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PREFACE

Learning is not easy (not for most people, anyway). It is, of course, aided by
being taught, but it is by no means only a passive exercise. One who hopes
to learn must work at it actively. My intention in writing this book is not to
teach, but rather to provide a stimulus and a medium through which a
reader can learn. There are various sorts of textbooks with widely differing
approaches. There is the encyclopaedic sort, which tends to be unreadable
but contains all of the information relevant to its subject. And at the other
extreme there is the work-book, which leads the reader through a
progressive series of exercises. In the field of linear algebra there are already
enough books of the former kind, so this book is aimed away from that end
of the spectrum. But it is not a work-book, neither is it comprehensive. It is
a book to be worked through, however. It is intended to be read, not
referred to.

Of course, in a subject such as this, reading is not enough. Doing is also
necessary. And doing is one of the main emphases of the book. It is about
methods and their application. There are three aspects of this provided by
this book: description, worked examples and exercises. All three are
important, but I would stress that the most important of these is the
exercises. In mathematics you do not know something until you can do it.

The format of the book perhaps requires some explanation. The worked
examples are integrated with the text, and the careful reader will follow the
examples through at the same time as reading the descriptive material. To
facilitate this, the text appears on the right-hand pages only, and the
examples on the left-hand pages. Thus the text and corresponding
examples are visible simultaneously, with neither interrupting the other.
Each chapter concludes with a set of exercises covering specifically the
material of that chapter. At the end of the book there is a set of sample
examination questions covering the material of the whole book.

The prerequisites required for reading this book are few. It is an
introduction to the subject, and so requires only experience with methods
of arithmetic, simple algebra and basic geometry. It deliberately avoids
mathematical sophistication, but it presents the basis of the subject in a way
which can be built on subsequently, either with a view to applications or
with the development of the abstract ideas as the principal consideration.



Examples

11 Simple elimination (two equations).
2x+3y=1
x—2y=4,
Eliminate x as follows. Multiply the second equation by 2:
2x+3y=1
2x—4y=38.
Now replace the second equation by the equation obtained by subtracting the first
equation from the second:
2x+3y=1
—Ty=1.
Solve the second equation for y, giving y= — 1. Substitute this into the first
equation:
2x—-3=1,
which yields x=2. Solution: x=2, y=—1.

12 Simple elimination (three equations).
x=2y+ z=5
3Ix+ y— z=0
x+3y+2z=2.
Eliminate z from the first two equations by adding them:
4x —y=>S5.
Next eliminate z from the second and third equations by adding twice the second
to the third:
Tx+Sy=2.
Now solve the two simultaneous equations:
4x— y=35
Ix+5y=2
as in Example 1.1. One way is to add five times the first to the second, obtaining
27x=217,
so that x= 1. Substitute this into one of the set of two equations above which
involve only x and y, to obtain (say)

4—-y=5,
so that y= — 1. Last, substitute x=1and y= — 1 into one of the original equations,
obtaining

142+2z=5,

so that z=2. Solution: x=1, y=—1, z=2.
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Gaussian elimination

We shall describe a standard procedure which can be used to solve sets of
simultaneous linear equations, no matter how many equations. Let us
make sure of what the words mean before we start, however. A linear
equation is an equation involving unknowns called x or y or z, or x, or x,
or x5, or some similar labels, in which the unknowns all occur to the first
degree, which means that no squares or cubes or higher powers, and no
products of two or more unknowns, occur. To solve a set of simultaneous
equations is to find all values or sets of values for the unknowns which
satisfy the equations.

Given two linear equations in unknowns x and y, as in Example 1.1, the
way to proceed is to eliminate one of the unknowns by combining the two
equations in the manner shown.

Given three linear equations in three unknowns, as in Example 1.2, we
must proceed in stages. First eliminate one of the unknowns by combining
two of the equations, then similarly eliminate the same unknown from a
different pair of the equations by combining the third equation with one of
the others. This yields two equations with two unknowns. The second stage
is to solve these two equations. The third stage is to find the value of the
originally eliminated unknown by substituting into one of the original
equations.

This general procedure will extend to deal with n equations in n
unknowns, no matter how large n is. First eliminate one of the unknowns,
obtaining n—1 equations in n—1 unknowns, then eliminate another
unknown from these, giving n —2 equations in n —2 unknowns, and so on
until there is one equation with one unknown. Finally, substitute back to
find the values of the other unknowns.

There is nothing intrinsically difficult about this procedure. It consists of
the application of a small number of simple operations, used repeatedly.



1.3

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Stage 5:

Examples

The Gaussian elimination process.

2x;— x;+3x3= 1
4%, +2x,— x3= -8
I+ x,+2x3=—1
xy— 3+ 3x,= 4
4x,+2x,— x3=-—8
I + x,+2x3=—1

x =%, +3x3= %

4x,—-Txy3=—10
$x,—3x3=—3

x =%, +3x,= %
x2—77,x3=—‘2i
$x,—3x3=—3

X — i, +3x= 4
X, —%x3=—3
1§§x3= JZ"a
xy—3x,+3x,= 4
Xy =Xy =—3
X3= 2.

(1

@

3)

n=+2

@

3

(1
@)—4x(1)
(3)-3x(1
(1)

2)+4

3

(1

@
3)-3x@)
(1)

@

B+

Now we may obtain the solutions. Substitute x;=2 into the second equation.

Finally substitute both into the first equation, obtaining

Hence the solution is x; = —2, x,=1, x3=2.

7
X;—3=—%, sox,=L1

x,—3+3=1, sox,=-2.
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These include multiplying an equation through by a number and adding or
subtracting two equations. But, as the number of unknowns increases, the
length of the procedure and the variety of different possible ways of
proceeding increase dramatically. Not only this, but it may happen that
our set of equations has some special nature which would cause the
procedure as given above to fail: for example, a set of simultaneous
equations may be inconsistent, i.e. have no solution at all, or, at the other
end of the spectrum, it may have many different solutions. It is useful,
therefore, to have a standard routine way of organising the elimination
process which will apply for large sets of equations just as for small, and
which will cope in a more or less automatic way with special situations.
This is necessary, in any case, for the solution of simultaneous equations
using a computer. Computers can handle very large sets of simultaneous
equations, but they need a routine process which can be applied
automatically. One such process, which will be used throughout this book,
is called Gaussian elimination. The best way to learn how it works is to
follow through examples, so Example 1.3 illustrates the stages described
below, and the descriptions should be read in ¢onjunction with it.

Stage 1 Divide the first equation through by the coefficient of x,. (If this
coefficient happens to be zero then choose another of the
equations and place it first.)

Stage 2 Eliminate x, from the second equation by subtracting a multiple of
the first equation from the second equation. Eliminate x, from the
third equation by subtracting a multiple of the first equation from
the third equation.

Stage 3 Divide the second equation through by the coefficient of x,. (If this
coefficient is zero then interchange the second and third equations.
We shall see later how to proceed if neither of the second and third
equations contains a term in x,.)

Stage 4 Eliminate x, from the third equation by subtracting a multiple of
the second equation.

Stage 5 Divide the third equation through by the coefficient of x,. (We
shall see later how to cope if this coefficient happens to be zero.)

At this point we have completed the elimination process. What we have
done is to find another set of simultaneous equations which have the same
solutions as the given set, and whose solutions can be read off very easily.

What remains to be done is the following.

Read off the value of x;. Substitute this value in the second
equation, giving the value of x,. Substitute both values in the first
equation, to obtain the value of x;,.



4 Examples

14 Using arrays, solve the simultaneous equations:
X +Xx,— x3= 4
2x, — x5+ 3x3= 7
4x, +x,+ x3=15.
First start with the array of coefficients:
1 1 -1 4
2 -1 3 7
4 1 1 15

1 1 -1 4

0 -3 5 —1 (2)—2x(1)
0 -3 5 -1 (3)—4x(1)
1 1 -1 4
0o 1 -3 1 )= =3
0 -3 5 -1

1 -1 4
0 1 -3 4
0O 0 0 o 3)+3x(Q)

See Chapter 2 for discussion of how solutions are obtained from here.

1.5 Using arrays, solve the simultaneous equations:
3x; —3x,+ x3=1
=X+ Xy +2x3=2
2x,+ x,—3x;=0.

What follows is a full solution.

3 -3 1 1
-1 1 2 2
2 1 =3 0
1 -1 1 (=3
-1 1 2 2
2 1 =3 0
1 -1 3 4
0o o 3 i 2)+(1)
0 3 -4 -2 (3)=2x(1)

o

S W e
|

wia o wm
|

Wi W uh

} interchange rows
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Notice that after stage 1 the first equation is not changed, and that after
stage 3 the second equation is not changed. This is a feature of the process,
however many equations there are. We proceed downwards and eventually
each equation is fixed in a new form.

Besides the benefit of standardisation, there is another benefit which can
be derived from this process, and that is brevity. Qur working of Example
1.3 includes much that is not essential to the process. In particular the
repeated writing of equations is unnecessary. Our standard process can be
developed so as to avoid this, and all of the examples after Example 1.3
show the different form. The sets of equations are represented by arrays of
coefficients, suppressing the unknowns and the equality signs. The first step’
in Example 1.4 shows how this is done. Our operations on equations now
become operations on the rows of the array. These are of the following
kinds:

@ interchange rows,

@ divide (or multiply) one row through by a number,

@ subtract (or add) a multiple of one row from (to) another.
These are called elementary row operations,and they play a large part in our
later work. It is important to notice the form of the array at the end of the
process. It has a triangle of 0s in the lower left corner and 1s down the
diagonal from the top left.

Now let us take up two complications mentioned above. In stage 5 of the
Gaussian elimination process (henceforward called the GE process) the
situation not covered was when the coefficient of x5 in the third equation
(row) was zero. In this case we divide the third equation (row) by the
number occurring on the right-hand side (in the last column), if this is not
already zero. Example 1.4 illustrates this. The solution of sets of equations
for which this happens will be discussed in the next chapter. What happens
is that either the equations have no solutions or they have infinitely many
solutions.

The other complication can arise in stage 3 of the GE process. Here the
coefficient of x, may be zero. The instruction was to interchange equations
(rows) in the hope of placing a non-zero coefficient in this position. When
working by hand we may choose which row to interchange with so as to
make the calculation easiest (presuming that there is a choice). An obvious
way to do this is to choose a row in which this coefficient is 1. Example 1.5
shows this being done. When the GE process is formalised (say for
computer application), however, we need a more definite rule, and the one
normally adopted is called partial pivoting. Under this rule, when we
interchange rows because of a zero coefficient, we choose to interchange
with the row which has the coefficient which is numerically the largest (that
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Lo-1 43
0 1 -4 -3 (2)+3
0 0 1 1 3)+]

From here, x;=1, and substituting back we obtain
x,—4=—-% sox,=1

Substituting again:
x,—1+4=4, sox;=1

Hence the solution sought is: x; =1, x,=1, x5=1.

1.6 Using arrays, solve the simultaneous equations:
X1+ x;— x3=-3
2x,+2x,+ x3= 0
5x; +5x,—3x3=—8.

Solution:
1 1 -1 -3
2 2 1 0
5 5 -3 -8
1 1 -1 -3
0 0 2)—2x(1)
0 0 7 (3)—5x(1)
1 1 -1 -
0 0 1 2)+3
0 0 2 7
1 1 -1 -3
0 0 1
0 0 0 3 3)—-2x(2)

Next, and finally, divide the last row by 3. How to obtain solutions from this point is
discussed in Chapter 2. (In fact there are no solutions in this case.)

1.7 Solve the simultaneous equations.
2xy =2x,4+ x3—-3x4= 2
X — Xp+3x3— x4=-2
=X, =2X,+ xX3+2x,=—6
Ixp+ xo— x3—2x,= 7.
Convert to an array and proceed:
2 =2 1 -3 2
1 -1 3 -1 =2
-1 =2 1 2 -6
3 1 -1 =2 7
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is, the largest when any negative signs are disregarded). This has two
benefits. First, we (and more particularly, the computer) know precisely
what to do at each stage and, second, following this process actually
produces a more accurate answer when calculations are subject to
rounding errors, as will always be the case with computers. Generally, we
shall not use partial pivoting, since our calculations will all be done by hand
with small-scale examples.

There may be a different problem at stage 3. We may find that there is no
equation (row) which we can choose which has a non-zero coefficient in the
appropriate place. In this case we do nothing, and just move on to
consideration of x5, as shown in Example 1.6. How to solve the equations
in such a case is discussed in the next chapter.

The GE process has been described above in terms which can be
extended to cover larger sets of equations (and correspondingly larger
arrays of coefficients). We should bear in mind always that the form of the
array which we are seeking has rows in which the first non-zero coefficient
(if there is one) is 1, and this 1 is to the right of the first non-zero coefficient
in the preceding row. Such a form for an array is called row-echelon form.
Example 1.7 shows the process applied to a set of four equations in four
unknowns.

Further examples of the GE process applied to arrays are given in the
following exercises. Of course the way to learn this process is to carry it out,
and the reader is recommended not to proceed to the rest of the book before
gaining confidence in applying it.

Summary

The purpose of this chapter is to describe the Gaussian elimination process
which is used in the solution of simultaneous equations, and the
abbreviated way of carrying it out, using elementary row operations on
rectangular arrays.
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From this last row we deduce that x,= — 1. Substituting back gives:

and

1>

SO X,

=1, x3=—1,x,=-1.

1, X

Hence the solution is: x,
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Exercises

Using the Gaussian elimination process, solve the following sets of

simultaneous equations.
i x—y=2
2x+y=1.
@) x4+ x,+ x3=2
2x,+ x;—2x,=0
—x; —2x,+3x;=4.
(V) 2x;—4x,+ x3= 2

X, 2x,—2x;= —4
—x;+ X, =-1
(vii) 2x,— x3=-—5

3%, — x,+2x3= 8
X, +2x,4+2x3= 5.
(ix) x;— 3x,— x3=0
2x;— 4x,—Txy=2
Tx, —13x, =8

X, —=2x,+ X3— Xu=

(xi)

1

(ii) 3x+2y=0

x— y=5.
@iv) 3x,— x3— x3= 7
X;— X3+ x3= 0

=X, +2x, +2x3=—2.
Vi) —x; +2x,— x3= -2
4x, — x,—2x3= 2
3x, —4x,=—1.
X, +5x,— 2x3=0
3x;— x,+10x,=0
—x;—=2x,+ Tx3=0.

(viii)

X) —2x;,— x,— x3=-2
3x,=Tx3= 0
—3x,4+ x,—4x;= 3

xil) x4+ x3—3x3+ x4=-2

—X;— Xp+2x34+2x,=-5
2x,+ x5+ x343x,= 0
Xy +3x,—3x3+3x,= 2.

2, +2x,+ x3+3x,= 0
X, +2x, —2x34+2x,=~2
—=3x,+4x;— x;= 1.
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Examples

21 Find all values of x and y which satisfy the equations:
x+2y=1
3x+6y=3.
GE process:
1

w
[= AN ]
(PSR

(=T
L= S ]
O -

(2)=3x(1)

Here the second row gives no information. All we have to work with is the single
equation x +2y=1. Set y=t (say). Then on substitution we obtain x = 1 —2¢. Hence
all values of x and y which satisfy the equations are given by:

x=1-2t, y=t (teR).

22 Find all solutions to:
X, +X,— x3= 5
3x; =X, +2x3=—2.
The GE process yields:

1 1 —1 5
o 1 -3 ¥
Set x,=t. Substituting then gives
x,—5t=11 so x,=%l+3t, and
X, +@EL+3)—t=5 sox;=3+it
Hence the full solution is:
x,=3+3t, x,=Y+3t, x3=t (teR).

23 Solve the equations:
X~ Xy—4x3=0
3, + x3— x3=3
5%y +3x5 +2x,=06.
The GE process yields:

1 -1 -4 0
0 1 & 3
0 0 0 0

In effect, then, we have only two equations to solve for three unknowns. Set X3=1.
Substituting then gives

x,+4t=3, sox,=3-41¢, and

x, —(3—41)—4t=0, sox,=3-3t.
—411

4

Y

Hence the full solution is: x, =3 —%t, x,=3 -1, x,=1 (te R).
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Solutions to simultaneous
equations 1

Now that we have a routine procedure for the elimination of variables
{Gaussian elimination), we must look more closely at where it can lead, and
at the different possibilities which can arise when we seek solutions to given
simultaneous equations.

Example 2.1 illustrates in a simple way one possible outcome. After the
GE process the second row consists entirely of zeros and is thus of no help
in finding solutions. This has happened because the original second
equation is a multiple of the first equation, so in essence we are given only a
single equation connecting the two variables. In such a situation there are
infinitely many possible solutions. This is because we may specify any value
for one of the unknowns (say y) and then the equation will give the value of
the other unknown. Thus the customary form of the solution to Example
2.1is:

y=t, x=1-2t (teR).

These ideas extend to the situation generally when there are fewer
equations than unknowns. Example 2.2 illustrates the case of two
equations with three unknowns. We may specify any value for one of the
unknowns (here put z=t) and then solve the two equations for the other
two unknowns. This situation may also arise when we are originally given
three equations in three unknowns, as in Example 2.3. See also Example
1.4.
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24 Find all solutions to the set of equations:

X +X+x3=1

X+ X+ x3=4.
This is a nonsensical problem. There are no values of x;, x, and x; which satisfy
both of these equations simultaneously. What does the GE process give us here?

1111
111 4
1111
0003 2)—(1)
1111
000 1 2)+3

The last row, when transformed back into an equation, is
Ox; +0x,+0x;=1.

This is satisfied by no values of x;, x, and x3.

25 Find all solutions to the set of equations:
X +2x,+ x3=1
2x; +5x,— x3=4
X+ x,+4x3=2.

GE process:

1 2 1 1

2 5 -1 4

1 1 4 2

1 2 1 1

0 1 -3 2 2)—2x(1)
0 -1 3 1 3—(1)
1 2 1 1

0 1 -3 2

0 0 0 3 3)+2)
1 2 1 1

0 1 -3 2

0 0 0 1 3=03)

Because of the form of this last row, we can say straight away that there are no
solutions in this case (indeed, the last step was unnecessary: a last row of 000 3
indicates inconsistency immediately).
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Here, then, is a simple-minded rule: if there are fewer equations than
unknowns then there will be infinitely many solutions (if there are solutions
at all). This rule is more usefully applied after the GE process has been
completed, because the original equations may disguise the real situation,
as in Examples 2.1, 2.3 and 1.4.

The qualification must be placed on this rule because such sets of
equations may have no solutions at all. Example 2.4 is a case in point. Two
equations, three unknowns, and no solutions. These equations are clearly
inconsistent equations. There are no values of the unknowns which satisfy
both. In such a case it is obvious that they are inconsistent. The equations
in Example 2.5 are also inconsistent, but it is not obvious there. The GE
process automatically tells us when equations are inconsistent. In Example
2.5 the last row turns out to be

0 0 0 1,
which, if translated back into an equation, gives

Ox; +0x,+0x;3=1,
ie.

0=1.

When this happens, the conclusion that we can draw is that the given
equations are inconsistent and have no solutions. See also Example 1.6.
This may happen whether there are as many equations as unknowns, more
equations, or fewer equations.



14 Examples

2.6 Find all solutions to the set of equations:
X+ x,=2
3x,— x,=2
—X;+2x,=3.
GE process:
1 1 2
3 -1 2
-1 2 3
1 1 2
0 —4 -4 (2)=3x(1)
0 3 5 (3)+(1)
1 1 2
0 1 1 (2)+ —4
0 3 5
1 1 2
0 1 1
0o 0 2 (3)-3x(2)

Without performing the last step of the standard process we can see here that the
given equations are inconsistent.

2.7 Find all solutions to the set of equations:
x, —4x,=—1
2%, +2x,= 8
S5x;— x,= 14.
GE process:
1 -4 -1
2 2 8
5 -1 14
1 -4 -1
0 10 10 (2)—2x(1)
0 19 19 (3)—5x(1)
1 -4 -1
0 1 1 2)+10
0 0 0 (after two steps)

Here there is a solution. The third equation is in effect redundant. The second row
yields x,= 1. Substituting in the first gives:

x;,—4=—-1, sox,;=3.

Hence the solution is: x; =3, x,=1.
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Example 2.6 has three equations with two unknowns. Here there are
more equations than we need to determine the values of the unknowns.We
can think of using the first two equations to find these values and then
trying them in the third. If we are lucky they will work! But the more likely
outcome is that such sets of equations are inconsistent. Too many
equations may well lead to inconsistency. But not always. See Example 2.7.

We can now see that there are three possible outcomes when solving
simultaneous equations:

(i) there is no solution,
(ii) there is a unique solution,
(iii) there are infinitely many solutions.
One of the most useful features of the GE process is that it tells us
automatically which of these occurs, in advance of finding the solutions.
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28 Illustration of the various possibilities arising from the GE process and
the nature of the solutions indicated.
: 1 2 1] : .
() 0 1 3 J unique solution.
. [1 -1 2] . :
(i1) 0 0 | inconsistent.
[1 3 3] . .
(iii) 0 1 0 unique solution.
(iv) 1 ! 2] infinitely many solutions
o o of y many '
[ 1 2 1 47
v) 0 1 -2 2 unique solution.
L 0 0 1 3
[ 1 0 -1 57
(vi) 0 1 1 -3 inconsistent.
L O 0 0 1
[ 1 3 0 2]
(vii) 0 1 3 ~1 unique solution.
L O 0 1 0
(1 -1 1 57
(viii) 0 1 7 2 infinitely many solutions.
L 0 0 0 0
( 1 2 -1 3 W
(ix) 0 0 1 2 inconsistent.
L 0 0 0 11
M1 2 2 57
(x) 0 0 1 2 infinitely many solutions.
L 0 0 0 0
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Rule
Given a set of (any number of) simultaneous equations in p unknowns:
(i) there is no solution if after the GE process the last non-zero row
has a 1 at the right-hand end and zeros elsewhere;

(ii) thereisaunique solution if after the GE process there are exactly p
non-zero rows, the last of which has a 1in the position second from
the right-hand end,;

(iii) there are infinitely many solutions if after the GE process there are
fewer than p non-zero rows and (i) above does not apply.

Example 2.8 gives various arrays resulting from the GE process, to
illustrate the three possibilities above. Note that the number of unknowns
is always one fewer than the number of columns in the array.
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29 Find all values of ¢ for which the equations
x+ y=c
Ix—cy=2
have a solution.
GE process:
1 1 c
3 —c
1 1 c
0 —c-3 2-3c 2)—3x(1)
1 1 c
2-3
0o 1 ¢ @)+ (—c—3)
—c-3

Now this last step is legitimate only if —c—3 is not zero. Thus, provided that
¢+3#0, we can say

y=2_3c and x=c—2~3c.
—c-3 —c—3
If ¢+ 3=0 then c= -3, and the equations are
x+ y=-3
3x+3y= 2.

These are easily seen to be inconsistent. Thus the given equations have a solution if
and only if c# —3.

2.10 Find all values of ¢ for which the following equations have
(a) a unique solution,
(b) no solution,
(c) infinitely many solutions.

