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Preface

The principal aims of this monograph are (i) to serve as an introduction and a
guide to the basic principles and the analysis of collocation methods for a broad
range of functional equations, including initial-value problems for ordinary
and delay differential equations, and Volterra integral and integro-differential
equations; (ii) to describe the current ‘state of the art’ of the field; (iii) to
make the reader aware of the many (often very challenging) problems that
remain open and which represent a rich source for future research; and (iv) to
show, by means of the annotated list of references and the Notes at the end of
each chapter, that Volterra equations are not simply an ‘isolated’ small class of
functional equations but that they play an (increasingly) important – and often
unexpected! – role in time-dependent PDEs, boundary integral equations, and
in many other areas of analysis and applications.

The book can be divided in a natural way into four parts:

� In Part I we focus on collocation methods, mostly in piecewise polyno-
mial spaces, for first-kind and second-kind Volterra integral equations (VIEs,
Chapter 2), and Volterra integro-differential equations (Chapter 3) possess-
ing smooth solutions: here, the regularity of the solution on the interval of
integration essentially coincides with that of the given data. This situation is
similar to the one encountered in initial-value problems for ordinary differ-
ential equations. Hence, Chapter 1 serves as an introduction to collocation
methods applied to initial-value problems for ODEs: this will allow us to
acquire an appreciation of the richness of these methods and their analysis
for more general functional equations encountered in subsequent chapters
of this book.

� Part II deals with Volterra integral and integro-differential equations contain-
ing delay arguments. For non-vanishing delays (Chapter 4), smooth data will
in general no longer lead to solutions with comparable regularity on the entire
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interval of integration, and hence optimal orders of convergence in colloca-
tion approximations comparable to those seen in the previous chapters can
only be attained by a careful choice of the underlying meshes. For equations
with (vanishing) proportional delays (Chapter 5) the situation is completely
different. Here, the solution inherits the regularity of the given data, but on
uniform meshes the analysis of the attainable order of superconvergence is
much more complex, due to the ‘overlap’ between the collocation points
and their images under the given delay function. This is not yet completely
understood, and a number of problems remain open.

� In Part III we study collocation methods for Volterra integral equations
(Chapter 6) and integro-differential equations (Chapter 7) with weakly sin-
gular kernels. The presence of these kernel singularities gives rise to a sin-
gular behaviour (different in nature from the non-smooth behaviour encoun-
tered in Chapter 4) of the solutions at the initial point of the interval of in-
tegration, and at the primary discontinuity points if there is a non-vanishing
delay: typically, the first- or second-order derivatives of the solutions, or
(in the case of first-kind Volterra integral equations) the solution itself, are
unbounded at these points. Thus, a decrease in the order of convergence
can only be avoided either by introducing suitably graded meshes, or by
switching to appropriate non-polynomial spline spaces, reflecting the nature
of this singular behaviour. This insight is then combined with results gained
in Chapter 4 when turning, at the end of Chapters 6 and 7, to collocation
methods for Volterra equations possessing weakly singular kernels and delay
arguments.

� In Part IV (Chapters 8 and 9) we shall have reached the current ‘frontier’ in
the analysis of collocation methods when considering their use for solving
integral-algebraic equations (IAEs, which may be viewed as differential-
algebraic equations (DAEs) with memory terms, or as ‘abstract’ DAEs in an
infinite-dimensional setting) and singularly perturbed Volterra integral and
integro-differential equations. It is known from the numerical analysis of
DAEs that the ‘direct’ application of collocation (even for index-1 problems)
will in general not yield the ‘expected’ convergence (and stability) behaviour
since very often the given problem is not ‘numerically well formulated’. But
while this is now well understood for DAEs, we have a far way to go when
analysing collocation methods for suitably reformulated IAEs. Thus, much
of Chapter 8 consists of a look into the future. Chapter 9 adds some additional
dimensions to this outlook: it points to a number of – to me – promising and
important directions of research that may contain the keys to obtaining deeper
insight into a number of the open problems we met in previous chapters.
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It will become apparent that the number of unanswered questions and open
problems becomes larger as we move through the chapters. For example, the
analysis of asymptotic stability of collocation solutions for most classes of
Volterra integral and functional differential equations is still in its infancy (I
believe that relatively little essential progress has been made since Pieter van
der Houwen and I wrote down a similar observation in the preface of our 1986
book), and this lack of progress and new results is reflected in the fact that
the present monograph deals with this topic only peripherally. It has also be-
come clear from recent advances in the analysis of the asymptotic properties
of numerical solutions to ordinary differential equations (Hairer and Wanner
(1996)), dynamical systems (Stuart and Humphries (1996)), and delay dif-
ferential equations (Bellen and Zennaro (2003)), that the study of the anal-
ogous properties of collocation methods for more general functional differ-
ential and integral equations will eventually have to be treated in a separate
monograph.

Most chapters begin with a section reviewing the relevant elementary theory
of the class of equations to be discretised by collocation. It goes without saying
that a thorough understanding of the theoretical aspects of a given functional
equation is imperative since a successful analysis of its discretisation will often
be inspired, and thus helped along, by insight into the essential features in the
analysis of the given equation and the corresponding discrete analogue derived
by collocation.

At the end of each chapter the reader will find exercises and extensive notes.
The Exercises range from ‘hands-on’ problems (intended to illustrate and com-
plement the theory of the respective chapter) to research topics of various degree
of difficulty, and these will often include important unsolved problems. The pur-
pose of the Notes is twofold: they contain remarks complementing the contents
of the given chapter (giving, e.g., the sources of original results), and they point
out papers on related topics not treated in the book.

The list of References tries to be representative, without being exhaustive,
of the developments in the research on collocation methods over the last 80
years or so. Moreover, it includes many papers on the analysis and application
of collocation methods to types of functional equations not treated in this book.
The intent of these references is to guide the reader to work that describes
results and mathematical techniques whose analogues and application are, in my
view, of potential interest for Volterra integral and related functional differential
equations, and they may thus yield the motivation for future research work. In
order to make this extensive bibliography more useful and give it a certain
guiding role, many of its items have been annotated, so as to enhance the Notes
given at the end of each chapter: the brief comments are either cross-references
to related work, give an idea of the main content of a paper, or point to books and
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survey articles containing large bibliographies complementing the one given in
this monograph.

As mentioned above, the bibliography lists also many papers and books
dealing with topics where exciting work is currently being carried but which,
due to limitations of space (and lack of expertise on my part) are not included in
this book. Among these topics are spectral and pseudo-spectral methods (which
appear to be very promising for Volterra equations but whose theory remains to
be developed); sequential (collocation based) regularisation methods for first-
kind VIEs; the numerical treatment of Volterra equations occurring in control
theory; and a posteriori error estimation and the design of adaptive collocation
methods (especially for problems with non-smooth solutions). I hope that these
additional references, while not directly relevant to the text of the monograph,
and the accompanying notes will encourage the reader to have a closer look at
these important topics.

This monograph is intended for researchers in numerical and applied analy-
sis, for ‘users’ of collocation methods in the physical sciences and in engineer-
ing, and as an introduction to collocation methods for senior undergraduate and
graduate students.

Since the exercise section of each chapter contains a rich list of open prob-
lems, the book may also serve as a source of topics for M.Sc. and Ph.D. theses.

Prerequisites: Senior-level courses in linear algebra, the theory of ordinary
differential equations, and numerical analysis (especially numerical quadrature
and the numerical solution of ODEs). A knowledge of elementary functional
analysis will prove helpful in Chapter 8.
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1

The collocation method for ODEs:
an introduction

A collocation solution uh to a functional equation (for example an ordinary
differential equation or a Volterra integral equation) on an interval I is an
element from some finite-dimensional function space (the collocation space)
which satisfies the equation on an appropriate finite subset of points in I (the
set of collocation points) whose cardinality essentially matches the dimension
of the collocation space. If initial (or boundary) conditions are present then uh

will usually be required to fulfil these conditions, too.
The use of polynomial or piecewise polynomial collocation spaces for the

approximate solution of boundary-value problems has its origin in the 1930s.
For initial-value problems in ordinary differential equations such collocation
methods were first studied systematically in the late 1960s: it was then shown
that collocation in continuous piecewise polynomial spaces leads to an impor-
tant class of implicit (high-order) Runge–Kutta methods.

1.1 Piecewise polynomial collocation for ODEs

1.1.1 Collocation-based implicit Runge–Kutta methods

Consider the initial-value problem

y′(t) = f (t, y(t)), t ∈ I := [0, T ], y(0) = y0, (1.1.1)

and assume that the (Lipschitz-) continuous function f : I × � ⊂ IR → IR is
such that (1.1.1) possesses a unique solution y ∈ C1(I ) for all y0 ∈ �. Let

Ih := {tn : 0 = t0 < t1 < . . . < tN = T }
be a given (not necessarily uniform) mesh on I , and set σn := (tn, tn+1], σ̄n :=
[tn, tn+1], with hn := tn+1 − tn (n = 0, 1, . . . , N − 1). The quantity

1



2 1 The collocation method for ODEs: an introduction

h := max{hn : 0 ≤ n ≤ N − 1} will be called the diameter of the mesh
Ih ; in the context of time-stepping we will also refer to h as the stepsize. Note
that we have, in rigorous notation,

tn = t (N )
n , σn := σ (N )

n , hn = h(N )
n (n = 0, 1, . . . , N − 1), and h = h(N ).

However, we will usually suppress this dependence on N , the number of subin-
tervals corresponding to a given mesh Ih , except occasionally in the conver-
gence analyses where N → ∞, h = h(N ) → 0, so that Nh(N ) remains uni-
formly bounded.

The solution y of the initial-value problem (1.1.1) will be approximated by
an element uh of the piecewise polynomial space

S(0)
m (Ih) := {v ∈ C(I ) : v|σ̄n ∈ πm (0 ≤ n ≤ N − 1)}, (1.1.2)

where πm denotes the space of all (real) polynomials of degree not exceeding
m. It is readily verified that S(0)

m (Ih) is a linear space whose dimension is

dim S(0)
m (Ih) = Nm + 1

(a description of more general piecewise polynomial spaces will be given in
Section 2.2.1). This approximation uh will be found by collocation; that is, by
requiring that uh satisfy the given differential equation on a given suitable finite
subset Xh of I , and coincide with the exact solution y at the initial point t = 0.
It is clear that the cardinality of Xh , the set of collocation points, will have to
be equal to Nm, and the obvious choice of Xh is to place m distinct collocation
points in each of the N subintervals σ̄n . To be more precise, let Xh be given by

Xh := {t = tn + ci hn : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}. (1.1.3)

For a given mesh Ih , the collocation parameters {ci } completely determine Xh .
Its cardinality is

|Xh |
=

{
Nm if 0 < c1 < . . . < cm ≤1 (or 0 ≤ c1 < . . . < cm < 1),
N (m − 1) + 1 if 0 = c1 < c2 < . . . < cm = 1 (m ≥ 2).

The collocation solution uh ∈ S(0)
m (Ih) for (1.1.1) is defined by the collocation

equation

u′
h(t) = f (t, uh(t)), t ∈ Xh, uh(0) = y(0) = y0. (1.1.4)

If uh corresponds to a set of collocation points with c1 = 0 and cm = 1 (m ≥ 2),
it lies (if it exists on I ) in the smoother space S(0)

m (Ih) ∩ C1(I ) =: S(1)
m (Ih) of

dimension N (m − 1) + 2 whenever the given function f in (1.1.1) is contin-
uous. This follows readily by considering the collocation equation (1.1.4) at
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t = tn−1 + cmhn−1 =: t−
n and at t = tn + c1hn =: t+

n : taking the difference and
using the continuity of f leads to

u′
h(t+

n ) − u′
h(t−

n ) = 0, n = 1, . . . , N − 1,

and this is equivalent to u′
h being continuous at t = tn .

In order to obtain more insight into this piecewise polynomial collocation
method, and to exhibit its recursive nature, we now derive the computational
form of (1.1.4). This will reveal that the collocation equation (1.1.4) represents
the stage equations of an m-stage continuous implicit Runge–Kutta method for
the initial-value problem (1.1.1) (compare also the original papers by Guillou
and Soulé (1969), Wright (1970), or the book by Hairer, Nørsett and Wanner
(1993).

Here, and in subsequent chapters of the book, it will be convenient (and
natural) to work with the local Lagrange basis representations of uh . Since
u′

h |σn ∈ πm−1, we have

u′
h(tn + vhn) =

m∑
j=1

L j (v)Yn, j , v ∈ (0, 1], Yn, j := u′
h(tn + c j hn), (1.1.5)

where the polynomials

L j (v) :=
m∏

k 	= j

v − ck

c j − ck
( j = 1, . . . , m),

denote the Lagrange fundamental polynomials with respect to the (distinct)
collocation parameters {ci }. Setting yn := uh(tn) and

β j (v) :=
∫ v

0
L j (s)ds ( j = 1, . . . , m),

we obtain from (1.1.5) the local representation of uh ∈ S(0)
m (Ih) on σ̄n , namely

uh(tn + vhn) = yn + hn

m∑
j=1

β j (v)Yn, j , v ∈ [0, 1]. (1.1.6)

The unknown (derivative) approximations Yn,i (i = 1, . . . , m) in (1.1.6) are
defined by the solution of a system of (generally nonlinear) algebraic equations
obtained by setting t = tn,i := tn + ci hn in the collocation equation (1.1.4) and
employing the local representations (1.1.5) and (1.1.6). This system is

Yn,i = f

(
tn,i , yn + hn

m∑
j=1

ai, j Yn, j

)
, (i = 1, . . . , m), (1.1.7)

where we have defined ai, j := β j (ci ).
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We see that the equations (1.1.6) and (1.1.7) define, as asserted above, a
continuous implicit Runge–Kutta (CIRK) method for the initial-value prob-
lem (1.1.1): its m stage values Yn,i are given by the solution of the nonlinear
algebraic systems (1.1.7), and (1.1.6) defines the approximation uh for each
t ∈ σ̄n (n = 0, 1, . . . , N − 1). This local representation may be viewed as the
natural interpolant in πm on σ̄n for the data {(tn, yn), (tn,i , Yn,i ) (i = 1, . . . , m)}.

It thus follows that such a continuous implicit RK method contains an em-
bedded ‘classical’ (discrete) m-stage implicit Runge–Kutta method for (1.1.1):
it corresponds to (1.1.6) with v = 1,

yn+1 := uh(tn + hn) = yn + hn

m∑
j=1

b j Yn, j (n = 0, 1, . . . , N − 1), (1.1.8)

with b j := β j (1), and the stage equations (1.1.7).
If m ≥ 2 and if the collocation parameters {ci } are such that

0 = c1 < c2 < . . . < cm = 1,

then tn,1 = tn implies Yn,1 = f (tn, yn), and the CIRK method (1.1.6), (1.1.7)
reduces to

uh(tn + vhn) = yn + hnβ1(v) f (tn, yn) + hn

m∑
j=2

β j (v)Yn, j , v ∈ [0, 1],

(1.1.9)
and

Yn,i = f

(
tn,i , yn + hnai,1 f (tn, yn) + hn

m∑
j=2

ai, j Yn, j

)
(i = 2, . . . , m).

(1.1.10)
Moreover, since cm = 1, we obtain

Yn,m = f

(
tn+1, yn + hnb1 f (tn, yn) + hn

m∑
j=2

b j Yn, j

)
.

Example 1.1.1 uh ∈ S(0)
1 (Ih) (m = 1), with c1 =: θ ∈ [0, 1]:

Since L1(v) ≡ 1 and β1(v) = v (hence a1,1 = θ and b1 = 1), (1.1.6) reduces to

uh(tn + vhn) = yn + hnvYn,1, v ∈ [0, 1],

with Yn,1 defined by the solution of

Yn,1 = f (tn + θhn, yn + hnθYn,1).

These equations may be combined into a single one (by setting v = 1 in the
expression for uh(tn + vhn) and solving for Yn,1); the resulting method is the
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continuous θ -method for (1.1.1),

uh(tn + vhn) = (1 − v)yn + vyn+1, v ∈ [0, 1].

where

yn+1 = yn + hn f (tn + θhn, (1 − θ )yn + θyn+1)

implicitly defines yn+1.

This family of continuous one-stage Runge–Kutta methods contains the
continuous implicit Euler method (θ = 1) and the continuous implicit mid-
point method (θ = 1/2). For θ = 0 we obtain the continuous explicit Euler
method. Due to its importance in the time-stepping of (spatially) semidiscre-
tised parabolic PDEs (or PVIDEs) we state the continuous implicit midpoint
method for the linear ODE

y′(t) = a(t)y(t) + g(t), t ∈ I,

with a and g in C(I ). Setting θ = 1/2 we obtain

yn+1 = yn + hn

2
a(tn + hn/2)[yn + yn+1] + g(tn + hn/2)(n = 0, 1, . . . , N −1),

or, using the notation tn+1/2 := tn + hn/2,(
1 − hn

2
a(tn+1/2)

)
yn+1 =

(
1 + hn

2
a(tn+1/2)

)
yn + hng(tn+1/2). (1.1.11)

Observe the difference between (1.1.11) and the continuous trapezoidal
method: the latter corresponds to collocation in the space S(0)

2 (Ih), with
c1 = 0, c2 = 1 being the Lobatto points; it is described in Example 1.1.2 below
(m = 2).

Example 1.1.2 uh ∈ S(0)
2 (Ih) (m = 2), with 0 ≤ c1 < c2 ≤ 1:

It follows from L1(v) = (c2 − v)/(c2 − c1), L2(v) = (v − c1)/(c2 − c1) that

β1(v) = v(2c2 − v)

2(c2 − c1)
, β2(v) = v(v − 2c1)

2(c2 − c1)
.

Hence, b1 = β1(1) = (2c2−1)/(2(c2−c1)), b2 = β2(1) = (1−2c1)/(2(c2−c1)).
The resulting continuous two-stage Runge–Kutta method thus reads:

uh(tn + vhn) = yn + hn{β1(v)Yn,1 + β2(v)Yn,2}, v ∈ [0, 1],

where

Yn,i = f (tn,i , yn + hn{ai,1Yn,1 + ai,2Yn,2}) (i = 1, 2).
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We present three important special cases:

� Gauss points c1 = (3 − √
3)/6, c2 = (3 + √

3)/6:
We obtain

β1(v) = v(1 +
√

3(1 − v))/2, β2(v) = v(1 −
√

3(1 − v))/2,

and

A := [
ai, j

] =
[

1
4

1
4 −

√
3

6

1
4 +

√
3

6
1
4

]
, b =

[
b1

b2

]
=

[
1
2
1
2

]
.

The discrete version of this two-stage implicit Runge–Kutta–Gauss method
(of order 4; cf. Section 1.1.3, Corollary 1.1.6) was introduced by Hammer and
Hollingsworth (1955) and generalised by Kuntzmann in 1961 (see Ceschino
and Kuntzmann (1963) for details).

� Radau II points c1 = 1/3, c2 = 1:
Here, we have

β1(v) = 3v(2 − v)/4, β2(v) = 3v(v − 2/3)/4,

and

A =
[

5
12 − 1

12
3
4

1
4

]
, b =

[
3
4
1
4

]
.

This represents the continuous two-stage Radau IIA method.
� Lobatto points c1 = 0, c2 = 1 (=⇒ uh ∈ S(1)

2 (Ih)):
The continuous weights are now

β1(v) = v(2 − v)/2, β2(v) = v2/2,

and hence

A =
[

0 0
1
2

1
2

]
, b =

[
1
2
1
2

]
.

This yields the continuous trapezoidal method: it can be written in the form

uh(tn + vhn) = yn + hn

2

(
v(2 − v)Yn,1 + v2Yn,2

)
, v ∈ [0, 1],

with

Yn,1 = f (tn, yn), Yn,2 = f (tn+1, yn + (hn/2){Yn,1 + Yn,2}).
(See also Hammer and Hollingsworth (1955).)
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For the linear ODE y′(t) = a(t)y(t) + g(t) the stage equation assumes the
form(
1 − hna(tn+1)

2

)
Yn,2 =

(
1+ hna(tn)

2

)
a(tn+1)yn + hna(tn+1)

2
g(tn) + g)tn+1).

Remark Other examples of (discrete) RK methods based on collocation, in-
cluding methods corresponding to the Radau I points (c1 = 0, c2 = 2/3 when
m = 2), may be found for example in the books by Butcher (1987, 2003),
Lambert (1991), and Hairer and Wanner (1996).

There is an alternative way to formulate the above continuous implicit
Runge–Kutta method (1.1.6),(1.1.7). Setting

Un,i := yn + hn

m∑
j=1

ai, j Yn, j (i = 1, . . . , m),

we obtain the symmetric formulation

uh(tn + vhn) = yn + hn

m∑
j=1

β j (v) f (tn, j , Un, j ), v ∈ [0, 1], (1.1.12)

with

Un,i = yn + hn

m∑
j=1

ai, j f (tn, j , Un, j ) (i = 1, . . . , m). (1.1.13)

Here, the unknown stage values Un,i represent aproximations to the solution
y at the collocation points tn,i (i = 1, . . . , m). For v = 1, (1.1.12) yields the
symmetric analogue of (1.1.8),

yn+1 = yn + hn

m∑
j=1

b j f (tn, j , Un, j ); (1.1.14)

if cm = 1 we have yn+1 = Un,m .

For later reference, and to introduce notation needed later, we also write down
the above CIRK method (1.1.6), (1.1.7) for the linear initial-value problem

y′(t) = a(t)y(t), t ∈ I, y(0) = y0,

where a ∈ C(I ). Setting A := (ai, j ) ∈ L(IRm), β(v) := (β1(v), . . . , βm(v))T ∈
IRm , and Yn := (Yn,1, . . . , Yn,m)T ∈ IRm , the CIRK method can be written in
the form

uh(tn + vhn) = yn + hnβ
T (v)Yn, v ∈ [0, 1], (1.1.15)

with Yn given by the solution of the linear algebraic system

[Im − hn An]Yn = diag(a(tn,i ))e · yn (n = 0, 1, . . . , N − 1). (1.1.16)
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Here, Im denotes the identity in L(IRm), An := diag(a(tn,i ) )A, and e :=
(1, . . . , 1)T ∈ IR m .

The derivation of the analogue of (1.1.15),(1.1.16) corresponding to the sym-
metric formulation (1.1.12),(1.1.13) of the CIRK method is left as an exercise
(Exercise 1.10.1).

The classical conditions for the existence and uniqueness of a solution y ∈
C1(I ) to the initial-value problem (1.1.1) (see, e.g. Hairer, Nørsett and Wanner
(1993, Sections I.7–I.9) assure the existence and uniqueness of the collocation
solution uh ∈ S(0)

m (Ih) to (1.1.1) or its linear counterpart for all h := max(n) hn

in some interval (0, h̄), provided that fy is bounded (or a and g lie in C(I )
when the ODE is y′ = a(t)y + g(t)). In the latter case, the existence of such
an h̄ follows from the Neumann Lemma which states that (Im − hn An)−1 is
uniformly bounded for all sufficiently small hn > 0, so that hn||An|| < 1 for
some (operator) matrix norm. We shall give the precise formulation of this
result in in Chapter 3 (Theorem 3.2.1) for VIDEs which contains the version
for ODEs as a special case.

It is clear that not every implicit Runge–Kutta method can be obtained by
collocation as described above (see, for example, Nørsett (1980), Hairer, Nørsett
and Wanner (1993)): a necessary condition is clearly that the parameters ci

are distinct. The framework of perturbed collocation (Nørsett (1980), Nørsett
and Wanner (1981); see also Section 1.2 below) encompasses all implicit)
Runge–Kutta methods. There is also an elegant connection between continuous
Runge–Kutta methods and discontinuous collocation methods (Hairer, Lubich
and Wanner (2002, pp. 31–34)). The following result (which can be found in
Hairer, Nørsett and Wanner (1993, p. 212)) characterises those implicit Runge–
Kutta methods that are collocation-based.

Theorem 1.1.1 The m-stage implicit Runge–Kutta method defined by (1.1.7)
and (1.1.8), with distinct parameters ci and order at least m, can be obtained
by collocation in S(0)

m (Ih), as described above, if and only if the relations

m∑
j=1

ai, j c
ν−1
j = cν

i

ν
, ν = 1, . . . , m (i = 1, . . . , m),

hold.

The proof of this result is left as an exercise. Recall that a (discrete) Runge–
Kutta method for (1.1.1) is said to be of order p if

|y(t1) − y1| ≤ Ch p
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for all sufficiently smooth f = f (t, y) in (1.1.1). The next section will reveal
that the collocation solution uh ∈ S(0)

m (Ih) to (1.1.1) is of global order p ≥ m
on I .

1.1.2 Convergence and global order on I

Suppose that the collocation equation (1.1.4) defines a unique collocation so-
lution uh ∈ S(0)

m (Ih) for all sufficiently small mesh diameters h ∈ (0, h̄). What
are the optimal values of pν and p∗

ν (ν = 0, 1) in the (global and local) error
estimates

||y(ν) − u(ν)
h ||∞ := sup

t∈I
|y(ν)(t) − u(ν)

h (t)| ≤ Cνh pν (1.1.17)

and

||y(ν) − u(ν)
h ||h,∞ := max

t∈Ih\{0}
|y(ν)(t) − u(ν)

h (t)| ≤ Cνh p∗
ν , (1.1.18)

respectively? These values depend of course on the regularity of the solution
y of the initial-value problem (1.1.1). For arbitrarily regular y we will refer
to the largest attainable pν (ν = 0, 1) as the (optimal) orders of global (super-)
convergence (on the interval I ) of uh and u′

h , respectively, and the corresponding
p∗

ν will be called the (optimal) orders of local superconvergence (at the mesh
points Ih \ {0}) of uh and u′

h , provided p∗
ν > pν .

In order to introduce the essential ideas underlying the answer to the above
question regarding the optimal orders, we first present the result on global
convergence for the linear initial-value problem

y′(t) = a(t)y(t) + g(t), t ∈ I, y(0) = y0. (1.1.19)

Theorem 1.1.2 Assume that

(a) the given functions in (1.1.19) satisfy a, g ∈ Cm(I );
(b) the collocation solution uh ∈ S(0)

m (Ih) for the initial-value problem (1.1.19)
corresponding to the collocation points Xh is defined by (1.1.15), (1.1.16);

(c) h̄ > 0 is such that, for any h ∈ (0, h̄), each of the linear systems (1.1.16)
has a unique solution.

Then the estimates

||y − uh ||∞ := max
t∈I

|y(t) − uh(t)| ≤ C0||y(m+1)||∞hm (1.1.20)

and

||y′ − u′
h ||∞ := sup

t∈I
|y′(t) − u′

h(t)| ≤ C1||y(m+1)||∞hm, (1.1.21)
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hold for h ∈ (0, h̄) and any Xh with 0 ≤ c1 < . . . < cm ≤ 1. The constants Cν

depend on the collocation parameters {ci } but are independent of h, and the
exponent m of h cannot in general be replaced by m + 1.

Proof Assumption (a) implies that y ∈ Cm+1(I ) and hence y′ ∈ Cm(I ). Thus
we have, using Peano’s Theorem (Corollary 1.8.2 with d = m) for y′ on σ̄n ,

y′(tn + vhn) =
m∑

j=1

L j (v)Zn, j + hm
n R(1)

m+1,n(v), v ∈ [0, 1], (1.1.22)

with Zn, j := y′(tn, j ). The Peano remainder term and Peano kernel are given by

R(1)
m+1,n(v) :=

∫ 1

0
Km(v, z)y(m+1)(tn + zhn)dz, (1.1.23)

and

Km(v, z) := 1

(m − 1)!

{
(v − z)m−1

+ −
m∑

k=1

Lk(v)(ck − z)m−1
+

}
, v ∈ [0, 1].

Integration of (1.1.22) leads to

y(tn + vhn) = y(tn) + hn

m∑
j=1

β j (v)Zn, j + hm+1
n Rm+1,n(v), v ∈ [0, 1],

(1.1.24)
where

Rm+1,n(v) :=
∫ v

0
R(1)

m+1,n(s)ds

(see also Exercise 1.10.3).

Recalling the local representation (1.1.6) of the collocation solution uh on
σ̄n , and setting En, j := Zn, j − Yn, j , the collocation error eh := y − uh on σ̄n

may be written as

eh(tn + vhn) = eh(tn) + hn

m∑
j=1

β j (v)En, j + hm+1
n Rm+1,n(v), v ∈ [0, 1],

(1.1.25)
while

e′
h(tn + vhn) =

m∑
j=1

L j (v)En, j + hm
n R(1)

m+1,n(v), v ∈ (0, 1], (1.1.26)
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with e′
h(tn,i ) = En,i + hm

n R(1)
m+1,n(ci ). Since eh is continuous in I , and hence at

the mesh points, we also have the relation

eh(tn) = eh(tn−1 + hn−1) = eh(tn−1) + hn−1

m∑
j=1

b jEn−1, j + hm+1
n−1 Rm+1,n−1(1)

(n = 1, . . . , N − 1), with b j := β j (1). The fact that eh(0) = 0 yields

eh(tn) =
n−1∑
�=0

h�

m∑
j=1

b jE�, j +
n−1∑
�=0

hm+1
� Rm+1,�(1) (n = 1, . . . , N − 1).

(1.1.27)

We are now ready to establish the estimates in Theorem 1.1.2: since the collo-
cation error satisfies

e′
h(tn,i ) = a(tn,i )eh(tn,i ), i = 1, . . . , m (0 ≤ n ≤ N − 1), (1.1.28)

with eh(tn) = eh(tn−1 + hn−1), it follows from (1.1.25) and (1.1.26) that

En,i = a(tn,i )

(
eh(tn) + hn

m∑
j=1

β j (ci )En, j + hm+1
n Rm+1,n(ci )

)
− hm

n R(1)
m+1,n(ci )

(i = 1, . . . , m). Recalling that β j (ci ) = ai, j and employing (1.2.24), this be-
comes

En,i = a(tn,i )

(
n−1∑
�=0

h�

m∑
j=1

b jE�, j + hn

m∑
j=1

ai, jEn, j

)
+ ρn,i (i = 1, . . . , m),

(1.1.29)
where the remainder terms ρn,i are defined by

ρn,i := a(tn,i )

{
n−1∑
�=0

hm+1
� Rm+1,�(1) + hm+1

n Rm+1,n(ci )

}
− hm

n R(1)
m+1,n(ci ).

(1.1.30)
Set b := (b1, . . . , bm)T and defineρn := (ρn,1, . . . , ρn,m)T . It then follows from
the above equation (1.2.29) that En := (En,1, . . . , En,m)T is the solution of the
linear algebraic system

[Im − hn An]En = diag(a(tn,i ))e
n−1∑
�=0

h�bT E� + ρn, (1.1.31)

where, as in (1.1.16), we have set An := diag(a(tn,i ))A. This system has the
same structure (due to the choice of the local representation for y′ and y) as the
linear system (1.1.16) defining Yn in the representation (1.1.15), except that
now the role of yn is assumed by eh(tn) (which can be expressed in the recursive
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form (1.1.27)). The matrices on the left-hand side of (1.1.31) coincide with those
in (1.1.16); hence, all have bounded inverses whenever h = max(n) hn ∈ (0, h̄),
for some h̄ > 0. That is, there exists a constant D0 < ∞ so that the uniform
bound

||(Im − hn An)−1||1 ≤ D0 (n = 0, 1, . . . , N − 1)

holds. Here, for B ∈ L(IRm), ||B||1 denotes the matrix (operator) norm induced
by the �1-norm in IRm . If we define

A0 := ||a||∞, Mm+1 := ||y(m+1)||∞, km := max
v∈[0,1]

∫ 1

0
|Km(v, z)|dz,

then, by (1.1.30),

||ρn||1 ≤ A0[km Mm+1m
n−1∑
�=0

hm+1
� + hm+1

n km Mm+1] + hm
n km Mm+1 ≤ρMm+1hm,

with obvious meaning of ρ. Using the above estimates in equation (1.1.31)
(solved for En) and defining b̄ := max( j) |b j |, we readily see that

||En||1 ≤ D0

(
A0mb̄

n−1∑
�=0

h�||E�||1 + ρMm+1hm

)
,

which we write as

||En||1 ≤ γ0

n−1∑
�=0

h�||E�||1 + γ1 Mm+1hm (n = 0, 1, . . . , N − 1), (1.1.32)

where the meaning of the positive constants γ0 and γ1 is again clear.
The inequality (1.1.32) is a generalised discrete Gronwall inequality (see

Corollary 2.1.18)); its solution is bounded by

||En||1 ≤ γ1 Mm+1hm exp

(
γ0

n−1∑
�=0

h�

)

≤ γ1 Mm+1hm exp(γ0T ) (n = 0, 1, . . . , N − 1).

In other words, there exists a constant B < ∞ so that, uniformly for h ∈ (0, h̄),

||En||1 ≤ B Mm+1hm for n = 0, 1, . . . , N − 1.

Recall now the local representations (1.1.25) and (1.1.26) for e′
h and eh : for

n = 0, 1, . . . , N − 1 and v ∈ [0, 1], they yield the estimates

|e′
h(tn + vhn)| ≤ 
m ||En||1 + hm Mm+1km ≤ 
m B Mm+1hm + Mm+1kmhm

=: C1 Mm+1hm,
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and

|eh(tn + vhn)| ≤ |eh(tn)| + hβ̄||En||1 + hm+1 Mm+1km

≤ b̄
n−1∑
�=0

h�||E�||1 + hm Mm+1km T + hβ̄||En||1 + hm Mm+1km T

≤ (b̄BT + km T + β̄ Bh + kmh)Mm+1hm

=: C0 Mm+1hm,

where 
m := max( j) ||L j ||∞ and β̄ := max( j) ||β j ||∞. This establishes the de-
sired estimates of Theorem 1.1.2. We note that Guillou and Soulé (1969) derived
these estimates for the first subinterval σ̄0.

We have presented the proof of the global convergence estimates in Theorem
1.1.2 in some detail because, as we shall soon see, analogous global collocation
error estimates for various types of Volterra integral and integro-differential
equations can be established along very similar lines. In other words, the key to
the proof of such results consists in a suitable local representation (on σn) of the
solution y of the given integral or integro-differential equation which reflects
(i) the regularity of y, and (ii) the choice of the (local) basis employed in the
representation of the piecewise polynomial collocation solution uh . Since the
latter is most conveniently chosen to be the local Lagrange basis, the Peano
Kernel Theorem is clearly the appropriate tool for the local representation of y
(or y′), especially if the exact solution does not have full regularity.

Remark The above proof reveals that we could have stated Theorem 1.1.2
under weaker regularity conditions on y: if assumption (a) is replaced by a, g ∈
Cd (I ), with 1 ≤ d < m (implying y ∈ Cd+1(I )), then its proof can be trivially
modified to show that now uh ∈ S(0)

m (Ih) satisfies only

||y(ν) − u(ν)
h ||∞ ≤ Cν ||y(d+1)||∞hd (ν = 0, 1). (1.1.33)

Compare also Theorem 3.2.4 which contains the above result as a special case.

For certain choices of the collocation parameters {ci } we obtain global su-
perconvergence on I ; that is, the estimate (1.1.20) holds with m replaced by
m + 1, as is made precise in the following theorem.

Theorem 1.1.3 Assume that the assumptions (b), (c) of Theorem 1.1.2 hold
and let (a) be replaced by a, g ∈ Cd (I ), with d ≥ m + 1. If the m collocation
parameters {ci } are subject to the orthogonality condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0, (1.1.34)
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then the corresponding collocation solution uh ∈ S(0)
m (Ih) satisfies, for h ∈

(0, h̄),

||y − uh ||∞ ≤ Chm+1, (1.1.35)

with C depending on the collocation parameters and on ||y(m+2)||∞ but not
on h. The exponent m + 1 cannot, in general, be replaced by m + 2. For the
derivative u′

h we attain only ||y′ − u′
h ||∞ = O(hm).

We remind the reader that the orthogonality condition (1.1.34) implies that
the interpolatory m-point quadrature formula over [0, 1] whose abscissas are
the collocation parameters ci possesses the higher degree of precision of (at
least) m, while for arbitrary {ci } the degree of precision is only m − 1 (see,
for example, Davis and Rabinowitz (1984), Atkinson (1989), or Plato (2002)).
This orthogonality condition is often written in the form

J0 =
∫ 1

0
Mm(s)ds = 0,

where (see also Lemma 1.1.12)

Mm(s) := 1

m!

m∏
i=1

(s − ci ), s ∈ [0, 1],

denotes the so-called collocation polynomial associated with the collocation
parameters {ci }.
Proof Let

δh(t) := −u′
h(t) + f (t, uh(t)), t ∈ I, (1.1.36)

denote the defect (or: residual) associated with the collocation solution uh ∈
S(0)

m (Ih) to the initial-value problem (1.1.1). By definition of the collocation
solution the defect δh vanishes on the set Xh :

δh(t) = 0 for all t ∈ Xh .

Moreover, the uniform convergence of uh and u′
h established in Theorem 1.1.2

implies the uniform boundedness (as h → 0) of δh on I , as well as that of its
derivatives of order not exceeding d (compare also Exercise 1.10.4).

Consider now the linear ODE (1.1.19): it follows from (1.1.36) that the
collocation error eh = y − uh satisfies the equation

δh(t) = e′
h(t) − a(t)eh(t), t ∈ I.
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Hence, using the estimates in Theorem 1.1.2 and the notation in its proof we
readily derive the estimate

||δh ||∞ ≤ C1||y(m+1)||∞hm + a0C0||y(m+1)||∞hm ≤ D1 Mm+1hm, (1.1.37)

and this holds for any choice of the {ci }. On the other hand, the collocation error
eh solves the initial-value problem

e′
h(t) = a(t)eh(t) + δh(t), t ∈ I, eh(0) = 0,

whose solution is given by

eh(t) = r (t, 0)eh(0) +
∫ t

0
r (t, s)δh(s)ds =

∫ t

0
r (t, s)δh(s)ds, t ∈ I.

(1.1.38)
The function r = r (t, s) denotes the ‘resolvent’ (or: resolvent kernel) of the
ODE (1.1.19)):

r (t, s) := exp

(∫ t

s
a(v)dv

)
, with r ∈ Cm+1(D),

where D := {(t, s) : 0 ≤ s ≤ t ≤ T }. For t = tn + vhn ∈ σ̄n the integral term
on the right-hand ide of (1.1.38) may be written as

∫ t

0
r (t, s)δh(s)ds =

n−1∑
�=0

h�

∫ 1

0
r (t, t� + sh�)δh(t� + sh�)ds

+ hn

∫ v

0
r (t, tn + shn)δh(tn + shn)ds

=:
n−1∑
�=0

h�

∫ 1

0
φn(t� + sh�)ds + hn

∫ v

0
φn(tn + shn)ds.

Suppose now that each of the integrals over [0, 1] is approximated by the
interpolatory m-point quadrature formula with abscissas {ci },
∫ 1

0
φn(t� + sh�)ds =

m∑
j=1

b jφn(t� + c j h�) + E (�)
n (v), v ∈ [0, 1] (� < n).

(1.1.39)
Here, terms E (�)

n (v) denote the quadrature errors induced by these quadrature
approximations. By assumption (1.1.34) each of these quadrature formulas has
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degree of precision m, and thus the Peano Theorem for quadrature (Corol-
lary 1.8.4, with d = m + 1, p = m) implies that the quadrature errors can be
bounded by

|E (�)
n (v)| ≤ Q�hm+1

� , v ∈ [0, 1] (� < n),

because the defect δh is in Cm+1 on each subinterval σn and has a bounded
derivative δ

(m+1)
h on σ̄n (see Exercise 1.10.4). This follows from (1.1.36), with

f (t, y) = a(t)y + g(t), and the assumed regularity of a and g (which is inher-
ited by r (t, s)). Due to the special choice of the quadrature abscissas, we have
φn(t� + c j h�) = 0, because δh(t) = 0 whenever t ∈ Xh . Hence, the equation
(1.1.38) reduces to

eh(tn + vhn) =
n−1∑
�=0

h�E (�)
n (v) + hn

∫ v

0
r (tn + vhn, tn + shn)δh(tn + shn)ds,

(1.1.40)
v ∈ [0, 1], 0 ≤ n ≤ N − 1. This leads to the estimate

|eh(tn + vhn)| ≤
n−1∑
�=0

h� Q�hm+1
� + hnr0||δh ||∞, (1.1.41)

and so, by (1.1.37) and with r0 := maxt∈I
∫ t

0 |r (t, s)|ds, to

|eh(tn + vhn)| ≤ hm+1 Q
N−1∑
�=0

h� + hr0 D1 Mm+1hm+1,

v ∈ [0, 1] (0 ≤ n ≤ N − 1).

The constant Q := max{Q� : 0 ≤ � < n ≤ N − 1} depends on ||y(m+2)||∞.
Since this is true uniformly in v and n, the assertion of Theorem 1.1.3 that
||eh ||∞ ≤ Chm+1 follows.

Remark In the above proof (cf. (1.1.38)) the representation of the collocation
error in terms of the resolvent r of the (homogeneous) ODE and the subsequent
quadrature argument already give an indication that a much higher order of
convergence may be attained at the mesh points t = tn (local superconvergence
on Ih). Details will be given in the next section, and it will be shown in Sections
2.2.5 and Section 3.2.4 that the principle underlying the analysis of the attainable
order of global and local superconvergence extends to Volterra integral and
integro-differential equations, as well as to Volterra functional equations with
non-vanishing delays (Chapter 4).
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1.1.3 Local superconvergence results on Ih

We observed in the proof of Theorem 1.1.3 on global superconvergence of the
collocation solution uh that there is a close link between the attainable (optimal)
order on I and the degree of precision of the m-point interpolatory quadrature
formula whose abscissas are the collocation parameters {ci }. The reason (cf.
(1.1.41) and (1.1.38)) that the order of global superconvergence cannot exceed
p = m + 1 is given by the fact that on I \ Xh the defect δh is in general only
O(hm). If, however, we restrict eh to the points of the mesh Ih then, by (1.1.40)
with v = 0, the inequality (1.1.41) reduces to

|eh(tn)| ≤
n−1∑
�=0

h� Q�hm+1
� , 1 ≤ n ≤ N , (1.1.42)

where Q� := max{|E (�)
n (v)| : v ∈ [0, 1]} (� < n). Since the exponent in hm+1

�

reflects the degree of precision of the quadrature formulas governed by (1.1.34),
we are able to replace these terms by hm+κ

� with 0 ≤ κ ≤ m, provided that the
collocation parameters {ci } satisfy the more general orthogonality condition

Jν :=
∫ 1

0
sν

m∏
i=1

(s − ci )ds = 0, ν = 0, . . . , κ − 1, (1.1.43)

with Jκ 	= 0, and the solution y has the appropriate regularity. This condition –
which says that the collocation polynomial Mm(s) is orthogonal with respect to
the polynomial space πκ−1 – implies that the m-point interpolatory quadrature
formula with the m distinct abscissas {ci } has degree of precision m + κ (see,
e.g. Davis and Rabinowitz (1984)). In other words, the quadrature argument
that formed the basis of the the proof of Theorem 1.1.3 now shows that 1.1.42
can be replaced by

|eh(tn)| ≤
n−1∑
�=0

h� Q�hm+κ
� ≤ hm+κ QT (h� ≤ h ∈ (0, h̄); κ ≤ m), (1.1.44)

uniformly for v ∈ [0, 1] and 1 ≤ n ≤ N . Thus we have

Theorem 1.1.4 Assume:

(a) The solution of the initial-value problem (1.1.1) lies in Cm+κ (I ), for some
κ with 1 ≤ κ ≤ m and value as specified in (b) below.

(b) The m distinct collocation parameters {ci } are chosen so that the general
orthogonality condition (1.1.43) holds, with Jκ 	= 0.
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Then, for all meshes Ih with h ∈ (0, h̄), the collocation solution uh ∈ S(0)
m (Ih)

corresponding to the collocation points Xh based on these {ci } satisfies

max{|y(t) − uh(t)| : t ∈ Ih} ≤ C0hm+κ , (1.1.45)

where C0 depends on the collocation parameters and on ||y(m+κ+1)||∞ but not
on h.
Moreover, if cm = 1, then

max{|y′(t) − u′
h(t)| : t ∈ Ih\{0}} = O(hm+κ ),

too. For cm < 1 we only have e′
h(tn) = O(hm) (n = 1, . . . , N ).

Proof For linear IVPs, f (t, y) = a(t)y + g(t), with a, g ∈ Cm+κ (I ), the proof
is obvious from the remarks preceding Theorem 1.1.3. Its extension to nonlinear
initial-value problems (1.1.1) will be studied in Section 1.1.4.

Corollary 1.1.5 For κ = m the (unique) set {ci } of collocation parameters
satifying the orthogonality conditions (1.1.43) is given by the Gauss (–Legendre)
points, i.e. the zeros of the (shifted) Legendre polynomial Pm(2s − 1), and for
these points we have

max{|y(t) − uh(t)| : t ∈ Ih} ≤ Ch2m,

while max{|y′(t) − u′
h(t)| : t ∈ Ih\{0} = O(hm) only.

Remark It was shown by Kuntzmann in 1961 (see Kuntzmann and Ceschino
(1963)) and by Butcher (1964) that ‘classical’ (discrete) m-stage implicit
Runge–Kutta–Gauss methods have order of convergence p = 2m (see also
Hammer and Hollingsworth (1955) for the case m = 2). The above result for
the corresponding continuous m-stage Runge–Kutta–Gauss methods was es-
tablished by Guillou and Soulé (1969) and by Wright (1970); see also the 1979
paper by Nørsett and Wanner, and the book by Hairer, Nørsett and Wanner
(1993).

In applications one is often interested in obtaining collocation solutions that
approximate the solution y and its derivative y′ on the mesh Ih with the same
(high) order. As we have shown above, this will not be true for collocation at
the Gauss points (for which cm < 1). This can be seen from the differentiated
form of (1.1.38) at t = tn ,

e′
h(tn) = r (tn, tn)δh(tn) +

∫ tn

0

∂r (tn, s)

∂t
δh(s)ds

with r (t, t) = 1: while the quadrature argument employed to establish (1.1.44)
can be aplied to the integral term, (1.1.37) shows that δh(tn) = O(hm) only
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unless tn (1 ≤ n ≤ N ) is a collocation point. In the linear case (1.1.19) it follows
from

e′
h(t) = a(t)eh(t) + δh(t), t ∈ Xh,

that the order of e′
h(t) matches the one of eh(t) at t = tn if and only if δh(tn) = 0;

that is, when cm = 1. (An analogous argument shows that this is also true for
nonlinear problems; see Section 1.1.4.) Thus, κ ≤ m − 1. This observation
yields the following two corollaries on ‘balanced’ optimal local superconver-
gence.

Corollary 1.1.6 Let κ = m − 1 and assume that the collocation parameters
{ci } are the Radau II points, that is, the zeros of Pm(2s − 1) − Pm−1(2s − 1).
Then the collocation solution uh ∈ S(0)

m (Ih) has the property that

max
t∈Ih\{0}

|e(ν)
h (t)| ≤ Cνh2m−1 (ν = 0, 1), (1.1.46)

for all meshes Ih with h ∈ (0, h̄).

If we consider smooth collocation solutions uh ∈ S(1)
m (Ih) (m ≥ 2), corre-

sponding to collocation parameters with c1 = 0 and cm = 1 (compare the re-
mark preceding Theorem 1.1.1), then the optimal local order cannot exceed
2(m − 1):

Corollary 1.1.7 Let the {ci } be the Lobatto points (κ = m − 2, with m ≥ 2),
given by the zeros of s(s − 1)P ′

m−1(2s − 1). Then the collocation error eh cor-
responding to the collocation solution uh ∈ S(1)

m (Ih) satisfies

max
t∈Ih\{0}

|e(ν)
h (t)| ≤ Cνh2(m−1) (ν = 0, 1) (1.1.47)

for all h ∈ (0, h̄).

The following section will reveal that all these superconvergence results
remain true for nonlinear initial-value problems.

1.1.4 Nonlinear initial-value problems

If the function f = f (t, y) describing the initial-value problem y′(t) =
f (t, y(t)) is such that the solution y exists uniquely on I and is in Cm+1(I ),
then the global convergence result of Theorem 1.1.2 remains valid for such
nonlinear equations: the role of a(tn,i ) in the error equation (1.1.28) is now
assumed by fy(tn,i , ·), where the second argument comes from the application
of the mean-value theorem (i.e. the linear version of Taylor’s Theorem). The
details of the proof are left as an exercise.
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In order to extend the superconvergence results of Theorems 1.1.3 and 1.1.4
to nonlinear initial-value problems (1.1.1) we may either employ a linearisation
argument in the equation for the collocation error,

e′
h(t) = f (t, y(t)) − { f (t, uh(t)) − δh(t)}, t ∈ I, (1.1.48)

where uh(t) = y(t) − eh(t), and then use a ‘perturbed’ counterpart of the re-
solven representation of (1.1.38); or we may resort to the nonlinear variation-
of-constants formula of Gröbner and Alekseev (see, e.g. Hairer, Nørsett and
Wanner (1993, pp. 96–97)). We will choose the first approach and then com-
ment briefly on the second one.

Assuming that fyy(t, y) is bounded for (t, y) ∈ I × �, we may write

f (t, y(t)) − f (t, y(t) − eh(t)) = fy(t, y(t))eh(t) − (1/2) fyy(t, w(t))e2
h(t),

where, by Taylor’s Theorem, w(t) := y(t) − θeh(t), θ ∈ (0, 1). Thus, the error
equation (1.1.48) assumes the form

e′
h(t) = a1(t)eh(t) + a2(t)e2

h(t) + δh(t), t ∈ I, eh(0) = 0, (1.1.49)

where a1(t) := fy(t, y(t)) and a2(t) := −(1/2) fyy(t, w(t)). Setting r1(t, s) :=
exp(

∫ t
s a1(v)ds), the solution of this perturbed linear initial-value problem is

given by

eh(t) =
∫ t

0
r1(t, s)

(
δh(s) + a2(s)e2

h(s)
)
ds, t ∈ I, (1.1.50)

in analogy to (1.1.38). Hence, recalling the quadrature argument of the proof of
Theorem 1.1.3 and the global error estimate of Theorem 1.1.2 we obtain, with
A2 := ||a2||∞,

|eh(tn)| ≤
n−1∑
�=0

h� Q�hm+κ
� + A2||e2

h ||∞

≤ QT hm+κ + A2(C0hm)2 = O(hm+κ ),

since κ ≤ m. This completes the proof.

As we mentioned above, another – more elegant – way of extending the
convergence estimates (1.1.45) to nonlinear problems is based on a nonlinear
version of (1.1.38). This is the nonlinear variation-of-constants formula for
(1.1.48) due to Alekseev (1961) and Gröbner (1960) (see, in addition to the
reference mentioned above, the 1973 paper by Wanner and Reitberger, also for
historical references, and Nørsett and Wanner (1981)).

Theorem 1.1.8 Let y = y(t) be the solution of the initial-value problem

y′ = f (t, y), t ∈ I, y(0) = y0, (1.1.51)
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and let w = w(t) be an approximate solution to y with the same initial value,
that is,

w′ = f (t, w) − g(t, w), t ∈ I, w(0) = y0, (1.1.52)

for some g. If fy exists and is continuous on I × IR, and if g = g(t, w) is
(piecewise) continuous, then

w(t) = y(t) +
∫ t

0
�(t, s, w(s))g(s, w(s))ds, t ∈ I. (1.1.53)

Here, �(t, s, w(s)) := (∂/∂w)y(t, s, w(s)) denotes the partial derivative of the
solution y passing through (s, w(s)) with respect to the initial values w(s).

A nice proof of this result can be found in Hairer, Nørsett and Wanner (1993,
pp. 96–97). The application of this result is now obvious: the role of w in (1.1.53)
is assumed by the collocation solution uh , and the initial-value problem (1.1.52)
is given by

u′
h(t) = f (t, uh(t)) − δh(t), t ∈ I, uh(0) = y0

(recall also (1.1.48)), where the defect δh(t) depends by definition on uh . The
quadrature argument introduced in the proofs of Theorems 1.1.3 and 1.1.4 can
now be used in (1.1.53) in exactly the same way, supported by our knowledge
of the regularity of the integrand.

1.1.5 Collocation for ‘integrated’ ODEs

When establishing existence and uniqueness results for an initial-value problem
of the form

y′(t) = f (t, y(t)), t ∈ I := [0, T ], y(0) = y0, (1.1.54)

one resorts to its integrated form,

y(t) = y0 +
∫ t

0
f (s, y(s))ds, t ∈ I, (1.1.55)

and then applies Picard iteration. Suppose now that we use the Volterra integral
equation (1.1.55) as the basis for obtaining collocation approximations to the
solution y of (1.1.54). Denote by

S(−1)
m−1(Ih) := {v : v|σn ∈ πm−1 (0 ≤ n ≤ N − 1)}

the space of piecewise polynomials of degree m − 1 ≥ 0 which may be discon-
tinuous at the interior points t1, . . . , tN−1 of the mesh Ih (see also Section 2.2.1
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for additional details of these collocation spaces). Since the dimension of this
linear space is

dimS(−1)
m−1(Ih) = Nm = dimS(0)

m (Ih) − 1,

we may employ the same set Xh of collocation points given by (1.1.3), as there
is now no prescribed initial condition to be satisfied.

The collocation solution vh ∈ S(−1)
m−1(Ih) for (1.1.55) is given locally by

vh(tn + vhn) =
m∑

j=1

L j (v)Vn, j , v ∈ (0, 1], with Vn, j := vh(tn + c j hn),

and is defined by the collocation equation

vh(t) = y0 +
∫ t

0
f (s, vh(s))ds, t ∈ Xh . (1.1.56)

Setting

Fn :=
∫ tn

0
f (s, vh(s))ds =

n−1∑
�=0

h�

∫ 1

0
f (t� + sh�, vh(t� + sh�))ds, (1.1.57)

and t = tn,i := tn + ci hn , (1.1.56) may be written in the form

Vn,i = y0 + Fn + hn

∫ ci

0
f (tn + shn, vh(tn + shn))ds

= y0 + Fn + hn

∫ ci

0
f (tn + shn,

m∑
j=1

L j (s)Vn, j )ds (i = 1, . . . , m).

(1.1.58)

We now introduce the iterated collocation solution vi t
h corresponding to the

collocation solution vh for (1.1.55): it is defined by

vi t
h (t) := y0 +

∫ t

0
f (s, vh(s))ds, t ∈ I.

For t ∈ σ̄n it can be written as

vi t
h (tn + vhn) = y0 +

∫ tn+vhn

0
f (s, vh(s))ds

= y0 + Fn + hn

∫ v

0
f (tn + shn,

m∑
j=1

L j (s)Vn, j )ds,

(1.1.59)

where v ∈ [0, 1] and

y0 + Fn = vi t
h (tn).

Note that vi t
h ∈ C(I ), in contrast to vh itself.
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In general, the integrals occurring in the above collocation equations (1.1.58)
and (1.1.59) cannot be found analytically and thus will have to be approximated
by suitable quadrature formulas. Suppose that these quadrature formulas are
interpolatory m-point quadrature rules whose abscissas coincide with, or are
based on, the collocation parameters {ci }. Hence,∫ 1

0
f (t� + sh�, vh(t� + sh�))ds

.=
m∑

j=1

b j f (t� + c j h�, vh(t� + c j h�)) (� < n),

and∫ ci

0
f (tn + shn, vh(tn + shn))ds

.=
m∑

j=1

ai, j f (tn + c j hn, vh(tn + c j hn)),

where ai, j := β j (ci ) and b j := β j (1) (cf. (1.1.7)). Due to the presence in gen-
eral of quadrature errors the so-discretised collocation equation generates a
‘perturbed’ collocation solution in the same space, v̂h ∈ S(−1)

m−1(Ih), and corre-
sponding iterated collocation solution v̂i t

h : they are given respectively by

v̂h(tn + vhn) =
m∑

j=1

L j (v)V̂n, j , v ∈ (0, 1], (1.1.60)

with V̂n, j := v̂h(tn, j ) defined by the solution of the algebraic system

V̂n,i = y0 + F̂n + hn

m∑
j=1

ai, j f (tn, j , V̂n, j ) (i = 1, . . . , m), (1.1.61)

where

F̂n :=
n−1∑
�=0

h�

m∑
j=1

b j f (t�, j , V̂�, j ),

and by

v̂i t
h (tn + vhn) := y0 + F̂n + hn

m∑
j=1

β j (v) f (tn, j , V̂n, j ), v ∈ [0, 1]. (1.1.62)

Setting Ŵn,i := f (tn,i , V̂n,i ) we may write (1.1.62) as

v̂i t
h (tn + vhn) = v̂i t

h (tn) + hn

m∑
j=1

β j (v)Ŵn, j , v ∈ [0, 1], (1.1.63)

with

Ŵn,i = f (tn,i , v̂
i t
h (tn) + hn

m∑
j=1

ai. j Ŵn, j ) (i = 1, . . . , m). (1.1.64)
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Comparing the last two equations with (1.1.6) and (1.1.7), the analogous ones
for uh , a simple induction argument shows that Yn,i = Ŵn,i for all i and n, and
hence

uh(t) = v̂i t
h (t) for all t ∈ I.

There is a way of avoiding the use of quadrature approximations when
employing collocation for the integrated IVP (1.1.55). Suppose the integral
equation (1.1.55) is written in implicitly linear form: defining z(t) := f (t, y(t)),
it becomes

y(t) = y0 +
∫ t

0
z(s)ds, t ∈ I, (1.1.65)

where z(t) is the solution of the implicitly linear Volterra integral equation

z(t) = f (t, y0 +
∫ t

0
z(s)ds), t ∈ I (1.1.66)

(which is a simple example of a Volterra–Hammerstein equation; see Section
2.3). We now approximate the solution z of this nonlinear integral equation
(1.1.66) by the collocation solution zh ∈ S(−1)

m−1(Ih), using the same collocation
points Xh as before. With the local representation

zh(tn + vhn) =
m∑

j=1

L j (v)Zn, j , v ∈ (0, 1],

the corresponding collocation equation becomes

Zn,i := zh(tn,i ) = f (tn,i , y0 +
∫ tn,i

0
zh(s)ds) (i = 1, . . . , m),

or

Zn,i = f (tn,i , y0 + �n + hn

m∑
j=1

ai, j Zn, j ), ai, j := β j (ci ), (1.1.67)

with

�n :=
∫ tn

0
zh(s)ds.

Once zh is known we obtain the approximation yh to the solution y of (1.1.55)
by setting

yh(tn + vhn) := y0 +
∫ tn+vhn

0
zh(s)ds

= y0 + �n + hn

m∑
j=1

β j (v)Zn, j , v ∈ [0, 1]. (1.1.68)
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Note that

yh(tn) = y0 +
∫ tn

0
zh(s)ds = y0 + �n.

How are these approximations, vh, vi t
h , v̂h, v̂i t

h , and yh , related to uh ∈
S(0)

m (Ih), the ‘direct’ collocation approximation to the solution y of (1.1.54)?
It is clear from the above analysis that, in general, vh 	= uh and, especially,
vi t

h 	= uh (‘wrong’ function space!). But, as the comparison of (1.1.63), (1.1.64)
with (1.1.66), (1.1.65) and (1.1.6), (1.1.7) readily reveals, the following is true.

Theorem 1.1.9 Let uh ∈ S(0)
m (Ih) denote the ‘direct’ collocation solution to the

initial-value problem 1.1.54), and let yh and v̂i t
h be the implicitly linear collo-

cation aproximations to (1.1.55) defined by (1.1.66) and (1.1.68), respectively.
Then, for all sufficiently small h > 0,

uh(t) = yh(t) = v̂i t
h (t), t ∈ I.

If in (1.1.54) we have f (t, y) = ay for some constant a 	= 0, then the inter-
polatory quadrature formulas used in the discretisation of (1.1.58) and (1.1.59)
are exact. This leads to the following

Corollary 1.1.10 Under the assumptions of Theorem 1.1.9 we have, for
(1.1.54) with f (t, y) = ay,

uh(t) = vi t
h (t), t ∈ I.

Remarks

1. Local superconvergence results for collocation-based implicit Runge–Kutta
methods applied to the integrated form of the given initial-value problem
were first derived by Axelsson (1969) for the Radau and Lobatto points.

The reader is also referred to the results in Theorems 5.3.5 and 5.3.6
(for q = 1) which reveal more explicitly, and in a more general setting, the
connection between uh(t), vh(t) and vi t

h (t) at t = h.
2. The nonlinear Volterra integral operator of (1.1.55) is a special case of a

Volterra–Hammerstein integral operator. Its general form is

(Hy)(t) :=
∫ t

0
K (t, s)G(s, y(s))ds, t ∈ I,

where G is a (usually smooth) function from I × � ⊂ IR → IR. We shall
study collocation methods for this important class of nonlinear second-kind
Volterra integral equations in Section 2.3.3 (for bounded kernels K (t, s)),
Section 4.3.4 (VH equations with non-vanishing delays), and Section 6.2.9
(VH equations with weakly singular kernels).
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1.1.6 Padé approximations to exp(z)

There is a close connection between the attainable order of local superconver-
gence (and the asymptotic stability) of the collocation solution uh ∈ S(0)

m (Ih) on
Ih and certain Padé approximants to the exponential function f (z) = exp(z) –
which, for z := ah, is the solution at t = h of the initial-value problem

y′(t) = ay(t), y(0) = 1.

Since this connection will also play a role in Chapter 5 we briefly describe its
main points. Additional details may be found in, e.g. Iserles and Nørsett (1991)
and Hairer and Wanner (1996).

Definition Let f = f (z) be a complex function that is analytic at z = 0 and
denote, for given non-negative integers k, �, by πk/� the set of all rational
functions of the form P/Q where P and Q (with Q(0) = 1) are polynomials
of degree not exceeding k and �, respectively. A function Rk/� ∈ πk/� is called
a [k/�]-Padé approximant to f if

Rk/�(z) − f (z) = O(z p∗+1) near z = 0,

with

p∗ := max{ρ : R ∈ πk/� so that R(z) − f (z) = O(zρ+1)}.

It can be shown that p∗ ≥ k + � implies that the Padé approximant Rk/� is
unique. This is in particular the case for f (z) = exp(z): here, p∗ = k + �. In
the following we will use the notation Rk/� to denote rational functions in πk/�

which are [k/�]-Padé approximants while Rk,� will be a generic element of
πk/�.

The following lemma describes the general form of Padé approximants to
exp(z).

Lemma 1.1.11 Let k and � be given non-negative integers. Then the [k, �]-Padé
approximant to f (z) = exp(z) is given by

Rk/�(z) = Pk,�(z)/Qk,�(z), (1.1.69)

with

Pk,�(z) :=
k∑

j=0

k!(� + k − j)!

(k − j)!(k + �)!

z j

j!
,

and

Qk,�(z) :=
�∑

j=0

�!(� + k − j)!

(� − j)!(k + �)!

(−z) j

j!
.
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Suppose now that we solve the linear ODE

y′(t) = ay(t), t ∈ I, y(0) = y0 = 1, (1.1.70)

by collocation in S(0)
m (Ih), with uniform mesh Ih and collocation points Xh de-

scribed by {ci : 0 < c1 < . . . < cm ≤ 1}. It follows from the collocation equa-
tion

u′
h(t) = auh(t), t ∈ Xh, uh(0) = 1, (1.1.71)

and its computational form for the subinterval [0, t1 = h],

U0,i = ay0 + ah
m∑

j=1

ai, jU0, j (i = 1, . . . , m) (1.1.72)

(cf. (1.1.16)), that the value of

uh(t0 + vh) = uh(vh) = 1 + h
m∑

j=1

L j (v)U0, j , v ∈ [0, 1],

at t = t1 = h can be expressed in the form

uh(h) = pm(z)/qm(z) =: Rm,m(z), z := ah,

where the right-hand side is a rational function whose numerator pm and de-
nominator qm are polynomials of degree not exceeding m. This rational function
is obviously an approximation (or, more precisely, an interpolant) to the exact
solution y(h) = exp(z) of (1.1.70) at t = h. For special choices of the colloca-
tion parameters {ci } the rational approximant is a Padé approximant to exp(z).
We mention the two most important cases:

1. If the collocation parameters {ci } are the Gauss points (corresponding to the
zeros of the shifted Legendre polynomial Pm(2s − 1)), then the resulting
rational approximation Rm,m(z) is the the Padé approximant is Rm/m(z) for
exp(z).

2. For the Radau II points (given by the zeros of Pm(2s − 1) − Pm−1(2s − 1))
we obtain the Padé approximant Rm,m(z) = R(m−1)/m(z).

We summarise these facts in the next lemma; we shall return to its result (and
its proof) in Section 5.2.3.

Lemma 1.1.12 Let M(s) = Mm(s) := (1/m!)
∏m

i=1(s − ci ) denote the collo-
cation polynomial associated with the collocation parameters {ci }. Then the
value of the collocation solution uh ∈ S(0)

m (Ih) to (1.1.70) at t = h is given by
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the rational function

Rm,m(z) := Pm,m(z)

Qm,m(z)
=

∑m
j=0 M (m− j)(1)z j∑m
j=0 M (m− j)(0)z j

, (1.1.73)

with z := ah. If the {ci } are the m Gauss points, then Rm,m(z) is the [m/m]-
Padé approximant Rm/m(z) to y(h) = exp(z), as described in Lemma 1.1.11: it
is given by

Pm,m(z) =
m∑

j=0

m!(2m − j)!z j

(m − j)!(2m)! j!
, (1.1.74)

Qm,m(z) =
m∑

j=0

m!(2m − j)!(−z) j

(m − j)!(2m)! j!
, (1.1.75)

and hence

y(h) − uh(h) = O(h2m+1).

If the {ci } are the Radau II points, then

Rm−1/m(z) = Pm−1,m(z)/Qm−1,m(z),

with the polynomials Pm−1,m(z) and Qm−1,m(z) obtained from Lemma 1.1.11
by replacing k by m − 1 and � by m. We now have

y(h) − uh(h) = O(h2m).

Analogous results hold for the Radau I points (zeros of Pm(2s − 1) +
Pm−1(2s − 1), yielding Rm/(m−1)(z)) and the Lobatto points (zeros of s(s −
1)P ′

m−1(2s − 1); leading to R(m−2)/m(z)). Details and proofs of these classical
results may be found in in the books by Lambert (1991), Iserles and Nørsett
(1991, pp. 48–51), Strehmel and Weiner (1992, pp. 75–76), Hairer and Wanner
(1996), or in the papers by Guillou and Soulé (1969), Axelsson (1969), and
Wright (1970). The comprehensive theory of so-called C-polynomials under-
lying the above result is is due to Nørsett (1975); see also the generalisation in
Iserles (1981).

We shall see in Chapter 5 (Theorem 5.2.7 and Theorem 5.2.8) that the result
of Lemma 1.1.12 will no longer be valid if the ODE y′(t) = ay(t) is replaced
by a (seemingly closely related) delay differential equation with proportional
(vanishing) delay,

y′(t) = by(qt), 0 < q < 1, t ≥ 0.
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1.2 Perturbed collocation methods

We have seen at the beginning of Section 1.1 that the (continuous) implicit
m-stage Runge–Kutta methods generated by collocation for (1.1.1) in S(0)

m (Ih)
form a proper subset of all implicit m-stage RK Methods. Since this insight
leads to a very elegant analysis of the optimal superconvergence properties
of methods from this subset, there arises the question of whether a similar
approach is possible for other implicit RK methods. Nørsett (1980) and Nørsett
and Wanner (1981) introduced such a framework in the form of perturbed
collocation methods which we will briefly describe in his section.

Definition

(a) For given (real) polynomials

N j (t) := 1

j!

m∑
i=0

(pi, j − δi, j )t
i ( j = 1, . . . , m), (1.2.1)

the operator Pn,h : πm → πm defined by

(Pn,hz)(t) := z(t) +
m∑

j=1

N j ((t − tn)/hn)z( j)(tn)h j
n, t ∈ σ̄n (0 ≤ n ≤ N − 1),

(1.2.2)
is called a perturbation operator with respect to the mesh Ih = {tn : 0 =
t0 < t1 < . . . < tN = T }.

(b) Let {ci } be a given set of m distinct points in [0, 1] and let Pn,h be the per-
turbation operator introduced in (1.2.2). The perturbed collocation method
corresponding to Pn,h consists in finding uh ∈ S(0)

m (Ih) so that

uh(tn) = yn,

u′
h(tn + ci hn) = f (tn + ci hn, (Pn,huh)(tn + ci hn) (i = 1, . . . , m),

yn+1 := uh(tn + hn) (n = 0, 1, . . . , N − 1). (1.2.3)

Remark The choice N j (t) ≡ 0 ( j = 1, . . . , m) obviously reduces (1.2.3) to
the ‘classical’ collocation method (1.1.7),(1.1.8), since Pn,h is now the identity
operator.

We observe also that if to each polynomial N j (t) we add an arbitrary con-
stant multiple of the collocation polynomial Mm(s) := (1/m!)

∏m
k=1(s − ck)

(corresponding to t = tn + shn ∈ σ̄n), the method (1.2.3) remains unchanged
because Mm(s) vanishes for each s = ci .
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Theorem 1.2.1 The perturbed collocation method (1.2.3) is equivalent to an
implicit RK method of the form

Yn,i = f (tn + ci hn, yn + hn

m∑
j=1

ai, j Yn, j ) (i = 1, . . . , m), (1.2.4)

yn+1 = yn + hn

m∑
i=1

bi Yn,i (n = 0, 1, . . . , N − 1),

where the matrix A := ( ai, j ) ∈ L(IRm) and the vector bT := ( b1, . . . , bm )
are now given by

A = V̂m Pm Jm V −1
m (1.2.5)

and

bT = ( 1, 1, . . . , 1 )Jm V −1
m . (1.2.6)

Here,

Vm :=




1 c1 . . . cm−1
1

1 c2 . . . cm−1
2

...
...

1 cm . . . cm−1
m


 ,

V̂m is the rectangular matrix formed by augmenting Vm by a new last column
( cm

1 , . . . , cm
m )T , and

Pm :=




1 p0,1 . . . p0,m

0 p1,1 . . . p1,m
...

...
...

0 pm,1 . . . pm,m


 , Jm :=




0 0 . . . 0
1 0 . . . 0
0 1/2 . . . 0
· · · · · ·
0 0 . . . 1/m


 .

The entries pi, j in Pm are the coefficients occurring in (1.2.1).

The proof of this result is straightforward. It, and the one for Theorem 1.1.2,
can also be found in Nørsett and Wanner (1981).

We have the following converse of Theorem 1.2.1, in which a RK method
will be called interpolatory if (1.2.6) holds.

Theorem 1.2.2 Consider any m-stage interpolatory RK method with distinct
parameters {ci }. Then this method is equivalent to a perturbed collocation
method (1.2.3).
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We conclude this brief description of perturbed collocation methods with a
result on the attainable order (Nørsett and Wanner (1981)).

Theorem 1.2.3 Assume that for given integers l and κ ≤ m we have:

(a) N j (t) ≡ 0 for j = 1, . . . , l − 1, and N j has exact degree j for j =
l, . . . , m;

(b)
∫ 1

0
sν N j (s)ds = 0 for j = l, . . . , m; ν = 0, . . . , m + κ − j − 1;

(c)
∫ 1

0
sν Mm(s)ds = 0 for ν = 0, . . . , κ − 1;

(d) 2l ≥ m + κ .

Then the perturbed collocation method has order p∗ ≥ m + κ on the mesh Ih.

The proof can again be based on the nonlinear variation-of-constants formula
of Alekseev and Gröbner (cf. Theorem 1.1.8): now, the defect is given by

δh(t) := −u′
h(t) + f (t, (Pn,huh)(t)), t ∈ σ̄n.

However, the argument (degree of (piecewise) regularity of δh , etc.) is rather
more complex than in the classical case. The reader is referred to Nørsett and
Wanner (1981) for details; see also Exercise 1.10.7 for the case of a linear ODE.

1.3 Collocation in smoother piecewise polynomial spaces

1.3.1 Divergence of collocation solutions

What can be said about the aproximation properties of collocation solutions
uh that lie in smooth collocation spaces S(d)

µ (Ih) with µ ≥ 2 and 1 ≤ d < µ?
It was shown by Loscalzo and Talbot (1967) (compare also Loscalzo (1968,
1969), Hung (1970), and Schoenberg’s 1974 survey paper) that collocation
in the ‘classical’ spline space S(3)

4 (Ih) (which corresponds, in the notation of
Section 2.1, to S(d)

m+d (Ih) with m = 1, d = 3) at the collocation points tn +
c1hn based on the single collocation parameter c1 = 1 is divergent. On the
other hand, Callender (1971) proved that collocation in S(1)

µ (Ih (µ ≥ 2) leads to
convergent collocation solutions when the {ci } are equidistant: ci = i/(µ − 1)
(i = 1, . . . , µ − 1).

Piecewise polynomial collocation methods where some (or all) of the col-
location parameters coalesce were briefly considered by Guillou and Soulé
(1969, pp. 24–26). Important related work was carried out by Kastlunger and
Wanner (1972) on implicit Turán–Runge–Kutta methods; see also Chapter II.13
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of Hairer, Nørsett and Wanner (1993). A comprehensive divergence and con-
vergence analysis was provided by Mülthei in the late 1970s and the early 1980s
(see especially Mülthei (1979, 1980a)).

Here, we summarise his results on the divergence of piecewise polynomial
collocation solutions uh , including Hermite-type methods where some of the
collocation points have multiplicity greater than one. See also Nørsett (1984)
for a good overview and numerous examples.

Let uh ∈ S(d)
µ (Ih) where the mesh Ih is supposed to be uniform. The di-

mension of this linear space is N (µ − d) + (d + 1) (see Section 2.2.1). Set
q := µ − d (this integer is sometimes called the defect of the piecewise poly-
nomial spline space S(d)

µ (Ih)), and let c1, . . . , cr , with 0 < c1 < . . . < cr = 1,
be given collocation parameters with multiplicities δi ≥ 1, where

r∑
i=1

δi = q = µ − d.

Instead of using local representations of uh on σ̄n based on Hermite canonical
polynomials (see, e.g. Hairer, Nørsett and Wanner (1993, pp. 274–276)), it will
be more convenient for our purpose to write

uh(tn + vhn) =
d∑

l=0

y(l)
h hl

n

l!
vl +

µ∑
j=d+1

αn, jv
j , v ∈ [0, 1],

with y(l)
n := u(l)

h (tn). The collocation equation for uh at tn,i := tn + ci hn ∈ σn is

u(ν)
h (tn,i ) = �(ν−1)(tn,i , uh(tn,i )), ν = 1, . . . , δi ; i = 1, . . . , r,

where

�(k)(t, y) := �
(k−1)
t (t, y) + �(k−1)

y (t, y) f (t, y), k ≥ 1; �(0)(t, y) := f (t, y).

In the methods of Loscalzo and Talbot (1967) we have d = µ − 1 and c1 = 1;
hence q = 1, δ1 = 1 and r = 1. The generalisation encompasses two possibil-
ities:

(I) q = µ − d > 1, but c1 = 1 with δ1 = q: this corresponds to Hermite collo-
cation at t = tn+1 (n = 0, . . . , N − 1).
(II) q = µ − d > 1, with 1 < r ≤ q, δi ≥ 1. If r = µ − d then all the param-
eters ci have multiplicity one.

We consider first the case (I) where c1 = · · · = cr = 1, generalising the
original approach by Loscalzo and Talbot. In the first paper of Mülthei (1979)
the following general result was proved.

Theorem 1.3.1 Let uh ∈ S(d)
µ (Ih) be the collocation solution to (1.1.1)

corresponding to (Hermite) collocation at the collocation points
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t = tn+1(n = 0, . . . , N − 1), each having multiplicity q := µ − d. The
uh is divergent, as h → 0 (Nh = T ) whenever

µ ≥ 2(q + 1), or, equivalently, if d ≥ q + 2.

For collocation in the classical spline space S(3)
4 (Ih) (corresponding to

µ = 4, d = 3 and hence to q = 1) collocation at t = tn+1 (c1 = 1) leads to a
divergent collocation solution uh . This is the result due to Loscalzo and Talbot
(1967). More generally, we have:

Corollary 1.3.2 If uh ∈ S(µ−1)
µ (Ih) (q = 1) and c1 = 1, then uh diverges, as

h → 0, whenever µ ≥ 4.

If there are interior collocation points present, the divergence/convergence of
the collocation solution may or may not depend on the location of these points.
The following general divergence result was proved in Mülthei (1980b); it uses
the above assumptions and notation.

Theorem 1.3.3 (i) Assume that d ≥ q + 1 + δr,1, where δi, j denotes the Kro-
necker symbol. Then the collocation solution uh ∈ S(d)

µ (Ih) is divergent,
regardless of the location of the (interior) collocation parameters.

(ii) If we have ci = i/r (i = 1, . . . , r − 1) and δr−i ≤ δi (i = 1, . . . , �(r −
1)/2�), then uh is divergent whenever d ≥ δr + 2.

The last theorem (Mülthei (1980b)) shows that for non-equally spaced col-
location parameters {ci } the convergence/divergence of the collocation solution
will in general depend on their location in (0, 1).

Theorem 1.3.4 Assume that the degree of regularity d in S(d)
µ (Ih) satisfies d =

δr + 1 (≥ 2), with r > 1. Then the collocation solution uh is divergent if

r−1∏
i=1

(
1 − ci

ci

)δi

> 1.

Example 1.3.1

(i) r = 1, q = 1, c1 = 1: Method of Loscalzo and Talbot (1967) (see also
Loscalzo (1968, 1969)).

(ii) r = 1, q > 1 (d < µ − 1), c1 = 1: Method of Mülthei, analysed in his
first three papers of 1980.

(iii) d = 1, ci = i/r (i = 1, . . . , r ), δi = 1 for all i : the convergence of collo-
cation solutions in S(1)

µ (Ih) with (simple) equidistant collocation parameters
was studied by Callender (1971).

Example 1.3.2 uh ∈ S(m)
2m (Ih):

For c1 = 1, δ1 = q = m (r = 1), Mülthei (1980a, II) showed that uh is
convergent. However, Hermite collocation in the smoother space S(m+1)

2m (Ih (q =
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m − 1) leads to divergent approximations, since d = m + 1 = q + 2 (Theorem
1.3.1).

Example 1.3.3 uh ∈ S(2)
4 (Ih):

Here we have µ = 4, d = q = 2, and the dimension of this linear space is
2N + 3. If the collocation parameters are chosen so that 0 < c1 < c2 = 1, then
the collocation solution uh is divergent whenever

1 − c1

c1
> 1,

that is, when c1 < 1/2.

Example 1.3.4 uh ∈ S(2)
5 (Ih):

This space corresponds to µ = 5, d = 2, q = 3, and its dimension is 3N + 3.
For

0 < c1 < c2 < c3 = 1,

we have r = 3 and d = 2 = δr + 1. The collocation solution is divergent when-
ever

(1 − c1)(1 − c2)

c1c2
> 1.

The last two examples reveal that collocation in S(2)
µ (Ih) (µ ≥ 4), with the µ − 2

parameters {ci } given by the Radau II points, leads to divergence.
We summarise this general divergence result in the following corollary.

Corollary 1.3.5 Let uh ∈ S(2)
µ (Ih) (µ ≥ 4) be the collocation solution corre-

sponding to the µ − 2 Radau II points {ci } in (0, 1]. Then uh is divergent.

Proof The Radau II points are the zeros of Pµ−2(2s − 1) − Pµ−3(2s − 1).
The corresponding points cI

i := 1 − cµ−1−i (i = 1, . . . , µ − 2) are the Radau I
points (given by the zeros of Pµ−2(2s − 1) + Pµ−3(2s − 1)). Thus, we may
write

r−1∏
i=1

1 − ci

ci
=

r−1∏
i=1

cI
i+1

ci
> 1.

The assertion follows since the {ci } interlace with the {cI
i }:

0 = cI
1 < c1 < cI

2 < · · · < cI
µ−2 < cµ−2 = 1,

and by Theorem 1.3.4 (with δi = 1 and r = q = µ − 2).

1.4 Higher-order ODEs

Let k ≥ 2 be a given integer and consider the initial-value problem

y(k)(t) = f (t, y(t), y′(t), . . . , y(k−1)(t)), t ∈ I := [0, T ], (1.4.1)

y(ν)(0) = y(ν)
0 (ν = 0, 1, . . . , k − 1).
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The comments in Section 1.1.1 motivating the use of the ‘natural’ collocation
space S(0)

m (Ih) when k = 1 imply that we will now seek the collocation solution
for (1.4.1) in the smooth piecewise polynomial space

S(d)
m+d (Ih) := {v ∈ Cd (I ) : v|σ̄n ∈ πm+d (0 ≤ n ≤ N − 1)}

with d = k − 1 ≥ 1 (see also Section 2.2.1). The dimension of this linear vector
space is

dimS(d)
m+d (Ih) = Nm + d + 1 = Nm + k.

Let Xh , the set of collocation points in I defined in (1.1.3). The collocation
solution uh in this space for (1.4.1) is thus defined by

u(k)
h (t) = f (t, uh(t), u′

h(t), . . . , u(k−1)
h (t)), t ∈ Xh, (1.4.2)

u(ν)
h (0) = y(ν)

0 (ν = 0, 1, . . . , k − 1).

Setting y(ν)
n := u(ν)

h (tn) (yn := y(0)
n ), Yn, j := u(k)

h (tn, j ) and

u(k)
h (tn + vhn) =

m∑
j=1

L j (v)Yn, j , v ∈ (0, 1],

the local Lagrange representation of u(ν)
h (ν = k − 1, . . . , 0) on σ̄n is given by

u(ν)
h (tn + vhn) =

k−ν−1∑
�=0

y(ν+�)
n

�!
(hnv)� + hk−ν

n

m∑
j=1

βν, j (v)Yn, j , v ∈ [0, 1],

(1.4.3)
where we have defined

βν, j (v) :=
∫ v

0

(v − s)k−ν−1

(k − ν − 1)!
L j (s)ds. (1.4.4)

For ν = 0, (1.4.3) yields

uh(tn + vhn) =
k−1∑
�=0

y(�)
n

�!
(hnv)� + hk

n

m∑
j=1

β0, j (v)Yn, j , v ∈ [0, 1]. (1.4.5)

This allows us to write down the computational form of the collocation equa-
tion (1.4.2) corresponding to the m collocation points t = tn,i ∈ σ̄n . However,
instead of doing this in complete generality we illustrate this for the important
case k = 2.

Illustration Continuous m-stage Runge–Kutta–Nyström method (k = 2):
Consider (1.4.1) with k = 2,

y′′(t) = f (t, y(t), y′(t)), t ∈ I.
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It follows from the collocation equation on σ̄n ,

Yn,i = f (tn,i , uh(tn,i ), u′
h(tn,i )), i = 1, . . . , m, (1.4.6)

that the components of the vector Yn := ( Yn,1, . . . , Yn,m )T are given by the
solution of the nonlinear algebraic system

Yn,i = f

(
tn,i , yn + hnvy(1)

n + h2
n

m∑
j=1

β0, j (ci )Yn, j , y(1)
n + hn

m∑
j=1

β1, j (ci )Yn, j

)

(1.4.7)

(i = 1, . . . , m). Once the solution Yn := ( Yn,1, . . . , Yn,m )T has been computed
the values of uh and u′

h on σ̄n are determined by

uh(tn + vhn) = yn + hnvy(1)
n + h2

n

m∑
j=1

β0, j (v)Yn, j , v ∈ [0, 1], (1.4.8)

and

u′
h(tn + vhn) = y(1)

n + hn

m∑
j=1

β1, j (v)Yn, j , v ∈ [0, 1], (1.4.9)

with

β1, j (v) :=
∫ v

0
L j (s)ds and β0, j (v) :=

∫ v

0
(v − s)L j (s)ds.

We now state the global and local convergence theorems for the collocation
solution uh ∈ S(d)

m+d (Ih) (d = k − 1) for the linear version of (1.4.1),

y(k)(t) =
k−1∑
ν=0

aν(t)y(ν)(t) + g(t), t ∈ I. (1.4.10)

As in the case k = 1 these results remain valid for the nonlinear problem (1.4.1),
provided it has a sufficiently regular solution on I (see also Chapter 3 and the
remark following Theorem 1.4.3). The first theorem describes the attainable
order of global convergence for arbitrarily chosen collocation points.

Theorem 1.4.1 Assume that the given functions aν (0 ≤ ν ≤ k − 1) and g in
the linear ODE (1.4.10) are m times continuously differentiable on I . Then for
all sufficiently small h > 0 and any {ci } we have the estimates

||y(ν) − u(ν)
h ||∞ ≤ Cνhm (ν = 0, 1, . . . , k − 1)

and

sup
t∈I

|y(k)(t) − u(k)
h (t)| ≤ Ckhm .

For certain special sets {ci } we obtain global superconvergence on I , as
described in the following theorem.



1.4 Higher-order ODEs 37

Theorem 1.4.2 Assume that the given functions aν (0 ≤ ν ≤ k − 1) and g in
(1.4.10) are in Cd (I ) with d ≥ m + 1, and let the {ci } be chosen such that the
orthogonality condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0

holds. Then the collocation solution uh ∈ S(d)
m+d (Ih) (d = k − 1) satisfies, for

all sufficiently small h > 0,

||y(ν) − u(ν)
h ||∞ ≤ Cνhm+1 (ν = 0, 1, . . . , k − 1).

While the collocation solution uh and its derivatives u′
h, . . . , u(k−1)

h are glob-
ally superconvergent on I , with order p∗ = m + 1, we only have O(hm)-
convergence for u(k)

h on I .

This result suggests (recalling the proof for the case k = 1) that local super-
convergence, of order up to 2m, at the mesh points is also possible.

Theorem 1.4.3 Let aν ∈ Cm+κ (I ) (0 ≤ ν ≤ k − 1), g ∈ Cm+κ (I ), for some κ

with 1 ≤ κ ≤ m, and assume that the {ci } satisfy

J� :=
∫ 1

0
s�

m∏
i=1

(s − ci )ds = 0, � = 0, 1, . . . , κ − 1,

with Jκ 	= 0. Then for all sufficiently small mesh diameters h > 0 the colloca-
tion solution uh ∈ S(k−1)

m+k−1(Ih) and its derivatives u(ν)
h (ν = 1, . . . , k − 1) are

superconvergent on the mesh Ih:

max
t∈Ih

|y(ν)(t) − u(ν)
h (t)| ≤ Cνhm+κ (ν = 0, 1, . . . , k − 1).

In particular, κ = m (implying that the {ci } are the m Gauss points in (0, 1))
leads to

max
t∈Ih

|y(ν)(t) − u(ν)
h (t)| ≤ Cνh2m (ν = 0, 1, . . . , k − 1).

If κ = m − 1 and cm = 1 (corresponding to the Radau II points in (0, 1]), then
local superconvergence of order 2m − 1 holds also for u(k)

h at the points Ih \ {0}:
we now have

max
t∈Ih\{0}

|y(ν)(t) − uν
h(t)| ≤ Cνh2m−1 (ν = 0, 1, . . . , k − 1, k).

We will see in Chapter 3 that these results can be viewed as corollaries to
analogous statements for Volterra integro-differential equations of order k ≥ 2,

y(k)(t) = f (t, y(t), y′(t), . . . , y(k−1)(t)) + (V (k y)(t),
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where

(V (k) y)(t) :=
∫ t

0
K (t, s, y(s), y′(s), . . . , y(k)(t)).

The details will be presented in Section 3.2.5 (Theorems 3.2.12 and 3.2.13).

1.5 Multistep collocation

We have seen in Section 1.2 that if uh ∈ S(0)
m (Ih) is obtained by collocation at the

Gauss points then it is locally superconvergent (on Ih) of order p∗ = 2m. Since
the numerical implementation of the collocation method will become rather
expensive for large m and, especially, for systems of ODEs resulting from the
semidiscretisation in space of (parabolic) PDEs, there arises the question of
‘cheaper’ collocation methods of comparable order. The multistep collocation
methods (introduced by Lie (1990) and Lie and Nørsett (1989) in the late 1980s;
see also Hairer and Wanner (1996, pp. 270–278)) – which contain as special
cases the one-leg methods of Dahlquist (1983) and the BDF methods – represent
a possible alternative. These methods form themselves a particular class of so-
called general linear methods introduced by Butcher (see, e.g. Butcher (1987,
Chapter 4) or Hairer and Wanner (1996, pp. 290–295)).

A µ-step collocation method is based on piecewise polynomials uh ∈
S(0)

m+µ−1(Ih) (µ ≥ 2), and uh is defined by the µ-step collocation equations

uh(t�) = y� (� = n − µ + 1, . . . , n), (1.5.1)

u′
h(tn + ci h) = f (tn + ci h, uh(tn + ci h)) (i = 1, . . . , m), (1.5.2)

where we have assumed for simplicity that the underlying mesh Ih is uniform.
On the interval [tn−µ+1, tn+1] the collocation solution is described by

uh(tn + vh) =
µ∑

k=1

φk(v)yn−µ−k + h
m∑

j=1

ψ j (v)Yn, j (1.5.3)

with Yn, j := u′
h(tn + c j h). The functions φk and ψ j are the canonical Hermite

polynomials (observe that the above problem may be viewed as an incomplete
Hermite interpolation problem for uh and u′

h) defined by{
φk(�) := δ�,k

φ′
k(ci ) := 0

}
and

{
ψ j (�) := 0
ψ j (ci ) := δi, j

}
.

It is a consequence of (incomplete) Hermite (–Birkhoff) interpolation theory
(see, e.g. Lorentz et al. (1983)) that, in contrast to one-step collocation, the
multistep collocation solution need not exist. An analysis of this problem of
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existence and uniqueness is given in Lie and Nørsett (1989) and in Hairer and
Wanner (1996). However, Lie and Nørsett have shown that there exist µ-step
collocation methods whose (optimal) order of local superconvergence is given
by p∗ = 2m + µ − 1 > 2m. They correspond to sets {ci } which are the abscis-
sas of µ-step Gauss quadrature formulas (see, e.g. Krylov (1962)). The global
convergence of µ-step collocation methods is due to Lie (1990). Examples of
such µ-step collocation methods, especially for µ = 2, are presented in Lie and
Nørsett (1989, pp. 77–78). Here, we mention without proof the following re-
sult which represents the µ-step analogue of the local superconvergence result
(1.1.45) in Theorem 1.1.4:

Theorem 1.5.1 For given collocation parameters {ci : 0 ≤ c1 < . . . < cm ≤
1} let Mm(s) := (1/m!)

∏m
i=1(s − ci ). Assume that µ ≥ 2 and define the deter-

minants D(µ)
ν by

D(µ)
ν :=




∫ 0
−1 sν Mm(s)ds · · · ∫ 0

−1 sν+µ−1 Mm(s)ds
...

. . .
...∫ 0

−(µ−1) sν Mm(s)ds · · · ∫ 0
−(µ−1) sν+µ−1 Mm(s)ds

∫ 1
0 sν Mm(s)ds · · · ∫ 1

0 sν+µ−1 Mm(s)ds




.

Then the µ-step collocation solution defined by (1.5.1)–(1.5.3), if it exists, has
local order p∗ = m + µ − 1 + κ (κ ≤ m) on Ih if, and only if, the {ci } are such
that

D(µ)
ν = 0 for ν = 0, 1, . . . , κ − 1.

Note that for µ = 1 the above theorem reduces to the first part of Theorem
1.1.4.

As Lie and Nørsett (1989) have shown, this result can be derived either by a
suitable adaptation of the Alekseev–Gröbner (nonlinear) variation-of-constants
formula, or by an algebraic approach based on the interpolation conditions un-
derlying the method. The latter leads to the following alternative characterisa-
tion of the order of local superconvergence.

Theorem 1.5.2 The µ-step collocation method based on the collocation pa-
rameters {ci } possesses the order p∗ = m + µ − 1 + κ on Ih if

d

ds

(
ρµ(s)p(s)

)∣∣
s=ci

= 0 (i = 1, . . . , m) for all p ∈ πκ−1.
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Here,

ρµ(s) :=
µ−1∏
i=−1

(s + i).

1.6 The discontinuous Galerkin method for ODEs

It was shown by Lesaint and Raviart (1974) that there is a close connection
between (collocation based) implicit Runge–Kutta methods and the discontin-
uous Galerkin (dG) method for (1.1.1). In order to describe the dG method we
introduce the following notation. For a given mesh Ih let

[φ]n := φ(t+
n ) − φ(t−

n )

denote the jump of the function φ at the (interior) mesh point t = tn , and set

V (Ih) := {φ ∈ L2(I ) : φ|σn is continuous and bounded}.
The weak form of the (scalar) ODE (1.1.1) is then given by: find y ∈ C1(I ) so
that, for each φ ∈ V (Ih),

N−1∑
n=0

∫
σn

[y′(t) − f (t, y(t))]φ(t)dt +
N−1∑
n=1

[y]nφ(t+
n ) + y(t+

0 )φ(t+
0 ) = y0φ(t+

0 ).

(1.6.1)

(An analogous definition holds for systems of the form (1.1.1.): if y ∈ IRd then
the above products are replaced by the corresponding inner products in IRd .)
Equation (1.6.1) forms the basis for the dG method: given the finite-dimensional
subspace Vh(Ih) = S(−1)

m (Ih) of V (Ih) we wish to find uh ∈ Vh(Ih) so that, for
all φ ∈ Vh(Ih),

N−1∑
n=0

∫
σn

[u′
h(t)− f(t, uh(t))]φ(t)dt +

N−1∑
n=1

[uh]nφ(t+
n ) + uh(t+

0 )φ(t+
0 ) = y0φ(t+

0 ).

(1.6.2)

The approximation uh defined in this way is called the discontinuous Galerkin
solution to the initial-value problem (1.1.1) in the space S(−1)

m (Ih). Its existence
and uniqueness can be established in complete analogy to that for the collocation
solution (see, e.g. Johnson (1988) or Schötzau and Schwab (2000) for a general
analysis); this will also become clear from the subsequent discussion.

Although (1.6.2) appears to be a ‘global’ equation on I , we will now
show that it represents in fact a time-stepping method similar to the collo-
cation method. This computational form of (1.6.2) says: find a polynomial
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u|σn =: un,h ∈ πm(σn) so that∫
σn

[u′
n,h(t) − f (t, un,h(t))]φ(t)dt + un,h(t+

n )φ(t+
n ) = un,h(t−

n )φ(t−
n ) (1.6.3)

holds for all φ ∈ πm(σn) and n = 0, 1, . . . , N − 1. Recall that u0,h(t−
0 ) = y0.

Suppose now that the integrals in (1.6.3) are approximated by interpolatory
(m + 1)-point quadrature formulas with abscissas tn, j := tn + c j hn (0 =: c0 <

c1 < . . . < cm ≤ 1) and weights w j ( j = 0, 1, . . . , m). We denote the resulting
discretised dG solution in S(−1)

m (Ih) by ûh and write ûn,h for its restriction to the
subinterval σn . The fully discretised version of (6.1.3) is then given by

hn

m∑
j=0

w j [û
′
n,h(tn, j ) − f (tn, j , ûn,h(tn, j ))]φ(tn, j ) + ûn,h(t+

n )φ(t+
n )

− ûn,h(t−
n )φ(t−

n ) = 0, (1.6.4)

for all φ ∈ πm(σn). For ease of notation we will omit the subscript n in ûn,h . Let

ŷn := ûh(t−
n ), Ûn,0 := ûh(t+

n ), Ûn, j := ûh(tn, j ) ( j = 1, . . . , m),

and let L j (v) be the j th Lagrange canonical polynomial (of degree m − 1)
corresponding to the points {ci : i = 1, . . . , m}. Moreover, denote by {φ j :
j = 0, 1, . . . , m} a (canonical) basis for πm(σn) so that

φi (tn + c j hn) = δi, j (i, j = 0, 1, . . . , m).

Since the restriction of û′
h to σn is a polynomial of degree m − 1 we may write

û′
h(tn + vhn) =

m∑
j=1

L j (v)û′
h(tn, j ), v ∈ (0, 1].

We also have the identity

ûh(tn + vhn) = ûh(t+
n ) + hn

∫ v

0
û′

h(tn + shn)ds, v ∈ (0, 1]. (1.6.5)

For φ = φ0, (1.6.4) reduces to

hnw0[û′
h(tn,0) − f (tn,0, ûh(tn,0)] + ûh(t+

n ) − ûh(t−
n ) = 0,

with non-vanishing quadrature weight w0, and this furnishes

Ûn,0 = ŷn + hnw0

(
f (tn,0, Ûn,0) −

m∑
j=1

L j (c0)û′
h(tn, j )

)
. (1.6.6)

For φ = φi (i = 1, . . . , m), with φi (tn, j ) = δi, j , we obtain from (1.6.4) the
equations

wi [û
′
h(tn,i ) − f (tn,i , ûh(tn,i ))] = 0,
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where wi 	= 0 (i = 1, . . . , m). This result can be used in (1.6.6) to produce

Ûn,0 = ŷn + hnw0 f (tn,0, Ûn,0) − hn

m∑
j=1

w0L j (c0) f (tn, j , Ûn, j ), (1.6.7)

where we have defined Ûn, j := ûh(tn, j ). Since the identity (1.6.5) allows us to
write

Ûn,i = ûh(t+
n ) + hn

m∑
j=1

β j (ci ) f (tn, j , Ûn, j ), (1.6.8)

with β j (v) as in Section 1.1 (cf. (1.1.6)) and β j (ci ) =: ai, j , it follows from
(1.6.7) that

Ûn,i = ŷn + hnw0 f (tn,0, ûh(t+
n )) + hn

m∑
j=1

[ai, j − w0L j (c0)] f (tn, j , Ûn, j )

(1.6.9)
(i = 1, . . . , m). The equations (1.6.7) and (1.6.9) form a system of m + 1
nonlinear algebraic equations for Ûn := (Ûn,0, Ûn,1, . . . , Ûn,m)T ∈ IR m+1, with
Ûn,0 := ûh(t+

n ): they closely resemble the ones corresponding to collocation at
the points {tn,0, tn,1, . . . , tn,m}.

We now show that these equations may indeed be interpreted as the
stage equations of an implicit (m + 1)-stage Runge–Kutta method. Let b j :=
β j (1) ( j = 1, . . . , m), and observe that

b j =
∫ 1

0
L j (s)ds =

m∑
k=0

wk L j (ck) = w0L j (c0) + w j ,

because our interpolatory (m + 1)-point quadrature formula is exact for poly-
nomials of degree not exceeding m. This leads to the relationship

b j − w0L j (c0) = w j ,

and hence, by (1.6.5), to the time-stepping equation

ŷn+1 := ûh(t−
n+1) = ŷn + hn

m∑
j=0

w j f (tn, j , Ûn, j ). (1.6.10)

We have thus shown that the discretised dG method in S(−1)
m (Ih) described

by (1.6.10), (1.6.7), (1.6.9) represents an implicit Runge–Kutta method with
m + 1 stages for the initial-value problem (1.1.1).
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1.7 Spectral and pseudo-spectral methods

Spectral methods (which have their origins in the numerical solution of
boundary-value problems; see, e.g. Mercier (1989), Funaro (1992), Fornberg
(1996), Boyd (2000), and Trefethen (2000)) are based on finite expansions, in
terms of orthogonal functions, approximating the unknown solution. These ap-
proximating series employ Fourier expansions or expansions involving certain
orthogonal polynomials. If algebraic or orthogonal polynomials are used, and if
the unknown coefficients are determined by collocation (at feasible points in I )
then the method is called a pseudo-spectral method. One of their most prominent
features is the exponential convergence of the resulting approximations.

Numerical evidence shows (Kauthen (1998), personal communication) that
(pseudo-)spectral methods represent a class of numerical methods for Volterra
integral and integro-differential equations that are potentially superior to the
piecewise collocation methods described in the following chapters. This is
intuitively not surprising, given their success in the numerical treatment of
(ordinary and partial) differential equations. However, their analysis remains to
be carried out.

1.8 The Peano theorems for interpolation and quadrature

In this section we briefly review two important special cases of the celebrated
Peano Kernel Theorem due to Giuseppe Peano (1913). The books by Stroud
(1974), Davis (1975), and Powell (1981) offer good introductions to this im-
portant tool in analysis.

We start with Peano’s Theorem on the representation of the interpolation
error.

Theorem 1.8.1 Assume:

(a) For given abscissas a ≤ ξ1 < . . . < ξm ≤ b, let

em( f ; t) := f (t) −
m∑

j=1

L j (t) f (ξ j ), t ∈ [a, b]

denote the error between f and the Lagrange interpolation polynomial of
degree m − 1 with respect to the given points {ξ j };

(b) f ∈ Cd [a, b] with 1 ≤ d ≤ m.

Then em( f ; t) possesses the integral representation

em( f ; t) =
∫ b

a
Kd (t, s) f (d)(s)ds, t ∈ [a, b], (1.8.1)
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where the Peano kernel Kd is given by

Kd (t, s) := 1

(d − 1)!

{
(t − s)d−1

+ −
m∑

k=1

Lk(t)(ξk − s)d−1
+

}
.

Here, (t − s)p
+ := 0 for t < s and (t − s)p

+ := (t − s)p for t ≥ s.

Proofs of this important result (as well as of Theorem 1.8.3) may be found
for example in Stroud (1974) or Powell (1981); consult also the Notes in Section
1.11 for remarks on more general (abstract) versions of Peano’s Theorem.

If the Peano kernel Kd (t, ·) has constant sign in [a, b], we may use the Mean-
Value Theorem for integrals to write the above error representation (1.8.1) as

em( f ; t) = f (d)(ξ )
∫ b

a
Kd (t, s)ds, t ∈ [a, b],

for some ξ ∈ [a, b], and this permits the derivation of error bounds of the type

|em( f ; t)| ≤ Cd || f (d)||∞; 1 ≤ d ≤ m.

In the context of estimating global errors in piecewise polynomial colloca-
tion methods the role of f will be taken either by y or by y′, and we have
[a, b] = [tn, tn+1], ξ j = tn + c j hn (0 ≤ c1 < . . . < cm ≤ 1). In view of these
applications we state

Corollary 1.8.2 Under the assumptions of Theorem 1.8.1 and with
[a, b] = [tn, tn+1], t = tn + vhn (v ∈ [0, 1], hn := tn+1 − tn), ξ j = tn + c j hn

(i = 1, . . . , m) the interpolation error

em( f ; t) := f (tn + vhn) −
m∑

j=1

L j (v) f (tn + c j hn), v ∈ [0, 1], (1.8.2)

can be expressed in the form

em( f ; tn + vhn) = hd
n

∫ 1

0
Kd (v, z) f (d)(tn + zhn)dz, v ∈ [0, 1], (1.8.3)

where

Kd (v, z) := 1

(d − 1)!

{
(v − z)d−1

+ −
m∑

k=1

Lk(v)(ck − z)d−1
+

}
.

An analogous result exists for the representation of the error in (weighted)
quadrature formulas of the form

Qm( f ) :=
m∑

j=1

w j f (ξ j ), a ≤ ξ1 < . . . < ξm ≤ b, (1.8.4)
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approximating the integral Q( f ) := ∫ b
a w(t) f (t)dt , where the weight function

w is assumed to satisfy w ∈ L1[a, b].

Theorem 1.8.3 Assume:

(a) The quadrature formula Qm( f ) defined in (1.8.4) has degree of precision
p ≥ 1.

(b) Em( f ) := Q( f ) − Qm( f ), with Qm( f ).
(c) f ∈ Cd [a, b], with 1 ≤ d ≤ p + 1.

Then there exists a function Kd = Kd (s) (the Peano kernel of Qm( f )) so that

Em( f ) =
∫ b

a
Kd (s) f (d)(s)ds. (1.8.5)

Moreover,

Kd (s) = 1

(d − 1)!

{∫ b

a
w(z)(z − s)d−1

+ dz −
m∑

k=1

wk(ξk − s)d−1
+

}
.

The constant

ed :=
∫ b

a
|Kd (s)|ds

is often called the Peano error constant. As in the case of interpolation, the
above result is the basis for classical bounds for the quadrature errors if the
Peano kernel Kd (s) does not change its sign on (a, b). A good discussion of
when this occurs may be found in Stroud (1974, pp. 168–182).

In view of later applications we also state the counterpart of Corollary 1.8.2,
namely

Corollary 1.8.4 Let [a, b] = [tn, tn+1] x j = tn + c j hn (0 ≤ c1 < . . . < cm ≤
1, hn = tn+1 − tn). Then, under the assumptions of Theorem 1.8.3, the quadra-
ture error

Em( f ) :=
∫ 1

0
w(tn + shn) f (tn + shn)ds −

m∑
j=1

w j f (tn + c j hn)

can be expressed in integral form,

Em( f ) = hd
n

∫ 1

0
Kd (s) f (d)(tn + shn)ds. (1.8.6)

Here,

Kd (s) = 1

(d − 1)!

{∫ 1

0
w(tn + shn)(z − s)d−1

+ dz −
m∑

k=1

wk(ck − s)d−1
+

}
.
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1.9 Preview: Collocation for Volterra equations

Formally, the collocation approach described for initial-value problems in ODEs
is readily extended to integral equations or integro-differential equations of
Volterra type,

y(t) = g(t) + (Vα y)(t), t ∈ I := [t0, T ], (1.9.1)

or

y′(t) = f (t, y(t)) + (Vα y)(t), t ∈ I, (1.9.2)

where Vα denotes a Volterra integral operator given by

(Vα y)(t) :=
∫ t

t0

(t − s)−αk(t, s, y(s))ds (0 ≤ α < 1),

and to delay problems, for example to

y′(t) = f (t, y(t), y(θ (t))) + (Wθ,α y)(t), t ∈ I. (1.9.3)

Here, the delay τ (t) in the lag function θ (t) = t − τ (t) may be non-vanishing,
τ (t) ≥ τ0 > 0 for t ∈ I , or vanishing, when θ (t) = qt = t − (1 − q)t (0 <

q < 1) with t0 = 0. The delay integral operator Wθ,α has the form

(Wθ,α y)(t) :=
∫ t

θ (t)
(t − s)−αk2(t, s, y(s), y′(s))ds.

In the case of (1.9.1) we will study, in Chapter 2 (α = 0) and Chapter 6
(α ∈ (0, 1])), the convergence properties of collocation solutions in S(−1)

m−1(Ih)
and corresponding iterated collocation solutions,

uit
h (t) := g(t) + (Vα y)(t), t ∈ I,

thus generalising the basic results of Section 1.1.5. Solutions of classical and
functional Volterra integro-differential equations (1.9.2) will be approximated
in the now familiar collocation space S(0)

m (Ih). However, numerous new prob-
lems and questions will be encountered:

� The presence of the ‘memory terms’ corresponding to the Volterra integral
operators will in general necessitate a second discretisation step, consisting
of suitable quadrature processesses for the integral terms in the ‘exact’ col-
location equations. How does this affect the (order of) convergence of the
resulting ‘discretised’ collocation solution?

� Weakly singular kernels lead, for smooth data, to solutions y which have very
low regularity at t = t0 (unbounded y′ for (1.9.1); unbounded y′′ for (1.9.2)).
Thus, the use of uniform meshes yields collocation solutions with low order
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of convergence, regardless of the choice of m or the collocation parameters
{ci }. Are there ways to restore the optimal orders we had for smooth solutions,
by a suitable choice of the mesh (reflecting the non-smooth behaviour of y),
or by working in a different (non-polynomial) collocation space?

� The presence of non-vanishing delays θ in a given Volterra equation neces-
sitates a judicious choice of the mesh if uh is to exhibit the optimal order
of convergence, since – for reasons different from those above – the exact
solution y will have low regularity at certain ‘primary discontinuity points’
induced by θ .

� Vanishing delays like θ (t) = qt (0 < q < 1) on I = [0, T ] increase the com-
plexity of the analysis (especially of local superconvergence properties of uh

very significantly, due to (initial) ‘overlap’ of the collocation points tn + ci hn

and the points q(tn + ci hn) (i = 1, . . . , m). We will see that the classical
local superconvergence results (e.g. ‘O(h2m) for the Gauss points’) are no
longer true: the reason underlying this fact is that the solutions to such
delay problems can no longer be represented by a variation-of-constants
formula.

� First-kind Volterra integral equations are known to be (mildly) ill-posed and
hence, again not surprisingly, collocation solutions in piecewise polynomial
spaces will no longer be convergent for arbitrary {ci }. This fact will have
important implications in the convergence analysis for ‘mixed’ systems of
Volterra equations (now usually referred to as integral-algebraic equations;
cf. Gear (1990)), consisting of second-kind Volterra integral equations or
Volterra integro-differential equations, and one or more Volterra integral
equations of the first kind (Chapter 8). Here, we may paraphrase the title
of Petzold’s 1982 paper, by saying that ‘IAEs are not VIEs’.

1.10 Exercises

Exercise 1.10.1 Derive the symmetric form (1.1.12), (1.1.13) of the CIRK
method corresponding to uh ∈ S(0)

m (Ih) for y′(t) = a(t)y(t), with a ∈ C(I ).
State it also in the case where c1 = 0, cm = 1 (m ≥ 2).

Exercise 1.10.2 Prove Theorem 1.1.1.

Exercise 1.10.3 Derive the exact form of the integrated Peano remainder term
Rm+1,n(v) in (1.1.24).

Exercise 1.10.4 Show that, under the regularity assumptions of Theorem 1.1.4,
the defect δh has derivatives δ(ν) (ν = 1, . . . , m + κ) that are smooth in σn and
uniformly bounded on σ̄n (n = 0, 1, . . . , N − 1).
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Exercise 1.10.5 Prove the nonlinear variation-of-constants formula of Gröbner
and Alekseev.

Exercise 1.10.6 Give the details of the proof for the nonlinear counterpart of
Theorem 1.1.2.

Exercise 1.10.7 Prove Theorem 1.2.3 for the linear initial-value problem

y′(t) = ay(t), t ∈ I, y(0) = y0.

Exercise 1.10.8 Prove that the collocation solution uh ∈ S(3)
4 (Ih), with uniform

Ih , for y′(t) = ay(t) is divergent.

Exercise 1.10.9 Use Hermite canonical polynomials to derive the collocation
equations for uh ∈ Sµ(d )(Ih) approxiating the solution of (1.1.1). The resulting
implicit method is an example of an r -stage, d-derivative method (see Hairer,
Nørsett and Wanner ?, pp. 274–276). In particular, find the method correspond-
ing to µ = 4, d = 2.

Exercise 1.10.10 Give the proof of Theorems 1.4.2 and 1.4.3 when k = 2.

Exercise 1.10.11 Assume that the initial-value problem 1.4.1 is solved by col-
location in S(d)

m+d (Ih) (d = k − 1), and suppose that solution of the equivalent
initial-value problem for the system consisting of k first-order ODEs is approx-
imated by collocation in S(0)

m (Ih), using the same set Xh of collocation points.
Discuss the connection between the approaches (order of superconvergence,
etc.).

Exercise 1.10.12 Show that the two-step collocation method has order p∗ =
m + 1 + µ if, and only if,∫ 2

0
Mms�ds = γ

∫ 1

0
Mm(s)sνds, ν = 1, . . . , µ.

Here,

γ :=
∫ 2

0
Mm(s)ds /

∫ 1

0
Mm(s)ds.

(Compare Nørsett (1980, pp. 128–129).)

Exercise 1.10.13 Derive the continuous two-stage Runge–Kutta–Nyström
method corresponding (i) to the Gauss points; (ii) the Radau II points.

Exercise 1.10.14 Derive the discontinuous Galerkin method of Section 1.6 for
m = 1 and m = 2, using the Gauss points and the Radau II points.
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1.11 Notes

The principal aim of the notes given at the end of each chapter is to comple-
ment the annotated bibliography. While providing additional information on
results cited in that chapter (including their history), they will focus mostly on
references dealing with topics not discussed in the book and should be read
‘hand-in-hand’ with the bibliography.

1.1: Piecewise polynomial collocation for ODEs
Collocation methods were introduced for boundary-value problems in lin-
ear partial differential equations by Kantorovich in 1934. The analysis of
their convergence properties has its origin in the work by Karpilovskaya of
1953 and 1963, and – especially – by Vainikko from 1965 onwards, while
the ‘modern’ analysis of collocation methods in spaces of piecewise poly-
nomials began with the papers by Russell and Shampine (1972) and by de
Boor and Swartz (1973). An excellent historical survey, accompanied by a
chronological list of references, was given by Matthäus (1980). The book
by Ascher, Mattheij and Russell (1995, pp. 213–226) contains a good in-
troduction to collocation methods for two-point BVPs; see also the papers
by Ascher and Weiss (1983, 1984) and by Auzinger, Koch and Weinmüller
(2002).

The systematic study of collocation methods for initial-value problems in
ODEs, Volterra integral and integro-differential equations, and other types of
functional differential equations has its origin, respectively, in the late 1960s, the
early 1970s, and the early 1980s. For initial-value problems in ordinary (first-
order) differential equations collocation by continuous piecewise polynomials
leads to a subclass of (continuous) implicit Runge–Kutta methods for which
results on optimal superconvergence and asymptotic stability properties were
well understood by the early 1980s (in fact, related superconvergence results
date back to work by Kuntzmann (1961), Butcher (1964), and – especially –
by Guillou and Soulé (1969) and Wright (1970)). The subsequent extension
of the analysis of collocation methods to more general functional differential
and integral equations (Tavernini (1971, 1978), Bellen (1984), Buhmann and
Iserles (1991, 1992, 1993), Iserles (1994c, 1997b), Brunner (1997a)) quickly
revealed that many of the results obtained for ODEs do either not carry over to
many of these equations, or their proofs have presented (and are still presenting)
formidable challenges to numerical analysts (see Chapter 5).

The connection between collocation in S(0)
m (Ih) and certain classes of (high-

order) Runge–Kutta methods was first observed by Guillou and Soulé (1969)
and by Wright (1970). Compare also Nørsett and Wanner (1979) and the
relevant sections in, e.g. the monographs by Butcher (1987), Hairer, Nørsett and
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Wanner (1993), Hairer and Wanner (1996); and see Lambert (1991), Iserles and
Nørsett (1991), and Iserles (1996).

Superconvergence results were also given by Axelsson (1969) (for the Radau
and Lobatto points) and Wouk (1976). Wanner (1976) uses the collocation
framework to obtain an elegant derivation of A-stability properties. Collocation
for ODEs with periodic solutions was studied by L.-Q. Zhang (1991, 1992) (see
also the references in these papers); see also Engelborghs, Luzyanina, in ’t Hout
and Roose (2000) and Engelborghs and Doedel (2002) on collocation for delay
DEs with periodic solutions.

Various properties of collocation matrices are described in Wright (1984),
Gerard and Wright (1984), Ahmed and Wright (1985); see also Russell and
Sun (1997) and D. Sloan (2003) (properties of pseudo-spectral differentiation
matrices).

Continuous (and natural extensions of) Runge–Kutta methods are analysed
in Zennaro (1985, 1986, 1988); see also Chapter 5 in Bellen and Zennaro
(2003). Collocation methods in more general settings (DEs on Lie groups)
are discussed in Zanna (1999) and in the illuminating survey by Iserles et al.
(2000); compare also the monograph by Hairer, Lubich and Wanner (2002). The
1996 monograph by Stuart and Humphries is the authoritative source for their
analysis in the framework of dynamical systems; see also Stuart and Peplow
(1991) on the dynamics of the θ -method.

The solvability of the system of nonlinear algebraic equations (1.1.7) or
(1.1.10) arising in implicit Runge–Kutta methods, and how the order is affected
by the iterative process, has been studied by many researchers: see, for exam-
ple, Liu and Kraaijevanger (1988) (and references), Spijker (1994), Jackson,
Kvaernø and Nørsett (1996), and Hairer and Wanner (1996), pp. 215–224.

A very comprehensive survey of superconvergence results (from ODEs and
PDES to IEs and IDEs) is given by Křı́žek and Neittaanmäki (1998); see also
their earlier paper of (1987) for an impression of the rapid development of this
area of numerical analysis.

1.2: Perturbed collocation methods
The question on how to ‘embed’ general Runge-Kutta methods in a collocation
framework led Nørsett (1980) and Nørsett and Wanner (1981) to introduce
perturbed collocation methods. Compare also Nørsett (1984).

1.3: Collocation in smoother piecewise polynomial spaces
Because of the considerable interest in cubic (and more general natural) spline
functions in the early 1960s it is not surprising that collocation spaces with
high regularity were used in most of the early papers on piecewise polynomial
collocation for ODEs, namely in Loscalzo and Talbot (1967), Loscalzo (1968,
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1969) (see also Schoenberg’s review paper of 1974) and in the 1970s in, e.g.
Hung (1970), Callender (1971), Micula (1972), and in the book by Micula
(1978, pp. 184–200). However, collocation spaces of high regularity tend to
lead to divergent approximations: this was first observed by Loscalzo and Talbot
(1967), Loscalzo (1968), and Hung (1970). The comprehensive analysis of the
convergence/divergence properties of polynomial spline collocation solutions
for ODEs is due to Mülthei who, in a series of papers between 1979 and 1982
provided a complete divergence/convergence theory which also encompassed
collocation with multiple ci . Compare also the related paper by Werner and
Hilgers (1986) on nonlinear spline collocation. Related earlier results were
given by A. Pahnutov (1975) and by B.I. Kvasov (1973); compare also MR
80i:65085ab.

1.4: Higher-order ODEs
Spline collocation methods for initial-value problems in kth-order ODEs were
first studied by Micula (1974) for k = 2; see also Micula (1978) and its refer-
ences. The convergence and stability properties are analysed in detail (for k = 2)
in Kramarz (1978, 1980), van der Houwen, Sommeijer and Cong (1991), Cole-
man (1992), Coleman and Duxbury (2000), and Paternoster (2000). See also
Aguilar and Brunner (1988) and Brunner (1988a, 1988b) for local superconver-
gence results in kth-order VIDEs, from which analogous results for kth-order
ODEs follow.

1.5: Multistep collocation
The papers by Lie (1990) and Lie and Nørsett (1989) contain a complete analysis
of multistep collocation methods, and in particular of their superconvergence
properties; see also Nguyen Cong and Mitsui (1996). The monograph by Hairer
and Wanner (1996, pp. 270–278) should be consulted for a concise review of
convergence results for multistep Runge–Kutta and collocation methods. In
his 1983 paper Dahlquist comments on the connection between one-leg and
(multistep) collocation methods.

1.6: The discontinuous Galerkin method for ODEs
The origins of dG methods for ODEs can be traced back to the early 1970s: see
Hulme (1972a, 1972b), Lesaint and Raviart (1974) (connection with implicit
Runge–Kutta methods), and Nørsett (1974). Results dealing with superconver-
gence properties are given in the fundamental papers by Delfour, Hager and
Trochu (1981) and Delfour and Dubeau (1986); see also Bensebah and Dubeau
(1997). The theory of a priori and, especially, a posteriori error estimates and
corresponding adaptive mesh selection is analysed in depth in Johnson (1988),
Estep (1995), in the surveys by Eriksson, Estep, Hansbo and Johnson (1995a,
1995b), and in the book by the same authors (1996). Compare also Thomée
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(1997, Ch. 12) for a good introduction to dG methods, in the context of time-
stepping for parabolic PDEs.

Schötzau and Schwab (2000, 2001) present the definitive analysis of hp-
versions of dG methods; see also the survey paper by Cockburn, Karniadakis
and Shu (2000) and its extensive list of references (including the history of the
subject).

1.7: Spectral and pseudospectral methods
The literature on spectral and pseudospectral methods has grown rapidly in the
last ten years. The reader will find good introductions in, e.g. the books by
Mercier (1989), Funaro (1992), Fornberg (1996), Boyd (2000), and Trefethen
(2000); see also the surveys by Tadmore (1987) and the recent paper by D. Sloan
(2003) on properties of matrices ocurring in spectral differentiation.

A closely related class of methods are the sinc methods introduced by
Stenger; see his 1993 monograph and his survey papers of 1995 and 2000.

1.8: The Peano theorems for interpolation and quadrature
Giuseppe Peano’s paper appeared in 1913. Good introductions to (and examples
for) Peano’s remainder theory can be found in Stroud (1974), Davis (1975),
Powell (1981), and Davis and Rabinowitz (1984, pp. 285–295). Its use in the
analysis of linear multistep methods for ODEs is discussed in Hairer, Nørsett
and Wanner (1993, pp. 375–377).

A more general setting for Peano’s remainder theory is given in Sard (1963).
De Marchi and Vianello (1996, 1997) discuss abstract versions of the Peano
theorems for vector-valued functions and normed spaces. Fractional versions
of the Peano theorems are due to Diethelm (1997a, 1997b, 1999).
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Volterra integral equations with smooth kernels

Piecewise polynomial collocation methods for Volterra integral equations of
the first and second kind introduce a number of aspects not present when solv-
ing ODEs. The first is that the collocation solution for a second-kind VIE
does no longer exhibit O(h2m) superconvergence at the mesh points if colloca-
tion is at the Gauss points: this optimal order is recovered only in the iterated
collocation solution. For VIEs of the first kind, the collocation solution is con-
vergent only under certain ‘stability constraints’ on the collocation parameters,
and local superconvergence at the mesh points cannot occur. Secondly, the
collocation equations are in general not yet in a form amenable to numerical
computation, due to the presence of the memory term given by the Volterra in-
tegral operator. Thus, another discretisation step, based on appropriate quadra-
ture approximations, is necessary to obtain the fully discretised collocation
scheme.

In order to make the book largely self-contained we will begin this and each
of the subsequent chapters with a brief introduction to those aspects of the
theory of Volterra integral and more general Volterra functional equations that
will play a role in the analysis of the corresponding collocation solutions.

2.1 Review of basic Volterra theory (I)

2.1.1 Linear VIEs of the second kind

Let V : C(I ) → C(I ) denote the linear Volterra integral operator defined by

(Vφ)(t) :=
∫ t

0
K (t, s)φ(s)ds, t ∈ I := [0, T ] (T < ∞), (2.1.1)

53
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where the kernel K = K (t, s) is continuous on D := {(t, s) : 0 ≤ s ≤ t ≤ T }.
The integral equation

y(t) = g(t) + (V y)(t), t ∈ I, (2.1.2)

is a (linear) Volterra integral equation (VIE) of the second kind for the unknown
function y = y(t); g = g(t) is a given continuous function on I . It will be
assumed throughout the book that the given functions, and hence the solution,
are real-valued.

The classical theory of linear VIEs is due to Vito Volterra (1896a): the starting
point in his Nota I was the problem of ‘inverting the integral’

(V y)(t) = g(t), t ∈ I, g(0) = 0, (2.1.3)

in C(I ). Using the terminology suggested by Lalesco (1908, p. 126), the problem
consists in solving a Volterra integral equation of the first kind. Volterra showed
that under certain conditions on its kernel K (see Section 2.1.4) the first-kind
VIE (2.1.3) is equivalent to a second-kind equation to which Picard iteration
(introduced in Picard (1890)) can be applied. This iteration process leads, via
the Neumann series associated with the kernel K in (2.1.1), to the resolvent
kernel and hence to the ‘resolvent representation’ of the solution y.

To be more precise, let y0(t) := g(t) and define the infinite sequence {yn(t)}
associated with (2.1.2) by

yn(t) := g(t) + (V yn−1)(t), t ∈ I, n ≥ 1. (2.1.4)

A straightforward induction argument shows that the iterates yn(t) can be ex-
pressed in terms of the iterated kernels Kn = Kn(t, s) (n ≥ 1), namely,

yn(t) = g(t) +
∫ t

0

(
n∑

ν=1

Kν(t, s)

)
g(s)ds, n ≥ 1, (2.1.5)

where K1(t, s) := K (t, s) and

Kn(t, s) :=
∫ t

s
K1(t, v)Kn−1(v, s)dv (n ≥ 2). (2.1.6)

The iterated kernels also satisfy a relationship more general than (2.1.6), as
the following result (first established in Volterra (1896a) (Nota I, p. 316) shows.

Lemma 2.1.1 Let K ∈ C(D). Then for any integer r with 1 ≤ r < n (n ≥ 2),

Kn(t, s) =
∫ t

s
Kr (t, v)Kn−r (v, s)dv, (t, s) ∈ D. (2.1.7)
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Proof The above assertion is obviously true for r = 1, since K1 = K . Thus,
assuming it holds for n, a simple induction argument establishes the result
(2.1.7) for n + 1. The details are left as an exercise (Exercise 2.5.1).

Remark If we associate with a given iterated kernel Kn the Volterra operator
Vn : C(I ) → C(I ) defined by

(Vnφ)(t) :=
∫ t

0
Kn(t, s)φ(s)ds, n ≥ 1,

then the result of Lemma 2.1.1 may be stated in a more general way, by saying
that the Volterra integral operators Vn commute:

Vr ◦ Vn−r = Vn−r ◦ Vr 1 ≤ r < n (n ≥ 2).

Consider now (2.1.6): for K ∈ C(D), with K̄ := max{|K (t, s)| : (t, s) ∈
D}, an induction argument readily yields the uniform bounds

|Kn(t, s)| ≤ K̄ n (t − s)n−1

(n − 1)!
≤ K̄ n T n−1

(n − 1)!
, (t, s) ∈ D (n ≥ 1).

Thus it follows that the Neumann series generated by the given kernel K
and by (2.1.6),

∞∑
n=1

Kn(t, s) = lim
ν→∞

ν∑
n=1

Kn(t, s) =: R(t, s), (t, s) ∈ D, (2.1.8)

converges absolutely and uniformly in D. Hence its limit R(t, s), the so-called
resolvent kernel associated with the given kernel K (t, s), is continuous on D.
This uniform convergence also implies that R(t, s) satisfies

R(t, s) = K (t, s) +
∞∑

n=2

Kn(t, s) = K (t, s) +
∞∑

n=2

∫ t

s
K (t, v)Kn−1(v, s)dv,

which we can write, by (2.1.6) and (2.1.8), as

R(t, s) = K (t, s) +
∫ t

s
K (t, v)R(v, s)dv, (t, s) ∈ D. (2.1.9)

An equivalent equation may be obtained by recalling the result of Lemma 2.1.1
(r = n − 1): we readily find

R(t, s) = K (t, s) +
∫ t

s
R(t, v)K (v, s)dv, (t, s) ∈ D. (2.1.10)

In the modern theory of linear Volterra integral equations the resolvent kernel
is usually introduced by means of the above resolvent equations. We summarise
this in the following



56 2 Volterra integral equations with smooth kernels

Definition 2.1.1 Let K ∈ C(D). Then the (unique) resolvent kernel R = R(t, s)
corresponding to the given kernel K in the linear Volterra integral equation
(2.1.2) is (formally) defined by either of the resolvent equations (2.1.9) and
(2.1.10).

Remark Good introductions to the resolvent theory (including the uniqueness
of the solution of the resolvent equations in C(D) and more general spaces like
L p(D)) may be found in Miller (1971a, Chapter IV) and Corduneanu (1991,
Section 4.2). The most general treatments are those in Gripenberg, Londen and
Staffans (1990) (see in particular Sections 2.3–2.5 and Chapter 6) and in Prüss
(1993) where the abstract resolvent theory is presented in Chapters I.1, I.2, and
III.10. See also the papers by Grimmer (1982), Grimmer and Pritchard (1983),
and Grimmer and Prüss (1985).

The existence and uniqueness of solutions to the linear Volterra integral
equations (2.1.2) is established in Theorem 2.1.2. This result is due to Volterra
and can be found in his Nota I of 1896.

Theorem 2.1.2 Let K ∈ C(D), and let R denote the resolvent kernel associated
with K . Then for any g ∈ C(I ) the second-kind Volterra integral equation
(2.1.2) has a unique solution y ∈ C(I ), and this solution is given by

y(t) = g(t) +
∫ t

0
R(t, s)g(s)ds, t ∈ I. (2.1.11)

Proof Replace t in the VIE (2.1.2) by v, then multiply the equation by R(t, v)
and integrate with respect to v over the interval [0, t]. Using Dirichlet’s formula
and the resolvent equation (2.1.10) we obtain∫ t

0
R(t, v)y(v)dv =

∫ t

0
R(t, v)g(v)dv +

∫ t

0
R(t, v)

(∫ v

0
K (v, s)y(s)ds

)
dv

=
∫ t

0
R(t, s)g(s)ds +

∫ t

0

(∫ t

s
R(t, v)K (v, s)dv

)
y(s)ds

=
∫ t

0
R(t, s)g(s)ds +

∫ t

0
(R(t, s) − K (t, s)) y(s)ds,

implying that

(V y)(t) =
∫ t

0
K (t, s)y(s)ds =

∫ t

0
R(t, s)g(s)ds, t ∈ I.

The resolvent representation (2.1.11) now follows by substituting the above
relation in (2.1.2). Thus, (2.1.11) defines a solution y ∈ C(I ) for (2.1.2). In
order to show that, under the assumptions of Theorem 2.1.2, this solution is
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unique, assume that z ∈ C(I ) is also a solution. Since

z(v) = g(v) + (Vz)(v), v ∈ I,

multiplication of both sides by R(t, v) and integration with respect to v over
[0, t] leads to∫ t

0
R(t, v)z(v)dv =

∫ t

0
R(t, v)g(v)dv +

∫ t

0

(∫ t

s
R(t, v)K (v, s)dv

)
z(s)ds

=
∫ t

0
R(t, v)g(v)dv +

∫ t

0
(R(t, s) − K (t, s)) z(s)ds.

Here, we have again employed Dirichlet’s formula and the second resolvent
equation (2.1.10). By (2.1.11) the above equation thus reduces to

0 = [y(t) − g(t)] −
∫ t

0
K (t, s)z(s)ds = [y(t) − g(t)] − [z(t) − g(t)] = 0,

t ∈ I.

The uniqueness of the solution y given by (2.1.11) can also be established
directly via the integral form of Gronwall’s Lemma (see Section 2.1.8). If y
and z are two (continuous) solutions of (2.1.2) it follows that

y(t) − z(t) = (V(y − z))(t), t ∈ I.

Hence, assuming again that |K (t, s)| ≤ K̄ in D,

|y(t) − z(t)| ≤ K̄
∫ t

0
|y(s) − z(s)|ds, t ∈ I.

By Lemma 2.1.14 this yields

|y(t) − z(t)| ≤ 0 · exp(K̄ t) = 0 for all t ∈ I,

thus verifying that y(t) = z(t) for all t ∈ I .

Remark In contrast to the linear Fredholm integral equation of the second
kind,

y(t) = g(t) + λ(F y)(t), t ∈ I := [0, T ],

with

(F y)(t) :=
∫ T

0
K (t, s)y(s)ds

and g ∈ C(I ), K ∈ C(I × I ), the Volterra integral equation

y(t) = g(t) + λ(V y)(t), t ∈ I,
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possesses a unique solution y ∈ C(I ) for any (real or complex) parameter λ.
This follows directly from the above analysis of the Neumann series (2.1.8).
Alternatively, if we define

||V|| := sup
φ �=0

||Vφ||∞
||φ||∞ = max

t∈I

∫ t

0
|K (t, s)|ds ≤ K̄ T,

and recall that ||Vφ||∞ ≤ ||V|| · ||φ||∞, we find

||Vn|| ≤ K̄ nT n

n!
(n ≥ 1);

hence, the inverse of the linear operator I − λV : C(I ) → C(I ) exists as a
bounded linear operator for any kernel K ∈ C(D) and any complex number λ.
In other words, the spectrum ofV , σ (V) (that is, the set of values λ for which the
operator I − λV is not invertible in C(I )) is empty. This is in general not true
for I − λF (see, e.g. Fredholm (1903), Pogorzelski (1966), Cochran (1972),
Gohberg and Goldberg (1980), or Kress (1999)).

Thus, the VIE y = g + λV y, possesses a unique solution y ∈ C(I ) for any
g ∈ C(I ) and any λ ∈ IR (or in C).

The following regularity result is an immediate consequence of the definition
of the iterated kernels of K and the resolvent kernel R, since K ∈ Cm(D)
implies Kn ∈ Cm(D) for all n ≥ 2 and hence, by the uniform convergence of
the Neumann series, R ∈ Cm(D).

Theorem 2.1.3 Assume that K ∈ Cm(D). Then its resolvent R has the same
degree of regularity, namely R ∈ Cm(D). Thus, for any g ∈ Cm(I ) the solution
of the Volterra integral equation (2.1.2) satisfies y ∈ Cm(I ).

It is often advantageous to represent the solution of the linear VIE (2.1.2) in
a form resembling the familiar variation-of-constant formula for a linear first-
order ODE. To derive this alternative representation, we first observe that the
special Volterra integral equation

y(t) = g(t) +
∫ t

0
a(s)y(s)ds, t ∈ I, (2.1.12)

with g ∈ C1(I ) and a ∈ C(I ), is equivalent to the initial-value problem

y′(t) = a(t)y(t) + g′(t), t ∈ I, y(0) = g(0), (2.1.13)

whose solution is given by

y(t) = exp

(∫ t

0
a(v)dv

)
g(0) +

∫ t

0
exp

(∫ t

s
a(v)dv

)
g′(s)ds.
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If we define

U (t, s) := exp

(∫ t

s
a(v)dv

)
, (t, s) ∈ D,

we obtain

y(t) = U (t, 0)y(0) +
∫ t

0
U (t, s)g′(s)ds, t ∈ I, (2.1.14)

the well-known representation of the solution of the initial-value problem
(2.1.13). On the other hand, we have seen that the resolvent kernel R associ-
ated with the kernel K (t, s) := a(s) in (2.1.12) satisfies the resolvent equation
(2.1.9),

R(t, s) = a(s) +
∫ t

s
a(v)R(v, s)dv, (t, s) ∈ D, (2.1.15)

and hence,

∂ R(t, s)

∂t
= a(t)R(t, s), with R(s, s) = a(s), s ∈ I. (2.1.16)

This initial-value problem possesses the (unique) solution

R(t, s) = a(s) exp

(∫ t

s
a(v)dv

)
, (t, s) ∈ D.

In other words, we have shown that for the special Volterra integral equation
(2.1.12),

∂U (t, s)

∂s
= −R(t, s), (t, s) ∈ D. (2.1.17)

We will now prove that the variation-of-constants formula (2.1.14) can be
extended to the general linear Volterra integral equation (2.1.2). It can be found
in Bownds and Cushing (1973); compare also Brunner and van der Houwen
(1986, pp. 13–14).

Theorem 2.1.4 Assume that g ∈ C1(I ) and K ∈ C(D). Then the (unique) so-
lution y ∈ C(I ) of the Volterra equation (2.1.2) may be expressed in the form

y(t) = U (t, 0)g(0) +
∫ t

0
U (t, s)g′(s)ds, t ∈ I, (2.1.18)

where U (t, s) is the (unique) continuous solution of

U (t, s) = 1 +
∫ t

s
K (t, v)U (v, s)dv, (t, s) ∈ D. (2.1.19)
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Moreover, U (t, s) is related to the resolvent kernel R(t, s) of the given kernel
K (t, s) by

−∂U (t, s)

∂s
= R(t, s), (t, s) ∈ D. (2.1.20)

Proof Consider first the right-hand side of (2.1.18): since we have U (t, t) = 1
on I , integration by parts yields, for t ∈ I ,

U (t, 0)g(0) + {g(t) − U (t, 0)g(0) −
∫ t

0

∂U (t, s)

∂s
g(s)ds}

= g(t) −
∫ t

0

∂U (t, s)

∂s
g(s)ds.

Thus, (2.1.18) can be written as

y(t) = g(t) −
∫ t

0

∂U (t, s)

∂s
g(s)ds, t ∈ I. (2.1.21)

Since y is the unique solution of (2.1.2), comparison of (2.1.11) and (2.1.20)
shows that the statement (2.1.20) in Theorem 2.1.4 is true. This can also be seen
by observing that the right-hand side of (2.1.19) is continuously differentiable
with respect to s:

∂U (t, s)

∂s
= −K (t, s)U (s, s) +

∫ t

s
K (t, v)

∂U (v, s)

∂s
dv

= −K (t, t) +
∫ t

s
K (t, v)

∂U (v, s)

∂s
dv, (t, s) ∈ D.

Multiplying the above equation by (−1) reveals that the resulting equation
has the form of the resolvent equation (2.1.9): since that equation is uniquely
solvable on D, we must have (∂/∂s)U (t, s) = −R(t, s), (t, s) ∈ D.

For certain classes of linear Volterra integral equations it is not necessary to
resort to Volterra’s classical approach to establish the existence and uniqueness
of continuous solutions. Here, we briefly mention Volterra equations corre-
sponding to Volterra operators V with finite rank and described by degenerate
(or: finitely decomposable) kernels of the form

K (t, s) =
r∑

i=1

Ai (t)Bi (s), with Ai , Bi ∈ C(I ).

Setting

zi (t) :=
∫ t

0
Bi (s)y(s)ds (i = 1, . . . , r ),

the integral equation can then be written as an equivalent initial-
value problem for a system of linear ordinary differential equations for
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z(t) := (z1(t), . . . , zr (t))T , namely,

z′
i (t) = Bi (t)

(
g(t) +

r∑
j=1

A j (t)z j (t)

)
(i = 1, . . . , r ), t ∈ I,

with initial condition z(0) = 0. Since the functions describing this system are
continuous in I , there exists a unique solution z ∈ C1(I ) satisfying the given
initial condition. It then follows from (2.1.2) with the above degenerate kernel
that the original integral equation possesses a unique solution y ∈ C(I ) which
is given by

y(t) = g(t) +
r∑

i=1

Ai (t)zi (t) =: g(t) + (A(t))T z(t), t ∈ I.

2.1.2 Linear convolution equations

The resolvent kernel corresponding to the linear Volterra integral equations
(2.1.2) with convolution kernel K (t, s) = k(t − s),

y(t) = g(t) +
∫ t

0
k(t − s)y(s)ds, t ∈ I := [0, T ], (2.1.22)

inherits the convolution structure of k(t − s): we have R(t, s) =: ρ(t − s). This
is readily seen from the Picard iteration process applied to (2.1.22): according
to (2.1.4) and (2.1.6) the iterated kernels corresponding to k(t − s) are given by

kn(t − s) =
∫ t−s

0
k(t − s − v)kn−1(v)dv (n ≥ 2), k1(t − s) := k(t − s),

leading to the (absolutely and uniformly convergent) Neumann series

ρ(t − s) :=
∞∑

n=1

kn(t − s), 0 ≤ t − s ≤ T .

It also follows that the resolvent equations (2.1.9) and (2.1.10) assume the forms

ρ(z) = k(z) +
∫ z

0
k(z − v)ρ(v)dv, z ∈ I, (2.1.23)

and

ρ(z) = k(z) +
∫ z

0
ρ(z − v)k(v)dv, z ∈ I, (2.1.24)

respectively, with z := t − s, and Theorem 2.1.2 for (2.1.22) may be restated
as
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Theorem 2.1.5 Let k ∈ C(I ). The for any g ∈ C(I ) the convolution integral
equation (2.1.22) possesses a unique solution y ∈ C(I ) which is given by

y(t) = g(t) +
∫ t

0
ρ(t − s)g(s)ds, t ∈ I. (2.1.25)

Here, the resolvent kernel ρ is defined by the resolvent equation (2.1.23) or
(2.1.24).

The following result is often useful in applications (we shall return to a
slightly more general version in Section 6.1.2) because it establishes a connec-
tion between the solution of the general convolution equation (2.1.22) and one
with a particular (constant) forcing function g (Bellman and Cooke (1963)).

Theorem 2.1.6 Consider the linear convolution equations

y(t) = g(t) +
∫ t

0
k(t − s)y(s)ds, t ∈ I, (2.1.26)

and

w(t) = 1 +
∫ t

0
k(t − s)w(s)ds, t ∈ I. (2.1.27)

Assume that g ∈ C1(I ), and k ∈ C(I ). Then the (unique) solutions y ∈ C(I )
and w ∈ C(I ) of (2.1.26) and (2.1.27) are related by

y(t) = g(0)w(t) +
∫ t

0
w(t − s)g′(s)ds, t ∈ I. (2.1.28)

If the solution w is in C1(I ) then we also have

y(t) = w(0)g(t) +
∫ t

0
w′(t − s)g(s)ds, t ∈ I.

Proof Exercise 2.5.5.

An alternative approach to solving linear Volterra integral equations possess-
ing convolution kernels is by means of Laplace transform techniques. We shall
not pursue this here; the interested reader is referred to the classical monograph
by Doetsch (1974); see also Guy and Salès (1991, pp. 23–32) for a detailed
description and numerous examples.

2.1.3 Systems of linear VIEs

Systems (of usually very large dimension) arise naturally in the spatial semidis-
cretisation of partial Volterra integral equations. A typical example is given by
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the equation

−∇2u(t, x) = f (t, x) −
∫ t

0
k(t − s)∇2u(s, x)ds, t ∈ I := [0, T ], x ∈ �,

u(t, x) = 0, x ∈ ∂� (t ∈ I ),

which occurs as a mathematical model in linear quasi-static visco-elasticity
problems (see, e.g. Shaw, Warby and Whiteman (1997) and Shaw and Whiteman
(2001), and their lists of references). Here, � ⊂ IRd is open and bounded, with
(piecewise) smooth boundary ∂�. Spatial approximation of the differential
operator based on finite element (or, for simple geometries, finite difference)
techniques leads to a system of VIEs of the form

y(t) = g(t) +
∫ t

0
K(t, s)y(s)ds, t ∈ I, (2.1.29)

where y(t) := ( y1(t), . . . , yM (t) )T ∈ IRM , g(t) := ( g1(t), . . . , gM (t) )T ∈
IRM and

K(t, s) :=
[

Ki, j (t, s)
(i, j = 1, . . . , M)

]
∈ L(IRM )

with g and K continuous on I and D, respectively. The theory on the exis-
tence and uniqueness of a continuous solutions y follows in a straightforward
way from the theory developed in Section 2.1.1 (and was already established
by Volterra (1896c)). In particular, the resolvent kernel R = R(t, s) ∈ L(IRm)
satisfies the resolvent equations

R(t, s) = K(t, s) +
∫ t

s
K(t, v)R(v, s)ds, (t, s) ∈ D,

and

R(t, s) = K(t, s) +
∫ t

s
R(t, v)K(v, s)ds, (t, s) ∈ D.

