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1. PREFACE v

1. Preface

These notes are the outgrowth of a graduate course on Lie groups I taught
at the University of Virginia in 1994. In trying to find a text for the course I
discovered that books on Lie groups either presuppose a knowledge of differentiable
manifolds or provide a mini-course on them at the beginning. Since my students
did not have the necessary background on manifolds, I faced a dilemma: either use
manifold techniques that my students were not familiar with, or else spend much
of the course teaching those techniques instead of teaching Lie theory. To resolve
this dilemma I chose to write my own notes using the notion of a matrix Lie group.
A matrix Lie group is simply a closed subgroup of GL(n; C). Although these are
often called simply “matrix groups,” my terminology emphasizes that every matrix
group is a Lie group.

This approach to the subject allows me to get started quickly on Lie group the-
ory proper, with a minimum of prerequisites. Since most of the interesting examples
of Lie groups are matrix Lie groups, there is not too much loss of generality. Fur-
thermore, the proofs of the main results are ultimately similar to standard proofs
in the general setting, but with less preparation.

Of course, there is a price to be paid and certain constructions (e.g. covering
groups) that are easy in the Lie group setting are problematic in the matrix group
setting. (Indeed the universal cover of a matrix Lie group need not be a matrix
Lie group.) On the other hand, the matrix approach suffices for a first course.
Anyone planning to do research in Lie group theory certainly needs to learn the
manifold approach, but even for such a person it might be helpful to start with a
more concrete approach. And for those in other fields who simply want to learn
the basics of Lie group theory, this approach allows them to do so quickly.

These notes also use an atypical approach to the theory of semisimple Lie
algebras, namely one that starts with a detailed calculation of the representations
of sl(3; C). My own experience was that the theory of Cartan subalgebras, roots,
Weyl group, etc., was pretty difficult to absorb all at once. I have tried, then, to
motivate these constructions by showing how they are used in the representation
theory of the simplest representative Lie algebra. (I also work out the case of
sl(2; C), but this case does not adequately illustrate the general theory.)

In the interests of making the notes accessible to as wide an audience as possible,
I have included a very brief introduction to abstract groups, given in Chapter 1.
In fact, not much of abstract group theory is needed, so the quick treatment I give
should be sufficient for those who have not seen this material before.

I am grateful to many who have made corrections, large and small, to the notes,
including especially Tom Goebeler, Ruth Gornet, and Erdinch Tatar.
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CHAPTER 1

Groups

1. Definition of a Group, and Basic Properties

Definition 1.1. A group is a set G, together with a map of G × G into G
(denoted g1 ∗ g2) with the following properties:

First, associativity: for all g1, g2 ∈ G,

g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3.(1.1)

Second, there exists an element e in G such that for all g ∈ G,

g ∗ e = e ∗ g = g.(1.2)

and such that for all g ∈ G, there exists h ∈ G with

g ∗ h = h ∗ g = e.(1.3)

If g ∗ h = h ∗ g for all g, h ∈ G, then the group is said to be commutative (or
abelian).

The element e is (as we shall see momentarily) unique, and is called the iden-
tity element of the group, or simply the identity. Part of the definition of a
group is that multiplying a group element g by the identity on either the right or
the left must give back g.

The map of G×G into G is called the product operation for the group. Part
of the definition of a group G is that the product operation map G×G into G, i.e.,
that the product of two elements of G be again an element of G. This property is
referred to as closure.

Given a group element g, a group element h such that g ∗h = h∗g = e is called
an inverse of g. We shall see momentarily that each group element has a unique
inverse.

Given a set and an operation, there are four things that must be checked to show
that this is a group: closure, associativity, existence of an identity, and existence of
inverses.

Proposition 1.2 (Uniqueness of the Identity). Let G be a group, and let e, f ∈
G be such that for all g ∈ G

e ∗ g = g ∗ e = g

f ∗ g = g ∗ f = g.

Then e = f .

Proof. Since e is an identity, we have

e ∗ f = f .

1



2 1. GROUPS

On the other hand, since f is an identity, we have

e ∗ f = e.

Thus e = e ∗ f = f .

Proposition 1.3 (Uniqueness of Inverses). Let G be a group, e the (unique)
identity of G, and g, h, k arbitrary elements of G. Suppose that

g ∗ h = h ∗ g = e

g ∗ k = k ∗ g = e.

Then h = k.

Proof. We know that g ∗ h = g ∗ k (= e). Multiplying on the left by h gives

h ∗ (g ∗ h) = h ∗ (g ∗ k).
By associativity, this gives

(h ∗ g) ∗ h = (h ∗ g) ∗ k,
and so

e ∗ h = e ∗ k
h = k.

This is what we wanted to prove.

Proposition 1.4. Let G be a group, e the identity element of G, and g an
arbitrary element of G. Suppose h ∈ G satisfies either h ∗ g = e or g ∗ h = e. Then
h is the (unique) inverse of g.

Proof. To show that h is the inverse of g, we must show both that h ∗ g = e
and g ∗ h = e. Suppose we know, say, that h ∗ g = e. Then our goal is to show that
this implies that g ∗ h = e.

Since h ∗ g = e,

g ∗ (h ∗ g) = g ∗ e = g.

By associativity, we have

(g ∗ h) ∗ g = g.

Now, by the definition of a group, g has an inverse. Let k be that inverse. (Of
course, in the end, we will conclude that k = h, but we cannot assume that now.)
Multiplying on the right by k and using associativity again gives

((g ∗ h) ∗ g) ∗ k = g ∗ k = e

(g ∗ h) ∗ (g ∗ k) = e

(g ∗ h) ∗ e = e

g ∗ h = e.

A similar argument shows that if g ∗ h = e, then h ∗ g = e.

Note that in order to show that h ∗ g = e implies g ∗ h = e, we used the fact
that g has an inverse, since it is an element of a group. In more general contexts
(that is, in some system which is not a group), one may have h ∗ g = e but not
g ∗ h = e. (See Exercise 11.)
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Notation 1.5. For any group element g, its unique inverse will be denoted
g−1.

Proposition 1.6 (Properties of Inverses). Let G be a group, e its identity, and
g, h arbitrary elements of G. Then

(
g−1
)−1

= g

(gh)
−1

= h−1g−1

e−1 = e.

Proof. Exercise.

2. Some Examples of Groups

From now on, we will denote the product of two group elements g1 and g2
simply by g1g2, instead of the more cumbersome g1 ∗ g2. Moreover, since we have
associativity, we will write simply g1g2g3 in place of (g1g2)g3 or g1(g2g3).

2.1. The trivial group. The set with one element, e, is a group, with the
group operation being defined as ee = e. This group is commutative.

Associativity is automatic, since both sides of (1.1) must be equal to e. Of
course, e itself is the identity, and is its own inverse. Commutativity is also auto-
matic.

2.2. The integers. The set Z of integers forms a group with the product
operation being addition. This group is commutative.

First, we check closure, namely, that addition maps Z×Z into Z, i.e., that the
sum of two integers is an integer. Since this is obvious, it remains only to check
associativity, identity, and inverses. Addition is associative; zero is the additive
identity (i.e., 0 + n = n + 0 = n, for all n ∈ Z); each integer n has an additive
inverse, namely, −n. Since addition is commutative, Z is a commutative group.

2.3. The reals and Rn. The set R of real numbers also forms a group under
the operation of addition. This group is commutative. Similarly, the n-dimensional
Euclidean space Rn forms a group under the operation of vector addition. This
group is also commutative.

The verification is the same as for the integers.

2.4. Non-zero real numbers under multiplication. The set of non-zero
real numbers forms a group with respect to the operation of multiplication. This
group is commutative.

Again we check closure: the product of two non-zero real numbers is a non-zero
real number. Multiplication is associative; one is the multiplicative identity; each
non-zero real number x has a multiplicative inverse, namely, 1

x . Since multiplication
of real numbers is commutative, this is a commutative group.

This group is denoted R∗.

2.5. Non-zero complex numbers under multiplication. The set of non-
zero complex numbers forms a group with respect to the operation of complex
multiplication. This group is commutative.

This group in denoted C∗.
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2.6. Complex numbers of absolute value one under multiplication.
The set of complex numbers with absolute value one (i.e., of the form eiθ) forms a
group under complex multiplication. This group is commutative.

This group is the unit circle, denoted S1.

2.7. Invertible matrices. For each positive integer n, the set of all n × n
invertible matrices with real entries forms a group with respect to the operation of
matrix multiplication. This group in non-commutative, for n ≥ 2.

We check closure: the product of two invertible matrices is invertible, since

(AB)
−1

= B−1A−1. Matrix multiplication is associative; the identity matrix (with
ones down the diagonal, and zeros elsewhere) is the identity element; by definition,
an invertible matrix has an inverse. Simple examples show that the group is non-
commutative, except in the trivial case n = 1. (See Exercise 8.)

This group is called the general linear group (over the reals), and is denoted
GL(n; R).

2.8. Symmetric group (permutation group). The set of one-to-one, onto
maps of the set {1, 2, · · ·n} to itself forms a group under the operation of compo-
sition. This group is non-commutative for n ≥ 3.

We check closure: the composition of two one-to-one, onto maps is again one-
to-one and onto. Composition of functions is associative; the identity map (which
sends 1 to 1, 2 to 2, etc.) is the identity element; a one-to-one, onto map has an
inverse. Simple examples show that the group is non-commutative, as long as n is
at least 3. (See Exercise 10.)

This group is called the symmetric group, and is denoted Sn. A one-to-one,
onto map of {1, 2, · · ·n} is a permutation, and so Sn is also called the permutation
group. The group Sn has n! elements.

2.9. Integers mod n. The set {0, 1, · · ·n− 1} forms a group under the oper-
ation of addition mod n. This group is commutative.

Explicitly, the group operation is the following. Consider a, b ∈ {0, 1 · · ·n− 1}.
If a+ b < n, then a+ b mod n = a+ b, if a+ b ≥ n, then a+ b mod n = a+ b−n.
(Since a and b are less than n, a+b−n is less than n; thus we have closure.) To show
associativity, note that both (a+bmod n)+c mod n and a+(b+cmod n) mod n
are equal to a+ b+ c, minus some multiple of n, and hence differ by a multiple of
n. But since both are in the set {0, 1, · · ·n− 1}, the only possible multiple on n
is zero. Zero is still the identity for addition mod n. The inverse of an element
a ∈ {0, 1, · · ·n− 1} is n− a. (Exercise: check that n− a is in {0, 1, · · ·n− 1}, and
that a+(n−a) mod n = 0.) The group is commutative because ordinary addition
is commutative.

This group is referred to as “Z mod n,” and is denoted Zn.

3. Subgroups, the Center, and Direct Products

Definition 1.7. A subgroup of a group G is a subset H of G with the follow-
ing properties:

1. The identity is an element of H.
2. If h ∈ H, then h−1 ∈ H.
3. If h1, h2 ∈ H, then h1h2 ∈ H .
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The conditions on H guarantee that H is a group, with the same product
operation as G (but restricted to H). Closure is assured by (3), associativity follows
from associativity in G, and the existence of an identity and of inverses is assured
by (1) and (2).

3.1. Examples. Every group G has at least two subgroups: G itself, and the
one-element subgroup {e}. (If G itself is the trivial group, then these two subgroups
coincide.) These are called the trivial subgroups of G.

The set of even integers is a subgroup of Z: zero is even, the negative of an
even integer is even, and the sum of two even integers is even.

The setH of n×n real matrices with determinant one is a subgroup of GL(n; R).
The setH is a subset of GL(n; R) because any matrix with determinant one is invert-
ible. The identity matrix has determinant one, so 1 is satisfied. The determinant of
the inverse is the reciprocal of the determinant, so 2 is satisfied; and the determi-
nant of a product is the product of the determinants, so 3 is satisfied. This group
is called the special linear group (over the reals), and is denoted SL(n; R).

Additional examples, as well as some non-examples, are given in Exercise 2.

Definition 1.8. The center of a group G is the set of all g ∈ G such that
gh = hg for all h ∈ G.

It is not hard to see that the center of any group G is a subgroup G.

Definition 1.9. Let G and H be groups, and consider the Cartesian product
of G and H, i.e., the set of ordered pairs (g, h) with g ∈ G, h ∈ H. Define a product
operation on this set as follows:

(g1, h1)(g2, h2) = (g1g2, h1h2).

This operation makes the Cartesian product of G and H into a group, called the
direct product of G and H and denoted G×H.

It is a simple matter to check that this operation truly makes G × H into a
group. For example, the identity element of G×H is the pair (e1, e2), where e1 is
the identity for G, and e2 is the identity for H .

4. Homomorphisms and Isomorphisms

Definition 1.10. Let G and H be groups. A map φ : G → H is called a
homomorphism if φ(g1g2) = φ(g1)φ(g2) for all g1, g2 ∈ G. If in addition, φ is
one-to-one and onto, then φ is called an isomorphism. An isomorphism of a
group with itself is called an automorphism.

Proposition 1.11. Let G and H be groups, e1 the identity element of G, and
e2 the identity element of H. If φ : G → H is a homomorphism, then φ(e1) = e2,
and φ(g−1) = φ(g)−1 for all g ∈ G.

Proof. Let g be any element of G. Then φ(g) = φ(ge1) = φ(g)φ(e1). Mul-
tiplying on the left by φ(g)−1 gives e2 = φ(e1). Now consider φ(g−1). Since
φ(e1) = e2, we have e2 = φ(e1) = φ(gg−1) = φ(g)φ(g−1). In light of Prop. 1.4, we
conclude that φ(g−1) is the inverse of φ(g).

Definition 1.12. Let G and H be groups, φ : G → H a homomorphism, and
e2 the identity element of H. The kernel of φ is the set of all g ∈ G for which
φ(g) = e2.
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Proposition 1.13. Let G and H be groups, and φ : G→ H a homomorphism.
Then the kernel of φ is a subgroup of G.

Proof. Easy.

4.1. Examples. Given any two groups G and H , we have the trivial homo-
morphism from G to H : φ(g) = e for all g ∈ G. The kernel of this homomorphism
is all of G.

In any group G, the identity map (id(g) = g) is an automorphism of G, whose
kernel is just {e}.

Let G = H = Z, and define φ(n) = 2n. This is a homomorphism of Z to itself,
but not an automorphism. The kernel of this homomorphism is just {0}.

The determinant is a homomorphism of GL(n,R) to R∗. The kernel of this map
is SL (n,R).

Additional examples are given in Exercises 12 and 7.
If there exists an isomorphism from G to H , then G and H are said to be

isomorphic, and this relationship is denoted G ∼= H . (See Exercise 4.) Two groups
which are isomorphic should be thought of as being (for all practical purposes) the
same group.

5. Exercises

Recall the definitions of the groups GL(n; R), Sn, R∗, and Zn from Sect. 2, and
the definition of the group SL(n; R) from Sect. 3.

1. Show that the center of any group G is a subgroup G.
2. In (a)-(f), you are given a group G and a subset H of G. In each case,

determine whether H is a subgroup of G.
(a) G = Z, H = {odd integers}
(b) G = Z, H = {multiples of 3}
(c) G = GL(n; R), H = {A ∈ GL(n; R) |detA is an integer}
(d) G = SL(n; R), H = {A ∈ SL(n; R) |all the entries of A are integers}
Hint : recall Kramer’s rule for finding the inverse of a matrix.
(e)G = GL(n; R), H = {A ∈ GL(n; R) |all of the entries of A are rational}
(f) G = Z9, H = {0, 2, 4, 6, 8}

3. Verify the properties of inverses in Prop. 1.6.
4. Let G and H be groups. Suppose there exists an isomorphism φ from G to
H . Show that there exists an isomorphism from H to G.

5. Show that the set of positive real numbers is a subgroup of R∗. Show that
this group is isomorphic to the group R.

6. Show that the set of automorphisms of any group G is itself a group, under
the operation of composition. This group is the automorphism group of
G, Aut(G).

7. Given any group G, and any element g in G, define φg : G→ G by φg(h) =
ghg−1. Show that φg is an automorphism of G. Show that the map g → φg
is a homomorphism of G into Aut(G), and that the kernel of this map is the
center of G.

Note: An automorphism which can be expressed as φg for some g ∈ G
is called an inner automorphism; any automorphism of G which is not
equal to any φg is called an outer automorphism.
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8. Give an example of two 2×2 invertible real matrices which do not commute.
(This shows that GL(2,R) is not commutative.)

9. Show that in any group G, the center of G is a subgroup.
10. An element σ of the permutation group Sn can be written in two-row form,

σ =

(
1 2 · · · n
σ1 σ2 · · · σn

)

where σi denotes σ(i). Thus

σ =

(
1 2 3
2 3 1

)

is the element of S3 which sends 1 to 2, 2 to 3, and 3 to 1. When multiplying
(i.e., composing) two permutations, one performs the one on the right first,
and then the one on the left. (This is the usual convention for composing
functions.)

Compute (
1 2 3
2 1 3

)(
1 2 3
1 3 2

)

and (
1 2 3
1 3 2

)(
1 2 3
2 1 3

)

Conclude that S3 is not commutative.
11. Consider the set N= {0, 1, 2, · · · } of natural numbers, and the set F of all

functions of N to itself. Composition of functions defines a map of F × F
into F , which is associative. The identity (id(n) = n) has the property that
id ◦ f = f ◦ id = f , for all f in F . However, since we do not restrict to
functions which are one-to-one and onto, not every element of F has an
inverse. Thus F is not a group.

Give an example of two functions f, g in F such that f ◦ g = id, but
g ◦ f 6= id. (Compare with Prop. 1.4.)

12. Consider the groups Z and Zn. For each a in Z, define a mod n to be the
unique element b of {0, 1, · · ·n− 1} such that a can be written as a = kn+b,
with k an integer. Show that the map a→ a mod n is a homomorphism of
Z into Zn.

13. Let G be a group, and H a subgroup of G. H is called a normal subgroup
of G if given any g ∈ G, and h ∈ H , ghg−1 is in H .

Show that any subgroup of a commutative group is normal. Show that
in any group G, the trivial subgroups G and {e} are normal. Show that the
center of any group is a normal subgroup. Show that if φ is a homomorphism
from G to H , then the kernel of φ is a normal subgroup of G.

Show that SL(n; R) is a normal subgroup of GL(n; R).
Note: a group G with no normal subgroups other than G and {e} is

called simple.
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CHAPTER 2

Matrix Lie Groups

1. Definition of a Matrix Lie Group

Recall that the general linear group over the reals, denoted GL(n; R), is the
group of all n × n invertible matrices with real entries. We may similarly define
GL(n; C) to be the group of all n× n invertible matrices with complex entries. Of
course, GL(n; R) is contained in GL(n; C).

Definition 2.1. Let An be a sequence of complex matrices. We say that An
converges to a matrix A if each entry of An converges to the corresponding entry
of A, i.e., if (An)ij converges to Aij for all 1 ≤ i, j ≤ n.

Definition 2.2. A matrix Lie group is any subgroup H of GL(n; C) with the
following property: if An is any sequence of matrices in H, and An converges to
some matrix A, then either A ∈ H, or A is not invertible.

The condition on H amounts to saying that H is a closed subset of GL(n; C).
(This is not the same as saying that H is closed in the space of all matrices.) Thus
Definition 2.2 is equivalent to saying that a matrix Lie group is a closed subgroup
of GL(n; C).

The condition that H be a closed subgroup, as opposed to merely a subgroup,
should be regarded as a technicality, in that most of the interesting subgroups of
GL(n; C) have this property. (Almost all of the matrix Lie groupsH we will consider
have the stronger property that if An is any sequence of matrices in H , and An
converges to some matrix A, then A ∈ H .)

There is a topological structure on the set of n × n complex matrices which
goes with the above notion of convergence. This topological structure is defined by

identifying the space of n× n matrices with Cn
2

in the obvious way and using the

usual topological structure on Cn
2

.

1.1. Counterexamples. An example of a subgroup of GL(n; C) which is not
closed (and hence is not a matrix Lie group) is the set of all n × n invertible
matrices all of whose entries are real and rational. This is in fact a subgroup of
GL(n; C), but not a closed subgroup. That is, one can (easily) have a sequence
of invertible matrices with rational entries converging to an invertible matrix with
some irrational entries. (In fact, every real invertible matrix is the limit of some
sequence of invertible matrices with rational entries.)

Another example of a group of matrices which is not a matrix Lie group is the
following subgroup of GL(2,C). Let a be an irrational real number, and let

H =

{(
eit 0
0 eita

)
|t ∈ R

}

9
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Clearly, H is a subgroup of GL(2,C). Because a is irrational, the matrix −I is not
in H , since to make eit equal to −1, we must take t to be an odd integer multiple
of π, in which case ta cannot be an odd integer multiple of π. On the other hand,
by taking t = (2n+ 1)π for a suitably chosen integer n, we can make ta arbitrarily
close to an odd integer multiple of π. (It is left to the reader to verify this.) Hence
we can find a sequence of matrices in H which converges to −I, and so H is not a
matrix Lie group. See Exercise 1.

2. Examples of Matrix Lie Groups

Mastering the subject of Lie groups involves not only learning the general the-
ory, but also familiarizing oneself with examples. In this section, we introduce some
of the most important examples of (matrix) Lie groups.

2.1. The general linear groups GL(n; R) and GL(n; C). The general linear
groups (over R or C) are themselves matrix Lie groups. Of course, GL(n; C) is a
subgroup of itself. Furthermore, if An is a sequence of matrices in GL(n; C) and An
converges to A, then by the definition of GL(n; C), either A is in GL(n; C), or A is
not invertible.

Moreover, GL(n; R) is a subgroup of GL(n; C), and if An ∈ GL(n; R), and An
converges to A, then the entries of A are real. Thus either A is not invertible, or
A ∈ GL(n; R).

2.2. The special linear groups SL(n; R) and SL(n; C). The special linear
group (over R or C) is the group of n×n invertible matrices (with real or complex
entries) having determinant one. Both of these are subgroups of GL(n; C), as noted
in Chapter 1. Furthermore, if An is a sequence of matrices with determinant one,
and An converges to A, then A also has determinant one, because the determinant
is a continuous function. Thus SL(n; R) and SL(n; C) are matrix Lie groups.

2.3. The orthogonal and special orthogonal groups, O(n) and SO(n).
An n× n real matrix A is said to be orthogonal if the column vectors that make
up A are orthonormal, that is, if

n∑

i=1

AijAik = δjk

Equivalently, A is orthogonal if it preserves the inner product, namely, if 〈x, y〉 =
〈Ax,Ay〉 for all vectors x, y in Rn. ( Angled brackets denote the usual inner product
on Rn, 〈x, y〉 =

∑
i xiyi.) Still another equivalent definition is that A is orthogonal

if AtrA = I, i.e., if Atr = A−1. (Atr is the transpose of A, (Atr)ij = Aji.) See
Exercise 2.

Since detAtr = detA, we see that if A is orthogonal, then det(AtrA) =

(detA)2 = det I = 1. Hence detA = ±1, for all orthogonal matrices A.
This formula tells us, in particular, that every orthogonal matrix must be in-

vertible. But if A is an orthogonal matrix, then
〈
A−1x,A−1y

〉
=
〈
A
(
A−1x

)
, A
(
A−1x

)〉
= 〈x, y〉

Thus the inverse of an orthogonal matrix is orthogonal. Furthermore, the product
of two orthogonal matrices is orthogonal, since if A and B both preserve inner
products, then so does AB. Thus the set of orthogonal matrices forms a group.



2. EXAMPLES OF MATRIX LIE GROUPS 11

The set of all n× n real orthogonal matrices is the orthogonal group O(n),
and is a subgroup of GL(n; C). The limit of a sequence of orthogonal matrices is
orthogonal, because the relation AtrA = I is preserved under limits. Thus O(n) is
a matrix Lie group.

The set of n× n orthogonal matrices with determinant one is the special or-
thogonal group SO(n). Clearly this is a subgroup of O(n), and hence of GL(n; C).
Moreover, both orthogonality and the property of having determinant one are pre-
served under limits, and so SO(n) is a matrix Lie group. Since elements of O(n)
already have determinant ±1, SO(n) is “half” of O(n).

Geometrically, elements of O(n) are either rotations, or combinations of rota-
tions and reflections. The elements of SO(n) are just the rotations.

See also Exercise 6.

2.4. The unitary and special unitary groups, U(n) and SU(n). An n×n
complex matrix A is said to be unitary if the column vectors of A are orthonormal,
that is, if

n∑

i=1

AijAik = δjk

Equivalently, A is unitary if it preserves the inner product, namely, if 〈x, y〉 =
〈Ax,Ay〉 for all vectors x, y in Cn. (Angled brackets here denote the inner product
on Cn, 〈x, y〉 =

∑
i xiyi. We will adopt the convention of putting the complex

conjugate on the left.) Still another equivalent definition is that A is unitary if
A∗A = I, i.e., if A∗ = A−1. (A∗ is the adjoint of A, (A∗)ij = Aji.) See Exercise 3.

Since detA∗ = detA, we see that if A is unitary, then det (A∗A) = |detA|2 =
det I = 1. Hence |detA| = 1, for all unitary matrices A.

This in particular shows that every unitary matrix is invertible. The same
argument as for the orthogonal group shows that the set of unitary matrices forms
a group.

The set of all n × n unitary matrices is the unitary group U(n), and is a
subgroup of GL(n; C). The limit of unitary matrices is unitary, so U(n) is a matrix
Lie group. The set of unitary matrices with determinant one is the special unitary
group SU(n). It is easy to check that SU(n) is a matrix Lie group. Note that a
unitary matrix can have determinant eiθ for any θ, and so SU(n) is a smaller subset
of U(n) than SO(n) is of O(n). (Specifically, SO(n) has the same dimension as
O(n), whereas SU(n) has dimension one less than that of U(n).)

See also Exercise 8.

2.5. The complex orthogonal groups, O(n; C) and SO(n; C). Consider
the bilinear form ( ) on Cn defined by (x, y) =

∑
xiyi. This form is not an inner

product, because of the lack of a complex conjugate in the definition. The set of all
n×n complex matrices A which preserve this form, (i.e., such that (Ax,Ay) = (x, y)
for all x, y ∈ Cn) is the complex orthogonal group O(n; C), and is a subgroup
of GL(n; C). (The proof is the same as for O(n).) An n × n complex matrix A is
in O(n; C) if and only if AtrA = I. It is easy to show that O(n; C) is a matrix Lie
group, and that detA = ±1, for all A in O(n; C). Note that O(n; C) is not the
same as the unitary group U(n). The group SO(n; C) is defined to be the set of all
A in O(n; C) with detA = 1. Then SO(n; C) is also a matrix Lie group.
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2.6. The generalized orthogonal and Lorentz groups. Let n and k be
positive integers, and consider Rn+k. Define a symmetric bilinear form [ ]n+k on

Rn+k by the formula

[x, y]n,k = x1y1 + · · · + xnyn − xn+1yn+1 · · · − yn+kxn+k(2.1)

The set of (n+k)× (n+k) real matrices A which preserve this form (i.e., such that
[Ax,Ay]n,k = [x, y]n,k for all x, y ∈ Rn+k) is the generalized orthogonal group

O(n; k), and it is a subgroup of GL(n+ k; R) (Ex. 4). Since O(n; k) and O(k;n) are
essentially the same group, we restrict our attention to the case n ≥ k. It is not
hard to check that O(n; k) is a matrix Lie group.

If A is an (n+ k) × (n+ k) real matrix, let A(i) denote the ith column vector
of A, that is

A(i) =




A1,i
...

An+k,i




Then A is in O(n; k) if and only if the following conditions are satisfied:
[
A(i), A(j)

]
n,k

= 0 i 6= j[
A(i), A(i)

]
n,k

= 1 1 ≤ i ≤ n[
A(i), A(i)

]
n,k

= −1 n+ 1 ≤ i ≤ n+ k

(2.2)

Let g denote the (n + k) × (n + k) diagonal matrix with ones in the first n
diagonal entries, and minus ones in the last k diagonal entries. Then A is in O(n; k)
if and only if AtrgA = g (Ex. 4). Taking the determinant of this equation gives
(detA)2 det g = det g, or (detA)2 = 1. Thus for any A in O(n; k), detA = ±1.

The group SO(n; k) is defined to be the set of matrices in O(n; k) with detA = 1.
This is a subgroup of GL(n+ k; R), and is a matrix Lie group.

Of particular interest in physics is the Lorentz group O(3; 1). (Sometimes
the phrase Lorentz group is used more generally to refer to the group O(n; 1) for
any n ≥ 1.) See also Exercise 7.

2.7. The symplectic groups Sp(n; R), Sp(n; C), and Sp(n). The special
and general linear groups, the orthogonal and unitary groups, and the symplectic
groups (which will be defined momentarily) make up the classical groups. Of the
classical groups, the symplectic groups have the most confusing definition, partly
because there are three sets of them (Sp(n; R), Sp(n; C), and Sp(n)), and partly
because they involve skew-symmetric bilinear forms rather than the more familiar
symmetric bilinear forms. To further confuse matters, the notation for referring to
these groups is not consistent from author to author.

Consider the skew-symmetric bilinear form B on R2n defined as follows:

B [x, y] =

n∑

i=1

xiyn+i − xn+iyi(2.3)

The set of all 2n × 2n matrices A which preserve B (i.e., such that B [Ax,Ay] =
B [x, y] for all x, y ∈ R2n) is the real symplectic group Sp(n; R), and it is a
subgroup of GL(2n; R). It is not difficult to check that this is a matrix Lie group
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(Exercise 5). This group arises naturally in the study of classical mechanics. If J
is the 2n× 2n matrix

J =

(
0 I
−I 0

)

then B [x, y] = 〈x, Jy〉, and it is possible to check that a 2n×2n real matrix A is in
Sp(n; R) if and only if AtrJA = J . (See Exercise 5.) Taking the determinant of this

identity gives (detA)
2
detJ = detJ , or (detA)

2
= 1. This shows that detA = ±1,

for all A ∈ Sp(n; R). In fact, detA = 1 for all A ∈ Sp(n; R), although this is not
obvious.

One can define a bilinear form on Cn by the same formula (2.3). (This form is
bilinear, not Hermitian, and involves no complex conjugates.) The set of 2n× 2n
complex matrices which preserve this form is the complex symplectic group
Sp(n; C). A 2n × 2n complex matrix A is in Sp(n; C) if and only if AtrJA = J .
(Note: this condition involves Atr, not A∗.) This relation shows that detA = ±1,
for all A ∈ Sp(n; C). In fact detA = 1, for all A ∈ Sp(n; C).

Finally, we have the compact symplectic group Sp(n) defined as

Sp(n) = Sp (n; C) ∩ U(2n).

See also Exercise 9. For more information and a proof of the fact that detA = 1,
for all A ∈ Sp(n; C), see Miller, Sect. 9.4. What we call Sp (n; C) Miller calls Sp(n),
and what we call Sp(n), Miller calls USp(n).

2.8. The Heisenberg group H. The set of all 3 × 3 real matrices A of the
form

A =




1 a b
0 1 c
0 0 1


(2.4)

where a, b, and c are arbitrary real numbers, is the Heisenberg group. It is easy
to check that the product of two matrices of the form (2.4) is again of that form, and
clearly the identity matrix is of the form (2.4). Furthermore, direct computation
shows that if A is as in (2.4), then

A−1 =




1 −a ac− b
0 1 −c
0 0 1




Thus H is a subgroup of GL(3; R). Clearly the limit of matrices of the form (2.4)
is again of that form, and so H is a matrix Lie group.

It is not evident at the moment why this group should be called the Heisenberg
group. We shall see later that the Lie algebra of H gives a realization of the
Heisenberg commutation relations of quantum mechanics. (See especially Chapter
5, Exercise 10.)

See also Exercise 10.

2.9. The groups R∗, C∗, S1, R, and Rn. Several important groups which
are not naturally groups of matrices can (and will in these notes) be thought of as
such.

The group R∗ of non-zero real numbers under multiplication is isomorphic to
GL(1,R). Thus we will regard R∗ as a matrix Lie group. Similarly, the group C∗
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of non-zero complex numbers under multiplication is isomorphic to GL(1; C), and
the group S1 of complex numbers with absolute value one is isomorphic to U(1).

The group R under addition is isomorphic to GL(1; R)+ (1×1 real matrices with
positive determinant) via the map x → [ex]. The group Rn (with vector addition)
is isomorphic to the group of diagonal real matrices with positive diagonal entries,
via the map

(x1, · · · , xn) →




ex1 0
. . .

0 exn


 .

2.10. The Euclidean and Poincaré groups. The Euclidean group E(n)
is by definition the group of all one-to-one, onto, distance-preserving maps of Rn

to itself, that is, maps f : Rn → Rn such that d (f (x) , f (y)) = d (x, y) for all
x, y ∈ Rn. Here d is the usual distance on Rn, d (x, y) = |x− y| . Note that we
don’t assume anything about the structure of f besides the above properties. In
particular, f need not be linear. The orthogonal group O(n) is a subgroup of E(n),
and is the group of all linear distance-preserving maps of Rn to itself. The set of
translations of Rn (i.e., the set of maps of the form Tx(y) = x+y) is also a subgroup
of E(n).

Proposition 2.3. Every element T of E(n) can be written uniquely as an or-
thogonal linear transformation followed by a translation, that is, in the form

T = TxR

with x ∈ Rn, and R ∈ O(n).

We will not prove this here. The key step is to prove that every one-to-one,
onto, distance-preserving map of Rn to itself which fixes the origin must be linear.

Following Miller, we will write an element T = TxR of E(n) as a pair {x,R}.
Note that for y ∈ Rn,

{x,R} y = Ry + x

and that

{x1, R1}{x2, R2}y = R1(R2y + x2) + x1 = R1R2y + (x1 +R1x2)

Thus the product operation for E(n) is the following:

{x1, R1}{x2, R2} = {x1 +R1x2, R1R2}(2.5)

The inverse of an element of E(n) is given by

{x,R}−1 = {−R−1x,R−1}
Now, as already noted, E(n) is not a subgroup of GL(n; R), since translations

are not linear maps. However, E(n) is isomorphic to a subgroup of GL(n + 1; R),
via the map which associates to {x,R} ∈ E(n) the following matrix




x1

R
...
xn

0 · · · 0 1


(2.6)

This map is clearly one-to-one, and it is a simple computation to show that it is a
homomorphism. Thus E(n) is isomorphic to the group of all matrices of the form
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(2.6) (with R ∈ O(n)). The limit of things of the form (2.6) is again of that form,
and so we have expressed the Euclidean group E(n) as a matrix Lie group.

We similarly define the Poincaré group P(n; 1) to be the group of all transfor-
mations of Rn+1 of the form

T = TxA

with x ∈ Rn+1, A ∈ O(n; 1). This is the group of affine transformations of Rn+1

which preserve the Lorentz “distance” dL(x, y) = (x1 − y1)
2 + · · · + (xn − yn)

2 −
(xn+1 − yn+1)

2. (An affine transformation is one of the form x → Ax + b, where
A is a linear transformation and b is constant.) The group product is the obvious
analog of the product (2.5) for the Euclidean group.

The Poincaré group P(n; 1) is isomorphic to the group of (n + 2) × (n + 2)
matrices of the form




x1

A
...

xn+1

0 · · · 0 1


(2.7)

with A ∈ O(n; 1). The set of matrices of the form (2.7) is a matrix Lie group.

3. Compactness

Definition 2.4. A matrix Lie group G is said to be compact if the following
two conditions are satisfied:

1. If An is any sequence of matrices in G, and An converges to a matrix A,
then A is in G.

2. There exists a constant C such that for all A ∈ G, |Aij | ≤ C for all 1 ≤
i, j ≤ n.

This is not the usual topological definition of compactness. However, the set

of all n× n complex matrices can be thought of as Cn
2

. The above definition says

that G is compact if it is a closed, bounded subset of Cn
2

. It is a standard theorem
from elementary analysis that a subset of Cm is compact (in the usual sense that
every open cover has a finite subcover) if and only if it is closed and bounded.