X+ X+ X3=c¢

cxy+ X;+2x3=2

Xy +ex+ x3=4.
GE process:

1 1 1 c

c 1 2 2

1 ¢ 1 4

(=T =]
—
|
o
N
|
o
N
|
o

~N

c—1 0 4—c *
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Finally, Examples 2.9 and 2.10 show how the GE process can be applied
even when the coefficients in the given simultaneous equations involve a
parameter (or parameters) which may be unknown or unspecified. As
naturally expected, the solution values for the unknowns depend on the
parameter(s), but, importantly, the nature of the solution, that is to say,
whether there are no solutions, a unique solution or infinitely many
solutions, also depends on the value(s) of the parameter(s).

Summary

This chapter should enable the reader to apply the GE process to any given
set of simultaneous linear equations to find whether solutions exist, and if
they do to determine whether there is a unique solution or infinitely many
solutions, and to find them.

Exercises
1. Show!that the following sets of equations are inconsistent.
i x-2y= 1 (i)) 3x+ y=3
2x— y= -8 2x— y=1
—-x+ y= 6. S5x+4y=4.
(iii) X, — Xp;—2x3=—1 @iv) 2x;,— x,+4x,=4
—2x;+ x4+ x3= 2 x,+2x,—3x;=1
3%, +2x,+9%3= 4. 3x, +3x3="6.

2. Show that the following sets of equations have infinitely many solutions,
and express the solutions in terms of parameters.

(i) x—3y=2 (i) 2x+ 3y=-1
2x —6y=4. 8x+ 12y=—4,

(i)  x;+ X3+ x3= S @iv) x, +2x3=1
—x; +2x,—Tx;= -2 2x, +x,+3x;=1
2x,+ x,+4x;= 9. 2x; —x5+5x3=3.

V) x;— x;+3x;=4 Vi) x;+2x,4+ x3= 2
2x, —2x,+ x3=3 2%, — X3+ Tx3=—6
—x;+ X3+ x3=0. =X+ x,—4x;= 4

X; —2x,+ 5x3=—6.

3. Show that the following sets of equations have unique solutions, and find

them.
(i) 2x—Sy=-1 (i) x—-2y=-—1
Ix+ y= 7. 4x+ y= 14
3x—4y=-3.
(iii) Xy — X3—2x3=—6 (iv) 3x,+ x3=-3
3x; 4+ x,—2x3=—6 X, —2x,—2x;= 4

—2x; —2x,+ x3= 2. 2x,+ x,—3x3= 3.
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2—¢c 2-¢
0 1 i ¢ (provided that ¢ # 1)
l—¢ 1-c¢
0 0 2-¢c d4—c+2—c? *=*
1 1 1 ¢
2—c 2-¢?
o 1 —
l—¢ 1—c¢
0o 0 1 34c¢ (provided that ¢ #2)

If ¢ =1 then the row marked *is 0 0 0 3, showing the equations to be inconsistent. If
¢=2 then the row marked ** is 0 0 0 0, and the equations have infinitely many
solutions: xy=t¢,x,=t,x, = —t (t € R). Last, if c# 1 and c# 2 then there is a unique
solution, given by the last array above:
x3=3+c,
2—c2 (2—-0¢)3+c)
T1-c¢” l—c

X2

>

and

2—c* (2-c)3+c)
+

1—¢ 1-¢

X, =c— —(3+o0).
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V) x;4+2x,+43x;=3 Vi) —x;+x,+x3+x,=2
2x, +3x, +4x,=3 X, —x,+x3+x,=4
3x,+4x,+5x;=3 Xy +x,—X3+x4=6
X+ x4+ x3=0. Xy +X;+x3—x4=8.

4. Find whether the following sets of equations are inconsistent, have a
unique solution, or have infinitely many solutions.

i) x +x,+ x3=1 i)  x;+2x,— x3=2
2x; +x,—3x3=1 2x; +2x, —4x,=0
3x,— x3=1. - X +3xy=2.
(i) x;— x5+ x3-2x,=—6 (iv) x,+ X;+x3=2
2x,+ x3—3x,=-5 3x, —2x,+x3=3
3x,— xp;—4x3— x4= 9 2x, +x3=3
—x; —3x, +3x3+2x,= 5. —x;+3x,+x3=3.
V) x;+ x;+x3+x,=0
X, +x4=0
X, +2x,+ X3 =0.

5. (i) Examine the solutions of
X, — X+ x3=c¢
2x, —3x,+4x,=0
3xy—4x,+5x;=1,
when ¢=1 and when c# 1.
(i) Find all values of k for which the equations
3%, — Txp— dx;= 8
—=2x,+ 6x,+ 11x;=21
—5x, —21x,+ Tx;=10k
Xy +23x,+ 13x,=41
are consistent.
6. In the following sets of equations, determine all values of ¢ for which the
set of equations has (a) no solution, (b) infinitely many solutions, and (c) a
unique solution.

i) x,+ x, —Xx3=2 (i) x,+ x, + x3=2
X, +2x, +x3=3 2xy +3x, +2x3=5
X+ x,+(2=5)x;=c 2x, +3x,+ (2= Dxy=c+1.
(iii) x, + x,=3 (iv) ex;+ x,—2x;=0
x; +(e?—8)x,=c. Xy +ex,+3x;=0

2%y +3x,+ ¢cx3=0.
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Examples

31 Examples of matrix notations.
e 1 2 31 an= L1, a;,= 2, a;3=3,
Tl =2 =1 0 ay=-2, ayp=-1, a,;=0.

5 6 b;y=5, by,=6,
B=} 7 8]|. by;=7, b,,=8,
9 10 b3, =9, by,=10.
A is a 2 x 3 matrix, B is a 3 x 2 matrix.

32 Examples of matrix addition.

'123+321444

(4 5 2 3 4] |6 810

r—132 1 3 4 3
4 0 2-2]:72—1].
L -2 2 -3 -1 3 2
6 1 3 -1
—12_1—3=—2 5].

L 3 4 0o 1 303

|:011 a2 ‘113:|+ by, by, b13:|=|:a“+b“ a;;+by, 013+b13:|
ay; Gy O3 by by b3 a3 +by ax+by a/a's"‘bzs

33 Examples of scalar multiples.
56 5 6 10 12 56
7 81+}17 81=]14 16]=2}17 8
9 10 9 10 18 20 9 10

612_612
3 4| (18 24
3 -2 1=g—1g
1201 -4 (1 & —2f

34 More scalar multiples.
11 -1 3 2
LetA=|: ) 4]andB: 4 0 1
: -2 15
Then
-2 2 -7 7 1
24= , 1A= , 1A 2
A[48] [1428]2[12]
-2 6 4 5 —15 —-10 -+ 3 2
and 2B= 8§ 0 2|,-5B=|-20 0 -5].iB= ¢4 04
-4 2 10 10 -5 =25 -3 11
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Matrices and algebraic
vectors

A matrix is nothing more than a rectangular array of numbers (for us this
means real numbers). In fact the arrays which were part of the shorthand
way of carrying out the Gaussian elimination process are matrices. The
usefulness of matrices originates in precisely that process, but extends far
beyond. We shall see in this chapter how the advantages of brevity gained
through the use of arrays in Chapters 1 and 2 can be developed, and how
out of this development the idea of a matrix begins to stand on its own.

An array of numbers with p rows and g columns is called a p x g matrix
(‘p by q matrix’), and the numbers themselves are called the entries in the
matrix. The number in the ith row and jth column is called the (i, j)-entry.
Sometimes suffixes are used to indicate position, so that a;; (or b;;, etc.) may
be used for the (i, j)-entry. The first suffix denotes the row and the second
suffix the column. See Examples 3.1. A further notation which is sometimes
used is [a;;],.,- This denotes the p x g matrix whose (i, j)-entry is a;;, for
each i and j.

Immediately we can see that there are extremes allowed under this
definition, namely when either p or g is 1. When p is 1 the matrix has only
one row, and is called a row vector, and when ¢ is 1 the matrix has only one
column, and is called a column vector. The case when both p and g are 1 is
rather trivial and need not concern us here. A column vector with p entries
we shall call a p-vector, so a p-vector is a p x 1 matrix. ’

Addition of matrices (including addition of row or column vectors) is
very straightforward. We just add the corresponding entries. See Examples
3.2. The only point to note is that, in order for the sum of two matrices (or
vectors) to make sense, they must be of the same size. To put this precisely,
they must both be p x g matrices, for the same p and q. In formal terms, if A
is the p x ¢ matrix whose (i, j)-entry is a;; and B is the p x ¢ matrix whose
(i,j)-entry is b;; then 4 + B is the p x ¢ matrix whose (i,j)-entry is a;; + b;;.

Likewise subtraction: A — B is the p x g matrix whose (i,j)-entry is a;;—b,;.
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Examples

Multiplication of a matrix with a column vector. Consider the equations:
2x;— X, +4x;=1
Xy +3x,—2x;=0
=2x1 4+ x,—3x3=2.

These may be represented as an equation connecting two column vectors:

The idea
vector is
coefficien

equation:

1
0
2
of multiplication of a matrix with a vector is defined so that the left-hand

2x1 - xZ+4X3

x;+3x,—2x,
—2x;+ x3—3x,

the result of multiplying the vector of unknowns by the matrix of
ts, thus:
2 -1 4 Xg ] 2x; — X,+4x;
1 3 -2 x, | = X1 +3x,—2x,
-2 1 -3 X3 —2x;+ x,—3x;
In this way the original set of simultaneous equations may be written as a matrix
2 -1 4 X1 ] 1
1 3 =2 x, =10
-2 1 -3 X3 2

3.6

37

Examples of simultaneous equations written as matrix equations.

S Bl
4

4x1+ x2=_2 4 1 2
1
|

Xy
X2
1
1

1
-1

6
0

X3 +xZ+X3=6
2

X
X;—X,—Xx3=0 X

3x; —2x,=0 3 -2, 0
X;+ x;=5 [ 1 1 [ 1]= 51.
—x;+2x,=4 -1 2 Jt*2 4

Multiplication of a column vector by a matrix.

[1 27, | _[ x1+2x;
3 4][x2]_|:3x1+4x2]'
f12715 54127 17
3 4][6]=[15+'24]=[39]'

T 1 2 1) T xi 20+ x
-1 -3 2] X2 ‘[—x,—3x2+2xa]'
- x3
11 1 2 2—-1-2 -1
[—1 2 1] [—1]= [—2—2-2]= [—6].
3 1 33 L-2 6—1-6 -1
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In Examples 3.3 we see what happens when we add a matrix to itself.
Each entry is added to itself. In other words, each entry is multiplied by 2.
This obviously extends to the case where we add a matrix to itself three
times or four times or any number of times. It is convenient, therefore, to
introduce the idea of multiplication of a matrix (or a vector) by a number.
Notice that the definition applies for any real number, not just for integers.
To multiply a matrix by a number, just multiply each entry by the number.
In formal terms, if A is the p x g matrix whose (i, j)-entry is a;; and if k is any
number, then kA is the p x g matrix whose (i, j)-entry is ka;;. See Examples
34

Multiplication of a matrix with a vector or with another matrix is more
complicated. Example 3.5 provides some motivation. The three left-hand
sides are taken as a column vector, and this column vector is the result of
multiplying the 3 x 3 matrix of coefficients with the 3 x 1 matrix (3-vector)
of the unknowns. In general:

a1y QA2 i3 X1 Ap3Xy +a32X; +a;3X;
dry dp; Q3 Xy | = | 21X +a32X;+a33X3
az; 4az; ds; X3 A31Xy +a3,X3 +d33X;

Note that the right-hand side is a column vector. Further illustrations are
given in Examples 3.6. This idea can be applied to any set of simultaneous
equations, no matter how many unknowns or how many equations. The
left-hand side can be represented as a product of a matrix with a column
vector. A set of p equations in g unknowns involves a p x ¢ matrix multiplied
to a g-vector.

Now let us abstract the idea. Can we multiply any matrix with any
column vector? Not by the above process. To make that work, there must
be as many columns in the matrix as there are entries in the column vector.
A p x g matrix can be multiplied on the right by a column vector only if it
has g entries. The result of the multiplication is then a column vector with p
entries. We just reverse the above process. See Examples 3.7.
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Examples
Evaluate the product

(123"1——1
2 3 4 3 =-2].

L4 5 61 L-1 1

The product is a 3 x 2 matrix. The first column of the product is

(102 3770 1
23 4 3], e

L4 5 61 L-1

The second column of the product is

1 23 -1
[2 3 4] [—2], 1e.
4 5 6 1

Hence the product matrix is

39

U]

(i)

(i)

(iv)

4 -2
7 —4|.
13 -8

Evaluation of matrix products.

1 2][1 0 -1 _ 140 0+2
3 40 1 =1 |3+0 0+4

=B

[ -qﬁ ﬂ:p—11+u=m 7.

1 0 1 0 0 1
0 1 1 [0 1 0]=
1 10 1 00

— 1
QO
[\S ]
|

—_
[
e
|

—_—

[1+ 6-—3
2+ 9-4
[ 4+15—6

2 =3
4 -7

0+0+1
0+0+1

0+2+14+9 0+4-—-1-6

[2
12

—1— 4+3 -2
—2— 6+4], ie. |-4

L —4—-10+6

0+0+0
0+1+0 04040
0+0+0 0+1+0

0 1
1 0].
0 1 1

0

2|  [0+0-1+3 0+40+1-2
L=

2

L3

-8

—1-2
—3-4

1+0+0

1+0+0

o)

|

|

]
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Next we take this further, and say what is meant by the product of two
matrices. The process is illustrated by Example 3.8. The columns of the
product matrix are calculated in turn by finding the products of the left-
hand matrix with, separately, each of the columns of the right-hand matrix.
Let A be a px g matrix whose (i, j)-entry is a;;, and let B be a g x r matrix
whose (i, j)-entry is b;;. Then the product 4B is a p x r matrix whose (i, j)-
entry is ) 1., ayby;, i.. the sum of all the products of the entries in the ith
row of A with the respective entries in the jth column of B.

Rule

A p x g matrix can be multiplied on the right only by a matrix with g rows.
If Ais a px q matrix and B is a ¢ x r matrix, then the product ABisa pxr
matrix.

There is a useful mnemonic here. We can think of matrices as dominoes.
A p,q domino can be laid next to a ¢q,r domino, and the resulting ‘free’
numbers are p and r.

Examples 3.9 illustrate the procedures in calculating products. It is
important to notice that given matrices can be multiplied only if they have
appropriate sizes, and that it may be possible to multiply matrices in one
order but not in the reverse order.

The most important case of matrix multiplication is multiplication of a
matrix by a column vector, so before we move on to consider properties of
the general multiplication, let us recap the application to simultaneous
equations. A set of simultaneous equations containing p equations in g
unknowns can always be represented as a matrix equation of the form

Ax=nh,
where A is a p x ¢ matrix, x is a g-vector whose entries are the unknowns,
and k is the p-vector whose entries are the right-hand sides of the given
equations.

Rules
(i) A+B=B+A4
(i) (A+B)+C=A+(B+C)
(iii) k(A+B)=kA+kB
(iv) (kA)B=k(AB)
(v) (AB)C= A(BC)
(vi) A(BB+C)=AB+ AC
(vii) (A+B)C=AC+BC,
where 4, B and C are any matrices whose sizes permit the formation of
these sums and products, and k is any real number.
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310 Show that for any p x ¢ matrix 4 and any g x r matrices B and C,
A(B+C)=AB+ AC.

Let a;; denote the (i, j)-entry in A, for 1<i<pand 1<j<q, let b;; denote the (i, )

entrymB for 1 <i<qand 1<j<r,and let ¢;; denote the (i, j)- entrymC forl1<i<q

and 1<j<r. The (k,j)-entry in B+C is then by;+cy;. By the definition, then, the
(i, j)-entry in A(B+C) is

Z Aix bk;+ck;

q

q
Y agby;+ Y AyCijs
K=1

k=1
which is just the sum of the (i, j)-entries in AB and in AC. Hence
A(B+C)=AB+ AC.

311 The commutative law fails for matrix multiplication. Let
4 1 2
13 4
1 1
B= .
o ]

Certainly both products 4B and B4 exist. Their values are different, however, as we
can verify by direct calculation.

w2 )
LI

and let

and
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Rules (i), (ii), (iii) and (iv) are easy to verify. They reflect corresponding
properties of numbers, since the operations involved correspond to simple
operations on the entries of the matrices. Rules (v), (vi) and (vii), while
being convenient and familiar, are by no means obviously true. Proofs of
them are intricate, but require no advanced methods. To illustrate the
ideas, the proof of (vi) is given as Example 3.10.

There is one algebraic rule which is conspicuously absent from the above
list. Multiplication of matrices does not satisfy the commutative law. The
products AB and BA, even if they can both be formed, in general are not the
same. See Example 3.11. This can lead to difficulties unless we are careful,
particularly when multiplying out bracketed expressions. Consider the
following:

(A+B)(A+B)=AA+ AB+ BA + BB,
sO
(A+B)?>=A*+ AB+BA+B?,
and the result must be left in this form, different from the usual expression
for the square of a sum.

Finally a word about notation. Matrices we denote by upper case letters
A B, C,....,X,Y,Z,....Column vectors we denote by bold-face lower
case letters @, b, c, ..., x, p, z, .. .. Thankfully, this is one situation where
there is a notation which is almost universal.

Summary

Procedures for adding and multiplying vectors and matrices are given,
together with rules for when sums and products can be formed. The
algebraic laws satisfied by these operations are listed. It is shown how to
write a set of simultaneous linear equations as a matrix equation.
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Exercises

Exercises

. In each case below, evaluate the matrices 4 + B, Ax, Bx,34,1B, where A,

B and x are as given.

. |1 2 [ 1 —1] x
R e
. 30 -2 1 1
o ol gl 4
1 -1 2 0 0 -1 X
(i) A= |0 1 1], B= 12 2}, x=[x2}.
2 3 -3 L -3 1 0 X3

-2 -1 1 11 1 2
ivv A=] o 1 4|, B={1 1 1], x=| 1].
6 -2 1 11 1 -1

. Evaluate all the following products of a matrix with a vector.

1 2 —27711 2 27y,
(i) [3 —1 —1] 2. Gy |1 =2 []]
-2 2 olls o 3]
i T
0 -
. 1 1 =1 ] 1 . - 1
(iii) [2 9 0 | 1 (iv) 0 3 [1]
3 30
o o]
[ 1
1111 171|2 (1 0 07 [-2
(v)lllll}S. viy [0 10 1.
1111 11}4 [0 0 1 3
| 5
. Let
2 -1 1 0
T R S L
30 —1 3
1 0 2
2 -1
c=2 =3 O} p |1 2f.
0 0 3 3 5
2 1 0

Evaluate the products AB, AD, BC, CB and CD. Is there any other
product of two of these matrices which exists? Evaluate any such.
Evaluate the products A(BC) and (4B)C.

. Evaluate the following matrix products.

2 1
. 3 4
(i) [—1 1][ ]
3 9 52
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1
1 0 1 o0 1

. 2 3 -1 1 0 -1

(i1) X 1 0
2 01 =2 -1 1 3 s 2
1 4 3 -3 1 11

... [0 171 2

(i) [1 0][3 4]'

o 1 17 1
(iv) [% - 2] [—2 3 3] [—1].
12 -1l
5. Obtain 4*—242+ 4 —1I, when

1 1 2
A=11 1 1].
2 1 1

6. How must the sizes of matrices 4 and B be related in order for both of the
products 4B and BA to exist?
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4.2

4.3

44

The following

Examples

Examples

Properties of a zero matrix.
[0 0'+|:a b]=|:a b]

i c d ¢ df
[ b 00
iJ"[o o

0 00
o of

b ¢ 0 00
cile ol

Properties of an identity matrix.

11
O O a6 a O O O

T

O O Ao OO O
T

QR OO0 6 .
(=)

[[1 07[a b [a b

o e )

a b[1 0__ a b

K d]I:O 14_|:c d:l’

1 0 0]f[a b ¢ a b ¢
0 1 0] d e fJ=[d e f],
L0 0 1JLlg h &k g h k
[a b ¢c1[1 0 O a b ¢
d e f] 0 1 0]:[(1 e f].
g h k 0 0 1 g h k

Examples of diagonal matrices.

3 0 3 0] -1 0

[0 2| |0 of 0 —1)

[ 6 0 0] 2 00 0 0

0 -2 0], 0 2 0], 0 1 ,

o o 11 Lo o 2 00

1 0 0 07

0200

0 0 3 0

L0 0 0 44

he following matrices are upper triangular.

1 o7 [ 1 1 37 (2 1 0] 0 1 1

o 1l 0 -2 21, 01 1}, 0 2]

L . L0 0 -1 L0 0 1 L0 0 1
matrices are lower triangular.

_ - [ 1 0 0 2 00 0 0 0

;_?, 2 -2 ow, {110W, 100]

<3 1 <) Lo 1)l L1 o201
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Special matrices

Example 4.1 shows the properties of a zero matrix. This form of special
matrix does not raise any problems. A matrix which consists entirely of Os
(a zero matrix) behaves just as we would expect. We normally use 0 (zero)
todenote a zero matrix, and 0 to denote a zero column vector. Of course we
should bear in mind that there are many zero matrices having different
sizes.

From matrices which act like zero we turn to matrices which act like 1. A
square matrix which has 1s down the diagonal from top left to bottom right
(this diagonal is called the main diagonal) and has Os elsewhere is called an
identity matrix. Example 4.2 shows the property which such matrices have,
namely

Al=1A=A,
where I is an identity matrix and A4 is a square matrix of the same size.
Notice that identity matrices are square and that there is one p x p identity
matrix for each number p. We denote it by I, or just I if the size is not
important.

There are other sorts of special matrix which are distinctive because of
their algebraic properties or because of their appearance (or both). We
describe some types here, although their significance will not be clear till
later.

A diagonal matrix is a square matrix which has zero entries at all points
off the main diagonal. One particular sort of diagonal matrix is an identity
matrix. Other examples are given in Examples 4.3. Of course we do not
insist that all the entries on the main diagonal are non-zero. We might even
consider a zero matrix to be a diagonal matrix. The sum and product of two
p x p diagonal matrices are p x p diagonal matrices.

The main diagonal divides a square matrix into two triangles. A square
matrix which has zeros at all positions below the main diagonal is called an
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4.5

(i) A sum of upper triangular matrices is upper triangular.

Sums and products of triangular matrices.

[ 1 1 3 2 10 3 2 3
0 -2 2 ] +{0 1 1]=]0 -1 3.
L 0 0 -1 0 0 1 0 0 0
(ii) A product of upper triangular matrices is upper triangular.
( 1 1 3172 1 07 [2 2 47
0 -2 2 01 1[=]0 =2 0].
L0 0 -1 J Lo 0 11 Lo 0 -1
(iii) A product of lower triangular matrices is lower triangular.
[ 1 0 012 0 071 [2 0 07
2 =2 0 1 1 0]=1[2 =2 0].
| 3 1 1 J L0 1 11 L7 2 1

4.6 Examples of transposed matrices.
F 2F_[13' F 2 yT_[; :]
3 4 2 4]’ |4 5 6] 3 6 ’
1 11"
[1 2 3]"= [2] and [2] =[1 2 3],
3 3
21" 1 2
4] 1 -4 |,
-4 -4 —1

so this matrix is symmetric.

