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Preface

This book is an extension of different lectures given by the authors during many
years at the University of Nice, at the University of Stuttgart in 1990, and the Uni-
versity of Bordeaux in 2000 and 2001. Large parts of the first four chapters are of
master level and contain various examples and exercises, partly posed at exams.
However, the infinite-dimensional set-up in Chapter 2 requires several tools and
results from the theory of linear operators. A brief description of these tools and
results is given in Appendix A.

Bifurcation theory forms the object of many different books over the past 30
years. We refer, for instance, to [4, 58, 17, 38, 29, 30, 39, 51, 110, 84, 16, 10, 79] for
some references covering various topics, going from elementary local bifurcations
to global bifurcations and applications to partial differential equations. In this book
we restrict our attention to the study of local bifurcations. Starting with the simplest
bifurcation problems arising for ordinary differential equations in one and two di-
mensions, the purpose of this book is to describe several tools from the theory of
infinite-dimensional dynamical systems, allowing to treat more complicated bifur-
cation problems, as for instance bifurcations arising in partial differential equations.
Such tools are extensively used to solve concrete problems arising in physics and
natural sciences.

In a parameter-dependent physical system, for example, modelized by a differ-
ential equation, the presence of a bifurcation corresponds to a topological change
in the structure of the solution set (which may break its symmetry in the case of a
system invariant under some symmetry group). Such a change may imply the occur-
rence of new solutions, or the disappearance of certain solutions, or may indicate a
change of stability of certain solutions. Local bifurcation theory allows one to de-
tect solutions and to describe their geometric (including symmetries) and dynamic
properties. During the last decades the use of bifurcation theory, and in particular of
the methods presented in this book, led to significant progress in the understanding
of nonlinear phenomena in partial differential equations, including hydrodynamic
problems, structural mechanics, but also pattern formation, population dynamics,
or questions in biophysics. For instance, in the classical Couette–Taylor problem
describing flows between two coaxial rotating cylinders (briefly presented in Sec-
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tion 5.1.2), the theory was not only a qualitative one, but also sufficiently quanti-
tative to allow prediction of numerical values of the parameters, where new flows,
such as “ribbons,” were expected to be observed. These were indeed later observed
experimentally [117]. This predictive power of the local theory appeared again in
water wave theory, where new forms of “solitary waves,” with damping oscilla-
tions at infinity, were found (see Section 5.2.1), or in the propagation of interfaces
between metastable states, where new types of fronts were constructed (see Sec-
tion 5.2.2).

In this book we focus on two specific methods that arise in the analysis of local
bifurcations in infinite-dimensional systems, namely the center manifold reduction
and the normal form theory. Center manifolds provide a powerful method of anal-
ysis of such systems, as they allow one to reduce, under certain conditions, the
infinite-dimensional dynamics near a bifurcation point to a finite-dimensional dy-
namics, described by a system of ordinary differential equations. An efficient way
of studying the resulting reduced systems is with the help of normal form theory,
which consists in suitably transforming a nonlinear system, in order to keep only the
relevant nonlinear terms and to allow easier recognition of its dynamics. The com-
bination of these two methods led over the recent years to significant progress in the
understanding of various problems arising in applied sciences, and in particular in
the study of nonlinear waves. A common feature of many of these problems is the
presence of symmetries, as for instance reversibility symmetries. It turns out that
both the center manifold reduction and the normal form transformations preserve
symmetries, allowing then an efficient treatment of such problems. In addition, they
provide a detailed comprehensive study near a singularity in the solution set of the
system, which might also orient a numerical treatment of such problems.

The book is organized as follows. We start in Chapter 1 with a presentation of the
simplest bifurcations for one- and two-dimensional ordinary differential equations:
saddle-node, pitchfork, Hopf, and steady bifurcations in the presence of a simple
symmetry group. The purpose of this particular choice is to also introduce the reader
to some of the techniques and notations used in the next chapters. Chapter 2 is de-
voted to the center manifold theory. This is the core tool used all throughout this
book. We present the center manifold reduction for infinite-dimensional systems,
together with simple examples and exercises illustrating the variety of possible ap-
plications. The aim is to allow readers who are not familiar with the subject to use
this reduction method simply by checking some clear assumptions. Chapter 3 is con-
cerned with the normal form theory. In particular, we show how to systematically
compute the normal forms in concrete situations. We illustrate the general theory
on different bifurcation problems, for which we provide explicit formulas for the
normal form, allowing one to obtain quantitative results for the resulting systems.
In Chapter 4 the normal form theory is applied to the study of reversible bifurca-
tions, which appear to be of particular importance in applications, as this is shown
in Chapter 5. We focus on bifurcations of codimension 1, i.e., bifurcations involving
a single parameter, which arise generically for systems in dimensions 2, 3, and 4. In
all cases, we give the normal forms and collect some known facts on their dynam-
ics. Finally, in Chapter 5 we present some applications of the methods described
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in the previous chapters. Without going into detail, for which we refer to the liter-
ature, we discuss hydrodynamic instabilities arising in the Couette–Taylor and the
Bénard–Rayleigh convection problems and the questions of existence of traveling
water waves, of almost planar waves in reaction-diffusion systems, and of traveling
waves in lattices. The proofs (few being original) of some of the results in Chapters 2
and 3, and some of the normal form calculations in Chapters 3 and 4, are given in
the Appendix. The Appendix is completed by a brief collection of results from the
theory of linear operators used in Chapters 2, 3, and 5, and a short introduction to
basic Sobolev spaces.

Historical Remark

Many authors refer to the work of C. G. J. Jacobi from 1834, on equilibria of self-
gravitating rotating ellipsoids [71], as a first reference in the field of bifurcation
theory. However, it seems that the first serious works on bifurcation problems were
by Archimedes and Apollonios over 200 years BCE. Archimedes studied the equilib-
ria of a floating paraboloid of revolution [107]. In today’s terminology his results
would correspond to a pitchfork bifurcation which breaks a flip symmetry, or to a
steady bifurcation with O(2) symmetry, when taking into account the invariance un-
der rotations about the paraboloid axis. Apollonios studied the extrema of the length
of segments joining a point of the plane to a given conic [74]. The number of solu-
tions changes from one to three in crossing the envelope of the normals to the conic.
Here again, due to the symmetry of the conic, we have an example of a pitchfork
bifurcation. Finally, it seems that the French word “bifurcation” was introduced by
Poincaré in 1885 [103].

Notational Remark

We adopt Arnold’s notation [4] to distinguish classes of real matrices L with the
same Jordan form by indicating the eigenvalues of L and the length of their Jordan
chain (e.g., iω when L has a pair of simple complex eigenvalues ±iω , 02 when L
has a double zero eigenvalue with a Jordan block of length 2, (iω1)(iω2) when L
has two pairs of complex eigenvalues ±iω1 and ±iω2, and so on).

Remark on Numbering

Each of the five chapters of this book is numbered with Arabic numerals. Sections
and subsections are numbered within chapters. The sections are identified by two
numbers, the number of the chapter and the number of the section in the chapter
(e.g., Section 1.2 is the second section in Chapter 1). The subsections are identified
by three numbers, the number of the chapter, the number of the section, and the
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number of the subsection (e.g., Section 1.2.1 is the first subsection in Section 1.2 of
Chapter 1).

Equations are numbered within sections and identified by only two numbers: the
number of the section inside the chapter (omitting the number of the chapter), and
the number of the equation inside the section (e.g., equation (2.1) is the first equation
in the second section of the current chapter). When referring to an equation, we only
give the number, e.g., equation (2.1), if the equation is in the current chapter, but
also mention the number of the chapter if the equation is in a different chapter, e.g.,
equation (2.1) in Chapter 2.

Definitions, hypotheses, theorems, lemmas, corollaries, remarks, and exercises
are numbered together within sections, and identified by two numbers, just as the
equations. Figures are numbered independently within sections and identified also
by two numbers, just as equations.
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Chapter 1
Elementary Bifurcations

In this chapter we discuss typical local bifurcations in one and two dimensions. We
restrict our attention to bifurcations of codimension 1, which require only one real
parameter in order to generically occur. We include several cases of systems that
possess an invariance under some simple symmetry.

1.1 Bifurcations in Dimension 1

We consider in this section two generic bifurcations that are found for scalar differ-
ential equations of the form

du
dt

= f (u,μ). (1.1)

Here the unknown u is a real-valued function of the “time” t, and the vector field f
is real-valued depending, besides u, upon a real parameter μ . The parameter μ is
the bifurcation parameter.

We assume that the vector field f is of class Ck, k ≥ 2, in a neighborhood of (0,0)
satisfying

f (0,0) = 0,
∂ f
∂u

(0,0) = 0. (1.2)

The first condition shows that u = 0 is an equilibrium of (1.1) at μ = 0. We are
interested in (local) bifurcations that occur in the neighborhood of this equilibrium
when we vary the parameter μ . Then the second equality in (1.2) is a necessary,
but not sufficient, condition for the appearance of local bifurcations at μ = 0. If
∂ f /∂u(0,0) �= 0, the condition (1.2) is not satisfied and a direct application of the
implicit function theorem shows that the equation f (u,μ) = 0 possesses a unique
solution u = u(μ) in a neighborhood of 0, for any μ sufficiently small. In particular,
u = 0 is the only equilibrium of (1.1) in a neighborhood of the origin when μ = 0,
and the same property holds for μ sufficiently small. Furthermore, it is not difficult
to show that the dynamics of (1.1) in a neighborhood of the origin is qualitatively

M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms
in Infinite-Dimensional Dynamical Systems, Universitext,
DOI 10.1007/978-0-85729-112-7 1, © EDP Sciences 2011
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2 1 Elementary Bifurcations

the same for all sufficiently small values of the parameter μ . Consequently, in this
situation no bifurcation occurs for small values of μ .

1.1.1 Saddle-Node Bifurcation

We discuss in this section the simplest bifurcation that occurs in one dimension, the
saddle-node bifurcation. Throughout this section we make the following hypothesis.

Hypothesis 1.1 Assume that the vector field f is of class C k, k ≥ 2, in a neighbor-
hood of (0,0), and that it satisfies (1.2) and

∂ f
∂ μ

(0,0) =: a �= 0,
∂ 2 f
∂u2 (0,0) =: 2b �= 0. (1.3)

An immediate consequence of this hypothesis is that f has the expansion

f (u,μ) = aμ +bu2 +o(|μ |+u2),

as (u,μ) → (0,0). It is then natural to start by studying the truncated equation

du
dt

= aμ +bu2, (1.4)

for which we expect that the dynamics near 0 are the same as those of (1.1).

Truncated Equation

The equilibria of (1.4) are solutions of the equation aμ + bu2 = 0, so that the trun-
cated equation has no equilibria if abμ > 0, one equilibrium u = 0 if μ = 0, and
a pair of equilibria u = ±

√
−aμ/b if abμ < 0. As for the dynamics, in the case

abμ > 0 the function aμ +bu2 has a constant sign for all u ∈R, so that the solutions
are monotone: increasing when b > 0 and decreasing when b < 0 (see Figure 1.1(a)).
The same property holds for the nonequilibrium solutions in the case μ = 0: They
are increasing when b > 0 and decreasing when b < 0 (see Figure 1.1(b)). Finally,
in the case abμ < 0, the function aμ + bu2 changes sign at the equilibrium points
u = ±

√
−aμ/b, and we find that solutions with |u(t)| <

√
−aμ/b are decreasing

when b > 0 and increasing when b < 0, whereas solutions with |u(t)| >
√
−aμ/b

are increasing when b > 0 and decreasing when b < 0 (see Figure 1.1(c)). In particu-
lar, the equilibrium −

√
−aμ/b is attractive, asymptotically stable, when b > 0, and

repelling, unstable, when b < 0; whereas, the equilibrium
√

−aμ/b has opposite
stability properties.

We summarize in Figure 1.2 the dynamics of the truncated equation. In all cases,
the qualitative behavior of the solutions changes when μ crosses 0. The value μ = 0
is the bifurcation point. At this value, a pair of equilibria with opposite stability
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Fig. 1.1 Extended phase portrait, in the (t,u)-plane, of the truncated equation (1.4) for b > 0 and
(a) aμ > 0, (b) μ = 0, (c) aμ < 0.

properties emerges for μ > 0 when ab < 0, and μ < 0 when ab > 0. We are here in
the presence of a saddle-node bifurcation (also called fold or turning point bifurca-
tion).

Fig. 1.2 Saddle-node bifurcation: bifurcation diagrams, in the (μ,u)-plane, of the truncated equa-
tion (1.4) for different values of a and b. The solid lines represent branches of stable equilibria,
the dashed lines branches of unstable equilibria, and the arrows indicate the sense of increasing
time t. For the full equation (1.1), under Hypothesis 1.1, the bifurcation diagrams are qualitatively
the same in a neighborhood of the origin.

Remark 1.2 (Saddle-node bifurcation) The names fold and turning point bifur-
cations are inspired by the form of the branch of the bifurcating equilibria in the
(μ ,u)-plane. The name saddle-node bifurcation comes from the fact that in the n-
dimensional case, when u(t) ∈ R

n, the two emerging equilibria are typically a sad-
dle point and a node.

Remark 1.3 (Explicit solutions) The truncated equation (1.4) can be easily solved
explicitly. For abμ > 0 we set

u =
√

aμ
b

v

and obtain the equation

dv
dt

= sign(b)
√

abμ (1+ v2).
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The unique solution v of this first order ordinary differential equation (ODE) with
initial data v(0) = v0 is then given by

v(t) = tan
(

sign(b)
√

abμ t + arctan(v0)
)

, (1.5)

with arctanv0 ∈ (−π/2,π/2). Similarly, for abμ < 0 we set

u =

√
−aμ

b
v

and obtain
dv
dt

= sign(b)
√
−abμ (v2 −1).

Hence,
v(t)+1
v(t)−1

=
v0 +1
v0 −1

e−2sign(b)
√

−abμ t ,

for any v0 �=±1. For v0 =±1, we find the constant solutions v(t) =±1. Finally, for
μ = 0 we have the unique solution

u(t) =
u0

1−bu0t

for initial data u(0) = u0. These calculations then give the results described above
and summarized in Figures 1.1 and 1.2. In addition, they show that the solu-
tions blow up in finite time (either positive or negative), except for initial data

u0 ∈
[
−

√
−aμ/b,

√
−aμ/b

]
, when abμ ≤ 0.

Full Dynamics

Let us now consider the full equation (1.1). The equilibria are solutions of the equa-
tion f (u,μ) = 0. Since a �= 0 we can apply the implicit function theorem, which
shows that this equation possesses a unique solution μ = g(u) for u close to 0. The
map g is of class C k in a neighborhood of the origin, and g(0) = 0. Moreover, its
Taylor expansion is given by

μ = −b
a

u2 +o(u2).

This gives a curve in the (μ ,u)-plane, which has a second order tangency at (0,0)
to the parabola μ = −bu2/a found for the truncated equation (see Figure 1.2). In
particular, this shows that the truncated equation and the full equation have the same
number of equilibria in a neighborhood of the origin, which are o(|μ |1/2)-close
to each other. Consequently, the full equation has no equilibria if abμ > 0, one
equilibrium u = 0 if μ = 0, and a pair of equilibria u±(μ) =±

√
−aμ/b+o(|μ |1/2)

if abμ < 0.
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As for the dynamics, the situation is also similar to that for the truncated equation,
provided u and μ are sufficiently small. In the case abμ > 0 the function f (u,μ) has
constant sign for sufficiently small u and μ , so that in a neighborhood of the origin
the solutions are monotone: increasing when b > 0 and decreasing when b < 0 (see
Figure 1.1(a)). When μ = 0, the nonequilibrium solutions are monotone: increasing
when b > 0 and decreasing when b < 0 (see Figure 1.1(b)). Finally, in the case
abμ < 0, the function f (u,μ) changes sign at the equilibrium points u±(μ), where

∂ f
∂u

(u±(μ),μ) = 2bu±(μ)+o(|μ |1/2)

has a definite sign. Then the equilibrium u−(μ) is attractive, asymptotically sta-
ble when b > 0, and repelling, unstable when b < 0; whereas, the equilibrium
u+(μ) has opposite stability properties. Further, we find that solutions with u(t) ∈
(u−(μ),u+(μ)) are decreasing when b > 0 and increasing when b < 0, whereas
solutions outside this interval, with u(t) > u+(μ) or u(t) < u−(μ) are increasing
when b > 0 and decreasing when b < 0 (see Figure 1.1(c)). Just as for the truncated
equation, we have here a saddle-node bifurcation (see Figure 1.2). We summarize
this result in the following theorem.

Theorem 1.4 (Saddle-node bifurcation) Assume that the vector field f satisfies
Hypothesis 1.1. Then, for the differential equation (1.1) a saddle-node bifurcation
occurs at μ = 0. More precisely, the following properties hold in a neighborhood of
0 in R for sufficiently small μ:

(i) If ab < 0 (resp., ab > 0) the differential equation has no equilibria for μ < 0
(resp., for μ > 0).

(ii) If ab < 0 (resp., ab > 0), the differential equation possesses precisely two equi-
libria u±(ε), ε = |μ |1/2 for μ > 0 (resp., for μ < 0), with opposite stabilities.
Furthermore, the map ε �→ u±(ε) is of class C k−2 in a neighborhood of 0, and
u±(ε) = O(ε).

Remark 1.5 (Higher orders) In the case when b = 0, but still a �= 0, one has to look
for the lowest positive integer n for which the derivative ∂ n f/∂un(0,0) = bn! �= 0.
The equilibria are then of order O(|μ |1/n), and for n even the qualitative phase
portraits are as in Figure 1.2. When n is odd, the branch of equilibria crosses the
u-axis, and on each side the equilibria have the same stability (stable if b < 0, or
unstable if b > 0). If a = b = 0, then the situation requires a study of the Newton
polygon and enters more into the framework of singularity theory (e.g., see [29]).

1.1.2 Pitchfork Bifurcation

In many physical situations the problem possesses some symmetry. The simplest
one that occurs in one dimension is the reflection, or mirror, symmetry: u �→ −u.
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In this section we discuss this situation and the corresponding generic bifurcation,
which is the pitchfork bifurcation.

We consider again the scalar differential equation (1.1) and now make the fol-
lowing assumptions.

Hypothesis 1.6 Assume that the vector field in (1.1) is of class C k, k ≥ 3, in a
neighborhood of (0,0), that it satisfies (1.2), and that it is odd with respect to u, i.e.,

f (−u,μ) = − f (u,μ). (1.6)

Further assume that

∂ 2 f
∂ μ∂u

(0,0) =: a �= 0,
∂ 3 f
∂u3 (0,0) =: 6b �= 0. (1.7)

An immediate consequence of the oddness property of f is that

f (0,μ) = 0 for all μ ,

so that u = 0 is an equilibrium of (1.1) for all μ .

Truncated Equation

We start again by studying the truncated equation, which in this case is

du
dt

= aμu+bu3. (1.8)

As for the full equation, u = 0 is an equilibrium of this equation for all values of μ .
Upon solving the equation aμu+bu3 = 0, we find that u = 0 is the only equilibrium
of (1.8) if abμ ≥ 0, and that for abμ < 0 there is an additional pair of nontrivial
equilibria u = ±

√
−aμ/b. As for the dynamics, the nonequilibrium solutions are

monotone, with monotonicity determined by the sign of the function aμu+bu3. This
function changes sign precisely at the equilibrium points, and a direct calculation
leads to the diagram in Figure 1.3.

Again, the qualitative behavior of the solutions changes when μ crosses 0, so that
μ = 0 is a bifurcation point. At this value, the trivial equilibrium u = 0 changes its
stability, and a pair of equilibria having the same stability, but opposite to that of the
trivial equilibrium, emerges for μ > 0 when ab < 0, and μ < 0 when ab > 0. Here
we are in the presence of a pitchfork bifurcation. The cases in which the emerging
nontrivial equilibria are stable are called supercritical, whereas the cases in which
these equilibria are unstable are called subcritical.

Remark 1.7 (Pitchfork bifurcation) The name pitchfork bifurcation comes from
the form of the branches of equilibria in the bifurcation diagram (even though actual
pitchforks in the countryside may look different in various countries).
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Fig. 1.3 Pitchfork bifurcation: bifurcation diagrams, in the (μ,u)-plane, of the truncated equation
(1.8) for different values of a and b. The solid lines represent branches of stable equilibria, the
dashed lines branches of unstable equilibria, and the arrows indicate the sense of increasing time t.
For the full equation (1.1), under Hypothesis 1.6, the bifurcation diagrams are qualitatively the
same.

Remark 1.8 (Explicit solution) The truncated equation (1.8) can be easily solved
explicitly. A direct calculation shows that its unique solution for initial data u(0) =
u0 is given by

u2(t) =
aμu2

0

aμe−2aμt +bu2
0(e−2aμt −1)

.

This formula allows us to recover the bifurcation diagrams in Figure 1.3 and shows,
in addition, that the unbounded nonequilibrium solutions blow up in either positive
or negative finite time.

Full Dynamics

We consider now the full equation (1.1), under Hypothesis 1.6. The equilibria are
solutions of f (u,μ) = 0, and as already noticed, u = 0 is always an equilibrium
because of the oddness of f in u. In addition, a standard analysis argument shows
that we can rewrite the vector field f as follows:

f (u,μ) = uh(u2,μ), h(u2,μ) = aμ +bu2 +o(|μ |+u2),

where h is of class C (k−1)/2 in a neighborhood of (0,0). Since a �= 0 we can apply
the implicit function theorem to the equation h(u2,μ) = 0, which shows that it has a
unique solution μ = g(u2) with g(0) = 0 and g of class C (k−1)/2 in a neighborhood
of 0. The Taylor expansion of g is given by

μ = −b
a

u2 +o(u4).

We then conclude that there is a curve of nontrivial equilibria in the (μ ,u)-plane
that has a second order tangency at (0,0) to the parabola μ = −bu2/a found for
the truncated equation (see Figure 1.3), and which is symmetric with respect to the
μ-axis. Again, this shows that the truncated equation and the full equation have the
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same number of equilibria in a neighborhood of the origin, which are o(|μ |1/2)-
close to each other. As for the dynamics, it is here again easy to study by looking
at the sign of f (u,μ). The arguments are analogous to those in the case discussed
in Section 1.1.1 and lead to the bifurcation diagrams in Figure 1.3. We summarize
these results in the following theorem.

Theorem 1.9 (Pitchfork bifurcation) Assume that the vector field f satisfies Hy-
pothesis 1.6. Then, for the differential equation (1.1), a supercritical (resp., subcriti-
cal) pitchfork bifurcation occurs at μ = 0 when b < 0 (resp., b > 0). More precisely,
the following properties hold in a neighborhood of 0 in R for sufficiently small μ:

(i) If ab < 0 (resp., ab > 0) the differential equation has precisely one trivial equi-
librium u = 0 for μ < 0 (resp., for μ > 0). This equilibrium is stable when b < 0
and unstable when b > 0.

(ii) If ab < 0 (resp., ab > 0), the differential equation possesses, for μ > 0 (resp., for
μ < 0), the trivial equilibrium u = 0 and two nontrivial equilibria u±(ε), ε =
|μ |1/2, which are symmetric, u−(ε) = −u+(ε). The map ε �→ u±(ε) is of class
C k−3 in a neighborhood of 0, and u±(ε) = O(ε). Furthermore, the nontrivial
equilibria are stable when b < 0 and unstable when b > 0, whereas the trivial
equilibrium has opposite stability.

Remark 1.10 (Higher orders) In the case b = 0, but still a �= 0, one has to look
for the lowest n for which the derivative ∂ 2n+1 f/∂u2n+1(0,0) �= 0. The equilibria
are then of order O(|μ |1/2n) and the qualitative phase portraits are as in Figure 1.3.
If a = b = 0 then the situation requires a study of the Newton polygon and belongs
more in the field of singularity theory (e.g., see [29]).

1.2 Bifurcations in Dimension 2

In the remainder of this chapter we consider differential equations in R
2,

du
dt

= F(u,μ). (2.1)

Now the unknown u takes values in R
2, just as the vector field F, which depends

again besides depending on u, upon a real parameter μ .
We assume that the vector field F is of class C k, k ≥ 3, in a neighborhood of

(0,0), satisfying
F(0,0) = 0. (2.2)

Again, this condition shows that u = 0 is an equilibrium of (2.1) at μ = 0. We are in-
terested in (local) bifurcations which occur in the neighborhood of this equilibrium
when varying the parameter μ . The appearance, or the absence, of bifurcations is in
this case determined by the linearization of the vector field at (0,0),

L := DuF(0,0),
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which is a linear map (operator) acting in R
2. In the case when the linear map L has

no eigenvalue on the imaginary axis, the Hartman–Grobman theorem shows that the
phase portraits of the equation (2.1) are qualitatively the same upon varying μ in a
neighborhood of 0 (e.g., see [32], [46]). In particular, no local bifurcations occur in
this case. When L has eigenvalues on the imaginary axis, bifurcations may occur at
μ = 0. The type of these bifurcations depend upon the location of the eigenvalues
on the imaginary axis. While we do not attempt to give a complete description of
the possible bifurcations for two-dimensional systems, we focus in this section on
two cases: L has a pair of complex conjugated purely imaginary eigenvalues (Hopf
bifurcation), and L has a double zero eigenvalue (steady bifurcation) for a system
possessing an O(2)-symmetry. The cases in which 0 is a simple eigenvalue of L
and another eigenvalue is real and different from 0, fall in the discussion of Chap-
ter 2, using a center manifold reduction (e.g., see the examples in Sections 2.2.4 and
2.4.2). The case of 0 a double, non-semisimple (with only one eigenvector) eigen-
value of L is treated in Chapter 4 in the presence of a reversibility symmetry, which
makes this bifurcation generically occur with only one real parameter.

1.2.1 Hopf Bifurcation

One generic bifurcation in two dimensions is the Hopf bifurcation, which occurs
when the linear operator L possesses a pair of purely imaginary complex conjugated
eigenvalues. This bifurcation was first proved in two dimensions by Andronov [3]
in 1937; it is therefore also referred to as Andronov–Hopf bifurcation, after it was
guessed by H. Poincaré in the early 1900s [102]. The n-dimensional case was proved
by Hopf in 1942, using the Lyapunov–Schmidt method [50]. Our analysis relies
upon the normal form theory that we develop in detail in Chapter 3.

Hypothesis 2.1 Assume that the vector field F in (2.1) is of class C k, k ≥ 5, that
it satisfies (2.2), and that the two eigenvalues of the linear operator L are ±iω for
some ω > 0.

Remark 2.2 (i) Since the operator L is real, its spectrum is symmetric with re-
spect to the real axis, so that purely imaginary eigenvalues occur in pairs ±iω .

(ii) Hypothesis 2.1 implies that L is invertible, since 0 is not an eigenvalue of L.
By arguing using the implicit function theorem, we can then solve the equation
F(u,μ) = 0 near (0,0). This gives a unique family of steady solutions u = u(μ)
for sufficiently small μ , with u(0) = 0. Furthermore, the map μ �→ u(μ) is of
class C k, and by making the change of variables u �→ u(μ)+u, we may replace
assumption (2.2) by

F(0,μ) = 0. (2.3)

In this way, u = 0 becomes an equilibrium of (2.1) for all values of μ suffi-
ciently small. We point out that it is then a generic possibility that a pair of
complex eigenvalues of the linearized operators Lμ = DuF(0,μ) crosses the
imaginary axis for a critical value of the parameter μ (here μ = 0).
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(iii) In contrast to the two bifurcations discussed before, now the number of equi-
libria of the differential equation stays constant upon varying μ in a neigh-
borhood of 0. As we shall see, we have here a different type of bifurcation in
which it is the dynamics of the differential equation that change at the bifurca-
tion point μ = 0, and not the number of equilibria. Such bifurcations are also
called dynamic bifurcations, whereas those in which the number of equilibria
changes are also called steady bifurcations.

Consider the eigenvectors ζ and ζ associated with the eigenvalues iω and −iω
of L, respectively,

Lζ = iωζ , Lζ = −iωζ .

A convenient way of looking at equation (2.1) in this case is by representing any
u ∈ R

2 by a complex coordinate z ∈ C through

u = zζ + zζ . (2.4)

Adopting the same decomposition for F, we write

F(u,μ) = f (z,z,μ)ζ + f (z,z,μ)ζ

and then obtain two complex differential equations

dz
dt

= f (z,z,μ), (2.5)

together with its complex conjugate. The complex-valued vector field f is of
class C k in a neighborhood of the origin in R

2 ×R, where the argument in R
2 is

represented by the “diagonal” (z,z) ∈ C
2. (Notice that f is not holomorphic in z.) In

these coordinates, the differential of the new vector field ( f , f ) at the origin is given
by

L =

(
∂ f
∂ z (0,0,0) ∂ f

∂ z (0,0,0)
∂ f
∂ z (0,0,0) ∂ f

∂ z (0,0,0)

)

=
(

iω 0
0 −iω

)
.

Though the linear part L of (2.5) is now in canonical form, it is still difficult to
detect its dynamics in general. Our approach relies upon the normal form theory
developed in Chapter 3. Roughly speaking, the idea of normal forms consists in
adding a polynomial term to the change of coordinates (2.4), such that the vector
field of the resulting system has a simpler, particular form, also at the nonlinear
level.

Normal Form

According to the general normal form theorem, Theorem 2.2 in Chapter 3, for any
integer p≤ k, and any μ sufficiently small, there exists a polynomial Φμ of degree p
in (A,A), with complex coefficients, depending upon μ , and taking values in R

2,



1.2 Bifurcations in Dimension 2 11

such that
Φ0(0,0) = 0, ∂AΦ0(0,0) = 0, ∂AΦ0(0,0) = 0,

and that the (near to identity) change of variables in R
2,

u = Aζ +Aζ +Φμ(A,A), A ∈ C, (2.6)

transforms the equation (2.1) into a differential equation, or “amplitude equation,”

dA
dt

= iωA+Nμ(A,A,)+ρ(A,A,μ). (2.7)

Here Nμ is a complex polynomial of degree p in (A,A), with

N0(0,0) = 0, ∂AN0(0,0) = 0, ∂AN0(0,0) = 0, (2.8)

and the remainder ρ satisfies

ρ(A,A,μ) = o(|A|p).

Furthermore, the polynomial

Nμ(A,A) = (Nμ(A,A),Nμ(A,A))

commutes with the mapping

(A,A) �→ (eiωtA,e−iωtA),

which implies that

Nμ(eiωtA,e−iωtA) = eiωtNμ(A,A) for all A, t. (2.9)

Remark 2.3 (Symmetry) We observe that the transformation (2.6) has the effect of
adding a symmetry for the terms up to degree p in the expansion of the transformed
vector field. The property (2.9) means that the truncation at order p of the vector
field is equivariant under rotations in the complex plane, which is a rather strong
restriction. We point out that in general this transformation cannot be achieved for
p = ∞, even when F in (2.1) is analytic.

The following elementary lemma allows us to describe more precisely the poly-
nomials Nμ satisfying (2.9).

Lemma 2.4 Let f be a complex-valued function of class C k, k ≥ 1, defined in a
neighborhood U of the origin in {(z,z) ; z ∈ C}, and which verifies

f (eiωt z,e−iωt z) = eiωt f (z,z) for any t ∈ R and (z,z) ∈ U . (2.10)

Then there exists an even, complex-valued function g of class C k−1 defined in a
neighborhood of 0 in R, such that
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f (z,z) = zg(|z|). (2.11)

Furthermore, if f is a polynomial, then g is an even polynomial, g(|z|) = φ(|z|2),
for a polynomial φ .

Proof First, choose t = −argz/ω in (2.10), which then reads

f (z,z) = eiargz f (|z|, |z|) for all (z,z) ∈ U .

Next, we take t = π/ω and find

f (−z,−z) = − f (z,z).

It follows that f (|z|, |z|) is odd in |z|, and a standard analysis result implies that there
exists an even function g of class C k−1 in a neighborhood of 0 in R, such that

f (|z|, |z|) = |z|g(|z|).

This proves the first part of the lemma. For a polynomial f , the above identity im-
plies that g is an even polynomial in |z|. Hence, there exists a polynomial φ such
that g(|z|) = φ(|z|2), which completes the proof of the lemma. 	


Going back to the differential equation (2.7), the above lemma together with the
equalities (2.8) show that it is of the form

dA
dt

= iωA+AQ(|A|2,μ)+ρ(A,A,μ). (2.12)

Here Q is a complex-valued polynomial with expansion

Q(|A|2,μ) = aμ +b|A|2 +O((|μ |+ |A|2)2), (2.13)

in which a and b are complex numbers. We make the following generic assumption
on the coefficients a and b.

Hypothesis 2.5 The complex coefficients a and b in the expansion (2.13) of the
polynomial Q have nonzero real parts, ar �= 0 and br �= 0.

Truncated System

We start again by the study of the truncated system obtained by suppressing the
higher order terms ρ in (2.12). We introduce polar coordinates by setting

A = reiφ ,

where r ∈ R
+ and φ ∈ R/2πZ. We obtain the equation

dr
dt

+ ir
dφ
dt

= iωr + rQ(r2,μ),
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and by taking the real and imaginary parts, we find the system

dr
dt

= rQr(r2,μ), (2.14)

dφ
dt

= ω +Qi(r2,μ), (2.15)

where Qr = (Q+Q)/2 and Qi = (Q−Q)/2i are the real and imaginary parts of the
polynomial Q, respectively. Then Qr and Qi are polynomials of degree ≤ (p−1)/2
in r2, with Qr(0,0) = Qi(0,0) = 0, and expansions

Qr(r2,μ) = arμ +brr
2 +O((|μ |+ r2)2),

Qi(r2,μ) = aiμ +bir
2 +O((|μ |+ r2)2).

The real coefficients ar and br represent the real parts of a and b, respectively, which
are both nonzero, by Hypothesis 2.5, whereas ai and bi represent the imaginary parts
of a and b, respectively.

The key property of the system (2.14)–(2.15) for r and φ is that the radial equa-
tion (2.14) for r decouples, so that we can solve it separately. Upon comparing (2.14)
with the scalar differential equation discussed in Section 1.1.2, we conclude that for
this equation a pitchfork bifurcation occurs at μ = 0, which is supercritical when
br < 0 and subcritical when br > 0. The bifurcation diagrams for this equation are
the same as those in Figure 1.3 with a and b replaced by ar and br, respectively.
Since for the radial equation we restrict ourselves to positive solutions, then for
arbr < 0 (resp., arbr > 0), the radial equation possesses the positive steady solution

r∗(μ) =
√

−arμ
br

+O(|μ |3/2),

for μ > 0 (resp., μ < 0). Upon substituting this solution in the equation (2.15) we
obtain the derivative of the phase (pulsation),

dφ ∗(μ)
dt

= ω∗(μ) = ω +Qi((r∗(μ))2,μ) = ω +
(

ai −bi
ar

br

)
μ +O(|μ |2),

and going back to the amplitude A this gives the periodic solutions

A∗(t,μ) = r∗(μ)eiω∗(μ)t , t ∈ R. (2.16)

The stability of these periodic solutions is the same as that of the steady solution
r∗(μ) of (2.14): They are stable when br < 0 and unstable when br > 0. Figure 2.1
illustrates the bifurcation diagram in the supercritical case ar > 0 and br < 0. Similar
bifurcation diagrams can be easily obtained in the other three cases, just as for the
pitchfork bifurcation in Figure 1.3.
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Fig. 2.1 Hopf bifurcation in the case ar > 0, br < 0.

Persistence of Periodic Solutions

We now turn back to the hardest part of the analysis, that is, the proof of the persis-
tence of such periodic orbits for the full equation (2.12). In what follows, we assume
ar > 0, br < 0, and then also μ > 0, to fix ideas, the proof being analogous in the
other cases.

As for the truncated system we introduce polar coordinates by setting

A = reiφ , r ∈ R
+, φ ∈ R/2πZ,

and obtain the system

dr
dt

= fr(r,φ ,μ) = rQr(r2,μ)+Rr(r,φ ,μ),

dφ
dt

= fφ (r,φ ,μ) = ω +Qi(r2,μ)+Rφ (r,φ ,μ),

where Rr = O((r + |μ |)p+1) and Rφ = O((r + |μ |)p+1/r). We now set

r = μ1/2
(√

−ar

br
+ v

)
,

where the new unknown v is supposed to lie in a small interval near 0. In this annular
region of the plane, for μ small enough,

fφ (r,φ ,μ) = ω +O(μ)

has a constant sign, and

fr(r,φ ,μ) = μ3/2
(√

−ar

br
+ v

)(
2vbr

√
−ar

br
+brv

2
)

+O(μ(p+1)/2).
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Using the fact that we can choose p ≥ 4, this leads to the equation

dv
dφ

= −2arμ
ω

v+ρ1(v,φ ,μ), ρ1(v,φ ,μ) = O(μv2 + μ2), (2.17)

where ρ1 is Lipschitz-continuous and bounded for −ε < v < ε , for ε small enough.
We use a fixed point argument to show that this equation possesses a 2π-periodic
solution for sufficiently small μ , which then gives the desired result.

By Duhamel’s formula, the solution v(φ), for initial data v(0) = v0, of the differ-
ential equation (2.17) satisfies the integral equation

v(φ) = e−
2ar μ

ω φ v0 +
∫ φ

0
e−

2ar μ
ω (φ−θ)ρ1(v,θ ,μ)dθ .

The uniqueness of the solution of the initial value problem, and its differentiability
with respect to the initial data v0, allow us to conclude that, for |v0| < ε , we have

v(φ) = e−
2ar μ

ω φ v0 +h(v0,φ ,μ), h(v0,μ) = O(μv2
0 + μ2)

for φ ∈ [0,2π], where the function h is continuously differentiable. Now, if we can
find a solution v0 for the equation

v0 = e−
2ar μ

ω 2π v0 +h(v0,2π,μ), (2.18)

then the corresponding solution of the integral equation satisfies v(2π) = v0, so that
we have a periodic orbit of (2.12) in a small neighborhood of the circle |A| =
μ1/2

√
−ar/br. Indeed, observe that the Poincaré map

v0 �→ e−
2ar μ

ω 2πv0 +h(v0,2π,μ),

is a contraction in a sufficiently small interval [−ε,ε], because the derivative of the
right hand side with respect to v0 is

1− 2arμ
ω

2π +O(μ2 + με) < 1

for ε and μ > 0 small enough. Consequently, this mapping possesses a unique fixed
point v0 solution of (2.18) for sufficiently small μ > 0.

This shows that the full equation (2.12) has a periodic orbit close to the circle
of radius |A| = r∗(μ), and with period approximated by that of the solution (2.16)
of the truncated equation. In addition, this proof allows us to conclude that this
periodic orbit is attractive for br < 0. We summarize this result in the following
Hopf bifurcation theorem (see also Figure 2.1).

Theorem 2.6 (Hopf bifurcation) Assume that Hypotheses 2.1 and 2.5 hold. Then,
for the differential equation (2.1) a supercritical (resp., subcritical) Hopf bifurcation
occurs at μ = 0 when br < 0 (resp., br > 0). More precisely, the following properties
hold in a neighborhood of 0 in R

2 for sufficiently small μ:
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(i) If arbr < 0 (resp., arbr > 0) the differential equation has precisely one equilib-
rium u(μ) for μ < 0 (resp., for μ > 0) with u(0) = 0. This equilibrium is stable
when br < 0 and unstable when br > 0.

(ii) If arbr < 0 (resp., arbr > 0), the differential equation possesses for μ > 0 (resp.,
for μ < 0) an equilibrium u(μ) and a unique periodic orbit u∗(μ) = O(|μ |1/2),
which surrounds this equilibrium. The periodic orbit is stable when br < 0 and
unstable when br > 0, whereas the equilibrium has opposite stability.

Remark 2.7 The proof in dimension 2 is originally due to Andronov [3]. The n di-
mensional case is due to Hopf [50]. The present proof using normal form arguments
is contained in Ruelle and Takens [108]. We also refer to Marsden and McCracken
[94] and Vanderbauwhede [120].

Remark 2.8 (Higher orders) In the above proof, we extensively use the assump-
tion that the coefficient br is not zero. In the case when this coefficient is zero, one
needs to consider the higher order terms, like the term of order O(A|A|4) in the
expansion of the amplitude equation, and so on. If the problem is not completely de-
generated, it is then possible to adapt the above proof without difficulty. Of course,
this then gives other orders of magnitude for the bifurcating periodic solutions. We
shall see in Chapter 4 that in the case of reversible systems all terms in Qr in the
radial equation disappear, leading to a degenerated situation.

How to Compute the Hopf Bifurcation

We show now how to compute the important coefficients a and b in the normal form
(2.12), (2.13), starting from the expansion of the vector field F in (2.1).

Consider the Taylor expansion of the vector field F in (2.1),

F(u,μ) = ∑
1≤r+q≤k

μqFrq(u(r))+o(|μ |+ ||u||)k, L = F10, (2.19)

where Frq is the r-linear symmetric operator from (R2)r to R
2,

Frq =
1

r!q!
∂ q

∂ μq Dr
uF(0,0),

and u(r) := (u,u, ...u) for u ∈ R
2. In particular, the map u �→ Frq(u(r)) is homoge-

neous of degree r in the coordinates of u. Similarly, for Φμ in (2.6) we write

Φμ(A,A) = ∑
1≤r+s+q≤p

Φ rsqArA
sμq, (2.20)

with
Φ100 = 0, Φ010 = 0, Φ rsq = Φ srq.

Next, we substitute the change of variables (2.6) into (2.1) and obtain the identity
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(ζ +∂AΦμ)
dA
dt

+(ζ +∂AΦμ)
dA
dt

= F(Aζ +Aζ +Φμ ,μ),

in which, according to the normal form (2.12)–(2.13), we have

dA
dt

= iωA+aμA+bA|A|2 +O(μ2|A|+ |μ ||A|3 + |A|5). (2.21)

Replacing F and Φμ by the expressions (2.19) and (2.20), we now identify the dif-
ferent powers of (A,A,μ) in the identity above in order to determine the coefficients
a, b, and Φrsq from the known coefficients Frq.

First, at order O(A) we recover the eigenvalue problem

iωζ = Lζ ,

and then successively, respectively at orders O(μ), O(μA), O(A2), O(AA), O(A3),
O(A2A), we find

0 = LΦ001 +F01 (2.22)

aζ +(iω −L)Φ101 = F11ζ +2F20(ζ ,Φ001) (2.23)

(2iω −L)Φ200 = F20(ζ ,ζ ) (2.24)

−LΦ110 = 2F20(ζ ,ζ ) (2.25)

(3iω −L)Φ300 = 2F20(ζ ,Φ200)+F30(ζ ,ζ ,ζ ) (2.26)

bζ +(iω −L)Φ210 = 2F20(ζ ,Φ200)+2F20(ζ ,Φ110)+3F30(ζ ,ζ ,ζ ). (2.27)

All these equations are linear, and (2.22), (2.24), (2.25), (2.26) can be easily solved,
because the operators L,(2iω −L),(3iω −L) are invertible. This allows us to com-
pute Φ001,Φ200,Φ110,Φ300, and the complex conjugates Φ020,Φ030. The equations
(2.23) and (2.27) have the same structure, however, with the noninvertible matrix
(iω −L). The kernel of this matrix is one-dimensional, since ±iω are simple eigen-
values of L, and one compatibility condition is needed in order to solve each of these
equations. A convenient way of computing this compatibility condition is with the
help of the eigenvector ζ ∗ of the adjoint operator satisfying

(−iω −L∗)ζ ∗ = 0, 〈ζ ,ζ ∗〉 = 1,

where 〈·, ·〉 denotes the Hermitian scalar product in C
2. (For ζ = (z1,z2) ∈ C

2 and
ζ ∗ = (z∗1,z

∗
2) ∈ C

2, we take the Hermitian scalar product defined by

〈ζ ,ζ ∗〉 = z1z∗1 + z2z∗2.)

Upon computing the Hermitian scalar product of these equations with ζ ∗ we find

a = 〈F11ζ +2F20(ζ ,Φ001),ζ ∗〉, (2.28)

and
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b = 〈2F20(ζ ,Φ200)+2F20(ζ ,Φ110)+3F30(ζ ,ζ ,ζ ),ζ ∗〉, (2.29)

in which

Φ001 = −L−1F01,

Φ200 = (2iω −L)−1F20(ζ ,ζ ),

Φ110 = −2L−1F20(ζ ,ζ ),

are obtained as explained above. We point out that Φ001 = 0 in the case when u = 0
is a solution for all μ , since then F(0,μ) = 0, so that F01 = 0. In the same way, it is
possible to derive formulas for higher order coefficients in (2.21), if needed.

1.2.2 Example: Homogeneous Brusselator

Consider the following system of ODEs:

du1

dt
= −(β +1)u1 +u2

1u2 +α

du2

dt
= βu1 −u2

1u2, (2.30)

in which u(t) = (u1(t),u2(t)) ∈ R
2 and α , β are positive constants.

Remark 2.9 This system, called the homogeneous Brusselator [106], arises in the
modeling of an autocatalytic chemical reaction ruled by the following reaction
mechanism:

A
k1→ X

B+X
k2→ Y +D

2X +Y
k3→ 3X

X
k4→ E.

Here A, B, D, and E denote different chemical species, X and Y are intermediate
products, and k j represent the speeds of reactions. Denoting by X, Y , A, B the chem-
ical concentrations of the corresponding species, assuming that the concentrations
are homogeneous, and that the concentrations of components A and B are main-
tained constant, one finds that the evolution of X and Y is governed by the system of
ODEs

dX
dt

= k1A− k2BX + k3X2Y − k4X

dY
dt

= k2BX − k3X2Y.
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Upon setting

u1 =
√

k3

k4
X , u2 =

√
k3

k4
Y, α =

√
k3

k4

k1A
k4

, β =
k2B
k4

, t̄ = k4t,

this leads to the system (2.30), in which we have dropped the bar on t.

The system (2.30) possesses one equilibrium at (u1,u2) = (α,β/α) for any posi-
tive constants α and β . The linearization at this equilibrium has the two eigenvalues

λ± =
1
2
(β −1−α2)±

(
−α2 − 1

4
(β −1−α2)2

)1/2

.

When β < 1+α2, the equilibrium is stable, and it loses its stability at β = 1+α2.
At this point, the two eigenvalues are purely imaginary, λ± = ±iα , and we are in
the presence of a Hopf bifurcation.

Computation of the Hopf Bifurcation

In the system (2.30) we set

u1 = α + v2, u2 =
β
α
− (v1 + v2),

and
ω = α, 2μ = β −1−α2.

This leads to the system

dv1

dt
= v2

dv2

dt
= −ω2v1 +2μv2 −2ωv1v2 +

2μ +1−ω2

ω
v2

2 − (v1 + v2)v2
2, (2.31)

in which ω is fixed, μ is a small bifurcation parameter, and (0,0) is a solution for
all values of ω and μ . The system (2.31) is of the form

dv
dt

= Lv+R(v,μ), (2.32)

where v(t) = (v1(t),v2(t)) ∈ R
2 and

L =
(

0 1
−ω2 0

)
, R(v,μ) = μR11v+R20(v,v)+ μR21(v,v)+R30(v,v,v),

with
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R11v =
(

0
2v2

)
, R21(u,v) =

(
0

2
ω u2v2

)
,

R20(u,v) =
(

0

−ω(u1v2 + v1u2)+ 1−ω2

ω u2v2

)
,

R30(u,v,w) =
(

0
− 1

3 (u1v2w2 +u2v1w2 +u2v2w1)−u2v2w2

)
.

Now, the linear operator L has the pair of simple purely imaginary eigenvalues
±iω with the associated eigenvectors

ζ =
(

1
iω

)
, ζ =

(
1

−iω

)
.

According to the results in the previous section the system (2.32) has the normal
form (2.12). We are interested in computing the coefficients a and b in the expansion
(2.13) of the polynomial Q. Of course we can use directly the formulas (2.28) and
(2.29) for the coefficients a and b, but for the sake of clarity we prefer to go through
the steps of the calculation, again.

Since we restrict ourselves to the terms of order 3 in the expansion of the normal
form, it is enough to take p = 3 in the expansion (2.20). Then Φμ is a polynomial
of degree 3,

Φμ(A,A) = ∑
1≤p+q+r≤3

Φ pqrA
pA

qμr, Φ100 = Φ010 = 0,

such that the change of variables

v = Aζ +Aζ +Φμ(A,A) (2.33)

transforms (2.31) into the normal form

dA
dt

= iωA+aμA+bA|A|2 +O(|A|(|μ |2 + |μ ||A|2 + |A|3)). (2.34)

By arguing as explained in the previous section, i.e., substituting (2.33) in (2.32),
then replacing dA/dt from (2.34), and finally identifying the different powers of
(A,A,μ), we find the system (2.22)–(2.27) with Fi j = Ri j. Since R01 = 0, we have
Φ001 = 0, and the identity (2.23) becomes

aζ +(iω −L)Φ101 = R11ζ =
(

0
2iω

)
.

The coefficient a is now found from the solvability condition for this equation, ob-
tained by taking the Hermitian scalar product with the vector ζ∗ in the kernel of the
adjoint operator satisfying

(−iω −L∗)ζ ∗ = 0, 〈ζ ,ζ ∗〉 = 1.
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A direct calculation shows that

L∗ =
(

0 −ω2

1 0

)
, ζ ∗ =

1
2iω

(
iω
−1

)
,

and then
a = 〈R11ζ ,ζ ∗〉 = 1.

Remark 2.10 Since R(0,μ) = 0, it is not difficult to check in this case that the
eigenvalues of the 2×2-matrix

L+ μR11 =
(

0 1
−ω2 2μ

)
,

obtained by linearizing the system (2.32) at U = 0, are the same as the eigenvalues
of the 2×2-matrix obtained by linearizing the normal form equation (2.34), together
with the complex conjugated equation, at (A,A) = (0,0). We can use this property
to compute the coefficient a in a different way. Indeed, this latter matrix is of the
form (

iω +aμ 0
0 −iω +aμ

)
+O(μ2),

and since the eigenvalues of L+ μR11 are

λ± = μ ± i
√

ω2 −μ2 = ±iω + μ ∓ iμ2

2ω
+O(μ4),

we can conclude that a = 1.

Next, in order to compute the coefficient b we use the equations (2.24), (2.25),
and (2.27), i.e.,

(2iω −L)Φ200 = R20(ζ ,ζ ),

−LΦ110 = 2R20(ζ ,ζ ),

bζ +(iω −L)Φ210 = 2R20(ζ ,Φ200)+2R20(ζ ,Φ110)+3R30(ζ ,ζ ,ζ ).

Solving the first two equations we find

Φ200 =

(
1−ω2

3ω + 2i
3

− 4ω
3 + 2i

3 (1−ω2)

)

, Φ110 =

(
2(1−ω2)

ω
0

)

,

and then

2R20(ζ ,Φ200) =
(

0
4
3 (1−ω2 +ω4)+2iω(1−ω2)

)
,

2R20(ζ ,Φ110) =
(

0
−4iω(1−ω2)

)
, 3R30(ζ ,ζ ,ζ ) =

(
0

−ω2 −3iω3

)
.

Finally, we compute b from the solvability condition for the third equation,
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b = 〈2R20(ζ ,Φ200)+2R20(ζ ,Φ110)+3R30(ζ ,ζ ,ζ ),ζ ∗〉.

We find

2R20(ζ ,Φ200)+2R20(ζ ,Φ110)+3R30(ζ ,ζ ,ζ )

=
(

0
1
3 (4−7ω2 +4ω4)− iω(2+ω2)

)
,

which gives

b = −1
2
(2+ω2)− i

6ω
(4−7ω2 +4ω4). (2.35)

In particular, this shows that the real part br of b is negative, so that we have here
a supercritical Hopf bifurcation.

Remark 2.11 In Section 2.4.4, Chapter 2, we discuss the inhomogeneous Brusse-
lator, in which u1 and u2 also depend upon a spatial variable x. This is a system
of partial differential equations (PDEs), for which we show that a Hopf bifurca-
tion occurs. It is then a Hopf bifurcation in infinite dimensions, and we show in
Section 2.4.4 how to compute the coefficients a and b explicitly.

1.2.3 Hopf Bifurcation with SO(2) Symmetry

We discuss in this section a particular case of a Hopf bifurcation, where the vector
field possesses a continuous symmetry. As before, we assume that the vector field F
in (2.1) satisfies Hypotheses 2.1 and 2.5, and now further assume that the following
holds.

Hypothesis 2.12 We assume that the vector field F is SO(2)-equivariant, that is,
there exists a one-parameter continuous family of linear maps Rϕ on R

2, for ϕ ∈
R/2πZ, with the following properties:

(i) Rϕ ◦Rψ = Rϕ+ψ for all ϕ , ψ ∈ R/2πZ;
(ii) R0 = I;

(iii) F(Rϕ u,μ) = Rϕ F(u,μ) for all ϕ ∈ R/2πZ.

An immediate consequence of the third property in this hypothesis is that if u(μ)
is a steady solution of (2.1), then Rϕ u(μ) is also a steady solution of (2.1). On the
other hand, as already noticed in the Remark 2.2, the system (2.1) has a unique
steady solution in a neighborhood of the origin for all sufficiently small μ . Then we
necessarily have Rϕ u(μ) = u(μ), that is, the steady solution u(μ) is invariant under
the action of Rϕ . In addition, notice that

L(Rϕ ζ ) = Rϕ(Lζ ) = iω(Rϕζ ),

and since the eigenvalue iω is simple we have
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Rϕ ζ = k(ϕ)ζ for some k(ϕ) ∈ C.

Using the group properties of Rϕ , Hypothesis 2.12(i)–(ii), we obtain that k(ϕ +ψ)
= k(ϕ)k(ψ)for all ϕ ,ψ , and that k(0) = 1. The fact that k is a continuous function
of ϕ ∈ R/2πZ, now implies that

k(ϕ) = eimϕ , m ∈ Z. (2.36)

We now distinguish two cases depending upon the value of m in (2.36).
First, assume that m = 0, which means that the action of the group Rϕ on the

eigenvector ζ is trivial, Rϕ ζ = ζ . Then the same also holds for the complex con-
jugated eigenvector ζ , and since {ζ ,ζ} forms a basis of R

2, we have in this case
Rϕ = Ifor all ϕ . Consequently, the action of the continuous group Rϕ is trivial, so
that there is no new fact with respect to Theorem 2.6 in this case, except that all
points of the periodic bifurcating orbit are invariant under Rϕ .

Next, assume that m �= 0. Then in the basis {ζ ,ζ} of R
2, the action of Rϕ on the

coordinates (z,z), z ∈ C is given by

Rϕ =
(

eimϕ 0
0 e−imϕ

)
.

This matrix commutes now with the vector field in equation (2.5), so that we have

f (eimϕz,e−imϕz,μ) = eimϕ f (z,z,μ)

for all ϕ ∈ R/2πZ and all z in a neighborhood of 0. Then, by Lemma 2.4, it follows
that the differential equation (2.5) is of the form

dz
dt

= iωz+ zg(|z|,μ), (2.37)

with g of class C k−1 and even in |z|. This means that in this case the equation is
already in the normal form (2.12), with polynomial Q given by the regular part in
the Taylor expansion of g, and the rest, ρ , being of the form z times a function
depending only upon |z|. The particular form of this part allows to use the same
arguments as for the truncated normal form and to show that in this case for the
bifurcating periodic solutions u∗(·; μ) the coordinate z∗(·,μ) is of the form (2.16).
In particular, they describe a “circle” in the plane C. Furthermore, from (2.16) we
obtain

Rϕ u(t; μ) = u(t +
mϕ

ω∗(μ)
; μ).

Choosing ϕ = −ω∗(μ)t/m, we obtain

R−ω∗(μ)t/mu(t; μ) = u(0; μ),

and this gives a new formula for the periodic solutions,
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u(t; μ) = R ω∗(μ)t
m

u(0; μ). (2.38)

These periodic solutions are rotating waves, with wavenumber m thanks to the prop-
erty

u(t; μ) = R 2π
m

u(t; μ).

This proves the following result:

Corollary 2.13 (Hopf bifurcation with SO(2) symmetry) Assume that Hypothe-
ses 2.1, 2.5, and 2.12 hold. Further assume that the action of the group Rϕ is not
trivial. Then the family of periodic solutions bifurcating in the Hopf bifurcation at
μ = 0 are the rotating waves (2.38), with wavenumber m given by the action of the
group on the eigenvector ζ of L associated with the purely imaginary eigenvalue iω .

1.2.4 Steady Bifurcation with O(2) Symmetry

We end this chapter with a case where the differential equation (2.1) possesses a
one-parameter group of symmetries together with one discrete symmetry. More pre-
cisely, we make the following assumption.

Hypothesis 2.14 Assume that the vector field F in (2.1) is of class C k, k ≥ 3, that
it satisfies (2.2), and that 0 is an eigenvalue of L. Further assume that F is O(2)-
equivariant, that is, there exists a one-parameter continuous family of linear maps
Rϕ on R

2, for ϕ ∈ R/2πZ, and a symmetry S on R
2 with the following properties:

(i) Rϕ ◦Rψ = Rϕ+ψ and SRϕ = R−ϕS for all ϕ , ψ ∈ R/2πZ;
(ii) R0 = I and S2 = I;

(iii) F(Rϕ u,μ) = Rϕ F(u,μ) and F(Su,μ) = SF(u,μ) for all ϕ ∈ R/2πZ.

Remark 2.15 This type of symmetry is very frequent in physical examples, partic-
ularly in systems of PDEs (infinite-dimensional case) when the system is invariant
under translations in one unbounded spatial direction and possesses a reflection
symmetry in this direction. When looking for solutions that are periodic in this un-
bounded spatial direction, the invariance under spatial translations provides the
one-parameter group of symmetries, whereas the reflection is the discrete symme-
try. We present an example of such a PDE in Section 2.4.3, Chapter 2.

An important consequence of the O(2)-equivariance in this hypothesis is that any
eigenvalue of the linear map L is double, provided the action of the group Rϕ is not
trivial. Indeed, any eigenvalue of L is either simple or double. Assume that λ ∈ C

is a simple eigenvalue of L, with associated eigenvector ζ . Then we have

L(Rϕ ζ ) = Rϕ(Lζ ) = λ (Rϕ ζ ),

so that Rϕ ζ = r(ϕ)ζ for some r(ϕ) ∈ C, and similarly Sζ = sζ for some s ∈ C. As
for k(ϕ) given by (2.36), in the case of the Hopf bifurcation with SO(2) symmetry
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discussed in the previous section, we conclude that r(ϕ) = eimϕ , with m ∈ Z. More-
over, since S2 = I, we have that s = ±1, and from the equality Rϕ Sζ = SR−ϕζ , we
obtain that seimϕ ζ = se−imϕ ζ for all ϕ . Thus m = 0, so that Rϕ = I for all ϕ , which
means that the group represented by Rϕ reduces to the identity. Consequently, if the
action of the group Rϕ is not trivial, then λ is a double eigenvalue of L. We shall
therefore make the following hypothesis.

Hypothesis 2.16 Assume that zero is a double eigenvalue of L and that the action
of Rϕ on R

2 is not trivial.

Now we construct a suitable basis for R
2 in which the action of Rϕ and S is given

by the 2×2-matrices

Rϕ =
(

eimϕ 0
0 e−imϕ

)
, S =

(
0 1
1 0

)
. (2.39)

First, we claim that the eigenvectors of Rϕ are independent of ϕ , and more precisely,
that an eigenvector ζ0 of Rϕ0 for some ϕ0 is also an eigenvector of Rϕ for any ϕ ,
namely,

Rϕ ζ0 = r(ϕ)ζ0, (2.40)

with corresponding eigenvalue r(ϕ) depending continuously upon ϕ such that

r(0) = 1, r(ϕ +ψ) = r(ϕ)r(ψ) for all ϕ ,ψ ∈ R/2πZ. (2.41)

Indeed, consider ϕ0 ∈ R/2πZ such that ϕ0/2π /∈ Q. Then the integer multiples
of ϕ0 form a dense set on the circle R/2πZ, so that for any ϕ ∈ R/2πZ there exists
a sequence of integers (np)p∈N such that

lim
p→∞

(npϕ0) = ϕ in R/2πZ. (2.42)

Take an eigenvector ζ0 of Rϕ0 ,

Rϕ0ζ0 = λ0ζ0,

for some eigenvalue λ0 of Rϕ0 . Using successively equality (2.42), the continuity of
the map ϕ �→ Rϕ , and Hypothesis 2.14(i), we find

Rϕ ζ0 = lim
p→∞

Rnpϕ0ζ0 = lim
p→∞

λ np
0 ζ0,

so that
Rϕ ζ0 = r(ϕ)ζ0, with r(ϕ) = lim

p→∞
λ np

0 .

This proves that the eigenvectors of Rϕ are independent of ϕ . Finally, the continuity
of Rϕ in ϕ and the properties (i) and (ii) in Hypothesis 2.14 imply the claim.

An immediate consequence of the continuity of r(ϕ) in ϕ and of the equalities
(2.41) is that r(ϕ) = eimϕ for some m ∈ R for all ϕ . Here m �= 0, because Rϕ acts
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nontrivially on R
2. Next, Rϕ Sζ0 = e−imϕSζ0, so that Sζ0 is an eigenvector of Rϕ for

the eigenvalue e−imϕ . Together with ζ0, which is an eigenvector of the same operator
Rϕ for the eigenvalue eimϕ , this provides us with a basis for R

2. In particular, there
exists k ∈ C such that

Sζ0 = kζ0,

and the property S2 = I leads to |k| = 1, i.e.,

k = eiβ , β ∈ R.

We set
ζ = e−iβ/2ζ0,

for which we find
Sζ = e−iβ/2Sζ0 = eiβ/2ζ0 = ζ .

It is then straightforward to conclude that the action of the operators Rϕ and S in
the basis {ζ ,ζ} is given by (2.39).

We now proceed as for the Hopf bifurcation, and represent any u ∈ R
2 by a

complex coordinate z ∈ C through

u = zζ + zζ .

Similarly, for the vector field F we write

F(u,μ) = f (z,z,μ)ζ + f (z,z,μ)ζ ,

and then obtain two complex differential equations

dz
dt

= f (z,z,μ)

and its complex conjugate. The equivariance properties in Hypothesis 2.14(iii) and
the equalities in (2.39) imply that f satisfies the relations

f (eimϕz,e−imϕ z,μ) = eimϕ f (z,z,μ),

and
f (z,z,μ) = f (z,z,μ)

for all z and μ . Using Lemma 2.4, again, the first relation implies that

f (z,z,μ) = zg(|z|,μ),

where g is a complex function of class C k−1 in a neighborhood of 0, and even in |z|.
The second relation implies that, in addition, g is real-valued.

We introduce polar coordinates A = reiφ and obtain the system
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dr
dt

= rg(r,μ) = aμr +br3 +o(r|μ |+ r3) (2.43)

dφ
dt

= 0, (2.44)

in which the coefficients a and b are found from the Taylor expansion of g. Since the
function g is even in r, the scalar vector field in (2.43) satisfies Hypothesis 1.6 from
the case of a pitchfork bifurcation, provided the coefficients a and b are nonzero.
We therefore assume now:

Hypothesis 2.17 Assume that the coefficients a and b in (2.43) are nonzero,

∂g
∂ μ

(0,0) =: a �= 0,
∂ 2g
∂ r2 (0,0) =: 2b �= 0.

Applying the result in Theorem 1.9, we conclude that for the equation (2.43) a
pitchfork bifurcation occurs at μ = 0, which is supercritical when b < 0 and subcrit-
ical when b > 0. The bifurcation diagrams for this equation are the same as those
in Figure 1.3. Since for the radial equation we are restricted to positive solutions,
this shows that for ab < 0 (resp., ab > 0), the radial equation possesses the positive
steady solution

r∗(μ) =
√
−aμ

b
+o(|μ |3/2)

for μ > 0 (resp., μ < 0). The dynamics of the second equation (2.44) is trivial,
showing that the phase φ of the solutions stays constant in time t.

Going back to the two-dimensional equation (2.1), this shows that at the bifurca-
tion point μ = 0, a “circle” of equilibria, parameterized by the phase φ ,

u∗(μ ,φ) = r∗(μ)eiφ ζ + r∗(μ)e−iφ ζ ,

bifurcates for μ > 0 (resp., μ < 0) when ab < 0 (resp., ab > 0). We have here
a steady bifurcation. The stability of the bifurcating equilibria is given by that of
r∗(μ), so that they are stable when b < 0 and unstable when b > 0. Figure 2.2
illustrates the phase portraits for μ < 0 and μ > 0 in the case a > 0, b < 0. Similar
phase portraits can be obtained in the other cases.

In addition, we have that the bifurcating equilibria are invariant under the rota-
tion R 2π

m
, since

R 2π
m

u∗(μ ,φ) = u∗(μ ,φ),

and there are two equilibria that are symmetric, i.e., invariant under the symmetry S,

Su∗(μ ,0) = u∗(μ ,0), Su∗(μ ,π) = u∗(μ ,π).

Moreover, u∗(μ ,φ) may be obtained from u∗(μ ,0) through

u∗(μ ,φ) = R φ
m

u∗(μ ,0).
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Fig. 2.2 Steady bifurcation with O(2) symmetry: phase portraits in the u-plane for equation (2.1)
in the case a > 0 and b < 0.

This shows that we have a group orbit of equilibria. We summarize these results in
the following theorem.

Theorem 2.18 (Steady bifurcation with O(2) symmetry) Assume that Hypo-
theses 2.14, 2.16, and 2.17 hold. Then, for the differential equation (2.1) a steady
bifurcation occurs at μ = 0. More precisely, the following properties hold in a neigh-
borhood of 0 in R

2 for sufficiently small μ:

(i) If ab < 0 (resp., ab > 0) the differential equation has precisely one trivial equi-
librium u = 0 for μ < 0 (resp., for μ > 0). This equilibrium is stable when b < 0
and unstable when b > 0.

(ii) If ab < 0 (resp., ab > 0), the differential equation possesses for μ > 0 (resp., for
μ < 0), the equilibrium u = 0 and a unique closed orbit of equilibria u∗(μ ,φ) =
O(|μ |1/2) for φ ∈ R/2πZ, which surrounds this equilibrium. These equilibria
are stable when b < 0 and unstable when b > 0, whereas the equilibrium u = 0
has opposite stability.

(iii) The equilibria u∗(μ ,φ) satisfy

u∗(μ ,φ) = R φ
m

u∗(μ ,0),

they are all invariant under the action of R 2π
m

, and there are two equilibria,

u∗(μ ,0) and u∗(μ ,π), invariant under the symmetry S.

Remark 2.19 (Higher orders) In the case where the coefficients a or (and) b in
Hypothesis 2.17 vanish, one has to consider the next nonzero higher order terms in
the expansion of g, just as in the case of the pitchfork bifurcation.



Chapter 2
Center Manifolds

This chapter is devoted to center manifold theory. We present a general result on
the existence of local center manifolds for infinite-dimensional systems in Sec-
tion 2.2 and then discuss several particular cases and extensions, as, for instance, to
parameter-dependent systems and systems possessing different symmetries in Sec-
tion 2.3. We give a series of examples showing how these results apply to various
situations in Section 2.2.4 and in Section 2.4. A brief description of the tools and
results from the theory of linear operators needed in this chapter is given in Ap-
pendix A.

2.1 Notations

Consider two (complex or real) Banach spaces X and Z . Throughout this chapter
we shall use the following notations:

• Bε(X ) is the closed ball {u ∈ X ;‖u‖X ≤ ε}.
• C k(Z ,X ) is the Banach space of k-times continuously differentiable functions

F : Z → X equipped with the sup norm on all derivatives up to order k,

‖F‖C k = max
j=0,...,k

(
sup
y∈Z

(
‖D jF(y)‖L (Z j ,X )

))
;

here, and in the following, D denotes the differentiation operator.
• For a positive constant η > 0, we define the space of exponentially growing

functions

Cη(R,X ) = {u ∈ C 0(R,X ) ; ‖u‖Cη = sup
t∈R

(
e−η |t|‖u(t)‖X

)
< ∞},

which is a Banach space when equipped with the norm ‖·‖Cη ; we also consider
the Banach space

M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms
in Infinite-Dimensional Dynamical Systems, Universitext,
DOI 10.1007/978-0-85729-112-7 2, © EDP Sciences 2011
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Fη(R,X ) = {u ∈ C 0(R,X ) ; ‖u‖Fη = sup
t∈R

(
eηt‖u(t)‖X

)
< ∞},

equipped with the norm ‖ · ‖Fη , of functions which may grow exponentially at
−∞ and which tend towards 0 exponentially at +∞. Notice that Fη(R,X ) ⊂
Cη(R,X ) with continuous embedding.

• L (Z ,X ) is the Banach space of linear bounded operators L : Z → X ,
equipped with the operator norm

‖L‖L (Z ,X ) = sup
‖u‖Z =1

(‖Lu‖X ) .

If Z = X , we write L (X ) = L (X ,X ).
• For a linear operator L : Z → X , we denote by imL its range,

imL = {Lu ∈ X ; u ∈ Z } ⊂ X ,

and by kerL its kernel,

kerL = {u ∈ Z ; Lu = 0} ⊂ Z .

• Assume that Z ↪→ X with continuous embedding. For a linear operator L ∈
L (Z ,X ) we denote by ρ(L), or simply ρ , if there is no risk of confusion, the
resolvent set of L,

ρ = {λ ∈ C ; λ I−L : Z → X is bijective}.

The complement of the resolvent set is the spectrum σ(L), or simply σ ,

σ = C\{ρ}.

Notice that when the operator L is real, the resolvent set and the spectrum of L
are both symmetric with respect to the real axis in the complex plane.

2.2 Local Center Manifolds

In this section we present the main result on the existence of local center manifolds.
We discuss the hypotheses in Section 2.2.1, and then in Section 2.2.3, and state the
main theorem in Section 2.2.2. The proof of the theorem is given in Appendix B.1.

2.2.1 Hypotheses

Let X , Z , Y be (real or complex) Banach spaces such that
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Z ↪→ Y ↪→ X ,

with continuous embeddings. We consider a differential equation in X of the form

du
dt

= Lu+R(u), (2.1)

in which we assume that the linear part L and the nonlinear part R are such that the
following holds.

Hypothesis 2.1 We assume that L and R in (2.1) have the following properties:

(i) L ∈ L (Z ,X );
(ii) for some k ≥ 2, there exists a neighborhood V ⊂ Z of 0 such that R ∈

C k(V ,Y ) and
R(0) = 0, DR(0) = 0.

Remark 2.2 The condition R(0) = 0 means that 0 is an equilibrium of the differen-
tial equation (2.1), and the condition DR(0) = 0 then shows that L is the lineariza-
tion of the vector field about 0, so that R represents the nonlinear terms which are
O(‖u‖2

Z ). More generally, for an equation which has a nonzero equilibrium, u∗,
say, we recover these conditions after replacing u by u− u∗ and then taking for L
the differential of the resulting vector field at 0.

Definition 2.3 A solution of the differential equation (2.1) is a function u : I →
Z ↪→ X defined on an interval I ⊂ R, with the following properties:

(i) the map u : I → Z is continuous;
(ii) the map u : I → X is continuously differentiable;

(iii) the equality (2.1) holds in X for all t ∈ I .

Besides Hypothesis 2.1, we make two further assumptions on the linear opera-
tor L, which are essential for the center manifold theorem.

Hypothesis 2.4 (Spectral decomposition) Consider the spectrum σ of the linear
operator L, and write

σ = σ+ ∪σ0 ∪σ−,

in which

σ+ = {λ ∈ σ ; Reλ > 0}, σ0 = {λ ∈ σ ; Reλ = 0}, σ− = {λ ∈ σ ; Reλ < 0}.

We assume that

(i) there exists a positive constant γ > 0 such that

inf
λ∈σ+

(Reλ ) > γ, sup
λ∈σ−

(Reλ ) < −γ;

(ii) the set σ0 consists of a finite number of eigenvalues with finite algebraic multi-
plicities.
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Remark 2.5 (i) The sets σ+, σ0, and σ− are called unstable, central, and stable
spectrum, respectively.

(ii) The hypothesis above implies that the resolvent set ρ of L is not empty. This
further implies that L is a closed operator in X . Indeed, for some λ ∈ ρ , the
operator λ I−L is bijective, and since I and L belong to L (Z ,X ), by the
closed graph theorem the resolvent (λ I−L)−1 belongs to L (X ,Z ). Now
L (X ,Z ) ⊂ L (X ), so that (λ I− L)−1 ∈ L (X ) and then by the closed
graph theorem λ I−L is closed in X . Consequently, L is closed in X .

As a consequence of Hypothesis 2.4(ii), we can define the (spectral) projection
P0 ∈ L (X ), corresponding to σ0, by the Dunford integral formula

P0 =
1

2πi

∫

Γ
(λ I−L)−1dλ , (2.2)

where Γ is a simple, oriented counterclockwise, Jordan curve surrounding σ0 and
lying entirely in {λ ∈ C ; |Reλ | < γ}. Then

P2
0 = P0, P0Lu = LP0u for all u ∈ Z ,

and the range imP0 is finite-dimensional, since σ0 consists of a finite number of
eigenvalues with finite algebraic multiplicities. In particular, it satisfies imP0 ⊂ Z ,
and

P0 ∈ L (X ,Z ),

since the map λ 
→ (λ I−L)−1 ∈ L (X ,Z ) is analytic in a neighborhood of Γ .
We define a second projection Ph : X → X by

Ph = I−P0,

which then also satisfies

P2
h = Ph, PhLu = LPhu for all u ∈ Z ,

and
Ph ∈ L (X )∩L (Z )∩L (Y ),

since P0 ∈ L (X ,Z ) and the embeddings Z ↪→ Y ↪→ X are continuous1.
Next, we consider the spectral subspaces associated with these two projections,

E0 = imP0 = kerPh ⊂ Z , Xh = imPh = kerP0 ⊂ X ,

which provide a decomposition of X into invariant subspaces,

X = E0 ⊕Xh.

1 If there is no risk of confusion we shall sometimes use the same notation for an operator L ∈
L (X ), say, and its restrictions to Z and Y , L

∣
∣
Z

∈ L (Z ) and L
∣
∣
Y

∈ L (Y ), respectively.
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We also set
Zh = PhZ ⊂ Z , Yh = PhY ⊂ Y ,

and denote by L0 and Lh the restrictions of L to E0 and Zh, respectively,

L0 ∈ L (E0), Lh ∈ L (Zh,Xh).

An immediate consequence of these definitions is that the spectrum of L0 is σ0 and
the spectrum of Lh is σh = σ+ ∪σ−.

Remark 2.6 As already noticed, the space E0 is finite-dimensional by Hypothe-
sis 2.4(ii). Then L0 acts in a finite-dimensional space, and the exponential eL0t al-
lows us to explicitly solve the linear ordinary differential equation

du0

dt
= L0u0 + f (t) (2.3)

via the variation of constant formula,

u0(t) = eL0tu0(0)+
∫ t

0
eL0(t−s) f (s)ds.

Our second hypothesis concerns the analogue of this linear problem for the opera-
tor Lh.

Hypothesis 2.7 (Linear equation) For any η ∈ [0,γ] and any f ∈ Cη(R,Yh) the
linear problem

duh

dt
= Lhuh + f (t), (2.4)

has a unique solution uh = Kh f ∈ Cη(R,Zh). Furthermore, the linear map Kh be-
longs to L (Cη(R,Yh),Cη(R,Zh)), and there exists a continuous map C : [0,γ] →
R such that

‖Kh‖L (Cη (R,Yh),Cη (R,Zh)) ≤C(η).

While Hypotheses 2.1 and 2.4 are rather easy to check, in applications it is much
more difficult to check Hypothesis 2.7. In Section 2.2.3, we discuss this hypothesis
in more detail and give standard results showing how to verify it for a large class of
infinite- dimensional systems.

Exercise 2.8 Prove that Hypothesis 2.7 is satisfied in finite dimensions when X = R
n.

Hint: For the differential equation (2.4) the initial condition uh(0) is uniquely determined by the
exponential growth required for the solution, uh ∈ Cη (R,Zh), which is given by

uh(t) = −
∫ ∞

t
eL(t−s)P+ f (s)ds+

∫ t

−∞
eL(t−s)P− f (s)ds.

Here, P± are the spectral projections associated to σ±, which are in this case finite sets, just as
σ0, and the projections can therefore be defined by formulae similar to (2.2).
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2.2.2 Main Result

In this section we state the center manifold theorem. This result has been proved
for the first time in finite dimensions by Pliss [101] in 1964, in the case where the
unstable spectrum σ+ is empty, and by Kelley [77] in 1967, in the case where σ+ is
not empty. There are several versions of these results in infinite dimensions (e.g., see
[47], σ+ is empty, and [97, 122, 82], and the references therein, σ+ is not empty),
and there are analogous results for mappings (e.g., see [87, 94, 72]).

Theorem 2.9 (Center manifold theorem) Assume that Hypotheses 2.1, 2.4, and
2.7 hold. Then there exists a map Ψ ∈ C k(E0,Zh), with

Ψ(0) = 0, DΨ(0) = 0, (2.5)

and a neighborhood O of 0 in Z such that the manifold

M0 = {u0 +Ψ(u0) ; u0 ∈ E0} ⊂ Z (2.6)

has the following properties:

(i) M0 is locally invariant, i.e., if u is a solution of (2.1) satisfying u(0) ∈ M0 ∩O
and u(t) ∈ O for all t ∈ [0,T ], then u(t) ∈ M0 for all t ∈ [0,T ].

(ii) M0 contains the set of bounded solutions of (2.1) staying in O for all t ∈R, i.e.,
if u is a solution of (2.1) satisfying u(t) ∈ O for all t ∈ R, then u(0) ∈ M0.

We give the proof of this theorem in Appendix B.1.

Remark 2.10 The manifold M0 is called a local center manifold of (2.1), and the
map Ψ is often referred to as the reduction function. Notice that M0 has the same
dimension as E0, so it is finite-dimensional, and that it is tangent to E0 in 0, due
to (2.5).

Remark 2.11 We give in Section 2.3.4 a specific center manifold theorem corre-
sponding to the cases in which the unstable part σ+ of the spectrum of L is empty.

Center manifolds are fundamental for the study of dynamical systems near “crit-
ical situations,” and in particular in bifurcation theory. Starting with an infinite-
dimensional problem of the form (2.1), the center manifold theorem reduces the
study of small solutions, staying sufficiently close to 0, to that of small solutions
of a reduced system with finite dimension, equal to the dimension of E0. Indeed,
such solutions belong to the center manifold M0, and are therefore of the form
u = u0 +Ψ(u0). The corollary below shows that solutions on the center manifold
are described by a finite-dimensional system of ordinary differential equations, also
called reduced system, which has the same dimension as E0.

Corollary 2.12 Under the assumptions in Theorem 2.9, consider a solution u of
(2.1) which belongs to M0 for t ∈ I , for some open interval I ⊂ R. Then u =
u0 +Ψ(u0), and u0 satisfies
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du0

dt
= L0u0 +P0R(u0 +Ψ(u0)). (2.7)

Furthermore, the reduction function Ψ satisfies the equality

DΨ(u0)(L0u0 +P0R(u0 +Ψ(u0))) = LhΨ(u0)
+PhR(u0 +Ψ(u0)) for all u0 ∈ E0. (2.8)

Proof By substituting u = u0 +Ψ(u0) into (2.1) we obtain

du0

dt
+DΨ(u0)

du0

dt
= L0u0 +LhΨ(u0)+R(u0 +Ψ(u0)).

Projecting this equality with P0 we find that u0 satisfies (2.7), and then projecting
with Ph we obtain

DΨ(u0)
du0

dt
= LhΨ(u0)+PhR(u0 +Ψ(u0)).

Inserting du0/dt from (2.7) in the equality above gives (2.8). 
�

Remark 2.13 In applications it is important to compute the reduced vector field
in (2.7), and more precisely its Taylor expansion. Very often it is enough to know the
lowest order terms in its Taylor expansion, which can be computed directly from the
formula P0R(u0 +Ψ(u0)). However, there are situations in which we need to know
the terms at the next orders. This requires the computation of the Taylor expansion of
the reduction function Ψ , as well, which can be done with the help of formula (2.8).
We point out that one can compute the Taylor expansions of the reduced vector
field and of the reduction function up to the order k, but these computations become
more involved as k increases. Several examples of such computations are made in
Section 2.4.

Remark 2.14 (i) Local center manifolds are in general not unique even though
the Taylor expansion at the origin is unique. This is due to the occurrence in the
proof of the theorem of a smooth cut-off function χ0 on the space E0, which is
not unique (see Appendix B.1). Uniqueness can be achieved under appropriate
boundedness conditions on the nonlinearity R: it should be Lipschitzian with
sufficiently small Lipschitz constant. We refer to [122, Theorems 1 and 2] for
a precise statement of this result. In addition, in this case the resulting center
manifold is global in the sense that the properties in Theorem 2.9 hold with
O = Z .

(ii) Center manifolds are in general not analytic even when the right hand side of
the differential equation (2.1) is analytic in u. We refer to [114, 12, 112], and
[94, pp. 44–45], [38, p. 126], [120, p. 123] for examples of analytic vector
fields leading to nonanalytic center manifolds.

(iii) A crucial hypothesis in the existing proofs on local center manifolds is Hy-
pothesis 2.4(ii) on the set σ0, which has to be finite. Without this hypothesis
one would expect to construct an infinite- dimensional manifold. However, this
raises a number of difficulties, which, so far, have been overcome in only very
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particular situations [98, 100]. Such a construction would require we first build
a “good” projection P0 associated with the infinite spectral set σ0, allowing us
to obtain a group property for eL0t together with a subexponential growth as
t →±∞, and then also to construct a smooth cut-off function χ0 on the central
space E0 = P0X .

2.2.3 Checking Hypothesis 2.7

We discuss in this section Hypothesis 2.7, and more precisely how to check it in
applications. While this hypothesis always holds in finite dimensions (see Exer-
cise 2.8), in infinite dimensions this is not always the case. Here, we distinguish
between

• the semilinear case, Y ⊂ X with Y �= X , and
• the quasilinear case, Y = X .

First, we give some conditions on the resolvent of L which are sufficient for
Hypothesis 2.7 to hold in the semilinear case. In contrast, in the quasilinear case
Hypothesis 2.7 is in general not true. We discuss this situation in the second part of
this section.

Semilinear Equations in Banach Spaces

We assume that Hypotheses 2.1, 2.4 hold, and show here that we may replace Hy-
pothesis 2.7 by the following one. Though we do not make explicitly the assumption
that Y �= X , the hypothesis below can only be verified in this case.

Hypothesis 2.15 (Resolvent estimates) Assume that there exist positive constants
ω0 > 0, c > 0, and α ∈ [0,1) such that for all ω ∈ R, with |ω | ≥ ω0, we have that
iω belongs to the resolvent set of L, and

‖(iωI−L)−1‖L (X ) ≤
c
|ω | , (2.9)

‖(iωI−L)−1‖L (Y ,Z ) ≤
c

|ω |1−α . (2.10)

Remark 2.16 (Hilbert spaces) Though necessary to show that Hypothesis 2.7
holds, as we shall see in Theorem 2.20, the second inequality (2.10) is not needed
for the center manifold Theorem 2.9 to hold when X , Z , and Y are Hilbert spaces.
We make use of this fact in the examples presented in Section 2.4.

We prove in Appendix B.2 that Hypothesis 2.15 above implies Hypothesis 2.7,
so that the following holds.
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Theorem 2.17 (Center manifold theorem in the semilinear case) Assume that
Hypotheses 2.1, 2.4, and 2.15 hold. Then

(i) Hypothesis 2.7 is satisfied;
(ii) the result in Theorem 2.9 holds.

Remark 2.18 (Parabolic problems) An important class of problems for which Hy-
pothesis 2.15 usually holds is that of parabolic equations in Hilbert spaces. In such
a situation the operator L is typically sectorial and generates an analytic semi-
group. In particular, its resolvent satisfies Hypothesis 2.15, so that center manifold
Theorem 2.9 applies provided Hypotheses 2.1 and 2.4 hold.

Remark 2.19 In Section 5.2.3 of Chapter 5 we give an example (waves in lattices)
where (2.9) does not hold, while Hypothesis 2.7 is verified.

Quasilinear Equations in Hilbert Spaces

We consider now the quasilinear case, Y = X . In this case Hypothesis 2.7 requires
a maximal regularity property for the linear equation (2.4), and it turns out that
such a property does not hold in general for spaces of continuous functions such as
Cη(R,Xh).

Nevertheless, maximal regularity has been shown in Sobolev and Hölder spaces.
We mention here the maximal regularity result by da Prato and Grisvard [21] in
Sobolev spaces W θ ,p(R,X ), with θ ∈ (0,1) and p ∈ (1,∞], X is a Banach space,
and the result by Mielke [96] in Sobolev spaces Lp(R,X ), with p ∈ (1,∞), X
is a Hilbert space. For both results, the resolvent estimate (2.9) turns out to be a
sufficient condition for maximal regularity in these spaces. As for the Hölder spaces,
Kirrmann [82] proved a maximal regularity result in C 0,α(R,X ) with X a Banach
space, but under a slightly different resolvent estimate.

