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Abstract

We present a noncommutative version of the Burgers equation which possesses the
Lax representation and discuss the integrability in detail. We find a noncommutative
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earized equation is the (noncommutative) diffusion equation and exactly solved. We also
discuss the properties of some exact solutions. The result shows that the noncommutative
Burgers equation is completely integrable even though it contains infinite number of time
derivatives. Furthermore, we derive the noncommutative Burgers equation from the non-
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1 Introduction

The extension of ordinary integrable systems to noncommutative (NC) spaces has been

studied intensively for the last several years [1]-[24]. In the recent developments of NC

field theories, various new physical aspects of gauge theories were revealed [25] and several

long-standing problems in real physics were solved.

NC field theories can be described as deformed theories from commutative ones. In

terms of gauge theories, the deformation is essentially unique because it corresponds to

the presence of the background magnetic fields [25]. Among them, NC (anti-)self-dual

Yang-Mills equations are integrable and important [26]. The first breakthrough was the

great work [27] of Atiyah-Drinfeld-Hitchin-Manin construction [28] of NC U(1) instantons.

On the other hand, in the lower-dimensional theories, there are many typical integrable

equations such as the Korteweg-de Vries (KdV) equation [29]. These equations contain

no gauge field and the NC extension of them perhaps might have no physical picture.

Furthermore, the NC extension of (1+1)-dimensional equations introduces infinite number

of time derivatives and it becomes very hard to define the integrability.

Nevertheless, NC versions of them have been proposed in various contexts. They

actually possess some integrable properties, such as the existence of infinite number of

conserved quantities [1, 13]. Furthermore, a few of them can be derived from NC (anti-

)self-dual Yang-Mills equations by suitable reductions [7]. This fact may give some phys-

ical meanings to the lower-dimensional NC field equations. Now it is time to investigate

various aspects of them more in detail in order to confirm whether the NC field equations

presented are really integrable or not.

For this purpose, the Burgers equation [30] would be the best example. On the com-

mutative space-time, it can be derived from the Navier-Stokes equation and describes real

phenomena, such as the turbulence and shock waves. In this point, the Burgers equa-

tion draws much attention amongst many integrable equations. Furthermore, it can be

linearized by the Cole-Hopf transformation [31]. The linearized equation is the diffusion

equation and can be solved by Fourier transformation for given boundary conditions. This

shows that the Burgers equation is completely integrable. The Burgers equation actually

sat in the central position at the early stage of integrable systems and have given much

influence on the subsequent studies. For example, the Hirota’s bilinear transformation

[32], which is a simple generalization of the Cole-Hopf transformation, plays a crucial

role in the construction of the exact multi-soliton solution of various soliton equations.

Therefore if the NC Burgers equation is linearizable and integrable even on the NC space-

time, it would be the first example of completely integrable NC equations and has much

significance for further studies on the topics.
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In this article, we present NC versions of the Burgers equation and the Burgers hi-

erarchy which possess the Lax representations. We prove that the NC Burgers equation

is linearizable by a NC version of the Cole-Hopf transformation. This shows that the

NC Burgers equation is really integrable even though the NC Burgers equation contains

infinite number of time derivatives in the nonlinear term. The linearized equation is the

(NC) diffusion equation of first order with respect to time and the initial value problem

is well-defined. The NC Lax representation is derived from the compatibility condition

of NC versions of linear systems. Hence the integrability of the NC Burgers equation

with the Lax representation could relate to some symmetry and the existence of the NC

Burgers hierarchy might suggest a hidden infinite-dimensional symmetry which is consid-

ered as a deformed symmetry from commutative one. We also obtain the exact solutions

which actually reflect the effects of the NC deformation. Finally we derive the NC Burg-

ers equation from both NC (anti-)self-dual Yang-Mills equation and the framework of NC

extension of Sato theory. This would be the first step to the confirmation of NC Ward

conjecture and the completion of NC Sato theory. We also discuss general properties of

integrability in NC field theories mainly in section 3 and 6.

Note added: After submitting the present article and our paper [20], we were aware of

the paper [33] by L. Martina and O. K. Pashaev on arXiv e-print server, which contains

some overlaps with ours.

2 Review of Noncommutative Field Theories

NC spaces are defined by the noncommutativity of the coordinates:

[xi, xj] = iθij , (2.1)

where θij are real constants and called the NC parameters. This relation looks like the

canonical commutation relation in quantum mechanics and leads to “space-space uncer-

tainty relation.” Hence the singularity which exists on commutative spaces could resolve

on NC spaces. This is one of the prominent features of NC field theories and yields various

new physical objects.

NC field theories have the following two equivalent descriptions:

• the star-product formalism

• the operator formalism

These are connected one-to-one by the Weyl transformation, which is briefly summarized

in Appendix A. In the present article, we mainly use the star-product formalism.
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The star-product formalism

The star-product is defined for ordinary fields on commutative spaces. For Euclidean

spaces, it is explicitly given by

f ⋆ g(x) := exp
(
i

2
θij∂

(x′)
i ∂

(x′′)
j

)
f(x′)g(x′′)

∣∣∣
x′=x′′=x

= f(x)g(x) +
i

2
θij∂if(x)∂jg(x) +O(θ2), (2.2)

where ∂
(x′)
i := ∂/∂x′i and so on. This explicit representation is known as the Moyal

product [34].

