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Preface

This is now, at last, the second volume of my ”Lectures on Algebraic Geometry”. When
working on this second volume, I always had a saying by Peter Gabriel on my mind:

”Der Weg zur Holle ist mit zweiten Bénden gepflastert!”

(The path to hell is paved with (never written?) second volumes.) Very often I felt like
Sisyphos in Homer’s Oddyssea. Sisyphos tries to push a rock over the ridge and just
before he reaches top the rock rolls down again. Only at this very moment, when I am
writing this preface, I am gaining some confidence that this second volume finally may
come to life.

It is still valid what I said in the preface to the first volume, I plan to write a book on
Cohomology of arithmetic groups. Actually there exists a very preliminary version
of this ”"Volume III” on my home page at the Bonn university. The present book is also
meant to provide background for ” VolumellI”.

”Volume IIT” will be different in nature, we do not give an introduction into a field which
is well established and already treated in other text books. It will rather be a description
of a research area which is still developing, it will contain some new results, and it will
put old results into a new perspective. I will formulate open questions and formulate
problems, which are important on one hand but which are also tractable.

The first group of fundamental results in this book is proved in Chapter 8 when I discuss
the finiteness results for the cohomology of coherent sheaves and the semi-continuity
theorems. Here I use the theorems on sheaf cohomology which are proved in the first
volume. I put a lot of emphasis on the relevance of the semi-continuity theorems for the
construction of moduli spaces.

Moduli spaces are a central theme in this book. We discuss the moduli space of elliptic
curves which are equipped in a nowhere vanishing differential form in Chapter 9. This
moduli space and its generalization to moduli of abelian varieties will play a prominent
role in ” VolumelII”. On the other hand the representability of the modified Picard functor
for curves ( Chap. 10 ) is one of the main (and most difficult) results in this book.

At several places I give informal outlooks into further developments. In the last part of
Chapter 9 I discuss the general version of the Grothendieck-Riemann-Roch theorem. Here
I have to ask the reader to accept some concepts and results, for instance the existence of
the Chow-ring, the theory of Chern classes and finally the Grothendieck-Riemann-Roch
theorem itself.

The final goal of this book is to bring the reader to the foothills of the mountain range of
étale cohomology. I give the definition of étale cohomology groups and ”compute” these
cohomology groups for curves. These first basic results on étale cohomology depend on the
results proved in 10.2 and 10.3. Once we have some acquaintance with étale cohomology
we can look to the giant peaks in the distance, for example the Weil conjectures and the
modularity of elliptic curves. But we also see some peaks that so far nobody climbed, so
for instance the Hodge and the Tate conjectures. We can define the L-functions attached
to the cohomology of smooth projective algebraic varieties or even motives over number
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fields. Then can formulate certain aspects of the Langlands program, these things will be
discussed in ”Volume III”. There are excellent books which guide the reader into étale
cohomology . (See [Del], [Mi], [F-K] [K-W].)

Again I want to thank my former student Dr. J. Schlippe, who went through this
manuscript many times and found many misprint and suggested many improvements.
I also thank J. Putzka who ”translated” the original Plain-Tex file into Latex and made
it consistent with the demands of the publisher. But he also made many substantial sug-
gestions concerning the exposition and corrected some errors.

Giinter Harder Bonn, February 2011
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Introduction

This second volume starts where the first volume ends. In the first volume we did a lot
of topology and also some analysis, in the last chapter we introduced compact Riemann
surfaces. These are by definition compact complex manifolds of dimension one. But finally
it turned out that they can be understood as purely algebraic objects; this is discussed in
Vol. I, 5.1.7. In 5.1.14 we attach a locally ringed space to such a surface, and this locally
ringed space is a scheme. This process of algebraization of analytic objects is continued
in Vol. I, 5.3.

Hence we develop the language schemes in the first chapter of the second volume, and
consequently this is Chapter 6 of the series. We discuss the basic abstract notions in the
theory of schemes. Here the exposition has a higher level of abstractness and generality.
In this chapter we also discuss the very abstract notions of descend. These notions play
an important role in the last chapter. The reader may skip this part in first reading.
Chapter 7 is an introduction to commutative algebra and its implications in geometry.
Here we are not very systematic and do not discuss all aspects in full generality. We only
discuss very basic notions, we prove some of the easier theorems, and for the more difficult
theorems we refer to the literature. As a byproduct the reader gets an introduction
to algebraic number theory. We prove some of the fundamental theorems in algebraic
number theory and formulate Dirichlet’s theorem on units, the finiteness of the class
number, and the unramified case of Artin’s reciprocity law.

Chapter 8 is an introduction into projective algebraic geometry. After explaining the basic
notions, we treat the fundamental finiteness theorems for the cohomology of coherent
sheaves. After that we discuss the semi-continuity theorems, which fundamental in the
construction of moduli spaces.

In the first part of Chapter 9 we consider projective curves, these are smooth projective
varieties of dimension one. The first theme is the theorem of Riemann-Roch, here we
emphasize that the theorem of Riemann-Roch, as it is usually stated, and Serre-duality
should be considered as a unity. In my view these two theorems together should be called
the Riemann-Roch theorem for curves. Our approach is different from the usual one, for
our treatment is very close to the approach in the paper of Dedekind-Weber [De-We].
We then proceed and discuss some applications of the Riemann-Roch theorem. One of
these applications concerns moduli problems. We show how the results on semi-continuity
provide a tool to construct moduli spaces (elliptic curves together with a non vanishing
differential, thm. 9.6.2). But after that we make some efforts to discuss the subtleties
behind the notion of moduli spaces if the objects, which we want to classify, have au-
tomorphisms. This leads to the distinction between fine and coarse moduli spaces. The
discussion also makes it clear that we can not hope for a moduli space of elliptic curves
(or of curves of genus ¢). It is possible to define a more general class of objects, these are
the so called stacks. It has been proved by Deligne and Mumford that the moduli stack
of curves of genus ¢ exists.

Finally we discuss the general Riemann-Roch theorem of Grothendieck. Here we can not
prove everything, we have to accept the existence of the Chow ring, the theory of Chern
classes and the isomorphism between two different definitions of K-groups. We formulate
the general Grothendieck- Riemann-Roch theorem (GRR).
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We also discuss and prove a special of GRR for products of curves over fields. Here we
hope that the reader gets a glimpse of the proof of the general GRR. We use this version
of GRR to prove the Hodge-index theorem for this special case.

In the last section of this Chapter we discuss curves over finite fields. In the beginning
this looks rather innocent, but in my view it is a first culmination point in this book. We
explain the relationship between the Riemann-Roch theorem and the Zeta-function of the
curve. If we take the analogy between number fields and function fields into account, then
the Zeta-function can be defined in terms of the function field. If we we look closer into
this analogy-here we recommend strongly to read Neukirch’s exposition in [Neu], Chapter
VII. Then we see that the Riemann-Roch theorem (in the above sense) is essentially the
Poisson summation formula and that this formula is the the basic reason for the functional
equation of the Zeta-function.

But we go one step further and we give a proof of the analogue of the Riemann hypoth-
esis, which in the realm of algebraic geometry is called the ”Weil conjecture”. Here we
reproduce the arguments of Mattuck-Tate in [Ma-Ta] and of Grothendieck in [Gr-RH]
and we show how the Riemann hypothesis follows from the Hodge index theorem applied
to the product of the curve by itself.

In the last Chapter we discuss the the Picard functor on curves, in other words we
investigate line bundles, or better the totality of line bundles on a given curve C'/k. The
first theorem is the the representability of some slightly modified Picard functors. This
is a hard piece of work.

We prove that Pic, /i 1s an abelian variety defined over k, this means it is a connected
projective variety together with the structure of a commutative group scheme. It is called
the Jacobian of the curve.

Starting from there we develop the theory of abelian varieties, and we study the Pi-
card scheme of abelian varieties, we investigate their endomorphism rings and the ¢-adic
representation. This exposition overlaps with the book [Mul], but we start from the Ja-
cobians as prototypes of abelian varieties, whereas Mumford stubbornly avoids to speak
of Jacobians.

Finally we give an outlook to the étale cohomology of schemes. We explain the concepts
and formulate some of the basic theorems. Especially we formulate Deligne’s theorem,
i.e. we give the formulation of the Weil conjectures for smooth projective varieties. We
prove this theorem (in a certain sense) for abelian varieties and for curves.

We conclude by discussing a degenerating family of elliptic curves. The purpose of this
example is twofold. Firstly: Understanding such degenerations is important for the com-
pactification of moduli spaces (stacks) of curves or abelian varieties. We describe in this
special case how the theory of © -functions can be used to analyze elliptic curves in
the neighborhood of their locus of degeneration, and write down explicit equations. This
gives us a tool to compactify the moduli space. For the general case of abelian varieties
we refer to [Fa-Ch].

Secondly we use this example to illustrate the final step in Deligne’s proof of the Weil con-
jecture. This gives me the opportunity to finish this book with an exceptionally beautiful
proof.






6  Basic Concepts of the Theory of
Schemes

6.1 Affine Schemes

We consider commutative rings A,B, ... with identity (14,1p5,...), homomorphisms ¢ :
A — B are always assumed to send the identity of A into the identity of B. We always
assume that the identity in a ring is different from zero. A ring A is called integral if it
does not have zero divisors.

For any such ring A we have the group of invertible elements (units):

Definition 6.1.1. The group of invertible elements (units) of a commutative ring
with identity is defined by A* = {a € A |3 a’ € A such that aa’ = 14}. An Element in
A* is called unit.

Definition 6.1.2. A proper ideal a C A is an ideal with 14 & a, prime ideals are
always proper.

For any ring and any f € A we use the standard notation (f) for the principal ideal Af.
If we have a homomorphism ¢ : A — B, then we will say that B is an A-algebra .

6.1.1 Localization

If we have a subset S C A, which is closed under multiplication and contains the identity
14 € S, we can define a quotient ring Ag and a map ¢g : A — Ag such that the
elements of S become invertible.

To do this we consider pairs (a,s) € A x S and introduce an equivalence relation

(a,s) ~ (a’,s') <= T 5" € S such that (as’ —a’s)-s" =0. (6.1)

We consider the quotient Ag of A x S by this relation, let mg : A x S — Ag be the
projection to this quotient. We define a ring structure on Ag by

m5((a,9) + ms((d,s') = ms((as’ +a's,s5")) (6.2)

ms((a.9)) - ms((d,s")) = ws((aa’,ss)).
We have a homomorphism of rings

¢s: A— Ag
a— 7s((a,l)).

We will write the elements of Ag simply as

G. Harder, Lectures on Algebraic Geometry I1, DOI 10.1007/978-3-8348-8159-5 1,
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2 6 Basic Concepts of the Theory of Schemes

Of course
a as’ as's”
Sslsl/

Lemma 6.1.3. The quotient ring has a universal property: For any ring B we can
consider

HomRings, S to units(AaB) = {Qs A — B|¢(S) € B~ fO’f’ all s € S}

and this set of homomorphisms is equal to Homgings(As,B), where the identification is
given by the diagram

A 95 L4

N

If0 € S then Asg = {0}. If f € A then we write Ay = Aypn

}H:U,l,.. N

6.1.2 The Spectrum of a Ring

Definition 6.1.4. If A is a commutative ring with identity then we define the spectrum
of A as Spec(A) = {p| p prime ideal in A}.

Lemma 6.1.5. The spectrum of A is ordered. The ordering is given by the inclusion
among prime ideals. The spectrum is functorial in A, if we have a homomorphism ¢ :
A — B then it induces

¢ : Spec(B) — Spec(A)
"o(p) =07 () = {f | &(f) € p}
and t¢ respects the order relation.

Definition 6.1.6. A maximal ideal m C A is an ideal with 14 ¢ m and for any ideal
m withm Cm' C A we havem =m’ orm’ = A.

The spectrum Spec(A) always contains the set of maximal ideals. We have a different
characterization

Lemma 6.1.7. An ideal m C A with 14 ¢ m is mazimal if and only if A/m is a field.
Mazximal ideals are prime ideals.

This is clear. The set of maximal ideals is denoted by Specmax(A) C Spec(A).

Definition 6.1.8. A chain of proper ideals is a totally ordered subset & of the set of
proper ideals, this means that for any pair a,b € K we have a Cb or b C a.

Zorn’s lemma implies:



6.1 Affine Schemes 3

Proposition 6.1.9. If A is a commutative ring with 14 # 0, then

Specmax(A) # 0.

Proof: For any chain we can form (J ., a = a*, this is an ideal with 14 ¢ a* and a* D a
for all a € R. Hence we see that for any chain of proper ideals we can find a proper ideal
which contains all elements of the chain. Now it is simply the assertion of Zorn’s lemma
that this implies the existence of a (proper) maximal ideal. O

This has as a consequence: We call an element f € A nilpotent if there exists an integer
n such that f™ = 0. These elements form an ideal Rad (A4), which is called the radical.

Lemma 6.1.10. If f € A is not nilpotent, then Spec(Ay) # (. Hence we get

Rad (A) = Ideal of nilpotent elements = ﬂ p.
pESpec(A)

Definition 6.1.11. A commutative ring is called a reduced if it does not have non zero
nilpotent elements.

Definition 6.1.12. A commutative ring is called a local ring if it has a unique mazximal
prime ideal.

If p € Spec(A) then the complement S = A\ p is closed under multiplication. Then we
write (abuse of notation)

Aarp) =t Ap-
Definition 6.1.13. The ring A, is local and is called the local ring at p. The ideal
my={L|fepggp}.

is the unique mazimal ideal in this ring. The field k(p) = A,/my, is called the residue
field at p.

Lemma 6.1.14. If we consider any multiplicatively closed S C A and the localization
¢: A — Ag then t¢ is an inclusion. We get

‘¢ : Spec(Ag) = {p € Spec(A)[pNS = 0}.
If especially S = {f"}n—o.1... then
Spec(Af) = {p € Spec(A)|f & p}.
If p € Spec(A) then

Spec(Ap) = {q € Spec(A4) | q C p}.
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The proof is left to the reader.
Remark 1 (Heuristical remarks).

1. The spectrum of a ring is a geometric object. At this point it is simply an ordered
set, but soon we will put a topology onto this space (The Zariski topology). We
already spoke of maximal ideals. If our ring A is integral, then the zero ideal (0) is
also a prime ideal. It is the unique minimal element in Spec(A). This ideal (0) is
called the generic point of Spec(A).

2. Intuitively we want to consider A as a ring of functions on Spec(A). This is not
quite the case because these functions do not have a common domain of values. But
it makes sense to say that f € A ”vanishes” at p € Spec(A): By this we mean that

f € p. Sometimes we will write f(p) =0, (resp. f(p) # 0) for f € p (vesp.f & p).

Example 1. The ring Z and the polynomial ring k[ X]| are principal ideal domains. This
implies immediately that the maximal ideals are of the form p = (p) resp. p = (p(X))
where p is a prime number (resp. p(X) € k[X] is a non-constant irreducible polynomial).
Both rings contain one more prime ideal namely p = (0) because they are integral. Hence

Spec(Z) = (0) U{(2),(3),(5), ..}
Spec(k[X]) = (0) U {(X),(X — 1),...}.

Of course not all irreducible polynomials are linear, but we cannot write down any other
polynomial, which is irreducible regardless what the field k is.

Example 2. Let us assume that k is a field. We consider the polynomial ring A =
k[X1,Xo,...,.X,] in n variables. For any point P = (ay,az,...,a,) € k™ we gel an
evaluation homomorphism

¢p A —k
op i f = f(P),
whose kernel is the mazimal ideal mp = (X1 — a1,X2 — ag, ..., Xy, — ayn): If our field k

is algebraically closed then the Nullstellensatz of Hilbert (See 7.1.11 ) says that we get an
identification

Specmax (k[ X1,Xo,...,.X,]) = k™. (6.3)
In other words the maximal ideals are exactly the ideals of the form m = mp.
Exercise 1. Prove the Nullstellensatz in the case of a polynomial ring in one variable.

Exercise 2. Try to prove it in the case of a polynomial ring A = k[X,Y] in two variables.
Of course k is still algebraically closed.
We give a hint: Let m be a maximal ideal. It cannot be the zero ideal.

Step 1: Assume m contains an element of the form

FOLY) = Y™ 4+ g (X)Y™ 4. gn(X)

where the g; are polynomials in X. Now we get a diagram
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A —— S A/(F)=B

\/

The ring B contains the polynomial ring k[X] = By and over this ring it is generated
by an element y, which satisfies the relation y™ + g1 (X)y™ 1 +...gm(X) = 0. The
maximal ideal m C A has as its image a maximal ideal m in B.

Prove that m N k[X] is a maximal prime ideal! In this case it suffices to show it is
not zero. Hence By/m = k and since B/m is a finite extension of k it follows that
B/m=k.

Step 2: We know that m contains a non zero polynomial

FXY) =) a,,X"Y"

Write this as a polynomial in Y with coefficients polynomials in X. Now it will not
be the case in general that the highest power of Y occurring in the polynomial has
a constant coefficient as in Step 1. But if we make a substitution

X —X+Yym=Xx'
Y —Y

then k[X")Y] = k[X,Y] and for m >> 0 the new polynomial will satisfy the as-
sumption in step 1.

It is known that a polynomial ring k[X7, . ..,X,,] has unique factorization, we will discuss
this fact in the Chapter VIII on commutative algebra. (see exercise 19 and Theorem 7.1.5)
This implies that any non constant irreducible polynomial f € k[Xy,...,X,] defines a
prime ideal p = (f). Therefore the ring Spec(k[X,Y]) contains many more elements than
just (0) and the maximal ones: Any irreducible polynomial

p(X)Y)=X+YorX*+Y3o0r...

defines a prime ideal p = (p(X,Y)). If k is algebraically closed then the Nullstellensatz
allows us to identify p = (p(X,Y")) with

V(p) = {(ab) € k*|f(a,b) =0 for all f € p} (6.4)

this is the set of common zeroes of the elements in p or the set of zeroes of p(X,Y") and
also the set of maximal ideals containing p. Hence we get an injection into the power set
Spec(k[X,Y]) — P(Specmax(k[X,Y])) (6.5)

p— V(p). (6.6)

The maximal ideals correspond to the sets consisting of one element, the prime ideals
p = (p(X,Y)) give hypersurfaces and p = (0) gives us the entire plane.
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Example 3. Let k be arbitrary, we consider the A = k[X,Y]/(XY) = klz,y]. The
elements x,y satisfy vy = 0. Hence this ring has zero divisors.

A prime ideal p in A has to contain either x ory. On the other hand the principal ideals
p = (x) and q = (y) are prime because after dividing by them we get polynomial rings in
the other variable.

We see that

Spec(k[z,y]) = Spec(k[z]) U(o,0) Spec(k[y])

where the two spectra are identified at (x,y) = (0,0).
This is an example of a reducible spectrum. (See Def. 7.2.2)

6.1.3 The Zariski Topology on Spec(A)

We define a topology on the space X. To do so we have to define what open sets are. At
first we declare the sets of the form

X = Spec(dy) C X

open. We saw that X; was the set of prime ideals p, which do not contain f. In our
remark 1 we said that this means f does not vanish at p. Hence our topology has the
property that the sets, where a given f € A is not zero, i.e. does not vanish, are open
sets.

This system of sets is closed under finite intersection because

XpNooonNXy, =Xy g,

These open sets are called affine open sets the reason is that they are again equal to a
spectrum of a ring. This system of affine open sets forms a basis for the Zariski topology
and this means that a set U C X is open if and only if it is the union of the affine open
sets, which are contained in U.

A subset Y C X is closed if the complement X\Y is open. Of course this means that YV
is the set of common zeroes of a collection of elements in A. Clearly the set of f € A,
which vanish on Y form an ideal I(Y"). If in turn we have given an ideal I then we may
consider its set common zeroes V(I). Clearly we always have V(I(Z)) = Z but it is easy
to see in examples that we may have a proper inclusion I C I(V(Z)). (What is V({0})
and what is 7(X)?) The topological space X will be called the underlying space .

The Zariski topology is not Hausdorff in general. It has other strange properties one has
to get used to:

Exercise 3. If p € Spec(A) then the closure of the set {p} is given by
{p} = {a & Spec(4)[a > p}.
A point p € Spec(A) is closed if and only if p is maximal.

If q is in the closure of {p} then we say that q is a specialization of p.
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Example 4. In our rings 7 and k[X] the closed points are the principal ideals (p) resp.
(p(x)) where p is a prime (resp. p(x) is a non-constant irreducible polynomial). The
generic point (0) is dense in Spec(A) in both cases. The open sets are the complements
of finite sets of closed points and the empty set. Here it becomes quite clear that Spec(Z)
and Spec(k[X]) are not Hausdorff.

For an integral ring A the generic point (0) is always dense in the space Spec(A). Every
prime ideal p € Spec(A) is a specialization of the generic point.

General Remark: We have put some further structure onto the set Spec(A): Now it
is a topological space. But still this space does not yet contain a lot of information on
the original ring A. If for instance A is a field, then Spec(A) is a single point, which will
never be able to recover the field A.

This is different for finitely generated algebras A = k[z1,z2,...,2,] over an algebraically
closed field k. In the next section we will see that the Nullstellensatz (7.1.11) implies

(| m=Rad(A). (6.7)

meSpecmax(A)

If our k-algebra is reduced, i.e. if Rad(A) = 0, then this implies that we can view A
as an algebra of k-valued functions on Specmax(A4). Then we will see that Specmax(A)
contains a lot of information on A. (See following exercise.) This discussion is resumed in
the sections 6.2.6

Exercise 4. Let k be an algebraically closed field and let A = k[z1,x9,...,2,], B =
kly1,Y2, - - ,ym) be two finitely generated reduced k-algebras. Let ¢ : A — B be a ho-
momorphism, which is the identity on &k (a k-algebra homomorphism). Show that this
induces a map ¢* : Specmax(B) — Specmax(A). We assume in addition that A and B
do not contain nilpotent elements. Observe that ¢* is the restriction of ‘¢ to Specmax(B)
and hence it contains less information than *¢.

Prove:

(a) ¢* is injective if and only if ¢ is surjective.
(b) If ¢* is surjective, then ¢ is injective.

(c) The map ¢* determines ¢.

We return to the general discussion. The following property of the topological space
Spec(A) is very important and perhaps a little bit surprising at the first glance.

Proposition 6.1.15. The space X = Spec(A) is quasicompact, this means that for any
covering | J;c; Ui by open sets U; we can find a finite subcovering, i. e. we can find a finite
subset E C I such that X =J,;c Us.

Proof: The U; are open, hence we can cover each of them by open sets of the form
Xy, . Therefore it is clear that we may assume that the U; themselves are of this form
U; = Xy,. Now we consider the ideal generated by the f;, it consists of the finite linear
combinations
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a= {Zgiﬁ: | almost all g; = 0} .

icl

This cannot be a proper ideal because otherwise we could find a maximal ideal m con-
taining a (see Proposition 6.1.9). Then we have f;(m) = 0 for all ¢ € I and hence
m & J;c; Xy,- This implies that a = A and hence the identity 14 is in our ideal. We can
find a finite linear combination 14 = ZieE g:fi with E C [ finite. But then it is clear
that X = (J;cp X}, because if there would be a p not contained in this union then we
would have f;(p) = 0 for all i € E and hence 1,(p) = 0, which cannot be the case if our
ring is not the zero ring. But for this last ring the spectrum is empty so the claim is also
clear. O

Our next goal will be to put more structure on X = Spec(A). Since it is already a
topological space we have the notion of a sheaf on this space. We will construct the
sheaf of regular functions on Ox = Spec(A) and then (X,0x) will be a locally ringed
space.(See Vol I, 3.2.)

6.1.4 The Structure Sheaf on Spec(A)

We want to introduce the structure of a locally ringed space on X = Spec(A). This means
that we want to construct a sheaf of rings Aon X , which plays the role of the sheaf of
regular functions on X. It will turn out — but this will be a theorem — that the ring of
regular functions on the total space is again A.

We make the following Ansatz: If we have an open set Xy C X then the element 1/f € Ay
should be a regular function on the affine open set X7. Hence we define A(X ) =Ap If
we have h = gf then A, = (Ay), then the map

¢{g"}n:0.1,,.. : Af — Ay

gives us a restriction map E’(Xf) — E’(ng) = A'(X},) where Xy = Xj. This obvi-
ously satisfies the transitivity relation for presheaves this means that the restriction from

A'(Xy) to X4 and then composed with the restriction to Xy is equal to the restriction
from Xy to Xyg. We will denote the restriction map ¢gny, _,, Ay — Aj also by
F +— F | X}. Hence our A s something like a presheaf except that it is not yet defined
on all open set but only on the affine open sets of the form Xjy.

We now have a proposition, which says that A’ satisfies axioms (Sh1), (Sh2) in Vol. I,
Definition 3.1.2 provided we restrict them to these special open sets.

Proposition 6.1.16. If we have an arbitrary covering X = J,.; Xy, then the sequence

i€l
Y pO Y .___ﬂ___} 1’4’/ X
A=A(X) ? HieIA (Xf'i)T)- H(i,j)elxl ( fifj)
2
is exact, this means that the first arrow is injective and its image is exactly the set of

elements, which become equal under p1 and ps.

This proposition is really central.
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Since our space is quasicompact, we can find a finite subset £ C I such that already
X = Uecp X5, = X. We assume that we proved exactness for this finite covering. We
want to show that then we have exactness for the original covering. We get a map from
the diagram above to the corresponding diagram for our finite covering:

P
= Po ~ : ~
A'(X) > Hie[ A/(Xfi)--———i)————-—)- H(i,j)ejxl A/(sz‘fj)

| | |
~ p(])f = -—-———————-——)—plE [
AX)— > [Liee A (Xfi)—E> i jyerxm A (Xfig,)-
V)
The injectivity of the first arrow is quite obvious, because the arrow p§ for the second
diagram is the composite of the py for the first diagram and the projection from the
product over [ to the product over E. Now let us take an element (... ,%, ... )ier in the

first diagram with

(e ) ().

If we project it to the second diagram then the image is also equalized by the correspon-
ding two arrows. Hence by our assumption it comes from an element g € A, this means
that the image of g in Ay, is equal to g;/f;]"" for all i € E. We have to show that this
implies that g actually maps to (...,g:/f;",...);c; - Hence we have show that g maps to
gi/[{"for all i € I. Let us pick an ¢ € I. We know that

Xp=U&nnxn) = Xp.p.

ecE ecE
But then we have
Xir = (91X ) Xpp = 2| x, . = T |x
91 Xpr. = @IXe )N Xp = 2z | Xper = 2o | Xrors
fe fi

for all e € E. Now we need a little remark. The open set X, is again the spectrum of a
ring. Hence everything we proved for X is also valid for X,. Especially we can assume
that Ay, — [[.cp Ay, s, is injective. We have seen that g | Xy, ;. = gi/f"" | Xy, 5, for all
e € E hence we conclude g | Xy, = g;/f" | Xy, for all i € I. Hence the reduction to
the case of a finite covering is complete and therefore, we assume the the index set I is
finite.

If the homomorphism pg is not injective then we have have an element f € A and
f1 Xy, =0forall i € I. This means that we can find exponents n; so that ff"* =0 in
the ring A. Since [ is finite we can assume that all these exponents are equal to a fixed
integer n.

In the proof for the quasicompactness of X we have seen that we can find g; € A such

that
Z gifi=1.

Raising this to a suitable high power N we get a relation
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ZGifin =1

and hence f = f1 =), ; G;f{' f = 0 and proves injectivity.
Now let us assume we have an element (...,g:;/f",...),c,, for which

gi

F Xfivfja

gi
anfj = TTL
J

for all pairs (7,j) € I x I. Again we may assume that all n; are equal. Then the equality
means that we can find an integer N so that

(9:f] — 9 SV (Fif)Y =

We are searching an element g € A, which satisfies g | Xy, =

certainly true if f'g = g; for all 7 € I. But again we can find H, € A for v € I such that
S gy =1
vel

and we see that g = H, g, solves our problem. O

vel

Still we have not yet defined our sheaf A. For an arbitrary open set U C X we choose a
covering U = | J;.; Xy, and define as in Vol. T 3.1.3

el
p1
HAfi : H Afifj [pl :p2]' (68)
iel P2 (i,5)elIxI

We have to verify that this does not depend on the covering and really defines a sheaf.
We will not do this in detail, the proof is a little bit tedious. To prove the independence
of the covering we first pass to a refinement of the covering: We have 7: J — I and

Xp= U Xpn (6.9)
ver—1(i)
We put h, = fih, (the index v determines the index i) and X = Uves X7,
We get a diagram
ZI(U) > Hie] Afi N H(i,j)elxl Afz‘fj (6~10)

;{J(U) —_— H}/GJ AE,,—)- H(V«,H)GJXJ ATLVTLM.

In the two horizontal diagrams A;(U),A;(U) are the subrings where the two horizontal
arrows take the same value. If we apply the Proposition 6.1.16 to the vertical arrows,
then we get an isomorphism between A;(U) and A;(U). So we see that a refinement of
a covering gives the same result for A. Then we may compare two coverings by passing
to a common refinement.
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The fact that U — E(U ) is actually a sheaf can be derived by similar arguments as those
used in the sheafification process. The intuitive meaning of A(U) is clear: These are the
reqular functions on U and these are ”functions”, which can locally be written in the

form fgﬁi in such a way that 97?,1, ng"] match on the intersection of their domains of

Ji Ji j

definition , which of course is Xy, ..

Our proposition 6.1.16 implies that A(X 1) = Ay, and this means that a "regular func-
tion” on affine open sets Xy, has always a kind of "global” description, which uses only
denominators of the form f/'*. Especially we have E(X )= A.

The sheaf A on Spec(A) is a sheaf of local rings on Spec(A) and (Spec(A),A) is the
affine scheme attached to A, it is a locally ringed space in the sense of Vol. I, 3.2.
Later we will suppress the second entry and we will simple write Spec(A) for this scheme.
Hence the notation Spec(A) may become a little bit ambiguous because it may denote
the locally ringed space or the topological space. It will be clear from the context what
is meant.

6.1.5 Quasicoherent Sheaves

Our considerations can be generalized. If we have an A-module M a set S C A, which is
closed under multiplication and contains 14, then we define

Mg = {(m,s) |m e M,s € S}/ ~ (6.11)
where the equivalence relation is
(m,s) ~ (m',s') < 35" €S such that (ms —m's)s” =0.

It is quite clear that this defines an Ag-module Mg. Now we can construct a sheaf M of
A-modules just by defining

M(Xy) = My

then verifying the proposition — just replace A by M everywhere — and then we put

—~ —
M(U) = ]‘_[]\41%_> H Mfifj [p1 = pa]. (6.12)
el (i,4)eIxI

The stalk of the sheaf A at a point p is the local ring A, the stalk of M in p is the
Ap-module My, = M4\p)-

It can happen that the stalk M, vanishes in some points. This is so if for any m € M we
can find an s € A\p such that sm = 0.

Definition 6.1.17. The module M defines an ideal
Am(M) ={f € A|fM = 0}.

The ideal Ann(M) is called annulator ideal.
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It is clear that M, # 0 is equivalent to p O Ann(M). The set of these p is called the
support of M and is a closed subset in Spec(A).
We will say that M is the sheaf obtained from M.

It is not so that any sheaf M of A-modules is automatically of the form M with some
A-module M. On Spec(Z,)) we have the sheaf

M{(0)}) =Q
M(Spec(Z,y)) =0

which is not of this form.

Definition 6.1.18. The sheaves M, which are obtained from an A-module M, are called
the quasi-coherent sheaves on Spec(A). We can recover the A-module from the sheaf

since M = M(X).

It is clear that a sequence 0 — Ml — M — Mg — 0 is exact if an only if if the
sequence of modules 0 — M; — M — M3 — 0 is exact. (Later we will solve an
exercise 9 where we show that localization is an exact functor and this has our assertion
as a consequence.)

We get quasi-coherent sheaves of ideals on X = Spec(A) by starting from an ideal I C A,
this is an A-module and the sheaf

ICA

is a quasi-coherent sheaf of ideals.

6.1.6 Schemes as Locally Ringed Spaces

In Vol 1. 3.2 we introduced the notion of a locally ringed space.

Definition 6.1.19. An affine scheme is a locally ringed space of the form (X,0x) =
(Spec(A),A).

I recall the definition of a morphism between two locally ringed spaces. A morphism is a
pair

(f:h) 1 (X,0x) — (Y.Oy)
where f is a continuous map from X to Y and h is a map of sheaves of rings
h: f*(Oy) — Ox,
which induces local homomorphisms

hz : Oydc(m) = f*((’)y)l e OX,r (613)

on the stalks. This means that the maximal ideal of Oy () is mapped into the maximal
ideal of Ox ;. We call f the spacial component of the morphism.

The locally ringed spaces form a category we have an obvious way of composing two
morphisms.
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Remark 2 (Heuristical remark). The difficulty is as always that the sections of the
sheaves are not actual functions, they are elements in very abstract rings. In our previous
examples (Coo-manifolds, complex manifolds (see Vol. I,3.2)) a continous map f: X —
Y between the spaces gave us a map hg from the sheaves of continuous functions on Y to
the continuous functions on X. Then we made requirements that this map should respect
certain distinguished subsheaves of functions, which define a so and so structure on X
and Y. If this was the case, we called f a so and so map. The map hg was determined by
f in such a case. Especially it is clear in these examples that a germ f at a point y € Y
with f(y) = 0 is mapped by hg to a germ at x € f~!(y), which vanishes at z. This means
that hg is automatically local.

Here the situation is different, the map is h : f*(Oy) — Ox is an extra datum. But
something is left from the notion of functions: We know what it means that a section
f € Ox(U) vanishes in a point z € U (see remark 1.2 on p. 4).

Now the requirement that h induces local homomorphisms in the stalks becomes clear:
A germ in Oy ¢(;), which vanishes in f(x) must be sent by h to a germ in Ox ., which
vanishes at x. The reader should observe that a germ in Oy, ¢(;), which does not vanish
at f(x), is a unit and hence it goes automatically to a germ in Ox ., which does not
vanish in z.

The following theorem is fundamental.

Theorem 6.1.20. Let (X,0x) = (Spec(A),4) and (Y,0y) = (Spec(B),B) be affine
schemes. A morphism

(f7h) : (X,Ox) - (KOY)
defines a map hx : Oy (Y) — Ox(X) i.e. a homomorphism hx : B — A. The map

Hom X,0x),(Y,0y)) — Hompings(B,A)

affine schemes ((
given by (f,h) — hx is a bijection.
We start by constructing a map in the other direction and then we show that the maps
are inverse to each other.
Given ¢ : B — A we have defined a map ‘¢ : Spec(A) — Spec(B) by té(p) = ¢~ 1(p). If
we have an element b € B we get an open set Y, = {q|b € q} in Y and it is clear that
0TI (Y) = Xy

Hence our map is continuous and we get maps

¢y : Oy (Ys) = By — [u(Ox) (V) = Ox(Xp0)) = Agr)
which by the adjointness formula is nothing else than a map

¢: f*(Oy) — Ox

and hence we constructed a morphism (t¢,$) between locally ringed spaces.
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We have to show that these maps are inverse to each other. At first we start from
¢: B — A, we get (*¢,¢). From this we construct again a homomorphism from B — A.
According to our rules we have to evaluate 5 on the pair X,Y and get ax B — A,
which is our original map.

Now we start from (f,h). The map h can be evaluated on XY and this gives us hx :
B — A. We have to prove at first that the map ‘hx : X — Y is equal to f. We have
thy(p) = hy'(p) = a.

Since we know that h induces a morphism between the sheaves we get a diagram

h

} }

By T*f‘l;r
p

This implies that hx has to map elements b € B\ f(p) to elements hx (b) € A\p because
b becomes invertible in B,y and hence hy has to map it to a unit in A,. This implies

B\f(p) C B\hx'(p)

and hence h;(l(p) C f(p). We also know that h, maps the maximal ideal m,) into the
maximal ideal m,. Hence it maps the elements of f(p) into p and this implies f(p) C
hx*(p) and we have the desired equality for f(p) = hy'(p) = ‘hx(p).

The rest is clear, the map h x, which we construct from hx is obviously equal to A since
these two coincide on the global sections. O

Closed Subschemes

We start from an ideal I C A. We have the projection map 7 : A — A/I and we have
Spec(A/I)={p|pDI}=V().Ifi:V(I)— Spec(A) is the inclusion then we consider
the map

(i,7) : (V(1),A/T)) — (Spec(A),A) (6.14)
as a closed subscheme of (Spec(A),A).

If the ideal is genecrated by elements {f;}icp then we write I = (....fi,....f5,...).

Consequently principal ideals are written as (f). The underlying space of (V' (I),A/I)) is
the set of points where all the f; vanish.

If we have an open subset X; = Spec(Ay) C X = Spec(A4) and if we have a closed
subscheme V' C Xy, which is defined by an ideal J C Ay then the closure Y of V' in
X is the subscheme defined by the ideal I C A which is the inverse image of J, i.e. it
consists of all h € A, which map under ¢¢» into J. (See 6.1.1)
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Sections

If have an A-algebra B, in other words a morphism 7 : X = Spec(B) — Y = Spec(A4)
then we define the set of sections to 7 , this is the set of morphisms s : ¥ — X, for
which mos = Idy . We denote this set of sections by X (Y").(This is of course a categorical
notion.) In this special situation a section is nothing else than a A— homomorphism
from ¢ : B — A. The subscheme of Spec(B) defined by the kernel of ¢ is canonically
isomorphic to Y = Spec(A4).

If we have an open subset Yy = Spec(Af) C Y, then the inverse image Xy under 7 is an
open subscheme of X and we can consider the sheaf of sections X (Y}). Now it is clear
that we can formulate a proposition 6.1.16 for this functor Yy — X (Y}) :

If we have a covering Y = J,cp Yy, then we get an evact sequence (See Vol. 1.5.1.8)

Po .
X(Y)——1liep X(¥y,) -9 H(i,j)eExE(X(Yfifj))
p
In other words it is a sheaf if we restrict it to the open sets of the form Y.
This is of course an immediate consequence of prop. 6.1.16

A remark

1 At this point the reader might wonder: We made a lot of effort to show that something
seemingly simple, namely the category of commutative rings with identity, is anti
equivalent to a certain category of locally ringed spaces. This category consists of
rather complicated objects and the morphisms are also not so easy to define.

The reason why we do this will become clear: These concepts allow us to glue affine
schemes together so that we can build larger objects, namely schemes. Locally these
schemes look like affine schemes but globally they look different. In other words we
embed the category of affine schemes into a larger category. In many respects this
larger category contains new objects, which have better properties than the affine
schemes. For instance we have a certain notion of compactness, which then is the
source for finiteness theorems. (See section 8.3)

2 Finally we notice that we have to live with the following fact: Our theorem says that
the homomorphism hx between the rings determines the morphism between the
affine schemes. But the map between the underlying spaces does not determine the
morphism between the schemes. Especially we can have that the map between the
spaces is a (topological) isomorphism but the morphism between the schemes is
not.

If for instance L — K is a homomorphism between to fields, then we have that
Spec(K), Spec(L) are plainly single points and the map between them has no chance
to be anything else than a bijection. A second example is given by the following
situation. We consider a field k and its ring of dual numbers over it, this is the ring
k[e] = k[X]/(X?). We have the inclusion k < k[e] but again the underlying spaces
are single points.

In a certain sense these to examples are typical for this fact, which is seemingly a
pathology.
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6.2 Schemes

6.2.1 The Definition of a Scheme

Definition 6.2.1. A scheme is a locally ringed space (X,0x), which is locally isomor-
phic to an affine scheme. In other words we can find o covering X =], U, by open sets

such that (U,,Ox | U,) is affine.

This implies of course that (U,,0x | U,) = (Spec(Al,)7gl,) where 4, = Ox(U,) is the
ring of regular functions on U,. But in contrast to the case of affine schemes the ring of
regular functions on X may be to small too contain enough information to recover the
scheme (X,0x). This will be demonstrated in the Chapter 8 on projective schemes.
Very often we will suppress the second entry Ox in the notation, i.e. if we say that X is
a scheme then X is not only the underlying space, the sheaf Ox is also given to us.

Example 5. Let us consider the polynomial ring A = k[f,g], let X = Spec(A). We
remove the point (0,0) from X, the resulting space U inherits a topology and the structure
of a locally ringed space. It is clearly a scheme since we may cover it by

U:XfUXg.

But it is easy to see that U is not an affine scheme. It is obvious that any element
h € Oy(U) extends to an element in A, i.e. Oy(U) = A but U # Spec(A).

In the theory of holomorphic functions in several variables this phemomenon is known
as Lemma of Hartogs: If n > 1 then a holomorphic function on C™\ {0} extends to a
holomorphic function on C".

This example shows that any open subset of an affine scheme is a scheme but not an
affine scheme in general.

If X is a scheme and if A = Ox(X) is the ring of global sections, it certainly has
an identity element different from zero. Then every point x € X yields a prime ideal
pr C A, we get a map between the underlying sets i : X — Spec(A4) and this is the
spacial component of a morphism- also called 4 - from X to Spec(A). It is clear that X
is affine if and only if this morphism is an isomorphism.

The gluing

Let assume we have a family (U, = Spec(A,)),er of affine schemes. Let us also assume
that for any pair of indices (v,u) € E x E we have an open subset U, ,, C U,, these U,
are schemes and they have their structure sheaves Oy, ,. Furthermore we assume that
for any pair (v,u) we have isomorphisms of schemes Suvp Uy = v,u Where ¢, ,, is
always the identity. Finally we assume that for any triple (v,u,x) the morphism ¢,, ,, sends
Uy, NU,, to the subscheme U, , NU,, ., and that these morphisms yield a commutative

diagram of isomorphisms

U,,NU, g ——>U,,NU,

NS

Ui NUg
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Then we can form the disjoint union of underlying sets | | U, and introduce the

equivalence relation

veE

r~yifeel,yeU, and ¢, ,(x) =y.

We divide this disjoint union by the equivalence relation. On the quotient set X the
structure sheaves O, introduce the structure of a locally ringed space and hence we
get a scheme (X,0x). We say that this scheme is obtained by gluing from the data
(le = SpeC(Au))l/eEaUu,u7¢u7u)-

We will see this kind of construction in a very concrete case when we construct the
projective space in 8.1.1.

Another very simple situation where we can apply this construction is the case of the affine
space A% = S[Xy,...,X,] : We start from a scheme S and cover it by affine schemes U], =
Spec(A,). For any of these affine we consider the scheme U, = Spec(A,[X1,...,X,]).
We define U,,,, = U,, = U, NU, and choose for the ¢, , the identity. Then we get
gluing data and the resulting scheme is A% = S[Xy,...,X,]. We can give the scheme
an additional structure. If we are over one of our affine subsets U] = Spec(4,) then the
set of sections is simply the set of A,-homomorphism from A,[Xq,...,X,] to A, and
this is equal to A]l. Hence we can put the structure of a free A,- module on this set the
addition and scalar multiplication are defined componentwise. Clearly this also allows us
to put the structure of a sheaf of Og-modules on the sheaf of sections. (See the section
on vector bundles further down.)

Again we have the notion of a quasi-coherent Ox-module.

Definition 6.2.2. A quasi-coherent Ox-module M is a Ox-module such that for all
open subsets U the sections M(U) form an Ox (U)—module and for affine open subsets
U the restriction M | U is obtained from the Ox (U) module M(U) (see 6.1.18).

Closed subschemes again

At his point it is rather clear what a closed subscheme of a general scheme is. We
know how to define a quasi-coherent sheaf of ideals Z C Ox: It is a sheaf of ideals, i.e. for
any open subset U C X the sections Z(U) C Ox(U) form an ideal in Ox (U) and for an
affine U the restriction Z | U is the sheaf associated to Z(U). On this open affine subset
U we have the closed subscheme ((V(Z(U)),(A(U)/Z(U)),(A(U)/Z(U))) — (U AU)).
We define V(Z) to be the union of all these subsets (V(Z(U)),(A(U)/Z(U))) and a quo-
tient sheaf Ox /Z by its restriction to the affine pieces. This yields the closed subscheme
(V(1),0x/1) — (X,0x).

Given a closed subset Y C X we consider its open complement U C X, then U has an
obvious structure of an open subscheme. We simply take the restriction of the structure
sheaf to U. (See also Vol. I, 3.4.2) The analogous process is not so simple if we want to
do the same thing with Y. To give a the structure of a closed sub scheme to Y we have
to define the structure sheaf on it. But in general the sheaf of ideals defining Y is not
unique. The only way is to choose the ideal I(Y") of all functions that vanish on Y, i.e.
for any open set V' C Y, which is of the form V = U NY with U open in X we define
I;(V) ={f € Ox(U)|f(y) = 0 for all y € V}. We take the limit over all such subsets
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U, and get a presheaf V' — I'(V). The sheafification of this presheaf is our sheaf I(Y)
and this defines the structure of a reduced scheme on Y. The subset Y together with this
structure sheaf on it is the scheme Yioq C X.

Annihilators, supports and intersections

If M is quasi coherent Ox -module sheaf then we can consider the annihilator Ann(M) C
Ox. It is a sheaf of ideals and its local sections f € Ann(M)(U) are those elements,
which satisfy fM(U) = 0. Then M is a sheaf of Ox/Ann(M) modules. The support
Supp(M) of M is the subscheme Y = Spec(Ox/ Ann(M)) but M is not necessarily a
sheaf over Yieq.

If for any open affine subscheme U C X the Ox (U)—module M(U) is finitely generated
then we can easily see

p D Ann(M) <= p € Supp(M) <= M, # (0) (6.15)

If we have two subschemes Y;,Ys C X, which are given by ideals 71,75 C Ox, then we
define the intersection Y; NY, to be the subscheme defined by the ideal (Z1,Z5), which
is the ideal generated by Z7,7,.

If U C X is an open sub scheme and if V' C U is a closed subscheme then it is clear what
the closure Y of V in X is: We cover U by affines and apply the construction from p. 14

6.2.2 Functorial properties

We know what a morphism f : X — Y between schemes is. If M is a quasi coherent
sheaf on X, then it is clear that f,(M) is a quasi-coherent sheaf on Y. But if N is a quasi
coherent sheaf on Y then f*(A\) is not necessarily quasi-coherent on X, simply because
we do not have the Ox-module structure on it. Therefore we define the inverse image of
a quasi coherent sheaf as

fc?coh(N) = f*(N) X Oy ,h Ox.

If for instance V' C Y is an open affine subset and if U C X is open affine and if
f : U — V, then the morphism f gives us a homomorphism h : Oy (V) — Ox (U). If
now N restricted to V' is obtained from a Oy (V) - module N, then fr_, (N) is obtained
from N ®o, (vy,n Ox(U). (See 6.1.18). If i : U — X is an open embedding and if M is
quasi-coherent on X then we have of course i*(M) = i}, (M)

We change the notation. If we work with quasi coherent sheaves, then the sheaf theoretic
inverse image does not play such a role, therefore, from now on f*(N') will be the quasi
coherent inverse image of the quasi coherent sheaf \.

We have to pay a price: The functor N' — f*(N) is not exact anymore because the
tensor product is not an exact functor. This does not apply to the case of an open
embedding i : U < X, in this case the (modified) functor i* is exact on quasi-coherent
sheaves.

If we have a quasi-coherent sheaf M on X and if x € X is a point, then we get an
inclusion of schemes i, : Spec(k(z)) — X and (i, )*(M) is a k(z) -vector space, it is the
evaluation of M at x. More generally we may consider a closed subscheme i : Y — X.
Then we call i*(M) the evaluation of M at Y.
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Affine morphisms

It is rather clear what an affine morphism f: X — Y is. This is a morphism for which
we can find a covering Y = | J,; V; by open affine sub schemes such that f~ Yv;) = Uy is
affine for all 7. In this case we also say that X is affine over Y, this does not imply that
X is affine. But it is not difficult to see that X is affine if Y is affine. (See proof of Prop.
8.1.16).

Sections again

Let f : X — Y be a morphism of schemes. For any open subset V' C Y we have the
open subscheme f~1(V) = Xy of X and the restriction f : Xy, — V. We can attach to
any open subset V C Y the set of sections X (V') from V to Xy, this gives us a presheaf
V — Y(V) and in fact we have

Proposition 6.2.3. For any morphism of schemes f : X — Y the functor V.— X (V)
from open subsets to sets is a sheaf.

This is rather clear. A morphism of schemes has two components, the map between
the underlying sets and then an morphism between the structure sheaves. For the first
component it is obvious that they satisfy the two conditions (Sh1),(Sh2) (See Vol. 1.3.1.3).
For the second component we have a local problem, we can easily reduce to the affine
case and there we apply prop. 6.1.16.

The construction of the functor V. — Xy is a special case of the fibered product, which
will be discussed in section 6.2.5, later on we will denote this construction by X xy V.

6.2.3 Construction of Quasi-coherent Sheaves

We have an important way of constructing quasi-coherent O x —modules on X. Let us
assume we have a covering 4 = {U,},en of a scheme (X,0x) by affine subschemes.
Let us also assume that we have given an Ox(U,)—module M, for all v € N. Each of

them defines a quasi-coherent sheaf M, on the corresponding subscheme U,. Now let us
assume that for any pair (v,u) of indices we have an isomorphism

Gop: M, |U,NU, = M, |U,NU, (6.16)
such that this system of isomorphism satisfies
1. g, = 1d for all v
2. gu,u © gu, = 1d for all pairs v,p
3. and for any three indices v,p,A we have the relation g,,, 09,1 = gu,» on U,NU,NU.

Then we can construct a sheaf M = (M, M,g, ) on X by the glueing process: For an
open set V C X, which is contained in at least one of the U, we define M (V) to be the
set of vectors m = (...,my,...,my,. ) where the indices run over the subset of indices
A, for which Uy DV, Where the m,, € M, (V) and where
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Gv,u(my) = my, for all pairs v,pu. (6.17)

Of course any of the components determines all the others. Then for an arbitrary V we
may cover it by the V. NU, and define M (V') by the conditions (SH1), (SH2) for sheaves
((see Vol. 1, 3.1.3.)

We will not discuss an example for this kind of construction, for this we refer to chapter
8 on projective spaces.

Vector bundles

We have the notion of a vector bundle in the the world of schemes. First of all we
have the trivial vector bundle A%/S, for which we gave an explicit construction above.
We observe that for any open subset V' C S the space of sections V' — A}, is equal to
Og(V)™. (Check this for affine V first.) We notice that the scheme A% /S has a particular
subgroup in its automorphism group. These are the linear automorphisms, which respect
the structure of the sheaf of sections as Og-module. This group of automorphisms is
clearly the group GL,(Og(S5)).

Now we say that a scheme X — S is a vector bundle if it has the following properties:

1. For any open subset V' C S the set of sections X (V') has the structure of an O(V)-
module and this structure is compatible with the restriction map to smaller open
sets. In other words the sheaf of sections has the structure of an Og-module.

2. We can find a covering of S by affine open subsets V; and isomorphisms
which induce a Og(V;)-linear isomorphism on the sheaves of sections.

We may formulate this slightly differently. We say that 7 : X — S is a vector bundle if
we can find a covering S = |J, V; and an isomorphism

such that on the intersections V; NV} the isomorphism

i 01

. n ~ n
u;nu; - AV,‘O‘/J' AVmVj
is Og(V; N Vj)-linear.

Vector Bundles Attached to Locally Free Modules

Of course we know what a locally free Ox— module module is (See I, 4.3.1 - 4.3.3).

Given we any locally free O x —module M of finite constant rank d we can also go in the
opposite direction, we can attach to it a vector bundle V(M) — X such that its sheaf

of sections is equal to M. .
To do this we start from the dual module M" consider the symmetric tensor algebra

Sym*(31Y) = € Sym"(}),

n=0
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where Sym"(Mv) is the quotient of the n-fold tensor product MV @ MY & ---® MV by
the sub module generated by tensors ¢ -+ - ®¢, @ QP QPp,—P1 - QPR - P, P,
i.e exactly two components are interchanged. We get of course the same sub module if
take all differences of tensors 11 @ -+ @@, ® - Q@ Ty, — Ty(1) @+ A Ty(1) @+ @ Ty (n),
where o runs over all permutations.

If we restrict the locally free module to an affine open subset U C X then the elements
® € Sym" (M (U)) are the symmetric n-linear forms on M (U). If we restrict to a smaller
affine open subset, which is still called U, then we may assume that M(U) is a free O(U)-
module with basis eq,ea, . . . ,eq then we denote the dual basis by X1, ...,X . Obviously the
symmetric algebra Sym® (MY (U)) = O(U)[X1,...,Xn]. Recall that we want to construct
the vector bundle V(M)/X and locally we solve this problem by defining V(M )y =
Spec(Sym*® (]TJV U)).

Now we choose a covering X = [, U; by affine open sub schemes such that the restriction
M|Ui is free. Then clearly

Sym® (MY (U3) |y, nw, = Sym® (M (U))

UiﬂUj

and we can glue these pieces together to the scheme V(M ).

Finally we have to show that the sheaf of sections has the structure of an Ox-module
and that this sheaf of section is equal to M. This is obvious: Over our affine subset
U a section attaches an element a; to X;. Hence the tuple (aq,...,a,) is a linear form
on MV(U) and hence an element in M(U) The scheme V(M)/X is called the vector
bundle attached to M.

Of course it is obvious that a vector bundle over S provides a locally free module, we
simple take the sheaf of sections. Hence we may say that vector bundles and locally free
sheaves a are essentially the same kind of objects.

A locally free sheaf of constant rank one is called a line bundle or a invertible sheaf.
The tensor product of two line bundles is again a line bundle and the isomorphism classes
of these line bundles form a group under this operation (See 9.4.).

6.2.4 Vector bundles and GL,-torsors.

If we have a vector bundle X — S of rank n then we can define a new object P — S,
which is a scheme with an action of GL,, on it. To be more precise: For an open set
V C S we define

P(V)={(e1,e2,...,en)|e; € X(V)}

such that the e; form a set of generators of the space of sections X (V7) for any open
subset V3 C V.

Of course P(V) may be empty, it is not empty if and only if the restriction of the bundle
X|V is trivial. If this restriction is trivial then we have an action of GL, (V) on P(V),
and this action is simply transitive. We call an element e = (eq,e3,. .. ,e,) a trivialization
over V.

Now it is clear that we can define a scheme P — S whose sections over V are the
trivializations of X — S over V, the group GL,, acts from the left on P — S and
if P(V) # () then the action of GL, (V) is simply transitive. Such an object is called a
principal homogenous space under GL,, /S or a GL,,/S -torsor. We will come back to this
in section 6.2.10
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6.2.5 Schemes over a base scheme S.

The schemes form a category. It is very important to study relative situations, i.e. to
study the category of schemes over a fixed base scheme S.

Definition 6.2.4. A scheme over S is a scheme X together with a morphism

X

i

Sometimes we write X/S, the morphism 7 is called the structure morphism and S is
called the base scheme.

If our two schemes are affine, i.e. S = Spec(A),X = Spec(B) the the morphism 7 is
nothing else than a homomorphism ¢ : A — B, i.e. B is an A-algebra.

Any commutative ring is in a unique a Z-algebra, there is exactly one homomorphism
7, — A because we assume that 1 goes to the identity 14. Therefore it is clear that
any affine scheme is in a canonical way a scheme over Spec(Z). But then it is also clear
that any scheme X admits a unique morphism X —— Spec(Z), this is the absolute
morphism.

Some notions of finiteness

Again the schemes over S form a category . If we have two schemes X/5,Y/S then the S-
morphisms Homg (X,Y") are those morphisms ¢ from X to Y, which render the following
diagram

Xx—72 Ly (6.18)

NS

S

commutative.

A morphism f : X — S is called of finite type if we have finite coverings X =
UierU;,Y = U;V; by open affine sub schemes such that f : U; — V; and such that can
write Oc(U;) as a quotient of a polynomial ring

OC’(Uz) == O(‘/Z‘)[Yl,Y27 N 7Yn]/lz

where the ideal I; is finitely generated.
A scheme X is of finite type if the absolute morphism X — Spec(Z) is of finite type.

Perhaps this is a good place to introduce the notion of an affine scheme of finite
type over S. This is a scheme X/S, which is given as a closed subscheme of some
vector bundle V/(M)/S. If S = Spec(A) is affine then we get an example of such an affine
scheme of finite type over S if we consider X = Spec(A[X1,Xs,...,X,,]/I where the X;
are independent variables and I is an ideal. Locally in the base S all schemes, which are
affine and of finite type over S are of this form. Under certain finiteness assumptions on
S an affine scheme of finite type over S is the same as an affine scheme X — S where
the algebras Ox (f~1(V;)) are of finite type over O(V;).
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A typical example of such a relative situation is the scheme A% — S, which was in-
troduced further up or more generally the vector bundle V(M)/S, which we attach to a

locally free quasi- coherent sheaf of M of finite rank.

Fibered products

Given two schemes X/S,Y/S we have the notion of the fibered product of these schemes
over S. This fibered product is nothing else than the product in the category of schemes
over S.

Hence the fibered product is an object Z/S together with two arrows pi,ps

7z — P L x (6.19)

-

Y —— §
such that for any scheme T'/S we have
Homg(T,Z) = Homg(T,X) x Homg(T,Y) (6.20)
where the identification is given by

Ur— (p1o¥,py00).

We can do this for any category (See Vol. I .1.3.1). The reader is advised to consider the
construction of fibered product in the category of sets as an example.

Theorem 6.2.5. In the category of schemes fibered products exist.

This theorem will not be proved here in detail. We will prove it for affine schemes in this
section and at the end of the proof I will give some indication how to do it in general.
(See also [Hal, Chap. II, Thm. 3.3 or [EGA1] 3.2.6.) In the section on projective schemes
we will prove that the product of projective schemes is again projective and hence the
existence of products in that case will be a by-product of this result.

Now we discuss the above theorem in the case of affine schemes, the discussion will be
very detailed and perhaps to verbose.

We consider the category of affine schemes. If X = Spec(A4) and S = Spec(R) then
m: X — S is the same thing as a homomorphism of rings ¢ : R — A.

At this point two remarks are in order

1. The datum ¢ : R — A is the same as giving the additive group A the structure of
an R-module, i.e. giving a composition

tRxA— A,

which satisfies the usual rules, especially we want 1 -a = a and we have to require
in addition 7 - (ajaz) = (r - a1)ag. This is clear because starting from ¢ we put

r-a=p(r)-a.
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On the other hand if we have given the R-module structure on A then
U(r)=r-1xa
gives us the ring homomorphism.

2. To simplify the notation we will drop the name of the morphism, this means we
will only write R — A instead of ¢ : R — A. In view of the first remark this means:
If we see R — A then this allows us to write r - a for r € R and a € A and this
satisfies the obvious rules.

If we have given R-rings A,B then Homp(A,B) are exactly those homomorphisms, which
are linear with respect to R, i.e. ¢ € Homp(A,B) means that ¢ satisfies p(r-a) = r-¢(b).
Now the two dots have different meanings.

Of course we don’t make any assumption that R — A should be injective. For instance
Z — 7Z./p make Z/pZ into a ring over Z. Actually it is clear that any ring A is in a
unique way a ring over Z, we simply send 1 — 1 4.

We come back to the construction of fibered products in the category of affine schemes.
We describe the problem in the category of rings and therefore, we turn the arrows
around. We have

A B.
NS
R

We are looking for a ring C' over R together with two R-homomorphisms « : A — C,
B : B — C such that for any other ring T over R we get: In the following diagram

C

YN

A B

N7

R—— T

an R-homomorphism from C' to T is the same thing as a pair of R-homomorphisms
f:A—-Tyg:B—T.
How do we get such a C? Starting from f,g we get a map

AxB—T
(a,b) — f(a) - g(b).
This is an R-bilinear map from A x B to T. We have to verify
(T : a7b)
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but

(r-ab) — f(r-a)g(b) = f((r-a)g(b)
= f(r-1a)f(a) - g(b) = (r- f(1a))f(a)g(b)
= (r-10)f(a)g(b) =r- (f(a)g(b))

and the distributivity is clear.
But this tells us that the pair f,g provides us an R-linear map

f®g: A®g B—T

where A ® g B is of course the tensor product of the two R-modules A,B.
We define a ring structure on A®pg B: The elements of the tensor product are finite sums
a1 @by +as by + ...+ as @ bs where we have the following rules

(r-a)@b—a®r-b =0 (6.21)
(a1+a2)®bfa1®bfa2®b :0
a®(b1+b2)fa®b17a®b2 :0

We introduce as multiplication

(a®b)(a @b) =ad @bV,

we extend this by distributivity. Then we have to check that this is compatible with the
rules above.
We put C = A ®g B with this ring structure, we have the homomorphism

7’—>T'13®1b:1A®T-1B,
we have
a:A— A®Rr B B:B— A®QgrB
a—a®lp b—14®5b

Starting from f,g we already had the R-linear map from the R-module A®g B to T. But
the ring structure on A ® zp B is made in such a way that f ® g is a ring homomorphism.
On the other hand, if h : A ®r B — 7T is a R-homomorphism then we may put
f=hoa,g=ho and it is clear that
ha®@b)=h((a®1p)-(14®YD)) (6.22)

=h((a®1p))-h((la®b)) = f(a) - g(b)

— (fogash).
After all this it should be clear that the diagram

Spec(A®gr B) (6.23)

X

Spec(A) Spec(B)

NS

Spec(R)
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is a fibered product of Spec(A) and Spec(B) over the base Spec(R).

It is a standard terminology to say that B is a finitely generated A algebra if we
can find x1,...,x, € B such that any b € B can be written as a A-linear combination
of monomials 27" ...z7". We can also reformulate that and say: The A-algebra B is a
quotient of the polynomial ring A[X7,...,X,]/I where I C A[X7,...,X,]is an ideal. (See
the following examples 5 and 6)

Example 6. If A and B are polynomial rings over R in finitely many variables, i.e.
A = R[Xy,...,X,] and B = R[Y3,...,Y.,] then A,B are free R modules with a basis
consisting of monomials X' -+ X4 Y. . YHm Then A®pg B is free again and has as
basis Xyt -+« Xt @Y - YEm . But then it is obvious that AQr B is actually isomorphic
to the polynomial ring in X1, ..., X, Y1,...,Yy,, i.e.

R[X1,.... X, ® R[Yq,.... Y] = R[X1,....Xn,Y1,....Y0l.

The scheme Spec(R[X1 ... X,]) is called the n-dimensional affine space over Spec(R)
and if S = Spec(R) we write A for this scheme. Hence we get the truly exciting formula

n m o __ n+m

Example 7. If we have two R-algebras R — A,R — B and we have given two ideals
I C A,J C B then these ideals define closed subschemes

Spec(A/I) “—— Spec(A Spec(B/J) & Spec(B)
\ S /

Hence we get a morphism from the fibered products

Spec(A/I) Xspec(r) Spec(B/J) —— Spec(A) Xspec(r) Spec(B
\\\\\\\\\\\\\\\-§~ Spec k///////////////

and we claim that this is again a closed embedding. We leave it to the reader as an exercise
to show that the arrow gives us an isomorphism of the fibered product of the subschemes
to the subscheme defined by the ideal (AQpr B)(14 ®r J) + (A®r)(I ®r B) C A®g B.

Example 8. If k is a field and K/k is a finite extension, then we have a map

Spec(K)

l

Spec(k)

which on the underlying sets is just a map from a point to a point. But we have different
rings of regular functions on these points, hence this morphism is not an isomorphism.
If we take the fibered product we get
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Spec(K') Xgpec(k) Spec(K) = Spec(K @i K)

and K @i K will not be a field in general. If for instance K/k is a separable normal
extension then the Main theorem of Galois theory says

KenK= P K

oc€Homy, (K,K)

where the identification is given by a @ b (...,0(a)b,...)scHom, (k,k)- Therefore

Spec(K @i K) = Spec( @ K) = Hom,,(K,K)

occ€Homy (K,K)

as a set. Here we have an example where the underlying set of X xsY may differ from
the set theoretic fibered product, which in our case is still a point.

Example 9. As we explained earlier, we always have a canonical morphism Spec(A) —
Spec(Z) and we may define the absolute product of two affine schemes as

Spec(A) x Spec(B) = Spec(A @y B).

We can consider the situation that we have an R-algebra Ry and two Ry algebras, i.e.
we have a diagram

A

R—>R1/
\B

Then we have a morphism

p:A®r B — A®pg, B

In the ring on the right hand side we have the Tule ria ® b = a ® b for r1 € R, which
18 not valid in the ring on the right hand side.
The map p is clearly surjective, hence we have

Spec(A) Xspec(ry) Spec(B) < Spec(A) Xgpec(r) SPec(B).

We want to say a few words concerning the construction of fibered products for general
schemes. First of all we have to cover the base scheme S by affines and to construct
the fibered product over these affine subschemes and to glue the fibered products over
the intersections. Over an affine base S we cover the schemes X/S,Y/S by affines and
constructs the fibered products for the pairs of affine covering sets. These will be glued
together. For the details I refer to the references given above.

In the section on projective schemes I will discuss the construction of fibered products
in a special case.
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Base change

Let X/S be a scheme and T -1, § another scheme, i.e. we have a diagram

X (6.24)

|

S <~—T.

Then we can form the fibered product X xg T this is now a scheme over T. Most of
the time we will drop the f in the subscript and write simply X xg T. This scheme is
called the base change from X/S to T.

Very often the fibered product X xg T is called the pullback of X — S to T. We
introduce the notation
X xg 8 = f*(X).

The same terminology is applied to an S morphism h : X;/S — X5/S, the induced
morphism 2’ : X; xg T — X5 xg T is called the pullback of h and denoted by f*(h).
If M is a quasi-coherent sheaf on X, the we also call (Id x f)*(M) the (quasi-coherent)
pullback of M and we also denote it by f*(M).

6.2.6 Points, T-valued Points and Geometric Points

In the theory of schemes we have to be careful with the notion of a point. If we have a
scheme (X,0x) then the underlying space X is a set and the points of the scheme are
the elements of this set. But we have seen that these points do not behave well under
fibered products. (Example 8)

Definition 6.2.6. Let X/S be a scheme and T 2, S another scheme, i.e. we have a
diagram as above (6.24) then the T-valued points of X are simply the S-arrows from
T to X, i.e.

Xs(T) = Homg(T,X). (6.25)

If S = Spec(R) and T = Spec(B) then we denote the set of T = Spec(B)-valued points
also by X (B) and speak of B-valued points.

Clearly the set of T' valued points of X/S is equal to the set of T-valued points of the
base change X xgT — T.
Therefore, we see that a scheme X /S defines a contravariant functor

Fx : Schemes /S — Ens, (6.26)
where Fx (T) = Xs(T).
It is the definition of the fibered product that the T-valued points behave well under
fibered products. We have

(X x5 Y)s(T) = Xs(T) x Ys(T). (6.27)



6.2 Schemes 29

I want to discuss this concept in a couple of examples. Let k£ be a field and and S =
Spec(k). We consider A = k[Xq,...,X,]/I = klz1,...,x,] where I is an ideal in the
polynomial ring, which is generated by polynomials Fy (X1,...,X,),... F-(X1,...,X,].
We have the diagram

Spec(A)

Spec(k) &Spec(k)(: T).

In this case the T-valued points are the k-homomorphisms ¢ : k[z1,...,x,] — k. Such
a ¢ is determined by its values (o(z1),...,0(xn)) = (a1,...,a,) € k™. But we have
constraints on the n-tuples of values because we have relations among the x;

Fi(xy,...xn)=... = Fp(21,...,2,) =0 (6.28)
and hence also (aq,...,a,) has to satisfy

Fi(ay,...,an) =...=F.(a1,...,a,) =0. (6.29)
This means that the point a = (aq,...,a,) has to be a solution of the polynomial equa-
tions F; = ... = F, =0. If in turn a = (a4, ...,a,) solves the system of equations then

we can look at the diagram

EXy... Xy — k(X ... X,/ I=A
where ¥, (X;) = a;. This homomorphism vanishes on the generators (Fi,...,F,) of the

ideal I and hence it factors over A. Therefore we get:

Proposition 6.2.7. For our A as above the k-valued points are given by
Spec(A)(k) ={a € k™ | Fi(a)=...= F.(a) =0},

i.e. they are the solutions of the system of polynomial equations given by the Fy, ... F. =
0, where we only allow solutions with coordinates in k.

We can embed our field £ into an algebraic closure k. Then this defines a morphism
Spec(k) — Spec(k) hence we have the diagram

X

l

Spec(k) <— Spec (k) .

Definition 6.2.8. The set X (E) is the set of solutions of the system of equations over

k. These are the so-called geometric points of the scheme X — Spec(k).. The points
in X (k) are called k-rational points or simply rational points.
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Of course it is much easier to find geometric points than k-valued points. We may consider
for instance the polynomial y? = 23 — x — 1 in Q[z,y] and want to find @ valued points.
We may start from a value a € Q for x, but now we need a good portion of luck if we
want to find a point (a,b) € Q satisfying the equation. We have to find a square root of
a® —a—11in @, i.e. we have to choose an a such that this number is a square.

If we look for geometric points we do not have this problem. If k is not algebraically

closed then we easily find a k algebra A/k, for which the set of k-valued points is empty.

Finding k-valued points on a scheme X/ is the classical problem of solving Diophantine
equations. Diophantus solved the problem of finding all @ rational points on Spec(Q[X,Y]/(X2+
Y2 — 1), this are the Pythagorean triples. Only recently it has been shown by A. Wiles
[Wi] that for n > 2 the scheme Spec(Q[X,Y]/(X™+Y™ —1) has only the trivial solutions
were one of the variables goes to zero.

It is certainly the first basic problem of algebraic geometry to understand the ”structure”
of the set of geometric points of a scheme of finite type (see Def. 6.2.10 above) over a
field k. Of course it is not clear what that means. If k¥ = Q then in most cases this set is
just a countable set. But for instance in the next chapter we will learn that under some
assumption (irreducibility) it has a dimension and this dimension is an integer.

If £k = C then all k-valued points are also geometric points. Then we have much more
structure on the set of geometric points. For instance it is a topological space because we
can realize affine pieces as subsets of C™. If we start from our equation y? = 2% — 2 — 1
above and if we add a point at infinity, then the set of geometric points becomes a
compact Riemann surface (See Vol. I, 5.1.7), actually it is even an elliptic curve. So we
can ask for the cohomology groups of this space. This aspect was discussed already in
Volume 1.

In general we have the feeling, that the set of geometric points is a geometric object. For
instance we may-in low dimensional cases-draw a picture of the R-valued points if our
scheme is defined over IR.

We discuss an example of such a drawing, but before doing this, we want to say a few
words why we want to consider relative situations

g
S,

where S is not just a point Spec(k). For any point s € S we can consider the stalk Og s,
this is a local ring and let m, be its maximal ideal. Then k(s) := Og s/m; is a field and
we have a morphism S « Spec(k(s)) and hence we get a base change X xg Spec(k(s))
and this is a scheme over Spec(k(s)).

Definition 6.2.9. The scheme Xs = X xsSpec(k(s)) over Spec(k(s)) is called the fibre
of X/S over s.

Hence we get a family of schemes, which is parametrized by the points of S. We may
even go one step further and embed k(s) into an algebraically closed field k. This gives
us a morphism Spec(k(s)) « Spec(k) and the composition S « Spec(k) is a geometric
point of S. The base change to S x g Spec(k) is the geometric fibre over the geometric
point.
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A very simple example of such a situation is given if we consider the equation
=3 —2-Nz?+x

over the scheme S = Spec(Q[A]). Hence we get a family of curves, which is parameterized
by the points on the affine line with coordinate function . In the pictures below we drew
the set of real points of some members of the family, we see some interesting properties
of these sets of real points and we see the dependence of these properties on A.

1.5

1

Figure 6.1 Pictures of real valued points

The above picture shows members of this family for the three values A = —1/10,0,1/10 =
red,green,blue.

Figure 6.2 Pictures of real valued points

The second picture shows the same family for the values A = 7/2,4,9/2 = red,green,blue.
These pictures tell us something: In the first picture we start with A < 0 but moving to
zero we get the blue curve. It has two connected components. If A approaches zero the
intersection points Pi,Ps of the two components with the z-axis come closer and closer
to each other. Eventually if A = 0 we get the green curve, which has a singular point
(1,0). This is a so called double point, a more than natural terminolgy of course, the two
points P;,P> became one point. If now A > 0 then we get the red curve, which has only
one component. The double point splits again into two points but now the y coordinates
of these two points are purely imaginary and they are not visible anymore.
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An similar thing happens of A approaches the value 4. If A > 4 we get the blue curve. It
has two components. If X\ approaches 4, then the ”circular” component becomes smaller
and smaller, for A = 4 the curve becomes green and the component shrinks to the point
(—1,0). This is again a double point, but the two branches have imaginary coordinates.
So we see that the set of R-valued points has interesting topological properties and these
properties may vary if we move the scheme in a family.

Another interesting family is obtained if we take S = Spec(Z). In this case we may take
X = Spec(Z[X1,Xa, ..., X,]]/I, where I = (Fy,...,F,) is an ideal generated by the F;
and the F; have coefficients in Z. Now we can choose a prime p and put T = Spec(IF),)
We get a family of schemes X xy IF),, which are parameterized by the primes.

In this case the set of IFj,-valued points X (IF)) is finite, this raises the question whether
we can say something intelligent about the cardinality of this set. Since our scheme is
over Spec(Z) we may also consider the topological space of C-valued points. It is one of
the great discoveries of the last century mathematics that the question of counting the
number of points in X (IF,) is related to the topology of the space X(C) of C-valued
points. We come back to this problem in 9.7.7 and section 10.4.2.

Closed Points and Geometric Points on varieties

Definition 6.2.10. A scheme X = Spec(k[X1,Xo,...,X,]/(F1,...,F.)) = Spec(A4) is
called an affine variety over k. A scheme X — Spec(k) is a variety over k if a
has a finite covering by open affine varieties.

We will use the terminology affine scheme of finite type over k (scheme of finite type over
k) synonymously to affine variety (variety) over k.

Let us consider the case of an affine variety Spec(A)/k. Then we have various kinds of
points. We have the k valued points, we have geometric points but in general we still have
many more points (see 6.4.)

If we have a geometric point P : A — k then the kernel of P is a prime ideal mp of
A. The quotient A/mp is a subring in k, which contains k and hence it is a field. This
implies that mp is maximal. Therefore we get a map X (k) — Specmax(A). If we have
in turn a maximal ideal m in A then it follows from the Nullstellensatz that k(m) = A/m
is a finite extension of k. We get a diagram

A — A/m = k(m)
N

and it is clear that the k-homomorphisms k(m) — k correspond one to one to the
geometric points of X, which lie above m. Now Galois theory implies

Lemma 6.2.11.

(1) The map X (k) — Specmax(A) is surjective with finite fibers. The points in the fibre
are in one to one correspondence with the prime ideals in the k -algebra k(m)®k. (see

p. 73)
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(2) The cardinality of the fibre of m of this map divides the degree [k(m) : k]| and it is
equal to this degree if and only if k(m)/k is a separable extension.

(3) The Galois group of k/k acts transitively on the geometric points in the fibre over
m.

We know that any scheme X/S defines a functor F'x from the category of schemes over S
to the category of sets. We also know that the functor recognizes X, this is the standard
Yoneda lemma (See Vol. I. 1.3.). But we have to evaluate the functor on all schemes
T —S.

We want to explain that for varieties X/k over a field k the value of the functor on k,
i-e. the set of geometric points, still contains a lot of information.

Definition 6.2.12. We call an affine variety X = Spec(A)/k absolutely reduced if the
algebra A ®y, k does not have non zero milpotent elements. A scheme of finite type is
absolutely reduced if it is covered by absolutely reduced affine schemes.

We restrict our attention to affine varieties over k. An element f € A defines a k-valued
function on X (k): By definition a ¢ € X (k) is a homomorphism from A/k to k and we
put f(¢) = é(f). If we assume that A ® k does not have nilpotent elements, then the
Nullstellensatz implies that we get in inclusion

A® k «— k valued functions on X (k)

in other words we can view A ® k as a sub algebra of all k valued functions on X (k).
The set X (k) is equal to the set of maximal ideals of this sub algebra, a point a € X (k)
defines the maximal idea m, consisting of those functions, which vanish at this point. In
the previous discussion our algebra always came with a set of generators and from this
we saw that X (k) C k. Then we see that we can reconstruct the algebra from its set of
geometric points. The algebra is simply the algebra of functions, which is generated by
the coordinate functions x; where z;((ay,...,a,)) = a;.

If we now have a second absolutely reduced affine variety of finite type Y = Spec(B)/k,B =
k[Y1,...,Y,,]/J then we may consider the regular maps from X (k) — Y (k). In a naive
way we can say, that a map f : X(k) — Y(k) is regular if the coordinates b; of
f((a1,...,a,)) are given by evaluating polynomials G;(X1,...,X,) at (a1,...,an), Le.
fl(a1,...,an)) = (Gi(a1, ... ,an), ... ,Gm(a1, ... ,ay)).

But it is much more elegant to say it this way:

If X = Spec(A),Y = Spec(B) are two absolutely reduced affine schemes over k. A map 9
between the sets of geometric points comes from morphism 12;: X =Y if and only if the
induced map 1) between the k-valued functions maps the elements of B into elements of
A. Hence we get from ¢ a homomorphism of rings, which then in turn induces the map
between the geometric points, from which we started. Note that *(11 o 1hg) =t 1y ol 1)q

To summarize we can say that for absolutely reduced finitely generated k-algebras over
an algebraically closed field k the set of geometric points together with the algebra A
of regular k-valued functions contains all the information. This is of course tautological,
because already the algebra A determines everything. But its realization as algebra of
k-valued functions on the set of geometric points gives us some picture, which has some
geometric flavor and is less abstract than the concept of a locally ringed space. Especially
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in the case where a set of geometric points is given to us as a subset of X (k) = ¥ C k" we
can reconstruct the ring of regular functions, it is the polynomial ring k[X7,Xs,...,X,]
divided by the ideal of all polynomials, which vanish on 3.