All of our examples of matrix Lie groups except GL(n; R) and GL(n; C) have
property (1). Thus it is the boundedness condition (2) that is most important.

The property of compactness has very important implications. For exam-
ple, if G is compact, then every irreducible unitary representation of G is finite-
dimensional.

3.1. Examples of compact groups. The groups O(n) and SO(n) are com-
pact. Property (1) is satisfied because the limit of orthogonal matrices is orthogonal
and the limit of matrices with determinant one has determinant one. Property (2)
is satisfied because if A is orthogonal, then the column vectors of A have norm one,
and hence |Aij | ≤ 1, for all 1 ≤ i, j ≤ n. A similar argument shows that U(n),
SU(n), and Sp(n) are compact. (This includes the unit circle, S1 ∼= U(1).)
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3.2. Examples of non-compact groups. All of the other examples given
of matrix Lie groups are non-compact. GL(n; R) and GL(n; C) violate property (1),
since a limit of invertible matrices may be non-invertible. SL (n; R) and SL (n; C)
violate (2), except in the trivial case n = 1, since

An =




n
1
n

1
. . .

1




has determinant one, no matter how big n is.
The following groups also violate (2), and hence are non-compact: O(n; C) and

SO(n; C); O(n; k) and SO(n; k) (n ≥ 1, k ≥ 1); the Heisenberg group H ; Sp (n; R)
and Sp (n; C); E(n) and P(n; 1); R and Rn; R∗ and C∗. It is left to the reader to
provide examples to show that this is the case.

4. Connectedness

Definition 2.5. A matrix Lie group G is said to be connected if given any
two matrices A and B in G, there exists a continuous path A(t), a ≤ t ≤ b, lying
in G with A(a) = A, and A(b) = B.

This property is what is called path-connected in topology, which is not (in
general) the same as connected. However, it is a fact (not particularly obvious at
the moment) that a matrix Lie group is connected if and only if it is path-connected.
So in a slight abuse of terminology we shall continue to refer to the above property
as connectedness. (See Section 7.)

A matrix Lie group G which is not connected can be decomposed (uniquely)
as a union of several pieces, called components, such that two elements of the
same component can be joined by a continuous path, but two elements of different
components cannot.

Proposition 2.6. If G is a matrix Lie group, then the component of G con-
taining the identity is a subgroup of G.

Proof. Saying thatA andB are both in the component containing the identity
means that there exist continuous paths A(t) and B(t) with A(0) = B(0) = I,
A(1) = A, and B(1) = B. But then A(t)B(t) is a continuous path starting at I and
ending at AB. Thus the product of two elements of the identity component is again
in the identity component. Furthermore, A(t)−1 is a continuous path starting at I
and ending at A−1, and so the inverse of any element of the identity component is
again in the identity component. Thus the identity component is a subgroup.

Proposition 2.7. The group GL(n; C) is connected for all n ≥ 1.

Proof. Consider first the case n = 1. A 1 × 1 invertible complex matrix A is
of the form A = [λ] with λ ∈ C∗, the set of non-zero complex numbers. But given
any two non-zero complex numbers, we can easily find a continuous path which
connects them and does not pass through zero.

For the case n ≥ 1, we use the Jordan canonical form. Every n × n complex
matrix A can be written as

A = CBC−1
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where B is the Jordan canonical form. The only property of B we will need is that
B is upper-triangular:

B =




λ1 ∗
. . .

0 λn




If A is invertible, then all the λi’s must be non-zero, since detA = detB = λ1 · · ·λn.
Let B(t) be obtained by multiplying the part of B above the diagonal by (1−t),

for 0 ≤ t ≤ 1, and let A(t) = CB(t)C−1. Then A(t) is a continuous path which
starts at A and ends at CDC−1, where D is the diagonal matrix

D =




λ1 0
. . .

0 λn




This path lies in GL(n; C) since detA(t) = λ1 · · ·λn for all t.
But now, as in the case n = 1, we can define λi(t) which connects each λi to 1

in C∗, as t goes from 1 to 2. Then we can define

A(t) = C




λ1(t) 0
. . .

0 λn(t)


C−1

This is a continuous path which starts at CDC−1 when t = 1, and ends at I
(= CIC−1) when t = 2. Since the λi(t)’s are always non-zero, A(t) lies in GL(n; C).

We see, then, that every matrix A in GL(n; C) can be connected to the identity
by a continuous path lying in GL(n; C). Thus if A and B are two matrices in
GL(n; C), they can be connected by connecting each of them to the identity.

Proposition 2.8. The group SL (n; C) is connected for all n ≥ 1.

Proof. The proof is almost the same as for GL(n; C), except that we must
be careful to preserve the condition detA = 1. Let A be an arbitrary element of
SL (n; C). The case n = 1 is trivial, so we assume n ≥ 2. We can define A(t) as above
for 0 ≤ t ≤ 1, with A(0) = A, and A(1) = CDC−1, since detA(t) = detA = 1. Now

define λi(t) as before for 1 ≤ i ≤ n− 1, and define λn(t) to be [λ1(t) · · ·λn−1(t)]
−1

.
(Note that since λ1 · · ·λn = 1, λn(0) = λn.) This allows us to connect A to the
identity while staying within SL (n; C).

Proposition 2.9. The groups U(n) and SU(n) are connected, for all n ≥ 1.

Proof. By a standard result of linear algebra, every unitary matrix has an
orthonormal basis of eigenvectors, with eigenvalues of the form eiθ. It follows that
every unitary matrix U can be written as

U = U1




eiθ1 0
. . .

0 eiθn


U−1

1(2.8)
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with U1 unitary and θi ∈ R. Conversely, as is easily checked, every matrix of the
form (2.8) is unitary. Now define

U(t) = U1




ei(1−t)θ1 0
. . .

0 ei(1−t)θn


U−1

1

As t ranges from 0 to 1, this defines a continuous path in U(n) joining U to I. This
shows that U(n) is connected.

A slight modification of this argument, as in the proof of Proposition 2.8, shows
that SU(n) is connected.

Proposition 2.10. The group GL(n; R) is not connected, but has two compo-
nents. These are GL(n; R)+, the set of n×n real matrices with positive determinant,
and GL(n; R)−, the set of n× n real matrices with negative determinant.

Proof. GL(n; R) cannot be connected, for if detA > 0 and detB < 0, then any
continuous path connectingA toB would have to include a matrix with determinant
zero, and hence pass outside of GL(n; R).

The proof that GL(n; R)+ is connected is given in Exercise 14. Once GL(n; R)+

is known to be connected, it is not difficult to see that GL(n; R)− is also connected.
For let C be any matrix with negative determinant, and take A,B in GL(n; R)−.
Then C−1A and C−1B are in GL(n; R)+, and can be joined by a continuous path
D(t) in GL(n; R)+. But then CD(t) is a continuous path joining A and B in
GL(n; R)−.

The following table lists some matrix Lie groups, indicates whether or not the
group is connected, and gives the number of components.

Group Connected? Components
GL(n; C) yes 1
SL (n; C) yes 1
GL(n; R) no 2
SL (n; R) yes 1

O(n) no 2
SO(n) yes 1
U(n) yes 1
SU(n) yes 1
O(n; 1) no 4
SO(n; 1) no 2

Heisenberg yes 1
E (n) no 2

P(n; 1) no 4

Proofs of some of these results are given in Exercises 7, 11, 13, and 14. (The
connectedness of the Heisenberg group is immediate.)

5. Simple-connectedness

Definition 2.11. A connected matrix Lie group G is said to be simply con-

nected if every loop in G can be shrunk continuously to a point in G.
More precisely, G is simply connected if given any continuous path A(t), 0 ≤

t ≤ 1, lying in G with A(0) = A(1), there exists a continuous function A(s, t),
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0 ≤ s, t ≤ 1, taking values in G with the following properties: 1) A(s, 0) = A(s, 1)
for all s, 2) A(0, t) = A(t), and 3) A(1, t) = A(1, 0) for all t.

You should think of A(t) as a loop, and A(s, t) as a parameterized family of
loops which shrinks A(t) to a point. Condition 1) says that for each value of the
parameter s, we have a loop; condition 2) says that when s = 0 the loop is the
specified loop A(t); and condition 3) says that when s = 1 our loop is a point.

It is customary to speak of simple-connectedness only for connected matrix Lie
groups, even though the definition makes sense for disconnected groups.

Proposition 2.12. The group SU(2) is simply connected.

Proof. Exercise 8 shows that SU(2) may be thought of (topologically) as the
three-dimensional sphere S3 sitting inside R4. It is well-known that S3 is simply
connected.

The condition of simple-connectedness is extremely important. One of our most
important theorems will be that if G is simply connected, then there is a natural
one-to-one correspondence between the representations ofG and the representations
of its Lie algebra.

Without proof, we give the following table.

Group Simply connected?
GL(n; C) no
SL (n; C) yes
GL(n; R) no
SL (n; R) no
SO(n) no
U(n) no
SU(n) yes

SO(1; 1) yes
SO(n; 1) (n ≥ 2) no

Heisenberg yes

6. Homomorphisms and Isomorphisms

Definition 2.13. Let G and H be matrix Lie groups. A map φ from G to H
is called a Lie group homomorphism if 1) φ is a group homomorphism and 2)
φ is continuous. If in addition, φ is one-to-one and onto, and the inverse map φ−1

is continuous, then φ is called a Lie group isomorphism.

The condition that φ be continuous should be regarded as a technicality, in
that it is very difficult to give an example of a group homomorphism between two
matrix Lie groups which is not continuous. In fact, if G = R and H = C∗, then
any group homomorphism from G to H which is even measurable (a very weak
condition) must be continuous. (See W. Rudin, Real and Complex Analysis, Chap.
9, Ex. 17.)

If G and H are matrix Lie groups, and there exists a Lie group isomorphism
from G to H , then G and H are said to be isomorphic, and we write G ∼= H . Two
matrix Lie groups which are isomorphic should be thought of as being essentially
the same group. (Note that by definition, the inverse of Lie group isomorphism is
continuous, and so also a Lie group isomorphism.)
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6.1. Example: SU(2) and SO(3). A very important topic for us will be the
relationship between the groups SU(2) and SO(3). This example is designed to
show that SU(2) and SO(3) are almost (but not quite!) isomorphic. Specifically,
there exists a Lie group homomorphism φ which maps SU(2) onto SO(3), and which
is two-to-one. (See Miller 7.1 and Bröcker, Chap. I, 6.18.)

Consider the space V of all 2 × 2 complex matrices which are self-adjoint and
have trace zero. This is a three-dimensional real vector space with the following
basis

A1 =

(
0 1
1 0

)
; A2 =

(
0 i
−i 0

)
; A3 =

(
1 0
0 −1

)

We may define an inner product on V by the formula

〈A,B〉 =
1

2
trace(AB)

(Exercise: check that this is an inner product.)
Direct computation shows that {A1, A2, A3} is an orthonormal basis for V .

Having chosen an orthonormal basis for V , we can identify V with R3.
Now, if U is an element of SU(2), and A is an element of V , then it is easy to

see that UAU−1 is in V . Thus for each U ∈ SU(2), we can define a linear map φU
of V to itself by the formula

φU (A) = UAU−1

(This definition would work for U ∈ U(2), but we choose to restrict our attention
to SU(2).) Moreover, given U ∈ SU(2), and A,B ∈ V , note that

〈φU (A), φU (B)〉 =
1

2
trace(UAU−1UBU−1) =

1

2
trace(AB) = 〈A,B〉

Thus φU is an orthogonal transformation of V ∼= R3, which we can think of as an
element of O(3).

We see, then, that the map U → φU is a map of SU(2) into O(3). It is very
easy to check that this map is a homomorphism (i.e., φU1U2 = φU1φU2), and that
it is continuous. Thus U → φU is a Lie group homomorphism of SU(2) into O(3).

Recall that every element of O(3) has determinant ±1. Since SU(2) is connected
(Exercise 8), and the map U → φU is continuous, φU must actually map into SO(3).
Thus U → φU is a Lie group homomorphism of SU(2) into SO(3).

The map U → φU is not one-to-one, since for any U ∈ SU(2), φU = φ−U .
(Observe that if U is in SU(2), then so is −U .) It is possible to show that φU is a
two-to-one map of SU(2) onto SO(3). (See Miller.)

7. Lie Groups

A Lie group is something which is simultaneously a group and a differentiable
manifold (see Definition 2.14). As the terminology suggests, every matrix Lie group
is a Lie group, although this requires proof (Theorem 2.15). I have decided to
restrict attention to matrix Lie groups, except in emergencies, for three reasons.
First, this makes the course accessible to students who are not familiar with the
theory of differentiable manifolds. Second, this makes the definition of the Lie
algebra and of the exponential mapping far more comprehensible. Third, all of the
important examples of Lie groups are (or can easily be represented as) matrix Lie
groups.
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Alas, there is a price to pay for this simplification. Certain important topics
(notably, the universal cover) are considerably complicated by restricting to the
matrix case. Nevertheless, I feel that the advantages outweigh the disadvantages in
an introductory course such as this.

Definition 2.14. A Lie group is a differentiable manifold G which is also a
group, and such that the group product

G×G→ G

and the inverse map g → g−1 are differentiable.

For the reader who is not familiar with the notion of a differentiable manifold,
here is a brief recap. (I will consider only manifolds embedded in some Rn, which is a
harmless assumption.) A subsetM of Rn is called a k-dimensional differentiable
manifold if given any m0 ∈ M , there exists a smooth (non-linear) coordinate
system (x1, · · ·xn) defined in a neighborhood U of m0 such that

M ∩ U =
{
m ∈ U

∣∣xk+1(m) = c1, · · · , xn(m) = cn−k
}

This says that locally, after a suitable change of variables, M looks like the k-
dimensional hyperplane in Rn obtained by setting all but the first k coordinates
equal to constants.

For example, S1 ⊂ R2 is a one-dimensional differentiable manifold because in
the usual polar coordinates (θ, r), S1 is the set r = 1. Of course, polar coordinates
are not globally defined, because θ is undefined at the origin, and because θ is not
“single-valued.” But given any point m0 in S1, we can define polar coordinates in
a neighborhood U of m0, and then S1 ∩ U will be the set r = 1.

Note that while we assume that our differentiable manifolds are embedded in
some Rn (a harmless assumption), we are not saying that a Lie group has to be

embedded in Rn
2

, or that the group operation has to have anything to do with
matrix multiplication. A Lie group is simply a subset G of some Rn which is a
differentiable manifold, together with any map from G × G into G which makes
G into a group (and such that the group operations are smooth). It is remarkable
that almost (but not quite!) every Lie group is isomorphic to a matrix Lie group.

Note also that it is far from obvious that a matrix Lie group must be a Lie
group, since our definition of a matrix Lie group G does not say anything about G
being a manifold. It is not too difficult to verify that all of our examples of matrix
Lie groups are Lie groups, but in fact we have the following result which makes
such verifications unnecessary:

Theorem 2.15. Every matrix Lie group is a Lie group.

Although I will not prove this result, I want to discuss what would be involved.
Let us consider first the group GL(n; R). The space of all n × n real matrices can

be thought of as Rn
2

. Since GL(n; R) is the set of all matrices A with detA 6= 0,

GL(n; R) is an open subset of Rn
2

. (That is, given an invertible matrix A, there
is a neighborhood U of A such that every matrix B ∈ U is also invertible.) Thus
GL(n; R) is an n2-dimensional smooth manifold. Furthermore, the matrix product
AB is clearly a smooth (even polynomial) function of the entries of A and B, and
(in light of Kramer’s rule) A−1 is a smooth function of the entries of A. Thus
GL(n; R) is a Lie group.
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Similarly, if we think of the space of n × n complex matrices as Cn
2 ∼= R2n2

,
then the same argument shows that GL(n; C) is a Lie group.

Thus, to prove that every matrix Lie group is a Lie group, it suffices to show
that a closed subgroup of a Lie group is a Lie group. This is proved in Bröcker and
tom Dieck, Chapter I, Theorem 3.11. The proof is not too difficult, but it requires
the exponential mapping, which we have not yet introduced. (See Chapter 3.)

It is customary to call a map φ between two Lie groups a Lie group homomor-
phism if φ is a group homomorphism and φ is smooth, whereas we have (in Definition
2.13) required only that φ be continuous. However, the following Proposition shows
that our definition is equivalent to the more standard one.

Proposition 2.16. Let G and H be Lie groups, and φ a group homomorphism
from G to H. Then if φ is continuous it is also smooth.

Thus group homomorphisms from G to H come in only two varieties: the very
bad ones (discontinuous), and the very good ones (smooth). There simply aren’t
any intermediate ones. (See, for example, Exercise 16.) For proof, see Bröcker and
tom Dieck, Chapter I, Proposition 3.12.

In light of Theorem 2.15, every matrix Lie group is a (smooth) manifold. As
such, a matrix Lie group is automatically locally path connected. It follows that
a matrix Lie group is path connected if and only if it is connected. (See Remarks
following Definition 2.5.)

8. Exercises

1. Let a be an irrational real number. Show that the set of numbers of the
form e2πina, n ∈ Z, is dense in S1. Now let G be the following subgroup of
GL(2; C):

G =

{(
eit 0
0 eiat

)
|t ∈ R

}

Show that

G =

{(
eit 0
0 eis

)
|t, s ∈ R

}
,

where G denotes the closure of the set G inside the space of 2 × 2 matrices.
Note: The group G can be thought of as the torus S1 × S1, which in

turn can be thought of as [0, 2π] × [0, 2π], with the ends of the intervals
identified. The set G ⊂ [0, 2π] × [0, 2π] is called an irrational line. Draw
a picture of this set and you should see why G is dense in [0, 2π] × [0, 2π].

2. Orthogonal groups. Let 〈 〉 denote the standard inner product on Rn, 〈x, y〉 =∑
i xiyi. Show that a matrix A preserves inner products if and only if the

column vectors of A are orthonormal.
Show that for any n× n real matrix B,

〈Bx, y〉 =
〈
x,Btry

〉

where (Btr)ij = Bji. Using this fact, show that a matrix A preserves inner

products if and only if AtrA = I.
Note: a similar analysis applies to the complex orthogonal groups O(n; C)

and SO(n; C).
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3. Unitary groups. Let 〈 〉 denote the standard inner product on Cn, 〈x, y〉 =∑
i xiyi. Following Exercise 2, show that A∗A = I if and only if 〈Ax,Ay〉 =

〈x, y〉 for all x, y ∈ Cn. ((A∗)ij = Aji.)

4. Generalized orthogonal groups. Let [x, y]n,k be the symmetric bilinear form

on Rn+k defined in (2.1). Let g be the (n + k) × (n + k) diagonal matrix
with first n diagonal entries equal to one, and last k diagonal entries equal
to minus one:

g =

(
In 0
0 −Ik

)

Show that for all x, y ∈ Rn+k,

[x, y]n,k = 〈x, gy〉

Show that a (n + k) × (n + k) real matrix A is in O(n; k) if and only if
AtrgA = g. Show that O(n; k) and SO(n; k) are subgroups of GL(n+ k; R),
and are matrix Lie groups.

5. Symplectic groups. Let B [x, y] be the skew-symmetric bilinear form on R2n

given by B [x, y] =
∑n

i=1 xiyn+i − xn+iyi. Let J be the 2n× 2n matrix

J =

(
0 I
−I 0

)

Show that for all x, y ∈ R2n

B [x, y] = 〈x, Jy〉
Show that a 2n×2n matrix A is in Sp (n; R) if and only if AtrJA = J . Show
that Sp (n; R) is a subgroup of GL(2n; R), and a matrix Lie group.

Note: a similar analysis applies to Sp (n; C).
6. The groups O(2) and SO(2). Show that the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)

is in SO(2), and that
(

cos θ − sin θ
sin θ cos θ

)(
cosφ − sinφ
sinφ cosφ

)
=

(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)

Show that every element A of O(2) is of one of the two forms

A =

(
cos θ − sin θ
sin θ cos θ

)

A =

(
cos θ sin θ
sin θ − cos θ

)

(If A is of the first form, then detA = 1; if A is of the second form, then
detA = −1.)

Hint : Recall that for A =

(
a b
c d

)
to be in O(2), the column vectors

(
a
c

)
and

(
b
d

)
must be unit vectors, and must be orthogonal.
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7. The groups O(1; 1) and SO(1; 1). Show that

A =

(
cosh t sinh t
sinh t cosh t

)

is in SO(1; 1), and that

(
cosh t sinh t
sinh t cosh t

)(
cosh s sinh s
sinh s cosh s

)
=

(
cosh(t+ s) sinh(t+ s)
sinh(t+ s) cosh(t+ s)

)

Show that every element of O(1; 1) can be written in one of the four forms

(
cosh t sinh t
sinh t cosh t

)

(
− cosh t sinh t
sinh t − cosh t

)

(
cosh t − sinh t
sinh t − cosh t

)

(
− cosh t − sinh t
sinh t cosh t

)

(Since cosh t is always positive, there is no overlap among the four cases.
Matrices of the first two forms have determinant one; matrices of the last
two forms have determinant minus one.)

Hint : For

(
a b
c d

)
to be in O(1; 1), we must have a2−c2 = 1, b2−d2 =

−1, and ab− cd = 0. The set of points (a, c) in the plane with a2 − c2 = 1

(i.e., a = ±
√

1 + c2 ) is a hyperbola.
8. The group SU(2). Show that if α, β are arbitrary complex numbers satisfying

|α|2 + |β|2 = 1, then the matrix

A =

(
α −β
β α

)
(2.9)

is in SU(2). Show that every A ∈ SU(2) can be expressed in the form (2.9)

for a unique pair (α, β) satisfying |α|2 + |β|2 = 1. (Thus SU(2) can be
thought of as the three-dimensional sphere S3 sitting inside C2 = R4. In
particular, this shows that SU(2) is connected and simply connected.)

9. The groups Sp (1; R), Sp (1;C), and Sp (1). Show that Sp (1; R) = SL (2; R),
Sp (1;C) = SL (2;C), and Sp(1) = SU(2).

10. The Heisenberg group. Determine the center Z(H) of the Heisenberg group
H . Show that the quotient group H/Z(H) is abelian.

11. Connectedness of SO(n). Show that SO(n) is connected, following the out-
line below.

For the case n = 1, there is not much to show, since a 1× 1 matrix with
determinant one must be [1]. Assume, then, that n ≥ 2. Let e1 denote the
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vector

e1 =




1
0
...
0




in Rn. Given any unit vector v ∈ Rn, show that there exists a continuous
path R(t) in SO(n) with R(0) = I and R(1)v = e1. (Thus any unit vector
can be “continuously rotated” to e1.)

Now show that any element R of SO(n) can be connected to an element
of SO(n− 1), and proceed by induction.

12. The polar decomposition of SL (n; R). Show that every elementA of SL (n; R)
can be written uniquely in the form A = RH , where R is in SO(n), and H
is a symmetric, positive-definite matrix with determinant one. (That is,
Htr = H , and 〈x,Hx〉 ≥ 0 for all x ∈ Rn).

Hint : If A could be written in this form, then we would have

AtrA = HtrRtrRH = HR−1RH = H2

Thus H would have to be the unique positive-definite symmetric square root
of AtrA.

Note: A similar argument gives polar decompositions for GL(n; R),
SL (n; C), and GL(n; C). For example, every element A of SL (n; C) can
be written uniquely as A = UH , with U in SU(n), and H a self-adjoint
positive-definite matrix with determinant one.

13. The connectedness of SL (n; R). Using the polar decomposition of SL (n; R)
(Ex. 12) and the connectedness of SO(n) (Ex. 11), show that SL (n; R) is
connected.

Hint : Recall that if H is a real, symmetric matrix, then there exists a
real orthogonal matrix R1 such that H = R1DR

−1
1 , where D is diagonal.

14. The connectedness of GL(n; R)+. Show that GL(n; R)+ is connected.
15. Show that the set of translations is a normal subgroup of the Euclidean

group, and also of the Poincaré group. Show that (E(n)/translations) ∼=
O(n).

16. Harder. Show that every Lie group homomorphism φ from R to S1 is of the
form φ(x) = eiax for some a ∈ R. In particular, every such homomorphism
is smooth.



26 2. MATRIX LIE GROUPS



CHAPTER 3

Lie Algebras and the Exponential Mapping

1. The Matrix Exponential

The exponential of a matrix plays a crucial role in the theory of Lie groups.
The exponential enters into the definition of the Lie algebra of a matrix Lie group
(Section 5 below), and is the mechanism for passing information from the Lie alge-
bra to the Lie group. Since many computations are done much more easily at the
level of the Lie algebra, the exponential is indispensable.

Let X be an n× n real or complex matrix. We wish to define the exponential
of X , eX or expX , by the usual power series

eX =

∞∑

m=0

Xm

m!
.(3.1)

We will follow the convention of using letters such as X and Y for the variable in
the matrix exponential.

Proposition 3.1. For any n × n real or complex matrix X, the series (3.1)
converges. The matrix exponential eX is a continuous function of X.

Before proving this, let us review some elementary analysis. Recall that the
norm of a vector x in Cn is defined to be

‖x‖ =
√
〈x, x〉 =

√∑
|xi|2.

This norm satisfies the triangle inequality

‖x+ y‖ ≤ ‖x‖ + ‖y‖ .

The norm of a matrix A is defined to be

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ .

Equivalently, ‖A‖ is the smallest number λ such that ‖Ax‖ ≤ λ ‖x‖ for all x ∈ Cn.
It is not hard to see that for any n× n matrix A, ‖A‖ is finite. Furthermore,

it is easy to see that for any matrices A,B

‖AB‖ ≤ ‖A‖ ‖B‖(3.2)

‖A+B‖ ≤ ‖A‖ + ‖B‖ .(3.3)

It is also easy to see that a sequence of matrices Am converges to a matrix A if and
only if ‖Am −A‖ → 0. (Compare this with Definition 2.1 of Chapter 2.)

A sequence of matrices Am is said to be a Cauchy sequence if ‖Am −Al‖ → 0

asm, l → ∞. Thinking of the space of matrices as Rn
2

or Cn
2

, and using a standard
result from analysis, we have the following:

27
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Proposition 3.2. If Am is a sequence of n× n real or complex matrices, and
Am is a Cauchy sequence, then there exists a unique matrix A such that Am con-
verges to A.

That is, every Cauchy sequence converges.
Now, consider an infinite series whose terms are matrices:

A0 +A1 +A2 + · · · .(3.4)

If
∞∑

m=0

‖Am‖ <∞

then the series (3.4) is said to converge absolutely. If a series converges abso-
lutely, then it is not hard to show that the partial sums of the series form a Cauchy
sequence, and hence by Proposition 3.2, the series converges. That is, any series
which converges absolutely also converges. (The converse is not true; a series of
matrices can converge without converging absolutely.)

Proof. In light of (3.2), we see that

‖Xm‖ ≤ ‖X‖m ,

and hence
∞∑

m=0

∥∥∥∥
Xm

m!

∥∥∥∥ ≤
∞∑

m=0

‖X‖m
m!

= e‖X‖ <∞.

Thus the series (3.1) converges absolutely, and so it converges.
To show continuity, note that since Xm is a continuous function of X , the

partial sums of (3.1) are continuous. But it is easy to see that (3.1) converges
uniformly on each set of the form {‖X‖ ≤ R}, and so the sum is again continuous.

Proposition 3.3. Let X,Y be arbitrary n× n matrices. Then

1. e0 = I.
2. eX is invertible, and

(
eX
)−1

= e−X .

3. e(α+β)X = eαXeβX for all real or complex numbers α, β.
4. If XY = Y X, then eX+Y = eXeY = eY eX .

5. If C is invertible, then eCXC
−1

= CeXC−1.
6.
∥∥eX

∥∥ ≤ e‖X‖.

It is not true in general that eX+Y = eXeY , although by 4) it is true if X and
Y commute. This is a crucial point, which we will consider in detail later. (See
the Lie product formula in Section 4 and the Baker-Campbell-Hausdorff formula in
Chapter 4.)

Proof. Point 1) is obvious. Points 2) and 3) are special cases of point 4). To
verify point 4), we simply multiply power series term by term. (It is left to the
reader to verify that this is legal.) Thus

eXeY =

(
I +X +

X2

2!
+ · · ·

)(
I + Y +

Y 2

2!
+ · · ·

)
.
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Multiplying this out and collecting terms where the power of X plus the power of
Y equals m, we get

eXeY =
∞∑

m=0

m∑

k=0

Xk

k!

Y m−k

(m− k)!
=

∞∑

m=0

1

m!

m∑

k=0

m!

k!(m− k)!
XkY m−k.(3.5)

Now because (and only because) X and Y commute,

(X + Y )n =
m∑

k=0

m!

k!(m− k)!
XkY m−k,

and so (3.5) becomes

eXeY =

∞∑

m=0

1

m!
(X + Y )m = eX+Y .

To prove 5), simply note that
(
CXC−1

)m
= CXmC−1

and so the two sides of 5) are the same term by term.
Point 6) is evident from the proof of Proposition 3.1.

Proposition 3.4. Let X be a n× n complex matrix, and view the space of all

n× n complex matrices as Cn
2

. Then etX is a smooth curve in Cn
2

, and

d

dt
etX = XetX = etXX.

In particular,

d

dt

∣∣∣∣
t=0

etX = X.

Proof. Differentiate the power series for etX term-by-term. (You might worry
whether this is valid, but you shouldn’t. For each i, j,

(
etX
)
ij

is given by a con-

vergent power series in t, and it is a standard theorem that you can differentiate
power series term-by-term.)

2. Computing the Exponential of a Matrix

2.1. Case 1: X is diagonalizable. Suppose that X is a n×n real or complex
matrix, and that X is diagonalizable over C, that is, that there exists an invertible
complex matrix C such that X = CDC−1, with

D =




λ1 0
. . .

0 λn


 .

Observe that eD is the diagonal matrix with eigenvalues eλ1 , · · · , eλn , and so in
light of Proposition 3.3, we have

eX = C




eλ1 0
. . .

0 eλn


C−1.
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Thus if you can explicitly diagonalize X , you can explicitly compute eX . Note that
if X is real, then although C may be complex and the λi’s may be complex, eX

must come out to be real, since each term in the series (3.1) is real.
For example, take

X =

(
0 −a
a 0

)
.

Then the eigenvectors of X are

(
1
i

)
and

(
i
1

)
, with eigenvalues −ia and ia,

respectively. Thus the invertible matrix

C =

(
1 i
i 1

)

maps the basis vectors

(
1
0

)
and

(
0
1

)
to the eigenvectors of X , and so (check)

C−1XC is a diagonal matrix D. Thus X = CDC−1:

eX =

(
1 i
i 1

)(
e−ia 0

0 eia

)(
1/2 −i/2
−i/2 1/2

)

=

(
cos a − sina
sin a cos a

)
.

Note that explicitly if X (and hence a) is real, then eX is real.

2.2. Case 2: X is nilpotent. An n × n matrix X is said to be nilpotent
if Xm = 0 for some positive integer m. Of course, if Xm = 0, then X l = 0 for all
l > m. In this case the series (3.1) which defines eX terminates after the first m
terms, and so can be computed explicitly.

For example, compute etX , where

X =




0 a b
0 0 c
0 0 0


 .

Note that

X2 =




0 0 ac
0 0 0
0 0 0




and that X3 = 0. Thus

etX =




1 ta tb+
1

2
t2ac

0 1 tc
0 0 1


 .

2.3. Case 3: X arbitrary. A general matrix X may be neither nilpotent nor
diagonalizable. However, it follows from the Jordan canonical form that X can be
written (Exercise 2) in the form X = S + N with S diagonalizable, N nilpotent,
and SN = NS. (See Exercise 2.) Then, since N and S commute,

eX = eS+N = eSeN

and eS and eN can be computed as above.
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For example, take

X =

(
a b
0 a

)
.

Then

X =

(
a 0
0 a

)
+

(
0 b
0 0

)
.

The two terms clearly commute (since the first one is a multiple of the identity),
and so

eX =

(
ea 0
0 ea

)(
1 b
0 1

)
=

(
ea eab
0 ea

)
.

3. The Matrix Logarithm

We wish to define a matrix logarithm, which should be an inverse function to
the matrix exponential. Defining a logarithm for matrices should be at least as
difficult as defining a logarithm for complex numbers, and so we cannot hope to
define the matrix logarithm for all matrices, or even for all invertible matrices. We
will content ourselves with defining the logarithm in a neighborhood of the identity
matrix.

The simplest way to define the matrix logarithm is by a power series. We recall
the situation for complex numbers:

Lemma 3.5. The function

log z =

∞∑

m=1

(−1)m+1 (z − 1)m

m

is defined and analytic in a circle of radius one about z = 1.
For all z with |z − 1| < 1,

elog z = z.

For all u with |u| < log 2, |eu − 1| < 1 and

log eu = u.

Proof. The usual logarithm for real, positive numbers satisfies

d

dx
log(1 − x) =

−1

1 − x
= −

(
1 + x+ x2 + · · ·

)

for |x| < 1. Integrating term-by-term and noting that log 1 = 0 gives

log(1 − x) = −
(
x+ x2

2 + x3

3 + · · ·
)

.

Taking z = 1 − x (so that x = 1 − z), we have

log z = −
(
(1 − z) + (1−z)2

2 + (1−z)3

3 + · · ·
)

=

∞∑

m=1

(−1)m+1 (z − 1)m

m
.

This series has radius of convergence one, and defines a complex analytic func-
tion on the set {|z − 1| < 1}, which coincides with the usual logarithm for real z
in the interval (0, 2). Now, exp(log z) = z for z ∈ (0, 2), and by analyticity this
identity continues to hold on the whole set {|z − 1| < 1}.
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On the other hand, if |u| < log 2, then

|eu − 1| =
∣∣∣u+ u2

2! + · · ·
∣∣∣ ≤ |u| + |u|2

2!
+ · · ·

so that

|eu − 1| ≤ e|u| − 1 < 1.

Thus log(expu) makes sense for all such u. Since log(expu) = u for real u with
|u| < log 2, it follows by analyticity that log(expu) = u for all complex numbers
with |u| < log 2.

Theorem 3.6. The function

logA =

∞∑

m=1

(−1)m+1 (A− I)m

m
(3.6)

is defined and continuous on the set of all n×n complex matrices A with ‖A− I‖ <
1, and logA is real if A is real.

For all A with ‖A− I‖ < 1,

elogA = A.

For all X with ‖X‖ < log 2,
∥∥eX − 1

∥∥ < 1 and

log eX = X.

Proof. It is easy to see that the series (3.6) converges absolutely whenever
‖A− I‖ < 1. The proof of continuity is essentially the same as for the exponential.
If A is real, then every term in the series (3.6) is real, and so logA is real.

We will now show that exp(logA) = A for all A with ‖A− I‖ < 1. We do this
by considering two cases.

Case 1: A is diagonalizable.
Suppose that A = CDC−1, with D diagonal. Then A − I = CDC−1 − I =

C(D − I)C−1. It follows that (A− I)m is of the form

(A− I)m = C




(z1 − 1)m 0
. . .

0 (zn − 1)m


C−1,

where z1, · · · , zn are the eigenvalues of A.
Now, if ‖A− I‖ < 1, then certainly |zi − 1| < 1 for i = 1, · · · , n. (Think about

it.) Thus

∞∑

m=1

(−1)m+1 (A− I)m

m
= C




log z1 0
. . .

0 log zn


C−1

and so by the Lemma

elogA = C




elog z1 0
. . .

0 elog zn


C−1 = A.