The star-product has associativity: f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h, and returns back to the

ordinary product in the commutative limit: θij → 0. The modification of the product

makes the ordinary spatial coordinate “noncommutative,” that is, [xi, xj ]⋆ := xi ⋆ xj −
xj ⋆ xi = iθij .

NC field theories are given by the exchange of ordinary products in the commutative

field theories for the star-products and realized as deformed theories from the commutative

ones. In this context, they are often called the NC-deformed theories.

We note that the fields themselves take c-number values as usual and the differentiation

and the integration for them are well-defined as usual. A nontrivial point is that NC field

equations contain infinite number of derivatives in general. Hence the integrability of the

equations are not so trivial as commutative cases.

The operator formalism

In order to make some comments on the integrability of NC field equations later,

let us introduce another formalism, the operator formalism, which is equivalent to the

star-product formalism.

This time, we start with the noncommutativity of the spatial coordinates (2.1) and

define NC gauge theory considering the coordinates as operators. From now on, we write

the hats on the fields in order to emphasize that they are operators. For simplicity, we

treat NC plane with the coordinates x̂1, x̂2 which satisfy [x̂1, x̂2] = iθ, θ > 0.

Defining new variables â, â† as

â :=
1√
2θ
ẑ, â† :=

1√
2θ

ˆ̄z, (2.3)

where ẑ = x̂1 + ix̂2, ˆ̄z = x̂1 − ix̂2, we get the Heisenberg’s commutation relation:

[â, â†] = 1. (2.4)
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Hence the spatial coordinates can be considered as the operators acting on Fock space H
which is spanned by the occupation number basis |n〉 :=

{
(â†)n/

√
n!
}
|0〉, â|0〉 = 0:

H = ⊕∞
n=0C|n〉. (2.5)

Fields on the space depend on the spatial coordinates and are also the operators acting

on the Fock space H. They are represented by the occupation number basis as

f̂ =
∞∑

m,n=0

fmn|m〉〈n|. (2.6)

If the fields have rotational symmetry on the plane, that is, the fields commute with the

number operator n̂ := â†â ∼ (x̂1)2 + (x̂2)2, they become diagonal:

f̂ =
∞∑

n=0

fn|n〉〈n|. (2.7)

The derivation is defined as follows:

∂if̂ := [∂̂i, f̂ ] := [−i(θ−1)ij x̂
j, f̂ ], (2.8)

which satisfies the Leibniz rule and the desired relation:

∂ix̂
j = [−i(θ−1)ikx̂

k, x̂j ] = δ j
i . (2.9)

The operator ∂̂i is called the derivative operator. Hence we can define “differential equa-

tions” which are realized as recursion relations for the matrix element fmn.

The integration can also be defined as the trace of the Fock space H:
∫
dx1dx2 f̂(x̂1, x̂2) := 2πθTrHf̂ . (2.10)

Hence the solutions for “differential equations” are also well-defined.

3 Comments on Integrability of Noncommutative Field

Equations

Before NC extension of the Burgers equation, let us discuss what is the definition of

integrability of NC field equations.

Even on commutative spaces, it is hard to define what is integrability of field equations.

(See e.g. [35].) There are various definitions for it according to situations. Typical

definitions are as follows. Field equations are called integrable if they possess, for example,

the linearizability, the Lax representation, the existence of infinite number of conserved
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quantities, the bi-Hamiltonian structure, the exact multi-soliton solutions, the Painlevé

properties, the presence of algebraic geometry, and so on. (See e.g. [36, 37]) Among them,

the linearizability is the best definition because the linearized equation can be solved by

Fourier transformation for arbitrary given initial conditions.

On NC spaces, it becomes harder to define what is integrability of field equations. In

this case, there are two situations which should be discussed separately:

• space-space noncommutativity

• space-time noncommutativity

In the former, the situation is just the same as the ordinary commutative case because

NC field theories can be considered as just deformed theories. The fields are c-number

valued functions (or infinite-side matrices in the operator formalism) and the derivation

and the integration is well-defined as usual. The notions of time evolutions, Hamiltonian

structures, action-angle variables and inverse scattering methods are also well-defined.

Hence the above definitions for commutative field equations are also reasonable for those

NC equations with space-space noncommutativities.

In the latter, however, the situation changes drastically. The obstruction arises in

the notion of time evolution in nonlinear equations. For simplicity, let us consider the

(1 + 1)-dimensional NC space-time whose coordinates and noncommutativity are (x, t)

and [t, x] = iθ, respectively. The noncommutativity introduces infinite number of time

derivatives in nonlinear terms as

f ⋆ g(t, x) = e
i

2
θ(∂

t′
∂

x′′
−∂

x′
∂

t′′
)f(t′, x′)g(t′′, x′′)

∣∣∣ t′ = t′′ = t

x′ = x′′ = x,

(3.1)

where ∂t = ∂/∂t and so on. Hence the notion of time evolution becomes vague and the

infinite number of derivatives of time might lead to acausal structure into the theories.

The initial value problem also seems to be hard to define. Therefore it becomes seriously

hard to discuss the integrability. In this case, only one possible definition of integrability

is the linearizability because linearized equations contain neither nonlinear term nor the

star-product.

The Burgers equation is defined on (1 + 1)-dimensional space-time and the NC exten-

sion belongs to the latter case. Hence it is worth studying whether it is linearizable and

how the initial value problem is solved.

4 Noncommutative Burgers Equation

In order to do it, we first present some NC version of the Burgers equation on (1 + 1)-

dimensional noncommutative space-time with the noncommutativity: [t, x] = iθ. In this
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section, we construct a NC version of the Burgers equation which possesses the Lax

representation.