4.7 A sum of symmetric matrices is symmetric. Let A and B be symmetric

matrices with the same size. Then A"=A4 and B"=
(A+B)"=A"+B"=4+B,
and so A + B is symmetric. Here is a particular case:
3 1 2 1 2 -1
A=|1 1 -4], B=| 2 2 o0
2 -4 -1 -1 0 3
Then A4 and B are both symmetric, and -
4 3 1
A+B=|3 3 -4,
1 -4 2
which is symmetric.
A product of two symmetric matrices is generally not symmetric. With A and B as

above,
3 8 3
AB=[ 7 4 131,

5 -4 -5
which is not symmetric.



4. Special matrices 35

upper triangular matrix. A square matrix which has zeros at all positions
above the main diagonal is called a lower triangular matrix. A matrix of one
or other of these kinds is called a triangular matrix. Such matrices have
convenient properties which make them useful in some applications. But
we can see now, as in Example 4.5, that sums and products of upper (lower)
triangular matrices are upper (lower) triangular. Notice that when the GE
process is applied to a square matrix the result is always an upper
triangular matrix.

The main diagonal also plays a part in our next kind of special matrix. A
square matrix is symmetric if reflection in the main diagonal leaves the
matrix unchanged. In formal terms, if 4 is any matrix whose (i, j)-entry is
a;;, the transpose of A (denoted by A”) is the matrix whose (i, j)-entry is a;;,
i.e. the matrix obtained by reflecting in the main diagonal. 4 is symmetric if
AT = A. Notice that the rows of AT are the columns of 4, and vice versa. See
Example 4.6. Such matrices figure prominently in more advanced work,
but we can see now (Example 4.7) that sums of symmetric matrices are
symmetric, but products in general are not. There are three important rules
about transposes.
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4.8 Let A and B be any p x p matrices. Then (AB)T= BT AT, To see this, let the
(i, j)-entries of A and B be denoted by a;; and b;; respectively. The (i, j)-
entry in (AB)! is the (j,i)-entry in AB, which is

P

Z ajkbki'

k=1

The (i, j)-entry in BTAT is
P
Y bray,
k=1

where b, is the (i,k)-entry in BT and af; is the (k,j)-entry in AT. Now from the
definition of the transpose, we have

bi=b,; and aj;=ay.
Hence the (i, j)-entry in BTAT is

14 14
Z buay, ie. Z azby,

which is the same as the (i, ) -entry in (AB). This proves the result.

49 Examples of skew-symmetric matrices.
() 0 277 o -2 0 2
i = =— .
-2 0 2 0 -2 0
0 t 21T o -1 -2 0 1 2
(i) -1 0 -3} =11 0 3l=-1]-1 0 -3
-2 3 0 2 -3 0 -2 3 0
410 Examples of orthogonal matrices.
1 1
(i) Let A= 12 715 Then AT= ? 712 ,
NG NN
SO
et 1M
51 4+
and
o B
—3+3 3+ [0 1
Hence A is orthogonal
2 _1 27 2 2 _1
3 3 3 3 3 3
(i1) Let B= % 2 3 Then B'= | -4 2 2
_1 2 2 2 1 2
3 3 3 3 T3 3

Then by direct evaluation we verify that BTB=1I and BBT=].
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Rules
(i) (A =4.
(i) (A+B)"=A"+B",
(iii) (AB)'=B"A4".

The last of these is important because of the change of the order of the
multiplication. Remember this! The first two are quite easy to justify. The
third is rather intricate, though not essentially difficult. A proof is given in
Example 4.8.

The transpose of a matrix 4 may be related to 4 in other ways. A skew-
symmetric matrix is a matrix for which A"= — 4. See Example 4.9. An
orthogonal matrix is a square matrix for which ATA=71 and AA"=1. See
Example 4.10.
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4.11 Examples of elementary matrices.
0 1 07
E,=|1 0 0],
o 0 1]
obtained by interchanging the first two rows of an identity matrix.
( 1 0 07
E,=]10 1 0],
L0 0 5
obtained by multiplying the third row of an identity matrix by S.
1 3 07
E,=|0 1 0],
0 0 11

obtained by adding three times the second row to the first row in an identity matrix.

4.12 Let

1 2 3
a4 5]
7 8 9

Check the effects of premultiplying 4 by E, E, and E, above.

[0 1 O7F1 2 37 [4 5 6
EA=]1 0 O 4 5 6|=|1 2 3].
L0 0 1JL7 8 91 L7 8 9
(The first two rows are interchanged.)
[1 0 0711 2 37 [ 1 2 37
E,A=|0 1 0 4 5 6l=]14 5 61}].
Lo o sIl7 8 9] L35 40 45|
(The third row is multiplied by 5.)
"1 3 0717011 2 37 [13 17 217
EsA=]10 1 0 4 5 6]=14 5 6].
Lo o 1J1l7 8 9J L7 8 9l

(Three times the second row is added to the first row.)
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Examples 4.11 illustrate the notion of elementary matrix. An elementary
matrix is a square matrix which is obtained from an identity matrix by the
application of a single elementary row operation (see Chapter 1). The
significance of such matrices lies in the following. Let E be obtained from a
p x p identity matrix by application of a single elementary row operation,
and let 4 be any p x g matrix. Then the product matrix EA is the same as
the matrix obtained from A by applying the same elementary row
operation directly to it. Examples 4.12 illustrate this. Our knowledge of the
GE process enables us to say: given any square matrix A, there exists a
sequence E,, E,, ..., E, of elementary matrices such that the product
E,E,_,...E,E Aisanupper triangular matrix. These elementary matrices
correspond to the elementary row operations carried out in the course of
the GE process. For an explicit case of this, see Example 4.13.

Another important property of elementary matrices arises from the
preceding discussion. Let E be an elementary matrix, obtained from an
identity matrix by application of a single elementary row operation.
Certainly E can be converted back into the identity matrix by application
of another elementary row operation. Let F be the elementary matrix
corresponding (as above) to this elementary row operation. Then FE=1.
The two row operations cancel each other out, and the two elementary
matrices correspondingly combine to give the identity matrix. It is not hard
to see that EF =1 here also. Such matrices are called inverses of each other.
We shall discuss that idea at length later. Examples 4.14 show some
elementary matrices and their inverses. The reader should check that their
products are identity matrices. Also, from the definition of an orthogonal
matrix it is apparent that an orthogonal matrix and its transpose are
inverses of each other.

Summary

Various special kinds of matrices are described: zero matrices, identity,
diagonal, triangular, symmetric, skew-symmetric, orthogonal and
elementary matrices. Some algebraic properties of these are discussed. The
transpose of a square matrix is defined, and rules for transposition of sums
and products are given. The correspondence between elementary matrices
and elementary row operations is pointed out.
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413 Find a sequence E,, E,, ..., E, of elementary matrices such that the
product E,E,_, ... E;A is an upper triangular matrix, where
0 1 -3 2
A=1]1 2 1 1].
1 1 4 2

We proceed with the standard GE process, noting the elementary matrix which
corresponds to each row operation.

[0 1 -3 27
1 2 1 1
|1 1 4 2
[ 1 2 1 IW - terch [0 1 O
interchange
0 1 -3 2 chanesrows e 11 o o]
L1 1 4 2 L0 0 1
(1 2 1 17 [ 1 0 0
0 1 -3 2 E,= 01 1
.0 —1 3 11 (3)—(1) L -1 0 1
[ 1 2 1 17 1 0 07
0 1 -3 2 E;=]0 1 0
L O 0 0 31 (3)+(2) 0 1 1]
[ 1 2 1 17 [1 0 07
0 1 -3 2 E,=}0 1 0
.0 0 0 11 (3)+3 L0 0 ]
Hence
1 2 1 1
E,ELE,E A=|0 1 -3 2] .
0 0 0 1
4.14 Elementary matrices and their inverses.
[0 1 0] [0 1 0
1 0 0 has inverse 1 0 0.
L0 0 1. L0 0 1
(1 0 0] [1 0 0
010 has inverse 0 1 0
0 0 5] L0 0 4
1 3 0] (1 -3 0
01 0 has inverse 0 1 0].
L0 0 1 L0 0 0

The way to see these is to consider the effect of premultiplying by first one and then
the other of each given pair. The second ‘undoes’ the effect of the first.
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Exercises

. Evaluate 42, 43, and 4%, where

[1 1 17
A=10 1 1}.
L0 0 1
Carry out the same calculations for the matrix
[1 0 0 W
B=|1 1 0}.
L1 1 11

. Let I be the 3 x 3 identity matrix. Show that A = A whenever Aisa2x3
matrix. Does this hold for any p x 3 matrix A, irrespective of the value of
p? Likewise, is it the case that I[B=B for every 3 x g matrix B?

. In each case below, evaluate 4B, where A and B are as given.

[1 —1 2 0 1 1
@ A=10 2 1], B=1]0 2 —2].
L0 0 -1 0 o0 1
(12 1 X1
(i) A4=1{0 1 -21{, B= xz].
L 0 0 1 X3
[ 1 0 o0 -1 00
(ili) A= 2 -1 0], B= 1 2 0}.
| -2 1 3 211

0
(v) A=[1 2 3], B=[1 1
1

. Evaluate the product

1 0 O
[y x5 x3] |—1 1 0f.
3 -2 1

Hence find values of x;, x, and x5 for which the product is equal to
[-1 4 1]

. Let A be any square matrix. Show that 4+ AT is a symmetric matrix.
. Show also that the products 474 and AA4" are symmetric matrices.

. Which of the following matrices are symmetric, and which are skew-
symmetric (and which are neither)?

12 12 0 2 12 10
23’—23’[—20’31’0—1’
-1 0 1 0 1 =2

0 2 2|, |-1 o0 3],

2 1 -1 2 -3 0

1 2 0 2 3 1

-2 0 —-1], |3 © —1],

0 1 1 1 -1 2
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10.

11.

Exercises

1 01 1 0 -1 1 1 0
[0 1 0], 0 1 0}, 1 0 —-1].
1 01 1 0 1 0 -1 -1

. Show that the following matrices are orthogonal.

1
0

W

1

7

1

7

1 2
NCEENES B !
v i

V2 e

W

_‘&..—. [\S]
(=Y (=Y

Wl | w
wnl W wnil b
[\)

(=)
(%)

. Show that a product of two orthogonal matrices of the same size is an

orthogonal matrix.

. Describe in words the effect of premultiplying a 4 x 4 matrix by each of the

elementary matrices below. Also in each case write down the elementary
matrix which has the reverse effect.

(10 0 0 1.0 2 0

. loo 10 . lo 100

@ 1o 100 @ 1901 0
[0 0 0 1 [0 0 0 1
1000 "1 0 0 0

(i) 0100 @ |0 -2 0 o0

m 3010 0 0 1 0
L 00 0 1 Lo 0 0 1

Apply the Gaussian elimination process to the matrix

0 1 3
A=[1 2 —1],
2 3 1

noting at each stage the elementary matrix corresponding to the row
operation applied. Evaluate the product T of these elementary matrices
and check your answer by evaluating the product T4 (which should be
the same as the result of the GE process).

Repeat Exercise 10, with the matrix

I -1 2 1
A= | -1 3 0 1].
2 1 1 -1
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Examples

5.1 Show that the inverse of a matrix (if it exists) is unique.

Let AB=BA=1 (so that B satisfies the requirements for the inverse of A4).
Now suppose that AX=XA=1I. Then

BAX =(BA)X=1X=X.
Also

BAX =B(AX)=BI=B.
Hence X = B. Consequently B is the only matrix with the properties of the inverse
of A.

52 An example of a matrix which does not have an inverse is

R

There is no matnx B such that

1 -1
B=1I.
]

To see this, let
B=|:a bjl
c d
1 —1]fa b a—c b—d
[—1 JL d}z[—aw -b+d]'
This cannot equal

o 3]

forifa—c=1then —a+c=—1,not0.

Then

53 Let A be a diagonal matrix, say A=[a;;],,,. With a;;=0 when i#j.
Suppose also that for 1 <i<p we have g;;#0 (there are no Os on the main
diagonal). Then A is invertible.
To see this, we show that B is the inverse of A, where B=[b, ], , is the diagonal
matrix with b; = 1/a;;, for 1 <i<p. Calculate the product AB. The (i, i)-entry in AB
is

14
Z agbys,
k=1

which is equal to a;;b;;, since for k 5¢ i we have a;, = b,;=0. By the choice of b;;, then,
azb;=1foreachi,and so AB=1. Similarly BA=1. We are assuming the result that
a product of diagonal matrices is a diagonal matrix (see Example 4.4).
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Matrix inverses

At the end of Chapter 4 we discovered matrices E and F with the property
that EF=1I and FE=I, and we said that they were inverses of each other.
Generally, if 4 is a square matrix and B is a matrix of the same size with
AB=1and BA=1, then B is said to be the inverse of A. The inverse of A is
denoted by A~ !. Example 5.1 is a proof that the inverse of a matrix (if it
exists at all) is unique. Example 5.2 gives a matrix which does not have an
inverse. So we must take care: not every matrix has an inverse. A matrix
which does have an inverse is said to be invertible (or non-singular). Note
that an invertible matrix must be square. A square matrix which is not
invertible is said to be singular.

Following our discussion in Chapter 4 we can say that every elementary
matrix is invertible and every orthogonal matrix is invertible. Example 5.3
shows that every diagonal matrix with no zeros on the main diagonal is
invertible. There is, however, a standard procedure for testing whether a
given matrix is invertible, and, if it is, of finding its inverse. This process is
described in this chapter. It is an extension of the GE process.
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1 1 1
54 Let A=1]1 2 3] .
0 1 1
Find whether A is invertible and, if it is, find A~'.

First carry out the standard GE process on A, at the same time performing the
same operations on an identity matrix.

111 1 0 0

1 2 3 0 1 0

0 1 1 0 0 1

111 1 0 0 T 10 1
0 1 2 |-1 1 0 @-() E=|-1 1 o0
0 1 1 0 0 1 L o o 1l
111 1 0 0 10 07
0 1 2 |-1 1 0 E,=| 0o 1 o0
0 0 -1 1 -1 1 3)=Q) L 0 ~1 1
11 1 0 0 1 0 07
0 1 2 |-1 1 0 Es=] 0 1 0
0 0 1 |-1 1 -1 @x-1 0 0 —1.

This is where the standard process ends. The matrix A’ referred to in the text is

1 11
0 1 2].
0 0 1

The process of finding the inverse continues with further row operations, with the
objective of transforming it into an identity matrix.

1 1 0|2 -1 1 (1)=-03) 10 -1
0 1 2 |-1 1 0 E,=]l0 1 0
0 0 1 |[-1 1 -1 o o 1l
1 1 0 |2 -1 1 (1 0 07
0 1 0 1 -1 2 (2-2x() Es={0 1 =2
0 0 1 [-1 1 -1 o o 1
1 0 0 1 0 -1 ()=-Q) [1 -1 0]
0 1 0 1 -1 2 Ec=|0 1 0
0 0 I [-1 1 -1 [0 o 1

The process has been successful, so A is invertible, and

1 0 -1
A" l= 1 -1 2].
-1 1 -1

Now check (just this once) that this is equal to the product of the elementary
matrices E¢EsE E;E, E, . In normal applications of this process there is no need to
keep a note of the elementary matrices used.
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Example 5.4 illustrates the basis of the procedure. Starting with a square
matrix A, the GE process leads to an upper triangular matrix, say A’. In the
example, continue as follows. Subtract a multiple of the third row of A’
from the second row in order to get 0 in the (2, 3)-place. Next, subtract a
multiple of the third row from the first row in order to get O in the (1, 3)-
place. Last, subtract a multiple of the second row from the first row in order
to get 0in the (1, 2)-place. By the GE process followed by this procedure we
convert A into an identity matrix by elementary row operations. There
exist, therefore, elementary matrices E,, E,, ..., E; such that

I=EE,_,...E,E A.
Nowifweset B=E.E,_, ...E,E,, then we have BA=1. Weshall show that
AB=1I also. Let F,, F,, ..., F, be the inverses of E,, E,, ..., E;
respectively. Then
F,F,...F,=F,F,...FJl
=F,F,...FEE,_,...E;E/A
=IA=A,
since F.E.=I, F,_E,_,=I,..., F,E,=I. Consequently,
AB=F,F,...FEE,_,...E,E =1
Hence Bis the inverse of A. Our procedure for finding the inverse of 4 must
therefore calculate for us the product E.E, _, ... E,E,. This product can be
written as E.E;_, ... E,E,I, and this gives the hint. We convert A to I by
certain elementary row operations. The same row operations convert I into
A~ (if it exists). Explicitly,
if I=E;...E;A then A '=E,...E|lL



48 Examples

1 2
55 Find the inverse of the matrix [0 1 2 ] .
2

1 0
1 0 2 1 0 0
0 1 2 0 1 0
1 2 o |0 o0 1
1 0 2 1 0 0
0 1 2 0 1 0
0 2 =2 |-1 0 1 (3=(1
1 0 2 1 0 0
0 1 2 0 1 0
0 0 -6 |-1 -2 1 (3)-2x()
1 0 1 0 0
0 1 0 1 0
0 0 1 1 1 3=--6

(At this stage we can be sure that the given matrix is invertible, and that the process
will succeed in finding the inverse.)

1 0 0 2 2 L (1)-2x(3)
0 1 0 -5 4 4 @-2x0)
o o0 1| & % -

This is the end of the process, since the left-hand matrix is an identity matrix. We
have shown that
-1

|

|
= = ity
(RN S Y

I 0 2
01 2
P20

Q= =

I 2 3
5.6 Find (if possible) the inverse of the matrix [ I 1 2 ] .

0 1 1
1 2 3 1 0 0
11 2 0 1 0
0 1 1 0o 0 1
1 2 3 1 0 0
0 -1 -1 |—-1 1 0 @)=
0 1 1 0 0 1
1 2 3 1 0 0
0 1 1 1 -1 0 2=-1
0 1 1 0 0 1
1 2 3 1 0 0
0 1 1 1 -1 0
0 0 0 |[-1 1 1 (3=
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The practical process for finding inverses is illustrated by Example 5.5.
Apply elementary row operations to the given matrix 4 to convert it to I.
At the same time, apply the same elementary row operations to I, thus
converting it into A~! (provided A~! exists, as it does in this example).
This shows how to find the inverse of a 3 x 3 matrix, but the method extends
to any size of square matrix. Apply elementary row operations to obtain
zeros below the main diagonal, as in the GE process, and, once this is
complete, carry on with the procedure for obtaining zeros above the main
diagonal as well. Remember that there is a simple way to check the answer
when finding the inverse of a given matrix A. If your answer is B, calculate
the product AB. It should be I. If it is not, then you have made a mistake.

What happens to our process for finding inverses if the original matrix 4
is not invertible? The method depended on obtaining, during the process,
the matrix A’ which had 1s on the main diagonal and Os below it. As we saw
in Chapter 2, this need not always be possible. It could happen that the last
row (after the GE process) consists entirely of 0s. In such a case the process
for finding the inverse breaks down at this point. There is no way to obtain
Os in the other places in the last column. Example 5.6 illustrates this. It is
precisely in these cases that the original matrix is not invertible. We can see
this quite easily. Suppose that the matrix A’ has last row all 0s. There exist
elementary matrices E,, E, ..., E, such that

A'=EE,_,...E,E A
Now suppose (by way of contradiction) that A4 is invertible. Then
AA '=I.LetF,,F,,...,F, betheinverses of E,, E,, ..., E, respectively.

Then
A(A"F,F,...F)=(E,E,_, ... E,E,A)A"'F, ... F

=EE,_,...E,E,IF, ...F,
=I.

r
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Here the matrix A’ is

1 2 3
01 1},
0 0 O

and the process for finding the inverse cannot be continued, because of the zero in
the (3, 3)-place. The conclusion that we draw is that the given matrix is not
invertible.

5.7 Let 4 be a p x p matrix whose pth (last) row consists entirely of Os, and let
X be any px p matrix. Show the product AX has pth row consisting
entirely of Os.
Let A=[a;],x, witha,;=0for 1 <j<p.Let X =[x;;],,,. In AX the (p, j)-entry
is Y'F_, aux,;. But a, =0 for all k, so this sum is zero. Hence the pth row of AX
consists entirely of 0s.

58 A formula for the inverse of a 2 X 2 matrix.

a b7t 1 d —-b
[c d] " ad—bc [—c a]’
provided that ad — bc #0.
This is easily verified by multiplying out.

59 Show that if A and B are square matrices with AB=1, then A is invertible
and 4" '=B.

Suppose that AB=1 and A is singular. Then, by the discussion in the text, there is
an invertible matrix X such that X A has last row consisting of 0s. It follows that
X AB has last row consisting of Os (see Example 5.7). But XAB= X, since AB=1.
But X cannot haveits last row all Os, because it is invertible (think about the process
for finding the inverse). From this contradiction we may deduce that A is invertible.
It remains to show that A~!=B.

We have AB=1, and so

A Y AB)=A"'=A4"",
ie. (A"*A)B=A"",
ie. B=A4"1.
Notice that from BA=1I we can conclude by the same argument that B is

invertible and B~!=4. From this it follows that A4 is invertible and A" !=
(BY)~'=B.
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Example 5.7 shows that such a product A’X, for any matrix X, haslast row
all0s,and so A’A™'F, ... F, haslast row all Os. But I does not. Hence the
supposition that A is invertible is false.

Example 5.8 gives a formula for the inverse of a 2 x 2 matrix, if it exists.
Example 5.10 is another calculation of an inverse.

Rule

A square matrix A is invertible if and only if the procedure given above
reaches an intermediate stage with matrix A’ having 1s on the main
diagonal and Os below it.

The definition of the matrix inverse required two conditions: B is the
inverse of A if AB=1 and BA=1I. It can be shown, however, that either one
of these conditions is sufficient. Each condition implies the other. For a
part proof of this, see Example 5.9. In practice it is very useful to use only
one condition rather than two.

Next, a rule for inverses of products. Suppose that A and B are invertible
p % p matrices. Must AB be invertible, and if so what is its inverse? Here is
the trick:
(AB)B~'A™")=A(BB ')A~ ! (rule (v) on page 27)
=AJA™1
=AA"'=1I,
and
(B"'A 1) 4B)=B (47 '4)B
=B~ 'IB=1I.
Thus the matrix B~ ! 4~ ! has the required properties and, since inverses are
unique if they exist, we have:

Rule
If A and B are both invertible p x p matrices, then so is AB, and (4B) ™! =
B l4~L

(Take note of the change in the order of the multiplication.)

This rule extends to products of any number of matrices. The order
reverses. Indeed, we have come across an example of this already. The
elementary matrices E;, E,, ..., E, had inverses F,, F,, ..., F
respectively, and

(E,E,_,...E,E\)(F\F,...F,_,F)=I,

r

and
(FIFZ s Fr—lFr)(ErEr—-l ce E2El)=1a
so the inverse of E,E, ., ... E;E, is F,F, ... F,_,F,, and vice versa.
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Find the inverse (if it exists) of the matrix

Examples
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Summary

The definitions are given of invertible and singular matrices. A procedure is
given for deciding whether a given matrix is invertible and, if it is, finding
the inverse. The validity of the procedure is established. Also a rule is given
for writing down inverses of products of invertible matrices.