Case 2: A is not diagonalizable.
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If A is not diagonalizable, then, using the Jordan canonical form, it is not
difficult to construct a sequence Am of diagonalizable matrices with Am → A. (See
Exercise 4.) If ‖A− I‖ < 1, then ‖Am − I‖ < 1 for all sufficiently largem. By Case
1, exp(logAm) = Am, and so by the continuity of exp and log, exp(logA) = A.

Thus we have shown that exp(logA) = A for all A with ‖A− I‖ < 1. Now, the
same argument as in the complex case shows that if ‖X‖ < log 2, then

∥∥eX − I
∥∥ <

1. But then the same two-case argument as above shows that log(expX) = X for
all such X .

Proposition 3.7. There exists a constant c such that for all n×n matrices B
with ‖B‖ < 1

2

‖log(I +B) −B‖ ≤ c ‖B‖2
.

Proof. Note that

log(I +B) −B =

∞∑

m=2

(−1)m
Bm

m
= B2

∞∑

m=2

(−1)m
Bm−2

m

so that

‖log(I +B) −B‖ ≤ ‖B‖2
∞∑

m=2

(
1
2

)m

m
.

This is what we want.

Proposition 3.8. Let X be any n×n complex matrix, and let Cm be a sequence
of matrices such that ‖Cm‖ ≤ const.

m2 . Then

lim
m→∞

[
I +

X

m
+ Cm

]m
= eX .

Proof. The expression inside the brackets is clearly tending to I as m → ∞,
and so is in the domain of the logarithm for all sufficiently large m. Now

log

(
I +

X

m
+ Cm

)
=
X

m
+ Cm + Em

whereEm is an error term which, by Proposition 3.7 satisfies ‖Em‖ ≤ c
∥∥X
m + Cm

∥∥2 ≤
const.
m2 . But then

I +
X

m
+ Cm = exp

(
X

m
+ Cm + Em

)
,

and so
[
I +

X

m
+ Cm

]m
= exp (X +mCm +mEm) .

Since both Cm and Em are of order 1
m2 , we obtain the desired result by letting

m→ ∞ and using the continuity of the exponential.
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4. Further Properties of the Matrix Exponential

In this section we give three additional results involving the exponential of a
matrix, which will be important in our study of Lie algebras.

Theorem 3.9 (Lie Product Formula). Let X and Y be n×n complex matrices.
Then

eX+Y = lim
m→∞

(
e

X
m e

Y
m

)m
.

This theorem has a big brother, called the Trotter product formula, which gives
the same result in the case where X and Y are suitable unbounded operators on an
infinite-dimensional Hilbert space. The Trotter formula is described, for example,
in M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I, VIII.8.

Proof. Using the power series for the exponential and multiplying, we get

e
X
m e

Y
m = I +

X

m
+
Y

m
+ Cm,

where (check!) ‖Cm‖ ≤ const.
m2 . Since e

X
m e

Y
m → I as m → ∞, e

X
m e

Y
m is in the

domain of the logarithm for all sufficiently large m. But

log
(
e

X
m e

Y
m

)
= log

(
I +

X

m
+
Y

m
+ Cm

)

=
X

m
+
Y

m
+ Cm + Em

where by Proposition 3.7 ‖Cm‖ ≤ const.
∥∥X
m + Y

m + Cm
∥∥2 ≤ const.

m2 . Exponentiating
the logarithm gives

e
X
m e

Y
m = exp

(
X

m
+
Y

m
+ Cm + Em

)

and
(
e

X
m e

Y
m

)m
= exp (X + Y +mCm +mEm) .

Since both Cm and Em are of order 1
m2 , we have (using the continuity of the

exponential)

lim
m→∞

(
e

X
m e

Y
m

)m
= exp (X + Y )

which is the Lie product formula.

Theorem 3.10. Let X be an n× n real or complex matrix. Then

det
(
eX
)

= etrace(X).

Proof. There are three cases, as in Section 2.
Case 1: A is diagonalizable. Suppose there is a complex invertible matrix C

such that

X = C




λ1 0
. . .

0 λn


C−1.
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Then

eX = C




eλ1 0
. . .

0 eλn


C−1.

Thus trace(X) =
∑
λi, and det(eX) =

∏
eλi = e

∑
λi . (Recall that trace(CDC−1) =

trace(D).)
Case 2: X is nilpotent. If X is nilpotent, then it cannot have any non-zero

eigenvalues (check!), and so all the roots of the characteristic polynomial must be
zero. Thus the Jordan canonical form of X will be strictly upper triangular. That
is, X can be written as

X = C




0 ∗
. . .

0 0


C−1.

In that case (it is easy to see) eX will be upper triangular, with ones on the diagonal:

eX = C




1 ∗
. . .

0 1


C−1.

Thus if X is nilpotent, trace(X) = 0, and det(eX) = 1.
Case 3: X arbitrary. As pointed out in Section 2, every matrix X can be

written as the sum of two commuting matrices S and N , with S diagonalizable
(over C) and N nilpotent. Since S and N commute, eX = eSeN . So by the two
previous cases

det
(
eX
)

= det
(
eS
)
det
(
eN
)

= etrace(S)etrace(N) = etrace(X),

which is what we want.

Definition 3.11. A function A : R → GL(n; C) is called a one-parameter

group if

1. A is continuous,
2. A(0) = I,
3. A(t+ s) = A(t)A(s) for all t, s ∈ R.

Theorem 3.12 (One-parameter Subgroups). If A is a one-parameter group in
GL(n; C), then there exists a unique n× n complex matrix X such that

A(t) = etX.

By taking n = 1, and noting that GL(1; C) ∼= C∗, this Theorem provides an
alternative method of solving Exercise 16 in Chapter 2.

Proof. The uniqueness is immediate, since if there is such an X , then X =
d
dt

∣∣
t=0

A(t). So we need only worry about existence.

The first step is to show that A(t) must be smooth. This follows from Proposi-
tion 2.16 in Chapter 2 (which we did not prove), but we give a self-contained proof.
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Let f(s) be a smooth real-valued function supported in a small neighborhood of
zero, with f(s) ≥ 0 and

∫
f(s)ds = 1. Now look at

B(t) =

∫
A(t+ s)f(s) ds.(3.7)

Making the change-of-variable u = t+ s gives

B(t) =

∫
A(u)f(u− t) du.

It follows that B(t) is differentiable, since derivatives in the t variable go onto f ,
which is smooth.

On the other hand, if we use the identity A(t+ s) = A(t)A(s) in (3.7), we have

B(t) = A(t)

∫
A(s)f(s) ds.

Now, the conditions on the function f , together with the continuity of A, guarantee
that

∫
A(s)f(s) ds is close to A(0) = I, and hence is invertible. Thus we may write

A(t) = B(t)

(∫
A(s)f(s)ds

)−1

.(3.8)

Since B (t) is smooth and
∫
A(s)f(s)ds is just a constant matrix, this shows that

A (t) is smooth.
Now that A(t) is known to be differentiable, we may define

X = d
dt

∣∣
t=0

A(t).

Our goal is to show that A(t) = etX . Since A(t) is smooth, a standard calculus
result (extended trivially to handle matrix-valued functions) says

‖A(t) − (I + tX)‖ ≤ const.t2.

It follows that for each fixed t,

A
(
t
m

)
= I + t

mX +O
(

1
m2

)
.

Then, since A is a one-parameter group

A(t) =
[
A
(
t
m

)]m
=
[
I + t

mX +O
(

1
m2

)]m
.

Letting m → ∞ and using Proposition 3.8 from Section 3 shows that A(t) =
etX .

5. The Lie Algebra of a Matrix Lie Group

The Lie algebra is an indispensable tool in studying matrix Lie groups. On the
one hand, Lie algebras are simpler than matrix Lie groups, because (as we will see)
the Lie algebra is a linear space. Thus we can understand much about Lie algebras
just by doing linear algebra. On the other hand, the Lie algebra of a matrix Lie
group contains much information about that group. (See for example, Proposition
3.23 in Section 7, and the Baker-Campbell-Hausdorff Formula (Chapter 4).) Thus
many questions about matrix Lie groups can be answered by considering a similar
but easier problem for the Lie algebra.

Definition 3.13. Let G be a matrix Lie group. Then the Lie algebra of G,
denoted g, is the set of all matrices X such that etX is in G for all real numbers t.
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Note that even if G is a subgroup of GL(n; C) we do not require that etX be in
G for all complex t, but only for all real t. Also, it is definitely not enough to have
just eX in G. That is, it is easy to give an example of an X and a G such that
eX ∈ G but etX /∈ G for some values of t. Such an X is not in the Lie algebra of G.

It is customary to use lower case Gothic (Fraktur) characters such as g and h

to refer to Lie algebras.

5.1. Physicists’ Convention. Physicists are accustomed to considering the
map X → eiX instead of X → eX . Thus a physicist would think of the Lie
algebra of G as the set of all matrices X such that eitX ∈ G for all real t. In
the physics literature, the Lie algebra is frequently referred to as the space of
“infinitesimal group elements.” See Bröcker and tom Dieck, Chapter I, 2.21. The
physics literature does not always distinguish clearly between a matrix Lie group
and its Lie algebra.

Before examining general properties of the Lie algebra, let us compute the Lie
algebras of the matrix Lie groups introduced in the previous chapter.

5.2. The general linear groups. If X is any n×n complex matrix, then by
Proposition 3.3, etX is invertible. Thus the Lie algebra of GL(n; C) is the space of
all n× n complex matrices. This Lie algebra is denoted gl(n; C).

If X is any n×n real matrix, then etX will be invertible and real. On the other
hand, if etX is real for all real t, then X = d

dt

∣∣
t=0

etX will also be real. Thus the

Lie algebra of GL(n; R) is the space of all n× n real matrices, denoted gl(n; R).
Note that the preceding argument shows that if G is a subgroup of GL(n; R),

then the Lie algebra of G must consist entirely of real matrices. We will use this
fact when appropriate in what follows.

5.3. The special linear groups. Recall Theorem 3.10: det
(
eX
)

= etraceX .

Thus if traceX = 0, then det
(
etX
)

= 1 for all real t. On the other hand, if X is

any n × n matrix such that det
(
etX
)

= 1 for all t, then e(t)(traceX) = 1 for all t.
This means that (t)(traceX) is an integer multiple of 2πi for all t, which is only
possible if traceX = 0. Thus the Lie algebra of SL (n; C) is the space of all n × n
complex matrices with trace zero, denoted sl(n; C).

Similarly, the Lie algebra of SL (n; R) is the space of all n×n real matrices with
trace zero, denoted sl (n; R).

5.4. The unitary groups. Recall that a matrix U is unitary if and only if
U∗ = U−1. Thus etX is unitary if and only if

(
etX
)∗

=
(
etX
)−1

= e−tX .(3.9)

But by taking adjoints term-by-term, we see that
(
etX
)∗

= etX
∗

, and so (3.9)
becomes

etX
∗

= e−tX .(3.10)

Clearly, a sufficient condition for (3.10) to hold is that X∗ = −X . On the other
hand, if (3.10) holds for all t, then by differentiating at t = 0, we see that X∗ = −X
is necessary.

Thus the Lie algebra of U(n) is the space of all n×n complex matrices X such
that X∗ = −X , denoted u(n).
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By combining the two previous computations, we see that the Lie algebra of
SU(n) is the space of all n × n complex matrices X such that X∗ = −X and
traceX = 0, denoted su(n).

5.5. The orthogonal groups. The identity component of O(n) is just SO(n).
Since (Proposition 3.14) the exponential of a matrix in the Lie algebra is automat-
ically in the identity component, the Lie algebra of O(n) is the same as the Lie
algebra of SO(n).

Now, an n× n real matrix R is orthogonal if and only if Rtr = R−1. So, given
an n× n real matrix X , etX is orthogonal if and only if (etX)tr = (etX)−1, or

etX
tr

= e−tX .(3.11)

Clearly, a sufficient condition for this to hold is that Xtr = −X . If (3.11) holds for
all t, then by differentiating at t = 0, we must have Xtr = −X .

Thus the Lie algebra of O(n), as well as the Lie algebra of SO(n), is the space of
all n× n real matrices X with Xtr = −X , denoted so(n). Note that the condition
Xtr = −X forces the diagonal entries of X to be zero, and so explicitly the trace
of X is zero.

The same argument shows that the Lie algebra of SO(n; C) is the space of n×n
complex matrices satisfying Xtr = −X , denoted so(n; C). This is not the same as
su(n).

5.6. The generalized orthogonal groups. A matrix A is in O(n; k) if and
only if AtrgA = g, where g is the (n + k) × (n + k) diagonal matrix with the first
n diagonal entries equal to one, and the last k diagonal entries equal to minus one.
This condition is equivalent to the condition g−1Atrg = A−1, or, since explicitly
g−1 = g, gAtrg = A−1. Now, if X is an (n+ k) × (n + k) real matrix, then etX is
in O(n; k) if and only if

getX
tr

g = etgX
trg = e−tX .

This condition holds for all real t if and only if gXtrg = −X . Thus the Lie
algebra of O(n; k), which is the same as the Lie algebra of SO(n; k), consists of all
(n+ k) × (n+ k) real matrices X with gXtrg = −X . This Lie algebra is denoted
so(n; k).

(In general, the group SO(n; k) will not be connected, in contrast to the group
SO(n). The identity component of SO(n; k), which is also the identity component
of O(n; k), is denoted SO(n; k)I . The Lie algebra of SO(n; k)I is the same as the
Lie algebra of SO(n; k).)

5.7. The symplectic groups. These are denoted sp (n; R) , sp(n; C) , and
sp (n) . The calculation of these Lie algebras is similar to that of the generalized
orthogonal groups, and I will just record the result here. Let J be the matrix in
the definition of the symplectic groups. Then sp (n; R) is the space of 2n× 2n real
matrices X such that JXtrJ = X, sp(n; C) is the space of 2n×2n complex matrices
satisfying the same condition, and sp (n) =sp(n; C) ∩ u (2n) .
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5.8. The Heisenberg group. Recall the Heisenberg group H is the group of
all 3 × 3 real matrices A of the form

A =




1 a b
0 1 c
0 0 1


(3.12)

Recall also that in Section 2, Case 2, we computed the exponential of a matrix of
the form

X =




0 α β
0 0 γ
0 0 0


(3.13)

and saw that eX was in H . On the other hand, if X is any matrix such that etX is
of the form (3.12), then all of the entries of X = d

dt

∣∣
t=0

etX which are on or below
the diagonal must be zero, so that X is of form (3.13).

Thus the Lie algebra of the Heisenberg group is the space of all 3 × 3 real
matrices which are strictly upper triangular.

5.9. The Euclidean and Poincaré groups. Recall that the Euclidean group
E(n) is (or can be thought of as) the group of (n+ 1)× (n+ 1) real matrices of the
form




x1

R
...
xn

0 · · · 0 1




with R ∈ O(n). Now if X is an (n + 1) × (n + 1) real matrix such that etX is in
E(n) for all t, then X = d

dt

∣∣
t=0

etX must be zero along the bottom row:

X =




y1

Y
...
yn

0 · · · 0


(3.14)

Our goal, then, is to determine which matrices of the form (3.14) are actually
in the Lie algebra of the Euclidean group. A simple computation shows that for
n ≥ 1




y1

Y
...
yn

0 · · · 0




n

=




Y n Y n−1y

0 · · · 0


 ,

where y is the column vector with entries y1, · · · , yn. It follows that if X is as in
(3.14), then etX is of the form

etX =




∗
etY

...
∗

0 · · · 0 1


 .
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Now, we have already established that etY is in O(n) for all t if and only if
Y tr = −Y . Thus we see that the Lie algebra of E(n) is the space of all (n+1)×(n+1)
real matrices of the form (3.14) with Y satisfying Y tr = −Y .

A similar argument shows that the Lie algebra of P(n; 1) is the space of all
(n+ 2) × (n+ 2) real matrices of the form




y1

Y
...

yn+1

0 · · · 0




with Y ∈ so(n; 1).

6. Properties of the Lie Algebra

We will now establish various basic properties of the Lie algebra of a matrix
Lie group. The reader is invited to verify by direct calculation that these general
properties hold for the examples computed in the previous section.

Proposition 3.14. Let G be a matrix Lie group, and X an element of its Lie
algebra. Then eX is an element of the identity component of G.

Proof. By definition of the Lie algebra, etX lies in G for all real t. But as t
varies from 0 to 1, etX is a continuous path connecting the identity to eX .

Proposition 3.15. Let G be a matrix Lie group, with Lie algebra g. Let X be
an element of g, and A an element of G. Then AXA−1 is in g.

Proof. This is immediate, since by Proposition 3.3,

et(AXA
−1) = AetXA−1,

and AetXA−1 ∈ G.

Theorem 3.16. Let G be a matrix Lie group, g its Lie algebra, and X,Y ele-
ments of g. Then

1. sX ∈ g for all real numbers s,
2. X + Y ∈ g,
3. XY − Y X ∈ g.

If you are following the physics convention for the definition of the Lie algebra,
then condition 3 should be replaced with the condition −i (XY − Y X) ∈ g.

Proof. Point 1 is immediate, since et(sX) = e(ts)X , which must be in G if X is
in g. Point 2 is easy to verify if X and Y commute, since then et(X+Y ) = etXetY . If
X and Y do not commute, this argument does not work. However, the Lie product
formula says that

et(X+Y ) = lim
m→∞

(
etX/metY/m

)m
.

BecauseX and Y are in the Lie algebra, etX/m and etY/m are inG, as is
(
etX/metY/m

)m
,

since G is a group. But now because G is a matrix Lie group, the limit of things
in G must be again in G, provided that the limit is invertible. Since et(X+Y ) is
automatically invertible, we conclude that it must be in G. This shows that X+Y
is in g.



6. PROPERTIES OF THE LIE ALGEBRA 41

Now for point 3. Recall (Proposition 3.4) that d
dt

∣∣
t=0

etX = X . It follows that
d
dt

∣∣
t=0

etXY = XY , and hence by the product rule (Exercise 1)

d

dt

∣∣∣∣
t=0

(
etXY e−tX

)
= (XY )e0 + (e0Y )(−X)

= XY − Y X .

But now, by Proposition 3.15, etXY e−tX is in g for all t. Since we have (by points
1 and 2) established that g is a real vector space, it follows that the derivative of
any smooth curve lying in g must be again in g. Thus XY − Y X is in g.

Definition 3.17. Given two n× n matrices A and B, the bracket (or com-

mutator) of A and B is defined to be simply

[A,B] = AB −BA.

According to Theorem 3.16, the Lie algebra of any matrix Lie group is closed
under brackets.

The following very important theorem tells us that a Lie group homomorphism
between two Lie groups gives rise in a natural way to a map between the corre-
sponding Lie algebras. In particular, this will tell us that two isomorphic Lie groups
have “the same” Lie algebras. (That is, the Lie algebras are isomorphic in the sense
of Section 8.) See Exercise 6.

Theorem 3.18. Let G and H be matrix Lie groups, with Lie algebras g and h,
respectively. Suppose that φ : G → H be a Lie group homomorphism. Then there

exists a unique real linear map φ̃ : g → h such that

φ(eX) = eφ̃(X)

for all X ∈ g. The map φ̃ has following additional properties

1. φ̃
(
AXA−1

)
= φ(A)φ̃(X)φ(A)−1, for all X ∈ g, A ∈ G.

2. φ̃([X,Y ]) =
[
φ̃(X), φ̃(Y )

]
, for all X,Y ∈ g.

3. φ̃(X) = d
dt

∣∣
t=0

φ(etX), for all X ∈ g.

If G, H, and K are matrix Lie groups and φ : H → K and ψ : G→ H are Lie
group homomorphisms, then

φ̃ ◦ ψ = φ̃ ◦ ψ̃.

In practice, given a Lie group homomorphism φ, the way one goes about com-

puting φ̃ is by using Property 3. Of course, since φ̃ is (real) linear, it suffices to

compute φ̃ on a basis for g. In the language of differentiable manifolds, Property

3 says that φ̃ is the derivative (or differential) of φ at the identity, which is the

standard definition of φ̃. (See also Exercise 19.)
A linear map with property (2) is called a Lie algebra homomorphism. (See

Section 8.) This theorem says that every Lie group homomorphism gives rise to a
Lie algebra homomorphism. We will see eventually that the converse is true under
certain circumstances. Specifically, suppose that G and H are Lie groups, and

φ̃ : g → h is a Lie algebra homomorphism. If G is connected and simply connected,

then there exists a unique Lie group homomorphism φ : G→ H such that φ and φ̃
are related as in Theorem 3.18.
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Proof. The proof is similar to the proof of Theorem 3.16. Since φ is a con-
tinuous group homomorphism, φ(etX) will be a one-parameter subgroup of H , for
each X ∈ g. Thus by Theorem 3.12, there is a unique Z such that

φ
(
etX
)

= etZ(3.15)

for all t ∈ R. This Z must lie in h since etZ = φ
(
etX
)
∈ H .

We now define φ̃(X) = Z, and check in several steps that φ̃ has the required
properties.

Step 1 : φ(eX) = eφ̃(X).

This follows from (3.15) and our definition of φ̃, by putting t = 1.

Step 2 : φ̃(sX) = sφ̃(X) for all s ∈ R.
This is immediate, since if φ(etX) = etZ , then φ(etsX) = etsZ .

Step 3 : φ̃(X + Y ) = φ̃(X) + φ̃(Y ).
By Steps 1 and 2,

etφ̃(X+Y ) = eφ̃[t(X+Y )] = φ
(
et(X+Y )

)
.

By the Lie product formula, and the fact that φ is a continuous homomorphism:

= φ
(

lim
m→∞

(
etX/metY/m

)m)

= lim
m→∞

(
φ
(
etX/m

)
φ(etY/m)

)m
.

But then we have

etφ̃(X+Y ) = lim
m→∞

(
etφ̃(X)/metφ̃(Y )/m

)m
= et(φ̃(X)+φ̃(Y )).

Differentiating this result at t = 0 gives the desired result.

Step 4 : φ̃
(
AXA−1

)
= φ(A)φ̃(X)φ(A)−1.

By Steps 1 and 2,

exp tφ̃(AXA−1) = exp φ̃(tAXA−1) = φ
(
exp tAXA−1

)
.

Using a property of the exponential and Step 1, this becomes

exp tφ̃(AXA−1) = φ
(
AetXA−1

)
= φ(A)φ(etX )φ(A)−1

= φ(A)etφ̃(X)φ(A)−1.

Differentiating this at t = 0 gives the desired result.

Step 5 : φ̃([X,Y ]) =
[
φ̃(X), φ̃(Y )

]
.

Recall from the proof of Theorem 3.16 that

[X,Y ] = d
dt

∣∣
t=0

etXY e−tX .

Hence

φ̃ ([X,Y ]) = φ̃
(
d
dt

∣∣
t=0

etXY e−tX
)

= d
dt

∣∣
t=0

φ̃
(
etXY e−tX

)

where we have used the fact that a derivative commutes with a linear transforma-
tion.
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But then by Step 4,

φ̃ ([X,Y ]) = d
dt

∣∣
t=0

φ(etX)φ̃(Y )φ(e−tX)

= d
dt

∣∣
t=0

etφ̃(X)φ̃(Y )e−tφ̃(X)

=
[
φ̃(X), φ̃(Y )

]
.

Step 6 : φ̃(X) = d
dt

∣∣
t=0

φ(etX).

This follows from (3.15) and our definition of φ̃.

Step 7 : φ̃ is the unique real-linear map such that φ(eX) = eφ̃(X).
Suppose that ψ is another such map. Then

etψ(X) = eψ(tX) = φ(etX)

so that

ψ(X) = d
dt

∣∣
t=0

φ(etX).

Thus by Step 6, ψ coincides with φ̃.

Step 8: φ̃ ◦ ψ = φ̃ ◦ ψ̃.
For any X ∈ g,

φ ◦ ψ
(
etX
)

= φ
(
ψ
(
etX
))

= φ
(
etψ̃(X)

)
= etφ̃(ψ̃(X)).

Thus φ̃ ◦ ψ(X) = φ̃ ◦ ψ̃(X).

Definition 3.19 (The Adjoint Mapping). Let G be a matrix Lie group, with
Lie algebra g. Then for each A ∈ G, define a linear map AdA : g → g by the
formula

AdA(X) = AXA−1.

We will let Ad denote the map A→ AdA.

Proposition 3.20. Let G be a matrix Lie group, with Lie algebra g. Then for
each A ∈ G, AdA is an invertible linear transformation of g with inverse AdA−1,
and Ad : G→ GL(g) is a group homomorphism.

Proof. Easy. Note that Proposition 3.15 guarantees that AdA(X) is actually
in g for all X ∈ g.

Since g is a real vector space with some dimension k, GL(g) is essentially the
same as GL(k; R). Thus we will regard GL(g) as a matrix Lie group. It is easy to
show that Ad : G→ GL(g) is continuous, and so is a Lie group homomorphism. By

Theorem 3.18, there is an associated real linear map Ãd from the Lie algebra of G
to the Lie algebra of GL(g), i.e., from g to gl(g), with the property that

eÃdX = Ad
(
eX
)
.
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Proposition 3.21. Let G be a matrix Lie group, let g its Lie algebra, and let

Ad : G→ GL(g) be the Lie group homomorphism defined above. Let Ãd : g →gl(g)
be the associated Lie algebra map. Then for all X,Y ∈ g

ÃdX(Y ) = [X,Y ].

Proof. Recall that by Theorem 3.18, Ãd can be computed as follows:

ÃdX = d
dt

∣∣
t=0

Ad(etX).

Thus

ÃdX(Y ) = d
dt

∣∣
t=0

Ad(etX)(Y ) = d
dt

∣∣
t=0

etXY e−tX

= [X,Y ]

which is what we wanted to prove. See also Exercise 13.

7. The Exponential Mapping

Definition 3.22. If G is a matrix Lie group with Lie algebra g, then the ex-

ponential mapping for G is the map

exp : g → G.

In general the exponential mapping is neither one-to-one nor onto. Neverthe-
less, it provides an crucial mechanism for passing information between the group
and the Lie algebra. The following result says that the exponential mapping is
locally one-to-one and onto, a result that will be essential later.

Theorem 3.23. Let G be a matrix Lie group with Lie algebra g. Then there
exist a neighborhood U of zero in g and a neighborhood V of I in G such that the
exponential mapping takes U homeomorphically onto V .

Proof. We follow the proof of Theorem I.3.11 in Bröcker and tom Dieck. In
view of what we have proved about the matrix logarithm, we know this result for
the case of GL(n; C). To prove the general case, we consider a matrix Lie group
G < GL(n; C), with Lie algebra g.

Lemma 3.24. Suppose gn are elements of G, and that gn → I. Let Yn = log gn,
which is defined for all sufficiently large n. Suppose Yn/ ‖Yn‖ → Y ∈ gl (n; C).
Then Y ∈ g.

Proof. To show that Y ∈ g, we must show that exp tY ∈ G for all t ∈ R. As
n → ∞, (t/ ‖Yn‖)Yn → tY . Note that since gn → I, Yn → 0, and so ‖Yn‖ → 0.
Thus we can find integers mn such that (mn ‖Yn‖) → t. Then exp (mnYn) =
exp [(mn ‖Yn‖) (Yn/ ‖Yn‖)] → exp (tY ). But exp (mnYn) = exp (Yn)

mn = (gn)
mn ∈

G, and G is closed, so exp (tY ) ∈ G.

We think of gl (n; C) as Cn
2 ∼= R2n2

. Then g is a subspace of R2n2

. Let D
denote the orthogonal complement of g with respect to the usual inner product on

R2n2

. Consider the map Φ : g ⊕D → GL(n; C) given by

Φ (X,Y ) = eXeY .

Of course, we can identify g ⊕D with R2n2

. Moreover, GL(n; C) is an open subset

of gl (n; C) ∼= R2n2

. Thus we can regard Φ as a map from R2n2

to itself.
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Now, using the properties of the matrix exponential, we see that

d

dt

∣∣∣∣
t=0

Φ (tX, 0) = X

d

dt

∣∣∣∣
t=0

Φ (0, tY ) = Y .

This shows that the derivative of Φ at the point 0 ∈ R2n2

is the identity. (Recall

that the derivative at a point of a function from R2n2

to itself is a linear map of

R2n2

to itself, in this case the identity map.) In particular, the derivative of Φ at 0
is invertible. Thus the inverse function theorem says that Φ has a continuous local
inverse, defined in a neighborhood of I.

Now let U be any neighborhood of zero in g. I want to show that exp (U)
contains a neighborhood of I in G. Suppose not. Then we can find a sequence
gn ∈ G with gn → I such that no gn is in exp (U). Since Φ is locally invertible,
we can write gn (for large n) uniquely as gn = exp (Xn) exp (Yn), with Xn ∈ g and
Yn ∈ D. Since gn → I and Φ−1 is continuous, Xn and Yn tend to zero. Thus (for
large n), Xn ∈ U . So we must have (for large n) Yn 6= 0, otherwise gn would be in
exp (U).

Let g̃n = exp (Yn) = exp (−Xn) gn. Note that g̃n ∈ G and g̃n → I. Since the
unit ball in D is compact, we can choose a subsequence of {Yn} (still called {Yn})
so that Yn/ ‖Yn‖ converges to some Y ∈ D, with ‖Y ‖ = 1. But then by the Lemma,
Y ∈ g! This is a contradiction, because D is the orthogonal complement of g.

So for every neighborhood U of zero in g, exp (U) contains a neighborhood of
the identity in G. If we make U small enough, then the exponential will be one-to-
one on U . (The existence of the matrix logarithm implies that the exponential is
one-to-one near zero.) Let log denote the inverse map, defined on exp

(
U
)
. Since U

is compact, and exp is one-to-one and continuous on U , log will be continuous. (This
is a standard topological result.) So take V to be a neighborhood of I contained in
exp

(
U
)
, and let U ′ = exp−1 (V ) ∩ U . Then U ′ is open and the exponential takes

U ′ homeomorphically onto V .

Definition 3.25. If U and V are as in Proposition 3.23, then the inverse map
exp−1 : V → g is called the logarithm for G.

Corollary 3.26. If G is a connected matrix Lie group, then every element A
of G can be written in the form

A = eX1eX2 · · · eXn(3.16)

for some X1, X2, · · ·Xn in g.

Proof. Recall that for us, saying G is connected means that G is path-
connected. This certainly means that G is connected in the usual topological sense,
namely, the only non-empty subset of G that is both open and closed is G itself.
So let E denote the set of all A ∈ G that can be written in the form (3.16). In light
of the Proposition, E contains a neighborhood V of the identity. In particular, E
is non-empty.

We first claim that E is open. To see this, consider A ∈ E. Then look at the
set of matrices of the form AB, with B ∈ V . This will be a neighborhood of A. But
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every such B can be written as B = eX and A can be written as A = eX1eX2 · · · eXn ,
so AB = eX1eX2 · · · eXneX .

Now we claim that E is closed (in G). Suppose A ∈ G, and there is a sequence
An ∈ E with An → A. Then AA−1

n → I. Thus we can choose some n0 such
that AA−1

n0
∈ V . Then AA−1

n0
= eX and A = An0e

X . But by assumption, An0 =

eX1eX2 · · · eXn , so A = eX1eX2 · · · eXneX . Thus A ∈ E, and E is closed.
Thus E is both open and closed, so E = G.

8. Lie Algebras

Definition 3.27. A finite-dimensional real or complex Lie algebra is a
finite-dimensional real or complex vector space g, together with a map [ ] from g×g

into g, with the following properties:

1. [ ] is bilinear.
2. [X,Y ] = − [Y,X ] for all X,Y ∈ g.
3. [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ g.

Condition 3 is called the Jacobi identity. Note also that Condition 2 implies
that [X,X ] = 0 for all X ∈ g. The same three conditions define a Lie algebra over
an arbitrary field F, except that if F has characteristic two, then one should add the
condition [X,X ] = 0, which doesn’t follow from skew-symmetry in characteristic
two. We will deal only with finite-dimensional Lie algebras, and will from now on
interpret “Lie algebra” as “finite-dimensional Lie algebra.”

A Lie algebra is in fact an algebra in the usual sense, but the product operation
[ ] for this algebra is neither commutative nor associative. The Jacobi identity
should be thought of as a substitute for associativity.

Proposition 3.28. The space gl(n; R) of all n × n real matrices is a real Lie
algebra with respect to the bracket operation [A,B] = AB−BA. The space gl(n; C)
of all n×n complex matrices is a complex Lie algebra with respect to the analogous
bracket operation.

Let V is a finite-dimensional real or complex vector space, and let gl(V ) denote
the space of linear maps of V into itself. Then gl(V ) becomes a real or complex Lie
algebra with the bracket operation [A,B] = AB −BA.

Proof. The only non-trivial point is the Jacobi identity. The only way to
prove this is to write everything out and see, and this is best left to the reader.
Note that each triple bracket generates four terms, for a total of twelve. Each of
the six orderings of {X,Y, Z} occurs twice, once with a plus sign and once with a
minus sign.

Definition 3.29. A subalgebra of a real or complex Lie algebra g is a sub-
space h of g such that [H1, H2] ∈ h for all H1, H2 ∈ h. If g is a complex Lie algebra,
and h is a real subspace of g which is closed under brackets, then h is said to be a
real subalgebra of g.

If g and h are Lie algebras, then a linear map φ : g → h is called a Lie algebra

homomorphism if φ ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ g. If in addition φ is
one-to-one and onto, then φ is called a Lie algebra isomorphism. A Lie algebra
isomorphism of a Lie algebra with itself is called a Lie algebra automorphism.
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A subalgebra of a Lie algebra is again a Lie algebra. A real subalgebra of a
complex Lie algebra is a real Lie algebra. The inverse of a Lie algebra isomorphism
is again a Lie algebra isomorphism.

Proposition 3.30. The Lie algebra g of a matrix Lie group G is a real Lie
algebra.

Proof. By Theorem 3.16, g is a real subalgebra of gl(n; C) complex matrices,
and is thus a real Lie algebra.

Theorem 3.31 (Ado). Every finite-dimensional real Lie algebra is isomorphic
to a subalgebra of gl(n; R). Every finite-dimensional complex Lie algebra is isomor-
phic to a (complex) subalgebra of gl(n; C).

This remarkable theorem is proved in Varadarajan. The proof is well beyond
the scope of this course (which is after all a course on Lie groups), and requires
a deep understanding of the structure of complex Lie algebras. The theorem tells
us that every Lie algebra is (isomorphic to) a Lie algebra of matrices. (This is
in contrast to the situation for Lie groups, where most but not all Lie groups are
matrix Lie groups.)

Definition 3.32. Let g be a Lie algebra. For X ∈ g, define a linear map
adX : g → g by

adX(Y ) = [X,Y ].

Thus “ad” (i.e., the map X → adX) can be viewed as a linear map from g into
gl(g), where gl(g) denotes the space of linear operators from g to g.

Since adX(Y ) is just [X,Y ], it might seem foolish to introduce the additional
“ad” notation. However, thinking of [X,Y ] as a linear map in Y for each fixed X ,
gives a somewhat different perspective. In any case, the “ad” notation is extremely
useful in some situations. For example, instead of writing

[X, [X, [X, [X,Y ]]]]

we can now write

(adX)4 (Y ).

This kind of notation will be essential in Section 1.

Proposition 3.33. If g is a Lie algebra, then

ad[X,Y ] = adXadY − adY adX = [adX, adY ].

That is, ad: g → gl(g) is a Lie algebra homomorphism.

Proof. Observe that

ad[X,Y ](Z) = [[X,Y ], Z]

whereas

[adX, adY ](Z) = [X, [Y, Z]] − [Y, [X,Z]].