If our absolutely reduced scheme X/k is defined over a field k, which is not algebraically
closed then we get an action of the Galois group Gal(k/k) on the set of geometric points.
If k is perfect, then we can reconstruct X/k from the scheme X xj k and the Galois
action on the geometric points. This is discussed in the section on Galois descend (See

6.2.9 and see Exc. 6 below))

Exercise 5. Let us assume that k is a field of characteristic p > 0. We take A = B =
k[X]. Then the set of geometric points is & and we have the bijective map x — P on
the set of geometric points. Show that this map comes from a morphism but its inverse
does not.

This teaches us that a morphism between affine schemes of finite type over k, which
induces a bijection between the sets of geometric points is not necessarily an isomorphism.

Exercise 6. We go back to the general situation that we have two reduced affine schemes
X,Y of finite type over Spec(k). We assume now in addition that the field k& has charac-
teristic p > 0 and is perfect .This means that the map x +— P is surjective and hence
bijective. The assumption on k also implies that the schemes are absolutely reduced.
Let us assume that we have a morphism ¢z : X xj k — Y xj k, which induces a map
t¢ : X(k) — Y (k). Now we can define an action of the Galois group Gal(k/k) on the
two set of geometric points. Show that ¢ is defined over k, i.e. comes from a morphism
¢ : B — A if and only if it commutes with the action of the Galois group.

We may also speak of integral solutions. If we have a scheme A = Z[X1,...,X,,]/I then
we may consider

X = Spec(A4)
|
Spec (7) <— Spec (7).

and X (Z) = X(Spec(Z)) are the integral solutions of the system of equations. For in-
stance we can try to find Z-valued points on Spec(Z[z,y]/(y?> — 2® + x + 1)), which is
even harder than finding Q-valued points.

6.2.7 Flat Morphisms

We now turn to something much more abstract, after some preparation we will discuss
the notion of ”"descend”, which is fundamental for the proof of representability results.
Let us consider a commutative ring A with identity and its category of A-modules. In
this category we have the tensor product of two modules, which is again an A-module.
(See Vol. 1. 2.4.2)

Remark 3. Here we need the commutativity of A since we want
me (fg)n=(fg)m@n = f(gm)@n=gm® fn=meg(fn) =ma (gf)n.

If we fix a module M we can consider the functor N — N ® 4 M of the category into
itself. This is a right exact functor: If we have an exact sequence
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0— N —N-—N'"—0
then the sequence

N/®AM—>N®AM—>NH®AM—>O

is still exact. The right exactness is proved in [La], XVI, prop. 2.6. the proof is elementary
if we use the construction by generators and relations. But the functor is not exact in
general, it can happen that the first arrow is not injective anymore. We will give the
examples, which we promised in Vol. T 2.4.2.

Exercise 7. To construct an example, which shows that the functor is not exact, let us
consider an element m € M,m # 0, which has a non-trivial annihilator in A, i.e. there is
an f € A,f # 0 and fm = 0. Consider the sequence of A modules

0— Af — A — AJAf — 0.

Show: The element f ®4 m € Af ® M goes to zero in A ®4 M = M. Construct an
example where you know that f ®4 m # 0.

The Concept of Flatness

Definition 6.2.13. An A-module M is called flat if the functor N — N ® o M is exact.

Example 10. A simple example of a flat module is the free A-module over an arbitrary
index set I: Al = {(...,ai,...)ier | almost all a; = 0}. This is the direct sum Al =
@P,cr A but the direct product [],.; A is also flat.

Definition 6.2.14. An A-module M is called faithfully flat if it is flat and if in addition
N ®s M =0 implies N = 0.

The above examples of the direct sum and direct product are indeed faithfully flat. We
will see flat modules, which are not faithfully flat in a minute.

Since an A-algebra A — B is also an A-module, we can speak of flat A-algebras. We may
view A — B also as a morphisms of affine schemes we can speak of flat morphisms
(Spec(B),B) — (Spec(A),A) of affine schemes. We also observe that for an A-module
N the module B ® 4 N has an obvious natural structure as a B-module, we simply put
b(bl X a n) =bb; ®4 n.

Definition 6.2.15. A morphism of affine schemes is called faithfully flat if the A-
module B is faithfully flat.

Exercise 8. Of course the polynomial ring A[X7,...,X,] is faithfully flat over A because
it is free as an A-module.

Exercise 9. An important case of a flat algebra is given by localization. It is not so
difficult to check that for any subset S C A, which is closed under multiplication, the
A-algebra A — Ag is flat. To see this one should also observe that N ®4 Ag ~ Ng, where
the isomorphism is simply given by n ® g — f?” Now it is clear that if N/ C N then
Né C Ng.
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Exercise 10. Let us assume that S = {f™} where f € A and not nilpotent. We have
just seen that A — Ay is flat. But it will not be faithfully flat in general. To see this
prove A/fA®a Ay =0.

But on the other hand:

Exercise 11. If we have a covering X = Spec(A) = {J;c; X,, where we may assume that
I is finite (see Proposition 6.1.15), then A — [];.; Ay, is faithfully flat. This corresponds
toamap X « | | Xy, and this is a faithfully flat morphism of schemes. (See also Exercise
17)

Exercise 12. If B is the quotient of A by an ideal A — B = A/I, then Spec(B) =
Spec(A/I) — Spec(A) is a closed subscheme. In this case one can show that this is
almost never flat.

Exercise 13. If A is a Dedekind ring (see 7.3.4), then an A-module N is flat if and only
if it is torsion free, i.e. if fn =0 with f € A;n € N then f or n is zero.

If we have A — B — C and an A-module N then we have a canonical isomorphism

C®p(B@aN)———>C®s N
~
(C®p B)®a N
We leave the verification to the reader.

Exercise 14. If we have A — B — C and B is a flat A-algebra and C' a flat B-algebra
then C is also a flat A-algebra.

Exercise 15. If we have A — B — (C and if C is a flat A-algebra and if C is a
faithfully flat B-algebra then B is a flat A-algebra.

The second assertion is important because it allows us to check flatness locally. The
exercise implies

Exercise 16. We start from a homomorphism A — B and we assume we have a family
of elements f; € B;,i € I such that the X;; C X = Spec(B) form a covering of X. If
A — By, is flat for all ¢ then B is a flat A-algebra.

The same principle can be applied if we want to check whether an A-module is flat:
If A — B is faithfully flat, then an A-module M is flat if and only if the B-module
M ®4 B is flat.

Definition 6.2.16. A morphism between two schemes

X

iﬁ

is flat if for any open affine subscheme V. C S and any open affine subscheme U C
7YV the Os(V)-algebra Ox (U) is flat. It is faithfully flat if it is also surjective.
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To justify the last definition we need to solve the following

Exercise 17. Show that for a flat A-algebra B the two conditions are equivalent
1. B is faithfully flat
2. Spec(B) — Spec(A) is surjective.

Since the schemes over a given scheme S form a category any X — S provides a
contravariant functor Fx from the category of schemes over S to the category of sets
T — Homg(T,X) = X(T) = Fx(T). This functor Fx determines X/S up to a canonical
isomorphism. A functor F from the category of schemes over S to the category of sets is
representable if it is of the form Fx.

The following fundamental fact gives us a constraint for the representability of a functor
F from a category of schemes to the category of sets (see below proposition 6.2.18).

Theorem 6.2.17. Let X/S be a scheme. Then for any faithfully flat morphism S «— S’
we get an exact sequence of sets

P1
X(9) 22 X () T X(S x5 S).
P2

Recall that exactness means that p{ is injective and that the image of pj is equal to the
set of x € X(5”), which satisfy pj(z) = p5(z).

It is clear that it suffices to prove this for affine schemes. Then we have S = Spec(A4), X =
Spec(C) and A — C. If now S" = Spec(B) — S is faithfully flat this means that
A — B is faithfully flat. We have to show that the sequence

P1
Hom 4 (C,A) L>HomA(C’,B) Hom(C,B ®4 B)
b2

is exact. Of course A — B is injective, so the first arrow is indeed an injection. Now
we have to show that an element ¢ : C' — B in Hom 4 (C,B), which is sent to the same
homomorphisms under the two arrows

b®1

7

b

N

1®0

is actually an element in Hom 4 (C,A). But this is clear once we know that

A={peB|b®1-18b=0}

We put 6(b) : b— b® 1 —1® b, then last assertion says that the sequence

O—>A—>Bi>B®AB
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is exact. Since A — B is faithfully flat this is equivalent to the exactness of the same
sequence tensorized by B:

0—B—B®y4B—B®1B®4B

where the homomorphisms are b — 1®b and by ® by — (b ® 1 —1®b1)®bs. This is now a
sequence of B-modules where B acts always on the last factor. We have an isomorphism

B®aB®aB "~ B®sB®pB® B,

which is given by by ® ba @ by — b1 @ 1 ® by ® b3. (In the fourfold tensor product we are
allowed to move the entry at place 2 to place 4 and backwards since we take the tensor
product over B.) Hence we have to prove the exactness of

00— B—B®,B—B®sB®pgB®yB.

But now the inclusion B — B ® 4 B admits a splitting given by b1 ® by — 1 ® b1by and
hence we have B®4 B = B®Y where Y is the kernel of that splitting. The elements of
y € Y are mapped to

Sy =10y+y®1+---cBRIYQOYRBOYRY

and therefore, it is clear that ¢ is injective on Y. O

Representability of functors

This theorem plays an enormous role since it gives us a necessary condition for the
representability of a functor

F : Schemes /S — Ens.

(See Vol. 1.1.3.4). Recall that representability means that we can find a scheme X /S and
an element — the identity section — ex € F(X) such that the map

Homg(T,X) — F(T) (6.30)
o — 9 (ex)

is a bijection for all T — S. Here ¢* is an abbreviation for F(¢) and ex is called the
identity section, because it is equal to ¢*(Idx).

Certainly the reader has noticed that the exactness of the sequence in 6.2.17 is analogous
to conditions the two conditions (Shl),(Sh2), which have to be satisfied by sheaves on
topological spaces (see Vol. I, 3.1.3). To make this analogy clear we start from a covering
of a topological space X = |J,; U; by open sets. We consider the disjoint union of the
open sets we get a continuous map X Lx = |]U;. Then the fibered product is
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X'xxX'=||UinU;.
(i)

and we get the diagram

P1
x < x* X' xx X' (6.31)
D2

A presheaf F on X is a sheaf if and only if it satisfies the conditions (Sh1),(Sh2). But
now it is clear that these two conditions together are equivalent to the exactness of the
sequence

*

* P1
FX) - F (X)) T T F(X <y XY, (6.32)
P5

A. Grothendieck introduced a much more general concept of topologies. Instead of con-
sidering coverings of spaces by open sets, he considers certain classes of morphisms
X’ — X, which are called coverings.

A very important example of such a Grothendieck topology is the the flat topology
on a scheme X. This means that we replace coverings of the scheme X by Zariski open
sets by faithfully flat morphisms X « X’. In this more general context we can still define
sheaves: These are functors

F :(Faithfully flat schemes X' — X) — Ens, (6.33)

which satisfy the extra condition that for all X’ £% S we get an exact sequence

* Py
FX) s F(8) T F(X xx X, (6.34)
128

where again the p* are called the restriction maps, these are the maps induced by the
functor. We can summarize:

Proposition 6.2.18. If we have a scheme X and a contravariant functor

F : Schemes /X — Ens
T+— F(T)

then a necessary condition for this functor to be representable is that its restriction to
the faithfully flat topology is a sheaf.

We can say even more. For any such functor F and any scheme T ER S we can define
the restriction

Fr : Schemes /T — Ens,
which is defined by the obvious definition
Fr(T') = F(T')

for any scheme T" — T, which then by the composition with f becomes a scheme over
S. We have tautologically:
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Proposition 6.2.19. If our functor is representable by a scheme X/S, then for any
scheme T — S the restriction Fr is represented by X xgT.

Later on we will consider coverings, which satisfy some finiteness conditions. If X' — X
is faithfully flat and of finite type then we will call it a covering in the fift-topology.
Another topology will be the étale topology (see 7.5.14).

6.2.8 Theory of descend

In the last two chapters of this book we will discuss the representability of some functors,
We will discuss the Picard functor or more precisely a modified Picard functor in detail.
There we will encounter a problem of the following type:

Let S be a scheme and let F be a contravariant functor from schemes over S to Ens.
Let us assume that F is a sheaf for the faithfully flat topology.

Let us also assume that we can find a faithfully flat scheme S’ — S such that the restric-
tion ' = Fg: of our functor becomes representable over S’, i.e. we have a scheme X'/S’
and an element, the identity section ex, € F'(X'), which represent the functor in the
above sense. Under what conditions can we conclude the already F itself is representable?

This question has been analyzed by Grothendieck and we will describe the techniques,
which allow us to construct — under certain conditions — an X /S, which represents F.

We introduce some notation, we put S’ xg S’ = S” and S’ xg 5" xg 5" = 5". We have
the two projections
P1
<~

%
D2

s’ s7,

and we can take the pullback of X’/S’ by these two arrows, i.e. we consider X| =
X' xgrp, 8" and XY = X' xg/ p, S”. These two schemes together with the restrictions
exy,exy of ex: represent the two restrictions of F' to S”. But these restrictions are also
the restrictions of F to S” via the composition of p; and p, with p : S’ — S. Since
these two compositions are equal we see that Fy'(T') = F4(T) for any object T — S”.
This means that the two restrictions of functors are the same, hence we have uniquely
determined isomorphisms of schemes (inverse to each other)

P12

i D —

> (N
P21

X4

which send the restrictions ex/,exy of the section ex- into each other.
Now we go one step further and consider

P12
<—---£-1----— P13
Sl p2 S// p23 S/// (635)

and can consider the pullback
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Pij (p12) (X7 X py §7) X 50,py; 8 — (X' Xg1,py S7) X5 iy 8™ (6.36)

and the same for p};(p21).

The composition p, o p;; is always a projection to a factor (the a-th factor)
w: 8" — 5.
and we have
pP1opi2 =m pi1opi3 =" P10 P23 = T2
P20 p12 = T2 Pp20p13 = T3 P2 © p23 = 3.

This allows us to identify always two of the two step pullbacks to a one step pullback,
we get

/ 1" 1 / " / " "
(X X5 py S ) X0 pa 8 =X Xgi g 57 = (X X8tpy S ) X5 prg S,
/ " 1 / " / " "
(X XS’ pa S ) XS p12 ST=X XS, s ST = (X XS’ p1 S ) XS pas ST,
/ " 1 / " / " "
(X XS’ p2 S ) XS p13 ST=X XS s ST = (X XS/, p2 S ) XS pas ST

Our ¢;; induce isomorphisms among these S”’ schemes, for example

Pia(p12)
X! Xy S D2t e S

N7

S///

and the assumption that X’ represents the restriction F’ of our functor F implies that
the restrictions of the identity sections are mapped into each other. Hence we get the
following 1-cocycle relation:

pis(p12) " 0 Phs(12) 0 pia(p12) =1d, (6.37)

where Id is the identity automorphism of X’ xg/ », S”. Let us forget for a moment the
functor F.
Let us assume that we have a faithfully flat scheme S’ — S and a scheme f': X’ — 5.

Definition 6.2.20. If we have an isomorphism @12 1 X' X g, " — X' X g1 p, S”, which
satisfies the cocycle rule

Pis(12) 7 0 phs(p12) 0 pia(p12) = 1d

where we made the 3 identifications between the corresponding two step pullbacks, then
we call this o descent datum (after A. Grothendieck). Such a descent datum is called

effective if we can find a scheme X 1, and an isomorphism

XXSS’—>X’

N
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such that: Firstly
X Xg S = (X Xs S/) X8 py S’ = (X X8 Sl) XS’ po S//,
and secondly the diagram
bl XS py S
/
X xg 9" P12
\l
bl XS py S

is commutative. Then we say that (X'/S’,p12) descends to S and (X,h) is the realization
of the descent datum.

To be able to say this, we should convince ourselves that:

Proposition 6.2.21. A realization of a descent datum is unique up to a canonical iso-
morphism.

Proof: Let us assume we have two such realizations (X/S,h) and (X;1/S,h1). Then we
get from the definition an isomorphism

hitoh: X xg8 — X1 xg 5
and from the compatibility with the descent datum we conclude that the two pullbacks
pi(hytohy): (X x5 8") Xgrpy 8" — (X1 x5 5") x5, S
and
py(hitohy) i (X xg8") Xg/py 8" — (X1 x5 5") X1, S

must be equal. Hence we get from Theorem 6.2.17 that hy' o h is the pullback of a
uniquely determined isomorphism. O

Now we come back to our functor F whose restriction to X xg S’ was supposed to be
representable by a scheme X’/S’. Then we constructed a descent datum for X'/S’ from
this information and we can summarize:

Proposition 6.2.22. If our functor F : Schemes /S — Ens is a sheaf for the flat
topology and if it is representable by a scheme X'/S’ for some faithfully flat S’ — S,
then it is representable by a scheme X/S if and only if the descent datum is effective.

Here we can also discuss the descent for sheaves. If we have a flat morphism S’ — S and
if we have a sheaf for the flat topology F'/S’, we want to know, under which conditions
we can find a sheaf F /S, which restricts to F'. We may also define descent data: We take
the two restriction Fj,F5 of F' by the two morphisms p;,ps from S’ xg 8" to S” and we
assume that we have an isomorphism of sheaves 12 : F| — F.
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We say that this isomorphism is a descent datum for the sheaf F’ if its pullbacks via the
different projections from S’ xg S’ xg S’ to S’ xg S’ satisfy the 1-cocycle relation

Pis(p12) ! o phg(p12) 0 pia(p12) = Id.

It is now easy to see that now the sheaf 7’ descends to a sheaf F, if we have such a
descent datum on it. The sheaf F is unique up to a canonical isomorphism.

We can now look at our previous discussion of descent data on schemes from a different
point of view: If we have a scheme X’/S’ then it defines a sheaf for the flat topology on
schemes over S’. A descent datum defines also a descent datum for the sheaf. Then the
sheaf descends to a sheaf over S on the flat topology over S. Now the descent datum is
effective if and only if this resulting sheaf is representable.

Remark 4.

1. Of course it is clear that for a scheme X/S we have a descend datum on X xg .5’
we can simply take the pullbacks of the identity.

2. Just to avoid possible misunderstandings: If we have a scheme X'/S’, and if we
can find a scheme X/S such that X xg S’ — X', then this scheme X/S is not
necessarily unique. Only if the isomorphism X x g8’ X’ is compatible with the
given descent datum, we have uniqueness (see 6.2.10.)

Effectiveness for affine descend data

We have a simple case where we have effectiveness of descend data. If all our schemes
S = Spec(A), S" = Spec(A’) and X’ = Spec(B’) are affine, then we have the diagram

BI

T

A —A.
We have the two homomorphisms

11
_
A/
_—
12

A, ®A Alv

and we assume that we have an isomorphism of A’ ® 4 A’-algebras
B oy, A@sAL Boy,AoyA. (6.38)
We consider the pullbacks
O Ry (B @ariy A @4 A) @i, AQA @A — B @, A @4 A'. (6.39)

The 4,, send an a’ ® a” to a threefold tensor with a 14/ at the right place. Now we say
that ¢ is a descent datum (we simply have to translate) if
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(p@i12) 0 (p @) 0 (p @irz) " = 1d. (6.40)

We want to show that such a descent datum is always effective. Let 14/ be the identity
of A’. We consider the algebra B C B’ consisting of elements

B={be B |p(b@ii(la)) = p(b@iz(1a))}.
This is an A-algebra and one checks easily that

B®AA/ZB/

6.2.9 Galois descend

In this book we only need a very special case for applying this method of descend. This
case is also the historic origin of the method.

Let us assume that we have a field k and a finite separable normal extension L/k. These
are our two schemes S = Spec(k), S’ = Spec(L). Let us assume that we have an affine
scheme X'/ Spec(L), it is given as an affine L-algebra A’, i.e. X’ = Spec(A’). Let us even
assume for the moment that X is given as a subscheme of an affine space: We consider
X' as a closed subscheme of A7 /L, this means that

X' = Spec(L[X1 -+ Xu)/I1]

where I, C L(X; -+ X,,) is the defining ideal. The Galois group Gal(L/k) acts on L/k,
we denote this action by (0,a) — o(a), we also use the convention to write o(a) = a” .
Then one has to be aware that (a”)? = a°". It is clear that it acts on L[X; --- X,,] via
the action on the coefficients and we can define the conjugate of X’ as

(X")7 = Spec(L[Xy - X,]/IT (6.41)
where of course
17 = {Eafjl,,,,,nXl”l X7 | Bay, g, X{ - X € IL} .

If we consider the set of geometric points X’ (k), then we see

(X)7 (F) = (X' (R)) (6.42)

where & € Gal(k/k) maps to o.
If we now want that X’/ Spec(L) is obtained by a base extension of an affine scheme over

k, then necessarily the two affine L-schemes X’ and (X’)? must be isomorphic for any
o € Gal(L/k).

What does it mean to have an isomorphism? This means that we should have an L-
algebra isomorphism
Po -
LIXy - X,/ [, ——L[X,--- X,/ I¢

| I
A o A




6.2 Schemes 45

We see that the element in the Galois group defines an isomorphism

o:h+—h? (6.43)

between the two rings A and A?. We have to be careful and observe that this isomorphism
is not L-linear, but only o-linear, this means that

o(AR) = A7h° (6.44)

for all A € L.
This allows us to get rid of the assumption that X is given as a subscheme of an affine
space. We define A% as the L-algebra, which as a ring is equal to A but where the scalar
A € L acts by

A#gh=\h (6.45)

on the right hand side A? act by the original L-algebra structure. This allows us to define
the conjugate scheme X'? without reference to the embedding.
Now we reformulate the concept of descent datum for this special case. We say that a
Galois descent datum is a family L-algebra of isomorphisms

o A— A7,

which satisfies a compatibility condition. To formulate this condition we observe that
for any 7 and any o the ring isomorphism ¢, : A — A provides also an isomorphism

7: AT — (A7)T = A7? : We easily check this
0o (ATh) = 0 (ATh) = (AT)%ps(h) = A7 ¢, (h) = A7 g (h)
Then the conditions for a Galois descend datum are

(2) For any pair 0,7 of elements in the Galois group the diagram

A—>AT

commutes, we have the cocycle condition
Por = Pg © Pr
Proposition 6.2.23. (i) If we have such a Galois-descent datum, then the k-algebra
Ao ={a € A|gy(a) = a}
defines an affine scheme over k (of course) and

Ay L — A
h® A+ Ah

1s an L-algebra isomorphism.
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(ii) Such a Galois-descent datum is nothing else than a descent datum in the previous
sense.

The first assertion is a consequence of the main theorem in Galois theory. If h € A and
if A € L, then we can form

> Xge(h).

oc€Gal(L/k)
If 7 € Gal(L/k), then
e X e )= X ) el (6.46)
ceGal(L/k) oceGal(L/k)
= Y Nl = Y NTer(h)
c€Gal(L/k) oc€Gal(L/k)

and hence we see that this element lies in Ag. But we know that we can find d = [L : k]

elements \q --- Ay € L such that the determinant of the matrix ()\;7)1,:1 o do€Gal(L/k) is

non-zero. (Linear independence of the elements in the Galois group.) Hence we can write
h as a unique linear combination of the elements

> Nee(h),
o€Gal(L/k)

and hence the assertion is clear.
We come to assertion (ii): Again we apply the main theorem of Galois theory, which can
be summarized to

Lo,L = QB L
oc€Gal(L/k)

where

a Xk br— ( .. ,CLO’(b), .. ')JGGal(L/k)'

If we look at the two arrows

iw:L—L®Lis: L —L&L
then
Zl(A) = ( A )OEGal(L/k)
i2(A) = (-, A%, )ocqal(L/k)
and
k=A{A]i1(A) =1i2(N)}

Now we skip some details and say that it is quite clear that for an L-algebra A the datum
of a descent datum
0: AR, LOL — AR®p,, (L®; L)
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is exactly the same as the datum of a Galois-descent datum, we simply have to use the
above description of L ®j, L. O

We have shown again :
Proposition 6.2.24. A Galois-descent datum for affine schemes is always effective.

It is quite clear at this point that we need the cocycle condition (2), i.e. the condition
Yor = @l 0@, If we do not have this condition then we may try to modify the family
¢, so that the cocycle condition holds for the modified family. But sometimes this is
not possible and we end up with an obstruction in a second Galois-cohomology set. (See
9.6.2.)

A geometric interpretation

If we have a scheme of finite type X/k then we have an action of the Galois group
Gal(k/k) on the set X (k) of geometric points. If ks C k is the separable closure of k
then Gal(k/k) also acts on X (ks). We know that X (k) C X(ks) is exactly the set of
fixed points under this action and an analogous statement holds for any finite separable
extension L C k.

So we may ask the following question: Assume we have an absolutely reduced scheme
X'/k of finite type and assume we have an action of the Galois group Gal(k/k) on its set of
geometric points. Does there exist a scheme of finite type X /k such that X x, k ~— X'/k
such that the induced isomorphism between the sets of geometric points is invariant
under the action of the Galois group?

Of course this action must satisfy some conditions. Let us assume our scheme is affine of
finite type X'/k = Spec(A’/k). We also assume that it is absolutely reduced. We get an
action of the Galois group Gal(k/k) on the algebra of all k valued functions by

7(f)(@) = o(f(o™ 2)).

Of course we demand that this induces an action of the Galois group on A’, i.e. 5(f) € A’
if feA.

Let us assume we have a finite, separable, normal extension L/k, and our scheme Spec(A’)
is obtained from an affine scheme Spec(Ayr /L) by base change, i.e. A’ = Ay ®p k and
our Galois action above restricted to Gal(k/L) is the action on the geometric points of
Spec(AL/L).

We made the assumption that the action of Gal(k/L) on X’(k) extends to an action of
Gal(k/k). We denote this action by (0,2) — ox. Then we get an action of Gal(k/k) on
the k valued functions on X’(k), and we have to demand that for f € A7 we must have
o(f) € Ar. Then a straightforward computation shows that f — &(f) is in fact an
isomorphism ¢, : A;, — (Ar)?. And this computation also shows immediately that the
function 0 — ¢, satisfies the cocycle condition.

Therefore we see:

Let L/k be a finite separable extension. For an absolutely reduced affine scheme X, /L =
Spec(Ar/L) a descend datum to k is the same as an extension of the Galois action
of Gal(k/L) on X1 (k) to Gal(k/k) where this extension satisfies o(Ar) = Ap for all
o € Gal(L/k). (Note that Gal(k/L) acts trivially on Ap)



48 6 Basic Concepts of the Theory of Schemes

It is also clear that in case of effectiveness of our descent datum this action of Gal(k/k)

on X'(k) is exactly the action, which is provided by & : X x3 L — X’ and the action of
Gal(k/k) on X (k).

Descend for general schemes of finite type

We want to say a word on Galois descend on absolutely reduced schemes of finite type
X/k. It is quite clear that we can prove effectiveness for a descent datum (X'/L, f5)seGai(L/k)
if we know in addition that we can find a finite covering X’ = {U/};cp by affine open
subschemes, which is compatible with the descent datum, i.e.

fo' : U’L/ - (U'L/)(T

for all o and all indices ¢ € F. This is clear because then we apply that the datum on the
affine pieces is effective, and we glue the descended affine pieces together. The detailed
proof is pure routine.

There is a simple criterion that tells us that we can verify this assumption. If X/k is
separated (see 8.1.4) and if we know that any finite set {z1, -+ ,7,,} € X’(k) is contained
in the set of geometric points of an affine open subset U’ /L C X'/L, then our assumption
is true. We simply start with any point 2 € X’(k) and look at its finitely many conjugates
{0(2)}5eqaE/x)- We pick an open affine set U” C X'/L, which contains all these points.

It is clear that the conjugates o(U” (k)) are also the sets of geometric points of an affine
open subset, namely £, 1((U")?), and we look at the intersection

U= (] &Uu". (6.47)
ocGal(L/k)

Now we know that the intersection of finitely many open affine subschemes is again affine
(see 8.1.4). It is affine and it contains our given point x € X'(k). Moreover it is clear
that f, : U' — (U’)°, and we are finished.

In Chap. 8 we introduce the notion of a projective scheme X/k and it will be almost
obvious that for any finite set {1, 2} € X(k) we can find an open affine subset
containing these points, hence our above criterion for effectiveness applies in this case.

6.2.10 Forms of schemes

We briefly discuss another question. Let us consider two schemes X /k, X' /k of finite type.
Let us assume they are absolutely reduced. What can we say if these two schemes become
isomorphic if base change them to k or the separable closure kg.?

Let us assume that they become isomorphic over ks. Then it is clear that we can find a
finite normal extension L/k such that X x; L = X’ x; L. Now we analyze what this
means, and the reader is asked to compare the reasoning to the considerations in Vol I
4.3.

First of all we introduce the functor the functor Aut(X) : For any scheme S — Spec(k)
we define Aut(X)(S) as the group of automorphisms of the scheme X x; S — S. We
may also introduce the functor Isom(X,X”). Our question is whether Isom(X,X")(k) # 0.
We observe the following: If S — Spec(k) and we can find a f € Isom(X,X’)(S) then
Aut(X)(S) acts on Isom(X,X’)(S) and the action is simply transitive. Here one usually
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says that Isom(X,X’) is a principal homogenous space under Aut(X)(S) or a Aut(X)
-torsor.

Now we come back to our problem. Our assumption says that we can find an isomorphism
f: X% L — X'x} L. Can we choose this isomorphism such that it is defined over k, i.e.
that it is an extension of an isomorphism between X and X’? We have seen (See previous
exercise 6) that f is defined over k if and only if f = f“ for all elements o € Gal(L/k).
Hence we consider the map Gal(L/k) — Aut(X Xy L), which is given by

oo =10 f".

and a straightforward computation shows that this map satisfies a cocycle condition
gr © gl = gro for all o,7 € Gal(L/E).

The morphism f is defined over k if and only if this cocycle is trivial. But we can try to
modify it: We can replace f by f o h where h is an automorphism of X X L. Then we
change 0 — g, into ¢ — g/, = h=' 0 g,h?. This defines an equivalence relation on the
cocycles and we define

H'(Gal(L/k), Aut(X x5, L)) = set of cocycles divided by the equivalence relation

Now it is obvious that X and X’ are isomorphic over k if and only if the above cocycle
defines the trivial class in H*(Gal(L/k), Aut(X x L)).

But we know more: If only X/k is given then we can consider a cohomology class £ €
HY(Gal(L/k), Aut(X xj L)) and represent it by by a cocycle ¢ — g,. We have the
surjective homomorphism of the Galois group Gal(k/k) — Gal(L/k), we can interpret
o0 — g, as a function (cocycle) on Gal(k/k). We use this cocycle to define a modified

action of the set X (k):

o(a) = goo(a)
and an easy computation shows that it is exactly the cocycle condition that makes this an
action. This action restricted to Gal(k/L) is the old action but the extension to Gal(k/k)
is different.
Now we saw in the previous paragraph, that such an action defines a descend datum
from L to k on X xj L. If this descend datum turns out to be effective, then we see
that the cohomology class (better the representing cocycle) defines a scheme X'/k. It is
almost tautological that the cohomology class in H'(Gal(L/k), Aut(X x, L) defined by
X'/k is the given one.
Hence we get a fundamental principle
If we know that we have effectiveness of descend data, then the isomorphism classes of
k-forms of X/k are given by the elements in

lim H'(Gal(L/k), Aut(X x, L))

We want to give two simple examples.
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Example 11. Let k be any field with characteristic # 2, pick two elements a,b € k*
such that a,b,—ab & (k*)?. We consider the matriz algebra Ms(k( /a)) this are the (2,2)
matrices with entries in k(y/a). The Galois group Gal(k(y/a)/k) is of order 2, let o be the
non trivial element. It acts on Ms(k(y/a)) by acting on the matriz coefficients. The fized
elements form the algebra May(k). We identify the scalars with the diagonal matrices. Now
we observe that the invertible elements of Ma(k(v/a))* = GLa(k(v/a)) act by conjugation
on Ma(k(y/a)), these conjugations induce automorphisms of the the algebra, and such a
congugation induces the identity if and only if the conjugating matriz is trivial. Hence we

get a cocycle by sending
o~ <(1) 8) ,er—1Id.

This cocycle defines a twisted action of the Galois group, we define

5(z) = (‘1) 8) o <b01 é) .

The elements fived by this new action of the Galois group form a k-algebra D/k and we
have seen that D @y k(v/a)/k) = My (k(y/a)/k). Hence D/k is a k-form of My(k). Let

a be one of the square roots of a in k(/a). Then we see easily that the matrices

(a0 (0 b
Ya=V1p —a) ™= \1 0

are elements in D, and the elements 1 = Id ,uq,up,uqpr = uqup form a basis of the k-vector
space D. We have
u? = a,u} = bug, = —ab.

This k-algebra D/k may have zero divisors or mot. If it has zero divisors then it is
isomorphic to Ma(k) (exercise) and if not it is called a quaternion algebra. If k = R and
a =b= —1 then we get the Hamilton quaternion algebra.
This k-algebra D/k is a k-form of the matriz algebra My (k) if we extend the scalars to
k(y/a) then it becomes isomorphic to the matriz algebra.

Before we discuss the second example we want to say a few words about the general
notion of an (affine) group scheme. Let S be any scheme. We consider an affine scheme
G/ S, which has the additional structure as an algebraic group scheme:

By this we mean that we have a morphism m : G Xxg G — G such that this morphism
defines a group structure on the set G(T') of T valued points for any scheme 7' — S. To
be more precise: For any T" — S a S-morphism g : T — G X g G is nothing else than
a pair of S-morphism g¢1,92 : T — G (Definition of the fibered product). Composing
g with m we get a S-morphism m o g : T — G, which will be called g1 - g2. We
require that this defines a group structure on G(T') for any 7' — S. It is clear that this
group structure depends functorially on T, i.e. if we have another S-scheme 7" and an S
morphism 7" — T then the induced map G(T') — G(T") is a group homomorphism.

We leave it to the reader to reformulate these requirements as properties of the S-
morphism m : G xg G — G. One has to say what associativity, existence of the identity
element and existence of the inverse mean. Of course we can extend this notion of group
schemes to arbitrary schemes G/S. We will come back to this later (See 7.5.6).
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As an example we may consider the group scheme GL,,/ Spec(Z). Its underlying affine
scheme is

SpeC(Z[Xll,Xlz, . .Xln,Xgl, ce 7Xnn7y]/(y det —1)

where det is the determinant of the matrix (X;;). The structure of an algebraic group is
given by matrix multiplication, this gives us the above group scheme.
We want to present an interesting case of a form of GL,, /IR.

Example 12. The group scheme GL,/R has an automorphism © : A —! A~! and
©2 = Id. Now we look at the extension C/R, the Galois group has as its non trivial
element the complex conjugation, which we denote by o. Again o — © defines an cocycle
and we can define a twisted action on GL,(C) by

F(A) = 0(A%) = O(A).

Then we get a R-form Of;GLn/R, which is called U(n) /R and whose real points are given
by the matrices A = ©(A) and if we unravel this we get

Un)(R) = {A]A A = 1d}.

If we extend the scalars to C we get U(n) xg € = GL, /C.

6.2.11 An outlook to more general concepts

More generally we have the notion of G//S-torsors (or principal homogeneous G bundles)
P/S for an arbitrary group scheme G/S. These are schemes P/S together with a left
action m : G x P — P, which satisfies two conditions.

a) Firstly we require that for any scheme T'— S, for which P(T') # 0 and x¢ € P(T)
the map G(T') — P(T) given by g — gz is a bijection.

a) Secondly we require that the torsor is locally trivial in a certain sense (See Vol. I,
4.3.11. (Unfortunately we did not state the requirement of local triviality in 4.3.11, but
it is clear from the context, because we speak of bundles.)) Here we have some flexibility.
We may require that our torsor is locally trivial with respect to the Zariski topology,
i.e. we have a covering by Zariski open sets S = |J, U; such that P(U;) # 0. If we put
S’ =], U; then this means that P xg .S’ is trivial.

But in view of our examples 11,12 this is certainly not a good requirement if our base
scheme is the spectrum of a non algebraically closed field. We need a more general notion
of local triviality. We may require that our torsor is locally trivial for the flat topology.
This means that for P/S we can find a faithfully flat morphism S” — S such that
P(S") #0.

Our considerations in 6.2.8 essentially mean that we do not loose any information if we
pass from P/S to P xg S" provided we keep track of the isomorphisms

(P Xs SI) XS’ py (S/ XS S/) = (P Xs S/) XS’ po (S/ Xs S/)

But the flat topology is very fine, it is necessary to introduce some coarser topologies.
We may for instance require that f : U — U C S is of finite type, this gives the ffft-
topology. We may require that f : U— U C S is étale (see 7.5.14, this yields the étale
topology. For all these topology we have the notion of a covering {[7L — S} and this
means that | |, U; — S is faithfully flat.
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If S = Spec(k) then an étale covering (see 7.5.14) is simply given by a finite separable
extension S’ = Spec(K), a finite flat covering is given by a finite extension K/k, which
is not necessarily separable.

If we come back to our affine group schemes G/S and consider G torsors G/S which
become trivial over a fixed covering pp : S — S (in some of our above topologies) then
the isomorphisms classes of such torsors again are in one-to-one correspondence to a set
of cohomology classes.

We define the set of cohomology classes first. We consider the sequence of groups

. Pla
2 L Pi3

G(S) ——=G(9") P G(S" xg 5" —*>G(S’ x5S xg 8"
2, D23

We define the 1-cocycles to be the elements g12 € G(S” x g S’), which satisfy

Pia(g12)P55(912)pi5(g912) 7 =1

and on this set we define the equivalence relation

dia ~ g1z if and only if 3 ¢ € G(S’) so that gi, = pi(g')g1205(¢") "

The set of 1-cocycles divided by this equivalence relation is the cohomology set

HY(S'/S.G)

If now P/S is a G/S torsor, which becomes trivial over S — S ( a morphisms in
our given topology) then we find a section zy € P(S’). We can take the pullbacks
pi(zo),p5(z0) € P(S" xg S’) and by definition we find an unique element gi2 with
91201 (o) = p3(zo). Now it is clear that gio is a 1-cocycle, changing the section zg to
another one yields an equivalent 1-cocycle. Hence P/S provides a class in H(S'/S,G).
On the other hand it is easy to see that a 1-cocycle provides a descend datum on G x g S’,
if we now assume that all these descend data are effective, then we get the canonical
bijection

{ Isomorphism classes of G/S torsors P/S, which become trivial over S’ — S}
— HY(S'/S,G)
(6.48)

It is now clear that the considerations in Volume I, 4.3. generalize to the situation here.
A morphism for our given topology f; : S| — S is a refinement of f : S’ — S if
we can find a morphism ¢ : S — S’ such that f; = f o g. Then we get obviously an
injection from the set of isomorphism classes of G/S torsors, which become trivial under
base change to S” to the set of those torsors, which become trivial over S] and hence an
inclusion

H'(S'/8,G) — H'(81/5.G),

which does not depend on the choice of g. Then we can define the limit

H'(S,G) = S;imSHl(S’/S,G),
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under our assumption on the effectiveness of descend data this is the set of isomorphism
classes of GG/S torsors, which are locally trivial in the given topology.

If S = Spec(k) is the spectrum of a field, then we can restrict our coverings S’ — S to
finite k-algebras k — L. Then we define accordingly

HY(k,G) = lim H'(L/kG).
(k) L/knigute (L/k,G)
If we restrict to finite separable algebras k¥ — L (i.e. L is a direct sum of separable
extensions) then we can show easily that
H'(k,G) = li H'(Gal(L/k),G(L)).
( 7G) L/k finite, seg;}able, normal (Ga< / )7G( ))
The set H'(Gal(L/k),G(L)) is called the first Galois cohomology (set) of L/k (with
coefficients in G) and the limit is called the first Galois cohomology of G/k. We considered
these sets already above.

If our group scheme G/S is abelian then we can imitate the construction of the Cech
complex (Vol. I, 4.5) and get a complex of abelian groups

0— G(S) — G(Y') — G(Y" x5 5') — G(Y' x5 5 x58") —

and this allows us to define the cohomology groups H™(S’/S,G) in the usual way. Again
we can take a limit over the ffft-coverings and define

Hf4(8,G) = H'(S,G) = lim H"(S'/S,G).
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7 Some Commutative Algebra

We want to collect some standard facts from commutative algebra. Here we will be rather
sketchy because many good references are available. Some of the proofs are outlined in
exercises.

7.1 Finite A-Algebras

Definition 7.1.1. An A-module B is called finitely generated if there are elements
bi,ba,...,b. € B such that for allb € B we can find a; € A such that b= a1b1+...+a,b,
with a; € A.

If ¢ : A — B is a homomorphism of rings, then we say that an element b € B is
integral over A if it is the zero of an monic polynomial, i.e. we can find a polynomial
(with highest coefficient equal to 1)

PX)=ap+a1 X...+ X" € A[X] (7.1)
such that

P(b) = g(ao) + play)b+ ...+ b" = 0. (7.2)

Definition 7.1.2. A morphism ¢ : A — B between two commutative rings is called
finite if one of the following two equivalent conditions is satisfied

1. The A-module B is finitely generated.
2. The A-algebra B is finitely generated and all elements of B are finite over A.

It is immediately clear that 2. implies 1. because we can use the polynomials to reduce
the degree of the generating monomials. The proof that 1. implies 2. is amusing, we leave
it as an exercise. (See also [Ei], Chap. I section 4 and [At-McD]). The following exercise
gives a hint.

Exercise 18. 1. We have to show that any b € B is a zero of a monic polynomial
in A[X], i.e. it is integral over A. To see this we multiply the generators b; by b
and express the result again as A-linear combination of the b;. This gives us an
r X r-matrix M with coefficients in A. If b is the column vector formed by the b;
we get a relation bb = Mb or (M — bId)b = 0. From this we have to conclude that
det(M — bId) = 0. This is clear if A is integral, but it suffices to know that the
identity of B is contained in the module generated by the b;, I refrain from giving
a hint. Hence we see that b is a zero of the characteristic polynomial of the matrix
M, but this polynomial equation has highest coefficient 1 and the other coefficients
are in A.

G. Harder, Lectures on Algebraic Geometry 11, DOI 10.1007/978-3-8348-8159-5 2,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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2. This argument generalizes: Let us consider any A-algebra A — B, but assume that
B is integral. Show that an element b € B is integral over A if we can find a finitely
generated A-submodule Y C B,Y # 0, which is invariant under multiplication by
b,i.e. bY CY.

If we have a morphism ¢ : A — B, then the integral closure of A in B consists
of all those elements in B, which are integral over A. It is an easy consequence of the
two exercises above that the integral closure is an A-sub algebra of B. (For two integral
elements by,by consider the finitely generated module {b%b5}.)

Definition 7.1.3. An ring A is normal if it is integral an if it is equal to its integral
closure in its quotient field K, i.e. if any element x € K, which is integral over A is
already in A. For any integral ring A the integral closure of A in its quotient field is
called the normalization.

Synonymously we use the terminology A is integrally closed for A is normal.

Definition 7.1.4. An element a in an integral ring A is irreducible if it is not a unit
and if in any multiplicative decomposition a = bc one of the factors is a unit. An integral
ring A is called factorial if any element x € A has a finite decomposition x = x1 ...z,
into irreducible elements, where the irreducible factors are unique up to units and per-
mutations.

Exercise 19. 1. Show that a factorial ring is normal.

2. Show that an integral ring is factorial if for any irreducible element m € A the
principal ideal (7) is a prime ideal.

3. Show that for any factorial ring A the polynomial ring A[X] is again factorial. (This
is essentially due to Gauss)

Hint: Let K be the field of fractions. Let P(X) = agp+a1 X+ - -4+a, X" € A[X],a, #
0. Assume that this polynomial splits in K[X]. Then we find a ¢ € A,c # 0 such
that we can factorize

cap+car X + - +can X" = (bo+ 01 X+ +0,X")(co+ a1 X + -+ ¢, X7)

into a product of two polynomials inA[X]| of smaller degree. Now use 2) to show
that for any irreducible divisor 7 of ¢ one of the factors must be zero mod (),
hence we can divide on both sides by 7. This process stops. Therefore we see that
a polynomial in A[X], which becomes reducible in K[X] is also reducible in A[X].
Then the rest is clear.

4. Show that the ring of integers Z and the ring k[X] of polynomials over a field k are
normal.

5. Let us assume that A — B are both integral and that K — L is the correspond-
ing extension of their quotient fields. Let us assume that L/K is a finite extension.
Furthermore we assume that A normal. For x € L we have a unique monic polyno-
mial F(X) € K[X] such that F(z) = 0. The multiplication by z induces a linear
transformation L, of the K-vector space L. It is well known that x is a zero of the
characteristic polynomial det(X Id —L,) of L,. Show that

x is integral over A <= F[X] € A[X] <= det(XId — L,) € A[X]
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6. Under the above assumptions we have try,/x(x) € A for any element x € L, which
is integral over A.

7. Again under the assumptions of 3. we can say: For any € L we can find a non
zero element a € A such that az becomes integral over A

8. If an A module M is locally free of rank of one then we can find a finite covering
X = Spec(4) = U Xy,, Xy, = Spec(Ay,) such that M ® Ay, is free of rank one, i.e.
M ® Ay, = Ay,s;, where s; € M.

Show that this implies that M is isomorphic to an ideal a, which is locally principal.

Show that for a factorial ring A any locally principal ideal a C A is itself principal
Hint: Show that either a = A or we can find an irreducible element 7, which divides
all elements of a and hence a C 7~ 'a C A. The ideal 7~ 'a is strictly larger than
a. We apply the same argument to 7~ 'a and get get an ascending chain of locally
principal ideals. This chain has to stop because a non zero element of a has only
finitely many irreducible divisors.

This implies that any locally free module of rank one over a factorial ring is free
(See [Ma], Thm. 20.7 )

The item (3) in the exercise above implies the following theorem, which we will use several
times (See for instance [Ja-Sch], Chap. IV, Satz 4.4.)

Theorem 7.1.5. For any factorial ring A the polynomial ring A[X1,Xs,...,X,] is fac-
torial.

We have the following fundamental theorem for finite morphisms

Theorem 7.1.6. Assume that the ring homomorphism ¢ : A — B is finite and injective.
Then the induced map ¢ : Spec(B) — Spec(A) is surjective, has finite fibers and the
elements in the fibers are incomparable with respect to the order on Spec(B).

This means in other words: For any p € Spec(A) we can find a q € Spec(B) such that
AN gq=p. The number of such q is finite, whenever we have two of them q;,q2 we have
q1 ¢ qz2. (See [Ei], I. 4.4,prop. 4.15, cor. 4.18)

To prove the theorem we need another famous result from commutative algebra, namely
the Lemma of Nakayama.

Lemma 7.1.7. [Nakayama] Let A be a local ring with mazimal ideal m and let M be a
finitely generated A-module. If

M@ (A/m)=M/mM =0
then M = 0.

To see this we use the same trick as above: Express a system of generators of M as a
linear combination of these generators but now with coefficients in m. We find that 14
is a zero of a characteristic polynomial of a matrix with coefficients in m, which is only
possible for the 0 x 0 -matrix. g
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Now we sketch the proof of the theorem 7.1.6. We pick a prime p € Spec(A). The residue
class ring A/p is integral, we have Spec(A/p) — Spec(A) and the zero ideal (0) is mapped
to p. We localize at (0) and we get the quotient field (A/p)(o). Taking fibered products
we get a diagram of affine schemes

Spec(A) Spec(B)

T T

Spec(A/p) <—————Spec(B @4 (A/p))

T T

Spec(A/p) () ~—— Spec(B ®4a (A/p) (o))

The vertical arrows are inclusions and it is clear that the prime ideals q € Spec(A), for
which qN A are exactly the elements in Spec(B®4 (A/p)(0)). To prove the surjectivity we
have to show that this scheme is not empty. This follows from the lemma of Nakayama
because we can obtain Spec(A/p)() also as the residue field A,/m;, of the local ring
A,. We have B ®4 A, # 0 (only the zero divisors of S = A\ p go to zero in this
tensor product) and hence we get by Nakayama that B ®4 A,/m, # 0 and this implies
Spec(B ®4 Ap/my) # 0. Now we have that B ®4 (A/p) (o) is a finite dimensional vector
space over the field (A/p)(o), it is a finite (A/p)y-algebra. This implies that any prime
ideal q € Spec(B ®4 (A/p)(0)) is maximal because the residue ring is automatically a
field. Then it is also clear that Spec(B ®4 (A/p)()) must be finite. The map

B®a (A/p)o) — HB ®a (A/P)0)/a
q

is easily seen to be surjective. Hence we have proved that the fibers are finite and non
empty and we have seen that the prime ideals in the fibers are incomparable.

7.1.1 Rings With Finiteness Conditions

In this section formulate some finiteness for rings collect some facts about these rings.
We will not give proofs because these facts are easily available in the literature. On the
other hand it may be a good exercise if the reader tries to find the proofs her(him)self.

Definition 7.1.8. A commutative ring A with identity is called noetherian if it satisfies
one of the following equivalent four conditions

1. Any ideal a C A is finitely generated.
2. Any submodule N of a finitely generated A-module M is finitely generated.

3. Any ascending chain a, C a,41 C ...a, C ... becomes stationary, i.e. there exists
an ng such that a,, = apy41 ... = Apytm for allm > 0.

4. Any ascending chain of A-submodules N, € N,y1 C ... of a finitely generated
A-module M becomes stationary.

Example 13. The ring 7Z is noetherian and of course we know that fields are so too.
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Theorem 7.1.9 (Hilbertscher Basissatz). If A is a noetherian ring then the polynomial
ring A[X] is also noetherian.

This implies that polynomial rings A[X7,...,X,] are noetherian.
The following lemma is extremely important. We leave the proof to the reader, a special
case of it was discussed in exercise (2) Step 2 in 6.1.2.

Lemma 7.1.10 (Noetherscher Normalisierungssatz). Let A = k[x1,29,...,2,] be a
finitely generated k-algebra (k a field). Then we can replace the system of generators
by another system yi, ..., YrYrt1, ... Ym Such that B = k[y1,ys2,...,yr] is a polynomial
ring in the variables y1, ...y, and the other variables (or the algebra A) are integral over
B.

For the proof we refer to the standard books (See for instance [Ei],II,13). The reader is
invited to write down a proof using the idea from the exercise mentioned above.
The theorem above has several important applications. One of them is the

Theorem 7.1.11 (Nullstellensatz von Hilbert). Let k be a field and let A = k[x1,x9, . .. ,z,]
be a finitely generated k-algebra. For any maximal ideal m € Spec(A) the residue field
A/m is a finite field extension of k. Especially if k is algebraically closed then A/m = k.

Here we give the argument. We divide by m, in other words we may assume that A itself
is already a field. We proceed by induction on r. If » = 0 then the theorem is obvious.
Let 7 > 1. We apply the lemma above and find that A is finite over a polynomial ring
B =k[y1,...,ys] C A. If s > 1 then B has non trivial prime ideals, which by our theorem
7.1.6 extend to non zero prime ideals in A, which is not possible. Hence we see that
B = k and therefore, A is a finite field extension of k.

The Nullstellensatz implies:

Corollary 7.1.12. For a finitely generated k-algebra A/k the intersection of the mazimal
prime ideals is equal to the radical.

Proof: Let f € A be not nilpotent. Then Ay is still a finitely generated k-algebra and
by the Normalisierungsatz it is finite over a polynomial k-algebra B. This polynomial
algebra has maximal ideals and then we apply 7.1.6.

7.1.2 Dimension theory for finitely generated k-algebras

Definition 7.1.13. For an integral k-algebra A we define the dimension dim(A) : The
number dim(A) + 1 is equal to the maximal length of a chain of prime ideals (0) C py C
... C p, where all the inclusions are proper. We say say that the dimension is co if chains
of arbitrary length exist.

A maximal chain is a chain that cannot be refined. We also define:

Definition 7.1.14. The height h(p) of a prime ideal p is defined as the number, for
which h(p) 4+ 1 is the mazimal length of a chain (0) Cp1 C ... C p ending with p.

There exists a theory of dimensions for arbitrary noetherian rings (see for instance
[At-McD],[Ei],IL,Chap. 8), which is more general than what we are doing here.
Before we discuss the main theorem in this section I want to mention
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Proposition 7.1.15. If A,B are two finitely generated integral k-algebras, if i : A — B
is an inclusion and if B is integral over A then for any chain (0) C p1 C ... C p,r of
prime ideals in A there exists a chain (0) C p}y C ... C pl. of prime ideals such that
p; = p; N A. Especially we can say that the two rings have the same dimension.

Proof: Obvious from Theorem 7.1.6 ]

Theorem 7.1.16. The dimension of an integral finitely generated k-algebra A is fi-
nite and any mazimal chain has the same length. The dimension of the polynomial ring
k[Xl,XQ, e >Xn] 5 n.

Again we give the argument. We proceed again by induction on the number of generators.
If we have two integral k-algebras A C B and if B is finite over A then dim(A) = dim(B).
Using the Noether Normalisierung we can write our algebra A as a finite extension of an
algebra with less generators as long as we have non trivial relations among the generators.
Hence we are reduced to the case of a polynomial ring A = k[X1,...,X,]. At this point
the reader should be aware that it is not clear at this point that we can find minimal
non zero prime ideals at all, it could be possible that we can always go to smaller and
smaller non zero prime ideals. This would of course imply that the dimension is co. To
see that this is not the case we pick an arbitrary non zero element F(X;,Xo,...,X,) in
A. We consider prime ideals p containing the principal ideal (F(X1,Xs,...,X,)).
Before we continue, we will show a proposition, which is a special case of the Hauptide-
alsatz of Krull.

Proposition 7.1.17. We can find minimal prime ideals p O (F(X1,X2,...,X,)) and
each such ideal is also a minimal non zero prime ideal in k[X1,Xo,...,Xp].

Again we apply the trick used in the proof of Noether Normalisierungsatz, which tells
us that after some change of variables we can assume that this polynomial is of the form

F(Xl,XQ,...,Xn) = a()(Xh...,Xn,l) +a1(X1,...,Xn,1)Xn +... +X;Ln,

i.e. it is unitary in X,, over the ring k[X1,...,X,,—1]. We rewrite our polynomial ring by
increasing the number of generators

A=k[Xq,....X,,.Y]/(F(X1,Xs,....X,,) = Y).
This gives us an embedding
k[Xl, ce 7Xn,1,Y] C k[Xl, C ,Xn,Y}/(F(Xl,XQ, ce 7Xn) — Y)

where now k[X,...,X,—1,Y] is again a polynomial ring. (This requires a little argument.)
We exchanged the variable X,, against the polynomial F'. Now it is very easy to see that
the principal ideal (Y) = Yk[X,...,X,,_1,Y] is a non zero prime ideal and it is minimal
with this property. Our original algebra A is integral over k[ X1, ..., X,,_1,Y]. Our theorem
tells us that we can find a prime ideal p, for which we have

pN k[Xl, c. ,anl,Y] = <Y)
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and hence p O F(X71,...,X,,) and p is minimal with this property. It is even clear that p
is a minimal non zero prime ideal because a smaller one would induce a non zero prime
ideal contained in (Y'). O

We continue with the proof of 7.1.16. We see that chains of prime ideals, in which the
non zero members contain F(X1,...,X,,) have the same length as the induced chains in
E[X1,...,Xn—1,Y] where the non zero members contain (Y'). But these last chains are
chains in k[X7,...,X,_1] and it follows from the induction hypothesis that the maximal
chains in this ring have length n. Hence we see that maximal chains in A have length
n + 1 and the theorem is proved.

Finally T want to comment briefly on the Hauptidealsatz von Krull. We proved it in the
course of the proof of the previous theorem for a polynomial ring, but the general case
follows easily again by Noether normalization. In our situation it says:

Theorem 7.1.18 (Hauptidealsatz von Krull). For a finitely generated k-algebra A, which
is integral and a non zero element f € A and a minimal prime ideal p D (f) we have

dim A — 1 =dim(A/p).

For arbitrary noetherian rings the first assertion in theorem 7.1.16 is not true. (See
[At-McD], chap. 11, Exercise 4) But for local noetherian rings we have the concept of
dimension and an analogue of this theorem. (see [At-McD],p.122, [Ei],II, Thm. 10).

We need the integrality of our algebra because otherwise Spec(A4) can have several irre-
ducible components (see 7.2) and these components may have different dimensions. This
would have the effect that we can find non refinable chains of prime ideals, which have
different length.

On the other hand we know that Spec(A) = Spec(A/Rad(A)) and this implies that what
we need is the integrality of A/ Rad(A) to define the dimension.

7.2 Minimal prime ideals and decomposition into irreducibles

For any noetherian ring A we can consider the set of minimal prime ideals. Of course for an
integral ring A the set of minimal prime ideals consists of just one element (0) € Spec(A),
this is the generic point. In the general case it is not a priory clear that minimal prime
ideals exist.

We know Spec(A) = Spec(A/Rad(A)), hence if we want to say something about the
ordered topological space Spec(A) we may very well restrict our attention to the case
that A is reduced. We state a theorem, which is a weak form of a theorem proved by E.
LASKER.

Theorem 7.2.1 (E. Lasker). Let A be a reduced noetherian ring. Then the set of minimal
prime ideals is finite. To any minimal prime ideal p we can find an f € A\ p such that

p=Annu(f) ={z € Alzf = 0}.
I want to indicate the steps of the proof and leave it to the reader to fill the gaps.

Exercise 20. We prove that there exist minimal prime ideals. This is clear if A is
integral. If not, then we find f,g € A\ {0} such that fg =0.
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la) Consider Anny(f) = a and prove: If a is not prime then we can find an = € A such
that f1 = zf # 0 and such that a; = Ann4(f1) is strictly larger than a = Ann4 (f).

1b) Show that this implies that we can find an y € A such that Anna(fy) = p is a prime
ideal and that this prime ideal is minimal. Hence we see that minimal primes exist.

Let us write yf = f,,. It is clear that f, & p.

Exercise 21. Prove that any prime ideal ¢ contains a minimal prime ideal p C q of the
form Ann,(f,) and hence all minimal prime ideals are of this form.

Let us assume we picked an f, for any minimal prime ideal.
Exercise 22. Prove that for two minimal prime ideals p # p; the product f, f,, =0.

Exercise 23. Consider the ideal generated by these f, and combine the fact that this
ideal is finitely generated and Exercise 22 above to show that these f, form a finite set.

Exercise 24. Let A be an arbitrary noetherian ring, let py,...,p, be the set of minimal
prime ideals. Let us also assume that the spaces Spec(A/p;) are disjoint. Then there is a
unique collection of elements eq,...,e,. such that
e; €p; and e; € p; for all j # i
e? =e; for all ¢
eie; =0 for all ¢ # j

,
E € =1y
i—1

(See [Ei], I. 7.3.) We give a hint for the solution. Our assumption that the spaces
Spec(A/p;) are disjoint implies that we can find €] such that €; =1 mod p; and e; € p;
for all j # 4. These e} satisfy all the relations if we compute modulo the radical Rad(A).
Now we can modify €} — e/ + r; = ¢; such that we have the idempotency €? = e;. (Use
the next exercise to show that ). e/ is a unit.) Then all the other requirements are also
fulfilled.

Exercise 25. If we have any noetherian ring R and if we consider the homomorphism
R — R/Rad(R) then the group R* of units of R is the inverse image of the units in
R/Rad(R)

This decomposition of 14 = e; + ...+ e, is called the decomposition into orthogonal
idempotents. It gives a decomposition of the ring

A:@Aei

If our ring has no radical, the f,, are equal to the e;.

Definition 7.2.2. An affine scheme X = Spec(B) is called irreducible, if it cannot be
written in a non trivial way as a union of two closed subschemes X = X; U Xs. (Non
trivial means both subschemes X1 and Xo are not equal to X .)
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If A = B/Rad(B) is not integral then we get a non trivial decomposition Spec(B) =
USpec(A/p;) and hence we see that Spec(B) is not irreducible in this case. If on the
other hand we have a non trivial decomposition Spec(B) = X7 U Xo then we can find
elements f1,f2, which are non zero such that f; vanishes on X;. Then f; fo vanishes on
Spec(B), hence it must be in the radical. (7.1.12). This implies that A has zero divisors.
We proved

Lemma 7.2.3. The spectrum Spec(B) of a noetherian ring B is irreducible if and only
if B/Rad(B) is integral.

It follows from Lasker‘s theorem (Theorem 7.2.1) that for a noetherian ring A we have
a unique finite decomposition of Spec(A) into irreducible subschemes Spec(A/p;). These
irreducible subschemes are called the irreducible components. If our ring A has no radical
then the elements f, have the property that they vanish on all components except the
one, which they define. This is a geometric interpretation of the result in Exercise 22
above.

Associated prime ideals

We want briefly discuss an extension of the theorem 7.2.1. Let A be a noetherian ring
and let M be a finitely generated A module. A prime ideal p is associated to M if it is
the annihilator of an element in M. Let Assa(M) be the set of associated primes. Then
we have the following

Theorem 7.2.4. 1 The set Asso(M) is finite, each prime in Ass (M) contains Ann (M)
and the minimal prime ideals containing Anna (M) are in Ass(M).

2 The union of the associated primes is the set of zero divisors of M plus the zero
element.

3 If S is a multiplicatively closed subset of A not containing 0 then
ASSAS (Ms) = ASS(M)S

For the proof of this theorem and further background we refer to [Ei],I. 3.1.

The restriction to the components

For our given noetherian ring A we consider the natural homomorphism

7T:A—>HA/pi

where the p; run over the minimal prime ideals. The kernel is the radical of A. (see
Exercise 19, 1b))

It is not necessarily surjective. If we have a pair of irreducible components, which have
a non empty intersection then we can find a prime ideal p of A, which contains the two
different minimal prime ideals p;,p;. Then an element f € A,f ¢ p has a non trivial
image in A/p; and in A/p;. If f; is the image of f in A/p,, then f; & pp; and hence the
element (0,...,f;,0,...,0) € [] A/pi, is not in the image of .
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A slightly different way of saying this: The spectrum Spec(]] A/p;) is the disjoint union
of the irreducible connected components, this may be different from Spec(A4).

Definition 7.2.5. A noetherian ring is called local artinian ring if its unique maximal
ideal is also minimal.

Definition 7.2.6. A non zero element f € A is called a non zero divisor if fg = 0
implies g = 0.

The non zero divisors form a multiplicatively closed subset S C A. It is clear that f € A
is a non zero divisor if and only if all its components under the projection map 7w are
non zero or what amounts to the same if f is not contained in any of the minimal prime
ideals.

Definition 7.2.7. The total quotient ring of A is the localization Ag = Quot(A).

The spectrum of Ag is simply the set of generic points of the irreducible components. If
we pick a minimal prime ideal p; then the localization A, is a local artinian ring. We
get

Proposition 7.2.8. The ring Ag is the direct product of the finitely many local artinian
rings Ap, and our map wg is defined component wise as [[ Ay, — Quot(A/p;). This
map is surjective and the kernel is Rad(A4)s

In principle this is the situation in exercise 24, since we localize at the generic points of the
components, we make the irreducible components disjoint. Instead of taking this radical
step we could have chosen non zero divisors f;; C A, which are zero on Spec(A/p;) N
Spec(A/p;). If we take the product of all these f;; we get a non zero divisor F' € A and
then Spec(Ar) has now the virtue that its irreducible components are disjoint. Hence we
may apply exercise 24 and write

AF L @AFBL

Here we replaced the generic points by actual open sets, which looks a little bit more
geometric.

An element f € Quot(A) can be written as f = g/h where h is a non zero divisor. Then
we have of course f € A and f is a regular function on Spec(A;)(See p.11.) We look at
all different ways to write f as a quotient, then we see that f is defined on the union of
all the Spec(Ay). This open set is called the domain of definition for f. It is a dense
subset of Spec(A).

Decomposition into irreducibles for noetherian schemes

Definition 7.2.9. If we have an arbitrary scheme X we say that this scheme is a
noetherian scheme if we have a finite open covering X = |JU; by affine schemes
U; = Spec(A4;) where the rings A; are noetherian rings.

Again we can speak of irreducible schemes. If one of the covering sets U; is not irreducible,
then we write it non trivially as U; = V; UW;. If we take the closures of these subschemes
in X we clearly get two closed subschemes, which are not equal to X. Then we get a non
trivial decomposition of X = V; UW; U Z; where Z; is the complement of Uj;.

Hence we see:
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Proposition 7.2.10. A noetherian scheme X = |JU; is irreducible if and only if all the
U; are irreducible.

From this we can deduce very easily that X itself has always a unique finite decomposition
into irreducible subschemes. This is usually proved directly without reference to affine
schemes.

If we have an affine scheme of finite type X = Spec(k[X1,...,X,]/I) = Spec(A) then it
is automatically noetherian. Hence our previous considerations apply.

If X/k is an irreducible and reduced scheme of finite time and if U C X is an open affine
subscheme, which is not empty, then Ox (U) is integral and the quotient field K of this
affine k-algebra is independent of U. This quotient field will be denoted by k(X) and it
is called the field of meromorphic functions on X/k or simply the function field of
X/k.

If we apply the Noether -normalization than we can write Ox (U) as a finite extension
of a polynomial algebra k[T},T%,...,T,] and then we have seen that

dim(Ox (U)) = dim(k[T1, Ty, ..., T}]) = r

and this number r is also by definition equal to the transcendence degree of the function
field k(X)/k. Hence we define for any irreducible scheme of finite type

dim(X/k) = trdeg(k(X)/k).

Local dimension

It is clear that it does not make sense to speak of the dimension of the dimension of a
finite type scheme X/k, which is not irreducible. But if we have point € X and if this
point lies on exactly one of the irreducible components, then we can speak of the local
dimension of X/k at . It is simply the dimension of this irreducible component. The
point z lies in exactly one irreducible component if and only if the local ring Ox , is
integral and in this case the local dimension at x is also the dimension of the local ring

Ox z-

7.2.1 Affine schemes over k and change of scalars

In this section we want to consider k-algebras A/k. We want to change the terminology
a little bit.

Definition 7.2.11. A k-algebra is called an affine k-algebra if it is finitely generated
over k as an algebra. This is synonymous to k-algebra of finite type.

For these schemes over a field k we always have the option of base change to k or to
another field extension, i.e. we can consider the algebra A x; L especially A ®; k. We
want to see what happens to irreducibility, reducedness and dimensions under such a
base change. We also want to discuss the behavior under the formation of products.

Definition 7.2.12. An affine algebra A/k is called absolutely irreducible if A ®;, k
1s irreducible.
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We know already what it means that A/k is absolutely reduced, it means that A @ k
has no non trivial nilpotent elements (see Def.6.2.12.)

Again it can happen that an irreducible (resp. reduced) k-algebra A/k becomes reducible
(non reduced) if extend the ground field. To see this we can start from a finite, non trivial
extension K/k. Then we know that K ® k is not a field. If K/k is separable then K ®y, k
is a direct sum of copies of k, if K/k is not separable then K ®; k contains non trivial
nilpotent elements.

In the following exercise we will show: If an integral k-algebra A becomes reducible or
non reduced after extension of scalars, then we can find a finite extension of K/k, which
is contained in the field of fractions of A, and which is "responsible” for that.

Exercise 26. Let A/k be an integral affine k- algebra. If it is not absolutely irreducible
or not absolutely reduced then we can find a non zero f € A such that the localization
Ay contains a non trivial finite extension of k.

This is a little bit tricky, we outline a strategy for a solution. First reduce the problem to a
base change A®j L where L = k[X]/(p(X)) with an irreducible polynomial p(X) € k[X].
Investigate, under which conditions the algebra A ®; L can become reducible or non re-
duced. This means that we can find two polynomials g1 (X),g2(X) € A[X] whose degrees
are strictly less than the degree of p(X) such that p(X) divides the product g1 (X)g2(X).
Look at all such pairs and pick one where the degree of say ¢g;(X) is minimal. Use the
arguments you learned in your first algebra course to show that there must be a non
zero element f € A such that g;(X) divides fp(X). This means that g, (X)/f € A¢[X]
divides p(X). Now conclude that the coefficients of g;(X)/f must be algebraic over k.
But not all of them are in k and we found the non trivial extension.

Definition 7.2.13. We call an element y € Ay a pseudoconstant if it generates a
finite extension of k, i.e. if it is algebraic over k. We call it a constant if it is actually
in A.

It looks a little bit bizarre that we can have pseudoconstants, which are not constants,
but this may be the case.

To give an example we consider the R-algebra A = R[z,y]/(2? + y?). Then our scheme
Spec(A) is irreducible but A ® C is not. The elements x/y,y/x are pseudoconstants but
they are not constants. The geometric points are given by two lines intersecting in the
origin. If we remove the origin, the value of say x/y is +i on the two lines. In the origin
the function z/y is just a little bit confused and does not know, which value to take.

If k£ is a non perfect field of characteristic 2 and if a € k is not a square then A =
k[z,y|/(z? + ay?) is integral. Again we see that x/y,y/z are pseudoconstants but not
constants. The terminus ”constants” is a little bit misleading. The ”constants” are only
constant if we restrict them to the irreducible components. We claim:

Exercise 27. If A/k is integral and of finite type then the pseudoconstants generate a
finite algebraic extension of K/k.

Hint: To see this we apply the Normalisierungslemma and write A as a finite extension
of a polynomial ring B. Hence A is a finite B-module, let m be the number of elements
in a system of generators of this B-module. It is easy to see that for any non zero f € A
we can find an F' € B such that Ay C Ar and Ap is still integral over Bp. If our
field % is infinite then we can find a k-rational point a € Spexmax(Bp) let m, be the
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corresponding maximal ideal. We get an injection of the field of constants of Ar to
Ap/mgAp. Now Ap/m,AF is a vector space over B/m,B = k, which is generated by
the images of the generators of the B-module A. Hence the degree of this extension is
bounded by m. Therefore the degree of the field of pseudoconstants is bounded. This
proves the assertion if k is infinite. If k is finite then we can replace k by an extension
k1 /k of prime degree where this prime is larger than m and such that we find a k;-valued
point a of Br. Then we see that the tensor product Ap ®j k is still a field and injects
into Ap ® Bp/m, and we have the same argument as before.

It is clear that a pseudoconstant has a dense domain of definition. Hence we see that we
have an open dense subset U C Spec(A), which is the common domain of all pseudocon-
stants. We also see that all the pseudoconstants lie already in a suitable sub algebra Ay
where f is a non zero divisor. (See 7.2.8).

We drop the assumption that A/k is integral and consider an arbitrary finitely generated
k-algebra. We can consider its total quotient Quot(A)/k and define the sub algebra of
pseudoconstants L/k C Quot(A)/k as being the ring of elements, which are finite over k.
It is obvious that this k-algebra L/k is exactly the inverse image of the pseudoconstants
under the map

7 : Quot(A) — @ Quot(A/pi),

p; minimal

where now on the right hand side we have a sum of fields. On the left hand side we may
have nilpotent elements.

We conclude- using exercise 27- that L/k is finite dimensional, because the radical is of
finite dimension over k. It is also clear that the map

Spec(Quot(A)) — Spec(L)

is bijective, the left hand side is just the set of generic points of the irreducible components
of Spec(A).
From these exercises we get

Lemma 7.2.14. An integral affine k-algebra is absolutely reduced and absolutely ir-
reducible if and only the field of pseudoconstants is equal to k. The k-algebra L/k of
pseudoconstants is preserved under change of scalars, i.e. L @k is the k-algebra of pseu-
doconstants of A®k. We can find a finite separable extension K /k such that the irreducible
components of A® K will be absolutely irreducible.

We can give this a slightly different formulation. We can consider the k-algebra homo-
morphism

L®k— Quot(A) ® k.
The lemma says that this induces bijections

Spec(L ® k) «— Spec(Quot(A) ® k)
Rad(L ® k) — Rad(Quot(A) @ k)

The proof is based on an observation which will also play a role in the next section.
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Let us consider an element F € A ® k. We can write this element in the form
F= Z i ®ay

where the «; are taken from a finite normal extension K/k. This extension has a maxi-
mal separable sub extension K., in it. We know that any element oo € K raised to a
sufficiently high power of the characteristic p of our field k& will fall into K., Hence we
get that

FPr=3 "l @a € A® Ky

If we now form the norm of this power, this means we form the product over all conjugates
by elements o € Gal(Kep/k), then its norm is

G= HU(FPT) = H (fo ®U(afr>) € A.

This has consequences: If for instance F' is a non zero divisor, then F?" is a non zero
divisor, then all o(F?") are non zero divisors. We see that /I =G € A C A®k is still
a non zero divisor. Therefore (A ® k)r C Ag ® k and this implies that

Quot(A) ® k = Quot(A ® k).

Now let us assume that I’ € Quot(A) ® K is a pseudoconstant. This is so if and only if
G = FP" is a pseudoconstant for any r > 1. As before we rewrite G in the form

GZZQ@@@

where the 3; € Ky, form a basis over k. We have the trace map tr : Ky, — k and
consider the elements

tI‘(Gﬁj) = Z gi tr(ﬂlﬂj).

These elements are pseudoconstants and since the determinant of the matrix tr(3;05;) is
non zero we get that the coefficients g; € Quot(A) must be pseudoconstants. We have the
decomposition of Quot(A) ® k into a direct sum of local artinian algebras and we have
the decomposition of the identity into orthogonal idempotents 14 = > e;. The e, are
clearly pseudoconstants in Quot(A) ® k. We apply our previous argument and find that
suitably high powers e " lie in L ® k. Since the e; are idempotents we know e; € L ® k
and more precisely we see that the e; are already in L ® K where K/k is separable. O

Exercise 28. Let us assume that A/k is absolutely reduced. In this case we may interpret
A ®p k as a ring of k-valued functions on the set of geometric points of Spec(A)/k. The
union of the intersections of pairs of two different irreducible components is a closed
subset Y of X = Spec(A xj k). The complement of U = X \ Y is a disjoint union of
irreducible components U; each of them is a non empty open subset of an irreducible
component of X. We can find an element f € A which vanishes on Y, but which is non
zero on any of the components. Show that
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Ap @rk =P (Af @k k)ei,

the e; are pseudoconstants and each of them is identically equal to one on exactly one of
the irreducible components U; and identically zero on all the others. If and only if all the
irreducible components of Spec(A ®y, k) are disjoint we have e; € A! Of course the e; are
not really constant on the the set of geometric points of Spec(A4), but they are defined
everywhere and constant on the irreducible components.

In our discussion above we gave an argument, which also can be used to show:

Exercise 29. If K /k is separable then Rad(A ® K) = Rad(4) ® K

Hint: The only thing that has to be proved is the equality concerning the radicals in the
reformulation of the Lemma. For this we may assume that our field k is already separably
closed and that A/k is integral. Now we repeat the argument in the exercise above. We
reduce the problem to the case of an extension K = k(«) where o = a € k. Then this
argument yields: If A ® K has nilpotent elements then we can find a § € Quot(A) such
that g? = of = a. This shows the desired equality of radicals for this small extension.
Then we proceed by looking at (A ® K)/Rad(4A ® K) and apply the same argument.

Let us consider two affine k-algebras A /k,As/k, then we have the following
Lemma 7.2.15. We have

Rad(Al ® Az) = Rad(Al) ® AQ + A1 (24 Rad(Az)

and especially the tensor product Ay ® Ao is reduced if the factors are reduced. If the two
algebras are irreducible, then tensor product A1 ® As is also irreducible.

Proof: Choose a basis {¢1,92, - . .} of Ay/k, where the first say ¢ basis vectors form a basis
of Rad(Asz). Let h = Y fi ® g; be an element in the radical. We evaluate this element
at geometric points x € Specmax(A4;) and then the element > fi(z)g; € A2 must be in
the radical of As. This implies that for all such points x we have f;(z) = 0 for all indices
i > t. The Nullstellensatz gives us f; € Rad(A;) for all these ¢ > ¢ and this proves the
first assertion.

The proof of the second assertion is similar. We can assume that both algebras are
actually integral. We take the same basis and consider a pair of zero divisors

(> ree) (> fiow) =0

If we evaluate at the geometric points = as above, then for each such z we must have
that one of the factors vanishes (irreducibility of Spec(As)). Hence we may consider the
two closed subschemes of Spec(A;), which are defined by the vanishing of the f; or the f/
respectively. Their union contains all geometric points, hence they cover Spec(A;). Since
Spec(A;) is irreducible we get that one of them must be the whole Spec(A;) and this
proves that the corresponding factor in the product must be zero because the product is
absolutely reduced. O

Proposition 7.2.16. If A;,As are two irreducible k-algebras then we have
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Proof: This is rather clear. We apply Noether Normalisierungssatz to our algebras and
write them as finite extensions of polynomial rings. Then the number of variables is equal
to the dimension in either case (prop.7.1.15 and thm. 7.1.16 ). The tensor product is finite
over the polynomial ring in the disjoint union of the variables. O

What is dim(Z, N Z5) ?

Let us assume that X/k is an irreducible scheme of finite type, let 71,75 C X be irre-
ducible subschemes. We consider the intersection Z; N Zy (See p. 18). This intersection
can be arbitrarily complicated, in general it will not be neither irreducible nor reduced.
Of course we can consider its decomposition into irreducibles, Z; N Zy = (JY; and we can
ask for the dimension of the irreducible components. Even this may be difficult to answer.
Instead of stating a theorem, I explain some reasoning how to attack this question.