Since these maximal regularity results hold in different spaces (Sobolev or
Hölder spaces instead of spaces of continuous functions), the proof of the center
manifold theorem given in Appendix B.1 does not work anymore, and needs to be
adapted. Starting with the result in [96] for Hilbert spaces, Mielke [97] proved a cen-
ter manifold theorem for quasilinear equations in Hilbert spaces. In Banach spaces,
the maximal regularity result by Kirrmann allowed proof of a center manifold theo-
rem [82], with a reduction function Ψ of class C k−1 instead of C k. We state below
the result in Hilbert spaces, which uses our resolvent estimate (2.9), and refer to [97]
for its proof and to [82] for the slightly different result in Banach spaces.

Theorem 2.20 (Center manifold theorem in the quasilinear case) Assume that
X , Z , and Y are Hilbert spaces, and that Hypotheses 2.1 and 2.4 hold. If the
linear operator Lh satisfies (2.9), then the result in Theorem 2.9 holds.
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2.2.4 Examples

We show in this section how to apply the center manifold theorem in two examples.
The first one is a fourth order ODE, for which X = R

4, while the second one is a
parabolic PDE, for which X is a Banach space of continuous functions.

A Fourth Order ODE

Consider the fourth order ODE

u(4)−u′′ −au2 = 0, (2.11)

where a is a given real number.

Formulation as a First Order System

We start by writing the equation (2.11) in the form (2.1). We set U = (u,u1,u2,u3)
with u1 = u′, u2 = u′′ − u, u3 = u′2, and then the equation is equivalent with the
system

dU
dt

= LU +R(U), (2.12)

in which

L =

⎛

⎜
⎜
⎝

0 1 0 0
1 0 1 0
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ , R(U) =

⎛

⎜
⎜
⎝

0
0
0

au2

⎞

⎟
⎟
⎠ .

Here L is a 4×4-matrix and R is a smooth vector field in R
4, so that we can choose

X = Y = Z = R
4.

Checking the Hypotheses

Clearly, Hypothesis 2.1 is satisfied for L and R as above, for any k ≥ 2 and the
neighborhood V = R

4.
Next, in order to check Hypothesis 2.4 we have to compute the spectrum of L,

i.e., the eigenvalues of L. A direct calculation gives

σ(L) = {−1,0,1},

with ±1 simple eigenvalues, and 0 a geometrically simple and algebraically double
eigenvalue. Consequently, Hypothesis 2.4 is also satisfied with
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σ+ = {1}, σ0 = {0}, σ− = {−1}.

Finally, according to the result in Exercise 2.8, Hypothesis 2.7 holds in this case
since X is finite-dimensional.

Consequently, we can apply center manifold Theorem 2.9, and conclude the ex-
istence of a local center manifold of class C k for any arbitrary, but fixed, k ≥ 2.
Since 0 is an algebraically double eigenvalue, the space E0 is two-dimensional, so
that the center manifold is two-dimensional.

Reduced Equation

Our purpose is to compute the Taylor expansion, up to order 2, of the vector field in
the reduced equation.

We start by computing a basis for E0, which is the two-dimensional generalized
kernel of L. Solving successively the eigenvalue problem Lζ0 = 0 and the general-
ized eigenvalue problem Lζ1 = ζ0, we find a basis {ζ0,ζ1} for E0 given by

ζ0 =

⎛

⎜⎜
⎝

−1
0
1
0

⎞

⎟⎟
⎠ , ζ1 =

⎛

⎜⎜
⎝

0
−1
0
1

⎞

⎟⎟
⎠ .

According to the center manifold Theorem 2.9, solutions on the center manifold are
of the form

U(t) = U0(t)+Ψ(U0(t)), (2.13)

in which Ψ(0) = 0, DΨ(0) = 0, and U0(t) ∈ E0, so that

U0(t) = A(t)ζ0 +B(t)ζ1, (2.14)

where A and B are real-valued functions. The reduced system is an ODE for U0 =
(A,B), and according to Corollary 2.12 it is given by

dU0

dt
= L0U0 +P0R(U0 +Ψ(U0)), (2.15)

where L0 is the restriction of L to E0, and P0 is the spectral projection onto E0. We
compute the expansion, up to order 2, of the vector field in (2.15), by calculating
successively the 2× 2-matrix L0, the spectral projector P0, and the expansion of
P0R(U0 +Ψ(U0)).

First, since L0 is the restriction of L to the space E0, in the basis {ζ0,ζ1} of E0

calculated above we find that the 2×2-matrix representing L0 is given by

L0 =
(

0 1
0 0

)
,
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since Lζ0 = 0 and Lζ1 = ζ0. Next, there are several ways of computing the spectral
projection P0 in finite dimensions. Here, we compute P0 with the help of the adjoint
matrix

L∗ =

⎛

⎜⎜
⎝

0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟⎟
⎠ ,

since this calculation also works in infinite dimensions, provided the operator L
possesses an adjoint L∗. Recall that the adjoint matrix L∗ satisfies

〈LU,V 〉 = 〈U,L∗V 〉 for all U,V ∈ R
4,

where 〈·, ·〉 is the usual Euclidean scalar product in R
4.

We claim that the spectral projection P0 is given by

P0U = 〈U,ζ ∗
0 〉ζ0 + 〈U,ζ ∗

1 〉ζ1, (2.16)

where {ζ ∗
0 ,ζ ∗

1 } is a dual basis satisfying

L∗ζ ∗
0 = ζ ∗

1 , L∗ζ ∗
1 = 0, 〈ζi,ζ ∗

j 〉 = δi j for all i, j ∈ {0,1}. (2.17)

Indeed, since P0 is a linear map from R
4 onto E0, there exist two vectors ζ ∗

0 ,ζ ∗
1 ∈R

4

such that P0U is given by (2.16). Next, since P0 is a projection, P2
0 = P0, it follows

that P0ζ0 = ζ0 and P0ζ1 = ζ1, which implies that the last equality in (2.17) holds for
all i, j ∈ {0,1}. Finally, the spectral projection P0 commutes with L, P0L = LP0,
which implies that

〈LU,ζ ∗
0 〉 = 〈U,ζ ∗

1 〉, 〈LU,ζ ∗
1 〉 = 0 for all U ∈ R

4,

and these equalities are equivalent with the first two equalities in (2.17). This proves
the claim.

It is now straightforward to compute the vectors ζ ∗
0 and ζ ∗

1 in (2.16). We obtain
that

ζ ∗
0 =

⎛

⎜⎜
⎝

0
0
1
0

⎞

⎟⎟
⎠ , ζ ∗

1 =

⎛

⎜⎜
⎝

0
0
0
1

⎞

⎟⎟
⎠ .

Finally, it remains to compute the Taylor expansion up to order 2 of P0R(U0 +
Ψ(U0)). Notice that since the last component of the vector ζ ∗

0 vanishes, the scalar
product 〈R(U0 +Ψ(U0)),ζ ∗

0 〉 = 0, so that

P0R(U0 +Ψ(U0)) = 〈R(U0 +Ψ(U0)),ζ ∗
1 〉ζ1.

Furthermore, since Ψ(0) = 0 and DΨ(0) = 0, we have Ψ(U0) = O(‖U0‖2), which
together with the fact that R is a quadratic map implies that
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P0R(U0 +Ψ(U0)) = 〈R(U0),ζ ∗
1 〉ζ1 +O(‖U0‖3).

The explicit formulas for P0, R, and U0 give

R(U0) = R(Aζ0 +Bζ1) =

⎛

⎜⎜
⎝

0
0
0

aA2

⎞

⎟⎟
⎠ ,

so that
P0R(U0 +Ψ(U0)) =

(
aA2 +O((|A|+ |B|)3)

)
ζ1.

Together with the explicit formula for L0 above, this implies that the reduced system
(2.15), in the basis {ζ0,ζ1}, is

dA
dt

= B

dB
dt

= aA2 +O((|A|+ |B|)3).

Remark 2.21 (i) In the calculation of the expansion up to order 2 of the reduced
system, it was not necessary to compute the expansion of Ψ . This property is
always true because Ψ(U0) = O(‖U0‖2) and R(U) = O(‖U‖2). However, the
expansion of Ψ is necessary when computing the expansion up to order 3, or
higher, of the reduced system. For instance, for a computation up to order 3 one
needs to compute the terms of order 2 in the expansion of Ψ . This can be done
by substituting the Ansatz

Ψ(A,B) =Ψ 20A2 +Ψ 11AB+Ψ 02B2 +O((|A|+ |B|)3) (2.18)

in the identity (2.8). Then the vectors Ψ 20, Ψ 11, and Ψ 02 are determined by
identifying powers of A and B in this identity and taking into account that these
vectors belong to the space (I− P0)R4, i.e., they are orthogonal to both ζ ∗

0
and ζ ∗

1 .
(ii) An alternative way of computing the reduced system, is by directly substituting

the formulas (2.13), (2.14), and (2.18) into the first order system (2.12) and
calculating the Taylor expansions of both sides of the resulting system. We use
this alternative approach in most of the examples in Section 2.4. It turns out that
such an approach is particularly convenient when the center manifold reduction
is followed by a normal form transformation (see Chapter 3, Section 3.4).

A Parabolic PDE

Consider the parabolic boundary value problem



42 2 Center Manifolds

∂u
∂ t

=
∂ 2u
∂x2 +u+g

(
u,

∂u
∂x

)
(2.19)

u(0, t) = u(π, t) = 0, (2.20)

where u(x, t) ∈ R for (x, t) ∈ (0,π)×R, and g ∈ C k(R2,R), k ≥ 2, satisfying

g(0,v) = 0 for all v ∈ R, and g(u,v) = O(|u|2 + |v|2) as (u,v) → 0.

Formulation and Hypothesis 2.1

First we write the problem (2.19)–(2.20) in form (2.1) by setting

Lu =
d2u
dx2 +u, R(u) = g

(
u,

du
dx

)
,

and choosing the Banach space

X = C0([0,π])

of real-valued continuous functions on [0,π]. Then L is a closed linear operator
in X with domain

Z = {u ∈C2([0,π]) ; u(0) = u(π) = 0},

taken such that Lu ∈ X for u ∈ Y , and such that the functions in Y satisfy the
boundary conditions (2.20). The nonlinear terms R satisfy R(u) ∈ C1([0,π]) and
(R(u))(0) = (R(u))(π) = 0 for u ∈ Y . We therefore set

Y = {u ∈C1([0,π]) ; u(0) = u(π) = 0},

and then we have R ∈ Ck(Z ,Y ). In particular, these show that L and R satisfy
Hypothesis 2.1.

Spectrum and Hypothesis 2.4

Next, we investigate the spectrum of L and check Hypothesis 2.4. For this we have
to solve the linear equation

λu−Lu = f

for λ ∈ C, f ∈ X , and u ∈ Z ; that is, we have to find solutions u ∈ C2([0,π]) of
the linear problem

λu−u−u′′ = f (2.21)

u(0) = u(π) = 0 (2.22)
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for f ∈C0([0,π]). The second order ODE (2.21) has a unique solution u∈C2([0,π])
satisfying the boundary conditions (2.22), for f ∈ C0([0,π]), precisely when the
associated homogeneous equation

u′′ +u−λu = 0 (2.23)

possesses no nontrivial solutions. When this is the case, then λ belongs to the resol-
vent set ρ(L) of L. A direct calculation shows that (2.23) has nontrivial solutions
for λ = 1− n2, with n any positive integer. We conclude that the resolvent set and
the spectrum of L are, respectively,

ρ(L) = C\σ(L), σ(L) = {λ ∈ C ; λ = 1−n2, n ∈ N
∗};

(here, and later in the text, N
∗ = {n ∈ N ; n ≥ 1}).

With the notations from Hypothesis 2.4 we now have

σ+ = ∅, σ0 = {0}, σ− ⊂ (−∞,−3],

so that part (i) of this hypothesis holds. Next, the kernel of L is one-dimensional,
spanned by ξ0 = sinx, so that the eigenvalue λ = 0 has geometric multiplicity one.
A generalized eigenvector v associated to the eigenvalue 0 satisfies the ODE

v′′ + v = sinx,

and the boundary conditions (2.22). Multiplying this equation by sinx, integrating
over [0,π], and then integrating twice by parts on the left hand side gives

∫ π

0
v′′(x)sinxdx+

∫ π

0
v(x)sinxdx = −

∫ π

0
v(x)sinxdx+

∫ π

0
v(x)sinxdx = 0,

while the right hand side is equal to
∫ π

0
sin2 xdx =

π
2

,

so that there are no solutions to the ODE above. This proves that 0 is a simple
eigenvalue of L, with algebraic multiplicity one, as well, and then shows that part
(ii) of Hypothesis 2.4 holds. Notice that the spectral subspace E0 associated to σ0

is one-dimensional, spanned by ξ0, so that we expect in this case to find a one-
dimensional center manifold.

Checking Hypothesis 2.7

Finally, we have to check Hypothesis 2.7. For this we use the result in Theorem 2.17,
so that we have to verify the estimates on the resolvent (2.9) and (2.10). Since our
problem is formulated in Banach spaces we need to check both inequalities (see
Remark 2.16).
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Consider ω �= 0. Since σ0 = {0}, we have that iω belongs to the resolvent set
of L, so that the equation

(iωI−L)u = f

has a unique solution u ∈ Z for f ∈ X . This solution satisfies

(iω −1)u−u′′ = f

u(0) = u(π) = 0,

and a direct computation gives

u(x) =
1

γ sinh(γπ)

(∫ x

0
sinh(γξ )sinh(γ(π − x)) f (ξ )dξ

+
∫ π

x
sinh(γx)sinh(γ(π −ξ )) f (ξ )dξ

)

in which
γ =

√
iω −1.

We need to show that

‖u‖C0 ≤
c
|ω | ‖ f‖C0 , ‖u‖C2 ≤

c
|ω |1−α ‖ f‖C1 (2.24)

for |ω | ≥ ω0 and constants c > 0 and α ∈ [0,1), which then proves that (2.9) and
(2.10) hold.

We write

u(x) =
1

γ sinh(γπ)

(
1
2

∫ x

0
cosh(γ(π +ξ − x)) f (ξ )dξ

+
1
2

∫ π

x
cosh(γ(π + x−ξ )) f (ξ )dξ − 1

2

∫ π

0
cosh(γ(x+ξ −π)) f (ξ )dξ

)
,

and γ = γr + iγi, γr > 0. Using the inequalities

|sinh(a+ ib)| ≥ sinh(a), |cosh(a+ ib)| ≤ 1+ sinh(a),

which hold for real numbers a > 0 and b ∈ R, we estimate

|u(x)| ≤ ‖ f‖C0

2|γ|sinh(γrπ)

(∫ x

0
(1+ sinh(γr(π +ξ − x)))dξ

+
∫ π

x
(1+ sinh(γr(π + x−ξ )))dξ +

∫ π−x

0
(1+ sinh(γr(π − x−ξ )))dξ

+
∫ π

π−x
(1+ sinh(γr(x+ξ −π)))dξ

)

=
‖ f‖C0

|γ|γr sinh(γrπ)
(γrπ + cosh(γrπ)−1) ≤ 2‖ f‖C0

|γ|γr
.
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This proves the first inequality in (2.24).
Similar calculations show that

‖u′‖C0 ≤
c

|ω |1/2
‖ f‖C0 ,

and it remains to estimate ‖u′′‖C0 . Now we use the fact that f ∈Y , in order to obtain
the second inequality in (2.24), with α �= 0. (We point out that ‖u′′‖C0 ≤ c‖ f‖C0 ,
since u′′ = γ2u− f , which gives the second inequality in (2.24) for α = 1, only.)
Integrating by parts in the formula for u we find, for f ∈C1([0,π]),

u′′(x) = γ2u(x)− f (x)

=
1

sinh(γπ)

(
− sinh(γ(π − x)) f (0)− sinh(γx) f (π)

−
∫ x

0
cosh(γξ )sinh(γ(π − x)) f ′(ξ )dξ

+
∫ π

x
sinh(γx)cosh(γ(π −ξ )) f ′(ξ )dξ

)
.

Using the fact that f (0) = f (π) = 0 for f ∈ Y , and arguing as above, we find

‖u′′‖C0 ≤
c

|ω |1/2
‖ f ′‖C0 ,

which completes the proof of (2.24). Notice that the equalities f (0) = f (π) = 0 were
essential in this last part of the proof, taking f ∈ C1([0,π]), only, does not allow
us to obtain the second inequality in (2.24) with α �= 0. However, such boundary
conditions on f are not necessary when the Banach spaces Ck([0,π]) are replaced
by the Sobolev spaces Hk(0,π), for which one can prove the second inequality in
(2.24), with α = 3/4, without imposing f (0) = f (π) = 0 (see [122]).

Reduced Equation

Hypotheses 2.1, 2.4, and 2.7 being satisfied, we can now apply center manifold
Theorem 2.9. This gives us a one-dimensional center manifold M0 as in (2.6), pa-
rameterized by u0 ∈ E0. Notice that L0u0 = 0 in this case, so that the linear term in
the reduced system (2.7) vanishes. Furthermore, since E0 is spanned by ξ0, we may
write

u0(t) = A(t)ξ0 ∈ E0, A(t) ∈ R.

Replacing this formula in the reduced system (2.7) we obtain a first order ODE
for A,

dA
dt

= f0(A),
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with f0(A) = O(A2) as A → 0. For concrete nonlinear terms g in (2.19), one can
compute explicitly the Taylor expansion of f0 (see Remark 2.13), and then easily
determine the dynamics near 0 of the reduced equation, since it is a first order ODE.
We present examples of such computations in Section 2.4.

2.3 Particular Cases and Extensions

2.3.1 Parameter-Dependent Center Manifolds

In the same frame as above, we consider a parameter-dependent differential equa-
tion in X of the form

du
dt

= Lu+R(u,μ), (3.1)

where L is a linear operator as in Section 2.2 and R is defined for (u,μ) in a neigh-
borhood of (0,0) in Z ×R

m. Here μ ∈ R
m is a parameter that we assume to be

small. More precisely, we keep Hypotheses 2.4, 2.7, and replace Hypothesis 2.1 by
the following:

Hypothesis 3.1 We assume that L and R in (3.1) have the following properties:

(i) L ∈ L (Z ,X );
(ii) for some k ≥ 2, there exist neighborhoods Vu ⊂ Z and Vμ ⊂ R

m of 0 such that
R ∈ C k(Vu ×Vμ ,Y ) and

R(0,0) = 0, DuR(0,0) = 0.

Remark 3.2 The equalities above on R imply that 0 is an equilibrium of (3.1) for
μ = 0, and that L represents the linearization of the vector field about this equilib-
rium at μ = 0. Now, if L has a bounded inverse, then this equilibrium persists for
small μ . More precisely, by arguing with the implicit function theorem, we find that
there is a family of stationary solutions u = u(μ) of (3.1) for μ close to 0, i.e., such
that

Lu(μ)+R(u(μ),μ) = 0.

On the contrary, if L does not have a bounded inverse, then this equilibrium may
not persist for some values of μ near 0.

The analogue of center manifold Theorem 2.9 for the parameter-dependent equa-
tion (3.1) is the following result.

Theorem 3.3 (Parameter-dependent center manifolds) Assume that Hypotheses
3.1, 2.4, and 2.7 hold. Then there exists a map Ψ ∈ C k(E0×R

m,Zh), with

Ψ(0,0) = 0, DuΨ(0,0) = 0, (3.2)

and a neighborhood Ou×Oμ of (0,0) in Z ×R
m such that for μ ∈Oμ , the manifold
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M0(μ) = {u0 +Ψ(u0,μ) ; u0 ∈ E0} (3.3)

has the following properties:

(i) M0(μ) is locally invariant, i.e., if u is a solution of (3.1) satisfying u(0) ∈
M0(μ)∩Ou and u(t)∈Ou for all t ∈ [0,T ], then u(t)∈M0(μ) for all t ∈ [0,T ].

(ii) M0(μ) contains the set of bounded solutions of (3.1) staying in Ou for all t ∈R,
i.e., if u is a solution of (3.1) satisfying u(t) ∈ Ou for all t ∈ R, then u(0) ∈
M0(μ).

Proof We consider (3.1) as a particular case of a system of the form (2.1), namely,

dũ
dt

= L̃ũ+ R̃(ũ), (3.4)

by setting
ũ = (u,μ),

and

L̃ ũ = (Lu+Dμ R(0,0)μ ,0),

R̃(ũ) = (R(u,μ)−DμR(0,0)μ ,0).

We show that L̃ and R̃ verify Hypotheses 2.1, 2.4, and 2.7, with Banach spaces

X̃ = X ×R
m, Z̃ = Z ×R

m, Ỹ = Y ×R
m,

and then the result in the theorem follows from Theorem 2.9.
First, Hypothesis 2.1 is an immediate consequence of Hypothesis 3.1. Next, we

show that the spectral sets σ̃±, σ̃0 of L̃ satisfy

σ̃± = σ±, σ̃0 \{0} = σ0 \{0}, (3.5)

where σ±, σ0 are the spectral sets of L, and that σ̃0 consists of purely imaginary
eigenvalues with finite algebraic multiplicities. These properties imply then that Hy-
pothesis 2.4 holds.

Indeed, let us consider the linear equation

(L̃−λ )ũ = ṽ,

where ṽ = (v,ν) ∈ X ×R
m. This means that

(L−λ )u+Dμ R(0,0)μ = v,

−λ μ = ν.

Hence, if λ �= 0 we have μ = −ν/λ and

(L−λ )u = v+λ−1Dμ R(0,0)ν.
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Consequently, in C\{0}, the resolvent set of L is identical to the resolvent set of L̃.

In particular, we have that (3.5) holds. Furthermore, for L̃ we can define the spectral
projections P̃0, P̃h, and the corresponding spectral spaces Ẽ0, X̃h as in Section 2.2.1.

Next, notice that Xh ×{0} is an invariant subspace for L̃, since

L̃(uh,0) = (Lhuh,0) ∈ Xh ×{0} for all uh ∈ Zh.

From this equality we further deduce that

σ(L̃
∣
∣
Xh×{0}) = σ(Lh) = σ+ ∪σ− = σ̃+ ∪ σ̃−.

Consequently, Xh ×{0} ⊂ X̃h, and since

codimX̃h ≤ codim(Xh ×{0}) = dimE0 +m < ∞,

we conclude that
dim Ẽ0 = codimX̃h < ∞.

In particular, this shows that σ̃0 consists of purely imaginary eigenvalues with finite
algebraic multiplicities and proves Hypothesis 2.4.

In order to prove Hypothesis 2.7 it is enough to show that X̃h = Xh ×{0}, and
then the conditions on L̃ in Hypothesis 2.7 follow from the analogue ones on L. We
claim that

Ẽ0 = {(u0 −L−1
h Dμ Rh(0,0)μ ,μ) ; u0 ∈ E0, μ ∈ R

m} =: F0.

Then this implies that

codimX̃h = dim Ẽ0 = dimE0 +m = codim(Xh ×{0}) ,

and since Xh ×{0} ⊂ X̃h we conclude that X̃h = Xh ×{0}.
It remains to prove the claim Ẽ0 = F0. First, take ũ = (u,μ)∈ Ẽ0 ⊂ Z̃ . We write

u = u0 +uh with u0 ∈ E0, uh ∈ Zh, and compute

L̃ũ = (Lhuh +Dμ Rh(0,0)μ ,0)+(L0u0 +Dμ R0(0,0)μ ,0),

where Rh = PhR and R0 = P0R. The first term on the right hand side of the above
equality belongs to Xh×{0}⊂ X̃h, whereas the second term belongs to E0×{0}⊂
Ẽ0. Then, since L̃ũ ∈ Ẽ0, the first term vanishes, so that

Lhuh +Dμ Rh(0,0)μ = 0.

Now Lh has a bounded inverse because 0 does not belong to its spectrum, so that
we find

uh = −L−1
h Dμ Rh(0,0)μ .
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Summarizing, for ũ ∈ Ẽ0, we have

ũ = (u,μ) = (u0 +uh,μ) = (u0 −L−1
h Dμ Rh(0,0)μ ,μ),

which proves that Ẽ0 ⊂ F0.
Next, notice that

L̃(u0 −L−1
h Dμ Rh(0,0)μ ,μ) = (L0u0 +Dμ R0(0,0)μ ,0) ∈ E0 ×{0} ⊂ F0,

so that F0 is an invariant subspace for L̃. Consider the bases {e j; j = 1, . . . ,dimE0}
and { fk;k = 1, . . . ,m} of E0 and R

m, respectively. Then the set

{(e j,0),(−L−1
h Dμ Rh(0,0) fk, fk) ; j = 1, . . . ,dimE0, k = 1, . . . ,m}

is a basis for F0, in which we find that the matrix of L̃
∣
∣
F0

is of the form

(
M0 M1

0 0

)
,

with M0 the matrix of L0 in the basis {e j; j = 1, . . . ,dimE0} and M1 a matrix of
size m× dimE0. The set of eigenvalues of M0 is precisely the set σ0, and we then
conclude that

σ(L̃
∣∣
F0

) = σ0 ∪{0} ⊂ σ̃0.

In particular, this implies that F0 ⊂ Ẽ0, which completes the proof of Ẽ0 = F0. 
�

Remark 3.4 The analogue of the reduced equation (2.7) in this situation is

du0

dt
= L0u0 +P0R(u0 +Ψ(u0,μ),μ)

def
= f (u0,μ), (3.6)

where we observe that f (0,0) = 0 and Du0 f (0,0) = L0 has the spectrum σ0. Simi-
larly, we have the analogue of the equality (2.8),

Du0Ψ(u0,μ) f (u0,μ) = LhΨ(u0,μ)
+PhR(u0 +Ψ(u0,μ),μ) for all u0 ∈ E0. (3.7)

Exercise 3.5 Consider a system of the form (3.1) for which 0 is a solution for all values of μ , i.e.,
such that R(0,μ) = 0 for all μ in a neighborhood of 0 in R

m. Show that

Ψ(0,μ) = 0, f (0,μ) = 0,

for μ sufficiently small. Furthermore, set

Lμ = L+DuR(0,μ) ∈ L (Z ,X ) and Aμ =
∂ f
∂u0

(0,μ).

Show that eigenvalues of Aμ are precisely the eigenvalues of Lμ , which are the continuation for
small μ of the purely imaginary eigenvalues of L (i.e., those of L0)).
Hint: Identify the terms linear in u0 in the identity
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(
I+Du0Ψ(u0,μ)

)
f (u0,μ) = L(u0 +Ψ(u0,μ))+R(u0 +Ψ(u0,μ),μ) for all u0 ∈ E0.

Remark 3.6 (Case when σ0 does not lie on the imaginary axis) A situation aris-
ing in some applications is one in which the eigenvalues in σ0 of the operator L in
(3.1) do not lie on the imaginary axis but stay close to the imaginary axis. More
precisely, we still have the spectral decomposition in Hypothesis 2.4, satisfying the
properties (i) and (ii), but with σ0 such that

σ0 = {λ ∈ σ ; |Reλ | ≤ δ} (3.8)

for some δ � γ sufficiently small. This means that σ0 consists of a finite number of
eigenvalues λ j , j = 1, . . . ,r of L, with real parts that are small but not necessarily 0:

Reλ j = ε j, |ε j| ≤ δ , j = 1, . . . ,r.

In such a situation we can apply the result in Theorem 3.3 by arguing in the follow-
ing way:

Consider the bounded linear operator

Aν =
r

∑
j=1

ν jP j for ν = (ν1, . . . ,νr) ∈ R
r,

where P j denotes the spectral projection associated with the eigenvalue λ j ∈ σ0

of L. When ν = ε , ε = (ε1, . . . ,εr), the operator

L′ = L−Aε , ε = (ε1, . . . ,εr),

satisfies Hypothesis 2.4, the effect of adding −Aε to L being that all eigenvalues
in σ0 are shifted on the imaginary axis. Consequently, we can apply the result in
Theorem 3.3 to the modified system

du
dt

= L′u+R′(u,μ ′),

where μ ′ = (μ ,ν) and
R′(u,μ ′) = Aν u+R(u,μ),

which satisfies the hypotheses in Theorem 3.3 with the parameter μ ′ = (μ ,ν) ∈
R

m+r. We recover the original equation by taking ν = ε , and find the invariant
manifolds M0(μ ,ε) for this equation, provided ε is sufficiently small, such that
(0,ε) belongs to the neighborhood Oμ ′ of (0,0) in R

m+r given by Theorem 3.3.
This latter property is achieved when δ in (3.8) is sufficiently small, i.e., when the
eigenvalues in σ0 are close enough to the imaginary axis.

Remark 3.7 (i) In (3.1) the parameter μ occurs only in the term R, which takes
values in Y . A more general study would be for cases where μ also occurs
in the linear terms which take values in X . Then one would have a family of
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operators Lμ with domains which may also depend upon μ . Such a situation
requires a more delicate analysis, which does not enter in our setting.

(ii) It is possible to develop the theory for a parameter μ lying in a (infinite-
dimensional) Banach space instead of R

m. Nevertheless, for such a situation
one needs to go back and adapt the proof of the general result in Theorem
2.9. The proof of Theorem 3.3 given above does not extend to this situation,
since it relies upon the fact that R

m is finite-dimensional (one has that dim Ẽ0 =
dimE0 +m, and this quantity is infinite when R

m is replaced by an infinite- di-
mensional Banach space, so that the extended system (3.4) does not satisfy Hy-
pothesis 2.4(ii)). We refer the reader to [73] for an example of a problem with
a parameter varying in a function space, and for which the continuity of the re-
duction function Ψ with respect to the parameter, is only valid in X , not in Z .

2.3.2 Nonautonomous Center Manifolds

We present in this section an extension of the result of center manifold Theorem 2.9
to the case of nonautonomous equations of the form

du
dt

= Lu+R(u, t). (3.9)

We replace here Hypothesis 2.1 by the following assumptions on L and R.

Hypothesis 3.8 We assume that L and R in (3.9) have the following properties:

(i) L ∈ L (Z ,X );
(ii) for some k ≥ 2, there exists a neighborhood V ⊂Z of 0 such that R ∈C k(V ×

R,Y ) and
R(0, t) = 0, DuR(0, t) = 0.

In addition, we assume that for any sufficiently small ε , there exist positive
constants δ0(ε) = O(ε2) and δ1(ε) = O(ε) such that

sup
u∈Bε (Z )

‖R(u, t)‖Y = δ0(ε), sup
u∈Bε (Z )

‖DuR(u, t)‖L (Z ,Y ) = δ1(ε). (3.10)

The equalities in the formula (3.10) above, show that the nonlinear term R is
bounded with respect to all t ∈ R, uniformly for u in any sufficiently small closed
ball Bε(Z ). Furthermore, the dependency in t of the system (3.9) is in the nonlinear
term R, only. In this sense, the following theorem is a “perturbation” result of center
manifold Theorem 2.9.

Theorem 3.9 (Nonautonomous center manifolds) Assume that Hypotheses 3.8,
2.4, and 2.7 hold. Then, there exist a map Ψ ∈ C k(E0 ×R,Zh) and c > 0, with

Ψ(0, t) = 0, Du0Ψ(0, t) = 0,
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and

sup
u0∈Bε (E0)

‖Ψ(u0, t)‖Z = cδ0(ε), sup
u0∈Bε (E0)

‖DuΨ(u0, t)‖L (Z ) = cδ1(ε),

for sufficiently small ε , and a neighborhood O of 0 in Z such that the manifold

M0(t) = {u0 +Ψ(u0, t) ; (u0, t) ∈ Bε(E0)×R} ⊂ Z

has the following properties:

(i) the set {(t,u(t)) ∈ R×M0(t)} is a local integral manifold of (3.9);
(ii) any solution u of (3.9) staying in O for all t ∈ R satisfies u(t) ∈ M0(t).

We give a brief proof of this result in Appendix B.3 (see also [95] for a complete
proof).

Remark 3.10 The analogue of the reduced equation (2.7) in this situation is

du0

dt
= L0u0 +P0R(u0 +Ψ(u0, t), t)

def
= f (u0, t), (3.11)

whereas the analogue of the equality (2.8) is

∂tΨ(u0, t)+Du0Ψ(u0, t) f (u0, t) = LhΨ(u0, t)
+PhR(u0 +Ψ(u0, t), t) for all u0 ∈ E0.

There are at least two particular cases of equation (3.9) that are important in
applications:

(i) the case in which the map R is periodic with respect to t, and
(ii) the case in which limt→∞ R(u, t) → R∞(u) or limt→−∞ R(u, t) → R−∞(u).

In these cases the reduction function Ψ , and then also the reduced system, has
similar properties. We show in Appendix B.3 that the following result holds.

Corollary 3.11 (Special cases) Assume that the hypothesis in Theorem 3.9 holds.

(i) If the map R is periodic with respect to t, R(u, t) = R(u, t + τ) for some τ > 0,
then one can find a reduction function Ψ that is periodic, with the same period,
namely Ψ(u0, t) =Ψ(u0, t + τ) for any (u0, t) ∈ Bε(E0)×R.

(ii) Assume that there exist a map R∞ ∈ C k(V ,Y ) and d0 > 0 such that

‖R(u, t)−R∞(u)‖Y ≤ ce−d0t for all (u, t) ∈ V ×R
+.

Then the result in center manifold Theorem 2.9 holds for the autonomous equa-
tion

du
dt

= Lu+R∞(u), (3.12)

and there exists c′ > 0 such that
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‖Ψ(u0, t)−Ψ ∞(u0)‖Zh
≤ c′e−d0t for all (u0, t) ∈ Bε(E0)×R

+,

where Ψ ∞ is the reduction function for the autonomous equation (3.12). A sim-
ilar result holds when ‖R(u, t)−R−∞(u)‖Y ≤ ced0t for all (u, t) ∈ V ×R

−.

2.3.3 Symmetries and Reversibility

We discuss in this section three cases of equations possessing a certain symmetry. In
each case we show that this symmetry is inherited by both the reduction function Ψ
and the reduced system.

Equivariant Systems

We start with the case of an equation that is equivariant under the action of a linear
operator. More precisely, we make the following assumptions.

Hypothesis 3.12 (Equivariant equation) We assume that there exists a linear op-
erator T∈L (X )∩L (Z ), which commutes with the vector field in equation (2.1),

TLu = LTu, TR(u) = R(Tu).

We further assume that the restriction T0 of T to the subspace E0 is an isometry.

Notice that the fact that the operator T commutes with the vector field in the
equation (2.1) implies that the subspace E0 is invariant under the action of T, so that
the restriction T0 in the hypothesis above is well defined. Indeed, since T commutes
with L, it also commutes with its resolvent (λ I−L)−1, and from the Dunford inte-
gral formula (2.2) it follows that T commutes with the spectral projector P0. Con-
sequently, the spectral subspace E0 associated with P0 is invariant under the action
of T.

We show in Appendix B.4 that the following result holds in this situation.

Theorem 3.13 (Center manifold theorem for equivariant equations) Under the
assumptions in Theorem 2.9, we further assume that Hypothesis 3.12 holds. Then
one can find a reduction function Ψ in Theorem 2.9 which commutes with T, i.e.,

TΨ(u0) =Ψ(T0u0) for all u0 ∈ E0,

and such that the vector field in the reduced equation (2.7) commutes with T0.

We point out that analogous results hold for the parameter-dependent equation
(3.1) and in the nonautonomous case for the equation (3.9).
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Reversible Systems

Next, we consider the case of reversible equations, when the vector field in (2.1)
anticommutes with a symmetry S. More precisely, we make the following assump-
tions.

Hypothesis 3.14 (Reversible equation) Assume that there exists a linear symmetry
S ∈ L (X )∩L (Z ), with

S2 = I, S �= I,

and which anticommutes with the vector field in (2.1),

SLu = −LSu, SR(u) = −R(Su). (3.13)

Notice that in this case, if t 
→ u(t) is a solution of (2.1), then t 
→ Su(−t) is also a
solution of (2.1). Moreover, the spectrum of the linear operator L is symmetric with
respect to the origin in the complex plane. Indeed, from the first equality in (3.13)
we deduce that

S(λ I−L)−1 = (λ I+L)−1S,

which shows that the resolvent set ρ(L) as well as its complement σ(L) are sym-
metric with respect to the origin. In particular, for real systems, besides the usual
symmetry with respect to the real axis, in this case the spectrum of L is also sym-
metric with respect to the imaginary axis. We also point out that if λ is an eigenvalue
of L with the associated eigenvector ζ , then −λ is an eigenvalue with the associated
eigenvector Sζ .

As in the case of equivariant equations with Hypothesis 3.12, we have that the
spectral subspace E0 is invariant under the action of S. Indeed, since the spectrum
of the operator L is symmetric with respect to the origin in the complex plane, we
may choose the curve Γ in the Dunford integral formula (2.2) such that it is also
symmetric with respect to the origin in the complex plane. Then a direct calculation
shows that the spectral projection P0 given by (2.2) commutes with S, so that E0 is
invariant under the action of S.

By arguing as in the case of equivariant equations, we obtain here the following
result.

Theorem 3.15 (Center manifold theorem for reversible equations) Under the
assumptions of Theorem 2.9, we further assume that Hypothesis 3.14 holds. Then
one can find a reduction function Ψ in Theorem 2.9 that commutes with S,

SΨ(u0) =Ψ(S0u0) for all u0 ∈ E0,

where S0 is the restriction of S to the subspace E0 and such that the reduced equation
is reversible, i.e., the vector field in (2.7) anticommutes with S0.

A similar result holds for the parameter-dependent equation (3.1), whereas in the
nonautonomous case for equation (3.9) the following holds.
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Corollary 3.16 (Reversible nonautonomous equations) Under the assumptions
of Theorem 3.9, we further assume that the equation (3.9) is reversible, i.e., there
exists a symmetry S ∈ L (X )∩L (Z ), with S2 = I and S �= I, such that

SLu = −LSu, SR(u, t) = −R(Su,−t).

Then, one can find a reduction function Ψ in the Theorem 3.9 that satisfies

SΨ(u0, t) =Ψ(S0u0,−t) for all u0 ∈ E0,

and the reduced equation is reversible, i.e., the vector field in (3.11) satisfies

S0 f (u0, t) = − f (S0u0,−t) for all u0 ∈ E0.

Continuous Symmetry

We end this section with the case where equation (2.1) is equivariant under a one-
parameter group of isometries. We focus on the case of the underlying group R, and,
instead of a single equilibrium at the origin, the equation has a “line” of equilibria.
This situation is encountered in the applications in Sections 5.1.2, 5.1.3, and 5.2.2
of Chapter 5. Other groups of symmetries can be treated in the same spirit, how-
ever, this may require more specific tools and further evolved algebra. We refer the
reader to the book [16] for such cases. More precisely, we make here the following
hypotheses.

Hypothesis 3.17 (Continuous symmetry) Assume that there exists a continuous
one-parameter group of isometries (Tα)α∈R ⊂ L (Z )∩L (X ), which commutes
with the vector field in (2.1), that is, such that the following properties hold:

(i) the map α ∈ R 
→ Tα ∈ L (Z )∩L (X ) is continuous;
(ii) T0 = I and Tα+β = Tα Tβ for all α, β ∈ R;

(iii) Tα Lu = LTα u and Tα R(u) = R(Tα u) for all α ∈ R.

Further assume that the infinitesimal generator τ of the group (Tα)α∈R ⊂ L (X )
belongs to L (Z ,Y ),

τ :=
dTα
dα

∣∣
α=0 ∈ L (Z ,Y ).

Hypothesis 3.18 (Equilibria) Assume that equation (2.1) has a nontrivial equilib-
rium u∗ ∈ Z ,

Lu∗ +R(u∗) = 0, u∗ �= 0,

satisfying τu∗ ∈ Z \{0}.

An immediate consequence of the hypotheses above is that equation (2.1) pos-
sesses a line of equilibria given by {Tα u∗ ∈ Z ;α ∈ R}. Furthermore, since τu∗ ∈
Z , we may differentiate the identity
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LTα u∗ +R(Tα u∗) = 0

at α = 0 and obtain
Lτu∗ +DR(u∗)τu∗ = 0. (3.14)

This shows that τu∗ belongs to the kernel of the linearization L + DR(u∗) of the
vector field at the equilibrium u∗ (this eigenvector is often called the “Goldstone
mode” by physicists).

Our purpose is to construct a local center manifold along this line of equilibria
in Z , taking into account the continuous symmetry of the equation. We make the
Ansatz

u(t) = Tα(t)(u
∗ + v(t)), (3.15)

replacing the unknown u by the pair (α,v), with α(t)∈ R and v(t)∈Z satisfying a
transversality condition that we define now. For this we decompose the space X in
the subspace spanned by τu∗, parallel to the line of equilibria, and a complementary
subspace. Consider the linear form ϕ∗ in the dual space X ∗ such that 〈τu∗,ϕ∗〉= 1
(e.g., see [76, p. 135]). We define the subspace H ⊂ X transverse to τu∗,

H = {v ∈ X ; 〈v,ϕ∗〉 = 0},

which provides us with a decomposition of X into two complementary closed sub-
spaces,

X = {τu∗}⊕H .

The linear operators

Π 0u = 〈u,ϕ∗〉τu∗, ΠH = I−Π 0

are projections onto the subspaces {τu∗} and H , respectively. Since τu∗ ∈ Z , we
have that ΠH u ∈ Z (resp., ΠH u ∈ Y ) if u ∈ Z (resp., u ∈ Y ), so that we have
similar decompositions for Z and Y . We now choose v in (3.15) such that v(t)
belongs to H , i.e.,

Π 0v(t) = 0 ⇐⇒ 〈v(t),ϕ∗〉 = 0.

Next, we substitute the Ansatz (3.15) into the equation (2.1) and obtain the equation

τTα(u∗ + v)
dα
dt

+Tα
dv
dt

= LTα v+R(Tα(u∗ + v))−R(Tαu∗),

where we have used the fact that Tα u∗ is an equilibrium of (2.1). Using the equiv-
ariance property in Hypothesis 3.17(iii) we find

(τu∗ + τv)
dα
dt

+
dv
dt

= Av+ R̃(v),

in which
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Av = Lv+DR(u∗)v, R̃(v)=R(u∗ + v)−R(u∗)−DR(u∗)v.

Projecting successively with Π 0 and ΠH , this gives the first order system for (α,v),

dα
dt

= (1+ 〈τv,ϕ∗〉)−1〈Av+ R̃(v),ϕ∗〉 def= g(v) (3.16)

dv
dt

= ΠH Av+ΠH R̃(v)−g(v)ΠH τv, (3.17)

which holds for v ∈ Z sufficiently small.
The key property of the system (3.16)–(3.17) is that the vector field is indepen-

dent of α , which in particular does not appear in the equation (3.17). This equation
decouples, so that we can solve it separately, and once v is known we obtain α from
the first equation. The differential equation (3.17) is of the form of (2.1), with the
spaces X , Z , Y replaced by

X ′ = H , Z ′ = ΠH Z , Y ′ = ΠH Y ,

respectively, and operators L and R replaced by

L′ = ΠH A, R′(v) = ΠH (R̃(v)−g(v)τv), (3.18)

respectively. In particular, this means that thanks to the choice of the Ansatz (3.15),
the dimension of the problem is decreased by one, the space X being replaced by
H . In fact we suppressed the direction τu∗, which belongs to the kernel of A as
shown by (3.14). Furthermore, once we obtain a local center manifold for equation
(3.17), we have a center manifold for equation (2.1), with one additional dimension,
in a neighborhood of the line of stationary solutions {Tα u∗ ∈ Z ;α ∈ R}. More
precisely, we have the following result.

Theorem 3.19 (Center manifolds in presence of continuous symmetry) Assume
that Hypothesis 2.1 holds and that the linear operator L′ = ΠH A in (3.18) acting
in X ′ satisfies Hypotheses 2.4 and 2.7. Then for the differential equation (3.17) the
result in Theorem 2.9 holds.

Let O ′, Ψ ′, and E ′
0 be respectively the neighborhood of the origin in Z ′, the re-

duction function, and the spectral subspace, given by Theorem 2.9 for (3.17). Con-
sider the “tubular” neighborhood

O = {Tα(u∗ + v) ; v ∈ O ′, α ∈ R} ⊂ Z

of the line of equilibria {Tα u∗ ∈ Z ;α ∈ R}, and the manifold

M0 = {Tα(u∗ + v0 +Ψ(v0)) ; v0 ∈ E ′
0, α ∈ R} ⊂ Z . (3.19)

Then for differential equation (2.1) the following properties hold:

(i) The manifold M0 is locally invariant, i.e., if u is a solution of (2.1) satisfying
u(0) ∈ M0 ∩O and u(t) ∈ O for all t ∈ [0,T ], then u(t) ∈ M0 for all t ∈ [0,T ].
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(ii) M0 contains the set of solutions of (2.1) staying in O for all t ∈ R, i.e., if u is a
solution of (2.1) satisfying u(t) ∈ O for all t ∈ R, then u(0) ∈ M0.

We point out that in this situation the center manifold M0 contains the solutions
which stay close to the line of equilibria for all t ∈ R. These solutions are of the
form

u = Tα(u∗ + v0 +Ψ(v0)),

with α and v0 satisfying the reduced system

dα
dt

= g(v0 +Ψ(v0)) (3.20)

dv0

dt
= ΠH Av0 +P′

0

(
ΠH R̃(v0 +Ψ(v0))

)

−P′
0 (g(v0 +Ψ(v0))ΠH τ(v0 +Ψ(v0))) , (3.21)

in which g is defined in (3.16) and P′
0 is the spectral projector for the linear operator

L′ = ΠH A defined as in Section 2.2.1. Furthermore, for such a solution we have
that v0 is a small bounded solution of the equation (3.21), whereas α given by (3.20)
has bounded derivative and may grow linearly in t.

Similar results hold for the parameter-dependent equation (3.1) and for the
nonautonomous equation (3.9).

2.3.4 Empty Unstable Spectrum

A particular case, which appears in some applications, e.g. in parabolic problems,
occurs when the unstable spectrum σ+ of L is empty. Then we complete general
Hypothesis 2.7 by the following assumptions, which allow us to obtain further in-
formation about the center manifolds in this case.

Hypothesis 3.20 (Empty unstable spectrum) Assume that σ+ = ∅ and that for
any η ∈ [0,γ] the following properties hold:

(i) For any f ∈ Fη(R,Yh) the linear problem

duh

dt
= Lhuh + f

has a unique solution uh = Kh f ∈ Fη(R,Zh). Furthermore, the linear map
Kh belongs to L (Fη(R,Yh),Fη(R,Zh)), and there exists a continuous map
C : [0,γ] → R such that

‖Kh‖L (Fη (R,Yh),Fη (R,Zh)) ≤C(η).

(ii) The linear initial value problem
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duh

dt
= Lhuh, uh|t=0 = uh(0) ∈ Zh,

has a unique solution uh(t) ∈ C 0(R+,Zh), which satisfies

‖uh(t)‖Z ≤ cη e−ηt for all t ≥ 0

for some positive constant cη .

As for Hypothesis 2.7, we have that these assumptions are satisfied, provided
Hypothesis 2.15 holds (see Remark B.2 in Appendix B.2).

Exercise 3.21 Prove that Hypothesis 3.20 is satisfied in finite dimensions when X = R
n and

σ+ = ∅.

Theorem 3.22 (Center manifold theorem for empty unstable spectrum) Under
the assumptions of Theorem 2.9, further assume that Hypothesis 3.20 holds. Then
in addition to the properties in Theorem 2.9 the following holds.

The local center manifold M0 is locally attracting, i.e., any solution of (2.1) that
stays in O for all t > 0 tends exponentially towards a solution of (2.1) on M0. More
precisely, if u(0) ∈ O and the solution u(t;u(0)) of (2.1) satisfies u(t;u(0)) ∈ O for
all t > 0, then there exists ũ ∈ M0 ∩O and γ ′ > 0 such that

u(t;u(0)) = u(t; ũ)+O(e−γ ′t) as t → ∞.

(Here we denoted by u(t;u(0)) the solution of (2.1) satisfying u|t=0 = u(0)).

We prove this result in Appendix B.5. In addition, since according to the proof of
Theorem 3.3, the parameter-dependent equation (3.1) can be regarded as a particular
case of equation (2.1), we can extend the result above to equation (3.1).

Theorem 3.23 (Parameter-dependent center manifolds) Assume that Hypotheses
3.1, 2.4, 2.7, and 3.20 hold. Then in addition to the properties in Theorem 3.3 the
following holds.

The local center manifold M0(μ) is locally attracting, i.e., any solution of (3.1)
that stays in Ou for all t > 0 tends exponentially towards a solution of (3.1) on
M0(μ). More precisely, if u(0) ∈ Ou and the solution u(t;u(0)) of (3.1) satisfies
u(t;u(0)) ∈ Ou for all t > 0, then there exists ũ ∈ M0(μ)∩Ou and γ ′ > 0 such that

u(t;u(0)) = u(t; ũ)+O(e−γ ′t) as t → ∞.

(Here we denoted by u(t;u(0)) the solution of (3.1) satisfying u|t=0 = u(0).)

2.4 Further Examples and Exercises

We end this chapter with some further examples in which we apply the different
variants of center manifold Theorem 2.9 presented in Section 2.3. In each example
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we show how to check the hypotheses and discuss the reduced system. In contrast to
the second example given in Section 2.2.4, here we work in Hilbert spaces, which, in
particular, simplifies the checking of Hypothesis 2.7 (see Remark 2.16). In addition,
these examples are such that u = 0 is a solution of the system for all values of
the parameter(s), except for the example in Section 2.4.3, case V, and the example
in Section 2.4.4. This property allows us to use the result in Exercise 3.5, and so
simplify some computations.

2.4.1 A Fourth Order ODE

Consider the fourth order ODE

u(4) −u′′ −μu−au2 = 0, (4.1)

where μ is a small parameter and a a given real number. For μ = 0 this is precisely
equation (2.11), studied in Section 2.2.4.

Formulation as a First Order System

We start by writing equation (2.11) in the form (3.1). As in Section 2.2.4, we set U =
(u,u1,u2,u3) with u1 = u′, u2 = u′′ −u, u3 = u′2, and then the equation is equivalent
to the system

dU
dt

= LU +R(U,μ), (4.2)

in which

L =

⎛

⎜⎜
⎝

0 1 0 0
1 0 1 0
0 0 0 1
0 0 0 0

⎞

⎟⎟
⎠ , R(U,μ) =

⎛

⎜⎜
⎝

0
0
0

μu+au2

⎞

⎟⎟
⎠ .

Here L is the same 4×4-matrix, and R : R
4 ×R → R

4 is a smooth map, so that we
choose again

X = Y = Z = R
4.

In addition, notice that the system (4.2) possesses a reversibility symmetry, i.e.,
L and R(·,μ) anticommute with

S =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟
⎟
⎠ .

This symmetry is a consequence of the fact that the equation (4.1) is invariant under
the reflection t 
→ −t.
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Checking the Hypotheses

Clearly, Hypothesis 3.1 is satisfied for L and R as above for any k ≥ 2, and neigh-
borhoods Vu = R

4 and Vμ = R. We have seen, in Section 2.2.4, that L satisfies
Hypothesis 2.4 with

σ+ = {1}, σ0 = {0}, σ− = {−1},

and that Hypothesis 2.7 holds because X is finite-dimensional. Consequently, we
can apply center manifold Theorem 3.3, and conclude the existence of a local two-
dimensional center manifold of class C k for any arbitrary, but fixed, k ≥ 2 for any
μ sufficiently small.

In addition, since system (4.2) is reversible, Hypothesis 3.14 is also satisfied, so
that according to Theorem 3.15 the reduced equation is reversible, i.e., the vector
field in this equation anticommutes with the symmetry S0 induced by S on E0.

Reduced Equation

We compute now the Taylor expansion, up to order 2, of the vector field in the
reduced equation. Clearly, for μ = 0 we have the expansion found in Section 2.2.4.

Consider the basis {ζ0,ζ1} of E0 computed in Section 2.2.4, and notice that S
acts on this basis through

Sζ0 = ζ0, Sζ1 = −ζ1,

so that

S0 =
(

1 0
0 −1

)
.

Then, according to Theorems 3.3 and 3.15, solutions on the center manifold are of
the form

U(t) = U0(t)+Ψ(U0(t),μ), (4.3)

in which Ψ(0,μ) = 0, DΨ(0,0) = 0, Ψ(S0U0,μ) = SΨ(U0,μ), and U0(t) ∈ E0, so
that

U0(t) = A(t)ζ0 +B(t)ζ1, (4.4)

where A and B are real-valued functions. Notice thatΨ(0,μ)= 0, because R(0,μ)=
0 (see Exercise 3.5). The reduced system is an ODE for U0 = (A,B), which now
depends upon μ , and according to (3.6) it is given by

dU0

dt
= L0U0 +P0R(U0 +Ψ(U0,μ),μ), (4.5)

where L0 and P0 are as in Section 2.2.4. Again, since the last component of the
vector ζ ∗

0 vanishes, we have that
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P0R(U0 +Ψ(U0,μ),μ) = 〈R(U0 +Ψ(U0,μ),μ),ζ ∗
1 〉ζ1,

and since now Ψ(U0) = O(‖U0‖(|μ |+‖U0‖)), we conclude that

P0R(U0 +Ψ(U0,μ),μ) = 〈R(U0),ζ ∗
1 〉ζ1 +O(‖U0‖(|μ |2 +‖U0‖2)).

The explicit formulas for P0, R, and U0 give

R(U0) = R(Aζ0 +Bζ1) =

⎛

⎜
⎜
⎝

0
0
0

−μA+aA2

⎞

⎟
⎟
⎠ ,

so that

P0R(U0 +Ψ(U0,μ),μ) =
(
−μA+aA2 +O((|A|+ |B|)(|μ |2 + |A|2 + |B|2))

)
ζ1.

We conclude that the reduced system (2.15), in the basis {ζ0,ζ1}, is

dA
dt

= B

dB
dt

= −μA+aA2 +O((|A|+ |B|)(|μ |2 + |A|2 + |B|2)).

In addition, the vector field in this system anticommutes with the matrix S0, which
implies that the right hand side in the second equation above is even in B, so that the
higher order terms in the expansion are in fact of order O((|A|+ |B|2)(|μ |2 + |A|2 +
|B|4)).

Remark 4.1 (i) For the calculation of the terms that are linear in A and B in
the reduced equation, we can also use the result in Exercise 3.5. According
to this result, the two eigenvalues of the 2× 2-matrix obtained by linearizing
the vector field in the reduced equation at (A,B) = (0,0) are precisely the two
eigenvalues of the matrix

Lμ = L+DR(0,μ) =

⎛

⎜⎜
⎝

0 1 0 0
1 0 1 0
0 0 0 1
μ 0 0 0

⎞

⎟⎟
⎠ ,

which are the continuation of the double eigenvalue 0 of L for small μ . A direct
calculation gives the eigenvalues

λ 2 =
1±

√
1+4μ
2

.

Hence, the two eigenvalues close to 0 satisfy λ 2
± = −μ + O(|μ |2). Next, the

2×2-matrix obtained by linearizing the vector field in the reduced equation at
(A,B) = (0,0) is of the form
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(
0 1

α(μ) 0

)
,

since, as we have seen above, B is the only term in the first component of the
vector field, and the second component is even in B. Consequently,

α(μ) = −μ +O(|μ |2),

which gives the same result as above.
(ii) For the computation of an expansion up to order 3, or higher, one needs to

compute the terms of order 2 in the expansion of Ψ (see also Remark 2.21).
This can be done by substituting the Ansatz

Ψ(A,B) = Ψ 101μA+Ψ 011μB+Ψ 200A2 +Ψ 110AB+Ψ 020B2

+O((|A|+ |B|)(|μ |2 + |A|2 + |B|2)) (4.6)

in the identity (3.7), and then the vectors Ψ i jk are determined by identifying
powers of μ , A, and B. Besides the fact that these vectors belong to the space
(I−P0)R4, so that they are orthogonal to both ζ ∗

0 and ζ ∗
1 , due to the reversibil-

ity symmetry they also satisfy

SΨ 101 =Ψ 101, SΨ 011 = −Ψ 011, SΨ 200 =Ψ 200,

SΨ 110 = −Ψ 110, SΨ 020 =Ψ 020.

(iii) An alternative way of computing the reduced system is to directly substitute
formulas (4.3), (4.4), and (4.6) into the first order system (4.2) and calculate the
Taylor expansions of both sides of the resulting system. We use this approach
in examples that follow, in this section.

(iv) The terms in the expansion of the vector field that do not depend upon μ can
be computed separately, by setting μ = 0 from the beginning. The other terms,
depending upon μ , can be calculated afterwards by restricting to such terms
in the Taylor expansions.

2.4.2 Burgers Model

We consider the initial boundary value problem

∂φ
∂ t

=
1
R

∂ 2φ
∂x2 +φ − ∂ (φ 2)

∂x
+Uφ , (4.7)

dU
dt

= − 1
R

U −
∫ 1

0
φ 2(x, t)dx, (4.8)

φ(0, t) = φ(1, t) = 0, (4.9)
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where φ(x, t) ∈ R and U(t) ∈ R for (x, t) ∈ (0,1)×R. This model equation, intro-
duced by J. M. Burgers [11], is a one-dimensional model used for understanding
instabilities in viscous fluid flows. In this system φ represents a velocity fluctuation,
U is the induced perturbation on the mean basic flow, and R is the Reynolds number,
proportional to the inverse of viscosity. The product Uφ represents the interaction
between the mean flow and the perturbation, the derivative of φ 2 represents inertial
terms, and the integral represents Reynolds stresses.

Formulation as a First Order Equation

We start by writing the problem (4.7)–(4.9) in the form (2.1), but now with linear
part L depending upon the parameter R, L = LR . We set

u =
(

φ
U

)
, LRu =

(
1
R

∂ 2φ
∂x2 +φ
− 1

RU

)

, R(u) =

(
− ∂ (φ2)

∂x +Uφ
−

∫ 1
0 φ 2(x, ·)dx

)

,

and choose the Hilbert space

X = L2(0,1)×R.

As in the example given in Section 2.2.4, we include the boundary conditions (4.9)
in the domain of definition Y of the operator LR , by taking

Z = (H2(0,1)∩H1
0 (0,1))×R.

Finally, we set
Y = H1

0 (0,1)×R,

so that R(u) ∈ Z for u ∈ Y . Notice that the system commutes with the symmetry
T defined by

T
(

φ(x)
U

)
=

(
−φ(1− x)

U

)
,

which is an isometry in both X and Z .
This formulation of the problem does not quite enter into the setting of center

manifold theorems presented in the previous sections, because the linear operator
depends upon the parameter R. The next step consists in determining the spec-
trum of this operator in order to detect the “critical” values of the parameter R,
where its spectrum contains purely imaginary eigenvalues. These values are bifur-
cation points. Then we choose such a bifurcation point and apply the result in the
parameter-dependent version of the center manifold theorem, Theorem 3.3, by tak-
ing L to be the operator LR at this bifurcation point.
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Spectrum of the Linear Operator

The linear operator LR is a closed operator in X with domain Z . Since the do-
main Z is compactly embedded in X , the operator LR has compact resolvent.
Consequently, its spectrum consists of isolated eigenvalues, only, which all have
finite algebraic multiplicity. In order to determine the spectrum we then solve the
eigenvalue problem

LRu = λu, u ∈ Z ,

which is equivalent to the system

φ ′′ +R(1−λ )φ = 0 φ(0) = φ(1) = 0,
(

λ +
1
R

)
U = 0.

The two equations in this system are decoupled, so that we can determine φ and U
separately. The second equation gives the eigenvalue λ0 = −1/R, with eigenvector
(0,1), whereas by solving the first equation we find the sequence of eigenvalues
λk = 1 − k2π2/R, with eigenvectors (sin(kπx),0) for k ∈ N

∗. Upon varying the
parameter R, we find that there is a sequence (Rk)k∈N∗ of critical values of R,
where the part σ0 of the spectrum of LR is not empty:

Rk = k2π2, k ∈ N
∗.

At each such value, σ0 = {0} and it is easy to check that the operators LRk
satisfy

spectral Hypothesis 2.4. Furthermore, in each case the kernel of the operator LRk

is one-dimensional, spanned by the vector (sin(kπx),0), so that 0 has geometric
multiplicity one, and by arguing as in the example in Section 2.2.4 we conclude that
its algebraic multiplicity is also one.

Checking Hypotheses 3.1 and 2.7

We restrict our analysis to the first bifurcation point R = R1 = π2. We set μ =
R−R1 and write the system in the form (3.1) by taking

L = LR1 , R(u,μ) = R(u)+(LR1+μ −LR1)u.

Then L satisfies Hypothesis 3.1, whereas we now have R(u,μ) ∈ X , instead of Y ,
for u ∈ Z , because of the term (LR1+μ −LR1)u, which belongs to X but not to
Y . Since R(u) is quadratic, and

‖R(u)‖X ≤C‖u‖2
Z for all u ∈ Z ,

for some positive constant C, we have that R ∈ Ck(Z ×Vμ ,X ) for any positive
integer k, where Vμ = R\{R1}. Consequently, R satisfies Hypothesis 3.1 with X
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instead of Y . We are in the presence of a “quasilinear” equation with this formula-
tion.

Remark 4.2 Alternatively, one could go back to the original system (4.7)–(4.9), and
rescale the time t through t = Rt ′, which then allows us to recover a formulation for
which Hypothesis 3.1 holds with the space Z introduced above. With this second
formulation we are in the presence of a “semilinear” equation. Since our problem
is formulated in Hilbert spaces we can apply the center manifold theorem to both
formulations, Theorem 2.20 to the first one and Theorem 2.17 to the second one.
We choose here the first formulation above as a quasilinear equation. However, this
won’t be possible in Banach spaces, e.g., if the Sobolev spaces Hk are replaced by
Ck, in which one has to choose this second formulation as a semilinear equation
(see Section 2.2.3).

It remains to check that Hypothesis 2.7 holds. For this we use now the result in
Theorem 2.20 which shows that it is enough to check the estimate on the resolvent
(2.9). For f = (ψ ,V ) ∈ X , we have to show that the solution u = (φ ,U) ∈ Y of
the system

(iω −1)φ − 1
π2 φ ′′ = ψ

(
iω +

1
π2

)
U = V,

satisfies

‖u‖X =
(
‖φ‖2

L2(0,1) + |U |2
)1/2

≤ c
|ω | ‖ f‖X =

c
|ω |

(
‖ψ‖2

L2(0,1) + |V |2
)1/2

,

for |ω | ≥ ω0 and some positive constant c. First, from the second equation we im-
mediately find

|U | = π2
√

1+π4ω2
|V |, (4.10)

whereas for the solution φ of the first equation we can proceed as in the example in
Section 2.2.4 (explicitly compute the solution and then estimate its norm). Alterna-
tively, we can make use of the fact that we know that this solution exists and belongs
to H2(0,1)∩H1

0 (0,1) for ψ ∈ L2(0,1), when ω �= 0, since any iω �= 0 belongs to
the resolvent set of LR1 . Then multiplying the equation by φ̄ , integrating over (0,1),
and integrating once by parts we obtain

(iω −1)‖φ‖2
L2(0,1) +

1
π2 ‖φ ′‖2

L2(0,1) =
∫ 1

0
ψ(x)φ̄(x)dx.

Upon taking the imaginary parts of both sides of this equality we find

ω‖φ‖2
L2(0,1) = Im

∫ 1

0
ψ(x)φ̄(x)dx,
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so that

|ω |‖φ‖2
L2(0,1) ≤

∫ 1

0
|ψ(x)φ̄(x)|dx ≤ ‖ψ‖L2(0,1)‖φ‖L2(0,1).

Consequently,

‖φ‖L2(0,1) ≤
1
|ω | ‖ψ‖L2(0,1),

which together with (4.10) gives the desired estimate and proves that Hypothesis 2.7
holds.

Center Manifold

Hypotheses 3.1, 2.4, and 2.7 being satisfied, we can now apply center manifold
Theorem 3.3. Since 0 is a simple eigenvalue, the space E0 is one-dimensional, which
gives us the family of one-dimensional center manifolds M0(μ), as in (3.3), for
sufficiently small μ . As in the example in Section 2.2.4, we have that L0u0 = 0, so
that the linear term in the reduced system (2.7) vanishes. Further denote by ξ0 the
eigenvector

ξ0 = (sin(πx),0)

which spans E0, and write

u0(t) = A(t)ξ0 ∈ E0, A(t) ∈ R.

Replacing this formula in the reduced system (3.6) we obtain a first order ODE
for A,

dA
dt

= f0(A,μ),

with f0(A,μ) = O(|A|(|μ |+ |A|)), as (A,μ) → (0,0).
Now, recall that the system commutes with the symmetry T, so that the result in

Theorem 3.13 holds, as well. Then the vector field in the reduced system commutes
with the induced symmetry T0 on E0. Since Tξ0 = −ξ0, this symmetry acts on A
through A 
→ −A. In particular, this shows that the vector field f0 is odd in A, so that
we may write

dA
dt

= aμA+bA3 +O(|A|(|μ |2 +A4)).

We expect to find here a pitchfork bifurcation (see Section 1.1.2, Chapter 1). In
order to analyze this bifurcation we compute the coefficients a and b.

Pitchfork Bifurcation

The coefficient a can be computed with the help of the result in Exercise 3.5, which
shows that ∂ f0/∂A(0,μ) is the eigenvalue of LR1+μ vanishing at μ = 0. This latter
eigenvalue is
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λ1 = 1− π2

R1 + μ
=

μ
π2 − μ2

π4 +O(|μ |3),

so that we find

a =
1

π2 .

Next, in order to compute b we write for u on the center manifold

u(t) = A(t)ξ0 +Ψ(A(t),μ), (4.11)

in which u0(t) = A(t)ξ0 and Ψ is the reduction function. Recall that R(u,0) = R(u)
is quadratic, so that we may write

R(u,0) = R2(u,u), R2(u,v) =

(
− ∂ (φψ)

∂x + 1
2Uψ + 1

2V φ
−

∫ 1
0 φ(x, ·)ψ(x, ·)dx

)

,

where v = (ψ ,V ). We set μ = 0 in the following calculations, and consider the
expansion

Ψ(A,0) = A2Ψ 2 +A3Ψ 3 +O(A4),

in which TΨ 2 =Ψ 2, and TΨ 3 =−Ψ 3, because Ψ commutes with the symmetry T.
Now we substitute u from (4.11) into

du
dt

= Lu+R2(u,u), (4.12)

and taking into account that

dA
dt

= bA3 +O(|A|5)

when μ = 0, we identify the powers of A in this equality. At orders O(A2) and
O(A3), we find, respectively,

LΨ 2 = −R2(ξ0,ξ0),
LΨ 3 = −2R2(ξ0,Ψ 2)+bξ0.

A necessary condition for solving these equations is that the right hand sides of
both equalities lie in the range of L, or equivalently, lie in the space orthogonal to the
kernel of the adjoint of L. A direct calculation shows that here L∗ = L, i.e., L is self-
adjoint, so that its kernel is spanned by ξ0. Further, recall that Ψ(A,μ) belongs to
Zh, the space defined by Zh = (I−P0)Z , where P0 is the spectral projection onto
E0, associated with σ0. It is this property which allows one to uniquely determine
Ψ 2 and Ψ 3 from the equalities above. However, in this particular example we can
get the desired result without explicitly computing the projection P0.

First,

R2(ξ0,ξ0) =
(
−π sin(2πx)

− 1
2

)
,
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which is clearly orthogonal to ξ0 in X , and a direct calculation gives

Ψ 2 =
(−π

3 sin(2πx)
−π2

2

)
+αξ0

for some α ∈ R. Now, recall that TΨ 2 = Ψ 2, which together with the fact that
Tξ0 = −ξ0, implies that α = 0. Next, we compute

2R2(ξ0,Ψ 2) =
(

π2 sin(3πx)− 5π2

6 sin(πx)
0

)
.

The solvability condition for the second equation is

0 = 〈bξ0 −2R2(ξ0,Ψ 2),ξ0〉 =
1
2

b+
5π2

12
,

so that

b = −5π2

6
.

Summarizing, the reduced equation is

dA
dt

=
1

π2 μA− 5π2

6
A3 +O(|A|(|μ |2 + |A|4)),

in which the right hand side is odd in A. According to the result in Theorem 1.9
in Chapter 1, we have here a supercritical pitchfork bifurcation, in which a pair of
steady solutions emerges from 0 as R crosses R1. These steady solutions are stable,
whereas the trivial solution A = 0 is stable for R < R1 and unstable for R > R1

(see Figure 4.1).

Fig. 4.1 Supercritical pitchfork bifurcation, which occurs at the first bifurcation point R1 = π2 in
the Burgers model.
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Exercise 4.3 Consider the integro-differential equation

∂u
∂ t

=
∂ 2u
∂x2 +1− e−νu −K

∫ π

0
u(x, t)dx,

∂u
∂x

∣∣
x=0 =

∂u
∂x

∣∣
x=π = 0,

where u(x, t) ∈ R for (x, t) ∈ (0,π)×R, and K, ν are real parameters.

(i) Check that u = 0 is a solution of this problem for all K and ν . Write the system in the form
(2.1) with linear operator L = LK,ν , depending upon the two parameters K and ν .

(ii) Show that the system is equivariant under the symmetry T defined by

Tu(x, t) = u(π − x, t).

(iii) Show that the spectrum of LK,ν is a discrete set, σ = {λn ∈ R;n ∈ N}, consisting of the
eigenvalues

λ0 = ν −Kπ, λn = ν −n2, n = N
∗,

with associated eigenvectors
ξn = cos(nx), n ∈ N.

Give the action of the symmetry T on these eigenvectors.
(iv) Assume Kπ > 1, and set ν = 1 + μ . Write the system in the form (3.1) and show that it

possesses a center manifold of dimension 1. Show that the reduced equation takes the form

dA
dt

= μA+bA3 +O(|A|(|μ|2 + |A|4)), b =
1
6

+
1

4(Kπ −1)
> 0.

(Notice that the coefficient b tends towards ∞ when Kπ → 1. This is due to the invalidity of
the study when Kπ is close to 1, since at Kπ = 1 there are two “critical” eigenvalues, λ0 and
λ1, instead of only one for Kπ > 1.)

(v) Consider Kπ and ν close to 1, and set μ = ν − 1 and ε = ν −Kπ . Write the system in the
form (3.1) and show that it possesses a center manifold of dimension 2. Show that the reduced
system is given by

dA
dt

= μA−AB+
1
6

A3 +h.o.t.

dB
dt

= (μ − ε)B− 1
4

A2 − 1
2

B2 +h.o.t.,

in which the first component of the vector field is odd in A, and the second component is even
in A. Here and in the remainder of this book “h.o.t.” denotes higher order terms.

2.4.3 Swift–Hohenberg Equation

We consider the Swift–Hohenberg equation (SHE)

∂u
∂ t

= −
(

1+
∂ 2

∂x2

)2

u+ μu−u3, (4.13)
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where u = u(x, t) ∈ R for (x, t) ∈ R
2, and μ is a real parameter. The Swift–

Hohenberg equation arises as a model for hydrodynamical instabilities. We refer
to [18] for a detailed analysis of this equation.

Notice that u = 0 is a solution of (4.13) and that the equation is invariant under
spatial translations x 
→ x+α , α ∈ R, and the reflections x 
→ −x and u 
→ −u.

Linear Stability Analysis

We first analyze the linear stability of the trivial solution u = 0. We look for solutions
of the form

u(x, t) = ûeikx+λ t , (4.14)

where k is a real wavenumber and λ and û may be complex numbers, of the lin-
earized SHE

∂u
∂ t

= −
(

1+
∂ 2

∂x2

)2

u+ μu.

Inserting (4.14) into the linearized equation gives the linear dispersion relation

λ (μ ,k) = μ − (1− k2)2. (4.15)

The solution u = 0 is linearly stable (resp., unstable) with respect to the mode eikx if
Reλ (μ ,k) < 0 (resp., Reλ (μ ,k) > 0).

The dispersion relation (4.15) shows that λ (μ ,k) is real for all k and μ . For a
fixed μ , the solution u = 0 is stable with respect to all modes eikx for which μ <
(1 − k2)2, and unstable with respect to all modes for which μ > (1 − k2)2. The
modes eikx such that (1 − k2)2 = μ are the critical modes at the threshold from
stability to instability. We plot in Figure 4.2 the curve λ (μ ,k) = 0. This shows that,

Fig. 4.2 Critical curve λ (μ,k) = 0 for the Swift–Hohenberg equation.

upon increasing μ , the first critical modes, k = ±1, occur at μ = 0. These modes
correspond to 2π-periodic solutions e±ix of the linearized equation, at the threshold
of linear instability. We therefore expect spatially 2π-periodic solutions to play a
particular role in the dynamics of the equation, and restrict ourselves to this type of
solutions in our analysis.
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Center Manifolds

We write the equation in the form (2.1), with linear operator L = Lμ depending
upon the parameter μ , by setting

Lμ = −
(

1+
∂ 2

∂x2

)2

+ μ , R(u) = −u3,

and choosing the spaces of 2π-periodic functions

X = L2
per(0,2π), Y = Z = H4

per(0,2π).

Then Lμ is a closed operator in X with domain Z , and R is a cubic map in Z ,
satisfying

‖R(u)‖Z ≤C‖u‖3
Z ,

so that R ∈Ck(Z ) for any positive integer k.
Next, we compute the spectrum of Lμ . As for the operator in the previous exam-

ple, Section 2.4.2, the domain Y of Lμ is compactly embedded in X , so that Lμ
has a compact resolvent. Consequently, its spectrum consists only of isolated eigen-
values with finite multiplicities. Since we work in spaces of 2π-periodic functions,
we can use Fourier analysis to solve the eigenvalue problem and conclude that

σ = {λn = μ − (1−n2)2 ; n ∈ N}.

All these eigenvalues are real, and there is a sequence (μn = (1−n2)2)n∈N of values
of μ for which 0 is an eigenvalue of Lμ . The smallest value, μ1 = 0, is the one
at which the solution u = 0 loses its stability when increasing μ . We apply center
manifold Theorem 3.3 for values of μ close to this critical value μ1 = 0.

We proceed as in the example in Section 2.4.2 and first rewrite the equation in
the form (3.1), with

L = L0, R(u,μ) = R(u)+(Lμ −L0)u.

From the arguments above it follows that L and R satisfy Hypothesis 3.1 and that
Hypothesis 2.4 holds with σ0 = {0}. Furthermore, 0 is an eigenvalue with geomet-
ric multiplicity two, with associated eigenvectors e±ix, and by arguing as in Sec-
tion 2.2.4, one can show that its algebraic multiplicity is two as well. (Alternatively,
notice that Lμ is self-adjoint in X so that its eigenvalues are all semisimple. In par-
ticular, 0 is then a double eigenvalue of L.) Finally, Hypothesis 2.7 can be checked
as in the example in Section 2.4.2. Applying Theorem 3.3, we conclude that the
equation possesses a two-dimensional center manifold for μ sufficiently small.
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Symmetries

An important role in this example is played by the different symmetries of the SHE
mentioned above. The invariance under spatial translations x 
→ x + α , α ∈ R, and
the reflections x 
→ −x and u 
→ −u imply that the equation is equivariant with
respect to the isometries defined by

(Tα u)(x) = u(x+α), α ∈ R, (Tu)(x) = u(−x), (Uu)(x) = −u(x).

All these symmetries, (Tα)α∈R, T, and U, satisfy Hypothesis 3.12. Consequently,
the result in Theorem 3.13 holds with any of these symmetries. The family (Tα)α∈R

also satisfies Hypothesis 3.17. However, we haven’t in this case a nontrivial equi-
librium satisfying Hypothesis 3.18, so that we cannot argue as for Theorem 3.19 in
this example.

In addition, notice that

Tα = Tα+2π , TTα = T−α T, UTα = Tα U, α ∈ R.

The first equality is a consequence of the fact that we restrict our analysis to 2π-
periodic functions in x. In particular, the first two equalities show that (4.13) is
equivariant under the representation of the group O(2) by (T,(Tα)α∈R/2πZ).

Steady O(2) Bifurcation

We discuss now the reduced system given by Theorems 3.3 and 3.13. Recall that the
subspace E0 is two-dimensional, spanned by the complex conjugated eigenvector
ζ = eix and ζ = e−ix, so that it is convenient in this case to write

u0 = Aζ + Āζ , A(t) ∈ C,

for real-valued u0(t) ∈ E0. Then we set for the real-valued solutions on the center
manifold

u = Aζ + Āζ +Ψ(A, Ā,μ), A(t) ∈ C,

where Ψ(A(t), Ā(t),μ) ∈ Zh. The reduced equation reads

dA
dt

= f (A, Ā,μ), (4.16)

together with the complex conjugated equation for Ā. In addition, since the original
equation is equivariant under the actions of Tα and T, by the result in Theorem 3.13,
we have that the reduced vector field ( f , f ) is equivariant under the actions of the
induced symmetries. Since

Tα ζ = eiα ζ , Tα ζ = e−iα ζ , Tζ = ζ , Tζ = ζ ,
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the action of the induced symmetries on the pair (A, Ā) is given by the 2×2-matrices

Tα :

(
eiα 0
0 e−iα

)
, T :

(
0 1
1 0

)
.

This shows that we are in the setting of the study made in Section 1.2.4, Chapter 1,
on steady bifurcations with O(2) symmetry. Consequently, we have that

f (A, Ā,μ) = Ag(|A|2,μ),

where the function g is of class Ck−1 in (A, Ā,μ) and real-valued. We consider the
Taylor expansion of g and write

dA
dt

= aAμ +bA|A|2 +O(|A|(|μ |2 + |A|4)).

In polar coordinates, for A = reiφ , this gives the system (2.43)–(2.44) studied in
Section 1.2.4.

We now compute the coefficients a and b in order to determine the nature of this
bifurcation. For this we proceed as in the previous example in Section 2.4.2. First,
using the result in the Exercise 3.5, we obtain

∂ f
∂A

(0,μ) = λ1 = μ ,

so that
a = 1.

Next, we set μ = 0 in the following calculations and consider the expansion of the
reduction function Ψ ,

Ψ(A, Ā,0) = ∑
p,q

Ψ pqApA
q
.

Here Ψ qp ∈ Zh are such that

Ψ qp =Ψ pq, Ψ 00 =Ψ 10 =Ψ 01 = 0.

The first equality shows that Ψ is real-valued, whereas the last equalities come from
(3.2). Furthermore, from the equivariance of the equation with respect to U, we
conclude that Ψ(−A,−A,0) = −Ψ(A,A,0) for all A, and thus Ψ pq = 0 when p+q
is even. Summarizing, we find the expansion

Ψ(A, Ā,0) =Ψ 30A3 +Ψ 03Ā3 +Ψ 21A2Ā+Ψ 12AĀ2 +O(|A|5),

where Ψ 03 = Ψ 30 and Ψ 12 =Ψ 21.
Now by arguing as in the calculation of the coefficient b in the example in Sec-

tion 2.4.2, we obtain the equalities
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LΨ 30 = e3ix,
LΨ 21 = 3eix +beix.

The solvability condition for the second equation gives

b = −3.

Summarizing, the reduced equation is

dA
dt

= μA−3A|A|2 +O(|A|(|μ |2 + |A|4)), (4.17)

and the reduced vector field possesses an O(2) equivariance, just as in Hypothe-
sis 2.14. According to the result in Theorem 2.18 in Chapter 1, we have here a
steady bifurcation with O(2) symmetry, in which a family (Aα)α∈R/2πZ) of stable
equilibria emerges from 0, as μ crosses 0. A direct calculation gives

Aα =
√

μ
3

eiα +O(|μ |3/2)

for μ > 0, and the corresponding family of steady 2π-periodic solutions of SHE,

uα(x) = 2

√
μ
3

cos(x+α)+O(|μ |3/2). (4.18)

We point out that uα = Tα u0, so that the solutions in this family are obtained by
spatially translating u0.

Remark 4.4 These steady 2π-periodic solutions of the SHE are called roll solu-
tions. Actually, such solutions exist for a range of periods close to 2π , for any suf-
ficiently small μ . One can prove the existence of all these rolls in a similar way.
Looking for periodic solutions of the SHE with wavenumbers k close to 1, instead
of wavenumbers k = 1, only, and normalizing the period to 2π in the equation, one
finds an equation having an additional parameter, the wavenumber k. The normal-
ization of the period allows us to use the same function spaces X and Z , and
this reduction procedure can be performed with two parameters, k close to 1 and μ
small.

Symmetry Breaking

We briefly discuss here several scenarios in which we perturb the Swift–Hohenberg
equation, by adding a small term, in such a way that one, or more, of the symmetries
of the SHE is broken. We are interested in the effect of the perturbation on the
reduced equation (4.17).

I. First we consider the perturbed equation obtained by adding the term εu2 in
the right hand side of the SHE, with ε a small real parameter. This term breaks
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the equivariance of the equation with respect to the symmetry U but preserves the
O(2) equivariance with respect to (T,(Tα)α∈R/2πZ). The center manifold analysis
remains the same, up to the equivariance in U, which is lost, and to the appearance
of the additional small parameter ε . However, this parameter does not play a role in
checking the different hypotheses, its effect being that now the reduced vector field
( f , f̄ ) depends upon ε as well. Since the O(2) equivariance is preserved, we still
have the particular form

f (A, Ā,μ ,ε) = Ag(|A|2,μ ,ε),

with g of class Ck−1 and real-valued.
Notice that at ε = 0 we find exactly the reduced vector field obtained for the

unperturbed equation. Furthermore, we have here a new symmetry, which is the
invariance of the SHE under (u,ε) 
→ (−u,−ε). It is then straightforward to check
that this induces the invariance of the reduced equation under the action of (A,ε) 
→
(−A,−ε). In particular, this shows that the map g above is even in ε . This fact is
useful in the computation of the Taylor expansion of g.

II. Next, we add the term ε∂u/∂x in the right hand side of the SHE, with ε a
small real parameter. This situation actually reduces to the unperturbed SHE, by the
change of variables u(x, t) = ũ(x + εt, t). It is easy to see that u is a solution of the
perturbed SHE if and only if ũ is a solution of the unperturbed SHE. In particular,
our previous analysis gives us in this case the family of traveling wave solutions
uα(x+εt), with uα the steady 2π-periodic solution in (4.18). These traveling waves
have small speeds −ε , are 2π-periodic in the spatial variable x, and are periodic in
time with large period 2π/ε .

Our interest in considering this example is to see the effect of such a term on the
different symmetries of the SHE and then on the reduced system. This term breaks
the symmetry T, but preserves the symmetries Tα and U. In particular, instead of an
O(2) equivariance we have now an SO(2) equivariance. However, one can argue as
in Section 1.2.4 and conclude that the map f in the reduced system is of the form

f (A, Ā,μ ,ε) = Ag(|A|2,μ ,ε),

with g of class Ck−1, and complex-valued but not necessarily real-valued anymore.
In this situation, we have the additional invariance of the SHE under (x,ε) 
→

(−x,−ε). On the center manifold, this induces the symmetry acting by (A,ε) 
→
(Ā,−ε), so that g satisfies

g(|A|2,μ ,ε) = g(|A|2,μ ,−ε).

Consequently, the real part gr of g is even in ε , whereas the imaginary part gi of g
is odd in ε . This leads to the equation

dA
dt

= (μ + cε2 + idε)A−3A|A|2 +h.o.t.,
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which in polar coordinates A = reiφ reads

dr
dt

= (μ + cε2)r−3r3 +h.o.t.

dφ
dt

= dε +h.o.t. (4.19)

Here the real coefficients c and d can be computed explicitly, just as the coefficients
a and b in (4.16), and we have used the fact that the reduced system at ε = 0 is the
same as the reduced system found for the unperturbed equation. It is then straight-
forward to find the solutions

r0(μ ,ε2) =
(

μ + cε2

3

)1/2

+h.o.t., φ0 = ωt +α, ω = dε +h.o.t.,

with any α ∈ R. These give the solutions of the perturbed SHE equation

u(x, t) = 2r0(μ ,ε2)cos(x+ωt +α)+h.o.t..

The lowest order term in this solution is clearly a traveling wave, with speed −ω . A
careful use of the symmetries mentioned above, together with the invariance of the
equation under translations in the time t, allows us to show that these solutions are
indeed traveling waves.

Exercise 4.5 Show that c = 0 and d = 1 in the reduced system (4.19).

III. Consider now the additional term εu∂u/∂x on the right hand side of the SHE.
This term breaks the symmetries T and U, but preserves the composed symmetry
T̃ = T◦U and the family (Tα)α∈R. Consequently, we still have an O(2) equivariance
of the system, but now with T̃ instead of T. The action of T̃ on the pair (A, Ā) is given
by the 2×2-matrix (

0 −1
−1 0

)
.

However this does not change the form of the reduced equation, the map f being
again of the form

f (A, Ā,μ ,ε) = Ag(|A|2,μ ,ε).

In addition, we have here the symmetry (u,ε) 
→ (−u,−ε), which implies that

g(|A|2,μ ,−ε) = g(|A|2,μ ,ε).

IV. We introduce now an additional term ε1u∂u/∂x + ε2u2, in which we have
two small parameters ε1 and ε2. This term breaks the symmetries T, U, and also
T̃ = T◦U, but preserves the symmetries Tα , α ∈ R. Consequently, we still have an
SO(2) equivariance, just as in the case II, which allows us to conclude that the map
f in the reduced system is of the form
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f (A, Ā,μ ,ε1,ε2) = Ag(|A|2,μ ,ε1,ε2),

with g of class Ck−1 and complex-valued.
In addition, we now find the new symmetries

(u,ε1,ε2) 
→ (−u,−ε1,−ε2), (u(x),ε1,ε2) 
→ (u(−x),−ε1,ε2).