So we require that

[[X,Y ], Z] = [X, [Y, Z]] − [Y, [X,Z]]
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or equivalently

0 = [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]]

which is exactly the Jacobi identity.

Recall that for any X ∈ g, and any A ∈ G, we define

AdA(X) = AXA−1

and that Ad: G → GL(g) is a Lie group homomorphism. We showed (Proposition

3.21) that the associated Lie algebra homomorphism Ãd : g → gl(g) is given by

ÃdX(Y ) = [X,Y ].

In our new notation, we may say

Ãd = ad

By the defining property of Ãd, we have the following identity: For all X ∈ g,

Ad(eX) = eadX .(3.17)

Note that both sides of (3.17) are linear operators on the Lie algebra g. This is
an important relation, which can also be verified directly, by expanding out both
sides. (See Exercise 13.)

8.1. Structure Constants. Let g be a finite-dimensional real or complex Lie
algebra, and let X1, · · · , Xn be a basis for g (as a vector space). Then for each i, j,
[Xi, Xj ] can be written uniquely in the form

[Xi, Xj ] =
n∑

k=1

cijkXk.

The constants cijk are called the structure constants of g (with respect to the
chosen basis). Clearly, the structure constants determine the bracket operation on
g. In some of the literature, the structure constants play an important role, although
we will not have occasion to use them in this course. (In the physics literature, the
structure constants are defined as [Xi, Xj ] =

√
−1
∑

k cijkXk, reflecting the factor

of
√
−1 difference between the physics definition of the Lie algebra and our own.)
The structure constants satisfy the following two conditions,

cijk + cjik = 0
∑

m

(cijmcmkl + cjkmcmil + ckimcmjl) = 0

for all i, j, k, l. The first of these conditions comes from the skew-symmetry of the
bracket, and the second comes from the Jacobi identity. (The reader is invited to
verify these conditions for himself.)

9. The Complexification of a Real Lie Algebra

Definition 3.34. If V is a finite-dimensional real vector space, then the com-

plexification of V , denoted VC, is the space of formal linear combinations

v1 + iv2
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with v1, v2 ∈ V . This becomes a real vector space in the obvious way, and becomes
a complex vector space if we define

i(v1 + iv2) = −v2 + iv1.

We could more pedantically define VC to be the space of ordered pairs (v1, v2),
but this is notationally cumbersome. It is straightforward to verify that the above
definition really makes VC into a complex vector space. We will regard V as a real
subspace of VC in the obvious way.

Proposition 3.35. Let g be a finite-dimensional real Lie algebra, and gC its
complexification (as a real vector space). Then the bracket operation on g has a
unique extension to gC which makes gC into a complex Lie algebra. The complex
Lie algebra gC is called the complexification of the real Lie algebra g.

Proof. The uniqueness of the extension is obvious, since if the bracket oper-
ation on gC is to be bilinear, then it must be given by

[X1 + iX2, Y1 + iY2] = ([X1, Y1] − [X2, Y2]) + i ([X1, Y2] + [X2, Y1]) .(3.18)

To show existence, we must now check that (3.18) is really bilinear and skew-
symmetric, and that it satisfies the Jacobi identity. It is clear that (3.18) is real
bilinear, and skew-symmetric. The skew-symmetry means that if (3.18) is complex
linear in the first factor, it is also complex linear in the second factor. Thus we
need only show that

[i(X1 + iX2), Y1 + iY2] = i [X1 + iX2, Y1 + iY2] .(3.19)

Well, the left side of (3.19) is

[−X2 + iX1, Y1 + iY2] = (− [X2, Y1] − [X1, Y2]) + i ([X1, Y1] − [X2, Y2])

whereas the right side of (3.19) is

i {([X1, Y1] − [X2, Y2]) + i ([X2, Y1] + [X1, Y2])}
= (− [X2, Y1] − [X1, Y2]) + i ([X1, Y1] − [X2, Y2]) ,

and indeed these are equal.
It remains to check the Jacobi identity. Of course, the Jacobi identity holds if

X,Y, and Z are in g. But now observe that the expression on the left side of the
Jacobi identity is (complex!) linear in X for fixed Y and Z. It follows that the
Jacobi identity holds if X is in gC, and Y, Z in g. The same argument then shows
that we can extend to Y in gC, and then to Z in gC. Thus the Jacobi identity holds
in gC.

Proposition 3.36. The Lie algebras gl(n; C), sl(n; C), so(n; C), and sp(n; C)
are complex Lie algebras, as is the Lie algebra of the complex Heisenberg group. In
addition, we have the following isomorphisms of complex Lie algebras

gl (n; R)
C

∼= gl(n; C)
u(n)C

∼= gl(n; C)
sl (n; R)

C
∼= sl(n; C)

so(n)C
∼= so(n; C)

sp(n; R)C
∼= sp(n; C)

sp(n)C
∼= sp(n; C).
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Proof. From the computations in the previous section we see easily that the
specified Lie algebras are in fact complex subalgebras of gl(n; C), and hence are
complex Lie algebras.

Now, gl(n; C) is the space of all n×n complex matrices, whereas gl (n; R) is the
space of all n× n real matrices. Clearly, then, every X ∈ gl (n; C) can be written
uniquely in the form X1 + iX2, with X1, X2 ∈ gl (n; R). This gives us a complex
vector space isomorphism of gl (n; R)

C
with gl(n; C), and it is a triviality to check

that this is a Lie algebra isomorphism.
On the other hand, u(n) is the space of all n × n complex skew-self-adjoint

matrices. But if X is any n× n complex matrix, then

X =
X −X∗

2
+
X +X∗

2

=
X −X∗

2
+ i

(−iX)− (−iX)∗

2
.

Thus X can be written as a skew matrix plus i times a skew matrix, and it is easy
to see that this decomposition is unique. Thus every X in gl(n; C) can be written
uniquely as X1 + iX2, with X1 and X2 in u(n). It follows that u(n)C

∼= gl(n; C).
The verification of the remaining isomorphisms is similar, and is left as an

exercise to the reader.

Note that u(n)C
∼= gl (n; R)

C
∼= gl(n; C). However, u(n) is not isomorphic to

gl (n; R), except when n = 1. The real Lie algebras u(n) and gl (n; R) are called
real forms of the complex Lie algebra gl(n; C). A given complex Lie algebra may
have several non-isomorphic real forms. See Exercise 11.

Physicists do not always clearly distinguish between a matrix Lie group and
its (real) Lie algebra, or between a real Lie algebra and its complexification. Thus,
for example, some references in the physics literature to SU(2) actually refer to the
complexified Lie algebra, sl(2; C).

10. Exercises

1. The product rule. Recall that a matrix-valued function A(t) is smooth if
each Aij(t) is smooth. The derivative of such a function is defined as

(
dA

dt

)

ij

=
dAij
dt

or equivalently,

d

dt
A(t) = lim

h→0

A(t+ h) −A(t)

h
.

Let A(t) and B(t) be two such functions. Prove that A(t)B(t) is again
smooth, and that

d

dt
[A(t)B(t)] =

dA

dt
B(t) +A(t)

dB

dt
.

2. Using the Jordan canonical form, show that every n × n matrix A can be
written as A = S + N , with S diagonalizable (over C), N nilpotent, and
SN = NS. Recall that the Jordan canonical form is block diagonal, with
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each block of the form



λ ∗
. . .

0 λ


 .

3. Let X and Y be n× n matrices. Show that there exists a constant C such
that

∥∥∥e(X+Y )/m − eX/meY/m
∥∥∥ ≤ C

m2

for all integers m ≥ 1.
4. Using the Jordan canonical form, show that every n× n complex matrix A

is the limit of a sequence of diagonalizable matrices.
Hint : If the characteristic polynomial of A has n distinct roots, then A

is diagonalizable.
5. Give an example of a matrix Lie group G and a matrix X such that eX ∈ G,

but X /∈ g.
6. Show that two isomorphic matrix Lie groups have isomorphic Lie algebras.
7. The Lie algebra so(3; 1). Write out explicitly the general form of a 4×4 real

matrix in so(3; 1).
8. Verify directly that Proposition 3.15 and Theorem 3.16 hold for the Lie

algebra of SU(n).
9. The Lie algebra su(2). Show that the following matrices form a basis for the

real Lie algebra su(2):

E1 = 1
2

(
i 0
0 −i

)
E2 = 1

2

(
0 1
−1 0

)
E3 = 1

2

(
0 i
i 0

)
.

Compute [E1, E2], [E2, E3], and [E3, E1]. Show that there is an invert-
ible linear map φ : su(2) → R3 such that φ([X,Y ]) = φ(X) × φ(Y ) for all
X,Y ∈ su(2), where × denotes the cross-product on R3.

10. The Lie algebras su(2) and so(3). Show that the real Lie algebras su(2) and
so(3) are isomorphic.

Note: Nevertheless, the corresponding groups SU(2) and SO(3) are not
isomorphic. (Although SO(3) is isomorphic to SU(2)/ {I,−I}.)

11. The Lie algebras su(2) and sl(2; R). Show that su(2) and sl(2; R) are not
isomorphic Lie algebras, even though su(2)C

∼= sl(2; R)C.
Hint : Using Exercise 9, show that su(2) has no two-dimensional subal-

gebras.
12. Let G be a matrix Lie group, and g its Lie algebra. For each A ∈ G, show

that AdA is a Lie algebra automorphism of g.
13. Ad and ad. Let X and Y be matrices. Show by induction that

(adX)
n

(Y ) =

n∑

k=0

(
n

k

)
XkY (−X)n−k.

Now show by direct computation that

eadX(Y ) = Ad(eX)Y = eXY e−X .

You may assume that it is legal to multiply power series term-by-term. (This
result was obtained indirectly in Equation 3.17.)
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Hint : Recall that Pascal’s Triangle gives a relationship between things
of the form

(
n+1
k

)
and things of the form

(
n
k

)
.

14. The complexification of a real Lie algebra. Let g be a real Lie algebra, gC its
complexification, and h an arbitrary complex Lie algebra. Show that every
real Lie algebra homomorphism of g into h extends uniquely to a complex
Lie algebra homomorphism of gC into h. (This is the universal property
of the complexification of a real Lie algebra. This property can be used as
an alternative definition of the complexification.)

15. The exponential mapping for SL (2; R). Show that the image of the exponen-
tial mapping for SL (2; R) consists of precisely those matrices A ∈ SL (2; R)
such that trace (A) > −2, together with the matrix −I (which has trace −2).
You will need to consider the possibilities for the eigenvalues of a matrix in
the Lie algebra sl (2; R) and in the group SL (2; R). In the Lie algebra, show
that the eigenvalues are of the form (λ,−λ) or (iλ,−iλ) with λ real. In the
group, show that the eigenvalues are of the form (α, 1/a) or (−a,−1/a) with
a real and positive, or else of the form

(
eiθ, e−iθ

)
, with θ real. The case of

a repeated eigenvalue ((0, 0) in the Lie algebra and (1, 1) or (−1,−1) in the
group) will have to be treated separately.

Show that the image of the exponential mapping is not dense in SL (2; R).
16. Using Exercise 4, show that the exponential mapping for GL(n; C) maps onto

a dense subset of GL(n; C).
17. The exponential mapping for the Heisenberg group. Show that the exponen-

tial mapping from the Lie algebra of the Heisenberg group to the Heisenberg
group is one-to-one and onto.

18. The exponential mapping for U(n). Show that the exponential mapping
from u(n) to U(n) is onto, but not one-to-one. (Note that this shows that
U(n) is connected.)

Hint : Every unitary matrix has an orthonormal basis of eigenvectors.
19. Let G be a matrix Lie group, and g its Lie algebra. Let A(t) be a smooth

curve lying in G, with A(0) = I. Let X = d
dt

∣∣
t=0

A(t). Show that X ∈ g.
Hint : Use Proposition 3.8.
Note: This shows that the Lie algebra g coincides with what would be

called the tangent space at the identity in the language of differentiable
manifolds.

20. Consider the space gl(n; C) of all n×n complex matrices. As usual, for X ∈
gl(n; C), define adX : gl(n; C) → gl(n; C) by adX(Y ) = [X,Y ]. Suppose
that X is a diagonalizable matrix. Show, then, that adX is diagonalizable
as an operator on gl(n; C).

Hint : Consider first the case where X is actually diagonal.
Note: The problem of diagonalizing adX is an important one that we

will encounter again in Chapter 6, when we consider semisimple Lie algebras.



CHAPTER 4

The Baker-Campbell-Hausdorff Formula

1. The Baker-Campbell-Hausdorff Formula for the Heisenberg Group

A crucial result of Chapter 5 will be the following: Let G and H be matrix
Lie groups, with Lie algebras g and h, and suppose that G is connected and simply

connected. Then if φ̃ : g → h is a Lie algebra homomorphism, there exists a unique

Lie group homomorphism φ : G→ H such that φ and φ̃ are related as in Theorem
3.18. This result is extremely important because it implies that if G is connected
and simply connected, then there is a natural one-to-one correspondence between
the representations of G and the representations of its Lie algebra g (as explained
in Chapter 5). In practice, it is much easier to determine the representations of
the Lie algebra than to determine directly the representations of the corresponding
group.

This result (relating Lie algebra homomorphisms and Lie group homomor-
phisms) is deep. The “modern” proof (e.g., Varadarajan, Theorem 2.7.5) makes
use of the Frobenius theorem, which is both hard to understand and hard to
prove (Varadarajan, Section 1.3). Our proof will instead use the Baker-Campbell-
Hausdorff formula, which is more easily stated and more easily motivated than the
Frobenius theorem, but still deep.

The idea is the following. The desired group homomorphism φ : G → H must
satisfy

φ
(
eX
)

= eφ̃(X).(4.1)

We would like, then, to define φ by this relation. This approach has two serious
difficulties. First, a given element of G may not be expressible as eX , and even if
it is, the X may not be unique. Second, it is very far from clear why the φ in (4.1)
(even to the extent it is well-defined) should be a group homomorphism.

It is the second issue which the Baker-Campbell-Hausdorff formula addresses.
(The first issue will be addressed in the next chapter; it is there that the simple con-
nectedness of G comes into play.) Specifically, (one form of) the Baker-Campbell-
Hausdorff formula says that if X and Y are sufficiently small, then

log(eXeY ) = X + Y + 1
2 [X,Y ] + 1

12 [X, [X,Y ]] − 1
12 [Y, [X,Y ]] + · · · .(4.2)

It is not supposed to be evident at the moment what “· · · ” refers to. The only
important point is that all of the terms in (4.2) are given in terms of X and Y ,
brackets of X and Y , brackets of brackets involving X and Y , etc. Then because

53
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φ̃ is a Lie algebra homomorphism,

φ̃
(
log
(
eXeY

))
= φ̃(X) + φ̃(Y ) + 1

2 [φ̃(X), φ̃(Y )]

+ 1
12 [φ̃(X), [φ̃(X), φ̃(Y )]] − 1

12 [φ̃(Y ), [φ̃(X), φ̃(Y )]] + · · ·

= log
(
eφ̃(X)eφ̃(Y )

)
(4.3)

The relation (4.3) is extremely significant. For of course

eXeY = elog(e
XeY )

and so by (4.1),

φ
(
eXeY

)
= eφ̃(log(eXeY )).

Thus (4.3) tells us that

φ
(
eXeY

)
= e

log
(
eφ̃(X)eφ̃(Y )

)

= eφ̃(X)eφ̃(Y ) = φ(eX)φ(eY ).

Thus, the Baker-Campbell-Hausdorff formula shows that on elements of the form
eX , with X small, φ is a group homomorphism. (See Corollary 4.4 below.)

The Baker-Campbell-Hausdorff formula shows that all the information about
the group product, at least near the identity, is “encoded” in the Lie algebra. Thus

if φ̃ is a Lie algebra homomorphism (which by definition preserves the Lie algebra
structure), and if we define φ near the identity by (4.1), then we can expect φ to
preserve the group structure, i.e., to be a group homomorphism.

In this section we will look at how all of this works out in the very special case
of the Heisenberg group. In the next section we will consider the general situation.

Theorem 4.1. Suppose X and Y are n×n complex matrices, and that X and
Y commute with their commutator. That is, suppose that

[X, [X,Y ]] = [Y, [X,Y ]] = 0.

Then

eXeY = eX+Y+ 1
2 [X,Y ].

This is the special case of (4.2) in which the series terminates after the [X,Y ]
term.

Proof. Let X and Y be as in the statement of the theorem. We will prove
that in fact

etXetY = exp

(
tX + tY +

t2

2
[X,Y ]

)
,

which reduces to the desired result in the case t = 1. Since by assumption [X,Y ]
commutes with everything in sight, the above relation is equivalent to

etXetY e−
t2

2 [X,Y ] = et(X+Y ).(4.4)

Let us call the left side of (4.4) A(t) and the right side B (t). Our strategy
will be to show that A (t) and B (t) satisfy the same differential equation, with the
same initial conditions. We can see right away that

dB

dt
= B (t) (X + Y ) .
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On the other hand, differentiating A (t) by means of the product rule gives

dA

dt
= etXXetY e−

t2

2 [X,Y ] + etXetY Y e−
t2

2 [X,Y ] + etXetY e−
t2

2 [X,Y ] (−t [X,Y ]) .

(4.5)

(You can verify that the last term on the right is correct by differentiating term-
by-term.)

Now, since X and Y commute with [X,Y ], they also commute with e−
t2

2 [X,Y ].
Thus the second term on the right in (4.5) can be rewritten as

etXetY e−
t2

2 [X,Y ]Y .

The first term on the right in (4.5) is more complicated, sinceX does not necessarily
commute with etY . However,

XetY = etY e−tYXetY

= etY Ad
(
e−tY

)
(X)

= etY e−tadY (X) .

But since [Y, [Y,X ]] = − [Y, [X,Y ]] = 0,

e−tadY (X) = X − t [Y,X ] = X + t [X,Y ]

with all higher terms being zero. Using the fact that everything commutes with

e−
t2

2 [X,Y ] gives

etXXetY e−
t2

2 [X,Y ] = etXetY e−
t2

2 [X,Y ] (X + t [X,Y ])

Making these substitutions into (4.5) gives

dA

dt
= etXetY e−

t2

2 [X,Y ] (X + t [X,Y ]) + etXetY e−
t2

2 [X,Y ]Y + etXetY e−
t2

2 [X,Y ] (−t [X,Y ])

= etXetY e−
t2

2 [X,Y ] (X + Y )

= A (t) (X + Y ) .

Thus A (t) and B (t) satisfy the same differential equation. Moreover, A (0) =
B (0) = I. Thus by standard uniqueness results for ordinary differential equations,
A (t) = B (t) for all t.

Theorem 4.2. Let H denote the Heisenberg group, and h its Lie algebra. Let

G be a matrix Lie group with Lie algebra g, and let φ̃ : h → g be a Lie algebra
homomorphism. Then there exists a unique Lie group homomorphism φ : H → G
such that

φ
(
eX
)

= eφ̃(X)

for all X ∈ h.

Proof. Recall that the Heisenberg group has the very special property that
its exponential mapping is one-to-one and onto. Let “log” denote the inverse of
this map. Define φ : H → G by the formula

φ (A) = eφ̃(logA).

We will show that φ is a Lie group homomorphism.



56 4. THE BAKER-CAMPBELL-HAUSDORFF FORMULA

If X and Y are in the Lie algebra of the Heisenberg group (3 × 3 strictly
upper-triangular matrices), then [X,Y ] is of the form




0 0 a
0 0 0
0 0 0


 ;

such a matrix commutes with both X and Y . That is, X and Y commute with

their commutator. Since φ̃ is a Lie algebra homomorphism, φ̃ (X) and φ̃ (Y ) will
also commute with their commutator:[

φ̃ (X) ,
[
φ̃ (X) , φ̃ (Y )

]]
= φ̃ ([X, [X,Y ]]) = 0

[
φ̃ (Y ) ,

[
φ̃ (X) , φ̃ (Y )

]]
= φ̃ ([Y, [X,Y ]]) = 0.

We want to show that φ is a homomorphism, i.e., that φ (AB) = φ (A)φ (B).
Well, A can be written as eX for a unique X ∈ h and B can be written as eY for a
unique Y ∈ h. Thus by Theorem 4.1

φ (AB) = φ
(
eXeY

)
= φ

(
eX+Y+ 1

2 [X,Y ]
)

.

Using the definition of φ and the fact that φ̃ is a Lie algebra homomorphism:

φ (AB) = exp

(
φ̃ (X) + φ̃ (Y ) +

1

2

[
φ̃ (X) , φ̃ (Y )

])
.

Finally, using Theorem 4.1 again we have

φ (AB) = eφ̃(X)eφ̃(Y ) = φ (A)φ (B) .

Thus φ is a group homomorphism. It is easy to check that φ is continuous (by

checking that log, exp, and φ̃ are all continuous), and so φ is a Lie group homo-

morphism. Moreover, φ by definition has the right relationship to φ̃. Furthermore,
since the exponential mapping is one-to-one and onto, there can be at most one φ

with φ
(
eX
)

= eφ̃(X). So we have uniqueness.

2. The General Baker-Campbell-Hausdorff Formula

The importance of the Baker-Campbell-Hausdorff formula lies not in the details
of the formula, but in the fact that there is one, and the fact that it gives log(eXeY )
in terms of brackets of X and Y , brackets of brackets, etc. This tells us something
very important, namely that (at least for elements of the form eX , X small) the
group product for a matrix Lie group G is completely expressible in terms of the Lie
algebra. (This is because log

(
eXeY

)
, and hence also eXeY itself, can be computed

in Lie-algebraic terms by (4.2).)
We will actually state and prove an integral form of the Baker-Campbell-

Hausdorff formula, rather than the series form (4.2). However, the integral form is
sufficient to obtain the desired result (4.3). (See Corollary 4.4.) The series form of
the Baker-Campbell-Hausdorff formula is stated precisely and proved in Varadara-
jan, Sec. 2.15.

Consider the function

g(z) =
log z

1 − 1
z

.
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This function is defined and analytic in the disk {|z − 1| < 1}, and thus for z in
this set, g(z) can be expressed as

g(z) =

∞∑

m=0

am(z − 1)m.

This series has radius of convergence one.
Now suppose V is a finite-dimensional complex vector space. Choose an arbi-

trary basis for V , so that V can be identified with Cn and thus the norm of a linear
operator on V can be defined. Then for any operator A on V with ‖A− I‖ < 1,
we can define

g(A) =

∞∑

m=0

am(A− 1)m.

We are now ready to state the integral form of the Baker-Campbell-Hausdorff for-
mula.

Theorem 4.3 (Baker-Campbell-Hausdorff). For all n×n complex matrices X
and Y with ‖X‖ and ‖Y ‖ sufficiently small,

log
(
eXeY

)
= X +

∫ 1

0

g(eadXetadY )(Y ) dt.(4.6)

Corollary 4.4. Let G be a matrix Lie group and g its Lie algebra. Suppose

that φ̃ : g → gl(n;C) is a Lie algebra homomorphism. Then for all sufficiently
small X,Y in g, log

(
eXeY

)
is in g, and

φ̃
[
log
(
eXeY

)]
= log

(
eφ̃(X)eφ̃(Y )

)
.(4.7)

Note that eadXetadY , and hence also g(eadXetadY ), is a linear operator on the
space gl(n; C) of all n×n complex matrices. In (4.6), this operator is being applied to
the matrix Y . The fact that X and Y are assumed small guarantees that eadXetadY

is close to the identity operator on gl(n; C) for all 0 ≤ t ≤ 1. This ensures that
g(eadXetadY ) is well defined.

IfX and Y commute, then we expect to have log
(
eXeY

)
= log(eX+Y ) = X+Y .

Exercise 3 asks you to verify that the Baker-Campbell-Hausdorff formula indeed
gives X + Y in that case.

Formula (4.6) is admittedly horrible-looking. However, we are interested not in
the details of the formula, but in the fact that it expresses log

(
eXeY

)
(and hence

eXeY ) in terms of the Lie-algebraic quantities adX and adY .
The goal of the Baker-Campbell-Hausdorff theorem is to compute log

(
eXeY

)
.

You may well ask, “Why don’t we simply expand both exponentials and the loga-
rithm in power series and multiply everything out?” Well, you can do this, and if
you do it for the first several terms you will get the same answer as B-C-H. However,
there is a serious problem with this approach, namely: How do you know that the
terms in such an expansion are expressible in terms of commutators? Consider for
example the quadratic term. It is clear that this will be a linear combination of X2,
Y 2, XY , and Y X . But to be expressible in terms of commutators it must actually
be a constant times (XY − Y X). Of course, for the quadratic term you can just
multiply it out and see, and indeed you get 1

2 (XY − Y X) = 1
2 [X,Y ]. But it is far

from clear how to prove that a similar result occurs for all the higher terms. See
Exercise 4.
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Proof. We begin by proving that the corollary follows from the integral form
of the Baker-Campbell-Hausdorff formula. The proof is conceptually similar to the
reasoning in Equation (4.3). Note that if X and Y lie in some Lie algebra g then
adX and adY will preserve g, and so also will g(eadXetadY )(Y ). Thus whenever
formula (4.6) holds, log

(
eXeY

)
will lie in g. It remains only to verify (4.7). The

idea is that if φ̃ is Lie algebra homomorphism, then it will take a big horrible looking
expression involving ‘ad’ and X and Y , and turn it into the same expression with

X and Y replaced by φ̃ (X) and φ̃ (Y ).

More precisely, since φ̃ is a Lie algebra homomorphism,

φ̃[Y,X ] = [φ̃(Y ), φ̃(X)]

or

φ̃ (adY (X)) = adφ̃ (Y )
(
φ̃ (X)

)
.

More generally,

φ̃ ((adY )n (X)) =
(
adφ̃ (Y )

)n (
φ̃ (X)

)
.

This being the case,

φ̃
(
eadY (X)

)
=

∞∑

m=0

tm

m!
φ̃ ((adY )

n
(X))

=
∞∑

m=0

tm

m!

(
adφ̃ (Y )

)n (
φ̃ (X)

)

= etadφ̃(Y )
(
φ̃(X)

)
.

Similarly,

φ̃
(
eadXetadY (X)

)
= eadφ̃(X)etadφ̃(Y )

(
φ̃(X)

)
.

Assume now that X and Y are small enough that B-C-H applies to X and Y , and

to φ̃(X) and φ̃(Y ). Then, using the linearity of the integral and reasoning similar
to the above, we have:

φ̃
(
log
(
eXeY

))
= φ̃(X) +

∫ 1

0

∞∑

m=0

amφ̃
[(
eadXetadY − I

)n
(X)

]
dt

= φ̃(X) +

∫ 1

0

∞∑

m=0

am

(
eadφ̃(X)etadφ̃(Y ) − I

)n
(φ̃(X)) dt

= log
(
eφ̃(X)eφ̃(Y )

)
.

This is what we wanted to show.

Before coming to the proof Baker-Campbell-Hausdorff formula itself, we will
obtain a result concerning derivatives of the exponential mapping. This result is
valuable in its own right, and will play a central role in our proof of the Baker-
Campbell-Hausdorff formula.

Observe that if X and Y commute, then

eX+tY = eXetY
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and so

d
dt

∣∣
t=0

eX+tY = eX d
dt

∣∣
t=0

etY = eXY .

In general, X and Y do not commute, and

d
dt

∣∣
t=0

eX+tY 6= eXY .

This, as it turns out, is an important point. In particular, note that in the language
of multivariate calculus

d
dt

∣∣
t=0

eX+tY =

{
directional derivative of exp at X ,
in the direction of Y

.(4.8)

Thus computing the left side of (4.8) is the same as computing all of the directional
derivatives of the (matrix-valued) function exp. We expect the directional derivative
to be a linear function of Y , for each fixed X .

Now, the function

1 − e−z

z
=

1 − (1 − z + z2

2! − · · · )
z

is an entire analytic function of z, even at z = 0, and is given by the power series

1 − e−z

z
=

∞∑

n=1

(−1)n−1 z
n−1

n!
= 1 − z

2!
+
z2

3!
− · · · .

This series (which has infinite radius of convergence), make sense when z is replaced
by a linear operator A on some finite-dimensional vector space.

Theorem 4.5 (Derivative of Exponential). Let X and Y be n×n complex ma-
trices. Then

d

dt

∣∣∣∣
t=0

eX+tY = eX
{
I − e−adX

adX
(Y )

}

= eX
{
Y − [X,Y ]

2!
+

[X, [X,Y ]]

3!
− · · ·

}
.(4.9)

More generally, if X (t) is a smooth matrix-valued function, then

d

dt

∣∣∣∣
t=0

eX(t) = eX(0)

{
I − e−adX(0)

adX(0)

(
dX
dt

∣∣
t=0

)}
.(4.10)

Note that the directional derivative in (4.9) is indeed linear in Y for each fixed
X . Note also that (4.9) is just a special case of (4.10), by taking X(t) = X + tY ,
and evaluating at t = 0.

Furthermore, observe that if X and Y commute, then only the first term in the
series (4.9) survives. In that case, we obtain d

dt

∣∣
t=0

eX+tY = eXY as expected.

Proof. It is possible to prove this Theorem by expanding everything in a
power series and differentiating term-by-term; we will not take that approach. We
will prove only form (4.9) of the derivative formula, but the form (4.10) follows by
the chain rule.

Let us use the Lie product formula, and let us assume for the moment that it
is legal to interchange limit and derivative. (We will consider this issue at the end.)
Then we have

e−X
d

dt

∣∣∣∣
t=0

eX+tY = e−X lim
n→∞

d

dt

∣∣∣∣
t=0

(
eX/netY/n

)n
.
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We now apply the product rule (generalized to n factors) to obtain

e−X
d

dt

∣∣∣∣
t=0

eX+tY = e−X lim
n→∞

n−1∑

k=0

[(
eX/netY/n

)n−k−1 (
eX/netY/nY/n

)(
eX/netY/n

)k]

t=0

= e−X lim
n→∞

n−1∑

k=0

(
eX/n

)n−k−1 (
eX/nY/n

)(
eX/n

)k

= lim
n→∞

1

n

n−1∑

k=0

(
eX/n

)−k
Y
(
eX/n

)k
.

But
(
eX/n

)−k
Y
(
eX/n

)k
=
[
Ad
(
e−X/n

)]k
(Y )

=
(
e−adX/n

)k
(Y )

(where we have used the relationship between Ad and ad). So we have

e−X
d

dt

∣∣∣∣
t=0

eX+tY = lim
n→∞

1

n

n−1∑

k=0

(
e−adX/n

)k
(Y ).(4.11)

Observe now that
∑n−1

k=0

(
e−adX/n

)k
is a geometric series. Let us now reason

for a moment at the purely formal level. Using the usual formula for geometric
series, we get

e−X
d

dt

∣∣∣∣
t=0

eX+tY = lim
n→∞

1

n

I −
(
e−adX/n

)n

I − e−adX/n
(Y )

= lim
n→∞

I − e−adX

n
[
I −

(
I − adX

n + (adX)2

n22! − · · ·
)] (Y )

= lim
n→∞

I − e−adX

adX − (adX)2

n2! + · · ·
(Y )

=
I − e−adX

adX
(Y ).

This is what we wanted to show!
Does this argument make sense at any rigorous level? In fact it does. As

usual, let us consider first the diagonalizable case. That is, assume that adX is
diagonalizable as an operator on gl(n; C), and assume that Y is an eigenvector for
adX . This means that adX(Y ) = [X,Y ] = λY , for some λ ∈ C. Now, there are
two cases, λ = 0 and λ 6= 0. The λ = 0 case corresponds to the case in which X
and Y commute, and we have already observed that the Theorem holds trivially in
that case.

The interesting case, then, is the case λ 6= 0. Note that (adX)
n

(Y ) = λnY ,
and so

(
e−adX/n

)k
(Y ) =

(
e−λ/n

)k
(Y ).

Thus the geometric series in (4.11) becomes an ordinary complex-valued series, with
ratio e−λ/n. Since λ 6= 0, this ratio will be different from one for all sufficiently
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large n. Thus we get

e−X
d

dt

∣∣∣∣
t=0

eX+tY =

(
lim
n→∞

1

n

I −
(
e−λ/n

)n

I − e−λ/n

)
Y .

There is now no trouble in taking the limit as we did formally above to get

e−X
d

dt

∣∣∣∣
t=0

eX+tY =
1 − e−λ

λ
Y

=
I − e−adX

adX
(Y ).

We see then that the Theorem holds in the case that adX is diagonalizable and
Y is an eigenvector of adX . If adX is diagonalizable but Y is not an eigenvector,
then Y is a linear combination of eigenvectors and applying the above computation
to each of those eigenvectors gives the desired result.

We need, then, to consider the case where adX is not diagonalizable. But
(Exercise 20), if X is a diagonalizable matrix, then adX will be diagonalizable
as an operator on gl(n; C). Since, as we have already observed, every matrix is
the limit of diagonalizable matrices, we are essentially done. For it is easy to see
by differentiating the power series term-by-term that e−X d

dt

∣∣
t=0

eX+tY exists and
varies continuously with X . Thus once we have the Theorem for all diagonalizable
X we have it for all X by passing to the limit.

The only unresolved issue, then, is the interchange of limit and derivative which
we performed at the very beginning of the argument. I do not want to spell this
out in detail, but let us see what would be involved in justifying this. A standard
theorem in elementary analysis says that if fn(t) → f(t) pointwise, and in addition
dfn/dt converges uniformly to some function g(t), then f(t) is differentiable and
df/dt = g(t). (E.g., Theorem 7.17 in W. Rudin’s Principles of Mathematical Anal-
ysis.) The key requirement is that the derivatives converge uniformly. Uniform
convergence of the fn’s themselves is definitely not sufficient.

In our case, fn(t) = e−X
(
eX/netY/n

)n
. The Lie product formula says that this

converges pointwise to e−XeX+tY . We need, then, to show that

d

dt
e−X

(
eX/netY/n

)n

converges uniformly to some g(t), say on the interval −1 ≤ t ≤ 1. This computation
is similar to what we did above, with relatively minor modifications to account for
the fact that we do not take t = 0 and to make sure the convergence is uniform.
This part of the proof is left as an exercise to the reader.

2.1. Proof of the Baker-Campbell-Hausdorff Formula. We now turn to
the proof of the Baker-Campbell-Hausdorff formula itself. Our argument follows
Miller, Sec. 5.1, with minor differences of convention. (Warning: Miller’s “Ad” is
what we call “ad.”) Define

Z(t) = log
(
eXetY

)

If X and Y are sufficiently small, then Z (t) is defined for 0 ≤ t ≤ 1. It is left as an
exercise to verify that Z(t) is smooth. Our goal is to compute Z(1).

By definition

eZ(t) = eXetY
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so that

e−Z(t) d

dt
eZ(t) =

(
eXetY

)−1
eXetY Y = Y .

On the other hand, by Theorem 4.5,

e−Z(t) d

dt
eZ(t) =

{
I − e−adZ(t)

adZ(t)

}(
dZ

dt

)
.

Hence
{
I − e−adZ(t)

adZ(t)

}(
dZ

dt

)
= Y .

IfX and Y are small enough, then Z(t) will also be small, so that
(
I − e−adZ(t)

)
/adZ(t)

will be close to the identity and thus invertible. So

dZ

dt
=

{
I − e−adZ(t)

adZ(t)

}−1

(Y ).(4.12)

Recall that eZ(t) = eXetY . Applying the homomorphism ‘Ad’ gives

Ad
(
eZ(t)

)
= Ad

(
eX
)
Ad
(
etY
)
.

By the relationship (3.17) between ‘Ad’ and ‘ad,’ this becomes

eadZ(t) = eadXetadY

or

adZ(t) = log
(
eadXetadY

)
.