Let us pick a closed point P € Z; N Z5 and let us assume that this point lies on exactly
one irreducible component of the intersection. We look at affine neighborhoods P C U.
We assume that we can find a neighborhood U such that U N Zs is defined by one
equation, i.e. there is an f C O(U),f # 0,f(P) = 0 such that U N Zy = Spec(OU)/(f).
Then it follows from the Hauptidealsatz that dim(Z;) = dim(U) — 1 = dim(X) — 1. The
subscheme Z; UU C U is defined by an ideal Iy C O(U), we have Z; = Spec(O(U)/I1).
Then Z1NZyNU = Spec(O(U)/(11,f) Now we have two possibilities. It may be that the
image of f in O(U)/1; is zero, i.e. (I1,f) = I;. This means that Z; N Zs = Z5 and hence
dim(Z; N Z3) = dim(Zy). If this is not the case then the Hauptidealsatz implies that for
irreducible components Y; C Z1 N Zy we have dim(Y;) = dim(Z;) — 1. So the dimension
stays the same or it drops by one.

The obvious induction yields the following technical proposition:

Proposition 7.2.17. Let X/k be an irreducible scheme of finite type and of dimension
d. Let Z1,7Z5 be two irreducible sub-schemes of codimension ay,as. Let Y be an irreducible
component in the intersection, let P € Y be a closed point, which does not lie in another
irreducible component. Now we assume that we can find an (affine) open neighborhood U
of P such that the ideal Iy defining Zs restricted to U is generated by as elements. Then
we have

dim(Y) > d — ay — ao,

i.e. the codimension of Y is less or equal to a; + as.

This is obvious from the considerations above. O

The question we are discussing is local, hence we may assume that X/k is affine, we write
X = Spec(A/k). We consider homomorphism A @ A — A, which corresponds to the
embedding of the diagonal

A:XLA)(CXXICX,

the diagonal is defined by the ideal I, which is generated by the elements f® 1 —1® f.
Clearly we have Z1 N Zo = Ax N (Zy Xy, Z3).

Now we anticipate the notion of smoothness (See 7.5). If we have an irreducible compo-
nent Y C Z; N Zy and a point P € Y, which is not in any other irreducible component,
and which is a smooth point on X then we can conclude
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dimy(Y) > d — a1 — az, codim(Y) < ay + ag (7.3)

This is an obvious consequence of the proposition above, if we take into account that in
a smooth point the diagonal is defined by d = dim(X) equations (see prop. 7.5.16 2.))
and apply the above proposition 7.2.17

7.2.2 Local Irreducibility

Let A/k be an affine k-algebra. Now we assume that we have a geometric point P €
Homy (4,k). It induces a maximal ideal mp in A ®y, k.

Definition 7.2.18. We say that A® k is locally integral at P if the local ring (A ®j
k)mp 18 integral.

The point P also induces a maximal ideal m% in A. Under these assumptions we have
the following technical Lemma:

Lemma 7.2.19. If A® k is locally integral at P then the local ring Am% s also inte-
gral, and i : Am% — (A ®k k)mp is an injection. We also have equality of dimensions
dim(A o ) = dim((A @y, E)mp). If p° is the unique minimal prime ideal in Ao, which is
contained in m% then these dimensions are also equal to dim(A/p°).

Proof: The integrality of Am% follows once we prove the injectivity of i. Let = € Am%

be an element that maps to zero in (A @y, k)m,. We can assume that € A and via the
inclusion A — A ®, k we can view it as element in the ring A ®y k. We know that we
can find an element yp ¢ mp such that zyp = 0. We have a finite number of geometric
points P = Py,P,...,P,, which lie above m% and the Galois group of k/k permutes
these points transitively (see 2.5.). We can find an element zp ¢ mp such that zp € mp,
for all i« = 2,...,s. If we take an element o; in the Galois group, which maps P to P;
then o(ypzp) = yp,zp, € mp, but it lies in all the other mp, for j # i. We always have
xyp,zp, = 0 and if we put s = Y yp,zp, then we have s ¢ mp, for all i and of course we
still have xs = 0. We apply the argument from 2.2.2.1. to s and see that we can produce
an element 7" = Norm(spN) € A. Then we still have zt*" = 0 and t*" ¢ mp, for all
i and hence 7" ¢ m%. But this tells us that the image of z € A maps to zero in Am%
hence we proved the injectivity of i.

Now we prove the assertions concerning the equality of dimensions. It is clear that we
can find an f ¢ m% such that Ay is integral and then we have dim(Af) = dim(Apo, ), this
follows from Theorem 7.1.16 and the fact that Spec(Ang) = {p € Spec(Ay) | p € m%}.
Now we have seen (Lemma 7.2.14 ) that we can find a finite extension K/k such that
the irreducible components of Ay ® K are absolutely irreducible. We consider the inclu-
sion A — A ® K it is finite. The algebra A ® K may have zero divisors, its minimal
ideals p; are transitively permuted by the Galois group and their intersection is the
radical of A ® K. The composed homomorphism A — A® K — [[A ® K/p;, (see
7.2) is injective and then it is clear that any of the projections p; : A — A ® K/p; is
still injective. But then proposition 7.1.15 implies dim(A) = dim(A ® K/p;) and hence
dim(Apy, ) = dim(A ®y k)m,p where now we choose i so that mp D p;. O
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The property that A is locally integral at the geometric point P implies that P lies on
exactly one irreducible component of Spec(A ®j, k) and this implies that it also lies on
exactly one irreducible component of Spec(A). The converse is not true since the local
ring at P may still have nilpotent elements. But for the definition of the dimension at P
we only need that P lies on exactly one component. In this case we will also say that A
is locally irreducible at P.

If we have an integral affine k-algebra A/k and a maximal ideal m, then we know that
the dimension of A is equal to the dimension of the local ring Ay, (see theorem 7.1.16).
If our k-algebra is not integral and if m is a maximal ideal, then we may still speak of
dim(Ay,) provided this local ring is irreducible, which means that m lies on exactly one
irreducible component, i.e. there is exactly one minimal prime ideal p; C m. If we pick an
element f ¢ m, which lies in all the other minimal prime ideals then Spec(Ay) is open and
irreducible in Spec(A). We again have the equality of dimensions dim(A¢) = dim(Ap).
If we have another maximal ideal my O p;, which does not lie in any other irreducible
component then we can choose f so that f ¢ m;. This shows that the local dimension
dim(A,,) stays constant as long as m moves within one component and avoids the set of
points, which lie in several components.

If A/k is irreducible then we can speak of dim(A). But what happens if A/k is not
absolutely irreducible? We claim that nothing happens. We have seen that we can find
a finite separable extension K /k such that the irreducible components of A ® K will be
absolutely irreducible (Lemma 7.2.1). Then we see as in the proof Lemma 2.3.1. that
dim(A4) = dim(A® K)/p for any minimal prime ideal. We can summarize by saying that
the dimension is stable under the extension of scalars.

The connected component of the identity of an affine group scheme G/k

If we have a scheme X/k of finite type, then it is clear that the set of those points, which
lie in exactly one irreducible component, form an open subscheme Xo/k C X/k. The
complement is a closed sub scheme Y/k C X/k. Let us now assume that we have an
affine group scheme G/k, we briefly discussed this notion in 6.2.10. We can extend the
scalars to k and G xj k is still a group scheme. It is rather obvious that in this case the
irreducible components of G xj, k are disjoint. (Because of the group structure the local
rings in all geometric points must be isomorphic, hence if one of them is integral all of
them must be integral.) Hence we see that this is also true for G/k. Let A/k be the affine
algebra of G/k. Then we get the decomposition into irreducibles (See exercise 24)

A:ZAei

Now we now that G (k) contains the identity element, this is a homomorphism e : A/k —
k. Clearly we have exactly one e; (call it ep), which maps to one in k and the other ones
map to zero.

We claim:

The algebra Aeq is absolutely irreducible and defines a sub group scheme of G/k This sub
group scheme is called the connected component of the identity and denoted by GO /.
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This is a rather easy consequence of our previous considerations. The main point is that
in this case the pseudoconstants form a subfield of Aeg and since Aeg has a k-rational
point the field of constants must be equal to k.

Actually we have a more general principle: If we have an irreducible scheme X /k and if the
open sub scheme X C X has a k-rational point, then the field of pseudoconstants is k& and
X is absolutely irreducible. (See the example following the definition of pseudoconstants,
this scheme has exactly one R-rational point, but this point is not on Xj.)

7.3 Low Dimensional Rings

A noetherian ring is of dimension zero if every prime ideal is maximal (and minimal). In
this case it is clear from Theorem 7.2.1 that Spec(A) = {p1,...,p:} is a finite set. Then
the local rings A,, are also of dimension zero and A, has only one prime ideal, which
we call my,, and hence my, is also the radical of this local ring. We get an isomorphism

t t
A— P A, =P Aey,.
i=1 i=1

The ey, are the idempotents (See Exercise 1 (5)).

Definition 7.3.1. A ring is called artinian if any descending chain of ideals becomes
stationary.

The rings A,, are local artinian and hence A is also artinian.

Finite k-Algebras

If k is a field, then a finite k-algebra A is a k-algebra, which is finite dimensional as a
k-vector space. Then it is clear that this is a zero dimensional k-algebra and hence we
apply step 5) in the proof of Theorem 7.2.1, we get A = €D Ae,,, where the the Ae, are
local finite (artinian) k-algebras. The k-algebra structure of Ae,, is given by the injection
1y : X +— Te,.

Such a finite k-algebra A is called absolutely reduced or separable, if A ®;, k does not
contain nilpotent elements. This is clearly equivalent to

dim A
Ak = P E (7.4)
1=1

We have a simple criterion for separability. To formulate this criterion, we define the trace
tra/, : A — k. To any element z € A we consider the linear endomorphism Ly : y +— xy
and we put tr/,(z) = tr(L;). Then it is clear that:

Proposition 7.3.2. The finite k-algebra A is separable if and only if the bilinear map
(z,y) = tram(zy) from A x A to k is non degenerate.
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To see that this is so one has to observe that degeneracy or non degeneracy are preserved,
if we extend k to k. For a nilpotent element z € A®j, k we have tr o 7 7(zy) = 0 for all
y. If we have a finite separable k-algebra A then we have

A ®y k= eBHomk(A,E)E

where the isomorphism is given by z ® a +— ZaeHomk(A B o(x)a. The linear map L, is
diagonal with eigenvalues o (). Therefore we get the formula

tram(e) = Y, ol (7.5)

o€Homy (A,k)

for the trace. (This is the well know formula from an elementary course in algebra, which
says that the trace of an element is the sum of its conjugates.)

One Dimensional Rings and Basic Results from Algebraic Number Theory

Now we consider integral rings A with dim(A) = 1. This means that every non-zero
prime ideal p is already maximal. If we have any ideal (0) # a # A, then dim(A/a) =0
and Spec(A/a) C Spec(A) is a finite subset by the previous results.

Hence we see that for a one dimensional ring A the open sets U C Spec(A) are the
complements of a finite set of closed points (maximal prime ideals) and of course the
empty set.

Definition 7.3.3. If A is integral, of dimension one and local, then Spec(A) consists
of two points {p,(0)}. Such a ring is A is called a discrete valuation ring if p is a
principal ideal, i.e. we can find an element m, such that p = A-m, = (m,). The element
mp 45 called an uniformizing element.

A uniformizing element 7, is of course not unique in general, it can be multiplied by a
unit and is still a uniformizing element. It is quite clear that any element a € A can be
written as

a= eﬂs”(a) (7.6)

where € is a unit and where v, (a) is an integer. This exponent is called the order of a
and can be considered as the order of vanishing of a at p.

The elements of the quotient field K are of the form

b eﬁ””(b) vy () =y (b) ord, (z)
x:,:"i:g/.wpv P :e”-wp p T (7.7)
cC ¢ ﬂ.;p (c)

We clearly have v, (2) > 0 if and only if z € A. We may say that x has a pole of order
—vp(x) if vp(x) < 0.

A very important class of one dimensional rings is provided by the Dedekind rings. We
have the following

Definition 7.3.4. A one-dimensional integral ring A is called a Dedekind ring if one
of the following equivalent conditions is satisfied.
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1. The ring is normal, i.e. integrally closed in its quotient field (See 7.1.3)
2. For every prime ideal p # (0) the local ring A, is a discrete valuation ring.

Proof: The inclusion 2. = 1. is quite clear: We consider our element x € K and assume
that it satisfies an equation as as in 7.1. We claim that for any p # (0) we must have
x € A,. Otherwise we could write = em,” with r > 0 and € a unit in A,. But then
x can not satisfy the polynomial equation, because we can multiply the equation by
m," and then the first term is non zero mod p and the other terms are zero mod p.
But if z € Ay for all p then this means that is regular at all points in Spec(A4) and the
assertion follows from proposition 6.1.16. The direction 1. = 2. is a not so easy. Of course
we may assume that A is already local. If p is the maximal ideal then we consider the
A-module p~! of all elements = € K, which satisfy zp C A. We clearly have p~! O A.
The decisive point is to show that we can find an element y € p~', which is not in A.
To see this we pick a non zero element b € p. The ring A/(b) has dimension zero and
therefore, the image of p in this ring is equal to the radical. This implies that a suitable
power p” C (b), we choose n minimal with this property. Then we know that we can
find elements py,...,p,—1 € p such that the element y = p1p2...pr_1/b & A. But if we
multiply by any further element in p then the result lies in A. Now we conclude yp = A
or yp = p. But the second case is impossible, because exercise 18. 2. implies that y is
integral over A. Since A is integrally closed we get y € A this is a contradiction. The rest
is clear: We can find a 7w € p such that ym = 1. Now it is clear that p = (7) because if
p € p then yp = a € A and this gives p = 7a. O
This proposition is fundamental for the foundation of the theory of algebraic numbers.

If we have a Dedekind ring A and a non-zero ideal (0) # a C A, then the quotient A/a
has dimension zero and we just saw that

Afa=T](A/a)y.
pDa
If a, is the image of a in the localization A, then (4/a), = A,/a,. Now we know that
A, is a discrete valuation ring hence we have a, = (w;*"“)) and v, (a) is called the order
of a at p. Tt is not difficult to show that A/p*»(®) = Ap/(ﬂ'zp(a)) and hence we get

Ala=EPA/p».

pDa

Exercise 30. a) Show this assertion implies a =[], pve (@),

Hint: What is in general the relation between the product ab and the intersection of two
ideals a,b in an arbitrary ring A? Show that there is always an inclusion in one direction.
Then verify that this inclusion becomes an equality if the two ideals generate the ring,
or in other words if Spec(A/a) N Spec(A4/b) = 0.

b) Show: For any maximal prime ideal p we can find an x € K (the field of fractions)
such that ord,(x) = —1 and ordg(z) > 0 for all the other maximal ideals. Then xp € A
for all p € p.

Definition 7.3.5. A fractional ideal b of a Dedekind ring A is a finitely generated
non zero A-submodule in the field of fractions K.
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For any fractional ideal b we can find an € K* such that b C A becomes an integral
(ordinary) ideal. We can multiply such fractional ideals and our previous results imply
that:

Lemma 7.3.6. The fractional ideals in a Dedekind ring form a group under multiplica-
tion.

Definition 7.3.7. The neutral element is obviously given by the ring A itself and exercise
30 b) above gives the inverse p~! = (1,x). This group is the free abelian group generated
by the prime ideals. It is also called the group of divisors Div(A). This group of divisors
contains the subgroup of principal divisors P(A), these are the ideals of the form (x) with
x # 0. The quotient group

Pic(A) = Div(A)/P(A)

is the so called ideal class group of A. Sometimes it is also called the Picard group.

The Picard group is an important invariant of the ring. By definition it is trivial if and
only if A is a principal ideal domain.

If we have a Dedekind ring A with quotient field K and if L/K is an extension of finite
degree, then we may consider the integral closure of A in L. This is the ring B consisting
of those elements b, which satisfy an equation b” + a6 +...ag = 0 with a; € A. We
have seen in exercise 18 that they form an A-algebra.

We have the

Theorem 7.3.8 (Krull - Akizuki). The integral closure of a Dedekind ring in a finite
extension of its quotient field is again a Dedekind ring.

This is not an easy theorem, we refer to the book of [Neu], prop. 12.8. The main problem
is to show that B is again noetherian.

The following fundamental theorem is easier, we drop the assumption that A is a Dedekind
ring, we only assume that it is integral, noetherian and normal (See 7.1.3).

Theorem 7.3.9. 1. Let A be an integral ring, which is noetherian and normal. Let
K be its quotient field and let L/ K be a finite separable extension. Then the integral
closure B of A in L is a finitely generated A- module. Hence B is clearly again an
integral, normal and noetherian ring

2. If A is a normal integral Ting, which is a finitely generated algebra over a field k,
i. e. A=klxy,...,x,] and if L is any finite extension of the quotient field K of A,
then the integral closure B of A in L is again a finitely generated algebra over k
and hence noetherian and normal.

For a proof see [Ei], II, 13.3, as an alternative the reader may fill the gaps in the following
sketch of the proof.

To see that that first assertion is true we start from a basis aq,--- ,a, of the field L
over K, which consists of integral elements over A. Write an element b € B as linear
combination b = a1x1 4+ asxs . .. a,x, with ; € K. We use the separability to invert this
system of equations for the x;. The traces tryx (ba,) are integral (use Exercise 18), and
we find the relations
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try i (bay,) = ZtrL/K(ai a,)x;.

Conclude that we can find an element a € A, which does not depend on b such that
a;a € A, hence B C A% + ... + A% and therefore, is finitely generated.

To prove the second assertion we check that we may assume that L/K is normal (in
the sense of field extensions). Then we have a maximal purely inseparable sub extension
L;/K. This is obtained by successive extraction of p-th roots. Hence we prove the assertion
for extensions of the form L = K [7"1/ P] (not so easy) and proceed by induction and apply
the first assertion at the end.

Without any further assumption on A or the extension L/K the assertion of the theorem
above may become false.

We return to our assumption that A is a Dedekind ring. The theorem above has the
following implication: Let us assume that we have a Dedekind ring A with quotient field
K and a finite extension L/K and we assume that the assumptions of a) or b) are valid.
Then we know that the integral closure B of A in L is a finitely generated A-module.
Let us pick a maximal prime ideal p C A. We consider the A/p algebra B/pB. First of
all we claim that the dimension of B/pB as an A/p-vector space is equal to the degree
[L : K] = dimg L. This is almost obvious, we may assume that A is local and then B
must be a free A-module of rank [L : K| and this implies the claim. Now we have seen
that

B/pB= P B/P»PPey (7.8)
BOpB

where the ey are the idempotents. Then B/P"* ®B) is a A/p algebra.

For a f D p we get a finite extension of residue fields (B/B)/(A/p) and we denote
its degree by fp = [B/P : A/p]. Moreover we know that for any integer m the quo-
tient P /P is a B/P-vector space of dimension one and hence an A/p-vector space
of dimension fy. Hence we get that B/P®(pB) is an A/p-vector space of dimension
fpvyp(pB). We call the numbers vy (pB) = vy ramification indices. Counting the dimen-
sions yields the formula

[L:K]= Y fyvyp. (7.9)
PBOpB

Definition 7.3.10. The extension is called unramified at p if all the vy = 1 and if
the extensions (B/B)/(A/p) are separable.

Since B is free over A we can define the trace trp 4 in the same way as we did this in
2.4.1 and it is clear (we still assume that A is local):

Proposition 7.3.11. The extension B/A is unramified if and only if the pairing
B x B — A(zy) — trga(zy)

is non degenerate, i.c. if for x € B the trace trg a(xy) € p for ally € B then it follows
that x € pB.

Let us now assume that our field extension L/K is a normal extension, this means that
it is normal and separable, and let us denote its Galois group by Gal(L/K). Let A,B be
as above, let p be a non zero prime ideal in A, we have the decomposition
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B/pB= P B/F*P = 5 (B/pB)es.

FOpB EOpB

The Galois group Gal(L/K) acts on B and permutes the prime ideals 8 D p and the
idempotents eg. We will see in the next theorem that this action is transitive. This of
course implies that all the ramification indices vy are equal, we denote this number by
Vp, this is the ramification index of p.

Definition 7.3.12. Let us denote by Dy C Gal(L/K) the stabilizer of B, this is the
decomposition group of .

These decomposition groups for the different primes P’ D p are conjugate to each other.
We get homomorphisms

Dy — Gal((B/%B)/(A/p)). (7.10)

Definition 7.3.13. The kernel of the homomorphism Dy — Gal((B/B)/(A/p) is the
inertia group Iy.

For us the following result is basic for the theory of algebraic numbers.

Theorem 7.3.14. Let K,L,A,B,p as above. Then the action of the Galois group on the
primes above P is transitive. If the normal separable extension L/K is unramified at
the prime p then for any P D p the homomorphism Dy — Gal((B/P)/(A/p)) is an
isomorphism.

To see the transitivity we pick a pair P,’ and assume that P’ is not in the orbit of .
We pick a uniformizing element Il € B. Then our assumption implies that the conjugate
elements o(Ily) ¢ P’ for for all o € Gal(L/K). Hence the norm a = [[o(Ily) ¢ P’. But
now a € A and since PNA = P 'NA = p we get a contradiction. If g, is the number of P
lying over p we have fpg, = [L: K] = Gal(L/K), hence we see that we get the equality
for the group orders: #Dg = # Gal((B/P)/(A/p)). Therefore it suffices to show that the
homomorphism is surjective. To see this we consider the trace tr(z,/q)/(4/p), the trace of
an element x = zeg is given by > cai(p/p)/(4a/p)) O(2). If we consider z = zeg as an
element in B/Bp, then we see that tr(g/p)/a/p) (x)ep = tr(z/p)/(a/p) (@) If we lift 2 to
an element ¥ € B so that £ mod p = x then we know

trp/p/am@) = Y, (@) modp.
r€Gal(L/K)

If we multiply this with egq, then we obtain

> o(z)= > 7(F) mod P.

oeGal((B/PB)/(A/p)) TE€Dy

The left hand side is always an element in (A/p). But if the image Dy of Dy is not the
entire Galois group then we get for the right hand side
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o(z) =myp Z 7(Z) mod P

o€Gal((B/B)/(A/p)) €Dy

where mss is the index of Diqg in Dy. Now we have two options: Either msp is zero in
A/p, then the right hand side is identically zero and so is the left hand side. But this is
impossible, because the extension (B/93)/(A/p) is separable. Or we can find an x such
that mg Y 5= 7(Z) mod P ¢ A/p this is a contradiction because the left hand side is

TEDy
always in this field. O

Definition 7.3.15. A finite extension K of Q is called an algebraic number field.

Since the ring 7Z is a Dedekind ring we now know that its integral closure Ok in L is
always a Dedekind ring. This ring is called the ring of integers in K. The study of
these rings of integers is the subject of algebraic number theory. We briefly state a basic
theorem of this theory. We need a little bit of notation. We consider the base extension
K ®q R, this is a finite R algebra and hence a direct sum of copies of R and C. Then

K®gR=R"&C",
this defines the numbers 1 and rs.

Theorem 7.3.16. For any algebraic number field K/Q the ideal class group Pic(Or) is
a finite abelian group.

The group of units OF is a finitely generated group, it is the product W x E, where W
is the finite group of roots of unity and E is free of rank rq +ro — 1.

If in our situation above L/K is a finite normal extension of algebraic number fields and
if this extension is unramified at a prime p of A = Ok, then the extensions (B/)/(A/p)
are extensions of finite fields. Let N(p) = #(A/p). Then we know that the Galois group of
these extensions is the cyclic group generated by the Frobenius element &g : 2 — V),
Hence we find a unique element, also called ®p € Dy C Gal(L/K), which maps to
this generator. This elements of the Galois group are also called Frobenius elements.
These Frobenii ®q to the different P’ O p form a conjugacy class attached to p, it is
the Frobenius class.

Since we are very close to it, we also state the simplest version of the main theorem of
class field theory. We consider an algebraic number field L with its ring of integers Or..
We consider finite normal extensions F/L, with the property that their Galois group
Gal(F/L) is abelian, and which are unramified at all prime p of Oy, If we have two such
extensions Fi,F5 then we can form the tensor product F; ® Fo and decompose this into
a sum of fields

F1®F2=@Fy.

These extensions F,, are again unramified and have an abelian Galois group.

Let us pick any such an extension. We construct a homomorphism from the group of
fractional ideals to Gal(F/L) : To do this we observe that the group of fractional ideals
is the free abelian group generated by the prime ideals. To any prime ideal p we pick
a prime ideal B and our homomorphism sends p to the Frobenius element ®sg. Since
our extension is abelian this extension does not depend on the choice of 3. Now we can
formulate the celebrated theorem, which has been proved by E. Artin in his paper [Art1]:
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Theorem 7.3.17. The above homomorphism is trivial on the principal ideals and hence
it induces a homomorphism

Art: Pic(Or) — Gal(F/L).

This homomorphism is surjective and there exists a maximal abelian, unramified exten-
sion H/L, for which this homomorphism becomes an isomorphism.

This maximal abelian, unramified extension is called the Hilbert class field.

Of course it is clear that for any normal ring A, which is also factorial, the Picard group
Pic(A) = 0. The opposite direction is also true if the ring is noetherian, see [Ei] , Cor.
11.7.

7.4  Flat morphisms

7.4.1 Finiteness Properties of Tor

In this section we prove two results concerning the structure of flat modules and properties
of the functor TorZ' , which will become important later (See 8.4.1). For a more systematic
treatment of these facts we refer to [Ei], L.6. The functor Tors has a certain finiteness
property.

If we have an A-module M, which is not flat, then this means that we can find another
A-module N such that Tor{'(N,M) # 0.

Proposition 7.4.1. If M,N are A-modules such that Tor{'(N,M) # 0 then we can find
a finitely generated submodule N' C N such that Tor{(N',M) # 0.

Proof: We start from the beginning of a projective resolution of IV,

0—X—F —N—70
and our assumption implies that

X®AM—>P0®AM

is not injective.

Hence we find an element y = >z, @ m, € X ® 4 M, which is not zero but, which goes
to zero in Py ® 4 M. We consider the element § = > (x,,m,) in the free abelian group
generated by the elements in Py x M. Since y goes to zero this element can be as a finite
linear combination ; R; where R; is one of the relations, which we use to define the
tensor product (see Vol. 1,2.4.2). In these relations the first components occurring in the
R; together with the xz, generate a finitely generated submodule Y C Fy. Then y goes
already to zero in Y ®4 M. We get a sequence

0—YNX —Y —N —0

where N’ C N is finitely generated. Our element y € (Y N X) ® M non zero and maps
to zero in Y ® 4 M. Hence we see that
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YNX)@a M —Y @4 M
is not injective and this implies Torf(N’,M) =+ 0. O

Of course the result may be sharpened. We can put N’ into an exact sequence 0 —
N{ — N’ — N} — 0, where the two outer modules a generated by fewer elements.
If we look now at the exact sequence for Tor; it becomes clear that we can assume that
N’ is generated by one element. This has the consequence:

For a non flat A-module M we can find an ideal a C A such that Tor (A/a,M) # 0.
Basically the same reasoning shows

If we have a flat A-module M, which is not faithfully flat, then we get by similar arguments
that we can find an ideal a C A,a # A such that AJa® M = 0.

Hence we can say that the modules of the form A/a recognize flat modules and among
the flat modules they recognize those which are faithfully flat.

Proposition 7.4.2. Let A be a noetherian ring and assume that M is a finitely gene-
rated A-module. For p € Spec(A) the A, module M, = M ® A, is free if and only if it
is flat. The set of points p € Spec(A) where M, is a free Ay-module is an open subset
U C Spec(A).

We pick a point p, then M ®@k(p) is a vector space of finite dimension over k(p). If we lift
the elements of a basis of this vector space to elements mq,...,ms then these elements
generate the A,-module M, (Lemma of Nakayama). Hence we get an exact sequence

0—R-L A3 —o.

Of course M, is free if and only if R = 0. We assume that M, is flat. Taking the tensor
product with k(p) gives us an exact sequence

Tor (M.k(p)) — R @ k(p) 2% A3 @ k(p) —2 M ® k(p) — 0

where now the arrow hy, in this sequence is an isomorphism by construction. Hence we
see that the arrow j, is the zero map. Our assumption implies that R @ k(p) = 0. But
since R is finitely generated (remember we assumed that A is noetherian) we get R = 0.
Now the rest follows because it is clear that if M, is free then we can find an open
neighborhood U = Spec(Ay) of p such that My = M ®4 Ay is free. O

We can easily extend the notion of flatness to quasi-coherent sheaves. If we have A-
modules M,N then we compute the groups Torf‘(M ,IV) from a projective resolution of
M:

Pl _>Pi71 —>P0—>M—>O

and we get the A-modules Torf(M ,N) as the homology groups of this complex. If f € A
is a non nilpotent element then localization provides a projective resolution of My

(P — (Pic)f — ... (Po)f — My — 0,
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the complex stays exact because localization is exact and projective modules stay pro-
jective after localization. Hence we get

Tor (M,N) @ Ay = Tor, (My,Ny).

If we consider the affine scheme Spec(A) and consider the associate sheaves M N then
we clearly get

Tor (M,N) = Tor}?**“Y (M ,N).

This allows us to speak of flat quasi-coherent sheaves M on any scheme S and for any

pair M, N we can define
Tor{ (M, N).

If we are dealing with non finitely generated A-modules, then we can not expect that a
generalization of proposition 7.4.2 is true. This is of course clear: Given M we consider
the points p where Tor{'(M,N) = 0 for all modules N. For a single module N it is of
course clear that the set of points p where Tor‘f‘(M ,N), = 0 is open, but we have to
check infinitely many modules N.

7.4.2 Construction of flat families

Let A be a noetherian ring, let i : A — B be an A algebra, we assume that B is

finitely generated over A, we write B = Alx1,29,...,x,]. We introduce some notation.
By v = (v1,...,V,) we mean a multi index , i.e. v; € N. We introduce the monomials
v o Vi,V v.
¥ =zxtay? .

and put deg(v) = > v;. We fix an integer N > 0 and consider expressions

f= Z ¢yt

vi|v|<N

where the ¢, € A or more generally in an A algebra C.
Clearly we can view such an f as a C valued point in an affine scheme

Ty =AY = AL 0,

where the C,, are polynomial variables attached to the multi-indices y with deg(y) < N.
For any A algebra C' we have the special element 1 € T (C'), this is the element where
co = 1 and all other coefficients are zero.

The algebra B=B®a Al...,Cp, .. .] contains the "universal” element
F= Z Cya*.
v, deg(v)|<N
This element yields a principal ideal (F') C B, it yields a quotient Al...,Cp,...] —

B/(F) and hence an affine subscheme
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Spec(B/(F)) ——— Spec(B) (7.11)

If we consider a point ¢ € Spec(A]...,C,,...]) with residue field k(¢), i.e. a homomor-

phism ¢ : A[...,Cy,...] — k()0 : C; — ¢, then we perform the base change and
get a hyper-surface B

Spec(B ®p s k(¥))/(f) C Spec(B @ y k(1))
where f = Zz deg ()| <N ¢, x% and the subscheme is defined by the equation f = 0. We
call this the evaluation of the family at ).

We may view Spec(B) as a "constant” affine scheme over TV and Spec(B/(F)) is a
family of hyper-surfaces ( of degree < N) inside this constant scheme.

We generalise our construction slightly. Let M be a B module of finite type we consider
the B® A[...Cy,...] -module M = M @4 A[...Cy,...]. It is not difficult to verify that

the annihilator of F in M is trivial, hence we get an exact sequence

mpg

0— M ™5 N — M/FM —0 (7.12)

where mp denotes the multiplication by F. Let ¢ € Spec(A[...Cy,...]) ¥ : Cy ¢y €
A. The fibre over 1) is Spec(B ®Al...Cp,...1.» A = Spec(B) and if evaluate M /FM at this

Oy

fibre over 1) then we get the B-module M/ fM where f =1+ Zu:deg(u)|<N Cya.
We state an important theorem, the integer NV is fixed. S

Theorem 7.4.3. Leti: A — B = Alx1,x9,...,z,] as above, let M be finitely generated
B-module, which is A-flat. The subset Uy C Spec(B) of points q € Spec(B), where
(M/FM)q is A-flat, is a non empty open subset.

This theorem is a special case of theorem of Thm. 24.3 in Chapter 8 of [Mat], the proof
is not easy at all. We will not prove it here. Later in the chapter on projective schemes
we will use a global version of this theorem and we will prove this global version using
the finiteness theorems for coherent cohomology.

But we want to say a few words about the meaning of this theorem.

At first we remark that Up; is non empty: If we choose for f the above element 1 € TV (C)
then M/1M = 0 and this module is flat.

Let us consider a very special case, namely B = A[X;,Xs,...,X,] where the capital
letters letters signalise that B is the polynomial ring. Let us also assume that M = B.
In this case M @ A/a = (A/a)[X1,X2, ..., Xn].

An element f = > c,a% € TV(A) yields an A-flat module B/fB if and only if the
ideal generated by the coefficients ¢, is equal to A, i.e. is not a proper ideal. The scheme

Spec(A[...C,,...]) = TN — Spec(A) has the structure of a vector bundle (See p. 20)
and we have the zero section Spec(A) — T, which is given by the homomorphism
C,, — 0 for all u. This zero section defines a closed subscheme {0} C T™. The condition
on f can be reformulated: The element f yields an A-flat module M/fM if and only if
fe (¥ \{o}h)(4).
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Now we assume again M = B but B = A[z1,22,...,2,] = A[X1,Xo,...,X,]/I where I is
an ideal. Let us consider an A-valued point 1) € T™ (A) where 1) = f = 2u deg(v)| <N v
We want to assume that the fibre over 1 is contained in Uyp;. What does this mean? Our
element v yields a homomorphism Id ®y : B — B and F' is mapped to f under this
homomorphism. ( If we look at this in the category of schemes this means that we restrict
Spec(B) to the fibre over ). We tensorize the sequence 7.4.2 via 1 : A[... Cus. .. ] — A
by A and our assumption of flatness at 1) yields the exact sequence B

0— B B— B/fB—0,

hence we see Anng(f) =0, i.e. f is not a zero divisor in B. But since flatness is preserved
by base change our assumption surely implies that B/ fB is flat over A.

Hence we have to show that for any ideal a we have Tori (B/fB,A/a) = 0. (See 7.4.1).
We tensorize our exact sequence by A/a and get

0 — Tor{"(B/fB,A/a) — fB® AJa — B — B/fB — 0
and hence we see that

Torf(B/fB,A/a) = Anngga/a)(f)

and M/fM is flat iff and only if for all ideals a the element f is not a zero divisor in
B® A/a.

We consider the case that a is prime, in other words that a is a point p € Spec(A). Let k(p)
be its residue field. We consider the affine algebra B ® k(p) over k(p). This algebra may
not be integral and Spec(B ® k(p)) may have irreducible components, which correspond
to minimal prime ideals. Hence f is not allowed to be a zero divisor in B ® k(p) Hence
a least it has to avoid the minimal prime ideals (See 7.2), actually the precise condition
is that this image is not in any of the finitely many associated ideals (See [Ei], I. 3 )
But this must be so if the point p varies, so a requirement on f is that f avoids certain
" forbidden” positions in the fibers B ® k(p)’. So in a certain sense we can say that for a
flat A-algebra B of finite type, the union of the associated ideals in the fibers B ® k(p)
varies ”continuously” with p so that we can find an f that avoids them. It follows from
the Hauptidealsatz that the dimension of the irreducible components of Spec(B ® k(p))
drops by one if we intersect with the hyper-surface f = 0.

7.4.3 Dominant morphisms

If we have an arbitrary morphism 7 : X — Y between two schemes X/k,Y/k of finite
type then we would like to have some answers for the following questions:

1. What is the structure of the image?
2. What can we say about the dimension of the fibers?
To attack these questions we have the following reduction process.

1. We cover X,Y by affine schemes U;,V; such that 7 : U; — V;, then we see that we
can reduce these questions to the case of affine morphisms.
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2. If now ¢ : A — B, Spec(B) — Spec(A) is a morphism of affine schemes then we see
that we may assume that ¢ is injective, because it factors over Spec(A/a), where a
is the kernel of ¢.

3. Now we decompose both affine schemes into irreducible components and then we
see that we may assume that the algebras are integral.

Let us assume that we have two integral affine k-algebras and a morphism

A—¢>B

A4

k

Let us assume in addition that the morphism ¢ is injective, under these assumptions the
morphism ¢ is called dominant. We get a morphism X = Spec(B) — Y = Spec(A). We
can pass to the quotient fields K of A and L of B and we get an injection

k
and now we get a surjective map Spec(L) — Spec(K) and the extension L/K is faithfully
flat.
Now we are a little bit (too) optimistic and we try to prove that the image of X =
Spec(B) — Y = Spec(A) is open. Assume that a given p € Spec(A) is in the image of the
map Spec(B) — Spec(A). Following the proof of the theorem 7.1.6 we form the tensor

product
Afp®@a B — (A/p)0) ® B

and our assumption means that (A/p))®B # (0). Of course we are tempted to apply the
previous proposition 7.4.2 this is still the case of we pass to a suitable open neighborhood
of p. But this reasoning is wrong unless we assume that B is finite over A, i.e. the A-
module B is finitely generated. To illustrate how subtle the situation is we recommend
to solve the following exercise

Exercise 31. We consider the inclusion
A=Ek[UV]— B=kUV,W/(UW —-V).

Determine the image of Spec(B) — Spec(A). Show that the image is not open (Propo-
sition 7.4.2 does not work) and the dimension of the fibers is not constant.

Of course our argument above shows

Proposition 7.4.4. The morphism Spec(B) — Spec(A) is surjective if A — B is
faithfully flat.
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We mentioned already that for a dominant morphism this morphism is faithfully flat in
the generic fibre. The following proposition asserts that these two facts remain true after
the restriction to suitable nonempty subsets U C X,V C Y, i.e. we get a faithfully flat
morphism U — V.

Proposition 7.4.5. Let ¢ : A — B be a dominant morphism between two affine k-
algebras. Then we can find an f # 0 in A and a g # 0 in B such that Ay — By, is
faithfully flat and then Spec(By,) — Spec(Ay) is surjective.

Proof: We consider the field of fractions K of A. Then B ® 4 K becomes a finitely
generated K-algebra, it is still integral. We apply the Normalisierungssatz 7.1.10 and this
allows us to assume that B ®4 K is of the form K[z1,29,...,x,] where K|[x1,29,...,2,]
is a polynomial ring and the remaining generators are integral over K|[x1,22,...,z,], i.e.
we have equations

0=a,x) + P,i(x1,... ,xr)xL"’“_l + ... P, (1, .. 20)

where v =r +1,...,n, the a, € K and not zero. If H is the product of the a,, then we
can find f € A,f # 0 such that
fHeA
and hence we see that .
BfH =B &® Af |:I1, e 7$T’f_H:|
is integral over Ay {xl, e ,wr,ﬁ} . We look at the coeflicients of fH, which are elements

in Ay. At least one of these coefficients c is not zero. We replace f by fc, then one of the
coefficients of fH = g is a unit. Now we have

1
Af C Af [ml,...,x,«,g} C Bfg

and By, is finite over Ay {xl, ... ,xr,ﬂ.

We claim that under these conditions the Af-algebra Ay {xl, e ,xnﬂ is faithfully flat.
First of all we observe that

1
Af |::1:17' "a$rag:| = Af [:I‘.la' . 7xT?y] /(yg - 1)

The ideal (yg—1) is a free Af[x1,...,z,,y]-module and hence we see that the Ay-modules
Aflzq,...,ry] and (yg — 1) are free. Hence we have the sequence of Ay-modules

1
0— (yg—1) — Affxr,... 2y — Ay {xl,...,azr,} — 0.
g

To check flatness it suffices to show that this sequence stays exact if we tensorize by
quotients A/a. (See previous subsection)We get

(yg—1)® AJa — Alalzy, ...,y — A/a [:cl .. .xr,] — 0,
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but now it is not difficult to see that the first arrow is still injective because yg — 1 is
not a zero divisor in A/afzy,...,z,,y]. To check that A {xl, . ,xr,ﬂ is faithfully flat,

we need that A/a [ml, e ,mrﬂ # 0 for all ideals a € A,a # A. This is obviously the case
since we assumed that ¢ # 0 mod a for all ideals of this kind. Now we observe that the
quotient field of By, is a finite extension of the quotient field of Ay [xl, e ,xr,ﬂ .

Hence we see that By, is free in the generic point of Spec (Af {wl, e ,Ir,é}) and hence

it is is flat over a non empty open subset of Spec (Af {Zl, e ,xr,ﬂ) and then it is
automatically locally free, hence faithfully flat.
This open set contains some Spec (Af {wh . ,xr%D , but then we see that this again

g1
contains a subset of the form Spec <Af, {xl, . ,xr,é,}) . Hence we proved the assertion

concerning faithful flatness.
The surjectivity follows from the faithfulness but can also easily be derived from the fact

that By, is integral over Ay [ml, . @hﬂ . O

Of course our considerations imply:

Proposition 7.4.6. If ¢ : A — B be a dominant morphism between two affine k-
algebras, and if r is the difference of the trancendence degrees of their fraction fields,
then we can find a non empty open subsets V = Spec(Ay) C Spec(A),U C Spec(B) such
that fy : U — V is surjective and for any point y € V the dimensions of the irreducible
components of the fiber fl;l(y) are equal to r. Especially we have dim(A) < dim(B)

Proof: This follows directly from the proof of the previous proposition. O

Now we can derive a general statement concerning the image of a morphism between
arbitrary k-schemes of finite type. Actually what we would like to have is:

Hope: Under some reasonable conditions the image of f : X — Y is open in the Zariski
closure of the image.

Let us start from a dominant morphism f : X — Y between affine schemes. Then we
have seen that the image contains a non empty open subset U C Y. Let us consider the
complement Y of U, this is a closed subscheme, we get a morphism X’ = f~%(Y’) — Y.
We consider two irreducible componets Y/, X of Y, X’ respectively, such that X| — Y/
and we take open affine subsets V{,U] such that U] — V{ and we get a homomorphism
between the corresponding integral affine algebras A’ — B’. But now there is no reason
why this morphism is still dominant, we get a diagram

Afp s

N S
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and this tells us that our morphism may factor through a proper closed irreducible
subscheme V{” of V/. This morphism U] — V{’ is again dominant and therefore, its
image contains a non empty open subset 171’ "' V{'. Again we can take its complement
and proceed.

This argument tells us that the image under a morphism between schemes of finite type
over a field k is always a so called constructible subset of Y. The family of constructible
subsets is the smallest family of subsets, which contains the open subsets and is closed
under finite intersections and the formation of complements. So open and closed subsets

are constructible but also open subsets of closed subsets are constructible and so on.

Exercise 32. Construct an example of the form k[U,V] — k[U,V,Z]/(P(U,V,Z)) where
the image is the affine plane minus (one of the axes minus the point (0,0)).

If we analyse our reasoning in the previous section and the example in the exercise, then
we see that taking the restriction from Y = Spec(A) to the complement of the open set
U we may loose the dominance. Keeping the notations from previous section this means
that the tensor product with the quotient field of A’ Al(o) ® 4 B" may become zero. But
now we look at the sequence

0— A" — Al(o) — AZO)/A/ —0
and take the tensor product with B’. We get
0— B — AEO) ®a B — A’(O)/A/ — 0.

Now if B’ is not zero (i.e. X’ # () then we see that B’ is not a flat B’ algebra if
Al(o) ®ar B’ = 0. This gives us the decisive hint how to formulate the assumption in the
above assertion Hope

Proposition 7.4.7. If f : X — Y is a flat morphism between to k-Schemes of finite
type, then the image f(X) is open in'Y .

Proof: Again we easily reduce this to the case X = Spec(A4),Y = Spec(B) and ¢ :
A — B is flat. It is a formal consequence of the concept of flatness that for any ideal
a C A the algebra homomorphism A/a — B ®4 A/a is flat. It is also clear that we can
restrict the morphism to the inverse image of a connected component of Y. A component
is given by a minimal prime ideal p. We remarked that A/p — B ®4 A/p is flat. Then
we may have that B ® 4 A/p = 0, then the inverse image of Spec(A/p) is empty and
nothing has to be proved. Otherwise we observed that (A/p) ) @a/p) B # 0 and hence
we see that B contains a minimal prime ideal q such that ‘¢(q) = p. In other words
A/p — B/q is injective. We are in the situation of proposition 7.4.5 and can conclude
that Spec(B) — Spec(A/p) has an open image. Now we proceed as indicated, we pass to
the complement of the open image and use the fact that the restriction of the morphism
to this complement is still flat. O

Birational morphisms

A dominant morphism ¢ : A — B between to affine k-algebras is called birational if
¢ induces an isomorphism between their quotient fields. It is very easy to see that this
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is the case if and only if we can find a non zero element f € A such that ¢ induces
an isomorphism ¢ : Ay — By. Therefore we see that the morphism Spec(B) = X —
Spec(Y) = Y is birational if and only if we can find a non empty Zariski open subset
U C X and an open subset V C Y such that ¢ induces an isomorphism U = V.

The Artin-Rees Theorem

Let A be a noetherian local ring with maximal ideal m. We can provide it with the so
called m-adic topology: The open neighborhoods of m € A are the sets m + m”~: We
define the completion

itA— A=limA/m".

We may also consider the completion of an A-module M, we define M= lim M /mN M =

M® A. The following two assertions are easy consequences of the theorem of Artin-Rees,
which we formulate futher down.

Corollary 7.4.8. If M is a finitely generated module over the noetherian local ring A
then M — M 1is injective.

This is of course equivalent to (), m" M = (0), in other words the m-adic topology is

Hausdorff. The reader should verify that the module M is complete with respect to the
m-adic topology, i.e. any Cauchy sequence is convergent.

We consider finitely generated A-modules M,M’ . ... The main implication of the Artin-
Rees theorem is:

Corollary 7.4.9. In the category of finitely generated A-modules the functor
M—M=M®e4A

is faithfully flat, i.e. M — M Q4 A is exact and M @4 A =0 implies M = 0:

The faithfulness is Nakayama’s lemma. To prove flatness we have to show: e
If M’ ,M are finitely generated A-modules and if M’ — M is injective then M’ — M is
again injective.

If we try to prove this we encounter the following problem: Consider M’ (\m® M for a
very large N then this must be contained in m™ M’ where n is also large. We have to
show that n goes to infinity if N goes to infinity.

The answer to our problem is the actual Artin-Rees theorem

Theorem 7.4.10 (Artin-Rees). There exists an ro > 0 such that for all r > ro we have
mMAM =m"~" (m"MNM)Cm" M.

For the proof we refer to the literature [Ei].L.5.

It is clear that it is the technical answer to our problem and it implies that A — A is
faithfully flat on finitely generated modules.

We leave it as an exercise to verify that for any finitely generated module (), m¥M =

0).
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7.4.4 Formal Schemes and Infinitesimal Schemes

I want to discuss a situation, which is in some sense opposite to the one discussed above.
Let k be a field, consider a polynomial ring A = k[Xy,...,X,] and we localize it at
the maximal ideal m = (X71,Xo,...,X,,). This local ring A, is the ring of germs of
regular functions at zero and hence we say that Spec(Ay) is the germ of our affine space
at zero. This ring is not of finite type over k anymore, but it is still a direct limit of
finitely generated k-algebras. This local ring sits inside the ring A = k[[X1,...,X,]]
of power series in the variables Xi,...,X, as a subring: If Q(X4,...,X,,) € A and if
ap = Q(0,...,0) # 0 then we can write @ = ag + R where R is a polynomial without
constant term and

1 1 1
Q(X1,....X») ’aoﬂg:;0(1*3/ao+(3/ao)2+...).

It is easy to see that this power series ring can also be obtained as the projective limit
1iLnN Am, /m¥. Tt is also the completion of Ay, with respect to the m-adic topology. (See
the previous subsection on the Artin Rees theorem)

The verifications of the following assertions are left to the reader.

1. Homy(Am,k) = Homg(Ak) = (0) € k™. We lost all our geometric points except
the origin. The geometric points are not dense and this does not contradict the
Nullstellensatz because the local ring is not of finite type.

2. Let us assume that B is a k-algebra, which is local with maximal ideal n and
B/n = k. Then Homy(Aw,B) C n", where the identification is provided by ¢ —

3. Can we construct rings B as above such that we still have Homy(4,B) = (0).

4. If in addition the ideal n in our k algebra B consists of nilpotent elements then we
have Homy (Ay,B) = Homy(A,B) = n™.

We have the inclusion of rings:

A— Ay < k[[X1,...,.X,]],
which in turn induces morphism between schemes

Spec(k[[X1,...,Xn]]) — Spec(An) — Spec(A)

Definition 7.4.11. We call an algebra B as above, for which the ideal n consists of
nilpotent elements an infinitesimal algebra.

The spectrum of an infinitesimal algebra is a single point. But if we consider Spec(B)-
valued points of Spec(k[[X71,...,X,]]) then we get n-tuples (e1,€2,...,6,) € n". These are
considered to be points, which are infinitesimally small in the sense that the coordinates
are not zero but if we raise them into a suitably high power they become zero. This
leads us to the idea that Spec(k[[X1,...,X,]]) should be considered as an infinitesimal
neighborhood of the origin in Spec(k[X3,...,X,]) = A"

The scheme Spec(k[[X71,...,X,]]) is also called the formal completion of the scheme
Spec(k[X1,...,X,]) at the origin.
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7.5 Smooth Points

Let k be a field and X/k be a scheme of finite type (see 6.2.10). We consider the set of
geometric points of X. B B
X(k) = HomSpec(k) (Xa Spec(k))

I want to introduce the notion of a smooth point P € X (k). To give a first idea of what
it should be we give examples of a non smooth or singular point .

Example 14. Consider the two algebras A = k[z,y]/(z*> —y>) and B = k[z,y]/(zy). The
point P = (0,0) is a geometric point on both of them and on both of them it is singular. If
k =R and we draw a picture of the R-valued points then we get an idea what a singular
point 1s.

The property of a point to be smooth will be local, this means that by definition a point
will be smooth if and only if for all affine open neighborhoods U C X,P € U(k) the point
is smooth on U. Hence we may assume that X = Spec(4), we could also pass to the
germ of X at P.

The notion of a smooth point is also a ” geometric” notion: If we embed k < k and form
the base extension X = X X Spec(k) k = Spec(A ®; k) then P is a geometric point of X .
The definition of a smooth point will be such that P is smooth as a geometric point on
X if and only if it is smooth as a geometric point of X. It will even turn out that the
smoothness of the point is a property of the formal completion of our scheme at P (see
above).

Our point P is now a homomorphism

Ay kL> k.

NS

It defines a maximal ideal mp C A ®; k. We have a decomposition of the k-vector space

which is given by f = f(P) + (f — f(P)) for f € A®, k.

Definition 7.5.1. The point P € Homy, (A,k) is smooth if and only if the local ring
(A® k)mp is integral and if the dimension of the k-vector space mp/m% is equal to the
dimension of the local ring (A @k k)mp -

The integrality of the local ring allows us to speak of its dimension (see 7.2.2) .
The maximal ideal mp induces also a maximal ideal m% in A itself. Recall (see 7.2.19)
that we proved that the local ring Am% is also integral, we have an injection 7 : Am% —

(A @k k)mp and equality of dimensions

dim (Ao ) = dim((A ®y k)mp))-
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If p° is the unique minimal prime ideal in A, which is contained in m%, then we have
the equality of dimensions dim(A/p?) = dim(Apy,) (See 7.2.19). Clearly the closed point
mY € Specmax(A) is smooth if and only if one ( and hence all ) of the geometric points
lying above this point is (are) smooth.

Now we want to discuss the implications of the smoothness of a point. For the following
discussion we assume that k = k and hence A ®; k = A. We pick a point P, where A is
locally irreducible.

We pick elements ¢; ...t; € mp, which provide a basis #; ...%4 in the quotient mp/m%.
These elements generate the A-module mp by Nakayama’s lemma. We consider the poly-
nomial ring with the same number of generators B = k[X1,...,X,4] and we consider its
maximal ideal mg = (X1, ...,X4). We get a k-algebra homomorphism By, — Am, send-
ing X; to t;. We compute modulo powers of the maximal ideals, i.e. we look at the rings
By /mYY, An, /m¥. Clearly our homomorphism induces maps By, /m) — Ap,/m¥. It
is easy to see that these maps are surjective: The ¢; generate the A, ,-module mp, hence
any f € Ay, can be written as f = a + Y. g;t; with a € k. Applying the same to the
gi we get [ = a+ > bit; + quadratic terms with b; € k. Since this goes on forever the
assertion becomes clear. We get projective systems

By/mltl — > By/mf ——— ..

| l

Aup fp T —— Ay fmf ————

imd if we consider the completions B = @Bg/mé\[ and Am, = lim Ay, /m¥ the Eing
B, is isomorphic to the ring of formal power series k[[X1,...,X4]]. Any element in Ay,
can be written as a power series > a,t¥, where a, € k and v = (v1,1a,...,1q) is a

multiindex. This yields a diagram

Bmo > AmP

Lo

1p ~
K[[Xq,. .. . Xq]] —— Ay,

The vertical maps in the diagram above are always injective by the Artin-Rees theorem.

The homomorphism ip is surjective by the above argument.

Theorem 7.5.2. Let A/k be an affine algebra over the algebraically closed field k, let P
be a geometric point such that Am, is irreducible, i.e. P lies on exactly one irreducible
component. Then we always have the inequality

d= dimkmp/m% > dim(AmP) =d.

We have equality if and only if the horizontal arrow in the bottom line ip is an isomor-
phism. This is the case if and only if P is a smooth point.

This is obvious if we accept that the ring of formal power series is noetherian and if we
accept the general dimension theory for noetherian rings. But since we did not explain
this we give a different argument.
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We prove the inequality. We proceed by induction on d’. Let a be the kernel of ip. For
d’ = 0 the maximal ideal mp is nilpotent and we have d > 0. Everything is clear. Now
let d > 1, then mp # Rad(An,). We pick one of the generators, say t1, which is not in
the radical. We choose a minimal prime ideal mp D p D (¢1). The Hauptidealsatz tells
us that dim((A/p)m,) = d’ — 1. Now the number of generators of the image of mp in the
local ring (A/p)m, has dropped by a number r > 1. Hence we get d —r > d’ — 1 and this
proves that always d > d’.

Ifd =d then d —r > d— 1. and we must have r = 1. We apply our construction above
to (A/p)m, and get

—

k[[XZa ) 7Xd” - (A/p)mpv
which is a bijection by the induction hypothesis. The kernel of

E[[X1,Xo,...,X4]] — K[ X2,...,Xd]]

is the principal ideal (X;) and hence a C (X7). Assume a # (0). If d = 1 we get
that a = (X") for some m, but this is impossible because this implies ¢]* = 0 and
the dimension of Ay, would be zero. If d > 1 then we could replace t; by any linear
combination of the generators t; and conclude that a is contained in any principal ideal
(f) where f = a1 X1+a2Xa+. ..aqXa+higher order terms with non zero linear term. But
this tells us that any element i € a must be divisible by any such power series f, which
is clearly impossible unless h = 0. Therefore we have proved that ip is an isomorphism
if d = d’, but then the local ring (A/p)m, must be integral and we proved that d = d’
implies that P is smooth.

If in turn ip is an isomorphism, then we observe that XLiS\sent to t;1 € mp. Hence we
see that (¢1) is a prime ideal and k[[Xq,...,Xq4]] — (A/(t1)mp is an isomorphism. By
induction this implies d’ — 1 = d — 1 hence d’ = d and our point must be smooth. ([

The theorem means that in an infinitesimal neighborhood of a smooth point a scheme
X/k over an algebraically closed field k looks like the ”infinitesimal neighborhood” of
the origin of an affine space of dimension dim(X).

Now we assume that our k-algebra is given as a quotient of a polynomial ring, in other
words we consider X = Spec(A) as embedded into an affine space. We write

0—1I—k[X1,....X] —A—0

where I is the defining ideal. Again we look at our smooth point P : A — k and for
simplicity we assume that P(X;) = 0 for all ¢, i.e. our point P is the origin. We want to
show that the smoothness of P has the consequence that the system of equations, which
defines X locally at P as a subscheme has certain nice properties (Jacobi criterion). Let
mg be the maximal ideal in A defined by P and My = (X7, ...,X,) the maximal ideal
in the polynomial ring. We get an exact sequence (localization is flat)

0 — Ioypy, — k[X1,..., Xn]oy — Ame — 0.

Let d = dim(Ap, ), then we may assume that X1,...,X; map to a basis in mg/m3. We
write x; for the image of X; in An,. We get a diagram
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0 Ion, E[ X1, ..., Xn]m, A, 0
0 ]A'mo E[[X1,.. .. Xn]] —K[[z1,...,2zq]] —— 0

where fsmo is the completion of oy, and the exactness on the left in the second sequence
is again the Artin-Rees theorem. We also use our previous theorem, which gives us that
Ap, is indeed the ring of power series in the given d variables.

Now we can find certain specific elements in Igy,, which turn out to be generators of the
ideal. We observe that for any i = d + 1,...,n the element z; € my must be up terms
of higher order (i.e. elements in m?) a linear combination of the z, with v =1,....d. In
other words, for any such ¢ we get a relation in Ay, :

x; = Li(x1,...xq) + Gi(x1, ...\ xp)

where L; is linear in the z1,...,x4 and where G; is an expression, which contains only
terms of degree at least one of the variables occurs with degree > 2. If we lift this to the
variable X7, ..., X,, this provides elements in gy,

Fi:Xi—Ll(Xl,...,Xd)—Gi(Xl,...,Xn)EI{)}'{O z:d—l—l,,n

We claim:

Proposition 7.5.3. The elements Fyi1,...,F, generate the ideal Ion, .

This is rather clear: If we look at the completion then we see that for any i = d+1,...,n we
can express the image of x; as power series in the variables x1, ... ,xq4. (Just substitute the
expression for z; into the G; and you get an expression for the x; in terms of a quadratic
term in the x1,x9,...,24 and an expression in all x; where the terms are of degree > 3,
and so on.) Hence we can write the z; for i = d+1,...,n as power series in the 1, ..., 24

and we get that the F; viewed as elements in the ideal fgmo can be written as
Fi(Xl> ce aXn) = X,L — Pi(XhXQ, SN ,Xd) 1= d+ 1, NI

where the P;(X,Xs,...,X4) are power series.

If we divide the power series ring k[[ X7, ..., X,]] by these F}, then the resulting ring is the
power series ring in the variables X1, ...,X; and this is also the result if we divide by Igmo
This makes it clear that these F; generate the ideal Ton, . Now Ion, /MoIon, = Ion, /Moo,
and the Nakayama lemma implies that the ideal Ioy, is also generated by these Fj.
This has several consequences. It is clear that we can find an affine open neighborhood
U C A} of our point P such that the restriction I(U) of I to U contains the F; and is
generated by them. Hence:

1. In a suitable Zariski neighborhood of a smooth point P we can define a scheme
X/k — A} by n — dim(X) equations, namely the above F;.

2. If we form the Jacobi matrix of the relations F; at our smooth point P, then the

matrix <g§' (P)) has rank n — d.
J t=d+1,...,n;j=1,..n

This leads us to the famous Jacobi criterion, which gives a characterization of the smooth
points of an embedded affine scheme X C A™.
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The Jacobi Criterion

From now on we drop the assumption that k£ should be algebraically closed. We consider
an affine scheme A = k[Xy,...,X,]/I. A geometric point P € Homy(A,k) defines a
maximal ideal mp in A but it can happen that different P give the same maximal ideal.
We have also the maximal ideal 9tp in the polynomial ring, which lies above mp. We
want to formulate a criterion for the smoothness of P in terms of the data over k, i.e. we
do not extend the base to k. This will imply for instance that all geometric point lying
over a given maximal ideal m will be smooth if one of them is so (see remark after 7.5.1).

Theorem 7.5.4 (Jacobi criterion). Let I be an ideal in k[X1,Xo,...,X,] and A =
k[X1,Xo,...,X,]/I. Let P be a geometric point of Spec(A), let mp (resp Mp) be the
corresponding mazximal ideal in A (resp. k[X1,Xo,...,Xy]). Let F1,... ,F,. be a system of
generators of Isgn,. We assume that the Jacobi matrix

OF;
()
(an i=1,...,r;j=1,..n

has rank r. Then P is smooth and dim(An,) =n —r.
If conversely P is smooth and dim(Ay,) = n—r then we can find generators Gy, ...,G,
of the ideal Inn, such that the Jacobi matriz built in these generators has rank r.

Before we give the proof,we want to make a few comments. First of all we remark that the
evaluation of an element F' € k[X7,...,X,] at P has as result an element in k. Hence we
did not keep our promise not to extend the ground field. But our statement concerning
the rank is equivalent to the assertion that a determinant of a suitable r X r-matrix is
non zero. This matrix has entries 682 € k[X1,...,X,] and hence the determinant is an
element F' € k[Xy,...,X,]. Now F(P) # 0 is equivalent to F' ¢ Mp, we restated our
condition on the Jacobi matrix without extending the ground field. Then it is also clear
that all the geometric points lying over a given maximal ideal are all smooth or none of
them is.

Since we have a geometric definition of the smoothness of a point we have to extend
the ground field to k. We consider the ideal I ® k C k[X1,Xo,...,X,]. After making
a substitution we may assume that P = (0,...,0). Hence it is reasonable to denote the
maximal ideals in A ®y k resp. the polynomial ring by mg resp. M. We put d =n — r.
If we renumber our variables we can assume that the partial Jacobi matrix

OF;
“r)
(8X] i=1,...,r;j=d+1,....n

has rank r. If we expand the polynomials at P = (0, ...,0) we get expressions
n 6F, '
Fi(Xy,....X,) = (P)X; + higher order terms
= 0X;
for i =1,...,r. Let us denote the homomorphism of the polynomial ring to our algebra

A by @, the images of the X; under ® are again called x;. Then we get in (A ®k k)m,
the relations
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- F;
0= Z (I)(SX )z; + higher order terms in the x;

Jj=1

If we ignore higher terms and evaluate at P then we get a system of linear equations for
the z; € mo/m3 and our assumption on the partial Jacobi matrix implies that we can
express the images x; for i = d+1, ... ,n as linear combinations of the x; with: =1, ... d.
We get that the z; with i = 1,...,d generate mg/m3.

To prove the smoothness of P it suffices to show that (A ®j k), is integral, it has
dimension d and that x; with i = 1,...,d form a basis of my/m3.

To prove these facts we embed (A ®j, k)m, into its mg-adic completion (A ®j, k)m,. In
this completion our defining equations just say that the z; with i =d + 1,...,n can be

expressed as power series in the z; with i = 1,...,d and hence it is clear that (A @y k)m,
is the power series ring in the variables z; with i = 1,....d. This implies integrality of
(A @ k)m, and it shows that dim(my/m3) = d.

As in our previous considerations we can construct an injective homomorphism from the
localized polynomial ring

E[Xl, - 7Xd]9ﬂ8 — (A Rk E)mo-

Since both sides are localizations of an affine k-algebra in closed points we can apply
proposition 7.4.6 and get dim((A ®j, k)m,) > d. Now it follows from our theorem 7.5.2
that dim(Am,) = d. This proves the first half of the theorem.

To prove the converse we observe that we have seen that the ideal Iy, ®k can be gener-
ated by Gy,...,G, € k[X1,...,X,] such that these have non vanishing Jacobi matrix at
P. Let F,...,F; € I be a system of generators. Then we can find an H € k[X1,...,X,]
with H(P) # 0 such that we can write

=Y LyF;
J

where L;; € k[X1,...,X,]. Taking partial derivatives and evaluating at P yields a system
of equations

8

H(P) ()

=2 Lu(P

This makes it clear that the Jacobi matrix built out of the F} evaluated at P has rank
r. But this means that the Jacobi matrix (8

) has rank r if we send it to the residue

0X,
field A/mp. Taking a sub matrix having the right number of columns gives us a subset
of the set of generators say F1,...,F,, which satisfies the Jacobi criterion. This subset
will necessarily generate Ioy, . U

The Jacobi criterion implies that the set of smooth geometric points of a scheme X/k
of finite type is always open. To see this we consider the case of an affine k-algebra
A = k[Xy,...,X,]/I. We may assume that it is irreducible because smooth points lie
on exactly one irreducible component. We pick generators Fi,Fs, ... ,F; of our ideal and
consider the open set where the Jacobi matrix has rank equal to n — dim(A). This set
can be empty. If for instance A = k[X]/(X?), then the only geometric point is z = 0,
the dimension is zero, but the number d is one.
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7.5.1 Generic Smoothness

Theorem 7.5.5 (Generic Smoothness). Let A/k be a finitely generated k-algebra, assume
that A/k is absolutely reduced. Then we can find a non empty open subset U C Spec(A)
such that the morphism w : U — Spec(k) is smooth.

Proof: Since localization does not destroy reducedness we may assume that A is integral.
We also may assume that k = k. We write A = k[zq,22,...,2,] = k[X1,Xo,... X,)/T

and let Fy,Fs, ... F; be a set of generators of the ideal I. Let gf;‘ be the image of 3)};,

k[X1,X2,...,X,] modulo the ideal I. Let r be the rank of the Jacobi matrix (gf)
considered as a matrix in the field of fractions of A and assume that

axj i=1,...,r;j=n—r+1,..n

has non zero determinant. Then this determinant is a unit in a suitable localization

Ox(U) = A(U). Let d = n —r. I claim that the sub algebra k[z1, . .. 24| is a polynomial
ring in d variables. If not, then the intersection k[Xi,..., X4 NI # 0. For all F in
k[X1,...,X4] NI we have % = 0 for all j = 1,...,d because otherwise the rank of

the Jacobian would be greater than r. This is equivalent to the assertion that for all

F € k[Xy,...,X4) NI we have % € [ for all j = 1,....d. Let us consider a non zero

element F' € k[X1,...,X4] NI with lowest total degree, i.e. the sum of the exponents in

the highest monomial occuring in F' is minimal. Then % €l forall j=1,...d and
J
these polynomials have a strictly smaller total degree. Hence they are zero and F' must

be constant or of the form
F(Xy,....Xq) =Y a, X"

where p is the characteristic of k and v = (vy, ... ,v4) is a multiindex. Of course F' cannot
be constant. But then we find nilpotent elements in k[x1, ... ,z4] because we can write

F(X1ho Xa) =3 a, X7 = (Z a;/PX")p.

The element (> a,l,/pX”)p & k[X1,...,X4) NI because it has smaller total degree than
F. Its image in A is a non zero nilpotent element. This gives a contradiction to our
assumption that A is absolutely reduced.

But once we know that k[x1,...,z4] is a polynomial ring we see that the dimension of A
is greater or equal to d (2.5.3.) and the Jacobi criterion yields that the open subscheme
where the above determinant is not zero must be smooth. O

The singular locus

Actually the proof gives us a little bit more: The algebra A/k is smooth in all those

oF;

points where at least one of the r x r-minors the ¢ X n- matrix ( 35 is non

J)i=1.4.t,j=1...n
zero. Or in other words: The singular locus, i.e. the set of non smooth points is a

closed subscheme and it is the set of common zeroes of all the minors above.
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We want to discuss a consequence of the smoothness of a geometric point for the original
algebra A and the induced maximal ideal mp. Let us assume we have an ideal I C
k[X1,...,X,], which is generated by Fi,...,F,. Let X/k be the subscheme defined by
the ideal, i.e. X = Spec(k[X7,...,X,]/I) = Spec(A). We assume that these generators
satisfy the Jacobi criterion at a point P € X(k), hence we know that this point is
smooth. Let mp be the maximal ideal induced by P in our algebra A, we know that Ay,
is integral. Again we put d = n — r. Now we assume for the coordinates Xgy1,...,X,

that
OF;
det ( ¢ (P)) ) # 0.
( aX;L j=1...,r,u=d+1,...,n

Let us denote by x, the image of the X, in A. Then we consider the sub algebra B C A
generated by the elements x1,...,r4. It will become clear in a minute that this algebra
is indeed the polynomial algebra in these variables. We have the diagram

klxy,...xq — A
E[l’h - ,l’d] —> A Qy k.
The maximal ideal mp induces a maximal ideal (geometric point) np in k[zy, ... ,z4). Let

np (resp. mp) be the maximal ideals induced by P in k[x1,...,24] (resp. A @y k). We
have seen in the beginning of this section that after passing to the completions we get
an isomorphism

o — o —

k[.’l)l, . ,.%‘d]— l> (A ®]€ E)W

np

and it follows from this that the sub algebra B C A is the polynomial algebra.
We have the inclusion of local rings

By, — Anp.
We consider the residue field B/np = k(np) and we claim
Lemma 7.5.6. 1. The tensor product
Awp ®@p k(np) = Anp /Amp -np
is a field, it is a finite separable extension of k(np) .
2. We have Ay, -np = mp and the residue field is k(mp) = An, @p k(np).

3. If A is integral then the function field Quot(A) is a finite separable extension of
L=k(z1,...,x4)

Proof: The second assertion follows from the first. To prove the first assertion we put
K =k(np) and A = Ap, ®p k(np). We have that A = K[Xay1,...,.Xn]/(F1,...,F)

where F; is the image of F; in A. Our point P induces a maximal ideal mp C A. Of

course we have that the generators F;,i = 1,...,r, satisfy the Jacobi criterion at P and
this means
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det <<8Fj (P)> ) 7 0.
8XM j=1...,r,u=d+1,....n

.....

Then it follows that all points P;, which lie above P are smooth and the scheme A ® kK
is of dimension zero and reduced. But then it follows from proposition 7.3.2 that A is a
separable extension of K.
The third assertion follows from the same argument as the first, we simply replace K by
L.

O

In our situation above we will call the elements x4, ... ,r4 a system of local parameters
at the point P. We can interpret the inclusion B C A as the morphism from X/k
to A" /k, which is induced by the projection of the ambient affine space A™/k to the
first r coordinates. If we extend the ground field to k then this projection becomes an
isomorphism between the infinitesimal neighborhoods of P in X x k and its image in
A" /k. This is the algebraic version of the theorem of implicit functions. If we want to
formulate what happens over k itself then this becomes a little bit less intuitive, we have
to be aware that we may have non trivial residue fields.

Our notion of a system of local parameters is given in terms of an embedding of our
scheme X/k into an affine space and with the help of the Jacobi criterion. In the next
section we will give a much more elegant formulation using differentials. (See def. 7.5.13)

7.5.2 Relative Differentials
For any morphism

7: X —Y

we will define a quasi-coherent sheaf Qﬁ( Jy on X, which is called the sheaf of relative
differentials. Since it is a quasi-coherent sheaf it is enough to define it in the case where
X = Spec(B),Y = Spec(A). Let ¢ : A — B be the homomorphism of rings correspond-
ing to .

We consider the fibered product of X/Y by itself

B®AB XXyX
A Y

and we have the diagonal X — X xy X defined by (Id,Id). The diagonal corresponds
to the multiplication

B®y B . B
and is defined by the ideal I, which is the kernel of m, i.e. we have an exact sequence

0—I—B®sB—B—0.
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Lemma 7.5.7. The ideal I is generated as a B o B-module by the elements fR1—-1R f.
The ideal 1/1% is a B-module, which is generated by the elements df = f®1—1® f
mod I2.

Proof: f Xf, ® g, € I, i.e. ¥f,g, =0, then

Sfh@gy=5(f01)(1@g)=%(f01-13f)1&g)

The B-module structure on I/I? is induced by the B ® 4 B-module structure of I. [

Definition 7.5.8. The B-module I/1? is denoted by Q}B/A and is called the module of
relative differentials.

Proposition 7.5.9. We have the product rule
dfg = gdf + fdg
and da =0 for a € A.

Proof: This follows from

fg@1-10gf=fg1-fRg+fRg-1® fg
=(felhgel-1g9)+(1g)(fel-1 f)

anda®1=1®a. O

We collect some facts where proofs can be found in the book by Matsumura [Ma], but
since they are all not difficult to prove, the reader could try to find them her(-him)self.

Proposition 7.5.10. a) The B-module Q}a 4 18 @ universal module of A-differentials:
Whenever we have a B-module M and an A-linear map di : B — M such that
di(fg) = fdig + gdi f then we get a commutative diagram

B/AV\—/*( M

where ¢ is unique and B-linear. It is clear that o(f @ 1 — 1 ® f) = di(f) but it
is not so clear why it is well defined. This can be checked by using d) below and
reducing to the case of a polynomial ring.

al) If we have a homomorphism f : B — C, then C is an A-algebra and we can take
= QE/A, this is a B-module and we put di(b) = d(f(b)). Therefore we get a

unique ¢(f) : QB/A — QC/A, which is the same as a C-module homomorphism
¢(f) 1 Q4 8 C — Qg 4-

b) We start from our algebra homomorphism A — B and we pick an element f € B.
Then we have A — B — By and hence we know what Q}Bf/A is. It is easy to

~

see that we have a canonical isomorphism Q}Bf/A — (Q}B/A)f, which in principle
comes from the rule
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FLE )

[

Therefore we can view Q}B/A as a quasi-coherent sheaf on Spec(B) and then we can

define Q}X/Y for an arbitrary morphism of schemesm: X — Y.

bl) If we have a commutative diagram of schemes
X —----me“-* Z
Y
then f indices a canonical homomorphism

Ag: f*(le/Y) - Q%(/Y'

c) The module of relative differentials is compatible with base change. If we have a dia-
gram

B ——> B =B®aA
A——mm A
then we have a canonical isomorphism Q}B/A ®p B = Q}B,/A.

d) Finally we consider the situation that our algebra B is a quotient of an A-algebra C
by an ideal J, i.e. we have

0 J c > B 0.

1/

A

It is clear that we have a surjective C-module homomorphism QIC/A — Q}B/A,

which sends g dh € Qé/A to w(g)dm(h). On the other hand we can map J to Qé/A
by sending an f €Y to df. This yields a sequence of B-modules

J/J2 —>Qlc/A®CB—>QlB/A—>O

this sequence is exact.

We prove the last assertion. We have to show that the elements in Qlc e B, which go
to zero come from .J/J?. To see this we start with the observation that QIC/A ®c B =
Qlc/A/JQlc/A. If we look at C @4 C — B ®4 B then we have seen that the kernel

is the ideal J ®4 C + C ®4 J (See 26). On the other hand we have the kernels of the
multiplication maps
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Io =ker(C®4C — C),Ip =ker(B®y B — B).

We consider elements in I¢, which go to zero in Ip/I} = Q}B/A. But it is clear that
IZ — I3 is surjective, hence we can represent an element in QF /4» which goes to zero
in Q}B/A by an element h € Ic N (J ®4 C + C ®4 J). Let us write this element

hi=Y j,®@c+Y ¢, ®j,
where the j,,j;, € J. We have ) j, ® ¢, + 3 j,, ® ¢, = 0. The sum is equal to
2@ et D R ©G =D dv@est Y J06+) (6,0, ~5,0d)
:Z(1®CV)(jV ®1-1®j,)

v

+Y (l@d)[e1-17,)
o

+)_ (1@ el -100)
m

=Y (led)i,®1-1a4,).
yu

This yields an element in Qlc /A namely
D cvdju+ Y i+ Y dude, = 3 i
v Iz

which is clearly in the image of J mod JQ¢,,

7.5.3 Examples
Example 15. If B = A[X; ... X,,] then

B®aB=AX:...X,,),... Y]

where X; = X; @1 and Y; =1 ® X;. The ideal I is generated by the elements
Xi-YV=X;01-10 X,

as a B ®4 B-module and I/1? is the free B-module generated by

dX; =X, —Y; mod I
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Example 16. Assume that

B=A[Xy,.... X,/ (F\,....F,)

where F; = Y a;, X¥ € A[Xy,...,X,]. Assume we have an f € B such that for all
mazimal ideals m € Spec(By) the rank of

OF;
< - > mod m
8Xj 1=1,..., r,j=n—r+1 n

.....

s maximal, i.e. equal to r. Then Q}Bf/A 1s locally free of rank d = n—r. If at our mazimal
ideal m the subdeterminant

F:
det(8’> #0 modm
aXJ i=1,...,r,j=n+1—r,....n

then the differentials dz1,...,dxq (where the z; are the images of the X; in B) are free
generators of Q}B/A -

This is clear from our consideration above.

Example 17. We look at our examples of non-smooth points and we will see how the
fact that they are not smooth is reflected by the sheaf of relative differentials.

(a) If A =K[X,)Y]/(XY) = k[x,y] then the set of geometric points is the union of the X
and the Y -axis in A%. The origin is not smooth. The A-module of differentials is
generated by dx and dy and we have the relation

rdy +ydx = 0.

In this example the origin is not smooth because already the condition that the local
ring should be integral is violated. But we could easily modify the example by looking
at

Ay = k[X,)Y]/(XY + X5 +Y7) = k[z,y].
Now the local ring at (0,0) is integral and we have

(y + 5xt)dx + (x + 7y®)dy = 0.

The dimension of Ay is one but the module of differentials is not free of rank one.

This example is interesting for a different reason. If we look at the completions of
our two rings then they become isomorphic

A\Z,\A\l.

We leave this as an exercise to the reader, one has to show that one can construct
power series
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(al)

X =X+ P(X)Y)
Y=Y +Q(X,)Y)

such that the relation XY + X° + Y7 = 0 becomes XY =0.

The reader should also prove that for k = C and a small number ¢ > 0 the complex
space

{(z) € C*lay +2° +y" = 0} B(0,e)

where B(0,e) = {(z,y) € C?||z|?> + |y|> < €} is indeed the union of two discs
intersecting transversally at the origin.

Hence we see that depending on the microscope, which we use to look at our singular
point, the local ring may be integral (Zariski topology) or non-integral (analytic
topology). The two branches of our complex: space above in B(0,€) will come together
very far out again.

Such a singular point is called an ordinary double point.

Let us consider an affine scheme T — Spec(k), which is reducible and whose
irreducible components are two affine lines T; = Spec(k[X;]),i = 1,2. Let us assume
that their intersection is the origin, i.e. the point t1 = to = 0. Then we say that
T, T5 meet transversally if the completion of the local ring at the intersection point
is isomorphic to k[[X1,X5]]/(X1X52).