A given NC differential equation is said to have the Lax representation if there exists

a suitable pair of operators (L, T ) so that the following equation (the Lax equation)

[L, T + ∂t]⋆ = 0 (4.1)

is equivalent to the given NC differential equation. Here the star-product does not affect

the derivative operator, for example, ∂t ⋆ ∂x = ∂t∂x. The pair of operators (L, T ) and the

equation (4.1) are called the Lax pair and the NC Lax equation, respectively.

The NC Lax equation (4.1) is derived from the compatible condition of the following

NC version of the linear system

L ⋆ ψ = λψ, (4.2)

∂ψ

∂t
+ T ⋆ ψ = 0, (4.3)

where the eigenvalue λ is a constant. On commutative spaces, Eq. (4.3) is an evolution

equation and the existence of the Lax representation (4.1) suggests the compatibility

of the linear systems. On NC spaces, however, the RHS of the equations (4.3) could

contain infinite number of derivatives of some variables and the geometrical meaning

might be vague. Therefore at this stage, the integrability of the Lax equation is not

trivial. In the next section, we will see a NC Burgers equation is actually linearizable,

which suggests the NC deformation would have good properties. Furthermore, we would

like to comment that the NC (anti-)self-dual Yang-Mills equation is integrable and derived

from the compatibility of linear systems with spectral parameters. (e.g. [40])

Now let us construct the NC Burgers equation with the Lax representation by the

Lax-pair generating technique [38]. The technique is a method to find a corresponding

T -operator for a given L-operator and based on the following ansatz for the T -operator

T = ∂ni L
m + T ′. (4.4)

Then the problem reduces to that for the T ′-operator and becomes enough easy to solve

in many cases including NC cases [16, 20].

Let us apply this technique to the NC extension of the Burgers equation. The L-

operator of the Burgers equation is given by

LBurgers = ∂x + u(t, x). (4.5)

The ansatz for the T -operator is now taken as

TBurgers = ∂xLBurgers + T ′
Burgers, (4.6)
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which is the case for n = 1 in the general ansatz (4.4). The ansatz for n = 2, 3, . . . gives

rise to the Burgers hierarchy, which is discussed in section 4.

Then the NC Lax equation becomes

[∂x + u, T ′
Burgers]⋆ = ux∂x + ut + ux ⋆ u, (4.7)

where ux := ∂u/∂x and so on. Here the term ux∂x in the RHS of Eq. (4.7) is troublesome

because the Lax equation should be a differential equation without bare derivatives ∂i.

Hence we have to delete this term to find an appropriate T ′-operator so that the bare

derivative term in the LHS of Eq. (4.7) should be canceled out.In order to do this, we

can take the T ′-operator as the following form:

T ′
Burgers = A∂x +B, (4.8)

where A and B are polynomials of u, ux, ut, etc. Then the Lax equation becomes f∂x+g =

0 and the condition f = 0 determines some part of A,B and finally a differential equation

g = 0 is expected to be the Burgers equation which possesses the Lax representation.

The condition f = 0 is

Ax + [u,A]⋆ = ux. (4.9)

The solution is A = u.3 Then the differential equation g = 0 becomes

Bx + [u,B]⋆ = ut + u ⋆ ux + ux ⋆ u. (4.10)

Taking the dimensions of the variables into account, that is, [x] = −1, [u] = 1, [t] = −2,

hence, [B] = 2, we can take the unknown B as4

B = aux + bu2, (4.11)

where a and b are constants.5

Finally we get the NC version of the Burgers equation with parameters:

ut − auxx + (1 + a− b)ux ⋆ u+ (1− a− b)u ⋆ ux = 0, (4.12)

whose Lax pair is
{
LBurgers = ∂x + u,
TBurgers = ∂2

x + 2u∂x + (a+ 1)ux + bu2.
(4.13)

3Exactly speaking, the general solution is A = u + α where α is a constant. However this constant
can be absorbed by the scale transformation u→ u+α/(2− 2β). In this article, we omit such constants.

4Here we don’t consider fractional terms such as uxx ⋆ u
−1 and so on. This constraint corresponds to

B2 := (L2)⋆≥0 in the framework of Sato theory. (cf. section 9.)
5We note that u ⋆ u ≡ u2.
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In the commutative limit, it reduces to

ut − auxx + 2(1− b)uux = 0. (4.14)

We note that the nonlinear term uux in the Burgers equation should be extended not

as symmetric forms but as Eq. (4.12) so that the NC Burgers equation should possess

the Lax representation.

This parameter family is a general form with Lax representation. Of course, some

parameters can be absorbed by a scale transformation.

However, on NC spaces, it is not clear whether the Lax representation has good prop-

erties or not in the integrable sense. In the next section, let us seek for the condition on

the constants that the Burgers equations should be linearizable.

5 Noncommutative Cole-Hopf Transformation

In commutative case, it is well known that the Burgers equation is linearized by the

Cole-Hopf transformation

u =
1

c
∂x logψ =

1

c

ψx
ψ
. (5.1)

Taking the transformation for the Burgers equation (4.12), we get6

ψt = aψxx −
(
a− b− 1

c

)
ψ2
x

ψ
. (5.2)

Hence we can see that only when ac = b − 1, the Burgers equation reduces to the linear

equation ψt = aψxx.
7 The linearizable Burgers equation becomes

ut − auxx − 2acuux = 0. (5.3)

We note that the scale transformations t→ (1/a)t and u→ (1/c)u absorb the constants

a and c in Eqs. (5.1) and (5.3), respectively.