Exercises

1. Find which of the following matrices are invertible and which are singular.
Find the inverses of those which are invertible. Verify your answers.

o2 10 -2 -
o[ w0 w [ )
1201 ( 1 -1 2
vy |0 1 2]. v | -1 2 -1}.
L0 0 1 [ 1 -3 1
(0 11 12 -1
wiy |10 1], (vii) 2 2 -—af.
110 [ -1 0 3
1 -2 -1 (1 -1 4
(viii) 0 3 41. (ix) 2 3 3].
L -3 11 (3 1 8
- 2 3 —2 3 r1r 1 11
10 2 1 . -2 1 0 3
o S 30 -2 5
. 3 0 o0 4 [ 1 -1 -1 =3

2. Find the inverse of the diagonal matrix

a 00
[0 b 0],
0 0 ¢

where a, b and ¢ are non-zero.

3. Let A, B and C be invertible matrices of the same size. Show that the
inverse of the product ABC is C™'B 1471,

4. Let x and y be p-vectors. Show that xy" is a p x p matrix and is singular.
Pick some vectors x and y at random and verify that xy' is singular.
5. Show that, for any invertible matrix A,
(A YWAT=1 and ATA4 Y=L
Deduce that A" is invertible and that its inverse is the transpose of 4™ *.
Deduce also that if A is symmetric then 47! is also symmetric.
6. Let X and A4 be p x p matrices such that X is singular and 4 is invertible.
Show that the products XA and 4X are both singular. (Hint: suppose

that an inverse matrix exists and derive a contradiction to the fact that X
does not have an inverse.)
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Examples

6.1 Illustrations of linear dependence.

o (] e )
o G LG
o B = B0

6.2 A list of two non-zero 2-vectors is LD if and only if each is a multiple of the
other. Let % s 2 be two non-zero 2-vectors.
by | | b,

First, suppose that they constitute a LD list. Then there exist numbers x; and x,,

not both zero, such that
a; a] [0
[ofreli-lo)
Without loss of generality, say x; #0. Then since I:Zl

:|¢0, we must have x,#0
1

also. Consequently,

_,‘:_=—(xz/x,)[‘;j and [Zj=—(x,/xz)[‘,:],

i.e. each is a multiple of the other.
Conversely, suppose that each is a multiple of the other, say

[a,] a; a; a
] e fenls]
@] —k[ %2 |= 0 andso (|“] [ is LD
|6, "|b.] |0 b, | [ b, '
6.3 Show that any list of three 2-vectors is LD. To show that
ai as ajz .’
LD
(D o
we seek numbers x;, x, and x,, not all zero, such that
a, a, az| [0
sl li )
a;x;+ax,+azx;=0
byx; +byx,+byx;=0{"

Then

i.e.

In other words, we seek solutions other than x;=x,=x;=0 to this set of
simultaneous equations. These equations are consistent (because x; =x,=x,=0
do satisfy them), so by the rules in Chapter 2 there are infinitely many solutions.
Thus there do exist non-trivial solutions, and so the given list of vectors is LD.
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Linear independence and
rank

Examples 6.1 illustrate what is meant by linear dependence of a list of
vectors. More formally: given a list of vectors vy, . . . , v, of the same size (i.e.
all are p x 1 matrices for the same p), a linear combination of these vectors is
a sum of multiples of them, i.e. x;v; +x,0,+ - =+ + X0, Wwhere x,, ..., x;
are any numbers. A list of vectors is said to be linearly dependent
(abbreviated to LD) if there is some non-trivial linear combination of them
which is equal to the zero vector. Of course, in a trivial way, we can always
obtain the zero vector by taking all of the coefficients x,, ..., x, tobe 0. A
non-trivial linear combination is'one in which at least one of the coefficients
is non-zero.

A list of vectors of the same size which is not linearly dependent is said to
be linearly independent (abbreviated to LI).

Example 6.2 deals with the case of a list of two 2-vectors. A list of two
non-zero 2-vectors is LD if and only if each is a multiple of the other.
Example 6.3 deals with a list of three 2-vectors. Such a list is always LD.
Why? Because a certain set of simultaneous equations must have a solution
of a certain kind.
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64 Find whether the list

(HEN RN

is L1 or LD.
Seek numbers x;, x, and x3, not all zero, such that

1 27 1 0
X, [2] +x, [——2 +x3 [1] =[0] R
5 4] 4 0
€.
Xy +2x,+ x3=0
2x; —2x;+ x3=0

5x;+4x,4+4x;=0
Apply the standard GE process (details omitted):

1 2 1 0 1210
2 =2 1 o|l-f0o 1 & of.
5 4 4 0 0000

From this we conclude that the set of equations has infinitely many solutions, and
so the given list of vectors is LD.

i

6.5 Find whether the list

{HRHAH)

is LT or LD.
Following the same procedure as in Example 6.4, we seek a non-trivial solution

to
1 2 1 Xy 0
2 2 4] [xz] =10
-1 0 3 X3 0

(here writing the three simultaneous equations as a matrix equation). Apply the
standard GE process:

1 210 1 2 1 0
2 2 4 0p—-1]60 1 -1 0].
-1 0 3 0 0 0 1 0

From this we conclude that there is a unique solution to the equation, namely x, =
x,=x3=0. Consequently there does not exist a non-trivial linear combination of
the given vectors which is equal to the zero vector. The given list is therefore LI.

6.6 Find whether the list

(RERHEH)

is L1 or LD.
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For the moment, however, let us see precisely how linear dependence
and simultaneous equations are connected. Consider three 3-vectors, as in
Example 6.4. Let us seek to show that these vectors constitute a list which is
LD (even though they may not). So we seek coefficients x,, x,, x; (not all
zero) to make the linear combination equal to the zero- vector. Now the
vector equation which x,, x, and x; must satisfy, if we separate out the
corresponding entries on each side, becomes a set of three simultaneous
equations in the unknowns x,, x, and x;. We can use our standard
procedure (the GE process) to solve these equations. But there is a
particular feature of these equations. The right-hand sides are all Os, so, as
we noted earlier, there certainly is one solution (at least), namely x, =x, =
x3=0. What we seek is another solution (any other solution), and from our
earlier work we know that if there is to be another solution then there must
be infinitely many solutions, since the only possibilities are: no solutions, a
unique solution, and infinitely many solutions. What is more, we know
what form the result of the GE process must take if there are to be infinitely
many solutions. The last row must consist entirely of Os. In Example 6.4 it
does, so the given vectors are LD. In Example 6.5 it does not, so the given
vectors are LI.

Because the right-hand sides of the equations are all Os in calculations of
this kind, we can neglect this column (or omit it, as we customarily shall).
Referring to Chapter 2 we can see:

Rule
Let vy, ..., v, be a list of p-vectors. To test whether this set is LD or LI,
form a matrix A4 with the vectors vy, ..., v, ascolumns (so that 4isa px q

matrix) and carry out the standard GE process on A. If the resulting matrix
has fewer than ¢ non-zero rows then the given list of vectors is LD.
Otherwise it is LI.

Example 6.6 shows what happens with a list of four 3-vectors. It will
always turn out to be LD. The matrix after the GE process is bound to have
fewer than four non-zero rows. This illustrates a general rule.
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Here we reduce the working to the bare essentials. Apply the GE process to the

matrix
1 1 2 1
-1 2 1 2 1.
5 -1 2 7

We obtain (details omitted) the matrix

1 1 2 1
0 1 1 1f.
0 0 1 -4

This matrix has fewer than four non-zero rows, so if we were proceeding as in the
previous examples and seeking solutions to equations we would conclude that there
were infinitely many solutions. Consequently the given list of vectors is LD.

6.7 Illustrations of calculations of ranks of matrices.
1 2 —17
@) 2 2 -4 has rank 2.
| —1 0 3.
GE process:
! 2 —17 1 2 -1
2 2 —-4]1-10 1 1},
| —1 0 3. 0 0 0

a matrix with two non-zero rows.

1 2
(i) l: 1] has rank 2.

2
GE process:
2 2 (two rows)
N -
2 0 1 non-zero rows).
[ 1 1 1 1 W
(ii1) 2 2 -1 1 has rank 3.
[ -1 7 5 2
GE process:
! 1 1 27 1 11 2
2 2 -1 1|-1]0 1 2 %] (three non-zero rows).
[ —1 7 5 2 0 0 1 1
[1 1 17
(iv) 1 2 3 has rank 3.
10 1 1.

GE process:

1 11 11 1
1 2 3|~- [0 1 2 (three non-zero rows).
10 1 1. 0 0 1

1 2 -1
v) 2 4 —2] has rank 1.
-1 =2 1
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Rule
Any list of p-vectors which contains more than p distinct vectors is LD.

Following Chapter 5, we have another rule.

Rule

If a matrix is invertible then its columns form a LI list of vectors.
(Recall that a p x p matrix is invertible if and only if the standard GE

process leads to a matrix with p non-zero rows.)

Another important idea is already implicit in the above. The rank of a
matrix is the number of non-zero rows remaining after the standard GE
process. Examples 6.7 show how ranks are calculated. It is obvious that the
rank of a p x ¢ matrix is necessarily less than orequal to p. It is alsoless than
or equal to g. To see this, think about the shape of the matrix remaining
after the GE process. It has Os everywhere below the main diagonal, which
starts at the top left. The largest possible number of non-zero rows occurs
when the main diagonal itself contains no Os, and in that case the first ¢
rows are non-zero and the remaining rows are all Os.

Consideration of rank is useful when stating criteria for equations to
have particular sorts of solutions. We shall pursue this in Chapter 8.

In the meantime let us consider a first version of what we shall call the
Equivalence Theorem, which brings together, through the GE process, all
the ideas covered so far.
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GE process:
1 2 -1 1 2 -1
2 4 -21-1]0 0 0 (one non-zero row).
-1 =2 1 0 0 0
6.8 Illustration of the Equivalence Theorem.

1 2 3
(i) A=[1 1 2].
1 -1 1

The GE process leads to

1 2 3
[0 1 1].
0 0 1

From this we can tell that the rank of 4 is 3, that the columns of 4 forma LI list,and
that the process for finding the inverse of 4 will succeed, so A is invertible.

(ii) A=

[ SN —

The GE process leads to
1 1 1 07
0 1 0 -1
0 0 1 -1
o o 0 1l

Consequently the rank of A is 4, the columns of A form a LI list, and A is invertible.

1 3 —17
(iii) A= | =2 1 -51.

4 5 3]
The GE process leads to

1 3 -1
[0 1 —-1y.
0 0 0

Consequently the rank of A is 2 (not equal to 3), the columns of 4 form a list which is
LD (not LI), and the process for finding the inverse of A will fail, so 4 is not
invertible. Also the equation Ax =0 has infinitely many solutions, so all conditions
of the Equivalence Theorem fail.
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Theorem
Let A be a p x p matrix. The following are equivalent.
(i) A is invertible.
(ii) The rank of 4 is equal to p.
(i) The columns of A form a LI list.
(iv) The set of simultaneous equations which can be written Ax=0 has
no solution other than x=0.

The justification for this theorem is that in each of these situations the
GE process leads to a matrix with p non-zero rows. See Examples 6.8.

In Chapter 7 we shall introduce another equivalent condition, involving
determinants.

Summary

The definitions are given of linear dependence and linear independence of
lists of vectors. A method is given for testing linear dependence and
independence. The idea of rank is introduced, and the equivalence of
invertibility with conditions involving rank, linear independence and
solutions to equations is demonstrated, via the GE process.
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Exercises

Exercises

. Find numbers x and y such that

LIRS

. For each given list of vectors, find whether the third vector is a linear

combination of the first two.

CTHCD » moo
o (L] [a) 1))
w (S]] o))

TN

. Show that each of the following lists is linearly dependent, and in each

case find a linear combination of the given vectors which is equal to the
zero vector.

o (=D o (CFEHED
e (GHEH D

o 3 R
(31D

[‘ 1 5

. -2 1 3
@ ([ 2]
L. 8 L1 1

. Find, in each case below, whether the given list of vectors is linearly

dependent or independent.

oI = (3ED
o ([ e Lsl)
o (- CED
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[ 0 3 -2
o (LB
L—1 1 0
[ 1 3 1
o (G
L —1 7 5

1 -1 2 0
. 1 0 1 1
(vii) 2 |’ 1 1o
L1 —1 -2 0

5. Calculate the rank of each of the matrices given below.

3 6] [-1 03] [2 1] [1 0

-1 =2 [ 12 4 [3 1) |2 of

-2 1 3 1 -3 2 1 -2 1
1 -1, |s 1 3|, j1 1 3],

[ 4 0 9 5 4 12 4

i 3 -2 12 12

: 2,[1_1,[_1-2],

10 0 2 36

8 2 2 3 1 0 -2

ol Lt -1 -2 0 4

-1 1 21 [0 1 -1 1
ol, |2 o 1 1],

|
—_—— O e

..
—_ e e e W) e W R e
—_
|
()

3 -4 -4 -1 1 2 3

1 -1 2 07 1 -1 2 0 3

1 1 1 0 1 1 4

1 oy 2 1 0 2 )

Ll -1 -2 0 1 -1 =2 0 -2
[ —1 2 1 1 2 1 -1 2
0 1 2 -1 1 2 1 2
-1 1 -1 2y 3 1 -1 0
L —1 3 3 0 0 2 1 4

. Let x and y be 3-vectors. Then xy" is a 3 x 3 matrix which is singular (see
Chapter 5, Exercise 4). What is the rank of xy"? Try out some particular
examples to see what happens. Does this result hold for p-vectors, for
every p?
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Examples

Examples

Evaluation of 2 x 2 determinants.

=21-0=21.

=0—1=—1.

N O = O N W s O
TN OO = 3O W =

=0-0=0.
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Determinants

A 2 x 2 determinant is written
a b
c d

What this means is just the number ad —bc. Examples 7.1 show some
simple 2 x 2 determinants and their values. Determinants are not the same
thing as matrices. A determinant has a numerical (or algebraic) value. A
matrix is an array. However, it makes sense, given any 2 x 2 matrix A4, to
talk of the determinant of A, written det A.

a

If Az[a b] then detA= b=ad—bc.
c d c

d
The significance and usefulness of determinants will be more apparent
when we deal with 3 x 3 and larger determinants, but the reader will find
this expression ad — bc occurring previously in Example 5.8. Also it may be
instructive (as an exercise) to go through the details of the solution (for x
and y) of the simultaneous equations

ax+by=h

cx+dy= k}'

A 3 x 3 determinant is written

a, da, as

b, b, b;].

€, €y C3
What this means is

a1b26’3 +a2b3c1 +a3b102 —a1b302 —a2b103 —asbzcl.

Again, this is a number, calculated from the numbers in the given array. It
makes sense, therefore, to talk of the determinant of 4 where Aisa 3x3
matrix, with the obvious meaning.
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7.2 (i) Evaluate the determinant

1 23
0 1 2f.
1 0 3

Here let us use the first method, with an extended array.

1 2 3 1 2
0\1><2><0/1
1/0><3><1\0

The value is 3+4+0—-3-0-0,i.e. 4.
(ii) Evaluate the determinant

1 -2 -1
1 -1 -3,
2 -1 9
Array:
1 -2 —1 1 =2
NOX X S

1/_1><_3>< 1 \——l
2 -1 9 2 -1

Value is: —94+12+1-2-3—(—18),i.e. 17.

7.3 Evaluation of determinants using expansion by the first row.
() - _;—1“1 - (:z)’1 _31+( ), _1‘
2 -1 9 -1 9 2 9 2 -1
=(—12)+2(15)=(1)=17.
(i) (l) :i g 1 2 2+30 .
ii = —
10 3 0 3 3 10
=3-2(-2)+3(—-1)=4.
S i P P
iii = -
110 0 10 1 1
=0—1(—1)+0=1.
o o1 of-aft o Juf
iv = -
110 10 10 1 1

=0-2(0)+1(— )= —1.
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How are we to cope with this imposing formula? There are several ways.
Here is one way. Write down the given array, and then write the first and
second columns again, on the right.

\><></
/><><\

Add together the products of the numbers on the left-to-right arrows, and
subtract the products of the numbers on the right-to-left arrows. A quick
check with the definition above shows that we obtain the correct
expression. Example 7.2 shows this method in operation.

The second method is called expansion by a row or column, and it is the
key to the development of 4 x 4 and larger determinants so, although this
method may seem more complicated, it is important and should be
understood.

a, a, a
vz 0 b, bs by bs by b,
b, b, bij=a, —a, +a, .
C; €3 ¢ (3 ¢ €
¢, Cy C;

Notice the form of the right-hand side. Each entry in the first row is
multiplied with the determinant obtained by deleting the first row and the
column containing that particular entry. To see that this gives the correct
value for the determinant, we just have to multiply out the right-hand side
as
ay(byc3—bycy) —ay(bycy —bsey) +as(byc, —byey)

and compare with the original definition. When using this method, we must
be careful to remember the negative sign which appears in front of the
middle term. See Example 7.3.

There are similar expressions for a 3x 3 determinant in which the

coefficients are the entries in any of the rows or columns. We list these
explicitly below.

a, a a, a a, a
—b,[? +b,| Y Tl=by ' ¥ (second row).
¢y €3 ¢, C; ¢y ¢,
a, da, a, as a, a .
c —c,| ! +c 2l (third row).
b, byl Plb, by b, b,
b, b a, a a, a
a,| 2 =b,| 2 l4el? 7P| (first column).
€2 €3 €2 C3 b, b;
b, b; a, a, a, a
—a,| ! +b, -c, (second column).
€ €3 € €3 by b,
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74 Evaluation of determinants using expansion by a row or column.
1 1 1
. 1 1 1 1 1 1
Q) 2 4 -1 =1] ‘—(—1)' ‘+0‘ ‘
1 —1 0 4 -1 2 -1 2 4
=-5-3=-8.
(Expansion by the third row.)
2 1 1
1 1 2 1 2 1
(i) 1 0 -1 =(—1)| ‘+0' |—(—1)I l
1 3 2 3 2 1 2 13
=—(—1)+5=6.
(Expansion by the second row.)
3 0 1
-2 1 3 1 31
(iii) -2 -1 1 =0‘ |+(_1)| ._2l ,
2 > _4 2 -4 2 —4 -2 1
= —(—14)-2(5)=4.
(Expansion by the second column.)
) . .1 2. 0‘2 3‘“2 3‘
v = -
10 3 0 3 0 3 1 2
=3+1
=4,
(Expansion by the first column.)
75 (i) Show that interchanging rows in a 3 x 3 determinant changes the sign

of the value of the determinant.
We verify this by straight algebraic computation.

a, a, a

oz b, b, by b; b, b,

b, by, byi=a, —a; +a; s

c, € ¢, ¢ ¢,

¢, ¢y Cy 2 €3 1 C3 1 €2

b, b, b

vtz M b, by by by by b,

a, 4, az|=-—a +a, —ay .
c, ¢ ¢, €3 ¢ ¢y

¢, ¢ s 2 €3 1

(The second determinant is evaluated by the second row.)

Similar calculations demonstrate the result for other possible single interchanges
of rows.

(ii) Show that multiplying one row of a 3 x 3 determinant by a number k has the
effect of multiplying the value of the determinant by k.

Again, straight computation gives this result.

ay a; ds
a, a, a, a, a, a,
kb, kb, kby|=—kb, +kb, —kb;
¢, ¢ ¢, c ¢
¢ c, ¢, 2 €3 1 €3 1 €2
a, a; a;  as a, a;
=k{ —b, +b, —b,
¢ C3 ¢ C3 ¢ Cy
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b, b,

Cl C2

a, a, a, a,
b, b,
Again, justification of these is by multiplying out and comparing with the
definition. It is important to notice the pattern of signs. Each entry always
appears (as a coefficient) associated with a positive or negative sign, the
same in each of the above expressions. This pattern is easy to remember
from the array

—b, +c3 (third column).

¢y €3

+ - o+

Examples 7.4 give some further illustrations of evaluation of 3x3
determinants. Expansion by certain rows or columns can make the
calculation easier in particular cases, especially when some of the entries
are zeros.

Now let us try to connect these ideas with previous ideas. Recall the three
kinds of elementary row operation given in Chapter 1, which form the basis
of the GE process. How are determinants affected by these operations? We
find the answers for 3 x 3 determinants.

Rule
(i) Interchanging two rows in a determinant changes the sign of the
determinant.
(i) Multiplying one row of a determinant by a number k has the effect
of multiplying the determinant by k.
(iii) Adding a multiple of one row in a determinant to another row does
not change the value of the determinant.

Proofs: (1) and (ii) are quite straightforward. See Examples 7.5. The third
requires a little more discussion. Consider a particular case, as follows.

a, a; as
by +kcy by+kc, by+ke,

(51 &) €3
a, a a, a
=—(by+ke)| 2 |+ tke) P
€ C3 ¢ C3

a, a

—(b3+kcy) ! 2

1 C2
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a, a, das
b, b, by ‘

Ci €2 €3

=k

Similar calculations demonstrate the result when a multiplier is applied to
another row.

7.6 Show that a 3 x 3 determinant in which two rows are identical has value
zero.
Expansion by the other row gives the result:

a, 4a, d4a;
d, dj d; aj d;  a;
a, a, azj=c, 4 a —Cy 4 a +c;3 e a
¢, €5 C 2 4d;3 1 a3 1 92
=¢1(0) —¢,(0) +¢5(0)
=0.
a, a, a
o723 a, aj a, ai a, a,
by by bsj=-b, 4 a +b2a a —bsa a
a, a, a, 2 aj3 1 93 1 @
= _b1(0)+h2(0)_b3(0)

=0.
(And similarly when the second and third rows are identical.)

7.7 Evaluate the 4 x 4 determinant
2 0 1 -1
1 1 -1 0
0 3 1 3y
-2 1 -1 1
Expand by the first row, obtaining
1 -1 0 b1 —1 0
213 1 3 —0‘ 0 1 3
I -1 t -2 -1 1
1 10 1 1 -1
+110 3 3|—(—-1] O 3 1
-2 1 1 -2 I -1
_ 1 3+3 3 N 3 3 0 3
NS 11 =21

+<3. I -1 _‘ 1 1)

-2 -1y |-2 1
(the determinants being evaluated by the first row, the first row and
the second row respectively)

=2(44+0)+(0—-6)+(—-9-3)

= - 10.
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(12 (13 al asj al (12
="—bl +b2 -'bs
Ccy C ¢y €3 ¢y €
(12 a3 a (13 al (12
+k(“cl +62 ! —C3
€ C3 ¢ C3 ¢ €
a, a, a
_ bl b2 b3 +k(—cq(ayes —asey)
=10y D2 03
e ca +cy(ac3—ase,) —csac, —azey))
1 €2 C3
ay 4 d4as
= bl bz bs >
€y €y C3

since the expression in brackets is identically zero (work it out!). This
process works in exactly the same way for the other possible cases.
Incidentally, we have come across another result of interest in the course of
the above.