(b) A=k[X,Y]/(X?—Y?3).

Again we see that Q,lq/k at the origin is generated by dx and dy with the relation
2z dr — 3y% dy = 0, the module of relative differentials is not free of rank 1.

In our three examples the scheme is smooth outside the origin and this is also the open
set where the sheaf of differentials is free of rank one. We will see that this is indeed
a very general fact, which will allow us to define smooth morphisms in a very general
context.

If we are in the situation of example 16 and if we consider a point Spec(k(y)) < Spec(A),
ie. U: A — k(y), then we can consider the base change

B — > BQak(y)

T T

A ————k(y)

This scheme is called the fibre over the point g, this is now a scheme over a field. It is
clear that this scheme

Spec(B ®4 k(y)) — Spec(k(y))

is smooth of dimension d. Moreover it also follows that if we have given a system of local

parameters at a closed point as above —say 1, . ..,rq — then the differentials dz1, . .. ,dzq4
. 1 . .

form a basis of QB®Ak(y))/SpeC(k(y)) at this point.
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Now we have enough insight to formulate our general definition.

Let us assume we have an arbitrary ring A and a finitely generated A-algebra
B = A[Il, Ce 71‘7,,} = A[Xl, e ,Xn]/l

Definition 7.5.11. The morphism

Spec(B) = X
Spec(A) = S

1s called smooth if

a) it is flat

b) For all points s € S the fibre X5 — Spec(k(s)) is smooth.
Theorem 7.5.12. The condition b) is equivalent to

bl) The fibers X, are locally integral at each point and at any point v € X, the sheaf
Qk/s is locally free of rank dim(Ox, ).

Before we come to the proof we want to make two comments.

1) We do not require that the fibers are integral since we never did that before. Hence it
can happen that the fibers are disjoint unions of irreducible ones, which then may
even have different dimensions.

2) Again it is clear that the notion of smoothness can be checked locally at the points.
Hence it is clear that our definition extends to an arbitrary morphism 7 : X — S
where X is of finite type over S.

To prove the theorem we start with the case that S = Spec(k) where k is a field. In
this case the assumption a) is automatically fulfilled. We have seen in the discussion of
example 16 that b) = bl).

If bl) is satisfied we write our algebra B = k[z1,...,z,] as a quotient

K[X1,....X,])/I > B.

Let us assume that we have a geometric point P, which induces the maximal ideals m,
(resp. M) in B (resp. C = k[X1,...,X,]). The module QlB/k is locally free at P and it
is of course generated by dx1,...,dx,. We can choose a basis locally at P let us assume
it is of the form dwy,...,drq where d = dim B,,,,. As usual we put r = n — d. It is clear
(see (d) above) that we can find Fi,...,F,. € I such that dFy,...,dF, together with
dX1i,...,dX, provide a basis of Qé/k at P. But this implies that

OF,;
0X,,

Rank ( ) mod M, = 7.

These Fi,...,F, generate an ideal J and we get
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Cg;np:k[Xl,..., g_n —-}Bmp
Bﬁp

where Eﬁ% is the quotient by the ideal J. The Jacobi criterion and dim Eﬁp = r imply

that Emp is smooth at P . But then it is clear that ¥ must be an isomorphism and it
follows that B is smooth at P.

Now we pass to the general case. From what we know it is clear that b1l) = b) because
b) can be checked fibre by fibre. Now we assume b), we pick a point s € S and a closed
point P € X,. We want to show that QF /4 is locally free and its rank is dim(Ox, p).

We may assume that S = Spec(A) is local and s is closed. Then we can write
AlXq,...,.X,)/I =B = Alzq,...,z,].
If we pass to the special fibre we get an exact sequence
0— Io — k(s)[Xq,...,. Xn] — k(s)[x1,...,2n) = B®a k(y).

Now B is a flat A-algebra (we localized in between but this preserves flatness) and hence
we get

I ®k(s) = Ip.
Now we know that we can find F(O) RO e Iy, which generate Iy, and which satisfy
the Jacobi criterion at P. These elements can be lifted to elements Fy,...,F,. in I and

by Nakayama’s lemma they generate I locally at P. Hence we see that locally at P we
have

B~ A[Xl,...,Xn]/(Fl,...,FT)

and we have seen in example 15 that this implies that Q B/A is locally free of rank d at P. [

We are now able to give a very intrinsic definition of a system of local parameters.

Definition 7.5.13. If we have a smooth morphism A — B, a point P and f € B with
f(P) # 0 then we say that z1,...,xq € By is a system of local parameters at P, if
the differentials dx1,...,dxq form a basis of Q}Bf/A in some neighborhood of P.

We get a diagram

A[Xl, .. Xd _— Bf

NS

where we send the X; to the ;. We have seen in our previous proof that we can write
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AlXy,. . X, Xar, .., Xn] /T = By (7.13)

where I = (Fy,...,F.),r =1,...,n —d and where

OF;
det <3XH> (P)izlmuzd-l-l,-.-,n 75 0. (7.14)

If we localize further then we can choose our f so that this is true at all points in
Spec(By). Then
i:AlXy,....X,] — By

.....

dimensional. Then this inclusion 7 is an example of an étale morphism:

Definition 7.5.14. A morphism A — B is called étale if it is smooth, of finite type and
if the sheaf of relative differentials is zero.

If we have a closed point n € Spec(A) then k(n) — B ®4 k(n) is still smooth and the
connected components are zero dimensional. Hence it follows that k(n) — B ®p k(n)
is a finite separable algebra, i.e a finite sum of separable field extensions of k(n). Let
us assume in addition that A — B is finite (or finite if we restrict to a neighborhood
Spec(Ay) of n) . For our point n € Spec(A) we can find an element § € B ® 4 k(n) such
that

B®ak(n) = Alf] = A[X]/(F(X)),
where F(X) = X%+ a; X% 4+ ... + ag is a polynomial in k(n))[X] of degree d =
dimy,q) (B ®a k(n). ( See [Ja-Sch], Chap. V , Satz 5.11). We know that F'(X) and its
derivative F'(X) are coprime. We can lift 6 to an element § € B and in a a suitable
neighborhood Spec(Ay) of n the elements 1,0, ...,097! will form a basis of By over Ay
and we get an equation
0+ a0+ +ag=0.

Hence we see

Proposition 7.5.15. A finite étale morphism A — B is locally in the base of the form

Ap — Af[X]/(F(X)),F(X) = X"+ ar X"+ 4 aq € Af[X]

where F,F' are coprime.

We want to retain

Proposition 7.5.16. 1) If j : A — B is smooth and if z1,...,xq are local parameters
on an open subset Spec(By) then j factorizes

A A[X, .. Xy -5 By

where h is étale and X; — x;.

2) The diagonal d : A — Spec(B) Xgpec(a) Spec(B) is locally at a point P defined by
the ideal, which is generated by (11 ® 1 —1®@x1,...,.24® 1 — 1@ z4) where x1,2,...,24
are local parameters at P.
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3) Let Y = Spec(C) — Spec(A) be a scheme and let f : Y — X = Spec(B)) a
Spec(A)-morphism let h : B — C' be the corresponding homomorphisms of A-algebras.
Let (Q,f(Q)) = P a point of the graph of f. Let x1,x2,...,x4 € B be local parameters
at f(Q). Then the ideal Ir, C C ®4 B defining the graph T'y C'Y Xgpec(a) Spec(B) is
locally at P generated by h(z1) @ 1 —1®@x1,....h(zq) @1 — 1 z4.

4) We apply this to the case where f : Y — X = Spec(B) is an inclusion and therefore,
C = B/I. We assume that Y is also smooth over Spec(A). We refer to prop. 7.5.10 d),
were here the roles of B,C are interchanged. We assert that that under our assumptions
the homomorphism

I/T* — Qpa @5 C

is injective and I /I? is locally free.

The first assertion has been discussed above, the second follows easily from the definition
of the module of relative differentials and the lemma of Nakayama. To prove the third
one we consider the morphism

1d
Y Xgpec(a) Spec(B) fx1d Spec(B) Xgpec(a) Spec(B)

and observe that I'y is the inverse of the diagonal. Therefore, 2) implies 3). To prove 4)
we choose local parameters x1,xs,...,2q4 € B at f(Q). We can choose them in such a way
that h(xq1),...,h(z,) are local parameters at @ and x,41,...,24 € Z. The differentials
dz1,dxa, . .. dr, form (locally at @) a basis of Q}B/A ® C. The homomorphism Z/Z? —
QlB /a® C may have a kernel G, the image B of this homomorphism is locally free at Q.

We want to show that the images of 2, 1,...,24 in Z/Z? are free generators at @ and
this means that the support of G does not contain ). The image of @) in our base scheme
Spec(A) is a prime ideal qo € Spec(A). Since C' is flat over A we get an exact sequence

0—G®A/q —I/I*®Alqo — B®B/go — 0
If the support of G contains @, then we have G® A/qo # 0. Then we can pick a geometric
point, i.e. a ¢ : A/qo — k and get the sequence
0—GRA/qok —T/T?QA/q @k — BRA/qo @k — 0

and the term on the left is still not zero. All this holds in an open neighborhood of @ and
we may replace Q by a k valued point Q; in the support of G and we still get the same
sequence. We can assume that zq,...,x, vanish at ()1 and we pass to the completion at
Q1. Then we get from 0 — Z — B — C' — 0 the exact sequence

0—7 — kllx1,@2, .. .\ &ryZrg1, - - - 2a)] — E[[T1,22, ... 2]
and we conclude that Z/(Z)? is the free k[[z1,22, . .. 2] module generated by the images
of images of ,1,...,24. This implies that the completion G = 0 and since completion

is faithfully flat we get that G is zero at @, in contrast to our assumption.
O
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7.5.4 Normal schemes and smoothness in codimension one

We consider an integral, normal affine k— algebra A /k. Then we know that the irreducible
components of Spec(A ®y, k) are disjoint and

ARk = @(A @ k)e;

K2

where the e; are constants (See exercise 28). If in addition the algebra A/k is absolutely
reduced, then the k-algebras (A ® k)e; are integral and we claim, that they are in fact
still normal.

This is easy to see. First of all it is clear that under our assumption the field L/k of
constants is separable. Since we have L C A we can view A as an absolutely irreducible
L-algebra, which is of course still normal. If we want to tensor by k we have to choose an
embedding o : L < k from the k-algebra L/k to the k-algebra k. Then our decomposition
becomes

Aerk= @ Aer.k.

o:oL—k

(See example 8 on p. 26) Hence we have to show that for the absolutely irreducible L-
algebra A and any o the k-algebra A ®r , k is still irreducible. In other words it suffices
to prove

Proposition 7.5.17. Let A/k be absolutely irreducible. Then A/k is normal if and only
if A®p k is normal.

Of course Quot(A ®y k) = Quot(A) ®; k and any element in F' € Quot(A ®y, k) is of the
form

F:ZFi®wi7

where the F; € Quot(A) and the w; form a k- basis of some finite extension K/k. It suffices
to show: If F'is integral over A®y, K, then the F; are integral over A and hence in A. But
this is clear because for any index v the element w, F =" F; @ w,w; = Zj (>, Ficij)w;
with some ¢;; € k, is integral. It is elementary linear algebra that we can write the F; as
linear combinations of the w,, F' with coefficients in K and this proves the claim. O

Now we can state

Theorem 7.5.18. (Smoothness in codimension one) If A/k is an integral, normal and
absolutely reduced k-algebra of finite type, then the singular locus is of codimension 2.

This is a sharpening of the generic smoothness under the assumption of normality.

Our considerations above show, that we may assume that k& = k and A/k is integral
and normal. We consider the singular locus and we assume that it has an irreducible
component of codimension one, This corresponds to a non zero prime ideal p C A of
height one, the local ring A, is of dimension one. It is still normal (easy exercise) and
therefore, it is a discrete valuation ring. (See Def.7.3.4) Hence we see that we can find
f.g € A, g € p such that in the localization A, the ideal p becomes principal, i.e.
p = (f/g). This tells us that we may assume that already p = (f) is principal. Now we
have that dim(A/(f)) = dim(A) — 1 and we know that A/(f) is generically smooth. We
can find a smooth geometric point P € Spec(A/(f)), and we show that this is also a
smooth geometric point on Spec(A). This is almost obvious. Let mp D p the maximal
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ideal, then we know that dim((mp/(f)/((mp/(f))?) = dim(A) — 1 (See Theorem 7.5.2),
this implies dim((mp/(mp)?) < dim(A) and applying this theorem a second time we get
the smoothness of P on A. But this shows that p can not lie in the singular locus and
we have a contradiction.

O

Regular local rings

At the end of section 7.1.2 we mentioned that integral, noetherian local rings A have
a dimension, again it is defined as the length of a chain of prime ideals minus one. Let
m C A the maximal ideal, let k(m) be the residue field. Then our local ring is called a
regular local ring if

dim(A) = dimp(m) (m/m?).
If A/k is an absolutely reduced k algebra and if P is a geometric point, then we obtain

a maximal ideal mp C A and a maximizl ideal my C A ®y, k. We have seen in Thm. 7.5.2
that P is smooth if and only if (A ® k)m, is regular. But we also have

Proposition 7.5.19. If P is a smooth geometric point on an affine scheme Spec(A)/k
then the local ring Aw,. is reqular.

We sketch the argument. We encounter a difficulty if the extension of residue fields
k(mp)/k is not separable. We write A = k[X1,Xo, ..., X,.]/(F1, ... . F] = k[X1,Xo, ..., X,]/1
as in Thm. 7.5.4. (This is only valid locally at P) Then P is a k-homomorphism A —

k and determined by the image (a,;1,...,a,) € k% of the coordinate functions x;
mod I,i = r+ 1,...,n. Hence the maximal ideal mg = (%41 — Gpg1,...,Tn — ap). If
now the extension k(a,11,...,a,)/k is separable, then for any j = r +1,...,n we con-

sider the set ; of embeddings o : k(a;)/k < k/k. and see easily that the elements

(I @rs1r = olarsn)), .. J[(@n = olan)i=r+1,...n

Yrg1 Yn

are in mp and form a basis of the k(m)— vector space mp/m%. This proves the proposition
if k(mp)/k is separable. Essentially the same argument-namely taking the product of
conjugates of the generators- allows to assume that k itself is separably closed. Then we
write again mg = (Zy41 — Gr41,...,Tn — ) Where a; € k. We can forget those j, for
which a; = 0, i.e. we assume that all of them a non zero. Then the a; generate a subgroup
< Qpgly.. .0y > in k> and from this we get a finite abelian p- group < ply e e yOp >
k> /k*. We apply the theorem of elementary divisors and after making some suitable
substitutions we assume that < a,11,...,a, > -k* /k* is the direct product of the cyclic
groups generated by the a;, the cyclic groups are of order p™ and hence aﬁ-’n] =0b €k
It is clear that the elements

oo ITa? s Josvapn
J

form a basis of k(a,y1,...,a,)/k. Now it follows from a simple calculation ( here is a
little gap to be filled) that the elements
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(@1 —ar )P (= a))P (= an)P Y =

form a basis for the k(mp)-vector space mp/m% and hence we have the proposition.
The following theorem is deeper

Theorem 7.5.20. A noetherian reqular local ring is factorial.

(See [Ei], Thm. 19.19)

7.5.5 Vector fields, derivations and infinitesimal automorphisms

We consider a smooth morphism of finite type f : X — Y. Then we define the relative
tangent sheaf as

TX/Y = HomoX (Qﬁ(/)mOX)-

Since we assume that f is smooth we know that Qﬁ( Iy is locally free and hence T'x/y is
also locally free.

If we have a point € X and if Ox ,/m, = k(z) is the residue field then T'x/y ® k(z) is
the tangent space at . We will sometimes also denote by 7 : T'x;y — X the associated
vector bundle 6.2.3 then the tangent space at x is also equal to the fibre 7= (z).

We may define T'x/y by the same formula above, even if the morphism f: X — Y not

smooth. But hen it it is not so useful. Let us look at the example 17 (a). We describe the
module QY /k explicitly and we saw that it is locally free of rank 1 outside the origin and

in the origin it is not locally free. But HomA(Qi‘ /k,A) is in fact locally free at all points
and hence in this case T4/, does not see the singularity.

Let us start from a diagram
x— 1 L (7.15)
g
h
Y
then we stated in proposition 7.5.10 bl) that we get a homomorphism A between the
sheaf of differentials. If now g and h are smooth then this yields a homomorphism

Dy Tx;y — [*(Tz/y)-
This means that in a point x € X we get a homomorphism
Dy :Txyyve — Tz/v,j(2) R0 Ox (7.16)

and this gives us a linear map between the tangent spaces

Dy(x) : (Tx)v,e @ k() — Tz/v,5(2) @ k(f (7)) @ k() (7.17)
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This is now the algebraic version of our good old differential of a map between differen-
tiable manifolds.
Let us assume in addition that f is an inclusion, we consider X as a sub scheme of Z.
Then Dy is the inclusion of the tangent bundle Tx/y into the restriction Tz/y|X. The
quotient bundle

Nxiy =Tzv|X/Tx)y

is called the normal bundle of Y in X. Looking at prop. 7.5.16 4) and recalling the
definition of the tangent bundle as dual the differentials we see

Nxy = (Z/T%)".

This is intuitively clear: If we have an f € Z and a section D in T,y then D(f) = 0
because f is identically zero on Y. This yields the pairing Nx/y xZ/T 2 — Oy, which is
non degenerate. The Oy sheaf Z/Z? is locally free and it is called the conormal bundle.

We come back to the investigation of the properties of intersections of two schemes. (See
p. 70). Again we assume that that Z;,Z, are irreducible sub schemes of an irreducible
scheme X/k of finite type. Let dy,ds be their codimensions. Let Y C Z; N Zs be an
irreducible component in the intersection.

Definition 7.5.21. We say that Z1 and Zy intersect transversally in'Y if we can find
an non empty open subset U C'Y such that any geometric point P € U(k) is smooth on
Z1,Z5 and X and the tangent spaces Tz, p, Tz, p intersect transversally and this means

dimE(TZ17P) + dim,;(TZ%p) = dimfc(TX’p) + dimE(TYJJ).

This implies of course that P is a smooth point on Y. We can rephrase this by saying:
Locally at P the ideals I;,I» defining Y7,Y5 are generated by di,ds elements fi,...,fq,
and ¢1,...,94, and the sequence {f1,...,f4,,91,---,94,) yields local generators at P of
the ideal defining Y. And proposition 7.2.17 implies

codim(Y) = codim(Z;) + codim(Z2) (7.18)

The global sections HO(X,TX/Y) are called vector fields (along the fibers). We pass to a
local situation Y = Spec(A),X = Spec(B) and g : A — B, then these vector fields are
the derivations

Dy/p = {D € Homu(B,B)|D(bibz) = b1 D(b2) + b2 D(by) for all by,by € B}.
This is clear: The sets Xy = Spec(By) form a basis of the Zariski topology and locally a
section in QY /. is of the form d(b/ f) € QY y (X;) where b € B. Now a derivation D has
to yield a By-linear map D|x;, : Q%{/Y(Xf) — By and we simply define D|x, (d(b/f) =
(fdb—bdf)/f?. On the other hand if we have an element D € Homo, (Q /y,Ox) then
it especially yields a B-linear map Dx : Qk/y(X) — B = O(X). The B-module
Qk/Y(X) is generated by the differentials db and hence we define D(b) = D|x (db). It is

a simple calculation that the two assignments D — ﬁ,ﬁ — D are well defined and
provide the isomorphism
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Dy =Tx/y(X)
where of course still X = Spec(B).
Let us keep the assumption that X = Spec(A),Y = Spec(B) are affine. We introduce the
ring of dual numbers Ble] = B[T]/(T?), and consider diagrams

X

] e

Spec(B)<_—> Spec(Ble]).
J

where P is a section, i.e. a Y-valued point of X — Y | where j is the morphism e — 0
and tp is a Spec(B[e]) valued point such that P = tp o j. We say that ¢p is in the e—
cloud around P.

We have seen that the section P : Y — X (see 6.1.6) identifies Y to a closed sub scheme
i: P(Y)— X and we can consider the restriction i*(Tx/y) (see 6.2.2) and hence we get
a quasi-coherent sheaf Ty )y,p = (i o P)*(Tx/y) on Y.

Now it is obvious

The set of tp satisfying P =tp o j, i.e. the tp in the € -cloud around P is equal
to HY(Y,Tx/y,p). If T € H°(Y,Tx,y,p) then we denote the resulting point tp by

tp =P+ €Tl (719)

If we drop the assumption that our schemes are affine, then we have to be a little bit
careful. Our considerations are local in Y. It is clear how to define the scheme Spec(Ye] :
We cover Y by affine schemes V; = Spec(4;) and then we glue the schemes Spec(A4;]e])
together and get Spec(Y[¢]. But we have to make an assumption concerning the morphism
X — Y. Without any further assumption we can not say that the section P:Y — X
defines a closed sub scheme P(Y) C X. For this to be true we need that the structural
morphism f : X — Y is separated, this is a global property of a morphism and will be
discussed in the next chapter (see 8.1.4) (It means that the diagonal Ax C X xy X is
closed.) If now Y is not necessarily affine but f is separated then we can reformulate the
above assertion into an assertion concerning the sheaf T'x,y,p : We state the assertion
only for the restriction to affine open subsets V C Y.

Therefore we can apply this to the following diagram: Let X/S be a separated scheme
of finite type then we consider

XXSX

S e

X :Spec(X[e]).
J

and now locally on affine open subsets U C X the e— cloud around A is the space of
sections H*(U,Tx/s).
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Automorphisms

For any scheme X — S we can consider the functor of its automorphisms. This functor
attaches to any scheme T' — S the group of automorphisms of the scheme X xg 7.
This functor T — S — Autp(X xg T/T) = Aut(X)(T). Sometimes this functor is
representable by a group scheme (See below.)

At this point we are interested in the kernel of the homomorphism

Aut(X)(S[e]) — Aut(X)(S)

and this group is called the group of infinitesimal automorphisms. It is clear from
our considerations above that this group of infinitesimal automorphisms is equal to
H%(X.Tx/s) : A global section T' € H%(X,Tx/s) "displaces a point z into the infinitesi-
mally close point z + €T,”.

7.5.6 Group schemes

We want to give a brief and informal outlook into the theory of group schemes over an
arbitrary base. We consider a separated scheme p : G — S of finite type. We assume
that we have the structure of a group scheme on G/S ( see also page 50.)This means
that we have S-morphisms

m:GxsgG— Ginv:G— Ge: S — G,

which satisfy the following rules encoding the associativity, the existence of the identity
and the inverse:

mom XgId =moldxgm, Associativity
mo(exgId)=Id,mo (Id xge) =1d, Identityelement
mo (Id xginv)) = eopmo (inv xg Id)) = e o p. Inverse

For any scheme T' — S the morphism m yields a composition G(T) x G(T) —
G(T),(g91,92) — g1 - g2 and this provides a group structure on G(T).

It is that for any S’ — S the morphism m’ : G xg 58’ xg: G x5S — G xg .5 yields a
group scheme structure on G xg S’.

A separated scheme p : G — S together with the data m,inv,e is called a group
scheme over S.. If in addition the structural morphism p is smooth, then it is called a
smooth group scheme .

In the following we assume that our group scheme are smooth. Since we have the group
structure the irreducible components of a fiber G all these irreducible components have
the same dimension. This dimension is locally constant in s. (Theorem?7.5.12) Hence we
can speak of the dimension dim(G/S) if the base scheme S is connected. If S is not
connected then let us assume that these dimensions are independent of s.

Our assumptions imply that Q(I;/S,Tg/s are locally free of rank dim(G/S). We denote
the restriction e*(Tg,g) by g or also by Lie(G/S). It is easy to see that for any affine
open subset U C S the elements in the e-cloud tp = e + €T, T € H°(U, Lie(G/S)) form a
subgroup and (e+€T1)-(e+€T5) = e+€e(T1+1%). It follows immediately from the definition
that the e-cloud around e is also the kernel of the homomorphism G(Ule]) — G(U).
Hence we can say
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H°(U,Lie(G/S)) = ker(G(Ule]) — G(U)).
If we have a locally free sheaf £ of finite rank r over our scheme S then we we can
define the group scheme GL(E)/S. For any T — S the group GL(E)(T") is the group of
Orp-linear automorphisms of the bundle &7, which is the pullback of £ to X x g T. Since
£/S is locally trivial, we can find a covering by Zariski-open subsets U C S such that
E/U = Of; and then G xg U = GL,./U.
For this group scheme it is evident that

Lie(GL(E)/S) = Endpg (€).

A representation of a group scheme G/S is a S-homomorphism

p: G — GL(E)

where £/ is a locally free Og module. Then it is clear from our considerations above
that we have a ”derivative” of the representation (See 7.16)

dp : g = Lie(G/S) — Lie(GL(£)/S) = Endog (€)

this is an Og-linear morphism of sheaves.
Every group scheme G/S has a very special representation, this is the the Adjoint repre-
sentation . We observe that the group acts on itself by conjugation, this is the morphism

ad: G x5 G — G,
which on T valued points is given by
ad(g1,92) — g192(91) "
This action clearly induces a representation
Ad:G/S — GL(g)

and this is the adjoint representation. This adjoint representation has a derivative (see
7.16) and this is a morphism of locally free sheaves

Dpg =ad: g — Endo,(g).

If we assume that S is affine, i.e. S = Spec(A) then g is simply a locally free A-module
and ad is simply an A-module homomorphism from g to End4(g). We introduce the
notation: For 77,75 € g we put

[T1,T5] := ad(T1)(T>).
Now we can state the famous and fundamental result

Theorem 7.5.22. The map (T1,1>) — [11,T3] is bilinear and antisymmetric. It induces
the structure of a Lie-algebra on g, i.e. we have the Jacobi identity

(T1,[T2,T5]] + [T2,[15,T1]] + [15,[11,T3]] = 0.

We do not prove this here. In the case G/S = GL(€) it is easy to see that for 11,15 €
Lie(GL(E)) = End(&) we have [T1,Tz] = T1 Ty — T5T and in this case the Jacobi Identity
is a well known.
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7.5.7 The groups schemes G,,G,, and u,

We want to introduce some simple affine group schemes. They can be defined over an
arbitrary base scheme S, this means that theyc are obtained by base change from the
two schemes G,/ Spec(Z),G,/ Spec(Z).

These two group schemes represent functors from the category of commutative rings to
the category of groups: For any commutative ring Z — A we put

G, (A) = AX= the multiplicative group of units of the ring A,
Go(A) = A= the additive group of the ring A.

It is easy to see that these two functors are represented by the group schemes Spec(Z[T,T~1])
and Spec(Z[X]), where the group structure on the affine algebras is given by the homo-
morphisms

m:T—TTinv:T—T le:T—1

for the group scheme G,, and

m: X—XR1+1Xinv: X— —-Xe: X—0

for the group scheme G,.

If describe affine group schemes over Spec(Z) (or any affine base scheme) in terms of al-
gebras then the homomorphism m is called the comultiplication. If £ is an algebraically
closed field an S = Spec(k) these are the are the only affine, connected, one dimensional
group schemes over S.

On our group scheme G,/ Spec(Z) we an endomorphism, which on G,,(A) = A* is
given by x +— z™. This endomorphism has a kernel, this is the group scheme

i = Spec(Z[T.T]/(T™ — 1))

where m,inv,e are given by the same formulae as for G,,.

This group scheme is a finite group scheme over Spec(Z), but if n > 1 it it is not smooth
anymore. If we pick a prime p | n and perform the base change G, Xspec(z) Spec(IFp)
then we get the coordinate ring F,[T,7~!]/(T™ — 1) and this ring contains non zero
nilpotent elements. Hence it cannot be smooth. The local ring at a smooth point does
not contain nilpotent elements (see definition 7.5.1.) But it easy to see that its base
change to Spec(Z[1] is smooth.

Since we are at this point let us just discuss another interesting scheme. We start from
the field IF), with p elements. We have G, /IF), = Gg X gpec(z) Spec(IFp). The affine algebra
of this reduction mod p is given by IF,[X] and the same m,inv,e as above. But for this
scheme the map X — XP? induces an endomorphism and the kernel of this endomorphism
is a group scheme

ap/Fp = Spec(IF,[X]/ (X))

with still the same formulae for m,inv,e.
We conclude this section by stating a classical theorem
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Theorem 7.5.23. (Hilbert’s theorem 90) Let V/k be a finite dimensional vector
space over a field k. For any finite, normal separable extension L/k we have

H'(L/k,GL(V)) = {e},

i.e it is trivial.

To see that this is true we observe that V/k is a scheme over k, we have an inclusion
GL(V)/k — Aut(V)/k (the group on the right hand side is huge if dimg(V) > 0.)
Now we know from section 6.2.10 that the image ¢’ of a class ¢ € HY(L/k,GL(V)) in
HY(L/k,Aut(V)) defines a form V’/k. But since this class is the image of ¢ it is clear
that V' /k is a vector space over k and has dimension dimg (V). Therefore it must be
isomorphic to V/k as a vector space and this shows that £ must be trivial.

I want to point out that this argument is not the one given in most of the text books. In

the text books, and also in Hilbert’s original proof, a boundary is written down explicitly
as a certain sum. This argument also occurs in this book at a different place.

7.5.8 Actions of group schemes

It is clear what it means that a group scheme G/S acts on a scheme X/S, this means
that we have a morphism

GxgX—24— x

such that the diagram

GXSX
m Xg

\E

Xsa

a
GxsGxgX >X
a

/=

GXSX

commutes and such that the composition e xgId : X — G x g G with a is the identity.
These axioms are equivalent with the requirement that we have a functorial action of
G(T) on X(T) for all schemes T — S. To any such an action we can attach a functor
from the category of schemes over S to the category of sets:

X/G:{T — S} — X(T)/G(T). (7.20)

It is one of the important issues of the theory of group schemes to discuss whether (or
under which conditions) we have a reasonable quotient X/G for this action. The best

we can hope for is that the functor X/G is representable, but this is only true for very
specific cases. (See [M-F-K]).
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We want to discuss very briefly actions of G,,/S on affine schemes X = Spec(A) — S.
This discussion is very informal and we leave the proofs of the statements as an exercise
to the reader.

Let us assume that S = Spec(B). Then our action is given by a B-algebra homomorphism

a:A— A® B[T, T,

for f € A we write

fHZaV(f)@)TV

vEZ

where the sum is finite (depending on f) and where a, : A — A is B-linear. Our two
axioms yield a, o a, = 6, ,a, and f =" a,(f). Therefore we see that

A=P A,

VEZ

where A, = a, (A). Since a is a homomorphism of B algebras it is clear that the A, are
B-modules and that A, - A, C A, 4.

In other words: A G,/ Spec(B)-action on the affine scheme B — A is simply a Z-
graduation of the B-algebra A.

If we now ask for a quotient X/G,,, then it seems to be quite natural to define X/G,, =
Spec(Ap) where the projection X — X/G,, is given by the inclusion A9 — A.This
construction gives us a quotient, which has the following property: For any (affine) scheme
B — C, which is endowed with the trivial G,, action we have

Homg;,, (X, Spec(C)) = Hom(X/G,, Spec(C)).

This means that our quotient is a categorical quotient in the sense of ([M-F-K], ), but
it may still have bad properties. Let us look a the case of the standard action of G,
on the affine line over a field k. Then X = Spec(k[U]) and a : U” +— U ® T". The
quotient is Y = Spec(k), and Y (k) is simply one point. But if we consider the quotient
X (k)/ G (k) = k/k* then we get two points, namely the orbit of 1 and the orbit of zero.
This is certainly not a very satisfactory situation.
The problem arises from the fact that the orbit of 1 under G,, is not closed. Hence we
should formulate another assumption. We say that all the geometric orbits are closed if
for all geometric points of B — k, where k is algebraically closed and all points z € X (k)
the orbit Gz, i.e. the image of G X g k under G xp k xg {2} — X xp k, is closed.
We formulate a criterion for an orbit to be closed. We assume that B is of finite type
over Z and A = Blx1,z2,...,2,] is of finite type. Since we can write the z; as sum of
homogenous elements we may assume that the z; themselves are homogenous of degree
d;.
Then a geometric point « : Blx1,x2, . ..,x,] — k yields a tuple (a1,a2,...,a,) € k™ and
an element ¢ € Gy, (k) = k™ acts by

(a1,az,...,a,) — (cMar,c®ay, ... cMay,).

We claim that the orbit of x is closed if and only if one of the following two conditions
holds

(i) There are two indices i,j, for which a; # 0,a; # 0 and d; > 0,d; < 0.
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(ii) For all indices i with a; # 0 we have d; =0

We leave it as an exercise to verify this criterion for the closedness of an orbit.
The following proposition is proved and explained in [M-F-K], Chap. I, § 2

Proposition 7.5.24. Let X — S be a scheme of finite type over S and let be an action
of Gm/S on X/S. If all geometric orbits are closed then X — X/G,, is a geometric
quotient and this means that for all geometric points B — k the induced map

X(k)/Gm(k) — (X/Gm) (k)
is a bijection.

It is important to notice that here k is algebraically closed, we are dealing with geo-
metric points. If k is not algebraically closed and if we consider for instance the action
of G,,/Spec(k) on X = G,,/Spec(k) itself, which is given by (z,y) — z?y, then we
clearly get X/G,, = Spec(k) and X/G,,(k) = {Id} is just one point. But in general
X/G(k) = X(k)/Gnm(k) = kX /(k*)? will consist of more than one point. And we see

that X/@G,, does not represent X/G,,.

This kind of problem will play a role in the discussion of moduli problems (see 9.6.2
and 10.1.1). There exist concepts, which help us to deal with this difficulty. The starting
point is to consider X (k)/G., (k) not as a set but as a groupoid. A groupoid is a category

where all morphisms between objects are isomorphisms. Hence the value of X/G,,(T)
will not be a set but a groupoid. In our situation the objects in our groupoid are the
elements in x,y € X(T) (7.20 and the morphisms Homm(a:,y) ={a € G,,(T)|ax = y}.

Now it does not make sense anymore to ask whether X/G is representable by a scheme.

But we can ask whether it is representable by a ”stack” X/G, where a stack is an object
in a 2-category, it is a more general object than a scheme, it is some kind of quotient
of a scheme by an equivalence relation. A 2-category S is a collection of objects U,V ...
where Homg (U,V) is a category, or better a 1-category.

If for instance X = pt = Spec(k)- here k is a field-, the we have the trivial action of G,,
on pt and the stack pt/G., is already a very sophisticated object.

If for instance kK = C, then we can consider the cohomology groups of the stack and it
turns out that

H*(pt) G, Z) = Z[z],x sits in degree 2,

i.e. it is the cohomology of the infinite dimensional projective space P°°(C).
The stack pt/G,, is also what the topologists call the classifying space of G,y,.
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8 Projective Schemes

8.1 Geometric Constructions

8.1.1 The Projective Space P’}

Let A be a commutative ring with identity 14. Let S = Spec(A). We want to construct
a scheme PP%, which will be called the n-dimensional projective space over S.

To do this we consider the following n + 1 affine schemes
Ui = Spec(A[T; ... T;n]/(Tii — 1)) (8.1)

The ring of regular functions of U; is the quotient of the polynomial ring in n + 1 inde-
pendent variables variables T; 0,75 1, ..., 15 i—1,13,i, 15 i1, - - - »1i,n divided by the relation
T;; = 1. This means that all the U; are copies of A%.
We denote by ¢; ; the images of the T; ; in the quotient ring Alt; o, ...t »]. This means
that for a given ¢ the ¢;0,ti1,. .. tii—1,ti,i+1,- - - ti,n are independent polynomial variables
and ti,i = 1. Then Ul = Spec(A[ti’O,ti_rl,.‘ ~ti,i—1ati,i+17~ . ,tiﬂ]). For any index _] we
define the open subscheme of U;:

Ui,j = SpeC (A[T’i70, . 7Ti,n}/(Ti,i — 1))T1,j (82)

= SpeC(A[tiyo,ti’l, e ti,i—17ti,i+17 . ,ti’n,ti—jl].
We have an isomorphism
fij Uiy — U,

which on the level of rings is given by

Gij t Altjostins - tijo1tiirts - timits ] — Altiostia, - tiiot,tiivts - timits;']
(8.3)

-1
Gij(tj) = tiv -t
We see that ¢; j(t;;) = ¢ (1) =ti; -t;} =1 and ¢i7j(tj_,i1 =t;; - t;; = t;; as it must

be. We allow ¢ = j, in this case ¢;; is the identity on U;.
Given three indices 7,5,k we get a commutative diagram

bij

Ui,j D) Uiﬂ' n Ui,k

o~

i,k 7,k
Uk,i n Uk,j

Uji NUjk C Uj

G. Harder, Lectures on Algebraic Geometry I1, DOI 10.1007/978-3-8348-8159-5 3,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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of isomorphisms. This allows us to define an equivalence relation on the space | |,_ 0...n Uis
namely u; ~ u; if and only if u; € Uju; € Uj; and ¢;j(u;) = uj. We divide by "this
equivalence relation and get the space

|_| Ui/~ =P7%, (8.4)
this will be the underlying space of P”j. The projection map
e |_| U, — P} (8.5)

provides a homeomorphism from U; to an open subset in IP7;, we identify U; with this
open subset, i.e. we consider U; as an open subset in P’;. Now we define a sheaf Op» on
the space P} simply by putting

and we use the ¢; ; to glue O(U;) | U; NU; with O(U;)|U; NU;.

This scheme (P’j,0pn ) is now the n-dimensional projective space over A. In accordance
with an earlier convention ( see p. 11) we will suppress the second variable and simply
write P’}

After constructing P} we can think of it in the following way: The scheme P"; admits
an open covering

:.U U,

1=0,...,n
such that the U; are affine spaces. The ring of regular functions on U; is
OP’Z(UZ) == A [ti707 PN ati,n] .

where ﬁiﬂ' =1 and ti,O» . ,tiyifl,ti’hul e 7ti,n are independent.
The intersection U; N Uj is affine and

O]pz (Ul M U]) =A [ti,o, - ,ti,n,t;}] =A [tj,o, ... ,tj7m,t;;] (87)
and
tiw = tjw  tigotiu = tiy - tja- (8-8)

Theorem 8.1.1. The regular functions on Py are the constants, this can be stated briefly
as Opg (P7) = A.

Proof: Let f € Opr (P7). We restrict f to the open sets U; and get a polynomial
f | Ui = Pi(ti,Oa - 7ti,n) S A[ti’g, A ati,n]-

For any pair of indices we have P;|U;NU; = P;|U;NU; and this means that ¢; ;(P;) = P,
and hence
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Pi(tio--tin) =P (tio-t; ], - stin 1)

Now we write P; as polynomial

12 Vj— Vj Vn
Pj = vy w5 £ (8.9)
We get
tio\"” tin\ "
Pi (t170 . ti,n) = Z a’l/(]...l/n e el — 5 (810)
tij tij
this is a polynomial in t;0,...% i—1,tii41 ... tin. If © # j, then this is only possible if

all exponents vy = ...V;_1,Vi11,...V, = 0 in other words, P; has to be constant. This
proves the theorem. O

We have a different way of looking at this argument:

Homogenous coordinates

We consider n + 1 new variables Xy,X1,...,X,, and we endow the polynomial ring
A[Xo,X1,...,X,] with its standard graduation: To any monomial X°X{*--- X" we
attach the degree d = »”.r;, then we define A[Xo,X1,...,X,](d) to be the A-module
generated by the monomials of degree d. This is the module of homogeneous polynomials
(or forms) of degree d. We have the direct sum decomposition

P AlXo. X1, ... X)) (d) = A[X0, X1, ... X,
d=0

We can localize this ring by inverting any of the variables and in any of these localizations
we can consider the subring of elements of degree zero, i.e. we consider

F
AlXo, X1, ..., X)) = {X.d ’ F e A[Xo, X1, ... 7Xn](d)} : (8.11)
It is clear that the homomorphism sending ¢; ; — X,;/X; induces an isomorphism

Alti0,- - tin] = AlXo, X1, - X))

and the ¢; ; correspond to the obvious inclusion maps. We can always think that we have

the relation ¢; ; = X;/X;. Now our theorem above says that
N AlXo.X1,.... XY = A. (8.12)
1=0...n

We want to describe the set of A-valued points in terms of homogenous coordinates. It
is already little bit complicated to say what an A-valued point on P’} is. Such a point
x € P4 (A) is a section from S = Spec(A) to P7. We can find a covering S = UV,, by
open sets such that the section z : V,, — P} x V,, factors through one of the open
subsets, say U;. We may assume that these V,, are affine, in other words V,, = Spec(4y, ).
Then the restriction of x to Ay, is of the form
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T, = (ai’o, e ,1, e ,ai,n)

where a; € Ay, , and where the entry with index ¢ is one. The index 7 is not determined
by v and such a point may also lie in U;. Then a; ; is a unit in Ay, and

[ aio 1 1 Qin
Ty, = P EREET TR e EEEE A
Qi,j @i, j Qg,j

represents the same point. Of course the restriction of w, to Ay, s, is equal the restriction
of z,, to the same set. If now x, factors through U; and z,, factors through U}, then the
restriction of these points to Ay, s, factors through U; N U; and if as above

Ty = (aiyo, e ,1, N ,ai’n),x# = (bj’(), ce ,1, ce 7bj,n)
then we have in Ay, ;, the necessary and sufficient relations
(ai’o, e ,]., e ,aiyn)bjﬁi = (bj,Oa AN ,1, e ,bjm)aij.

We should be aware that in general P"(A) # (JU;(A).

The situation becomes much easier if we assume that A is a local ring. Then we can
represent a point x € P™(A) by an element in

ATl = {(ao, ...,a,) | at least one entry is a unit in A},

and the equivalence class representing x is given by the elements

(ag, ... a,) =(agh,...,a,b) with be A*. (8.13)

The vectors (ag,. .. ,a,) are the homogenous coordinates of the A-valued point z.
If we drop the assumption that A is local we also can represent a point by homogenous
coordinates. Let us assume for simplicity that A is integral. Then we introduce the set

ATXL‘*‘1 — {(ao, cooan) € Al | not all entries are zero}

where we require in addition that the ideal {ao,...,a,} generated by the a; is locally
principal for the Zariski topology. We define any equivalence relation ~: Two arrays
(ag, .- an),(bo, ... ,by) in A1 are equivalent if we can find an element ¢ € Quot(A)
such that

(a0, @) = c(bo, . . bu).

Then it is clear from our previous considerations that
A =P (A).

With a little bit more effort we can find a formulation, which does not assume integrality
of A.

The scheme Spec(A[X,X1,...,X,]) — S = Spec(A4) is of course equal to Ag“. We
have the zero section s : .S — Ag“, which ends all the coordinates to zero. The image
of the zero section is a closed subscheme also denoted by S C [Ag“, the complement is
open and yields the scheme Ag“ \ S. Our considerations above yield a diagram



8.1 Geometric Constructions 125

AT\ § — T P (8.14)

NS

We have an action of the group scheme G,, on ZA”H \ S, which on the S-valued points
is given by the the the component wise multlphcatlon For t € G,,(9),(ao,.-.,an)) €
AT\ S(S) we the action is given by (t,(ao,...,as)) = (tag, ... ta,).

This action defines the structure of a G,,— torsor (See 6.2.4) on w: A%t \ § — P!,
The points in 7= (U;)(A) are the elements (ag, ... ,a;,...,a,), for which a; € A%, over
U, the torsor is trivialised by choosing the section

S; - (CL@(), e ,am_l,ai’i_i_l, e ,CLi’n) — (ai_’o, e ,am_l,l,ai’i_,_l, e ,a@n). (815)

Finally we remark, that the gluing argument allows us to replace the affine scheme
S = Spec(A) by an arbitrary scheme, some of the formulations have to be modified
appropriately.

8.1.2 Closed subschemes

Now we know of course what a closed subscheme of P is, see 6.2.2 page 17. We simply
pick a quasi-coherent sheaf (see 6.2.2) of ideals Z in Opr , then (V(’J),Opv;‘) is a closed
subscheme of P”;. We get a commutative diagram

(V(3),0pn /3) —— TP (8.16)

~. |

Spec(A),

hence this subscheme is automatically a scheme over Spec(A).
Such a quasi-coherent sheaf of ideals Z is simply a collection of ideals I; C Op~ (U;) such
that I; and I, generate the same ideal in Op~(U; N Uj) (see 6.2.1).

We call an ideal Z C A[X0,X4,...,X,] homogeneous if for any F € 7T its homogeneous
components F,; are also in the ideal. _

We can get quasi-coherent sheaves of ideals from homogeneous ideals I in A[X,X1,...,X,].
This is not difficult to see. To any homogeneous polynomial F' € A[X(,X;,...,X,](d) € I
of degree d we attach a collection of elements { f; € Op» (U;) }i=o0,1...n simply by substitut-
ing t; , for X, into the polynomial. These f; generate an ideal I; in Opn (U;). It is clear
that the restrictions of f;,f; to U; NU; satisfy t;ffAUi NU; = f;|U;NU; and since t; 5 is
a unit in Op~ (U; NU;) it follows that I; and I; generate the same ideal in Opn (U; NU;).
If F' runs over the homogeneous elements of I these F give us a quasi-coherent sheaf of
ideals 7. _

If in turn Z C P”} is a closed subset, we may consider the ideal I generated by homoge-
neous polynomials, which vanish on Z. It is clear that V(I) = Z (See 6.1.3).
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Lemma 8.1.2. For a homogeneous ideal I C A[Xo,X1,....X,] we have V(I) = 0 if and
only if I(d) = A[X0,X1,...,Xn](d) for d sufficiently large.

Proof: Of course we know that V(I) = 0 if and only if V(I)NU; =0 for i =0...n.
This is equivalent to the assertion: For all 7 we can find g, € Op~(U;) and f,, € I; such

that
Z gl/fl/ =1

(See prop 6.1.15 and its proof). Now we remember that we should think of ¢; ; as being
X;/X; then we see that we can multiply this relation by a power of X; and it yields a
relation

> G.F, =Xx["
where the G, ,F, are homogeneous and F), € I;. Hence we conclude that V(f ) = () implies
that for all 7 a suitable power of X is in the ideal, this proves one direction of the Lemma.
The other direction is obvious. O

For our considerations above it was not necessary to assume that the base scheme Spec(A)
is affine. All the constructions work over an arbitrary base scheme S.

We could have started with the ring A = Z and construct the scheme P7j. If S is
any scheme then we have the absolute morphism S — Spec(Z) and we could define
P% =P7 x S.(See 6.2.5).

Of course it is again very easy to describe B-valued points of a closed subscheme X C P}
if this subscheme is given by a homogeneous ideal I C A[Xj,...,X,]. Then the B-valued
points of X are given by

X(B) = {(bo,-...bn) € BI"| f(bo,...,by) =0V f € Thomogeneous}/ ~ .  (8.17)

8.1.3 Projective Morphisms and Projective Schemes

Definition 8.1.3. We call a morphism m : X — S projective if we can find a commu-
tative diagram

R ———

|

5,
where 1 is a closed embedding, i.e. an isomorphism to a closed subscheme in P™. We also
say that m: X — S is a projective scheme over S.

Now we want to show that the fibered product of projective schemes exists and is again
a projective scheme. We write S = Spec(A). We have the two schemes

P Py
S.



8.1 Geometric Constructions 127

It will turn out that this fibered product of these two schemes exists and can be written
as a closed subscheme of P+,

To construct this closed subscheme we start from the usual covering by affine spaces.
We change the numeration: We had n + 1 open affine spaces to cover IP%. Since we have
nm+n+m=(n+1)(m+ 1) —1 hence we need (n + 1)(m + 1) open affine spaces for
the covering.

For 0 <i<n,0<j<m we write

Ui ; = Spec (A[... i jupu---])

where of course 0 < v < n,0 < p < m, the z; ;,,, are independent polynomial variables
except that we have the relation z; ;; ; = 1. We cover P and P'¢'by

U; = Spec (Altio .. tin])
Vj = Spec (At} ...t ,]) -

7,m
We have already constructed the fibered product
Ui xs Vj = Spec (A [tio, .- tinst) o)) -

We construct an morphism from U; x V; with a closed subscheme of U; ;. To do this we
construct an A-homomorphism of rings

A[ RN RNTP R ] — A [ti,Oa N 7ti,nat_/j,07 ce ’t;',m}

and this homomorphism is given by

!/

Ti g = tip 1 e

We observe that x; ;; ; maps to 1. We also observe that
Tigin — L

Tijuwg — liw

and hence it is clear that the kernel of this homomorphism is the ideal I; ; generated by
Tigip Tijwj — Tijwpu- 1 we divide by the ideal generated by these polynomials, then
we get a polynomial ring generated by x; ;.. with (v,p) # (4,5).

Hence this ideal defines a closed subscheme V' (I; ;) C U; ;, which is isomorphic to U; x g V.
This ideal defines a quasi-coherent sheaf E j on U; ; and we will show that

E’j|U¢,j NUy 50 = :'/,j/|Uiyj NUy . (8.18)
To see this we consider the following diagram
U; Xg ij = V(Iiyj) C Ui,j
U U
V(L;J) n V(I%j/) C Ui,j N Ui/}j/

Uzl XSI/]‘ l’ V(Ii’,j’) C Ui/_’]‘/.



128 8 Projective Schemes

We can construct the fibered product (U; NU;) x g (V; NV;/) since both factors are affine
and of course we can place it into the middle of the left column of the diagram above
and we get open subschemes (U; NUy) xs (V;NVy) C Uy xgVj and (U; NUy) xs (V; N
Vi) C U; xg Vj. Of course we want a horizontal arrow from (U; N Uy ) xg (V; NVjr) to
V(l;,;) N V(I j), which should be an isomorphism. To see that this works we rewrite
the diagram in terms of rings, we drop the column in the middle

A[tzw,t;u] — A[zmuu]
1 1 m —1
A[...ti,j,.. t; #’t“/ 7tjj ] — A[...,x’i’j’l,”u,...7.Ti’jﬂ-,’j,]

/ 1 -1
A[...ti/,y,.. tj ,u’tl Z’t]'j] — A[...Ii/j/,,ﬂ $Z/ IR z,]]

]

A[...ti/,y,... — A[...,l‘y’j/,yﬁu,...}.

The two arrows in the middle are obtained from the arrow on the top and the bottom
by the following rule: We send x;_ J i (resp. z;,! i) tot R tj*,;, (resp. tz,i t;,lj) But
using the rules for changing the coordinates yield that the two arrows in the middle are
equal. The kernel of this arrow in the middle is clearly (I; ;)4 = (Iytj/)s,,.,.. and

i,5,47,5" i’'j'ij
this proves Ii,j|Ui’j NUy jr = i/}j/|Ui,j N Uy 4. For later references we write our diagram

again, but now we write the ”completed diagram”

U, Xg V} = V(I%J) C Ui,j
U U U
(Uz NU; Xg (V] n V}/) = V(Ii,j) N V(Iil,jl) C Ui,j N Uigj/
m ~
U,L/ Xs ‘/J — V(Ii/ﬂ'/) C Ui/J/.

Hence the I; ; define a quasi coherent sheaf of ideals on PZ" "% and this defines a
closed subscheme Y of PE™ "+,
We can define projection maps

Y -——————————> P Y —>IP
which on U; ;NY = U; xg V; are the projections to the first and second factor. (It needs
a little computation that these projections match on U; ; N Uy ;:.)

Then it becomes clear that
Y
2N
PY Py
S
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is indeed a fibered product. If we have a scheme T — S and a pair of arrows

then we find for any t € T an open neighborhood V' such that f(V) C U;,g(V) C V; for
some ,7. Hence on V' we get a map

Vv —-U; Xs‘/jﬁUi’jﬁY
S

and if we cover T by such V’s then the maps must match on the intersections. This
follows from the ”completed diagram” above.

We could also use the description of subschemes by homogeneous ideals. We introduce the
ring A[ ;] where i =0,1,...,n,7 =0,1,...,n and in this ring we have the homogeneous
ideal P generated by the polynomials Z; ;Z,, — Z,; 2y,

for all quadruples of indices. Then the process of passing from homogeneous ideals to

quasi-coherent sheaves of ideals gives us the ideal describing P% x g Py as a subscheme
of IP(7L+1)(7n+1)—1
5 .

The above embedding is the Segre embedding.

Locally Free Sheaves on P™

At this point we return to the construction of sheaves by the gluing process. We want
to construct locally free sheaves and line bundles on P”;. To do this we start from the
collection of free modules of a fixed rank m on the open schemes U;:

O]P'VL(Ui)Tn - A[ti,()» e ,ti7n]nL = M1

They define sheaves ]\AjZ on the affine schemes U;. Now we choose Opn (U; N U;)-linear
isomorphisms

9i,j: M(Ul nU;) = ]\A/-fJ(Uz nu;),

this is nothing else than a collection of matrices g; ; € Gl (Opn (U; NUj)), which should
satisfy the cocycle relation

Gii = Id
9i,j95 = 1d
Gi,j * Gje = gie on UiNU; NUe.

Then we get a locally free sheaf (vector bundle, see below) on P by glueing:
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M = (M;,gi,)i=o0,... n;j=0,....n-

We recall that for an open set a section s € M(V) is a collection s = (Sq,...,Si,...,Sn)
where s; € ]\Z(Ul N V) and where g¢; js; = s; on V N U; N U;. Especially we have
M (U;) = M; because in this case the i-th component determines the others.

In the simple case m = 1 our matrix becomes a unit in Op~(U; NU;) and we may choose
for instance an integer r and define

9ij =1, ; .
This yields a locally free sheaf of rank one (or invertible sheaf), which is called Opn(r)
on P, Again I point out that Opn (r)(U;) = Opn(U;) = Altio, - - - stin]-
Exercise 33. Let A be a factorial ring. Show that every line bundle £ on P} is isomor-
phic to Op~ (r) for some r. Hint: Exploit that for all ¢ the ring Op~ (U;) is a polynomial

ring over A and hence factorial (See theorem 7.1.5). Then the restriction of £ to U; is
free for all 7, (see exercise 19.8) and the rest is clear.

Exercise 34. Compute H°(P",Op~(r)) and show that this is isomorphic to the A-
module of homogeneous polynomials in n + 1-variables of degree . To be more precise:
A section in HO(P",Opx (7)) is by definition a collection s = (fo,...,f,) where f; €
Altio, - - tin] which satisfies

7 k= 1.
on U; NUj. A homogeneous polynomial
F(Xo,...,.Xn) =Zay,, ., X" ... X"
with Yv; = r provides such a section if we define

fi(tios - tin) =F (tio,--- 1, . tin) .
Show that this gives us the isomorphism!
Exercise 35. Any homogeneous polynomial F'(Xj,...,X,) defines a sheaf of ideals
Opn (F) — Opn

which is defined by Op« (F)(U;) = Op« (U;) fi, in other words: the restriction of the ideal
to the open sets U; is the principal ideal (f;).

Show: Assume that for all p € Spec(A) this polynomial is non zero in A/p[Xo, ..., X,],
then this is a locally free sheaf on 7, which is isomorphic to Opn(—d) where d =
degree of F!

Hint: Write a section Opn (F)(V) as a collection of elements (... ,h; f;,...) and show that
we must have tﬁjhi = hj. Where do we use our assumption? Can it be replaced by a
weaker assumption?

We refer to the exercise 35. The sheaf of ideals defines a closed subscheme V' (F), which is
called a hypersurface of degree d. If we take for instance simply F' = X, then this closed
subscheme is the reduced scheme Hy = P™ \ Uy, it is isomorphic to P"~!/Spec(A). Tt
is called the hyperplane at infinity (from the point of view of somebody who lives in
Uy). We consider the other hyperplanes H; = V(X;) as well. The exercise shows that
Opn (X;) = Opn(—1).
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The tensor product of locally free sheaves is again a locally free sheaf and especially we
have Opa(r) @ Opn(s) — Opn(r + s). The inclusion Opn(Xg) C Opn combined with
the isomorphism Opn(Xg) — Opn(—1) gives us an inclusion Opn(—1) — Opn and
this induces after taking tensor products Opn(r — 1) < Op«(r) and we get a chain of
inclusions

Opn — Opn (1) = Opn(2) — ... = Opn(d)... (8.19)

where all the embeddings are obtained from Opn(Xy) < Opn.

Of course it should be clear that we have many ways of mapping the sheaf Op» into
Opn(d). To be more precise we can look at Homey, (Opn,0Opn(d)) and to give a ho-
momorphism among sheaves we only need to know what happens to 1 € HY(P™,Opn)
because this section generates the stalk on each point. Hence we get

Homp,,, (Opn,0p«(d)) = H*(P™,0p~(d)) (8.20)

and this is the A-module of homogeneous forms of degree d in A[Xy,...,X,]. Hence
giving such an embedding Opn» «— Opn(d) amounts to pick a form of degree d. At this
point we have chosen the form X¢.

Op~(d) as Sheaf of Meromorphic Functions
If we look at Opr — Opn(d) and restrict this map to U; then we get
Opr (Ui) — Opn (d)(Us) = Opn (U5)
and this map is given by
fir—t3,ifi- (8.21)

We can embed Op-(U;) into the module t%(’)lpn(Ui), which is the Opn (U;)-module of
0,7

meromorphic functions on U;, which are regﬁlar on U; N Uy and have at most a "pole of
order d” along the hyperplane U;\U; N Uy = U; N V(Xp). Then the map above gives an
isomorphism

%opn(m) =, Opa (d)(U). (8.22)

The notion of a pole will also be discussed in section 9.1

(8.23)

Especially for ¢ = 0 we have t9 o = 1, which means that V(X,) does not meet Uy. We
glue these modules t%(?]pn (U;) over the intersections of two affine sets and hence we get
0,4

the sheaf Opn(dHy) and call this the sheaf of "meromorphic functions on P"™”, which
are regular on Uy and have at most a pole of order d along the hyperplane at infinity.

We have a diagram

O]pn — O]pn (dHo) = O]Pn(d)
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This also gives a slightly different view of the above chain of inclusions: The chains arise
simply because we allow higher and higher orders of poles.

Of course we have also an interpretation for < 0: In this case the sections are the germs
of regular functions, which have a zero of order > —r along the hyperplane.

Instead of looking at the hyperplane at infinity, we can choose an arbitrary homogenous
polynomial F of degree d, again we make the assumption (nonzero) that

For all p € S = Spec(A) the image of the polynomial is non zero inA/p[Xo,X1,...,Xx].

Then we can define the sheaf Op= (V(F')) of functions h, which are regular on P"\ V(F),
and whose restriction to any U; N V(F) extends to a regular function on U; after we
multiply it by f; = F|U;. These are the functions, which are regular outside V(F') and
have at most a first order pole along (or at ) V(F).

The Relative Differentials and the Tangent Bundle of P%

The scheme
Py
!
Spec(A)

is always smooth. Locally on one of the U; the module of differentials is the free module
generated by the dti’o, e 7dti,i—1ydti,i+la e ,dti’n, of course dti’i =0.
We consider the n -th exterior power of this module

A" Qpnja = Qpn 4
The restriction 2f, /A | U; is the trivial line bundle generated by
dtio Ao ANdti i Adti g1 Ao Adti,
and on U; N U; we have
tiv =1 jtju, (8.24)
and hence
dt;, =t jdt;, +t;, - dt; ;. (8.25)

Taking the highest exterior power we get

dtip VAN dtiyifl A dti}ijq VAN dti,n = (ti’jdtj’() + tj,Odti,j> VAN <t¢’jdtj}n + t]’7ndti7j> s

where on the right hand side we have to leave out the factor with index v = 7. We assume
i # j, the factor v = j simplifies to ¢; ;dt; ;. Since t; ; = t;zl we have dt; ; = —tfvjdtjﬁi.
Hence we see that the right hand side is
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(=09 dtyo A Adty g Adt g A dE.
Therefore we see that the line bundle QIPZ /4 is obtained from the cocycle
(=)t =g (8.26)

in the sense of the consideration on page 129. But we may of course change our generator
of Q%Z/A over U; by the sign (—1)* and the cocycle modifies into g; ; = tfjl, which then
implies

Qpn 4 = Oprja(—n —1). (8.27)

We consider the dual sheaf of QIan 4» this is the sheaf of tangent vectors. We want
to achieve a more geometric understanding of this bundle. We recall that we have the
morphism

W:AZ"H\S—JPg.
This morphism is a Gy,-torsor. It is trivialised over U; by the sections s; (See 8.15), we
have t; js; = s; and hence the associated line bundle is Opn(—1).

Then the tangent bundle of Ag“ \ S is trivial, we get an exact sequence of vector bundles
on AL\ S

0 — Tpntr\g/pp — AZEL\S — [*(Tpp) — 0 (8.28)
This induces an exact sequence of bundles on P% : For any open subset U C P" we
consider a subspace of sections in the tangent bundle of Ag“ \ S

{f € ZAZ‘,EL\S(W%(U))U is homogenous of degree 1} (8.29)
ie. f(tx) =tf(x) for all t € OAgH\S(ﬂ'_l(U))X. This space of sections is clearly equal
to Opx (U)(1)"F. Tt follows from a simple calculation that the derivative D (f) €

f*(Tpg)(m~1(U)) is actually constant, i.e. an element in T, (U). Hence we get a surjec-

tive homomorphism Op+ (1)(U)"*" — Tp(U). The kernel T(Agﬂ\s)/ﬂ)g — ZAZEL\S

in the sequence above is 7*(Opr (—1)). Eventually we get the exact sequence

0 — Opp — Opyp(1)"™" — Tp, — 0. (8.30)

Further up we realised the sheaf Opn (1) as the sheaf of meromorphic functions, which
are regular on U; and have at most a first order pole at the hyperplane H;. This gives us
an embedding Opn — Opn (H;) = Opx(1). Hence we get an embedding

i=n
Opy — (P Opy (Hy).
i=0
Now it follows from our formulae for the coordinate changes, that the tangent vector field

52— on U; extends to a tangent vector field on P%. Hence for any f € Opz (H;)(U;), which

is of the form f = a; —Q—ZV# ayt;, we get a global tangent vector field 0f = ZV# al,%
and this yields another version of our sequence above
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O]Pg — @(ng(Hl) — Tp, — 0.

i=0
Finally we observe that taking the n + 1-th power we get the isomorphism
A" (Tpy) = O]pg (n+1),

which dual to our formula above.

8.1.4 Seperated and Proper Morphisms

The property of a morphism to be projective is a global property in contrast to the
property to be smooth or flat, which can be checked locally.

There are two other properties of morphism, which are global in nature namely a mor-
phism X — S can be separated or it can be proper and I think here is the right place
to discuss them.

If we have a scheme 7 : X — S then we can form the fibered product X xg X/S and the
identity Id : X — X provides an element (Id,Id) € Homg(X,X) x Homg(X,X). By the
universal property this is nothing else than an element Ax — X xg¢ X.

Definition 8.1.4. The morphism w is called separated if Ax is a closed embedding.

It is not too hard to see that this property is local in the base, hence if we discuss this
notion we may assume that S = Spec(A). Then

Lemma 8.1.5. A morphism m : X — Spec(A) = S is separated if for any two affine
open subsets U,V C X the intersection UNV is affine again and Ox(UNV) is generated
by the restriction of Ox(U)[UNV and Ox(V)|UNV.

This is rather clear because - as we mentioned at the end of the section on fibered
products- we can cover X Xg X by open affine subsets U xg V. The morphism A is a
closed embedding if for any such pair UNV — U xgV is a closed embedding, But then
UNYV is a closed subscheme of the affine scheme U x ¢V and its ring of regular functions
Ox(UNYV) is a quotient of Ox(U) @4 Ox (V).

We should notice that a morphism 7 : X — Spec(A) = S is separated if we can find
some covering 4 = {U; };¢s by affine subschemes such that for any pair of indices 4,j the
affine schemes U;,U; satisfy the condition in the lemma above.

We have given an explicit construction of P x g P as a projective subscheme of some
PL. We apply this to the case n = m. In this case we can either verify that the system
of affine sets {U; }i—o,... ., satisfies the condition in the Lemma because the elements in
Op~ (U;), which we have to invert to get Op» (U; NU;) lie in Op~ (U;). Hence we see that
that P™ — S is separated. We could also argue that we can describe the diagonal as a
closed subscheme of the product just by adding the polynomials Z; ; — Z; ;, to the ideal
which describes the product as a subscheme of IP(SnH)(mH)fl.

Definition 8.1.6. An open subscheme Y C X/S of a projective scheme X/S is called
quasi projective over S.

It is now clear that quasi projective schemes Y/S are also separated.

Finally we want to introduce the notion of a proper morphism.
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Definition 8.1.7. A morphism m : X — S is called proper if it is separated and if
it 1is universally closed. This means that for any base change S’ — S and any closed
subscheme Z C X x5S’ the image of Z under the projection ™ X S’ is closed.

Theorem 8.1.8. A projective morphism m: X — S is always proper.

We have just seen that it is separated. We recall the definition of a projective morphism.
It means that we have a diagram

XC%IPZ,

where i is a closed embedding. We have to show that for any base change S’ — S and
any closed subset Y C X xg S the image of 7 is closed. Since this closed subset is also
a closed subset in IP%, it suffices to show that for any closed subset Z C P% its image in
S is closed.

The question is local in the base, we assume that S = Spec(A). Now we know that we
can describe Z as the set of zeroes of a homogeneous ideal IcC AlX0, X1, ..., X,] (see
1.1.2). Now we pick a point s € S, which is not in the image of Z. We localize A at s,
let ms be the maximal ideal of this local ring Ay,_. Now we have Z; = () and our Lemma
8.1.2 tells us that for a sufficiently large d > 0 we have

I(d) ® Am, /My ~ A, /mg[X0, X1, ..., X0](d)

or in other words

A, [ X0, X1, ..., X,](d)/I(d) @ A, /ms = (0).
By the lemma of Nakayama it follows that
Aw [ X0, .., X,)(d)/T(d) = 0.

We are basically through but since we passed to the localization at s, we need still a
little finiteness argument. We know that any monomial X°--- X of degree d can be
written in the form
XX =Y Gu-Fy
u

where F}, € T and Gy € A[Xy,...,X,]. The local ring Ay, is obtained from our original
A by localization. But to write down the G, we need only finitely many denominators,
which means that we can replace A by a localization Ay with some f with f(s) # 0.
Hence we see that already

I(d) ® Ay =~ As[Xo, X1 ... X,,](d),
which proves that the image of Z does not intersect with the open neighborhood Spec(Ay)

of s. This proves the theorem. O

We need some formal properties of proper morphisms.
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Proposition 8.1.9. Let m: X — S be a proper morphism.
a) If 8" — S is any scheme over S, then X xg S" — S’ is also proper.
b) IfY — S is another scheme and if f : X — Y is an S-morphism, then f is proper.

Proof: The first assertion is obvious, because for any scheme S” — S’ we have
X xg 8" = (X xg8") xg S”. For the second assertion we notices that for any scheme
S" — Y the scheme X xy S’ is a closed subscheme of X xg 5. O

8.1.5 The Valuative Criteria

I want to state criteria for separatedness and properness, which are extremely important,
and which give a very intuitive idea of this notion. We will not give the proofs here, we
refer to A. Grothendieck’s book [Gr-EGA II]. The parts of that book concerning these
valuative criteria is relatively self contained, so it can be read directly. For the central
results proved in this book we do not need the concept of proper morphisms. At some
points we have to work a little bit to circumvent the use of this notion.

Since we know that the question whether a morphism 7 : X — Y is separated (resp.
proper) is local in the base, we consider the following situation. Let Y = Spec(A) where
A is noetherian, let w : X — Y be of finite type, i.e. we can cover X by affines U, =
Spec(B,) where B, is a finitely generated A-algebra. Then we have:

Theorem 8.1.10. Under our conditions above the morphism w : X — Spec(A) is

a) separated if for any discrete valuation ring C with quotient field K and any morphism
f : Spec(C) — Spec(A)
two Spec(C') valued points

Spec(C) X

|

Spec(A)

)

which become equal if we restrict them to Spec(K), are already equal,

b) proper if for any such C' and any f a Spec(K) valued point extends (uniquely) to a
Spec(C) valued point.

For the proof see [Gr-EGA 11],§7, 7.2.3 and Remarks 7.2.4 and 7.3.8].

The Valuative Criterion for the Projective Space

The following property of a projective space is an algebraic substitute for the fact that
the complex projective space P"*(C) is compact.
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Let us start from a discrete valuation ring R. We want to study the S = Spec(R) valued
points of P% — S. Let 7 be a uniformizing element of R and let K be its quotient field.
We have a diagram

IPTL

|

Spec(R) <~———Spec(K)

The valuative criterion asserts that the K valued points and the R valued points are the
same. But this is almost obvious. We have seen on page 123

P (Spec(K)) = P5(K) = (K" \ {0})/K".

But for any z = (zg,71...,2,) € K"\ {0} we write 2; = u;7"™ and pick the index
t0, for which n;, is minimal. Then (7~ ™oxg,m "0z ... ,m "ox,) represents the same
point, but now the coordinates are in R and one of the coordinates is a unit. Therefore
this is a R-valued point and have have shown

Proposition 8.1.11. If R is a discrete valuation ring with quotient field K then

gpec(R) (R) = Ingec(R) (K)

This is the valuative criterion for the projective space. This of course extends immediately
to projective schemes over R.

This expresses in algebraic terms the compactness of the projective space. We should
look at Spec(R) as a small disc, the generic point (0) € Spec(R) corresponds to the disc
minus the origin and the closed point (7) corresponds to the origin. The analogous object
in function theory is a disc D = {z||z] < 1} in the complex plane. Then we know from
function theory that a meromorphic map f : D\ {0} — U;(C) C P™*(C) extends in a
unique way to a holomorphic map f: D — P™(C).

8.1.6 The Construction Proj(R)

We have a construction of projective schemes starting from a graded algebra. Let A be
an arbitrary ring and let R be a graded A-algebra. This means that R is an A-algebra
and we have a direct sum decomposition

such that the R; are A-modules and R;R; C R;4;. The identity element is in Ry and
the algebra homomorphism from A to R factors through Ry. We assume that A — Ry is
surjective and we assume that Ry is a finitely generated A-module, which generates the
A-algebra.

Definition 8.1.12. We define the set Proj(R), the projective spectrum, to be the set
of homogeneous prime ideals of R, which do not contain R;.

If we have such a prime ideal p we pick an f € Ry such that f & p and we define
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Proj(R); = {q € Proj(R)|f & q} . (8.31)
We form the ring
g
RY = {fn|g € Rn}, (8.32)

i.e. the ring of elements of degree zero in the quotient ring R;. It is very easy to see that

Proj(R); = Spec (R}O)) . (8.33)

We use this to define a topology on Proj(R) and a structure of a ringed space. The open
sets V' C Proj(R) are those, for which V' N Proj(R)y is open for all f.
Then we define the sheaf of regular functions so that its restriction to the Proj(R); is

(0)

simply the sheaf Réo) on Spec (Rg ) Now we have defined a scheme (Proj(R),0) for any

such graded A-algebra. Usually we drop the O in the notation and Proj(R) will denote
the scheme, i.e the underlying set plus the sheaf.
If we take for instance the polynomial graded algebra A[Xj,...,X,] then

PI'Oj (A[X07 ERER) aXTL]7O) = (]Pn7O]P”)

If our A-algebra R is generated by elements x,...,r, of degree one we have a homo-
morphism of graded A-algebras

A[Xo,..., *--*Ro IQ,...,.’L‘n]

NS

and we see that Proj(R) is a closed subscheme

Proj(R) — - IP"}

N S

Spec(A

The intersections U; N Proj(R) are affine and clearly U; N Proj(R) = Spec(Rgz))
This generalizes easily to the case where we replace Spec(A) by an arbitrary scheme S
and where R is a sheaf of graded Og-algebras.

The assumption that R is generated by homogeneous elements in degree one is not
essential. Let us assume that R is finitely generated by elements xg,x1, . ..,r,, which are
of degree dy, d > 1 respectibely. Then we can define

RY) = {9{ : deg(f) = dim} C Ry, (8.34)

2
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and we can consider Spec (Rgf)) Now we define Proj(R) as the space of homogeneous

prime ideals p, which do not contain all the x;. Then we have

Proj(R) = 0 Spec (R§3)> (8.35)

i=1

and we can proceed as before.

We get such graded algebras if we start from any A-module N and consider its symmetric
graded algebra (See 6.2.3)

R=Sym*(N)=A® N & Sym*(N) & ....

If this module N is written as a quotient of a free A-module MV = AXy ®AX; D --- P
AX, — N, then we get a surjective homomorphism

A[X07X17 R 7X7L] I Sym.(N)

and hence a closed embedding Proj(R) — P%.
Finally we may start from any scheme S and a locally free Og-module M of finite rank.
Then we can use the standard gluing procedure to construct the scheme

IP(M) = Proj(Sym*(M"))/5.

For any point # € S and the resulting local ring Og , the set of Og, -valued points of

IP(M) is the set of lines through the origin in M ® Os.z. (See section on homogenous
coordinates.)

A special case of a finiteness result.

The following result is a special case of a general theorem of Grothendieck, which will be
stated later without a proof. For this special case we want to avoid the reference to the
general result.

Definition 8.1.13. A morphism f: X — Y of schemes is called finite if it is affine,
i.e. Y has a finite covering by affine open set V; such that U; = f~1(V;) are affine and if
in addition the restrictions U; — V; are finite.

We consider an affine scheme of finite type 7 : Y — S| the base is arbitrary. Then we
have

Proposition 8.1.14. If the morphism w : Y — S is affine and proper, then the sheaf
m(Oy) is a locally finitely generated sheaf of Og-modules. Especially if S = Spec(A)
is affine and Y = Spec[A[X1,Xs,...,X,]/I = Spec(Alx1,...,x,]) = Spec(B), then the
A-algebra B is finite over A.

Proof: The assertion is local in S, so we only have to prove the second assertion.
The ideal I is generated by polynomials f,(X1,X2,...,.Xy) = >, a,, X% here v is a
multiindex v = (vy,...,1,) and X% = X{* ... X%, We put deg(v) = > v;. Let d,, be the
maximum deg(v), for which we have an a,,., # 0.
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We embed the affine variety into IP"/S, to do this we make the equations homogenous:
We introduce the new variable Xy and define

FM(XU,Xth, ce 7Xn) = Z aM,ZXngu,fdeg(u)’

let I be the homogenous ideal in A[X(,X7,...,X,]. In the notation of 8.1.1 we have
X C Uy C P%. Since Y/S is proper we know that ¥ C P% is a closed embedding (See
prop. 8.1.9 b) and therefore, the projective scheme defined by the ideal Iis equal to Y.
Consequently this ideal defines the empty sub scheme in the complement H of Uy. What
does this mean? We restrict the ideal to this complement. To get this restriction we write

F(X0,X1,X5,...,X,) = XoGu(X0,X1,...,.X) + Hu(X1,Xo,...,X,)

where H,,(X1,X2,...,X,,) is homogenous of degree d,,, it collects the monomials, which

do not contain X,. The restriction of T to Hj is now simply the ideal generated by the
H,,. These H,, do not have a common zero on H, and therefore, for any indexi =1,...,n
we can find homogenous polynomials R; ,(X1,...,X,,) and integers n; such that

> Rip(X1,. . Xn)Hy(X1, X, ., Xy) = X[,
"

(See lemma 8.1.2) (We do not need that the indexing set of y is finite, almost all of the
R; ,(X1,...,X,) will be zero.)

We rewrite this for the original polynomials F), and get that the ideal I contains poly-
nomials

D> Rip(X1,. . Xn) XoGu(Xo, X1, ., Xn) + X[
1

for i = 1,...,n. Now we restrict these polynomials to Uy, this means we put Xy = 1 and
then we find that our ideal I contains polynomials

S O Riu(X1, . Xn)Gu(1,Xy, . X)) + X
7

for ¢ = 1,...,n and where the total degree of the monomials in the X,,v = 1,...,n in
Gu(1,X1,...,X,) is less than n;.

This implies that the A—module Az, ...,z,] is generated by monomials z7* ... z¥» with
v; < n; and this is the finiteness. O

8.1.7 Ample and Very Ample Sheaves

Let S be a noetherian scheme. We want to discuss certain constructions, which allow us
to show that a scheme X — S is projective or, which provide projective embeddings of
this scheme. It will be clear that the results, which we are going to prove are local in the
base S hence we always assume that S = Spec(A) and A is noetherian.

Let us go back briefly to the case of affine schemes. If we have an arbitrary scheme X
and if we want to show that this scheme is affine we have only one chance: We consider
the ring of global sections B = I'(X,0x) and we try to prove that X ~ Spec(B).
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This may be not so easy. Of course we always have a morphism 7 : X — Spec(B). It
sends a point x € X to the prime ideal p, of functions, which vanish at x, we get an
inclusion hg : By, < Ox , and this yields the morphism for the sheaves. (See 6.1.20).
We have to show that both maps are isomorphisms. This makes it clear what kind of
information we need if we want to be successful: We have find enough regular functions
on X.

For instance we certainly need the information that the regular functions separate points:

Definition 8.1.15. We say that the regular functions separate points if for any two
points x,y € X such that y is not in the closure of {x} (see 6.1.3) we can find an f € B
such that f(x) =0 and f(y) # 0.

This would tell us that 7 is injective on the underlying space, but this is by far not good
enough. For instance the example 32 tells us that 7 does not need to be surjective. Hence
we have to assume the surjectivity of m or to make some assumptions, which allow to
conclude that 7 is surjective.

We assume that X — Spec(A) is a separated scheme and it can be covered by finitely
many affine open sub schemes. Let us consider a sub algebra B C T'(X,0x) and the
resulting the diagram

X — > Spec(B) =

N /S

Spec(4) =

We formulate two strong assumptions

a) the morphism 7 is closed, this means that the image of any closed subset Z C X is
closed.

b) Any fibre 77 !(y) is contained in an open affine subset of X.