This transformation (5.1) still works well in NC case. Then we have to treat the

inverse of ψ carefully. There are typically two possibilities to define the NC version of the

6Here we can set the constant C(t) zero in Eq. (5.2) after the linearization without loss of generality

because it can be absorbed by the scale transformation ψ → ψ exp
{
±
∫ t
C(t′)dt′

}
.

7Without loss of generality, we can take a > 0. Then the linear equation is just the diffusion equation
or the heat equation where a shows the coefficient of viscosity.
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Cole-Hopf transformation:8

(i) u =
1

c
ψx ⋆ ψ

−1 (5.4)

(ii) u =
1

c
ψ−1 ⋆ ψx (5.5)

In the case (i), we can see that when a + b = 1, c = −1,9 the NC Burgers equation

reduces to the equation: (∂x−ψx ⋆ψ−1) ⋆ (ψt− aψxx) = 0. Hence the solutions of the NC

diffusion equation10

ψt = aψxx, (5.6)

give rise to the exact solutions of the NC Burgers equation via the NC Cole-Hopf trans-

formation (5.4). The naive solution of the NC diffusion equation (5.6) is

ψ(t, x) = 1 +
N∑

i=1

hie
ak2

i
t ⋆ e±kix = 1 +

N∑

i=1

hie
i

2
ak3

i
θeak

2

i
t±kix, (5.7)

where hi, ki are complex constants. The final form in (5.7) shows that the naive solution

on commutative space is deformed by e
i

2
ak3

i
θ due to the noncommutativity. This reduces

to the N -shock wave solution in fluid dynamics. Hence we call it the NC N-shock wave

solution. The explicit representation in terms of u is hard to obtain because the derivation

of τ−1 is non-trivial. However we can discuss the asymptotic behaviors at t→ ±∞. The

effect of the NC deformation is easily seen. In fact , exact solutions for N = 1, 2 are

obtained by L. Martina and O. Pashaev [33] and nontrivial effects of the NC-deformation

are actually reported.

If we want to know more general solutions, it would be appropriate to take the Fourier

transformation under some boundary conditions. The calculation is the same as the

commutative case. The initial value problem is also well-defined, that is, the initial

condition u(t = 0, x) = −ψx ⋆ ψ−1
∣∣∣
t=0

is an appropriate one.

Let us comment on multi-soliton solutions with no scattering process. Defining z :=

x + vt, z̄ := x− vt, we easily see

f(z) ⋆ g(z) = f(z)g(z) (5.8)

8There would be other candidates, such as u = ψ−α ⋆ ψx ⋆ ψ
−β where α + β = 1. However they do

not seem to lead to linear equations because ∂iψ
−α = −ψ−α ⋆ ∂iψ

α ⋆ ψ−α makes it complicated.
9Here we omit the possibility: a = 0, b = 1 because the NC Burgers equation (4.12) becomes trivial

in this case.
10Here we can also put a > 0 as in commutative case.
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because the star-product (3.1) is rewritten in terms of (z, z̄) as

f(z, z̄) ⋆ g(z, z̄) = eivθ(∂z̄′
∂

z′′
−∂

z′
∂

z̄′′
)f(z′, z̄′)g(z′′, z̄′′)

∣∣∣ z′ = z′′ = z

z̄′ = z̄′′ = z̄.

(5.9)

This situation is realized when all ki are the same: k1 = k2 = · · · = kN = k(=: v/a)

including one-soliton solutions. The NC one shock-wave solution [33] is essentially the

same as the commutative one because of the above observation. In fact, their one shock-

wave solution is reduced to our solution (5.7) by putting k1 = 0 in [33]. The condition

k1 = 0 is taken without loss of generality and then the effect of NC-deformation disappears.

We note that the solution ψsol of the diffusion equation (5.6) do not yield all solutions

of the NC Burgers equation because the NC Cole-Hopf transformation (5.4) is a one-way

map. However the transformation ψsol → gψ ⋆ψ
sol gives rise to the solution of the directly

transformed equation (∂x − ψx ⋆ ψ−1) ⋆ (ψt − aψxx) = 0 from the NC Burgers equation,

where gψ is the so-called NC transition operator which satisfies ∂xgψ = (ψx⋆ψ
−1)⋆gψ. The

existence of gψ would be guaranteed [25] and in principle we can construct all solutions

of the NC Burgers equation via the inverse of the NC Cole-Hopf transformation.

In the case (ii), the same discussion leads us to the similar conclusion that when

a − b = −1, c = 1,11 the solutions of the NC diffusion equation (5.6) yields the exact

solutions of the NC Burgers equation via the NC Cole-Hopf transformation (5.5).

The region where the NC Burgers equation (4.12) can be linearized is shown in Fig. 1.

a

 b

1

1

O

c

c

= 1

=    1

  1

Figure 1: The region where the NC Burgers equation can be linearized

It is interesting that the condition on a, b is equivalent to that each part of two co-

efficients of ux ⋆ u and u ⋆ ux in the NC Burgers equation (4.12) vanishes. The result is

summarized in Table 1.
11Here we also omit the possibility: a = 0, b = 1 for the same reason as in the case (i).
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Table 1: The Linearizable NC Burgers Equation
NC Cole-Hopf transformation NC Burgers Equation

(i) u = −ψx ⋆ ψ−1 ut − auxx + 2aux ⋆ u = 0
(ii) u = ψ−1 ⋆ ψx ut − auxx − 2au ⋆ ux = 0

This is formally consistent with the condition that the matrix Burgers equation should

be integrable [41], which would be reasonable because the variable u in the NC deformed

Burgers equation can be rewritten as the infinite-size matrix by the Weyl transformation.