(cf. (2.1.9), (2.1.10)).
The following theorems on the existence and uniqueness, and the regularity

of solution are thus readily proved: the iterated kernel matrices Kn(t, s) are
defined similar to (2.1.6), and the uniform upper bounds for their norms
||Kn(t, s)||∞ (n ≥ 1) on D are obtained in complete analogy to the scalar case,
leading again to absolute and uniform convergence of the Neumann series (cf.
(2.1.8)),

R(t, s) :=
∞∑

n=1

Kn(t, s), (t, s) ∈ D,

and hence to the fact that R inherits the regularity of K.
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Theorem 2.1.7 Assume that K ∈ C(D), and let R denote its resolvent kernel.
Then for every g ∈ C(I ) the system of second-kind Volterra integral equations
(2.1.29) possesses a unique solution y ∈ C(I ), and this solution is given by

y(t) = g(t) +
∫ t

0
R(t, s)g(s)ds, t ∈ I. (2.1.30)

If g ∈ Cm(I ) and K ∈ Cm(D) (m ≥ 1), then the solution y of the linear system
(2.1.29) lies in Cm(I ).

We shall return to these results in Chapter 3 (Section 3.1.2) when discussing
neutral Volterra integro-differential equations of the form

y(k)(t) =
k−1∑
ν=0

aν(t)y(ν)(t) + g(t) +
∫ t

0

k∑
ν=0

Kν(t, s)y(ν)(s)ds (k ≥ 2).

It will be seen that such an equation can be rewritten as a system of k + 1 second-
kind VIEs with a (sparse) kernel matrix K ∈ L(IRk+1). This observation, and
the result of Theorem 2.1.7, will then play a key role in the derivation of opti-
mal superconvergence estimates for collocation solutions uh ∈ S(d)

m+d (Ih) (d =
k − 1) for the above VIDE.

2.1.4 Linear VIEs of the first kind

The general theory of integral equations with variable upper limit of integration
was estabilshed by Volterra (1896a, Nota I). As we mentioned in Section 2.1.1
he studied the solvability of the first-kind integral equation

(V y)(t) :=
∫ t

0
K (t, s)y(s)ds = g(t), t ∈ I := [0, T ], with g(0) = 0,

(2.1.31)
under appropriate assumptions on g and the kernel K . Here is Volterra’s classical
result.

Theorem 2.1.8 Assume that K satisfies K ∈ C(D), ∂K/∂t ∈ C(D), and
|K (t, t)| ≥ k0 > 0 for t ∈ I . Then for any g ∈ C1(I ) with g(0) = 0 the integral
equation (2.1.31) has a unique solution y ∈ C(I ).

Proof Clearly, the condition that g(0) = 0 is necessary for y to be continuous
at t = 0. The assumptions for K and g permit the differentiation of both sides
of (2.1.31), yielding

K (t, t)y(t) +
∫ t

0

∂K (t, s)

∂t
y(s)ds = g′(t), t ∈ I.
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Since K (t, t) does not vanish in I , (2.1.31) is equivalent to the linear second-
kind Volterra integral equation

y(t) = g1(t) +
∫ t

0
K1(t, s)y(s)ds, t ∈ I, (2.1.32)

where the functions g1 ∈ C(I ) and K1 ∈ C(D) describing this equation are
defined by

g1(t) := g′(t)/K (t, t) and K1(t, s) := −(∂K (t, s)/∂t)/K (t, t).

The proof is now completed by appealing to Theorem 2.1.2.

Remark In Section 6.1.6 (Theorem 6.1.16 with α = 0) we will see an extension
of this classical result to nonlinear first-kind VIEs of Hammerstein type,∫ t

0
K (t, s)G(s, y(s))ds = g(t), t ∈ I.

Under appropriate regularity assumptions this problem is equivalent to an im-
plicit VIE of the second-kind,

G(t, y(t)) = g1(t) −
∫ t

0
K1(t, s)G(s, y(s))ds,

where g1 and K1 have the same meaning as in the proof of Theorem 2.1.8.

Example 2.1.1 The assumption that K (t, t) be non-zero for t ∈ I is of course
not necessary for (2.1.31) to possess a unique continuous solution in I . As an
example, consider the kernel

K (t, s) = (t − s)r−1

(r − 1)!
, r ≥ 1 (r ∈ IN),

which vanishes identically along the line t = s. However, equation (2.1.31)
with this kernel and with

g ∈ Cr (I ), g( j)(0) = 0 ( j = 0, . . . , r − 1),

possesses the unique continuous solution y(t) = g(r )(t), t ∈ I . This can be
readily verified either by direct substitution or by differentiating both sides of
the integral equation r times.

Example 2.1.2 Isolated zeros of K (t, s) in I can lead to non-uniqueness, as
the following example shows. Let

K (t, s) = 2t − 3s, g(t) = t2 (t ∈ I = [0, T ]).

Here, K (0, 0) = 0 and K (t, t) < 0 whenever t > 0. It is easily verified that
y(t) = 1 + γ t is a (real) continuous solution for any γ ∈ IR.
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A detailed discussion of the connection between first-kind VIEs with kernels
having K (0, 0) = 0 (and K (t, t) �= 0 when t > 0) and differential equations of
Fuchsian type may also be found in the 1927 survey paper by Davis. The first
study of such VIEs is due to Volterra (1896b).

The equivalence between (2.1.31) and (2.1.32) allows us also to derive the
following regularity result.

Theorem 2.1.9 Let m ≥ 0 and assume that

(a) g ∈ Cm+1(I ), with g(0) = 0, and
(b) K ∈ Cm+1(D), with |K (t, t)| ≥ k0 > 0 for all t ∈ I .

Then the unique solution of the first-kind Volterra integral equation (2.1.31)
lies in the space Cm(I ).

Remarks

1. First-kind Volterra integral equations with convolution kernel,∫ t

0
k(t − s)y(s)ds = g(t), t ∈ I = [0, T ],

with k ∈ C1(I ) and k(0) �= 0 fall of course within the framework of Theo-
rems 2.1.8 and 2.1.9. Like their second-kind conterparts in Section 2.1.2 they
can also be solved by Laplace transform techniques. The books by Krasnov,
Kissélev and Makarenko (1977) and Guy and Salès (1991) contain details
and numerous examples.

2. The book by Srivastava and Buschman (1977) deals with linear first-kind
Volterra integral equations possessing special kernels of convolution type; it
contains an extensive list of equations whose solution can be found explicitly.

Can the solution of a linear first-kind VIE be represented in terms of a
‘resolvent kernel’, in analogy to linear VIEs of the second kind? As we shall
see in more detail in Section 6.1.5, Niels Henrik Abel showed in his papers of
1823 and 1826 that the solution of the first-kind integral equation with weakly
singular kernel,∫ t

0
(t − s)−α y(s)ds = g(t), t ∈ I := [0, T ] (0 < α < 1), (2.1.33)

where g ∈ C1(I ), can be written as

y(t) = d

dt

(∫ t

0
R(t − s; α)g(s)ds

)
, t ∈ (0, T ]. (2.1.34)
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Here, the resolvent kernel R(· ; α) has the form

R(t − s; α) := γα(t − s)α−1, 0 ≤ s < t ≤ T,

with γα := sin(απ )/π (= 1/[�(α)�(1 − α)]). This is reminiscent of the result
in Corollary 6.1.4.

Does an analogous resolvent representation for the solution of the first-kind
VIE (2.1.31) exists if the kernel K is smooth on D? This problem was studied in
detail by Gripenberg 1980 (see also the monograph by Gripenberg, Londen and
Staffans (1990, pp. 156–167)). He showed that in this case no such function
in the classical sense exists: in order for an analogue of (2.1.34) to be true,
the resolvent kernel R has to be a measure. However, as can be seen in the
monograph just mentioned, the general resolvent theory for linear first-kind
VIEs is far from being completely understood.

We conclude this section by briefly looking at the ill-posed nature of first-kind
Volterra integral equations. A detailed treatment, including feasible numerical
(e.g. collocation based) methods for such problems, is beyond the scope of this
book. The interested reader may wish to consult the excellent survey paper by
Lamm (2000) and, in particular, the sections and references to sequential (i.e.
‘Volterra type’) regularisation methods studied by her and her collaborators.
Compare also Ring and Prix (2000) and Ring (2001) for a complementary
analysis.

As we have seen earlier, the solution of the (linear) first-kind VIE (2.1.31)
does not depend continuously on the given data K and g. If g ∈ C1(I ), with
g(0) = 0, and K ∈ C1(D), with |K (t, t)| ≥ k0 > 0 on I , then the equation can
be transformed into an equivalent second-kind equation with solution y ∈ C(I ).
However, for a small change from g(t) to gε(t) := g(t) + εg1(t) (ε �= 0), with
g1 ∈ C1(I ), g1(0) �= 0, this is no longer possible, and the solution yε is no
longer continuous on I . The following definition describes a measure of the
degree of ill-posedness (see Lamm (2000)).

Definition 2.1.2 The Volterra integral operator V given by (2.1.31) is said to
be ν-smoothing if there exists an integer ν ≥ 1 for which the kernel K of V
satisfies

(a)
∂ j K (t, s)

∂t j

∣∣∣∣
s=t

= 0, t ∈ I, j = 0, 1, . . . , ν − 2;

(b)
∂ν−1 K (t, s)

∂tν−1

∣∣∣∣
s=t

= kν �= 0, t ∈ I ;

(c)
∂ν K

∂tν
∈ C(D).
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If
∂ j K (t, s)

∂t j

∣∣∣∣
s=t

= 0 for t ∈ I and all j ∈ IN0, then V is called an infinitely

smoothing Volterra operator.
The Volterra equationV y = g is a ν-smoothing problem ifV is a ν-smoothing

operator and g ∈ Cν(I ).

Example 2.1.3 If K (t, s) ≡ 1 on D, then

(V y)(t) =
∫ t

0
y(s)ds, t ∈ I,

is a one-smoothing operator. The corresponding first-kind VIE describes the
process of differentiating the function g: y(t) = g′(t), t ∈ I .

Example 2.1.4 Let r ∈ IN. Then the Volterra operator given by

(V y)(t) :
∫ t

0

(t − s)r−1

(r − 1)!
y(s)ds, t ∈ I,

is r -smoothing. We have seen in Example 2.1.1 that the solution of V y = g is
y(t) = g(r )(t), t ∈ I , provided we have g( j)(0) = 0, j = 0, . . . , r − 1.

Remark The degree of ill-posedness – which increases as ν increases – can
also be characterised by the singular values {σ j } of V (see, e.g. Lamm (2000,
p. 75) for references). These singular values behave like O(1/jν) as j → ∞.

Example 2.1.5 The inverse heat conduction problem (often referred to as the
sideways heat equation; cf. Eldén (1983) or the references in Lamm (2000,
pp. 76–77)) can be formulated as a first-kind VIE whose kernel is

K (t, s) = k(t − s) = 1

2
√

π
t−3/2 exp(−1/(4t)).

It is easily seen that the correspondingV has ν = ∞: it is an infinitely smoothing
Volterra operator. This is of course consistent with the fact that solving the
sideways heat equation is a severely ill-posed problem.

2.1.5 Nonlinear VIEs

Before dealing with general nonlinear VIEs we briefly consider the nonlinear
VIE with degenerate kernel,

y(t) = g(t) +
∫ t

0

r∑
i=1

Ai (t)bi (s, y(s))ds, t ∈ I := [0, T ]. (2.1.35)
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If the functions defining the kernel are continuous then we may formally trans-
form (2.1.35) into a system of nonlinear ordinary differential equations for

zi (t) :=
∫ t

0
bi (s, y(s))ds (i = 1, . . . , r ).

This system of ODEs has the form

z′
i (t) = bi (s, g(s) +

r∑
i=1

Ai (t)zi (t)) t ∈ I (i = 1, . . . , r ),

with initial conditions zi (0) = 0. We may thus appeal to the theory of nonlinear
ODEs to establish the existence and uniqueness of a solution z ∈ C1(I ), with
z := ( z1, . . . , zr )T . The unique solution y ∈ C(I ) of (2.1.35) is then given by

y(t) = g(t) +
∫ t

0

r∑
i=1

Ai (t)zi (s)ds, t ∈ I.

Consider now the general nonlinear Volterra integral equation

y(t) = g(t) +
∫ t

0
k(t, s, y(s))ds =: g(t) + (V y)(t), t ∈ I. (2.1.36)

For this equation Picard iteration assumes the form

yn+1(t) := g(t) + (V yn)(t), t ∈ I (n ≥ 0), (2.1.37)

with y0(t) := g(t). The following (local) existence theorem (see, e.g. Miller
(1971a)) generalises the classical result for

y(t) = y0 +
∫ t

0
f (s, y(s))ds, t ∈ I,

which is the integrated form of the initial-value problem y′(t) =
f (t, y(t)), y(0) = y0 and whose kernel k does not depend on t . To state this
result we will adopt the notation

D := {(t, s) : 0 ≤ s ≤ t ≤ T },
�B := {(t, s, y) : (t, s) ∈ D, y ∈ IR and |y − g(t)| ≤ B},

and we set MB := max{|k(t, s, y)| : (t, s, y) ∈ �B}.
Theorem 2.1.10 Assume:

(a) g ∈ C(I );
(b) k ∈ C(�B);
(c) K satisfies the Lipschitz condition

|k(t, s, y) − k(t, s, z)| ≤ L B |y − z| for all (t, s, y), (t, s, z) ∈ �B .
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Then:

(i) The Picard iterates yn(t) exist for all n ≥ 1. They are continuous on the
interval I0 := [0, δ0], where

δ0 := min{T, B/MB},
and they converge uniformly on I0 to a solution y ∈ C(I0) of the nonlinear
Volterra integral equation (2.1.36).

(ii) This solution y is the unique continuous solution on I0.

Proof

• Uniqueness: Suppose that (2.1.36) possesses two continuous solutions y1

and y2 on the interval I0. Hence, by (c),

|y1(t) − y2(t)| ≤
∫ t

0
|k(t, s, y1(s)) − k(t, s, y2(s)|ds

≤ L B ·
∫ t

0
|y1(s) − y2(s)|ds, t ∈ I0.

It follows from the continuity of |y1 − y2| and from Lemma 2.1.14 (Section
2.1.8) that

|y1(t) − y2(t)| ≤ 0 · exp(L Bt) = 0, t ∈ I0.

Hence, ||y1 − y2||0,∞ := maxt∈I0 |y1(t) − y2(t)| = 0, implying that the two so-
lutions are identical on I0.

• Existence: We begin by showing that the Picard iterates defined in (2.1.37)
satisfy

|yn(t) − g(t)| ≤ MBt ≤ B for all t ∈ I0.

Since this assertion is certainly true for n = 0, assume it holds for n. This
implies that (t, s, yn(s)) ∈ �B when t ∈ I0. Hence, k(t, s, yn(s)) is well defined
and we have

|k(t, s, yn(s))| ≤ MB for (t, s) ∈ D.

This yields

|yn+1(t) − g(t)| ≤
∫ t

0
|k(t, s, yn(s))|ds ≤ MBt ≤ B, t ∈ I0.

Thus, yn+1(t) is defined on I0, and it follows from the continuity of g and k on
I and �B that yn+1 ∈ C(I0).

We now prove that the sequence {yn(t)} defined by Picard iteration (2.1.37)
is a Cauchy sequence on I0. To this end, let zn(t) := yn+1(t) − yn(t). It is readily
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verified that

|zn(t)| ≤ MB Ln
Btn+1

(n + 1)!
, t ∈ I0 (n ≥ 0).

Therefore,

yn+m(t) − yn(t) =
m−1∑
j=0

[yn+ j+1(t) − yn+ j (t)]

implies that, for all t ∈ I0,

|yn+m(t) − yn(t)| ≤
m−1∑
j=0

|zn+ j (t)| ≤ MB

m−1∑
j=0

Ln+ j
B tn+ j+1

(n + j + 1)!
= MB

m+n∑
j=n+1

L j−1
B t j

j!
.

Thus, limn→∞ yn(t) =: y(t) uniformly on I0, with limit y ∈ C(I0). Using the
Lipschitz condition for k(t, s, y) with respect to y (assumption (c)), we obtain∣∣∣∣
∫ t

0
[k(t, s, yn(s)) − k(t, s, y(s))]ds ≤ L B

∫ t

0
|yn(s) − y(s)|ds

∣∣∣∣ −→ 0, t ∈ I0,

as n → ∞. This allows us to carry out the final step in the existence proof,
namely to show that y solves the nonlinear integral equation (2.1.36) in I0:

y(t) = lim
n→∞ yn(t) = g(t) + lim

n→∞

∫ t

0
k(t, s, yn−1(s))ds

= g(t) +
∫ t

0
k(t, s, lim

n→∞ yn−1(s))ds = g(t) + (V y)(t), t ∈ I0.

The proof is now complete.

Does the solution exist (and remain continuous) beyond t = δ0? Setting
z(t) := y(t + δ0) the given VIE (2.1.36) can be written in ‘shifted’ form, namely,

z(t) = g0(t) +
∫ t

0
k0(t, s, z(s))ds, t ≥ 0,

where

g0(t) = g(t + δ0) +
∫ δ0

0
k(t + δ0, s, y(s))ds

and

k0(t, s, z) := k(t + δ0, s + δ0, z), t + δ0 ≤ T .

Since g0 and k0 satisfy the hypotheses of Theorem 2.1.10, we may deduce the
existence of a (unique) continuous solution z on some interval [0, δ1], with
δ1 > 0, and this implies that the solution y of the orginal VIE (2.1.36) has
been continued continuously to [δ0, δ1]. How far this process can be continued
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obviously depends on the constants B and MB . A more detailed analysis of the
question regarding the continuation of solutions to nonlinear VIEs can be found
in, e.g. the books by Miller (1971a, pp. 30–33) or Burton (1983, pp. 66–89).

We conclude this discussion with an example showing that a solution cannot
always be continued to an arbitrary interval.

Example 2.1.6 VIEs with blow-up solutions

It is well known that solutions of the initial-value problem

y′(t) = λy(t) + ε(y(t))p, t ≥ 0 (λ ≤ 0, ε > 0, p > 1)

y(0) = y0 > 0,

may not exist for all t > 0; in other words, the solution cannot always be
continued to any finite interval. This initial-value problem is of course equivalent
to the nonlinear VIE

y(t) = y0 +
∫ t

0
{λy(s) + ε(y(s))p}ds, t ≥ 0, (2.1.38)

which may be viewed as a particular case of the ‘semilinear’ VIE (2.1.40)
considered below. The following result shows that the solution may blow up
in finite time: there exists Tb < ∞ so that limt→T −

b
y(t) = +∞. Since the VIE

(2.1.38) corresponds to a Bernoulli differential equation, the proof of Theorem
2.1.11 is elementary.

Theorem 2.1.11 Assume that λ < 0, ε > 0, p > 1 and y0 > 0. Then the
(unique) continuous solution of (2.1.38) is (formally) described by

y(t) =
(

1

y1−p
0 exp(−λ(p − 1)t) − (ε/λ)(1 − exp(−λ(p − 1)t)

)1/(p−1)

.

(2.1.39)
For given λ and p it blows up in finite time Tb if, and only if, the initial value
y0 is such that

y0 > (−λ/ε)1/(p−1).

The blow-up time is then

Tb = 1

λ(p − 1)
ln

(
1 + λ

εy p−1
0

)
.

Remark Blow-up solutions for the more general VIE

y(t) = y0 +
∫ t

0
k(t − s))G(y(s))ds,
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with L1 kernel k and nonlinearity G satisfying, respectively,

k(t) ≥ bt (b > 0) and lim
t→∞ inf

G(z)

z p
> 0

are discussed in Miller (1971a, pp. 46–51). Related blow-up results can be
found in, e.g. Okrasiński (1991), Mydlarczyk (1994, 1996, 1999), Bushell and
Okrasiński (1996), Olmstead (2000); see also the survey paper by Roberts
(1998) and its list of references.

In Chapter 6 (Exercise 6.6.24) we shall encounter an analogous result for
a more general nonlinear VIE with weakly singular kernel that arises in, e.g.
combustion theory.

As we have seen above, in applications nonlinear VIEs often occur in ‘per-
turbed’ (or: ‘semi-linear’) form,

y(t) = g(t) +
∫ t

0
K (t, s){y(s) + H (s, y(s))}ds,

=: g(t) + (V y)(t) + (Hy)(t), t ∈ I, (2.1.40)

where V is our usual linear Volterra integral operator (2.1.1) corresponding to
the kernel K and where H denotes the Volterra–Hammerstein integral operator
defined by

(Hy)(t) :=
∫ t

0
K (t, s)H (s, y(s))ds;

here, K ∈ C(D) and H is a (‘small’) smooth function. If (2.1.40) possesses
a unique solution y ∈ C(I ), this equation may be rewritten in the form of a
nonlinear variation-of-constant representation in which the integral term cor-
responding to H is viewed as a perturbation of the linear VIE described by V .
This is made precise in the following theorem (Grossman and Miller (1970,
1973)).

Theorem 2.1.12 Suppose that the nonlinear integral equation (2.1.40) has a
unique solution y ∈ C(I ), and let H : I × IR → IR be (Lipschitz) continuous.
Then the solution of this equation may be written as

y(t) = y�(t) +
∫ t

0
R(t, s)H (s, y(s))ds, t ∈ I. (2.1.41)

Here, y� denotes the (unique) solution of the linear part of (2.1.40) and is given
by

y�(t) = g(t) +
∫ t

0
R(t, s)g(s)ds, t ∈ I,
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with R = R(t, s) denoting the resolvent kernel corresponding to the given
kernel K = K (t, s).

Proof Setting

Q(t) := (Hy)(t) =
∫ t

0
K (t, s)H (s, y(s))ds,

and applying Theorem 2.1.2 to the ‘linear’ integral equation

y(t) = g(t) + Q(t) +
∫ t

0
K (t, s)y(s)ds, t ∈ I,

we obtain

y(t) = g(t) + Q(t) +
∫ t

0
R(t, s){g(s) + Q(s)}ds

= g(t) +
∫ t

0
R(t, s)g(s)ds + [Q(t) +

∫ t

0
R(t, s)Q(s)ds]

= y�(t) +
∫ t

0
K (t, s)H (s, y(s))ds

+
∫ t

0

(∫ t

v

R(t, s)K (s, v)ds

)
H (v, y(v))dv

= y�(t) +
∫ t

0
R(t, s)H (s, y(s))ds.

Here, we have made use of the resolvent equation (2.1.10) (read from right to
left) to replace the integral involving the product R(t, s)K (s, v) by the difference
of R and K .

The nonlinear second-kind Volterra integral equation (2.1.40) is a particular
case of a more general Volterra–Hammerstein integral equation often encoun-
tered in applications (see, e.g. Brunner (1991) and its references).

Definition 2.1.3 The nonlinear Volterra integral operator H given by

(Hy)(t) :=
∫ t

0
K (t, s)G(s, y(s))ds, t ∈ I. (2.1.42)

is called a Volterra–Hammerstein operator. Here, G : I × IR → IR is smooth,
while the kernel function K = K (t, s) may be continuous (bounded) or weakly
singular (the latter case will be considered in Section 6.1.4). The corresponding
second-kind Volterra integral equation,

y(t) = g(t) + (Hy)(t), t ∈ I, (2.1.43)

is a Volterra–Hammerstein integral equation of the second kind.
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Note that in the above equation (2.1.40) the nonlinearity G is given by
G(s, y) = y + H (s, y).

Remark In his 1930 paper A. Hammerstein analysed the solvability of the
nonlinear Fredholm-type integral equation

y(t) = g(t) +
∫ T

0
K (t, s)G(s, y(s))ds, t ∈ I.

Therefore such equations now carry the name of Hammerstein. Hammerstein’s
analysis was continued by Niemytzki (1934); see also the books by Tricomi
(1957), Krasnosel’skii and Zabreiko (1984), and Corduneanu (1991, pp. 86–88)
for the theory of Hammerstein equations of Fredholm or Volterra type.

In Section 2.3.3 we shall see that it will frequently be advantageous to
rewrite a nonlinear second-kind Volterra integral equation of Hammerstein form
(2.1.43) as follows. Define the Niemytzki operator (or: substitution operator)
N by

(Nφ)(t) := G(t, φ(t)), t ∈ I,

and set z(t) := (N y)(t). The original Volterra–Hammerstein equation (2.1.43)
then becomes

y(t) = g(t) + (VN y)(t), t ∈ I, (2.1.44)

and can thus be written as an implicitly linear integral equation for z,

z(t) = G(t, g(t) + (Vz)(t)), t ∈ I, (2.1.45)

where V denotes the linear Volterra integral operator with kernel K (t, s),

(Vz)(t) :=
∫ t

0
K (t, s)z(s)ds, t ∈ I.

If (2.1.45) has a unique solution z ∈ C(I ) then the (unique) solution y ∈ C(I )
of the original Volterra–Hammerstein equation is obtained by

y(t) = g(t) + (Vz)(t), t ∈ I. (2.1.46)

It is shown in Krasnosel’skii and Zabreiko (1984, p. 143) that, under suit-
able assumptions on the (smooth) nonlinearity G, there is a one-to-one corre-
spondence between (continuous) solutions of (2.1.43) and (2.1.45); hence, if
(2.1.43) possesses a unique solution y ∈ C(I ) then (2.1.45) has a unique so-
lution z ∈ C(I ). Compare also Corduneanu (1991, p. 153). General results on
the existence of solutions to Hammerstein integral equations can also be found
in Dolph and Minty (1964) and in Brezis and Browder (1975).
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2.1.6 Volterra–Fredholm integral equations

One of the most prominent sources of Volterra–Fredholm integral equations of
the second kind is mathematical population dynamics (see, e.g. Thieme (1977,
1979), Diekmann (1978)). Typically, such a VFIE has the form

u(t, x) = g(t, x) + (T u)(t, x), t ∈ I := [0, T ], x ∈ �, (2.1.47)

with Volterra–Fredholm integral operator T : C(I × �) → C(I × �) defined
by

(T u)(t, x) :=
∫ t

0

∫
�

K (t, s, x, ξ )G(u(s, ξ ))dξds. (2.1.48)

Here, � denotes a (closed) bounded region in IRd (d = 1, 2, 3) with (piecewise)
smooth boundary ∂�. In applications one often has

K (t, s, x, ξ ) = k(t − s)H (x, ξ ),

where k represents a (positive) memory kernel.
In this section we briefly show, by means of (2.1.47) corresponding to the

linear Volterra–Fredholm operator (2.1.48) with G(u) = u, that the Volterra part
of the integral operator ‘dominates’ the FIE, in the sense that the Neumann series
generated by the Picard iteration process converges absolutely and uniformly on
I × � (in other words, the spectrum of T consists only of {0}). The following
result, as well as detailed proofs, can be found in Kauthen (1989a, 1989b); see
also Pachpatte (1986), and Brunner (1990) for the nonlinear case.

Theorem 2.1.13 Assume:

(a) g ∈ C(I × �);
(b) K ∈ C(D × �2), where D := {(t, s) : 0 ≤ s ≤ t ≤ T } and �2 := � × �.

Then the linear VFIE

u(t, x) = g(t, x) +
∫ t

0

∫
�

K (t, s, x, ξ )u(s, ξ )dξds, (t, x) ∈ I × �,

(2.1.49)
possesses a unique solution u ∈ C(I × �). This solution is given by

u(t, x) = g(t, x) +
∫ t

0

∫
�

R(t, s, x, ξ )g(s, ξ )dξds, (t, x) ∈ I�. (2.1.50)
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The resolvent kernel R ∈ C(D × �2) associated with the kernel K (t, s, x, ξ )
is the limit of the Neumann series for K and solves the resolvent equations

R(t, s, x, ξ ) = K (t, s, x, ξ ) +
∫ t

0

∫
�

K (t, v, x, z)R(v, s, z, ξ )dz dv

= K (t, s, x, ξ ) +
∫ t

0

∫
�

R(t, v, x, z)K (v, s, z, ξ )dz dv

on D × �2.

Proof The proof is a straightforward adaptation of the arguments introduced
at the beginning of Section 1.1.1. We define the sequence {un(t, x)} (n ≥ 1)
by the Picard iteration process applied to (2.1.49) with u0(t, x) := g(t, x), and
then show that the resulting iterated kernels Kn(t, s, x, ξ ) can be (uniformly)
bounded by

|Kn(t, s, x, ξ )| ≤ K0
(K0T |�|)n−1

(n − 1)!
(n ≥ 1)

on D × �2. Here, we have set K0 := max{|K (t, s, x, ξ )| : (t, s) ∈ D, (x, ξ ) ∈
�2}; |�| denotes the ‘volume’ of the spatial domain �. (Recall that this is in
sharp contrast to Picard iteration for Fredholm integral equations where the
majorant series for the Neumann series is a geometric series.) We leave the
details of the proof as a simple exercise.

Analogous existence and uniqueness results for the nonlinear VFIE (2.1.47)
can be found in, e.g. Diekmann (1978), Thieme (1979); see also Zhao (2003).

The reformulation of the initial-boundary-value problem for the linear heat
equation in a two-dimensional spatial domain � with boundary ∂� by single-
layer techniques leads to a Volterra–Fredholm integral equation of the first kind;
its generic form is∫ t

0

∫ 1

0
K (t − s, x(θ ) − x(φ))u(s, φ)dφ ds = g�(t, θ ), (t, θ ) ∈ I × IR.

(2.1.51)
Here, x(θ ) is a smooth 1-periodic parametric representation of the boundary
curve � := ∂�, and g� represents the function describing the given boundary
condition on I × ∂�. Since the kernel in (2.1.51) possesses a weak singular-
ity at t = s a more detailed discussion of this first-kind VFIE belongs more
appropriately in Chapter 6.

Details can be found, e.g. in the papers by Iso and Onishi (1991) and Hamina
and Saranen (1994), and in the doctoral dissertation by Hämäläinen (1998). The
book by Atkinson (1997a) contains a good introduction to the basic theory and
the numerical treatment of boundary integral equations.
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2.1.7 Volterra integral equations in IR2

Consider first the second-kind VIE

u(x, y) = g(x, y) +
∫ x

0

∫ y

0
K (x, ξ, y, η)u(ξ, η)dη dξ,

(x, y) ∈ � := [0, X ] × [0, Y ], (2.1.52)

with g ∈ C(�) and K ∈ C(D2), where we have set

D2 := {(x, ξ, y, η) : 0 ≤ ξ ≤ x ≤ X, 0 ≤ η ≤ y ≤ Y }.

The existence and uniqueness of continuous solutions was discussed by Vol-
terra (1986c), Lalesco (1912), Volterra (1913); see also Kowalewski (1930,
pp. 83–90). Picard iteration is again the principal tool in the proof of the fol-
lowing result, the analogue of Theorem 2.1.2.

Theorem 2.1.14 Assume that K ∈ C(D2). Then for any g ∈ C(�) the integral
equation (2.1.52) possesses a unqique solution u ∈ C(�). This solution has the
representation

u(x, y) = g(x, y) +
∫ x

0

∫ y

0
R(x, ξ, y, η)g(ξ, η)dη dξ, (x, y) ∈ �.

Here, R = R(x, ξ, y, η) denotes the resolvent kernel corresponding to the given
kernel K ; it inherits the regularity of K .

In Volterra (1896c), the sequel to his four Note of 1896, Volterra studied the
two-dimensional first-kind integral equation∫ x

0

∫ y

0
K (x, ξ, y, η)u(ξ, η)dη dξ = g(x, y), (x, y) ∈ �, (2.1.53)

where the given functions g and K are assumed to possess continuous
(partial) derivatives on their respective domains � and D2, with g(0, y) =
0 (y ∈ [0, Y ]), g(x, 0) = 0 (x ∈ [0, X ]), and |K (x, x, y, y)| ≥ k0 > 0 for x ∈
[0, X ], y ∈ [0, Y ]. He showed that under these hypotheses the above ‘multiple
integral’ can be ‘inverted’ and the (unique) solution u ∈ C(�) is given by the
solution of a second-kind equation of a form more general than (2.1.52),

u(x, y) = g1(x, y) +
∫ x

0
H1,0(x, ξ, y)u(ξ, y)dξ +

∫ y

0
H0,1(x, y, η)u(x, η)dη

+
∫ x

0

∫ y

0
H1,1(x, ξ, y, η)u(ξ, η)dη dξ, (x, y) ∈ �, (2.1.54)
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with obvious meaning of the kernels H1,0, H0,1 and H1,1. This equation is
obtained by differentiating (2.1.53) with respect to x , followed by differentiation
with respect to y.

Second-kind VIEs of the form (2.1.53) also arise in the analysis of a special
second-order hyperbolic initial-value problem, known as the Goursat problem:

∂2u(x, y)

∂x∂y
= a(x, y)u(x, y) + φ(x, y), (x, y) ∈ �,

with u(0, y) = α(y), u(x, 0) = β(x) on [0, Y ] and [0, X ], respectively. Details
can be found in, e.g. Goursat (1942), Moore (1961), and Dzyadyk (1995); see
also McKee, Tang and Diogo (2000) and the Notes at the end of this chapter
for additional references.

2.1.8 Comparison theorems

We begin with a slight generalisation of the classical result by Gronwall (1919).
Its proof can be found for example in Quarteroni and Valli (1997, pp. 13–14).

Lemma 2.1.15 Let I := [0, T ] and assume that z, g ∈ C(I ), k ∈ C(I ), with
k(t) ≥ 0. If z satisfies the inequality

z(t) ≤ g(t) +
∫ t

0
k(s)z(s)ds, t ∈ I, (2.1.55)

then

z(t) ≤ g(t) +
∫ t

0
k(s)g(s) · exp

(∫ t

s
k(v)dv

)
ds for all t ∈ I. (2.1.56)

If g is non-decreasing on I the above inequality reduces to

z(t) ≤ g(t) · exp

(∫ t

0
k(s)ds

)
for all t ∈ I. (2.1.57)

Remark Gronwall’s original result is obtained by setting k(s) = k0 > 0 and
g(t) = at with a ≥ 0. We note also that the continuous function k = k(s) can be
replaced by an unbounded, but integrable, function, for example by k(t − s) =
(t − s)−α with 0 < α < 1. We shall return to this generalisation in Section 6.1.8
(Theorem 6.1.17).

We now turn to some representative comparison theorems for solutions of
Volterra inequalities. Good treatments of such results are given in the papers
by Beesack (1969, 1985a) and in Miller (1971a).
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Theorem 2.1.16 Assume that g ∈ C(I ) and K ∈ C(D), with g(t) ≥ 0 and
K (t, s) ≥ 0 on I and D, respectively. Let R = R(t, s) be the resolvent ker-
nel corresponding to K = K (t, s). If z ∈ C(I ) satisfies the Volterra inequality

z(t) ≤ g(t) +
∫ t

0
K (t, s)z(s)ds, t ∈ I,

then

z(t) ≤ g(t) +
∫ t

0
R(t, s)g(s)ds, t ∈ I,

and R(t, s) ≥ K (t, s) ≥ 0 for all (t, s) ∈ D.

This result is readily proved, by observing that the non-negativity of K
is inherited by its iterated kernels Kn (cf. (2.1.7)) and hence, by the uniform
convergence of the Neumann series, by the resolvent kernel R. This also implies
that

R(t, s) =
∞∑

n=1

Kn(t, s) ≥ K1(t, s) = K (t, s) ≥ 0, (t, s) ∈ D.

A more general comparison result is presented in Theorem 2.1.17. Its proof,
as well as variants of this result (including extension to VIEs in the L2 setting),
can be found in Beesack (1969, 1975); see also Pachpatte (1998). The books
by Miller (1971a) and Cochran (1972) contain nonlinear analogues of Theorem
2.1.16.

Theorem 2.1.17 Assume:

(a) The functions gi ∈ C(I ) (i = 1, 2) satisfy |g1(t)| ≤ g2(t) on I .
(b) An analogous inequality holds for the kernels Ki ∈ C(D):

|K1(t, s)| ≤ K2(t, s), (t, s) ∈ D.

Then the (unique) solutions of the two integral equations

yi (t) = gi (t) +
∫ t

0
Ki (t, s)yi (s)ds, t ∈ I (i = 1, 2),

are related by

|y1(t)| ≤ y2(t) + |g1(t)| − g2(t), t ∈ I.

If g1 and K1 are non-negative on I and D, respectively, the absolute value signs
in the above inequality can be dropped.

Additional, and more general, comparison theorems can also be found in
Section 9.8 of the monograph by Gripenberg, Londen and Staffans (1990).



2.1 Review of basic Volterra theory (I) 81

2.1.9 Discrete Volterra equations and and discrete
Gronwall inequalities

Theorem 2.1.18 Assume that {k j } ( j ≥ 0) is a given non-negative sequence
and the sequence {εn} satisfies ε0 ≤ ρ0 and

εn ≤ ρ0 +
n−1∑
j=0

q j +
n−1∑
j=0

k jε j , n ≥ 1, (2.1.58)

with ρ0 ≥ 0, q j ≥ 0 ( j ≥ 0). Then

εn ≤
(

ρ0 +
n−1∑
j=0

q j

)
exp

(
n−1∑
j=0

k j

)
, n ≥ 1. (2.1.59)

Proofs of this result, as well as numerous variants, can be found in, e.g. Schmidt
(1976), McKee (1982a), Beesack (1985), Brunner and van der Houwen (1986,
Ch. 1), Quarteroni and Valli (1997, pp. 14–15).

In most applications (arising in the discretisation of second-kind VIEs or
VIDEs by one-step methods) we have qn = 0 (n ≥ 0).

Corollary 2.1.19 Let {ε j } and {k j } satisfy the assumptions stated in Theorem
2.1.18. If qn = 0 for all n ≥ 0, then (2.1.57) implies

εn ≤ exp

(
n−1∑
j=0

k j

)
ρ0, n ≥ 1. (2.1.60)

A more general version of the above result (see also Dixon and McKee
(1986)) was given by Norbury and Stuart in the first of their two 1987 papers.
It is deals with the inequality

εn ≤ h
n∑

j=0

kn, jε j + γ (n ≥ 0), (2.1.61)

with kn, j ≥ 0 and γ > 0. We define the ‘discrete iterated kernels’ associated
with the kn, j by

k(1)
n, j := |kn, j |

|1 − hkn,n| (0 ≤ j ≤ n),

k(µ)
n, j := h

n−1∑
�= j+1

k(1)
n,�k(µ−1)

�, j (µ ≥ 2; 0 ≤ j ≤ n).

Let �(µ) = �(µ)(·, ·) be a function satisfying

k(µ)
n, j ≤ �(µ)(nh, ( j + 1)h), 0 ≤ j ≤ n − 1.
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Theorem 2.1.20 Assume:

(a) hkn,n �= 0 for all n ≥ 0.

(b) qn :=
n−1∑
j=0

k(1)
n, j is bounded independent of h.

(c) There exists a positive integer µ0 not depending on h, so that �(µ0)(t, t)
exists, with

∂�(µ0)(t, s)

∂t
≥ 0 and

∂�(µ0)(t, s

∂s
≤ 0.

(d)
∫ t

0
�(µ)(t, s)ds exists, regardless of the value of h.

Then the inequality (2.1.60) implies that

|εn| ≤ Cγ (n ≥ 0),

with some constant C not depending on h or n.

Remark A comprehensive treatment of (systems of) discrete Volterra equa-
tions of the form

xn = g j +
n−1∑
j=0

k(n, j, x j ), n = 1, 2, . . . ,

can be found in the monograph by Elaydi (1999); see also Song and Baker
(2003).

2.2 Collocation for linear second-kind VIEs

2.2.1 Meshes and piecewise polynomial spaces

Let

Ih := {tn = t (N )
n : 0 = t (N )

0 < t (N )
1 < . . . < t (N )

N = T }
denote a mesh (or: grid) on the given interval I := [0, T ] and set, as in Section
1.1.1,

σ (N )
n := (t (N )

n , t (N )
n+1, h(N )

n := t (N )
n+1 − t (N )

n , h(N ) := max
(n)

h(N )
n ,

h(N )
min := min

(n)
h(N )

n .

Four types of meshes (or, more precisely, mesh sequences) will be used in this
and the following chapters:
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� Uniform mesh Ih:

h(N )
n = h(N )

min = h(N ) = T/N (n = 0, 1, . . . , N ).

� Quasi-uniform mesh Ih:

h(N )
n /h(N )

min ≤ h(N )/h(N )
min ≤ γ for all N ∈ IN.

This implies that

Nh(N )
n ≤ Nh(N ) ≤ γ Nh(N )

min ≤ γ T for all N ∈ IN. (2.2.1)

We shall encounter quasi-uniform meshes in Section 2.4.2 when analysing
the convergence of collocation solutions for first-kind VIEs.

� Graded mesh Ih:

t (N )
n := (n/N )r T (n = 0, 1, . . . , N ), r > 1. (2.2.2)

The real number r is called the grading exponent (or: scaling parameter).
For r = 1 such a mesh reduces of course to a uniform one.
Observe that for r > 1 a graded mesh is not quasi-uniform, because we have

h(N )

h(N )
min

= h(N )
N−1

h(N )
0

= r N−1(1 − θ/N )r−1

N−r
= r Nr−1(1 − θ/N )r−1,

with 0 < θ < 1. Hence, h(N )/h(N )
min → ∞ as N → ∞, whenever r > 1, but

limN→∞ h(N ) = 0.
Graded meshes will play an important role in Chapters 6 and 7, in the analysis
of the attainable order of collocation solutions for Volterra equations with
weakly singular kernels.

� Geometric mesh Ih:

t (N )
n := γ N−nT (n = 0, 1, . . . , N ), with 0 < γ < 1.

The mesh parameter γ will depend on N , m, such that h(N ) = h(N )
N−1 =

(1 − γ )T → 0, as N → ∞.
These meshes will be used in Chapter 5 when analysing optimal local su-
perconvergence of collocation solutions for functional equations with (van-
ishing) proportional delays.

For ease of notation we will, as in Chapter 1, usually suppress the superscript
N in t (N )

n , h(N )
n (etc.), except possibly in convergence analyses where we shall

be dealing with sequences of meshes corresponding to N → ∞ and h(N ) → 0.
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Definition 2.2.1 For a given mesh Ih the piecewise polynomial space S(d)
µ (Ih),

with µ ≥ 0, −1 ≤ d < µ, is given by

S(d)
µ (Ih) := {v ∈ Cd (I ) : v|σn ∈ πµ (0 ≤ n ≤ N − 1)}.

Here, πµ denotes the space of (real) polynomials of degree not exceeding µ.
It is readily verified that S(d)

µ (Ih) is a (real) linear vector space whose dimension
is given by

dim S(d)
µ (Ih) = N (µ − d) + d + 1.

Remark The particular piecewise polynomial space S(d)
m+d (Ih) corresponding

to µ = m + d with m ≥ 1 and d ≥ −1 will play a central role in this book.
Since its dimension is

dim S(d)
m+d (Ih) = Nm + (d + 1), (2.2.3)

it may be viewed as the ‘natural’ collocation space for the approximation of
solutions to initial-value problems for ODEs or Volterra equations: as we already
indicated in Chapter 1, the choice of the degree of regularity d will be governed
by the number of prescribed initial conditions, while the term Nm suggests that
m (distinct) collocation points are to be placed in each of the N subintervals
σn . Thus, the ‘natural’ choice of d in (2.2.3) is as follows:

� For Volterra integral equations (no initial condition) we choose d = −1;
hence, the natural collocation space will be S(−1)

m−1(Ih). Its dimension
is Nm.

� For first-order ODEs or Volterra integro-differential equations (one initial
condition) we use d = 0, and the preferred collocation space is S(0)

m (Ih), with
dimension equal to Nm + 1.

� For ODEs or VIDEs of order k with k ≥ 2 (k initial conditions) the natural
collocation space is S(k−1)

m+k−1(Ih), corresponding to the choice d = k − 1. The
dimension of this space is Nm + k.

Remark In the computational use of piecewise collocation methods in
S(d)

m+d (Ih), the value of m will usually not exceed m = 4. Hence, the obvious
candidate for the local representation of the collocation solution on σn will
be the local Lagrange basis corresponding to the m (distinct) collocation
parameters {ci }.
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2.2.2 Piecewise polynomial collocation methods in S(−1)
m−1(Ih)

As in Section 2.1.1 let the linear Volterra integral operator V : C(I ) → C(I )
be given by

(Vφ)(t) :=
∫ t

0
K (t, s)φ(s)ds, t ∈ I := [0, T ], (2.2.4)

where K ∈ C(D) (D := {(t, s) : 0 ≤ s ≤ t ≤ T }), and let g ∈ C(I ) be a given
function. The solution of the Volterra integral equation

y(t) = g(t) + (V y)(t), t ∈ I, (2.2.5)

will be approximated by collocation in the piecewise polynomial space

S(−1)
m−1(Ih) := {v : v|σn ∈ πm−1 (0 ≤ n ≤ N − 1)},

corresponding to the choice µ = m − 1, d = −1 in Definition 2.2.1 and pos-
sessing the dimension dim S(−1)

m−1(Ih) = Nm. This collocation solution uh is
defined by the collocation equation for (2.2.5),

uh(t) = g(t) + (Vuh)(t), t ∈ Xh, (2.2.6)

where (see (1.1.3)) the set of collocation points,

Xh := {tn + ci hn : 0 ≤ c1 ≤ . . . ≤ cm ≤ 1 (n = 0, 1, . . . , N − 1)}, (2.2.7)

is determined by the given mesh Ih and the given collocation parameters {ci } ⊂
[0, 1]. Note that for m ≥ 2 the choice c1 = 0 and cm = 1 implies

uh ∈ S(−1)
m−1(Ih) ∩ C(I ) = S(0)

m−1(Ih),

with dim S(0)
m−1(Ih) = N (m − 1) + 1. This means that uh assumes the initial

value uh(t0,1) = uh(0) = g(0).
The iterated collocation solution uit

h corresponding to the collocation solu-
tion uh is defined by

uit
h (t) := g(t) + (Vuh)(t), t ∈ I. (2.2.8)

It trivially satisfies

uit
h (t) = uh(t) for all t ∈ Xh .

It will be seen below (Theorem 2.2.5 and, especially, Theorem 2.2.6) that uit
h

will often exhibit a higher order of convergence (‘superconvergence’) than uh

itself, for example if the collocation parameters {ci } are given by the Gauss
points: globally (on I ) a gain of one order is obtained, while locally (at the
mesh points) the order is twice the global order of uh . We observe also that for
continuous data we have uit

h ∈ C(I ), in contrast to uh .
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As we mentioned at the end of Section 2.1.1, a convenient computational
form of the collocation equation (2.2.6) is obtained when employing local
Lagrange basis functions: setting

L j (v) :=
m∏

k �= j

v − ck

c j − ck
(v ∈ [0, 1]) and

Un, j := uh(tn + c j hn) ( j = 1, . . . , m),

the restriction of the collocation solution uh ∈ S(−1)
m−1(Ih) to the subinterval σn :=

(tn, tn+1] can be written as

uh(t) = uh(tn + vhn) =
m∑

j=1

L j (v)Un, j , v ∈ (0, 1]. (2.2.9)

Thus, for t = tn,i := tn + ci hn the collocation equation (2.2.6) assumes the
form

uh(t) = g(t) +
∫ tn

0
K (t, s)uh(s)ds + hn

∫ ci

0
K (t, tn + shn)uh(tn + shn)ds.

Expressed in terms of the ‘stage values’ {Un, j } it is

Un,i = g(tn,i ) + Fn(tn,i ) + hn

m∑
j=1

(∫ ci

0
K (tn,i , tn + shn)L j (s)ds

)
Un, j

(2.2.10)
(i = 1, . . . , m), where

Fn(t) :=
∫ tn

0
K (t, s)uh(s)ds =

n−1∑
�=0

h�

∫ 1

0
K (t, t� + sh�)uh(t� + sh�)ds

(2.2.11)
denotes the lag term (or: history term) corresponding to the collocation solution
on [0, tn]. If we set t = tn,i in (2.2.11) and employ the local representation (2.2.9)
we may write

Fn(tn,i ) =
n−1∑
�=0

h�

∫ 1

0
K (tn,i , t� + sh�)uh(t� + sh�)ds

=
n−1∑
�=0

h�

m∑
j=1

(∫ 1

0
K (tn,i , t� + sh�)L j (s)ds

)
U�, j .

Let Un := (Un,1, . . . , Un,m)T , gn := (g(tn,1), . . . , g(tn,m)T , tn,m)T , and define
the matrices in L(IRm),

B(�)
n :=




∫ 1

0
K (tn,i , t� + sh�)L j (s)ds

(i, j = 1, . . . , m)


 (0 ≤ � < n ≤ N − 1), (2.2.12)
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and

Bn :=



∫ ci

0
K (tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 . (2.2.13)

The collocation equation (2.2.5) then assumes the form

[Im − hn Bn]Un = gn + Gn (n = 0, 1, . . . , N − 1), (2.2.14)

with

Gn := (Fn(tn,1), . . . , Fn(tn,m))T =
n−1∑
�=0

h� B(�)
n U�.

Here, Im denotes again the identity matrix in L(IRm).

Theorem 2.2.1 Assume that g and K in the Volterra integral equation (2.2.5)
are continuous on their respective domains I and D. Then there exists an
h̄ > 0 so that for any mesh Ih with mesh diameter h ∈ (0, h̄) each of the linear
algebraic systems (2.2.14) has a unique solution Un (n = 0, 1, . . . , N − 1).
Hence the collocation equation (2.2.6) defines a unique collocation solution
uh ∈ S(−1)

m−1(Ih) for (2.2.5), with local representation on σn given by (2.2.9).

Proof Since the kernel K of the Volterra operator V is continuous on D,
the elements of the matrices Bn (n = 0, 1, . . . , N − 1) are all bounded. The
Neumann Lemma (cf. Ortega (1972, p. 26) or Atkinson (1989, p. 492))
then shows that the inverse of the matrix Bn := Im − hn Bn exists whenever
hn||Bn|| < 1 for some matrix norm. This clearly holds whenever hn is suffi-
ciently small. In other words, there is an h̄ > 0 so that for any mesh Ih with
h := max{hn : 0 ≤ n ≤ N − 1} < h̄, each matrix Bn has a uniformly bounded
inverse. The assertion of Theorem 2.2.1 now follows.

When the collocation solution on the subinterval σn has been computed, the
iterated collocation solution for t = tn + vhn ∈ σ̄n := [tn, tn+1] is given by

uit
h (t) = g(t) + Fn(t) + hn

m∑
j=1

(∫ v

0
K (t, tn + shn)L j (s)ds

)
Un, j , (2.2.15)

with lag term Fn(t) as in (2.2.11).

Example 2.2.1 uh ∈ S(−1)
0 (Ih) (m = 1), 0 < c1 =: θ ≤ 1:

Here, uh(tn + vhn) = Un,1 for all v ∈ (0, 1]. Setting yn+1 := Un,1 the collo-
cation solution is then determined by the equation(

1 − hn

∫ θ

0
K (tn,1, tn + shn)ds

)
yn+1 = g(tn,1) + Fn(tn,1) (2.2.16)
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(n = 0, 1, . . . , N − 1), with tn,1 = tn + θhn and with lag term given by

Fn(tn,1) =
n−1∑
�=0

h�

(∫ 1

0
K (tn,1, t� + sh�)ds

)
y�+1.

For t = tn + vhn (v ∈ [0, 1]) the corresponding iterated collocation solution is
then

uit
h (t) = g(t) + Fn(t) + vhn

(∫ 1

0
K (t, tn + svhn)ds

)
yn+1. (2.2.17)

Example 2.2.2 uh ∈ S(−1)
1 (Ih) (m = 2), 0 < c1 < c2 ≤ 1:

Since the Lagrange fundamental polynomials corresponding to the two collo-
cation parameters are

L1(s) = (c2 − s)/(c2 − c1) and L2(s) = (s − c1)/(c2 − c1),

the matrix Bn ∈ L(IR2) in (2.2.13) has the elements

(Bn)i,1 = 1

c2 − c1

∫ ci

0
K (tn,i , tn + shn)(c2 − s)ds (i = 1, 2)

and

(Bn)i,2 = 1

c2 − c1

∫ ci

0
K (tn,i , tn + shn)(s − c1)ds (i = 1, 2).

Moreover,

(B(�)
n )i,1 = 1

c2 − c1

∫ 1

0
K (tn,i , t� + sh�)(c2 − s)ds (i = 1, 2),

and

(B(�)
n )i,2 = 1

c2 − c1

∫ 1

0
K (tn,i , t� + sh�)(s − c1)ds (i = 1, 2).

The collocation solution is now determined by the resulting system (2.2.14) and
the local Lagrange representation (2.2.9) with m = 2, and (2.2.15) then yields
the iterated collocation solution on σ̄n .

2.2.3 The fully discretised collocation equation

We have seen in Section 1.1.1 that when an initial-value problem for an
ODE is solved by collocation in a piecewise polynomial space, for exam-
ple in S(0)

m (Ih), then the resulting collocation equation is completely discre-
tised and thus in a form feasible for numerical computation. When applying
the collocation method to Volterra integral (or integro-differential) equations,
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this is in general not true: in the collocation equation (2.2.10) and the lag
term (2.2.11) corresponding to the VIE (2.2.5) the integrals cannot, in gen-
eral, be found analytically but have to be approximated by suitable numerical
quadrature formulas. Thus, the fully discretised version of (2.2.9) will have the
form

ûh(t) = g(t) + (V̂hûh)(t), t ∈ Xh, (2.2.18)

where V̂h denotes some discretisation of the original Volterra integral oper-
ator V in (2.2.6). While in principle these integrals can be approximated to
any desired accuracy, the nature of the Volterra integral operator (memory
term!) makes such an approach prohibitively expensive, especially in long-
time integration problems and when solving systems of VIEs. On the other
hand we have to make sure that the quadrature formulas are order preserv-
ing; that is, they are such that the order of the resulting quadrature errors
will (at least) match the order of convergence of the exact collocation solu-
tion defined by (2.2.6), either globally (on I ), or at the mesh points Ih . We
shall see below, when carrying out the detailed error and convergence analy-
ses, that this can be achieved if we choose interpolatory m-point quadrature
formulas whose abscissas are given by, or based on, the m collocation param-
eters {ci }. To be more precise, we shall in the following employ the quadrature
approximations

(Q̂(�)
n uh)(t) :=

m∑
j=1

b j K (t, t� + c j h�)U�, j (� < n) (2.2.19)

and

(Q̂nuh)(t) := v

m∑
j=1

b j K (t, tn + vc j hn)uh(tn + vc j hn) (2.2.20)

for the integrals

(Q(�)
n uh)(t) :=

∫ 1

0
K (t, t� + sh�)uh(t� + sh�)ds (� < n),

and

(Qnuh)(t) :=
∫ v

0
K (t, tn + shn)uh(tn + shn)ds

= v

∫ 1

0
K (t, tn + svhn)uh(tn + svhn)ds,
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respectively, where t = tn + vhn ∈ σn and b j := ∫ 1
0 L j (s)ds. Note that, for any

such t , (2.2.20) can also be written as

(Q̂nuh)(t) = v

m∑
j=1

(
m∑

k=1

bk K (t, tn + ckvhn)L j (ckv)

)
Un, j . (2.2.21)

The fully discretised collocation equation is obtained from the exact col-
location equation (2.2.10) by replacing the integrals by the above quadrature
approximations, disregarding the quadrature errors induced by this secondary
discretisation process. We shall denote the resulting discretised collocation so-
lution by ûh : it is, of course, still an element of our space S(−1)

m−1(Ih), but in
general we now have ûh �= uh . In analogy to (2.2.9) the local representation of
ûh on σn is

ûh(tn + vhn) =
m∑

j=1

L j (v)Ûn, j v ∈ (0, 1], with Ûn, j := ûh(tn + c j hn).

(2.2.22)
Thus, the fully discretised collocation equation is

Ûn,i = g(tn,i ) + F̂n(tn,i ) + hn(Q̂nûh)(tn,i ) (i = 1, . . . , m), (2.2.23)

where (Q̂nûh)(tn,i ) is defined in (2.2.21) and the fully discretised lag term F̂n

has the form

F̂n(t) :=
n−1∑
�=0

h�(Q̂(�)
n ûh)(t) =

n−1∑
�=0

h�

(
m∑

j=1

b j K (t, t� + c j h�)Û�, j

)
. (2.2.24)

In analogy to (2.2.14) we may write the discretised collocation equation
(2.2.23) in the more concise form

[Im − hn B̂n]Ûn = gn + Ĝn (n = 0, 1, . . . , N − 1), (2.2.25)

with

Ĝn := ( F̂n(tn,1), . . . , F̂n(tn,m) )T =
n−1∑
�=0

h� B̂(�)
n Û�.

Here, Ûn := ( Ûn,1, . . . , Ûn,m )T ∈ IRm ; the matrices B̂n and B̂(�)
n in L(IRm),

defined respectively by

B̂n :=


 ci

m∑
k=1

bk K (tn,i , tn + ci ckhn)L j (ci ck)

(i, j = 1, . . . , m)
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and

B̂(�)
n :=

(
b j K (tn,i , t� + c j h�)
(i, j = 1, . . . , m)

)
(� < n),

represent the discretised versions of Bn and B(�)
n in (2.2.13), (2.2.12).

Theorem 2.2.2 Let the assumptions of Theorem 2.2.1 hold. Then there exists
an ĥ > 0 so that for any mesh Ih with mesh diameter h satisfying h ∈ (0, ĥ)
there exists a unique discretised collocation approximation ûh ∈ S(−1)

m−1(Ih) de-
fined by the unique solutions Ûn of the linear algebraic systems (2.2.25)
(n = 0, 1, . . . , N − 1) and the local representations (2.2.22).

The proof of Theorem 2.2.2 closely resembles the one for Theorem 2.2.1:
since, for any fixed m, the weights {b j } of the interpolatory m-point quadrature
formulas underlying the discretised collocation equations (2.2.23) are bounded,
it follows from the Neumann Lemma that each matrix B̂n := Im − hn B̂n (n =
0, 1, . . . , N − 1) in (2.2.25) possesses a uniformly bounded inverse whenever
hn < ĥ, for some suitable ĥ > 0, where in general ĥ �= h̄.

For t = tn + vhn ∈ σn the corresponding discretised iterated collocation
solution ûit

h corresponding to ûh ∈ S(−1)
m−1(Ih) in (2.2.18) is defined by

ûi t
h (tn + vhn) := g(tn + vhn) + F̂n(tn + vhn) + hn(Q̂nûh)(tn + vhn),

v ∈ [0, 1]. (2.2.26)

The following two illustrations are the discrete counterparts of the exact
collocation methods described in Examples 2.2.1 and 2.2.2.

Example 2.2.3 ûh ∈ S(−1)
0 (Ih), 0 < c1 =: θ ≤ 1:

Setting ŷn+1 := ûh(tn + vhn) = Ûn,1, equation (2.2.25) yields

(1 − θhn K (tn,1, tn + θ2hn))ŷn+1 = g(tn,1) + F̂n(tn,1) (2.2.27)

(n = 0, 1, . . . , N − 1), with tn,1 = tn + θhn , and

F̂n(tn,1) =
n−1∑
�=0

h�K (tn,1, t� + θh�)ŷ�+1.

The corresponding discretised iterated collocation solution at t = tn + vhn (v ∈
[0, 1]) is then given by

ûi t
h (t) = g(t) +

n−1∑
�=0

h�K (t, t� + θh�)ŷ�+1 + vhn K (t, tn + vθhn)ŷn+1.

(2.2.28)
Example 2.2.4 ûh ∈ S(−1)

1 (Ih) (m = 2), 0 < c1 < c2 ≤ 1:
We see from Example 2.2.2 that the discretised matrices B̂n ∈ L(IR2) in (2.2.26)
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possess the elements

(B̂n)i,1 = ci

c2 − c1
[b1 K (tn,i , tn + ci c1hn)(c2 − ci c1)

+ b2 K (tn,i , tn + ci c2hn)c2(1 − ci )]

and

(B̂n)i,2 = ci

c2 − c1
[b1 K (tn,i , tn + ci c1hn)c1(ci − 1)

+ b2 K (tn,i , tn + ci c2hn)(ci c2 − c1)]

(i = 1, 2), with quadrature weights

b1 = 2c2 − 1

2(c2 − c1)
, b2 = 1 − 2c1

2(c2 − c1)
.

The stage values Ûn,1 and Ûn,2 in the local representation of ûh on σn (cf.
(2.2.22) with m = 2) are given by the solution of the linear algebraic system
(2.2.25).

2.2.4 Global convergence results

Theorem 2.2.3 Assume:

(a) The given functions describing the Volterra integral equation (2.2.5) satisfy
K ∈ Cm(D) and g ∈ Cm(I ).

(b) uh ∈ S(−1)
m (Ih) is the collocation solution to (2.2.5) defined by (2.2.6) with

h ∈ (0, h̄).

Then

||y − uh ||∞ := sup
t∈I

|y(t) − uh(t)| ≤ C ||y(m)||∞hm (2.2.29)

holds for any set Xh of collocation points with 0 ≤ c1 < . . . < cm ≤ 1. The
constant C depends on the {ci } but not on h.

Since the dependence of the error bounds on certain derivatives of the exact
solution y will become apparent in the course of the proof, we will usually no
longer state this dependence explicitly in subsequent convergence theorems.

Proof The proof of course follows closely the one for Theorem 1.1.2, except
that now there is no continuity constraint at the the mesh points t1, . . . , tN−1.
Since assumption (a) implies y ∈ Cm(I ) we may resort to Peano’s Theorem
(Corollary 1.8.2 with d = m) to write

y(tn + vhn) =
m∑

j=1

L j (v)Yn, j + hm
n Rm,n(v), v ∈ [0, 1], with Yn, j := y(tn, j ).

(2.2.30)
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Here, we have

Rm,n(v) :=
∫ 1

0
Km(v, z)y(m)(tn + zhn)dz,

and

Km(v, z) = 1

(m − 1)!

{
(v − z)m−1

+ −
m∑

k=1

Lk(v)(ck − z)m−1
+

}
, z ∈ [0, 1].

Thus, it follows from (2.2.9) that the collocation error eh := y − uh possesses
the local representation

eh(tn + vhn) =
m∑

j=1

L j (v)En, j + hm
n Rm,n(v), v ∈ (0, 1], (2.2.31)

with En, j := Yn, j − Un, j , and it satisfies the equation

eh(tn,i ) = (Veh)(tn,i ), i = 1, . . . , m (0 ≤ n ≤ N − 1). (2.2.32)

Its right-hand side is

(Veh)(tn,i ) =
∫ tn

0
K (tn,i , s)eh(s)ds + hn

∫ ci

0
K (tn,i , tn + shn)eh(tn + shn)ds

=
n−1∑
�=0

h�

∫ 1

0
K (tn,i , t� + sh�)

(
m∑

j=1

L j (s)E�, j + hm
� Rm,�(s)

)
ds

+ hn

∫ ci

0
K (tn,i , tn + shn)

(
m∑

j=1

L j (s)En, j + hm
n Rm,n(s)

)
ds.

Hence, we obtain a system of linear equations for En := ( En,1, . . . , En,m )T ∈
IRm , namely

En,i − hn

m∑
j=1

(∫ ci

0
K (tn,i , tn + shn)L j (s)ds

)
En, j

=
n−1∑
�=0

h�

m∑
j=1

(∫ 1

0
K (tn,i , t� + sh�)L j ds

)
E�, j

+
n−1∑
�=0

hm+1
�

∫ 1

0
K (tn,i , t� + sh�)Rm,�(s)ds

+ hm+1
n

∫ ci

0
K (tn,i , tn + shn)Rm,n(s)ds (i = 1, . . . , m).
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Introducing the vectors ρ(�)
n and ρn in IRm by

ρ(�)
n :=

( ∫ 1

0
K (tn,i , t� + sh�)Rm,�(s)ds (i = 1, . . . , m)

)T

(� < n)

and

ρn :=
( ∫ ci

0
K (tn,i , tn + shn)Rm,n(s)ds (i = 1, . . . , m)

)T

,

and recalling the definition of the matrices B(�)
n and Bn in Section 2.2.2 (cf.

(2.2.12), (2.2.13)) this linear algebraic system may be written more concisely
as

[Im − hn Bn]En =
n−1∑
�=0

h� B(�)
n E� +

n−1∑
�=0

hm+1
� ρ(�)

n + hm+1
n ρn (0 ≤ n ≤ N − 1).

(2.2.33)

We observe that it closely resembles (2.2.14): both systems are described by
the same matrix Bn := Im − hn Bn , while the role of gn is now assumed by
the sum of the remainder term vectors. Moreover, a glimpse at (1.1.31), the
ODE analogue of (2.2.33), reveals that the terms in (1.1.31) emanating from
the continuity requirements at the mesh points are here replaced by the terms
reflecting the memory term Veh .

It thus follows from the proof of Theorem 2.2.1 that we have again the
uniform bound

||(Im − hn Bn)−1||1 ≤ D0 (n = 0, 1, . . . , N − 1),

for all mesh diameters h with h ∈ (0, h̄). Assume that ||B(�)
n ||1 ≤ D1 for 0 ≤

� < n ≤ N − 1, and set

||ρ(�)
n ||1 ≤ mK0km Mm (� < n), ||ρn||1 ≤ mK0km Mm .

In analogy to the notation employed in the proof of Theorem 1.1.2, we define

Mm := ||y(m)||∞, km := max
v∈[0,1]

∫ 1

0
|Km(v, z)|dz,

and

K̄ := max
t∈I

∫ t

0
|K (t, s)|ds = ||V||∞

(the (operator) norm of the Volterra integral operator V). Then, from (2.2.33),

||En||1 ≤ D0 D1

n−1∑
�=0

h�||E�||1 + D0[mK̄ km Mm

n−1∑
�=0

hm+1
� + hm+1

n mK̄ km Mm],
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and hence

||En||1 ≤ γ0

n−1∑
�=0

h�||E�||1 + γ1 Mmhm, n = 0, 1, . . . , N − 1, (2.2.34)

where γ0 := D0 D1, γ1 := m D0 K̄ km(T + h). The above generalised discrete
Gronwall inequality has the same form as the one encountered in the proof of
Theorem 1.1.2, and so we obtain the estimate

||En||1 ≤ B Mmhm, n = 0, 1, . . . , N − 1.

Using the local error representation (2.2.31) this yields, setting �m :=
max( j) ||L j ||∞,

|eh(tn + vhn)| ≤ �m ||En||1 + hmkm Mm ≤ (�m B + km)Mmhm,

uniformly for v ∈ [0, 1] and 0 ≤ n ≤ N − 1. The is equivalent to the estimate
||eh ||∞ ≤ C ||y(m)||∞hm , as asserted in (2.2.30).

Remarks

1. An important problem that, to my knowldege, remains open concerns the
determination of an ‘optimal’, computable value of the error constant C
in Theorem 2.2.3, especially in long-time integration. (See, however, the
implementation of the collocation method on adaptive meshes discussed in
Blom and Brunner (1987, 1991).)

2. The convergence analysis of general one-step methods for second-kind
Volterra integral equation is given in Hairer, Lubich and Nørsett (1983).

The above proof shows that, as for ODEs, lower regularity in the solution
leads to a corresponding lower order of global convergence. We summarise this
result in Theorem 2.2.4 whose proof resorts again to Peano’s Theorem where
now m is replaced d < m.

Theorem 2.2.4 Suppose that (a) in Theorem 2.2.3 is replaced by the weaker as-
sumption g ∈ Cd (I ), K ∈ Cd (D)), with 1 ≤ d < m, implying that y ∈ Cd (I ).
Then

||y − uh ||∞ ≤ C ||y(d)||∞hd . (2.2.35)

The analysis in Section 1.1.3 has given a first indication that global (and
local) superconvergence results for ODEs may not necessarily carry over to
second-kind Volterra integral equations. On the other hand, they might hold
for the iterated collocation solution. This is made precise in the following
theorem, the counterpart of Theorem 1.2.3 (Brunner and Yan (1996)), for global
superconvergence.



96 2 Volterra integral equations with smooth kernels

Theorem 2.2.5 Assume:

(a) g ∈ Cm+1(I ) and K ∈ Cm+1(D);
(b) uh ∈ S(−1)

m−1(Ih) (h ∈ (0, h̄)) is the collocation solution for (2.2.5), with col-
location parameters {ci } satisfying the orthogonality condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0.

Then the iterated collocation solution,

uit
h (t) := g(t) + (Vuh)(t), t ∈ I,

is globally superconvergent on I , with

||y − uit
h ||∞ ≤ Chm+1, (2.2.36)

where C is depends on the {ci } and on ||y(m+1)||∞ but not on h.

Proof In analogy to (1.1.36) we define the defect (or residual) associated with
the collocation solution uh to the VIE (2.2.5) by

δh(t) := −uh(t) + g(t) + (Vuh)(t), t ∈ I,

with δh(t) = 0 whenever t ∈ Xh . Under the regularity assumptions for g and K
it is piecewise Cm+1, and Theorem 2.2.3 implies that it has uniformly bounded
derivatives on each subinterval σn (Exercise 2.5.14). Since eh = y − uh , with
y denoting the solution of (2.2.5), we also have

δh(t) = eh(t) − (Veh)(t), t ∈ I. (2.2.37)

Thus, it follows from (2.2.29) and (2.2.37) that

||δh ||∞ ≤ ||eh ||∞ + K̄ ||eh ||∞ ≤ C(1 + K̄ )hm := D1hm,

with

K̄ := ||V||∞ = max
t∈I

∫ t

0
|K (t, s)|ds,

The defect and the collocation error are related by equation (2.2.37) which we
write as

eh(t) = δh(t) + (Veh)(t), t ∈ I, (2.2.38)

and the iterated collocation error eit
h := y − uit

h has the property that

eit
h (t) = eh(t) − δh(t), t ∈ I.
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Thus, denoting by R = R(t, s) the resolvent kernel of K (t, s) we know from
Section 2.1.1 (Theorem 2.1.1) that the solution of the Volterra equation (2.2.38)
is given by

eh(t) = δh(t) +
∫ t

0
R(t, s)δh(s)ds, t ∈ I. (2.2.39)

(We note that since δh is only piecewise continuous (but bounded) on I , (2.2.38)
and the representation of eh given by (2.2.39) are to be interpreted in the corre-
sponding way, that is, for each subinterval σn .) The above thus implies

eit
h (t) =

∫ t

0
R(t, s)δh(s)ds, t ∈ I. (2.2.40)

Formally this reminds us immediately of equation (1.1.38) which we encoun-
tered in the proof of the global superconvergence result for ODEs. Therefore,
the arguments based on replacing the various integrals over subintervals making
up a given interval [0, tn + vhn] (v ∈ [0, 1]) carry over to the present situation,
where the role of r (t, s) is assumed by R(t, s). More precisely, it is easy to see
that instead of (1.1.41) we now obtain

|eit
h (tn + vhn)| ≤

n−1∑
�=0

h� Q�hm+1
� + hn R̄||δh ||∞ ≤ hm+1(QT + R̄D1),

(2.2.41)
uniformly for v ∈ [0, 1] and 0 ≤ n ≤ N − 1, with

R̄ := max
t∈I

∫ t

0
|R(t, s)|ds.

This readily leads to the completion of the proof of Theorem 2.2.5.

2.2.5 Local superconvergence results

Will collocation using the collocation points Xh corresponding to the m Gauss
points {ci } yield a collocation solution uh ∈ S(−1)

m−1(Ih) to the Volterra integral
equation (2.2.5) for which

max
t∈Ih\{0}

|y(t) − uh(t)| = O(h2m)

holds, in analogy to the result of Corollary 1.1.5 for ODEs? A first indication
that this will not be true can already be found in Section 1.1.5 (Corollary 1.1.10):
we showed that collocation in S(−1)

m−1(Ih) for the integrated form of a linear ODE
will not coincide with the ‘direct’ collocation solution in S(0)

m (Ih) for the given
ODE when the collocation parameters are the Gauss points. These observations
suggest the conjecture that the above local superconvergence result will be true
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if uh is replaced by the iterated collocation solution uit
h . The following theorem

shows that this is indeed so.

Theorem 2.2.6 Assume that the given functions in (2.2.5) satisfy g ∈ Cm+κ (I )
and K ∈ Cm+κ (D) for some integer κ with 1 ≤ κ ≤ m. If the collocation pa-
rameters {ci } are chosen so that the orthogonality conditions

Jν :=
∫ 1

0
sν

m∏
i=1

(s − ci )ds = 0, ν = 0, . . . , κ − 1, (2.2.42)

hold, with Jκ �= 0, then the (optimal) order estimate

max
t∈Ih\{0}

|y(t) − uit
h (t)| ≤ Chm+κ (2.2.43)

is true whenever h ∈ (0, h̄).
If, in addition to (2.2.42), we have cm = 1, then local superconvergence is

obtained for the collocation solution uh itself:

max
t∈Ih\{0}

|y(t) − uh(t)| ≤ Chm+κ . (2.2.44)

Here, κ cannot exceed m − 1.

Proof Recall (2.2.40): for t = tn the expression for the iterated collocation
error can be written as

eit
h (tn) =

n−1∑
�=0

h�

∫ 1

0
R(tn, t� + sh�)δh(t� + sh�)ds (n = 1, . . . , N ).

Hence, a glimpse at the corresponding expression (1.1.38) in Section 1.1.2
reveals that the arguments used in the proof of Theorem 1.1.4 carry over to the
present situation, leading straightforwardly to the assertions of Theorem 2.2.6.

Corollary 2.2.7 Let κ = m. Collocation at the corresponding Gauss points
yields

max
t∈Ih\{0}

|y(t) − uit
h (t)| ≤ Ch2m,

but only

max
t∈Ih\{0}

|y(t) − uh(t)| = O(hm).

Note the second estimate is a consequence of the estimate |δh(tn)| = O(hm)
whenever cm < 1.

Corollary 2.2.8 If κ = m − 1 and cm = 1, the {ci } are the Radau II points,
leading to

max
t∈Ih\{0}

|y(t) − uh(t)| ≤ Ch2m−1.
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Corollary 2.2.9 Let m ≥ 3 and assume that 0 = c1 < c2 < . . . < cm = 1 are
the Lobatto points. Then the optimal order of local superconvergence for the cor-
responding continuous collocation solution uh ∈ S(0)

m−1(Ih) is p∗ = 2(m − 1).
For m = 2 the local order on Ih coincides with the global order on I , namely
p∗ = p = m = 2.

The above analysis gives rise to the following question regarding repeated
iterated collocation: if we define uit

1,h := uit
h and

uit
µ+1,h := g(t) + (Vuit

µ,h)(t), t ∈ I (µ ≥ 1),

what can be said about the resulting order and, more importantly, the behaviour
of the error constants? It is clear that the order of (local) superconvergence
cannot be increased. To understand this, observe first that it follows from

uit
2,h(t) := g(t) + (Vuit

1,h)(t), t ∈ I,

that

eit
2,h(t) =

∫ t

0
[R(t, s) − K (t, s)]δh(s)ds = eit

1,h(t) − (Vδh)(t), t ∈ I,

with eit
1,hh := eit

h , and this yields

eit
µ+1,h(t) = eit

µ,h(t) −
∫ t

0
Kµ(t, s)δh(s)ds, t ∈ I. (2.2.45)

Here, Kµ denotes the µth iterated kernel of the given kernel K (cf. (2.1.6)).
Hence, an induction argument readily leads to

Theorem 2.2.10 For µ ≥ 1 the µth iterate uit
µ,h of the collocation solution

uh ∈ S(−1)
m−1(Ih) induces an error eit

µ,h := y − uit
µ,h which has the representation

eit
µ,h(t) =

∫ t

0
Rµ(t, s)δh(s)ds, t ∈ I.

Here we have set

Rµ(t, s) :=
∞∑

n=µ

Kn(t, s).

In Section 2.1.1 we derived uniform bounds for the iterated kernels Kn(t, s).
These bounds – which involve the factor 1/n! – will form the basis for obtaining
more concrete answers to the above question. We leave this as an exercise
(Exercise 2.5.20).

A result related to that in Theorem 2.2.9 can be found in Brunner, Lin and
Yan (1996): it deals with iterative correction techniques (see also Q. Lin (1979),
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Q. Lin, Sloan and Xie (1990), Q. Lin and Shi (1993), Q. Lin, Zhang and Yan
(1997), and Q. Lin and Zhang (1997) for related correction techniques). We
mention also that Porter and Stirling (1993) studied the convergence proper-
ties of repeated iterated Galerkin solutions to second-kind Fredholm integral
equations.

2.2.6 Optimal orders for the discretised collocation solutions

Do the discretised collocation solution ûh and the corresponding iterate ûi t
h

possess the same order as the exact collocation approximations uh and uit
h ; in

particular, do the local superconvergence results of Theorem 2.2.6 remain valid
for ûh and/or ûi t

h ? The answer is in the affirmative if, as in Section 2.2.3, the
quadrature processes employ interpolatory m-point quadrature formulas whose
abscissas are based on the collocation parameters {ci }.

In order to understand this, observe first that we have

|y(t) − ûh(t)| ≤ |y(t) − uh(t)| + |uh(t) − ûh(t)| =: eh(t) + zh(t), t ∈ I.
(2.2.46)

Global and local estimates for the exact collocation error eh were established
in Sections 2.2.4 and 2.2.5. In order to analyse the perturbation zh induced by
the quadrature processes, recall that uh and ûh ∈ S(−1)

m−1(Ih) are, respectively, the
exact and discretised collocation solutions to (2.2.5) defined by

uh(t) = g(t) + (Vuh)(t), t ∈ Xh,

and

ûh(t) = g(t) + (Vhûh)(t), t ∈ Xh,

corresponding to

(Vuh)(tn,i ) = Fn(tn,i ) + hn(Qnuh)(tn,i )

and

(Vhûh)(tn,i ) = F̂n(tn,i ) + hn(Q̂nûh)(tn,i ).

Here, the lag terms are given by

Fn(tn,i ) =
n−1∑
�=0

h�(Q(�)
n uh)(tn,i ),

and

F̂n(tn,i ) =
n−1∑
�=0

h�(Q̂nûh)(tn,i )
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(cf. (2.2.19) and (2.2.20)). We will denote by E (�)
n (tn,i ) (� < n) and En(tn,i )

the quadrature errors associated with these quadrature approximations
(Q̂(�)

n ûh)(tn,i ) and (Q̂nûh)(tn,i ). This allows us to write

(Q̂(�)
n ûh)(tn,i ) = (Q(�)

n ûh)(tn,i ) − E (�)
n (tn,i ) (� < n),

and

(Q̂nûh)(tn,i ) = (Qnûh)(tn,i ) − En(tn,i ).

Thus, setting

zh(tn + vhn) := uh(tn + vhn) − ûh(tn + vhn) =
m∑

j=1

L j (v)Zn, j , v ∈ (0, 1],

(2.2.47)
with Zn, j := Un, j − Ûn, j , it follows from the above collocation equations, upon
replacing the quadrature approximations by the difference between the exact
integrals and the quadrature errors, that the vector Zn := (Zn,1, . . . , Zn,m)T

solves the linear algebraic system

Zn,i =
n−1∑
�=0

h�(Q(�)
n zh)(tn,i ) + hn(Qnzh)(tn,i ) + εn(tn,i ) (i = 1, . . . , m),

(2.2.48)
where

εn(tn,i ) :=
n−1∑
�=0

h�E (�)
n (tn,i ) + hn En(tn,i ).

This algebraic system can be written as

[Im − hn Bn]Zn =
n−1∑
�=0

h� B(�)
n Z� + εn, (2.2.49)

with εn := (εn(tn,1), . . . , εn(tn,m))T . Its structure is similar to that of (2.2.33),
and hence it leads again to a discrete Gronwall inequality analogous to (2.2.34),
except that now the non-homogeneous term is governed by an upper bound
for ||εn||1. If the quadrature formulas have degree of precision p (where p ≥
m − 1), then

||εn||1 ≤
m∑

j=1

(
n−1∑
�=0

h� · Qn,�h p
� + Qn,nh p

n

)
≤ Qh p

(n = 0, 1, . . . , N − 1), provided the kernel K is sufficiently regular. The error
constants Qn,� follow from the Peano Kernel Theorem, and we have used the
fact that

∑n−1
�=0 h� ≤ T (n ≤ N ).
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The analysis is now readily completed: since ||Zn|| satisfies the discrete
Gronwall inequality

||Zn||1 ≤ γ0h
n−1∑
�=0

||Z�||1 + γ1h p (n = 0, 1, . . . , N − 1),

it follows that ||Zn||1 ≤ γ h p and so, by (2.2.47),

|zh(tn + vhn)| ≤
m∑

j=1

|L j (v)| · |Zn, j | ≤ �m ||Zn||1 ≤ �mγ h p,

where �m := max( j) ||L j ||∞. This estimate is valid uniformly for v ∈ [0, 1]
and n = 0, 1, . . . , N − 1, for all meshes Ih with h ∈ (0, h̄).

It is obvious that this perturbation analysis can also be used to deal with the
effect of the full discretisation on the iterated collocation error: if we define
zit

h (t) := uit
h (t) − ûi t

h (t) then it follows from the definition of the exact iterated
collocation solution and its discretised counterpart (recall (2.2.17) and (2.2.26))
that the above equation (2.2.48) is to be replaced by

zit
h (tn + vhn) =

n−1∑
�=0

h�(Q(�)
n zh)(tn + vhn) + hn(Qnzh)(tn + vhn) + εn(tn + vhn),

with v ∈ [0, 1], and this leads to the expected order results, both globally on I
and locally on the mesh points Ih , thus extending Theorems 2.2.5 and 2.2.6 to
||y − ûi t

h ||∞ and max(Ih ) |y(t) − ûi t
h (t)|, respectively. Moreover, the same ideas

can be used to deal with the fully discretised collocation methods for other
types of Volterra integral and (functional) integro-differential equations. In the
following chapters we will usually not explicitly state the convergence results
corresponding to fully discretised collocation solutions since they can easily
be obtained by adapting the above analysis. We will, however, summarise the
insight obtained presently in Theorem 2.2.11: it represents the discrete analogue
of Theorems 2.2.5 and 2.2.6.

Theorem 2.2.11 Assume that the collocation equation defining the exact col-
location solution uh ∈ S(−1)

m−1(Ih) and the corresponding iterated collocation so-
lution uit

h for (2.2.5) are discretised by using interpolatory m-point quadrature
formulas whose absissas are based on the collocation parameters {ci }. Then
the resulting discretised collocation approximations ûh and ûit

h have the same
(optimal) global and local optimal convergence properties as uh and uit

h .

Remark Discretised collocation methods, in the past often called block meth-
ods, were analysed by Weiss (1972a) and by de Hoog and Weiss (1975). The
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connection between these methods and (exact) collocation methods was studied
in Brunner (1977).

2.2.7 Divergence of collocation solutions in smoother
collocation spaces

We have observed in Section 1.1.5 (Theorem 1.1.9 and Corollary 1.1.10)
that if uh ∈ S(0)

m (Ih) is the collocation solution for the initial-value problem
y′(t) = ay(t), t ∈ I, y(0) = y0, and if vi t

h denotes the iterated collocation so-
lution corresponding to vh ∈ S(−1)

m−1(Ih) for the integrated form of the initial-value
problem,

y(t) = y0 +
∫ t

0
ay(s)ds, t ∈ I,

then uh(t) = vi t
h for all t ∈ I . We will now show that this result remains true for

more general, smooth piecewise polynomial collocation spaces S(d)
µ (Ih (d < µ).

An important consequence of this result will be that it allows us to extend
Mülthei’s divergence theory for collocation solutions for ODEs (described in
Section 1.3.1) to second-kind VIEs.

Theorem 2.2.12 Let µ and d be any positive integers satisfying d < µ, and let

X (d)
h := {tn + ci hn : 0 < c1 < . . . < cµ−d ≤ 1 (n = 0, 1, . . . , N − 1)}

denote the set of collocation points associated with the mesh Ih and the given
µ − d (distinct) collocation parameters {ci }. If uh ∈ S(d)

µ (Ih) is the collocation
solution defined by

u′
h(t) = auh(t), t ∈ X (d)

h , uh(0) = y0 (a �= 0), (2.2.50)

and

vi t
h (t) := y0 +

∫ t

0
avh(s)ds, t ∈ I, (2.2.51)

is the iterate of the collocation solution vh ∈ S(d−1)
µ−1 (Ih) for

y(t) = y0 +
∫ t

0
ay(s)ds, t ∈ I, (2.2.52)

then

vi t
h (t) = uh(t) for all t ∈ I.
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Proof Let the local representation of the collocation solution uh ∈ S(d)
µ (Ih) for

the initial-value problem (2.2.50) be

uh(tn + vhn) =
d∑

ν=0

hν
n y(ν)

n

ν!
vν +

µ∑
j=d+1

αn, jv
j , v ∈ [0, 1].

We have u(ν)
h (tn) = y(ν)

n (ν = 0, 1, . . . , d), with y(ν)
n := u(ν)

h (tn−1 + hn−1) and
given initial values u(ν)

h (0) := y(ν)(0). Since

u′
h(tn + vhn) = h−1

n

(
d∑

ν=1

hν
n y(ν)

n

(ν − 1)!
vν−1 +

µ∑
j=d+1

jαn, jv
j−1

)
, v ∈ [0, 1],

the collocation equation (2.2.50) for uh at t = tn,i can be written in the form

µ∑
j=d+1

(
jc j−1

i − hnac j
i

)
αn, j = −

d∑
ν=1

hν
n y(ν)

n

(ν − 1)!
cν−1

i + hna
d∑

ν=0

hν
n y(ν)

n

ν!
cν

i

(i = 1, . . . , µ − d). Somewhat more concisely, it reads

V (d)
n αn = hnayne −




d∑
ν=1

(
cν−1

i

(ν − 1)!
− hna

cν
i

ν!

)
hν

n y(ν)
n

(i = 1, . . . , µ − d)


 , (2.2.53)

where

V (d)
n :=

(
jc j−1

i − hnac j
i

(i = 1, . . . , µ − d; j = d + 1, . . . , µ)

)
∈ L(IRµ−d )

and αn := (αn,d+1, . . . , αn,µ)T ∈ IRµ−d .

Consider now the collocation solution vh ∈ S(d−1)
µ−1 (Ih) for the VIE (2.2.52)

(the integrated form of the initial-value problem for the ODE). We choose as
its local representation on σn ,

vh(tn + vhn) =
d−1∑
ν=0

hν
nv

(ν)
n

ν!
vν +

µ−1∑
j=d

( j + 1)γn, jv
j , v ∈ (0, 1]

which implies that v
(ν)
h (tn) = v(ν)

n , ν = 0, 1, . . . , d − 1. It is then easily seen
that the collocation equation at t = tn,i ,

vh(tn,i ) = Fn + hna
∫ ci

0
vh(tn + shn)ds (i = 1, . . . , µ − d),

with lag term

Fn := y0 +
∫ tn

0
avh(s)ds,
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after some algebraic manipulations assumes the form

µ−1∑
j=d

(
( j + 1)c j

i − hnac j+1
i

)
γn, j = Fn −

d−1∑
ν=0

hν
nv

(ν)
n

ν!
cν

i + hna
d−1∑
ν=0

hν
nv

(ν)
n

(ν + 1)!
cν+1

i

(2.2.54)

(i = 1, . . . , µ − d). Thus, the counterpart of (2.2.53) is given by

W (d)
n γγn = Fne −




d−1∑
ν=0

(
cν

i

ν!
− hna

cν+1
i

(ν + 1)!

)
hν

nv
(ν)
n

(i = 1, . . . , µ − d)


 , (2.2.55)

with

W (d)
n :=

[
( j + 1)c j

i − hnac j+1
i

(i = 1, . . . , µ − d; j = d, . . . , µ − 1)

]
∈ L(IRµ−d )

and γγn := ( γn,d , . . . , γn,µ−1 )T ∈ IRµ−d .
The definition of the iterated collocation solution at t = tn + vhn ,

vi t
h (tn + vhn) := Fn + hna

∫ v

0
vh(tn + shn)ds, v ∈ [0, 1],

reveals that the value of the lag term Fn is of course (as in Section 1.1.5)

Fn = vi t
h (tn) (n = 1, . . . , N ),

since the kernel of the VIE does not depend on t .
In order to bring the proof to its conclusion we first observe that:

(i) The matrices V (d)
n and W (d)

n on the left-hand sides of (2.2.53) and (2.2.54)
are identical: V (d)

n = W (d)
n for n = 0, 1, . . . , N − 1.

(ii) u(ν)
h (0) = y(ν)

0 = (vi t
h )(ν)(0) (ν = 0, 1, . . . , d).

(iii) Since y′(t) = ay(t), we have y(ν)(0) = ay(ν−1)(0) (ν = 1, . . . , d).

(iv) The following relationship between uh and vi t
h is obvious:

Lemma 2.2.13 For v ∈ [0, 1] and n = 0, 1, . . . , N − 1,

uh(tn + vhn) − vi t
h (tn + vhn) = yn − vi t

h (tn)
d∑

ν=1

(
y(ν)

n − hnav(ν−1)
n

)

+ hν
nv

ν

ν!
+

µ∑
j=d+1

(
αn, j − hnaγn, j−1

)
v j .

If we now compare the solutions αn and γn of the linear algebraic systems
(2.2.53) and (2.2.55) and use the result of the above lemma, together with a
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straightforward induction argument (and an obvious change of the variables of
summation j in (2.4.54) and ν in the first term on its right-hand side), we find
that for all n,

u(ν)
h (tn) = y(ν)

n = (vi t
h )(ν)(tn) (n = 1, . . . , N − 1),

and hence, αn = γγn , that is,

αn, j = hnaγn, j−1 ( j = d + 1, . . . , µ; n = 0, 1, . . . , N − 1).

By combining all these observations we can now easily convince ourselves that
the assertion of Theorem 2.2.11 is indeed true.

Remark As we indicated in Section 1.3.1, an obvious alternative to the above
local representations of uh and vh are the ones based on the Hermite canonical
polynomials with respect to the {ci } (see Exercise 2.5.26).

Corollary 2.2.14 Assume that the collocation solution uh ∈ S(d)
µ (Ih) for the

initial-value problem for y′(t) = ay(t) is divergent. Then both the iterated col-
location solution vi t

h and the underlying collocation solution vh ∈ S(d−1)
µ−1 (Ih),

based on the same (distinct) collocation points X (d)
h , for the second-kind VIE

(2.2.5) are also divergent.

Proof We simply note that

|eit
h (t)| = |Veh)(t)| ≤ K0||eh ||∞, t ∈ I,

where

K0 := max
t∈I

∫ t

0
|K (t, s)|ds = |a|T .

We described divergence results for collocation solutions to ODEs (due
mainly to Loscalzo and Talbot (1967) and Mülthei (1979, 1980a)) in Section
1.3.1. Hence, Theorem 2.2.11 and Corollary 2.2.13 provide the basis for the
analogous divergence theory for second-kind VIEs. The first convergence and
divergence results for second-kind VIEs are due to Hung (1970) and to El Tom
(1971, 1974, 1976). A more general (stability) analysis can be found in the
recent papers by Oja (2001a, 2001b) and Oja and Saveljeva (2002).

The equivalence result of Theorem 2.2.11 and Corollary 2.2.13 allows us to
establish the complete divergence theory of piecewise polynomial collocation
methods for second-kind VIEs. We state a number of representative results,
starting with the case of simple parameters {ci }. Similar results on collocation
using parameters with higher multiplicity will be given in Section 2.2.8. Revert-
ing to our standard notation, using again uh , instead of vh , to denote a collocation
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solution to the VIE (2.2.5), we conclude this section by stating the analogue
of Theorem 1.3.4. The results for Hermite-type collocation (corresponding to
Theorem 1.3.1 and Corollary 1.3.2) will be given in Section 2.2.8.

The analogue of Corollary 1.3.2 for second-kind VIEs is due to Hung (1970).

Theorem 2.2.15 The collocation solution uh ∈ S(2)
3 (Ih) for (2.2.5), with c1 =

1, is divergent.

A more general result is given in Theorem 2.2.16: it corresponds to Theorem
1.3.4 for ODEs.

Theorem 2.2.16 Let uh ∈ S(d−1)
µ−1 (Ih) (d < µ) be the collocation solution for

the second-kind VIE (2.2.5), with collocation parameters 0 < c1 < . . . < cr =
1 possessing multiplicities δi = 1 (hence r = µ − d). If d ≥ 2 then uh is diver-
gent whenever

r−1∏
i=1

1 − ci

ci
> 1.

Proof The above divergence result is implied by Theorem 1.3.4 (δi = 1 for all
i , and d = 2 = δr + 1) and by Corollary 2.2.14.

Corollary 2.2.17 If uh ∈ S(1)
µ−1(Ih) is the collocation solution corresponding to

the µ − 2 Radau II points, then uh is divergent.

Proof This divergence result follows from Corollary 1.3.5 and Corollary
2.2.14.

2.2.8 Hermite-type collocation methods

Assume now that some of the collocation parameters ci have multiplicities
δi > 1. In analogy to Section 1.3, the collocation solution uh ∈ S(d−1)

µ−1 (Ih) is
now determined by the collocation equation

u(ν)
h (tn,i ) = g(ν)(tn,i ) + d

dt
(Vuh)(tn,i ), ν = 0, . . . , δi − 1; i = 1, . . . , r,

(2.2.56)
with initial values u(ν)

h (0) = y(ν)(0) (ν = 0, . . . , d − 1). Setting

uh(tn + vhn) =
d−1∑
l=0

y(l)
n hl

n

l!
vl +

µ−1∑
j=d

( j + 1)γn, jv
j , v ∈ [0, 1],

with y(l)
n := u(l)

h (tn) (cf. Section 1.3.1), the proof of Theorem 2.2.11 is readily
adapted to encompass this more general situation; hence the equivalence result
remains valid. This allows us to deduce the following divergence statements.
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Theorem 2.2.18 Let uh ∈ S(d−1)
µ−1 (Ih) (1 ≤ d < µ) be the collocation solution

for the VIE (2.2.5), corresponding to the collocation parameters satisfying
0 < c1 < . . . < cr−1 < cr = 1 and possessing multiplicities δ1, . . . , δr , so that
δi > 1 for at least one i .

If d is such that d = δr + 1 (≥ 2) then uh is divergent whenever

r−1∏
i=1

(
1 − ci

ci

)δi

> 1.

Theorem 2.2.19 The Hermite collocation solution uh ∈ S(m)
2m−1(Ih), with q =

m − 1 and c1 = 1, is divergent for second-kind VIEs.

The proof is a consequence of the second part in Example 1.3.2.

Remarks

1. Esser (1978) showed that Hermite collocation for second-kind VIEs in
S(m−1)

2m−1 (Ih) (with c1 = 1 having multiplicity δ1 = m) is convergent.
2. Mülthei’s convergence results for ODEs (Mülthei (1980a, 1980b, 1980c,

1982a)) do not necessarily imply analogous convergence results for VIEs,
since a linear second-kind VIE is in general not reducible to a first-order
ODE. Except for some partial results by Oja et al. mentioned above, the
convergence analysis of piecewise polynomial collocation solutions to VIEs
is still incomplete.

2.2.9 Multidimensional VIEs of the second kind

We have seen in Section 2.1.7 that the second-kind VIE,

u(x, y) = g(x, y) + (Vu)(x, y), (x, y) ∈ � := [0, X ] × [0, Y ], (2.2.57)

with Volterra integral operator V : C(�) → C(�) given by

(Vφ)(x, y) :=
∫ x

0

∫ y

0
K (x, ξ, y, η)φ(ξ, η)dη dξ,

possesses a unique solution u ∈ C(�) whenever g and K are continuous on
� and D2 := {(x, ξ, y, η) : 0 ≤ ξ ≤ x ≤ X, 0 ≤ η ≤ y ≤ Y }, respectively.
Moreover, as in the one-dimensional case it can be represented by a variation-
of-constants formula (resolvent representation), as shown in Theorem 2.1.14.
This suggests that the convergence results derived in Section 2.2 will also carry
over to collocation solutions and their iterates for the above VIE.

We will give a brief description of the collocation method and a summary
of the corresponding (super-) convergence results; details and proofs are along
familiar lines and can also be found in Brunner and Kauthen (1989).
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Let

Ih := {x j : 0 = x0 < x1 < . . . < xM = X},
Jk := {yl : 0 = y0 < y1 < . . . < yN = Y },
h j := x j+1 − x j , kl := yl+1 − yl ; h := max

( j)
h j , k := max

(l)
kl ,

and set �h,k := Ih × Jk . The collocation space will be

S(−1)
m−1,µ−1(�h,k) := {v : v|σ j,l ∈ πm−1,µ−1 (0 ≤ j ≤ M − 1, 0 ≤ l ≤ N − 1)},

where σ j,l := (x j , x j+1] × (yl , yl+1] and πm−1,µ−1 := πm−1 ⊗ πµ−1. The di-
mension of this linear space is M Nmµ, and hence the set of collocation points,
Zh,k := Xh × Yk , will be based on the sets

Xh := {x j + ci h j : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ j ≤ M − 1)},
Yk := {yl + di kl : 0 ≤ d1 < . . . < dµ ≤ 1 (0 ≤ l ≤ N − 1)}.

The collocation solution uh,k to (2.2.57) is the element of S(−1)
m−1,µ−1(�h,k) that

satisfies the collocation equation

uh,k(x, y) = g(x, y) + (Vuh,k)(x, y), (x, y) ∈ Zh,k, (2.2.58)

and the corresponding iterated collocation solution is determined by

uit
h,k(x, y) := g(x, y) + (Vuh,k)(x, y), (x, y) ∈ �. (2.2.59)

Note that uit
h,k ∈ C(�); this is true for uh,k only if m ≥ 2 and c1 = d1 = 0, cm =

dµ = 1.
We leave the derivation of the computational forms of the above collocation

equations to the reader: since the collocation space is a tensor-product space,
the local representation of uh,k on a subregion σ j,l is the tensor product of the
two familiar one-dimensional local Lagrange representations.

Theorem 2.2.20 Assume that g ∈ Cd (�) and K ∈ Cd (D2), for some d ≥ 0.

(i) There exists H̄ > 0 so that (2.2.58) defines a unique collocation solution
uh,k ∈ S(−1)

m−1,µ−1(�h,k) for all meshes �h,k with h, k ∈ (0, H̄ ).
(ii) If d ≥ m, then

sup{|u(x, y) − uh,k(x, y)| : (x, y) ∈ �} ≤ C Hρ, ρ := min{m, µ}.

Here, H := max{h, k}, and the estimate is true for arbitrary collocation
parameters {ci } and {di }.
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(iii) Suppose that the collocation parameters are chosen so that the orthogo-
nality conditions

J 1
� :=

∫ 1

0
s�

m∏
i=1

(s − ci )ds = 0 (� = 0, . . . , κ1 − 1, with κ1 ≤ m),

J 2
ν :=

∫ 1

0
sν

µ∏
i=1

(s − di )ds = 0 (ν = 0, . . . , κ2 − 1, with κ2 ≤ µ)

hold.

If d ≥ max{m + κ1, µ + κ2}, then

max{|u(x j , yl) − uit
h,k(x j , yl)| : 1 ≤ j, l ≤ M − 1, N − 1} ≤ C Hρ∗

,

with ρ∗ := min{m + κ1, µ + κ2}. In particular, if m = µ and the two sets {ci }
and {di } are the Gauss points, then we have ρ∗ = 2m.

Analogous results are true for the discretised collocation solutions ûh,k and
ûi t

h,k , provided the (tensor product) quadrature formulas are of interpolatory
type and based on the collocation parameters {ci } and {di }, respectively. See
also Stroud (1971) for details and expressions for the quadrature errors (and the
underlying two-dimensional version of the Peano Kernel Theorem).

2.2.10 Comparison with collocation for Fredholm
integral equations

In order to gain a better perspective on the superconvergence results for Volterra
integral equations, we briefly look at collocation methods for linear Fredholm
integral equations of the second kind,

y(t) = g(t) + λ(F y)(t), t ∈ I := [0, T ], (2.2.60)

where λ denotes a (real or complex) parameter and where the Fredholm integral
operator F : C(I ) → C(I ) is defined by

(Fφ)(t) :=
∫ T

0
K (t, s)φ(s)ds, K ∈ C(I × I ).

We will assume that λ−1 is not in the spectrum σ (F ) of the Fredholm integral
operator F ; that is, I − λF is invertible in C(I ).

The collocation solution uh ∈ S(−1)
m−1(Ih) for (2.2.60) is determined by

uh(t) = g(t) + λ(Fuh)(t), t ∈ Xh, (2.2.61)
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and the corresponding iterated collocation solution is found by

uit
h (t) := g(t) + λ(Fuh)(t), t ∈ I. (2.2.62)

Using again the local representation

uh(tn + vhn) =
m∑

j=1

L j (v)Un, j , v ∈ (0, 1], with Un, j := uh(tn, j ),

and setting

B(�)
n :=




∫ 1

0
K (tn,i , t� + sh�)L j (s)ds

(i, j = 1, . . . , m)


 (�, n = 0, 1, . . . , N − 1),

gn := (g(tn,1), . . . , g(tn,m))T , the linear algebraic system for the vectors Un ∈
IRm (n = 0, 1, . . . , N − 1) can be written as

Im − λh0 B(0)

0 −λh1 B(1)
0 . . . −λhN−1 B(N−1)

0
...

...
...

−λh0 B(0)
N−1 −λh1 B(1)

N−1 . . . Im − λhN−1 B(N−1)
N−1







U0
...

UN−1


=




g0
...

gN−1


.

The invertibility of the Nm × Nm block matrix now depends, in contrast to
Volterra integral equations, not only on h but also on λ: it is guaranteed if
|λ| · ||F || < 1, where

||F || := max
t∈I

∫ T

0
|K (t, s)|ds ≤ K̄ T,

assuming that |K (t, s| ≤ K̄ on I × I .
The convergence analysis of collocation methods for Fredholm integral equa-

tions of the second kind dates back to the work of Kadner (1960, 1967); of the
many papers dealing with superconvergence properties of piecewise colloca-
tion solutions (also in Galerkin methods) we cite those by Sloan (1976, 1984,
1988a, 1990), Chandler (1979), Chatelin and Lebbar (1981), Brunner (1984a),
Joe (1985a, 1985b); see also the monographs by Chatelin (1983), Golberg
and Chen (1997), and Atkinson (1997a). As the following theorem shows, the
fundamental difference between superconvergence results for Volterra and for
Fredholm integral equations is that in the latter case, high-order (e.g. O(h2m)-)
convergence for uit

h holds globally on I .

Theorem 2.2.21 Assume:

(a) g ∈ Cm+κ (I ), K ∈ Cm+κ (I × I );
(b) λ−1 �∈ σ (F);



112 2 Volterra integral equations with smooth kernels

(c) uh ∈ S(−1)
m (Ih) is the collocation solution defined by (2.2.61), with associ-

ated iterated collocation solution uit
h given by (2.2.62);

(d) the collocation parameters {ci } are subject to the orthogonality conditions

Jν :=
∫ 1

0
sν

m∏
i=1

(s − ci )ds = 0, ν = 0, . . . , κ − 1 (κ ≤ m),

with Jκ �= 0.

Then for all sufficiently small h > 0, the collocation solution uh is supercon-
vergent on Xh:

max
t∈Xh

|y(t) − uh(t)| ≤ Cκhm+κ ,

and the iterated collocation solution exhibits the same order of superconver-
gence on the entire interval I :

||y − uit
h ||∞ ≤ Cκhm+κ .

A proof of these results, along the lines of the one for VIEs (Section 2.2.5)
may be found in Brunner (1984a); see also the survey paper by Brunner (1987).
The analysis of the attainable order when the solution of (2.2.57) does not have
full regularity was analysed in detail by Joe (1985a, 1985b).

Remark The above analysis and the results derived in Section 2.2.9 readily
suggest that the global superconvergence result of Theorem 2.2.19 for uit

h will
remain valid for the analogous iterated collocation solution to

u(x, y) = g(x, y) + (Fu)(x, y), (x, y) ∈ � := [0, X ] × [0, Y ],

with Fredholm integral operator F : C(�) → C(�) given by

(Fφ)(x, y) :=
∫

�

K (x, ξ, y, η)φ(ξ, η)dη dξ

and K ∈ C(�), provided λ = 1 is not in the spectrum of F . Compare also
Graham (1980) and Atkinson (1997a).

2.2.11 Collocation for Volterra–Fredholm integral equations

We have seen in Section 2.1.6 that in the analysis of ‘mixed’ integral equations
of the form

u(t, x) = g(t, x) + (T u)(t, x), (t, x) ∈ I × J := [0, T ] × [0, X ], (2.2.63)

with

(T φ)(t, x) :=
∫ t

0

∫
J

K (t, s, x, ξ )φ(s, ξ )dξ ds,
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it is the Volterra part of the integral operator T that dominates the existence
of solutions (Theorem 2.1.13). Hence, we intuitively expect that the (super-)
convergence properties of (iterated) collocation solutions to (2.2.63) will also
be governed to some extent by the Volterra integral operator making up T . In
order to state the precise convergence results, we adopt a notation similar to the
one in Section 2.2.9: we set �τ,h := Iτ × Jh , with

Iτ := {tn : 0 = t0 < t1 < . . . < tn = T }, τn := tn+1 − tn,

Jh := {x j : 0 = x0 < x1 < . . . < xM = X}, h j := x j+1 − x j ,

and τ := max(n) τn, h := max( j) h j . The collocation space based on the mesh
�τ,h will be

S(−1)
m−1,µ−1(�τ,h) := {v : v ∈ πm−1,µ−1 on each subregion (tn, tn+1]

×(x j , x j+1]}.
Accordingly, we will work with the collocation points Xτ × Yh , defined by

Xτ := {tn + ciτn : 0 ≤ c1 < . . . < cm ≤ 1 (n = 0, 1, . . . , N − 1)},
and

Yh := {x j + di h j : 0 ≤ d1 < . . . < dµ ≤ 1 ( j = 0, 1, . . . , M − 1)}.
The collocation solution uτ,h ∈ S(−1)

m−1,µ−1(�τ,h) to (2.2.63) and its iterate uit
τ,h

are then respectively defined by

uτ,h(t, x) = g(t, x) + (T uτ,h)(t, x), (t, x) ∈ Xτ × Yh, (2.2.64)

and

uit
τ,h(t, x) := g(t, x) + (T uτ,h)(t, x), (t, x) ∈ �. (2.2.65)

However, since in physical or biological problems leading to the VFIE (2.2.63)
the independent variable t represents time, we will also consider the continuous-
time collocation equation: for t ∈ I it defines a collocation solution Vh(t) ∈
S(−1)

µ−1(Jh) by means of

Vh(t, x) = g(t, x) + (T Vh)(t, x), x ∈ Yh (t ∈ I );

its iterate is

V it
h (t, x) := g(t, x) + (T Vh)(t, x), x ∈ J (t ∈ I ).

The time-stepping scheme is then described by the collocation approximation
Uτ,h to Vh(t, x) with respect to t , using the space S(−1)

m−1(Iτ ) as the collocation
space. We obviously have Uτ,h = uτ,h .
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The convergence properties of Vh(t, x), uh(t, x) and their iterates
V it

h (t, x), uit
h (t, x) were analysed by Kauthen (1989a, 1989b) (for (2.2.63)),

and by Brunner (1990, 1991) (nonlinear VFIEs).

Theorem 2.2.22 Let the functions describing the VIFE (2.2.63) be sufficiently
regular on their respective domains, and assume that the collocation parameters
{ci } and {di } defining the sets Xτ and Yh satisfy the orthogonality conditions
stated in Theorem 2.2.14. Then:

(i) sup{|u(t, x) − Vh(t, x)| : x ∈ Yh, t ∈ I } ≤ Chµ+κ2 , with κ2 ≤ µ.
(ii) max{|u(t, x) − V it

h (t, x)| : x ∈ J , t ∈ I } ≤ Chµ+κ2 .
(iii) max{|u(t, x) − uτ,h(t, x)| : x ∈ J, t ∈ Iτ \ {0}} ≤ C Hρ∗

,
with ρ∗ := min{m + κ1, µ + κ2} and H := max{τ, h}.

Remark The above results are also true for VFIEs of Hammerstein type, e.g.
for (2.2.63) with integral operator T given by

(T φ)(t, x) :=
∫ t

0

∫
J

k(t − s)K (x, ξ )G(φ(s, ξ ))dξ ds.

In such cases it may again be advantageous to use implicitly linear collocation
(see Section 2.3.3 below) to approximate the solution. Compare also Brunner
(1991) for details and additional comments.

2.3 Collocation for nonlinear second-kind VIEs

2.3.1 Global error analysis

The collocation error eh = y − uh for the collocation solution uh ∈ S(−1)
m−1(Ih)

to the general nonlinear VIE

y(t) = g(t) +
∫ t

0
k(t, s, y(s))ds, t ∈ I,

satisfies, at t = tn + ci hn ∈ Xh ,

eh(tn,i ) = (V y)(tn,i ) − (Vuh)(tn,i )

=
n−1∑
�=0

h�

∫ 1

0

(
k(tn,i , t� + sh�, y(t� + sh�))

− k(tn,i , t� + sh�, uh(t� + sh�))
)
ds

+ hn

∫ ci

0

(
k(tn,i , tn + shn, y(tn + shn))

− k(tn,i , tn + shn, uh(tn + shn))
)
ds.
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Since uh = y − eh , we may write this in the form

eh(tn,i ) =
n−1∑
�=0

h�

∫ 1

0
ky(tn,i , t� + sh�, z�(s))eh(t� + sh�)ds

+ hn

∫ ci

0
ky(tn,i , tn + shn, zn(s))eh(tn + shn)ds,

assuming that ky(t, s, ·) is continuous and bounded. The functions z� (� ≤ n)
are the arguments arising in the Taylor remainder terms. Hence, using the local
representation of the collocation error eh , the proof of Theorem 2.2.3 is readily
extended to encompass nonlinear VIEs, and in particular the Hammerstein
version (2.1.43) often found in applications,

y(t) = g(t) +
∫ t

0
K (t, s)G(s, y(s))ds, t ∈ I

(cf. Section 2.3.3).
While leaving the details to the reader we just state that, under appropriate

existence and regularity assumptions, the collocation solution uh ∈ S(−1)
m−1(Ih)

induces an error whose order is described by

||y − uh ||∞ ≤ Chm,

and this holds for any {ci } with 0 ≤ c1 < . . . < cm ≤ 1.

2.3.2 Local superconvergence results for nonlinear V2s

For nonlinear VIEs (2.1.36) with sufficiently regular solutions the global and
local superconvergence results of Theorems 2.2.5 and 2.2.6 remain valid. This is
not surprising because if we employ Taylor’s theorem with quadratic remainder
term, we may write the equation for the collocation error,

eh(t) = δh(t) +
∫ t

0
[k(t, s, y(s)) − k(t, s, uh(s))]ds, t ∈ I,

where uh = y − eh , in the form

eh(t) = δh(t) +
∫ t

0
H0(t, s)eh(s)ds + T2(t), t ∈ I. (2.3.1)

with H0(t, s) := ky(t, s, y(s)) and

T2(t) := −1

2

∫ t

0
kyy(t, s, η(s))e2

h(s)ds.
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Here, η(s) := y(t) − θeh(s) for some θ with 0 < θ < 1. We deduce from the
order of global convergence of uh that

|T2(t)| = O(||eh ||2∞) = O(h2m), t ∈ I,

provided fyy(t, s, ·) is bounded on D × � for some � ⊂ IR. Denoting the re-
solvent kernel associated with the kernel H0(t, s) by R0(t, s), the solution of
the linearised error equation can be written as

eh(t) = δh(t) + T2(t) +
∫ t

0
R0(t, s) (δh(s) + T2(s)) ds, t ∈ I.

Hence, the statements on the attainable order of eh(t) at t = tn (n = 1, . . . , N )
follow from the familiar quadrature arguments based on the degree of precision
of the interpolatory quadrature formulas with the collocation points as abscissas.
In other words, the superconvergence results of Theorems 2.2.5 and 2.2.6 remain
valid for nonlinear VIEs.

Remark As in the case of nonlinear ODEs (Section 1.1.4) an alternative proof
can be based on the nonlinear ‘variation-of-constants formula’ for the VIE
(2.1.36) (see Beesack (1987)). Note, however, that the formula given originally
in Bernfeld and Lord (1978) is not correct.

2.3.3 Hammerstein-type VIEs: implicitly linear collocation

We have seen at the end of Section 2.1.5 that the Volterra–Hammerstein integral
equation

y(t) = g(t) + (Hy)(t), t ∈ I := [0, T ], (2.3.2)

with

(Hy)(t) :=
∫ t

0
K (t, s)G(s, y(s))ds,

can be rewritten in a form that leads to a computationally more attractive version
of the collocation method. This form is based on the Niemytzki operator (or:
substitution operator) N ,

z(t) := (N y)(t) := G(t, y(t)), t ∈ I, (2.3.3)

which permits the recasting of (2.3.2) as an ‘implicitly linear’ Volterra integral
equation,

z(t) = (N (g + Vz)(t) = G(t, g(t) + (Vz)(t)), t ∈ I, (2.3.4)
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with linear Volterra operator

(Vz)(t) :=
∫ t

0
K (t, s)z(s)ds.

The solution to the original VIE (2.3.2) is then obtained by the iteration

y(t) = g(t) + (Vz)(t), t ∈ I. (2.3.5)

We now approximate z by the collocation solution zh ∈ S(−1)
m−1(Ih),

zh(t) = G(t, g(t) + (Vzh)(t)), t ∈ Xh, (2.3.6)

and define the approximation yh to the solution y of the original VIE by

yh(t) := g(t) + (Vzh)(t), t ∈ I. (2.3.7)

The computational form of the collocation equation (2.3.6) on σn uses the
local representation

zh(tn + vhn) =
m∑

j=1

L j (v)Zn, j , v ∈ (0, 1], with Zn, j := zh(tn, j ), (2.3.8)

and is thus given by

Zn,i = G

(
tn,i , g(tn,i ) + Fn(tn,i ) + hn

m∑
j=1

[
∫ ci

0
K (tn,i , tn + shn)L j (s)ds]Zn, j

)

(2.3.9)

(i = 1, . . . , m), with lag term

Fn(t) :=
∫ tn

0
K (t, s)zh(s)ds, t ∈ σn.

After zh has been found we obtain the approximation yh to the solution y of the
given VIE (2.3.2) on σ̄n by

yh(tn + vhn) = g(tn + vhn) + Fn(tn + vhn)

+ hn

m∑
j=1

(∫ v

0
K (tn + vhn, tn + shn)L j (s)ds

)
Zn, j , (2.3.10)

v ∈ [0, 1].

In applications the kernel K (t, s) is usually of convolution type, K (t, s) =
k(t − s), where the memory function k is often such that the integrals arising
from

(Vzh)(t) =
∫ t

0
k(t − s)zh(s)ds
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can be found analytically, thus avoiding the need for quadrature approximations.
A more important advantage of implicitly linear collocation lies in the fact that,
in contrast to direct collocation for (2.3.2), the integrals need not be re-computed
for every iteration step when solving the nonlinear algebraic system (2.3.9),
or when computing the approximation yh(t) for different values of t ∈ I by
(2.3.10).

Remark Implicitly linear collocation methods (called ‘new collocation-type
methods’) were first introduced for Fredholm integral equations in Kumar and
Sloan (1987) and Kumar (1987); see also Brunner (1991, 1992b), Frankel (1995)
and Kaneko, Noren and Padilla (1997).

It turns out that the approximation yh obtained by implicitly linear colloca-
tion and the iterated collocation solution uit

h generated by ‘direct’ collocation
are closely related and, for certain kernels, essentially identical. Thus, for judi-
ciously chosen collocation parameters both approaches yield superconvergent
approximations of the same global and local orders. This is made precise in the
following theorem.

Theorem 2.3.1 Assume that:

(a) The given functions g, K and G in (2.3.2) are continuous on their domains,
and G is such that the VHIE possesses a unique solution y ∈ C(I ).

(b) yh is the approximation to the solution y of the Volterra–Hammerstein
equation (2.3.2) obtained by implicitly linear collocation and defined by
(2.3.6), (2.3.7).

(c) ûi t
h denotes the discretised iterated collocation solution corresponding to

the ‘direct’ collocation solution ûh ∈ S(−1)
m−1(Ih) defined by the fully discre-

tised collocation equation (2.3.11) below, using the same collocation points
Xh as for the computation of zh ∈ S(−1)

m−1(Ih) in (2.3.6).

Then

ûit
h (t) = yh(t) for all t ∈ I.

Proof If we solve the given Volterra–Hammerstein equation (2.3.2) by ‘direct’
collocation, then the exact collocation equation is

uh(t) = g(t) + (Huh)(t), t ∈ I,

and the exact iterated collocation solution is found from

uit
h (t) := g(t) + (Huh)(t), t ∈ I.
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For t = tn,i (i = 1, . . . , m) and t = tn + vhn (v ∈ [0, 1]) these equations be-
come, respectively,

Un,i = g(tn,i ) + �n(tn,i )

+ hn

∫ ci

0
K (tn,i , tn + shn)G(tn + shn,

m∑
j=1

L j (s)Un, j )ds,

and

uit
h (tn + vhn) = g(tn + vhn) + �n(tn + vhn)

+ hn

∫ v

0
K (tn + vhn, tn + shn)G(tn + vhn,

m∑
j=1

L j (s)Un, j )ds.

Here, we have set

�n(tn + vhn) :=
∫ tn

0
K (tn + vhn, s)G(s, uh(s))ds, v ∈ [0, 1].

Consider now their fully discretised versions based on interpolatory m-point
product quadrature formulas with weight function K (·, s) and abscissas given
by the collocation points: according to Section 2.2.3 they are given by

Ûn,i = g(tn,i ) + �̂n(tn,i )

+ hn

m∑
ν=1

(∫ ci

0
K (tn,i , tn + shn)Lν(s)ds

)
G(tn,ν , Ûn,ν) (2.3.11)

and

ûi t
h (tn + vhn) = g(tn + vhn) + �̂n(tn + vhn)

+ hn

m∑
ν=1

(∫ v

0
K (tn + vhn, tn + shn)Lν(s)ds

)
G(tn,ν , Ûn,ν).

(2.3.12)

Let V̂n,i := G(tn,i , Ûn,i ). From (2.3.11) and (2.3.12) we thus obtain the equa-
tions

V̂n,i = G(tn,i , g(tn,i ) + �̂n(tn,i ) + hn

m∑
ν=1

(∫ ci

0
K (tn,i , tn + shn)Lν(s)ds

)
V̂n,ν)

(2.3.13)

and

ûi t
h (tn + vhn) = g(tn + vhn) + �̂n(tn + vhn)

+ hn

m∑
ν=1

(∫ v

0
K (tn + vhn, tn + shn)Lν(s)ds

)
V̂n,ν .

(2.3.14)
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We wish to show that V̂n,i = Zn,i (i = 1, . . . , m; n = 0, 1, . . . , N − 1), where
the Zn,i are defined by the solution of the nonlinear algebraic system (2.3.9).
This is readily verified by induction, using the obvious fact that the assertion is
true for n = 0. We leave the remaining details of this simple proof to the reader.

In view of applications the kernel will usually be of convolution type,
K (t, s) = k(t − s), and hence the quadrature weights in (2.3.11)–(2.3.14) have
an analogous structure, e.g.

wn,ν(v) :=
∫ v

0
k((v − s)hn)Lν(s)ds, v ∈ (0, 1].

For K (t, s) ≡ 1 we obtain the result of Theorem 1.1.9 for the special Volterra–
Hammerstein integral equation arising in the integrated form of the initial-value
problem y′(t) = f (t, y(t)), y(0) = y0.

2.4 Collocation for first-kind VIEs

2.4.1 The exact collocation equations for S(−1)
m−1(Ih)

Assume that the kernel K of the Volterra integral operator V : C(I ) → C(I )
defined by

(Vφ)(t) :=
∫ t

0
K (t, s)φ(s)ds, t ∈ I := [0, T ], (2.4.1)

is in C1(D) and is strictly non-zero along the line t = s of I ; that is, |K (t, t)| ≥
k0 > 0 for all t ∈ I . According to Theorem 2.1.8 the first-kind Volterra integral
equation

(V y)(t) = g(t), t ∈ I, (2.4.2)

then possesses a unique solution y ∈ C(I ) for any g ∈ C1(I ) with g(0) = 0.

Since (V y)(0) = 0 the parameters {ci } underlying the set Xh of collocation
points will have to satisfy

0 < c1 < . . . < cm ≤ 1,

both for the collocation solution uh ∈ S(−1)
m−1(Ih) and the one in the continuous

space S(0)
m (Ih). We will see, however, that these collocation solutions will con-

verge uniformly on I to the solution y of (2.4.1), as h → 0, only under rather
stringent conditions on the {ci }. In particular, while collocation at the Gauss
points will yield a convergent collocation solution in S(−1)

m−1(Ih) (with possible
order reduction), the collocation solution in S(0)

m (Ih) for the same collocation
points turns out to be divergent.
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The collocation solution uh ∈ S(−1)
m−1(Ih) to (2.4.1) is defined by the colloca-

tion equation

(Vuh)(t) = g(t), t ∈ Xh . (2.4.3)

Its local representation is again

uh(tn + shn) =
m∑

j=1

L j (v)Un, j , v ∈ (0, 1], with Un, j := uh(tn, j ), (2.4.4)

and hence Un := (Un,1, . . . , Un,m)T ∈ IRm is defined by the solution of the
linear algebraic system

BnUn = h−1
n [gn − Gn] (n = 0, 1, . . . , N − 1), (2.4.5)

where

Gn := (Fn(tn,1), . . . , Fn(tn,m))T =
n−1∑
�=0

h� B(�)
n U�,

in complete analogy to (2.2.14). The matrix Bn ∈ L(IRm) was introduced in
(2.2.13) and has the form

Bn :=



∫ ci

0
K (tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 . (2.4.6)

Is this matrix non-singular, at least for sufficiently small values of hn? We
observe that its elements sample the kernel K (t, s) only ‘near’ the boundary
t = s of D; hence, since K ∈ C1(D) we may employ Taylor’s Theorem to write

K (tn,i , tn + shn) = K (tn, tn) + hn[ci Kt (tn + θ1ci hn, tn + θ2shn)

+ sKs(tn + θ1ci hn, tn + θ2shn)],

where θk ∈ (0, 1) (k = 1, 2). Hence, the elements of the matrix Bn can be there-
fore be expressed in the form∫ ci

0
K (tn,i , tn + shn)L j (s)ds = K (tn, tn)ai, j + O(hn), i, j = 1, . . . , m;

as in Section 1.1, we have set ai, j := ∫ ci

0 L j (s)ds. This shows that for suffi-
ciently small hn > 0, and under the assumption that |K (t, t)| ≥ k0 > 0, t ∈ I ,
we have

Bn =



∫ ci

0
K (tn, tn)L j (s)ds

(i, j = 1, . . . , m)


 + O(hn),
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where the first matrix on the right-hand side is non-singular for all n =
0, 1, . . . , N − 1, due to the linear independence of the (local) basis functions
{L j }.
Theorem 2.4.1 Assume that g and K in the first-kind Volterra integral equation
(2.4.2) satisfy

g ∈ C1(I ), g(0) = 0; K ∈ C1(D), |K (t, t)| ≥ k0 > 0, t ∈ I.

Then there exists an h̄ > 0 so that for all meshes Ih with diameter h ∈ (0, h̄) each
of the linear algebraic systems (2.4.5) possesses a unique solution Un ∈ IRm.
Hence, the collocation equation (2.4.3) defines a unique collocation solution
uh ∈ S(0)

m−1(Ih) which on σn is given by (2.4.4).

Remark A more general analysis of the existence and uniqueness of collo-
cation solutions to first-kind Volterra integral equations in more general linear
spaces can be found in Brunner (1976).

Example 2.4.1 uh ∈ S(−1)
0 (Ih) (m = 1), 0 < c1 ≤ 1:

The collocation equation follows immediately from Example 2.2.1 and now
reads (setting again θ := c1)(∫ θ

0
K (tn,1, tn + shn)ds

)
yn+1

= h−1
n [g(tn,1) − Fn(tn,1)](n = 0, 1, . . . , N − 1),

with yn+1 := Un,1 = un(tn + vhn), v ∈ (0, 1], and

Fn(t) :=
n−1∑
�=0

h�

(∫ 1

0
K (tn,1, t� + sh�)ds

)
y�+1 (t ∈ σn).

We shall see in Theorem 2.4.2 below that this method yields a convergent
collocation solution only if θ ∈ [1/2, 1]; its (global) order is then p = m = 1.
For θ = 1 we obtain the continuous midpoint method (see also Example 2.4.4 for
its fully discrete version): the name has its origin in the fact that, as we will see in
Theorem 2.4.6, it exhibits local superconvergence of order p∗ = m + 1 = 2 at
the midpoints tn+1/2 := tn + hn/2 (n = 0, 1, . . . , N − 1) of the subintervals σn .

Example 2.4.2 uh ∈ S(−1)
1 (Ih) (m = 2), 0 < c1 < c2 ≤ 1:

Here, the local representation of the collocation solution is

uh(tn + vhn) = 1

c2 − c1
[(c2 − v)Un,1 + (v − c1)Un,2], v ∈ (0, 1].

The vector Un := (Un,1, Un,2)T ∈ IR2 is the solution of the linear system

BnUn = h−1
n [gn − Gn]

(recall (2.4.5)) with the elements of the matrix Bn ∈ L(IR2) as in Example 2.2.2.
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This collocation solution is convergent only if the collocation parameters are
chosen so that (1 − c1)(1 − c2) ≤ c1c2 (see Theorem 2.4.2 below). The global
order of convergence is p = m = 2 for, e.g. the points c1 = 1/3, c2 = 1 (the
Radau II points) and c1 = 1/2, c2 = 1; in both cases we have ρm = 0 in (2.4.7).
If c1, c2 are the Gauss points (for which we have ρ2 = +1 in (2.4.7)) then we
obtain only O(h)-convergence.

2.4.2 Global convergence in S(−1)
m−1(Ih)

We have seen in Section 2.2.4 that for second-kind Volterra integral equations
the collocation solution uh ∈ S(−1)

m−1(Ih) converges to the exact solution for any
choice of the collocation parameters {ci } with 0 ≤ c1 < . . . < cm ≤ 1. This is
no longer true for first-kind VIEs, as the following theorem shows.

Theorem 2.4.2 Let d ≥ m and assume that

(a) g ∈ Cd+1(I ), with g(0) = 0;
(b) K ∈ Cd+1(D), with |K (t, t)| ≥ k0 > 0 for t ∈ I ;
(c) uh ∈ S(−1)

m−1(Ih) is the collocation solution defined by the collocation equa-
tion (2.4.3).

Then for all uniform meshes Ih with h ∈ (0, h̄) the collocation solution uh con-
verges uniformly on I to the solution y of (2.4.2) if, and only if, the collocation
parameters satisfy the condition

−1 ≤ ρm := (−1)m
m∏

i=1

1 − ci

ci
≤ 1. (2.4.7)

The attainable global order of convergence is then described by

||y − uh ||∞ =
{
O(hm) if ρm ∈ [−1, 1),
O(hm−1) if ρm = 1.

(2.4.8)

Remark Recall that in Section 1.1.2 (following Theorem 1.1.3) we introduced
the collocation polynomial Mm(s) := (1/m!)

∏m
i=1(s − ci ) associated with the

given collocation parameters {ci }. Thus, the above theorem can be rephrased, to
say that the collocation solution uh ∈ S(−1)

m−1(Ih) is convergent of (global) order
p = m if, and only if,

−1 ≤ ρm = Mm(1)

Mm(0)
< 1. (2.4.9)

Proof The collocation error eh := y − uh is governed by the equations

(Veh)(tn,i ) = 0, i = 1, . . . , m (0 ≤ n ≤ N − 1).
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Assume first that n = 0: using the local representation (2.2.31),

eh(tn + vhn) =
m∑

j=1

L j (v)En, j + hm
n Rm,n(v), v ∈ (0, 1],

we obtain the linear algebraic system
m∑

j=1

(∫ ci

0
K (t0,i , t0 + sh0)L j (s)ds

)
E0, j = ρ0,i h

m
0 (i = 1, . . . , m),

where

ρ0,i := −
∫ ci

0
K (t0,i , t0 + sh0)Rm,0(s)ds.

According to Theorem 2.4.1 this system possesses a unique solution since the
left-hand side matrix B0 is invertible whenever h0 ∈ (0, h̄). Hence we obtain
the initial estimate

||E0||1 ≤ ||B−1
0 ||1 · ||ρ0||1hm

0 ,

implying that

|eh(t0 + vh0)| ≤ �m ||E0||1 + hm
0 mK0km Mm =: C0hm

0 , v ∈ [0, 1]

(recall the proof of Theorem 2.2.3 and the notation employed there).
Assume now that 1 ≤ n ≤ N − 1. In order to analyse the convergence of

uh we resort to the discrete analogue of differentiating the (continuous) error
equation, namely,

1

hn
[Veh)(tn,i ) − (Veh)(tn−1,m)] = 0, i = 1, . . . , m.

This can be written in the more explicit form

hn

∫ ci

0
K (tn,i , tn + shn)eh(tn + shn)ds

= hn−1

∫ cm

0
K (tn−1,m, tn−1 + shn−1)eh(tn−1 + shn−1)ds

− hn−1

∫ 1

0
K (tn,i , tn−1 + shn−1)eh(tn−1 + shn−1)ds

−
n−2∑
�=0

h�

∫ 1

0
[K (tn,i , t� + sh�) − K (tn−1,m, t� + sh�)]eh(t� + sh�)ds

(i = 1, . . . , m). Due the assumed regularity of the kernel K (t, s) we have

K (tn + ci hn, t� + sh�) − K (tn−1 + cmhn−1, t� + sh�)

= ci hn Kt (·, t� + sh�) + (1 − cm)hn−1 Kt (·, t� + sh�) + O(h),
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where the unspecified first arguments in the partial derivatives of K are those
arising in the Taylor’s remainder terms. Thus, we can write∫ ci

0
K (tn,i , tn + shn)eh(tn + shn)ds

= −hn−1

hn

(∫ 1

0
K (tn,i , tn−1 + shn−1)eh(tn−1 + shn−1)ds

−
∫ cm

0
K (tn−1,m, tn−1 + shn−1)eh(tn−1 + shn−1)ds

)

−
n−2∑
�=0

h�

hn

∫ 1

0
[ci hn Kt (·, t� + sh�) + (1 − cm)hn−1 Kt (·, t� + sh�)]eh

(t� + sh�)ds. (2.4.10)

For K (t, s) ≡ 1 on D (which we will assume later, without loss of generality,
when discussing the case cm < 1) this becomes

∫ ci

0
eh(tn + shn)ds = −hn−1

hn

∫ 1

cm

eh(tn−1 + shn−1)ds (i = 1, . . . , m).

(2.4.11)
Case I: cm = 1.
The error equation (2.4.10) reduces to∫ ci

0
K (tn,i , tn + shn)eh(tn + shn)ds

= − ci

n−1∑
�=1

h�

∫ 1

0
Kt (·, t� + sh�)eh(t� + sh�)ds

− ci h0

∫ 1

0
Kt (·, t0 + sh0)eh(t0 + sh0)ds

(i = 1, . . . , m). We have shown at the beginning of the proof that eh(t0 + vh0) =
O(hm) for v ∈ [0, 1]. Thus, substitution of the local representations of eh leads
to the discrete Gronwall inequality

||En||1 ≤ γ0h
n−1∑
�=1

||E�||1 + γ1hm (n = 1, . . . , N − 1),

and hence to ||eh ||∞ = O(hm), for any choice of the first m − 1 collocation
parameters, 0 < c1 < . . . < cm−1 < 1.

Case II: cm < 1.
For ease of notation we will assume that K (t, s) ≡ 1 on D. The error equation
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(2.4.11) then becomes, employing again the local representations of eh ,∫ ci

0

(
m∑

j=1

L j (s)En, j + hm
n Rm,n(s)

)
ds

= −hn−1

hn

∫ 1

cm

(
m∑

j=1

L j (s)En−1, j + hm
n−1 Rm,n−1(s)

)
ds.

If we introduce the matrices P and Q in L(IRm) by setting

P :=



∫ ci

0
L j (s)ds

(i, j = 1, . . . , m)


 and Q := −




∫ 1

cm

L j (s)ds

(i, j = 1, . . . , m)


 ,

where P is non-singular and Q has rank one, and define vectors rn and ρn−1 in
IRm with components given by

rn,i := −
∫ ci

0
Rm,n(s)ds and ρn−1,i := −

∫ 1

cm

Rm,n−1(s)ds,

respectively, we arrive at the system of difference equations

PEn = −hn−1

hn
QEn−1 + hm

n rn + hn−1

hn
hm

n−1ρn−1 (n = 1, . . . , N − 1).

(2.4.12)
Recall from Section 2.2.1 that for a sequence of quasi-uniform meshes Ih the
ratio of any two stepsizes h� and hn is bounded by some constant γ < ∞,
uniformly in N .

Lemma 2.4.3 Assume that 0 < c1 < . . . < cm < 1. Then the non-trivial eigen-
value λ1 of the rank one matrix P−1 Q is

λ1 = (−1)m
m∏

i=1

1 − ci

ci
. (2.4.13)

Proof Since the local bases {L j (v) : j = 1, . . . , m} and {v j−1 : j =
1, . . . , m} of πm−1 are related via a linear transformation (the paper by de
Boor (2001) illuminates many aspects related to such basis transformations),
the matrix P−1 Q is similar to

P̃−1 Q̃ := −



∫ ci

0
s j−1ds

(i, j = 1, . . . , m)




−1 


∫ 1

cm

s j−1ds

(i, j = 1, . . . , m)


 .

The non-trivial eigenvalue of P̃−1 Q̃ is easily computed; it is given by (2.4.13).
Compare also Brunner (1978) for details.

If the meshes Ih are uniform (γ = 1), it follows from the elementary the-
ory of difference equations (see, e.g. Elaydi (1999)) that the solutions of the
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system of first-order difference equations (2.4.12) remain uniformly bounded
(as N →∞) if, and only if, |λ1| = ρm ≤ 1. This completes the first part of the
proof of Theorem 2.4.2.

Suppose now that cm < 1. If ρm ∈ [−1, 1) then the proof that this yields
again O(hm)-convergence is almost identical to the one for cm = 1, as (2.4.12)
and the corresponding discrete Gronwall estimate show. If ρm = 1 then the
reason for the resulting order reduction is found in the following lemma (see,
e.g. Henrici (1962, p. 18)).

Lemma 2.4.4 Assume that {zn} (0 ≤ n ≤ N ) is a sequence of non-negative
numbers satisfying the inequality

zn+1 ≤ Azn + B, A, B ≥ 0.

Then

zn ≤ Anz0 +



An − 1

A − 1
if A �= 1,

nB if A = 1.

Our situation corresponds to the case A = 1, where A assumes the role of
ρm and where we use the fact that the spectral radius (which for the rank-one
matrix P−1 Q now equals one) is a lower bound for any matrix norm induced by
a vector norm. Hence, the term nB corresponds to const · nhm and is bounded
by const · Nh · hm−1 = CT · hm−1.

Remark If the mesh sequence {Ih} is quasi-uniform, then we have h�/hn ≤ γ

for 0 ≤ � < n ≤ N − 1. Hence, the solutions of the system of difference equa-
tions (2.4.12) (whose coefficients are now variable) remain uniformly bounded
if

γ |λ1| = γ

m∏
i=1

1 − ci

ci
≤ 1.

Illustration Numerical differentiation by collocation

If the kernel of V in (2.4.3) is given by K (t, s) ≡ 1 on D, then the solution
of the integral equation (4.4.2) is y(t) = g′(t), t ∈ I, for any g ∈ C1(I ) with
g(0) = 0. Hence, Examples 2.4.1–2.4.3 yield simple (global) numerical dif-
ferentiation formulas of orders one and two. Since the kernel K (t, s) has now
the value one on D the integrals occurring in the collocation equations can be
evaluated analytically, leading to the desired differentiation formulas on, e.g.
the subinterval σ0 := (0, h] with h = 1. We leave their explicit derivation as an
exercise (see also Brunner and van der Houwen (1986, Section 5.5.2)).
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2.4.3 Collocation and global convergence in S(0)
m (Ih)

Recall from Section 2.2.1 that dim S(0)
m (Ih) = Nm + 1. Thus, in order to com-

pute the collocation solution uh in this continuous collocation space from the
collocation equation (2.4.3) we need to prescribe an initial value; it can be
obtained from the differentiated form of (2.4.2) and is given by

uh(0) = y(0) = g′(0)

K (0, 0)
=: y0. (2.4.14)

The analogue of the collocation equation (2.4.3) is: find uh ∈ S(0)
m (Ih) so that

(Vuh)(t) = g(t) for all t ∈ Xh, with uh(0) = y0. (2.4.15)

Let the local representation of uh on σn be

uh(tn + vhn) =
m∑

j=0

L j (v)Un, j , v ∈ [0, 1], with Un, j := uh(tn + c j hn),

(2.4.16)
where we have set c0 := 0 and

L0(v) := (−1)m
m∏

k=1

v − ck

ck
, L j (v) := v

c j

m∏
k=0,k �= j

v − ck

c j − ck
( j = 1, . . . , m).

Hence, (2.4.16) can be written in the form

uh(tn + vhn) = L0(v)yn +
m∑

j=1

L j (v)Un, j , v ∈ [0, 1]. (2.4.17)

Here, yn := uh(tn) = uh(tn−1 + hn−1) (n = 1, . . . , N − 1), since the colloca-
tion solution uh is continuous at the mesh points. Note also that cm = 1 implies
Un,m = uh(tn + hn) = yn+1.

The collocation equation on σn now becomes∫ tn

0
K (tn,i , s)uh(s)ds + hn

∫ ci

0
K (tn,i , tn + shn)uh(tn + shn)ds

= g(tn,i ) (i = 1, . . . , m),

or, by employing (2.4.17),

m∑
j=1

(∫ ci

0
K (tn,i , tn + shn)L j (s)ds

)
Un, j

= h−1
n [g(tn,i ) − Fn(tn,i )] −

(∫ ci

0
K (tn,i , tn + shn)L0(s)ds

)
yn. (2.4.18)
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Setting

ρn := −
(∫ ci

0
K (tn,i , tn + shn)L0(s)ds (i = 1, . . . , m)

)T

we are led to a linear algebraic system for Un := (Un,1, . . . , Un,m )T , namely

BnUn = h−1
n [gn − Gn] + ρn yn (n = 0, 1, . . . , N − 1). (2.4.19)

The matrix Bn and the vectors gn and Gn are as in (2.4.5).
Observe that the existence of a unique collocation solution uh ∈ S(0)

m (Ih) is
assured by Theorem 2.4.1 because in the systems of linear algebraic equations
(2.4.19) we have the same coefficient matrices Bn as in (2.4.5).

Example 2.4.3 uh ∈ S(0)
1 (Ih), 0 < c1 =: θ ≤ 1:

Here, we have

L0(v) = (θ − v)/θ, L1(v) = v/θ,

and

Bn =
(

1

θ

∫ θ

0
K (tn,1, tn + shn)s ds

)
.

The resulting collocation method is thus described by

uh(tn + vhn) = L0(v)yn + L1(v)Un,1, v ∈ [0, 1],

with Un,1 determined by the solution of

BnUn,1 = h−1
n [gn,1 − Fn(tn,1)]

−1

θ

(∫ θ

0
K (tn,1, tn + shn)(θ − s)ds

)
yn (n = 0, 1, . . . , N − 1)

where y0 is given by (2.4.14).
For θ = 1 we obtain the exact continuous trapezoidal method: here, L0(v) =

1 − v and L1(v) = v, and hence

uh(tn + vhn) = (1 − v)yn + vyn+1, v ∈ [0, 1],

with

Bn =
∫ 1

0
K (tn+1, tn + shn)s ds.

It follows from Theorem 2.4.5 below that this method is convergent and its
global order of convergence is p = m + 1 = 2 (since c1 = 1).

The fully discretised (continuous) counterpart of this method will be derived
in Example 2.4.5.
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We have seen in Section 2.4.1 that collocation in the discontinuous colloca-
tion space S(−1)

m−1(Ih) does not yield a uniformly convergent collocation solution
for any choice of the {ci }. Thus, it is intuitively clear that for uh ∈ S(0)

m (Ih) to
be uniformly convergent on I the collocation parameters will have to obey an
even more restrictive condition than (2.4.7), due to the continuity constraints
now imposed on uh at the interior mesh points. In fact, as Theorem 2.4.6 below
shows, collocation at the Gauss points leads to a divergent uh .