The assumption b) is certainly true if B separates points because then 7=*(y) is empty
or a point. We claim:

Proposition 8.1.16. Under the above assumptions the scheme X is affine.

Proof: We pick a point y € Y and we choose an affine subset U C X, which contains
the fibre 77! (y). We consider the complement of U in X and by our assumption we know
that the image of this complement is a closed subset Z C Y, which of course does not
contain y. Hence we find a regular function g € B such that g(y) # 0 and g|Z = 0. Then
we see that m~!(Y,) C U. The element g is also a regular function on U and therefore,
7 1(Y,) = U, is affine. We conclude that any point y € Y has an open neighborhood
such that the inverse image of this neighborhood is affine. We can cover Y by affine
subsets Yy, such that the 7=1(Y,,) = X; are affine. We get homomorphisms

Oy (Y,,) — Ox(Xy).

The algebras Oy (Yy,) are localizations By, and since B — I'(X,0x) is injective, we get
inclusions

By, — I(X,0x)y, — Ox(Xi).

We need that the last arrow is an isomorphism. This follows from a little lemma.
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Lemma 8.1.17. Let X be a separated scheme, which can be covered by a finite set of
affine schemes. Let g € T'(X,0x) and let h € Ox(Xy). Then we can find an integer
n > 0 such that g™h is the restriction of an element in T'(X,0x) to X,.

Proof: Let us write X = UiEE U; with U; affine and F finite. We consider the restriction

hi of h to Xy NU; = U, 4. By definition we can write h; = g{f,-, for some f; € T'(U;,0x)

and hence we can find an index n and functions F; € Ox (U;) such that

g"h=F;

UiﬂXg .
Now we compare F; and F; on U; N U;. We have
F\UNU;NX,=F; |U;NnU; N X,.

Since we assumed that X is separated the intersections U; N U; are affine (see definition
8.1.4 and the following lemma) and hence we can find an positive integer m such that

ngz‘ | UZ‘QUJ‘ :ngj | UiﬂUj

and then the g™ F; are restrictions of a function F' € I'(X,Ox).
(If we want to avoid to assume that X is separated, we can assume instead that any open
set has a finite covering by affines.)

O

Now it is clear that the morphism of schemes X — Spec(I'(X,0x)) is an isomorphism.
It is obvious that I'(X,0x) separates points because already B separates the points in
Y and the Lemma implies that I'(X,,0x ) separate the points on X,. It is also clear that
for any € X the map h : I'(X,0x),, — Ox, is an isomorphism, because we have
the isomorphisms I'(X,0x )4, — Ox(X;).

It remains to prove the surjectivity. We go back to the beginning of the proof. If 7 is not
surjective then we pick a point y € Y, which is not in the image. We may take U = ()
and choose our g as above. Then it is clear that g vanishes on X and hence it must be
nilpotent. This contradicts our assumption that g(y) # 0. O

We have seen that the assumption a) is vital and it is not so clear how we can verify it
in a given case. (See example 32).

Now we become a little bit more ambitious. If we have a scheme over X — Spec(A) and
we want to prove that it is projective. Then our strategy above cannot work since we do
not have enough regular functions. But we have seen that the line bundles Opn (1)) on
P"; have many sections if r > 0. Hence we replace the regular functions by the sections
in the positive powers £%" of a suitable line bundle £.

If we have a section s € H(X,£) then we can trivialize £ on the open set X where s
does not vanish. If now f € HY(X,L£%") then f/s" is regular functions on X,. We see
that a line bundle provides a tool to construct regular functions on certain open sets. For
a particular class of line bundles - the so called very ample bundles - this method can
be used to construct a projective embedding and this will be explained next.
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First we go in the opposite direction. If we start from X — S and assume that we have
an embedding

xC L Lpn

\/

Spec(A
This embedding provides the line bundle Op- (1) on P’} and we may consider its pullback

L = i*(Opn(1)).

We explain how we can use the line bundle £ to (re-)construct (the) an embedding from
X into a projective space. We consider the direct image sheaf Ry = m,(L). Since we
assume that S is affine Ry = m.(£) is an A-module.

We put Ry = A and form the graded A-algebra

R=Ry® R ®Ry®-- = Ad (@ m.(L5))

n>1
and in this algebra we consider the sub algebra

R=Ry®Ri®RP ...,

which is generated by R;.

We write Py = Proj(A[Yp,Ys,...,Y,] then HO(P,0px (1)) = m0,.(Opn (1)) = AYy @
AY @---©AY,, (see p.123 ) and we have the restriction homomorphism 7 : g . (Opn (1)) —
74 (L). This homomorphism is not necessarily surjective, but if y; is the image of Y; then
clearly ¢; : A[Yp,Y1,. .. ,Yn]gg) — Rg(,?) is surjective and the kernel of ¢; is the ideal, which

defines X; = X NU; as a sub scheme of U;. Hence X; = Spec(Rg(,?)) for all indices i, and
it becomes clear that X = Proj(R), If we choose any submodule Rz + Rzq,- -+ Rxy
in m.(£), which contains the image of r then this sub module generates a sub algebra
R C Ay@,,~, m(LZ™) and this provides an embedding X = Proj(R’) — PY.

We return to our original problem. We start from a proper scheme X — S = Spec(A).
We consider a line bundle £ on X and we want to investigate, under which condition the
bundle £ provides an embedding as above. We need a definition

Definition 8.1.18. We say, that a line bundle L over a scheme X — S has no base
point, if for any point s € S we can find an affine neighborhood V- C S of s such that
the sections

T (L) (V) =L (771(V))

generate the stalk of the line bundle at any point x € m=1(s). This is the same as saying
that for any x we can find a section t € HO(x=1(V'),L), which does not vanish at x, i.e.
it does not go to zero in L e, k(x).
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In the situation, which we considered above, our line bundle £ = i*(Op~ (1)) obviously
has no base point.

Of course A is still noetherian, we assume that X is of finite type over Spec(A), let L
be a line bundle without base point. Since under our given assumption the space X is
quasi compact we find sections to,tq,...,txy € m (L) such that the open sets X;, form
a covering of X. Again we can consider the graded sub algebra R C A@, -, 7. (L")
generated by the ¢; and if we write R’ as a quotient -

14[1—‘0,1—‘17 e ,TN] E— R/,T'i [ad ti

then we get a morphism, (which depends on the choice of the generators)

re: X — Proj(R') — PY

and whose restriction
i Xp, — Spec(Ry™) — U

i

is given by the homomorphism T}, /T; — t, /t;.

Definition 8.1.19. The line bundle L is called very ample if we can find sections
to,t1, ... tn € mu(L) such that the Xy, are affine and rc; @ Xy — Spec(Ré’i(O)). It is
called ample if a suitable positive power LZ™ is very ample.

Bundles of the form £ = i*(Op~ (1)) above are certainly ample. It is clear that for a very
ample line bundle £ the morphism 7 is a closed embedding (if we select enough ¢;) and
that for this embedding we get £ = i*(Op=(1)).

We want to investigate, under which additional assumptions we get more precise infor-
mation on 7., so far our arguments also apply to £L = Ox and in this case we only have
shown that we get a morphism to S.

For any line bundle £ on X the direct image 7. (L) is a Og-module. In the following we
assume that it is locally finitely generated (coherent, see 8.3.1). (This is not really an
assumption, it follows from a general finiteness theorem of Grothendieck [Gr-EGA III].
This theorem will not be proved in full generality in this book, we will prove it only
for projective morphisms (see theorem 8.3.2) whereas Grothendieck proves it for proper
morphisms. A close look at the following arguments will show that we do not really need
this finiteness result, it only makes the argument slightly more comfortable.)

We start from a line bundle £ on X. Then 7, (L) is coherent and hence by our assumption
a finitely generated A-module Ry = H°(X,L). We consider the graduated ring

R=APRiPRP...

where R; C HY(X,£%") is the submodule generated by the products of elements in R;.
Let us pick a set tg,t1,...,t, of generators. As always we assume that R; has no base
point and hence X = |J Xy,.

Now we formulate several assumptions:

al) For any choice of # € X the fibers 7' (rz(2) are finite and lie in an open affine
subset of X.



8.1 Geometric Constructions 145

a2)  For all i the algebra RE?) seperates points on Xy,.

(This assumption is equivalent to the assumption that H%(X,L) separates points.)
The strongest assumption is
a3) The algebra Rg?) separates points and for any « € Xy,,.Z = r.(x) the homomorphism
0
Rg,:i - OX,T/rng(,JL
is surjective.

Theorem 8.1.20. Let m: X — S be a proper morphism of finite type.

(1) Under the assumptions al) or a2) the Xy, are affine, and the morphism rp : X —
Proj(R) is finite.

(ii) Under the same assumption the morphism X — S is projective.
(iii) Under the assumption a3), the morphism o is an isomorphism.

Proof:
We apply our previous considerations for the affine case and we see that under the
assumption al) or under the assumption a2) the X;, must be affine. Hence we also know

that X;, = Spec(I'(X,,0x)). By construction we have an inclusion RE?) — I'(Xy,,0x),
the morphism X;, — Spec(RE?)) is proper. Hence proposition 8.1.14 implies that the
algebras I'(Xy,,0x, ) are finite over RE?). This proves (i).

We postpone the proof of (ii) and we assume a3). Then the algebra Rg)) separates points,
and we can conclude that X;, — Spec <RE?) ) is always bijective. Now we are confronted

with the problem we alluded to in the remark on p. 15. We have to show that the
induced morphism between the sheaves is an isomorphism, this can be checked on the
stalks. We have to show that for any point x € X;, and its image & € Spec(RE?)) the
?2 — Ox,, is an isomorphism. Let mz,m; be the two maximal

homomorphism h,, : Rg z

ideals. Since localization is flat we have the inclusion RE?,)mE C I'(X4,,0x) ® Rg?_)mi and
this extension of rings is finite. We also know that there is only one maximal prime
ideal in I'(X,,0x) lying over m; this unique maximal ideal is m, and this implies that
I'X;.,0x)® Rg?’)mi is local and hence equal to OX%I. Putting everything together we

conclude that RE?)W C Ox, , is a finite extension of local rings. Now our assumption a3)

implies that the homomorphism between the residue fields

RO

t;, Mz /mi = OXti,J: /mi

is an isomorphism. The algebra O, , /m is finite over RE?,)m
know that mY C mg if NV is sufficiently large. Now our assumption a3) also implies that
mz — m,/(m,)? is surjective and this implies that m; — m,/(m;)Y — m,/(m,mz)
is surjective. Hence we can conclude that

. /mgz and since it is local we

RO Ox, ,/mz0x, ,

ti, Mz
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is surjective. We noticed already that Ox, , is finite over Rg??mi and now the lemma of
(0)

Nakayama implies that R, ., — Ox,, , is surjective and hence an isomorphism. So we
proved (iii) under the assumption a3).

We still have to prove (ii) under the assumption al) or a2). This assertion follows from
the following proposition

Proposition 8.1.21. We consider a diagram of schemes of finite type

f

X ——Y
o
™
Spec(4) =S

and we assume that f is finite, 7 is proper and my is projective. Then m is also projective.

The proof of this proposition also finishes the proof of the theorem. We choose an em-
bedding j of Y/S into some P and as before we put £ = J*(Opx(1)). We consider the
bundle £; = f*(£) on X. We choose generators to,t1, . ..,tx of mp (L) and define as usual
R to be the graded sub algebra of A® @, -, mo,«(L®™) Then Y;, = Spec(RE?)), the ele-
ments ¢; can also be seen as elements in 7, L;. Since f is finite the schemes X;, = f~1(Y;,)
are affine and Ox (X3,) is finite over Oy (Y%,). Hence we can find finite sets of generators
hija, .. R, ... i, which generate the Oy (Y, )-module Ox (Xy,). Now a slight exten-
sion of the lemma 8.1.17 shows that we can find an integer n > 0 such that all £}'h; ,
extend to sections in 7, (L%™).
Hence we see: If start from the bundle £L%" = L5 and define accordingly the graded
algebra R = A& @, -, m.(L5") then the morphisms X;, — R,g?) become isomorphisms
and hence r., provides an embedding.

O

8.2 Cohomology of Quasicoherent Sheaves

For any scheme X and any quasi coherent sheaf 7 on X we know how to define he
cohomology groups H?(X,F). We recall that F is a sheaf on the underlying topological
space, which here will also be denoted by X and this space is the first variable in H7(X,F).
Furthermore F is a sheaf of abelian groups and hence the cohomology is defined in Volume
I

More generally we can consider morphisms f : X — Y between schemes, then we have
defined the direct image functor F — f,(F) and its higher derived functors RY f.(F).
We have a first fundamental theorem:

Theorem 8.2.1. Let f : X — Y be an affine morphism between schemes. For any
quasi coherent sheaf F the higher direct images vanish, i.e.

RIf(F)=0
for all g > 0.
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Before proving this we want to indicate that this is highly plausible. First of all the
assertion is local in the base. Hence we may assume that X = Spec(A4),Y = Spec(B)
are affine and then the morphism is given by a homomorphism B — A of rings. At the
end of section 6.1.5 we have seen that the category of quasi coherent sheaves on an affine
scheme Spec(C) is equivalent to the category of C' modules. Now taking the direct image
of a quasi coherent module M on X amounts to the same as considering the A-module
M as a B-module and then taking the associated sheaf. Hence it is clear that for an exact
sequence of quasi coherent sheaves on X the sequence of direct images is also exact. We
find that there is no need to have higher derived images if we restrict to the category of
quasi coherent sheaves.

But since the derived images are defined inside the category of all sheaves, something
has to be proved. We need an acyclic resolution by injective sheaves and we do not know
a priori whether these sheaves can be chosen to be quasi-coherent.

Proof: We consider two special cases of the theorem. In the first case X = Spec(A4)
is an absolute scheme and we prove HY(X,F) = 0 for all ¢ > 0. In the second case
we pick an f € A and as morphism is an inclusion i : Xy < X. Then we prove that
Rif . (i3(F)) = 0 for all ¢ > 0 and any quasi coherent sheaf (See 6.2.2). We use an
induction argument, which runs as follows: If we know the first case up to degree n, then
we prove the second case up to degree n. Then we show that this in turn implies the first
case up to n + 1.

We start with the following observation. Let n > 0 be an integer, assume we proved that
for any quasi coherent sheaf F on any affine scheme and any 0 < v < n the module
HY(X,F) = 0. This is the first case up to the degree n. We claim that under this
assumption RViy.(i3(F)) = 0 for all 0 < v < n. To see this we recall that the functor
F — HO(Xf,i} (F)), which sends sheaves on X to abelian groups, is the composite of
if .+, which sends sheaves on Xy to sheaves on X, and G — HO (X,G) from sheaves on X
to abelian groups. We have seen that this provides a spectral sequence, whose EL"?-term
is (see Vol. I, 4.6.3 example d))

HP(X,R%iy . (i3(F))) = H"(X,i}(F)) =0 for p+q = v.

Let us assume that we proved the vanishing of R7iy . (i%(F)) for all indices ¢ < po < n. We
consider the term HO(X,R”"Z'ﬁ*(i}(]:)). Looking at the differentials we see that we do not
have any differentials going into this term. The outgoing differentials go to zero. Hence we
see that we have a surjective homomorphism H*0 (X ,i%(F)) — H°(X,RFoiy . (i(F)))
and since the group on the left hand side is zero it follows that HO(X,R#0if . (i%(F))) = 0.
But here we can pick any point € X \ Xy and localise at this point by restricting to
smaller affine schemes X, with g(z) # 0. Then we always get H°(X,,RM0is . (F)) = 0
and this proves that the stalk R*°is ,(F), = 0, hence R*is . (F) = 0.

Now we assume HY(X,F) = 0, for all affine X, all quasi coherent sheaves F and all
0 < v < n+1. We consider a quasi coherent sheaf F on X, let M = H°(X,F). We choose
an f € H°(X,0x) and compute the sheaf if . (i%(F)). For any open subset X, C X we
have iy . (i3 (F))(Xgy) = i3(F)(Xy N Xg) = F(Xyg). This tells us that if .(i}(F) is quasi
coherent and equal to the sheaf, which is obtained from the A-module M. We have the
restriction map F — iz .(i}(F)) on the level of sheaves and hence we get the restriction
maps

H™M(X.F) =5 H"(X,ig (i5(F)) = H"(Xy,i5(F)).
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We claim that 7y is injective. This homomorphism is an edge-homomorphism and the
kernel has a filtration, where the sub quotients in this filtration themselves are subquo-
tients of the modules H"~%~!(X,R% . (i%(F)) with 0 < ¢ < n+ 1. But our induction
hypothesis together with the above observation implies that R% . (i}(F)) = 0. So r is
injective.

We claim that that the cohomology groups are ”effacable”. This means that for any class
& € HY(X,F) we can find a finite covering X = (J X7, such that for all ¢ the given class
goes to zero if we restrict it to H(Xy,,F). This is clear, we choose an injective resolution
of F as in volume I. 4.2.1 and then we have H*(X,F) = H*(Z°(X)). But the complex
of sheaves F — Z° is exact, hence for any cycle ¢ € Z9(X) and any point z € X we
find a neighbourhood U = Xy, of x such that the restriction of ¢ to X, is a boundary.
Hence the class represented by this cycle goes to zero after restriction to Xy . We apply
this to ¢ = n + 1 and see that for any class ¢ € H""(X,F) we can find a finite covering
X =J Xy, such that ¢ goes to zero under the map

H" (X, F) — @ H" (X ig, «(iF, (F)).

We get an exact sequence

0— F — @ifw*(i’}v(]:)) — G —0

of quasi coherent sheaves and a long exact sequence in cohomology
H' (X, iy, (i}, (F) — H(X.G) — H" T (X, F) — H" (X, @iy, (i}, (F)).

Now we know that for n > 1 the cohomology H™(X,G) = 0 or that for n = 0 the
homomorphism H(X, @iy, . (i}, (F)) — H°(X,G) is surjective. Since our class is in
the image of the boundary map H"(X,G) — H""1(X,F) we conclude that it has to be
Z€ro.

The rest is clear: If we have our affine morphism f : X — Y and pick a point
y € Y then the stalk of the sheaf RYf,(F) in the point y is the limit of the coho-
mology groups H4(f~1(V),F) where V runs over a system of neighbourhoods of y. (See
Vol. 1.4.4.2). If we take the V-s to be affine, then the f~!(V) are also affine and hence

Ha(f~H(V),F) = 0. O

8.2.1 Cech cohomology

At this point we want to make a simple remark. When we defined the cohomology of
a sheaf in Vol. 1. 4.2.1 we said that the reader might be scared, because it seemed to
be impossible to compute them. But then we developed some tools to compute the
cohomology of some specific sheaves. Especially we considered the Cech resolution of
sheaves, especially in the case of manifolds and local coefficient systems as sheaves. We
had these coverings by convex sets (See Vol. 1.4.8.2) they provided the acyclic (Cech)
resolution of the the sheaf. The resolving sheaves were direct sums of sheaves, whose
support was contractible and, which were constant on their support. At that point we
applied a (difficult) theorem, namely that H9(X,Z) = 0 for a contractible space X.
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Here the situation is quite similar, we want to compute the cohomology H™(X,F), where
F is quasi coherent. We assume that X is separated. We cover our scheme by affine
schemes and show that that the resulting Cech complex computes the cohomology.
More generally we consider a separated scheme f : X — S, let F be quasi coherent on
X, we want to show that the sheaves R?f,(F) on S are quasi coherent. For this we we
assume that S = Spec(A) is already affine.

We have a covering X = |, U,, by affine subschemes. We make some finiteness assump-
tion, the covering should be locally finite (See Vol. 1.4.5.2, see also Vol. 1.3.5.to justify
the finiteness assumption.) Let I be the set of indices, the elements in I9F! are denoted
by a = (a,0q,...,0q), then d(a) = ¢q. As in Vol. I we put Uy, = Uy, N...Uq, by
o : Uy — X we denote the inclusion and

Fo = laxin(F).
We consider the Cech resolution of F provided by this covering
0—F — H}—; —>H‘7::¢ﬁ_)'

acl a,B

Our theorem 8.2.1 says that this resolution is acyclic, hence the complex of global sections
computes the cohomology (See Vol. 1. 4.6.6). Since F;(X) = F(U,) we see that
HYX,F)=HY0— [[ FUs) — ... — ][] FUO)—...)
acl aclatl

We get a presheaf of cohomology groups V. — HY9(Xy ,F) where V C S is open and
Xy = X xg V is the inverse image of V. We want to show that this presheaf is indeed
a sheaf. To do this we consider affine subsets Sy = Spec(Ay) C S. Then it is clear that
F(UaNXy)=F(Uy) ® As. Therefore we obtain

HIXpF)=H (00— [[ FUO) 0 A —...— ][] FUO)@A; —...).
acA aclatl
We know that A — Ay is flat therefore, the lemma below yields the equality
HYX:F)=HI1(X;,F)® Ay.
This proves

Proposition 8.2.2. Let f : X — S be a separated morphism, let F be a quasi coherent
sheaf on X. Furthermore we assume that X has a locally finite covering by affine sub-
schemes. Then we assert that for any open subscheme S, = Spec(4,) C S, X, = f~1(S,),
any degree q, the restriction of R1f.(F) to S, is the quasi coherent sheaf obtained from
HY(X,,F). The sheaves R1f,(F) are quasi coherent.

The following lemma will be used later again.

Lemma 8.2.3. Let A,A’ be a rings and A — A’ a flat homomorphism. Let
K*:0— K’ —K!'— ..
be a complex of A modules. Then

H*(K* @4 A') = HY(K*) 94 A
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Proof:
This is clear since in a given degree ¢ we have

0 Zi—l Ki—l Bz 0

zZt —> 0.

HY(K*)

0

Now since Z is the kernel of d : K — K1 we see that
Z'@a A =ker (K'®@q A" — K" @4 A') (8.36)
and
B'@sA=Im (K" @4 A — K'®4 A') (8.37)
because A — A’ is flat. Hence
H(K*®A)=Z(K*®4 A)/B(K*@A)=2'9,A'/B @4 A (8.38)

and the last quotient is equal to H*(K® ®4 A’), which is clear if we tensorize the above
vertical sequence by A’ over A. O

8.2.2 The Kunneth-formulae

Let S be any scheme and let f : X — S,g : Y — S be two separated over S. Let
F (resp. G) be quasi coherent sheaves on X (resp. Y). We have the two projections
p1: X XgY — X,ps: X XgY — Y. We consider the two inverse images p} (F),p5(G)
on X Xg Y(see 6.2.2), these are again quasi coherent and we define

FRG = pi(F) ®@p5(9).

As in Vol. T 4.6.7 we can construct a homomorphism

m: @@ Rf(F)@ Rg*(G) — R'(f x 9)«(FRG)

i+j=n
provided one of the sheaves is flat over S.

Theorem 8.2.4. If the two sheaves are flat over S then m is an isomorphism.
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This is almost obvious. We may assume that S = Spec(A) is affine. Then we choose affine
coverings X = |J, Ua,Y = g V3. Then the products U, x V3 provide an affine covering

of X x Y and the cohomology H®*(X xgY,F K G) is computed from the resulting Cech
complex. But with the above notations we have

FRGUq x5 Vg) = F(Us) ®a G(Vp),

this is an isomorphism of A-modules. Now the flatness implies that the cohomology of
this Cech complex is equal to the tensor product of the two Cech complexes for F and G. [J

8.2.3 The cohomology of the sheaves Opn (r)

We investigate the cohomology of the sheaves Opn (r) on P™/S where S = Spec(A4). Our
main tool will be the exact sequence obtained from

0 — O]P"(XO) I O]Pn — O]Pn—l — 0.

[ (8.39)
Opr(-1)
(see exercise 35. Tensoring this with Op~ (r) we get
0— Opn(r—1) — Opn(r) — Opm-n(r) — 0 (8.40)

for all integers r. We get the chain of inclusions

O]Pn — O]Pn(].) — O]Pn (2) — ... O]PH(T) R O]]Dn (OO) = io)*ig(opn).

Our theorem 8.2.1 implies that for ¢ > 0 any class in H?(IP",Op= (r)) vanishes if we send
it to H1(P™,0Opn(00)). If we realise this class by a cochain in the Cech-complex we can
bound this cochain by an element in [] . 4o O(c0)(Us), but this cochain lies already in
some [[,c 40 O(r + 5)(Uy) and we conclude that any class in H(IP",Op~(r)) vanishes
if we sent it to some H?(P",Opx(r + s)) with s >> 0. (We refer to this as the ”limit
argument”).

We proceed by analyzing the information provided by the long exact cohomology sequence

0 — HOP"Opu(r —1)) — HO(P"Opn(r)) — HO(P"}Opu-i(r)) >

H'(P"Opi(r—1))  — H'(P"Ope(r)) — H' P Opns(r))

We know that HY(P",0p« (1)) — HO(P"~!,Opn-1(r)) is surjective unless we have n = 1
and r < 0. This follows from the Exercise 34, the map between the modules of homoge-
neous polynomials is given by putting X, = 0.

Hence we get for n = 1

0 — HY(PLOpi(r—1)) — H'(PYOpi(r)) — H°(P°,Opo(r)) —
HY(PL,0p:i(r —1)) — HY(PY,0p:1(r)) —0 —

H2(P Opi(r —1))  — H2(PY,Opi(r)) —0 —.
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If in addition 7 > 0 we see that for any ¢ > 1 the map HY(P},Opi(r — 1)) —
H4(P',Op1(r)) is injective. Then the limit argument implies H?(P!,Op:1(r)) = 0 for
q > 2 and all r and for ¢ =1 and » > —1. For ¢ = 1,r = —1 our sequence becomes

0—0—0— HY(P°Opo(-1)) — HY(P',Op:(-2)) —0
I
A

and hence
Hl(Pl,O]Pl(—Q)) ~ A.

For r < —2 we get a short exact sequence

A

[
0 — HYPY,Opo(r)) - HY(P'Opi(r —1)) — H'(PL,O0p:(r)) — 0

and hence: For r < —2
HY (P Op1(r)) = A1,

Now we state the theorem.

Theorem 8.2.5. Forn > 1 we have

HO(P",0pn(r)) =  Module of homogeneous polynomials of degree rin A[Xy, ..., X,].
Especially it is zero for r < 0.

HY (P",Opn(r)) =0 for 0<i<n or i>n.

0 for r<n+1
H"(P",0pn(—1)) =4 A for r=n+1
A™  for r>n+1

where m = rank of HO(P",Opn(—n — 1 +7)).
‘We have proved this for n = 1. We get easily by induction that

HY(P",Opn(r — 1)) — H(P™,Opn(r))

is injective for all 0 < i < n — 1 and ¢ > n. Hence by the same argument as above we
find H{(P",0p«(r)) = 0 for all i # 0,n. For i =n we get

0— H" (P 1,0pn-i(r)) —H"(P",0pn(r — 1)) — H"(P",0pn(r)) — 0.

For r > —n the first term is zero hence we get an isomorphism between the second and
third term. This implies again by the limit argument

H™(P"Opn (r)) = 0

for r > —n. For r = —n we get an isomorphism
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H" Y P 1 0pn-1(—n)) = H"(P",0pn(—n — 1))
and for still smaller r we get

0 — H" Y{(P" 1 Opni(—n—5)) — H*(P",0pn(—n—1—35)) —
H"(P",0pn(—n—3s)) — 0

and one checks easily that the recursion for the rank as a function of s is the same as for
HO(P™,0pn(s)). |

Remark: One make the point that the isomorphisms in the above theorem are not canon-
ical, if we change X into uXy, where u € A* they will change by some power of u.

8.3 Cohomology of Coherent Sheaves

We consider the projective space 7 : P4 — S over an arbitrary locally noetherian base
scheme S. Our results will be local in S, hence we assume that S = Spec(A), where A is
noetherian.

Definition 8.3.1. A quasi-coherent sheaf F on IP™ is coherent if one of the following
equivalent conditions is fulfilled:

(1) For all U; the Opn (U;)-module F(U;) is finitely generated.
(2) For any affine open set V.C P™ the Opn(V)-module F(V) is finitely generated.

(8) The stalks F, are finitely generated Opn y-modules for all points p € P™.

We leave it as an exercise to prove that these conditions are equivalent.

Of course we have this notion of coherence for any scheme X, which is locally noetherian,
i.e. has a covering by affine schemes Spec(A4, ), where the A, are noetherian. Then a quasi
coherent sheaf F on X is coherent if its modules of sections over the Spec(A,) are finitely
generated.

Now we are ready for the celebrated coherence theorem.

Theorem 8.3.2 (Coherence Theorem). Let S be a locally noetherian scheme and let F
be a coherent sheaf on P™/S. Then the sheaves Rim,(F) are coherent and they are zero
fori>n.

Proof: The proof requires a series of steps. The theorem is local in the base, hence we
may assume that S = Spec(A), where A is a noetherian ring. Our sheaf F has a support
Supp(F) (see 6.1.5). This support is a union of irreducible components, these irreducible
components have a dimension and let us denote by dim(F) the maximal dimension of an
irreducible component.

Again we start from the exact sequence 8.39

0 — Opn(Xo) — Opn — Opa-1 — 0
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and the resulting exact sequence
0— Opn(r—1) — Opa(r) — Opun-1(r) — 0.

We will consider the tensor products F(r) = F ® Opn(r), but we have to be aware of a
minor technical complication: Since the tensor product is not an exact functor tensoring
F with this sequence yields only an exact sequence

0—G— Opn(X0)®F — Opn @ F — Opus @ F — 0

where G is the kernel of the next arrow so the exactness is true by definition. Since
Opn (1) is locally free, we get for all r € Z an exact sequence

0—G(r) — Opn(r=1)QF — Opn(1) @ F — Opn-1 @ F — 0.

We need some information how the sheaf G looks like. Here we observe that locally we
are in the following situation: We have an A-algebra B an element f € B and we consider
the sequence of B modules

0— fB—B— B/fB—0.
This will be tensorized by a B-module N (the local F) and we get
fB® N — N — N/fN — 0

and the first arrow is f ® n — fn and hence the kernel is exactly the annihilator of f in
N. This means that we get

0 — Amny(f) — Bf®@ N — N — N/fN — 0.

Now it is clear that Anny(f) is an A/fA-module, which is of course finitely generated.
This implies for our sequence above that the kernel G is in fact a Opn-1-module sheaf,
hence it is a coherent sheaf on the hyperplane at infinity, which is P!,

The next step in the proof of the coherence theorem will be the proof of

Theorem 8.3.3. (Serre) Under the assumptions of the theorem above we can find an
ro > 0 (depending on F) such that

1) For all v the A-module H°(P™,F(r)) is a finitely generated. For r > ro the higher
cohomology groups H'(P™ . F(r)) =0 for all i > 0.

2) For all r > rq the sheaf F(r) = F @ Opn (1) is generated by a finite number of global
sections. In other words we can find sy,...,sny € HO(P™,F(r)) such that for any
point q € P™ the stalk F(r)q is generated by the restrictions of these sections to
this stalk as an Opn q-module.

Proof: The proof of this second theorem will basically be obtained by induction on n.
The case n = 0 is obvious. We break the four term exact sequences into two pieces

0—G(r) —Opn(r—1)@F — F'(r—1) —0
0— F'(r—1) —O0pn(r) @ F — Opn-1(r) @ F — 0.
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Since G and Opn-1(r) ® F are supported on P"~! we can apply induction and find an
rg > 0 such that

HY(P"G(r)) = H'(P"1,G(r)) = 0,H (P""!,0pn-1(r) ® F) = 0
for all » > rg,i > 0. The first exact sequence yields
HY(P" . F'(r —1)) =H"(P",0pn(r — 1) @ F)

for i > 0,r > rg

We substitute this into the long exact cohomology sequence attached to the second short
exact sequence of sheaves and get for r >> 0

— HY(P",Opu(r) @ F) — HOP™",Opn-1(r)®@F) —
HYP"Opn(r—1)®@F) — HY(P"Opn(r)®F) —0
and for higher degrees i > 2 we get
HY(P™,Opn(r —1) @ F) = H(P",0px(r) ® F).

In degree one we know by induction that H°(P",Opn-1(r) ® F) is finitely generated,
under the boundary operators the generators are mapped to finite set of classes in
HY(P",Opn(r — 1) ® F). Our limit argument shows that these classes vanish, if we pass
to a larger r. Hence we find a possibly larger ro such that we get H*(P",Opn(r)@F) = 0
if 7 > ro. The same limit argument shows that H*(IP",Opx(c0) ® F) = 0 implies that
H{(P",Opn(r)® F) =0 for i > 2,r > ro.

Now we prove 2) We consider the restriction of F to the open sets U;, we know that

F|U; = F(U;). The Opn (U;)-modules F(U;) are finitely generated. We write s; 1, .. . ,S;..,
for these generators. They also generate the stalks in the points inside U;. We have the
embedding Op» C Opn(dH;) and this induces a morphism among sheaves F ® Opn —
F ® Opn(dH;). This morphism is an isomorphism on the stalks inside U;. If we pass to
the limit we see that F ® Opn (coH;)(P") = F @ Opn» (U;) and hence we see that all the
sections s;, extend to sections in the limit.

But then these extensions must already lie in some F ® Op«(rH;) and since we have
Opn(rH;) = F(r) = F @ Opn(r) we see that at least the stalks inside U; can be
generated by global sections in F(r). Since this is so for any 4 the assertion 2) follows.
It follows from 2) that we get a morphism of sheaves OF, — F(r) simply by sending
0,...,1,...,0) = $;,.... This morphism is surjective and has a kernel G, which is again
coherent. We get an exact sequence, which we still can twist by Opn (s) for an arbitrary
integer s. Hence we obtain

0 — G(s) — (Opn ()Y — F(r+5) — 0,

which gives us for s > 0

0 — H°(P",G(s)) — H°(P",08.(s)) — H'(P",F(r+s)) — H (P",G(s)) =0
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Then it follows from our computation of the cohomology of the sheaves Opn(s) that
HO(P™ F(r + s)) is finitely generated for s >> 0. But since for any r; < r + s we have
HO(P™ F(r1)) € HO(P"™,F(r + s)) this finishes the proof (inside the proof) . O

Now the coherence theorem can be proved easily by induction on n. But we want to
prove a slightly stronger result. In section 8.4.1 we will prove a technical lemma (Lemma
8.4.7), which our given situation tells us the following:

For our sheaf F and a point p € Spec(A) we can find an open neighbourhood Spec(A4,) of
p,anr > 0 and a section f € HO(IP’Aq 7(’)lng (r)) such that the annihilator Annrga, (f) =

0. The same holds true for the image f € HO(IP;‘1p /p 0P i (r)),i.e. we have Anngga, /p(f) =
P

0. In other words f (resp. f = f mod p)) are non zero divisors for the sheaves F ® Agy
(resp. F @ Ap/p. )

As we said, this is a very technical lemma. Its proof uses the above theorem 8.3.3, but
this theorem we have already proved at this stage. The proof also uses another global
argument, namely the we have to use the fact P — S is proper.

We pick such an f. Multiplication by f yields a homomorphism my : Opn M, Opr (1)
and we get an exact sequence

my

00— O]pz — O]PZ (’I“) I 0]132(7“)/]00]?2 I 0,

and we get a corresponding sequence of sheaves on the fiber P"® A, /p. If we now tensorize
the first sequence by F, and restrict it to Spec(A,) then we get an exact sequence

0 — Fa, mng(r) — Fa,(r)/fFa, — O,

here we use that f is a non zero divisor. On the fiber we get the analogous sequence

0 — (F®Ap/p) 5 (F® Ap/p)(r) — F ® Ay [p(r)) J(F @ Ay/p) — 0.

(The sheaf G disappears, but it did not do much harm to our argument) We can replace
f by f™ and rog by 7 = mrq, this means that we can make this degree arbitrarily large.
Recall that we just proved that for degree r of f large enough that Fu (r) is acyclic.
We clearly have Supp(F @ A, /p(r)/f(F @ Ap/p)) C Supp(F @ A,/p(r)). Since f is
not a zero divisor we see that for any minimal prime ideal q € Supp((F(p)(r)), i.e any
irreducible component of the support, the multiplication by f induces an isomorphism
myg: F® Ap/pg — F @ Ap/p(r)q. This implies that the irreducible components of
Supp(F ® A, /p(r)) are not contained in Supp(F @ A, /p(r)/f(F @ Ay /p)). Hence we see
that d(F © Ay /p(r)/ F(F © A,/p)) < d(F & Ay/p).

We apply the same reasoning to the quotient sheaf Fa, (r)/fFa, and get an acyclic
resolution

O—>f—>.7-"0(:.7-",49(r))—>.771—>..._7-"m—>...—>.7-"k—>.

Now we observe the after each step the number d(F* x A, /p)) drops and hence we see
that for k > d(F x A, /p) we get F* x A, /p = 0. This means that Supp(F¥) has empty
intersection with the fiber IPZF /p and hence the image of this closed set in Spec(A4,) is
closed (see Thm. 8.1.8). This means that we can localize further and find another g; & p
such that F* ® A,, =0 for k > d(F x A, /p).
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Hence for a given coherent sheaf F we have constructed a finite acyclic resolution of F
by coherent sheaves. This resolution is of course only local in the base Spec(A). Taking
global sections over P™ we get a complex H°(IP",F*) of A-modules. I refer to the simple
principle in the section on homological algebra. This principle tells us that this complex
computes the cohomology groups and

H*(P",F) = H*(H°(P",F*))

and since the individual members of the complex are finitely generated A-modules the co-
herence theorem follows. The reasoning above shows that locally at p we have H* (IPZflg1 F) =

0 for k > d(F(p)). Actually we proved the stronger statement:

Theorem 8.3.4. In the derived category of coherent sheaves on P’y any coherent sheaf
is - locally in the base Spec(A) -quasi-isomorphic to a finite complex of acyclic coherent
sheaves.

This finishes the proof of the coherence theorem. O

Of course we may replace Spec(A) by a more general base scheme S, we should assume
that S has a finite covering by affine noetherian schemes. Then we consider a projective
scheme f : X — S and we get the same formulation, except that now the F™ are
acyclic for the functor G — f.(G).

The Hilbert polynomsial
Our base scheme is a field k. We start from our sequence above (see 132)
0—F —F@0p(V(f)) — F @ (Op(V(f))/Opn) — 0,

here we assume that f is of degree ro > 0. We tensorize this sequence by Opn (1) and get
an exact sequence

0— F(r) — F@Opn(V(f)(r) — F @ (Opn(V(f))/Opn)(r) — 0,

and now we observe that F® Op« (V(f))(r) = F@Op(V(f))(r+ro). For any coherent
sheaf G on IP}! we define its Euler characteristic

X(P".G) = (~1)'dim H'(P".G).
For the Euler characteristics of the sheaves in the exact sequence we get
X®"F(r) + x(P"F'(r)) = x(P"F(r + ro))-

Now we make a little observation: If we have d(F’) = 0, i.e. its support is a finite number
of points, then x(IP™,F’(r)) does not depend on r and it is equal to the number

X(P"F(r))= > [k(p) : kllenght(F}) = length(F),
pESupp(F’)

where we observe that ]-'é has a filtration by k(p)— vector spaces and the length is by
definition the sum of the k(p) dimensions of these vector spaces.
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Let us assume that rg = 1, this is possible if k is infinite. If k is finite, then we observe
that we can extend the ground field without changing the Euler-characteristics. Hence
we conclude that for d(F) = 1 we have

X(P" . F(r)) = err + co,
where ¢; = length(F’). Then we get by the obvious induction argument

The function r — x(P™,F(r)) is given by a polynomial

d
X(P™F(r) = j(gg;)rdm F ety e
where deg(F) is equal to the length of the ”last sheaf with zero dimensional support” ,
which occurs at the end of the resolution, especially deg(F) # 0

The polynomial is called the Hilbert polynomial of F. If Z/k C IP™/k is a sub scheme
defined by an ideal Z then the degree of Z/k is defined by d(Z) = d(Opr/Z). Tt will
become clear later that the degree d(Z) is the number of points in the intersection ZNH;N
HyN---N Hg where the H; are hyperplanes in general position and s is the codimension
of Z, this is the codimension of an irreducible component of maximal dimension.

8.3.1 The coherence theorem for proper morphisms

Of course we can consider arbitrary projective schemes f : X — S, where S is locally
noetherian. Let F be a coherent sheaf on X. Then our two theorems above hold verbatim
for this sheaf. This is clear because by assumption we have a diagram

x 1t py
g
f
S
and if F is a coherent sheaf on X/S then i.(F) is coherent on P% and we have

RIf(F) = RIg.(i(F))-

This gives us the theorem 8.3.2. The embedding provides the line bundle £ = I*(Opr (1)
on X and we can use this bundle to twist coherent sheaves on X and to formulate theorem
8.3.3.

At this point we observe that £ depends on the embedding, it is clear that we can replace
it by any ample line bundle.

Now we want to explain A. Grothendieck‘s generalisation of the coherence theorem. We
consider a base scheme S, which is locally noetherian. We consider a scheme f : X — S,
which is of finite type and we assume that f is proper. Under this assumption it is still
true that for any coherent sheaf F on X the sheaves R?f,(F) are coherent sheaves on S.
We will not prove this theorem here, but after the following digression we give some
indications why it is true. Before stating the theorem and giving some hints why it is
true we make a slight detour.
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Digression: Blowing up and contracting

We want briefly explain some geometric constructions, which allow certain modifications
of schemes. These modifications are of importance in the process of resolving singularities,
an important subject, which is treated only marginally in this book.

We begin by discussing simple examples. Let us consider the affine space over a field k,
i.e. S = Spec(k[Y1,...,Y,]). In the projective space P"~1 /S we define a closed subscheme
Z — P4 by the system of homogeneous (even linear) equations

YiX; - Y;X; =0.

(The Xq,...,X, are the homogeneous variables for P"~1.) The inclusion composed with
the projection to S a projective morphism provides

T:Z— S.

Now it is clear that for any point s € S, the fibre consists of a single point if (Y1 (s),...,Y,(s)) #
0, because in this case the solutions are given by the line determined by (Y1 (s),...,Y,(s)).

But if (Yi(s)...,Y,(s)) = 0 then suddenly the system of equations degenerates to
0X; —0X; =0 and the fibre is the full P"~!/Spec(k(s)).

This process is called blowing up a point and is of considerable importance in algebraic
geometry. The intuitive meaning is that the point is replaced by the projective space
attached to its tangent space. To see how useful this is we give two examples.

Example 18. Let us assume we have the meromorphic function

X+Y

FXY) =5y

in the function field of the affine plane S = Spec(k[X,Y]) where k is a field and char(k) #
2. It is reqular outside the diagonal X =Y and provides a morphism

f : Spec(k[X,Y])\A — Spec(k[T]) = A;.
We can extend this to a morphism
Spec(k[X.Y])\{(0,0)} — P},

if we send the points on the diagonal A to infinity. But in the origin we do mot know
what to do.
Composing this morphism with the morphism © : Z — S we get a morphism Z \
771((0,0)) — P}..then a point in the fibre over (0,0) tells us in "which direction” we ap-
proach (0,0) and we can take a "limit”. This allows us to extend f to a regular morphism
f:2— P

Example 19. Consider a plane curve C C Spec(k[X,Y]) = S, for example something
like

f(XY)=XY +X"+Y" =0,
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then the origin O = (0,0) is a geometric point and the Jacobi criterion shows that this
point is singular. The curve has two tangents at O = (0,0), these are the X and the
Y -axis. Now we blow up the origin O € S then the inverse image of our curve has two
irreducible components, one is the "proper transform” C' and the other is the fibre of w
over O. The curve C C Z meets the fibre 7=1(0) in two points (the two tangents) and
is smooth in these two points. We have resolved the singularity.

This process of blowing up a point is a special case of a much more general procedure.
Let us consider any scheme X, we may assume that it is affine, i.e. X = Spec(A). Let
Y = Spec(A/I) be a subscheme, which is defined by an ideal I. Now we form the graded
A-algebra

R=AolIo’®---0I"9...,

where of course I"” is the homogenous summand of degree v. Now we can consider the
scheme
7 : Z = Proj(R) — Spec(4),

by definition 7 is projective and this scheme is called the ”blow up” of the subscheme Y.
We have to meditate a little bit how this morphism looks like. We assume that the ring
A is noetherian. We choose a system of generators fo,...,f. of the ideal I. Sending the
X; to the f; yields a surjective homomorphism

F:A[Xo,X.,....X,] —AoIe’e - ol"®...,

which in turn gives us a diagram

and Z is the closed subscheme defined by the homogenous ideal J = € J,,, which is the
kernel of the homomorphism F.

The problem is that this ideal J might be difficult to understand. The homogenous
component J; of degree contains the elements f;X; — f;X;. This shows that at any
point x € X \'Y the stalk J, is equal to the homogenous component of degree 1 in
Ap, [ X0, X, X

This implies that the morphism
F':Z\7m YY) — X\Y

is an isomorphism.

Now we look what happens locally at a point y € Y. We assume that the fy,...,f. are
a minimal system of generators. It may happen, that the elements f; X; — f; X; actually
generate J (locally at y) and even better the generate the homogenous ideal J (locally
at y). (This is the case if X is an affine k-algebra over a field k and if in addition y is a
smooth point on X and if YV is smooth in y (Exercise).) Under these assumptions it is
clear the ideal J ® A/I is the zero ideal and hence we see that

ZxxY=11Y)=Y xP".
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More generally we can say the following. Let X — Spec(k) be a smooth scheme and
let Y C X be a smooth sub scheme. It is defined by a sheaf of ideals Z and we know
that the sheaf Z/Z? is locally free (see 7.5.5 , it is the conormal bundle, it is dual to the
normal bundle T'x ;. /Ty/r, = Ny. If we now blow up Y then we see that 7= '(Y’) is the
projective bundle IP(Ny ) attached to the conormal bundle.

Example 20. The situation becomes much more interesting if X is not smooth and Y
lies in the singular locus. We may for instance start from a field k of characteristic 0,
an integer n > 1 and consider the affine scheme

S = Spec(k[X1,X2,X3]/(X? + X3 + XJT') = Spec(k[z1,72,23].

This is an integral affine scheme of dimension 2 and the singular locus consists of one
point namely the origin O = (0,0,0). We take for our ideal I the ideal generated by
x1,T2,23 and we blow up the origin.

We give the result and strongly recommend to the reader to carry out the calculation.
If n =1 then the fibre over O is a quadric in IP? it is given by the homogenous equation
u? + v? +w? = 0 and the scheme Z/Spec(k) is smooth. If n = 2 the fibre over O is
again a P! but the scheme Z = Z;/ Spec(k) is not smooth any more, it has an isolated
singularity, which lies on the fibre. But this singularity is "milder” than the original one
and if we blow up Z1 in this singular point zy we get a smooth scheme Zy — Z1 where
the fibre over z, is a P. Then the fibre of the composition Zo — S is a union of two
projective lines, which intersect transversally in one point (see examplel7,(al).)

We can do this for any n, but then we have to wait longer until the scheme m,, : Z, — S
becomes smooth. The fibre 7, 1(O) will be a chain Y1,Ya,...,Y,, where fori=1,...,i=
n —1Y; and Y41 intersect transversally and these are the only intersections.

We can encode this into a graph: Any of the projective lines yields a vertex and two
vertices are joined by an edge if they intersect. We get the graph

0Oo—o0—:-+—o0,

which is the Dynkin diagram of the semi simple algebraic group (Lie algebra) of type A,,.
This connection between the theory of singularities and the theory of semi simple alge-
braic groups is not accidental. It had been conjectured by A. Grothendieck that certain
singularities are visible inside the algebraic groups and that their resolution gives rise to
the Dynkin diagram. This has been proved by E. Brieskorn and P. Slodowy (See [Br] and
[Slo]).

For instance in the resolution of the singularity in Spec(k[X1,X2,X3]/(X? + X3 + X3)
we get a configuration of projective lines, which gives rise to the Dynkin diagram of Eg:

The process of blowing up points or sub schemes is the main tool to resolve singularities.
By this we mean: Let X /k be an absolutely irreducible scheme of finite type, let Y C X be
the singular locus 7.5.1. We would like to construct another scheme 7 : X’ — X, where
7 should be projective, the scheme X’ should be smooth and 7/ : X'\ 7~ 1(Y) — X \Y
should be an isomorphism. In case we achieved this goal, we say that we resolved the
singularity.
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If the ground field is algebraically closed of characteristic zero, it has been shown by
Hironaka [Hi] that we always have resolution of singularities. For a more recent account
we refer to [Kollar].

We may also reverse this process of blowing up a point. We consider a scheme X and
a closed subscheme Y C X. Now we can ask ourselves whether it is possible to contract
the subscheme Y to a point, this means whether we can find another scheme X’ and a
morphism ¢ : X — X’ such that Y maps to a closed point € X ,Y = ¢~ !(x) and the
morphism ¢’ : X \' Y — X’ \ z is an isomorphism.

In the category of topological spaces this construction is always possible, but in algebraic
geometry we need certain assumptions. We briefly discuss a special case. Let us assume
that X — Spec(k) is a projective scheme, let £ be a line bundle over X, let V(L) be
the associated vector bundle (See 6.2.3.) Let j : X — V(L) be the zero section. Then
we have the following result of Grauert

Theorem 8.3.5. The zero section j(X) C V(L) can be contracted to a point, if and only
if the dual bundle LV is ample.

For the proof and a more general formulation we refer to [EGA, II. 8.9].

We consider schemes ' : X' — S,f : X — S. A S- morphism 7 : X' — X is
called a modification if 7 is projective, surjective and if we can find dense open subsets
U’ ¢ X',U C X such that the restriction to U’ induces an isomorphism 7 : U’ — U.
In our previous considerations we have seen such modifications. Blowing up or contracting
a closed subscheme Y C X, whose complement is dense, yields such modifications.

We can state the fundamental

Theorem 8.3.6. (Lemma of Chow) Let S be a noetherian scheme, let f : X — S be of
finite type and separated. Then there exists a quasi projective S— scheme f': X' — S,
and a modification

X/\_/X

If f: X — S is proper, then then we can find a projective f : X' — S, and if X is
reduced, then we can take X' also reduced.

For a proof of this theorem we refer to [EGA], 11.5.6. The proof can be read rather
independently from the rest of the book. The theorem gives a hint how we should think
of the difference between proper morphisms and projective morphisms. For instance we
may get proper schemes X — Spec(k), which are not projective if we start from a
projective scheme X’ — Spec(k) and contract a suitable closed sub scheme ¥ C X,
perhaps even to a point.

After this detour we state Grothendieck's general coherence theorem

Theorem 8.3.7. Let S be a noetherian scheme, let f : X — S be a proper morphism
of finite type. For any coherent sheaf F on X the higher direct images R f.(F) are again
coherent Og-modules.
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We will not prove this theorem here, the proof is lengthy but not difficult anymore. We
may make a few reduction steps and try an induction over the dimension of the support
of our sheaves. The decisive idea is of course to use the Lemma of Chow and start from
a coherent sheaf 7' on X'. Then we get coherent sheaves R"f.(F’) and we have the
FE>-term of the spectral sequence

RPf.(R'm.(F)) = R"f.(F).

Here the sheaves RYm(F) are coherent, but this does not immediately imply that the
terms RP f.(Rim.(F)) are coherent, because there may be non zero differentials. But a
careful inspection of the differentials allows us to show that some of these terms must
be coherent and another induction argument eventually yields the proof. For a detailed
discussion we refer to Grothendieck’s exposition in [Gr-EGA III], Chap. 111, §3.

In this context I admit that some of the important consequences of the coherence theorem
are not treated in this book. I refer to EGA loc.cit. §4 where Grothendieck discusses
the implications of the coherence theorem to the comparison theorem between formal
and algebraic theory (Theorem 4.1.5). This theorem treats the following situation. We
consider a proper morphism f : X — Spec(A), where A is noetherian. Let I C A an
ideal, we define A = lim, (A/I ) and we have the base change

F:X =X x4 A— Spec(A)

For any sheaf coherent sheaf 7~ we have its restriction .7-" to X and we can consider the
sheaves R? f*( G), these are coherent sheaves on Spec(A) C Spec(A).

We may also consider the sheaves G ® A/I¥ on X and consider their derived images
Rif,(G® A/I*¥) on Spec(A). Finally we may consider R?f.(G) ® A/I*. Both formations
yield a projective system and we get a diagram

qu*( )+qu*(11m (G® A/IF))

NS

R17,(G) ® lim(A/I*)

Now the theorem asserts that all three arrows are isomorphisms. For the proof the reader
may also consult [Ha], Chap. III, section 11. This theorem on formal functions has
very important consequences, which we want to discuss briefly, for details we refer to
[Gr-EGA I11], Chap. III, &4.

The connectedness theorem of Zariski (Thm. 4.3.1) says

Theorem 8.3.8. Let f : X — Y be a proper morphism between locally noetherian
schemes. Then there exists a scheme g : Y' — Y, which is finite over Y and a morphism
f'X — Y’ which is surjective and for any y' € Y’ the fiber (f')~1(y’) is connected.

The factorization f = go f’ is called the Stein factorization of f.

We can give a sketch of the proof. It it clear that the assertion is local in the base,
hence we may assume that Y = Spec(A4) and A is noetherian. Then H°(X,0x) = B
is finite over A and we put Y’ = Spec(B). This yields f’ : X — Spec(B) and g :
Spec(B) — Spec(A). The surjectivity of f’ is clear. For the rest of the statement we
may assume B = A. We pick a prime ideal p € Spec(A) and consider the fiber f~1(p).
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Assume that this fiber has several (i.e. more than one) connected components. Then it
is clear that HO(f~'(p),0f-1(p)) is the direct sum of several fields. If we replace p by a
power p* and perform the base change Spec(A) « Spec(A/p¥) then we get basically the
same: HY(X x Spec(A/pk),OXXSpec(A/pk)) is the direct sum of several local rings. This
implies that the projective limit lim HO(X x Spec(A/pk),OXXSPCC(A/pk)) is a direct sum
of several non zero local rings (the constant section 1 on a component does not go to
zero) and we have

@(A/pk) - mHO(X X SpeC(A/pk)aOXXSpoC(A/p"‘))'
k k

Now we have to invoke the above mentioned theorem on formal functions, it implies that
this homomorphism must be an isomorphism and this is impossible, because liglk(A /p*)
is still local.
If we are in the situation the connectedness theorem, then we may consider the set X’ of
points z € X which are isolated in their fiber f~!(f(x)). Then Zariski’s Main Theorem
asserts that X’ C X is open and the morphism f’ induces an isomorphism between X'
and an open subscheme of Y.
Again we give a brief indication, why this is true. We can easily reduce this to the case
that Y =Y, i.e. f.(Ox) = Oy. Then it follows from the connectedness theorem that
for x € X’ we actually have f~1(f(x)) = x. This implies that for any open neighborhood
x € U, we can find a neighborhood Vy ;) of f(z) such that f*I(Vf(m)) C U, This implies
that Oy, ¢(4) — Ox,, is an isomorphism and the rest is clear.
In Zariski’s Main Theorem we can weaken the hypothesis that f : X — Y is proper,
obviously it suffices to assume that f is quasi projective (see 8.1.6). We can easily reduce
the assertion to the case of a projective morphism.
The theorem has an important application for birational isomorphisms. Let f: X — Y
be quasi projective and let us assume that X,Y are integral. Furthermore we assume that
f is birational, i.e. X and Y have the same field of meromorphic functions. If in addition
Y is normal then f is an isomorphism between X’ and the open set V C Y, which is
defined as the set y € Y for which f~!(y) contains an isolated point.
We do not need these results in the proofs of the theorems in the later chapters.

8.4 Base Change

We consider a projective scheme X — S, where S a noetherian base scheme, let F be a
coherent sheaf on X. We want to study the behavior of the direct images R? f,(F) under
base change, i.e. we consider diagrams

’
X “Tixs X xa 5

lf lfxld

§ ~——g—— &'

and then we will see that we have a canonical homomorphism (the base change homo-
morphism) for coherent sheaves
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Gsiys - RIS >x 1) ((Id x8)"(F)) — s (R fo(F)),

and we want to understand the properties of this homomorphism.

The question we want to study is local in the base, so there is no harm if we assume
S = Spec(A) where A is a noetherian ring, we may also assume that S’ = Spec(4’)
is affine. Finally we may assume that we have an embedding X — P, and that our
sheaf on X is the restriction of a sheaf on P”j. This sheaf is also called F. Under these
assumptions the sheaf RYf,(F) is the quasi coherent sheaf obtained from H?(IP%,F).
(See proposition 6.1.18)

We make a first step to understand the behavior of the cohomology of coherent sheaves
under base change. We want to simplify the notations slightly. If we have a scheme
X — S = Spec(A) we allow ourselves to write X4 for X/Spec(A). Accordingly we
write X4 for X x4 5.

Our sheaf is a sheaf on P7, (with support in X.) We compute the cohomology starting
from the Cech complex attached to the standard covering by the U;. We consider

P’ Xspec(a) Spec(A’) =P, (8.41)

If we have a sheaf F on X then this yields a sheaf (Id xs)*(F) = Fa» on X4 and
by definition by Fa/(U; ar) = F(U;) @4 A’. This tells us that the Cech complex, which
computes H®(PP%,,Fas), is the tensor product C*(P™UF) ®4 A’ and hence we get a
map between the complexes

C* (PR AUF) — C*(P% MFa),
which in turn gives a map between the cohomology groups
H.( Zv‘fj‘)H.( Tzﬁll’?j:A/)‘

Here we consider both sides as abelian groups, the left hand side carries the structure of
A-modules, the right hand side cohomology groups are A’-modules. It is obvious that we
get from the homomorphism above an A’-module homomorphism

¢s//3 : H.( le,]:) ®a A — H.(IPE/,]:A/). (842)

This map between the cohomology groups is the base change homomorphism. In
general we cannot say very much about this base change homomorphism.

It is very easy to see that this morphism is an isomorphism if S « S’ is flat (See
theorem 8.4.1 below.) The interesting case is that s is a point or even a closed point,
ie. s : Spec(k(s)) — S. Then X x Spec(k(s)) = X, is a scheme over a field. Then
dim H9(X,,F;) is a finite dimensional vector space over k(s) and we may for instance
ask the question how these dimensions vary with the point s. In the previous section we
saw, that the fibers X may vary in a very irregular way. If for instance F = Ox, then we
should expect some weird behavior of dim HY(X,,F,) unless we make some assumptions
on f: X — S or on the sheaf F. The question is delicate, one answer is given in the
theorem 8.4.5 below.

We have to make some assumptions, and here we have two options
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(a) The base change A — A’ is flat.

(b) The sheaf F is flat over A (we say it is A-flat or S = Spec(A)-flat), i.e. for any open
set U C P} the Opx (U)-module F(U) is a flat A module.

We consider the case (a) first. In this case we have

Theorem 8.4.1. If S «— S’ is flat, i.e. if A — A’ is flat then the base change homo-
morphism is an isomorphism.

This is clear, it follows from the computation of the cohomology of the Cech-complex
and lemma 8.2.3.

Now we come to the case b). For the formulation we drop the assumption that the base
schemes are affine.

Theorem 8.4.2. Let S be a locally noetherian scheme, we assume it has a finite covering
by affine schemes. Let F be a S-flat coherent sheaf on PS. Let m be the projection P —
S. Then we can find an rg > 0 such that

(1) Riml (P% Fs/(r)) =0 for all i > 0,0 > 1o and all schemes S — S.
(2) The Os module R°m,(F(r)) is locally free for r > ro.
(8) For any S «— S’ the base change homomorphism
R (F(r))) ®0s Osr — R'm.(Fs:(r)))
is an isomorphism if r > rq.

Proof: Of course we may assume that S = Spec(A), where A is a noetherian ring. We
apply theorem 8.3.3 and choose a large enough r > ry such that H¢(P",F(r)) = 0 for
all ¢ > 0.

We profit from the Cech complex. We have the standard covering of P", by the affine
spaces U; 4 and with respect to this covering we take the Cech-complex, but this time
we take the alternating sub-complex (See Vol. I 4.5)

CHUF(r) =0 — 1:[7"(7‘)((]2‘) — I Fnwinu;) —.
i=0

0<i<j<n

The alternating complex becomes zero after the n+ 1-th step. We know that the inclusion
of this complex into the usual Cech-complex induces an isomorphism in cohomology.
Hence the cohomology groups of this complex are the cohomology groups of F(r). Since
we assumed that the higher cohomology groups vanish we get an acyclic complex of
A-modules

0 — H(P",F(r)) — CO(UF(r) — CHWF(r) — ... — C" T (UF(r)) — 0,

where the C?(8,F(r)) are A-flat and H°(IP",F(r)) is a finitely generated A-module. We
show that HO(P7 ,F(r)) is also A-flat. We do this by induction on the length of the
complex. We break the sequence and get two sequences
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0 HO( ij(,r)) . Co(u7f'(r)) B0
0— B — CYWF(r) — ... — C"H(WF(r) — 0

If our exact sequence is a short exact sequence, i.e. n = 0 then we see only the first
sequence and have B = C(4,F(r)) and hence B is flat. We tensor this short exact
sequence by an arbitrary A-module N and get the long exact sequence

— 0 — Tor}(B°,N) — H°(P%},F(r)) @ N — CO(UF(r)) ® N — B @ N — 0

Since B is flat we have Tor{'(B%,N) = 0. Further to the left in this sequence we find
some isomorphisms

0= Tor;‘_,_l(BO,N) = Tor;-‘(HO( F(r)),N) forall j > 1

and we conclude that H°(P7,F(r)) is A-flat.

Now the induction step is obvious. If n > 0 then the second of our sequences above
becomes shorter, we get by induction assumption that B° is A-flat and we just proved
that this implies that H° is A-flat.

We investigate what happens if we perform a base change A — A’. It follows from
the definitions that the resulting Cech-complex is simply the tensor product of the old
Cech-complex by A’, we get

C* (ﬂ,f(?“)) Q A =00 (ﬂ,f(?“)A/).
Since all modules are A-flat it follows that
HO(PY,, F(r)a) = H(P%,F(r) @ A'.

Finally we observe that H°(P%,F(r)) is a finitely generated A-module, since it is also
flat we can conclude that it is locally free.
O

This theorem has important consequences. We go back to the proof of theorem 8.3.2 and
the first remark following it. Given a coherent sheaf F on P”; and a point p € Spec(A) we
passed to a suitable neighbourhood Spec(4,) and found a suitable f € H( 4,08, (1)

such that we got an exact sequence
0 — Fa, L Fa,(r) — Fa,(r)/fFa, — 0.

Now we assume in addition that F is A-flat. We apply a lemma in section 8.4.1 (Lemma
8.4.8). It tells us that we can even find an f such that the quotient sheaf F4 (r)/fFa,
is again Ag-flat.

Repeating the reasoning from the proof of the coherence theorem we get:

Theorem 8.4.3. Let F be an A-flat coherent sheaf on IP"y. Then locally in the base we
find a resolution
0—F —F —F — F...

where all the sheaves F* are flat and "universally acyclic”i.e. H' (P, Far) = 0 for all
i >0 and all base changes A — A’.
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Remark: We come back the proof of the coherence theorem. At the end of the proof we
stated a strengthening of that theorem. Here we proved that for a coherent and A-flat
sheaf F on P} we have -locally in the base- a quasi-isomorphism of complexes

0
0 F 0 0
0 ]:O j:l }"2 ey Fm 0

where the F? are A- flat and universally acyclic.
Hence we know that for any A — A’ the complex

0 — HO(P%,FY) —H(Pa,Fh) — ...
computes the cohomology groups H'(PP%,Fa/), and we also know that
HO(P7%, Far) =H(P%,F) @4 A’

Hence we see that the above flat universally acyclic resolution gives us a complex of
finitely generated locally free A-modules

K*:=0— H(P},7°) — H'(P},F') — ... — H'(P%,F") — 0

such that for any A — A’, the complex K® ® 4 A’ computes the cohomology groups
H'(PP%, . Far).

Among other things we want to understand the behaviour of the cohomology groups
ik (P'4/,Fa, /p) vary if p varies over the prime ideals in Spec(A). If A is integral and p is
not the minimal ideal (0), then A — A, /p is the prototype of a non flat base change.
Now we need a little bit of linear algebra.

Lemma 8.4.4. Let k be a field, in the derived category of the category of finite dimen-
sional k-vector spaces is any finite complex “isomorphic to its complex of cohomology
groups”. This means that any finite complex of finite dimensional k vector spaces

C*= —0—CFr St — .. —Ccm—0

can be split into two summands C* = H*(C®) @ A®(C*®) such that the differentials split
accordingly and such that the differentials on H®(C®) are all zero and such that the
complex A*(C*®) is acyclic.

Let us call a complex, in which all the differentials are zero a cohomological complex. We
do not prove this lemma, it is simple linear algebra.

Let us assume that A is local with maximal ideal m. The complex K*® consists of free
modules and we consider the homomorphism

K*— K*®A/m = H*(K* ® A/m)) & A*(K* ® A/m))
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where we applied the lemma above. We see easily that this yields a decomposition
K. — H.(K.) @ A.(K‘.)

such that the differentials respect the direct sum decomposition, where A®(K*) is still
exact but where for the differential dyy on H®(K*®) we only have

dy(HI(K*)) € mHTH(K®)

In the derived category of A modules the complex K* is isomorphic to H®(K*®).
Let p be another prime ideal in A let A, be the localization at p and m, the maximal
ideal. We have the diagram of homomorphisms

A — A
| |
A/m. Ay /p

and this induces a diagram in the category of complexes
H(K*) ———H(K*) ® 4,
HO(K®)® A/m He(K®) @ Ay /p

Now the complex in the lower left corner is cohomological, therefore,
dim 4 /gy HY (Ingec( ) F © A/m) = dim g/ (K9 ® A/m)

and this is equal to the rank of the free A module H?(K?*).
But H°*(K*®) is not necessarily cohomological, and hence also H*(K®) ® A,/p is not
necessarily cohomological, i.e. the differentials are not necessarily zero. Hence we get

dim 4 H (Ingec(A oy F ® A/m> > dimy, jm, H' (ngecmp gy F ® Ay /m,,>
We drop the assumption that A is local and summarise our findings to a theorem
Theorem 8.4.5 (Semi-continuity). (1) If F is a coherent A-flat sheaf on Pgoec(a) and
if m D p are two prime ideals then

dlmA/m Hl (IPngeC(A/m)’j:A/m) 2 dlmA,,/mp EIZ (]:ngeC(Ap/mp)’pr/mp) . (8.43)

(2) If for a given degree i and a prime ideal p € Spec(A) we have H”(IPZF/ ]-'Ap/mp) =0
. mp
forv=1—1and v =1i+1 then H (P}, F) is locally free at p and the base change
homomorphism

H'(P,F) ® Apjm, — H' (PG, Fa

p/myp p/mp)

is an isomorphism.
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(3) We assume that the ring A is reduced, let m € Spec(A). We assume that for a given
degree v and for all primes p C m we have the equality

dim 4 H' (ngpec(A oy Fa /m) = dimy, jm, H (ngpec(AP Jngy F iy /mp> . (8.44)

Then HY(P",F) is locally free at m and the base change homomorphism

H (P, F)® Ap/my — H (P Fa

p/mp p/mp )
18 an 1somorphism.

Proof: These are now rather easy consequence of our consideration above. The assertion
(1) is already proved. We consider the complex H®(K*®). The proof of (2) is easy. In this
case the assumptions imply that

HTHEK®) @ Ay /my = HTHE®) @ A, =0
Then the Nakayama lemma implies that
Hifl(KO) ® Ap — Hi+l(K0) ® Ap — 0’

and hence , )
H(P%,F) @ Ay = HI(K®) @ A,
This then yields . )
H' (D) = H (O (K*)).

To prove (3) we may assume that A is local with maximal ideal m. Then our assumptions
imply that for all p C m we have

dNHTNK®) CpHI(K®) ' H(K®) C pHITTH(K®)

otherwise the dimension dimy, /m, Hi(]ngec(Ap/mp),pr /m,,) would drop. But since we
assumed that A is reduced we know that the intersection of these primes is (0) we can
conclude that d=1 = 0,d" = 0 on H*(K*).

O
Usually one finds this in a slightly different form in the literature. Let S be noetherian
base scheme S and an Fan S-flat coherent sheaf on a projective scheme 7 : X — S.
We consider the coherent sheaves Rim.(F) on S. Then our assertion (1) in the theorem
above is equivalent to

The function s — dimyy) H(X,,Fs) is upper semicontinous with respect to the Zariski
topology on S.

I find it easier to remember that the function may jump up if we specialize (See 6.1.3)
a point s — s’. But this formulation is obviously the same as the one above because the
assertion is local on S.

Theorem 8.4.6 (Invariance of the Euler characteristic). Let 7 : X — S be a projective
scheme over a noetherian base scheme S and let F be a S flat coherent sheaf. Then the
function
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d
s (X, F) =Y (=1)" dimy) H' (X, F)

=0

is locally constant. Here d is large enough such that the cohomology groups vanish in
degrees beyond d.

Proof: This is obvious because for any s € S the Euler characteristic x(Xs,F) is equal
to 3¢ o(~1)" Ranko,,, (K’ ® Oy))- O

K3

8.4.1 Flat families and intersection numbers

We now come to a very important topic, which we can treat only cursorily, a thorough
treatment can be found in the book [Fu]. But we hope that it possible to illustrate some
of the ideas, which play a role.

In principle we want to do the following: Let X — Spec(k) an irreducible, smooth and
projective (or even only proper) scheme over a field k. Let Z1,Z5 be two irreducible sub
schemes of codimension cy,cy. Let us assume that they are in complementary dimension,
i.e. we have ¢1 + ¢co = d = dim(X). Then we can expect that that under favourable con-
ditions they intersect in a finite number of points and that we may define an intersection
number #(Z; N Z3). Moreover we want that this number is the sum over the points in
the intersection counted with a multiplicity.

For instance it looks plausible that the intersection multiplicity of the parabola y =
2? with the x-axis = 0 in the point (0,0) should be equal to two. We give a more
sophisticated example further down.

We do not assume that the base field k is algebraically closed, but we want that the
intersection number is invariant under base change: If k& — k is an algebraic closure
of k then we want #(Z; x; k) N (Z2 xi k) = #(Z1 N Zy). If for instance the ground
field is Q and Z; = Spec(Q[X,Y]/(X? + Y2 +1),Zs = Q[X,Y]/(X —Y) then Z; N Z5
consists of one point, which will be counted with multiplicity two, because the residue
field extension has degree two. If we pass to the algebraic closure, then the intersection
has two points each counted with multiplicity one.

We briefly recall the analogous problem in the context of oriented manifolds (See Vol.
I, 4.8.9). In this case we started with two oriented submanifolds Ni,N2 of an oriented
manifold M, which sit in complementary dimension. They provided classes [Ny],[N2] in
the cohomology (with compact support). Nobody can prevent us from defining # (N7 N
N3) by taking the cup product of the two classes, and then

[N1] U [Na] = #(N1 N Ny) x fundamental class of M.

If these two manifolds intersect transversally, then we can interpret the number # (N7 N
N3) is number of intersection points, where each point p € Ny N Ny is counted with a
sign €(p), which arises from the comparison of the orientations of the two tangent spaces
of N1,Ns at p to the orientation of the tangent space of M at p. But this intersection
number is always defined, even if N1,No do not intersect transversally, for instance it
may happen that N3 C N» and still the intersection number is defined.
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We can have an analogous situation in algebraic geometry. Let us assume that the scheme
Z1 N Zy =Y is of dimension zero. If the intersection is transversal (see 7.5.21), then the
intersection number will be simply the number of points in the intersection. In this case
orientations do not play a role, this is clear because this notion does not make sense over
an arbitrary field, for instance it does not make sense for C vector spaces. But if the
intersection is not transversal then we have a problem.

The point is that in the theory of manifolds we can attach to the geometric object N C M
another more algebraic object [IN] in the cohomology ring H®(M,Z).

And it is here where the problems in algebraic geometry start: We need a replacement
for the cohomology ring. One option for this replacement will be the Chow ring, which
will not be constructed in this book, we will only give a sketchy discussion of this ring.
It should be a graded ring

d
A(X) = P A (x),
v=0
we should have a surjective homomorphism
AYX) — 7

and we should have a reasonable procedure to attach to an irreducible subvariety Z; of
codimension ¢; a class
[Y1] € A9 (X).

We will come back to this ring later (See 9.7.3), in this section we want to discuss some
constructions, which are based on the concept of flat deformations, and which give a hint
how to solve the problem of constructing such a ring.

Imagine you should compute the intersection number of the green and the blue curves in
the following picture?

Figure 8.1 Intersecting y*> —2°/3=0and y> —2? +2° =0

We have three intersection points, the point (0,0) and two others points P;,Ps, in which
the intersection is transversal. They are all real. The intersection multiplicity in P; and
P5 is one, but what is the intersection multiplicity in the origin? We push the red curve
to the left:

Now we see that the origin ”splits” into 4 points, in which the two curves intersect
transversally, this seems to indicate that the intersection number in the origin should be
4. This is in fact the right answer.
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Figure 8.2 Intersecting y*> — (z +1/3)*/3=0and y*> — 2% +2° =0

There is another way to get this number 4. Let us localise the ring k[X,Y] at the origin,
as usual we denote this ring by k[X,Y] Now we look at the local ring (assume
char(k) # 3).

M0,0) *

R=k[XY]ng, /(Y?—X3/3Y% - X*+ X¥).

We check easily that the ideal mf, o) O (Y~ X?/3Y? — X*+ X?) 5 mf, ). This implies
that the ring R has dimension zero, image of the ideal m(g ) is the only prime ideal in
it. We get a filtration

RS m,0) 2 m%o,o) O(Y?-X?/3Y? - X?+ X7).

We have dimy (R/m(g,0)) = 1, dimy(mo,0)/m ) = 2 and mf, /(Y = X?/3.Y? — X? +
X3) is of dimension one and generated by XY. Hence we conclude that dimy(R/(Y? —
X3/3,Y? — X2 + X3)) = 4. (Such a formula for intersection numbers is not always true,
in our special case a certain flatness condition holds (See [Se3]).

We could also consider the case that X = IPQ/k and Z1 = Hy,Zy = Hy, i.e. we want to
intersect the hyper-plane H, with itself. Here we replace one of the hyper-planes Xy = 0
by a hyper-plane agXg + a1 X1 + as X2 = 0 and we and if a; or as is not zero, then the
new hyper-plane intersects the second one transversally and the intersection number is
one.

Therefore, we see the principle: If we want to define intersection numbers, we deform
71,75 (we put them into a flat family) and compute the intersection numbers of suitable
members of the family.

We come to the technical construction and we prove a lemma that we used already earlier.
Recall that we introduced the notation d(F) for the maximal dimension of an irreducible
component of Supp(F). As usual A is a noetherian ring. For any sheaf F any line bundle
L on P% and any section H°(PP",£) we know what it means that s is not a zero divisor
in F : We can trivialize £ on the open sets of a suitable covering by affine sets. On any
open set U of the covering we can can view s as a regular function in OPZ(U), it is unique
up to a unit. Then F(U) is a module under the ring of regular functions on U and we
know what it means that s is not a zero divisor in F(U). Then s is not a zero divisor in
F if it is not a zero divisor for all the open sets in the covering.
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Lemma 8.4.7. Let F be a coherent sheaf on P";. For any point p € Spec(A) can find
an element g € A,g € p, an integer r > 0 and a section f € HO(P% ;,Opn (1)) such that
_ g 9
(i) The image f of f in HO(IPZF/WO]PZ; /p(r)) is a non zero dwisor of F ® k(p), i.e.
p

Annp®k(p) (f) =0
(ii) The annihilator Anng, (f)=0
iii) We get an exact sequence

0 _>]:A_q ﬂ>.7’:Aq(’l“) —>.7:Ag(1")/f.7:Ag — 0.
and d(F) > d(Fa,(r)/fFa,)-

We pass to the affine situation consider the restrictions of the sheaf F to the open set U; C
P”. On any of these open sets F becomes a O(U;) = Altioti1,---tii—1:tiitt,---stinl-
module M;. It suffices to prove the first assertion for any given index ¢. In the beginning
we choose 7 = 1.The restriction of f € H?(P’,Opx (1)) to U; becomes an inhomogeneous
linear function f; = yotio+ -+ vi + - + Yotin.

We assume that M; is non zero, otherwise nothing has to be proved. We start from the
observation that M; contains a sub-module M; 1 = O(U;)my where my # 0 and where
the annihilator of m; is a prime ideal. This is clear because if the annihilator of a given
mq is not prime, then we find an element my € O(U;)m; whose annihilator is strictly
larger, we get an ascending chain of annihilators, which must become stationary. We
apply the same argument to M; /M, ; and conclude that M; has a has an ascending chain
of sub-modules such that each sub-quotient is isomorphic to O(U;)/q;,, and q, is prime.
Since A and O(U;) are noetherian, this chain must end with M; after a finite number of
steps.