Plugging this into (4.12) gives

dZ

dt
=

{
I −

(
eadXetadY

)−1

log (eadXetadY )

}−1

(Y ).(4.13)

But now observe that

g(z) =

{
1 − z−1

log z

}−1

so, formally, (4.13) is the same as

dZ

dt
= g

(
eadXetadY

)
(Y ).(4.14)

Reasoning as in the proof of Theorem 4.5 shows easily that this formal argument
is actually correct.

Now we are essentially done, for if we note that Z(0) = X and integrate (4.14),
we get

Z(1) = X +

∫ 1

0

g(eadXetadY )(Y ) dt

which is the Baker-Campbell-Hausdorff formula.
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3. The Series Form of the Baker-Campbell-Hausdorff Formula

Let us see how to get the first few terms of the series form of B-C-H from the
integral form. Recall the function

g (z) =
z log z

z − 1

=
[1 + (z − 1)]

[
(z − 1) − (z−1)2

2 + (z−1)3

3 · · ·
]

(z − 1)

= [1 + (z − 1)]

[
1 − z − 1

2
+

(z − 1)
2

3

]
.

Multiplying this out and combining terms gives

g (z) = 1 +
1

2
(z − 1) − 1

6
(z − 1)

2
+ · · · .

The closed-form expression for g is

g (z) = 1 +

∞∑

n=1

(−1)
n+1

n (n+ 1)
(z − 1)

n
.

Meanwhile

eadXetadY − I =

(
I + adX +

(adX)
2

2
+ · · ·

)(
I + tadY +

t2 (adY )
2

2
+ · · ·

)
− I

= adX + tadY + tadXadY +
(adX)

2

2
+
t2 (adY )

2

2
+ · · · .

The crucial observation here is that eadXetadY − I has no zero-order term, just
first-order and higher in adX/adY . Thus

(
eadXetadY − I

)n
will contribute only

terms of degree n or higher in adX/adY .
We have, then, up to degree two in adX/adY

g
(
eadXetadY

)
= I +

1

2

[
adX + tadY + tadXadY +

(adX)
2

2
+
t2 (adY )

2

2
+ · · ·

]

− 1

6
[adX + tadY + · · · ]2

= I +
1

2
adX +

t

2
adY +

t

2
adXadY +

(adX)
2

4
+
t2 (adY )

2

4

− 1

6

[
(adX)

2
+ t2 (adY )

2
+ tadXadY + tadY adX

]

+ higher-order terms.

We now to apply g
(
eadXetadY

)
to Y and integrate. So (neglecting higher-order

terms) by B-C-H, and noting that any term with adY acting first is zero:

log
(
eXeY

)

= X +

∫ 1

0

[
Y +

1

2
[X,Y ] +

1

4
[X, [X,Y ]] − 1

6
[X, [X,Y ]] − t

6
[Y, [X,Y ]]

]
dt

= X + Y +
1

2
[X,Y ] +

(
1

4
− 1

6

)
[X, [X,Y ]] − 1

6

∫ 1

0

t dt [Y, [X,Y ]] .
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Thus if we do the algebra we end up with

log
(
eXeY

)
= X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]] − 1

12
[Y, [X,Y ]]

+ higher order terms.

This is the expression in (4.2).

4. Subgroups and Subalgebras

Suppose that G is a matrix Lie group, H another matrix Lie group, and suppose
that H ⊂ G. Then certainly the Lie algebra h of H will be a subalgebra of the Lie
algebra g of G. Does this go the other way around? That is given a Lie group G
with Lie algebra g, and a subalgebra h of g, is there a matrix Lie group H whose
Lie algebra is h?

In the case of the Heisenberg group, the answer is yes. This is easily seen using
the fact that the exponential mapping is one-to-one and onto, together with the
special form of the Baker-Campbell-Hausdorff formula. (See Exercise 6.)

Unfortunately, the answer in general is no. For example, let G = GL (2; C) and
let

h =

{(
it 0
0 ita

)∣∣∣∣ t ∈ R

}
,

where a is irrational. If there is going to be a matrix Lie group H with Lie algebra
h, then H would contain the set

H0 =

{(
eit 0
0 eita

)∣∣∣∣ t ∈ R

}
.

To be a matrix Lie group, H would have to be closed in GL (2; C), and so it would
contain the closure of H0, which (see ) is the set

H1 =

{(
eit 0
0 eis

)∣∣∣∣ s, t ∈ R

}
.

But then the Lie algebra of H would have to contain the Lie algebra of H1, which
is two-dimensional!

Fortunately, all is not lost. We can still get a subgroup H for each subalgebra
h, if we weaken the condition that H be a matrix Lie group. In the above example,
the subgroup we want is H0, despite the fact that H0 is not a matrix Lie group.

Definition 4.6. If H is any subgroup of GL (n; C), define the Lie algebra h of
H to be the set of all matrices X such that

etX ∈ H

for all real t.

Definition 4.7. If G is a matrix Lie group with Lie algebra g, then H is a
connected Lie subgroup of G if

i) H is a subgroup of G
ii) H is connected
iii) the Lie algebra h of H is a subspace of g

iv) Every element of H can be written in the form eX1eX2 · · · eXn , with X1, · · · , Xn ∈
h.
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Theorem 4.8. If G is a matrix Lie group with Lie algebra g, and H is a
connected Lie subgroup of G, then the Lie algebra h of H is a subalgebra of g.

Proof. Since by definition h is a subspace of g, it remains only to show that
h is closed under brackets. So assume X,Y ∈ h. Then etX and esY are in H , and
so (since H is a subgroup) is the element

etXesY e−tX = exp
[
s
(
etXY e−tX

)]
.

This shows that etXY e−tX is in h for all t. But h is a subspace of g, which is
necessarily a closed subset of g. Thus

[X,Y ] =
d

dt

∣∣∣∣
t=0

etXY e−tX = lim
h→0

(
ehXY e−hX − Y

)

h

is in h. (This argument is precisely the one we used to show that the Lie algebra
of a matrix Lie group is a closed under brackets, once we had established that it is
a subspace.)

We are now ready to state the main theorem of this section, which is our second
major application of the Baker-Campbell-Hausdorff formula.

Theorem 4.9. Let G be a matrix Lie group with Lie algebra g. Let h be a Lie
subalgebra of g. Then there exists a unique connected Lie subgroup H of G such
that the Lie algebra of H is h.

Given a matrix Lie group G and a subalgebra h of g, the associated connected
Lie subgroup H might be a matrix Lie group. This will happen precisely if H
is a closed subset of G. There are various conditions under which you can prove
that H is closed. For example, if G = GL (n; C), and h is semisimple, then H is
automatically closed, and hence a matrix Lie group. (See Helgason, Chapter II,
Exercises and Further Results, D.)

If only the Baker-Campbell-Hausdorff formula worked globally instead of only
locally the proof of this theorem would be easy. If the B-C-H formula converged
for all X,Y we could just define H to be the image of h under the exponential
mapping. In that case B-C-H would show that this image is a subgroup, since then
we would have eH1eH2 = eZ , with Z = H1 + H2 + 1

2 [H1, H2] + · · · ∈ h provided
that H1, H2 ∈ h. Unfortunately, the B-C-H formula is not convergent in general,
and in general the image of H under the exponential mapping is not a subgroup.

Proof. Not written at this time.

5. Exercises

1. The center of a Lie algebra g is defined to be the set of all X ∈ g such that
[X,Y ] = 0 for all Y ∈ g. Now consider the Heisenberg group

H =








1 a b
0 1 c
0 0 1


 |a, b, c ∈ R





with Lie algebra

h =








0 α β
0 0 γ
0 0 0


 |α, β, γ ∈ R



 .
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Determine the center Z(h) of h. For any X,Y ∈ h, show that [X,Y ] ∈
Z(h). This implies, in particular that both X and Y commute with their
commutator [X,Y ].

Show by direct computation that for any X,Y ∈ h,

eXeY = eX+Y+
1
2 [X,Y ].(4.15)

2. Let X be a n× n complex matrix. Show that

I − e−X

X
is invertible if and only if X has no eigenvalue of the form λ = 2πin, with n
an non-zero integer.

Hint : When is (1 − e−z) /z equal to zero?
Remark : This exercise, combined with the formula in Theorem 4.5,

gives the following result (in the language of differentiable manifolds): The
exponential mapping exp : g → G is a local diffeomorphism near X ∈ g if
and only adX has no eigenvalue of the form λ = 2πin, with n a non-zero
integer.

3. Verify that the right side of the Baker-Campbell-Hausdorff formula (4.6)
reduces to X + Y in the case that X and Y commute.

Hint : Compute first eadXetadY (Y ) and
(
eadXetadY − I

)
(Y ).

4. Compute log
(
eXeY

)
through third order in X/Y by using the power series

for the exponential and the logarithm. Show that you get the same answer
as the Baker-Campbell-Hausdorff formula.

5. Using the techniques in Section 3, compute the series form of the Baker-
Campbell-Hausdorff formula up through fourth-order brackets. (We have
already computed up through third-order brackets.)

6. Let a be a subalgebra of the Lie algebra of the Heisenberg group. Show that
exp (a) is a connected Lie subgroup of the Heisenberg group. Show that in
fact exp (a) is a matrix Lie group.

7. Show that every connected Lie subgroup of SU (2) is closed. Show that this
is not the case for SU (3).



CHAPTER 5

Basic Representation Theory

1. Representations

Definition 5.1. Let G be a matrix Lie group. Then a finite-dimensional

complex representation of G is a Lie group homomorphism

Π : G→ GL(n; C)

(n ≥ 1) or more generally a Lie group homomorphism

Π : G→ GL(V )

where V is a finite-dimensional complex vector space (with dim(V ) ≥ 1). A finite-

dimensional real representation of G is a Lie group homomorphism Π of G
into GL(n; R) or into GL(V ), where V is a finite-dimensional real vector space.

If g is a real or complex Lie algebra, then a finite-dimensional complex

representation of g is a Lie algebra homomorphism π of g into gl(n; C) or into
gl(V ), where V is a finite-dimensional complex vector space. If g is a real Lie
algebra, then a finite-dimensional real representation of g is a Lie algebra
homomorphism π of g into gl(n; R) or into gl(V ).

If Π or π is a one-to-one homomorphism, then the representation is called
faithful.

You should think of a representation as a (linear) action of a group or Lie
algebra on a vector space. (Since, say, to every g ∈ G there is associated an
operator Π(g), which acts on the vector space V .) In fact, we will use terminology
such as, “Let Π be a representation of G acting on the space V .” Even if g is a real
Lie algebra, we will consider mainly complex representations of g. After making a
few more definitions, we will discuss the question of why one should be interested
in studying representations.

Definition 5.2. Let Π be a finite-dimensional real or complex representation
of a matrix Lie group G, acting on a space V . A subspace W of V is called
invariant if Π(A)w ∈ W for all w ∈W and all A ∈ G. An invariant subspace W
is called non-trivial if W 6= {0} and W 6= V . A representation with no non-trivial
invariant subspaces is called irreducible.

The terms invariant, non-trivial, and irreducible are defined analogously
for representations of Lie algebras.

Definition 5.3. Let G be a matrix Lie group, let Π be a representation of
G acting on the space V , and let Σ be a representation of G acting on the space
W . A linear map φ : V → W is called a morphism (or intertwining map) of
representations if

φ(Π(A)v) = Σ(A)φ(v)

67
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for all A ∈ G and all v ∈ V . The analogous property defines morphisms of repre-
sentations of a Lie algebra.

If φ is a morphism of representations, and in addition φ is invertible, then
φ is said to be an isomorphism of representations. If there exists an isomor-
phism between V and W , then the representations are said to be isomorphic (or
equivalent).

Two isomorphic representations should be regarded as being “the same” rep-
resentation. A typical problem in representation theory is to determine, up to
isomorphism, all the irreducible representations of a particular group or Lie alge-
bra. In Section 5.4 we will determine all the finite-dimensional complex irreducible
representations of the Lie algebra su(2).

Proposition 5.4. Let G be a matrix Lie group with Lie algebra g, and let Π
be a (finite-dimensional real or complex) representation of G, acting on the space
V . Then there is a unique representation π of g acting on the same space such that

Π(eX) = eπ(X)

for all X ∈ g. The representation π can be computed as

π(X) =
d

dt

∣∣∣∣
t=0

Π
(
etX
)

and satisfies

π
(
AXA−1

)
= Π(A)π(X)Π(A)−1

for all X ∈ g and all A ∈ G.

Proof. Theorem 3.18 in Chapter 3 states that for each Lie group homomor-

phism φ : G → H there is an associated Lie algebra homomorphism φ̃ : g → h.
Take H = GL(V ) and φ = Π. Since the Lie algebra of GL(V ) is gl(V ) (since the ex-
ponential of any operator is invertible), the associated Lie algebra homomorphism

φ̃ = π maps from g to gl(V ), and so constitutes a representation of g.

The properties of π follow from the properties of φ̃ given in Theorem 6.

Proposition 5.5. Let g be a real Lie algebra, and gC its complexification.
Then every finite-dimensional complex representation π of g has a unique extension
to a (complex-linear) representation of gC, also denoted π. The representation of
gC satisfies

π(X + iY ) = π(X) + iπ(Y )

for all X ∈ g.

Proof. This follows from Exercise 14 of Chapter 3.

Definition 5.6. Let G be a matrix Lie group, let H be a Hilbert space, and
let U(H) denote the group of unitary operators on H. Then a homomorphism
Π : G→ U(H) is called a unitary representation of G if Π satisfies the following
continuity condition: If An, A ∈ G and An → A, then

Π(An)v → Π(A)v

for all v ∈ H. A unitary representation with no non-trivial closed invariant sub-
spaces is called irreducible.
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This continuity condition is called strong continuity. One could require the
even stronger condition that ‖Π(An) − Π(A)‖ → 0, but this turns out to be too
stringent a requirement. (That is, most of the interesting representations of G will
not have this stronger continuity condition.) In practice, any homomorphism of G
into U(H) you can write down explicitly will be strongly continuous.

One could try to define some analog of unitary representations for Lie alge-
bras, but there are serious technical difficulties associated with getting the “right”
definition.

2. Why Study Representations?

If a representation Π is a faithful representation of a matrix Lie group G, then
{Π(A) |A ∈ G} is a group of matrices which is isomorphic to the original group G.
Thus Π allows us to represent G as a group of matrices. This is the motivation for
the term representation. (Of course, we still call Π a representation even if it is not
faithful.)

Despite the origin of the term, the point of representation theory is not (at
least in this course) to represent a group as a group of matrices. After all, all of
our groups are already matrix groups! While it might seem redundant to study
representations of a group which is already represented as a group of matrices, this
is precisely what we are going to do.

The reason for this is that a representation can be thought of (as we have
already noted) as an action of our group on some vector space. Such actions (rep-
resentations) arise naturally in many branches of both mathematics and physics,
and it is important to understand them.

A typical example would be a differential equation in three-dimensional space
which has rotational symmetry. If the equation has rotational symmetry, then the
space of solutions will be invariant under rotations. Thus the space of solutions will
constitute a representation of the rotation group SO(3). If you know what all of the
representations of SO(3) are, this can help immensely in narrowing down what the
space of solutions can be. (As we will see, SO(3) has lots of other representations
besides the obvious one in which SO(3) acts on R3.)

In fact, one of the chief applications of representation theory is to exploit sym-
metry. If a system has symmetry, then the set of symmetries will form a group, and
understanding the representations of the symmetry group allows you to use that
symmetry to simplify the problem.

In addition, studying the representations of a group G (or of a Lie algebra g)
can give information about the group (or Lie algebra) itself. For example, if G
is a finite group, then associated to G is something called the group algebra.
The structure of this group algebra can be described very nicely in terms of the
irreducible representations of G.

In this course, we will be interested primarily in computing the finite-dimensional
irreducible complex representations of matrix Lie groups. As we shall see, this
problem can be reduced almost completely to the problem of computing the finite-
dimensional irreducible complex representations of the associated Lie algebra. In
this chapter, we will discuss the theory at an elementary level, and will consider in
detail the example of SO(3) and SU(2). In Chapter 6, we will study the represen-
tations of SU(3), which is substantially more involved than that of SU(2), and give
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an overview of the representation theory of a very important class of Lie groups,
namely, the semisimple ones.

3. Examples of Representations

3.1. The Standard Representation. A matrix Lie group G is by definition
a subset of some GL(n; R) or GL(n; C). The inclusion map of G into GL(n) (i.e.,
Π(A) = A) is a representation of G, called the standard representation of G.
Thus for example the standard representation of SO(3) is the one in which SO(3)
acts in the usual way on R3. If G is a subgroup of GL(n; R) or GL(n; C), then its
Lie algebra g will be a subalgebra of gl(n; R) or gl(n; C). The inclusion of g into
gl(n; R) or gl(n; C) is a representation of g, called the standard representation.

3.2. The Trivial Representation. Consider the one-dimensional complex
vector space C. Given any matrix Lie group G, we can define the trivial repre-
sentation of G, Π : G→ GL(1; C), by the formula

Π(A) = I

for all A ∈ G. Of course, this is an irreducible representation, since C has no non-
trivial subspaces, let alone non-trivial invariant subspaces. If g is a Lie algebra, we
can also define the trivial representation of g, π : g → gl(1; C), by

π(X) = 0

for all X ∈ g. This is an irreducible representation.

3.3. The Adjoint Representation. Let G be a matrix Lie group with Lie
algebra g. We have already defined the adjoint mapping

Ad : G→ GL(g)

by the formula

AdA(X) = AXA−1.

Recall that Ad is a Lie group homomorphism. Since Ad is a Lie group homomor-
phism into a group of invertible operators, we see that in fact Ad is a representation
of G, acting on the space g. Thus we can now give Ad its proper name, the adjoint
representation of G. The adjoint representation is a real representation of G.

Similarly, if g is a Lie algebra, we have

ad : g → gl(g)

defined by the formula

adX(Y ) = [X,Y ].

We know that ad is a Lie algebra homomorphism (Chapter 3, Proposition 3.33), and
is therefore a representation of g, called the adjoint representation. In the case
that g is the Lie algebra of some matrix Lie group G, we have already established
(Chapter 3, Proposition 3.21 and Exercise 13) that Ad and ad are related as in
Proposition 5.4.

Note that in the case of SO(3) the standard representation and the adjoint
representation are both three dimensional real representations. In fact these two
representations are equivalent (Exercise 4).
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3.4. Some Representations of SU(2). Consider the space Vm of homoge-
neous polynomials in two complex variables with total degree m (m ≥ 0). That is,
Vm is the space of functions of the form

f(z1, z2) = a0z
m
1 + a1z

m−1
1 z2 + a2z

m−2
1 z2

2 · · · + amz
m
2(5.1)

with z1, z2 ∈ C and the ai’s arbitrary complex constants. The space Vm is an
(m+ 1)-dimensional complex vector space.

Now by definition an element U of SU(2) is a linear transformation of C2. Let
z denote the pair z = (z1, z2) in C2. Then we may define a linear transformation
Πm(U) on the space Vm by the formula

[Πm(U)f ] (z) = f(U−1z).(5.2)

Explicitly, if f is as in (5.1), then

[Πm(U)f ] (z1, z2) =
m∑

k=0

ak
(
U−1

11 z1 + U−1
12 z2

)m−k (
U−1

21 z1 + U−1
22 z2

)k
.

By expanding out the right side of this formula we see that Πm(U)f is again a
homogeneous polynomial of degree m. Thus Πm(U) actually maps Vm into Vm.

Now, compute

Πm (U1) [Πm (U2) f ] (z) = [Πm (U2) f ] (U−1
1 z) = f

(
U−1

2 U−1
1 z

)

= Πm (U1U2) f(z).

Thus Πm is a (finite-dimensional complex) representation of SU(2). (It is very
easy to do the above computation incorrectly.) The inverse in definition (5.2)
is necessary in order to make Πm a representation. It turns out that each of
the representations Πm of SU(2) is irreducible, and that every finite-dimensional
irreducible representation of SU(2) is equivalent to one (and only one) of the Πm’s.
(Of course, no two of the Πm’s are equivalent, since they don’t even have the same
dimension.)

Let us now compute the corresponding Lie algebra representation πm. Accord-
ing to Proposition 5.4, πm can be computed as

πm(X) =
d

dt

∣∣∣∣
t=0

Πm

(
etX
)
.

So

(πm(X)f) (z) =
d

dt

∣∣∣∣
t=0

f
(
e−tXz

)
.

Now let z(t) be the curve in C2 defined as z(t) = e−tXz, so that z(0) = z. Of
course, z(t) can be written as z(t) = (z1(t), z2(t)), with zi(t) ∈ C. By the chain
rule,

πm(X)f =
∂f

∂z1

dz1
dt

∣∣∣∣
t=0

+
∂f

∂z2

dz2
dt

∣∣∣∣
t=0

.

But dz/dt|t=0 = −Xz, so we obtain the following formula for πm(X)

πm(X)f = − ∂f

∂z1
(X11z1 +X12z2) −

∂f

∂z2
(X21z1 +X22z2) .(5.3)

Now, according to Proposition 5.5, every finite-dimensional complex represen-
tation of the Lie algebra su(2) extends uniquely to a complex-linear representation
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of the complexification of su(2). But the complexification of su(2) is (isomorphic
to) sl(2; C) (Chapter 3, Proposition 3.36). To see that this is so, note that sl(2; C)
is the space of all 2 × 2 complex matrices with trace zero. But if X is in sl(2; C),
then

X =
X −X∗

2
+
X +X∗

2
=
X −X∗

2
+ i

X +X∗

2i

where both (X−X∗)/2 and (X+X∗)/2i are in su(2). (Check!) It is easy to see that
this decomposition is unique, so that every X ∈ sl(2; C) can be written uniquely as
X = X1 + iY1 with X1, Y1 ∈ su(2). Thus sl(2; C) is isomorphic as a vector space to
su(2)C. But this is in fact an isomorphism of Lie algebras, since in both cases

[X1 + iY1, X2 + iY2] = [X1, X2] − [Y1, Y2] + i ([X1, Y2] + [X2, Y1]) .

(See Exercise 5.)
So, the representation πm of su(2) given by (5.3) extends to a representation

of sl(2; C), which we will also call πm. I assert that in fact formula (5.3), still holds
for X ∈ sl(2; C). Why is this? Well, (5.3) is undoubtedly (complex) linear, and it
agrees with the original πm for X ∈ su(2). But there is only one complex linear
extension of πm from su(2) to sl(2; C), so this must be it!

So, for example, consider the element

H =

(
1 0
0 −1

)

in the Lie algebra sl(2; C). Applying formula (5.3) gives

(πm(H)f) (z) = − ∂f

∂z1
z1 +

∂f

∂z2
z2.

Thus we see that

πm(H) = −z1
∂

∂z1
+ z2

∂

∂z2
.(5.4)

Applying πm(H) to a basis element zk1z
m−k
2 we get

πm(H)zk1 z
m−k
2 = −kzk1zm−k

2 + (m− k)zk1z
m−k
2 = (m− 2k)zk1z

m−k
2 .

Thus zk1z
m−k
2 is an eigenvector for πm(H) with eigenvalue (m− 2k). In particular,

πm(H) is diagonalizable.
Let X and Y be the elements

X =

(
0 1
0 0

)
; Y =

(
0 0
1 0

)

in sl(2; C). Then (5.3) tells us that

πm(X) = −z2 ∂
∂z1

; πm(Y ) = −z1 ∂
∂z2

so that

πm(X)zk1z
m−k
2 = −kzk−1

1 zm−k+1
2

πm(Y )zk1z
m−k
2 = (k −m)zk+1

1 zm−k−1
2 .(5.5)

Proposition 5.7. The representation πm is an irreducible representation of
sl(2; C).
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Proof. It suffices to show that every non-zero invariant subspace of Vm is in
fact equal to Vm. So let W be such a space. Since W is assumed non-zero, there is
at least one non-zero element w in W . Then w can be written uniquely in the form

w = a0z
m
1 + a1z

m−1
1 z2 + a2z

m−2
1 z2

2 · · · + amz
m
2

with at least one of the ak’s non-zero. Let k0 be the largest value of k for which
ak 6= 0, and consider

πm(X)k0w.

Since (by (5.5)) each application of πm(X) lowers the power of z1 by 1, πm(X)k0

will kill all the terms in w whose power of z1 is less than k0, that is, all except the
ak0z

k0
1 zm−k0

2 term. On the other hand, we compute easily that

πm(X)k0
(
ak0z

k0
1 zm−k0

2

)
= k0!(−1)k0ak0z

m
2 .

We see, then, that πm(X)k0w is a non-zero multiple of zm2 . Since W is assumed
invariant, W must contain this multiple of zm2 , and so also zm2 itself.

But now it follows from (5.5) that πm(Y )kzm2 is a non-zero multiple of zk1z
m−k
2 .

Therefore W must also contain zk1z
m−k
2 for all 0 ≤ k ≤ m. Since these elements

form a basis for Vm, we see that in fact W = Vm, as desired.

3.5. Two Unitary Representations of SO(3). Let H = L2(R3, dx). For
each R ∈ SO(3), define an operator Π1(R) on H by the formula

[Π1(R)f ] (x) = f
(
R−1x

)
.

Since Lebesgue measure dx is rotationally invariant, Π1(R) is a unitary operator
for each R ∈ SO(3). The calculation of the previous subsection shows that the
map R → Π1(R) is a homomorphism of SO(3) into U(H). This map is strongly
continuous, and hence constitutes a unitary representation of SO(3).

Similarly, we may consider the unit sphere S2 ⊂ R3, with the usual surface
measure Ω. Of course, any R ∈ SO(3) maps S2 into S2. For each R we can define
Π2(R) acting on L2(S2, dΩ) by

[Π2(R)f ] (x) = f
(
R−1x

)
.

Then Π2 is a unitary representation of SO(3).
Neither of the unitary representations Π1 and Π2 is irreducible. In the case of

Π2, L
2(S2, dΩ) has a very nice decomposition as the orthogonal direct sum of finite-

dimensional invariant subspaces. This decomposition is the theory of “spherical
harmonics,” which are well known in the physics (and mathematics) literature.

3.6. A Unitary Representation of the Reals. Let H = L2(R, dx). For
each a ∈ R, define Ta : H → H by

(Taf) (x) = f(x− a).

Clearly Ta is a unitary operator for each a ∈ R, and clearly TaTb = Ta+b. The
map a → Ta is strongly continuous, so T is a unitary representation of R. This
representation is not irreducible. The theory of the Fourier transform allows you
to determine all the closed, invariant subspaces of H (W. Rudin, Real and Complex
Analysis, Theorem 9.17).
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3.7. The Unitary Representations of the Real Heisenberg Group.
Consider the Heisenberg group

H =








1 a b
0 1 c
0 0 1


 |a, b, c ∈ R



 .

Now consider a real, non-zero constant, which for reasons of historical convention
we will call ~ (“aitch-bar”). Now for each ~ ∈ R\{0}, define a unitary operator Π~

on L2(R, dx) by

Π~




1 a b
0 1 c
0 0 1


 f = e−i~bei~cxf(x− a).(5.6)

It is clear that the right side of (5.6) has the same norm as f , so Π~ is indeed
unitary.

Now compute

Π~




1 ã b̃
0 1 c̃
0 0 1


Π~




1 a b
0 1 c
0 0 1


 f

= e−i~b̃ei~c̃xe−i~bei~c(x−ã)f(x− ã− a)

= e−i~(̃b+b+cã)ei~(c̃+c)xf (x− (ã+ a)) .

This shows that the map A→ Π~(A) is a homomorphism of the Heisenberg group
into U

(
L2(R)

)
. This map is strongly continuous, and so Π~ is a unitary represen-

tation of H .
Note that a typical unitary operator Π~(A) consists of first translating f , then

multiplying f by the function ei~cx, and then multiplying f by the constant e−i~b.
Multiplying f by the function ei~cx has the effect of translating the Fourier trans-
form of f , or in physical language, “translating f in momentum space.” Now,
if U1 is an ordinary translation and U2 is a translation of the Fourier transform
(i.e., U2 = multiplication by some ei~cx), then U1 and U2 will not commute, but
U1U2U

−1
1 U−1

2 will be simply multiplication by a constant of absolute value one.
Thus {Π~(A) |A ∈ H } is the group of operators on L2(R) generated by ordinary
translations and translations in Fourier space. It is this representation of the Heisen-
berg group which motivates its name. (See also Exercise 10.)

It follows fairly easily from standard Fourier transform theory (e.g., W. Rudin,
Real and Complex Analysis, Theorem 9.17) that for each ~ ∈ R\{0} the repre-
sentation Π~ is irreducible. Furthermore, these are (up to equivalence) almost all
of the irreducible unitary representations of H . The only remaining ones are the
one-dimensional representations Πα,β

Πα,β




1 a b
0 1 c
0 0 1


 = ei(αa+βc)I

with α, β ∈ R. (The Πα,β ’s are the irreducible unitary representations in which
the center of H acts trivially.) The fact that Π~’s and the Πα,β ’s are all of the
(strongly continuous) irreducible unitary representations of H is closely related
to the celebrated Stone-Von Neumann theorem in mathematical physics. See, for
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example, M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol.
3, Theorem XI.84. See also Exercise 11.

4. The Irreducible Representations of su(2)

In this section we will compute (up to equivalence) all the finite-dimensional
irreducible complex representations of the Lie algebra su(2). This computation is
important for several reasons. In the first place, su(2) ∼= so(3), and the repre-
sentations of so(3) are of physical significance. (The computation we will do here
is found in every standard textbook on quantum mechanics, under the heading
“angular momentum.”) In the second place, the representation theory of su(2) is
an illuminating example of how one uses commutation relations to determine the
representations of a Lie algebra. In the third place, in determining the represen-
tations of general semisimple Lie algebras (Chapter 6), we will explicitly use the
representation theory of su(2).

Now, every finite-dimensional complex representation π of su(2) extends by
Prop. 5.5 to a complex-linear representation (also called π) of the complexification
of su(2), namely sl(2; C).

Proposition 5.8. Let π be a complex representation of su(2), extended to a
complex-linear representation of sl(2; C). Then π is irreducible as a representation
of su(2) if and only if it is irreducible as a representation of sl(2; C).

Proof. Let us make sure we are clear about what this means. Suppose that
π is a complex representation of the (real) Lie algebra su(2), acting on the com-
plex space V . Then saying that π is irreducible means that there is no non-trivial
invariant complex subspace W ⊂ V . That is, even though su(2) is a real Lie alge-
bra, when considering complex representations we are interested only in complex
invariant subspaces.

Now, suppose that π is irreducible as a representation of su(2). If W is a
(complex) subspace of V which is invariant under sl(2; C), then certainly W is
invariant under su(2) ⊂ sl(2; C). Therefore W = {0} or W = V . Thus π is
irreducible as a representation of sl(2; C).

On the other hand, suppose that π is irreducible as a representation of sl(2; C),
and suppose that W is a (complex) subspace of V which is invariant under su(2).
ThenW will also be invariant under π(X+iY ) = π(X)+iπ(Y ), for allX,Y ∈ su(2).
Since every element of sl(2; C) can be written as X + iY , we conclude that in fact
W is invariant under sl(2; C). Thus W = {0} or W = V , so π is irreducible as a
representation of su(2).

We see, then that studying the irreducible representations of su(2) is equivalent
to studying the irreducible representations of sl(2; C). Passing to the complexified
Lie algebra makes our computations easier.

We will use the following basis for sl(2; C):

H =

(
1 0
0 −1

)
; X =

(
0 1
0 0

)
; Y =

(
0 0
1 0

)

which have the commutation relations

[H,X ] = 2X
[H,Y ] = −2Y
[X,Y ] = H

.
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If V is a (finite-dimensional complex) vector space, and A,B, and C are operators
on V satisfying

[A,B] = 2B
[A,C] = −2C
[B,C] = A

then because of the skew-symmetry and bilinearity of brackets, the linear map
π : sl(2; C) → gl(V ) satisfying

π(H) = A; π(X) = B; π(Y ) = C

will be a representation of sl(2; C).

Theorem 5.9. For each integer m ≥ 0, there is an irreducible representation
of sl(2; C) with dimension m+1. Any two irreducible representations of sl(2; C) with
the same dimension are equivalent. If π is an irreducible representation of sl(2; C)
with dimension m + 1, then π is equivalent to the representation πm described in
Section 3.

Proof. Let π be an irreducible representation of sl(2; C) acting on a (finite-
dimensional complex) space V . Our strategy is to diagonalize the operator π(H).
Of course, a priori, we don’t know that π(H) is diagonalizable. However, because
we are working over the (algebraically closed) field of complex numbers, π(H) must
have at least one eigenvector.

Proof. The following lemma is the key to the entire proof.

Lemma 5.10. Let u be an eigenvector of π(H) with eigenvalue α ∈ C. Then

π(H)π(X)u = (α + 2)π(X)u.

Thus either π(X)u = 0, or else π(X)u is an eigenvector for π(H) with eigenvalue
α+ 2. Similarly,

π(H)π(Y )u = (α− 2)π(Y )u

so that either π(Y )u = 0, or else π(Y )u is an eigenvector for π(H) with eigenvalue
α− 2.

Proof. We call π(X) the “raising operator,” because it has the effect of raising
the eigenvalue of π(H) by 2, and we call π(Y ) the “lowering operator.” We know
that [π(H), π(X)] = π ([H,X ]) = 2π(X). Thus

π(H)π(X) − π(X)π(H) = 2π(X)

or

π(H)π(X) = π(X)π(H) + 2π(X).

Thus

π(H)π(X)u = π(X)π(H)u + 2π(X)u

= π(X) (αu) + 2π(X)u

= (α+ 2)π(X)u.

Similarly, [π(H), π(Y )] = −2π(Y ), and so

π(H)π(Y ) = π(Y )π(H) − 2π(Y )
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so that

π(H)π(Y )u = π(Y )π(H)u− 2π(Y )u

= π(Y ) (αu) − 2π(Y )u

= (α− 2)π(Y )u.

This is what we wanted to show.

As we have observed, π(H) must have at least one eigenvector u (u 6= 0), with
some eigenvalue α ∈ C. By the lemma,

π(H)π(X)u = (α+ 2)π(X)u

and more generally

π(H)π(X)nu = (α+ 2n)π(X)nu.

This means that either π(X)nu = 0, or else π(X)nu is an eigenvector for π(H) with
eigenvalue (α+ 2n).

Now, an operator on a finite-dimensional space can have only finitely many
distinct eigenvalues. Thus the π(X)nu’s cannot all be different from zero. Thus
there is some N ≥ 0 such that

π(X)Nu 6= 0

but

π(X)N+1u = 0.

Define u0 = π(X)Nu and λ = α+ 2N . Then

π(H)u0 = λu0(5.7)

π(X)u0 = 0(5.8)

Then define

uk = π(Y )ku0

for k ≥ 0. By the second part of the lemma, we have

π(H)uk = (λ− 2k)uk.(5.9)

Since, again, π(H) can have only finitely many eigenvalues, the uk’s cannot all be
non-zero.

Lemma 5.11. With the above notation,

π(X)uk = [kλ− k(k − 1)]uk−1 (k > 0)

π (X)u0 = 0.

Proof. We proceed by induction on k. In the case k = 1 we note that u1 =
π(Y )u0. Using the commutation relation [π(X), π(Y )] = π(H) we have

π(X)u1 = π(X)π(Y )u0 = (π(Y )π(X) + π(H)) u0.

But π(X)u0 = 0, so we get

π(X)u1 = λu0

which is the lemma in the case k = 1.
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Now, by definition uk+1 = π(Y )uk. Using (5.9) and induction we have

π(X)uk+1 = π(X)π(Y )uk

= (π(Y )π(X) + π(H)) uk

= π(Y ) [kλ− k(k − 1)]uk−1 + (λ− 2k)uk

= [kλ− k(k − 1) + (λ− 2k)]uk.