We first consider the case where cm = 1. We know from Theorem 2.4.2 that
if the collocation solution uh ∈ S(−1)

m−1(Ih) is based on collocation parameters
satisfying this condition, it will be uniformly convergent on I for any distinct
c1, . . . , cm−1 in (0, 1). This is no longer true in the collocation space S(0)

m (Ih),
as the following theorem makes clear (Brunner and van der Houwen (1986),
Kauthen and Brunner (1997)).

Theorem 2.4.5 Assume:

(a) g ∈ Cm+3(I ), with g(0) = 0;
(b) K ∈ Cm+3(D), and |K (t, t)| ≥ k0 > 0 on I ;
(c) uh ∈ S(0)

m (Ih) is the collocation solution defined by (2.4.15) and (2.4.17),
with uniform mesh Ih.

If the collocation parameters {ci } are so that 0 < c1 < . . . < cm = 1, then uh

converges uniformly (on I ) to the solution y of (2.4.2) if, and only if,

−1 ≤ ρm−1 := (−1)m
m−1∏
i=1

1 − ci

ci
≤ 1. (2.4.20)

For such collocation parameters the global order of convergence, as h →
0 (Nh = T ), is given by

||y − uh ||∞ =
{
O(hm+1) if − 1 ≤ ρm−1 < 1,

O(hm) if ρm−1 = 1.
(2.4.21)

In the case where cm < 1 (for example if the {ci } are the Gauss points) the
convergence analysis is much more complex. The following theorem gives a
first indication of this fact.

Theorem 2.4.6 Let g and K be subject to the assumptions in Theorem 2.4.5.
If cm < 1 and if the collocation parameters are symmetrical,

ci = cm+1−i , i = 1, . . . , m,

then the collocation solution uh ∈ S(0)
m (Ih) to (2.4.2) does not converge uni-

formly to y. In particular, the collocation solution uh ∈ S(0)
1 (Ih) corresponding

to c1 = 1/2 and uniform Ih is divergent as h → 0.
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Proof See Kauthen and Brunner (1997). The techniques employed in the proof
are based on a connection between the collocation solution defined by equa-
tion (2.4.3) and the value of the stability function at infinity associated with
(continuous) Runge–Kutta methods for (stiff) ODEs.

We note that there exist non-symmetric sets {ci } for which the collocation
solution uh ∈ S(0)

m (Ih) to (2.4.2) does converge uniformly on I . A detailed dis-
cussion of the construction and the numerical performance of such methods
can be found in Kauthen and Brunner (1997, pp. 1449–1452).

2.4.4 Is local superconvergence on Ih possible?

Do there exist sets of collocation parameters {ci } in (0, 1] for which the colloca-
tion solution uh ∈ S(−1)

m−1(Ih) exhibits local superconvergence of order p∗ > m
at the mesh points? The next theorem shows that the answer is negative. How-
ever, local superconvergence of (optimal) order p∗ = m + 1 can occur at certain
non-mesh points.

Theorem 2.4.7 Assume:

(a) g ∈ Cd (I ), with d ≥ m + 2 and non-trivial g satisfying g(0) = 0;
(b) K ∈ Cd (D), with d ≥ m + 2 and |K (t, t)| ≥ k0 > 0, t ∈ I ;
(c) uh ∈ S(−1)

m−1(Ih) is the collocation solution defined by (2.4.5), with distinct
collocation parameters ci ∈ (0, 1].

Then:

(i) Local superconvergence of order p∗ > m on Ih \ {0} is not possible for uh.
(ii) If Xh is based on collocation parameters {ci } given by the zeros of (s − 1)

P ′
m(2s − 1) (the m + 1 Lobatto points minus the point 0), and if the set

Yh := {tn + di hn : 0 < d1 < . . . < dm < 1 (0 ≤ n ≤ N − 1)}
corresponds to the Gauss points {di } (the zeros of Pm(2s − 1)), then

max
t∈Yh

|y(t) − uh(t)| ≤ Chm+1 :

local superconvergence of order p∗ = m + 1 occurs at the Gauss (–
Legendre) points in each subinterval σn. In particular, for odd values of
m we have

max
1≤n<N

|y(tn+ 1
2
) − uh(tn+ 1

2
)| ≤ Chm+1.

Remark Note that the set Yh of points at which local superconvergence can
occur is not unique (Exercise 2.5.19). Compare also Brunner (1978, 1979a,
1979b) and Eggermont (1982, 1983, 1986) for additional details.



132 2 Volterra integral equations with smooth kernels

Proof For {di } with 0 < d1 < . . . < dm ≤ 1 we define

L̄ j (v) :=
∏
k �= j

v − dk

d j − dk
( j = 1, . . . , m),

and we set

uh(tn + vhn) =
m∑

j=1

L̄ j (v)Ūn, j , v ∈ (0, 1], with Ūn, j := uh(tn + d j hn).

(2.4.22)
Using assumptions (a) and (b) we write the collocation error (remainder term)
in the form

eh(tn + vhn) =
m∑

j=1

L̄ j (v)Ēn, j + hm
n M̄m(v)[y(m)(tn) + hnθn y(m+1)(tn + ηnvhn)],

(2.4.23)
v ∈ (0, 1], where Ēn, j := eh(tn + d j hn), θn, ηn ∈ (0, 1), and

M̄m(v) := 1

m!

m∏
i=1

(v − di ).

We wish to show that for certain choices of the collocation parameters {ci }
there exist sets {di } (with a prominent example specified in Theorem 2.4.7) so
that ||Ēn||1 = O(hm+1), and that under the constraint dm = 1 we only obtain
||Ēn||1 = O(hm).

We know that the collocation error satisfies

(Veh)(tn,i ) = 0, i = 1, . . . , m (0 ≤ n ≤ N − 1).

For n = 0 these equations reduce to∫ ci

0
K (t0,i , t0 + sh0)eh(t0 + sh0)ds = 0 (i = 1, . . . , m),

and by (2.4.23) we obtain

m∑
j=1

(∫ ci

0
K (t0,i , t0 + sh0)L̄ j (s)ds

)
Ē0, j = hm

0 r0,1 + O(hm+1
0 ) (i = 1, . . . , m).

(2.4.24)
Here,

r0,i := −
∫ ci

0
K (t0,i , t0 + sh0)M̄m(s)ds · y(m)(tn).

Since K is continuously differentiable on D we may write

K (tn,i , tn + shn) = K (tn, tn) + ci hn Kt (·, tn + shn) = K (tn, tn) + O(hn)
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(recall also Section 2.4.2), where by assumption, K (t, t) �= 0 for t ∈ I . Hence,
the linear algebraic system (2.4.24) possesses a unqiue solution Ē0 whenever
h0 > 0 is sufficiently small (cf. (2.4.6) and Theorem 2.4.1). Moreover, since

r0,i = −K (t0, t0)y(m)(t0) ·
∫ ci

0
M̄m(s)ds + O(h0),

this solution satifies ||Ēn||1 = O(hm+1
0 ) if, and only if,∫ ci

0
M̄m(s)ds = 0, i = 1, . . . , m, (2.4.25)

is true. It is easily seen that (2.4.25) can only hold if the sets {ci } (defining the
collocation points) and {di } (describing the ‘evaluation points’) interlace, that
is, if

0 < d1 < c1 < d2 < . . . < dm < cm ≤ 1.

Direct computation, using an elementary property of the Legendre polynomials,
shows that

Qm+1(v) :=
∫ v

0
Pm(2s − 1)ds = const · [Pm+1(2v − 1) − Pm−1(2v − 1)]

(see also Ghizzetti and Ossicini (1970, pp. 62–63)). The zeros of Qm+1(v) are
the m + 1 Lobatto points in [0, 1] (including 0 and 1). If we denote these points
by

0 =: c0 < c1 < . . . < cm−1 < cm = 1,

(2.4.25) is satisfied if we choose

M̄m(v) = am Pm(2v − 1) = 1

m!

m∏
i=1

(v − di ),

with am := 1/(1 · 3 · · · (2m − 1)2m). This also shows, by the above interlacing
property, that O(hm+1)-convergence at t = t1 (corresponding to dm = 1) is not
possible.

We leave the extension of the above analysis to the subintervals σn with
1 ≤ n ≤ N − 1 to the reader. It uses as its starting point the equation (2.4.10),
and (for cm = 1) it leads to

m∑
j=1

(∫ ci

0
K (tn,i , tn + shn)L̄ j (s)ds

)
Ēn, j = hm

n rn,i + O(hm+1
n ), i = 1, . . . , m).

An analogous (negative) result holds for the collocation solution uh ∈
S(0)

m (Ih). We we will not state it here but refer the interested reader to the 1997
paper by Kauthen and Brunner.
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2.4.5 Fully discretised collocation for first-kind VIEs

Since we have discussed the fully discretised collocation method for second-
kind VIEs in some detail in Section 2.2.3, we can be brief in dealing with the
analogous discretisations for VIEs of the first kind. As before, the integrals in the
collocation equations (2.4.5) and (2.4.19) are approximated by the interpolatory
m-point quadrature formulas corresponding to the local abscissas tn + ci hn .
The resulting approximations then coincide with those obtained, in the early
1970s (Weiss (1972a), de Hoog and Weiss (1973a, 1973b), by ‘block-by-block’
methods (see also Brunner (1977, 1978) for the connection with discretised
collocation methods). It is intuitively clear from the perturbation analysis of
Section 2.2.3 that the discretised collocation solution ûh will also converge,
provided the collocation parameters satisfy the stability condition (2.4.7) when
ûh ∈ S(−1)

m−1(Ih), and (2.4.20) for ûh ∈ S(0)
m (Ih) with 0 < c1 < . . . < cm = 1.

Theorem 2.4.8 Assume that g and K satisfy the assumptions stated in Theorem
2.4.4, and let û(−1)

h (Ih) be the discretised collocation solution for (2.4.3) that is
based on the interpolatory m-point quadrature formulas introduced in Section
2.2.3. Then the order results of Theorem 2.4.4 remain valid for ûh.

An analogous theorem – the discrete counterpart of Theorem 2.4.6 – can be
stated for ûh ∈ S(0)

m (Ih).

We conclude this discussion with three examples which play a role in many
applications (and which, in Linz’s work of the late 1960s, introduced – and are
still introducing – many numerical analysts and users of computational mathe-
matics to the numerical solution of first-kind VIEs). Their proper place within
the general framework of (discretised) collocation, as described above, does,
however, shed more light on their convergence analysis and their numerical
implementation.

Example 2.4.4 ûh ∈ S(−1)
0 (Ih) (m = 1), 0 < c1 =: θ ≤ 1:

Consider the fully discretised version of Example 2.4.1 corresponding to θ = 1:
using again interpolatory one-point collocation based on the abscissas tn +
θhn , the discretised collocation solution in this space is determined by ŷn+1 :=
uh(tn + vhn) (v ∈ (0, 1]) and

K (tn+1, tn+1)ŷn+1 = h−1
n [g(tn+1) − F̂n(tn+1)],

where

F̂n(tn+1) =
n−1∑
�=0

h�K (tn+1, t�+1)ŷ�+1.
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Its global order of convergence is p = m = 1; on the set

Yh := {tn+1/2 := tn + hn/2 : n = 0, 1, . . . , N − 1}
we have local superconvergence of order p∗ = m + 1 = 2,

max
t∈Yh

|y(t) − uh(t)| ≤ Ch2

(see Theorem 2.4.6), a result well known in the classical literature on the nu-
merical analysis of first-kind VIEs (see, e.g. Linz (1969b) for a discussion of
the (discrete) midpoint method for first-kind VIEs).

Example 2.4.5 ûh ∈ S(0)
1 (Ih) (m = 1), 0 < c1 =: θ ≤ 1:

It follows from Example 2.4.3 that the discretised collocation solution in the
space of continuous piecewise linear polynomials is, on σ̄n ,

ûh(tn + vhn) = 1

θ
[(θ − v)ŷn + vUn,1], v ∈ [0, 1],

with Ûn,1 being the solution of

1

2
K (tn,1, tn,1)Ûn,1 = h−1

n [g(tn,1) − F̂n(tn,1)] − 2θ − 1

2
K (tn,1, tn)ŷn.

The corresponding discretised lag term is given by

F̂n(tn,1) = 1

2

n−1∑
�=0

h�[K (tn,1, t�)ŷ� + K (tn,1, t�+1)ŷ�+1].

For θ = 1 this fully discretised method becomes the discretised (continuous)
trapezoidal method, described by

ûh(tn + vhn) = (1 − v)ŷn + v ŷn+1, v ∈ [0, 1],

and

1

2
K (tn+1, tn+1)ŷn+1 = h−1

n [g(tn+1) − F̂n(tn+1)] − 1

2
K (tn+1, tn)ŷn.

Its order (globally, on I , and locally, on Xh) is p = m + 1 = 2.

2.4.6 Direct versus indirect collocation

We have seen in the previous sections that the collocation solution uh in
S(d)

m+d (Ih) (d ∈ {−1, 0}) is in general not locally superconvergent at the points
of the mesh Ih . Thus, if a given first-kind Volterra integral equation can be
converted into an equation of the second kind, it will be advantageous to use
the latter as the basis for obtaining high-order collocation solutions to (2.4.2)
since the superconvergence results of Section 2.2.3 and 2.2.4 will now apply.
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It follows under the assumptions of Theorem 2.1.8 that, upon differentiation
with respect to t , the first-kind VIE (2.4.2) can be rewritten as

y(t) = g1(t) +
∫ t

0
K1(t, s)y(s)ds, t ∈ I, (2.4.26)

with

g1(t) := g′(t)/K (t, t), K1(t, s) := −(∂K (t, s)/∂t)/K (t, t)

(cf. (2.1.32)), with |K (t, t)| ≥ k0 > 0 for t ∈ I . If g1 and K1 are sufficiently
regular, then collocation in S(−1)

m−1(Ih) yields local superconvergence of order
p∗ = 2m − 1 at the mesh points tn (n = 1, . . . , N ) when the Radau II points
are chosen as the collocation parameters (Corollary 2.2.8). Note that the amount
of linear algebra required for solving the linear algebraic systems (2.4.5) and
(2.2.14) is the same, and the matrices Im − hn Bn in (2.2.14) are in general
better conditioned than Bn in (2.4.5).

If collocation for (2.4.26) is at the Gauss points, then the iterated colloca-
tion solution for uh yields local superconvergence of order p∗ = 2m at these
mesh points with little additional computational cost. We observe again that the
amount of linear algebra remains the same in both approaches.

The indirect collocation approach will be particularly advantageous when
solving nonlinear first-kind VIEs, as we shall see in Section 2.4.8.

2.4.7 Adjoint first-kind Volterra integral equations

We will refer to the VIE

(V∗y)(t) :=
∫ T

t
K (s, t)y(s)ds = g(t), t ∈ I := [0, T ], (2.4.27)

as the adjoint equation of (2.4.2).
Let 0 ≤ c1 < c2 < . . . < cm < 1 be the collocation parameters underly-

ing the collocation points Xh and the collocation solution uh ∈ S(−1)
m−1(Ih) for

(2.4.27). The collocation equation now reads

(V∗uh)(tn,i ) = g(tn,i ) i = 1, . . . , m (n = N − 1, N − 2, . . . , 0).

Theorem 2.4.9 Assume:

(a) g ∈ Cm+1(I ), with g(T ) = 0;
(b) K ∈ Cm+1(D), with |K (t, t)| ≥ k0 > 0 for t ∈ I ;
(c) uh ∈ S(−1)

m−1(Ih) is the collocation solution to the adjoint VIE (2.4.27) with
respect to a uniform mesh Ih.
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Then uh converges uniformly to the exact solution y on I ,

lim
N→∞

||y − uh ||∞ = 0,

if, and only if, the collocation parameters satisfy the condition

−1 ≤ ρ∗
m := (−1)m

m∏
i=1

ci

1 − ci
≤ 1. (2.4.28)

We leave the proof (and the statement, analogous to (2.4.8) in Theorem 2.4.2,
on the attainable order of convergence) as an exercise.

Remarks

1. If the collocation parameters are such that c1 = 0, then we have ρ∗
m = 0, and

the collocation solution is convergent for any choice of the remaining ci in
(0, 1).

2. The stability condition (2.4.28) can also be written as

−1 ≤ Mm(0)

Mm(1)
≤ 1

(compare (2.4.7) and (2.4.9)), and we have ρ∗
m = 1/ρm . It is reminiscent of a

similar condition for adjoint collocation methods in ODEs whose collocation
parameters {c∗

i } are given by

c∗
i = 1 − cm+1−i , i = 1, . . . , m.

For details, see Section V.2.1 in Hairer, Lubich and Wanner (2002).

2.4.8 Nonlinear first-kind VIEs

Although nonlinear first-kind VIEs,∫ t

0
k(t, s, y(s))ds = g(t), t ∈ I,

can in principle be solved by ‘direct’ collocation in S(−1)
m−1(Ih), it is often ad-

vantageous – as we have already briefly indicated in Section 2.4.6 – to use
a somewhat different, ‘indirect’ approach. We will illustrate by considering
nonlinear equations of Hammerstein type, namely,

(Hy)(t) :=
∫ t

0
K (t, s)G(s, y(s))ds = g(t), t ∈ I, (2.4.29)

with g(0) = 0 and appropriately differentiable K and G.
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The basis of this approach is the differentiated form of (2.4.29): it is an
implicit VIE of the second kind, again of Hammerstein type,

G(t, y(t)) = g1(t) +
∫ t

0
K1(t, s)G(s, y(s))ds, t ∈ I, (2.4.30)

with g1 and K1 as in (2.4.26). We assume again that |K (t, t)| ≥ k0 > 0 on I . In
analogy to Section 2.3.3 we rewrite this equation, by setting z(t) := (N y)(t) =
G(t, y(t)), as

z(t) = g1(t) +
∫ t

0
K1(t, s)z(s)ds, t ∈ I. (2.4.31)

If its solution z is known, the solution y of the original VIE can be found by
solving the nonlinear operator equation

(N y)(t) = G(t, y(t)) = z(t), t ∈ I (2.4.32)

for y in C(I ). In the collocation framework the problem becomes: find the collo-
cation solution zh ∈ S(−1)

m−1(Ih) satisfying the collocation equation corresponding
to (2.4.31),

zh(t) = g1(t) +
∫ t

0
K1(t, s)zh(s)ds, t ∈ Xh, (2.4.33)

and then define the iterated collocation solution zit
h by

zit
h (t) := g1(t) +

∫ t

0
K1(t, s)zh(s)ds, t ∈ I. (2.4.34)

For any given t ∈ I the approximation yh(t) to the exact solution y(t) is obtained
by solving the nonlinear equation

(N yh)(t) = G(t, yh(t)) = zit
h (t). (2.4.35)

Under suitable conditions guaranteeing the invertibility of the Niemytzki op-
erator on C(I ) we obtain a unique approximation yh ∈ C(I ) to the solution of
the first-kind Volterra-Hammerstein equation (2.4.29).

2.4.9 Collocation in smoother piecewise polynomial spaces

Hung (1970) showed that the collocation solution uh ∈ S(1)
2 (Ih) to the first-kind

VIE (2.4.1) is divergent when c1 = 1. From what we have seen in Section 1.3.1
(Theorem 1.3.1) and Section 2.2.15 this result is perhaps not entirely surprising.
However, the general ‘Mülthei theory’ on the divergence and convergence of
smooth piecewise polynomial collocation solutions for Volterra integral equa-
tions of the first kind has not yet been established.
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2.4.10 Multidimensional first-kind VIEs

The collocation approach described in Section 2.2.9 can be adapted to discretise
the two-dimensional first-kind VIE first analysed by Volterra (1896c),∫ x

0

∫ y

0
K (x, ξ, y, η)u(ξ, η)dη dξ = g(x, y), (x, y) ∈ � := [0, X ] × [0, Y ]

(2.4.36)
(recall Section 2.1.7). Suppose, as in Section 2.2.9, that its solution is ap-
proximated by the collocation solution uh,k ∈ S(−1)

m−1,µ−1(�h,k), defined by the
collocation equation∫ x

0

∫ y

0
K (x, ξ, y, η)uh,k(ξ, η)dη dξ = g(x, y), (x, y) ∈ Xh,k,

where Xh,k := Xh × Yk denotes the set of collocation points corresponding to

Xh := {x j + ciτ j : 0 < c1 < . . . < cm ≤ 1 (0 ≤ j ≤ M − 1)},
Yk := {yl + di hl : 0 < d1 < . . . < dµ ≤ 1 (0 ≤ j ≤ N − 1)}.

The convergence analysis for m = µ = 1 and c1 = d1, with correspondingly
discretised integrals occurring in the collocation equation (resulting in the Euler
method), can be found in McKee, Tang and Diogo (2000). Ries (1988) in her
diploma thesis generalised the first part of Theorem 2.4.2 to the two-dimensional
first-kind VIE (2.4.36). We state her result but leave the proof as an exercise.

Theorem 2.4.10 Suppose that g and K in (2.4.36) are such that the integral
equation has a unique solution u ∈ Cm(�). If u is approximated by the colloca-
tion solution uh ∈ S(−1)

m−1,µ−1(�h,k), with collocation points given by Xh,k , then
uh,k converges uniformly to u on � if, and only if, the collocation parameters
satisfy the conditions

m∏
i=1

1 − ci

ci
≤ 1 and

µ∏
i=1

1 − di

di
≤ 1.

2.5 Exercises and research problems

Exercise 2.5.1 Prove Lemma 2.1.1.

Exercise 2.5.2 Let V be a linear (finite-rank) Volterra integral operator with
kernel

K (t, s) =
r∑

i=1

Ai (t)Bi (s), with Ai , Bi ∈ C(I ) (i = 1, . . . , r ).

What can be said about the resolvent kernel corresponding to K ?
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Exercise 2.5.3 Determine the resolvent kernel of the VIE

u(t, s) = g(t, s) +
∫ t

0

∫ s

0
A(τ )B(σ )u(τ, σ )dσ dτ,

where g, A, B are continuous functions.

Exercise 2.5.4 Let K ∈ C(D), and assume that ε is a (small) non-zero constant.
Consider the perturbed VIE

z(t) = g(t) +
∫ t

0
Kε(t, s)z(s)ds, t ∈ I,

where Kε(t, s) := K (t, s) + εK0(t, s), with K0 ∈ C(D). How are the resolvent
kernels R(t, s) and Rε(t, s) related? Are we justified to write

Rε(t, s) = R(t, s) + εR0(t, s), (t, s) ∈ D?

If so, what can be said about R0(t, s)?

Exercise 2.5.5 Prove Theorem 2.1.6.

Exercise 2.5.6 Determine the solution of

y(t) = g(t) + λ

∫ t

0

(t − s)r

r !
y(s)ds

for g ∈ C(I ) and r ∈ IN.

Exercise 2.5.7 Consider the first-kind VIEs∫ t

0
(t − s)y(s)ds = t, t ∈ I := [0, T ],∫ t

0
sin(t − s)y(s)ds = t + 1, t ∈ I,∫ t

0
(t − s)2 y(s)ds = t2(1 + t), t ∈ I.

Show that these equations do not have ‘classical’ (i.e. continuous) solutions
on I . Solutions exist in the setting of (special) distributions: determine these
solutions, and discuss their uniqueness. (Compare also Krasnov et al. (1977)
for additional examples.)

Exercise 2.5.8 Consider the linear first-kind VIE (V y)(t) = g(t), t ∈ I :=
[0, T ], with g ∈ C1(I ), g(0) = 0, and

K (t, s) =
r∑

i=1

Ai (t)Bi (s), Ai , Bi ∈ C1(I ).

Assume that the Ai are linearly independent on I . When does this integral
equation have a unique solution y ∈ C(I )?
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Exercise 2.5.9 Do Exercise 2.5.8 for the nonlinear VIE∫ t

0

r∑
i=1

Ai (t)bi (s, y(s))ds = g(t), t ∈ I.

Exercise 2.5.10

y(t) = exp(−t/2) − (1/2)
∫ t

0
(t − s)2 exp(s − t){y(s) + [1 + y(s)]−2}ds:

Show that a solution exists in [0, ∞). Is the solution bounded? [Hint: Theorem
2.1.10 on ‘nonlinear perturbations’ of linear V2s.]

Exercise 2.5.11

(a) Formulate Theorem 2.1.9 for Volterra–Hammerstein integral equations.
(b) Do the same for equation (2.1.34).

Exercise 2.5.12 Provide the details in the proof of Theorem 2.1.13. In partic-
ular, show the uniqueness of the solution u ∈ C(I × �).

Exercise 2.5.13 Extend the Gronwall-type result of Lemma 2.1.14 to the in-
equality

z(t) ≤ g(t) +
∫ t

0
A(t)B(s)z(s)ds, t ∈ I,

where a and B are continous, non-negative functions on I . (See also Beesack
(1975).)

Exercise 2.5.14 Show that, under the regularity assumptions of Theorem 2.2.5,
the defect δh defined at the beginning of the proof of Theorem 2.2.5 has deriva-
tives δ(ν) (ν = 1, . . . , m + 1) that are smooth in σn and uniformly bounded on
σ̄n (n = 0, 1, . . . , N − 1).

Exercise 2.5.15 Recall the superconvergence result of Theorem 2.2.6 (and
Corollaries 2.2.5 and 2.2.8). Is local superconvergence on Xh possible? (Com-
pare also Theorem 2.2.19 for Fredholm integral equations.)

Exercise 2.5.16 (Research problem)
Establish global and local superconvergence results for the two-dimensional
(‘mixed’) VIE (2.1.53).

Exercise 2.5.17 Discuss the analogue of two-step collocation (Section 1.5) to
Volterra integral equations of the second kind. Is it true that if the collocation
parameters {ci } are such that the two-step collocation solution in S(0)

m+µ−1(Ih) for
the ODE has optimal (local) order p∗ = 2m + µ − 1, then the same is true for
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the iterated two-step collocation solution associated with the collocation solu-
tion in S(−1)

m+µ−2(Ih) for the VIE? In other words, does the analogue of Theorem
1.5.1 hold?

Exercise 2.5.18 Derive the numerical differentiation formulas corresponding
to Examples 2.4.1–2.4.5. Find those of optimal order (cf. Theorem 2.4.6).

Exercise 2.5.19 Show that the set of parameters {ci } that lead to local super-
convergence for first-kind VIEs at certain points tn + di hn is not unique. Give
such a set different from the one in Theorem 2.4.7.

Exercise 2.5.20 Use Theorem 2.2.10 to derive concrete error bounds for eit
µ,h(t).

Compute ||eit
µ,h ||∞ (µ = 1, 2, 3) for some test VIEs with known solutions.

Exercise 2.5.21 Describe collocation and iterated collocation for systems of
second-kind VIEs (cf. Section 2.1.3).

Exercise 2.5.22 Consider the ‘non-standard’ VIE

y(t) = g(t) +
∫ t

0
k(t − s)G(y(t), y(s))ds, t ∈ I.

Establish global and local superconvergence results for uit
h corresponding to the

collocation solution uh ∈ S(−1)
m−1(Ih).

Exercise 2.5.23 (see Sloss and Blyth (1994))
Assume that the nonlinear VIE

y(t) =
r∑

l=1

bl

(
gl(t) +

∫ t

0
Kl(t, s)y(s)ds

)
, t ∈ I (r ∈ IN, r ≥ 2),

is solved by collocation in S(−1)
m−1(Ih). Discuss the existence and uniqueness of

the collocation solution, and analyse its global and local (super-) convergence
properties.

Exercise 2.5.24 Prove Theorem 2.2.12 by using local representations based
on the Hermite canonical polynomials with respect to the {ci } (with given
multiplicities).

Exercise 2.5.25 Do the statements of Theorem 2.4.5 on the attainable order
of local superconvergence in collocation solutions uh ∈ S(−1)

m−1(Ih) for first-kind
VIEs remain valid discretised collocations ûh in this space (cf. Section 2.4.5)?

Exercise 2.5.26 Prove the analogue of Theorem 2.4.6 (local superconvergence
for VIE1) for the discretised collocation solution. In particular: m = 1, t = tn+ 1

2
.

Exercise 2.5.27 Prove Theorem 2.4.8 (necessary and sufficient condition for
uniform convergence of collocation solution uh ∈ S(−1)

m−1(Ih) for the adjoint
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first-kind VIE (2.4.27)). Establish also the analogue of (2.4.8) on the attain-
able global order.

Exercise 2.5.28 (Research problem)
Consider the general first-kind VIE

(V1 y)(t) + (V∗
2 y)(t) = g(t), t ∈ I,

where

(V1φ)(t) :=
∫ t

0
K1(t, s)φ(s)ds, (V∗

2 φ)(t) :=
∫ T

t
K2(s, t)φ(s)ds.

Analyse the existence, uniqueness, and regularity of its solution, and derive
convergence results for the collocation solution uh ∈ S(−1)

m−1(Ih).

Exercise 2.5.29 (Research problem)
Analyse the application of collocation in S(−1)

m−1(Ih) and corresponding iterated
collocation (especially for m = 1 and m = 2) to nonlinear second-kind VIEs
with blow-up solutions (see the Remark following Theorem 2.1.11). In partic-
ular, extend the approach based on the θ -method in Stuart and Floater (1990).

Exercise 2.5.30 Discuss the existence and uniqueness of solutions y ∈ C(I )
of the non-standard second-kind VIE,

y(t) = g(t) + λy(t)
∫ t

0
K (t, s)y(s)ds, t ∈ I := [0, T ],

where g ∈ C(I ) and K ∈ C(D), λ is a parameter (see also Nestell and Ghan-
dehari (2000) in Corduneanu and Sandberg (2000, pp. 357–365).
Is global and local superconvergence for the collocation solution uh ∈ S(−1)

m−1(Ih)
and its iterate uit

h possible?

Exercise 2.5.31 (Research problem)
Discuss the solvability of the system of nonlinear algebraic equations arising in
the implicitly linear collocation equation (2.3.9), and analyse the effect of the
stopping error in iterative methods, e.g. in Newton’s method, on the attainable
order of the method. This will generalise analogous investigations for ODEs,
as given for example in Liu and Kraaijevanger (1988), Spijker (1994), Jackson,
Kvaernø and Nørsett (1996); see also Hairer and Wanner (1996, pp. 215–224).

2.6 Notes

2.1: Basic Volterra theory (I)
The most comprehensive and advanced analyses of Volterra integral and integro-
differential equations are contained in the monographs by Miller (1971a),
Gripenberg, Londen and Staffans (1990), Corduneanu (1991), and Prüss (1993).
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The name ‘integral equation’ appears to be due to Du Bois-Reymond (1888):
in his paper on elliptic partial differential equations he says that ‘Ich schrieb
diese Gleichungen nicht hin, als ob sie etwa das Problem lösten oder doch der
Lösung näher führten, sie sollen nur ein Beispiel unter zahllosen sein, dafür,
dass man bei Randwertproblemen der linearen partiellen Differentialgleichun-
gen beständig vor dieselbe Gattung von Aufgaben gestellt wird, welche je-
doch, wie es scheint, für die heutige Analysis im Allgemeinen unüberwindliche
Schwierigkeiten darbieten. Ich meine die zweckmässig Integralgleichungen zu
nennenden Aufgaben, welche darin bestehen, dass die zu bestimmende Func-
tion, ausser ihrem sonstigen Vorkommen, in ihnen unter bestimmten Integralen
enthalten ist,. . . ’ (‘I write down these equations not as if they solve the problem
or even carry it nearer to a solution; they serve only as examples of the fact
that in the boundary value problem of linear partial differential equations one is
continually faced by this type of problem which still, for the analysis of today,
presents in general insurmountable difficulties. I propose to give to these very
useful problems the name integral equations . . . ’.) An English translation of
most of this can be found in Davis (1926, p. 10). These ‘insurmountable dif-
ficulties’ were of course dealt with by Ivar Fredholm some twelve years later
(see his main paper of 1903).

Picard introduced the iteration technique that now bears his name in his
mémoire of 1890. Some of the results by Le Roux (1895) predate the ones by
Volterra (1896a); however, his convergence analysis for the Neumann series
was based on a geometric series and hence valid only under the condition that
K̄ T < 1.

The paper by Lauricella (1908) gives a survey of the early developments of
the theory of integral equations with variable upper limits of integration. While
such integral equations were already considered by Liouville in the late 1830s
(see, e.g. Dieudonné (1981)), the name ‘Volterra integral equation’ appears to
have been coined by Lalesco (1908, p. 126), following a suggestion by his
teacher, E. Picard.

Bôcher (1909, 2nd edn: 1913) was the first monograph dedicated to the theory
of integral equations. Its publication was followed by the report by Bateman
(1910) on the state of the art in their theory. (It is interesting to compare this
account with the report by Walther and Dejon (1960), published 50 years later.)

The following books contain large sections on Volterra integral equations:
Lalesco (1912) (pp. 5–18: Volterra theory, including V1s in IR2; systems of
V2s; nonlinear V2s (pp. 127–130); (V 1)α (pp. 103–111); chronological bib-
liography (≤ 1911), Volterra (1913) (based on lectures given in Rome during
1909–1910: Volterra theory (pp. 34–101); ‘finite to infinite’ (corresponding
to discretised collocation in S(−1)

0 (Ih) with c1 = 0 for V2), Vivanti (1929)
(includes a comprehensive list of references, including Ph.D. theses), and



2.6 Notes 145

Kowalewski (1930). See also Schmeidler (1950), Pogorzelski (1966), Cochran
(1972), and Zabreyko et al. (1975). Mingarelli (1983) analyses VIEs of Stieltjes
type.

The papers by Klebanov and Sleeman (1996) and Väth (1998a, 1998b),
and the book by Väth (1999) beautifully complement the above expositions of
Volterra theory: they respectively introduce an axiomatic theory of VIEs and
study abstract VIEs by means of topological and algebraic methods (Väth).

Because of practical implications, we also mention a number of contributions
to the problem of deriving optimal estimates for the norm of the nth power of
a linear Volterra operator (usually with K (t, s) ≡ 1); they are Halmos (1982,
Chapter 20), Lao and Whitley (1997), Thorpe (1998), Little and Read (1998),
and Kershaw (1999).

The detailed study of nonlinear Volterra integral equations of the second
kind has its origin in the early 1950s, in the papers by Sato (1951, 1953), Mann
and Wolf (1951), and Roberts and Mann (1951); see also Padmavally (1958).
A detailed survey (including a comprehensive list of references) of the early
developments of this theory can be found in Nohel (1964), Wouk (1964), and
Nohel (1976). See also v. Wolfersdorf (2000). Miller (2000) describes the
important role the group at the University of Wisconsin at Madison played in
this.

The classical book on nonlinear VIEs is the one by Miller (1971a); see also
Gripenberg, Londen and Staffans (1990) and Corduneanu (1991) (this book
starts with an excellent overview of the many contributions to the subject).
The reader may wish to look at the paper by Diekmann and Gils (1981) for
a variation-of-constants formula for nonlinear VIEs with convolution kernels;
see also Brauer (1972). We also mention Diekmann and van Gils (1984) for an
illuminating discussion of invariant manifolds.

The existence and uniqueness of solutions to nonlinear VFIEs is studied in,
e.g. Pachpatte (1986) and Zaghrout (1993).

Theoretical aspects of the Goursat problem are discussed in Dzyadyk (1995)
(Section 5.3.1); see also Kowalewski (1930), Goursat (1942), and Törnig
(1959), Moore (1961), Filippi and Stimberg (1968), and Dobner (1987) for
additional references and numerical approaches to the problem.

The books by Bellman and Cooke (1963), Lakshmikantham and Leela
(1969), Miller (1971a), Cochran (1972), Mitrinović, Pečarić and Fink (1991),
and Bainov and Simeonov (1992) contain much material on Gronwall type in-
equalities and comparison theorems for Volterra equations; see also the papers
by Beesack (1969, 1985b), Agarwal and Thandapani (1981), and Dixon and
McKee (1984).

The first result on a discrete Gronwall inequality appears to occur in Mike-
ladze (1935, p. 259); more recent results can be found in, e.g. Jones (1964),
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Beesack (1975, 1985b), Schmidt (1976), McKee (1982a), Dixon and McKee
(1986), and Brunner and van der Houwen (1986), Ch. 1.

Due to limitation of space we have not mentioned the qualitative theory
of VIEs (and VIDEs), which may be said to have its origin in the celebrated
results by Paley and Wiener (1934) (see also Exercise 3.5.3). The monograph
by Gripenberg, Londen and Staffans (1990) should be consulted for a thorough
exposition of this theorem (see pp. 45–63 and pp. 83–89). However, see also
Nohel (1964, 1976), Tsalyuk (1969), Shea and Wainger (1975), and the survey
paper by Tsalyuk (1979).

Linear and nonlinear VIEs with periodic solutions are studied in Friedman
(1965); see also Miller (1971a) and Gripenberg, Londen and Staffans (1990).

Applications of VIEs:
The following books and survey papers contain sections dealing with various
applications of Volterra integral equations in the physical and biological sci-
ences: Schmeidler (1950), Bellman and Cooke (1963), Anselone (1964), Miller
(1971a), Brunner (1982a), Burton (1983), Webb (1985), Okrasiński (1989),
Corduneanu (1991), Guy and Salès (1991), Prüss (1993), Agarwal and O’Regan
(2000), and Corduneanu and Sandberg (2000), Zhao (2003). Most of these also
include extensive lists of references.

The following is a selection of papers dealing with specific applications of
VIEs of the second kind:

� Population dynamics, spread of epidemics: Brauer (1975, 1976a), Diekmann
(1978, 1979), Thieme (1977, 1979), Gripenberg (1981) (‘non-standard’ VIE),
Brauer and Castillo-Chávez (2001) (see also for additional references).

� Renewal equation: Feller (1941), Karlin (1955), Bellman and Cooke (1963)
(Chapters 7 and 8), Brauer (1976b).

� Wave problems: Levinson (1960) (superfluidity), Gilding (1993) (travelling
wave analysis in nonlinear reaction-convection-diffusion problems), mono-
graph by Kabanikhin and Lorenzi (1999) (identification problems for wave
phenomena), Franco (1999) (nonlinear waves).

� Water percolation: Okrasiński (1978).
� Semi-conductor devices: Miller and Unterreiter (1992), Schmeiseer, Unter-

reiter and Weiss (1993), Unterreiter (1996) (models for switching behaviour
of PN-diodes).

� Inverse problems related to wave propagation: A detailed discussion of
Volterra (operator) integral equations arising in such problems and their reg-
ularisation is given in the book by Kabanikhin and Lorenzi. (See also the
Notes to Chapters 3 and 6 on additional, related work by Lorenzi and his
co-workers.)
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� Identification of memory kernels in viscoelasticity and heat conduction: This
problem was studied extensively by v. Wolfersdorf (1994), Unger and v.
Wolfersdorf (1995), Janno and v. Wolfersdorf (1997a,b), Kiss (1999 / doc-
toral thesis). See also Berrone (1995) on the modelling of materials that may
undergo a change of phase.

� Viscoelasticity (partial VIEs): Shaw, Warby and Whiteman (1994, 1996,
1997), Shaw and Whiteman (1997).

Applications of first-kind VIEs with bounded kernels:
Volterra’s Nota I of 1896 may have been motivated by a first-kind integral
equation he encountered in a problem in electrostatics (Volterra (1884)). A
selection of more recent sources of applications of such functional equations
is given below.

� The books by Sneddon (1972), Asanov (1998) and Bukhgeim (1999) contain
numerous sources of applications of first-kind VIEs.

� Inverse problems in heat conduction: Beck, Backwell and St. Clair (1985),
Eldén (1976), Lamm (2000 / survey paper with comprehensive list of refer-
ences), Lamm and Scofield (2000).

� Peirce and Siebrits (1996): elastodynamic models / boundary integral equa-
tions.

� Davies and Duncan (2002, 2003): retarded potential equations.

2.2: Collocation for second-kind VIEs
In his book of 1913 (pp. 40–46) Volterra used a discretised version of the lin-
ear second-kind VIE to establish the existence of a unqiue continuous solution
for the latter. The underlying quadrature formula is based on the left rectangu-
lar rule, and the resulting discrete version version of the VIE may be viewed
as discretised collocation in S(−1)

0 (Ih), with c1 = 1. The idea of employing
collocation-type approximations in S(0)

1 (Ih) for the numerical solution of VIEs
is due to Huber (1939); his aproach was extended by Wagner (1954). See also
the paper by Kaspšickaja (1969) where special polynomial collocation spaces
are used.

The books by Baker (1977), Linz (1985), and Brunner and van der Houwen
(1986) contain a wealth of information (and extensive bibliographies) on the
numerical treatment of Volterra integral equations. See also the survey papers
by Bernier (1945), Noble (1964, 1977), Baker (1982, 1997, 2000), Brunner
(1982a, 1987, 1999b).

The papers by Brunner (1984c, 1986b) review the historical development of
numerical methods – particularly collocation methods – for second-kind VIEs.
In Section 2.2.6 we analysed the error uh − ûh that results when the ex-
act collocation equation is replaced by its fully discretised counterpart. If
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the kernel of the Volterra integral operator V is highly oscillatory, K (t, s) =
exp(iω(t − s))H (t, s), with ω � 1, this analysis will be misleading when h > 0
is fixed: interpolatory quadrature based on the collocation points will in general
introduce large errors depending on ω. A powerful alternative to such classical
quadrature formulas is described in Iserles (2004); it employs an elegant vari-
ant of Filon-type quadrature. The application to the derivation of feasible fully
discretised collocation equations remains to be investigated.

As we already indicated in the Preface, an attractive alternative to piecewise
polynomial collocation methods is given by pseudo-spectral methods. Of the
papers dealing with these methods we mention the ones by Elnagar and Kazemi-
Dekhordi (1996) and Elnagar and Razzaghi (1996) on Volterra–Hammerstein
equations; see also their references.

An early contribution to the numerical analysis of (nonlinear) two-
dimensional VIEs of the second kind is by Bel’tyukov and Kuznechikhina
(1976): they design and analyse a class of Runge–Kutta methods (extending
Bel’tyukov’s method of 1965; see Brunner and van der Houwen (1986, Chapter
4)). See also the papers by Singh (1976) and Mureşan (1984). The paper by
Schaback (1974) contains may pertinent remarks on multi-dimensional spline
collocation.

More recent papers on such VIEs are by, e.g. Brunner and Kauthen (1989),
G. Han and Zhang (1994a), Luo and Hu (1995), G. Han et al. (2000), and G. Han
and Wang (2001).

Second-kind integral equations of (‘mixed’) Volterra–Fredholm type arise
for example in the modelling of the spread of epidemics (cf. Thieme (1977,
1979), Diekmann (1978), Pachpatte (1986), and Brunner (1990) for addi-
tional references). The numerical treatment of such functional equations has
been studied by many authors; see, e.g. Haçia (1979, 1996, 1999), Kauthen
(1989a, 1989b), Brunner (1990, 1991), Han and Zhang (1994b), Han (1995),
and Hadizadeh (2003).

Divergence of classical (full-continuity) cubic spline collocation solution:
convergent variants given by Hung (1970), Netravali (1973) and by Oja and
Saveljeva (2001); in latter paper: one of the initial conditions is replaced by a
right-hand boundary condition. The analysis for the collocation spaces S(d)

m+d (Ih)
given by Danciu (1995) is, as pointed out in MR 99g:65125a and in Oja (2001a,
2002b), unfortunately flawed.

Fredholm integral equations of the second kind: Nyström’s paper on the
numerical solution of Fredholm integral equations dates from 1928. Kadner
(1960, 1967) initiated the interest in collocation methods for second-kind FIEs
(see also Dejon (1962) on the choice of the collocation points). One of the
subsequent key papers is the one by Sloan (1976) in which the notion of the
iterated collocation (and Galerkin) solution is introduced; compare also Sloan
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(1984) (variants of the Galerkin method) and Schock (1985) (analysis of pos-
sible rates of convergence). Surveys of superconvergence results for FIEs can
be found in Chatelin and Lebbar (1981), the monograph by Chatelin (1983), in
Brunner (1987), and in Sloan (1988a, 1990). The reader should also consult the
papers by Joe (1985a, 1985b) on exact and discretised collocation methods, and
their optimal convergence estimates. Similar analyses, especially for nonlinear
FIEs, can be found in Atkinson and Bogomolny (1987) (Galerkin methods) and
Atkinson and Flores (1993) (collocation methods). See also the survey paper
of Atkinson (1992).

The paper by Graham, Joe and Sloan (1985) gives an illuminating com-
parison (with respect to regularity requirements and attainable orders of con-
vergence) of iterated Galerkin methods with iterated collocation methods for
second-kind Fredholm integral equations. See also Sloan (1990, pp. 63–64) for
a concise survey of these results. It would be of considerable interest to carry
out a similar study for Volterra integral equations.

The authoritative book on the numerical analysis of FIEs is Atkinson (1997a);
it contains extensive sections on piecewise polynomial collocation solutions.

2.3: Collocation for nonlinear second-kind VIEs
A general analysis of fully discretised collocation methods can be found in
Brunner (1992a). Implicitly linear collocation methods are analysed in Brunner
(1992b); see also Brunner (1991).

2.4: Collocation for first-kind VIEs
Many of the common numerical methods described in, e.g. Linz (1969b),
Weiss (1972a), de Hoog and Weiss (1973b, 1973c) and McAlevey (1987) can
be interpreted as fully discretised collocation methods in S(−1)

m−1(Ih) or S(0)
m (Ih);

see Brunner (1977) and Brunner and van der Houwen (1986, Chapter 5).
The diploma theses of Rothe (1982) and Ries (1988) analyse various aspects
of piecewise poynomial collocation methods for VIEs of the first kind with
smooth kernels.

The numerical solution of two-dimensional VIEs of the first kind by block
methods was studied by Ten Men Yan (1979): it corresponds to discre-
tised collocation in S(−1)

0,0 (�h,k) with c1 = d1 = 1 and leads (as in the one-
dimensional case) to local superconvergence of order O(h2) at the midpoints
points x j+1/2, yl+1/2 of a uniform mesh.

We have already mentioned (end of Section 2.1.4) the sequential regularisa-
tion approaches by Lamm et al. (see e.g. the surveys by Lamm (2000, 2003);
also Ring (2001)): some of these methods are based on collocation techniques.
Plato and Vainikko (1990) study the regularisation of general projection meth-
ods. A different approach to regularisation for first-kind VIEs is discussed in
Brunner and Sizikov (1998).
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Galerkin methods and adaptivity
Galerkin-type methods for second-kind VIEs have been analysed by, e.g. Lin,
Thomée and Wahlbin (1991), Bedivan and Fix (1997, 1998), and Brunner, Lin
and Zhang (1998) (see also for additonal references). The reader should also
consult the important paper by Graham, Joe and Sloan (1985) in which the
relative merits of Galerkin and collocation methods for second-kind Fredholm
integral equations are studied. An analogous comparison of these methods for
second-kind VIEs would be valuable, too.

An important topic for future research relates to a posteriori error estimates
for (iterated) collocation solutions and adaptive mesh selection. There are now
a number of papers in which this problem has been studied for (continuous
and discontinuous) Galerkin methods: we cite especially Shaw and Whiteman
(1996a, 1997, 2000a, 2001b, 2001).

Postprocessing methods
There is an extensive literature on methods aimed at improving the accu-
racy/order of a computed numerical (quadrature, collocation, or Galerkin) so-
lution to a VIE (or a Fredholm integral equation). Hock (1979, 1980, 1981)
studied extrapolation techniques based on simple quadrature methods (which
can be interpreted as discretised collocation methods). The research work of
Lin Qun (Chinese Academy of Sciences) from the late 1970s onwards was the
starting point for many more recent papers. A detailed treatment of the mathe-
matical framework and their computational applications of such postprocessing
methods would easily fill a separate monograph. (The monograph by Marchuk
and Shaidurov (1983) deals with extrapolation methods for VIEs of the first
and second kind.)

Extrapolation techniques applied to simple quadrature methods for second-
kind VIEs were suggested by Noble (1964) and, especially, by Hock (1979,
1980, 1981). Of the numerous papers on iterative correction and multilevel
correction techniques we mention the ones by Lin and Lü (1984), Lin, Sloan
and Xie (1990), Xiang (1991), Lin and Shi (1993), Han (1993, 1994a, 1994b,
1994c), Han and Zhang (1994a, 1995), Han (1995) (for VFIEs), Luo and Hu
(1995), Brunner, Lin and Yan (1996), Zhou (1997), Lin and Zhou (1997a,
1997b), Lin, Zhang and Yan (1998a,b), Hu (1998a), Brunner, Y. Lin and Zhang
(1998), Zhang, Y. Lin and Rao (2000), Luo (2000), Han et al. (2000), Han and
Wang (2001).

Extrapolation methods for first-kind VIEs were studied by Linz (1969b),
Hung (1970) (for collocation in S(0)

1 )(Ih)), Eggermont (1985, 1986) (for collo-
cation solutions), and McAlevey (1987). Zhou (1991) presents a detailed anal-
ysis of extrapolation methods for collocation solutions (see also Zhou (1997)
for multiparameter error resolution techniques).
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Volterra integro-differential equations
with smooth kernels

In 1909 Volterra wrote (following the study of the modelling of hysteresis prob-
lems) that one is led ‘. . . ad equazioni che hanno tipo misto, cioé in parte quello
delle equazioni differenziali a derivate parziale ed in parte quello delle equazioni
integrali. Mi permetto perciò di chiamarle equazioni integro-differenziali.’ He
then used such ‘equations of mixed type’, namely linear integro-differential
equations involving Volterra integral operators, as models describing heredity
effects (see Volterra (1913, pp. 138–162)). Related, but more general (non-
linear) versions became famous in Volterra’s work, starting around 1926, on
the growth of single-species or interacting populations. At the end of his 1909
paper (p. 174) he added, however, a cautionary note when he observed that ‘. . . il
problema della risoluzione delle equazioni integro-differenziali costituisce in
generale un problema essenzialmente distinto dai problemi delle equazioni dif-
ferenziali e da quelli ordinarii delle equazioni integrali’ [his italics].

Although such functional equations may be viewed formally as ODEs per-
turbed by a ‘memory’ term given by a Volterra integral operator, the analysis of
collocation methods will be more complex (perhaps not ‘essentially distinct’ –
except when it comes to the analysis of qualitative properties) than simply a
synthesis of the techniques employed in Chapters 1 and 2. The convergence
results we establish in this chapter will of course yield those of Chapter 1 as
special cases.

3.1 Review of basic Volterra theory (II)

3.1.1 Linear VIDEs

Consider the initial-value problem for a linear first-order Volterra integro-
differential equation (VIDE),

y′(t) = a(t)y(t) + g(t) + (V y)(t), t ∈ I, y(0) = y0, (3.1.1)

151
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where V : C(I ) → C(I ) denotes the linear Volterra integral operator intro-
duced in (2.1.1),

(Vφ)(t) :=
∫ t

0
K (t, s)φ(s)ds, t ∈ I,

and where a, g ∈ C(I ), K ∈ C(D) are given (real-valued) functions. It is clear
from the analysis presented in Section 2.1.1 that the result on the existence
and uniqueness of a solution to (3.1.1) can readily be obtained by rewriting the
above initial-value problem (which generalizes the initial-value problem for a
linear ODE) as a second-kind Volterra integral equation,

y(t) = g0(t) +
∫ t

0
H (t, s)y(s)ds, t ∈ I, (3.1.2)

where

g0(t) := y0 +
∫ t

0
g(s)ds, H (t, s) := a(s) +

∫ t

s
K (v, s)dv, (3.1.3)

to which Theorem 2.1.1 can be applied. This will also allow us to introduce the
notion of the (differential) resolvent kernel associated with the given functions
a and K (which describe the homogeneous part of the VIDE in (3.1.1)) and to
derive the corresponding resolvent equations. We first state

Theorem 3.1.1 Assume that a, g ∈ C(I ) and K ∈ C(D). Then for any initial
value y0 ∈ IR the VIDE (3.1.1) possesses a unique solution y ∈ C1(I ) satisfying
y(0) = y0. Moreover, there exists a unique function r = r (t, s), the (differential)
resolvent kernel, with r ∈ C1(D), so that this solution can be written as

y(t) = r (t, 0)y0 +
∫ t

0
r (t, s)g(s)ds, t ∈ I. (3.1.4)

Proof Let Q(t, s) denote the resolvent kernel of the kernel H (t, s) in the integral
equation (3.1.2). According to Section 2.1.1, Q solves the resolvent equation
(2.1.10),

Q(t, s) = H (t, s) +
∫ t

s
Q(t, v)H (v, s)dv, (t, s) ∈ D, (3.1.5)

and the (unique) solution of (3.1.2) is given by

y(t) = g0(t) +
∫ t

0
Q(t, s)g0(s)ds, t ∈ I. (3.1.6)

Using the above definitions of g0 and H we obtain

y(t) =
(

1 +
∫ t

0
Q(t, s)ds

)
y0 +

∫ t

0

(
1 +

∫ t

s
Q(t, v)dv

)
g(s)ds.
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This shows that the desired function r in (3.1.4) is given by

r (t, s) := 1 +
∫ t

s
Q(t, v)dv, (t, s) ∈ D; (3.1.7)

its uniqueness, and hence that of y, follow from the uniqueness of the resolvent
kernel Q and from Theorem 2.1.2. Note that r ∈ C(D), with ∂r (t, s)/∂s =
−Q(t, s) ∈ C(D), and we have r (t, t) = 1 for all t ∈ I . This completes the
proof.

These observations reveal that the resolvent r (t, s) associated with the linear
VIDE (3.1.1) satisfies

∂r (t, s)

∂s
= −Q(t, s) = −H (t, s) −

∫ t

s
Q(t, v)H (v, s)dv

= −a(s) −
∫ t

s
K (v, s)dv −

∫ t

s
Q(t, v)

(
a(s) +

∫ v

s
K (z, s)dz

)
dv

= −
(

1 +
∫ t

s
Q(t, v)dv

)
a(s) −

∫ t

s

(
1 +

∫ t

v

Q(t, z)dz

)
K (v, s)dv,

and hence, by (3.1.7),

∂r (t, s)

∂s
= −r (t, s)a(s) −

∫ t

s
r (t, v)K (v, s)dv, (t, s) ∈ D. (3.1.8)

The resolvent kernel r (t, s) can also be defined by the (unique) solution of an
adjoint resolvent equation, in complete analogy to the situation for second-kind
VIEs. We summarise this result in the following theorem.

Theorem 3.1.2 Assume that a ∈ C(I ) and K ∈ C(D). Then the resolvent ker-
nel r = r (t, s) of the linear VIDE (3.1.1) is the (unique) solution of the resolvent
equation (3.1.8), corresponding to r (t, t) = 1 for t ∈ I . It also solves the adjoint
resolvent equation,

∂r (t, s)

∂t
= r (t, s)a(t) +

∫ t

s
K (t, v)r (v, s)dv, (t, s) ∈ D, (3.1.9)

with r (s, s) = 1 for s ∈ I .

We leave it to the reader to prove the second part of Theorem 3.1.2 (see Exercise
3.5.1).

Corollary 3.1.3 The resolvent equations associated with the special VIDE

y′(t) = g(t) + (V y)(t), t ∈ I,
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are

∂r (t, s)

∂s
= −

∫ t

s
r (t, v)K (v, s)dv, (t, s) ∈ D,

and

∂r (t, s)

∂t
=

∫ t

s
K (t, v)r (v, s)dv, (t, s) ∈ D,

with r (t, t) = 1 (t ∈ I ) and r (s, s) = 1 (s ∈ I ), respectively. If K (t, s) = k(t −
s) then the resolvent r inherits the convolution structure of the kernel.

The next theorem, the counterpart of Theorem 2.1.3, deals with the regularity
of the solution to the linear VIDE (3.1.1).

Theorem 3.1.4 Assume that a, g ∈ Cm(I ) and K ∈ Cm(D). Then for any y0

the solution y of the linear VIDE (3.1.1) lies in the space Cm+1(I ).

Proof This regularity result can be proved either by applying Theorem 2.1.3
to the second-kind VIE (3.1.2) (with m + 1 replacing m, due to the additional
regularity in g0 and H ), or by showing that the resolvent r lies in Cm+1(D) and
using this fact in the representation (3.1.4). Details are left to the reader.

In Section 3.1.3 we shall describe analogous results for various nonlinear
counterparts of the VIDE (3.1.1), including the generic nonlinear VIDE

y′(t) = f (t, y(t)) +
∫ t

0
k(t, s, y(s))ds. (3.1.10)

Similar to Section 2.1, the semilinear VIDE

y′(t) = a(t)y(t) + g(t) +
∫ t

0
K (t, s) (y(s) + H (s, y(s)))ds (3.1.11)

represents a first step towards more general nonlinear problems: here, the linear
Volterra integral operator V has been perturbed by the Hammerstein term

(Hy)(t) :=
∫ t

0
K (t, s)H (s, y(s))ds

(recall (2.1.40); see also the 1970 paper by Grossman and Miller).

Theorem 3.1.5 Assume that the initial-value problem for the semilinear VIDE
(3.1.11) possesses a unique solution y ∈ C1(I ), and let

y�(t) := r (t, 0)y0 +
∫ t

0
r (t, s)g(s)ds, t ∈ I,



3.1 Review of basic Volterra theory (II) 155

denote the solution of the linear VIDE

y′(t) = a(t)y(t) + g(t) + (V y)(t), y(0) = y0.

Then y and y� are related by

y(t) = y�(t) −
∫ t

0

(
r (t, s)a(s) + ∂r (t, s)

∂s

)
G(s, y(s))ds, t ∈ I. (3.1.12)

Here, r (t, s) denotes the resolvent kernel associated with a and K describing
the linear part of (3.1.11).

Proof Setting Q(t) := g(t) + (Hy)(t), the semilinear VIDE (3.1.11) becomes

y′(t) = a(t)y(t) + Q(t) + (V y)(t), t ∈ I.

According to Theorem 3.1.1 the solution of this ‘linear’ VIDE is formally given
by

y(t) = r (t, 0)y0 +
∫ t

0
r (t, s)Q(s)ds, t ∈ I.

The representation of y in Theorem 3.1.5 now follows readily by resorting to
the resolvent equation (3.1.8) and writing∫ t

s
r (t, v)K (v, s)dv = −r (t, s)a(s) − ∂r (t, s)

∂s
.

3.1.2 Neutral and higher-order VIDEs

If the kernel k = k(t, s, y) in the VIDE (3.1.10) also depends on y′, that is, if
the VIDE has the form

y′(t) = f (t, y(t)) +
∫ t

0
k(t, s, y(s), y′(s))ds, t ∈ I, (3.1.13)

then such a functional equation is often (but not quite properly) referred to as a
neutral (first-order) VIDE. It is a particular case of the kth-order VIDE (3.1.14)
we shall study below. In Chapters 4 and 8 we shall meet another class of neutral
(delay) VIDEs for which

d

dt

(
y(t) −

∫ θ (t)

0
k(t, s, y(s))ds

)
= f (t, y(t), y′(t)),

with θ (t) ≤ t , is a typical example.
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Let now k ≥ 2 be a given integer and consider the initial-value problem for
the general (nonlinear) neutral VIDE,

y(k)(t) = f (t, y(t), y′(t), . . . , y(k−1)(t)) + (V y)(t), t ∈ I, (3.1.14)

y(ν)(0) = y(ν)
0 (ν = 0, 1, . . . , k − 1),

where we now define

(V y)(t) :=
∫ t

0
k(t, s, y(s), y′(s), . . . , y(k)(s))ds.

We will often use the linear counterpart of this VIDE, described by

f (t, y, y′, . . . , y(k−1)) =
k−1∑
ν=0

aν(t)y(ν) + g(t), (3.1.15)

k(t, s, y, y′, . . . , y(k)) =
k∑

ν=0

Kν(t, s)y(ν), (3.1.16)

with continuous functions g, aν and Kν , to render the subsequent convergence
analysis more transparent. Note that we allow the derivative of order k of y
to occur as argument in the kernel of the VIDE, thus generalising the neutral
VIDE (3.1.13).

We shall now show briefly that, under the above continuity assumptions,
the linear VIDE possesses a unique solution y ∈ Ck(I ) which assumes the
prescribed initial values. An analogous (generally only local) existence and
uniqueness result can be obtained for the nonlinear VIDE (3.1.10), by suitably
adapting the arguments presented below.

Let w(t) := (w0(t), w1(t), . . . , wk(t))T := (y(t), y′(t), . . . , y(k)(t))T∈ IRk+1:
the components of w(t) are coupled by

wν(t) = y(ν)
0 +

∫ t

0
wν+1(s)ds, t ∈ I (ν = 0, 1, . . . , k − 1). (3.1.17)

The above (linear) VIDE can then be rewritten as an equivalent system of VIEs
of the second kind, namely,

wk(t) = g(t) +
k−1∑
ν=0

aν(t)

(
y(ν)

0 +
∫ t

0
wν+1(s)ds

)
+

∫ t

0

k∑
ν=0

Kν(t, s)wν(s)ds,

(3.1.18)
which, by means of the vector function

γγ(t) :=
(

y(0)
0 , y(1)

0 , . . . , y(k−1)
0 , g(t) +

k−1∑
ν=0

aν(t)y(ν)
0

)T

∈ IRk+1
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and the kernel matrix K(·, ·) ∈ L(IRk+1),

K(t, s) :=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 1
K0(t, s) a0(t) + K1(t, s) · · · · · · ak−1(t) + Kk(t, s)


 ,

assumes the compact form

w(t) = γγ(t) +
∫ t

0
K(t, s)w(s)ds, t ∈ I. (3.1.19)

We have seen in Section 2.1.3 that because γγ and K are continuous, this system
possesses a unique solution y ∈ C(I ) whose representation,

w(t) = γγ(t) +
∫ t

0
R(t, s)γ (s)ds, t ∈ I, (3.1.20)

is based on the (matrix) resolvent kernel R ∈ L(IRk+1) of K. If we write this
matrix resolvent kernel as

R(t, s) :=




R0,0(t, s) . . . R0,k(t, s)
...

...
Rk,0(t, s) . . . Rk,k(t, s)


 ,

then the representation (3.1.20) permits the explicit derivation of the expressions
for the k + 1 components, e.g. for w0(t) = y(t), of the solution vector w(t).

The above equivalence between the initial-value problem for the kth-order
neutral VIDE given by (3.1.14)–(3.1.16), and the system of k + 1 linear Volterra
integral equations (3.1.19) allows us, by appealing to Theorem 2.1.7, to obtain
the following regularity result.

Theorem 3.1.6 Assume that aν (ν = 0, 1, . . . , k − 1) and g are in C(I ),
and Kν ∈ C(D) (ν = 0, 1, . . . , k). Then for any initial values y(ν)

0 (ν =
0, 1, . . . , k − 1) the linear kth-order VIDE (3.1.14) corresponding to (3.1.15),
(3.1.16) possesses a unique solution y ∈ Ck(I ) satisfying the given initial con-
ditions.

If the given functions have continuous derivatives of order m on their re-
spective domains I and D, then the solution y lies in the space Ck+m(I ).

We will return to this result, and the equivalence property underlying it, in
Section 3.2.6 when we analyse the attainable order of global and local super-
convergence of the collocation solution in S(d)

m+d (Ih) (d = k − 1) for (3.1.14).
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3.1.3 Nonlinear and non-standard VIDEs

Consider first the initial-value problem for the general nonlinear first-order
VIDE

y′(t) = f (t, y(t)) +
∫ t

0
k(t, s, y(s))ds, t ∈ I, y(0) = y0. (3.1.21)

Since it is equivalent to a nonlinear VIE of the second kind, namely,

y(t) = y0 +
∫ t

0

(
f (s, y(s)) +

∫ t

s
k(v, s, y(s))

)
ds, t ∈ I,

Theorem 2.1.10 is readily adapted to establish the (local) existence and unique-
ness of a solution.

We observe that in certain applications, in particular in the spatial semidis-
cretisation of parabolic VIDEs (see for example Thomée (1988), Thomée and
Zhang (1989), Zhang (1990), Kauthen (1989b, 1992), Larsson, Thomée and
Wahlbin (1998), Lin (1998), and Chen and Shih (1998), as well as the the refer-
ences in Brunner (1989b)), nonlinear VIDEs typically have a more structured
form. A representative example is

y′(t) = f (y(t)) + (Hy)(t), t ∈ I (3.1.22)

(compare also the end of Section 3.1.1), where H denotes the Hammerstein
operator introduced before,

(Hy)(t) :=
∫ t

0
K (t, s)G(s, y(s))ds,

corresponding to a smooth function G : I × IR → IR (or, in the case of a spa-
tially semidiscretised partial IDE, G : I × IRM → IRM , for some M � 1). The
integrated form of this VIDE is given by

y(t) = y0 +
∫ t

0
( f (y(s)) + K2(t, s)G(s, y(s)))ds, (3.1.23)

with

K2(t, s) :=
∫ t

s
K (v, s)dv.

Thus, the resulting nonlinear VIE is a special case (r = 2, K1(t, s) ≡
1, G1(s, y) = f (y)) of the more general Hammerstein equation

y(t) = g(t) +
∫ t

0

(
r∑

i=1

Ki (t, s)Gi (s, y(s))

)
ds. (3.1.24)
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Results on the existence and uniqueness of solutions to initial-value prob-
lems for higher-order (neutral) VIDEs of the form (3.1.14) can be proved by
rewriting the VIDE as a system of k + 1 nonlinear second-kind VIEs, analogous
to (3.1.19).

Other mathematical modelling processes (we mention those in population
growth and viscoelasticity as two important examples; cf. Volterra (1927, 1928,
1931, 1959), Cushing (1977), Lodge, McLeod and Nohel (1978), Markowich
and Renardy (1983), and the Notes at the end of the chapter) lead to more
general, non-standard VIDEs in which the integrand depends both on y(s) and
y(t). A typical generic form is given by

y′(t) = f (t, y(t)) +
∫ t

0
k(t − s)G(y(t), y(s))ds, (3.1.25)

and the best known example is probably the logistic equation with memory
term,

y′(t) =
(

ε − ay(t) −
∫ t

0
k(t − s)y(s)ds

)
y(t), t ≥ 0, (3.1.26)

which corresponds to f (t, y) = f (y) = (ε − ay)y and G(y, z) = −yz (see, for
example, Volterra’s papers of 1928 and 1934); an existence result can be found
in Miller (1966)). The memory kernel k is usually of the form

k(t) = (γ0b−1 + γ1b−2t) exp(−t/b),

with γ1 > γ0 ≥ 0, γ0 + γ1 = 1, and b > 0 (see also Cushing (1977) and Aves,
Davies and Higham (1996, 2000)).

The dynamics of two interacting species was first modelled by Volterra
(1927) (and preocccupied him until his death in 1940 – see Volterra (1939)):
if we denote by N1(t) and N2(t) the size of the two populations at time t ≥ 0,
then the resulting system of non-standard VIDEs has the form

N ′
1(t) =

(
ε1 − a1 N2(t) −

∫ t

θ

k1(t − s)N2(s)ds

)
N1(t),

N ′
2(t) =

(
−ε2 + a2 N1(t) +

∫ t

θ

K2(t − s)N1(s)ds

)
N2(t).

Here, the εi and ai denote given positive constants, and the lower limit of in-
tegration is either θ = 0, θ = −∞, or θ = θ (t) = t − τ (τ > 0) (VIDEs with
constant and variable delays τ > 0 will be discussed in Chapter 4). In his 1927
paper Volterra presents a detailed analysis of the quantitative and qualitative
properties of the solutions to the above system of VIDEs.
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3.2 Collocation for linear VIDEs

3.2.1 The exact collocation equations

Consider the first-order Volterra integro-differential equation

y′(t) = f (t, y(t)) + (V y)(t), t ∈ I := [0, T ], (3.2.1)

with initial condition y(0) = y0. The operator V : C(I ) → C(I ) for now de-
notes again the linear Volterra integral operator defined by

(Vφ)(t) :=
∫ t

0
K (t, s)φ(s)ds, t ∈ I,

where K ∈ C(D). Since the VIDE (3.2.1) can be viewed as being a ‘pertur-
bation’ of the ODE (1.1.1), with perturbation term given by the memory term
(V y)(t), it will be interesting to see how this perturbation affects the order results
we derived for ODEs, and how the usually necessary quadrature approximations
for the memory term influence these results for the exact collocation equation.
Here, the insights we obtained in Chapter 2 will of course be helpful.

As in the case of ODEs we approximate the solution y by collocation in the
piecewise polynomial space S(0)

m (I ): the collocation solution uh is the element
in this space that satisfies the collocation equation

u′
h(t) = f (t, uh(t)) + (Vuh)(t), t ∈ Xh, (3.2.2)

together with the initial condition uh(0) = y(0) = y0. Since the dimension of
this collocation space is dim S(0)

m (Ih) = Nm + 1, the set Xh of collocation points
will be as in Sections 1.1.1 and 2.2.1, namely,

Xh := {tn,i := tn + ci hn : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}.

If we admit sets Xh with c1 = 0 and cm = 1 (m ≥ 2), then the collocation
solution lies again in the smoother space S(0)

m (Ih) ∩ C1(I ) =: S(1)
m (Ih), provided

the given functions in (3.2.1) are continuous. Its dimension is dim S(1)
m (Ih) =

N (m − 1) + 2, implying that we need a second (‘artificial’) initial condition,
u′

h(0) = y′(0) = f (0, y0), in order to start the recursive process for solving
(3.2.2).

We have already encountered the local (Lagrange) representation of uh ∈
S(0)

m (Ih) on σ̄n in Section 1.1.1: setting Yn, j := u′
h(tn + c j hn), and

u′
h(tn + vhn) =

m∑
j=1

L j (v)Yn, j , v ∈ (0, 1],
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it is given by

uh(tn + vhn) = yn + hn

m∑
j=1

β j (v)Yn, j , v ∈ [0, 1], (3.2.3)

where yn := uh(tn) and β j (v) := ∫ v

0 L j (s)ds. Since (Vuh)(tn,i ) may be written
as

(Vuh)(tn,i ) = Fn(tn,i ) + hn

∫ ci

0
K (tn,i , tn + shn)uh(tn + shn)ds,

with lag term Fn(t) as in (2.2.8) (see also (3.2.7) below), the computational
form of the collocation equation (3.2.2) on σ̄n becomes

Yn,i = f (tn,i , yn + hn

m∑
j=1

ai, j Yn, j ) + h2
n

m∑
j=1

(∫ ci

0
K (tn,i , tn + shn)β j (s)ds

)
Yn, j

+ Fn(tn,i ) + hn

(∫ ci

0
K (tn,i , tn + shn)ds

)
yn (i = 1, . . . , m). (3.2.4)

Note that since uh is continuous on I , the value yn is given by

yn = uh(tn) = uh(tn−1 + hn−1) = yn−1 + hn−1

m∑
j=1

b j Yn−1, j (n = 1, . . . , N ),

where b j := β j (1). We note in passing that it will again occasionally be conve-
nient to write∫ ci

0
K (tn,i , tn + shn)β j (s)ds = ci

∫ 1

0
K (tn,i , tn + sci hn)β j (sci )ds

when ci < 1, especially when deriving the fully discretised collocation equation
(Section 3.2.2).

In the remainder of this section we will assume, for ease of exposition, that
f in (3.2.1) is linear,

f (t, y) = a(t)y + g(t), with a, g ∈ C(I ). (3.2.5)

(Various nonlinear versions of (3.2.1) will be considered in Section 3.3.) The
collocation equation corresponding to (3.2.4) then assumes the linear form

Yn,i − hna(tn,i )
m∑

j=1

ai, j Yn, j − h2
n

m∑
j=1

(∫ ci

0
K (tn,i , tn + shn)β j (s)ds

)
Yn, j

= g(tn,i ) + Fn(tn,i ) +
(

a(tn,i ) + hn

∫ ci

0
K (tn,i , tn + shnds

)
yn (3.2.6)
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(i = 1, . . . , m), where the lag term,

Fn(tn,i ) :=
∫ tn

0
K (tn,i , s)uh(s)ds =

n−1∑
�=0

h�

∫ 1

0
K (tn,i , t� + sh�)uh(t� + sh�)ds,

(3.2.7)
may be written as

Fn(tn,i ) =
n−1∑
�=0

h�

∫ 1

0
K (tn,i , t� + sh�){y� + h�

m∑
j=1

β j (s)Y�, j }ds. (3.2.8)

Let us introduce the vectors in IRm ,

Yn := (Yn,1, . . . , Yn,m)T , an := (a(tn,1), . . . , a(tn,m))T

gn := (g(tn,1), . . . , g(tn,m))T , Gn := (Fn(tn,1), . . . , Fn(tn,m))T ,

and the matrices in L(IRm),

A :=
(

ai, j

(i, j = 1, . . . , m)

)
, An := diag(a(tn,i ))A ,

Cn :=



∫ ci

0
K (tn,i , tn + shn)β j (s)ds

(i, j = 1, . . . , m)




C (�)
n :=




∫ 1

0
K (tn,i , t� + sh�)β j (s)ds

(i, j = 1, . . . , m)


 (� < n).

with ai, j = β j (ci ). Moreover, set

κn := an + hn

( ∫ ci

0
K (tn,i , tn + shn)ds (i = 1, . . . , m)

)T

∈ IRm

and, for 0 ≤ � < n ≤ N − 1,

κ(�)
n :=

(∫ 1

0
K (tn,i , t� + sh�)ds (i = 1, . . . , m)

)T

∈ IRm .

The system of linear algebraic equations (3.2.6) then becomes

[Im − hn(An + hnCn)]Yn = gn + Gn + κn yn (n = 0, 1, . . . , N − 1),
(3.2.9)

where

Gn := (Fn(tn,1), . . . , Fn(tn,m))T =
n−1∑
�=0

h2
�C (�)

n Y� +
n−1∑
�=0

h�κ
(�)
n y�.
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When the solution Yn of (3.2.9) has been found, the collocation solution on the
interval σ̄n is determined by

uh(tn + vhn) = yn + hnββ
T (v)Yn, v ∈ [0, 1], (3.2.10)

where ββ(v) := (β1(v), . . . , βm(v))T ∈ IRm .

Theorem 3.2.1 Assume that the functions a, g and K in the VIDE (3.2.1),
with f given by (3.2.5), are continuous on their respective domains I and D.
Then there exists an h̄ > 0 so that for any mesh Ih with mesh diameter h > 0
satisfying h < h̄, each of the linear algebraic systems (3.2.9) has a unique
solution Yn ∈ IRm. Hence the collocation equation (3.2.2) defines a unique
collocation solution uh ∈ S(0)

m (Ih) for the initial-value problem (3.2.1), (3.2.5),
and its representation on the subinterval σ̄n is given by (3.2.10).

Proof It follows from the assumptions on a and K that the matrices

Cn := An + hnCn ∈ L(IRm) (0 ≤ n ≤ N − 1)

have bounded elements for any mesh Ih . Thus, the argument in the proof of
Theorem 2.2.1 can again be used to deduce that the inverses (Im − hnCn)−1

exist and are bounded whenever hn ∈ (0, h̄), for some sufficiently small h̄ >

0, implying that each of the systems (Im − hnCn)Yn = gn + Gn + κκn yn is
uniquely solvable in IRm when h = max(n) hn < h̄. This proves Theorem 3.2.1.
For V = 0 (i.e. Cn = 0 for all n) we obtain the uniqueness of the collocation
solution uh ∈ S(0)

m (Ih) for ODEs.

Example 3.2.1 uh ∈ S(0)
1 (Ih) (m = 1), 0 < c1 =: θ ≤ 1, tn,1 = tn + θhn:

Here we have, as in Example 1.1.1, β1(v) = v, A = a1,1 = θ , and

uh(tn + vhn) = (1 − v)yn + vyn+1, v ∈ [0, 1], yn = uh(tn) (3.2.11)

(since uh(tn + vhn) = yn + vhnYn,1 yields, for v = 1, hnYn,1 = yn+1 − yn). It
thus follows from (3.2.6) that yn+1 is given by the solution of the linear algebraic
equation (

1 − θhna(tn,1) − h2
n

∫ θ

0
K (tn,1, tn + shn)s ds

)
yn+1

= hn(g(tn,1) + Fn(tn,1)) +
(

1 + (1 − θ )hna(tn,1)

+ h2
n

∫ θ

0
K (tn,1, tn + shn)(1 − s)ds

)
yn, (3.2.12)
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with lag term

Fn(tn,1) =
n−1∑
�=0

h�

∫ 1

0
K (tn,1, t� + sh�)[(1 − s)y� + sy�+1]ds. (3.2.13)

The collocation method defined by (3.2.11)–(3.2.13) will be referred to as the
(exact) continuous θ -method for the linear VIDE (3.2.1),(3.2.5). Its nonlinear
counterpart is given by (3.2.11) and by

yn+1 = yn + hn f (tn,1, (1 − θ )yn + θyn+1) + Fn(tn,1)

+ h2
nθ

∫ 1

0
k(tn,1, tn + sθhn, (1 − sθ )yn + sθyn+1)ds,

with lag term

Fn(tn,1) :=
n−1∑
�=0

h�

∫ 1

0
k(tn,1, t� + sh�, (1 − s)y� + sy�+1)ds.

Example 3.2.2 uh ∈ S(0)
2 (Ih) (m = 2), 0 < c1 < c2 ≤ 1:

Here,

β1(v) =
∫ v

0
L1(s)ds = v(2c2 − v)

2(c2 − c1)
,

β2(v) =
∫ v

0
L2)ds = v(v − 2c1)

2(c2 − c1)
,

which permits the computation of the elements of the matrix A ∈ L(IR2), ai, j =
β j (ci ) (i, j = 1, 2) (compare also Example 1.1.2). The elements of the matrix
Cn ∈ L(IR2) in (3.2.9) are

(Cn)i,1 = 1

2(c2 − c1)

∫ ci

0
K (tn,i , tn + shn)s(2c2 − s)ds (i = 1, 2),

and

(Cn)i,2 = 1

2(c2 − c1)

∫ ci

0
K (tn,i , tn + shn)s(s − 2c1)ds (i = 1, 2).

See also Example 1.1.2 (and Brunner (1984b)) for further details, including
collocation at the Gauss and Radau II points.

3.2.2 The fully discretised collocation equations

The (exact) collocation equation (3.2.6) for the linear VIDE (3.2.1),(3.2.5) can
only be used for the numerical computation of uh if the integrals in the equation
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(and the lag term (3.2.7)) can be found analytically. Since this will in general
not be possible (compare, however, Section 3.3) these integrals will have to be
approximated by feasible numerical quadrature processes which, as in Section
2.2.1, will be given, or are based on, interpolatory m-point quadrature formulas
whose abscissas are determined by the collocation parameters {ci }. Hence,
using the notation introduced in (2.2.19), (2.2.20), the fully discretised version
of (3.2.6) assumes the form

Ŷn,i − hna(tn,i )
m∑

j=1

ai, j Ŷn, j − h2
n(Q̂nûh)(tn,i )

= g(tn,i ) + F̂n(tn,i ) + [a(tn,i ) + hn

m∑
j=1

ci b j K (tn,i , tn + ci c j hn)]ŷn

(i = 1, . . . , m). (3.2.14)

The discretised lag term is

F̂n(tn,i ) :=
n−1∑
�=0

h�(Q̂(�)
n ûh)(tn,i ), (3.2.15)

with ûh(t� + sh�) = ŷ� + h�

m∑
j=1

β j (s)Ŷ�, j . We recall for convenience that the

quadrature approximations introduced in Section 2.2.1 are defined by

(Q̂nûh)(tn,i ) := ci

m∑
j=1

b j K (tn,i , tn + ci c j hn)ûh(tn + ci c j hn)

= ci

m∑
j=1

b j K (tn,i , tn + ci c j hn)ŷn

+ ci hn

m∑
j=1

(
m∑

k=1

bk K (tn,i , tn + ci ckhn)β j (ci ck)

)
Ŷn, j , (3.2.16)

and, for � < n, by

(Q̂(�)
n ûh)(tn,i ) :=

n−1∑
�=0

m∑
j=1

b j K (tn,i , t� + c j h�)ûh(t� + c j h�)

=
n−1∑
�=0

m∑
j=1

b j K (tn,i , t� + c j h�)ŷ�

+
n−1∑
�=0

h�

m∑
j=1

(
m∑

k=1

bk K (tn,i , t� + ckh�)β j (ck)

)
Ŷ�, j (� < n).

(3.2.17)
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Here, b j = β j (1) and β j (ck) = ak, j . The solution Ŷn := (Ŷn,1, . . . , Ŷn,m)T ∈
IRm of the linear algebraic system (3.2.14) determines the discretised collocation
solution on the subinterval σ̄n:

ûh(tn + vhn) = ŷn + hn

m∑
j=1

β j (v)Ŷn, j , v ∈ [0, 1], (3.2.18)

with

ŷn := ûh(tn) = ŷn−1 + hn−1

m∑
j=1

b j Ŷn−1, j .

In order to state and prove the result on the existence and uniqueness of the
discretised collocation solution on I , we write (3.2.14) in a more concise form
representing the discrete analogue of (3.2.9), namely

[Im − hn(An + hnĈn)]Ŷn = gn + Ĝn + κ̂n ŷn (n = 0, 1, . . . , N − 1),
(3.2.19)

with

Ĝn := (F̂n(tn,1), . . . , F̂n(tn,m))T =
n−1∑
�=0

h�κ̂
(�)
n ŷ� +

n−1∑
�=0

h�Ĉ (�)
n Ŷ�.

Here,

Ĉn :=


 ci

m∑
k=1

bk K (tn,i , tn + ci ckhn)β j (ci ck)

(i, j = 1, . . . , m)




(cf. (3.2.16)) and

Ĉ (�)
n :=




m∑
k=1

bk K (tn,i , t� + ckh�)β j (ck)

(i, j = 1, . . . , m)


 (� < n)

are the discretised versions of the matrices Cn and C (�)
n in (3.2.9), while

κ̂n := an + hn

(
ci

m∑
k=1

bk K (tn,i , tn + ci ckhn) (i = 1, . . . , m)

)T

, (3.2.20)

and

κ̂(�)
n :=

(
m∑

k=1

bk K (tn,i , t� + ckh�) (i = 1, . . . , m)

)T

(� < n). (3.2.21)

We rewrite the local representation (3.2.18) of the discretised collocation solu-
tion ûh on σ̄n as

ûh(tn + vhn) = ŷn + hnββ
T (v)Ŷn, v ∈ [0, 1], (3.2.22)

with ββ(v) := (β1(v), . . . , βm(v))T .
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Theorem 3.2.2 Assume that the given functions a, g and K in the linear VIDE
(3.2.1), (3.2.5) satisfy the conditions of Theorem 3.2.1. If the exact collocation
equation (3.2.6) is discretised by interpolatory m-point quadrature formulas
based on the collocation parameters {ci } and given by (3.2.16) and (3.2.17),
then there exists an ĥ > 0 so that for any mesh Ih with mesh diameter h ∈ (0, ĥ),
each of the linear systems (3.2.19) has a unique solution Ŷn ∈ IRm. Hence the
discretised collocation equation (3.2.14) defines a unique collocation solution
ûh ∈ S(0)

m (Ih) which on σ̄n is given by (3.2.22).

The proof is a straightforward adaptation of the proof for Theorem 3.2.1: for
fixed m ≥ 1 the weights of the above interpolatory m-point quadrature formulas
are bounded for all h > 0, and hence, by the assumed continuity of a and K ,
the matrices Ĉn ∈ L(IRm) have bounded elements for any hn . This implies
that the inverses of the matrices characterising the systems (3.2.18), Ĉn :=
Im − hn(An + hnĈn) (n = 0, 1, . . . , N − 1), exist and are uniformly bounded
for hn ∈ (0, ĥ) for some ĥ > 0 which will in general be different from h̄ defined
in Theorem 3.2.1.

Example 3.2.3 m = 1 (discretised θ -method): It follows from Example 3.2.1
that this method is given by

ûh(tn + vhn) = ŷn + (1 − v)ŷn + v ŷn+1, v ∈ [0, 1],

and

[1 − θhna(tn,1) − θ3h2
n K (tn,1, tn + θ2hn)]ŷn+1 = hn[g(tn,1) + F̂n(tn,1)]

+ [1 + (1 − θ )hna(tn,1) + θ (1 − θ2)h2
n K (tn,1, tn + θ2hn)]ŷn,

with

F̂n(tn,1) :=
n−1∑
�=0

h�K (tn,1, t� + θh�)[(1 − θ )ŷ� + θ ŷ�+1].

For the nonlinear VIDE we have

ŷn+1 = ŷn + hn f (tn,1, (1 − θ )ŷn + θ ŷn+1) + hn F̂n(tn,1)

+ θ2h2
nk(tn,1, tn + θ2hn, (1 − θ2)ŷn + θ2 ŷn+1),

with discretised lag term

F̂n(tn,1) :=
n−1∑
�=0

h�k(tn,1, t� + θh�, (1 − θ )ŷ� + θ ŷ�+1).
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3.2.3 Global convergence results

We start by deriving global error estimates for the collocation solution uh ∈
S(0)

m (Ih) to the linear VIDE

y′(t) = a(t)y(t) + g(t) + (V y)(t), t ∈ I, y(0) = y0, (3.2.23)

where

(V y)(t) :=
∫ t

0
K (t, s)y(s)ds.

Theorem 3.2.3 Assume:

(a) The given functions in (3.2.23) satisfy a, g ∈ Cm(I ), K ∈ Cm(D).
(b) uh ∈ S(0)

m (Ih) is the collocation solution to (3.2.23) defined by (3.2.3),
(3.2.4) with h ∈ (0, h̄).

Then the estimates

||y(ν) − u(ν)
h ||∞ ≤ Cν ||y(m+1)||∞hm (ν = 0, 1) (3.2.24)

hold for any set Xh of collocation points with 0 ≤ c1 < . . . < cm ≤ 1. The
constants Cν depend on the collocation parameters {ci } and but not on h.

Proof The collocation error eh := y − uh satisfies the equation

e′
h(t) = a(t)eh(t) + (Veh)(t), t ∈ Xh, (3.2.25)

with eh(0) = 0. Recall now the analogous error equations for ODEs, (1.1.25),
and for second-kind VIEs, (2.2.32), as well as the local representations (1.1.22)
and (1.1.23) for eh and e′

h ; they are, respectively,

eh(tn + vhn) = eh(tn) + hn

m∑
j=1

β j (v)En, j + hm+1
n Rm+1,n(v), (3.2.26)

e′
h(tn + vhn) =

m∑
j=1

L j (v)En, j + hm
n R(1)

m+1,n(v), v ∈ (0, 1], (3.2.27)

with En, j := Zn, j − Yn, j . These representations are based on the fact that, by as-
sumption (a), the solution y of (3.2.23) is in Cm+1(I ). Hence, not surprisingly if
we recall the proofs of Theorem 1.1.2 and Theorem 2.2.3, all the essential ingre-
dients for proving Theorem 3.2.3 are in place, and therefore we will just focus
on the main steps, leaving most of the details to the reader. Consider first the ex-
pression for (Veh)(tn,i ) in (2.2.32): the only changes necessary to adapt it to the
present situation consist in replacing the Lagrange polynomials L j (s) by their
integrals β j (s), and the Peano remainder terms Rm,�(s) by Rm+1,�(s) (� ≤ n).
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Secondly, since eh is continuous at the mesh points t = tn we have again the
recurrence relation (1.1.27),

eh(tn) =
n−1∑
�=0

h�

m∑
j=1

b jE�, j +
n−1∑
�=0

hm+1
� Rm+1,�(1) (n = 1, . . . , N − 1).

(3.2.28)
Consider now the error equation (3.2.25) at t = tn,i = tn + ci hn . Observe first
that, by (3.2.27), its left-hand side reduces to

e′
h(tn,i ) = En,i + hm

n R(1)
m+1,n(ci ).

The contribution of the first term on its right-hand side is known from Section
1.1.2; it reads

a(tn,i )[eh(tn) + hn

m∑
j=1

ai, jEn, j + hm+1
n Rm+1,n(ci )].

By (3.2.26) the explicit expression for the Volterra term (Veh)(t) at t = tn,i is

(Veh)(t) =
n−1∑
�=0

h�

(∫ 1

0
K (t, t� + sh�)ds

)
eh(t�)

+ hn

(∫ ci

0
K (t, tn + shn)ds

)
eh(tn)

+
n−1∑
�=0

h2
�

m∑
j=1

(∫ 1

0
K (tn,i , t� + h�)β j (s)ds

)
E�, j

+ h2
n

m∑
j=1

(∫ ci

0
K (t, tn + shn)β j (s)ds

)
En, j

+
n−1∑
�=0

hm+2
�

∫ 1

0
K (t, t� + sh�)Rm+1,�(s)ds

+ hm+2
n

∫ ci

0
K (tn,i , tn + shn)Rm+1,n(s)ds.

Therefore, letting t = tn,i ∈ Xh , (3.2.25) can be written as

En,i = hna(tn,i )
m∑

j=1

ai, jEn, j + h2
n

m∑
j=1

(∫ ci

0
K (tn,i , tn + shn)β j (s)ds

)
En, j

+
n−1∑
�=0

h2
�

m∑
j=1

(∫ 1

0
K (tn,i , t� + sh�)β j (s)ds

)
E�, j

+
n−1∑
�=0

h�κ
(�)
n,i eh(t�) + κn,i eh(tn) +

n−1∑
�=0

hm+2
� ρ

(�)
n,i + hm

n ρn,i . (3.2.29)
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Here, the components of the vectors κn and κ (�)
n (� < n), introduced in Section

3.2.1 (preceding Theorem 3.2.1), are given by

κ
(�)
n,i :=

∫ 1

0
K (tn,i , t� + sh�)ds (� < n),

κn,i := a(tn,i ) + hn

∫ ci

0
K (tn,i , tn + shn)ds,

and we have set (in analogy to the proof of Theorem 2.2.3)

ρn,i := hn[a(tn,i )Rm+1,n(ci ) + hn

∫ ci

0
K (tn,i , tn + shn)Rm+1,n(s)ds]

−R(1)
m+1,n(ci ) ,

ρ
(�)
n,i :=

∫ 1

0
K (tn,i , t� + sh�)Rm+1,�(s)ds (� < n).

It follows that En := ( En,1, . . . , En,m )T is given by the unique solution of the
linear algebraic system

[Im − hn(An + hnCn)]En

=
n−1∑
�=0

h2
�C (�)

n E� +
n−1∑
�=0

h�κ
(�)
n eh(t�) + κneh(tn)

+
n−1∑
�=0

hm+2
� ρ(�)

n + hm
n ρn (n = 0, 1, . . . , N − 1). (3.2.30)

Its left-hand side matrix, Im − hnCn , of course coincides with the one in (3.2.9).
Also, the nodal errors eh(t�) (� ≤ n) can be expressed in terms of the compo-
nents of E�, as shown by (3.2.28).

According to Theorem 3.2.1 this linear system has a unique solution
whenever hn ∈ (0, h̄), and hence there exists a constant D0 < ∞ so that
||(Im − hnBn)−1||1 ≤ D0 uniformly for 0 ≤ n ≤ N − 1. Equation (3.2.30) now
leads to the estimate

||En||1 ≤ D0 [
n−1∑
�=0

h2
�||E�||1 + mK̄

n−1∑
�=0

h�|eh(tn)| + m(A0 + hK̄ )|eh(tn)|

+ hm+1mK̄ km Mm+1

n−1∑
�=0

h� + hm+1m(A0 + hK̄ )km Mm+1]. (3.2.31)

Here we have used the notation introduced in Sections 1.1.2 and 2.2.2. It follows
from the continuity relation (3.2.28) that

|eh(tn)| ≤ b̄
n−1∑
�=0

h�||E�||1 + hmkm Mm+1T (n = 1, . . . , N − 1). (3.2.32)
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Moreover, bounds for the error termsρ(�)
n (� < n) and ρn are readily found from

the definition of their components given above; they are, respectively,

||ρ(�)
n ||1 ≤ mK̄ km Mm+1 (� < n) and ||ρn||1 ≤ m(A0 + hK̄ )km Mm+1.

Thus, observing that sums of the form
∑n−1

�=0 h� are bounded by T uniformly
for 0 ≤ n ≤ N − 1, the above inequality for ||En||1 reduces to a generalized
discrete Gronwall inequality,

||En||1 ≤ γ0

n−1∑
�=0

h�||E�||1 + γ1 Mm+1hm, 0 ≤ n ≤ N − 1.

Hence, as in the proofs of Theorems 1.1.2 and 2.2.3, this leads to the uniform
estimate

||En||1 ≤ γ1 Mm+1hm exp(γ0T ) =: B Mm+1hm, 0 ≤ n ≤ N − 1,

and so (3.2.32) yields

|eh(tn)| ≤ (b̄B + km)T Mm+1hm (1 ≤ n ≤ N − 1).

Recalling the error representations (3.2.26) and (3.2.27) and employing by now
familiar notation, we find the estimates

|eh(tn + vhn)| ≤ |eh(tn)| + hβ̄||En||1 + hm+1km Mm+1

≤ [(b̄B + km)T + h(β̄ B + hkm]Mm+1hm =: C0 Mm+1hm

and

|e′
h(tn + vhn)| ≤ m ||En||1 + hmkm Mm+1

≤ (m B + km)Mm+1hm =: C1 Mm+1hm,

uniformly for v ∈ [0, 1] and 0 ≤ n ≤ N − 1 (h ∈ (0, h̄)). Since the constants
C0 and C1 depend (via the bound B for ||En||1 and the bound Mm+1) on
||y(m+1)||∞, this concludes the proof of Theorem 3.2.3.

As we know from the error analyses in the two preceding chapters, less
than full regularity (y ∈ Cd (I ) with d < m + 1) will imply a lower order of
global convergence for uh . The above proof, with appropriate form of Peano’s
Theorem, is thus readily modified to furnish the following convergence result.

Theorem 3.2.4 Suppose that the regularity assumption (a) in Theorem 3.2.3 is
replaced by:

(a′) The given functions in (3.2.3) satisfy a, g ∈ Cd (I ) and K ∈ Cd (D), for
some d with 1 ≤ d < m.
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If (b) of Theorem 3.2.3 holds, then the estimates

||y(ν) − u(ν)
h ||∞ ≤ Cν ||y(d+1)||∞hd (ν = 0, 1)

are best possible and hold for any set Xh of collocation points with 0 ≤ c1 <

. . . < cm ≤ 1.

On the other hand, a judicious choice of the {ci } and a higher degree of
regularity for y than in Theorem 3.2.3 will lead to global superconvergence on
I , in complete analogy to Theorem 1.1.3 for ODEs.

Theorem 3.2.5 Assume that the given functions in the linear VIDE (3.2.23)
satisfy a, g ∈ Cm+1(I ) and K ∈ Cm+1(D), and let uh ∈ S(0)

m (Ih) be the collo-
cation solution to (3.2.23) corresponding to the collocation points Xh. If the m
collocation parameters {ci } defining Xh are chosen so that the orthogonality
condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0

holds (cf. (1.1.34)), then for all meshes Ih with mesh diameter h ∈ (0, h̄) the
global order of the collocation solution uh on Ih exceeds m:

||y − uh ||∞ ≤ Chm+1, (3.2.33)

with C depending on the {ci } and on ||y(m+2)||∞ but not on h.

Proof Starting with the defect δh induced by uh ,

δh(t) := −u′
h(t) + f (t, uh(t)) + (Vuh)(t), t ∈ I,

with f (t, y) = a(t)y + g(t), we have

δh(t) = e′
h(t) − a(t)eh(t) − (Veh)(t), t ∈ I,

and thus, by the estimates in Theorem 3.2.3,

||δh ||∞ ≤ C1hm + A0C0hm + K̄ C0hm =: Dhm,

with A0 := ||a||∞ and K̄ := ||V||∞. Hence, since the collocation error is the
solution of the initial-value problem

e′
h(t) = a(t)eh(t) + δh(t) + (Veh)(t), t ∈ I, eh(0) = 0, (3.2.34)

it may be written in the form

eh(t) = r (t, 0)eh(0) +
∫ t

0
r (t, s)δh(s)ds =

∫ t

0
r (t, s)δh(s)ds, t ∈ I,

(3.2.35)
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(cf. Theorem 3.1.1). Except for the definition of the resolven kernel r (t, s),
which is now given by the solution of the resolvent equations (3.1.8) or (3.1.9),
the above error representation is formally identical with (1.1.38) for linear
ODEs. Thus, taking into account the regularity of r (t, s) and of the defect δh in
the subintervals σn , we are able to complete the proof of Theorem 3.2.3 exactly
along the lines of the one for Theorem 1.1.3 (or Theorem 2.2.5), to arrive at the
desired global estimate (3.2.33).

3.2.4 Local superconvergence results

When we proved the result on global superconvergence for VIDEs (Theorem
3.2.5) we pointed out that the formal analysis was identical with the one we
used in Section 1.1.3 for establishing such results for ODEs. In addition, we
saw that the key to establishing local superconvergence results for uh and u′

h on
Ih was the resolvent representation of the collocation error eh and its derivative
e′

h in terms of the defect δh , namely

eh(t) =
∫ t

0
r (t, s)δh(s)ds, t ∈ I (3.2.36)

and

e′
h(t) = r (t, t)δh(t) +

∫ t

0

∂r (t, s)

∂t
δh(s)ds, t ∈ I, (3.2.37)

where r (t, t) = 1 on I . For linear VIDEs an analogous (and formally identical)
resolvent representation holds (Theorem 3.1.1), with the differential resolvent
r (t, s) of the linear VIDE (3.2.23) defined by

∂r (t, s)

∂s
= −r (t, s)a(s) −

∫ t

s
r (t, v)K (v, s)dv, (s, t) ∈ D (3.2.38)

(cf. (3.1.8)), again with r (t, t) = 1 for t ∈ I .
Thus, in view of these observations it is not surprising that Theorem 1.1.4

and its corollaries remain valid for first-order VIDEs.

Theorem 3.2.6 Assume:

(a) The given functions in (3.2.23) satisfy a, g ∈ Cm+κ (I ) and K ∈ Cm+κ (D),
for some integer κ ≥ 1 specified in (c) below.

(b) u ∈ S(0)
m (Ih) is the collocation solution to (3.2.23) with respect to the col-

location points Xh.
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(c) The parameters {ci } defining Xh are chosen so that the generalised orthog-
onality condition

Jν :=
∫ 1

0
sν

m∏
i=1

(s − ci )ds = 0, ν = 0, . . . , κ − 1, (3.2.39)

with Jκ 
= 0 (and κ ≤ m), is fulfilled.

Then, for h ∈ (0, h̄), with h̄ > 0 defined in Theorem 3.2.1, the collocation error
satisfies

max
t∈Ih

|eh(t)| ≤ C0hm+κ , (3.2.40)

If cm = 1, then u′
h exhibits the same order of local superconvergence as uh:

max
t∈Ih\{0}

|e′
h(t)| ≤ Chm+κ

1 , (3.2.41)

while for cm < 1 we only obtain |e′
h(tn)| = O(hm) (1 ≤ n ≤ N ). The constants

C0 and C1 depend on the {ci } and on ||y(m+κ+1)||∞ but not on h.

Proof Consider (3.2.36) with t = tn:

eh(tn) =
∫ tn

0
r (tn, s)δh(s)ds

=
n−1∑
�=0

h�

∫ 1

0
r (tn, t� + sh�)δh(t� + sh�)ds (n = 1, . . . , N ).

The assertion (3.2.40) now follows immediately along the lines of the proof
of Theorem 1.1.4, by observing the regularity of the differential resolvent
r = r (t, s) (which is governed by the assumed regularity of a and K ; i.e.
r ∈ Cm+κ+1(D)) and the piecewise smoothness of the defect δ = δh(t) on each
subinterval σn (depending on the regularity of g).

If cm = 1 we have δh(tn) = 0 (since now tn ∈ Xh), and hence (3.2.37) yields

e′
h(tn) =

∫ tn

0

∂r (tn, s)

∂t
δh(s)ds, n = 1, . . . , N .

Thus, the by now familiar quadrature argument carries over, with the role of
r (tn, s) in the above expression for eh(tn) assumed by (∂/∂t)r (tn, s).

Theorem 3.2.6 yields the following obvious corollaries generalising the re-
sults of Corollaries 1.1.5–1.1.7:

Corollary 3.2.7 Let the {ci } be so that the orthogonality condition (3.2.39)
holds with κ = m, that is, collocation is at the Gauss points. Then

max
t∈Ih

|eh(t)| ≤ Ch2m,

while maxt∈Ih |e′
h((t)| = O(hm) only.
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Corollary 3.2.8 If the {ci } are the Radau II points (corresponding to (3.2.39)
with κ = m − 1 and cm = 1), then

max
t∈Ih\{0}

|e(ν)
h (t)| ≤ Cνh2m−1 (ν = 0, 1).

Corollary 3.2.9 For the continuously differentiable collocation solution corre-
sponding to the Lobatto points {ci }, 0 = c1 < . . . < cm = 1 (κ = m − 2, with
m ≥ 2 in (3.2.39)), the attainable order of uh ∈ S(1)

m (Ih) and u′
h is described by

max
t∈Ih

|e(ν)
h (t)| ≤ Cνh2(m−1) (ν = 0, 1).

Remark The above order estimates remain valid for the discretised collocation
solution ûh : the ‘perturbation argument’ of Section 2.2.6 can again be used to
show that the order of ||uh − ûh ||∞, as well as the one for |uh(tn) − ûh(tn)| (n =
1, . . . , N ), match the orders of the exact collocation error on I and on Ih ,
respectively.

Theorem 3.2.10 Suppose that the collocation equation defining the exact col-
location solution uh ∈ S(0)

m (Ih) for the VIDE (3.2.23) is discretised by interpo-
latory m-point quadrature formulas based on the collocation parameters {ci }.
Then the resulting discretised collocation solution ûh ∈ S(0)

m (Ih) has the same
global and local (super-) convergence properties as uh itself.

3.2.5 Neutral and higher-order VIDEs

In Section 3.1.2 we introduced the first-order VIDE (3.1.13),

y′(t) = f (t, y(t)) +
∫ t

0
k(t, s, y(s), y′(s))ds, t ∈ I, y(0) = y0, (3.2.42)

and its linear version,

y′(t) = a(t)y(t) + g(t) + (V0 y)(t) + (V1 y′)(t), (3.2.43)

with Vi : C(I ) → C(I ) given by

(V0φ)(t) :=
∫ t

0
K0(t, s)φ(s)ds,

and

(V1φ)(t) :=
∫ t

0
K1(t, s)φ(s)ds,

as special cases of higher-order ‘neutral’ VIDEs. In this section we will derive
the collocation equations and corresponding convergence results for the latter.
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The proofs of the analogous theorems for kth-order ODEs follow then as special
cases, as announced in Section 1.4.

Let k ≥ 2 be a given integer and consider the initial-value problem

y(k)(t)= f (t, y(t), y′(t), . . . , y(k−1)(t)) + (V y)(t), t ∈ I := [0, T ], (3.2.44)

y(ν)(0)= y(ν)
0 (ν = 0, 1, . . . , k − 1),

where

(V y)(t) :=
∫ t

0
k(t, s, y(s), y′(s), . . . , y(k)(s))ds.

As before we will focus on its linear counterpart, described by

f (t, y, y′, . . . , y(k−1)) =
k−1∑
ν=0

aν(t)y(ν), (3.2.45)

k(t, s, y, y′, . . . , y(k)) =
k∑

ν=0

Kν(t, s)y(ν), (3.2.46)

where the given functions aν and Kν are assumed to be continuous on I and D,
respectively.

We will seek the collocation solution for (3.2.44) in the smooth piecewise
polynomial space

S(d)
m+d (Ih) := {v ∈ Cd (I ) : v|σ̄n ∈ πm+d (0 ≤ n ≤ N − 1)}

with d = k − 1 ≥ 1. We know that the dimension of this linear space is

dimS(d)
m+d (Ih) = Nm + d + 1 = Nm + k

(see Section 2.2.1). Let Xh , the set of collocation points in I , be as in Section
3.2.1. The collocation solution uh in this space for (3.2.44) is thus defined by

u(k)
h (t) = f (t, uh(t), u′

h(t), . . . , u(k−1)
h (t)) + (Vuh)(t), t ∈ Xh, (3.2.47)

u(ν)
h (0) = y(ν)

0 (ν = 0, 1, . . . , k − 1).

Setting y(ν)
n := u(ν)

h (tn) (yn := y(0)
n ), Yn, j := u(k)

h (tn, j ), and

u(k)
h (tn + vhn) =

m∑
j=1

L j (v)Yn, j , v ∈ (0, 1],
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the local Lagrange representation of u(ν)
h (ν = k − 1, . . . , 0) on σ̄n is that of

Section 1.4,

u(ν)
h (tn + vhn) =

k−ν−1∑
�=0

y(ν+�)
n

�!
(hnv)� + hk−ν

n

m∑
j=1

βν, j (v)Yn, j , v ∈ [0, 1],

(3.2.48)
where we defined

βν, j (v) :=
∫ v

0

(v − s)k−ν−1

(k − ν − 1)!
L j (s)ds. (3.2.49)

For ν = 0, (3.2.48) yields

uh(tn + vhn) =
k−1∑
�=0

y(�)
n

�!
(hnv)� + hk

n

m∑
j=1

β0. j (v)Yn, j , v ∈ [0, 1]. (3.2.50)

This permits us to write down the computational form of the collocation
equation (3.2.47) for t = tn,i ∈ σ̄n . We will do this in detail only when k = 2,
that is, for the VIDE

y′′(t) =
1∑

ν=0

aν(t)y(ν)(t) + g(t) +
∫ t

0

2∑
ν=0

Kν(t, s)y(ν)(s)ds, t ∈ I. (3.2.51)

The general case is treated in Brunner (1988a, 1988b).

Illustration 3.2.1 The continuous m-stage Volterra–Runge–Kutta–Nyström
method:
Consider (3.2.44) with k = 2. It follows from

Yn,i = f (tn,i , uh(tn,i ), u′
h(tn,i )) + (Vuh)(tn,i ), i = 1, . . . , m, (3.2.52)

that the components of the vector Yn := ( Yn,1, . . . , Yn,m )T are given by the
solution of the nonlinear algebraic system

Yn,i = f

(
tn,i , yn + hnvy(1)

n + h2
n

m∑
j=1

β0, j (ci )Yn, j , y(1)
n + hn

m∑
j=1

β1, j (v)Yn, j

)

+ Fn(tn,i ) + hn

∫ ci

0
k

(
tn,i , tn + shn, uh(tn + shn), u′

h(tn + shn),

u′′
h(tn + shn)

)
ds (3.2.53)

(i = 1, . . . , m), with lag term approximation

Fn(tn) :=
∫ tn

0
k

(
tn,i , s, uh(s), u′

h(s), u′′
h(s)

)
ds. (3.2.54)
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Once the solution Yn := ( Yn,1, . . . , Yn,m )T has been computed, the values of
uh and u′

h on σ̄n are determined by the interpolation formulas

uh(tn + vhn) = yn + hnvy(1)
n + h2

n

m∑
j=1

β0, j (v)Yn, j , v ∈ [0, 1], (3.2.55)

and

u′
h(tn + vhn) = y(1)

n + hn

m∑
j=1

β1, j (v)Yn, j , v ∈ [0, 1], (3.2.56)

where

β1, j (v) :=
∫ v

0
L j (s)ds and β0, j (v) :=

∫ v

0
(v − s)L j (s)ds.

For the linear version of this VIDE, corresponding to

f (t, y, y′) = a0(t)y + a1(t)y′ + g(t) and

k(t, s, y, y′, y′′) =
2∑

ν=0

Kν(t, s)y(ν)(s), t ∈ I,

the linear algebraic system corresponding to (3.3.53) reduces to

[Im − hn(An + Cn)]Yn = gn + Gn + κn,0 yn + κn,1 y(1)
n , (3.2.57)

with

An := An,1 + hn An,0, Cn := Cn,2 + hnCn,1 + h2
nCn,0.

The five matrices in L(IRm) determining An and Cn are defined by

An,0 := diag(a0(tn,i ))

(
β0, j (ci )

(i, j = 1, . . . , m)

)
,

An,1 := diag(a1(tn,i ))

(
β1, j (ci )

(i, j = 1, . . . , m)

)
,

Cn,0 :=



∫ ci

0
K0(tn,i , tn + shn)β0, j (s)ds

(i, j = 1, . . . , m)


 ,

Cn,1 :=



∫ ci

0
K1(tn,i , tn + shn)β1, j (s)ds

(i, j = 1, . . . , m)


 ,

Cn,2 :=



∫ ci

0
K2(tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 .



3.2 Collocation for linear VIDEs 179

The right-hand side vectors gn and Gn are as before, and the terms reflecting
the C0 behaviour of the collocation solution uh at the mesh points t = tn have
the forms

κn,0 :=
(

(a0(tn,i ) + hn

∫ ci

0
K0(tn,i , tn + shn)ds (i = 1, . . . , m)

)T

κn,1 :=
(

a1(tn,i ) + hnci a0(tn,i ) + hn

∫ ci

0
K1(tn,i , tn + shn)ds

+ h2
n

∫ ci

0
K0(tn,i , tn + shn)s ds (i = 1, . . . , m)

)T

.

The equations (3.2.55)–(3.2.57) describe the continuous implicit m-stage
VRKN method for (3.2.44)–(3.2.46) with k = 2.

Example 3.2.3 m = 1 (see also Example 3.2.1)
Setting θ := c1 ∈ (0, 1], tn,1 := tn + θhn , and observing that we have
β1,1(v) = v, β0,1(v) = v2/2 , the continuous one-stage VRKN θ -method is
described by the collocation equation

Yn,1 = f (tn,1, uh(tn,1), u′
h(tn,1)) + Fn(tn,1)

+ hn

∫ θ

0
k(tn,1, tn + shn, uh(tn + shn), u′

h(tn + shn), Yn,1)ds.

Here,

Yn,1 := u′′
h(tn + vhn) = 1

hn
[y(1)

n+1 − y(1)
n ], v ∈ (0, 1],

and this can be employed to express the local representations of uh, u′
h ,

uh(tn + vhn) = yn + hnvy(1)
n + h2

n

2
v2Yn,1,

u′
h(tn + vhn) = y(1)

n + hnvYn,1, v ∈ [0, 1],

in the forms

uh(tn + vhn) = yn + hnv

2

(
(1 − v)y(1)

n + vy(1)
n+1

)
,

u′
h(tn + vhn) = (1 − v)y(1)

n + vy(1)
n+1, v ∈ [0, 1].

It will be seen below (Theorem 3.2.12) that for θ = 1/2 the order of (local)
superconvergence on Ih is p∗ = 2m = 2.



180 3 VIDEs with smooth kernels

We now state the global and local (super-) convergence theorems for the
collocation solution uh ∈ S(d)

m+d (Ih) (d = k − 1) for (3.2.44)–(3.2.46),

y(k)(t) =
k−1∑
ν=0

aν(t)y(ν)(t) + g(t) +
k∑

ν=0

(Vν y)(t), t ∈ I, (3.2.58)

where

(Vν y)(t) :=
∫ t

0
Kν(t, s)y(ν)(s)ds. (3.2.59)

In analogy to the case k = 1 these results are readily extended to the nonlinear
neutral VIDE (3.2.44); the proofs given below for the linear neutral VIDE
suggest how to adapt the key ideas to the nonlinear problem.

Theorem 3.2.11 Assume that the given functions aν, g and Kν in the linear
VIDE (3.2.44)–(3.2.46) are m times continuously differentiable on their respec-
tive domains I and D. Then for all sufficiently small h > 0 and any {ci } with
0 ≤ c1 < . . . < cm ≤ 1 we have the estimates

||y(ν) − u(ν)
h ||∞ ≤ Cνhm (ν = 0, 1, . . . , k − 1)

and

||y(k) − u(k)
h ||∞ := sup

t∈Ih\{0}
|y(k)(t) − u(k)

h (t)| ≤ Ckhm .

The constants Cν depend on the {ci } but not on h.

Proof We leave the proof as an exercise: it is a straightforward (but notationwise
somewhat tedious) generalisation of the proof of the global convergence result
in Theorem 3.2.3 for first-order VIDEs.

As we saw in Section 1.4 when we studied the question of global supercon-
vergence in collocation solutions for higher-order ODEs, a judicious choice
of the collocation parameters {ci } leads to O(hm+1)-convergence on I for
u(ν)

h (ν = 0, 1, . . . , k − 1). The following theorem shows that this remains true
for higher-order VIDEs.

Theorem 3.2.12 Assume that the given functions aν, g and Kν in (3.2.58) and
(3.2.59) are in Cd (I ) and Cd (D), respectively, with d ≥ m + 1, and let the {ci }
be chosen such that the orthogonality condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0

is satisfied. Then, for all sufficiently small h > 0,

||y(ν) − u(ν)
h ||∞ ≤ Cνhm+1 (ν = 0, 1, . . . , k − 1):
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the collocation solution uh ∈ S(d)
m+d (Ih) (d = k − 1) and its derivatives

u′
h, . . . , u(k−1)

h are globally superconvergent on I , with (optimal) order p∗ =
m + 1. The error ||y(k) − u(k)

h ||∞ will, in general, be only O(hm).

Proof By definition, the collocation error eh := y − uh associated with the
collocation solution uh ∈ S(d)

m+d (Ih) (d = k − 1) is the solution of the initial-
value problem

e(k)
h (t) =

k−1∑
ν=0

aν(t)e(ν)
h (t) + δh(t) +

k∑
ν=0

(Vνeh)(t), t ∈ I, (3.2.60)

e(ν)
h (0) = 0 (ν = 0, 1, . . . , k − 1),

with δh(t) = 0 for t ∈ Xh . If we introduce the vectors

εh(t) := (eh(t), . . . , e(k)
h (t))T and dh(t) := (0, . . . , 0, δh(t))T

in IRk+1, and recall the matrix kernel K(t, s) ∈ L(IRk+1) introduced in Section
3.1.3 (cf. (3.1.18)), we can write the VIDE for the collocation error as a system
of k + 1 first-order VIDEs, in analogy to Section 3.1.3:

εh(t) = dh(t) +
∫ t

0
K(t, s)εh(s)ds, t ∈ I. (3.2.61)

Hence, according to Theorem 2.1.7, its unique solution is given by

εh(t) = dh(t) +
∫ t

0
R(t, s)dh(s)ds, t ∈ I, (3.2.62)

where the (matrix) resolvent kernel R(t, s) ∈ L(IRk+1) (compare Sections 3.1.3
and 2.1.3) possesses the elements Rν, j (t, s) (ν, j = 0, 1, . . . , k). Due to the
special structure of the non-homogeneous term dh(t) this implies that, for ν =
0, 1, . . . , k − 1,

e(ν)
h (t) =

∫ t

0

k∑
j=0

Rν, j (t, s)(dh(s)) j ds

=
∫ t

0
Rν,k(t, s)δh(s)ds(ν = 0, 1, . . . , k − 1), (3.2.63)

while

e(k)
h (t) = δh(t) +

∫ t

0

k∑
j=0

Rk, j (t, s)(dh(s)) j ds = δh(t) +
∫ t

0
Rk,k(t, s)δh(s)ds.

(3.2.64)
Here, (dh(s)) j denotes the j th component of the vector dh(s).
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Suppose now that t = tn + vhn ∈ σn . It follows from the representation
(3.2.62) that, for ν = 0, 1, . . . , k − 1,

e(ν)
h (t) =

n−1∑
�=0

∫ 1

0
Rν,k(t, t� + sh�)δh(t� + sh�)ds

+ hn

∫ v

0
Rν,k(t, tn + shn)δh(tn + shn)ds.

We see that we are back on familiar territory: the quadrature arguments we
used in the previous chapters to prove global (and local) superconvergence
results are clearly applicable here, too. Thus, the proof is brought to its end
by observing that ||δh ||∞ ≤ Dhm (as a consequence of the global convergence
result in Theorem 3.2.10 and the error equation (3.2.59)). We omit the details.
Note, however, that O(hm+1)-convergence does not hold for u(k)

h because of
the presence of the term δh(t) in (3.2.63). For this term we have, according to
Theorem 3.2.11 and (3.2.60), ||δh ||∞ = O(hm) only.

Finally, and by now not surprisingly, the optimal local superconvergence
results of Section 1.2.4 carry over to kth-order VIDEs, since the argument
in the proof of the previous theorem on global superconvergence can be
readily adapted, by setting t = tn (n = 1, . . . , N ) in the error representation
(3.2.61),(3.2.62). We deduce that for collocation parameters {ci } with cm < 1
(e.g. the Gauss points) superconvergence of order p∗ = 2m at the mesh points
can only be achieved for u(ν)

h with ν < k. If we have cm = 1 (as for the Radau
II points), then u(k)

h (tn) will also exhibit (the same order of) local supercon-
vergence as uh(tn) itself, since tn ∈ Xh and hence δh(tn) = 0 in (3.2.63). We
summarise this in

Theorem 3.2.13 In the neutral VIDE (3.2.43) let aν ∈ Cm+κ (I ) (ν =
0, 1, . . . , k − 1), g ∈ Cm+κ (I ), Kν ∈ Cm+κ (D) (ν = 0, 1, . . . , k) for some κ

with 1 ≤ κ ≤ m. Assume that the {ci } satisfy

J� :=
∫ 1

0
s�

m∏
i=1

(s − ci )ds = 0, � = 0, 1, . . . , κ − 1,

with Jκ 
= 0. Then for all sufficiently small mesh diameters h > 0 the collocation
solution uh ∈ S(d)

m+d (Ih) (d = k − 1) and its derivatives u(ν)
h (ν = 1, . . . , k − 1)

are superconvergent on the mesh Ih:

max
t∈Ih

|y(ν)(t) − u(ν)
h (t)| ≤ Cνhm+κ (ν = 0, 1, . . . , k − 1).

In particular, κ = m (for which the {ci } are the m Gauss points in (0, 1)) leads
to

max
t∈Ih

|y(ν)(t) − u(ν)
h (t)| ≤ Cνh2m (ν = 0, 1, . . . , k − 1),

with max{|e(k)
h (t)| : t ∈ Ih \ {0}} = O(hm) only.
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If κ = m − 1 and cm = 1 (corresponding to the Radau II points in (0, 1]),
then local superconvergence holds also for u(k)

h : we now have

max
t∈Ih

|y(ν)(t) − uν
h(t)| ≤ Cνh2m−1 (ν = 0, 1, . . . , k − 1)

and

max
t∈Ih\{0}

|y(k)(t) − u(k)
h (t)| ≤ Ckh2m−1.

3.2.6 Collocation in smoother piecewise polynomial spaces

As a consequence of the results of Loscalzo and Talbot (1967) and Loscalzo
(1968), it is clear that the collocation solution uh ∈ S(3)

4 (Ih) (classical quartic
splines of degree four) for the VIDE (3.1.1) will be divergent. Hung (1970)
showed that collocation solutions uh ∈ S(µ−1)

µ (Ih) are convergent whenµ = 2, 3
and c1 = 1. He also established the convergence of Hermite-type collocation in
the space S(2)

4 (Ih) (whose dimension is 2N + 3), with collocation at the points
t = tn+1 (n = 0, 1, . . .) corresponding to c1 = c2 = c3 = 1. More recently, Oja
and Tarang (2001) and Oja and Saveljeva (2002) have obtained a number of
significant results on the dependence of the convergence of smooth collocation
solutions on the location of the collocation parameters {ci }, using techniques
different from those of Mülthei (1979, 1980a).

The general divergence results by Mülthei on collocation in S(d)
µ (Ih) for

ODEs remain of course valid for general VIDEs of the form (3.1.1). However,
it is not clear – and remains an open problem – if they can be refined (and are
possibly different) for the special VIDE

y′(t) = g(t) + (V y)(t),

with V as in (3.2.23).

3.3 Collocation for nonlinear VIDEs

3.3.1 Local superconvergence results

The analysis of global convergence of the collocation solution uh ∈ S(0)
m (Ih) to

the initial-value problem

y′(t) = f (t, y(t)) +
∫ t

0
k(t, s, y(s))ds, t ∈ I, y(0) = y0, (3.3.1)

proceeds along the lines of the one for ODEs in Section 1.1.4, and VIEs
in Section 2.3.2, using in addition the classical linearisation argument for
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k(t, s, y(s) − eh(s)). We leave the details of the proof to the reader and focus
instead on the analysis of local superconvergence on Ih . Since the collocation
error uh = y − eh solves the initial-value problem

e′
h(t) = f (t, y(t)) − f (t, y(t) − eh(t)) + δh(t)

+
∫ t

0
(k(t, s, y(s)) − k(t, s, y(s) − eh(s)))ds, (3.3.2)

with eh(0) = 0, we may rewrite this error equation in the form

e′
h(t) = a1(t)eh(t) +

∫ t

0
H1(t, s)eh(s)ds + δh(t) (3.3.3)

+ a2(t)e2
h(t) + (W2eh)(t), t ∈ I,

assuming that f and k possess continuous (and bounded) second-order partial
derivatives with respect to y. The functions a1(t) := fy(t, y(t)), H1(t, s) :=
ky(t, s, y(s)) assume the roles of a(t) and K (t, s) in the linear VIDE (3.2.23),
and we have set

a2(t) := −1

2
fyy(t, w(t)),

(W2eh)(t) := −1

2

∫ t

0
kyy(t, s, z(s))e2

h(s)ds,

with suitable intermediate ‘Taylor arguments’ w(t) and z(s). If r1 = r1(t, s) de-
notes the differential resolvent of the kernel H1 = H1(t, s), then the collocation
error can be expressed in a form reflecting the perturbed error equation (3.3.3),
namely,

eh(t) =
∫ t

0
r1(t, s)

(
δh(s) + a2(s)e2

h(s) + (W2eh)(s)
)
ds, t ∈ I. (3.3.4)

Comparing this with the error representation (3.2.36) we observe that we now
have two additional nonlinear terms which depend on e2

h . Thus, assuming that
fyy(t, ·) and kyy(t, s, ·) are bounded, the previous quadrature argument com-
bined with the global estimate in Theorem 3.2.3 (cf. the remark at the end of
its proof) and the estimates for these nonlinear terms, e.g.,

|(W2eh)(t)| ≤ const · ||eh ||2∞ ≤ D2(hm)2, t ∈ I,

allow us readily to arrive at

|eh(tn)| ≤ hm+κ Q
n−1∑
�=0

h� + C2h2m ≤ (QT + C2hm−κ )hm+κ

=: C0hm+κ + C1h2m, 1 ≤ n ≤ N ,

where 0 ≤ κ ≤ m.
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Therefore, the global and local superconvergence results of Theorems 3.2.5
and 3.2.6, and Corollaries 3.2.7–3.2.9 carry over to nonlinear VIDEs, under the
appropriate smoothness and boundedness conditions. Compare also Brunner
(1992a) for additional details.

Remark Alternatively, these superconvergence results can be proved by em-
ploying the nonlinear variation-of-constant formula for (3.3.1). We refer the
reader to the paper by Burgstaller (2000) in which a corrected version of the
nonlinear variation-of-constants formulas contained in Brauer (1972) and Bern-
feld and Lord (1978) has been used. Nonlinear variation-of-constants formulas
for VIDEs can also be found in Hu, Lakshmikantham and Rao (1988).

3.3.2 Kernels of ‘non-standard’ form a(t − s)G(y(t), y(s))

Consider the VIDE

y′(t) = f (t, y(t)) +
∫ t

0
k(t − s)G(y(t), y(s))ds, t ∈ I, y(0) = y0,

(3.3.5)
and assume for ease of exposition, and without loss of generality, that f (t, y) =
g(t). The collocation error eh := y − uh solves, as we have already seen above
in a more particular situation, the initial-value problem

e′
h(t) = δh(t) +

∫ t

0
k(t − s) (G(y(t), y(s)) − G(uh(t), uh(s)))ds, t ∈ I,

eh(0) = 0.

Under appropriate regularity assumptions on G = G(y, z) we may write

G(y(t), y(s)) − G(y(t) − eh(t), y(s) − eh(s))

= G y(y(t), y(s))eh(t) + Gz(y(t), y(s))eh(s) + T2(t, s),

where the Taylor remainder term reads

T2(t, s) : = −1

2

(
G yy(η(s), η(t))e2

h(t) + 2G yz(η(s), η(t))eh(s)eh(t)

+ Gzz(η(t), η(s))e2
h(s)

)
and η(·) := y(·) − θeh(·) (0 < θ < 1). Hence, the linearised initial-value prob-
lem for the collocation error becomes

e′
h(t) = δh(t) +

∫ t

0
k(t − s)

(
G y(y(t), y(s))eh(t) + Gz(y(t), y(s))eh(s)

)
ds

+
∫ t

0
k(t − s)T2(t, s)ds, t ∈ I,
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with eh(0) = 0. (Here, we have set f (t, y) ≡ 0 for simplicity: we recall that
this term has been dealt with in Section 1.1.4.) The above error equation is of
the form

e′
h(t) = A0(t)eh(t) + δh(t) + W2(t) +

∫ t

0
K0(t, s)eh(s)ds, t ∈ I, (3.3.6)

where we have set

A0(t) :=
∫ t

0
k(t − s)G y(y(t), y(s))ds, W2(t) :=

∫ t

0
k(t − s)T2(t, s)ds,

and K0(t, s) := k(t − s)Gz(y(t), y(s)). Hence, the solution of the linearised
initial-value problem (3.3.6) for eh is given by

eh(t) =
∫ t

0
r0(t, s)[δh(s) + W2(t)]ds, t ∈ I. (3.3.7)

As in the case of standard nonlinear VIDEs the global order of the collocation
error eh corresponding to the collocation solution uh ∈ S(0)

m (Ih) for (3.3.5),

||eh ||∞ ≤ Chm, for any set {ci },
can be derived in a straighforward way. It thus follows from the definition of
W2(t) and T2(t, s) that, under appropriate smoothness assumptions on the given
functions,

|W2(t)| ≤ const.
∫ t

0
|k(t − s)|ds · ||eh ||2∞ = O(h2m),

for all t ∈ I . If we now combine this result with the familiar quadrature ar-
gument used to derive the earlier ‘classical’ global (on I ) and local (on Ih)
superconvergence results we see that they carry over to non-standard VIDEs;
that is, Theorems 3.2.5 and 3.2.6, and Corollaries 3.2.7–3.3.9 remain valid for
(3.3.5).

3.4 Partial VIDEs: time-stepping

The spatial semidiscretisation of initial-boundary-value problems for
(parabolic) partial integro-differential equations is the main source of (high-
dimensional) systems of semilinear VIDEs. Two representative examples are
given below.

Example 3.4.1 Consider the parabolic problem with memory term,

ut (t, x) − �u(t, x) = f (t, x) +
∫ t

0
k(t − s)Bu(s, x)ds, t ≥ 0, x ∈ �,

u(0, x) = u0(x), x ∈ �; u(t, x) = 0, t ≥ 0, x ∈ ∂�,
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where � ⊂ IRd is bounded, with piecewise smooth boundary ∂�, andB denotes
a (linear or nonlinear) spatial partial differential operator of order not exceeding
two.

Spatial discretisation (e.g. by finite difference or finite element techniques)
leads to a (large) system of ordinary VIDEs for U(t) ∈ IRM , with M � 1,

Uh(t)

dt
= AhUh(t) +

∫ t

0
k(t − s)(BhUh)(s)ds, t ≥ 0,

corresponding to discrete versions Ah and Bh of the Laplace operator � and
the operator B. For the common spatial discretisations the dimension M corre-
sponds to the number of interior mesh points resulting from the triangulation of
�. Note that Ah ∈ L(IRM ) is an (unboundedly) stiff matrix (Dekker and Verwer
(1984), Kauthen (1989a,b, 1992)).

Example 3.4.2 In the mathematical modelling of population dynamics involv-
ing spatial dependencies one encounters PVIDEs of the form

ut (t, x) − u(t, x) = g(t, x) + (T u)(t, x), x ∈ � ⊂ IRd , t ∈ I (3.4.1)

(cf. Zhao (2003) and its references), where T denotes the Volterra–Fredholm
integral operator given by

(T u)(t, x) :=
∫ t

0

∫
�

K (t, τ, x, ξ )u(τ, ξ )dξ dτ. (3.4.2)

The integral operator may even contain a delay argument.
Spatial semidiscretisation, in which � is replaced by a suitable triangulation

�h , and the use of corresponding appropriate quadrature approximations for the
Fredholm part of the integral operator T , leads to a (large) system of ordinary
VIDEs, similar to the one in Example 3.4.1.

Example 3.4.3 It is well known that, depending on the geometry of the
(bounded or unbounded) spatial domain � ⊂ IRd and the ‘size’ of the initial
function u0(x) ≥ 0, solutions of

ut (t, x) − �u(t, x) = u p(t, x), t > 0, x ∈ � (p > 1),

with u(0, x) = u0(x), x ∈ � and u(t, x) = 0, x∂�, t ≥ 0, will blow up in fi-
nite time (see, e.g., the survey by Bandle and Brunner (1998) and its references).
Bellout (1987) showed that the same is true for solutions of parabolic equations
in which the local reaction term u p is replaced by a memory term, e.g.

ut (t, x) − �u(t, x) =
∫ t

0
k(t − s)G(u(s, x))ds, t > 0, x ∈ �, (3.4.3)



188 3 VIDEs with smooth kernels

with G(u) = u p (p > 1), with initial and boundary conditions as before, and
bounded � (the analogous problem for unbounded � remains open).

If the VIDE (3.4.3) is semidiscretised in space, with respect to a mesh �h ,
then we obtain a (generally large) system of nonlinear VIDEs of the form

Uh(t)

dt
= AhUh(t) +

∫ t

0
k(t − s)Gh(U(s))ds, t > 0. (3.4.4)

It is clear that since the dynamics of the system (3.4.4) depends both on the
geometry of �h and on the approximating (finite element or collocation) space
and will thus be different from that of (3.4.3), blow-up of the solution of (3.4.3)
will not necessarily imply blow-up for Uh .

Remarks

1. If time-stepping in the above semidiscretised systems of VIDEs is based on
collocation in the space S(0)

m (Ih) with m ≥ 2, the approximation of the time
integrals (when deriving the fully discretised time-stepping scheme) will be-
come prohibitively expensive. There are a number of ways to ‘economise’
these quadrature approximations; see, for example, Sloan and Thomée
(1986).

2. The numerical detection of blow-up remains remains essentially open, in
particular for the classes of (parabolic) partial VIDEs described in Bell-
out (1987) and Souplet (1998a, 1998b). The same is true for the accurate
computation of the blow-up time and corresponding realistic (a posteriori)
error estimates, especially in two- and three-dimensional spatial domains.
Compare also Bandle and Brunner (1994, 1998), especially for references.

3.5 Exercises and research problems

Exercise 3.5.1 Derive the adjoint resolvent equation (3.1.9). In particular, show
that ∂r (t, s)/∂t ∈ C(D).

Exercise 3.5.2 Consider the linear VIDEs with convolution kernel,

y′(t) = a(t)y(t) + g(t) +
∫ t

0
k(t − s)y(s)ds, t ∈ I := [0, T ].

Assuming that the given functions a, g, k are in C(I ), does the resolvent kernel
r (t, s) inherit the convolution structure of k? Derive the resolvent equations for
this case.

Exercise 3.5.3 For certain classes of linear VIEs and VIDEs, the Laplace
transform provides a powerful tool for analysing quantitative and qualitative
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properties of their solutions. An important result is given by a generalisation
of the Paley–Wiener Theorem (Paley and Wiener (1934)). We state these two
results for scalar VIEs and VIDEs; analogous results hold for systems of such
Volterra equations with convolution kernels (see Miller (1971a, Appendix I),
also for background material on the Laplace transform).

1. The Paley–Wiener Theorem deals with the question of integrable resolvent
kernels for convolution-type VIEs of the form

y(t) = g(t) +
∫ t

0
k(t − s)y(s)ds, t ≥ 0.

If k ∈ L1(IR+) and if K (s) := ∫ ∞
0 exp(−st)k(t)dt denotes the Laplace trans-

form of k, then the resolvent kernel R = R(t − s) corresponding to the con-
volution kernel k = k(t − s) is in L1(IR+) if, and only if, A(s) 
= 1 for all s
with Re(s) ≥ s.
Prove this result. An analogous condition holds for matrix kernels k(·) ∈ IRm :
det(I − K (s)) 
= 0 whenever Re(s) ≥ 0.

2. Grossman and Miller (1973) extended this result to the VIDE

y′(t) = ay(t) + g(t) +
∫ t

0
k(t − s)y(s)ds, t ≥ 0 :

The resolvent kernel r = r (t − s) associated with the given convolution
kernel k satisfies r ∈ L1(IR+) if, and only if, s − a − K (s) 
= 0 for all s
with Re(s) ≥ 0.
Prove this theorem. The corresponding matrix condition reads

det[sI − A − K (s)] 
= 0 whenever Re(s) ≥ 0.

Here, A ∈ IRm is the matrix replacing a in the VIDE.

(Compare also Lubich (1983b), pp. 461-463.)

Exercise 3.5.4 Assume that the memory kernel in the logistic (‘non-standard’)
VIDE (3.1.26) is of the form

k(t − s) =
r∑

i=1

γi exp(λi (t − s)),

with distinct (non-positive) constants λi . Show that the VIDE can then be re-
duced to a system of r + 1 ODEs, and use this result to establish an existence
and uniqueness result for the given VIDE.

Exercise 3.5.5 Analyse the optimal superconvergence properties of the dis-
cretised collocation solution ûh ∈ S(0)

m (Ih) for the VIDE (3.2.1),(3.2.5), by
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establishing the orders of ||u(ν)
h − û(ν)

h ||∞ and |u(ν)
h (tn − û(ν)

h (tn)| (ν = 0, 1; 1 ≤
n ≤ N ). (Recall Section 2.2.6 and Theorem 2.2.10.)

Exercise 3.5.6 Assume that the collocation parameters {ci } are the m Lobatto
points in [0, 1] (i.e., 0 = c1 < c1 < . . . < cm = 1). State and prove the local su-
perconvergence result for the collocation solution uh ∈ S(d+1)

m+d (Ih) (d = k − 1)
to the linear version of the neutral kth-order VIDE (3.2.44).
Illustrate this by deriving the method for k = 2 and m = 3.

Exercise 3.5.7 Suppose that the VIDE (3.1.10) is rewritten as a system of two
nonlinear second-kind VIEs,

y(t) = y0 +
∫ t

0
F(s, y(s), z(s)),

z(t) =
∫ t

0
k(t, s, y(s))ds, t ∈ I.

Here, we have set

F(t, y, z) := f (t, y) + z and z(t) :=
∫ t

0
k(t, s, y(s))ds.

Derive superconvergence results for the collocation solutions uh, vh in S(−1)
m−1(Ih)

(and their iterates) approximating y and z. Compare the results with those cor-
reponding to ‘direct’ collocation of the VIDE in S(0)

m (Ih): do the two approaches
yield identical approximations?

Exercise 3.5.8 Extend the proofs of the global and local superconvergence
results (Theorems 3.2.5 and 3.2.6) to nonlinear VIDEs

y′(t) = f (y(t)) +
∫ t

0
k(t − s)G(y(s), y′(s))ds.

Exercise 3.5.9 Formulate and prove the result on the global order of the col-
location solution uh ∈ S(0)

m (Ih) for the non-standard VIDE (3.3.5).

Exercise 3.5.10 Consider the VIDE (personal communication by J.H. Gordis,
September 1993),

y(t) = g(t) +
∫ t

0
k(t − s)y′′(s)ds, t ∈ I := [0, T ], (3.5.1)

with continuous data g and k and appropriate initial conditions.

(a) Discuss the existence and uniqueness of a solution when k ∈ C2(I ), by
rewriting (3.5.1) as a first-order VIDE.

(b) Assuming that k ∈ C(I ), apply Laplace transform techniques to (3.5.1) to
obtain an existence and uniqueness result.
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(c) Under the assumption in (b) write the original Volterra equation (3.5.1) as
a VIE of the first kind, and discuss its solvability.

(d) Suppose (3.5.1) is solved directly, by collocation in S(1)
m+1(Ih). Determine

the attainable orders of global and local superconvergence of the collocation
solution uh .

Exercise 3.5.11 (Research problem)
Nonlinear VIDEs with blow-up solutions: Extend the approach and the results
of Stuart and Floater (1990) to

y′(t) = λy(t) +
∫ t

0
k(t − s)y p(s)ds, y(0) = y0 > 0,

with λ ≤ 0, p > 1, and k ∈ C[0, ∞) positive and non-increasing. (See also:
partial VIDEs with blow-up solutions, as analysed by Bellout (1987) and
Souplet (1998a, 1998b); in addition; consult the list of references in the sur-
vey paper by Bandle and Brunner (1998).) Here, one is above all interested in
computing very accurate approximations for the blow-up time. However, the
more challenging problem is the numerical detection of blow-up, especially
in partial VIDEs: since numerical time-stepping is usually based on some spa-
tially semidiscretised version of the given PVIDE, the dynamics of the resulting
(high-dimensional) system of ordinary VIDEs will be different from the one of
the original problem.

Exercise 3.5.12 (Research problem)
Discuss the solvability of the system of nonlinear algebraic equations arising
in the (exact and discretised) collocation equation for (stiff) nonlinear VIDEs
(including ‘non-standard’ VIDEs). Analyse the effect of the stopping error in
iterative methods used to solve these systems, e.g. in Newton’s method, on the
attainable order of the method. This will generalise analogous investigations for
ODEs, as given for example in Liu and Kraaijevanger (1988), Spijker (1994),
Jackson, Kvaernø and Nørsett (1996); see also Hairer and Wanner (1996,
pp. 215–224) (and compare with Exercise 2.7.30).

Exercise 3.5.13 (Research problem)
Extend the perturbed collocation method for ODEs (Section 1.2) to VIDEs. In
particular, discuss the difference between the exact and the (fully) discretised
perturbed collocation methods.

Exercise 3.5.14 (Research problem)
Derive and analyse the (super-) convergence properties of two-step collocation
for linear first-order VIDEs.
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Exercise 3.5.15 (Research problem)
Derive and analyse the discontinuous Galerkin method for VIDEs (recall Sec-
tion 1.6 where the dG method was introduced for ODEs). Can the dG method
be viewed as a (non-trivial) perturbed collocation method?

3.6 Notes

3.1: Review of basic Volterra theory (II)
An excellent account of the early theory of VIDEs, and especially of Volterra’s
contributions, can be found in Hellinger and Toeplitz (1927, pp. 1494–1498).
The monograph by Gripenberg, Londen and Staffans (1990) contains many
results on linear and nonlinear VIDEs, as does Corduneanu (1991). See also
the important paper by Nohel and Shea (1976) on global existence of solutions
to nonlinear (Hammerstein-type) VIDEs. A variation-of-constant formula for
linear neutral VIDEs is presented in Wang, Wu and Li (1986); the result is used
to prove the existence of periodic solutions.

Extensions of the Paley–Wiener theorem (Paley and Wiener (1934, pp. 58–
63)) to linear VIDEs with convolution kernels can be found in Grossman and
Miller (1973), Shea and Wainger (1975), and in Lubich (1983b); see also
Gripenberg, Londen and Staffans (1990) and B. Zhang (1997) on the inte-
grability of resolvent kernels.

Ordinary and partial VIDEs with blow-up solutions are studied in Bellout
(1987), Hattori and Lightbourne (1990), and Souplet (1998a, 1998b). The last
paper contains a good bibliography. See also Chadam, Pierce and Yin (1992)
for related problems involving nonlinear Fredholm operators.

Good references on nonlinear Gronwall-type inequalities and comparison
theorems for VIDEs are the books by Gripenberg, Londen and Staffans (1990,
Chapter 10 (Lemma 3.10)) and Györi and Ladas (1991, Section 9.2).

Applications of VIDEs
The following monographs and conference proceedings contain numerous
applications of VIDEs, as well as extensive lists of references: Cushing
(1977), Brunner (1982a), Burton (1983), Lakshmikantham (1987), Yanik and
Fairweather (1988), Brunner (1989b), Corduneanu (1991), Prüss (1993), Wu
(1996), Agarwal and O’Regan (2000), and Zhao (2003). As in the Notes to the
previous chapter we list a brief selection of more specific references; most of
these papers and book feature detailed bibliographies.
� Modelling of heredity effects: Volterra (1913, pp. 139–141) considered a

‘problème dynamique de la torsion héréditaire’ modelled by the VIDE

ω(t) = k{P(t) − µω′′(t)} +
∫ t

0
{P(τ ) − µω′′(τ )}�(t, τ )dτ.
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A survey of such problems was given in Volterra (1912); see also Volterra
(1928). His book of 1959 contains a review of VIDEs arising as models of
hysteresis effects. The book by Visintin (1994) treats the modern theory of
hysteresis. As indicated there, it appears that in spite of Volterra’s pioneering
work of around 1910 many challenging problems remain in the theory and,
especially, the numerical analysis of Volterra integral and integro-differential
equations with hysteresis.

� Population dynamics: Volterra (1927, 1931, 1934, 1939). The classical ref-
erence is Cushing (1977). More recent papers are by Ruan and Wu (1994)
(with extensive references), Aves, Davies and Higham (1996, 2000), Thieme
and Zhao (2003), and Zhao (2003). Consult also Brunner, van der Houwen
and Sommeijer (2003) on relevant references.

� Identification problems in partial VIDEs: A. Lorenzi and his numerous col-
laborators have made extensive contributions to this topic; here, we mention
only the papers by Favaron and Lorenzi (2003) and by Grasselli and Lorenzi
(1991) (and their references). See also v. Wolfersdorf (1994), Janno and v.
Wolfersdorf (1997a, 1997b), and the dissertation by Kiss (1999). These papers
also contain extensive bibliographies.