Of course, the notions of time evolution are different.

In the commutative limit, the linearizable NC Burgers equation reduces to commuta-

tive one (5.3) with c = ±1.

6 Conserved Quantities of the Noncommutative Burg-

ers Equation

Here we would like to comment on conserved quantities of NC Burgers equation. The

discussion is basically the same as commutative case because both the differentiation and

the integration are the same as commutative ones in the Moyal representation.

Let us suppose the conservation law

∂J(t, x)

∂t
=
∂K(t, x)

∂x
. (6.1)

then the conserved quantity is given by an integral

Q(t) =
∫ ∞

−∞
J(t, x)dx. (6.2)

The proof is straightforward:

dQ

dt
=

∂

∂t

∫ ∞

−∞
J(t, x)dx =

∫ ∞

−∞

∂J(t, x)

∂t
dx =

∫ ∞

−∞

∂K(t, x)

∂x
dx = 0, (6.3)

unless the integrand K(t, x) vanishes or is periodic at spatial infinity. The convergence

of the integral is also expected because the star-product naively reduces to the ordinary

product at spatial infinity due to: ∂x ∼ O(x−1).

On commutative spaces, the existence of infinite number of conserved quantities would

lead to infinite-dimensional hidden symmetry from Noether’s theorem. In Liouville sense,

the existence is necessary condition for complete integrability unlike dynamical systems

with finite-dimensional degree of freedom.

On NC spaces, this is also true and the existence of infinite number of conserved quan-

tities would be meaningful. Many NC field equations with infinite number of conserved
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quantities have been found by the bi-complex method [1, 2, 13]. The bi-complex method

also seems to be applicable to the NC Burgers equation. However this time, it is not so

trivial whether Noether’s theorem is valid or not.

7 Reduction from the Noncommutative (Anti-)Self-

Dual Yang-Mills Equation

On commutative spaces, there is a famous conjecture, Ward conjecture [39]. The state-

ment is that almost all lower-dimensional integrable equations can be derived from (anti-

)self-dual Yang-Mills equation by reductions. This conjecture is almost confirmed now

[40].

It is very interesting to study whether this conjecture still holds on NC spaces or not.

In this section, we show that the NC Burgers equation could be derived from a NC (anti-

)self-dual Yang-Mills equation by reduction, which is one example of NC Ward conjecture

[20].

Let us consider the following NC (anti-)self-dual Yang-Mills equation with G = U(1)

(Eq. (3.1.2) in [40]):

∂wAz − ∂zAw + [Aw, Az]⋆ = 0, ∂w̃Az̃ − ∂z̃Aw̃ + [Aw̃, Az̃]⋆ = 0,

∂zAz̃ − ∂z̃Az + ∂w̃Aw − ∂wAw̃ + [Az̃, Az]⋆ + [Aw, Aw̃]⋆ = 0. (7.1)

where (z, z̃, w, w̃) and Az,z̃,w,w̃ denote the coordinates of the original (2 + 2)-dimensional

space and the gauge fields, respectively. We note that the commutator part should remain

though the gauge group is U(1) because the elements of the gauge group could be operators

and the gauge group could be considered to be non-abelian: U(∞). This commutator

part actually plays an important role as usual in NC theories.

Now let us take the simple dimensional reduction ∂z̃ = ∂w̃ = 0 and put the following

constraints:

Az̃ = Aw̃ = 0, Az = u, Aw = auz + (1− b)u2. (7.2)

Then the NC (anti-)self-dual Yang-Mills equation (7.1) reduces to

uw − auzz + (1 + a− b)uz ⋆ u+ (1− a− b)u ⋆ uz = 0. (7.3)

This is just the NC Burgers equation (4.12) with w ≡ t, z ≡ x. We note that without

the commutator part [Aw, Az]⋆, the nonlinear term should be symmetric: (uz ⋆u+u⋆uz),

which cannot lead to the Lax representation as is commented below Eq. (4.12). This

shows that the special feature in NC gauge theories plays a crucial role. Therefore the

12



NC Burgers equation is expected to have some non-trivial property special to NC spaces

such as the existence of U(1) instantons.

Essentially the same argument is presented in [33] from a different viewpoint.

8 Noncommutative Hierarchy Equations

Now let us look for the Lax representations of the NC Burgers equation with the higher-

dimensional time evolution by the Lax-pair generating technique:

[LBurgers, Tnth-h + ∂tn ]
⋆

= 0, (8.1)

where the dimensions are given by [tn] = −n, [Tnth-h] = n and the noncommutativity

could be introduced as [tn, x] = iθn. The Lax representations (8.1) is derived from the

compatible conditions of the NC linear systems:

LBurgers ⋆ ψ = λψ, (8.2)

∂ψ

∂tn
+ Tnth-h ⋆ ψ = 0. (8.3)

This time, Eq. (8.3) is not an evolution equation. However as the previous discussion,

some geometrical meaning would be expected. Then, the existence of infinite number

of hierarchy equations would suggest infinite-dimensional hidden symmetry which is ex-

pected to be deformed symmetry from commutative one.