We get a finite collection of closed sub-schemes Spec(B/q;,) C U;,v = 1...n, in the
support of M;, such that for all f € H(P",Opx (1)) we have Annyy, (f;) = 0 provided
fi & 4i, for any v. This can be done for any i, we can take the closures Z; 4, , of the affine
schemes Spec(B/q;,) C U; in P’;. Then we can take the union of these sub-schemes over
all i. Now we look at the fibre Py = = P} X Spec(k(p)). The union of those Z; 4, , which
do not meet (have empty intersection with) this fibre form a closed subscheme Z C IP7,
which does not meet the fibre. The image of the projection of Z to Spec(A) is a closed
subscheme (See Theorem 8.1.8) Z; C Spec(A), which does not contain p. Hence can find
an element g € A,g ¢ p, which vanishes on Z;. We replace A by A, and hence we may
assume that all the closures Z; q, meet the fibre P7 . We pick any of these Z; 4, and
take the intersection with the fibre and restrict to any of the U;, where this intersection
is non empty. This intersection is of the form Spec(O(U;)/q;,, ® k(p)). In general this
will not be integral. But we apply our filtration argument again and get that there will
be a finite number of prime ideals ;. € Spec(O(U;)/q;., @ k(p)),ac = 1,...m; j, such
that an element f; = yotjo + - +yj + + Yntjn,yi € k(p), which satisfies f; € q;.0
for all «, will not be a zero divisor in O(U;)/q;,, ® k(p). Taking the closures of these
Spec(O(Uj)/qjﬂ,@k(p))iin P ) we find a finite number of closed sub-schemes Zjy C Py
such that an element f € HO(]PZ(p),O]pZ(p)(l)), which does not vanish on any of these
sub-schemes, is not a zero divisor in F ® k(p) the sheaf Annzgyp)(f) = 0. If we now lift
[ to an element f € H(P’§,Op~ (1)) then locally on any of the U; this element satisfies
f ¢ q;,,, and hence Anng(f) = 0.

We still have to find such an f. If we remove the zero element and consider the projection

p: H (P, Oz, (1)) \ {0} — PH( k(p) 0Pz, (1)-

k(p)
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Tt is clear that Z /H defines a proper closed sub-scheme

Sg C {x € P(H(PY(,),0pr (1)) f1Z5 =0 for all f €p~'(z)}.

k(p)

If S is the union of these ¥, then any f € HO(IPZ(p),(’)pZ(p)(l)), which maps to an
element in Vr = (]P(HO(IPZ(p),(’)]pZ(p)(1)))(k(p)) \ Z£)(k(p)) and any lift to an element
f yields such an element.

Now we have the minor problem that we can not show that Vz(k(p)) # 0. This is rather
obvious if k(p) is an infinite field, but if k(p) is finite this may not be true.

If k(p) = FF, is finite, then we find such an z € Vz(F,) for some r we lift it to an
f € p~!(x) and now we take the product of the conjugates of this f under the Galois
group Gal(F,-/IF,). We get an element in f; € H°(P",Op~(r)). This is the reason why
we need a bigger r. It is clear that that d(F' ® Ay) < d(Fa,(r)/fFa,(r)) d

We need an extension of this lemma

Lemma 8.4.8. The notations and assumptions are the same as in the lemma above,
but now we assume in addition that F is A flat. Then for any x € V(k(p)), and a lift
fepHx) and any f € H°(P,Opx (1)) that maps to f we can find a neighbourhood
Spec(Ay,) C Spec(Ay) of p such that Fa, (r)/fFa, is Ay, flat.

We have to show that for a suitable localization A, and for any ideal a C A, the
annihilator

Amngga, /a(f) =0.

We replace the sheaf by F(s), where s is large enough so that the global sections generate
the stalks at all points and so that the assumptions in Theorem 8.4.2 are valid. We get
an exact sequence for the global sections

0 — H(P4,F) =5 HO (PG, F(r) — HO(P"Fa,(r)/fFa,) — O,

the first two modules in this sequence are locally free over A and satisfy base change. Let
us assume they are indeed free and let us choose basis‘es v1, ... ,74,01, - . . ,0p of these two
modules respectively. Then the multiplication my is given by a (a,b) matrix M (f) with
coefficients in A. Since m 7 x Spec(k(p)) : HO(IPZp /p,}"@)k(p)) — HO(]PZP /p,}'®k(p)(7’))
is injective we can conclude that this matrix evaluated at p has rank a, hence it has a
(a,a) minor whose determinant does not vanish at p, hence it is a unit in a suitable
localization Ay, . Let a be an ideal in Ag,, we apply base change and get a commutative
diagram

mf X SpOC(Agl /Cl)

HOPY, 100 F @ (A /a))

!

HO(]PZ!,I F® Ag,) @ (Ag, /a))

HO(]P?AQI/G),}'(r) ® (Ag, /a))

!

my @ Ag, /a
——> HP} F(r)® Ag,) ® (Ag, /a)
The vertical arrows are base change isomorphisms, the horizontal arrow in the bottom line
is injective because our (a,a) minor above has an invertible determinant. Therefore the
horizontal arrow in the top line is injective. But this implies that Ann]_-®(Agl/a)(f) =0,
because in the beginning we assumed that the global sections generate the stalks.



176 8 Projective Schemes

O

We translate the considerations from section 7.4.2 into the context of projective algebraic
geometry. Our starting point is a noetherian ring A, the projective space P”; and a
coherent sheaf F on the projective space. We pick a positive integer r > 0 and consider
the free A-module H°(IP%,Opx (r)) = HY We have seen that this free A-module has as
a basis the monomials X = X} ... X/ where Y u; = deg(u) = r. We consider the
corresponding vector bundle V(H?) — Spec(A), which is the affine space

V(H?) = Spec(A[... Cuy 1)

where the C, are polynomial variables. For any A-algebra C' a C-valued point in V(H?)is
simply a section )¢, X" € H° (P%,0pz (r)). Especially we may look at the base change
A— Al...,Cp,...] and then F =} C, X" yields the universal section

Fe HO(]Pn XA V(Hg)volP"XAV(H,E?)(T))'

Multiplication by this universal section yields an exact sequence of sheaves on P™ X 4

V(HY)
0 — Opnxv (o) — Opnxy(9)(r) — Opnyxy w0y (r)/FOpnyy (o) — 0.

We remove the zero section {0} from V(H?) and we put 73 = V(H?) \ {0}, from here
we have the morphism

7w Ty — P(HO(P%,Opy (1)) = P(HY)

(See diagram 8.14).

We restrict the sheaves in our exact sequence to P" xT¢. Clearly Opn v (179),Opn x v (10)(7)
are the quasi-coherent inverse images of Opnyp(#0),Opn o) (7). The multiplication
by F defines a sub-sheaf < F' > Opnyp(go) C Opnxpuo)(r) and hence we get a quotient
sheaf

OPer]P(HQ)(V")/ < F > Opnxp(m)-

on P(H{). This sheaf is the quotient of Opnyp(go)(r) by a homogeneous ideal < F' >,
it defines a sub-scheme

H, C P" x P(HY),

which will be called the universal hyper-surface of degree r. It is flat over P(H?).

We consider the projective space IP™ over a field k. Let T" be an absolutely connected
scheme of finite type over Spec(k). A flat family of schemes over T (we may also say
parameterized by T') is a subscheme

ZCP"x,T

whose structure sheaf Oz is flat over T'. Let m be the projection to 7T'. For any point t € T’
we can consider the fibre Z; = m71(¢), we get the members of the family. If we have a
second absolutely connected scheme T” over Spec(k) and a morphism ¢ : T/ — T, then
we get a flat family over T” if we simply take the inverse image (Id x)~1(Z) Cc P* x T".
Let us call this the pull-back family of Z via .
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We introduce the notion of equivalence of two flat families 21 C P™ x 11,25 C P™ X T5.
To do this we consider the two projections py,ps from T7 X T to T1,T> respectively and
take the two pull-back families of 21,25 via these two projections. We call the two families
equivalent, we can find a geometric point ¢ = (¢1,t2) such that

(Id xp1)"H(21)e = (Id xp2) " (Za)s

in other words if 214, = Z2,4,.

The intuitive meaning of a flat family is, that the “topological type” of the members in
a flat family stays constant if ¢ moves inside the parameter space. We may for instance
consider the Hilbert polynomial

t (1= x(21,0z,(r)))

and theorem 8.4.6 tells us that this function is locally constant in ¢, and hence constant
on T, because we assumed that T should be absolutely connected. From this we conclude
that the degree t — d(Z;) is (locally) constant.
We have a simple process to construct flat families. Let us assume that we have a flat
family

ZCP" % T.

Now we also have the universal family of degree r hyper-surfaces H,. C P" x P(H?). We
have the two projections

pr,p  P" x T x P(HY) — P" x T, P" x P(H?)

we take the pullbacks of these two families p;'(Z) = Z, p7'(H,) = H, C P"xTxP(H?)
and we consider the intersection of these two sub schemes

ZNH, CP"x T x P(H?)
This is a scheme over 7' x P(H?) and we claim

Proposition 8.4.9. There exists a non empty open subset U C T xy P(H?)) such that
the intersection ZN'H, C P"xT xIP(H?) is flat at any point of U, hence this intersection
with P™ x U is a flat family over U.

Proof: This is our lemma 8.4.8
O

Since U C T x P(H?) is connected we see that we can define the intersection of any flat
family with the universal family of hyper-planes of degree r.

This allows us to define the universal family of m-fold intersections of hyper-surfaces of
degree 71,79, ...,rm. This is the intersection

Hey NHey N NHy, CP < P(HY ) % .. . P(HY ).

Tm Tm

Our previous proposition implies that we can find a non empty open subset 7., . C

P(HY ) x ...IP(H ) such that

< T'm

Hrl,rg,...,rm = Hrl N Hr2 n---N Hrm NP" x 7;‘17-~-,Tm

Trsooirm
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is flat.
In general it may not be so easy to check, whether a given (closed) point f € P(H} ) x
. P(H? (k) isin Ty, ..y, (k). By definition we can interpret such a point as an array

f = (fi,...,fm) of non zero homogenous polynomials (up to homotetie ) of degree
71,72, .., Fm. We know that we can check this locally on P”, i.e. we can restrict to
Ui X Try.....ry — Try,....r,- Then the point f is an array of polynomials

— (a) 40 Hi—1 pHit1 Hn _
fai= E o tig -ttty wherea =1,...m.

pudeg(p)<ri

Now it is clear from our previous considerations that we have flatness in f if for all ¢
the sequence f1,f2,i--.,fm, is a O(U;) regular sequence and this means that for any
1 < b < m the element f,; is not a zero divisor in OU;)/(f14,---,fo—1,:). (For this
concept and its relation to flatness see [Ei],II. 10 and II.18).

This is certainly the case if the collection of equations satisfies the Jacobi-criterion (See
7.5.4), namely that for any closed point P € U;(k), for which f1;(P) = fo;(P) =--- =
fm,i(P) =0, i.e. a point closed in Spec(O(U;)/(f1,i,f2,i - - - +fm,i) the Jacobi-matrix

afa,i
8tj,i

(P)

has rank m. This is so because our Theorem 7.5.4 implies that for all values 1 < b < m
the local ring O(U;)/(f1.isf2.i -+ +fb.i)mp is integral and has dimension n — b and hence
fv+1,; has a non zero image in this ring.

To give an application we consider the case m = n. A point u is given by an array of
n homogenous polynomials f;(Xo,...,X,) of degree r;. We consider very special points,
i.e. very special systems of equations. We make the assumption that these polynomials
are products of linear forms, i.e.

J=rr

fi= 11 tis
j=1

where the [;; are linear. Furthermore we assume that for any choice of factors [; ;,,i =
1,...,n these n linear forms are linearly independent. Then it is clear that the universal
family is flat over such a point.

It is also clear that for any point P € Spec(O(U;)/(f1,f2,i---,fn)) we find a unique
choice of factors ji,ja,...,jJn such that l; ;,(P) = l2;,(P) = ..., = ly;,(P) and after
localization at P

OP"/(ll,j17l2,j27 e ;ln,jn)mp = O]P"/(fl7f2: cee 7fn)mp =k.

We conclude that under our assumptions Opn /(f1,f2,...,fn) is of dimension zero and
reduced. It has exactly r175...7, points and we get for the Hilbert polynomial

X(Opn/(f1,f2, -5 fa)(T)) = 1172 . Tp0

The Hilbert polynomial is independent of r.

But now we can apply the semi-continuity theorem, it tells us that in any point point
u € Tpy...r. (k) the fibre

X k(u)

Hrirayrnuw = o,y
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is of dimension zero and

dlmk(u) HO(HT1 ,Tz,...,?”n,uao'H,.l,7-2,,__,”“1‘ = X(OIP”/(flvf27 s 7fn)(T)) =Trire...Tn.

The scheme for v € 7, . ,, (k) the scheme H,, r,. . . o consists of a finite number of
closed points Py, ...,P, and

and the individual term dimg (O Jmp, is called the intersection multiplicity

1w

of the n hyper-planes u = (f1,...,fn) in the point P;.
Hence we can say that for an array of homogenous polynomials f1,fs,...,f, of degrees
T1,7'2, - . . ,Vn, which define a point u € 7, ., (k), the number of points in the intersection

of these hyper-planes counted with the right multiplicities is riry...7r,.

Finally we come to a classical result, which is now an easy consequence of our considera-
tion. I want to stress that the following arguments do not depend on the lengthy consid-
erations in the proof of the two lemmas above. We consider the projective space P? over
an arbitrary field k. We choose two homogenous linear forms f1 =Y a, X%, fi =3 b, X~
of degree dy,d>. Now we exploit the fact that k[Xo,X1,X2] has unique factorization. Then
we can say that fi,fo are coprime, this means that they have no common factor. This
condition defines a non empty open subset 74, 4, in the space of coordinates of the co-
efficients (...au,...,b,...) It is clear that over this open set scheme Opz/(f1,f2) is flat.
Hence we get the classical

Theorem 8.4.10. (Theorem of Bezout)
If we have two hyper-surfaces in P3 given by homogenous polynomials

F1(Xo0,X1,X3) = ZaﬁXﬁ: Z pug i X" X1 X

HO, 152ty i =d1

f2(X07X15X3) = ZbﬁXﬁ = Z b#o#h#zX(})mX{“X527
HOsH1 2t i =d2

then their intersection is of dimension zero if and only if they are coprime. If this is
the case the intersect in dids points, if we count the points P in the intersection with
multiplicity

m(P) = dim(Ops p /(F1,12))-

We want to stress that the essential ingredient in the proof is the semicontinuity theorem
O

The Theorem of Bertini

We want to close this section by stating a classical theorem.
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Theorem 8.4.11. Let k be field, let X/ Spec(k) be a smooth projective scheme, which
comes with an embedding © into the projective space

X —*t py

NS

Spec(k)

Let r > 0 . We consider the intersection of X x P(H?) with the hyper surface H, C
P? x P(HY) then we can find a non empty open subset U C P(H?) such that for all
u € U the intersection X x k(u) N (HY), is smooth.

For the proof we refer to the literature (See [Ha]), but we can as well leave it as an
exercise to the reader. It is also easy to prove the following extension. For is a rational
point P € X (k) let Vp C P(H?) of those hypersurfaces containing P. Then we can find

a non empty subset VS” C Vp such that the analogous assertion holds.

8.4.2 The hyperplane section and intersection numbers of line bundles

We consider a projective scheme f : X — S, where the base scheme is noetherian and
connected. We assume that the scheme is flat over S. Let us assume that H is a very
ample line bundle, it provides a projective embedding

X — bt ,py

where i*(Opz (1) = H.

In the previous considerations we always considered the restriction of H’(P%,0px (7)) to
X we replace this space of sections by the more natural choice H?(P%,H®").

Let d be the relative dimension of X/S and let £4,...,L4 be a collection of line bundles
on X, we want to define the intersection number

Ly-Lo- ... - Lg.

This problem was discussed in Vol. I 5.3.1 and the solution given there was satisfactory
in the sense that it captured the essence of the concept, but formally it was not so
satisfactory because we alluded to the cohomology theory of complex analytic varieties.
Here we will demonstrate that the ideas, which we adumbrated in Volume I actually
work.

Of course we want that I(L£1,La,... L4) = L1-La- ... -L4is commutative in the variables
and that it is multilinear, i.e.

(Lr®LY) - . La=Ly Lo .. La+ L) Lo ... Lg.

It is clear what we have to do if d = 0. In this case X — S is finite and flat, and
therefore, Ox is a locally free, finitely generated Og module. We have the empty set of
line bundles and to this empty set we attach the intersection number
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I(0) = Rankpg (Ox),

this number is well defined because we assumed the S is connected.

We proceed by induction. We replace L4 by L4 ® H®" where r is sufficiently large so
that the assumptions in Theorem 8.4.3 are valid for H®" and for L4 ® H®". We apply
proposition 8.4.9 to the sheaves F = Ox and F = L4 and consider the two schemes

Ps(f(H®")) and Ps(f.(Ls @ H®T))

over S. To any point s € S we find open subsets Vi C P(f.(H®")),Vo C P(L® f.(HET)),
which have a non empty intersection with the fibers if we intersect them with the fibers
P(f.(H®")) xg Spec(k(s)), resp. P(f.(Lq @ H®")) Xg Spec(k(s)) and such that the
schemes of hyperplane sections

= X % P(fu(La ® HET))

N A

P(f(La @ H®T))

and

X — s X g P(f.(HET))

NOA

P(f.(H®T))

are flat if we restrict them to V4 (resp. Vi.) These schemes of hyperplane sections are
now flat over V4 (resp.) V7 and their relative dimension is d — 1. We take the pullbacks
of the bundles to X xg Vs (resp.) X xg V7 and restrict them to the hyperplane sections,
we get line bundles

! I " 1
1oLy onXr,, 1y, Ly_qon X

then the following intersection numbers are defined and we put

_ / " "
L1 Lo Lg=Ly o Ly =L L.

We have to show that the definition of this intersection number neither depends on the
choice of H nor on r. Furthermore we have to show that it is commutative and multilinear.
We consider the case d = 1. For a line bundle H on X and a section s € H°(X,H), which
is not a zero divisor in Ox we put

I;(H) = Rank of the Og-module H/sOx,

we will show that this number is equal to I(7).

We say that H is ”ample enough” if it has non zero sections and if the set of sections,
which a non zero divisors in Ox is a non empty open set. We have seen that for an
ample bundle H there exists an r > 0 such that H®" is ample enough. (Lemma 8.4.8).
If two line bundles H,H; are ample enough, then H ® H; is ample enough, because if
s € H'(X,H),s1 € HY(X,H1) are non zero divisors in Ox then ss; € H'(X,H ® H;) is
also a non zero divisor. The linearity relation I1(H ® Hi1) = I (H) + 11 (H1) means
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Rankep,(H ® Hi1/ss10x) = Ranko, (H/sOx) + Rankog (H1/510x).
This last equality follows from the exactness of the sequence
0 —H®s510x/(s®51)0x — HQH1/(s®51)0Ox — H1/s1H1 — 0

and the isomorphism H ® s10x /(s @ s1)Ox — H/sOx, which in turn follows from the
assumption that s; is not a zero divisor. Hence we see, that for a line bundle £, which
is ample enough, we have I (£) = I(L). But at the same time we see that for any line
bundle £ the above definition of the intersection number I(£) = I(L @ H®") — I(H®")
is independent of the choice of H and r. Then the linearity also becomes obvious. This
settles the case d = 1. The case d > 1 follows from an easy and obvious induction
argument.

We will encounter these numbers I(£) again in 9.4.1 when we discuss the degree of
divisors on curves over a field.
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9 Curves and the Theorem of
Riemann-Roch

9.1 Some basic notions

In the following k is a field, k is an algebraic closure and ky C k is the separable closure
inside .

A curve over field k is a scheme C/k, which is separated, of finite type over k (See 6.2.5)
and all its irreducible components are of dimension 1. In other words our scheme has a
finite covering by affine schemes U; = Spec(O¢(U;)), where the irreducible components
of O¢(U;) are finitely generated k-algebras of dimension 1. We know what it means that
C/k is irreducible or absolutely irreducible (See 7.2.2 and 7.2.12.)

To give simple examples we can take a non zero homogeneous polynomial of degree d say

f(:uy,z) = § al/luzvzxylyyzzys Auyvyvg € ki + v+ =d.

Then the ideal (f) defines a curve

c C P2/k (9.1)

\ l}h
pec(k).

To see this we restrict to one of the affine planes, which cover P2. This means we put one
of the variables equal to 1 and divide the polynomial ring in the remaining 2 variables
by the principal ideal generated by the resulting polynomial. We have to show that
the irreducible components of C' intersected with this plane are of dimension one. This
intersection is non empty if and only if this resulting polynomial is not constant. But
then the irreducible components correspond to the minimal prime ideals containing the
polynomial and these are of height one (Krull Hauptidealsatz) 7.1.18 and hence the
quotient ring by this ideal is of dimension one.

Polynomial rings over fields are factorial (See 7.1.4). Therefore a principal ideal defined
by an irreducible polynomial F(X1,...,X,) € k[X1,...,X,] is a prime ideal. If we apply
this to our case then we see that an irreducible polynomial f defines an irreducible
curve C. But irreducibility is not invariant under base change, it may happen that f is
irreducible but can be factorized over a bigger field.

If for instance we take k = Q then (z +y — v22)(z +y + v22) = (z +y)? — 222 is
irreducible over @ but factors over Q[v/2]. If this occurs, the curve is irreducible but not
absolutely irreducible. In our example the curve C' ®g @ is the union of two lines, which
are interchanged by the Galois group. They intersect in one point, which is not smooth.
There are even worse cases. Let us assume that the ground field is not perfect and let
p > 0 be its characteristic. Then we can find an a € k, which is not a p-th power. We
take f = 2P 4+ yP + azP. Then k(a'/?) is an inseparable extension of degree p and the
equation of he curve C' xy, k(a'/?) is simply (x +y + a'/P2)P = 0 In this case the curve
is something like p-times a line.

G. Harder, Lectures on Algebraic Geometry II, DOI 10.1007/978-3-8348-8159-5 4,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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It is also possible that a curve C/k is smooth, irreducible but not absolutely irreducible.
This happens if we start from an absolutely irreducible curve C/k. Let kg be a subfield
of k such that k/ko is a finite separable non trivial extension. Then we have C' —
Spec(k) — Spec(ko) and we can view C/kgy as a curve over kg. This curve will still be
smooth, but it is not absolutely irreducible. To see this we simply look at C' xj, k and
verify that this is a disjoint union of [k : k¢] irreducible smooth curves.

There is a slightly different way of looking at this phenomenon. If we have a smooth
irreducible curve C/k and an element f € O¢(U), which is not in k it can happen
that this element is still algebraic over k. It generates a finite extension L/k contained in
Oc(U) and now O¢(U) @4k must have zero divisors and hence our curve is not absolutely
irreducible. We call such elements f, which are algebraic over k the constant elements
or simply the constants(see 7.2.13). They form a finite extension of the ground field. A
smooth irreducible curve is absolutely irreducible if and only if the field of constants is
equal to k.

Exercise 36. We return to the case of a curve defined by a homogeneous polynomial
f of degree d as above. Use the results in the previous section (See theorem 8.2.5) to
compute the cohomology groups H*(C,0¢). Show that H°(C,0¢) is a k-vector space of
dimension one. Conclude that C' cannot decompose into disjoint closed subschemes and
conclude that C' must be absolutely irreducible if it is smooth. Show that the dimension

of HY(C,0¢) is (*3') .

Remark: We can construct a universal curve of degree d. If we consider forms of a fixed
degree and we remove the trivial form, then we see that we can view the coefficients
(Gyyvs.... vy) @s the k-valued point of a projective scheme Sq = Proj(Z][. .. ,au,ms..09s---])
where we consider the a,,,,.. ., as independent variables in degree one. We can define
the universal curve of degree d, which is a subscheme of

¢ ¢ Sy x P? (9.2)
\ lpl
Po
Sq.

Exercise 37. a) Prove that there is a closed subscheme S5 C S, such that the universal
curve restricted to the complement S50 := S;\ 3¢ is smooth and that all the fibers
over S*8 are singular. Show that S§meoth .= S, \S;ing is non empty.

b) Compute S§m°°(Z) for d = 1,d = 2. (It is a deep theorem that S§m°°(Z) = () for
d > 3. Why is this not a contradiction to a)?)

A projective curve is a curve, which is isomorphic to a closed subscheme of some
P" /k, our curves V(f) above are projective curves. If our ground field k = C, the field
of complex numbers, then the set of € valued points of a smooth projective curve is
the same thing as a compact Riemann surfaces. Many of the following considerations
are parallel to the considerations in Chapter 5 of volume I. Some of these considerations
will be easier here, because we do not have to deal with analytical difficulties. But the
possibility that the ground field is not algebraically closed or even not perfect, will cause
us some headaches of different kind.
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9.2 The local rings at closed points

Proposition 9.2.1. For a smooth curve C/k the local ring Oc,, at a closed point p is a
discrete valuation ring. For any non empty affine open set U C C the ring Oc(U) is a
Dedekind ring.

Proof: Let P be a geometric point, let p be the corresponding point on C. We can
choose a local parameter f at P. Recall that this is an element in f € O¢  such that the
differential df generates Qé /i At p. We have seen in the section on smooth points (See

theorem 7.5.2) that we get an embedding of the polynomial ring

X — f.

If po = k[X] Np then the embedding of local rings
k[X]Po - OC,p

is étale (See Definition 7.5.14)
(i) The maximal ideal po C k[X],, generates the maximal ideal p C O¢p.
(ii) The extension

k[X]po /Po = Oc,p/p

is a finite separable extension. (This is explained at the end of the section on smooth
points, just before the section on flat morphisms).

Since the ring k[X] is principal, we have pg = (p(X)) with an irreducible polynomial p(X).
The maximal ideal of the local ring O¢,, is also generated by p(X) and the proposition
follows (see definition 7.3.4.) Since we had the habit to denote a uniformizing element of
the maximal ideal p of a discrete valuation ring by m, we can choose 7, = 7y, = p(X). O

The above étale morphism provides in a certain sense a good approximation of O¢ , by
E[X]p,. If we assume for instance that k(pg) = k(p) then it is clear that for any n we
have kE[X]/pf = Oc¢,p/p™ and hence we get an isomorphism between the completions (See
theorem 7.5.2)

k[X],, = lim k[X]/p§ < 1im Ocp /p"Oc,p = Ocp-
Under our assumptions the extension k(p)/k(po) is separable, but the first step k(po)/k
can be inseparable. But

Proposition 9.2.2. If p is a closed point on the smooth curve C/k and if the extension
of residue fields k(p)/k is separable, and if m, is a uniformizing element at p, then dm,
generates the module of differentials at p.

Proof: We choose our X as above. Then our assumption implies that p’(X) is a unit in
k[X]p, and then dm,, = dm, = p'(X)dX is a generator for the module Qg , of differen-
tials. ]
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9.2.1 The structure of 60,]3

We need a little bit of information concerning the structure of 6C,p~ We have the diagram

6C’,p L k(p)
T
/
k.

If the extension of residue fields k(p)/k is separable then we have a unique section s :
k(p) — (50,;; with s|k = Id;, and Wos = Idy,,). To get this section we write k(p) = k(0)
where 0 is the zero of an irreducible and separable polynomial f(X) € k[X]. We lift 0
to an element 6 € @cﬁ,. Then F(0) =0 mod p. Let m, be a uniformizing element. We
modify 9 into 0 + am, where a € @C,;r We evaluate F' at this new argument and get
F(0+ amy) = F'(6) + F’(g)omp. We know that F'(6) is a unit in (5(;7,J and hence we see
that we can choose « in such a way that

F(g—f— army) =0 mod p.

We modify again by adding a ﬁwg and improve our solution to a solution mod p3.
This yields a sequence, which converges to an exact solution. This argument is called
Hensel’s Lemma (See [Neu]) and it is the p-adic version of Newtons method.

We identify s(k(p)) to k(p) and our diagram above becomes

k(p)[lmpl]  — K(p)

|
/!

k

in other words our ring @c,p is the power series ring in one variable 7, over the residue
field. The quotient field is k(p)[[mp]][1/my), it is sometimes called the field of Laurent
expansions at p. N

If the residue field extension is not separable then the structure of O¢ , is not so nice
and will cause us some trouble.

If the extension k(p)/k purely inseparable then it is clear that for any finite extension
L/k the L-algebra k(p) ®; L is local and hence we have only one prime ideal p’ in the
fibre over p. For the structure of @C,p in this case we refer to [Ei], Thm 7.7.

9.2.2 Base change

We have to investigate systematically what happens if we extend the field of constants k,
i.e. we choose an extension L/k and we consider the curve C' Xgpec(x) Spec(L) or simply
C xj L. We have a morphism (the base change morphism)

C<—CXkL.
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We studied this question at the end of the section on affine schemes for the case L = k
but it is clear that the considerations carry over to this case. The base change morphism
induces a map on the closed points and the fibre over a closed point p is the set of prime
ideals of the finite L-algebra k(p) ®j L . If we consider a closed point p and an affine
neighborhood U of p then our base change morphism corresponds to the inclusion
A(U) — A(U) ® L.
Let us assume that L/k is finite. Then the prime ideal p C A(U) decomposes in A(U)® L,
i.e.
P(A(U) @k L) = py" - S
or
(AU)@ L) /pAU)@ L~ A(U) @, L/p{* @ ...® (A(U) @ L) /ps.
The e, are called the ramification indices. There are some special cases

(1) If the residue field k(p) = k, then it is clear that p stays prime. (This tells us also
that our assumption that L/k is finite is inessential. After passing to a suitable
finite extension nothing essential happens after that (if we stick to the given p)).

(2) If the extension k(p)/k is separable then the ramification exponents e, are one, the
algebra (A(U)® L)/pA(U) ® L = k(p) @ L has no nilpotent elements.

(3) But if for instance k(p) = k(Py/a) where p = char(k) and a ¢ kP and A(U) =
k[X]/(XP —a) and if L = k(P /a) then

KIX] @4 KOV (xo—a) = KOVAX]/(X — ¥/a)
and hence we get nilpotent elements.

(4) We can always choose a finite normal extension L/k such that we can embed
k(p)/k — L/k. If k(p)/k is purely inseparable then we may choose L = Ek(p).
In this case the ramification index e = [k(p) : k]. In other words in the group of

fractional ideals of A(U) ® L we have p = p’[k(p):k]. The completion Ocx, pr is
again a power series ring.

(5) If p is a separable point then we may take for L/k a normal closure of k(p)/k and
then the closed points of C' xj, L, which lie over p correspond to the embeddings

o:k(p)/k— L/k
We have
kp) o L= L

(See 7.4)

In general we can say: If we pass to the completion at p and take the base extension to
L/k then

60-,9 QL = (1131A(U)/p" ®L) = OcxyLp ©... 8 6C><kL,ps-

If the extension k(p)/k is separable then we get
Ocyp @k L = k(p)[[mp]] @k L = (k(p) @, L)[Imp]] = € Lllm]]

where now the points above p correspond to the points of Spec(k(p) ®j L).
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9.3 Curves and their function fields

The following considerations are parallel to the reasoning in Vol. I. 5.1.7. For an irre-
ducible curve C/k we consider the function field £(C') of meromorphic functions. This is
simply the stalk Oc, of the sheaf O¢ in the generic point 7. For any affine non-empty
open subset U C C the ring O¢(U) is a one-dimensional, integral ring and k(C) is its
quotient field. We pick an f € O¢(U), which is not constant. By definition this element
cannot be algebraic over k. It yields an embedding of the polynomial ring

k[f] <= Oc(U)

and an embedding of fields

Proposition 9.3.1. The field k(C) is a finite extension of k(f) and hence of transcen-
dence degree one.

This is rather clear, if we had an g € k(C'), which is not algebraic over k(f) then k[f,g]
would be a polynomial ring in two variables sitting in some Dedekind ring O¢(V'), which
is absurd. O

Let us denote by Dy D U the set of points p where f is regular, i.e. we have f € O¢,,.
Since O¢ is a sheaf then we have f € Oc(Dy). Now we consider the integral closure A
of k[f] in k(C). In the section on Dedekind rings we indicated that A is again a finitely
generated k-algebra and a Dedekind ring (See 7.3.8). (The extension k(C)/k(f) needs
not to be separable anymore). It is clear that the elements of A are integral at all points
of Dy in other words we have A — O¢(Dy). We get a diagram

Dy — Spec(A)

N
c

Now we assume in addition that our curve C/k is projective. Then it is clear that the
morphism Dy — C' extends uniquely to Spec(A) — C. (See 8.1.10) Our diagram can
be completed by a vertical arrow:

Dy — Spec(A)
N\ l
C.

If p is a closed point in the image of Spec(A) then we have A C O¢,, hence we have
f € O¢,p and this implies p € Dy. Hence our diagram becomes

Dy — Spec(A)
N\ Id !
Df c C.

If we now assume that C'/k is smooth then we see that the inclusion A — O¢ (D) must
be an isomorphism.
We summarize
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Proposition 9.3.2. Let C/k be a projective smooth curve. If we pick a non constant
f € k(C) and consider the set Dy C C where f is reqular. Then Oc(Dy) is the integral
closure of k[f] in k(C). We can find an f such that the extension k(C)/k(f) is separable.

We may also consider k[f~!] and by the same procedure we get k[f~!] C Oc(Dy-1).
We have seen how to glue Spec(k[f])and Spec(k[f~!]) over Spec(k[f,f~!]) and construct
P! /k. Hence we see that our element f defines a morphism

<I>f:C'—>IP1.

This morphism is finite, i.e. on any open affine V' C P! the morphism Op:(Y) —
Oc(q);l(V)) is finite. If our curve is smooth and U C X is a nonempty affine open
subset then we can find an f € O¢(U) such that df € QEC(U)/k is not zero (See Theorem
7.5.12). Then it is clear that under this assumption on f the morphism ®; is separable.

This tells us that for a smooth, projective and absolutely irreducible curve we can recon-
struct the curve from its field of meromorphic functions, i.e. from O¢ ,, = k(C). The set
of closed points of C' can be identified to the set Val(k(C)) of all discrete valuation rings
V in k(C), which contain the field of constants k and have quotient field k(C). To see
this we have to show that any such discrete valuation ring V' C k(C) is the stalk of O¢
at a closed point. We pick an f € V, which is not in & then V' D k[f]. Then we must have
V D Oc¢(Dy). Hence V is the discrete valuation ring at a point of D¢. We put a topology
onto the set Val(k(C)): The non empty open sets are the sets Val(k(C))s = {V|f € V}.
Then we see that the bijection Val(k(C)) = closed points of C' becomes a homeomor-
phism. Eventually we define a sheaf O(Val(k(C))s) = Ny evain(cy), V> we get a ringed
space and if we add a generic point we get an isomorphism of ringed spaces.

If we have two smooth, absolutely irreducible projective curves C7,C5 then we can con-
sider morphisms ¢ : C; — Cs. If such a morphism is not constant (i.e. it does not map
(4 to a point) then it maps the generic point to the generic point. Hence it induces a
map between the function fields

and it is not difficult to see, that we can recover ¢ from ‘¢. Hence we see that non
constant morphisms
@ Cl e CQ

between two smooth, absolutely irreducible projective curves are in one to one corre-
spondence to morphisms
P k(Cy) — k(Cy)

between the function fields, which are the identity on the constants. This is an exceptional
phenomenon in dimension one.

We may even start from a field K/k of transcendence degree one. We assume in addition
that k is absolutely closed in K i.e. any element f € K, which is algebraic over k is already
in k. Then we can construct a smooth, absolutely irreducible, projective curve C/k with
k(C) = K. The set of closed points will be the set of discrete valuation rings in K, which
contain k, the underlying set C' is the set of closed points and the generic point. The non
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empty open sets will be the sets Dy of closed points p containing a given f € K,f € k
plus the generic point. The k-algebra of holomorphic functions Oc(Dy) is the integral
closure of k[f] in K. This is a finitely generated k algebra and a Dedekind ring (See
7.3.8). It is absolutely irreducible (See Lemma 7.2.14). Since Spec(O¢(Dy))/ Spec(k) is
of dimension one and normal it is an affine smooth curve (See theorem 7.5.18). The set C'
together with the sheaf defined by the Oc(Dy) is a curve, a pair of elements f,f~'.f € k
defines a finite morphism 7 : C' — P} and hence it follows from proposition 8.1.21 that
C'/k is projective.

Hence we can say that the category of absolutely, irreducible smooth curves over a field
k is antiequivalent to the category of fields K/k of transcendence degree 1, for which k
is algebraically closed in k.

If the field k is not algebraically closed in K, then the field of elements, which are algebraic
over k, was called the field of pseudoconstants earlier, but we could call it as well the
field of constants, because we are only looking at generic points.

Remark: We just want to mention that an irreducible curve C/k, which is covered by
open affine sub schemes U; is smooth if and only if the k-algebras O(U;) are normal (see
7.5.4. Hence for absolutely irreducible curves C’/k we have an easy way to desingularize
them: We take their function field K = K(C") and consider the smooth projective curve
C/k constructed from it. We have a morphism © : C — C’, if we have a covering
C" = NV, by affine schemes then the rings Oc(7~1(V;)) are simple the integral closures
of O/ (V;) in K. The curve C — (' is called the normalization of C’. (See 7.1.3) .

9.3.1 Ramification and the different ideal

Let ¢ : C1 — C5 be a separable, finite morphism between two smooth and absolutely
irreducible projective curves, this means that

" 1 k(Ca) = k(Ch)
is a finite separable extension. For any affine open subset U C Cy we know that
B=0c¢,(¢"'(U)) 2 Oc,(U) = A

and B is the integral closure of A in k(C}). We introduced the concept of ramification in
(See definition 7.3.10), we said that B is ramified at a point p € Spec(A) if and only if
the A/p-algebra B/pB = B ® 4 A/p has nilpotent elements. This is obviously equivalent
to the assertion that the trace pairing

trs/pm)/(a/p) (29)
is degenerate.
This leads to the definition of the fractional ideal
@;}A ={z € Ky |trg,/k,(xB) C A}.
Since K3 /K> is separable we see that

tr Kl X K1 — KQ
tr - (1’7:1/) - trKl/Kz (.’,Cy)
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is non degenerate and we conclude that we have B C ’Dg} , and that ’Dg} , is indeed the
inverse of a non zero ideal Dg,4 C B.

This ideal can be written as ,
@B/A = H p’zml7
i=1
and it gives us the ramified primes and it also measures the ramification.

By definition we have a homomorphism
P ’D;}A — Homy (B,A)

= {b trp/a(zb)}

and I claim that this map is an isomorphism.
To see this we pick any non zero prime ideal p in A and localize at this prime ideal. If
now z € ’DB}A \C‘J;}Ap then we can find a b € B s.t. trg/a(zb) Z 0 mod p. Otherwise

we would have z/m, € @;}A in contradiction to our assumption on z. Hence we see that

@71

p/a ©A/p — Homu(B,A/p)

and since these two vector spaces have the same dimension the claim follows.
If we vary the open set U we can put these different ideals together and get a sheaf

D, /s

which measures the ramification of ¢ : C'y — C5. We consider the sheaf of differentials
Qlcl Ik and (2102 i Both of them are line bundles because we made the assumption that
C1,C5 are smooth.

If we pull back the sheaf QEZ/k via ¢ to the sheaf p* (¢, /i), then we have an obvious
inclusion between the two line bundles

‘P*(Q}Jg/k) - QlC'1/k7
and we have the

Theorem 9.3.3. Riemann-Hurwitz formula. This inclusion extends to an isomor-
phism
* 1 —1 — 0l
0" (e, k) © Dy 0,0, b

Proof: This is a local formula. If we choose an affine open set U C C5 such that 9,14/1@
9119 Jk and D /4 become free modules and if w4 is generator of 9}4 Jk and F' a generator
of ®p/a, then F~1.w=u'1is a generator of Q}B/k.

We have seen for the sheaves of differentials that they behave well under extensions of

the ground field. Hence we perform the base change Spec(k) < Spec(k), then

1 _ ol T
QA®kE/E = Wy @k
1 _ ol T
Bowk/E QB/k ®r k
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Now we look at the discriminant D 4 /5. Since we assumed that our curves are absolutely
irreducible the two algebras A @y k, B ®y k are still fields.

We showed that 1) : ’D]_g} 4 — Homy(B,A) is an isomorphism, hence for any extension
K[k
Dy @ k' — Homag, (B @y k', A® k)

is an isomorphism. This shows

-1 -1
@B/A ®k k/ - ©B®kk'/A®kk/.

Hence it suffices to prove the Riemann-Hurwitz formula under the assumption that our
ground field is algebraically closed.

Since we may also pass to the completion, we are reduced to the case
Oc,p = k[[z]] — Ocy,p = K[y]]
where the extension is finite.

We can write x as a power series in y

.’L’:Q(y):ym+am+1ym+1+...:ym(1+am+1y+...)7

which implies that ord,(x) = m. Then it is obvious that the elements 1,y, - - - y™ =1 form
a basis of the k[[z]]-module k[[y]], and we have an equation

y" +ar(@)y" T 4 am (@) =0

where the a;(z) € k[[z]] and a;(z) = mod (). Looking at the order of vanishing yields
am () = apr + ayz? -+ with ag # 0. If P(Y) = Y™ + a1 (2)Y™ L. a,,(x) € k[[z]][Y],
we find a relation for the differentials

oP da, . _
—(y)d —y™ " ) dx = 0.
5y ) y+< 5 Y ) z=0

Since %%m = ag # 0 we see that (3 9%2y™~?) dz generates Q}L‘/k ® B, we see that Q}a/k
is generated by

Now everything boils down to show that

Dpa= <g§(y)> ;

which is very easy. O

One of the important consequences of our considerations is that we can define a trace
map
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tr: fu(Qe, 1) — Qs (9.3)

This is clear. Locally we can write a differential w = fdx where dx is a generator of Qé2 Jk
and f € D!, Then

tre, o, (W) = tre, /o, (f)dx
and tre, /¢, (f) is regular by definition of the different.

9.4 Line bundles and Divisors

The following considerations are valid in a more general framework. Let X be any scheme.
We consider line bundles on X, this are locally free O x-modules of rank one. The struc-
ture sheaf itself is a line bundle, it is called the trivial bundle. If we have two line
bundles L£1,Ls, we can form the tensor product £; ® Lo. We can form the line bundle
L71 = Homp, (£,0x) and we have £L® £~! = Ox. Hence it is rather clear that the iso-
morphism classes of line bundles form a group under the multiplication. It is the so-called
Picard group Pic(X). To define this group we do not need any assumption on X.
Under certain assumptions we can identify this group to the so called divisor class group.
At first we assume that X is irreducible, then we have the field of meromorphic functions
on X. If we denote the generic point by 7 then this field is Ox .

We define the group of divisors as the free group generated by the irreducible sub-
schemes p of codimension one. We need the concepts from dimension theory and hence
we assume that our scheme is covered by a finite number of affine noetherian schemes.
We are mainly interested in the case where X/k is of finite type over a field k then it is
covered by a finite number of affine schemes of finite type over k. For this special case
we discussed the relevant results in dimension theory in section 7.1.2

A meromorphic function f on X is simply an element in the stalk Ox, ,,. We want to
attach a divisor Div(f) to the function f. We can find a covering X = UU; by affine
integral schemes such that on U; we can write

gi
f= I,
with fi,h; € Ox(U;). We consider the prime ideals, which contain the principal ideals (f;)
resp (g;) and among those we we consider the minimal ones. Then the Hauptidealsatz of
Krull asserts that there is a finite number of such minimal prime ideals p1,....,ps D (fi)
and q1,....,9, D (¢;) and these have height one (See 7.1.18 ,[Ei], Thm. 10.1 ). But this is
not enough to attach a divisor to f, we must be able to attach multiplicities to the zeroes
of fi,g: at p,,q,. To define these multiplicities we make the additional assumption that
the scheme X is normal, recall that this means that the affine rings O x (U;) are integrally
closed in their fields of meromorphic functions (See Definition 7.1.3). This implies that for
all prime ideals p of height one the local rings Ox ,, are discrete valuation rings. (We gave
a reference and an indication of the proof of this fact in the section on low dimensional
rings.)
If now p, O (fi) (resp. g, D (¢;) then we can write the principal ideals local rings
(fi) C Oxp, (vesp. (g;) C Oxq,) as
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ordy, (fi ordg,, (9:)
(fi) = por® U (gi) = g,

and we attach a divisor to the restriction of f to U; namely

Z Ordpu (fZ)pV - Z Ordq# (gi)qu.

Comparing these divisors on the intersections U; N U; gives us a divisor on X.

Of course it can happen that we have some cancellations, i.e. that the same p occurs
among the p, and the q,. We say that the function f has a zero (resp. pole) of order
n > 0 at an irreducible subscheme p of codimension 1 if it occurs among the p,,q,, and
if n = ord,(f;) —ord,(g;) resp. n = ordy(g;) — ord,(f;) (for some 7).

Hence we see that we can define the group of principal divisors on a noetherian, integral
normal scheme as the group of divisors of meromorphic functions. We define the divisor
class group Cl(X) as the group of divisors modulo principal divisors.

Under certain conditions we have an isomorphism between Pic(X) and the divisor class
group. To get this isomorphism we have to use some results from the commutative algebra
of noetherian rings, which are not in our script. In the special case of rings of dimension
one they are proved in the section on ”Low dimensional rings”.

Assume again that X is noetherian, integral and normal. Let £ be a line bundle on X.
Then the stalk £ at the generic point 7 is a one dimensional Ox , - vector space. Let
s € L, be a generator. It is a meromorphic section in the line bundle. We want to attach
a divisor to this meromorphic section.

We proceed as above. We cover X by affine integral schemes U; such that £|U; becomes
trivial, i.e. L(U;) = (Ox|U;) -t; with t; € H(U;,£). Then we have for all i wee can write
s = g;t; where g; is an element in the field of meromorphic functions Ox ,. Again we
write g; = }{— with fi,h; € Ox(U;). As before we see that there is a finite number of
minimal prime ideals p1,...,ps D (f;). and q1,...,9, D (g;) and these have height one.
Again we use the fact that the local rings Ox ,,,Ox 4, are discrete valuation rings and
inside these local rings (f;) = pgrdpu(f'i)7(gi) — q‘;rdqv““). The prime ideals p,,q, define
irreducible subschemes of codimension one and we attach to (L£,s,t;) a divisor D; on U;
namely

D; = Zordpu (fi)po — Zordqu (9i)4p-

If we compare D; and D; on the intersection U; NU; we see that they must coincide and
hence we see that we can attach a divisor D on X to our data (£,s,t;). If we change then
t; then we modify g; by a unit and D; stays the same. If we modify the meromorphic
section s, i.e. we multiply s by a meromorphic function g then the divisor is changed by
the divisor of a meromorphic function.

Therefore, we can say that get a homomorphism

Pic (X) — Divisors modulo principal divisors.

It can be shown that under our assumptions this homomorphism is injective: If we can
choose the sections s and t; in such a way that the divisor becomes zero, then s = g;t;
where the divisor of g; is zero. We conclude that g; and g; ! lie in the intersection of
all discrete valuation rings Ox (U;), where p runs over the prime ideals of height one.
Now we know that this intersection is equal to Ox (U;) (See [Ei], Cor. 4.11, in dimension
one also in "Low dimensional rings”) Hence g; is a unit. But then ¢; = g; 's and the
meromorphic section s is an element in H°(X,£), which generates the free Ox-module

L.
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This homomorphism is not surjective in general. If we want this we need to assume
that X is locally factorial. This means that for any point z € X and any prime ideal
p C Ox , of height one we find an f, € Ox , such that p = (f,). This is much stronger
than saying that Ox , is a discrete valuation ring.

Under this assumption the homomorphism becomes bijective. To see this we start from
a divisor D = Zp npp. For any point x € X we can find an open neighborhood U, and
an element f, € Ox(U,) such that Div(f,)|U, = D|U,. Now we define the line bundle
Ox(D): Its sections over U, are

Ox(Ux) = {h S OX,n

Then it is clear that this defines a line bundle because locally at x the function 1/f,
trivializes the bundle. The corresponding divisor class is the class of D (Our global
meromorphic section s above s is simply the constant function 1 and for the ¢; we choose
fr 1. The the g; become the f,.)

We will change the notation slightly, we denote a divisor in the form D = ", n;Z; where
the Z; irreducible closed sub schemes of codimension one, the Z; are the closures of the
p,q, which are codimension one prime ideals and define closed sub schemes on the open
affine pieces.

If we have a line bundle £ on X, which has a non zero global section s € H(X,£) then
we can define the scheme V(s) of zeroes of s. . We simply observe that locally £
is trivial, hence locally s is nothing else than a non zero regular function and locally
V(s) is the scheme defined by the principal ideal (s). We can decompose this scheme
into irreducibles whose closures are then the Z;. Then the divisor attached to £ is simply
Zi n;Z; where the n; are the multiplicities.

Our divisor is called effective if all the multiplicities are > 0. If D is effective then
Ox (D) is the sheaf of germs of meromorphic functions, which may have poles of order
< n; along the Z;. In this case we have 1 € H°(X,0x (D)) and D = V(1).

It is a theorem in commutative algebra that X is locally factorial if X/k is smooth (See
Prop. 7.5.19 and Thm. 7.5.20). If X is of dimension one then this is a consequence of
definition 7.3.4 and the assertion contained in it.

9.4.1 Divisors on curves

Now we come back to the case where X = C/k is a smooth, projective and absolutely
irreducible curve. The irreducible subschemes of codimension 1 are the closed points.
The group of divisors Div(C) is the free abelian group generated by the closed points.

We write
D= anp.
We define the degree of a divisor as
deg(D) = an [k(p) : k]

where [k(p) : k] is the degree of the extension of the residue field. This degree has also
been discussed in 8.4.2, but here we want to discuss this notion independently and give
more elementary treatment.
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If we pick a non zero element f € k(C) then we know that for any closed point p we

may write f = em,” ) in the local ring Oc¢p. Hence we can attach a divisor to our
element f namely Div(f) = > ordy(f)p. A divisor, which has such a presentation is
called principal divisor. The principal divisors form a subgroup of the group of all
divisors.

Theorem 9.4.1. If C/k is a smooth, absolutely irreducible projective curve, then a
principal divisor has degree zero.

This follows from the results, which we explained in the section on Dedekind rings. We
assume that f is not constant. We constructed the morphism (see 9.3.2)

<I>‘f:C’—>1P1

and it is clear from the construction that f C k(P1). As an element in the function field
of the projective line its divisor is (0) — (c0) where (0) is the closed point defined by
(f) € k[f] and (c0) is the closed point defined by (f~!) C k[f~!]. This divisor has degree
zero. Now we consider the divisor of f on C'/k. We decompose the divisor into the divisor
of zeroes and the divisor of poles:

Div(f) =Divo(f) + Divae (f) = > ordy(flp+ > ordy(f)p.

p,ord, (f)>0 p,ord, (f)<0

We studied the behavior of prime ideals under extension of Dedekind rings and have the
formula

deg(Divo(f)) = Y ordy(f)[k(p) : k] = [k(C) : k(f)]

p,ord, (f)>0

(See 7.9) (Our (f) is the prime ideal p there and the P there correspond to the p here.)
The same holds for the pole divisor and the theorem is clear. (I

All our assumptions are valid in the case of smooth, absolutely irreducible curves hence
we define as Pic(C/k) the group of line bundles of our curve C'/k and we identify it to
the group of divisors modulo linear equivalence. Especially we can now define the degree
of a line bundle, it is simply the degree of the corresponding divisor class. The degree
defines a homomorphism

deg : Pic(C/k) — Z.

The kernel of this homomorphism is denoted by Pic’(C/k).

It is one of the major aims of this book to give a proof, that this group Pic’(C/k) is
actually the group of rational points of a so called abelian variety of dimension g over
k (the Jacobian). (See Chap. X). An abelian variety is a connected projective variety,
which in addition has a structure of a group. In the case of curves over C this goes back
to Abel, Riemann and Jacobi. We proved this in Chapter V of volume I.
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9.4.2 Properties of the degree

Let C'/k be an absolutely irreducible, smooth projective curve, let us consider an effective
divisor D = )" n,p. In this case the sections of O¢(D) over an affine open set V' C C
are the meromorphic functions on U whose pole order p is less or equal to n.

We notice that we have Oc C O¢(D) and the quotient sheaf Oc(D)/O¢ has non zero
stalk only at the points p with n, > 0 this set is called the support of the divisor
D and sometimes denoted by |D|. If V' is an affine open set containing the support
of D then O¢ (V) is a Dedekind ring and we can interpret D as a fractional ideal for
this Dedekind ring, it is clear from the definition (see section on Dedekind rings) that
Oc(D)(V) =[I,ey p~"*. Now it is clear that for the global sections

Oc(D)/0c)(C) = (0c(D))/Oc)(V) =Y 9" Ocp/Ocp-

This direct sum ) p~"™ O¢,p,/Oc,p is a finite dimensional vector space over k and the
dimension of this vector space is Y ny[k(p) : k] = deg(D), we summarize

dimy (H*(C,0c(D)/Oc¢) = deg(D).

This can be generalized to arbitrary line bundles. If we have a line bundle £ and an
effective divisor D, then we can define £(D) = L ® O¢(D) and we have £ C £(D). On
the other hand if we have two line bundles one of them contained in the other £ C £;
then there is a unique divisor D such that £; = £(D). In these cases we have the formula

deg(£1) = deg L(D) = deg(£L) + deg(D) = deg(L) + dimy((£1/L£)(C)) (9.4)

Line bundles on non smooth curves have a degree

If C/k is an absolutely irreducible projective curve, which is not necessarily smooth we
still can define the homomorphism

deg : Pic(C) — Z.

We simply consider the normalization 7 : c — C (See remark at the end of 9.3)
and we get a homomorphism Pic(C) — Pic(C) given by £ — 7*(£) we we define
deg(£) = deg(m*(£)).

There is a different way of looking at this notion of degree. The singular locus of C/k
is dimension zero hence finite (See theorem 7.5.1). We can find an affine open subset
U C C such that it contains the singular locus. A line bundle £ on C' can be restricted
to U and on the expense of making smaller but still containing the singular locus we can
find a section t € H°(U,L), which trivializes £|U. But the points not in U are smooth
and if we trivialize £ in a point p ¢ U by a section s, then ¢ = gys, where g is a
meromorphic function. We define the divisor D = ZpeU ordy (gp)p. But then ¢ extends
to a section in H°(C,L£(—D)) and this extension trivializes £(—D). Hence it follows that
L = O¢(D). Now the map 7 : C — Cis an isomorphism if we restrict it to the
complement of the singular set, this means that we can say 7~ !(D) = D and hence
deg(L) = deg(m*(L) = deg(D).
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Actually essentially the same reasoning shows that we only use the projectivity but not
the irreducibility of the curve. If we have a line bundle £ on an arbitrary absolutely
reduced curve C/k then we base change from k to the algebraic closure & and the the
degree is simply the sum of the degrees of the restriction to the irreducible components.

Base change for divisors and line bundles

If we have a base change C' «+— C ®y, L then this induces a homomorphism on the group
of divisors. To see this we have to check what happens for prime divisors. We discussed
what happens in section 9.2.2: The divisor p maps to > e;p;. This extends to the group
of divisors and we see that this homomorphism preserves the degree. We may denote the
divisor on the base extension by D X L. If we consider any line bundle £ on C then we
have a base change of this line bundle iz/k([,) where iz /5, : C' x Spec(L) — C'is the

base change morphism (See 6.2.2 ). Clearly i} , (O(D)) = O(D x L). This implies

deg(ir/)" (L) = deg(L) (9.5)

9.4.3 Vector bundles over a curve

A locally free coherent Oc—module £ is called a vector bundle. Let n be its rank. It is an
easy exercise in algebra to prove the following: If we have a subspace V' C &, in the O¢
vector space &, then we can find a submodule F C & such that F,, = V" and the quotient
E/F is again locally free. Locally on C' the bundle F is a direct summand. This implies
that our vector bundle £ admits a complete flag (0) = Lo C L1 C Ly C--- C Ly_1 CE
of sub bundles such that the quotient of two successive bundles is a line bundle. We can
define the n-th exterior power, this is a line bundle det(£) = A™(€). We define the degree
by deg(£) = deg(det(£)) and it is clear that we can express the degree in terms of a
given flag as deg(&) = Y deg(L;/Li_1).

For any vector bundle we can define the dual bundle as Homp,, (£,0¢) = EV. It is easy
to see that deg(€) + deg(£Y) = 0. Again we can derive it easily from the case of line
bundles.

Our formula 9.4 generalizes to vector bundles. If we have two vector bundles £ C &; of
the same rank, then & /& is a finitely generated torsion sheaf and

deg(&1) = deg(&) + dimy((£,/€)(C)) (9.6)

To see this we trivialize both bundles on a suitably small non empty affine open set
V. Then the matrices, which transform the two bases into each other have non zero
determinants in O¢,,, which are units over a still smaller but still non empty affine open
set V1 C V. This means that £|V; = &;|V;. This shows that the stalks of & /€ are non
zero only in the finite set p € C'\ V4. But for these points it is clear that we can find
my such that p"»&; , C &, and hence it is clear that the quotient is a finitely generated
torsion sheaf. To see the assertion concerning the degree we may proceed as follows: We
choose an affine set V' containing the support of £; /€. If we take this set to be sufficiently
small, then we may assume that both bundles are trivial and the theorem on elementary
divisors tells us that we can find a basis ej,es,...,e, for & (V) and non zero elements
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ay,az, . ..a, in Oc(V) such that aje;,ases,. .. ane, form a basis for £(V). Now these
bases define complete flags in both vector bundles. These are the flags, which are induced
by the subspaces V; = O¢ne1 @ --- @ Oc,pe; of the generic fibre. We used these flags
to define the degree: The degree was the sum of the degrees of the successive quotient
line bundles induced by the flag. But if we compare these quotient line bundles for both
vector bundles then we see the following: If M; resp. M ; is such a quotient line bundle
obtained by the flag in € resp. & then the stalks (M;)q = (M ;)4 for all g not in the
support of & /€. For the points p in the support of & /€ and even for the p € V' we have
a; "M, = My, Hence we see deg(My ;) = deg(M;) + dimy(a; ' Oc(V)/Oc(V)).
Hence we get deg(&;) = deg(€) + 3, dimy,(a; ' Oc(V)/Oc(V)). On the other hand we
see that

EJEC)=&/E(V) = @iafl(’)c(V)/(’)C(V,

this implies our formula.
It is also clear that for an exact sequence of vector bundles

0—& —E&E—&E —0

we have the relation deg(&1) + deg(&:) = deg(€).
And finally we have: If we have a vector bundle £ over C/k and if we tensorize it by a
line bundle £ then we get the formula

deg(€ ® L) = deg(€) + Rank(E) deg(L) (9.7)

Vector bundles on P!

We consider vector bundles over the projective line P}. In this case we have

Theorem 9.4.2. Any vector bundle £/P}. is a direct sum of line bundles, i.e.
E~Opi(d)) ®-- @ Op1(dy)

with some integers dy - - - d,,. The integers are well defined up to order.

Proof: Clearly the assertion is insensitive to tensorization by line bundles. We consider
the case rank £ = 2. Since dimy, H°(IP1,€) < oo it follows that the degree of a line sub
bundle £ is bounded (see exercises 33 , 34 ) we can find a line sub bundle of maximal
degree. We tensorize by the inverse of this bundle and therefore, we can assume that
Op: C € is a sub bundle of maximal degree. We have the exact sequence

0—O0pr —E&—E/Opr — 0

the quotient is a line bundle because otherwise it had torsion and the sub bundle would
not be maximal. It is isomorphic to Op1(r) for some r € Z. We claim that r < 0. To see
this we look at the long exact cohomology sequence for the spaces of sections. If r > 0
then dimy HY(P,£/Op1) = dimy HO(PY,0p1(r)) > 1. Since we have H(P1,0p1) = 0
we find a non zero section s € H°(IP!,£). This provides an embedding Op1 — &£ given
by f — fs. Now we have two possibilities. Either the two sections 1 € H°(P!,Op1)
and s generate £ at every point or not. In the first case we get £ = Op1 & Op: and
we are finished. In the second case we can find a non zero section s = al + s, which
vanishes at some point and then we found a line sub bundle Op:5 of degree > 0. This is
a contradiction.
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Hence we get a sequence
0— Op1 — & — Opi(r) — 0
where now r < 0. We tensorize by Op:1(—r) and get
0— Opi(—r) — &(-1) — Op1 — 0.

We have the section 1 € H°(IP',0p:1), which is everywhere # 0. Again we exploit the
fact that H'(IP!,Op1(—7)) = 0 and the section 1 lifts to a section sg € HY(P1,E(—r))
which does not have any zero. This gives us a splitting of the last exact sequence.

The general case follows by induction. Let rank (£) = d. Again we find a line sub bundle
L C &, such that deg(L£) = d; is maximal, as before we conclude that £/L is a vector
bundle. Then we have £ = Op:(r1)

0—L—E—E/L—0
and our induction hypothesis implies
gL ~ ®g=2 L= @i:z Opa(ry)

We claim that 1 > r, for all v > 2. Assume we find an index vy s.t. r,, > 71, then
we consider the rank 2 bundle £ C &, which is the inverse image of the line sub bundle
Opi(ry,) in £/L. This bundle decomposes

&g = (’)]p1(a) D O]Pl(b)

where a + b = r1 + 1,, = deg(€’). One of the summands has to map non trivially to
E'/L = Opi(ry,). If this is Opi(a), then we conclude a < r,,. We cannot have equality
because then deg Op:(a) = r,,, and this contradicts the choice of £. But then b >
and this is again produces a sub bundle of degree > r1, a contradiction.

Now we show that the sequence
0—L—E—E/L—0

must split. Basically we argue as in the rank 2 case but we modify our argument slightly.
We can cover P! by affines Uy,Us such that on these affines we have sections s; : £/L — £.
These local sections may differ by a homomorphism

@12:5/£|U10U2—>£
and @19 gives us a class in H'(P!,Hom(E£/L,L)). But this cohomology group vanishes
because Hom(E/L,L) = @), _, Op1(di — d,,). We can bound the cocycle and get the
splitting.

We add an observation. Once we have

E=E Opi(d)
v=1



9.5 The Theorem of Riemann-Roch 201

where dy =do = -+- =d,y, > dpy41 ... then we can tensorize by Op1(—d; —a),a > 0 and
we get HY(P', Hom(€ ® Op1(—d; — a)) = 0. But if we tensorize by Op1(—d;) then we
get

E® OlPl(*dl) = OITPol ©® @ O]pl(dl — du)

v=ro+1

where we assumed that d; = --- = d,, = d,,, and the other d, are smaller. Then we
conclude that
HY(P'.€ @ Opi(—d,,)) = k"™

and that these sections generate the sub bundle O, . This implies that d,, is determined
by £ and that the sub bundle

T0

@ O]pl (d7‘u)

v=1

is unique.
This shows: If we order these numbers
di==dpy >dpgp1 = =dp, >dpt1-,

then the resulting sequence of numbers is determined by £ and that the flag

P Opi(d,) cEPOpi(d,) C -
v=1 v=1

is also determined by £. O

The theorem above and the consequences are called Grothendieck’s theorem, but it occurs
already in [De-We], §22.

9.5 The Theorem of Riemann-Roch

We consider line bundles on a smooth, projective, absolutely irreducible curve C'/k. Such a
line bundle £ has cohomology group H°(C,L),H'(C,L), ..., which are finite dimensional
k-vector spaces. We shall see that H*(C,L£) = 0 for i > 2 and we will give a formula for

x(C,L) = dim, H(C,L) — dim, H* (C,L).

The first observation is

dimkHO(C,Oc) =1.

If f € H°(C,0¢) then we have f2,f3,... € H°(C,0¢) and since this is a finite dimension
vector space we see that f must be algebraic over k. If f ¢ k then we find that

k(C) @ k

has zero divisors and this contradicts the assumption that C/k should be absolutely
irreducible.
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We define the genus of the curve as
g =dim, H'(C,0¢).
Now we can state

Theorem 9.5.1. Theorem of Riemann-Roch (first version)
For any line bundle L on C we have

X(C,.L) = dimy H°(C,L) — dimp H'(C,L) = deg(L) + 1 — g.

The proof is not too difficult, it is essentially the same as the proof in the case of Rie-
mann surfaces in Volume I 5.1 . In the case of Riemann surfaces the main difficulty was
to prove that dimy H'(C,L) is finite dimensional and this required difficult analytical ar-
guments. But here it is easier and follows from our general results in the previous chapter.

The theorem is true for £ = O¢ by definition. If we have a closed point p then we have
an exact sequence of sheaves

0 — Oc — Oc¢(p) — Oc(p)/Oc — 0.

The quotient is a skyscraper sheaf, its only non-zero stalk is the stalk at p and there it
is a one dimensional k(p)-vector space.
Since L is locally free we get an exact sequence by tensoring by £

0—L—L®0c(p) — Oc(p)/Oc — 0.

‘We observe that

dimy,(H°(C,0c(p)/Oc)) = [k(p) : k]
and

Hi(C,OC(p)/(’)C)) =0 for i>1.

We write the long exact sequence in cohomology

0 — H°(C,L) — H°(C,.L® Oc(p)) — H(C,0c(p)/Oc) —
— HYC,L) — H'(C,.L® Oc(p)) — 0
and and in higher degrees we get (See remark 2 after the proof of the coherence theorem)
H'(C.L) = H(C,L® Oc(p)) foralli>2.

From this we get easily that our assertions are true for £ ® O¢c(p) if and only if they are
true for £ itself. The rest is more or less clear. We have seen that H*(C,Oc(ocop)) = 0
for 4 > 2 in the section on cohomology of coherent sheaves (see exercise below). Since we
know that our line bundle is isomorphic to some O¢(D) the theorem follows. O

Now it is an easy argument in homological algebra that we have a Riemann-Roch formula
for vector bundles:

X(C,€) = dim, HY(C,) — dimy H'(C,€) = deg(&) + Rank(E)(1 — g).
(Use the flag to prove it by induction)

Exercise 38. Show that the curve C'\ {p} is affine by applying the strategy outlined in
8.1.16.
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9.5.1 Differentials and Residues

On our curve C/k we have two privileged line bundles. The first one is the structure
sheaf O¢ and the other one is the sheaf Q}J k= Qlc of differentials. It is called the
canonical bundle. We know the degree of O¢ and we computed the cohomology groups
H°(C,0¢) = k and dimy H' (C,0¢) = g where the second assertion is tautological.

Our next aim is to show that

deg(ﬂ};/k) =29 —2,dimy H*(C,\Q5) =g (9.8)
and that we have a canonical isomorphism: The global residue map
Res : H'(C,Qp ;) — k. (9.9)

Here we mean by canonical that this map is consistent with the trace map, which we
defined for separable morphisms. If we have Cy/k, C3/k and if f : C; — C5 is a finite
separable morphism, then we defined the trg, /o, : f« (Qlc1 / p) — 9102 Ik We require that
the resulting k-linear map yields a commutative diagram

HY(C1.0, 1) LN H'Y(Co,Q4, /1)
Res \, ./ Res (9.10)

k

Of course we also want compatibility with base change in the obvious sense. The existence
and ”uniqueness” of this form is not so easy to prove, it will take us the next 14 pages
until we reach this goal. This may be considered a too long way, but I think that during
our journey we will gain a lot of insights, which provide a deeper understanding of the
Riemann-Roch theorem. Our approach to prove these assertions is essentially already in
[De-We], for this compare the beautiful exposition by W.-D. Geyer in [Sch].

Let us accept for a moment the existence of the isomorphism Res for all curves C/k over
any field whatsoever. Then we can take any line bundle £ on C and get a pairing

HO(C.L) x H'(C.LT @ Qg ) — H' (CQ¢),) =k,

and it will be proved that this pairing is non degenerate (see theorem 9.5.4). If we apply
the first version of the Riemann-Roch theorem to £L = O¢ and L = Qlc /k and exploit the
non degeneracy of the pairing then it becomes clear that

HO(Cvgé/k) = Hl (CvoC/k)v
and

dimk(HO(C,Qlc/k) =g, dcg(Qé/k) =29 —2.

We give an outline of the construction of the above pairing. We recall how we computed
H(C,0¢). We looked at effective divisors

D :anp
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with np, > 0, and at the resulting exact sequence
0— Oc — O¢c(D) — L& Oc(D)/Oc — 0.

The quotient sheaf Oc(D)/O¢ is a collection of Laurent expansions at the points in the
support of D. We introduced the notation IL(D) for it. For any closed point p in |D| the
stalk of IL(D) at p is

{f € k(C)|ordy(f) > —np} =7 Ocp/Oc,p,

where , is a generator of the maximal ideal p C O¢ . We may (or may not) pass to the
direct limit
lim O¢(D)/O¢ = L

D
where IL is the sheaf of all Laurent expansions: For an open set U its sections are given
by
LU)= & K/Ocy.

peU, p closed

We introduce the completions of the local rings lim._ (O¢ ,/p") = Oc p and the quotlent
fields of these completions K p- We define the module of differentials QC p= Qé " ®(’)C -

Of course this is again a free module of rank one over OC p and it is not difficult to see
that it is a universal separated module for continuous differentials. We may also introduce
the infinitesimal meromorphic differentials Ql Cp = =QL p ® K o

Now we choose an effective divisor with deg(D) >> 0 and we consider the long exact
sequence in cohomology. We have seen that H'(C,O¢(D)) = 0 provided deg(D) >> 0
and hence we get

0 — H°(C,0¢) — H°(C,0¢(D)) — H*(C,0¢(D)/O¢) — H'(C,0¢) — 0

if deg(D) >> 0, we could as well look at the same sequence where we passed to the limit
over all D.

Hence we can interpret H'(C,0¢) as a quotient of a space of Laurent expansions modulo
the space of those Laurent expansions, which come from a meromorphic function. This
means that have to understand the obstruction for a collection of Laurent expansions

§€@pm, " Ocp/Ocp

to come from a meromorphic function. The point is that the holomorphic differentials
produce such obstructions. This will be made precise in the proposition below.

We identify
H°(CL(D)) ~L(D)(C).

For any p € |D| we have
L(D)p =y " Ocp/Ocp-

Our next goal is to define a (local) residue map : For any prime p we want to define

resy

res hm7r "Ocp/Ocy @ Q& , =1lim 7 "QL . /QL . —5 k, 9.11
p - P P C,p C,p C.p
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the definition of this residue map requires some work especially if our ground field is of
positive characteristic. Once we have this map, then we can define

L(D)®H(CQL) — k
{Qw — Z resp (&, @ w)

pe|D|
and we want the following property of this collection of maps:

Proposition 9.5.2. An element £ € IL(D) is the Laurent expansion of an element f €
H°(C,0¢(D)) if and only if

Z resp(fw) =0

p

for all holomorphic differentials w.
It is clear that this says that we get a non degenerate pairing
HY(C,0¢0) x H(CQL) — k.
The elements
W' = fw e H(CQL(—-D))
are called meromorphic differentials and part of the assertion above is that
Z resy (W) =0
p
for any meromorphic differential. This ends the outline.

We come to the definition of the residue map 9.11 We notice that we can replace Oc,
by the completion O¢ , because

. oA
T, "Ocp/Ocp =7, " Ocp/Ocp.

At first we define this residue map only for rational points, i.e. those, for which k(p) = k.
We change the notation slightly and denote the local parameter by X, then we have (see
p. 186)

Oc,p = K[[X]],

the quotient field is

and our differentials are of the form

a_n Ay —1 a1
- XdX:(— s ~--)dX.
w=JX) xo Pyttt

Of course we want resp(%) =1 and hence we try the definition

resp (w) =resp(f ® dX) = a_;.



206 9 Curves and the Theorem of Riemann-Roch

Now we encounter a somewhat unexpected problem. We have to show that this definition
does not depend on the choice of the local parameter X. Let us replace X by another
local parameter

Y =tX +up X? 4+ u, X"+ - = P(X)
where ¢ # 0. Then

a’, a4
= (== 4.4 =L gy,
w ( v + -+ v )
and we want to show (invariance of the residue)
a_1=a_, (9.12)

This is indeed the case, but surprisingly difficult to prove.
Our first attempt is the naive one. If we want to prove the invariance of the residue, we
have to write X as a power series in Y

X=7Y+uY?+ 40, Y™ +...=Q(Y)
where 7 = t~! and the v, /7 are polynomials in the u, /t. Then we have to expand

dx T4 20Y + - mu,, Y 4 dY:<~~-a;/1 ) iy

We have to show that in this expansion the coefficient a’ ; of % is
(i) equal to one if m =1
(ii) it is zero if m > 2.

The first assertion is clear because the factor 7 cancels. But the second assertion is not
so clear. (I recommend to do the calculation for some small values of m.)
It is clear that our coefficient a_; is a polynomial

P, (27...’1’7’")

T T

times 7'~™. The polynomial has coefficients in k and we have to show that this polyno-
mial is identically zero if m > 2. (We can view the %= as indeterminates.) But it seems
to be difficult to do this by a direct calculation. We use a trick and prove the invariance
of the residue by an argument, which goes back to H. Hasse.

If the characteristic of k£ is equal to zero, then we can write for m > 2

dX 1
0 Xmfm
xm m—1
but then is is equal to
L) =l bt bt )
m—1 - Fm—1lym—1 —m—+2 ym—2 —1 % 0 o)y

and here the coefficient for 1/Y is zero. This argument fails if char(k) = p > 0. For
instance the differential 2%+ is not of the form dG(X).
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Recall that we have to show that the polynomial P, (%, e 7”77”) vanishes identically.
If we start from the case k = Q, then we see easily that P, (”717 e ,”Tm) has integer
coefficients, hence it lies in
VU1 Um
7 {f’ . 7} _
T T

Moreover it is obvious that the corresponding polynomial in arbitrary characteristic is
obtained by reducing the coefficients mod p, it lies in

o R P L

T T T T
Our above argument shows that the polynomial in Z [%, e ,vj’”] must become the zero
polynomial in @ [%,--- 221, but then it must be identically zero itself. This proves (ii)

in general. We proved the existence of the local residue map.

9.5.2 The special case C = P!/k

We observe that our problem to construct res, is purely local. If we want to construct
the local residue map 9.11, then we observed that we can pass to the completion of the
local ring, in other words we consider the formal scheme at the point. But this formal
scheme does not "know”, on which curve it is lying, hence we consider first the special
case that our curve is P! /k.

This allows to give a second construction of the local residue, which uses global argu-
ments. I like better because it gives more insight. It will give the proposition 9.5.2 and at
the same time, we will see that the proposition guides us to the definition of the residue
map. We will use the fact that for differentials, which have only a first order pole the
invariance of the residue is obvious. (Assertion (i) above)

We consider the special case C/k = PL We have seen H'(IP},0p1) = 0 therefore, g = 0,
we know that
Qﬁ)l ~ 0]131 (—2)

(see 8.26) and hence
deg(Qp1) =0—2 = —2.

We construct the canonical isomorphism
Res: H'(P',QL)) — k.

To do this we apply a principle, which also works in the general situation. So let us return
for one moment to the case of an arbitrary smooth, projective and absolutely irreducible
curve C' = C'/k. We will show later:

Proposition 9.5.3. For any non zero effective divisor D we have H'(C,Q4(D)) = 0
and especially for any k rational point a € C(k) we have an isomorphism

8 HY(CL(a) ® QL) = HYC,QF),

where the map §, is of course the boundary homomorphism.
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This proposition is easy for C/k = P! /k. For any point a € P'(k) we have QL (a) ~
Op1(—1) and therefore, H°(P*,Qf,, (a)) = 0, this implies the proposition for C' = P}. So
we pick a point @ € P*(k) and consider the sequence

0= Qp1 — Qpa(a) = L(a) ® Qpr — 0,
which gives us the isomorphism
o : L(a) ® Qb —= H' (P QL))
We noticed that for differentials with a first order pole we have defined the map
res, : L(a) ® Qb — k,
and for C/k = P}, we can define the global residue map:
Res = res, o6, L.

Of course something would be wrong if we did not have the problem of well definedness
again. Let us pick a point b € P1(k), which is different from a. Then we get a diagram

L(a) ® Qﬁn
N\
L(a+b) @ Oh, ~ HY(P1,0L)
(23 /‘
L(b) ® QL.
The map § has a nontrivial kernel and it is clear that this kernel is spanned by the form

dr dr

Wap = —— — —
’ r—a xT—20b

b

which is a generator of H?(IP', QL. (a+ b)), this differential is holomorphic at co! Clearly
0q = d0i, and d, = § 0 i, and hence

res, oéa_l = reSbO(;I:l.

This proves that Res : H!(P},Q1%,) — k does not depend on the choice of a.
k

Now we consider the special point co € P1(k). We have
Spec(k[X]) U Spec(k[Y]) = P*

where XY =1 and oo is given by 0 € Spec(k[Y]), the element Y is a local parameter at
o0. We consider the exact sequence

0 — QL — Q1 (noo) — L(noo) @ Qpr — 0

and get
Res

L(noo) ® QL. 2= HY(P.0L,) 2% 0.
Hence we try a new definition of the local residue map at oco: We put

J/  — Res
res,, = Resod
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for the local residue map.

We want to give local formula for resl, this is easy. We observe that the elements of
L(noo) ® Qf, can be written as

oot (Ll

By definition we have res/_(w) = 0 if and only if the element w is the image of
HO(P1, 0} (noc)) — L(na) & O,

and this is the case if and only if a; = 0. We can also say that the form
dX
—(@X + -t X") T

is holomorphic on Spec(k[X]) \ {0} and has a pole of order < 1 at zero with residue —ay
at 0. Hence it is clear that
res’_(w) = ay,

and this is our old definition of the residue with respect to the parameter Y at infinity.

Now we give a second proof that the residue map the residue does not depend on the
choice of the local parameter.

We have seen that it suffices to show that the differentials
dY

which have residue zero for m > 1 still have residue zero if we make a change of local
parameters
Y =tU 4 vU? 40U +---

where ¢ # 0 and the right hand side is a power series in U.

But we know how to characterize the elements in L(noo) ® Q. which have residue zero.
These are the elements, which lie on the image of

H°(P',Q%: (noo)) — L(noo) @ Qb

We approximate the power series, which defines the change of parameters by a polynomial
of degree r > n, only the first n coefficients are relevant. Since the degree can be chosen
to be larger, we may assume that the polynomial

FU)=tU +vU? +---+v,U"

is separable. It provides an inclusion k[Y] C k[U] and a morphism

op: P — P!

where the first P! is Spec(k[U]) U Spec(k[U~!]) and the second one is Spec(k[X]) U
Spec(k[X ~1]). We can consider the pull back ®% (&%) = w, this form has poles of order
m in the point U = 0 and in the other r — 1 points usg - - - u, where F vanishes. (We
assume that F' is separable.) In the point u = 0 its Laurent expansion is
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F'(U)dU
FU)m’

and we want to show that the coefficient at 5dU is zero.