� Financial mathematics: Chukwu (1999), Makroglou (2000, 2003).
� Rheology / viscoelasticity: Lodge, McLeod and Nohel (1978), Jordan (1978),

Markowich and Renardy (1983), Angell and Olmstead (1985), Renardy,
Hrusa and Nohel (1988), Hrusa, Nohel and Renardy (1988), Shaw, Warby and
Whiteman (1994, 1996, 1997), Shaw and Whiteman (1997, 2000b, 2001).

� Turbulent diffusion: Tang and Yuan (1987), Yuan and Tang (1990), Bui Doan
Khanh (1994).

� Wave-power hydrolics: Elliott and McKee (1981).
� Capillary theory: A. Corduneanu and Morosanu (1996).
� Medicine: Clements and Smith (1996).

Information on the physical origin of the Volterra equation (3.5.1) in Exercise
3.5.9 can be found in Arfken and Weber (2001, Chapter 16).

3.2 / 3.3: Collocation for linear and nonlinear VIDEs
The paper by Brunner and Lambert (1974) contains a detailed quantitative and
qualitative analysis of various one-step methods (based on the explicit and
implicit Euler methods) that may be viewed as fully discretised collocation
methods. The A-stability of such methods was also studied in Matthys (1976).
The general convergence and local superconvergence analysis of piecewise
polynomial collocation for linear VIDEs was given in Brunner (1984b, 1988a,
1988b), Brunner and van der Houwen (1986, Chapter 5), and Aguilar and Brun-
ner (1988). Analogous results for nonlinear VIDEs are the subject of Brunner
(1989a, 1989b), while local superconvergence results for higher-order nonlinear
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VIDEs can be found in Brunner (1992a). The paper by Brunner (1992b) deals
with collocation methods for VIDEs with Hammerstein nonlinearities. See also
the doctoral dissertation by Burgstaller (1993) for a good treatment of many
aspects of collocation methods for VIDEs.

A survey of spline collocation methods for (partial) differential and integro-
differential equations was given by Fairweather and Meade (1989); it contains a
comprehensive list of references. See also the more recent papers by Fairweather
(1994), Ganesh and Spence (1998), Ganesh and Sloan (1999), and Bialecki and
Fairweather (2001) on orthogonal spline collocation methods.

In his doctoral dissertation, Wahr (1977) studies the convergence and nu-
merical implementation of collocation methods for boundary-value problems
in mth-order VIDEs. See also the related paper by Hangelbroek, Kaper and Leaf
(1977) (extension of superconvergence results of de Boor and Swartz (1973)).

The analysis of pseudo-spectral methods for VIDEs is still incomplete. The
reader may wish to consult the paper by Akyüz and Sezer (1999) (which deals
with Chebyshev collocation) for additional references.

The theory and numerical solution of Fredholm integro-differential equations
is presented in, e.g., Karpilovskaya (1965), Hangelbrook et al. (1977) (exten-
sion of superconvergence results by de Boor and Swartz (1973)), Volk (1985),
Fairweather and Meade (1989) (survey paper), Micula and Micula (1992), Mic-
ula and Fairweather (1993), Ngyuen and Nguyen (1997) (Volterra–Fredholm
IDEs), Hu (1998a), Ganesh and Spence (1998), Ganesh and Sloan (1999); see
also the book by Appell, Kalitvin and Zabrejko (2000).

3.4: Partial VIDEs: time-stepping
Of the numerous literature we cite the papers by Sloan and Thomée (1986),
Yanik and Fairweather (1988), Thomée (1988) (survey paper), Kauthen (1989b,
1992), Lin, Thomée and Wahlbin (1991), Thomée and Wahlbin (1994),
Fairweather (1994) (hyperbolic VIDEs), Brunner, Kauthen and Ostermann
(1995) (parabolic VIDEs as abstract ODEs), van der Houwen and Sommeijer
(1997) (splitting methods), Larsson, Thomée and Wahlbin (1998), Kolobov
and Molorodov (1999) (choice of the collocation parameters), and Brunner,
van der Houwen and Sommeijer (2003). The monograph by Chen and Shih
(1998) contains a comprehensive treatment of spatial (finite element) and time-
discretisation techniques, as well as a good bibliography.

Post-processing methods
The post-processing (by extrapolation or multilevel iteration correction tech-
niques) of collocation solutions to VIDEs was studied by Hu (1996b) and Hu
and Peng (2000); see also the related analysis of Hu (1998a) for Fredholm
integro-differential equations. We also mention the papers by Zhang, T. Lin,
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Y. Lin and Rao (2001) (Galerkin methods), T. Lin, Y. Lin, Rao and Zhang (2000)
and T. Lin, Y. Lin, Luo, Rao and Zhang (2001) (Petrov–Galerkin methods).

Q. Lin and his collaborators have done extensive research on Richardson
extrapolation and defect correction methods for improving the accuracy of
collocation and Galekin finite-element methods for parabolic and hyperbolic
partial VIDEs. The paper by Q. Lin, Zhang and Yan (1998a) lists many of their
papers. In addition, see Q. Lin and Lü (1984), Q. Lin and Zhang (1997), Q. Lin,
Zhang and Yan (1997, 1998a, 1998b), and Q. Lin and Zhou (1997a,b).

The discontinuous Galerkin method for VIDEs
The doctoral dissertation by Ma (2004) presents a detailed convergence analysis
of the discontinuous Galerkin methods, especially for non-standard (nonlinear)
VIDEs. Compare also Ma and Brunner (2003).

WR and TR methods
Due to limitation of space we have not dealt with the question on how best
to solve the (large) linear or nonlinear systems of algebraic equations result-
ing from the computational form of the collocation equations for systems of
VIDEs. As we have briefly seen in Section 3.4, such systems are typically
encountered in time-stepping for semi-discretised semi-linear partial VIDEs.
Waveform relaxation (WR) methods and their discrete analogues, time-point
relaxation methods, have recently received considerable attention. The reader
will find information on theoretical and computational aspects of such methods
in, e.g., Crisci, Ferraro and Russo (1996), Crisci, Russo and Vecchio (1997,
1998); see also the doctoral thesis by Parsons (1999) and the paper by Brunner,
Crisci, Russo and Vecchio (2003) (on weakly singular VIDEs). Jackiewicz and
Kwapisz (1997) and Zubik-Kowal and Vandewalle (1999) study WR methods
for general functional differential equations.
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Initial-value problems with non-vanishing delays

The functional equations considered in the previous three chapters had the com-
mon feature that smooth data led to smooth solutions. This will in general no
longer be true if the equation contains a non-vanishing delay: such delays induce
so-called primary discontinuity points at which the regularity of the solution
will be lower, at least initially, than that of the given functions. Thus, supercon-
vergence can only occur if the meshes underlying the collocation spaces are
chosen so as to reflect this behaviour of the analytic solutions.

4.1 Basic theory of Volterra equations with delays

4.1.1 Definitions and notation

The initial-value problem for a first-order delay differential equation (DDE) is
described by

y′(t) = f (t, y(t), y(θ (t))), t ∈ I := [t0, T ], (4.1.1)

y(t) = φ(t), t ≤ t0.

The DDE (4.1.1) is also referred to as a retarded differential equation. We will
assume that the delay function (or: lag function) θ (t) := t − τ (t) is continu-
ous and strictly increasing on I , and that the delay τ (t) is strictly positive on
I : τ (t) ≥ τ0 > 0 for all t ∈ I .

A DDE containing also the derivative of the unknown solution at the points
θ (t),

y′(t) = f (t, y(t), y(θ (t)), y′(θ (t))), t ∈ I, (4.1.2)

196
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is called a neutral DDE. Neutral DDEs often occur in a somewhat different, but
related form – often called Hale’s form – namely,

d

dt
[y(t) − G(t, y(θ (t))] = f (t, y(t), y(θ (t))), t ∈ I. (4.1.3)

The most complex situation arises if the lag function θ depends also on
the unknown solution, θ = θ (t, y(t)) = t − τ (t, y(t)): we then speak of a DDE
with state-dependent delay.

The following definition, together with examples, may be found in Bellen
and Zennaro (2003, Section 2.2).

Definition 4.1.1 The points {ξµ : µ ≥ 0} generated by the recursion

θ (ξµ+1) = ξµ+1 − τ (ξµ+1) = ξµ, µ = 0, 1, . . . ; ξ0 := t0, (4.1.4)

are called the primary discontinuity points associated with the lag function
θ (t) = t − τ (t).

As the name indicates, at these points the solution of a DDE, regardless of
how regular the given functions are, will in general exhibit a low degree of
regularity: for example, at t = ξ0 = t0 the solution will be continuous but will
have a discontinuous derivative. We note that additional, so-called secondary
discontinuity points may arise if the given initial function φ is only piecewise
continuous, that is, if it contains one ore more finite jump discontinuities.

Illustration

1. If τ (t) = τ > 0 is constant, then the primary discontinuity points induced
by θ (t) = t − τ are

ξµ = t0 + µτ, µ = 0, 1, . . . .

2. Let I := [t0, T ] be such that t0 > 0. Then the lag function θ (t) = qt = t −
(1 − q)t (0 < q < 1) corresponds to the non-vanishing proportional delay
τ (t) = (1 − q)t . The corresponding primary discontinuity points are given
by

ξµ = q−µt0, µ = 0, 1, . . . .

We note that for t0 = 0 there are no primary discontinuity points: as we will
see in Chapter 5, in this case smooth data lead to smooth solutions on I .

Definition 4.1.2

(i) The lag function θ (t) = t − τ (t) describes a fading memory if there exists
a τ1 > 0 so that τ (t) ≤ τ1 for all t ≥ t0.
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(ii) The delay τ is said to be bounded if sup{τ (t) : t ≥ t0} < ∞.
(iii) The delay τ is called unbounded if τ (t) → ∞ as t → ∞.

Note that for the delay function θ (t) := qt = t − (1 − q)t (0 < q < 1), with
t0 > 0, we have τ (t) = (1 − q)t , and hence τ is unbounded, while the constant
delay τ (t) = τ > 0 is bounded.

A detailed discussion of DDEs with more general (e.g. non-monotonic) θ

can be found in Chapters 1 and 2 of the monograph by Bellen and Zennaro
(2003). In addition, see the papers by de Gee (1985), Willé and Baker (1992),
Baker, Paul and Willé (1995a), and the survey Baker (2000) on the implications
of delays of various types on their solutions.

Standard introductions to the general theory of DDEs are Bellman and Cooke
(1964), Halanay (1966), El’sgol’ts and Norkin (1973), Driver (1977), Hale
(1977), and Hale and Verduyn Lunel (1993). Compare also Diekmann et al.
(1995) and Wu (1996) for more advanced treatments.

4.1.2 Second-kind Volterra integral equations with
non-vanishing delays

The general linear Volterra integral equation with delay (or lag) function θ (t)
has the form

y(t) = g(t) + (V y)(t) + (Vθ y)(t), t ∈ (t0, T ]. (4.1.5)

Here, V : C(I ) → C(I ) denotes the classical Volterra integral operator intro-
duced in Chapter 2,

(V y)(t) :=
∫ t

t0

K1(t, s)y(s)ds, (4.1.6)

with kernel K1 ∈ C(D), D := {(t, s) : t0 ≤ s ≤ t ≤ T }. The kernel K2 of the
delay integral operator

(Vθ y)(t) :=
∫ θ (t)

t0

K2(t, s)y(s)ds, (4.1.7)

is assumed to be continuous in Dθ := {(t, s) : θ (t0) ≤ s ≤ θ (t), t ∈ I }, with
I := [t0, T ]. Throughout this chapter the lag function θ will be subject to the
following conditions (D1)–(D3):

(D1) θ (t) = t − τ (t), τ ∈ Cd (I ) for some d ≥ 0;
(D2) τ (t) ≥ τ0 > 0 for t ∈ I ;
(D3) θ is strictly increasing on I .
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Remark The subsequent discussion will reveal that condition (D3) has been
introduced mainly for technical reasons. However, the reader is encouraged
to consult Section 2.1 in Bellen and Zennaro (2003) for many illuminating
examples and remarks on the complications arising if (D3) does not hold. While
the vast majority of delay Volterra equations (including of course those with
constant delay τ > 0) satisfy (D1)–(D3), severe complication will usually arise
when the lag function θ depends on the solution y.

In applications (for example, in mathematical models for population growth;
see Section 4.1.5 below) one often encounters delay integral equations of the
type

y(t) = g(t) + (Wθ y)(t), t ∈ (t0, T ], (4.1.8)

corresponding to the delay Volterra integral operator

(Wθ y)(t) :=
∫ t

t0

K (t, s)y(s)ds (4.1.9)

(or to its nonlinear version, see Section 4.1.5). This delay equation may be
viewed as a particular case of (4.1.5), obtained formally by setting K2 =
−K1 =: −K .

As for DDEs, the given delay integral equation will have to be complemented
by an initial condition,

y(t) = φ(t), t ∈ [θ (t0), t0].

We observe that, in contrast to initial-value problem for DDEs and DVIDEs with
non-vanishing delays (compare Section 4.1.3), the interval in which (4.1.5) is
considered is the left-open interval (t0, T ]: we shall see below (Theorem 4.1.1)
that solutions to Volterra integral equations with non-vanishing delays typi-
cally possess a finite (jump) discontinuity at t = t0, while for first-order DDEs
(and DVIDEs) the solution y is continuous at this point, with the discontinuity
occurring in y′.

However, in complete analogy to DDEs the non-vanishing delay θ gives rise
to the primary discontinuity points {ξµ} for the solution y of (4.1.5): they are
determined by the recursion

θ (ξµ) = ξµ−1, µ ≥ 1 (ξµ = t0).

Condition (D2) ensures that these discontinuity points have the (uniform) sep-
aration property

ξµ − ξµ−1 = τ (ξµ) ≥ τ0 > 0 for all µ ≥ 1.
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Theorem 4.1.1 Assume that the given functions in (4.1.5) are continuous on
their respective domains and that the lag function θ satisfies the above con-
ditions (D1)–(D3). Then for any initial function φ ∈ C[θ (t0), t0] there exists a
unique (bounded) y ∈ C(t0, T ] solving the delay integral equation (4.1.5) and
coinciding with φ on [θ (t0), t0]. In general, this solution has a finite (jump)
discontinuity at t = t0:

lim
t→t+

0

y(t) �= lim
t→t−

0

y(t) = φ(t0).

The solution is continuous at t = t0 only if the initial function is such that

g(t0) −
∫ t0

θ (t0)
K2(t0, s)φ(s)ds = φ(t0).

Proof For t ∈ I (µ) := [ξµ, ξµ+1] the initial-value problem for (4.1.5) may be
written as a Volterra integral equation of the second kind,

y(t) = gµ(t) +
∫ t

ξµ

K1(t, s)y(s)ds, (4.1.10)

with gµ(t) := g(t) + �µ(t) and

�µ(t) :=
∫ ξµ

t0

K1(t, s)y(s)ds +
∫ θ (t)

t0

K2(t, s)y(s)ds.

For µ = 0 this function is known and given by

�0(t) = −
∫ t0

θ (t)
K2(t, s)φ(s)ds;

by our assumptions we have �0 ∈ C(I (0)). It follows from the classical Volterra
theory of Chapter 2 that for each µ ≥ 0 (so that I (µ) ⊂ I ) the integral equation
(4.1.10) possesses a unique continuous solution in I (µ).

As for its regularity, we first observe that for µ = 0 (with ξ0 = t0),

lim
t→t+

0

y(t) = g(t0) + �0(t0) = g(t0) −
∫ t0

θ (t0)
K2(t0, s)φ(s)ds

which, for arbitrary (continuous) data g, K2, φ, will not coincide with the
value φ(t0). For µ ≥ 1 we derive

y(ξ−
µ ) = g(ξµ) +

∫ ξµ

t0

K1(ξµ, s)y(s)ds +
∫ θ (ξµ)

t0

K2(ξµ, s)y(s)ds

and

y(ξ+
µ ) = g(ξµ) +

∫ ξµ

t0

K1(ξµ, s)y(s)ds +
∫ θ (ξµ)

t0

K2(ξµ, s)y(s)ds.
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Hence,

y(ξ+
µ ) − y(ξ−

µ ) = 0,

whenever g, K1, K2 and θ are continuous functions. This completes the proof
of Theorem 4.1.1.

We have seen in Chapter 2 that the solution of a linear Volterra integral
equation of the second kind can be expressed in terms of the resolvent kernel
and the non-homogeneous term g (recall Theorem 2.1.2); this ‘variation-of-
constants’ formula proved to be the key to the establishing of (global and
local) superconvergence results for collocation solutions to such equations. As
the above proof implicitly shows, an analogous representation can be derived
for the solution of the delay Volterra integral equation (4.1.5), since by (D2)
the delay τ = τ (t) in θ (t) = t − τ (t) does not vanish in I . Suppose, for ease
of notation and without loss of generality, that T in I = [t0, T ] is such that
ξM+1 = T (or, alternatively, T ∈ (ξM , ξM+1]) for some M ≥ 1.

Theorem 4.1.2 Suppose that (D1)–(D3) and the assumptions of Theorem 4.1.1
hold, and set

g0(t) := g(t) −
∫ t0

θ (t)
K2(t, s)φ(s)ds for t ∈ I (0).

Then for t ∈ I (µ) := [ξµ, ξµ+1] (µ ≥ 1) the unique solution y of (4.1.5) corre-
sponding to the initial function φ can be expressed in the form

y(t) = g(t) +
∫ t

ξµ

R1(t, s)g(s)ds + Fµ(t) + �µ(t), (4.1.11)

with

Fµ(t) :=
∫ ξ1

t0

Rµ,0(t, s)g0(s)ds +
µ−1∑
ν=1

∫ ξν+1

ξν

Rµ,ν(t, s)g(s)ds,

�µ(t) :=
∫ θµ(t)

t0

Qµ,0(t, s)g0(s)ds +
µ−1∑
ν=1

∫ θµ−ν (t)

ξν

Qµ,ν(t, s)g(s)ds.

On the initial interval (ξ0, ξ1] (with ξ0 = t0) the solution y is given by

y(t) = g0(t) +
∫ t

t0

R1(t, s)g0(s)ds. (4.1.12)

Here, R1 is the resolvent kernel associated with the given kernel K1 of the
Volterra integral operator (4.1.6), Rµ,ν and Qµ,ν denote functions which are
continuous on their respective domains and depend on K1, K2, R1 and θ , and
θ k := θ ◦ · · · ◦ θ︸ ︷︷ ︸

k

.
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Remarks

1. The structure of the above variation-of-constants formula (4.1.11) clearly
reveals the interaction between the classical lag term Fµ(t) (governed by the
classical Volterra operator V) and the delay term �µ(t) (which reflects the
action of the non-vanishing delay function θ ). The insight obtained from the
latter will play a crucial role in the selection of appropriate (‘θ -invariant’)
meshes underlying local superconvergence results (Section 4.2.1).

2. Cerha (1976) showed that the solution of a delay VIE whose delay occurs
in the integrand,

y(t) = g(t) +
∫ t

0
K (t, s)y(θ (s))ds, t ∈ I,

with g ∈ C(I ) and K ∈ C(D), admits a simpler ‘resolvent representation’,
namely

y(t) = g(t) +
∫ t

0
R(t, s)g(θ (s))ds, t ∈ I.

The resolvent kernel R associated with the given kernel K satisfies the
resolvent equations

R(t, s) = K (t, s) +
∫ t

s
K (t, v)R(θ (v), s)dv, (t, s) ∈ D),

and

R(t, s) = K (t, s) +
∫ t

s
R(t, v)K (θ (v), s)dv, (t, s) ∈ D.

Proof The solution of the integral equation (4.1.10),

y(t) = gµ(t) +
∫ t

ξµ

K1(t, s)y(s)ds, t ∈ I (µ),

is given by

y(t) = gµ(t) +
∫ t

ξµ

R1(t, s)gµ(s)ds, t ∈ I (µ), (4.1.13)

with R1 defined by the resolvent equation

R1(t, s) = K1(t, s) +
∫ t

s
R1(t, v)K1(v, s)dv, (t, s) ∈ D(µ)

(cf. (2.1.9)), where D(µ) := {(t, s) : ξµ ≤ s ≤ t ≤ ξµ+1}. The expression
(4.1.12) for the solution on the interval I (0) thus follows immediately.
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On I (1) we thus have, using Dirichlet’s formula and (4.1.12),

g1(t) = g(t) +
∫ ξ1

t0

K1(t, s)y(s)ds +
∫ θ (t)

t0

K2(t, s)y(s)ds

= g(t) +
∫ ξ1

t0

K1(t, s)g0(s)ds +
∫ θ (t)

t0

K2(t, s)g0(s)ds

+
∫ ξ1

t0

(∫ ξ1

v

K1(t, s)R1(s, v)ds

)
g0(v)dv

+
∫ θ (t)

t0

(∫ θ (t)

v

K2(t, s)R1(s, v)ds

)
g0(v)dv,

and hence

g1(t) = g(t) +
∫ ξ1

t0

(
K1(t, s) +

∫ ξ1

s
K1(t, v)R1(v, s)dv

)
g0(s)ds

+
∫ θ (t)

t0

(
K2(t, s) +

∫ θ (t)

s
K2(t, v)R1(v, s)dv

)
g0(s)ds

=: g(t) +
∫ ξ1

t0

Q(1)
1,1(t, s)g0(s)ds +

∫ θ (t)

t0

Q(1)
1,0(t, s)g0(s)ds,

with obvious meaning of the (continuous) functions Q(1)
1,0 and Q(1)

1,1.
Recall now the representation (4.1.13) of the solution y on I (1): after trivial

algebraic manipulation it can be written as

y(t) = g(t) +
∫ t

t0

R1(t, s)g(s)ds +
∫ ξ1

t0

(
Q(1)

1,1(t, s) + Q̂(1)
1,1(t, s)

)
g0(s)ds

+
∫ θ (t)

t0

(
Q(1)

1,0(t, s) + Q̂(1)
1,0(t, s)

)
g0(s)ds.

This yields (4.1.11) for µ = 1, by setting

R1,0(t, s) := Q(1)
1,1(t, s) + Q̂(1)

1,1(t, s), Q1,0(t, s) := Q(1)
1,0(t, s) + Q̂(1)

1,0(t, s).

Clearly, the functions describing this expression for y are continuous in the
region where they are defined.

The proof is now concluded by a simple but (notationwise) tedious induc-
tion argument. This argument reveals that in the variation-of-constants formula
(4.1.11) the integrals over [ξµ, ξµ+1] with µ ≥ 1 will contribute terms involving
only g(t), while the integrals over [ξ0, ξ1] and [ξ0, θ

µ(t)] contain the ‘entire’
initial function g0(t).

The result of Theorem 4.1.2 and its proof lead to the following result on the
regularity of solutions of (4.1.5).
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Theorem 4.1.3 Assume that (D1)–(D3) are satisfied and that the functions
describing the delay Volterra integral equation (4.1.5) all possess continuous
derivatives of at least order m ≥ 1 on their respective domains. Then:

(a) The (unique) solution y of (4.1.5) is in Cm(ξµ, ξµ+1] for each µ =
0, 1, . . . , M and is bounded on Z M := {ξµ : µ = 0, 1, . . . , M}, and hence
on I .

(b) At t = ξµ (µ = 1, . . . , min{m, M}) we have

lim
t→ξ−

µ

y(µ−1)(t) = lim
t→ξ+

µ

y(µ−1)(t),

while the µ-th derivative of y is in general not continuous at ξµ. In addition,
if min{m, M} = m < M, the solution also lies in Cm[ξm+1, T ].

The proof is left as an exercise (Exercise 4.7.3).

In Section 4.4.2 we shall meet a second-kind delay VIE that is somewhat
more general than (4.1.8), namely,

y(t) = g(t) + b(t)y(θ (t)) + (Wθ y)(t), t ∈ (θ (t0), t0]. (4.1.14)

Since the delay τ in θ (t) = t − τ (t) does not vanish on I the above result on
the existence and uniqueness of a solution of the corresponding initial-value
problem (Theorem 4.1.1), the variation-of-constant formula (Theorem 4.1.2),
and the regularity properties (Theorem 4.1.3) can be generalised to encompass
(4.1.14). We leave the proofs of these generalisations as an exercise (Exercise
4.7.4).

Turning to the regularity and smoothing properties of solutions of delay
VIEs, it is not diffult, on the basis of Theorem 4.1.2, to establish results that
are close analogues of those for DDEs with non-vanishing delays. Due to
limitation of space we will simply summarise some of these results; the proofs
of some of these can be found in Brunner and Zhang (1999). The extension of
the results to delay VIEs with weakly singular kernels can be found in Section
6.1.7 (Table 6.1).

4.1.3 First-kind VIEs with non-vanishing delays

Consider the linear first-kind Volterra integral equation with lag function θ

satisfying (D1)–(D3),

(V y)(t) + (Vθ y)(t) = g(t), t ∈ (t0, T ], (4.1.15)

subject to the initial condition y(t) = φ(t), t ∈ [θ (t0), t0]. The (linear) Volterra
integral operators are those of (4.1.6) and (4.1.7). Using the notation of the
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Table 4.1. Regularity and smoothing of solutions to delay VIEs

Delay VIE Regularity at t = ξµ

(Cm–data) (µ = 0, 1, . . . , M)

• y(t) = g(t) + (Vθ y)(t) Cµ−1

(finite jump at t = t0)
• y(t) = g(t) + (Wθ y)(t) Cµ−1

(finite jump at t = t0)
• y(t) = g(t) + b(t)y(θ (t)) + (Vθ y)(t) C−1

(finite jump at t = t0; no
smoothing at t = ξµ)

previous section we can write (4.1.15) in the local form∫ t

ξµ

K1(t, s)y(s)ds = gµ(t), t ∈ (ξµ, ξµ+1], (4.1.16)

with

gµ(t) := g(t) −
∫ ξµ

t0

K1(t, s)y(s)ds −
∫ θ (t)

t0

K2(t, s)y(s)ds (4.1.17)

(µ ≥ 1). For t ∈ (ξ0, ξ1] this becomes

g0(t) := g(t) +
∫ t0

θ (t)
K2(t, s)φ(s)ds. (4.1.18)

This reveals that for arbitrary continuous K2, g, φ, θ , we have

g0(t0) = g(t0) +
∫ t0

θ (t0)
K2(t0, s)φ(s)ds �= 0.

Hence, according to the classical Volterra theory of 1896, it follows that typically
the solution of (4.1.16) (with µ = 0) will be unbounded at t = t+

0 :

lim
t→t0−

y(t) = φ(t0) �= lim
t→t0+

y(t) = ±∞.

For the solution to be bounded at t = t+
0 the initial function must be such that∫ t0

θ (t0)
K2(t0, s)φ(s)ds = −g(t0) (4.1.19)

holds.

Theorem 4.1.4 Assume:

(a) K1 ∈ C1(D), with |K1(t, t)| ≥ κ0 > 0, t ∈ I := [t0, T ];
(b) K2 ∈ C1(Dθ );
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(c) g ∈ C1(I );
(d) θ is subject to (D1)–(D3) of Section 4.1.2, with d = 1 in (D1).

Then for any initial function φ ∈ C[θ (t0), t0] there exists a unique y with y ∈
C(ξµ, ξµ+1] (µ = 0, 1, . . . , M) which solves (4.1.15) and coincides with φ on
[θ (t0), t0]. This solution y remains bounded at t = t0 = ξ0 if, and only if, (4.1.19)
holds.

Proof We know from Section 2.1.3 that under the assumptions (a)–(d) the first-
kind Volterra integral equation (4.1.16) possesses, for each µ = 0, 1, . . . , M ,
a unique solution y ∈ C(ξµ, ξµ+1]. At t = ξ+

0 = t+
0 the solution is bounded

if, and only if, g0(ξ0) = 0 which, according to (4.1.18), is equivalent to the
condition (4.1.19).

Is the smoothing property we encountered in solutions of delay Volterra
integral equations of the second kind (Theorem 4.1.3) also present for solutions
of the first-kind delay equation (4.1.15)? Let us obtain some insight into the
general answer by looking at a representative example.

Illustration

For the smooth kernels K1(t, s) ≡ 1, K2(t, s) ≡ λ2 �= 0, (4.1.15) reads

∫ t

t0

y(s)ds +
∫ θ (t)

t0

λ2 y(s)ds = g(t), t ∈ (t0, T ], (4.1.20)

with y(t) = φ(t) = φ0 for t ∈ [θ (t0), t0]. On (ξµ, ξµ+1] this delay equation is
given by ∫ t

ξµ

y(s)ds = gµ(t),

where

gµ(t) := g(t) −
∫ ξµ

t0

y(s)ds −
∫ θ (t)

t0

λ2 y(s)ds (µ ≥ 1),

and

g0(t) := g(t) +
∫ t0

θ (t)
λ2φ(s)ds = g(t) + λ2φ0 · (t0 − θ (t)).

On (t0, ξ1] we find the solution to be

y(t) = g′
0(t) = g′(t) − λ2φ0θ

′(t).
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It is bounded at t = t+
0 if, and only if, the initial function is such that g(t0) = 0,

implying that

φ0 = − g(t0)

λ2τ (t0)

holds (recall that t − θ (t) = τ (t), with strictly positive delay τ (t)). We observe
also that under this hypothesis,

y(t+
0 ) = g′(t0) − λ2φ0θ

′(t0) = g′(t0) + g(t0)θ ′(t0)/τ (t0);

thus, y(t+
0 ) �= φ(t0) for general data.

Let now µ = 1: using the above results and definitions we find

g1(t) = g(t) −
∫ ξ1

ξ0

(
g′(s) − λ2φ0θ

′(s)
)

ds −
∫ θ (t)

ξ0

λ2
(
g′(s) − λ2φ0θ

′(s)
)

ds

and hence

g1(ξ1) = g(ξ0) + λ2φ0(ξ0 − θ (ξ0)) = g(t0) + λ2φ0τ (t0).

If the boundedness condition (4.1.19) is true, then it follows that g1(ξ1) =
g0(t0) = 0. In other words, boundedness of y at t = t0 = ξ0 implies bounded-
ness at t = ξ1; an analogous argument yields then boundedness at the remaining
points of Z M . Moreover, we find from the expressions

y(ξ−
1 ) = g′(ξ1) + g(ξ0)θ ′(ξ0)/τ (ξ0)

and

y(ξ+
1 ) = g′(ξ1) − λ2θ

′(ξ1){g′(ξ0) + g(ξ0)θ ′(ξ0)/τ (ξ0)}.
that the jump at t = ξ1 is given by

y(ξ+
1 ) − y(ξ−

1 ) = −λ2g′(t0)θ ′(ξ1) − g(t0)θ ′(t0)[1 + λ2θ
′(t0)]/τ (t0).

Clearly, the jump discontinuity of y at t = t0 will lead to such a discontinuity at
the next primary discontinuity point t = ξ1: even if the boundedness condition
(4.1.19) is fulfilled, there is no smoothing in the solution of the first-kind delay
Volterra integral equation (4.1.20).

The analysis for the particular first-kind delay integral equation (4.1.20)
is readily generalised to encompass (4.1.15). We summarise the result in the
following theorem but leave the proof of the result to the reader.

Theorem 4.1.5 Let the assumptions of Theorem 4.1.4 for the given functions in
(4.1.15) hold, and assume that the initial function φ ∈ C[θ (t0), t0] is such that
the solution y of the initial-value problem for (4.1.15) is bounded at t = t+

0 .
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If y possesses a finite discontinuity at t = t0, then the discontinuity persists at
the other points of Z M .

4.1.4 VIDEs with non-vanishing delays

In this section we study the properties of solutions of the linear first-order delay
VIDE

y′(t) = a(t)y(t) + b(t)y(θ (t)) + g(t) + (V y)(t) + (Vθ y)(t), t ∈ I := [t0, T ],

(4.1.21)

corresponding to the Volterra integral operators V and Vθ introduced in (4.1.6)
and (4.1.7). It includes the analogue of the particular delay VIE (4.1.8),
namely

y′(t) = a(t)y(t) + b(t)y(θ (t)) + g(t) + (Wθ y)(t), t ∈ I. (4.1.22)

The solutions y of the delay VIDE (4.1.21) (and hence those of (4.1.22))
will in general again have lower regularity at the primary discontinuity points
{ξµ} defined by the recursion

θ (ξµ) = ξµ−1, µ = 1, . . . (ξ0 = t0)

(cf. Section 4.1.1).
We start with a basic result on the existence and uniqueness of solutions of

the initial-value problem for (4.1.21).

Theorem 4.1.6 Assume:

(a) a, b, g, θ ∈ C(I ), K1 ∈ C(D), K2 ∈ C(Dθ );
(b) θ (t) = t − τ (t) satisfies the conditions (D1)–(D3) of Section 4.1.2.

Then for any initial function φ ∈ C[θ (t0), t0] there exists a unique function
y ∈ C(I ) ∩ C1(t0, T ] which satisfies the delay VIDE (4.1.21) on I and coincides
with φ on [θ (t0), t0]. At t = t0 its derivative is, in general, discontinuous (but
bounded):

lim
t→t+

0

y′(t) �= lim
t→t−

0

y′(t) = φ′(t0)

(assuming that θ ′(t0) exists).

The proof is left as an exercise (for which the lines preceding Theorem 4.1.9
below may be helpful).

The (unique) solution y of the initial-value problem for (4.1.21) can be
expressed by a variation-of-constant formula, analogous to the one in Theorem
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4.1.2 for the delay VIE (4.1.5). This result is based on the ‘local’ form of the
above delay VIDE, that is, on the initial-value problem with respect to the
interval I (µ) := [ξµ, ξµ+1] (µ = 1, . . . , M):

y′(t) = a(t)y(t) + gµ(t) +
∫ t

ξµ

K1(t, s)y(s)ds, t ∈ I (µ), (4.1.23)

where y(ξµ) is known and gu is defined by

gµ(t) := g(t) + b(t)y(θ (t)) +
∫ ξµ

t0

K1(t, s)y(s)ds

+
∫ θ (t)

t0

K2(t, s)y(s)ds, t ∈ I (µ). (4.1.24)

For µ = 0 the above lag term reduces to

g0(t) := g(t) + b(t)φ(θ (t)) −
∫ t0

θ (t)
K2(t, s)φ(s)ds, t ∈ I (0). (4.1.25)

According to Theorem 3.1.1, the solution of the (local) VIDE (4.1.23) has the
form

y(t) = r1(t, ξµ)y(ξµ) +
∫ t

ξµ

r1(t, s)gµ(s)ds, t ∈ I (µ), (4.1.26)

with the resolvent kernel r1 given by the solution of the resolvent equation

∂r1(t, s)

∂s
= −r1(t, s)a(s) −

∫ t

s
r1(t, v)K1(v, s)dv, (t, s) ∈ D(µ), (4.1.27)

subject to the initial condition r1(t, t) = 1 for t ∈ I (µ).

Theorem 4.1.7 Let the given functions a, b, g, K1, K2, φ be continuous,
and assume that the delay function θ is subject to (D1)–(D3). Then on the
interval I (µ) := [ξµ, ξµ+1] (µ ≥ 1) the solution of the initial-value problem for
(4.1.21) can be written as

y(t) = r1(t, ξµ)y(ξµ) + +
∫ t

ξµ

r1(t, s)g(s)ds + Fµ(t) + �µ(t), (4.1.28)

with

Fµ(t) :=
µ−1∑
ν=1

ρµ,ν(t)y(ξν) +
∫ ξ1

ξ0

rµ,0(t, s)g0(s)ds +
µ−1∑
ν=1

∫ ξν+1

ξν

rµ,ν(t, s)g(s)ds,

�µ(t) :=
∫ θµ(t)

ξ0

qµ,0(t, s)g0(s)ds +
µ−1∑
ν=1

∫ θµ−ν (t)

ξν

qµ,ν(t, s)g(s)ds.
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On the first interval I (0) this representation reduces to

y(t) = r1(t, t0)y(t0) +
∫ t

t0

r1(t, s)g0(s)ds, (4.1.29)

where y(t0) = φ(t0). The functions ρµ,ν, rµ,ν , and qµ,ν depend on
a, b, K1, K2, r1 and θ and are continuous on their respective domains;
r1 = r1(t, s) denotes the resolvent kernel for K1 = K1(t, s) defined by the re-
solvent equation (4.1.27).

Remark As in Theorem 4.1.2 we see again how the presence of the delay
term (Vθ y)(t) in (4.1.21) influences the resolvent representation of the classical
(non-delay) VIDE on the macro-interval I (µ). In addition, we now have terms
reflecting the initial values y(ξν) (0 ≤ ν ≤ µ).

Proof The basic idea governing the proof of the above result is essentially the
one used to establish Theorem 4.1.2, except that now the variation-of-constant
formula is based on the resolvent representation of the solution of the ‘local’
VIDE (4.1.26) and will thus reflect the initial values y(ξµ). Due to this similarity,
we just sketch the first steps of the proof. For µ = 0 (t ∈ I (0)) the solution of
(4.1.26) is

y(t) = r1(t, t0)y(t0) +
∫ t

t0

r1(t, s)g0(s)ds, t ∈ I (0),

with g0 defined in (4.1.25). For t ∈ I (µ) (µ ≥ 1) we obtain, according to (4.1.26)
and Theorem 3.1.1,

y(t) = r1(t, ξµ)y(ξµ) +
∫ t

ξµ

r1(t, s)gµ(s)ds

= r1(t, ξµ)y(ξµ) +
∫ t

ξµ

r1(t, s)g(s)ds + �µ(t),

with

�µ(t) :=
∫ t

ξµ

r1(t, s)b(s)y(θ (s))ds +
∫ t

ξµ

r1(t, s)

(∫ ξµ

ξ0

K1(s, v)y(v)dv

)
ds

+
∫ t

ξµ

r1(t, s)

(∫ θ (s)

ξ0

K2(s, v)y(v)dv

)
ds.

Thus, starting with µ = 1, and noting that the double integrals in the corre-
sponding above equation have already been encountered in the proof of Theo-
rem 4.1.2, the use of Dirichlet’s formula and a simple induction argument yield
the main proposition of Theorem 4.1.8 in a straightforward way.
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For the sake of completeness, and since in Section 4.5.4 on neutral functional
integro-differential equations we shall have to resort to the result, we add the
following corollary on solutions to DDEs with non-vanishing delays.

Corollary 4.1.8 Consider the delay differential equation

y′(t) = a(t)y(t) + b(t)y(θ (t)) + g(t), t ∈ I := [t0, T ], (4.1.30)

with y(t) = φ(t) on [θ (t0), t0]. If the given functions are continuous, with θ

subject to the conditions (D1)–(D3) of Section 4.1.2, then the (unique) solution
y of this initial-value problem is given on I (µ) (µ ≥ 1) by

y(t) = r (t, ξµ)y(ξµ) +
µ−1∑
ν=1

rµ,ν(t)y(ξν) +
∫ t

ξµ

r (t, s)g(s)ds

+
∫ θµ(t)

ξ0

qµ,0(t, s)g0(s)ds +
µ−1∑
ν=1

∫ θµ−ν (t)

ξν

qµ,ν(t, s)g(s)ds (4.1.31)

Here,

g0(t) := g(t) + b(t)φ(θ (t)), t ∈ I (0), (4.1.32)

and

r (t, s) := exp

(∫ t

s
a(v)dv

)
, (t, s) ∈ D.

The continuous functions rµ,ν and qµ,ν depend on a, b, θ and r.

If the data in the delay VIDE (4.1.21) are smooth functions, the correspond-
ing solution will essentially inherit this smoothness, except – similar to delay
VIEs of the second kind – at the primary discontinuity points {ξµ}. This is made
precise in

Theorem 4.1.9 Let a, b, g, K1, K2 and φ in (4.1.21) be Cm-functions on
their respective domains, and assume that the delay θ is subject to the conditions
(D1)–(D3) of Section 4.1.2, with d ≥ m. Then:

(a) The (unique) solution of the initial-value problem for (4.1.21) is (m +
1)-times continuously differentiable on each left-open macro-interval
(ξµ, ξµ+1] and has a bounded first derivative on I .

(b) At t = ξµ (µ = 0, 1 . . . , min{m, M}) we have

lim
t→ξ−

µ

y(µ)(t) = lim
t→ξ+

µ

y(µ)(t),
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while the (µ + 1)st derivative of y is in general not continuous at t = ξµ.
If min{m, M} = m < M, the solution possesses a continuous (m + 1)st
derivative on [ξm, T ].

The proof can be found in, e.g. Brunner and Zhang (1999). Compare also
El’sgol’ts and Norkin (1973), Neves and Feldstein (1976), de Gee (1985), and
Bellen and Zennaro (2003) for related ideas in proofs for DDEs.

We will again summarise a number of regularity and smoothing results in a
table; proofs (which can be based on Theorem 4.1.7) are left to the reader. See
also Brunner and Zhang (1999).

Table 4.2. Regularity and smoothing of solutions to delay VIDEs

Delay VIDE Regularity at t = ξµ

(Cm–data) (µ = 0, 1, . . . , M)

• y′(t) = f (t, y(t)) + (Vθ y)(t) C2µ

(‘super-smoothing’)

• y′(t) = f (t, y(t), y(θ (t))) + (Vθ y)(t) Cµ

• y′(t) = f (t, y(t), y(θ (t))) + (Wθ y)(t) Cµ

• y′(t) = f (t, y(t), y(θ (t)), y′(θ (t))) + (Vθ y)(t) C0

(no smoothing at t = ξµ)

The reader may wish to complete the table by adding smoothing results for the
delay VIDEs in which Vθ has been replaced by Wθ or by

(W1
θ y)(t) :=

∫ t

θ (t)
k(t, s, y(s), y′(s))ds.

4.1.5 Nonlinear delay problems

Nonlinear Volterra integral and integro-differential equations with non-
vanishing delays have been used since the 1920s as mathematical models of
population growth and related phenomena in biology. In this section we will
briefly describe two such classes of Volterra functional equations; comments
pointing to additional sources of nonlinear delay Volterra equations will be
added at the end.

Example 4.1.1
In Part IV (‘Studio delle azioni ereditarie’) of his 1927 paper Volterra refined
his earlier celebrated (ODE) ‘predator–prey’ model to include situations where
‘historical actions cease after a certain interval of time’ (see also Volterra (1939),
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p. 8). This leads to a system of nonlinear Volterra integro-differential equations
with constant delay T0 > 0 (using again Volterra’s notation),

d N1

dt
= N1(t)

(
ε1 − γ1 N2(t) −

∫ t

t−T0

F1(t − τ )N1(τ )dτ

)
, (4.1.33)

d N2

dt
= N2(t)

(
−ε2 + γ2 N1(t) +

∫ t

t−T0

F2(t − τ )N2(τ )dτ

)
,

with εi > 0, γi ≥ 0, and continuous Fi (t) ≥ 0. Volterra later extended this
model and its analysis to n interacting populations (see also his survey paper
of 1939). Cushing (1977) is an excellent source on the further development of
such population models based on VIDEs with delays; see also Bocharov and
Rihan (2000) and its bibliography.

Example 4.1.2
Many basic mathematical models in epidemiology and population growth (see,
e.g. Cooke and Yorke (1973), Waltman (1974), Cooke (1976), and Smith (1977))
are described by nonlinear Volterra integral equations of the second kind with
(constant) delay τ > 0, namely,

y(t) =
∫ t

t−τ

P(t − s)G(s, y(s))ds + g(t), t > t0, (4.1.34)

or

y(t) =
∫ t

t−τ

P(t − s)G(y(s) + g(s))ds, t > t0. (4.1.35)

Here, g is usually assumed to be such that limt→∞ g(t) =: g(∞) exists. These
delay integral equations model the deterministic growth of a population y =
y(t) (e.g. of animals, or cells) or the spread of an epidemic with immigration
into the population; it also has applications in economics.

Example 4.1.3
A generalisation of the above model is discussed in Bélair (1991): here, the
delay τ in the delay (or: lag) function θ (t) := t − τ (y(t)) (life span) is no longer
constant but depends on the size y(t) of the population at time t (reflecting, e.g.
crowding effects). Bélair’s model corresponds to the delay VIE with state-
dependent delay,

y(t) =
∫ t

t−τ (y(t))
P(t − s)G(y(s))ds, t > 0, (4.1.36)

with P(t) ≡ 1. Here it is assumed that the number of births is a function of
the population size only (that is, the birth rate is density dependent but not age
dependent). For this choice of the kernel P it is tempting to ‘simplify’ the delay
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VIE, by differentiating it with respect to t , to obtain the state-dependent (but
‘local’) DDE

y′(t) = G(y(t)) − G(y(t − τ (y(t))))

1 − τ ′(y(t))G(y(t − τ (y(t))))
. (4.1.37)

While any constant y(t) = yc solves the above DDE, this is not true in the
original DVIE (2.1.36): it is easily verified that y(t) = yc is a solution if, and
only if, yc = G(yc)τ (yc). This simple example also contains a warning: the use
of the the DDE (2.1.37) as the basis for the (‘indirect’) numerical solution of
the delay VIE (2.1.36) may lead to approximations for y(t) that do not correctly
reflect the dynamics of the original (highly nonlinear) delay integral equation.

4.1.6 Volterra functional equations of neutral type

The delay differential and integro-differential equations we have studied so far
are functional equations of retarded type: the derivative y′(t) of the unknown
function depends on y(t) and y(θ (t)) but not on y′(θ (t)). As we have seen, one
of the consequences of this is that the solutions become smoother at the primary
discontinuity points {ξµ}. This is in general no longer true if the delay equation
of of neutral type, as the simple linear model problem

y′(t) − cy′(θ (t)) = ay(t) + by(θ (t)), t ≥ t0, y(t) = φ(t) �≡ 0, t ≤ t0,

(4.1.38)

with c �= 0 and θ (t) = t − τ , readily shows. The following theorem is repre-
sentative of neutral differential equations more general than (4.1.38). Its proof,
and a general discussion of DDEs of neutral type, can be found in, e.g. the
books by El’sgol’ts and Norkin (1973) and, especially, Hale (1977) and Hale
and Verduyn Lunel (1993).

Theorem 4.1.10 Assume that φ ∈ C1[θ (t0, t0]. Then there exists a unique func-
tion y that coincides with φ on [θ (t0, t0], is in C1 and satisfies (4.1.38) for t ≥ 0,
except possibly at the points ξµ = µτ (µ ≥ 0). This solution cannot have higher
regularity than the initial function φ, and it is a C1-function for t ≥ 0 if, and
only if, φ is such that

φ′(t0 − cφ′(θ (t0) = aφ(t0) + bφ(θ (t0) + g(t0).

Will the result of Theorem 4.1.10 substantially remain valid if the right-hand
side of (4.1.38) also contains a memory term, for example

(W1
θ y)(t) :=

∫ t

θ (t)

(
K1(t, s)y(s) + K2(t, s)y′(s)

)
ds?
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To study this question consider the general (nonlinear) first-order delay VIDE
of neutral type,

y′(t) = f (t, y(t), y(θ (t)), y′(θ (t))) + (V1 y)(t) + (V1
θ y)(t), t ∈ I, (4.1.39)

where the kernels of the Volterra operators V1 and V1
θ also depend on y′(s):

(V1 y)(t) :=
∫ t

t0

k1(t, s, y(s), y′(s))ds, (V1
θ y)(t) :=

∫ θ (t)

t0

k2(t, s, y(s), y′(s))ds.

We will also consider the important case

y′(t) = f (t, y(t), y(θ (t)), y′(θ (t))) + (W1
θ y)(t), t ∈ I, (4.1.40)

corresponding to the (nonlinear) Volterra operator

(W1
θ y)(t) :=

∫ t

θ (t)
k(t, s, y(s), y′(s))ds.

As we have seen in Section 4.1.1, neutral delay differential equations often
occur in what we called ‘Hale’s form’, which for (4.1.38) with θ (t) = t − τ is
given by

d

dt
[y(t) − cy(θ (t))] = ay(t) + by(θ (t)), t ≥ t0, (4.1.41)

with y(t) = φ(t) when t ∈ [θ (t0), t0] (see also Liu (1999a, 1999b)). Note that
here the initial function need only satisfy φ ∈ C[θ (t0), t0]. An obvious gener-
alisation of this simple neutral functional equation is given by

d

dt
[y(t) − (Vθ y)(t)] = F(t, y(t), y(θ (t))), t ∈ I, (4.1.42)

with y(t) = φ(t), t ∈ [θ (t0, t0] and

(Vθ y)(t) :=
∫ θ (t)

0
k2(t, s, y(s))ds

(compare also Brunner and Vermiglio (2003)). Its ‘local’ counterpart is the
neutral DDE

d

dt
[y(t) − G(t, y(θ (t)))] = F(t, y(t), y(θ (t))), (4.1.43)

corresponding to a smooth function G.
In view of applications, and to prepare for the collocation analysis to be

presented in Section 4.5.4 we will focus on NFIDEs in the class (4.1.42). Results
on the existence and uniqueness of solutions to the above initial-value problems
can be obtained by considering the integrated forms of (4.1.42) and (4.1.43):
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they are, respectively,

y(t) = �0 + (Vθ y)(t) +
∫ t

t0

F(s, y(s), y(θ (s)))ds, t ∈ I, (4.1.44)

with y(t) = φ(t), t ≤ t0, and �0 := φ(t0) − (Vθφ)(t0); and

y(t) = �0 + G(t, y(θ (t)) +
∫ t

t0

F(s, y(s), y(θ (s)))ds, t ∈ I, (4.1.45)

with �0 := φ(t0) − G(t0, φ(t0)). These NFIDEs are thus equivalent to initial-
value problems for nonlinear second-kind Volterra integral equations with delay
function θ . Their existence and uniqueness theory is a straightforward conse-
quence of Theorems 4.1.1.

Alternatively, setting

z(t) := y(t) − (Vθ y)(t), t ∈ I, (4.1.46)

and

H (t, z, w) := F(t, z + Vθ y, w), (4.1.47)

the initial-value problem (4.1.42) can be reformulated as an initial-value prob-
lem for z,

z′(t) = H (t, z(t), y(θ (t))), t ∈ I, (4.1.48)

z(t0) = φ(t0) − (Vθφ)(t0) (= �0),

whose solution then determines the solution y of the orginal problem (4.1.42)
via the recursion

y(t) = z(t) + (Vθ y)(t), t ∈ I, (4.1.49)

with y(t) = φ(t) when t ≤ t0. Clearly, the DDE (4.1.48) may be viewed as a
sequence of initial-value problems on I (µ) := [ξµ, ξµ+1] for a nonlinear ODE,
with the explicit recursion (4.1.49) furnishing the expression for y(θ (t)). This
reformulation can also be used to obtain insight into the regularity properties
of the solution y of the original NFIDE (4.1.42).

We note in passing the the analogous reformulation of the NDE (4.1.43) is

z′(t) = H (t, z(t), y(θ (t))), t ∈ I, (4.1.50)

z(t0) = φ(t0) − G(t0, φ(t0)) (= �0 ),

with

z(t) := y(t) − G(t, y(θ (t))) and H (t, z, w) := F(t, z + G(t, y), w),
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and with

y(t) = z(t) + G(t, y(θ (t))), t ∈ I.

(compare Liu (1999a), Vermiglio and Torelli (1998), Torelli and Vermiglio
(2002) and, especially, Bellen and Zennaro (2003, Section 3.2.3)).

4.2 Collocation methods for DDEs: a brief review

A comprehensive treatment of continuous (explicit and implicit) Runge–Kutta
methods for various classes of delay differential equations, including their con-
vergence and asymptotic stability properties, can be found in the 2003 mono-
graph by Bellen and Zennaro. We therefore restrict our discussion to the pre-
sentation of the basic definitions and to the description of piecewise polynomial
collocation methods for DDEs. The corresponding convergence results will be
obtained as particular cases of theorems for delay VIDEs (Section 4.5).

4.2.1 Constrained and θ -invariant meshes

Assume that the given delay function θ (t) = t − τ (t) satisfies the assumptions
(D1)–(D3) of Section 4.1.2 which we recall for the convenience of the reader:

(D1) θ ∈ Cd (I ) for some d ≥ 0, with I := [t0, T ];
(D2) τ (t) ≥ τ0 > 0 for t ∈ I ;
(D3) θ is strictly increasing on I .

This implies that the primary discontinuity points {ξµ} induced by θ and given
by

θ (ξµ) = ξµ − τ (ξµ) = ξµ−1, µ = 1, . . . , with ξ0 := t0,

have the (uniform) separation property

ξµ − ξµ−1 ≥ τ0 > 0 for all µ ≥ 1.

For ease of notation we will again assume that T defining I = [t0, T ] is such
that

T = ξM+1 for some M ≥ 1,

and we recall the set Z M := {ξµ : µ = 0, 1, . . . , M} introduced in Theorem
4.1.3.



218 4 Initial-value problems with non-vanishing delays

Since, as we have already seen in Section 4.1.1, solutions of delay problems
with non-vanishing delays generally suffer from a loss of reguarity at the pri-
mary discontinuity points {ξµ}, the mesh Ih underlying the collocation space
will have to include these points if the collocation solution is to attain its optimal
global (or local) order (of superconvergence). Thus, we shall employ meshes
of the form

Ih :=
M⋃

µ=0

I (µ)
h , I (µ)

h := {t (µ)
n : ξµ = t (µ)

0 < t (µ)
1 < . . . < t (µ)

Nµ
= ξµ+1}.

(4.2.1)

Such a mesh is called a constrained mesh (with respect to θ ) for I . We will
refer to Ih as the macro-mesh and call the I (µ)

h the underlying local meshes.

Definition 4.2.1

A mesh Ih for I := [t0, T ] is said to be θ -invariant if it is constrained (that is,
given by (4.2.1)) and if

θ (I (µ)
h ) = I (µ−1)

h (µ = 1, . . . , M) (4.2.2)

holds. We then have Nµ = N for all µ ≥ 0.

Observe that if Ih is θ -invariant then

t ∈ I (µ)
h =⇒ θµ−ν(t) ∈ I (ν)

h (ν = 0, 1, . . . , µ). (4.2.3)

In analogy to the previous chapters we will use the following notation:

σ (µ)
n := (t (µ)

n , t (µ)
n+1], h(µ)

n := t (µ)
n+1 − t (µ)

n , h(µ) := max
(n)

h(µ)
n , h := max

(µ)
h(µ),

and σ̄
(µ)
n := [t (µ)

n , t (µ)
n+1].

For a given θ -invariant mesh Ih the collocation solution uh will be an element
of a piecewise polynomial space

S(d)
m+d (Ih) := {v ∈ Cd (Ih) : v|

σ
(µ)
n

∈ πm+d (0 ≤ n < N ; 0 ≤ µ ≤ M)}.
(4.2.4)

It follows from Section 2.1.1 (Definition 2.2.1) that this linear space has the
dimension

dim S(d)
m+d (Ih) = (M + 1)Nm + d + 1.

This suggests we choose the set of collocation points as

Xh :=
M⋃

µ=0

X (µ)
h : (4.2.5)
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it is based on the local sets

X (µ)
h := {t (µ)

n + ci h
(µ)
n : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}.

In the collocation equation for a given delay equation with non-vanishing
delay τ (t) we shall encounter the mapping θ (X (µ)

h ) (see, for example, (4.3.2)).
It is clear that for linear lag functions θ and a given θ -invariant mesh Ih the
set Xh defined in (4.2.5) is also θ -invariant. However, for nonlinear delays this
will no longer be true. We record this important fact – which will affect the
computational form of the collocation equation – in the following lemma. Its
proof is straightforward and is left as an exercise.

Lemma 4.2.1 Assume that the lag function θ satisfies (D1)–(D3), and let Ih be
a θ -invariant mesh on I = [t0, T ].

(a) If θ is linear, then

θ (X (µ)
h ) = X (µ−1)

h , µ = 1, . . . , M :

the set Xh of collocation points is also θ -invariant.
(b) For nonlinear θ this is no longer true: setting

θ (t (µ)
n + ci h

(µ)
n ) = t (µ−1)

n + c̃i h
(µ−1)
n =: t̃ (µ−1)

n,i (i = 1, . . . , m),

the images {c̃i } of the {ci } satisfy

0 ≤ c̃1 < . . . < c̃m ≤ 1 (with c̃i �= ci in general),

and they depend on the micro-interval σ (µ)
n containing the collocation point

t (µ)
n,i ; that is, we have

c̃i = c̃i (n; µ) (i = 1, . . . , m).

4.2.2 Collocation and continuous implicit
Runge–Kutta methods

As will become apparent in more detail in the following section on delay VIEs
and VIDEs, collocation solutions in S(0)

m (Ih) to DDEs with non-vanishing delays
satisfying (D1)–(D3) will have the same global and local (super-) convergence
properties as those for ODEs, provided the underlying mesh is constrained and
(for superconvergence) θ -invariant. In the case of ODEs this was first observed
by Bellen (1984). Thus, we will not state these convergence results explicitly
here since we shall obtain them in Section 4.1.4 as particular cases of results for
VIDEs with non-vanishing delays. However, we briefly describe the collocation
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equations for DDEs (the reader may wish to consult the monograph by Bellen
and Zennaro (2003) for a more detailed treatment).

Consider the general (neutral) DDE

y′(t) = f (t, y(t), y(θ (t)), y′(θ (t))), t ∈ I := [t0, T ], (4.2.6)

y(t) = φ(t), t ≤ t0,

and assume that the delay function θ satisfies (D1)–(D3). For a θ -invariant mesh
Ih given by (4.2.1) and (4.2.2), let uh ∈ S(0)

m (Ih) be the collocation solution to
(4.2.6):

u′
h(t) = f (t, uh(t), uh(θ (t)), u′

h(θ (t))), t ∈ Xh, (4.2.7)

uh(t) = φ(t), t ≤ t0,

with initial function φ ∈ C1[θ (t0), t0]. On the subinterval σ̄
(µ)
n we use the local

representations

u′
h(t (µ)

n + vh(µ)
n ) =

m∑
j=1

L j (v)Y (µ)
n, j , v ∈ (0, 1],

uh(t (µ)
n + vh(µ)

n ) = y(µ)
n + h(µ)

n

m∑
j=1

β j (v)Y (µ)
n, j , v ∈ [0, 1], (4.2.8)

where y(µ)
n := uh(t (µ)

n , Y (µ)
n, j := u′

h(t (µ)
n, j . Note that the assumed θ -invariance of

Ih implies, by Lemma 4.2.1, that

uh(θ (t (µ)
n + vh(µ)

n ) = y(µ−1)
n + h(µ−1)

n

m∑
j=1

β j (ṽ)Y (µ−1)
n, j , v ∈ [0, 1],

since θ (t (µ)
n + vh(µ)

n ) = t (µ−1)
n + ṽh(µ)

n for appropriate ṽ ∈ [0, 1]. If µ = 0 then

u(ν)
h (θ (t (0)

n + vh(0)
n ) = φ(t (−1)

n + ṽh(−1)
n ) (ν = 0, 1),

where we have set θ (t (0)
n + vh(0)

n ) =: t (−1)
n + ṽh(−1)

n . The computational form of
the collocation equation (4.2.7) at t = t (µ)

n,i then becomes

Y (µ)
n,i = f

(
t (µ)
n,i , y(µ)

n + h(µ)
n

m∑
j=1

ai, j Y
(µ)
n, j , �

(µ−1)
n,i )

)
(i = 1, . . . , m), (4.2.9)

with

�
(µ−1)
n,i :=

m∑
j=1

L j (c̃i )Y
(µ−1)
n, j .

Recall that if the lag function θ is nonlinear then c̃i �= ci in general; for linear
θ we have c̃i = ci , and hence

∑m
j=1 L j (c̃i )Y

(µ−1)
n, j = Y (µ−1)

n,i . Equations (4.2.8)
and (4.2.9) describe an m-stage continuous implicit Runge–Kutta method for
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the DDE (4.2.6). We observe that, in contrast to ‘classical’ (discrete) Runge–
Kutta methods, the collocation scheme automatically furnishes the ‘natural’
continuous (local) interpolant on each σ̄

(µ)
n .

Since the results on the attainable orders of global and local (super-)
convergence of collocation solutions uh ∈ S(0)

m (Ih) to DDEs will be obtained
as special cases of such results for VIDEs with non-vanishing delays (Sections
4.4.2 and 4.5.3), we will not state them explicitly here. The first comprehensive
convergence analysis of collocation solutions to DDEs was given by Bellen
(1984).

4.3 Collocation for second-kind VIEs with delays

4.3.1 The exact collocation equations

The collocation solution uh ∈ S(−1)
m−1(Ih) for the delay integral equation

y(t) = g(t) + (V y)(t) + (Vθ y)(t), t ∈ (t0, T ], (4.3.1)

with

(V y)(t) :=
∫ t

t0

K1(t, s)y(s)ds, (Vθ y)(t) :=
∫ θ (t)

t0

K2(t, s)y(s)ds,

and with initial condition y(t) = φ(t), t ≤ t0, is defined by the collocation
equation

uh(t) = g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ Xh . (4.3.2)

The values of uh at t ∈ [θ (t0), t0] are determined by the given initial function for
(4.2.1), uh(t) = φ(t). As for classical second-kind Volterra integral equations
we will also consider the iterated collocation solution corresponding to uh :

uit
h (t) := g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ (t0, T ]. (4.3.3)

The lag function θ = θ (t) = t − τ (t) will be assumed to satisfy the con-
ditions (D1)–(D3) of Section 4.1.2, and the mesh Ih on I := [t0, T ] will be
assumed to be the θ -invariant mesh defined by (4.2.2). As we indicated in
Section 4.2.1 (cf. (4.2.5)) the collocation points Xh are given by

Xh :=
M⋃

µ=0

X (µ)
h , X (µ)

h := {t (µ)
n,i := t (µ)

n + ci h
(µ)
n :

0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}.



222 4 Initial-value problems with non-vanishing delays

On σ
(µ)
n := (t (µ)

n , t (µ)
n+1] the collocation solution will have the usual local La-

grange representation,

uh(t (µ)
n + vh(µ)

n ) =
m∑

j=1

L j (v)U (µ)
n, j , v ∈ (0, 1], with U (µ)

n, j := uh(t (µ)
n, j ).

(4.3.4)
Since the contribution of the classical Volterra termVuh to the computational

form of the collocation was analysed in detail in Chapter 2, we will focus here
on the terms induced by the delay part (Vθuh)(t) with t = t (µ)

n,i .
Assume first that the lag function θ is linear. Since, as we have seen in

Lemma 4.2.1, the θ -invariance of the mesh Ih implies the θ -invariance of the
set Xh of collocation points, we may write, using the fact that θ (t (µ)

n,i ) = t (µ−1)
n,i ,

(Vθuh)(t (µ)
n,i ) =

∫ θ (t (µ)
n,i )

t0

K2(t (µ)
n,i , s)uh(s)ds =

∫ t (µ−1)
n,i

t0

K2(t (µ)
n,i , s)uh(s)ds,

(4.3.5)
and hence, recalling the local representation (4.2.4) of uh ,

(Vθuh)(t (µ)
n,i ) = � (µ−1)

n (t (µ)
n,i )

+ h(µ−1)
n

m∑
j=1

(∫ ci

0
K2(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n )L j (s)ds

)
U (µ−1)

n, j ,

(4.3.6)

with lag term

�(µ−1)
n (t) :=

∫ ξµ−1

t0

K2(t, s)uh(s)ds +
∫ t (µ−1)

n

ξµ−1

K2(t, s)uh(s)ds (t ∈ σ (µ)
n ).

(4.3.7)
If θ is nonlinear, then the above terms have to be modified: by the (strict)

monotonicity assumption (D3) for θ (cf. Section 4.2.1), the image of t (µ)
n,i ∈ σ

(µ)
n

under θ lies in σ
(µ−1)
n (but will be different from the collocation point t (µ−1)

n,i );
that is,

θ (t (µ)
n,i ) = t (µ−1)

n + c̃i h
(µ−1)
n =: t̃ (µ−1)

n,i (i = 1, . . . , m), (4.3.8)

with

0 ≤ c̃1 < . . . < c̃m ≤ 1 and c̃i = c̃i (n; µ)

(cf. Lemma 4.2.1). Accordingly, the expression (4.2.6) for (Vθuh)(t (µ)
n,i ) now
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reads

(Vθuh)(t (µ)
n,i ) = � (µ−1)

n (t (µ)
n,i )

+ h(µ−1)
n

m∑
j=1

(∫ c̃i

0
K2(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n )L j (s)ds

)
U (µ−1)

n, j .

(4.3.9)

Hence, adapting the notation of Section 2.2.2 for the classical Volterra part
Vuh , in the collocation equation, (4.3.2) at t = t (µ)

n,i (i = 1, . . . , m) can now be
written as

U (µ)
n,i = g(t (µ)

n,i ) + F (µ)
n (t (µ)

n,i ) + (Vθuh)(t (µ)
n,i )

+ h(µ)
n

m∑
j=1

(∫ ci

0
K1(t (µ)

n,i , t (µ)
n + sh(µ)

n )L j (s)ds

)
U (µ)

n, j . (4.3.10)

Let U(µ)
n := (U (µ)

n,1 , . . . , U (µ)
n,m )T and, in analogy to Section 2.2.2 (cf (2.2.12)),

define the matrices

B(µ)
n :=




∫ ci

0
K1(t (µ)

n,i , t (µ)
n + sh(µ)

n )L j (s)ds

(i, j = 1, . . . , m)


 ,

B̃(µ−1)
n :=




∫ c̃i

0
K2(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n )L j (s)ds

(i, j = 1, . . . , m)


 .

Finally, set g(µ)
n := (g(t (µ)

n,1 ), . . . , g(t (µ)
n,m))T, G(µ)

n := (F(t (µ)
n,1 ), . . . , F (µ)

n (t (µ)
n,m)T,

and

Q(µ−1)
n := (� (µ−1)

n (t (µ)
n,1 ), . . . , �(µ−1)

n (t (µ)
n,m))T .

Thus, the collocation solution uh ∈ S(−1)
m−1(Ih) to (4.3.1) on σ

(µ)
n is described by

(4.3.4) in which the U(µ)
n is the solution of the linear algebraic system (4.3.10)

which we now write in the form

[Im − h(µ)
n B(µ)

n ]U(µ)
n = g(µ)

n + G(µ)
n + Q(µ−1)

n + h(µ−1)
n B̃(µ)

n U(µ−1)
n (4.3.11)

(n = 0, 1, . . . , m; µ = 0, 1, . . . , M).
The following theorem on the existence of a unique collocation solution is

a natural, and obvious, extension of Theorem 2.2.1.

Theorem 4.3.1 Assume that g, θ, K1 and K2 are continuous on their respec-
tive domains I, D and Dθ , with the delay θ satisfying (D1)–(D3) of Section
4.2.1.
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Then there exists an h̄ > 0 so that for any θ -invariant mesh Ih with h ∈ (0, h̄)
and any initial function φ ∈ [θ (t0), t0] each of the linear algebraic systems
(4.3.11) possesses a unique solution U(µ)

n ∈ IRm. Hence, the collocation equa-
tion (4.3.2) defines a unique collocation solution uh ∈ S(−1)

m−1(Ih) for (4.3.1)

whose local representation on the subinterval σ
(µ)
n is given by (4.3.4).

The computational form of the iterated collocation solution (4.3.3) at t =
t (µ)
n + vh(µ)

n ∈ σ̄
(µ)
n can be written as

uit
h (t) = g(t) + F (µ)

n (t) + � (µ−1)
n (t)

+ h(µ)
n

m∑
j=1

(∫ v

0
K1(t, t (µ)

n + sh(µ)
n )L j (s)ds

)
U (µ)

n, j (4.3.12)

+ h(µ−1)
n

m∑
j=1

(∫ ṽ

0
K2(t, t (µ−1)

n + sh(µ−1)
n )L j (s)ds

)
U (µ−1)

n, j , v ∈ [0, 1].

The classical lag term (cf. (2.2.8)) has, for t ∈ σ
(µ)
n , the form

F (µ)
n (t) :=

∫ ξµ

t0

K1(t, s)uh(s)ds +
∫ t (µ)

n

ξµ

K1(t, s)uh(s)ds (4.3.13)

while the lag term �
(µ−1)
n (t) corresponding to the delay operator Vθ is given

above by (4.3.7). The image t̃ := t (µ−1)
n + ṽh(µ−1)

n of t = t (µ)
n + vh(µ)

n under θ

depends on the nature of the delay function θ : if θ is linear then we have ṽ = v;
for nonlinear θ the value of ṽ ∈ [0, 1] must be obtained from

θ (t (µ)
n + vh(µ)

n ) =: t (µ−1)
n + ṽh(µ−1)

n , v ∈ (0, 1]. (4.3.14)

Observe that uit
h ∈ C(t0, T ] whenever the given data defining the initial-value

problem for (4.3.1) are continuous functions and if

uit
h (t0) = g(t0) −

∫ t0

θ (t0)
K2(t0, s)φ(s))ds

holds. Moreover, if the right-hand side of the above equation coincides with
φ(t0) (cf. Theorem 4.1.1), then uit

h is also continuous at t = t0.

uit
h (t) = uh(t) for all t ∈ Xh .

Since second-kind Volterra integral equations with non-vanishing delays
often arise in the particular form (4.1.8),

y(t) = g(t) + (Wθ y)(t), t ∈ (t0, T ], (4.3.15)
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where

(Wθ y)(t) :=
∫ t

θ (t)
K (t, s)y(s)ds,

we present the corresponding computational form of the collocation equation
defining uh ∈ S(−1)

m−1(Ih) in some detail (although it could of course be formally
obtained by setting K2 = −K1 in (4.3.9) and (4.3.10)).

We first note that for t = t (µ)
n,i we have

(Wθuh)(t) =
∫ t (µ−1)

n+1

θ (t)
K (t, s)uh(s)ds

+
∫ ξµ

t (µ−1)
n+1

K (t, s)uh(s)ds +
∫ t (µ)

n

ξµ

K (t, s)uh(s)ds (4.3.16)

+ h(µ)
n

∫ ci

0
K (t, t (µ)

n + sh(µ)
n )uh(t (µ)

n + sh(µ)
n )ds,

where

θ (t) = θ (t (µ)
n,i ) =

{
t (µ−1)
n,i = t (µ−1)

n + ci h
(µ−1)
n if θ is linear,

t̃ (µ−1)
n,i := t (µ−1)

n + c̃i h
(µ−1)
n if θ is nonlinear.

Define, for t = t (µ)
n + ci h

(µ)
n ,

�̄ (µ−1)
n (t) := h(µ−1)

n

∫ 1

c̃i

K (t, t (µ−1)
n + sh(µ−1)

n )uh(t (µ−1)
n + sh(µ−1)

n )ds

+
∫ ξµ

t (µ−1)
n+1

K (t, s)uh(s)ds +
∫ t (µ)

n

ξµ

K (t, s)uh(s)ds. (4.3.17)

The collocation equation for (4.3.15) on σ
(µ)
n then becomes

U (µ)
n,i = g(t (µ)

n,i ) + �̄ (µ−1)
n (t (µ)

n,i )

+ h(µ)
n

m∑
j=1

(∫ ci

0
K (t (µ)

n,i , t (µ)
n + sh(µ)

n )L j (s)ds

)
U (µ)

n, j (i = 1, . . . , m).

(4.3.18)

Hence, the resulting linear algebraic system for U(µ)
n ∈ IRm defining the local

representation of uh on σ
(µ)
n (cf. (4.3.4)) has the form

[Im − h(µ)
n B(µ)

n ]U(µ)
n = g(µ)

n + Ḡ(µ−1)
n , (4.3.19)

with g(µ)
n := ( g(t (µ)

n,1 ), . . . , g(t (µ)
n,m))T and Ḡ(µ−1)

n := (�̄ (µ−1)
n (t (µ)

n,1 ), . . . , �̄ (µ−1)
n

(t (µ)
n,m))T .

The corresponding iterated collocation solution at t = t (µ)
n + vh(µ)

n ∈ σ̄
(µ)
n
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can be then computed via

uit
h (t) = g(t) + �̄ (µ−1)

n (t)

+ h(µ)
n

m∑
j=1

(∫ ci

0
K (t, t (µ)

n + sh(µ)
n )L j (s)ds

)
U (µ)

n, j , v ∈ [0, 1].

(4.3.20)

4.3.2 Global convergence results

The collocation error eh := y − uh associated with the collocation solution
uh ∈ S(−1)

m−1(Ih) for the delay integral equation (4.3.1) solves the initial-value
problem

eh(t) = δh(t) + (Veh)(t) + (Vθeh)(t), t ∈ (t0, T ], (4.3.21)

with initial condition eh(t) = 0 for t ∈ [θ (t0), t0]. The defect δh vanishes on the
set Xh . For t ∈ σ

(µ)
n (µ ≥ 1) the above error equation can be written as

eh(t) = Eµ(t) + δh(t) +
∫ t0

ξµ

K1(t, s)eh(s)ds, (4.3.22)

where

Eµ(t) :=
µ−1∑
ν=0

∫ ξν+1

ξν

K1(t, s)eh(s)ds + (Vθeh)(t). (4.3.23)

On the first macro-interval (t0, ξ1] we have

E0(t) := (Vθeh)(t) = −
∫ t0

θ (t)
K2(t, s)eh(s)ds = 0.

If the given functions in (4.3.1) have continuous derivatives of at least order
m on their respective domains, the global convergence and order analysis can
be based again on the (local) representation of the collocation error by means
of the Peano Kernel Theorem: in analogy to the approach in Section 2.2.4 we
now have

eh(t (µ)
n + vh(µ)

n ) =
m∑

j=1

L j (v)E (µ)
n, j + (h(µ)

n )m R(µ)
m,n(v), v ∈ (0, 1], (4.3.24)

with E (µ)
n, j := eh(t (µ)

n, j ). The definition of the Peano remainder terms R(µ)
m,n(v) is

obvious from (2.2.30), (2.2.31) in the proof of Theorem 2.2.3.
In order to obtain an estimate for eh on (t0, ξ1] we can resort directly

to the proof of Theorem 2.2.3: a trivial change in the notation yields
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||E (0)
n ||1 = O((h(0))m) (we have set E (µ)

n := (E (µ)
n,1 , . . . , E (µ)

n,m)T ), and hence it fol-
lows that

||eh ||0,∞ := sup
t∈I (0)

|eh(t)| ≤ C0(h(0))m (n = 0, 1, . . . , N − 1).

A simple induction argument, employing the estimates for the terms Eµ(t) on
I (µ) in (4.3.22), together with the observation that by the conditions (D1)–(D3)
for the lag function θ the number (M + 1) of macro-intervals I (µ) := [ξµ, ξµ+1]
is finite, yields the results summarised in the following theorem.

Theorem 4.3.2 Assume

(a) The given functions g, K1, K2 and φ in (4.3.1) all possess continuous
derivatives of order m on their respective domains.

(b) The lag function θ (t) = t − τ (t) is subject to the conditions (D1)–(D3) of
Section 4.2.1, with d ≥ m in (D1).

(c) uh ∈ S(−1)
m−1(Ih) is the collocation solution to (4.3.1) corresponding to a θ -

invariant mesh Ih with h ∈ (0, h̄), with h̄ defined in Theorem 4.3.1.

Then for any set of collocation parameters {ci : 0 ≤ c1 < . . . < cm ≤ 1} the
collocation error eh := y − uh has the property that

||eh ||∞ := sup
t∈(t0,T ]

|eh(t)| ≤ Chm . (4.3.25)

The constant C depends on the {ci } but not on h := max(n,µ) h(µ)
n .

Not surprisingly, the global superconvergence result of Theorem 2.2.5 for
the iterated collocation solution uit

h remains valid in the case of second-kind
Volterra integral equations with non-vanishing delays.

Theorem 4.3.3 Suppose that the assumptions (a)–(c) of Theorem 4.3.2 hold,
but with m + 1 replacing m in (a) and (b). If the collocation parameters {ci }
are chosen so that the orthogonality condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0 (4.3.26)

is satisfied, then the iterated collocation solution corresponding to the colloca-
tion solution uh ∈ S(−1)

m−1(Ih) for (4.3.1) is globally superconvergent on Ih:

||y − uit
h ||∞ ≤ Chm+1,

with C depending on the {ci } but not on h.

Proof The key to the proof of Theorem 2.2.5 (and of Theorem 2.2.6) on su-
perconvergence of iterated collocation solutions for classical second-kind VIEs
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was the variation-of-constants formula (or ‘resolvent representation’) of

eit
h := y − uit

h = eh − δh,

together with the general global convergence result of Theorem 2.2.3. It is clear
that the analogous approach, based on Theorem 4.1.2, works here, too: for
t = t (µ)

n + vh(µ)
n ∈ σ̄

(µ)
n Theorem 4.1.2 yields, with eh and δh replacing y, g

and g0 = g, respectively,

eit
h (t) =

∫ t

ξµ

R1(t, s)δh(s)ds +
µ−1∑
ν=0

∫ ξν+1

ξν

Rµ,ν(t, s)δh(s)ds

+
µ−1∑
ν=0

∫ θµ−ν (t)

ξν

Qµ,ν(t, s)δh(s)ds. (4.3.27)

We now adapt the techniques employed in the proofs of Theorem 1.1.3 (cf.
(1.1.39) and (1.1.40)) and Theorem 2.2.5 ((2.2.40), (2.2.41)) to (4.3.27). The
integrals over subintervals [t (v), t (v)

l+1] can then be replaced by the sum of an
interpolatory m-point quadrature formula with respect to the collocation points
in that interval and the corresponding quadrature error. The expression given
by the quadrature formula has value zero, since δh(t) = 0 for t ∈ Xh . Due to
the assumed regularity of the data (which is inherited on D by the resolvent
R1 and piecewise on I and D, respectively, by the defect δh and the functions
Rµ,ν, Qµ,ν), the orthogonality condition (4.3.26) implies that all quadrature
errors are O(hm+1).

It remains to deal with the integrals∫ t

t (µ)
n

R1(t, s)δh(s)ds and
∫ θµ−ν (t)

t (ν)
n

Qµ,ν(t, s)δh(s)ds

(recall from (4.2.3), following the definition of a θ -invariant mesh, that
θµ−ν(t) ∈ σ (ν)

n if t ∈ σ
(µ)
n ). It is easily verified (using the global convergence

result of Theorem 4.3.2 and (4.3.21)) that ||δh ||∞ = O(hm). Thus, in the esti-
mation of the above integrals (via the usual scaling) the uniform estimate for
δh is multiplied by h, leading to the required O(hm+1)-term in Theorem 4.3.3.

Corollary 4.3.4 In the particular delay integral equation (4.3.15) assume that
g ∈ Cm+1(I ) and K ∈ Cm+1(D̄θ ), with D̄θ := {(t, s) : θ (t) ≤ s ≤ t, t ∈ I },
and let the delay function θ satisfy (D1)–(D3) with d ≥ m + 1. Then the iterated
collocation solution based on uh ∈ S(−1)

m−1(Ih) and defined by (4.3.20) has the
global superconvergence property

||y − uit
h ||∞ ≤ Chm+1

provided the mesh Ih is θ-invariant, the {ci } underlying the set Xh of collocation
points satisfy J0 = 0 (cf. (4.3.26)), and φ ∈ Cm+1[θ (t0), t0].
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4.3.3 Local superconvergence results

The proof of the global superconvergence result in Theorem 4.3.3 indicates
that we can readily modify it – as we have already seen in Section 2.2.5 when
we established local superconvergence results for classical Volterra integral
equations of the second kind – to obtain the ‘non-vanishing delay analogues’ of
Theorem 2.2.6 and Corollaries 2.2.7–2.2.9. The key to the proofs of these results
is once more the variation-of-constants formula of Theorem 4.1.2, evaluated at
t = t (µ)

n ∈ Ih .

Theorem 4.3.5 Let the given functions g, K1, K2 and φ in the delay integral
equation (4.3.1) have continuous derivatives of order m + κ in their respective
domains I, D, Dθ and [θ (t0), t0], and assume that the delay function θ is
subject to the conditions (D1)–(D3) of Section 4.2.1, with d ≥ m + κ in (D1).
If uh ∈ S(−1)

m−1(Ih) denotes the collocation solution, for a θ -invariant mesh Ih,
with corresponding iterated collocation solution uit

h , and if the collocation
parameters are so that the orthogonality conditions (2.2.42),

Jν :=
∫ 1

0
sν

m∏
i=1

(s − ci )ds (0 ≤ ν ≤ κ − 1),

hold, with Jκ �= 0, then

max
t∈Ih\{t0}

|y(t) − uit
h | ≤ Chm+κ

is true whenever h ∈ (0, h̄).
If, in addition, we have cm = 1 (implying κ < m), then uh itself exhibits local

superconvergence at the mesh points:

max
t∈Ih\{t0}

|y(t) − uh(t)| ≤ Chm+κ .

Proof Our starting point is (4.3.27) in the proof of Theorem 4.3.3 where we
now set t = t (µ)

n . Hence,

eit
h (t (µ)

n ) =
∫ t (µ)

n

ξµ

R1(t (µ)
n , s)δh(s)ds +

µ−1∑
ν=0

∫ ξµ+1

ξν

Rµ,ν(t (µ)
n , s)δh(s)ds

+
µ−1∑
ν=0

∫ θµ−ν (t (µ)
n )

ξν

Qµ,ν(t (µ)
n , s)δh(s)ds

(0 ≤ n < N ; 0 ≤ µ ≤ M), with θµ−ν(t (µ)
n ) = t (ν)

n (cf. (4.2.3)). Hence, the by
now rather familiar quadrature argument is applicable: since the defect δh van-
ishes on Xh , and since the orthogonality and regularity conditions imply that
the quadrature errors induced by the interpolatory m-point quadrature formu-
las based on the {ci } are all of order O(hm+κ ), with the number M + 1 of
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macro-intervals I (µ) being finite, the first assertion in Theorem 4.3.4 follows
immediately.

The second assertion is based on the fact that when cm = 1, each mesh
point t (µ)

n (1 ≤ n ≤ N ) is a collocation point and thus uit
h (t (µ)

n ) = uh(t (µ)
n ), since

δh(t (µ)
n ) = 0. Note also that eit

h (t0) = 0 because uit
h (t0) = y(t+

0 ).

Corollary 4.3.6 Assume κ = m in Theorem 4.3.4. Then collocation in S(−1)
m−1(Ih)

at the Gauss points leads to an iterated collocation solution with the property
that

max
t∈Ih

|y(t) − uit
h (t)| ≤ Ch2m,

while

max
t∈Ih\{t0}

|y(t) − uh(t)| ≤ Chm only.

Corollary 4.3.7 Suppose that κ = m − 1 and cm = 1. The optimal order of
convergence of the collocation solution uh ∈ S(−1)

m−1(Ih) corresponding to the
Radau II points is then given by

max
t∈Ih\{t0}

|y(t) − uh(t)| ≤ Ch2m−1.

Recall that we have uit
h (t) = uh(t) for t ∈ Ih\{t0} whenever cm = 1 (i.e. when

tn ∈ Xh, n = 1, . . . , N ).

We illustrate these results by an example:

Example 4.3.1 Non-vanishing proportional delay

On I = [t0, T ] with t0 > 0, the delay function θ (t) = qt (0 < q < 1) corre-
sponds to a non-vanishing delay τ (t) since

θ (t) = qt = t − (1 − q)t =: t − τ (t),

with τ (t) ≥ (1 − q)t0 > 0 for t ∈ I . Hence, the primary discontinuity points
{ξµ} are given by

ξµ = q−µt0 (µ ≥ 0).

We will assume, for ease of exposition and without loss of generality, that T is
such that ξM+1 = T for some M > 1. Hence, we may write

ξµ = q M+1−µT, µ = 0, 1, . . . , M + 1.

Suppose that the mesh Ih is constrained, and let each local mesh I (µ)
h be uniform:

I (µ)
h := {t (µ)

n := ξµ + nh(µ) : n = 0, 1, . . . , N (h(µ) = q−(µ+1)(1 − q)t0/N )}.
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A mesh of this type is often called a quasi-geometric mesh (see also Section
5.5.3). The linearity of θ then implies that Ih is θ -invariant, and the same is true
for the set Xh of collocation points.

This choice of the local meshes defining Ih implies that

h = h(M) = 1

N
(ξM+1 − ξM ) = (1 − q)

T

N
,

and

h(µ) = 1

N
(ξµ+1 − ξµ) = q M+1−µ−1(1 − q)

T

N
(µ = 0, 1, . . . , M).

The result of, e.g. Theorem 4.3.5 then becomes

max
t∈Ih\{t0}

|y(t) − uit
h (t)| ≤ C(q)N−(m+κ).

Note that this result also holds for the delay VIE (4.3.15),

y(t) = g(t) + (Wθ y)(t), t ∈ I := [t0, T ] (t0 > 0),

with θ (t) = qt (0 < q < 1).

We shall return to this example in Section 5.5.3 when we describe collocation
on quasi-geometric meshes for VIDEs with vanishing delays.

4.3.4 Nonlinear delay VIEs

We turn to the nonlinear version of (4.3.1),

y(t) = g(t) + (V y)(t) + (Vθ y)(t), t ∈ (t0, T ], (4.3.28)

where now

(V y)(t) :=
∫ t

t0

k1(t, s, y(s))ds, (Vθ y)(t) :=
∫ θ (t)

t0

k2(t, s, y(s))ds.

(4.3.29)
The computational form of the collocation equation for uh ∈ S(−1)

m−1(Ih) is readily
obtained by adapting (4.3.10), and thus we will not write it down in detail.
Instead, we focus on the particular nonlinear delay VIE

y(t) = g(t) + (Wθ y)(t), t ∈ (t0, T ], (4.3.30)

where we assume that the Volterra operator Wθ is now of Hammerstein type,

(Wθ y)(t) :=
∫ t

θ (t)
k(t − s)G(s, y(s))ds. (4.3.31)

As we have already seen in Section 2.3.3, there are two ways of generat-
ing collocation approximations to solutions of Volterra–Hammerstein integral
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equations of the second kind. In the ‘direct’ approach we approximate y by
uh ∈ S(−1)

m−1(Ih), followed by the iterated collocation solution uit
h based on uh .

The equations defining these approximations are the nonlinear analogues of
those in (4.3.18), namely,

U (µ)
n ,i

= g(t (µ)
n,i ) + �̄(µ−1)

n (t (µ)
n,i )

+ h(µ)
n

∫ ci

0
k((ci − s)h(µ)

n )G(t (µ)
n + sh(µ)

n ,

m∑
j=1

L j (s)U (µ)
n, j )ds (4.3.32)

(i = 1, . . . , m), with lag term approximation at t = t (µ)
n,i as in (4.3.17),

�̄(µ−1)
n (t) :=

∫ ξµ

t (µ−1)
n+1

G(s, uh(s))ds +
∫ t (µ)

n

ξµ

k(t − s)G(s, uh(s))ds

+ h(µ−1)
n

∫ 1

c̃i

k(t − t (µ−1)
n − sh(µ−1)

n ) (4.3.33)

G
(
t (µ−1)
n + sh(µ−1)

n , uh(t (µ−1)
n + sh(µ−1)

n )
)

ds.

The local representation of uh on σ
(µ)
n is again described by (4.3.4).

The iterated collocation solution at t = t (µ)
n + vh(µ)

n ∈ σ
(µ)
n is then deter-

mined by

uit
h (t) = g(t) + �̄ (µ−1)

n (t)

+ h(µ)
n

∫ v

0
k((v − s)h(µ)

n )G(t (µ)
n + sh(µ)

n , uh(t (µ)
n

+ sh(µ)
n ))ds, v ∈ [0, 1]. (4.3.34)

Here, �̄
(µ−1)
n (t) is the nonlinear counterpart of (4.3.17).

Alternatively, we can resort to what we called implicitly linear collocation
in Section 2.3.3. Setting z(t) := G(t, y(t)) (recall the Niemytzki operator intro-
duced at the end of Section 2.1.5), the nonlinear delay VIE (4.3.30) becomes
an implicitly linear delay VIE for z,

z(t) = G

(
t, g(t) +

∫ t

θ (t)
k(t − s)z(s)ds

)
, t ∈ (t0, T ], (4.3.35)

with initial condition z(t) = G(t, φ(t)), t ∈ [θ (t0), t0]. The solution of the orig-
inal DVIE is then obtained via the recursion

y(t) = g(t) + (Lθ z)(t), t ∈ (t0, T ], (4.3.36)

where Lθ denotes the linear delay Volterra operator

(Lθ y)(t) :=
∫ t

θ (t)
k(t − s)z(s)ds.
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The solution z of (4.3.35) will be approximated by zh ∈ S(−1)
m−1(Ih), using the

same collocation points Xh as in the direct approach: it is defined by the implicit
linear collocation equation

zh(t) = G

(
t, g(t) +

∫ t

θ (t)
k(t − s)zh(s))ds

)
, t ∈ Xh, (4.3.37)

with initial values zh(t) = G(t, φ(t)), t ∈ [θ (t0), t0]. This leads to the approx-
imation yh for the solution y of the original DVIE,

yh(t) := g(t) + (Lθ zh)(t), t ∈ [t0, T ]. (4.3.38)

Setting

zh(t (µ)
n + vh(µ)

n ) =
m∑

j=1

L j (v)Z (µ)
n, j , v ∈ (0, 1], with Z (µ)

n,i := zh(t (µ)
n, j ,

(4.3.39)
the computational forms of these equations at t = t (µ)

n,i and at t = t (µ)
n + vh(µ)

n ,
respectively, are

Z (µ)
n,i = G

(
t (µ)
n,i , g(t (µ)

n,i ) + �̄ (µ−1)
n (t (µ)

n,i ) + h(µ)
n

×
m∑

j=1

(∫ ci

0
k((ci − s)h(µ)

n )L j (s)ds

)
Z (µ)

n, j

)
(4.3.40)

(i = 1, . . . , m), where for t = t (µ)
n + vh(µ)

n ∈ σ̄
(µ)
n we have

�̄(µ−1)
n (t) := h(µ−1)

n

∫ 1

ṽ

k(t − t (µ−1)
n − sh(µ−1)

n )zh(t (µ−1)
n + sh(µ−1)

n )ds

+
∫ ξµ

t (µ−1)
n+1

k(t − s)zh(s)ds +
∫ t (µ)

n

ξµ

k(t − s)zh(s)ds,

and

yh(t) = g(t) + �̄ (µ−1)
n (t) + h(µ)

n

m∑
j=1

(∫ v

0
k((v − s)h(µ)

n )L j (s)ds

)
Z (µ)

n, j ,

v ∈ [0, 1]. (4.3.41)

Recall that the number ṽ ∈ [0, 1] is obtained from

θ (t (µ)
n + vh(µ)

n ) =: t (µ−1)
n + ṽh(µ−1)

n , v ∈ [0, 1],

with ṽ = v if the lag function θ is linear.
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4.4 Collocation for first-kind VIEs with delays

4.4.1 The collocation space S(−1)
m−1(Ih)

In this section we will study the collocation solution uh ∈ S(−1)
m−1(Ih) for the

(linear) first-kind Volterra integral equation with non-vanishing delay θ ,

(V y)(t) + (Vθ y)(t) = g(t), t ∈ I := (t0, T ], (4.4.1)

subject to the initial condition y(t) = φ(t) when t ≤ t0.
Employing the notation introduced in Section 4.3.1, the computational form

of the corresponding collocation equation defining the collocation solution uh ∈
S(−1)

m−1(Ih) for (4.4.1),

(Vuh)(t) + (Vθuh)(t) = g(t), t ∈ Xh, (4.4.2)

with initial condition uh(t) = φ(t), t ≤ t0, is

h(µ)
n

m∑
j=1

(∫ ci

0
K1(t (µ)

n,i , t (µ)
n + sh(µ)

n )L j (s)ds

)
U (µ)

n, j

= g(t (µ)
n,i ) − F (µ)

n,i (t (µ)
n,i ) − (Vθuh)(t (µ)

n,i ), (i = 1, . . . , m). (4.4.3)

For t = t (µ)
n + vh(µ)

n ∈ σ
(µ)
n we have

F (µ)
n (t) :=

∫ t (µ)
n

t0

K1(t, s)uh(s)ds

=
∫ ξµ

t0

K1(t, s)uh(s)ds +
∫ t (µ)

n

ξµ

K1(t, s)uh(s)ds,

and

(Vθuh)(t) = � (µ−1)
n (t)

+ h(µ−1)
n

m∑
j=1

(∫ ṽ

0
K2(t, t (µ−1)

n + sh(µ−1)
n )L j (s)ds

)
U (µ−1)

n, j

(recall (4.3.9) and (4.3.13)), with uh on σ
(µ)
n given by

uh(t (µ)
n + vh(µ)

n ) =
m∑

j=1

L j (v)U (µ)
n, j , v ∈ (0, 1], with U (µ)

n, j := uh(t (µ)
n, j ).

(4.4.4)
The vector Un := (U (µ)

n,1 , . . . , U (µ)
n,m)T is determined by the solution of the linear

algebraic system in IRm ,

B(µ)
n U(µ)

n = (h(µ)
n )−1[g(µ)

n − G(µ)
n − Q(µ−1)

n − h(µ−1)
n B̃(µ)

n U(µ−1)
n ], (4.4.5)

in complete analogy to (4.3.11).
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As we have observed before, an important special case of (4.4.1) is

(Wθ y)(t) = g(t), t ∈ (t0, T ], (4.4.6)

with given y(t) = φ(t) on the initial interval [θ (t0), t0]. The kernel K of the
integral operator

(Wθ y)(t) :=
∫ t

θ (t)
K (t, s)y(s)ds

is assumed to satisfy the hypotheses stated in Theorem 4.1.4.
Since we have already done our homework in Section 4.3.1, the computa-

tional form of the collocation equation

(Wθuh)(t) = g(t), t ∈ Xh, (4.4.7)

with initial values given by uh(t) = φ(t), t ∈ [θ (t0), t0], derives immediately
from (4.3.18) and reads, for t = t (µ)

n,i ∈ σ
(µ)
n ,

h(µ)
n

m∑
j=1

(∫ ci

0
K (t, t (µ)

n + sh(µ)
n )L j (s)ds

)
U (µ)

n, j

= g(t (µ)
n,i ) − �̄ (µ−1)

n (t) − h(µ−1)
n

×
m∑

j=1

(∫ 1

c̃i

K (t, t (µ−1)
n + sh(µ−1)

n )L j (s)ds

)
U (µ−1)

n, j .

(4.4.8)

With the notation of Section 4.3.1 (see (4.3.19)) this leads to the linear algebraic
system for U(µ)

n ,

B(µ)
n U(µ)

n = (h(µ)
n )−1[g(µ)

n − Ḡ(µ−1)
n ] (4.4.9)

(compare (4.3.19) where this notation was introduced). For known U(µ)
n , the

collocation solution on σ
(µ)
n is thus given by

uh(t (µ)
n + vh(µ)

n ) =
m∑

j=1

L j (s)U (µ)
n, j , v ∈ (0, 1].

Remark In Example 4.3.1 we considered the lag function θ (t) = qt (0 < q <

1) on I = [t0, T ] with t0 > 0. The corresponding delay τ (t) = (1 − q)t does
not vanish on I . Consider the delay equation

(Wθ y)(t) = g(t), t ∈ I (g(0) = 0),

where the kernel K in W and the function g are such that it possesses a unique
solution y ∈ Cd (I ) for some d ≥ 1. Suppose that y is approximated by the col-
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location solution uh ∈ S(−1)
m−1(Ih), with Ih being the θ -invariant (quasi-geometric)

mesh of Example 4.3.1.
Does the ‘stability condition’ in Theorem 2.4.2 for the collocation parame-

ters,

−1 ≤ ρm := (−1)m
m∏

i=1

1 − ci

ci
≤ 1,

imply the uniform convergence of uh to y on I , as N → ∞? The answer to this
question remains to be found (see Exercise 4.7.13).

4.4.2 Direct versus indirect collocation

We know from Section 2.4.4 that local superconvergence at the mesh points is
not possible in collocation solutions for first-kind Volterra integral equations,
and that hence it is often advantageous to use its differentiated form (a VIE of
the second kind) as the basis for generating high-order solutions. The same is
true for first-kind VIEs with non-vanishing delays θ . Thus, if the given functions
in (4.4.1) satisfy the conditions in Theorem 4.1.4, differentiation of both sides
of the given equation yields the delay integral equation

y(t) = f (t) + b(t)y(θ (t)) + (W̃θ y)(t), t ∈ (t0, T ], (4.4.10)

where we have introduced the functions f (t) := g′(t)/K (t, t),

b(t) := −K (t, θ (t))θ ′(t)/K (t, t), H (t, s) := −[∂K (t, s)/∂t]/K (t, t),

and the Volterra integral operator

(W̃θ y)(t) := −
∫ t

θ (t)
H (t, s)y(s)ds.

Thus, instead of the given first-kind integral equation (5.4.1) we solve (4.4.5)
by collocation in S(−1)

m−1(Ih), with θ -invariant mesh Ih :

uh(t) = f (t) + b(t)uh(θ (t)) + (W̄θuh)(t), t ∈ Xh, (4.4.11)

with uh(t) = φ(t) when t ∈ [θ (t0), t0]. Since the delay function θ does not van-
ish on I , the result of Theorem 4.3.1 on the existence of a unique collocation
solution uh carries over to the more general equation (4.4.11). Hence, the it-
erated collocation solution for (4.4.1) corresponding to the unique ‘indirect’
collocation solution uh is obtained from

uit
h (t) := f (t) + b(t)uh(θ (t)) + (W̄θuh(t), t ∈ (t0, T ].
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Theorem 4.4.1 Suppose that the functions defining the first-kind delay Volterra
integral equation (4.4.1) satisfy, for d ≥ m + κ:

(a) K ∈ Cd+1(D̄θ );
(b) g ∈ Cd+1(I );
(c) θ ∈ Cd+1(I ), and θ subject to the conditions (D1)–(D3) of Section 4.2.1;
(d) φ ∈ Cd+1[θ (t0), t0].

If the collocation points Xh are defined by the Gauss points {ci }, then the
‘indirect’ iterated collocation solution uit

h corresponding to uh ∈ S(−1)
m−1(Ih), with

θ -invariant mesh Ih, and defined by (4.4.11), has the superconvergence prop-
erties

||y − uit
h ||∞ ≤ Chm+1 (if κ = 1), (4.4.12)

and

max
t∈Ih\{t0}

|y(t) − uit
h (t)| ≤ Ch2m (if κ = m). (4.4.13)

If the collocation parameters are the Radau II points (κ = m − 1) then uh itself
is superconvergent on Ih \ {t0}:

max
t∈Ih\{t0}

|y(t) − uh(t)| ≤ Ch2m−1.

Proof We leave it as Exercise 4.7.12.

4.5 Collocation for VIDEs with delays

4.5.1 The exact collocation equations

The description and analysis of collocation methods in Chapters 1 and 3, and
in the previous sections of the present chapter, have introduced all the ideas
required to deal with collocation solutions for the initial-value problem

y′(t) = f (t, y(t), y(θ (t))) + (V y)(t) + (Vθ y)(t), t ∈ I := [t0, T ], (4.5.1)

y(t) = φ(t), t ∈ [θ (t0), t0],

with Volterra integral operators V and Vθ given by (4.3.29) or by their linear
counterparts in (4.3.1). The delay function θ will again be assumed to sat-
isfy conditions (D1)–(D3) of Section 4.1.1. Therefore, the collocation equation
defining uh ∈ S(0)

m (Ih) in the subinterval σ̄
(µ)
n of the θ -invariant mesh Ih is

uh(t) = f (t, uh(t), uh(θ (t))) + (Vuh(t) + (Vθuh)(t), t ∈ Xh, (4.5.2)
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with uh(t) := φ(t) if t ≤ t0. For t ∈ σ
(µ)
n we define the lag term approximations

F (µ)
n (t) :=

∫ ξµ

t0

k1(t, s, uh(s)))ds +
∫ t (µ)

n

ξµ

k1(t, s, uh(s)))ds, (4.5.3)

and

(Vθuh)(t) = � (µ−1)
n (t) +

∫ θ (t)

t (µ−1)
n

k2(t, s, uh(s)))ds. (4.5.4)

In analogy to (4.3.6) we have

�(µ−1)
n (t) =

∫ ξµ−1

t0

k2(t, s, uh(s)))ds +
∫ t (µ−1)

n

ξµ−1

k2(t, s, uh(s)))ds.

Recall from Section 4.2.1 (Lemma 4.2.1) that θ (t (µ)
n,i ) = t (µ−1)

n + c̃i h
(µ−1)
n which

coincides with the collocation point t (µ−1)
n,i (i = 1, . . . , m) only if θ is linear.

With the usual local Lagrange representation of uh on σ̄
(µ)
n ,

uh(t (µ)
n + sh(µ)

n ) = y(µ)
n + h(µ)

n

m∑
j=1

β j (v)Y (µ)
n, j , v ∈ [0, 1],

with Y (µ)
n, j := u′

h(t (µ)
n, j ), (4.5.5)

the computational form of (4.5.2) becomes

Y (µ)
n,i = f

(
t (µ)
n,i , y(µ)

n + h(µ)
n

m∑
j=1

ai, j Y
(µ)
n, j , uh(θ (t (µ)

n,i ))

)

+ h(µ)
n

∫ ci

0
k1

(
t (µ)
n,i , t (µ)

n + sh(µ)
n , y(µ)

n + h(µ)
n

m∑
j=1

β j (s)Y (µ)
n, j )

)
ds

+ F (µ)
n (t (µ)

n,i ) + (Vθuh)(t (µ)
n,i ) (i = 1, . . . , m). (4.5.6)

For the linear version of (4.5.1),

y′(t) = a(t)y(t) + b(t)y(θ (t)) + g(t) + (V y)(t) + (Vθ y)(t), t ∈ I, (4.5.7)

withV andVθ given by (4.1.2) and (4.1.3), the collocation solution uh ∈ S(0)
m (Ih)

on the subinterval σ̄
(µ)
n is defined by the local representation (4.5.5) and the

solution Y(µ)
n ∈ IRm of the linear algebraic system

[Im − h(µ)
n (A(µ)

n + h(µ)
n C (µ)

n )]Y(µ)
n = g(µ)

n + G(µ)
n + κ(µ)

n y(µ)
n

+ Q(µ−1)
n + κ̃(µ−1)

n y(µ−1)
n + (h(µ−1)

n )2C̃ (µ−1)
n Y(µ−1)

n (4.5.8)
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(n = 0, 1, . . . , N − 1; µ = 0, 1, . . . , M). The matrices in L(IRm) defining
(4.5.8) are

A(µ)
n := diag(a(t (µ)

n,i ))A, with A := (ai, j );

Ã(µ)
n := diag(b(t (µ)

n,i )) Ã, with Ã := (β j (c̃i );

C (µ)
n :=




∫ ci

0
K1(t (µ)

n,i , t (µ)
n + sh(µ)

n )β j (s)ds

(i, j = 1, . . . , m)


 ;

C̃ (µ−1)
n :=




∫ c̃i

0
K2(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n )β j (s)ds

(i, j = 1, . . . , m)


 ,

and we have set

κ(µ)
n := a(µ)

n + h(µ)
n

(∫ ci

0
K1(t (µ)

n,i , t (µ)
n + sh(µ)

n )ds (i = 1, . . . , m)

)T

,

κ̃(µ−1)
n := b(µ)

n + h(µ−1)
n

(∫ c̃i

0
K2(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n )ds (i = 1, . . . , m)

)T

,

with

a(µ)
n := (a(t (µ)

n,i ) (i = 1, . . . , m))T , b(µ)
n := (b(t (µ)

n,i ) (i = 1, . . . , m))T .

The vectors G(µ)
n and Q(µ−1)

n are defined by

G(µ)
n := (F (µ)

n (t (µ)
n,1 ), . . . , F (µ)

n (t (µ)
n,m))T ,

Q(µ−1)
n := (� (µ−1)

n (t (µ)
n,1 ), . . . , �(µ−1)

n (t (µ)
n,m))T ;

for t = t (µ)
n,i ∈ σ̄

(µ)
n their components are given respectively by

F (µ)
n (t) :=

∫ ξµ

t0

K1(t, s)uh(s)ds +
∫ t (µ)

n

ξµ

K1(t, s)uh(s)ds,

�(µ−1)
n (t) :=

∫ ξµ−1

t0

K2(t, s)uh(s)ds +
∫ t (µ−1)

n

ξµ−1

K2(t, s)uh(s)ds

(see also (4.3.7)).

Theorem 4.5.1 Assume that the given functions describing the linear delay
VIDE (4.5.7) are continuous on their respective domains, and let the delay
functions θ be subject to the hypotheses (D1)–(D3) in Section 4.1.2. Then there
exists a h̄ > 0 so that for any θ -invariant mesh Ih with h ∈ (0, h̄) and any initial
function φ ∈ C[θ (t0), t0] each of the linear algebraic systems (4.5.8) possesses a
unique solution Y (µ)

n ∈ IRm. Therefore, the collocation equation (4.5.2) defines a
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unique collocation solution uh ∈ S(0)
m (Ih) for (4.5.7) whose local representation

on σ̄
(µ)
n is given by (4.5.5).

4.5.2 Global convergence results

Let eh := y − uh denote the collocation error for the collocation solution uh ∈
S(0)

m (Ih) to the linear version (4.5.7) of the delay VIDE (4.5.1), where Ih is the
θ -invariant mesh defined in (4.2.1), (4.2.2). It obviously solves the initial-value
problem

e′
h(t) = a(t)eh(t) + b(t)eh(θ (t)) + δh(t) + (Veh)(t) + (Vθeh)(t), t ∈ I,

(4.5.9)
eh(t) = 0 on [θ (t0), t0], where the defect δh vanishes on Xh , the set of collocation
points. For t ∈ I (µ) := [ξµ, ξµ+1] we write the above error equation in the form

e′
h(t) = a(t)eh(t) + δh(t) + Gµ(t) +

∫ t

ξµ

K1(t, s)eh(s)ds, t ∈ I (µ), (4.5.10)

with given initial value eh(ξµ) and lag term

Gµ(t) := b(t)eh(θ (t)) +
∫ ξµ

t0

K1(t, s)eh(s)ds + (Vθeh)(t).

When µ = 0 we have

e′
h(t) = a(t)eh(t) + δh(t) +

∫ t

t0

K1(t, s)eh(s)ds, t ∈ I (0), (4.5.11)

since the initial condition eh(t) = 0, t ≤ 0 implies G0(t) = 0 in [θ(t0), t0].
Hence, on the first macro-interval I (0) the gobal convergence result of The-

orem 3.2.1 for classical VIDEs holds: under appropriate assumptions on the
regularity of the solution (see Theorem 4.5.1 below) the collocation error can
be estimated by

||e(ν)
h ||0,∞ := sup

t∈I (0)

|e(ν)
h (t)| ≤ Cν(h(0))m (ν = 0, 1).

This implies in particular that e(ν)
h (ξ1) = O((h(0))m).

An analogous global error estimate can now be derived on each subsequent
macro-interval I (µ) (1 ≤ µ ≤ M), by applying the global convergence esti-
mates of Section 3.2.3 to the VIDE (4.5.10) on I (µ). We leave these obvious
details to the reader and simply summarise the result in

Theorem 4.5.2 Assume:

(a) a, b, g ∈ Cm(I ), and φ ∈ Cm+1[θ (t0), t0];
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(b) K1 ∈ Cm(D), K2 ∈ Cm(Dθ );
(c) θ satisfies the conditions (D1)–(D3) of Section 4.1.2, with d ≥ m in (D1);
(d) uh ∈ S(0)

m (Ih) is the collocation solution to the delay VIDE (4.5.7), where
Ih is θ -invariant and h ∈ (0, h̄) so that the linear algebraic systems (4.5.8)
all have unique solutions.

Then the estimates

||y(ν) − u(ν)
h ||∞ ≤ Cνhm (ν = 0, 1) (4.5.12)

hold for any set {ci } of distinct collocation parameters in [0, 1]. The constants
Cν depend on these parameters but are independent of h.

Since the delay τ in the VIDE (4.5.1) does not vanish on I , a gain of one
can be achieved in the global order of convergence of uh by a judicious choice
of the {ci }, thus extending the global superconvergence result of Theorem 3.2.5
for classical VIDEs.

Theorem 4.5.3 Let the assumed degree of regularity for the given functions in
the initial-value problem for the linear delay VIDE (4.5.7) be raised by one (to
m + 1 and m + 2, respectively) in Theorem 4.5.1. If the collocation parameters
satisfy the orthogonality condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0

then for all θ -invariant meshes Ih with h ∈ (0, h̄), the collocation solution
uh ∈ S(0)

m (Ih) is globally superconvergent on I :

||y − uh ||∞ ≤ Chm+1, (4.5.13)

with C depending on the {ci } but not on h.

Proof The key to establishing this global superconvergence result (and the
local superconvergence results in the next section) is the variation-of-constants
formula of Theorem 4.1.7, where y and g are replaced, respectively, by eh

and δh , and where the initial condition is given by eh(t) = 0 (t ≤ t0). It is then
easy to show that eh(ξµ) = O((h(µ))m+1) (1 ≤ µ ≤ M ; h(µ) ≤ h), by applying
Theorem 3.2.5 on each of the macro-intervals I (µ). Note that, as discussed in
detail in Sections 4.3.1 and 4.3.2 (proof of Theorem 4.3.3), the image of a
point t = t (µ)

n + vh(µ)
n ∈ σ

(µ)
n under θµ−ν (0 ≤ ν ≤ µ − 1) is given either by

t (ν)
n + vh(ν)

n (v ∈ [0, 1]) if θ is linear, or by t (ν)
n + ṽh(ν)

n (for some ṽ ∈ [0, 1],
with ṽ �= v) if θ is nonlinear.

The remaining details of the proof are left as an exercise.
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Remark The convergence results of Theorems 4.5.2 and 4.5.3 contain, as spe-
cial cases, global convergence and superconvergence results for DDEs (corre-
sponding to Ki = 0 on D and Dθ , respectively).

4.5.3 Local superconvergence results

In the previous section we have briefly described the foundation for proving op-
timal superconvergence results on Ih for the collocation solution uh ∈ Sm((0)(Ih)
to the linear delay VIDE (4.5.7): it is given by the variation-of-constants for-
mula (or ‘resolvent representation’) for the collocation error eh := y − uh de-
rived from Theorem 4.1.7 The essential ingredients of the proof of the local
superconvergence result are thus all in place: the θ -invariance of the mesh
Ih and the resulting mapping (4.2.2) of mesh points t (µ)

n into corresponding
previous mesh points t (ν)

n (which is of course true regardless of whether the
delay function θ is linear or nonlinear) and the order of the quadrature errors
corresponding to the interpolatory m-point quadrature formulas based on the
collocation points and depending on the familiar orthogonality conditions for
the collocation parameters {ci }. Thus, without any more ado we state

Theorem 4.5.4 Assume:

(a) The given functions a, b, g and K1, K2 in the DVIDE (4.5.7) are in Cm+κ

on their respective domains, for some κ with 1 ≤ κ ≤ m, as specified in
(d).

(b) The lag function θ is subject to (D1)–(D3) in Section 4.2.1, with d ≥ m +
κ + 1 in (D1).

(c) uh ∈ S(0)
m (Ih) is the collocation solution, with θ -invariant mesh Ih, for the

delay VIDE (4.5.7).
(d) The collocation parameters {ci } are such that the orthogonality conditions

(3.2.39),

Jν :=
∫ 1

0
sν

m∏
i=1

(s − ci )ds = 0, ν = 0, 1, . . . , κ − 1,

with Jκ �= 0, hold.

Then, for all sufficiently small h (i.e. h ∈ (0, h̄)) the collocation error eh :=
y − uh satisfies

max
t∈Ih

|eh(t)| ≤ Chm+κ (4.5.14)

for some constant C which depends on the {ci } but not on h.
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If, in addition, cm = 1 (implying κ ≤ m − 1), then we also have

max
t∈Ih\{t0}

|e′
h(t)| ≤ C1hm+κ . (4.5.15)

4.5.4 Neutral VFIDEs

In Section 4.1.4 we introduced two classes of neutral Volterra functional integro-
differential equations, namely

y′(t) = f (t, y(t), y(θ (t)), y′(θ (t))) + (V ′y)(t) + (V ′
θ y)(t) (4.5.16)

where the kernels of V ′ and V ′
θ depend also on y′(s), and

d

dt
[y(t) − (Vθ y)(t)] = F(t, y(t), y(θ (t))) (4.5.17)

with

(Vθ y)(t) :=
∫ θ (t)

t0

k(t, s, y(s))ds.

Since the global and local (super-) convergence properties of collocation so-
lutions uh ∈ S(0)

m (Ih) to (4.5.16) can be derived along the lines of the ones for
the ‘classical’ neutral VIDEs we considered in Section 3.2.6 (see also Brunner
(1994b) for the case of constant delay τ > 0), we leave their derivation as an
exercise (Exercise 4.7.14) and focus instead on collocation methods for (4.5.17)
and the corresponding initial-value problem introduced in (4.1.48),

z′(t) = H (t, z(t), y(θ (t)), t ∈ I := [t0, T ], (4.5.18)

z(t0) = �0 := φ(t0) − (Vθφ)(t0),

where

z(t) := y(t) − (Vθ y)(t) and H (t, z, w) := F(t, z + Vθ y, w).

The solution to (4.5.17) is then obtained from

y(t) = z(t) + (Vθ z)(t), t ∈ I

(see also Brunner and Vermiglio (2003)).
Suppose that the solution z of the initial-value problem (4.5.18) is approxi-

mated by the collocation solution zh ∈ S(0)
m (Ih) where Ih is a θ -invariant mesh

on I :

z′
h(t) = H (t, zh(t), yh(θ (t))), t ∈ Xh ; zh(t0) = �0. (4.5.19)



244 4 Initial-value problems with non-vanishing delays

The induced approximation yh to the solution y of the original problem (4.5.17)
is then determined by

yh(t) := zh(t) + (Vθ yh)(s)ds, t ∈ I. (4.5.20)

On the first macro-interval I (0) := [ξ0, ξ1], with ξ0 = t0, the above equations
reduce to

z′
h(t) = H (t, z(t), φ(θ (t))), t ∈ X (0)

h ; zh(t0) = �0,

and

yh(t) = zh(t) + (Vθφ)(t) = zh(t) −
∫ t0

θ (t)
k(t, s, φ(s))ds, t ∈ I (0).

On the subsequent macro-intervals I (µ) (µ = 1, . . . , M) the approximations zh

and yh are then generated recursively: for t = t (µ)
n + vh(µ)

n (v ∈ [0, 1]) we have

yh(t) = zh(t) +
∫ θ (t)

t0

k(t, s, yh(s))ds, t ∈ I (µ), (4.5.21)

where zh is determined by

z′
h(t) = H (t, zh(t), yh(θ (t)), t ∈ X (µ)

h , (4.5.22)

with

zh(t (µ)
n + sh(µ)

n ) = z(µ)
n + h(µ)

n

m∑
j=1

β j (v)W (µ)
n, j , v ∈ [0, 1],

and z(µ)
n := zh(t (µ)

n ), W (µ)
n, j := z′

h(t (µ)
n, j ). The explicit computational forms of

(4.5.22) and (4.5.21) are

W (µ)
n,i = H

(
t (µ)
n,i , z(µ)

n + h(µ)
n

m∑
j=1

ai, j W
(µ)
n, j , yh(t (µ−1)

n + c̃i h
(µ−1)
n )

)
(4.5.23)

(i = 1, . . . , m), and

yh(t) = zh(t) + � (µ−1)
n + h(µ−1)

n

∫ ṽ

0
k(t, t (µ−1)

n

+ sh(µ−1)
n , yh(t (µ−1)

n + sh(µ−1)
n ))ds, v ∈ [0, 1] (4.5.24)

with θ (t (µ)
n + vh(µ)

n ) =: t (µ−1)
n + ṽh(µ−1)

n (v ∈ [0, 1]). The images θ (t (µ)
n,i ) =:

t (µ−1)
n + c̃i h

(µ−1)
n of t (µ)

n,i := t (µ)
n + ci h

(µ)
n coincide with t (µ−1)

n,i (i = 1, . . . , m)
only if θ is linear.

The convergence analysis is straightforward because it can be based on
our previous techniques. Consider first the error z(t) − zh(t) associated with
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(4.5.19): since zh ∈ S(0)
m (Ih) approximates the solution of a delay differential

equation, we know that

||z − zh ||∞ ≤ Chm+1

holds if the {ci } satisfy the orthogonality condition J0 = 0 (cf. Theorem 4.5.3).
Also, we have

max
t∈Ih

|z(t) − zh(t)| ≤ Ch2m,

provided Jν = 0 (ν = 0, 1, . . . , m − 1) (Theorem 4.5.4). It is then easy to show
that the same order results are true for the approximation yh to the solution y
of (4.5.17): this follows from

|(Vθ y)(t) − (Vθ yh)(t)| ≤
∫ θ (t)

0
|K2(t, s)| · |y(s) − yh(s)|ds, t ∈ I,

and the estimate

|y(t) − yh(t)| ≤ |z(t) − zh(t)|, t ∈ I.

Here, we have used the fact that y(t) = yh(t) = φ(t), t ≤ t0, where φ is the
given initial function.

Remark When solving neutral delay VIDEs (or neutral DDEs), for example
the analogue of problem (4.5.17)),

d

dt
[y(t) − (Vθ y)(t)] = F(t, y(t), t(θ (t), y′(θ (t))),

it is desirable to have high-order approximations to y(t) and its derivative y′(t)
on Ih . In this case the use of the Radau II points as the collocation parameters
defining Xh is to be preferred over the Gauss points. The resulting order of local
superconvergence on Ih is then p∗ = 2m − 1, both for yh and y′

h .

4.6 Functional equations with state-dependent delays

4.6.1 DDEs with state-dependent delays

The numerical analysis of DDEs with state-dependent delays is now quite well
understood. The pioneering papers by Neves and Feldstein (1976) and Feldstein
and Neves (1984), as well as those by, e.g. Neves (1975a, 1975b), Neves and
Thompson (1992) (with many examples and additional references), Willé and
Baker (1994), Karoui and Vaillancourt (1994), Hartung and Turi (1995), Györi,
Hartung and Turi (1995), Hartung, Herdman and Turi (1997), Györi, Hartung
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and Turi (1998), and the monograph by Bellen and Zennaro (2003, pp. 30–32)
convey a good picture of its development and current state of the art.

4.6.2 Collocation for VIEs and VIDEs with
state-dependent delays

For Volterra functional differential systems with state-dependent delays (which
include integro-differential equations with such delays) we have the substantial
work by Tavernini (1978) on general one-step methods. It also contains some
superconvergence results. The numerical solution of second-kind Volterra inte-
gral equations with state-dependent delays was studied by Cahlon and Nachman
(1985) and Cahlon (1992).

However, except for the results in Cryer and Tavernini (1972) (Euler’s
method may be viewed as a simple collocation method) the general (super-)
convergence analysis for piecewise collocation methods is still outstanding. For
example, we do not know if the collocation solution uh ∈ S(0)

1 (Ih) for DVIDEs
of the form

y′(t) = g(t) +
∫ t

t−τ (y(t))
k(t − s)G(y(s))ds

(i.e. the VIDE analogue of (4.1.36)) exhibits O(h2)-superconvergence if collo-
cation is based on the Gauss point c1 = 1/2. We are similarly ignorant about
the optimal order of convergence on Ih for uit

h corresponding to the colloca-
tion solution uh ∈ S(−1)

0 (Ih) for Bélair’s state-dependent delay integral equation
(4.1.36).

The major obstacle in these still missing analyses is of course the fact that
now the location of the primary discontinuity points {ξµ} is not known a priori
since these points depend on the unknown solution of the functional equation.
The problem of tracking the {ξµ} is addressed in Neves and Feldstein (1976),
Feldstein and Neves (1984), Neves and Thompson (1992), and Willé and Baker
(1994). See also Bellen and Zennaro (2003) for a good exposition of these results
for DDEs. The same problem is discussed in Brunner and Zhang (1999); they
also analyse the regularity of solutions to VIEs and VIDEs with state-dependent
delays (extending the techniques due to Feldstein and Neves). The exploitation
of these results in collocation methods remains open.

4.7 Exercises and research problems

Exercise 4.7.1 Suppose that g, K1 K2 and θ in (4.1.5) are continuous on their
respective domains. For which continuous initial functions φ is the solution y
in C(I )?
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Exercise 4.7.2 Derive the analogue of the variation-of-constants formula of
Theorem 4.1.2 for the special delay VIE (4.1.14) corresponding to the delay
integral operator Wθ .

Exercise 4.7.3 Prove Theorem 4.1.3. State and prove Theorem 4.1.3 directly
for (4.1.8).

Exercise 4.7.4 Extend the variation-of-constants formula in Theorem 4.1.2 to
the more general second-kind delay VIE (4.1.14), and to the modified version
in which Wθ has been replaced by Vθ .

Exercise 4.7.5 Prove Theorem 4.1.5. What can be said about the ‘size’ of the
jumps at the points {ξµ} as µ increases from µ = 0?

Exercise 4.7.6 Prove Theorem 4.1.6. For which initial functions φ ∈
C1[θ (t0), t0] does the solution of the DVIDE possess a continuous first deriva-
tive at t = t0?

Exercise 4.7.7 Let θ (t) = t − τ (τ > 0) and consider the DVIDEs

y′(t) = ay(t) +
∫ θ (t)

0
[λ1 y(s) + λ2 y′(s)]ds

and

y′(t) = cy′(θ (t)) +
∫ θ (t)

0
[λ1 y(s) + λ2 y′(s)]ds,

with λ2 �= 0. Does smoothing occur at the points ξµ = µτ as µ increases from
µ = 0?

Exercise 4.7.8 Prove Lemma 4.2.1.

Exercise 4.7.9 A mesh I (µ) is called quasi-uniform if

qµ) := max
0≤n<N

h(µ)
n / min

0≤n<N
h(µ)

n ≤ γn < ∞

for all N ∈ N.

(a) Show that if Ih is θ -invariant (cf. (4.2.1), (4.2.2)) and I (0)
h (or I (M)

h ) is chosen
to be quasi-uniform, then each I (µ)

h , µ = 1, . . . , M [µ = 0, . . . , M − 1] is
also quasi-uniform, provided θ is linear.

(b) Does (a) remain true for nonlinear θ?

Exercise 4.7.10 Suppose the DV2 is given in the form

y(t) = g(t) + (V y)(t) +
∫ t

0
K2(t, s)y(θ (s))ds.
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Compare the resulting collocation equations (for uh ∈ S(−1)
m−1(Ih) and uit

h ) with
those obtained for (4.3.2) in which the lag function θ occurs as the upper limit
in Vθ . Compare the computational implementations, and discuss their relative
merits.

Exercise 4.7.11 Describe and analyse collocation in S(−1)
m−1(Ih) and associated

iterated collocation for DVIEs with multiple (constant) delays in θν(t) := t −
τν (0 = τ0 < τ1 < . . . < τr ),

y(t) = g(t) +
r∑

ν=0

∫ θν

0
(t)Kν(t, s)y(s)ds, t ∈ I.

(Compare also Torelli and Vermiglio (1993) for a similar analysis for related
DDEs.)

Exercise 4.7.12 Prove Theorem 4.4.1 on the convergence of the ‘indirect’
collocation solution for a first-kind VIE with non-vanishing delay.

Exercise 4.7.13 (Research problem)
Recall the Remark at the end of Section 4.4.1: if the solution of Wθ y = g
is approximated by collocation in S(−1)

m−1(Ih), and if the underlying mesh Ih is
quasi-geometric, find a necessary and sufficient condition on the collocation
parameters so that uh converges uniformly to y on I . (Assume that the given
functions K , g, φ are such that y is bounded on I .)

Exercise 4.7.14 State and prove global and local superconvergence results for
the neutral DVIDEs (4.5.16) and (4.5.7).

Exercise 4.7.15 (Research problem)
Suppose that Volterra’s system of ‘non-standard’ delay VIDEs of Section 4.1.5
is solved numerically by approximating the unknown solutions N1 and N2

by collocation in S(0)
m (Ih). Derive optimal global and local superconvergence

estimates for the collocation solutions.

Exercise 4.7.16 Do the superconvergence results described at the end of Sec-
tion 4.5.4 remain valid if the delay VIDE (4.5.17) is replaced by

d

dt
(y(t) − (Wθ y)(t)) = F(t, y′(θ (t))),

with

(Wθ y)(t) :=
∫ t

θ (t)
k(t − s)G(y(s))ds?
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4.8 Notes

4.1: Basic theory of Volterra equations with delays (I)
Variation-of-constants formulas for DDEs (including neutral equations) can
be found for example in the books by Hale (1977), Hale and Verduyn Lunel
(1993), and Diekmann et al. (1995). The paper by Cerha (1976) presents various
variation-of-constants formulas and related solution representations for second-
kind VIEs with variable delays; while Corduneau (1989) establishes analogous
results for abstract Volterra differential equations.

An important early paper on nonlinear delay VIEs is Nohel and Levin (1964)
(see also Ford, Baker and Roberts (1998)). The analysis of such functional
equations received considerable momentum from the study of mathematical
models of biological growth processes: see, e.g. Cooke (1976), Cooke and
Kaplan (1976), Hethcote, Lewis and van den Driessche (1989), and Hethcote
and van den Driessche (2000) (also for additional references).

The papers by Cahlon, Nachman and Schmidt (1984), Cahlon (1990, 1995b)
and Cahlon and Schmidt (1997) deal, in addition to numerical solutions, with
various aspects of the theory of delay VIEs of the second kind. Compare also
Cahlon and Dentz (2000) for related results. A more general stability analysis
can be found in Luzyanina, Roose and Engelborghs (2003). DVIEs with state-
dependent delays are discussed in Cahlon and Nachman (1985) and Cahlon
(1992).

Results on the existence and uniqueness of solutions to (nonlinear) delay
VIEs of the first kind can be found in Meis (1978). See also Esser (1976, 1978)
for related results for second-kind DVIEs.

The regularity of solutions to functional differential and integral equations
was studied in Neves and Feldstein (1976) (DDEs with state-dependent delays),
de Gee (1985), Willé and Baker (1992), Baker and Paul (1997), and in Brunner
and Zhang (1999) and Ma (2004) (DVIDEs). The papers by Tavernini (1971)
and by Cryer and Tavernini (1972) contain results on the solvability of gen-
eral Volterra functional differential equations. We also point out the important
contribution by Kappel and Kunisch (1987) on invariance results for delay and
Volterra functional equations.

Applications of Volterra functional equations
As we have already seen briefly in Section 4.1.5, one of the principal sources
of DDEs and, especially, Volterra integral and integro-differential equations
with constant or more general non-vanishing delays is the mathematical mod-
elling in population dynamics, with Volterra’s pioneering work of the late 1920s
marking its beginning. Many basic (early) mathematical models in epidemi-
ology and population growth are described in, e.g. Waltman (1974), Cooke
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(1976), Smith (1977), and Busenberg and Cooke (1980). The monographs by
Volterra (1931), Volterra and d’Ancona (1935), Cushing (1977), Webb (1985),
Kuang (1993), Wu (1996) (partial functional differential equations), Brauer and
Castillo-Chávez (2001), and Zhao (2003) contain a wealth of material on the
theory and application of population models, as do the proceedings edited by
Schmitt (1972), Metz and Diekmann (1986) (especially Chapter IV), and Ruan,
Wolkowicz and Wu (2003), and the survey papers by Cooke and Yorke (1973),
Busenberg and Cooke (1980), Ruan and Wu (1994), Bocharov and Rihan
(2000), and Brauer and van den Driessche (2003) (the last two papers fea-
ture extensive bibliographies). Among the milestone papers on this subject
are the papers by Volterra (1927, 1928, 1934, 1939), Cooke (1976), Cooke
and Kaplan (1976), Smith (1977), Hethcote and Tudor (1980), Hethcote et
al. (1989), Cañada and Zertiti (1994), Hethcote and van den Driessche (1995,
2000). In addition, the reader may find it worthwhile to look at Tychonoff
(1938) (for early applications of Volterra functional equations), Corduneanu
and Lakshmikantham (1980) (on functional equations with unbounded delays),
Ruan and Wu (1994) (on non-standard Volterra integro-differential equations),
and Thieme and Zhao (2003), not least because of the numerous additional
references contained in these papers.

Detailed treatments (and numerous additional applications) of nonlinear
delay VIEs and VIDEs can be found in Marshall (1979), Lakshmikantham
(1987), Györi and Ladas (1991), Yoshizawa and Kato (1991), Kolmanovskii
and Myshkis (1992), Yatsenko (1995), Hritonenko and Yatsenko (1996), Piila
(1996), Ruan and Wolkowicz (1996), and Corduneanu and Sandberg (2000).
Compare also the papers by Tavernini (1978) and Cahlon and Nachman (1985),
and their lists of references, on Volterra equations with state-dependent delays.
The second chapter in Vogel (1965) contains an illuminating survey of the
historical development of Volterra equations with delays and corresponding
detailed references. Finally, the recent monograph by Ito and Kappel (2002)
is the authoritative source for information on the mathematical framework for,
and applications of, neutral functional integro-differential equations of the type
(1.10).

4.2: Collocation for DDEs: a review
The monograph by Bellen and Zennaro (2003) gives a comprehensive account
of numerical methods for DDEs, with the focus being on (classical and con-
tinuous) Runge–Kutta methods and their asymptotic stability properties. Early
papers on the subject are by Bellman (1961), Bellman and Cooke (1965). The
papers by Torelli (1989) and Zennaro (1993) are landmarks in the analysis of
contractivity of Rung–Kutta approximations to DDEs (but see also Reverdy
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(1981, 1990) for closely related results). Related stability results were derived
by numerous authors; we cite Bellen and Zennaro (1992), Zennaro (1993, 1997),
Bellen (1997), Bellen, Guglielmi and Zennaro (1999), and Torelli and Vermiglio
(2003).

The important question of delay-dependent stability was answered by
Guglielmi (1998, 2000, 2001); see also Guglielmi and Hairer (2001a, 2001b).
In order to obtain an impression of the development of the numerical analy-
sis of DDEs and related functional equations, the reader may wish to consult
the surveys by Cryer (1972), Bellen (1985), Jackiewicz and Kwapisz (1991),
Zennaro (1995) and Baker (1997).

Bellen (1984) established the local superconvergence results of collocation
methods (for the Gauss points) for nonlinear DDEs with non-vanishing delays;
see also Vermiglio (1985) and Zennaro (1985, 1986, 1988).

Collocation methods for functional differential equations with periodic so-
lutions were studied in Bellen (1979) and, more recently, in Engelborghs,
Luzyanina, in ’t Hout and Roose (2000) and Engelborghs and Doedel
(2002).

4.3: Collocation for second-kind VIEs with delays
The superconvergence analysis of collocation and iterated collocation solutions
for linear second-kind VIEs with constant delays is due to Brunner (1994a). It
was extended to nonlinear equations in Brunner (1992a). Related convergence
results may be found in Hu (1997c, 1999).

The asymptotic stability of collocation solutions for delay VIEs (with con-
stant delays) was studied by Vermiglio (1992). As we mentioned in the Pref-
ace, the stability properties of numerical methods for Volterra integral and
more general functional equations are not yet well understood. Stability anal-
yses for some classes of numerical methods for (special) delay VIEs can be
found Cahlon (1990, 1995a, 1995b), Cahlon and Dentz (1992), and Cahlon
and Schmidt (1997, 2000); see also Tian and Kuang (1995). A more general
approach is given in Luzyanina, Roose and Engelborghs (2003).

4.4: Collocation for first-kind VIEs with delays:
Brunner (1999b) uses the integrated form of the neutral functional equation
(d/dt)[(Wθ y)(t)] = f (t) (with θ (t) = t − τ ) to generate piecewise polynomial
solutions and prove corresponding superconvergence results.

4.5: Collocation for VIDEs with delays
Collocation methods for VIDEs with constant delays were studied by Brunner
(1994b). These superconvergence results were extended to VIDEs with non-
vanishing proportional (and more general) delays in Brunner, Bellen, Maset
and Torelli (2002).
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Brunner and Vermiglio (2003) analyse continuous Runge-Kutta and collo-
cation methods for delay VIDEs in ‘Hale’s form’; the focus of the analysis is on
contractivity properties of the aproximate solutions. A different approach (based
on the integrated form of the neutral Volterra integro-differential equation) is
studied in Brunner (1999b).

The papers by Kappel and Kunisch (1982) and Ito and Kappel (1989) are
concerned with spline approximation methods to neutral functional differential
equations and Volterra functional equations with infinite delay, respectively.
The basis for these methods is the semigroup framework generated by the
given functional equations (see also the Notes to Chapter 7, and the monograph
by Ito and Kappel (2002)).



5

Initial-value problems with proportional
(vanishing) delays

Delay differential equations and Volterra functional equations with smooth
data and proportional delays that vanish at the left endpoint of their interval of
integration I = [0, T ] possess smooth solutions on I . However, the supercon-
vergence analysis of collocation solutions to functional equations with these
seemingly ‘innocent’ delays is much more complex, not least due to the fact
that variation-of-constants formulas for the representation of their solutions do
no longer exist. A thorough understanding of the numerical analysis of these
functional equations will be crucial when dealing with more general problems
including vanishing delays.

5.1 Basic theory of functional equations with
proportional delays

5.1.1 Volterra’s 1897 paper and some early history

In the first Nota of his 1896 papers Volterra had studied and solved the problem
of ‘inverting’ definite integrals of the form

(V y)(t) :=
∫ t

0
K (t, s)y(s)ds = g(t), t ∈ I := [0, T ], g(0) = 0,

where K ∈ C(D). He then turned his attention to the more general inversion
problem in which the lower limit of integration in the Volterra integral operator
is also variable. In particular he considered the delay equation

(Wθ y)(t) = g(t), t ∈ I, g(0) = 0, (5.1.1)

253
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where the Volterra integral operator Wθ is defined by

(Wθφ)(t) :=
∫ t

θ (t)
K (t, s)φ(s)ds, with θ (t) := qt (0 < q < 1). (5.1.2)

He gave a complete answer to this question in Volterra (1897), by adapting the
techniques he used in Nota I (1896a) to this new, and very different, situation.
Under suitable conditions on K and g (similar to those in Theorem 2.1.8) this
equation can be transformed into the equivalent second-kind equation

K (t, t)y(t) − q K (t, qt)y(qt) +
∫ t

qt

∂K (t, s)

∂t
y(s)ds = g′(t), t ∈ I. (5.1.3)

(see also Brunner (1997b)). This reformulation is the basis for Volterra’s 1897
result which we state below. We set D̄θ := {(t, s) : 0 ≤ θ (t) ≤ s ≤ t ≤ T }.
Theorem 5.1.1 Assume:

(a) g ∈ C1(I ), with g(0) = 0;
(b) K ∈ C ( D̄θ ), ∂K/∂t ∈ C(D̄θ ), with |K (t, t)| ≥ k0 > 0 for all t ∈ I .

Then for each θ (t) = qt with q ∈ (0, 1) the first-kind delay integral equation
(5.1.1) possesses a unique solution y ∈ C(I ).

Proof Volterra starts the proof by the following observation (Volterra (1897,
pp. 156–157). Suppose that the given (real-valued) functions λ and ϕ are con-
tinuous on I , with |λ(0)| ≤ 1, and consider the infinite series

θ (t) := ϕ(t) +
∞∑
j=1

α j

(
j−1∏
l=0

λ(αl t)

)
ϕ(α j t), t ∈ I.

This series converges uniformly on I , and hence its limit θ lies in C(I ). On the
other hand, if θ ∈ C[0, T ] is given, then replacing t in the above equation by αt
and then multiplying by αλ(x) readily leads to an expression for the unknown
function ϕ,

θ (t) − αλ(t)θ (αt) = ϕ(t), t ∈ I.

In other words, these two equations are reciprocal to each other. This obser-
vation was then used by Volterra to establish the desired result for the delay
integral equation (5.1.2) in a rather elegant way. We shall encounter the second
functional equation again later, in Section 5.3.4; see also Liu (1995b).

Volterra’s analysis – which relies on Picard iteration techniques – was ex-
tended by Lalesco (1908, 1911) (see also Volterra (1913, pp. 92–101) and Fenyö
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and Stolle (1984, pp. 324–327)) to first-kind integral equations with more gen-
eral vanishing delays.

We note in passing that the above result was generalised by, among others,
Lalesco (1908, 1911), and more recently by Denisov and Korovin (1992) and
by Denisov and Lorenzi (1995). From the latter paper we cite the following
result.

Theorem 5.1.2 Assume the lag function θ in Wθ satisfies

(a) θ ∈ C3(I ), with θ (0) = 0, θ ′(0) = 1, θ ′′(0) < 0, θ (t) < t (t ∈ (0, T ]),
θ ′(t) > 0 for t ∈ I ,

and let

(b) g ∈ C2(I ), with g(0) = g′(0) = 0;
(c) K ∈ C3(D̄θ ), with |K (t, t)| ≥ k0 > 0 (t ∈ I ).

Then the first-kind delay integral equation (Wθ y)(t) = g(t) has a unique solu-
tion y ∈ C(I ).

Remark A similar result was proved in Denisov and Korovin (1992), but under
the hypothesis that θ ′(0) < 1. If, as in the above theorem, θ ′(0) = 1, the domain
D̄θ has a cusp at the point (t, s) = (0, 0), and new techniques are needed to deal
with this situation. We note that the case θ ′(0) = 1 was already treated, albeit
in a somewhat sketchy way, by Lalesco (1911).

In his papers of 1913 and 1914 Andreoli studied the class of ‘pure’ delay
integral equations of the second kind described by

y(t) = g(t) + (Vθ y)(t), t ∈ I,

with

(Vθφ)(t) :=
∫ θ (t)

0
K (t, s)φ(s)ds,

and he illustrated his observation (Andreoli (1914, p. 77)) that

‘. . . la θ (t) avrà un’enorme influenza sulle formole di soluzione . . .’

by two examples, namely

y(t) = g(t) +
∫ qt

0
K (t, s)y(s)ds, t ∈ I = [0, T ] (0 < q < 1) (5.1.4)

(which is also analysed in Chambers (1990)), and

y(t) = g(t) +
∫ tr

0
K (t, s)y(s)ds, t ∈ [0, 1] (r > 0).
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The use of Picard iteration, extending Volterra’s approach of 1896, reveals im-
mediately that the representation of the solution is now much more complex
(see Theorem 5.1.4 below). Andreoli’s statement is even more true in the nu-
merical analysis of such proportional delay VIEs, as we shall see in Sections
5.2.5 and 5.3.6!

If the kernel in (5.1.4) is constant, K (t, s) = b/q, and g ∈ C1(I ), then the
delay VIE is equivalent to the proportional delay differential equation

y′(t) = g′(t) + by(qt), t ∈ I, y(0) = g(0).

We shall have a closer look at ‘innocent’ DDEs of this type in the following
section (cf. (5.1.6)).

5.1.2 Linear differential equations with proportional delays

The linear DDE with constant coefficients,

y′(t) = ay(t) + by(qt), t ≥ 0 (0 < q < 1), (5.1.5)

arose in the mathematical modelling of the wave motion in the supply line
to an overhead current collector (pantograph) of an electric locomotive (see
Ockendon and Tayler (1971) and Fox et al. (1971); also Tayler (1986, pp. 40–
45, 50–53)): the resulting pantograph equation is a (seemingly!) very simple
example of a DDE with vanishing delay on any interval I := [0, T ]: here, we
have θ (t) = t − τ (t), with τ (t) = (1 − q)t ≥ 0.

A special case of (5.1.5) is the ‘pure delay’ equation

y′(t) = by(qt), t ≥ 0, y(0) = y0 (b �= 0) (5.1.6)

(which we have already met at the end of the previous section). Its (unique)
solution is given by

y(t) =
∞∑
j=0

q j( j−1)/2

j!
(bt) j · y0, t ≥ 0. (5.1.7)

Iserles (1993) presents an illuminating introduction into the beautifully com-
plex world of solutions to (5.1.5) and its generalisations.

The following result can be found in Kato and McLeod (1971); compare
also Frederickson (1971), Morris, Feldstein and Bowen (1972), Derfel (1990),
Iserles (1993), and Terjéki (1995).

Theorem 5.1.3 For any q ∈ (0, 1) and any y0 the delay differential equation
(5.1.5) possesses a unique solution y ∈ C1(I ) with y(0) = y0, regardless of the
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choice of a, b �= 0, and T > 0. It is given by

y(t) =
∞∑

n=0

γn(q)tn,

where

γn(q) := 1

n!

n∏
j=1

(a + bq j−1).

Proof We apply Picard iteration to the equivalent Volterra integral equation,

y(t) = y0 +
∫ t

0
(ay(s) + by(qs))ds, t ∈ I.

It can be shown that the resulting sequence {yn(t)} (n ≥ 0, y0(t) := y0) con-
verges uniformly on any interval I . Moreover, setting

y(t) :=
∞∑

n=0

γn(q)tn,

one verifies the power series has infinite radius of convergence, since its coef-
ficients satisfy

γn

γn−1
= 1

n
[a + bqn−1], n ≥ 1.

Remarks

1. The above result (except for the last statement) remains true for (5.1.5) with
variable coefficients a, b ∈ C(I ). More precisely, if a, b ∈ Cm(I ) then, for
any q ∈ (0, 1) and any y0, the solution y lies in Cm+1(I ). See also Terjéki
(1995) on various representations of solutions to linear pantograph DDEs.
Properties of solutions of nonlinear versions of these equations (e.g. Riccati-
type equations) can be found in the papers by Iserles (1994b) and Iserles and
Terjéki (1995).