Now let us take the other ansatz for the operator LBurgers = ∂x + u as

T(n+1)th-h = ∂nxLBurgers + T ′
(n+1)th-h. (8.4)

Then the unknown part is reduced to T ′
(n+1)th-h which is determined so that Eq. (8.1) is

a differential equation. The results are as follows.

• For n = 1, the NC Lax equation gives the (second-order) NC Burgers equation

(4.12).

• For n = 2, the NC Lax equation gives the third-order NC Burgers equation.

The Lax pair is given by

LBurgers = ∂x + u(t, x), T3rd-h = ∂2
xLBurgers + T ′

3rd-h, (8.5)

where

∂2
xLBurgers = ∂3

x + u∂2
x + 2ux∂x + uxx. (8.6)

13



Substituting this ansatz into the NC Lax equation, we can take more explicit form

on T ′
3rd-h as

T ′
3rd-h = A∂2

x +B∂x + C, (8.7)

where A,B and C are polynomials of u, ux, ut, etc. In the similar way to the n = 1

case, the unknown polynomials satisfy the following differential equations

Ax + [u,A]⋆ − 2ux = 0,

Bx + [u,B]⋆ − 2A ⋆ ux − uxx − 2ux ⋆ u = 0,

Cx + [u, C]⋆ −A ⋆ uxx −B ⋆ ux − ut − 2u2
x − uxx ⋆ u = 0, (8.8)

and the solutions are:

A = 2u, B = ux + 3u2,

C = auxx + bux ⋆ u+ cu ⋆ ux + du3, (8.9)

where the coefficients a, b, c and d are constants.

Then the last equation of (8.8) yields the third-order NC Burgers equation with

parameters:

ut − auxxx + (1 + a− b)uxx ⋆ u+ (2− a− c)u ⋆ uxx + (3− b− c)u2
x

+(b− d)ux ⋆ u
2 + (c− b− d)u ⋆ ux ⋆ u+ (3− c− d)u2 ⋆ ux = 0, (8.10)

whose Lax pair is

{
LBurgers = ∂x + u,
T3rd-h = ∂3

x + 3u∂2
x + 3(ux + u2)∂x + (a+ 1)uxx + bux ⋆ u+ cu ⋆ ux + du3.

(8.11)

The parameter family of this equation formally coincides with four integrable equa-

tions given in Theorem 3.6 in [41], that is, two type of the third-order NC Burgers

equations and two type of NC modified KdV equations up to scale transformations:

– the third-order NC Burgers equation: (a = −1, b = c = d = 0)

ut + uxxx + 3u ⋆ uxx + 3u2
x + 3u2 ⋆ ux = 0. (8.12)

– the third-order (conjugated) NC Burgers equation: (a = −1, b = c = 3, d = 0)

ut + uxxx − 3uxx ⋆ u− 3u2
x + 3ux ⋆ u

2 = 0. (8.13)
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– NC modified KdV equation via NC Miura map from NC KdV equation [2]:

(a = −1, b = 0, c = d = 3)

ut + uxxx − 3ux ⋆ u
2 − 3u2 ⋆ ux = 0. (8.14)

Our result gives the Lax representation of the Miura-mapped NC KdV equa-

tion.

– NC modified KdV equation: (a = −1, c = 0, b = d = 3)

ut + uxxx + 3[u, uxx]⋆ − 6u ⋆ ux ⋆ u = 0. (8.15)

This has another Lax representation:

{
L = ∂2

x + 2u∂x,
T = 4∂3

x + 12u∂2
x + 6(u2 + ux)∂x.

(8.16)

Let us comment on the linearizability. This time, the linearizable condition by the

NC version of Cole-Hopf transformation leads to the restricted situation a = 0, b =

1, c = 2, d = 1 where the third-order NC Burgers equation (8.10) becomes trivial.

The result shows that the linearizable condition is too strict for the third-order NC

Burgers equation (8.10) due to the nonlinear effect.

• For n = 3, the NC Lax equation gives the fourth-order NC Burgers equation.

The Lax pair is given by

LBurgers = ∂x + u(t, x), T4th-h = ∂3
xLBurgers + T ′

4th-h. (8.17)

Substituting this ansatz into the Lax equation (4.1), we can take more explicit form

on T ′
4th-h as

T ′
4th-h = A∂3

x +B∂2
x + C∂x +D, (8.18)

where A,B,C and D are polynomials of u, ux, ut, etc and are determined in the

similar way to the cases for n = 1, 2 as differential equations

A = 3u, B = 3ux + 6u2,

C = uxx + 4ux ⋆ u+ 8u ⋆ ux + 4u3,

D = auxxx + buxx ⋆ u+ cu ⋆ uxx + du2
x

+eux ⋆ u
2 + fu ⋆ ux ⋆ u+ gu2 ⋆ ux + hu4, (8.19)
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where the coefficients a, b, . . . , h are constants. Then we can get the fourth-order

NC Burgers equation with parameters:

ut − auxxxx + (1 + a− b)uxxx ⋆ u+ (3− a− c)u ⋆ uxxx
+(4− b− d)uxx ⋆ ux + (6− c− d)ux ⋆ uxx

+(b− e)uxx ⋆ u2 + (c− b− f)u ⋆ ux ⋆ u+ (6− c− g)u2 ⋆ uxx

+(d− e− f)u2
x ⋆ u+ (4− e− g)ux ⋆ u ⋆ ux + (8− d− f − g)u ⋆ u2

x

+(e− h)ux ⋆ u
3 + (f − e− h)u ⋆ ux ⋆ u

2

+(g − f − h)u2 ⋆ ux ⋆ u+ (4− g − h)u3 ⋆ ux = 0. (8.20)

In this way, we can generate the higher-order NC Burgers equations. The ansatz for

the (n+ 1)-th order is more explicitly given by

T(n+1)-th = ∂nxL+ T ′
(n+1)-th = ∂n+1

x +
n∑

k=0

n!

k!(n− k)!
(∂kxu)∂n−kx +

n∑

l=0

Al∂
n−l
x , (8.21)

where Al are homogeneous polynomials of u, ux, uxx and so on, whose degrees are [Al] =

l + 1. These unknown polynomials are determined one by one as A0 = nu and so on.