Their action on (A, Ā) is given by

(A, Ā,ε1,ε2) 
→ (−A,−A,−ε1,−ε2), (A, Ā,ε1,ε2) 
→ (Ā,A,−ε1,ε2).

We can then conclude that the map g satisfies

g(|A|2,μ ,ε1,ε2) = g(|A|2,μ ,−ε1,−ε2), g(|A|2,μ ,ε1,ε2) = g(|A|2,μ ,−ε1,ε2),

so that the reduced equation is

dA
dt

= μA−3A|A|2 +(c1ε2
1 + idε1ε2 + c2ε2

2 )A|A|2 +h.o.t..

In polar coordinates A = reiφ , we find the system

dr
dt

= μr−3r3 +(c1ε2
1 + c2ε2

2 )r3 +h.o.t.

dφ
dt

= dε1ε2r2 +h.o.t..

By arguing as for the system (4.19) in case II, one can show in this case the existence
of bifurcating traveling waves with speeds of order O(με1ε2).

Exercise 4.6 Show that c1 = −1/9, d = 4/3, and c2 = 20/9 in the reduced system.

V. Consider now the case of an inhomogeneous additional term εh(x), on the
right hand side of the SHE, where h : R → R is an even 2π-periodic function and
ε a small parameter, again. Notice that in this case the trivial solution u = 0 is no
longer a solution for ε �= 0.

This term now breaks the translation invariance Tα , α ∈ R, and the reflection U,
but preserves the symmetry T. As in the previous cases we find a two-dimensional
center manifold and a reduced equation of the form

dA
dt

= f (A, Ā,μ ,ε)

for A(t) ∈ C. At ε = 0, the map f is the one obtained for the unperturbed equation,

f (A, Ā,μ ,0) = Ag(|A|2,μ) = μA−3A|A|2 +h.o.t.,

whereas for ε �= 0 the equivariance with respect to T implies that
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f (A, Ā,μ ,ε) = f (Ā,A,μ ,ε).

Consequently, the reduced equation is of the form

dA
dt

= cε + μA−3A|A|2 +h.o.t.,

where c is a real constant. Notice that the constant term on the right hand side of
this equation is real, because of the property of f above, and nonzero, since u = 0 is
no longer a solution of the perturbed equation.

Exercise 4.7 Show that the coefficient c in the reduced system is given by

c =
1

2π

∫ 2π

0
h(x)cosxdx.

Remark 4.8 (Steady solutions) Notice that the steady solutions of this system are
easy to compute. They are real, A = Ar, with Ar satisfying

cε +Ar(μ −3A2
r )+h.o.t. = 0.

We plot in Figure 4.3 the bifurcation diagram for the steady solutions of this reduced
equation. As for the stability of these steady solutions, it can be determined from the

Fig. 4.3 Bifurcation diagram in the (μ,Ar)-plane for the steady solutions of the reduced system
in the SHE perturbed by an inhomogeneity εh(x) in the case cε > 0. The solid lines represent the
branches of steady solutions for a fixed, small ε , whereas the dashed lines represent the branch of
steady solutions for ε = 0.

eigenvalues of the linearized vector field at A = Ar. A direct calculation gives the
two eigenvalues μ − 9A2

r + h.o.t. and μ − 3A2
r + h.o.t.. In particular, in the case

represented in the bifurcation diagram in Figure 4.3, the upper branch is stable
(both eigenvalues are negative), while the lower branch is unstable (at least one
eigenvalue is positive). We point out that this result differs from the classical result
occuring in a perturbed pitchfork bifurcation. Notice that one eigenvalue is 0 at the
turning point of the lower branch, but that this does not change the stability here,
because of the second eigenvalue. Moreover, observe that all these steady solutions
are symmetric, invariant under T, since they are real.
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VI. Finally, we consider the Swift–Hohenberg equation (4.13), but instead of
looking for solutions that are 2π-periodic in x, we seek solutions that satisfy the
boundary conditions

u(±h, t) =
∂u
∂x

(±h, t) = 0 (4.20)

on some interval [−h,h]. We assume that h is large enough, so that we regard this
new problem as a “small” perturbation of the equation (4.13).

Replacing the spatial periodicity of the solutions by the boundary conditions
(4.20) breaks the translational invariance Ta, but does not break the symmetries
T and U, and u = 0 remains a solution of the new problem. As a consequence, the
eigenvalues of the linear operator Lμ are no longer double, and for μ = 0 the former
0 eigenvalue splits into two simple, negative eigenvalues, which are close to 0, of
order O(1/h3) as h → ∞. The other eigenvalues are all negative and at least of order
O(1/h2). It is then convenient to rescale the variables in order to push the eigenval-
ues of order O(1/h2) at a distance of order O(1) from the imaginary axis. Then the
two eigenvalues of order O(1/h3) are changed into eigenvalues of order O(1/h),
which allows us to use a center manifold reduction, as described in Remark 3.6,
when the critical spectrum σ0 does not lie on the imaginary axis, but stays close to
it. In addition to the original parameter μ , we now have a second small parameter
ε = O(1/h), so that this case is indeed a small perturbation of the original problem.

Taking into account the fact that 0 is always a solution, and that in this new
problem only the translational symmetry is broken, by arguing as in the previous
cases one finds that the reduced equation is now modified at main orders as follows:

dA
dt

= (μ +aε)A+bεĀ−3A|A|2,

where a and b are real coefficients. Using polar coordinates A = reiφ , we find the
system

dr
dt

= r(μ +aε +bε cos2φ −3r2)

dφ
dt

= −bε sin(2φ).

Steady solutions are found for φ ∈ {0,π/2,π,3π/2}. Note that changing φ 
→
φ + π is equivalent to changing r 
→ −r, so that we can restrict to the two cases
φ = 0 and φ = π/2. The case φ = 0 leads to symmetric solutions, i.e., invariant
under U, since A = Ā, whereas the case φ = π/2 leads to antisymmetric solutions,
since Ā =−A. It turns out that symmetric solutions bifurcate for μ =−(a+b)ε and
have the amplitude given by r2

S = 1/3(μ +(a + b)ε). Their stability is determined
by the sign of the two eigenvalues −6r2

S, −2bε . Antisymmetric solutions bifurcate
for μ = (b− a)ε , and have the amplitude given by r2

A = 1/3(μ +(a− b)ε). Their
stability is determined by the sign of the two eigenvalues −6r2

A, 2bε . In particular,
it follows that the stabilities of these two branches of solutions are opposite (see
Figure 4.4 for a typical bifurcation diagram).
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Fig. 4.4 Bifurcation diagram for the Swift–Hohenberg equation with boundary conditions (4.20),
for a fixed ε = O(1/h). The two curves S and A represent the branches of symmetric and antisym-
metric solutions, respectively.

Remark 4.9 This question has a major physical importance for many hydrody-
namic stability problems where, for a large aspect ratio apparatus, one replaces,
for mathematical convenience, the physical boundary conditions by periodic bound-
ary conditions (large periods), as for example in Section 5.1 of Chapter 5. On the
model equation SHE, a complete mathematical justification of the new amplitude
equation obtained for Dirichlet–Neumann boundary conditions, as a perturbation
of the periodic case, can be found in [125], while this is still a mathematically open
problem for classical hydrodynamic stability problems like the ones in Section 5.1
of Chapter 5.

2.4.4 Brusselator Model

Consider the system of PDEs

∂u1

∂ t
= δ1

∂ 2u1

∂x2 − (β +1)u1 +u2
1u2 +α

∂u2

∂ t
= δ2

∂ 2u2

∂x2 +βu1 −u2
1u2, (4.21)

in which δ1, δ2, α , and β are positive constants, and u = (u1,u2) is a function of
(x, t) ∈ (0,1)×R, together with the boundary conditions

u1(0, t) = u1(1, t) = α, u2(0, t) = u2(1, t) =
β
α

. (4.22)

Remark 4.10 This system is called inhomogeneous Brusselator, and arises in mod-
eling an autocatalytic chemical reaction as described in Remark 2.9 of Chapter 1.
In contrast to the homogeneous Brusselator considered in Section 1.2.2, in the in-
homogeneous case the products are not homogeneously mixed during the reaction.
In such a case, diffusion phenomena occur, so that u1 and u2 are now functions of a
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space variable x, besides the time t. We assume that x ∈ (0,1), which is, of course,
a simplification of the reality. The coefficients δ1 and δ2 in the system (4.21) rep-
resent the diffusion coefficients of the products X and Y . The Dirichlet boundary
conditions (4.22) correspond in the chemical reaction to a control at the boundary
for the concentrations of the products X and Y , which are maintained at the con-
stant values given by the equilibrium solution of the homogeneous system. Notice
that with such boundary conditions, the equilibrium (u1,u2) = (α,β/α) found in
Section 1.2.2 remains a solution of the PDE, but the periodic solution arising in
the Hopf bifurcation for the homogeneous system is no longer a solution. It is not
difficult to check that this solution does not satisfy the boundary conditions.

First Formulation and Spectrum

We set

(u1,u2) =
(

α,
β
α

)
+(v1,v2).

Then v = (v1,v2) satisfies the system

∂v1

∂ t
= δ1

∂ 2v1

∂x2 +(β −1)v1 +α2v2 +2αv1v2 +
β
α

v2
1 + v2

1v2

∂v2

∂ t
= δ2

∂ 2v2

∂x2 −βv1 −α2v2 −2αv1v2 −
β
α

v2
1 − v2

1v2, (4.23)

and the Dirichlet boundary conditions

v1(0, t) = v1(1, t) = 0, v2(0, t) = v2(1, t) = 0. (4.24)

In this way we have replaced the constant solution (u1,u2) = (α,β/α) by the trivial
solution v = 0. This system is of the form (2.1) with

L =

(
δ1

d2

dx2 +β −1 α2

−β δ2
d2

dx2 −α2

)

, R(v) =

(
2αv1v2 + β

α v2
1 + v2

1v2

−2αv1v2 − β
α v2

1 − v2
1v2

)

,

where both L and R depend upon parameters.
Next, we choose the spaces

X = (L2(0,1))2, Z = Y = (H2(0,1)∩H1
0 (0,1))2,

such that the boundary conditions are included in the definition of Y . Then L is a
closed operator in X , with domain Z , and R a smooth map in Y . As in the previous
examples, Y is compactly embedded in X , so that L has compact resolvent and its
spectrum consists of isolated eigenvalues with finite multiplicities.

We determine now the spectrum of L. Since the set {sin(nπx) ; n ∈ N} forms a
basis of H1

0 (0,1), we can look for solutions v = (v1,v2) of the eigenvalue problem
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Lv = λv, λ ∈ C,

of the form

v1 = ∑
n∈N

v(n)
1 sin(nπx), v2 = ∑

n∈N

v(n)
2 sin(nπx).

Then λ is an eigenvalue of L if there exists n �= 0 such that there exists a nontrivial

solution (v(n)
1 ,v(n)

2 ) of the system

(δ1n2π2 −β +1+λ )v(n)
1 −α2v(n)

2 = 0

βv(n)
1 +(δ2n2π2 +α2 +λ )v(n)

2 = 0. (4.25)

Consequently, the eigenvalues λ are roots of the characteristic polynomials

Pn(X) = X2 +(βn −β )X +δ2n2π2(γn −β ),

where

βn = 1+α2 +n2π2(δ1 +δ2), γn = 1+α2 δ1

δ2
+n2π2δ1 +

α2

n2π2δ2
.

The two roots of Pn have negative real parts provided

β < βn, β < γn.

Notice that the sequence (βn)n≥1 is increasing and that γn ≥
(

1+α
√

δ1/δ2

)2
, so

that for any β satisfying

β < β1, β <

⎛

⎝1+α

√
δ1

δ2

⎞

⎠

2

,

the roots of all these polynomials have negative real parts. When

β = β1 <

⎛

⎝1+α

√
δ1

δ2

⎞

⎠

2

,

the polynomial P1 has purely imaginary roots, whereas the other polynomials all
have roots with negative real parts. We conclude that the eigenvalues of L have
negative real parts (are all stable) if β < β1, and that a pair of eigenvalues crosses
the imaginary axis at β = β1, provided
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β1 <

⎛

⎝1+α

√
δ1

δ2

⎞

⎠

2

.

This inequality is equivalent to

α2
(

δ1

δ2
−1

)
+2α

√
δ1

δ2
−π2(δ1 +δ2) > 0, (4.26)

and we assume in the following that this condition holds, so that we have a Hopf
bifurcation at β = β1.

Center Manifolds

We focus on this Hopf bifurcation and set β = β1 + μ . In order to apply the result
in Theorem 3.3, we rewrite the system (4.23) in the form

dv
dt

= Lv+R(v,μ) (4.27)

in the space X , with

L =

(
δ1

d2

dx2 +β1 −1 α2

−β1 δ2
d2

dx2 −α2

)

,

and
R(v,μ) = μR01v+R20(v,v)+R30(v,v,v)+ μR21(v,v), (4.28)

where

R01v =
(

v1

−v1

)
, R20(u,v) =

(
α(u1v2 +u2v1)+ β1

α u1v1

−α(u1v2 +u2v1)− β1
α u1v1

)

,

3R30(u,v,w) =
(

u1v1w2 +u1v2w1 +u2v1w1

−u1v1w2 −u1v2w1 −u2v1w1

)
, R21(u,v) =

( 1
α u1v1

− 1
α u1v1

)
.

Then L, which is closed in X with domain Z , and R(v,μ), which has a polyno-
mial form and is continuous in Z , satisfy Hypothesis 3.1. Next, the analysis above
implies that the operator L satisfies Hypothesis 2.4, with

σ0 = {±iω}, ω2 = α2 +α2π2(δ1 −δ2)−δ 2
2 π4.

The eigenvectors ζ and ζ̄ associated with the eigenvalues iω and −iω , respectively,
are given by
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ζ = sin(πx)
(

1
γ

)
, γ =

iω −α2 −δ2π2

α2 =
−β1

iω +α2 +δ2π2 .

Notice that ω2 > 0 thanks to the condition (4.26), since

ω2 = π2δ2

⎛

⎝α2
(

δ1

δ2
−1

)
+2α

√
δ1

δ2
−π2(δ1 +δ2)

⎞

⎠+(α −π2
√

δ1δ2)2.

Finally, one can proceed as in the example in Section 2.4.2 and check the inequality
(2.9), which implies that Hypothesis 2.7 holds as well.

Applying Theorem 3.3 we conclude that the system possesses a two-dimensional
center manifold for sufficiently small μ . For the solutions on the center manifold we
write

v = zζ + zζ +Ψ(z, z̄,μ), z ∈ C, (4.29)

in which v0(t) = z(t)ζ +zζ (t)∈ E0 and Ψ takes values in Zh. The reduced equation

dz
dt

= f (z, z̄,μ),

together with the complex conjugated equation, has the linear part
(

∂ f
∂ z (0,0,0) ∂ f

∂ z̄ (0,0,0)
∂ f̄
∂ z (0,0,0) ∂ f̄

∂ z̄ (0,0,0)

)

=
(

iω 0
0 −iω

)
,

in which ±iω are the two eigenvalues in σ0. In particular, it is of the form (2.5), so
that we can use the results on the Hopf bifurcation in Section 1.2.1, Chapter 1, to
analyze this reduced equation.

Hopf Bifurcation

According to the analysis in Section 1.2.1, there is a polynomial change of variables
that transforms this reduced equation into the normal form

dA
dt

= iωA+aμA+bA|A|2 +O(|A|(|μ |+ |A|2)2). (4.30)

Our goal now is to compute the coefficients a and b in this normal form. To do so it
is convenient to incorporate this change of variables in the formula (4.29), and write

v = Aζ +Aζ +Ψ(A, Ā,μ), A ∈ C, (4.31)

in which v0(t) = A(t)ζ +A(t)ζ ∈ E0, but now Ψ takes values in Z , instead of Zh.
First, according to the result in the Exercise 3.5, the coefficient a can be obtained

from the eigenvalue λ of L+μR01 which is equal to iω when μ = 0. More precisely,
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a is the coefficient of the O(μ) term in the expansion in μ of this eigenvalue. Going
back to the eigenvalue problem (4.25) we find that this eigenvalue λ is a root of the
characteristic polynomial P1 for β = β1 + μ , i.e.,

λ 2 −μλ +ω2 −μπ2δ2 = 0.

Here we have used the fact that iω is a root of P1 when β = β1. This gives the
solutions

λ+ = iω + μ
(

1
2
− iπ2 δ2

2ω

)
+O(μ2), λ− = λ̄+,

so that the coefficient a in (4.30) is

a =
1
2
− iπ2 δ2

2ω
. (4.32)

To compute b we proceed as in the previous examples. We set μ = 0 in the
following calculations. Inserting v from (4.31) into (4.27), we find the equality

(ζ +∂AΨ)
dA
dt

+(ζ̄ +∂ĀΨ)
dĀ
dt

= L(Aζ +Aζ +Ψ)+R(Aζ +Aζ +Ψ ,0). (4.33)

Using the expansion (4.28) of R, the expansion of Ψ

Ψ(A, Ā,0) = ∑
p,q

Ψ pqApA
q
,

where Ψ qp ∈ Z are such that

Ψ qp =Ψ pq, Ψ 00 =Ψ 10 =Ψ 01 = 0,

and replacing dA/dt by the right hand side of (4.30), we identify the powers of
(A, Ā) in (4.33). At orders A2, AĀ, and A2Ā, we find, respectively,

(2iω −L)Ψ 20 = R20(ζ ,ζ ), (4.34)

−LΨ 11 = 2R20(ζ , ζ̄ ), (4.35)

(iω −L)Ψ 21 = −bζ +2R20(ζ̄ ,Ψ 20)+2R20(ζ ,Ψ 11)+3R30(ζ ,ζ , ζ̄ ). (4.36)

Recall that ±iω are the only purely imaginary eigenvalues of L. Then from the first
two equations we can compute Ψ 20 and Ψ 11, since (2iω −L) and L are invertible,
and from the solvability condition for the third equation we find b. We show below
how these quantities can be explicitly computed. The arguments are typical for such
types of bifurcation problems arising for PDEs.

First, we obtain
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R20(ζ ,ζ ) =
(

αγ +
β1

2α

)
(1− cos(2πx))

(
1
−1

)
,

2R20(ζ , ζ̄ ) =
(

2αγr +
β1

α

)
(1− cos(2πx))

(
1
−1

)
,

where γr in the second formula represents the real part of γ . The equation (4.34) is
a linear nonhomogeneous system of two differential equations of second order. Its
solution set is a four-dimensional space, and the solutionΨ 20 is uniquely determined
by the Dirichlet boundary conditions at x = 0 and x = 1, which must be satisfied by
the functions in Z . We introduce the following 2×2-matrices:

M (niω ,ν2) =
(

niω +1−β1 −δ1ν2 −α2

β1 niω +α2 −δ2ν2

)
,

representing the action of the operator inω −L on the exponential eνxv, with v ∈C
2,

so that
(niω −L)eνxv = M (niω ,ν2)eνxv.

Then the solutions of the homogeneous equation (2iω −L)v = 0 are linear combi-
nations of the four basic solutions,

v1+eν1x, v1−e−ν1x, v2+eν2x, v2−e−ν2x,

in which ±ν1, ±ν2 are the four solutions of

det(M (2iω ,ν2)) = 0

and the vectors v1± ∈ C
2 and v2± ∈ C

2 belong to the kernels of M (2iω ,ν2
1 ) and

M (2iω ,ν2
2 ), respectively. Next, notice that the operator 2iω −L preserves the lin-

ear subspaces spanned by cos(nπx) (and also sin(nπx)), so that we can look for a
particular solution of (4.34) in the form

Ψ 0
20 = α20 +β20 cos(2πx),

in which α20 ∈ C
2 and β20 ∈ C

2 are the unique solutions of

M (2iω ,0)α20 =
(

αγ +
β1

2α

)(
1
−1

)
,

M (2iω ,−4π2)β20 =
(

αγ +
β1

2α

)(
−1
1

)
. (4.37)

Summarizing, we have that

Ψ 20 = α20 +β20 cos(2πx)+ γ20eν1x +δ20e−ν1x + χ20eν2x +κ20e−ν2x,

in which α20 and β20 are uniquely determined from (4.37), the vectors γ20, δ20, χ20,
and κ20 satisfy
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M (2iω ,ν2
1 )γ20 = 0, M (2iω ,ν2

1 )δ20 = 0,

M (2iω ,ν2
2 )χ20 = 0, M (2iω ,ν2

2 )κ20 = 0,

and are uniquely determined from the Dirichlet boundary conditions at x = 0 and
x = 1 for Ψ 20:

α20 +β20 + γ20 +δ20 + χ20 +κ20 = 0,

α20 +β20 + γ20eν1 +δ20e−ν1 + χ20eν2 +κ20e−ν2 = 0.

In the same way, we solve equation (4.35) and find the solution

Ψ 11 = α11 +β11 cos(2πx)+ γ11eμ1x +δ11e−μ1x + χ11eμ2x +κ11e−μ2x,

where ±μ1 ∈ C and ±μ2 ∈ C are the four solutions of

det(M (0,μ2)) = 0,

and the vectors on the right hand side are uniquely determined from

M (0,0)α11 =
(

2αγr +
β1

α

)(
1
−1

)
, M (0,−4π2)β11 =

(
2αγr +

β1

α

)(
−1
1

)
,

M (0,μ2
1 )γ11 = 0, M (0,μ2

1 )δ11 = 0, M (0,μ2
2 )χ11 = 0, M (0,μ2

2 )κ11 = 0,

and the equalities

α11 +β11 + γ11 +δ11 + χ11 +κ11 = 0,

α11 +β11 + γ11eμ1 +δ11e−μ1 + χ11eμ2 +κ11e−μ2 = 0.

Finally, in equation (4.36) we compute

2R20(ζ̄ ,Ψ 20)+2R20(ζ ,Ψ 11)+3R30(ζ ,ζ , ζ̄ ) =
(

f (x)
− f (x)

)
,

where

f (x) = (2γ + γ̄)
(

3
4

sin(πx)− 1
4

sin(3πx)
)

+
(

2α(ψ(2)
20 +ψ(2)

11 )+
(

2αγ̄ +
2β1

α

)
ψ(1)

20 +
(

2αγ +
2β1

α

)
ψ(1)

11

)
sin(πx).

Here we have denoted

Ψ 20 =

(
ψ(1)

20

ψ(2)
20

)

, Ψ 11 =

(
ψ(1)

11

ψ(2)
11

)

.
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The solvability condition for the equation (4.36) is that its right hand side should
be orthogonal to the kernel of the adjoint operator, −iω +L∗. A direct computation
shows that this kernel is one-dimensional and spanned by the vector

ζ ∗ = sin(πx)
(
−γ
1

)
,

from which we obtain that

b =
2(1+ γ̄)

γ̄ − γ

∫ 1

0
sin(πx) f (x)dx.

According to the result in Theorem 2.6 in Chapter 1, on the Hopf bifurcation,
a supercritical (resp., subcritical) Hopf bifurcation occurs at μ = 0 if the real part
br of b is negative (resp., positive). Notice that the bifurcating periodic solution
corresponds to an oscillating chemical reaction.

2.4.5 Elliptic PDE in a Strip

Consider the elliptic problem

∂ 2v
∂x2 +

∂ 2v
∂y2 +νv+g

(
v,

∂v
∂x

,
∂v
∂y

)
= 0,

v(x,0) = v(x,π) = 0,

where v(x,y) ∈ R for (x,y) ∈ R× (0,π), ν is a real parameter, and we assume that
g ∈ Ck(R3,R), with g(u,v,w) = O(|u|2 + |v|2 + |w|2), as (u,v,w) → 0. We further
assume that g is even in its second argument.

Formulation and Symmetries

This problem enters our setting when we take as our time variable the unbounded
spatial variable x ∈ R, and so write the problem in the form

du
dx

= Lν u+R(u). (4.38)

This formulation of the problem is also called “spatial dynamics” formulation. The
idea of spatial dynamics goes back to [80] and was used for finding bounded solu-
tions of elliptic PDEs in cylindrical domains.

We obtain the equation (4.38) by taking u = (u1,u2) = (v,∂v/∂x), and

Lν =

(
0 1

− d2

dy2 −ν 0

)

, R(u) =

(
0

−g
(

u1,u2,
du1
dy

)
)

.
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We choose the spaces

X = H1
0 (0,π)×L2(0,π), Z =

(
H2(0,π)∩H1

0 (0,π)
)
×H1

0 (0,π),

such that Lν is a closed operator in X with domain Z , which contains the boundary
conditions, and

Y =
(
H2(0,π)∩H1

0 (0,π)
)
×H1(0,π),

such that R(u) ∈ Y for u ∈ Z , and R is of class Ck(Z ,Y ).
Notice that the elliptic equation is invariant under (x,v) 
→ (−x,v), since we as-

sumed that g is even in its second argument. This induces a reversibility symmetry
for (4.38), i.e., the vector field on the right hand side anticommutes with the sym-
metry S defined by

S
(

u1

u2

)
=

(
u1

−u2

)
.

As in the previous examples we next look at the spectrum of Lν . We have again
that Y is compactly embedded in X , so Lν has a compact resolvent and its spec-
trum consists of isolated eigenvalues with finite multiplicities. The eigenvalue prob-
lem reads

u2 = λu1

−u′′1 −νu1 = λu2,

in which u1 satisfies the boundary conditions u1(0) = u1(π) = 0. Then a direct
computation shows that the spectrum σ of Lν is

σ = {λ±
n = ±

√
n2 −ν ; n ∈ N

∗}. (4.39)

Notice that σ is symmetric with respect to both the imaginary and the real axis in
the complex plane, due to the reversibility symmetry and the fact that Lν is a real
operator. When ν �= p2, for any integer p, the eigenvalues are all simple and real
except for a finite number that are purely imaginary. When ν = p2 for some nonzero
integer p, we find that 0 is a double eigenvalue, λ±

p = 0, and the eigenvalues λ±
n

with n < p are purely imaginary, whereas the eigenvalues λ±
n with n > p are real.

Consequently, we can use the center manifold theorem, for values of ν close to
νp = p2, for any p ≥ 1.

Reduced System

We focus here on values of ν close to ν1 = 1 and set ν = 1 + μ . We rewrite the
equation (4.38) in the form

du
dx

= Lu+R(u,μ),
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with
L = L1, R(u,μ) = R(u)+(L1+μ −L1)u.

From the arguments above it is now easy to check that Hypotheses 3.1 and 2.4 hold.
In Hypothesis 2.4 we have σ0 = {0} with 0 a geometrically simple and algebraically
double eigenvalue. The corresponding spectral subspace E0 is spanned by

ζ0 =
(

siny
0

)
, ζ1 =

(
0

siny

)
,

which satisfy Lζ0 = 0 and Lζ1 = ζ0, respectively. Also notice that

Sζ0 = ζ0, Sζ1 = −ζ1.

Further, Hypothesis 2.7 can be checked as in the example in Section 2.4.2, using the
result in Theorem 2.17 and showing that the estimate (2.9) holds. In addition, the
reversibility symmetry S satisfies Hypothesis 3.14.

We can now apply the results in Theorems 3.3 and 3.15 and obtain a family
of two-dimensional center manifolds for μ sufficiently small. For solutions on the
center manifold we write

u = Aζ0 +Bζ1 +Ψ(A,B,μ),

where A(t)∈R, B(t)∈R, andΨ takes values in Zh. This leads to a reduced equation
of the form

dA
dx

= f (A,B,μ)

dB
dx

= g(A,B,μ), (4.40)

in which the vector field ( f ,g) satisfies

( f ,g)(0,0,μ) = (0,0), D( f ,g)(0,0,0) =
(

0 1
0 0

)
.

In addition, the vector field is reversible, it anticommutes with the symmetry S0

induced by S acting through

S0(A,B) = (A,−B),

and the reduction function Ψ commutes with S,

SΨ(A,B,μ) =Ψ(A,−B,μ). (4.41)

We shall further analyze this reduced system in Chapter 4, which is devoted to re-
versible systems.





Chapter 3
Normal Forms

In this chapter we present a number of results from the theory of normal forms. The
idea of normal forms consists in finding a polynomial change of variable which “im-
proves” locally a nonlinear system, in order to more easily recognize its dynamics.
As we shall see, normal form transformations apply to general classes of nonlinear
systems in R

n near a fixed point, here the origin, by just assuming a certain smooth-
ness of the vector field. In particular, this theory applies to the reduced systems
provided by the center manifold theory given in the previous chapter.

3.1 Main Theorem

We consider a differential equation in R
n of the form

du
dt

= Lu+R(u), (1.1)

in which L and R represent the linear and nonlinear terms, respectively. More pre-
cisely, we assume that the following holds.

Hypothesis 1.1 Assume that L and R in (1.1) have the following properties:

(i) L is a linear map in R
n;

(ii) for some k ≥ 2, there exists a neighborhood V ⊂ R
n of 0 such that R ∈

C k(V ,Rn) and
R(0) = 0, DR(0) = 0.

Our purpose is to transform this system, in a neighborhood of the origin, in such
a way that the Taylor expansion of the transformed nonlinear vector field contains a
minimal number of terms at every order. The following result shows the existence
of a polynomial change of variables leading to a transformed vector field, which, as
we shall see later, has this property.

M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms
in Infinite-Dimensional Dynamical Systems, Universitext,
DOI 10.1007/978-0-85729-112-7 3, © EDP Sciences 2011
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Theorem 1.2 (Normal form theorem) Consider the system (1.1) and assume that
Hypothesis 1.1 holds. Then for any positive integer p, 2 ≤ p ≤ k, there exists a
polynomial Φ : R

n → R
n of degree p, with

Φ(0) = 0, DΦ(0) = 0,

and such that the change of variable

u = v+Φ(v) (1.2)

defined in a neighborhood of the origin in R
n transforms the equation (1.1) into the

“normal form”
dv
dt

= Lv+N(v)+ρ(v), (1.3)

with the following properties:

(i) N : R
n → R

n is a polynomial of degree p, satisfying

N(0) = 0, DN(0) = 0.

(ii) The equality
N(etL∗

v) = etL∗
N(v), (1.4)

holds for all (t,v) ∈ R×R
n, where L∗ represents the adjoint of L.

(iii) ρ is a map of class C k in a neighborhood of 0, such that

ρ(v) = o(‖v‖p).

Remark 1.3 (Equivalent characterization of the normal form) Instead of the
characterization (1.4) for the polynomial N, it may be advantageous to use the fol-
lowing equivalent characterization

DN(v)L∗v = L∗N(v) for all v ∈ R
n. (1.5)

Indeed, the following identity is valid for any (t,v) ∈ R×R
n :

d
dt

(
e−tL∗

N(etL∗
v)

)
= e−tL∗

(
−L∗N(etL∗

v)+DN(etL∗
v)L∗etL∗

v
)

.

Consequently, if (1.4) holds, then the left hand side in the above equality vanishes,
and by taking t = 0 in the right hand side we obtain (1.5). Conversely, writing
(1.5) with etL∗

v instead of v implies that e−tL∗
N(etL∗

v) is independent of t, which
gives (1.4).

Remark 1.4 (Uniqueness of the normal form) As we shall see from the proof of
this theorem, the choice of the polynomial N is not unique. Actually, one can add
to the polynomial N satisfying one of the equivalent characterizations (1.4) or (1.5)
any polynomial Q which belongs to the range of the linear operator AL acting on
the space of polynomials Φ : R

n → R
n defined by
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(ALΦ)(v) = DΦ(v)Lv−LΦ(v) for all v ∈ R
n.

Of course the new polynomial N + Q does not satisfy (1.4) and (1.5) anymore, but
the change of variables Φ still exists. This property may sometimes allow one to
further simplify the normal form (e.g., see Remark 1.10).

Remark 1.5 In applications we often use the characterizations (1.4) or (1.5) in a
complex basis in which L∗ is diagonal, or triangular (Jordan form). The formula-
tions of (1.4) and (1.5) are valid in such a basis, as well. Indeed, denote by P the
matrix for a change of basis, which may be complex, such that

P−1L∗P = T∗.

Replacing v = Pw into (1.5) we find

DvP−1N(Pw)PT∗w = T∗P−1N(Pw).

Consequently, the polynomial Ñ defined through

Ñ(w)
def
= P−1N(Pw)

satisfies
DwÑ(w)T∗w = T∗Ñ(w),

which is equivalent to (1.5).

Remark 1.6 (i) Theorem 1.2 has been proved in [25] in its elementary formula-
tion, given below in Section 3.1.1. The characterization (1.5) is in fact contained
(a little hidden) in the general work of Belitskii [7], using more sophisticated
methods of algebraic geometry.

(ii) Some normal form results are also available in infinite- dimensional spaces for
very specific problems, but there is no general result in this situation. The result
in Theorem 1.2 suffices for the analysis of the reduced systems obtained by a
center manifold reduction, since these are all finite-dimensional.

3.1.1 Proof of Theorem 1.2

We give in this section the proof of the normal form Theorem 1.2.
Consider the Taylor expansion of R,

R(u) = ∑
2≤q≤p

Rq(u(q))+o(‖u‖p)

for a given p, 2 ≤ p ≤ k, where u(q) = (u, . . . ,u) ∈ (Rn)q, with u ∈ R
n repeated q

times, and Rq is the q-linear symmetric map on (Rn)q given through



96 3 Normal Forms

Rq(u(q)) =
1
q!

DqR(0)(u(q)).

Similarly, we write the polynomials Φ and N in the form

Φ(v) = ∑
2≤q≤p

Φq(v(q)), N(v) = ∑
2≤q≤p

Nq(v(q)),

with Φq and Nq q-linear symmetric maps on (Rn)q.
Differentiating (1.2) with respect to t and replacing du/dt and dv/dt from (1.1)

and (1.3), respectively, leads to the identity

(I+DΦ(v))(Lv+N(v)+ρ(v)) = L(v+Φ(v))+R(v+Φ(v)), (1.6)

which should be valid for all v in a neighborhood of 0. Our purpose it to determine
Φ and N from this equality. By identifying the Taylor expansions on both sides, we
obtain at order 2

DΦ2(v(2))Lv−LΦ2(v(2)) = R2(v(2))−N2(v(2)), (1.7)

and then at any order q, 3 ≤ q ≤ p, we have

DΦq(v(q))Lv−LΦq(v(q)) = Qq(v(q))−Nq(v(q)), (1.8)

with

Qq(v(q)) = − ∑
2≤r≤q−1

DΦr(v(r))Nq−r+1(v(q−r+1))+

+ ∑
r1+···+r�=q, r j≥1

R�

(
Φr1(v

(r1)),Φr2(v
(r2)), . . . ,Φ r�(v

(r�))
)

,

where we have set Φ1(v) = v. Notice that if Φ l and Nl are known for any l, 2 ≤
l ≤ q−1, then Qq is known. Therefore, we can determine Φ and N by successively
finding (Φ2,N2), (Φ3,N3), and so on, from (1.7) and (1.8).

The equations (1.7) and (1.8) have the same structure; more precisely, they are
both of the form

ALΦq = Qq −Nq, (1.9)

in which AL is a linear map (also called “homological operator”) acting on the space
of polynomials Φ : R

n → R
n through

(ALΦ)(v) = DΦ(v)Lv−LΦ(v). (1.10)

A key property of AL is that it leaves invariant the subspace Hq of homogeneous
polynomials of degree q, for any positive integer q. In the equality (1.9), Qq is
known, and we have to determine Φq and Nq. It is clear that if AL|Hq is invertible,
then we can take Nq = 0, which gives the simplest solution here. However, this is
not always the case, and the condition for solving (1.9) is that Qq −Nq lies in the
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range of the operator AL. We claim that this condition is achieved when (1.4), or
equivalently (1.5), is satisfied by Nq.

Indeed, we define below a scalar product in the space H of polynomials of
degree p, such that the adjoint operator (AL)∗ of AL with respect to this scalar
product is AL∗ , where L∗ is the adjoint of L with respect to the canonical Euclidean
scalar product in R

n. Then Qq −Nq belongs to the range of AL if

Qq −Nq ∈ ker(AL∗)⊥ = im(AL),

or, equivalently,
Pker(AL∗ )(Qq −Nq) = 0,

where Pker(AL∗ ) is the orthogonal projection on ker(AL∗) in the space H of poly-
nomials of degree p. It is then natural to choose

Nq = Pker(AL∗ )Qq.

Of course, this choice is not unique, since we can add to Nq any term in the range
of AL (this then implies Remark 1.4). Furthermore, we shall see that the projection
Pker(AL∗ ) leaves invariant the subspace Hq, so that Nq ∈ kerAL∗ |Hq . In particular,
this shows that (1.5) holds for Nq. With this choice for Nq, we can now solve (1.9)
and obtain a solution Φq, which is determined up to an arbitrary element in the
kernel of AL. A possible, but not unique, choice is to choose the unique solution Φq

orthogonal to kerAL in Hq. Summarizing, this shows that (1.9) possesses a solution
(Φq,Nq) with Nq satisfying (1.5). Solving successively for q = 2, . . . , p, we obtain
the polynomials Φ and N in the theorem, with N satisfying (1.5).

To finish the proof, it remains to define the scalar product in the space H such
that

(AL)∗ = AL∗ , (1.11)

and to check that the orthogonal projection Pker(AL∗ ) on ker(AL∗) leaves invariant
the subspace Hq.

For a pair of scalar polynomials P,P′ : R
n → R we define

〈P|P′〉 def= P(∂u)P′(u)|u=0, (1.12)

where u = (u1, . . . ,un) ∈ R
n and ∂u = (∂/∂u1, . . . ,∂/∂un). The equality (1.12) de-

fines a scalar product in the linear space of scalar polynomials P : R
n → R. To see

this, it is sufficient to take the canonical basis of the space of scalar polynomials,
consisting of monomials uα1

1 . . .uαn
n , and to check that

〈uα1
1 . . .uαn

n |uβ1
1 . . .uβn

n 〉 = α1! . . .αn!δα1β1
. . .δαnβn ,

where δα jβ j
= 1 if α j = β j, and δα jβ j

= 0 otherwise. (Notice that this scalar product
can be extended to complex-valued polynomials P : C

n → C by taking

〈P|P′〉 def= P(∂u)P
′(u)|u=0,
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where P(u) def= P(u).)
Now we define a scalar product on H by taking

〈Φ |Φ ′〉 =
n

∑
j=1

〈Φ j|Φ ′
j〉

for Φ = (Φ1, . . . ,Φn) ∈H , Φ ′ = (Φ ′
1, . . . ,Φ ′

n) ∈H . An important property of this
scalar product (used in theoretical physics) is that the adjoint of the multiplication
by u j is the differentiation with respect to u j,

〈u jP|P′〉 = ∂u j P(∂u)P′(u)|u=0 = P(∂u)∂u j P
′(u)|u=0 = 〈P|∂u j P

′〉.

For our purpose, the most interesting property is the equality

〈P◦T|P′〉 = 〈P|P′ ◦T∗〉, (1.13)

in which T is any invertible linear map, and T∗ is the adjoint of T with respect to
the Euclidean scalar product in R

n. To show (1.13), consider the change of variable
u = T∗v, which means

ui =
n

∑
j=1

Tjiv j,

for u = (u1, . . . ,un), v = (v1, . . . ,vn) and T = (Ti j)1≤i, j≤n. Then

∂ui

∂v j
= Tji,

∂
∂v j

=
n

∑
i=1

Tji
∂

∂ui
,

so that ∂v = T∂u. Using this equality and the fact that u = 0 is equivalent to v = 0,
we find

〈P◦T|P′〉 = P(T∂u)P′(u)|u=0 = P(∂v)P′(T∗v)|v=0 = 〈P|P′ ◦T∗〉,

which proves (1.13).
We use the identity (1.13) to determine the adjoint of AL. We take T = e−tL, for

which we find T∗ = e−tL∗
and T−1 = etL. Then from (1.13) we obtain

〈e−tLΦ ◦ etL|Φ ′〉 = 〈Φ |e−tL∗
Φ ′ ◦ etL∗〉

for any Φ ,Φ ′ ∈ H . Differentiating this equality with respect to t at t = 0, leads to

〈ALΦ |Φ ′〉 = 〈Φ |AL∗Φ ′〉.

This proves the formula for the adjoint (1.11).
Finally, the identity above also holds in the subspaces Hq of homogeneous poly-

nomials of degree q, which are all invariant under the actions of both AL and AL∗ .
Consequently,

ker(AL∗ |Hp) = kerAL∗ ∩Hp,
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and since monomials with different degrees are orthogonal to each other, this implies
the invariance of Hp under the orthogonal projection PkerAL∗ . This ends the proof
of Theorem 1.2.

In the next sections, we apply this theorem to different cases in dimensions 2, 3,
and 4. In all these cases the linear map L has purely imaginary eigenvalues, only,
just as the linear part has in the reduced systems obtained from the center manifold
reduction.

3.1.2 Examples in Dimension 2: iω , 02

We discuss in this section two cases in dimension 2: iω , where L has a pair of
simple complex eigenvalues ±iω , and 02, where L has a double zero eigenvalue
with a Jordan block of length 2.

The case iω corresponds to a matrix

L =
(

0 −ω
ω 0

)
,

where ω > 0, and L has the simple eigenvalues ±iω . In this situation it is more
convenient to identify R

2 with the diagonal {(z, z̄);z ∈ C} in C
2 and to choose a

complex basis of eigenvectors {ζ ,ζ} with ζ = (1,−i), such that L becomes

L =
(

iω 0
0 −iω

)
. (1.14)

A vector in R
2 is now represented as

u = Aζ +Aζ , A ∈ C.

Applying Theorem 1.2, we now prove the following result.

Lemma 1.7 (iω normal form) Assume that the 2 × 2-matrix L takes the form
(1.14) in a complex basis {ζ , ζ̄}, in which a vector u ∈ R

2 is represented by
u = (A,A), with A ∈ C. Then the polynomial N in Theorem 1.2 is of the form

N(u) = (AQ(|A|2), AQ(|A|2)),

where Q is a complex-valued polynomial in its argument, satisfying Q(0) = 0.

Proof In order to determine the normal form in this case, it is convenient to use the
identity (1.4) and Remark 1.5. We have

etL∗
=

(
e−iωt 0

0 eiωt

)
,
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and denoting N = (P(A,A),P(A,A)), from (1.4) we obtain that

P(e−iωtA,eiωtA) = e−iωtP(A,A).

In particular, this shows that the normal form in this case commutes with all rotations
in the complex plane (with this choice of the basis). Using Lemma 2.4 in Chapter 1,
we find that

P(A,A) = AQ(|A|2),

where Q is a complex-valued polynomial in its argument. Moreover, Q(0) = 0 since
DN(0) = 0, which completes the proof. ��
Exercise 1.8 Compute the terms up to order 2 in the normal of the system (2.31) in Chapter 1,
with μ = 0.
Hint: Redo the calculations in Section 1.2.2 with μ = 0.

Next we consider the case 02 where L has a double zero eigenvalue with a Jordan
block of length 2.

Lemma 1.9 (02 normal form) Assume that the matrix L is in Jordan form

L =
(

0 1
0 0

)
,

in a basis of R
2 in which a vector u ∈ R

2 is represented by u = (A,B) ∈ R
2. Then

the polynomial N in Theorem 1.2 is of the form

N(u) = (AP(A), BP(A)+Q(A)),

where P and Q are real-valued polynomials, satisfying P(0) = Q(0) = Q′(0) = 0.

Proof We set
N(u) = (Φ1(A,B),Φ2(A,B)),

where Φ1 and Φ2 are polynomials in (A,B). Then we have L∗(A,B) = (0,A) and
using the identity (1.5) we obtain

A
∂Φ1

∂B
= 0, A

∂Φ2

∂B
= Φ1.

Consequently, Φ1 does not depend upon B, Φ1(A,B) = φ1(A), and since the poly-
nomial A∂Φ2/∂B = Φ1 is divisible by A, there exists a polynomial P such that

Φ1(A,B) = AP(A).

Then the equation for the polynomial Φ2 leads to

Φ2(A,B) = BP(A)+Q(A),

with Q a polynomial. Finally, we find that P(0) = Q(0) = Q′(0) = 0, since N(0) = 0
and DN(0) = 0. ��
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Remark 1.10 (i) Notice that the kernel of the operator AL∗ in the proof of Theo-
rem 1.2 in the space Hp of homogeneous polynomials of degree q is in this case
two-dimensional, spanned by

(Aq,BAq−1), (0,Aq).

Furthermore, (−Aq,qBAq−1) is orthogonal to this two-dimensional space, so
that it belongs to the range of AL. As it was noticed in Remark 1.4, we can add
to N any term in the range of AL. In particular, in this case we can then choose
N such that its first component is 0, which gives a simpler normal form,

N(u) = (0,BP1(A)+Q1(A)),

where P1 and Q1 are polynomials such that P1(0) = Q1(0) = Q′
1(0) = 0.

(ii) Alternatively, we can obtain this simpler normal form starting from the result in
Lemma 1.9, which gives the system

dA
dt

= B+AP(A)+ρ0(A,B)

dB
dt

= BP(A)+Q(A)+ρ1(A,B), (1.15)

by making the change of variables

B̃ = B+AP(A)+ρ0(A,B). (1.16)

By the implicit function theorem, this change of variables is invertible:

B = B̃−AP(A)+ ρ̃0(A, B̃),

and leads to the system

dA
dt

= B̃

dB̃
dt

= B̃P1(A)+Q1(A)+ ρ̃1(A, B̃),

with

P1(A) = P(A)+
d

dA
(AP(A)), Q1(A) = Q(A)−A(P(A))2.

Notice that in contrast to the result in the first part of this remark, in the first
equation of the system above there is no longer a remainder. In turn, when going
back to the change of variables from (A, B̃) to u, this transformation is now not
a polynomial.
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Example: Computation of a 02 Normal Form

Consider the following second order differential equation

u′′ = αu2 +βuu′ + γ(u′)2, (1.17)

with α , β , and γ real numbers.

Normal Form

We set U = (u,v), so that the equation takes the form

dU
dt

= LU +R2(U,U), (1.18)

with

L =
(

0 1
0 0

)
, R2(U,Ũ) =

(
0

αuũ+ β
2 (uṽ+ ũv)+ γvṽ

)
.

We are interested in computing the normal form of this system up to terms of order 2.
Therefore it is enough to use the result in the normal form Theorem 1.2 with p = 2,
i.e., to take the polynomial Φ of the form

Φ(A,B) = A2Φ20 +ABΦ11 +B2Φ02.

Then, according to Lemma 1.9 and Remark 1.10(ii), the change of variables

U = Aζ0 +Bζ1 +Φ(A,B), (1.19)

where

ζ0 =
(

1
0

)
, ζ1 =

(
0
1

)
,

transforms system (1.18) into the normal form

dA
dt

= B

dB
dt

= aA2 +bAB+O(|A|+ |B|)3, (1.20)

where a and b are real constants.

Computation of the Coefficients a and b

In order to compute the coefficients a and b in this normal form we proceed as in
the computation of the Hopf bifurcation in Chapter 1 (see Sections 1.2.1 and 1.2.2).
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First, substituting the change of variables (1.19) into the system (1.18) we find
the equation

dA
dt

ζ0 +
dB
dt

ζ1 +∂AΦ(A,B)
dA
dt

+∂BΦ(A,B)
dB
dt

= Bζ0 +LΦ +R2(Aζ0 +Bζ1 +Φ ,Aζ0 +Bζ1 +Φ),

where we have used the fact that Lζ0 = 0 and Lζ1 = ζ0. Next, we substitute the
expressions of dA/dt and dB/dt from (1.20) in the left hand side of the equality
above. In the resulting equality we identify the monomials A2, AB, B2, and find that

aζ1 = LΦ20 +R2(ζ0,ζ0), (1.21)

bζ1 +2Φ20 = LΦ11 +2R2(ζ0,ζ1), (1.22)

Φ11 = LΦ02 +R2(ζ1,ζ1), (1.23)

where

R2(ζ0,ζ0) =
(

0
α

)
, 2R2(ζ0,ζ1) =

(
0
β

)
, R2(ζ1,ζ1) =

(
0
γ

)
.

Each of equations (1.21)–(1.23) are nonhomogeneous linear systems of the form

LΦ = R, Φ ,R ∈ R
2,

which are not uniquely solvable, since L is not invertible. Notice that the range imL
of L is given by imL = {(u,0);u ∈ R} ⊂ R

2 and that the kernel kerL is spanned by
ζ0. Consequently, the system LΦ = R has a solution if and only if R ∈ imL and this
solution is unique up to an element in kerL.

For the equation (1.21) we find

aζ1 −R2(ζ0,ζ0) =
(

0
a−α

)
,

so that the solvability condition aζ1 −R2(ζ0,ζ0) ∈ imL is satisfied when

a = α,

which determines the coefficient a in the normal form. Then the solution Φ20 is any
element of the kernel of L,

Φ20 = φ20ζ0, φ20 ∈ R.

Next, for equation (1.22) we have

bζ1 +2Φ20 −2R2(ζ0,ζ1) =
(

2φ20

b−β

)
,
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so that the solvability condition for this equation determines the coefficient b,
namely,

b = β .

This completes the calculation of the coefficients a and b.
Notice that it is not necessary to compute the solution Φ11 of the equation (1.22)

and to solve the equation (1.23), unless one needs to also compute the polynomial
Φ in the change of variables. Here we find

Φ11 = 2φ20ζ1 +φ11ζ0, 2φ20 = γ, Φ02 = φ11ζ1 +φ02ζ0,

where the second equality is the solvability condition for the equation (1.23). In
particular, this uniquely determines φ20, whereas φ11 and φ02 are arbitrary. We can
choose, for instance, φ11 = φ02 = 0, which then leads to the formula for Φ :

Φ(A,B) =
γ
2

A2ζ0 + γABζ1.

Remark 1.11 In this example it was easy to determine the range imL of L, and
so to obtain the solvability conditions for the equations (1.21)–(1.23). In general,
a convenient way of finding these solvability conditions is with the help of the ad-
joint L∗, since the kernel of the adjoint L∗ is orthogonal to the range of L. This
means that the solvability conditions are orthogonality conditions on the kernel of
the adjoint L∗.

3.1.3 Examples in Dimension 3: 0(iω), 03

We present in this section two cases in dimension 3: 0(iω), where L has a pair of
simple complex eigenvalues ±iω and a simple eigenvalue at 0, and 03, where L has
a triple zero eigenvalue with a Jordan block of length 3.

Lemma 1.12 (0(iω) normal form) Assume that the matrix L is of the form

L =

⎛

⎝
0 0 0
0 iω 0
0 0 −iω

⎞

⎠

for some ω > 0, in a basis of R
3 in which a vector u ∈ R

3 is represented by u =
(A,B,B), with A ∈ R and B ∈ C. Then the polynomial N in Theorem 1.2 is of the
form

N(u) = (P(A, |B|2), BQ(A, |B|2), BQ(A, |B|2)),

where P and Q are polynomials in their arguments, taking values in R and C, re-
spectively, and satisfying P(0,0) = ∂P/∂A(0,0) = Q(0,0) = 0.
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Proof We set
N(u) = (P0(A,B,B),Q0(A,B,B),Q0(A,B,B)).

Then identity (1.4) leads to

P0(A,e−iωtB,eiωtB) = P0(A,B,B),
Q0(A,e−iωtB,eiωtB) = e−iωtQ0(A,B,B),

which holds for all t ∈ R and all (A,B,B) ∈ R×C
2. First, the same arguments as in

the proof of Lemma 2.4 in Chapter 1, give the form of the dependency of Q0 upon
B, namely,

Q0(A,B,B) = BQ(A, |B|2).

Since Q0 is a polynomial in (A,B,B) with Q0(0,0,0) = 0 and DQ0(0,0,0) = 0, we
conclude that Q is a polynomial in its arguments with Q(0,0) = 0. Next, for the
polynomial P0 we take successively ωt = argB and ωt = π , which give that

P0(A,B,B) = P0(A, |B|, |B|) = P0(A,−B,−B).

Consequently, P0 is of the form

P0(A,B,B) = P(A, |B|2),

where P is a polynomial in its arguments and satisfies P(0,0) = ∂P/∂A(0,0) = 0.
��

In the case 03, we prove in Appendix C.1 that the following result holds.

Lemma 1.13 (03 normal form) Assume that the matrix L is in Jordan form

L =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠

in a basis of R
3 in which a vector u ∈ R

3 is represented by u = (A,B,C), with
A,B,C ∈ R. Then the polynomial N in Theorem 1.2 is of the form

N(u) = (AP1(A, B̃), BP1(A, B̃)+AP2(A, B̃), CP1(A, B̃)+BP2(A, B̃)+P3(A, B̃)),

where
B̃ = B2 −2AC,

and P1, P2, and P3 are real-valued polynomials such that P1(0,0) = P2(0,0) =
P3(0,0) = ∂P3/∂A(0,0) = 0.

Remark 1.14 As in the case 02, we can use here Remark 1.4 and choose N such
that its two first components vanish, i.e.,

N(u) = (0, 0, CP1(A, B̃)+BP2(A, B̃)+P3(A, B̃)),
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where the polynomials P1, P2, and P3 are real-valued such that P1(0,0) = P2(0,0) =
P3(0,0) = ∂P3/∂A(0,0) = 0.

3.1.4 Examples in Dimension 4: (iω1)(iω2), (iω)2, 02(iω), 0202

In this section we consider four cases of matrices L in R
4. The first case is that in

which L has two pairs of simple purely imaginary eigenvalues, ±iω1 and ±iω2.

Lemma 1.15 ((iω1)(iω2) normal form) Assume that the matrix L is of the form

L =

⎛

⎜
⎜
⎝

iω1 0 0 0
0 iω2 0 0
0 0 −iω1 0
0 0 0 −iω2

⎞

⎟
⎟
⎠ ,

where ω1 �= ω2 are positive real numbers, in a basis of R
4 in which a vector u ∈ R

4

is represented by u = (A,B,A,B), with A,B ∈ C.

(i) Assume that ω1/ω2 /∈ Q. Then the polynomial N in Theorem 1.2 is of the form

N(u) = (AP(|A|2, |B|2), BQ(|A|2, |B|2), AP(|A|2, |B|2), BQ(|A|2, |B|2)),

where P and Q are complex-valued polynomials in their arguments such that
P(0,0) = Q(0,0) = 0.

(ii) Assume that ω1/ω2 = r/s ∈ Q. Then the polynomial N in Theorem 1.2 is of the
form

N(u) =
(

AP1(|A|2, |B|2,AsB
r)+A

s−1
BrP2(|A|2, |B|2,A

s
Br),

BQ1(|A|2, |B|2,A
s
Br)+AsB

r−1
Q2(|A|2, |B|2,AsB

r),

(AP1(|A|2, |B|2,AsB
r)+As−1B

r
P2(|A|2, |B|2,A

s
Br),

BQ1(|A|2, |B|2,A
s
Br)+A

s
Br−1Q2(|A|2, |B|2,AsB

r)
)

,

where P1, P2, Q1, and Q2 are complex-valued polynomials in their arguments
and P1(0,0,0) = Q1(0,0,0) = 0.

Proof We set

N(u) = (Φ1(A,B,A,B), Φ2(A,B,A,B), Φ1(A,B,A,B), Φ2(A,B,A,B)),

and then from (1.4) we find

Φ1(e−iω1tA,e−iω2tB,eiω1tA,eiω2tB) = e−iω1tΦ1(A,B,A,B)
Φ2(e−iω1tA,e−iω2tB,eiω1tA,eiω2tB) = e−iω2tΦ2(A,B,A,B) (1.24)

for all t ∈ R, and A,B ∈ C.
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Consider the monomials

φ (1)
p1q1 p2q2Ap1A

q1Bp2B
q2 and φ (2)

p1q1 p2q2Ap1A
q1Bp2B

q2

in the polynomials Φ1 and Φ2, respectively. Then (1.24) implies that

ω1(p1 −q1 −1)+ω2(p2 −q2) = 0.

If ω1/ω2 /∈ Q, we then have

p1 = q1 +1, p2 = q2,

from which we conclude the result in part (i).
If ω1/ω2 = r/s ∈ Q, then the relation above gives

r(p1 −q1 −1)+ s(p2 −q2) = 0,

and since r and s have no common divisor, we obtain

p1 −q1 −1 = ls, p2 −q2 = −lr

for some l ∈ Z. For l ≥ 0, this gives

p1 = q1 +1+ ls, q2 = p2 + lr,

which corresponds to a polynomial of the form AP1(|A|2, |B|2,AsB
r), where P1 is a

polynomial in its arguments. For l = −l′ < 0, we find

q1 = p1 + s−1+(l′ −1)s, p2 = q2 + r +(l′ −1)r,

which gives a polynomial of the form A
s−1

BrP2(|A|2, |B|2,A
s
Br), where P2 is a poly-

nomial in its arguments. The same arguments work for the polynomial Φ2. Notice
that the lowest order terms in these polynomials, which are not of the standard form
found in the irrational case, are of degree r+s−1 ≥ 2 (we assumed ω1 �= ω2, which
implies that r and s are different positive integers). This ends the proof of the lemma.
��

Exercise 1.16 (Generalization) Consider the matrix L in R
2n with the pairs of simple eigenvalues

±iω1, . . . ,±iωn.

(i) Assume that 〈α,ω〉 �= 0 for any α ∈ Z
n \ {0}, where 〈·, ·〉 denotes the scalar product in R

n,
and ω = (ω1, . . . ,ωn). Show that the polynomial N in Theorem 1.2 is of form

N(u) = (A1P1(|A1|2, . . . , |An|2), . . . ,AnPn(|A1|2, . . . , |An|2),
A1P1(|A1|2, . . . , |An|2), . . . ,AnPn(|A1|2, . . . , |An|2)),

where the Pj, j = 1, . . . ,n, are complex-valued polynomials in their arguments such that
Pj(0, . . . ,0) = 0.
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(ii) Set |α0| = min{|α| ; 〈α,ω〉 = 0,α ∈ Z
n \{0}} < ∞, where |α| = ∑n

j=1 |α j|, for α = (α1, . . . ,
αn) ∈ Z

n. Show that the lowest order terms in the polynomial N in Theorem 1.2, which are
not of the “standard form” obtained in the case (i), are of degree |α0|−1.

In the remainder of this section, we give the normal forms in the cases (iω)2,
02(iω), and 0202. The proofs of the following results are given in Appendices C.2,
C.3, and C.4. The first two proofs can be also found in [25], while the latter one can
be found in [59]. We also refer to [20] for different proofs of the results in the cases
(iω)2 and 0202.

Lemma 1.17 ((iω)2 normal form) Assume that the matrix L is of the form

L =

⎛

⎜
⎜
⎝

iω 1 0 0
0 iω 0 0
0 0 −iω 1
0 0 0 −iω

⎞

⎟
⎟
⎠ ,

where ω > 0, in a basis of R
4 in which a vector u ∈ R

4 is represented by u =
(A,B,A,B), with A,B ∈ C. Then the polynomial N in Theorem 1.2 is of the form

N(u) = (AP(|A|2, i(AB−AB)), BP(|A|2, i(AB−AB))+AQ(|A|2, i(AB−AB)),
AP(|A|2, i(AB−AB)), BP(|A|2, i(AB−AB))+AQ(|A|2, i(AB−AB))),

where P and Q are complex-valued polynomials in their arguments, satisfying
P(0,0) = Q(0,0) = 0.

Lemma 1.18 (02(iω) normal form) Assume that the matrix L is of the form

L =

⎛

⎜⎜
⎝

0 1 0 0
0 0 0 0
0 0 iω 0
0 0 0 −iω

⎞

⎟⎟
⎠ ,

where ω > 0, in a basis of R
4 in which a vector u ∈ R

4 is represented by u =
(A,B,C,C), with A,B ∈ R and C ∈ C. Then the polynomial N in Theorem 1.2 is of
the form

N(u) = (AP0(A, |C|2), BP0(A, |C|2)+P1(A, |C|2),
CP2(A, |C|2), CP2(A, |C|2)),

where P0 and P1 are real-valued polynomials, and P2 is a complex-valued polyno-
mial, satisfying

P0(0,0) = P1(0,0) = P2(0,0) =
∂P1

∂A
(0,0) = 0.
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Lemma 1.19 (0202 normal form) Assume that the matrix L is in Jordan form

L =

⎛

⎜⎜
⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎟
⎠

in a basis of R
4 in which a vector u ∈ R

4 is represented by u = (A,B,C,D), with
A,B,C,D ∈ R. Then the polynomial N in Theorem 1.2 is of the form

N(u) = (AP1(A,C, B̃)+CP2(A,C, B̃), BP1(A,C, B̃)+DP2(A,C, B̃)+P3(A,C),
AP4(A,C, B̃)+CP5(A,C, B̃), BP4(A,C, B̃)+DP5(A,C, B̃)+P6(A,C)),

where B̃ = BC −AD, and P1, P2, P3, P4, P5, and P6 are real-valued polynomials
satisfying

P1(0,0,0) = P2(0,0,0) = P4(0,0,0) = P5(0,0,0) = P3(0,0) = P6(0,0) = 0,

∂
∂A

P3(0,0) =
∂

∂C
P3(0,0) =

∂
∂A

P6(0,0) =
∂

∂C
P6(0,0) = 0.

Remark 1.20 We shall discuss the normal form in the case 04 in Section 4.3.5, in
Chapter 4, in the particular case when the system possesses a reversibility symmetry.
The interested reader may find other normal forms in literature, as for example 0203

in [25], (iω1)2(iω2) in [60, 93], (iω)5 with spherical symmetry O(3) in [70].

3.2 Parameter-Dependent Normal Forms

3.2.1 Main Result

In the same framework as above, we are interested now in parameter-dependent
equations of the form

du
dt

= Lu+R(u,μ), (2.1)

in which we assume that L and R satisfy the following hypothesis.

Hypothesis 2.1 Assume that L and R in (2.1) have the following properties:

(i) L is a linear map in R
n;

(ii) for some k ≥ 2, there exist neighborhoods Vu ⊂ R
n and Vμ ⊂ R

m of 0 such that
R ∈ C k(Vu ×Vμ ,Rn) and

R(0,0) = 0, DuR(0,0) = 0.

In this situation we have the following result.
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Theorem 2.2 (Normal form for perturbed vector fields) Assume that Hypothesis
2.1 holds. Then for any positive integer p, 2 ≤ p ≤ k, there exist neighborhoods
V1 and V2 of 0 in R

n and R
m, respectively, such that for any μ ∈ V2, there is a

polynomial Φμ : R
n → R

n of degree p with the following properties:

(i) The coefficients of the monomials of degree q in Φμ are functions of μ of class
C k−q, and

Φ0(0) = 0, DuΦ0(0) = 0.

(ii) For v ∈ V1, the polynomial change of variable

u = v+Φμ(v), (2.2)

transforms equation (2.1) into the “normal form”

dv
dt

= Lv+Nμ(v)+ρ(v,μ), (2.3)

and the following properties hold:

a. For any μ ∈ V2, Nμ is a polynomial R
n → R

n of degree p, with coefficients
depending upon μ , such that the coefficients of the monomials of degree q
are of class C k−q, and

N0(0) = 0, DvN0(0) = 0.

b. The equality
Nμ(etL∗

v) = etL∗
Nμ(v) (2.4)

holds for all (t,v) ∈ R×R
n and μ ∈ V2.

c. The map ρ belongs to C k(V1 ×V2,R
n), and

ρ(v,μ) = o(‖v‖p)

for all μ ∈ V2.

We give the proof of this theorem in Appendix C.5. We point out that in most
results on normal forms in the literature the normal form Nμ is a polynomial in both
v and μ , whereas here it is only a polynomial in v. To our knowledge, a proof of this
latter type of result is not available in the literature.

Remark 2.3 (i) As for Theorem 1.2, identity (2.4) is equivalent to the identity

DvNμ(v)L∗v = L∗Nμ(v) for all v ∈ R
n, μ ∈ V2.

(ii) Notice that the origin is not necessarily an equilibrium of (2.1) when μ �= 0.
Then Nμ(0) is, in general, not 0, and the equality above shows that in this case

Nμ(0) ∈ kerL∗.

(iii) In Theorem 2.2, the polynomials Φμ and Nμ have coefficients depending upon
μ . The regularity with respect to μ of these coefficients decreases as the de-
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gree of the corresponding monomial increases. In applications, we actually
compute the Taylor expansions of the coefficients of the polynomials Φμ and
Nμ up to a needed degree in μ (see Section 3.2.3 below). Also notice, that
the remainder ρ in (2.3) is uniformly estimated for μ ∈ V2. This is sometimes
useful when one is looking for the optimal behavior of certain solutions as
t →±∞.

(iv) We can consider again the examples in Sections 3.1.2–3.1.4, now in the con-
text of the parameter-dependent equation (2.1). In each case, we find that the
parameter-dependent normal form polynomial Nμ has the same structure as
the unperturbed polynomial N, but now with coefficients depending upon the
parameter μ .

3.2.2 Linear Normal Forms

An interesting particular case occurs when the map R(u,μ) is linear in u, so that we
have a linear equation

du
dt

= Lu+Rμ u.

Assuming that R0 = 0, Hypothesis 2.1 is satisfied and the result in Theorem 2.2
holds. According to Remark C.1 in the Appendix C.5, the polynomial Φμ is of
degree 1 in this case, so that we have a linear change of variables. The normal form
is also linear,

dv
dt

= (L+Nμ)v,

in which the map μ �→ Nμ is of class C k−1 in a neighborhood of 0, and now

Nμ L∗ = L∗Nμ . (2.5)

This result was proved in [4] and is of particular interest since it gives a smooth
unfolding of a linear map L, which is, in general, not the case when one uses the
classical transformation into Jordan form. For example, assume that L is not di-
agonalizable, but L + Rμ is diagonalizable for μ �= 0. Then the linear change of
variables, which transforms L+Rμ into a diagonal matrix, is singular in μ = 0.

Exercise 2.4 Consider the 3×3-matrix

L =

⎛

⎝
0 1 0
0 0 0
0 0 λ

⎞

⎠ ,

in which λ is a real parameter, and consider a linear perturbation Rμ depending smoothly upon
μ ∈ R

m, such that R0 = 0.

(i) Assume that λ �= 0. Show that there is a linear change of variables in R
3, which is smooth in

μ in a neighborhood of 0, such that the transformed matrix is of the form
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⎛

⎝
αμ 1 0
βμ αμ 0
0 0 λ + γμ

⎞

⎠ ,

where αμ , βμ , and γμ depend smoothly upon μ . Compute the first two leading order terms in
the Taylor expansions in μ of the vectors in the basis {ζ1(μ),ζ2(μ),ζ3(μ)} of R

3 consisting
of generalized eigenvectors of the new matrix, which is the smooth continuation of the basis
{ξ1,ξ2,ξ3} such that

Lξ1 = 0, Lξ2 = ξ1, Lξ3 = 0.

Hint: Use (2.5) to prove the first part. For the second part, use the dual basis {ξ ∗
1 ,ξ ∗

2 ,ξ ∗
3 }

such that

L∗ξ ∗
1 = ξ ∗

2 , L∗ξ ∗
2 = 0, L∗ξ ∗

3 = λξ ∗
3 , 〈ξ j,ξ ∗

l 〉 = δkl ,

and identify the different powers of μ in the identities

(L+Rμ )ζ1(μ) = αμ ζ1(μ)+βμ ζ2(μ),

(L+Rμ )ζ2(μ) = ζ1(μ)+αμ ζ2(μ),

(L+Rμ )ζ3(μ) = (λ + γ(μ))ζ3(μ).

(ii) Assume that λ = 0. Show that there is a linear change of variables in R
3, which is smooth in

μ in a neighborhood of 0, such that the transformed matrix is of the form

⎛

⎝
αμ 1 0
βμ αμ εμ
δμ 0 γμ

⎞

⎠ ,

where αμ , βμ , γμ , δμ , and εμ depend smoothly upon μ . Describe a method for computing
the Taylor expansions in μ of the vectors in the basis {ζ1(μ),ζ2(μ),ζ3(μ)} of R

3 consisting
of generalized eigenvectors of the new matrix, which is the smooth continuation of the basis
{ξ1,ξ2,ξ3} above. Show that in general the eigenvalues of the transformed matrix do not
depend smoothly upon μ , even for a single parameter μ ∈ R.

3.2.3 Derivation of the Parameter-Dependent Normal Form

In this section we give a method of computing the Taylor expansions of the poly-
nomials Φμ and Nμ given by Theorem 2.2. We have already used this method in
the particular case of the Hopf bifurcation in Section 1.2.1, Chapter 1, and without
parameters in the example of a 02 normal form in Section 3.1.2.

We write the Taylor expansion of R and rewrite polynomials Φμ and Nμ as
follows:

R(u,μ) = ∑
1≤q+l≤p

Rql(u(q),μ(l))+o((‖u‖+‖μ‖)p), R10 = 0,

Φμ(v) = ∑
1≤q+l≤p

Φql(v(q),μ(l))+o((‖v‖+‖μ‖)p), Φ10 = 0,

Nμ(v) = ∑
1≤q+l≤p

Nql(v(q),μ(l))+o((‖v‖+‖μ‖)p), N10 = 0,
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where Rql , Φql , and Nql are (q+ l)-linear maps on (Rn)q×(Rm)l , u(q) = (u, . . . ,u)∈
(Rn)q, and μ(l) = (μ , . . . ,μ) ∈ (Rm)l . Furthermore, Rql(·,μ(l)) and Rql(u(q), ·) are
q-linear symmetric and l-linear symmetric, respectively, and similar properties hold
for Φql , and Nql . Notice that the terms o((‖v‖+ ‖μ‖)p) in the expansions of Φ
and N come from the fact that these are polynomials in v with coefficients that are
functions of μ , of class C k−q for the monomials of degree q.

Now we proceed as in the proof of Theorem 1.2. Differentiating (2.2) with re-
spect to t and replacing du/dt and dv/dt from (2.1) and (2.3), respectively, we
obtain the identity

ALΦμ(v)+Nμ(v) = Π p
(
R(v+Φμ(v),μ)−DvΦμ(v)Nμ(v)

)
. (2.6)

Here AL is the homological operator given by (1.10), and Π p represents the linear
map which associates to a map of class C p the polynomial of degree p in its Taylor
expansion. Identifying the coefficients of the monomials of degree q in u and of
degree 0 in μ leads to

ALΦ20 +N20 = R20,

ALΦ30 +N30 = Q30,

with
Q30(v(3)) = R30(v(3))+2R20(v,Φ20(v))−2Φ20(v,N20(v(2)))

for q = 2 and q = 3, respectively, and similar equalities hold for q ≥ 4, just as in
(1.8). Then the equation for ALΦq0 +Nq0 only contains in the right hand side terms
involving Φq′0 and Nq′0, with q′ ≤ q−1, so that we can successively determine Φq0

and Nq0.
Next, we consider the monomials of degree q in u and of degree 1 in μ , and

obtain

ALΦ01 +N01 = R01,

ALΦ11(v,μ)+N11(v,μ) = R11(v,μ)−2Φ20(v,N01(μ))

for q = 0 and q = 2, respectively, and

ALΦq1(v(q),μ)+Nq1(v(q),μ) = Qq1(v(q),μ)

for q ≥ 2, where Qq1 depends upon Φq′1,Nq′1,Φq′′0,Nq′′0 such that q′ ≤ q − 1
and q′′ ≤ q + 1. Consequently, once we have found (Φq0,Nq0), q = 2, . . . , p, we
can determine (Φq1,Nq1) by successively solving the equations above for q =
0,1, . . . , p−1. More generally, we obtain

ALΦql(v(q),μ(l))+Nql(v(q),μ(l)) = Qql(v(q),μ(l)),

which is of the same form as above, with Qql depending upon Φq′l′ and Nq′l′ either
such that q′ + l′ ≤ q + l − 1 with l′ ≤ l, or such that q′ + l′ = q + l with l′ ≤ l − 1.
This shows that once we found (Φq j,Nq j), for q+ j ≤ p, j = 0,1, . . . , l, then we can
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determine (Φq′l′ ,Nq′l′) for l′ = l + 1 and q′ ≤ p− l − 1. We indicate in Figure 2.1
the way in which (Φql ,Nql) depend upon (Φq′l′ ,Nq′l′).

Fig. 2.1 Plot of the indices (q, l) of (Φql ,Nql). The arrows indicate the dependence of (Φql ,Nql)
at the position (q, l) upon (Φq′l′ ,Nq′l′ ) at the position (q′, l′).

3.2.4 Example: 02 Normal Form with Parameters

Consider the second order differential equation

u′′ = μ0 + μ1u+ μ2u′ +αu2 +βuu′ + γ(u′)2,

where α , β , γ are real constants, and μ0, μ1, μ2 small parameters. Notice that for
μ0 = μ1 = μ2 = 0 this is precisely the equation (1.17) for which the normal form
has been computed in Section 3.1.2. Therefore, it remains to compute the terms in
the normal form involving the three small parameters μ0, μ1, and μ2.

Normal Form

We set U = (u,v) and μ = (μ0,μ1,μ2) ∈ R
3, so that the equation becomes

dU
dt

= LU +R(U,μ), R(U,μ) = R01(μ)+R2(U,U)+R11(U,μ), (2.7)

where L and R2 are as in (1.18), and

R01(μ) =
(

0
μ0

)
, R11(U,μ) =

(
0

μ1u+ μ2v

)
.

We are interested in computing the normal form of this system up to terms of order 2,
so that it is enough to consider a polynomial Φμ of degree 2,
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Φμ(A,B) = Φ001(μ)+AΦ101(μ)+BΦ011(μ)+A2Φ200 +ABΦ110 +B2Φ020,

where Φ i j1 : R
3 → R

2 are linear maps. Since for μ = 0 the result is the same as the
one found for the equation (1.17) in Section 3.1.2, it is clear that here

Φ200 = Φ20, Φ110 = Φ11, Φ020 = Φ02,

where
Φ20 =

γ
2

ζ0, Φ11 = γζ1, Φ02 = 0

have been computed in Section 3.1.2. According to Lemma 1.9 and Remark 1.10(ii),
and taking into account the result found for μ = 0 in Section 3.1.2, it follows that
the change of variables

U = Aζ0 +Bζ1 +Φμ(A,B), (2.8)

where

ζ0 =
(

1
0

)
, ζ1 =

(
0
1

)
,

transforms the system (2.7) into the normal form

dA
dt

= B

dB
dt

= α1(μ)+α2(μ)A+α3(μ)B+αA2 +βAB

+O(|μ |2 + |μ |(|A|+ |B|)2 +(|A|+ |B|)3), (2.9)

in which α j : R
3 → R, j = 0,1,2, are linear maps.

Computation of α0, α1, and α2

We proceed as indicated in Section 3.2.3, and also as in the previous computations.
We substitute the change of variables (2.8) into the system (2.7), and then replace the
derivatives dA/dt and dB/dt from (2.9). In the resulting equality we now identify
the terms of orders O(μ), O(μA), and O(μB), which gives the equations

α1(μ)ζ1 = LΦ001(μ)+R01(μ), (2.10)

α2(μ)ζ1 +α1(μ)Φ110 = LΦ101(μ)+R11(ζ0,μ)
+2R2(ζ0,Φ001(μ)), (2.11)

α3(μ)ζ1 +2α1(μ)Φ020 +Φ101(μ) = LΦ011(μ)+R11(ζ1,μ)
+2R2(ζ1,Φ001(μ)). (2.12)
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Using the fact that the range imL of L is given by imL = {(u,0);u ∈ R} ⊂ R
2 and

that the kernel kerL is spanned by ζ0, we can solve these equations and determine
α j from the corresponding solvability conditions.

Solving these three equations we find, successively,

α1(μ) = μ0, Φ001(μ) = φ001(μ)ζ0,

α2(μ) = −γμ0 + μ1 +2αφ001(μ), Φ101(μ) = φ101(μ)ζ0,

and
α3(μ) = μ2 +βφ001(μ), Φ011(μ) = φ101(μ)ζ1 +φ011(μ)ζ0,

in which φ001,φ101,φ011 : R
3 → R are arbitrary linear maps. A simple choice is of

course φ001 = φ101 = φ011 = 0, which then gives

α1(μ) = μ0, α2(μ) = −γμ0 + μ1, α3(μ) = μ2.

Alternatively, if β �= 0 we may choose φ001(μ) such that α3(μ) = 0, i.e.,

φ001(μ) = −μ2

β
,

which gives

α1(μ) = μ0, α2(μ) = −γμ0 + μ1 −
2α
β

μ2, α3(μ) = 0,

whereas if α �= 0 we may choose φ001(μ) such that α2(μ) = 0, i.e.,

φ001(μ) =
1

2α
(γμ0 −μ1) ,

which gives

α1(μ) = μ0, α2(μ) = 0, α3(μ) = μ2 +
β

2α
(γμ0 −μ1) .

Actually, these choices can be made in general for a Takens–Bogdanov bifurcation
(see Section 3.4.4).

3.3 Symmetries and Reversibility

In this section, we consider the particular cases where the equation is equivariant
under the action of a symmetry and where it possesses a reversibility symmetry. In
both cases we show that the symmetry is inherited by the normal form. We state our
results for equation (1.1), but the same results also hold for the parameter-dependent
equation (2.1).
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3.3.1 Equivariant Vector Fields

We start with the case of an equation that is equivariant under the action of a linear
symmetry. More precisely, we make the following assumption.

Hypothesis 3.1 (Equivariant vector field) Assume that there exists an isometry
T ∈ L (Rn) which commutes with the vector field in the equation (1.1),

TLu = LTu, TR(u) = R(Tu) for all u ∈ R
n.

In this situation, we prove the following result.

Theorem 3.2 (Equivariant normal forms) Under the assumptions of Theorem
1.2, further assume that Hypothesis 3.1 holds. Then the polynomials Φ and N in
Theorem 1.2 commute with T.

Proof We consider the linear operator J in the space H of polynomials Φ : R
n →

R
n of degree p defined through

JΦ = T−1Φ ◦T for all Φ ∈ H .

Then notice that the equality JΦ = Φ is equivalent to the fact that Φ commutes
with T and that J leaves invariant the subspace Hq of homogeneous polynomials of
degree q.

Now, we go back to equation (1.9) in the proof of Theorem 1.2, which determines
the homogeneous parts Φq and Nq of degree q in the polynomials Φ and N. At each
step q, we have to solve an equation of the form

ALΦ = Q−N, (3.1)

in which Q is known, and we have dropped the subscripts q for notational simplicity.
We prove by induction in q that there is a solution (Φ ,N) of (3.1) satisfying

JΦ = Φ , JN = N, (3.2)

when Q satisfies
JQ = Q. (3.3)

Assuming that Hypothesis 3.1 holds, it is straightforward to check that (3.3) holds
for q = 2. We assume now that (3.3) is satisfied at degree q and show that there is
a solution (Φ ,N) of (3.1) satisfying (3.2), and then, that in the equation at degree
q + 1 the term Q also satisfies (3.3). According to the proof of Theorem 1.2, the
equation (3.1) has a unique solution with the property

(Φ ,N) ∈ (kerAL)⊥×kerAL∗ .

We show that this solution has the required property.
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Recall that T is an isometry, so that T−1 = T∗. Since T commutes with L we then
find that T−1 commutes with L, and both T and T−1 commute with the adjoint L∗.
This further implies that J commutes with AL and AL∗ ,

(JALΦ)(u) = T−1DΦ(Tu)LTu−T−1LΦ(Tu)
= DT−1Φ(Tu)TLu−LT−1Φ(Tu) = (ALJΦ)(u)

and

(JAL∗Φ)(u) = T−1DΦ(Tu)L∗Tu−T−1L∗Φ(Tu)
= DT−1Φ(Tu)TL∗u−L∗T−1Φ(Tu) = (AL∗JΦ)(u).

In particular, this shows that the subspaces im(AL∗) = (kerAL)⊥ and kerAL∗ are
invariant under the action of J.

Next, consider the unique solution (Φ ,N) of (3.1), constructed in the proof of
Theorem 1.2, satisfying

(Φ ,N) ∈ (kerAL)⊥×kerAL∗ .

Applying J to the equation (3.1) and taking into account the fact that J commutes
with AL, and that JQ = Q, we find that (JΦ ,JN) is also a solution of (3.1). Fur-
thermore, since (kerAL)⊥ and kerAL∗ are invariant under the action of J, we have

(JΦ ,JN) ∈ (kerAL)⊥×kerAL∗ .

The uniqueness of the solution (Φ ,N), now implies that JΦ = Φ and JN = N.
Furthermore, from the formula for Q in the proof of Theorem 1.2 it is now easy
to check that the term Q in the equation at degree q + 1 satisfies JQ = Q, which
completes the proof. ��

3.3.2 Reversible Vector Fields

Next, we consider the case of reversible equations for which we assume that the
following assumptions are satisfied.

Hypothesis 3.3 (Reversible vector field) Assume that there exists an isometry S ∈
L (Rn), with

S2 = I, S �= I,

and which anticommutes with the vector field in (1.1),

SLu = −LSu, SR(u) = −R(Su) for all u ∈ R
n.

In this case we prove the following result.
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Theorem 3.4 (Reversible normal forms) Under the assumptions of Theorem 1.2,
further assume that Hypothesis (3.3) holds. Then the polynomial Φ in Theorem 1.2
commutes with S, whereas the polynomial N anticommutes with S.

Proof As in the proof of Theorem 3.2, we consider the linear operator J in the space
H of polynomials Φ : R

n → R
n of degree p, defined through

JΦ = SΦ ◦S for all Φ ∈ H .

Recall that here S = S−1, so that Φ commutes (resp., anticommutes) with S if JΦ =
Φ (resp., JΦ =−Φ). In addition, we have that J2 = I. By arguing as in the proof of
Theorem 3.2, from the fact that S anticommutes with L, we obtain here that

JAL = −ALJ, JAL∗ = −AL∗J, (3.4)

which further implies that the subspaces imAL∗ = (kerAL)⊥ and kerAL∗ are in-
variant under the action of J.

Now, we consider again the equation

ALΦ = Q−N, (3.5)

which determines the homogeneous parts Φq and Nq of degree q in the polynomials
Φ and N, as in the proof of Theorem 1.2. We proceed now as in the proof of The-
orem 3.2, and solve this equation by induction in q. Assuming that Hypothesis 3.3
holds, we have that

JQ = −Q (3.6)

holds for q = 2. We assume that this equality holds for Q at degree q, and now show
that the unique solution (Φ ,N) of (3.5) satisfying

(Φ ,N) ∈ (kerAL)⊥×kerAL∗ ,

from the proof of Theorem 1.2, now also satisfies

JΦ = Φ , JN = −N,

which further implies that (3.6) holds for Q at degree q + 1. Indeed, applying J to
the equation (3.5) and taking into account the fact that J anticommutes with AL,
and that JQ = −Q, we find that (JΦ ,−JN) is also a solution of (3.5). Furthermore,
since (kerAL)⊥ and kerAL∗ are invariant under the action of J, we have

(JΦ ,−JN) ∈ (kerAL)⊥×kerAL∗ .

The uniqueness of the solution (Φ ,N) now implies that JΦ = Φ and JN = −N,
which proves the result in the theorem. ��
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3.3.3 Example: van der Pol System

Consider the van der Pol system [104],

u′1 = μu1 −u2 −u3
1

u′2 = u1,

in which μ is a small parameter. (This system models an electrical circuit with a
triode vacuum tube, nowadays replaced by a transistor.) Notice that the system is
invariant under the reflection (u1,u2) �→ −(u1,u2).

Normal Form

We set U = (u1,u2), so that the system is of the form

dU
dt

= LU +R(U,μ), R(U,μ) = μR11(U)+R30(U,U,U), (3.7)

where

L =
(

0 −1
1 0

)
, R11(U) =

(
u1

0

)
, R30(U,V,W ) =

(
−u1v1w1

0

)
.

Due to the reflection invariance mentioned above, the system (3.7) is equivariant
under the action of

T = −I.

The linear map L has a pair of complex conjugated eigenvalues ±i, with associated
eigenvectors

ζ =
(

1
−i

)
, ζ =

(
1
i

)
.

This implies that μ = 0 is a bifurcation point, at which we expect a Hopf bifurcation
to occur. We are interested in computing the normal form of this system up to terms
of order 3, taking into account the equivariance of the system under the action of T.

We consider the change of variables

U = Aζ +Aζ +Φμ(A,A),

with A(t) ∈ C and Φμ a polynomial of degree 3, since we are interested in the
normal form up to terms of order 3. According to the result in Lemma 1.7 and
Theorem 3.2 there exists a polynomial Φμ which commutes with T and such that
the system is transformed into the normal form

dA
dt

= aμA+bA|A|2 +O(μ2|A|+ |μ ||A|3|+ |A|5).



3.3 Symmetries and Reversibility 121

Since Φμ commutes with T, it follows that Φμ is an odd polynomial, hence

Φμ(A,A) = μAΦ101 + μAΦ011 +A3Φ300 +A2AΦ210 +AA
2Φ120 +A

3Φ030.