2. These results reveal a crucial difference between the regularity of solutions
of DDEs with non-vanishing delays and DDEs of pantograph-type DDEs:
for the latter, smooth data lead to solutions that are smooth on the entire
interval [0, T ]. In particular, solutions to (5.1.6) are entire functions of order
zero. It follows from classical complex function theory (Ahlfors’s Theorem)
that an entire function of order zero cannot have finite asymptotes. This
implies that, for b < 0, non-trivial solutions of (5.1.6) are not bounded on
IR+; also, the number of sign changes (zeros) is infinite. (See also Iserles
(1993, 1997b), Liu (1997), and Exercise 5.6.2.) The properties of solutions
to the second-order analogue of (5.1.6) were analysed in Bélair (1981).
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Table 5.1. Zeros of y(t) for b = −1

q = 0.05 q = 0.5 q = 0.95

z1 = 1.02631 z1 = 1.48808 z1 = 8.96684
z2 = 40.3651 z2 = 4.88114 z2 = 10.8942...

...
z3 = 1205.57 z10 = 5223.38 z46 = 5258.99

To give the reader an idea of how these zeros depend on q, Table 5.1 ex-
hibits a representative sample of zeros of y. Additional information (for
q = 1/4, q = 3/4) can be found in Iserles (1993, p. 5).

The values of |y(t)| in the interval given by the last listed zero and the
following one exceed 1015.

The reader interested in details on the asymptotic distribution of the zeros
of such solutions may wish to consult the 1992 paper by Elbert (which in-
cludes a reference to the first study of this subject, a 1967 report by Feldstein
and Kolb).

5.1.3 Linear Volterra integral equations with
proportional delays

We now return to the delay VIE (5.1.4) considered by Andreoli (1913, 1914)
(and by Chambers (1990)), and to his remark about the effect the (vanishing)
proportional delay has on the representation of the solution.

Theorem 5.1.4 Let g and K in (5.1.4) satisfy g ∈ C(I ) and K ∈ C(Dθ ), where
Dθ := {(t, s) : 0 ≤ s ≤ θ (t), t ∈ I }. Then for any θ (t) := qt with q ∈ (0, 1)
the delay integral equation (5.1.4) possesses a unique solution y ∈ C(I ). This
solution is given by

y(t) = g(t) +
∞∑

n=1

∫ qnt

0
Kn(t, s)g(s)ds

= g(t) +
∫ t

0

( ∞∑
n=1

qn Kn(t, qns)g(qns)

)
ds, t ∈ I. (5.1.8)

The iterated kernels Kn(t, s) (= Kn(t, s; q)) are obtained recursively by

Kn+1(t, s) :=
∫ qt

q−ns
K (t, v)Kn(v, s)dv, (t, s) ∈ D(n+1)

θ (n ≥ 1),
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with K1(t, s) := K (t, s) and

D(k)
θ := {(t, s) : 0 ≤ s ≤ qkt, t ∈ I }, k ≥ 1 (D(1)

θ = Dθ ).

Proof The Picard iteration process we applied to the integrated form (5.1.8)
of the pantograph DDE can of course be used for the delay VIE (5.1.4), with
suitably adapted Dirichlet’s formula when changing the order of integration
in the double integrals: here again, the resulting limits of integration depend
on the iteration number n. To see this in some more detail, we have, setting
y0(t) := g(t),

y1(t) := g(t) +
∫ qt

0
K1(t, s)g(s)ds,

and hence

y2(t) := g(t) +
∫ qt

0
K1(t, s)

(
g(s) +

∫ qs

0
K1(s, v)g(v)dv

)
ds

= g(t) +
∫ qt

0
K1(t, s)g(s)ds +

∫ qt

0

(∫ qt

q−1v

K1(t, s)K1(s, v)ds

)
y(v)dv.

It is now easily verified by induction that the iterated kernels Kn(t, s) of the
given kernel K (t, s) =: K1(t, s) are generated recursively by

Kn+1(t, s) =
∫ qt

q−ns
K (t, v)Kn(v, s)dv, (t, s) ∈ D(n+1)

θ (n ≥ 1)

(see also Chambers (1990)).
We leave the detailed steps of the proof as an exercise but state the uniform

bounds for the iterated kernels. This (readily verified) result will play a role
in the analysis of global superconvergence of collocation solutions for (5.1.9)
below (compare the proof of Theorem 5.3.4).

Lemma 5.1.5 Uniform bounds on I = [0, T ] for the iterated kernels Kn(t, s)
defined in Theorem 5.1.5 are given by

|Kn(t, s)| ≤ qn(n−1)/2

(n − 1)!
T n−1 K̄ n

θ , (t, s) ∈ D(n)
θ (n ≥ 1),

where we have set K̄ θ := max{|K (t, s)| : (t, s) ∈ Dθ }.
The existence, uniqueness and regularity properties hold also for the more

general linear delay VIE with proportional delay,

y(t) = g(t) + (V y)(t) + (Vθ y)(t), t ∈ I, (5.1.9)
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corresponding to the Volterra integral operators

(V y)(t) :=
∫ t

0
K1(t, s)y(s)ds, (Vθ y)(t) :=

∫ θ (t)

0
K2(t, s)y(s)ds,

with θ (t) := qt (0 < q < 1), K1 ∈ C(D) and K2 ∈ C(Dθ ).

Theorem 5.1.6 Assume that K1 ∈ Cd (D) and K2 ∈ Cd (Dθ ), for some d ≥
0. Then the delay integral equation (5.1.9) with θ (t) = qt (0 < q < 1) has a
unique solution y ∈ Cd (I ) for any g with g ∈ Cd (I ).

Proof Theorem 5.1.4 shows that the iterated kernels Kn(t, s; q) associated with
the kernel K of the special delay integral equation (5.1.4) inherit the regularity
of K . Since the additional term (V y)(t) in the general linear delay VIE (5.1.9)
will not lead to lower regularity in the Picard iteration process, the assertion of
Theorem 5.1.5 follows from the uniform convergence of the Picard iterates on
I , for any q ∈ (0, 1).

We shall see in Section 5.1.5 that this regularity result can also be derived
by means of embedding techniques.

Remark The paper by Morris, Feldstein and Bowen (1972, pp. 518–523) con-
tains an illuminating discussion of the connection between general pantograph
DDEs and certain Volterra integral and integro-differential equations with (mul-
tiple) proportional delays. Compare also Iserles and Liu (1994).

5.1.4 Volterra integro-differential equations with
proportional delays

In order to obtain some first insight into the properties of solutions of linear
VIDEs with proportional delays we will consider the analogue of Andreoli’s
‘pure delay’ problem (5.1.4), namely

y′(t) = g(t) +
∫ qt

0
K (t, s)y(s)ds, t ∈ I := [0, T ], y(0) = y0, (5.1.10)

assuming that g ∈ C(I ), K ∈ C(Dθ ), and 0 < q < 1. This initial-value prob-
lem is equivalent to the delay VIE

y(t) = g0(t) +
∫ qt

0
H (t, s; q)y(s)ds, t ∈ I, (5.1.11)

where

g0(t) := y0 +
∫ t

0
g(s)ds, H (t, s; q) :=

∫ t

q−1s
K (v, s)dv.
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We now apply Theorem 5.1.4: setting H1(t, s) := H (t, s; q), and denoting by
Hn(t, s) the corresponding iterated kernels, the unique solution y of (5.1.11)
(which, since g0 and H (·, ·; q) are continuously differentiable functions, lies in
C1(I )) can be expressed in the form*

y(t) = g0(t) +
∞∑

n=1

∫ qnt

0
Hn(t, s)g0(s)ds, t ∈ I,

where the infinite series converges absolutely and uniformly. If we now sub-
stitute the expressions for g0(t), an obvious rearrangement (using Dirichlet’s
formula) leads to the following result.

Theorem 5.1.7 For any g ∈ C(I ) and K ∈ C(Dθ ), the unique solution y ∈
C1(I ) to the initial-value problem (5.1.10) has the representation

y(t) =
(

1 +
∞∑

n=1

H̃ n(t, 0)

)
y0 +

∞∑
n=0

∫ qnt

0
H̃ n(t, s)g(s)ds, t ∈ I.

Here, we have set

H̃ n(t, s) :=
∫ qnt

s
Hn(t, v)dv, (t, s) ∈ D(n)

θ (n ≥ 1),

with H̃ 0(t, s) := 1 on D, and we note that

H̃ n(t, 0) =
∫ qnt

0
Hn(t, v)dv t ∈ I.

The initial-value problem for the general linear VIDE with proportional
delay,

y′(t) = a(t)y(t) + b(t)y(qt) + g(t) + (V y)(t) + (Vθ y)(t), t ∈ I, (5.1.12)

with θ (t) = qt (0 < q < 1), is equivalent to the delay VIE

y(t) = g0(t) +
∫ t

0

(
a(s) +

∫ t

s
K1(v, s)dv

)
y(s)ds

+
∫ qt

0

(
(1/q)b(s/q) +

∫ t

q−1s
K2(v, s)dv

)
y(s)ds

=: g0(t) +
∫ t

0
G1(t, s)y(s)ds +

∫ qt

0
G2(t, s; q)y(s)ds,

where

g0(t) := y0 +
∫ t

0
g(s)ds.
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The regularity of the kernels G1 and G2(·; ·; q) is determined by that of the
original data a, b and K1, K2. Thus, Theorem 5.1.6 implies

Theorem 5.1.8 Assume:

(a) a, b, g ∈ Cd (I ) for some d ≥ 0;
(b) K1 ∈ Cd (D) and K2 ∈ Cd (Dθ ).

Then for each initial value y0 the delay VIDE (5.1.12) possesses a unique
solution y ∈ Cd+1(I ).

5.1.5 Embedding techniques

The embedding of a (proportional) delay differential equation into an infinite
system of ordinary differential equations was studied in detail in the 1995 paper
by Feldstein, Iserles and Levin (1995). The motivation behind this approach
was to explore another way of obtaining results on the asymptotic stability
(or the boundedness) of solutions of such DDEs, and for constructing feasible
methods for their numerical solution. It also permits the derivation of regularity
results for the exact solutions.

Here, we extend these embedding techniques to the delay Volterra integral
equation (5.1.9) and to the delay Volterra integro-differential equation (5.1.12).
Note that these delay VEs contain the important special cases characterised by
K2(t, s) = −K1(t, s) =: −K (t, s):

y(t) = g(t) + (Wθ y)(t), t ∈ I, (5.1.13)

and

y′(t) = a(t)y(t) + b(t)y(qt) + (Wθ y)(t), t ∈ I ; y(0) = y0. (5.1.14)

corresponding to the delay Volterra operator Wθ introduced in (5.1.2). The fol-
lowing embedding results (which can be extended to the nonlinear counterparts
of the above pantograph-type Volterra equations) contain the key not only to
establishing results on the existence, uniqueness, and regularity of solutions
but possibly also to the analysis of the local superconvergence properties of
collocation solutions to such functional equations.

Embedding results for the DVIE (5.1.9)

Lemma 5.1.9 The delay VIE (5.1.9) can be embedded into an infinite-
dimensional system of ‘classical’ VIEs of the second kind,

zν(t) = gν(t) +
∫ t

0

(
K1,ν(t, s)zν(s) + K2,ν(t, s)zν+1(s)

)
ds (ν ∈ IN0),

(5.1.15)



5.1 Basic theory of functional equations with proportional delays 263

where

zν(t) := y(qν t), gν(t) := g(qν t)

and

K1,ν(t, s) := qν K1(qν t, qνs), K2,ν(t, s) := qν+1 K2(qν t, qν+1s).

The proof of this embedding result is left as an exercise.

Consider now the truncated (finite) system corresponding to (5.1.15),

zM,ν(t) = gν(t) +
∫ t

0

(
K1,ν(t, s)zM,ν(s) + K2,ν(t, s)zM,ν+1(s)

)
ds

(ν = 0, 1, . . . , M − 1), (5.1.16)

zM,M (t) = gM (t) +
∫ t

0
K1,M (t, s)zM,M (s)ds, t ∈ I. (5.1.17)

Lemma 5.1.10 Assume that g ∈ C(I ), K1 ∈ C(D), K2 ∈ C(Dθ ). Then for
ν = M, M − 1, . . . , 0, the (unique) solution of (5.1.16), (5.1.17) satisfies

||zν − zM,ν ||∞ ≤ Cq M̃ , with M̃ ≥ M + 1.

Proof Setting εM,ν := zν − zM,ν , it follows from (5.1.16) and (5.1.17) that

εM,ν(t) =
∫ t

0
K1,ν(t, s)εM,ν(s)ds + �M,ν(t), t ∈ I (5.1.18)

(ν = 0, 1, . . . , M) with

�m,ν(t) :=




∫ t

0
K2,M (t, s)zM+1(s)ds if ν = M

∫ t

0
K2,ν(t, s)εM,ν+1(s)ds if M − 1 ≥ ν ≥ 0.

Let R1,ν = R1,ν(t, s) denote the resolvent kernel associated with the kernel
K1,ν in (5.1.15); we know from Section 2.1.1 that K1 ∈ C(D) implies R1,ν ∈
C(D) for all ν ≥ 0. The (unique) solution of the finite system (5.1.18) may thus
be written as

εM,ν(t) =
∫ t

0
R1,ν(t, s)�M,ν(s)ds + �M,ν(t), t ∈ I (5.1.19)

(ν = M, M − 1, . . . , 0). Since |K2,ν(t, s)| ≤ K̄ 2 qν+1, (t, s) ∈ Dθ , where
K̄ 2 := maxDθ

|K2(t, s)|, setting ν = M in (5.1.19) leads to

|εM,M (t)| ≤ Cq M+1, t ∈ I.
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Thus, assuming that ||ε||∞ ≤ Cq M̃ (M̃ ≥ M) for ν = M, M − 1, . . . , M0 + 1,
we find

|�M0,ν(t)| ≤ K̄ 2T qν+1C0q M̃ =: Cq M̃+ν+1, ν ≥ M̃ + 1,

and hence,

|εM,M0 (t)| ≤ Cq M̃ , t ∈ I, with M̃ ≥ M + 1.

This establishes the uniform estimates in Lemma 5.1.10.

Embedding results for the DVIDE (5.1.12)

Lemma 5.1.11 The delay VIDE (5.1.12) can be embedded into an infinite-
dimensional system of ‘classical’ VIDEs, namely,

z′
ν(t) = ãν(t)zν(t) + b̃ν(t)zν+1(t) +

∫ t

0

(
K̃ 1,ν(t, s)zν(s) + K̃ 2,ν(t, s)zν+1(s)

)
ds

(5.1.20)
(ν ∈ IN0), with

ãν(t) := qνa(qν t), b̃ν(t) := qνb(qν t),

and

K̃ i,ν(t, s) := qν Ki,ν(t, s) (i = 1, 2).

The kernels Ki,ν are those defined in Lemma 5.1.9.

This easily verified result leads to the VIDE analogue of Lemma 5.1.10:

Lemma 5.1.12 Assume that a, b ∈ C(I ), K1 ∈ C(D), and K2 ∈ C(Dθ ). Then
the (unique) solution of the truncated (finite) system of VIDEs corresponding
to (5.1.20),

z′
M,ν(t) = ãν(t)zM,ν(t) + b̃ν(t)zM,ν+1(t)

+
∫ t

0

(
K̃ 1,ν(t, s)zM,ν(s) + K̃ 2,ν(t, s)zM,ν+1(s)

)
ds (5.1.21)

(ν = 0, 1, . . . , M − 1),

z′
M,M (t) = ãν(t)zM,M (t) +

∫ t

0
K̃ 1,M (t, s)zM,M (s)ds, t ∈ I,

(5.1.22)

with zM,ν(0) = y0, satisfies

||zν(t) − zM,ν(t)||∞ ≤ Cq M̃ (ν = 0, 1, . . . , M), with M̃ ≥ M.



5.1 Basic theory of functional equations with proportional delays 265

Proof Setting εM,ν := zν − zM,ν , we have

ε′
M,ν(t) = ãν(t)εM,ν(t) +

∫ t

0
K̃ 1,ν(t, s)εM,ν(s)ds + �M,ν(t), t ∈ I,

(5.1.23)
with εM,ν(0) = 0 (ν = M, M − 1, . . . , 0). Here,

�M,ν(t) :=




b̃M (t)zM+1(t) +
∫ t

0
K̃ 2,M (t, s)zM+1(s)ds if ν = M

b̃ν(t)εM,ν+1(t) +
∫ t

0
K̃ 2,ν(t, s)εM,ν+1(s)ds if ν < M.

Let r1,ν = r1,ν(t, s) denote the (differential) resolvent kernel corresponding
to the functions ãν and K̃ 1,ν in (5.1.20); that is, r1,ν is defined by the (unique)
solution of the (differential) resolvent equation

∂r1,ν(t, s)

∂s
= −r1,ν(t, s)ãν(s) −

∫ t

s
r1,ν(t, z)K̃ 1,ν(z, s) dz, (t, s) ∈ D,

with r1,ν(t, t) = 1, t ∈ I (recall Theorem 3.1.2). The solution of the initial-
value problem (5.1.21),(5.1.22) can then be written in the form

εM,ν(t) = r1,ν(t, 0)εM,ν(0) +
∫ t

0
r1,ν(t, s)�M,ν(s)ds, t ∈ I, (5.1.24)

(ν = M, M − 1, . . . , 0), where εM,ν(0) = 0 for all ν. Since

|�M,M (t)| ≤ γ0q M + γ1q2M+1, t ∈ I,

for some finite constants γ1 (recall that K̃ 2,ν(t, s) = qν K2,ν(t, s) and
|K2,ν(t, s)| ≤ K̄ 2qν+1), we readily derive the uniform estimate

|εM,M (t)| ≤ C0q M + C1q2M+1 =: Cq M , t ∈ I (M ∈ IN0),

where C = C(q, M) < ∞ and q ∈ (0, 1).
For ν < M the argument for bringing the proof to its conclusion is analogous

to the one in the proof of Lemma 5.1.10: we employ the representation (5.1.24)
and the estimate for ||εM,M ||∞. Details are left to the reader.

Remark The (uniform) convergence results in Lemmas 5.1.10 and 5.1.12 allow
us not only to deduce the existence of unique solutions to the delay problems
(5.1.9) and (5.1.12) but also to establish the global regularity results already
alluded to: Cm-data imply that the solutions of the DVIE and the DVIDE lie,
respectively, in Cm(I ) and Cm+1(I ).
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5.1.6 Nonlinear pantograph-type functional equations

Results on the existence, uniqueness and qualitative behaviour of solutions
to various classes of nonlinear DDEs with vanishing proportional delays can
be found for example in Iserles (1994a), Iserles and Tejéki (1995), Feldstein,
Iserles and Levin (1995) (embedding techniques), and Feldstein and Liu (1998)
(see also for additional references).

Three typical examples are described below; the first two were studied in
detail by Iserles (1994a) and Feldstein and Liu (1998).

Example 5.1.1 The nonlinear DDE with proportional delay,

y′(t) = ay(t) + by(qt)(1 − y(qt)), t ≥ 0 (0 < q < 1). (5.1.25)

is a Riccati-type equation which may be viewed as the proportional delay ana-
logue of the classical logistic equation.

Example 5.1.2 The rational version of (5.2.5) is

y′(t) = ay(t)

1 + by(qt)
, t ≥ 0 (0 < q < 1). (5.1.26)

Example 5.1.3 Nonlinear second-kind Volterra integral equations with propor-
tional delays were studied by Chambers (1990). He showed that the equation

y(t) = g(t) +
∫ qt

0
k(t, s, y(s))ds, t ∈ I := [0, T ],

possesses a unique solution y ∈ C(I ) if g ∈ C(I ) and k satisfies

|k(t, s, y) − k(t, s, z)| ≤ P(t)Q(s)|y − z| for (t, s) ∈ Dθ , y, z ∈ IR,

for some functions P and Q with P(t) = ptα, Q(s) = sβ (α, β ≥ 0).

Results on the existence and uniqueness of solutions of more general non-
linear VIEs (and VIDEs) with vanishing proportional delays can be established
by using the embedding techniques described in the previous section. We leave
the details to the reader.

5.2 Collocation for DDEs with proportional delays

Since a complete understanding of the effects of the (seemingly simple) vanish-
ing proportional delay θ (t) = qt on the structure of the collocation equations
and hence on the convergence properties of collocation solutions to functional
equations with vanishing proportional delays is essential for tackling analo-
gous questions for problems with state-dependent delays, we will present a
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rather detailed description of the collocation equations and the corresponding
error analysis, perhaps more so than in the previous chapters. Although Runge–
Kutta methods for pantograph-type DDEs are studied in some detail in Bellen
and Zennaro (2003), our approach in Section 5.2.1 may yield some additional
insight into collocation-based continuous RK methods.

5.2.1 Collocation and continuous Runge–Kutta methods

Assume that the initial-value problem

y′(t) = f (t, y(t), y(qt)), t ∈ I := [0, T ], y(0) = y0 (0 < q < 1),
(5.2.1)

possesses a unique solution y ∈ C1(I ). As we have seen in Section 5.1.2, so-
lutions of equations with proportional delays on any interval [0, T ] essentially
inherit the regularity of the given data on that interval; that is, there are no pri-
mary discontinuity points, in sharp contrast to DDEs with non-vanishing delays
(e.g. (5.2.1) on I = [t0, T ] with t0 > 0). Hence, the meshes Ih underlying the
collocation space S(0)

m (Ih) need not be constrained ones, and we may choose, as
in Section 1.1 for ODEs,

Ih := {tn : 0 = t0 < t1 < . . . < tN = T },
with

σn := (tn, tn+1], hn := tn+1 − tn, h := max
(n)

hn,

and σ̄n := [tn, tn+1]. The resulting computational form of the collocation equa-
tion for uh ∈ S(0)

m (Ih),

u′
h(t) = f (t, uh(t), uh(qt)), t ∈ Xh, uh(0) = y0, (5.2.2)

with collocation points

Xh := {tn,i := tn + ci hn : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)},
is, however, much more complex than the one for ODEs or for DDEs with
non-vanishing delays. This is due to the presence of the terms q(tn + ci hn):
since t0 = 0, these points qtn,i will initially lie in the same subinterval σn as
the collocation points tn,i themselves, and this will be followed in general by
‘partial overlap’. The collocation equations assume a structure similar to the one
of the collocation equation corresponding to a DDE with non-vanishing delay
only after some ‘transition phase’, when we have reached the subintervals σn

for which qtn,i ≤ tn for all i = 1, . . . , m.
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We shall limit our analysis to uniform meshes and to certain (quasi-) ge-
ometric meshes. The (non-trivial!) case of more general meshes – important
when designing collocation methods on adaptive meshes Ih – will be left as a
research problem (Exercise 5.6.24).

Assume first that Ih := {tn := nh : n = 0, 1, . . . , N ; ; hn = h = T/N } is a
uniform mesh. Set

qn,i := �q(n + ci )�, γn,i := q(n + ci ) − qn,i ∈ [0, 1), (5.2.3)

where, for x ∈ IR, �x� denotes the largest integer not exceeding x . Hence,

qtn,i = q(tn + ci h) = h · (qn,i + γn,i ) = tqn,i + γn,i h ∈ [tqn,i , tqn,i +1]. (5.2.4)

We denote by 	x
 the least upper integer bound of x ∈ IR.

Lemma 5.2.1 Let q ∈ (0, 1) and 0 < c1 < . . . < cm ≤ 1 be given, and assume
that Ih is a uniform mesh with mesh diameter h = T/N. Then:

(i) For n = 0 we have qtn,i ∈ (tn, tn+1) for i = 1, . . . , m.
(ii) If n ≥ 1, then qtn,i ∈ (tn, tn+1) for i = 1, . . . , m if, and only if, n <

	 q
1−q c1
 =: q I .

(iii) qtn,i ≤ tn for i = 1, . . . , m if, and only if, 	 q
1−q cm
 =: q I I ≤ n ≤ N − 1.

Proof

(i) Assuming that c1 > 0 we clearly have q(t0 + ci h) = h · qci ∈ (0, h) for
all i ; i.e., ‘complete overlap’ occurs always at least for n = 0, for any
q ∈ (0, 1).

(ii) Since qtn,i ≥ qtn,1, qtn,1 ∈ (tn, tn+1) if, and only if, q(n + c1) > n. This
holds if, and only if, n < qc1/(1 − q).

(iii) We have qtn,i ≤ tn for i = 1, . . . , m if, and only if, qtn,m ≤ tn . This leads
to the condition that n ≥ qcm/(1 − q), and hence to the final assertion in
Lemma 5.2.1.

The above results and their proofs are readily modified to cover sets {ci }
where c1 = 0 (e.g. the Lobatto points). We leave this as an exercise.

Lemma 5.2.1 shows that the recursive computation of the collocation solu-
tion for the DDE (5.2.1) with vanishing proportional delay qt (or, as we shall
see in subsequent sections, for analogous DV2s and DVIDEs with vanishing
proportional delays) consists in general of three phases:

� Phase I: This ‘initial phase’ (complete overlap) is described by the values n
satisfying

0 ≤ n <

⌈
q

1 − q
c1

⌉
=: q I



5.2 Collocation for DDEs with proportional delays 269

(assuming again that c1 > 0). For these values of n we have q(tn + ci h) > tn
for i = 1, . . . , m. As already metioned in Lemma 5.2.1 this is always true
when n = 0, for any q ∈ (0, 1).

� Phase II: The ‘transition phase’ (partial overlap) is characterised by the
values of n with

q I ≤ n <

⌈
q

1 − q
cm

⌉
=: q I I .

In this phase there exists, for given n, a νn ∈ {1, . . . , m − 1} so that

q(tn + ci h) ≤ tn for i = 1, . . . , νn,

while

q(tn + ci h) > tn for i = νn + 1, . . . , m.

Note that this phase may be empty (recall Example 5.2.1, and see Exercise
5.6.11).

� Phase III: The ‘pure delay phase’ (no overlap) consists of those values of n
for which

q I I ≤ n ≤ N − 1.

Here,

q(tn + ci h) ≤ tn for all i = 1, . . . , m,

that is, qn,i ≤ n − 1 for all i = 1, . . . , m.

Example 5.2.1
For q = 1/2 and n = 1,

q(tn + ci h) = hq(1 + ci ) ≤ h(1 + ci )/2 ≤ h, i = 1, . . . , m.

Thus, we have either (assuming c1 > 0)

qtn,i > n (i = 1, . . . , m) =⇒ n = 0,

or

qtn,i ≤ tn (i = 1, . . . , m) if 1 ≤ n ≤ N − 1.

Hence, q I = q I I = 1: Phase II is empty for all values of m and any set {ci }
with c1 > 0.
Compare also Example 5.4.1 (m = 1) and the values for qn,1 and γn,1 given in
Tables 5.4–5.7.
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Example 5.2.2
Let q = 1/2 and uh ∈ S(0)

2 (Ih) (m = 2). Hence,

qn,i = �(n + ci )/2� = �ci/2 + n/2� (i = 1, 2).

� Let the {ci } be the Gauss points: c1 = (3 − √
3)/6, c2 = (3 + √

3)/6. It is
easily seen that

qn,i = �n/2� (i = 1, 2),

and

γn,1 =
{

(3 − √
3)/12 if n is even

(9 − √
3)/12 if n is odd

γn,2 =
{

(3 + √
3)/12 if n is even

(9 + √
3)/12 if n is odd.

Here, we have q I = 	c1
 = 1, q I I = 	c2
 = 1, a particular case of the pre-
vious example.

� For the Radau II points, c1 = 1/3, c2 = 1, we find

qn,1 = �1/6 + n/2� = �n/2�, qn,2 = �(n + 1)/2�,
and

γn,1 =
{

1/6 if n is even

2/3 if n is odd

γn,2 =
{

1/2 if n is even

0 if n is odd.

The values of q I and q I I are again given by q I = q I I = 1.

Example 5.2.3
Assume that q = 0.9 and uh ∈ S(0)

2 (Ih) (m = 2).

� For the Gauss points, Lemma 5.2.1 yields

qtn,i > tn (i = 1, 2) if, and only if n < 	9c1
 = 2,

and

qtn,i ≤ tn (i = 1, 2) if, and only if n ≥ 	9c2
 = 8.

Thus, for n = 2, . . . , 7 we have

qtn,1 ∈ (tn−1, tn] and qtn,2 ∈ (tn, tn+1).
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Table 5.2. m = 2

Gauss points Radau II points

q = 1/2 2/3 0.9 0.99 1/2 2/3 0.9 0.99
q I = 1 1 2 21 1 1 3 33
q I I = 1 2 8 79 1 2 9 99

It follows that q I = 	9c1
 = 2, q I I = 	9c2
 = 8.
� For the Radau II points,

qtn,i > tn (i = 1, 2) if, and only if n < 	9c1
 = 3,

and

qtn,i ≤ tn (i = 1, 2) if, and only if n ≥ 	9c2
 = 9,

implying that for n = 3, . . . , 8 we have

qtn,1 ∈ (tn−1, tn] and qtn,2 ∈ (tn, tn+1).

Hence, q I = 	9c1
 = 3, q I I = 	9c2
 = 9.

For later reference we add a brief summary of values of q I and q I I corre-
sponding to m = 2, m = 3 and to two prominent sets of collocation parameters.

• Gauss points:

m = 2 : c1 = (3 − √
3)/6, c2 = (3 + √

3)/6,

m = 3 : c1 = (5 − √
15)/10, c2 = 1/2, c3 = (5 + √

15)/10;

• Radau II points:

m = 2 : c1 = 1/3, c2 = 1,

m = 3 : c1 = (4 − √
6)/10, c2 = (4 + √

6)/10, c3 = 1

We complement these illustrations by a more general result: it deals with a
class of values of q for which we have q I = q I I and for which in Phase III (q I I ≤
n ≤ N − 1) all values q(tn + ci h (i = 1, . . . , m) lie in the same subinterval.

Lemma 5.2.2 Let 0 < c1 < . . . < cm ≤ 1, and assume that q is of the form
q = 1/r , with r ∈ IN, r ≥ 2. Then:

(a) q I = q I I = 1: Phase I consists of n = 0 only, Phase II is empty, and hence
Phase III is described by 1 ≤ n ≤ N − 1.
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(b) In Phase III, the images θ (tn,i ) := q(tn + ci h) (i = 1, . . . , m) all lie in the
same subinterval (tqn , tqn+1] for some qn < n − 1.

(c) For kr ≤ n < (k + 1)r we have qn = k.

Proof See Exercise 5.6.13.

Table 5.3. m = 3

Gauss points Radau II points

q = 1/2 2/3 0.9 0.99 1/2 2/3 0.9 0.99
q I = 1 1 2 12 1 1 2 16
q I I = 1 2 8 88 1 2 9 99

We now return to the collocation equation (5.2.2) (for uniform mesh Ih). Let
the local representation of uh ∈ S(0)

m (Ih) be given by

uh(tn + vh) = yn + h
m∑

j=1

β j (v)Yn, j , v ∈ [0, 1], (5.2.5)

with yn := uh(tn) and Yn, j := uh(tn, j ). For a given collocation point tn,i ∈ σn ,
equation (5.2.2) becomes

Yn,i = f (tn,i , yn + h
m∑

j=1

ai, j Yn, j , yqn,i ,i + h
m∑

j=1

β j (γn,i )Yqn,i , j ) (5.2.6)

(because, by (5.2.4), qtn,i ∈ [tqn,i , tqn,i +1]), with ai, j := β j (ci ). Thus, by Lemma
5.2.1, as n increases from 0 to N − 1 the above systems of nonlinear algebraic
equations for Yn := (Yn,1, . . . , Yn,m)T ∈ IRm assume the following forms:

(I) Initial phase (complete overlap) 0 ≤ n < q I .
For these values of n we have, according to Lemma 5.2.1, qtn,i >

tn (i = 1, . . . , m); this is always true at least for n = 0. Since now
qn,i = n (i = 1, . . . , m), the above system of algebraic equations (5.2.6) is

Yn,i = f

(
tn,i , yn + h

m∑
j=1

ai, j Yn, j , yn + h
m∑

j=1

β j (γn,i )Yn, j

)
(i = 1, . . . , m),

(5.2.7)
with γn,i > 0 for all i .

If the given DDE (5.2.1) is linear,

y′(t) = a(t)y(t) + b(t)y(qt) + g(t), t ∈ I, (5.2.8)
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with a, b ∈ C(I ) (and, for simplicity, g(t) ≡ 0), then the linear algebraic system
corresponding to (5.2.7) has the form

Yn,i = a(tn,i )[yn + h
m∑

j=1

ai, j Yn, j ] + b(tn,i )

[yn + h
m∑

j=1

β j (γn,i )Yn, j ] (i = 1, . . . , m).

Recalling the m × m matrices introduced in Section 1.1.1,

A := (ai, j ), An := diag(a(tn,i ))A,

and

AI
n(q) := diag(b(tn,i ))(β j (γn,i )),

and defining

rn := diag(a(tn,i ))e, rI
n(q) := diag(b(tn,i ))e,

with e := (1, . . . , 1)T ∈ IRm , we obtain

[Im − h(An + AI
n(q))]Yn = (rn + rI

n(q))yn. (5.2.9)

(II) Transition phase (partial overlap) q I ≤ n < q I I .
If this set of values n is not empty (recall the remark following Lemma 5.2.1),
let νn ∈ INwith 1 ≤ νn < m be such that

qn,i = n − 1 (i = 1, . . . , νn) and qn,i = n, γn,i > 0 (i = νn + 1, . . . , m).

Thus, the collocation equation (5.2.6) separates into

Yn,i = f

(
tn,i , yn + h

m∑
j=1

ai, j Yn, j , yn−1 + h
m∑

j=1

β j (γn,i )Yn−1, j )

)

(i = 1, . . . , νn), (5.2.10)

and

Yn,i = f

(
tn,i , yn + h

m∑
j=1

ai, j Yn, j , yn + h
m∑

j=1

β j (γn,i )Yn, j

)
,

(i = νn + 1, . . . , m). (5.2.11)

In the linear case (5.2.8) we employ the notation

AI I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)AI
n(q),

rI I
n (q) := diag(b(tn,1), . . . , b(tn,νn ), 0, . . . , 0)e, r̂I I

n (q) := AI I
n (q)e,
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and

SI I
n (q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)AI
n(q),

to express the linear algebraic system corresponding to (5.2.10),(5.2.11) as

[Im − h(An + AI I
n (q))]Yn = hSI I

n (q)Yn−1 + (rn + rI I
n (q))yn + r̂I I

n (q)yn−1.

(5.2.12)

(III) Pure delay phase (no overlap) q I I ≤ n ≤ N − 1.
Here, qtn,i ≤ tn (i = 1, . . . , m), and qn,i < n for all i . Depending on the value
of q, the indices qn,i and qn, j (i �= j) are either equal or differ by one. Thus,
for such an n there is an integer νn ∈ {1, . . . , m} so that

qn,i = qn (i = 1, . . . , νn) and qn,i = qn + 1, γn,i > 0 (i = νn + 1, . . . , m),

with qn + 1 < n. The algebraic system (5.2.6) now decomposes into

Yn,i = f (tn,i , yn + h
m∑

j=1

ai, j Yn, j , yqn + h
m∑

j=1

β j (γn,i )Yqn , j ) (i = 1, . . . , νn),

(5.2.13)
and

Yn,i = f (tn,i , yn + h
m∑

j=1

ai, j yn, j , yqn+1

+ h
m∑

j=1

β j (γn,i )Yqn+1, j ) (i = νn + 1, . . . , m). (5.2.14)

Setting rI I I
n := diag(a(tn,i ))e,

r̂I I I
n (q) := diag(b(tn,1), . . . , b(tn,νn , 0, . . . , 0)e,

rI I I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, b(tn,νn+1), . . . , b(tn,m))e,

Ŝ I I I
n (q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)AI
n(q),

and

SI I I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)AI
n(q),

we can write the linear algebraic system for (5.2.8) corresponding to
(5.2.13),(5.2.14) as

[Im − h An]Yn = h[SI I I
n (q)Yqn+1 + Ŝ I I I

n (q)Yqn ]

+ rn yn + rI I I
n (q)yqn+1 + r̂I I I

n (q)yqn . (5.2.15)
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Remark We will employ the above notation also in subsequent sections: if a
matrix or vector carries the argument q , it is to indicate a contribution from a
delay term; a hat over a matrix or vector suggests that this quantity originates
from an index i ∈ {1, . . . , νn} with νn < m.

Summary The collocation solution uh ∈ S(0)
m (Ih) for uniform mesh Ih and col-

location parameters {0 < c1 < . . . < cm ≤ 1} has, on the subinterval σn :=
[tn, tn+1], the local representation (5.2.5) in which Yn = (Yn,1, . . . , Yn,m)T is
determined by a system of algebraic equations in IRm , as follows:

Phase I (complete overlap): 0 ≤ n < 	qc1/(1 − q)
 =: q I :

(5.2.7) (nonlinear DDE (5.2.1)), or (5.2.9) (linear DDE (5.2.8));

Phase II (partial overlap): q I ≤ n < 	qcm/(1 − q)
 =: q I I :

(5.2.10),(5.2.11) (nonlinear DDE (5.2.1)), or (5.2.12) (linear DE (5.2.8));

Phase III (no overlap): q I I ≤ n ≤ N − 1:

(5.2.13), (5.2.14) (nonlinear DDE (5.2.1)), or (5.2.15) (linear DDE (5.2.8)).

Although we have based the above discussion on the assumption that c1 > 0,
these arguments are – as we have already briefly indicated – readily modified to
include the case where c1 = 0 (occurring, for example, when we choose c1 = 0
and cm = 1, thus generating a continuous collocation solution uh). We leave
this as an exercise (Exercise 5.6.15).

The existence and uniqueness of the collocation solution uh ∈ S(0)
m (Ih), i.e.

the unique solvability for sufficiently small h > 0 of the nonlinear or linear
algebraic systems mentioned in the above summary, follows from arguments
essentially identical with those in Section 1.1 (Theorem 1.1.2) and Section 2.1
(Theorem 2.2.1). Note in particular that the matrix of the linear system (5.2.15)
(pure delay phase) coincides of course with the ones for the linear ODEs in
(1.1.16).

Theorem 5.2.3 Assume that the given functions a and b in (5.2.8) are con-
tinuous on I . Then there exists an h̄ > 0 so that the linear algebraic systems
(5.2.9), (5.2.12) and (5.2.15) are uniquely solvable whenever the mesh diameter
of the underlying uniform mesh Ih satisfies h ∈ (0, h̄). Thus, for such meshes the
collocation equation (5.2.2), with f (t, y, z) := a(t)y + b(t)z, defines a unique
collocation solution uh ∈ S(0)

m (Ih) whose local representation on σ̄n is given by
(5.2.5).

We shall see in Section 5.2.3 that the analysis of the attainable order of local
superconvergence (on Ih) is very complex (and is not yet fully understood)
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if the mesh Ih is uniform. This is due to the fact that such meshes are not
θ -invariant and, as we have seen above, lead to initial ‘overlap’. Moreover,
collocation on uniform meshes will lead to severe storage problems if it is used
for long-time integration (compare the papers by Iserles (1997b) and by Liu
(1997) for illuminating comments and illustrations in the case of DDEs with
proportional delays). Hence, it seems natural to ask if (non-uniform) meshes
can be constructed for which the ‘non-vanishing delay techniques’ of Chapter
4 can be employed.

Two such approaches have recently been analysed: Brunner, Hu and Lin
(2001) consider collocation solutions uh ∈ S(0)

m (Ih) where Ih is a geometric
mesh defined by

tn = t (N )
n := q1/κ T (n = 1, . . . , N ), (5.2.16)

where κ = κ(q; N ) depends not only on q ∈ (0, 1) but also on the number N
of subintervals σn corresponding to the mesh Ih .

Collocation (or, more generally, continuous implicit Runge–Kutta methods)
on quasi-geometric meshes requires the computation of a sufficiently accurate
approximation y0 to y on some (small) initial interval [0, t0], with t0 = q M T
(Bellen (2002)). Once a feasible (small) t0 > 0 has been chosen, we define the
points {ξµ} by setting

ξµ := q M−µT (µ = 0, 1, . . . , M)

(these points may be viewed as the primary discontinuiy points generated by
ξ0 := t0 > 0), each of the subintervals [ξµ, ξµ+1] is endowed with a (usually
uniform) mesh defined by

I (µ)
h := {t (µ)

n := ξµ + (n/N )[ξµ+1 − ξµ] : n = 0, 1, . . . , N − 1}.
We shall describe the details in Sections 5.5.3 and 5.5.4 when studying collo-
cation solutions for DVIDEs with proportional delays. Consult also Example
4.3.1.

5.2.2 Global convergence results: uniform Ih

We first study the convergence of the collocation solution uh ∈ S(0)
m (Ih) on uni-

form meshes Ih . In order to exhibit the basic principles underlying the global
convergence and error analysis more clearly and without additional technicali-
ties we will deal first with the linear proportional delay equation (5.2.8).

Theorem 5.2.4 Consider the linear DDE (5.2.8),

y′(t) = a(t)y(t) + b(t)y(qt) + g(t), t ∈ I = [0, T ] (0 < q < 1),
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with initial condition y(0) = y0, and assume that

(a) a, b, g ∈ Cm(I );
(b) uh ∈ S(0)

m (Ih) is the (unique) collocation solution to (5.2.8) corresponding
to uniform Ih and collocation parameters {ci } with 0 ≤ c1 < . . . < cm ≤ 1.

Then for all uniform meshes Ih with diameter h ∈ (0, h̄) (cf. Theorem 5.2.3) we
have

||y(ν) − u(ν)
h ||∞ := sup

t∈I
|y(ν)(t) − u(ν)

h (t)| ≤ Cν ||y(m+1)||∞hm (ν = 0, 1),

(5.2.17)
and this optimal order estimate holds for any set {ci } defining the set of collo-
cation points Xh. The constants Cν depend on the {ci } but not on h.

Proof Theorem 5.1.3 shows that assumption (a) implies y ∈ Cm+1(I ). Thus,
the local representations (1.1.22), (1.1.24) of the collocation error eh := y − uh

carry over to the present situation, except that now collocation is based on
uniform meshes Ih . To be more precise, we have

eh(tn + vh) = eh(tn) + h
m∑

j=1

β j (v)En, j + hm+1 Rm+1,n(v), v ∈ [0, 1],

(5.2.18)
with En, j := e′

h(tn, j ) and with Rm+1,n(v) denoting the Peano remainder term
(see (1.1.22) and (1.1.24) with hn = h). The continuity constraints of eh at the
interior mesh points furnish the recurrence relation (cf. (1.1.27))

eh(tn) = h
n−1∑
�=0

m∑
j=1

b jE�, j + hm+1
n−1∑
�=0

Rm+1,�(1), n = 1, . . . , N − 1,

(5.2.19)
with eh(0) = 0. By definition of the collocation solution for (5.2.8), eh satisfies

e′
h(tn,i ) = a(tn,i )eh(tn,i ) + b(tn,i )eh(qtn,i ), i = 1, . . . , m (0 ≤ n ≤ N − 1),

and so, using the recursion (5.2.19) for eh(tn) we obtain

En,i = a(tn,i )

(
h

n−1∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

ai, jEn, j

)
+ hmρn,i

+ b(tn,i )

(
h

qn,i −1∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

β j (γn,i )Eqn,i , j

)
+ hmρn,i (q)

(5.2.20)

where (cf. (1.1.30))

ρn,i := a(tn,i )

(
h

n−1∑
�=0

Rm+1,�(1) + h Rm+1,n(ci )

)
− R(1)

m+1,n(ci ),
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and

ρ I
n,i (q) := b(tn,i )

(
h

qn,i −1∑
�=0

Rm+1,�(1) + h Rm+1,n(γn,i )

)
. (5.2.21)

We set ρn := (ρn,i , . . . , ρn,m)T and ρI
n(q) := (ρ I

n,1(q), . . . , ρ I
n,m(q))T . A

glimpse at Phases I, II and III in Section 5.2.1 (cf. (5.2.9), (5.2.12), and (5.2.15))
will help in making the following analysis obvious:

(I): 0 ≤ n < q I : Since qn,i = n for all values of i , the vector En :=
(En,1, . . . , En,m)T is defined by the linear algebraic system

[Im − h(An + AI
n(q))]En

= h · diag(a(tn,i ))e
n−1∑
�=0

bT E� + h · diag(b(tn,i ))e
n−1∑
�=0

bT E�

+hm[ρn + ρI
n(q)]. (5.2.22)

Here, the matrix AI
n(q) ∈ L(IRm) coincides with the one in (5.2.9), and the

components of ρI
n(q) are given by (5.2.24) with qn,i = n (i = 1, . . . , m).

(II): q I ≤ n < q I I : As before, let νn be such that qn,i = n − 1 for i = 1, . . . , νn

and qn,i = n when i = νn + 1, . . . , m (with γn,i > 0). Setting

ρ I I
n,i (q) := b(tn,i )

(
h

n−2∑
�=0

Rm+1,�(1) + h Rm+1,n−1(γn,i )

)
, (i = 1, . . . , νn),

and

ρ I I
n,i (q) := b(tn,i )

(
h

n−1∑
�=0

Rm+1,�(1) + h Rm+1,n(γn,i )

)
, (i = νn + 1, . . . , m),

the equations defining the components of En read

En,i = a(tn,i )

(
h

n−1∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

ai, jEn, j

)
+ hmρn,i

+ b(tn,i )

(
h

n−2∑
�=0

b jE�, j + h
m∑

j=1

β j (γn,i )En−1, j

)
+ hmρ I I

n,i (q)

when i = 1, . . . , νn , and

En,i = a(tn,i )

(
h

n−1∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

ai, jEn, j

)
+ hmρn,i

+ b(tn,i )

(
h

n−1∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

β j (γn,i )En, j

)
+ hmρ I I

n,i (q)
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for i = νn + 1, . . . , m. Thus, the linear algebraic system defining En is

[Im − h(An + AI I
n (q))]En

= h · diag(a(tn,i ))e
n−1∑
�=0

bT E� + h · diag(b(tn,i ))e
n−2∑
�=0

bT E�

+ hSI I
n (q)En−1 + hm[ρn + ρI I

n (q)], (5.2.23)

where the matrices AI I
n (q), SI I

n (q) ∈ L(IRm) are as in (5.2.12), and the vector
ρI I

n (q) is described by the components

ρ I I
n,i (q) := b(tn,i ) ·




h
n−2∑
�=0

Rm+1,�(1) + h Rm+1,n−1(γn,i ) for i =1, . . . , νn

h
n−1∑
�=0

Rm+1,�(1) + h Rm+1,n(γn,i ) for i =νn + 1, . . . , m.

(III) q I I ≤ n ≤ N − 1 For given n let νn (1 ≤ νn ≤ m) be the integer
for which qn,i = qn (i = 1, . . . , νn), and qn,i = qn + 1, γn,i > 0 (i = νn +
1, . . . , m), with qn < n − 1. The algebraic equations determining En are then

En,i = a(tn,i )

(
h

n−1∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

ai, jEn, j

)
+ hmρn,i

+ b(tn,i )

(
h

qn−1∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

β j (γn,i )Eqn , j

)
+ hmρ I I I

n,i (q)

when i ≤ νn , and

En,i = a(tn,i )

(
h

n−1∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

ai, jEn, j

)
+ hmρn,i

+ b(tn,i )

(
h

qn∑
�=0

m∑
j=1

b jE�, j + h
m∑

j=1

β j (γn,i )Eqn+1, j

)
+ hmρ I I I

n,i (q)

when νn + 1 ≤ i ≤ m. Here,

ρ I I I
n,i (q) := b(tn,i ) ·




h
qn−1∑
�=0

Rm+1,�(1) + h Rm+1,qn (γn,i ), 1 ≤ n ≤ νn

h
qn∑

�=0

Rm+1,�(1) + h Rm+1,qn+1(γn,i ), νn < n ≤ m.
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The corresponding linear algebraic system for En can be written concisely as

[Im − h An]En = h · diag(a(tn,i ))e
n−1∑
�=0

bT E� + h · diag(b(tn,i ))e
qn−1∑
�=0

bT E�

+ h[SI I I
n (q)Eqn+1 + Ŝ I I I

n (q)Eqn ] + hm[ρn + ρI I I
n (q)].

(5.2.24)

By Theorem 5.2.3, each of the linear algebraic systems (5.2.22), (5.2.23),
(5.5.24) possesses a unique solution En whenever h ∈ (0, h̄). Thus, the argu-
ments we used to pass from the linear system (1.1.31) to a generalised discrete
Gronwall inequality for ||En||1 are readily adapted to the present situation: de-
noting by DI

0 , DI I
0 , DI I I

0 (= D0 for (1.1.31)) (uniform) upper bounds for the
�1-norms of the inverses of the matrices Im − hAn ∈ L(IRm) on the left-hand
side of these three linear systems, with

An :=




An + AI
n(q) if 0 ≤ n < q I

An + AI I
n (q) if q I ≤ n < q I I

An if q I I ≤ n ≤ N − 1 ,

and recalling that the integers q I and q I I characterising Phase I and Phase II
do not depend on h (or N ), we obtain the discrete Gronwall inequalities

||En||1 ≤




γ I
0 h

n−1∑
�=0

||E�||1 + γ I
1 Mm+1hm if 0 ≤ n < q I

γ I I
0 h

n−1∑
�=0

||E�||1 + γ I I
1 Mm+1hm if q I ≤ n < q I I

γ I I I
0 h

n−1∑
�=0

||E�||1 + γ I I I
1 Mm+1hm if q I I ≤ n ≤ N − 1.

(5.2.25)
Thus, the standard argument of Section 1.1.1 and the local representations for
eh and e′

h yield, respectively, ||En||1 ≤ B Mm+1hm (n = 0, 1, . . . , N − 1), and
hence the asserted estimates (5.2.17) follow.

Remark If the regularity assumption y ∈ Cm+1(I ) replaced by y ∈ Cd+1(I )
with 1 ≤ d < m, then a trivial modification (employing the Peano Kernel The-
orem with remainder terms Rd+1,n(v)) leads to

Theorem 5.2.5 Suppose that assumption (a) of Theorem 5.2.4 is replaced
by a, b, g ∈ Cd (I ), 1 ≤ d ≤ m. Then the collocation error eh := y − uh
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corresponding to uh ∈ Sm(Ih) is governed by

||e(ν)
h ||∞ ≤ Cν ||y(d+1)||∞hd (ν = 0, 1), (5.2.26)

for all uniform Ih with h ∈ (0, h̄).

We now enter what may be called ‘new territory’ – as predicted by Andreoli
(1914) (cf. Section 5.1.1): we shall see that while the global superconvergence
results for DDEs and VIEs with non-vanishing delays (e.g. Theorems 4.5.3 and
4.3.3) remain valid for pantograph-type functional equations (but with much
less obvious proofs!), this is no longer true for local superconvergence state-
ments. The following result can be proved by adapting the analysis employed
in Brunner and Hu (2003).

Theorem 5.2.6 Assume that the given functions a, b, g in the linear panto-
graph equation

y′(t) = a(t)y(t) + b(t)y(qt) + g(t), t ∈ I,

are in Cm+1(I ). If the collocation parameters satisfy the orthogonality condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0,

then the collocation solution uh ∈ S(0)
m (Ih) on uniform Ih can be estimated by

||y − uh ||∞ ≤ Chm+1. (5.2.27)

This holds for any q ∈ (0, 1), and the exponent m + 1 is best possible.

We shall obtain this result as a special case of the more general convergence
theorem for delay VIDEs with vanishing proportional delays (Theorem 5.5.4).

5.2.3 Attainable order at t = t1 = h

To obtain some first insight into the optimal local superconvergence properties
of the collocation solution at the points of a uniform mesh Ih , suppose that the
solution of the initial-value problem

y′(t) = by(qt), t ∈ I := [0, T ], y(0) = 1, (0 < q < 1), (5.2.28)

is approximated by uh ∈ S(0)
m (Ih). What can be said about the order of y(t) −

uh(t) at t = t1 = h? Since uh ∈ πm in σ̄0 := [0, h], the collocation equation
u′

h(t) = buh(qt), t ∈ Xh ∩ σ̄0, may be written in the form

u′
h(t) − buh(qt) = K · Mm((t − tn)/h), t ∈ σ̄0, vh(0) = 1. (5.2.29)
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The polynomial

Mm(s) := 1

m!

m∏
i=1

(s − ci ) (s = (t − tn)/h)

(which for brevity we will often denote just by M(s)) is the collocation poly-
nomial introduced in Lemma 1.1.11, and K is a constant to be determined.
(Compare also Nørsett (1974, 1984) and the monograph by Iserles and Nørsett
(1991, pp. 29–32).) Note that K M((t − tn)/h) is of course closely related to
the defect δh(t) induced by the collocation solution uh : it is defined by

δh(t) := −u′
h(t) + buh(qt) = −K M((t − tn)/h), t ∈ σ̄0.

The following result may also be found in Brunner (1997a). Observe that
for q = 1 we obtain the result of Lemma 1.1.12.

Theorem 5.2.7 The value of the collocation solution uh ∈ S(0)
m (Ih) for (5.2.28)

at t = t1 = h is given by

uh(h) = vh(h) = Pm,m(z; q)/Qm,m(z; q),

with

Pm,m(z; q) :=
m∑

j=0

q j(2m− j+1)/2 M (m− j)(1/qm− j+1)z j ,

Qm,m(z; q) :=
m∑

j=0

q j(2m− j+1)/2 M (m− j)(0)z j .

Remark Observe that the term in Pm,m(z; q) corresponding to j = m contains
the factor M(1/q) which, for q ∈ (0, 1), does not vanish. Hence, the numerator
polynomial in the expression for uh(h) is of exact degree m for any set {ci } with
ci ∈ [0, 1].

Proof The proof is a straightforward adaptation of ideas due to Nørsett (see,
e.g. Nørsett (1975) or Iserles and Nørsett (1991, pp. 29–32)). It follows from
equation (5.2.29) that

u′′
h(t) − bqu′

h(t) = K M ′((t − t0)/h), t ∈ σ̄0,

and hence,

u′′
h(t) − bq{buh(q2t) + K M(q(t − t0)/h)} − K M ′((t − t0)/h) = 0, t ∈ σ̄0,

where we have set, without loss of generality, h = 1. This leads to

u(m+1)
h (t) − zm+1qm(m+1)/2uh(qm+1t)−K

m∑
j=0

zm− j q (m− j)(m+ j+1)/2 M ( j)(qm− j t)

= 0.
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Here, z := bh, and we have u(m+1)
h (t) ≡ 0 on σ̄0. Setting t = 0 and t = 1/qm+1,

respectively, and observing that uh(0) = 0, we readily find

uh(h) =

m∑
j=0

q (m− j)(m+ j+1)/2 M ( j)(1/q j+1)zm− j

m∑
j=0

q (m− j)(m+ j+1)/2 M ( j)(0)zm− j

.

An obvious change in the order of summation leads to the desired result.

Example 5.2.1 m = 1
Here, the collocation polynomial is M(s) = s − c1, and the expressions for
uh(h) and the [1/1]-Padé approximant are given respectively by

uh(h) = 1 + (1 − qc1)z

1 − qc1z
and R1/1(z; q) = 1 + (1 − q/2)z

1 − (q/2)z
(z := bh).

Note that these expressions coincide for any q ∈ (0, 1) if, and only if, c1 = 1/2
(collocation at the Gauss points).

Example 5.2.2 m = 2
The collocation polynomial has the form M(s) = (s − c1)(s − c2)/2, and we
readily obtain

uh(h) = 1 + [1 − (1/2)q2(c1 + c2]z + (q/2)[1 − q(c1 + c2) + q2c1c2]z2

1 − (1/2)q2(c1 + c2)z + (1/2)q3c1c2z2

(see also [195]), while the [2, 2]-Padé approximant is found to be

R2/2(z; q) =
1 + [(6 − 4q − 2q2 + q4)/(2(3 − 2q))]z + [q(18 − 24q + 10q3 − 3q4)/(12(3 − 2q))]z2

1 − [q2(2 − q2)/(2(3 − 2q))]z + [q4(4 − 3q)/(12(3 − 2q))]z2
.

For the Gauss points, c1 = (3 − √
3)/6, c2 = (3 + √

3)/6, and q = 1/2 the
above expressions become, respectively,

vh(h) = 1 + (7/8)z + (13/96)z2

1 − (1/8)z + (1/96)z2
and

R2/2(z; 1/2) = 1 + (57/64)z + (113/768)z2

1 − (7/64)z + (5/768)z2
.

It follows that they are identical if, and only if, q = 1.

For the Radau II points c1 = 1/3, c2 = 1 we obtain

uh(h) = 1 + [1 − (2/3)q2]z + (q/2)[1 − (4/3)q + (1/3)q2]z2

1 − (2q2/3)z + (q3/6)z2
.
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Note that this rational function is not the [1/2]-Padé approximant to y(h).

Do there exist (distinct) collocation parameters ĉi = ĉi (q) ∈ [0, 1] so that
vh(h) = Rm/m(z; q) for all q ∈ (0, 1)? This question was answered by Brunner
(1997a) for m = 2 and by Takama, Muroya and Ishiwata (2000) for arbitrary
m ≥ 3. See also Ishiwata (2000).

5.2.4 Local superconvergence on uniform meshes

The optimal order estimates for the collocation solution at the first mesh point
t = t1 = h of the previous section might suggest that, for collocation at the
Gauss points, the optimal order of convergence of uh(t) at t ∈ Ih is again
p∗ = 2m, or at least p∗ = 2m − 1. Numerical examples suggest that we have
p∗ = 2m when m = 2 (see Brunner (1997a); however, this is no longer true
for m > 2. Instead the following result (whose proof is still elusive) appears to
hold when m ≥ 3. It is a special case of Conjecture 5.5.5.

Conjecture 5.2.8 Assume that the assumptions on a, b, g of Theorem 5.2.6
hold, but with Cm+1(I ) replaced by Cd (I ) (d ≥ m + 2). If the collocation solu-
tion uh ∈ S(0)

m (Ih) corresponds to the collocation parameters given by the Gauss
points {ci } and if m ≥ 2, then

max
t∈Ih

|y(t) − uh(t)| ≤ Chm+2,

where m + 2 cannot be replaced by m + 3. This estimate is true for all q ∈
(0, 1).

Remark We shall see in Section 5.5.4 that the classical local superconvergence
results (e.g. p∗ = 2m for collocation at the Gauss points) can be restored if we
use quasi-geometric meshes. For DDEs with proportional delays this was shown
by Bellen (2001).

5.3 Second-kind VIEs with proportional delays

As we mentioned at the beginning of Section 5.1.1, second-kind Volterra integral
equations with proportional delays,

y(t) = g1(t) + b(t)y(qt) +
∫ t

qt
K (t, s)y(s)ds, t ∈ I := [0, T ], 0 < q < 1,

(5.3.1)
and

y(t) = g(t) +
∫ qt

0
K (t, s)y(s)ds, t ∈ I, 0 < q < 1, (5.3.2)



5.3 Second-kind VIEs with proportional delays 285

were studied by Volterra in (1897) and by Andreoli (1914). The first of these
delay equations arose in the analysis of the ‘invertibility’ of the delay integral
equation of the first kind,∫ t

qt
H (t, s)y(s)ds = g(t), t ∈ I, 0 < q < 1. (5.3.3)

We shall return to (5.3.3) in more detail in Section 5.4. We will first focus on
general second-kind delay VIEs of which (5.3.1) with b(t) ≡ 0 is a particular
case. It will be seen later that the analysis of collocation methods for (5.3.1)
with b �≡ 0 is much harder.

5.3.1 The collocation equations for uniform meshes

Set θ (t) := qt, 0 < q < 1, and recall the delay integral equation (5.1.9),

y(t) = g(t) + (V y)(t) + (Vθ y)(t), t ∈ I := [0, T ], (5.3.4)

with Volterra operators V and Vθ given by

(V y)(t) :=
∫ t

0
K1(t, s)y(s)ds, t ∈ I,

and

(Vθ y)(t) :=
∫ θ (t)

0
K2(t, s)y(s)ds, t ∈ I.

Their kernels are assumed to be continuous on their respective domains D :=
{(t, s) : 0 ≤ s ≤ t ≤ T } and Dθ := {(t, s) : 0 ≤ s ≤ θ (t), t ∈ I }.

As for DDEs with (vanishing) proportional delay, smooth data g, K1 and K2

in (5.3.4) yield correspondingly smooth solutions y (Theorem 5.1.5), and hence
we may choose the same collocation space as for classical (non-delay) second-
kind VIEs, namely S(−1)

m−1(Ih), with unconstrained mesh Ih and with collocation
points again given by

Xh := {tn,i := tn + ci hn : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}.
The equations

uh(t) = g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ Xh, (5.3.5)

and

uit
h (t) := g(t) + (Vuh)(t) + (Vθuh)(t), t ∈ I, (5.3.6)

determine, respectively, the collocation solution uh ∈ S(−1)
m−1(Ih) and the corre-

sponding iterated collocation solution uit
h ∈ C(I ) for (5.3.4). As in Section 5.2.1
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we shall first study the computational form of the collocation equation (5.3.5) on
uniform meshes; collocation on geometric meshes will be considered in Section
5.3.7.

For uniform meshes Ih the general framework is the one introduced in Section
5.2.1. Recall in particular that, for t = tn,i := tn + ci h ∈ Xh , we set

qtn,i = tqn,i + γn,i h ∈ [tqn,i , tqn,i +1], with qn,i := �q(n + ci )�,
γn,i := q(n + ci ) − qn,i .

Hence, the collocation equation (5.3.5) at t = tn,i (i = 1, . . . , m) becomes

Un,i = g(tn,i ) + Fn(tn,i ) + h
∫ ci

0
K1(tn,i , s)uh(s)ds + (Vθuh)(tn,i ). (5.3.7)

The lag term corresponding to the operator V is

Fn(tn,i ) :=
∫ tn

0
K1(tn,i , s)uh(s)ds

= h
n−1∑
�=0

m∑
j=1

(∫ 1

0
K1(tn,i , t� + sh)L j (s)ds

)
U�, j , (5.3.8)

while the one corresponding to Vθ can be expressed in the form

(Vθuh)(tn,i ) = h
qn,i −1∑
�=0

m∑
j=1

(∫ 1

0
K2(tn,i , t� + sh)L j (s)ds

)
U�, j

+ h
m∑

j=1

(∫ γn,i

0
K2(tn,i , tqn,i + sh)L j (s)ds

)
Uqn,i , j . (5.3.9)

Here, we have employed again the local representation of uh on the subintervals
σn ,

uh(tn + vh) =
m∑

j=1

L j (v)Un, j , v ∈ (0, 1], with Un, j := uh(tn, j ).

(5.3.10)
The computational form of the collocation equation (5.3.5) on σn is thus given
by

Un,i = h
m∑

j=1

(∫ ci

0
K1(tn,i , tn + sh)L j (s)ds

)
Un, j

+ g(tn,i ) + Fn(tn,i ) + (Vθuh)(tn,i ) (i = 1, . . . , m). (5.3.11)

Recall from Section 5.2.1 that the integer qn,i is not necessarily the same for all
i ∈ {1, . . . , m}: it is possible that qn,i = qn, j − 1 for some i < j .
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(I) Initial phase (complete overlap) 0 ≤ n < 	qc1/(1 − q)
 =: q I .
We know from Lemma 5.2.1 that for this (finite) set of values of n (which always
includes n = 0), we have qn,i = n and γn,i > 0 (i = 1, . . . , m), provided c1 >

0. Hence, setting (recall also Section 2.2.2)

B(�)
n :=




∫ 1

0
K1(tn,i , t� + sh)L j ds

(i, j = 1, . . . , m)


 (� < n),

Bn :=
(∫ ci

0
K1(tn,i , tn + sh)L j (s)ds

(i, j = 1, . . . , m)

)
,

B(�)
n (q) :=




∫ 1

0
K2(tn,i , t� + sh)L j (s)ds

(i, j = 1, . . . , m)


 (� < n),

B I
n (q) :=

(∫ γn,i

0
K2(tn,i , tn + sh)L j (s)ds

(i, j = 1, . . . , m)

)
,

where, following the convention introduced in Section 5.2.1, the argument q
attached to a matrix (or a vector below) indicates that it originates with the
delay integral operator Vθ , we may write the collocation equation (5.3.11) as

[Im − h(Bn + B I
n (q))]Un = gn + h

n−1∑
�=0

(B(�)
n + B(�)

n (q))U�, (5.3.12)

with Un := (Un,1, . . . , Un,m)T and gn := (g(tn,1), . . . , g(tn,m))T .

(II) Transition phase (partial overlap) q I ≤ n < 	qcm/(1 − q)
 =: q I I .
If this set of values n is not empty, there exists, for given n, an integer νn ∈
{1, . . . , m − 1} so that

qn,i = n − 1 (i = 1, . . . , νn) and qn,i = n, γn,i > 0 (i = νn + 1, . . . , m);

that is, we have tqn,i ≤ tn for i = 1, . . . , νn , and tqn,i > tn when i > νn . Accord-
ingly, we define the matrices

B I I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)B I
n (q),

SI I
n−1(q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)B(n−1)
n (q),

Ŝ I I
n−1(q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)B I I
n−1(q),
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where

B I I
n−1(q) :=




∫ γn,i

0
K2(tn,i , tn−1 + sh)L j (s)ds

(i, j = 1, . . . , m)


 .

The linear algebraic system describing Phase II then becomes

[Im − h(Bn + B I I
n (q))]Un = gn + h

n−1∑
�=0

B(�)
n U� + h

n−2∑
�=0

B(�)
n (q)U�

+ h(Ŝ I I
n−1(q) + SI I

n−1(q))Un−1 . (5.3.13)

(III) Pure delay phase (no overlap) q I I ≤ n ≤ N − 1.
According to Lemma 5.2.1, the points qtn,i now all satisfy qtn,i ≤ tn . Assume
that, for given n,

qn,i = qn (i = 1, . . . , νn) and qn,i = qn + 1, γn,i > 0, (i = νn + 1, . . . , m),

for some νn ∈ {1, . . . , m}, where qn + 1 < n. Hence, using (5.3.11) and (5.3.9)
with the above values of qn,i , and defining the matrices

Ŝ I I I )
qn

(q) := diag(1, . . . , 1︸ ︷︷ ︸
νn

, 0, . . . , 0)B I I I
qn

(q),

SI I I
qn+1(q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)B I I I
qn+1(q),

with

B I I I
qn

(q) :=



∫ γn,i

0
K2(tn,i , tqn + sh)L j (s)ds

(i, j = 1, . . . , m)


 ,

the linear algebraic system for Phase III assumes the form

[Im − h Bn]Un = gn + h
n−1∑
�=0

B(�)
n U� + h

qn−1∑
�=0

B(�)
n (q)U�

+ h(Ŝ I I I
qn

(q) + B(qn )
n (q))Uqn + hS(I I I )

qn+1 (q)Uqn+1.

(5.3.14)

This confirms of course that once we have reached Phase III the matrix charac-
terising the linear algebraic system (5.3.14) coincides with the one in (2.2.14),
the linear algebraic system for second-kind Volterra integral equations without
delay argument.

The existence of a unique collocation solution uh ∈ S(−1)
m−1(Ih) is guaranteed by

Theorem 5.3.1 Assume that g, K1, K2 are continuous on their domains
I, D, Dq, and let the collocation solution uh ∈ S(−1)

m−1(Ih) to the delay VIE
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(5.3.4) be defined by (5.3.5) and (5.3.10). Then there exists an h̄ > 0 (depend-
ing on q) so that for all h ∈ (0, h̄) each of the linear algebraic systems (5.3.12),
(5.3.13), (5.3.14) possesses a unique solution Un. Thus, for such a mesh Ih the
collocation solution uh is unique for all q ∈ (0, 1), and it is given locally, on
σn, by (5.3.10).

The proof is completely analogous to the one for Theorem 2.2.1 and is readily
carried out by applying the Neumann Lemma to each of the linear algebraic
systems (5.3.12)–(5.3.14). We leave the details to the reader.

Once the collocation solution uh ∈ S(−1)
m−1(Ih) has been computed, the cor-

responding iterated collocation solution uit
h at t = tn + vh (v ∈ [0, 1] can be

obtained from

uit
h (tn + vh) = g(tn + vh) + Fn(tn + vh) + (Vθuh)(tn + vh)

+ h
m∑

j=1

(∫ v

0
K1(tn + vh, tn + sh)L j (s)ds

)
Un, j .

(5.3.15)

Here,

qn(v) := �q(n + v)�, γn(v) := q(n + v) − qn(v) ∈ [0, 1),

and hence q(tn + vh) = tqn (v) + γn(v)h ∈ [tqn (v), tqn (v)+1]. The lag term corre-
sponding to V in (5.3.6) is, for t = tn + vhn ∈ σ̄n ,

Fn(t) = h
n−1∑
�=0

∫ 1

0
K1(t, t� + sh)uh(t� + sh)ds, (5.3.16)

and we have

(Vθuh)(t) = h
qn (v)−1∑

�=0

∫ 1

0
K2(t, t� + sh)uh(t� + sh)ds (5.3.17)

+ h
m∑

j=1

(∫ γn (v)

0
K2(t, tqn (v)) + sh)L j (s)ds

)
Uqn (v), j .

We observe once more that, in contrast to uh , the iterated collocation so-
lution uit

h is continuous in I whenever the given functions g, K1 and K2 are
continuous.

5.3.2 Two prominent DVIEs with proportional delay

We will now briefly illustrate the foregoing analysis by looking at two particular
cases of the general delay Volterra integral equation (5.3.1) which we have met
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before. These delay integral equations have both historical and practical signif-
icance. The first is the ‘pure delay’ Volterra integral equation corresponding to
K1 = 0,

y(t) = g(t) + (Vθ y)(t), t ∈ I = [0, T ], (5.3.18)

where

(Vθ y)(t) :=
∫ θ (t)

0
K (t, s)y(s)ds, (5.3.19)

with θ (t) := qt (0 < q < 1). Its collocation solution uh ∈ S(−1)
m−1(Ih) is com-

puted by solving the linear algebraic systems (5.3.12)–(5.3.14) in which Bn = 0
and B(�)

n for all n and � < n. See also Exercise 5.6.16.
The more interesting equation corresponds formally to K2 = −K1 in (5.3.4),

y(t) = g(t) + (Wθ y)(t), t ∈ I, (5.3.20)

with Wθ : C(I ) → C(I ) given by

(Wθ y)(t) :=
∫ t

θ (t)
K (t, s)y(s)ds. (5.3.21)

Let t = tn,i := tn + ci h ∈ Xh be given. If n is such that qtn,i ≤ tn , we may write

(Wθuh)(tn,i ) =
∫ tn,i

qtn,i

K (tn,i , s)usds

= h
∫ 1

γn,i

K (tn,i , tqn,i + sh)uh(tqn,i + sh)ds

+ h
n−1∑

�=qn+1

∫ 1

0
K (tn,i , t� + sh)uh(t� + sh)ds

+ h
∫ ci

0
K (tn,i , tn + sh)uh(tn + sh)ds. (5.3.22)

We recall that qn,i and γn,i were defined in (5.2.4).
If qtn,i > tn we have qn,i = n and γn,i > 0 (which is true for all i = 1, . . . , m

in Phase I, and at least for some i in Phase II, unless it is empty). Hence, the
above equation reduces to

(Wθuh)(tn,i ) = h
∫ ci

γn,i

K (tn,i , tn + sh)uh(tn + sh)ds. (5.3.23)

We now readily derive the systems of algebraic equations resulting from the
collocation equation

uh(tn,i ) = g(tn,i ) + (Wθuh)(tn,i ) (i = 1, . . . , m),
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and which define the vector Un := (Un,1, . . . , Un,m)T in (5.3.10):

Phase I 0 ≤ n < q I (qn,i = n, γn,i > 0 for all i):

[Im − h B̄ I
n(q)]Un = gn, (5.3.24)

where

B̄ I
n(q) :=

( ∫ ci

γn,i

K (tn,i , tn + sh)L j (s)ds

)
∈ L(IRm),

which is of course formally equivalent to Bn + B I
n (q) with K2 = −K1 =: −K

(recall (5.3.12)).

Phase II q I ≤ n < q I I (where qn,i = n − 1 = qn, i = 1, . . . , νn; qn,i =
n, γn,i > 0, i = νn + 1, . . . , m):
Here, we obtain

[Im − h B̄ I I
n (q)]Un = gn + hS̄ I I

n−1(q)Un−1, (5.3.25)

with

B̄ I I
n (q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)Bn + diag(0, . . . , 0︸ ︷︷ ︸
νn

, 1, . . . , 1)B̄ I
n(q),

S̄ I I
n−1(q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)

( ∫ 1

γn,i

K (tn,i , tn−1 + sh)L j (s)ds

)
.

Phase III q I I ≤ n ≤ N − 1 (with qn,i = qn < n − 1, i = 1, . . . , νn; qn,i =
qn + 1, i = νn + 1, . . . , m):
The system of linear equations describing the final, pure delay phase is given
by

[Im − h Bn]Un = gn + h[S̄ I I I
qn

(q)Uqn +
n−1∑

�=qn+1

B(�)
n U� + SI I I

qn+1(q)Uqn+1],

(5.3.26)
where

S̄ I I I
qn

(q) := diag(1, . . . , 1︸ ︷︷ ︸
νn

, 0, . . . , 0 )

( ∫ 1

γn,i

K (tn,i , tqn + sh)L j (s)ds

)
,

SI I I
qn+1(q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)B(qn+1)
n

+ diag(0, . . . , 0︸ ︷︷ ︸
νn

, 1, . . . , 1)

(∫ 1

γn,i

K (tn,i , tqn+1 + sh)L j (s)ds

)
.

The matrices B(�)
n ∈ L(IRm) (� < n) coincide with those in (5.3.14).
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5.3.3 Global convergence results: uniform Ih

Consider the linear delay integral equation introduced in Section 5.3.1,

y(t) = g(t) + (V y)(t) + (Vθ y)(t), t ∈ I := [0, T ], (5.3.27)

with V and Vθ as in (5.3.4), and θ (t) := qt (0 < q < 1).

Theorem 5.3.2 Assume:

(a) The given functions describing (5.3.27) satisfy the regularity conditions
g ∈ Cm(I ), K1 ∈ Cm(D), and K2 ∈ Cm(Dθ ).

(b) For given uniform mesh Ih and collocation points Xh, uh ∈ S(−1)
m−1(Ih) is the

collocation solution to (5.3.27).

Then for any uniform mesh Ih with mesh diameter h ∈ (0, h̄), with h̄ as in
Theorem 5.3.1, and any set {ci } of m distinct collocation parameters in [0, 1],
the collocation error eh := y − uh can be estimated by

||eh ||∞ ≤ C ||y(m)||∞hm . (5.3.28)

The constant C depends on the {ci } but not on h.

Proof We have seen in Theorem 5.1.5 that assumption (a) implies that the
(unique) solution y of (5.3.27) lies in Cm(I ). Thus, we may again resort to the
local representation (2.2.31) for the collocation error eh := y − uh on σn ,

eh(tn + vh) =
m∑

j=1

L j (v)En, j + hm Rm,n(v), v ∈ (0, 1], En, j := eh(tn, j ).

(5.3.29)
On Xh it satisfies the error equation

eh(t) = (Veh)(t) + (Vθeh)(t).

For t = tn,i this equation becomes

En,i = h
∫ ci

0
K1(tn,i , tn + sh)eh(tn + sh)ds + Fn(tn,i ) + (Vθeh)(tn,i ),

(5.3.30)
with lag term corresponding to V given by

Fn(tn,i ) = h
n−1∑
�=0

∫ 1

0
K1(tn,i , t� + sh)

(
m∑

j=1

L j (s)E�, j + hm Rm,�(s)

)
ds.

(5.3.31)
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The contribution of the delay operatorVθ in the above error equation is described
by

(Vθeh)(t) := h
qn,i −1∑
�=0

∫ 1

0
K2(t, t� + sh)

(
m∑

j=1

L j (s)E�, j + hm Rm,�(s)

)
ds

+ h
∫ qn,i

0
K2(t, tqn,i + sh)

(
m∑

j=1

L jEqn,i , j + hm Rm,qn,i (s)

)
ds,

(5.3.32)

where t = tn,i .

The description in the previous section of the structure of the recursive
process underlying the collocation method for the proportional delay VIE
(5.3.27) contains all the essential ingredients for proving Theorem 5.3.2: since
Phase I and Phase II, corresponding to the values of n for which, respectively,
0 ≤ n < q I := 	c1q/(1 − q)
 and q I ≤ n < q I I := 	cmq/(1 − q)
 holds, in-
volve only finitely many time steps, regardless of the choice of h, the order of
convergence is governed by a generalised discrete Gronwall inequality arising
from the pure delay Phase III. We observe that these systems of linear algebraic
equations for En closely resemble the ones for Un , namely (5.3.12)–(5.3.14):
the role of gn is now assumed by terms reflecting the (Peano) error terms in the
local representation (5.3.29) of the collocation error. Thus, depending on the
value of n and the corresponding qn,i the details are as follows:

(I): 0 ≤ n < q I := 	qc1/(1 − q)

Here, qn,i = n for all values of i = 1, . . . , m, with γn,i > 0. Thus, proceeding
along familiar lines and using the notation introduced in (5.3.13), the vector
En := (En,1, . . . , En,m)T is defined by the solution of the linear algebraic system

[Im − h(Bn + B I
n (q))]En = h

n−1∑
�=0

(B(�)
n + B(�)

n (q))E� + hm[h
n−1∑
�=0

ρ(�)
n + hρn]

+ hm[h
n−1∑
�=0

ρ(�)
n (q) + hρI

n(q)], (5.3.33)

where the matrices Bn, B I
n (q), B(�)

n , B(�)
n (q) (� < n) are those of (5.3.13), and

where we have set

ρI
n(q) :=

(∫ γn,i

0
K2(tn,i , tn + sh)Rm,n(s)ds (i = 1, . . . , m)

)T

,

ρ(�)
n (q) :=

(∫ 1

0
K2(tn,i , t� + sh)Rm,�(s)ds (i = 1, . . . , m)

)T

(� < n).
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(II): q I ≤ n < q I I := 	qcm/(1 − q)

For given n let νn, 1 ≤ νn < m, be such that

qn,i = n − 1 for i = 1, . . . , νn; qn,i = n, γn,i > 0 for i = νn + 1, . . . , m.

It then follows readily from (5.3.30)–(5.3.32) and the analysis of Phase II in
Section 5.3.1 that the algebraic system for En has the form

[Im − h(Bn + B I I
n (q))]En

= h
n−1∑
�=0

B(�)
n E� + h

n−2∑
�=0

B(�)
n (q)E� + h(Ŝ I I

n (q) + SI I
n (q))En−1

+ hm[h
n−1∑
�=0

ρ(�)
n + hρn] + hm[h

n−2∑
�=0

ρ(�)
n (q) + h(ρ̂I I

n−1(q) + ρI I
n (q))],

(5.3.34)

with matrices B I I
n (q), B(�)

n , B̂(�)
n (q), Ŝ I I

n (q), SI I
n (q) as in (5.3.13), and

ρ̂I I
n−1(q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)

(∫ γn,i

0
K2(tn,i , tn−1 + sh)Rm,n−1(s)ds (i = 1, . . . , m)

)
,

ρI I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)[ρ(n−1)
n (q) + ρI

n(q)].

(III): q I I ≤ n ≤ N − 1
Let now νn with 1 ≤ νn ≤ m be such that

qn,i = qn for i = 1, . . . , νn, and qn,i = qn + 1, γn,i > 0

for i = νn + 1, . . . , m,

with qn < n − 1. Using these values for qn,i in (5.3.32) we are led to the linear
algebraic system

[Im − h Bn]En = h
n−1∑
�=0

B(�)
n E� + h

qn−1∑
�=0

B(�)
n (q)E�

+ h(Ŝ I I I
qn

(q) + B(qn )
n (q))Eqn + hSI I I

qn+1(q)Eqn+1

+ hm[h
n−1∑
�=0

ρ(�)
n + hρn] + hm[h

qn−1∑
�=0

ρ(�)
n (q)

+ h(ρ̂I I I
qn

(q) + ρI I I
qn+1(q))], (5.3.35)
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with Ŝ I I I
qn

(q) and SI I I
qn+1(q) as in (5.3.14) and with

ρ̂I I I
qn

(q) := diag(1, . . . , 1︸ ︷︷ ︸
νn

, 0, . . . , 0)

×
(∫ γn,i

0
K2(tn,i , tqn + sh)Rm,qn (s)ds (i = 1, . . . , m)

)
,

ρI I I
qn+1(q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)[ρ(qn−1)
n (q) + ρqn+1(q)].

According to Theorem 5.3.1 each of the above linear algebraic systems
(5.3.33)–(5.3.35) possesses a unique solution for (uniform) meshes Ih with
h ∈ (0, h̄). Thus, we may proceed as in the proof of Theorem 2.2.3: denoting
by D0 the constant for which we have

||(Im − hBn)−1||1 ≤ D0, h ∈ (0, h̄) (n = 0, 1, . . . , N − 1),

with

Bn :=




Bn + B I
n (q) if 0 ≤ n < q I

Bn + B I I
n (q) if q I ≤ n < q I I

Bn if q I I ≤ n ≤ N − 1,

we are led to a generalised discrete Gronwall inequality for ||En||1 of the type
(5.2.25), except that now the last term reads γ1 Mmhm , because of the lower-
order bounds for the ρ-terms in (5.3.33)–(5.3.35). Hence, in complete analogy
to the final argument in the proof of Theorem 2.2.3 we obtain ||En||1 ≤ B Mmhm ,
leading via the local error representation (5.3.29) to ||eh ||∞ ≤ C Mmhm .

The following corollary to Theorem 5.3.2 addresses again the case where
the solution y of (5.3.27) does not have full regularity; that is, if instead of
y ∈ Cm(I ) we only have y ∈ Cd (I ), 1 ≤ d < m (which corresponds to the
assumption that the given functions lie only in Cd (I )).

Corollary 5.3.3 If assumption (a) in Theorem 5.3.2 is replaced by g ∈
Cd (I ), K1 ∈ Cd (D), K2 ∈ Cd (Dθ ), for some d with 1 ≤ d < m, then the es-
timate

||eh ||∞ ≤ C ||y(d)||∞hd (5.3.36)

for the collocation error eh corresponding to uh ∈ S(−1)
m−1(Ih) is true for any set

Xh of collocation points defined by distinct {ci } in [0, 1].

In Theorem 2.2.4 we showed that the iterated collocation solution for a clas-
sical Volterra integral equation of the second kind can be globally superconver-
gent if the collocation parameters are chosen judiciously. An analogous result
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holds for second-kind VIEs with proportional delays. However, the proof of
this result (due to Brunner and Hu (2003) and based on interpolatory projection
techniques) is much more complex.

Theorem 5.3.4 If the collocation parameters {ci } are chosen so that

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0,

then

||y − uit
h ||∞ ≤ Chm+1,

provided we have g ∈ Cd+1(I ) and K1 ∈ Cd+1(D), K2 ∈ Cd+1(Dθ ), with
d ≥ m. This global superconvergence result is true for any q ∈ (0, 1), and
the exponent m + 1 can in general not be replaced by m + 2.

Proof Since the crucial term in the delay VIE (5.3.1) is Vθ y, we will prove
Theorem 5.3.4 for the ‘pure delay’ delay VIE (5.3.18), employing an approach
that is different from the one in Brunner and Hu (2003). This will exhibit
more clearly how the ‘overlapping effect’ seen in the solution representation of
Theorem 5.1.4 affects the superconvergence analysis.

The collocation error eh := y − uh for uh ∈ S(−1)
m−1(Ih) satisfies the equation

eh(t) = δh(t) +
∫ qt

0
K (t, s)eh(s)ds, t ∈ I,

with δh = 0 on Xh . Hence, by Theorem 5.1.4 we may write (because of eit
h (t) =

eh(t) − δh(t))

eit
h (t) =

∞∑
k=1

∫ qk t

0
Kk(t, s)δh(s)ds, t ∈ I, (5.3.37)

with iterated kernels Kk(t, s) as defined in (5.1.9). Suppose that t = tn +
vh (v ∈ [0, 1]). We define

qk,n(v) := �qk(n + v)�, γk,n(v) := qk(n + v) − qk,n(v) ∈ [0, 1).

Thus, the representation of eit
h (t) assumes the form

eit
h (t) =

∞∑
k=1

(∫ tqk,n (v)

0
Kk(t, s)δh(s)ds

+ h
∫ γk,n (v)

0
Kk(t, tqk,n (v) + sh)δh(tqk,n (v) + sh)ds

)
=: SI

n (v) + SI I
n (v). (5.3.38)
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For fixed n, consider first the individual terms of SI
n (v), written as∫ tqk,n (v)

0
Kk(t, s)δh(s)ds = h

qk,n (v)−1∑
�=0

∫ 1

0
Kk(t, t� + sh)δh(t� + sh)ds,

for all integers qk,n(v) with qk,n(v) ≥ 1. This holds as long as qk(n + 1) ≥ 1,
or

k ≤ �− log(n)/ log(q)� =: k∗
n (q).

In any case, we have qk,n(v) < N for v ∈ [0, 1] and all q ∈ (0, 1). Hence, by
the standard quadrature argument employed in our earlier superconvergence
analyses,

SI
n (v) = h

k∗
n (q)∑

k=1

qk,n (v)−1∑
�=0

∫ 1

0
Kk(t, t� + sh)δh(t� + sh)ds

= h
k∗

n (q)∑
k=1

qk,n (v)−1∑
�=0

E (�)
k,n(v), v ∈ [0, 1],

where the terms E (�)
k,n(v) denote the quadrature errors induced by the interpola-

tory m-point quadrature formulas with abscissas {t� + c j h}. Since the orthogo-
nality condition J0 = 0 implies that these formulas possess degree of precision
of (at least) m, it follows that |E (�)

k,n(v)| ≤ Qmhm+1 uniformly for v ∈ [0, 1].
Thus,

|SI
n (v)| ≤ hQmhm+1

k∗
n (q)∑

k=1

qk,n (v)−1∑
�=0

1 ≤ hQmhm+1
k∗

n (q)∑
k=1

qk N

≤ Nh · Qmhm+1
k∗

n (q)∑
k=1

qk ≤ Qm T hm+1q/(1 − q) (0 ≤ n ≤ N − 1).

In order to derive an upper bound for SI I
n (v) in (5.3.38), recall first that the

iterated kernels Kk(t, s) are bounded by

|Kk(t, s)| ≤ qk(k−1)/2

(k − 1)!
T k−1 K̄ k

θ , (t, s) ∈ D(k)
θ (k ≥ 1)

(cf. Lemma 5.1.5). Moreover, by Theorem 5.3.2 we have ||δh ||∞ ≤ Cδhm for
any choice of {ci }. These observations lead to

|SI I
n (v)| ≤ h

∞∑
k=1

∫ γk,n (v)

0
|Kk(t, tqk,n (v) + sh)||δh(tqk,n (v) + sh)|ds

≤ Cδhm+1
∞∑

k=1

γk,n(v)
qk(k−1)/2

(k − 1)!
T k−1 K̄ k

θ

≤ Cδhm+1 K̄ θ

∞∑
k=1

qk(k−1)/2

(k − 1)!
(T K̄ θ )k−1.
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For any finite T and q ∈ (0, 1), the infinite series is convergent (note its simi-
larity to the expression for the solution of the initial-value problem

y′(t) = K̄ θ y(qt), t ∈ [0, T ], y(0) = y0,

at t = T , as seen in (5.1.7)!). We therefore conclude that there exist constants
C I (q) and C I I (q) so that

|eit
h (t)| ≤ (C I (q) + C I I (q))hm+1, t ∈ I.

5.3.4 A more general VIE with proportional delay

As we have seen at the beginning of Section 5.1.1, the first-kind delay integral
equation (5.1.1) can often be recast as an equation of the second kind,

y(t) = g(t) + b(t)y(qt) + (Wθ y)(t), t ∈ I := [0, T ] (5.3.39)

(cf. (5.1.3))), with b(t) �≡ 0. This more general delay equation is a particular
case of

y(t) = g(t) + b(t)y(qt) + (V y)(t) + (Vθ y)(t), t ∈ I. (5.3.40)

It is immediately clear that the analysis of existence and uniqueness of the
collocation solution uh ∈ S(−1)

m−1(Ih), defined by

uh(t) = g(t) + b(t)uh(qt) + (Vuh)(t) + (Vθuh)(t), t ∈ Xh,

and that of its attainable order of convergence on I and Ih is much more com-
plex, due to the presence of the term b(t)uh(qt) on the right-hand side of the
collocation equation. The additional matrix representing the contribution of
b(tn,i )uh(qtn,i ), for example to Phase I,

D I
n := diag(b(tn,i ), . . . , b(tn,m))

(
L j (γn,i )

(i, j = 1, . . . , m)

)
,

implies that the matrix Im − h[Bn + B I
n (q)] characterising the linear algebraic

system (5.3.12) is now replaced by Im − D I
n − h[Bn + B I

n (q)]. Thus, since
D I

n does not carry the factor h, the statement Theorem 5.3.1, guaranteeing the
existence of a (unique) solution Un for all sufficiently small h, will in general no
longer remain valid, unless we have ||D I

n || < 1 for all n. An analogous remark
applies to Phase II, while Phase III is no longer affected by the additional delay
term b(t)uh(qt).

A very particular case was studied by Y. Liu (1995b): it essentially corre-
sponds to the choice m = 1, c1 = 1, and it already exhibits the different, much
more difficult nature of the analysis.
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5.3.5 Attainable order at t = t1 = h

Consider now the integrated form of the DDE (5.2.28),

y(t) = 1 +
∫ qt

0
(b/q)y(s)ds, t ∈ I, (5.3.41)

and suppose that its solution is approximated by uh ∈ S(−1)
m−1(Ih), using the same

collocation parameters {ci } as for vh ∈ S(0)
m (Ih), the collocation solution to

y′(t) = by(qt), t ∈ I, y(0) = 1.

Will the results of Section 1.1.5 (Corollary 1.1.10, corresponding to q = 1: no
delay) remain valid when 0 < q < 1?

Theorem 5.3.5 The collocation solution uh ∈ S(−1)
m−1(Ih) and the corresponding

iterated collocation solution uit
h for (5.2.41) at t = t1 = h (with z := bh) have

the values

uh(h) =

m−1∑
j=0

q j(2m− j−1)/2 M (m− j)(1/qm− j )z j

m∑
j=0

q j(2m− j−1)/2 M (m− j)(0)z j

and

uit
h (h) =

m∑
j=0

q j(2m− j−1)/2 M (m− j)(1/qm− j )z j

m∑
j=0

q j(2m− j−1)/2 M (m− j)(0)z j

,

where z := bh.

Remark We observe that the two rational approximants describing uh(h) and
uit

h (h) are very closely related: they essentially coincide except that in the numer-
ator of uh(h) the upper limit of the sum is m − 1, compared to m in uit

h (h). The
result remains of course true for q = 1; see Sections 1.1.5 and 1.1.6 (Corollary
1.1.10 and Lemma 1.1.12).

Proof In analogy to the proof of the previous theorem the collocation equation
for uh ∈ S(−1)

m−1(Ih) on the first subinterval σ̄0 = [0, h] may be written as

uh(t) = 1 +
∫ qt

0
(b/q)uh(s)ds + K̃ M(t), t ∈ σ0, (5.3.42)

where M(t) denotes the collocation polynomial with respect to the points {ci }.
There is, however, one major difference: since we are now in the discontinuous
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space S(−1)
m−1(Ih) we have, in general, uh(0) �= y0 = 1; that is,

uh(0) = 1 + K̃ M(0) �= 1 (unless c1 = 0).

Applying m-fold differentiation to the collocation equation (5.2.40) on σ̄0 (and
setting again h = 1 for simplicity) we find

0 ≡ bmqm(m−1)/2uh(qmt) + K̃
m−1∑
j=0

q j(2m− j−1)/2 M (m− j)(q j t)z j .

It thus follows from the above value of uh(0) and by setting, respectively, t = 0
and t = 1/qm in the differentiated collocation equation that the first assertion
of Theorem 5.3.5 is true.

To prove the second statement we first note that, by definition,

uit
h (t) = 1 +

∫ qt

0
(b/q)uh(s)ds, t ∈ σ̄0.

Hence,

(d/dt)uit
h (t) = buh(qt), t ∈ σ̄0.

Since on σ̄0 the iterated collocation solution uit
h for (5.3.39) reduces to a poly-

nomial of degree m, we find that

0 ≡ (dm/dtm)uit
h (t) = bm+1qm(m+1)/2uit

h (qm+1t)

+ bq2 K̃
m∑

j=0

q j(2m− j−1)/2 M (mj)(q j+1t).

The proof is brought to its conclusion by setting t = 0 and t = 1/qm+1 and by
observing that uh(0) = 1, in complete analogy to the proof of Theorem 5.2.7.

Example 5.3.1
For m = 1 we obtain

uit
h (h) = 1 + (1 − c1)z

1 − c1z
(z := bh)

for all values of q ∈ (0, 1]. Thus, for c1 = 1/2 (Gauss point) this coincides with
the [1, 1]-Padé approximant for exp(z), regardless of q.

Example 5.3.2
For m = 2 Theorem 5.3.5 yields

uit
h (h) = 1 + (1 − [q(c1 + c2)/2]z + [q(1 − c1)(1 − c2)/2]z2

1 − [q(c1 + c2)/2]z + [qc1c2/2]z2
.
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If c1 and c2 are the Gauss points then

uit
h (h) = 1 + (1 − q/2)z + (q/12)z2

1 − (q/2)z + (q/12)z2
.

This rational function is different from the one for vh(h) (recall Example 5.2.2),
and it also differs from the [2, 2]-Padé approximant for y(h), whenever q ∈
(0, 1).

If we compare the expressions for vh(h) and uit
h (h) given, respectively, in

Theorem 5.2.7 and Theorem 5.3.5, we see that the following result (answering
one of the questions raised above) is now obvious. To state it, assume that
vh ∈ S(0)

m (Ih) is based on the collocation parameters {ci } while uh ∈ S(−1)
m−1(Ih)

corresponds to the m collocation parameters {ĉi }.
Theorem 5.3.6 For q ∈ (0, 1), we obtain

uit
h (h) = vh(h) if, and only if, ĉi = qci (i = 1, . . . , m).

The proof of this result can be found in Takama, Muroya and Ishiwata (2000);
for m = 2 it was given in Brunner (1997a).

Remark For q = 1 the result of Theorem 5.3.6 reduces to the one in Corollary
1.1.10 (Section 1.1.5).

5.3.6 Local superconvergence analysis on uniform meshes

We have already seen that for DDEs with proportional delay the classical local
superconvergence order of p∗ = 2m for collocation at the Gauss points can
no longer be attained if m > 2 (Conjecture 5.2.8). For pantograph-type delay
Volterra integral equations of the second kind the situation is even worse, as
the following theorem shows (Brunner and Hu (2003)). This is not really too
surprising in view of Theorem 5.3.6 on the relationship between the collocation
solutions for a special case of the pantograph equation and its integrated form.

To be more precise, we will now show that, in contrast to the global super-
convergence result of Theorem 5.3.2, the attainable order of local superconver-
gence on the uniform mesh Ih differs rather substantially from earlier classical
O(hm+κ )-estimates (κ ≤ m) when m ≥ 3.

Theorem 5.3.7 Let uh ∈ S(−1)
m−1(Ih) be the collocation solution to the DVIE

(5.3.27), and let uit
h be the corresponding iterated collocation solution. If the

collocation parameters {ci } are the Gauss points, then the order p∗ in the
estimate

max
t∈Ih\{0}

|y(t) − uit
h (t)| ≤ Ch p∗
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cannot exceed m + 2. More precisely, the following is true:

(i) If q = 1/2, then

p∗ =
{

m + 2 if m is even,

m + 1 if m is odd.

(ii) For q ∈ (0, 1) \ {1/2} we attain only p∗ = m + 1.

Proof See Brunner and Hu (2003).

We note in passing that the superconvergence results presented in Theorems
5.3.4 and 5.3.7 are of course also true for the collocation solution uh ∈ S(−1)

m−1(Ih)
to the particular delay VIEs (5.3.20) and (5.3.18).

5.3.7 Local superconvergence on geometric meshes

The special form of the delay function θ (t) = qt (0 < q < 1) suggests that uit
h

might possibly attain the classical optimal order of superconvergence p∗ = 2m
on a suitable geometric mesh, if collocation is at the Gauss points. That this is
(almost) so was verified in Brunner, Hu and Lin (2001). We briefly describe
this result and sketch its proof.

Assume that Ih is a geometric mesh defined by

Ih := {tn : tn = γ N−nT, n = 0, 1, . . . , N ; γ ∈ (0, 1)}. (5.3.43)

As we shall see below, the mesh parameter γ will depend on N (but not on n),
on q, and on m. The mesh (5.3.43) possesses the following obvious properties:

(i) hn := tn+1 − tn = γ N−n−1(1 − γ )T (n = 0, 1, . . . , N − 1);
(ii) max(n) hn = hN−1 = (1 − γ )T (for any N ∈ IN). Hence, γ = γ (N ) will

have to be chosen so that γ → 1, as N → ∞, for all q ∈ (0, 1).

Let ρ ∈ IN be defined by

ρ :=
⌊

ln(q)

ln(1 − 2m ln(N )
(m+1)N )

⌋
: (5.3.44)

it is the largest integer for which

q1/ρ ≤ 1 − 2m · ln(N )

(m + 1)N
.

Theorem 5.3.8 will reveal the motivation for introducing this integer ρ. Observe
that for given (fixed) q ∈ (0, 1) and m ≥ 1, we have ρ > 1 for all sufficiently
large N . This is true because

1 − 2m · ln(N )

(m + 1)N
−→ 1−, as N → ∞,
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for any m ∈ IN. The following is the result of Brunner, Hu and Lin (2001).

Theorem 5.3.8 Assume:

(a) g ∈ C2m(I ), K1 ∈ C2m(D), K2 ∈ C2m(Dθ );
(b) Ih is the geometric mesh described by (5.3.43) and (5.3.44), with γ = q1/ρ;
(c) uh ∈ S(−1)

m−1(Ih) is the collocation solution to the delay VIE (5.3.5), with the
{ci } given by the Gauss points, and uit

h denotes the corresponding iterated
collocation solution.

Then for all sufficiently large N the resulting local order of convergence of uit
h

is given by

max
t∈Ih\{0}

|y(t) − uit
h (t)| ≤ C(q)N−(2m−εN ),

where

εN := logN

(
(2m · ln(N ))2m

(2m + 1)(m + 1)2m

)

satisfies

lim
N→∞

εN = 0.

Proof Since the proof is technically quite complex (using interpolatory pro-
jection techniques), we will only point to one of the key ingredients.

Lemma 5.3.9 Let Ih be the geometric mesh defined by (5.3.43) and (5.3.44),
with γ = q1/ρ . Then:

(i) h0 ≤ C N−2m/(m+1);

(ii)
N−1∑
n=1

h2m+1
n ≤ C N−(2m−εN );

(iii) For ρ + 1 ≤ n ≤ N we have qtn = tn−ρ ∈ Ih \ {0}.
Note that (iii) may be viewed as generalised θ -invariance of this geometric
mesh Ih .

Remarks

1. Geometric meshes similar to the ones employed here were introduced by Hu
(1998c) for piecewise polynomial collocation methods applied to VIDEs
with weakly singular kernels, to obtain local superconvergence of the collo-
cation solution on Ih .

2. The analysis in Brunner, Hu and Lin (2001) suggests that analogous super-
convergence results can be derived for collocation solutions in S(0)

m (Ih), with
suitable geometric mesh Ih , for Volterra integro-differential equations with



304 5 IVPs with proportional (vanishing) delay

vanishing proportional delays. This has not yet been worked out in detail,
and hence the reader is invited to take up the challenge.

3. As Bellen (2001) has shown (see also the remark at the end of Section
5.2.5), the classical local superconvergence results on the mesh points Ih

can be revovered if one switches from uniform to quasi-geometric meshes.
We will not write down the details of this approach for second-kind VIEs
with proportional delays; the reader should be able to derive them from the
presentation in Sections 5.5.4 and 5.5.5.

5.4 Collocation for first-kind VIEs with
proportional delays

We have seen at the beginning of the present chapter that the analysis of the
existence and uniqueness of solutions becomes significantly more difficult when
we move from the ‘classical’ first-kind integral equation in Volterra (1896a),

(V y)(t) = g(t), t ∈ I := [0, T ], (5.4.1)

with K ∈ C1(D), |K (t, t)| ≥ κ0 > 0, g ∈ C1(I ), g(0) = 0, to the related de-
lay integral equation

(Wθ y)(t) :=
∫ t

θ (t)
K (t, s)y(s)ds = g(t), t ∈ I, (5.4.2)

with lag function θ (t) = qt (0 < q < 1). This is, as Volterra (1897) has de-
scribed (cf. (5.1.3)), closely related to the problem of analysing the solution of
the functional equation

y(t) − qy(qt) = f (t), t ∈ I.

This increase in complexity is even more pronounced in the convergence
analysis of collocation solutions for (5.4.2). Therefore, it will not come as a
surprise to the reader that the convergence analysis on uniform Ih is not yet
understood since, as we have already seen in Sections 2.4.2 and 2.4.3, even for
‘classical’ first-kind VIEs (5.4.1) we cannot expect uniform convergence of uh

for arbitrary {ci }.

5.4.1 Collocation in S(−1)
m−1(Ih): uniform Ih

The collocation solution uh ∈ S(−1)
m−1(Ih) to (5.4.2) with θ (t) = qt (0 < q < 1)

is determined by

(Wθuh)(t) = g(t), t ∈ Xh, (5.4.3)
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where, as in Section 5.3.2, the set Xh of collocation points now corresponds
to collocation parameters satisfying 0 < c1 < . . . < cm ≤ 1. Since we have
already done our homework at the end of Section 5.3.2, the precise form of
the collocation equations is already available: for t = tn,i ∈ Xh we see that the
linear algebraic systems for Un in the local representation (5.3.10) have the
following forms:

Phase I 0 ≤ n < q I (qn,i = n, γn,i > 0)
Here, (5.4.3) reduces to

B̄ I
n(q)Un = h−1gn, (5.4.4)

where the matrix B̄ I
n(q) was introduced in (5.3.24); the vector gn has the com-

ponents g(tn,i ).

Phase II q I ≤ n < q I I (qn,i = n − 1, i = 1, . . . , νn; qn,i = n, γn,i > 0
when i > νn)
A glimpse at (5.3.25) reveals that Un is now given by the system

B̄ I I
n (q)Un = h−1gn − S̄ I I

n−1(q)Un−1, (5.4.5)

with the matrices B̄ I I
n (q) and S̄ I I

n−1(q) as in (5.3.25).

Phase III q I I ≤ n ≤ N − 1 (qn,i = qn < n − 1, i = 1, . . . , νn; qn,i = qn +
1, γn,i > 0 when i > νn)
Since we have now reached the pure delay stage in the recursion, the left-hand
side matrix in these linear systems coincides with the one for the ‘classical’
first-kind equation (5.4.1) and we obtain

BnUn = h−1gn − [S̄ I I I
n (q)Uqn +

n−1∑
�=qn+1

B(�)
n U� + SI I I

qn+1(q)Uqn+1], (5.4.6)

in complete analogy to (5.3.26) for the second-kind delay VIE of Section 5.3.3.

Example 5.4.1 uh ∈ S(−1)
0 (Ih) (m = 1)

Here, we have q I = q I I . According to (5.4.3) and (5.3.24), the collocation
equation of Phase I (0 ≤ n < q I ) assumes the form(∫ c1

γn,1

K (tn,1, tn + sh)ds

)
yn+1 = h−1g(tn,1).

Since Phase II is empty, the collocation equation for Phase III (n ≥ q I I = q I )
is given by

(Wθuh)(tn,1) =
∫ tn

qtn,1

K (tn,1, s)uh(s)ds +
∫ tn,1

tn

K (tn,1, s)uh(s)ds,
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and this can be written as(∫ c1

0
K (tn,1, tn + sh)ds

)
yn+1 = h−1g(tn,1) −

(∫ 1

γn,1

K (tn,1, tqn,1 + sh)ds

)
yqn,1+1

−
n−1∑

�=qn,1+1

(∫ 1

0
K (tn,1, t� + sh)ds

)
y�+1.

Setting

Bn :=
∫ c1

0
K (tn,1, tn + sh)ds,

B(�)
n :=

∫ 1

0
K (tn,1, t� + sh)ds (qn,1 + 1 ≤ � ≤ n − 1),

and

B̄ I I I
qn

(q) :=
∫ 1

γn,1

K (tn,1, tqn,1 + sh)ds,

with qn,1 := �q(n + c1)� and γn,1 := q(n + c1) − qn,1, the above difference
equation defining the values {yn+1} becomes

Bn yn+1 +
n−1∑

�=qn,1+1

B(�)
n y�+1 + B̄ I I I

qn
(q)yqn,1+1 = h−1g(tn,1). (5.4.7)

If K (t, s) ≡ 1 the delay integral equation (5.4.3) reduces to∫ t

qt
y(s)ds = g(t), t ∈ I (g(0) = 0),

and this is equivalent to the functional equation

y(t) − qy(qt) = g′(t), t ∈ I.

The corresponding collocation solution uh ∈ S(−1)
0 (Ih) is thus determined by

the solution of the difference equations

(c1 − γn,1)yn+1 = h−1g(tn,1) (0 ≤ n < q I ) (5.4.8)

(for Phase I ), and

c1 yn+1 +
n−1∑

�=qn,1+1

y�+1 + (1 − γn,1)yqn,1+1 = h−1g(tn + c1h) (n ≥ q I = q I I )

(5.4.9)

(for Phase III; Phase II is empty). We will briefly return to this in Section 5.4.3.
Note that Liu (1995b) analysed similar difference equations in the special case
where c1 = 1.
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Table 5.4. q = 1/2, c1 = 1/2 (q I = q I I = 1)

n 0 1 2 3 4 5 6

qn,1 0 0 1 1 2 2 3
γn,1 1/4 3/4 1/4 3/4 1/4 3/4 1/4

Table 5.5. q = 0.9, c1 = 1/2 (q I = q I I = 5)

n 0 1 2 3 4 5 6

qn,1 0 1 2 3 4 4 5
γn,1 0.45 0.35 0.25 0.15 0.05 0.95 0.85

Table 5.6. q = 1/2, c1 = 1 (q I = q I I = 1)

n 0 1 2 3 4 5 6

qn,1 0 1 1 2 2 3 3
γn,1 1/2 0 1/2 0 1/2 0 1/2

Table 5.7. q = 0.9, c1 = 1 (q I = q I I = 9)

n 0 1 2 3 . . . 8 9 10

qn,1 0 1 2 3 . . . 8 9 9
γn,1 0.9 0.8 0.7 0.6 . . . 0.1 0.0 0.9

In order to illustrate the structure of the above difference equations corre-
sponding to collocation at the Gauss points (c1 = 1/2) we give a sample of
values of qn,1 and γn,1 (Tables 5.4 and 5.5). For comparison we also show a
sample of values of qn,1 and γn,1 for c1 = 1 (Tables 5.6 and 5.7).

If the given functions K and g in (5.4.2) satisfy the hypotheses stated in
Theorem 5.1.1, the existence of a unique collocation solution uh ∈ S(−1)

m−1(Ih) to
(5.4.2), for all meshes with sufficiently small h > 0, can be established along
the lines of the analysis in Section 2.4.1, by proceeding from Phases I and II to
the ‘pure delay’ Phase III.
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5.4.2 Convergence results for S(−1)
m−1(Ih) on uniform meshes

What can be said about the (order of) global convergence of the collocation
solution uh ∈ S(−1)

m−1(Ih) to (5.4.2)? Perhaps not surprisingly, we do not even
know sufficient conditions on the {ci } for which uh converges uniformly to y
on I . Numerical evidence suggests that the condition

−1 ≤ ρm := (−1)m
m∏

i=1

1 − ci

ci
≤ 1

(which guarantees uniform convergence when q = 0 in Wθ with θ (t) = qt ;
see Section 2.4.2) is necessary but certainly no longer sufficient for uniform
convergence. In particular, it is not even known for which values of c1 ∈ (0, 1]
the solution of the simple difference equations (5.4.8) and (5.4.9) remains uni-
formly bounded as N → ∞ (h → 0, Nh = T ) when q ∈ (0, 1).

5.5 VIDEs with proportional delays

5.5.1 The collocation equations and their discretisations

We now study the convergence of collocation solutions for the delay VIDE with
proportional delay θ (t) := qt (0 < q < 1),

y′(t) = f (t, y(t), y(qt)) + (V y)(t) + (Vθ y)(t), t ∈ I, y(0) = y0,

(5.5.1)
with V and Vθ denoting the nonlinear Volterra integral operators from C(I ) to
C(I ),

(V y)(t) :=
∫ t

0
k1(t, s, y(s))ds, t ∈ I,

and

(Vθ y)(t) :=
∫ qt

0
k2(t, s, y(s))ds, t ∈ I. (5.5.2)

The kernel functions ki (i = 1, 2) are supposed to be (Lipschitz-) continuous.
Hence, the derivation and the analysis of the collocation equation defining
uh ∈ S(0)

m (Ih) for (5.5.1),

u′
h(t) = f (t, uh(t), uh(qt)) + (Vuh)(t) + (Vθuh)(t), t ∈ I, uh(0) = y0,

(5.5.3)

are by now straightforward, since they will be based on the machinery intro-
duced in Sections 5.2. and 5.3. For ease of exposition we will often resort to
the linear version of (5.5.1), because it captures most of the essential features.
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This delay VIDE is

y′(t) = a(t)y(t) + b(t)y(qt) + (V y)(t) + (Vθ y)(t), t ∈ I. (5.5.4)

where a, b ∈ C(I ). The Volterra integral operators V and Vθ are the linear
counterparts of the above nonlinear operators, as defined at the beginning of
Section 5.3. It will again be assumed that the kernels K1 and K2 defining these
linear integral operators V and Vθ are continuous on their respective domains
D and Dθ .

Suppose now that the mesh Ih is uniform and that the local representation of
uh ∈ S(0)

m (Ih) on the subinterval σ̄n is

uh(tn + vhn) = yn + hn

m∑
j=1

β j (v)Yn, j , v ∈ [0, 1], (5.5.5)

where yn := uh(tn) and Yn, j := u′
h(tn, j ) (cf. (1.1.5)). Recall the notation intro-

duced in Sections 5.2.1 and 5.3.1.:

qn,i := �q(n + ci )� ∈ IN0, γn,i := q(n + ci ) − qn,i ∈ [0, 1).

Thus, at the collocation points tn,i := tn + ci h (i = 1, . . . , m) the collocation
equation (5.5.3) assumes the form

Yn,i = f (tn,i , yn + h
m∑

j=1

ai, j Yn, j , yqn,i + h
m∑

j=1

β j (γn,i )Yqn,i , j )

+ Fn(tn,i ) + h
∫ ci

0
k1(tn,i , tn + sh, yn + h

m∑
j=1

β j (s)Yn, j )ds

+ (Vθuh)(tn,i ) (i = 1, . . . , m). (5.5.6)

The lag term associated with the Volterra operator V is

Fn(tn,i ) :=
∫ tn

0
k1(tn,i , s, uh(s))ds

= h
n−1∑
�=0

∫ 1

0
k1(tn,i , t� + sh, y� + h

m∑
j=1

β j (s)Y�, j )ds,

and the term (Vθuh)(tn,i ) has the form

(Vθuh)(tn,i ) =
∫ qtn,i

0
k2(tn,i , s, uh(s))ds

= Qqn,i (tn,i )

+ h
∫ γn,i

0
k2(tn,i , tqn,i + sh, yqn,i + h

m∑
j=1

β j (s)Yqn,i , j )ds, (5.5.7)
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with

Qqn,i (tn,i ) := h
qn,i −1∑
�=0

∫ 1

0
k2(tn,i , t� + sh, y� + h

m∑
j=1

β j (s)Y�, j )ds. (5.5.8)

The description of the three phases in the computation of uh for the nonlinear
VIDE (5.5.1) of course closely resembles the one in Section 5.3.1.

(I) Initial phase (complete overlap) 0 ≤ n < 	qc1/(1 − q)
 =: q I .
Employing the local representation (5.5.5) and letting t = tn,i := tn + ci h in
(5.5.3), we find that the system of nonlinear algebraic equations (5.5.6) for
Yn := (Yn,1, . . . , Yn,m)T has the form

Yn,i = f (tn,i , yn + h
m∑

j=1

ai, j Yn, j , yn + h
m∑

j=1

β j (γn,i )Yn, j )

+ Fn(tn,i ) + h
∫ ci

0
k1(tn,i , tn + sh, yn + h

m∑
j=1

β j (s)Yn, j )ds

+ Qn(tn,i ) + h
∫ γn,i

0
k2(tn,i , tn + sh, yn + h

m∑
j=1

β j (s)Yn, j )ds

(5.5.9)

(i = 1, . . . , m), since qn,i = n for i = 1, . . . , m. The lag terms are defined
above, where qn,i in Qqn,i (tn,i ) now assumes the value n for all i .

(II) Transition phase (partial overlap) q I ≤ n < 	qcm/(1 − q)
 =: q I I .
If this set of values of n is not empty there is an integer νn ∈ {1, . . . , m − 1} so
that

qn,i = n − 1 for i = 1, . . . , νn and qn,i = n, γn,i > 0

for i = νn + 1, . . . , m.

The collocation equation (5.5.6) assumes the separated form described by

Yn,i = f (tn,i , yn + h
m∑

j=1

ai, j Yn,i , yn−1 + h
m∑

j=1

β j (γn,i )Yn−1, j )

+ Fn(tn,i ) + h
∫ ci

0
k1(tn,i , tn + sh, yn + h

m∑
j=1

β j (s)Yn, j )ds

+ Qn−1(tn,i ) + h
∫ γn,i

0
k2(tn,i , tn−1 + sh, yn−1 + h

m∑
j=1

β j (s)Yn−1, j )ds

(i = 1, . . . , νn), (5.5.10)
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and

Yn, j = f (tn,i , yn + h
m∑

j=1

ai, j Yn, j , yn + h
m∑

j=1

β j (γn,i )Yn, j )

+ Fn(tn,i ) + h
∫ ci

0
k1(tn,i , tn + sh, yn + h

m∑
j=1

β j (s)Yn, j )ds

+ Qn(tn,i ) + h
∫ γn,i

0
k2(tn,i , tn + sh, yn + h

m∑
j=1

β j (s)Yn, j )ds

(i = νn + 1, . . . , m). (5.5.11)

(III) Pure delay phase (no overlap) q I I ≤ n ≤ N − 1.
Assume that for given n we have

qn,i = qn (i = 1, . . . , νn) and qn,i = qn + 1 < n, γn,i > 0,

(i = νn + 1, . . . , m)

for some integer νn with 1 ≤ νn ≤ m. The resulting system of nonlinear alge-
braic equations corresponding to (5.5.6) is now given by the sets of equations

Yn,i = f (tn,i , yn + h
m∑

j=1

ai, j Yn, j , yqn + h
m∑

j=1

β j (γn,i )Yqn , j )

+ Fn(tn,i ) + h
∫ ci

0
k1(tn,i , tn + sh, yn + h

m∑
j=1

β j (s)Yn, j )ds

+ Qqn (tn,i ) + h
∫ γn,i

0
k2(tn,i , tqn + sh, yqn + h

m∑
j=1

β j (s)Yqn , j )ds,

(i = 1, . . . , νn), (5.5.12)

and

Yn,i = f (tn,i , yn + h
m∑

j=1

ai, j Yn, j , yqn+1 + h
m∑

j=1

β j (γn,i )Yqn+1, j )

+ Fn(tn,i ) + h
∫ ci

0
k1(tn,i , tn + sh, yn + h

m∑
j=1

β j (s)Yn, j )ds

+ Qqn+1(tn,i ) + h
∫ γn,i

0
k2(tn,i , tqn+1 + sh, yqn+1 + h

m∑
j=1

β j (s)Yqn+1, j )ds

(i = νn + 1, . . . , m). (5.5.13)

In order to understand the precise structure of these (seemingly) rather
complex algebraic systems, and to prepare the ground for the analysis of the
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collocation error, we will use the linear VIDE with proportional delay (5.5.4)
to make the above collocation equations more transparent. The corresponding
systems of linear algebraic equations describing the three phases of the com-
putational form of the collocation equation are presented below. The reader
may find it instructive to compare these systems with those corresponding to
‘classical’ linear Volterra integro-differential equations (Section 3.2.1) and the
ones encountered in Section 5.3.1 (cf. (5.3.12)–(5.3.14)).

We first study the contributions arising from the classical (non-delay) VIDE
part, a(t)uh(t) + (Vuh)(t), and the delay part, b(t)uh(t) + (Vθuh)(t), separately.
Since the former was studied in Section 3.2, we can be brief: recall that, for all
values of n = 0, 1, . . . , N − 1,

a(tn,i )uh(tn,i ) + (Vuh)(tn,i )

= ha(tn,i )
m∑

j=1

ai, j Yn, j + h2
m∑

j=1

(∫ ci

0
K1(tn,i , tn + sh)β j (s)ds

)
Yn, j

+ h2
n−1∑
�=0

m∑
j=1

(∫ 1

0
K1(tn,i , t� + sh)β j (s)ds

)
Y�, j

+
(

a(tn,i ) + h
∫ ci

0
K1(tn,i , tn + sh)ids

)
yn

+ h
n−1∑
�=0

(∫ 1

0
K1(tn,i , t� + sh)ds

)
y�. (5.5.14)

Thus, the resulting contribution to the linear system for Yn coming from the
non-delay terms in the collocation equation (5.5.6) for the linear VIDE (5.5.4)
is given by

h(An + hCn)Yn + h2
n−1∑
�=0

C (�)
n Y� + (rn + hκn)yn + h

n−1∑
�=0

κ (�)
n y�, (5.5.15)

where the matrices An, Cn, C (�)
n (� < n) and the vectors rn, κn, κ (�)

n (� < n)
were introduced in Section 3.2.1 (cf. (3.2.9)).

Consider now the contribution due to the delay terms Dn,i :=
b(tn,i )uh(qtn,i ) + (Vθuh)(tn,i ): We first note that

(Vθeh)(tn,i ) = h
qn,i −1∑
�=0

∫ 1

0
K2(tn,i , t� + sh)

(
y� + h

m∑
j=1

β j (s)Y�, j

)
ds

+ h
∫ γn,i

0
K2(tn,i , tqn,i + sh)

(
yqn,i + h

m∑
j=1

β j (s)Yqn,i , j

)
ds.

(5.5.16)
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Hence,

Dn,i = hb(tn,i )
m∑

j=1

β j (γn,i )Yqn,i + h2
m∑

j=1

(∫ γn,i

0
K2(tn,i , tqn,i + sh)β j (s)ds

)
Yqn,i , j

+ h2
qn,i −1∑
�=0

m∑
j=1

(∫ 1

0
K2(tn,i , t� + sh)β j (s)ds

)
Y�, j

+
(

b(tn,i ) + h
∫ γn,i

0
K2(tn,i , tqn,i + sh)ds

)
yqn,i

+ h
qn,i −1∑
�=0

(∫ 1

0
K2(tn,i , t� + sh)ds

)
y�. (5.5.17)

The precise structure of the corresponding matrices and vectors will now of
course depend on the value of qn,i : We have qn,i = n in Phase I; qn,i ∈ {n − 1, n}
(Phase II); and qn,i ∈ {qn, qn + 1}, with qn < n − 1 (Phase III). Thus, let νn ∈
{0, 1, . . . , m} be such that, for given n,

qn,i =
{

qn for i = 1, . . . , νn

qn + 1 (γn,i > 0) for i = νn + 1, . . . , m.

The three phases I–III are then characterised by

qn,i =




qn + 1 = n (νn = 0) : Phase I

qn = n − 1 (1 ≤ νn < m) : Phase II

qn < n − 1 (1 ≤ νn ≤ m) : Phase III. (5.5.18)

If we are in Phase II or Phase III, the equations (5.5.17) will in general split
into two separated forms: for qn,i = qn (i = 1, . . . , νn) we obtain

Dn,i = hb(tn,i )
m∑

j=1

β j (γn,i )Yqn , j + h2
m∑

j=1

(∫ γn,i

0
K2(tn,i , tqn + sh)β j (s)ds

)
Yqn , j

+ h2
qn−1∑
�=0

m∑
j=1

(∫ 1

0
K2(tn,i , t� + sh)β j (s)ds

)
Y�, j

+
(

b(tn,i ) + h
∫ γn,i

0
K2(tn,i , tqn + sh)ds

)
yqn

+ h
qn−1∑
�=0

(∫ 1

0
K2(tn,i , t� + sh)ds

)
y� (i = 1, . . . , νn), (5.5.19)

while for qn,i = qn + 1 (i = νn + 1, . . . , m, with γn,i > 0), we have

Dn,i = hb(tn,i )
m∑

j=1

β j (γn,i )Yqn+1, j
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+ h2
m∑

j=1

(∫ γn,i

0
K2(tn,i , tqn+1 + sh)β j (s)ds

)
Yqn+1, j

+ h2
qn−1∑
�=0

m∑
j=1

(∫ 1

0
K2(tn,i , t� + sh)β j (s)ds

)
Y�, j

+ h2
m∑

j=1

(∫ 1

0
K2(tn,i , tqn + sh)β j (s)ds

)
Yqn , j

+
(

b(tn,i ) + h
∫ γn,i

0
K2(tn,i , tqn+1 + sh)ds

)
yqn+1

+ h
qn−1∑
�=0

(∫ 1

0
K2(tn,i , t� + sh)ds

)
y� + h

∫ 1

0
i
(
K2(tn,i , tqn + sh)ds

)
yqn .

(5.5.20)

Hence, the right-hand sides of these two equations (5.5.19) and (5.5.20) may
be written concisely as

(Dn,i ) = h Â{∗}
n (q)Yqn + h A{∗}

n (q)Yqn+1 + h2 Ŝ{∗}
qn

(q)Yqn + S{∗}
qn+1)(q)Yqn+1

+ r̂{∗}
n (q)yqn + r{∗}

n (q)yqn+1 + h[κ̂{∗}
qn

(q)yqn + κ
{∗}
qn+1(q)yqn+1],

where {∗} stands for I, I I or I I I , depending on the value of n. We are now
ready to describe the linear algebraic systems corresponding to the three phases;
the definitions of the above matrices and vectors will then also become clear.

(I) Initial phase 0 ≤ n < q I .
Combining (5.5.13) and (5.5.19) (with qn + 1 = n (νn = 0) and {∗} = {I }), the
linear algebraic system corresponding to (5.5.6) may then be written as

[Im − h(An + AI
n(q)) − h2(Cn + C I

n (q))]Yn

= h2
n−1∑
�=0

(C (�)
n + C (�)

n (q))Y� + (rn + rI
n(q))yn

+ h
n−1∑
�=0

(κ(�)
n + κ(�)

n (q))y� + h(κn + κI
n(q)). (5.5.21)

where

AI
n(q) := diag(b(tn,i ))(β j (γn,i )),

C I
n (q) :=




∫ γn,i

0
K2(tn,i , tn + sh)β j (s)ds

(i, j = 1, . . . , m)


 ,

C (�)
n (q) :=




∫ 1

0
K2(tn,i , t� + sh)β j (s)ds

(i, j = 1, . . . , m)


 (� < n)
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(the latter matrices are the analogues of the matrices B I
n (q) and B(�)

n (q) of
Section 5.3.1), and

κ I
n,i (q) :=

∫ γn,i

0
K2(tn,i , tn + sh)ds,

κ
(�)
n,i (q) :=

∫ 1

0
K2(tn,i , t� + sh)ds (� < n).

(II) Transition phase q I ≤ n < q I I .
If this set is not empty we now have qn = n − 1 (i = 1, . . . , νn) and qn + 1 =
n (i = νn + 1, . . . , m). The analogue of the above linear system (5.5.21) for
Phase II is

[Im − h(An + AI I
n (q)) − h2(Cn + C I I

n (q))]Yn

= h2
n−1∑
�=0

C (�)
n Y� + h2

n−2∑
�=0

C (�)
n (q)Y�

+ h ÂI I
n (q)Yn−1 + h2]Ŝ I I

n−1(q) + SI I
n (q)]Yn−1

+ rn yn + r̂I I
n (q)yn−1 + rI I

n (q)yn)

+ h
n−1∑
�=0

κ(�)
n y� + hκn yn + h

n−2∑
�=0

κ(�)
n (q)y� + h(κ̂I I

n (q)yn−1 + κI I
n (q)yn.

(5.5.22)

Here, we have introduced the matrices in L(IRm),

AI I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)AI
n(q),

ÂI I
n (q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)AI
n(q),

C I I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)C I
n (q),

as well as

Ŝ I I
n−1(q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)C I
n (q)

+ diag(0, . . . , 0︸ ︷︷ ︸
νn

, 1, . . . , 1)C (n−1)
n (q),

SI I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)C (n−1)
n (q),
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and the vectors

r̂I I
n (q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)rI
n(q),

rI I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . , 1)rI
n(q),

κ̂I I
n−1(q) := diag(1, . . . , 1︸ ︷︷ ︸

νn

, 0, . . . , 0)

(∫ γn,i

0
K2(tn,i , tn−1 + sh)ds

+
∫ 1

0
K2(tn,i , tn−1 + sh)ds (i = 1, . . . , m)

)T

,

κI I
n (q) := diag(0, . . . , 0︸ ︷︷ ︸

νn

, 1, . . . ,1)

(∫ γn,i

0
K2(tn,i , tn + sh)ds (i =1, . . . , m)

)T

.

(III) Pure delay phase q I I ≤ n ≤ N − 1.
We have now reached the stage where qn,i = qn < n − 1 (i = 1, . . . , νn) and
qn,i = qn + 1, γn,i > 0 (i = νn + 1, . . . , m). Hence, the resulting system of
linear algebraic equations for Yn is given by

[Im − h An − h2Cn]Yn

= h2
n−1∑
�=0

C (�)
n Y� + h2

qn−1∑
�=0

C (�)
n (q)Y�

+ h[ ÂI I I
n (q)Yqn + AI I I

n (q)Yqn+1] + h2[Ŝ I I I
qn

(q)Yqn + SI I I
qn+1(q)Yqn+1

+ rn yn + r̂I I I
n (q)yqn + rI I I

n (q)yqn+1 + h
n−1∑
�=0

κ(�)
n y� + hκn yn

+ h
qn−1∑
�=0

κ(�)
n (q)y� + h[(κ̂I I I

qn
(q)yqn + κI I I

qn+1(q)yqn+1]. (5.5.23)

We refrain from writing down the by now self-explanatory meanings of the
matrices and vectors describing the above linear algebraic system (5.5.23): a
brief look at (5.2.15) and the explicit equations (5.5.14) and (5.5.20) will help
the reader readily to do this.

Theorem 5.5.1 Assume that a, b and K1, K2 in (5.5.4) are continuous on their
respective domains I, D and Dθ . Then there exists an h̄ > 0 (depending on
q) so that for every uniform mesh Ih with h ∈ (0, h̄) the linear algebraic sys-
tems (5.5.21)–(5.5.23) have unique solutions Yn for any q ∈ (0, 1); that is, the
collocation equation (5.5.3) corresponding to the linear DVIDE (5.5.4) defines
a unique collocation solution uh ∈ S(0)

m (Ih) which on σ̄n is described by (5.5.5).
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Illustration

If K2 = −K1 =: −K , the (linear) delay VIDE (5.5.4) becomes

y′(t) = a(t)y(t) + b(t)y(qt) + (Wθ y)(t), t ∈ I := [0, T ], (5.5.24)

where the delay operator Wθ is as in (5.4.2). In the corresponding collocation
equation for uh ∈ S(0)

m (Ih),

u′
h(t) = a(t)uh(t) + b(t)uh(qt) + (Wθuh)(t), t ∈ Xh, (5.5.25)

the term (Wθuh)(t) for t = tn,i assumes the forms

(Wθuh)(tn,i ) =
∫ tn,i

qtn,i

K (tn,i , s)uh(s)ds

= h2
m∑

j=1

(∫ 1

γn,i

K (tn,i , tqn + sh)β j (s)ds

)
Yqn , j

+ h2
n−1∑

�=qn+1

m∑
j=1

(∫ 1

0
K (tn,i , t� + sh)β j (s)ds

)
Y�, j

+ h2
m∑

j=1

(∫ ci

0
K (tn,i , tn + sh)β j (s)ds

)
Yn, j

+ h
∫ 1

γn,i

(
K (tn,i , tqn + sh)ds

)
yqn

+ h
n−1∑

�=qn+1

∫ 1

0

(
K (tn,i , t� + sh)ds

)
y�

+ h
∫ ci

0

(
K (tn,i , tn + sh)ds

)
yn,

when we have qtn,i ≤ tn (that is, qn,i = qn < n). If qtn,i > tn (which is true
during Phase I and part of Phase II), the above expression reduces to

(Wθuh)(tn,i ) = h2
m∑

j=1

(∫ ci

γn,i

K (tn,i , tn + sh)β j (s)ds

)
Yn, j

+ h
∫ ci

γn,i

(
K (tn,i , tn + sh)ds

)
yn.

This allows us to write down the linear algebraic systems for Yn correspond-
ing to Phase I, II, and III (cf. (5.5.22)–(5.5.24) with K2 = −K1 =: −K ), and
the collocation solution uh on any subinterval σn is then given by the local
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representation (5.5.5). The extension of the above equation and remarks to the
nonlinear analogue of (5.5.25),

y′(t) = f (t, y(t), y(qt)) +
∫ t

qt
k(t, s, y(s)ds, t ∈ I := [0, T ], (5.5.26)

which formally corresponds to (5.5.1) with k2 = −k1, is obvious.

5.5.2 Convergence results on uniform meshes

Consider first the linear VIDE

y′(t) = a(t)y(t) + b(t)y(qt) + (V y)(t) + (Vθ y)(t), t ∈ I = [0, T ],

y(0) = y0, (5.5.27)

with the linear Volterra integral operators given by

(V y)(t) :=
∫ t

0
K1(t, s)y(s)ds, (Vθ y)(t) :=

∫ θ (t)

0
K2(t, s)y(s)ds,

and θ (t) := qt, 0 < q < 1.

Theorem 5.5.2 Assume:

(a) The given functions in (5.5.27) are sufficiently regular: a, b ∈
Cm(I ), K1 ∈ Cm(D), and K2 ∈ Cm(Dθ ).

(b) For given uniform mesh Ih, uh ∈ S(0)
m (Ih) is the collocation solution to

(5.5.27).

Then for all h ∈ (0, h̄) and any set {ci } of distinct collocation parameters in
[0, 1] the collocation error eh := y − uh satisfies

||e(ν)
h ||∞ ≤ Cν ||y(m+1)||∞hm (ν = 0, 1), (5.5.28)

with constants Cν depending on the {ci } but not on h. This estimate is true for
any q ∈ (0, 1).

Proof Consider the equation satisfied by the collocation error eh := y − uh ,

e′
h(t) = a(t)eh(t) + (Veh)(t) + (Vθeh)(t), t ∈ Xh, (5.5.29)

and set t = tn,i := tn + ci h: using the local Peano representation of eh ,

eh(tn + vh) = eh(tn) + h
m∑

j=1

β j (v)En, j + hm+1 Rm+1,n(v), v ∈ [0, 1]

(5.5.30)
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(cf. (5.2.18)), with En, j := e′
h(tn,i ), the contribution of the delay term,

�n,i := b(tn,i )eh(tn,i ) + (Vθeh)(tn,i ),

to the error equation is given by

�n,i =hb(tn,i )
m∑

j=1

β j (γn,i )En,i

+ h2
m∑

j=1

(∫ γn,i

0
K2(tn,i , tqn,i + sh)β j (s)ds

)
Eqn,i , j

+ h2
qn,i −1∑
�=0

m∑
j=1

(∫ 1

0
K2(tn,i , t� + sh)β j (s)ds

)
E�, j

+ b(tn,i )eh(tqn,i ) + h
∫ γn,i

0

(
K2(tn,i , tqn,i + sh)ds

)
eh(tqn,i )

+ h
qn,i −1∑
�=0

(∫ 1

0
K2(tn,i , t� + sh)ds

)
eh(t�)

+ b(tn,i )h
m+1Rm+1,qn,i (γn,i ) + hm+2

∫ γn,i

0
K2(tn,i , tqn,i + sh)Rm+1,qn,i (s)ds

+ hm+2
qn,i −1∑
�=0

∫ 1

0
K2(tn,i , t� + sh)Rm+1,�(s)ds (5.5.31)

(compare with (5.5.17)). As described in detail in Section 5.5.1, the value of
qn,i depends crucially on that of n and the corresponding phase: it is qn,i =
n (γn,i > 0) in Phase I; qn,i ∈ {n − 1, n} in Phase II (which may be empty); and
qn,i ∈ {qn, qn + 1}, with qn < n − 1, in Phase III. This leads to the three sets of
linear algebraic systems, in complete analogy to Section 5.2.2 and Section 5.3.2.
The proof of Theorem 5.5.2 is then achieved in a by now familar way. In order
not to become overly repetitive, we leave the details of the precise structure
of these algebraic systems and the derivation of the corresponding generalised
discrete Gronwall inequalities for ||En||1, and hence the completion of the proof
of Theorem 5.5.2, to the reader.

The proof of Theorem 5.2.2 shows that Theorem 5.5.3 can be modified in
a straightforward way to derive optimal global error estimates for solutions of
(5.5.4) possessing a lower degree of regularity:

Theorem 5.5.3 If y ∈ Cd+1(I ) with 1 ≤ d < m (corresponding to the assump-
tion that a, b ∈ Cd (I ), K1 ∈ Cd (D), K2 ∈ Cd (Dθ )), then the optimal esti-
mates (5.5.28) have to be modified to read

||y(ν) − u(ν)
h ||∞ ≤ Cd ||y(d+1)||∞hd (ν = 0, 1). (5.5.32)
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The key to the proof is again Peano’s Kernel Theorem and the corresponding
local error representations (5.5.32) and (5.5.31), with d + 1 replacing m + 1.

Remark Both Theorem 5.5.2 and the above observation regarding the order
of global convergence in the case of lower regularity in y include the special
delay VIDE (5.5.26),

y′(t) = a(t)y(t) + b(t)y(qt) + (Wθ y)(t),

as well as its nonlinear counterpart

y′(t) = f (t, y(t)), y(qt)) +
∫ t

qt
k(t, s, y(s))ds. (5.5.33)

Do the global and local superconvergence results we derived for classi-
cal VIDEs (Sections 3.2.3 and 3.2.4) and VIDEs with non-vanishing delays
(Sections 4.5.2 and 4.5.3) remain valid for VIDEs with vanishing proportional
delay? From what we have seen in this chapter, the answer will likely be in
the affirmative for global convergence (as shown in Theorem 5.5.4). Regarding
local superconvergence on Ih the answer appears to be no if m > 2 (Conjecture
5.5.5), and this is supported by numerical evidence.

Theorem 5.5.4 Assume that the orthogonality condition J0 = 0 holds. If the
given data in the DVIDE (5.5.27) are in Cd with d ≥ m + 1, then the attainable
order of global superconvergence of the collocation solution uh ∈ S(0)

m (Ih) is,
for all q ∈ (0, 1), described by

||y − uh ||∞ ≤ Chm+1.

Proof In order to exhibit the crucial steps leading to the above global super-
convergence result we will prove Theorem 5.5.4 for the delay VIDE

y′(t) = g(t) + (Vθ y)(t).

(cf. Section 5.1.4). The collocation error eh := y − uh solves the initial-value
problem

e′
h(t) = δh(t) + (Vθeh)(t), t ∈ I, eh(0) = 0,

and hence, according to Theorem 5.1.6, it can be written as

eh(t) =
∫ t

0
δh(s)ds +

∞∑
k=1

∫ qk t

0
H̄k(t, s)δh(s)ds, t ∈ I. (5.5.34)

If we now compare the error representation (5.5.34) with (5.3.37), the one for
the iterated collocation error for second-kind VIEs with proportional delay,
we see that they possess an essentially identical structure, except that (5.5.34)
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contains the additional term
∫ t

0 δh(s)ds. For t = tn + vh with v ∈ [0, 1] we may
write this term as∫ t

t
δh(s)ds = h

n−1∑
�=0

∫ 1

0
δh(s)ds + h

∫ v

0
δh(s)ds.

Hence, if we now approximate each integral over [0, 1] by interpolatory m-
point quadrature formulas based on the {ci }, the orthogonality condition J0 = 0
implies that the induced quadrature errors are O(hm+1). Furthermore, it follows
from

sup{|δh(tn + vh)| : v ∈ [0, 1]} = O(hm)

that the argument used in the proof of Theorem 5.3.4 is now easily modified,
to yield the O(hm+1)-estimate of Theorem 5.5.4.

Conjecture 5.5.5 If d ≥ m + 2 in Theorem 5.5.4, with m ≥ 2, and if the col-
location points Xh correspond to the Gauss points {ci }, then the optimal value
of p∗ in the local estimate for the collocation solution uh ∈ S(0)

m (Ih) to (5.5.27),

max
t∈Ih

|y(t) − uh(t)| ≤ Ch p∗
,

is given by p∗ = m + 2. This holds for all q ∈ (0, 1), and the value m + 2 is
best possible.

5.5.3 Collocation on quasi-geometric meshes

Suppose that on some small initial subinterval [0, t0] of I := [0, T ] we have
computed, by some continuous method, an approximation y0 = y0(t) to the
solution y = y(t) of the initial-value problem for (5.5.1) with θ (t) = qt (0 <

q < 1), so that

||y − y0||0,∞ := max
t∈[0,t0]

|y(t) − y0(t)| ≤ C0t p0
0 (5.5.35)

for some p0 ≥ 1 to be specified later. We will assume that this initial interval
is defined by setting

t0 = θ M (T ) for some M ∈ IN, (5.5.36)

where θ M (T ) := (θ ◦ θ ◦ . . . ◦ θ︸ ︷︷ ︸
M

)(T ) = q M T .

High-order approximations to the solution y of (5.5.1) on [0, t0] can be
generated either by computing the collocation solution vh ∈ S(0)

m+r ([0, t0]), using
the single subinterval [0, t0] and with the choice of r depending on the desired
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order, or by resorting to the appropriate Taylor series for y (since on I the
solution y of (5.5.1) is smooth when the data are smooth).

The original initial-value problem (5.5.1) is now replaced by

z′(t) = f (t, z(t), z(θ (t))) + (Vz)(t) + (Vθ z)(t), t ∈ Ī := [t0, T ], (5.5.37)

z(t) = y0(t), t ∈ [θ (t0), t0] = [qt0, t0] ⊂ (0, t0].

Since, by assumption, the delay θ does not vanish on the interval Ī (recall
condition (D1) in Section 4.1.2) we introduce on Ī the graded macro-mesh �̄

by

�̄ := {ξµ : t0 = ξ0 < ξ1 < . . . < ξM = T, ξµ := θ M−µ(T ) (0 ≤ µ ≤ M)},
(5.5.38)

with H (µ) := ξµ+1 − ξµ (µ = 0, 1, . . . , M − 1) denoting the macro-steps. The
local meshes I (µ)

h on the subintervals I (µ) := [ξµ, ξµ+1] (µ = 0, 1, . . . , M − 1)
are defined by

I (µ)
h := {t (µ)

n : ξµ = t (µ)
0 < t (µ)

1 < . . . < t (µ)
N = ξµ+1},

and we set

σ (µ)
n := [t (µ)

n , t (µ)
n+1], h(µ)

n := t (µ)
n+1 − t (µ)

n , h(µ) := max{h(µ)
n : 0 ≤ n < N }.

For linear delays θ we will assume, without loss of generality, that the sub-
meshes I (µ)

h are all uniform; that is, h(µ)
n = h(µ) = Hµ/N (0 ≤ n < N ). The

corresponding mesh on Ī ,

Ī h :=
M−1⋃
µ=0

I (µ)
h , (5.5.39)

is then both constrained and θ -invariant, that is,

θ (I (µ+1)
h ) = I (µ)

h (µ = 0, 1, . . . , M − 1). (5.5.40)

The collocation solution uh for the delay VIDE (5.5.1) will be an element of the
continuous piecewise polynomial space S(0)

m ( Ī h). It is defined by the collocation
equation

u′
h(t) = f (t, uh(t), uh(θ (t))) + (Vuh)(t) + (Vθuh)(t), t ∈ X̄ h, (5.5.41)

uh(t) = y0(t) for t ∈ [θ (t0), t0].

Here, the set

X̄ h :=
M−1⋃
µ=0

X (µ)
h ,

X (µ)
h := {t (µ)

n + ci h
(µ)
n : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n < N )}, (5.5.42)
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denotes the set of collocation points for the underlying θ -invariant mesh Ih .
Hence, the basic setting is the one for VIDEs with non-vanishing delays intro-
duced in Section 4.5.1, and we can employ that notation to put (5.5.41) into a
form that is feasible both for the subsequent convergence analysis and for the
numerical computation of uh . We employ the local Lagrange basis representa-
tion for uh on σ

(µ)
n = [t (µ)

n , t (µ)
n+1], namely,

uh(t (µ)
n + vh(µ)

n ) = y(µ)
n + h(µ)

n

m∑
j=1

β j (v)Y (µ)
n, j , v ∈ [0, 1], (5.5.43)

where

y(µ)
n := uh(t (µ)

n ), Y (µ)
n, j := u′

h(tn, j ) and t (µ)
n, j := t (µ)

n + c j h
(µ)
n .