9 Sato’s Approach to the Noncommutative Hierar-

chy

In this final section, we present NC versions of the Burgers equation and the Burgers hier-

archy in the framework of the Sato theory [42] by using the pseudo-differential operator.

We look for the Lax representation of the NC Burgers hierarchy.

Let us introduce the following Lax operator as a pseudo-differential operator:

L = ∂x + u1 + u2∂
−1
x + u3∂

−2
x + u4∂

−3
x + · · · , (9.1)

where the infinite number of fields um (m = 1, 2, . . .) depend on infinite number of

variables (t1, t2, t3, . . .). The action of the operator ∂nx on a multiplicity function f(x) is

given by

∂nx · f :=
∑

i≥0

(
n
i

)
(∂ixf)∂n−i, (9.2)

where the binomial coefficient is defined as
(
n
i

)
:=

n(n− 1) · · · (n− i+ 1)

i(i− 1) · · ·1 . (9.3)
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We note that the definition can be extended to the negative powers of ∂x.The examples

are,

∂−1
x · f = f∂−1

x − fx∂−2
x + fxx∂

−3
x − · · · ,

∂−2
x · f = f∂−2

x − 2fx∂
−3
x + 3fxx∂

−4
x − · · · ,

∂−3
x · f = f∂−3

x − 3fx∂
−4
x + 6fxx∂

−5
x − · · · ,

where ∂−1
x in the RHS acts as an integration operator

∫ x dx. For more on foundation of

the pseudo-differential operators and the Sato theory, see e.g. [43, 44, 45].

The noncommutativity for them can be introduced arbitrarily. Thus we do not fix the

noncommutativity here. At the end of the present section, we comment on this point.

The Lax representation for the NC Burgers hierarchy in Sato’s framework is given by

[∂tm −Bm, L]⋆ = 0, (9.4)

where Bm is given here by

Bm := (L ⋆ · · · ⋆ L︸ ︷︷ ︸
m times

)≥1 =: (Lm)⋆≥1. (9.5)

The suffix “≥ 1” represents the positive power part of Lm. A few concrete examples are

as follows:

B1 = ∂x,

B2 = ∂2
x + 2u1∂x,

B3 = ∂3
x + 3u1∂

2
x + 3(u2 + u2

1 + (u1)x)∂x. (9.6)

The replacement of the products of fields in the commutator with the star products

means the NC extension. In this approach, the geometrical meaning of the Lax repre-

sentation is also vague. However we can expect that the Lax equations actually contain

integrable equations as in the previous sections.

Now let us discuss the existence of the NC Burgers hierarchy. The NC Burgers hier-

archy could be derived by putting the following constraint for the Lax equations (9.4)

L = B1 (=: LBurgers), (9.7)

which implies

uk = 0, k = 2, 3, 4, . . . . (9.8)

This means that the Lax equations (9.4) can be represented in terms of one kind of field

u1 ≡ u, which guarantees the existence of the hierarchy. Now we can see that the Lax

equation (9.4) just gives a differential equation.

The hierarchy equations are as follows:
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• For m = 1, the Lax equation (9.4) reduces to ut1 = ux, which means t1 = x.

• For m = 2, the Lax equation (9.4) becomes the second order NC Burgers equation

∂u

∂t2
= [B2, LBurgers]⋆ = [∂2

x + 2u∂x, ∂x + u]⋆ = uxx + 2u ⋆ ux. (9.9)

This is just one of the linearizable NC Burgers equation with t2 ≡ t. (See Table 1.)

• For m = 3, the Lax equation (9.4) is the third order NC Burgers equation

∂u

∂t3
= [B3, LBurgers]⋆

= [∂3
x + 3∂2

x + 3(u2 + ux)∂x, ∂x + u]⋆

= uxxx + 3u ⋆ uxx + 3u2
x + 3u2 ⋆ ux. (9.10)

This just coincides with the third order NC Burgers equation (8.12).

• For m = 4, the Lax equation (9.4) is the fourth order NC Burgers equation

∂u

∂t4
= [∂4

x + 4u∂3
x + 6(u2 + ux)∂

2
x + 4(u3 + ux ⋆ u+ 2u ⋆ ux)∂x, ∂x + u]⋆

= uxxxx + 4u ⋆ uxxx + 4uxx ⋆ ux + 6ux ⋆ uxx

+6u2 ⋆ uxx + 4uxuux + 8u ⋆ u2
x + 4u3 ⋆ ux. (9.11)

In this way, we can obtain infinite number of NC hierarchy equations which possess

the Lax representations with no parameter. The results for m = 2, 3 suggest that this ap-

proach gives rise to integrable equations directly. The relationship between this approach

and the Lax-pair generating technique is Bm = (Tmth-h)≥1. Hence the Lax-pair generating

technique would yield wider class of integrable equations than Sato’s approach such as

the modified KdV equations (8.14) and (8.15).