Computation of the Coefficients a and b

We proceed as in the computation of the Hopf bifurcation in Section 1.2.1, which
leads for a general Hopf bifurcation to the system (2.22)–(2.27) in Chapter 1. Here,
due to the equivariance under T, implying in particular that Φμ is an odd polyno-
mial, several terms in this calculation vanish, so that we find the system

aζ +(i−L)Φ101 = R11(ζ ) (3.8)

(3i−L)Φ300 = R30(ζ ,ζ ,ζ ) (3.9)

bζ +(i−L)Φ210 = 3R30(ζ ,ζ ,ζ ), (3.10)

instead of the general system (2.22)–(2.27) in Chapter 1. Now, the coefficients a
and b are easily computed from the solvability conditions for the equations (3.8)
and (3.10). Recall that these conditions are orthogonality conditions on the kernel
of the adjoint matrix, namely,

(i−L)∗ = −i−L∗ = −i+L,

e.g., see Section 1.2.1, which is here one-dimensional and spanned by

ζ ∗ =
1
2

(
1
−i

)
.

This vector is chosen such that 〈ζ ,ζ∗〉= 1, and then the solvability conditions lead to

a = 〈R11(ζ ),ζ ∗〉 =
1
2
, b = 〈3R30(ζ ,ζ ,ζ ),ζ ∗〉 = −3

2
.

Notice that b < 0, which implies that we have a supercritical Hopf bifurcation.
Since a > 0 the branch of stable periodic solutions bifurcates for μ > 0.

Exercise 3.5 Compute the higher orders terms and show that

Φμ (A,A) = μA

(
0

1/2

)
+A3

(
3i/8
1/8

)
+A2A

(
0

−3/2

)

+A
3
(
−3i/8

1/8

)
+AA

2
(

0
−3/2

)
+O(|A|5 + |μ||A|3 + |μ|2|A|),

and that the normal form is

dA
dt

=
(

i+
1
2

μ − i
8

μ2
)

A− 3
2

(1− iμ)A|A|2 − 63i
16

A|A|4 +h.o.t..
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Remark 3.6 In Chapter 4 we give examples of reversible bifurcations for which we
apply the result in Theorem 3.4.

3.4 Normal Forms for Reduced Systems on Center Manifolds

Consider an infinite-dimensional system of the form

du
dt

= Lu+R(u,μ), (4.1)

which satisfies the assumptions in center manifold Theorem 3.3 in Chapter 2. Then
the reduced system is of the form (2.1) and satisfies Hypothesis 2.1, so that we can
apply normal form Theorem 2.2. We show in this section how to compute the normal
form of the reduced system directly from the infinite-dimensional, without comput-
ing the reduced system, as this was already done in the example in Section 2.4.4 in
Chapter 2. Of course, this is the most efficient way of computation in applications.

3.4.1 Computation of Center Manifolds and Normal Forms

Recall that the center manifold theorem gives solutions of the form

u = u0 +Ψ(u0,μ),

with u0 ∈ E0 and Ψ(u0,μ) ∈ Zh. Then the normal form theorem applied to the
reduced system for u0 in the finite-dimensional subspace E0 shows that

u0 = v0 +Φμ(v0),

which leads to the normal form

dv0

dt
= L0v0 +Nμ(v0)+ρ(v0,μ). (4.2)

Consequently, we can write

u = v0 +Ψ̃(v0,μ), (4.3)

with
Ψ̃(v0,μ) = Φμ(v0)+Ψ(v0 +Φμ(v0),μ) ∈ Z .

Notice that here Ψ̃(v0,μ) belongs to the entire space Z , and not to Zh as Ψ(u0,μ).
To obtain the normal form, we can now use the Ansatz (4.3), and proceed as for the
algorithmic derivation in Section 3.2.3.
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First, differentiating (4.3) with respect to t and replacing du/dt and dv0/dt from
(4.1) and (4.2), respectively, gives the identity

Dv0Ψ̃(v0,μ)L0v0 −LΨ̃(v0,μ)+Nμ(v0) = Q(v0,μ), (4.4)

where

Q(v0,μ) = Π p

(
R(v0 +Ψ̃(v0,μ),μ)−Dv0Ψ̃(v0,μ)Nμ(v0)

)
.

Here Π p represents the linear map that associates to a map of class C p the polyno-
mial of degree p in its Taylor expansion. Next, we set

Ψ̃(v0,μ) = Ψ̃ 0(v0,μ)+Ψ̃ h(v0,μ),

where Ψ̃ 0 = P0Ψ̃ and Ψ̃ h = PhΨ̃ take values in E0 and Zh, respectively, according
to the decomposition Z = E0 +Zh. Projecting the identity (4.4) successively on E0

and Zh with the projectors P0 and Ph, respectively, gives the following system:

AL0Ψ̃ 0(v0,μ)+Nμ(v0) = Q0(v0,μ) (4.5)

Dv0Ψ̃ h(v0,μ)L0v0 −LhΨ̃ h(v0,μ) = Qh(v0,μ), (4.6)

where

Q0(v0,μ) = P0Q(v0,μ), Qh(v0,μ) = PhQ.

We can solve both equations in this system using again the Taylor expansions of
R, Ψ̃ 0, Ψ̃ h, and Nμ . Then equation (4.5) leads to an equation of the form (2.6),

with Φμ(v) replaced by Ψ̃ 0(v0,μ) and can be solved as described in Section 3.2.3.

Parallel to this, we have to solve the second equation, which determines Ψ̃ h(v0,μ).
This is also done with the help of the Taylor expansions, which lead at every order
to an equation of the form

Dv0Ψ̃ h(v0)L0v0 −LhΨ̃ h(v0) = Qh(v0),

in which the right hand side is known. At this point we have to make sure that this
equation has a solution Ψ̃ h(v0) ∈ Zh. For this, notice that the equation above is
obtained from the equation

d
dt

Ψ̃ h(eL0t v0) = LhΨ̃ h(eL0t v0)+Qh(eL0t v0)

by taking t = 0. Here the map t �→ Qh(eL0t v0) belongs to Cη(R,Yh) for any η > 0,
so that by Hypothesis (2.7) of Chapter 2 this equation possesses a unique solution
KhQh(eL0·v0). Consequently, we may take

Ψ̃ h(v0) =
(
KhQh(eL0·v0)

)
(0),
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which then shows that (4.6) can be solved at every order.
We show in the following sections, how to simultaneously compute the center

manifold and the normal form for three different bifurcations in infinite-dimensional
equations.

3.4.2 Example 1: Hopf Bifurcation

Consider an equation of the form (4.1), with a single parameter μ ∈ R, and satisfy-
ing the hypotheses in the center manifold Theorem 3.3, Chapter 2. Further assume
that the spectrum of the linear operator L contains precisely two purely imaginary
eigenvalues ±iω , which are simple.

Normal Form

Under these assumptions, we have that σ0 = {±iω} and that the associated spectral
subspace E0 is two-dimensional spanned by the eigenvectors ζ and ζ associated
with iω and −iω , respectively. The center manifold Theorem 3.3, Chapter 2, gives

u = u0 +Ψ(u0,μ), u0 ∈ E0, Ψ(u0,μ) ∈ Yh,

and applying the normal form Theorem 2.2 to the reduced system we find

u0 = v0 +Φμ(v0),

which gives the equality (4.3),

u = v0 +Ψ̃(v0,μ), v0 ∈ E0, Ψ̃(u0,μ) ∈ Y .

For v0(t) ∈ E0, it is convenient to write

v0(t) = A(t)ζ +A(t)ζ , A(t) ∈ C,

and according to the Lemma 1.7 (see Remark 2.3(iv)), the polynomial Nμ(A,A) in
the normal form is of the form

Nμ(A,A) = (AQ(|A|2,μ),AQ(|A|2,μ)),

with Q a complex-valued polynomial in its first argument satisfying Q(0,0) = 0.
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Computation of the Normal Form

Our purpose it to show how to compute the two leading order coefficients in the
expression of Nμ , i.e., the coefficients a and b in the expression

Q(|A|2,μ) = aμ +b|A|2 +O((|μ |+ |A|2)2).

(An example of such a computation is given in the example in Section 2.4.4, Chap-
ter 2.) For this calculation we proceed as indicated in Section 3.4.

We start from the identity (4.4) in which we replace the Taylor expansions of R
and Ψ̃ . With the notations from Section 3.2.3, we set

Ψ̃ ql(v
(q)
0 ,μ(l)) = μ l ∑

q1+q2=q
Aq1A

q2Ψ q1q2l , Ψ q1q2l ∈ Y .

By identifying in (4.4) the terms of order O(μ), O(A2), and O(AA), we obtain

−LΨ 001 = R01,

(2iω −L)Ψ 200 = R20(ζ ,ζ ),

−LΨ 110 = 2R20(ζ ,ζ ).

Here the operators L and (2iω−L) on the left hand sides are invertible, so thatΨ 001,
Ψ 200, and Ψ 110 are uniquely determined from these equalities. Next, we identify the
terms of order O(μA) and O(A2A) and find

(iω −L)Ψ 101 = −aζ +R11(ζ )+2R20(ζ ,Ψ 001),

(iω −L)Ψ 210 = −bζ +2R20(ζ ,Ψ 110)+2R20(ζ ,Ψ 200)+3R30(ζ ,ζ ,ζ ).

Since iω is a simple isolated eigenvalue of L, the range of (iω −L) is of codimen-
sion 1, so that we can solve these equations and determine Ψ 101 and Ψ 200, provided
the right hand sides satisfy one solvability condition. It is this solvability condition
which allows us to compute the coefficients a and b, just in the finite-dimensional
case. In the case where L has an adjoint L∗ acting in the dual space X ∗, the solv-
ability condition is that the right hand sides be orthogonal to the kernel of the adjoint
(−iω −L∗) of (iω −L). The kernel of (−iω −L∗) is one-dimensional, just as the
kernel of (iω −L), spanned by ζ ∗ ∈X ∗ that we choose such that 〈ζ ,ζ ∗〉= 1. Here
〈·, ·〉 denotes the duality product between X and X ∗, where it is semilinear with
respect to the second argument. Then in this situation we find

a = 〈R11(ζ )+2R20(ζ ,Ψ 001),ζ ∗〉,
b = 〈2R20(ζ ,Ψ 110)+2R20(ζ ,Ψ 200)+3R30(ζ ,ζ ,ζ ),ζ ∗〉.

Notice that here it is not necessary to further solve the equations and compute Ψ 101

and Ψ 210.
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Now, if the adjoint L∗ does not exist, we still have a Fredholm alternative for the
equations above. Indeed, both equations are of the form

(iω −L)Ψ = R, (4.7)

with R ∈ X . Projecting with P0 and Ph on the subspaces E0 and Xh, respectively,
we obtain

(iω −L0)P0Ψ = P0R,

(iω −Lh)PhΨ = PhR.

The operator on the left hand side of the second equation is invertible, since the
spectrum of Lh is σ− ∪σ+, which is bounded away from the imaginary axis (see
Hypothesis 2.4 in Chapter 2). Then the second equation has a unique solution

PhΨ = (iω −Lh)−1PhR, (iω −Lh)−1 : Xh → Zh.

The first equation is two-dimensional, so that there is a solution Ψ 0, provided the
following solvability condition holds

〈R0,ζ ∗
0 〉 = 0,

where ζ ∗
0 ∈ E0 is the eigenvector in the kernel of the adjoint (−iω−L∗

0) in E0 chosen
such that 〈ζ ,ζ ∗

0 〉 = 1. We rewrite this solvability condition as

〈R0,ζ ∗
0 〉 = 〈P0R,ζ ∗

0 〉 = 〈R,P∗
0ζ ∗

0 〉 = 0, (4.8)

in which P∗
0 is the adjoint of the projector P0, and the last bracket represents the

duality product between X and X ∗. Upon setting

ζ ∗ = P∗
0ζ ∗

0 ∈ X ∗,

the solvability condition becomes 〈R,ζ ∗〉 = 0, which then leads to formulas for the
coefficients a and b as above.

We point out that the range of iω −L is orthogonal to the vector ζ ∗ constructed
above, with respect to the duality product between X and X ∗, and actually, its
range is precisely the space orthogonal to ζ ∗. Indeed, since iω is an isolated simple
eigenvalue of L, the operator is Fredholm with index zero, so its range is closed and
has a codimension equal to the dimension of the kernel, which is 1.

Reduced Dynamics

The dynamics of the reduced equation, which is two-dimensional, is as described in
Theorem 2.6 in Chapter 1, so that we are here in the presence of a Hopf bifurcation.
We then have a branch of equilibria for small μ and a family of periodic solutions of
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size O(|μ |1/2), which bifurcate at μ = 0 for μ such that arbrμ < 0. Here ar and br

denote the real parts of a and b, respectively.
We point out that such a Hopf bifurcation typically occurs for equations for which

the unstable spectrum σ+ in Hypothesis 2.4, Chapter 2, is empty, σ+ = ∅. In this
situation, the stability of both equilibria and periodic solutions is the same in the
reduced system and in the full equation. Indeed, for all these solutions, one has a
strong stable manifold of codimension 2 corresponding to perturbations of the stable
spectrum σ− of L, and the remaining dynamics are found on the center manifold.
For example, assume that ar > 0. Then the family of equilibria is stable for μ < 0
and loses its stability when μ crosses 0 (see Theorem 2.6 of Chapter 1). In the su-
percritical case, when br < 0, we have an attracting periodic solution on the center
manifold for μ > 0, for which we can compute the Floquet exponents. The most
unstable exponents correspond to the flow on the center manifold, which give here
0, due to the invariance under translations in time t of (4.1), and a real negative
exponent, close to 0. The other exponents correspond to perturbations of the stable
eigenvalues in σ− of L, and give a strong stable manifold of codimension 2, trans-
verse to the weakly stable mode obtained from the dynamics on the center manifold.
It results that in the supercritical case the bifurcating periodic solution is also stable
in Y . In the subcritical case, when br > 0, the periodic solution occurs for μ < 0
and is unstable, since it is already unstable on the center manifold.

3.4.3 Example 2: Hopf Bifurcations with Symmetries

We discuss in this section two examples of Hopf bifurcations, with symmetries
SO(2) and O(2). While in the first case the symmetry implies that the reduced sys-
tem is always in normal form, in the second case we apply the result in Theorem 3.2
to determine the normal form of the reduced system.

Hopf Bifurcation with SO(2) Symmetry

Consider the situation in Section 3.4.2 of an equation of the form (4.1), with a single
parameter μ ∈ R, satisfying the hypotheses in center manifold Theorem 3.3, Chap-
ter 2, and such that the spectrum of the linear operator L contains precisely two
purely imaginary eigenvalues ±iω , which are simple. We now further assume that
there is a one-parameter continuous family of linear maps Rϕ ∈ L (X )∩L (Z )
for ϕ ∈ R/2πZ, with the following properties:

(i) Rϕ ◦Rψ = Rϕ+ψ for all ϕ , ψ ∈ R/2πZ;
(ii) R0 = I;

(iii) Rϕ L = LRϕ and R(Rϕ u,μ) = Rϕ R(u,μ) for all ϕ ∈ R/2πZ, u ∈ Z , and
μ ∈ R.

In particular, the group {Rϕ ;ϕ ∈R/2πZ} is a representation of an SO(2) symmetry
in X and Z . As in the two-dimensional case discussed in Section 1.2.1 in Chap-
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ter 1, these properties allow us to simplify the analysis of the reduced equation, and
induce some symmetry properties for the bifurcating periodic solutions.

Reduced System

Consider the eigenvector ζ associated to the simple eigenvalue iω of L. Then, by
arguing as in Section 1.2.1 from the fact that Rϕ commutes with L, we find that

Rϕ ζ = eimϕ ζ ,

for some m ∈ Z. In the case m = 0, which means that the action of all Rϕ on the
subspace E0 is trivial, the results in Section 3.4.2 hold with the additional property
that the periodic solution is pointwise invariant under the “rotations” Rϕ .

Assume that m �= 0. Then we choose a norm on E0 such that Rϕ is an isometry,
and applying the result in Theorem 3.13 in Chapter 2, we find that the reduction
function Ψ satisfies

RϕΨ(u0,μ) =Ψ(Rϕ u0,μ) for all u0 ∈ E0, μ ∈ R.

We set again
u0(t) = A(t)ζ +A(t)ζ

for u0(t) ∈ E0, with A a complex-valued function, and then the reduced system is

dA
dt

= iωA+ f (A,A,μ),

together with the complex conjugated equation. In addition, the vector field com-
mutes with Rϕ |E0 , which together with the equality Rϕ ζ = eimϕ ζ implies that

f (eimϕ A,e−imϕA,μ) = eimϕ f (A,A,μ).

According to Lemma 2.4 in Chapter 1, we then have that

f (A,A,μ) = Ag(|A|2,μ),

with g of class Ck−1, so that in this case the reduced equation in already in normal
form.

Reduced Dynamics

This situation was discussed in Section 1.2.1, in Chapter 1. First, A = 0 is always an
equilibrium of the reduced system, which gives the equilibria u = Ψ(0,μ). These
equilibria are invariant under the action of Rϕ . Next, according to the results in
Corollary 2.13 in Chapter 1, the reduced equation possesses a family of periodic
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solutions
A(t,μ) = r(μ)eiω∗(μ)t , r(μ) = O(|μ |1/2),

which are rotating waves, with

A(t,μ) = R ω∗(μ)t
m

A(0,μ)

satisfying

Rϕ A(t,μ)ζ = A(t +
mϕ
ω∗

,μ)ζ .

Using the fact that Rϕ commutes with the reduction function Ψ , we find that the
corresponding solutions u(·,μ) of the full equation satisfy

Rϕ u(t,μ) = Rϕ(u0(t,μ)+Ψ(u0(t,μ),μ))

= u0(t +
mϕ
ω∗

,μ)+Ψ(u0(t +
mϕ
ω∗

,μ),μ) = u(t +
mϕ
ω∗

,μ).

By arguing as for (2.38) in Chapter 1, this implies that u(·,μ) is also a rotating
wave, i.e.,

u(t,μ) = R ω∗(μ)t
m

u(0,μ). (4.9)

Hopf Bifurcation with O(2) Symmetry

In the same setting as above, we now further assume that there exists a symmetry S,
with S2 = I, such that the vector field is equivariant under the action of S,

SL = LS, R(Su,μ) = SR(u,μ) for all μ ∈ R (4.10)

and that

Rϕ S = SR−ϕ for all ϕ ∈ R/2πZ. (4.11)

Then the group {Rϕ ,S;ϕ ∈ R/2πZ} is a representation of an O(2) symmetry in X
and Z . We already met this type of symmetry in Section 1.2.4 in Chapter 1 and in
the example in Section 2.4.3 in Chapter 2.

A key property here is that generically the eigenvalues of the linear operator L are
at least geometrically double. Indeed, by arguing as in Section 1.2.4, one concludes
that any eigenvalue λ of L that has an eigenvector ζ which is not invariant under
the action of Rϕ (i.e., Rϕ ζ �= ζ for some ϕ ∈ R/2πZ) is at least geometrically
double. We shall therefore assume in this example that σ0 = {±iω}, where ±iω are
algebraically and geometrically double eigenvalues, with associated eigenvectors
that are not invariant under the action of Rϕ . Then the restriction of the action of Rϕ
to the eigenspaces associated with the eigenvalues ±iω is not trivial, and the result
in (2.39) in Chapter 1 shows that we can choose the eigenvectors {ζ0,ζ1} associated
with iω such that
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Rϕ ζ0 = eimϕ ζ0, Rϕ ζ1 = e−imϕ ζ1, Sζ0 = ζ1, Sζ1 = ζ0. (4.12)

Clearly, {ζ 0,ζ 1} are the eigenvectors associated with −iω .

Normal Form

We can now choose a norm on E0 such that Rϕ and S are isometries, and apply-
ing the result in Theorem 3.13 in Chapter 2, we find that the reduction function Ψ
satisfies

Ψ(Rϕ u0,μ) = RϕΨ(u0,μ), Ψ(Su0,μ) = SΨ(u0,μ) for all u0 ∈ E0, μ ∈ R.

Further applying Theorems 2.2 and 3.2 to the reduced equation, we write

u = v0 +Ψ̃(v0,μ), v0 ∈ E0, Ψ̃(v0,μ) ∈ Z ,

and set

v0(t) = A(t)ζ0 +B(t)ζ1 +A(t)ζ 0 +B(t)ζ 1.

Here A and B are complex-valued functions, and Ψ̃(·,μ) commutes with Rϕ and S.
The polynomial Nμ in the resulting normal form satisfies the characteriza-

tion (2.4) and also commutes with Rϕ and S. We write

Nμ = (Φ0,Φ1,Φ0Φ1)

where Φ j, j = 0,1, are polynomials of (A,B,A,B) with coefficients depending upon
μ . Using successively the characterization (2.4) and the fact that Nμ commutes with
Rϕ and S, we find that

Φ0(e−iωtA,e−iωtB,eiωtA,eiωtB) = e−iωtΦ0(A,B,A,B),
Φ1(e−iωtA,e−iωtB,eiωtA,eiωtB) = e−iωtΦ1(A,B,A,B),

Φ0(eimϕ A,e−imϕB,e−imϕA,eimϕB) = eimϕ Φ0(A,B,A,B),
Φ1(eimϕ A,e−imϕB,e−imϕA,eimϕB) = e−imϕ Φ1(A,B,A,B),

Φ0(B,A,B,A) = Φ1(A,B,A,B) (4.13)

for all t ∈ R and ϕ ∈ R/2πZ.
To exploit these identities we proceed as follows. The first and third identities

lead to

Φ0(ei(mϕ−ωt)A,e−i(mϕ+ωt)B,ei(ωt−mϕ)A,ei(mϕ+ωt)B) = ei(mϕ−ωt)Φ0(A,B,A,B)

for any t ∈ R and ϕ ∈ R/2πZ. We choose (t,ϕ) such that

mϕ −ωt = −argA, mϕ +ωt = argB,
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which implies that

Φ0(A,B,A,B) = eiargAΦ0(|A|, |B|, |A|, |B|).

Then we choose (t,ϕ) such that

mϕ −ωt = π, mϕ +ωt = 0,

which gives
Φ0(−A,B,−A,B) = −Φ0(A,B,A,B),

and finally we choose (t,ϕ) such that

mϕ −ωt = 0, mϕ +ωt = π,

which shows that
Φ0(A,−B,A,−B) = Φ0(A,B,A,B).

Since Φ0 is a polynomial, it follows now that there is a polynomial P0 such that

Φ0(A,B,A,B) = AP0(|A|2, |B|2),

and similarly we obtain that there is a polynomial P1 such that

Φ1(A,B,A,B) = BP1(|A|2, |B|2).

In addition, from the last identity in (4.13) we conclude that

P1(|A|2, |B|2) = P0(|B|2, |A|2).

Summarizing, we have the normal form

dA
dt

= iωA+AP(|A|2, |B|2,μ)+ρ(A,B,A,B,μ)

dB
dt

= iωB+BP(|B|2, |A|2,μ)+ρ(B,A,B,A,μ), (4.14)

in which P is a polynomial of degree p in its first two arguments with coefficients de-
pending upon μ , as given in Theorem 2.2, and ρ(A,B,A,B,μ) = O((|A|+ |B|)2p+3).
Furthermore, notice here the particular form of the remainder ρ , which is due to the
fact that the vector field in this system commutes with S, whereas from the fact that
the vector field commutes with Rϕ we have in addition that

ρ(eimϕ A,eimϕ B,e−imϕA,e−imϕB,μ) = eimϕ ρ(A,B,A,B,μ).
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Exercise 4.1 (Computation of the normal form) Consider the normal form truncated at order 3,

dA
dt

= iωA+A(aμ +b|A|2 + c|B|2),

dB
dt

= iωB+B(aμ +b|B|2 + c|A|2),

with complex coefficients a, b, and c, and the Taylor expansion of Ψ̃ ,

Ψ̃(A,B,A,B,μ) = ∑
p+q+r+s+l≥1

Ψ pqrslA
pA

q
BrB

sμ l ,

in which Ψ 10000 = Ψ 01000 = Ψ 00100 = Ψ 00010 = 0. Show that

Ψ 00001 = −L−1R01, Ψ 20000 = (2iω −L)−1R20(ζ0,ζ0),

Ψ 11000 = −2L−1R20(ζ0,ζ 0), Ψ 00110 = SΨ 11000,

Ψ 10100 = 2(2iω −L)−1R20(ζ0,ζ1), Ψ 10010 = −2L−1R20(ζ0,ζ 1),

and that the coefficients a,b,c are given by

a = 〈R11(ζ0)+2R20(ζ0,Ψ 00001),ζ ∗
0 〉,

b = 〈2R20(ζ0,Ψ 11000)+2R20(ζ 0,Ψ 20000)+3R30(ζ0,ζ0,ζ 0),ζ
∗
0 〉,

c = 〈2R20(ζ0,Ψ 00110)+2R20(ζ1,Ψ 10010)+2R20(ζ 1,Ψ 10100)+6R30(ζ0,ζ1,ζ 1),ζ
∗
0 〉,

where ζ ∗
0 ∈ X ∗ is constructed as ζ ∗ in Section 3.4.2.

Reduced Dynamics

The study of the dynamics of the system (4.14) strongly relies upon the study of the
normal form truncated at order 3. In polar coordinates

A = r0eiθ0 , B = r1eiθ1 ,

the truncated normal form becomes

dr0

dt
= r0(arμ +brr

2
0 + crr

2
1),

dr1

dt
= r1(arμ +brr

2
1 + crr

2
0),

dθ0

dt
= ω +aiμ +bir

2
0 + cir

2
1,

dθ1

dt
= ω +aiμ +bir

2
1 + cir

2
0, (4.15)

where the subscripts r and i indicate the real and the imaginary parts, respectively,
of a complex number. Here the two first equations for (r0,r1) decouple from the last
two equations for the phases (θ0,θ1), so that we can solve them separately.

The dynamics of these two equations are rather simple and are summarized in the
case arμ > 0 in Figure 4.1. (Similar phase portraits can be found in the other cases.)
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Fig. 4.1 Phase portraits in the (r0,r1)-plane of the equations for (r0,r1), depending upon (br,cr)
in the case arμ > 0.

In particular, for br < 0 in this case, one finds two pair of equilibria (±r∗(μ),0)
and (0,±r∗(μ)) on the r0- and r1-axis, respectively. These equilibria correspond to
rotating waves, just as for the Hopf bifurcation in the presence of SO(2) symmetry.
Here, the symmetry S exchanges the two axes, so that it exchanges the rotating
waves corresponding to r0 = 0 into the rotating waves corresponding to r1 = 0. Their
stability is indicated in Figure 4.1, and we refer for instance to [56] for a proof of the
persistence of these rotating waves for the full system (4.14). Next, for br + cr < 0
in this case, there is another pair of equilibria with r0 = r1, which correspond to
standing waves, another class of bifurcating periodic solutions (e.g., see [56] for a
proof of the persistence of these solutions for (4.14)). These correspond to a torus
of solutions of the normal form

v0(t,μ ,δ0,δ1) = r0(μ)
(

ei(ω∗(μ)t+δ0)ζ0 + ei(ω∗(μ)t+δ1)ζ1

)

+ r0(μ)
(

e−i(ω∗(μ)t+δ0)ζ 0 + e−i(ω∗(μ)t+δ1)ζ 1

)

for any (δ0,δ1) ∈ R
2, which induces a torus of solutions u(t,μ ,δ0,δ1) in Y of the

full system (4.1). Notice that these standing waves possess the following symmetry
properties:

R δ1−δ0
m

Su(t,μ ,δ0,δ1) = u(t,μ ,δ0,δ1), R 2π
m

u(t,μ ,δ0,δ1) = u(t,μ ,δ0,δ1),

R π
m

u(t,μ ,δ0,δ1) = u(t +
π

ω∗(μ)
,μ ,δ0,δ1), Su(t,μ ,δ0,δ0) = u(t,μ ,δ0,δ0).

Exercise 4.2 Consider a system of the form (4.1) with μ ∈R
2 satisfying the hypotheses of Theorem

3.3 of Chapter 2. Further assume that

(i) the linear operator L has precisely three eigenvalues on the imaginary axis, σ0 = {±iω ,0},
which are all simple;
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(ii) L and R(·,μ) commute with a symmetry S, with S2 = I;
(iii) the eigenvector ζ associated with the eigenvalue 0 is antisymmetric, Sζ = −ζ .

Using the result in Lemma 1.12, derive the normal form for the three-dimensional reduced system,
and give formulas for the coefficients of the linear and cubic terms. (The study of the dynamics of
the reduced vector field in this situation can be found in [88].)

3.4.4 Example 3: Takens–Bogdanov Bifurcation

Consider now an equation of the form (4.1), with a parameter μ ∈ R
m, and satisfy-

ing the hypotheses in the center manifold Theorem 3.3, Chapter 2. Further assume
that 0 is the only eigenvalue of L on the imaginary axis and that this eigenvalue is
geometrically simple and algebraically double.

Normal Form

With these assumptions we have σ0 = {0}, and the associated spectral subspace E0

is two-dimensional. We choose a basis {ζ0,ζ1} in E0 such that

Lζ0 = 0, Lζ1 = ζ0.

As in the previous example, center manifold Theorem 3.3, Chapter 2, gives

u = u0 +Ψ(u0,μ), u0 ∈ E0, Ψ(u0,μ) ∈ Zh,

and applying normal form Theorem 2.2 to the reduced system we find

u0 = v0 +Φμ(v0),

which gives the equality (4.3),

u = v0 +Ψ̃(v0,μ), v0 ∈ E0, Ψ̃(u0,μ) ∈ Z .

For v0(t) ∈ E0, we now write

v0(t) = A(t)ζ0 +B(t)ζ1,

in which A and B are real-valued. According to the result in Lemma 1.9 and Re-
mark 1.10, we find here the normal form

dA
dt

= B

dB
dt

= BP(A,μ)+Q(A,μ)+ρ(A,B,μ), (4.16)

where P(·,μ) and Q(·,μ) are polynomials of degree p such that
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P(0,0) = Q(0,0) =
∂Q
∂A

(0,0) = 0 (4.17)

and
ρ(A,B,μ) = o((|A|+ |B|)p).

Computation of the Normal Form

We compute now the leading order terms in the expansion of the vector field. We set

dA
dt

= B (4.18)

dB
dt

= α1(μ)+α2(μ)A+α3(μ)B+β1(μ)AB+β2(μ)A2 + ρ̃(A,B,μ),

where the coefficients α j(μ) and β j(μ) are such that

α j(μ) = α(1)
j (μ)+O(μ2), β j(μ) = β (0)

j +O(|μ |),

with α(1)
j : R

m → R linear maps, according to (4.17), and ρ̃(A,B,μ) = O(|A2B|+
|A|3)+o((|A|+ |B|)p).

We proceed as for the previous example and start from identity (4.4), in which we
replace the Taylor expansions of R and Ψ̃ . With the notations from Section 3.2.3,
we set here

Ψ̃(v0,μ) = ∑
q+l+r≥1

AqBlΨ qlr(μ(r)), Ψ 100 =Ψ 010 = 0,

where Ψ ql0 ∈ Z , and Ψ qlr, r ≥ 1, is r-linear symmetric in μ ∈ R
m with values in

Z . By identifying in (4.4) the terms of order O(A2), O(AB), and O(B2), we obtain

β (0)
2 ζ1 = LΨ 200 +R20(ζ0,ζ0), (4.19)

β (0)
1 ζ1 +2Ψ 200 = LΨ 110 +2R20(ζ0,ζ1), (4.20)

Ψ 110 = LΨ 020 +R20(ζ1,ζ1), (4.21)

and similarly, for the terms of order O(μ), O(μA), and O(μB), we find

α(1)
1 ζ1 = LΨ 001 +R01, (4.22)

α(1)
2 ζ1 +α(1)

1 Ψ 110 = LΨ 101 +R11(ζ0, ·)+2R20(ζ0,Ψ 001), (4.23)

α(1)
3 ζ1 +2α(1)

1 Ψ 020 +Ψ 101 = LΨ 011 +R11(ζ1, ·)+2R20(ζ1,Ψ 001). (4.24)

Notice that each term in these three equalities is a linear map of μ ∈ R
m with values

in X , so that the equalities hold in X for any μ ∈ R
m.

Next, we claim that for an equation of the form
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LΨ = R, (4.25)

with R ∈ X and Ψ ∈ Z , a Fredholm alternative applies, just as in the previous ex-
ample. Indeed, projecting again with the spectral projections P0 and Ph, the equation
decomposes as

L0P0Ψ = P0R,

LhPhΨ = PhR.

Since Lh : Xh → Zh is invertible, the second equation has the unique solution

PhΨ = Lh
−1PhR, Lh

−1 : Zh → Xh.

The first equation is two-dimensional, and the linear operator L0 has a one-dimen-
sional kernel spanned by ζ0 and a two-dimensional generalized kernel spanned by
ζ0 and ζ1. Then we can choose a dual basis {ζ ∗

00,ζ ∗
01} for the generalized kernel of

the adjoint L∗
0, with the properties

L∗
0ζ ∗

01 = 0, L∗
0ζ ∗

00 = ζ ∗
01,

and

〈ζ0,ζ ∗
00〉 = 1, 〈ζ1,ζ ∗

00〉 = 0, 〈ζ0,ζ ∗
01〉 = 0, 〈ζ1,ζ ∗

01〉 = 1.

The solvability condition is now

〈P0R,ζ ∗
01〉 = 0,

and a solution P0Ψ is determined up an element in the kernel of L0. Among these
solutions there is precisely one solution, P0Ψ̃ , which is orthogonal to ζ ∗

00, and sum-
marizing we have that the solutions are of the form

P0Ψ = P0Ψ̃ +αζ0, 〈P0Ψ̃ ,ζ ∗
00〉 = 0, α ∈ R.

Taking now the adjoint P∗
0 of P0, we can rewrite the solvability condition

〈R,ζ ∗
1 〉 = 0, ζ ∗

1 = P∗
0ζ ∗

01,

and the solutions

P0Ψ = P0Ψ̃ +αζ0, 〈Ψ̃ ,ζ ∗
0 〉 = 0, ζ ∗

0 = P∗
0ζ ∗

00, α ∈ R,

with Ψ̃ uniquely determined by the condition 〈Ψ̃ ,ζ ∗
0 〉 = 0, and α an arbitrary real

number. In the case when the operator L has an adjoint L∗ in X ∗, then ζ ∗
0 and ζ ∗

1
above are the vectors in the dual basis of the generalized kernel of the L∗, with the
properties

L∗ζ ∗
1 = 0, L∗ζ ∗

0 = ζ ∗
1 ,
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and

〈ζ0,ζ ∗
0 〉 = 1, 〈ζ1,ζ ∗

0 〉 = 0, 〈ζ0,ζ ∗
1 〉 = 0, 〈ζ1,ζ ∗

1 〉 = 1.

Notice that in this case again we have that the range of L is the space orthogonal
to ζ ∗

1 .
Going back to the equalities (4.19)–(4.24), we can now determine the different

coefficients in (4.18) from the solvability conditions, which give,

β (0)
2 = 〈R20(ζ0,ζ0),ζ ∗

1 〉,

β (0)
1 = 〈2R20(ζ0,ζ1)−2Ψ 200,ζ ∗

1 〉,

α(1)
1 (μ) = 〈R01(μ),ζ ∗

1 〉,

α(1)
2 (μ) = 〈−α(1)

1 (μ)Ψ 110 +R11(ζ0,μ)+2R20(ζ0,Ψ 001(μ)),ζ ∗
1 〉,

α(1)
3 (μ) = 〈−2α(1)

1 (μ)Ψ 020 −Ψ 101(μ)+R11(ζ1,μ)+2R20(ζ1,Ψ 001(μ)),ζ ∗
1 〉.

Here, the terms Ψ 200, Ψ 110, Ψ 001(μ), Ψ 020 and Ψ 101(μ) are obtained by solving
successively the equations (4.19), (4.20), (4.22), (4.21), and (4.23), using the proce-
dure explained above. First, from (4.19) we find

Ψ 200 = Ψ̃ 200 +ψ200ζ0, 〈Ψ̃ 200,ζ ∗
0 〉 = 0, ψ200 ∈ R,

and then from (4.20) we obtain

Ψ 110 = Ψ̃ 110 +2ψ200ζ1 +ψ110ζ0, 〈Ψ̃ 110,ζ ∗
0 〉 = 0, ψ110 ∈ R.

The solvability condition for equation (4.21) determines the coefficient ψ200,

2ψ200 = 〈R20(ζ1,ζ1)−Ψ̃ 110,ζ ∗
1 〉,

and then solving (4.21) we find

Ψ 020 = Ψ̃ 020 +ψ110ζ1 +ψ020ζ0, 〈Ψ̃ 020,ζ ∗
0 〉 = 0, ψ020 ∈ R.

Next, from (4.22) we obtain

Ψ 001(μ) = Ψ̃ 001(μ)+ψ001(μ)ζ0, 〈Ψ̃ 001,ζ ∗
0 〉 = 0, ψ001(μ) ∈ R,

and solving (4.23) we find

Ψ 101(μ) = Ψ̃ 101(μ)+α(1)
1 (μ)ψ110ζ1 +ψ101(μ)ζ0 +2ψ001(μ)Ψ̃ 200,

〈Ψ̃ 101,ζ ∗
0 〉 = 0, ψ101(μ) ∈ R,

where we have used in (4.23) the equality (4.19) which gives

2R20(ζ0,Ψ 001(μ)) = 2R20(ζ0,Ψ̃ 001(μ))+2ψ001(μ)(β (0)
2 ζ1 −LΨ̃ 200).



138 3 Normal Forms

Notice that we do not need to solve (4.24) and determine Ψ 011(μ).
In the formulas above we have determined Ψ 110, Ψ 020, Ψ 001(μ), and Ψ 101(μ),

up to an element ψ110ζ0, ψ020ζ0, ψ001(μ)ζ0, and ψ101(μ)ζ0, respectively, which
belongs to the kernel of L and is arbitrary. The simplest choice is to take

ψ110 = ψ020 = ψ001(μ) = ψ101(μ) = 0.

However, notice that the coefficients β (0)
2 , β (0)

1 , and α(1)
1 (μ) are uniquely deter-

mined, whereas α(1)
2 (μ) and α(1)

3 (μ) depend upon the choice of ψ110 and ψ001(μ).
We can then make use of the fact that ψ110 and ψ001(μ) are arbitrary, in order to
further simplify the normal form.

Further Transformation

Consider the coefficient α(1)
2 (μ) that we rewrite as

α(1)
2 (μ) = 〈−α(1)

1 (μ)Ψ̃ 110 −2ψ200R01(μ)+R11(ζ0,μ)+2R20(ζ0,Ψ̃ 001(μ)),ζ ∗
1 〉

+2β (0)
2 ψ001(μ).

If the coefficient β (0)
2 = 0, then α(1)

2 (μ) is uniquely determined. If β (0)
2 �= 0, then

we can choose the arbitrary coefficient ψ001(μ) such that α(1)
2 (μ) = 0. Indeed, this

is achieved by taking

ψ001(μ) =
1

2β (0)
2

〈α(1)
1 (μ)Ψ̃ 110 +2ψ200R01(μ)

−R11(ζ0,μ)−2R20(ζ0,Ψ̃ 001(μ)),ζ ∗
1 〉.

Similarly, for α(1)
3 (μ) we write

α(1)
3 (μ) = 〈−2α(1)

1 (μ)Ψ̃ 020 −Ψ̃ 101(μ)+R11(ζ1,μ)+2R20(ζ1,Ψ̃ 001(μ)),ζ ∗
1 〉

−3α(1)
1 (μ)ψ110 +β (0)

1 ψ001(μ).

Then if β (0)
1 �= 0 we can take ψ110 = 0 and

ψ001(μ) =
1

β (0)
1

〈2α(1)
1 (μ)Ψ̃ 020 +Ψ̃ 101(μ)−R11(ζ1,μ)−2R20(ζ1,Ψ̃ 001(μ)),ζ ∗

1 〉,

and then α(1)
3 (μ) = 0.

Remark 4.3 (i) Alternatively, we can obtain that either α(1)
2 (μ) = 0 or α(1)

3 (μ) =
0 by making a change of variables of the form



3.4 Normal Forms for Reduced Systems on Center Manifolds 139

Ã = A−A∗(μ),

with A∗(μ) suitably chosen, provided β (0)
2 �= 0 or β (0)

1 �= 0, respectively. Indeed,

we have that α(1)
2 (μ) = 0 after the change of variables above, provided A∗(μ)

satisfies
∂Q(A∗(μ),μ)

∂A
= 0.

The existence of A∗(μ) with this property is obtained by solving equation

∂Q(A,μ)
∂A

= 0.

Since ∂Q/∂A(0,0) = 0 and ∂ 2Q/∂A2(0,0) = 2β (0)
2 , the implicit function the-

orem gives a unique solution A∗(μ) of this equation for μ sufficiently small,

provided β (0)
2 �= 0. In a similar way, by solving P(A∗(μ),μ) = 0, for which

∂P/∂A(0,0) = β (0)
1 , one finds α(1)

3 (μ) = 0 when β (0)
1 �= 0.

(ii) An example of a second order ODE which has a normal form as described here
is given in Section 3.2.4.

Reduced Dynamics

The dynamics of systems of the form (4.18) have been extensively studied in the
literature. In particular, we refer the reader to [38] for an analysis of the Takens–
Bogdanov bifurcation, which is generically of codimension 2, arising for two small
parameters, the coefficients α1 and α3 in (4.18). Varying these two coefficients,
one finds here saddle-node, Hopf, and homoclinic bifurcations. In Sections 4.1.1
and 4.1.2, Chapter 4, we analyze this system under the additional assumption that it
possesses a reversibility symmetry.

3.4.5 Example 4: (iω1)(iω2) bifurcation

Consider again an equation of the form (4.1), with a parameter μ ∈ R
m and satisfy-

ing the hypotheses in center manifold Theorem 3.3, Chapter 2. We assume now that
the spectrum of the linear operator L contains precisely two pairs of eigenvalues on
the imaginary axis, ±iω1 and ±iω2, with 0 < ω1 < ω2. Furthermore, we assume that
these eigenvalues are simple, and that ω1/ω2 = r/s ∈ Q, where r and s are positive
integers, r < s, and the fraction is irreducible.

We point out that, since we can use as many parameters as needed, in practical
situations when ω1/ω2 is irrational, or rational ω1/ω2 = r/s with large r and s,
then it is more convenient to consider these cases as perturbations of the case with
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ω1/ω2 = r/s, where r/s is a rational number, with smallest r and s, sufficiently close
to ω1/ω2 (see also Remark 4.5).

Normal Form

With these assumptions we have σ0 = {±iω1,±iω2}, and the associated spectral
subspace E0 is four-dimensional. We choose a basis {ζ1,ζ2,ζ 1,ζ 2} in E0 consisting
of the eigenvectors associated to the eigenvalues iω1, iω2, −iω1, and −iω2, respec-
tively. As in the previous examples, center manifold Theorem 3.3, Chapter 2, gives

u = u0 +Ψ(u0,μ), u0 ∈ E0, Ψ(u0,μ) ∈ Zh,

and applying normal form Theorem 2.2 to the reduced system we find

u0 = v0 +Φμ(v0),

which gives the equality (4.3),

u = v0 +Ψ̃(v0,μ), v0 ∈ E0, Ψ̃(u0,μ) ∈ Z .

For v0(t) ∈ E0, we now write

v0(t) = A(t)ζ1 +B(t)ζ2 +A(t)ζ 1 +B(t)ζ 2,

in which A and B are complex-valued. According to the result in Lemma 1.15, we
find here the normal form

dA
dt

= iω1A+AP1(|A|2, |B|2,AsB
r
,μ)+A

s−1
BrP2(|A|2, |B|2,A

s
Br,μ)

+ρ1(A,B,A,B,μ)
dB
dt

= iω2B+BQ1(|A|2, |B|2,A
s
Br,μ)+AsB

r−1
Q2(|A|2, |B|2,AsB

r
,μ)

+ρ2(A,B,A,B,μ), (4.26)

with Pj and Q j polynomials in their first three arguments satisfying P1(0,0,0,0) =
Q1(0,0,0,0) = 0, and ρ j(A,B,A,B,μ) = O(|A|+ |B|)2p+2), j = 1,2.

Computation of the Normal Form

We proceed now as in the previous examples and compute the leading order terms
in this normal form. We write
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dA
dt

= (iω1 +α1(μ))A+A(a|A|2 +b|B|2)+β1A
s−1

Br + ρ̃1(A,B,A,B,μ)

dB
dt

= (iω2 +α2(μ))B+B(c|A|2 +d|B|2)+β2AsB
r−1 + ρ̃2(A,B,A,B,μ), (4.27)

where
α j(μ) = α(1)

j (μ)+O(|μ |2), j = 1,2,

with α(1)
j , j = 1,2, linear maps in μ , the coefficients a, b, c, d, β1, and β2 complex

numbers, and

ρ̃ j(A,B,A,B,μ) = O(|μ |(|A|+ |B|)3 +(|A|+ |B|)4 + |μ |(|A|+ |B|)r+s−1).

Here r + s ≥ 3, so that the coefficients β1 and β2 are relevant in this expansion only
in the cases (r,s) = (1,2) and (r,s) = (1,3), which correspond to ω2 = 2ω1 and
ω2 = 3ω1, respectively. Therefore the cases (r,s) = (1,2) and (r,s) = (1,3) are also
called strongly resonant cases, whereas the cases when r + s ≥ 5 are called weakly
resonant cases.

The computation of these coefficients can be done exactly as in the previous two
examples. We shall therefore only give the results here. First, by looking at the terms
of orders O(μA) and O(μB) we obtain

α(1)
1 = 〈R11(ζ1)+2R20(ζ1,Ψ 00001),ζ ∗

1 〉,

α(1)
2 = 〈R11(ζ2)+2R20(ζ2,Ψ 00001),ζ ∗

2 〉,

where
Ψ 00001 = −L−1R01.

Here ζ ∗
1 and ζ ∗

2 belong to X ∗, and span the orthogonal to the range of iω1 −L and
iω2 −L, respectively, just as the vector ζ ∗ constructed in Section 3.4.2. Next, by
considering the terms of order 2 in (A,A,B,B), in the case ω2 �= 2ω1, we find

Ψ 20000 = (2iω1 −L)−1R20(ζ1,ζ1),
Ψ 10100 = 2(i(ω1 +ω2)−L)−1R20(ζ1,ζ2),

Ψ 10010 = 2(i(ω1 −ω2)−L)−1R20(ζ1,ζ2),

Ψ 11000 = −2L−1R20(ζ1,ζ1),
Ψ 00200 = (2iω2 −L)−1R20(ζ2,ζ2),

Ψ 00110 = −2L−1R20(ζ2,ζ2),

whereas if ω2 = 2ω1 we need to solve the equations

β1ζ1 +(iω1 −L)Ψ 10010 = 2R2,0(ζ2,ζ1),
β2ζ2 +(iω2 −L)Ψ 20000 = R20(ζ1,ζ1).
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The solvability conditions for these two equations give the formulas for the coeffi-
cients β1 and β2, in this case,

β1 = 〈2R20(ζ2,ζ1),ζ ∗
1 〉,

β2 = 〈R20(ζ1,ζ1),ζ ∗
2 〉.

Finally, by considering the terms of order 3, we find in the case ω2 �= 3ω1 that

a = 〈2R20(ζ1,Ψ 11000)+2R20(ζ1,Ψ 20000)+3R30(ζ1,ζ1,ζ1),ζ ∗
1 〉,

b = 〈2R20(ζ1,Ψ 00110)+2R20(ζ2,Ψ 10010)+2R20(ζ2,Ψ 10100)

+6R30(ζ1,ζ2,ζ2),ζ ∗
1 〉,

c = 〈2R20(ζ1,Ψ 10010)+2R20(ζ2,Ψ 11000)+2R20(ζ1,Ψ 10100)

+6R30(ζ1,ζ2,ζ1),ζ ∗
2 〉,

d = 〈2R20(ζ2,Ψ 00110)+2R20(ζ2,Ψ 00200)+3R30(ζ2,ζ2,ζ2),ζ ∗
2 〉.

Exercise 4.4 Compute the coefficients a, b, c, d, β1, and β2 in the case ω2 = 3ω1.

Reduced Dynamics

Finding the full bifurcation diagram of a parameter-dependent dynamical system
in high dimensions is beyond the scope of this book. This is also the case for the
system (4.26), which is four-dimensional. Instead, the analysis is often restricted to
the questions of finding bounded orbits, such as equilibria, periodic orbits, invariant
tori, homoclinic or heteroclinic orbits, and determining their stability properties. In
particular, one way of treating the existence question is to first show the existence of
some bounded orbit for the truncated normal form, obtained by removing the small
remainder ρ , e.g., by removing ρ̃ in (4.27), and then show the persistence of this
orbit for the full system. For equilibria and periodic orbits the persistence question
can be often solved by an adapted implicit function theorem, but this question is
much more delicate for invariant tori, homoclinics, and heteroclinics, and may be
wrong. We discuss this type of difficulty in more detail in Chapter 4 in the case of
reversible systems.

We do not attempt to discuss here these issues for the system (4.26), for which we
refer for instance to [38]. Instead, we only mention some basic facts for the generic
situation in which all the coefficients in (4.27) are nonzero. For the μ-dependent
coefficients α1(μ) and α2(μ), which are small, since α1(0) = α2(0) = 0, we write

α j(μ) = ν j + iχ j, j = 1,2,

and assume that the small real parts ν j are nonzero. A convenient way of studying
system (4.27) is in polar coordinates, by setting
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A = r1eiθ1 , B = r2eiθ2 .

Restricting ourselves to the leading order system obtained by removing the terms
ρ̃ j, j = 1,2, in (4.27), we find three equations which decouple:

dr1

dt
= ν1r1 + r1(arr

2
1 +brr

2
2)+ rs−1

1 rr
2 Re(β1e−iΘ )

dr2

dt
= ν2r2 + r2(crr

2
1 +drr

2
2)+ rs

1rr−1
2 Re(β2eiΘ ) (4.28)

dΘ
dt

= γ +(sai − rci)r2
1 +(sbi − rdi)r2

2 + rs−2
1 rr−2

2 Im(r2
2sβ1e−iΘ − r2

1rβ2eiΘ ),

in which
Θ = sθ1 − rθ2,

together with an equation for θ1. Here γ = sχ1 − rχ2 is a detuning parameter, and
the subscripts r and i indicate the real and the imaginary parts, respectively, of a
complex number.

In particular, the equilibria (r1,r2,Θ) of the three equations which decouple de-
pend upon the values of the coefficients a, b, c, d, β1, and β2, and upon the three
small parameters ν1, ν2, and γ . These equilibria correspond to periodic solutions for
the four-dimensional truncated system (4.27), because of the additional phase θ1,
and, provided they persist, also for the full system (4.26).

Looking at (4.28) we notice again the fundamental difference between the weakly
resonant cases where r + s ≥ 5, and the strongly resonant cases where r + s ≤ 4.
Indeed, in the weakly resonant cases the Θ -dependent terms in the equations for
r1 and r2 are of an order higher than 3, so that these two equations decouple in the
truncation at order 3. One can first solve these two equations, for which we are in the
presence of a bifurcation of codimension 2, with two small parameters ν1 and ν2.
We refer to [38] for a detailed analysis of this situation. However, when including
the higher order terms, we observe that the two first equations give the equilibria
r1 and r2 as functions of Θ , which are generically of size O((|ν1|+ |ν2|)1/2). Then
the equation for Θ leads to a condition between the small parameters γ and ν1, ν2,
represented in the three-dimensional parameter space by a “resonance tongue.”

Remark 4.5 The case when ω1/ω2 is irrational is similar to the weakly resonant
cases discussed above and can be analyzed in the same way. However, we point
out that this irrationality condition is physically hard to check, so that in practical
situations it is more convenient to regard this situation as a perturbation of a weakly
resonant case by considering the closest rational number r/s to ω1/ω2 which has
the smallest sum r + s, and then taking a detuning parameter δ = sω1 − rω2, which
is added to the detuning γ in the system (4.28). This allows us to regard this situation
as a small perturbation of the case ω1/ω2 = r/s. On the contrary, in the strongly
resonant cases the terms in rs−1

1 rr
2 and rs

1rr−1
2 are of order 2 or 3, i.e., they are

larger or comparable to the cubic terms. This introduces a number of difficulties in
the bifurcation study. We refer to [89], and the references therein, for a discussion
of the case ω1/ω2 = 1/2.
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Remark 4.6 ((iω)2 bifurcation (1:1 resonance)) In the same context as above,
one can consider the case ω1 = ω2. The most interesting situation arises when these
eigenvalues are double, non-semisimple. In this case the center manifold is four-
dimensional and the normal form is given by Lemma 1.17. We refer to [27] for an
analysis of the generic cases, in which one finds a bifurcation of codimension 3, i.e.,
involving three small parameters. In Chapter 4, Section 4.3.3, we shall discuss this
situation in the case of reversible systems, where it turns out that the bifurcation is
of codimension 1, only.

3.5 Further Normal Forms

3.5.1 Time-Periodic Normal Forms

A situation which arises quite often in applications is that of a periodically forced
system. Here we consider the cases where the system is nonautonomous, as in Sec-
tion 2.3.2, in Chapter 2, with R being periodic in t. In particular, this means that
the time-dependency occurs as a small perturbation near the origin. This is not the
general case of systems with time-periodic coefficients, and also not the case of au-
tonomous systems near a closed orbit, for which normal forms may be found for
general cases in [53, 56].

We consider a differential equation in R
n of the form

du
dt

= Lu+R(u,μ , t), (5.1)

for which we assume that the following hypothesis holds.

Hypothesis 5.1 Assume that L and R in (5.1) have the following properties:

(i) L is a linear map in R
n;

(ii) for some k ≥ 2 and l ≥ 1, there exists a neighborhood V of the origin in
R

n ×R
m such that the map t �→ R(·, ·, t) belongs to Hl(R,C k(V ,Rn));

(iii) R(0,0, t) = 0 and DuR(0,0, t) = 0 for all t ∈ R;
(iv) there exists τ > 0, such that

R(u,μ , t + τ) = R(u,μ , t) for all t ∈ R,(u,μ) ∈ V .

Notice that the time dependency is taken in the Sobolev space Hl with l ≥ 1.
This is to insure that we can multiply two such functions, since H1(R/τZ) is an
algebra. We could use continuous functions instead, but Hl is really useful when we
are looking at infinite-dimensional problems.

Theorem 5.2 (Periodically forced normal form) Consider the system (5.1) and
assume that Hypothesis 5.1 holds. Then for any positive integer p ≤ k there exist
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neighborhoods V1 and V2 of 0 in R
n and R

m, respectively, and a τ-periodic func-
tion t �→ Φ(·, ·, t), which belongs to Hl(R/τZ,C k(Rn×V2,R

n)), with the following
properties:

(i) Φ is a polynomial of degree p in its first argument, and the coefficients of the
monomials of degree q belong to Hl(R/τZ,C k−q(V2,R

n)). Furthermore,

Φ(0,0, t) = 0, DuΦ(0,0, t) = 0 for all t ∈ R.

(ii) For v ∈ V1, the polynomial change of variable

u = v+Φ(v,μ , t),

transforms system (2.1) into the “normal form”

dv
dt

= Lv+N(v,μ , t)+ρ(v,μ , t), (5.2)

with the following properties:

a. The map t �→ N(·, ·, t) is τ-periodic and satisfies

N(0,0, t) = 0, DvN(0,0, t) = 0 for all t ∈ R.

Furthermore, N is a polynomial of degree p in its first argument and the co-
efficients of the monomials of degree q belong to Hl(R/τZ,C k−q(V2,R

n)).
b. The equality

etL∗
N(e−tL∗

v,μ , t) = N(v,μ ,0) (5.3)

holds for all (t,v) ∈ R×R
n and μ ∈ V2.

c. The map ρ belongs to Hl(R/τZ,C k(V1 ×V2,R
n)) and

ρ(v,μ , t) = o(‖v‖p) for all (t,v) ∈ R×V1, μ ∈ V2.

A preliminary version of this theorem appeared in [24].

Remark 5.3 As in Theorem 1.2 we can replace (5.3) by

∂N(v,μ , t)
∂ t

= DvN(v,μ , t)L∗v−L∗N(v,μ , t) for all (t,v) ∈ R×R
n, μ ∈ V2. (5.4)

Via Fourier analysis this equation is, for every Fourier mode, of the same form
as (1.5).

Proof (of Theorem 5.2) Proceeding as in the proof of Theorems 1.2 in Section 3.1.1,
we are lead to solve the equation

∂Φ
∂ t

+ALΦ +N = Π p (R(·+Φ ,μ)−DvΦ ·N) (5.5)
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with respect to (Φ ,N), which are unknown functions of (v,μ , t). This equation is
the analogue for this situation of the equality (C.10) in the proof of Theorem 2.2,
and the notations AL and Π p below have the same meaning as in this proof (see
also equality (2.6)).

We start by solving the equation at μ = 0. Then, at each degree q in v, we have
to solve a linear equation of the form

∂Φ
∂ t

+ALΦ = Q−N, (5.6)

in which Q ∈ Hl(R/τZ,Hq), where Hq is the space of homogeneous polynomials
of degree q, as in Section 3.1.1. Taking the Fourier expansion with respect to t of
(5.6), we find for the kth Fourier coefficient,

(
2ikπ

τ
+AL

)
Φ (k) = Q(k) −N(k).

This equation is now solved using the scalar product introduced in Section 3.1.1. It
follows that we may choose N(k) as the orthogonal projection of Q(k) on the kernel
of the adjoint of (2ikπ/τ +AL), which is (−2ikπ/τ +AL∗), and Φ(k) orthogonal
to the kernel of (2ikπ/τ +AL). In fact, this is equivalent to considering the scalar
product in L2(R/τZ,Hq) defined through

〈Φ ,Ψ〉τ =
1
τ

∫ τ

0
〈Φ(·, t),Ψ(·, t)〉dt, (5.7)

and then directly solving (5.6) with the help of the formal adjoint −∂/∂ t +AL∗ of
the linear operator ∂/∂ t +AL in L2(R/τZ,H ).

The Fourier analysis above shows that there is a unique solution (Φ ,N) of (5.6)
satisfying

Φ ∈ Hl+1(R/τZ,Hq), Φ ∈
(

ker

(
∂
∂ t

+AL

))⊥
,

and

N ∈ Hl(R/τZ,Hq), N ∈ ker

(
− ∂

∂ t
+AL∗

)
,

for any Q ∈ Hl(R/τZ,Hq). Furthermore, the linear mapping Q �→ (Φ ,N) is boun-
ded from Hl(R/τZ,Hq) to (Hl(R/τZ,Hq))2.

Finally, we solve the equation (5.5) for small μ . The proof is done in the same
way as the proof of Theorem 2.2 given in Appendix C.5, and we omit the details
here. ��

Remark 5.4 Consider an infinite-dimensional system, as in Chapter 2, and assume
that the center manifold theorems in Chapter 2, Theorem 3.9 with periodic time-
dependence, and Theorem 3.3 for perturbed vector fields apply (e.g., see the ex-
ample of periodically forced Hopf bifurcation below). We then obtain a reduced
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finite-dimensional system in E0 which is of the form (5.1). Hence, we can apply The-
orem 5.2 to this reduced system. For the computation of the normal form, we can
make it directly on the infinite-dimensional system, as it is not necessary to split the
computation into the computation of the center manifold and the computation of the
normal form, just as in the computation made in Section 3.4.

3.5.2 Example: Periodically Forced Hopf Bifurcation

Consider an infinite-dimensional system of the form

du
dt

= Lu+R(u,μ , t), (5.8)

where, with the notations from Chapter 2,

L ∈ L (Z ,X ) and R ∈ Hl(R,C k(V ,Y )),

for k ≥ 2, l ≥ 1, and V a neighborhood of the origin in Z ×R
m. We assume that R

is τ-periodic in t,

R(u,μ , t + τ) = R(u,μ , t) for all (u,μ) ∈ V , t ∈ R,

and
R(0,0, t) = 0, DuR(0,0, t) = 0.

We further assume that the hypotheses of Theorems 3.9 and 3.3 in Chapter 2 are
satisfied, and that the Hypothesis 2.4 of Chapter 2 on L holds with σ0 = {±iω}, in
which ±iω are simple eigenvalues.

Normal Form

Under the above hypotheses, we find a 2-dimensional reduced system to which we
can apply the Theorem 5.2. We choose an eigenvector ζ associated with the eigen-
value iω , so that {ζ ,ζ} is a basis of E0. As in the previous examples, we then have

u(t) = v0(t)+Ψ̃(v0(t),μ , t),

with
v0(t) = A(t)ζ +A(t)ζ ∈ E0,

and Ψ̃(v0,μ , t) ∈Z , for (v0,μ) in a neighborhood of 0 in E0 ×R
m. Furthermore, Ψ

is τ-periodic in t, and

Ψ̃(0,0, t) = 0, Dv0Ψ̃(0,0, t) = 0.
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The normal form of the reduced equation is

dA
dt

= iωA+N(A,A,μ , t)+ρ(A,A,μ , t),

with N polynomial of degree p in (A,A), with coefficients depending upon μ and t,
as in Theorem 5.2, and

ρ(A,A,μ , t) = O(|A|p+1).

Moreover,
N(0,0,0, t) = 0,∂AN(0,0,0, t) = ∂AN(0,0,0, t) = 0,

N(A,A,μ , t + τ) = N(A,A,μ , t),

and the identity (5.3) gives in this case

e−iωtN(eiωtA,e−iωtA,μ , t) = N(A,A,μ ,0) (5.9)

for all A ∈ C and t ∈ R.
We set ω f = 2π/τ , and consider the monomials of the nth Fourier mode of

N(A,A,μ , ·) of the form

α(n)
pq (μ)ApA

q
einω f t .

According to (5.9), these monomials should satisfy

α(n)
pq (μ)

(
ei((p−q−1)ω+nω f )t −1

)
= 0,

so that
(p−q−1)ω +nω f = 0. (5.10)

Assume now that ω f

ω
=

r
s
∈ Q.

Then the equality (5.10) leads to

p−q−1 = lr, n = −ls, l ∈ Z,

and we conclude that

N(A,A,μ , t) = AN0(|A|2,(Ae−iωt)r,μ)+A
r−1

eriωtN1(|A|2,(Aeiωt)r,μ), (5.11)

where N0 and N1 are polynomials in their first two arguments.
The leading order terms in the normal form now strongly depend upon the value

of r. For r = 1 we find the truncated equation

dA
dt

= iωA+a(μ)A+ c(μ)eiωt +d(μ)Ae2iωt + e(μ)A2e−iωt + f (μ)A2
e3iωt

+ b(μ)A|A|2 +g(μ)A3e−2iωt +h(μ)A3
e4iωt + j(μ)A|A|2e2iωt , (5.12)
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where a(0) = c(0) = d(0) = 0. For r = 2 we obtain the equation

dA
dt

= iωA+a(μ)A+ c(μ)Ae2iωt +b(μ)A|A|2 (5.13)

+ d(μ)A3e−2iωt +g(μ)A3
e4iωt + f (μ)A|A|2e2iωt ,

with a(0) = c(0) = 0, whereas for r ≥ 3 we find

dA
dt

= iωA+a(μ)A+b(μ)A|A|2 + c(μ)Ar−1
eriωt , (5.14)

in which a(0) = 0. The cases r = 1,2,3 are strongly resonant cases, leading to very
rich dynamics, the “worse” being r = 1.

Remark 5.5 (i) In the case of a small periodic forcing, i.e., if

∂tR(u,0, t) = 0,

all the coefficients of the time-dependent terms in the above equations vanish at
μ = 0. We refer to [26] for an analysis of the dynamics in the cases r = 1 and
r = 2.

(ii) The case when ω f /ω is irrational is quite academic, since it is physically hard
to check. Instead, it is more convenient to consider this case as a small pertur-
bation of the case ω f /ω = r/s ∈ Q, by choosing a rational number r/s with
minimal r close enough to ω f /ω .

Computation of the Normal Form

We briefly describe below how to compute the terms of order O(μ) of the coeffi-
cients a(μ) and c(μ), and the coefficients b(0), d(0), g(0), and f (0) in the case
ω f = 2ω , i.e., r = 2 and s = 1.

We set

a(μ) = a(1)(μ)+O(|μ |2), c(μ) = c(1)(μ)+O(|μ |2),

where a(1) and c(1) are linear maps in μ ∈ R
m. We proceed as in the previous ex-

amples by taking the Taylor expansions of R and Ψ . With similar notations, we first
find at order O(μ)

dΨ 001

dt
−LΨ 001 = R01(t).

Here R01(t) is τ-periodic, and after taking its Fourier expansion

R01(t) = ∑
n∈Z

R(n)
01 einω f t , R(n)

01 ∈ L (Rm,Y ),

we then have to solve the equations
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(
inω f −L

)
Ψ (n)

001 = R(n)
01

for any n ∈ Z. Since ω f = 2ω , the operators (inω f −L) are invertible, so that we
obtain a unique solution Ψ 001 ∈ Hl(R/τZ,L (Rm,Z ).

Next, we consider the terms of order O(μA) and find

dΨ 101

dt
+(iω −L)Ψ 101 +a1ζ + c1e−2iωtζ = R11(ζ )(t)+2R20(ζ ,Ψ 001(t))(t).

Using again Fourier series, we obtain a system of equations for n ∈ Z as above.
These equations are invertible for n /∈ {0,−1} and the solvability conditions for
n = 0 and n = −1 determine the coefficients

a(1) = 〈R11(ζ )(·)+2R20(ζ ,Ψ 001(·))(·),ζ ∗〉τ

c(1) = 〈R11(ζ )(·)+2R20(ζ ,Ψ 001(·))(·),e2iωtζ
∗〉τ .

Here 〈·, ·〉τ is the scalar product defined through (5.7), and ζ ∗ is taken such that
{ζ ∗,ζ ∗} is a dual basis of {ζ ,ζ} in E0.

Finally, we compute the coefficients b(0), d(0), g(0), and f (0) by consider-
ing successively the terms of orders O(A2), O(AA), O(A3), and O(A2A). At orders
O(A2) and O(AA), we find

dΨ 200

dt
+(2iω −L)Ψ 200 = R20(ζ ,ζ )(t),

dΨ 110

dt
−LΨ 110 = 2R20(ζ ,ζ )(t),

and Ψ 200(t) and Ψ 110(t) are determined just as Ψ 001 above. At orders O(A3), and
O(A2A) we obtain

dΨ 300

dt
+ (3iω −L)Ψ 300 +de−2iωtζ +ge−4iωtζ

= 2R20(ζ ,Ψ 200(t))(t)+R30(ζ ,ζ ,ζ )(t),
dΨ 210

dt
+ (iω −L)Ψ 210 +bζ + f e−2iωtζ

= 2R20(ζ ,Ψ 200(t))(t)+3R30(ζ ,ζ ,ζ )(t)+2R20(ζ ,Ψ 110(t))(t),

and the coefficients are obtained from the solvability conditions for these equations:

b(0) = 〈2R20(ζ ,Ψ 200(·))(·)+3R30(ζ ,ζ ,ζ )(·)+2R20(ζ ,Ψ 110(·))(·),ζ ∗〉τ ,

f (0) = 〈2R20(ζ ,Ψ 200(·))(·)+3R30(ζ ,ζ ,ζ )(·)+2R20(ζ ,Ψ 110(·))(·),e2iωtζ
∗〉τ ,

d(0) = 〈2R20(ζ ,Ψ 200(·))(·)+R30(ζ ,ζ ,ζ )(·),e2iωtζ ∗〉τ ,

g(0) = 〈2R20(ζ ,Ψ 200(·))(·)+R30(ζ ,ζ ,ζ )(·),e4iωtζ
∗〉τ .
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Exercise 5.6 (Periodically forced vibrating structure) Consider a system in R
n, n = 2m, of the

form

du
dt

= Lu+R(u, t),

in which L and R have the following properties:

(i) the linear map L has 2m simple, purely imaginary eigenvalues ±iω j , j = 1,2, . . . ,m;
(ii) the map R is smooth and τ-periodic in t;

(iii) R(0, t) = DuR(0, t) = 0 for all t ∈ R.

Further consider the change of variables in the normal form Theorem 5.2,

u = v+Φ(v, t),

with Φ polynomial in v, τ-periodic in t, satisfying Φ(0, t) = DvΦ(0, t) = 0, and with

v =
m

∑
j=1

A jζ j +
m

∑
j=1

A jζ j,

where ζ j are the eigenvectors associated with the eigenvalues iω j .
Set ω f = 2π/τ , and take r0 and r j, j = 1, . . . ,m a set of integers, such that

r0ω f +
m

∑
j=1

r jω j = 0, r0 �= 0, (5.15)

with a minimal total degree |r| defined by

|r| =
m

∑
j=1

|r j|.

Assuming the nonresonance condition

m

∑
j=1

α jω j �= 0, α j ∈ Z, |α| ≤ p+1

for some p ≥ 3, show that

(i) the normal form at order p reads

dA j

dt
= iω jA j +A jPj(|A1|2 + · · ·+ |Am|2)+Q j(A1, . . . ,Am,A1, . . . ,Am, t),

where Pj are polynomials, and Q j are polynomials in (A1, . . . ,Am,A1, . . . ,Am) with τ-periodic
coefficients in t;

(ii) the lowest order monomials in the normal form that have time-dependent coefficients are of
degree |r|−1, and their coefficients are proportional to either eir0ω f t or e−ir0ω f t .

Application: Take m = 3 and assume that the eigenvalues ±iω1,±iω2,±iω3 of L satisfy

3

∑
j=1

α jω j �= 0,

for any α = (α1,α2,α3) ∈ Z
3 with |α| ≤ 4. Further assume that the frequency ω f of the periodic

forcing satisfies
4ω f +ω1 −3ω2 = 0,
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and that no other integer combination corresponding to the minimal degree |r| = 4 exists.

(i) Show that the normal form at order 3 contains only the following time-dependent terms:

c1e−4iω f t A3
2 in the equation for A1, and c2e4iω f t A1A

2
2 in the equation for A2, with complex

coefficients c1 and c2.
(ii) Consider polar coordinates θ j = argA j and set Θ = θ1 − 3θ2 + 4ω f t. Show that the normal

form at order 3 written in these polar coordinates leads to a four-dimensional autonomous
system for (r1,r2,r3,Θ), which decouples from the two equations for the phases θ1 and θ3.

3.5.3 Normal Forms for Analytic Vector Fields

An interesting issue about normal forms arises when the vector field in (2.1) is
analytic in (u,μ). The polynomials Φ and N exist for any order p ∈N, and a natural
question is then the convergence of the series resulting as p → ∞. In general this
series does not converge, but under suitable conditions, it is possible to determine
an optimal degree for the normal form polynomial that minimizes the remainder
term ρ (in the sense that the remainder is exponentially small). We present in this
section two recent results by Iooss and Lombardi [62, 63] which show the existence
of this optimal degree.

Definition 5.7 Consider a linear map L on C
n with eigenvalues λ1, . . . ,λn ∈ C. Set

λ = (λ1, . . . ,λn)∈C
n, and consider γ > 0 and τ > n−1. The linear map L is called

(γ,τ)-homologically diophantine if for every α = (α1, . . . ,αn) ∈ N
n, with |α| ≥ 2,

where |α| = ∑n
j=1 α j , the following inequality holds:

|〈λ ,α〉−λ j| ≥
γ

|α|τ ,

whenever 〈λ ,α〉−λ j �= 0.

The following result is proved in [62].

Theorem 5.8 (Optimal normal form) Consider the system (2.1) with R an ana-
lytic map in a neighborhood of the origin in R

n ×R
m such that R(0,μ) = 0 for

all μ . Assume that there exist positive constants c and r such that in the expansion

R(u,μ) = ∑
k+l≥2,k≥1

Rkl(u(k),μ(l))

of R, the (k + l)-linear maps Rkl on (Rn)k × (Rm)l satisfy

‖Rkl(u1, . . . ,uk,μ1, . . . ,μl)‖ ≤ c
‖u1‖ . . .‖uk‖‖μ1‖ . . .‖μl‖

rk+l .

Then for any p ≥ 2, the result in Theorem 2.2 holds, with Φ and N polynomials of
degree p in (u,μ). Furthermore, the following properties hold:
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(i) If the linear operator L is diagonalizable and (γ,τ)-homologically diophantine,
then there is a degree popt for the polynomials Φ and N such that the remain-
der ρ satisfies

sup
‖v‖+‖μ‖≤δ

‖ρ(v,μ)‖ ≤ M(τ)e−C/δ b
,

where C depends upon (c,r,γ,n,m), M(τ) depends upon τ and (c,r,γ,n,m),
b = (1+ τ)−1, and popt = O(δ−b).

(ii) If 0 is the only eigenvalue of L, with at most one 2× 2 or 3× 3 Jordan block,
then the above estimate for ρ holds with b = 1.

Remark 5.9 (i) Notice that the optimal degree popt of the normal form depends
upon the radius of the ball where the remainder ρ is estimated. In applications,
this is not really a restriction, since one may choose δ to be of order O(|μ |β )
with β > 0 small enough, such that the “interesting dynamics” take place in
a smaller ball. In particular, the bifurcating solutions lie inside this ball. The
result shows that, under the above hypotheses, the remainder ρ is exponentially
small with respect to the relevant terms in the bifurcation analysis of the normal
form.

(ii) The restriction (i) on the linear map L in Theorem 5.8 may sometimes be over-
come by using a suitable decomposition of the problem (see [61] where the case
02+iω , with L not diagonalizable, is studied).

A key ingredient in Theorem 5.8 is the analyticity of R. However, this condition
is not satisfied by the reduced systems given by the center manifold theorem, of
interest here, in which the vector field is not analytic, even when the original vector
field is analytic (see Remark 2.14 in Chapter 2). In this situation, the idea is to
first use a normal form transformation on a suitably decomposed system, taking
advantage of the analyticity of the vector field, and then use the center manifold
reduction, taking into account the exponentially small estimate given by the normal
form. In this context, the following result has been proved in [63].

Theorem 5.10 Consider the system (2.1) with R as in Theorem 5.8. Further assume
that L is the direct sum of two linear maps L0 on R

n0 and L1 on R
n1 , with n0 +n1 =

n, such that L0 is diagonalizable with eigenvalues λ (0)
1 , . . . ,λ (0)

n0 , and that there exist
positive constants γ and τ such that

|〈α,λ (0)〉−λ (1)
j | ≥ γ

|α|τ , j = 1, . . . ,n1, (5.16)

for any α ∈ N
n0 , α �= 0, where λ (0) = (λ (0)

1 , . . . ,λ (0)
n0 ) and λ (1)

1 , . . . ,λ (1)
n1 are the

eigenvalues of L1. Then, there exists a polynomial Φ : R
n0 ×R

m → R
n1 of optimal

degree popt such that the change of variables

u1 = ũ1 +Φ(u0,μ),

transforms the system (2.1) into the following system in R
n0 ×R

n1
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du0

dt
= L0u0 + R̃0(u0, ũ1,μ), (5.17)

dũ1

dt
= L1ũ1 + R̃1(u0, ũ1,μ)+ρ1(u0,μ),

in which R̃0, R̃1, and ρ1 are analytic in their arguments,

R̃0(u0, ũ1,μ) = P0R(u0 + ũ1 +Φ(u0,μ),μ),

where P0 is the projection on the subspace R
n0 ,

R̃1(u0, ũ1,μ) = O(‖ũ1‖(‖u0‖+‖ũ1‖+‖μ‖)),

and, with the notations from Theorem 5.8, popt = O(δ−b) where b = (1+ντ)−1, ν
being the maximal algebraic multiplicity of eigenvalues of L1, and

sup
‖u0‖+‖μ‖≤δ

‖ρ1(u0,μ)‖ ≤ M(τ)e−C/δ b
.

Remark 5.11 The polynomial Φ in the above theorem satisfies the identity

Du0Φ(u0,μ)L0u0 −L1Φ(u0,μ) = −Du0Φ(u0,μ)P0R(u0 +Φ(u0,μ),μ)
+P1R(u0 +Φ(u0,μ),μ)−ρ1(u0,μ).

From this identity one can compute the coefficients of the polynomial Φ by identi-
fying the powers of (u0,μ) in the Taylor expansions of both sides (like in the com-
putation described in Section 3.4; see also Figure 2.1). The Theorem 5.10 asserts
that there is an optimal degree for the polynomial Φ for which the remainder ρ1 is
exponentially small.

A particularly interesting situation arises when in Theorem 5.10 the spectrum of
L0 lies on the imaginary axis, whereas the spectrum of L1 is hyperbolic, i.e., it has
no point on the imaginary axis. In this case the condition (5.16) is always satisfied,
so that the result in Theorem 5.10 holds. Notice that if ρ1 would be identically 0,
then the manifold ũ1 = 0, i.e.,

{u = u0 +u1 = u0 +Φ(u0,μ) ; u0 ∈ R
n0},

would be an invariant center manifold for the system (2.1). This means that we
have found in Theorem 5.10 an approximated center manifold, with an exponen-
tially small error, but with the property of keeping the analyticity of the vector field.
Applying now the center manifold Theorem 3.3 of Chapter 2 to the system (5.17)
one finds a reduced system for u0 ∈ R

n0 in which the vector field is the sum of
an analytic vector field with an exponentially small remainder, and it is possible to
adapt the Theorem 5.8 for this reduced system. This result can be generalized to the
infinite dimensional situation treated in Section 2.3.1 in Chapter 2. More precisely,
we have the following result.
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Theorem 5.12 Consider equation (4.1), under the hypotheses of the center mani-
fold Theorem 3.3, Chapter 2. With the notations from Section 2.3.1, further assume
that R is analytic on Vu ×Vμ and that L0 is diagonalizable. Then, there exists a
polynomial Φ : E0 ×R

m → Zh of optimal degree popt , such that the change of vari-
able

uh = ũh +Φ(u0,μ)

transforms equation (4.1) into a system of the form (5.17) for u0 ∈ E0 and ũh ∈ Zh,
with the same properties as in Theorem 5.10 where the subscript 1 is replaced by h.

Remark 5.13 As in the finite-dimensional case, one can apply center manifold The-
orem 3.3 of Chapter 2 to the system given by the theorem above, and find a center
manifold of the form {u = u0 + Φ(u0,μ)+ O(e−C/δ ) ; u0 ∈ E0} in a ball of radius
δ in Z . Again, it is possible to adapt Theorem 5.8 for the reduced system.

Remark 5.14 Another interesting situation in Theorem 5.10 arises when the eigen-
values of L0 and L1 are all purely imaginary. Provided they satisfy the condition
(5.16), the result of the theorem allows us to give a bound for the solutions of the ini-
tial value problem, for initial values lying on the manifold {u = u0 +Φ(u0,μ);u0 ∈
E0}. One expects that ũ1 stays exponentially close to 0 for a very long time, i.e., we
don’t see the eigenmodes of L1 for a very long time of order O(δ−(b+1/ν)), where
ν is the maximal index of the eigenvalues of L1 (see [63]). This situation occurs
for instance in the theory of nonlinear vibrations of structures, where in some cir-
cumstances many modes are not excited, this being true for all times due to the
existence of a small dissipation in the structure. A precise statement of this last
assertion would be an interesting application of these results.

Exercise 5.15 Consider a system of the form (2.1) with μ ∈ R and such that R(0,μ) = 0 for all
μ . Further assume that the eigenvalues of L are all purely imaginary {±iω j; j = 0,1, . . . ,r}, with
±iω0 simple eigenvalues and such that this nonresonance condition is satisfied:

nω0 �= ω j, j = 1, . . . ,r, n ∈ Z.

Set
u = Aζ0 +Aζ 0 +Φ(A,A,μ)+ v, A ∈ C, v ∈ E1,

where ζ0 is an eigenvector of L associated to the eigenvalue iω0, E1 is the spectral subspace
associated to the eigenvalues {±iω j; j = 1, . . . ,r}, and Φ is a polynomial in its arguments taking
values in R

n.

(i) Check that the hypotheses of Theorem 5.10 are satisfied, with L0 being the restriction of L to
the spectral space associated to the eigenvalues ±iω0 and L1 the restriction of L to E1.

(ii) Show that there is a polynomial Φ such that the system satisfied by (A,A,v) becomes

dA
dt

= Ag(|A|2,μ)+R0(A,A,v,μ)+ρ0(A,A,μ)

dv
dt

= L1v+R1(A,A,v,μ)+ρ1(A,A,μ),

with the properties:
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g(|A|2,μ) = iω0 +aμ +b|A|2 +h.o.t.,

|R0(A,A,v,μ)|+‖R1(A,A,v,μ)‖ = O(‖v‖(|A|+‖v‖+ |μ|)),

sup
‖u0‖+‖μ‖≤δ

(|ρ0(u0,μ)|+‖ρ1(u0,μ)‖) ≤ Me−C/δ b
.

(iii) Determine the first order terms of the polynomial Φ . (One finds the same formulas as for the
Hopf bifurcation in Section 3.4.2.)

(iv) Notice that if br < 0, and if at time t = 0 the v component is 0, or exponentially small, then it
stays exponentially small for a very long time.



Chapter 4
Reversible Bifurcations

In this chapter we present a number of typical bifurcations that occur for reversible
systems in dimensions 2, 3, and 4. We focus on bifurcations of codimension 1, which
involve only one bifurcation parameter. Reversible systems are first order systems
in which the vector field anticommutes with a linear symmetry. We already met re-
versible systems in Section 2.3.3 of Chapter 2, and in Section 3.3.2 of Chapter 3,
where we have seen that the reversibility property is preserved by both the center
manifold reduction and the normal form transformation (Theorem 3.15 in Chapter
2 and Theorem 3.4 in Chapter 3, respectively). We discuss in this chapter reversible
systems for which the linearization at the origin has a spectrum lying on the imagi-
nary axis, including in this way the reduced systems provided by the center manifold
theorem. In all cases, the analysis relies upon the normal form transformation for re-
versible systems in Theorem 3.4 in Chapter 3.

4.1 Dimension 2

In this section, we consider reversible systems in R
2 of the form

du
dt

= F(u,μ), (1.1)

for which we assume that the vector field F satisfies the following hypothesis.

Hypothesis 1.1 Assume that the vector field F is of class C k, k ≥ 3, in a neighbor-
hood V of (0,0) ∈ R

2 ×R, satisfying

F(0,0) = 0. (1.2)

We further assume that there is a symmetry S with

S2 = I, (1.3)
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which anticommutes with F,

F(Su,μ) = −SF(u,μ) for all (u,μ) ∈ V . (1.4)

Remark 1.2 (i) Condition (1.2) shows that u = 0 is an equilibrium of (1.1) for
μ = 0. Our analysis concerns the dynamics of (1.1) close to this equilibrium.

(ii) The property (1.4) gives by definition a reversible system (see also Sec-
tion 2.3.3 for a definition in infinite dimensions). We point out that this situation
occurs for instance for second order differential equations modeling mechan-
ical systems without dissipation. In Section 2.4.5 of Chapter 2, we discussed
an elliptic PDE in a strip possessing the spatial symmetry x �→ −x. As we have
seen, this reflection symmetry induces a reversibility symmetry when the equa-
tion is written as a first order system with the coordinate x playing the role of
the evolutionary variable (denoted by t in (1.1)). We come back to this exam-
ple at the end of Section 4.1.1 since the reduced system provided by the center
manifold theorem is two-dimensional and enters into the present discussion.

(iii) A key property of reversible systems is that if t �→ u(t) is a solution of (1.1),
then t �→ Su(−t) is also a solution of (1.1).

We consider the linearized operator L at the equilibrium u = 0 for μ = 0,

L = DuF(0,0).

An immediate consequence of reversibility property (1.4) is that L anticommutes
with S. This property implies that the two eigenvalues of L are pairs {λ ,−λ}, since
if λ is an eigenvalue with associated eigenvector ζ , then −λ is an eigenvalue with
associated eigenvector Sζ . Consequently, the spectrum σ(L) of L is symmetric with
respect to the origin in the complex plane, and since L is real we further conclude
that it is symmetric with respect to both the real and imaginary axis. We then have
the following three cases:

(i) σ(L) = {±λ} for some nonzero real number λ ;
(ii) σ(L) = {±iω} for some nonzero real number ω ;

(iii) σ(L) = {0} with 0 an algebraically double eigenvalue.

In the first two cases the linear operator L is invertible, and by arguing with the
implicit function theorem, we find in each of these two cases a unique family of
equilibria u = u(μ) for μ close to 0, which are solutions of

F(u(μ),μ) = 0.

Here u(0) = 0 and the map μ �→ u(μ) is of class C k for small μ . Furthermore, since
Su(μ) is also an equilibrium of (1.1), due to reversibility, from the uniqueness of
the equilibria u(μ) we have that

Su(μ) = u(μ).

The linearized operators at these equilibria,
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Lμ = DuF(u(μ),μ),

are functions of μ of class C k−1, and the same regularity is true for their eigenval-
ues. Indeed, the two eigenvalues of Lμ are small perturbations of the two simple
eigenvalues of L, so that they are also simple for μ sufficiently small and functions
of μ of class C k−1 (e.g., see [76, Chapter 2]). Moreover, since Su(μ) = u(μ), it is
easy to check that Lμ anticommutes with S, just as L does. In particular, this shows
that the set of eigenvalues of Lμ is also symmetric with respect to both the real and
imaginary axis.