Rule
A determinant in which two rows are the same has value zero.

Proof: Notice that in the previous proof the expression in brackets is in fact
the expansion by the second row of the determinant

a; a4 a;
¢, €2 C3,
€, €y €3

and this is seen above to equal zero. Other possible cases work similarly.
See Examples 7.6.

We shall not pursue the detailed discussion of larger determinants. A
4 x 4 determinant is defined most easily by means of expansion by the first
row:

a, a, as a,

b, by b, by b by
bl b2 b3 b4 =al Cz 63 C4 *612 Cl 63 C4
4 C 4 C
1 €2 C3 Gy d, dy d, d, d, d,
dl d2 d3 d4

b, b, b, b, b, b,
+asje; €3 cal—agle, ¢ c3l.
dy d;, d, dy d, dy
See Example 7.7. Expansions by the other rows and by the columns
produce the same value, provided we remember the alternating pattern of
signs
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7.8 Evaluation of determinants of triangular matrices.
a b ¢ d e
(i) 0 d ej=a =adf. (Expanding by the first column.)
0 s
0 0 f
a, 4, a4z dy
. 0 b, by b, by by b,
(1) =a, |0 c¢3 c,| (by first column)
0 0 ¢35 ¢y 0 0 d
0 0 0 d, 4
=a,(bycsd,) (by part (i)
=a,b,cid,.

(1) Larger determinants yield corresponding results. The determinant of any
triangular matrix is equal to the product of the entries on the main diagonal. You
should be able to see why this happens. A proper proof would use the Principle of
Mathematical Induction. (We have dealt here with upper triangular matrices.
Similar arguments apply in the case of lower triangular matrices.)

7.9 Evaluation of determinants using the GE process.
1 3 -1

(1) 2 0 1.
1 1 4

Proceed with the GE process, noting the effect on the determinant of each row
operation performed.

1 3 -1 Leaves the determinant unchanged.
0 -6 3 2)-2x(1)

0 -2 5 (3)—(1

lﬁﬂ 3 -1 Divides the determinant by —6.

0 1 -3 2+=-6

0 -2 5

1 3 -1 Leaves the determinant unchanged.
0 -3

0 0 4 (3)+2x(2)

This last matrix is upper triangular, and has determinant equal to 4. Hence the
original determinant has value 4 x (—6), i.e. —24.

01 1 1
(ii) 1 0 1 1 )
1 1 01
1110
GE process as above:
1 0 1 1 { interchange Changes the sign of the determinant.
0 1 1 1 rows
1 1 0 1
1 1 1 0
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+ - + -
- 4+ - +
+ - + -
-+ - +
Larger determinants are defined similarly.

The above rules hold for determinants of all sizes. Indeed, corresponding
results also hold for columns and column operations in all determinants,
but we shall not go into the details of these. (Elementary column operations
are exactly analogous to elementary row operations.)

It is apparent that evaluation of large determinants will be a lengthy
business. The results of this chapter can be used to provide a short cut,
however. If we apply the standard GE process, keeping track of all the row
operations used, we end up with a triangular matrix, whose determinant is
a multiple of the given determinant. Evaluation of determinants of
triangular matrices is a simple matter (see Example 7.8), so here is another
use for our GE process. Some determinants are evaluated by this procedure
in Examples 7.9.

Now recall the Equivalence Theorem from Chapter 6. Four different sets
of circumstances led to the GE process applied to a p x p matrix ending
with a matrix with p non-zero rows. The argument above demonstrates
that in such a case the p x p matrix concerned must have a non-zero
determinant. The upper triangular matrix resulting from the GE process
applied to a p x p matrix has determinant zero if and only if its last row
consists entirely of Os, in which case it has fewer than p non-zero rows.

Here then is the complete Equivalence Theorem.

Theorem
Let A be a px p matrix. The following are equivalent.
(1) A 1is invertible.
(1) The rank of 4 is equal to p.
(1) The columns of A form a LI list.
(iv) The set of simultaneous equations which can be written 4x=0 has
no solution other than x=0.
(v) (This is the new part.) The determinant of 4 is non-zero.

We end this chapter with some new notions, which are developed in
further study of linear algebra (but not in this book).

In the expansion of a determinant by a row or column, each entry of the
chosen row or column is multiplied by a signed determinant of the next
smaller size. This signed determinant is called the cofactor of that particular
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Examples

1 0 1 1 Determinant unchanged
0 1 1 1

0 1 -1 0 3)-()

0 1 0 -1 @9-(

1 0 1 1 Determinant unchanged.
0 1 1 1

0 0 -2 -1 (3)-()

0 0 -1 -2 @-(2)

1 0 1 1 Divides the determinant by —2.
0 1 1 1

0 0 1 i 3)+-2

0 0 -1 =2

1 0 1 1 Determinant unchanged.
0 1 1 1

0 0 1 4

0 0 0 -3 @D+

This last matrix has determinant equal to —3. Hence the original determinant has
value (—3) x (—2), i.e. 3.

7.10

So

Find adj A, where

2 1 1
A= | -1 1 0].
1 -1 1

10 -1 0
Au=|_y 4=t A=y =t
-1 1 11
a=|" _1‘=0, An=-|_, =2
2 1 1
A= =1, Ayy=— =3,

22 1 1‘ 23 -1
11 2 1
A31—1 0=—1, /‘132—__1 0'—’_1,
2 1

Ay, Ay Ay 1 -2 -1
adjd=|4,, A, A, |=|1 1 -1].

0 3 3
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entry. We illustrate this in the 3 x 3 case, but the following ideas apply to
determinants of any size. In the determinant

ay 4a, as
bl bZ b3 +
€y €3 €3

the cofactor of g, is
b, bs
€2 O3

>

the cofactor of a, is
by by

€y €3

’

and so on. If we change notation to a double suffix and let
a1y Ag2 Ay3
A= fay ay; ax |,
a3y d3; Aa3;3
then there is a convenient notation for cofactors. The cofactor of q;; is
denoted by A;;. For example:

Az Q33 azy 4dszs
A= and 4,,=-| .

dz; d33 a3y dsz;

In this notation, then, we can write

det A=ay,A;; +ay,4;,+a;;3A4;3,
which is the expansion by the first row, and similarly for expansions by the
other rows and the columns. Note that the negative signs are incorporated
in the cofactors, so the determinant is represented in this way as a sum of
terms.

The adjoint matrix of A (written adj A) is defined as follows. The (i, j)-
entry of adj 4is A;;. Note the order of the suffixes. To obtain adj 4 from A4,
replace each entry a;; of 4 by its own cofactor 4;;, and then transpose the
resulting matrix. This yields adj A. See Example 7.10. This process is
impossibly long in practice, even for matrices as small as 3 x 3, so the
significance of the adjoint matrix is mainly theoretical. We can write down
one (perhaps surprising) result, however.

Theorem
If A4 is an invertible matrix, then

1 .
AAI:detAadJ A.
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7.11 Show that if A is an invertible 3 x 3 matrix then
A" '=1/(detA)adj A.
Let A=[a;;]3 3. The adjoint of A is the transposed matrix of cofactors, so the
(k,j)-entry in adj A is Aj. Hence the (i, j)-entry in the product A(adj A) is
3

Y apAy, i€ ayA; tapdptasA;, (%)
k=1

Now if j=i then this is equal to

i Aiy Fap A+ a3 A,
which is the value of det 4 (expanded by the ith row). So every entry of A(adj A) on
the main diagonal is det A. Moreover, if j # i, then the (i, j)-entry in A(adj 4) is zero.
This is because the expression (*) then is in effect the expansion of a determinant in
which two rows are identical. For example, if i=2 and j=1:

|
a3 4; Q3

an Ay +a3Ad;;tasd;s=la,, ay a3 |=0.
azyp Q32 Q433
Hence all entries in A(adj A) which are off the main diagonal are zero. So

det4 0 0
Aadj)=| 0 detd 0]=mmn
0 0 detd

It follows that
A(l/(det A)adj A)=1.
(The supposition that A is invertible ensures that det 4#0.)
Consequently (see Example 5.10), we have the required result:
A~ '=1/(det A)adj A.
The above argument can be extended to deal with the case of a p x p matrix, for
any value of p.
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Proof: See Example 7.11. See also Example 5.8.

Finally, an important property of determinants. We omit the proof,
which is not easy. The interested reader may find a proof in the book by
Kolman. (A list of books for further reading is given on page 146.)

Theorem
If A and B are p x p matrices, then

det(4B)= (det A)(det B).

Summary

Definitions are given of 2x 2 and 3 x 3 determinants, and methods are
described for evaluating such determinants. It is shown how larger
determinants can be defined and evaluated. The effects on determinants of
elementary row operations are shown. The application of the GE process
to evaluating determinants is demonstrated, and it is used to show that a
square matrix is invertible if and only if it has a non-zero determinant.
Cofactors and the adjoint matrix are defined. The theorem on the
determinant of a product of matrices is stated.

Exercises

1. Evaluate the following determinants.

2 1 -1 =2 B -5 @4 -2
3 =2 ‘—3 —4" o 1" o 0\’
4 20 -2 -1 3 =2 o 1
6 —4 .—3 2{’ 2 '3 —5.'

2. Evaluate the following determinants (by any of the procedures described
in the text for 3 x 3 determinants).

011 3 1 3 0 0 1

10 1], [-2 -1 0], |-2 1 2],

1 10 1 1 1 1 4 -6

1 23 4 5 1 1 1 -1

4 5 6}, |1 1 -1/, |4 5 1y,

7 8 9 3 2 2 3 2 2

2 4 -6 3 0 3 2 =2 3
-1 =2 3L, |1 1 I, |1 0 41.
1 1 4 -2 0 -2 0 1 1
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Exercises

. Evaluate the following 4 x 4 determinants.

2 0 1 -1 0 3 1 =2

-1 1 0 3 2 2 =2 1
0 2 1 1’ 1 0 1 o
3 3 I -1 0 2 =3 3

. Let A be a 3 x 3 skew-symmetric matrix. Prove that det A=0. Is this true

for all skew-symmetric matrices?

. Using the fact that, for any square matrices A and B of the same size,

det(AB)=(det A)(det B),show thatifeither A or Bissingular (or both are)
then AB is singular. Show also that if A is invertible then det(4™!)=
1/(det A).

. Let 4 be a 3 x 3 matrix, and let k be any real number. Show that

det(kA)=k3(det A).

. Let Abea square matrix such that 4*=0. Show that det A=0,50 that 4 is

singular. Extend this to show that every square matrix 4 which satisfies
A"=0, for some n, is singular.

. Evaluate det 4 and adj A, where

0 1 1
A=|1 0 1]
1 10

Check your answers by evaluating the product A(adj A).
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Examples

8.1 By finding the ranks of appropriate matrices, decide whether the following
set of equations has any solutions.

X;+3x,+2x3= 3
—X;+ X,+2x3=-3
2x,+4x, —2x;= 10.
1 3 2 1 3 2 3
A= | -1 1 2|, [Ain]=] -1 1 2 -31.
2 4 -2 2 4 -2 10
The GE process yields (respectively)

1 3 2 1 3 2 3
[0 1 1] 0 1 1 0]
0 0 1 0 0 1 -1
The rank of 4 is 3, the rank of [A'h] is 3, so there do exist solutions.

8.2 Examples of ranks of augmented matrices.

0 1 2 =3
(i) [4ik]=] 1 -1 0o -2].
3 -2 2 1
The GE process leads to

1 -1 0 -2
0 1 2 —3],
0 0 0 1

so the rank of 4 is 2 and the rank of [A}A] is 3.

(1) (Arising from a set of four equations in three unknowns.)
1 -1 1 4
0 2 2 6
2 3 -1 8

-1 2 0 -1

The GE process leads to

[4i4]=

1 -1 1 4
0o 1 1 3
o o 1 )
0 0 0 0

so the rank of A is 3 and the rank of [A4}4] is 3.
(iii) (Arising from a set of four equations in three unknowns.)

1 1 1 1
3 4 -1 =2
-1 0 2 1
0 2 1 0
The GE process leads to
1 1 1 1
0 1 -4 -5
0 0 1 1
0 0 0 1

[4iA])=
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Solutions to simultaneous
equations 2

We have developed ideas since Chapter 2 which are applicable to solving
simultaneous linear equations, so let us reconsider our methods in the light
of these ideas. Recall that a set of p equations in g unknowns can be written
in the form Ax=h, where A is the p x ¢ matrix of coefficients, x is the g¢-
vector of unknowns and A is the p-vector of the right-hand sides of the
equations. Recall also that there can be three possible situations: no
solution, a unique solution or infinitely many solutions.

Example 8.1 illustrates the criterion for deciding whether there are any
solutions. Let [A}k] denote the augmented matrix obtained by adding h as
an extra column to A ([A4}A] is the matrix on which we carry out the GE
process). As we saw in Chapter 2, the equations are inconsistent if and only
if the last non-zerc row (after the GE process) consists entirely of Os except
for the last entry. Consider what this means with regard to the ranks of the
matrices A and [ A}k]. The GE process applied to [ 4}A] is identical to the
GE process applied to A, as far as the first ¢ columns are concerned. In the
above situation, then, the rank of A4 is less than the rank of [ 4} 4], since the
last non-zero row after the GE process on [ A{h] corresponds to a row of 0s
in the matrix obtained from A by the GE process. We therefore have:

Rule
The equation Ax= h has a solution if and only if the rank of [ A} k] is the
same as the rank of A.

Examples 8.2 provide illustration of the different cases which arise.

Notice the special case of homogeneous simultaneous equations, that is,
the case when A=0. As we observed before, such a set of equations must be
consistent, because a solution is obtained by taking every unknown to be
zero. A moment’s thought should convince the reader that here the rank of
[Aih] is bound to be the same as the rank of A.
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Here the rank of 4is 3 and the rank of [ A}&] is 4, so the set of equations would have
been inconsistent.

83 Illustrations of the equation Ax=h, with A singular.

1 0 3 5
(i) [4ih]= | -2 5 -1 o].
-1 4 1 4
The GE process applied to A:

[ 1 0 3 1 03
-2 5 —=1]-1]0 1 1 (A is singular).
-1 4 1 0 00
The GE process applied to [A}4]:
[ 1 0 3 5 1 03 5
-2 5. -1 o0]-]0 11 2].
-1 4 1 4 0 0 01
In this case there would be no solutions, since the ranks of 4 and [ A}#] are unequal.

1 -1 3 -4
(i1) [4in]=]2 3 1 7] .

4 3 5 5
The GE process applied to A:

1 -1 3 1 -1 3
2 3 l] - [0 1 -1 (A is singular).

[ 4 3 5 0o O 0
The GE process applied to [4}4]:

1 —1 3 —-4 1 -1 3 -4
2 3 1 7 —»[0 1 -1 3].
L4 3 5 5 0 0 0 0

In this case there would be infinitely many solutions. The ranks of A and of [A4}#]
are the same, but less than 3.

84 Solution involving two parameters.

1 -1 3 -2
[4ih]= 2 -2 6 -—4].
-1 1 32
The GE process applied to [A}4] leads to

1 -1 3 =2
0 0 0 0].
0 0 0 0

X, -2
To solve the matrix equation [ X, ] = [—4 ] we have, in effect, only the single
X3 2
equation
Xy =Xy +3x3=—2.
Introduce parameters x, =t and x5 =u, and substitute to obtain x; =t —3u—2 (the
method of Chapter 2).
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Next, given a set of equations which are known to have a solution, what
criterion determines whether there is a unique solution or infinitely many?
Part of the answer is very easy to see.

Rule
If A is an invertible matrix then the equation Ax= A has a unique solution.
(The solution is x=A4"'h.)

The other part of the answer 1s the converse of this, namely:

Rule
If A is a singular matrix then the equation Ax=hA (if it has solutions at all)
has infinitely many solutions.

Proof: See Examples 8.3 forillustration. We must consider the GE process
and the process for inverting a matrix. If 4 is singular, then the GE process
applied to A yields a matrix whose last row consists entirely of 0s. The GE
process applied to [ A} k] may have last row all Os or may havelast row all Os
except for the last entry. In the latter case there are no solutions, and in the
former case we have to look at the last non-zero row in order to decide
whether there are no solutions, or infinitely many solutions. See the rule
given in Chapter 2.

Example 8.4 shows a particularly trivial way in which there can be
infinitely many solutions. In that case there are two parameters in the
solution. Example 8.5 (in which the matrix is 4 x 4) shows that two
parameters can arise in the solution of non-trivial cases also. Can you
suggest a 4 x4 set of equations in which the set of solutions has three
parameters? All these are examples of a general rule.

Rule
If Aisa p x p matrix whose rank is r, and A is a p-vector, then the equation
Ax = hhas solutions provided that the rank of [A4;h] is also equal to r, and
in that case the number of parameters needed to specify the solutions is
p—r. (This covers the case when r=p, 4 is invertible and there is a unique
solution which requires no parameters.)

A proof of this rule is beyond the scope of this book, but the reader
should be able to see intuitively why it happens by visualising the possible
outcomes of the GE process.

Rule

If Ais a p x g matrix with p>q,and his a p-vector, then the equation Ax=h
has a unique solution if and only if the rank of 4 and the rank of [A4}k] are
both equal to ¢, the number of columns of A4.
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85 Solution involving two parameters.

1 2 1 0 1

. 1 -1 -2 3 =2
(4ifl=1 5, | 3 _5 3
0 2 2 -2 2

The GE process applied to [A}h] leads to
1 2 1 0 1
0 1 1 -1 1
0 0 0 0 0
0 0 0 0 0
Solving equations in this case would entail solving two cquations in four unknowns:
Xy +2x,+ X3 =1
Xy +x3—Xa= L.
Introduce parameters x5 =t, and x, =u, and substitute to obtain x,=1—t—u and
x;=—14+t-2u.
8.6 Uniqueness of solutions when A is not square. Listed below are four
possible results of applying the GE process (to the augmented matrix)
where A4 is a 4 x 3 matrix and A is a 4-vector.

1 -1 2 17
. 0 1 3 -3
® o 0o 1 -1
Lo 0o o ol
Here the ranks of 4 and of [4:4] are both 3, and there is a unique solution.
1 0 1 =37
.. 0 1 1 0
(i) o 0o 1 2
L 0 0 0 14

Here the ranks of A and of [4}4] are different, so there are no solutions.

[ 1 1 =2 27
0 1 1 3
(i) o 0 o0 I
L0 0 0 0
Here the ranks of A and of [4}4] are different, so there are no solutions.
[ 1 0 3 -27
(iv) 0 o0 1 2
0 o0 0 o0
L0 0 0 o0

Here the ranks of 4 and of [4}4] are both 2, so there are infinitely many solutions.
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To see this, consider what must be the result of the GE process if there is
to be a unique solution. The first g rows of the matrix must have 1s in the
(L, 1)-, (2,2)-, ..., (q,9)-places and Os below this diagonal, and all
subsequent rows must consist of Os only. This is just the situation when
both A and [A}{h] have rank equal to g. Example 8.6 illustrates this.

Notice that if A is a px ¢ matrix with p<gq, then the equation Ax=h
cannot have a unique solution.

Summary

Rules are given and discussed regarding the solution of equations of the
form Ax=h. These involve the rank of A4 and the rank of the augmented
matrix [A4}h], and whether (in the case where 4 is a square matrix) A4 is
invertible or singular.

Exercises

By considering the ranks of the matrix of coefficients and the augmented
matrix, decide in each case below whether the given set of equations is
consistent or not and, if it is, whether there is a unique solution.

(i) 2x— y=1 (i) 3x—6y=S5
x+3y=11. x—=2y=1,

(i) —4x+3y=0 (iv) x+2y=0

12x —9y=0. 3x—4y=0.

(V)  x;— Xp+2x3= 3 (vi) 2x,+ x3=0
2x; —3x,— x3=-8 X, —3x,+2x,=0
2x, 4+ x,+ x3= 3. 2x,+ x,— x3=0.

(vi)) —x;+2x,—4x,= 1 (viii) X, +2x,4+3x,=0
2x; +3x,4+ x3=-2 X, — Xx;—3x3;=0

X, — Xp+3x3= 2. —3x;+ x,—5x,=0.

(ix) 2x;+ x,+5x,=3 (x) x;—=2x,— x3=2

—x, +2x, =1 X+ x3=0

X, +2x,+4x;=3. X, + x3=2

X, +3x, +4x,=3.

(xi) x;—2x,— x,=0 (xii) Xy +x,—x3= 8§
X+ x,=0 —Xx + X+ x3= 2

X, + x3=0 X, —X;+x3= 0

X1+ 3x,+4x3;=0. Xy +x,+x;=10.
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Vectors in geometry

Linear algebra and geometry are fundamentally related in a way which can
be useful in the study of either topic. Ideas from each can provide helpful
insights in the other.

The basic idea is that a column vector may be used to represent the
position of a point in relation to another point, when coordinate axes are
given. This applies in both two-dimensional geometry and three-
dimensional geometry, but to start with it will be easier to think of the two-
dimensional case. Let P and Q be two (distinct) points, and let 0X and OY
be given coordinate axes. Draw through P a straight line parallel to 0X
and through Q a straight line parallel to OY, and let these lines meet at N, as
shown.

[+

g
P

The position of Q relative to P can now be specified by a pair of numbers
determined by the lengths and directions of the lines PN and NQ. The sizes
of the numbers are the lengths of the lines. The signs of the numbers depend
on whether the directions (P to N and N to Q) are the same as or opposite to
the directions of the coordinate axes OX and OY respectively.

We can thus associate with the (ordered) pair of points P,Q a column

vector [Z], where a and b are the two numbers determined by the above



88 Examples

92
(2]
[} p/ 0>
]
P| PS
YA
Q4
Q )?
3
— 2 — 21 — 2 — 2
P1Q1= ’ Pz 2= ’ P3Q3= , P4Q4= .
1 1 1 1
93
170
) \‘\ o
N P+
Ny Ny
YA
o5}

a X

3
Let 01=[1:|.

—)
Then @, is the only point such that PQ,=v;,.

-3
Let 02=[ 2]'

—)
Then Q, is the only point such that PQ,=v,.

-2
Let v3=[_2:|.

—)
Then Q; is the only point such that PQ;=v,.
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process. The notation ITé is used for this. Examples 9.1 give several pairs of
points and their associated column vectors, illustrating the way in which
negative numbers can arise. Note the special cases given in Examples
9.1(iv) and (v).

Example 9.2 shows clearly that for any given column vector, many
different pairs of points will be associated with it in this way. The diagram
shows the properties that the lines P,Q,, P,Q,, P,Q,, and P,Q, have
which cause this. They are parallel, they have the same (not opposite)
directions, and they have equal lengths.