Simplifying the last expression give the Lemma.

Since π(H) can have only finitely many eigenvalues, the uk’s cannot all be
non-zero. There must therefore be an integer m ≥ 0 such that

uk = π(Y )ku0 6= 0

for all k ≤ m, but

um+1 = π(Y )m+1u0 = 0.

Now if um+1 = 0, then certainly π(X)um+1 = 0. Then by Lemma 5.11,

0 = π(X)um+1 = [(m+ 1)λ−m(m+ 1)]um = (m+ 1)(λ−m)um.

But um 6= 0, and m+1 6= 0 (since m ≥ 0). Thus in order to have (m+1)(λ−m)um
equal to zero, we must have λ = m.

We have made considerable progress. Given a finite-dimensional irreducible
representation π of sl(2; C), acting on a space V , there exists an integer m ≥ 0 and
non-zero vectors u0, · · ·um such that (putting λ equal to m)

π(H)uk = (m− 2k)uk

π(Y )uk = uk+1 (k < m)

π(Y )um = 0

π(X)uk = [km− k(k − 1)]uk−1 (k > 0)

π(X)u0 = 0(5.10)

The vectors u0, · · ·um must be linearly independent, since they are eigenvectors
of π(H) with distinct eigenvalues. Moreover, the (m + 1)-dimensional span of
u0, · · ·um is explicitly invariant under π(H), π(X), and π(Y ), and hence under
π(Z) for all Z ∈ sl(2; C). Since π is irreducible, this space must be all of V .

We have now shown that every irreducible representation of sl(2; C) is of the
form (5.10). It remains to show that everything of the form (5.10) is a represen-
tation, and that it is irreducible. That is, if we define π(H), π(X), and π(Y )
by (5.10) (where the uk’s are basis elements for some (m + 1)-dimensional vector
space), then we want to show that they have the right commutation relations to
form a representation of sl(2; C), and that this representation is irreducible.

The computation of the commutation relations of π(H), π(X), and π(Y ) is
straightforward, and is left as an exercise. Note that when dealing with π(Y ), you
should treat separately the vectors uk, k < m, and um. Irreducibility is also easy
to check, by imitating the proof of Proposition 5.7. (See Exercise 6.)

We have now shown that there is an irreducible representation of sl(2; C) in
each dimension m + 1, by explicitly writing down how H , X , and Y should act
(Equation 5.10) in a basis. But we have shown more than this. We also have
shown that any (m + 1)-dimensional irreducible representation of sl(2; C) must be
of the form (5.10). It follows that any two irreducible representations of sl(2; C)
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of dimension (m + 1) must be equivalent. For if π1 and π2 are two irreducible
representations of dimension (m + 1), acting on spaces V1 and V2, then V1 has a
basis u0, · · ·um as in (5.10) and V2 has a similar basis ũ0, · · · ũm. But then the
map φ : V1 → V2 which sends uk to ũk will be an isomorphism of representations.
(Think about it.)

In particular, the (m+1)-dimensional representation πm described in Section 3
must be equivalent to (5.10).This can be seen explicitly by introducing the following
basis for Vm:

uk = [πm(Y )]
k
(zm2 ) = (−1)k

m!

(m− k)!
zk1z

m−k
2 (k ≤ m).

Then by definition πm(Y )uk = uk+1 (k < m), and it is clear that πm(Y )um = 0.
It is easy to see that πm(H)uk = (m − 2k)uk. The only thing left to check is the
behavior of πm(X). But direct computation shows that

πm(X)uk = k(m− k + 1)uk−1 = [km− k(k − 1)]uk−1.

as required.
This completes the proof of Theorem 5.9.

5. Direct Sums of Representations and Complete Reducibility

One way of generating representations is to take some representations you know
and combine them in some fashion. We will consider two methods of generating
new representations from old ones, namely direct sums and tensor products of
representations. In this section we consider direct sums; in the next section we look
at tensor products. (There is one other standard construction of this sort, namely
the dual of a representation. See Exercise 14.)

Definition 5.12. Let G be a matrix Lie group, and let Π1,Π2, · · ·Πn be rep-
resentations of G acting on vector spaces V1, V2, · · ·Vn. Then the direct sum of
Π1,Π2, · · ·Πn is a representation Π1⊕· · ·⊕Πn of G acting on the space V1⊕· · ·⊕Vn,
defined by

[Π1 ⊕ · · · ⊕ Πn(A)] (v1, · · · vn) = (Π1(A)v1, · · · ,Πn(A)vn)

for all A ∈ G.
Similarly, if g is a Lie algebra, and π1, π2, · · ·πn are representations of g acting

on V1, V2, · · ·Vn, then we define the direct sum of π1, π2, · · ·πn, acting on V1 ⊕
· · · ⊕ Vn by

[π1 ⊕ · · · ⊕ πn(X)] (v1, · · · vn) = (π1(X)v1, · · · , πn(X)vn)

for all X ∈ g.

It is trivial to check that, say, Π1 ⊕ · · · ⊕ Πn is really a representation of G.

Definition 5.13. A finite-dimensional representation of a group or Lie alge-
bra, acting on a space V , is said to be completely reducible if the following
property is satisfied: Given an invariant subspace W ⊂ V , and a second invariant

subspace U ⊂ W ⊂ V , there exists a third invariant subspace Ũ ⊂ W such that

U ∩ Ũ = {0} and U + Ũ = W .

The following Proposition shows that complete reducibility is a nice property
for a representation to have.
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Proposition 5.14. A finite-dimensional completely reducible representation of
a group or Lie algebra is equivalent to a direct sum of (one or more) irreducible
representations.

Proof. The proof is by induction on the dimension of the space V . If dimV =
1, then automatically the representation is irreducible, since then V is has no non-
trivial subspaces, let alone non-trivial invariant subspaces. Thus V is a direct sum
of irreducible representations, with just one summand, namely V itself.

Suppose, then, that the Proposition holds for all representations with dimension
strictly less than n, and that dim V = n. If V is irreducible, then again we have
a direct sum with only one summand, and we are done. If V is not irreducible,
then there exists a non-trivial invariant subspace U ⊂ V . Taking W = V in the
definition of complete reducibility, we see that there is another invariant subspace

Ũ with U ∩ Ũ = {0} and U + Ũ = V . That is, V ∼= U ⊕ Ũ as a vector space.

But since U and Ũ are invariant, they can be viewed as representations in

their own right. (That is, the action of our group or Lie algebra on U or Ũ is

a representation.) It is easy to see that in fact V is isomorphic to U ⊕ Ũ as a

representation. Furthermore, it is easy to see that both U and Ũ are completely
reducible representations, since every invariant subspace W of, say, U is also an
invariant subspace of V . But since U is non-trivial (i.e., U 6= {0} and U 6= V ),

we have dimU < dimV and dim Ũ < dimV . Thus by induction U ∼= U1 ⊕ · · ·Un
(as representations), with the Ui’s irreducible, and Ũ ∼= Ũ1 ⊕ · · · Ũm, with the Ũi’s

irreducible, so that V ∼= U1 ⊕ · · ·Un ⊕ Ũ1 ⊕ · · · Ũm.

Certain groups and Lie algebras have the property that every (finite-dimensional)
representation is completely reducible. This is a very nice property, because it im-
plies (by the above Proposition) that every representation is equivalent to a direct
sum of irreducible representations. (And, as it turns out, this decomposition is
essentially unique.) Thus for such groups and Lie algebras, if you know (up to
equivalence) what all the irreducible representations are, then you know (up to
equivalence) what all the representations are.

Unfortunately, not every representation is irreducible. For example, the stan-
dard representation of the Heisenberg group is not completely reducible. (See Ex-
ercise 8.)

Proposition 5.15. Let G be a matrix Lie group. Let Π be a finite-dimensional
unitary representation of G, acting on a finite-dimensional real or complex Hilbert
space V . Then Π is completely reducible.

Proof. So, we are assuming that our space V is equipped with an inner prod-
uct, and that Π(A) is unitary for each A ∈ G. Suppose that W ⊂ V is invariant,
and that U ⊂W ⊂ V is also invariant. Define

Ũ = U⊥ ∩W .

Then of course Ũ ∩ U = {0}, and standard Hilbert space theory implies that

Ũ + U = W .
It remains only to show that Ũ is invariant. So suppose that v ∈ U⊥ ∩W .

Since W is assumed invariant, Π(A)v will be in W for any A ∈ G. We need to
show that Π(A)v is perpendicular to U . Well, since Π(A−1) is unitary, then for any
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u ∈ U

〈u,Π(A)v〉 =
〈
Π(A−1)u,Π(A−1)Π(A)v

〉
=
〈
Π(A−1)u, v

〉
.

But U is assumed invariant, and so Π(A−1)u ∈ U . But then since v ∈ U⊥,〈
Π(A−1)u, v

〉
= 0. This means that

〈u,Π(A)v〉 = 0

for all u ∈ U , i.e., Π(A)v ∈ U⊥.

Thus Ũ is invariant, and we are done.

Proposition 5.16. If G is a finite group, then every finite-dimensional real or
complex representation of G is completely reducible.

Proof. Suppose that Π is a representation of G, acting on a space V . Choose
an arbitrary inner product 〈 〉 on V . Then define a new inner product 〈 〉G on V
by

〈v1, v2〉G =
∑

g∈G

〈Π(g)v1,Π(g)v2〉 .

It is very easy to check that indeed 〈 〉G is an inner product. Furthermore, if h ∈ G,
then

〈Π(h)v1,Π(h)v2〉G =
∑

g∈G

〈Π(g)Π(h)v1,Π(g)Π(h)v2〉

=
∑

g∈G

〈Π(gh)v1,Π(gh)v2〉 .

But as g ranges over G, so does gh. Thus in fact

〈Π(h)v1,Π(h)v2〉G = 〈v1, v2〉G .

That is, Π is a unitary representation with respect to the inner product 〈 〉G.
Thus Π is completely reducible by Proposition 5.15.

There is a variant of the above argument which can be used to prove the
following result:

Proposition 5.17. If G is a compact matrix Lie group, then every finite-
dimensional real or complex representation of G is completely reducible.

Proof. This proof requires the notion of Haar measure. A left Haar mea-
sure on a matrix Lie group G is a non-zero measure µ on the Borel σ-algebra in
G with the following two properties: 1) it is locally finite, that is, every point in
G has a neighborhood with finite measure, and 2) it is left-translation invariant.
Left-translation invariance means that µ (gE) = µ (E) for all g ∈ G and for all
Borel sets E ⊂ G, where

gE = {ge |e ∈ E } .

It is a fact which we cannot prove here that every matrix Lie group has a left Haar
measure, and that this measure is unique up to multiplication by a constant. (One
can analogously define right Haar measure, and a similar theorem holds for it. Left
Haar measure and right Haar measure may or may not coincide; a group for which
they do is called unimodular.)
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Now, the key fact for our purpose is that left Haar measure is finite if and
only if the group G is compact. So if Π is a finite-dimensional representation of a
compact group G acting on a space V , then let 〈 〉 be an arbitrary inner product
on V , and define a new inner product 〈 〉G on V by

〈v1, v2〉G =

∫

G

〈Π(g)v1,Π(g)v2〉 dµ (g) ,

where µ is left Haar measure. Again, it is easy to check that 〈 〉G is an inner
product. Furthermore, if h ∈ G, then by the left-invariance of µ

〈Π(h)v1,Π(h)v2〉G =

∫

G

〈Π(g)Π(h)v1,Π(g)Π(h)v2〉 dµ (g)

=

∫

G

〈Π(gh)v1,Π(gh)v2〉 dµ (g)

= 〈v1, v2〉G .

So Π is a unitary representation with respect to 〈 〉G, and thus completely reducible.
Note that 〈 〉G is well-defined only because µ is finite.

6. Tensor Products of Representations

Let U and V be finite-dimensional real or complex vector spaces. We wish to
define the tensor product of U and V , which is will be a new vector space U ⊗V
“built” out of U and V . We will discuss the idea of this first, and then give the
precise definition.

We wish to consider a formal “product” of an element u of U with an element
v of V , denoted u⊗ v. The space U ⊗V is then the space of linear combinations of
such products, i.e., the space of elements of the form

a1u1 ⊗ v1 + a2u2 ⊗ v2 + · · · + anun ⊗ vn.(5.11)

Of course, if “⊗” is to be interpreted as a product, then it should be bilinear. That
is, we should have

(u1 + au2) ⊗ v = u1 ⊗ v + au2 ⊗ v

u⊗ (v1 + av2) = u⊗ v1 + au⊗ v2.

We do not assume that the product is commutative. (In fact, the product in the
other order, v ⊗ u, is in a different space, namely, V ⊗ U .)

Now, if e1, e2, · · · , en is a basis for U and f1, f2, · · · , fm is a basis for V , then
using bilinearity it is easy to see that any element of the form (5.11) can be written
as a linear combination of the elements ei ⊗ fj . In fact, it seems reasonable to
expect that {ei ⊗ fj |0 ≤ i ≤ n, 0 ≤ j ≤ m} should be a basis for the space U ⊗ V .
This in fact turns out to be the case.

Definition 5.18. If U and V are finite-dimensional real or complex vector
spaces, then a tensor product of U with V is a vector space W , together with a
bilinear map φ : U × V →W with the following property: If ψ is any bilinear map

of U × V into a vector space X, then there exists a unique linear map ψ̃ of W into
X such that the following diagram commutes:

U × V
φ→ W

ψ ց ւ ψ̃
X

.
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Note that the bilinear map ψ from U × V into X turns into the linear map ψ̃
of W into X . This is one of the points of tensor products: bilinear maps on U × V
turn into linear maps on W .

Theorem 5.19. If U and V are any finite-dimensional real or complex vector
spaces, then a tensor product (W,φ) exists. Furthermore, (W,φ) is unique up to
canonical isomorphism. That is, if (W1, φ1) and (W2, φ2) are two tensor products,
then there exists a unique vector space isomorphism Φ : W1 → W2 such that the
following diagram commutes

U × V
φ1→ W1

φ2 ց ւ Φ
W2

.

Suppose that (W,φ) is a tensor product, and that e1, e2, · · · , en is a basis for
U and f1, f2, · · · , fm is a basis for V . Then {φ(ei, fj) |0 ≤ i ≤ n, 0 ≤ j ≤ m} is a
basis for W .

Proof. Exercise 12.

Notation 5.20. Since the tensor product of U and V is essentially unique, we
will let U ⊗V denote an arbitrary tensor product space, and we will write u⊗ v in-
stead of φ(u, v). In this notation, the Theorem says that {ei ⊗ fj |0 ≤ i ≤ n, 0 ≤ j ≤ m}
is a basis for U ⊗ V , as expected. Note in particular that

dim (U ⊗ V ) = (dimU) (dim V )

(not dimU + dim V ).

The defining property of U ⊗ V is called the universal property of tensor
products. While it may seem that we are taking a simple idea and making it
confusing, in fact there is a point to this universal property. Suppose we want to
define a linear map T from U ⊗V into some other space. The most sensible way to
define this is to define T on elements of the form u⊗ v. (You might try defining it
on a basis, but this forces you to worry about whether things depend on the choice
of basis.) Now, every element of U⊗V is a linear combination of things of the form
u⊗ v. However, this representation is far from unique. (Since, say, if u = u1 + u2,
then you can rewrite u⊗ v as u1 ⊗ v + u2 ⊗ v.)

Thus if you try to define T by what it does to elements of the form u ⊗ v,
you have to worry about whether T is well-defined. This is where the universal
property comes in. Suppose that ψ(u, v) is some bilinear expression in u, v. Then

the universal property says precisely that there is a unique linear map T (= ψ̃)
such that

T (u⊗ v) = ψ(u, v).

(Think about it and make sure that you see that this is really what the universal
property says.)

The conclusion is this: You can define a linear map T on U ⊗ V by defining it
on elements of the form u⊗ v, and this will be well-defined, provided that T (u⊗ v)
is bilinear in (u, v). The following Proposition shows how to make use of this idea.
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Proposition 5.21. Let U and V be finite-dimensional real or complex vector
spaces. Let A : U → U and B : V → V be linear operators. Then there exists a
unique linear operator from U ⊗ V to U ⊗ V , denoted A⊗B, such that

A⊗B(u ⊗ v) = (Au) ⊗ (Bv)

for all u ∈ U , v ∈ V .
If A1, A2 are linear operators on U and B1, B2 are linear operators on V , then

(A1 ⊗B1) (A2 ⊗B2) = (A1A2) ⊗ (B1B2) .

Proof. Define a map ψ from U × V into U ⊗ V by

ψ(u, v) = (Au) ⊗ (Bv) .

Since A and B are linear, and since ⊗ is bilinear, ψ will be a bilinear map of U ×V
into U ⊗ V . But then the universal property says that there is an associated linear

map ψ̃ : U ⊗ V → U ⊗ V such that

ψ̃(u⊗ v) = ψ(u, v) = (Au) ⊗ (Bv) .

Then ψ̃ is the desired map A⊗B.
Now, if A1, A2 are operators on U and B1, B2 are operators on V , then compute

that

(A1 ⊗B1) (A2 ⊗B2) (u⊗ v) = (A1 ⊗B1) (A2u⊗B2v)

= A1A2u⊗B1B2v.

This shows that (A1 ⊗B1) (A2 ⊗B2) = (A1A2)⊗ (B1B2) are equal on elements of
the form u⊗v. Since every element of U⊗V can be written as a linear combination of
things of the form u⊗v (in fact of ei⊗fj), (A1 ⊗B1) (A2 ⊗B2) and (A1A2)⊗(B1B2)
must be equal on the whole space.

We are now ready to define tensor products of representations. There are two
different approaches to this, both of which are important. The first approach starts
with a representation of a group G acting on a space V and a representation of
another group H acting on a space U, and produces a representation of the product
group G × H acting on the space U ⊗ V . The second approach starts with two
different representations of the same group G, acting on spaces U and V , and
produces a representation of G acting on U ⊗ V . Both of these approaches can be
adapted to apply to Lie algebras.

Definition 5.22. Let G and H be matrix Lie groups. Let Π1 be a represen-
tation of G acting on a space U and let Π2 be a representation of H acting on a
space V . The the tensor product of Π1 and Π2 is a representation Π1 ⊗ Π2 of
G×H acting on U ⊗ V defined by

Π1 ⊗ Π2(A,B) = Π1(A) ⊗ Π2(B)

for all A ∈ G and B ∈ H.

Using the above Proposition, it is very easy to check that indeed Π1 ⊗ Π2 is a
representation of G×H .

Now, if G and H are matrix Lie groups, that is, G is a closed subgroup of
GL(n; C) and H is a closed subgroup of GL(m; C), then G×H can be regarded in
an obvious way as a closed subgroup of GL(n+m; C). Thus the direct product of
matrix Lie groups can be regarded as a matrix Lie group. It is easy to check that
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the Lie algebra of G × H is isomorphic to the direct sum of the Lie algebra of G
and the Lie algebra of H . See Exercise 13.

In light of Proposition 5.4, the representation Π1 ⊗Π2 of G×H gives rise to a
representation of the Lie algebra of G×H , namely g⊕h. The following Proposition
shows that this representation of g ⊕ h is not what you might expect at first.

Proposition 5.23. Let G and H be matrix Lie groups, let Π1, Π2 be represen-
tations of G,H respectively, and consider the representation Π1⊗Π2 of G×H. Let
π1 ⊗ π2 denote the associated representation of the Lie algebra of G ×H, namely
g ⊕ h. Then for all X ∈ g and Y ∈ h

π1 ⊗ π2(X,Y ) = π1(X) ⊗ I + I ⊗ π2(Y ).

Proof. Suppose that u(t) is a smooth curve in U and v(t) is a smooth curve
in V . Then we verify the product rule in the usual way:

lim
h→0

u(t+ h) ⊗ v(t+ h) − u(t) ⊗ v(t)

h

= lim
h→0

u(t+ h) ⊗ v(t+ h) − u(t+ h) ⊗ v(t)

h
+
u(t+ h) ⊗ v(t) − u(t) ⊗ v(t)

h

= lim
h→0

[
u(t+ h) ⊗ (v(t+ h) − v (t))

h

]
+ lim
h→0

[
(u(t+ h) − u (t))

h
⊗ v(t)

]
.

Thus

d

dt
(u(t) ⊗ v(t)) =

du

dt
⊗ v(t) + u(t) ⊗ dv

dt
.

This being the case, we can compute π1 ⊗ π2(X,Y ):

π1 ⊗ π2(X,Y )(u ⊗ v) =
d

dt

∣∣∣∣
t=0

Π1 ⊗ Π2(e
tX , etY )(u⊗ v)

=
d

dt

∣∣∣∣
t=0

Π1(e
tX)u⊗ Π2(e

tY )v

=

(
d

dt

∣∣∣∣
t=0

Π1(e
tX)u

)
⊗ v + u⊗

(
d

dt

∣∣∣∣
t=0

Π2(e
tY )v

)
.

This shows that π1 ⊗ π2(X,Y ) = π1(X) ⊗ I + I ⊗ π2(Y ) on elements of the form
u⊗ v, and therefore on the whole space U ⊗ V .

Definition 5.24. Let g and h be Lie algebras, and let π1 and π2 be represen-
tations of g and h, acting on spaces U and V . Then the tensor product of π1 and
π2, denoted π1 ⊗ π2, is a representation of g ⊕ h acting on U ⊗ V , given by

π1 ⊗ π2(X,Y ) = π1(X) ⊗ I + I ⊗ π2(Y )

for all X ∈ g and Y ∈ h.

It is easy to check that this indeed defines a representation of g⊕ h. Note that
if we defined π1 ⊗π2(X,Y ) = π1(X)⊗π2(Y ), this would not be a representation of
g⊕h, for this is not even a linear map. (E.g., we would then have π1⊗π2(2X, 2Y ) =
4π1 ⊗ π2(X,Y )!) Note also that the above definition applies even if π1 and π2 do
not come from a representation of any matrix Lie group.
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Definition 5.25. Let G be a matrix Lie group, and let Π1 and Π2 be repre-
sentations of G, acting on spaces V1 and V2. Then the tensor product of Π1 and
Π2 is a representation of G acting on V1 ⊗ V2 defined by

Π1 ⊗ Π2(A) = Π1(A) ⊗ Π2(A)

for all A ∈ G.

Proposition 5.26. With the above notation, the associated representation of
the Lie algebra g satisfies

π1 ⊗ π2(X) = π1(X) ⊗ I + I ⊗ π2(X)

for all X ∈ g.

Proof. Using the product rule,

π1 ⊗ π2(X) (u⊗ v) =
d

dt

∣∣∣∣
t=0

Π1

(
etX
)
u⊗ Π2

(
etX
)
v

= π1 (X)u⊗ v + v ⊗ π2 (X)u.

This is what we wanted to show.

Definition 5.27. If g is a Lie algebra, and π1 and π2 are representations of g

acting on spaces V1 and V2, then the tensor product of π1 and π2 is a represen-
tation of g acting on the space V1 ⊗ V2 defined by

π1 ⊗ π2(X) = π1(X) ⊗ I + I ⊗ π2(X)

for all X ∈ g.

It is easy to check that Π1 ⊗ Π2 and π1 ⊗ π2 are actually representations of G
and g, respectively. There is some ambiguity in the notation, say, Π1 ⊗ Π2. For
even if Π1 and Π2 are both representations of the same group G, we could still
regard Π1 ⊗ Π2 as a representation of G ×G, by taking H = G in definition 5.22.
We will rely on context to make clear whether we are thinking of Π1 ⊗ Π2 as a
representation of G×G or as representation of G.

Suppose Π1 and Π2 are irreducible representations of a group G. If we re-
gard Π1 ⊗ Π2 as a representation of G, it may no longer be irreducible. If it is
not irreducible, one can attempt to decompose it as a direct sum of irreducible
representations. This process is called Clebsch-Gordan theory. In the case of
SU(2), this theory is relatively simple. (In the physics literature, the problem of
analyzing tensor products of representations of SU(2) is called “addition of angular
momentum.”) See Exercise 15.

7. Schur’s Lemma

Let Π and Σ be representations of a matrix Lie group G, acting on spaces V
and W . Recall that a morphism of representations is a linear map φ : V → W
with the property that

φ (Π(A)v) = Σ(A) (φ(v))

for all v ∈ V and all A ∈ G. Schur’s Lemma is an extremely important result which
tells us about morphisms of irreducible representations. Part of Schur’s Lemma
applies to both real and complex representations, but part of it applies only to
complex representations.
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It is desirable to be able to state Schur’s lemma simultaneously for groups and
Lie algebras. In order to do so, we need to indulge in a common abuse of notation.
If, say, Π is a representation of G acting on a space V , we will refer to V as the
representation, without explicit reference to Π.

Theorem 5.28 (Schur’s Lemma). 1. Let V and W be irreducible real or
complex representations of a group or Lie algebra, and let φ : V → W be a
morphism. Then either φ = 0 or φ is an isomorphism.

2. Let V be an irreducible complex representation of a group or Lie algebra,
and let φ : V → V be a morphism of V with itself. Then φ = λI, for some
λ ∈ C.

3. Let V and W be irreducible complex representations of a group or Lie algebra,
and let φ1, φ2 : V → W be non-zero morphisms. Then φ1 = λφ2, for some
λ ∈ C.

Corollary 5.29. Let Π be an irreducible complex representation of a matrix
Lie group G. If A is in the center of G, then Π(A) = λI. Similarly, if π is an
irreducible complex representation of a Lie algebra g, and if X is in the center of g

(i.e., [X,Y ] = 0 for all Y ∈ g), then π(X) = λI.

Proof. We prove the group case; the proof of the Lie algebra case is the same.
If A is in the center of G, then for all B ∈ G,

Π(A)Π(B) = Π(AB) = Π(BA) = Π(B)Π(A).

But this says exactly that Π(A) is a morphism of Π with itself. So by Point 2 of
Schur’s lemma, Π(A) is a multiple of the identity.

Corollary 5.30. An irreducible complex representation of a commutative group
or Lie algebra is one-dimensional.

Proof. Again, we prove only the group case. If G is commutative, then the
center of G is all of G, so by the previous corollary Π(A) is a multiple of the identity
for each A ∈ G. But this means that every subspace of V is invariant! Thus the
only way that V can fail to have a non-trivial invariant subspace is for it not to have
any non-trivial subspaces. This means that V must be one-dimensional. (Recall
that we do not allow V to be zero-dimensional.)

Proof. As usual, we will prove just the group case; the proof of the Lie algebra
case requires only the obvious notational changes.

Proof of 1. Saying that φ is a morphism means φ(Π(A)v) = Σ(A) (φ(v)) for all
v ∈ V and all A ∈ G. Now suppose that v ∈ ker(φ). Then

φ(Π(A)v) = Σ(A)φ(v) = 0.

This shows that kerφ is an invariant subspace of V . Since V is irreducible, we must
have kerφ = 0 or kerφ = V . Thus φ is either one-to-one or zero.

Suppose φ is one-to-one. Then the image of φ is a non-zero subspace of W . On
the other hand, the image of φ is invariant, for if w ∈ W is of the form φ(v) for
some v ∈ V , then

Σ(A)w = Σ(A)φ(v) = φ(Π(A)v).

Since W is irreducible and image(V ) is non-zero and invariant, we must have
image(V ) = W . Thus φ is either zero or one-to-one and onto.
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Proof of 2. Suppose now that V is an irreducible complex representation, and
that φ : V → V is a morphism of V to itself. This means that φΠ(A) = Π(A)φ
for all A ∈ G, i.e., that φ commutes with all of the Π(A)’s. Now, since we are over
an algebraically complete field, φ must have at least one eigenvalue λ ∈ C. Let U
denote the eigenspace for φ associated to the eigenvalue λ, and let u ∈ U . Then for
each A ∈ G

φ (Π(A)u) = Π(A)φ(v) = λΠ(A)u.

Thus applying Π(A) to an eigenvector of φ with eigenvalue λ yields another eigen-
vector of φ with eigenvalue λ. That is, U is invariant.

Since λ is an eigenvalue, U 6= 0, and so we must have U = V . But this means
that φ(v) = λv for all v ∈ V , i.e., that φ = λI.

Proof of 3. If φ2 6= 0, then by (1) φ2 is an isomorphism. Now look at φ1 ◦ φ−1
2 .

As is easily checked, the composition of two morphisms is a morphism, so φ1 ◦ φ−1
2

is a morphism of W with itself. Thus by (2), φ1 ◦ φ−1
2 = λI, whence φ1 = λφ2.

8. Group Versus Lie Algebra Representations

We know from Chapter 3 (Theorem 3.18) that every Lie group homomorphism
gives rise to a Lie algebra homomorphism. In particular, this shows (Proposition
5.4) that every representation of a matrix Lie group gives rise to a representation of
the associated Lie algebra. The goal of this section is to investigate the reverse pro-
cess. That is, given a representation of the Lie algebra, under what circumstances
is there an associated representation of the Lie group?

The climax of this section is Theorem 5.33, which states that if G is a con-
nected and simply connected matrix Lie group with Lie algebra g, and if π is a
representation of g, then there is a unique representation Π of G such that Π and
π are related as in Proposition 5.4. Our proof of this theorem will make use of the
Baker-Campbell-Hausdorff formula from Chapter 4. Before turning to this general
theorem, we will examine two special cases, namely SO(3) and SU(2), for which we
can work things out by hand. See Bröcker and tom Dieck, Chapter II, Section 5.

We have shown (Theorem 5.9) that every irreducible complex representation of
su(2) is equivalent to one of the representations πm described in Section 3. (Recall
that the irreducible complex representations of su(2) are in one-to-one correspon-
dence with the irreducible representations of sl(2; C).) Each of the representations
πm of su(2) was constructed from the corresponding representation Πm of the group
SU(2). Thus we see, by brute force computation, that every irreducible complex
representation of su(2) actually comes from a representation of the group SU(2)!
This is consistent with the fact that SU(2) is simply connected (Chapter 2, Prop.
2.12).

Let us now consider the situation for SO(3). (Which is not simply connected.)
We know from Exercise 10 of Chapter 3 that the Lie algebras su(2) and so(3) are
isomorphic. In particular, if we take the basis

E1 = 1
2

(
i 0
0 −i

)
E2 = 1

2

(
0 1
−1 0

)
E3 = 1

2

(
0 i
i 0

)

for su(2) and the basis

F1 =




0 0 0
0 0 −1
0 1 0


 F2 =




0 0 1
0 0 0
−1 0 0


 F3 =




0 −1 0
1 0 0
0 0 0
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then direct computation shows that [E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2,
and similarly with the E’s replaced by the F ’s. Thus the map φ : so(3) → su(2)
which takes Fi to Ei will be a Lie algebra isomorphism.

Since su(2) and so(3) are isomorphic Lie algebras, they must have “the same”
representations. Specifically, if π is a representation of su(2), then π ◦ φ will be
a representation of so(3), and every representation of so(3) is of this form. In
particular, the irreducible representations of so(3) are precisely of the form σm =
πm ◦φ. We wish to determine, for a particular m, whether there is a representation
Σm of the group SO(3) such that σm and Σm are related as in Proposition 5.4.

Proposition 5.31. Let σm = πm ◦φ be the irreducible complex representations
of the Lie algebra so(3) (m ≥ 0). If m is even, then there is a representation Σm
of the group SO(3) such that σm and Σm are related as in Proposition 5.4. If m is
odd, then there is no such representation of SO(3).

Note that the condition that m be even is equivalent to the condition that
dimVm = m+ 1 be odd. Thus it is the odd-dimensional representations of the Lie
algebra so(3) which come from group representations.

In the physics literature, the representations of su(2)/so(3) are labeled by the
parameter l = m/2. In terms of this notation, a representation of so(3) comes from
a representation of SO(3) if and only if l is an integer. The representations with l
an integer are called “integer spin”; the others are called “half-integer spin.”

8.0.1. Proof.

Proof. Case 1: m odd. In this case, we want to prove that there is no rep-
resentation Σm such that σm and Σm are related as in Proposition 5.4. (We have
already considered the case m = 1 in Exercise 7.) Suppose, to the contrary, that
there is such a Σm. Then Proposition 5.4 says that

Σm(eX) = eσm(X)

for all X ∈ so(3). In particular, take X = 2πF1. Then, computing as in Chapter
3, Section 2 we see that

e2πF1 =




1 0 0
0 cos 2π − sin 2π
0 sin 2π cos 2π


 = I.

Thus on the one hand Σm
(
e2πF1

)
= Σm(I) = I, while on the other hand Σm

(
e2πF1

)
=

e2πσm(F1).
Let us compute e2πσm(F1). By definition, σm(F1) = πm(φ(F1)) = πm(E1). But,

E1 = i
2H , where as usual

H =

(
1 0
0 −1

)
.

We know that there is a basis u0, u1, · · · , um for Vm such that uk is an eigenvector
for πm(H) with eigenvalue m − 2k. This means that uk is also an eigenvector for
σm(F1) = i

2πm(H), with eigenvalue i
2 (m− 2k). Thus in the basis {uk} we have

σm(F1) =




i
2m

i
2 (m− 2)

. . .
i
2 (−m)


 .
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But we are assuming the m is odd! This means that m− 2k is an odd integer.

Thus e2π
i
2 (m−2k) = −1, and in the basis {uk}

e2πσm(F1) =




e2π
i
2m

e2π
i
2 (m−2)

. . .

e2π
i
2 (−m)


 = −I.

Thus on the one hand, Σm
(
e2πF1

)
= Σm(I) = I, while on the other hand Σm

(
e2πF1

)
=

e2πσm(F1) = −I. This is a contradiction, so there can be no such group representa-
tion Σm.

Case 2: m is even. We will use the following:

Lemma 5.32. There exists a Lie group homomorphism Φ : SU(2) → SO(3)
such that

1) Φ maps SU(2) onto SO(3),
2) kerΦ = {I,−I}, and

3) the associated Lie algebra homomorphism Φ̃ : su(2) → so(3) is an isomor-

phism which takes Ei to Fi. That is, Φ̃ = φ−1.

Proof. Exercise 17.

Now consider the representations Πm of SU(2). I claim that if m is even, then
Πm(−I) = I. To see this, note that

e2πE1 = exp

(
πi 0
0 −πi

)
= −I.

Thus Πm(−I) = Πm(e2πE1) = eπm(2πE1). But as in Case 1,

eπm(2πE1) =




e2π
i
2m

e2π
i
2 (m−2)

. . .

e2π
i
2 (−m)


 .

Only, this time, m is even, and so i
2 (m − 2k) is an integer, so that Πm(−I) =

eπm(2πE1) = I.
Since Πm(−I) = I, Πm(−U) = Πm(U) for all U ∈ SU(2). According to

Lemma 5.32, for each R ∈ SO(3), there is a unique pair of elements {U,−U} such
that Φ(U) = Φ(−U) = R. Since Πm(U) = Πm(−U), it makes sense to define

Σm(R) = Πm(U).

It is easy to see that Σm is a Lie group homomorphism (hence, a representation).
By construction, we have

Πm = Σm ◦ Φ.(5.12)

Now, if Σ̃m denotes the Lie algebra representation associated to Σm, then it
follows from (5.12) that

πm = Σ̃m ◦ Φ̃.

But the Lie algebra homomorphism Φ̃ takes Ei to Fi, that is, Φ̃ = φ−1. So πm =

Σ̃m ◦ φ−1, or Σ̃m = πm ◦ φ. Thus Σ̃m = σm, which is what we want to show.
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It is now time to state the main theorem.

Theorem 5.33. 1. Let G,H be a matrix Lie groups, let φ1, φ2 : G → H

be Lie group homomorphisms, and let φ̃1, φ̃2 : g → h be the associated Lie

algebra homomorphisms. If G is connected and φ̃1 = φ̃2, then φ1 = φ2.