In case (i) the situation is hyperbolic, and, as already mentioned in Section 1.2
of Chapter 1, no bifurcation occurs in this case, the Hartman–Grobman theorem
showing that the phase portraits of (1.1) are qualitatively the same when varying μ
in a neighborhood of 0. The dynamics in a neighborhood of 0 are the same as those
of the linear equation du/dt = Lu, and are completely understood.

In case (ii), the symmetry of the spectrum of Lμ observed above implies that the
two purely imaginary eigenvalues ±iω of L stay purely imaginary, and nonzero,
for sufficiently small μ . In particular, they do not cross the imaginary axis when
varying the parameter μ , in contrast to the case of the Hopf bifurcation discussed
in Section 1.2.1 of Chapter 1. It turns out that in this case the dynamics of the
nonlinear system (1.1) are qualitatively the same as those of the linearized problem
du/dt = Lμ u, i.e., the equilibrium u(μ) is surrounded by a one-parameter family
of periodic orbits. This result strongly relies upon the reversibility property of the
system and can be proved using the classical Lyapunov center theorem in a rather
straightforward manner (e.g., see [77]). We point out that such a situation also arises
for Hamiltonian systems.

The most interesting case is the last one, when 0 is an algebraically double eigen-
value. We focus on the generic case, when 0 is geometrically simple, so that L has
a one-dimensional kernel. If 0 is geometrically double, then L is diagonalizable,
which means here that L = 0. This is a very special case, and might result in appli-
cations, for instance, from the occurrence of a second symmetry, or from the special
value of an additional parameter, coming from a codimension 2 problem. Assuming
that 0 is geometrically simple, we can choose a basis {ζ0,ζ1} of R

2 such that

Lζ0 = 0, Lζ1 = ζ0. (1.5)

Then we have
SLζ0 = LSζ0 = 0,

and since the kernel of L is one-dimensional,

Sζ0 = kζ0,

in which k = ±1, due to (1.3). Following the notations used in Chapter 3, we refer
to the case k = +1 as an 02+ bifurcation and to the case k = −1 as an 02− bifur-
cation. We discuss these cases in the following two sections. We refer for example
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to the recent paper [124], and the references therein, for a detailed analysis of these
bifurcations.

4.1.1 Reversible Takens–Bogdanov Bifurcation 02+

We consider here the 02+ bifurcation so that we assume the following holds.

Hypothesis 1.3 Assume that σ(L) = {0}, with 0 an algebraically double and ge-
ometrically simple eigenvalue. Further assume that the eigenvector ζ0 associated
with this eigenvalue satisfies

Sζ0 = ζ0,

in which S is the symmetry anticommuting with L in Hypothesis 1.1.

Normal Form

We start by constructing a convenient basis of R2.

Lemma 1.4 (02+ basis of R
2) Assume that Hypothesis 1.3 holds. Then there exists

a basis {ζ0,ζ1} of R
2 consisting of generalized eigenvectors of L such that

Lζ0 = 0, Lζ1 = ζ0, (1.6)

Sζ0 = ζ0, Sζ1 = −ζ1. (1.7)

Proof Consider a basis {ζ0,ζ ′
1} of R

2 such that Lζ0 = 0 and Lζ ′
1 = ζ0. Then

LSζ ′
1 = −ζ0,

and there is α ∈ R such that

Sζ ′
1 = −ζ ′

1 +αζ0.

Define the vector ζ1 by

ζ1 = ζ ′
1 −

α
2

ζ0.

Then
Sζ1 = −ζ1,

and the lemma is proved. ��

We use now the results in Chapter 3 to determine the normal form of the equa-
tion (1.1) in this case.

Lemma 1.5 (02+ normal form) Assume that Hypotheses 1.1 and 1.3 hold, and
consider a basis {ζ0,ζ1} of R

2 satisfying (1.6) and (1.7). Then for any positive
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integer p, 2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in R
2 and R, respec-

tively, and a map Φ : V1 ×V2 → R
2 with the following properties:

(i) Φ is of class C k, satisfying

Φ(0,0,0) = 0, ∂(A,B)Φ(0,0,0) = 0,

and
Φ(A,−B,μ) = SΦ(A,B,μ).

(ii) For (A,B) ∈ V1, the change of variables

u = Aζ0 +Bζ1 +Φ(A,B,μ), (1.8)

transforms the equation (1.1) into the normal form

dA
dt

= B

dB
dt

= Q(A,μ)+ρ(A,B,μ), (1.9)

where Q(·,μ) : R → R is a polynomial of degree p such that

Q(0,0) = 0, ∂AQ(0,0) = 0,

and the remainder ρ ∈ C k(V1 ×V2,R) is an even function in B satisfying

ρ(A,B,μ) = o((|A|+ |B|)p).

Proof Applying the results in Theorem 2.2 and Lemma 1.9, and taking into account
Remark 1.10(ii), in Chapter 3, we obtain the existence of the map Φ , which trans-
forms (1.1) into the normal form

dA
dt

= B

dB
dt

= BP(A,μ)+Q(A,μ)+ρ(A,B,μ), (1.10)

with P(·,μ) and Q(·,μ) polynomials on R.
Next, we use the reversibility symmetry of the equation. First notice that the

action of S in the basis {ζ0,ζ1} is given by the matrix

S =
(

1 0
0 −1

)
.

Applying now the result in Theorem 3.4 in Chapter 3 and taking into account that the
change of variables (1.16) in Remark 1.10(ii) of Chapter 3, preserves the symmetry
S, we find that the map Φ commutes with S, i.e.,
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Φ(A,−B,μ) = SΦ(A,B,μ),

and the system (1.10) is reversible, i.e., it anticommutes with S. This property im-
plies that

−BP(A,μ)+Q(A,μ)+ρ(A,−B,μ) = BP(A,μ)+Q(A,μ)+ρ(A,B,μ)

for all (A,B)∈R
2 and μ ∈ V2. It is now straightforward to check that P = 0 and that

ρ is even in B, which completes the proof. ��

Solutions of the Normal Form System

We analyze now the dynamics of the normal form system (1.9). As usual, we start
by analyzing the truncated system obtained by removing the remainder ρ and then
study the full system. We consider the generic situation in which the following as-
sumption on the expansion of the vector field holds.

Hypothesis 1.6 Assume that the expansion of Q in (1.9),

Q(A,μ) = aμ +bA2 +O(|μ |2 + |μ ||A|+ |A|3),

is such that a 
= 0 and b 
= 0.

Remark 1.7 The coefficients a and b in the expansion above can be computed as
explained in Chapter 3. We show below how to compute them when starting from a
reversible infinite-dimensional system for which the center manifold theorem leads
to a two-dimensional reduced system satisfying Hypotheses 1.1 and 1.3.

Truncated System

We start with the truncated system

dA
dt

= B

dB
dt

= Q(A,μ) (1.11)

obtained from (1.9) by removing the remainder ρ . A key property of this system it
that it is integrable, with first integral

B2 = 2
∫ A

0
Q(z,μ)dz+H, (1.12)

with constant H ∈ R. Varying the constant H, we find the full phase portrait of the
truncated system.

Assuming that Hypothesis 1.6 holds, the first integral becomes
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B2 = fH(A,μ),

with

fH(A,μ) =
2
3

bA3 +2aμA+H +O(|μ |2|A|+ |μ ||A|2 + |A|4), H ∈ R.

We show in Figure 1.1 the graphs, in a neighborhood of 0, of f0 in the case b < 0
for aμ < 0, μ = 0, and aμ > 0. For H 
= 0, the graph of fH in each case is obtained
by a vertical translation from the graph of f0. It is now straightforward to check that
the phase portraits, in a neighborhood of the origin, of (1.11) are as indicated in
Figure 1.2.

Fig. 1.1 Schematic plot of the graph of f0 in a neighborhood of the origin in the case b < 0.

Fig. 1.2 Dynamics of the 02+ bifurcation in the case b < 0. Phase portraits in a neighborhood of
the origin in the (A,B)-plane of the truncated system (1.11). The phase portraits in a neighborhood
of the origin of the full normal form (1.9) are qualitatively the same.

The phase portraits are symmetric with respect to the A-axis, since the first inte-
gral is even in B. This is actually a consequence of the symmetry S. For abμ > 0, the
function fH is monotone in a neighborhood of 0, and therefore there are no bounded
orbits of (1.11) in a neighborhood of the origin in this case. For abμ < 0, the func-

tion fH has two critical points, A(0)
± = ±

√
−aμ/b + O(|μ |), which correspond to

two equilibria (A(0)
± ,0) for the truncated system (1.11). When b < 0 the equilibrium

(A(0)
− ,0) is a saddle, while (A(0)

+ ,0) is a center, and the situation is reversed in the
case b > 0. The center equilibrium is surrounded by a one-parameter family of pe-
riodic orbits, which tend to the center equilibrium as their amplitude is decreased.



164 4 Reversible Bifurcations

Increasing the amplitude, the periods of these periodic orbits tend to infinity, and
in the limit we find the homoclinic orbit, which connects the saddle equilibrium
to itself. This homoclinic orbit constitutes at the same time, the unstable and stable
manifolds of the saddle equilibrium.

Full System

We consider now the full system (1.9). While we do not give detailed proofs, we
discuss some geometrical properties which indicate that the dynamics of the full
system is qualitatively the same as the one of the truncated system.

For abμ > 0 we observe that the system has no equilibria in a neighborhood of
the origin, since Q(A,μ) does not vanish for A sufficiently small. Moreover, dB/dt
has a definite sign for (A,B) sufficiently small, given by the sign of Q(A,μ). Hence
B is monotonous in the neighborhood of the origin, and since dA/dt = B, the A-
component reaches an extremum when B = 0. This allows us to show that in this
case the dynamics are qualitatively the same as that of the truncated system.

For abμ < 0, by arguing with the implicit function theorem it is not difficult to

check that the equilibria (A(0)
± ,0) of the truncated system persist for the full sys-

tem, for which we have two equilibria (A±,0), which are O(μ)-close to (A(0)
± ,0).

Furthermore, these equilibria are of the same type, one is a saddle and the other a
center.

We focus here on the persistence of the homoclinic orbit connecting the saddle
equilibrium to itself. Assume, for fixing ideas, that b < 0, so that (A−,0) is a saddle
and (A+,0) is a center. The key idea is to show that the unstable manifold of (A−,0)
intersects the A-axis in some point (A0,0). This follows from the fact that the un-

stable manifold of (A−,0) is O(μ)-close to the unstable manifold of (A(0)
− ,0) of the

truncated system, and that the unstable manifold of the truncated system intersects
the A-axis transversely. Actually, at the intersection point the tangent to the unsta-
ble manifold is parallel to the B-axis, in both cases, due to symmetry S. Then, by
taking this point as an initial data at t = 0 for the system (1.9), we find one solution
t �→ (Au(t),Bu(t)), which corresponds to the unstable manifold, and tends to (A−,0)
as t → −∞. Due to reversibility we have that t �→ (Au(−t),−Bu(−t)) is also a so-
lution, which satisfies the same initial data, and tends to (A−,0) as t → +∞. By the
uniqueness of solutions of the differential equation, these two solutions coincide,
which in particular shows that the unstable manifold tends to (A−,0) as t → ∞ and
coincides with the stable manifold of the equilibrium (A−,0).

These arguments allow one to show in this case the persistence of the homo-
clinic orbit for the full system (1.9). Finally, using reversibility, again, one can show
that inside this homoclinic orbit there is one-parameter family of periodic orbits,
surrounding the center equilibrium, just as for the truncated system.

Summarizing, we have the following result.

Theorem 1.8 (02+ bifurcation) Assume that Hypotheses 1.1, 1.3, and 1.6 hold.
Then for the differential equation (1.1) a reversible Takens–Bogdanov bifurcation
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occurs at μ = 0. More precisely, the following properties hold in a neighborhood
of 0 in R

2 for sufficiently small μ:

(i) For abμ > 0 there is no small bounded solution of (1.1).
(ii) For abμ < 0, the differential equation (1.1) possesses two equilibria of order

O(|μ |1/2), one equilibrium is a saddle and the other one a center. The center
equilibrium is surrounded by a one-parameter family of periodic orbits, which
tend to a homoclinic orbit connecting the saddle equilibrium to itself, as the
period tends to infinity.

Remark 1.9 (i) In the case when the coefficients a or (and) b in Hypothesis 1.6
vanish, one has to consider the next nonzero higher order terms in the expan-
sion of Q.

(ii) A frequent case is when 0 is a solution of (1.1) for all μ , i.e., F(0,μ) = 0 for
all μ . Then a = 0 and

Q(A,μ) = cμA+bA2 +h.o.t.

If b 
= 0 and c 
= 0, the phase portraits of the system are qualitatively the same
as in the case abμ < 0 (see Figure 1.2). This situation appears for the reduced
system in the example considered in Section 2.4.5 of Chapter 2, which is dis-
cussed at the end of this section.

(iii) Another important particular case is when the system (1.1) possesses an ad-
ditional symmetry T, which commutes with L and R(·,μ), and for which the
eigenvector ζ0 is antisymmetric, Tζ0 = −ζ0. In this situation the normal form
has an additional symmetry, i.e., the vector field is odd in (A,B), and then the
phase portraits are symmetric with respect to both axes in the (A,B)-plane (see
the Exercise 1.10 below, and the example in Section 4.3.1).

Exercise 1.10 (i) Determine the phase portraits of the truncated normal form (1.11) with

Q(A,μ) = cμA+dA3,

where c 
= 0 and d 
= 0 (see Figure 1.3).
(ii) Show that the phase portraits are qualitatively the same for the full normal form (1.9), where

the vector field is odd in A.

Fig. 1.3 Bounded orbits of (1.9) in the case where the vector field is odd in A.



166 4 Reversible Bifurcations

Computation of the 02+ Normal Form in Infinite Dimensions

We show below how to compute the principal coefficients in the normal form (1.9)
when starting from an infinite-dimensional system

du
dt

= Lu+R(u,μ), (1.13)

just like the system (4.1) in Chapter 3. We assume that the parameter μ is real and
that system (1.13) possesses a reversibility symmetry S and satisfies the hypotheses
of Theorems 3.3 and 3.15 in Chapter 2. We further assume that the spectrum of
the linear operator L is such that σ0 = {0}, where 0 is an algebraically double and
geometrically simple eigenvalue, with a symmetric eigenvector ζ0 such that

Sζ0 = ζ0.

Then the two-dimensional reduced system satisfies the hypotheses of Lemma 1.4,
so that its normal form is given by (1.9).

For the computation of the coefficients a and b in the expansion of Q we pro-
ceed as in Section 3.4 and in the examples given in Chapter 3. We start from the
equality (4.3) in Chapter 3, in which we take v0 = Aζ0 +Bζ1, and then write

u = Aζ0 +Bζ1 +Ψ̃(A,B,μ), (1.14)

where Ψ̃ takes values in Z . With the notations from Section 3.2.3, we consider the
Taylor expansions of R and Ψ̃ ,

R(u,μ) = ∑
1≤r+q≤p

μqRr,q(u(r))+o((||u||Y + |μ |)p), R1,0 = 0, (1.15)

and

Ψ̃(A,B,μ) = ∑
1≤r+s+q≤p

Ψ rsqArBsμq +o((|A|+ |B|+ |μ |)p),

Ψ 100 =Ψ 010 = 0. (1.16)

Using the reversibility symmetry we find that

Rr,q((Su)(r)) = −SRr,q(u(r)) (1.17)

and
SΨ rsq = (−1)sΨ rsq. (1.18)

Now we identify the different powers of (A,B,μ) in identity (4.4) in Chapter 3,
obtained here by differentiating (1.14) with respect to t and replacing the derivatives
du/dt and dA/dt, dB/dt from (1.13) and (1.9), respectively. This gives here the
identity
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(∂AΨ̃)B+(ζ1 +∂BΨ̃)Q(A,μ) = LΨ̃ +R(Aζ0 +Bζ1 +Ψ̃ ,μ). (1.19)

Using the expansions of R, Ψ , and Q, we find at orders O(μ) and O(A2) the equali-
ties

aζ1 = LΨ 001 +R0,1,

bζ1 = LΨ 200 +R2,0(ζ0,ζ0).

The coefficients a and b are now found from the solvability conditions for these two
equations, just as in Section 3.4.4 of Chapter 3,

a = 〈R0,1,ζ ∗
1 〉, (1.20)

b = 〈R2,0(ζ0,ζ0),ζ ∗
1 〉, (1.21)

in which ζ ∗
1 is the vector orthogonal to the range of L constructed in Section 3.4.4.

Remark 1.11 (i) We point out that the vector ζ ∗
1 above can be taken such that

S∗ζ ∗
1 = −ζ ∗

1 ,

where S∗ is the adjoint of the (bounded) symmetry S in X . Recall that ζ ∗
1 =

P∗
0ζ ∗

01 ∈ X ∗, where P∗
0 is the adjoint of the (bounded) projection P0, and

{ζ ∗
00,ζ ∗

01} is a dual basis for the generalized kernel of the adjoint L∗
0, such

that
L∗

0ζ ∗
01 = 0, L∗

0ζ ∗
00 = ζ ∗

01, 〈ζk,ζ ∗
0 j〉 = δk j, k, j = 0,1.

For any ξ ∈ Z we have

〈Lξ ,S∗ζ ∗
1 〉 = 〈SLξ ,ζ ∗

1 〉 = −〈LSξ ,ζ ∗
1 〉 = 0,

and since (S∗)2 = I, we deduce that

S∗ζ ∗
1 = ±ζ ∗

1 . (1.22)

Using the identity
〈Sζ1,S∗ζ ∗

1 〉 = 〈ζ1,ζ ∗
1 〉 = 1,

and Sζ1 = −ζ1, we conclude that S∗ζ ∗
1 = −ζ ∗

1 .
(ii) By taking the higher orders in (μ ,A,B) in the expansion (1.19) we can compute

the coefficients in the expansion of Ψ̃ and the coefficients of the terms of next
orders in the expansion of Q. The computation is similar to the calculation given
in Section 3.4.4 of Chapter 3.

Exercise 1.12 Consider the second order differential equation

x′′ −μx−αx2 −β (x′)2 − γx3 −δx(x′)2 = 0,

in which α , β , γ , δ are real constants and μ is a small real parameter.

(i) Set u = (x,x′) and write the equation in the form (1.1). Show that this equation satisfies the
hypotheses in Lemma 1.5, with the reversibility symmetry S defined by
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S

(
u1
u2

)
=

(
u1
−u2

)

and ζ0 = (1,0), ζ1 = (0,1).
(ii) With the notations from Lemma 1.5, show that

Φ(A,B,0) =
β
2

A2ζ0 +βABζ1 +O((|A|+ |B|)3)

and
Q(A,μ) = μA+αA2 + γA3 +O(|μ|A2 +A4).

(iii) Draw the phase portraits in a neighborhood of the origin in the (A,B)-plane of the normal
form system in the cases α 
= 0 and α = 0, γ 
= 0.

Example: Elliptic PDE in a Strip

We consider the elliptic PDE in a strip in the example in Section 2.4.5 of Chapter 2,
in which we take

g(u1,u2,u3) = −αu2
1 −βu1u3 − γu2

2 −δu2
3.

We saw in Section 2.4.5 that the problem can be written in the form (1.13), to which
we can apply Theorems 3.3 and 3.15 in Chapter 2. The resulting two-dimensional
reduced system (4.40) in Chapter 2 is reversible and satisfies the hypotheses in
Lemma 1.5, so that we can choose coordinates (A,B) in R

2 such that the reduced
system is in normal form

dA
dx

= B

dB
dx

= Q(A,μ)+ρ(A,B2,μ), (1.23)

with ρ(A,B2,μ) = O((|A|+ |B|)p). Notice that here 0 is a solution of (1.13) for all
μ , so that Q(0,μ) = 0, which then leads to the expansion

Q(A,μ) = cμA+bA2 +O(|μ |2|A|+ |A|3).

Furthermore the coefficients in the expansion (1.16) of Ψ̃ now satisfy

Ψ 00q = 0, SΨ rsq = (−1)sΨ rsq.

In order to compute the coefficients c and b we proceed as in the previous section,
by identifying powers of (A,B,μ) in (1.19). At orders μA and A2 we find

cζ1 = LΨ 101 +R1,1ζ0 (1.24)

bζ1 = LΨ 200 +R2,0(ζ0,ζ0), (1.25)

so that c and b can be found from the compatibility conditions for these equations:
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c = 〈R1,1ζ0,ζ ∗
1 〉

b = 〈R2,0(ζ0,ζ0),ζ ∗
1 〉.

In this case the operator L has a well-defined adjoint L∗ so that ζ ∗
1 is the vector in

the kernel of L∗ satisfying 〈ζ1,ζ ∗
1 〉 = 1. Using the explicit formulas of the different

terms in these equalities, a direct calculation gives

c = −1, b =
2

3π
(4α +2δ ).

Assuming that b 
= 0 and μ 
= 0, the phase portraits of this system are as the phase
portrait to the right of Figure 1.2 (the case aμ > 0). In particular, there is a homo-
clinic orbit to the saddle equilibrium, and the center equilibrium is surrounded by a
family of periodic orbits. In the full elliptic PDE, the homoclinic orbit corresponds
to an asymptotically homogeneous solution v(x,y), which tends as x →±∞ towards
the same x-independent solution v∗(y). The periodic orbits correspond to a family of
solutions of the PDE, which are periodic in x and which tend to the asymptotically
homogeneous solution, as their period tends to infinity.

Remark 1.13 (i) Alternatively, for the computation of the coefficient c we can use
the result in the Exercise 3.5 in Chapter 2. This implies that the two eigenvalues
of the linearization of the normal form (1.23) at 0 for small μ are precisely the
two eigenvalues of the linearization L+DR(0,μ) that vanish at μ = 0. Accord-
ing to the formula (4.39) in Section 2.4.5, these two eigenvalues are ±√−μ ,
which then gives c = −1.

(ii) The equality (1.25) leads to the second order differential equation

u′′200 +u200 +bsiny =
α +δ

2
− α −δ

2
cos(2y)+

β
2

sin(2y),

in which u200 represents the first component of the vector Ψ 200 and satisfies
u200|y=0 = u200|y=π = 0. Taking the scalar product of this equality with siny
and integrating by parts gives the formula for b above.

Exercise 1.14 (i) Identifying the terms of orders μB, AB, and B2 in (1.19) show that

Ψ 101 = LΨ 011 +R1,1ζ1,

2Ψ 200 = LΨ 110 +2R2,0(ζ0,ζ1),

Ψ 110 = LΨ 020 +R2,0(ζ1,ζ1).

(ii) Show that the solvability conditions for these equations are always satisfied.
(iii) Compute Ψ 101, Ψ 011, Ψ 200, Ψ 110, and Ψ 020.

Exercise 1.15 Consider the example in Section 2.4.5, Chapter 2, with

g(u1,u2,u3) = −βu1u3 −χu1u2
2.

(i) Write the equation in the form (1.13) and show that it is reversible and that the vector field
commutes with the symmetry S1 defined by
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S1

(
u1
u2

)
(y) =

(
−u1
−u2

)
(π − y).

(ii) Applying Lemma 1.5 to the reduced system, show that Q(A,μ) and ρ(A,B2,μ) are odd in A
and that Ψ satisfies (4.41) and

Ψ(−A,−B,μ) = S1Ψ(A,B,μ).

(iii) Show that
Q(A,μ) = cμA+dA3 +O(|μ|2|A|+ |A|5),

with c = −1.
(iv) Consider the expansion (1.16) of Ψ̃ . Show that

Ψ 200 =
(
−β

6
sin(2y),0

)
, Ψ 110 =

(
0,−β

3
sin(2y)

)
, Ψ 200 =

(
−β

9
sin(2y),0

)

and

d =
β 2

12
.

(v) Draw the phase portraits of the reduced system for μ > 0 and μ < 0. In particular, show that
for μ > 0 there are two heteroclinic orbits, symmetric under the action of S and connect-
ing two equilibria symmetric under the action of S1 and a one-parameter family of periodic
solutions surrounding the origin. A heteroclinic orbit corresponds to a front solution v(x,y)
of the elliptic PDE, which tends as x →±∞ towards two homogeneous solutions, which are
independent of x and symmetric under the action of S1.

Exercise 1.16 Consider the example in 2.4.5 of Chapter 2, with

g(u1,u2,u3) = −αu2
1 −βu1u3 − γu2

2 −δu2
3 + εu2,

where ε is a small parameter.

(i) Show that the reversibility symmetry given by S is broken.
(ii) Show that the vector field in (1.13) anticommutes with the symmetry S̃ defined by

S̃(u,ε) = (Su,−ε).

(iii) Using the characterization of the normal form in Lemma 1.9, Chapter 2, and Theorem 2.2 in
Chapter 2, show that the normal form of the reduced system is

dA
dx

= B+ εdA+h.o.t.

dB
dx

= cμA+bA2 + εdB+h.o.t.

and show that c = −1 and d = −1/2.
(iv) Assuming that μ < 0, ε > 0, and ε2 � |μ|, show that the phase portrait of the reduced sys-

tem is as in Figure 1.4. In particular, show that the reduced system possesses a heteroclinic
orbit connecting the origin to an equilibrium close to (μ/b,0). Give an interpretation of the
solution v(x,y) of the elliptic PDE corresponding to this orbit.

Exercise 1.17 Consider the following PDE, due to Ostrowsky [99],

∂
∂x

(
∂v
∂ t

−β
∂ 3v
∂x3 +

∂
∂x

(v2)
)

= γv.
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Fig. 1.4 Phase portrait in the (A,B)-plane of the reduced system in Exercise 1.16 for μ < 0, ε > 0,
and ε2 � |μ|.

(This equation models the unidirectional propagation of weakly nonlinear long surface and inter-
nal waves of small amplitude in a rotating fluid.) We are interested in traveling waves, i.e., solutions
of the form

v(x, t) = φ(x− ct).

(i) Set z = x− ct and show that φ satisfies the following fourth-order ODE:

φ (4) −qφ ′′ + μφ +(φ 2)′′ = 0, (1.26)

where
μ =

γ
β

, q = − c
β

, v = −βφ .

(ii) Set u = (u1,u2,u3,u4) = (φ ,φ ′,φ ′′,φ ′′′) and rewrite (1.26) as a first order system of the form

du
dz

= Lq,μ u+R(u,u), (1.27)

with

Lq,μ =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
−μ 0 q 0

⎞

⎟⎟
⎠ , R(u,u) =

⎛

⎜⎜
⎝

0
0
0

−2u1u3 −2u2
2

⎞

⎟⎟
⎠ .

(iii) Show that system (1.27) is reversible, with the reversibility symmetry S defined by

Su = (u1,−u2,u3,−u4).

(iv) Show that the eigenvalues λ of Lq,μ satisfy

λ 4 −qλ 2 + μ = 0.

(v) Assume that q > 0 and that μ is close to 0. Show that the spectrum of Lq,0 consists of a
pair of simple eigenvalues ±√

q and of 0, which is algebraically double and geometrically
simple. Compute a basis {ζ0,ζ1} of the generalized kernel of Lq,0 satisfying

Sζ0 = ζ0, Sζ1 = −ζ1.

(vi) Show that the system satisfies the hypotheses of center manifold Theorems 3.3 and 3.15 in
Chapter 2 and of Lemma 1.5. Conclude that for solutions u of the form

u = Aζ0 +Bζ1 +Ψ̃(A,B,μ),

where Ψ̃(A,B,μ) ∈ R
4 and

SΨ̃(A,B,μ) = Ψ̃(A,−B,μ),

the functions A and B satisfy
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dA
dz

= B

dB
dz

= Q(A,μ)+ρ(A,B2,μ),

with

Q(A,μ) = aμA+bA2 + cA3, ρ(A,B2,μ) = O(|μ|2|A|+ |μ|A2 +A4).

(vii) Show that

a =
1
q
, b = c = 0,

and, with the notations from (1.16), that

Ψ 200 =
1
q

ζ0, Ψ 110 =
2
q

ζ1, Ψ 020 =
(

0,0,
2
q
,0

)
.

(viii) Consider the normal form of the reduced system at order p. Show that the coefficients of the
monomials Ap of the polynomial Q(·,μ) vanish when μ = 0.

(ix) Conclude that this method does not allow one to prove the existence of small traveling waves
for the Ostrowsky equation (1.26). (We point out that the conclusion is different if the non-
linear term (φ 2)′′ in (1.26) is replaced by φ 2; see [56, Problem 8, Question 2].)

4.1.2 Reversible Takens–Bogdanov Bifurcation 02−

In this section, we treat in the same way the case 02−, where the following hypoth-
esis holds.

Hypothesis 1.18 Assume that σ(L) = {0}, with 0 an algebraically double and ge-
ometrically simple eigenvalue. Further assume that the eigenvector ζ0 associated
with this eigenvalue satisfies

Sζ0 = −ζ0,

in which S is the symmetry anticommuting with L in Hypothesis 1.1.

Normal Form

As in the case 02+, we start by constructing a convenient basis of R2.

Lemma 1.19 (02− basis of R
2) Assume that Hypothesis 1.18 holds. Then there ex-

ists a basis {ζ0,ζ1} of R
2 consisting of generalized eigenvectors of L such that

Lζ0 = 0, Lζ1 = ζ0, (1.28)

Sζ0 = −ζ0, Sζ1 = ζ1. (1.29)

Proof Except for minor changes, the proof is the same as that of Lemma 1.4, so we
omit the details here. ��
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We use now the results of Chapter 3 to determine the normal form of the equa-
tion (1.1) in this case.

Lemma 1.20 (02− normal form) Assume that Hypotheses 1.1 and 1.18 hold, and
consider a basis {ζ0,ζ1} of R

2 satisfying (1.28) and (1.29). Then, for any posi-
tive integer p, 2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in R

2 and R,
respectively, and a map Φ : V1 ×V2 → R

2 with the following properties:

(i) Φ is of class C k, satisfying

Φ(0,0,0) = 0, ∂(A,B)Φ(0,0,0) = 0,

and
Φ(−A,B,μ) = SΦ(A,B,μ).

(ii) For (A,B) ∈ V1, the change of variables

u = Aζ0 +Bζ1 +Φ(A,B,μ), (1.30)

transforms the equation (1.1) into the normal form

dA
dt

= B

dB
dt

= ABP(A2,μ)+AQ(A2,μ)+Aρ(A,B,μ), (1.31)

where P(·,μ) : R → R and Q(·,μ) : R → R are polynomials of degrees p− 2
and p−1, respectively, such that Q(0,0) = 0, and the remainder ρ ∈C k−1(V1×
V2,R) is an even function in A satisfying

ρ(A,B,μ) = O((|A|+ |B|)p).

Proof As in the proof of Lemma 1.5, using the results in Theorem 2.2, Lemma 1.9,
and Remark 1.10(ii) of Chapter 3, we obtain the existence of the map Φ which
transforms (1.1) into the normal form

dA
dt

= B

dB
dt

= BP(A,μ)+Q(A,μ)+ρ(A,B,μ),

with P(·,μ) and Q(·,μ) polynomials on R.
Now, in the basis {ζ0,ζ1} of R

2 in Lemma 1.19 the reversibility symmetry is
represented by the matrix

S =
(
−1 0
0 1

)
.

Applying the result in Theorem 3.4 in Chapter 3, and taking into account that the
change of variables (1.16) in Remark 1.10(ii) of Chapter 3 preserves the symme-
try S, we find that the vector field in the normal form anticommutes with S, so that
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BP(−A,μ)+Q(−A,μ)+ρ(−A,B,μ) = −BP(A,μ)−Q(A,μ)−ρ(A,B,μ)

for any A, B, and μ in a neighborhood of 0. This implies that P, Q, and ρ are all odd
in A, so that we can write

BP(A,μ)+Q(A,μ)+ρ2(A,B,μ) = ABP̃(A2,μ)+AQ̃(A2,μ)+Aρ̃2(A2,B,μ),

from which we conclude that the normal form is as in (1.31). ��

Remark 1.21 Notice that in this case 0 is always a solution of the normal form
(1.31), which implies that the full equation (1.1) has the family of symmetric equi-
libria u = Φ(0,0,μ), for μ close to 0.

Solutions of the Normal Form System

We discuss now the normal form (1.31). We assume that the polynomials P and Q
satisfy the following hypothesis.

Hypothesis 1.22 Assume that

P(A2,μ) = c+O(|μ |+A2),
Q(A2,μ) = aμ +bA2 +O(|μ |2 + |μ |A2 +A4),

with coefficients a 
= 0, b 
= 0, and c 
= 0.

Remark 1.23 (i) In the case c = 0, the phase portrait of the truncated system is as
in Figure 1.3, with c and d replaced by a and b, respectively. Often this situation
arises when the system possesses an additional symmetry, the case in which one
can prove the persistence of these phase portraits for the full system.

(ii) The coefficients a, b, and c in the expansion above can be computed as ex-
plained in Chapter 3. We show below how to compute them when starting from
a reversible infinite-dimensional system for which the center manifold theorem
leads to a two-dimensional reduced system satisfying the Hypotheses 1.1 and
1.18.

Truncated System

We start by studying the dynamics of the truncated system

dA
dt

= B

dB
dt

= aμA+ cAB+bA3. (1.32)

For abμ > 0 there is only one equilibrium in 0, which is a saddle when aμ > 0 and
a center when aμ < 0. It is then not difficult to conclude that the system has no
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bounded solutions when aμ > 0, and that 0 is surrounded by a family of periodic
orbits when aμ < 0 (see Figure 1.5).

For abμ < 0, there are two additional equilibria,

A+ =

(√
−aμ

b
,0

)

, A− =

(

−
√

−aμ
b

,0

)

,

which are exchanged by the symmetry S, SA+ = A−. These equilibria are both sad-
dles if b > 0, both nodes, with opposite stabilities if b < 0 and c2 +8b > 0, and both
foci, with opposite stabilities if b < 0 and c2 +8b < 0. Moreover, if we set

B = u(v), A2 = v,

then u(v) satisfies the first order differential equation

2u′u = aμ +bv+ cu.

This equation possesses two explicit solutions,

u± = α± +β±v,

with

β± =
1
4

(
c±

√
c2 +8b

)
, α± = − aμ

2β∓
.

When c2 +8b > 0, these two solutions give two parabolas in the (A,B)-plane, which
are invariant manifolds of the equilibria A+ and A−, and connect these equilibria. In
particular, they correspond to heteroclinic orbits (see Figure 1.5(ii)–(iii)).

Summarizing, the truncated system possesses no bounded solutions (except for
the equilibrium at the origin) in the case aμ > 0 and b > 0 and has several bounded
solutions in the other cases. We give in Figure 1.5 the phase portraits of the truncated
system in these cases. We point out that these phase portraits are all symmetric with
respect to the B-axis, due to the reversibility symmetry. In particular, we find:

(i) for aμ < 0 and b < 0, a one-parameter family of periodic orbits surrounding
the origin;

(ii) for aμ < 0 and b > 0, two heteroclinic orbits connecting the nontrivial equilib-
ria A+ and A−, together with a one-parameter family of periodic orbits, lying
inside the region bounded by the heteroclinic orbits and surrounding the origin;

(iii) for aμ > 0, b < 0, and c2 +8b > 0, a family of heteroclinic orbits connecting
the equilibria A+ and A−, and two heteroclinic orbits connecting the origin
with A−, and A+ with the origin;

(iv) for aμ > 0, b < 0, and c2 +8b < 0, a homoclinic orbit to the origin, a family of
periodic orbits outside this homoclinic orbit, two heteroclinics connecting the
origin with A−, and A+ with the origin, and a family of heteroclinics connect-
ing A+ with A−.
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Fig. 1.5 Dynamics of the 02− bifurcation. Phase portraits in the (A,B)-plane of the truncated sys-
tem (1.32) in the cases when the system has nontrivial bounded orbits: (i) aμ < 0,b < 0, (ii)
aμ < 0,b > 0, (iii) aμ > 0, b < 0, c2 + 8b > 0, (iv) aμ > 0, b < 0, c2 + 8b < 0. These dynamics
persist for the full system.

Notice a striking feature in case (iv), where the phase portrait in the domain outside
the homoclinic orbit to the origin resembles a conservative system, while inside the
homoclinic orbit it resembles a dissipative system.

Full System

The dynamics of the truncated system persist qualitatively for the full vector field.
As for the 02+ bifurcation we only discuss some properties which indicate that these
dynamics persist. A detailed analytic proof may be found in [124].

First, the implicit function theorem allows one to show that the fixed points of
the truncated system persist for the full system (1.31), and that they have the same
stability properties, i.e., saddles, nodes, centers and foci of the truncated system stay
saddles, nodes, centers and foci, respectively, for the system (1.31). Furthermore,
in a neighborhood of a saddle, the stable and unstable manifolds are close to the
corresponding manifolds of the truncated system.

Next, the phase portrait is symmetric with respect to the B-axis, because of the re-
versibility symmetry S. As a consequence, the right half of a closed orbit for (1.32),
which intersects twice the B-axis orthogonally, is perturbed in an integral curve
for (1.31), which still intersects twice the B-axis and by symmetry it gives again a
closed orbit. This allows one to show the persistence of the periodic orbits. For a
homoclinic or a heteroclinic orbit of (1.32), which intersects the B-axis, in the full
system (1.31) one has an unstable manifold, starting at t = −∞, which intersects
still orthogonally the B-axis; and the reversibility symmetry gives the other half of
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the curve. This implies the persistence of the heteroclinic orbits connecting A± in
the case (ii), of the homoclinic orbit in the case (iv), and the same idea allows one to
prove the persistence of the heteroclinic orbits connecting A± in the cases (iii) and
(iv). Finally, the persistence of heteroclinic orbits connecting an invariant manifold
of the origin with a node in the case (iii), or a focus in the case (iv), is generic.

We summarize these dynamics in the next theorem.

Theorem 1.24 (02− bifurcation) Assume that Hypotheses 1.1, 1.18, and 1.22 hold.
Then for the differential equation (1.1) a reversible Takens–Bogdanov bifurcation
occurs at μ = 0. More precisely, the following properties hold in a neighborhood
of 0 in R

2, for sufficiently small μ:

(i) For aμ < 0, b < 0, the origin is a center surrounded by a one-parameter family
of periodic orbits.

(ii) For aμ < 0, b > 0, the differential equation has three equilibria, a center at the
origin and two saddles that are exchanged by the reversibility symmetry S. In
addition, there is a pair of heteroclinic orbits connecting the two saddles, and a
one-parameter family of periodic orbits lying inside the closed domain bounded
by the two heteroclinics, and surrounding the origin.

(iii) For aμ > 0, b < 0, c2 + 8b > 0, the differential equation has three equilibria,
a saddle at the origin, and two nodes with opposite stabilities and exchanged
by the reversibility symmetry S. In addition, there is one family of heteroclinic
orbits connecting the two nodes, and two heteroclinics connecting the origin
with the stable node, and the unstable node with the origin.

(iv) For aμ > 0, b < 0, c2 +8b < 0, the differential equation has three equilibria, a
saddle at the origin, and two foci with opposite stabilities and exchanged by the
reversibility symmetry S. In addition, there is a homoclinic orbit to the saddle
at the origin, a family of periodic orbits lying outside this homoclinic orbit,
two heteroclinics lying inside this homoclinic orbit, one connecting the origin
with the stable focus, and the other one connecting the unstable focus with the
origin, and a family of heteroclinics connecting the unstable focus to the stable
focus.

(v) For aμ > 0, b > 0, there is no small nontrivial bounded solution of (1.1).

Computation of the 02− Normal Form in Infinite Dimensions

We briefly show below how to compute the coefficients in the truncated system
(1.32), when starting from an infinite-dimensional system of the form (1.13). We
assume that this system satisfies the same hypotheses as in Section 4.1.1, except
that now we suppose that the eigenvector ζ0 is antisymmetric,

Sζ0 = −ζ0.

Following the arguments in Section 4.1.1, we start from decomposition (1.14)
and the expansions of R(u,μ) and Ψ̃(A,B,μ) in (1.15) and (1.16). Property (1.18)
is now replaced by
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SΨ rsq = (−1)rΨ rsq, (1.33)

and the identity (1.19) becomes

(∂AΨ̃)B+(ζ1 +∂BΨ̃)
(
ABP(A2,μ)+AQ(A2,μ)

)
= LΨ̃ +R(Aζ0 +Bζ1 +Ψ̃ ,μ).

Then, at orders O(μ), O(μA), O(A2), O(AB), and O(A3) we find, successively,

0 = LΨ 001 +R0,1, (1.34)

aζ1 = LΨ 101 +R1,1ζ0 +2R2,0(ζ0,Ψ 001), (1.35)

0 = LΨ 200 +R2,0(ζ0,ζ0), (1.36)

cζ1 +2Ψ 200 = LΨ 110 +2R2,0(ζ0,ζ1), (1.37)

bζ1 = LΨ 300 +2R2,0(ζ0,Ψ 200)+R3,0(ζ0,ζ0,ζ0). (1.38)

The solvability conditions for the equations (1.35), (1.37), and (1.38) give the for-
mulas for the coefficients a, c, and b,

a = 〈R1,1ζ0 +2R2,0(ζ0,Ψ 001),ζ ∗
1 〉, (1.39)

c = 2〈R2,0(ζ0,ζ1)−Ψ 200,ζ ∗
1 〉, (1.40)

b = 〈2R2,0(ζ0,Ψ 200)+R3,0(ζ0,ζ0,ζ0),ζ ∗
1 〉, (1.41)

in which ζ ∗
1 is the vector orthogonal to the range of L in Section 4.1.1, and Ψ 001

and Ψ 200 are found by solving (1.34) and (1.36), respectively.
In order to solve (1.34) and (1.36) we have to check that the solvability condi-

tions for these two equations are satisfied. This is a consequence of the reversibility
symmetry. Indeed, following the arguments in Remark 1.11(i), we find here that

S∗ζ ∗
1 = ζ ∗

1 .

Since

SR0,1 = −R0,1,

SR2,0(ζ0,ζ0) = −R2,0(Sζ0,Sζ0) = −R2,0(ζ0,ζ0),

we conclude that

〈R0,1,ζ ∗
1 〉 = 0, 〈R2,0(ζ0,ζ0),ζ ∗

1 〉 = 0,

which shows that the solvability conditions for equations (1.34) and (1.36) hold.

Exercise 1.25 Compute the terms of orders O(μB) and O(B2) and find

Ψ 101 = LΨ 011 +R1,1ζ1 +2R2,0(ζ1,Ψ 001),

Ψ 110 = LΨ 020 +R2,0(ζ1,ζ1).

Show that the solvability conditions for these equations hold.
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4.2 Dimension 3

In this section, we consider reversible systems in R
3 of the form

du
dt

= F(u,μ), (2.1)

for which we assume that the vector field satisfies the following hypothesis.

Hypothesis 2.1 Assume that the vector field F is of class C k, k ≥ 3, in a neighbor-
hood V of (0,0) ∈ R

3 ×R, satisfying

F(0,0) = 0. (2.2)

We further assume that there is a symmetry S with

S2 = I,

which anticommutes with F,

F(Su,μ) = −SF(u,μ) for all (u,μ) ∈ V . (2.3)

We set
L = DuF(0,0), (2.4)

and as in the previous section we have that

SL = −LS.

Consequently, the spectrum of L is symmetric with respect to both the real and
imaginary axes, and we distinguish the following cases:

(i) σ(L) = {0,±λ} for some nonzero real number λ ;
(ii) σ(L) = {0,±iω} for some nonzero real number ω ;

(iii) σ(L) = {0}, with 0 an algebraically triple eigenvalue.

In case (i), the operator L has only one eigenvalue on the imaginary axis, and in
this case we can apply the center manifold theorem in Chapter 2. This gives a one-
dimensional manifold on which the dynamics are described by a scalar, reversible
equation. Depending upon the action of S on the eigenvector ζ0 in the kernel of L,
we distinguish here two bifurcations, 0+ when Sζ0 = ζ0, and 0− when Sζ0 = −ζ0.
It is then not difficult to see that in the case 0+ the reduced vector field vanishes,
so that the dynamic is trivial. In the case 0−, the vector field is even, and this bi-
furcation can be analyzed in the same way as the bifurcations in Section 1.1 of
Chapter 1. Generically, one finds in this case a saddle node bifurcation in which the
two bifurcating equilibria are exchanged by the symmetry S.

The most interesting situations arise in case (iii). In this case, the type of bifur-
cations further depends upon the geometric multiplicity of the eigenvalue 0 and the
action of S on the kernel of L. The generic situation occurs when 0 is a geometrically
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simple eigenvalue, 03 bifurcation, for which we distinguish between 03+, when (for
ζ0 in the kernel of L) we have Sζ0 = ζ0, and 03−, when Sζ0 =−ζ0. The next case is
002 when 0 is a geometrically double eigenvalue, and finally we have the case 000,
when 0 is geometrically triple. The latter case is in fact a codimension 3 bifurca-
tion, and it arises, typically, when the system possesses an additional property, due
to either an additional parameter taking a special value, or an additional symmetry,
for example a continuous group invariance. We shall not discuss this particular case
here.

We focus in this section on the case 03+, which is the codimension 1 bifurcation
arising most frequently in concrete examples. The results in the cases 03−, 002, and
0±(iω) are less complete, and we only present their normal forms, and collect some
known results on their dynamics.

4.2.1 Reversible 03+ Bifurcation

We consider in this section the 03+ bifurcation (e.g., see [55] for a detailed analysis
of this bifurcation).

Hypothesis 2.2 Assume that σ(L) = {0}, with 0 an algebraically triple and ge-
ometrically simple eigenvalue. Further assume that the eigenvector ζ0 associated
with this eigenvalue satisfies

Sζ0 = ζ0,

in which S is the symmetry anticommuting with L in Hypothesis 1.1.

Normal Form

As in the previous cases, we start by constructing a suitable basis of R
3.

Lemma 2.3 (03+ basis of R
3) Assume that Hypothesis 2.2 holds. Then there exists

a basis {ζ0,ζ1,ζ2} of R
3 consisting of generalized eigenvectors of L such that

Lζ0 = 0, Lζ1 = ζ0, Lζ2 = ζ1, (2.5)

Sζ0 = ζ0, Sζ1 = −ζ1, Sζ2 = ζ2. (2.6)

Proof Consider a basis {ζ0,ζ ′
1,ζ ′

2}, such that

Lζ0 = 0, Lζ ′
1 = ζ0, Lζ ′

2 = ζ ′
1.

By Hypothesis 2.2 we have Sζ0 = ζ0, and then

LSζ ′
1 = −SLζ ′

1 = −Sζ0 = −ζ0.

Consequently, there exists α ∈ R such that
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Sζ ′
1 = −ζ ′

1 +αζ0,

and by taking

ζ1 = ζ ′
1 −

α
2

ζ0,

we obtain
Lζ1 = ζ0, Sζ1 = −ζ1.

Next, we have
LSζ ′

2 = ζ ′
1 −αζ0

so that
Sζ ′

2 = ζ ′
2 −αζ1 +βζ0,

for some β ∈ R. Since
S2ζ ′

2 = ζ ′
2 +2βζ0 = ζ ′

2,

we have that β = 0. Now setting

ζ2 = ζ ′
2 −

α
2

ζ1,

we find
Lζ2 = ζ1, Sζ2 = ζ2,

which proves the lemma. ��

Lemma 2.4 (03+ normal form) Assume that Hypotheses 2.1 and 2.2 hold, and
consider a basis {ζ0,ζ1,ζ2} of R

3 satisfying (2.5) and (2.6). Then for any posi-
tive integer p, 2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in R

3 and R,
respectively, a map Φ : V1 ×V2 → R

3 with the following properties:

(i) Φ is of class C k, satisfying

Φ(0,0,0,0) = 0, ∂(A,B,C)Φ(0,0,0,0) = 0, (2.7)

and
Φ(A,−B,C,μ) = SΦ(A,B,C,μ).

(ii) For (A,B,C) ∈ V1, the change of variables

u = Aζ0 +Bζ1 +Cζ2 +Φ(A,B,C,μ), (2.8)

transforms the equation (2.1) into the normal form

dA
dt

= B

dB
dt

= C +AP(A, B̃,μ)+ρB(A,B,C,μ) (2.9)

dC
dt

= BP(A, B̃,μ)+BρC(A,B,C,μ),
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where B̃ = B2 − 2AC, P(·,μ) : R
2 → R is a polynomial of degree p − 1 in

(A,B,C), such that
P(0,0,0) = 0,

and the remainders ρB and ρC are of class C k and C k−1, respectively, are both
even in B, and satisfy

ρB(A,B,C,μ) = o((|A|+ |B|+ |C|)p), (2.10)

ρC(A,B,C,μ) = o((|A|+B|+ |C|)p−1). (2.11)

Proof According to Theorem 2.2 and Lemma 1.13 in Chapter 3, there is a polyno-
mial Φ1(·,μ) of degree p in (A,B,C), with coefficients depending upon μ , which
satisfies (2.7), and such that the change of variables

u = Aζ0 +Bζ1 +Cζ2 +Φ1(A,B,C,μ)

transforms (2.1) into

dA
dt

= B+AP1(A, B̃,μ)+ρ1(A,B,C,μ)

dB
dt

= C +BP1(A, B̃,μ)+AP2(A, B̃,μ)+ρ2(A,B,C,μ)

dC
dt

= CP1(A, B̃,μ)+BP2(A, B̃,μ)+P3(A, B̃,μ)+ρ3(A,B,C,μ),

in which B̃ = B2 − 2AC, P1 and P2 are polynomials of degree p− 1 in (A,B,C),
P3 is a polynomial of degree p in (A,B,C), and ρ j are functions of class C k both
satisfying (2.10).

Now, using the reversibility symmetry S, which acts on the basis {ζ0,ζ1,ζ2}
through

S =

⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ ,

by Theorem 3.4 in Chapter 3, we have that

Φ1(A,−B,C,μ) = SΦ1(A,B,C,μ)

and that the vector field in the normal form anticommutes with S. For the first com-
ponent of the vector field this leads to

AP1(A, B̃,μ)+ρ1(A,−B,C,μ) = −AP1(A, B̃,μ)−ρ1(A,B,C,μ),

which implies that

P1(A, B̃,μ) = 0 and ρ1 is odd in B.

For the second and third components of the vector field we find
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AP2(A, B̃,μ)+ρ2(A,−B,C,μ) = AP2(A, B̃,μ)+ρ2(A,B,C,μ),
BP2(A, B̃,μ)−P3(A, B̃,μ)−ρ3(A,−B,C,μ)

= BP2(A, B̃,μ)+P3(A, B̃,μ)+ρ3(A,B,C,μ),

which lead to

P3(A, B̃,μ) = 0, ρ2 is even in B and ρ3 is odd in B.

Consequently, we have the normal form

dA
dt

= B+Bρ̃1(A,B,C,μ)

dB
dt

= C +AP2(A, B̃,μ)+ ρ̃2(A,B,C,μ)

dC
dt

= BP2(A, B̃,μ)+Bρ̃3(A,B,C,μ),

with ρ̃ j even in B, ρ̃1 and ρ̃3 satisfying (2.11), and ρ̃2 satisfying (2.10).
Finally, we obtain the desired normal form by making a change of variables as in

Remark 1.10(ii), in Chapter 3. We set

B′ = B+Bρ̃1(A,B,C,μ), (2.12)

which is invertible by the implicit function theorem,

B = B′ +B′ ρ̂1(A,B′,C,μ),

where ρ̂1 is of class C k−1, and even in B′. This transforms the first equation into

dA
dt

= B′.

Furthermore, we have Bρ̃1 = −B′ρ̂1, and

B̃′ = B′2 −2AC = B̃+2ρ̃1B2 + ρ̃2
1 B2,

B̃ = B̃′ +2B′2ρ̂1 +B′2ρ̂2
1 .

In addition,
dB̃
dt

= 2B(ρ̃2 −Cρ̃1 −Aρ̃3),

so that

dB′

dt
= (1+ ρ̃1)(C +AP2 + ρ̃2)+B2(1+ ρ̃1)∂Aρ̃1

+ 2B2(ρ̃2 −Cρ̃1 −Aρ̃3)∂B̃ρ̃1 +B2(P2 + ρ̃3)∂Cρ̃1.

Then this equation can be written in the form
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dB′

dt
= C +AP2(A, B̃′,μ)+ρB′(A,B′,C,μ),

with ρB′ even in B′, and a similar calculation gives the equation for dC/dt. With
this transformation for B, we have the normal form in the lemma, but now with a
map Φ , instead of the polynomial Φ1. Finally, observe that Φ has the same symme-
try property as Φ1, which completes the proof. ��

Solutions of the Normal Form System

We analyze now the dynamics of the normal form system (2.9). We make the fol-
lowing assumption on the polynomial P.

Hypothesis 2.5 Assume that the expansion of P in (2.9),

P(A, B̃,μ) = aμ +bA+ cB̃+dA2 +O(μ2 + |A||μ |+(|μ |+ |A|+ |B|+C|)3),

is such that a 
= 0, and either b 
= 0 or b = 0 and d 
= 0.

Truncated System

Consider first the truncated system

dA
dt

= B

dB
dt

= C +AP(A, B̃,μ)

dC
dt

= BP(A, B̃,μ), (2.13)

where B̃ = (B2 − 2AC). A key property of this system is that it possesses two first
integrals,

K = B̃ = B2 −2AC, H = C−gK(A,μ),

where

gK(A,μ) =
∫ A

0
P(s,K,μ)ds.

Consequently, the system is integrable and its phase portrait is obtained by varying
(H,K) ∈ R

2. The orbits in the (A,B,C)-space are curves given by

B2 = fH,K(A,μ), C = gK(A,μ)+H, (2.14)

where
fH,K(A,μ) = 2AgK(A,μ)+2HA+K.
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Remark 2.6 (Equilibria) The equilibria of the truncated system satisfy

B = 0, C +AP(A,−2AC,μ) = 0.

The implicit function theorem allows one to solve the second equation, and gives
a one-parameter family of symmetric equilibria (A,0,C∗(A,μ)) for sufficiently
small μ , with

C∗(A,μ) = −aμA−bA2 −dA3 +O(|μ ||A|3 +A4), A = O(μ).

The linearization of system (2.1) at these equilibria gives a family of linear oper-
ators, which anticommute with the symmetry S, because the equilibria are symmet-
ric. In particular, the spectrum of these operators is symmetric with respect to both
the real and imaginary axes, just as the spectrum of L. It is not difficult to check that
0 is an eigenvalue of each operator, with symmetric eigenvector

ζA,μ = (1,0,∂AC∗(A,μ)).

Notice that the vector
ζ ′

A,μ = (0,0,∂μC(A,μ))

is not an eigenvector, since the vector field depends on μ . The two other eigenvalues
are symmetric with respect to the origin and are either real or purely imaginary.
These eigenvalues vanish if

∂AC∗(A,μ)+
1
A

C∗(A,μ) = 0.

Then, if b 
= 0, or if b = 0 and aμd < 0, one can show that there is an equilibrium
for some A = A0(μ) such that 0 is a triple eigenvalue of the linearized operator, with
a 3×3 Jordan block.

For the study of the phase portraits, we consider the cases b 
= 0, and b = 0, d 
= 0.
In both cases we look at the projections on the (A,B)-plane of the orbits, which are
given by the equation

B2 = fH,K(A,μ). (2.15)

We first consider only the leading order terms in the expansion of P, which, as we
shall see, give a correct description of the dynamics in a neighborhood of the origin.

Assume b 
= 0. Then we have at leading orders

B2 = fH,K(A,μ) = bA3 +2μ̃A2 +2HA+K, μ̃ = aμ + cK. (2.16)

We plot in Figure 2.1 the graphs of fH,K(·,μ), varying (K,H) ∈ R
2 in the case

b > 0 and μ̃ > 0. (In the other cases the result is similar.) We find a curve in the
(K,H)-plane along which fH,K(·,μ) has a double root, obtained by solving

fH,K(A,μ) = ∂A fH,K(A,μ) = 0. (2.17)
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Fig. 2.1 Graphs of fH,K(·,μ), depending on (K,H), for μ̃ > 0, b > 0.

These equalities give the parametric equations of the curve,

K = 2bA3 +2μ̃A2, H = −3b
2

A2 −2μ̃A.

At the cusp point

(Kc,Hc) =
(

8μ̃3

27b2 ,
2μ̃2

3

)
, A = −2μ̃

3b
,

the polynomial fK,H(·,μ) has a triple root.
The double roots of fH,K(·,μ) correspond to equilibria of the truncated system,

and their stability, in the (A,B)-plane, is determined by the sign of the second deriva-
tive ∂ 2

A fK,H(·,μ): the equilibrium is a saddle for positive sign, and a center for neg-
ative sign. Then, for (H,K) along the curve Γe we have a center equilibrium, and
along Γh a saddle equilibrium. These equilibria are precisely the ones found in Re-
mark 2.6, and in particular, the equilibrium given by the cusp point is the equilibrium
found for A = A0(μ), at which the linearization has a triple zero eigenvalue. Further-
more, there is no other bounded solution for (K,H) on Γe, whereas for (K,H) on
Γh there is a homoclinic orbit connecting the saddle equilibrium to itself. We point
out that for H = 0 this orbit is homoclinic to the origin. For values of (K,H) ly-
ing outside the curves Γe and Γh there is no bounded orbit, while for (K,H) lying
between the curves Γe and Γh there is a periodic orbit surrounding the center equilib-
rium. We plot in Figure 2.2 the projections in the (A,B)-plane of the orbits obtained
by varying K, for a fixed H < Hc. As H → Hc the homoclinic orbit shrinks to the
equilibrium found at the cusp point (Kc,Hc), and there are no bounded solutions for
H > Hc.

Finally, notice that the bounded orbits found in this case are such that
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Fig. 2.2 Dynamics of the 03+ bifurcation. Plot of the projections in the (A,B)-plane of the orbits
of the truncated system (2.13) obtained by varying K for a fixed H < Hc, in the case μ̃ > 0, b > 0.
For H > Hc there are no bounded orbits, and the dynamics are similar for other values of μ̃ and b.

K = O(|μ̃|3), H = O(|μ̃|2),
A = O(|μ̃|), B = O(|μ̃|3/2), C = O(|μ̃|2).

In particular, this shows that μ̃ = O(μ). Furthermore, the terms in the polynomial
fH,K(·,μ) that were neglected by the restriction to the leading order terms in (2.16)
are of order O(A2(|μ |+ |A|)2), so adding these terms does not change the shape of
fH,K(·,μ) for A in a neighborhood of size O(μ). This implies that the same phase
portraits can be found for the truncated normal form (2.13) in a sufficiently small
neighborhood of the origin.

Consider now the case b = 0 and d 
= 0. Then at leading orders we find

fH,K(A,μ) =
2
3

dA4 +2μ̃A2 +2HA+K, μ̃ = aμ + cK. (2.18)

We summarize the behavior of fH,K(·,μ) for different values of μ̃ and d in Fig-
ure 2.3. In particular, solving (2.17) we find that fH,K(·,μ) has double roots for
(K,H) along the curve parameterized by

K = 2dA4 +2μ̃A2, H = −4d
3

A3 −2μ̃A.

The situation is slightly more complicated in the case μ̃d < 0, where there is a pair
of cusp points

(Kc,±Hc) =

(

− μ̃2

2d
,±4

3

√

− μ̃3

2d

)

, A = ±
√

− μ̃
2d

,

and a particular point

(K0,0) =
(

3μ̃2

2d
,0

)
, A =

√

−3μ̃
2d

.

The projection of the orbits on the (A,B)-plane obtained varying K for fixed H,
in the cases of bounded orbits, is sketched in Figure 2.4. Summarizing, we have:
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Fig. 2.3 Graphs of fH,K(·,μ) for b = 0 depending on (K,H).

(i) For μ̃ < 0, d < 0, and any H ∈ R, there is precisely a center equilibrium sur-
rounded by a one-parameter family of periodic orbits.

(ii) For μ̃ < 0, d > 0, and |H| < Hc, there are three equilibria, a center and two
saddles. For H = 0, the origin is a center equilibrium surrounded by a one-
parameter family of periodic orbits, which tend to a pair of heteroclinic orbits,
exchanged by the reversibility symmetry, connecting the two saddle equilibria.
For 0 < |H| < Hc, the center equilibrium is surrounded by a one-parameter
family of periodic orbits, which tend to a homoclinic orbit to one of the saddle
equilibria. As |H| → Hc, the three equilibria collide in a single equilibrium,
which is the only bounded orbit, for |H| > Hc.

(iii) For μ̃ > 0, d < 0, there are three equilibria, two centers and a saddle, when
|H| < Hc. Each center is surrounded by a one-parameter family of periodic
orbits, which tends to a homoclinic orbit to the saddle equilibrium. As |H| →
Hc, the saddle equilibrium and one center collide, and for |H| = Hc there is
a one-parameter family of equilibria surrounding the remaining center and a
homoclinic orbit to the other equilibrium. For |H|> Hc, there is only one center
equilibrium surrounded by a one-parameter family of periodic orbits.
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Fig. 2.4 Dynamics of the 03+ bifurcation in the case b = 0. Plot of the projections in the (A,B)-
plane of the orbits of the truncated system (2.13) obtained by varying K for a fixed H in the cases
(i) μ̃ < 0, d < 0, (ii) μ̃ < 0, d > 0, (iii) μ̃ > 0, d < 0, when the system has nonequilibrium bounded
orbits.

(iv) For μ̃ > 0, d > 0, and any H ∈ R there is a saddle equilibrium and no other
bounded solutions.

Finally, we have that the small bounded solutions are such that

K = O(|μ̃|2), H = O(|μ̃|3/2),

and

A = O(|μ̃|1/2), B = O(|μ̃|), C = O(|μ̃|3/2),

hence μ̃ = O(μ), and the neglected terms in fH,K(A,μ) are O(A2(|μ̃|2 + |μ̃||A|+
|A|3)). This implies that the leading order terms describe correctly the shape of
fH,K(·,μ) in the neighborhood of 0 of size O(|μ |1/2), so that the phase portraits can
be found for the truncated system (2.13).

Full System

For the persistence of the phase portraits obtained above for the full system (2.9) we
proceed as in the previous sections. First, the implicit function theorem allows us to
show that the equilibria persist. Next, the reversibility symmetry acting through

(A,B,C) �→ (A,−B,C)

implies that the phase portrait is symmetric with respect to the plane B = 0, which
is invariant under the action of this symmetry. Then, by arguing as in the previous
sections one can show that the orbits of the truncated system which intersect the
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plane B = 0 persist. This allows us to prove the persistence of the periodic orbits
and the homoclinic orbits that exist in the different cases.

It remains to discuss the persistence of the pair of heteroclinic orbits found in
the case μ̃ < 0, d > 0, for H = 0, K = K0. Recall that in this case the two equi-
libria belong to the one-parameter family of equilibria (A,0,C∗(A,μ)) found in
Remark 2.6, and that the linearization at these points possesses a zero eigenvalue
and a pair of real eigenvalues, one negative and one positive. They are found for
A = A± =±

√
−3μ̃/2d, and the heteroclinic orbits connect (A−,0,C∗(A−,μ)) with

(A+,0,C∗(A+,μ)). Each heteroclinic orbit intersects transversally the plane A = 0
in some point (0,B0,C0), which then implies that these orbits persist under small
perturbations. Indeed, the equilibria (A,0,C∗(A,μ)), for A close to A±, have the
same stability properties, and in particular a one-dimensional stable and a one-
dimensional unstable manifold. Then the family of one-dimensional unstable man-
ifolds of (A,0,C(A,μ)) for A close to A+, intersects transversally the plane A = 0
along a curve γ+ lying in a neighborhood of (0,B0,C0). In the same way, the family
of one-dimensional stable manifolds of (A,0,C(A,μ)) for A close to A−, intersects
transversally the plane A = 0 along a curve γ− lying in a neighborhood of (0,B0,C0).
One shows then that γ− intersects transversally γ+ (e.g., see [55]). This implies the
persistence of the heteroclinic orbits.

Summarizing we have the following result.

Theorem 2.7 (03+ bifurcation) Assume that the Hypotheses 2.1, 2.2, and 2.5 hold.
Then for the differential equation (2.1) a reversible 03+ bifurcation occurs at μ =
0. More precisely, the following properties hold in a neighborhood of 0 in R

3 for
sufficiently small μ .

For b 
= 0, there are two curves of equilibria (A,0,Ce(A,μ)) and (A,0,Ch(A,μ))
which meet at a point (A0,0,C∗(A0,μ)) having an algebraically and geometri-
cally triple eigenvalue. Each equilibrium (A,0,Ce(A,μ)) is surrounded by a one-
parameter family of periodic orbits, which tend to a homoclinic orbit to an equilib-
rium (A,0,Ch(A,μ)).

For b = 0 and d 
= 0, we have the following cases:

(i) For aμ < 0 and d < 0, there is a one-parameter family of equilibria, and each
equilibrium is surrounded by a one-parameter family of periodic orbits.

(ii) For aμ < 0 and d > 0, there are three curves of equilibria (A,0,Ce(A,μ))
and (A,0,C±(A,μ)) for A close to 0. Each equilibrium (A,0,Ce(A,μ)) with
A 
= 0, is surrounded by a one-parameter family of periodic orbits which
tend to a homoclinic orbit to an equilibrium (A,0,C±(A,μ)). The equilib-
rium (0,0,Ce(0,μ)) is surrounded by a one-parameter family of periodic orbits
which tend to a pair of heteroclinic orbits, exchanged by the reversibility sym-
metry, connecting two equilibria (A,0,C±(A,μ)).

(iii) For aμ > 0 and d < 0, there are three curves of equilibria (A,0,Ch(A,μ))
and (A,0,C±(A,μ)) for A close to 0. Each equilibrium (A,0,C±(A,μ)) is sur-
rounded by a one-parameter family of periodic orbits, which tend to a homo-
clinic orbit to an equilibrium (A,0,Ch(A,μ)).
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(iv) For aμ > 0 and d > 0, there is a one-parameter family of equilibria and no
other bounded solutions.

Remark 2.8 We show in Appendix D.1 how to compute the principal coefficients in
the normal form (2.9) when starting from an infinite-dimensional system of the form
(1.13).

Exercise 2.9 Consider a system in R
4 of the form

du
dt

= F(u,μ).

Assume that the vector field F is of class C k, k ≥ 3, in a neighborhood V of (0,0) ∈ R
4 ×R, sat-

isfying F(0,0) = 0, and that 0 is an algebraically quadruple and geometrically simple eigenvalue
of L = DuF(0,0). Further assume that there is a symmetry S with S2 = I, which anticommutes
with F,

F(Su,μ) = −SF(u,μ) for all (u,μ) ∈ V ,

and that there is a continuous symmetry such that

F(u+aζ0,μ) = F(u,μ) for all a ∈ R,

where ζ0 satisfies
Lζ0 = 0, Sζ0 = −ζ0.

(i) Show that there is a basis {ζ0,ζ1,ζ2,ζ3} in R
4 such that

Lζ0 = 0, Lζ1 = ζ0, Lζ2 = ζ1, Lζ3 = ζ2,

Sζ0 = −ζ0, Sζ1 = ζ1, Sζ2 = −ζ2, Sζ3 = ζ3,

and a dual basis {ζ ∗
0 ,ζ ∗

1 ,ζ ∗
2 ,ζ ∗

3 } such that

L∗ζ ∗
3 = 0, L∗ζ ∗

2 = ζ ∗
3 , L∗ζ ∗

1 = ζ ∗
2 , L∗ζ ∗

0 = ζ ∗
1 , 〈ζ j,ζ ∗

k 〉 = δ jk,

S∗ζ ∗
0 = −ζ ∗

0 , S∗ζ ∗
1 = ζ ∗

1 , S∗ζ ∗
2 = −ζ ∗

2 , S∗ζ ∗
3 = ζ ∗

3 .

(ii) For u ∈ R
4, set

u = Aζ0 + v, 〈v,ζ ∗
0 〉 = 0, A ∈ R.

Show that the vector field of the system satisfied by (A,v) is independent of A. (Compare with
the proof of Theorem 3.19 in Chapter 2.)

(iii) Show that v satisfies a first order equation in R
3 of the form (2.1) satisfying Hypotheses 2.1

and 2.2.

4.2.2 Reversible 03− Bifurcation (Elements)

We consider in this section the 03− bifurcation, when 0 is an algebraically triple and
geometrically simple eigenvalue of L, with associated eigenvector ζ0 satisfying

Sζ0 = −ζ0.

This type of bifurcation is still an open problem, so we shall only briefly outline the
normal form and some elementary facts about its dynamics. We point out that we
are not aware of any physical example leading to a bifurcation of this type.
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03− Normal Form

First, by arguing as in the case of the 03+ bifurcation, we can prove here that there
is a basis {ζ0,ζ1,ζ2} of R

3 such that

Lζ0 = 0, Lζ1 = ζ0, Lζ2 = ζ1,

Sζ0 = −ζ0, Sζ1 = ζ1, Sζ2 = −ζ2.

Using this basis, in the same way as in the proof of Lemma 2.4, we find in this
case that for any p < k there exists a polynomial Φ(·,μ) : R

3 → R
3 of degree p,

with

Φ(0,0,0,0) = 0, ∂(A,B,C)Φ(0,0,0,0) = 0, Φ(−A,B,−C,μ) = SΦ(A,B,C,μ),

such that the change of variables

u = Aζ0 +Bζ1 +Cζ2 +Φ(A,B,C,μ), (2.19)

transforms the differential equation into the normal form

dA
dt

= B+A2P(A2, B̃,μ)+ρA(A,B,C,μ)

dB
dt

= C +ABP(A2, B̃,μ)+AQ(A2, B̃,μ)+ρB(A,B,C,μ)

dC
dt

= ACP(A2, B̃,μ)+BQ(A2, B̃,μ)+R(A2, B̃,μ)+ρC(A,B,C,μ). (2.20)

Here B̃ = B2 −2AC, and P, Q, and R are polynomials of degree p−2, p−1, and p,
respectively, in (A,B,C). The remainders ρA and ρC are even in (A,C), while ρB is
odd in (A,C), and they are all of class C k satisfying

|ρA|+ |ρB|+ |ρC| = o((|A|+B|+ |C|)p).

Exercise 2.10 Consider the leading order terms in the polynomials P, Q, and R,

P(A2, B̃,μ) = d +h.o.t.,

Q(A2, B̃,μ) = eμ +h.o.t.,

R(A2, B̃,μ) = aμ +bA2 + c(B2 −2AC)+h.o.t,

with real coefficients a, b, c, d, and e. Using the procedure in Appendix D.1, compute the coeffi-
cients a, b, c, d, and e.
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Solutions of the Normal Form

The complete description of the dynamics of system (2.20) is an open problem.
We only mention here that equilibria can be found as usual, and that assuming that
ab 
= 0 we have:

(i) for abμ > 0 there is no equilibrium in a neighborhood of 0;
(ii) for abμ < 0 there is a pair of equilibria, exchanged by the symmetry S, with

A = O(|μ |1/2), B = O(μ), C = O(|μ |3/2).

The linearized operator at these equilibria has one real and two complex eigen-
values of order O(|μ |1/6).

For the study of the dynamics, a natural way to start is by analyzing the truncated
system, which reduces in this case to a third order differential equation

A′′′ = aμ +bA2 +(c+3d)(A′)2 +(4d −2c)AA′′. (2.21)

4.2.3 Reversible 002 Bifurcation (Elements)

Consider now the 002 bifurcation, when 0 is an algebraically triple and geometri-
cally double eigenvalue of L. We briefly describe the normal form and collect some
known facts about its dynamics.

002 Normal Form

Consider a basis {ξ0,ζ0,ζ1} of R
3 such that

Lξ0 = 0, Lζ0 = 0, Lζ1 = ζ0. (2.22)

Then, depending upon the action of the symmetry S on this basis, we distinguish the
following situations:

(i) 0+02+ when Sξ0 = ξ0, Sζ0 = ζ0, Sζ1 = −ζ1;
(ii) 0+02− when Sξ0 = ξ0, Sζ0 = −ζ0, Sζ1 = ζ1;

(iii) 0−02+ when Sξ0 = −ξ0, Sζ0 = ζ0, Sζ1 = −ζ1;
(iv) 0−02− when Sξ0 = −ξ0, Sζ0 = −ζ0, Sζ1 = ζ1.

By arguing as in the previous sections, we obtain the normal forms below. As
before, P, Q, Q1, Q2, R, R1, and R2 represent polynomials, and ρA, ρB, and ρC

denote the higher order terms.

(i) In the case (0+02+),
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dA
dt

= CρA

dB
dt

= C +CρB

dC
dt

= R(A,B,μ)+ρC, (2.23)

with ρA, ρB, and ρC even in C.
(ii) In the case (0+02−),

dA
dt

= BP(A,B2,μ)+BρA

dB
dt

= C +B2Q(A,B2,μ)+ρB

dC
dt

= CBQ(A,B2,μ)+BR(A,B2,μ)+BρC, (2.24)

with ρA, ρB, and ρC even in B.
(iii) In the case (0−02+),

dA
dt

= P(A2,B,μ)+ρA

dB
dt

= C +ABQ(A2,B,μ)+ρB

dC
dt

= ACQ(A2,B,μ)+R(A2,B,μ)+ρC, (2.25)

with ρA, ρC even, and ρB odd in (A,C).
(iv) In the case (0−02−),

dA
dt

= P(A2,AB,B2,μ)+ρA

dB
dt

= C +ABQ1(A2,AB,B2,μ)+B2Q2(A2,AB,B2,μ)+ρB

dC
dt

= ACQ1(A2,AB,B2,μ)+BCQ2(A2,AB,B2,μ)

+AR1(A2,AB,B2,μ)+BR2(A2,AB,B2,μ)+ρC, (2.26)

with ρA, ρB even, and ρC odd in (A,B).

Solutions of the Normal Form

The dynamics in the case 0+02+ are similar to that of the 02+ bifurcation, with an
additional coordinate that can take the role of a parameter. The invariant set for the
symmetry S is the plane C = 0, so it is two-dimensional, which allows us to prove
the persistence of the different bounded orbits. Similarly, the analysis in the case
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0+02− is analogue to that of the 02− bifurcation, with an additional coordinate that
can take the role of a parameter. A new feature here is the existence of a family
of symmetric equilibria for which the stability changes at some point. In this case
again, the invariant set for the symmetry S is two-dimensional, the plane B = 0,
which allows us to show the persistence results.

The cases 0−02+ and 0−02− are less understood. In contrast to the previous cases,
here the invariant set for the symmetry S is only one-dimensional, which creates
a serious difficulty for the proofs of persistence results. We mention that in the
case when the vector field is analytic, one could use the optimal normal form in
Theorem 5.8 in Chapter 2. The exponentially small size of the remainder in this
theorem may be helpful to show the persistence of bounded orbits (e.g., see the
02+(iω) bifurcation in Section 4.3.1).

4.2.4 Reversible 0(iω) Bifurcation (Elements)

Consider now the case 0(iω), when L has a simple 0 eigenvalue and a pair of purely
imaginary eigenvalues iω .

0(iω) Normal Form

Consider a basis {ξ0,ζ ,ζ} of R
3 such that

Lξ0 = 0, Lζ = iωζ , Lζ = −iωζ . (2.27)

Then by taking into account the action of S on these vectors we can choose this
basis such that we have one of the following two cases:

(i) 0+(iω) when Sξ0 = ξ0, Sζ = ζ , Sζ = ζ ;
(ii) 0−(iω) when Sξ0 = −ξ0, Sζ = ζ , Sζ = ζ .

Notice that in this case we can always choose ζ ∈ C
2 such that Sζ = ζ . Indeed,

since Lζ = iωζ , we have that LSζ = −iωSζ . Consequently, there is k ∈ C such
that Sζ = kζ . Since S2 = I this implies that |k|= 1, i.e., there exists α ∈ R such that
Sζ = eiα ζ . Replacing ζ by ζ ′ = e−iα/2ζ , we find that Sζ ′ = ζ ′.

The normal forms in the two cases can be found as for the previous bifurcations.
Setting

u = Aξ0 +Bζ +Bζ ,

with A real-valued and B complex-valued we obtain the following normal forms:

(i) In the case 0+(iω),
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dA
dt

= ρA

dB
dt

= iωB+ iBQ(A, |B|2,μ)+ρB, (2.28)

where Q is a real-valued polynomial, and

ρA(A,B,B,μ) = −ρA(A,B,B,μ), ρB(A,B,B,μ) = −ρB(A,B,B,μ).

(ii) In the case 0−(iω),

dA
dt

= P(A2, |B|2,μ)+ρA

dB
dt

= iωB+ iBQ1(A2, |B|2,μ)+ABQ2(A2, |B|2,μ)+ρB, (2.29)

where P, Q1, Q2 are real-valued polynomials, and

ρA(−A,B,B,μ) = ρA(A,B,B,μ), ρB(−A,B,B,μ) = −ρB(A,B,B,μ).

Solutions of the Normal Form

The study of the dynamics in the case 0+(iω) is rather straightforward. First, for the
truncated normal form, obtained by removing the remainders ρA and ρB, we find the
line of symmetric equilibria (A0,0), A0 ∈ R. Notice that the linearization of the vec-
tor field at these equilibria has a simple 0 eigenvalue and a pair of purely imaginary
eigenvalues ±iωA0,μ for A0 and μ small, just as L. This is due to the reversibility
symmetry. Furthermore, each plane A = A0 is invariant under the dynamics of the
normal form, and in this plane the orbits are circles. Indeed, in polar coordinates
B = reiθ we find the system

dr
dt

= 0,
dθ
dt

= ω +Q(A,r2,μ),

which in addition shows that the period in t of the periodic orbits depends upon μ ,
A, and the radius r. When adding the remainders ρA and ρB, the implicit function
theorem, allows us to show that these dynamics persist for the full system.

In the case 0−(iω), for the truncated normal form we can use polar coordinates
B = reiθ , again, and then the dynamics reduce to that of the two-dimensional system
for A and r. The number and nature of equilibria and bounded orbits depends upon
the coefficients of the leading order terms in P and Q2. When adding the remainders
ρA and ρB, the implicit function theorem allows us to show the persistence of the
equilibria and periodic orbits. The question of persistence of homoclinic and hete-
roclinic orbits in this case is much more difficult, since the invariant set under the
action of S is only one-dimensional. In the case of analytic vector fields, one could
use the optimal normal form in Theorem 5.8 in Chapter 2. Nevertheless, despite the
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exponentially small estimate of the remainder, the question of persistence is open in
this case.

4.3 Dimension 4

In this section, we consider reversible systems in R
4 of the form

du
dt

= F(u,μ), (3.1)

for which we assume that the vector field satisfies the following hypothesis.

Hypothesis 3.1 Assume that the vector field F is of class C k, k ≥ 3, in a neighbor-
hood V of (0,0) ∈ R

4 ×R, satisfying

F(0,0) = 0. (3.2)

We further assume that there is a symmetry S with

S2 = I,

which anticommutes with F,

F(Su,μ) = −SF(u,μ) for all (u,μ) ∈ V . (3.3)

As in the previous sections, we set

L = DuF(0,0), (3.4)

and we have that
SL = −LS.

Consequently, the spectrum of L is symmetric with respect to both the real and
imaginary axis. If L has eigenvalues that do not lie on the imaginary axis, then there
are either four or two such eigenvalues. In the first case, the situation is hyperbolic,
and the dynamics are the same as that of the linear equation du/dt = Lu, whereas
in the second case one can use the center manifold theorem and reduce the problem
to a two-dimensional one, which enters in the setting of Section 4.1. We therefore
consider only the situation in which the four eigenvalues all lie on the imaginary
axis where we distinguish the following cases:

(i) σ(L) = {0,±iω} for some nonzero real number ω , with 0 an algebraically
double eigenvalue;

(ii) σ(L) = {±iω} for some nonzero real number ω , with ±iω algebraically dou-
ble eigenvalues;

(iii) σ(L) = {±iω1,±iω2} for some nonzero real numbers ω1 and ω2;
(iv) σ(L) = {0}, with 0 an algebraically quadruple eigenvalue.
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In case (i), the generic situation occurs when 0 is geometrically simple, the
02(iω) bifurcation, for which we distinguish between 02+(iω), when for ζ0 in the
kernel of L we have Sζ0 = ζ0, and 02−(iω), when Sζ0 = −ζ0. Similarly, in the
case (ii) the generic situation occurs when ±iω are geometrically simple, which is
the (iω)2 bifurcation. This bifurcation has been extensively studied, and is often re-
ferred to as 1 : 1-resonance or Hamiltonian–Hopf bifurcation. We discuss in more
detail the cases 02+(iω) and (iω)2, which are most frequently met in physical ex-
amples, and give only some elements of the analysis in the case 02−(iω), and in
case (iii), (iω1)(iω2) bifurcation.

In case (iv), the type of bifurcations further depends upon the geometric multi-
plicity of the zero eigenvalue, 04, 003, 0202, 0002, 0000, and the action of S on the
kernel of L. The complete study of these bifurcations, which are of codimension
higher than 1, is still open. We present here only some elements of analysis for the
04+ bifurcation, and for an 0202 bifurcation with an additional SO(2) symmetry,
which are of importance in some physical examples.

4.3.1 Reversible 02+(iω) Bifurcation

We consider in this section the 02+(iω) bifurcation. This bifurcation has been ex-
tensively studied in the literature, and we refer for instance to [59, 61, 93], and the
references therein, for further details.

Hypothesis 3.2 Assume that σ(L) = {0,±iω}, with 0 an algebraically double and
geometrically simple eigenvalue. Further assume that the eigenvector ξ0 associated
with the eigenvalue 0 satisfies

Sξ0 = ξ0,

in which S is the symmetry anticommuting with L in Hypothesis 3.1.

Normal Form

As in the previous cases, we start by constructing a suitable basis of R
4.

Lemma 3.3 (02+(iω) basis of R
4) Assume that Hypothesis 3.2 holds. Then there

exists a basis {ξ0,ξ1,Reζ , Imζ} of R
4 consisting of generalized eigenvectors

ξ0,ξ1 ∈ R
4 and ζ ∈ C

4 of L, such that

Lξ0 = 0, Lξ1 = ξ0, Lζ = iωζ ,

Sξ0 = ξ0, Sξ1 = −ξ1, Sζ = ζ .

Proof The vectors ξ0 and ξ1 are constructed as in the proof of Lemma 1.4, and ζ
is the eigenvector associated to iω such that Sζ = ζ , as explained in Section 4.2.4.
��
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Notation 3.4 In the basis above, we represent a vector in u ∈ R
4 by (A,B,C,C),

u = Aξ0 +Bξ1 +Cζ +Cζ ,

with A,B ∈ R, and C ∈ C. We identify R
4 with the space R

2 × R̃2 in which

R̃2 = {(C,C) ; C ∈ C}.

Lemma 3.5 (02+(iω) normal form) Assume that Hypotheses 3.1 and 3.2 hold, and

consider the basis {ξ0,ξ1,ζ ,ζ} of R
2 × R̃2 in Lemma 3.3. Then for any positive

integer p, 2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in R
2 × R̃2 and R,

respectively, a map Φ : V1 ×V2 → R
4 with the following properties:

(i) Φ is of class C k, satisfying

Φ(0,0,0,0,0) = 0, ∂(A,B,C,C)Φ(0,0,0,0,0) = 0, (3.5)

and
Φ(A,−B,C,C,μ) = SΦ(A,B,C,C,μ).

(ii) For (A,B,C,C) ∈ V1, the change of variables

u = Aξ0 +Bξ1 +Cζ +Cζ +Φ(A,B,C,C,μ) (3.6)

transforms equation (3.1) into the normal form

dA
dt

= B

dB
dt

= P(A, |C|2,μ)+ρB(A,B,C,C,μ)

dC
dt

= iωC + iCQ(A, |C|2,μ)+ρC(A,B,C,C,μ), (3.7)

where P and Q are real-valued polynomials of degree p and p−1 in (A,B,C,C),
respectively. The remainders ρB and ρC are of class C k and satisfy

ρB(A,−B,C,C,μ) = ρB(A,B,C,C,μ),
ρC(A,−B,C,C,μ) = −ρC(A,B,C,C,μ),

with the estimate

|ρB(A,B,C,C,μ)|+ |ρC(A,B,C,C,μ)| = o((|A|+ |B|+ |C|)p). (3.8)

Proof According to Theorem 2.2 and Lemma 1.18 in Chapter 3, there is a polyno-
mial Φ1(·,μ) of degree p in (A,B,C,C), with coefficients depending upon μ , which
satisfies (3.5), and such that the change of variables

u = Aξ0 +Bξ1 +Cζ +Cζ +Φ1(A,B,C,C,μ)
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transforms (3.1) into the system

dA
dt

= B+AP0(A, |C|2,μ)+ρ1(A,B,C,C,μ)

dB
dt

= BP0(A, |C|2,μ)+P1(A, |C|2,μ)+ρ2(A,B,C,C,μ)

dC
dt

= iωC +CP2(A, |C|2,μ)+ρ3(A,B,C,C,μ),

where P0 and P2 are polynomials of degree p−1 in (A,C,C), P1 is a polynomial of
degree p in (A,C,C), and ρ j, j = 1,2,3, are functions of class C k satisfying (3.8).

Now, using the reversibility symmetry S, by Theorem 3.4 we have that

Φ1(A,−B,C,C,μ) = SΦ1(A,B,C,C,μ),

and that the first component of the vector field satisfies

AP0(A, |C|2,μ)+ρ1(A,−B,C,C,μ) = −AP0(A, |C|2,μ)−ρ1(A,B,C,C,μ).