A column vector is associated with a direction and a length, as we have
just seen. Thus, given a (non-zero) column vector v and a point P, there will

always be one and only one point Q such that ITézv. Example 9.3
illustrates this.
To summarise: N
1. Given any points P and @, there is a unique column vector PQ
which represents the position of Q relative to P.
2. Given any non-zero column vector v, there are infinitely many

_)
pairs of points P,Q such that PQ=v.
3. Given any point P and any non-zero column vector v, there is a

_)
unique point Q such that PQ=v.
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94

-

N
/'
/ Q ~
Vv Ny
Yk //
P.
. N, N,

o |x

— —
Here we treat only the case when the components of the vectors PQ and QR are all
positive. If any are negative, the diagrams will be different and the argument will
have to be modified slightly. Let

o] e 3]
a, b,

Then |PN,|=a,, |[N,Q|=a,, |@N,|=b,, [N,R|=b,. So |PN3|=|PN,|+|N N;|=
|PN1|+IQN2|=‘11 +b,, and |N3R|=|N3N2|+|N2R|=|N1Q|+|N2R|=az+b2~

9.5

PQRS is a parallelogram. Hence QR and PS have the same direction and the same
_)

length. Consequently they are associated with the same column vector, i.e. QR =

- . - = o . . - —

PS. By the Triangle Law, PQ + QR = PR, so it follows immediately that PQ + PS=

_)

PR.
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Where is the advantage in this? It is in the way that addition of column
vectors corresponds with a geometrical operation. Let P, Q and R be three
distinct points, and let

o] o]

a; b,

— [g,+b a b — =

PR= 1 1 — 1 1 =P + R
I:a2+b2:| l:az]+|:b2] e+e

This rule is called the Triangle Law, and is of fundamental importance in
vector geometry. See Example 9.4 for a partial justification for it.

Then

Rule (The Triangle Law)
If PQR is a triangle then

— = —
PQ+QR=PR.
The Triangle Law is sometimes expressed in a different form:

Rule (The Parallelogram Law)
If PORS is a parallelogram then

— =5 —
PQ +PS=PR.

See Example 9.5 for a justification of this, using the Triangle Law.
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9.6

U]

(i)

Position vectors.

AR,

(i)

YA

A(=1,-2)

) Lo}

AG-D
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This relationship between algebraic vectors and directed lines is
dependent on having some origin and coordinate axes, but it is important
to realise that these laws which we have found are true irrespective of the
choice of coordinate axes. We shall develop ideas and techniques which
likewise are geometrical in character but which use the algebra of vectors in
a convenient way without the necessity to refer to particular coordinate
axes.

Before we proceed, we must take note of an important special case of all
this, namely when the reference point (the first of the pair) is the origin.

hN

2 R

o X

The construction which yields the components of the column vector 04
invo_)lves thelines ON and N 4. But now it is easy to see that the components
of OA are just the coordinates of A. See Example 9.6 for particular cases,

ﬁ .
including cases with negative coordinates. The vector OA4 is called the

position vector of A. It is customarily denoted by r,. Every point has a
uniquely determined position vector.
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9.7

Produce QP back so that |PR|=|PQ|. Then the triangles PN,R and PN,Q are
congruent, so PN, and PN, have equal lengths and opposite directions. The
column vector associated with PR is thus the negative of the column vector

-5 —

associated with PQ. Notice that PQ + PR=0, which can be thought of as an
extension of the Parallelogram Law to an extreme case. (The parallelogram is
flattened.)

9.8 Multiplication by a scalar.

P

— —
Here PR=4 PQ.

—}
Here PR= 4 PQ.
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Rules
(i) The zero vector cannot be associated with any pair of distinct
points. Nevertheless we can think of 0 as the position vector of the
origin itself. - N
(ii) If vis a non-zero column vector, and PQ = v, then —v= PR, where
R is the point obtained by producing the line QP so that PR and
PQ have the same length. See Example 9.7.
(iii) If v is any non-zero column vector and k is any positive number,

and if I;é =v, then kv= ﬁ , where R is the point such that PQ and
PR have the same qirection and the length of PR is k times the
length of PQ. Multiplying a vector by a negative number reverses
the direction (as well as changing the length). See Example 9.8.
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99 The difference of two vectors. Let PAB be a triangle.

By the Triangle Law,

- = —

PA+ AB=PB.
Hence N

AB=PB—PA.

Notice that, in the parallelogram PACB, one diagonal (PC) represents the sum
- — . - —
PA+ PB, and the other diagonal (AB) represents the difference PB—PA. Of course

the second diagonal may be taken in the opposite direction: BA=PA—PB.

9.10 Illustrations of the ratio in which a point divides a line segment. In each
case P divides 4B in the given ratio.

(i) Ratio 1:1. " ~ *

A P B
(i) Ratio 3:1. A P 3
(iii) Ratio 2:3. . ‘
A P B
(iv) Ratio —1:5. P 1 3
(v) Ratio 4:— 1. > .
A B P



9. Vectors in geometry 97

Subtraction of vectors also has an important geometrical interpretation.
For a diagram, see Example 9.9. In a triangle PAB,

- o5 -
AB=PB-PA.

This is a consequence of the Triangle Law. In particular, if A and B are any

two distinct points then (taking the origin O as the point P) we have

- 2 -
AB=0OB—-0A=rz—r,.
We shall use this repeatedly.

As mentioned earlier, all of these ideas apply equally well in three
dimensions, where points have three coordinates and the vectors
associated with directed lines have three components. One of the best
features of this subject is the way in which the algebraic properties of 2-
vectors and 3-vectors (which are substantially the same) can be used in the
substantially different geometrical situations of two and three dimensions.

As an application of algebraic vector methods in geometry we shall
derive the Section Formula. Consider a line segment AB. A point P on AB
(possibly produced) divides AB in the ratio m:n (with m and n both positive)
if|AP|/|PB|=m/n. Here |AP| and |PB| denote the lengths of the lines AP and
PB respectively. Extending this idea, we say that P divides AB in the ratio
—m:n (with m and n both positive) if AP and PB have opposite directions
and |AP|/|PB|=m/n. See Examples 9.10 for illustrations of these.



98 Examples

9.11 Proof of the Section Formula (the case with m and n positive).
A
P
Ta
B
rs
o

Let P divide AB in the ratio m:n, with m>0 and n>0. Then

— —
AP=(m/n) PB.
Now
— —
AP=rp—r, and PB=rg—rp,
S0
n(rp—ry)=mirg—rp).
From this we obtain
nrp—nr,—mrg+mrp=0,
(m+n)rp=nr,+mrg,
rp=m (nry+mrp).
The cases where m and n have opposite signs require separate proofs, but the
ideas are the same.

9.12 The medians of a triangle are concurrent at the centroid of the triangle.
Let ABC be a triangle, and let L, M and N be the midpoints of the sides
BC, CA and AB, respectively. Let A, Band C have position vectors a,  and ¢. Then

L has position vector 1(b+c),
M has position vector i(c+4), and
N has position vector 1(a+b).
The point which divides AL in the ratio 2:1 has position vector

(2+1)(1xa+2x§(b+c)), ie Ya+d+o).

The point which divides BM in the ratio 2:1 has position vector
1

2+1)

The point which divides CN in the ratio 2:1 has position vector

(Ixb+2x¥c+a), ie. Ya+b+o).

L 1 2xi(a+b), ie. Ya+b+
m( xc+2x3a+b), ie. 4(a ).

Hence the point with position vector 4(a+ b+ ¢) lies on all three medians. This is the
centroid of the triangle.
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Rule
Let P divide AB in the ratio m:n (with n#0 and m+n#0). Then

¥p= nr,+mrg).
P m+n( A )

See Example 9.11 for a proof.

An important special case of the Section Formula is when P is the
midpoint of AB. In that case

re=3%(rs+rs).

The Section Formula may be used to give a convenient proof of a simple
geometrical theorem: the medians of a triangle are concurrent at a point
which trisects each median. A median of a triangle is a line which joins a
vertex of the triangle to the midpoint of the opposite side. Let ABC be any
triangle, and let @, b and ¢ be position vectors.of 4, B and C relative to
some fixed origin. See Example 9.12. Let L, M and N be the midpoints of
BC, CA and AB respectively. Then

— — —

OL=4(b+c), OM=%(c+a), ON=4(a+b).
The Section Formula may now be used to find the position vectors of the
points which divide AL, BM and CN respectively each in the ratio 2:1. It
turns out to be the same point, which must therefore lie on all three
medians. This point is called the centroid of the triangle ABC. It has
position vector $(a+ b+ ¢).

This result has been demonstrated using vectors in a geometrical style.
The link with algebra has not been explicit, except in the algebraic
operations on the vectors. Consequently we worked without reference to
any particular coordinate system and obtained a purely geometrical result.
These ideas can be taken considerably further, but we shall return now to
the link with algebra, via coordinates.
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913 Components of a vector in the directions of the coordinate axes.

Z

N

x— L

P has coordinates (x,y,z). Construct a rectangular solid figure by drawing
perpendiculars from P to the three coordinate planes, and then to the coordinate
axes from the feet of these perpendiculars. For example, PQ and then QL and QM,
asshown in the diagram. The picture has been simplified by assuming that x, yand z
are all positive. Our arguments work also if any or all of them are negative. You
should try to visualise the various possible configurations.
|OL|=x, |OM|=y, |ON|=z.

So

— — —

OL=xi, OM=yf, ON-=zk.

Now O—I). + OX/I) = O—é , by the Parallelogram Law. Also OQPN is a parallelogram (it
) - - -
is a rectangle), so OQ + ON =OP. Hence

- = > =
OP=0L+OM +ON =xi+yj+zk.

9.14 Examples of unit vectors.

1°
1

() Let a= [2] . Then —a=

1 la|

since |a|=,/1+4+1=\/6.

2
1
(i) Let b= [ 2] . Then — b=
-1 L

since |b|=/4+4+1=3.

AR

re—] |

W= W Wi

Then |d=/75+0+48=1.

Thus ¢ is already a unit vector.

(ii) Let c=

wip O uvlw
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Consider three dimensions. A point P(x, y, z) has position vector

2

In particular:
the points L(1,0,0), M(0, 1,0) and N(0, 0, 1) have position vectors

HRHEH

respectively.
These three vectors are denoted respectively by i, jand k. Note that they are
represented by directed lines OL, OM and ON in the directions of the
coordinate axes. Notice also that

HRANRRE
(i

=xi+ yj+zk.
The vectors i, jand k are known as standard basis vectors. Every vector can
be written (uniquely) as a sum of multiples of these, as above. The numbers
x, y and z are called the components of the vector in the directions of the
coordinate axes. See Example 9.13.

It is clear what should be meant by the length of a vector: the length of
any line segment which represents it. Each of i, j and k above has length
equal to 1. A unit vector is a vector whose length is equal to 1. The length of
an algebraic vector

|

is (by definition) equal to . /x2 + y? + z2, i.e. the length of the line O P, where
P is the point with coordinates (x, y, z). Given any non-zero vector a we can
always find a unit vector in the same direction as a. If we denote the length

of a by |a| then (1/|a])a is a unit vector in the direction of a. See Example
9.14.

Summary

The way in which vectors are represented as directed line segments is
explained, and algebraic operations on vectors are interpreted
geometrically. The Section Formula is derived and used. The standard
basis vectors i, j and k are defined. The length of a vector (in three
dimensions) is defined, and the notion of a unit vector is introduced.
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Exercises

Exercises

. Let ABCDEF be a regular hexagon whose centre is at the origin. Let A
and B have position vectors @ and b. Find the position vectors of C, D, E
and F in terms of a and 5.

. Let ABCD be a parallelogram, and let a, b, ¢ and d be the position vectors
of A, B, C and D respectively. Show that a+c=5b+4d.

. Let L, M and N be the midpoints of BC, CA and AB respectively, and let
O be any fixed origin. Show that

N T e T e
(1) %+O§)+O§)=OL+OM+ON, and
(i) AL+ BM+CN=0.

. Let A,, A,, ..., A, be any points in three dimensions. Show that

—_ — —_— >
AyAy+ A Ay + + Ay A+ A A, =0.

_)
5. In each case below, write down the 3-vector AB, where 4 and B are points

with the given coordinates.

(i) A(0,0,0), B2, —1,3).
i) A2, —-1,3), B(0,0,0).
(i) A(3,4,1), B(1,2, —-1).
(iv) A(0,1,-1), B0, —1,0).
v) AQ2,2,2), B(3,2,1).

. In each case below, find the position vector of the point which divides the
line segment AB in the given ratio.
i) A(1,1,3), B(—1,1,5), ratio 1:1.
(i) A(-2,-1,1), B(3,2,2), ratio 2: —1.
(iii) A(0,0,0), B(11,11,11), ratio 6:5.

(iv) AQ(3, -1, -2), B(10, —8,12), ratio 9:-2.

v) A@2,1, -1), B(-2, —1,1), ratio —2:3.

Also in each case draw a rough diagram to indicate the relative positions
of the three points.

7. Let OABC be a parallelogram as shown, and let D divide 0 A in the ratio

m:n (where ns 0 and m+ n#0). Prove by vector methods that DC and OB
intersect at a point P which divides each line in the ratio m:(m+n).
B
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8. Let OAB be a triangle as shown. The midpoint of OA is M, P is the point
which divides BM in the ratio 3:2, and § is the point where OP produced
meets BA. Prove, using vector methods, that § divides BA in the ratio 3:4.

B

(0] M A

9. In each case below, find a unit vector in the same direction as the given
vector.

1 2 1 2
(i) of. G |2])]. Gi)y | -2f. v)] 2
-1 1 -1 2

10. Let @and b be non-zero vectors. Prove that |a+ b| =|a| + |b] if and only if a
and b have the same (or opposite) directions.

11. Let A and B be points with position vectors @ and b respectively (with @+ 0
and b30). Show that |a|b and |b|a are vectors with the same length, and
deduce that the direction of the internal bisector of the angle 40B is given
by the vector |a|b+ |bla.
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Examples

10.1 Vector equation of a straight line.
(i) Given two points 4 and B with position vectors a and b respectively,

P

(4]
rp=a+tb—a) (teR).

(ii) Given one point A with position vector 4, and a vector v in the direction of
the line.

o

rp=a+tv (teR).



10
Straight lines and planes

In three dimensions a straight line may be specified by either
(i) two distinct points on it, or
(ii) a point on it and its direction.
These give rise to the vector form of equation for a line as follows. For
diagrams, see Example 10.1. First, given points A and B, with position
vectors a and b, let P be any point on the straight line. The Triangle Law
gives
— -
rp=0A+ AP,

— —

Now AP is in the same direction as (or in the opposite direction to) AB.

- . — — - —
Hence AP is a multiple of AB, say AP=t AB. We know that 0A=a and
_»
AB=b—a, so

rr=a+tb—a). (1)
Second, given a point A with position vector a, and a direction, say the

direction specified by the vector v, let P be any point on the straight line.
Then

- —
rr=0A+ AP, as above,

- . -
but here AP is a multiple of v, say AP=tv. Hence
rp=a-+te. (2)
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10.2 To find parametric equations for given straight lines.
(i) Line through A(2;3, —1) and B(3, 1, 3).

2 3 1
a= 3|1, b=|1], so b—a= [—2 .
L —1 3 4

An equation for the line is

x 7 2 1
[y = [ 3] +1 [—2] (teR).
z -1 4

[n terms of coordinates, this becomes
x=2+t, y=3-2t, z=—1+4t (teR).
(i) Line through A(—2,5, 1) in the direction of the vector

r 1
v= —l].
L 2
An equation for the line is
x ) -2 1
[y =[ S|+t |-—1 (teR).
z 1 2

In terms of coordinates, this becomes
x==2+t, y=5-t, z=142t (teR).

10.3 Find parametric equations for the straight line through A(—2, 5, 1) in the

direction of the unit vector
~ -
1

T6
1
WG
2
| V6

An equation for the line is

1
6
[X ] [_2 ] 71_
yi= S+t - (teR).
z 1 | 76
2
7
This of course is the same line as in Example 10.2 (ii), because the vector # is in the
same direction as the vector v given there. The equations obtained look different,
but as ¢ varies in each case the sets of equations determine the same sets of values for

x, y and z. For example, the point (— 1, 4, 3) arises from the equations in Example
10.2 (ii) with t=1, and from the equations above with t=\/(—5.
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Equations (1) and (2) are forms of vector equation for a straight line. The
number t is a parameter: as t varies, the right-hand side gives the position
vectors of the points on the line. The equation (1) is in fact a special case of
(2). We may represent the vector rp by

X
i
z

where (x, v, z) are the coordinates of P, and then if

Yy
v=1vov, 1|,
U3
(2) becomes
x a, v,
Yyl=lajt+t]|v,
z a, vy
(say), or
x=a; +1tv,
y=a,+tv, (teR),
z=a5+ 10,

which is the coordinate form of parametric equations for a straight line.
Examples 10.2 give specific cases.

The components of a vector such as v above, when used to specify a
direction, are called direction ratios. In this situation any vector in the
particular direction will serve the purpose. It is often convenient, however,
to use a unit vector. See Example 10.3.
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104 To find whether straight lines with given parametric equations intersect.
Linel: x=2-t, y=3t, z=2+4+2t (teR).
Line2: x=-3—-4u, y=4+u, z=1-3u (ueR).
At a point of intersection we would have a value of ¢ and a value of u satisfying:

2— t=-3—-4u t—4u= 5
3= 4+ u}. ie. 3t— u= 4
242t= 1-3u 2+3u=—1

Here we have three equations in two unknowns. We may expect them to be
inconsistent, in which case the two lines have no point of intersection. Let us find
out, using the GE process.

1 -4 5 1 -4 5 1 —4 5
3 -1 41 ->10 11 —11] -10 1 -1].
2 3 -1 0 11 -11 0 0 0

So the equations are consistent, and there is a unique solution u=—1, t=1.
Substitute either of these into the equations for the appropriate line, to obtain

x=1, y=3, z=4,
the coordinates of the intersection point.

10.5 A proof that for any non-zero vectors a, b,
a.b=|a||b|cos 6,
where 8 is the angle between @ and b. Let

a b,
= I:az] , and b= l:bz] s
as b,

and let A and B be points with position vectors @ and b respectively.

B(by,by,b3)

a A(ay,ay,a5)
Then AOB=$, and in triangle O AB the cosine formula gives
|AB|*=|0A4|*+|0B|*>—-2|0A||0B]| cos 6
=|a|® +|b|* —2|al[8| cos 6.
Hence
|a||8] cos 6=14(|a|* + |B]> —|4B|?)
=4(a,2+a,2+as?+b, 2+ b2+ by’
—(by —a,)* — (b, —a,)* — (b3 —ay)?)
=1(2a,b, +2a,b, +2a3b,)
=a,b, +a,b,+as3b,
=a.b.
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Two straight lines in three dimensions need not intersect. Example 10.4
shows how, given vector equations for two lines, we can check whether they
intersect and, if they do, how to find the point of intersection. Note that, to
avoid confusion, we use different letters for the parameters in the equations
for the two lines.

There is a way of dealing with angles in three dimensions, using vectors.
This involves the idea of the dot product of two vectors. By the angle

A —
between two vectors a and b we mean the angle AOB, where OA=a and
— N —
OB=b. (Note that this angle is the same as any angle APB where PA=a

—_
and PB=5.) This angle always lies between 0 and m radians (180°)
inclusive. In algebraic terms, the dot product of two 3-vectors

a, b,
a=)|a,} and b=|b,
as b,

is defined by
a. b=a1b1 +a2b2 +a3b3.
Notice that the value of a dot product is a number, not a vector. In some

books the dot product is referred to as the scalar product.What has this to
do with angles?

Rule
Let a and b be non-zero vectors and let 0 be the angle between them. Then
a.b=|a||b| cos 6.
Consequently,
a.b

cosf=——.
|al 8]

A demonstration of this rule is given as Example 10.5.
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10.6 Calculate the cosine of the angle  between the given vectors in each case.

N

la|=/6, |b|=1/6.
a.b=—1+2+2=3.
Hence

1

3
NN

-2 1
(ii) a= [ 3], b=[2].
1 2

of=/13.  Jbl=3.

a.b=-24+6+2=6.

cosf=

Hence

-1 2
(iii) a= [ 1], b= [3]
—4 1

jal=y/18,  |p|=y/14.

a.b=-2+3—-4=-3.

Hence
1

-3
NN YN

(The negative sign indicates an obtuse angle.)

cosf=

10.7 Proof that, for any three vectors a, b and ¢,
a.(b+c)=a.b+a.c.
Let
a, b, <
:[%],b=[m],c=[ﬁ].
as b, C3
Then
l:b1 +c,]
btc=|by+c;, |-
by+c,
So

a.(b+c)=a;(b, +c;)+ay(b, +cy)+as(bs+csy)
=a,b,+a,c, +ab,+a,c,+asb;+asc,
=a;b; +a,b, +asbs+a;c, +a,c,+asc;

=a.b+a.c.
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Using this rule, we are now able to calculate (the cosines of) angles
between given vectors. See Examples 10.6. One of these examples illustrates
a general rule. A dot product @ . b may equal zero even though neither a nor
b is itself 0.

Rule
(i) If the angle between two non-zero vectors a and b is a right angle,
then a.b5=0.
(ii) If @ and b are non-zero vectors with a.b=0, the angle between a
and b is a right angle.

Two non-zero vectors are said to be perpendicular (or orthogonal) if the
angle between them is a right angle.

Rules
For dot products:
(i) @.b=>.a for all vectors a and b.
(ii) a.a=|a|? for all vectors a.
(iii) @a.(b+c)=a.b+a.c for all vectors a, b, c.
(iv) (ka).b=a.(kb)=k(a.b) for all vectors a,b,c, and all keR.
V) i.j=j.k=k.i=0.

These are quite straightforward. Part (iii) is proved in Example 10.7. The
others may be regarded as exercises.
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10.8 A plane through a given point A, perpendicular to a given vector n.

n P(x,y,z)

[

[

i
1
4

1]
1 TP
!
!
]

Let A be the point (3, 1,—2), and let » be the vector

-1
2.
-1
The point P(x, y, z) lies on the plane if and only if AP is perpendicular to AN, i.e. if
and only if A—I)’.n=0. Now

SN x 3 x=3
AP=0P-0A= |y | - 1l=ty-11.
z -2 z+2

So A—Ig‘.n=0 becomes
x=3)-D+(y—-12+(=z+2)(-1)=0.
ie. —x+3+2y—2~-z-2=0.
ie. —x+2y—z—1=0.
This is an equation for the plane in this case.
a

10.9 Show that the vector n= l:b] is perpendicular to the plane with
c

equation ax+by+cz+d=0.
Let Py(x,,y;,2;) and P,(x,,,,z,) be two points lying on the plane. Then
and ax, +by, +cz; +d=0 *)
ax,+by,+cz,+d=0.

We show that P, P, is perpendicular to a.

—
r.PPy=a(x;—x;)+b(y,—y,)+clz;—z,)

=ax,—ax, +by,—by, +cz,—cz,

=ax,+by,+cz,—(ax, +by, +cz;)

=—d—(—d) by (*) above

=0.
Hence n is perpendicular to P, P, and, since P, and P, were chosen arbitrarily, nis
perpendicular to the plane.
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A plane in three dimensions may be specified by either
(i) three points on the plane, or
(ii) one point on the plane and a vector in the direction perpendicular
to the plane.
We postpone consideration of (i) until later (see Example 11.9). The
procedure for (ii) is as follows. A diagram is given in Example 10.8.
Let A be the point (a,, a,,a) and let nbe a vector (which is to specify the

ﬂ
direction perpendicular to the plane). Let 04 =a, and let N be such that
ﬂ
AN =n. The point P(x, y, z) lies on the plane through A perpendicular to
ﬂ
AN if and only if AP is perpendicular to AN, i.e. vector AP is perpendicular
ﬁ
to vector AN,
. -
1e. AP .n=0,
. - -
1.e. (OP-04).n=0,

ie. (rp—a).n=0.