Recall from Section 4.2.1 that if the delay θ (t) is linear, the set X̄ h of collocation
points is θ -invariant, too:

θ (X (µ+1)
h ) = X (µ)

h (µ = 0, 1, . . . , M − 1). (5.5.44)

As we have already seen in Lemma 4.2.1, this is of course no longer true for
nonlinear delay functions θ (t).

The collocation equation (5.5.41) at t = t (µ)
n,i ∈ σ

(µ)
n can be written in the

form

Y (µ)
n,i = f (t (µ)

n,i , uh(t (µ)
n,i ), uh(θ (t (µ)

n,i )) + (Vuh)(t (µ)
n,i ) + (Vθuh)(t (µ)

n,i ), (5.5.45)

where θ (t (µ)
n,i ) = t (µ−1)

n,i . In (5.5.45)

(Vuh)(t (µ)
n,i ) = F (µ)

n (t (µ)
n,i ) + h(µ)

n

∫ ci

0
k1(t (µ)

n,i , t (µ)
n + sh(µ)

n , uh(t (µ)
n + sh(µ)

n ))ds,

(5.5.46)
where the lag term F (µ)

n (t) has the form

F (µ)
n (t) :=

∫ ξ0

0
k1(t, s, y0(s))ds +

∫ ξµ

ξ0

k1(t, s, uh(s))ds +
∫ t (µ)

n

ξµ

k1(t, s, uh(s))ds,

(5.5.47)
with t ∈ σ

(µ)
n . Moreover,

(Vθuh)(t (µ)
n,i ) =

∫ θ (t (µ)
n,i )

0
k2(t (µ)

n,i , s, uh(s))ds + � (µ−1)
n (t (µ)

n,i )

+ h(µ−1)
n

∫ ci

0
k2(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n , uh(t (µ−1)
n + sh(µ−1)

n ))ds,

(5.5.48)

where we have set

�(µ−1)
n (t (µ)

n,i ) :=
∫ ξ0

0
k2(t (µ)

n,i , s, y0(s))ds +
∫ t (µ−1)

n

ξµ−1

k2(t (µ)
n,i , s, uh(s))ds

+
∫ t (µ−1)

n

ξµ−1

k2(t (µ)
n,i , s, uh(s))ds (5.5.49)
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(ξ0 = t0 = t (0)
0 ). For t = t (0)

n,i ∈ X (0)
h we obtain, defining θ (t (0)

n,i ) = θ (t0 +
ci h(0)

n ) =: t (−1)
n,i ,

(Vθuh)(t (0)
n,i ) =

∫ t (−1)
n,i

0
k2(t (0)

n,i , s, y0(s))ds, (5.5.50)

where y0(t) denotes the already computed initial approximation to y(t) on the
‘small’ interval [0, t0] described by (5.5.36).

The (exact) collocation method in S(0)
m ( Ī h) is described by (5.5.43)

and (5.5.45)–(5.5.49). It involves the computation of the solution Y(µ)
n :=

(Y (µ)
n,1 , . . . , Y (µ)

n,m)T ∈ IRm of each nonlinear algebraic system (5.5.45). In order to
make this discussion more transparent we will derive these algebraic systems
in the case where the given VIDE (5.5.37) is linear:

y′(t) = a(t)y(t) + b(t)y(θ (t)) + (V y)(t) + (Vθ y)(t), t ∈ I, (5.5.51)

with

(V y)(t) :=
∫ t

0
K1(t, s)y(s)ds, (Vθ y)(t) :=

∫ θ (t)

0
K2(t, s)y(s)ds.

The given kernel functions K1 and K2 are assumed to be continuous on their
respective domains D and Dθ , respectively. The resulting linear algebraic sys-
tems can be described in concise form if we introduce matrices in L(IRm) given
by

A := (ai, j ), A(µ)
n := diag(a(t (µ)

n,i ))A, B(µ)
n := diag(b(t (µ)

n,i ),

and

C (µ)
n :=




∫ ci

0
K1(t (µ)

n,i , t (µ)
n + sh(µ)

n )β j (s)ds

(i, j = 1, . . . , m)


 ,

D(µ)
n :=




∫ ci

0
K2(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n )βi (s)ds

(i, j = 1, . . . , m)


 .

In addition, we define the m-vectors

κ(µ)
n :=

(
a(t (µ)

n,i ) + h(µ)
n

∫ ci

0
K1(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n )ds

)T

,

κ̃(µ−1)
n :=

(
κ̃

(µ−1)
n,1 , . . . , κ̃ (µ−1)

n,m

)T
,

where

κ̃
(µ−1)
n,i := b(t (µ)

n,i ) + h(µ−1)
n

∫ ci

0
K2(t (µ)

n,i , t (µ−1)
n + shµ−1)

n )ds.
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Finally, set

G(µ)
n := (F (µ)

n (t (µ)
n,1 ), . . . , F (µ)

n (t (µ)
n,m))T

and

Q(µ−1)
n := (� (µ−1)

n (t (µ)
n,1 ), . . . , �(µ−1)

n (t (µ)
n,m))T ,

with F (µ)
n (t) and �

(µ−1)
n (t) given by (5.5.47) and (5.5.49). The linear counterpart

of (5.5.45) then assumes the form

[Im − h(µ)
n (A(µ)

n + h(µ)
n C (µ)

n )]Yµ)
n = h(µ)

n [B(µ)
n + h(µ−1)

n D(µ)
n ]Y(µ−1)

n

+κ(µ)
n y(µ)

n + κ̃(µ−1)
n y(µ−1)

n + G(µ)
n + Q(µ−1)

n . (5.5.52)

On the first interval [ξ0, ξ1] of the macro-mesh (µ = 0) the above algebraic
system (5.5.53) reduces to

Y (0)
n,i = a(t (0)

n,i )y(0)
n + h(0)

n a(t (0)
n,i )

m∑
j=1

ai, j Y
(0)
n, j + b(t (0)

n,i )y0(t (0)
n,i ) + F (0)

n (t (0)
n,i )

+ h(0)
n

∫ ci

0
K1(t (0)

n,i , t (0)
n + sh(0)

n )

(
y(0)

n + h(0)
n

m∑
j=1

β j (s)Y (0)
n, j

)
ds

+
∫ θ (t (0)

n,i )

0
K2(t (0)

n,i , s)y0(s)ds. (5.5.53)

In more compact notation (5.5.53) reads

[Im − h(0)
n (A(0)

n + h(0)
n C (0)

n )]Y(0)
n = κ(0)

n y(0)
n + G(0)

n + Q(−1)
n (5.5.54)

(n = 0, 1, . . . , N − 1), where the components of Q(−1)
n ∈ IRm are given by

�
(−1)
n,i := b(t (0)

n,i )y0(θ (t (0)
n,i )) +

∫ θ (t (0)
n,i )

0
K2(t (0)

n,i , s)y0(s)ds.

The exact collocation method in S(0)
m ( Ī h) for the VIDE (5.5.1) with delay

function θ (t) = qt (0 < q < 0) can now be summarised as follows:

1. Choose a small initial interval [0, t0] defined by t0 := θ M (T ) (cf. (5.5.36))
where M denotes an appropriate ‘large’ integer which will be specified in
Section 5.5.4.

2. The points ξµ := θ M−µ(T ) (µ = 0, 1, . . . , M), with ξ0 = t0, define the
macro-intervals I (µ) := [ξµ, ξµ+1] and the macro-steps H (µ) := ξµ+1 − ξµ.

3. Introduce the local meshes I (µ)
h := {t (µ)

n : ξµ = t (µ)
0 < t (µ)

1 < . . . < t (µ)
n =

ξµ+1} (µ = 0, 1, . . . , M − 1) on the intervals I (µ) and define the (con-
strained and θ -invariant) mesh on Ī := [t0, T ] by (5.5.39). These local
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meshes will often be chosen to be uniform: h(µ)
n = h(µ) := H (µ)/N (n =

0, 1, . . . , N − 1).
4. On the subinterval σ̄

(µ)
n := [t (µ)

n , t (µ)
n+1] the collocation solution uh ∈ S(0)

m ( Ī h)
to the delay VIDE (5.5.1) is determined by (5.5.43) and by the solutions
Y(µ)

n of the algebraic systems (5.5.45) (or by (5.5.52) and (5.5.54) if the
delay VIDE is the linear equation (5.5.51)).

The existence of a unique collocation solution uh for (5.5.45) is guaranteed for
any sufficiently small h, say h ∈ (0, h̄), provided the given delay VIDE has a
unique solution y ∈ C1(I ). In the linear case this is obvious from the form of
the linear algebraic systems (5.5.52) and (5.5.54) (recall also Theorem 4.5.1).
In the nonlinear situation the assertion follows by the usual classical fixed-point
argument.

5.5.4 Superconvergence results on quasi-geometric meshes

Suppose that the initial approximation y0(t) in [0, t0] satisfies (5.5.35) with
some feasible order p0 ≥ m. How should t0 be determined? It is suggestive that
it be chosen so that

t0 = θ M (T ) = q M T ≤ max
(n,µ)

h(µ)
n =: h. (5.5.55)

If the local meshes I (µ)
h are all uniform then

h = h(M−1) = H (M−1)/N = (T − θ (T ))/N = (1 − q)T/N . (5.5.56)

It then follows that (5.5.55) holds if M in (5.5.36) is such that

θ M (T ) = q M T ≤ (T − θ (T ))/N = (1 − q)T/N . (5.5.57)

For the (linear) proportional delay θ (t) = qt (0 < q < 1) we have θ (T ) = qT ,
and this leads to

M = M(q; N ) ≥ log(1 − q) − log(N )

log(q)
(5.5.58)

Hence, we choose

M = M(q; N ) :=
⌈

log(1 − q) − log(N )

log(q)

⌉
(5.5.59)

(see Bellen (2001)). In order to obtain an idea on how large these values of M
defining the number of macro-intervals are for specific values of q ∈ (0, 1) and
N , the number of subintervals corresponding to each local mesh I (µ)

h , it may be
instructive to list a sample of such values (Table 5.8).



5.5 VIDEs with proportional delays 327

Table 5.8. Values of M = M(q; N )

q N = 100 N = 1000 N = 10000

0.1 3 4 5
0.5 8 11 15
0.9 66 88 110
0.99 917 1146 1375

We will assume in the following that θ (t) = qt (0 < q < 1) and that the
local meshes I (µ)

h (0 ≤ µ ≤ M − 1) are all uniform, with M in (5.5.36) sat-
isfying (5.5.58) (implying that t0 = O(h)). It then follows from the classical
convergence analysis of collocation methods for VIDEs with non-vanishing de-
lays (Section 4.5) that the collocation solution uh ∈ S(0)

m ( Ī h) for (5.5.1) induces
the estimates

max
t0≤t≤ξµ+1

|z(ν)(t) − u(ν)
h | ≤ Cν(h(µ))m (5.5.60)

for µ = 0, 1, . . . , M − 1, and hence

||z(ν) − u(ν)
h ||∞ := max

t∈ Ī
|z(ν)(t) − u(ν)

h (t)| ≤ Cνhm (ν = 0, 1), (5.5.61)

for any choice of the m (distinct) parameters {ci }, provided the mesh Ih is given
by (5.5.39), and the exact solution z is in Cm+1(I (µ)) for µ = 0, 1, . . . , M − 1.

These results are not particularly exciting since we obtained the same order of
global convergence on I by collocation on uniform meshes. However, since the
order of local superconvergence can apparently not exceed m + 2 on uniform
Ih (Conjecture 5.5.5), the use of these quasi-geometric meshes leads to the op-
timal local superconvergence results we derived for VIDEs with non-vanishing
delays.

Theorem 5.5.6 Assume

(a) a, b ∈ Cm+1(I ); K1 ∈ Cm+1(D), K2 ∈ Cm+1(Dθ ); θ (t) = qt (0 < q <

1);
(b) uh ∈ S(0)

m ( Ī h) is the collocation solution defined by (5.5.39), (5.5.54),
(5.5.52);

(c) Ī h is the (constrained and θ -invariant) mesh defined by (5.5.39) and
(5.5.40), with uniform local meshes I (µ)

h so that h ∈ (0, h̄);
(d) p0 ≥ m + 1 in (5.5.35), with M as in (5.5.59).
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If the collocation parameters {ci } satisfy the orthogonality condition

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0, (5.5.62)

then

||z − uh ||∞ := max
t∈ Ī

|z(t) − uh(t)| ≤ Chm+1. (5.5.63)

As we have indicated earlier, the principal motivation for employing appro-
priate quasi-geometric meshes for the computation of the collocation solution
to proportional delay VIDEs, with given initial approximation y0, is that we
can then resort to the results of Chapter 4 to allow us to generate collocation
solutions with high-order local superconvergence.

Theorem 5.5.7 Let the assumptions (b), (c) of Theorem 5.5.6 hold, and assume
that (a) is replaced by

a, b ∈ Cm+κ (I ); K1 ∈ Cm+κ (D), K2 ∈ Cm+κ (Dθ ),

for some integer κ with 1 ≤ κ ≤ m described in (5.5.64) below. Finally, in
(5.5.35) let p0 ≥ m + κ and choose M by (5.5.59).

If the collocation parameters {ci } are chosen so that the orthogonality con-
ditions

Jν :=
∫ 1

0
sν

m∏
i=1

(s − ci )ds (ν = 0, 1, . . . , κ − 1), (5.5.64)

with Jκ �= 0, hold then, for all q ∈ (0, 1),

max
t∈ Ī h

|z(t) − uh(t)| ≤ Chm+κ . (5.5.65)

If, in addition, cm = 1, then also

max
t∈ Ī h\{ξµ}

|z′(t) − u′
h(t)| ≤ Chm+κ . (5.5.66)

In this case κ cannot exceed m − 1.

Corollary 5.5.8 Let κ = m in Theorem 5.5.7: the (unique) {ci } are the m Gauss
points in (0, 1). Then for all q ∈ (0, 1) the local estimate

max
t∈ Ī h

|z(t) − uh(t)| ≤ Ch2m (5.5.67)

holds, while we only obtain

max
t∈ Ī h\{ξµ}

|z′(t) − u′
h(t)| = O(hm).
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If κ = m − 1, then collocation at the corresponding Radau II points (for which
cm = 1) yields

max
t∈ Ī h\{ξµ}

|z(ν)(t) − u(ν)
h (t)| ≤ Cνh2m−1 (ν = 0, 1). (5.5.68)

Proof We proceed as in Section 4.5.3. The only difference is that now the
initial condition eh(0) = 0 is replaced by eh(t0) �= 0, and thus the initial-value
problem for eh := z − uh is

e′
h(t) = a(t)eh(t) + b(t)eh(θ(t)) + δh(t) + (Veh)(t) + (Vθeh)(t), t ∈ Ī ,

eh(t) = ε0(t) for t ∈ [θ (t0), t0]. (5.5.69)

Here,

|ε0(t)| ≤ C0t p0
0 , t ∈ [0, t0], (5.5.70)

by our assumption (5.5.34). Note that ε0(t) ≡ 0 if y0(t) coincides with the exact
solution y(t) of (5.5.1) for t ∈ [0, t0].

The key to the proofs of the superconvergence results is again the variation-
of-constants formula for the representation of the (unique) solution of the initial-
value problem (5.5.69), in analogy to delay VIDEs with non-vanishing delays
treated in Chapter 4 (cf. Theorem 4.1.7). We now have

eh(t) = r1(t, ξµ)eh(ξµ) +
∫ t

ξµ

r1(t, s)δh(s)ds

+
µ−1∑
ν=1

rµ,ν(t)eh(ξν) + rµ,0(t)ε0(ξ0)

+
µ−1∑
ν=0

∫ ξν+1

ξν

Rµ,ν(t, s)δh(s)ds

+
µ−1∑
ν=0

∫ θµ−ν (t)

ξν

Qµ,ν(t, s)δh(s)ds + E (µ)
0 (t). (5.5.71)

Here, r1(t, s) denotes the resolvent kernel associated with the data a and K1 of
the homogeneous VIDE

y′(t) = a(t)y(t) + (V y)(t).

It satisfies r1(t, t) = 1 on I , and rµ,ν, Rµ,ν, Qµ,ν denote continuous (piecewise
smooth) functions depending on the given functions a, b, Ki , θ . Moreover,

E (µ)
0 (t) :=

∫ ξ1

ξ0

Rµ,0(t, s){b(s)ε0(θ (s)) −
∫ ξ0

θ (s)
K2(s, v)ε0(v)dv}ds

+
∫ θµ(t)

ξ0

Qµ,0(t, s){b(s)ε0(θ (s)) −
∫ ξ0

θ (s)
K2(s, v)ε0(v)dv}ds,

(5.5.72)

and θν := θ ◦ · · · ◦ θ︸ ︷︷ ︸
ν

.
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The superconvergence result of Theorems 5.5.7 will be obtained from the
above representation of eh by setting, respectively, t = t (µ)

n + vh(µ)
n (v ∈ [0, 1])

and t = t (µ)
n ∈ I (µ)

h in (5.5.71). Thus, we have to show that, in spite of the
fact that M = M(N ; q) = O(log(N )) and N → ∞, the sums with upper limits
equal to µ − 1 remain uniformly bounded. This central basic ingredient in the
subsequent convergence analysis is summarised in the following lemma (whose
proof is obvious).

Lemma 5.5.9 Assume that θ (t) = qt (0 < q < 1) and let Ī h be the constrained
and θ -invariant mesh defined by (5.5.39) and (5.5.40), with M in t0 = ξ0 = q M T
satisfying (5.5.59). Then for any p ∈ IN, p ≥ 1,

µ−1∑
ν=0

N−1∑
�=0

(h(ν)
� )p+1 ≤ h p

κ−1∑
ν=0

(
N−1∑
�=0

h(ν)
�

)
= (T − t0)h p, (5.5.73)

uniformly in M and N.

We are now ready to prove the two main theorems. Consider first Theorem
5.5.6. It follows from the order m of global convergence (p = m) that the defect
δh can be bounded by

||δh(t)||µ,∞ ≤ A0C0(h(µ))m + B0C0(h(µ−1))m + K0,1||eh ||µ,∞
+ K0,2||eh ||µ−1,∞,

where

A0 := ||a||∞, B0 := ||b||∞, K0,1 := max
t∈I

∫ t

t0

|K1(t, s)|ds,

K0,2 := max
t∈I

∫ θ (t)

t0

|K2(t, s)|ds.

Hence,

||δh ||∞ ≤ D0(h(µ))m (0 ≤ µ ≤ M − 1).

Let now t = t (µ)
n + vh(µ)

n (v ∈ [0, 1]) in (5.5.71) and write

∫ t

ξµ

ds = h(µ)

(
µ−1∑
�=0

∫ 1

0
ds +

∫ v

0
ds

)
,

and ∫ θµ−ν (t)

ξµ

ds = h(ν)

(
ν−1∑
�=0

∫ 1

0
ds +

∫ v

0
ds

)
.
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In the remaining terms of (5.5.71) the integrals over the macro-intervals I (ν) are
broken down similarly into sums of (scaled) integrals over [0, 1] with factors
h(ν). Each of the integrals over [0, 1] is replaced by the sum consisting of the
m-point interpolatory quadrature approximation using the collocation points as
abscissas and the corresponding quadrature error Eµ,ν(t). Due to the orthog-
onality assumption (5.5.62) all these quadrature errors are of order O(hm+1)
since the integrands possess, by assumption on the given functions in (5.5.1),
the required (piecewise) regularity. The integral over [0, v] can be bounded by
h(µ) · const||δh ||µ,∞ = O((h(µ))m+1). Collecting all these estimates and invok-
ing Lemma 5.5.9 we readily establish the desired global O(hm+1)-estimate of
Theorem 5.5.6.

We now turn to the proof of Theorem 5.5.7. Here, we set t = t (µ)
n in the

representation (5.5.71) of the collocation error eh(t (µ)
n ), and we employ again

m-point interpolatory quadrature formulas based on the collocation parameters
{ci } plus the corresponding error terms Eµ,ν(t), to replace the (scaled) integrals
over [0, 1]. To illustrate this, consider the sum in the third line of (5.5.71): it is
replaced by

µ−1∑
ν=0

N−1∑
�=0

h(ν)
�

∫ 1

0
Rµ,ν(t, t (ν)

� + sh(ν)
� )δh(t (ν)

� + sh(ν)
� )ds

=
µ−1∑
ν=0

N−1∑
�=0

h(ν)
�

(
m∑

j=1

w j Rµ,ν(t, t (ν)
� + c j h

(ν)
� )δh(t (ν)

� + c j h
(ν)
� ) + Eµ,ν(t)

)

=
µ−1∑
ν=0

N−1∑
�=0

h(ν)
� Eµ,ν(t).

It follows from the orthogonality conditions (5.5.64) (and the resulting degree of
precision of these quadrature formulas) and from the assumed regularity of the
given data that all quadrature errors are of order O(hm+r ). Moreover, the sums
with upper limit µ − 1 can again be bounded, uniformly in N and M , using
Lemma 5.5.9. The final estimate (5.5.65) is now obtained in a straightforward
way, as is (5.5.66).

5.5.5 More general vanishing delays

The approach and the convergence results described in Sections 5.5.3 and 5.5.4
are not confined to vanishing linear delay functions θ (t) = qt (0 < q < 1), but
they remain valid, with obvious modifications, if θ (t) is nonlinear and is such
that

(N1) θ ∈ C1(I ), with θ (0) = 0 and θ (t) < t for t > 0;
(N2) min

t∈I
θ ′(t) =: q0 > 0.
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Then – as we already briefly indicated in Section 4.2.1 (Lemma 4.2.1) –
(5.5.43) is no longer valid: the set X̄ h of collocation points in no longer θ -
invariant. Hence the expression (5.5.48) for (Vθuh)(t (µ)

n,i ) in the collocation
equation (5.5.45) has to be modified. Since θ is strictly increasing on I we
have

θ (t (µ)
n,i ) = t̃ (µ−1)

n,i := t (µ−1)
n + c̃i h

(µ−1)
n ∈ σ (µ−1)

n (i = 1, . . . , m), (5.5.74)

for some {c̃i } with 0 ≤ c̃1 < . . . < c̃m ≤ 1. (It is understood that the value of
each c̃i depends on both n and µ: c̃i = c̃i (n; µ). For the sake of ease of notation
we will usually supress these arguments.) The θ -invariant mesh Ī h on Ī is still
given by (5.5.39) and (5.5.40). Since θ is nonlinear, this mesh Ī h is no longer
quasi-geometric: we will call it quasi-graded.

Using again the local Lagrange representation (5.5.43) for uh ∈ S(0)
m ( Ī h) on

σ
(µ−1)
n ,

uh(t (µ−1)
n + vh(µ−1)

n ) = y(µ−1)
n + h(µ−1)

n

m∑
j=1

β j (v)Y (µ−1)
n, j , v ∈ [0, 1],

we see that the computational form of the collocation equation (5.5.41) remains
essentially the same, except that now we have

(Vθuh)(t (µ)
n,i ) = � (µ−1)

n (t (µ)
n,i ) + h(µ−1)

n

∫ c̃i

0
k2(t (µ)

n,i , t (µ−1)
n + sh(µ−1)

n ,

uh(t (µ−1)
n + sh(µ−1)

n ))ds, (5.5.75)

with lag term �
(µ−1)
n (t) as in (5.5.49), and

b(t (µ)
n )uh(θ (t (µ)

n,i ) = b(t (µ)
n,i )

(
y(µ−1)

n + h(µ−1)
n

m∑
j=1

β j (c̃i )Y
(µ−1)
n, j

)
. (5.5.76)

In a fixed subintervalσ (µ)
n where we consider the collocation equation the (given)

collocation points are t (µ)
n,i = t (µ)

n + ci h
(µ)
n (i = 1, . . . , m). Thus, the parameters

c̃i used in the above delay terms have to be computed from the images of these
collocation points under θ .

The validity of the global and local superconvergence results of Theorems
5.5.6 and 5.5.7 hinges on the fact that, for such nonlinear delays θ the corre-
sponding θ -invariant mesh has, as for linear delays θ , the property that

h := max
(n,µ)

h(µ)
n → 0 as N → ∞,

provided the grading exponent M = M(N ; µ) satisfies a nonlinear analogue of
(5.5.58). In order to make this precise, let θ0(t) := q0t denote the proportional
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delay corresponding to the value of q0 in condition (N2) for θ , and let

θ0(ηµ) =: ηµ−1, H (µ)
0 := ηµ+1 − ηµ, H0 := max

(µ)
H (µ)

0 ,

h0 := H0/N = (1 − q0)T/N .

Assume in the following that one of the local meshes I (µ)
h , e.g. I (0)

h or I (M−1)
h , has

been prescribed; without loss of generality we will assume that this prescribed
mesh is uniform. Hence,

h(0)
n = h(0) := H (0)/N , or h(M−1)

n = h(M−1) := H (M−1)/N .

Lemma 5.5.10 Let θ satisfy (N1) and (N2), and let θ0(t) := q0t . Then, under
the above hypotheses on the choice of I (0)

h (or I (M−1)
h ), we have

H (µ) ≤ H0 = (1 − q0)T (µ = 0, 1, . . . , κ − 1),

and

h(µ) ≤ h0 = (1 − q0)T/N (µ = 0, 1, . . . , M − 1).

Proof The assertion is geometrically evident. Its analytical verification is left
to the reader.

The above observations, including Lemma 5.5.10 and the (super-) convergence
arguments based on it, show that the linear pantograph VIDE (5.5.1), with q0

replacing q, is a representative test equation for a large class of VIDEs with
vanishing nonlinear delay functions θ .

5.6 Exercises and research problems

Exercise 5.6.1

(a) Prove Theorem 5.1.3.
(b) Show that if the coefficients a and b in the more general pantograph equa-

tion,

y′(t) = a(t)y(t) + b(t)y(qt), t ∈ I, y(0) = y0 �= 0,

are in Cm(I ), then its unique solution y lies in Cm+1(I ) for all q ∈ (0, 1).
(c) Does the uniqueness part of Theorem 5.1.3 remain valid if (5.1.5) is replaced

by

y′(t) = ay(t) + by(qt) + cy′(qt) (0 < q < 1),

with a, b, c ∈ IR and c �= 0?
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Exercise 5.6.2 Use Theorem 5.1.4 to derive the expression for the solution of
the DDE

y′(t) = by(qt), 0 < q < 1.

Assuming b < 0, use both this expression and collocation in S(0)
m (Ih) (m = 1, 2)

to compute the zeros of the solution for q = 0.5, q = 0.9, q = 0.99 in the
interval (0, 150).

Exercise 5.6.3 Consider the pantograph equation (5.1.5) with q > 1. What can
be said about the existence or uniquenss of the solution corresponding to an
initial value y0 �= 0?

Exercise 5.6.4 Compute the iterated kernels for the delay VIE (5.1.4) when
K (t, s) = λ.

Exercise 5.6.5 Discuss the existence and uniqueness of the solution to the delay
VIE

y(t) = 1 + by(qt) +
∫ t

0
k(t − s)y(s)ds, t ∈ I := [0, T ],

where k ∈ C(I ) is given and 0 < q < 1.

Exercise 5.6.6 Use the embedding approach deribed in Section 5.1.5 and
Lemma 5.1.12 to prove the regularity result of Theorem 5.1.8.

Exercise 5.6.7 Extend the embedding approach of Section 5.1.5 to the nonlin-
ear delay VIE

y(t) = g(t) +
∫ qt

0
k(t − s)G(y(s))ds, t ∈ I (0 < q < 1).

Assume that k ∈ C(I ) and G is appropriately smooth. Discuss the application
of embedding to the implicitly linear form of this DVIE, given by

z(t) = G

(
g(t) +

∫ qt

0
k(t − s)z(s)ds

)
,

y(t) = g(t) +
∫ qt

0
k(t − s)z(s)ds, t ∈ I.

Exercise 5.6.8 Let the lag function θ satisfy the conditions (N1) and (N2)
of Section 5.5.5, with θ ∈ Cd (I ), d ≥ 1. Establish regularity results for the
solutions of the corresponding delay VEs (5.1.9) and (5.1.12).
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Exercise 5.6.9 Analyse the solvability of the first-kind VIE with two propor-
tional delays, ∫ r t

qt
K (t, s)y(s)ds = g(t), t ∈ I := [0, T ],

with 0 < q < r < 1 and g(0) = 0.

Exercise 5.6.10 Consider the pantograph VIDE

y(k)(t) =
k∑

j=0

b j (t)y( j)(qt) +
∫ qt

0

k∑
j=0

K2, j (t, s)y( j)(s)ds,

with k ≥ 2 and continuous given functions. Show that for any prescribed set
of inital values {y(ν)

0 : ν = 0, 1, . . . , k − 1} the initial-value problem for the
above delay VIDE has a unqiue solution y ∈ Ck(I ).

Use the result for k = 2, to establish the existence, uniqueness, and regularity
properties of the generalisation of the second-order pantograph equation studied
by Bélair (1981),

y′′(t) = b0(t)y(qt) +
∫ qt

0

2∑
ν=0

K2,ν(t, s)y(ν)(s)ds.

Exercise 5.6.11 (Section 5.1.2) For which values of q ∈ (0, 1) is Phase II non-
empty? Consider both the Gauss points and the Radau II points.

Exercise 5.6.12 Prove Lemma 5.2.2.

Exercise 5.6.13 Assume that q = 1/r where r ∈ IN, r ≥ 2. Determine q I and
q I I , and discuss the ‘periodicity’ of the corresponding values of γn,i . Illustrate
your result by choosing m = 2, m = 3 and r = 3, . . . , 6.

What happens if q = �/r (� ∈ IN, 2 ≤ � < r )?

Exercise 5.6.14 Extend Theorem 5.2.3 on the existence of a unique collocation
solution uh ∈ S(0)

m (Ih) to the neutral pantograph equation given in part (c) of
Exercise 5.6.1.

Exercise 5.6.15 State and prove Lemmas 5.2.1 and 5.2.2 when 0 = c1 < c1 <

. . . < cm ≤ 1.

Exercise 5.6.16 Formulate the collocation equations defining uh ∈ S(−1)
m−1(Ih)

and uit
h for the special DV2 (5.3.18). In particular, consider the case where

m = 2, m = 3 and the {ci } are the Gauss points. Choose an example with
known exact solution and compute the errors induced by uh and uit

h , and use the
numerical results to deduce the orders of convergence, both on I and on Ih \ {0}.
Exercise 5.6.17 In Section 5.5.3 we described collocation on quasi-geometric
meshes for delay VIDEs. Adapt this approach to the second-kind delay VIE
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(5.3.4). In particular, state and prove the analogue of the superconvergence
result of Theorem 5.5.7 and Corollary 5.5.8.

Exercise 5.6.18 In Section 5.2 we only considered the collocation solution
in S(−1)

m−1(Ih) defined by the exact collocation equation. Discuss the choice of
suitable quadrature formulas for obtaining the discretised collocation equation,
and carry out the perturbation analysis for uh − ûh and uit

h − ûi t
h .

Exercise 5.6.19 Extend the results of Section 5.3.6 on the quasi-optimal order
of local superconvergence (p∗ = 2m − εN ) for geometric meshes to the linear
delay VIDE (5.5.50) and the general delay VIDE (5.5.1). As a corollary we
obtain the result for the pantograph equation (5.1.5).

Exercise 5.6.20 Formulate the collocation equations for uh ∈ S(−1)
m−1(Ih) ap-

proximating∫ t

qt
K (t, s)y(s)ds = g(t), t ∈ I := [0, T ] (0 < q < 1),

when an approximation y0(t) to y(t) has been found on [0, t0] and Ī h is a quasi-
geometric mesh for Ī := [t0, T ] (t0 > 0). Compare the beginning of Section
5.5.3 for notation and assumptions on Ī h and t0.

Exercise 5.6.21 (Research problem)
Delay VIEs of the form

y(t) = g(t) +
∫ t

−t
K (t, s)y(s)ds, t ∈ [0, T ],

were analysed by Ghermanesco (1959, 1961) (see also Volterra (1913),
pp. 92–94). Discuss the existence and uniqueness of solutions in C(I ), and
analyse the (super-) convergence properties of collocation solutions, either for
the given problem itself, or for the equivalent pair of integral equations (see the
original papers for details).

Exercise 5.6.22 (Research problem)
Assume that K (t, s) ≡ 1 in the Volterra operator Wθ characterising the propor-
tional delay VIE of the first kind (5.4.2).

(i) If m = 1 find a sufficient condition for c1 ∈ (0, 1] so that the collocation
solution uh ∈ S(−1)

0 (Ih) defined by (5.4.9) converges uniformly to y on I .
(ii) Extend the result of (i) to uh ∈ S(−1)

m−1(Ih) with m ≥ 2, assuming 0 < c1

< . . . < cm = 1.
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Exercise 5.6.23 (Research problem)
Analyse the convergence and superconvergence properties of the collocation
solution uh ∈ S(0)

m (Ih) to the Riccati–Hammerstein delay VIDE

y′(t) = [a − by(qt)]y(t) +
∫ t

qt
k(t − s)G(y(s), y(t))ds.

Exercise 5.6.24 (Research problem)
A posteriori error estimates and adaptive mesh selection for pantograph-type
functional equations: extend the approaches in Eriksson et al. (1995a, 1995b,
1996) and Shaw and Whiteman (1996, 2000a) to discontinuous Galerkin meth-
ods for (i) the pantograph equation; (ii) the delay VIE (5.1.13); and (iii) to the
delay VIDE (5.1.14).

5.7 Notes

5.1: Basic theory of functional equations with proportional delays
The book by Volterra (1913, pp. 85–88, 92–100) gives a detailed analysis of the
solvability of integral equations with proportional (and more general vanishing)
delays. This review is based on his own paper of 1997, as well as on work by
Picard (1907) (on functional equations of the form y(t) = g(t) + b(t)y(qt) +
(V y)(t)), and Lalesco (1908, 1911). Hellinger and Toeplitz (1927) contains a
concise overview of this development. Volume 3 of Fenyö and Stolle (1984) is,
to my knowledge, the only ‘modern’ book that deals with pantograph-type VIEs.
Compare also the papers by Chambers (1990), Pukhnacheva (1990), Denisov
and Lorenzi (1997) and Mureşan (1999) for additional results for linear and
nonlinear second-kind VIEs with proportional delays.

First-kind VIEs with variable upper and lower limits of integration are the
subject of the monograph by Apartsin (2003).

The systematic study of the theory of the pantograph DDE and its various
generalisations began with the papers by Ockendon and Tayler (1971), Fox,
Mayers, Ockendon and Tayler (1971), and Kato and MacLeod (1971). These
DDEs almost immediately received much attention by researchers in analysis;
see, for example, the papers by Frederickson (1971), Kato (1972), Nussbaum
(1972), Carr and Dyson (1976), Bélair (1981), Derfel (1990, 1991), Kuang and
Feldstein (1990), Derfel and Molchanov (1990), Iserles (1993) (survey with
extensive list of references), Iserles (1994b), Terjéki (1995), Iserles and Terjéki
(1995), Derfel and Vogl (1996), Liu (1996a), Iserles (1997a), Iserles and Liu
(1997), Feldstein and Liu (1998). However, the reader may also wish to look at
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the ‘early’ papers cited in Frederickson (1971), including the one by de Bruijn
(1953).

5.2: Collocation for DDEs with proportional delays
Numerical analysts remained singularly inattentive to the challenges of the
numerical analysis of pantograp-type DDEs: the fundamental paper by Fox et al.
(1971) on the numerical solution of the pantograph DDE (and its formulation as
Volterra functional equation) stood alone until the early 1990s, when Buhmann
and Iserles (1991, 1992, 1993), Iserles (1993), and Buhmann, Iserles and Nørsett
(1993) understood that this class of functional differential equations represents
a rich source of deep mathematical problems, both for the (theoretical and
computational) numerical analyst.

In the contributions just mentioned the focus was on the asymptotic prop-
erties of numerical approximations, by linear multistep and simple collocation
methods, for the pantograph equation (5.1.5). The survey by Iserles (1994a)
and the papers by Iserles (1994c, 1997a, 1997b), Y. Liu (1995a, 1995b, 1996a,
1996b, 1997), Liang and Liu (1996), Liang, Qiu and Liu (1996), Bellen,
Guglielmi and Torelli (1997), Carvalho and Cooke (1998), Koto (1999), Liang
and Liu (1999), Bellen (2001), Liu and Clements (2002), and Guglielmi and
Zennaro (2003) describe various extensions of these early stability results, both
on uniform and (quasi-) geometric meshes. Compare also the monograph by
Bellen and Zennaro (2003) for a survey of many of these results, and Brunner
(2003) for additional references.

Collocation methods and their (super-) convergence properties are consid-
ered in Buhmann, Iserles and Nørsett (1993) (for uh ∈ S(0)

1 (Ih) and q = 1/2),
Brunner (1997a), Zhang (1998), Zhang and Brunner (1998), and Takama,
Muroya and Ishiwata (2000). While these properties are now reasonably well
understood, this is not true for the qualitative aspects of piecewise polynomial
(and continuous Runge–Kutta) methods: as shown in, e.g. Buhmann, Iserles
and Nørsett (1993) the present understanding is still at a very primitive level
(except possibly when q = 1/2).

5.3: Second-kind VIEs with proportional delays
Fox et al. (1971, pp. 292–295) used the integrated form of the pantograph

equation, i.e. a Volterra functional integral equation, to analyse the error induced
by a variant of the classical Lanczos τ -method. Collocation methods for Volterra
integral and integro-differential equations with proportional delays were stud-
ied in detail in Brunner (1997a), Zhang (1998), Brunner and Zhang (1998)
(for second-order Volterra functional integro-differential equations), Takama,
Muroya and Ishiwata (2000), Ishiwata (2000), Muroya, Ishiwata and Brunner
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(2002), and Bellen et al. (2002). In these papers the focus is on the attainable
orders of global and local (super-) convergence in collocation solutions. See
also the survey by Brunner (2003).

As we mentioned before, the analysis of the asymptotic behaviour of collo-
cation solutions to pantograph-type Volterra integral (and integro-differential)
equations is completely open.

5.4: Collocation for first-kind VIEs with proportional delays
As we have already indicated in Section 5.4.2, the convergence analysis for
collocation solutions to pantograph-type VIEs of the first kind is completely
open (see also Brunner (1997b). The same is of course true for the more general
first-kind VIEs with vanishing delays (Denisov and Korovin (1992), Denisov
and Lorenzi (1995).

5.5: VIDEs with proportional delays
Piecewise polynomial collocation methods on uniform meshes for a rather
general class of VIDEs with proportional delays are studied in Ishiwata (2000);
her analysis (which focuses on the attainable order of the collocation solution
at t = h) generalises the ones in Brunner (1997a) and Takama, Muroya and
Ishiwata (2000). See also the sequel to this paper, Muroya, Ishiwata and Brunner
(2003).
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Volterra integral equations with weakly
singular kernels

Volterra integral equations with weakly singular kernels (of algebraic or loga-
rithmic type) typically have solutions whose derivatives are unbounded at the
left endpoint of the interval of integration. Due to this singular behaviour the op-
timal global and local (super-) convergence results of Chapter 2 for collocation
solutions in piecewise polynomial spaces on uniform meshes will no longer be
valid. The use of appropriately graded meshes, or of non-polynomial colloca-
tion spaces on uniform meshes, are two of the possible alternative approaches
for dealing with this order reduction problem.

6.1 Review of basic Volterra theory (III)

6.1.1 The Mittag-Leffler function

In Chapter 1 we encountered the special linear initial-value problem

y′(t) = λy(t), t ≥ 0, y(0) = y0, (6.1.1)

which is equivalent to the second-kind Volterra integral equation

y(t) = y0 +
∫ t

0
λy(s)ds, t ≥ 0, (6.1.2)

and whose solution is given by y(t) = exp(λt)y0. We then studied, in Chapter 5,
a delay variant of this problem,

y′(t) = λy(qt), t ≥ 0, y(0) = y0 (0 < q < 1), (6.1.3)

or, equivalently,

y(t) = y0 +
∫ qt

0
(λ/q)y(s)ds, t ≥ 0 : (6.1.4)

340
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while its solution is also smooth for all t ≥ 0, the analysis of the local supercon-
vergence properties of the corresponding collocation solutions is vastly more
complex.

Another variant of (6.1.2) and (6.1.4) arose in Chapter 4: for τ > 0 the
solution of

y(t) = y0 +
∫ t−τ

0
λy(s)ds, t > 0,

corresponding to an arbitrarily smooth initial function φ in the initial condition
y(t) = φ(t), t ∈ [−τ, 0], has low regularity at the points ξµ := µτ (µ ≥ 0).
Smoothing occurs at ξµ as µ increases.

In the present chapter we meet an entirely different non-smooth behaviour of
solutions. To illustrate this we choose as our starting point the VIE generalising
(6.1.2), i.e.

y(t) = g(t) + λ

∫ t

0
(t − s)−α y(s)ds, t ≥ 0, 0 < α < 1, (6.1.5)

with g(t) = y0. The (unique) solution can be found in explicit form generalising
the expression for the solution of (6.1.2), as shown in the following theorem
(due to Hille and Tamarkin (1930); see also Friedman (1963)).

Theorem 6.1.1 For any interval I := [0, T ] the unique solution y ∈ C(I ) of
the VIE (6.1.5) with 0 < α < 1 is given by

y(t) = E1−α(λ�(1 − α)t1−α)y0, t ∈ I, (6.1.6)

where

Eβ(z) :=
∞∑

k=0

zk

�(1 + kβ)
(β > 0) (6.1.7)

denotes the Mittag-Leffler function.

Remark The Mittag-Leffler function was introduced early in the 20th century
by the Swedish mathematician whose name it bears (see, e.g. his paper of 1903).
It is an entire function of order p = 1/β for any β > 0. For β = 1/2 we have

E1/2(±z1/2) = exp(z)[1 + erf(±z1/2)] = exp(z)erfc(±z1/2),

with

erf(x) := 2√
π

∫ z

0
exp(−v2)dv and erfc(z) := 1 − erf(z)

denoting, respectively, the error function and the complementary error function.
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For β = 1 we obtain of course E1(z) = exp(z). Additional properties and
applications can be found, for example, in Erdélyi (1955) and, especially, in the
survey paper by Mainardi and Gorenflo (2000).

We do not prove Theorem 6.1.1 here since the result will be obtained as
a special case of Theorem 6.1.2 (see Corollary 6.1.4). Note that for α = 0
we recover the solution of (6.1.2), y(t) = E1(λt) = exp(λt). If α ∈ (0, 1) the
solution of (6.1.5) is no longer smooth on I : according to (6.1.6) near t = 0+

its first derivative behaves like

y′(t) = λy0t−α + (λ�(1 − α))2

�(2(1 − α))
y0t1−2α + · · · .

As we shall see in the next section this representation also reflects the general
situation: the solutions of general linear (and nonlinear) second-kind VIEs with
algebraic kernel singularity pα(t − s) (0 < α < 1), but otherwise smooth data,
are smooth on (0, T ] but have an unbounded first derivative at t = 0; in the
terminology of Section 6.2.3, y lies in the Hölder space C1−α(I ).

6.1.2 Linear VIEs of the second kind

The linear Volterra integral operators Vα : C(I ) → C(I ) we will consider in
this and the next chapter have as part of their kernels the weakly singular
(integrable) convolution factor

pα(t − s) :=
{

(t − s)−α if 0 < α < 1,

log(t − s) if α = 1.
(6.1.8)

(We note in passing that writing (t − s)α−1 instead of (t − s)−α is a seemingly
more obvious choice of notation. However, it will become clear that the one
chosen here will have certain advantages in our analysis.) Hence, Vα has the
form

(Vαφ)(t) :=
∫ t

0
pα(t − s)K (t, s)φ(s)ds, t ∈ I := [0, T ]; (6.1.9)

we will assume that K ∈ C(D), with K (t, t) �= 0 for t ∈ I . The nonlinear case
will be treated in Section 6.1.4.

Since the kernel Hα(t, s) := pα(t − s)K (t, s) in the corresponding linear
VIE,

y(t) = g(t) + (Vα y)(t), t ∈ I, (6.1.10)

is integrable on D, Picard iteration will lead to a uniformly and absolutely
convergent Neumann series with limit Rα(t, s), in analogy to Theorem 2.1.2.
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Hence, the solution of (6.1.10) will possess a representation similar to (2.1.11),
namely

y(t) = g(t) +
∫ t

0
Rα(t, s)g(s)ds, t ∈ I. (6.1.11)

This is made more precise, first for 0 < α < 1, in the following theorem.

Theorem 6.1.2 Assume that K ∈ C(D), and let 0 < α < 1. Then for any g ∈
C(I ) the linear, weakly singular Volterra integral equation (6.1.10) possesses a
unique solution y ∈ C(I ). This solution is given by (6.1.11): here, the resolvent
kernel Rα corresponding to the kernel Hα inherits the weak singularity (t − s)−α

and has the form

Rα(t, s) = (t − s)−α Q(t, s; α), 0 ≤ s < t ≤ T, (6.1.12)

where

Q(t, s; α) :=
∞∑

n=1

(t − s)(n−1)(1−α)	n(t, s; α). (6.1.13)

The functions 	n are defined recursively by

	n(t, s; α) :=
∫ 1

0
(1 − z)−αz(n−1)(1−α)−1 K (t, s + (t − s)z)

	n−1(s + (t − s)z, s; α)dz

(n ≥ 2), with 	1(t, s; α) := K (t, s) and 	n(·, ·; α)∈C(D). Moreover, Q(·, ·; α)
solves the resolvent equations

Q(t, s; α) = K (t, s) + (t − s)α
∫ t

s
(t − v)−α(v − s)−α K (t, v)Q(v, s; α)dv,

Q(t, s; α) = K (t, s) + (t − s)α
∫ t

s
(t − v)−α(v − s)−α Q(t, v; α)K (v, s)dv

on D.

Proof The Picard iteration process for (6.1.10) defines an infinite sequence
{yn(t)} by choosing y0(t) := g(t) and setting

yn(t) := g(t) + (Vα yn−1)(t), t ∈ I (n ≥ 1).

In complete analogy to Section 2.1.1 the resulting iterated kernels Hn(t, s; α)
corresponding to Hα(t, s) := pα(t − s)K (t, s) =: H1(t, s; α) are obtained re-
cursively by

Hn(t, s; α) :=
∫ t

s
H1(t, v; α)Hn−1(v, s; α)dv, (t, s) ∈ D (n ≥ 2).
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Using the variable transformation v = s + (t − s)z and an induction argument
it is easy to prove the following result on the form of the iterated kernels.

Lemma 6.1.3 Let 0 < α < 1 and K ∈ C(D), with K̄ := max{|K (t, s)| :
(t, s) ∈ D}. Then the iterated kernels {Hn(t, s; α)} corresponding to the ker-
nel H1(t, s; α) := Hα(t, s) in (6.1.9) can be written as

Hn(t, s; α) = (t − s)−α(t − s)(n−1)(1−α)	n(t, s; α) (n ≥ 2),

with

	n(t, s; α) :=
∫ 1

0
(1 − z)−αz(n−1)(1−α)−1 K (t, s + (t − s)z)

	n−1(s + (t − s)z, s; α)dz.

Moreover, the terms 
n(t, s; α) := (t − s)(n−1)(1−α)	n(t, s; α) can be bounded
uniformly by

|
n(t, s; α)| ≤ K̄ nT (n−1)(1−α) (�(1 − α))n

�(n(1 − α))
.

We note in passing that the above uniform estimate for the iterated kernels
corresponding to the weakly singular kernel Hα(t, s) was already given by
Tychonoff (1938). The resulting uniform convergence of the Neumann series,

∞∑
n=1


n(t, s; α) =: Q(t, s; α), (t, s) ∈ D,

implies that Q(·, ·; α) ∈ C(D) for all α ∈ (0, 1). The representation (6.1.11)
then follows, thus generalising the analogous result (2.1.11) of Theorem 2.1.2.

To show that this solution y ∈ C(I ) given by (6.1.11) is unique, we observe
that the existence of another solution z ∈ C(I ) leads to

y(t) − z(t) = (Vα(y − z))(t) =
∫ t

0
Hα(t, s)[y(s) − z(s)]ds, t ∈ I.

Hence,

|y(t) − z(t)| ≤ K̄
∫ t

0
pα(t − s)|y(s) − z(s)|ds, t ∈ I.

Since 0 < α < 1, the generalised Gronwall inequality dealt with in Theorem
6.1.17 yields, since γ (t) ≡ 0,

|y(t) − z(t)| ≤ E1−α(K̄�(1 − α)t1−α) · 0 = 0 for all t ∈ I.

The assertion regarding uniqueness of y thus follows from the continuity of
|y − z|.
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Remark The first proposition in Lemma 6.1.3 shows that the iterated kernels
Hn(t, s; α) become bounded (that is, continuous) on D when n ≥ N = N (α):
it is easily verified that this value of N is N (α) = 
1/(1 − α)�.

Corollary 6.1.4 Let g ∈ C(I ) and 0 < α < 1. Then the (unique) solution y ∈
C(I ) of the weakly singular VIE (6.1.5) can be written as

y(t) = d

dt

(∫ t

0
E1−α(λ�(1 − α)(t − s)1−α)g(s)ds

)

= g(t) +
∫ t

0

(
d

dt
E1−α(λ�(1 − α)(t − s)1−α)

)
g(s)ds, t ∈ I.

Hence, the resolvent kernel associated with the kernel Hα(t, s) := λ(t − s)−α

of (6.1.5) is

Rα(t, s) = d

dt
E1−α(λ�(1 − α)(t − s)1−α), (t, s) ∈ D;

it can be written as

Rα(t, s) = (t − s)−α
∞∑

n=1

(λ�(1 − α))n

�(n(1 − α))
(t − s)(n−1)(1−α).

Proof For constant kernel, K (t, s) = λ, Lemma 6.1.3 yields

	n(t, s; α) = λn (�(1 − α))n

�(n(1 − α))
,

and hence

Hn(t, s; α) = 	n(t, s; α)(t − s)n(1−α)−1 (n ≥ 1).

It follows that the unique solution of (6.1.5) is given by

y(t) = g(t) +
∫ t

0

( ∞∑
n=1

Hn(t, s; α)

)
g(s)ds

= g(t) + λ�(1 − α)
∫ t

0
(t − s)−α

( ∞∑
n=1

[λ�(1 − α)(t − s)1−α]n−1

�(n(1 − α))

)
g(s)ds,

with uniformly convergent series, and this reduces to

y(t) = g(t) +
∫ t

0

( ∞∑
n=1

[λ�(1 − α)]n

�(n(1 − α))
(t − s)n(1−α)−1

)
g(s)ds t ∈ I.

(6.1.14)
Observe that

∞∑
n=1

(λ�(1 − α))n

�(n(1 − α))
(t − s)n(1−α)−1 = d

dt
E1−α(λ�(1 − α)(t − s)1−α),
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since �(1 + n(1 − α)) = n(1 − α)�(n(1 − α)). The last statement in Corollary
6.1.4 follows by recalling that Eβ(0) = 1 for all β > 0.

For g(t) ≡ 1 we can explicitly compute the above integrals (note that the
infinite series converges absolutely and uniformly on D), and this allows us to
derive the expression (6.1.6) for the solution of the special VIE (6.1.5).

We have seen in Section 2.1.1 that there exists an alternative representation
of the solution in terms of the ‘integrated’ resolvent kernel U (t, s) (cf. Theorem
2.1.4). This result extends to VIEs with weakly singular kernels.

Theorem 6.1.5 Assume that g ∈ C1(I ) and K ∈ C(D), and let α ∈ (0, 1).
Then the solution y ∈ C(I ) of (6.1.10) can be written as

y(t) = Uα(t, 0)g(0) +
∫ t

0
Uα(t, s)g′(s)ds, t ∈ I. (6.1.15)

The function Uα = Uα(t, s) is related to the resolvent Rα = Rα(t, s) by

−∂Uα(t, s)

∂s
= Rα(t, s), 0 ≤ s < t ≤ T . (6.1.16)

Proof Using integration by parts to rewrite the integral on the right-hand side
of (6.1.15) we derive

y(t) = Uα(t, 0)g(0) +
(

Uα(t, s)g(s)|t0 −
∫ t

0

∂Uα(t, s)

∂s
g(s)ds

)

= Uα(t, t)g(t) −
∫ t

0

Uα(t, s)

∂s
g(s)ds, t ∈ I.

We already know from Theorem 6.1.2 that the VIE has a unique solution y ∈
C(I ) for any α ∈ (0, 1). Hence, by comparing the above expression for y with
the one in (6.1.11) we deduce that (6.1.16) must hold uniquely.

The proofs of the previous results on the resolvent representation of the
solution y of (6.1.10) also contain information on the regularity of y: for 0 <

α < 1 it confirms that Theorem 6.1.1 in fact reflects the general qualitative
regularity behaviour of the solution of (6.1.10) near t = 0+.

Theorem 6.1.6 Assume that g ∈ Cm(I ) and K ∈ Cm(D), with K (t, t) �= 0 on
I . Then:

(i) For any α ∈ (0, 1) the functions 	n(t, s; α) (n ≥ 1) in (6.1.13) defining
Q(t, s; α) lie in the space Cm(D), and the regularity of the unique solution
of the weakly singular VIE (6.1.10) is described by

y ∈ Cm(0, T ] ∩ C(I ), with |y′(t)| ≤ Cαt−α for t ∈ (0, T ].
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(ii) The solution y can be written in the form

y(t) =
∑
( j,k)α

γ j,k(α)t j+k(1−α) + Ym(t ; α), t ∈ I. (6.1.17)

Here, ( j, k)α := {( j, k) : j, k ∈ IN0, j + k(1 − α) < m} and Ym(· ; α) ∈
Cm(I ). The coefficients γ j,k(α) are defined in the proof below.

Proof The assertion regarding the regularity of y follows straightforwardly
from the proof of Theorem 6.1.2, since K ∈ Cm(D) implies – by Lemma 6.1.3 –
that 	n(·, ·; α) possesses the same regularity: 	n(·, ·; α) ∈ Cm(D) (n ≥ 1) for
any α ∈ (0, 1).

Consider now the solution representation described by (6.1.11) and Theorem
6.1.2. By the uniform convergence of the infinite series defining Q(t, s; α) we
may write

∫ t

0
Rα(t, s)g(s)ds =

∞∑
k=1

∫ t

0
(t − s)k(1−α)−1Gk(t, s; α)ds,

where Gk(t, s; α) := 	k(t, s; α)g(s). It follows from the assumed regularity of
g and K that Gk(·, ·; α) ∈ Cm(D) (k ≥ 1). Hence, by Taylor’s formula and by
employing the more convenient multi-index notation d := (d1, d2) (di ∈ IN0),
with

|d| := d1 + d2, d! := d1!d2!, td := td1 sd2 , Dd := ∂ |d|

∂d1∂d2
,

we write

Gk(t, s; α) =
∑

|d|<m

1

d!
Dd G(0, 0; α)td +

∑
|d|=m

1

d!
G(ζ1, ζ2; α)td .

Note that ∫ t

0
(t − s)k(1−α)−1s j ds = t j+k(1−α)

∫ 1

0
(1 − v)k(1−α)−1v j dv

= B(k(1 − α), j + 1) · t j+k(1−α),

with B(·, ·) denoting the Euler beta function (compare also the remark following
Theorem 6.1.13 in Section 6.1.3). By suitably rearranging all these terms, and
by adding the contribution due to g,

g(t) =
m−1∑
j=0

g( j)(0)

j!
t j−1 + 1

(m − 1)!

∫ t

0
(t − s)m−1g(m)(s)ds, t ∈ I,
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the solution representation (6.1.11) can be expressed in the form

y(t) =
∑
( j,k)α

γk, j (α)t j+k(1−α) + Ym(t ; α), t ∈ I,

where Ym(t ; α) comprises those terms containing t j+k(1−α) with j + k(1 − α) ≥
m, and all Taylor remainder terms. This completes the proof of Theorem 6.1.6.
(Compare also Cerezo (1996) and Cao, Herdman and Xu (2003) for a repre-
sentation very similar to (6.1.17) and for an alternative proof.)

Remark If the given functions g and K are (real) analytic in their domains,
then it can be shown (see Lubich (1983a) that there is a function Y = Y (z1, z2),
real and analytic at (0, 0), so that solution of the VIE (6.1.10) (0 < α < 1) can
be written as y(t) = Y (t, t1−α). Related regularity results can be found in the
papers by Miller and Feldstein (1971) and de Hoog and Weiss (1974).

The existence and uniqueness of a solution y ∈ C(I ) of (6.1.10) is also guar-
anteed if the kernel singularity is of logarithmic type, p1(t − s) := log(t − s).
We summarise this in the following theorem (but leave its proof as an exercise).

Theorem 6.1.7 Let α = 1 and K ∈ C(D) in (6.1.10). Then for any g ∈ C(I )
the VIE

y(t) = g(t) +
∫ t

0
log(t − s)K (t, s)y(s)ds, t ∈ I,

possesses a unique solution y ∈ C(I ). If g ∈ Cm and K ∈ Cm(D) then

y ∈ Cm(0, T ] ∩ C(I ), with |y′(t)| ≤ C | log(t)|, t ∈ (0, T ].

We conclude this section with a generalisation of some of the above regularity
results: they cover VIEs with bounded but non-smooth kernels, and equations
with non-smooth right-hand sides g.

Consider first the VIE

y(t) = g(t) + (Vν y)(t), t ∈ I, (6.1.18)

corresponding to the Volterra integral operator (with a slight abuse of our pre-
vious notation)

(Vν y)(t) :=
∫ t

0
(t − s)ν K (t, s)y(s)ds

with ν := ρ − α, ρ ∈ IN, 0 < α < 1, and K ∈ C(D), K (t, t) �= 0 (t ∈ I ). A
look at Theorem 6.1.2 and its proof shows that they, and the result of Lemma
6.1.3, remain valid if the role of −α is now assumed by ν = ρ − α. Hence, we
readily derive
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Theorem 6.1.8 Let ν := ρ − α, with ρ ∈ INand 0 < α < 1. Then the unique
solution y ∈ C(I ) of (6.1.18) is given by

y(t) = g(t) +
∫ t

0
Rν(t, s)g(s)ds, t ∈ I,

with resolvent kernel

Rν(t, s) = (t − s)ν Q(t, s; ν)

and

Q(t, s; ν) :=
∞∑

n=1

(t − s)(n−1)(1+ν)	n(t, s; ν).

The (continuous) functions 	n(·, ·; ν) correspond to the ones introduced in
Lemma 6.1.3, with −α replaced by ν.

If in addition we assume that g ∈ Cm(I ), K ∈ Cm(D) (m ≥ 1), with
K (t, t) �= 0 on I , then the solution lies in Cρ(I ) whenever 1 ≤ ρ < m, while
y(ρ+1)(t) near t = 0+ behaves like t−α . If ρ ≥ m then y ∈ Cm(I ).

Remark In Section 6.2.3 we will adopt the more concise (classical) notation
to describe the regularity properties of solutions to VIEs with weakly singular
kernels of algebraic type, by introducing the notion of a Hölder space. In that
terminology, the regularity result in the above theorem will read: y ∈ Cρ,1−α(I ),
with 1 ≤ ρ < m.

Theorem 6.1.8 yields an obvious generalisation of the result we met in
Corollary 6.1.4, namely:

Corollary 6.1.9 Assume that g ∈ C(I ), and let ν := ρ−α(ρ ∈ IN, 0 < α < 1).
Then the (unique) solution of the integral equation

y(t) = g(t) + λ

∫ t

0
(t − s)ν y(s)ds, t ∈ I,

is

y(t) = d

dt

(∫ t

0
E1+ν(λ�(1 + ν)(t − s)1+ν)g(s)ds

)

= g(t) +
∫ t

0

(
d

dt
E1+ν(λ�(1 + ν)(t − s)1+ν)

)
g(s)ds, t ∈ I.

For g(t) ≡ y0 we obtain the generalisation of (6.1.6),

y(t) = E1+ν(λ�(1 + ν)t1+ν)y0, t ∈ I.
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The last statement in this theorem will often form the basis for finding the
solutions of somewhat more general VIEs with weakly singular kernels, in com-
plete analogy to Theorem 2.1.6 for second-kind VIEs with regular convolution
kernels. A particular case corresponds to the choice k(t − s) = pα(t − s) (0 <

α ≤ 1).

The next result (extending Theorem 2.1.6) puts Corollary 6.1.9 into a some-
what more general context.

Theorem 6.1.10 Consider the linear convolution equations

y(t) = g(t) +
∫ t

0
k(t − s)y(s)ds, t ∈ I, (6.1.19)

and

w(t) = 1 +
∫ t

0
k(t − s)w(s)ds, t ∈ I. (6.1.20)

Assume that g ∈ C1(I ), and k ∈ L1(I ). Then the (unique) solutions y ∈ C(I )
and w ∈ C(I ) of (6.1.19) and (6.1.20) are related by

y(t) = g(0)w(t) +
∫ t

0
w(t − s)g′(s)ds

= w(0)g(t) +
∫ t

0
w′(t − s)g(s)ds, t ∈ I. (6.1.21)

Proof We leave it as an exercise. The reader is also referred to Bellman and
Cooke (1963).

The final result in this section forms the basis for analysing the effect of a
non-smooth function g on the regularity of the solution of the weakly singular
VIE (6.1.10).

Theorem 6.1.11 Let g(t) = g1(t) + tβ g2(t), with gi ∈ C(I ) (i = 1, 2) and
β > 0 (β �∈ IN), and assume that K ∈ C(D). Then the (unique) solution y ∈
C(I ) of (6.1.10) with this function g can be written as

y(t) = g1(t) +
∫ t

0
Rα(t, s)g1(s)ds

+ tβ g2(t) +
∫ t

0
Rα(t, s)g2(s)sβds, t ∈ I.

Here, Rα(t, s) is the resolvent kernel given by (6.1.12) in Theorem 6.1.2.

The proof uses the superposition principle for solutions of linear VIEs with
the same kernel but different non-homogeneous terms, and the result of Theorem
6.1.2.
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Remarks

1. The statement of Theorem 6.1.11 yields a regularity result for the solution of
(6.1.10) corresponding to g1(t) ≡ 0. An obvious modification of Theorem
6.1.6 and its proof then leads to the analogue of the representation (6.1.17)
of y. See also Exercise 6.6.6.

2. Results on the regularity of the solution of more general linear (and nonlinear)
VIEs with weakly singular, or other types of bounded but non-smooth kernels
involving both algebraic and logarithmic terms can be found in Brunner,
Pedas and Vainikko (1999, pp. 1080–1082).

6.1.3 Nonlinear VIEs of the second kind

Since the singular term pα(t − s) in the general nonlinear second-kind VIE,

y(t) = g(t) +
∫ t

0
pα(t − s)k(t, s, y(s))ds, t ∈ I (0 < α ≤ 1), (6.1.22)

is integrable, it can be shown in a straightforward way that the existence and
uniqueness result of Theorem 2.1.10 remains valid: however, the number δ0

defining the existence interval I0 now depends on α. We leave the proof as
an exercise (Exercise 6.6.5) and instead consider briefly the Hammerstein-type
Volterra equation

y(t) = g(t) + (Hα y)(t), t ∈ I, (6.1.23)

where the weakly singular Volterra–Hammerstein operator is

(Hα y)(t) :=
∫ t

0
pα(t − s)K (t, s)G(s, y(s))ds.

The functions pα and K are subject to the assumptions stated at the beginning
of Section 6.1.2, and G : I × � ⊂ IR→ IRis smooth.

The short discussion we presented at the end of Section 2.1.5 is easily adapted
to cover the above VHIE with weakly singular kernel: with the Niemytzki
operator N as in (2.1.44),

z(t) := (N y)(t) = G(t, y(t)),

(6.1.23) yields an implicitly linear VIE for z,

z(t) = G(t, g(t) + (Vαz)(t)), t ∈ I, (6.1.24)

and this is followed by the recursion

y(t) = g(t) + (Vαz)(t), t ∈ I. (6.1.25)
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The operator Vα is our linear, weakly singular Volterra integral operator,

(Vαz)(t) :=
∫ t

0
pα(t − s)K (t, s)z(s)ds.

We will return to this reformulation in Section 6.2.11.

The analysis of second-kind VIEs with weakly singular kernels and Ham-
merstein nonlinearities has its origin in the early 1950s. Such equations arise
in the modelling of one-dimensional heat flow with radiation cooling at the
boundary, and they typically have the form

y(t) =
∫ t

0
(t − s)−αG(y(s))ds,

with G(y) = γ (1 − yν); (γ > 0, ν = 4). Mann and Wolf (1951) showed that
for α = 1/2, the solution y is increasing and satisfies

0 < y(t) < 1 (t > 0), and lim
t→∞ y(t) = 1.

These results were extended by Roberts and Mann (1951) to arbitrary α ∈ (0, 1),
and by Padmavally (1958) to nonlinearities G(s, y(s)). The papers by Nohel
(1964, 1976) and Miller (2000) survey this development and contain additional
references.

6.1.4 Linear VIEs of the first kind

We should of course have started the presentation of the classical theory of
Volterra integral equations with weakly singular kernels with Niels Henrik
Abel’s classical results of 1823 and 1826 on the solution of the first-kind integral
equation∫ t

0
(t − s)−α y(s)ds = g(t), t ∈ (0, T ] (0 < α < 1), (6.1.26)

now named after him. In these papers he derived the inversion formula

y(t) = 1

γα

d

dt

(∫ t

0
(t − s)α−1g(s)ds

)
, t ∈ (0, T ], (6.1.27)

with γα := π/ sin(απ ) = �(α)�(1 − α), provided the function

Gα(t) :=
∫ t

0
(t − s)α−1g(s)ds (6.1.28)

has a continuous derivative on (0, T ]. This is certainly true if g ∈ C1(I ) (I :=
[0, T ]); if, in addition, we have g(0) = 0 then the solution y lies in C(I ) and is
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given by

y(t) = 1

γα

∫ t

0
(t − s)α−1g′(s)ds, t ∈ I.

We summarise Abel’s result in the following theorem.

Theorem 6.1.12 Let g ∈ C1(I ). Then for any α ∈ (0, 1) the Abel integral equa-
tion (6.1.26) possesses a unique continuous solution on (0, T ]. This solution
can be written in the form

y(t) = 1

γα

(
g(0)tα−1 +

∫ t

0
(t − s)α−1g′(s)ds

)
, t ∈ (0, T ]. (6.1.29)

In his Nota II of 1896, Vito Volterra extended both his approach of Nota I
and Abel’s result (and his key idea in the proof) of 1823/26 to the more general
first-kind integral equation

(Vα y)(t) = g(t), t ∈ I = [0, T ] (0 < α < 1), (6.1.30)

with Vα as in (6.1.9) and g(0) = 0. He showed, by multiplying the equation
by (z − t)α−1 and then integrating with respect to t over [0, z], that the given
equation (6.1.31) can be written as a first-kind VIE with regular (bounded)
kernel, ∫ t

0
H (t, s; α)y(s)ds = Gα(t), t ∈ I, (6.1.31)

where Gα is the function defined in (6.1.28) and

H (t, s; α) :=
∫ 1

0

K (s + (t − s)v, s)

vα(1 − v)1−α
dv.

Observe that this kernel H (·, ·; α) inherits the regularity of the original kernel
K : if K ∈ Cm(D) then H (·, ·; α) ∈ Cm(D). Moreover, H (t, t ; α) = K (t, t)/γα .
We shall return to these facts in Theorems 6.1.13 and 6.1.14.

The following theorem contains Volterra’s fundamental result (Volterra
(1896a, Nota II)).

Theorem 6.1.13 Assume that

(a) g ∈ C1(I ), with g(0) = 0;
(b) K ∈ C(D), ∂K/∂t ∈ C(D), with |K (t, t)| ≥ k0 > 0 when t ∈ I .

Then for any α ∈ (0, 1) the following is true:

(i) The first-kind VIE (6.1.30) possessing the weakly singular kernel Hα(t, s) :=
(t − s)−α K (t, s) is equivalent to the first-kind VIE (6.1.31) with bounded
kernel H (t, s; α) and with non-smooth right-hand side Gα(t).
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(ii) The kernel H (t, s; α) and the right-hand side Gα(t) satisfy the hypotheses
for K (t, s) and g(t) in Theorem 2.1.8, and hence the given VIE (6.1.30)
possesses a unique solution y ∈ C(I ).

We leave the proof as a simple exercise. It makes use of the fact that∫ 1

0
vµ−1(1 − v)ν−1dv = B(µ, ν) = �(µ)�(ν)

�(µ + ν)
(µ, ν > −1),

where B(·, ·) denotes Euler’s beta function (see, e.g. Henrici (1962, pp. 24–62)).

We shall see in Theorem 6.1.14 that while the solution y is continuous on
the interval [0, T ], its derivative near t = 0+ will behave like tα−1, for any
non-trivial Cd -data with d ≥ 2.

Due to this equivalence between the first-kind VIE with weakly singular
kernel and smooth right-hand side, and a first-kind VIE with smooth kernel
but non-smooth right-hand side, the proof of Theorem 2.1.9 can be adapted to
yield an analogous regularity result for the weakly singular VIE (6.1.31). Note,
however, that since Gα is smooth only on the left-open interval (0, T ], the same
will be true of the solution y when g and K are smooth. In other words, as the
previous theorem already suggests, the regularity of Gα(t) at t = 0 will depend
on the values of g(ν)(0) (ν ≥ 0).

In order to make this more precise we recall the definition of the Pochhammer
symbol,

(α)k := α(α + 1) · · · (α + k − 1), k ≥ 1 (k ∈ IN).

Theorem 6.1.14 Assume:

(a) g ∈ Cm+1(I );
(b) K ∈ Cm+1(D), with |K (t, t)| ≥ k0 > 0 when t ∈ I ;
(c) g(ν)(0) = 0 for ν = 0, 1, . . . , q (q < m).

Then the unique solution of (6.1.30) lies in the space Cq (I ) ∩ Cm(0, T ] for all
α ∈ (0, 1), and |y(q+1)(t)| ≤ Ctα−1 on (0, T ].

For q = 0 the solution of (6.1.30) has a representation similar to (6.1.17) in
Theorem 6.1.6, with α replacing 1 − α.

In the terminology to be introduced in Section 6.2.3 the solution lies in the
Hölder space Cq,α(I ).

The proof of Theorem 6.1.14 is based on the observation that, by (c), the
function Gα in (6.1.27) can be written as

Gα(t) = 1

(α)q+1

∫ t

0
(t − s)q+αg(q+1)(s)ds, t ∈ I. (6.1.32)

Hence it follows that Gα ∈ Cq+1(I ), with G(ν)
α (0) = 0 (ν = 0, . . . , q).
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Remark In his 1916 paper (Chapter 4) Volterra analysed the solution of
first-kind VIEs whose kernels contain weakly singular factors of both alge-
braic and logarithmic type. He showed in particular that the derivation of
the solution of the VIE corresponding essentially to pα(t − s) with α = 1
(cf. (6.1.8)), ∫ t

0
[log(t − s) + γ ]y(s)ds = g(t), t ∈ I := [0, T ],

with g(0) = 0, and with

γ := −�′(1)/�(1) = −
∫ ∞

0
exp(−s) log(s)ds

.= 0.57721

denoting the Euler constant, is considerably more complex than in the case
0 < α < 1. The starting point of the analysis is the fact that this VIE is equivalent
to a first-kind equation of the form∫ t

0

(
d

dα

(
1

�(α)
(t − s)α−1

)∣∣∣∣
α=1

)
y(s)ds = g(t).

Details and results on related VIEs can also be found in Krasnov et al. (1977),
pp. 141–143, Srivastava and Buschman (1977, p. 87), and in volume 3 of Fenyö
and Stolle (1984).

We continue by briefly touching upon the first-kind Abel-type VIE corre-
sponding to the ‘non-standard’ Volterra–Abel integral operator

(Aαφ)(t) :=
∫ t

0
(h(t) − h(s))−α K (t, s)φ(s)ds, 0 < α < 1, (6.1.33)

with K ∈ C(D), K (t, t) �= 0 (t ∈ I , and h ∈ C1(I ), h′(t) > 0 (t > 0). In
many applications (see, e.g. Anderssen (1977) and its bibliography) we have
h(t) = t p, p > 1. In this case we will denote the corresponding integral oper-
ator (6.1.29) by Ap,α .

The following theorem is concerned with this particular case; it is readily
extended to encompass the general case, and the reader may wish to consult
Schmeidler (1950), Sneddon (1972), Anderssen (1976, 1977), and Hung (1979).
The regularity result (ii) is due to Atkinson (1974a) (see also Lubich (1987)). In
addition, compare Smarzewski and Malinowksi (1978, 1983) where Volterra–
Abel integral equations corresponding to the adjoint operator A∗

p,α ,

(A∗
p,αφ)(t) :=

∫ T

t
(s p − t p)−α K (t, s)φ(s)ds,

are studied.



356 6 VIEs with weakly singular kernels

Theorem 6.1.15 Consider the Abel-type integral equation

(Ap,α y)(t) = g(t), t ∈ I := [0, T ] (0 < α < 1, p > 1).

Assume that g ∈ C1(I ) and K ∈ C1(D), with |K (t, t)| ≥ k0 > 0 for t ∈ I .

(i) If K (t, t) ≡ 1 then the (unique) solution y ∈ C(0, T ] of (Aα y)(t) = g(t) is
given by the inversion formula

y(t) = p

γα

(
g(0)tαp−1 + t p−1

∫ t

0
(t p − s p)α−1g′(s)ds

)
, t ∈ (0, T ].

(ii) If g(t) = g0(t)tβ , with g0 ∈ Cm+1(I ) and β > −pα, and K ∈ Cm+1(D),
then the solution is of the form

y(t) = t pα+β−1[c0 + tφ0(t)], t ∈ (0, T ],

where φ0 ∈ Cm(I ) and c0 = 0 if, and only if, g0(0) = 0.

We conclude with a remark on the fundamental difference between the in-
tegral operators Vα and Ap,α (0 < α < 1, p > 1); we illustrate this with the
example p = 2, α = 1/2 and K (t, s) ≡ 1 (see also Atkinson (1997a), p. 20).
If we define φβ(t) := tβ , direct computation shows that, for any β ≥ 0, β ∈ IR,

(A2,1/2φβ)(t) =
∫ t

0
(t2 − s2)−1/2φβ(s)ds = λβφβ(t), t ∈ I,

with (A2,1/2φ)(0) := 0 and

λβ :=
∫ 1

0
(1 − s2)−1/2sβds ∈ (0, π/2].

In other words, the integral operator A2,α (0 < α < 1) has a continuous spec-
trum σ (A2,α) = (0, π/2]. This is equivalent to the statement that A2,1/2 is not
a compact operator from C(I ) → C(I ). Thus, not surprisingly, the analysis
of piecewise collocation methods for first-kind and second-kind integral equa-
tions described by such Abel-type operators is considerably more complex; it
remains essentially open (Exercise 6.6.17).

6.1.5 Nonlinear VIEs of the first kind

As we shall see in Chapter 8, nonlinear VIEs of the first kind occur for example
in systems of integral-algebraic equations, replacing the algebraic constraints
in a DAE (Chapter 8). Their kernel functions are usually of Hammerstein type,
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and hence we will restrict our present discussion to VIEs of the form

(Hα y)(t) :=
∫ t

0
pα(t − s)K (t, s)G(s, y(s))ds = g(t),

t ∈ I := [0, T ] (0 ≤ α ≤ 1), (6.1.34)

with g(0) = 0 and K (t, t) �= 0 on I .
The following result is due to Deimling (1995). Related results can be found

in Gladwin and Jeltsch (1974), Branca (1976, 1978), and Dixon, McKee and
Jeltsch (1986).

Theorem 6.1.16 Assume:

(a) g ∈ C1(I ), with g(0) = 0;
(b) K ∈ C1(D), with |K (t, t)| ≥ k0 > 0, t ∈ I ;
(c) G : I × IR→ IRis continuous and satisfies

(G(t, y) − G(t, z))(y − z) > 0, t ∈ I, y, z ∈ IR (y �= z);

(d) lim
|y|→∞

G(t, y)y

|y| → ∞ (t ∈ I ).

Then the nonlinear Volterra–Hammerstein equation (6.1.34) possesses a unique
solution y ∈ C(I ) for any α ∈ [0, 1). For 0 < α < 1 and sufficiently regular
functions g, K and G its regularity properties coincide with those described in
Theorem 6.1.14. In particular, if g′(0) �= 0 then |y′(t)| ≤ Ctα−1 near t = 0+.

Remark The above result remains valid for systems of first-kind Volterra–
Hammerstein integral equations when the products and absolute values are
replaced, respectively, by the standard inner product in IRm and the induced
Euclidian norm (see Deimling (1995) and Section 8.1.2).

Proof Since 0 < α < 1 we can adopt Volterra’s idea of rewriting the given
VIE as an equivalent, now nonlinear, first-kind equation with bounded kernel
function. Recalling the remarks preceding Theorem 6.1.13 this VIE is∫ t

0
H (t, s; α)G(s, y(s))ds = Gα(t), t ∈ I, (6.1.35)

with H (t, s; α) and Gα(t) as in (6.1.27). Differentiation with respect to t leads
to

H (t, t ; α)G(t, y(t)) +
∫ t

0

∂ H (t, s; α)

∂t
G(s, y(s))ds = G ′

α(t). (6.1.36)

Since by (b) (see also (ii) in Theorem 6.1.13)) we have H (t, t ; α) �= 0 on I , we
have to show that this implicit second-kind VIE has a unique continuous solution
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on I . To this end, set z(t) := G(t, y(t)) and consider the integral equation

z(t) = Fα(t) +
∫ t

0
H1(t, s; α)z(s)ds, t ∈ I, (6.1.37)

where

Fα(t) := G ′
α(t)/H (t, t ; α), H1(t, s; α) := −[∂ H (t, s; α)/∂t]/H (t, t ; α).

It follows from the theory of linear second-kind VIEs and assumptions (a), (b)
that there exists a unique z ∈ C(I ) solving (6.1.35). The unique solvability of

G(t, y(t)) = z(t), t ∈ I,

is now a consequence of the assumptions (c) and (d).

6.1.6 Weakly singular Volterra equations with
non-vanishing delays

Let θ be a delay function satisfying the conditions (D1)–(D3) of Section 4.1.2:

(D1) θ (t) = t − τ (t), τ ∈ Cd (I ) for some d ≥ 0;
(D2) τ (t) ≥ τ0 > 0 for t ∈ I ;
(D3) θ is strictly increasing on I .

Here, we assume that I := [t0, T ] for some t0 ≥ 0.
For given θ and α ∈ (0, 1] we define the Volterra integral operator Vθ,α by

(Vθ,α y)(t) :=
∫ θ (t)

0
pα(t − s)K2(t, s)y(s)ds, t ∈ I := [0, T ], (6.1.38)

where K2 ∈ Cd (Dθ ) for some d ≥ 0. We also introduce

(Wθ,α y)(t) :=
∫ t

θ (t)
pα(t − s)K (t, s)ds, t ∈ I.

How does a non-vanishing delay affect the regularity of the solutions of the
second-kind VIEs

y(t) = g(t) + (V y)(t) + (Vθ,α y)(t), t ∈ I, (6.1.39)

and

y(t) = g(t) + (Wθ,α y)(t), t ∈ I,

with y(t) := φ(t) if t ≤ 0, when all the given functions are smooth, e.g. have
continuous derivatives of order m on their respective domains?
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Table 6.1. Regularity and smoothing of solutions to weakly singular delay
VIEs

Delay Volterra integral equation Regularity on I (µ) = (ξµ, ξµ+1]
(with arbitrarily smooth data) (µ = 0, 1, . . . , M)

• y(t) = g(t) + (Vθ,α y)(t)

{
Cµ,1−α if µ = 0, 1, . . . , min{m, M}
Cm if µ > min{m, M}

(finite jump at t = t0)

• y(t) = g(t) + (Wθ,α y)(t)

{
Cµ,1−α if µ = 0, 1, . . . , min{m, M}
Cm if µ > min{m, M}

(finite jump at t = t0)

• y(t) = b(t)y(θ (t)) + (Vθ,α y)(t) C1−α

(finite jump at t = t0,
no smoothing at t = ξµ)

• y(t) = b(t)y(θ (t)) + (Wθ,α y)(t) C1−α

(finite jump at t = t0,
no smoothing at t = ξµ)

We summarise a number of relevant regularity results in Table 6.1; they
extend those described in Section 4.1.2 (Table 4.1). The proofs are left as an
exercise.

6.1.7 Comparison theorems and Gronwall-type inequalities

We conclude this look at the theory of weakly singular Volterra integral equa-
tions by describing a number of generalisations of the continuous and discrete
comparisons theorems of Sections 2.1.8 and 2.1.9. These results (as well as
more general variants) are due to McKee (1982a), Beesack (1985a, 1985b),
and Dixon and McKee (1986); see also McKee and Tang (1991).

We start with an extension of the classical result of Gronwall.

Theorem 6.1.17 Let I := [0, T ] and assume that

(a) g ∈ C(I ), g(t) ≥ 0 on I , and g is non-decreasing on I .
(b) The continuous, non-negative function z satisfies the inequality

z(t) ≤ g(t) + M
∫ t

0
(t − s)−αz(s)ds, t ∈ I, (6.1.40)
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for some M > 0 and 0 < α < 1.

Then:

z(t) ≤ E1−α(M�(1 − α)t1−α)g(t), t ∈ I. (6.1.41)

Here, Eβ denotes the Mittag-Leffler function introduced in Section 6.1.1.

Remark An extension of this result to VIEs with more general weakly singular
kernels,

z(t) ≤ γ (t) + M
∫ t

0
sq (t p − s p)−αz(s)ds, t ∈ I ; q ≥ 0, 1 ≤ p ≤ q + 1,

(6.1.42)
can be found in the papers by McKee (1982a) and Beesack (1985b); see also
the survey by McKee and Tang (1991).

The comparison theorems of Section 2.1.8 can be extended to equations with
weakly singular kernels. We state the analogue of Theorem 2.1.15.

Theorem 6.1.18 Assume that g ∈ C(I ), with g(t) ≥ 0 on I , and K ∈ C(D),
with K (t, s) ≥ 0 on D. Let Rα(t, s) = (t − s)−α Q(t, s; α) denote the resolvent
kernel associated with

Hα(t, s) := (t − s)−α K (t, s) (0 < α < 1).

If z ∈ C(I ) satisfies the inequality

z(t) ≤ g(t) +
∫ t

0
Hα(t, s)z(s)ds, t ∈ I,

then

z(t) ≤ g(t) +
∫ t

0
Rα(t, s)g(s)ds, t ∈ I,

and we have Q(t, s; α) ≥ K (t, s) on D.

Proof Theorem 6.1.2 and its proof show that

Q(t, s; α) =
∞∑

n=1


n(t, s; α), (t, s) ∈ D,

with 
1(t, s; α) = 	1(t, s; α) = K (t, s) and 
n(t, s; α) ≥ 0 since, by their re-
cursive definition, all 	n(t, s; α) are non-negative on D.
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We conclude this section by briefly considering a generalised discrete
Gronwall inequality,

zn ≤ γn + Mh1−α
n−1∑
�=0

(n − �)−αz�, 0 ≤ n ≤ N , (6.1.43)

where the sequence {γn} is non-negative and non-decreasing, M > 0, and 0 <

α < 1.

Theorem 6.1.19 If the non-negative sequence {zn} satisfies the inequality
(6.1.45), then its elements can be bounded by

zn ≤ E1−α(M�(1 − α)(nh)1−α)γn, 0 ≤ n ≤ N . (6.1.44)

We refer the reader to McKee and Tang (1991) for a proof of this theorem. A
somewhat more general version of this result, and its proof, can be found in
Dixon (1985). See also Beesack (1985b).

6.2 Collocation for weakly singular VIEs of the
second kind

6.2.1 The exact collocation equations

As in Section 6.1.2 let the linear Volterra integral operator Vα : C(I ) → C(I )
be given by

(Vα y)(t) :=
∫ t

0
Hα(t, s)y(s)ds, t ∈ I := [0, T ], (6.2.1)

with

Hα(t, s) := pα(t − s)K (t, s), 0 < α ≤ 1. (6.2.2)

The kernel function K = K (t, s) is assumed to satisfy K ∈ C(D) and K (t, t) �=
0 on I , and the integrable (weak) singularity pα has the form

pα(t − s) :=
{

(t − s)−α if 0 < α < 1,

log(t − s) if α = 1.
(6.2.3)

Given a function g ∈ C(I ) we shall approximate the solution of the weakly
singular VIE

y(t) = g(t) + (Vα y)(t), t ∈ I, (6.2.4)

by collocation in the piecewise polynomial space

S(−1)
m−1(Ih) := {v : v|σn ∈ πm−1 (0 ≤ n ≤ N − 1)}.
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The desired collocation solution uh is therefore defined by

uh(t) = g(t) + (Vαuh)(t), t ∈ Xh, (6.2.5)

where the set of collocation points,

Xh := {tn + ci hn : 0 ≤ c1 < · · · < cm ≤ 1 (n = 0, 1, . . . , N − 1)}, (6.2.6)

is determined by the given mesh Ih and the (distinct) collocation parameters
{ci }. As we have already observed at the beginning of Section 2.2.2, the choice
c1 = 0 and cm = 1 (m ≥ 2) implies, for continuous g and K , that

uh ∈ S(−1)
m−1(Ih) ∩ C(I ) = S(0)

m−1(Ih),

with dim S(0)
m−1(Ih) = N (m − 1) + 1. In this case we require uh to satisfy the

the initial condition uh(t0,1) = uh(0) = g(0).
The iterated collocation solution uit

h corresponding to the collocation solu-
tion uh is then defined by

uit
h (t) := g(t) + (Vαuh)(t), t ∈ I. (6.2.7)

It trivially satisfies

uit
h (t) = uh(t) for all t ∈ Xh

and for any α ∈ (0, 1].

As in Chapter 2, the computational form of the collocation equation (6.2.5)
will again be based on the local representation employing the Lagrange basis
functions with respect to the collocation parameters {ci } which we will recall
for convenience: setting

L j (v) :=
m∏

k �= j

v − ck

c j − ck
and Un, j := uh(tn + c j hn) ( j = 1, . . . , m),

the collocation solution uh ∈ S(−1)
m−1(Ih) on the subinterval σn := (tn, tn+1] is

described by

uh(t) = uh(tn + vhn) =
m∑

j=1

L j (v)Un, j , v ∈ (0, 1]. (6.2.8)

Thus, for t = tn,i := tn + ci hn the collocation equation (6.2.5) assumes the form

uh(t) = g(t) +
∫ tn

0
Hα(t, s)uh(s)ds + hn

∫ ci

0
Hα(t, tn + shn)uh(tn + shn)ds.
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We write this as

Un,i = g(tn,i ) + Fn(tn,i ; α) + hn

m∑
j=1

(∫ ci

0
Hα(tn,i , tn + shn)L j (s)ds

)
Un, j

(6.2.9)
(i = 1, . . . , m). For t ∈ σn the lag term is

Fn(t ; α) :=
∫ tn

0
Hα(t, s)uh(s)ds =

n−1∑
�=0

h�

∫ 1

0
Hα(t, t� + sh�)uh(t� + sh�)ds.

(6.2.10)
If t = tn,i this becomes, by (6.2.8),

Fn(tn,i ; α) =
n−1∑
�=0

h�

m∑
j=1

(∫ 1

0
Hα(tn,i , t� + sh�)L j (s)ds

)
U�, j .

Let Un := (Un,1, . . . , Un,m)T , gn := (g(tn,1), . . . , g(tn,m))T , and define the
matrices in L(IRm),

B(�)
n (α) :=




∫ 1

0
Hα(tn,i , t� + sh�)L j (s)ds

(i, j = 1, . . . , m)


 (� < n), (6.2.11)

and

Bn(α) :=



∫ ci

0
Hα(tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 . (6.2.12)

The collocation equation (6.2.9) then assumes the form

[Im − hn Bn(α)]Un = gn + Gn(α) (n = 0, 1, . . . , N − 1), (6.2.13)

where

Gn(α) := (Fn(tn,1; α), . . . , Fn(tn,m ; α))T =
n−1∑
�=0

h� B(�)
n (α)U�.

Here, Im denotes again the identity matrix in L(IRm).
We note for later reference that the integrands defining the elements of

B(�)
n (α) and Bn(α) are, respectively,

Hα(tn,i , t� + sh�) = pα(tn,i − t� − sh�)K (tn,i , t� + sh�) (� < n), (6.2.14)

Hα(tn,i , tn + shn) = pα((ci − s)hn)K (tn,i , tn + shn). (6.2.15)

We also observe that for 0 < α < 1 we may write

pα(tn,i − t� − sh�) = h−α
�

(
tn + ci hn − t�

h�

− s

)−α

(� < n)
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and

pα((ci − s)hn) = h−α
n (ci − s)−α.

The left-hand side matrix in the system (6.2.13) then becomes Im − h1−α
n Bn(α),

where we now have

Bn(α) :=



∫ ci

0
(ci − s)−α K (tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 .

Due to the integrability of the kernel Hα in the Volterra integral operator Vα

it is clear that the result of Theorem 2.2.1 on the existence and uniqueness of
the collocation solution uh remains valid for any α ∈ (0, 1].

Theorem 6.2.1 Assume that g and K in Hα(t, s) = pα(t − s)K (t, s) are con-
tinuous on their respective domains I and D. Then there exists an h̄ = h̄(α) > 0
so that, for every α ∈ (0, 1] and any mesh Ih with mesh diameter h satisfying
h ∈ (0, h̄), each of the linear algebraic systems (6.2.13) has a unique solution
Un ∈ IRm (n = 0, 1, . . . , N − 1). Hence the collocation equation (6.2.5) de-
fines a unique collocation solution uh ∈ S(−1)

m−1(Ih) for the weakly singular VIE
(6.2.4), with local representation given by (6.2.8).

Proof By our assumptions on the factor K in the kernel Hα of the Volterra
operator Vα , the elements of the matrices Bn(α) in (6.2.12) are bounded for
all α ∈ (0, 1]. As in the case α = 0 this implies that the inverse of the matrix
Bn(α) := Im − hn Bn(α) ∈ L(IRm) exists if hn||Bn(α)|| < 1 for some matrix
norm. This clearly holds whenever hn is sufficiently small. In other words,
there is an h̄ = h̄(α) > 0 so that for any mesh Ih with h := max{hn : 0 ≤
n ≤ N − 1} < h̄, each matrix Bn(α) (n = 0, 1, . . . , N − 1) has a uniformly
bounded inverse. The assertion of Theorem 6.2.1 now follows.

When the collocation solution on the subinterval σn has been computed, the
iterated collocation solution for t = tn + vhn ∈ σ̄n := [tn, tn+1] is given by

uit
h (t) = g(t) + Fn(t ; α) + hn

m∑
j=1

(∫ v

0
Hα(t, tn + shn)L j (s)ds

)
Un, j ,

(6.2.16)
with lag term Fn(t ; α) as in (6.2.10). For 0 < α < 1, (6.2.16) can be written as

uit
h (t) = g(t) + Fn(t ; α) + h1−α

n

m∑
j=1

(∫ v

0
(v − s)−α K (t, tn + shn)L j (s)ds

)
Un, j ,

v ∈ [0, 1].
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Example 6.2.1 uh ∈ S(−1)
0 (Ih) (m = 1), 0 < c1 =: θ ≤ 1:

Here, uh(tn + vhn) = Un,1 for all v ∈ (0, 1]. Setting yn+1 := Un,1 the collo-
cation solution is determined by the equation(

1 − hn

∫ θ

0
Hα(tn,1, tn + shn)ds

)
yn+1 = g(tn,1) + Fn(tn,1; α), (6.2.17)

(n = 0, 1, . . . , N − 1), with tn,1 = tn + θhn and with lag term given by

Fn(tn,1; α) =
n−1∑
�=0

h�

(∫ 1

0
Hα(tn,1, t� + sh�)ds

)
y�+1.

For t = tn + vhn (v ∈ [0, 1]) the corresponding iterated collocation solution is
then

uit
h (t) = g(t) + Fn(t ; α) + hn

(∫ v

0
Hα(t, tn + shn)ds

)
yn+1. (6.2.18)

We remind the reader that Hα(t, tn + shn) = pα((v − s)hn)K (t, tn + vhn)
when t = tn + vhn; hence, for 0 < α < 1 we have

Hα(t, tn + shn) = h−α
n (v − s)−α K (t, tn + shn).

Example 6.2.2 uh ∈ S(−1)
1 (Ih) (m = 2), 0 < c1 < c2 ≤ 1:

Since the Lagrange fundamental polynomials corresponding to the two collo-
cation parameters are

L1(s) = (c2 − s)/(c2 − c1) and L2(s) = (s − c1)/(c2 − c1),

the matrix Bn(α) ∈ L(IR2) in (2.2.14) has the elements

(Bn(α))i,1 = 1

c2 − c1

∫ ci

0
pα((ci − s)hn)K (tn,i , tn + shn)(c2 − s)ds (i = 1, 2)

and

(Bn(α))i,2 = 1

c2 − c1

∫ ci

0
pα((ci − s)hn)K (tn,i , tn + shn)(s − c1)ds (i = 1, 2).

Moreover,

(B(�)
n (α))i,1 = 1

c2 − c1

∫ 1

0
Hα(tn,i , t� + sh�)(c2 − s)ds (i = 1, 2),

and

(B(�)
n (α))i,2 = 1

c2 − c1

∫ 1

0
Hα(tn,i , t� + sh�)(s − c1)ds (i = 1, 2).
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The collocation solution is now determined by the corresponding system
(6.2.13) in IR2 and the local Lagrange representation (6.2.8) with m = 2, and
(6.2.16) yields the iterated collocation solution on σ̄n .

6.2.2 The fully discretised collocation equations

The integrals occurring in the collocation equation (6.2.9), and in (6.2.10) and
(6.2.16), usually cannot be found analytically but have to be approximated by
suitable numerical quadrature formulas, similar to the situation we have already
encountered in Section 2.2.3. Now, due to the presence of the weak singularity
pα(t − s) it will be natural, as we shall see below, to base this further discretisa-
tion step on (interpolatory) product quadrature formulas whose weights depend
on the weakly singular factor pα(t − s) in the kernel Hα(t, s).

Thus, the fully discretised version of (6.2.5) will be

ûh(t) = g(t) + (V̂α,hûh)(t), t ∈ Xh, (6.2.19)

where V̂α,h denotes the discrete version of the original Volterra integral operator
Vα in (6.2.4). The weighted interpolatory m-point quadrature formulas (which
we will refer to simply as m-point product quadrature formulas) whose ab-
scissas are given by, or based on, the m collocation parameters {ck} and whose
weights depend on pα will be employed to generate the quadrature approxima-
tions defining V̂α,h ; they are

(Q̂n(α)uh)(t) :=
m∑

k=1

wn,k(v; α)K (t, tn + vckhn)uh(tn + vckhn) (6.2.20)

and

(Q̂(�)
n (α)uh)(t) :=

m∑
k=1

w
(�)
n,k(v; α)K (t, t� + ckh�)uh(t� + ckh�) (� < n)

(6.2.21)
for the integrals

(Qn(α)uh)(t) :=
∫ v

0
Hα(t, tn + shn)uh(tn + shn)ds

= v

∫ 1

0
Hα(t, tn + svhn)uh(tn + svhn)ds,

and

(Q(�)
n (α)uh)(t) :=

∫ 1

0
Hα(t, t� + sh�)uh(t� + sh�)ds (� < n),
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respectively, when t = tn + vhn ∈ σn . The product quadrature weights are

wn,k(v; α) :=
∫ v

0
pα((v − s)hn)Lk(s/v)ds

= v

∫ 1

0
pα((1 − z)vhn)L j (z)dz, (v ∈ (0, 1]), (6.2.22)

and, for � < n,

w
(�)
n,k(v; α) :=

∫ 1

0
pα(((tn + vhn − t�)/h� − s)h�)Lk(s)ds (v ∈ (0, 1], � < n).

(6.2.23)
Note that for α = 0 these quadrature weights reduce to wn, j (v; 0) = vb j and
w

(�)
n, j (v; 0) = β j (1) = b j , respectively (cf. (2.2.19), (2.2.20)).

We observe in passing that the integrals Q(�)
n (α)uh)(t) (� < n) in the lag term

(6.2.10) could, of course, also be discretised by the ‘classical’ (i.e. non-product)
interpolatory quadrature formulas used in Section 2.2.3, since pα(tn + vhn −
t� − sh�) is now bounded for v ∈ (0, 1] when � < n.

The fully discretised collocation equation is obtained from the exact col-
location equation (6.2.9) by replacing the integrals by the above quadrature
approximations, disregarding the quadrature errors induced by this secondary
discretisation process. As in Section 2.2.3 we will denote the resulting discre-
tised collocation solution by ûh : it is, of course, still an element of our space
S(−1)

m−1(Ih), but in general we have ûh �= uh . The local representation of ûh on σn

is thus

ûh(tn + vhn) =
m∑

j=1

L j (v)Û n, j v ∈ (0, 1], with Û n, j := ûh(tn + c j hn).

(6.2.24)
Thus, the fully discretised version of the collocation equation (6.2.9) is

Û n,i = g(tn,i ) + F̂n(tn,i ; α) + hn(Q̂n(α)ûh)(tn,i ) (i = 1, . . . , m), (6.2.25)

where (Q̂n(α)ûh)(tn,i ) is defined in (6.2.20) and where the fully discretised lag
term F̂n(t ; α) at t = tn + vhn has the form

F̂n(t ; α) :=
n−1∑
�=0

h�(Q̂(�)
n (α)ûh)(t)

=
n−1∑
�=0

h�

(
m∑

j=1

w
(�)
n, j (v; α)K (t, t� + c j h�)Û �, j

)
. (6.2.26)
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In analogy to (6.2.13) we can write the corresponding discretised collocation
equation (6.2.25) in the more concise form

[Im − hn B̂n(α)]Ûn = gn + Ĝn(α) (n = 0, 1, . . . , N − 1), (6.2.27)

with

Ĝn(α) := (F̂n(tn,1; α), . . . , F̂n(tn,m ; α))T =
n−1∑
�=0

h� B̂(�)
n (α)Û�.

Here, Ûn := (Ûn,1, . . . , Ûn,m)T ∈ IRm ; the matrices B̂n(α) and B̂(�)
n (α) in L(IRm) –

representing the discretised versions of Bn(α) and B(�)
n (α) in (6.2.12 and

(6.2.11) – are defined respectively by

B̂n(α) :=




m∑
k=1

wn,k(ci ; α)K (tn,i , tn + ci ckhn)L j (ci ck)

(i, j = 1, . . . , m)


 ,

and

B̂(�)
n (α) :=

(
w

(�)
n, j (ci ; α)K (tn,i , t� + c j h�)

(i, j = 1, . . . , m)

)
(� < n).

Observe again that for 0 < α < 1 we obtain, by (6.2.22) and (6.2.23),

wn,k(v; α) = h−α
n

∫ v

0
(v − s)−α Lk(s/v)ds (v > 0),

and

w
(�)
n,k(v; α) = h−α

�

∫ 1

0

(
tn + vhn − t�

h�

− s

)−α

Lk(s)ds (� < n).

In accordance with the notation we introduced for the exact matrices Bn(α)
corresponding to α ∈ (0, 1) we will write the matrix describing the left-hand
side of the discretised algebraic system (6.2.27) as Im − h1−α

n B̂n(α), with ap-
propriately redefined matrix B̂n(α).

Theorem 6.2.2 Let the assumptions of Theorem 6.2.1 hold. Then there exists
an ĥ = ĥ(α) > 0 so that for α ∈ (0, 1] and any mesh Ih with mesh diameter h
satisfying h ∈ (0, ĥ) there exists a unique discretised collocation approximation
ûh ∈ S(−1)

m−1(Ih) defined by the unique solutions Ûn of the linear algebraic systems
(6.2.27) (n = 0, 1, . . . , N − 1) and the local representations (6.2.24).

The proof of Theorem 6.2.2 of course closely resembles the one for Theo-
rem 6.2.1: since, for any fixed m and any α ∈ (0, 1], the weights {wn,k(ci ; α)}
characterising the elements of B̂n(α) are bounded, it follows from the con-
tinuity of K and the Neumann Lemma that each matrix Im − hn B̂n(α)
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(n = 0, 1, . . . , N − 1) in (2.2.27) possesses a uniformly bounded inverse when-
ever hn < ĥ, for some suitable ĥ > 0 depending on α; in general we have ĥ �= h̄.

For t = tn + vhn ∈ σn the corresponding discretised iterated collocation
solution ûit

h corresponding to ûh ∈ S(−1)
m−1(Ih) is defined by

ûi t
h (t) := g(t) + F̂n(t ; α) + hn(Q̂n(α)ûh)(t) (6.2.28)

(recall (6.2.16)), where (Q̂n(α)ûh)(t) is as in (6.2.20). The discretised lag term
F̂n(t ; α) was introduced in (6.2.26).

The following two illustrations are the discrete counterparts of the exact
collocation methods described in Examples 6.2.1 and 6.2.2.

Example 6.2.3 ûh ∈ S(−1)
0 (Ih), 0 < c1 =: θ ≤ 1:

Setting ŷn+1 := Û n,1 and tn,1 := tn + θhn , equation (6.2.17) yields

[1 − wn,1(θ ; α)hn K (tn,1, tn + θ2hn)]ŷn+1 = g(tn,1) + F̂n(tn,1; α) (6.2.29)

(n = 0, 1, . . . , N − 1), with

wn,1(v; α) :=
∫ v

0
pα((v − s)hn)ds =


 h−α

n

v1−α

1 − α
if 0 < α < 1,

v[log(vhn) − 1] if α = 1.

The discretised lag term is

F̂n(tn,1; α) =
n−1∑
�=0

h�w
(�)
n,1(θ ; α)K (tn,1, t� + θh�)ŷ�+1,

with weights given by

w
(�)
n,1(v; α) :=

∫ 1

0
pα(tn + vhn − t� − sh�)ds (� < n).

The corresponding discretised iterated collocation solution at t = tn + vhn (v ∈
[0, 1]) is

ûi t
h (t) = g(t) + F̂n(t ; α) + wn,1(v; α)hn K (t, tn + vθhn)ŷn+1. (6.2.30)

Example 6.2.4 ûh ∈ S(−1)
1 (Ih) (m = 2), 0 < c1 < c2 ≤ 1:

We see from Example 6.2.2 that the elements of the discretised matrices B̂n ∈
L(IR2) in (6.2.27) are

(B̂n(α))i,1 = wn,1(ci ; α)K (tn,i , tn + ci c1hn)L1(ci c1)

+ wn,2(ci ; α)K )tn,i , tn + ci c2hn)L1(ci c2)
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and

(B̂n(α))i,2 = wn,1(ci ; α)K (tn,i , tn + ci c1hn)L2(ci c1)

+ wn,2(ci ; α)K (tn,i , tn + ci c2hn)L2(ci c2)

(i = 1, 2), with quadrature weights

wn,1(ci ; α) := 1

c2 − c1

∫ ci

0
pα((ci − s)hn)(c2 − s/ci )ds,

wn,2(ci , α) := 1

c2 − c1

∫ ci

0
pα((ci − s)hn)(s/ci − c1)ds.

The elements of the matrices B̂(�)
n (α) (� < n) describing the discretised lag term

have the forms

(B̂(�)
n (α))i,1 = w

(�)
n,1(ci ; α)K (tn,i , t� + c1h�)

and

(B̂(�)
n (α))i,2 = w

(�)
n,2(ci ; α)K (tn,i , t� + c2h�).

6.2.3 Approximation of functions in Hölder spaces and
graded meshes

We briefly mentioned in Section 2.2.1 that graded meshes would play an impor-
tant role in the computation and convergence analysis of collocation methods
for Volterra equations with weakly singular kernels. The regularity results of
Section 6.1 indicate why this will be so: typically, the first derivative of so-
lutions of second-kind VIEs with smooth data behave like t−α if 0 < α < 1,
or like t · log(t) if α = 1, near t = 0+. Thus, it is intuitively clear that collo-
cation in piecewise polynomial spaces based on uniform meshes Ih will, due
to the lack of regularity in y at t = 0, lead to low orders of (global or local)
convergence.

We recall from Section 2.2.1 that for an interval I := [t0, T ] a graded mesh
with grading exponent r > 1 is defined by

Ih := {tn = t (N )
n := t0 + (n/N )r (T − t0) : n = 0, 1, . . . , N }. (6.2.31)

The sequence {hn := tn+1 − tn (n = 0, 1, . . . , N − 1)} is strictly increasing,
and its mesh diameter is given by h = hN−1.

In this chapter we will assume that t0 = 0; graded meshes corresponding to
more general t0 will be encountered in Sections 6.4 and 7.4.2. The following
elementary lemma summarises the key properties of graded meshes.
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Lemma 6.2.3 Let Ih be a graded mesh of the form (6.2.31), with t0 = 0. Then:

(a) tn = nr t1 (n = 1, . . . , N ), with t1 = h0 = T N−r .
(b) h = hN−1 = rT N−1(1 − θ N−1)r−1 ≤ rT N−1, for some θ ∈ (0, 1).
(c) h/h0 = r Nr−1(1 − θ N−1)r−1 for some θ ∈ (0, 1).

The grading exponent r = r (α) > 1 of the meshes that will be employed
in this and the next chapter will depend on the real number α ∈ (0, 1] charac-
terising the weakly singular factor pα(t − s) of the kernel Hα(t, s): our aim is
to choose r (α) so that the collocation solutions uh and uit

h , or their discretised
counterparts, exhibit optimal orders of global and local (super-) convergence.

In order to obtain some first insight into why mesh grading is crucial when
approximating functions with low regularity we recall a number of relevant
definitions and results from classical aproximation theory.

Definition A function f : I := [0, T ] → IRis said to be Hölder continuous on
I , with Hölder exponent β ∈ (0, 1], if there exists a constant Lβ > 0 so that the
Hölder condition,

| f (t) − f (τ )| ≤ Lβ |t − τ |β for all t, τ ∈ I,

holds. The space of Hölder continuous functions on I will be denoted by Cβ(I ).
If a function f : I → IR is in Ck(I ) and y(k) ∈ Cβ(I ), then we shall write

f ∈ Ck,β(I ), with C0,β(I ) := Cβ(I ). For β = 1 we obtain the space of Lipschitz
continuous functions on I which we will denote by C0,1(I ). Clearly, C0,1(I ) is
a proper subset of C(I ).

Illustration 6.2.1 It is easily verified that for ρ ∈ IN0 the function f (t) := tρ+β

is in Cρ,β[0, T ] for any T > 0.

How well can a function f ∈ Cβ(I ) (0 < β < 1) be approximated by (con-
tinuous) piecewise polynomials? The key to the answer in the case of polyno-
mial approximation is given by the classical results of Jackson (see, e.g. Timan
(1963) or Schumaker (1981)), and they can be used to obtain corresponding
optimal orders of convergence for piecewise polynomials of (fixed) degree. We
first cite the following simple but instructive result (which, together with their
proofs, can be found in the books by de Boor (2000) and Powell (1981, pp.
254–255)).

Theorem 6.2.4 Let f (t) = tβ (0 < β < 1), t ∈ [0, 1], and assume that ph is
the unique interpolant in S(0)

1 (Ih) for f with respect to the points Ih := {tn :
0 = t0 < t1 < . . . < tN = 1}.
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(i) If Ih is the uniform mesh then

|| f − ph ||∞ ≤ C1(β)N−β.

This estimate is also true if Ih is a quasi-uniform mesh.
(ii) If Ih is the graded mesh given by

tn :=
( n

N

)r
(n = 0, 1, . . . , N ), with r = r (β) = 2

β
,

then

|| f − ph ||∞ ≤ C∗
1 (β)N−2.

Proof It is not difficult to show that the interpolation error on the subinterval
σ̄n := [tn, tn+1] is given by

eh(t) := f (t) − ph(t) = tβ − [(tn+1 − t)tβ
n + (t − tn)tβ

n+1]/hn,

with hn := tn+1 − tn . The maximum of |eh(t)| on σ̄n is attained at the point

ξn := [βhn/(tβ

n+1 − tβ
n )]1/(1−β.

It now follows from the geometry of f that for uniform Ih we have ||eh ||∞ =
|eh(ξ0)|, and a simple calculation then yields the result of (i).

The assertion of (ii) is proved analogously, by using the given specially
graded mesh and the above expression for ξn .

In order to acquire more insight into the nature of this problem, and as a step
towards the general best approximation result of Theorem 6.2.7 below, we will
indicate how the results of Theorem 6.2.4 can be derived in a different way, by
using what is called an equidistribution principle for the points of the mesh Ih .
The proof can be found in, e.g. de Boor (2000).

Theorem 6.2.5 Assume that f ∈ C2(0, 1) has the property that it is monotone
near t = 0+ and t = 1−, with

∫ 1
0 | f ′′(t)|1/2dt < ∞. If ph ∈ S(0)

1 (Ih) is the in-
terpolant for f on Ih and if the points of Ih satisfy the equidistribution condition∫ tn

0
| f ′′(t)|1/2dt = n

N

∫ 1

0
| f ′′(t)|1/2dt (n = 1, . . . , N − 1),

then the order of the interpolation error eh := f − ph is optimal:

||eh ||∞ ≤ C∗
1 N−2.

As we will see in Illustration 6.2.2 below, for f (t) = tβ (0 < β < 1) the
corresponding optimally graded mesh of Theorem 6.2.4(ii) can also be obtained
by the above equidistribution equation.



6.2 Collocation for weakly singular VIEs of the second kind 373

So far we have only looked at interpolation for Hölder continuous functions.
What can be said about the optimal approximation order exhibited by the best
uniform approximation p∗

h ∈ S(0)
m (Ih)? It turns out, not surprisingly if we look

at the Jackson theorems, that the optimal order on uniform Ih is again O(N−β),
regardless of the degree m ≥ 1. The optimal order is recovered by a judicious
grading of the mesh Ih , as the following theorem reveals.

Theorem 6.2.6 Assume:

(a) f ∈ Cm+1(0, 1), with
∫ 1

0
| f (m+1)(t)|1/(m+1)dt < ∞.

(b) The points defining the mesh Ih satisfy the equidistribution equations∫ tn

0
| f (m+1)(t)|1/(m+1)dt = n

N

∫ 1

0
| f (m+1)(t)|1/(m+1)dt,

n = 1, . . . , N − 1.

If p∗
h ∈ S(0)

m (Ih) denotes the best uniform approximation to f on I , that is, if

|| f − p∗
h ||∞ ≤ || f − ph ||∞ for all ph ∈ S(0)

m (Ih),

then

|| f − p∗
h ||∞ ≤ C∗N−(m+1).

The proof of this theorem can be found in Schumaker (1981, pp. 286–294);
see also de Boor (2000).

Illustration 6.2.2 Let f (t) = tβ (0 < β < 1) and I = [0, 1]. It follows from
f (m+1)(t) = const · tβ−m−1 that

| f (m+1)(t)|1/(m+1) = const · tβ/(m+1)−1.

Hence, the equidistribution condition reduces to∫ tn

0
tβ/(m+1)−1dt = n

N

∫ 1

0
tβ/(m+1)−1dt (n = 1, . . . , N − 1),

and this yields the mesh described by

tn =
( n

N

)(m+1)/β
(n = 0, 1, . . . , N ).

We shall encounter this optimal grading exponent, r = r (β) := (m + 1)/β, in
the subsequent convergence analyses for VIEs and VIDEs with weakly singular
kernels.

Illustration 6.2.3 Consider f (t) = t log(t) in I = [0, 1]. Since we now have

f (k+1)(t) = (−1)k+1(k − 1)!t−k (k ≥ 1, t > 0),
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and hence

| f (m+1)(t)|1/(m+1) = const · t−m/(m+1),

the equdistribution condition yields the optimal grading exponent r = m + 1,
and the corresponding graded mesh is given by

tn =
( n

N

)m+1
(n = 0, 1, . . . , N ).

We observe that this agrees formally with r (1) in Illustration 6.2.2. See also the
result of Theorem 6.2.11.

Readers who are looking for a more general setting and additional details
on the results in this section are directed to the papers by Krantz (1983) and
Graham (1985).

6.2.4 The error in product quadrature on graded meshes

Suppose that f ∈ Cd (I ) (d ≥ 0), with I := [0, T ]. On a given mesh Ih we
approximate the integrals

(Q(α) f )(tn) :=
∫ tn

0
pα(tn − s) f (s)ds

=
n−1∑
�=0

h�

∫ 1

0
pα((tn − t�)/h� − s)h�) f (t� + sh�)ds

(n = 1, . . . , N ) by the interpolatory m-point (composite) product quadrature
formulas

(Q̂(α) f )(tn) :=
n−1∑
�=0

h�

m∑
k=1

w
(�)
n,k(α) f (t�,k).

Here, the abscissas t�,k := t� + ckh� correspond to prescribed points {ck} with
0 ≤ c1 < · · · < cm ≤ 1, and the product quadrature weights are defined by

w
(�)
n,k(α) :=

∫ 1

0
pα((tn − t�)/h� − s)h�)Lk(s)ds (k = 1, . . . , m)

(cf. (6.2.23) with v = 0). If 0 < α < 1 we may write

w
(�)
n,k(α) = h−α

�

∫ 1

0

(
tn − t�

h�

− s

)−α

Lk(s)ds.

Note that for � = n − 1 these quadrature weights assume the form

w
(n−1)
n,k (α) = h−α

n−1

∫ 1

0
(1 − s)−α Lk(s)ds.
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The first result (see de Hoog and Weiss (1973c)) deals with the optimal
order of the product quadrature error on uniform meshes when pα(t − s) =
(t − s)−α (0 < α < 1).

Theorem 6.2.7 Assume:

(a) f ∈ Cd (I ) with d ≥ m;

(b) κ := min

{
ν ∈ IN0 : Jν :=

∫ 1

0
sν

m∏
i=1

(s − ci )ds �= 0 (κ ≤ m)

}
;

(c) Ih is uniform: tn := nh, n = 0, 1, . . . , N (Nh = T ).

Then for any α ∈ (0, 1) and any d ≥ m,

|(Q(α) f )(tn) − (Q̂(α) f )(tn)| ≤ C(α)

{
hm if κ = 0
hm+1−α if κ > 0.

For suitably graded meshes it is possible to attain a higher order of conver-
gence (Schneider (1980); compare also Kaneko and Xu (1994), Köhler (1995),
and Tamme (2000)):

Theorem 6.2.8 Let κ be as in Theorem 6.2.7 and assume that:

(a) f ∈ Cm+κ (I ) if κ > 0; else f ∈ Cm+1(I );
(b) Ih is the graded mesh given by

tn :=
( n

N

)ρ∗

, with ρ∗ = ρ∗(α) := m + κ + 1

m + 1 − α
.

Then for any α ∈ (0, 1) we have

|(Q(α) f )(tn) − (Q̂(α) f )(tn)| = O(n−(m+κ)) (n = 1, . . . , N ).

This estimate remains true for graded meshes with grading exponents ρ > ρ∗

and sufficiently small mesh diameters h.

The principal application of these results in the subsequent analysis will
be in the convergence analysis of the discretised collocation solution (Section
6.2.7). As a preview we note here that the optimal grading exponent ρ∗ given
in (b) of the above theorem satisfies

ρ∗ = m + κ − α

m + 1 − α
<

m

1 − α
=: r

for all α ∈ (0, 1]: since r will be seen to be the optimal grading exponent for
the collocation solution uh ∈ S(−1)

m−1(Ih) to attain the global order p = m on I ,
Theorem 6.2.8 will show that the discretised collocation solution will retain
this order, due to sufficient (over-) grading of the mesh.
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An analogous result is true for the logarithmic kernel singularity p1(t − s) =
log(t − s) (corresponding to α = 1). This can be proved by using, for example,
Theorem 2.3 in Kaneko and Xu (1994), with r = m in the above inequality.

6.2.5 Global convergence results

The collocation error eh := y − uh associated with the collocation solution
uh ∈ S(−1)

m−1(Ih) to the (linear) VIE

y(t) = g(t) + (Vα y)(t), t ∈ I := [0, T ],

satisfies

eh(t) = (Vαeh)(t), t ∈ Xh . (6.2.32)

Assume first that 0 < α < 1 (the case of the logarithmic kernel singularity will
be considered later). We know from Section 2.2.4 and the regularity property
of the exact solution y that much of the global convergence analysis carries
over to VIEs with weakly singular kernels. The significant new element is the
representation of eh on the first subinterval σ̄0 := [0, h0]: since y possesses an
unbounded derivative at the left endpoint t = 0+, we have to replace the local
representation (2.2.31) (which was based on the Peano Theorem) by

eh(t0 + vh0) =
m∑

j=1

L j (v)E0, j + hβ

0 Rm,0(v; α), v ∈ [0, 1], (6.2.33)

with appropriate (fractional) exponent β > 0 and remainder term Rm,0(v; α) to
be determined. On the other subintervals σn (n = 1, . . . , N − 1) the represen-
tation (2.2.31),

eh(tn + vhn) =
m∑

j=1

L j (v)En, j + hm
n Rm,n(v), v ∈ (0, 1], (6.2.34)

remains valid. Hence, a look at the proof of Theorem 2.2.3 (recall in particular
(2.2.33) and the subsequent discrete Gronwall argument for (2.2.34)) reveals
that the order of the collocation error will be governed by the first remainder
term hβ

0 Rm,0(v; α). The detailed proof of the following theorem will show that
for uniform meshes the value of β will be β = 1 − α, regardless of the degree
m − 1 of the piecewise polynomials in uh . This is of course not unexpected
after our short excursion, in Section 6.2.3, into the problem of approximating
non-smooth functions. That insight also suggests that if Ih is a graded mesh with
grading exponent r = r (α) ≥ m/(1 − α) then uh converges again with optimal
order p = m.
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Graded meshes in collocation (and Galerkin) methods for Fredholm integral
equations of the second kind were first employed in the late 1970s, by Chandler
(1979), Graham (1980), Schneider (1981), and Vainikko and Uba (1981) (com-
pare also the Notes in Section 6.7). For VIEs with 0 < α < 1 they were used
by Brunner (1985a, 1985c) (see also the Brunner and van der Houwen (1986,
Chapter 6) and the survey by Brunner (1987)). The definitive convergence (and
superconvergence) analysis, including weakly singular kernels of logarithmic
type, as well as bounded but non-smooth kernels, can be found in Brunner,
Pedas and Vainikko (1999).

The basic result is the following.

Theorem 6.2.9 Assume:

(a) The given functions in the Volterra integral equation (6.2.4) satisfy K ∈
Cm(D) and g ∈ Cm(I ).

(b) The kernel singularity in Vα is pα(t − s) = (t − s)−α , with 0 < α < 1.
(c) uh ∈ S(−1)

m (Ih) is the (unique) collocation solution to (6.2.4) defined by
(6.2.5), with h ∈ (0, h̄) and corresponding to the collocation points Xh.

(d) The grading exponent r = r (α) ≥ 1 determining the mesh Ih is given by

r (α) = µ

1 − α
, µ ≥ 1 − α.

Then we have, setting h := T/N:

||y − uh ||∞ := sup
t∈I

|y(t) − uh(t)| ≤ C(r )

{
hµ if 1 − α ≤ µ ≤ m,

hm if µ ≥ m,

(6.2.35)
holds for any set Xh of collocation points with 0 ≤ c1 < · · · < cm ≤ 1. The
constant C(r ) depends on the {ci } and on the grading exponent r = r (α), but
not on h.

Proof As we have indicated at the beginning of this section, the proof will fol-
low closely the one for Theorem 2.2.1, except that now the local (Peano) repre-
sentation of the exact solution y on σ̄n remains valid only if n = 1, . . . , N − 1.
The collocation error eh := y − uh satisfies the error equation

eh(tn,i ) = (Vαeh)(tn,i ), i = 1, . . . , m (0 ≤ n ≤ N − 1). (6.2.36)

Its right-hand side is

(Vαeh)(tn,i ) =
∫ t1

0
Hα(tn,i , s)eh(s)ds +

∫ tn

t1

Hα(tn,i , s)eh(s)ds

+ hn

∫ ci

0
Hα(tn,i , tn + shn)eh(tn + shn)ds.
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It follows from Theorem 6.1.6 and Section 2.2 that for n = 1, . . . , N − 1 the
collocation error on the corresponding subintervals σn has the local Lagrange
(-Peano) representation

eh(tn + vhn) =
m∑

j=1

L j (v)En, j + hm
n Rm,n(v), v ∈ (0, 1], (6.2.37)

where E(tn, j ) := eh(tn, j ) and

Rm,n(v) :=
∫ 1

0
Km(v, z)y(m)(tn + zhn)dz,

with

Km(v, z) := 1

(m − 1)!

{
(v − z)m−1

+ −
m∑

k=1

Lk(v)(ck − z)m−1
+

}
, z ∈ [0, 1].

For n = 0 we resort to Theorem 6.1.6: it implies that on σ̄0 = [t0, t1] =
[0, h0] the exact solution of (6.2.4) can be written in the form

y(t0 + vh0) =
∑
( j,k)α

γ j,k(α)(t0 + vh0) j+k(1−α) + hm
0 Ȳ m,0(v; α), v ∈ [0, 1],

with

( j, k)α := {( j, k) : j, k ∈ IN0, j + k(1 − α) < m},

and with obvious adaptation of the meaning of the definition of Ym,0(v; α);
recall (6.1.17). (The general initial point t0, instead of t0 = 0, is being used in
view of later applications to weakly singular VIE with non-vanishing delays;
see Sections 6.5 and 7.5.)

We rewrite this representation as

y(t0 + vh0) =
∑
( j,k)′α

γ j,k(α)h j+k(1−α)
0 v j+k(1−α) +

∑
( j,k)′′α

γ j,k(α)h j+k(1−α)
0 v j+k(1−α)

+ hm
0 Ym,0(v; α), v ∈ [0, 1],

where

( j, k)′α := {( j, k) : j + k(1 − α) ∈ IN0; j + k(1 − α) < m}

and

( j, k)′′α := {( j, k) : j + k(1 − α) �∈ IN0; j + k(1 − α) < m}.
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With self-explanatory meaning of the coefficients c j,k(α) we thus obtain the
local representation

y(t0 + vh0) =
m−1∑
j=0

c j,0(α)v j + h1−α
0 	m,0(v; α) + hm

0 Ym,0(v; α), v ∈ [0, 1],

(6.2.38)
with

	m,0(v; α) :=
∑
( j,k)′′α

c j,k(α)v j+k(1−α).

Suppose now that on σ̄0 the collocation solution uh ∈ S(−1)
m−1(Ih) is expressed in

the form

uh(t0 + vh0) =
m−1∑
j=0

d j,0v
j , v ∈ [0, 1].

This allows us to write the collocation error on σ̄0 as

eh(t0 + vh0) =
m−1∑
j=0

β j,0(α)v j + h1−α
0

∑
( j,k))′′α

c j,k(α)v j+k(1−α) + hm
0 Rm,0(v; α),

v ∈ [0, 1], (6.2.39)

having set β j,0(α) := c j,0(α) − d j,0.
We now return to the error equation (6.2.36) corresponding to n = 0. It

follows from

eh(t0 + ci h0) = (Vαeh)(t0 + ci h0)

= hα
0

∫ ci

0
(ci − s)−α K (t0 + ci h0, t0 + sh0)eh(t0 + sh0)ds

that the unknown coefficients β j,0(α) in (6.2.39) solve the linear algebraic sys-
tem

m−1∑
j=0

(
c j

i − h1−α
0

∫ ci

0
(ci − s)−α K (t0,i , t0 + sh0)s j ds

)
β j,0(α)

= −h1−α
0

∑
( j,k)′′α

(
c j+k(1−α)

i − h1−α
0

×
∫ ci

0
(ci − s)−α K (t0,i , t0 + sh0)s j+k(1−α)ds

)
c j,k(α)

− hm
0

(
Rm,0(ci ; α) − h1−α

0

∫ ci

0
(ci − s)−α K (t0,i , t0 + sh0)Rm,0(s; α)ds

)

(6.2.40)
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(i = 1, . . . , m). It can be written compactly as

[Vm − h1−α
0 B0(α)]β0(α) = h1−α

0 q0(α) + hm
0 ρ0(α).

Here, Vm ∈ L(IRm) denotes the Vandermonde matrix based on the collocation
parameters {ci }, and the components of the vectors q0(α) and ρ0(α) can be
deduced from (6.2.40). Due to the continuity and boundedness of the kernel
K and the remainder term Rm,0(·; α) the inverse matrix [Vm − h1−α

0 B0(α)]−1

exists for all α ∈ (0, 1) and is uniformly bounded for sufficiently small h0. This
in turn implies that, since m ≥ 1,

||β0(α)||1 ≤ Bh1−α
0 (α ∈ (0, 1))

holds for some constant B, and thus, by (6.2.39),

|eh(t0 + vh0)| ≤ ||β0(α)||1 + γ0(α)h1−α
0 + γ1(α)hm

0 , v ∈ [0, 1],

with appropriate constants γ0(α), γ1(α) and h0 ∈ (0, h̄). If the grading exponent
r = r (α) is chosen as r = µ/(1 − α), with 1 − α ≤ µ ≤ m, then we have

h1−α
0 = (T N−r )1−α = T 1−α N−µ = O(hµ) (h := T/N ),

by Lemma 6.2.3(a), and hence

||eh ||0,∞ := max
v∈[0,1]

|eh(t0 + vh0)| = O(hµ). (6.2.41)

Assume now that 1 ≤ n ≤ N − 1. It follows from the error equation (6.2.36)
and the corresponding expression for (Vαeh)(tn,i ) that

En,i − h1−α
n

m∑
j=1

(∫ ci

0
(ci − s)−α K (tn,i , tn + shn)L j (s)ds

)
En, j

=
n−1∑
�=1

h1−α
�

m∑
j=1

(∫ 1

0
((tn,i − t�)/h� − s)−α K (tn,i , t� + sh�)L j (s)ds

)
E�, j

+ h1−α
0

∫ 1

0
((tn,i − t0)/h0 − s)−α K (tn,i , t0 + sh0)eh(t0 + sh0)ds

+ hm+1−α
n

∫ ci

0
(ci − s)−α K (tn,i , tn + shn)Rm,n(s; α)ds

+
n−1∑
�=1

hm+1−α
�

∫ 1

0
((tn,i − t�)/h� − s)−α K (tn,i , t� + sh�)Rm,�(s; α)ds

(6.2.42)
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(i = 1, . . . , m). This represents a linear algebraic system,

[Im − h1−α
n Bn(α)]En =

n−1∑
�=1

h1−α
� B(�)

n (α)E� + h1−α
0 q(0)

n (α)

+ hm+1−α
n ρn(α) +

n−1∑
�=1

hm+1−α
� ρ(�)

n (α), (6.2.43)

described by the vectors

q0(α) :=
(∫ 1

0
((tn,i − t0)/h0 − s)−α K (tn,i , t0 + sh0)eh(t0 + sh0)ds

(i = 1, . . . , m)

)T

,

ρn(α) :=
(∫ ci

0
(ci − s)−α K (tn,i , tn + shn)Rm,n(s; α)ds (i = 1, . . . , m)

)T

,

ρ(�)
n (α) :=

(∫ 1

0
((tn,i − t�)/h� − s)−α K (tn,i , t� + sh�)Rm,�(s; α)ds

(i = 1, . . . , m)

)T

,

and the matrices Bn(α) and B(�)
n (α) (� < n) whose meaning is clear from

(6.2.42) (see also (6.2.11) and (6.2.12)). As Theorem 6.2.1 showed, [Im −
h1−α

n Bn(α)]−1 exists and is uniformly bounded whenever hn ∈ (0, h̄): there is
a constant D0(α) so that

||(Im − h1−α
n Bn(α))−1||1 ≤ D0(α) (n = 1, . . . , N − 1). (6.2.44)

Thus, (6.2.43) yields a generalised discrete Gronwall inequality,

||En||1 ≤ D0(α)

(
n−1∑
�=1

h1−α
� ||B(�)

n (α)||1 · ||E�||1 + h1−α
0 ||q(0)

n (α)||1

+ hm+1−α
n ||ρn(α)||1 +

n−1∑
�=1

hm+1−α
� ||ρ(�)

n (α)||1
)

(n = 1, . . . , N −1).

(6.2.45)

In order to derive the desired �1-estimates for the above vectors and matrices
(so as to transform (6.2.45) into a discrete Gronwall inequality of the form
(6.1.45)), we have to appeal to Lemma 6.2.3 and the following

Lemma 6.2.10 Let Ih be the graded mesh (6.2.31) on I = [0, T ], with grading
exponent r ≥ 1. If the {ci } satisfy 0 ≤ c1 < · · · < cm ≤ 1 then, for 1 ≤ � < n ≤
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N − 1 and ν ∈ IN0,∫ 1

0

(
tn,i − t�

h�

− s

)−α

sνds ≤ γ (α)(n − �)−α (i = 1, . . . , m)

with γ (α) := 2α/(1 − α).

Proof Consider first the case � = n − 1 for which∫ 1

0

(
tn,i − tn−1

hn−1
− s

)−α

sνds ≤
∫ 1

0
(1 + ci hn/hn−1 − s)−αds

≤ 1/(1 − α) < 2α/(1 − α),

(i = 1, . . . , m; 0 < α < 1). Here, we have used the fact that r ≥ 1 (r > 1)
implies that hn−1 ≤ hn (hn−1 < hn) for n = 1, . . . , N − 1.

Assume now that � < n − 1. In this case we obtain∫ 1

0

(
tn,i − t�

h�

− s

)−α

sνds ≤
∫ 1

0

(
tn − t�

h�

− s

)−α

ds

= 1

1 − α

{(
tn − t�

h�

)1−α

−
(

tn − t�
h�

− 1

)1−α
}

= 1

1 − α

(
tn − t�

h�

)1−α

×

1 −

[
1 −

(
tn − t�

h�

)−1
]1−α


 .

The application of the Mean-Value Theorem to the function f (z) := (1 − z)1−α ,
with z := [(tn − t�)/h�]−1, leads without difficulty to∫ 1

0

(
tn,i − t�

h�

− s

)−α

ds ≤
(

tn − t�
h�

)−α
(

1 − θn,�

(
tn − t�

h�

)−1
)−α

,

where θn,� is some number between 0 and 1. Since, as pointed out above,

0 < h0 < h1 < · · · < hn−1 < hn < · · · < hN−1 = h,

it follows that

tn − t�
h�

= hn−1 + · · · + h�+1 + h�

h�

≥ (n − �)h�

h�

= n − �,

and so

1 − θn,�

(
tn − t�

h�

)−1

≥ 1 −
(

tn − t�
h�

)−1

≥ 1 −
(

h�+1 + h�

h�

)−1

≥ 1

2
,

whenever � ≤ n − 2.
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We have thus shown that∫ 1

0

(
tn,i − t�

h�

− s

)−α

sνds ≤ 2α(n − �)−α <
2α

1 − α
(n − �)−α

for i = 1, . . . , m, � ≤ n − 2, and 0 < α < 1. This completes the proof of
Lemma 6.2.10.

Recall now the definition of the matrices B(�)
n (α) and the vectorsρ(�)

n (α) (� <

n) from Section 6.2.1. It is easy to verify, along the lines of the proof of Theorem
2.2.3, that

||B(�)
n (α)||1 ≤ D1(α)(n − �)−α (� < n)

and

||ρ(�)
n (α)||1 ≤ R1(α)(n − �)−α (� < n),

with appropriate constants D1(α) and R1(α) depending on m and the bounds
for K and the uniform norms of the Lagrange fundamental polynomials L j .
The inequality (6.2.45) now becomes

||En||1 ≤ γ0(α)h1−α
n−1∑
�=1

(n − �)−α||E�||1 + γ1(α)h1−α
0

+ γ2(α)hm+1−α
n + γ3(α)

n−1∑
�=1

hm+1−α
� (n − �)−α, (6.2.46)

with 1 ≤ n ≤ N − 1 and appropriate constants γi (α) (i = 1, 2, 3). (It is instruc-
tive to compare this with (2.2.34).)

Recall now the generalised discrete Gronwall inequality (6.1.45) and Theo-
rem 6.1.19: we now have z� := ||E�||1, and the sequence {γn} given by

γn := γ1(α)h1−α
0 + γ2(α)hm+1−α + γ3(α)

n−1∑
�=1

hm+1−α
� (n − �)−α (n ≥ 1)

is clearly non-decreasing. Moreover, we have

n−1∑
�=1

h1−α
� (n − �)−α ≤ T 1−α

1 − α
, n = 1, . . . , N .

This is easily verified by observing that, for any uniform mesh,

∫ tn

0
(tn − s)−αds = h1−α

n−1∑
�=0

∫ 1

0
(n − � − s)−αds ≥ h1−α

n−1∑
�=0

(n − �)−α,
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where the last expression represents the lower Riemann sum (left rectangular
quadrature approximation) for the given integral whose integrand is convex on
[0, tn).

Hence, we have found a uniform upper bound for γn , namely,

γn ≤ γ̄ := γ1(α)h1−α
0 + γ2(α)hm+1−α + γ3(α)hm T 1−α/(1 − α)

= γ1(α)h1−α
0 + [γ2(α)h1−α + γ3(α)T 1−α/(1 − α)]hm,

and with this (6.2.46) leads to

||En||1 ≤ E1−α(γ0(α)�(1 − α)(nh)1−α) · h1−α
0 · γ̄ .

Lemma 6.2.3 shows that

nh ≤ nrT N−1 = (n/N )rT ≤ rT, n = 1, . . . , N ,

and we have

h1−α
0 = (T N−r )1−α = T 1−α N−r (1−α) = T 1−α N−µ, (6.2.47)

for any graded Ih with grading exponent r = µ/(1 − α) (1 − α ≤ µ ≤ m).
Therefore, ||En||1 ≤ Bhµ (1 ≤ n ≤ N − 1), and so, by (6.2.37) and (6.2.41),
we arrive at the desired estimate for ||eh ||∞.

If the weakly singular part of the kernel Hα(t, s) in (6.2.2) is of logarithmic
type (corresponding to α = 1) we recover the optimal (global) order of conver-
gence if r = m, as the following theorem (due to Brunner, Pedas and Vainikko
(1999)) shows.

Theorem 6.2.11 Assume that in (6.2.2), (6.2.4) we have α = 1 (that is,
pα(t − s) = log(t − s)) and g ∈ Cm(I ), K ∈ Cm(D). Let Ih be the graded
mesh (6.2.31) with grading exponent r ≥ 1, and set h := T/N. Then the global
order of convergence of the collocation solution uh ∈ S(−1)

m−1(Ih) for (6.2.4) is
described by

||y − uh ||∞ ≤ C(r )




h(1 + | log(h)|) if r = 1 and m = 1,

h if r > 1 and m = 1,

hr if 1 ≤ r ≤ m and m ≥ 2,

hm if r ≥ m and m ≥ 2.

Proof The proof is based on the regularity result of Theorem 6.1.7 (recall
also Illustration 6.2.3). Details may be found in the paper just mentioned: they
include the embedding of the given VIE (6.2.4) into a second-kind Fredholm
integral equation and the corresponding tools for the analysis of its collocation
solution.
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We conclude this section by complementing the above convergence results
with one for VIEs whose kernels are bounded but have unbounded derivatives.
As a typical example, consider

(Vν y)(t) :=
∫ t

0
(t − s)ν K (t, s)y(s)ds, t ∈ I := [0, T ], (6.2.48)

with ν := ρ − α (ρ ∈ IN and 0 < α < 1). Assume also that K (t, t) �= 0 for
t ∈ I . (VIEs with more general non-smooth (but bounded) kernels have been
studied in Brunner, Pedas and Vainikko (1999).)

Theorem 6.2.12 Assume that the given functions g and K in

y(t) = g(t) + (Vν y)(t), t ∈ I,

satisfy g ∈ Cm(I ), K ∈ Cm(D). If Ih is the graded mesh (6.2.31) with grading
exponent

r = r (ν) = µ

1 + ν
(µ ≥ 1 + ν),

then the corresponding collocation solution uh ∈ S(−1)
m−1(Ih) satisfies

||y − uh ||∞ ≤ C(r )

{
hµ if 1 + ν ≤ µ ≤ m,

hm if µ ≥ m,

where we have again defined h := T/N. These estimates hold for any {ci } with
0 ≤ c1 < · · · < cm ≤ 1.

The proof is left as an exercise: its starting point is the regularity result of
Theorem 6.1.8, and it consists essentially in a straightforward adaption of the
proof for Theorem 6.2.9 where 1 − α is now replaced by 1 + ν = ρ + 1 − α.
The choice of the grading exponent then implies

h1+ν
0 = (T N−r )1+ν = T 1+ν N−µ.

Compare also Brunner (1985b), and see Brunner, Pedas and Vainikko (1999)
for the extension of Theorem 6.2.12 to bounded but non-smooth kernels of the
form (t − s)k log(t − s) (k ∈ IN).

6.2.6 Global and local superconvergence results

So far we have only considered the attainable order of (global) convergence
on I for the collocation solution uh when {ci } is an arbitrary set of collocation
parameters. If uit

h is the corresponding iterated collocation solution,

uit
h (t) := g(t) + (Vαuh)(t), t ∈ I,
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can it exhibit global or local superconvergence (on I or Ih \ {0}, respectively),
and what are the optimal orders? It is intuitively clear that on uniform meshes
little can be gained. As the following theorems show, the possible orders of
superconvergence for suitably graded meshes are only marginally higher than
m.

Theorem 6.2.13 Assume:

(a) g ∈ Cm+1(I ), K ∈ Cm+1(D), with K (t, t) �= 0 on I , and 0 < α < 1;
(b) uh ∈ S(−1)

m−1(Ih) is the collocation solution to (6.2.4), with corresponding
iterated collocation solution uit

h ;

(c) the collocation parameters satisfy J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0;

(d) Ih is the graded mesh (6.2.31) with grading exponent r ≥ 1, and h := T/N.

Then:

||y − uit
h ||∞ ≤ C(r )

{
h2(1−α) if r = 1,

hm+1−α if r ≥ m
1−α

.

Proof The relationship between eit
h := y − uit

h and the defect δh , defined by

δh(t) := −uh(t) + g(t) + (Vαuh)(t), t ∈ I,

is – in complete analogy to the case α = 0 of Section 2.2 – given by

eit
h (t) =

∫ t

0
Rα(t, s)δh(s)ds, t ∈ I, (6.2.49)

where Rα(t, s) is the resolvent kernel introduced in Theorem 6.1.2,

Rα(t, s) := (t − s)−α Q(t, s; α) (0 < α < 1).

We first observe that

δh(t) = eh(t) − (Vαeh)(t), t ∈ I,

implies, by the global convergence result of Theorem 6.2.9,

||δh ||∞ ≤ (1 + ||Vα||∞)||eh ||∞ ≤ (1 + ||Vα||∞)C(r )hµ =: D(r )hµ,

provided the grading exponent has been chosen as r = µ/(1 − α) with 1 − α ≤
µ ≤ m. Here, the norm of the Volterra integral operator Vα is given by

||Vα||∞ = max
t∈I

∫ t

0
pα(t − s)|K (t, s)|ds.
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Consider (6.2.49) for t = tn + vhn ∈ σn . If n = 0 there exist constants
D = D(r ) and Qα so that

|eit
h (t)| ≤

∫ t

0
(t − s)−α|Q(t, s; α)||δh(s)|ds

≤ ||δh ||∞
∫ t

0
(t − s)−α|Q(t, s; α)|ds

≤ D(r )hµ · Qαt1−α/(1 − α) ≤ D(r )hµ Qαh1−α
0 /(1 − α) = O(hµ+1−α),

v ∈ [0, 1].

Thus, on uniform Ih we obtain

|eit
h (t0 + vh)| = O(h2(1−α) (v ∈ [0, 1].

If Ih is a graded mesh, with r = m, there follows

|eit
h (t0 + vh0)| = O(hm+1−α), v ∈ [0, 1],

with h := T/N
If 1 ≤ n ≤ N − 1 and t = tn + vhn ∈ σn , equation (6.2.49) yields

eit
h (t) =

∫ tn

0
(t − s)−α Q(t, s; α)δh(s)ds + h1−α

n∫ v

0
(v − s)−α Q(t, tn + shn; α)δh(tn + shn)ds.

Consider the second (‘local’) term on the right-hand side: since ||δh ||∞ = O(hµ)
an upper bound for its absolute value is given by

h1−α
n hµ Q0(α)/(1 − α) = O(N−(µ+1−α)) (1 − α ≤ µ ≤ m).

The sum in the first term can be written as

n−1∑
�=0

h1−α
�

∫ 1

0

(
tn + vhn − t�

h�

− s

)−α

Q(t, t� + sh�; α)δh(t� + sh�)ds.

Since we now have � < n, the integrands of the individual integrals are no
longer singular. Hence, the orders of the quadrature errors induced by (weighted)
interpolatory quadrature based on the m collocation points in each σ� match
that of the second term (see also Schneider (1980) and Kaneko and Xu (1994)),
because the collocation parameters {ci } are assumed to satisfy the orthogonality
condition J0 = 0.
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6.2.7 Fully discretised collocation and product integration
methods

We have shown in Section 2.2.6 that a judicious choice of the quadrature for-
mulas in the discretisation of the integrals occurring in the collocation equation
will not reduce the order of convergence of the resulting discretised collocation
solution ûh . This remains true for VIEs with weakly singular kernels when
appropriate product quadrature formulas are used. To be more precise, assume
that uh and ûh denote again the exact and the discretised collocation solution
in S(−1)

m−1(Ih): they are determined, respectively, by the equations

uh(t) = g(t) + (Vαuh)(t), t ∈ Xh

and

ûh(t) = g(t) + (V̂α,hûh)(t), t ∈ Xh .