2. Let G,H be a matrix Lie groups with Lie algebras g and h. Let φ̃ : g → h be
a Lie algebra homomorphism. If G is connected and simply connected, then
there exists a unique Lie group homomorphism φ : G → H such that φ and

φ̃ are related as in Theorem 3.18 of Chapter 3.

This has the following corollaries.

Corollary 5.34. Suppose G and H are connected, simply connected matrix
Lie groups with Lie algebras g and h. If g ∼= h then G ∼= H.

Proof. Let φ̃ : g → h be a Lie algebra isomorphism. By Theorem 5.33, there

exists an associated Lie group homomorphism φ : G→ H . Since φ̃−1 : h → g is also
a Lie algebra homomorphism, there is a corresponding Lie group homomorphism
ψ : H → G. We want to show that φ and ψ are inverses of each other.

Well, φ̃ ◦ ψ = φ̃ ◦ ψ̃ = Ih, so by the Point 1 of the Theorem, φ ◦ ψ = IH .
Similarly, ψ ◦ φ = IG.

Corollary 5.35. 1. Let G be a connected matrix Lie group, let Π1 and
Π2 be representations of G, and let π1 and π2 be the associated Lie algebra
representations. If π1 and π2 are equivalent, then Π1 and Π2 are equivalent.

2. Let G be connected and simply connected. If π is a representation of g, then
there exists a representation Π of G, acting on the same space, such that Π
and π are related as in Proposition 5.4.

Proof. For (1), let Π1 act on V and Π2 on W . We assume that the associated
Lie algebra representations are equivalent, i.e., that there exists an invertible linear
map φ : V →W such that

φ (π1(X)v) = π2(X)φ(v)

for all X ∈ g and all v ∈ V . This is the same as saying that φπ1(X) = π2(X)φ, or
equivalently that φπ1(X)φ−1 = π2(X) (for all X ∈ g).

Now define a map Σ2 : G→ GL(W ) by the formula

Σ2(A) = φΠ1(A)φ−1.

It is trivial to check that Σ2 is a homomorphism. Furthermore, differentiation shows
that the associated Lie algebra homomorphism is

σ2(X) = φπ1(X)φ−1 = π2(X)

for all X . Then by (1) in the Theorem, we must also have Σ2 = Π2, i.e.,

φΠ1(A)φ−1 = Π2(A)

for all A ∈ G. But this shows that Π1 and Π2 are equivalent.
Point (2) of the Corollary follows immediately from Point (2) of the Theorem,

by taking H = GL(V ). �

We now proceed with the proof of Theorem 5.33.
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Proof. Step 1: Verify Point (1) of the Theorem.
Since G is connected, Corollary 3.26 of Chapter 3 tells us that every element

A of G is a finite product of the form A = expX1 expX2 · · · expXn, with Xi ∈ g.

But then if φ̃1 = φ̃2, we have

φ1

(
eX1 · · · eXn

)
= eφ̃1(X1) · · · eφ̃1(Xn) = eφ̃2(X1) · · · eφ̃2(Xn) = φ2

(
eX1 · · · eXn

)
.

So we now need only prove Point (2).

Step 2: Define φ in a neighborhood of the identity.
Proposition 3.23 of Chapter 3 says that the exponential mapping for G has a

local inverse which maps a neighborhood V of the identity into the Lie algebra g.
On this neighborhood V we can define φ : V → H by

φ(A) = exp
{
φ̃(logA)

}
.

That is

φ = exp ◦φ̃ ◦ log .

(Note that if there is to be a homomorphism φ as in Theorem 3.18 of Chapter 3,

then on V , φ must be exp ◦φ̃ ◦ log.)
It follows from Corollary 4.4 to the Baker-Campbell-Hausdorff formula that this

φ is a “local homomorphism.” That is, if A and B are in V , and if AB happens
to be in V as well, then φ(AB) = φ(A)φ(B). (See the discussion at the beginning
of Chapter 4.)

Step 3: Define φ along a path.
Recall that when we say G is connected, we really mean that G is path-

connected. Thus for any A ∈ G, there exists a path A(t) ∈ G with A(0) = I
and A(1) = A. A compactness argument shows that there exists numbers 0 = t0 <
t1 < t2 · · · < tn = 1 such that

A(s)A(ti)
−1 ∈ V(5.13)

for all s between ti and ti+1.
In particular, for i = 0, we have A(s) ∈ V for 0 ≤ s ≤ t1. Thus we can

define φ (A(s)) by Step 2 for s ∈ [0, t1]. Now, for s ∈ [t1, t2] we have by (5.13)
A(s)A(t1)

−1 ∈ V . Moving the A(t1) to the other side, this means that for s ∈ [t1, t2]
we can write

A(s) =
[
A(s)A(t1)

−1
]
A(t1).

with A(s)A(t1)
−1 ∈ V . If φ is to be a homomorphism, we must have

φ (A(s)) = φ
([
A(s)A(t1)

−1
]
A(t1)

)
= φ

(
A(s)A(t1)

−1
)
φ (A(t1)) .(5.14)

But φ (A(t1)) has already been defined, and we can define φ
(
A(s)A(t1)

−1
)

by Step
2. In this way we can use (5.14) to define φ (A(s)) for s ∈ [t1, t2].

Proceeding on in the same way, we can define φ (A(s)) successively on each
interval [ti, ti+1] until eventually we have defined φ (A(s)) on the whole time interval
[0, 1]. This in particular serves to define φ (A(1)) = φ(A).

Step 4: Prove independence of path.
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In Step 3, we “defined” φ(A) by defining φ along a path joining the identity to
A. For this to make sense as a definition of φ(A) we have to prove that the answer
is independent of the choice of path, and also, for a particular path, independent
of the choice of partition (t0, t1, · · · tn).

To establish independence of partition, we first show that passing from a par-
ticular partition to a refinement of that partition doesn’t change the answer. (A
refinement of a partition is one which contains all the points of the original partition,
plus some other ones.) This is proved by means of the Baker-Campbell-Hausdorff
formula. For example, suppose we insert an extra partition point s between t0 and
t1. Under the old partition we have

φ (A(t1)) = exp ◦φ̃ ◦ log (A(t1)) .(5.15)

Under the new partition we write

A(t1) =
[
A(t1)A(s)−1

]
A(s)

so that

φ (A(t1)) = exp ◦φ̃ ◦ log
(
A(t1)A(s)−1

)
exp ◦φ̃ ◦ log (A(s)) .(5.16)

But (as noted in Step 2), Corollary 4.4 of the Baker-Campbell-Hausdorff for-
mula (Chapter 4, Section 2) implies that for A and B sufficiently near the identity

exp ◦φ̃ ◦ log(AB) =
[
exp ◦φ̃ ◦ log(A)

] [
exp ◦φ̃ ◦ log(B)

]
.

Thus the right sides of (5.15) and (5.16) are equal. Once we know that passing to a
refinement doesn’t change the answer, we have independence of partition. For any
two partitions of [0, 1] have a common refinement, namely, the union of the two.

Once we know independence of partition, we need to prove independence of
path. It is at this point that we use the fact that G is simply connected. In
particular, because of simple connectedness, any two paths A1(t) and A2(t) joining
the identity to A will be homotopic with endpoints fixed. (This is a standard
topological fact.) Using this, we want to prove that Step 3 gives the same answer
for A1 and A2.

Our strategy is to deform A1 into A2 in a series of steps, where during each
step we only change the path in a small time interval (t, t+ ǫ), keeping everything
fixed on [0, t] and on [t+ ǫ, 1]. Since we have independence of partition, we can take
t and t+ ǫ to be partition points. Since the time interval is small, we can assume
there are no partition points between t and t+ ǫ. Then we have

φ (A(t+ ǫ)) = φ
(
A(t+ ǫ)A(t)−1

)
φ (A(t))

where φ
(
A(t+ ǫ)A(t)−1

)
is defined as in Step 2.

But notice that our value for φ (A(t+ ǫ)) depends only on A (t) and A (t+ ǫ),
not on how we get from A (t) to A (t+ ǫ)! Thus the value φ (A(t+ ǫ)) doesn’t
change as we deform the path. But if φ (A(t+ ǫ)) doesn’t change as we deform the
path, neither does φ (A(1)), since the path isn’t changing on [t+ ǫ, 1].

Since A1 and A2 are homotopic with endpoints fixed, it is possible (by a stan-
dard topological argument) to deform A1 into A2 in a series of small steps as above.

Step 5: Prove that φ is a homomorphism, and is properly related to φ̃.
Now that we have independence of path (and partition), we can give a simpler

description of how to compute φ. Given any group element A, A can be written in
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the form

A = CnCn−1 · · ·C1

with each Ci in V . (This follows from the (path-)connectedness of G.) We can then
choose a path A(t) which starts at the identity, then goes to C1, then to C2C1, and so
on to CnCn−1 · · ·C1 = A. We can choose a partition so that A(ti) = CiCi−1 · · ·C1.
By the way we have defined things

φ(A) = φ
(
A(1)A(tn−1)

−1
)
φ
(
A(tn−1)A(tn−2)

−1
)
· · ·φ (A(t1)A(0)) .

But

A(ti)A(ti−1)
−1 = (CiCi−1 · · ·C1) (Ci−1 · · ·C1)

−1
= Ci

so

φ(A) = φ(Cn)φ(Cn−1) · · ·φ(C1).

Now suppose that A and B are two elements of G and we wish to compute
φ(AB). Well, write

A = CnCn−1 · · ·C1

B = DnDn−1 · · ·D1.

Then

φ (AB) = φ (CnCn−1 · · ·C1DnDn−1 · · ·D1)

= [φ(Cn) · · ·φ(C1)] [φ(Dn) · · ·φ(D1)]

= φ(A)φ(B).

We see then that φ is a homomorphism. It remains only to verify that φ

has the proper relationship to φ̃. But since φ is defined near the identity to be

φ = exp ◦φ̃ ◦ log, we see that

d

dt

∣∣∣∣
t=0

φ
(
etX
)

=
d

dt

∣∣∣∣
t=0

etφ̃(X) = φ̃(X).

Thus φ̃ is the Lie algebra homomorphism associated to the Lie group homomor-
phism φ.

This completes the proof of Theorem 5.33.

9. Covering Groups

It is at this point that we pay the price for our decision to consider only matrix
Lie groups. For the universal covering group of a matrix Lie group (defined below)
is always a Lie group, but not always a matrix Lie group. For example, the universal
covering group of SL (n; R) (n ≥ 2) is a Lie group, but not a matrix Lie group. (See
Exercise 20.)

The notion of a universal cover allows us to determine, in the case of a non-
simply connected group, which representations of the Lie algebra correspond to
representations of the group. See Theorem 5.41 below.

Definition 5.36. Let G be a connected matrix Lie group. A universal cov-

ering group of G (or just universal cover) is a connected, simply connected

Lie group G̃, together with a Lie group homomorphism φ : G̃ → G (called the
projection map) with the following properties:
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1. φ maps G̃ onto G.

2. There is a neighborhood U of I in G̃ which maps homeomorphically under
φ onto a neighborhood V of I in G.

Proposition 5.37. If G is any connected matrix Lie group, then a universal

covering group G̃ of G exists and is unique up to canonical isomorphism.

We will not prove this theorem, but the idea of proof is as follows. We assume
that G is a matrix Lie group, hence a Lie group (that is, a manifold). As a mani-

fold, G has a topological universal cover G̃ which is a connected, simply connected

manifold. The universal cover comes with a “projection map” φ : G̃→ G which is

a local homeomorphism. Now, since G is not only a manifold but also a group, G̃
also becomes a group, and the projection map φ becomes a homomorphism.

Proposition 5.38. Let G be a connected matrix Lie group, G̃ its universal

cover, and φ the projection map from G̃ to G. Suppose that G̃ is a matrix Lie
group with Lie algebra g̃. Then the associated Lie algebra map

φ̃ : g̃ → g

is an isomorphism.

In light of this Proposition, we often say that G and G̃ have the same Lie
algebra.

The above Proposition is true even if G̃ is not a matrix Lie group. But to make
sense out of the Proposition in that case, we need the definition of the Lie algebra
of a general Lie group, which we have not defined.

Proof. Exercise 18.

9.1. Examples. The universal cover of S1 is R, and the projection map is the
map x→ eix. The universal cover of SO(3) is SU(2), and the projection map is the
homomorphism described in Lemma 5.32.

More generally, we can consider SO(n) for n ≥ 3. As it turns out, for n ≥ 3 the
universal cover of SO(n) is a double cover. (That is, the projection map φ is two-to-
one.) The universal cover of SO(n) is called Spin(n), and may be constructed as a
certain group of invertible elements in the Clifford algebra over Rn. See Bröcker
and tom Dieck, Chapter I, Section 6, especially Propositions I.6.17 and I.6.19. In
particular, Spin(n) is a matrix Lie group.

The case n = 4 is quite special. It turns out that the universal cover of SO(4)
(i.e., Spin(4)) is isomorphic to SU(2)× SU(2). This is best seen by regarding R4 as
the quaternion algebra.

Theorem 5.39. Let G be a matrix Lie group, and suppose that G̃ is also a

matrix Lie group. Identify the Lie algebra of G̃ with the Lie algebra g of G as in
Proposition 5.38. Suppose that H is a matrix Lie group with Lie algebra h, and that

φ̃ : g → h is a homomorphism. Then there exists a unique Lie group homomorphism

φ : G̃→ H such that φ and φ̃ are related as in Theorem 3.18 of Chapter 3.

Proof. G̃ is simply connected.
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Corollary 5.40. Let G and G̃ be as in Theorem 5.39, and let π be a repre-

sentation of g. Then there exists a unique representation Π̃ of G̃ such that

π(X) =
d

dt

∣∣∣∣
t=0

Π̃
(
etX
)

for all X ∈ g.

Theorem 5.41. Let G and G̃ be as in Theorem 5.39, and let φ : G̃→ G. Now

let π be a representation of g, and Π̃ the associated representation of G̃, as in the
Corollary. Then there exists a representation Π of G corresponding to π if and only
if

ker Π̃ ⊃ kerφ.

Proof. Exercise 19.

10. Exercises

1. Let G be a matrix Lie group, and g its Lie algebra. Let Π1 and Π2 be
representations of G, and let π1 and π2 be the associated representations of
g (Proposition 5.4). Show that if Π1 and Π2 are equivalent representations
of G, then π1 and π2 are equivalent representations of g. Show that if G is
connected, and if π1 and π2 are equivalent representations of g, then Π1 and
Π2 are equivalent representations of G.

Hint : Use Corollary 3.26 of Chapter 3.
2. Let G be a connected matrix Lie group with Lie algebra g. Let Π be a

representation of G acting on a space V , and let π be the associated Lie
algebra representation. Show that a subspace W ⊂ V is invariant for Π if
and only if it is invariant for π. Show that Π is irreducible if and only if π
is irreducible.

3. Suppose that Π is a finite-dimensional unitary representation of a matrix
Lie group G. (That is, V is a finite-dimensional Hilbert space, and Π is
a continuous homomorphism of G into U(V ).) Let π be the associated
representation of the Lie algebra g. Show that for each X ∈ g, π(X)∗ =
−π(X).

4. Show explicitly that the adjoint representation and the standard represen-
tation are equivalent representations of the Lie algebra so(3). Show that the
adjoint and standard representations of the group SO(3) are equivalent.

5. Consider the elements E1, E2, and E3 in su(2) defined in Exercise 9 of
Chapter 3. These elements form a basis for the real vector space su(2).
Show directly that E1, E2, and E3 form a basis for the complex vector space
sl(2; C).

6. Define a vector space with basis u0, u1 · · ·um. Now define operators π(H),
π(X), and π(Y ) by formula (5.10). Verify by direct computation that the op-
erators defined by (5.10) satisfy the commutation relations [π(H), π(X)] =
2π(X), [π(H), π(Y )] = −2π(Y ), and [π(X), π(Y )] = π(H). (Thus π(H),
π(X), and π(Y ) define a representation of sl(2; C).) Show that this repre-
sentation is irreducible.

Hint : It suffices to show, for example, that [π(H), π(X)] = 2π(X) on
each basis element. When dealing with π(Y ), don’t forget to treat separately
the case of uk, k < m, and the case of um.
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7. We can define a two-dimensional representation of so(3) as follows:

π




0 0 0
0 0 1
0 −1 0


 =

1

2

(
i 0
0 −i

)
;

π




0 0 1
0 0 0
−1 0 0


 =

1

2

(
0 1
−1 0

)
;

π




0 1 0
−1 0 0
0 0 0


 =

1

2

(
0 i
i 0

)
.

(You may assume that this actually gives a representation.) Show that there
is no group representation Π of SO(3) such that Π and π are related as in
Proposition 5.4.

Hint : If X ∈ so(3) is such that eX = I, and Π is any representation of
SO(3), then Π(eX) = Π(I) = I.

Remark : In the physics literature, this non-representation of SO(3) is
called “spin 1

2 .”

8. Consider the standard representation of the Heisenberg group, acting on C3.
Determine all subspaces of C3 which are invariant under the action of the
Heisenberg group. Is this representation completely reducible?

9. Give an example of a representation of the commutative group R which is
not completely reducible.

10. Consider the unitary representations Π~ of the real Heisenberg group. As-
sume that there is some sort of associated representation π~ of the Lie alge-
bra, which should be given by

π~(X)f =
d

dt

∣∣∣∣
t=0

Π~

(
etX
)
f

(We have not proved any theorem of this sort for infinite-dimensional unitary
representations.)

Computing in a purely formal manner (that is, ignoring all technical
issues) compute

π~




0 1 0
0 0 0
0 0 0


 ; π~




0 0 0
0 0 1
0 0 0


 ; π~




0 0 1
0 0 0
0 0 0


 .

Verify (still formally) that these operators have the right commutation rela-
tions to generate a representation of the Lie algebra of the real Heisenberg
group. (That is, verify that on this basis, π~[X,Y ] = [π~(X), π~(Y )].)

Why is this computation not rigorous?
11. Consider the Heisenberg group over the field Zp of integers mod p, with p

prime, namely

Hp =








1 a b
0 1 c
0 0 1


 |a, b, c ∈ Zp



 .

This is a subgroup of the group GL (3; Zp), and has p3 elements.
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Let Vp denote the space of complex-valued functions on Zp, which is
a p-dimensional complex vector space. For each non-zero n ∈ Zp, define a
representation of Hp by the formula

(Πnf) (x) = e−i2πnb/pei2πncx/pf (x− a) x ∈ Zp.

(These representations are analogous to the unitary representations of the
real Heisenberg group, with the quantity 2πn/p playing the role of ~.)

a) Show that for each n, Πn is actually a representation of Hp, and that
it is irreducible.

b) Determine (up to equivalence) all the one-dimensional representations
of Hp.

c) Show that every irreducible representation ofHp is either one-dimensional
or equivalent to one of the Πn’s.

12. Prove Theorem 5.19.
Hints : For existence, choose bases {ei} and {fj} for U and V . Then

define a space W which has as a basis {wij |0 ≤ i ≤ n, 0 ≤ j ≤ m}. Define
φ(ei, fj) = wij and extend by bilinearity. For uniqueness, use the universal
property.

13. Let g and h be Lie algebras, and consider the vector space g⊕ h. Show that
the following operation makes g ⊕ h into a Lie algebra

[(X1, Y1), (X2, Y2)] = ([X1, X2], [Y1, Y2]) .

Now let G and H be matrix Lie groups, with Lie algebras g and h. Show
that G ×H can be regarded as a matrix Lie group in an obvious way, and
that the Lie algebra of G×H is isomorphic to g ⊕ h.

14. Suppose that π is a representation of a Lie algebra g acting on a finite-
dimensional vector space V . Let V ∗ denote as usual the dual space of V ,
that is, the space of linear functionals on V . If A is a linear operator on V ,
let Atr denote the dual or transpose operator on V ∗ ,

(
Atrφ

)
(v) = φ (Av)

for φ ∈ V ∗, v ∈ V . Define a representation π∗ of g on V ∗ by the formula

π∗ (X) = −π
(
Xtr

)
.

a) Show that π∗ is really a representation of g.
b) Show that (π∗)∗ is isomorphic to π.
c) Show that π∗ is irreducible if and only if π is.
d) What is the analogous construction of the dual representation for

representations of groups?
15. Recall the spaces Vm introduced in Section 3, viewed as representations of

the Lie algebra sl(2; C). In particular, consider the space V1 (which has
dimension 2).

a) Regard V1 ⊗ V1 as a representation of sl(2; C), as in Definition 5.27.
Show that this representation is not irreducible.

b) Now view V1 ⊗ V1 as a representation of sl(2; C) ⊕ sl(2; C), as in
Definition 5.24. Show that this representation is irreducible.

c) More generally, show that Vm ⊗ Vn is irreducible as a representation
of sl(2; C) ⊕ sl(2; C), but reducible (except if one of n or m is zero) as a
representation of sl(2; C).
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16. Show explicitly that exp : so(3) → SO(3) is onto.
Hint : Using the fact that SO(3) ⊂ SU(3), show that the eigenvalues of

R ∈ SO(3) must be of one of the three following forms: (1, 1, 1), (1,−1,−1),
or (1, eiθ, e−iθ). In particular, R must have an eigenvalue equal to one. Now
show that in a suitable orthonormal basis, R is of the form

R =




1 0 0
0 cos θ sin θ
0 − sin θ cos θ


 .

17. Proof of Lemma 5.32.
Let {E1, E2, E3} be the usual basis for su(2), and {F1, F2, F3} be the

basis for so(3) introduced in Section 8. Identify su(2) with R3 by identifying
the basis {E1, E2, E3} with the standard basis for R3. Consider adE1, adE2,
and adE3 as operators on su(2), hence on R3. Show that adEi = Fi, for
i = 1, 2, 3. In particular, ad is a Lie algebra isomorphism of su(2) onto so(3).

Now consider Ad : SU(2) → GL (SU(2)) = GL (3; R). Show that the
image of Ad is precisely SO(3). Show that the kernel of Ad is {I,−I}.

Show that Ad : SU(2) → SO(3) is the homomorphism Φ required by
Lemma 5.32.

18. Proof of Proposition 5.38.

Suppose that G and G̃ are matrix Lie groups. Suppose that φ : G̃→ G
is a Lie group homomorphism such that φ maps some neighborhood U of I

in G̃ homeomorphically onto a neighborhood V of I in G. Prove that the

associated Lie algebra map φ̃ : g̃ → g is an isomorphism.

Hints : Suppose that φ̃ were not one-to-one. Show, then, that there

exists a sequence of points An in G̃ with An 6= I, An → I and φ(An) = I,
giving a contradiction.

To show that φ̃ is onto, use Step 1 of the proof of Theorem 5.33 to show
that on a sufficiently small neighborhood of zero in g̃,

φ̃ = log ◦φ ◦ exp .

Use this to show that the image of φ̃ contains a neighborhood of zero in g.

Now use linearity to show that the image of φ̃ is all of g.
19. Proof of Theorem 5.41.

First suppose that ker Π̃ ⊃ kerφ. Then construct Π as in the proof of
Proposition 5.31.

Now suppose that there is a representation Π of G for which the as-
sociated Lie algebra representation is π. We want to show, then, that

ker Π̃ ⊃ kerφ. Well, define a new representation Σ of G̃ by

Σ = Π ◦ φ.

Show that the associated Lie algebra homomorphism σ is equal to π, so that,

by Point (1) of Theorem 5.33, Π̃ = Σ. What can you say about the kernel
of Σ?

20. Fix an integer n ≥ 2.
a) Show that every (finite-dimensional complex) representation of the

Lie algebra sl (n; R) gives rise to a representation of the group SL (n; R),
even though SL (n; R) is not simply connected. (You may use the fact that
SL (n; C) is simply connected.)
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b) Show that the universal cover of SL (n; R) is not isomorphic to any
matrix Lie group. (You may use the fact that SL (n; R) is not simply con-
nected.)

21. Let G be a matrix Lie group with Lie algebra g, let h be a subalgebra of g,
and let H be the unique connected Lie subgroup of G with Lie algebra h.
Suppose that there exists a compact simply connected matrix Lie group K
such that the Lie algebra of K is isomorphic to h. Show that H is closed.
Is H necessarily isomorphic to K?



CHAPTER 6

The Representations of SU(3), and Beyond

1. Preliminaries

There is a theory of the representations of semisimple groups/Lie algebras which
includes as a special case the representation theory of SU(3). However, I feel that
it is worthwhile to examine the case of SU(3) separately. I feel this way partly
because SU(3) is an important group in physics, but chiefly because the general
semisimple theory is difficult to digest. Considering a non-trivial example makes it
much clearer what is going on. In fact, all of the elements of the general theory are
present already in the case of SU(3), so we do not lose too much by considering at
first just this case.

The main result of this chapter is Theorem 1, which states that an irreducible
finite-dimensional representation of SU(3) can be classified in terms of its “high-
est weight.” This is analogous to labeling the irreducible representations Vm of
SU(2)/sl(2; C) by the highest eigenvalue of πm(H). (The highest eigenvalue of
πm(H) in Vm is precisely m.) We will then discuss, without proofs, what the
corresponding results are for general semisimple Lie algebras.

The group SU(3) is connected and simply connected (Bröcker and tom Dieck),
so by Corollary 1 of Chapter 5, the finite-dimensional representations of SU(3)
are in one-to-one correspondence with the finite-dimensional representations of the
Lie algebra su(3). Meanwhile, the complex representations of su(3) are in one-to-
one correspondence with the complex-linear representations of the complexified Lie
algebra su(3)C. But su(3)C

∼= sl (3; C), as is easily verified. Moreover, since SU(3)
is connected, it follows that a subspace W ⊂ V is invariant under the action of
SU(3) if and only if it is invariant under the action of sl (3; C). Thus we have the
following:

Proposition 6.1. There is a one-to-one correspondence between the finite-
dimensional complex representations Π of SU(3) and the finite-dimensional complex-
linear representations π of sl (3; C). This correspondence is determined by the prop-
erty that

Π
(
eX
)

= eπ(X)

for all X ∈ su(3) ⊂ sl (3; C).
The representation Π is irreducible if and only the representation π is irre-

ducible. Moreover, a subspace W ⊂ V is invariant for Π if and only if it is invariant
for π.

Since SU(3) is compact, Proposition 5.17 of Chapter 5 tells us that all the
finite-dimensional representations of SU(3) are completely reducible. The above
proposition then implies that all the finite-dimensional representations of sl (3; C)
are completely reducible.

101
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Moreover, we can apply the same reasoning to the group SU(2), its Lie algebra
su(2), and its complexified Lie algebra sl(2; C). Since SU(2) is simply connected,
there is a one-to-one correspondence between the complex representations of SU(2)
and the representations of the complexified Lie algebra sl(2; C). Since SU(2) is com-
pact, all of the representations of SU(2)–and therefore also of sl(2; C)–are completely
reducible. Thus we have established the following.

Proposition 6.2. Every finite-dimensional (complex-linear) representation of
sl(2; C) or sl (3; C) is completely reducible. In particular, every finite-dimensional
representation of sl(2; C) or sl (3; C) decomposes as a direct sum of irreducible in-
variant subspaces.

We will use the following basis for sl (3; C):

H1 =




1 0 0
0 −1 0
0 0 0


 H2 =




0 0 0
0 1 0
0 0 −1




X1 =




0 1 0
0 0 0
0 0 0


 X2 =




0 0 0
0 0 1
0 0 0


 X3 =




0 0 1
0 0 0
0 0 0




Y1 =




0 0 0
1 0 0
0 0 0


 Y2 =




0 0 0
0 0 0
0 1 0


 Y3 =




0 0 0
0 0 0
1 0 0


 .

Note that the span of {H1, X1, Y1} is a subalgebra of sl (3; C) which is isomor-
phic to sl(2; C), by ignoring the third row and the third column. Similarly, the span
of {H2, X2, Y2} is a subalgebra isomorphic to sl(2; C), by ignoring the first row and
first column. Thus we have the following commutation relations

[H1, X1] = 2X1 [H2, X2] = 2X2

[H1, Y1] = −2Y1 [H2, Y2] = −2Y2

[X1, Y1] = H1 [X2, Y2] = H2.

We now list all of the commutation relations among the basis elements which
involve at least one of H1 and H2. (This includes some repetitions of the commu-
tation relations above.)

[H1, H2] = 0

[H1, X1] = 2X1 [H1, Y1] = −2Y1

[H2, X1] = −X1 [H2, Y1] = Y1

[H1, X2] = −X2 [H1, Y2] = Y2

[H2, X2] = 2X2 [H2, Y2] = −2Y2

[H1, X3] = X3 [H1, Y3] = −Y3

[H2, X3] = X3 [H2, Y3] = −Y3

(6.1)
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We now list all of the remaining commutation relations.

[X1, Y1] = H1

[X2, Y2] = H2

[X3, Y3] = H1 +H2

[X1, X2] = X3 [Y1, Y2] = −Y3

[X1, Y2] = 0 [X2, Y1] = 0

[X1, X3] = 0 [Y1, Y3] = 0
[X2, X3] = 0 [Y2, Y3] = 0

[X2, Y3] = Y1 [X3, Y2] = X1

[X1, Y3] = −Y2 [X3, Y1] = −X2

Note that there is a kind of symmetry between the Xi’s and the Yi’s. If a
relation in the first column involves an Xi and/or a Yj , the corresponding relation
in the second column will involve a Yi and/or an Xj. (E.g., we have the relation
[H1, X2] = −X2 in the first column, and the relation [H2, Y2] = Y2 in the second
column.) See Exercise 1.

All of the analysis we will do for the representations of sl (3; C) will be in terms
of the above basis. From now on, all representations of sl (3; C) will be assumed to
be finite-dimensional and complex-linear.

2. Weights and Roots

Our basic strategy in classifying the representations of sl (3; C) is to simultane-
ously diagonalize π(H1) and π(H2). Since H1 and H2 commute, π(H1) and π(H2)
will also commute, and so there is at least a chance that π(H1) and π(H2) can be
simultaneously diagonalized.

Definition 6.3. If (π, V ) is a representation of sl (3; C), then an ordered pair
µ = (µ1, µ2) ∈ C2 is called a weight for π if there exists v 6= 0 in V such that

π(H1)v = µ1v

π(H2)v = µ2v.(6.2)

The vector v is called a weight vector corresponding to the weight µ. If µ =
(µ1, µ2) is a weight, then the space of all vectors v satisfying (6.2) is the weight

space corresponding to the weight µ.

Thus a weight is simply a pair of simultaneous eigenvalues for π(H1) and π(H2).

Proposition 6.4. Every representation of sl (3; C) has at least one weight.

Proof. Since we are working over the complex numbers, π(H1) has at least
one eigenvalue µ1. Let W ⊂ V be the eigenspace for π(H1) with eigenvalue µ1. I
assert that W is invariant under π(H2). To see this consider w ∈ W , and compute

π(H1) (π(H2)w) = π(H2)π(H1)w

= π(H2) (µ1w) = µ1π(H2)w.

This shows that π(H2)w is either zero or an eigenvector for π(H1) with eigenvalue
µ1; thus W is invariant.
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Thus π(H2) can be viewed as an operator on W . Again, since we are over C,
the restriction of π(H2) to W must have at least one eigenvector w with eigenvalue
µ2. But then w is a simultaneous eigenvector for π(H1) and π(H2) with eigenvalues
µ1 and µ2.

Now, every representation π of sl (3; C) can be viewed, by restriction, as a
representation of the subalgebra {H1, X1, Y1} ∼= sl(2; C). Note that, even if π is
irreducible as a representation of sl (3; C), there is no reason to expect that it will
still be irreducible as a representation of the subalgebra {H1, X1, Y1}. Neverthe-
less, π restricted to {H1, X1, Y1} must be some finite-dimensional representation
of sl(2; C). The same reasoning applies to the restriction of π to the subalgebra
{H2, X2, Y2}, which is also isomorphic to sl(2; C).

Proposition 6.5. Let (π, V ) be any finite-dimensional complex-linear repre-
sentation of sl(2; C) = {H,X, Y }. Then all the eigenvalues of π(H) are integers.

Proof. By Proposition 6.2, V decomposes as a direct sum of irreducible in-
variant subspaces Vi. Each Vi must be one of the irreducible representations of
sl(2; C), which we have classified. In particular, in each Vi, π(H) can be diagonal-
ized, and the eigenvalues of π(H) are integers. Thus π(H) can be diagonalized on
the whole space V , and all of the eigenvalues are integers.

Corollary 6.6. If π is a representation of sl (3; C), then all of the weights of
π are of the form

µ = (m1,m2)

with m1 and m2 integers.

Proof. Apply Proposition 6.5 to the restriction of π to {H1, X1, Y1}, and to
the restriction of π to {H2, X2, Y2}.

Our strategy now is to begin with one simultaneous eigenvector for π(H1) and
π(H2), and then to apply π(Xi) or π(Yi), and see what the effect is. The following
definition is relevant in this context. (See Lemma 6.8 below.)

Definition 6.7. An ordered pair α = (α1, α2) ∈ C2 is called a root if

1. α1 and α2 are not both zero, and
2. there exists Z ∈ sl (3; C) such that

[H1, Z] = α1Z

[H2, Z] = α2Z.

The element Z is called a root vector corresponding to the root α.

That is, a root is a non-zero weight for the adjoint representation. The com-
mutation relations (6.1) tell us what the roots for sl (3; C) are. There are six roots.

α Z
(2,−1) X1

(−1, 2) X2

(1, 1) X3

(−2, 1) Y1

(1,−2) Y2

(−1,−1) Y3

(6.3)
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It is convenient to single out the two roots corresponding to X1 and X2 and
give them special names:

α(1) = (2,−1)

α(2) = (−1, 2).(6.4)

The roots α(1) and α(2) are called the simple roots. They have the property that
all of the roots can be expressed as linear combinations of α(1) and α(2) with integer
coefficients, and these coefficients are either all greater than or equal to zero or all
less than or equal to zero. This is verified by direct computation:

(2,−1) = α(1)

(−1, 2) = α(2)

(1, 1) = α(1) + α(2)

(−2, 1) = −α(1)

(1,−2) = −α(2)

(−1,−1) = −α(1) − α(2).

The significance of the roots for the representation theory of sl (3; C) is con-
tained in the following Lemma. Although its proof is very easy, this Lemma plays
a crucial role in the classification of the representations of sl (3; C). Note that
this Lemma is the analog of Lemma 5.10 of Chapter 5, which was the key to the
classification of the representations of sl(2; C).

Lemma 6.8. Let α = (α1, α2) be a root, and Zα 6= 0 a corresponding root vector
in sl (3;C). Let π be a representation of sl (3; C), µ = (m1,m2) a weight for π, and
v 6= 0 a corresponding weight vector. Then

π(H1)π(Zα)v = (m1 + α1)π(Zα)v

π(H2)π(Zα)v = (m2 + α2)π(Zα)v.

Thus either π(Zα)v = 0 or else π(Zα)v is a new weight vector with weight

µ+ α = (m1 + α1,m2 + α2).

Proof. The definition of a root tells us that we have the commutation relation
[H1Zα] = α1Zα. Thus

π(H1)π(Zα)v = (π(Zα)π(H1) + α1π(Za)) v

= π(Zα)(m1v) + α1π(Zα)v

= (m1 + α1)π(Zα)v.

A similar argument allows us to compute π(H2)π(Zα)v.