This last is a vector form of equation for the plane (not a parametric

equation this time, though). The vector n is called a normal to the plane.
The equation which we have just derived can be written in coordinate

form. Let

Then the equation becomes
(x—ajy)n, +(y—az)ny +(z—az)n; =0.

Example 10.8 contains a specific case of this.

Rule
Equations of planes have the form
ax+by+cz+d=0.
Example 10.9 shows that, given such an equation, we can read off a
normal vector, namely

]



114 Examples

10.10  The angle between two planes.

®;

Plane =, has normal vector n,.
Plane n, has normal vector n,.
Here is an ‘edge-on’ view, looking along the line of intersection.

n, n, %,

/ ll

The angle observed here between the planes is the same (by a simple geometrical
argument) as the angle between the normal vectors.
Let =, and =, have equations respectively

x— y+3z4+2=0

and
—x+2y+2z—3=0.
The two normal vectors can then be taken as

1 -1
n = [—1] and n,= [ 2],
3 2

say. The angle between these vectors is 0, where

cosg MM _—1-246_ 3

|"x||"2|—\/ﬁx\/§=\/§'

10.11  Find parametric equations for the line of intersection of the two planes
with equations:

x— y+3z+2=0,
—x+2y+2z—-3=0.

Try to solve the equations
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Two planes will normally intersect in a straight line. The angle between
two planes is defined to be the angle between their normal vectors. See
Example 10.10.

Planes which do not intersect are parallel. We can tell immediately from
their equations whether two given planes are parallel, since parallel planes
have normal vectors in the same direction.

3x+ y—2z+1=0
and

6x+2y—4z+5=0
are equations of parallel planes. By inspection we can see that they have
normal vectors

3 6
1 and 2
-2 —4

respectively. These vectors are clearly in the same direction, being multiples
of one another. But we can also see quite easily that the two equations
above are inconsistent. If we tried to solve them simultaneously we would
find that there are no solutions. Of course this is to be expected: any
solutions would yield coordinates for points common to the two planes.

Distinct planes which do intersect have a line in common. Parametric
equations for the line of intersection are given by the standard process for
solving sets of equations. We would expect a set of two equations with three
unknowns (if it had solutions at all) to have infinitely many solutions, these
being specified by expressions involving a single parameter. An example is
given in Example 10.11.

Here is a clear situation where algebra and geometry impinge. And it
becomes clearer when we consider the ways in which three planes might
intersect. A point which is common to three planes has coordinates which
satisfy three linear equations simultaneously. So finding the intersection of
three planes amounts to solving a set of three linear equations in three
unknowns. As we know, there can be three possible outcomes.

(i) The equations may be inconsistent. In this case the planes have no
common point. Either they are all parallel or each is parallel to the
line of intersection of the other two.

(i) The equations may have a unique solution. This is the general case
from the geometrical point of view. The line of intersection of two
of the planes meets the third plane in a single point, common to all
three planes.

(i) The equations may have infinitely many solutions, which may be
specified using one parameter or two parameters. In the first case
the planes have a line in common, and in the second case the
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x— y+3z=-2,
—x+2y+2z= 3
simultaneously. The GE process leads to

1 -1 3 -2
0 1 5 1P
and hence to a solution

z=t, y=1-5t, x=—1—-8t (teR).
These are in fact just parametric equations for the line of intersection, as required.

10.12  Ways in which three planes can intersect.
(1) Three planes: x+2y+3z=0,
3x+ y— z=5,
xX— y+ z=2.
The GE process leads to

1 2 3 0
0 1 2 —-1].
0 0 0 1

Hence the set of equations is inconsistent. There is no point common to the three
planes. Nevertheless each pair of these planes has a line of intersection. The three
lines of intersection are parallel. What makes this so? If you are not sure, work out
their parametric equations and confirm that they all have the same direction.

(i) Three planes: x— y— z= 4,
2x—3y+4z= -5,
—x+2y—2z= 3.

The GE process leads to

1 -1 -1 4
0 1 -6 13].
0 0 1 -2

Thus there is a unique solution x =3, y= 1, z= —2. These planes have a single point
in common, namely (3, 1, —2). Each pair of planes intersects in a line which meets
the third plane at this point.

(iii) Three planes: x+2y+ z= 6,
—x+ y—4z= 3,
x—=3y+6z=-9.

The GE process leads to

1 2 1 6
0 1 -1 31.
0 0 0 0

Hence there are infinitely many solutions, which can be specified by parametric
equations

x=-3t, y=3+t, z=t (teR).
The straight line with these parametric equations is common to all three planes.
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planes are all the same plane. Illustrations are provided in
Example 10.12.

There is a convenient formula for finding the perpendicular distance
from a given point to a given plane. Let P be the point with coordinates
(X0 Yo, Zo), and let

ax+by+cz+d=0
be an equation of a plane. Not all of a, b and ¢ can be zero, or else this
equation would not be sensible.

Rule
The perpendicular distance from the point P to the plane given above is
equal to

laxo+ by +czo+d|
JaA+br+cr
This formula can be derived using the methods of this chapter, and this is
done in Example 10.13.

Summary

A vector form of equation for a straight line in three dimensions is derived
and used in geometric deductions. The dot product of two vectors is
defined, and properties of it are derived. A standard form of equation for a
plane is established, and ideas of linear algebra are used in considering the
nature of the intersection of two or three planes. Angles between lines and
between planes are dealt with. A formula is given for the perpendicular
distance from a point to a plane.

Exercises
1. Find parametric equations for the straight line passing through the points
A and B in each case.
i) A, 1,3), B(1,0,1).
@) A(1,1, -2), B(1,2,0).
(i) A(—-1,2,4), B(—1,2,-7).
(v) A(1,1,1), B(2,2,2).
v) A(0,0,0), B3, —-1,2).
2. Ineachcase below, write down a vector in the direction of the straight line
with the given parametric equations.
(i x=3-t, y=—-142t, z=4-5t (teR).
(i) x=2t, y=1-t, z=24+t (teR).
(i) x=1-3t, y=2, z=3—-t (teR).
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10.13  Proof that the perpendicular distance from the point P(x,, o, 2o) to the
plane with equation ax+by+cz+d=0is

laxo+byo+czo+d|
Jat+ b2 +c?

The vector

a

c
is perpendicular to the plane, so the straight line through P perpendicular to the
plane has parametric equations

x=Xxo+at, y=yo+bt, z=zo+ct (teR).
This line meets the plane at the point M (say), whose coordinates are given by these
parametric equations with the value of t given by
a(xe+at)+b(yo+bt)+clzg +ct)+d=0.
Solve for ¢, obtaining
@+ b2 +c*)t= —axe—byy,—czy—d,
S0
axo+by,+eczo+d
EE N
Now
[PMP? = (xo +at —xo)* +(yo + bt — yo)* + (2o +ct — 2o)*
=a’? +bx2 +c%?
=(a®+b*+ )
(axo +byo+czo+d)?

=(a®+b%+c?
@ +b"+c) (@>+b2+c?)?

Hence
_axo+byo +czo +d|

|PM|_ \/ﬁ“‘z
a‘+b°+c

as required.
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. In each case below, find whether the two lines with the given parametric
equations intersect and, if they do, find the coordinates of the points of
intersection.

(i) x=2+2t, y=2+t, z=—-t (teR),
x=—243u, y=-3+6u, z=7-9u (ueR).
(i) x=1+t, y=2—t, z=-1-2t (teR),
x=142u, y=-—6u, z=1 (ueR).
(i) x=2—t, y=-—1-3t, z=24+2t (teR),
x=u, y=-24u, z=1-u (ueR).
(iv) x=2+4t, y=—t, z=14+2t (teR),
x=4-2u, y=-24+2u, z=5-4u (ueR).
. Calculate the cosine of the angle APB in each case, where A, P and B are
the points given.
i) Ad,1,1), P©,0,0), B(1,1,0).
@) A(-2,1,-1), P(0,0,0), B(1,2,1).
(i) A@3, —1,2), P(1,2,3), B(@©,1, —-2).
(iv) A(6,7,8), P©,1,2), B(0,0,1).
. Find the cosines of the internal angles of the triangle whose vertices are

A(1,3,—1),B0,2, —1),and C(2, 5, 1), and find the radian measure of the
largest of these angles.

. Find a vector perpendicular to both @ and b, where

2 1
a= | -1 and b= 1
0 -1

. Find the length of the vector 2a + b, where a and b are unit vectors and the
angle between them is 7/3 (i.e. 60°).
. In each case below, find the length of the perpendicular from the given
point to the straight line with the given parametric equations.
i @2,1,-1), x=3—t, y=142t, z=t (teR).
(i) (0,1,4), x=2t, y=3, z=4-2t (teR).
aii) (2,3,1), x=2t, y=3t, z=2-t (teR).
. In each case below, find an equation for the plane through the given point
A, with normal in the direction of the given vector a.
-1
i AG3,2,1), n= 1]. (i) A@©,1,-1), n=
-2

]

d

—— = N W A

0
(i) A(=2,3,5), n=[l]. (v) A, 1,1, n=
3
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10. Find the cosine of the acute angle between the planes with given equations
in each case.
i) x+ y+ z—3=0,
2x— y—~ z+1=0.
@) 3x+ y +2=0,
x+ y—4z—-3=0.

m) x+ y =0,
y+ z =0.

@v) 3x— y+2z-7=0,
z =0.

11. In each case below, determine whether the intersection of the three planes
with given equations is empty, is a single point, or is a straight line.
) x-2y-3z=-1, @) x +3z=-1,

y+2z= 1, 2x~ y+ z= 2

2x+ y+4z= 3. X+2y— z= 5,

() x+3y+5z= 0, @iv) x-—2y+ z= -6,
x+2y+3z= 1, -2 + z= 8,

x — z=-—1 x+2y+2z= 1.

12. In each case below, find the perpendicular distance from the given point P
to the plane with the given equation.

@i P2,1,2), x—2y— z+2=0.
(i) P(-1,0,1), 3x— y+2z—5=0.
(i) P(1,1,1), x+ y+ z =0
(iv) P(0,0,0), 5x— y—4z+6=0.
v) P(0,0,0), 5x— y—4z+1=0.
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Examples

11.1 Evaluation of cross products.

1
M a= [2] )
3
2 -1 2-0 2
(i) a=[1], b= [ 3], axb= [0-4]: [—4].
0 2 6+1 7
2 -4 6—6 0
(iii) a= [—1], b= [ 2], ax b= [_12+12] =[o].
3 -6 4- 0
-1 2
(iv) a=[ 3], b=[1], axb=[
2 0

Compare (ii) with (iv).

11.2 Use of the determinant mnemonic in evaluating cross products.
(i) a=—i+2j—k, b=3i—j.
, J ‘; i | 2 1’ _’—1 3'+k’—1 3{
axb=|j =i —j
k-1 0 -1 0f 7|-1 0 21
=i-3j—Tk.
(1) a=3i—4j+2k, b=j+2k.
i 3 0
-4 1 30 0
axb=]j -4 1| =i 2'—]" 2'+k‘ i 1'
k2 2 2 2 -

= — 10i—6j+ 3k.

113 Proof that for any 3-vectors a and b, a x b is perpendicular to g and to b.

Let
a3 b,
a= I:az] and b= [bz] .
as b,

aby—asb,
ax b= [a3b,—a1b3] ,

a;b, —a,b,

Then

S0
a.(ax b)=a,(a,b; —asb,) +ay(azb, —a,b3)+aj(a,b, ~a,b,)
=a,a,b;—a,a;b, +a,asb, —a,a,b;+aza,b, —aza,b,
=0.
Similarly b.(ax )=0.
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Cross product

We have dealt with the dot product of two vectors. There is another way of
combining vectors which is useful in geometric applications.

Let
a b,
a= | a, and b= (b,
as b,

be two 3-vectors. The cross product of a and b is defined by
azb;—asb,
axb= [a3b1 —a1b3] .
arb,—azb,
Note that the result is a vector this time. Example 11.1 gives some

calculations. Example 11.2 shows how to apply the following mnemonic
which is useful in calculating cross products. Write

a=a,i+a+ask and b=>b,i+b,j+bsk,
where i, j and k are the standard basis vectors. Then

ax b=(aybs—asb,)i+(ashy —a,bs)j+(a;b, —azb,)k.
This is reminiscent of the expansion of a determinant, and we can stretch
the idea of a determinant to write

i a; by
ax b= j a2 b2 .
k a; b,

Expanding this ‘determinant’ by the first column gives the correct
expression for a x b.

The definition above of the cross product involved two 3-vectors
explicitly. It is important to realise that, unlike the dot product, the cross
product applies only to 3-vectors, and its application is of use in three-
dimensional geometry.
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114 Proof that |a x b}=/|a]|b| sin 6, where a and b are non-zero 3-vectors and 6

is the angle between them, for the case when 6+#0 and 0#mn.
Suppose that a and b are 3-vectors, as in Example 11.3.

|ax b =(a,b3—asby)* +(ashy —arbs)* +(arb, —azhy)?
=a,%b;2 +as2b,2 +a;3?b, 2 +a,2by% +a,?b, % +a,%b, 2
—2a,bsa3b, —2asbia,bs—2ab,ayb,.
Also (|a||d] sin 8)*=|a]||B|*(1 —cos? 6)
= Jalb[2(1 — (a. 5y a2
=|a|*|b]*> —(a . b)*
=(a,> +a,’ +a3?)(b;* + b, + b3?)
—(ab, +ayb, +asbs)?
=a.%b;2+a,%b,2 +a,2b;2 +a,2b; 2 + a,’b,2 +a,%bs?
+a32b; 2 +a3%b,% +a3%by2 —a,%b 2 —a,%h,?
—ay2by? —2a,b,ayb, —2a,biash; —2a,b,a3b,
=|ax b>.
Now sin 0 is positive, as are |a|, |8| and |a x b], so it follows that
|a@ > b|=|a||b| sin 6.

115 Proof that ax (b+ ¢)=(a x b)+ (a x ¢), for any 3-vectors a, b and ¢. Let

a; b, ¢y
a=|ay|, b=|by|, e=]cy |-
as bs €3

ay(by+c3)—asby+c;)
ax(b+c)= l:a3(b1 +c1)—a1(b3+c3)]
ayb, +cy)—ay(b, +c¢y)

[[12b3 —a3b2+a2c3—a3c2]

Then

asby—aby+ase, —a,c;
ab,—a,b, +a,c,—ayc,

=(ax b)+(ax o).
11.6 Remember that ax b= — (b x a), for any 3-vectors a and b. See Example

11.1, parts (ii) and (iv).
Here is another illustration. Let

2 5
a= [—3] and b= [—4].
1 1
1 -1
ax b= [3] and bxa= [—3] = —(axb).
7 -7

Then
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Let us now explore these geometrical uses. Some properties of the cross
product will emerge as we proceed.

Rule
The product vector a x b is perpendicular to both a and b.

To see this we just write down expanded expressions for a . (a x b) and
b.(ax b). Details are in Example 11.3. Both expressions are identically
zero, and the rule is therefore justified, using a result from Chapter 10.

The above rule is in fact the most useful property of the cross product,
and we shall see applications of it shortly. But consider now the length of
ax b. It has a convenient and useful geometrical interpretation.

Rule

If @ and b are non-zero vectors then
|ax b| = |a||b| sin 6,

where 0 is the angle between a and b.

Justification of the general case (when 0 is not 0 or w) is given in Example
11.4. The special case is also significant, so let usformulate it into a separate
rule.

Rule
(i) ax a=0 for every 3-vector a.
(1) ax (ka)=0 for every 3-vector a and any number k.

Justification of these is straightforward verification, which is left as an
exercise. This rule is perhaps surprising. It suggests that the cross product
behaves in ways which we might not expect. This is indeed so, and we must
be careful when using it.

Rules (Properties of the cross product)
(i) ax (kb)=(ka) x b=k(ax b), for all 3-vectors a and b, and any
number k. ‘
(i) ax b= — (b x a), for all 3-vectors @ and b.
(iii) ax (b+c)=(ax b)+(ax ¢), for all 3-vectors a, b and c.
(iv) ixj=k, jx k=i k xi=j.

Demonstration of these is not difficult, using the definition. See Example
11.5 for (iii). Take note of (ii)! See Example 11.6.

Now let us see how these geometrical interpretations can be used. First
we consider areas.
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11.7 Areas of triangles and parallelograms.

-=C

P

q
Let PAB be a triangle, with PA=a and 171)3=b.
Then the area of triangle PAB is 3|ax b|.
Let C be such that PACB is a parallelogram. Then the area of PACB is |a x b\.

118 Calculation of areas.
(i) Let

2 4 3
a= 0], b=]|1]. Then axb=|4]|,
-3 4 2
and |axb|=,/9+16+4=\/ﬁ.

Hence the area of the triangle PAB in the above diagram would be 4./29 units?.
(ii) Let the three points be P(3, — 1, 1), A(1,1,0) and B(0, 3, 1). Then

— =2 — =3 - = 4
PA= 2}, PB= 4 and PAxPB= 41.
~1 0 -2
Hence the area of triangle PAB is equal to 3,/16+ 16 +4, i.e. 3 units>.

119 Find an equation for the plane through the three points A(5,3, —1),
B(2, —-2,0) and C(3,1,1).

— -3 — -2
AB= | -5, AC=|-2].
1 2
- - — — .
The vector AB x AC is perpendicular to both AB and AC, so is a normal vector to
the plane of A, B and C.

- — -8
ABx AC= [ 4] .
-4
Any vector in the direction of this vector is a normal vector for the plane. We can
2
choose this one or any multiple of it. Taking [— 1] , as the normal vector, we
1
obtain an equation for the plane:
2x-5)-1(y-3)+1(z+1)=0,
1.e. 2x —y+2z—6=0. (See Chapter 10 for the method used.)



11. Cross product 127
Rule

— —
Let PA and PB represent 3-vectors @and b. Then the area of triangle PAB is
equal to 4lax b|.

This follows from our knowledge that
|ax b|=|a||8| sin 6,
and the familiar rule that
area of APAB=4|PA||PB|sin APB.

For a diagram see Example 11.7.

Further, if C is such that PACB is a parallelogram, the area of the
parallelogram is equal to |ax b|. Some calculations of areas are given in
Examples 11.8.

Example 11.9 gives an application of another use of cross products. A
plane may be specified by giving the position vectors (or coordinates) of
three points on it, say A(a), B(d) and C(c). We know from Chapter 10 how
to derive an equation for a plane given a point on it and the direction of a
normal vector to it. We obtain a normal vector in the present case by using
the cross product. AB represents the vector h—a and AC represents the
vector ¢ —a. Consequently (b —a) x (¢ — a) is perpendicular to both AB and
AC, and so must be perpendicular to the plane containing A, B and C. It
will serve as a normal vector, and the method of Chapter 10 can now be
applied.
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11.10  Calculation of volumes of parallelepipeds.
(i) Find the volume of the parallelepiped with one vertex at P(1,2, —1)

and adjacent vertices at A(3, —1,0), B(2,1,1) and C(4,0, —2).
) —> — —
The volume is |a. (b x ¢)|, where a=PA, b=PB and ¢=PC.
—» 2 —> 1 — 3
PA=|-3]|, PB={-1|, PC=}]-21}].
1 2 -1
r— 3
PBx PC= [7] .
1

so — - -3
PA.(PBxPC)=10-21+1=—-10.

Hence the volume required is 10 units®.
(ii) Repeat (i) with the points P(0,0,0), A(2,1,0), B(1,2,0) and C(3,3,2).

Here

—> 2 —> 1 —> 3
PA=|1|, PB=|2]|, PC=}|3}.
0 2

50 — oy )
PA.(PBx PC)=8-2+0=6.

Hence the volume of the parallelepiped is 6 units>.
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Besides areas, volumes can be calculated using the cross product: in

particular, volumes of parallelepipeds. A parallelepiped is a solid figure
with six faces such that opposite faces are congruent parallelograms.

bxe

The volume of such a solid is equal to the area of the base multiplied by the
height. Take PBDC as the base, draw a line through P perpendicular to the
base and let K be the foot of the perpendicular from A to this line. Then
|PK|is the height of the parallelepiped. The area of PBDC is equal to |b x ¢|,
and the height |PK| is equal to |PA|cos APK, i.e. |a|cos APK. In our
diagram, APK is the angle between a and (bx ¢), so

a.(bxc)=|a||bx ¢| cos APK = volume of parallelepiped.

It may happen that the direction of b x ¢ is opposite to the direction of PK,
in which case the angle between a and (b x ¢) is 1 — APK, and

a.(bxc)=|a|lbx c| cos(n — APK)

=|a||b x ¢|(—cos APK),

which is the negative of what we obtained above for the other case. A
volume is normally taken as a positive number, so we may combine both
cases in the result

Volume of the parallelepiped =|a. (b x ¢)|.

Notice that a.(bx ¢) is a number, since it is the dot product of two
vectors. This form of product of three vectors is quite important, and it has
aname. It is called the scalar triple product of a, b and ¢. The appearance of
a. (b x ¢) in the formula for the volume of a parallelepiped enables us to see
an unexpected property. Because the parallelepiped is the same no matter
what order the three vectors are taken, we have

la.(bxc)|=|b.(cxa)|=|c.(axb)|=|a.(cxb)
=|b.(axc)|=|c.(bx a)|
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11.11 Proofthat det A=a. (b x ¢), where A is the 3 x 3 matrix having the vectors
a, b and ¢ as its columns. Let

"a, b, cy
a=|a,|, b= b1, e=]c,|.
a, b, Cy

Then, expanding det 4 by the first column, we obtain
by <
by ¢

b, c; b, ¢

by ¢,

det A=a, —a, +as

b, ¢,
=a,(byc3~bjsc;)—ay(byc3~bsey)+asbye, —byey)
=a;(byc3—bsc,)+a,(bsc; —bycs)+as(bic,—byey)

a; byes—bse,
= [az] . I:b3c1—b,c3]

as bicy—b,e,
=a.(bxe).

11.12 Find whether the points O, 4, B and C are coplanar, where 4is(1,3,0), B
is©,1,1)and Cis (-2, 1,7).

- — —

They are coplanar if and only if the three vectors 04, OB and OC are coplanar.
We therefore have to test whether these three vectors are linearly dependent. Use
the standard GE process.

(o) @[] =[]
0A=|3]|, OB=|1]|, .0OC= 1].

0 1 7
1 0 -2 1 0 -2 1 0 -2
R IR il
0 1 7 0 1 7 0 0 0

Hence the three vectors form a linearly dependent list (see Chapter 6), and so the
four points are coplanar.