This differential has some more poles at points as - - - a,. The total order of the pole is
rm. Hence w must have a divisor of zeroes Z of degree rm — 2 because the degree of Q!
is —2. It is a global section in the line bundle

we HY (P Qb (Z — may — - — ma,)).
If we multiply w by a section f € H°(P!,OL,(—Z + mas--- + ma,)), then we get a
meromorphic form fw, which now has only one pole at U = 0, the other poles are
cancelled.

Of course the multiplication by f changes the expansion at U = 0, but we still have the
choice of f at our disposal. The functions f are holomorphic at u = 0, we look at its
expansion at U = 0, i.e. we map f to Op1 o/(U)™ 'Op1 g, then we get an exact sequence

0 — Op1(=Z+mag+- - -+ma,+(m—1)(0)) = Op1(—Z+mas+- - -+ma,) — Op1 /(U)" 1 Op1 — 0,

and the line bundle on the left has degree —1, hence it has no cohomology. This yields
that
HO(P17O]P1(*Z +mag + -+ maT):o]Pl/(U)m_lolpl

is an isomorphism. This means that we find an f € H*(P!,0p1(—Z +maz + - - - +ma,))
such that its expansion at © = 0 with respect to U is

fO)=1+a, U +---

The meromorphic differential fw on P! = Spec(k[U]) U Spec(k[U~!]) has only one pole
at U = 0 and its polar part of the Laurent expansion is the same as the polar part of the
Laurent expansion of w. We write the same expansion as above, but now in the variables

Uuyv=u-!

, av
m)@dUz—(a’lv+~-a;an)®V2

B ay  ah a

and since the only pole is at U = 0 we conclude a} = 0.
This finishes the second proof of the invariance of the residue, it proves 9.8 and 9.9. for
the case C'/k = P} /k.

Historical and heuristic remark:

1) If our ground field is the field of complex numbers then the set of complex points
S = C(C) carries the structure of a compact Riemann surface. (Complex manifold in
dimension one it has a natural orientation!) . In this case everything is much easier. A
meromorphic differential w, which has a pole at a point P can be written locally as

w= f(z2)dz

where z is a uniformizing element at P and f is meromorphic. In this case we look at a
small disc around P and we know that
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1
9 Pw= resp(w)

where the left hand side is defined intrinsically as the integral over the boundary of the
disc taken counterclockwise and where the right hand side is computed in terms of the
Laurent expansion of f(z). Hence it is clear that the right hand side does not depend on
the choice of the local parameter z.

A meromorphic differential has a finite number of poles and we can compute the sum of
the residues at these poles as the sum of the integrals over the boundary of these discs.
Then we consider the complement U of the open discs. This is a compact manifold with
boundary OU= union of the boundaries of the discs. We can apply Stokes theorem, which
says the the integral over this boundary is equal to the integral of dw over U. But w is
holomorphic on U hence we have dw = 0, and we see that the sum over the residues is
Z€ro.

2) It may be interesting to look into the original paper by Riemann and to find out what
Riemann and Roch actually proved.

For them cohomology did not exist, hence they could not define H!(S,0g) and g =
dim H'(S,0g). On the other hand they could study the cokernel of

H"(S,05(D)) — L(D),
which is isomorphic to H'(S,05) if deg(D) >> 0.

Of course it was clear to them that the holomorphic 1-forms produced linear forms on
this cokernel. They could define g = dim H%(S5,Q%) and it also was clear to them that 2g
is the the first Betti- number. It was also proved that the common kernel of linear forms
produced by the differentials described the image of the map above. This is the content
of Serre duality, which is much deeper. Therefore it is seems to be clear that Riemann
and Roch proved more that just the first version of Riemann-Roch.

9.5.3 Back to the general case

We have to understand the sheaf Qlc /k and to prove the two fundamental equalities 9.8.
To do this we consider a finite morphism

7:C — P,

which is induced by a choice of a function f € k(C), for which k(C')/k(f) is separable.
(See proposition 9.3.2 and the considerations following it.)

In this case the functor m,, which sends coherent sheaves on C to coherent sheaves on
P!, is acyclic because the fibers are finite. Hence we know that for any coherent sheaf F
on C

H*(C\F) ~ H* (P! 7.(F)).
For any line bundle £ on C' the bundle 7, (£) is a vector bundle of rank d = deg(w) over
P
We apply the Dedekind-Weber-Grothendieck theorem to this vector bundle and write
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’/T*(E) = O]Pl(al) DD O]Pl(ad)

with a; > a2 -+ > a4, actually this is also the approach in [De-We]. If £ = O¢ we have
H°(C,0¢) = k and this implies

a1 =0 and a, <0 for all v > 2.
Since by definition
dim H'(C,0¢) = dim H'(P*,7,.(0O¢)) = g
we must have (see 8.2.5)

d d

g=> (-a,—1) ==Y a,—(d-1).

v=2 v=2
We invoke the Riemann-Hurwitz formula (See 9.3.3)
T (Qp1) ® DE}Pl = Q5
By construction the vector bundle 7, (’DE}PI) is dual to the bundle 7. (O¢). We wrote

d
7T*(00> =0p1 & @ OlPl(au)7

v=2

hence we see that

d
T (Dg)p1) = Op1 @ P Opi (~av)

v=2

and
d

m.(Q8) = Op1(-2) & P Op1 (—a, — 2).

v=2

Since the a, < 0 we see —a,, —2 > —1. We get
HY(CQL) ~ HY O (Q8)) = H' (P!,0p1(—2)) ~ k
(this is not yet what we really want) and the second of our fundamental equalities 9.8
d
dimg HO(CQp) =Y (—a, —1) = g.

v=2

For any line bundle £ on C' and any effective divisor D we can consider the exact sequence
0— L — L(D)— L(D) —0,

which yields the exact sequence

0 — (L) — m(L(D)) — m(L(D)) — 0

and 7, (IL(D)) is a torsion sheaf on P!, its space of section has
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dimy 7, (IL(D)) = deg D.

Hence we see that

deg(m.(L(D)) = deg(m.(L)) + deg D.
If we apply this to the exact sequence
0—0c—D ' —2710c —0

we get
deg(m.(D71)) = deg(7.(O¢)) + dimy (D~1/0O).

On the other hand
deg(m.(Oc)) + deg(m.(D~1)) = 0

because these bundle are dual to each other. Hence
d
dimg(D71/0) = 2deg(m,.(D71)) =2 ( Z ay> =2(g+d—1).
v=2

This can be read on C. We get
deg(® 1) =2(g —d+1).

On the other hand we know that deg(7*(2}.)) = —2d and therefore, (the first of the
fundamental equalities 9.8)

deg(Q4) = —2d+2(g+d—1) =29 — 2.
The next step is to construct the canonical linear map
Res: HY(C,QE) — k.

To get this map we proceed in the same way as in the case C' = IP*. We assume that our
curve has a rational point a € C(k) and consider the line bundle Q% (a). We claim that
(this is again the proposition 9.5.2, which is not yet proved, but will be proved now)

HY(C,05(a)) = 0.

To see that this is so we choose a meromorphic function f such that df generates the
differentials at a and we consider the map induced by f

mp=m:C— P!,
it is étale at the point a. It is clear that the bundles
7 (Oc(—a)) and 1. (D7 (a))

are dual to each other. We have

d
7.(Oc(—a)) C 1 (Oc) = Op1 & P Op1 (—ay),

v=2
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and the degree of this subbundle drops by one. Since 7, (O¢(a)) has no non trivial section,
we conclude that

d
7.(0c(a)) = Ops (—1) & @D Op1(~a,)

and hence because of duality

d
(D7 (a)) = Op1(1) & P Op1 (a).
v=2
This implies the claim

HY (P (75 (1) @ D H(a))) = H(C,Q4(a)) = 0.
We have the exact sequence
0— QL — Qb(a) — L(a) @ Q5 — 0
and obtain the exact sequence in cohomology
HO(CQL) — H(C.0L(a)) — H(CL(a) ® QL) 2% HY(C,QL) — 0.
The map J§, must be an isomorphism, we have defined
res, : HY(CL(a) ® Q5) = k

and define
Res = res, od, '

To see that this morphism does not depend on the choice of a, we choose a second point
b e C(k). Now we consider the exact sequence

0— QL — Qb(a+b) = Lia+d) QL —0,

and find that there exists a 1-form W;,b on ,C' which has a simple pole at ¢ and b and
is holomorphic elsewhere. We choose an f € k(C) such that df generates Q}, in the two
points a,b and consider the resulting morphism

r=mp:C — P

This morphism 7 induces isomorphisms between the completions (507,1 ~ @P1 7w (a) ,60,1) ~
OP1 (a), and it is clear that

rese(wy,,) = Tr€Sr(a) (trC/]Pl(w:z,b))

resp(w, ) = Tesp() (tYC/lPl(sz,b))~

Of course it is clear that trc/pl(w;’b) is a non zero multiple of the 1-form wr(q)(s),
which we constructed on P!, hence we get

resq (wy ) + resy(wy, ) = 0.
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This argument shows that Res : H'(C,Q}) — k is well defined but it also shows that it
is compatible with a map
n:C — P!

as above: By construction we habe the commutative diagram
HO(C\L(a) ® Q) —  HYCQY)
L tre/pa | treypr
HO(P'L(n(a)) ® Qp,) — HY(P'Qp),

which then implies the commutativity

HY(C.QL)
\Res
1l tro/p1 k
/Rcs
HY(P' QL))

and then it is easy to derive the general compatibility for arbitrary separable f : C; — Cs.

Tt is also clear that in the diagram above we can replace IL(a) by LL(na) with any n > 0,
then we get a commutative diagram

HO(CL(na) ® QL) -2 HYC,QL)

\rcsa /Rcs

k

If we assume that k is algebraically closed, then we always find rational points. Hence
we see that under this assumption we have H'(C,Qc (D)) = 0 for any effective divisor
D # 0. Therefore we get the diagram

HY(CQL(D)) — H(CLD)®QL) — HYCQL) —0
> ae|p| T€Sa \ / Res (9.13)

k

the top line is an exact sequence and the triangle in the bottom is commutative.

If k is not algebraically closed and if D = Zp npp # 0 is an effective divisor then we still
have H'(C,QL (D)) = 0 because we may extend the ground field to k and then use 8.4.
This allows us to remove our assumption that k is algebraically closed.

We needed a rational point a € C(k) to construct Res : H*(C,QL) — k and so far we
defined the residue map
resy : IL(oop) ® Q¢, — k
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only for rational points p € C(k). We shall show that we can extend the definition easily
to “separable” points, i.e. points, for which k(p)/k is a separable extension. We know
that we always have many “separable” points on C. Once we have seen this we use the
same diagram 9.13 to define the global residue map.

How do we get separable points? We choose an f € k(C) such that k(C)/k(f) becomes
separable. Then we have the resulting 77 : C' — P'. We have a non empty affine open
set V C P! such that #=1(V) = U — V is unramified.

Now if k is finite, then any closed point p € C' is separable. Otherwise it is clear that
V (k) is infinite and for any py € V (k) the points p € C lying over p, are separable.

Now we want to define res, for a separable point p € C. This is more or less clear. We
have seen on page 187 that for a suitable normal separable extension L/k we have

Ocp @1 L = k(p)[[mp]] @ L = (k(p) @ D)[[m]] = € Lllm]l.
o:k(p)/k—L/k

If we now have a meromorphic differential w € k(p)[[ﬁp}][%] ® Q¢ then we can expand

it as usual
a_ Ay a_
w= <"+ ns +~~-+1+--->d7rp

n—1
Ty T Tp

where now the a, € k(p). Now it it clear that we are forced to make the definition

resy (W) = trypy/p(a1).
To see that this is the only reasonable definition we extend the field of scalars to L/k,
where L/k is a normal closure of k(p)/k. We have the extension of the form
1 ~ 1
wxiLekmeDimlllee > @  Liml-loe
P o:k(p)/k—L/k 4

Since we want that the residue of w at p is equal to the sum of the residues of the extended
form at the points on C' xj L over p we see that we must define res,(w) = > o(a_1)
and this is the definition of the trace.

We explained already that we now are able define the global residue map Res : H'(C,Q,) —
k in general: We pick a separable point p € C' and consider the exact sequence in coho-
mology

HO(C,0L(p)) — HO(CL(p) ® Q&) > HY(C,QL) — 0.

Here the map 4 is not necessarily an isomorphism. But if we extend our base field to the
algebraic closure, then see that the kernel of our map

res: H°(CL(p) ® Q) — k

is equal to the kernel map given by the sum of the residues . Hence we can define Res by

the diagram

resp \, ~~ Res
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But once we defined Res we can define res, for arbitrary points using the same diagram.
It turns out that the local residue map at non separable points is zero.

It is clear that our definition of Res has the right functoriality principles with respect to
separable morphisms and extension of the ground field.

Especially we know now that for any effective divisor D the image of
consists of the elements { ® w, for which
Z resy (& @w) = 0.
P

We can formulate the final version of the Riemann-Roch theorem. We start from a line
bundle £ on C and we pick a point p (or an effective divisor). We compute the cohomology
H(C,L) and to do this we start from the sequence

0— L — L(cop) — L(oop)/L — 0.
We have the cohomology sequence
H°(C\L(oop)) — H(C,L(cop)/L) — H'(C.L) — 0.

Now we consider the sheaf of differentials with coefficients in £~ namely £7' @ Q.
If p € H(C,L(oop)) and w € HY (L' ® Qlc/k) then &,w is a Laurent-expansion of a
meromorphic differential at p and res, (§pw) is defined. If £p comes from a meromorphic
section s € H(C,L(oop)) then sw is a meromorphic differential, which is holomorphic
outside p. Hence resy(sw) = 0 and we get again a pairing

Res: H'(C,L) x HY(C,.L™" @ Qf ;) — k.
This generalizes the pairing we had for £ = O¢.

Theorem 9.5.4. (Serre Duality or final version of Riemann-Roch):
The pairing
Res: H'(C.L) x H'(C.LT ' @ Q) —

is mon-degenerated. FEspecially we find
dimy (H'(C,£)) = dim(H(C.L™' @ Qf 1))

It is quite clear that a non zero element a € H(C, L1 ® Qé/k) will induce a non trivial
linear form on H'(C,L). Hence we conclude dimyH'(C,L) > dimpH(C.L™ @ Q¢ ;).
This last dimension is equal to (first version of Riemann-Roch)

dim, H' (C,.L™" @ Qg ;) — deg(L) +2g —2+1—g

We apply our argument a second time and get dim; H(C,L7! ® Qlc/k) > dimy H°(C,L)
Hence we see that
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dim, H'(C,L) > dim, H(C,L) — deg(L) +¢g — 1

But the first version of Riemann-Roch tells us that we must have equality in this last
inequality. Hence we see that all the inequalities in between where actually equalities.
But if the dimensions are equal it follows that the pairing is non degenerate. O

Finally we conclude: If we have a line bundle £ with deg(£) < 0 then we have H°(C,L) =
0, because if we had a section s # 0 then deg(Div(s)) = deg(£) and Div(s) is effective.
Now we can say: If £ is a line bundle with deg(L£) > 2g—2, then H*(C,L) = H*(C,L™'®
Qé,/k) =0 and

dim H°(C,L) = deg(£) + 1 — g.

9.5.4 Riemann-Roch for vector bundles and for coherent sheaves.

We begin with a very general remark. If we have a projective scheme X — Spec(k) and
a coherent sheaf 7 on X, then we have seen that the cohomology groups H(X,F) are
finite dimensional k-vector spaces and the cohomology vanishes, if ¢ >> 0. This allows
us to define the Euler-characteristic

X(XF) =) (—1)'dim H' (X, F).

?

A short exact sequence of sheaves
0 —F —wF—F' —0

yields a long exact sequence in cohomology. It is an easy exercise in linear algebra to
show that the long exact sequence provides the addivity of the Euler characteristic

X(X,F) = X(X,]:/) +X(Xa}—//)-

We consider the special case where X/k = C'/k is a smooth curve. In this case, we have
the notion of Rank(€) and deg(€) for any locally free sheaf £ on C. The rank is simply
the dimension of the generic fibre as a vector space over O¢, and the degree can be
defined inductively: If 0 — & — & — &” — 0 is an exact sequence of locally free
sheaves then

deg(&) = deg(&’) + deg(E").

We know (see section 9.4.3) that any locally free sheaf admits a filtration (complete flag):
(0):.7:()Cfl CF, CFn1 CF=¢

such that F;11/F; = M, is a line bundle. We reduced the definition of the degree to the
case of line bundles. One has to check that if n = Rank(E)

A'E ~ ®.7:i/.7:i,1 = M,;.

The theorem of Riemann-Roch gives as a formula for x(C,£) in terms of Rank(E), deg(&)
namely

X(C,E) = deg(€) + Rank(E)(1 — g).
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To prove this we observe that both sides behave additively under exact sequences and
then the existence of flags reduces the problem to the case of line bundles.

But there is a different way to look at the theorem of Riemann - Roch. We could consider
all coherent sheaves on C' and ask for a formula for x(C,F) in terms of deg(F), Rank(F).
The first problem is that we do not yet have a notion of deg(F) and Rank(F) for arbitrary
coherent sheaves.

But let us have a closer look at the coherent sheaves on C. Locally they are finitely
generated modules over Dedekind rings. If A is a Dedekind ring and M a finitely generated
A-module then we have an exact sequence

0 — Miors — M — M/Mtors —0

where Miors is the module of torsion elements and M /M,s is locally free. Hence we see
that any coherent sheaf on C' sits in such a sequence

0— 5t0rs — & — g/gtors — 0

where &/Eors is locally free. Now it is clear that a torsion M module over a discrete
valuation ring O¢ is of the form M = ®O¢ ,/p™ and this implies that any torsion
module M on C can be written as quotient of a vector bundle by a subbundle of the
same rank. Hence it sits in an exact sequence

0—& —&—M—0.
This suggests the definition

deg(M) = deg(&) — deg(E') = dim, H*(C,M)
Rank(M) = Rank(€) — Rank(£’) = 0. (9.14)

The first formula has been verified earlier.(See 9.6 on p. 198.) We define the degree and
the rank for arbitrary coherent sheaves by

deg(&) = deg(E/Eors) + deg(Etors)
Rank(&) = Rank(E/Evors) (9.15)

and this gives a more general Riemann-Roch formula:

For any coherent sheaf F on C' we have
X(C.F) = deg(F) + (1 — g) Rank(F).
The proof is almost obvious but we write it down in a slightly sophisticated form.

We introduce the group K'(C'). This group is generated by the isomorphism classes of
coherent sheaves. For such a sheaf & let [£] be its class in K'(C). The group K'(C) is
the free abelian group generated by the classes [€] divided by the following relations: For
any exact sequence

0—¢& —E—E&"—0

we have



220 9 Curves and the Theorem of Riemann-Roch

€] = [+ [€").

The Euler characteristic, the degree and the rank provide homomorphisms

x:K'(C)—Z
deg: K'(C) — Z
Rank : K'(C) — Z

and the theorem of Riemann-Roch says
X = deg+(1 — g) - Rank.

Our proof of the theorem of Riemann-Roch can be reformulated in this new language:
The previous considerations make it clear that K'(C) is generated by line bundles and
torsion sheaves. But since any line bundle is of the form £ = O¢ (D) we see that the
group K'(C) is actually generated the structure sheaf and the torsion sheaves. But now
it is clear that

x(Oc) = deg(Oc) + (1 — g) Rank(O¢) = 1—g

and for torsion sheaves
X(M) = deg(M)

and this proves the formula.

The structure of K'(C)

The structure of this group is rather complicated. We have the surjective homomorphism
(Rank, deg) : K'(C) — Z @& Z, which means that the group has a very simple quotient.
But the kernel of this group is very complicated. We leave it as an exercise to prove that
the kernel is the group PicO(C), which is the group of line bundles of degree zero.

The group K'(X) can be defined for any scheme X by the same construction. These
groups have been invented by A. Grothendieck. He also introduced the groups K(X).
They are obtained by a similar construction, but instead of looking at all coherent sheaves
we consider the isomorphim classes of locally free sheaves [£] and we require the relation
[€] = [E']+][E"] for any exact sequence of locally free sheaves 0 — &' — & — £ — 0.
Of course we have a tautological homomorphism K (X) — K'(X).

We mention the following important theorem

Theorem 9.5.5. If X/k is a smooth quasiprojective variety over a field k then the
homomorphism K(X) — K'(X) is bijective.

We are not giving a proof here, we refer to the article of Borel-Serre [B-S], it is the
theorem 2. Our notation here differ from the notation in [B-S], our K’ is what they
call K our K is what they call K. The proof is three pages long and is essentially self
contained.

Our considerations above provide a proof in the case that X/k is a smooth projective
curve.
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9.6 Applications of the Riemann-Roch Theorem

9.6.1 Curves of low genus

We want to begin by discussing the cases of curves with low genus. Let C/k be an
absolutely irreducible, smooth and projective curve. Let us assume the genus of this
curve is 0. If this curve has a rational point P € C(k), then we can consider the line
bundle £ = O¢(P) and as in VII 3.1, we can consider the morphism

re: C —s Proj (@ HO(C,£®”)> ,

n=0

The vector space HY(C,L) has rank 2, it is generated by the constant function 1 €
H°(C,L), which we call Xy and another function X7, which has a first order pole at P.
Then it is clear that H°(C,£L®") is spanned by the homogeneous polynomials of degree
n in Xy, X1, and these form a basis. Hence we see that

é HY(C,LP™) = k[X(,X,].

n=0

I leave it as an exercise to the reader to show that r, provides an isomorphism
re: C = P!
(see theorem 8.1.20).

A curve of genus zero over an arbitrary field does not necessarily have a rational point.
This can also be formulated by saying that it does not necessarily have a line bundle of
degree one. But in any case we have the sheaf Q}) . and this is a line bundle of degree
—2. Hence the dual of this line bundle has degree 2 and therefore, we can find a non
zero section t € H%(C,(251)Y). This section must have zeroes. The divisor of zeroes has
degree 2, hence it must be a point P of degree 2 or of the form P; + P> with two rational
points P; and P, (which may become equal). In the second case we see that we have a
rational point. In the first case the point P has a residue field k(P), which is of degree 2
over k. Hence we conclude that we can always find a quadratic extension L/k such that
C x L has a rational point.

To produce such an example we consider a quadratic form over a field of characteristic

+2
f(zy,2) = ax® + by* + cz*,abc # 0.

It is absolutely irreducible and it defines a curve of genus zero (see exercise 36.) Now it
is clear that this curve does not have a rational point if this form does not represent zero
(i.e. we can not find (z0,y0,20) € k3\{0} such that az? + by? + cz3 = 0).

In turn it is not difficult to see that the line bundle £ = (94,,)" provides an embedding
re:C — P2

where the image is described by a quadratic form.
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We consider curves of genus one over a field k. Again we assume that we have a point
P € C(k), and we consider the line bundle £ = O¢(P). We have the inclusions

Oc C Oc(P) C Oc(2P) C O(3P).
Again we consider the graded ring

R=EH(CLEM.

In contrast to our precious situations this ring is not generated by elements in degree
one, but we will see that this does not really matter.

The constant function 1 yields a section zo € H°(C,L) and this section spans this space.
Then we get from the Riemann-Roch theorem that we have a section z1 € H°(C,L%?),
which is independent of 3, and we have a section x5 € H°(C,£%3), which is independent
of x3,z2x1. Now it is not difficult to see that the element z (in degree one), z; (in degree
2) and x5 (in degree 3) generate the graded ring R. It follows from the Riemann-Roch
theorem that the elements

6 ,.4 2,2 .3 .3 2
{xo,.%'oxl,xoxl,xl,x0$2,xo$lx2,x2}

must be linearily dependent because the space H°(C,£%%) has dimension 6. Therefore
we find a linear relation amoung them. Before we write it down we want to derive some
information about it. Let mp be a uniformizing element at P, then

x2:%+... a€k*
TP
and
b *
T =—5 +... bek”.
2
TP

It is clear that 23,73 are the only terms, which have a 6-th order pole, hence our relation

has to cancel that pole. We can modify x1,r5 by a scalar factor such that the above
numbers satisfy a = b = 1. Then we can conclude that our relation must be of the form

2 3., _ .3 2.2 4 6
T5 + a1X0x1T2 + azryLe = T + A2XyT] + asxyx1 + asxy.

this is a relation among elements in H°(C,L%%) = H(C,0¢(6P)). Since zq is the con-
stant function 1 viewed as element in H°(C,O¢(6P)) we see that in the monomials the
exponent v of 2} does not matter. We view our z; as elements in H%(C,£%3) and we can
modify our relation to

2 2 3 2 2 3
ToT5 + A1XoL1T2 + A3TyxLe = T] + A2ToT] + 4T + asxy,

and this is a homogeneous relation of degree three among elements in H°(C,£%?). (The
point of this trick is that we see that we do not need all monomials of degree 3 in
20,71,72 € HY(C,L%?). Hence we get the morphism

IPQ

Tres C

N '

Spec(k).

Again I leave it to the reader to show that this is a closed embedding.
If we do not have a rational point on C, then this does not work.
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9.6.2 The moduli space

At this point we want to give an outlook to more advanced topics. Let .S be a scheme of
finite type over Spec(Z), we want to consider elliptic curves over S. An elliptic curve
over S is a diagram

C
T |Ts

S.

where 7 : C' — § is a smooth projective scheme, all its fibers are absolutely irreducible
of dimension one and of genus one and s : § — C' is a section. We will see in the last
chapter that C'/S has a unique structure of a groups scheme over S, for which our given
section is the identity element. Given such an elliptic curve (C,s)/S we will denote it by
EJSs.

We want to treat the problem to construct a moduli space for elliptic curves. We discussed
this kind of question in the first volume and formulated theorem 5.2.28. We pointed out
that this result is not really a precise statement. This will be cured by the following con-
siderations. We will formulate a precise statement, which asserts that a suitable functor is
representable. This means that we will try to construct a moduli space for elliptic curves.
In a naive sense the construction of such a moduli space means that we write down cano-
nical equations for the curve where the coefficients of the equations are the ”coordinates”
of the curve. This vague formulation will become precise during the discussion below.

We return to our elliptic curve (C,s)/S = £/S. As before, we view the image of S under
the section s as a divisor P on C. It defines a line bundle £ = O¢(P) on C. If we evaluate
at a point x € .S, then we get the curve

C'x Spec(k(x))
!
Spec(k(x)), (9.16)

the point P gives us a k(x)-rational point, and we are in the previous situation.

We consider the direct images of our line bundle 7, (£®"). The Riemann-Roch theorem
tells us that the k(x)-vector spaces

HO(C x5 k(2),£5" | C x5 k(z))

have dimension n if x varies. Then our semicontinouity implies that 7, (L®") are locally
free Og modules of rank n.

We localize a little bit and assume that S = Spec(A) and that any locally free module
over A is actually free. Then HO(S,r.(L®")) = H°(C,L®") is a free module of rank n.
We find sections

Xo € HO(C,E),xl S HO(C,£®2),ZE3 S HO(C,E®3)

where xg is the constant function with value 1 and such that these sections successively
provide a basis in
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HY(C,L) c H(C,L®?) c H°(C,L®?).

If J C Oc is the ideal defining P the module J/J? is free or rank one over A. We may
choose an uniformizing element 7p, which generates this A-module. We notice that the
module J/J? is actualy isomorphic to the restriction of the line bundle QF, /s to our
section s. Since the line bundle Qg  is trivial along the fibers we see that H°(C\Q¢, g)
is a free A module of rank 1 (semicontinuity). Hence the choice of 7p is the same as the
choice of a differential w, which generates this free rank 1 module.

The elements 7521 and 7%y are elements which are regular along P, we can evaluate
at P, the result is a unit in A. Now we can require

%21 (P) = mhxa(P) = 1. Q)
Then we conclude that we have a relation
z% + a1xor1T0 + agxgxg = x? + agxgxf + a4x3x1 + agxg

with some coefficients in A. Again we perform the change of the bundle, we replace £
by L& = O¢(3P) and we consider xq,z1,72 as sections of this bundle, we give them the
degree one and consider the homogenous relation (recall zg = 1)

2 2 3 2 2 3
Zoxs + a1T0T1T2 + asTiTe = ] + asToT] + a4T{T1 + gy &)

which describes C' as a closed subscheme of P? = Proj A[X(,X1,X2]. The coefficients are
uniquely determined by the choice of xo,21,x9. We will always choose zp = 1 as constant
function 1 this is a canonical choice. If we stick to our choice of 7p (resp. w), then we
can choose zj, = 1,2),2} such that

1 = )+ axg (S)
xe = b+ fBx) +yxo

Then we will get a new relation (£) with new coefficients:
7\2 / Wi r 2 0 /\3 / 1\2 12 0 /.3
wo(73)" + ajzox 7y + ajzgry = (21)° + aszo(2)” + ayrpr + agrp.

We can write formulae for the a} in terms of the a;,a,3,7 This makes it clear that the
coefficients of the relation are by no means determined by the curve and the choice of 7.
The following statements have to be verified by computations and a little bit of thinking.
To proceed we assume that 2 and 3 are invertible in A, i.e. % € A. Then we see from the
formulae for the a} that there exists unique substitution (S) such that the new relation
(&) will be of the form

rors = 2 + ajxir, + agrd (Wei),

in other words a} = a% = a, = 0. This is the Weierstrass normal form of the equation
for an elliptic curve (in the classical Weierstrass form is a factor 4 as coefficient of 1,
this is not relevant in our context).

Then a) and af are the following expressions in the ay,a3,a2,a4,a6:

’ G,All a%ag Cl% ayas
ay=————— =+ + a4

6
/I
% = 364 T 72 18 27 24 6 112 3
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Now it is quite easy to see that the curve defined by the equation
Tors = T} + ajr 7] + agr
is smooth if and only if the discriminant ( of the cubic polynomial 23 + ajz + ag)
—4(a})® — 27(ag)?

is a unit in A. If we rewrite this in terms of the a;, then we get an expression, which is
a sum of monomials in the aj,as,a2,a4,a6. It is homogeneous of degree 12, if we give a;
the degree i. The coefficients are rational numbers, which have only powers of 2 in their
denominator and where the largest denominator is 16. Hence we define

Alay,a3,a9,a4,a6) = 16 - (—4(a})® — 27(ag)?)
and with the help of a computer we find

4 2 2.2 2 2
Alay,a3,a9,a4,a6) = —ajasas — 8atasa3 — 16a3a3 + aba3 + 36a,a0a3—
4, 5 3 2 2 2 2 4 2 22
27a3 + ajazaq + 8ajazazas + 16aja3a3a4 — 30ajazas + 72aza3a4 + ajay + S8ajaza;+
16a3a3 — 96a1aza3 — 64a3 — aSag — 12aazas — 48a3aias — 64a3as + 36a3azas+

144a; azazas — 216a3a6 + 72a%asa6 + 288azasa6 — 432a2.

The coefficients of the monomials are integral, and some monomials have the coefficient
+1.

Finally we can apply the same process to afy and af; and put
Cy=48-a), , Cs=864-ag,

then

Cy = —af —8aas — 1643 + 24a1a3 + 48a4
Cs = a® + 12a}ay + 48a3a3 + 64a3 — 36a3a3—
144a;aza3 + 216a3 — 72a%a, — 288aza4 + 864ag (9.18)

We have 48 = 4 - 12 and 864 = 123 /2, therefore,

1
A(a1703,a2704,&6) = 123 : (*CZZ’ - 062)»

We observe that the expressions C4,Cs and A can be written down without the assump-
tion that % € A. Furthermore it is clear that:

The expressions for Cy,Cs and A are invariant under the substitutions induced on the
coefficients ay,a3,a2,a4,a¢ by substitutions of the form (S).

The following theorem is almost clear from our considerations above. We drop the as-
sumption % € A for a moment.
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Theorem 9.6.1. Let A be any commutative ring with identity. The equation

2 2 3 2 2 3
ToT5 + A1XTpT1 T2 + A3T2Xy = X7 + A2T1To + Q41T + AgXy

defines a projective curve C over Spec(A). This curve is smooth if and only if
A(ar,a3,az,a4,a6) € A™.

It contains the point P = (0,0,1) choosing this point as our section s makes C' to an
elliptic curve € = (C,s). The complement C \ s(Spec(A)) = U of this this section is
affine, on this complement we can normalize xg = 1 and

U= Spec(A[xl,xg]/(:z:% + a1zi1T9 + azTe — xi’ — agx% — asw1 — ag)

We have an explicit holomorphic differential w, which on the affine part o =1 is given

by
dl‘g le

32% + 2a271 + ay — a1x2 279 + 171 +ag

w

If A is noetherian and if any locally free A-module of finite rank is free, then any elliptic
curve & — Spec(A) together with a nowhere vanishing differential w is of the form
above.

The last assertion has been proved above and uses in an essential way the semi-continuity
theorems. The assertion concerning smoothness is clear if % € A, but it is also true
without this assumption. It requires some computations, which are carried out in [Hu,
Chap. 4.

We can formulate this slightly differently if we consider the a; as indeterminates and say
that the above equation defines an elliptic curve over SpeC(Z[al,03,(12,&4,(16,%}), which
comes with a nowhere vanishing differential.

At this point the reader is invited to play a little bit with this expression and to evaluate
it for small values of the a;. You will see that you never get +1. If we evaluate at bigger
values of the a;, then we even find rather big values for A. So we are tempted to believe

The diophantine equation
A(a1:a37a2;a47a6) - :l:]-?

has no solution in integers ay,a3,a2,04,06 € Z

and this means that there is no elliptic curve over Spec(Z).(See exercise 37.). The asser-
tion in exercise 37) follows from the stronger statement

There is no smooth curve C — Spec(Z) of genus g > 1

and this has been proved by Abrashkin (for g < 3) (see [Ab]) Jand Fontaine for arbitrary
g > 1 (see [Fo].).

But if we assume again that ; € A and if we consider pairs (£,w) where w € HO(C Qg /5)
is a generator of H%(C,Q¢ /), then the situation is different. The existence of such a
form is an additional requirement, of course it exists if any locally free module of rank
1 over A is free. Let us assume this for a moment.. Then we we have seen that we
have a unique choice for our sections (z¢g = 1,z1,z2) such that (Q) holds and such that
a1 = az = ay = 0, i.e. the equation is in Weierstrass form. Then the remaining two
coefficients ayq,a¢ € A are uniquely determined by the datum (€,w). The pair (a4,a6) can
be viewed as the ”coordinates” of the curve.
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Now we explain that this means that the following functor is representable:
We consider the base scheme Spec(Z[%]). On the category of schemes of finite type
S — Spec(Z[§]), we define a functor

S — My,qir¢(S) = Set of isomorphism classes of pairs (£/S5,w).

This is indeed a functor, if we have a Spec(%[+]) morphism S’ — S then we get a map
Mi,aifr(S) — Maairp(S’) if we take the pullback of the curve, the section and the
differential (see p.28, 7.5.10).

We show that this functor is representable by an affine scheme of finite type. To do
this we write down a universal elliptic curve: We introduce the ring Z[][u,v,A,1/A]
where the first two variables are independent and A = —4u® — 27v%. We put M 4i5¢ =
Spec(Z[§][u,v,A,1/A]) and our universal elliptic curve is (we perform a slight change in
notations (zg,x1,22) — (2,2,y))

£y = 2%+ uze? + 05— My gipp x P2 (9.19)

lp1
Po
1,diff

and the section s is given by the point (z,y,z) = (0,1,0).
This elliptic curve together with the differential @ in theorem 9.6.1 is an element

(ga&)unv S Ml,diff(Ml,diff)'
Now the following theorem asserts that M ;7 is representable.

Theorem 9.6.2. For any scheme S — Spec(Z[%]) of finite type and any elliptic curve
(€/Sw) over S we have a unique morphism m : S — My g5y such that we a unique
isomorphism

(m* (€)1 (@) = (Ew).

from the pullback (see 6.2.5) of the universal curve to our given curve. The scheme
M giff — Spec(Z[%]) is called the moduli space of elliptic curves, which are equipped
with a nowhere vanishing differential.

Most of the work has been done in our considerations above. From our elliptic curve
m: & — S we get the locally free sheaves m.(O¢) C 7. (Oc(P)) C 7. (Oc(2P)) C
7+(O(3P)). We cover S by open affine schemes S,, = Spec(A4,) such that the restriction
of these sheaves to Spec(A4,) are free modules. Then we can choose unique sections
) =1¢e HY(S, m (L)), (2 € HOS, m.(£82)), 2§ € HO(S, m. (L®3)), such that
the condition (2) holds and in the relation among these sections we have agy) = ag") =

agy) = 0. Since these sections are unique we find that we get equality for the restrictions

:BEU)|SV ns, = xz(-“)|Sl, N S,. Hence they extend to sections zg = 1 € H(S,m. (L)), ,z1 €
HO(S,m.(L£%?)), 29 € H(S,7.(L®?) and we get a Weierstrass equation (Wei).

2 3 2 3
ToTsy = T + agxyx1 + ATy,
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where a; € H°(S,05) and A(ag,ag) € H°(S,0g)*. This yields a Spec(Z[§]) morphism
¢ S8 — My qirs, which is defined by u — a4,v — a¢ and clearly we have an isomorphism
®: (7%(€),m* (@) = (Ew), which on the affine part (ie. z = L,zg = 1) is given by
T = X1,y — Ta.
On the other hand it is clear that the morphisms ¢,® are uniquely determined by
((£/S,w). To see this we can assume that S = Spec(A) is affine. Let us assume that
we have a second pair (¢',®’). The isomorphism @’ is determined by its value on the
affine parts, and on the affine part ®' must send = — x1,y — 2, because these elements
are uniquely determined by the constraint () and the vanishing a&") = ag'/) = aéy) =0.
But then ¢ has to send u — a4,v — ag and hence we see that (¢/,®") = (P,¢).

([

Remark: As a byproduct of the proof we see that (£/S,w) can not have any non trivial
automorphism, this follows the uniqueness of the isomorphism ®. On the other hand
the argument at the end of the proof can be used to prove the triviality of Aut(£/S,w)
directly. But we should also observe the the formal definition of representability does
not imply the uniqueness of ® : To prove representability in the above case it suffices to
prove the uniqueness of ¢ and the existence of a ®. The reader should keep this remark
in mind during the following discussion.

At this point it seems to be natural to ask whether we can drop choice of the the form
w, this choice is somewhat arbitrary, two such choices differ by a unit a € Og(S5)*.
Therefore we tempted to ask whether the functor

1
M : { Schemes S — Spcc(Z[é]) of finite type} — { Set of Isomclasses of elliptic curves £/S}.

is representable, and can be obtained from M; 4;ry by dividing by an action of the
multiplicative group scheme G, (see 7.5.8.)

The answer is "No” and we will explain why this is so. For the following discussion we
also refer to to 10.1, where the same problem is discussed in a different context.

We drop the assumption § € Og(S) for a moment. If (£,w) is an elliptic curve over S and
if we replace w by wy then w; = aw with a € Og(.5)*. This means that we have an action
of the multiplicative groups scheme G,/ Spec(Z) on the moduli scheme M 4; 7, which
reflects this change of the differential. We describe this action explicitly. To do this we
return to the general form (€) of our equation. Changing the differential w to aw is the
same thing as changing the uniformizing element 7p to amp. If sections (zg = 1,21,22)
satisfy () with respect to w, then the sections xj, = zg, 2} = a~2z; and x4 = a3,
satisfy (2) with respect to aw. The relation (£) among the sections (zg,z1,22) yields the
relation

6 1 12 5 rog 3 r 12 6.3 4 12 2 ;12 16
Q- xaTy + Qa1 TnT 1Ty + ATazToxy = QT + Qa2 Tyt atagxixy + agTy -

Dividing by af gives us the relation (£) among the new sections.

;12 -1 AW -3 r 12 13 -2 12 —4 ;12 —6 ;6
ToTy + Q "a1xgx Ty + 0 Tazxroxy =T + Q@ “agxy o+ Taar1Ty + o Casxg -

‘We see that



9.6 Applications of the Riemann-Roch Theorem 229

-1 -3 —2 —4 —6
{a17037a27a4,a6}—>{06 a1, ~agz,0 “ag,x a4, a6}

This yields a G,,-action on Spec(Z[al,ag,ag,a@ag,%]). We know that Cy4,Cg,A are ho-
mogenous of degrees —4, — 6, — 12 respectively. Hence we see that the expression

i

A

is invariant under the action of G,,, i.e. invariant the change of the differential form.
Hence it becomes clear that j(ay,as,a2,a4,a6) only depends on the the isomorphism class
of the elliptic curve £/S. This is the famous j -invariant of an elliptic curve.

jla1,a3,a2,a4,06) =

This seems to indicate that Spec(Z[X]) is the moduli space of elliptic curves, because
for any elliptic curve &€ — S we found a uniquely defined morphism j(&) : S —
Spec(Z[X]), which attaches to £ its j-invariant.

But what is next? Since we do not have-and there is no way to get it- a universal curve
with j-invariant j we can not formulate the assertion in the above theorem (9.6.2).
We want to analyze this further. We revitalize our assumption % € Og(9), and we apply
our consideration to My 4;ry = Spec(Z[§]as,a6,%]). For any Z[§]-algebra B the group
B* = G, (B) acts on Z[§][as,a6,x](B) by

—4 -6 121
) = (@ “aq,a Pag,00 = —),

(CL4, A

a67Z

this means that we have an action of G, on M 455 (see section 7.5.8).

We come back to the apparently more natural functor S — M, (S).

Our considerations above seem to suggest that M is representable and represented by
the affine scheme M 4;¢¢/Gp,. But this is not quite right.

We see easily that My = My aifs/Gp = Spec(Z[§][j] = Spec(Z[%][aA—i], i.e. the Z[g]-
algebra of elements of degree zero is generated by j.

We have a look at the diagram, which is provided by the general theory of G,,-actions,
here S = Spec(B):

M aif5(B) ; (9.20)
f
lpo
My i 1(B) ) Gon(B) ——> (My4if /G (B)
J(Pl h
M, (B)

The vertical arrow p; is bijective, provided every locally free B-module of rank one is
actually free. We apply the criteria formulated at the end of section 7.5.6 in the subsection
on Gy,-actions. We see that the degrees of the action are (4,6, — 12). For any geometric
point (a47a6,%) the last coordinate is never zero and hence at least one of the other two
coordinates is non zero. Hence we can apply proposition 7.5.24 and see that My gi5 ¢/ Gm
is a geometric quotient. But we will see that g will not be a bijection, in general it will
be neither injective nor surjective. We formulate two precise assertions concerning this
issue.
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A faithfully flat morphism S’ — S of finite type, will be called a ffft-morphism, if S’,S
are of finite type over Spec(Z).

(i) Let S — Spec(Z) be ffft. For any two two elliptic curves 1,E over S with h(&y) =
h(E2) we can find a ffft - morphism S’ — S, such that & x5 S — E x5 5'.

(i1) If [E] € M1(S) then we can find a ffft " — S such that we find a (£/5",w) with
h(E/S"\w) = [€], then we have p1 o po(E/S" w) = [E].

For any element & € M;(S) the Og-module W*(Qé/s) is locally free, we can find a
finite Zariski covering S” = | |, Spec(B,) such that it becomes free over S’ and therefore,
& xg S is in the image of My qir¢(S") — M1(S').
We consider our two curves &;/5,E5/S. To prove (i) we can apply the last argument and
we may assume that S = Spec(B) and that we can equip both of them with a nowhere
vanishing form wy,ws. Then the two pairs (€1,w1),(E2,ws) are defined by equations

y2z =% + auz® + ag, yQZ =% 4+ byz2® + be,
where the coefficients are in B, where A(a4,a6) = A, A(by,bg) = A; are units and where
the differentials are given by the expressions in Theorem 9.6.1.
If we change the differential w; by a factor w; — [w; then we change the coefficients
ay — B %as,a6 — S %ag. Our assumption that the two curves have the same image
under h says that the two j-invariants are the same and hence

af _ b
AT A

Now A,A; are units, we put v = A/A;. We consider the B-algebra B; = B[(] =
B[X]/(®12(X), where ®15(X) = X* — X2 4+ 1 is the cyclotomic polynomial for the
primitive 12-th roots of unity. Then we construct a second extension B’ = Bi[d] =
Bi1[Y]/(Y'? — u). We observe that the extension B < B’ is finite the B-module B’ is
free of rank 48. It it also easily checked that the module 9}3, /B = 0, because we assumed
% € B. We consider the two curves £] = &1 Xgpec(n) SPeC(B’),E5 = E2 Xspec(n) SPEC(B’),
both are equipped with a differential wj,wj. If we now replace wj by dwj, then we get
a new equation for & with coefficient a), = 6 *as,af = 6 %ag and A is replaced by
uA = A;. Hence we get (a}y)® = b3. Since we have the relation —4(a4)® —27(ag)? = A we
also get (aj)? = b2. Therefore we see that for % = p and % = v we have p% =12 = 1.
From this we can conclude that we find an element (; € B’ such that ({ = u,(? = v.
(This is not entirely obvious, we leave it as an (amusing) exercise to the reader.) If we
now modify our ¢ to (10 then we get ajy = aq,af = ag.

The second assertion is easier to verify. By definition [£] € M;(S) means that [£] is the
isomorphism class of an elliptic curve £/S. Then we even find a Zariski-covering S' — S
such that €& xg 5" can be equipped with a nowhere vanishing form w and hence [£] is in
the image of p; o py.

The following considerations form a paradigm for some much more general phenomenon
in the general theory of moduli spaces.



9.6 Applications of the Riemann-Roch Theorem 231

We explain why we can not expect that g is a bijection, in general it is neither injective
nor surjective. The arrow pg is a bijection if every locally free B-module of rank one is free.
Let us assume that this is the case. We pick an elliptic curve £/S. Now it can happen that
we can find a second elliptic curve &; /.S, which is not isomorphic to £/.5, but we can find a
faithfully flat extension of finite type S’ — S such that & x g.5" = £ x5 S5’. If we found
such a curve then clearly h(&1) = h(E), because My qifr/Gm)(S) — M aifr/Gm)(S")
is injective (see theorem 6.2.17.)

Such a curve & /S, which becomes isomorphic to £/S over a faithfully flat extension of
finite type, is called an S-form of £/S. This was already discussed in section 6.2.10 and
we have explained that we have a canonical bijection

{Set of isomclasses of S forms of £/S =+ H'(S, Aut(£/5)),

Now we compute the algebraic group Aut(£/S5), i.e. for any scheme T' — Spec(B) =
S we compute Aut(E xg T'/T). We choose a nowhere vanishing one form w on £/S.
Then (£/Sw) is a B valued point of (a4,a6,m) € M gifs. Any automorphism o €
Aut(€ xgT/T) will multiply the pullback wr by a factor ¥(«). This is a homomorphism
Y Aut(E xg T/T) = Aut(E/S)(T) — G, (T). Since Aut(€ xg T/T,wr) is trivial we
get an injective homomorphism

P Aut(E/S) — G, /S.

We have to compute the image. For simplicity we assume that S is integral. The morphism
T — S yields a homomorphism B — H%(T,Or), let b be the image of b € B under
this homomorphism. An element u € G,,(T) induces an isomorphism between our curve
(€ x s T wr) with ”coordinates” al ,al to the curve with coordinates u=*al ,u=%al. Hence
it is an automorphism of our curve if and only if

al =u*a] and af =u"Cad.

Since AT is a unit we can conclude that u'? = 1. For any integer n > 0 we define the
sub group scheme

ftn, — Spec(Z) : pn = Spec(Z[U]/(U™ — 1)) C G, = Spec(Z[U, U],

the comultiplication is given by m : U — U ® U (see 7.5.6.) We just showed that the
image of v is contained in pj9. If we now restrict the morphisms 7" — S to faithfully
flat morphisms (of finite type), then the homomorphism B — H%(T,Or) is injective
and we find

u2(T) if aq and ag # 0
Aut(E/S)(T) =  pa(T) ifag #0and ag =0
ue(T) ifag#0and ay =0
Hence we get
For any scheme S of finite type over Spec(Z) any any elliptic curve £/S we have a
bijection
Isomclasses of S -forms of £/S > H*(S,1,)
where n = 2,4,6 depending on £/S.
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The cohomology groups can be computed, under our two assumptions % € B and all

locally free B- modules of rank 1 are free. Then it follows from a standard computation

H'(Spec(B).p) = B* /(B*)"

We can look at this from a different point of view. For any faithfully flat morphism
S’ — S our functor M yields a diagram

*

* P
Mi(8) P M) T T MU x5 S,
D5

and this means that M /S yields a presheaf on the ffft-topology over S. Our considera-
tions above show that this presheaf violates the first sheaf condition (Shl), provided B
is sufficiently general. The reason for this is the non triviality of the group Aut(£/S) and
in view of theorem 6.2.17 this destroys all our hopes that M; /S might be representable.
But also the second condition (Sh2) will be violated. Let pg : S’ — S be a fift-morphism
and let £'/S" an elliptic curve. We ask whether the elliptic curve descends to a curve over
S, this means we ask whether we can construct a curve £/S such that p§(€/5) = € xg S’
is isomorphic to £’/S’. This is a special case of a question, which has been discussed
in section 6.2.8. Let us assume that we found such an £/S, we choose an isomorphism
¢:ExsS" =5 £'/8". We have the two projections py,ps : S’ x5S’ — S’, the composition
with pg yields a morphism ¢ = pgop; = poops : S’ x5S’ — S. Then we get isomorphisms
K[ % PI(®) s or K[ % P3(®) s or
pi(po(€)) — pi(E'/S"), p2(po(€)) = p3(E7/S"),
the term on the left is ¢*(£/5" xs S’) = pi(p5(E)) = p5(p§(E)). Therefore we get an
isomorphism
p3(9) o pi(0) ™" = d12 : pi(E/S") = p5(E'/S").

Now we have the projections p;; : S’ xg §' xg 8" — S’ xg S’ these 3 projections
composed with the 2 projections p, : S’ xgS" — S’ yield the three projections m, :
S xg8 xg8 — 5" x5 (see 6.2.8). A slightly tedious computation shows that these
isomorphisms satisfy a cocycle relation

Pis(p12) " o pis(p12) o pia(pr2) =1d,

where factors from right to left are morphisms 7§ (£'/5") — #3(£'/S") — #5(E'/5") —
T (E'/9").

Therefore we can conclude:
A first necessary condition for the curve &£ to descend to a curve is the existence of an
isomorphism

$12: pI(E'/S) = p3(E'/9). (GO)

To such an isomorphism we can define the boundary

8(d12) = Pia(w12) " 0 P33(012) 0 Pla(p12) € Aut(E X g7, §' x5 8" x5 5").
If this boundary §(¢12) = Id then this says that ¢ is a descend datum (see Definition
6.2.20). Once we have the descend datum we need to show that it is effective. In our
special case this is easy, we simply extend the argument given on p.43 to the case of
projective schemes.
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We assume again that our base scheme S = Spec(B) is integral, under this assumption
we know that Aut(E'/S") = pa/S" = pa xXs S’ with d = 2,4,6, especially we see that it is
abelian and it descends in canonical way to a group scheme over S. Then it is clear that
0(¢12) is a 2-cocycle (See end of section 6.2.8). We can modify ¢12) by an automorphism
h € Aut(pi(€'/5"))/S" xsS’, this has the effect that §(¢12) gets modified by a boundary
and hence we get a cohomology class

[€/8'] = [6(¢12)] € H*(S'/ S p1a)-

This class is zero if and only find a ¢}, = ¢12 o h, which is a descend datum.

Exercise 39. Find a field K and a separable quadratic extension F'/K, such that there
exists an elliptic curve £/F, which is isomorphic to its conjugate under the non trivial
automorphism of F/K, and which does not descend.

We ask a weaker question. Given our curve £'/S’, we ask whether we can find a fIft-
morphism S” — S’ such that the extension & xg S” — S” descends to a curve
& — S. Again we have the first necessary condition:

For our curve &’'/S’ we can find a ffft-covering £ = &’ x g S — S”, such that we can
find an isomorphism

Pha s (1) (E"/S") = (p3)"(£"/5"), (@)
here p} : §” xg S” — S” are the two projections.
If this condition is fulfilled the elliptic curve & — S’ is called a gerbe of elliptic curves
over S . Now we say that the gerbe descends to an elliptic curve £/S if we can find a
ffft-covering S” — S’ such that & xg S” — S descends to a curve &€ — S.
If £'/S" is a gerbe of elliptic curves then we may proceed as before and attach a class
(65 (h5)] € H?(S"/S,uq) to £'/S’. But now we may pass to still finer and finer ffft-
coverings S — S” and get a class

[6('/S) € lim H*(S"/S.G) = HX(S.G),

We see: A gerbe £'/5’ descends if and only if [6(€'/S")] = 0.

It is quite clear that not every gerbe descends. Let S = Spec(B), let us assume that
% € B. Let 8" — S be a flft-morphism and let £ — S’ be a gerbe. Its j invariant
j(&") € B’ and the gerbe condition (G) implies that 1 (j(E’)) = i2((j(E')) where iq,is :
B’ — B’ ®p B’ are the two inclusions given by the first and second component. But
since B — B’ is faithfully flat this implies j(£’) € B. On the other hand our two
assertion (i) and (ii) imply that given a j € B we can find a fift-morphism S’ — S
and an elliptic curve & — S’ with j(£’) = j. If we introduce some obvious notion of
equivalence of gerbes then we see easily that we get a unique equivalence class of gerbes
this way.

Actually we have a universal gerbe: The morphism M q;5y — M;( or in affine writing
Z[ %] < Spec(Z[+][as,a6,%]) is fift and the universal curve over My g;ff has j invariant
j-

We come back to our exercise 39 above: If B = K is a field, then every gerbe of elliptic
curves is trivial. In a less sophisticated terminology this says:
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For any x € K we can find a curve with j invariant equal to x. In other words the map
My girf(K) — My(K) is surjective.
Finally we see that
If we have two elliptic curves £1,E2 over an algebraically closed field k then they are
isomorphic if and only if

J(&1) =j(&)
This means in modern language: The affine line Spec(Z[X]) is a coarse moduli space
for the elliptic curves. In contrast to this the scheme Mi 45y — Spec(Z[+]) is a fine
moduli space for the elliptic curves equipped with differentials over a ffft scheme over
Spec(Z[¢]). We will briefly come back to this issue in the next subsection.

9.6.3 Curves of higher genus

We want to discuss some aspects of the theory of curves of genus g > 2 The following
considerations are more geometric in nature, hence we assume at this point that C/k is
a smooth, projective and irreducible curve over an algebraically closed field k. Let g be
the genus of our curve.

Exercise 40. We pick g points P, ... ,P, on our curve. We form the divisor D =) P;
and ask: Is there a non-constant meromorphic function f € H°(C,0¢(D)). ?

a) What does the Riemann-Roch theorem tell us? We see that the simple version of the
Riemann-Roch is not good enough.

b) What do we need to know about the behavior of the holomorphic differentials at D if
we want to answer our question?

¢) We want to discuss this kind of questions in a more systematic way. We consider the
product of our curve by itself C' xj C, then we may consider the diagonal A C C xj, C.
This diagonal can locally be described by one equation and hence we can look at the line
bundle O¢xc(A).

d) We form the product

CxCI=CxCOx(Cx...x(C=X.
—_—
g—times

On this variety we have the line bundles Ox(4;), which is obtained by the diagonal
in the factor C' in front and the i-th factor in the product. This gives us a line bundle
L=8) 0x(A;)on X.

Now we look at the projection to the second factor

C x C9

=

C9

The sheaf £ is flat over C9. If we pick a point P = (Py,...,P,;) € C? and restrict £ to
the fibre 71 (P) ~ C then this restriction is exactly the line bundle Oc(P; ... + P,) on
C.
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e) Prove that we have a non-empty Zariski open subset U C CY9 such that
dim, H*(C,Oc(Py + ...+ P,)) =1 ifonlyif P=(P,...,P,)€U.
f) Prove that U # CY9 and show that the complement is of codimension one.

The next exercise is difficult, that is the reason why it has two stars.

g**) Assume g > 2. Show that we can find a point P, for which there exists a holomorphic
differential form w # 0, which has a zero of order > ¢ in P.

Hint: We put Qf = p;(Q}) it is a line bundle on C' x C, and consider the sheaf

L =9i(~(g - 1)A),

this is the sheaf of sections, which have a zero of order > g — 1 along the diagonal. What
is the restriction of this sheaf to a fibre C' x {P}?
The Riemann-Roch theorem shows that

dim H°(C.Q&(—(g — 1)P)) > 1.

Show:
a) If we can find a point Py where dim, H?(C,QL(—(g—1)Fy)) > 2, then we are finished.
Hence we can make the additional assumption that

dimy H*(C,.Q&(—(g — 1)P)) =1

for all P € C(k), i.e. the rank is constant.
b) Reformulate this conditions in terms the homomorphism

HY(CQL(—aP)) — HY(CQ})

where 0 < a < g and P is any point on C.

We apply our semicontinuity theorem 8.4.5 to the projection py to the second factor.
We get that the sheaf ps .(Q2}(—(g — 1)A)) is a line bundle on the curve C. We have an
inclusion p5(pa.. (2} (—(g — A))) — Q1(=(g — 1)A).

For a point P € V anon zero section wp € H°(C,Q%L(—(g—1)P)) viewed as a holomorphic
1-form has 2g — 2 zeroes, if we view it as a section in H°(C,QL(—(g —1)P)) it has g — 1
zeroes. We consider the subset Z C C(k) x C(k), which consists of pairs

(QP)eCxC

where @ is a zero of the section wp € HY(C,Q4(—(g — 1)P)). This is by construction a
divisor on C' x; C. and it is clear that the inclusion above yields an isomorphism

P32, (21 (= (g = DA)) = Qi (~(g = DA)(=Z) = Q(~(9 ~ DA) @ Ocxc(~2).

Now we must prove that Z has a non empty intersection with the diagonal!
We have to compute the intersection number £q - Lo of our two line bundles on C' x; C
(see 8.4.1). It is rather clear that:

If Z,A have no component in common then the intersection number is equal to the number
of points in Z N A counted with the right multiplicities.
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But how can we compute the intersection number Ocxc(Z) - Ocxc(A)? To do this we
have to use the fact that the intersection product is bilinear, and reduce the problem to
the computation of p3(pa (1 (—(9—1)A)) - Ocxc(A) and eventually reach the trickiest
part of the computation namely the computation of ps (i (—(g — 1)A). This can be
done inductively by applying the direct image functor to the exact sequences (0 < a < g)

Q(l) ® OCXc(—(CL — I)A)
Q0 Ocxco(—al)

— 0.

0— Q(l)®OCxC(_aA) - Q(l)®OCxC(_(a_1)A) -
The term on the right is a sheaf concentrated on the diagonal, which we identify with
C. It follows from the definition of the sheaf of differentials that this quotient on the
diagonal is
ol OcXc(—(CL — I)A)
QO ® OCXc(faA)
('see also the discussion of the Riemann-Roch theorem for surfaces following later). Now

we apply the functor py . to this sequence and get an exact sequence of locally free sheaves
(this is still our assumption, see b) above)

= (20)*°

0 — 2. (Y © Ocxe(—ad)) — P2 (QY @ Ocxe(—(a —1)A)) — (25)%* — 0.

Taking suitable exterior powers we get

g9(g—1)

P2 (2 ® Ocxe(—(g = 1)A)) = () 2
and from this we get the value
”#(ZHA)” 293 _gn

End of the exercise g**)

If we pick a point P € C(k) and consider the spaces H(C,Oc(aP)) for a = 1,...,...
then we get from the Riemann-Roch formula

dimy, H(C,0¢(aP)) — dimy H' (C,0c(aP)) = a+1—g.

We know that 1 € H°(C,0¢(aP)) hence dim, H°(C,0¢(aP)) > 1.
On the other hand it is clear that

dimy H(C,0¢c((a + 1)P)) < dimy H*(C,0c(aP)) + 1

the dimension may jump by one if we go from a to a+ 1 or it may stay constant. Finally
we have

dimH?(C,0c((29 — 1)P)) = g.

This means that if we go up from a = 0 to a = 2¢g — 1 the dimension will jump exactly
g — 1 times.

h) Show that for a point P, for which H°(C,Q%(—gP)) = 0 we have
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dimy H°(C,0c(aP)) = {1 for0<a<g

a+1—g forg+1<a
A point P, for which dimy H°(C,QL(—gP)) > 0 is called a Weierstrass-point . In our
previous exercise we have shown that Weierstrass-points always exist. Actually we have
shown more: Under the assumption that dim, H°(C,Q5(—(g9—1)Q)) = 1 for all Q € C(k)
we can show that either all points are Weierstrass-points ( this happens if A C Z) or
the number of Weierstrass-points counted with the right multiplicity is g3 — g. The first
case can not happen if the characteristic of k is zero (See for instance [Gr-Ha] , Chap.
I1, section 4).
At the same place it is shown that the number of Weierstrass-points is always ¢% — ¢ if
we count them with certain weights and if the characteristic of & is zero.
I formulate some questions, for which I do not know the answer. I state them as exercise
and it is likely that they have been answered in the literature.

Exercise 41. a) Of course we know that a non-zero differential cannot have a zero of
order > 2g — 1. But I do not know what the record for the order of vanishing for a
differential is.

b) For a given g can we find a curve C'/k such that H°(C,QL((—gP)) > 1 for all points
P € C(k)? This means that all points are Weierstrass-points.

¢) How early can it happen that
dim, H(C,Q4(—aP)) > g —a + 1,

which is the minimal a, for which this happens for a special curve or the generic curve.
We consider line bundles of degree g + 1,9 + 2,... and ask whether they are base point
free or provide an embedding of the curve into projective space.

d) Any line bundle £ of degree d > g + 1 is of the form
ﬁZO(P1+...+Pd).

What does it mean that the bundle £ is base point free?
Prove that there is a non-empty subset U C C9"! such that O(P; + ...+ Py41) is base
point free for (P;...,Pyy1) € U.

e) Try to prove: For a non-open set U C C9%2 the line bundle O(P; ... P, 5) provides a
closed immersion
i:C — P2,

this means that on a non-empty open set the morphism ¢ is injective and its differential
is always non-zero. (Show that not all curves can be realized as plane projective curves).

f) Prove that for a non-empty open set U C C9%2 the line bundle
L=0(P+...4+ Pyy3)

provides a closed embedding of C into P3.
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The ”"moduli space” of curves of genus g

We may look at the questions, which we formulated in the above group of exercises, from
a much more systematic point of view. In the the first part of this section we discussed
the moduli space of elliptic curves, recall that this a curves of genus one together with
a distinguished point. We may also ask for a moduli space M, of curves of genus g,
this is an algebraic variety over k, which ” parameterizes” the curves of genus g. Here
we are entering a dangerous terrain, such a space can not exist because curves may
have non trivial automorphisms. (See also the previous discussion of the moduli space
of elliptic curves .) To overcome this difficulties Deligne and Mumford introduced more
general objects, namely the stacks. These stacks form a 2-category (this means that the
Hom( , ) do not form a set but only a category) and in this context stack the moduli stack
M/ Spec(Z) of curves of genus g exists. We do not attempt to give precise definitions
and statements here, but the previous discussion in the case g = 1 should give some
impression what this means (See also 7.5.8, for an account of the theory of stacks see
[L-MB].)

For a first understanding one may ignore the difference between a stack and a variety. In
any case the object M, is of great interest in actual research and we want to state some
known results and ask some questions.

It can be shown- and was already known to Riemann- that M, has dimension 3g — 3,
it is a quasi-projective variety and Deligne and Mumford constructed a compactification
of it (See [De-Mu]). Hence we know that to a point m € M(k) we find a curve C),. For
this curve we may ask the following question: Let d be an integer 0 < d < g. Can we
find a divisor D = Py + -+ + Py such that H°(C,,,0c,, (P1 + -+ + P;)) contains a non
constant function, i.e. is of dimension > 1.

We have seen that a non constant function x € H°(C,,,0c¢, (P, + P - - - + P;) provides a
morphism ®,, : C,,, — P! and during the proof of theorem 9.4.1 we saw that the degree
of @, is equal to d. Since g > 2 we can conclude that the case d = 1 does not occur.
But it may happen that d = 2, i.e. we can find pairs of points P,Q € C,,(k) such
that we have a non constant function z € H°(C,,,0c, (P + @)). Then the morphism
P, : C — P} is of degree 2. Let us assume that the characteristic of k is not two
and for simplicity that P # @. Then we know that the ring of regular functions on
Cr \ {P,Q} = U is the integral closure of k[z] in the function field of Cy,. It is clear that
we can find a regular function y € O, which satisfies an equation

y2:xn_~_a1xn71+...+a)0 :f(x)

The polar part of the divisor of y is —5 (P + @) hence we see that n must be even.
The reader is invited to fill the gaps in the following reasoning:

a) There exists an unique involution © : C — C, i.e. ©2 = Id, such that
dimy H°(C Q¢ (—P'— Q') = g — 1 if and only if Q" = ©(P").
(The argument for this is not so obvious)

b) The element x is fixed by © and O(y) = —y, the subfield k(x) is uniquely determined
by C,, it is the fixed field of ©.

c) The roots of f(x) are pairwise different, the genus of the curve is g = § — 1, the
holomorphic differentials are of the form
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where p(z) is a polynomial of degree < § — 2.

A curve Cp,, for which we have an involution ©, which satisfies a) above is called hy-
perelliptic . It is clear that the isomorphism class of a hyperelliptic curve is determined
by the set of zeroes of the polynomial f(z). Since variable x is not unique and can be
replaced by

, ar+b
=
cx+d

we can assume the three of these zeroes are 0,1, — 1 (recall that the characteristic of & is
not equal to 2!). Then the remaining n — 3 zeroes are independent variables, which are
determined by the curve up to a permutation by the curve C,,. Hence we see that the
moduli space of hyperelliptic curves of genus g has dimension 2g — 1 and the theorems on
semi-continuity imply that the hyperelliptic curves of genus g form a closed subvariety
of this dimension in M. Only if g = 2 all curves are hyperelliptic.

If g > 2 then we can consider the open subvariety M™"MP of non hyperelliptic curves,
i.e. we need d > 3. Again we can ask for those curves, for which we find three points
Py, P, P such that we can find a non constant = € H°(C,,,0Oc, (Py + P2 + P3)). Again

these curves will form a subvariety Még) in the moduli space.

So we found a procedure to construct sub varieties in the moduli space and it is an
interesting problem to understand these subvarieties.

We may also play the same game with Weierstrass points, in the exercise g**) we made
the assumption that the first jump happens if we go from a = g — 1 to a = g. Again it
is rather clear that the curves C,,, for which this is true form an open subset U (non
empty?) and we can define subvarieties by describing certain certain pattern of jumps.
(For further developments see [Arb] [ACGH].)

9.7 The Grothendieck-Riemann-Roch Theorem

The Riemann-Roch Theorem has been generalized. We want to discuss and explain this
generalization but in a rather informal way. We skip the precise discussion of some of the
concepts needed, and we do not give the proofs. But we will give a detailed exposition in
a non trivial special case and hopefully in this exposition some of the general ideas will
be visible. For a very condensed treatment we also refer to [Fa2].

The first step is of course formulate a question for higher dimensional, smooth projective
schemes:

Let X — Spec(k) be a projective algebraic variety, let F be a line bundle (or a di-
visor or even a vector bundle) on X, how can we compute the Euler characteristic

X(XF) =52, (1) HY (X, F)?
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The answer has to be expressed in terms of certain data, which we attach to the coherent
sheaf. In the case of curves these data where the degree and the rank, which are numbers
or at least look like numbers. Hence we encounter a first problem, namely we have to
attach such data to our sheaf in the case of higher dimensional varieties.

For surfaces, i.e dim(X) = 2 the classical algebraic geometers proved a Riemann-Roch
theorem for divisors. If X = P} and F = Opy(r) we have a formula for the Euler-
characteristic if 7 = Opy(r) in terms of n,r (see theorem 8.2.5).

If the ground field is C, then the set of complex valued points X(C) is a complex
manifold and therefore, a topological space. If F a holomorphic vector bundle, then we
have the theory of Chern classes, these are cohomology classes ¢;(F) € H*(X(C),Z),
they are topological invariants attached to the bundle. Then the Riemann-Roch formula
of Hirzebruch (See [Hi] and exercise 43) expresses the Euler characteristic in terms of the
Chern classes of F and the Chern classes of the tangent bundle of X.

A. Grothendieck formulated and proved a still more general and certainly much more
systematic version of the Riemann-Roch Theorem. He considers a morphism f: X — Y
between smooth projective varieties over k. Let F be a coherent sheaf on X. Then the
higher direct images R” f.(F) are again coherent. Recall that we have defined the K-
groups K ( ),K'( ) in (9.5.4 on p. 220). They provide elements [R” f.(F)] € K'(Y) and we
can define R*f,(F) = > (=1)[R"f.(F)] € K'(Y). The Grothendieck-Riemann-Roch
Theorem provides information concerning this element in K'(Y).

We want to illustrate and prove the Grothendieck-Riemann-Roch Theorem in a special
case.

9.7.1 A special case of the Grothendieck -Riemann-Roch theorem

Let C/k be a smooth absolutely irreducible curve. We form the product of our curve C/k
by itself, we put X = C x;, C, we have the two projections py,ps : X —= C. Let £ be a

line bundle on X. Of course we may ask again for a formula for the Euler characteristic
X(X.L) = dimy(~1)"H"(X,L)

in terms of certain data, which are attached to the line bundle £. The answer is given
by the classical Riemann-Roch theorem for surfaces. It is treated in Hartshorn’s book in
Chapter IV for arbitrary smooth projective surfaces X. Here we discuss the special case
where X is the product of a curve by itself, but we want to discuss a stronger theorem,
which is a special case of a Riemann- Roch theorem in the sense of Grothendieck.
In the supplementary section on the properties of the degree function (See p. 218) we
introduced the group K'(C) and I showed that the formula of Riemann-Roch gave an
expression for the Euler characteristic of an element in K’(C) in terms of its degree and
its rank. Here we recall that we interpreted the Euler characteristic, the degree and the
rank as homomorphisms
xc: K'(C) —Z

Ranke : K'(C) — Z

deg. : K'(C) — Z.
The Grothendieck-Riemann-Roch theorem will give an answer to the the following ques-

tion: Let £ be a line bundle on X, we consider the coherent sheaves R”ps. (L) on the
curve. How can we compute the Euler characteristic
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R*po(L) =) (~1)"[R"p2.(L)] (9.21)

as an element in K'(C)?

If we are able to ”compute” this element, then we can also compute x(X,L) : We use
the spectral sequence with Es-term (HP(C,Rps.L)),d2) = H™(X,L) and as explained
in Vol.I. 4.6 we get

Xo(R°p2.L)) = x(X,L) =Y dimy(—1)"H"(X,L)

Hence it is clear that we have a better theorem if we have a formula for R*ps.(L), such
a formula will imply the classical Riemann-Roch formula for C' x; C.

We explain how we can get such a formula in a special situation. Let us assume that our
line bundle is of the form £ = Ox(Z) where Z is a smooth irreducible curve in X, which
is not one of the fibers. Therefore the restrictions of the two projections p; : Z — C,ps :
Z — C are finite, we denote their degrees by di(Z),d2(Z). We proceed in exactly the
same way as in the case of curves. We write the exact sequence

0— OX E— Ox(Z) i Ox(Z)/OX — 0

This gives us the formula

X(X,R®*p2. (L)) = X(X,R*p2.(Ox)) + x(R*p2.(0x (2)/Ox))
The situation is similar (but much more complicated) as in the case of curves. The sheaf
Ox(Z)/0Ox) is supported on Z and since the morphism po, : Z — C'is finite the higher
direct images vanish. Therefore we have x(R*p2. (Ox(Z)/Ox) = [p2:(Ox(Z)/Ox)] and
since it is clear that x(X,R*p2.(Ox)) = —[ngl] our formula simplifies

X(X.R*p2. (L)) = —[0L] + [p2:(Ox(2)/Ox)].
Hence we are left with the ”computation” of [pa2.(Ox(Z)/Ox)].
Here we have to stop for a second. What does it mean to compute this element in
K'(C)? This group is much to complicated to identify this individual object. But re-
member what we actually want. Eventually we want to compute the Euler characteristic
Xo(x(X,R®p2,L)) and to do this we only need to know the degree and the rank of
X(X,R®p2.L). Therefore we will be content if we can compute the two numbers

deg p2.(Ox(Z)/Ox) and Rankps.(Ox(Z)/Ox).

In principle we learned how to do that. We did this in the special case when we discussed
the degree of the module of differentials in section 9.5.3. It is quite clear that the rank
Rank p2.(Ox (Z)/Ox) is degree da2(Z) of the morphism p, : Z — C'. The computation
of the degree is more subtle and will be done in the following section.

9.7.2 Some geometric considerations

The following considerations are valid for arbitrary smooth surfaces X and a smooth
curve Z C X. The Ox - module sheaf N' = Ox(Z)/Ox is a line bundle when we restrict
it to Z. To see this we recall that we can write Z locally by one equation and hence
the ideal Z(Z), which defines Z is a line bundle, it is the line bundle Ox(—Z). Then
I(Z)® Oz = Z(Z)/Z(Z)? is a line bundle on Z, it is the conormal bundle (see 7.5.5).
The bundle N' = Ox (Z)/Ox is obviously dual to Z(Z)/Z(Z)>.
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If we restrict the tangent bundle Tx to Z then we get an exact sequence

0 — TZ —>Tx|Z _)TX|Z/TZ — 0

But now one sees that I(Z)/Z(Z)? is the dual bundle to the quotient T'x|Z/Tyz. This
is so because the differentials df for f € Z(Z) can be evaluated on the tangent vectors
t, € Tx . they vanish on the subspace T . and this gives the pairing. Hence it is clear
that N' = Tx|z/Tz is the normal bundle. The degree of the line bundle A/ on Z is equal
to the intersection number Z - Z = Ox(Z) - Ox(Z). (see 8.4.2)
We get a formula

A*(Tx|z) =Tz @ N,

which is called the adjunction formula. Very often is is written in dual form. The
second exterior power A(Tx) is the dual bundle to the so called canonical bundle
Kx = A?(Q%) and we get

Kx|z =Qy ©1(2)/1(Z)*.

This yields in terms of degrees

deg(Kx|z) = deg(Qy) + deg(Z(2)/1(2)?)

and this can be interpreted in terms of intersection numbers as (see the considerations
following below)
Kx-Z:2gz—2—Z'Z

We return to our discussion of the Grothendieck-Riemann-Roch theorem, we assume
again that X = C x;, C. Hence we have in K’(X) that [N] = [Oz] + [M], where M is a
virtual torsion sheaf of degree Z - Z. Hence we get

P2:+(Ox(2)/Ox) = p2.(N) = [p2.(O2)] + [p2. M]

The second term is torsion and consequently its rank is zero and its degree is Z - Z. We
are not yet at the end, we need to compute pa,(Oyz). This can be done by the same
method, which we applied when we computed the degree of the sheaf of differentials.
Again we introduce the ”different”-module D/ using the same definition as before, we
replace P! by C and C by Z. We have the perfect duality of Oc-modules

P2*(Oz) X pQ*(DE/lC) B 007

which implies that the degrees of these two modules add up to zero. Again we have the
Hurwitz formula

Qz =p3(Qc) @ Dg/lc
This gives a formula for the degree of DE}C and this formula yields

deg(p2+(07) = 3 dea(Dc) = dx(Z)(g — 1) ~ (97— 1)

This formula is still not completely satisfactory, we have to compute the genus gz of the
curve Z. To get this we recall that we have seen that Tz @ N' = A?(Tx|z), which implies
292 —-2=7Z-7Z— dcg(AQ(TX\Z)
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Collecting all the terms gives us

(Rank, deg)(Ox (2)/Ox) = (da(2),d2(Z)(g — 1) + %(Z - Z + deg(A*(Tx|2)))

The tangent bundle Tx is the direct sum of the two pullbacks of the tangent bundle
on C hence it is clear that deg(A%(Tx|z)) = (2 — 29)(d1(Z) + d2(Z)) and our formula
simplifies to

(Rank, deg) (Ox (2)/Ox) = (do(2), ~ ds(Z)(g ~ 1) + L Z - 2)

To get the final formula we remember that Ox(Z)/Ox was only one term in our exact
sequence. For our original line bundle £ = Ox(Z) we get

(Rank, deg) (R*pa. (Ox (2))) = (~(g 1) + da(Z), — di(Z)(g ~ 1) + 52 - 2).

Recall that we now have a formula for R®ps. (L) ('see 9.21) for a line bundle £ = Ox (Z),
where Z is a smooth curve. But now it is clear how to get a formula for arbitrary line
bundles on X. On the product X we have the two special divisors Hy = x¢g X C,Hy =
C x o where xg is just an arbitrary point. Then it is clear that the degrees d;(Z) =
Z - H1,d2(Z) = Z - Hy. Hence the general formula should be

1
(Rank, deg)(R®p2. (L)) = (—(g— 1)+ L-Hy,— (9 — 1)L - Hy + §£ - L) (9.22)
To prove it we consider exact sequences (a > 0)

0— L — L(aH,) — L(aH,)/L —0

0 — L — L(aHy) — L(aH2)/L — 0

and we apply R°pa. to both sequences. It is not difficult to show that in both cases the
resulting long exact sequence shows that the formula above is true for £ if and only if it
is true for L(aH;) resp. L(aHz).