3. Highest Weights and the Classification Theorem

We see then that if we have a representation with a weight µ = (m1,m2), then
by applying the root vectors X1, X2, X3, Y1, Y2, Y3 we can get some new weights of
the form µ + α, where α is the root. Of course, some of the weight vectors may
simply give zero. In fact, since our representation is finite-dimensional, there can
be only finitely many weights, so we must get zero quite often. By analogy to
the classification of the representations of sl(2;C), we would like to single out in
each representation a “highest” weight, and then work from there. The following
definition gives the “right” notion of highest.
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Definition 6.9. Let α(1) = (2,−1) and α(2) = (−1, 2) be the roots introduced
in (6.4). Let µ1 and µ2 be two weights. Then µ1 is higher than µ2 (or equivalently,
µ2 is lower than µ1) if µ1 − µ2 can be written in the form

µ1 − µ2 = aα(1) + bα(2)

with a ≥ 0 and b ≥ 0. This relationship is written as µ1 � µ2 or µ2 � µ1.
If π is a representation of sl (3; C), then a weight µ0 for π is said to be a highest

weight if for all weights µ of π, µ � µ0.

Note that the relation of “higher” is only a partial ordering. That is, one can
easily have µ1 and µ2 such that µ1 is neither higher nor lower than µ2. For example,
α(1)−α(2) is neither higher nor lower than 0. This in particular means that a finite
set of weights need not have a highest element. (E.g., the set

{
0, α(1) − α(2)

}
has

no highest element.)
We are now ready to state the main theorem regarding the irreducible repre-

sentations of sl (3; C).

Theorem 6.10. 1. Every irreducible representation π of sl (3; C) is the di-
rect sum of its weight spaces. That is, π(H1) and π(H2) are simultaneously
diagonalizable.

2. Every irreducible representation of sl (3; C) has a unique highest weight µ0,
and two equivalent irreducible representations have the same highest weight.

3. Two irreducible representations of sl (3; C) with the same highest weight are
equivalent.

4. If π is an irreducible representation of sl (3; C), then the highest weight µ0

of π is of the form

µ0 = (m1,m2)

with m1 and m2 non-negative integers.
5. Conversely, if m1 and m2 are non-negative integers, then there exists a

unique irreducible representation π of sl (3; C) with highest weight µ0 =
(m1,m2).

Note the parallels between this result and the classification of the irreducible
representations of sl(2; C): In each irreducible representation of sl(2; C), π(H) is
diagonalizable, and there is a largest eigenvalue of π(H). Two irreducible repre-
sentations of sl(2; C) with the same largest eigenvalue are equivalent. The highest
eigenvalue is always a non-negative integer, and conversely, for every non-negative
integer m, there is an irreducible representation with highest eigenvalue m.

However, note that in the classification of the representations of sl (3; C) the
notion of “highest” does not mean what we might have thought it should mean.
For example, the weight (1, 1) is higher than the weights (−1, 2) and (2,−1). (In
fact, (1, 1) is the highest weight for the adjoint representation, which is irreducible.)

It is possible to obtain much more information about the irreducible represen-
tations besides the highest weight. For example, we have the following formula for
the dimension of the representation with highest weight (m1,m2).

Theorem 6.11. The dimension of the irreducible representation with highest
weight (m1,m2) is

1

2
(m1 + 1)(m2 + 1)(m1 +m2 + 2).
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We will not prove this formula. It is a consequence of the “Weyl character
formula.” See Humphreys, Section 24.3. Humphreys refers to sl (3; C) as A2.

4. Proof of the Classification Theorem

It will take us some time to prove Theorem 1. The proof will consist of a series
of Propositions.

Proposition 6.12. In every irreducible representation (π, V ) of sl (3; C), π(H1)
and π(H2) can be simultaneously diagonalized. That is, V is the direct sum of its
weight spaces.

Proof. Let W be the direct sum of the weight spaces in V . Equivalently, W is
the space of all vectors w ∈ V such that w can be written as a linear combination of
simultaneous eigenvectors for π(H1) and π(H2). Since (Proposition 6.4) π always
has at least one weight, W 6= {0}.

On the other hand, Lemma 6.8 tells us that if Zα is a root vector corresponding
to the root α, then π(Zα) maps the weight space corresponding to µ into the weight
space corresponding to µ+α. Thus W is invariant under the action of all of the root
vectors, namely, under the action X1, X2, X3, Y1, Y2, and Y3. Since W is certainly
invariant under the action of H1 and H2, W is invariant. Thus by irreducibility,
W = V .

Definition 6.13. A representation (π, V ) of sl (3; C) is said to be a highest

weight cyclic representation with weight µ0 = (m1,m2) if there exists v 6= 0
in V such that

1. v is a weight vector with weight µ0.
2. π(X1)v = π(X2)v = 0.
3. The smallest invariant subspace of V containing v is all of V .

The vector v is called a cyclic vector for π.

Proposition 6.14. Let (π, V ) be a highest weight cyclic representation of sl (3; C)
with weight µ0. Then

1. π has highest weight µ0.
2. The weight space corresponding to the highest weight µ0 is one-dimensional.

4.0.1. Proof.

Proof. Let v be as in the definition. Consider the subspace W of V spanned
by elements of the form

w = π(Yi1 )π(Yi2 ) · · ·π(Yin)v(6.5)

with each il = 1, 2, and n ≥ 0. (If n = 0, it is understood that w in (6.5) is equal to
v.) I assert that W is invariant. To see this, it suffices to check that W is invariant
under each of the basis elements.

By definition, W is invariant under π(Y1) and π(Y2). It is thus also invariant
under π(Y3) = − [π(Y1), π(Y2)].

Now, Lemma 6.8 tells us that applying a root vector Zα ∈ sl (3; C) to a weight
vector v with weight µ gives either zero, or else a new weight vector with weight µ+
α. Now, by assumption, v is a weight vector with weight µ0. Furthermore, Y1 and
Y2 are root vectors with roots −α(1) = (−2, 1) and −α(2) = (1,−2), respectively.
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(See Equation (6.3).) Thus each application of π(Y1) or π(Y2) subtracts α(1) or
α(2) from the weight. In particular, each non-zero element of the form (6.5) is a
simultaneous eigenvector for π(H1) and π(H2). Thus W is invariant under π(H1)
and π(H2).

To show that W is invariant under π(X1) and π(X2), we argue by induction on
n. For n = 0, we have π(X1)v = π(X2)v = 0 ∈ W . Now consider applying π(X1)
or π(X2) to a vector of the form (6.5). Recall the commutation relations involving
an X1 or X2 and a Y1 or Y2:

[X1, Y1] = H1 [X1, Y2] = 0
[X2, Y1] = 0 [X2, Y2] = H2.

Thus (for i and j equal to 1 or 2) π(Xi)π(Yj) = π(Yj)π(Xi) + π(Hij), where Hij is
either H1 or H2 or zero. Hence (for i equal to 1 or 2)

π(Xi)π(Yi1 )π(Yi2 ) · · ·π(Yin)v

= π(Yi1 )π(Xi)π(Yi2 ) · · ·π(Yin)v + π(Hij)π(Yi2 ) · · ·π(Yin)v.

But π(Xi)π(Yi2 ) · · ·π(Yin)v is in W by induction, and π(Hij)π(Yi2 ) · · ·π(Yin)v is
in W since W is invariant under π(H1) and π(H2).

Finally, W is invariant under π(X3) since π(X3) = [π(X1), π(X2)]. Thus W is
invariant. Since by definition W contains v, we must have W = V .

Since Y1 is a root vector with root −α(1) and Y2 is a root vector with root
−α(2), Lemma 6.8 tells us that each element of the form (6.5) is either zero or a
weight vector with weight µ0 − α(i1) − · · · − α(in). Thus V = W is spanned by v
together with weight vectors with weights lower than µ0. Thus µ0 is the highest
weight for V .

Furthermore,every element of W can be written as a multiple of v plus a linear
combination of weight vectors with weights lower than µ0. Thus the weight space
corresponding to µ0 is spanned by v; that is, the weight space corresponding to µ0

is one-dimensional.

Proposition 6.15. Every irreducible representation of sl (3; C) is a highest
weight cyclic representation, with a unique highest weight µ0.

Proof. Uniqueness is immediate, since by the previous Proposition, µ0 is the
highest weight, and two distinct weights cannot both be highest.

We have already shown that every irreducible representation is the direct sum
of its weight spaces. Since the representation is finite-dimensional, there can be
only finitely many weights. It follows that there must exist a weight µ0 such that
there is no weight µ 6= µ0 with µ � µ0. This says that there is no weight higher
than µ0 (which is not the same as saying the µ0 is highest). But if there is no
weight higher than µ0, then for any non-zero weight vector v with weight µ0, we
must have

π(X1)v = π(X2)v = 0.

(For otherwise, say, π(X1)v will be a weight vector with weight µ0 + α(1) ≻ µ0.)
Since π is assumed irreducible, the smallest invariant subspace containing v

must be the whole space; therefore the representation is highest weight cyclic.
�
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Proposition 6.16. Every highest weight cyclic representation of sl (3; C) is ir-
reducible.

Proof. Let (π, V ) be a highest weight cyclic representation with highest weight
µ0 and cyclic vector v. By complete reducibility (Proposition 6.2), V decomposes
as a direct sum of irreducible representations

V ∼=
⊕

i

Vi.(6.6)

By Proposition 6.12, each of the Vi’s is the direct sum of its weight spaces.
Thus since the weight µ0 occurs in V , it must occur in some Vi. On the other hand,
Proposition 6.14 says that the weight space corresponding to µ0 is one-dimensional,
that is, v is (up to a constant) the only vector in V with weight µ0. Thus Vi must
contain v. But then that Vi is an invariant subspace containing v, so Vi = V . Thus
there is only one term in the sum (6.6), and V is irreducible.

Proposition 6.17. Two irreducible representations of sl (3; C) with the same
highest weight are equivalent.

Proof. We now know that a representation is irreducible if and only if it is
highest weight cyclic. Suppose that (π, V ) and (σ,W ) are two such representations
with the same highest weight µ0. Let v and w be the cyclic vectors for V and
W , respectively. Now consider the representation V ⊕W , and let U be smallest
invariant subspace of V ⊕W which contains the vector (v, w).

By definition, U is a highest weight cyclic representation, therefore irreducible
by Proposition. 6.16. Consider the two “projection” maps P1 : V ⊕ W → V ,
P1(v, w) = v and P2 : V ⊕W → W , P1(v, w) = w. It is easy to check that P1 and
P2 are morphisms of representations. Therefore the restrictions of P1 and P2 to
U ⊂ V ⊕W will also be morphisms.

Clearly neither P1|U nor P2|U is the zero map (since both are non-zero on
(v, w)). Moreover, U , V , and W are all irreducible. Therefore, by Schur’s Lemma,
P1|U is an isomorphism of U with V , and P2|U is an isomorphism of U with W .
Thus V ∼= U ∼= W .

Proposition 6.18. If π is an irreducible representation of sl (3; C), then the
highest weight of π is of the form

µ = (m1,m2)

with m1 and m2 non-negative integers.

Proof. We already know that all of the weights of π are of the form (m1,m2),
withm1 andm2 integers. We must show that if µ0 = (m1,m2) is the highest weight,
then m1 and m2 are both non-negative. For this, we again use what we know about
the representations of sl(2; C). The following result can be obtained from the proof
of the classification of the irreducible representations of sl(2; C).

Let (π, V ) be any finite-dimensional representation of sl(2; C). Let v be an
eigenvector for π(H) with eigenvalue λ. If π(X)v = 0, then λ is a non-negative
integer.

Now, if π is an irreducible representation of sl (3;C) with highest weight µ0 =
(m1,m2), and if v 6= 0 is a weight vector with weight µ0, then we must have
π(X1)v = π(X2)v = 0. (Otherwise, µ0 wouldn’t be highest.) Thus applying the
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above result to the restrictions of π to {H1, X1, Y1} and to {H2, X2, Y2} shows that
m1 and m2 must be non-negative.

Proposition 6.19. If m1 and m2 are non-negative integers, then there exists
an irreducible representation of sl (3; C) with highest weight µ = (m1,m2).

Proof. Note that the trivial representation is an irreducible representation
with highest weight (0, 0). So we need only construct representations with at least
one of m1 and m2 positive.

First, we construct two irreducible representations with highest weights (1, 0)
and (0, 1). (These are the so-called fundamental representations.) The stan-
dard representation of sl (3; C) is an irreducible representation with highest weight
(1, 0), as is easily checked. To construct an irreducible representation with weight
(0, 1) we modify the standard representation. Specifically, we define

π(Z) = −Ztr(6.7)

for all Z ∈ sl (3; C). Using the fact that (AB)
tr

= BtrAtr, it is easy to check that

− [Z1, Z2]
tr

=
[
−Ztr1 ,−Ztr2

]

so that π is really a representation. (This is isomorphic to the dual of the standard
representation, as defined in Exercise 14 of Chapter 5.) It is easy to see that π is
an irreducible representation with highest weight (0, 1).

Let (π1, V1) denote C3 acted on by the standard representation, and let v1 de-
note a weight vector corresponding to the highest weight (1, 0). (So, v1 = (1, 0, 0).)
Let (π2, V2) denote C3 acted on by the representation (6.7), and let v2 denote a
weight vector for the highest weight (0, 1). (So, v2 = (0, 0, 1).) Now consider the
representation

V1 ⊗ V1 · · · ⊗ V1 ⊗ V2 ⊗ V2 · · ·V2

where V1 occurs m1 times, and V2 occurs m2 times. Note that the action of sl (3; C)
on this space is

Z → (π1(Z) ⊗ I · · · ⊗ I)

+ (I ⊗ π1(Z) ⊗ I · · · ⊗ I) + · · · + (I ⊗ · · · I ⊗ π2(Z)) .(6.8)

Let πm1,m2 denote this representation.
Consider the vector

vm1,m2 = v1 ⊗ v1 · · · ⊗ v1 ⊗ v2 ⊗ v2 · · · ⊗ v2.

Then applying (6.8) shows that

πm1,m2(H1)vm1,m2 = m1vm1,m2

πm1,m2(H2)vm1,m2 = m2vm1,m2

πm1,m2(X1)vm1,m2 = 0

πm1,m2(X2)vm1,m2 = 0.(6.9)

Now, the representation πm1,m2 is not irreducible (unless (m1,m2) = (1, 0) or
(0, 1)). However, if we let W denote the smallest invariant subspace containing the
vector vm1,m2 , then in light of (6.9), W will be highest weight cyclic with highest
weight (m1,m2). Therefore by Proposition 6.16, W is irreducible with highest
weight (m1,m2).

Thus W is the representation we want.
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We have now completed the proof of Theorem 1.

5. An Example: Highest Weight (1, 1)

To obtain the irreducible representation with highest weight (1, 1) we are sup-
posed to take the tensor product of the irreducible representations with highest
weights (1, 0) and (0, 1), and then extract a certain invariant subspace. Let us
establish some notation for the representations (1, 0) and (0, 1). In the standard
representation, the weight vectors for

H1 =




1 0 0
0 −1 0
0 0 0


 ; H2 =




0 0 0
0 1 0
0 0 −1


 ;

are the standard basis elements for C3, namely, e1, e2, and e3. The corresponding
weights are (1, 0), (−1, 1), and (0,−1). The highest weight is (1, 0).

Recall that

Y1 =




0 0 0
1 0 0
0 0 0


 ; Y2 =




0 0 0
0 0 0
0 1 0


 .

Thus

Y1(e1) = e2 Y2(e1) = 0
Y1(e2) = 0 Y2(e2) = e3
Y1(e3) = 0 Y2(e3) = 0.

(6.10)

Now, the representation with highest weight (0, 1) is the representation π(Z) =
−Ztr, for Z ∈ sl (3; C). Let us define

Z = −Ztr

for all Z ∈ sl (3; C). Thus π(Z) = Z. Note that

H1 =




−1 0 0
0 1 0
0 0 0


 ; H2 =




0 0 0
0 −1 0
0 0 1


 .

The weight vectors are again e1, e2, and e3, with weights (−1, 0), (1,−1), and (0, 1).
The highest weight is (0, 1).

Define new basis elements

f1 = e3
f2 = −e2
f3 = e1.

Then since

Y1 =




0 −1 0
0 0 0
0 0 0


 ; Y2 =




0 0 0
0 0 −1
0 0 0


 ;

we have

Y1(f1) = 0 Y2(f1) = f2
Y1(f2) = f3 Y2(f2) = 0

Y1(f3) = 0 Y2(f3) = 0.

(6.11)

Note that the highest weight vector is f1 = e3.
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So, to obtain an irreducible representation with highest weight (1, 1) we are
supposed to take the tensor product of the representations with highest weights
(1, 0) and (0, 1), and then take the smallest invariant subspace containing the vector
e1 ⊗ f1. In light of the proof of Proposition 6.14, this smallest invariant subspace
is obtained by starting with e1 ⊗ f1 and applying all possible combinations of Y1

and Y2.
Recall that if π1 and π2 are two representations of the Lie algebra sl (3; C), then

(π1 ⊗ π2) (Y1) = π1(Y1) ⊗ I + I ⊗ π2(Y1)

(π1 ⊗ π2) (Y2) = π1(Y2) ⊗ I + I ⊗ π2(Y2).

In our case we want π1(Yi) = Yi and π2(Yi) = Yi. Thus

(π1 ⊗ π2) (Y1) = Y1 ⊗ I + I ⊗ Y1

(π1 ⊗ π2) (Y2) = Y2 ⊗ I + I ⊗ Y2.

The actions of Yi and Yi are described in (6.10) and (6.11).
Note that π1 ⊗ π2 is not an irreducible representation. The representation

π1⊗π2 has dimension 9, whereas the smallest invariant subspace containing e1⊗f1
has, as it turns out, dimension 8.

So, it remains only to begin with e1 ⊗ f1, apply Y1 and Y2 repeatedly until we
get zero, and then figure out what dependence relations exist among the vectors we
get. These computations are done on a supplementary page. Note that the weight
(0, 0) has multiplicity two. This is because, starting with e1 ⊗ f1, applying Y1 and
then Y2 gives something different than applying Y2 and then Y1.

6. The Weyl Group

The set of weights of an arbitrary irreducible representation of sl (3; C) has a
certain symmetry associated to it. This symmetry is in terms of something called
the “Weyl group.” (My treatment of the Weyl group follows Bröcker and tom
Dieck, Chap. IV, 1.3.) We consider the following subgroup of SU(3):

W =





w0 =




1 0 0
0 1 0
0 0 1


 ; w1 =




0 0 1
1 0 0
0 1 0


 ; w2 =




0 1 0
0 0 1
1 0 0




w3 = −




0 1 0
1 0 0
0 0 1


 ; w4 = −




0 0 1
0 1 0
1 0 0


 ; w5 = −




1 0 0
0 0 1
0 1 0








.

These are simply the matrices which permute the standard basis elements of C3,
with an adjustment of overall sign when necessary to make the determinant equal
one.

Now, for any A ∈ SU(3), we have the associated map AdA : su(3) → su(3),
where

AdA(X) = AXA−1.

Now, since each element of sl (3; C) is of the form Z = X + iY with X,Y ∈ su(3),
it follows that sl (3; C) is invariant under the map Z → AZA−1. That is, we can
think of AdA as a map of sl (3; C) to itself.

The reason for selecting the above group is the following: If w ∈ W , then
Adw(H1) and Adw(H2) are linear combinations of H1 and H2. That is, each
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Adw preserves the space spanned by H1 and H2. (There are other elements of
SU(3) with this property, notably, the diagonal elements. However, these actually
commute with H1 and H2. Thus the adjoint action of these elements on the span
of H1 and H2 is trivial and therefore uninteresting. See Exercise 3.)

Now, for each w ∈ W and each irreducible representation π of sl (3; C), let’s
define a new representation πw by the formula

πw(X) = π
(
Adw−1(X)

)
= π(w−1Xw).

Since Adw−1 is a Lie algebra automorphism, πw will in fact be a representation of
sl (3; C).

Recall that since SU(3) is simply connected, then for each representation π of
sl (3; C) there is an associated representation Π of SU(3) (acting on the same space)
such that

Π
(
eX
)

= eπ(X)

for all X ∈ su(3) ⊂ sl (3; C). The representation Π has the property that

π(AXA−1) = Π(A)π(X)Π(A)−1(6.12)

for all X ∈ su(3). Again since every element of sl (3; C) is of the form X + iY with
X,Y ∈ su(3), it follows that (6.12) holds also for X ∈ sl (3; C).

In particular, taking A = w−1 ∈W we have

πw(X) = π(w−1Xw) = Π(w)−1π(X)Π(w)(6.13)

for all X ∈ sl (3; C).

Proposition 6.20. For each representation π of sl (3; C) and for each w ∈W ,
the representation πw is equivalent to the representation π.

Proof. We need a map φ : V → V with the property that

φ (πw(X)v) = π(X)φ(v)

for all v ∈ V . This is the same as saying that φπw(X) = π(X)φ, or equivalently
that πw(X) = φ−1π(X)φ. But in light of (6.13), we can take φ = Π(w).

Although π and πw are equivalent, they are not equal. That is, in general
π(X) 6= πw(X). You should think of π and πw as differing by a change of basis on
V , where the change-of-basis matrix is Π(w). Two representations that differ just
by a change of basis are automatically equivalent.

Corollary 6.21. Let π be a representation of sl (3; C) and w ∈ W . Then
a pair µ = (m1,m2) is a weight for π if and only if it is a weight for πw. The
multiplicity of µ as a weight of π is the same as the multiplicity of µ as a weight
for πw.

Proof. Equivalent representations must have the same weights and the same
multiplicities.
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Let us now compute explicitly the action of Adw−1 on the span of H1 and H2,
for each w ∈ W . This is a straightforward computation.

w−1
0 H1w0 = H1 w−1

3 H1w3 = −H1

w−1
0 H2w0 = H2 w−1

3 H2w3 = H1 +H2

w−1
1 H1w1 = −H1 −H2 w−1

4 H1w4 = −H2

w−1
1 H2w1 = H1 w−1

4 H2w4 = −H1

w−1
2 H1w2 = H2 w−1

5 H1w5 = H1 +H2

w−1
2 H2w2 = −H1 −H2 w−1

5 H2w5 = −H2.

(6.14)

We can now see the significance of the Weyl group. Let π be a representation
of sl (3; C), µ = (m1,m2) a weight, and v 6= 0 a weight vector with weight µ. Then,
for example,

πw1(H1)v = π(w−1
1 H1w1)v = π(−H1 −H2)v = (−m1 −m2)v

πw1(H2)v = π(w−1
1 H2w1)v = π(H1)v = m1v.

Thus v is a weight vector for πw with weight (−m1 −m2,m1). But by Corollary
6.21, the weights of π and of πw are the same!

Conclusion: If µ = (m1,m2) is a weight for π, so is (−m1−m2,m1).
The multiplicities of (m1,m2) and (−m1 −m2,m1) are the same.

Of course, a similar argument applies to each of the other elements of the
Weyl group. Specifically, if µ is a weight for some representation π, and w is an
element of W , then there will be some new weight which must also be a weight
of π. We will denote this new weight w · µ. For example, if µ = (m1,m2), then
w1 ·µ = (−m1 −m2,m1). (We define w ·µ so that if v is a weight vector for π with
weight µ, then v will be a weight for πw with weight w · µ.) From (6.14) we can
read off what w · µ is for each w.

w0 · (m1,m2) = (m1,m2) w3 · (m1,m2) = (−m1,m1 +m2)
w1 · (m1,m2) = (−m1 −m2,m1) w4 · (m1,m2) = (−m2,−m1)
w2 · (m1,m2) = (m2,−m1 −m2) w5 · (m1,m2) = (m1 +m2,−m2)

(6.15)

It is straightforward to check that

wi · (wj · µ) = (wiwj) · µ.(6.16)

We have now proved the following.

Theorem 6.22. If µ = (m1,m2) is a weight and w is an element of the Weyl
group, let w · µ be defined by (6.15). If π is a finite-dimensional representation
of sl (3; C), then µ is a weight for π if and only if w · µ is a weight for π. The
multiplicity of µ is the same as the multiplicity of w · µ.

If we think of the weights µ = (m1,m2) as sitting inside R2, then we can
think of (6.15) as a finite group of linear transformations of R2. (The fact that
this is a group of transformations follows form (6.16).) Since this is a finite group
of transformations, it is possible to choose an inner product on R2 such that the
action of W is orthogonal. (As in the proof of Proposition 5.16 in Chapter 5.)
In fact, there is (up to a constant) exactly one such inner product. In this inner
product, the action (6.15) of the Weyl group is generated by a 120◦ rotation and a
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reflection about the y-axis. Equivalently, the Weyl group is the symmetry group of
an equilateral triangle centered at the origin with one vertex on the y-axis.

7. Complex Semisimple Lie Algebras

This section gives a brief synopsis of the structure theory and representation
theory of complex semisimple Lie algebras. The moral of the story is that all such
Lie algebras look and feel a lot like sl (3; C). This section will not contain any
(non-trivial) proofs.

If g is a Lie algebra, a subspace I ⊂ g is said to be an ideal if [X,Y ] ∈ I for
all X ∈ g and all Y ∈ I. A Lie algebra g is a said to be simple if dim g ≥ 2 and g

has no ideals other than {0} and g. A Lie algebra g is said to be semisimple if g

can be written as the direct sum of simple Lie algebras.
In this section we consider semisimple Lie algebras over the complex numbers.

Examples of complex semisimple Lie algebras include sl (n; C), so(n; C) (n ≥ 3), and
sp(n; C). All of these are actually simple, except for so(4; C) which is isomorphic
to sl(2; C) ⊕ sl(2; C).

Definition 6.23. Let g be a complex semisimple Lie algebra. A subspace h of
g is said to be a Cartan subalgebra if

1. h is abelian. That is, [H1, H2] = 0 for all H1, H2 ∈ h.
2. h is maximal abelian. That is, if X ∈ g satisfies [H,X ] = 0 for all H ∈ h,

then X ∈ h.
3. For all H ∈ h, adH : g → g is diagonalizable.

Since all theH ’s commute, so do the adH ’s. (I.e., [adH1, adH2] = ad [H1, H2] =
0.) By assumption, each adH is diagonalizable, and they commute, therefore the
adH ’s are simultaneously diagonalizable. (Using a standard linear algebra fact.)
Let h∗ denote the dual of h, namely, the space of linear functionals on h.

Definition 6.24. If g is a complex semisimple Lie algebra and h a Cartan
subalgebra, then an element α of h∗ is said to be a root (for g with respect to h) if
α is non-zero and there exists Z 6= 0 in g such that

[H,Z] = α(H)Z(6.17)

for all H ∈ h. (Thus a root is a non-zero set of simultaneous eigenvalues for the
adH’s.)

The vector Z is called a root vector corresponding to the root α, and the space
of all Z ∈ g satisfying (6.17) is the root space corresponding to α. This space is
denoted gα.

The set of all roots will be denoted ∆.

Note that if g = sl (3; C), then one Cartan subalgebra is the space spanned
by H1 and H2. The roots (with respect to this Cartan subalgebra) have been
calculated in (6.3).

Theorem 6.25. If g is a complex semisimple Lie algebra, then a Cartan subal-
gebra h exists. If h1 and h2 are two Cartan subalgebras, then there is an automor-
phism of g which takes h1 to h2. In particular, any two Cartan subalgebras have
the same dimension.

From now on, g will denote a complex semisimple Lie algebra, and h a fixed
Cartan subalgebra in g.
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Definition 6.26. The rank of a complex semisimple Lie algebra is the dimen-
sion of a Cartan subalgebra.

For example, the rank of sl (n; C) is n − 1. One Cartan subalgebra in sl (n; C)
is the space of diagonal matrices with trace zero. (Note that in the case n = 3
the space of diagonal matrices with trace zero is precisely the span of H1 and H2.)
Both so(2n; C) and so(2n+ 1; C) have rank n.

Definition 6.27. Let (π, V ) be a finite-dimensional, complex-linear represen-
tation of g. Then µ ∈ h∗ is called a weight for π if there exists v 6= 0 in V such
that

π(H)v = µ(H)v

for all H ∈ h. The vector v is called a weight vector for the weight µ.

Note that the roots are precisely the non-zero weights for the adjoint represen-
tation.

Lemma 6.28. Let α be a root and Z a corresponding root vector. Let µ be a
weight for a representation π and v a corresponding weight vector. Then either
π(Z)v = 0 or else π(Z)v is a weight vector with weight µ+ α.

Proof. Same as for sl (3;C).

Definition 6.29. A set of roots {α1, · · ·αl} is called a simple system (or
basis) if

1. {α1, · · ·αl} is a vector space basis for h∗.
2. Every root α ∈ ∆ can be written in the form

α = n1α1 + n2α2 + · · · + nlαl

with each ni an integer, and such that the ni’s are either all non-negative or
all non-positive.

A root α is said to be positive (with respect to the given simple system) if the
ni’s are non-negative; otherwise α is negative.

If g = sl (3; C) and h = {H1, H2}, then one simple system of roots is
{
α(1), α(2)

}
=

{(2,−1) , (−1, 2)} (with the corresponding root vectors beingX1 andX2). The posi-
tive roots are {(2,−1) , (−1, 2) , (1, 1)}. The negative roots are {(−2, 1) , (1,−2) , (−1,−1)}.

Definition 6.30. Let {α1, · · ·αl} be a simple system of roots and let µ1 and
µ2 be two weights. Then µ1 is higher than µ2 (or µ2 is lower than µ1) if µ1 − µ2

can be written as

µ1 − µ2 = a1α1 + a2α2 + · · · + alαl

with ai ≥ 0. This relation is denoted µ1 � µ2 or µ2 � µ1.
A weight µ0 for a representation π is highest if all the weights µ of π satisfy

µ � µ0.

The following deep theorem captures much of the structure theory of semisimple
Lie algebras.

Theorem 6.31. Let g be a complex semisimple Lie algebra, h a Cartan subal-
gebra, and ∆ the set of roots. Then

1. For each root α ∈ ∆, the corresponding root space gα is one-dimensional.
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2. If α is a root, then so is −α.
3. A simple system of roots {α1, · · ·αl} exists.

We now need to identify the correct set of weights to be highest weights of
irreducible representations.

Theorem 6.32. Let {α1, · · ·αl} denote a simple system of roots, Xi an element
of the root space gαi and Yi an element of the root space g−αi . Define

Hi = [Xi, Yi] .

Then it is possible to choose Xi and Yi such that

1. Each Hi is non-zero and contained in h.
2. The span of {Hi, Xi, Yi} is a subalgebra of g isomorphic (in the obvious way)

to sl(2; C).
3. The set {H1, · · ·Hl} is a basis for h.

Note that (in most cases) the set of all Hi’s, Xi’s, and Yi’s (i = 1, 2, · · · l) do
not span g. In the case g = sl (3; C), l = 2, and the span of H1, X1, Y1, H2, X2, Y2

represents only six of the eight dimensions of sl (3; C). Nevertheless the subalgebras
{Hi, Xi, Yi} play an important role.

We are now ready to state the main theorem.

Theorem 6.33. Let g be a complex semisimple Lie algebra, h a Cartan subal-
gebra, and {α1, · · ·αl} a simple system of roots. Let {H1, · · ·Hl} be as in Theorem
6.32. Then

1. In each irreducible representation π of g, the π(H)’s are simultaneously di-
agonalizable.

2. Each irreducible representation of g has a unique highest weight.
3. Two irreducible representations of g with the same highest weight are equiv-

alent.
4. If µ0 is the highest weight of an irreducible representation of g, then for
i = 1, 2, · · · l, µ0(Hi) is a non-negative integer.

5. Conversely, if µ0 ∈ h∗ is such that µ0(Hi) is a non-negative integer for all
i = 1, 2, · · · l, then there is an irreducible representation of g with highest
weight µ0.

The weights µ0 as in 4) and 5) are called dominant integral weights.

8. Exercises

1. Show that for any pair of n× n matrices X and Y ,
[
Xtr, Y tr

]
= − [X,Y ]tr .

Using this fact and the fact that Xtr
i = Yi for i = 1, 2, 3, explain the symme-

try betweenX ’s and Y ’s in the commutation relations for sl (3; C). For exam-
ple, show that the relation [Y1, Y2] = −Y3 can be obtained from the relation
[X1, X2] = X3 by taking transposes. Show that the relation [H1, Y2] = Y2

follows from the relation [H1, X2] = −X2.
2. Recall the definition of the dual π∗ of a representation π from Exercise 14

of Chapter 5. Consider this for the case of representations of sl (3; C).
a) Show that the weights of π∗ are the negatives of the weights of π.
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b) Show that if π is the irreducible representation of sl (3; C) with highest
weight (m1,m2) then π∗ is the irreducible representation with highest weight
(m2,m1).

Hint : If you identify V and V ∗ by choosing a basis for V , then Atr is
just the usual matrix transpose.

3. Let h denote the subspace of sl (3; C) spanned by H1 and H2. Let G denote
the group of all matrices A ∈ SU(3) such that AdA preserves h. Now let G0

denote the group of all matrices A ∈ SU(3) such that AdA is the identity
on h, i.e., such that AdA(H1) = H1 and AdA(H2) = H2. Show that G0 is a
normal subgroup of G. Compute G and G0. Show that G/G0 is isomorphic
to the Weyl group W .

4. a) Verify Theorems 6.31 and 6.32 explicitly for the case g = sl (n; C).
b) Consider the task of trying to prove Theorem 6.33 for the case of

sl (n; C). Now that you have done (a), what part of the proof goes through
the same way as for sl (3; C)? At what points in the proof of the correspond-
ing theorem for sl (3; C) did we use special properties of sl (3; C)?

Hint : Most of it is the same, but there is one critical point which we do
something which does not generalize to sl (n; C).
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Cumulative exercises

1. Let G be a connected matrix Lie group, and let Ad : G → GL(g) be the
adjoint representation of G. Show that

ker(Ad) = Z(G)

where Z(G) denotes the center of G. If G = O(2), compute ker(Ad) and
Z(G) and show that they are not equal.

Hint : You should use the fact that if G is connected, then every A ∈ G
can be written in the form A = eX1eX2 · · · eXn , with Xi ∈ g.

2. Let G be a finite, commutative group. Show that the number of equivalence
classes of irreducible complex representations of G is equal to the number
of elements in G.

Hint : Use the fact that every finite, commutative group is a product of
cyclic groups.

3. a) Show that if R ∈ O(2), and detR = −1, then R has two real, orthogonal
eigenvectors with eigenvalues 1 and −1.

b) Let R be in O(n). Show that there exists a subspaceW of Rn which is
invariant under both R and R−1, and such that dimW = 1 or 2. Show that
W⊥ (the orthogonal complement of W ) is also invariant under R and R−1.
Show that the restrictions of R and R−1 to W and to W⊥ are orthogonal.
(That is, show that these restrictions preserve inner products.)

c) Let R be in O(n). Show that Rn can be written as the orthogonal
direct sum of subspaces Wi such that

(a) 1) Each Wi is invariant under R and R−1,
(b) 2) Each Wi has dimension 1 or 2, and
(c) 3) If dimWi = 2, then the restriction of R to Wi has determinant one.

d) Show that the exponential mapping for SO(n) is onto. Make sure
you use the fact that the elements of SO(n) have determinant one.

Note: This provides an alternative proof that the group SO(n) is con-
nected.

4. Determine, up to equivalence, all of the finite-dimensional, irreducible (complex-
linear) representations of the Lie algebra sl(2; C)⊕sl(2; C). Can your answer
be expressed in terms of a sort of “highest weight”?

Hint : Imitate the proof of the classification of the irreducible represen-
tations of sl(2; C).

5. Consider the irreducible representation (π, V ) of sl (3; C) with highest weight
(0, 2). Following the procedure in Chapter 6, Section 5, determine

1) The dimension of V .
2) All of the weights of π.

119
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3) The multiplicity of each of the weights. (That is, the dimension of
the corresponding weight spaces.)
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