11.13 Find whether the points P(—1,1, —1), A(2,3,0), B(@©,1,1) and
C(-2,2,2) are coplanar.
They are coplanar if and only if the vectors

— 3 — 1 — ~1
P4=12}, PB={0|, PC= 1
1 2 3

form a linearly dependent list. The GE process yields

3 1 -1 1 1 -1 1 4 -
r|.2 0 l] - [2 0 l] - [0 -3 %]
1 2 3 1 2 3 0 3 R

R
- [0 1 —-%] - [0 1 —%] .
0 3 0 0 1

Hence the three vectors form a linearly independent list, and so the given points are
not coplanar.
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These six products, however, do not all have the same value. Three of them
have one value and the other three have the negative of that value. As an
exercise, find out how they are grouped in this way.

We end with a further link-up between geometry and algebra. Given
three 3-vectors a, b and ¢ we can construct line segments O A, OB and OC
respectively representing them. We say that the vectors are coplanar if the
three lines OA, OB and OC lie in a single plane.

Rule
Three vectors a, b and ¢ in three dimensions are coplanar if and only if
a.(bxc)=0.

To see this we need consider only the parallelepiped with one vertex at O
and with A, B and C as the vertices adjacent to O. The vectors are coplanar
if and only if the volume of this parallelepiped is zero (i.e. the parallelepiped
is squashed flat).

Recall that three vectors a, b and ¢ form a lingarly dependent list if there
exist numbers [, m and n, not all zero, such that

la+mb+nc=0.
Recall also the Equivalence Theorem, part of which stated (in the case of a
3 x 3 matrix A): the columns of A form a linearly independent list if and
only if det 4#0. This is logically equivalent to: the columns of A form a
linearly dependent list if and only if det A=0. To make the connection
between this and the ideas of coplanarity and scalar triple product,
consider three 3-vectors a, b and ¢. Let A be the matrix with these vectors as
its columns. Then

det A=a.(bxc).
To see this, it is necessary only to evaluate both sides. This is done in
Example 11.11.

We can now see that the conditions
a.(bxc)=0 and detA=0

are the same. We therefore have:

Rule
Three vectors a, b and cin three dimensions are coplanar if and only if they
form a linearly dependent list.

See Examples 11.12 and 11.13 for applications of this.

As a final remark, let us note that the rule a.(bx ¢)=det A can be a
convenient way of evaluating scalar triple products and volumes of
parallelepipeds.
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Summary

The cross product of two 3-vectors is defined, and algebraic and
geometrical properties are derived. The use of cross products in finding
areas and volumes is discussed, leading to the idea of scalar triple product.
The equivalence between coplanarity and linear dependence is established
using the link between the scalar triple product and determinants.

Exercises

1. Evaluate the cross product of each of the following pairs of vectors (in the

order given).

3 -1 ( 21 1]
) 1], [1] (ii) ol, |3].
[ 2 -1 [ -11 L3
0 3 F—17  [3]
(iii) 1], [-1]. (iv) 1], |1}.
I ] L
r—4 3 —171 (1]
v) 4], [1] (vi) 21, |1].
| —4 2 1] L1

. Write down the areas of the triangles O AB, where 4 and B are points with
the pairs of vectors given in Exercise 1 as their position vectors.

. Find the area of the triangle ABC in each case below, where 4, B and C
have the coordinates given.
(i) A2,1,3), B(1,1,0), C(0,2,2).
(i) A(-1,2,-2), B(-3,0,1), C(0,1,0).
. For each of the following pairs of planes, find a vector in the direction of
the line of intersection.
(i) x —y+3z—4=0.
2x +y —z+5=0.
() 3x +y —-2=0.
x=3y +z+1=0.
. Find an equation for the plane containing the three points A, B and C,
where A, B and C have the given coordinates.

G A@,1,1), B@,0,-2), C(1,1,1).
@) A®©,1,1), B(1,0,1), C(1,1,0).
@) A(—1,1,2), B@,0,0), C(3,2, —1).

. Find the volume of the parallelepiped which has P(—1, 1,2) as one vertex
and A(1,1, —1), B(0,0,0) and C(1,2,0) as the vertices adjacent to P.
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7. Repeat the calculation of Exercise 6, where P is the point (—1,0,0), 4 is

the point (1,0, — 1), B is the point (1,0, 1) and C is the point (0, 1,0).
8. Using the scalar triple product, find whether the given four points are

coplanar.

(i) 0(0,0,0), A(1,3,5), B(1,2,3), C(1,0, - 1).

(i) 0(0,0,0), A2, 1,1), B(1,1,2), C(—-1,2,7).

(iii) 0(0,0,0), A(l, —1,1), B(2,2,-1), C(—1,1,3).

(iv) P(2,-1,0), A(3,2,2), B(2,-2,-1), C@4,0,-1).

(v) P(1,2,3), A(-1,3,4), B(3,4,7), C(4,0,4).



ANSWERS TO EXERCISES

Chapter 1
i) x=1,y=~1 (1) x=2, y=-3.
(i) x; =3, x,= =2, x3=1. (iv) x, =2, x,=1, x3=—1.
V) x;=2,x,=1, x3=2. (vi) x; =1, x,=0, x3=1.
(vil) x, =1, x,= 1, x3=3. (vili) x; =0, x,=0, x;=0.
(x) x; =3, x,=1,x3=0. (x) x;=—1, x,=0, x;=0.
(xi) x; =2, x,=1, x3=0, x,= — L.

(xil) x, =2, x,=2, x3=1, x,= —3.

Chapter 2

(1) x=24+3t, y=t (teR).

(i) x=—4-3t, y=t (teR).

(i) x, =4+1t, x,=1=-2t, x3=t (teR).
(V) x,=1-2t, x,=—14+t, x3=t (teR).
V) x;=14+t,x,=t, x3=1 (teR).

Vi) x;= =2=3¢t, x, =241, x3=t (teR).
(1) x=2,y=1. (i) x=3, y=2.

(m) x,=—1,x,=1, x3=2.
(iv) x, =2, x,=—1, x3=0.
V) xy==2,x,=1, x3=1.

(vi) x;=4, x,=3, x3=2, x,=1.
(1) Unique solution. (ii) Infinitely many solutions.
(iii) Inconsistent. (iv) Inconsistent.
(v) Infinitely many solutions.
. (i) c=1: infinitely many solutions. c¢# l: inconsistent.
(i) Consistent only for k=6.
(i) c= —2: no solution. ¢=2: infinitely many solutions. Otherwise:
unique solution.

(1) ¢= 4+./3: no solution. Otherwise: unique solution.
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(ii1)) ¢c= —3: no solution. ¢ =3: infinitely many solutions. Otherwise:
unique solution.

@iv) ¢=0, c-—-\/g, c= _\/6; infinitely many solutions. Otherwise:
unique solution.

Chapter 3
-1 - 4 _3 _
2. (i) [—2]. Gy |-11. (iii)[ ] (iv)
2 [ 3] -3

15 [ —2
(v) [15]. (vi) 11.
15 L 3.

3 AB— 9 -1 6 13 AD_21 -7
T 1e -8 -8 6 13 -6

O W W= b

0 3 7
Bc=|8 -4 6|, c=|% "8 -4 -6
Lo 3 3 >0 =39
4 0 4 2
8 -5
1 -8
CD= 9 6
L5 0
DA also exists. A(BC) of course should be the same as (AB)C.
110 252
4. (1) 2 =21, ()
19 16 7 4 3
8 4

7
3 4 2
(i) [1 2]. (iv) [_6].

8§ 8 13
5 8 5 8}.
13 8 8

6. A must be px g and B must be g x p, for some numbers p and g.

Chapter 4

1 2 3 1 3 6
1. A*=|0 1 2, A*=[0 1 31,
0 0 1 0 01
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10.

11.

Answers to exercises

10
1
0
B*=3 0], B*=
6
0 5
(® [

1
0
0

1

W= O =

-1
4
0

1
0 -3
0 -1

-1 0 o0
(iii) [—3 -2
9 5 3

Xy =2,%x,=6, x3=1.

. Symmetric:
121 1 o 2
2 37 |0 —1f 3

- 1

1 0 1 1 1
01 0}, 1 0
1 0 1 0 -1

Skew-symmetric:

[ 0 2] [ ‘1’ é
-2 0 3

(i) Interchange rows 2 and
(it) Add twice row 3 to row

1
2

[
[

1
4

3

0

-1
0
—1
-1

3.
1.

!
3

1

3 2

| ol

0 0
0 >
1
0 0
1 0}f.
10 4 1
X;+2x,+ X3
Xy —2X%3
X3

o:l. (v) [6 5 3]

1
-1
2

Ik

(iii) Subtract three times row 1 from row 3.

(iv) Multiply row 2 by —2.

1 0 0 1 0 0
T= 0 1 0
01 1

01 0
0 0 ¢
and

1 2 -1
TA='[O 1 3].
0 0 1
1 0 0 1 0
r- [0 ! 0] [0 !
0 0 -1 0 -3
1 00 1 00
. [ o 1 o][l | o
-2 0 1 0 0 1
and
1 -1 2 1
TA= [0 1 1 1].
0 0 1 1

JLe sl

O O

]

0

0
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Chapter 5

. Invertible: (i), (ii), (iv), (v), (vi), (viii), (xi).

lja 0 0
[0 /b 0 ] .
0 0 Il

Chapter 6

x==1,y=2

2. (i) Yes. (i) No. (iii) Yes. (iv) No.

W=

. In each case we give the coefficients in a linear combination which is equal

to 0 (the vectors taken in the order given).
(i) 2, — 1. (i) 6, —7, 2. (iii) 4, —1, 3.
(iv) =9,7,16. (v) 5, —4,3. (vi) 1, —13, 5.

. LD: (ii), (iii), (vi).

LI: (i), (iv), (v), (vii).

. 1,2,2,1,2,2,3,3,2,1,1,2,1,2,3,4,4,2,3.
. Rank of xyT is 1. This holds for any p.

Chapter 7
-7, -2,8,0, -28, -7,7, =3.

. 2, -4, -9,0, —10, 10,0, 0, —3.

—-16, —11.

. No, only for p x p skew-symmetric matrices with odd p.

-1 1 1
L detA=2. adjd= | 1 -1 1}.

1 1 -1

Chapter 8

(i) Ranks 2, 2; unique solution.
(ii) Ranks 1, 2; inconsistent.
(iii) Ranks 1, 1; infinitely many solutions.
(iv) Ranks 2, 2; unique solution.
(v) Ranks 3, 3; unique solution.
(vi) Ranks 3, 3; unique solution.

(vii) Ranks 2, 3; inconsistent.

(viii) Ranks 2, 2; infinitely many solutions.
(ix) Ranks 2, 2; infinitely many solutions.
(x) Ranks 2, 2; infinitely many solutions.
(xi) Ranks 2, 2; infinitely many solutions.

(xii) Ranks 3, 3; unique solution.
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- ()

. 1 . 5
. COS A= ———=, cosB=——, cosC=

Answers to exercises

Chapter 9

.C:b—a,D: —a,E: —b,F:a—b.

2 -2 -2 0
. (1) [—1] ] [ 1] . (i) [—2] . (iv) [—2
-3 ~2 1

14
[ wf] =) [
]

v)

LI\LI\O

1 1
1
2 3 V8 V3
. (i) 10 . (i) [g] (iii) —723 . (@iv) %
_ 1 1
V2 _
| V6] NE
Chapter 10

() x=t,y=1-—t,z=3-2t (teR).
(i) x=1,y=1—-t,z=-242t (teR).
() x=—1,y=2,z=4—-11t (teR).
) x=1+t,y=1+t,z=14t (teR).
(V) x=3t, y=—t,z=2t (teR).

-1 2 -3
. () [ 2]. (ii) [—1]. (iii) [ 0].
-5 1 -1

(i) Intersect at (0,1, 1).
(i1) Intersect at (0, 3, 1).
(iii) Do not intersect.
(iv) These two sets of equations represent the same line.

2 2 2
NG Ja /6
4

J2 /3 J17

The largest angle is A, which is 3n/4 radians.

(ii) —é. (i) (iv) —




o

10,

11

12

Answers to exercises

For example,

=l

7 units.
(i) \/2. (i) \/24. (iii) O (the point lies on the line).
() x—y+2z—3=0. (i) 4x+ 5y +6z+1=0.
(i) y+3z—18=0. (iv) x+y+z—3=0.
(1) O (the planes are perpendicular).
5 (i 1 i 2
ﬁd iii) 5 iv) \/ﬁ
(i) Straight line. (ii) Single point.
(i) Empty. (iv) Single point.

(i)

6

(i 0. (ii)i. (i) /3. (V) —=. (V) %

J14 N

b}
<
-
)

Chapter 11

-3 3 —4

(i) l: 1] . (i) [-7] . (i) [—6] .
4 6 -3
3 4 3

(iv) [—1] . W) |: 20] . (vi) [ 0] .
—4 —16 -3

2. () 4/26. (i) 4/94. i) 3./61.
(iv) $/26. (v) 1,/672. (vi) 1/18.
30 () 5/35. (i) 4./66.
-2 1
4. (i) [ 7] . () [ —3] .
3 - 10
5. (i) 3y—z-2=0. (ii) x+ y+z—2=0.
(i) x —y+2=0.
6. 3 units>.
7. 4 units>.
8. (i), (ii) and (iv) are coplanar. The others are not.
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SAMPLE TEST PAPERS

Paper 1

1
(i) Let X be a 3 x 4 matrix. What size must the matrix Y be if the product XY X is to
exist? For such a matrix Y, what is the size of the matrix XY X?

Calculate AB or BA (or both, if both exist), where

-1 2
a=1 0 1| and B=[0 2 3].
3 1 1 -1 0

(ii) Find the values of t for which the following equations have (a) a unique solution,
and (b) infinitely many solutions.
tx+4y=0
t—1x+ty=0.
(ii1) Let X and Y be p x p symmetric matrices. Is the matrix XY — Y X symmetric? Is
it skew-symmetric? If P and Q are skew-symmetric matrices, what can be said about
the symmetry or skew-symmetry of the matrix PQ —QP?

2
Show that the list

(HRERES)

is linearly independent if and only if a=1 or a= —4. For each of these values of a,
find a non-trivial linear combination of these vectors which is equal to the zero
vector.

What is the rank of the matrix

1 1 1
A=12 4 -1 R
1 -1 a*+3a

when a=1or a= —4?
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Find the inverse of A when a=0, and hence or otherwise solve the equation

-

in the case when a=0.
3
(i) Show that the determinant of a 3 x 3 skew-symmetric matrix is equal to zero. Do
all skew-symmetric matrices have determinant equal to zero? Justify your answer.
(ii) Explain what is meant by an elementary matrix. Give examples of the three
different kinds of elementary matrix, and explain their connection with the
Gaussian elimination process.
(iii) Let A, Band C be the points (1, 0,0), (0,2,0)and (0, 0, 2) respectively. Using the
cross product of vectors, or otherwise, find the surface area of the tetrahedron
OABC.
4
Let A(2,1, —4), B0, — 1, —6), C(3,0, — 1) and D(—3, —4, —3) be four points in
space. Find parametric equations for the straight lines AB and CD. Hence show
that these two lines do not intersect. Let P and @ be points on AB and CD
respectively such that PQ is perpendicular to both AB and CD. Calculate the length
of PQ.

Find an equation for the locus of all midpoints of line segments joining a point on
AB to a point on CD. Deduce that the locus is a plane.
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Paper 2
1
(1) Let
1 1
2 1 1 -1 0 2 0
= = d C=
A[o 1]’3[2 2 1]” -1 -1
2 3

Calculate all possible products of two of these matrices. Is it possible to multiply
them all together? If so, in what order? Calculate any such product of all three.

(ii) Let
1 2 -1
X=[ 2 3 0].
-1 0 -2

Find whether X is invertible. If it is, find its inverse.
(iii) Define a skew-symmetric matrix. Explain why the entries on the main diagonal
of a skew-symmetric matrix must all be zero. Let H be the matrix

01
[-1 o)
Show that H2+I=0, that H is invertible, and that H ™! =HT".
2
(i) Let 4 be a p x g matrix and let b be a p-vector. In the matrix equation Ax=¥,
what condition must be satisfied by the rank of 4 and the rank of the augmented

matrix [A}{b] if the equation is to have no solutions? Prove that the following set of
equations has no solutions.

x+2y+3z=1
x+ y+ z=2
Sx+7y+9z=6.
(1) Find whether the list

(L] D

is linearly dependent or linearly independent.
(i11) Find all values of ¢ for which the equations
(c+ )x+ 2y=0
3x+(c—1)y=0
have a solution other than x=y=0.
3
(i) Evaluate the determinant
2 1 3 -1
-2 0 1 1
1 0 2 2
3 0 -1 1
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(ii) Explain what is meant by the adjoint (adj 4) of a square matrix 4. Show that,for
any 3 x 3 matrix A4,

Afadj A)=(det A)I,
where I is the 3 x 3 identity matrix.
(iii) Find an equation for the plane containing the three points A(2, 1, 1), B(—1, 5,9)
and C4,5, —1).
4
Define the dot product a.b of two non-zero vectors a and b.
(i) Let OABC be a tetrahedron, O being the origin. Suppose that OC is
perpendicular to 4B and that OB is perpendicular to 4B. Prove that 04 is
perpendicular to BC.
(i) Let P and Q be the points (1,0, —1) and (0, 1, 1) respectively. Find all unit

— —
vectors u which are perpendicular to OP and which make angle n/3 (60°) with 0Q.
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Paper 3

1

(1) Let
1 0
s 4 1 1 0 -1 10 1

A= , B=1]-1 0 2 0 and C= .

0 2 ‘ 110
1 3 0 0 1 1

Evaluate the product CB. Evaluate every other product of 4 or C with B. There are
exactly three orders in which it is possible to multiply A, Band C all together. Write
these down but do not evaluate the products. State the sizes of the three product
matrices.

(i1) Define the rank of a matrix. Calculate the rank of the matrix

1 -3 4
[2 -1 7:|.
2 4 6

Use your answer in determining (without actually solving them) whether the
following equations are consistent.

x—3y+4z=0
2x— y+7z=4
2x+4y+62z=8.

(iii) Show that the product of two upper triangular 3x 3 matrices is upper
triangular.

2
Solve the system of equations

x+2y— z= 4
2x— y+ z=-3 (*)
—x+ yté4z=-7.

Show that the inverse of an invertible symmetric matrix is symmetric, and verify this
by finding the inverse of

1 10
P=[1 2 1y¢.
010

Let A be a 3 x 3 matrix and let & be a 3-vector. Show that if ¢ is a solution to the
equation Ax=»h then P~ cis a solution to the equation (4P)x= b. Use your earlier
results to find a solution to

4
(AP)x= [—3] ,
-7

where A4 is the matrix of coefficients on the left-hand sides of equations (*) above.
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3
(i) Let

1 t 0
A= | 1+t 1 51, whereteR.

0 -t t
Evaluate det 4 and hence find all values of t for which 4 is singular.
(ii) Let X be a 3 x 1 matrix and let Y be a 1 x 3 matrix. Show that XY is a singular
3 x 3 matrix.
(iii) Let A, B, C and P be points with coordinates (2, 1, 1), (—4, —2, 1), (1,2, 3) and
(—1, —1,2) respectively. Find which of the angles BPC, CPA and APB is the
smallest.

4
Give the definition of the cross product a x b of two non-zero vectors a and b.

Find an equation for the plane = through the points A(1, 1,4), B(3, —2,4) and
B, —1,1).

What is the perpendicular distance of the point X(1, — 3, 5) from the plane n?
Find the volume of the parallelepiped which has X as one vertex and 4, Band C as
the vertices adjacent to X. Find the coordinates of the vertex of this parallelepiped
which is farthest from X.



FURTHER READING

As indicated in the Preface, there are many books on linear algebra, and as
suggested there, not many which contain treatments which are sympathetic
with the approach taken in this book. Here is a selection which the reader
may usefully refer to or take as a starting point for further study.

[1]

[2]
(3]
[4]
[5]

[6]
[7]

F. Ayres, Matrices. Schaum’s Outline Series, McGraw-Hill, 1968.

This is a book of problems and solutions.

H. Anton, Elementary Linear Algebra, 4th edition. John Wiley,
1984.

D. T. Finkbeiner, Elements of Linear Algebra, 3rd edition.
Freeman, 1978.

B. Kolman, Elementary Linear Algebra, 4th edition. Collier
Macmillan, 1986.

I. Reiner, Introduction to Linear Algebra and Matrix Theory. Holt,
Rinehart & Winston, 1971.

These are four very similar books. They are all rather more
advanced and rather more substantial than this book, but there is
common material, and their contents should for the most part be
accessible to the interested reader of this book.

P.J.Kelly & E. G. Straus, Elements of Analytical Geometry. Scott
Foresman, 1970.

J. H. Kindle, Plane and Solid Analytic Geometry. Schaum’s
Outline Series, McGraw-Hill, 1950.

These two books, as their titles suggest, are about geometry rather
than algebra, but they may be useful as background and/or further
reading for the more geometrical aspects of this book.
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addition of matrices 23

adjoint matrix 75

algebra of matrices (rules) 27

angle between two planes 115
angle between two vectors 109, 125
area of a triangle 127

augmented matrix 81

centroid of a triangle 99
cofactor 73ff.

column vector 23
commutative law (failure) 29
components of a vector 101
coplanar vectors 131

cross product 123ff.

determinant 63ff., 73, 131
determinant of a product 77
diagonal matrix 33

direction ratios 107

distance from a point to a plane 117
dot product 109

elementary matrix 39, 45

elementary row operation 4, 39, 47, 69
elimination 1

entry in a matrix 23

equation of a plane 113

equations with parameters 19
Equivalence Theorem 61, 73
expansion by row or column 67

Gaussian elimination 3ff.
GE process 5

homogeneous simultaneous equations 81
identity matrix 33, 39

inconsistent equations 3, 13
inverse of a matrix 45ff.

inverse of a product 51
invertible matrix 45, 51, 59, 61, 73

LD 55

length of a vector 101

LI 55

linear combination 55

linear equation 1

linearly dependent list 55, 131

linearly independent list 55, 61, 73, 131
lower triangular matrix 35

main diagonal 33

matrix 23

median of a triangle 99

multiplication
of a matrix by a number 25
of a matrix by a vector 25
of matrices 27

non-singular matrix 45
non-trivial linear combination 55
normal vector to a plane 113

orthogonal matrix 37, 39, 45
orthogonal vectors 111

parallelepiped 129

parallel planes 115

Parallelogram Law 91

parameters in solutions to simultaneous
equations 11, 83, 115

parametric equations for a straight
line 107

partial pivoting 5

perpendicular vectors 111

perpendicular distance from a point to a
plane 117

plane 113

position vector 93
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rank of a matrix 59, 61, 73, 81ff.
row-echelon form 7
row vector 23

scalar triple product 129

Section Formula 97

simultaneous equations 11ff., 81ff.
singular matrix 45

skew-symmetric matrix 37

solution of simultaneous equations 11ff.
standard basis vectors 101

straight line 105ff.

symmetric matrix 35

transpose of a matrix 35
transpose of a product 37
Triangle Law 91
triangular matrix 35, 73

unit vector 101
upper triangular matrix 35, 39, 47

vector 23, 87ff.
vectors in geometry 87ff.
volume of a parallelepiped 129

zero matrix 33