The discretised Volterra operator V̂α,h was introduced in Section 6.2.2: it is
given by

(V̂α,hûh)(tn,i ) := F̂n(tn,i ; α) + h1−α
n (Q̂n(α)ûh)(tn,i ),

where

F̂n(tn,i ; α) :=
n−1∑
�=0

(Q̂(�)
n (α)ûh)(tn,i )

and with product quadrature operators Q̂n(α) and Q̂(�)
n (α) defined in (6.2.20)

and (6.2.21). The discretised iterated collocation solution ûi t
h associated with

ûh is defined by

ûi t
h (t) := g(t) + (V̂α,hûh)(t), t ∈ I.

What can be said about the orders of the perturbations

zh(t) := uh(t) − ûh(t),

and

zit
h (t) := uit

h (t) − ûi t
h (t), t ∈ I ?

In order to show that its order agrees with that of the exact collocation solution
itself, we introduce the product quadrature errors,

(Q̂(�)
n (α)ûh)(tn,i ) = (Q(�)

n (α)ûh)(tn,i ) − E (�)
n (tn,i ; α) (� < n),

(Q̂n(α)ûh)(tn,i ) = (Qn(α)ûh)(tn,i ) − En(tn,i ; α),
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and we define

εn(tn,i ) :=
n−1∑
�=0

h1−α
� E (�)

n (tn,i ; α) + h1−α
n En(tn,i ; α) (i = 1, . . . , m). (6.2.50)

Let εn := (εn(tn,1), . . . , εn(tn,m))T , and set Zn,i := zh(tn,i ). Since we have

zh(tn,i ) = (Vαuh)(tn,i ) − (V̂α,hûh)(tn,i ),

it follows that Zn := (Zn,1, . . . , Zn,m)T solves the algebraic system

[Im − h1−α
n Bn(α)]Zn =

n−1∑
�=0

h1−α
� B(�)

n (α)Z� + εn, (6.2.51)

n = 0, 1, . . . , N − 1; 0 < α < 1. (Before proceeding, the reader may wish to
have another look at (6.2.43)–(6.2.45) and at Lemma 6.2.10.) Hence,

||Zn||1 ≤ γ0(α)h1−α
n−1∑
�=0

(n − �)−α||Z�||1 + D0(α)||εn||1,

whenever h ∈ (0, h̄). Since the integrands in Q�)
n (α)ûh and Qn(α)ûh are smooth

on each subinterval σ̄n , the orders of the quadrature errors in (6.2.50) are gov-
erned by the results of Theorem 6.2.7 (if Ih is uniform) and Theorem 6.2.8 (if Ih

is graded); see also Brunner (1984b) and Brunner and van der Houwen (1986,
pp. 365–369). We summarise these order results in

Theorem 6.2.14 Assume:

(a) g ∈ Cd (I ), K ∈ Cd (D) for some d ≥ m, and 0 < α < 1;
(b) uh ∈ S(−1)

m−1(Ih) is the exact collocation solution, with corresponding iterated
collocation slution uit

h , for the weakly singular VIE (6.2.4);
(c) ûh ∈ S(−1)

m−1(Ih) denotes the discretised collocation solution, for the same col-
location points Xh, given by (6.2.19), with discretised iterated collocation
solution ûit

h . The underlying quadrature formulas are the (interpolatory)
product quadrature rules (6.2.20) and (6.2.21).

(d) The collocation parameters ci satisfy the orthogonality condition of Theo-
rem 6.2.7 (assumption (b)).

Then:

(i) The estimates

||uh − ûh ||∞ ≤ C(α)

{
hm if κ = 0,

hm+1−α if κ ≥ 1

hold for uniform Ih. The same orders are attained by ||uit
h − ûi t

h ||∞.
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(ii) If Ih is graded, with grading exponent r satisfying r ≥ (m + κ + 1)/
(m + 1 − α), then we obtain (setting h := T/N)

||uh − ûh ||∞ ≤ C(r )hm+κ and ||uit
h − ûi t

h ||∞ ≤ C(r )hm+κ ,

for all α ∈ (0, 1).

Remark The use of non-product (but interpolatory) quadrature formulas for
the integrals Q(�)

n (α)uh (� < n) whose abscissas are the collocation points in
the subintervals σ� lead to the same estimates, but possibly with larger error
constants.

Proof In Theorem 6.2.7 (product quadrature on uniform Ih) and Theorem 6.2.8
(product quadrature on graded meshes) we presented the relevant information
on the orders of the resulting product quadrature errors. Note that the smooth
part of the integrand in Section 6.2.4 is now given by the product of the kernel
K and the restriction of the collocation solution uh (or ûh) on the subintervals
σ̄n . Moreover, as we observed after Theorem 6.2.8,

r = m/(1 − α) > (m + κ + 1)/(m + 1 − α)

for α ∈ (0, 1) and all m ≥ 1.

6.2.8 Comparison with weakly singular Fredholm
integral equations

Solutions of second-kind Fredholm integral equations with weakly singular
kernels but otherwise smooth data g and K (with K (t, t) �= 0),

y(t) = g(t) + λ(Fα y)(t), t ∈ I := [0, T ],

where the Fredholm operator Fα : C(I ) → C(I ) has the form

(Fαφ)(t) :=
∫ T

0
pα(|t − s|)K (t, s)φ(s)ds, 0 < α ≤ 1,

and pα(t) as before, possess unbounded derivatives at both endpoints of I . To be
more precise, assume that λ−1 �∈ σ (Fα) and that g ∈ Cm(I ), K ∈ Cm(I × I ).
The unique solution y then lies in Cm(0, T ), and the behaviour at t = 0+ and
t = T − is described by

|yν)(t)| ≤ C[t1−α−ν + (T − t)1−α−ν], t ∈ (0, T ), (ν = 1, . . . , m).

Details and proofs of this and more general regularity results for weakly singular
FIEs can be found in Richter (1976), Schneider (1979), Vainikko and Uba
(1981) (see also for earlier papers, in Russian, by Vainikko and others), Graham
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(1982a), and in the book by Vainikko, Pedas and Uba (1984). More recent
papers are by Kaneko, Noren and Xu (1992) and by Pedas and Vainikko (1997)
(nonlinear FIEs). The standard reference for regularity results of solutions of
multidimensional FIEs with weakly singular kernels is Vainikko (1993).

It is clear from our earlier analysis that this singular behaviour of the solution
at t = 0 and t = T will in general again result in a reduction of the attainable
order of piecewise polynomial collocation solutions. Assume that uh ∈ S(−1)

m (Ih)

satifies the collocation equation

uh(t) = g(t) + λ(Fαuh)(t), t ∈ Xh,

with corresponding iterated collocation solution given by

uit
h (t) := g(t) + λ(Fαuh)(t), t ∈ I.

The set Xh of collocation points is again based on m distinct collocation pa-
rameters {ci } in I . In order to reflect the symmetric location of the points where
y has unbounded derivatives we choose the points of the mesh Ih by

tn :=
( n

N

)r T

2
, n = 0, 1, . . . , N ; tN+n := T − tN−n, n = 1, . . . , N ,

with r ≥ 1 denoting the grading parameter. It can then be shown (see, e.g.
Vainikko and Pedas (1981), Schneider (1981), Pedas and Vainikko (1997); also
Kaneko, Noren and Xu (1992) and Kaneko, Noren and Padilla (1997)) that, for
sufficiently regular g and K and 0 < α < 1,

||y − uh ||∞ := sup{|y(t) − uh(t)| : t ∈ I } = O(N−µ)

if the grading exponent is given by r = µ/(1 − α) (1 − α ≤ µ ≤ m), in com-
plete analogy to the result in Theorem 6.2.9 for weakly singular VIEs. The
iterated collocation solution exhibits (slight) global superconvergence on I ,
namely

||y − uit
h ||∞ = O(N−(m+1−α),

provided the collocation parameters satisfy the orthogonality condition J0 = 0
(cf. Theorem 6.2.13).

Similar optimal estimates hold when α = 1 (pα(t) = log(t)); see Pedas and
Vainikko (1997) for details.

6.2.9 Hammerstein-type VIEs: Implicitly linear collocation

Most nonlinear VIEs with weakly singular kernels arising in the mathemati-
cal modelling of physical or biological phenomena are of Hammerstein type
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(see, for example, Mann and Wolf (1951), Roberts and Mann (1951), Pad-
mavally (1958), Levin (1960), Olmstead and Handelsman (1976), Groetsch
(1989, 1991), and their references). A typical example arises in nonlinear heat
condution and superfluidity: it is

y(t) = γ

∫ t

0
(t − s)−α[ f (s) − (y(s))k]ds (α = 1/2, k > 1)

(Roberts and Mann (1951); see also Gorenflo and Kilbas (1995)). Therefore
we will not extend the previous convergence analyses to completely general
nonlinear VIEs but restrict our considerations to problems of the form

y(t) = g(t) + (Hα y)(t), t ∈ I := [0, T ], (6.2.52)

with

(Hα y)(t) :=
∫ t

0
Hα(t, s)G(s, y(s))ds.

Here, Hα(t, s) := pα(t − s)K (t, s), with smooth K and G and with K (t, t) �=
0 on I . The VHIE (6.2.53) can again be rewritten in a form that leads to a
computationally more attractive version of the collocation method. Setting

z(t) := (N y)(t) := G(t, y(t)), t ∈ I, (6.2.53)

where N denotes the Niemytzki operator, equation (6.2.52) becomes an im-
plicitly linear integral equation for z, namely,

z(t) = (N (g + Vαz))(t) = G(t, g(t) + (Vαz)(t)), t ∈ I, (6.2.54)

with linear Volterra operator

(Vαz)(t) :=
∫ t

0
pα(t − s)K (t, s)z(s)ds.

The solution y is then found by the iteration

y(t) = g(t) + (Vαz)(t), t ∈ I. (6.2.55)

Hence, as in Section 2.33, we approximate z by the collocation solution zh ∈
S(−1)

m−1(Ih),

zh(t) = G(t, g(t) + (Vαzh)(t)), t ∈ Xh, (6.2.56)

and define the approximation yh to the solution y of the original VHIE (6.2.50)
by

yh(t) := g(t) + (Vαzh)(t), t ∈ I. (6.2.57)
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The computational form of the collocation equation (6.2.56) on σn uses the
local representation

zh(tn + vhn) =
m∑

j=1

L j (v)Zn, j , v ∈ (0, 1], Zn, j := zh(tn, j ), (6.2.58)

and is thus given by

Zn,i = G(tn,i , g(tn,i ) + Fn(tn,i ; α)

+ hn

m∑
j=1

(∫ ci

0
Hα(tn,i , tn + shn)L j (s)ds

)
Zn, j ) (6.2.59)

(i = 1, . . . , m), with lag term

Fn(t ; α) :=
∫ tn

0
Hα(t, s)zh(s)ds (t ∈ σn).

When zh is known we can compute the approximation to the solution y of the
given VIE at t = tn + vhn ∈ σ̄n by means of

yh(tn + vhn) := g(tn + vhn) + Fn(tn + vhn; α)

+ hn

m∑
j=1

(∫ v

0
Hα(tn + vhn, tn + shn)L j (s)ds

)
Zn, j .

(6.2.60)

As we have already observed in Section 2.3.3 (see the remark preceding
Theorem 2.3.4), the principal merit of implicitly linear collocation is that it
eliminates the necessity of re-computing the integrals in the (nonlinear) collo-
cation equation: since the integrals in (6.2.59) do not depend on the unknown
Zn := (Zn,1, . . . , Zn,m)T , they need to be evaluated only once, before the begin-
ning of the iteration process chosen for the solution of the nonlinear algebraic
system (6.2.59).

It turns out that the approximation yh obtained by implicitly linear collocation
and the iterated collocation solution uit

h generated by ‘direct’ collocation are
essentially identical when K (t, s) ≡ 1. Thus, for judiciously chosen collocation
parameters {ci } both approaches yield superconvergent approximations of the
same global and local order, in particular on optimally graded meshes (cf.
Theorem 6.2.13). This is made precise in

Theorem 6.2.15 Assume:

(a) g ∈ C(I ), K (t, s) ≡ 1, and G is smooth and such that the Volterra–
Hammerstein equation (6.2.52) has a unique solution y ∈ C(I ) for given
α ∈ (0, 1].
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(b) yh is the approximation to the solution y of the VHIE equation (6.2.52) with
0 < α ≤ 1, obtained by implicitly linear collocation (6.2.56), (6.2.57).

(c) ûi t
h is the discretised iterated collocation solution corresponding to the

direct collocation solution ûh ∈ S(−1)
m−1(Ih) defined by the fully discretised

collocation equation (6.2.61), (6.2.62) below, using the same collocation
points Xh as for the computation of zh ∈ S(−1)

m−1(Ih) in (6.2.56).

Then for any α ∈ (0, 1] we have

ûit
h (t) = yh(t) for all t ∈ I.

Proof If we solve the given Volterra–Hammerstein integral equation (6.2.52)
by ‘direct’ collocation in S(−1)

m−1(Ih), the the exact collocation equation reads

uh(t) = g(t) + (Hαuh)(t), t ∈ I,

and the corresponding exact iterated collocation solution is found from

uit
h (t) := g(t) + (Hαuh)(t), t ∈ I.

Recall that by our assumption on K we now have Hα(t, s) = pα(t − s). For
t = tn,i (i = 1, . . . , m) and t = tn + vhn (v ∈ [0, 1]) these equations become,
respectively,

Un,i = g(tn,i ) + 	n(tn,i ; α)

+ hn

∫ ci

0
pα((ci − s)hn)G(tn + shn,

m∑
j=1

L j (s)Un, j )ds,

and

uit
h (tn + vhn) = g(tn + vhn) + 	n(tn + vhn; α)

+ hn

∫ v

0
pα((v − s)hn)G(tn + vhn,

m∑
j=1

L j (s)Un, j )ds.

Here, we have set

	n(tn + vhn; α) :=
∫ tn

0
pα(tn + vhn − s)G(s, uh(s))ds, v ∈ [0, 1].

Consider now their fully discretised versions based on interpolatory m-point
product quadrature formulas with weight function Hα(·, s) = pα(· − s) (be-
cause K (t, s) = 1) and abscissas given by the collocation points Xh : in analogy
to Section 6.2.2 they are given by

Û n,i = g(tn,i ) + 	̂n(tn,i ; α)

+ hn

m∑
ν=1

(∫ ci

0
pα((ci − s)hn)Lν(s)ds

)
G(tn,ν , Û n,ν) (6.2.61)
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and

ûi t
h (tn + vhn) = g(tn + vhn) + 	̂n(tn + vhn; α)

+ hn

m∑
ν=1

(∫ v

0
pα((v − s)hn)Lν(s)ds

)
G(tn,ν , Û n,ν).

(6.2.62)

Let V̂n,i := G(tn,i , Û n,i ). From (6.2.61) and (6.2.62) we thus obtain the equa-
tions

V̂n,i = G
(
tn,i , g(tn,i ) + 	̂n(tn,i ; α)

+ hn

m∑
ν=1

(∫ ci

0
pα(ci − s)hn)Lν(s)ds

)
V̂n,ν

)
(6.2.63)

and

ûi t
h (tn + vhn) = g(tn + vhn) + 	̂n(tn + vhn; α)

+ hn

m∑
ν=1

(∫ v

0
pα((v − s)hn)Lν(s)ds

)
V̂n,ν . (6.2.64)

It remains to show that V̂n,i = Zn,i , i = 1, . . . , m (n = 0, 1, . . . , N − 1),
where the stage values Zn,i are defined by the solution of the nonlinear al-
gebraic system (6.2.59). This is readily verified by induction, using the obvious
fact that the assertion is true for n = 0. We summarise the convergence result
in Theorem 6.2.16 and leave the remaining details of its proof as an exercise.

Theorem 6.2.16 Assume that the given functions describing the VHIE (6.2.52)
satisfy g ∈ Cm(I ), K (t, s) ≡ 1, with G ∈ Cm(I × �) (� ⊂ IR) such that the
integral possesses a unique solution y ∈ Cm(I ). If (6.2.52) is solved by implicitly
linear collocation (6.2.56), (6.2.57), and if the underlying mesh Ih is the graded
mesh (6.2.31) with grading exponent r = µ/(1 − α), then

||y − yh ||∞ ≤ C(r )

{
hµ if 1 − α ≤ µ ≤ m,

hm if µ ≥ m,

for any set {ci }, and with h := T/N.

It is clear that the superconvergence results of Theorem 6.2.13 carry over to
ûi t

h , because of Theorems 6.2.14 and 6.2.15. We omit the detailed statement of
these by now expected results.

6.3 Collocation for weakly singular first-kind VIEs

We know from the analysis in Section 2.4 that collocation solutions in
S(d)

m+d (Ih) (d = −1, d = 0) to first-kind VIEs with regular kernels (i.e. α = 0)
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do not converge to the exact solution for any choice of the collocation parameters
{ci }. Hence, it is intuitively clear that the same will be true when the Volterra
integral operator contains the weakly singular factor pα(t − s) (0 < α ≤ 1).
It turns out, however, that to describe this quantitatively poses a formidable
challenge, and so far only a few partial results are known.

We will focus on the case where uh ∈ S(−1)
nm−1(Ih); in view of the results of

Theorem 2.4.5 (Kauthen and Brunner (1997)) the convergence analysis in the
continuous collocation space S(0)

m (Ih) will be even more intractable at present.

6.3.1 Collocation in S(−1)
m−1(Ih)

The collocation solution uh ∈ S(−1)
m−1(Ih) to the linear weakly singular first-kind

VIE

(Vα y)(t) :=
∫ t

0
pα(t − s)K (t, s)y(s)ds = g(t), t ∈ I := [0, T ]

(0 < α ≤ 1), (6.3.1)

is defined by the collocation equation

(Vαuh)(t) = g(t), t ∈ Xh, (6.3.2)

and by the local representation

uh(tn + shn) =
m∑

j=1

L j (v)Un, j , v ∈ (0, 1], with Un, j := uh(tn, j ).

(6.3.3)
The vector Un := (Un,1, . . . , Un,m)T ∈ IRm is the solution of the linear algebraic
system

Bn(α)Un = h−1
n [gn − Gn(α)] (n = 0, 1, . . . , N − 1), (6.3.4)

in complete analogy to Section 2.4.2. Here Gn(α) is the vector whose compo-
nents are the lag term values Fn(tn,i ; α) and which can be written as

Gn(α) :=
n−1∑
�=0

h� B(�)
n (α)U�

(see also (6.2.13) in Section 6.2.1). The matrices Bn(α) and B(�)
n (α) in L(IRm)

are the ones we introduced in (6.2.12) and (6.2.11), namely,

Bn(α) :=



∫ ci

0
pα((ci − s)hn)K (tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 , (6.3.5)
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and

B(�)
n (α) :=




∫ 1

0
pα(tn,i − t� − sh�)K (tn,i , t� + sh�)L j (s)ds

(i, j = 1, . . . , m)


 (� < n).

(6.3.6)

Under the assumptions of Theorem 6.1.13 the matrix Bn(α) is non-singular
for all sufficiently small values of hn . To see this, recall that the assumption
K ∈ C1(D) allows us to write, by Taylor’s Theorem,

K (tn,i , tn + shn) = K (tn, tn) + hn[ci Kt (tn + θ1ci hn, tn + θ2shn)

+ sKs(tn + θ1ci hn, tn + θ2shn)],

where θk ∈ (0, 1) (k = 1, 2). Hence, the element of the matrix Bn(α) corre-
sponding to the index pair (i, j) can be expressed in the form∫ ci

0
pα((ci − s)hn)[K (tn, tn) + O(hn)]L j (s)ds (i, j = 1, . . . , m),

and this reveals that for sufficiently small hn > 0,

Bn(α) =

 K (tn, tn)

∫ ci

0
pα((ci − s)hn)L j (s)ds

(i, j = 1, . . . , m)


 + O(hn),

is invertible for n = 0, 1, . . . , N − 1 and all α ∈ (0, 1], under the assumption
that |K (t, t)| ≥ k0 > 0, t ∈ I .

Theorem 6.3.1 Assume that g and K in the first-kind Volterra integral equation
(6.3.1) satisfy

g ∈ C1(I ), g(0) = 0; K ∈ C1(D), |K (t, t)| ≥ k0 > 0, t ∈ I.

Then for any α ∈ (0, 1] there exists an h̄ = h̄(α) > 0 so that for all meshes Ih

with diameter h ∈ (0, h̄) each of the linear algebraic systems (6.3.4) possesses
a unique solution Un ∈ IRm. Hence, for such meshes the collocation equation
(6.3.2) defines a unique collocation solution uh ∈ S(0)

m−1(Ih) which on σn is given
by (6.3.3).

Example 6.3.1 uh ∈ S(−1)
0 (Ih), 0 < c1 ≤ 1:

Since uh is constant on each σn we again set yn+1 := uh(tn + vhn (v ∈ (0, 1]).
The collocation equation follows immediately from Example 6.2.1 and now
reads (writing θ := c1)(∫ θ

0
Hα(tn,1, tn + shn)ds

)
yn+1 = h−1

n [g(tn,1) − Fn(tn,1; α)],
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(n = 0, 1, . . . , N − 1), with tn,1 = tn + θhn and with lag term given by

Fn(tn,1; α) =
n−1∑
�=0

h�

(∫ 1

0
Hα(tn,1, t� + sh�)ds

)
y�+1.

We recall that Hα(t, t� + sh�) = pα(t − t� − s)h�)K (t, t� + vh�) when t =
tn + vhn .

We shall see below (Section 6.3.4) that this collocation solution converges
uniformly on I only if

θ ≥ θ∗(α) := 1

2
(α(1 − α)γα)1/(1−α) (0 < α < 1).

On uniform meshes the order then cannot exceed p = α, while on suitably
graded meshes (with grading exponent r ≥ m/α) we observe O(h)- conver-
gence (having set h := T/N ).

Example 6.3.2 uh ∈ S(−1)
1 (Ih), 0 < c1 < c2 ≤ 1:

We know from Example 6.2.2 that the local representation of the collocation
solution is

uh(tn + vhn) = 1

c2 − c1
[(c2 − v)Un,1 + (v − c1)Un,2], v ∈ (0, 1].

The vector Un := (Un,1, Un,2)T ∈ IR2 is the solution of the linear system

Bn(α)Un = h−1
n [gn − Gn(α)]

(recall (6.3.4)) with the elements of the matrix Bn(α) ∈ L(IR2) as in Example
6.2.2. The matrix Bn(α) and the ones describing the lag term Gn(α) are given,
resepectively, by

(Bn(α))i,1 = 1

c2 − c1

∫ ci

0
pα((ci − s)hn)(c2 − s)K (tn,i , tn + shn)ds (i = 1, 2),

(Bn(α))i,2 = 1

c2 − c1

∫ ci

0
pα((ci − s)hn)(s − c1)K (tn,i , tn + shn)ds (i = 1, 2),

and

(B(�)
n (α))i,1 = 1

c2 − c1

∫ 1

0
Hα(tn,i , t� + sh�)(c2 − s)ds (i = 1, 2),

(B(�)
n (α))i,2 = 1

c2 − c1

∫ 1

0
Hα(tn,i , t� + sh�)(s − c1)ds (i = 1, 2).

The collocation solution is now determined by the solution (Un,1, Un,2)T of the
linear system (6.3.4), the local Lagrange representation (6.3.3) with m = 2.
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As we shall see in Conjecture 6.3.5 at the end of Section 6.3.3, no necessary
and sufficient condition on the two collocation parameters is known yet under
which uh converges uniformly on I to y.

6.3.2 Collocation in S(0)
m (Ih)

We have seen in Section 2.4.3 that the imposition of continuity at the mesh
points on the collocation solution uh for a first-kind VIE leads to a more severe
constraint on the collocation parameters {ci } for which uh is convergent, even
in the case of smooth exact solutions. Since in a weakly singular first-kind VIE
(6.3.1) with smooth g (satisfying g(0) = 0) and K the exact solution has an un-
bounded derivative at t = 0+ (Theorem 6.1.14), such a continuity requirement
will likely make the conditions on the {ci } more stringent (and will certainly
lead to very challenging arguments in the convergence analysis!). At the time
of writing this problem remains essentially open (except for some special re-
sults in the case m = 1 and c1 = 1; see, e.g. Weiss (1972b), Benson (1973),
Eggermont (1981), and Capobianco (1990a, 1990b)).

The collocation equation determining uh ∈ S(0)
m (Ih) is

(Vαuh)(t) = g(t), t ∈ Xh, with uh(0) = y(0), (6.3.7)

where

y(0) = lim
t→0+

(1 − α)tα−1g(t)

K (0, 0)

must be known. As in Section 2.4.3, let the local representation of uh on σn be
given by

uh(tn + vhn) =
m∑

j=0

L j (v)Un, j , v ∈ [0, 1], with Un, j := uh(tn + c j hn);

(6.3.8)
here, we have introduced c0 := 0 and

L0(v) := (−1)m
m∏

k=1

(v − ck)/ck,

L j (v) := (v/c j )
m∏

k=0,k �= j

(v − ck)/(c j − ck) ( j = 1, . . . , m).

Hence, (6.3.8) can be written in the form

uh(tn + vhn) = L0(v)yn +
m∑

j=1

L j (v)Un, j , v ∈ [0, 1], (6.3.9)
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and this implies that

yn := uh(tn) = uh(tn−1 + hn−1) (n = 1, . . . , N − 1),

because the collocation solution uh is continuous at the mesh points.
The collocation equation on σn now becomes∫ tn

0
Hα(tn,i , s)uh(s)ds + hn

∫ ci

0
Hα(tn,i , tn + shn)uh(tn + shn)ds

= g(tn,i ) (i = 1, . . . , m),

or, using (6.3.9),

m∑
j=1

(∫ ci

0
Hα(tn,i , tn + shn)L j (s)ds

)
Un, j

= h−1
n [g(tn,i ) − Fn(tn,i ; α)] −

∫ ci

0
Hα(tn,i , tn + shn)L0(s)ds · yn,

(6.3.10)

with obvious meaning of the lag term Fn(tn,i ; α). Setting

ρn(α) := −
(∫ ci

0
Hα(tn,i , tn + shn)L0(s)ds (i = 1, . . . , m)

)T

we are led to a linear algebraic system for Un := (Un,1, . . . , Un,m)T which
resembles (6.3.4) but which contains on its right-hand side an additional term
reflecting the continuity of uh at the mesh points:

Bn(α)Un = h−1
n [gn − Gn(α)] + ρn(α)yn (n = 0, 1, . . . , N − 1). (6.3.11)

The matrix Bn(α) and the vectors gn and Gn(α) are as in (6.3.4)–(6.3.6).
Note that the existence of a unique collocation solution uh ∈ S(0)

m (Ih) is
assured by Theorem 6.3.1 because in the systems of linear algebraic equations
(6.3.11) we have the same coefficient matrices Bn(α) as in (6.3.4).

Example 6.3.3 uh ∈ S(0)
1 (Ih), 0 < c1 =: θ ≤ 1:

Here, we have

L0(v) = (θ − v)/θ, L1(v) = v/θ,

and

Bn(α) =
(

1

θ

∫ θ

0
pα((θ − s)hn)K (tn,1, tn + shn)sds

)
.

The collocation solution is thus determined by

uh(tn + vhn) = L0(v)yn + L1(v)Un,1, v ∈ (0, 1],
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by the solution of

Bn(α)Un,1 = h−1
n [gn,1 − Fn(tn,1; α)]

−1

θ

(∫ θ

0
pα((θ − s)hn)K (tn,1, tn + shn)(θ − s)ds

)
yn

(n = 0, 1, . . . , N − 1). The ‘artificial’ initial value y0 must be prescribed, as
indicated in (6.3.7).

The continuous (exact) product trapezoidal method is obtained by choosing
θ = 1. Its fully discretised counterpart will be presented in Example 6.3.6.

6.3.3 Convergence analysis; conjectures

For the weakly singular first-kind Volterra integral equation (6.3.1) with
0 < α < 1, no necessary and sufficient conditions under which the colloca-
tion solutions in the spaces S(d)

m+d (Ih) (d = −1, 0) are convergent are yet known
(compare, however, Eggermont (1984, 1988b) for an analysis of related ques-
tions in Galerkin methods for (6.3.1) and for a comparison of Galerkin and
collocation methods).

Before describing a partial answer for the collocation space S(−1)
0 (Ih) of

piecewise constant functions we first show that we can answer the question on
the global order of convergence of uh ∈ S(−1)

m−1(Ih), provided we know that the
collocation parameters {ci } are such that ||y − uh ||∞ → 0, as h → 0, is true.

Theorem 6.3.2 Let 0 < α < 1 and assume that K and g in (6.3.1) are, re-
spectively, in Cm+1(D) and Cm+1(I ), with K (t, t) �= 0 for all t ∈ I . In addition
suppose that

g( j)(0) = 0, j = 0, 1, . . . , q, (6.3.12)

for some q with 0 ≤ q < m. If the collocation parameters {ci : 0 < c1 < · · · <

cm ≤ 1} are such that the corresponding collocation solution uh ∈ S(−1)
m−1(Ih) to

(6.3.1) converges uniformly to y on I then we have, for all h ∈ (0, h̄),

‖y − uh‖∞ ≤ Chα+q (6.3.13)

for any α ∈ (0, 1), regardless of the choice of m, if the mesh Ih is uniform.
For graded meshes given by

tn =
( n

N

)r
T (n = 0, 1, . . . , N ), with r = µ

α + q
, (6.3.14)

we obtain the estimates

‖y − uh‖∞ ≤ C(r )

{
hµ if α + q ≤ µ ≤ m,

hm if µ ≥ m,
(6.3.15)

with h := T/N.
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Proof We will sketch the main steps but leave the details to the reader. First,
we recall that the collocation error, eh := y − uh , satisfies

(Vαeh)(t) = 0 for t ∈ Xh .

Since 0 < α < 1, this equation can be written more explicitly as

h1−α
n

∫ ci

0
(ci − s)−α Kn,i (tn + shn)eh(tn + shn)ds

= −
n−1∑
�=0

h1−α
�

∫ 1

0

(
tn + ci hn − t�

h�

− s

)−α

K (tn,i , t� + sh�)eh(t� + sh�)ds

(6.3.16)

(i = 1, . . . , m; n = 0, 1, . . . , N − 1). While uh |(tn ,tn+1] is a polynomial of de-
gree m − 1, the exact solution y of (6.3.1) has, according to Theorem 6.1.14,
lower regularity at t = 0, namely y ∈ Cq,α(I ). Thus, the collocation error may
be expressed in the form

eh(tn + vhn) =




m∑
j=1

β0, j (α)v j−1 + hα+q
0 ρ0(v; α) + hm

0 Rm,0(v; α), if n = 0

m∑
j=1

L j (v)En, j + hm
n Rm,n(v), if 1 ≤ n ≤ N − 1,

(6.3.17)
in analogy to (6.2.39) and (6.2.37). Here, ρ0(·; α), Rm,0(·; α), and Rm,n are
bounded functions analogous to those in Theorems 6.1.6 and 6.1.14 (compare
also the results in Section 6.5.2) below).

If the above expressions (6.3.17) for eh are substituted in the error equation
(with t = tn,i ) we obtain, as in the proof of Theorem 6.2.9 but with α + q
replacing 1 − α, first an estimate of the form ||β0(α)||1 ≤ Bhα+q

0 and so

|eh(t0 + vh0)| = O(hα+q
0 ), v ∈ [0, 1].

The subsequent systems of difference equations (for 1 ≤ n ≤ N − 1) are
uniquely solvable for h ∈ (0, h̄), thanks to the crucial assumption on the col-
location parameters {ci } (which is equivalent to the statement that the matrices
Bn(α) all possess uniformly bounded inverses for α ∈ (0, 1)). A discrete Gron-
wall argument leads to uniform O(hα+q

0 )-bounds for the quantities ||En||1 and
hence, by the local representation (6.3.17) for eh , for ||eh ||∞ itself.

Note that for the graded meshes Ih with grading exponent r = µ/(α + q)
we obtain

h0 = t1 = (N−1)r T = N−µ/(α+q)T,

and hence hα+q
0 = O(N−µ) = O(hµ) (α + q ≤ µ ≤ m) similar to (6.2.47).
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The order result of Theorem 6.3.2 hinges on the assumed uniform conver-
gence of the collocation solution uh . We will now investigate this assumption
for the simple collocation space S(−1)

0 (Ih) and derive a sufficient condition for
c1 ∈ (0, 1] under which uh is convergent. Some related convergence results
were obtained in the early 1970s: In Weiss and Anderssen (1972) it was shown
that uniform convergence holds for the (discretised) collocation solution uh

when c1 = 1. It is thus natural to ask if this is true for all c1 ≥ 1/2, as in the
nonsingular case α = 0. The following theorem answers this question in the
affirmative. The result shows in particular that the collocation equation corre-
sponding to m = 1 has uniformly bounded solutions as h → 0 even for certain
values of c1 < 1/2, depending on the given value of α. This is not entirely
surprising because the first-kind VIE (6.3.1) becomes ‘less ill-conditioned’ as
α moves from 0+ to 1−.

Theorem 6.3.3 Let K and g in (6.3.1) satisfy the conditions stated in The-
orem 6.3.2 (with m = 1), and let uh ∈ S(−1)

0 (Ih) be the collocation solution
corresponding to the collocation parameter c1 ∈ (0, 1] and uniform mesh Ih. If

c1 ≥ c∗
1(α) := 1

2
(α(1 − α)γα)1/(1−α) , (6.3.18)

where γα := π/ sin(απ ) (= �(α)�(1 − α)), then uh converges uniformly on I
to the solution y of (6.3.1).

We present a sample of values for c∗
1(α) in the following table, as an illus-

tration of (6.3.18).
While numerical experiments indicate that the lower bound (6.3.18) for

c1 appears to be also necessary for uh to remain uniformly bounded for all
α ∈ (0, 1), a result analogous to that for α = 0 (cf. Theorem 2.4.2), giving a
necessary and sufficient condition, is yet to be established.

Proof We will outline a few of the key steps in the proof of the above result;
details are left to the reader. The setting is as follows. We have seen in Section
6.1.3 (Theorem 6.1.13) that, for 0 < α < 1, (6.3.1) is equivalent to the regular

Table 6.2. A selection of values for c∗
1(α)

α 0 0.10 0.25 0.5 0.90 0.99 1−

c∗
1(α) 0.5 0.3919 0.4520 0.3084 0.2056 0.1861 0.1839

(= e−1/2)
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first-kind integral equation∫ t

0
H (t, s; α)y(s)ds = Gα(t), t ∈ I, (6.3.19)

where

H (t, s; α) :=
∫ 1

0
v−α(1 − v)α−1 K (s + (t − s)v, s) dv, (t, s) ∈ D,

and

Gα(t) :=
∫ t

0
(t − s)α−1g(s)ds = 1

(α)q+1)

∫ t

0
(t − s)α+q g(q+1)(s)ds, t ∈ I.

Suppose now that the collocation solution for (6.3.1) is uh ∈ S(−1)
0 (Ih), with

collocation at tn + c1h, 0 < c1 ≤ 1, and the solution of the (equivalent) first-
kind Volterra integral equation (6.3.19) is approximated by zh in the same space,
but with collocation at the points tn + d1h, for some d1 ∈ (0, 1]. Since H (·, ·; α)
and Gα in (6.3.19) satisfy the assumptions of Theorem 2.4.2, we know that zh

converges uniformly on I to y if, and only if, d1 ≥ 1/2.
The collocation equation determining uh is given in Example 6.3.1. For ease

of exposition we will assume that K (t, s) ≡ 1, implying that H (t, s; α) = γα

on D; suppose also that q = 0. Thus, setting uh(tn + vhn) =: yn+1 (v ∈ (0, 1]),
we find

yn+1 = 1 − α

h1−αc1−α
1

g(tn + c1h)

− 1

c1−α
1

n−1∑
�=0

(
(n − � + c1)1−α − (n − � + c1 − 1)1−α

)
y�+1 (6.3.20)

(n = 0, 1, . . . , N − 1). For (6.3.19) we obtain

zn+1 + 1

d1

n−1∑
�=0

z�+1

= 1

γαh1−αd1

∫ d1

0
(d1 − s)α−1 g(tn + sh) ds

+ 1

γαh1−αd1

n−1∑
�=0

∫ 1

0
(n − � + d1 − s)α−1g(t� + sh)ds

(6.3.21)

with zn+1 := zh(tn + vhn) (v ∈ (0, 1]). If we approximate the integrals
in (6.3.21) by one-point interpolatory product quadrature with abscissas
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{t� + ξ1h (ξ1 ∈ (0, d1])}, we are led to the Volterra difference equation

zn+1 + 1

d1

n−1∑
�=0

z�+1

= 1

αγαh1−αd1−α
1

g(tn + ξ1h)

+ 1

αγαh1−αd1

n−1∑
�=0

((n − � + d1)α − (n − � + d1 − 1)α) g(t� + ξ1h).

(6.3.22)

For n = 0 the equations (6.3.20) and (6.3.22) respectively reduce to

u1 = uh(t1) = 1 − α

h1−αc1−α
1

g(t0 + c1h)

and

v1 = vh(t1) = 1

αγαh1−αd1−α
1

g(t0 + ξ1h).

The following statement is now obvious.

Lemma 6.3.4 We have uh(t1) = zh(t1) for any g ∈ C1(I ) with g(0) = 0 if, and
only if, ξ1 = c1 and

c1 = φ(α) · d1,

where φ(α) := (α(1 − α)γα)1/(1−α) and γα := π/ sin(απ ).

Note that the function φ is strictly decreasing on (0, 1), with φ(0) = 1 and
φ(1−) = e−1.

For n ≥ 1, |zn+1| (n = 0, 1, . . . , N − 1) is uniformly bounded as h → 0
and Nh = T if, and only if, d1 ≥ 1/2 (Theorem 2.4.2)). In order to complete
the proof of Theorem 6.3.3 we now have to show that, using (6.3.20) and
(6.3.22), |zn+1 − yn+1| (n = 0, 1, . . . , N − 1) remains uniformly bounded as
N → ∞, tN = T , whenever c1 ∈ (0, 1] is chosen so that

c1 ≥ φ(α)/2 = c∗
1(α) > (1/2)e−1 .= 0.1839 (0 < α < 1).

The details are left to the reader.
As we observed at the beginning of the present section, an analogue of

Theorem 6.3.3 for collocation in S(−1)
m−1(Ih) with m ≥ 2 is not yet known. There

appears to be a close connection between the answer to this open problem and
the asymptotic behaviour of the collocation solution vh ∈ S(−1)

m−1(Ih), with the
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same collocation parameters {ci }, for the second kind VIE

y(t) = 1 +
∫ t

0
λ(t − s)−α y(s)ds, 0 < α < 1, λ < 0. (6.3.23)

We will say that the solution y of (6.3.23) is Aα-stable if, for tn := nh (n =
0, 1, ...), with fixed h > 0,

lim
n→∞ uh(tn) = 0, for all λ < 0.

Conjecture 6.3.5 Assume that the collocation parameters {ci } satisfy 0 <

c1 < · · · < cm ≤ 1 and let the mesh Ih be uniform. The collocation solution
uh ∈ S(−1)

m−1(Ih) for the weakly singular first-kind VIE (6.3.1) with 0 < α < 1
converges uniformly to the exact solution y as h → 0 if, and only if, the collo-
cation solution vh ∈ S(−1)

m−1(Ih), using the same set {ci }, for the weakly singular
second-kind equation (6.3.23) is Aα-stable.

However, it is at present not known for which {ci } the collocation solution
vh for (6.3.23) has the property of being Aα-stable. A partial answer (sufficient
condition) was given in Brunner, Crisci, Russo and Vecchio (1991) for the case
m = 1.

The final remark in this section concerns collocation for the singularly per-
turbed VIE

εy(t) = g(t) + (Vα y)(t), t ∈ I, 0 < α < 1,

with 0 < ε � 1. We have seen that for ε = 1 the collocation uh ∈ S(−1)
m−1(Ih)

exhibits optimal order of convergence p = m if the mesh Ih is graded and
r =: r1 = m/(1 − α). If ε = 0 and the collocation parameters {ci } are such
that the collocation solution in this space converges uniformly to y, then it
attains the same optimal order p only if the grading exponent is r =: r0 = m/α.
While we have r1 = r0 when α = 1/2, numerical experiments show clearly that
for α �= 1/2 the collocation solution corresponding to mesh grading with r1

loses its optimal order as ε → 0+. Thus, it will be important to understand the
dependence of the order, and hence that of the optimal grading exponent, on ε,
as ε → 0.

An excellent survey of singularly perturbed Volterra equations and the state
of the art in their numerical analysis can be found in Kauthen (1997a).

6.3.4 Fully discretised collocation

The secondary discretisation step in the (exact) collocation equation (6.3.2)
will, as in the case of second-kind VIEs with weakly singular kernels, be based
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on interpolatory m-point quadrature formulas whose abscissas are given by
the collocation parameters. Since the generalities have been dicsussed in detail
in Section 6.2.2, we will not repeat them here. Instead we present the fully
discretised collocation equations for two important special cases: these product
integration methods were analysed in the early papers Weiss and Anderssen
(1972), Weiss (1972b), Benson (1973), and Eggermont (1981).

Example 6.3.4 ûh ∈ S(−1)
0 (Ih), 0 < c1 =: θ ≤ 1

Setting ŷn+1 := ûh(tn + vhn) = Û n,1 (v ∈ (0, 1]) and tn,1 := tn + θhn , Exam-
ple 6.2.1 yields

wn,1(θ ; α)K (tn,1, tn + θ2hn))ŷn+1 = h−1
n [g(tn,1) − F̂n(tn,1; α)] (6.3.24)

(n = 0, 1, . . . , N − 1), with

wn,1(v; α) :=
∫ v

0
pα((v − s)hn)ds =




h−α
n v1−α/(1 − α) if 0 < α < 1,

v[log(vhn) − 1] if α = 1.

The discretised lag term is

F̂n(tn,1; α) =
n−1∑
�=0

w
(�)
n,1(θ ; α)K (tn,1, t� + θh�)ŷ�+1,

where the weights are given by

w
(�)
n,1(v; α) :=

∫ 1

0
pα(tn + vhn − t� − sh�)ds (� < n).

The order of convergence of the discretised midpoint method (θ = 1) was
analysed by Weiss and Anderssen (1972).

Example 6.3.5 ûh ∈ S(−1)
1 (Ih), 0 < c1 < c2 ≤ 1:

Using the interpolatory two-point quadrature formulas for the integrals in Ex-
ample 6.3.2 we find that the matrices describing the fully discretised collocation
equation have the elements (cf. Example 6.2.4)

(B̂n(α))i,1 = wn,1(ci ; α)K (tn,i , tn + ci c1hn)L1(ci c1)

+ wn,2(ci ; α)K )tn,i , tn + ci c2hn)L1(ci c2),

(B̂n(α))i,2 = wn,1(ci ; α)K (tn,i , tn + ci c1hn)L2(ci c1)

+ wn,2(ci ; α)K (tn,i , tn + ci c2hn)L2(ci c2),

and, for � < n,

(B̂(�)
n (α))i,1 = w

(�)
n,1(ci ; α)K (tn,i , t� + c1h�),

(B̂(�)
n (α))i,2 = w

(�)
n,2(ci ; α)K (tn,i , t� + c2h�)
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(i = 1, 2), with quadrature weights

wn,1(ci ; α) := 1

c2 − c1

∫ ci

0
pα((ci − s)hn)(c2 − s/ci )ds,

wn,2(ci , α) := 1

c2 − c1

∫ ci

0
pα((ci − s)hn)(s/ci − c1)ds

and

w
(�)
n,1(ci ; α := 1

c2 − c1

∫ 1

0
pα(tn,i − t� − sh�)(c2 − s)ds,

w
(�)
n,2(ci ; α) := 1

c2 − c1

∫ 1

0
pα(tn,i − t� − sh�)(s − c1)ds.

Example 6.3.6 ûh ∈ S(0)
1 (Ih), 0 < c1 =: θ ≤ 1:

Upon recalling that L0(v) := (θ − v)/θ, L1(v) := v/θ , the quadrature weights
of the interpolatory two-point product quadrature formulas for approximating
the integrals in the exact collocation (Example 6.3.3) are

wn,1(θ ; α) = 1

θ

∫ θ

0
pα((θ − s)hn)(θ − s)ds,

wn,2(θ ; α) = 1

θ

∫ θ

0
pα((θ − s)hn)sds,

and, for � < n,

w
(�)
n,1(θ ; α) = 1

θ

∫ 1

0
pα(tn,1 − t� − sh�)(θ − s)ds,

w
(�)
n,2(θ ; α) = 1

θ

∫ 1

0
pα(tn,1 − t� − sh�)sds.

The discretised (continuous) product trapezoidal method corresponds to the
choice θ = 1: it defines the collocation solution ûh on σ̄n by

ûh(tn + vhn) = (1 − v)ŷn + v ŷn+1, v ∈ [0, 1],

with ŷn+1 given by the solution of

wn,2(θ ; α)K (tn+1, tn+1)ŷn+1 = h−1
n [g(tn+1) − F̂n(tn+1; α)]

− wn,1(θ ; α)K (tn+1, tn)ŷn.

The discretised lag term has the form

F̂n(tn+1; α) =
n−1∑
�=0

[w(�)
n,1(θ ; α)K (tn+1, t�)ŷ� + w

(�)
n,2(θ ; α)K (tn+1, t�+1)ŷ�+1.
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The discretised product trapezoidal method was studied by Weiss (1972a,
1972b); see also Benson (1973) and, especially, Eggermont (1981).

Remark Convergence results for the product midpoint and product trape-
zoidal methods were proved in Weiss and Anderssen (1972) and Weiss (1972b)
(and by Eggermont (1981)) under the assumption that the underlying exact
solution of (6.3.1) has Lipschitz-continuous derivatives, namely y ∈ C1,1(I )
and y ∈ C2,1(I ), respectively. The resulting orders of convergence on uniform
meshes are then given by O(h) and O(h2). As we have seen in Theorem 6.1.14,
this regularity is present only under special assumptions on g( j)(0) ( j ≥ 1). In
general, smooth K and g lead to y ∈ C0,α(I ) only. Hence, in order to attain
O(h)- and O(h2)-convergence the mesh Ih must be graded, with grading ex-
ponents r = m/α (m = 1, m = 2), as shown in Theorem 6.3.2. On uniform
meshes we have only O(hα)-convergence, both for m = 1 and m = 2.

6.4 Non-polynomial spline collocation methods

6.4.1 Weakly singular VIEs of the second kind

In Section 6.2.5 (proof of Theorem 6.2.9) we observed that the reason behind
the low (O(h1−α)-) convergence of the collocation solution uh ∈ S(−1)

m−1(Ih) for
uniform meshes lies in the fact that on the first subinterval σ0 the polynomial
uh ∈ πm−1 cannot match the fractional-power terms of the exact solution y (cf.
Theorem 6.1.6). This suggests that, on uniform Ih , it may be more natural to seek
the collocation solution in special non-polynomial spline spaces whose elements
reflect the expansion (6.1.38) of y. In other words, if we choose a collocation
space Z (−1)

m−1(Ih) with the property that zh ∈ Z (−1)
m−1(Ih) on σ̄0 = [t0, t1] (t0 = 0)

reduces to

zh(t0 + vh) =
∑

( j,k)1−α

b j,kv
j+k(1−α), v ∈ [0, 1], (6.4.1)

where ( j, k)1−α := {( j, k) : j + k(1 − α) < m, j, k ∈ IN0} and b j,k = b j,k(h),
then this local representation exactly matches the terms in the first expression
on the right-hand side of (6.1.38). The error analysis for the corresponding
collocation solution zh can then be carried out along familiar lines (using a
standard Gronwall argument, as in the proof of Theorem 6.2.9) and it reveals
that ‖y − zh‖∞ = O(hm) (see also Brunner and van der Houwen (1986, Section
6.2.5)).

The dimension of such a non-polynomial spline space depends on α and is
of course much larger than that of S(−1)

m−1. A detailed analysis of this dimension
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is given in Brunner (1983). In the practically important case where α = 1/2
the number of basis functions used to represent zh on σ0 is 2m. If α → 1−, the
number of basis functions tends to infinity. This observation is closely connected
with a result of Lubich (1983a) which shows that the number of order conditions
required for a Volterra–Runge–Kutta method for a weakly singular VIE to have
order m tends to infinity as α → 1−.

Variants of such non-polynomial collocation methods were studied by a
number of authors. The paper by te Riele (1982) discusses hybrid methods (for
α = 1/2) that combine the above non-polynomial spline collocation technique
(on a feasible small number of subintervals σ0, . . . , σn0 ) with subsequent piece-
wise polynomial collocation. The underlying mesh is uniform. See also Cao,
Herdman and Xu (2003).

Another approach was investigated by Hu (1997a): here, the collocation
solution is a so-called piecewise β-polynomial (employing integer powers of
tβ , with suitable β, as basis functions), and Ih is a specially chosen geometric
mesh. Compare also Hu (1998c) for postprocessing techniques based on this
special non-polynomial spline approximation, and Hu and Luo (1997) for its
use in Volterra–Hammerstein equations with weakly singular kernels.

6.5 Weakly singular Volterra functional equations with
non-vanishing delays

6.5.1 Collocation for delay equations of the second kind

In Section 6.1.6 we introduced the delay Volterra operators Vθ,α and Wθ,α:
recall that they are respectively defined by

(Vθ,α y)(t) :=
∫ θ (t)

0
pα(t − s)K2(t, s)y(s)ds, t ∈ I := [t0, T ] (t0 ≥ 0),

and

(Wθ,α y)(t) :=
∫ t

θ (t)
pα(t − s)K (t, s)ds, t ∈ I.

The lag function θ is assumed to be subject to the conditions (D1)–(D3) of
Section 6.1.7, and the kernels K2 and K are smooth on their domains Dθ and
D̄θ . Suppose we approximate the solutions of the corresponding VIEs

y(t) = g(t) + (Vα y)(t) + (Vθ,α y)(t), t ∈ (t0, T ],

and

y(t) = g(t) + (Wθ,α y)(t), t ∈ (t0, T ],
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with y(t) := φ(t) if t ≤ 0, by the collocation solutions uh ∈ S(−1)
m−1(Ih) and the

associated iterated collocation solutions uit
h . What is the combined effect of the

non-vanishing delay and the weakly singular kernel on the order of (super-)
convergence of the collocation and iterated collocation solutions? Since opti-
mal convergence orders are attained only if the mesh Ih is suitable graded (cf.
Theorems 6.2.9 and 6.2.13), the answer to this question depends on the regu-
larity of the solutions y at the primary discontinuity points {ξµ} (Table 6.1) and
– as we shall see – on whether the lag function θ is linear or nonlinear. The
following lemma provides the key to these results.

Lemma 6.5.1 Assume that the mesh Ih := ∪M
µ=0 I (µ)

h is θ -invariant (Definition

4.2.1), and let the first local mesh I (0)
h be optimally graded:

t (0)
n := ξ0 +

( n

N

)r0

(ξ1 − ξ0) (n = 0, 1, . . . , N ; ξ0 = t0), with r0 = m

1 − α
.

(i) If the lag function θ is linear, then the other local meshes I (µ)
h are also

optimally graded, with grading exponents rµ = r0 (µ = 1, . . . , M).
(ii) If θ is nonlinear, then the grading is lost for I (µ)

h (µ = 1, . . . , M).

Proof The assertion in (i) is a direct consequence of the definitions of θ -
invariance and the primary discontinuity points {ξµ}, and the linearity of θ (t) =
t − τ (t). These reveal that the grading exponent r0 remains invariant under θ .
The validity of (ii) can be seen graphically, by constructing an example.

Table 6.1 shows that, depending on the type of the delay VIE, the solution at ξ+
µ

is in Cµ,1−α (smoothing), or in C1−α for all µ = 0, 1, . . . , M (no smoothing).
Hence, Lemma 6.5.1 tells us that for linear lag functions the proofs of Theorems
6.2.9 and 6.2.13 carry over to second-kind VIEs with non-vanishing delays and
weakly singular kernels, leading to the first assertion in the following theorem.

Theorem 6.5.2 Assume:

(a) The given functions g, b, K1, K2, θ, φ are d ≥ m-times continuously
differentiable on their respective domains, with the lag function θ satisfying
the conditions (D1)–(D3) and α ∈ (0, 1).

(b) uh ∈ S(−1)
m−1(Ih), with θ -invariant mesh Ih.

(c) The first local mesh I (0)
h is optimally graded:

t (0)
n := t0 +

( n

N

)r0

(ξ0 − t0) (n = 0, 1, . . . , N ), with r0 = m

1 − α
.
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(I) If θ is linear, the results of Theorems 6.2.9 and 6.2.13 remain valid on each
subinterval I (µ) := [ξµ, ξµ+1]:

‖y − uh‖µ,∞ := sup
t∈I (µ)

|y(t) − uh(t)| ≤ C(α)N−m (0 ≤ µ ≤ M),

and, for d = m + 1 and {ci } with J0 = 0,

‖y − uit
h ‖µ,∞ ≤ C(α)N−(m+1−α) (0 ≤ µ ≤ M).

(II) If θ is nonlinear, the results of Theorems 6.2.9 and 6.2.13 are in general
valid only on I (0). On the subsequent subintervals I (µ) (µ ≥ 1) the attainable
orders of ‖y − uh‖µ,∞ and ‖y − uit

h ‖µ,∞ will be less than m and lie between
1 − α and m, except when m = 1 and we have smoothing in the exact solution.

Remarks

1. For linear lag functions the (super-) convergence results of Brunner, Pedas
and Vainikko (1999), in particular those involving logarithmic kernel sin-
gularities, remain true for second-kind delay VIEs with weakly singular, or
bounded but non-smooth, kernels.

2. If θ is nonlinear, we can of course still obtain global convergence order
p = m, by resorting to local meshes I (µ)

h that are individually graded:
� If the solution y has Cµ,1−α-regularity at t = ξ+

µ (cf. Table 6.1) then –

according to Theorem 6.2.9 – the optimal grading exponent for I (µ)
h is

rµ =




m

µ + 1 − α
for µ = 0, 1, . . . , min{m, M},

1 for µ = m + 1, . . . , M.

� If y has only C1−α-regularity at each ξµ (no smoothing), then we choose
rµ = m/(1 − α for all µ = 0, 1, . . . , M .

The corresponding global mesh Ih is of course no longer θ -invariant.

6.5.2 Collocation for weakly singular delay VIEs of the
first kind

Since we do not yet understand for which sets of collocation parameters {ci }
collocation solutions to first-kind VIEs with weakly singular kernels converge
uniformly on I , the reader will not be surprised to read that the convergence
analysis of collocation solutions uh ∈ S(−1)

m−1(Ih) for the functional equation

(Wθ,α y)(t) = g(t), t ∈ (t0, T ] (g(0) = 0), (6.5.1)
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is a completely open problem. The same is true for a closely related Volterra
functional integro-differential equation, namely

d

dt
[(Wθ,α y)(t)] = f (t), (6.5.2)

even when θ (t) = t − τ (τ > 0) (compare also the comments at the end of the
paper by Ito and Turi (1991)). A new semigroup framework (different from the
one in the paper just mentioned) for (6.5.2) has recently been established in
Clément, Desch and Homan (2003): since, as shown in Ito and Turi (1991), the
delay equation (6.5.1) can be recast in the form (6.5.2), this framework may
yield the basis for the analysis of collocation solutions to (6.5.1).

6.6 Exercises and research problems

Exercise 6.6.1 Prove the resolvent equations for Q(t, s; α) in Theorem 6.1.2,
and find Q(t, s; α) for the VIE (6.1.5).

Exercise 6.6.2 Prove Theorem 6.1.7: show that the VIE

y(t) = g(t) + (V1 y)(t), t ∈ I,

corresponding to p1(t − s) = log(t − s), has a unique solution y ∈ C(I ). De-
scribe the regularity of y on I = [0, T ] when g ∈ Cm(I ) and K ∈ Cm(D). What
can be said about the structure of the resolvent kernel: does it inherit the factor
log(t − s), in analogy to the case 0 < α < 1?

Exercise 6.6.3 Prove Theorem 6.1.10. Use the result to prove the statement in
Corollary 6.1.4.

Exercise 6.6.4 Consider the second-kind VIE

y(t) = g(t) + λ

∫ t

0
(t − s)−α y(s)ds, t ∈ I := [0, T ] (0 < α < 1),

with g ∈ Cm(I ) and λ �= 0. If g(ν)(0) = 0 for ν = 0, . . . , q (q < m), does this
affect the regularity of the solution y?

What happens if (t − s)−α is replaced by log(t − s)?

Exercise 6.6.5 Extend the result and the proof of Theorem 2.1.10 to the non-
linear VIE (6.1.22) in Section 6.1.3. Formulate this result for the Volterra–
Hammerstein equation (6.1.23).

Exercise 6.6.6 Discuss the regularity of the solution of the VIE

y(t) = tβ + λ

∫ t

0
pα(t − s)y(s)ds, t ∈ I,
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when β > 0 (β �∈ IN) and 0 ≤ α ≤ 1. Solve the problem when α is replaced by
ν := ρ − α (ρ ∈ IN, 0 < α < 1).

Exercise 6.6.7 Extend the result of Theorem 6.1.6 to the VIE

y(t) = g(t) + (Vν y)(t), ν := ρ − α (ρ ∈ IN, 0 < α < 1).

(Recall Theorem 6.1.8.)

Exercise 6.6.8 Derive the analogue of the regularity result in Theorem 6.1.6
for the first-kind VIE (6.1.26) (using as starting point Theorem 6.1.14).

Exercise 6.6.9 Prove the analogue of Theorem 6.1.17 for the kernel pα(t −
s) = log(t − s) (α = 1).

Exercise 6.6.10 Extend the Comparison Theorem 2.1.16 to linear second-kind
VIEs with weakly singular kernels. What can be said if the weak singularities
corresponding to i = 1, 2 are different, i.e. given by

pαi := (t − s)−αi , 0 < α1 < α2 ≤ 1 ?

Exercise 6.6.11 (Section 6.1.4) Show that the solution of the ‘regular’ V1
(6.1.31) solves the original VIE (6.1.30, Vα y = g.

Exercise 6.6.12 Assume that h ∈ C1(I ) is strictly increasing on I . Derive the
inversion formula giving the solution of

(Aα y)(t) :=
∫ t

0
(h(t) − h(s))−α y(s)ds = g(t), t ∈ I (0 < α < 1, g(0) = 0).

In particualr, let h(t) = t p, p > 1.
Also:

(A∗
α y)(t) :=

∫ T

t
(h(s) − h(t))−α y(s)ds = g(t), t ∈ I :

Derive the inversion formula describing the solution. When is y ∈ C(I )?

Exercise 6.6.13 Establish the analogue of the regularity result in Theorem
6.1.14 for the nonlinear (Hammerstein) VIE of the first kind (6.1.34).

Exercise 6.6.14 Consider the VIE

y(t) = tβ g0(t) + (V y)(t), t ∈ I := [0, T ] (g0(0) �= 0),

with β > 0, β �∈ IN; here, V denotes the classical Volterra integral operator
with smooth kernel K (t, s).

(a) Discuss the regularity of the solution y, and derive the analogue of the
representation (6.1.17) (Theorem 6.1.6).
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(b) Give a complete convergence analysis for uh ∈ S(−1)
m−1(Ih) and the associated

uit
h . In particular, determine the optimal mesh grading.

Exercise 6.6.15 Solve the Volterra–Hammerstein integral equation

y(t) = g(t) + λ

∫ t

0
pα(t − s)G(y(s))ds, t ∈ I := [0, T ] (0 < α ≤ 1),

with g(y) = exp(−y) and λ < 0, by direct collocation in S(−1)
m−1(Ih) (followed

by uit
h ), and by implicitly linear collocation. Compare the numerical results

corresponding to uniform and optimally graded meshes, by selecting suitable
‘test solutions’ (determining the non-homogeneous term g).

Exercise 6.6.16 Nonlinear VIEs of the form

(y(t))β = g(t) + (Vα y)(t), β > 1

(cf. Buckwar (1997, 2000) for the underlying existence and uniqueness theory),
can be solved by a simple variant of implicitly linear collocation. Provide the
computational details, and carry out the convergence analysis. In particular: is
(global or local) superconvergence possible (when α = 0, and when 0 < α <

1)?

Exercise 6.6.17 (Research problem)
Consider the more general (Abel–) Volterra integral equation

y(t) = g(t) + (Vα,β y)(t), t ∈ I,

with

(Vα,β y)(t) :=
∫ t

0
(t − s)−α(t + s)−β K (t, s)y(s)ds, with

0 < α < 1, 0 < β ≤ 1 − α.

Assume that K is smooth, with K (t, t) �= 0 on I .

(a) Analyse the attainable orders of convergence of the collocation solution
uh ∈ S(−1)

m−1(Ih) and the corresponding iterated collocation solution, for uni-
form and suitably graded meshes.

(b) Collocation in the same piecewise polynomial space for

(Vα,β y)(t) = g(t), t ∈ I (g(0) = 0).

(See also the remark at the end of Weiss and Anderssen (1972, p. 455).)
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Exercise 6.6.18 (Research Problem)
Do Exercise 6.6.17 for the linear version of ‘Lighthill’s equation’,

y(t) = g(t) + (Ap,α y)(t), p = 3/2, α = 2/3

(cf. Franco, McKee and Dixon (1983)). See Section 6.1.5 for the definition of
the Volterra operator Ap,α .

Exercise 6.6.19 Assume that the {ci } are such that the collocation solution
uh ∈ S(−1)

m−1(Ih) for the first-kind VIE (Vα y)(t) = g(t) is convergent. Show that
the corresponding discretised collocation solution ûh in the same collocation
space is also convergent, with the same order of convergence. In other words,
the result of Theorem 6.3.4 remains true for ûh .

Exercise 6.6.20 (Research problem)
Extend the sequential collocation method/sequential future (constant/poly-
nomial) regularisation methods of Lamm and Scofield (2000) and of Ring
(2001) and Ring and Prix (2000) to weakly singular first-kind VIEs described
by the operators Vα and Vp,α (0 < α < 1, p = 2).

Exercise 6.6.21 The result in Theorem 6.1.6 on the representation of the solu-
tion to the second-kind VIE y(t) = g(t) + (Vα y)(t) (0 < α < 1) can be used,
as already suggested in Section 6.4.1, as the basis for obtaining non-polynomial
collocation solutions to this equation. Using the appropriate collocation space
(which, on the first subinterval σ̄0, is spanned by the functions

φ
(0)
j,k(t) := t j+k(1−α), j + k(1 − α) < m ( j, k ∈ IN0 )),

analyse the attainable orders of convergence of the corresponding collocation
solution and its iterate. In particular, is superconvergence (globally, on I , and
locally, on Ih) possible? (Compare also Brunner (1982b, 1983) and Brunner
and van der Houwen (1986, Section 6.2.5).)

Exercise 6.6.22 Show that the starting methods used by Lubich for the frac-
tional linear multistep methods for solving weakly singular VIEs of the second
kind can be interpreted as non-polynomial spline collocation methods using
equidistant collocation points (see also Exercise 6.6.23 below).

Exercise 6.6.23 (Research problem)
Give a convergence analysis of non-polynomial spline collocation for linear
first-kind Volterra integral equations with weakly singular kernel pα(t − s)
(0 < α < 1) (see Section 6.4.2). In particular, find a necessary and sufficient
condition for the collocation parameters which implies the uniform convergence
of the collocation on I (assume that the mesh is uniform).
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Exercise 6.6.24 (Research problem)
Solutions of certain nonlinear VIEs with weakly singular kernels can blow
up for some finite value of t (recall also Section 2.1.5). Typical examples are
encountered in the modelling of the formation of shear bands in steel, when
subjected to very high strain rates (see Roberts, Lasseigne and Olmstead (1993)
and the survey paper by Roberts (1998)). If y = y(t) denotes the temperature
at time t , a simple such model is given by

y(t) = γ

∫ t

0
(t − s)−α(1 + s)q [y(s) + 1]pds, t ≥ 0,

where γ > 0, 0 < α < 1, q ≥ 0, p > 1. The numerical analysis (e.g. of col-
location methods) for such problems is not yet understood. Thus, as a first step,
consider the collocation solution uh ∈ S(−1)

0 (Ih), with c1 = 1/2 and c1 = 1, and
the associated iterated collocation solution. The choice of the mesh Ih is ini-
tially governed by the non-smooth behaviour of y near t = 0 (graded mesh with
r = 1/(1 − α)). As we approach the blow-up point t = Tb (and uh becomes
large), the stepsize sequence {hn} must be such that the nonlinear algebraic
equations remain uniquely solvable.

(a) Discuss the choice of Ih near t = T −
b . (Compare also Bandle and Brunner

(1994).)
(b) (Detection of blow-up.) Is it possible to generate collocation solutions

uh, vh (corresponding to two different values of c1) so that, for a given
mesh Ih ,

vi t
h (t) ≤ y(t) ≤ uit

h (t) for all t ∈ [0, Tb) ?

Exercise 6.6.25 Let 0 < α < 1 and assume that the lag function θ is nonlinear
and satisfies (D1)–(D3). Let Ih be a θ -invariant whose first submesh I (0)

h is
graded with grading exponent r0 = m/(1 − α). Are the submeshes I (µ)

h (µ =
1, . . . , M) quasi-uniform? (See also Exercise 4.7.9.)

Exercise 6.6.26 Suppose that a weakly singular delay VIE with α ∈ (0, 1)
and non-vanishing linear delay satisfying (D1)–(D3) is solved by collocation
in S(−1)

m−1(Ih). If the submeshes I (µ)
h (µ = 0, 1, . . . , M) are graded individually,

each with optimal grading exponent rµ (recall Remark 2 following Theorem
6.5.2), is local superconvergence of order m + 1 − α possible on Ih \ {t0}?
Exercise 6.6.27 (Research problem)
Collocation analysis on graded meshes for

d

dt
[(Wθ,α y)(t)] = g(t), t ∈ (0, T ] (0 < α < 1),
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with y(t) = φ(t), t ≤ 0: compare the convergence properties and the numerical
implementation of direct collocation (based on setting z(t) := (Wθ,α y)(t) in
the given VFDE) and indirect collocation (based on the integrated form of the
equation). Compare also the remark on a related open problem at the end of the
paper by Ito and Turi (1991).

6.7 Notes

6.1: Review of basic Volterra theory (III)
The two papers by Evans (1910, 1911) are based on his doctoral dissertation
(written under the supervision of Bôcher); they represent the first detailed stud-
ies of second-kind VIEs with weakly singular kernels, as well as other types of
singular VIEs.

The Swedish mathematician Mittag-Leffler introduced ‘his’ function in se-
ries of papers in the early 1900s; the one of 1903, listed in the References, is a
good one to consult. It was used by Hille and Tamarkin (1930) to represent the
solution of certain linear VIEs with weakly singular kernels. The survey paper
by Mainardi and Gorenflo (2000) is a rich source of information on the history,
theory, and applications of the Mittag-Leffler function; it also contains an exten-
sive list of references. In addition see Erdélyi (1955), Wagner (1978) (Laplace
transform techniques and asymptotic behaviour of solutions), Gorenflo (1987,
1996), W. Han (1994), and Kiryakova (2000).

Regularity results for weakly singular second-kind VIEs can be found for
example in Evans (1910), Tychonoff (1938), Miller and Feldstein (1971), Lu-
bich (1983a), Brunner (1983, 1985b, 1985c), Brunner and van der Houwen
(1986, Ch. 6), Mydlarczyk (1990) and – especially – in Brunner, Pedas and
Vainikko (1999). Compare also volume 2 of Fenyö and Stolle (1984). At the
end of Section 6.1.5 we pointed out an example of a non-compact Volterra
integral operator. The paper by Graham and Sloan (1979) establishes necessary
and sufficient conditions for compactness of (Fredholm) integral operators, and
introduces tests for deciding if these conditions are satisfied. Many of these
results will of course be relevant for Volterra integral operators.

Blow-up for nonlinear weakly singular VIEs (possessing Hammerstein non-
linearities G(s, y) with G(s, 0) = 0, implying the existence of nontrivial solu-
tions, in addition to y = 0) is studied in Mydlarczyk (1994, 1996, 1999, 2003),
Bushell and Okrasiński (1996), and Mydlarczyk and Okrasiński (2001, 2003).
See also Constantin and Peszat (2000) on the generalisation of some results in
Bushell and Okrasiński (1996).
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Another important class of VIEs with finite-time blow-up is mentioned in
the next paragraph on applications. The numerical analysis (e.g. of collocation
methods) for blow-up problems in VIEs is not yet understood.

Existence results for nonlinear VIEs of the form (y(t))β = g(t) +
(V y)(t) (β > 1), can be found in Bushell and Okrasiński (1992) and in Buckwar
(1997, 2000). See also Kilbas and Saigo (1999).

Applications of VIEs with weakly singular kernels
Of the many papers listed (and annotated) in the bibliography we just mention
a brief selection:

� Heat transfer problems: This is one of the major sources of (nonlinear) VIEs
with weakly singular kernels. Beginning with the papers by Mann and Wolf
(1951) and Roberts and Mann (1951), we have later contributions by Keller
and Olmstead (1972), Olmstead and Handelsman (1976), Gorenflo (1987),
Norbury and Stuart (1987), Groetsch (1989, 1991), Jumarhon (1994), Ju-
marhon and McKee (1996), Jumarhon et al. (1996), and Ibrahim and Alnasr
(1997).

An interesting VIE, due to Lighthill, is studied in Franco, McKee and Dixon
(1983): its kernel is of form (t p − s p)−α , with p = 3/2 and α = 2/3.

� Gas absorption: Olmstead (1977).
� VIEs with blow-up solutions: Solutions of certain nonlinear VIEs with weakly

singular kernels can blow up for finite value of t (recall also Section 2.1.5).
Typical examples are encountered in the modelling of the formation of shear
bands in steel, when subjected to very high strain rates (see Roberts, Lasseigne
and Olmstead (1993)). Related papers are by Olmstead and Roberts (1994,
1996), Olmstead, Roberts and Deng (1995), Roberts and Olmstead (1996),
Olmstead (1997, 2000), Roberts (1997, 2000) and her survey paper of 1998.
Compare also Exercise 6.6.23.

� Weakly singular VIEs of the first kind, either in Abel’s original form, or with
singularity (t p − s p)−α (p > 1), arise in many applications. The survey paper
by Anderssen (1977) and the monograph by Gorenflo and Vessella (1991) list
numerous sources and contain extensive bibliographies. See also Atkinson
(1974a, 1974b), Brunner (1975), and Hung (1979). A related first-kind VIE
(the generalised Tricomi equation, related to a boundary-value problem in
PDEs) is studied in v. Wolfersdorf (1965); its numerical analysis is to my
knowledge completely open.

The reader should also consult the illuminating paper by Plato (1997a) in
which a general resolvent theory for Abel-type integral operators of the above
form is established; it also deals with Lavrentiev’s iterated regularisation
method.
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� Systems of VIEs with non-smooth solutions arise for example in the spatial
discretisation of partial VIEs of the form

u(t, x) = φ(x) + tα/2

�(1 + α/2)
ψ(x) + 1

�(α)

∫ t

0
(t − s)α−1�u(s, x)ds,

with 1 ≤ α ≤ 2. Such PVIEs are studied in the two papers by Fujita (1990).

6.2: Collocation for weakly singular VIEs of the second kind
Many different aspects of the classical Hölder spaces (including approxima-
tion theory) can be found in Timan (1963), Kufner, John and Fačı́k (1977),
Burchard (1977), Powell (1981), and Zeidler (1990). See also Rice (1969)
(where a somewhat different terminology is employed), and the survey paper
by Brunner (1987, p. 585).

Of the many papers dealing with product quadrature for weakly singular inte-
grands we cite the theses by Benson (1973), Logan (1976) and Kutsche (1994),
and the papers by de Hoog and Weiss (1973c, 1974), Schneider (1980), Palamara
Orsi (1993), Kaneko and Xu (1994), Mastroianni and Monegato (1994), Köhler
(1995), Monegato and Lyness (1998) and Tamme (2000). See also Schwab
(1994) for an analysis of composite quadrature formulas of variable order, and
Monegato and Sloan (1997) on quadrature approximations for Cauchy-type
singular integrals.

Discretised collocation methods based on product integration (for weakly
singular VIEs of the first and second kind) was suggested by Huber (1939);
he used the space S(0)

1 (Ih). His analysis was extended by Wagner (1954) (see
also Mirkin and Nilov (1991) where non-uniform meshes were employed). The
application of product integration to integral equations is the subject of Young
(1954).

Of the subsequent papers we mention Oulès (1964), Linz (1969c), the doc-
toral theses of Benson (1973) and Logan (1976), de Hoog and Weiss (1974),
Bownds (1979), Bownds and Wood (1976), Cameron and McKee (1984).
Lubich (1983a) provided a comprehensive analysis (order conditions and
their dependence on α ∈ (0, 1)) of Runge–Kutta methods for weakly singular
VIEs.

Various aspects of piecewise collocation methods were analysed by Brunner
and Nørsett (1981) (superconvergence), Kershaw (1982a, 1982b) (asymptotic
stability in S(0)

1 (Ih)), Brunner (1985a, 1985c) (graded meshes), Brunner and van
der Houwen (1986, Chapter 6) (see also the survey paper of Brunner (1987),
Eggermont (1988a) (trapezoidal method on IR+), Palamara Orsi (1996), Mon-
egato and Scuderi (1998a,b), Kasemets and Pedas (1999) (discretisation of
collocation equation by product quadrature), Tamme (1999), and Savchenko
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(2003). Optimal superconvergence order estimates, also for L p-norms and log-
arithmic kernel singularities, can be found in Brunner, Pedas and Vainikko
(1999); this paper contains an extensive list of references.

Collocation methods for VIEs with other types of singular kernels are dis-
cussed in Diogo (1991), Diogo, McKee and Tang (1991, 1994), and Lima and
Diogo (1997).

A numerical approach to weakly singular VIEs of the third kind (whose
left-hand side is p(t)y(t), with p(t) = 0 at a finite number of points in I ) can
be found in Pereverzev and Prössdorf (1997).

In order to avoid the use of graded meshes, it may be feasible to use a suitable
transformation of the independent variable to obtain a VIE whose solution is
smooth and which can be solved on a uniform mesh (with respect to the new
variable). Such an approach were already described by Prasad (1924). See also
Noble (1964), de Hoog and Weiss (1973c, p. 573), Norbury and Stuart (1987),
Abdalkhani (1993), Diogo, McKee and Tang (1994), Monegato and Scuderi
(1998b), Galperin et al. (2000), and Baratella and Orsi Palamara (2003).

Weakly singular Fredholm integral equations: The first analyses of collocation
(and Galerkin) methods on graded meshes are those in Chandler (1979), Graham
(1980, 1982b), Vainikko and Uba (1981), Schneider (1981), and Vainikko,
Pedas and Uba (1984). More recent contributions are by Kaneko, Noren and
Xu (1992), Kaneko and Xu (1994), Kaneko, Noren and Padilla (1997), Pedas
and Vainikko (1997, 1999), and Tamme (1999). A comprehensive analysis of
collocation methods for one- and multidimensional Fredholm integral equations
of the second kind is contained in Vainikko (1993). See also the survey paper
by Brunner (1987) and the monographs by Hackbusch (1995) and Atkinson
(1997a).

Cauchy type singular integral equations: There is now an extensive literature
on collocation methods for singular integral equations of, e.g. Cauchy type.
A good (early) survey paper is by Elliott (1982); compare also Volume 4 of
Fenyö and Stolle (1984). Elliott (1989) presents an illuminating comparison of
Galerkin and collocation methods. The most comprehensive exposition of the
numerical analysis of such IEs is Prössdorf and Silbermann (1991). The detailed
survey by Junghanns and Silbermann (2000) and the paper by Junghanns and
Müller (2000) contain numerous references to related contributions.

6.3: Collocation for weakly singular first-kind VIEs
Huber (1939) studied collocation in S(0)

1 (Ih) for weakly singular VIEs. The con-
vergence properties of the product midpoint and trapezoidal methods were anal-
ysed in detail in Weiss (1972a, 1972b), Weiss and Anderssen (1972), Benson
(1973) and – especially – in Eggermont (1981). See also Cameron and McKee
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(1984). Branca (1976, 1978) used a more general approach which is more in
the spirit of collocation methods; it leads to higher-order spline methods. The
paper by te Riele and Schroevers (1986) contains an illuminating numerical
comparison of the performance of many discretisation methods, including col-
location.

The papers by Brunner (1997b, 1999a, 1999c) convey a picture of the ‘state
of the art’ in the analysis of collocation methods for such VIEs, including the
open problems mentioned earlier in this chapter. In addition, see Eggermont
(1984, 1988b) (also for a comparison of collocation and Galerkin methods),
Capobianco (1988, 1990), and Capobianco and Formica (1998).

Numerical methods for first-kind VIEs with kernel singularities (t p −
s p)−α p > 1, 0 < α < 1) can be found in, e.g. Atkinson (1974b), Brunner
(1975), Anderssen (1976) (use of inversion formula and spectral differentia-
tion), Anderssen (1977) (survey paper; see also the proceedings volume edited
by Anderssen, de Hoog and Lukas (1980)), Smarzewski and Malinowski (1978),
Hung (1979), and Smarzewski and Malinowski (1983) (singular kernels of the
form (h(t) − h(s))−α).

The convergence analysis for collocation solutions in S(d)
m+d (Ih) (d ∈

{−1, 0}) remains to be established: as in the case p = 1 it is not known (except
for m = 1 and c1 = 1) under which conditions on the collocation parameters
{ci } one obtains uniform convergence on I as h → 0 (to my knowledge, there
is not even a counterpart to Theorem 6.3.3 when m = 1).

Boundary integral equations
Collocation methods for BIEs have received considerable attention in the last
dozen years or so. The surveys by Atkinson (1997b) and by Sloan (2000)
convey a detailed picture of these developments. In addition, see also, e.g.
Chandler (1984) (mesh grading), Elschner (1989), Chandler and Sloan (1990),
Iso and Onishi (1991), Lubich and Schneider (1992) (time-discretisation), Sloan
(1992, 1995), Hamina and Saranen (1994), McLean (1994) (comparison of
exact and discretised collocation solutions), Sloan (1995), Berthold and Sil-
bermann (1995), Elschner and Graham (1995), Saranen and Vainikko (1996)
(trigonometric collocation), Tran and Sloan (1998), Hämäläinen (1998), Sloan
and Tran (1998, 2001), Junghanns and Rathsfeld (2002), as well as the mono-
graphs by Saranen and Vainikko (2002) (and its bibliograpy) and Yu (2002).

Qualocation
The ‘quadrature modified collocation method’ (or qualocation method) com-
bines the best properties of Galerkin methods (superconvergence, easy stability
analysis) and collocation methods (no inner products, cheaper implementa-
tion); this is achieved by replacing the inner products by speciallly designed
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quadrature rules not based on the collocation parameters. Its principal applica-
tion is in boundary integral equations. An excellent survey is Sloan (2000)
(with numerous references); in addition, see Sloan (1998b, 1991), Hagen
and Silbermann (1988), Wendland (1989), Yan (1990), Chandler and Sloan
(1990), Tran and Sloan (1998), Sloan and Tran (2001), and the book by Hagen,
Roch and Silbermann (1995). An alternative but related approach for periodic
pseudo-differential equation, using ‘corrected’ collocation methods, described
in Berthold and Silbermann (1995).

6.4: Non-polynomial spline collocation methods
Collocation methods in non-polynomial spline spaces (and on uniform meshes)
reflecting the non-smooth behaviour of solutions of weakly singular VIEs were
introduced in te Riele (1982) (for α = 1/2) and Brunner (1983); see Brun-
ner (1982b) and Brunner and van der Houwen (1986, Chapter 6). Hu (1997a,
1997) and Hu and Luo (1997) combined special non-polynomial splines (‘β-
polynomials’), geometric meshes, and interpolation postprocessing to obtain
superconvergence results for such VIEs. An analogous approach to weakly sin-
gular VIDEs can be found in Hu (1996a, 1998b). Cao, Herdman and Xu (2003)
describe a hybrid collocation method, combining non-polynomial spline col-
location near the singular point t = 0 with polynomial spline collocation on
suitably graded meshes in the rest of I . Riley (1989, 1992) applied Sinc meth-
ods to linear, weakly singular VIEs. Stenger (1993, 1995, 2000) should be
consulted for a comprehensive treatment and applications of these functions. A
different kind of non-polynomial spline approximation can be found in Horvath
and Rogina (2002) (for singularly perturbed VIEs and VIDEs).

The reader may also wish to look at the survey paper by Unser and Blu
(2000) on fractional splines and wavelets.

6.5: Weakly singular Volterra functional equations with non-vanishing delays
Numerical methods for the first-kind Volterra functional integro-differential
equation (6.5.2) can be found in Herdman and Turi (1991a) and in Ito and
Turi (1991). They use the semigroup framework of Burns, Herdman and Stech
(1983) to rewrite the given equation as a hyperbolic PDE with non-local bound-
ary conditions. As we mentioned before, the numerical exploitation of the alter-
native semi-group framework for (6.5.2) given in Clément, Desch and Homan
(2002) remains to be studied. Collocation for the integrated form of this class
of equations is discussed in Brunner (1999c).
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VIDEs with weakly singular kernels

The order reduction we observed in Chapter 6 when approximating solutions of
weakly singular Volterra integral equations by piecewise polynomial colloca-
tion on uniform meshes is also present in analogous Volterra integro-differential
equations, although their solutions are slightly more regular. We shall see that
the principal ideas underlying the convergence analysis in the previous chap-
ter are readily adapted to derive analogous optimal convergence estimates for
VIDEs with weakly singular kernels.

7.1 Review of basic Volterra theory (IV)

7.1.1 Linear weakly singular VIDEs

In this section we will focus on the regularity properties of solutions to initial-
value problems for linear first-order VIDEs with weakly singular kernels,

y′(t) = a(t)y(t) + g(t) + (Vα y)(t), t ∈ I := [0, T ], y(0) = y0. (7.1.1)

As in Section 6.1, Vα : C(I ) → C(I ) is defined by

(Vαφ)(t) :=
∫ t

0
pα(t − s)K (t, s)φ(s)ds, (7.1.2)

with pα denoting either an algebraic or a logarithmic singularity,

pα(t − s) :=
{

(t − s)−α if 0 < α < 1,

log(t − s) if α = 1,

and with K ∈ C(D), K (t, t) �= 0 for t ∈ I . We will again set Hα(t, s) :=
pα(t − s)K (t, s). Various nonlinear and higher-order (neutral) counterparts of
(7.1.1) will be considered in Sections 7.1.2 and 7.1.3.

424



7.1 Review of basic Volterra theory (IV) 425

The regularity analysis can be based on either of two second-kind VIEs that
are equivalenti to the original initial-value problem (7.1.1). Its first reformula-
tion has the form

y(t) = g0(t) +
∫ t

0
K I

α (t, s)y(s)ds, t ∈ I, (7.1.3)

where

g0(t) := y0 +
∫ t

0
g(s)ds, K I

α (t, s) := a(s) +
∫ t

s
Hα(v, s)dv.

Alternatively, we may consider the equivalent VIE for z(t) := y′(t), namely,

z(t) = f0(t) +
∫ t

0
K I I

α (t, s)z(s)ds, t ∈ I, (7.1.4)

with

f0(t) := g(t) +
(

a(t) +
∫ t

0
Hα(t, s)ds

)
y0,

K I I
α (t, s) := a(t) +

∫ t

s
Hα(t, v)dv.

Note that if a(t) ≡ 0 and K (t, s) ≡ 1, we obtain

K I
α (t, s) = K I I

α (t, s) =
{ 1

1−α
(t − s)1−α if 0 < α < 1,

(t − s)[log(t − s) − 1] if α = 1.

Before stating the fundamental result on existence and representation of
solutions we look at a representative example, as we did in Section 6.1.1. It is
the VIDE

y′(t) = g(t) + λ

∫ t

0
(t − s)−α y(s)ds, t ∈ I := [0, T ] (0 < α < 1),

(7.1.5)
with initial condition y(0) = y0. This initial-value problem is equivalent to the
second-kind VIE

y(t) = g0(t) + λ0

∫ t

0
(t − s)1−α y(s)ds, t ∈ I,

with

λ0 := λ

1 − α
and g0(t) := y0 +

∫ t

0
g(s)ds.

Its (unique) solution is, according to Corollary 6.1.9 with ν = 1 − α,

y(t) = g0(t) +
∫ t

0

(
d

dt
E2−α(λ0�(2 − α)(t − s)2−α)

)
g0(s)ds.
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A more explicit expression can be obtained by carrying out the differentiation
and then applying integration by parts. For g(t) ≡ 0 this yields

y(t) = E2−α(λ0�(2 − α)t2−α)y0, t ∈ I.

The definition of the Mittag-Leffler function tells us that the solution y of (7.1.5)
is in C1(I ); however, its second derivative typically behaves like |y′′(t)| ≤ Ct−α

near t = 0+. As Theorem 7.1.4 will show, this reflects the general situation:
solutions to (7.1.1) with smooth data a, g and K and 0 < α < 1 exhibit the
regularity behaviour just described; that is, the solution of (7.1.1) is in the Hölder
space C1,1−α(I ).

We first give the representation of the solution of the initial-value problem
(7.1.1), thus extending Theorem 3.1.1 to linear VIDEs with weakly singular
kernels.

Theorem 7.1.1 Assume that a, g ∈ C(I ) and K ∈ C(D), and let α ∈ (0, 1].
Then for any initial value y0 the VIDE (7.1.1) possesses a unique solution
y ∈ C1(I ) satisfying y(0) = y0. Moreover, there exists a unique function rα =
rα(t, s) satisfying rα ∈ C1(D), so that this solution has the representation

y(t) = rα(t, 0)y0 +
∫ t

0
rα(t, s)g(s)ds, t ∈ I. (7.1.6)

The resolvent kernel rα can be defined as the solution of the resolvent equation

∂rα(t, s)

∂s
= −rα(t, s)a(s) −

∫ t

s
rα(t, v)Hα(v, s)dv, (t, s) ∈ D, (7.1.7)

with rα(t, t) = 1 for t ∈ I .

Proof We will use the second-kind VIE (7.1.3) to establish results on the
properties of solutions of the weakly singular VIDE (7.1.1). Let RI

α(t, s) denote
the resolvent kernel of the kernel K I

α (t, s) in the integral equation (7.1.3). Since
K I

α ∈ C(D) we can use the results of Section 2.1.1: RI
α solves the resolvent

equation (2.1.10),

RI
α(t, s) = K I

α (t, s) +
∫ t

s
R I

α(t, v)K I
α (v, s)dv, (t, s) ∈ D, (7.1.8)

and the (unique) solution y ∈ C1(I ) of (7.1.3) is thus given by

y(t) = g0(t) +
∫ t

0
RI

α(t, s)g0(s)ds, t ∈ I. (7.1.9)
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(note that we have g0 ∈ C(I ) and K I
α ∈ C(D), with integrable partial deriva-

tives). Using the above definitions of g0 and K I
α we obtain

y(t) =
(

1 +
∫ t

0
RI

α(t, s)ds

)
y0 +

∫ t

0

(
1 +

∫ t

s
R I

α(t, v)dv

)
g(s)ds.

This shows that the desired function rα in (7.1.5) is given by

rα(t, s) := 1 +
∫ t

s
R I

α(t, v)dv, (t, s) ∈ D. (7.1.10)

Its uniqueness, and the uniqueness of y, follow from that of the resolvent kernel
RI

α and from Theorem 2.1.2 in Section 2.1.1. Note that rα ∈ C1(D); in partic-
ular, we have ∂rα(t, s)/∂s = −RI

α(t, s) ∈ C(D), and rα(t, t) = 1 for all t ∈ I .
Since (7.1.1) and (7.1.3) are equivalent, this completes the first part of the proof.

The above also reveals that the resolvent rα(t, s) associated with the linear
VIDE (7.1.1) satisfies

∂rα(t, s)

∂s
= −RI

α(t, s) = −K I
α (t, s) −

∫ t

s
R I

α(t, v)K I
α (v, s)dv

= −a(s) −
∫ t

s
Hα(v, s)dv −

∫ t

s
R I

α(t, v)

(
a(s) +

∫ v

s
Hα(z, s)dz

)
dv

= −
(

1 +
∫ t

s
R I

α(t, v)dv

)
a(s)

−
∫ t

s

(
1 +

∫ t

v

RI
α(t, z)dz

)
Hα(v, s)dv,

and hence, by (7.1.9),

∂rα(t, s)

∂s
= −rα(t, s)a(s) −

∫ t

s
rα(t, v)Hα(v, s)dv, (t, s) ∈ D. (7.1.11)

The resolvent kernel rα(t, s) can also be defined by the (unique) solution of
an adjoint resolvent equation, in complete analogy to the result in Chapter 3
(Theorem 3.1.2). We summarise this for the sake of completeness in Theorem
7.1.2 and leave the details of its proof as an exercise.

Theorem 7.1.2 Assume that a ∈ C(I ) and K ∈ C(D), and let α ∈ (0, 1]. Then
the resolvent kernel rα = rα(t, s) of the linear weakly singular VIDE (7.1.1) is
also the (unique) solution of the adjoint resolvent equation,

∂rα(t, s)

∂t
= rα(t, s)a(t) +

∫ t

s
Hα(t, v)rα(v, s)dv, (t, s) ∈ D, (7.1.12)

with initial condition rα(s, s) = 1 for s ∈ I .
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Corollary 7.1.3 The resolvent equations associated with the special weakly
singular VIDE

y′(t) = g(t) + (Vα y)(t), t ∈ I, (7.1.13)

with Vα as in (7.1.2), are

∂rα(t, s)

∂s
= −

∫ t

s
rα(t, v)Hα(v, s)dv, (t, s) ∈ D,

and

∂rα(t, s)

∂t
=

∫ t

s
Hα(t, v)rα(v, s)dv, (t, s) ∈ D,

with rα(t, t) = 1 (t ∈ I ) and rα(s, s) = 1 (s ∈ I ), respectively.

We now return to (7.1.1) and show that solutions corresponding to smooth
data will in general not be smooth at t = 0+: they lie in the Hölder space
C1,1−α(I ).

Theorem 7.1.4 Assume that a, g ∈ Cm(I ) and K ∈ Cm(D) (m ≥ 1), with
K (t, t) �= 0 on I , and let α ∈ (0, 1). Then:

(i) The regularity of the solution y of the linear VIDE (7.1.1) with weak kernel
singularity pα(t − s) is described by

y ∈ C1(I ) ∩ Cm+1((0, T ]),

with y′′ being unbounded at t = 0+:

|y′′(t)| ≤ Ct−α for t ∈ (0, T ].

(ii) The solution y can be written in the form

y(t) =
∑
( j,k)ν

γ j,k(ν)t j+k(1+ν) + Ym+1(t ; ν), t ∈ I, (7.1.14)

where ν = 1 − α and, slightly abusing the notation in Theorem 6.1.6,

( j, k)ν := {( j, k) : j, k ∈ IN0, j + k(1 + ν) < m + 1}.
Moreover, Ym+1(·; ν) ∈ Cm+1(I ), and the coefficients γk, j (ν) are defined in
analogy to the γ j,k(α) in the proof of Theorem 6.1.6.

Proof We have seen that for 0 < α < 1, the weakly singular VIDE (7.1.1) is
equivalent to the second-kind VIE (7.1.3) whose kernel is bounded and whose
convolution part is essentially (t − s)1−α . The regularity of solutions to VIEs
of this type has been analysed in Theorem 6.1.8: the present case corresponds
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to ρ = 1 in ν = ρ − α. Thus, the result of Theorem 7.1.4 follows immediately
from that theorem.

Regularity results for linear VIDEs with logarithmic kernel singularity or
with non-smooth but bounded kernels can be found in the papers by Brunner,
Pedas and Vainikko (2001a, 2001b). Exercise 7.7.6 also deals with some of
those cases.

7.1.2 Nonlinear VIDEs with weakly singular kernels

The nonlinear VIDE with weakly singular kernel,

y′(t) = f (t, y(t)) +
∫ t

0
hα(t, s, y(s))ds, (7.1.15)

where hα(t, s, y) := pα(t − s)k(t, s, y) and 0 < α ≤ 1, with smooth f (t, y)
and k(t, s, y), is equivalent to a nonlinear VIE with bounded kernel,

y(t) = y(0) +
∫ t

0

(
f (s, y(s)) +

∫ t

s
hα(v, s, y(s))dv

)
ds.

If (7.1.15) is of Hammerstein type, that is, if k(t, s, y) = K (t, s)G(s, y), then
the equivalent VIE is

y(t) = y(0) +
∫ t

0
( f (s, y(s)) + Hα(t, s)G(s, y(s)))ds,

with

Hα(t, s) :=
∫ t

s
pα(v − s)K (v, s)dv, (t, s) ∈ D.

Therefore, the existence and uniqueness of its solution follow from Theorem
2.1.10: if the nonlinearities f (t, y) and G(s, y) are (Lipschitz) continuous on
I × 	 for some 	 ⊂ IR, then there is a unique local solution on some interval
[0, δ0).

The semilinear VIDE

y′(t) = a(t)y(t) + g(t) +
∫ t

0
Hα(t, s)(y(s) + G(s, y(s)))ds (7.1.16)

represents, as in Section 3.1.2, a first step towards more general nonlinear
VIDEs: the linear Volterra integral operator Vα has been perturbed by the Ham-
merstein term

(Hα y)(t) :=
∫ t

0
Hα(t, s)G(s, y(s))ds
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corresponding to Hα(t, s) := pα(t − s)K (t, s), with K (t, t) �= 0 on I . The fol-
lowing result can be found for example in Grossman and Miller (1970).

Theorem 7.1.5 Assume that the initial-value problem for the semilinear VIDE
(7.1.16) possesses a unique solution y ∈ C1(I ), and let

y�(t) := rα(t, 0)y0 +
∫ t

0
rα(t, s)g(s)ds, t ∈ I,

denote the solution of the linear VIDE

y′(t) = a(t)y(t) + g(t) + (Vα y)(t), y(0) = y0.

Then y and y� are related by

y(t) = y�(t) −
∫ t

0

(
rα(t, s)a(s) + ∂rα(t, s)

∂s

)
G(s, y(s))ds, t ∈ I.

(7.1.17)
Here, rα(t, s) denotes the resolvent kernel associated with a and Hα describing
the linear part of (7.1.16).

Proof Setting Qα(t) := g(t) + (Hα y)(t), the semilinear VIDE (7.1.16) can be
written as

y′(t) = a(t)y(t) + Qα(t) + (Vα y)(t), t ∈ I.

According to Theorem 7.1.1 the solution of this perturbed linear VIDE is for-
mally given by

y(t) = rα(t, 0)y0 +
∫ t

0
rα(t, s)Qα(s)ds, t ∈ I.

The representation of y in Theorem 7.1.2 now follows readily by observing the
resolvent equation (7.1.6) and by writing∫ t

s
rα(t, v)Hα(v, s)dv = −rα(t, s)a(s) − ∂rα(t, s)

∂s
.

We observe that when α = 0 the above result reduces to the one in Theorem
3.1.5.

7.1.3 Neutral and higher-order VIDEs

If the kernel hα in the VIDE (7.1.15) also depends on y′, that is, if the VIDE
has the form

y′(t) = f (t, y(t)) +
∫ t

0
hα(t, s, y(s), y′(s))ds, t ∈ I, (7.1.18)
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with

hα(t, s, y, z) := pα(t − s)k(t, s, y, z) (0 < α ≤ 1),

then this functional equation is the weakly singular counterpart of the (neutral)
first-order VIDE (3.1.13). It can be viewed as a particular case of a weakly
singular kth-order VIDE

y(k)(t) = f (t, y(t), y′(t), . . . , y(k−1)(t)) + (Vα y)(t), t ∈ I := [0, T ],

y(ν)(0) = y(ν)
0 (ν = 0, 1, . . . , k − 1), (7.1.19)

with k ≥ 2. Here, Vα stands for

(Vα y)(t) :=
∫ t

0
hαt, s, y(s), y′(s), . . . , y(k)(s))ds

and corresponds to the kernel

hα(t, s, y, . . . , y(k)) = pα(t − s)k(t, s, y, . . . , y(k)) (0 < α ≤ 1).

We will often use the linear counterpart of this VIDE as the basis for our
subsequent convergence analysis: it is described by

f (t, y, y′, . . . , y(k−1)) =
k−1∑
ν=0

aν(t)y(ν) + g(t), (7.1.20)

hα(t, s, y, y′, . . . , y(k)) = pα(t − s)
k∑

ν=0

Kν(t, s)y(ν). (7.1.21)

The given functions g, aν and Kν are assumed to be continuous on I and D,
respectively. We note again that we allow the derivative of order k of y to occur
as argument in the kernel of the VIDE. Compare also Exercise 7.7.7 for the
more general form of (7.1.21),

hα(t, s, y, y′, . . . , y(k)) :=
k∑

ν=0

pαν
(t − s)Kν(t, s)y(ν),

with 0 < α0 < α1 < . . . < αk ≤ 1.
We shall now briefly show that, for α ∈ (0, 1), the linear VIDE corresponding

to (7.1.20) and (7.1.21) possesses a unique solution y ∈ Ck,1−α(I ) satisfying a
prescribed set of initial conditions. An analogous (generally only local) exis-
tence and uniqueness result can be obtained for the nonlinear VIDE (7.1.19),
by a straightforward adaptation of the arguments presented below.
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Let w(t) := (w0(t), w1(t), . . . , wk(t))T := (y(t), y′(t), . . . , y(k)(t))T , and
write

wν(t) = y(ν)
0 +

∫ t

0
wν+1(s)ds, t ∈ I (ν = 0, 1, . . . , k − 1).

Hence,

wk(t) =
k−1∑
ν=0

aν(t)

(
y(ν)

0 +
∫ t

0
wν+1(s)ds

)
+ g(t)

+
∫ t

0
pα(t − s)

k∑
ν=0

Kν(t, s)wν(s)ds. (7.1.22)

Set

γ(t) :=
(

y(0)
0 , y(1)

0 , . . . , y(k−1)
0 , g(t) +

k−1∑
ν=0

aν(t)y(ν)
0

)T

,

Hα,ν(t, s) := pα(t − s)Kν(t, s), and define the matrix Hα ∈ L(IRk+1) by

Hα(t, s) :=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 1
Hα,0(t, s) a0(t) + Hα,1(t, s) · · · · · · ak−1(t) + Hα,k(t, s)


.

The given VIDE (7.1.19), with (7.1.20) and (7.1.21), is thus equivalent to a
system of second-kind VIEs, namely

w(t) = γ(t) +
∫ t

0
Hα(t, s)w(s)ds, t ∈ I. (7.1.23)

It follows from Section 6.1.4 that due to the continuity of γ and the integrability
of Hα , this system possesses a unique solution w ∈ C(I ) whose representation,

w(t) = γ(t) +
∫ t

0
Rα(t, s)γ (s)ds, t ∈ I, (7.1.24)

is based on the (matrix) resolvent kernel Rα ∈ L(IRk+1) of Hα . If we write this
matrix resolvent kernel as

Rα(t, s) :=




R0,0(t, s; α) . . . R0,k(t, s; α)
...

...
Rk,0(t, s; α) . . . Rk,k(t, s; α)


 ,
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then the representation (7.1.24) permits the explicit derivation of the expressions
for the k + 1 components of the solution vector w(t), e.g. for w0(t) = y(t), in
analogy to Section 3.1.2.

This equivalence between the initial-value problem for the kth-order VIDE
(7.1.19)–(7.1.21) and the system of k + 1 linear Volterra integral equations of
the second kind (7.1.22) allows us, by appealing to Theorem 6.1.6, to obtain
the following.

Theorem 7.1.6 Let α ∈ (0, 1) and assume that the aν (ν = 0, 1, . . . , k − 1)
and g are in C(I ), and Kν ∈ C(D), with Kν(t, t) �= 0 on I (ν = 0, 1, . . . , k).
Then for any initial values y(ν)

0 (ν = 0, 1, . . . , k − 1) the kth-order VIDE
(7.1.19) corresponding to (7.1.20), (7.1.21) possesses a unique solution y ∈
Ck,1−α(I ) satifying the given initial conditions.

We leave it to the reader (see Exercise 7.7.8) to write down the analogue of
the solution representation (7.1.14) in Theorem 7.1.4.

The arguments leading from (7.1.18) to the system (7.1.23) remain valid for
α = 1 (when pα(t − s) = log(t − s)). Hence, we see by extending Theorem
6.1.7 to systems of second-kind VIEs with logarithmic kernel singularity that,
for any set of initial values, the the initial-value problem

y(k)(t) =
k−1∑
ν=0

aν(t)y(ν)(t) + g(t) +
∫ t

0
log(t − s)

k∑
ν=0

Kν(t, sy(ν)(s)ds, t ∈ I,

y(ν)(0) = y(ν)
0 (ν = 0, 1, . . . , k − 1),

possesses a unique solution y ∈ Ck(I ) with

|y(k+1)(t)| ≤ C · t | log(t)|, t ∈ (0, T ],

provided the given functions are in C(I ).

7.1.4 Weakly singular VIDEs with delay arguments

Let the Volterra integral operator Vθ,α be defined as in Section 6.1.7, with the
delay function θ subject to (D1)–(D3). From what we have seen in Section 6.1.7
it is clear that the presence of this delay operator in the VIDE

y′(t) = a(t)y(t) + b(t)y(θ (t)) + g(t) + (Vα y)(t) + (Vθ,α y)(t), t ∈ I,
(7.1.25)

with initial condition y(t) = φ(t) on [θ (t0), t0], will affect the regularity of the
solution y at the points t = ξ+

µ (µ ≥ 0).
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Table 7.1. Regularity and smoothing of solutions to weakly singular
delay VIDEs

Delay Volterra integro-differential equation Regularity on I (µ) = (ξµ, ξµ+1]
(with arbitrarily smooth data) (µ = 0, 1, . . . , M)

• y′(t) = f (t, y(t)) + (Vθ,α y)(t) C2µ+1,1−α

(‘super-smoothing’)
• y′(t) = f (t, y(t), y(θ (t))) + (Vθ,α y)(t) Cµ+1,1−α

• y′(t) = f (t, y(t), y(θ (t))) + (Wθ,α y)(t) Cµ+1,1−α

• y′(t) = f (t, y(t), y(θ (t)), y′(θ (t))) (no smoothing at t = ξµ)
+ (Vθ,α y)(t) C1,1−α C1,1−α

• y′(t) = f (t, y(t), y(θ (t)), y′(θ (t))) (no smoothing at t = ξµ)
+ (Wθ,α y)(t)

This is also true for neutral VIDEs, for example for the class of equations
described by

d

dt
[a0 y(t) − (Vθ,α y)(t)] = f (t, y(t), y(θ (t))), (7.1.26)

where the coefficient a0 is from {1, 0}.
The regularity results summarised in Table 7.1 are analogous to those in

Table 6.1 for weakly singular VIEs and generalise those described in Table 4.1
(Section 4.1.4). Their proofs can be found in Ma (2004). In analogy to Table
6.1 the range of the values µ is such that when the exponent of the indicated
Hölder space reaches m + 1, the reguarity on the remaining subintervals I (µ) is
Cm+1. We will not specify this in Table 7.1.

7.1.5 A generalisation of Gronwall’s Lemma

The kth-order VIDE

y(k)(t) = g(t) +
∫ t

0
(t − s)−α K (t, s)y(s)ds, t ∈ I (α < 1, k ≥ 1))

(7.1.27)
with continuous g and K , is equivalent to the second-kind VIE

y(t) = g0(t) +
∫ t

0

∫ τk

0
· · ·

∫ τ1

0
(τ1 − s)−α K (t, s)y(s)ds dτ1 . . . dτk, t ∈ I,

where

g0(t) := w0(t) +
∫ t

0

(t − s)k−1

(k − 1)!
g(s)ds



7.2 Collocation for linear weakly singular VIDEs 435

and

w0(t) :=
k−1∑
ν=0

y(ν)(0)

ν!
tν .

Hence, the uniqueness of the solution of the initial-value problem for the VIDE
(7.1.27) can be established by means of the following Gronwall-type result due
to Dixon and McKee (1984).

Theorem 7.1.7 Assume that γ ∈ C(I ) is non-negative and non-decreasing on
I := [0, T ], and let z ∈ C(I ) be a non-negative function on I satisfying

z(t) ≤ γ (t) + K0

∫ t

0

∫ τk

0
· · ·

∫ τ1

0

z(s)

(τ1 − s)α
ds dτ1 . . . dτk, t ∈ I, (7.1.28)

with α < 1 and K0 > 0. If we define β := k + 1 − α then

z(t) ≤ Eβ(K0�(1 − α)tβ)γ (t), t ∈ I.

Proof The (k + 1)-fold integral in (7.1.28) can be rewritten, using Dirichlet’s
formula, as ∫ t

0

∫ τk

0
· · ·

∫ τ1

0

z(s)

(τ1 − s)α
ds dτ1 . . . dτk

= �(1 − α)

�(k + 1 − α)

∫ t

0
(t − s)k−αz(s)ds, t ∈ I.

The result of Theorem 7.1.7 now follows from Theorem 6.1.17.

7.2 Collocation for linear weakly singular VIDEs

7.2.1 The exact collocation equations

The weakly singular counterpart of the VIDE (3.2.1) is given by

y′(t) = f (t, y(t)) + (Vα y)(t), t ∈ I := [0, T ], y(0) = y0 (0 < α ≤ 1).

(7.2.1)

The Volterra integral operator Vα : C(I ) → C(I ) is the one given in (7.1.2),

(Vαφ)(t) :=
∫ t

0
Hα(t, s)φ(s)ds :=

∫ t

0
pα(t − s)K (t, s)φ(s)ds, t ∈ I.

Recall that the kernel singularity is either of algebraic type, pα(t − s) :=
(t − s)−α if 0 < α < 1, or of logarithmic type, pα(t − s) := log(t − s) when
α = 1. We will assume that K ∈ C(D) and K (t, t) �= 0 (t ∈ I ). Later in this
chapter we shall also turn to fully nonlinear versions of (7.2.1), in particular to
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the one associated with the Volterra–Hammerstein operator

(Hαφ)(t) :=
∫ t

0
pα(t − s)K (t, s)G(s, φ(s))ds.

The collocation solution uh ∈ S(0)
m (Ih) for (7.2.1) satisfies the collocation equa-

tion

u′
h(t) = f (t, uh(t)) + (Vαuh)(t), t ∈ Xh, uh(0) = y0, (7.2.2)

with the familiar set Xh of collocation points,

Xh := {tn,i := tn + ci hn : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}.
If we admit sets {ci } where c1 = 0 and cm = 1 (m ≥ 2), then – as in the case
α = 0 – the collocation solution lies in the smoother space S(0)

m (Ih) ∩ C1(I ) =:
S(1)

m (Ih), provided the given functions f and k in (7.2.1) are continuous. How-
ever, since

dim S(1)
m (Ih) = N (m − 1) + 2,

we need a second, ‘artificial’, initial condition, u′
h(0) = y′(0) = f (0, y0), in

order to start the recursive process given by the computational form of (7.2.2).
The memory term (Vαuh)(t) corresponding to t = tn,i may be written as

(Vαuh)(tn,i ) = Fn(tn,i ; α) + hn

∫ ci

0
Hα(tn,i , tn + shn)uh(tn + shn)ds,

with lag term Fn(t ; α) defined as in (6.2.8),

Fn(t ; α) :=
∫ tn

0
Hα(t, s)uh(s)ds, t = tn + vhn ∈ σ̄n. (7.2.3)

We will use again the local (Lagrange) representation of uh ∈ S(0)
m (Ih) on σ̄n ,

namely,

uh(tn + vhn) = yn + hn

m∑
j=1

β j (v)Yn, j , v ∈ [0, 1],

with Yn, j := u′
h(tn + c j hn), (7.2.4)

with yn := uh(tn) and β j (v) := ∫ v

0 L j (s)ds. The computational form of the
collocation equation (7.2.2) on σ̄n then becomes

Yn,i = f (tn,i , yn + hn

m∑
j=1

ai, j Yn, j )

+ h2
n

m∑
j=1

(∫ ci

0
Hα(tn,i , tn + shn)β j (s)ds

)
Yn, j

+ Fn(tn,i ; α) + hn

(∫ ci

0
Hα(tn,i , tn + shn)ds

)
yn (i = 1, . . . , m).

(7.2.5)
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Due to the continuity of uh on I , the value yn is given by

yn = uh(tn) = yn−1 + hn−1

m∑
j=1

b j Yn−1, j (n = 1, . . . , N ),

with b j := β j (1) and y0 = y(0).
In the remainder of this section we will assume that f in (7.2.1) is linear,

f (t, y) = a(t)y + g(t), with a, g ∈ C(I ). (7.2.6)

The collocation equation to (7.2.5) then assumes the form

Yn,i − hna(tn,i )
m∑

j=1

ai, j Yn, j − h2
n

m∑
j=1

(∫ ci

0
Hα(tn,i , tn + shn)β j (s) ds

)
Yn, j

= g(tn,i ) + Fn(tn,i ; α) +
(

a(tn,i ) + hn

∫ ci

0
Hα(tn,i , tn + shnds

)
yn (7.2.7)

(i = 1, . . . , m), where the lag term Fn(tn,i ; α) may now be written as

Fn(tn,i ; α) =
n−1∑
�=0

h�

∫ 1

0
Hα(tn,i , t� + sh�)

(
y� + h�

m∑
j=1

β j (s)Y�, j

)
ds

=
n−1∑
�=0

h�

(∫ 1

0
Hα(tn,i , t� + sh�)ds

)
y�

+
n−1∑
�=0

h2
�

m∑
j=1

(∫ 1

0
Hα(tn,i , t� + sh�)β j (s)ds

)
Y�, j . (7.2.8)

We will employ the vectors

Yn := (Yn,1, . . . , Yn,m)T , an := (a(tn,1), . . . , a(tn,m))T ,

gn := (g(tn,1), . . . , g(tn,m))T , Gn(α) := (Fn(tn,1; α), . . . , Fn(tn,m ; α))T ,

and the matrices in L(IRm),

A :=
(

ai, j

(i, j = 1, . . . , m)

)
, An := diag(a(tn,i ))A ,

Cn(α) :=



∫ ci

0
Hα(tn,i , tn + shn)β j (s) ds

(i, j = 1, . . . , m)


 ,

C (�)
n (α) :=




∫ 1

0
Hα(tn,i , t� + sh�)β j (s) ds

(i, j = 1, . . . , m)


 (� < n)
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(see also (3.2.9)), with ai, j = β j (ci ). Moreover, set

κn(α) := an + hn

(∫ ci

0
Hα(tn,i , tn + shn) ds (i = 1, . . . , m)

)T

∈ IRm

and, for 0 ≤ � < n ≤ N − 1,

κ(�)
n (α) :=

(∫ 1

0
Hα(tn,i , t� + sh�)ds (i = 1, . . . , m)

)T

∈ IRm .

The system of linear algebraic equations (7.2.7) then becomes

[Im − hn(An + hnCn(α))]Yn = gn + Gn(α) + κn(α)yn, (7.2.9)

where n = 0, 1, . . . , N − 1. Observe that the lag term Gn(α) has the form

Gn(α) =
n−1∑
�=0

h2
�C (�)

n (α)Y� +
n−1∑
�=0

h�κ�(α)y�.

When the solution Yn of (7.2.9) has been found, the collocation solution on the
interval σ̄n is determined by

uh(tn + vhn) = yn + hnβ
T (v)Yn, v ∈ [0, 1], (7.2.10)

where β(v) := (β1(v), . . . , βm(v))T ∈ IRm .

Theorem 7.2.1 Assume that the functions a, g and K in the VIDE (7.2.1),
with f given by (7.2.6), are continuous on their respective domains I and D.
Then for any α ∈ (0, 1] there exists an h̄ = h̄(α) > 0 so that for any mesh Ih

with mesh diameter h ∈ (0, h̄), each of the linear algebraic systems (7.2.9) has
a unique solution Yn ∈ IRm. Hence the collocation equation (7.2.2) defines a
unique collocation solution uh ∈ S(0)

m (Ih) for the initial-value problem (7.2.1),
(7.2.6), and its representation on the subinterval σ̄n is given by (7.2.10).

Proof It follows from the assumptions on a and K , and because the kernel Hα

is integrable for all α ∈ (0, 1], that the matrices

Cn(α) := An + hnCn(α) (0 ≤ n ≤ N − 1)

in (7.2.9) have bounded elements for any mesh Ih . The argument in the proof of
Theorem 2.2.1 can thus be used to deduce that the inverses [Im − hnCn(α)]−1

exist and are uniformly bounded for hn ∈ (0, h̄), with sufficiently small h̄ > 0.
This implies that each of the systems [Im − hnCn(α]Yn = gn + Gn(α) +
hnκn(α)yn is uniquely solvable for Yn ∈ IRm when h = max(n) hn < h̄. Hence,
for each n = 0, 1, . . . , N − 1 the local representation (7.2.10) is uniquely de-
termined.
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Example 7.2.1 uh ∈ S(0)
1 (Ih) (m = 1), 0 < c1 =: θ ≤ 1, tn,1 = tn + θhn:

Here we have, as in Example 3.2.1, β1(v) = v, A = a1,1 = θ , and

uh(tn + vhn) = (1 − v)yn + vyn+1, v ∈ [0, 1], yn = uh(tn) (7.2.11)

(since uh(tn + vhn) = yn + vhnYn,1 yields, for v = 1, hnYn,1 = yn+1 − yn).
It thus follows that, in analogy to (3.2.6), yn+1 is given by the solution of the
linear algebraic equation(

1 − θhna(tn,1) − h2
n

∫ θ

0
Hα(tn,1, tn + shn)s ds

)
yn+1

= hng(tn,1) + hn Fn(tn,1; α)) +
(

1 + (1 − θ )hna(tn,1)

+ h2
n

∫ θ

0
Hα(tn,1, tn + shn)(1 − s)ds

)
yn

with

Hα(tn,1, tn + shn) = pα((θ − s)hn)K (tn + θhn, tn + shn),

and with lag term

Fn(tn,1; α) =
n−1∑
�=0

h�

∫ 1

0
Hα(tn,1, t� + sh�)[(1 − s)y� + sy�+1]ds .

This method will be referred to as the (exact) continuous θ -method for the
linear weakly singular VIDE (7.2.1),(7.2.6). Its nonlinear counterpart is given
by (7.2.11) and by

yn+1 = yn + hn f (tn,1, (1 − θ )yn + θyn+1) + Fn(tn,1; α)

+ h2
n

∫ θ

0
hα(tn,1, tn + shn, (1 − s)yn + syn+1)ds,

where now

Fn(tn,1; α) :=
n−1∑
�=0

h�

∫ 1

0
hα(tn,1, t� + sh�, (1 − s)y� + sy�+1)ds.

For θ = 1/2 we obtain the continuous implicit (product) midpoint method.

Example 7.2.2 uh ∈ S(0)
2 (Ih) (m = 2), 0 < c1 < c2 ≤ 1:

Here, as in Example 3.2.2,

β1(v) =
∫ v

0
L1(s)ds = v(2c2 − v)

2(c2 − c1)
,

β2(v) =
∫ v

0
L2)ds = v(v − 2c1)

2(c2 − c1)
,
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which permits the computation of the elements of the matrix A, ai, j =
β j (ci ) (i, j = 1, 2) (compare also Example 1.1.2). The elements of the ma-
trix Cn(α) ∈ L(IR2) in (7.2.9) are

(Cn(α))i,1 = 1

2(c2 − c1)

∫ ci

0
Hα(tn,i , tn + shn)s(2c2 − s) ds (i = 1, 2),

and

(Cn(α))i,2 = 1

2(c2 − c1)

∫ ci

0
Hα(tn,i , tn + shn)s(s − 2c1) ds (i = 1, 2).

7.2.2 The fully discretised collocation equations

The (exact) collocation equation (7.2.5) for the VIDE (7.2.1) is amenable to
numerical computations of uh only if the integrals in the equation (and in the
lag term (7.2.8)) can be found analytically. Since this will in general not be
possible, they will have to be approximated by appropriate numerical (product)
quadrature processes which, as in Section 6.2.1, will again be interpolatory
m-point product quadrature formulas whose abscissas are based on the collo-
cation parameters {ci }. Hence, using the notation of (6.2.20) and (6.2.21), the
fully discretised version of (7.2.5) is

Ŷn,i − hna(tn,i )
m∑

j=1

ai, j Ŷn, j − h2
n(Q̂n(α)ûh)(tn,i )

= g(tn,i ) + F̂n(tn,i ) +
(

a(tn,i ) + hn

m∑
j=1

wn, j (ci ; α)K (tn,i , tn + ci c j )

)
ŷn

(7.2.12)

(i = 1, . . . , m), where the discretised lag term has the form

F̂n(tn,i ; α) :=
n−1∑
�=0

h�(Q̂(�)
n (α)ûh)(tn,i ). (7.2.13)

As mentioned above, we have employed the product quadrature approximations
of Section 6.2.3,

(Q̂n(α)ûh)(tn,i ) :=
m∑

k=1

wn,k(ci ; α)K (tn,i , tn + ci ckhn)ûh(tn + ci ckhn)

(7.2.14)
and, for � < n,

(Q̂(�)
n (α)ûh)(tn,i ) :=

n−1∑
�=0

m∑
k=1

wn,k(ci ; α)K (tn,i , t� + ckh�)ûh(t� + ckh�).

(7.2.15)
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Here, the product quadrature weights are as in (6.2.22) and (6.2.23). Since ûh

is locally given by

(ûh(t� + vh�) = ŷ� + h�

m∑
j=1

β j (v)Ŷ�, j ), v ∈ [0, 1], with Ŷn, j := ûh(tn, j ),

we can now write

(Q̂n(α) =
m∑

k=1

wn,k(ci ; α)K (tn,i , tn + ci ckhn)ŷn

+ hn

m∑
j=1

(
m∑

k=1

wn,k K (tn,i , tn + ci ckhn)β j (ci ck)

)
Ŷn, j ,

(Q̂(�)
n (α) =

n−1∑
�=0

m∑
k=1

wn,k(ci ; α)K (tn,i , t� + ckh�)ŷ�

+
n−1∑
�=0

h�

m∑
j=1

(
m∑

k=1

wn,k(ci ; α)K (tn,i , t�+ckh�)β j (ck)

)
Ŷ�, j (� < n).

The solution Ŷn := (Ŷn,1, . . . , Ŷn,m)T ∈ IRm of the linear algebraic system
(7.2.12) determines the discretised collocation solution on the subinterval σ̄n:

ûh(tn + vhn) = ŷn + hn

m∑
j=1

β j (v)Ŷn, j , v ∈ [0, 1], (7.2.16)

with

ŷn := ûh(tn) = ŷn−1 + hn−1

m∑
j=1

b j Ŷn−1, j .

In order to state and prove the result on the existence and uniqueness of the
discretised collocation solution on I , we write (7.2.12) in a more concise form
that reflects the fully discretised analogue of (7.2.9), namely

[Im − hn(An + hnĈn(α))]Ŷn = gn + Ĝn + κ̂(α)ŷn (n = 0, 1, . . . , N − 1),

(7.2.17)

with

Ĉn(α) :=




m∑
k=1

wn,k(ci ; α)K (tn,i , tn + ci ckhn)β j (ci ck)

(i, j = 1, . . . , m)


 ,

and

Ĝn(α) := (F̂n(tn,1; α), . . . , F̂n(tn,m ; α))T .
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The latter may be written as

Ĝn(α) =
n−1∑
�=0

h�κ̂
(�)
n ŷ� +

m∑
�=0

h�Ĉ (�)
n Ŷ�;

here,

Ĉ (�)
n (α) :=




m∑
k=1

w
(�)
n,k(ci ; α)K (tn,i , t� + ckh�)β j (ck)

(i, j = 1, . . . , m)


 (� < n),

with β j (ck) = ak, j . The vectors κ̂n(α), κ̂(�)
n (α) ∈ IRm are defined by

κ̂n(α) := an + hn

(
m∑

k=1

wn,k(ci ; α)K (tn,i , tn + ci ckhn) (i = 1, . . . , m)

)T

(7.2.18)

and, for � < n, by

κ̂(�)
n (α) :=

(
m∑

k=1

w
(�)
n,k(ci ; α)K (tn,i , t� + ckh�) (i = 1, . . . , m)

)T

, (7.2.19)

respectively.

Theorem 7.2.2 Assume that the given functions a, g and K in the linear
weakly singular VIDE (7.2.1), (7.2.6) satisfy the conditions of Theorem 7.2.1,
and let α ∈ (0, 1]. If the corresponding exact collocation equation (7.2.7) is
discretised by means of the interpolatory m-point product quadrature formulas
(7.2.14), (7.2.15), then there exists an ĥ = ĥ(α) > 0 so that for any mesh Ih

with mesh diameter h ∈ (0, ĥ), each of the linear systems (7.2.17) has a unique
solution Ŷn ∈ IRm. Hence the discretised collocation equation (7.2.12) defines
a unique discrete collocation solution ûh ∈ S(0)

m (Ih) whose restriction to σ̄n is
given by (7.2.16).

The proof is a straightforward adaptation of the one for Theorem 7.2.1 (or
Theorem 6.2.2): for fixed m ≥ 1 the weights of the above interpolatory m-point
quadrature formulas are bounded for all h > 0, and hence, by the assumed
continuity of a and K , the matrices Ĉn(α) := An + hnĈn(α) ∈ L(IRm) have
bounded elements for any hn . This implies that the inverses of the matrices
characterising the systems (7.2.16), Im − hn Ĉn(α) (n = 0, 1, . . . , N − 1), exist
and are uniformly bounded for hn ∈ (0, ĥ) for some ĥ > 0 which depends on
α and will in general be different from h̄ defined in Theorem 7.2.1.
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Example 7.2.3 m = 1 (discretised θ -method): It follows from Example 7.2.1
that this method is given by

ûh(tn + vhn) = ŷn + (1 − v)ŷn + v ŷn+1, v ∈ [0, 1],

and (
1 − θhna(tn,1) − h2

nθ
2wn,1(θ ; α)K (tn + θ2hn)

)
ŷn+1

= hng(tn,1) + hn F̂n(tn,1; α) +
(

1 + (1 − θ )hna(tn,1)

+ h2
n(1 − θ2)wn,1(θ ; α)K (tn,1, tn + θ2hn)

)
ŷn.

In the nonlinear case when hα(t, s, y) := pα(t − s)k(t, s, y), the method is de-
scribed by

ŷn+1 = ŷn + hn f (tn,1, (1 − θ )ŷn + θ ŷn+1) + hn F̂n(tn,1; α)

+ h2
nwn,1(θ ; α)k(tn,1, tn + θ2hn, (1 − θ2)ŷn + θ2 ŷn+1),

with discretised lag term

F̂n(tn,1; α) :=
n−1∑
�=0

h�w
(�)
n,1(θ ; α)k(tn,1, t� + θh�, (1 − θ )ŷ� + θ ŷ�+1).

The product quadrature weights are

wn,1(θ ; α) =
∫ θ

0
pα((v − s)hn)ds

and

w
(�)
n,1(θ ; α) =

∫ 1

0
pα((tn + vhn − t�)/h� − s)h�)ds (� < n)

(compare also Example 6.2.3). The method corresponding to θ = 1/2 is the
discretised implicit (product) midpoint method for (7.2.1).

7.2.3 Global convergence results

We have seen in Section 7.1 that, typically, VIDEs with weakly singular kernels
but otherwise smooth data possess solutions that have an unbounded second
derivative at the left endpoint of the interval of integration. Thus, in analogy to
the results for weakly singular VIEs of the second kind, collocation solutions
in S(0)

m (Ih) with uniform mesh Ih will not converge with optimal (global) or-
der p = m. This result, and the one on how to recover optimal order, can be
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established in two different ways: we can either take the proof of the conver-
gence result for VIDEs with smooth solutions (Theorem 3.2.3) as our starting
point, with appropriate modifications – similar to the proof of Theorem 6.2.9
for weakly singular VIEs – of the remainder terms Rm+1,0(v) and R(1)

m+1,0(v) in
the local representations of eh and e′

h on the initial interval σ0 (recall (3.2.26)
and (3.2.27)). Alternatively, we may use the integrated form of the VIDE, as
discussed in Section 6.1.1, whose kernel is bounded but non-smooth, and then
apply Theorem 6.2.12 to the resulting second-kind VIE.

We begin by stating the basic global convergence result for the collocation
solution uh ∈ S(0)

m (Ih) to the linear VIDE

y′(t) = a(t)y(t) + g(t) + (Vα y)(t), t ∈ I := [0, T ], (7.2.20)

where

(Vα y)(t) :=
∫ t

0
pa(t − s)K (t, s)y(s)ds (0 < α < 1),

with K (t, t) �= 0, t ∈ I . VIDEs with logarithmic kernel singularity (α = 1) will
be considered in Theorem 7.2.5. Recall that our graded meshes on I := [0, T ]
are defined by

Ih := {tn := (n/N )r T : 0 ≤ n ≤ N ; r = r (α) ≥ 1}.
Theorem 7.2.3 Assume

(a) The given functions in (7.2.20) satisfy a, g ∈ Cm(I ), K ∈ Cm(D), with
K (t, t) �= 0 for t ∈ I .

(b) In the weakly singular part of Hα(t, s) := pα(t − s)K (t, s) we have 0 <

α < 1.
(c) uh ∈ S(0)

m (Ih) is the (unique) collocation solution to (7.2.20) defined by
(7.2.9), (7.2.10), with h ∈ (0, h̄) and collocation points Xh.

(d) The grading exponent r = r (α) has the form

r = µ

1 − α
, with µ ≥ 1 − α.

Then, setting h := T/N, the estimates

||y(ν) − u(ν)
h ||∞ ≤ Cν(r )

{
hµ if 1 − α ≤ µ < m,

hm if µ ≥ m
(7.2.21)

hold for ν = 0, 1 and any set Xh of collocation points with 0 ≤ c1 < . . . <

cm ≤ 1. The constants Cν(r ) depend on the collocation parameters {ci } and on
the grading exponent r = r (α), but not on h.

Proof The collocation error eh := y − uh satisfies the initial-value problem

e′
h(t) = a(t)eh(t) + (Veh)(t) − δh(t), t ∈ I, eh(0) = 0. (7.2.22)
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The defect δh is defined by

δh(t) := −u′
h(t) + a(t)uh(t) + g(t) + (Vαuh)(t), t ∈ I,

and vanishes on Xh . Recall now the analogous error equation (3.2.25) for
VIDEs, as well as the local representations (3.2.27) and (3.2.26) for eh and
e′

h , respectively:

eh(tn + vhn) = eh(tn) + hn

m∑
j=1

β j (v)En, j + hm+1
n Rm+1,n(v), v ∈ [0, 1],

(7.2.23)
and

e′
h(tn + vhn) =

m∑
j=1

L j (v)En, j + hm
n R(1)

m+1,n(v), v ∈ (0, 1], (7.2.24)

with En, j := Zn, j − Yn, j . Since, according to Theorem 7.1.4, the solution y has
an unbounded second derivative at t = 0+, these representations are only valid
for n ≥ 1. On the first subinterval σ̄0 = [0, h0] we resort to the representation
(7.1.14) (Theorem 7.1.4) for the exact solution of (7.2.20) and the resulting
analogue to the error representation (6.2.39), with m replaced by m + 1. The
convergence analysis proceeds now along the lines we have mapped out in the
proofs of Theorem 3.2.3 and Theorem 6.2.9.

In order to avoid these repetitive arguments (the reader may wish to consult
Brunner (1985b, 1985c, 1986a) or Brunner and van der Houwen (1986, Chapter
6), we will describe a somewhat different approach to establishing the results
of Theorem 7.2.3. It is based on the easily verified fact that we may without
loss of generality consider the VIDE

y′(t) = g(t) + (Vα y)(t), t ∈ I,

since the deleted term a(t)y(t) of (7.2.20) has, according to Theorem 7.1.4, no
smoothing effect on the solution. The error equation is then, for 0 < α < 1,

e′
h(t) = δh(t) +

∫ t

0
(t − s)−α K (t, s)eh(s)ds, t ∈ I.

Using the initial condition eh(0) = 0 we may rewrite it as

e′
h(t) = δh(t) +

∫ t

0
(t − s)−α K (t, s)

(∫ s

0
e′

h(v)dv

)
ds

= δh(t) +
∫ t

0

(∫ t

v

(t − s)−α K (t, s)ds

)
e′

h(v)dv,

or, setting

K0(t, s; α) :=
∫ t

s
(t − v)−α K (t, v)dv,
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as

e′
h(t) = δh(t) +

∫ t

0
K0(t, s; α)e′

h(s)ds, t ∈ I. (7.2.25)

This equation is similar to (6.2.36) except that now the role of eh is assumed
by e′

h . Note that

K0(t, s; α) = (t − s)1−α

∫ 1

0
(1 − z)−α K (t, (t − s)z + s)dz

=: (t − s)1−α H0(t, s; α), (t, s) ∈ D,

where H0(·, ·; α) inherits the assumed regularity of K in (7.2.20).

We know from Theorem 7.1.4 that y′ ∈ Cm,1−α(I ). Hence, on σ̄0, e′
h(t) admits

a local representation of the form (6.2.38) (cf. Theorem 6.1.6)), namely

e′
h(t0 + vh0) =

m−1∑
j=0

β j,0(α)v j + h1−α
0 �m,0(v; α) + hm

0 Rm,0(v; α), v ∈ [0, 1],

with appropriately adapted meaning of the coefficients β j,0(α) and the remain-
der terms Rm,0(v; α) (recall (6.2.39)). These observations imply that we may
now proceed exactly as in the proof of Theorem 6.2.9, to show that

|e′
h(t0 + vh0)| ≤ ||β0(α)||1 + γ0(α)h1−α

0 + γ1(α)hm
0 , v ∈ [0, 1],

where ||β0(α)||1 ≤ Bh1−α
0 . If the grading exponent defining the graded mesh Ih

is given by r = µ/(1 − α) then we obtain first, in analogy to the proof of The-
orem 6.2.9, the estimate ||e′

h ||0,∞ = O(hµ), and then, continuing as indicated,

||e′
h ||∞ ≤ C1(r )

{
hµ if 1 − α ≤ µ ≤ m,

hm if µ ≥ m.

This holds for any set {ci } of collocation parameters.
Consider now the collocation error eh itself: we have, for n = 0, 1, . . . ,

N − 1,

eh(tn + vhn) = eh(tn) + hn

∫ v

0
e′

h(tn + shn)ds, v ∈ [0, 1],

with eh(t0) = eh(0) = 0. Since

|eh(t1)| ≤ h0||e′
h ||0,∞ ≤ C1(r )hµ+1

0 (1 − α ≤ µ ≤ m),

and, for 2 ≤ n ≤ N − 1,

eh(tn) = eh(t1) +
n−1∑
�=1

h�

∫ 1

0
e′

h(t� + sh�)ds,
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it follows that

|eh(tn)| ≤ |eh(t1)| +
n−1∑
�=1

h�||e′
h ||∞ ≤ C1(r )h1−α

0 + C1(r )hµT .

Hence, for v ∈ [0, 1], we find

|eh(tn + vhn)| ≤ |eh(tn)| + hn

∫ v

0
|e′

h(tn + shn)|ds

≤ |eh(t1)| +
n−1∑
�=1

h�||e′
h ||∞ + hnv||e′

h ||∞.

The asserted O(hµ)-convergence of ||eh ||∞, with 1 − α ≤ µ ≤ m, now follows
immediately since h1−α

0 = (N−r T )1−α = T 1−α N−µ (where we have set h :=
T/N ).

Remarks

1. It is possible to show that on uniform meshes one obtains in fact the slightly
better order estimate ||eh ||∞ = O(h2−α) (see Tang (1992, 1993a)).

2. Tang (1992) showed that the collocation solution uh ∈ S(0)
m (Ih) correspond-

ing to collocation parameters with J0 = 0 and graded meshes with r ≥
(m + 1 − α)/(2 − α) satisfies

||eh ||∞ = O(N−(m+1−α)) and max
t∈Xh

|e′
h(t)| = O(N−(m+1−α)).

Moreover, the choice r > m/(2 − α) implies ||eh ||∞ = O(N−m) for any set
{ci } (Tang (1993a)).

The papers by Brunner, Pedas and Vainikko (2001a, 2001b) contain a com-
plete global convergence and superconvergence analysis for linear VIDEs with
weakly singular kernels (see also Kangro and Parts (2003) for related results).
It complements the analysis in Tang (1992, 1993a) not only by admitting
logarithmic kernel singularities but also by giving optimal L p-estimates. We
cite two typical results. Their proofs can be found in the above-mentioned
papers.

Theorem 7.2.4 Let 0 < α < 1, d ≥ m, and assume:

(a) a, g ∈ Cd (I );
(b) K ∈ Cd (D), and K (t, t) �= 0 on I ;
(c) uh is the collocation solution to (7.2.20) in S(0)

m (Ih), with graded mesh Ih

governed by some grading exponent r ≥ 1.
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The following estimates are true:

(i) If d = m ≥ 2, then

||y − uh ||∞ ≤ C0(r )




hr (2−α) if 1 ≤ r < m/(2 − α),
hm(1 + | log(h)|) if r = m/(2 − α),
hm if r > m/(2 − α),

where we have set h := T/N. This holds for any choice of the set {ci }.
(ii) If, in addition to the above assumptions, the set {ci } is such that

J0 :=
∫ 1

0

m∏
i=1

(s − ci )ds = 0,

then we obtain

||y − uh ||∞ ≤ C0(r )hm+1−α,

provided we have d ≥ m + 1 and r ≥ (m + 1 − α)/(2 − α).

Consider now the case where the weak singularity is of logarithmic type. The
following result was also established in Brunner, Pedas and Vainikko (2001a,
2001b).

Theorem 7.2.5 Let α = 1 and assume that (a), (b) and (c) of Theorem 7.2.4
hold.

(i) If m = 1, then

||y(ν) − u(ν)
h ||∞ ≤ Cν(r )

{
h · (1 + | log(h)|) if r = 1,

h if r > 1,

is true for v = 0, 1 and any c1 ∈ [0, 1].
(ii) If m ≥ 2, then

||y(ν) − u(ν)
h ||∞ ≤ Cν(r )

{
hr if 1 ≤ r ≤ m,

hm if r > m,

holds for ν = 0, 1 and arbitrary 0 ≤ c1 < . . . < cm ≤ 1.
(iii) The first of the preceding estimates for m ≥ 2 can be refined:

||y − uh ||∞ ≤ C0(r )




h2r if 1 ≤ r < m/2,

hm(1 + | log(h)|) if r = m/2,

hm if r > m/2.
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7.3 Hammerstein-type VIDEs with weakly
singular kernels

We briefly consider the nonlinear VIDE

y′(t) = g(t) +
∫ t

0
pα(t − s)K (t, s)G(s, y(s))ds, t ∈ I, (7.3.1)

with y(0) = y0, α ∈ (0, 1] and K (t, t) �= 0 on I . Systems of this kind arise for
example in the spatial semidiscretisation of certain partial VIDEs with weakly
singular kernels, as studied by, e.g. Lubich, Sloan and Thomée (1996) and
McLean and Thomée (1997). Compare also Chapter 7 in the monograph by
Chen and Shih (1998).

As an alternative to using ‘direct’ collocation in S(0)
m (Ih), with appropriate

mesh grading as discussed in Section 7.2.1, we rewrite this VIDE as a second-
kind VIE,

y(t) = g0(t) +
∫ t

0
K0(t, s; α)G(y(s))ds, t ∈ I, (7.3.2)

where

g0(t) := y0 +
∫ t

0
g(s)ds and K0(t, s; α) :=

∫ t

s
pα(v − s)K (v, s)dv.

If the solution of this VIE is approximated by uh ∈ S(−1)
m−1(Ih), followed by an

iteration step to generate uit
h , then (by Theorem 6.2.12)

||y − uit
h ||∞ ≤ C(r )hm if r ≥ m/(2 − α).

Since the VIE (7.4.2) is of Hammerstein type, it can also be solved by
implicitly linear collocation, especially if K (t, s) is constant on D. Setting
z(t) := G(t, y(t)) we obtain

z(t) = G

(
t, g0(t) +

∫ t

0
K0(t, s; α)z(s)ds

)
,

and hence

y(t) = g0(t) +
∫ t

0
K0(t, s; α)z(s)ds, t ∈ I.

As we have seen in Section 6.2.9, this approach will often avoid the need of
having to resort to quadrature approximations in order to make the ‘direct’ col-
location equations amenable to numerical computations. For details, including
convergence estimates based on optimally graded meshes, we refer to Section
6.2.9 and Theorem 6.2.16: in the latter, the role of the optimal grading exponent
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is now assumed by

r = µ/(2 − α), µ ≥ m.

7.4 Higher-order weakly singular VIDEs

In Section 7.1.3 we introduced the first-order VIDE,

y′(t) = f (t, y(t)) +
∫ t

0
pα(t − s)k(t, s, y(s), y′(s))ds, t ∈ I, y(0) = y0,

(7.4.1)
and its linear version,

y′(t) = a(t)y(t) + g(t) + (Vα,1 y)(t) + (Vα,2 y′)(t), (7.4.2)

with

(Vα,1φ)(t) :=
∫ t

0
pα(t − s)K1(t, s)φ(s)ds,

and

(Vα,2φ)(t) :=
∫ t

0
pα(t − s)K2(t, s)φ(s)ds,

as special cases of higher-order neutral VIDEs. In this section we shall derive the
collocation equations and corresponding convergence results for the latter, and
so obtain the analogues of Theorems 3.2.11–3.2.13 (Section 3.2.6) for (3.2.44).
They then yield as special cases convergence order estimates for (7.4.1) and
(7.4.2).

Let k ≥ 2 be a given integer and consider the initial-value problem

y(k)(t) = f (t, y(t), y′(t), . . . , y(k−1)(t)) + (Vα y)(t), t ∈ I := [0, T ],

y(ν)(0) = y(ν)
0 (ν = 0, 1, . . . , k − 1), (7.4.3)

where, as in Section 7.1.3,

(Vα y)(t) :=
∫ t

0
hα(t, s, y(s), y′(s), . . . , y(k)(s))ds,

with

hα(t, s, y, y′, . . . , y(k)) := pα(t − s)k(t, s, y, y′, . . . , y(k))

and 0 < α ≤ 1.
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We will first focus on its linear counterpart, described by

f (t, y, y′, . . . , y(k−1)) =
k−1∑
ν=0

aν(t)y(ν), (7.4.4)

k(t, s, y, y′, . . . , y(k)) =
k∑

ν=0

Hα,ν(t, s)y(ν), (7.4.5)

where

Hα,ν(t, s) := pα(t − s)Kν(t, s) (ν = 0, 1, . . . , k).

The given functions aν and Kν are assumed to be continuous on I and D,
respectively.

The collocation solution for (7.4.3) will be sought in the ‘natural’ smooth
piecewise polynomial space

S(d)
m+d (Ih) := {uh ∈ Cd (I ) : uh |σ̄n ∈ πm+d (0 ≤ n ≤ N − 1)}

with d = k − 1 ≥ 1 and, as the reader will recall, dim S(d)
m+d (Ih) = Nm + d +

1 = Nm + k. This collocation solution uh is thus defined by

u(k)
h (t) = f (t, uh(t), u′

h(t), . . . , u(k−1)
h (t)) + (Vαuh)(t), t ∈ Xh, (7.4.6)

u(ν)
h (0) = y(ν)

0 (ν = 0, 1, . . . , k − 1),

where Xh := {tn + ci hn : 0 ≤ c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}. Setting

y(ν)
n := u(ν)

h (tn), yn := y(0)
n , Yn, j := u(k)

h (tn, j ),

and

u(k)
h (tn + vhn) =

m∑
j=1

L j (v)Yn, j , v ∈ (0, 1],

the local Lagrange representation of u(ν)
h (ν = k − 1, . . . , 0) on σ̄n is given by

u(ν)
h (tn + vhn) =

k−ν−1∑
�=0

y(ν+�)
n

�!
(hnv)� + hk−ν

n

m∑
j=1

βν, j (v)Yn, j , v ∈ [0, 1],

(7.4.7)
where we have defined, as in Section 3.2.5,

βν, j (v) :=
∫ v

0

(v − s)k−ν−1

(k − ν − 1)!
L j (s)ds. (7.4.8)

For ν = 0, (7.4.7) yields

uh(tn + vhn) =
k−1∑
�=0

y(�)
n

�!
(hnv)� + hk

n

m∑
j=1

β0, j (v)Yn, j , v ∈ [0, 1]. (7.4.9)
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Substitution of these local representations in (7.4.6), with t = tn,i (i.e. v =
ci , i = 1, . . . , m) yields a system of algebraic equations for Yn ∈ IRm , and its
solution determines the values of the collocation solution and its k derivatives
on σn , via (7.4.7).