Consequently, P0 = 0. For the second and the third components of the vector field
we then find

P1(A, |C|2,μ)+ρ2(A,−B,C,C,μ) = P1(A, |C|2,μ)+ρ2(A,B,C,C,μ)
CP2(A, |C|2,μ)+ρ3(A,−B,C,C,μ) = −CP2(A, |C|2,μ)−ρ3(A,B,C,C,μ),

which imply that the polynomial P2 is purely imaginary.
Finally, we make the change of variables

B′ = B+ρ1(A,B,C,C,μ),

which preserves the reversibility symmetry, and gives the desired normal form. No-
tice that with this change of variables the polynomial Φ1 is transformed into the
function Φ of class C k. ��

Solutions of the Normal Form System

We analyze now the dynamics of the normal form in the generic situation in which
the following assumption on the expansion of the vector field holds.

Hypothesis 3.6 Assume that the expansions of P and Q in (3.7),

P(A, |C|2,μ) = aμ +bA2 + c|C|2 +O(|μ |2 +(|μ |+ |A|+ |C|)3),
Q(A, |C|2,μ) = αμ +βA+ γ|C|2 +O((|μ |+ |A|+ |C|2)2),

are such that a, b, and c do not vanish.
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Truncated System

We start with the truncated system

dA
dt

= B

dB
dt

= P(A, |C|2,μ)

dC
dt

= iωC + iCQ(A, |C|2,μ). (3.9)

This system is integrable, with two first integrals

K = |C|2, H = B2 −2
∫ A

0
P(s,K,μ)ds.

Further notice that the system is invariant under rotations in the C-plane. This shows
that the projections on the C-plane of the orbits are all circles, whereas the projec-
tions on the (A,B)-plane are described by

B2 = fH,K(A,μ), fH,K(A,μ) = 2
∫ A

0
P(s,K,μ)ds+H. (3.10)

The leading order terms in the expansion of fH,K are

fH,K(A,μ) =
2
3

bA3 +2μ̃A+H, μ̃ = aμ + cK,

which implies that the projections on the (A,B)-plane of the orbits are as in the case
of the 02+ bifurcation. In particular, there are no bounded orbits when μ̃b > 0, and
the orbits are as shown in Figure 3.1 when μ̃b < 0.

Fig. 3.1 Dynamics of the 02+(iω) bifurcation. Plot of the projections in the (A,B)-plane of the
orbits of the truncated system (3.9) obtained by varying H in the case μ̃ > 0 and b < 0. For μ̃ < 0
and b > 0 the phase portrait is qualitatively the same, and for μ̃b > 0 there are no bounded orbits.

For the truncated system, we then find bounded orbits in the case μ̃b < 0, only.

(i) The two equilibria, the center (Ac,0) and the saddle (Ah,0) in the (A,B)-plane,
give two equilibria, a center (Ac,0,0) and a saddle-center (Ah,0,0) of the
truncated system, which are found for K = 0. For any K > 0, the equilibria
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(Ac,0) and (Ah,0) give periodic orbits (Ac,0,Cc,K(t)) and (Ah,0,Ch,K(t)), re-
spectively, with |Cc,K(t)| = |Ch,K(t)| =

√
K. Below, we refer to these periodic

orbits as periodic orbits of the first kind.
(ii) The homoclinic orbit in the (A,B)-plane gives a homoclinic orbit to the equi-

librium (Ah,0,0) for K = 0, and for any K > 0 it gives a one-parameter fam-
ily of homoclinic orbits connecting the periodic orbit (Ah,0,Ch,K(t)) to itself.
More precisely, we have a “circle” of homoclinic orbits parameterized by some
φ ∈ R/2πZ. We point out that when we restrict terms in the expansions of P
and Q, to the quadratic order:

P(A, |C|2,μ) = aμ +bA2 + c|C|2, Q(A, |C|2,μ) = αμ +βA+ γ|C|2,

these homoclinic orbits can be computed explicitly. For instance, in the case
μ̃ < 0 and b > 0, one finds the solutions

A(t) = Ah

(
1− 3

cosh2 δ t

)
, B(t) = A′(t), C(t) =

√
Kei(Ω t+κ tanhδ t+φ),

where

δ =

√
bAh

2
, Ω = ω +αμ + γK +βAh, κ = −3β

√
2Ah

b
,

and φ ∈ R/2πZ is arbitrary. In particular, this gives an explicit description
of the asymptotics at infinity, where we find a phase shift κπ = O(| − μ̃|1/4)
between t = −∞ and t = +∞.

(iii) The periodic orbits in Figure 3.1 correspond to a family of invariant 2-tori in
the four-dimensional space. Depending on the ratio between the frequency in
the C-plane and the frequency in the (A,B)-plane, on these tori we find quasi-
periodic or periodic orbits of the truncated system. Below, we refer to these
periodic orbits as periodic orbits of the second kind, or elliptic.

Remark 3.7 Recall that μ̃ = aμ + cK and K ≥ 0. The condition μ̃b < 0 for the
existence of bounded orbits is then abμ +bcK < 0, so that small bounded solutions
exist for any small μ if bc < 0, and they exist only when abμ < 0 if bc > 0.

Remark 3.8 In applications there is often a trivial equilibrium that exists for all
values of μ . Then in the expansion of the polynomial P the coefficient a vanishes, so
that

P(A, |C|2,μ) = a′μA+bA2 + c|C|2 +O(μ2|A|+ |μ |A2 + |A|3 + |C|4). (3.11)

It turns out that this situation is similar to the case abμ < 0. Indeed, assuming that
abμ < 0, one can make in (3.9) the change of variables

A = A0 +A′,

where A0 is a solution of P(A0,0,μ) = 0,
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A0 = sign(b)

√
−aμ

b
+h.o.t..

This leads to a similar system for (A′,B,C), with P(A, |C|2,μ) replaced by

P′(A′, |C|2,μ) = 2
√
−abμA′+bA′2 +c|C|2 +O(|μ ||A′|+ |μ |1/2|A′|2 + |A′|3 + |C|4),

which is of the form (3.11).

Full System

We discuss now the persistence of the bounded orbits found above for the full nor-
mal form (3.7). This question is a delicate problem here, which has been extensively
studied.

First, the persistence of the equilibria and the periodic orbits as given in case (i)
by the two equilibria (Ac,0) and (Ah,0) found in the (A,B)-plane, can be shown
by an implicit function argument, with an adapted Lyapunov–Schmidt method [59,
93]. The persistence of the periodic orbits given in case (iii) by the periodic orbits
found in the (A,B)-plane, and lying on the invariant 2-tori of the system (3.9), is
more complicated but can also be proved in the same way [59]. The persistence of
quasiperiodic solutions in case (iii), lying on the other invariant 2-tori of (3.9), leads
to a small divisor problem. This question can be analyzed using a parameterization
with the two first integrals by restricting the study to a region where these solutions
exist for the system (3.9). In [59] it is roughly proved that for a fixed value of the
bifurcation parameter μ , quasiperiodic solutions of (3.7) exist for (K,H) lying in a
region that is locally the product of a line with a Cantor set.

The question of persistence of the orbits homoclinic to periodic orbits in case
(ii) has received partial answers [6, 59, 91, 115, 116] and is more generally stud-
ied in [93]. In the truncated system each of these periodic orbits has a two-
dimensional unstable manifold, which intersects transversally the two-dimensional
plane B = ImC = 0, which is invariant under the reversibility symmetry S, in two
points of coordinates (A0,0,±C0,±C0), with C2

0 = K > 0. Using reversibility, tak-
ing these points as initial conditions at t = 0 gives two orbits that are homoclinic
to the periodic orbit and are invariant under the reversibility symmetry. For the full
system (3.7), a transversality argument allows us to show the persistence of these
homoclinic orbits, provided the size

√
K of the periodic orbit is not too small.

Notice that these are just two orbits in the circle of homoclinics to these peri-
odic orbits, and are precisely those which are reversible. The persistence of some
homoclinic orbit that is not reversible is an open problem.

In the limit K = 0, the periodic orbits shrink to the saddle-center equilibrium
(Ah,0,0). This equilibrium has a one-dimensional unstable manifold, which misses
in general the two-dimensional plane of symmetry. This is the challenging problem
of asymptotics beyond all orders, since these homoclinic orbits exist for the normal
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form at any order (except that the normal form cannot be written up to infinite order,
even for analytical vector fields).

Remark 3.9 (Analytic vector fields) (i) We point out that for analytic vector
fields, the homoclinics to periodic orbits persist for periodic orbits of size
larger than an exponentially small quantity with respect to |μ | (e.g., see [93]
and the references therein, and [61] for a shorter proof using the result in The-
orem 5.8 of Chapter 3).

(ii) For analytic vector fields, one could in principle compute an infinite expansion
in powers of |μ |1/2 of a solution homoclinic to the saddle-center (Ah,0,0).
However, a delicate analysis of singularities in the complex time-plane shows
that in general this expansion does not converge [92, 93].

(iii) As already mentioned, the center manifold reduction does not preserve analyt-
icity, so the results mentioned above for analytic vector fields cannot be directly
transfered to higher order systems. However, in this situation one can use the
results in Chapter 3, Corollary 5.12 and Remark 5.13, together with Theo-
rem 5.8 of that Chapter. We refer the reader to [61] for further details about
this situation.

We summarize in the next theorem the results briefly described above for Ck-
vector fields. We refer to [93] for the case of analytic vector fields and the persistence
of the homoclinics to periodic orbits, and to [59] for more precise statements on the
persistence of the periodic orbits of the second kind and of quasiperiodic solutions.

Theorem 3.10 (02+(iω) bifurcation) Assume that Hypotheses 3.1, 3.2, and 3.6
hold. Then for differential equation (3.1) a reversible 02+(iω) bifurcation occurs at
μ = 0. More precisely, the following properties hold in a neighborhood of 0 in R

4

for sufficiently small μ:
(i) For abμ < 0 and bc < 0, there are two equilibria, a center and a saddle-center,

together with two one-parameter families of periodic orbits of the first kind,
parameterized by their size r, which tend to the two equilibria as r → 0. For
any periodic orbit in the family which tends to the saddle-equilibrium, with
size r not too small, r > r∗(μ), there is a pair of reversible homoclinic orbits
connecting this periodic orbit to itself.

(ii) For abμ < 0 and bc > 0, there are two equilibria, a center and a saddle-center,
together with two families of periodic orbits of the first kind, parameterized
by their size r, for r < r∗(μ) = O(|μ |1/2), and which tend to the two equilib-
ria as r → 0. For any periodic orbit in the family which tends to the saddle-
equilibrium, with size r not too small, r > r∗(μ), there is a pair of reversible
homoclinic orbits connecting this periodic orbit to itself.

(iii) For abμ > 0 and bc < 0, there are two families of periodic orbits of the first
kind, parameterized by their size r, for r > r∗(μ) = O(|μ |1/2). To any periodic
orbit in one of these families, there is a pair of reversible homoclinic orbits
connecting the periodic orbit to itself.

(iv) For abμ > 0 and bc > 0, there are no bounded solutions.
Furthermore, in the cases (i), (ii), and (iii), there are periodic orbits of the second
kind and quasiperiodic orbits.
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Computation of 02+(iω) Bifurcations in Infinite Dimensions

We show below how to compute the principal coefficients in the normal form (3.7)
when starting from an infinite-dimensional system of the form

du
dt

= Lu+R(u,μ). (3.12)

We assume that the parameter μ is real, and that the system (3.12) possesses a
reversibility symmetry S and satisfies the hypotheses of Theorems 3.3 and 3.15 in
Chapter 2. We further assume that the spectrum of the linear operator L is such
that σ0 = {0,±iω}, where 0 is an algebraically double and geometrically simple
eigenvalue, with a symmetric eigenvector ξ0 such that Sξ0 = ξ0, and ±iω are simple
eigenvalues. Then the four-dimensional reduced system satisfies the hypotheses of
Lemma 3.5, so that its normal form is given by (3.7).

We proceed as in Section 3.4 and in the previous examples. In equality (4.3) in
Chapter 3, we take v0 = Aξ0 +Bξ1 +Cζ +Cζ and then write

u = Aξ0 +Bξ1 +Cζ +Cζ +Ψ̃(A,B,C,C,μ), (3.13)

where Ψ̃ takes values in Z . With the notations from Section 3.2.3, we consider the
Taylor expansion (1.15) of R, and the expansion of Ψ̃ ,

Ψ̃(A,B,C,C,μ) = ∑
1≤r+s+q+l+m≤p

ArBsCqC
l μmΨ rsqlm,

where

Ψ rsql0 = 0 for r + s+q+ l = 1.

Using the reversibility symmetry we find that

SΨ rsqlm = (−1)sΨ rslqm, Ψ rsqlm =Ψ rslqm.

Identity (4.4) in Chapter 3 is, in this case,

B∂AΨ̃ + iωC∂CΨ̃ − iωC∂CΨ̃ +(ξ1 +∂BΨ̃)P(A, |C|2,μ)

+(iC(ζ +∂CΨ̃)− iC(ζ +∂CΨ̃))Q(A, |C|2,μ)

= LΨ̃ +R(Aξ0 +Bξ1 +Cζ +Cζ +Ψ̃ ,μ).

Using the expansions of R, Ψ̃ , P, and Q, we find at orders O(μ), O(A2), O(CC),
O(AC), and O(μC), the equalities
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aξ1 = LΨ 00001 +R0,1,

bξ1 = LΨ 20000 +R2,0(ξ0,ξ0),

cξ1 = LΨ 00110 +2R2,0(ζ ,ζ ),
iβζ = (L− iω)Ψ 10100 +2R2,0(ξ0,ζ ),
iαζ = (L− iω)Ψ 00101 +R1,1ζ +2R2,0(ζ ,Ψ 00001).

The different coefficients are now found from the solvability conditions for these
five equations, just as in Section 3.4.4 of Chapter 3,

a = 〈R0,1,ξ ∗
1 〉, b = 〈R2,0(ξ0,ξ0),ξ ∗

1 〉, c = 〈2R2,0(ζ ,ζ ),ξ ∗
1 〉,

iβ = 〈2R2,0(ξ0,ζ ),ζ ∗〉, iα = 〈R1,1ζ +2R2,0(ζ ,Ψ 00001),ζ ∗〉.

Here the vectors ξ ∗
1 and ζ ∗ are orthogonal to the ranges of L and iω −L, respec-

tively, and are found as in the Sections 3.4.2 and 3.4.4.

Exercise 3.11 Using the reversibility symmetry, show from the formulas above that the coefficients
a, b, c, α , and β are real.

Exercise 3.12 Consider system (3.12) under the assumptions above. Further assume that u = 0 is
a solution for all μ , i.e., R(0,μ) = 0.

(i) Show that
Ψ(0,0,0,0,μ) = 0, P(0,0,μ) = 0, ρB,C(0,0,0,0,μ) = 0.

(ii) Consider the expansion of P,

P(A, |C|2,μ) = a′μA+bA2 + c|C|2 +h.o.t..

Show that
a′ = 〈R1,1ξ0,ξ ∗〉

and that the function fH,K in (3.10) is

fH,K(A,μ) =
2
3

bA3 +a′μA2 +2cKA+H +h.o.t..

Compare with (2.16) and determine the phase portraits of the truncated normal form.
(iii) Assume that b = 0 and take

P(A, |C|2,μ) = a′μA+b′A3 + c|C|2 +h.o.t..

Show that
b′ = 〈2R2,0(ξ0,Ψ 20000)+R3,0(ξ0ξ0,ξ0),ξ ∗

1 〉,
where

LΨ 20000 +R2,0(ξ0,ξ0) = 0.

Determine the leading order terms in the expansion of fH,K and compare with (2.18). Deter-
mine the phase portraits of the truncated normal form.

(iv) Discuss the phase portraits of the full four-dimensional reduced system in cases (ii) and (iii).

Example: Two-dimensional NLS-type Equation

Consider the following nonlinear Schrödinger equation (NLS) in the plane
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i∂tU +ΔU +V (x)U +U f (|U |2) = 0, (3.14)

in which U is complex-valued, U(t,x,y) ∈ C, V (x) a given one-dimensional poten-
tial, i.e., independent of y, and f a smooth map. This kind of equation arises as a
model in many different contexts, as for instance, wave formation in Bose–Einstein
condensates, or waves in photorefractive media.

We are interested in solutions of the form

U(t,x,y) = eiωt v(x,y),

with real-valued profiles v satisfying the steady equation

Δv−ωv+V (x)v+ v f (v2) = 0. (3.15)

Hypothesis 3.13 (i) Assume that f : R → R is a smooth function with f (0) = 0
and

f (w) = d0w+O(w2) as w → 0,

with d0 
= 0.
(ii) Assume that the potential V : R → R is a smooth function, such that the one-

dimensional operator
LV = ∂xx +V (x)

acting in L2(R) has the spectrum

σ(LV ) = σc(LV )∪{γn, . . . ,γ1}, σc(LV ) ⊂ {λ ∈ C ; Reλ ≤ γ∗},

for some n ≥ 1, where γ∗ < γn < · · ·< γ1, and γ j , j = 1, . . . ,n, are simple eigen-
values with associated eigenfunctions g j normalized in the norm of L2(R).

Spatial Dynamics

We start by writing equation (3.15) as a first order system,

vy = w

wy = (ω −LV )v− v f (v2), (3.16)

where the time-like variable is the spatial variable y, in which the potential is
homogeneous. This system is of the form (2.1) in Chapter 2, with u = (v,w)
and a linear part Lω depending upon ω . We assume that Lω acts in the Hilbert
space X = H1(R)× L2(R), in which it is a closed operator with dense domain
Z = H2(R)×H1(R).

Equation (3.15) possesses two discrete symmetries: a reflection in y, v(·,y) �→
v(·,−y), and a reflection in v, v �→ −v, as a remnant of the phase rotation invari-
ance of the original NLS equation. As a consequence, the first order system (3.16),
possesses a reversibility symmetry S and is equivariant under a symmetry T acting
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through
S(v,w) = (v,−w), T(v,w) = (−v,−w).

Reversible Bifurcations

We take ω as bifurcation parameter and look for the bifurcation points. For this, we
compute the spectrum of Lω , from Hypothesis 3.13(ii) which describes the spectral
properties of LV . A direct calculation allows us to conclude that there is an increas-
ing sequence of bifurcation points at ω = γ1,γ2, . . . ,γn. At each bifurcation point
ω = γk the spectrum of Lω consists of

one eigenvalue in zero, geometrically simple and algebraically double;
k−1 pairs of simple complex conjugated eigenvalues

±i
√

γ j − γk, j = 1, . . . ,k−1;

and

the rest of the spectrum lies at a distance
√

γk − γk+1 > 0 from the imaginary axis.

Furthermore, in each case the eigenvector (gk,0) in the kernel of Lγk is invariant
under the action of S. In particular, this shows that we are in the presence of an 02+

bifurcation at ω = γ1, and an 02+(iω) bifurcation at ω = γ2.

First Bifurcation at ω = γ1

We set ω = γ1 + μ , and rewrite the first order system in form (1.13), with y replac-
ing the time t and L = Lγ1 . This system satisfies the hypotheses of Theorems 3.3,
3.13, and 3.15 in Chapter 2, so that it possesses a two-dimensional center manifold.
Furthermore, the two-dimensional space E0 is spanned by the vectors

ζ0 =
(

g1

0

)
, ζ1 =

(
0
g1

)
,

satisfying

Lζ0 = 0, Lζ1 = ζ0, Sζ0 = ζ0, Sζ1 = −ζ1, Tζ0 = −ζ0, Tζ1 = −ζ1.

Then the reduced system satisfies Hypotheses 1.1 and 1.3, and, in addition, it is
equivariant under the action of T. Applying the result in Theorem 1.5, we conclude
that the normal form of the reduced system is given by (1.9), in which the polyno-
mial Q is odd in A, due to the symmetry T (see also Remark 1.9).

The computation of the principal coefficients in the normal form is now much
easier than in the general case. We find that

Q(A,μ) = μA+dA3 +O(μ2|A|+ |A|5), d = −d0

∫

R

g4
1(x)dx.
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Consequently, the reduced system possesses bounded solutions in the cases μ <
0,d0 > 0, μ < 0,d0 < 0, and μ > 0,d0 > 0, when the phase portraits are as in Fig-
ure 1.3, with c = 1 and d as above. Summarizing we have:

(i) periodic orbits in the three cases, which correspond to solutions of (3.15) that
are periodic in y and localized in x;

(ii) a pair of heteroclinic orbits in the case μ < 0, d0 < 0, which correspond to
solutions of (3.15) that are asymptotically constant in y and localized in x;

(iii) a pair of homoclinic orbits in the case μ > 0, d0 > 0, which correspond to
solutions of (3.15) that are fully localized.

Second Bifurcation at ω = γ2

Now we set ω = γ2 + μ , and rewrite the first order system in form (3.12), with
y replacing time t and L = Lγ2 . Applying the results in Theorems 3.3, 3.13, and
3.15 in Chapter 2, we obtain in this case a four-dimensional center manifold. The
two-dimensional space E0 is spanned by the vectors

ξ0 =
(

g2

0

)
, ξ1 =

(
0
g2

)
, ζ =

(
g1

i
√

γ1 − γ2g1

)
, ζ =

(
g1

−i
√

γ1 − γ2g1

)
,

satisfying

Lξ0 = 0, Lξ1 = ξ0, Sξ0 = ξ0, Sξ1 = −ξ1, Tξ0 = −ξ0, Tξ1 = −ξ1,

and
Lζ = i

√
γ1 − γ2ζ , Sζ = ζ , Tζ = −ζ .

Then the reduced system satisfies Hypotheses 3.1 and 3.2, and, in addition, it is
equivariant under the action of T. Applying the result in Theorem 3.5, we conclude
that the normal form of the reduced system is given by (3.7), in which the polyno-
mials P and Q are odd and even, respectively, in A, due to the symmetry T (see also
Remark 1.9).

The computation of the principal coefficients in the normal form is again easier
than in the general case. We find the truncated system

dA
dt

= B,
dB
dt

= μA+dA3,
dC
dt

= i
√

γ1 − γ2C, (3.17)

in which
d = −d0

∫

R

g4
2(x)dx.

We can now proceed as in the general case and conclude that this system possesses
bounded solutions in the cases μ < 0,d0 > 0, μ < 0,d0 < 0, and μ > 0,d0 > 0, and
more precisely:
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(i) periodic orbits, of the first and second kind, and quasiperiodic orbits, in the
three cases, which correspond to solutions of (3.15) that are periodic and
quasiperiodic, respectively, in y and localized in x;

(ii) a pair of heteroclinic orbits to the periodic orbits of the first kind, which are not
too small, in the case μ < 0, d0 < 0, which correspond to solutions of (3.15)
that have an asymptotically constant profile with relative small oscillations at
infinity in y and are localized in x;

(iii) a pair of homoclinic orbits to the periodic orbits of the first kind, which are not
too small, in the case μ > 0, d0 > 0, which correspond to solutions of (3.15)
which have a localized profile with relative small oscillations at infinity in y
and are localized in x.

We refer to [40] for further details, and extensions to the case of complex-valued
solutions, nearly one-dimensional potentials, and systems of NLS-type equations.

4.3.2 Reversible 02−(iω) Bifurcation (Elements)

We consider in this section the 02−(iω) bifurcation, when 0 is an algebraically dou-
ble and geometrically simple eigenvalue of L, with associated eigenvector ξ0 satis-
fying

Sξ0 = −ξ0,

and ±iω are simple eigenvalues. The complete study of the dynamics of this bifur-
cation is an open problem. We shall only briefly outline here the normal form and
some elementary facts about its dynamics. This case is roughly treated in [56], and
with an additional reversibility symmetry in [124].

02−(iω) Normal Form

First, by arguing as in the case of the 02+(iω) bifurcation, we can prove here that

there is a basis {ξ0,ξ1,ζ ,ζ} of R
2 × R̃2 such that

Lξ0 = 0, Lξ1 = ξ0, Lζ = iωζ ,

Sξ0 = −ξ0, Sξ1 = ξ1, Sζ = ζ .

Using this basis, in the same way as in the proof of Lemma 3.5 we find in this
case that for any p < k there exists a map Φ : V1 ×V2 → R

4 of class Ck, defined in

a neighborhood V1 ×V2 of 0 in R
2 × R̃2 ×R, with

Φ(0,0,0,0,0) = 0, ∂(A,B,C,C)Φ(0,0,0,0,0) = 0,

and
Φ(−A,B,C,C,μ) = SΦ(A,B,C,C,μ),
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such that the change of variables

u = Aξ0 +Bξ1 +Cζ +Cζ +Φ(A,B,C,C,μ), (3.18)

transforms the differential equation into the normal form

dA
dt

= B

dB
dt

= ABP(A2, |C|2,μ)+AQ(A2, |C|2,μ)+ρB(A,B,C,C,μ)

dC
dt

= iωC + iCR1(A2, |C|2,μ)+ACR2(A2, |C|2,μ)+ρC(A,B,C,C,μ). (3.19)

Here P, Q, R1, and R2 are real-valued polynomials of degrees p− 2, p− 1, p− 1,
and p−2, respectively, in (A,B,C,C), and the remainders ρB and ρC are functions
of class C k satisfying

ρB(−A,B,C,C,μ) = −ρB(A,B,C,C,μ),
ρC(−A,B,C,C,μ) = −ρC(A,B,C,C,μ),

and
|ρB(A,B,C,C,μ)|+ |ρC(A,B,C,C,μ)| = o((|A|+B|+ |C|)p).

Solutions of the Normal Form System

The complete description of the dynamics of the full normal form in this case is still
open. We only mention below some preliminary properties.

Consider the truncated system

dA
dt

= B

dB
dt

= aμA+ cAB+bA3 +dA|C|2

dC
dt

= iωC + f AC, (3.20)

obtained by keeping only the leading order terms in the normal form (3.19). We
assume that the coefficients a, b, and f in this system do not vanish.

First notice that the plane C = 0 is invariant, and that the dynamics in this plane
are those of the 02− bifurcation discussed in Section 4.1.2. Next, for C 
= 0, we set

A2 = v, B = u(v), C =
√

w(v)eiθ ,

which leads to the system
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2u
du
dv

= aμ + cu+bv+dw

u
dw
dv

= f w

dθ
dt

= ω .

Since f 
= 0, we may set
s = lnw,

which leads to the system

du
ds

=
1

2 f
(aμ +des + cu+bv)

dv
ds

=
u
f
.

This system is linear, and assuming that

2 f 2 − f c−b 
= 0, (3.21)

we obtain the general solution

u(s) = f (d′es +αλ+eλ+s +βλ−eλ−s)

v(s) = −aμ
b

+d′es +αeλ+s +βeλ−s

w(s) = es, (3.22)

in which α and β are arbitrary constants. Substituting s from the last equality into
the first two equalities give

u = f (d′w+αλ+wλ+
+βλ−wλ−

)

v = −aμ
b

+d′w+αwλ+
+βwλ−

,

where
d′ = d(2 f 2 − f c−b)−1,

and λ± are the solutions of

2 f 2λ 2 − f cλ −b = 0.

We only consider values of α,β such that u and v are real, v(s)≥ 0, and the paramet-
ric curve (u(s),v(s),w(s)) is bounded (recall that v = A2, u = A′, w = |C|2). Notice
that the values u = 0, v = −aμ/b, w = 0 correspond to a pair of equilibria (A±,0)
when abμ < 0, where A± are the two equilibria given Section 4.1.2.

In all cases, there is a set of (α,β ) such that there exist s0 and s1 such that
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v(s0) = v(s1) = 0, v(s) > 0 for all s ∈ (s0,s1).

It then follows that there exists s2 ∈ (s0,s1) such that u(s2) = 0, and a straight-
forward symmetry argument allows us to show the existence of a closed orbit in
the (A,B, |C|)-space. This gives a family of invariant 2-tori for the truncated sys-
tem (3.20). For the full system (3.19), one would expect that only KAM 1 tori per-
sist.

For abμ < 0, when we have the two equilibria (A±,0), we can further distinguish
the following cases, just as in Section 4.1.2:

(i) aμ < 0,b > 0. Then λ− < 0, λ+ > 0, and λ+ 
= 1. Take β = 0 in (3.22).
Then one finds a two-parameter family of heteroclinic orbits connecting the
equilibria (A+,0) and (A−,0), parameterized by α and the phase θ . These
orbits intersect the symmetry plane {A = 0, ImC = 0} transversally, so that
one expects the persistence of a one-parameter family of pairs of reversible
heteroclinic orbits for the full system (3.19).

(ii) aμ > 0, b < 0, c2 +8b > 0. Then λ− and λ+ are both real with the same sign,
and λ± 
= 1. For f c < 0 the stable and unstable manifolds of (A±,0) are two-
dimensional. Take α = β = 0 in (3.22). Then one finds a one-parameter family
of heteroclinic orbits, parameterized by the phase θ . Again, these orbits inter-
sect transversally the symmetry plane {A = 0, ImC = 0}, so that one expects
the persistence of a pair of reversible heteroclinic orbits for the system (3.19).
For f c > 0, the equilibria (A±,0) are nodes, one stable, and the other one
unstable. The orbits connecting (A+,0) and (A−,0) are expected to persist for
system (3.19) by the same argument as before. In addition, there are now orbits
connecting (A+,0), or (A−,0), to the origin. These are also expected to persist
since the one-dimensional stable (resp., unstable) manifold of the origin, which
stays close to that of the truncated system, ends necessarily at (A−,0) (resp.,
(A+,0)).

(iii) aμ > 0, b < 0, c2 +8b < 0. Then λ− and λ+ are complex conjugate. The dis-
cussion is the same as above for f c < 0, whereas for f c > 0, the nodes (A±,0)
are replaced by foci. The main difference concerns now the homoclinic orbit
to the origin (see Figure 1.5(iv)), which is not expected to persist for the full
system (3.19), due to the fact that the plane C = 0 is no longer invariant, and
to the fact that the stable and unstable manifolds of the origin are only one-
dimensional. One would expect here again to have homoclinic orbits to peri-
odic orbits, (up to an exponentially small size, if the vector field is analytic),
just as in the case 02+(iω).

1 The Kolmogorov–Arnold–Moser (KAM) theorem allows one to prove the existence of invariant
tori, in particular in Hamiltonian systems, for which a suitable formulation is performed. It is
particularly used in celestial mechanics, where small divisor problems occur. It is related to the
”strong implicit function theorem”, which is out of the scope of this book.
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4.3.3 Reversible (iω)2 Bifurcation (1-1 resonance)

We consider in this section the (iω)2 bifurcation. This bifurcation is also referred
to as “1:1 resonance,” or “reversible-Hopf bifurcation,” or ”Hamiltonian–Hopf bi-
furcation” in the case of a Hamiltonian system. We refer for instance to [68], and to
[28] for the Hamiltonian case, for detailed proofs.

Hypothesis 3.14 Assume that σ(L) = {±iω}, with ±iω algebraically double and
geometrically simple eigenvalues.

Normal Form

As in the previous cases, we start by constructing a suitable basis of R
4.

Lemma 3.15 ((iω)2 basis of R
4) Assume that Hypotheses 3.1 and 3.2 hold. Then

there exists a basis {Reζ0, Imζ0,Reζ1, Imζ1} of R
4, with ζ0,ζ1 ∈ C

4 generalized
eigenvectors of L, such that

(L− iω)ζ0 = 0, (L− iω)ζ1 = ζ0, (L+ iω)ζ0 = 0, (L+ iω)ζ1 = ζ0,

Sζ0 = ζ0, Sζ1 = −ζ1.

Proof Consider an eigenvector ζ ′
0 associated to the eigenvalue iω . Since L anticom-

mutes with S we have
(L+ iω)Sζ ′

0 = 0,

so there exists k ∈ C such that
Sζ ′

0 = kζ ′
0.

Furthermore, since S2 = I, we have |k| = 1. Set k = eiα and

ζ0 = e−iα/2ζ ′
0.

Then
(L− iω)ζ0 = 0, Sζ0 = ζ0.

Next, take a generalized eigenvector ζ ′
1 such that

(L− iω)ζ ′
1 = ζ0.

Then
(L+ iω)Sζ ′

1 = −Sζ0 = −ζ0,

and there exists β0 ∈ C such that

Sζ ′
1 = −ζ ′

1 +βζ0.

Applying S to this equality, taking into account that S2 = I, we obtain
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ζ ′
1 = −Sζ ′

1 +βζ0 = ζ ′
1 +(β −β )ζ0.

Consequently, β ∈ R, and we choose

ζ1 = ζ ′
1 −

β
2

ζ0.

Then
(L− iω)ζ1 = ζ0

and

Sζ1 = Sζ ′
1 −

β
2

ζ0 = −ζ ′
1 +

β
2

ζ0 = −ζ1,

which proves the lemma. ��

Notation 3.16 In the basis above, we represent a vector in u ∈ R
4 by (A,B,A,B),

u = Aζ0 +Bζ1 +Aζ0 +Bζ1,

with A,B ∈ C. We identify R
4 with the space R̃4 in which

R̃4 = {(A,B,A,B) ; A,B ∈ C}.

Lemma 3.17 ((iω)2 normal form) Assume that Hypotheses 3.1 and 3.14 hold, and

consider the basis {ζ0,ζ1,ζ0,ζ1} of R̃4 in Lemma 3.15. Then for any positive inte-

ger p, 2≤ p≤ k, there exist neighborhoods V1 and V2 of 0 in R̃4 and R, respectively,

and for any μ ∈ V2 there is a polynomial Φ(·,μ) : R̃4 → R̃4 of degree p with the
following properties:

(i) The coefficients of the monomials of degree q in Φ(·,μ) are functions of μ of
class C k−q,

Φ(0,0,0,0,0) = 0, ∂(A,B,A,B)Φ(0,0,0,0,0) = 0, (3.23)

and
Φ(A,−B,A,−B,μ) = SΦ(A,B,A,B,μ).

(ii) For (A,B,A,B) ∈ V1, the change of variables

u = Aζ0 +Bζ1 +Aζ0 +Bζ1 +Φ(A,B,A,B,μ), (3.24)

transforms the equation (3.1) into the normal form
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dA
dt

= iωA+B+ iAP
(
|A|2, i

2
(AB−AB),μ

)
+ρA(A,B,A,B,μ)

dB
dt

= iωB+ iBP
(
|A|2, i

2
(AB−AB),μ

)
+AQ

(
|A|2, i

2
(AB−AB),μ

)

+ρB(A,B,A,B,μ), (3.25)

where P and Q are real-valued polynomials of degree p−1 in (A,B,A,B). The
remainders ρA and ρB are of class C k, and satisfy

ρA(A,−B,A,−B,μ) = −ρA(A,B,A,B,μ),
ρB(A,−B,A,−B,μ) = ρB(A,B,A,B,μ),

with the estimate

|ρA(A,B,A,B,μ)|+ |ρB(A,B,A,B,μ)| = o((|A|+ |B|)p).

Proof According to Theorem 2.2 and Lemma 1.17 of Chapter 3, there is a poly-
nomial Φ(·,μ) of degree p with coefficients of the monomials of degree q of class
C k−q in μ , which satisfies (3.23), and such that the change of variables (3.24) trans-
forms (3.1) into

dA
dt

= iωA+B+ iAP
(
|A|2, i

2
(AB−AB),μ

)
+ρA(A,B,A,B,μ)

dB
dt

= iωB+ iBP
(
|A|2, i

2
(AB−AB),μ

)
+AQ

(
|A|2, i

2
(AB−AB),μ

)

+ρB(A,B,A,B,μ),

where P and Q are polynomials of degree p−1 and the remainders satisfy the esti-
mates in the part (ii) of the lemma.

Now, we use the reversibility symmetry. According to Theorem 3.4 we have that

Φ(A,−B,A,−B,μ) = SΦ(A,B,A,B,μ),

and for the first component in the normal form we find

iAP
(
|A|2, i

2
(AB−AB),μ

)
+ρA(A,−B,A,−B,μ)

= iAP
(
|A|2, i

2
(AB−AB),μ

)
−ρA(A,B,A,B,μ).

This implies that P is real-valued and that the symmetry property for ρA in the part
(ii) of the lemma holds. Next, for the second component we find

AQ
(
|A|2, i

2
(AB−AB),μ

)
+ρB(A,−B,A,−B,μ)

= AQ
(
|A|2, i

2
(AB−AB),μ

)
+ρB(A,B,A,B,μ),
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which implies that Q is real-valued, and the symmetry property for ρB. ��

Solutions of the Normal Form System

We analyze now the dynamics of the normal form in the generic situation in which
the following assumption on the expansion of the vector field holds.

Hypothesis 3.18 Assume that the expansions of P and Q in (3.25),

P
(
|A|2, i

2
(AB−AB),μ

)
= αμ +β |A|2 +

iγ
2

(AB−AB)+O((|μ |+(|A|+ |B|)2)2),

Q
(
|A|2, i

2
(AB−AB),μ

)
= aμ +b|A|2 +

ic
2

(AB−AB)+O((|μ |+(|A|+ |B|)2)2).

are such that a and b do not vanish.

A first observation is that the system (3.25) always has an equilibrium at the
origin.

Truncated System

We start with the truncated system

dA
dt

= iωA+B+ iAP
(
|A|2, i

2
(AB−AB),μ

)

dB
dt

= iωB+ iBP
(
|A|2, i

2
(AB−AB),μ

)
+AQ

(
|A|2, i

2
(AB−AB),μ

)
. (3.26)

This system is integrable with first integrals

K =
i
2
(AB−AB), H = |B|2 −

∫ |A|2

0
Q(s,K,μ)ds.

Also notice that in addition to the reversibility symmetry S acting through S(A,B) =
(A,−B), this truncated system is equivariant under the SO(2) group action,

Rφ (A,B) = (Aeiφ ,Beiφ ), φ ∈ R/2πZ. (3.27)

In addition, we have that
Rφ S = SR−φ ,

so that the truncated normal actually possesses an O(2) symmetry.
For the analysis of this system it is convenient to work in polar coordinates

A = r0ei(ωt+θ0), B = r1ei(ωt+θ1),

in which the two first integrals are given by
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K = r0r1 sin(θ1 −θ0), H = r2
1 −

∫ r2
0

0
Q(s,K,μ)ds, (3.28)

and system (3.9) becomes

dr0

dt
= r1 cos(θ1 −θ0)

dr1

dt
= r0 cos(θ1 −θ0)Q(r2

0,K,μ)

dθ0

dt
=

r1

r0
sin(θ1 −θ0)+P(r2

0,K,μ)

d(θ1 −θ0)
dt

= − sin(θ1 −θ0)
r0r1

(
r2

1 + r2
0Q(r2

0,K,μ)
)
. (3.29)

Remark 3.19 (i) The projection of the phase portrait in the (r0,r1)-plane is simi-
lar to that in Figure 1.3, when allowing for negative values for r0 and r1 (which
requires a careful redefinition of the phases θ0 and θ1). However, because of
the dependence of θ0 and θ1 on t, only parts of these curves correspond to the
present case. For the analysis of this situation we shall use different variables
below.

(ii) In the case when the system is Hamiltonian, the normal form has an additional
relationship between polynomials P and Q (e.g., see [67]). We point out that
in [28] suitable symplectic polar coordinates (r0 being one of them) lead to
different, less singular, phase portraits.

Next, we set
u0 = r2

0, u1 = r2
1,

for which we find
du1

dt
= Q(u0,K,μ)

du0

dt
,

and (
du0

dt

)2

= 4(u0u1 −K2), u1 = G(u0,K,μ)+H,

with

G(u0,K,μ) =
∫ u0

0
Q(s,K,μ)ds.

Equivalently, we have
(

du0

dt

)2

= 4 fH,K(u0,μ), fH,K(u0,μ) = u0 (G(u0,K,μ)+H)−K2. (3.30)

Furthermore,

d(θ1 −θ0)
dt

= − K
u0u1

∂
∂u0

( fH,K(u0,μ)) = −K
∂

∂u0
(ln(u0u1)) ,

which gives
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d(θ1 −θ0)
du0

= −sign

(
du0

dt

)
∂

∂u0

(
tan−1

(
1
K

f 1/2
H,K(u0,μ)

))
.

Integration with respect to u0 gives

θ1 −θ0 = −sign

(
du0

dt

)
tan−1

(
1
K

f 1/2
H,K(u0,μ)

)
+θ∗,

with an arbitrary integration constant θ∗. Finally, θ0 can be expressed in terms of u0

by integrating the third equation in the system (3.29). Summarizing, we can solve
(3.29) by first determining u0 from the equality (3.30), and then obtaining succes-
sively u1, θ1 −θ0, and θ0.

Restricting the system to (u0,u1,θ1 −θ0) equilibria are given by

fH,K(u0,μ) = 0,
∂

∂u0
fH,K(u0,μ) = 0. (3.31)

Notice that this corresponds to either

θ1 −θ0 = ±π
2

, r2
1 + r2

0Q(r2
0,K,μ) = 0, r0r1 
= 0,

or to
r1 = 0, Q(r2

0,K,μ) = 0.

Equations (3.31) give a curve in the (H,K)-plane. At leading orders we find

fH,K(u0,μ) =
b
2

u3
0 + μ̃u2

0 +Hu0 −K2, μ̃ = aμ + cK,

which gives the parametric equations,

H = −3b
2

s2 −2μ̃s, K2 = −s2(μ̃ +bs).

We plot this curve in Figure 3.2, together with the shape of fH,K(·,μ) for different
values of H and K, in cases (i) μ̃ < 0, b < 0, (ii) μ̃ < 0, b > 0, and (iii) μ̃ > 0, b < 0.
In the case μ̃ > 0, b > 0, it is not difficult to check that the system has no bounded
solutions, except for the equilibrium at the origin. In the cases (ii) and (iii), we have
the particular points (0,KE) and (Hc,0) given at leading orders by

(0,KE) =

(

0,

√

−4a3μ̃3

27b2

)

, (Hc,0) =
(

a2μ̃2

2b
,0

)
.

The projections in the (u0,u′0)-plane of the bounded orbits obtained by varying
H for a fixed K in the three cases are shown in Figure 3.3. In order to obtain these
curves we only need to consider the parts of the graphs of fH,K(·,μ) where u0 ≥ 0
and fH,K(u0,μ) ≥ 0. Notice that for a fixed K 
= 0, the curves do not intersect each
other as H varies, whereas for H = 0 all these curves intersect at one point, which is
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Fig. 3.2 Graphs of fH,K(·,μ) depending on (H,K) in the cases (i) μ̃ < 0, b < 0, (ii) μ̃ < 0, b > 0,
(iii) μ̃ > 0, b < 0, when the system has nonequilibrium bounded orbits. In case (ii), bounded orbits
exist for values of (H,K) in the closed bounded set surrounded by the curves Γe and Γh, whereas in
cases (i) and (iii) bounded orbits exist for values of (H,K) in the closed set bounded by the curves
Γe and containing the positive H-axis.

the origin. In particular, this leads to the unusual behavior of the orbits close to the
origin in the case H = 0 (see Figure 3.3).

(i) For μ̃ < 0, b < 0, in the (u0,u′0)-plane we have for any K 
= 0 one nontrivial
equilibrium, which is surrounded by a one-parameter family of periodic or-
bits, and for K = 0 a one-parameter family of periodic orbits, which shrink to
the origin as H → 0. The equilibrium at the origin corresponds to the equi-
librium at the origin for the truncated normal form (3.26), whereas each non-
trivial equilibrium in the (u0,u′0)-plane corresponds to an equilibrium of the
(r0,r1,θ1 −θ0)-system, and to a periodic orbit for the truncated normal form.
The periodic orbits in the (u0,u′0)-plane correspond to periodic orbits of the
(r0,r1,θ1 −θ0)-system, and to invariant tori with quasiperiodic or periodic so-
lutions for the truncated normal form (3.26).

(ii) For μ̃ < 0, b > 0, in addition to equilibria and periodic orbits which are similar
to those found in case (i), in the (u0,u′0)-plane we now find a homoclinic orbit
for each K with |K| < KE . For the truncated normal form (3.26), each of these
homoclinic orbits corresponds to a circle of homoclinics to periodic orbits,
which, it turns out, have a phase shift between the limits t →±∞, just as in the
02+(iω) bifurcation. For the system truncated at cubic order, we can compute
explicitly the circle of homoclinic orbits found for K = 0,
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Fig. 3.3 Dynamics of the (iω)2 bifurcation. Plot of the projections in the (u0,u′0)-plane of the
bounded orbits of the truncated system (3.26) obtained by varying H for a fixed K 
= 0 (left) and
K = 0 (right), in the cases (i) μ̃ < 0, b < 0, (ii) μ̃ < 0, b > 0, (iii) μ̃ > 0, b < 0, when the system
has nonequilibrium bounded orbits.

r0 =

√
−aμ

b
tanh

(√
−aμ

2
|t|

)

, r1 = |r′0|,

θ1 −θ0 ∈ {0,π}, θ0 =
(

α − aβ
b

)
μt − β

√
−2aμ
b

tanh

(√
−aμ

2
t

)

+θ∗.

In this expression, we have explicitly the phase shift 2β
√
−2aμ/b between

t = +∞ and t = −∞ on the asymptotic periodic orbit which is given by

r0 =

√
−aμ

b
, r1 = 0, θ0 =

(
αμ − aβ μ

b

)
t.

(iii) For μ̃ > 0, b < 0, in the (u0,u′0)-plane, we have again equilibria and periodic
orbits similar to those found in case (i). In addition, there is in this case a
homoclinic orbit to the origin, found for H = K = 0. For the truncated normal
form (3.26), this homoclinic orbit corresponds to a circle of homoclinics to
the origin. For the system truncated at cubic order, these homoclinic orbits are
given by
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r0 =

√
−2aμ

b
(cosh(

√
aμt)))−1, r1 = |r′0|,

θ1 −θ0 ∈ {0,π}, θ0 = αμt −
2β√aμ

b
tanh(

√
aμt)+θ∗.

Finally, notice that the small bounded solutions are such that

K = O(|μ̃|3/2), H = O(|μ̃|2),

hence μ̃ = O(μ). This further implies that the leading order terms describe correctly
the shape of fH,K(·,μ) in the neighborhood of 0, so that all these bounded solutions
can be found for the truncated system (3.26).

Remark 3.20 In literature, the case b > 0 is also called the “defocusing” case
when related to the nonlinear Schrödinger equation, or “supercritical” case when it
arises in viscous hydrodynamical applications. The solutions corresponding to the
homoclinic orbits found in this case are sometimes called “dark solitary waves,”
because the amplitude of the corresponding localized solution is smaller in the cen-
tral region than in the limits as t → ±∞. The case b < 0 is also referred to as the
“focusing” or “subcritical” case, for the same reasons as above, while the solu-
tions corresponding to the homoclinics to 0 in this case are called “bright” solitary
waves.

Full System

The origin is an equilibrium of the normal form (3.25), and using the implicit func-
tion theorem it is easy to check that it corresponds to a symmetric equilibrium in the
four-dimensional system (3.1).

The persistence of the periodic orbits corresponding to the nontrivial equilibria
found in the (u0,u′0)-plane in the three cases (i), (ii), and (iii) can be proved with the
help of the implicit function theorem. The persistence of invariant tori corresponding
to periodic orbits in the (u0,u′0)-plane in the three cases (i), (ii), and (iii) is a question
of persistence of quasiperiodic solutions and leads to a small divisor problem, just as
in the case of the 02(iω) bifurcation. However, it can treated in a subset of the two-
dimensional parameter space defined by the two first integrals. It is roughly proved
in [64], in the context of a hydrodynamical application, that for a fixed value of μ
quasiperiodic solutions of (3.25) typically exist for (H,K) lying in a region that is
locally the product of a line with a Cantor set.

Next, the question of persistence of the orbits homoclinic to periodic solutions
in the case (ii) turns out to be simpler than in the case of the 02+(iω) bifurcation,
since here the family of asymptotic periodic orbits does not shrink to a point. In-
deed, for the reduced system (3.26), the two-dimensional unstable manifold of any
asymptotic periodic orbit, which is rotationally symmetric, intersects transversally
the two-dimensional plane that is invariant under the reversibility symmetry in two
points. Then a perturbation argument, controlling the size of the perturbation, which
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is linked to the size of the periodic orbit, allows us to show that these two intersec-
tion points persist for system (3.25), and a symmetry argument allows to conclude
the existence of a pair of reversible homoclinic orbits to every periodic orbit (e.g.,
see [68]).

Finally, the persistence of the orbits homoclinic to 0 in case (iii) can be solved
in the same way, since the intersection of the rotationally invariant two-dimensional
unstable manifold of the origin for the reduced system (3.26) intersects transversally
in two distinct points the two-dimensional plane of symmetry [68]. However, we
point out that while the reduced system (3.26) possesses a circle of homoclinics,
we just indicated above the persistence of two of them, those which are reversible.
The persistence of nonsymmetric homoclinics is still an open problem, related to
asymptotics beyond all orders.

Summarizing, we have the following result (see [68] and the references therein
for further details).

Theorem 3.21 ((iω)2 bifurcation) Assume that Hypotheses 3.1, 3.14, and 3.18
hold. Then for differential equation (3.1) a reversible (iω)2 bifurcation occurs at
μ = 0. More precisely, the following properties hold in a neighborhood of 0 in R

4

for sufficiently small μ:

(i) For b < 0, or b > 0 and aμ < 0, there is one symmetric equilibrium, a one-
parameter family of periodic orbits, and a two-parameter family of quasiperi-
odic orbits located on KAM tori.

(ii) For aμ < 0 and b > 0, there is a one-parameter family of pairs of reversible
homoclinic orbits to periodic orbits.

(iii) For aμ > 0 and b < 0, there is a pair of reversible homoclinic orbits to the
symmetric equilibrium.

(iv) For aμ > 0 and b > 0, there is one symmetric equilibrium and no other bounded
solutions.

Remark 3.22 We show in Appendix D.2 how to compute the principal coefficients
in the normal form (3.25) when starting from an infinite-dimensional system of the
form (3.12).

Example: Steady Solutions of the Swift–Hohenberg Equation

Consider the Swift–Hohenberg equation, discussed in Section 2.4.3 of Chapter 2.
We are now interested in bounded steady solutions of (4.13), which arise as bifurca-
tions from the trivial solution u = 0, i.e., small bounded solutions of the fourth order
differential equation

(
1+

d2

dx2

)2

u−μu+u3 = 0, x ∈ R. (3.32)
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Formulation as a First Order System

We start by writing equation (3.32) as a first order system

dv
dx

= Lv+R(v,μ) (3.33)

of the form (3.1), but now with the spatial variable x being the time t. We set

v1 = u, v2 =
du
dx

, v3 =
d2u
dx2 , v4 =

d3u
dx3 ,

and then (3.32) is of the form (3.33) with

v =

⎛

⎜
⎜
⎝

v1

v2

v3

v4

⎞

⎟
⎟
⎠ , L =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
−1 0 −2 0

⎞

⎟
⎟
⎠ ,

and

R(v,μ)= μR1,1v+R3,0(v,v,v), R1,1v =

⎛

⎜⎜
⎝

0
0
0
v1

⎞

⎟⎟
⎠ , R3,0(u,v,w)=

⎛

⎜⎜
⎝

0
0
0

−u1v1w1

⎞

⎟⎟
⎠ .

The system (3.33) is reversible, with reversibility symmetry S defined by

S(v1,v2,v3,v4) = (v1,−v2,v3,−v4),

and it is easy to check that the vector field in this system satisfies Hypothesis 3.1.

Bifurcations

In order to determine the type of bifurcations which may arise in this system we
look at the eigenvalues λ of the 4×4-matrix L + μR1,1. A direct calculation gives
that λ satisfies

(λ 2 +1)2 −μ = 0,

so that the four eigenvalues of this matrix are given by

λ = ±i

(
1± 1

2
√

μ − 1
8

μ +O(|μ |3/2)
)

. (3.34)

In particular, we have that ±i are double eigenvalues when μ = 0. Furthermore, the
vectors

ζ0 = (1, i,−1,−i), ζ1 = (0,1,2i,−3)
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satisfy
Lζ0 = iζ0, Lζ1 = iζ1 +ζ0, Sζ0 = ζ0, Sζ1 = −ζ1.

This implies that L satisfies Hypothesis 3.14 and that the vectors ζ0,ζ1 ∈C
4 provide

a basis of R
4 as in Lemma 3.15.

Normal Form

We are here in the presence of a (iω)2 bifurcation, with ω = 1, and according to
Lemma 3.17 the system has the normal form (3.25). The computation of the prin-
cipal coefficients in the normal form is in this particular case simpler than in the
general case discussed in Appendix D.2, since the vector field is cubic.

First observe that the eigenvalues of the linearization at the origin of the normal
form (3.25) are given by

i
(

1±
√
−aμ +αμ +O(|μ |3/2)

)
,

where α and a are the coefficients in the expansions of P and Q in Hypothesis 3.18.
These eigenvalues are the same as those of L+ μR1,1 in (3.34), which implies that

α = −1
8
, a = −1

4
.

Actually, this argument can be used in general, which is often quicker than using
formulas (D.45) and (D.46) (see Exercise 3.5 in Chapter 2).

With the notations from Appendix D.2, we have to solve now the following sys-
tem

bζ1 + iβζ0 = (L− i)Ψ 20100 +3R3,0(ζ0,ζ0,ζ0)
ic
2

ζ1 −
γ
2

ζ0 +Ψ 20100 = (L− i)Ψ 20010
(

iβ − ic
2

)
ζ1 +

γ
2

ζ0 +2Ψ 20100 = (L− i)Ψ 11100

γ
2

ζ1 +Ψ 11100 = (L− i)Ψ 02100

−γ
2

ζ1 +2Ψ 20010 +Ψ 11100 = (L− i)Ψ 11010

Ψ 11010 +Ψ 02100 = (L− i)Ψ 02010.

The solvability conditions for these equations determine the coefficients b, c, β ,
and γ .

Following the procedure for solving these equations given in Appendix D.2, and
also in the previous examples, we compute the vector ζ ∗

1 in the kernel of (L− i)∗,

ζ ∗
1 = −1

4
(−i,1,−i,1),



226 4 Reversible Bifurcations

which satisfies

〈ζ1,ζ ∗
1 〉 = 1, 〈ζ0,ζ ∗

1 〉 = 0, 〈ζ1,ζ ∗
1 〉 = 0, 〈ζ0,ζ ∗

1 〉 = 0.

Notice that S∗ = S and Sζ ∗
1 = −ζ ∗

1 . Then we obtain successively,

b = 〈3R3,0(ζ0,ζ0,ζ0),ζ ∗
1 〉 =

3
4
, Ψ̃ 20100 =

(
0,0,

3
4
,

9i
4

)
,

iβ +
ic
2

= 〈−Ψ̃ 20100,ζ ∗
1 〉 =

3i
4

, 3iβ − ic
2

= 〈−2Ψ̃ 20100,ζ ∗
1 〉 =

3i
2

,

and

Ψ̃ 11100 = 2Ψ̃ 20010 =
(

0,0,
3i
2

,−3

)
,

so that

β =
9

16
, c =

3
8
,

and
3γ = 〈2Ψ̃ 20010 −Ψ̃ 11100,ζ ∗

1 〉 = 0.

Consequently, the normal form truncated at cubic order reads

dA
dx

= iA+B+ iA

(
−1

8
μ +

9
16

|A|2
)

dB
dx

= iB+ iB

(
−1

8
μ +

9
16

|A|2
)

+A

(
−1

4
μ +

3
4
|A|2 +

3i
16

(AB−AB)
)

.

Solutions of the Normal Form

The symmetric equilibrium in Theorem 3.21 is here the origin. Since a < 0 and
b > 0, from Theorem 3.21 we can conclude that there are no nontrivial small,
bounded solutions when μ < 0, and that for μ > 0 we have here case (ii) in Fig-
ures 3.2 and 3.3. Notice that the steady 2π-periodic solutions found for μ > 0 in
the steady bifurcation discussed in Section 2.4.3 are contained in the set of steady
periodic solutions found here.

4.3.4 Reversible (iω1)(iω2) Bifurcation (Elements)

In this section, we consider the (iω1)(iω2) bifurcation, when L has four simple
purely imaginary eigenvalues ±iω1, ±iω2, such that ω1/ω2 = r/s ∈ Q, with r and
s positive integers, r < s, and the fraction is irreducible. Without the reversibility
symmetry, this bifurcation was discussed in Section 3.4.5 of Chapter 3. In contrast
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to the reversible bifurcations discussed in the previous sections, we assume here that
the parameter μ is two-dimensional, μ ∈ R

2.

(iω1)(iω2) Normal Form

First, we choose the eigenvectors ζ1 and ζ2, associated with the simple eigenvalues
iω1 and iω2, respectively, of L such that

Lζ1 = iω1ζ1, Sζ1 = ζ1, Lζ2 = iω2ζ2, Sζ2 = ζ2.

Starting from the normal form found in Section 3.4.5 and using the reversibility
symmetry, it is not difficult to show in this case that for any positive integer p,

2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in R̃4 and R
2, respectively, and

for any μ ∈ V2 there is a polynomial Φ(·,μ) : R̃4 → R̃4 of degree p with

Φ(0,0,0,0,0) = 0, ∂(A,B,A,B)Φ(0,0,0,0,0) = 0,

and
Φ(A,B,A,B,μ) = SΦ(A,B,A,B,μ),

such that the change of variables

u = Aζ0 +Bζ1 +Aζ0 +Bζ1 +Φ(A,B,A,B,μ) (3.35)

transforms the differential equation into the normal form

dA
dt

= iω1A+ iAP1(|A|2, |B|2,AsB
r
,μ)+ iA

s−1
BrP2(|A|2, |B|2,A

s
Br,μ)

+ρA(A,B,A,B,μ)
dB
dt

= iω2B+ iBQ1(|A|2, |B|2,A
s
Br,μ)+ iAsB

r−1
Q2(|A|2, |B|2,AsB

r
,μ)

+ρB(A,B,A,B,μ). (3.36)

Here Pj, Q j, j = 1,2, are polynomials with real coefficients of degrees p− 1 in
(A,B,A,B) for j = 1 and of degree p− r− s + 1 for j = 2. The remainders ρA and
ρB are functions of class C k which satisfy

ρA(A,B,A,B,μ) = −ρA(A,B,A,B,μ),
ρB(A,B,A,B,μ) = −ρB(A,B,A,B,μ),

and
|ρA(A,B,A,B,μ)|+ |ρB(A,B,A,B,μ)| = o((|A|+ |B|)p).
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Solutions of the Normal Form System

Recall that ω1/ω2 = r/s ∈ Q, with r and s positive integers, such that r < s and the
fraction is irreducible, and that the cases (r,s) = (1,2) and (r,s) = (1,3) are called
strongly resonant, whereas the cases of r + s ≥ 5 are called weakly resonant (see
Section 3.4.5).

In the weakly resonant cases, when r + s ≥ 5, the normal form truncated at order
r + s−2 is

dA
dt

= iω1A+ iAP(|A|2, |B|2,μ)

dB
dt

= iω2B+ iBQ(|A|2, |B|2,μ), (3.37)

where P and Q are real-valued polynomials of degree r+ s−3 ≥ 2 in (A,B,A,B), at
most. In polar coordinates

A = r1eiθ1 , B = r2eiθ2 ,

we find the system

dr1

dt
= 0,

dr2

dt
= 0,

dθ1

dt
= ω1 +P(r2

1,r
2
2,μ),

dθ1

dt
= ω2 +Q(r2

1,r
2
2,μ).

Consequently, the dynamics of the truncated system (3.37) lie on invariant 2-tori
r1 = c1, r2 = c2, with real constants c1 and c2, and the solutions are either periodic
or quasiperiodic, depending on whether the ratio

ω1 +P(r2
1,r

2
2,μ)

ω2 +Q(r2
1,r

2
2,μ)

is rational or irrational. For the full system (3.36) only KAM tori are expected to
persist, on which the flow is quasiperiodic. This persistence problem is again a small
divisor problem and is extensively studied (see for instance [111]). The dynamics
between these KAM tori are expected to be very intricate and should mimic the
corresponding problem for Hamiltonian systems.

We consider now the strongly resonant case (r,s) = (1,2), also referred to as 1 : 2
resonance. The case (r,s) = (1,3), also called 1 : 3 resonance, has common features,
but its complete study is still quite open.

Assuming that (r,s) = (1,2), the normal form truncated at order 3 is

dA
dt

= iA
(
ω1 + μ1 +a1|A|2 +a2|B|2

)
+ ia3AB

dB
dt

= iB
(
ω2 + μ2 +b1|A|2 +b2|B|2

)
+ ib3A2, (3.38)
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where μ j, j = 1,2, are small parameters, and a j, b j, j = 1,3, are real coefficients. A
key property of this truncated system is that it is integrable. Indeed, setting

A = r1eiθ1 , B = r2eiθ2 , Θ = θ2 −2θ1, ν = μ2 −2μ1

leads to the system

dr1

dt
= −a3r1r2 sinΘ

dr2

dt
= b3r2

1 sinΘ

dΘ
dt

= ν +
1
r2

cosΘ(b3r2
1 −2a3r2

2), (3.39)

together with an equation for dθ1/dt, which can be solved afterwards. It is now
straightforward to check that (3.39) has the two first integrals

K = b3r2
1 +a3r2

2, H = r2
1r2 cosΘ − ν

2a3
r2

1,

where we have assumed that a3 
= 0. Setting u0 = r2
1, one finds in this case an equa-

tion similar to (3.30), (
d
dt

u0

)2

= 4 fH,K(u0,μ).

The solutions can be now analyzed as in the case of the (iω)2 bifurcation studied
in Section 4.3.3. Depending upon the sign of a3b3, one finds in this case different
periodic orbits and homoclinic orbits to periodic orbits. We refer to [5] for further
details and the proofs of the persistence results.

4.3.5 Reversible 04+ Bifurcation (Elements)

We briefly discuss in this section the 04+ bifurcation, when 0 is an algebraically
quadruple and geometrically simple eigenvalue of L, with associated eigenvector ζ0

satisfying
Sζ0 = ζ0.

As in the previous section, we take here the parameter μ ∈ R
m.

04+ Normal Form

First, by arguing as in the case of the 03+ bifurcation, we can prove here that there
is a basis {ζ0,ζ1,ζ2,ζ3} of R

4 such that
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Lζ0 = 0, Lζ1 = ζ0, Lζ2 = ζ1, Lζ3 = ζ2,

Sζ0 = 0, Sζ1 = −ζ0, Sζ2 = ζ1, Sζ3 = −ζ2. (3.40)

The normal form in this case is proved in [54]. Using the basis above it is shown
that for any p < k there exists a polynomial Φ(·,μ) : R

4 → R
4 of degree p, with

Φ(0,0,0,0,0) = 0, ∂(A,B,C,D)Φ(0,0,0,0,0) = 0,

and
Φ(A,−B,C,−D,μ) = SΦ(A,B,C,D,μ),

such that the change of variables

u = Aζ0 +Bζ1 +Cζ2 +Dζ3 +Φ(A,B,C,μ), (3.41)

transforms the differential equation into the normal form

d
dt

⎛

⎜
⎜
⎝

A
B
C
D

⎞

⎟
⎟
⎠ = L

⎛

⎜
⎜
⎝

A
B
C
D

⎞

⎟
⎟
⎠+P1(A, p2, p4,μ)

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠+P2(A, p2, p4,μ)

⎛

⎜
⎜
⎝

0
A
B
C

⎞

⎟
⎟
⎠

+P3(p2, p4,μ)

⎛

⎜⎜
⎝

0
p2

q2

r2

⎞

⎟⎟
⎠+P4(A, p2, p4,μ)

⎛

⎜⎜
⎝

p3

q3

r3

s3

⎞

⎟⎟
⎠

+P5(A, p2, p4,μ)

⎛

⎜⎜
⎝

0
0
p3

q3

⎞

⎟⎟
⎠+ρ(A,B,C,D,μ).

Here

p2 = B2 −2AC, q2 = −3AD+BC, r2 = −3BD+2C2,

p3 = B3 −3ABC +3A2D, q3 = 3ABD−2AC2 +B2C,

r3 = −3ACD+3B2D−BC2, s3 = 3BCD− 4
3C3 −3AD2,

p4 = 3B2C2 −6B3D−8AC3 +18ABCD−9A2D2,

Pj, j = 1, . . . ,5, are polynomials of degree p− j +1 in (A,B,C,D), with

P1(0,0,0,0) = 0, ∂AP1(0,0,0,0) = 0, P2(0,0,0,0) = 0,

and the remainder ρ is of class C k satisfying

ρ(A,−B,C,−D,μ) = −Sρ(A,B,C,D,μ),

and the estimate
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‖ρ(A,B,C,D,μ)‖ = o((|A|+ |B|+ |C|+ |D|)p) .

Remark 3.23 Notice that we have p2
3 = p3

2 − p2
1 p4.

Solutions of the Normal Form

The study of this bifurcation is widely open. As for the other bifurcations, we can
start from the truncated normal form, at order 2 here,

dA
dt

= B

dB
dt

= C + μ2A+ cA2

dC
dt

= D+ μ2B+ cAB

dD
dt

= μ0 + μ1A+ μ2C +aA2 +b(B2 −2AC)+ cAC, (3.42)

where a, b, and c are real coefficients, and μ0, μ1, μ2 are small parameters coming
from the terms in the expansion of the vector field that are linear in μ ∈ R

m. In
particular, assuming that a 
= 0, it is not difficult to check that there is a saddle-node
bifurcation for

μ0 ∼
1
4a

(μ1 −μ2
2 )2,

in which a pair of equilibria invariant under S bifurcates from 0.
We restrict ourselves below to the particular case in which the origin is an equi-

librium for all values of the parameter μ , so that μ0 = 0. This is the case which
arises more often in applications. Linearizing at the origin, we then find the matrix

Lμ =

⎛

⎜⎜
⎝

0 1 0 0
μ2 0 1 0
0 μ2 0 1
μ1 0 μ2 0

⎞

⎟⎟
⎠ ,

with eigenvalues λ satisfying

λ 4 −3μ2λ 2 + μ2
2 −μ1 = 0.

Clearly, the four eigenvalues are symmetric with respect to both axis in the complex
plane, and their location depends upon the parameters μ1 and μ2.

We plot in Figure 3.4 the location of the four eigenvalues of Lμ , depending on
the parameters μ1 and μ2. The four curves Γj, j = 1, . . . ,4, are such that

(i) μ1 = μ2
2 , μ1 > 0, for Γ1, along which 0 is an algebraically double and geomet-

rically simple eigenvalue, and Lμ has a pair of simple real eigenvalues;
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Fig. 3.4 Location of the four eigenvalues of Lμ , depending on the parameters (μ1,μ2).

(ii) μ1 = μ2
2 , μ1 < 0, for Γ2, along which 0 is an algebraically double and geo-

metrically simple eigenvalue, and Lμ has a pair of simple purely imaginary
eigenvalues;

(iii) μ1 = −5μ2
2 /4, μ1 < 0, for Γ3, along which Lμ has a pair of double purely

imaginary eigenvalues;
(iv) μ1 = −5μ2

2 /4, μ1 > 0, for Γ4, along which Lμ has a pair of double real eigen-
values.

It appears that each point on the curves Γ1, Γ2, and Γ3 is a bifurcation point, with

(i) a reversible 02+ bifurcation occuring when crossing Γ1 in the parameter plane;
(ii) a reversible 02+(iω) bifurcation occuring when crossing Γ2;

(iii) a reversible (iω)2 bifurcation occuring when crossing Γ3.

The computations of the bifurcations near Γ1 and Γ3 are done in [54]. It is a re-
markable fact that for Γ3 the coefficient of the cubic term of the normal form, which
determines whether focusing or defocusing case occurs, always gives the focusing
case here, provided that a 
= 0. In particular, this implies the existence of homo-
clinic orbits to 0. The results found for each of these bifurcations are valid in little
horn-like regions of the parameter plane, due to the fact that when (μ1,μ2) tends
to 0 along Γj, the nonzero eigenvalues all tend to 0, which gives a singularity in the
coefficients of the normal forms. Though not a bifurcation curve, the dynamics in a
neighborhood of Γ4 turn out to be quite rich. In particular, a new type of bounded
orbits can be found here, which are multipulse homoclinic orbits. We refer to the
review papers [13, 49], and the references therein, for different results of existence
of such orbits.

Exercise 3.24 Consider the fourth order ODE

u(4) −3μ2u′′ +(μ2
2 −μ1)u−au2 = 0,

where μ1,μ2 ∈ R are two small parameters and a is a given real number. (See the example in
Section 2.4.1 for the particular case 3μ2 = 1 and μ1 −μ2

2 = μ .)
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(i) Write the equation as a first order reversible system of the form (3.42) with b = c = 0.
(ii) Consider the curve Γ1 in Figure 3.4 (02+ bifurcation). Show that for (μ1,μ2) close to Γ1 the

system possesses a two-dimensional center manifold, and show that the reduced system has
the normal form

dA
dt

= B

dB
dt

= − ε
3μ2

A− a
3μ2

A2 +h.o.t.,

where ε = μ1 −μ2
2 , μ2 > 0, and A, B are real-valued functions.

(iii) Consider the curve Γ2 in Figure 3.4 (02+(iω) bifurcation). Show that for (μ1,μ2) close to Γ2
the system can be put in the normal form

dA
dt

= B

dB
dt

= − 1
3μ2

(
εA+aA2 +2a|C|2

)
+h.o.t.

dC
dt

=
i

(−3μ2)1/2
C

(
1+

ε
18μ2

+
aA

9μ2
2

)
+h.o.t.,

where ε = μ1 −μ2
2 , μ2 < 0, A, B are real-valued functions, and C is complex-valued.

(iv) Consider the curve Γ3 in Figure 3.4 ((iω)2+ bifurcation). Show that for (μ1,μ2) close to Γ3
the system can be put in the normal form

dA
dt

= i

(
−3

2
μ2

)1/2

A+B+
iε

(−6μ2)3/2
A+h.o.t.

dB
dt

= i

(
−3

2
μ2

)1/2

B+
iε

(−6μ2)3/2
B+

ε
−6μ2

A+
76a2

243μ3
2

A|A|2 +h.o.t.,

where ε = −(5/4)μ2
2 −μ1, μ2 < 0, and A, B are complex-valued functions.

Hint: This exercise is solved in [56]. Notice that some of the coefficients in the normal form become
unbounded as (μ1,μ2) → (0,0). This is due to the quadruple zero eigenvalue of the linearization
for (μ1,μ2) = (0,0), and shows that these normal forms are not valid in a neighborhood of the
origin.

Remark 3.25 The equation

ε2u(4) +u′′ − cu+3u2 = 0

arises as a traveling wave equation from a fifth order Korteweg–de Vries (KdV) type
equation when we seek solutions which decay to 0 at infinity [105]. Here ε is a small
parameter and c the constant speed of propagation of the traveling waves. After a
suitable scaling, this equation enters into the frame above, with small parameters
close to the curve Γ2 in Figure 3.4, where an 02+(iω) bifurcation occurs. From the
results in Theorem 3.10, one can then conclude that for small ε 
= 0 there are no
homoclinic orbits to 0 in this case, in contrast to the case ε = 0 in which such orbits
do exist.
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4.3.6 Reversible 0202 Bifurcation with SO(2) Symmetry

We end this chapter with a brief discussion of reversible 0202 bifurcations in the
presence of a SO(2) symmetry. We assume that the matrix L has an algebraically
quadruple and geometrically double zero eigenvalue with a two 2×2-Jordan block.
Besides the reversibility symmetry S, we now further assume that the vector field
F(·,μ) in (3.1) is SO(2)-equivariant, that is, there exists a one-parameter continuous
family of linear maps Rϕ which act nontrivially on R

4, for ϕ ∈ R/2πZ, with the
following properties:

(i) R0 = I and Rϕ ◦Rψ = Rϕ+ψ for all ϕ , ψ ∈ R/2πZ;
(ii) F(Rϕ u,μ) = Rϕ F(u,μ) for all ϕ ∈ R/2πZ.

In addition, we assume that

SRϕ = Rϕ S for all ϕ ∈ R/2πZ, or SRϕ = R−ϕS for all ϕ ∈ R/2πZ. (3.43)

Normal Form

First, we construct a basis {ζ0,ζ1,ζ0,ζ1} of R
4, identified here with R̃4, such that

Lζ0 = 0, Lζ1 = ζ0,

Rφ ζ0 = eimφ ζ0, Rφ ζ1 = eimφ ζ1,

for some nonzero integer m. Then, depending upon the action of S on ζ0, we distin-
guish the following cases:

(i) Sζ0 = ζ0, Sζ1 = −ζ1;
(ii) Sζ0 = −ζ0, Sζ1 = ζ1;

(iii) Sζ0 = ζ0, Sζ1 = −ζ1.

We have the cases (i) and (ii) when Rφ S = SRφ and the case (iii) when Rφ S = SR−φ .
The construction of this basis is similar to that of the basis of R

2 for the steady
bifurcation with O(2) symmetry in Section 1.2.4 of Chapter 1. By arguing as in the
proof of (2.40)–(2.41) in Chapter 1, we find here the vector ζ0 satisfying

Lζ0 = 0, Rφ ζ0 = eimφ ζ0.

Then we can choose ζ1 such that

Lζ1 = ζ0, Rφ ζ1 = eimφ ζ1.

Since Sζ0 belongs to the kernel of L we have

Sζ0 = aζ0 +bζ0

for some complex numbers a and b, and the cases (i)–(iii) are obtained from the
equalities (3.43).
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The normal form is obtained in the basis above, starting from the result in
Lemma 1.19 in Chapter 3, using the Theorems 2.2, 3.2, and 3.4 in Chapter 3, with
the symmetries Rφ and S. We obtain that for any p < k there exists a polynomial

Φ(·,μ) : R̃4 → R̃4 of degree p, with

Φ(0,0,0,0,0) = 0, ∂(A,B,A,B)Φ(0,0,0,0,0) = 0,

and

Φ(eimφ A,eimφ B,e−imφ A,e−imφ B,μ) = Rφ Φ(A,B,A,B,μ) for all φ ∈ R/2πZ,

such that the change of variables

u = Aζ0 +Bζ1 +Aζ0 +Bζ1 +Φ(A,B,A,B,μ) (3.44)

transforms equation (3.1) into the normal form

dA
dt

= B+AP(|A|2, i(AB−AB),μ)+ρA(A,B,A,B,μ)

dB
dt

= BP(|A|2, i(AB−AB),μ)+AQ(|A|2, i(AB−AB),μ)

+ρB(A,B,A,B,μ). (3.45)

Here P and Q are polynomials of degree p−1 in (A,A,B,B,μ) and the remainders
ρA and ρB satisfy

ρA(eimφ A,eimφ B,e−imφ A,e−imφ B,μ) = eimφ ρA(A,B,A,B,μ),
ρB(eimφ A,eimφ B,e−imφ A,e−imφ B,μ) = eimφ ρB(A,B,A,B,μ)

for all φ ∈ R/2πZ, and the estimate

|ρA(A,B,A,B,μ)|+ |ρB(A,B,A,B,μ)| = o((|A|+ |B|)p) .

Moreover the following properties hold in the three cases:

(i) Φ(A,−B,A,−B,μ) = SΦ(A,B,A,B,μ);
P and Q are odd and even, respectively, in their second argument;
ρA(A,−B,A,−B,μ) = −ρA(A,B,A,B,μ), and
ρB(A,−B,A,−B,μ) = ρB(A,B,A,B,μ);

(ii) Φ(−A,B,−A,B,μ) = SΦ(A,B,A,B,μ);
P and Q are odd and even, respectively, in their second argument;
ρA(−A,B,−A,B,μ) = ρA(A,B,A,B,μ), and
ρB(−A,B,−A,B,μ) = −ρB(A,B,A,B,μ);

(iii) Φ(A,−B,A,−B,μ) = SΦ(A,B,A,B,μ);
P is imaginary-valued and Q is real-valued;

ρA(A,−B,A,−B,μ) = −ρA(A,B,A,B,μ), and

ρB(A,−B,A,−B,μ) = ρB(A,B,A,B,μ).
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Solutions of the Normal Form

The cases (i) and (ii) have the same type of normal form, but the complete study
of the dynamics in these cases is open. Some partial answers can be found in [66]
where this situation arises in an infinite-dimensional problem.

In the case (iii), the normal form is a particular case of the normal form (3.25)
for the (iω)2 bifurcation when ω = 0 and the remainders ρA and ρB have the ad-
ditional rotational invariance given above. Consequently, the analysis done for the
(iω)2 bifurcation stays also valid here. In addition, the rotational invariance of the
full vector field allows us to show in this case the persistence of a “circle” of homo-
clinics, instead of only a pair of reversible homoclinics.

Exercise 3.26 Consider a system in R
4 of the form (3.1) satisfying Hypothesis 3.1. Assume

that the matrix L = DuF(0,0) has two geometrically double eigenvalues ±iω with eigenvectors
ζ0,ζ1,ζ0,ζ1 ∈ C

4 such that

Lζ0 = iωζ0, Lζ1 = iωζ1, Sζ0 = ζ1 
= ζ0.

Further assume that the vector field is SO(2)-equivariant with respect to a group representation
(Rφ )φ∈R/2πZ, which commutes with the reversibility symmetry S and acts on the vectors ζ0,ζ1
through

Rφ ζ0 = eimφ ζ0, Rφ ζ1 = eimφ ζ1.

(i) Show that the normal form of this system is

dA
dt

= iωA+AP(|A|2, |B|2,μ)+ρA(A,B,A,B,μ)

dB
dt

= −iωA−BP(|B|2, |A|2,μ)+ρB(A,B,A,B,μ),

where P is a complex polynomial in its arguments such that P(0,0,0) = 0.
(ii) Write the truncated system, obtained by removing the remainders ρA and ρB, in polar coordi-

nates, and study the phase portraits for the radial components. (Proceed as in Section 3.4.3.)
(iii) Determine the bounded solutions of the system.

Hint: See [65].

Exercise 3.27 Consider the system of Korteweg–de Vries (KdV) equations

ut +Δ1ux + μ1uux +λ1uxxx +κ1vx = 0

vt +Δ2vx + μ2vvx +λ2vxxx +κ2ux = 0,

where Δ1 − Δ2 is a detuning parameter, κ1,κ2 are coupling parameters, and λ1,λ2 are linear
dispersive coefficients.

(i) Consider traveling wave solutions of the form

u(x, t) = u1(x− ct), v(x, t) = v1(x− ct),

where c is the constant speed of propagation, and assume that these solutions tend to 0 as
|x| → ∞. Set ξ = x− ct, u2 = u′1, v2 = v′1, and show that u1, u2, v1, v2 satisfy the following
system of ODEs:
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u′1 = u2

u′2 =
1
λ1

(
(c−Δ1)u1 −

μ1

2
u2

1 −κ1v1

)

v′1 = v2

v′2 =
1
λ2

(
(c−Δ2)v1 −

μ2

2
v2

1 −κ2u1

)
. (3.46)

(ii) Show that the system (3.46) is reversible.
(iii) Show that the purely imaginary eigenvalues ik of the matrix obtained by linearizing the vector

field at 0 satisfy the “dispersion relation”

λ1λ2k4 +Dk2 +H = 0,

in which

H = (c−δ1)2 −δ 2
2 −κ1κ2, D = (λ1 +λ2)(c−δ1)− (λ1 −λ2)δ2, δ1,2 =

1
2
(Δ1 ±Δ2).

(iv) Assuming that λ1λ2κ1κ2 < 0, fix δ1 and consider the curves H = 0, D = 0, and P =
D2 − 4λ1λ2H = 0 in the (δ2,c)-plane. Show that these curves are bifurcation curves for the
system (3.46), and determine the nature of the corresponding reversible bifurcations (02+,
02+(iω), or (iω)2).

Hint: See [31].





Chapter 5
Applications

In this chapter we present several applications of the methods given in this book:
the center manifold theorem in Chapter 2, the normal form theory in Chapter 3,
and the results on reversible bifurcations in Chapter 4. We discuss hydrodynamic
instabilities arising in the Navier–Stokes equations in Section 5.1, and we consider
in Section 5.2 the question of existence of traveling waves for three different situ-
ations: the water-wave problem; reaction-diffusion systems in two dimensions; and
one-dimensional lattices.

5.1 Hydrodynamic Instabilities

5.1.1 Hydrodynamic Problem

Consider a viscous incompressible fluid filling a domain Ω in R
2 or R

3. We present
in this section the hydrodynamic problem corresponding to the following three types
of domains:

(i) a smooth bounded domain Ω ⊂ R
2 or Ω ⊂ R

3;
(ii) an infinite cylindrical domain Ω = Σ ×R, where the section Σ is a smooth

bounded domain in R
2;

(iii) a domain situated between two planes Ω = R
2 × I, where I = (α,β ) is a

bounded interval in R.

The velocity V of fluid particles and the pressure p are functions of (x, t) ∈ Ω ×R
+

and satisfy the Navier–Stokes equations

∂V
∂ t

+(V ·∇)V +
1
ρ

∇p = νΔV + f (x),

∇ ·V = 0. (1.1)

M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms
in Infinite-Dimensional Dynamical Systems, Universitext,
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In this system V (x, t) has two or three components, when Ω ⊂ R
2 or Ω ⊂ R

3,
respectively, the volumic mass ρ is constant, ∇, ∇·, and Δ denote the gradient,
divergence and Laplace operators, respectively, ν is the kinematic viscosity, and f
represents an external massic force, independent of t. The first equation represents
the momentum balance, while the second is the incompressibility condition.

Boundary Conditions

System (1.1) is completed by boundary conditions. In the three cases, we assume
that we have fixed geometric boundaries.

The simplest situation occurs in case (i) of a smooth bounded domain Ω , when
the boundary conditions are

V |∂Ω = a,
∫

∂Ω
a ·ndS = 0, (1.2)

where a is a given vector field, independent of t and having zero total flux, in order to
be compatible with the incompressibility condition, and n is the exterior unit normal
to ∂Ω .

In case (ii) of a cylindrical domain Ω = Σ ×R, the boundary conditions are

V |∂Σ×R = a,
∫

∂Σ
a ·nds = 0, (1.3)

to which one can add, for instance, the following periodicity conditions along the
cylinder:

V (x, t) =V (x+hez, t), ∇p(x, t) = ∇p(x+hez, t) for all x = (X ,z)∈ Σ ×R, (1.4)

where h is the period in the direction z ∈ R along the cylinder, and ez = (0,1) ∈
Σ ×R. Notice that we require only ∇p to be periodic and not p, which would also
be a possibility, but less realistic. These conditions are completed by the assumption

∫

Σ
V ·ndS = D, (1.5)

where D is a given constant, showing that V has a given flux through the section Σ
of the cylinder. It is not difficult to check that this flux is independent of z ∈ R. This
implies that p is allowed to increase linearly in z over a period.

Finally, in case (iii) of a domain Ω = R
2 × (α,β ) situated between two planes,

the boundary conditions are

V |
R2×{α} = V |

R2×{β} = a,

which imply that the total mass flux through the periodicity domain is zero, together
with a biperiodicity condition,
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V (x, t) = V (x+n1e1 +n2e2, t), ∇p(x, t) = ∇p(x+n1e1 +n2e2, t) (1.6)

for all x = (X ,z) ∈ R
2 × (α,β ), where (n1,n2) ∈ Z

2, and the lattice of periods is
generated by two noncolinear vectors e1 and e2 in R

2. To these conditions we add
two conditions on the flux of the velocity in the directions of two vectors k1 and k2

in the X-plane, ∫

Σ1

V · k2 dS = D1,

∫

Σ2

V · k1 dS = D2. (1.7)

The vectors k1 and k2 are such that

〈e j,kl〉 = 2πδ jl , (1.8)

and Σ1 (resp., Σ2) is the face orthogonal to k2 (resp., to k1) of the parallelepiped
built with vectors e1, e2 and the interval (α,β ) orthogonally to the X-plane, which
constitutes the domain of periodicity.

Remark 1.1 (Free boundaries) Sometimes the boundary, or part of the boundary,
of the domain Ω is “free,” which means that the fluid is in contact with another
fluid, the common boundary being unknown. An example of a free-boundary prob-
lem is discussed in more detail in Section 5.2.1, where we consider the water-wave
problem. Here, we only mention the simplified situation in which one assumes that
the part of the boundary ∂Ω1, say, where the fluid is in contact with another fluid, is
fixed. (This is acceptable for instance if the external fluid is mercury and the internal
one is water.) Then, on this part of the boundary one has the following conditions:

V ·n|∂Ω1
= 0, (1.9)

showing that no fluid crosses the boundary, and

(∇V +∇tV ) ·n|∂Ω1
×n = 0, (1.10)

showing that the tangent stresses cancel.

Basic Solution

We assume that a smooth stationary solution (V (0)(x), p(0)(x)) is known for system
(1.1), together with the corresponding boundary conditions. We set

V = V (0) +U, p = p(0) +ρq,

which leads to the system

∂U
∂ t

= νΔU − (V (0) ·∇)U − (U ·∇)V (0) − (U ·∇)U −∇q

∇ ·U = 0. (1.11)
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In case (i) the boundary condition (1.2) becomes

U |∂Ω = 0, (1.12)

whereas in case (ii), the boundary conditions (1.3), (1.4), and (1.5) become, respec-
tively,

U |∂Σ×R = 0, (1.13)

U(x, t) = U(x+hez, t), ∇q(x, t) = ∇q(x+hez, t) for all x = (X ,z) ∈ Σ ×R,

and ∫

Σ
U ·ndS = 0. (1.14)

The boundary conditions in case (iii) are similar.