Let us comment how to introduce the noncommutativity of infinite-dimensional pa-

rameter spaces: [ti, tj] = iθij . A natural one is θ12 6= 0, θ34 6= 0, . . . , θ2n−1,2n 6= 0, . . . and

otherwise = 0. However the noncommutativity θ2n−1,2n 6= 0 introduces infinite number

of derivatives with respect to t2n−1, t2n. If we respect the notion of time evolutions, it is

reasonable to take the special possibility: θ12 6= 0 and otherwise = 0. Then problematic

directions are t1 and t2-directions only. However, we know that the NC Burgers equation

is actually integrable and the integrability is guaranteed in t1, t2-direction. In the other

directions, time evolution is well-defined and the hierarchy equations can be considered

as infinite-side matrix evolution equations because of û =
∑∞
m,n=0 umn(t3, t4, . . .)|m〉〈n|.

Then the situation belongs to infinite-dimensional version of matrix Sato theory and var-

ious discussions would be possible. This time, the results in [41] are applicable to the

present discussion and the third order NC Burgers equation is proved to be integrable.
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10 Conclusion and Discussion

In this article, we gave NC versions of the Burgers equation and the Burgers hierarchy

which possess the Lax representations. We proved that the NC Burgers equation is

linearizable by the NC versions of the Cole-Hopf transformations (5.4) and (5.5). The

linearized equation is the (NC) diffusion equation of first order with respect to time and

the initial value problem is well-defined. We obtained the exact solutions of the linearized

equation and discussed the effects of the NC deformation. Furthermore, we rederived the

NC Burgers equation from both NC (anti-)self-dual Yang-Mills equation, which would be

an evidence of NC Ward conjecture. Finally we showed the NC Burgers hierarchy in the

frameworks of the Lax-pair generating technique and the Sato theory, which would lead

to the completion of NC Sato theory.

The results show that the NC Burgers equation is completely integrable even though

the NC Burgers equation contains infinite number of time derivatives in the nonlinear

term. The linearized equation is the (NC) diffusion equation of first order with respect

to time and the initial value problem is well-defined. This is a surprising discovery and a

good news for the study of NC extension of integrable equations. There would be many

further directions such as NC extension of the Hirota’s bilinear method which is a simple

generalization of the Cole-Hopf transformation. The existence of NC hierarchies for other

integrable equations have been already proved in [16, 46]. Hence if we succeed in the bi-

linearization, the NC Sato theory must be constructed. Then we can discuss the structure

of the solution spaces and the symmetry underlying the integrability. The discretization

of the NC Burgers equation is also considerably interesting in recent developments of

integrable systems.12 The further study is worth investigating.
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A Equivalence between the star-product formalism

and the operator formalism

The two formalisms of NC field theories, the star-product formalism and the operator

formalism are equivalent and connected by the Weyl transformation. The Weyl transfor-

mation transforms the field f(x1, x2) in the star-product formalism into the infinite-size

matrix f̂(x̂1, x̂2) as

f̂(x̂1, x̂2) :=
1

(2π)2

∫
dk1dk2 f̃(k1, k2)e

−i(k1x̂1+k2x̂2), (A.1)

where

f̃(k1, k2) :=
∫
dx1dx2 f(x1, x2)ei(k1x

1+k2x2). (A.2)

This map is the composite of twice Fourier transformations replacing the commutative

coordinates x1, x2 in the exponential with the NC coordinates x̂1, x̂2 in the inverse trans-

formation:

f(x1, x2)
ւ |

f̃(k1, k2) Weyl transformation
ց ↓

f̂(x̂1, x̂2).

The Weyl transformation preserves the product:

̂f ⋆ g = f̂ · ĝ. (A.3)

The inverse transformation of the Weyl transformation is given directly by

f(x1, x2) =
∫
dk2 e

−ik2x
2
〈
x1 +

k2

2

∣∣∣f̂(x̂1, x̂2)
∣∣∣x1 − k2

2

〉
. (A.4)

The transformation also maps the derivation and the integration one-to-one . Hence the

field equation and the solution are also transformed one-to-one. The correspondences are

the following (See e.g. [48]):
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The star-product formalism ←Weyl transformation→ The operator formalism

ordinary functions [field] infinite-size matrices

f(x1, x2) f̂(x̂1, x̂2) =
∞∑

m,n=0

fmn|m〉〈n|

star-products [product] multiplications of matrices

(f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h) (associativity)
(
f̂(ĝĥ) = (f̂ ĝ)ĥ (trivial)

)

[xi, xj]⋆ = iθij [noncommutativity] [x̂i, x̂j] = iθij

∂if [derivation] ∂if̂ := [−i(θ−1)ijx̂
j

︸ ︷︷ ︸
=: ∂̂i

, f̂ ]

(
especially, ∂ix

j = δ j
i

) (
especially, ∂ix̂

j = δ j
i

)

∫
dx1dx2 f(x1, x2) [integration] 2πθTrHf̂(x̂1, x̂2)

√
n!

m!

(
2r2/θ

)m−n

2 ei(m−n)ϕ×

2(−1)nLm−n
n (2r2/θ)e−

r
2

θ

[matrix element] |n〉〈m|

where (r, ϕ) is the usual polar coordinate (r = {(x1)2 + (x2)2}
1

2 ) and Lαn(x) is the Laguerre

polynomial:

Lαn(x) :=
x−αex

n!

(
d

dx

)n
(e−xxn+α). (A.5)
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