We will illustrate this for k = 2, that is, for the linear weakly singular VIDE

y′′(t) =
1∑

ν=0

aν(t)y(ν)(t) + g(t) +
∫ t

0
hα(t, s, y(s), y′(s), y′′(s))ds. (7.4.10)

The reader may wish to compare this with Illustration 3.2.1 (α = 0).

Illustration 7.4.1 The continuous m-stage Volterra–Runge–Kutta–Nyström
(VRKN) method:
Consider (7.4.3) with k = 2 and α ∈ (0, 1]. It follows from

Yn,i = f (tn,i , uh(tn,i ), u′
h(tn,i )) + (Vαuh)(tn,i ), i = 1, . . . , m, (7.4.11)

that the components of the vector Yn := (Yn,1, . . . , Yn,m)T , with Yn, j :=
u′′

h(tn, j ), are given by the solution of the nonlinear algebraic system

Yn,i = f (tn,i , yn + hnvy(1)
n + h2

n

m∑
j=1

β0, j (ci )Yn, j , y(1)
n + hn

m∑
j=1

β1, j (v)Yn, j )

+ Fn(tn,i ; α) (7.4.12)

+ hn

∫ ci

0
hα

(
tn,i , tn + shn, uh(tn + shn), u′

h(tn + shn), u′′
h(tn + shn)

)
ds

(i = 1, . . . , m), with lag term approximation

Fn(tn,i ; α) :=
∫ tn

0
pα(tn,i − s)k(tn,i , s, uh(s), u′

h(s), u′′
h(s))ds. (7.4.13)

Once the solution Yn := (Yn,1, . . . , Yn,m)T has been computed, the values of uh

and u′
h on σ̄n are determined by the interpolation formulas

uh(tn + vhn) = yn + hnvy(1)
n + h2

n

m∑
j=1

β0, j (v)Yn, j , v ∈ [0, 1], (7.4.14)

and

u′
h(tn + vhn) = y(1)

n + hn

m∑
j=1

β1, j (v)Yn, j , v ∈ [0, 1], (7.4.15)

where

β1, j (v) :=
∫ v

0
L j (s)ds and β0, j (v) :=

∫ v

0
(v − s)L j (s)ds.
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For the linear version of this VIDE, corresponding to

f (t, y, y′) = a0(t)y + a1(t)y′ + g(t)

and

hα(t, s, y, y′, y′′) =
2∑

ν=0

Hα,ν(t, s)y(ν)(s)ds, t ∈ I (0 < α ≤ 1), (7.4.16)

the linear algebraic system corresponding to (7.4.12) is seen to have the form

[Im − hn(An + Cn(α))]Yn = gn + Gn(α) + κn,0(α)yn + κn,1(α)y(1)
n ,

(7.4.17)
where now

An := An,1 + hn An,0, Cn(α) := Cn,2(α) + hnCn,1(α) + h2
nCn,0(α).

The five matrices in L(IRm) defining An and Cn(α) have the forms

An,0 := diag(a0(tn,i ))

(
β0, j (ci )

(i, j = 1, . . . , m)

)
,

An,1 := diag(a1(tn,i ))

(
β1, j (ci )

(i, j = 1, . . . , m)

)
,

Cn,0(α) :=



∫ ci

0
Hα,0(tn,i , tn + shn)β0, j (s)ds

(i, j = 1, . . . , m)


 ,

Cn,1(α) :=



∫ ci

0
Hα,1(tn,i , tn + shn)β1, j (s)ds

(i, j = 1, . . . , m)


 ,

Cn,2(α) :=



∫ ci

0
Hα,2(tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 .

The right-hand side terms gn and Gn(α) are as before, and the terms reflecting
the C1-regularity of the collocation solution uh at t = tn are

κn,0(α) :=
(

a0(tn,i ) + hn

∫ ci

0
Hα,0(tn,i , tn + shn)ds (i = 1, . . . , m)

)T

κn,1(α) :=
(

a1(tn,i ) + hnci a0(tn,i ) + hn

∫ ci

0
Hα,1(tn,i , tn + shn)dsi

+ h2
n

∫ ci

0
Hα,0(tn,i , tn + shn)s ds (i = 1, . . . , m)

)T

.
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Example 7.4.1 m = 1 (see also Example 3.2.1)
Setting θ := c1 ∈ (0, 1], tn,1 := tn + θhn , and observing that β1,1(v) = v,

β0,1(v) = v2/2 , the resulting continuous one-stage VRKN method is described
by the collocation equation

Yn,1 = f (tn,1, uh(tn,1), u′
h(tn,1)) + Fn(tn,1; α)

+ hn

∫ θ

0
hα(tn,1, tn + shn), uh(tn + shn), u′

h(tn + shn), Yn,1)ds.

Here,

Yn,1 := u′′
h(tn + vhn) = 1

hn
[y(1)

n+1 − y(1)
n ], v ∈ (0, 1],

and this can be employed to express the local representations of uh, u′
h ,

uh(tn + vhn) = yn + hnvy(1)
n + h2

n

2
v2Yn,1,

u′
h(tn + vhn) = y(1)

n + hnvYn,1, v ∈ [0, 1],

in the form

uh(tn + vhn) = yn + hnv

2

(
(2 − v)y(1)

n + vy(1)
n+1

)
,

u′
h(tn + vhn) = (1 − v)y(1)

n + vy(1)
n+1, v ∈ [0, 1].

For the linear VIDE (7.4.10) the elements of the matrices characterising the
left-hand side of the algebraic equation for Yn,1 are found to be

An,0 = θ2

2
a0(tn + θhn), An,1 = θa1(tn + θhn),

Cn,0(α) = 1

2

∫ θ

0
Hα,0(tn + θhn, tn + shn)s2ds,

Cn,1(α) =
∫ θ

0
Hα,1(tn + θhn, tn + shn)s ds,

Cn,1(α) =
∫ θ

0
Hα,2(tn + θhn, tn + shn)ds.

It is clear from the regularity results and the convergence analysis in earlier
sections that the results of Theorems 7.2.4 and 7.2.5 can be extended in an ob-
vious way to higher-order VIDEs with weakly singular kernels. As an example
we cite a theorem (due to Tang and Yuan (1990)) for (7.3.10),(7.3.16) (k = 2).
(The original result was proved only for kernels of the form hα(t, s, y); however,
it is readily extended to the general case where hα(t, s, y, y′, y′′).) Note that for
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smooth data the exact solution of (7.4.10) lies in the space C2,1−α(I ) and has
an unbounded third derivative at t = 0+ that behaves like |y′′′(t)| ≤ Ct−α .

Theorem 7.4.1 Assume:

(a) The given functions aν, g and Kν in (7.4.10) and (7.4.16) possess contin-
uous derivatives of order m on their respective domains I and D.

(b) uh ∈ S(1)
m+1(Ih) is the collocation solution defined by (7.4.12)–(7.4.15), and

the underlying mesh Ih is graded, with r = µ/(1 − α) ≥ 1.

Then for any α ∈ (0, 1) the estimates

||y(ν) − u(ν)
h ||∞ ≤ Cν(r )

{
hµ if 1 − α ≤ µ ≤ m,

hm if µ ≥ m

hold for ν = 0, 1, 2 and all {ci } with 0 ≤ c1 < . . . < cm ≤ 1.

Refined estimates, analogous to those given in Theorems 7.2.4 and 7.2.5,
can also be derived. We leave this as a research exercise (Exercise 7.7.13).

7.5 Non-polynomial spline collocation methods

The solution representation (7.1.14) in Section 7.1.5 suggests that, on uniform
Ih , it may be more natural to seek the collocation solution to the weakly singular
VIDE (7.2.20) in a special non-polynomial spline space based on the expan-
sion (7.1.14) of the exact solution y. In analogy to Section 6.4.1 we choose a
collocation space Z (0)

m (Ih) with the property that on σ̄0 = [t0, t1] (t0 = 0) any
element zh from this space reduces to

zh(t0 + vh) =
∑

( j,k)2−α

b j,kv
j+k(2−α), v ∈ [0, 1], (7.5.1)

where ( j, k)2−α := {( j, k) : j + k(2 − α) < m + 1, j, k ∈ IN0} and b j,k =
b j,k(h). This local representation thus exactly matches the terms in the first
expression on the right-hand side of (7.1.14)). The error analysis for the cor-
responding collocation solution zh can then be carried out along familiar lines
(using a standard Gronwall argument, as in the proof of Theorem 7.2.3), and it
reveals that ‖y(ν) − z(ν)

h ‖∞ = O(hm) for ν = 0, 1. The details can be found in
Brunner (1983, pp. 1116–1119).

Variants of this non-polynomial collocation method were studied by Hu
(1996a, 1998b): he employed collocation solutions based on so-called piece-
wise β-polynomials (employing integer powers of tβ , with suitable β, as basis
functions); the mesh Ih is a specially chosen geometric mesh.
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7.6 Weakly singular Volterra functional
integro-differential equations

7.6.1 Weakly singular VIDEs with non-vanishing delays

The result in Lemma 6.5.1 shows that the attainable order of (super-) conver-
gence of collocation solutions to VIDEs with non-vanishing delays and weakly
singular kernels will depend on whether the lag function θ is linear or nonlinear.
Hence, in analogy to Theorem 6.5.2, if θ in the equations

y′(t) = a(t)y(t) + b(t)y(θ (t)) + g(t) + (Vα y)(t) + (Vθ,α y)(t), t ∈ I,
(7.6.1)

or

y′(t) = a(t)y(t) + b(t)y(θ (t)) + g(t) + (Wθ,α y)(t), t ∈ I, (7.6.2)

is linear, the optimal orders derived in Theorem 7.2.3 are also attained by the
collocation solutions uh ∈ S(0)

m (Ih) for (7.6.1) and (7.6.2), provided the mesh
Ih is θ -invariant and the first submesh I (0)

h is optimally graded. For nonlinear θ

this is no longer valid. We summarise these fact in

Theorem 7.6.1 Assume

(a) The given functions a, b, K1, K2, K in (7.6.1) and (7.6.2) are d ≥
m-times continuously differentiable on their respective domains, φ ∈
Cd+1[θ (t0, t0], and the lag function satisfies (D1)–(D3).

(b) uh ∈ S(0)
m (Ih) is the collocation solution to (7.6.1) or (7.6.2), with θ -

invariant mesh Ih.
(c) The first submesh I (0)

h is optimally graded:

t (0)
n := t0 +

( n

N

)r0

(ξ0 − t0) (n = 0, 1, . . . , N ), with r0 = m

1 − α
.

(I) If θ is linear, the results of Theorems 7.2.3 and 7.2.4 remain valid on each
subinterval I (µ) := [ξµ, ξµ+1]:

‖y(ν) − u(ν)
h ‖µ,∞ := sup

t∈I (µ)

|y(ν)(t) − u(ν)
h (t)| ≤ Cν N−m (0 ≤ µ ≤ M ; ν = 0, 1).

If the collocation parameters are such that J0 = 0 holds, and if d ≥ m + 1,
then we obtain

‖y − uh‖µ,∞ ≤ C(α)N−(m+1−α) whenever r ≥ m + 1 − α

2 − α
.

(II) If θ is nonlinear, the results of Theorems 7.2.3 and 7.2.4 are in general valid
only on I (0). On the subsequent subintervals I (µ) (µ ≥ 1) the attainable orders
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of ‖y(ν) − uν
h‖µ,∞ (ν = 0, 1) will be less than m and lie between 1 − α and m,

except when m = 1 and we have smoothing in the exact solution.

Remarks

1. For linear lag functions the (super-) convergence results of Brunner, Pedas
and Vainikko (2001a, 2001b), in particular those involving logarithmic kernel
singularities, remain true for second-kind delay VIDEs with weakly singular,
or bounded but non-smooth, kernels. The same is true for the convergence
estimates corresponding to a more refined choice of the grading exponent
(recall Remark 2 following the proof of Theorem 7.2.3).

2. If θ is nonlinear, we can – as for weakly singular VIEs with weakly singular
kernels – again achieve global convergence order p = m, by resorting to
submeshes that are individually graded:
� If the solution y has Cµ+1,1−α-regularity at t = ξ+

µ (cf. Table 7.1) then –

according to Theorem 7.2.3 – the optimal grading exponent for I (µ)
h is

rµ =




m

µ + 1 − α
for µ = 0, 1, . . . , min{m, M},

1 for µ = m + 1, . . . , M.

� If y has only C1,1−α-regularity at each ξ+
µ (no smoothing), then we choose

rµ = m/(1 − α) for all µ = 0, 1, . . . , M .
We recall from Section 6.5.1 that the corresponding global mesh Ih is now
no longer θ -invariant.

7.7 Exercises and research problems

Exercise 7.7.1 Use the reformulation (7.1.4) to prove Theorems 7.1.1 and
7.1.4.

Exercise 7.7.2 Derive the adjoint resolvent equation (7.1.11) and prove the
C1-regularity of rα .

Exercise 7.7.3 Describe the Hölder space containing the resolvent rα = rα(t, s)
defined in (7.1.7) or (7.1.12), under the assumptions of Theorem 7.1.1. Is the
special resolvent rα of Corollary 7.1.3 in the same Hölder space?

Exercise 7.7.4 Find the resolvent kernel rα(t, s) for the special VIDE (7.1.12)
when Hα(t, s) = pα(t − s) (0 < α ≤ 1).
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Exercise 7.7.5 Extend the regularity result of Theorem 7.1.4 to linear VIDEs
(7.1.1) with Volterra integral operator

(Vν y)(t) :=
∫ t

0
(t − s)ν K (t, s)y(s)ds,

where ν := ρ − α, ρ ∈ IN, 0 < α < 1, and

g(t) = g1(t) + tβ g2(t) (β > 0, β �∈ IN,

with smooth functions gi and g2(0) �= 0.

Exercise 7.7.6 Analyse the regularity of the solutions of the linear VIDE

y′(t) = g(t) +
∫ t

0
(t − s)k log(t − s)K (t, s)y(s)ds, t ∈ I := [0, T ],

where k ∈ IN0 and K (t, t) �= 0 on I .

Exercise 7.7.7 What can be said about the regularity of the solution to the
VIDE in Exercise 7.7.6 if k = 0 and g is replaced by the more general (non-
smooth) function g of Exercise 7.7.5?

Exercise 7.7.8 Derive the analogue of the VIE (7.1.24) when the kernel of the
integral operator in (7.1.19) has the more general form

hα(t, s, y, y′, . . . , y(k)) :=
k∑

ν=0

pαν
(t − s)Kν(t, s),

with 0 < α0 < α1 < . . . < αk ≤ 1.

Exercise 7.7.9 Derive the solution representation for (7.1.19)–(7.1.21); i.e.,
prove the corresponding analogue of Theorem 7.1.4.

Exercise 7.7.10 Consider the semilinear VIDE

y′(t) = λy(t) +
∫ t

0
pα(t − s)G(y(s))ds, t ≥ 0,

where λ ≤ 0 and G(y) = u p (p > 1). Discuss the existence and possible blow-
up of solutions corresponding to initial conditions of the form y(0) = y0 > 0.
(The above equation is a non-local analogue of the ODE studied in Section
2.1.5 (Theorem 2.1.11).)

Exercise 7.7.11 In Example 7.2.3, does the use of the right rectangle product
rule lead to the same order of convergence as the the product midpoint rule?

Exercise 7.7.12 Derive the fully discretised version of the Rung–Kutta–
Nyström method for the (linear) weakly singular second-order VIDE (7.4.10),
first for general m, then for m = 1 (cf. Example 7.4.1) and for m = 2.
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Exercise 7.7.13 Extend the results of Theorem 7.2.4 (0 < α < 1) and Theo-
rem 7.2.5 (α = 1) to collocation solutions uh ∈ S(1)

m+1(Ih) for the second-order
weakly singular VIDE (7.4.10).

Exercise 7.7.14 Prove the analogues of Theorems 7.2.3, 7.2.4 and 7.2.5 for
the approximation yh generated by using implicitly linear collocation for the
integrated form (7.4.2) of the Hammerstein type VIDE (7.4.1).

Exercise 7.7.15 In (7.4.1) choose K (t, s) = λ < 0, G(s, y) = s exp(−y). For
a prescribed ‘test solution’ y(t) (of your choice), with corresponding g(t), carry
out a numerical comparison when the VIDE is solved, on appropriately graded
meshes Ih ,

(i) by direct collocation in S(0)
m (Ih);

(ii) by direct collocation, followed by uit , for the integrated form (7.4.2);
(iii) by implicitly linear collocation for (7.4.2).

Discuss the relative merits of these methods.

Exercise 7.7.16 (Research problem)
High-order convergence on uniform meshes for solutions of weakly singular
VIDEs is only possible if the collocation solution lies in some feasible non-
polynomial spline space. The solution representation given in Theorem 7.1.4
gives a hint on how to choose this space: on the first subinterval σ̄0 = [0, h] it
will have to be spanned by the functions

φ
(0)
j,k(t) := t j+k(2−α) ( j + k(2 − α) < m + 1, j, k ∈ IN0).

Describe the collocation equation for such collocation solutions and show that
they exhibit O(hm)-convergence on uniform meshes, for any choice of the
collocation parameters. Is (global and local) superconvergence possible for
judicious choices of these parameters?

Exercise 7.7.17

(a) Prove the regularity results summarised in Table 7.1.
(b) Use these results to establish results on the regularity of the neutral VIDEs

d

dt
[y(t) − (Vθ,α y)(t)] = f (t, y(t), y(θ (t))),

d

dt
[y(t) − (Wθ,α y)(t)] = f (t, y(t), y(θ (t))),

and

d

dt
[(Wθ,α y)(t)] = g(t).
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(See also Burns, Herdman and Stech (1983), Kappel and Zhang (1986), and
Clément, Desch and Homan (2003) for a (different) semigroup framework
for the last of these three functional equations.)

(c) (Research problem) Establish convergence results, similar to those in The-
orem 7.6.1, for collocation solutions to the FVIDEs in (b).

(The paper by Ito and Turi (1991) employs the semigroup framework of
Burns, Herdman and Stech (1983) to derive and analyse a corresponding
numerical method for the last VIDE in (b). It will be interesting to compare
this with an analogous one exploiting the ideas in Clément, Desch and
Homan (2003).)

Exercise 7.7.18 (Research problem)
Consider the state-dependent DDE

y′(t) = y(y(t)) + g(t), t ∈ [0, 1], y(0) = 0,

with

g(t) = (3 + α)t2+α − t (3+α)2
(0 < α < 1)

(Tavernini (1978, p. 1049)). Show that its (unique) solution is given by y(t) =
t3+α . Discuss the application of collocation in S(0)

m (Ih) (m ≥ 1): for which m,
and how, does one need to grade the mesh Ih in order to obtain optimal order
of convergence of uh on I ?

7.8 Notes

7.1: Review of basic Volterra theory (IV)
The regularity properties of solutions to VIDEs with weakly singular kernels are
analysed in Lubich (1983a), Brunner (1983, 1985b, 1985c) and – especially –
in Brunner, Pedas and Vainikko (2001a, 2001b). See also Kiryakova (1994) and
Meehan and O’Regan (1999) for related results.

There is an extensive literature on the regularity of solutions to partial VIDEs
of parabolic type. We mention DaPrato, Iannelli and Sinestrari (1985), Lunardi
and Sinestrari (1986), Sanz-Serna (1988), Choi and MacCamy (1989), Grasselli
and Lorenzi (1991), Sforza (1991), Prüss (1993), Chen and Shih (1998, Chapter
7), Clément and Londen (2000), and Gripenberg, Clément and Londen (2000).
See also the two papers by Fujita (1990).

The mathematics underlying Volterra functional integro-differential equa-
tions with non-vanishing delays has received much attention since the early
1980s. In particular, the semigroup framework for (d/dt)[(Wθ,α y)(t)] =
f (t) (θ (t) = t − τ, 0 < α < 1) is discussed in, e.g. Burns, Herdman and Stech
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(1983), Kappel and Zhang (1986), and (in a wider context) in Staffans (1985b,
Section 10). See also the more recent paper by Clément, Desch and Homan
(2003) and the monograph by Ito and Kappel (2002).

Applications of weakly singular VIDEs
A good source of information (including numerous additional references) on
applications of weakly singular VIDE is the monograph by Prüss (1993). As
in Chapter 6 we will list a representative sample of application areas, together
with typical papers.

� Viscoelasticity / materials with memory: Hrusa, Nohel and Renardy (1988),
Renardy, Hrusa and Nohel (1988), Choi and MacCamy (1989), Brewer and
Powers (1990).

� Biosciences: Dixon (1987), Jumarhon (1994), Jones, Jumarhon, McKee and
Scott (1996), Jumarhon and Pidcock (1996), Jumarhon, Lamb, McKee and
Tang (1996), Clements and Smith (1996).

� Diffusion of discrete particles in turbulent fluids: McKee and Stokes (1983)
(see also for references on the Basset equation), Brunner and Tang (1989).

� Vapour-bubble growth in superheated liquid: Prosperetti (1982) (the paper
contains numerous references on the underlying physical model).

� Capillarity theory: A. Corduneanu and Morosanu (1996).
� Aero-elastic systems: Burns, Cliff and Herdman (1983, 1987), Burns, Herd-

man and Stech (1983), Burns, Herdman and Turi (1987), Herdman and Turi
(1991a, b), Cerezo (1996).

7.2: Collocation for linear weakly singular VIDEs
A comprehensive analysis of global and local superconvergence in collocation
solutions on graded meshes for linear weakly singular VIDEs (with 0 < α ≤ 1)
is given in Brunner, Pedas and Vainikko (2001a, 2001b). Earlier results (for
0 < α < 1) were given by Brunner (1985b, 1985c, 1986a), Brunner and Tang
(1989) (for the Basset equation), Tang (1992, 1993a). The paper by Kangro and
Parts (refines some of the results by Brunner, Pedas and Vainikko.

The discontinuous Galerkin method for such VIDEs is studied in Brunner
and Schötzau (2002) (hp-method) and in the dissertation by Ma (2004).

Waveform and timepoint relaxation methods for solving large systems of nonlin-
ear systems of weakly singular VIDEs (and their discrete versions) are described
and analysed in Parsons (1999); also VIEs: Brunner, Crisci, Russo and Vecchio
(2003).

7.3: Hammerstein-type VIDEs with weakly singular kernels
Ladopoulos (1997) discusses collocation methods for general nonlinear VIDEs
with weakly singular kernels.
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7.4: Higher-order weakly singular VIDEs
The convergence and numerical performance of collocation methods for such
problems were studied by Papatheodorou and Jesanis (1980) (general mth-order
VIDEs), Prosperetti (1982), and by Tang and Yuan (1990) (k = 2: extension of
results of Brunner (1986a)).

7.5: Non-polynomial spline collocation methods
Collocation solutions in special non-polynomial spline spaces (and uniform
meshes) were first analysed by Brunner (1983). Hu (1996a, 1998b) combines
so-called β-polynomials with geometric meshes to obtain superconvergent non-
polynomial spline collocation solutions.

We note that Keller (1982) used special non-polynomial collocation spaces
for (stiff) ODEs; these spaces also reflect certain known properties of the solu-
tion of the given problem.

7.6: Weakly singular Volterra functional integro-differential equations
The survey papers by Brunner (1999a, 1999c) describe the many open problems
in the numerical analysis of VIEs and VIDEs with weakly singular kernels and
non-vanishing delays.

Parabolic VIDEs with weakly singular kernels
There are numerous papers on time-stepping in spatially semidiscretised ver-
sions of such PVIDEs; see, e.g. Sanz-Serna (1988), López-Marcos (1990),
and Tang (1993b) (Burgers’ equation with weakly singular Volterra memory
term, 0 < α < 1), Chen, Thomée and Wahlbin (1992), Xu (1993, 1998), Y. Lin
(1994), Chen and Shih (1998), and Larsson, Thomée and Wahlbin (1998) (also
for additional references). The hp-discontinuous Galerkin method described in
Brunner and Schötzau (2002) extends the approach by Schötzau and Schwab
(2000, 2001) to parabolic VIDEs with weakly singular memory term; see also
the Ph.D. thesis of Ma (2004). Related papers of interest are by Kim and Choi
(1998) (spectral collocation) and by Cuesta and Palencia (2003) (fractional
trapezoidal method for abstract VIDEs).
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Outlook: integral-algebraic equations
and beyond

Summary: As we mentioned in the Preface the voyage through the previous
seven chapters has now brought us in many ways to the ‘frontier’ of what
is known about the analysis of collocation methods. Thus, in this chapter we
will make this more precise, first by reviewing recent and current work on
collocation methods for DAEs and Volterra-type integral-algebraic equations
(IAEs) of index 1. This will be followed by an exploration of various directions
for future research on IAEs in particular, and collocation methods in general,
in more abstract settings that may contain the key to the solution of many of
the open problems encountered earlier.

8.1 Basic theory of DAEs and IAEs

The purpose of this section, especially Section 8.1.1, is to present some of the
modern tools that will be required in the analysis of collocation methods for
integral-algebraic equations of Volterra type. Thus, we present a fairly detailed
introduction to the basic theory of (index-1) DAEs: this will allow us better
to appreciate the complexity behind the analysis of collocation methods for
IAEs and, especially, IDAEs of higher index. As we have just said, much of the
quantitative and qualitative analysis of collocation solutions to such problems
remains to be carried out.

The reader not familar with the theory and numerical analysis of DAEs will
find good introductions to these subjects in the monographs by Griepentrog and
März (1986), Hairer, Lubich and Roche (1989), Brenan, Campbell and Petzold
(1996), and the surveys by März (1992, 1994), Rabier and Rheinboldt (2002),
and Schulz (2003).

463
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8.1.1 DAEs: a brief introduction

A system of implicit ODEs,

�(x ′(t), x(t), t) = 0, t ∈ I := [0, T ], (8.1.1)

where � : IRd × IRd × I → IRd (d ≥ 2) is said to be a system of differential-
algebraic equations (or simply: a DAE) if the Jacobian ∂�/∂x ′ is singular for
all values of its arguments. If ∂�/∂x ′ is regular on IRd × IRd × I , then (8.1.1)
is a regular (implicit) ODE.

If the DAE (8.1.1) has the form

y′(t) = F(t, y(t), z(t)), (8.1.2)

0 = G(t, y(t), z(t)), t ∈ I,

with (continuous) functions F : I × IRd1 × IRd2 → IRd1 and G : I × IRd1 ×
IRd2 → IRd2 , it is called is a semi-explicit DAE. The component z(t) in the
solution x(t) = (y(t), z(t))T (with y ∈ IRd1 and z ∈ IRd2 ) is referred to as
its algebraic component. In this chapter we will restrict the discussion to
semi-explicit DAEs (and analogous integral-algebraic and integro-differential-
algebraic equations; see Sections 8.1.2 and 8.1.3).

The system (8.1.2) is complemented by a given set of initial values, x(0) =
(y(0), z(0))T = (y0, z0)T : it will be assumed that these values are consistent,
that is, they satisfy

G(0, y0, z0) = 0 (8.1.3)

(see also Griepentrog and März (1989)). The general semilinear version of the
DAE (8.1.1) is given by

A(t)x ′(t) + b(x(t), t) = 0, t ∈ I, (8.1.4)

where A(·) ∈ L(IRd ) is continuous and singular (but has constant rank at least
one) for all t ∈ I , and b : IRd × I → IRd is (Lipschitz) continuous. The semi-
explicit form of the linear DAE

A(t)x ′(t) + B(t)x(t) = q(t), t ∈ I. (8.1.5)

with continuous B(·) : I → IRd , corresponds to

A(t) = diag (Id1 , Od2 )
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and is thus given by the more structured system

y′(t) + B11(t)y(t) + B12(t)z(t) = q1(t), (8.1.6)

B21(t)y(t) + B22(t)z(t) = q2(t), t ∈ I. (8.1.7)

The matrix functions Bkk(·) ∈ L(IRdk ) (k = 1, 2) and B12(·) ∈ L(IRd2 , IRd1 ),
B21(·) ∈ L(IRd1 , IRd2 ) are assumed to be continuous on I , as are q1 : I → IRd1

and q2 : I → IRd2 .
It was shown by Rheinboldt (1984) (see also Hairer and Wanner (1996,

pp. 457–458) and Rabier and Rheinboldt (1994, 2002)) that DAEs may be
viewed as differential equations on manifolds, with the manifolds described
by the given algebraic constraints in the DAE. This geometric interpretation
adds considerable insight into the behaviour of solutions to DAEs and into
the properties a feasible numerical method must have. (See also the related
remark in Section 8.3 and Exercise 8.6.12 on the geometry of IDAEs!) While
the geometry is relatively simple for so-called index-1 DAEs like

y′(t) = F(y(t), z(t)), (8.1.8)

0 = G(y(t), z(t)), t ∈ I

(where G is smooth and has non-vanishing Jacobian ∂G/∂z), it becomes much
more complex if the DAE has the (‘index-2’) form

y′(t) = F(y(t), z(t)), (8.1.9)

0 = G(y(t)), t ∈ I.

The notion of index is crucial for the classification of DAEs, as the above
examples indicate. There exist several different (but often closely related) def-
initions of the index of a DAE. Somewhat loosely speaking, we say that the
semi-linear DAE (8.1.4) has

� differentiation index 1 if, and only if, a single differentiation of the algebraic
constraints yields a system of (implicit) regular ODEs;

� perturbation index 1 if, and only if, perturbations in the right-hand side of
(8.1.4) lead to perturbations in the solution that can be estimated in terms of
the original perturbations, with the estimate not depending on derivatives of
the input.

� tractability index 1 if, and only if, the algebraic constraints are locally solv-
able for the algebraic components of the solution x .

For details and, especially, the extension of the above definitions to DAEs
with index 2 and higher, and to fully nonlinear DAEs, we refer the reader to
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Griepentrog and März (1986), März (1987, 1989, 1992, 2002a), Gear (1990),
Hairer, Lubich and Roche (1989), Brenan, Campbell and Petzold (1996), and the
recent survey by Schulz (2003). Lamour (2001) presents a general algorithm,
based on the notion of the tractability index, for computing this index.

In the following we will follow the route chosen by R. März and her collab-
orators and employ the tractability index, not least because it requires minimal
regularity assumptions. Also, it can easily be seen that if (8.1.4) possesses
tractability index 1, then its perturbation index is also 1; the same is true for
the differentiation index, provided b has sufficient regularity. This close rela-
tionship no longer remains true for DAEs of index 2 or higher (compare also
Hairer, Lubich and Roche (1989, pp. 12–13), and Schulz (2003)).

Definition 8.1.1

(i) The matrix pencil p(λ) := det(A + λB) (A, B ∈ L(IRd ), λ ∈ C) associ-
ated with the linear DAE with constant coefficients,

Ax ′(t) + Bx(t) = q(t), t ∈ I (det(A) = 0, rank(A) ≥ 1), (8.1.10)

is called a regular matrix pencil if p(λ) �≡ 0 (that is, if there is a λ for which
A + λB is a regular matrix). We will denote the matrix pencil associated
with the matrices A and B by {A, B}.

(ii) The DAE (8.1.10) is said to be tractable if its matrix pencil {A, B} is
regular.

We leave it to the reader to discuss the phenonema that can occur if the matrix
pencil associated with (8.1.10) is singular.

In order to make the meaning of Definition 8.1.1 more transparent, assume
that {A, B} is a regular matrix pencil. It then follows from a result by Weierstrass
(see, e.g. Griepentrog and März (1986, pp. 14–23) or Brenan, Campbell and
Petzold (1996, pp. 18–22) for details) that there exist regular matrices E, F ∈
L(IRd ) so that

Ã := E AF =
[
I 0
0 J

]
, B̃ := E B F =

[
W 0
0 I

]
,

where I denotes the appropriate identity matrix, W ∈ L(IRk), and

J :=



J1 . . . 0

. . .

0 . . . Jν


 ∈ L(IRd−k):

here, the Ji denote (nilpotent) Jordan blocks in L(IRmi ). The pencil { Ã, B̃} is
called the Kronecker normal form of the regular matrix pencil {A, B}, and the
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corresponding transformed DAE is

Ãx̃ ′(t) + B̃ x̃(t) = q̃(t), t ∈ I,

where x̃(t) := F−1x(t), q̃(t) := Eq(t).

Definition 8.1.2 The index of nilpotency of {A, B} is

µp := max{mi : i = 1, . . . , ν}.
It is not difficult to see that the perturbation index of the linear DAE (8.1.10)
equals its index of nilpotency.

The given DAE (8.1.10) can therefore be decoupled into a system of (regular)
differential equations of the form

ỹ′(t) + W ỹ(t) = q̃1(t), (8.1.11)

J z̃′(t) + z̃(t) = q̃2(t), t ∈ I, (8.1.12)

with obvious meaning of ỹ(t) and z̃(t). This DAE is referred to as the Kronecker
normal form of the DAE (8.1.10). It is described by the regular ODE (8.1.11)
for ỹ and the ‘backward system’ (8.1.12) for the algebraic components z̃. Note
that if we have mi = 1 for i = 1, . . . , ν, then the components of z̃ are given
in terms of those of q̃2, and no derivatives of z̃ are needed. In other words, the
index of nilpotency equals one, and this is also the index of tractability of the
original DAE (8.1.10).

While the Kronecker normal form also exists for DAEs (8.1.5) with variable
coefficients A(t), B(t) (see, e.g. Gear and Petzold (1984)), there is a more elegant
(and practically very feasible – see Lamour (2001, 2003)) way to describe the
index of tractability. It was introduced by Griepentrog and März (1986) and is
based on the null space of A(t) and certain matrix chains associated with it.
Details can be found in, e.g. Griepentrog and März (1986), März (1992, 2002a,
2002b), and Schulz (2003). Here we will describe the basic ideas for the index-1
case. See also Lamour (2001, 2003) on the computational determination of the
tractability index of a DAE.

Assume that A(·) ∈ L(IRd ) is singular for all t ∈ I := [0, T ] but has constant
rank r ≥ 1. We introduce the subspaces

N (t) := ker A(t) := {w ∈ IRd : A(t)w = 0}
(the null space of A(t)) and, for B(·) ∈ L(IRd ) in (8.1.5),

S(t) := {w ∈ IRd : B(t)w ∈ im A(t)},
where im A(·) := {A(·)w : w ∈ IRd} denotes the image of A(·) ∈ L(IRd ). This
space obviously contains every solution of the homogeneous DAE (8.1.5).
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Moreover, we assume that N (t) (t ∈ I ) is spanned by d − r continuously dif-
ferentiable basis functions. Then there exists a matrix function Q(·) ∈ L(IRd ),
with Q ∈ C1(I ), that projects IRd pointwise onto N (t):

(Q(t))2 = Q(t), im Q(t) = N (t), t ∈ I. (8.1.13)

For such a projector Q(t) define P(t) := Id − Q(t), t ∈ I . It follows that
A(t) = A(t)P(t), since we have, by definition of Q(t),

0 = A(t)Q(t) = A(t)[Id − P(t)] = A(t) − A(t)P(t), t ∈ I.

Hence, the DAE (8.1.5) can be rewritten as

A(t)[(P(t)x(t))′ − P ′(t)x(t)] + B(t)x(t) = q(t),

or as

A(t)[P(t)x(t)]′ + [B(t) − A(t)P ′(t)]x(t) = q(t), t ∈ I. (8.1.14)

This reformulation, incidentally, also yields information about the feasible func-
tion space in which the solution x is to be sought: instead of requiring that
x ∈ C1(I ), we define a solution to be an element of the space

C1
N (I ) := {x ∈ C(I ) : P(·)x ∈ C1(I )}.

Lemma 8.1.1 Let N (t) be the null space of A(t) in (8.1.5), and assume that
the projector Q(t) satifies (8.1.13). Then the DAE (8.1.14) decomposes into the
system

[P(t)x]′ − P ′(t)P(t)x + P(t)A−1
1 (t)B0(t)P(t)x = P(t)A−1

1 (t)q(t), (8.1.15)

Q(t)x + Q(t)A−1
1 (t)B0(t)P(t)x = Q(t)A−1

1 (t)q(t). (8.1.16)

Here, we have introduced the matrix functions

B0(t) := B(t) − A(t)P ′(t), A1(t) := A(t) + B0(t)Q(t).

Proof Using the definition of Q(t) and P(t) (and omitting the argument t) we
first write (8.1.14) as

A(Px)′ + (B − AP ′)(Px + Qx) = q.

Since AP = A, Q2 = 0 and Q P = 0 we obtain

{A + (B − AP ′)Q}{P(Px)′ + Qx} + (B − AP ′)Px = q. (8.1.17)

This motivates the definition of the matrix functions B0 and A1. If A1 is non-
singular for all t ∈ I , we multiply (8.1.17) by P A−1

1 and Q A−1
1 , respectively,
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and this yields the system

(Px)′ − P ′ Px + P A−1
1 B0 Px = P A−1

1 q, (8.1.18)

Qx + Q A−1
1 B0 Px = Q A−1

1 q. (8.1.19)

We see that the second component (8.1.19) of this system is derivative free and
determines the null space component Qx of the solution once Px is known.
The non-null space component w := Px (note that P is non-singular) is given
by the solution of the so-called inherent regular ODE,

w′ − P ′w + P A−1
1 B0w = P A−1

1 q,

associated with the DAE (8.1.5).
The proof of the following criterion for A1(t) to be non-singular on I is left

as an exercise.

Lemma 8.1.2 The matrix A1(t) = B(t) + B0(t)Q(t) is non-singular for all
t ∈ I if, and only if, the direct sum of the spaces N0(t) := N (t) and

S0(t) := s(t){w ∈ IRd : B0(t)w ∈ im A(t)} = {w ∈ IRd : B(t)w ∈ im A(t)}

spans IRd :

S0(t) ⊕ N0(t) = IRd for all t ∈ I. (8.1.20)

We are now ready to characterise linear DAEs with variable coefficients that
are index-1 tractable.

Definition 8.1.3 Consider the linear DAE (8.1.5) whose coefficients are con-
tinuous matrix functions in L(IRd ), and assume that on I , det A(t) = 0, A(t)
has constant rank, and its null space N (t) is smooth. Then (8.1.5) is said to be
index-1 tractable if

det A1(t) �= 0 for all t ∈ I.

Here, A1(t) is defined in Lemma 8.1.1.
It can be shown that the tractability index does not depend on the choice of

the projector Q.
We will use these insights into the ‘inner’ structure of linear DAEs to obtain

a better understanding of the semi-explicit DAE given by (8.1.6) and (8.1.7).
We start with

Theorem 8.1.3 The semi-explicit DAE (8.1.6),(8.1.7) is index-1 tractable if
B22(t) is non-singular on I .
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Proof Choose

Q :=
[

0 0
0 Id2

]
, A1 := A + B Q =

[
Id1 B12

0 B22

]
.

We now formalise the above discussion by introducing the important concept
of a (numerically) properly stated DAE. Our starting point is the linear DAE
(8.1.5) which we now write in the form

Ā(t)(D(t)x(t))′ + B̄(t)x(t) = g(t), t ∈ I, (8.1.21)

where Ā(·) ∈ L(IRd0 , IRd ), D(·) ∈ L(IRd , IRd0 ) and B̄(·) ∈ L(IRd ) are continuous
on I . Here, we usually (but not always) have d0 = d. The term Ā(t)(D(t)x(t))
is called the leading term of the DAE (8.1.21).

Definition 8.1.4 The leading term of the DAE (8.1.21) is said to be properly
stated if the matrices Ā(t) and D(t) have the property that

im D(t) ⊕ ker Ā(t) = IRd for all t ∈ I,

with the subspaces im D(t) and ker Ā(t) spanned by C1 bases.
The matrices Ā(t) and D(t) in (8.1.21) are then called well matched.

The following statements are readily verified.

Lemma 8.1.4 Assume that the matrices Ā(t) and D(t) are well matched. Then:

(i) rank Ā(t) = rank D(t) =: r is constant on I ;
(ii) im Ā(t)D(t) = im A(t), ker Ā(t)D(t) = ker D(t);

(iii) ker Ā(t)
⋂

im D(t) = ∅.

If the matrix A(·) ∈ L(IRd ) in the DAE (8.1.5) has constant rank and admits
a factorisation A(t) = Ā(t)D(t) (t ∈ I ) so that Ā(·) and D(·) are continuously
differentiable matrix functions on I that are well matched, then the left-hand
side of the DAE can be written in the form

Ā(t)D(t)x(t) + B(t)x(t) = Ā(t)(D(t)x(t))′ + [B(t) − Ā(t)D′(t)]x(t),
(8.1.22)

in analogy to (8.1.14).

8.1.2 IAEs with smooth kernels

We now turn to ‘mixed’ systems of Volterra integral equations,

A(t)x(t) = q(t) +
∫ t

0
k(t, s, x(s))ds, t ∈ I, (8.1.23)



8.1 Basic theory of DAEs and IAEs 471

with continuous A(·) ∈ L(IRd ) as in (8.1.4) and (8.1.5) (that is, det A(t) = 0 and
rank A(t) ≥ 1 on I ). The semi-explicit linear version of this system is

y(t) = q1(t) + (V11 y)(t) + (V12z)(t), (8.1.24)

0 = q2(t) + (V21 y)(t) + (V22z)(t), t ∈ I, (8.1.25)

where the Volterra integral operators Vkl are given by

(Vklφ)(t) :=
∫ t

0
Kkl(t, s)φ(s)ds (k, l = 1, 2). (8.1.26)

The matrix kernels Kkl(·, ·) (k, l = 1, 2): Kkk(·, ·) ∈ L(IRdk ), K12(·, ·) ∈
L(IRd2 , IRd1 ), and K21(·, ·) ∈ L(IRd1 , IRd2 ) are assumed to be continuous (or pos-
sibly unbounded but integrable). We will always assume that q2(0) = 0.

As the nonlinear analogue we will choose the one based on Hammerstein
operators,

y(t) = q1(t) +
∫ t

0
K1(t, s)G1(s, y(s), z(s))ds, (8.1.27)

0 = q2(t) +
∫ t

0
K2(t, s)G2(s, y(s), z(s))ds, t ∈ I, (8.1.28)

with continuous Kk(·, ·) ∈ L(IRdk ) (k = 1, 2); the functions G1 : I × IRd1 ×
IRd2 → IRd1 and G2 : I × IRd1 × IRd2 → IRd2 are assumed to be smooth. We
set again x(t) := (y(t), z(t))T .

In accordance with the terminology introduced by Gear (1990) we will refer
to these systems of Volterra integral equations as integral-algebraic equations
of Volterra type (or IAEs in short since we will not discuss Fredholm-type
integral equations). Here, the word ‘algebraic’ assumes a wider meaning, in
that it refers to the ‘non-differential’ constraints forming part of the system.

Definition 8.1.5 The semi-explicit IAE (8.1.24/25) is said to be index-1
tractable if the first-kind VIE corresponding to the Volterra operator V22,

(V22w)(t) = g(t), t ∈ I, (8.1.29)

is uniquely solvable in C(I ) whenever g ∈ C1(I ) and g(0) = 0.

In the following we will focus again on index-1 IEAs, in analogy to DAEs
in Section 8.1.1. Thus, the key question concerns the unique solvability for z(t)
of the (linear or nonlinear) first-kind Volterra integral equations (8.1.25) and
(8.1.28) replacing the algebraic equations in (8.1.7) and (8.1.2).

Note first that when we have

∂K2l(t, s)/∂t = 0 on D
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if V21 and V22 are linear, or

∂Kk(t, s)/∂t = 0 on D

in the nonlinear (Hammerstein) case, then differentiation of these first-kind
integral equations leads to (linear or nonlinear) algebraic constraints,

0 = g′(t) + K21(t)y(t) + K22(t)z(t)

and

0 = g′(t) + K2(t)G2(t, y(t), z(t)),

respectively.
In order to deal with the general case of integral constraints, we resort

to Theorems 2.1.8 and 6.1.16 (with α = 0). It follows from the former that
the linear VIE (8.1.25) is (formally) uniquely solvable for z ∈ C(I ) if we as-
sume q2 ∈ C1(I ), with q2(0) = 0, and if given matrix functions K21(·, ·) ∈
L(IRd1 , L(IRd2 ), K22(·, ·) ∈ L(IRd2 ) describing the Volterra operators V21, V22

in (8.1.25) are all continuous on their domains D and in addition satisfy

K21 ∈ C1(D); K22 ∈ C1(D), with | det K22(t, t)| ≥ k0 > 0, t ∈ I.
(8.1.30)

We now turn to the nonlinear IAE (8.1.28): in this case, Theorem 6.1.16)
(α = 0) reveals the additional conditions we have to impose on G2. To see this
in the present context, consider the differentiated form of (8.1.28),

0 = q ′
2(t) + K2(t, t)G2(t, y(t), z(t)) +

∫ t

0

∂K2(t, s)

∂t
G2(s, y(s), z(s))ds.

(8.1.31)

Thus, this implicit VIE is uniquely solvable for z ∈ C(I ) if K2(·, ·) ∈ L(IRd2 )
is continuously differentiable, with | det K2(t, t)| ≥ k0 > 0 (t ∈ I ), and if G2

satisfies, for y ∈ IRd1 , z, z̃ ∈ IRd2 (z �= z̃),

〈G2(t, y, z) − G2(t, y, z̃), z − z̃)〉 > 0, t ∈ I, (8.1.32)

lim
||z||→∞

G2(t, y, z)z

||z|| = ∞, t ∈ I. (8.1.33)

Here, 〈·, ·〉 denotes the standard inner product in IRd2 , with induced norm || · ||.
We will now have a closer look at the linear IAE (8.1.25) and describe its

solvability and the regularity of its solution.

Theorem 8.1.5 Let ν ≥ 0 and assume that

(a) K1l ∈ Cν(D) for l = 1, 2;
(b) K2l ∈ Cν+1(D) (l = 1, 2), and K22 satisfies the condition (8.1.30);
(c) q1 ∈ Cν(I ) and q2 ∈ Cν+1(I ), with q2(0) = 0.
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Then the IAE (8.1.24),(8.1.25) possesses a unique solution x = (y, z)T on I ,
with y, z ∈ Cν(I ).

The proof of the regularity of x can also be deduced from the following
representation theorem (which we state and prove, for ease of notation, for the
case V21 = 0).

Theorem 8.1.6 Assume that the hypotheses given in Theorem 8.1.5 hold with
ν ≥ 0. Then for K21(t, s) = 0 on D the (unique) solution of the linear IAE
(8.1.24),(8.1.25) is given by the representation

y(t) = q1(t) +
∫ t

0
R11(t, s)q1(s)ds (8.1.34)

+ κ12(t)q2(t) +
∫ t

0
Q12(t, s)q2(s)ds,

z(t) = κ21(t)q2(t) + κ22(t)q ′
2(t) +

∫ t

0
Q22(t, s)q2(s)ds, t ∈ I, (8.1.35)

where R11(t, s) denotes the matrix resolvent kernel of K11(t, s) in (8.1.26). It and
the matrix functions Q12, Q22 lie in Cν(D). (The proof will give an indication
of the connection between these functions and the given kernels Kkl .)

Proof If we denote by R11(t, s) and R22(t, s) the resolvent kernels associated
respectively with the kernel K11(t, s) in (8.1.24) and the kernel

H22(t, s) := −(K22(t, t))−1 ∂K22(t, s)

∂t

arising when the differentiated form of (8.1.25),

0 = q ′
2(t) + K22(t, t)z(t) +

∫ t

0

∂K22(t, s)

∂t
z(s)ds, (8.1.36)

is rewritten as a standard second-kind VIE. Recall from Chapter 2 that these
resolvent kernels can be defined by suitably adapted versions of the resolvent
equations (2.1.9) or (2.1.10). The solutions of the second-kind VIEs (8.1.31)
(with K21 = 0) and (8.1.24) are then given by

z(t) = g2(t) +
∫ t

0
R22(t, s)g2(s)ds, t ∈ I,

and

y(t) = q1(t) +
∫ t

0
R11(t, s)q1(s)ds

+
∫ t

0

(
K12(t, s) +

∫ t

s
R11(t, v)K12(v, s)dv

)
z(s)ds, t ∈ I, (8.1.37)
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respectively, where g2(t) := −(K22(t, t))−1q ′
2(t) and R22(t, s) denotes the re-

solvent kernel for H22(t, s). It follows from the definition of g2 and integration
by parts that∫ t

0
R22(t, s)g2(s)ds = −

∫ t

0

R22(t, s)

K22(s, s)
q ′

2(s)ds =:
∫ t

0
Q̃22(t, s)q ′

2(s)ds

= −Q̃22(t, t)q2(t) +
∫ t

0

∂ Q̃22(t, s)

∂s
q2(s)ds

=: κ21(t)q2(t) +
∫ t

0
Q22(t, s)q2(s)ds

(note that, by assumption, q2(0) = 0). The representation (8.1.35) for z(t) now
readily follows, by setting κ22(t) := −(K22(t, t))−1.

The representation (8.1.34) for the solution component y(t) results by re-
placing z(s) by the right-hand side of (8.1.37), and by applying Dirichlet’s
formula and an integration by parts step. This representation also yields the
desired information on the regularity of the solution y of the IAE (8.1.24/25).

8.1.3 IDAEs with smooth kernels

In this section we will consider the semilinear Volterra ‘integro-differential-
algebraic’ equation (IDAE),

A(t)x ′(t) + b(x(t), t) =
∫ t

0
k(t, s, x(s))ds, t ∈ I, (8.1.38)

(cf. (8.1.4) and (8.1.23)), as well as its linear version described by

b(x, t) = B(t)x − q(t) and k(t, s, x) = K (t, s)x .

We write the corresponding linear semi-explicit IDAE as

y′(t) + B11(t)y(t) + B12(t)z(t) = q1(t) + (V11 y)(t) + (V12z)(t), (8.1.39)

0 = q2(t) + (V21 y)(t) + (V22z)(t), (8.1.40)

with B11, B12 and the integral operators Vkl as in (8.1.6/7) and (8.1.24/25),
and subject to the hypotheses stated earlier. We assume again that q2(0) = 0.
An interesting special case – the link between a DAE and a ‘full’ IDAE, so to
speak – is obtained when V11 = V12 = 0: we then have the coupling of an ODE
with a first-kind VIE. If we are looking for a solution x(t) = (y(t), z(t))T to the
IDAE system (8.1.39),(8.1.40) satisfying an initial condition x0 = (y0, z0)T ,
we observe that these initial values are consistent if

K21(0, 0)y0 + K22(0, 0)z0 = −q ′
2(0).
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Definition 8.1.6 The semi-explicit IDAE (8.1.39/40) is said to be index-1
tractable if the first-kind VIE corresponding to the Volterra operator V22 in
(8.1.40),

(V22w)(t) = g(t), t ∈ I, (8.1.41)

is uniquely solvable in C(I ) whenever g ∈ C1(I ) and g(0) = 0.
We will focus again on index-1 IDEAs, in analogy to DAEs in Section 8.1.1.
It follows from the resolvent theory of Section 3.1.1 and the analysis of the

previous section on the representation of solutions of IAEs that the solution
x(t) := (y(t), z(t))T of the IDAE (8.1.39),(8.1.40) can be expressed in a way
completely analogous to that of Theorem 8.1.6. We state this in Theorem 8.1.7
but leave the details of the proof to the reader.

Theorem 8.1.7 Assume that the matrix functions B11(·, ·), B12(·, ·) are in
Cν(I ), with ν ≥ 0, and that q1, q2 and the kernels Kk,l (k, l = 1, 2) are subject
to the assumptions (a)–(c) of Theorem 8.1.5. Then for any set of consistent
initial values {y0, z0} the IDEA (8.1.39),(8.1.40) possesses a unique solution
x = (y, z)T , with y ∈ Cν+1(I ) and z ∈ Cν(I ), satisfying x(0) = (y0, z0)T .

This solution can be represented in the form

y(t) = r11(t, 0)y0 +
∫ t

0
r11(t, s)q1(s)ds (8.1.42)

+ κ12(t)q2(t) +
∫ t

0
q12(t, s)q2(s)ds,

z(t) = κ21(t)q2(t) + κ22(t)q ′
2(t) +

∫ t

0
q22(t, s)q2(s)ds, t ∈ I. (8.1.43)

Here, r11 ∈ Cν+1(D) denotes the matrix resolvent kernel corresponding to the
homogeneous data B11(·) and K11(·, ·) in (8.1.39), and the remaining functions
κ12, q12 and κ21, κ22, q22 inherit, respectively, the regularity of the data in
(8.1.39) and (8.1.40).

Proof We proceed along the lines of the proof of Theorem 8.1.6 for IAEs. The
argument regarding the solvability of the first-kind equation (8.1.40) and the
representation of its solution z by (8.1.35) remains the same. If we view the
VIDE (8.1.40) as an equation for y, then we may use the classical resolvent
representation (see (8.1.46) below) to express y in terms of z: we know that
formally this representation is the same for both equations. Substitution of the
previously derived expression for z, and the adaptation of the techniques used
in the proof of Theorem 8.1.6 then readily lead to the result of the theorem.
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Remark The form of the solution representation in Theorem 8.1.7 remains of
course valid for IDAEs of the special form

y′(t) + B11(t)y(t) + B12(t)z(t) = q1(t) (8.1.44)

(V21 y)(t) + (V22z)(t) = q2(t), (8.1.45)

since the resolvent representation (3.1.4),

y(t) = r (t, 0)y0 +
∫ t

0
r (t, s)g(s)ds, t ∈ I, (8.1.46)

with r (t, s) defined by

∂r (t, s)

∂s
= −r (t, s)a(s) −

∫ t

s
r (t, v)K (v, s)dv, (t, s) ∈ D,

of the solution to

y′(t) = a(t)y(t) + g(t) +
∫ t

0
K (t, s)y(s)ds, y(0) = y0,

is formally identical with the one for the ODE corresponding to K (t, s) ≡ 0.

Question Can we extend the notion of inherent regular ODE and properly
stated leading term, described in Section 8.1.1 (recall Lemma 8.1.1, its proof,
and Definition 8.1.4), to the linear version of the IDAE (8.1.38),

A(t)x ′(t) + B(t)x(t) = q(t) + (Vx)(t), t ∈ I, (8.1.47)

where we have set

(Vx)(t) :=
∫ t

0
K (t, s)x(s)ds,

with continuous matrix function K (·, ·) ∈ L(IRd )? In other words, what is the
inherent regular VIDE of (8.1.38) or (8.1.47)?

Proceeding formally, starting from Lemma 8.1.1 (and omitting the argument
t in P(t), A1(t), B0(t)), we may rewrite (8.1.47) as

(Px)′ − P ′ Px + P A−1
1 B0 Px = P A−1

1 [q(t) + (Vx)(t)], (8.1.48)

Qx + Q A−1
1 B0 Px = Q A−1

1 [q(t) + (Vx)(t)]. (8.1.49)

This observation clearly reveals the limitations of the previous framework:
the analogous decoupling analysis for IDAEs requires an infinite-dimensional
(Hilbert or Banach space) setting, as has been pointed out in März (2002) and
Lamour, März and Tischendorf (2001). Compare also the remarks in Section
9.3.
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8.1.4 IAEs and IDAEs with weakly singular kernels

Except for the regularity results in Theorems 8.1.5 and 8.1.7, the analysis of
Sections 8.1.2 and 8.1.3 carries over to IAEs and IDAEs in which the Volterra
integral operators possess weakly singular kernels. In the linear case the defi-
nition (8.1.26) is then replaced by

(Vα
klφ)(t) :=

∫ t

0
pα(t − s)Kkl(t, s)φ(s)ds, t ∈ I (k, l = 1, 2),

with 0 < α ≤ 1. As in Chapter 6 the weakly singular factor pα is given
by pα(t) := t−α when 0 < α < 1, and by p1(t) := log(t). The continu-
ous matrix kernels Kkl(·, ·) (k, l = 1, 2) satisfy Kkk(·, ·) ∈ L(IRdk ), K12(·, ·) ∈
L(IRd2 , IRd1 ), and K21(·, ·) ∈ L(IRd1 , IRd2 ), with Kkl(t, t) �= 0 on I .

Hence, the weakly singular analogue of the semi-explicit linear IAE
(8.1.24/25) reads

y(t) = q1(t) + (Vα
11 y)(t) + (Vα

12z)(t), (8.1.50)

0 = q2(t) + (Vα
21 y)(t) + (Vα

22z)(t), t ∈ I. (8.1.51)

We will always assume that q2(0) = 0, and we set again x(t) := (y(t), z(t))T .
In the nonlinear case corresponding to (8.1.27/28) the Volterra operators

have the Hammerstein forms∫ t

0
pα(t − s)Kk(t, s)Gk(s, y(s), z(s))ds (k = 1, 2),

with 0 < α ≤ 1, continuous kernels Kk not vanishing along t = s, and smooth
Gk as in (2.1.27) and (2.1.28). The corresponding weakly singular IAE is then

y(t) = q1(t) +
∫ t

0
pα(t − s)K1(t, s)G1(s, y(s), z(s))ds, (8.1.52)

0 = q2(t) +
∫ t

0
pα(t − s)K2(t, s)G2(s, y(s), z(s))ds, t ∈ I. (8.1.53)

As in Section 8.1.2 we will again focus on index-1 IEAs.

Definition 8.1.7 The semi-explicit IAE system (8.1.50/51) is said to be index-1
tractable if the first-kind VIE corresponding to the Volterra operator Vα

22,

(Vα
22w)(t) = g(t), t ∈ I, (8.1.54)

is uniquely solvable in C(I ) whenever g ∈ C1(I ) and g(0) = 0.
Index-1 tractability for the nonlinear system (8.1.52/53) is defined analo-

gously, based on the unique solvability of (8.1.53) in C(I ) with respect to z.
Conditions under which the first-kind VIEs (8.1.51) and (8.1.53) possess

unique continuous solutions can be found in, or deduced from, Theorems 6.1.13
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and 6.1.16. In the following we will restrict our analysis to values α ∈ (0, 1);
its (rather straightforward) extension to logarithmic kernel singularities is left
to the reader.

The degree of regularity of y and z follows essentially from Theorems 6.1.11
and 6.1.14. To see this, assume for ease of exposition that Vα

21 = 0 in (8.1.51)
(compare Exercise 8.6.6 for the general case). If q2 ∈ Cν+1(I ), with q2(0) = 0,
and K22 ∈ Cν+1(D) satisfies |K22(t, t)| ≥ k0 > 0 on I , then it follows from
Theorem 6.1.14 that the solution z of the first-kind VIE (8.1.51) lies in the
Hölder space Cα(I ) and possesses continuous derivatives up to order ν on
(0, T ].

Consider now (8.1.50): since∫ t

0
(t − s)−αsαds = t1−α+α

∫ 1

0
(1 − v)−αvαdv = B(1 − α, 1 + α)t,

the contribution of the term (Vα
12z)(t) is smooth: it is in Cν(I ) (but see also the

Remark below). Hence, Theorem 6.1.11 tells us that the (unique) solution of

y(t) = f (t) + (Vα
11 y)(t), t ∈ I,

with f (t) := q1(t) + (Vα
12z)(t), lies in C1−α(I ) but has continuous derivatives

up to order ν on (0, T ].
We summarise these observations in

Theorem 8.1.8 Assume that 0 < α < 1, and let the given functions qk and
Kkl (k, l = 1, 2) in the index-1 IAE system (8.1.50/51) satisfy the hypotheses
stated in Theorem 8.1.5. If K21 ≡ 0, then the regularity of its solution x =
(y, z)T is described by

y ∈ C1−α(I ), with y ∈ Cν(0, T ],

and

z ∈ Cα(I ), with z ∈ Cν(0, T ].

Remark Suppose that the Volterra integral operators describing the IAE system
(8.1.50/51) are replaced respectively by Vα1

1l (0 < α1 < 1) (in (8.1.50)) and
Vα2

2l (0 < α2 < 1) (in (8.1.51)). Let again K21 ≡ 0. Since z ∈ Cα2 (I ), it follows
from the analysis preceding Theorem 8.1.8 that∫ t

0
(t − s)−α1 sα2 ds = B(1 − α1, 1 + α2)t1−α1+α2 .

Hence, according to Theorem 6.1.11, we have y ∈ Cα2 (I ), regardless of the
value of α1.
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A similar regularity result is true for the semi-explicit IDAE system

y′(t) + B11(t)y(t) + B12(t)z(t) = q1(t) + (Vα
11 y)(t) + (Vα

12z)(t), (8.1.55)

0 = q2(t) + (Vα
21 y)(t) + (Vα

22z)(t), (8.1.56)

with B11, B12 and the integral operators Vα
kl as in (8.1.6) and (8.1.50/51), re-

spectively, and subject to the hypotheses stated earlier. We assume again that
q2(0) = 0 and that the tractability index of (8.1.55/56) equals one.

Theorem 8.1.9 Let 0 < α < 1 and assume that the given functions in
(8.1.55/56) satisfy the assumptions stated in Theorem 8.1.7. If Vα

21 = 0, then the
regularity of the solution x = (y, z)T to the IDAE system (8.1.55/56) is given by

y ∈ C1,1−α(I ), with y ∈ Cν+1(0, T ],

and

z ∈ Cα(I ), with z ∈ Cν(0, T ].

An interesting special case corresponds to Vα
11 = Vα

12 = 0: we then have the
coupling of an ODE with a weakly singular first-kind VIE.

Corollary 8.1.10 Let 0 < α < 1. If K1l ≡ 0 (l = 1, 2) and K21 ≡ 0 in
(8.1.55/56), then z ∈ Cα(I ), with z ∈ Cν(0, T ], and y ∈ C1,α(I ), with y ∈
Cν+1(0, T ].

The proofs of the above regularity results are a direct consequence of Theorems
6.1.14 and Theorem 7.1.4. Details are left to the reader (who should also study
Exercise 8.9.2(ii) to obtain analogous results for more general IDAE systems).

8.2 Collocation for DAEs: a brief review

8.2.1 The collocation equations for index-1 problems

Let x(t) := (y(t), z(t))T denote the solution of the semi-explicit index-1 DAE

y′(t) = F(t, y(t), z(t)), (8.2.1)

0 = G(t, y(t), z(t)), t ∈ I := [0, T ], (8.2.2)

with consistent initial values {y0, z0}. Assume that it is approximated by the
collocation solution xh(t) := (uh(t), vh(t) T ), where uh, vh ∈ S(0)

m (Ih) are de-
termined by the collocation equations

u′
h(t) = F(t, uh(t), vh(t)), t ∈ Xh, (8.2.3)

0 = G(t, uh(t), vh(t)), t ∈ Xh, (8.2.4)

and the initial conditions uh(0) = y0, vh(0) = z0.
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Let Xh := {tn,i := tn + ci hn : 0 < c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}
be the set of the collocation points. In analogy to Chapter 1, the computa-
tional form of the collocation equations (8.2.3),(8.2.4) will be based on the
local Lagrange representations of uh and vh :

uh(tn + shn) = yn + hn

m∑
j=1

β j (s)Yn, j , (8.2.5)

vh(tn + shn) = zn + hn

m∑
j=1

β j (s)Zn, j , s ∈ [0, 1], (8.2.6)

where yn := uh(tn), zn := vh(tn), Yn, j := u′
h(tn,i ), Zn, j := vh(tn,i ). Thus, for

t = tn,i the collocation equations become the stage equations for the resulting
continuous m-stage implicit Runge–Kutta method for the given semi-explicit
DAE, namely

Yn,i = F(tn,i , yn + hn

m∑
j=1

ai, j Yn, j , zn + hn

m∑
j=1

ai, j Zn, j ), (8.2.7)

0 = G(tn,i , yn + hn

m∑
j=1

ai, j Yn, j , zn + hn

m∑
j=1

ai, j Zn, j ) (8.2.8)

(i = 1, . . . , m), with ai, j := β j (ci ).
Since classical Runge–Kutta methods and collocation methods for DAEs are

well understood (detailed treatments, also for DAES with index 2 and higher,
can be found in the books by Griepentrog and März (1986), Brenan, Campbell
and Petzold (1996), Hairer, Lubich and Roche (1989), Strehmel and Weiner
(1992) (index-1 DAEs), and Hairer and Wanner (1996); see also Ascher and
Petzold (1991) and Jay (1993)), we will only state a typical (super-) conver-
gence result. Additional convergence results will be given in Section 8.4 for
IDAEs (see in particular Theorem 8.4.2) of which our DAEs are particular
cases.

Theorem 8.2.1 Let xh = (uh, vh)T be the collocation solution to the semi-
explicit DAE (8.2.1),(8.2.2), with uh and vh in S(0)

m (Ih). Define, as in Theorem
2.4.2,

ρm := (−1)m
m∏

i=1

1 − ci

ci
.

If the given functions are sufficiently regular, and such that (8.2.1),(8.2.2) is an
index-1 DAE, the following is true:
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(i) The collocation solution xh = (uh, vh)T converges to x = (y, z)T if, and
only if, |ρm | ≤ 1.

(ii) At the mesh points I ′
h := Ih \ {0} we have

max
t∈I ′

h

|y(t) − uh(t)| ≤ C1h2m−1,

max
t∈X ′

h

|z(t) − vh(t)| ≤ C2hm,

provided the collocation parameters are the Radau II points (for which
ρm = 0).

(iii) If collocation is at the Gauss points (where ρm = ±1), the local supercon-
vergence property is lost: the optimal orders of convergence are

max
t∈X ′

h

|y(t) − uh(t)| ≤ C1hm,

max
t∈X ′

h

|z(t) − vh(t)| ≤ C2

{
hm if − 1 ≤ ρm < 1,

hm−1 if ρm = 1.
.

Remarks

1. The the eigenvalue ρm (recall the proof of Theorem 2.4.2) is closely related
to the stability function R(z) associated with the (collocation-based) implicit
Runge–Kutta method using as abscissas the collocation parameters {ci } with
c1 > 0 (see, e.g. Dekker and Verwer (1984) or Hairer and Wanner (1996)):
it coincides with R(∞). The reader may also wish to consult Kauthen and
Brunner (1997) for details on this connection.

2. As Ascher (1989) has shown, the collocation approximation vh to the alge-
braic component z of x could also have been sought in S(−1)

m−1(Ih).

8.2.2 Collocation for semi-explicit index-2 DAEs

We will briefly illustrate, mainly for the sake of comparison, the collocation
equations for the semi-explicit index-2 DAE

y′(t) = F(t, y(t), z(t)),

0 = G(t, y(t)), t ∈ I,

where F and G are smooth and G y is non-singular. The collocation approxima-
tions uh and vh in S(0)

m (Ih) to y and z are defined by their local representations
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(8.2.5) and (8.2.6) and the collocation equations

Yn,i = f (tn,i , yn + hn

m∑
j=1

ai, j Yn, j , zn + hn

m∑
j=1

ai, j Zn, j ),

0 = G(tn,i , yn + hn

m∑
j=1

ai, j Yn, j ) (i = 1, . . . , m).

Detailed analyses of the convergence properties of Runge–Kutta methods
for index-2 DAEs can be found in, e.g. Griepentrog and März (1986), Petzold
(1986) and, especially, in März and Rodrı́guez-Santiesteban (2002). Conver-
gence results for piecewise polynomial collocation methods (and corresponding
implicit Runge–Kutta methods) applied to index-2 DAEs are discussed in Hairer
and Wanner (1996, pp. 498–501); a summary of local superconvergence results
is given on p. 504. Ascher and Petzold (1991) introduced projected colloca-
tion methods and studied their properties; see also Lubich (1991) and März
(1996) for an in-depth analysis and wider prespective of projected collocation
methods.

8.2.3 Numerically properly formulated DAEs

The above (superconvergence order) results for index-1 DAEs do not neces-
sarily imply that the collocation solution possesses the correct dynamics as
t → ∞ (and h > 0 fixed). This fact is closely connected with the notion of
a properly formulated DAE described in Section 8.1.1. We will illustrate this
by analysing the collocation in the space S(0)

1 (Ih) and with c1 = 1 for a simple
index-1 DAE: while the resulting continuous implicit Euler method shows the
familiar unconditional asymptotic behaviour when the DAE has constant coef-
ficients, it is no longer asymptotically stable for any stepsize h > 0 in the case
of variable coefficients. This deficiency can be rectified if the DAE is rewritten
so that its leading terms are well matched, as described at the end of Section
8.1.1 (Definition 8.1.4).

We use the following linear DAE (see also Gear and Petzold (1984), März
(1996), März and Rodrı́guez-Santiesteban (2002)) to show that even in an index–
1 DAE a usually ‘foolproof’ collocation method (like the continuous implicit
Euler method) may not reflect the asymptotic behaviour of the exact solution
unconditionally for any stepsize h > 0.

Example 8.2.1

A(t)x ′(t) + B(t)x(t) = q(t), t ∈ I, (8.2.9)
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with

A(t) =
[

δ − 1 δt
0 0

]
, B(t) = σ

[
δ − 1 δt
δ − 1 δt − 1

]
, (8.2.10)

where δ, σ ∈ IR, with δ �= 1, σ �= 0. It is easy to see that under these assump-
tions the DAE has (tractability) index one. Note also that for δ = 0 the DAE has
constant coefficients. For q(t) ≡ 0 the solution x(t) = (y(t), z(t))T is given by

z(t) = exp((δ − σ )t)z0, y(t) = 1 − δt

δ − 1
z(t).

(Note that the initial values x(0) = x0 = (y0, z0)T are consistent if (δ − 1)y0 −
z0 = 0, or y0 = z0/(δ − 1).) It thus follows that

lim
t→∞ z(t) = lim

t→∞ y(t) = 0

whenever δ < σ .
Assume now that we solve (8.2.10) by collocation in S(0)

1 (Ih), with uniform
mesh Ih and 0 < c1 ≤ 1. We use the local representations

uh(tn + sh) = yn + shYn,1, vh(tn + sh) = zn + sh Zn,1 (v ∈ [0, 1]),

where yn := uh(tn), zn := vh(tn), Yn,1 := u′
h(tn + c1h), Zn,1 := v′

h(tn + c1h).
The collocation equation defining the collocation solution xh = (uh, vh)T ,[

δ − 1 δtn,1

0 0

] [
u′

h(tn,1)
v′

h(tn,1)

]
+ σ

[
δ − 1 δtn,1

δ − 1 δtn,1 − 1

] [
uh(tn,1)
vh(tn,1)

]
= 0,

can be rewritten as[
δ − 1 δtn,1

0 0

] [
yn+1 − yn

zn+1 − zn

]
+ σh

[
δ − 1 δtn,1

δ − 1 δtn,1 − 1

]

×
[

(1 − c1)yn + c1 yn+1

(1 − c1zn + c1zn+1

]
= 0

(since Yn,1 = (yn+1 − yn)/h, etc.). For c1 = 1 (which yields the continuous
implicit Euler method) we find the recursion

zn+1 = 1 + δh

1 + σh
zn, yn+1 = 1 − δtn+1

δ − 1
zn+1.

It reveals the following:

� For δ = 0 (DAE with constant coefficients) and σ < 0 we see that

lim
n→∞ zn = lim

n→∞ yn = 0

for any stepsize h > 0. This reflects the ‘typical’ unconditional asymptotic
stability of the implicit Euler method.
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� For δ �= 0 (DAE with variable coefficients) the situation is very different: the
approximation zn to the algebraic component z(t) at t = tn does not remain
bounded for every h > 0. More precisely, xh is asymptotically stable only
under the stepsize restriction

|1 + δh| < |1 + σh|.
This shows that, in contrast to ODEs (‘DAEs are not ODEs’ – Petzold (1984))
DAE test equations with constant coefficients do not properly model the
general qualitative behaviour of solutions to variable coefficient DAEs, even
if they are linear: variable coefficients in DAEs have a much stronger effect
on the numerical solution than in ODEs.

This phenomenon is even more pronounced in DAEs of higher index.
Illuminating examples (and additional references) can be found in März
(1992) and Schulz (2003).

However, choosing Ā := diag (1, 0), D = A, we obtain B̄ := B − ĀD (cf.
(8.1.22)), and the use of the continuous implicit Euler method to the decoupled
DAE

Ā(D(t)x(t))′ + B̄(t)x(t) = 0, t ≥ 0, (8.2.11)

with δ �= 0, δ < σ , yields an approximation that is asymptotically stable for
any stepsize h > 0. Its components are given by

zn+1 = 1

1 − (δ − σ )h
zn,

yn+1 = 1 − δtn+1

δ − 1
zn+1.

We leave the proof of this statement to the reader.

8.3 Collocation for IAEs with smooth kernels

8.3.1 The collocation equations for Volterra IAEs

Consider the IAE system given by

y(t) = q1(t) + (V11 y)(t) + (V12z)(t), (8.3.1)

0 = q2(t) + (V21 y)(t) + (V22z)(t), t ∈ I := [0, T ], (8.3.2)

and based on the (linear) Volterra integral operators Vkl : C)I ) → C(I ),

(Vklφ)(t) :=
∫ t

0
Kkl(t, s)φ(s)ds, Kkl ∈ C(D) (8.3.3)
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(see (8.1.24/25)). We approximate its solution x := (y, z)T by xh := (uh, vh)T ,
with uh and vh in S(−1)

m−1(Ih) (and uh : I → IRd1 , vh : I → IRd2 ). This colloca-
tion solution is defined by the collocation equations

uh(t) = q1(t) + (V11uh)(t) + (V12vh)(t), (8.3.4)

0 = q2(t) + (V21uh)(t) + (V22vh)(t), t ∈ Xh, (8.3.5)

with the set of collocation points, Xh , as before. When xh has been found we
can use it to define the iterate of uh ,

uit
h (t) := q1(t) + (V11uh)(t) + (V12vh)(t), t ∈ I. (8.3.6)

In order to describe the key ideas without having to resort to complex notation
involving Kronecker products of matrices and vectors (for example in the linear
system (8.3.12) below), we will assume that d1 = d2 = 1.

Suppose then that the local representations of uh and vh are again

uh(tn + vhn) =
m∑

j=1

L j (v)Un, j , v ∈ (0, 1], with Un, j := uh(tn, j ), (8.3.7)

vh(tn + vhn) =
m∑

j=1

L j (v)Vn, j , v ∈ (0, 1], with Vn, j := vh(tn, j ). (8.3.8)

The computational forms of the collocation equations (8.3.4), (8.3.5) at t = tn,i

then become

Un,i = hn

m∑
j=1

(∫ ci

0
K11(tn,i , tn + shn)L j (s)ds

)
Un, j

+ hn

m∑
j=1

(∫ ci

0
K12(tn,i , tn + shn)L j (s)ds

)
Vn, j + q1(tn,i ) + F (1)

n (tn,i ),

(8.3.9)

0 = hn

m∑
j=1

(∫ ci

0
K21(tn,i , tn + shn)L j (s)ds

)
Un, j

+ hn

m∑
j=1

(∫ ci

0
K22(tn,i , tn + shn)L j (s)ds

)
Vn, j + q2(tn,i ) + F (2)

n (tn,i ),

(8.3.10)

with lag term approximations given by

F (k)
n (tn,i ) =

∫ tn

0

(
Kk1(tn,i , s)uh(s) + Kk2(tn,i , s)vh(s)

)
ds (k = 1, 2).

(8.3.11)
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In order to formulate the resulting systems of linear algebraic equations for
the vector Un := (Un,1, . . . , Un,m)T and Vn := (Vn,1, . . . , Vn,m)T we adapt the
notation introduced in Section 2.2.2 and define the matrices

B(k,l)
n :=




∫ ci

0
Kkl(tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 (k, l = 1, 2)

in L(IRm). Moreover, we set

fn := (q1(tn,1), . . . , q1(tn,m))T , gn := (q2(tn,1), . . . , q2(tn,m))T ,

and

G(k)
n := (F (k)

n (tn,1), . . . , F (k)
n (tn,m))T (k = 1, 2).

The algebraic system defining Un and Vn can then be written as[
Im − hn B(1,1)

n −hn B(1,2)
n

B(2,1)
n B(2,2)

n

] [
Un

Vn

]
=

[
fn + G(1)

n

−h−1
n [gn + G(2)

n ]

]
. (8.3.12)

It is clear that due to our assumptions on the kernels Kkl the left-hand side
(block-) matrix is non-singular for all sufficiently small hn: there exists a h̄ > 0
so that the linear algebraic system (8.3.12) has a unique solution Un, Vn for n =
0, 1, . . . , N − 1 whenever Ih is a mesh with h ∈ (0, h̄). This is a consequence
of the structure of the matrix block Im − hn B(1,1)

n (cf. Theorem 2.2.1) and the
form of B(2,2)

n (condition (8.2.20) on K22(t, s) and Theorem 2.4.1).

8.3.2 Convergence results

Once we know the collocation solution components uh and vh we can compute
the iterated collocation solution uit

h at t = tn + vhn (v ∈ [0, 1]) via (8.3.6).
However, as we shall see below (Theorem 8.3.2) this will now not have any
advantage (except for generating a continuous approximation on I ). Since the
given system of IAEs contains a first-kind Volterra integral equation, the con-
vergence properties of the collocation solution wh will be governed by the
(necessary and sufficient) conditions on the {ci } given in Theorem 2.4.2. The
‘coupling’ of VIEs of the second and first kind will also mean that collocation
at the Gauss points (for which we have cm < 1) will no longer lead to global
superconvergence (of order m + 1) on I , or to local superconvergence (of order
2m) on Ih in the iterated collocation solution uit

h .
We start with the following global convergence result (due to Kauthen

(2001)).
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Theorem 8.3.1 Let the assumptions of Theorem 8.1.5 hold with ν ≥ m, and
suppose that Ih is a mesh with h ∈ (0, h̄). Then the following statements are
true for the collocation solution xh, with uh, vh ∈ S(−1)

m−1(Ih):

(i) For every choice of the {ci } with 0 < c1 < . . . < cm = 1 we have

||y − uh ||∞ ≤ C1hm, ||z − vh ||∞ ≤ C2hm .

(ii) If 0 < c1 < . . . < cm < 1, the attainable order of convergence is given by

||y − uh ||∞ ≤ C1hm,

||z − vh ||∞ ≤ C2

{
hm if ρm ∈ [−1, 1),
hm−1 if ρ = 1.

Here,

ρm := (−1)m
m∏

i=1

1 − ci

ci
.

Proof The proof of this result combines elements of the proofs for Theorems
2.2.3 and 2.4.2. For cm = 1 the assertion that both uh and vh converge with
the same order p = m is easily verified. In the case where cm < 1 we have to
resort to the differencing procedure (used in the proof of Theorem 2.4.2) for the
collocation equation corresponding to the first-kind VIE (8.2.3). The reader is
referred to Kauthen (2001, pp. 1509–1511) for the details.

We now turn to the question on the attainable orders of (global and local)
superconvergence for uh and vh . As in Section 2.2, let

eh(tn + vhn) :=
m∑

j=1

L j (v)En, j + hm
n R(1)

m,n(v), v ∈ (0, 1],

and

εh(tn + vhn) :=
m∑

j=1

L j (v)En, j + R(2)
m,n(v) v ∈ (0, 1],

with En, j := eh(tn, j ) and En,i := εh(tn, j ), be the local representations of the
collocation errors eh := y − uh and εh := z − vh on σn . These errors solve the
IAE system

eh(t) = δh(t) + (V11eh)(t) + (V12εh)(t), (8.3.13)

0 = dh(t) + (V21eh)(t) + (V22εh)(t), t ∈ I, (8.3.14)

where the defects δh and dh vanish at all points of Xh . Since the above system
has the same structure as (8.1.39) and (8.1.40), with eh, εh, δh and dh replacing
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y, z, f and g, Theorem 8.1.6 tells us that the solution of the system of IAEs
for the errors has the representation

eh(t) = δh(t) +
∫ t

0
R11(t, s)δh(s)ds (8.3.15)

+ κ12(t)dh(t) +
∫ t

0
Q12(t, s)dh(s)ds,

εh(t) = κ21(t)dh(t) + κ22(t)d ′
h(t) +

∫ t

0
Q22(t, s)dh(s)ds, t ∈ I. (8.3.16)

Moreover, we have eit
h := y − uit

h = eh − δh . Setting t = tn (n = 1, . . . , N ) we
are led to two observations: firstly, the expression for eh(tn) reduces to a sum of
integrals (containing the defects δh and dh in their integrands) if, and only if, tn ∈
Xh , that is, if cm = 1. In this case, the well-known quadrature argument we have
employed in the proofs of superconvergence results for second-kind VIEs can
again be applied: they show that if the {ci } are the Radau II points then eh exhibits
O(h2m−1)-convergence on Ih \ {0}. We also see that local superconvergence in
eit

h of order 2m is no longer possible when the Gauss points are used, due to the
presence of the term κ12(t)dh(t) in (8.3.15).

A similar reason prevents the occurrence of local superconvergence in εh(tn).
Here, (8.2.3) contains, in addition to κ21(tn) (which vanishes when cm = 1) the
term κ22(tn)d ′

h(tn): it would only be zero in the case of Hermite-type collocation
at cm = 1. This is of course not surprising after what we have learned in Section
2.4.2.

We summarise the results obtained from these observations in

Theorem 8.3.2 Assume:

(a) f ∈ Cν(I ), K1l ∈ Cν(D) (l = 1, 2).
(b) g ∈ Cν+1(I ), g(0) = 0, and K2l ∈ Cν+1(D), with |K22(t, t)| ≥ k0 > 0 for

t ∈ I .
(c) uh ∈ S(−0)

m−1(Ih) and vh ∈ S(−1)
m−1(Ih) are the collocation solutions to the IAE

(8.3.1),(8.3.2) determined by (8.3.4) and (8.3.5).

If the collocation points Xh correspond to the Radau II {ci } points (where
cm = 1) and if ν ≥ 2m − 1, then

max
t∈Ih\{0}

|y(t) − uh(t)| ≤ C1h2m−1, (8.3.17)

max
t∈Ih\{0}

|z(t) − vh(t)| ≤ C2hm . (8.3.18)
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If collocation is based on the Gauss points, then the (local) order of uit
h on Ih

cannot in general exceed

max
t∈Xh\{0}

|y(t) − uit
h (t)| ≤ C1hm,

even if ν ≥ 2m. The order of vh depends on the value of ρm: if ρm ∈ [−1, 0)
then we obtain O(hm)-convergence, while for ρm = 1 the order reduces to
p = m − 1.

8.4 Collocation for IDAEs with smooth kernels

8.4.1 The collocation equations for Volterra IDAEs

Recall the IDAE system given by (8.1.39) and (8.1.40):

y′(t) + B11(t)y(t) + B12(t)z(t) = q1(t) + (V11 y)(t) + (V12z)(t), (8.4.1)

0 = q2(t) + (V21 y)(t) + (V22z)(t). (8.4.2)

We will also consider the corresponding nonlinear (Volterra–Hammerstein)
version,

y′(t) = F(y(t), z(t)) +
∫ t

0
K1(t, s)G1(s, y(s), z(s))ds, (8.4.3)

0 = q2(t) +
∫ t

0
K2(t, s)G2(s, y(s), z(s))ds, t ∈ I. (8.4.4)

It is natural to approximate their solutions x(t) = (y(t), z(t))T by the collo-
cation solution xh(t) = (uh(t), vh(t))T with uh ∈ S(0)

m (Ih) and vh ∈ S(−1)
m−1(Ih).

Since, as we know from Section 2.2.1, the dimensions of these two linear spaces
differ only by one, we can use the set

Xh := {tn,i := tn + ci hn : 0 < c1 < . . . < cm ≤ 1 (0 ≤ n ≤ N − 1)}
as collocation points in the collocation equations for both VIEs in (8.4.1/2) and
(8.4.3/4). For the linear IDAE system (8.4.1/2) these equations read

u′
h(t) + B11(t)uh(t) + B12(t)vh(t) = q1(t) + (V11uh)(t) + (V12vh)(t), (8.4.5)

0 = q2(t) + (V21uh)(t) + (V22vh)(t), (8.4.6)

where t ∈ Xh .
As in Section 8.3.1 we will again assume that d1 = d2 = 1 in (8.4.1/2);

this permits a more transparent exposition of the main ideas underlying the
convergence analysis. The reader is again invited to derive the more general
analysis for arbitrary d1 and d2, employing the familiar Kronecker product
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notation used in the description of Runge–Kutta methods for systems of linear
ODEs (see, for example, Dekker and Verwer (1984)) for the linear system
(8.4.11) below.

Let the collocation solutions have the local representations

uh(tn + vhn) = yn + hn

m∑
j=1

β j (v)Yn, j , v ∈ [0, 1], (8.4.7)

vh(tn + vhn) =
m∑

j=1

L j (v)Vn, j , v ∈ (0, 1], (8.4.8)

with Yn, j := u′
h(tn, j ) and Vn, j := vh(tn, j ). Hence, the computational forms of

the collocation equations (8.4.5), (8.4.6) on σ̄n become respectively,

Yn,i + B11(tn,i )[yn + hn

m∑
j=1

ai, j Yn, j ] + B12(tn,i )Vn,i

+ h2
n

m∑
j=1

(∫ ci

0
K11(tn,i , tn + shn)β j (s)ds

)
Yn, j

+ hn

m∑
j=1

(∫ ci

0
K12(tn,i , tn + shn)L j (s)ds

)
Vn, j

+ q1(tn,i ) + hn

(∫ ci

0
K11(tn,i , tn + shn)ds

)
yn

+ F (1)
n (tn,i ) (i = 1, . . . , m), (8.4.9)

and

0 = h2
n

m∑
j=1

(∫ ci

0
K21(tn,i , tn + shn)β j (s)ds

)
Yn, j

+ hn

m∑
j=1

(∫ ci

0
K22(tn,i , tn + shn)L j (s)ds

)
Vn, j

+ q2(tn,i ) + hn

(∫ ci

0
K21(tn,i , tn + shn)ds

)
yn

+ F (2)
n (tn,i ) (i = 1, . . . , m), (8.4.10)

In analogy to the previous section we define

F (k)
n (tn,i ) :=

∫ tn

0

(
K1k(tn,i , s)uh(s) + Kk2(tn,i , tn + shn)vh(s)

)
ds (k = 1, 2),
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and, for future use, we set G(k)
n := (F (k)

n (tn,1), . . . , F (k)
n (tn,m))T (k = 1, 2), and

κ
(k)
ni :=

∫ ci

0
Kk1(tn,i , tn + shn)ds (i = 1, . . . , m; k = 1, 2).

The linear algebraic system whose solution determines the collocation solutions
uh and vh on σn can be written concisely as[

Im − h2
nC (1,1)

n −hn B(1,2)
n

hnC (2,1)
n B(2,2)

n

] [
Yn

Vn

]
=

[
fn + κ (1)

n + G(1)
n

−h−1
n [gn + G(2)

n ] − κ(2)
n

]
.

(8.4.11)

Observe the similarity with the analogous system (8.3.12) for IAEs. The mean-
ing of the vectors on the right-hand side of (8.4.11) is clear from the above
description of the computational forms of the two collocation equations. The
matrices B(k,2)

n ∈ L(IRm) (k = 1, 2) are as in (8.3.12), while C (k,1)
n ∈ L(IRm) is

given by

C (k,1)
n :=




∫ ci

0
Kk1(tn,i , tn + shn)β j (s)ds

(i, j = 1, . . . , m)


 (k = 1, 2).

Thanks to the assumed continuity of the kernels Kkl on D there exists again
an h̄ > 0 so that the (block-) matrix describing the left-hand side of (8.4.11)
is invertible for all h ∈ (0, h̄). Thus, for meshes whose diameters satisfy this
condition, the algebraic systems (8.4.11) and the local representations (8.4.7/8)
define a unique collocation solution xh to the IDAE (8.4.1/2).

8.4.2 Convergence results

Theorems 8.2.1 and 8.3.2 give an indication of what the analogous results on
the optimal global and local orders of (super-) convergence for the collocation
solutions defined by (8.4.5) and (8.4.6) will look like for IDAEs, since the
orders will again be governed by the presence of a first-kind VIE. We first
state, without proof, the result on the attainable order of global convergence on
I . A closely related result for implicit Runge–Kutta methods was derived by
Kauthen (1993).

Theorem 8.4.1 Assume that

(a) B11, B12, q1 ∈ Cm(I ), and q2 ∈ Cm+1(I ), with q2(0) = 0;
(b) K1l ∈ Cm(D) (l = 1, 2);
(c) K2l ∈ Cm+1(D), with |K22(t, t)| ≥ k0 > 0 on I ;
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(d) xh = (uh, vh)T , with uh ∈ S(0)
m (Ih) and vh ∈ S(−1)

m−1(Ih), is the collocation
solution defined by (8.4.7/8) and (8.4.11).

If the collocation points Xh correspond to any {ci } with 0 < c1 < . . . < cm = 1,
then xh induces the estimate

||y − uh ||∞ ≤ C1hm, ||z − vh ||∞ ≤ C2hm .

For cm < 1 the second of the above estimates does not necessarily remain true:
we now have

||y − uh ||∞ ≤ C1hm,

||z − vh ||∞ ≤ C2

{
hm if − 1 ≤ ρm < 1,

hm−1 if ρm = 1.

As in Theorem 8.2.1, ρm (= R(∞)) is given by

ρm := (−1)m
m∏

i=1

1 − ci

ci
.

An order reduction in the optimal order of local superconvergence is, after
Theorem 8.2.1 (index-1 DAEs), Theorem 8.3.2 (index-1 IAEs) and the above
result, no longer surprising: collocation at the Gauss points does not lead to
p∗ = 2m for uh on Ih , and the optimal order is given by 2m − 1.

Theorem 8.4.2 Let the assumptions of Theorem 8.4.1 hold, but with m in the
regularity hypotheses replaced by ν ≥ 2m − 1. If the collocation points Xh are
those corresponding to the Radau II points {ci }, we obtain the estimates

max
t∈Ih\{0}

|y(t) − uh(t)| ≤ C1h2m−1, (8.4.12)

max
t∈Ih\{0}

|z(t) − vh(t)| ≤ C2hm . (8.4.13)

If collocation is at the Gauss points, then the local order of uh coincides with
the global one: we only attain

max
t∈Ih\{0}

|y(t) − uh(t)| ≤ C1hm .

The second estimate (8.4.13) remains valid if m is odd; for even values of m it
becomes

max
t∈Ih\{0}

|z(t) − vh(t)| ≤ C2hm−1.

Proof Setting again eh := y − uh and εh := z − vh , and denoting the defects
induced by collocation by δh and dh , respectively, we see that the errors solve

e′
h(t) = B11(t)eh(t) + B12(t)εh(t) + δh(t) + (V11eh)(t) + (V12εh)(t), t ∈ I,

0 = dh(t) + (V21eh)(t) + (V22εh)(t), t ∈ I,
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with eh(0) = 0. Thus, the key to the above order results is contained in Theorem
8.1.7 and the representation of the collocation errors eh and εh . We readily obtain
– along the lines of the proof of Theorem 8.3.2 – the error representations

eh(t) = r11(t, 0)eh(0) +
∫ t

0
r11(t, s)δh(s)ds (8.4.14)

+ κ12(t)dh(t) +
∫ t

0
q12(t, s)dh(s)ds,

and

εh(t) = κ21(t)dh(t) + κ22(t)d ′
h(t) +

∫ t

0
q22(t, s)dh(s)ds, t ∈ I. (8.4.15)

Setting t = tn (1 ≤ n ≤ N ) and employing once more the familiar quadrature
arguments, the assertions in Theorem 8.4.2 follow: we observe that cm = 1
implies that δh(tn) = dh(tn) = 0.

If the {ci } are the Gauss points, then dh(tn) �= 0 (in fact, this term is O(hm)).
Thus, the local order on Ih cannot exceed the global order, p = m, of uh .

Corollary 8.4.3 The optimal order results of Theorem 8.4.2 hold for the semi-
explicit index-1 system given by

y′(t) = F(t, y(t), z(t)), (8.4.16)

0 = g(t) +
∫ t

0
K (t, s)G(t, y(s), z(s))ds. (8.4.17)

8.5 IAEs and IDAEs with weakly singular kernels

8.5.1 Collocation for weakly singular IAEs

Assume that the solution x = (y, z)T of the linear semi-explicit IAE system
(8.1.50/51) is approximated by the collocation solution xh = (uh, vh)T , as al-
ready described in Section 8.3.1 for α = 0. The collocation equations defining
uh, vh ∈ S(−1)

m−1(Ih) are now

uh(t) = q1(t) + (Vα
11uh)(t) + (Vα

12vh)(t), t ∈ Xh, (8.5.1)

0 = q2(t) + (Vα
21uh)(t) + (Vα

22vh)(t), t ∈ Xh . (8.5.2)

The iterated collocation solution uit
h is then found from

uit
h (t) := q1(t) + (Vα

11uh)(t) + (Vα
12vh)(t), t ∈ I. (8.5.3)

The computational forms of these three equations are readily derived from
(6.2.13), (6.3.4), and (6.2.16), using again the familiar local Lagrange
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representations of uh and vh . The linear algebraic system defining the stage
vectors Un and Vn for uh and vh has of course the same structure as (8.3.12):
for d1 = d2 = 1 it is given by[

Im − h1−α
n B(1,1)

n (α) −h1−α
n B(1,2)

n (α)
B(2,1)

n (α) B(2,2)
n (α)

] [
Un

Vn

]
=

[
fn + G(1)

n (α)
−hα−1

n [gn + G(2)
n (α)]

]
.

(8.5.4)

Here, we have set Un := (Un,1, . . . , Un,m)T , Vn := (Vn,1, . . . , Vn,m)T , and

fn := (q1(tn,1), . . . , q1(tn,m))T , gn := (q2(tn,1), . . . , q2(tn,m))T ,

and

G(k)
n (α) := (F (k)

n (tn,1; α), . . . , F (k)
n (tn,m ; α))T (k = 1, 2).

The lag term approximations are given by

F (k)
n (tn,i ; α) =

∫ tn

0
pα(tn,i − s)[Kk1(tn,i , s)uh(s) + Kk2(tn,i , s)vh(s)]ds

(k = 1, 2), (8.5.5)

with the matrices in L(IRm),

B(k,l)
n (α) :=




∫ ci

0
(ci − s)−α Kkl(tn,i , tn + shn)L j (s)ds

(i, j = 1, . . . , m)


 (k, l = 1, 2).

Due to our assumptions on the kernels Kkl , the existence of a unique solution
for these linear algebraic systems follows along standard arguments, and is true
for all meshes Ih with h ∈ (0, h̄), for some h̄ = h̄(α) > 0.

The convergence analysis for the collocation solution xh remains open. This
is due, as we recall from Section 6.3.3, to the fact that for m > 1 we do not
yet know necessary and sufficient conditions on the collocation parameters {ci }
ensuring the uniform convergence of vh to z. However, assuming that we have
set {ci } for which convergence holds, then we can say more about the attainable
order of convergence of uh and vh , since we have already derived, in Theorem
8.1.8, results on the regularity of solution components y and z.

Suppose that Ih is a graded mesh of the form

Ih := {tn := (n/N )r T : n = 0, 1, . . . , N (r = r (α) ≥ 1)},
and set

r I := m

1 − α
, r I I := m

α
(0 < α < 1).

We remember from Chapter 6 that r I and r I I are respectively the optimal
grading exponents for weakly singular VIEs of the second and first kind
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(cf. Theorems 6.2.9 and 6.3.2). For α = 1/2 we have r I = r I I . If α �= 1/2,
‘over-grading’ still yields optimal convergence orders. Hence, the following
result is now obvious.

Theorem 8.5.1 Assume that the given functions describing the IAE system
(8.1.50/51) with 0 < α < 1 are subject to the hypotheses in Theorem 8.1.5,
where ν ≥ m and K21 ≡ 0. Set r∗ := max{r I , r I I }, and let the collocation
parameters {ci } be such that the collocation solution vh ∈ S(−1)

m−1(Ih) to weakly
singular first-kind VIEs is uniformly convergent on I . Then the collocation solu-
tion xh := (uh, vh)T determined by the collocation equations (8.5.1/2) satisfies

||y − uh ||∞ ≤ C1hm, ||z − vh ||∞ ≤ C2hm,

for any graded mesh Ih with grading exponent r = r∗ and sufficiently large N.
Here we have set again h := T/N.

Remark The attainable order in the iterated collocation solution uit
h given by

(8.5.3) is not yet understood, since we do not know if collocation parameters
satisfying the orthogonality condition J0 = 0 (recall assumption (c) in Theorem
6.2.13) lead to convergent collocation solutions for weakly singular VIEs of
the first kind.

8.5.2 Collocation for weakly singular IDAEs

The results in the previous section readily suggest that an optimal convergence
result similar to that in Theorem 8.5.1 will hold for the semilinear IDAE system

y′(t) + B11(t)y(t) + B12(t)z(t) = q1(t) + (Vα
11 y)(t) + (Vα

12z)(t), (8.5.6)

0 = q2(t) + (Vα
21 y)(t) + (Vα

22z)(t), (8.5.7)

again with the proviso that the collocation parameters are feasible in the sense
of that theorem. Thus, assume that the solution of (8.5.4/5) is approximated
in S(0)

m (Ih) and S(−1)
m−1(Ih), respectively. According to Section 8.4.1 the resulting

collocation equations are

u′
h(t) + B11(t)uh(t) + B12(t)vh(t) = q1(t) + (Vα

11uh)(t) + (Vα
12vh)(t), (8.5.8)

0 = q2(t) + (Vα
21uh)(t) + (Vα

22vh)(t), (8.5.9)

where t ∈ X )h. The collocation solutions will have the local representations

uh(tn + vhn) = yn + hn

m∑
j=1

β j (v)Yn, j , v ∈ [0, 1], (8.5.10)

vh(tn + vhn) =
m∑

j=1

L j (v)Vn, j , v ∈ (0, 1], (8.5.11)
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with Yn, j := u′
h(tn, j ) and Vn, j := vh(tn, j ). As we have done before, we will again

describe the key ideas by assuming that d1 = d2 = 1 in (8.5.6/7). It therefore
follows, as in Section 8.4.1, that the linear algebraic system whose solution
determines the collocation solutions uh and vh on σn can be written concisely
as[
Im − h2

nC (1,1)
n (α) −hn B(1,2)

n (α)
hnC (2,1)

n (α) B(2,2)
n (α)

] [
Yn

Vn

]
=

[
fn + κ (1)

n (α) + G(1)
n (α)

−h−1
n [gn + G(2)

n (α)] − κ(2)
n (α)

]
.

(8.5.12)

The matrices B(k,2)
n (α) ∈ L(IRm) (k = 1, 2) are as in Section 8.5.1, while

C (k,1)
n (α) ∈ L(IRm) is given by

C (k,1)
n (α) :=




∫ ci

0
(ci − s)−α Kk1(tn,i , tn + shn)β j (s)ds

(i, j = 1, . . . , m)


 (k = 1, 2).

Moreover, we have defined, in analogy to Section 8.4.1,

F (k)
n (tn,i ; α) :=

∫ tn

0
(tn,i − s)−α[K1k(tn,i , s)uh(s) + Kk2(tn,i , tn + shn)vh(s)]ds

(k = 1, 2),

and set G(k)
n (α) := (F (k)

n (tn,1; α), . . . , F (k)
n (tn,m ; α))T (k = 1, 2), and

κ
(k)
ni (α) :=

∫ ci

0
(ci − s)−α Kk1(tn,i , tn + shn)ds (i = 1, . . . , m; k = 1, 2).

Theorem 8.5.2 Let 0 < α < 1 and assume that the given functions describing
the IDAE system (8.5.4/5) are subject to the hypotheses in Theorem 8.1.7,
with ν ≥ m and K21 ≡ 0. Set r∗ := m/α, and let the collocation parameters
{ci } be such that the collocation solution vh ∈ S(−1)

m−1(Ih) to weakly singular
first-kind VIEs is uniformly convergent on I . Then the collocation solution
xh := (uh, vh)T determined by the collocation equations (8.5.1/2) satisfies

||y − uh ||∞ ≤ C1hm, ||z − vh ||∞ ≤ C2hm,

for any graded mesh Ih with grading exponent r = r∗ and sufficiently large N .

Here we have set again h := T/N.

Proof Under the assumption that the chosen collocation parameters {ci } yield
uniform convergence of collocation solutions in S(−1)

m−1(Ih) to weakly singular
VIEs of the first kind, we can resort to Section 7.2.3 (see Remark 2 following
the proof of Theorem 7.2.3) and to Theorem 6.3.2, to deduce that – in complete
analogy to Theorem 8.5.1 – the optimal order of global convergence for uh and
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vh is attained if the grading exponent r∗ is given by

r∗ := max{(m + 1 − α)/(2 − α), m/α} = m/α (0 < α < 1).

We conclude this section by briefly looking at a simple special case of the
index-1 IDAE system (8.5.4), namely

y′(t) + B11(t)y(t) + B12(t)z(t) = q1(t), (8.5.13)

(Vα
22z)(t) + q2(t) = 0, t ∈ I. (8.5.14)

Here, the kernel K22 in Vα
22 is assumed to satisfy the condition (c) in Theorem

8.4.1: K22 ∈ Cm+1(D), with |K22(t, t)| ≥ k0 > 0 on I . While the first part of
this IDAE system now does not contain a Volterra operator with weakly singular
kernel, the non-smooth contribution has its origin solely in the second equation:
under the standard assumptions on q2 and K22 we know that its solution lies in
Cα(I ) and is smooth on (0, T ]. Hence, according to Theorem 7.1.1 and Exercise
7.7.5, the general solution of the VIDE (8.5.6) lies in the Hölder space C1,α(I ).
This insight allows us to establish the attainable orders of uh and vh on suitably
graded meshes.

Theorem 8.5.3 Let the setting described in Theorem 8.5.2 hold. If the mesh Ih

is graded, with grading exponent r = r I I := m/α, then the collocation solution
xh = (uh, vh)T to (8.5.6/7), with uh ∈ S(0)

m (Ih) and vh ∈ S(−1)
m−1(Ih), exhibits the

global orders given by

||y − uh ||∞ ≤ C1hm, ||z − vh ||∞ ≤ C2hm,

with constants Ck = Ck(r ) depending on α but not on N.

8.6 Exercises and research problems

Exercise 8.6.1 Prove Lemma 8.1.2. Show that Qs(t) := Q(t)A−1
1 (t)B0(t)

projects IRd onto N0(t) along S0(t).

Exercise 8.6.2 Prove Lemma 8.1.4.

Exercise 8.6.3 State and prove Theorem 8.1.6 for the case where V21 �= 0.

Exercise 8.6.4 Prove Theorem 8.1.7 on the representation of the solution y, z
of the IDAE (8.1.39/40).
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Exercise 8.6.5

(a) Recall Example 8.2.1: analyse the asymptotic behaviour of the continuous
θ -method (resulting from collocation in S(0)

1 (Ih) with θ := c1 ∈ (0, 1]) for
the DAE (8.2.10). Then apply the θ -method to the numerically properly
formulated DAE (8.2.11) and discuss its asymptotic stability.

(b) Use the DAE (8.2.10) as the basis for the construction of an index-1 ‘test’
IDAE (with convolution kernels) whose solution x = (y, z)T has the same
asymptotic stability property as the one for the original DAE. Suppose
that this IDAE is solved numerically in the same collocation space as
the DAE, and analyse the asymptotic stability of the collocation solution
wh = (uh, vh)T . Then derive the corresponding IDAE with properly stated
leading term (recall (8.1.48/49)) and analyse the asymptotic behaviour of
the θ -method for the reformulated IDAE.

Exercise 8.6.6 Consider the linear IDAE given by

2(y′(t) − z′(t)) + y(t) + 2(y(t) − z(t)) = q(t),

y(t) + 2z(t) +
∫ t

0
z(s)ds = q(t), t ≥ 0

(see Doležal (1960, p. 20)). Determine consistent initial values, and determine
the solution of this IDAE. What is its tractability index?

Exercise 8.6.7

(a) Consider the generalisation of the weakly singular IAE system (5.1.50/51)
where α ∈ (0, 1) has been replaced respectively by α1 ∈ (0, 1) (in (8.1.50))
and α2 ∈ (0, 1) (in (8.1.51)). Provide an analysis of the regularity of the
corresponding solution.

(b) Solve the analogue of (a) for the IDAE system (8.1.55/56).

Exercise 8.6.8 Analyse the regularity of the solutions to the weakly singular
index-2 IAE and IDAE systems

y(ν)(t) = q1(t) + (Vα
11 y)(t) + (Vα

12z)(t),

0 = q2(t) + (Vα
21 y)(t) + (Vα

22z)(t)

(ν = 0, 1), where 0 < α < 1 and K21 ∈ Cm+1(D), with |K21(t, t)| ≥ k0 > 0 on
I . Consider in particular the systems with Vα

22 = 0.

Exercise 8.6.9 Determine the collocation solution xh = (uh, vh)T in Example
8.2.1 for arbitrary c1 ∈ (0, 1]. For which c1 is xh asymptotically stable when (i)
δ = 0; (ii) δ < σ?
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Exercise 8.6.10 Consider the IAE (8.1.24/25) and suppose that the collocation
solution xh = (uh, vh)T , with uh and vh in S(−1)

m−1(Ih), is based on the parameters
{ci } given by the m positive Lobatto points from 0 = c0 < c1 < . . . < cm = 1
(cf. Theorem 2.4.6). Discuss the resulting orders of convergence for uh andvh . In
particular, can the results of Theorem 2.4.6 be extended to IAEs: if m is odd, then

max
(n)

|z(tn+1/2) − vh(tn+1/2)| ≤ C2hm+1 ?

Exercise 8.6.11 Prove Theorem 8.4.1

Exercise 8.6.12 Describe and analyse projected collocation methods for the
linear version of the IDAE (8.4.38). Extend the results in Ascher and Petzold
(1991), and the insight obtained by Lubich (1991) and März (1996) to these
methods for IDAEs.

Exercise 8.6.13 Collocation for the IAE and IDAE systems of Exercise 8.6.8:
assume thatVα

21 = 0 and |K22(t, t)| ≥ k0 > 0 on I . Analyse the attainable orders
of global convergence in the collocation approximations to y and z, assuming
that 0 < α1 < α2 < 1. Do these orders change if α2 < α1?

Exercise 8.6.14 (Research problem)
‘IDAEs on manifolds’: give a geometrical interpretation (e.g. along the lines of
Rheinboldt (1984) and Rabier and Rheinboldt (1994)) of the exact solution and
its collocation approximation for the IDAE system (8.5.6/7). See also Hairer
and Wanner (1996), pp. 457–458.

Exercise 8.6.15 (Research problem)
Consider the semi-explicit index-2 analogue of the linear system (8.1.24/25):

y(t) = q1(t) + (ν11 y(t) + (ν12z(t), 0 = q2(t) + (V21, y)(t), t ∈ I,

where the Volterra integral operators Vkl are again given by (8.1.26),

(Vklφ(t) :=
∫ t

0
Kkl(t, s)φ(s)ds.

The matrix kernels Kkl(., .) are continuous and K21 is such that K21 ∈ C1(D),
with |det K21(t, t)| ≥ k0 > 0 on I .

Analyse the convergence of collocation solutions for this index-2 IAE, along
the lines of Section 8.3.2.

8.7 Notes

8.1: Basic theory of DAEs and IAEs
The most comprehensive and up-to-date survey of the theory and numerical
analysis of DAEs is Rabier and Rheinboldt (2002). The books by Griepen-
trog and März (1986), Brenan, Campbell and Petzold (1996) (first published
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in 1989), Hairer, Lubich and Roche (1989), and Hairer and Wanner (1996)
(Chapters VI and VII) all contain good introductions to, and descriptions of,
the respective state of the art in numerical DAEs and their applications. See, in
addition, the survey papers by März (1985, 1990, 1992, 1994, 1998), the book
by Boyarintsev and Chystyakov (1998) (who also consider the IAE forms of
DAE systems), and the report by Schulz (2003). Chapter 6 of Strehmel and
Weiner (1992) treats numerical methods for index-1 DAEs.

The geometry of DAEs is studied in Rheinboldt (1984) and Rabier and
Rheinboldt (1994, 2002).

Applications of DAEs, IAEs and IDAEs:
The survey by Rabier and Rheinboldt (2002, pp. 197–218) contains a wide-
ranging description of DAEs arising in applications, from network problems
and constrained rigid-body systems to control problems. Good sources on appli-
cations are also Ascher (1989), Brenan, Campbell and Petzold (1996), Winkler
(2003), and Tischendorf (2001). Consult also the many references in März
(2001).

‘Mixed’ systems of IAEs consisting of second- and first-kind VIEs arise in
many mathematical modelling processes; we mention memory kernel identifi-
cation problems in heat conduction and viscoelasticity (v. Wolfersdorf (1994),
Janno and v. Wolfersdorf (1997a, 1997b) and Kiss (1999)), evolution of a chem-
ical reaction within a small cell (Jumarhon, Lamb, McKee and Tang (1996) and
references), and Kirchhoff’s laws (Doležal (1960); this appears to be the first
source (except for a similar paper, in Czech, of 1959 by the same author) of a
Volterra IDAE). (The author is grateful to Roswitha März for pointing out this
paper to him.)

8.2: Collocation for DAEs
Hairer, Lubich and Roche (1989) present numerous superconvergence results
for Runge–Kutta solutions to DAEs; see also Petzold (1986), März (1989),
Lopez (1990), Hanke, Izquierdo Macana and März (1998), März and Rodrı́guez-
Santiesteban (2002), and Rabier and Rheinboldt (2002, pp. 415–424). Two-step
Runge–Kutta methods for index-1 DAEs are presented in Y. Chen (1995).

Collocation methods for higher-index DAEs are studied in Hairer, Lubich
and Roche (1989), Jay (1993) and Hairer and Wanner (1996, Ch. VII). Ascher
and Petzold (1991) introduced projected collocation methods for DAEs, to
avoid ‘drift-off’ of the approximate solution; these methods are studied further
in Lubich (1991), Hairer and Wanner (1996, pp. 512–515) and, especially, in
März (1996). See also Rabier and Rheinboldt (2002, pp. 426–428).

Boundary-value problems for DAEs have also received considerable atten-
tion, not least owing to their importance in applications. We refer the reader to
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Stöver (2001) and to Section 81 of Rabier and Rheinboldt (2002, pp. 507–513)
(as well as the lists of references in these two articles).

Readers interested in the numerical analysis of partial DAEs should consult
the paper by Lucht, Strehmel and Eichler-Liebenow (1999) and its references.

März (2001) and Lamour, März and Tischendorf (2001) have shown that
partial DAEs and IDAEs can be re-formulated as abstract DAEs in an infinite-
dimensional (Hilbert space) setting. This insight, combined with the work of
März and her collaborators (see, e.g. the papers by März (1992, 2002a, 2002b),
Higueras and März (2000), Higueras, März and Tischendorf (2001a, 2001b),
and Balla and März (2002)) appears to provide a powerful tool for the qualitative
and quantitative analysis of numerical solutions to partial DAEs and IDAEs.

DAEs with delay arguments
Ascher and Petzold (1995) and Hauber (1997) studied the convergence proper-
ties of Runge–Kutta and piecewise polynomial collocation solutions for DAEs
with constant and (more general) non-vanishing delays. It would be interesting
to investigate these problems within the general framework of abstract DAEs,
as described in März (2001). The alternative approach by Bellen and Maset
(1999) and Maset (1999, 2002) of recasting a DDE as a Cauchy problem for an
abstract ODE may also be worth investigating.

Except for our (super-) convergence results for index-1 IAEs and IDAEs with
delay arguments, the general study of the quantitative (and qualitative) proper-
ties of collocation solutions to such problems with higher index, especially the
extension of the theory of März and her collaborators, has not yet been done.

8.3: Collocation for IAEs with smooth kernels
The results on local superconvergence of piecewise polynomial collocation
solutions to index-1 Volterra IAEs are due to Kauthen (2001). Compare also
Kauthen (1997b) for a related analysis. The analogous analysis for IAEs of
tractability index 2 and higher is waiting to be carried out.

8.4: Collocation for IDAEs with smooth kernels
To the best of my knowledge, this is the first treatment of the question of global
and local superconvergence of piecewise polynomial collocation solutions for
index-1 IDAEs. The corresponding analysis for IDAEs with index-2 or higher
is open.

Kauthen (1993) provided the first study of the convergence properties of
implicit Runge–Kutta methods of Pouzet-type for IDAEs. These methods can
be viewed as fully discretised collocation methods.

8.5: IDAEs with weakly singular kernels
As we have mentioned, the numerical analysis of IAEs and IDAEs with weakly
singular kernels is largely incomplete, because it hinges on the open problem
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regarding the sets of collocation parameters {ci } for which the collocation so-
lution in S(−1)

m−1(Ih) or S(0)
m (Ih) for first-kind VIEs with integrable kernel singu-

larities is uniformly convergent.
The paper by Favini, Lorenzi and Tanabe (2002) deals with the analysis of

IDAEs of the form

[Mu′(t)]′ + Lu(t) =
∫ t

0
k(t − s)L1u(s)ds + f (t),

where L , L1, M are closed linear operators in a Banach space, with L−1

bounded and M not necessarily invertible. The kernel k(t − s) is either weakly
singular or non-smooth (with some unbounded derivative when t = s). The
numerical analysis of problems of this type appears to be open, too.

Singularly perturbed Volterra equations
Due to limitations of space we can only point to some recent advances in the
theory and the numerical analysis of singularly perturbed Volterra equations;
the comprehensive survey paper by Kauthen (1997a) gives a good idea about
the ‘state of the art’ and has an extensive list of references also on applications.
In addition, compare Kauthen (1995) and Bijura (2002a, 2002b, 2003).

The analysis regarding the attainable order of convergence in collocation
solutions for singularly perturbed VEs possessing weakly singular kernels,

εy(t) = g(t) + (Vα y)(t), (8.7.1)

and

εy(r )(t) = f (t, y(t)) + (Vα y)(t), (r = 1, 2), (8.7.2)

with 0 < ε � 1, 0 < α ≤ 1, and with Vα as in Chapters 6 and 7, is essentially
open. This is due to the fact that (i) we do not yet know under what conditions
on the collocation parameters {ci } the collocation solutions for the limiting
first-kind VIEs corresponding to ε = 0 in (8.10.1) and (8.10.2) are convergent;
and (ii) for α �= 1/2 the optimal grading exponent have different values (recall
Theorems 6.2.9, 6.3.2, and 7.2.4). Thus, a complete understanding of the de-
pendence of the optimal grading exponent on ε, as ε → 0+, will be crucial for
the analysis of the attainable order convergence.



9

Epilogue

Our voyage through the preceding eight chapters has shown that we have cer-
tainly not yet reached the end of the story on collocation methods for Volterra
functional integral and integro-differential equations. Many important ques-
tions remain unanswered. It is my belief that we have to find new mathematical
approaches and tools (likely from very unexpected areas) if we are to make sub-
stantial progress towards finding complete solutions to these open problems.

It is the purpose of this brief final chapter to point to some possible, and seem-
ingly very promising, new approaches for the numerical analysis of collocation
solutions to Volterra functional equations.

9.1 Semigroups and abstract resolvent theory

The long-time integration of Volterra integral and integro-differential equations
by collocation methods, in particular the asymptotic behaviour of collocation
solutions, is not yet understood. As a number of papers and books have shown
(see, e.g. Ito and Kappel (1989, 1991, 2002), Ito and Turi (1991), Brunner,
Kauthen and Ostermann (1995), Bellen and Maset (1999), Maset (1999, 2003),
and Bellen and Zennaro (2003, pp. 56–60)) the appropriate reformulation of the
given equation as an abstract Cauchy problem and the exploitation of the under-
lying semigroup or abstract resolvent framework (integrability and asymptotic
behaviour of resolvents) will often lead to deep insight into the qualitative
properties of approximate solutions.

The following books and papers will be helpful in acquiring the basic tools
necessary to investigate qualitative properties of collocation solutions to VIEs
and VIDEs, and their more general (delay and weakly singular) versions.

503
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� Semigroup theory and sectorial operators:
These aspects of modern functional analysis are well covered in the mono-
graphs by Aubin (1979), Henry (1981), Zeidler (1990), Prüss (1993), Lunardi
(1995), and Ito and Kappel (2002). See also Delfour (1980), Burns, Herdman
and Stech (1983), Staffans (1984, 1985a, 1985b), Kappel and Zhang (1986),
Burns, Herdman and Turi (1990), and Clément, Desch and Homan (2003),
and the references in these papers.

� Abstract resolvent theory:
Abstract VIEs in Banach spaces and properties of resolvents are analysed in
Friedman and Shinbrot (1967), Miller (1975), Chen and Grimmer (1980),
Grimmer (1982), Grimmer and Pritchard (1983), Gripenberg and Prüss
(1985), Gripenberg (1987), Gripenberg, Londen and Staffans (1990), Prüss
(1993), and Engel and Nagel (2000, Ch. VI.6/7).
Analogous results for abstract VIDEs can be found for example in Chen
and Grimmer (1982), Desch and Schappacher (1985), Desch and Grimmer
(1989); see also Gripenberg, Londen and Staffans (1990) and Prüss (1993).

9.2 C∗-algebra techniques and invertibility of
approximating operator sequences

Suppose that the operator equation Ay = g, where A is a bounded linear oper-
ator acting between two infinite-dimensional Banach spaces, is approximated
by a sequence of approximating equations Ahuh = gh (where, for example,
h = T/N , with N → ∞). Under what conditions on the approximating opera-
tor Ah does uh converge (in an appropriate norm) to the solution y of the given
operator equation?

We have encountered a typical problem of this kind in Sections 6.3 and 6.5.2,
where A represents one of the Volterra integral operators Vα or Wθ,α , and uh is
a piecewise polynomial (or non-polynomial spline) collocation solution. As we
have seen, we do not know necessary or sufficient conditions for the collocation
parameters {ci } under which uh converges uniformly to y on I , as h → 0.

In recent years, Silbermann and his collaborators have convincingly shown
that C∗-algebra techniques provide very powerful tools for answering such
invertibility and convergence questions in the case of, e.g. spline projection
methods for periodic pseudo-differential equations and other types of singular
integral equations. This novel approach (based on a very surprising connection
between the rather different worlds of C∗-algebra and numerical analysis) may
well yield the key tools for successfully dealing with our open problems in
collocation methods for first-kind VIEs with weakly singular kernels.
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Excellent introductions to the application of C∗-algebra in the numerical
analysis of operator equations are given in the monograph by Hagen, Roch and
Silbermann (2001) and in the survey papers by Roch and Silbermann (1996),
Silbermann, Hagen and Roch (1998), and Böttcher (2000). The related books
by Prössdorf and Silbermann (1991) and Hagen, Roch and Silbermann (1995)
provide much of the necessary functional analysis framework.

9.3 Abstract DAEs

As we briefly mentioned in Chapter 8, partial (parabolic) DAEs and (partial)
IDAEs of Volterra (or Fredholm) type can be reformulated as abstract DAEs in
an infinite-dimensional Hilbert space setting. This not only permits the exten-
sion of the notions of (tractability) index and properly stated leading terms to a
much wider class of differential-algebraic problems but also appears to furnish
the tools for the analysis of collocation methods for ordinary or partial IDAEs
of higher index.

The mathematical framework underlying the numerical analysis of abstract
DAEs is currently being developed by März and her collaborators at Hum-
boldt University in Berlin; the reader can find an introduction to these ideas in
the paper by März (2001, pp. 330–334) and its sequel by Lamour, März and
Tischendorf (2001).
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(1997) contain analogous results for DDEs.]

Buckwar, E. (1997), Iterative approximation of the positive solution of a class of non-
linear Volterra-type integral equations, dissertation, Freie Universität Berlin; also:
Logos Verlag (Berlin).
[Analysis of VIEs of the form yβ (t) = ∫ t

0 (t − s)−αk(t − s)y(s)ds, β > 1, 0 ≤ α < 1.]
(2000), On a nonlinear Volterra integral equation, in: Corduneanu and Sandberg (2000)

pp. 157–162.
Bukhgeim, A. L. (1983), Volterra Equations and Inverse Problems (in Russian) (Novosi-

birsk, Nauka Sibirsk. Otdel.).
[Consult also the detailed review 86b:35193 in Math. Reviews.]

(1999), Volterra Equations and Inverse Problems (Zeist, VSP).
[Compare also Bukhgeim (1983) and Asanov (1998).]

Buhmann, M. and A. Iserles (1991), Numerical analysis of functional differential equa-
tions with a variable delay, in: Numerical Analysis (Dundee 1991) (D. F. Griffiths



References 521

and G. A. Watson, eds.), pp. 17–33, Pitman Res. Notes Math. Ser. 260 (Harlow,
Longman).

(1992), On the dynamics of a discretized neutral equation, IMA J. Numer. Anal. 12,
339–363.
[y′(t) = ay(t) + by(qt) + cy′(pt), 0 < p, q < 1.]

(1993), Stability of the discretized pantograph differential equation, Math. Comp. 60,
575–589.

Buhmann, M., A. Iserles and S. P. Nørsett (1993), Runge–Kutta methods for neutral dif-
ferential equations, in: Contributions in Numerical Mathematics (Singapore 1993),
(R. P. Agarwal, ed.), pp. 85–98 (River Edge, NJ, World Scientific Publ.).
[One-point collocation for y′(t) = ay(t) + by(t/2) + cy′(t/2) : q = 1/2.]

Bulatov, M. V. (1998), Numerical solution of a system of Volterra equations of the first
kind, Comput. Math. Math. Phys. 38, 585–589.

(2001), Numerical solution of systems of integral equations of the first kind (in Rus-
sian), Vychisl. Tekhnol. 6, 3–8.

Bulatov, M. V. and V. F. Chistyakov (2002), On a numerical method for solving
differential-algebraic equations, Comput. Math. Math. Phys. 42, 439–449.
[Collocation method for linear DAEs of high index.]

Burchard, H. G. (1977), On the degree of convergence of piecewise polynomial approx-
imation on optimal meshes: II, Trans. Amer. Math. Soc. 234, 531–559.

Burgstaller, A. (1993), Kollokationsverfahren für Anfangswertprobleme, dissertation,
Fakultät für Mathematik, Ludwig-Maximilians-Universität, Munich.

(2000), A modified collocation method for Volterra delay integrodifferential equations
with multiple delays, in: Agarwal and O’Regan (2000), pp. 39–53.

Burns, J. A., E. M. Cliff and T. L. Herdman (1983), A state-space model for an
aeroelastic system, 22nd IEEE Conference on Decision and Control 3, 1074–
1077.

(1987), On integral transforms appearing in the derivation of the equations of an
aeroelastic system, in Lakshmikantham (1987), pp. 89–98.

Burns, J. A., T. L. Herdman and H. W. Stech (1983), Linear functional differential equa-
tions as semigroups on product spaces, SIAM J. Math. Anal. 14, 98–116.

Burns, J. A., T. L. Herdman and J. Turi (1987), Nonatomic neutral functional differential
equations, in Lakshmikantham (1987), pp. 635–646.

(1990), Neutral functional integro-differential equations with weakly singular kernels,
J. Math. Anal. Appl. 145, 371–401.

Burns, J. A. and K. Ito (1995), On well-posedness of integro-differential equations in
weighted L2-spaces, Differential Integral Equations 8, 627–646.
[Well-posedness in the state space C is considered in Ito, Kappel and Turi (1996).]

Burrage, K. and L. Petzold (1990), On order reduction for Runge–Kutta methods applied
to differential/algebraic systems and to stiff ODEs, SIAM J. Numer. Anal. 27, 447–
456.
[In particular: collocation at Gauss points for DAEs.]

Burton, T. A. (1983), Volterra Integral and Differential Equations (New York, Academic
Press).
[See also for numerous applications.]

Busenberg, S. and K. L. Cooke (1980), The effect of integral conditions in certain equa-
tions modelling epidemics and population growth, J. Math. Biol. 10, 13–32.



522 References
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(méthodes numériques) (Paris, Dunod).
[English translation: Numerical Solution of Initial Value Problems (Englewood Cliffs, NJ,
Prentice-Hall, 1966). See in particular pp. 223–226 (English edition) on ‘completely implicit’
RK methods, and pp. 236–239 on applications to Volterra equations.]



524 References

Chambers, Ll. G. (1990), Some properties of the functional equation φ(x) = f (x) +∫ λx
0 g(x, y, f (y))dy, Internat. J. Math. Math. Sci. 14, 27–44.

[Representation of solutions: analogue of “Neumann series” for 0 < λ < 1; application to
scalar and multidimensional pantograph equations.]

Chandler, G. A. (1979), Superconvergence of numerical solutions to second kind integral
equations, Ph.D. thesis, Australian National University, Canberra.

(1984), Mesh grading for boundary integral equations, in: Computational Techniques
and Applications: CTAC-83 (Sydney 1983) (J. Noye and C. Fletcher, eds.), pp.
289–296 (Amsterdam and New York, North-Holland).
[Mesh grading in Galerkin and collocation methods for second-kind boundary integral equa-
tions on boundaries with re-entrant corners.]

Chandler, G. A. and I. G. Graham (1988), Product integration-collocation methods for
non-compact integral operator equations, Math. Comp. 50, 125–138.

Chandler, G. A. and I. H. Sloan (1990), Spline qualocation methods for boundary integral
equations, Numer. Math. 58, 537–567.

Chatelin, F. (1983), Spectral Approximation of Linear Operators (New York, Academic
Press).
[Iterated projection/collocation methods for Fredholm integral equations; very comprehensive
bibliography, including papers on the historical development of projection methods.]

Chatelin, F. and R. Lebbar (1981), The iterated projection solution for the Fredholm
integral equation of the second kind, J. Austral. Math Soc. Ser. B 22, 439–
451.
[Superconvergence of iterated collocation and Galerkin approximations; see also Lin (1979),
Sloan (1976).]

Chen, C. and T. Shih (1998), Finite Element Methods for Integrodifferential Equations,
Series on Applied Math., vol. 9 (Singapore, World Scientific).
[See also for numerous references on abstract VIEs and partial VIDEs.]

Chen, C., V. Thomée and L. B. Wahlbin (1992), Finite element approximation of a
parabolic integro-differential equation with a weakly singular kernel, Math. Comp.
58, 587–602.

Chen, G. and R. Grimmer (1980), Semigroups and integral equations, J. Integral Equa-
tions Appl. 2, 133–154.

(1982), Integral equations as evolution equations, J. Differential Equations 45, 53–74.
Chen, Y. (1995), Two-step Runge-Kutta methods for differential-algebraic systems,

Beijing Math. 1, 98–103.
Cheng, Z., Y. Xu and J. Zhao (1999), The discrete Petrov–Galerkin method for weakly

singular integral equations, J. Integral Equations Appl. 11, 1–35.
[Detailed description/analysis of PG methods for Fredholm IEs.]

Choi, M.-J. (1993), Collocation approximations for integro-differential equations, Bull.
Korean Math. Soc. 30, 35–51.
[Parabolic and hyperbolic VIDEs with weakly singular kernels.]

Jin, U. Choi and R. C. MacCamy (1989), Fractional order Volterra equations, in: Volterra
Integrodifferential Equations in Banach Spaces and Applications (G. Da Prato and
M. Iannelli, eds.), pp. 231–249, Pitman Res. Notes in Math. 190 (Harlow, Long-
man).
[ut = ∫ t

0 a(t − s)u(s)ds, a(t) = t−α exp(−t) (0 < α < 1). Compare also Hrusa, Nohel
and Renardy (1988) for related models in viscoelasticity.]



References 525

Chukwu, E. N. (1999), Volterra integrodifferential neutral dynamics for the growth of
wealth of nations: a controllability theory, with Canada example, Dynamics Contr.
Discrete Impulsive Systems 5, 561–577.

Cinzori, A. C. (1998), Future polynomial regularization of ill-posed Volterra problems,
Ph.D. thesis, Michigan State University, East Lansing.

Cinzori, A. C. and P. K. Lamm (2000), Future polynomial regularization of ill-posed
Volterra equations, SIAM J. Numer. Anal. 37, 949–979.
[Generalisation of methods in Lamm (1995, 1996, 1997a).]

Clément, Ph. and S.-O. Londen (2000), Regularity aspects of fractional evolution equa-
tions, Rend. Istit. Mat. Univ. Trieste XXXI, Suppl. 2, 19–30.

Clements, J. C. and B. R. Smith (1996), Parameter estimation in a reaction-diffusion
model for synaptic transmission at a neuromuscular junction, Canad. Appl. Math.
Quart. 4, 157–173.
[Neutral, ‘nonstandard’ VIDE; compare also Jones, Jumarhon, McKee and Scott (1996) for
a closely related VIDE.]

Clément, Ph., W. Desch and K. W. Homan (2003), An analytic semigroup setting for a
class of Volterra equations, J. Integral Equations Appl. 14, 239–281.

Cochran, J. A. (1972), Analysis of Linear Integral Equations (New York, McGraw-Hill).
Cockburn, B., G. E. Karniadakis and Ch.-W. Shu (2000), The development of discontin-

uous Galerkin methods, in: Discontinuous Galerkin Methods (Newport, RI, 1999)
(B. Cockburn et al., eds.), pp. 3–50, Lecture Notes in Comput. Sci. Engrg. 11 (Berlin,
Springer–Verlag).
[Contains comprehensive bibliography.]

Coleman, J. P. (1992), Rational approximations for the cosine function; P-acceptability
and order, Numer. Algor. 3, 143–158.

Coleman, J. P. and S. C. Duxbury (2000), Mixed collocation methods for y′′ = f (x, y),
J. Comput. Appl. Math. 126, 47–75.
[Analysis of attainable order; comparison with piecewise polynomial collocation. See also
Brunner, Makroglou and Miller (1997a).]

Collatz, L. (1951), Einige neuere Forschungen über die numerische Behandlung von
Differentialgleichungen, Z. Angew. Math. Mech. 31, 230–236.
[Collocation for boundary-value problems, including idea of coalescing collocation points.]

(1966), The Numerical Treatment of Differential Equations (3rd edn), Grundlehren
der Math. Wissenschaften 60 (New York, Springer-Verlag).
[Contains many remarks on early collocation methods for differential and integral equations.]

Constantin, A. and S. Peszat (2000), Global existence of solutions of semilinear parabolic
evolution equations, Differential Integral Equations 13, 99–114.
[Deals also with nonlinear weakly singular V2s, extending some results of Bushell and
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[Reformulation as a VIE of the first kind; compare also Lamm and Eldén (1997).]

Elliott, C. M. and S. McKee (1981), On the numerical solution of an integro-differential
equation arising from wave-power hydraulics, BIT 21, 318–325.

Elliott, D. (1982), The classical collocation method for singular integral equations having
a Cauchy kernel, SIAM J. Numer. Anal. 19, 816–832.

(1989), A comprehensive approach to the approximation solutions of singu-
lar integral equations over the arc (−1, 1), J. Integral Equations Appl. 2,
59–94.
[Comparison of collocation and Galerkin solutions.]



532 References

Elnagar, G. N. and M. Kazemi-Dehkordi (1996), Chebyshev spectral solution of non-
linear Volterra–Hammerstein integral equations, J. Comput. Appl. Math. 76, 147–
158.

Elnagar, G. N. and M. Razzaghi (1996), A pseudospectral method for Hammerstein
equations, J. Math. Anal. Appl. 199, 579–591.

Eloe, P. and M. Islam (1995), Stability properties and integrability of the resolvent of
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Estévez, D. Schwarz and R. Lamour (2001), The computation of consistent initial values
for nonlinear index-2 differential-algebraic equations, Numer. Algorithms 26, 49–
75.

Evans, G. C. (1910), Volterra’s integral equation of the second kind, with discontinuous
kernel, Trans. American Math. Soc. 11, 393–413.
[First contribution to the theory of singular VIEs of the second kind. See also its sequel in the
same journal, 12 (1911), 429–472, and compare Davis (1924) and its bibliographical notes.
Extensions and additional (historical) references may be found in Reynolds (1984).]

Fairweather, G. (1994), Spline collocation methods for a class of hyperbolic partial
integro-differential equations, SIAM J. Numer. Anal. 31, 444–460.

Fairweather, G. and D. Meade (1989), A survey of spline collocation methods for the
numerical solution of differential equations, in: Methods for Large Scale Computing
(J. C. Dı́az, ed.), pp. 297–341, Lecture Notes Pure Appl. Math. 120 (New York,
Marcel Dekker).
[Contains extensive list of references, including historical ones. See also Ganesh and Sloan
(1999) and Bialecki and Fairweather (2001).]

Fasshauer, G. E. (1999), Solving differential equations with radial basis functions: mul-
tilevel methods and smoothing, Adv. Comput. Math. 11, 139–159.
[See also for extensive references on RBF collocation for ODEs and PDEs.]



534 References

Favini, A., A. Lorenzi and H. Tanabe (2002), Singular integro-differential equations of
parabolic type, Adv. Differential Equations 7, 769–798.

Feilmeier, M. (1975), Hermitesche Kollokation bei Integralgleichungen, Computing 15,
137–146.
[Gauss collocation for nonlinear Fredholm integral equations.]

Feldstein, A., A. Iserles and D. Levin (1995), Embedding of delay equations into an
infinite-dimensional ODE system, J. Differential Equations 117, 127–150.

Feldstein, A. and Y. Liu (1998), On neutral functional-differential equations with variable
time delays, Math. Proc. Cambridge Phil. Soc. 124, 371–384.

Feldstein, A. and R. K. Miller (1971), Error bounds in compound quadrature of weakly
singular integrals, Math. Comp. 25, 505–520.

Feldstein, A. and K. W. Neves (1984), High order methods for state-dependent delay
differential equations with nonsmooth solutions, SIAM J. Numer. Anal. 21, 844–
863.

Feldstein, A. and J. R. Sopka (1974), Numerical methods for nonlinear Volterra integro-
differential equations, SIAM J. Numer. Anal. 11, 826–846.
[Convergence analysis of one-step methods and extrapolation algorithms.]

Feller, W. (1941), On the integral equation of renewal theory, Ann. Math. Statist. 12,
243–267.
[Compare also Brauer (1976b).]
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Birkhäuser Verlag).

Golberg, M. A. (1990), Perturbed projection methods for various classes of operator and
integral equations, in: Numerical Solution of Integral Equations (M. A. Golberg,
ed.), pp. 77–130 (New York, Plenum Press).

Golberg, M. A. and H. Bowman (1990), The conditioning of some projection methods
for Fredholm and singular integral equations, Appl. Math. Comp. 40, 165–178.
[Compare also Wright (1984), Gerard and Wright (1984), Ahmed and Wright (1985) for col-
location methods in ODEs.]

Golberg, M. A. and C. S. Chen (1997), Discrete Projection Methods for Integral Equa-
tions (Southampton and Boston, Computational Mechanics Publications).
[Contains a good introduction to relevant results from functional analysis and approximation
theory (Ch. 4 and Ch. 5).]

Gorenflo, R. (1987), Newtonssche Aufheizung, Abelsche Integralgleichungen zweiter
Art und Mittag-Leffler-Funktionen, Z. Naturforsch. 42a, 1141–1146.

(1996), Abel Integral Equations with Special Emphasis on Applications, Lecture
Notes in Math. Sciences, Graduate School of Math. Sciences, University of Tokyo.

(1997), Fractional calculus: some numerical methods, in Carpinteri and Mainardi
(1997), pp. 277–290.

Gorenflo, R. and A. A. Kilbas (1995), Asymptotic solution of a nonlinear Abel–Volterra
integral equation of second kind, J. Fract. Calculus 8, 103–117.



References 537

[Asymptotic expansion of solution near t = 0, t = ∞ of y(t) = c
∫ t

0 (t − s)α−1( f (s) −
ym (s))ds, α > 0, m > 1.]

Gorenflo, R., Yu. Luchko and F. Mainardi (2000), Wright functions as scale-invariant
solutions of the diffusion-wave equation, J. Comput. Appl. Math. 118, 175–
191.
[Time-fractional diffusion-wave equation. The paper also contains an extensive list of refer-
ences on equations of fractional order.]

Gorenflo, R. and F. Mainardi (1997), Fractional calculus: integral and differential equa-
tions of fractional order, in Carpinteri and Mainardi (1997), pp. 223–276.
[The article contains also a section on the Mittag–Leffler function.]

Gorenflo, R. and S. Vessella (1991), Abel Integral Equations: Analysis and Applications,
Lecture Notes in Math. 1461 (Berlin and Heidelberg, Springer-Verlag).

Gorenflo, R. and M. Yamamoto (1995), On regularized inversion of Abel integral oper-
ators, in: Analysis and Mechanics of Continuous Media (Ho Chi Minh City 1995),
(N. H. Anh et al., eds.), pp. 162–182 (Ho Chi Minh City, Publications of the Ho
Chi Minh City Mathematical Society 3).

Gori, L. and E. Santi (1999), A spline method for the numerical solution of Volterra
integral equations of the second kind, Preprint (for a talk presented at the 1999
Dundee Conference on Numerical Analysis).
[Quasi-interpolatory spline method for equations with weakly singular kernels. See also
below.]
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aux conditions initiales par des méthodes de collocation, Rev. Française Informat.
Recherche Opérationnelle 3, 17–44.
[First paper on local superconvergence results for collocation methods for ODEs. See also
for results on higher-order ODEs and coalescing collocation points.]

Guo, D., V. Lakshmikantham and X. Liu (1996), Nonlinear Integral Equations in Ab-
stract Spaces (Dordrecht, Kluwer Academic Publishers).

Guy, J. and A. Salès (1991), Integral Equations in Everyday Practice (Paris, Lavoisier-
TEC&DOC).
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Verlag).
[Extrapolation for the midpoint method.]

(1981), An extrapolation method with stepsize control for nonlinear Volterra integral
equations, Numer. Math. 38, 155–178.

de Hoog, F. R. and R. Weiss (1973a), On the solution of a Volterra integral equation with
a weakly singular kernel, SIAM J. Math. Anal. 4, 561–573.
[Extension of regularity results by Miller and Feldstein Miller and Feldstein (1971).]



544 References

(1973b), On the solution of Volterra integral equations of the first kind, Numer. Math.
21, 22–32.

(1973c), High order methods for Volterra integral equations of the first kind, SIAM J.
Numer. Anal. 10, 647–664.

(1973d), Asymptotic expansions for product integration, Math. Comp. 27, 295–306.
[Related results and references may be found in (Håvie 1994).]
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Iserles, A. and J. Terjéki (1995), Stability and asymptotic stability of functional-
differential equations, J. London Math. Soc. (2) 51, 559–572.

Ishiwata, E. (2000), On the attainable order of collocation methods for the neutral
functional-differential equations with proportional delays, Computing 64, 207–
222.
[Generalisation of results in Brunner (1997a), Takama, Muroya and Ishiwata (2000).]



References 547

Iso, Y. and K. Onishi (1991), On the stability of the boundary element collocation
method applied to the linear heat equation, J. Comput. Appl. Math. 38, 201–
209.
[See also Hamina and Saranen (1994), Hämäläinen (1998).]
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Editions Mir).
[Contains numerous examples and solved problems of Volterra integral equations.]

Kress, R. (1999), Linear Integral Equations (2nd edn) (Berlin and New York, Springer-
Verlag).
[Theory and numerical analysis, in particular: projection methods; regularization.]



References 553

Krisztin, T. (1988), Uniform asymptotic stability of a class of integrodifferential systems,
J. Integral Equations Appl. 1, 581–597.
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Niemytzki, W. (1934), Théorie d’existence des solutions de quelques équations
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Vâţă, P. (1978), Convergence theorems of some numerical approximation scheme for
the class of nonlinear integral equation, Bul. Univ. Galaţi Fasc. II Mat. Fiz. Mec.
Teoret. 1, 25–33.
[Rectangle, trapezoidal, and midpoint methods for u(x) = f (x) + ∫ x

0 H (x, t, u(t − τ ))dt .]
Väth, M. (1998a), Abstract Volterra equations of the second kind, J. Integral Equations

Appl. 10, 319–362.
(1998b), Linear and nonlinear abstract Volterra equations, Funct. Differ. Equ. 5, 499–

512.
(1999), Volterra and Integral Equations of Vector Functions (New York, Marcel

Dekker).
[Study of abstract Volterra equations via topological and algebraic methods.]

Vecchio, A. (1998), Stability results on some direct quadrature methods for Volterra
integro-differential equations, Dynam. Systems Appl. 7, 501–518.

(2000), Stability of backward differentiation formulas for Volterra integro-differential
equations, J. Comput. Appl. Math. 115, 565–576.

Ventura, A. (1989), A new approach to the method of nonlinear variation of parameters
for a perturbed nonlinear neutral functional differential equation, J. Math. Anal.
Appl. 138, 59–74.

Venturino, E. and A. Saxena (1998), Smoothing the solutions of history-dependent
dynamical systems, Numer. Funct. Anal. Optim. 19, 647–666.
[VIDEs of the form y′′(t) = H (t, y(t), y′(t),

∫ t
0 K (t, u, y(u), y′(u))du).]

Vermiglio, R. (1985), A one-step subregion method for delay differential equations,
Calcolo 22, 429–455.
[Sequel to Bellen (1984).]

(1988), Natural continuous extension of Runge–Kutta methods for Volterra integro-
differential equations, Numer. Math. 53, 439–458.

(1992), On the stability of Runge–Kutta methods for delay integral equations, Numer.
Math. 61, 561–577.

Vermiglio, R. and L. Torelli (1998), A stable numerical approach for implicit non-linear
neutral delay differential equations, BIT 43, 195–215.

Vermiglio, R. and M. Zennaro (1993), Multistep natural continuous extensions of
Runge–Kutta methods: the potential for stable interpolation, Appl. Numer. Math.
12, 521–546.

Visintin, A. (1994), Differential Models of Hysteresis (Berlin and Heidelberg, Springer-
Verlag).

Vivanti, G. (1929), Elemente der Theorie der linearen Integralgleichungen (Hannover,
Helwingsche Verlagsbuchhandlung).
[Features extensive annotated bibliography, including a list of dissertations.]
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