Analytical Set-up

We introduce now the basic Hilbert spaces in which system (1.11), together with the
corresponding boundary conditions, is analyzed.

In case (i), we restrict to the case Ω ⊂ R
3, and define the Hilbert space

X =
{

U ∈
(
L2(Ω)

)3
; ∇ ·U = 0, U ·n|∂Ω = 0

}
,

equipped with the scalar product of
(
L2(Ω)

)3
. Notice that here the trace U ·n|∂Ω is

well-defined in H−1/2(∂Ω) (e.g., see [118]). Next, we consider the subspace

Z =
{

U ∈
(
H2(Ω)∩H1

0 (Ω)
)3

; ∇ ·U = 0
}
⊂ X ;

i.e., the functions in this subspace satisfy the boundary condition (1.12).
A key property of the Hilbert space X is that the kernel of the orthogonal

projection Π 0 in
(
L2(Ω)

)3
on the subspace X can be identified with the space

{∇φ ; φ ∈ H1(Ω)} (e.g., see [129, 85, 118]). Then, using the projection Π 0, the
pressure term ∇q in (1.11) can be eliminated, and we obtain a system of the form

dU
dt

= LU +R(U) (1.15)

posed in X for U(·, t) ∈ Z , where

LU = Π 0

(
νΔU − (V (0) ·∇)U − (U ·∇)V (0)

)
, R(U) = −Π 0 ((U ·∇)U) .(1.16)

The linear operator L, acting in X , may be regarded as a lower order perturba-
tion of the self-adjoint operator Π 0 (νΔU). It is a closed operator in X , with dense
domain Z and a compact resolvent. The spectrum of L consists of isolated eigen-
values with finite multiplicities, situated in a sector of the complex plane centered
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on the real axis, and oriented on the negative side of this axis [129]. Its resolvent
satisfies the estimate (2.9) in Chapter 2 (see [129, 85]), and in fact also the estimate
(2.10) in Chapter 2, with α = 3/4 (see [52, 9]), but this latter estimate is useless if
Theorem 2.20 in Chapter 2 is applied. Actually, one can prove in this case that L is
the generator of an analytic semigroup eLt for t > 0 (see [76]).

The nonlinear term R(U) satisfies R(U) ∈ X ∩
(
H1(Ω)

)3
for U ∈ Z , by the

Sobolev embedding theorem, and the map R : Z →X is quadratic and continuous.

Remark 1.2 In the case of a free boundary, when a part of the boundary is sub-
jected to conditions (1.9)–(1.10), we can use the same space X , and replace(
H1

0 (Ω)
)3

in the definition of Z by the space

{
U ∈

(
H1(Ω)

)3
; U |∂Ω2

= 0, U ·n|∂Ω1
= 0, (∇U +∇tU) ·n}|∂Ω1

×n = 0
}

,

where ∂Ω1 ∪∂Ω2 = ∂Ω .

In case (ii) of a cylindrical domain Ω = Σ ×R, we define the Hilbert space

X =
{

U ∈
(
L2(Σ × (R/hZ))

)3
; ∇ ·U = 0, U ·n|∂Σ×R = 0,

∫

Σ
U ·ndS = 0

}
.

We point out that here the orthogonal complement of X in
(
L2(Σ × (R/hZ))

)3
is

the space {∇φ ; φ ∈ H1(Σ ×(R/hZ))+zR}, i.e., ∇φ is a periodic function, while φ
is not periodic [15]. The space Z is defined as a subspace of

(
H2(Σ × (R/hZ))

)3∩
X , according to the boundary conditions. Using again the orthogonal projection
Π 0 on X , the Navier–Stokes system can be written in form (1.15) with L and R
defined as in (1.16).

Similarly, in case (iii) for a domain Ω = R
2× I, we can define the spaces X and

Z in an appropriate manner taking into account the boundary conditions, and use
the orthogonal projection Π 0 to write the system in the form (1.15). In both cases,
the properties of L and R mentioned above are still valid.

Summarizing, in the three cases we have a system of the form (1.15), for which
Hypotheses 2.1 and 3.20 required by the center manifold theorem in Chapter 2 are
verified, and in order to check Hypothesis 2.4 in Chapter 2, it is enough to locate the
eigenvalues that have the largest real parts. In general, this is obtained by a careful
study of their location for each specific physical situation. We point out that the
parameter dependency comes from the viscosity ν and the boundary data, which
influence the basic solution (V (0), p(0)).

We present in the next two sections two classical examples where the theoretical
tools developed in the previous chapters apply particularly well. A description of
classical experiments and physical results connected to both examples may be found
in the books [75, 83].
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5.1.2 Couette–Taylor Problem

We briefly present in this section some results on the Couette–Taylor problem,
which have been obtained with the help of the methods described in this book.
We refer to the book [15] for details, and to [117] for the huge bibliography on this
problem.

Hydrodynamic Problem

Consider two coaxial cylinders of radii R1 (the inner cylinder), and R2 (the outer
cylinder), the gap between them being filled by an incompressible viscous fluid.
Both cylinders rotate with constant rotation rates Ω1 and Ω2, respectively (see Fig-
ure 1.1(i)). For fixing ideas, we assume that Ω1 > 0. When the length of the cylinders
is large with respect to the gap R2 −R1, it is physically reasonable, for a first study,
to replace the rather complicated physically relevant boundary conditions at the ends
of the cylinders by periodicity conditions, as this is also suggested by experimental
observations. The mathematical problem consists then in solving the Navier–Stokes
system (1.1) in the cylindrical domain

Ω = Σ ×R, Σ = {(x,y) ∈ R
2 ; R2

1 < x2 + y2 < R2
2},

with f = 0 and the boundary conditions (1.3), (1.4), (1.14). In these boundary con-
ditions a is now the velocity R1Ω1 or R2Ω2 tangent to the inner or outer cylinder, re-
spectively, and orthogonal to the axis of rotation, and the flux of the velocity through
any section is D = 0.

Couette Flow

This problem possesses a basic steady solution (V (0), p(0)), the Couette flow, given
in cylindrical coordinates (r,θ ,z) by

V (0) = (0,v0(r),0), p(0) = ρ
∫

v2
0

r
dr

with

v0(r) =
Ω2R2

2 −Ω1R2
1

R2
2 −R2

1

r +
(Ω1 −Ω2)R2

1R2
2

R2
2 −R2

1

1
r
.

Notice that this solution is independent of z, the coordinate along the cylinder, and θ ,
the angle around the axis, and that its streamlines are circles centered on the rotation
axis.



5.1 Hydrodynamic Instabilities 245

Fig. 1.1 (i) Domain of periodicity for the Couette–Taylor problem. (ii) Side view of the Taylor
vortex flow. (iii) Meridian view of the Taylor cells. (iv) Helicoidal waves (traveling in both z and θ
directions). (v) Ribbons (standing in z direction, traveling in θ direction).

Symmetries

A fundamental feature of this system consists in its symmetries. When f = 0, the
Navier–Stokes system (1.1) possesses the Galilean invariance, which is typical to
any physical system ruled by Newtonian laws. The result is the symmetries of the
system are restricted to the symmetries of the boundary conditions. For the Couette–
Taylor problem, the invariance under translations along the z-axis allied with the
periodicity conditions, and the invariance under reflections through any plane or-
thogonal to this axis induce an O(2) symmetry (the same as in the example in Sec-
tion 2.4.3 of Chapter 2). Notice that gravity plays no role here, since it may be
included in the gradient of the pressure. In addition, the system is invariant under
rotations around the z-axis that induce a SO(2)-symmetry.

In cylindrical coordinates (r,θ ,z), we have the following linear representations
of these symmetries:

(τaV )(r,θ ,z) = V (r,θ ,z+a), a ∈ R/hZ,

(SV )(r,θ ,z) = (Vr(r,θ ,−z),Vθ (r,θ ,−z),−Vz((r,θ ,−z)),
(RφV )(r,θ ,z) = V (r,θ +φ ,z), φ ∈ R/2πZ,

which satisfy
τaS = Sτ−a, τh = I, τaτb = τa+b.

Consequently, (τa,S) is an O(2) grouprepresentation, and Rφ represents a SO(2)
action, which commutes with the O(2) action. We point out that the basic Couette
flow (V (0), p(0)) is left invariant by all these symmetries, which are then inherited
by the system (1.11).



246 5 Applications

Instabilities

As usual in any physical problem, we need to choose the scales. Here the length
scale is (R2 −R1) and the velocity scale is R1Ω1. Three dimensionless parameters
appear in the equations of the problem, which we can choose as

Ωr =
Ω2

Ω1
, η =

R1

R2
, R =

R1Ω1(R2 −R1)
ν

,

where R is a Reynolds number. Consider the system (1.11) satisfied by perturba-
tions of the basic Couette flow, and more precisely its formulation (1.15) as a first
order system. Fixing the parameters Ωr and η , we take R as bifurcation parame-
ter, and denote the linear operator L in (1.15) by LR . It turns out that the spectrum
of LR is strictly contained in the left half-complex plane, i.e., the Couette flow is
stable, for low values of R, i.e. for small rotation rate of the inner cylinder, or high
viscosity. Instabilities are obtained by increasing R (for instance by increasing the
rotation rate of the inner cylinder). This may be interpreted by the fact that for Ω1

large enough, the excess of centrifugal forces acting on particles close to the inner
cylinder, with respect to those near the outer cylinder, becomes dominant if we di-
minish the viscosity ν . The nature of these instabilities now depends upon the values
of Ωr.

The Case Ωr > 0 or Ωr < 0 Close to 0

In this case it has been shown numerically that as R increases, there is a critical
value Rc for which an eigenvalue of LR crosses the imaginary axis, passing through
0 from the left to the right, and all other eigenvalues remain in the left half-complex
plane. We are here in the presence of a steady O(2) bifurcation in which 0 is a
double eigenvalue with complex conjugated eigenvectors

ζ = eikczÛ(r), ζ = Sζ ,

where the wave number kc is such that there is an integer n with

kch = 2nπ,

and
τaζ = eikcaζ for all a ∈ R.

Applying the center manifold Theorems 3.23 and 3.13 in Chapter 2, one finds a
two-dimensional center manifold, and the reduced vector field commutes with the
restrictions of τa and S on the two-dimensional subspace E0 spanned by ζ and ζ . We
point out that Rφ acts trivially on E0, which means that all solutions on the center
manifold are invariant under Rφ . Consequently, for the reduced system we are in the
situation described in Section 1.2.4 of Chapter 1 (see also the first part of example in
Section 2.4.3, Chapter 2). The reduced dynamics are ruled by the following ordinary
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differential equation:

dA
dt

= Ag(|A|2,μ), g(|A|2,μ) = aμ +b|A|2 +h.o.t., a,b ∈ R, (1.17)

in which A is complex-valued, μ = R −Rc, and a, b are real numbers depending
upon Ωr. Equation (1.17) is called the Landau equation in the physics literature, as
it was first formally derived by Landau [86].

According to the results in [15] the coefficients a and b are such that a > 0,
b < 0 when Ωr > 0, and b changes sign for a certain small value of Ωr < 0. We
can now apply Theorem 2.18 in Chapter 1 and conclude that for b < 0 (resp., for
b > 0) we have a supercritical (resp., subcritical) pitchfork bifurcation to a circle
of steady stable (resp., unstable) solutions. In the infinite-dimensional phase space
of the full system (1.15), this circle of solutions corresponds to solutions that are
shifted along the z direction, i.e., obtained by the action of τa. In addition, the action
of τ2π/kc is trivial, which means that the period in z of the bifurcating solutions is
2π/kc = h/n, and the solutions are invariant under the action of Rφ . Two of the
shifted solutions are also invariant under S, which means that the corresponding
flow does not cross the planes z = kπ/kc, k ∈Z, thus forming axisymmetric toroidal
cells. This constitutes the Taylor vortex flow (see Figure 1.1(ii)–(iii)).

The Case Ωr < 0, not too close to 0

In this case, numerical results show that the Couette flow first becomes unstable
at a critical value Rc of R, when a pair of complex conjugate eigenvalues of LR

crosses the imaginary axis, from the left to the right, as R is increased, and the rest
of the spectrum stays in the left half-complex plane. These two eigenvalues are both
double, as this case is generic for O(2) equivariant systems, with two eigenvectors
of the form

ζ0 = ei(kcz+mθ)Û(r), ζ1 = ei(−kcz+mθ)SÛ(r),

where m 	= 0, and the critical wave number kc is determined as in the previous case.
Applying the center manifold Theorems 3.23 and 3.13 of Chapter 2, we find a

four-dimensional center manifold, and the reduced vector field commutes with the
actions of the induced symmetries τa, S, and Rφ , found from

τaζ0 = eikcaζ0, τaζ1 = e−ikcaζ1, Sζ0 = ζ1, Sζ1 = ζ0,

Rφ ζ0 = eimφ ζ0, Rφ ζ1 = eimφ ζ1.

We are here in the presence of a Hopf bifurcation with O(2) symmetry, as discussed
in Section 3.4.3, but with an additional SO(2) symmetry represented by Rφ . With
the notations from Section 3.4.3, it turns out that the dynamics are ruled by a system
in C

2 of the form
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dA
dt

= AP(|A|2, |B|2,μ)

dB
dt

= BP(|B|2, |A|2,μ),

where μ = R−Rc, and

P(|A|2, |B|2,μ) = iω +aμ +b|A|2 + c|B|2 +h.o.t.

is a smooth function of its arguments, and with no “remainder ρ .”
The coefficients a, b, and c are complex, and their explicit values can be found

in [15]. The bifurcating solutions corresponding to A = 0 or to B = 0 travel along
and around the z-axis with constant velocities. These are helicoidal waves, also
called spirals, and they are axially periodic just as the Taylor vortex flow (see Fig-
ure 1.1(iv)). The bifurcating solutions obtained for |A| = |B| are standing waves
located in fixed horizontal periodic cells, as they are for the Taylor vortex flow, but
with a non-axisymmetric internal structure rotating around the axis with a constant
velocity. These solutions are also called ribbons (see Figure 1.1(v)). We point out
that both types of waves may be observed, depending upon the other parameters
(see [15] for the predicted parameter values, and [117] for the corresponding exper-
imental observations).

Further Bifurcations

The next step consists in considering the circle of solutions corresponding to the
Taylor vortex flow and to study the resulting bifurcation, which is a symmetry-
breaking bifurcation. Here, one may proceed as indicated in Section 2.3.3 of Chap-
ter 2, for systems possessing a continuous symmetry and a one-parameter family
of equilibria. Theorem 3.19 in Chapter 2 applies, provided we know the “critical”
eigenvalues, in addition to the eigenvalue 0, of the operator obtained by linearizing
at one point of the “circle” of Taylor vortex solutions where the solution is invariant
under symmetry S. It is shown in [15] that when R passes a new critical value R2,
depending on the parameters Ωr and η , a Hopf bifurcation occurs. To one purely
imaginary eigenvalue corresponds a non-axisymmetric eigenvector, which is either
symmetric or antisymmetric, with the same or the double axial periodicity as the
Taylor flow, and leading to twisted vortices, wavy vortices, wavy inflow boundaries,
or wavy outflow boundaries. All these flows are rotating waves around the z-axis,
due to the Hopf bifurcation with the SO(2) symmetry broken by the eigenvectors
(see also Section 3.3.1), but with various cell structures, the two first having the
same axial periodicity as the Taylor vortex flow, the last two having a double period.
One can proceed in the same way when starting with spirals or ribbons instead of
the Taylor vortex flow [15].

Finally, we point out that these tools can also be used to study imperfect situations
such as when cylinders are slightly eccentric, which breaks the SO(2) symmetry,
or in the presence of a little flux of fluid downwards, e.g., due to a leak in the
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apparatus, which breaks the reflection symmetry S, or in the presence of a small
bump on one cylinder, which breaks the translation invariance (see also the example
in Section 2.4.3 of Chapter 2).

5.1.3 Bénard–Rayleigh Convection Problem

Hydrodynamic Problem

Consider a viscous fluid filling the region between two horizontal planes. Each pla-
nar boundary may be a rigid plane, or a “free” boundary in the sense explained in
Remark 1.1. In addition, we assume that the lower and upper planes are at temper-
atures T0 and T1, respectively, with T0 > T1 (see Figure 1.2(i)). The difference of
temperature between the two planes modifies the fluid density, tending to place the
lighter fluid below the heavier one. The gravity then induces, through the Archi-
median force, an instability of the “conduction regime” where the fluid is at rest,
while the temperature depends linearly on the vertical coordinate z. This instability
is prevented up to a certain level by viscosity, so that there is a critical value of the
temperature difference, below which nothing happens and above which a “convec-
tive regime” appears.

The Navier–Stokes system (1.1) is not sufficient to describe this situation. An
additional equation for energy conservation is needed, where the internal energy is
proportional to temperature. In the Boussinesq approximation, the dependency of
the density ρ in function of the temperature T ,

ρ = ρ0 (1−α(T −T0)) ,

where α is the volume expansion coefficient, is taken into account in the momentum
equation, only in the external volumic gravity force −ρgez, introducing the coupling
between (V, p) and T . We refer to [75, Vol. II] for a very complete discussion and
bibliography on various geometries and boundary conditions in this problem.

Several different scalings are used in literature. We adopt here the one in [83],
which consists in choosing the length, time, velocity, and temperature scales respec-
tively as d, d2/κ , κ/d, νκ/αgd3, where d is the distance between the planes, κ is
the thermal diffusivity, and ν , α , and g are as above. This leads to the system

∂V
∂ t

+V ·∇V +∇p = P(θez +ΔV )

∇ ·V = 0
∂θ
∂ t

+V ·∇θ = Δθ +R(V · ez), (1.18)

replacing the Navier–Stokes system (1.11). Here θ is the deviation of the tem-
perature from the conduction profile, which satisfies the boundary conditions, and
V = (V1,V2,Vz), p, and θ are functions of (x, t), x = (X ,z), with X = (x1,x2) ∈ R

2
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the horizontal coordinates and z ∈ (0,1) the vertical coordinate, ez being the unitary
ascendent vector. There are two dimensionless numbers in this problem: the Prandtl
number P and the Rayleigh number R defined respectively as

P =
ν
κ

, R =
αgd3(T0 −T1)

νκ
.

System (1.18) is completed by the boundary conditions

Vz = θ = 0, z = 0,1,

together with either a “rigid surface” condition

V1 = V2 = 0, (1.19)

or a “free surface” condition
∂V1

∂ z
=

∂V2

∂ z
= 0 (1.20)

on the planes z = 0 or z = 1. Notice that here the kinematic viscosity is independent
of the temperature T . If this is not the case, some qualitative results change. Also,
adding a solute with a certain concentration, satisfying an equation and boundary
conditions of the same form as θ , gives richer results [75, Vol. II].

Fig. 1.2 (i) Bénard–Rayleigh problem. (ii) Domain of periodicity for bidimensional convection
(above) and convection rolls (below).

Bidimensional Convection

We restrict ourselves first to the case of bidimensional flows, i.e., we assume that
V2 = 0, and V = (V1,Vz), p, and θ are only functions of x1, z, and t.
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Formulation as a First Order System

We set U = (V,θ), and then the system is of the form (1.15) in the space X of
h-periodic functions in x1, defined by

X =
{

U ∈
(
L2((R/hZ)× (0,1))

)3
; ∇ ·V = 0, Vz|z=0,1 = 0,

∫ 1

0
V1dz = 0

}
.

In the case of rigid boundary conditions (1.19) on both planes z = 0 and z = 1, the
domain of L is defined by

Z(r,r) =
{

U ∈
(
H2((R/hZ)× (0,1))

)3
; ∇ ·V = 0,

V |z=0,1 = θ |z=0,1 = 0,

∫ 1

0
V1dz = 0

}
,

and similarly we define Z(r, f ), Z( f ,r), and Z( f , f ) by replacing the rigid boundary
condition V1 = 0 by the free boundary condition ∂V1/∂ z = 0 on z = 1, z = 0, and
z = 0,1, respectively (see Figure 1.2(ii)). Here we have

LU = (Π 0P(ΔV +θez),Δθ +RVz), R(U) = (−Π 0(V ·∇V ),−V ·∇θ),(1.21)

with R : Z → Y = X ∩
(
H1((R/hZ)× (0,1))

)3
quadratic and continuous. Here

Z represents one of the spaces Z(r,r), Z(r, f ), Z( f ,r), and Z( f , f ) above, depending
upon the choice of boundary conditions. Notice that the pressure p is not necessarily
periodic in x1, and that the orthogonal projection Π 0 in

(
L2((R/hZ)× (0,1))

)3
on

the subspace X eliminates the periodic gradient ∇p, as in Section 5.1.1.
A specific property of L in this case is that there is a special scalar product in the

Hilbert space X , with corresponding norm equivalent to the usual one, such that L
is self-adjoint. This scalar product is defined by

〈U (1),U (2)〉 = 〈V (1),V (2)〉|(L2((R/hZ)×(0,1)))2 +
P

R
〈θ (1),θ (2)〉|L2((R/hZ)×(0,1)).

As a consequence, the spectrum of L is now located on the real axis. Notice that L
is a relatively compact perturbation of the uncoupled self-adjoint negative operator

L′U = (Π 0PΔV,Δθ),

and that it has a compact resolvent, since its domain is compactly embedded in X
(see [76]). The spectrum of L consists then of isolated semisimple real eigenval-
ues of finite multiplicities, accumulating at −∞, only. Furthermore, the resolvent
estimate (2.9) in Chapter 2 is straightforward, and the estimate (2.10) in Chapter 2
also holds with α = 3/4 (see [52]). As for the case considered in Section 5.1.1, the
hypotheses required by the center manifold theorem in Chapter 2 are all satisfied.



252 5 Applications

Symmetries

This problem is invariant under translations parallel to the x1-axis and under the
reflection x1 �→ −x1. Then the system (1.15) possesses an O(2) symmetry group
represented by τa and S defined through

(τaU)(x1,z) = U(x1 +a,z), a ∈ R/hZ

(SU)(x1,z) = (−V1(−x1,z),Vz(−x1,z),θ(−x1,z)), (1.22)

where τh = I, because of the periodicity assumption. In addition, in the cases of
“rigid-rigid” and “free-free” boundary conditions, i.e., with Z(r,r) and Z( f , f ), re-
spectively, there is the additional symmetry with respect to the half-plane z = 1/2,

(SzU)(x1,z) = (V1(x1,1− z),−Vz(x1,1− z),−θ(x1,1− z)). (1.23)

Bifurcations

We fix the Prandtl number P and take the Reynolds number R as bifurcation pa-
rameter. As before, we denote by LR the linear operator L in (1.15). Then upon
increasing R from 0, there is a critical value Rc for which the largest real eigen-
value of LR crosses the imaginary axis from the left to the right [113, 119] (see also
[75, Vol. II]). The eigenvalue 0 of LRc is double, as it is generic for O(2) equivariant
operators, and the corresponding eigenvectors are of the form

ζ = eikcx1Û(z), ζ = Sζ ,

where kc is a positive critical wavenumber. In the case of “free-free” boundary con-
ditions, the eigenvectors are explicit and kc is easily obtained. In other cases, the
existence of such a positive kc may be proved analytically [123] (or following the
method in [126]); see also [75, Vol. II], but its uniqueness is, so far, only a numerical
evidence. Notice that the action of τa on the eigenvector ζ is

τaζ = eikcaζ ,

so that we are in the presence of a steady bifurcation with O(2) symmetry.
Applying the center manifold Theorems 3.23 and 3.13 in Chapter 2, we find a

two-dimensional center manifold and a reduced system, which commutes with the
restrictions of τa and S on the two-dimensional subspace E0 spanned by ζ and ζ .
The reduced equation is a Landau equation (1.17), and we find precisely the situa-
tion described in Section 1.2.4 of Chapter 1 (see also the first part of the example
in Section 2.4.3, Chapter 2). Here μ = R −Rc, and a > 0, b < 0 ([119, 127]; see
also [75, Vol. II]). Notice that in the cases of “rigid-rigid” or “free-free” bound-
ary conditions, the reduced system also commutes with the restriction on E0 of the
symmetry Sz. However, the action of this symmetry is ±I on E0, which does not
influence the Landau equation, already odd in (A,A). Applying Theorem 2.18 in
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Chapter 1, we find a pitchfork bifurcation of a “circle” of stable steady solutions,
obtained by translating with τa a symmetric, periodic solution. All these solutions
have the period 2π/kc and, as in the previous section, appear in cells of size π/kc,
the velocity being tangent to the boundaries of the rectangular cells. These solutions
are the convection rolls (see Figure 1.2(iii)).

Tridimensional Convection

Consider now the three-dimensional case, in which V2 is not identically 0, and V , p,
and θ are functions of X , z, and t, X = (x1,x2). Here, we assume the biperiodicity
condition (1.6), where the lattice of periods Γ is generated by two independent hor-
izontal vectors {e1,e2}, and the dual lattice of wave vectors is generated by the two
vectors {k1,k2} defined by (1.8). It turns out that in this case the critical wavenum-
ber found in the bidimensional case, is now the radius of a critical circle in the
Fourier plane. It was shown in [78] that the only possible forms of periodic patterns
are rolls, hexagons, regular triangles, and rectangles (see also [30]). Since experi-
mental evidence mostly show convection in rolls and convection in hexagonal cells,
we choose a lattice compatible with both patterns, as initiated in [109].

Formulation as a First Order System

We choose

e1 = h

(√
3

2
,

1
2

)

, e2 = h(0,1), k1 = kc(1,0), k2 = kc

(

−1
2
,

√
3

2

)

,

where h is determined by the critical wavelength kc,

hkc =
4π√

3
.

It is not difficult to check that this lattice is invariant under rotations of angle π/3
(see Figure 1.3(i)).

According to the flux conditions (1.7), we choose the Hilbert spaces

X =
{

U ∈
(
L2((R2/Γ )× (0,1))

)4
; ∇ ·V = 0, Vz|z=0,1 = 0,

∫

Σ1

V · k2dS =
∫

Σ2

V · k1dS = 0

}
,

and in the case of “rigid-rigid” boundary conditions
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Fig. 1.3 (i) Lattice Γ in the X-plane, for 3-D convection. (ii) Flow in a hexagonal cell.

Z(r,r) =
{

U ∈
(
H2((R2/Γ )× (0,1))

)4
; ∇ ·V = 0, V |z=0,1 = θ |z=0,1 = 0,

∫

Σ1

V · k2dS =
∫

Σ2

V · k1dS = 0

}
,

and similarly Z(r, f ), Z( f ,r), and Z( f , f ), by replacing the rigid boundary conditions
V1 = V2 = 0 by the free boundary conditions ∂V1/∂ z = ∂V2/∂ z = 0 on z = 1, z = 0,
and z = 0,1, respectively. We set U = (V,θ), just as in the two-dimensional case,
and then the system is of the form (1.15), with L and R defined as in (1.21). The
linear operator L and the quadratic map R have the same properties as in the two-
dimensional case.

Symmetries

This problem is invariant under horizontal translations, represented by the opera-
tors τa when replacing x1 + a by X + a for any a ∈ R

2/Γ , and invariant under the
mirror symmetry S defined as in (1.22). In addition, it is invariant under the rotation

(R2π/3U)(X ,z) =
(
R2π/3(V (R−2π/3X ,z)),θ(R−2π/3X ,z)

)
, (1.24)

where R2π/3 is the horizontal rotation, in the X-plane, of angle 2π/3. The group
generated by S and R2π/3 is denoted by D6, consisting of rotations on a circle of
angle π/3 together with the symmetries through a diameter. In the cases of “rigid-
rigid” and “free-free” boundary conditions, we still have the symmetry Sz, defined
by (1.23) with x1 replaced by X .
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Bifurcations

We fix the Prandtl number P and take the Reynolds number R as bifurcation pa-
rameter. As before, we denote by LR the linear operator L in (1.15). Upon increas-
ing R, there is a critical value Rc for which the largest real eigenvalue of LR crosses
the imaginary axis from the left to the right, which is now of multiplicity six. The
associated eigenvectors are now of the form

ζ j = eik j ·XÛj(z), j = 1, . . . ,6,

and satisfy

ζ2 = R2π/3ζ1, ζ3 = R−2π/3ζ1, ζ j+3 = Sζ j = ζ j, j = 1,2,3,

where
k3 = −(k1 + k2), k j+3 = −k j, j = 1,2,3.

Furthermore
τaζ j = eik j ·aζ j, eik3·a = e−i(k1+k2)·a,

and the action of the symmetry Sz is either the identity I or −I, when it is relevant.
Applying the center manifold Theorems 3.23 and 3.13 in Chapter 2, we find

a six-dimensional center manifold. For U0 ∈ E0, the eigenspace associated to the
eigenvalue 0 of LRc , we set

U0 = Aζ1 +Bζ2 +Cζ3 +Aζ1 +Bζ2 +Cζ3, (1.25)

and then we have the induced symmetries

τa(A,B,C) = (Aeik1·a,Beik2·a,Ceik3·a) for all a ∈ R
2/Γ ,

S(A,B,C) = (A,B,C), R2π/3(A,B,C) = (C,A,B),

and when Sz is relevant,
Sz(A,B,C) = ±(A,B,C).

The general form of vector fields commuting with these symmetries is given in
[30, Chap. XIII]. When the symmetry Sz is irrelevant, or when it is the identity
on E0, it is sufficient to consider the six-dimensional system truncated at order 3, of
the form

dA
dt

= aμA+ cBC +bA|A|2 +dA(|B|2 + |C|2)

dB
dt

= aμB+ cCA+bB|B|2 +dB(|C|2 + |A|2)

dC
dt

= aμC + cAB+bC|C|2 +dC(|A|2 + |B|2). (1.26)
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Here μ = R −Rc, a > 0, and the other coefficients are all real. The coefficient b
is the same as in the two-dimensional case, hence we have b < 0. In general the
presence of quadratic terms changes drastically the stability of the steady solutions
of (1.26) (see [30, Chap. XIII]). However in the present case, a specific property of
the Navier–Stokes equation implies that c = 0. This comes from the fact that for any
U in the domain of L, we have

〈R(U),U〉 = 0,

where 〈·, ·〉 is the usual scalar product in (L2)4, and this scalar product arises in the
computation of c, with U = U0 given by (1.25).

When B = C = 0 we recover the Landau equation (1.17) for A, which gives the
circle of steady solutions

aμ +b|A|2 = 0, B = C = 0,

corresponding to the steady convection rolls found in the two-dimensional case.
In addition, we have here the solutions obtained through the actions of R2π/3
and S, which correspond to convection rolls obtained by π/3-rotations of the two-
dimensional rolls above, so altogether we have three “circles” of rolls. In contrast
to the two-dimensional case, in which these rolls are stable, here they may also be
unstable. Indeed, since we have a “circle” of bifurcating solutions, one eigenvalue
of the linearized operator is 0, and the other eigenvalues are now 2b|A|2, the same as
in the two-dimensional case, and a quadruple eigenvalue (d−b)|A|2. Consequently,
the condition for stability of these rolls is

d < b < 0.

Another class of steady solutions of the system (1.26), with c = 0, is

A = reiθ1 , B = reiθ2 , C = reiθ3 ,

where r > 0 satisfies
aμ +(b+2d)r2 = 0,

and the phases θ j are arbitrary. For θ j = 0, this solution is invariant under the actions
of R2π/3 and S, and corresponds to hexagonal convection cells [30, Chap. XIII] (see
Figure 1.3(ii)). It should be noticed by the same argument as in the two-dimensional
convection, by using the periodicity and the symmetry S, that the velocity field is
tangent to the planes x1 = 2πn/kc for any n ∈ Z. Hence, by the D6 rotational in-
variance, the velocity field is tangent to all the vertical planes deduced from this
family, by rotations of angles π/3 and 2π/3. This means that the fluid particles are
confined in vertical triangular prisms, and a basic hexagonal prism for the pattern is
formed with six of these triangular prisms. The linearized operator at these hexag-
onal convection cells has a triple eigenvalue 0, a simple eigenvalue 2(b + 2d)r2,
and a double eigenvalue 2(b− d)r2. This latter eigenvalue implies that the hexag-
onal convection cells and the convection rolls cannot be both stable. In the case of
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“rigid-rigid” boundary conditions it is shown in [128] that b+2d < 0. Actually, the
result in [128] shows that hexagonal cells are stable under perturbations with hexag-
onal symmetry, in which case only the simple eigenvalue 2(b+2d)r2 is present. We
also point out that if c 	= 0 in system (1.26), then the phases of the steady solutions
above lose one degree of freedom, and the bifurcation is two-sided. In particular, the
hexagonal cells are then unstable [109, 30], but this might only apply to a different
physical situation, since here c = 0.

In the absence of the symmetry Sz we need to include the fourth order terms
in (1.26), in order to avoid the occurrence of a three-parameter family of hexagonal
cells: Only two arbitrary phases are relevant because of the action of τa, and this
leads to a degenerescence shown by the triple 0 eigenvalue. Adding fourth order
terms (see [30] for their structure) allows us to fix θ1 + θ2 + θ3 ∈ {0,π}, and to
obtain another, in general nonzero, simple eigenvalue decreasing by one the multi-
plicity of the 0 eigenvalue, for the linearized operator.

It appears that the symmetry Sz acts as −I on E0 in the case of the “free-free”
boundary conditions, because of a factor sin(πz) in the components Vz and θ , and
of a factor cos(πz) in the components V1 and V2 of Û j(z), in the formula of the
eigenvector ζ j. It is a priori not automatic, but it is shown numerically that it is also
the case for “rigid-rigid” boundary conditions, since for R = Rc the components
Vz and θ in Û j(z) are invariant under the symmetry z �→ 1− z (see [14]). With such
a symmetry, the vector field in (1.26) is odd in (A,B,C,A,B,C), so that there are
no terms of even orders. Consequently, one has to consider the fifth order terms in
order to solve the degenerescence and find all steady solutions. For further details
we refer to [30, Chap. XIII], where the problem is treated using the Lyapunov–
Schmidt method, but the results can be adapted to the present approach. It is shown
that there are four types of steady solutions: rolls, hexagons, regular triangles, and
patchwork quilts, which all may be stable, depending on the coefficients, but not
simultaneously. This confirms the prediction in [78], though only the first two types
of solutions are usually observed.

Tridimensional Convection in an Elongated Cylindrical Domain

Finally, we briefly discuss the case of a long horizontal cylindrical container, with
rectangular section in the (x2,z)-plane, and small sides compared to the length of
the cylinder along the x1-axis. Physically, to satisfy the a priori periodicity in x1

which we impose to the solutions, it might be convenient to take a thin ring-shaped
container (a torus) having a radius large with respect to the sides of the rectangu-
lar meridian section. This problem also possesses an O(2) symmetry, and it turns
out to be similar to the case of two-dimensional convection [75, Vol. II]. The same
approach as above can be used, showing the existence of a “circle” of stable convec-
tion rolls, bifurcating for R > Rc, which are periodic in x1, the cells being parallel
to the x2-axis.
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Second Bifurcation

We are interested here in the next bifurcation, when R crosses a second critical
value R2, at which the stable convection rolls for R > Rc become unstable.

The “circle” of convection rolls is given by τaU∗, a ∈R, where U∗ is a symmetric
solution, SU∗ = U∗. Notice that there are two such symmetric solutions on the “cir-
cle,” and that all these solutions are of class C ∞. The generator of the group (τa)a∈R

is the derivative ∂x1 ∈ L (Z ,Y ), and then ∂x1U∗, the Goldstone mode, satisfies

∂x1U∗ ∈ Z , (L+DU R(U∗))(∂x1U∗) = 0, S(∂x1U∗) = −∂x1U∗.

In particular, this shows that the operator L + DU R(U∗) has an eigenvalue 0 with
eigenvector ∂x1U∗. It turns out, that experimental evidence suggests that this eigen-
value is actually algebraically double and geometrically simple when R = R2. In-
deed, for R close to R2 there are bifurcating solutions which are slow traveling
waves, and, as we shall see below, correspond to the situation in which there is a
generalized antisymmetric eigenvector ξ0, such that

(L+DuR(U∗))ξ0 = ∂x1U∗, Sξ0 = −ξ0,

(see also [15, p. 102], for an analogue for the Couette–Taylor problem).
Following the method of construction of center manifolds near a line of equilib-

ria in Section 2.3.3 of Chapter 2, we consider the new coordinates (α,v) defined
through

U = τα(U∗ + v), 〈v,∂x1U∗〉 = 0,

where 〈·, ·〉 is the scalar product in (L2)4. Then the linear operator L′ defined
in (3.18) in Chapter 2, acting on v, which commutes with S due to the choice of U∗,
has a simple eigenvalue crossing the imaginary axis through 0, when R crosses R2.
Applying the center manifold Theorems 3.19 and 3.13 in Chapter 2, we conclude
that a pitchfork bifurcation occurs in the equation for v when R = R2 (see also
the general study of the ten possible solutions generically bifurcating from a one-
dimensional periodic pattern in [19]). Since α(t) has a small constant derivative,
the bifurcating solutions are traveling waves with speeds close to 0, which arise in
pairs exchanged by the symmetry S, i.e., traveling in opposite directions. This type
of flow is indeed observed in experiments [8].

5.2 Existence of Traveling Waves

Traveling waves are particular solutions of partial differential equations in domains
with at least one unbounded coordinate, which describe propagation phenomena at
constant speeds. We present three different examples of traveling-wave problems
for which the existence question is treated with the help of the methods described
in this book. The analysis relies upon a formulation of the existence problem as a



5.2 Existence of Traveling Waves 259

first order system of the form (2.1) in Chapter 2, in which the timelike variable t
is an unbounded coordinate of the domain on which the PDE is posed. This idea
goes back to K. Kirchgässner [80], and this type of approach is often referred to as
“spatial dynamics.”

5.2.1 Gravity-Capillary Water-Waves

The Hydrodynamic Problem

The classical gravity-capillary water-wave problem concerns the three-dimensional
irrotational flow of a perfect fluid of constant density subject to the forces of gravity
and surface tension. The fluid motion is governed by the Euler equations in a domain
bounded below by a rigid horizontal bottom and above by a free surface.

Denote by (x,y,z) the usual Cartesian coordinates. We assume that the fluid oc-
cupies the domain

Dη = {(x,y,z) ; x,z ∈ R, y ∈ (0,h+η(x,z, t))},

where η >−h is a function of the unbounded horizontal spatial coordinates x, z and
of time t, and h represents the depth of the fluid in its undisturbed state. Consider
the Eulerian velocity potential φ . The mathematical problem consists in solving
Laplace’s equation

φxx +φyy +φzz = 0 in Dη , (2.1)

with kinematic boundary conditions

φy = 0, on y = 0 (2.2)

φy = ηt +ηxφx +ηzφz, on y = h+η (2.3)

showing that the water cannot permeate the rigid bottom at y = 0 or the free surface
at y = h+η(x,z, t), and the dynamic boundary condition

φt = −1
2
(φ 2

x +φ 2
y +φ 2

z )−gη

+
T
ρ

(
ηx√

1+η2
x +η2

z

)

x

+
T
ρ

(
ηz√

1+η2
x +η2

z

)

z

+B on Y = h+η , (2.4)

at the free surface. Here g is the acceleration due to gravity, T is the coefficient of
surface tension, ρ the density of the fluid, and B is a constant called the Bernoulli
constant.
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Traveling Waves

Traveling waves are particular solutions (φ ,η) of the problem (2.1)–(2.4) of the
form η = η(x + ct,z), φ = φ(x + ct,y,z), i.e., waves that are uniformly translating
in the horizontal direction x with speed −c. We point out that there is no loss of
generality in choosing x as the direction of propagation since the system (2.1)–(2.4)
is invariant under rotations in the (x,z)-plane. Substituting this form of η , φ into
(2.1)–(2.4), and introducing the dimensionless variables

(x′,y′,z′) =
1
h
(x,y,z), η ′(x′,z′) =

1
h

η(x,z), φ ′(x′,y′,z′) =
1
ch

φ(x,y,z),

we find the equations

φxx +φyy +φzz = 0, 0 < y < 1+η (2.5)

φy = 0, y = 0 (2.6)

φy = ηx +ηxφx +ηzφz, y = 1+η (2.7)

φx +
1
2
(φ 2

x +φ 2
y +φ 2

z )+λη

−b

(
ηx√

1+η2
x +η2

z

)

x

−b

(
ηz√

1+η2
x +η2

z

)

z

= 0, y = 1+η , (2.8)

in which the primes have been dropped, x is a shorthand for the variable x+ ct, and
the Bernoulli constant has been set to zero. The dimensionless numbers

λ =
gh
c2 , b =

T
ρhc2

are respectively the inverse square of the Froude number and the Weber number.

Symmetries

The time-dependent water-wave equations (2.1)–(2.4) possess several symmetries.
Of importance in the present approach to traveling waves are the following contin-
uous symmetries: the invariance under translations in φ ,

φ �→ φ +A, A ∈ R; (2.9)

the horizontal Galilean invariance

x �→ x−Ct, φ �→ φ +Cx, η �→ η − 1
2g

C2, C ∈ R; (2.10)
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and the invariance under rotations in the (x,z)-plane. As a remnant of this rotation
invariance, the problem (2.5)–(2.8) possesses the two discrete symmetries

x �→ −x, z �→ z, η �→ η , φ �→ −φ ;

x �→ x, z �→ −z, η �→ η , φ �→ φ . (2.11)

We point out that the equations (2.5)–(2.8) also possess a Hamiltonian structure,
which has been used in many different studies of traveling water waves (see the
review paper [33] and the references therein).

Two-Dimensional Waves

The question of existence of two-dimensional traveling water waves, i.e., solutions
of (2.5)–(2.8) that are independent of z, has a long history, and has been studied by
many different authors in many different works. We present here an approach to this
question, which relies upon the methods described in this book. For further details
we refer to the review paper [23] and the references therein. We point out that this
approach also works for pure gravity waves when b = 0. We refer for instance to
[81] for an analysis of this case.

Spatial Dynamics

We restrict ourselves to two-dimensional waves, i.e., solutions of the system (2.5)–
(2.8) that are independent of z. A very convenient way of formulating the system
(2.5)–(2.8) as a first order system of the form (2.1) in Chapter 2, in which x is the
timelike variable, is with the help of a variables and coordinates transformation due
to Levi–Civita [90] (see also [81] for a different formulation).

Consider the complex velocity potential defined through

w(x+ iy) = κ + iζ , κ = x+φ(x,y), ζ = ψ(x,y),

where here x + φ is the velocity potential in the moving frame, in contrast to φ
used above which is the velocity potential in the original reference frame, and ψ
is the stream function. Notice that in the moving frame, the two-dimensional ve-
locity vector (u,v) satisfies the following equations, due to incompressibility and
irrotationality of the flow,

u = 1+φx = ψy, v = φy = −ψx,

showing that x+φ and ψ satisfy the Cauchy–Riemann equations.
We define the new variables (α,β ) by

w′(x+ iy) = u− iv = e−i(α+iβ ),
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where α = arg(v/u) is the slope of the streamline and β = (1/2) ln(u2 + v2), and
introduce the change of coordinates defined by

dx+ idy = ei(α+iβ )(dκ + idζ ).

Then the bottom of the domain y = 0 corresponds to ζ = 0 and the free surface
y = 1 + η(x) corresponds to ζ = 1, because the Bernoulli constant B has been set
to 0. Furthermore, (α,β ) = 0 corresponds to the rest state (φ ,η) = 0 in (2.5)–(2.8).
With these new variables we regard α + iβ as an analytic function of κ + iζ .

A key property of this choice of variables is that we still have the Cauchy–
Riemann equations for (α,β ):

ακ = βζ , αζ = −βκ,

but now for (κ,ζ ) in a fixed strip (κ,ζ ) ∈ R× (0,1). Then the Cauchy–Riemann
equations above replace the equation (2.5), and the boundary conditions (2.6)–(2.8)
become

α = 0, ζ = 0,

η̃κ = e−β sinα, ζ = 1,

1
2
(e2β −1)+λη̃ −beβ ακ = 0, ζ = 1,

where η̃(κ) = η(x). Notice that we recover the shape of the free surface from the
expression

η̃(κ) =
∫ 1

0
(e−β cosα −1)dζ .

We now set

U(κ,ζ ) = (α0(κ),α(κ,ζ ),β (κ,ζ )), α0(κ) = α(κ,1),

and then the system (2.5)–(2.8) is transformed into a system of the form

dU
dκ

= F(U,λ ,b), (2.12)

with

F(U,λ ,b) =

⎛

⎜
⎝

1
b sinhβ0 + λ

b e−β0
∫ 1

0 (e−β cosα −1)dζ
∂β
∂ζ

− ∂α
∂ζ

⎞

⎟
⎠ , β0(κ) = β (κ,1).

We also consider the spaces

X = R×
(
L2(0,1)

)2
, Z = {U ∈ R×

(
H1(0,1)

)2
; α(0) = 0, α0 = α(1)},
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so that F(·,λ ,b) : Z → X is a smooth map.
Notice that the system (2.12) is reversible, with the reversibility symmetry S

defined by
S(α0,α,β ) = (−α0,−α,β ).

We also point out that we can write

F(U,λ ,b) = Lλ ,bU +R(U,λ ,b), Lλ ,b = DU F(0,λ ,b),

with Lλ ,b a closed linear operator in X with domain Z , and the nonlinearity
R(·,λ ,b) having the last two components identically 0, so that R(·,λ ,b) is a smooth
map from Z into R×{0} ⊂ X .

Bifurcation Analysis

For the system (2.12) the bifurcations are determined by the purely imaginary spec-
trum of the linear operator

Lλ ,b = DU F(0,λ ,b), Lλ ,bU =

⎛

⎜
⎝

1
b β0 − λ

b

∫ 1
0 βdζ

∂β
∂ζ

− ∂α
∂ζ

⎞

⎟
⎠ .

Since Z is compactly embedded in X , the operator Lλ ,b has a compact resolvent,
so that its spectrum consists of isolated eigenvalues with finite algebraic multiplic-
ities, only accumulating at infinity. It is straightforward to check that a nonzero
purely imaginary number iκ 	= 0 is an eigenvalue if and only if it satisfies the dis-
persion relation

(λ +bκ2) tanh(κ)−κ = 0

and that 0 is an eigenvalue only when λ = 1. The resulting bifurcation diagram,
and the location of the four eigenvalues closest to the imaginary axis is shown in
Figure 2.1. We conclude that there are three bifurcation curves: the half-line {λ =
1, b > 1/3}, the segment {λ = 1, 0 < b < 1/3}, and the curve C0, along which we
find a 02+, 02+(iω), and (iω)2 bifurcation, respectively. The point (λ ,b) = (1,1/3)
is a codimension two bifurcation point, where a 04+ bifurcation occurs.

The center manifold Theorems 3.3 and 3.15 in Chapter 2 together with the re-
sults on reversible bifurcations in Chapter 4: Theorem 1.8 (see also Remark 1.9(ii)),
Theorem 3.10 (see also Exercise 3.12), and Theorem 3.21(iii), can be applied to
study each of these bifurcations. Besides periodic and quasi-periodic orbits, for the
reduced systems one finds homoclinic orbits in the case of the 02+ and (iω)2 bifurca-
tions, and homoclinic orbits to periodic orbits in the case of the 02+(iω) bifurcation.
The solutions corresponding to all these homoclinics are solitary waves, and are of
particular interest in the water-wave problem (see Figure 2.2).
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Fig. 2.1 Two-dimensional water waves: bifurcation diagram in (b,λ )-parameter plane, and behav-
ior of the critical eigenvalues of Lλ ,b. The solid lines represent the bifurcation curves, whereas the
solid and hollow dots represent simple and double eigenvalues, respectively.

Fig. 2.2 Two-dimensional solitary waves found in the 02+, 02+(iω), and (iω)2 bifurcations (from
left to the right). The arrows indicate the direction of propagation.

Three-Dimensional Waves

In contrast to the case of two-dimensional traveling waves, there are relatively few
mathematical results on the existence of three-dimensional traveling waves, which
are all quite recent. Most of these results rely upon a formulation of the equations
(2.5)–(2.8) as a first order system of the form (2.1) in Chapter 2, and a center
manifold reduction. A major difficulty, which seems to be specific to the three-
dimensional problem, is that the formulation of equations (2.5)–(2.8) as a first order
system is not explicit, due to the nonlinear boundary conditions at the free surface.
This difficulty has been first overcome in [35]. In addition, in the three-dimensional
problem the domain has infinitely many unbounded directions, any horizontal direc-
tion being unbounded, whereas there is only one unbounded direction in the two-
dimensional problem. Then any of these unbounded directions can be taken as a
timelike variable in the formulation of the equations as a first order system.

Another particularity of the three-dimensional problem is that, to be able to ap-
ply the center manifold reduction, one may address only particular wave-profiles
in a direction transverse to the direction which is taken as timelike variable. A nat-
ural choice is to address only waves that are periodic in such a direction, but one
could also impose some boundary conditions, as Dirichlet or Neumann. Without
this restriction in formulation (2.1) in Chapter 2, as a first order system the linear
operator L has a purely continuous spectrum, with no gap around the imaginary
axis, so that the center manifold theorem does not apply. Furthermore, even with
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this restriction, in the particular case of gravity waves, i.e. in the absence of surface
tension when b = 0, it turns out that L has infinitely many imaginary eigenvalues,
so that the center manifold theorem does not apply either. It is therefore essential
when using this approach to the three-dimensional problem to assume that b 	= 0.

Here, we restrict ourselves to the simpler, particular case in which the timelike
variable in the formulation of the equations as a first order system of the form (2.1)
in Chapter 2 is the direction x of propagation, and when the waves are periodic in the
perpendicular direction z. This is the case considered in [35]. While the formulation
in [35] relies upon the Hamiltonian structure of the equations, we present below a
different formulation, which does not use this Hamiltonian structure (see also [41]
for a similar formulation).

Spatial Dynamics

Choosing the direction of propagation x as timelike variable, and restricting to waves
which are periodic of period L = 2π/� in z, our purpose is to write equations (2.5)–
(2.8) as a first order system of the form

dU
dx

= F(U,λ ,b, �). (2.13)

Notice that in contrast to the two-dimensional problem we have now the additional
parameter �, which is the wavenumber in z.

We introduce the new variables

u = φx, ξ =
ηx

(
1+η2

x +η2
z

)1/2
,

and rewrite equations (2.5)–(2.8) as

φx = u, 0 < y < 1+η
ux = −φyy −φzz, 0 < y < 1+η

ηx = ξ
(

1+η2
z

1−ξ 2

)1/2

ξx =
1
b

u+
λ
b

η +
1

2b

(
u2 +φ 2

y +φ 2
z

)
−

(

ηz

(
1−ξ 2

1+η2
z

)1/2
)

z

, y = 1+η ,

to which we add the boundary conditions

φy = 0, y = 0,

φy = ξ (1+u)
(

1+η2
z

1−ξ 2

)1/2

+ηzφz, y = 1+η .
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We now flatten the free boundary at y = 1 +η and normalize the period in z to 2π ,
by taking the new coordinates

y′ =
y

1+η(x,z)
, z′ = �z, � =

2π
L

,

so that y′ ∈ (0,1) and the waves are 2π-periodic in z′. In the coordinate system
(x,y′,z′), after suppressing the primes, we find the equations

φx = u+
yφyξ
1+η

(
1+ �2η2

z

1−ξ 2

)1/2

ux = −�2
(

φz −
yηz

1+η
φy

)

z
+

�2yηz

1+η

(
φz −

yηz

1+η
φy

)

y
− φyy

(1+η)2

+
yuyξ
1+η

(
1+ �2η2

z

1−ξ 2

)1/2

ηx = ξ
(

1+ �2η2
z

1−ξ 2

)1/2

ξx =
1
b
(u|y=1 +λη)+

1
2b

[

u2 + �2
(

φz −
yηz

1+η
φy

)2

+
φ 2

y

(1+η)2

]

y=1

−�2

(

ηz

(
1−ξ 2

1+ �2η2
z

)1/2
)

z

and the boundary conditions

φy|y=0 = 0,

φy|y=1 =
(

1+η
1+ �2η2

z

)(

ξ (1+u|y=1)
(

1+ �2η2
z

1−ξ 2

)1/2

+ �2ηzφz|y=1

)

.

Next, consider the following spaces of functions which are 2π-periodic in z,

Hs
per(S) = { f ∈ Hs

loc(R) ; f (·+2π) = f (·)},
Hs

per(Σ) = { f ∈ Hs
loc((0,1)×R) ; f (·, ·+2π) = f (·, ·)},

where Hs
loc is the classical Sobolev space, S = (0,2π), Σ = (0,1)× (0,2π), and we

assume that 0 < s < 1/2. We set

Hs = Hs+1
per (Σ)×Hs

per(Σ)×Hs+1
per (S)×Hs

per(S),

and V = (φ ,u,η ,ξ ). Then the system above is of the form

dV
dx

= F̃(V,λ ,b, �), (2.14)
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with F̃(·,λ ,b, �) : D(F̃) ⊂ Hs+1 → Hs a smooth map with domain a codimension-
two manifold in a neighborhood of 0,

D(F̃) =
{

(φ ,u,η ,ξ ) ∈ Hs+1 ; |ξ | < 1, η > −1, φy|y=0 = 0,

φy|y=1 =
(

1+η
1+�2η2

z

)(
ξ (1+u|y=1)

(
1+�2η2

z
1−ξ 2

)1/2
+ �2ηzφz|y=1

)}
,

defined by the boundary conditions. Notice that Hs
per(S) and Ht

per(Σ) are Banach
algebras for s > 1/2 and t > 1, respectively, and that Hs+1

per (S) ·Hs
per(S) ⊂ Hs

per(S)
and Hs+1

per (Σ) ·Hs
per(Σ) ⊂ Hs

per(Σ) if s > 0.
One of the difficulties here is due to nonlinear boundary condition in the defini-

tion of the domain of F̃. In order to transform this boundary condition into a linear
one, we follow the arguments in [35].

Consider the smooth map H : Hs+1 → Hs+1
per (Σ) defined by

H(φ ,u,η ,ξ ) = y

(
1+η

1+ �2η2
z

)(

ξ (1+u)
(

1+ �2η2
z

1−ξ 2

)1/2

+ �2ηzφz

)

,

so that the two boundary conditions become

φy = H(φ ,u,η ,ξ ), y = 0,1.

We construct a suitable change of variables in the neighborhood of the origin with
the help of the smooth map G : Hs+1 → Hs+1 defined by

G(φ ,u,η ,ξ ) = (φ −ϕy,u,η ,ξ ),

where ϕ ∈ Hs+3
per (Σ) is the unique solution of the linear boundary value problem

Δϕ = H(φ ,u,η ,ξ ), (y,z) ∈ Σ ,

ϕ = 0, y = 0,1.

Setting
ψ = φ −ϕy,

the boundary conditions become

ψy = 0, y = 0,1. (2.15)

By arguing as in [35], it can be shown that G has a bounded inverse at the origin,
(dG(0))−1 = I, and that the operator dG(U) : Hs+1 → Hs+1 extends to an isomor-
phism d̃G(U) : Hs → Hs for every U ∈ Hs+1 sufficiently small.

Now we set V = G−1(U) and the system (2.14) becomes
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dU
dx

= dG(G−1(U))
(

F̃(G−1(U),λ ,b, �)
)

,

where U = G(φ ,u,η ,ξ ) = (ψ ,u,η ,ξ ), as defined above, satisfies the linear bound-
ary conditions (2.15). This system is of the form (2.13), with F a smooth map, and
F(·,λ ,b, �) : D(F) ⊂ Hs+1 → Hs defined on the linear subspace

D(F) = {(ψ ,u,η ,ξ ) ∈ Hs+1 ; ψy|y=0,1 = 0} ⊂ Hs+1.

Notice that since 0 < s < 1/2 the domain D(F) is dense in Hs, which is useful to
avoid technical complications in the reduction procedure, and that Hs+1 is com-
pactly embedded in Hs.

The two discrete symmetries (2.11) of equations (2.5)–(2.8) induce a reversibility
symmetry S and an equivariance symmetry T of the system (2.13), which are defined
through

S(ψ ,u,η ,ξ ) = (−ψ ,u,η ,−ξ ),
T(ψ(y,z),u(y,z),η(z),ξ (z)) = (ψ(y,−z),u(y,−z),η(−z),ξ (−z)).

Bifurcation Analysis

For the system (2.13) the bifurcations are determined by the purely imaginary spec-
trum of the linear map

Lλ ,b,� = DU F(0,λ ,b, �),

which is a closed linear operator in X = Hs, with dense domain Z = D(F). Since
D(F) is compactly embedded in Hs, the operator Lλ ,b,� has a compact resolvent,
so that its spectrum consists of isolated eigenvalues, only accumulating at infinity.
Using Fourier series in z, a direct calculation shows that a purely imaginary number
iκ is an eigenvalue of Lλ ,b,�, with corresponding eigenvectors in the nth Fourier
mode, if and only if

κ2 = (λ +bγ2
n )γn tanhγn, γ2

n = κ2 +n2�2, n ∈ Z. (2.16)

Fixing the wavenumber � in the direction z, and taking λ and b as bifurcation param-
eters one finds an infinite sequence of bifurcation curves Cn, n = 0,1,2, . . . , in the
(b,λ )-parameter plane, which accumulate at the half-axis b = 0, λ > 0, as n → ∞
(see Figure 2.3).

The center manifold theorem can be applied for values of (b,λ ) close to each of
these bifurcation curves, the resulting center manifolds being of dimension 8n + 4
for (b,λ ) close to Cn when λ > 1, and of dimension 8n + 2 for (b,λ ) close to Cn

when λ < 1. We point out that the center manifold has actually two additional di-
mensions, due to a double zero eigenvalue of Lλ ,b,� which exists for all values of
(b,λ ). This eigenvalue results from the continuous symmetries (2.9)–(2.10) of the
equations (2.1)–(2.4). An appropriate use of these invariances allows us to eliminate
these two additional dimensions in the reduction procedure [34, 40]. Furthermore,
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Fig. 2.3 Three-dimensional water waves: first four bifurcation curves in (b,λ )-parameter plane for
a fixed �, and behavior of the critical eigenvalues of Lλ ,b,�. The solid dots, hollow dots, and crosses
represent simple, double, and quadruple eigenvalues, respectively.

using the equivariance symmetry T, one can restrict to the study of symmetric so-
lutions satisfying TU = U , and then the reduced systems of ODEs are of lower
dimension, 4n +4 for (b,λ ) close to Cn when λ > 1, and 4n +2 for (b,λ ) close to
Cn when λ < 1.

The first bifurcation is found when crossing the curve C0 from right to the left,
when the reduced center manifold is four-dimensional, and we have a reversible
(iω)2 bifurcation. But this is precisely the (iω)2 bifurcation found in the two-
dimensional problem, because the purely imaginary eigenvalues correspond to the
Fourier mode n = 0 in z, and therefore the associated eigenvectors are constant in z.
The bifurcating solutions are all two-dimensional.

The simplest bifurcation of truly three-dimensional waves occurs when crossing
the curve C1 for λ < 1. Restricting to symmetric solutions, TU = U , we have a
reversible (iω1)2(iω2) bifurcation. This bifurcation has been analyzed in [35], where
for the reduced system the existence of periodic orbits and of orbits homoclinic to
periodic orbits has been shown. These orbits correspond to water waves that are
even in both x and z, are periodic in z, and have the profile of a periodic wave or
a generalized solitary wave in the direction of propagation x (see Figure 2.4). The
other bifurcations are more complicated and their analysis is open.

Further Waves

As already mentioned, one may choose any horizontal direction as timelike vari-
able in the formulation of the equations as a first order system, and then take any
transverse direction as direction in which the waves are periodic. This freedom in-
troduces two additional parameters in the bifurcation problem, making the analysis
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Fig. 2.4 Three-dimensional water-waves having the profile of a periodic wave (left), and of a gen-
eralized solitary wave (right) in the direction of propagation; they are periodic in the perpendicular
direction. The arrows indicate the direction of propagation.

much more involved, but allowing us to find additional classes of traveling waves
[34] (see also [36]).

This approach to three-dimensional waves excludes the fully localized waves,
and also the case of gravity waves, when the surface tension vanishes. We refer to
[37] and [69] for two recent existence results of fully localized waves in the case
of large surface tension, and of doubly periodic waves in the case of zero surface
tension, respectively.

5.2.2 Almost-Planar Waves in Reaction-Diffusion Systems

We consider the reaction-diffusion system

Ut = DΔU + f (U), (x,y) ∈ R
2, t ∈ R, (2.17)

where U(x,y, t) ∈ R
N is a vector of N chemical species, D = diag(D1, . . . ,DN) > 0

is a positive, diagonal diffusion matrix, Δ represents the laplacian in R
2, and the

reaction kinetics f are assumed to be smooth. We are interested in two-dimensional
traveling waves propagating with speed c in the direction y, i.e., bounded solutions
of the form U(x,y, t) = u(x,y − ct). Notice that there is no loss of generality in
taking y as direction of propagation, because of the rotational invariance of the sys-
tem (2.17). In a moving coordinate system (x′,y′) = (x,y−ct), the traveling wave u
satisfies the stationary equation

DΔu+ c∂yu+ f (u) = 0, (2.18)

in which the primes have been dropped.
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Almost-Planar Waves

We focus on the existence of almost-planar traveling waves, which are solutions
of (2.18) that are close to a given one-dimensional wave q∗(y) (planar wave). We
restrict here to the particular case when the planar wave q∗(y) is either a front or a
pulse (see Figure 2.5), and rely upon the approach to almost-planar waves in [42].

Fig. 2.5 Planar waves: front, pulse, periodic wave, and a rotated front (from left to the right). The
arrows indicate the direction of propagation y.

This approach can be adapted to the case of periodic waves in a rather straightfor-
ward way.

Assuming that q∗(y) is a one-dimensional traveling wave with speed c∗ satisfying
(2.18), a solution u(x,y) of (2.18) is an almost planar traveling wave δ -close to q∗,
if u is of the form

u(x,y) = q∗(y+ξ (x))+ ũ(x,y), (2.19)

with ξ ∈C2(R), and

sup
x∈R

|ξ ′(x)| < δ , sup
(x,y)∈R2

|ũ(x,y)| < δ , |c− c∗| < δ . (2.20)

The wave u is a trivial almost planar wave if u is a rotated planar wave u =
q∗((cosϑ)x +(sinϑ)y), for some ϑ ∈ R (see Figure 2.5). In particular, in this case
we have that ξ ′′ = 0. Depending upon the shape of the derivative ξ ′, and its lim-
its ξ ′(x) → η± ∈ R, as x → ±∞, we distinguish several classes of almost planar
waves: periodically modulated waves when ξ ′ is periodic, interior corners when
η+ < η−, exterior corners when η+ > η−, steps when η+ = η− 	= 0, holes when
η+ = η− = 0 (see Figure 2.6)

Fig. 2.6 Almost-planar waves close to a planar front: periodically modulated wave, interior cor-
ner, exterior corner, step, and hole (from left to the right). The arrows indicate the direction of
propagation y.
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Hypotheses

We assume the existence of a traveling one-dimensional front, or pulse. More pre-
cisely, we assume that there exists a speed c∗ > 0 and asymptotic states q± such that
there exists an x-independent traveling-wave solution q∗(y) of (2.18),

Dq′′∗ + c∗q′∗ + f (q∗) = 0, (2.21)

connecting q− and q+, i.e.,

q∗(y) → q+ for y → +∞, q∗(y) → q− for y →−∞. (2.22)

We emphasize that we allow for the possibility of pulses, when q+ = q−.
The key assumption is concerned with the stability of the above traveling-wave

solution. We discuss here the simplest situation, in which the traveling wave is
asymptotically stable with respect to both one- and two-dimensional perturbations.

Consider the linearized operator M∗ : H2(R2,RN)⊂ L2(R2,RN)→ L2(R2,RN),
defined through

M∗u = DΔu+ c∗∂yu+ f ′(q∗(·))u (2.23)

and obtained by linearizing equation (2.18) at the one-dimensional wave q∗ and its
Fourier conjugates Mk : H2(R,RN) ⊂ L2(R,RN) → L2(R,RN),

Mku = D(∂yy − k2)u+ c∗∂yu+ f ′(q∗(·))u. (2.24)

We assume that

(i) zero is an isolated eigenvalue of M0 and the rest of the spectrum is strictly
contained in the left half-complex plane;

(ii) the eigenvalue zero is simple with associated eigenvector the derivative q′∗, i.e.,
the traveling wave q∗ is asymptotically stable in one-space dimension;

(iii) the spectra of Mk, for k 	= 0 are strictly contained in the left half-complex plane
and that the unique eigenvalue λd(k), k ∼ 0 with λd(0) = λ ′

d(0) = 0 satisfies
λ ′′

d (0) < 0 i.e., the traveling wave q∗ is asymptotically stable in two space
dimensions.

Bifurcation Analysis

As in the case of the water-wave problem, we start by rewriting equation (2.18) as a
first order system. Though we also have here an infinity of unbounded directions in
the (x,y)-plane, there is in this case a distinguished direction, which is the direction
x in which the one-dimensional wave q∗ is homogeneous. Choosing x as timelike
variable we write the equation (2.18) in the form

dU
dx

= LcU +F(U), (2.25)
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where U = (u,v),

Lc =
(

0 I

−∂yy −D−1c∂y 0

)
, F(U) =

(
0

−D−1 f (u)

)
. (2.26)

The system (2.25) possesses a reversibility symmetry S, defined through S(u,v) =
(u,−v), and a continuous translation symmetry, induced by the y-shift ξ : U(·) �→
U(·+ξ ).

An important consequence of the choice of x as timelike variable is that the one-
dimensional wave q∗ is now an equilibrium of (2.25), and due to the continuous
translation symmetry above we have a family of equilibria

Qξ
∗ =

(
qξ
∗ (·)
0

)
=

(
q∗(·+ξ )

0

)
. (2.27)

The linearization of (2.25) about Q0
∗ is given by the operator

L0 = Lc∗ +DU F(Q0
∗),

which is a closed linear operator in X = (H1×L2)(R,RN) with dense domain Z =
(H2×H1)(R,RN). Using the stability properties (i)–(iii) of q∗, one can show in this
case that 0 is an algebraically double and geometrically simple eigenvalue of L0,
and that the rest of the spectrum lies away from the imaginary axis in a region {λ ∈
C ; |Reλ |> γ}, for some γ > 0. Consequently, L0 satisfies Hypothesis 2.4 required
by the center manifold theorem in Chapter 2. The space E0 is two-dimensional and
spanned by the vectors

ζ0 =
(

q′∗(·)
0

)
, ζ1 =

(
0

q′∗(·)

)
,

with L0ζ0 = 0 and L0ζ1 = ζ0. Similarly, to the shifted equilibria Qξ
∗ we con-

sider the shifted linear operator Lξ , the shifted vectors ζ ξ
0 = ((q′∗)

ξ (·),0), and

ζ ξ
1 = (0,(q′∗)

ξ (·)), and the shifted space E ξ
0 .

Following the general strategy for construction of a local center manifold along
a line of equilibria described in Section 2.3.3, and taking into account the above
properties of the linearization Lξ around Qξ

∗ , we decompose

U = Qξ
∗ +ηζ ξ

1 +W ξ with PξW ξ = 0. (2.28)

Here ξ and η are real functions depending upon x, and Pξ represents the spectral

projection onto E ξ
0 . Substituting (2.28) into (2.25), and then projecting successively

on ζ ξ
0 , ζ ξ

1 , and the complement (I−Pξ )X of E ξ
0 we find the equation for ξ ,

ξx = η +O(|η |‖W‖X ), (2.29)
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which decouples, and the quasilinear system

ηx =
2

λ ′′
d (0)

(c− c∗)−
c∗

λ ′′
d (0)

η2 +O(|c− c∗|‖W‖X + |η |‖W‖X +‖W‖2
X )

Wx = L0W +O(|c− c∗|+ |η |2 +‖W‖2
X + |η |‖W‖Y ) (2.30)

posed on the Hilbert space R×Xh, with Xh = (id−P)X .
Applying the center manifold theorem for quasilinear systems, Theorem 2.20 in

Chapter 2, to system (2.30), we find a one-dimensional center manifold on which
the dynamics is governed by the scalar equation

ηx =
2

λ ′′
d (0)

(
c− c∗ −

c∗
2

η2
)

+O(|c− c∗|2 + |η |4). (2.31)

The vector field in (2.31) is even in η , due to reversibility, and one can show that
a saddle-node bifurcation occurs at c = c∗. For c > c∗ there are two equilibria,
which in the reaction-diffusion system (2.18) correspond to rotations of the one-
dimensional wave q∗, and a heteroclinic orbit connecting these two equilibria, which
corresponds to an interior corner.

Further Waves

We discussed above the simplest situation, in which the one-dimensional wave q∗ is
stable in both one and two dimensions. Another situation that may occur is the one-
dimensional wave q∗ still stable in one dimension, but unstable in two dimensions.
For a parameter-dependent reaction-diffusion system

Ut = DΔU + f (U,μ),

in which μ is a small real parameter, one can consider the onset of two-dimensional
instability where there exists a smooth family of waves q∗(y,μ), with speeds c∗(μ)
connecting the asymptotic states q±(μ) for μ ∼ 0, which are stable in two dimen-
sions for μ < 0, say, and unstable for μ > 0. Using the same approach, one finds in
this case a three-dimensional center manifold on which the dynamics are governed
by a steady Kuramoto–Sivashinsky equation. Known results on existence of hete-
roclinic and homoclinic orbits for this equation allow us to show existence of both
interior and exterior corners, and of steps, for μ > 0, where the one-dimensional
wave is unstable [42, Section 4].

The same approach can be used in several different contexts. For example,
the traveling one-dimensional wave q∗ may be replaced by a modulated wave
U(x,y, t) = q∗(y− c∗t,ωt) of the reaction-diffusion system (2.17), connecting two
homogeneous equilibria q± as y →±∞, and with q∗ being 2π-periodic in its second
argument. In this case one finds a two-dimensional center manifold on which the
dynamics are governed by a coupled system of steady conservation laws. In addi-
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tion to the almost-planar waves found close to a traveling wave, one can also show
now the existence of holes [42, Section 5].

Next, the isotropic system (2.17) can be replaced by an anisotropic model

Ut = ∇ · (a∇U)+ f (U,∇U), (2.32)

in which the diffusion matrices are supposed to be elliptic, a = (am
i j)

1≤m≤N
1≤i, j≤2 such that

(∇ · (a∇u))m = am
i j∂i ju

m, ∑
i j

am
i jyiy j ≥ M∑

i
y2

i ,

for some positive constant M > 0 independent of y = (y1,y2). We refer to [43] for
an analysis of this situation, and to [44, 45] for further extensions.

5.2.3 Waves in Lattices

A large variety of physical problems, such as crystal dislocation, localized excita-
tions in ionic crystals, and thermal denaturation of DNA, may be described by a
one-dimensional lattice for which the dynamics satisfy the system

d2un

dt2 +W ′(un) = V ′(un+1 −un)−V ′(un −un−1), n ∈ Z, , (2.33)

where un is the displacement of the nth particle from an equilibrium position. In
particular, this system describes a chain of particles nonlinearly coupled to their
first neighbors. The interaction potential V and the on-site potential W are assumed
to be analytic in a neighborhood of u = 0, with

V ′(0) = W ′(0) = 0, V ′′(0) > 0, W ′′(0) > 0 or W = 0.

The system (2.33) is referred to as the Fermi–Pasta–Ulam (FPU) lattice if W = 0,
and the Klein–Gordon (KG) lattice if V is harmonic, V (x) = (γ/2)x2, for some
γ > 0.

A wide class of wave solutions may be found, which satisfy

un(t) = un−p(t − pτ), p ≥ 1, τ ∈ R. (2.34)

The case p = 1 corresponds to traveling waves with speed 1/τ . For p > 1 we obtain
pulsating traveling waves, which are translated by p sites after a fixed propagation
time pτ , and oscillate as they propagate through the lattice. Solutions satisfying
(2.34) and such that un(t) → 0 as n →±∞ are known as solitary waves when p = 1
and exact breathers when p > 1. Such systems have been intensively studied in
the literature. We refer to [57] for a review of mathematical results using center
manifold theorems. Here, we briefly discuss the case of traveling waves for the FPU
lattice, i.e., when W = 0 in (2.33) and p = 1 in (2.34).
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Formulation as a First Order System

Consider the system (2.33) with W = 0, and assume that

V ′(x) = x+N(x), N(x) = αx2 +βx3 +O(|x4|),

in a neighborhood of 0. We set

un(t) = y(x), x = n− t
τ
, (2.35)

so that the system (2.33) leads to the following scalar advance-delay differential
equation, for the scalar function y(x),

1
τ2

d2y
dx2 = V ′ (y(x+1)− y(x))−V ′ (y(x)− y(x−1)) . (2.36)

We are interested in small bounded solutions of this equation.
Notice that the equation (2.36) possesses the reversibility symmetry

x �→ −x, y �→ −y, (2.37)

and has the first integral

J =
dy
dx

− τ2
∫ 1

0
V ′(y(x+ v)− y(x+ v−1))dv. (2.38)

We start by writing the equation in the form (2.1) in Chapter 2. Consider the
Banach spaces

X = R
2 ×C 0[−1,1], Z = {(y,ξ ,Y ) ∈ R

2 ×C 1[−1,1] ; Y (0) = y},

equipped with usual norms. We set ξ = dy/dx, Y (x,v) = y(x+v), and U = (y,ξ ,Y ).
Then the equation (2.36) is of the form

dU
dx

= LτU + τ2R(U), (2.39)

with

LτU =

⎛

⎝
ξ

τ2(Y |v=1 −2y+Y |v=−1)
∂Y
∂v

⎞

⎠ , R(U)=

⎛

⎝
0

N(Y |v=1 − y)−N(y−Y |v=−1)
0

⎞

⎠ .

Here Lτ ∈ L (Z ,X ) and the map R : X → Z is analytic.
The system (2.39) is reversible, with the reversibility symmetry defined by

S(y,ξ ,Y ) = (−y,ξ ,−Y ◦ s), (Y ◦ s)(v) = Y (−v),
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as a consequence of (2.37), and it has the first integral

J = ξ (x)− τ2
∫ 1

0
V ′(Y (x,v)−Y (x,v−1))dv, (2.40)

due to (2.38). Finally, notice that equation (2.39) possesses a two-parameter family
of solutions,

Ua,b(x) = (ax+b)χ0 +aχ1, χ0 = (1,0,1), χ1 = (0,1,v), a,b ∈ R,(2.41)

corresponding to uniformly extended or compressed lattices, depending on the sign
of a.

Bifurcation Analysis

As in most of the previous examples, the operator Lτ has a compact resolvent, so
that its spectrum consists of isolated eigenvalues with finite algebraic multiplicities,
only accumulating at infinity. Purely imaginary eigenvalues iκ are solutions of the
dispersion relation

κ2 +2τ2(cosκ −1) = 0,

from which it is not difficult to check that there are only a finite number of purely
imaginary eigenvalues. The remaining eigenvalues are located at a positive distance
from the imaginary axis, in a region of the complex plane with exponential shape,
centered on the imaginary axis [55]. Notice that 0 is always an eigenvalue of Lτ , at
least double, due to the presence of the two-parameter family of solutions mentioned
above.

The lowest value of the parameter τ at which a bifurcation occurs is τ = 1, cor-
responding to the “sound speed” in the physics literature. For τ < 1, the linear oper-
ator Lτ has, besides the double eigenvalue 0, a pair of simple real eigenvalues, with
opposite signs, the rest of the spectrum being away from the imaginary axis. These
two nonzero eigenvalues collide in 0, when τ = 1, so that 0 is a quadruple eigen-
value of L1. For τ > 1, not too large, there is a pair of purely imaginary eigenvalues
close to 0, in addition to the double eigenvalue 0, and the remaining eigenvalues are
all bounded away from the imaginary axis.

A particularity of the present case is that the resolvent estimates in the Hypothe-
sis 2.15 in Chapter 2 are not verified, but one can prove directly that Hypothesis 2.7
of the center manifold theorem in Chapter 2 holds. The method of proof relies upon
Fourier analysis on a specific space of distributions [60, Appendix]. Applying center
manifold Theorems 3.3 and 3.15 in Chapter 2, we obtain a four-dimensional center
manifold. However, it is possible to reduce the dimension of this center manifold by
two. First, using the equivariance of (2.39) under the group action U �→ U + aχ0,
a ∈ R, as indicated in Theorem 3.19 in Chapter 2, the dimension of the center mani-
fold is reduced by one, and one finds a 03+ reversible bifurcation at τ = 1 (see [55]).
However, using in addition to the first integral (2.40), we are then left with a two-
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dimensional manifold, and a 02+ reversible bifurcation at τ = 1 (see [57]). Applying
the results in Theorem 1.8 of Chapter 4, in the case α 	= 0 one finds, in particular,
homoclinic orbits, which correspond to solitary waves connecting a stretched or a
compressed state to itself. In the case α = 0 and β 	= 0, we can in fact use the phase
portraits in Figure 2.4 of Chapter 4, and conclude, in particular, the existence of
heteroclinic orbits, which correspond to fronts connecting a compressed state to a
stretched state [55].



Appendix

A Elements of Functional Analysis

We collect in this section a number of notions and results from the theory of linear
operators in Banach spaces. We refer for instance to the book [76] for further details
and proofs. In addition, in Section A.6 we give the definitions and some basic results
on Sobolev spaces, for which we refer to the books [1, 2].

A.1 Bounded and Closed Operators

Consider the Banach spaces X and Z equipped with the norms ‖ · ‖X and ‖ · ‖Z ,
respectively, and a linear map (or linear operator) L : Z → X . We denote by imL
the range of L,

imL = {Lu ∈ X ; u ∈ Z } ⊂ X ,

by kerL its kernel,
kerL = {u ∈ Z ; Lu = 0} ⊂ Z ,

and by G(L) its graph,

G(L) = {(u,Lu) ; u ∈ Z } ⊂ Z ×X .

Definition A.1 (Bounded operator) A linear operator L : Z → X is called a
bounded linear operator, or simply a bounded operator, if L is continuous. The set
of bounded linear operators is denoted by L (Z ,X ), and by L (X ) if Z = X .

Properties A.2 [76, Chapter III, §2.2, §3.1]

(i) For a linear operator L : Z → X the following properties are equivalent:

a. L is continuous, i.e., L is a bounded linear operator;
b. L is continuous in 0;
c. sup{‖Lu‖X ; u ∈ Z , ‖u‖Z = 1} < ∞.
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(ii) For a bounded linear operator L, the real number

‖L‖L (Z ,X )
def= sup

‖u‖Z =1
‖Lu‖X = sup

0<‖u‖Z ≤1

‖Lu‖X

‖u‖Z
= sup

‖u‖Z �=0

‖Lu‖X

‖u‖Z

is called norm of L.
(iii) The set of bounded linear operators L (Z ,X ) is a Banach space when

equipped with the norm ‖ · ‖L (Z ,X ).

Definition A.3 (Closed operator) A linear operator L : D(L) ⊂ X → X defined
on a linear subspace D(L) ⊂ X is called a closed linear operator, or simply a
closed operator, if its graph G(L) is a closed set in X ×X . The set of closed
linear operators is denoted by C (X ).

Properties A.4 [76, Chapter III, §5.2, Theorem 5.20]

(i) A linear operator L : D(L)⊂X →X is closed if and only if for any sequence
(un)n∈N ⊂ D(L) such that un → u in X and Lun → v in X , we have that
u ∈ D(L) and Lu = v.

(ii) The sum of a closed operator with a bounded operator is a closed operator.
However, the sum of two closed operators is not always a closed operator.

(iii) A closed operator with domain D(L) = X is bounded (closed graph theorem).
(iv) For a closed operator L : D(L) ⊂ X → X the domain D(L) equipped with

the norm
‖u‖L =

(
‖u‖2

X +‖Lu‖2
X

)1/2

is a Banach space, and the injection i : D(L) → X is bounded. This norm is
also called the graph norm.

(v) A closed operator L : D(L) ⊂ X → X belongs to L (D(L),X ) when D(L)
is equipped with the graph norm ‖ · ‖L.

A.2 Resolvent and Spectrum

Definition A.5 Consider a linear operator L : D(L) ⊂ X → X .

(i) We call resolvent set of L the set of complex numbers

ρ(L) = {λ ∈ C ; (λ I−L) invertible and (λ I−L)−1 ∈ L (X )}.

The operator (λ I−L)−1, for λ ∈ ρ(L), is called the resolvent of L.
(ii) We call the spectrum of L the complement of the resolvent set,

σ(L) = C\ρ(L).

(iii) A complex number λ ∈ C is called an eigenvalue of L if ker(λ I−L) �= {0}.
The kernel ker(λ I−L) is called the eigenspace associated with the eigenvalue
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λ , and any element u ∈ ker(λ I−L)\{0} is called an eigenvector associated
with the eigenvalue λ .

(iv) For an eigenvalue λ ∈ σ(L), the dimension of ker(λ I−L) is called the ge-
ometric multiplicity of λ . An eigenvalue with geometric multiplicity one is
called geometrically simple.

(v) For an isolated eigenvalue λ ∈ σ(L), the dimension of the largest subspace
Xλ ⊂ D(L) which is invariant under the action of L and such that σ(L|Xλ ) =
{λ} is called the algebraic multiplicity of λ . An eigenvalue with algebraic
multiplicity one is called algebraically simple or simple.

(vi) An eigenvalue is called semisimple if its algebraic and geometric multiplicities
are the same.

Properties A.6 [76, Chapter III, §6.1, §6.3]

(i) The spectrum of a closed operator L ∈ C (X ) is a closed set.
(ii) The spectrum of a bounded operator L∈L (X ) is a closed, bounded, nonempty

set.
(iii) For a closed operator L ∈ C (X ), if λ ∈ ρ(L), then the resolvent (λ I−L)−1 :

X → D(L) is a bounded operator, when D(L) is equipped with the graph
norm, i.e., (λ I−L)−1 ∈ L (X ,D(L)).

(iv) The map λ �→ (λ I−L)−1 is holomorphic from ρ(L) into L (X ).
(v) For λ ∈ ρ(L), the resolvent (λ I−L)−1 : X → D(L) commutes with L, i.e.,

L(λ I−L)−1u = (λ I−L)−1Lu for all u ∈ D(L).

(vi) For λ ,μ ∈ ρ(L), the resolvents (λ I−L)−1 and (μI−L)−1 commute and

(λ I−L)−1 − (μI−L)−1 = (μ −λ )(λ I−L)−1(μI−L)−1.

(vii) For an operator L, we call the extended spectrum the set σ∞(L) ⊂ C∪{∞}
defined by

σ∞(L) =
{

σ(L) if σ(L) is bounded,
σ(L)∪{∞} if σ(L) is unbounded.

Then for λ ,μ ∈ ρ(L) the spectrum of the resolvent satisfies

σ
(
(λ I−L)−1) =

{
(λ −μ)−1 ; μ ∈ σ∞(L)

}
. (A.1)

Theorem A.7 (Spectral decomposition [76, Chapter III, Theorem 6.17]) Con-
sider a closed operator L : D(L) ⊂ X → X . Assume that σ(L) = F ∪G, with
F ∩G = ∅ and F ⊂ C a closed, bounded set, such that there exists a rectifiable,
simple, closed curve Γ which encloses an open set containing F in its interior and
G in its exterior. Then there exists a decomposition of X = XF ⊕XG, with XF and
XG invariant under the action of L, such that the spectra of the restrictions L|XF

and L|XG coincide with F and G, respectively. Furthermore, L|XF is a bounded
operator, L|XF ∈L (XF), and the unique spectral projection PF : X →XF which
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commutes with L is given by the Dunford integral formula

PF =
1

2πi

∫

Γ
(λ I−L)−1dλ .

Remark A.8 (i) The result in the above theorem still holds when the curve Γ is
replaced by a finite number of rectifiable, simple, closed curves.

(ii) In the particular case when F = {λ} is reduced to one point, λ is an isolated
point of the spectrum. If the dimension of XF is finite, then λ is an eigenvalue
of L, and the dimension of XF is the algebraic multiplicity of λ [76, Chapter
III §6.5].

A.3 Compact Operators and Operators with Compact Resolvent

Definition A.9 (Compact operator) A linear operator L : Z → X is called a
compact operator if for any bounded sequence (un)n∈N ⊂Z , the sequence (Lun)n∈N

⊂ X contains a convergent subsequence.

Properties A.10 [76, Chapter III §4.2]

(i) A compact operator is bounded.
(ii) The sum of two compact operators is a compact operator. For a bounded oper-

ator L : Y → Z and a compact operator K : Z → X , the composed operator
K ◦ L : Y → X is compact. A similar property holds for L ◦ K (adapt the
spaces).

Theorem A.11 (Spectrum [76, Chapter III, Theorem 6.26]) Consider a compact
operator L : X → X . Then the following properties hold:

(i) 0 ∈ σ(L) if X is infinite-dimensional;
(ii) any λ ∈ σ(L) with λ �= 0 is an isolated eigenvalue with finite algebraic multi-

plicity;
(iii) σ(L) is a countable set with at most one accumulation point in 0.

Definition A.12 (Operator with compact resolvent) A linear operator L : D(L)⊂
X → X is called an operator with compact resolvent if ρ(L) �= ∅ and for some
λ ∈ ρ(L) the operator (λ I−L)−1 : X → X is compact.

Properties A.13 [76, Chapter III §6.8]

(i) If (λ I−L)−1 : X → X is a compact operator for some λ ∈ ρ(L), then it is a
compact operator for any λ ∈ ρ(L).

(ii) The spectrum of an operator with compact resolvent is a countable set consist-
ing of isolated eigenvalues with finite algebraic multiplicities, with no accumu-
lation point in C.
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A.4 Adjoint Operator

For a Banach space X , denote by X ∗ the dual space, i.e., the space of all continu-
ous linear forms on X , and by 〈·, ·〉 the duality product defined by

〈u,u∗〉 = u∗(u) for all u ∈ X , u∗ ∈ X ∗.

Recall that X = X ∗ when X is a Hilbert space.

Definition A.14 (Adjoint operators) (i) Two linear operators L : D(L) ⊂ X →
X and M : D(M) ⊂ X ∗ → X ∗ are called adjoint to each other if

〈Lu,v〉 = 〈u,Mv〉 for all u ∈ D(L), v ∈ D(M).

(ii) If there exists a unique maximal operator L∗ which is adjoint to L, then L∗ is
called the adjoint of L.

Properties A.15 ([76, Chapter III, §5.5, Theorem 6.22])

(i) If D(L) is dense in X , for an operator L : D(L) ⊂ X → X there is a unique
adjoint operator, but this property is not true in general. The adjoint operator
L∗ : D(L∗) ⊂ X ∗ → X ∗ is constructed in the following way. The domain
D(L∗) consists of all v ∈X ∗ such that u �→ 〈Lu,v〉 is a continuous linear form
on X . Then there exists w ∈ X ∗ such that

〈Lu,v〉 = 〈u,w〉 for all u ∈ D(L),

and w is unique because D(L) is dense in X . We define L∗v = w.
(ii) For an operator L : D(L) ⊂ X → X with D(L) dense in X , the adjoint

operator L∗ : D(L∗) ⊂ X ∗ → X ∗ is closed. In addition, if L is closed and the
Banach space X is reflexive, then L∗ is densely defined, i.e., D(L∗) is dense
in X ∗.

(iii) For an operator L : D(L) ⊂ X → X with D(L) dense in X , we have

kerL∗ = (imL)⊥ def= {v ∈ X ∗ ; 〈u,v〉 = 0 for all u ∈ imL}.

(iv) For an operator L : D(L) ⊂X → X the resolvent set and the spectrum of the
adjoint operator L∗ : D(L∗) ⊂ X ∗ → X ∗ satisfy

ρ(L∗) = ρ(L), σ(L∗) = σ(L).

Furthermore,

(λ I−L∗)−1 =
(
(λ I−L)−1)∗ for all λ ∈ ρ(L).

Definition A.16 (Self-adjoint operator) A linear operator L : D(L) ⊂ X → X
in a Hilbert space X , with domain D(L) dense in X , is called self-adjoint if its
adjoint L∗ : D(L∗) ⊂ X → X satisfies D(L) = D(L∗) and Lu = L∗u for all u ∈
D(L).
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Properties A.17 [76, Chapter V, §3.4, §3.5]

(i) The spectrum of a self-adjoint operator is real.
(ii) The algebraic and geometric multiplicities of an isolated eigenvalue λ ∈ σ(L)

of a self-adjoint operator are the same, i.e., the eigenvalue is semisimple.

A.5 Fredholm Operators

Definition A.18 A bounded operator L ∈L (Z ,X ) is called a Fredholm operator
if its kernel kerL is finite-dimensional and its range imL is closed and has finite
codimension. The integer

ind(L)
def
= dim(kerL)− codim(imL),

is called the Fredholm index.

Remark A.19 The above definition is easily extended to closed operators L :
D(L) ⊂ X → X , since L ∈ L (D(L),X ).

Properties A.20 [76, Chapter IV, §5.1, Theorem 5.22, Theorem 5.28, §5.2]

(i) The set of Fredholm operators is open in L (Z ,X ) and the map L �→ ind(L)
is continuous.

(ii) For a closed operator L : D(L) ⊂ X → X , if λ ∈ σ(L) is an eigenvalue with
finite algebraic multiplicity which is isolated in the spectrum of L, then λ I−L
is a Fredholm operator with index 0.

(iii) If L : D(L) ⊂ X → X is a densely defined closed operator, then L is a Fred-
holm operator if and only if L∗ is a Fredholm operator. Furthermore,

ind(L∗) = −ind(L).

A.6 Basic Sobolev Spaces

We recall in this section some basic properties of the Sobolev spaces L2(Ω) and
Hm(Ω), m ∈ N

∗ which are used in this book. We refer to [1, Chapters II, III, V, and
VI] for more general statements, and for the case of the spaces Lp(Ω) and W m,p(Ω).

The Space L2(Ω)

Consider a domain Ω ⊂ R
n, and the space of complex-valued square-integrable

functions on Ω
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L 2(Ω) =
{

f : Ω → C ; f measurable and
∫

Ω
| f (x)|2dx < ∞

}
.

This set is a linear space with respect to the natural operations (sum and multiplica-
tion by a complex number). For f ∈ L 2(Ω), we set

‖ f‖ =
(∫

Ω
| f (x)|2dx

)1/2

. (A.2)

Then ‖ · ‖ is a seminorm on L 2(Ω), but not a norm, since if ‖ f‖ = 0, then f = 0
almost everywhere, only. However, ‖·‖ can be transformed into a norm by replacing
L 2(Ω) by the quotient with respect to the kernel of ‖ · ‖, i.e., by

L2(Ω) = L 2(Ω)/ker(‖ · ‖).

Clearly, the kernel of ‖·‖ consists of functions that are equal to 0 almost everywhere,
so that L2(Ω) consists of classes of functions that are equal almost everywhere.
Then ‖ · ‖ is a norm on L2(Ω), or, in other words L2(Ω) is a normed space with
norm ‖·‖ defined by (A.2). Furthermore, this norm corresponds to the scalar product
defined by

〈 f ,g〉 =
∫

Ω
f (x)g(x)dx for all f , g ∈ L2(Ω). (A.3)

A key property of the space L2(Ω) is that it is complete; more precisely we have
the following result.

Properties A.21 The space L2(Ω) equipped with the scalar product 〈·, ·〉 defined
by (A.3) is a Hilbert space.

The Spaces Hm(Ω) and Hm
0 (Ω)

Definition A.22 Consider m ∈ N
∗.

(i) We define the space

Hm(Ω) =
{

u ∈ L2(Ω) ; Dα u ∈ L2(Ω) for all α ∈ N
n, |α| ≤ m},

in which Dα u is the distributional partial derivative of u,

Dα u =
∂ |α|u

∂xα1
1 . . .∂xαn

n
,

for a multi-index α = (α1, . . . ,αn) ∈ N
n and |α| = α1 + · · ·+αn.

(ii) On Hm(Ω) we define the scalar product

〈 f ,g〉m = ∑
|α|≤m

〈Dα f ,Dα g〉,
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where 〈·, ·〉 represents the scalar product in L2(Ω), and the corresponding
norm

‖u‖m = 〈u,u〉1/2
m .

(iii) We define Hm
0 (Ω) as the closure of C∞

0 (Ω) in Hm(Ω), where C∞
0 (Ω) is the

space of functions of class C∞ which have compact support in Ω .

Properties A.23 [1, Theorem 3.2]

(i) Hm(Ω) equipped with the scalar product 〈·, ·〉m is a Hilbert space.
(ii) Hm+ j(Ω) is a dense subspace of Hm(Ω) and the imbedding Hm+ j(Ω) ↪→

Hm(Ω) is continuous, for any j ∈ N
∗.

Properties A.24 (Sobolev imbedding theorem [1, Theorem 5.4]) Assume that ei-
ther Ω = R

n or Ω is a bounded domain in R
n having a locally Lipschitz boundary,

i.e., for each point x on the boundary ∂Ω of Ω there exists a neighborhood Ux such
that ∂Ω ∩Ux is the graph of a Lipschitz continuous function.

(i) For any j ∈ N
∗ such that j > n/2, we have that Hm+ j(Ω) ⊂ Cm(Ω), and the

imbedding is continuous.
(ii) If Ω is an arbitrary domain in R

n, the result (i) holds with Hm+ j
0 (Ω) instead of

Hm+ j(Ω).

Properties A.25 (Rellich–Kondrachov theorem [2, Theorem 3.8], [1, Theorem
6.2]) Assume that Ω is a bounded domain in R

n having a locally Lipschitz boundary.

(i) For any j ∈ N
∗, the imbedding Hm+ j(Ω) ⊂ Hm(Ω) is compact.

(ii) For any j ∈ N
∗ such that j > n/2, the imbedding Hm+ j(Ω) ⊂Cm(Ω) is com-

pact.
(iii) If Ω is an arbitrary domain in R

n, the results (i) and (ii) hold with Hm+ j
0 (Ω)

instead of Hm+ j(Ω).

Spaces of Periodic Functions

An important particular case is that of spaces of periodic functions on the real
line. Consider the space L2

loc(R) of measurable functions f : R → C satisfying
f ∈ L2(a,b) for any bounded interval (a,b) ⊂ R. We define the space of square-
integrable �-periodic functions by

L2
per(0, �) = { f ∈ L2

loc(R) ; f (·+ �) = f (·)},

and for m ∈ N
∗, the Sobolev spaces Hm consisting of �-periodic functions by

Hm
per(0, �) = { f ∈ L2

per(R) ; f (k) ∈ L2
per(R) for all k ≤ m}.

Notice that L2
per(0, �) can be identified with L2(0, �), but this is not true for the spaces

Hm, m ≥ 1. The results above, in particular the imbedding theorems, hold for these
spaces, as well.
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B Center Manifolds

The references in this section are to theorems, hypotheses, formulas, and remarks in
Chapter 2.

B.1 Proof of Theorem 2.9 (Center Manifolds)

Consider system (2.1), and assume that Hypotheses 2.1, 2.4, and 2.7 hold. For any
u ∈ Z we set

u = u0 +uh ∈ Z , u0 = P0u ∈ E0, uh = Phu ∈ Zh,

and rewrite the system (2.1) as

du0

dt
−L0u0 = P0R(u)

duh

dt
−Lhuh = PhR(u). (B.1)

Modified System

We take a cut-off function χ : E0 → R of class C ∞ such that

χ(u0) =
{

1 for ‖u0‖ ≤ 1
0 for ‖u0‖ ≥ 2

, χ(u0) ∈ [0,1] for all u0 ∈ E0.

Since E0 is finite-dimensional such a function always exists. We use this function to
modify the nonlinear terms R(u) outside a neighborhood of the origin, in order to
be able to control the norm of the u0-component of the system (B.1) in the space of
exponentially growing functions Cη(R,E0).

We set
Rε(u) = χ

(u0

ε

)
R(u) for all ε ∈ (0,ε0),

where ε0 is chosen such that
{

u = u0 +uh ; ‖u0‖E0 ≤ 2ε0, ‖uh‖Zh
≤ ε0

}
⊂ V ,

with V the neighborhood of the origin in Hypothesis 2.1. Then Rε is well defined
in the closed set

Oε = E0 ×Bε(Zh), Bε(Zh) = {uh ∈ Zh ; ‖uh‖ ≤ ε},

and satisfies
Rε(u) = R(u) for all u ∈ Oε , ‖u0‖ ≤ ε.
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Consider the modified system

du0

dt
−L0u0 = P0Rε(u)

duh

dt
−Lhuh = PhRε(u). (B.2)

The nonlinear terms in this system now satisfy

δ0(ε) def= sup
u∈Oε

(
‖P0Rε(u)‖E0 ,‖PhRε(u)‖Yh

)
= O(ε2)

δ1(ε) def= sup
u∈Oε

(
‖DuP0Rε(u)‖L (Z ,E0),‖DuPhRε(u)‖L (Z ,Yh)

)
= O(ε). (B.3)

We prove below the existence of a “global” center manifold for this system which,
due to the fact that Rε and R coincide for ‖u0‖E0 ≤ ε , will give the local center
manifold for the system (2.1) in the theorem.

Integral Formulation

We replace system (B.2) by the integral formulation

u0(t) = S0,ε(u, t,u0(0)) def= eL0tu0(0)+
∫ t

0
eL0(t−s)P0Rε(u(s))ds

uh = Sh,ε(u) def= KhPhRε(u). (B.4)

The first equation in this system is obtained by the variation of constant formula
from the first equation in (B.1). Here u0(0) ∈ E0 is arbitrary, and the exponential
eL0t exists since E0 is finite-dimensional. The second equation in (B.4) is obtained
from Hypothesis 2.7, used with f ∈ C0(R,Yh). It is now straightforward to check
that this integral system is equivalent to (B.2) for

u = (u0,uh) ∈ Nη ,ε
def= Cη(R,E0)×C0(R,Bε(Zh)),

with 0 < η ≤ γ and ε ∈ (0,ε0). Notice that Nη ,ε is a closed subspace of Cη(R,Z ),
so that it is complete when equipped with the norm of Cη(R,Z ).

Fixed Point Argument

Our aim now is to show that (B.4) has a unique solution u = (u0,uh) ∈Nη ,ε for any
u0(0) ∈ E0. For this we use a fixed point argument for the map

Sε(u,u0(0)) def= (S0,ε(u, ·,u0(0)),Sh,ε(u)), Sε(·,u0(0)) : Nη ,ε → Nη ,ε .



B Center Manifolds 289

We show that Sε(·,u0(0)) is well defined and that it is a contraction with respect to
the norm of Cη(R,Z ) for η ∈ (0,γ], with γ the constant in Hypothesis 2.7, and ε
sufficiently small.

First, Hypothesis 2.4 implies that for any δ > 0 there is a constant cδ > 0 such
that

‖eL0t‖L (E0) ≤ cδ eδ |t| for all t ∈ R. (B.5)

Using this equality with δ = η , we find

sup
t∈R

(
e−η |t|∥∥eL0tu0(0)

∥
∥

E0

)
≤ cη‖u0(0)‖E0 ,

which shows that the first term in S0,ε(u, ·,u0(0)) belongs to Cη(R,E0), for any
η > 0. Next, for any u ∈ Nη ,ε , we have the estimates

‖P0Rε(u(t))‖E0 ≤ δ0(ε), ‖PhRε(u(t))‖Yh
≤ δ0(ε),

which together with (B.5) for δ = η/2, and Hypothesis 2.7 imply

sup
t∈R

(

e−η |t|
∥∥∥∥

∫ t

0
eL0(t−s)P0Rε(u(s))ds

∥∥∥∥
E0

)

≤ cδ δ0(ε)sup
t∈R

(
e−η |t|

∫ t

0
eδ |t−s|ds

)

≤
2cη/2δ0(ε)

η
,

and
‖KhPhRε(u)‖C0(R,Zh) ≤C(0)δ0(ε).

This shows that Sε(u,u0(0)) ∈ Nη ,ε , provided C(0)δ0(ε) ≤ ε , which holds for ε
sufficiently small since δ0(ε) = O(ε2).

Now we show that the map Sε(·,u0(0)) is a contraction with respect to the norm
of Cη(R,Z ) for η ∈ (0,γ] and sufficiently small ε . From equality (B.3) we find that

‖Rε(u1)−Rε(u2)‖Cη (R,Y ) = sup
t∈R

(
e−η |t|‖Rε(u1(t))−Rε(u2(t))‖Y

)

≤ δ1(ε)sup
t∈R

(
e−η |t|‖u1(t)−u2(t)‖Z

)

≤ δ1(ε)‖u1 −u2‖Cη (R,Z )

for any u1,u2 ∈ Nη ,ε . Now, using (B.5) with δ = η/2 we obtain

‖S0,ε(u1, ·,u0(0))−S0,ε(u2, ·,u0(0))‖Cη (R,E0)

≤ cδ δ1(ε)sup
t∈R

(
e−η |t|

∣∣
∣∣

∫ t

0
eη |s|+δ |t−s|ds

∣∣∣
∣

)
‖u1 −u2‖Cη (R,Z )

≤
2cη/2δ1(ε)

η
‖u1 −u2‖Cη (R,Z ),
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and using the estimate in Hypothesis 2.7 we find

‖Sh,ε(u1)−Sh,ε(u2)‖Cη (R,Zh) ≤C(η)δ1(ε)‖u1 −u2‖Cη (R,Z ).

Since δ1(ε) = O(ε) for any η ∈ (0,γ], we can choose ε small enough such that

‖Sε(u1,u0(0))−Sε(u2,u0(0))‖Cη (R,Z ) ≤
1
2
‖u1 −u2‖Cη (R,Z ).

Consequently, the map Sε(·,u0(0)) is a contraction in the complete metric space
Nη ,ε .

Applying the fixed point theorem we now have the existence of a unique solution
of (B.4),

u
def= Φ(u0(0)) ∈ Nη ,ε

for any u0(0) ∈ E0, for any η ∈ (0,γ], and ε sufficiently small. Clearly, this is also a
solution of (B.2).

Properties of Φ

Recall that ε is chosen such that

C(0)δ0(ε) ≤ ε,
2cη/2δ1(ε)

η
≤ 1

2
, C(η)δ1(ε) ≤ 1

2
.

Then the continuity on [0,γ] of the map η → C(η) in Hypothesis 2.7 implies that
for any η̃ ∈ (0,γ), we can choose ε > 0 such that these inequalities hold for all
η ∈ [η̃ ,γ]. Consequently, for any η̃ ∈ (0,γ), there exists ε > 0 such that the unique
fixed point Φ(u0(0)) belongs to Nη ,ε for any η ∈ [η̃ ,γ]. This property is used later
when showing that the center manifold is of class C k.

Next, notice that the map u0(0) �→ S0,ε(u, ·,u0(0)) is Lipschitz from E0 into
Cη(R,E0), so that the map u0(0) �→ Sε(u,u0(0)) is also Lipschitz. Consequently,
Φ is a Lipschitz map. In addition, the uniqueness of the fixed point implies that

Φ(0) = 0.

Construction of Ψ

We define now the map Ψ : E0 → Zh in the theorem, through

(u0(0),Ψ(u0(0)) def= Φ(u0(0))(0) for all u0(0) ∈ E0,

i.e., by taking the component in Zh of the fixed point Φ(u0(0)) at t = 0. Since Φ is
a Lipschitz map, we have that Ψ is also a Lipschitz map, and since Φ(0) = 0, we
have
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Ψ(0) = 0.

We prove now that Ψ has the properties (i) and (ii) in the theorem.
First, we show that the manifold

Mη ,ε = {(u0,Ψ(u0)) ; u0 ∈ E0}

is a global invariant manifold for the flow defined by (B.2). We define the shift
operator Γ s through

(Γ su)(t) = u(t + s) for all t, s ∈ R.

Since system (B.2) is autonomous, it is equivariant under the action Γ s for any s∈R,
so that if u is a solution of (B.2), then Γ su is also a solution of (B.2). Moreover,
Γ su ∈ Nη ,ε when u ∈ Nη ,ε .

Consider a solution u of (B.2) with u(0) = (u0(0),Ψ(u0(0))) for some u0(0) ∈
E0. Then u = Φ(u0(0)) ∈ Nη ,ε , and since Γ su ∈ Nη ,ε is also a solution, from the
uniqueness of the fixed point we conclude that

Γ su = Φ(u0(s)) for all s ∈ R.

Consequently,
u(s) = (u0(s),Ψ(u0(s)) for all s ∈ R,

which shows that Mη ,ε is globally invariant under the flow defined by (B.2). Since
the system (B.1) coincides with (B.2) in

Oε = Bε(E0)×Bε(Zh),

this proves part (i) of the theorem with M0 = Mη ,ε and O = Oε . Indeed, assume
that u is a solution of (B.1) such that u(0) ∈ M0 ∩O and u(t) ∈ O for all t ∈ [0,T ].
Then u satisfies (B.2) for all t ∈ [0,T ], and since u(0) ∈ Mη ,ε and Mη ,ε is an in-
variant manifold, we have u(t) ∈ Mη ,ε = M0 for all t ∈ [0,T ].

Consider now a solution u of (B.1) which belongs to O = Oε for all t ∈ R. Then
u ∈ Nη ,ε and it is also a solution of (B.2). Consequently, u = Φ(u0(0)), so that
u(0) ∈ Mη ,ε = M0, which proves part (ii) of the theorem.

Regularity of Ψ

We have proved so far that Ψ is a Lipschitz map. Notice that for this proof we have
only used the fact that R is of class C 1. It remains to show that Ψ is of class C k

when R is of class C k. For this, it is enough to prove that Φ is of class C k.
The major difficulty in proving this property comes from the fact that the Nemit-

sky operator
Rε : Cη(R,Z ) → Cη(R,Y )
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is not continuously differentiable, due to the growth of u ∈ Cη(R,Z ) as t →±∞.
The following properties of this operator are proved in [120, Lemma 3.7]:

(i) Rε : Cη(R,Z ) → Cζ (R,Y ) is continuous for any η ≥ 0 and ζ > 0;
(ii) Rε : Cη(R,Z ) → Cζ (R,Y ) is of class C k for any 0 ≤ η < ζ/k and ζ > 0.

We point out that the kth order derivative exists for η = ζ/k, but this derivative is
continuous only if η < ζ/k.

Following [120], the integral system (B.4) is written as

u = Su0(0)+KRε(u), (B.6)

with S and K linear maps defined by

(Su0(0))(t) = eL0tu0(0),

and

(Kv)(t) =
∫ t

0
eL0(t−s)P0(v(s))ds+(KhPh(v))(t).

We already showed that

S ∈ L (E0,Cη̃(R,E0)), ‖Su0(0)‖Cη (R,E0) ≤ cη/2‖u0(0)‖E0 ,

and that KRε : Nη ,ε → Nη ,ε is a contraction for any η ∈ [η̃ ,γ], when η̃ ∈ (0,γ)
and ε is sufficiently small.

The idea is to consider the fixed point u = Φ(u0(0))∈Nη ,ε ⊂Cη(R,Z ) of (B.4)
found for η ∈ [η̃ ,γ], with η̃ taken such that 0 < η̃ < γ/k, and to show that the map
Φ : E0 → Cη(R,Z ) is of class C k for all η ∈ (kη̃ ,γ], with

DpΦ(u0(0)) ∈ L p(E0,Ckη̃(R,Z )).

Here L p(E0,Ckη̃(R,Z )) denotes the Banach space of p-linear continuous maps
from E0 into Ckη̃(R,Z ). Several proofs of this result are available in the literature,
all being quite long and technical. In particular, in [121] an abstract theorem for
contractions on embedded Banach spaces is used, whereas in [120] a fiber contrac-
tion theorem due to Hirsch and Pugh [48] is used. While we refer to these works for
further details, we only point out that the derivative DΦ(u0(0)) is the fixed point in
L (E0,Cη̃(R,Z )) of the linear equation

DΦ(u0(0)) = S+KDuRε(Φ(u0(0))DΦ(u0(0)),

which may be differentiated up to order k. In particular, this implies that DPhΦ(0) =
0 and DΨ(0) = 0, and ends the proof of Theorem 2.9. ��
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B.2 Proof of Theorem 2.17 (Semilinear Case)

We prove here the first part of Theorem 2.17. The second part is an immediate
consequence of this and of Theorem 2.9.

Estimates on the Resolvent of Lh

First, the estimates on the resolvent (2.9) and (2.10) together with the fact that Lh

has no spectrum on the imaginary axis, i.e., iωI−Lh is invertible for any ω ∈ R,
imply that there exists a positive constant c1 such that for any ω ∈ R, the following
estimates hold:

‖(iωI−Lh)−1‖L (Xh) ≤
c1

1+ |ω | , ‖(iωI−Lh)−1‖L (Zh) ≤
c1

1+ |ω | , (B.7)

‖(iωI−Lh)−1‖L (Xh,Zh) ≤ c1, ‖(iωI−Lh)−1‖L (Yh,Zh) ≤
c1

(1+ |ω |)1−α . (B.8)

Next, we claim that there exist δ > 0 and M > 0 such that any λ ∈ C satisfying

λ = μ + iω , |μ | ≤ δ (1+ |ω |)

belongs to the resolvent set of Lh, and that the following estimates hold:

‖(λ I−Lh)−1‖L (Xh) ≤
M

1+ |λ | , ‖(λ I−Lh)−1‖L (Xh,Zh) ≤ M, (B.9)

‖(λ I−Lh)−1‖L (Yh,Zh) ≤
M

(1+ |λ |)1−α . (B.10)

Indeed, we can write

λ I−Lh =
(
I+ μ(iωI−Lh)−1)(iωI−Lh) = (iωI−Lh)

(
I+ μ(iωI−Lh)−1) ,

and choosing δ = 1/2c1 from equalities (B.7) we find

‖μ(iωI−Lh)−1‖L (Xh) ≤
1
2
, ‖μ(iωI−Lh)−1‖L (Zh) ≤

1
2
.

This shows that the operator I + μ(iωI − Lh)−1 has a bounded inverse in both
L (Xh) and L (Zh), so that λ I−Lh is invertible. Furthermore, inequalities (B.7)
and (B.8) imply the inequalities above on the norms of (λ I−Lh)−1.

We set
β def= min{|Reλ | ; λ ∈ σ(Lh)} ≥ δ > 0. (B.11)

(Recall that β > γ > 0, according to Hypothesis 2.4(i).)
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Construction of S±

Consider the curves Γ+ and Γ− in C defined by

Γ+ = {−δ |ω |+ iω ; ω ∈ R}, Γ− = {δ |ω |+ iω ; ω ∈ R},

and oriented such that ω increases along Γ+ and decreases along Γ−. The results
above imply that these two curves lie in the resolvent set of Lh, and that for any λ
on one of these two curves the estimates (B.9) and (B.10) hold.

For t > 0 we define

S+(t) =
1

2iπ

∫

Γ+
eλ t(λ I−Lh)−1dλ ∈ L (Xh,Zh),

for which the estimates (B.9) and the dominated convergence theorem allows us to
show that it is well defined and that the map t �→ S+(t) is differentiable with

dnS+(t)
dtn = (Lh)

n S+(t) for all n ≥ 1. (B.12)

Similarly, for t < 0 we set

S−(t) =
1

2iπ

∫

Γ−
eλ t(λ I−Lh)−1dλ ∈ L (Xh,Zh),

for which we have that

dnS−(t)
dtn = (Lh)

n S−(t) for all n ≥ 1. (B.13)

Furthermore, the commutativity property

Lh(λ I−Lh)−1 = (λ I−Lh)−1Lh

implies that

LhS+(t)u = S+(t)Lhu for all u ∈ Zh, t > 0,

LhS−(t)u = S−(t)Lhu for all u ∈ Zh, t < 0

and using the estimate (B.10) we show that for any fixed β ′ < β and for 0 < γ ′ < β ′,
there exists M′ > 0 such that the estimates

‖S+(t)‖L (Yh,Zh) ≤ M′(1+ t−α)e−γ ′t for all t > 0,

‖S−(t)‖L (Yh,Zh) ≤ M′(1+ |t|−α)e−γ ′|t| for all t < 0, (B.14)

hold. The following lemma is proved at the end of this section.
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Lemma B.1 The limits

P− = lim
t→0+

S+(t)|Yh
∈ L (Yh,Xh), P+ = lim

t→0−
S−(t)|Yh

∈ L (Yh,Xh), (B.15)

exist, and
(P+ +P−)u = u for all u ∈ Yh. (B.16)

Checking Hypothesis 2.7

We now use the operators S+(t) and S−(t) above to solve the linear differential
equation

duh

dt
= Lhuh + f (t). (B.17)

We show that for any f ∈ Cη(R,Yh) with η ∈ [0,γ] this equation has a unique
solution uh ∈ Cη(R,Zh) given by

uh(t) = (Kh f )(t) def=
∫ t

−∞
S+(t − s) f (s)ds−

∫ ∞

t
S−(t − s) f (s)ds, (B.18)

with the properties in Hypothesis 2.7.
We assume that γ ′ in (B.14) is such that β > γ ′ > γ . Then using these two es-

timates and the dominated convergence theorem it is straightforward to check that
uh = Kh f ∈ Cη(R,Zh), and that the linear map Kh ∈ L (Cη(R,Yh),Cη(R,Zh)),
with norm satisfying the inequality in Hypothesis 2.7. Moreover using (B.12),
(B.13), and Lemma B.1, we obtain that in Xh the following holds

duh

dt
= lim

s→t−
S+(t − s) f (s)+ lim

s→t+
S−(t − s) f (s)

+
∫ t

−∞
LhS+(t − s) f (s)ds−

∫ ∞

t
LhS−(t − s) f (s)ds

= Lhuh(t)+(P+ +P−) f (t)
= Lhuh(t)+ f (t).

Consequently, uh is a solution of equation (B.17). It remains to prove the uniqueness
of this solution.

Assume that ũh(t) ∈ Cη(R,Zh) is a solution of the homogeneous equation

dũh

dt
= Lhũh.

We show that ũh = 0. Take any t0 ∈ R, and define

ũ+(t) def= S+(t0 − t)ũh(t) for all t < t0,

ũ−(t) def= S−(t0 − t)ũh(t) for all t > t0.
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Then we have

dũ+(t)
dt

= −S+(t0 − t)Lhũh(t)+S+(t0 − t)
dũh

dt
(t) = 0

in Xh for all t < t0, hence

ũ+(t) = lim
s→−∞

ũ+(s) for all t < t0.

Using (B.21) and the continuous embedding from Yh into Xh, it follows that for
η < γ ′ < β , there is a constant Cγ ′ such that

‖S+(t)‖L (Zh,Xh) ≤Cγ ′e
−γ ′t for all t > 0.

Consequently,

‖ũ+(s)‖Xh
≤ ‖S+(t0 − s)‖L (Zh,Xh)‖ũh(s)‖Zh

≤Cγ ′e
−γ ′(t0−s)eη |s|‖ũh‖Cη ,

so that ‖ũ+(s)‖Xh
→ 0 as s → −∞. This implies that ũ+(t) = 0 for all t < t0, and

similarly we find that ũ−(t) = 0 for all t > t0. From the definitions of P+ and P−,
and from Lemma B.1, we conclude that ũh(t0) = 0. Since t0 is arbitrary we have that
ũh = 0, which completes the proof of Theorem 2.17. ��

Remark B.2 In the particular case when σ+ = ∅, we can define the bounded pro-
jection P− = I−P0 = Ph. The estimates (B.9) imply in this case that the linear op-
erator L− = Lh is the infinitesimal generator of an analytic semigroup (S+(t))t≥0

in Xh, which satisfies

‖S+(t)‖L (Zh) ≤ ce−γ ′t for all t ≥ 0.

This allows us to give a simpler proof of Theorem 2.17 in this case.

Proof (of Lemma B.1) For any η > 0 we define the paths Γ η
+ and Γ η

− in C by

Γ η
+ = {−δ |ω |+ iω ; ω ∈ R, |ω | ≥ δ−1η}∪{−η + iω ; ω ∈ R, |ω | ≤ δ−1η},

Γ η
− = {δ |ω |+ iω ; ω ∈ R, |ω | ≥ δ−1η}∪{η + iω ; ω ∈ R, |ω | ≤ δ−1η},

and orient them such that ω increases along Γ η
+ , and decreases along Γ η

− (see Fig-
ure B.1).

For any η ∈ (0,β ) we can rewrite S±(t) as

S+(t) =
1

2iπ

∫

Γ η
+

eλ t(λ I−Lh)−1dλ for all t > 0,

S−(t) =
1

2iπ

∫

Γ η
−

eλ t(λ I−Lh)−1dλ for all t < 0. (B.19)

Using the identity
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Fig. B.1 Plot in the complex plane of the paths Γ η
± (left) and Γ̃ ζ

± (right).

Lh(λ I−Lh)−1 = −IXh
+λ (λ I−Lh)−1, (B.20)

which holds for any λ ∈ ρ(Lh), we obtain

S+(t) =
1

2iπ

(∫

Γ η
+

eλ t

λ
dλ

)

IXh
+

1
2iπ

∫

Γ η
+

eλ t

λ
Lh(λ I−Lh)−1dλ .

The first integral in the right hand side of this equality is independent of η , and by
taking the limit as η → ∞ we conclude that this integral vanishes.

Next, using (B.9) and the fact that α ∈ [0,1) we find that

‖S+(t)‖L (Yh,Xh) ≤Cη e−ηt for all t > 0, (B.21)

for any η ∈ (0,β ), and we conclude that

P− = lim
t→0+

S+(t)|Yh
=

1
2iπ

∫

Γ η
+

Lh

λ
(λ I−Lh)−1dλ ∈ L (Yh,Xh)

is well defined. Similarly, we find

P+ = lim
t→0−

S−(t)|Yh
=

1
2iπ

∫

Γ η
−

Lh

λ
(λ I−Lh)−1dλ ∈ L (Yh,Xh)

for any η ∈ (0,β ), which proves the first part of the lemma.

In order to prove (B.16), we define for ζ > 0 the paths Γ̃ ζ
± by

Γ̃ ζ
+ = {μ + iδ−1|μ | ; μ ∈ R, |μ | ≥ δζ}∪{μ + iζ ; μ ∈ R, |μ | ≤ δζ},

Γ̃ ζ
− = {μ − iδ−1|μ | ; μ ∈ R, |μ | ≥ δζ}∪{μ − iζ ; μ ∈ R, |μ | ≤ δζ},

oriented such that μ decreases along Γ̃ ζ
+ , and increases along Γ̃ ζ

− . Now observe that
the operators
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B+
def=

1
2iπ

∫

Γ̃ ζ
+

Lh

λ
(λ I−Lh)−1dλ ,

B−
def=

1
2iπ

∫

Γ̃ ζ
−

Lh

λ
(λ I−Lh)−1dλ ,

are independent of ζ , and that the dominated convergence theorem shows their limit
in L (Yh,Xh), as ζ → ∞, vanishes. Consequently, B± = 0.

Next, for η = δζ , we define the oriented clockwise rectangular path

Γη = Γ η
+ +Γ η

− − Γ̃ ζ
+ − Γ̃ ζ

− .

Then we have

P+ +P− = B+ +B− +
1

2iπ

∫

Γη

Lh

λ
(λ I−Lh)−1dλ

=
1

2iπ

∫

Γη

Lh

λ
(λ I−Lh)−1dλ

in L (Yh,Xh), and by (B.20),

P+ +P− =
1

2iπ

∫

Γη
(λ I−Lh)−1dλ − 1

2iπ

(∫

Γη

dλ
λ

)
IL (Yh,Xh),

where IL (Yh,Xh) denotes the continuous embedding from Yh into Xh. The first inte-
gral on the right hand side of this equality vanishes, since the interior of the rectangle
Γη does not contain any singularity of (λ I−Lh)−1, which then proves (B.16), and
completes the proof of the lemma. ��

B.3 Proof of Theorem 3.9 (Nonautonomous Vector Fields)

The proof of Theorem 3.9 in Chapter 2 follows exactly the proof of Theorem 2.9
given in Section B.1. The main difference is that we replace the arbitrary data u0(0)
in the integral formulation (B.4) by u0(s) = v0, which modifies trivially (B.4). The
fixed point is now denoted by Φ(v0,s), so that the corresponding solution of the
system (3.9), modified by the cut-off function, is

u(v0,s, t) = u0(v0,s, t)+(Φ(v0,s))(t),

where u0(v0,s,s) = v0 ∈ E0. We set

Ψ(u0, t)
def= (Φ(u0, t))(t).

Then the uniqueness of the fixed point implies that
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(Φ(u0(v0,s,τ),τ))(t) = (Φ(v0,s))(t),

hence
Ψ(u0(v0,s, t), t) = (Φ(v0,s))(t).

This proves that

u0(v0,s, t)+Ψ(u0(v0,s, t), t) = u(v0,s, t),

i.e., the set
{(t,u0 +Ψ(u0, t)) ; (u0, t) ∈ E0 ×R}

is an integral manifold for (3.9) modified by the cut-off function. Restricting to the
ball Bε(E0), this implies property (i) of the theorem. Property (ii) is obtained as for
Theorem 2.9. ��

We conclude this section with a brief proof of the particular cases in Corol-
lary 3.11.

Property (i) results from a standard property of τ-periodic systems, which implies
here that

u(v0,s, t) = u(v0,s+ τ, t + τ).

This leads directly to
Ψ(u0, t) =Ψ(u0, t + τ).

Part (ii) is obtained from the integral formulations (B.4) for both u(v0,s, t) and
u∞(v0,s, t) by estimating, in a straightforward way, their difference as t → ∞. ��

B.4 Proof of Theorem 3.13 (Equivariant Systems)

The uniqueness of the global center manifold for the modified system (B.2) in Sec-
tion B.1 implies that this manifold is invariant under T, provided system (B.2) is
equivariant under T. Since equation (2.1) is equivariant under T, the modified is
also equivariant when the cut-off function χ satisfies

χ(T0u0) = χ(u0) for all u0 ∈ E0. (B.22)

Taking the Euclidean norm in E0, which is finite-dimensional, for any isometry T0

on E0 we can choose χ to be a smooth function of ‖u0‖2, such that (B.22) holds.
Consequently, the result in the theorem follows from the fact that T0 is an isometry
on E0. ��
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B.5 Proof of Theorem 3.22 (Empty Unstable Spectrum)

With the notations from Section B.1, assume that u(·;u(0)) ∈ C 0(R+,Z ) is a solu-
tion of (2.1), which belongs to Oε/4 for all t ≥ 0. Consider u(t,u(0)) defined through

u(t;u(0)) =
{

u(t;u(0)) for t ≥ 0
ũ(t;u(0)) for t ≤ 0,

where ũ(·;u(0)) is the solution of the modified equation

dũ
dt

= L0ũ+P0Rε(ũ), ũ(0) = u(0).

Notice that P−ũ(t) = P−u(0), where P− = I−P0 = Ph. Then we find that

sup
t≤0

(
eηt‖P0u(t;u(0))‖E0

)
< ∞,

and since

‖P0u(t;u(0))‖E0 ≤
ε
4
, ‖P−u(t;u(0))‖Z ≤ ε

4
for all t ≥ 0,

we have that u(·;u(0) ∈ Nη ,ε/4. Moreover, for all t ∈ R,

P0u(t;u(0)) = eL0tP0u(0)+
∫ t

0
eL0(t−τ)P0Rε(u(τ;u(0)))dτ. (B.23)

Now assume that we have found a solution

z ∈ Fη(R,E0)×
(
C0(R,Bε/2(Z−))∩Fη(R,Z−)

)
,

which means that z(t) → 0 exponentially as t → +∞, of the equation

z(t) = −P−u(t;u(0))+KhP−Rε(u(·;u(0))+ z)(t)

−
∫ ∞

t
eL0(t−τ)P0

[
Rε(u(τ;u(0))+ z(τ))−Rε(u(τ;u(0)))

]
dτ. (B.24)

We show below that t �→ u(t;u(0))+z(t) is solution of (B.2), which belongs to Nη ,ε .
As a consequence, u(0)+ z(0) ∈ M0, and by construction

u(t,u(0)+ z(0)) = u(t;u(0))+ z(t) for all t > 0.

This is precisely the assertion in Theorem 3.22, since we have found a solution lying
on M0 which is exponentially asymptotic to the solution u(·;u(0)) of the initial
value problem.

To end the proof, we show that t �→ u(t;u(0))+ z(t) is solution of (B.2). First,
from (B.24) we observe that
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P0z(0) = −
∫ ∞

0
e−L0τ P0

[
Rε(u(τ;u(0))+ z(τ))−Rε(u(τ;u(0)))

]
dτ,

and using (B.23) we obtain

u(t;u(0))+ z(t) = eL0tP0(u(0)+ z(0))+(KhP−Rε(u(·;u(0))+ z))(t)

+
∫ t

0
eL0(t−τ)P0Rε (u(τ;u(0))+ z(τ))dτ.

This is equivalent to the fact that u(·;u(0))+z∈Nη ,ε satisfies (B.2). It remains then
to prove the existence of a solution

z ∈ Fη(R,E0)×
(
C0(R,Bε/2(Z−))∩Fη(R,Z−)

)

of (B.24).
The argument is similar to the proof of the existence of the fixed point in

the proof of the center manifold theorem in Section B.1. The main difference
is that the space Cη is replaced by the space Fη . Then for z ∈ Fη(R,E0) ×(
C0(R,Bε/2(Z−))∩Fη(R,Z−)

)
, examining all terms in (B.24), we find that:

(i) Rε(u(τ;u(0))+ z(τ))−Rε(u(τ;u(0))) ∈ Fη(R,Y ), and

t �→−
∫ ∞

t
eL0(t−τ)P0

[
Rε(u(τ;u(0))+z(τ))−Rε(u(τ;u(0)))

]
dτ ∈Fη(R,E0);

(ii) KhP− (Rε(u( · ;u(0))+ z)−Rε(u(τ;u(0))))∈Fη(R,Z−)∩C0(R,Bε/8(Z−)),
by construction and from Hypothesis 3.20, for ε sufficiently small;

(iii) v
def= KhP−(Rε(u( · ;u(0)))−P−u(t;u(0)) ∈ Fη(R,Z−)∩C0(R,B3ε/8(Z−)).

The last property follows from the fact that v ∈ Cη(R,Z−), and v is by construction
a solution of

dv
dt

= L−v

for t ≥ 0, which by Hypothesis 3.20 implies the exponential convergence to 0 as
t → ∞, that KhP−(Rε(u(·;u(0))) ∈ C0(R,Bε/8(Z−)), and that P−u(t;u(0)) =
P−u(0) ∈ Bε/4(Z−) for t < 0. This completes the proof of Theorem 3.22. ��

C Normal Forms

The references in this section are to theorems, hypotheses, formulas, and remarks in
Chapter 3.
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C.1 Proof of Lemma 1.13 (03 Normal Form)

The proof below can be found in [25] (see also [20] for a different proof).
We set

N(u) = (Φ1(A,B,C),Φ2(A,B,C),Φ3(A,B,C)), u = (A,B,C),

where Φ1,Φ2, and Φ3 are polynomials in (A,B,C). Then we have L∗u = (0,A,B)
and the characterization (1.5) leads to

A
∂Φ1

∂B
+B

∂Φ1

∂C
= 0

A
∂Φ2

∂B
+B

∂Φ2

∂C
= Φ1

A
∂Φ3

∂B
+B

∂Φ3

∂C
= Φ2. (C.1)

Since A and B2 −2AC are first integrals of the linear vector field L∗, we choose the
new variables

Ã = A, B̃ = B2 −2AC, C̃ = B,

where the change of variables is nonsingular as soon as A �= 0, and define

Φ̃ j(Ã, B̃,C̃) = Φ j(A,B,C), j = 1,2,3.

Then the equations (C.1) become

Ã
∂Φ̃1

∂C̃
= 0, Ã

∂Φ̃2

∂C̃
= Φ̃1, Ã

∂Φ̃3

∂C̃
= Φ̃2, (C.2)

so that
Φ̃1(Ã, B̃,C̃) = φ1(Ã, B̃).

We claim that φ1 is a polynomial in its arguments. Indeed, by construction we
have that

Φ1(A,B,C) = Φ1

(

Ã,C̃,
C̃2 − B̃

2Ã

)

,

which shows that φ1 is a polynomial in B̃ with rational coefficients in Ã. Conse-
quently, we can write

Φ1(A,B,C) = ∑
k∈N

fk(Ã)B̃k = ∑
i∈Z, k∈N

fikAiB̃k.

Assume that ι = min{i ∈ Z ; fik �= 0 for some k ∈ N} < 0. Multiplying by A−ι and
setting A = 0 yields

∑
k∈N

fιkB2k = 0,
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which implies that fιk = 0. This contradicts the assumption ι < 0, so that ι ≥ 0.
Consequently, φ1 is a polynomial of (Ã, B̃), which proves the claim.

We write now
φ1(Ã, B̃) = ÃP1(Ã, B̃)+ψ1(B̃),

where P1 and ψ1 are polynomials, ψ1(B̃) = φ1(0, B̃). Solving the second equation in
(C.2) leads to

Φ̃2(Ã, B̃,C̃) = BP1(Ã, B̃)+
B

Ã
ψ1(B̃)+

φ2(Ã, B̃)

Ã
,

where the same proof as above shows that φ2 is a polynomial in its arguments.
Multiplying this equality by Ã and setting Ã = 0, we obtain

Bψ1(B2)+φ2(0,B2) = 0 for all B.

The two terms on the right hand side of this equality have different parity, so that
ψ1(B2) = φ2(0,B2) = 0, and then

ψ1(B̃) = 0, φ2(0, B̃) = 0 for all B̃.

Consequently, the polynomial φ2(Ã, B̃) is divisible by Ã and we can write

Φ̃1(Ã, B̃,C̃) = AP1(Ã, B̃),

Φ̃2(Ã, B̃,C̃) = BP1(Ã, B̃)+AP2(Ã, B̃)+ψ2(B̃),

where P2 and ψ2 are polynomials.
Finally, solving the last equation in (C.2) leads to

Φ̃3(Ã, B̃,C̃) = CP1(Ã, B̃)+BP2(Ã, B̃)+
B
A

ψ2(B̃)+
φ3(Ã, B̃)

A
,

and the same arguments as the ones above for ψ1 and φ2 apply here for ψ2 and φ3.
Then we conclude that ψ2(B̃) = 0, and φ3(Ã, B̃)/A = P3(Ã, B̃), which is a polyno-
mial. This completes the proof of Lemma 1.13. ��

C.2 Proof of Lemma 1.17 ((iω)2 Normal Form)

We define

N(u) = (Φ1(A,B,A,B),Φ2(A,B,A,B),Φ1(A,B,A,B),Φ1(A,B,A,B)),

for u = (A,B,A,B), and consider the differential operator

D∗ = −iωA
∂

∂A
+(A− iωB)

∂
∂B

+ iωA
∂

∂A
+(A+ iωB)

∂
∂B

.
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Then using the characterization (1.5) in its complex form (see Remark 1.5), we find
the system

D∗Φ1 = −iωΦ1, D∗Φ2 = −iωΦ2 +Φ1.

First, notice that
D∗A = −iωA, D∗B = A− iωB,

and that the equation D∗u = 0 has the following three independent first integrals:

u1 = AA, u2 = i(AB−AB), u3 = iω
B
A

+ lnA.

Since D∗(Φ1/A) = 0, we have that Φ1/A is a first integral of D∗u = 0, as well.
Consequently,

Φ1(A,B,A,B) = Aφ(u1,u2,u3) (C.3)

for some function φ .
We claim that φ is a polynomial in u1, u2, and that it is independent of u3. Indeed,

we have

∂φ
∂u1

=
1

A2

∂Φ1

∂A
− B

A3

∂Φ1

∂B
∂φ
∂u2

=
−i
A2

∂Φ1

∂B
∂φ
∂u3

=
1

iω
∂Φ1

∂B
+

A
iωA

∂Φ1

∂B
.

Assume that Φ1 is of degree n−1. Then

∂ nφ
∂un

j
= 0, j = 1,2,3,

so that
∂ kφ

∂uα
1 ∂uβ

2 ∂uγ
3

= 0 for α +β + γ = k ≥ 3n.

This shows that φ is a polynomial in u1, u2, u3. Next, assume that φ depends upon u3.
Comparing the behavior of Φ1 and Aφ in the equality (C.3), as A → ∞, we obtain a
contradiction between the polynomial behavior in the left hand one side and the log-
arithmic behavior in the right hand side. Consequently, φ does not depend upon u3

and we can write
Φ1(A,B,A,B) = AP(u1,u2),

where P is a polynomial in its arguments.
Finally, notice that BP(u1,u2) is a particular solution of the equation

D∗Φ2 = −iωΦ2 +Φ1.
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Then proceeding as above for Φ1, we obtain that

Φ2(A,B,A,B) = BP(u1,u2)+AQ(u1,u2),

which ends the proof of Lemma 1.17. ��

C.3 Proof of Lemma 1.18 (02(iω) Normal Form)

We define

N(u) = (Φ1(A,B,C,C),Φ2(A,B,C,C),Φ3(A,B,C,C),Φ3(A,B,C,C))

for u = (A,B,C,C), and consider the differential operator

D∗ = A
∂

∂B
− iωC

∂
∂C

+ iωC
∂

∂C
.

Using characterization (1.5), we have to solve the system

D∗Φ1 = 0, D∗Φ2 = Φ1, D∗Φ3 = −iωΦ3. (C.4)

First, notice that

x = A, y = |C|2, z = A lnC + iωB

are three independent first integrals of the linear equation D∗u = 0. Using the local
diffeomorphism (A,B,C,C) �→ (x,y,z,B), with Jacobian determinant −A, it is easy
to show that Φ1 expressed in the new variables, Φ̃1(x,y,z,B), satisfies

A
∂Φ̃1

∂B
= 0.

Consequently, there is a function φ , which is smooth, except at the origin, such that

Φ1(A,B,C,C) = φ(x,y,z). (C.5)

We claim that φ is a polynomial in x, y, and that it is independent of z. Indeed,
we have the equalities

∂φ
∂x

=
∂Φ1

∂A
+

i lnC
ω

∂Φ1

∂B
∂φ
∂y

=
1
C

∂Φ1

∂C
∂φ
∂ z

=
1

iω
∂Φ1

∂B
,
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so that

∂ nφ
∂xn =

∂ nΦ1

∂An +
(

i lnC
ω

)n ∂ nΦ1

∂Bn

∂ nφ
∂yn =

1
Cn

∂ nΦ1

∂C
n

∂ nφ
∂ zn =

1
(iω)n

∂ nΦ1

∂Bn .

The right hand sides of these equalities vanish for n sufficiently large, which im-
plies that φ is a polynomial in its arguments. Next, assume that φ depends upon z.
Comparing the behavior of Φ1 and φ in the equality (C.5), as A → ∞, we obtain a
contradiction between the polynomial behavior in the left hand one side and the log-
arithmic behavior on the right hand side. Consequently, φ does not depend upon z
and we can write

Φ1(A,B,C,C) = φ0(A, |C|2),

where φ0 is a polynomial in its arguments.
Next, the second equation in (C.4) leads to

Φ2(A,B,C,C) =
B
A

φ0(A, |C|2)+φ1(A, |C|2,z),

and using the fact that AΦ2 and φ0 are polynomials, it follows that Aφ1 = ψ(A, |C|2),
with ψ a polynomial satisfying

Bφ0(0, |C|2) = ψ(0, |C|2).

This implies that φ0(0, |C|2) = 0, and that φ1 is a polynomial in A, and |C|2. Sum-
marizing, there are two polynomials P0 and P1 in A and |C|2, such that

Φ1(A,B,C,C) = AP0(A, |C|2),
Φ2(A,B,C,C) = BP0(A, |C|2)+P1(A, |C|2).

Finally, the equation for Φ3 in (C.4) leads to

D∗(CΦ3) = 0.

Consequently,
CΦ3(A,B,C,C) = φ2(A, |C|2),

where φ2 is a polynomial such that φ2(A,0) = 0, and we conclude that there is a
polynomial P2 such that

Φ3(A,B,C,C) = CP2(A, |C|2).

This completes the proof of Lemma 1.18. ��
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C.4 Proof of Lemma 1.19 (0202 Normal Form)

We define

N(u) = (Φ1(A,B,C,D),Φ2(A,B,C,D),Φ3(A,B,C,D),Φ4(A,B,C,D))

for u = (A,B,C,D), and consider the differential operator

D∗ = A
∂

∂B
+C

∂
∂D

.

Using characterization (1.5), we obtain that

D∗Φ1 = 0, D∗Φ2 = Φ1, D∗Φ3 = 0, D∗Φ4 = Φ3. (C.6)

First, notice that
A, C, B̃ = BC−AD

are three independent first integrals of the equation D∗u = 0. Then it is not difficult
to show that there is a function φ1 that is smooth, except at the origin, such that

Φ1(A,B,C,D) = φ1(A,C, B̃).

Furthermore, we have the identities

∂ nφ1

∂An =
(

∂
∂A

+
D
C

∂
∂B

)n

Φ1

∂ nφ1

∂Cn =
(

∂
∂C

+
B
A

∂
∂D

)n

Φ1

∂ nφ1

∂ B̃n
=

(
1
C

∂
∂B

)n

Φ1,

and the right hand sides of these equalities vanish for n sufficiently large, since Φ1

is a polynomial. Consequently, φ1 is a polynomial in its arguments.
We decompose φ1 as

φ1(A,C, B̃) = AQ1(A,C, B̃)+CQ2(A,C, B̃)+Q3(B̃),

where Q j are polynomials in their arguments. Notice that this decomposition is not
unique. Now we set

Φ2(A,B,C,D) = BQ1(A,C, B̃)+DQ2(A,C, B̃)+
B
A

Q3(B̃)+
1
A

Φ̃2(A,B,C,D) (C.7)

so that the second equation in (C.6) leads to

D∗Φ̃2 = 0,
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where Φ̃2 is a polynomial in its arguments. The arguments used for φ1 above, imply
that

Φ̃2(A,B,C,D) = φ2(A,C, B̃),

with φ2 polynomial in its arguments. Now multiplying (C.7) by A and taking A = 0
gives

BQ3(BC)+φ2(0,C,BC)

for any (B,C) ∈ R
2. This proves that

Q3 = 0, φ2(0,C,BC) = 0.

As a consequence, since B and BC are independent variables, the polynomial
φ2(A,C, B̃) is divisible by A, and there is a polynomial Q4 such that

Φ2(A,B,C,D) = BQ1(A,C, B̃)+DQ2(A,C, B̃)+Q4(A,C, B̃).

Finally, notice that we can write

Q4(A,C, B̃) = P3(A,C)+ B̃Q5(A,C, B̃)
= P3(A,C)+BCQ5(A,C, B̃)−DAQ5(A,C, B̃),

hence we obtain the final form

Φ1(A,B,C,D) = AP1(A,C, B̃)+CP2(A,C, B̃)
Φ2(A,B,C,D) = BP1(A,C, B̃)+DP2(A,C, B̃)+P3(A,C), (C.8)

where
P1 = Q1 +CQ5, P2 = Q2 −AQ5.

In the same way, from the last two equalities in (C.6) we obtain

Φ3(A,B,C,D) = AP4(A,C, B̃)+CP5(A,C, B̃)
Φ4(A,B,C,D) = BP4(A,C, B̃)+DP5(A,C, B̃)+P6(A,C), (C.9)

which completes the proof of Lemma 1.19. ��

C.5 Proof of Theorem 2.2 (Perturbed Normal Forms)

We have to determine two polynomials Φμ and Nμ of degree p in R
n with coeffi-

cients depending upon μ , which satisfy the equality

F (Φμ ,Nμ ,μ) = 0. (C.10)

With the notations from Hypothesis 2.1, the map F : H 2 ×Vμ → H defined by
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(F (Φ ,N,μ))(v) def= (ALΦ)(v)+N(v)+Π p(DΦ(v)N(v)−R(v+Φ(v),μ))
(C.11)

is of class C k, where we recall that H is the space of polynomials of degree p, and
Π p the linear map that associates to a map of class C p the polynomial of degree
p in its Taylor expansion. For notational simplicity, we suppress the indices μ and
write Φ and N instead of Φμ and Nμ , respectively.

For μ = 0 we recover exactly the situation treated in Theorem 1.2. This means
that we have a solution (Φ ,N) = (Φ(0),N(0)) of (C.10) for μ = 0,

F (Φ(0),N(0),0) = 0,

which is unique when we restrict to

Φ ∈ (kerAL)⊥, N ∈ ker(AL∗). (C.12)

In order to determine the polynomials Φ and N for μ close to zero, we use the
implicit function theorem to solve (C.10), together with (C.12), i.e., with

F : (kerAL)⊥×ker(AL∗)×Vμ → H .

First, we compute the differential

D0
def= D(Φ ,N)F (Φ(0),N(0),0) : (kerAL)⊥×ker(AL∗) → H

of F with respect to (Φ ,N) at (Φ (0),N(0),0). A direct calculation gives

(D0(Ψ ,M))(v) = (ALΨ)(v)+M(v)+Π p

(
DΨ(v)N(0)(v)

+DΦ(0)(v)M(v)−DR(v+Φ(0)(v),0)Ψ(v)
)

, (C.13)

and we prove now that this linear map is invertible.
Denote by πq the linear map on H , which associates to a polynomial P the

polynomial Pq obtained by suppressing the monomials in P of degree different of q.
With this notation, according to Theorem 1.2 we have that

(Φ(0)
0 ,N(0)

0 ) = (Φ(0)
1 ,N(0)

1 ) = 0,

since the polynomials (Φ(0),N(0)) are at least quadratic. Identifying the homoge-
neous polynomials of degrees 0, . . . , p on the right hand side of (C.13) we obtain,
successively,

(ALΨ 0)(v)+M0(v),

(ALΨ 1)(v)+M1(v)+DΦ(0)
2 (v)M0 −DR2(v)Ψ 0,
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(ALΨ 2)(v)+M2(v)+DΦ(0)
3 (v)M0 +DΦ(0)

2 (v)M1(v)−DR2(v)Ψ 1(v)

−D2R2(Ψ 0,Φ
(0)
2 (v))−DR3(v)Ψ 0,

(ALΨ p)(v)+Mp(v)+ ∑
1≤l≤p

DΦ(0)
l+1(v)Mp−l(v)+ ∑

1≤l≤p−1

DΨ p−l(v)N
(0)
l+1(v)

− ∑
2≤q≤p

π p

(
DRq(v+Φ(0)(v))Ψ(v)

)
,

where Rs(u) = Ds
uR(0,0)(u(s))/s!. Now notice that for any degree q between 0

and p, the formulas above are of the form

ALΨ q +Mq +Gq,

with Gq depending only upon M j and Ψ j with j = 0, . . . ,q−1. We have seen in the
proof of Theorem 1.2 that the equation

ALΨ +M = Q

has a unique solution

M = Pker(AL∗ )Q ∈ ker(AL∗), Ψ ∈ (kerAL)⊥,

for any homogeneous polynomial Q of degree q. This implies that the differential
D0 is invertible, and by the implicit function theorem we conclude that (C.10) has
a unique solution (Φμ ,Nμ) satisfying (C.12). Furthermore the map μ �→ (Φμ ,Nμ)
is of class C k, which implies that the coefficients of monomials of degree q are
functions of μ of class C k−q. This completes the proof of Theorem 2.2. ��

Remark C.1 In the case where R(·,μ) is linear, equation (C.10) is affine in Φ ,
and we can look directly for a solution (Φ ,N) ∈ (L (Rn))2, i.e., in the space of
polynomials of degree 1.

D Reversible Bifurcations

The references in this section are to theorems, hypotheses, formulas, and remarks in
Chapter 4.

D.1 03+ Normal Form in Infinite Dimensions

We show below how to compute the principal coefficients in the normal form (2.9)
when starting from an infinite-dimensional system
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du
dt

= Lu+R(u,μ), (D.1)

just like the system (4.1) in Chapter 3. We assume that the parameter μ is real,
and that the system (D.1) possesses a reversibility symmetry S and satisfies the
hypotheses of Theorems 3.3 and 3.15 in Chapter 2. We further assume that the
spectrum of the linear operator L is such that σ0 = {0}, where 0 is an algebraically
triple and geometrically simple eigenvalue, with a symmetric eigenvector ζ0 such
that

Sζ0 = ζ0.

Then the three-dimensional reduced system satisfies the hypotheses of Lemma 2.4,
so that its normal form is given by (2.9).

For the computation of the coefficients in the expansion of P we proceed as in
Section 3.4, and as for the reversible bifurcations in Section 4.1. We start from the
equality (4.3) in Chapter 3, in which we take v0 = Aζ0 +Bζ1 +Cζ2, and then write

u = Aζ0 +Bζ1 +Cζ2 +Ψ̃(A,B,C,μ), (D.2)

where Ψ̃ takes values in Y . With the notations from Section 3.2.3, we consider the
Taylor expansions of R in (1.15) and of Ψ̃ ,

Ψ̃(A,B,C,μ) = ∑
1≤r+s+q+n≤p

ArBsCqμnΨ rsqn, Ψ rsq0 = 0 for r + s+q = 1.

Using the reversibility symmetry we find that

Rr,q((Su)(r)) = −SRr,q(u(r)), SΨ rsqn = (−1)sΨ rsqn.

Now we identify the different powers of (A,B,C,μ) in the identity (4.4) in Chap-
ter 3, which is here

(∂AΨ̃)B+(∂BΨ̃)C +(ζ1 +∂BΨ̃)AP(A, B̃,μ)+(ζ2 +∂CΨ̃)BP(A, B̃,μ)

= LΨ̃ +R(Aζ0 +Bζ1 +Cζ2 +Ψ̃ ,μ).

This leads to the following equalities, found successively at orders μ , Aμ , Bμ , Cμ :

0 = LΨ 0001 +R0,1, (D.3)

aζ1 = LΨ 1001 +R1,1ζ0 +2R2,0(ζ0,Ψ 0001), (D.4)

aζ2 +Ψ 1001 = LΨ 0101 +R1,1ζ1 +2R2,0(ζ1,Ψ 0001), (D.5)

Ψ 0101 = LΨ 0011 +R1,1ζ2 +2R2,0(ζ2,Ψ 0001); (D.6)

at orders A2, AB, AC, BC, C2:

bζ1 = LΨ 2000 +R2,0(ζ0,ζ0), (D.7)

bζ2 +2Ψ 2000 = LΨ 1100 +2R2,0(ζ0,ζ1), (D.8)
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Ψ 1100 = LΨ 0200 +R2,0(ζ1,ζ1), (D.9)

Ψ 1100 = LΨ 1010 +2R2,0(ζ0,ζ2), (D.10)

2Ψ 0200 +Ψ 1010 = LΨ 0110 +2R2,0(ζ1,ζ2), (D.11)

Ψ 0110 = LΨ 0020 +R2,0(ζ2,ζ2); (D.12)

at orders A3, A2B, AB2, B3, A2C, ABC:

dζ1 +bΨ 1100 = LΨ 3000 +2R2,0(ζ0,Ψ 2000)
+R3,0(ζ0,ζ0,ζ0), (D.13)

dζ2 +3Ψ 3000 +2bΨ 0200 +bΨ 1010 = LΨ 2100 +2R2,0(ζ0,Ψ 1100)
+2R2,0(ζ1,Ψ 2000)
+3R3,0(ζ0,ζ0ζ1), (D.14)

cζ1 +2Ψ 2100 +bΨ 0110 = LΨ 1200 +2R2,0(ζ0,Ψ 0200)
+2R2,0(ζ1,Ψ 1100)
+3R3,0(ζ0,ζ1,ζ1), (D.15)

cζ2 +2Ψ 1200 = LΨ 0300 +2R2,0(ζ1,Ψ 0200)
+R3,0(ζ1,ζ1,ζ1), (D.16)

−2cζ1 +Ψ 2100 +bΨ 0110 = LΨ 2010 +2R2,0(ζ0,Ψ 1010)
+2R2,0(ζ2,Ψ 2000)
+3R3,0(ζ0,ζ0,ζ2), (D.17)

−2cζ2 +2Ψ 2010 +2Ψ 1200 +2bΨ 0020 = LΨ 1110 +2R2,0(ζ0,Ψ 0110)
+2R2,0(ζ1,Ψ 1010)+2R2,0(ζ2,Ψ 1100)
+6R3,0(ζ0,ζ1,ζ2); (D.18)

and at orders AC2, B2C, BC2, C3:

Ψ 1110 = LΨ 1020 +2R2,0(ζ0,Ψ 0020)+2R2,0(ζ2,Ψ 1010)
+3R3,0(ζ0,ζ2,ζ2), (D.19)

Ψ 1110 +3Ψ 0300 = LΨ 0210 +2R2,0(ζ1,Ψ 0110)+2R2,0(ζ2,Ψ 0200)
+3R3,0(ζ1,ζ1,ζ2), (D.20)

2Ψ 0210 = LΨ 0120 +2R2,0(ζ1,Ψ 0020)+2R2,0(ζ2,Ψ 0110)
+3R3,0(ζ1,ζ2,ζ2), (D.21)

Ψ 0120 = LΨ 0030 +2R2,0(ζ2,Ψ 0020)+R3,0(ζ2,ζ2,ζ2). (D.22)

Notice that due to the symmetry properties of Rp,q, ζ0, ζ1, ζ2, and since SΨ rsqn =
(−1)sΨ rsqn, we have that

SR0,1 = −R0,1, SR1,1ζ j = (−1) j+1R1,1ζ j, j = 0,1,2,

and
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SR2,0(ζ j,Ψ rsqn) = (−1) j+s+1R2,0(ζ j,Ψ rsqn), j = 0,1,2,

SR3,0(ζ j,ζk,ζl) = (−1) j+k+l+1R3,0(ζ j,ζk,ζl), j,k, l ∈ {0,1,2}.

The solvability conditions for these equations are now obtained by taking the
duality product of each equation with the vector ζ ∗

2 orthogonal to the range of L.
Proceeding as for the other examples, we find that this vector is given by

ζ ∗
2 = P∗

0ζ ∗
02 ∈ X ∗,

where P∗
0 is the adjoint of the projection P0 onto the three-dimensional space E0,

and ζ ∗
02 is the eigenvector associated with the eigenvalue 0 of the adjoint of L0, the

restriction of L to E0, satisfying 〈ζ2,ζ ∗
2 〉 = 1. In addition, we have that

〈ζ0,ζ ∗
2 〉 = 0, 〈ζ1,ζ ∗〉 = 0, 〈ζ2,ζ ∗

2 〉 = 1,

and since Sζ2 = ζ2), that
S∗ζ ∗

2 = ζ ∗
2 .

We can now solve the system (D.3)–(D.22). Since any antisymmetric vector of
X lies in the range of L, it is straightforward to check that there is no solvability
condition for the equations (D.3), (D.4), (D.6), (D.7), (D.9), (D.10), (D.12), and
(D.13), (D.15), (D.17), (D.19), (D.20), (D.22). The solvability conditions for the
remaining equations allow us to determine the coefficients a, c, and d.

First, the equation (D.3) gives Ψ 0001, defined up to an arbitrary multiple of ζ0.
Then from (D.4) we obtain

Ψ 1001 = Ψ̃ 1001 +aζ2,

where
LΨ̃ 1001 +R1,1ζ0 +2R2,0(ζ0,Ψ 0001) = 0.

For (D.5) we find the solvability condition

2a = 〈R1,1ζ1 +2R2,0(ζ1,Ψ 0001)−Ψ̃ 1001,ζ ∗
2 〉,

which gives a, and from this equation we can determine Ψ 0101 up to an arbitrary
multiple of ζ0. From (D.6) we can find Ψ 0011 up to an arbitrary multiple of ζ0,
again.

Next, equation (D.7) gives

Ψ 2000 = Ψ̃ 2000 +bζ2 +ψ2000ζ0,

where
LΨ̃ 2000 +R2,0(ζ0,ζ0) = 0.

For (D.8) we find the solvability condition

3b = 〈2R2,0(ζ0,ζ1)−2Ψ̃ 2000,ζ ∗
2 〉,
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which gives b, and we can determine

Ψ 1100 = Ψ̃ 1100 +2ψ2000ζ1,

where
LΨ̃ 1100 +2R2,0(ζ0,ζ1) = 2Ψ̃ 2000.

Similarly, from (D.9) and (D.10) we obtain,

Ψ 0200 = Ψ̃ 0200 +2ψ2000ζ2, Ψ 1010 = Ψ̃ 1010 +2ψ2000ζ2,

where

LΨ̃ 0200 +R2,0(ζ1,ζ1) = Ψ̃ 1100, LΨ̃ 1010 +2R2,0(ζ0,ζ2) = Ψ̃ 1100.

Now for (D.11) we find the solvability condition

6ψ2000 = 〈2R2,0(ζ1,ζ2)−2Ψ̃ 0200 −Ψ̃ 1010,ζ ∗
2 〉,

and from (D.11) and (D.12) we can determine Ψ 0110 and Ψ 0020.
Finally, from (D.13) and (D.14) we find

Ψ 3000 = Ψ̃ 3000 +dζ2 +ψ3000ζ0, Ψ 2100 = Ψ̃ 2100 +3ψ3000ζ1,

and the coefficient d,

4d = 〈2R2,0(ζ0,Ψ 1100)+2R2,0(ζ1,Ψ 2000)+3R3,0(ζ0,ζ0ζ1),ζ ∗
2 〉

−〈3Ψ̃ 3000 +2bΨ 0200 +bΨ 1010,ζ ∗
2 〉. (D.23)

Now (D.15) and (D.16) give

Ψ 1200 = Ψ̃ 1200 +(c+6ψ3000)ζ2, Ψ 0300 = Ψ̃ 0300,

and

3c+12ψ3000 = 〈2R2,0(ζ1,Ψ 0200)+R3,0(ζ1,ζ1,ζ1)−2Ψ̃ 1200,ζ ∗
2 〉.

From (D.17) and (D.18) we obtain

Ψ 2010 = Ψ̃ 2010 +(3ψ3000 −2c)ζ2 +ψ2010ζ0, Ψ 1110 = Ψ̃ 1110 +2ψ2010ζ1,

and

12ψ3000 = 〈2R2,0(ζ0,Ψ 0110)+2R2,0(ζ1,Ψ 1010)+2R2,0(ζ2,Ψ 1100),ζ ∗
2 〉

+〈6R3,0(ζ0,ζ1,ζ2),ζ ∗
2 〉−〈2Ψ̃ 2010 +2Ψ̃ 1200 +2bΨ 0020,ζ ∗

2 〉.

We conclude that
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3c = 〈2R2,0(ζ1,Ψ 0200)−2R2,0(ζ0,Ψ 0110)−2R2,0(ζ1,Ψ 1010),ζ ∗
2 〉

−〈2R2,0(ζ2,Ψ 1100)−R3,0(ζ1,ζ1,ζ1)+6R3,0(ζ0,ζ1,ζ2),ζ ∗
2 〉

+〈2Ψ̃ 2010 +2bΨ 0020,ζ ∗
2 〉. (D.24)

Furthermore, from the equations (D.19) and (D.20) we can find

Ψ 1020 = Ψ̃ 1020 +2ψ2010ζ2, Ψ 0210 = Ψ̃ 0210 +2ψ2010ζ2,

the solvability condition for (D.21) gives

4ψ2010 = 〈2R2,0(ζ1,Ψ 0020)+2R2,0(ζ2,Ψ 0110)+3R3,0(ζ1,ζ2,ζ2),ζ ∗
2 〉,

and from (D.21) and (D.22) we can also determine Ψ 0120 and Ψ 0030.

D.2 (iω)2 Normal Form in Infinite Dimensions

We show below how to compute the principal coefficients in the normal form (3.25)
when starting from an infinite-dimensional system of the form (3.12). We assume
that the parameter μ is real and that the system (3.12) possesses a reversibility sym-
metry S and satisfies the hypotheses of Theorems 3.3 and 3.15 in Chapter 2. We
further assume that the spectrum of the linear operator L is such that σ0 = {±iω},
where ±iω are algebraically double and geometrically simple eigenvalues. Then the
four-dimensional reduced system satisfies the hypotheses of Lemma 3.17, so that its
normal form is given by (3.25).

We proceed as in Section 3.4, and in the previous cases. In equality (4.3) in
Chapter 3, we take v0 = Aζ0 +Bζ1 +Aζ0 +Bζ1, and then write

u = Aζ0 +Bζ1 +Aζ0 +Bζ1 +Ψ̃(A,B,A,B,μ) (D.25)

where Ψ̃ takes values in Z . With the notations from Section 3.2.3, we consider the
Taylor expansion (1.15) of R, and the expansion of Ψ̃ ,

Ψ̃(A,B,A,B,μ) = ∑
1≤r+s+q+l+m≤p

ArBsA
q
B

l μmΨ rsqlm,

where
Ψ rsql0 = 0, for r + s+q+ l = 1.

Using the reversibility symmetry we find that

Ψ̃(A,−B,A,B,μ) = SΨ̃(A,B,A,B,μ),

and
SΨ rsqlm = (−1)s+lΨ qlrsm, Ψ rsqlm =Ψ qlrsm.
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Identity (4.4) in Chapter 3, is in this case

(iωA+B)∂A Ψ+ iωB∂B Ψ+(−iωA+B)∂AΨ − iωB∂BΨ

+
(

iA(ζ0 +∂AΨ)− iA(ζ 0 +∂AΨ)
)

P

+(ζ1 +∂BΨ)(iBP+AQ)+(ζ 1 +∂BΨ)(−iBP+AQ)

= LΨ +R(Aζ0 +Bζ1 +Aζ0 +Bζ1 +Ψ ,μ).

Using the expansions of R, Ψ̃ , P, and Q, we find at orders μ , Aμ , and Bμ , the
equalities

0 = LΨ 00001 +R0,1, (D.26)

aζ1 + iαζ0 = (L− iω)Ψ 10001 +R1,1ζ0 +2R2,0(ζ0,Ψ 00001), (D.27)

iαζ1 +Ψ 10001 = (L− iω)Ψ 01001 +R1,1ζ1 +2R2,0(ζ1,Ψ 00001), (D.28)

and at orders A2, AA, AB, AB, B2, BB we have:

0 = (L−2iω)Ψ 20000 +R2,0(ζ0,ζ0), (D.29)

0 = LΨ 10100 +2R2,0(ζ0,ζ0), (D.30)

2Ψ 20000 = (L−2iω)Ψ 11000 +2R2,0(ζ0,ζ1), (D.31)

Ψ 10100 = LΨ 10010 +2R2,0(ζ0,ζ1), (D.32)

Ψ 11000 = (L−2iω)Ψ 02000 +R2,0(ζ1,ζ1), (D.33)

Ψ 10010 +Ψ 01100 = LΨ 01010 +2R2,0(ζ1,ζ1). (D.34)

At orders A3, A2B, AB2, and B3 we obtain:

0 = (L−3iω)Ψ 30000 +2R2,0(ζ0,Ψ 20000)+R3,0(ζ0,ζ0,ζ0), (D.35)

3Ψ 30000 = (L−3iω)Ψ 21000 +2R2,0(ζ0,Ψ 11000)+2R2,0(ζ1,Ψ 20000)
+3R3,0(ζ0,ζ0,ζ1), (D.36)

2Ψ 21000 = (L−3iω)Ψ 12000 +2R2,0(ζ1,Ψ 11000)+2R2,0(ζ0,Ψ 02000)
+3R3,0(ζ0,ζ1,ζ1), (D.37)

Ψ 12000 = (L−3iω)Ψ 03000 +2R2,0(ζ1,Ψ 02000)+R3,0(ζ1,ζ1,ζ1), (D.38)

and finally at orders A2A, A2B, AAB, AB2, ABB, and B2B we find:

bζ1 + iβζ0 = (L− iω)Ψ 20100 +2R2,0(ζ0,Ψ 10100)

+2R2,0(ζ0,Ψ 20000)+3R3,0(ζ0,ζ0,ζ0), (D.39)
ic
2

ζ1 −
γ
2

ζ0 +Ψ 20100 = (L− iω)Ψ 20010 +2R2,0(ζ0,Ψ 10010)

+2R2,0(ζ1,Ψ 20000)+3R3,0(ζ0,ζ0,ζ1), (D.40)
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(
iβ − ic

2

)
ζ1 +

γ
2

ζ0 +2Ψ 20100 = (L− iω)Ψ 11100 +2R2,0(ζ0,Ψ 01100)

+2R2,0(ζ0,Ψ 11000)+2R2,0(ζ1,Ψ 10100)

+6R3,0(ζ0,ζ1,ζ0), (D.41)
γ
2

ζ1 +Ψ 11100 = (L− iω)Ψ 02100 +2R2,0(ζ0,Ψ 02000)

+2R2,0(ζ1,Ψ 01100)+3R3,0(ζ1,ζ1,ζ0), (D.42)

−γ
2

ζ1 +2Ψ 20010 +Ψ 11100 = (L− iω)Ψ 11010 +2R2,0(ζ0,Ψ 01010)

+2R2,0(ζ1,Ψ 11000)+2R2,0(ζ1,Ψ 10010)

+6R3,0(ζ0,ζ1,ζ1), (D.43)

Ψ 11010 +Ψ 02100 = (L− iω)Ψ 02010 +2R2,0(ζ1,Ψ 01010)

+2R2,0(ζ1,Ψ 02000)+3R3,0(ζ1,ζ1,ζ1). (D.44)

Notice that due to the symmetry properties of Rp,q, ζ0, and ζ1 we have

SR0,1 = −R0,1, SR1,1ζ0 = −R1,1ζ0, SR1,1ζ1 = R1,1ζ1,

which, together with the symmetry properties for Ψ qlrsm, imply that applying the
symmetry S to both sides of (D.27), (D.39), (D.42), and (D.43), we obtain the oppo-
site of the complex conjugate of these equalities, whereas by applying it to (D.28),
(D.40), (D.41), and (D.44), we find the complex conjugate of these equalities.

First, notice that the invertibility of the operators L, (L− 2iω), and (L− 3iω),
lets us solve the equations (D.26), (D.29)–(D.34), and (D.35)–(D.38), and determine
Ψ 00001, Ψ 20000, Ψ 10100, Ψ 11000, Ψ 10010,Ψ 02000, Ψ 01010, Ψ 30000,Ψ 21000,Ψ 12000, and
Ψ 03000.

Next, consider the vector ζ ∗
1 orthogonal to the range of L− iω , constructed as in

the other cases, such that

〈ζ0,ζ ∗
1 〉 = 0, 〈ζ0,ζ ∗

1 〉 = 0, 〈ζ1,ζ ∗
1 〉 = 1, 〈ζ1,ζ ∗

1 〉 = 0,

and
S∗ζ ∗

1 = −ζ ∗
1 .

Then from the equations (D.27) and (D.28) we find

a = 〈R1,1ζ0 +2R2,0(ζ0,Ψ 00001),ζ ∗
1 〉 (D.45)

and
Ψ 10001 = Ψ̃ 10001 + iαζ1,

2iα = 〈R1,1ζ1 +2R2,0(ζ1,Ψ 00001)−Ψ̃ 10001,ζ ∗
1 〉. (D.46)

Taking into account the fact that 〈Su,S∗v〉 = 〈u,v〉 for any u ∈ X and v ∈ X ∗, it is
not difficult to check that a and α are real numbers.
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Next, equation (D.39) gives

b = 〈2R2,0(ζ0,Ψ 10100)+2R2,0(ζ0,Ψ 20000)+3R3,0(ζ0,ζ0,ζ0),ζ ∗
1 〉, (D.47)

and
Ψ 20100 = Ψ̃ 20100 + iβζ1 +ψ20100ζ0,

with a constant ψ20100 ∈ R, which will be determined later. The equations (D.40)
and (D.41) now give

iβ +
ic
2

= 〈2R2,0(ζ0,Ψ 10010)+2R2,0(ζ1,Ψ 20000),ζ ∗
1 〉

+〈3R3,0(ζ0,ζ0,ζ1)−Ψ̃ 20100,ζ ∗
1 〉,

3iβ − ic
2

= 〈2R2,0(ζ0,Ψ 01100)+2R2,0(ζ0,Ψ 11000)+2R2,0(ζ1,Ψ 10100),ζ ∗
1 〉

+〈6R3,0(ζ0,ζ1,ζ0)−2Ψ̃ 20100,ζ ∗
1 〉,

which determine the real coefficients β and c, and

Ψ 20010 = Ψ̃ 20010 +
(

ψ20100 −
γ
2

)
ζ1,

Ψ 11100 = Ψ̃ 11100 +
(

2ψ20100 +
γ
2

)
ζ1 +ψ11100ζ0,

with another constant ψ11100 determined later.
Finally, the equations (D.42)–(D.44) let us determine γ , ψ20100, and ψ11100. In-

deed, (D.42) gives

γ +2ψ20100 = 〈2R2,0(ζ0,Ψ 02000)+2R2,0(ζ1,Ψ 01100),ζ ∗
1 〉

+〈3R3,0(ζ1,ζ1,ζ0)−Ψ̃ 11100,ζ ∗
1 〉,

and
Ψ 02100 = Ψ̃ 02100 +ψ11100ζ1,

whereas (D.43) leads to

4ψ20100 − γ = 〈2R2,0(ζ0,Ψ 01010)+2R2,0(ζ1,Ψ 11000)+2R2,0(ζ1,Ψ 10010),ζ ∗
1 〉

+〈6R3,0(ζ0,ζ1,ζ1)−2Ψ̃ 20010 −Ψ̃ 11100,ζ ∗
1 〉,

and
Ψ 11010 = Ψ̃ 11010 +ψ11100ζ1.

This determines γ and ψ20100. In particular, we obtain

3γ = 〈4R2,0(ζ0,Ψ 02000)+4R2,0(ζ1,Ψ 01100)+6R3,0(ζ1,ζ1,ζ0),ζ ∗
1 〉

−〈2R2,0(ζ0,Ψ 01010)+2R2,0(ζ1,Ψ 11000)+2R2,0(ζ1,Ψ 10010),ζ ∗
1 〉

−〈6R3,0(ζ0,ζ1,ζ1)−2Ψ̃ 20010 +Ψ̃ 11100,ζ ∗
1 〉.
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Finally the equation (D.44) gives

2ψ11100 = 〈2R2,0(ζ1,Ψ 01010)+2R2,0(ζ1,Ψ 02000)+3R3,0(ζ1,ζ1,ζ1),ζ ∗
1 〉

−〈Ψ̃ 11010 +Ψ̃ 02100,ζ ∗
1 〉,

and completes the computation of the normal form.
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Lyapunov–Schmidt method, 257

multiplicity
algebraic, 281
geometric, 281

NLS, 206
normal form, 93

(iω1)(iω2) bifurcation, 140
analytic vector fields, 152, 153
characterization, 94, 110
computation, 16, 20, 85, 102, 112, 114, 120,

122, 125, 135, 140, 149, 166, 177, 205,
225, 310, 315

equivariant systems, 117
Hopf bifurcation, 10, 16, 20, 85, 120, 124,

130, 147
hypotheses, 93, 109, 117, 118, 144
linear, 111
parameter-dependent, 109, 110
particular cases, 99, 100, 104–106, 108, 109
reversible 02− bifurcation, 177
reversible (iω)2 bifurcation, 215, 315

reversible (iω1)(iω2) bifurcation, 227
reversible 0(iω) bifurcation, 195
reversible 002 bifurcation, 193
reversible 0202 bifurcation, 234
reversible 02+ bifurcation, 160, 166
reversible 02+(iω) bifurcation, 199, 205
reversible 02− bifurcation, 173
reversible 02−(iω) bifurcation, 210
reversible 03+ bifurcation, 181, 310
reversible 03− bifurcation, 192
reversible 04+ bifurcation, 229
reversible systems, 118, 119
Takens–Bogdanov, 134
theorem, 94, 110, 117, 119, 144, 152, 153
time-periodic, 144, 147, 149

ODE, 4
operator

adjoint, 283
bounded, 279
closed, 280
compact, 282
Fredholm, 284
graph, 279
homological, 96
kernel, 30, 279
linear, 279
Nemitsky, 291
norm, 280
range, 30, 279
resolvent, 280
resolvent set, 30, 280
self-adjoint, 283
spectrum, 30
with compact resolvent, 282

orbit
group, 28
heteroclinic, 175
homoclinic, 164
periodic, 15, 163, 164, 202
quasi-periodic, 202

PDE, 22
Poincaré map, 15
problem

Bénard–Rayleigh, 249
Couette–Taylor, 244

reduction function, 34
resolvent

operator, 280
set, 30, 280

resonant
strongly, 141, 228



Index 329

weakly, 141, 228

SHE, 70, 223
Sobolev space, 284
solution, 31

antisymmetric, 80
equilibrium, 27, 28, 55, 158, 164
heteroclinic, 175
homoclinic, 164
periodic, 15, 127, 163, 164, 202
quasi-periodic, 202
roll, 75
symmetric, 80

spatial dynamics, 261, 265, 272
spectral

decomposition, 281
projection, 281

spectrum, 30, 280
central, 32
extended, 281
stable, 32
unstable, 32

symmetry, 254, 261
O(2), 24, 28, 73–75, 129, 217, 245, 247,

252, 257
SO(2), 22, 24, 127, 234, 245
continuous, 55, 273
equivariance, 53, 64, 117, 207, 268
mirror, 5
reflection, 5, 207, 245, 252
reversibility, 54, 55, 60, 90, 118, 157, 207,

263, 273, 276
system

Brusselator, 18, 81
Burgers, 63
equivariant, 53, 117
Euler, 259
Navier–Stokes, 239
reaction-diffusion, 270

reduced, 34, 49
reversible, 54, 118
van der Pol, 120

water-wave
gravity-capillary, 259
three-dimensional, 264
two-dimensional, 261

wave
almost planar, 271
breather, 275
convection roll, 253, 256, 257
Couette flow, 244
exterior corner, 271, 274
front, 278
helicoidal, 248
hexagon, 257
hexagonal convection cell, 256
hole, 271, 275
in lattices, 275
interior corner, 271, 274
modulated, 274
patchwork quilt, 257
planar, 271
regular triangle, 257
ribbon, 248
roll, 257
rotating, 24, 129, 133
solitary, 263, 275, 278
spiral, 248
standing, 133, 248
step, 271, 274
Taylor vortex flow, 247
traveling, 258
twisted vortex, 248
water-, 259
wavy inflow boundary, 248
wavy outflow boundary, 248
wavy vortex, 248
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