Then it is clear that it suffices to prove the Riemann-Roch formula for £(a; H; + agHs)
where aj,a2 >> 0. But then the bundle £(a; Hy + a3 H>3) will be very ample and provide
a projective embedding of C' x; C. Then we get L(a1H; + asHs) = Ox(Z) where Z is
a section with a hyperplane. Now we invest the theorem of Bertini, which says that we
can choose the hyperplane so that Z is smooth and now we are in the case, which we
treated above.

Of course we can now easily derive the formula for the Euler characteristic of H*(X,L):

> (=1)7dimg HY(X,L) = (9 —1)* = (9 — 1)L - (H + Ha) + %E L.

It is quite clear that our approach still has a defect. In our argument we used that we have
a Riemann -Roch formula for arbitrary coherent sheaves on curves. More precisely we used
the following. If we have two smooth curves C7,Cs and a finite morphism f : C; — Cs
and if we have a coherent sheaf F on C then we a formula for [f.(F)] as an element in
the group K'(C2) in terms of [F] € K'(C4). We used the fact that it suffices to compute
f+(O¢,) and this is done by the Riemann-Hurwitz formula (See 9.3.3).
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Hence we should be much more consequent and ask for a formula for R®ps,(F) for any
coherent sheaf on X and not only for line bundles. We can define the group K'(X) by
the same construction as in the case of curves p. 218 and then x; : F — R*pos(F))
is a homomorphism ys : K'(X) — K'(C). This situation is analogous to the situation
discussed on p. 218. We have to attach certain coarser data to the element [F], from
which we can compute the corresponding coarser data of R*ps.(F), namely the degree
and the rank. To define these coarser data attached to [F] we have to introduce the Chow
ring, this will be done in the next section.

9.7.3 The Chow ring

For a more detailed exposition of the following we refer to the article of Borel and Serre
[Bo-Se] and to the book of Fulton [Fu].
We discuss the Chow ring

A(X)=A"X)e AYX) e A2(X) e ...

for a smooth projective, absolutely irreducible variety X/k of dimension d. .

The Chow ring is an associative, commutative graded ring. The graded pieces AY(X) are
abelian groups and any irreducible reduced sub scheme Z C X of codimension v gives
us a class [Z] € AY(X). The graded piece A”(X) is generated by these classes, i.e. any
element in A”(X) can be written as a finite sum Y nyz[Z]. If ¥ = 1 then this says that
AY(X) is a quotient of Div(X).

We want to define a ring structure on A®(X) by defining an intersection product

AY(X) x AP(X) — AVFR(X),

which should basically be given by intersecting cycles [Z1]-[Z2] = [Z1 N Z5]. We explained
already that this is too naive and requires some extra reasoning. We have to introduce an
equivalence relation on the cycles, which allows us to choose representing cycles Z! € [Z;]
such that Z7,7Z) lie in a "nice position” relative to each other. For instance we can require
that for each irreducible component Y of Z; N Z; the intersection is transversal in Y (see
7.5.21). In this last case we define

[Z1] - [22] = Z Y.

irred comp Y inZ;NZ}

Of course we have to show that this product is well defined. But we also want it to be
non trivial. To get this non triviality we consider A%(X). Then an element in A%(X) is
of the form ¢ = Zp npp where p are closed points. We require that the homomorphism

¢ D mplk(p) : k] = deg(c)
p

induces a homomorphism deg : A4(X) — Z.

Such equivalence relations exist, actually we have several options for choosing them.
Therefore we get different versions of a Chow ring, the resulting Chow ring will of depend
on the choice of the equivalence relation. For instance we may take as equivalence relation
the linear equivalence of cycles (See [Bo-Se], [Fu].) Two cycles A = Y nzZ,B =
S ngZ' of codimension v are linear equivalent if we can find a smooth sub scheme
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W C X of codimension v — 1, which contains the support of these cycles- hence the
cycles can be viewed as divisors on W- and a meromorphic function f on W whose
divisor is A — B. This relation of linear equivalence on cycles generates the relation of
linear equivalence on the free group of cycles.

This is a very fine equivalence relation and this has the effect that in some sense the
A”(X) become very "big” and cannot be controlled. In any case the ”moving lemma”
(see ([Fu])) guarantees that we can define the intersection product and hence a ring
structure on A} (X). Let us call this Chow ring A, (X). Our considerations in 9.4 allow
us to describe the group Aj; (X), in this case the codimension 1 cycles are simply the
divisors and the relation of linear equivalence is exactly the linear equivalence relation
for divisors. Hence we see that

Al (X) =5 Pic(X) (9.23)

If we work with this equivalence relation, then we have to pay for it. If X/k is irreducible
then we clearly have A°(X) = 7, the group is generated by X itself. If we hope for some
kind of duality then we may wish that also A% (X) = Z or more precisely we hope that
the homomorphism deg : A]m(X ) — 7Z might be an isomorphism. In general it will
not be surjective, but this is not so bad. For instance if our ground field is algebraically
closed, then it will be surjective. But in general it will have a big kernel. Already in the
case of projective smooth curves C'/k the kernel is the group Pic’(C/k) (see 9.4.1), which
may be very big and difficult to understand. So our hope fails completely.

We may also start from the algebraic equivalence of cycles: T'wo irreducible sub-varieties
Z1,Zs are called algebraically equivalent if we can find a connected scheme T'/k of
finite type and a flat family schemes Z C X X T such that we can find two points t1,t5
such that Z;, = 71,2, = Zs. We can extend this equivalence relation to the free group
of cycles and define Aalg( ) as the group of cycles of codimension v modulo algebraic
equivalence. This may open the option to define the Chow ring A;lg(X ), but T do not
know a reference for this.

But for the relation of algebraic equivalence we have a better understanding of Aalg( ).

Let us assume that k is algebraically closed. Then Aalg( ) generated by zero dimensional
cycles Y pnpP. If P,Q € X(k) then the theorem of Bertini asserts, that we can find to
smooth hypersurface sections X N Hy,X N Hy with P € Hy(k),Q € Hy(k). We can find
a point Q1 € X N Hy N Hs. Iterating this shows that we can find a finite collection of
smooth curves C1,Cs,...,C, and points Q1,...,Q,_1 such that P.Q, € C’l( ),Q1,Q2 €
Ca(k),...,Qr—1,Q € Cr(k) and this clearly implies that [P] = [Q] € Afy,, and from
this we get that deg : Aglg(X ) = Z. If k is not algebraically closed a cycle represents
the trivial class if and only iff >, n,[k(p) : k| = 0. If in addition X/k has a rational
point P € X (k) and if d = dim(X) then Aglg(X) = 7Z and is generated by the class of
this point. Hence we see that we get an injection Aﬂg(X ) — 7Z. Certain diophantine
problems amount to the computation of the index of the image.

If we accept the ring structure on A (X), then we can introduce the very coarse equiva-
lence relation of numerical equivalence: Two v— codimensional cycles Z;,7Z, are numeri-
cally equivalent, if for all cycles Z3 in codimension d—v we have deg(Z;-Z3) = deg(Z2-Z3).

If we divide the by this relation of numerical equivalence then we get quotients AY  (X)
and clearly the ring structure on A (X) defines a product structure on A, (X). For
this version of the Chow ring the pairing
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Alm(X)®@Q x AL N (X) 2o Q — Q

is non degenerate by definition.
Finally we mention that for a smooth surface X/k we have defined the intersection
product

AL (X) x A (X) 25 42 (x) 29 7.

lin
Here we only need to recall that A}, (X) — Pic(X) and to apply our results in the end
of 8.4.1. To be a little bit more precise, we only constructed the composition deg o int
but a closer look at the reasoning shows that we actually also constructed int.
For projective, smooth surfaces X/k we have defined the non degenerate pairing

I

Al (X) — 7.

num

(X) x AL

num

If the ground field is k¥ = C then we can attach to any irreducible smooth subscheme
Z C X of codimension v a class [Z] € H? (X (C),Z). This is the so called cycle class.
This has been explained in Vol. T 4.8.8: We consider X (C) as an oriented 2d dimensional
Coo manifold and the set of complex valued points Z(C) is a 2d— 2r dimensional subman-
ifold and for this situation we constructed the fundamental class [Z(C)] € H* (X (C),Z)
and this will be our [Z].

If we drop the assumption that Z/C is smooth then it is still possible to attach to it a
cycle class [Z] € H* (X (C),Q). We will not construct this class in detail but we give the
basic idea behind this construction and explain the geometric meaning of this class.

We recall Poincaré-duality, it gives us a non degenerate pairing

H2V(X((D)7Q) % HZd_QV(X<(D>,Q) N Q,

hence we know that we know the class [Z] if we know the values [Z] U £ for all £ €
H?4=2v(X(C),Q). In Vol. I 4.8.6 we gave a somewhat sketchy argument that we have
a canonical isomorphism PD : H,, (X (C),Q) = H???"(X(C),Q) and then we also
basically explained in 4.8.9 that for a class ¢ € Hy,(X(C),Q) and for [Z] smooth we
have PD(c) U [Z] = ¢- Z(C), where we think of ¢ = Y m,o as being represented by a
Cw singular cycle also called ¢. We can choose ¢ in such a way that it intersects Z(C) in
transversally in a finite number of points then ¢ - Z(C) is the intersection number as in
Vol. I 4.8.9.

This means we identify [Z] by the intersection numbers of Z(C) with singular cycles in
the complementary dimension. But if Z is singular then the singular locus Zg,g has a
larger codimension. A simple reasoning using some Mayer-Vietoris sequences shows that
we may choose the singular cycle in such a way that it avoids the singular locus. And
hence way may define [Z] by the intersection relation

PD(c)U[Z] = ¢- Z(T).

This shows us that we may define a version A2, (X) of the Chow ring, it is simply the
image generated by the cycle classes in H2*(X(C),Q). Of course the intersection product
in the Chow ring goes to the cup product in cohomology.
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At the very end of this book we will discuss the étale cohomology groups H®(X x k,Q,)
of algebraic varieties over an arbitrary field. They also allow the construction of a cycle
class (See [Del], [Cycle] ) we get cohomological versions-depending on the cohomology
theory, which we choose, of the Chow ring. Cycles, which are algebraically to zero map
to zero under the cycle map. Hence we get a sequence of surjective maps

2(X) — A% (X) — AL, (X) C H**(X).

lin alg coh
We can conclude that a class of a cycle [Z] € A% (X) is zero if its cup product with
all classes in H2972¥(X) is zero. (Poincaré duality is valid for our cohomology theories).

This implies that we have a natural homomorphism

i A% (X) — Apum(X).

coh

But interestingly enough it is not clear that this homomorphism r is an isomorphism.
Because if we want to test the vanishing of the class [Z] we are only allowed to take the
cup product with classes [Z'] of cycles and in general A2, (X) is a proper subspace of
H?*(X).

It is one of the major problems in algebraic geometry (or arithmetic algebraic geometry)
to achieve some understanding of the subspace generated by the cycles classes. If there
is some space left, we come back to this problem at the end of this book. We have two
major conjectures- namely the Hodge and the Tate conjecture-, which once they have
been proved yield a description of the image.

The Chow ring has a very intuitive geometric meaning, so I ask the reader to accept
these geometrical ideas and to believe that they can by rigorously justified.

Finally we want to mention that for the projective space P"/k the Chow ring becomes
very simple. We have the class H of a hyperplane in A!(PP") and then

A*(P") = Z[H]/(H™).

Similar results hold for Grassmann manifolds.

Base extension of the Chow ring

Sometimes it useful to pass to the geometric situation: If X/k is absolutely irreducible
then we can choose an algebraic closure k and consider the ring A®(X xj, k). Of course
we have to understand the relationship between these two rings. We construct a homo-
morphism from i : A(X) — A(X xy k).

Let us consider a reduced and irreducible cycle Z C X. We want to attach an element in
A(X xy k) to it. In section 7.2.1 we investigated what can happen if we extend the field
of scalars. We learned that an extension Y xj L may not be irreducible anymore and it it
may also become non reduced. We have seen that we can find an affine non empty open
subset V' C Z such that the ring A = Oz(U) contains the field L/k of pseudoconstants.
This is a finite extension of k. Then we saw that

L®kE:ZLo'

where o € Homy(L,k) and where L, are finite local algebras over k. We have L, =
L ®y, ke, where the e, are the orthogonal idempotents. Then A @ k = Yoo (A®y ke,
where now (A ®j, k)e, is an absolutely irreducible k algebra. If we divide (A ®y, k)e, by
its radical, then defines an irreducible reduced cycle Y, C X xj k.
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But the L, may not be reduced. We know from elementary algebra that L/k has a unique
maximal sub extension L;/k, which is purely inseparable over k. It is the field consisting
of those elements € L, for which o(z) = 7(z) for all pairs 0,7 € Homy(L,k). Then the
extension L/L; becomes separable, we get [L : L;] = # Homy(L,k) and dimy, L, = [L; :
k]. Then it becomes clear that we should define

i(Z) =" (dimg Ly)Y, = [Li : k] Y _ Yo (9.24)
The following example should convince the reader that this definition is natural. Again
we consider the irreducible curves Cy,,Cy, defined by the equations (see 9.1) f; = (z +
y)? —22% and fo = 2P + yP + azP.

The first curve is irreducible over Q. For our set U we can take the open set where z # 0.
Then u = (x + y)/z is a pseudoconstant and the field of pseudoconstants is L = Q]u],
which is a separable extension of degree 2. If we extend the field of scalars to L, then
our curve is the union of two different absolutely irreducible, absolutely reduced smooth
curves. The sum of these to curves is a cycle on P? x L, it is the image of Cy, .

For the second curve the field of pseudoconstants L/k is generated by v = (z +y)/z and
u satisfies the equation uP = a. This is a purely inseparable extension of degree p. Now
Cy, X1 L is absolutely irreducible but not reduced. In this case we have only one o and
Y, = (A ®y k)es)rea(See 7.2.1). The image of O, under the base change to L will then
be p((A Ok k)ea)red~

We also see that the Chow ring changes if we extend the ground field. Let us consider
the curve C/k defined by the quadratic form f = az? + by? + cz? considered on p.221.
Then it is clear that for this curve C/k the index of A(C) in Z is two, if the quadratic
form does not represent zero. It is one otherwise. If we are in the first case then we see
that A'(C) has index two in A(C x k(\/a)).

The intermediate groups A”(X) may become very mysterious. But we observe that we
have a good definition for A'(X). If we have two irreducible cycles Y C X of codimension
one and Z of dimension one then we can define the line bundle O(=Y)) it is the ideal
sheaf defining Y. We know that this is a line bundle 9.4. We can restrict this line bundle
to the curve Z. The curve may be singular.

In the case where dim(X) = 2 it is clear how to define the Chow ring. In this case we have
to say what A'(X) is and we have to define the intersection product A'(X) x A*(X) —
A%(X) = 7. As equivalence relation we take the linear equivalence of divisors to define
AY(X) (See 9.23) and then we define the intersection numbers in 8.4.2. In our special
case that X = C xj, C the group is A'(X) is essentially the group of correspondences in
10.3.

We can relate the Chow ring to topology if our smooth projective variety over C. Then
we can define a homomorphism

A*(X) — H?*(X(C),Z).

To get this homomorphism we pick an irreducible cycle Z C X of codimension v. The set
of complex points Z(C) is not necessarily a complex variety, but it is possible to show that
the singularities do not matter, and we can attach a fundamental class [Z] € H?*"(X,7)
to a cycle of codimension p. Then it is possible to show-with some technical effort- that
this defines a homomorphism of rings.
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9.7.4 The formulation of the Grothendieck-Riemann-Roch Theorem

The next thing we have to accept is the theory of Chern classes for vector bundles
on smooth projective varieties X/k. If we have a line bundle £ , then we know that
L = O(D), where D is a divisor, we write it as a linear combination D = Y, n;¥; where
the Y; are irreducible subvarieties of codimension one. Then the first Chern class of £ is
simply this divisor considered as an element in A'(X), i.e. ¢1(£) = D. We also define
the total Chern class

c(L) = (1,¢1(£),0,0,...) e A X) s A'(X) D ....

To any vector bundle £ on X we can attach a Chern class
(c1(E),e2(E),...) € AMX) @ A% (X) +....
We encode these Chern classes by writing the Chern polynomial
PEL) =1+ ci(Et+ ca(E)P + ...
The fundamental properties of these Chern classes are:

(1) If we have an exact sequence of vector bundles
0—& —&—&—0

then
P(Et) = P(EH)P(E" L),

here we use the ring structure of A®(X).
(2) The Chern class of a line bundle is given by the above rule.

The Chern classes are defined uniquely by these two conditions.

We briefly mention Grothendieck’s formula for the Chern classes: If £ is a vector bundle
of rank d over X then we can define the bundle IP(E) ( see end of section 8.1.6). Since
this bundle is locally trivial we can define the hyperplane class H € A%(P(£)) which
restricted to each fiber yields the hyperplane class. If restrict to an open set U C X such
that BP(E)|U = U x P? then H& = 0. But globally on X we get the relation

HY — i (E)H 4 ep(E)H 4 -+ 4 (=1)dcy(E) = 0.

(See [Gr-Ch], 3.) (The sign comes from a different convention to define IP(£), our P(£)
is Grothendieck’s P(EV).)

We know that for a smooth variety X/k the group K’(X) is isomorphic to K (X). (See
Theorem 9.5.5). Each of these two groups has some advantages over the other. For in-
stance we can define a ring structure on K (X ) using the tensor product of vector bundles,
this works because an exact sequence of vector bundles stays exact of we tensorize it by a
vector bundle. This construction does not work on K’(X)), but we can define the product
structure via the isomorphism. On the other hand we can not define the homomorphism
R? on the group K (X) directly.

Now we define a homomorphism of rings (the Chern character)
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ch: K(X) = K'(X) — A*(X)

by the following rule:
For a vector bundle £ of rank (£) = d, we factorize the Chern polynomial ”symbolically”

L4+ (E)t+...ca()t = (1+ Mit) ... (1 + Aat),
i.e. we think of the Chern classes as being the elementary symmetric functions in the \;.
Then we put
d

d d d
1 1 n R
Ch(5)=(z>\?7z>\i@ A?w'wﬁz)‘i)eA (X)
i=1 i=1 ’ Ti=1

i=1
in other words

A3(E) = 3c1(E)e2(E) + 3c3(€)
G .

eh(€) = (Rank(&), + cl(g)é(cl(g)? —2%5(E)), ).

This can also be written in the form

C?(g) — 301(5)02(8) + 303(5) tg
6

oh(€) = Rank(E)° + ¢1 (£)¢ + %(01(5)2 20, (E))E2 4+
For an exact sequence of vector bundles
0—& —E—&" —0
the property 1) translates into
ch(&) = ch(&") 4 ch(E").
This shows that ch is a homomorphism for the additive structure.
For a line bundle £ = Ox (D) we have by definition

ch(ﬁ)—(lDlDD Lpn )fZD—ktk
= (1D, P =2

If we now have two line bundles £1,£5 then it is clear from the construction that ch(£; ®
L2) = ch(Ly)ch(Ls). Then it follows from general principles that for any two vector
bundles &;,E2 we have ch(&1 ® &) = ch(&1) ch(&:) and then it is clear that ch is a ring
homomorphism.

If D is effective then we had the sequence

0— OX — Ox(D) — Ox(D)/OX — 0

and we find )
ch(Ox(D)/0) = (O,D,ED -D,...).

We observe that for a coherent sheaf F on X ( Now X maybe arbitrary again), whose
support has codimension p, the value ch(F) in A*(X) has entry zero in the first p com-
ponents.

We still assume that X/k,C/k are smooth projective and f is an arbitrary morphism.
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We can define a homomorphism of groups
foAN(X) — A%(O).

If Z C X is irreducible and of codimension v, then the closure f(Z) of p2(Z) is also an
irreducible subvariety. We put p5(Z) = 0 if dim(Z) > dim(f(Z)). If we have equality of
dimensions then the restriction f : Z — po(Z) is finite if we restrict it to a suitably non
empty open set (or to the generic point.) Then we put

(Z) = [k(Y) : k(p2(2)]f(2).

The homomorphism sends A¥(X) to A¥+dim(C)—dim(X)(x)

We get a diagram

K'(X) & A%(X)

Rfl ol

K'(C) % 4%(0)
This diagram does not commute! We have a deviation from commutativity. To understand
this deviation we introduce the Todd genera 7 (Tx) resp 7 (T¢) of the tangent bundles
Tx resp T¢. Its general definition is as follows: We write as above the Chern class of the
tangent bundle as

L4 (Tx)t 4 .. ocq(Tx)th = (1 + Mit) ... (1 + Agt)

and then
T(T):HL:H(Mr Intr oz o Lo 2
X (1—e) L 1271 7207
a(Tx),  a(Tx)’+c(Tx) , | caa(Tx)e(Tx) 3
1
+ 5 t+ D t° + o1 t
+ (—Cl (Tx)4 + C1 (Tx)C3(Tx) + 401 (TX)QCQ(TX) + 362(Tx)2 — C4(Tx))t4

720

Now can write down Grothendieck’s Riemann-Roch formula for an arbitrary morphism
f: X — C between two smooth projective varieties over a field:

f2(eh(F) - (T(Tx)) = ch(R*fo(F)) - T(To) (GRR)

The Todd genera T (T'x),7 (T¢) are units in the rings A®*(X),A*(C).

We make the point that the general GRR is of striking simplicity and the formula has
its own aesthetic beauty. Only if you start to produce explicit formulae it becomes com-
plicated. A large part of the ingenuity required to prove this theorem is to find the right
correcting terms.
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9.7.5 Some special cases of the Grothendieck-Riemann-Roch-Theorem

Let us consider the case that X/k is a smooth, absolutely irreducible projective curve.
Then we have A*(X) = A%(X) @ AY(X) C Z & Z and the Chern character is given by

c¢h: K'(X) — 7Z & Z,F — (Rank(F), deg(F)),

we introduced this homomorphism on p. 220.
Now we a separable finite morphism f : C; — (3 between two smooth, absolutely
irreducible projective curves. Then we have

K'(C) 2 4A(oy)

fel ol

K'(Co) < A%(Co)
and we apply GRR to the trivial sheaf O¢,. We have ch(O¢,) = 1 and 7 (T¢,) =
14 (1 —gcy)t- Then f*(ch(O¢,) - T (Tc,)) = deg(f) + (1 — gc, )t. On the other hand we
have ch(f.(O¢,)) = deg(f) + deg(f«(O¢,))t and the GRR yields the equality

(deg(f) + deg(f.((Oc,)t) (1 + (1 — ge,)t) =

deg(f) + (deg(f.(Ocy)) + deg(f)(1 = ge,))t = deg(f) + (1 = gey )t

The non trivial information in this formula is the equality

deg(f+(Oc,)) +deg(f)(1 - gc,) =1 - gc,

and this a slight generalization of the Riemann-Hurwitz formula. (See Thm. 9.3.3)

Another special case is that C' = Spec(k). In this case ch : K'(C) = A%(C) = Z and
RY f.(F) = HY(X,F). Therefore we get for the right hand side of the formula the Euler
characteristic x(X,F) = Y (—1)” dimy(H"(X,F)). On the left hand side we compute
the product ch(F)-7(X) € A®(X). and then we have to apply f* to the result. But here
it is clear that f* = 0 unless we are in the top dimension, i.e. v = d = dimy(X). In this
degree the component ch(F)7 (X)@ is a zero dimensional cycle >_ nyp, which is a linear
combination of intersections of Chern classes of £ and cycle classes in the coefficients of
T (Tx ). Now it is the definition that f4(}"n,p) = >_p p[k(p) : k] and the Riemann-Roch
theorem says that

X(X.F) = fU(ch(F) - T(Tx)) = OO _nypp)

We leave it as an exercise to the reader to verify that for a smooth, projective and
absolutely irreducible curve X/k this is our old Riemann-Roch theorem. But we see a
small subtlety: In our first version of the Riemann-Roch theorem the genus g entered
as the dimension of H'(X,0x) where in the version above it is defined by the equality
deg(Tx) =2 — 2g.
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9.7.6 Back tothecasep, : X =CxC —(C

We want to show that we actually almost proved the Grothendieck-Riemann-Roch-
Theorem for this special case. Of course it is not entirely clear what it means that
we proved it, since already the statement depends on several concepts and results (the
theory of Chern classes and the equality K (X) = K'(X)), which we did not prove here).

But in the special case of a smooth, projective surface X/k we have defined A'(X) and
the intersection product A'(X) x AY(X) — A%(X) C Z. (See 8.4.2). It this point I
recommend to work with the relation of algebraic equivalence on cycles. We have the
Chow ring in this case and the degree map gives us an inclusion A?(X) < Z.

For a coherent sheaf F on X we want to define (compute) the value of the Chern character
ch(F). We have to do some maneuverings. We have the additional problem, that we have
not proved that K(X) = K’(X) and we propose a strategy to solve both problems at
once.

The support of the sheaf is a closed subscheme, we define ch(F) by induction on the
dimension and the number of components of maximal dimension in its support. Basically
this is the same strategy as in the discussion of the Riemann-Roch theorem for curves.
Let us assume that F let Y C supp(F) be an irreducible component of maximal dimension
of the support. We can find a non empty open subset V' C Y such that F restricted to
V becomes trivial, i.e. we have sections ti,...,ty € HY(V,F), which trivialize F|V. We
take an ample sheaf £ on X and a global section s € H°(X,), which is not vanishing
on Y. Let D be the divisor of zeroes of s then we get an embedding F — F ® Ox(rD)
for any r > 0. We have seen in the proof of Thm. 8.3.3 that for » >> 0 our sections t;
extend to sections of F ® Ox (rD) and hence we get an embedding O — F ®@ Ox (rD)
and therefore, an exact sequence

0— O} — F®O0x(rD) — F — 0.
The support of F’ is strictly smaller than the support of F, and we have
ch(F) ch(Ox(rD)) = dch(Oy) + ch(F).

This tells us that K'(X) as an abelian group is generated by line bundles on X, the
restriction of line bundle £ on X to (one dimensional) irreducible sub schemes ¥ C X
and closed points. But for an irreducible sub scheme of dimension 1 we have the sequence

0—O0x(-2)— O0x — Oy — 0

and hence
0—O0x(-2)L —L—LROy — 0,

and hence the restriction of a line bundle to Y is also in the group generated by line
bundles on X. Therefore, in our special case it suffices to prove GRR for line bundles on
X and sheaves with support of dimension zero. Now we show that for line bundles our
formula 9.22 is equivalent to (GRR) and then we for points..

Our formula 9.22 yields

R*pa(£) = [Fpa(0)] ~ [R'pa(D)] = (1~ g) + L Ha) + (1 — )L Hy + S £+ L)t

As before we have 7 (T¢) =1+ (1 — g)t and hence we get on the right hand side
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ch(R°p2(L)) - T(Te) = ((1—g)+ L -Ha)+ (1 —g)L - Hy + %c L+ (1—g)?)t

To compute the left hand side we know that ch(£) = 1+ ¢i (L)t + Fc1(L) - er(L)t2.
For the tangent bundle have have the identity Tx = pi(T¢) @ p5(Tc). We know that
a(pi(Te)) = (2 = 29)[Hi],e1(p5(Tc)) = (2 — 2g)[Hz], where [H;] is the image of H; in
AY(X). We get for the Chern polynomials

P(pi(To),t) = 1+ (2 = 29)[Hi]t, P(p3(Tc)t) =1+ (2 — 2g)[Halt

and in accordance with our above rule we get
P(Tx t) = (1+(2—29)[H1]t) (1+(2 —29) [Ha]t) = 1+ ((2—29) ([H1]+[Ha])t +4(g—1)*t.

This means that ¢1(Tx) = pi(c1(Te))+ps(ci(Te)) and ca(Tx ) = pi(c1(Te))-p5(cr(Te)) =
4(g — 1)2. Hence the Todd genus is

pi(c1(Te)) + p3(a(Te)) . (i (c1(Te)) + p3(ei(T0)))? + pi(a(Te)) - p3(ei(Te))

2 =
2 12

T(Tx) =1+

L+ (1= g)([H] + [Ha])t + (9 — 1),
We multiply this by ch(£) and get

(1+c(L)t+ %cl(ﬁ) cer (L)) - (L+ (1= g)([Hy] + [Ha)))t + (g — 1)*#?) =

14 (er(£) + (= g)([Hi] + [H2))t+ (9= 1)* +ex (L) - (1 — g)([Ha] + [Ha]) + % “er (L))t

Now we have to apply p5 to this expression. The constant term vanishes because the
fibre has dimension one. The linear term yields the constant term, ¢;(£) maps to £ - Hy
the class [Hz] maps to zero and [H;] maps to one. The coefficient of the quadratic term
is a number, which then becomes the coefficient of the linear term. Hence we see that
somewhat miraculously (or not?) we get

p3(ch(L) - T(Tx)) =

((lfg)+£-H2)+((1fg)£-H1+%£«£+(1fg)2)t:
ch(R®*p2(L)) - T (T¢)

Hence our previous calculations yield a proof of GRR for the case of ps : C x C — C
and line bundles £ on it. But this also yields GRR for divisors on C' x C, hence it remains
to prove GRR for sheaves with zero dimensional support. Let us look at this last case.
For the moment X can be any smooth irreducible projective variety of dimension d. If
the dimension of the support of F is zero, then our sheaf is a skyscraper sheaf, which is
direct sum over a finite set of closed points 7 = @®,S,, where S, is an Ox ,— module of
finite length. (This means that it is annihilated by a suitable power mév of the maximal
ideal and the successive quotients m;'S, / 111;’”'15p are finite dimensional vector spaces of
dimension d,, ., over k(p)). Then we claim that the value of the Chern character on F is
given by
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ch(F) = (d— 1)) [k(p) : Kldp mt”.
p,m

This is not entirely obvious. If our base field is algebraically closed, it says that for all
closed points = € X (k) we have ch(Ox/m,) = (d — 1)!it?. If we accept this fact, then
GRR becomes true for sheaves with zero dimensional support (see [Gr-Ch], 16).

We give a hint how this can be proved for surfaces X/k. Let us choose two irreducible
subvarieties 71,75 C X, which intersect transversally in smooth points. If I;,I5 are the
ideals defining these subvarieties, we get an exact sequence of sheaves

00— Ox/OX(—Zl — Zg) — OX/OX(_Zl) EBO/O)((—ZQ) —J —0

where J is a torsion sheaf whose stalk is non zero only at the intersection points of Z;,Zs.
At these points we have

J = OX,z/(Il7I2) - @zEZlﬁZzoX,x/mm-
Hence our exact sequence yields

ch(J) = ch(Ox /1) + ch(Ox /Iz) — ch(Ox /Ox (Zy + Z3)) =

1 1 1
tZ, — 521 2+t 7y — 522 73— (H(Z1 + Zy) — 5(21 + 7o) - (Zy — Zo)t?) =22, - 7

and hence we get >° -~ ch(Ox ./m;) = #(Z1 N Z3) and our assertion above follows
if we accept that ch(Ox ;) does not depend on = € X.

In any case in our special case X = C x, C we know that any point (z,y) € C x C is the
transversal intersection of two cycles {xo} x Ho N Hy x {yo} and the above claim follows.
Hence we proved GRR for the projection py : C x C — C.

Exercise 42. Consider the case X = IP?/k, write a point = as intersection of d hyper-
planes and prove the above formula for ch(Opa , /m,) using the same strategy. Once you
have done this you proved another special case of GRR.

Exercise 43. Let us consider a smooth, projective and irreducible scheme X —
Spec(k), i.e. Y is a point, let F be a coherent sheaf. Write the GRR in this case. This is
the Hirzebruch-Riemann-Roch-formula.

Exercise 44. Prove the Hirzebruch-Riemann-Roch formula for P /k and F = Opr (1)
using 8.2.3.

The GRR is a marvelous example for the paradigm that theorems become easier to prove,
concepts become clearer if we formulate them in greater generality. In a nutshell this is
already visible in [De-We], in principle they discuss vector bundles over curves and this
allows them to make use of the morphisms C' — P*.

We want to discuss a very important application of the GRR theorem. We still consider
the case where X = C x C' is the product of a smooth, projective, absolutely irreducible
curve by itself. We have the non degenerate pairing

Al (X))@ Q x AL, (X)®Q — Q,

which is given by the intersection pairing. In Al (X) we have the two classes given by
Hy,H,, it is clear that Hy - Hy = Hy- Hy, = 0 and Hy - Hy = 1. Hence QH; ® QH> is a
hyperbolic plane in Auum(X) ® Q. Hence it has an orthogonal complement A}(X) and
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Arllum(X) ® Q = QHl EB QH2 @ A(IJ(X)
We get the famous Hodge index theorem:
Theorem 9.7.1. The intersection form is negative definite on A§(X).
Let £ be a line bundle, which corresponds to a class £ € A}(X). Then we get from the
Riemann-Roch theorem that
. 1
ch(R®p2 (L) =1—g+ §£ - Lt

We consider the degree and get
1
deg(R’ps - (L)) — deg(R'ps.(£)) = 5L L..

Since R%ps (L) has no torsion it is a locally free sheaf. We assume for simplicity that
C'/k has rational points zg,yo, ... The fibre L|C' x {2} has degree zero, hence we get
dimy, H(C' x {x0},L|C x {z0}) < 1 and is equal to one if and only if £|C x {z¢}) is trivial.
We can conclude that either R%ps (L) is a line bundle M or it is zero (See Theorem 8.4.5).
The adjointness of ps . and p} yields a homomorphism i : p3(ps ) (L) — L (See 1,3.4.1),
which in the second case is an isomorphism. In other words we have have py ,(£) = 0 or
L = p3(M). We restrict p5(M) to a {yo} x C, which represents the class [Hs]., Then we
see, that this restriction has degree zero, hence in any case deg(R"ps (L)) = 0. Therefore,

1
—deg(R'pa«(L)) = 5L L

Now we show that we can find a constant m > 0 such that deg(R'ps.(L)) > —m
independently of £. To see this we consider the tensor product £ ® Ox(r(yo x C) =
L(r(yo x C) and the resulting exact sequence

0— L— L(r(yo x C)) — L(r(yo x C))/L — 0.

We restrict L(r(yo x C)) to the fibers (C'x {t}). The degree of these restriction is r. Hence
we know: If » > 29— 2 then H*(C x {t}),L(r(yo x C))) = 0. Therefore the semicontinuity
theorem yields R'ps . (L(r(yo x C))) = 0, and we get the exact sequence

0 — R%» . (L) — Rps . (L(r(yo x C))) —

R%py (L (r(yo x C))/L) —> R'pa.(L) — 0.

If we denote by L,, the restriction of £ to {yo} x C' and observe that the projection po
induces an isomorphism {yo} x C = C. Then

R%p2(L(r(yo x C))/Ox) = Ly,

We want to have a bound from below for the degree of R'ps . (£). Let N be be the image

of R%pa (L ® Ox (r(yo x C)) — L}, this means that we have an exact sequence

0—N— L) — R'py.(L) — 0.

The degree of L, is zero, hence we get
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deg(R'py (L)) = — deg(N).

We need an estimate for the degree of N from above. Since dim H(C,L; ) < r and
H(CN) C HO(C’,EZO), we get an estimate for the dimension of the space of sections of
N and then the Riemann-Roch formula in section 9.5.4 yields an estimate for the degree
of N from above.
We find that the degree of £ - £ is bounded from above, hence £L®" - L& = n2L - L is
bounded from above. This implies £ - £ < 0. Since the form is non degenerate we must
have £ - £ < 0 if the class £ of the bundle in Al (X) is not zero.

O

9.7.7 Curves over finite fields.

We consider the special situation of a projective, smooth and absolutely irreducible curve
C/F,, where IFy is the field with ¢ elements. This special case is historically the origin
for the theory of curves over arbitrary fields. The classical geometers always studied the
case of curves over C and the theory of Riemann surfaces.

Let K = IF,(C) be the function field , this is a finite separable extension of a rational
function field IF,[f] (see Prop. 9.3.1). Since C/IF, is absolutely irreducible we know that
the field of constants is equal to IFy. We can recover the curve C//IF, from the field K as
we explained in section 9.3.

These function fields attracted the attention of number theorists since they are analogous
to number fields. The closed points p of the curve C' are in one to one correspondence to
the discrete valuation ring O, C K. If we remove one point oo from C, then C'\ {oo} is
the spectrum of the Dedekind ring Oc(C \ {oc0}), and this has to be seen in analogy to
the number field case where we have Spec(Q) where O is the ring of integers.

For instance we can attach a (-function to our curve, which we define as

Ck(s) =Cels) = 11 ;1

p:closed point ~ NP°

where Np = #(0O,/p) is the number of elements in the residue field. This (-function is
analogous to the Dedekind (-function of a number field, and it is easy to see that the
product converges for Re (s) > 1.

We will show that the Riemann-Roch theorem implies that this (-function is a rational
function in the variable ¢ = ¢~° and more precisely we have

Pi(q™?)
(=g q*)1—q%)
where Pi(qg7%) = 1 +a1q *--- + ¢7 - ¢"%9° is a polynomial of degree 2¢g in ¢~* with

integer coefficients. We will see that the theorem of Riemann-Roch implies that we have
a functional equation

Co(s) =
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((s) = ¢P2D5g19¢(1 — ).

This is in a perfect analogy to the situation of a number field.

It has been observed by Artin (see [Art2] that we can formulate the analogue of the Rie-
mann hypothesis, which would say that the zeroes of ((s) have imaginary part Re (s) = %
This assertion can be formulated in terms of the polynomial P;(¢~%) = Pi(t). We may

factor it over Q C C and get
29

Pi(t) =[] - w)

i=1
where the w; are algebraic integers. It is easy to see that the functional equation allows
a grouping of these numbers w; so that we have

wl...wg 7wg+1...w2g

and w, - wy4g = q.
Then the Riemann hypothesis is equivalent to the assertion that all the w; have absolute
value ;

|wil = q=.
This has been conjectured by Artin in his thesis, and he verified it in several cases. But
actually Gauss knew it as special cases in a somewhat disguised form and also Artin’s
thesis advisor Herglotz had proved in it in a special case.

The Riemann hypothesis was then proved by Hasse in 1934 ( [Has]) for curves of genus
one and A. Weil announced the proof in the general case in 1941( [We3]). The final proof
appeared in 1948, and it is based on the theory of the Jacobian of curves.

Elementary properties of the (-function.

In this section we call elementary properties of the (-function those, which follow from
the Riemann-Roch theorem for the curve. (See [Scm]). As in the case of the Riemann

(-function we can expand the product

1 1
II —— :ZN(Q)S

p Nps a

where a runs over the effective divisors
a= E nip; n; < O,

where N(a) = [[(Np;)™ = ¢3°8(). For the following discussion we have to assume that
our curve has a divisor of degree one. This assumption is equivalent to the assumption
that the degrees f, of the prime divisors are coprime. It is a theorem of F. K. Schmidt
that this is always the case (see [Scm]).
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If we make this assumption (or if we believe F. K. Schmidt’s theorem), then it is clear
that the divisor classes of degree n for any n form a principal homogeneous space under
Pic’(C)(IF,), this is the group of divisor classes of degree 0. The number & of these divisor
classes is finite and it is called the class number. We get

Cols) =" Z(,Z)

where ¢(n) = # of effective divisors of degree n. (This number is clearly finite.) For
n > 2g — 2 we have a formula for ¢(n): If a is an effective divisor of degree n, then we
can consider the line bundle £ = O¢(a), and we have

dim H(C,0¢(a)) =n+1—g.

A non zero section s € H°(C,L) defines the divisor b = Div(s). and we see that the
divisors b, which we get if s varies are exactly those divisors, which are linearly equivalent

to a. Then i
gt 1
= h B —

e(n) p—

(As a byproduct we proved the finiteness of the class number.) We make the substitution

q~*® =t, and write {c(s) = Z¢(t). Then we define a new function Zg(t) by

h t29-1 1
Zo(t) = 260+ - (4 ).

1—qt 1t
and
2g—1
ZE(t) =Y c(n)t"
n=0

The coefficients ¢*(n) are equal to zero for n > 2g — 1, and we have

h
c(n):c*(n)—m for 0<n<2g—2.

R(t) " (qg o ! )

Tyt \T1 o 1t

The correcting term

satisfies the functional equation

1
t) = t2g—2 1—g -
R(t) = #2972 OR ().

and hence we have to show that Zf(t) satisfies this functional equation.

Now we observe that we have a precise formula for ¢(n). We sum over the classes of
bundles of degree n and count the effective divisors in a class. If £ is a line bundle of
degree n, then the number of effective divisors in this class is

1 (qdim HO(C.L) 1) ,
q—1
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and hence

1 dim H°(C,L)
- L) 1) .
=~ > (o
L:deg(L)=n
Now we assume that for all n this sum is not empty. This follows from the theorem of F.
K. Schmidt that we can always find a divisor of degree one. Then we can conclude that
the number of terms in the sum is equal to A and hence

c* (n) _ Z qdim HO(C',,C).

L:deg(L)=n

Our problem is that we do not know the dimension of the space of sections. But we have
in involution n, the set of divisor classes of degree between 0 and 2g — 2.

L—L'ow0="L,
and then deg(L£) — 2¢g — 2 — deg(L). We see that

*(29—2—n) = Z gtim HO(C,L)
L:deg(L)=2g—2—n

If now £' = L7 ® Q, then
dim H°(C,L) — dim H°(C.L") =n+1—g,
hence this difference depends only on the degree and not on the class. This implies
¢*(n) =q""179c" (29 - 2~ n),

and this implies the functional equation for Z(t). We can conclude that

14 ayt---+ ¢9t%
(1=)(1 - qt)

The coefficients a; must be integers, since the ¢(n) are integers. We can write

Zc (t) =

29

Pi(t) = [J(1 = wit),

i=1

the w; € C are algebraic and the functional equation implies that the collection

{wl P wzg}
is invariant under the substitution

w; — W, 1q.
At this moment it is neither clear that they are algebraic integers nor that the Riemann
hypothesis )

|wi| = q> for i=1---2¢

holds.
These so called elementary results are all due to F. K. Schmidt (See [Scm]). By the way

F. K. Schmidt was clever enough to remove the assumption that we have a divisor of
degree one. Can you also prove it?
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The Riemann hypothesis.
We recall the multiplicative definition of the (-function, and we remember that
Np—* = g~f»5 = 1
where [F,(p) : F,] = ¢/», i.e. f, is the degree of the residue field at p. Now we consider

the expression

Z’ (t) Z fpt?

1—th’

If we expand the expression on the right, we get an infinite sum

Z anpt"
an = Z fp'

feln

and clearly

But f, is exactly the number of geometric points over p, and these geometric points lie
in
C(F ) C C(Fyn),

and hence we see that the right hand side must be

Z #C tn

Going back to our expression for Z.(t) as a rational function we find

Z(t) qt
A CAS _
Zo(t) 1—qt Z l—wl

and from here we get
29
HOEp)=q"+1-3 of
i=1
for all n.

is implies that > 7. w" is an integer for all numbers n, and this implies that the w;
This implies that 329, w? is an integer for all numb d this implies that th
must be algebraic integers).

The following proof of the Riemann hypothesis is due to A. Grothendieck (see [Gr-RH])
and is based on intersection theory and the Hodge index theorem.

Our curve C/IF, is defined over Iy, and this allows us to define the Frobenius morphism
®,:C—C.

To define this morphism we consider an affine open subset U C C, then the ring of
regular function O.(U) is an F ,-algebra and the map
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U, :0.(U) — O.(U),

which sends f € O.(U) to f9is an IF ;-algebra homomorphism. This defines the restriction
of ®, to U, and since we can cover C' by such open affine sets, we have defined it every
where. If we have an embedding of our curve

i:C — ]ngec(Fq)

NS
Spec(Fy).
Then the action of the Frobenius ®, on the geometric points is given by
z = (zg,  xn) — x? =27 = (28, - 2?)

for any point x € P™(IF,).

Now we pass to a geometric situation, we replace C by C' = C XF, F, and our information
that C' comes from the curve C/IF, is encoded in the datum of the Frobenius morphism

b, : C — C,

which also can be viewed as given by its graph
I'p cCxC=X.
Then it is clear by definition that
C(F,) =TeNACC(F,) x C(F,).
The tangent space of X in any geometric point p = (z,y) is given by
T, =To. ®Ta,

and the tangent space of I'p at p = (x,P(x)) consist of vectors in

Tryp =15,

The tangent space of A is an point (z,x) is the diagonal, hence we see that I's and A
intersect transversally, and this gives us

#C(F,) =Ts - A.
If we pick any two points zo € C(IF,), yo € C(IF,), then we may consider the divisors
Hy={20} xC ,C x {yo} = Ho
on C x C. We get an orthogonal decomposition of the Chow group

AN X) = ANX) & Z[Hy] & Z[H,).
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Since Hy + Hj is ample on X, we can conclude that the intersection form restricted to
AY(X) is negative definite. We write in A'(X)

[A] = [A'] + [Hi] + [H2],
then [A'] € Al (X). More generally we can say: If I' € C' x C is the graph of a morphism

f:C — C, then -
F({CL‘O}XC) = FHQ =1

I (Cx{y}) = I-H = deg(f)

and
'] = [[] — (deg f)[Ha] — [H1] € A(X).

We need the self intersection I' - I'. To get this number we recall the adjunction formula.
The tangent bundle T5 ~ p}(Tx) + p3(Tw) and hence

ATy = pi(Tg) © p3(Te).
Now we have
AT =T pj(Tg) + T p3(Tg) = (29 — 2) - (deg(f) +1).
Then the adjunction formula yields
[ ATg=2gr—2-1"-T,
and gr = g because the projection p; provides an isomorphism p; : I' — C. Hence we get
[T = (2 —2g) - deg(f)

and this yields
- T = —2gdeg(f).

We look at the case I' = I'g. We have
Iy -A=Tg- ([A]+[Hi]+ [Ha]) =ToA" +q+1,
and hence we get
29
—Z wi:F¢-A/:F&,~A’.
=1

We know that
(nT +mA’) - (nI'y + mA") <0
for all integers n.m, and this says that

—n?-2gq +2nmly - A —m?-29g <0

for all n, m. This is equivalent to the inequality
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2

29
(g - A)? = (Z wz) < 4¢%q,

i=1

and hence we get the estimate

29
1> wil <294

i=1
This is in principle the Riemann hypothesis. The only thing we have to say is that we
can replace IF,; by any field IF -, i.e. we get the inequality

2g
1> Wl <29V
=1

for all » =1,2,---. Since we have
29
H w; = qga
i=1

this can be the case only if
|wil = V4
foralli=1---2g.
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10 The Picard functor for curves and their
Jacobians

Introduction:

In the last chapter of volume I we constructed the Jacobian of a compact Riemann
surface S. The Jacobian was defined as the group of isomorphism classes of holomorphic
line bundles on S. Our main result asserted that the Jacobian had the structure of a
complex torus, and assuming theorems of Lefschetz and Chow we proved that this torus
is a projective algebraic variety. We heavily relied on transcendental methods.

We formulate the goal of this chapter. For any smooth, projective and absolutely irre-
ducible curve C/k over an arbitrary field k£ we want to construct a Jacobian Jo/k = J/k.
This Jacobian should be the ” variety” of line bundles of degree zero on C. It is not re-
ally clear what this means. A certain minimal requirement might be that J/k is a group
scheme and for any field extension L/k the set J(L) is canonically isomorphic to to the
group isomorphism classes of line bundles over C' x, L. But it is still not really clear what
this means.

We get a closer understanding if we recall the situation in Chapter V of volume I. At
the end of this chapter we constructed a line bundle S x J and formulated a universality
property for the line bundle A, which we did not prove in all detail. This universality
property will become the basic principle for the construction of J/k. We will use the
concept of representable functors.

Once we constructed the Jacobian J/k we will show that is a projective algebraic alge-
braic, it carries the structure of an algebraic group. Again want to investigate the group
of line bundles on J/k, this means that we want to construct the dual JY of J/k and we
want to show that we have a canonical identification J — JV.

10.1 The construction of the Jacobian

10.1.1 Generalities and heuristics :

Let S be a scheme. For any scheme X (of finite type) over S, we can define the Picard

functor
PICx s : Schemes of finite type/S —— Abelian groups

T —  Pie(X x5T)

where PZC x,5(T) = Pic(X xsT') is the group of isomorphism classes of line bundles over
X xgT. We may ask whether this functor is representable (in the category of schemes
of finite type over S) (See proposition 6.2.18).

We recall what this means: We can find a group scheme Picx/g /S, (which is of finite
type over S) and a ”universal” line bundle

P on XXSPiCX/S/S

G. Harder, Lectures on Algebraic Geometry II, DOI 10.1007/978-3-8348-8159-5 5,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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such that for any scheme T' — S of finite type and any line bundle £ over X xg T we
have a unique S-morphism
Y(L) : T — Picxyg

such that we can find an isomorphism

n: L "= (Id x¢(L£))*(P).

The answer to this question is simply “No”. It is important to understand why this is so.

Actually we know already why the functor can not be representable. Let us assume in
addition that X/k is projective, reduced and connected. Let us assume we constructed a
Picx/s and a line bundle P on X X Picx/g . The point is that a line bundle £ on X xgT'
has non trivial automorphisms, the group of automorphisms is O(X x g T)* and under
our assumptions this is O(T)*. But if now T'= 5" — § is faithfully flat (and of finite
type) then the homomorphism

PICX/S(S) — PICX/S(S/)

is not necessarily injective. We have seen in 6.2.11, 6.48 and in the section on the
moduli space of elliptic curves 9.6.2 that the kernel is given by the cohomology group
H'(S'/S,G,,), which is not trivial in general. This means that our functor does not
satisfy the first sheaf condition (Shl) and our functor can not be representable.

Instead of asking for representability of the functor we can pose a weaker question: Let
us now assume that S = Spec(k) is the spectrum of a field. Let X/k a smooth projective
scheme. The question is: Can we find a scheme Picx,s over k and a line bundle P on
X x3, Picxy, such that for any scheme T'/k of finite type and any line bundle £ on X x; T
we find a unique morphism

1/}([:) T — PiCx/k

such that we can find a covering T' = UyT4,iq : T, — T by Zariski open subsets such
that

(Id xia)"(£) = ¥5(P).

This formulation should be compared to the analogous statement in Volume I (Prop.
5.2.10).

In general we will call a line bundle £ on X x T locally trivial in T if we can cover T by
open sets Ty, such that £|X x T, becomes trivial. We call two line bundles £1,£2 on X xT
locally isomorphic in 7' if we can cover T by open sets T}, such that £1|X x T, —
£2|X X Ta

We formulate a more modest goal. We show that our functor is locally representable:
This means that we want to construct a scheme Picy,; over k and a line bundle P on
X x Picyy such that for any bundle £ on X x T with T of finite type over k we find a
unique ¢ : T' — Picx/y such that

(Id x)"(P) ~1 L,
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and this means that the bundles are locally isomorphic in T'.

Once we have achieved this goal we will say that PZCx/;, is locally represented by
the pair (Picy, ,P).

The condition (Id x¢)*(P) ~p L can be reformulated: Let g2 : X xg T — T be the
projection to the second factor: Then there exists a line bundle A/ on T such that

L®gN) = (Idx¢)"(P).

Remark: It is clear by essentially the same reasoning that the line bundle P is only unique
up to a twist by a line bundle p5(M), where M is a line bundle on Picx /. Then our
above equation becomes

(Id x)"(P @ p3(M)) = L @ g3 (N) ® (Id x3h)" (M).

Of course we will need some finiteness conditions on 7' . The condition for T'/k to be of
finite type is natural, but we should also allow localizations of such schemes.

Rigidification of PIC

Now we apply the same method, which was applied in the discussion of moduli spaces of
elliptic curves. We considered elliptic curves & — S — Spec(Z)[1/6] and since these
objects still have automorphisms we equipped them with a nowhere vanishing 1-form w.
After that these objects have no non trivial automorphisms anymore and we proved the
representability of the functor My gir5 (See 9.6.2).

In our situation here we assume that X is projective, absolutely reduced and connected
over a field k and it comes with a distinguished point P € X (k). Let S = Spec(k). We
consider line bundles £ on X x g T whose restriction Lp to {P} x ¢ T is trivial. We define
the functor

PICxk,p(T) = {(L,s)|L£ line bundle on X x T',s € H*({P} xg T) trivializes Lp}

This means we look at the group of isomorphism classes of line bundles on X x T', which
are trivial on {P} x T, and which are equipped with an isomorphism

Wt LI{PY < T =5 Oy
where we require that np(s) = 1.

If we have two such pairs (£1,s1) and (L2,s2) with isomorphic line bundles then we have
exactly one isomorphism, which sends s; into sy. Hence we can say that the two pairs
(L1,81), (L2,82) are not only isomorphic, they are even equal. Here we used of course
that X/ Spec(k) is projective, reduced and connected. Especially we see that the pairs
(L,s) are rigid, i.e. their group of automorphisms is trivial. Hence our modified functor
PICx/k,p is in fact a sheaf for the faithfully flat topology, and therefore, we can hope for
representability the functor PZCy, p . Passing from PICx /, PICx i, p means that we
put some additional structure on our objects such that these do not have automorphism.
This process is called rigidification.
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Let us assume that we have proved the representability of PZCx/, p. We recall that
representability of Picx p gives us a universal triplet

(X X PiCX/kJD ,P,S)

where is Picx/, p a scheme, P a line bundle on X xPicx/,, p and sg € H({P} xPicx/,P)
a section, which is everywhere non zero, and such that this triplet satisfies the universality
property.

We drop the section s and claim that
(X X PiCX/k,P ,P)
provides a local presentation of PZCx/y, .

To see this we start from a line bundle on X xg T. Let Lp its restriction to {P} x T.
We have the structural morphism ¢ : X — Spec(k), from this we get the line bundle
(t x Id)*(Lp) on X x; T and we consider the bundle £ ® ((t x Id)*(Lp)))~* on X x;, T.
This bundle has a canonical trivializing section if we restrict it to {P} xj T, because
Lp @ ((txI1d)*(Lp) H{P} x T = Or, namely the element 1 € H*({P} x; T,07).
Hence we see that £ ® (t x I1d)*(Lp)~" is an object in PZCxk p(T), and provides a
unique morphism

’(/J T — PiCX/k’p

such that we have a unique isomorphism

n: (L@ (tx1d)*(Lp)~") = (Id xx20)*(P),

which maps the given sections into each other. But now it is clear that we have

L ~p (Id xp1p)" (P).

Therefore our claim is proved if we can show that v is uniquely determined provided it
only satisfies this last relation. Assume that we have a second morphism v, for which
we know

L ~p (Id xh1)* (P).

Hence we can find a line bundle A" and an isomorphism 7
m o L®gN) = (Id xxtp1)"(P).

But we must have ¢3(N) = ((t x Id)*(Lp)))~!. and choosing the right section in
H({p} x% ,L @ q3(N)) we can conclude that (¢,n) = (¥1,171).

We may also go in the opposite direction, let us assume we have a local representation
(Picx/ ,P). Using the same argument as above we may assume that P|{P} x Picx j, is
trivial. Then we choose a trivializing section s € H°({P} xj Picx /s, and then the triplet
(Picx /i ,P,s) represents PICx /i, p -

All this tells us that constructing a pair (Picx, ,P), which yields a local representation
of PICx i p or the construction a representation of PZICx/,; p are actually the same
problem.
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In a sense PZCx i, p is a better functor since it is representable. But it depends on the
somewhat arbitrary choice of a point P € X (k), which may even not exist. The more
natural functor PZCx s, is not representable but locally representable. The underlying
schemes Picy;, and Picy,; p are canonically isomorphic, we can even say that they are
equal.

If we analyze the concept of local representability then we see that we do not need the
line bundle P on X X Picy,;, , we get along with something less: It suffices to give this
bundle locally in Picy ;. This means that we need a Zariski covering Picx/, = UU, and
line bundles P, on X x U, such that

PQ‘X X (Ua n Ulg) ~ULNUg Pg‘X X (Ua n Ug).

i.e. the two restrictions differ by the pullback of a line bundle on U, N Ug.

Now we say that Picy, together with the family of line bundles {P, on X x Uy}q is a
weak local representation of PZCx/y, if for any line bundle £; on X x T we find a unique
¢ : T — Picy/y, such that for any o and T, = ¢~ (Us) and g : T, — U, we have
(Id X¢a)*(Pa) ~Uq ['1|X X Ty.

It is clear that we also may require the existence and uniqueness of the ¥, : T, — U,
such that we have the above relation. Then it is clear that these 1, coincide on the
intersections U, N Ug and fit together to a morphism .

We denote the datum Picx/;, together with the covering and the P, simply by (Picx, ,P)
and call P a Picy;, gerbe (See 9.6.2)

If our scheme X/k has a rational point P € X (k) then we may argue as before: We can
modify our P, such that P, = O{P}XpiCX/k7 i.e. they are trivial and equipped with a
nowhere vanishing section. Then we can glue them together to a line bundle P, whose
restriction to {P} x Picx/,, has a nowhere vanishing global section. This shows us that
weak local representability of PZCx/, implies representability of PZCx/x,p -

It is quite clear that the concept of weak local representability is more natural than local
representability

The next 28 pages are devoted to the proof of weak local representability of Piccy
where C'/k is a smooth, projective, absolutely irreducible curve over k.

10.1.2  General properties of the functor PZC

The locus of triviality

We consider a reduced, projective and connected scheme X /k and line bundles on X x T
where T should be of finite type. In the following considerations it is always possible to
replace these schemes T' by the affine schemes Spec(A) since our questions will be local
in T. We will also allow ourselves to pass to local rings at points in 7.

‘We need some finiteness condition for T because we have to apply the finiteness theorem
8.3.2. Since the Picard functor will be of finite type our condition above seems to be
natural. But the passage to local rings does not hurt.

Of course the following lemma would be clear if we had local representability.
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Lemma 10.1.1. Let X/k be an irreducible, reduced projective scheme, let T — Spec(k)
a scheme of finite type . Let L be a line bundle on X Xgpecry T Then there ewists a
“largest” closed subscheme Ty C T such that L1 = L|X Xgpec(r) T1 is locally trivial in
Ty and "largest” means for any closed subscheme T' C T, for which L|X Xy T" is locally
trivial in T', the inclusion T" — T factors over T}.

The subscheme 77 will be called the locus of triviality of L.

Let T/ C T be a subscheme such that L7+ = L|X x;T" is locally trivial. Our assumptions
on X imply that the projection p : X xy T — T yields two line bundles on 7" namely
p«(L7), and p*([,;/l) These bundles are locally constant in the following sense: For any
closed subscheme T C T” the natural restriction provides isomorphisms

Pe(L) © Opir 55 po (L) pu (L7 @ Opi = po(L3h).

But if in turn for a subscheme 77 C T these two sheaves are locally constant of rank one,
then ﬁTr,[,;,l are locally trivial in 7”. To see this, we can consider two local generators

ERS HO(‘/hp*(ET’)) , S— € HO(‘/tap*(E;’l))
(Here V4 is an open neighborhood of a point ¢ € T") . Their product gives an element
ss_ € H'(X x V;,0xxv,),

By definition of local constancy we know that the restrictions of these sections to the
special fibre over ¢ generate the spaces of sections H(X x {t},£;) and H(X x {t},£; "),
which are both of dimension one. Then the product ss_ restricted to the fibre is not
zero, but since X x {t} is projective and connected, it follows that they never vanish.
The closed subset in X x V; where ss_ vanishes does not meet the fibre X x {t}. Its
projection to V; is closed in V; (see theorem 8.1.8) and does not contain ¢. Hence we find
an open neighborhood W; of ¢ such that s,s_ are nowhere zero on X x W; and hence
L7 and E;,l are trivial on X x W,.

We assume that we have a point ¢t € T such that £|X x {t} is trivial. Let A be the local
ring Op ;. We restrict our sheaf to X x Spec(4), let m be the maximal ideal. We want to
show that there is a smallest ideal Iy such that our sheaf restricted to X x Spec(A/I)
becomes trivial. By our previous considerations this means that p.(L|X x4 (A/Iy)) is
free of rank one.

For any ideal I C A we compute p,(L£|X x4 (A/I)). In the section (semicontinuity) we
have seen that we can construct a resolution of £ on X x, T

0—=L—=E =& — -,

such that the & are coherent, flat and acyclic for p, and such that the p.(&;) = M;
are locally free on T' (see Thm. 8.4.3. We restrict to Spec(A) C T, so that the M, are
actually free, and we get

O—>p*(£)—>M0—>M1—>

We have My = AN, M; = AN and the map oy : My — M is given by a Ny x Ni-
matrix.
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The complex

0 — Mo®(A/I) — M1 ® (A)]) — ...

computes the cohomology H*® (X x Spec(A/I),L|X x Spec(A/I)) especially we know that
the kernel (A/m)No — (A/m)™ _ is of rank 1. Now we choose an element m; € ANo,
which reduces to a basis element of this kernel. We can assume that m is the first element
of a basis of ANo. We consider m; as a column vector

1
0

mi =
0

The linear map AN — AM is given by a matrix M (ag). Our matrix operates by multi-
plication from the left, then it will be of the form

mi2
M (o) = 5
mi,N

where the m; , are in the maximal ideal m. We reduce mod m. The matrix B mod m
maps the space of vectors

with x; € Aj/m
TNy

injectively into (A/m)™t. This implies that B contains an invertible (Ng — 1) x (Ng — 1)
submatrix. This allows us to modify the basis in the target such that the vectors

0

0

1 :

1

: 0

0 0

are the images of the (Ny — 1)-vectors

0 0
1 0
0 1

and then our matrix B is of the form
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mi1 0O --- 0
mi2 1 0

0o . 1
mi,N,

Now we take an ideal I C A and ask: When is the kernel
(A/DN — (A/D)™
free of rank one and surjects to the kernel of
(A/m)No — (A/m)™,

i.e. £ is locally constant of rank one on Spec(A/I).
Clearly this is the case if and only if this kernel is spanned by the element

1

—mi2

—M1,Ny

The first condition to be satisfied is that mq; € I. Then the second, third up to Ny-th
component of the image is zero. Now the vanishing of the Ny + 1-th up to the Nj-th
entry means that the my , with u = No +1... to Ny satisfy

j=No
mi,, — E bugma,; = 0.
7j=2

This gives us a collection of elements, which must be in I and in turn if I contains these
elements, then the kernel of (A4/1)No — (A/I)™ is free of rank one.
Hence we see that we can take for Iy the ideal generated by these elements

{mlhml,u - bujml,j} =1Io

and Spec(A/Ip) is the largest subscheme of Spec(A), on which £|X xSpec(A/Iy) is locally
constant of rank one. If we do this reasoning also for £7! then we find a second ideal I
and then our argument above shows that the ideal generated by these two ideals define

the largest subscheme, on which £ becomes locally trivial.
O

10.1.3 Infinitesimal properties
In our chapter on Riemann surfaces we exploited the exact sequence of sheaves
0—-Z— 05— 05 —1,

which give rise to the sequence in cohomology
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0 — H'(S,Z) — H'(S,05) — H*(S,0%) — H*(S,Z) —

(actually we can do this over any compact complex algebraic variety). From this sequence
we get that H'(S,0%) is a complex analytic group with tangent space H'(S,0g). We
showed that H'(S,Z) is a lattice in H'(S,Z) and H'(S,05)/H"(S,Z) = Pic’(S) is a
compact complex analytic group. The homomorphism

HY(S,05) — HY(S,05)/H(S,Z) = Pic’(9)

should be viewed as the exponential map from the tangent space to this complex analytic
group.

We want to save some parts of this argument to our abstract situation. For instance we
want to make it clear that the “additive” coherent cohomology group H'(X,0x) is the
tangent space of our functor Picx .

To understand the infinitesimal properties we assume that T = Spec(A) where A is a
local artinian k-algebra. Its maximal ideal m is nilpotent hence A = k & m. We want
to consider the line bundles on X xj Spec(A), which are trivial on the special fibre
X = X Xxj A/m. This means that we want to understand the kernel

Pic(X x}, Spec(A))e = HY(X x5, A,0% a)e = ker[HY (X x5, A,0% 1) — H'(X,0%)]

For any integer n we put A, = A/m™ and hence k = A;. We put X,, = X Xy, Spec(4,),
then our assumption implies that H°(X,,,0%, )= (A/m™)*.

For any pair of integers n > n; we can consider the embedding
an — Xn

as a closed subscheme, it is an isomorphism on the topological spaces and we have the
restriction
(Ox,)" — (0x,,)"

nq

which is surjective. For n = n; + 1 we can see easily that the kernel is isomorphic to
Ox ®m"/m"TL. Since HO(Xn,(’)}") = (A/m")* — HO(Xn,l,(’)}nil) = (A/m" )" is
surjective, we get an exact sequence

0— H'(X,0x@m" !'/m") —» H'(X,,0% ) — H' (X,-1,0%,_,) — H*(X,Ox@m"~!/m")
We have

HYX,0x @m" ' /m") = H'(X,0x) @m" ! /m"
and since we know that H'(X,0x) is finite dimensional, we can conclude that

The abelian group Pic(X Xy Spec(A)). is an extension of finite dimensional k- vector
spaces.

The sum of the dimensions, which we want to call the size of Pic(X X Spec(A))., can
be estimated by H'(X,0x) and the structure of A. Especially if A = kle] is the k algebra
of dual numbers then

Pic(X (k[e])e = H'(X,0x).
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We can reformulate this and say that H'(X,Ox) is the tangent space of the Picard
functor at e.

Of course in general we do not know whether
H'Y(Xn,0%,) — H'(Xn-1,0%,_,)

is surjective. We could say that the functor is smooth if this is the case.

Differentiating a line bundle along a vector field

Let us assume that X/k is smooth, then we have seen 7.5.5 that a vector field V' €
H°(X,Tx) can be viewed as a X[e] = X xj, k[e] valued point

X

| ™S
X —X|e.

The morphism p : X[e] — X is given by the trivial vector field. Let £ be a line bundle
on X, then we can consider line bundle

V(L)@ p (L)~

this is a line bundle on XJe], which is trivial on X C XJe], hence it is an element in
Pic(X (kle])e = H'(X,0x). Therefore, any line bundle £ defines a map

6p HY (X, Tx) — H'(X,0x).

It is easy to describe this map in terms of cocycles. If £ is given by a cocycle {ga,5} (a,5)erx1
with respect to an open covering (J,c; Ua-

We can differentiate the sections g, s with respect to the restriction of the vector field
V to Uy, NUg and we put

has = gV gas € O(Ua N Up).

Clearly this is a 1-cocycle with values in Ox and it follows from the definition that the
class of this cocycle is 6. (V).

The theorem of the cube.

We combine the above results and Lemma 10.1.1. Again we consider a line bundle £ on
X x Spec(A), where A is still local. Let I; C A be the ideal, which defines the maximal
subscheme Spec(A/I) such that £|X x Spec(A/I;) is trivial. Let m C A be the maximal
ideal, then I /mI; is a finite dimensional A/m-vector space. Any non-zero linear form
U : I /ml; — A/m defines an ideal Iy ;Il and L|X x Spec(A/Iy) is not trivial anymore.
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We want to compute the obstruction to trivialize £|X x Spec(A/Iy), i.e. we try to
extend a trivialization to this larger scheme, and we will get a non zero element £y €
H'(X x Spec(A/m),0x), which tells us that this is impossible.

Let I be any ideal such that £|X x Spec(A/I) is trivial. Let I’ = Im. We have the
inclusion

X x Spec(A/I) — X x Spec(A/I'),

and our line bundle £|X x Spec(A4/I) has a section s € H°(X x Spec(A/I),L), which is
a generator at all points. We can cover X x Spec(A/I’) by affine open sets U; such that
the section s extends to a section s; € H°(U;,£), which then will be a generator at all
points. We have

Si = GijSj
with g;; € H°(U; N U; .0, qu, )- These gi; are of the form
gij =1+ hij

where h;; € I. Since we compute modulo I’, we have I/I" >~ k(to) and {h;;} defines a
class in H'(X x k(t0),Ox xk(t,))- This makes it clear that for any point to € Spec(A/I)
we get a linear map

O, : I/mtOI — HI(X X k(to)aoXxk(to))-

We may for instance take as our ideal I simply the maximal ideal attached to a point
to € Spec(A) and get a linear map

(5£ : mto/mfo — Hl(X X k(t0)7OX><k(t0))a

which can be interpreted as the map from the tangent space of Spec(A) in the point ¢g
to the “tangent space” of Pic(X)(k(to)) in the “point” L.

Tt is clear: If I C A is the maximal ideal such that £]|X x Spec(A/I) is trivial, then the
map
Sc : Ijmyg ] — H' (X % k(t0),Ox xto))

is injective for all ¢y € Spec(A/I). This has the following consequence

Theorem 10.1.2. (Theorem of the cube) Let XY be projective schemes over k. Let
T be a connected scheme of finite type over k, and let L be a line bundle on

X xY xT.

Let us assume that we have points xo € X (k), yo € Y (k), to € T(k) such that L restricted
to
To XY XT X xyoxT , X XY Xt

becomes trivial. Then the bundle itself is trivial.
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Let A be the local ring at to,We have Spec(A4) C T. Let us consider the locus of triviality
of £ in Spec(A), it is of the form

L]X xY x Spec(A/I).
We want to show I = 0. If not, then I/m; I # 0, and we get an injective map
S I/my, I — HY(X xY x k(tg),0xxv).
But now we have the Kiinneth formula (See 8.2.2), which tells us

HY (X XY x k(t0),Oxxyxto) = H (X x k(t0),Oxxt,) © H (Y x k(t),0y xt,)
= H' (X x yo x k(t0),0xxt,) ® H' (X x yo x k(tg),0y xt,). (10.1)

But £|X x yo x T and L|zg x Y x T are assumed to be trivial. This means §z = 0. This
is a contradiction.
Now we have seen that we can find an open neighborhood V' of ¢y such that £ | X xY xV is
trivial. This proves that the locus of triviality is open, on the other hand it is closed. Since
it is non empty it follows that it is equal to T. Since X,Y are projective it follows that
L = p§(M) where M is a line bundle on T'. This line bundle restricted to {zo} x {yo} x T
is trivial, hence M is trivial.

O

The Picard functor has two natural sub functors. We say that a line bundle £ on our
projective scheme X/k is numerically equivalent to zero, if its restriction to any
curve C — X/k has degree zero.

We say that L is algebraically equivalent to zero , if we can find a connected scheme
of finite type T'/k with two points tg,t1 € T(k) on it and a line bundle £ over X x; T
such that

L|X x to is trivial
L|X x t; is isomorphic to £. (10.2)
The intuitive meaning of this concept is: A line bundle is algebraically equivalent to zero,

if it can be “deformed” into the trivial bundle.

Proposition 10.1.3. If a line bundle L on X is algebraically equivalent to zero, then it
is numerically equivalent to zero.

It suffices to consider the case of a non smgular projective curve C/k. If we have a
connected family L on C x T with £t0 ~ O, Ltl ~ L then the function

t — dimyy H(C x k(t),£) — dimy,y H(C x k(t),L)

is constant on T’ (see Thm. 8.4.6). But the right hand side is equal to deg(L;) +1 — g,
therefore, the degree is constant and equal to zero because deg(L,) = 0. ([

We define sub functors. We put
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’PIC())(/k(T) =Isomorphism classes of line bundles on X x; T
such that £; is numerically equivalent to zero for all t € T. (10.3)

The second functor is defined on the category of connected schemes T'/k of finite type,
equipped with a base point ¢y € T'(k) and the morphisms respecting the base point. Then

PIC())?/k(T) =Isomorphism classes of line bundles £ on X Xy, T,
for which £|X x {t9) ~ Ox (10.4)

It is a central point is that this last functor is “linear”:

Proposition 10.1.4. For a product X XY of two projective schemes, which are also
equipped with base points xo € X (k) and yo € Y (k), we have

PICR oy /i (T) = PICY),(T) & PICY),(T)

This is a direct consequence of the theorem of the cube. If we have a line bundle £ over
X xY x T, then the restrictions

Lx = LI X xyoxT
Ly = LlezgxY xT

provide line bundles on X x T and Y x T. Now we consider the two projections

px : XxYxT — XxT
py X xYxT — YxT,

and we consider
Lopx(Lx) " @py(Ly)™"

This line bundle on X x Y x T is trivial by the theorem of the cube. 0

Assume we have proved (local) representability for these functors. Then we denote the
resulting schemes by Picx ,Picg( Ik ,Picg?/k , it follows from their universal properties
that they are group schemes.

We could think of Picg( /1 as being the ”connected component ” of the identity of our
functor, the quotient Picx ;, / Picg(/k gives us discrete invariants. These invariant can
viewed as elements in some second cohomology group H?(X). (See Vol. I, 5.2.1.) But
this group is not yet defined at this stage. In any case the class ¢1(£) of a line bundle
L on X/k in Picy/y /Picg(/k will be called the Chern class of £. Again the quotient
NS(X) = Picx/r(k)/ Picg(/k(k) is called Neron-Severi group of X/k.

Let £ be a line bundle on a product X x Y. Since the second cohomology of a product
X x Y is bigger than the sum of the second cohomology groups of X and Y (Kiinneth-
formula), we can not test the vanishing of ¢; (£) by restricting it to {zo} xY and X x {yo}
and this is the reason why we have the theorem of the cube and not the theorem of the
square. The Picard functor is quadratic and not linear.
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10.1.4  The basic principles of the construction of the Picard scheme of a
curve.

The principal aim of this chapter is the construction of Picc/y, for a smooth, projective
and absolutely irreducible curve C'/k, i.e we want to construct the scheme, which together
with appropriate line bundle P on C' x Picc/, weakly represents the functor PZCq/j,. At
the same time we will construct PZCq p if P € C(k) is a k-rational point.

It is of course clear that this functor is a “disjoint union”
PICcm =| |PICL) .

where PZC¢y, is the functor of line bundles of degree r on C.

Let Picg /i be the corresponding components. It will turn out that PicOC /1 1s an abelian
variety, it is called J = Jg, the Jacobian of the curve. We will show that J and the
Pic"(C) are smooth, projective and irreducible.

In the second section of this chapter we will also discuss the Picard functor of .J.

The basic idea of the construction is simple and goes back to Jacobi. The first object,
which we will construct is Pic% Ik Let us assume that k = k is algebraically closed. Let
us consider line bundles £ of degree g on C. The Riemann-Roch theorem says

dimH(C,L) =g+ 1—g+dimH (C.L) =1+ dim H(C,L).

We introduce the notion of a ”generic” line bundle of degree g. A bundle of degree ¢ is
generic if dim H*(C,£) = 0, which is equivalent to dim H°(C,L) = 1.

The leading principle will be that a ”generic” line bundle £ has a non zero global section
s € dim H°(C,L), which is unique up to a scalar. The set of zeroes of s is a divisor

Div(s) =P+ ---+ Py,

where P; € C(k). This collection of g points is unique up to permutations. Therefore we
can view it as a point in C9/3,(k) where CY9/%, is the quotient of CY divided by the
symmetric group X,. (We will discuss the construction of the quotient C9/3, and its
properties in the following section, we anticipate the obvious properties of this construc-
tion). On the other hand a point D € C9/%,(k) can be lifted to a point (P,...,P,) € C?
hence we can say D = P, - - -+ P, and this point yields a line bundle O(P;+- - -+F;), which
comes with a non vanishing section namely the constant 1. We say that D is generic if
O(D) is generic. We have seen in exercise 40 that the set of generic divisors D € C9 /3, (k)
is the set of geometric points of an open, non empty subscheme Ugen C C9/%,.
Therefore the following becomes clear: If we have a line bundle £ on C' X T such that
Ly = L|C x {t} is of degree g and generic for ¢t € T'(k), then we have a unique map

Y : T(k) — Ugen(k)

such that £; = O(¢(t)).

But we know that this is not yet what we want. We have to show that ¢ is in fact
induced by a morphism and we have to construct a line bundle on C' X Ugen whose
pullback is locally in T isomorphic to £. Only if we have established these two points
we have proved the local representability of PIC%:%ZH. The detailed proof is a little bit
technical and lengthy.
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To remove the restriction to generic bundles we will show that there is a finite number
of line bundles Fy = O¢,F1,...,F such that for any line bundle £ on C there exists a
index 0 <4 < r, for which the line bundle £ ® F; is generic. Hence we define Ug(zl to be
the open subset, for which

UW (k) = {t € C9/%,(k) | O(t) ® F; is generic }

gen

Clearly these Ug(?n yield local representations of appropriate ”"sub functors” 771'0']0’;,c of
PICgC/k, we have to glue them together to get our Picc/y, . Eventually we apply the

methods of Galois descend (see 6.2.9) to remove the restriction that & is algebraically
closed.

10.1.5 Symmetric powers

Let k be a field and let X/k be a quasi-projective scheme. Let k be an algebraic closure
of k. For any integer r we can form the r-fold product X" = X x, X -+ x X (r factors)
and on this product we have an action of the symmetric group ,.. We will construct a
quotient X" /3, together with a projection

m: X" — X"/%,

such that we have the obvious universal property: For any scheme T and any morphism
h : X" — T, which commutes with the action of ¥, (i.e. hoo = h for all o € 3,.) we
have a unique morphism h : X" /%, — T such that h = ho .

The construction of this quotient is easy if X = Spec(A), where A is an affine k-algebra.
We have X" = Spec(A®") and

X" /%, = Spec ((A%")*r).
If X/k is quasi-projective, then we write

X — P”

N\ /
Spec(k)
and we observe that a geometric point P € X" (k) gives us an r-tuple of points (Py, - - - ,P;)
with P; € X (k). Since all these point lie already in X (L) for a suitable normal finite ex-
tension L/k we get a finite set of conjugates PY where o runs through the elements of
Gal(L/k). We can find a hyperplane H C P", which is defined over a separable, nor-
mal extension F/k such that P? ¢ H(k) for all i,0. The complement U of the union of
the conjugates of the hyperplanes U, H,7 € Gal(k/k) is a non empty affine subscheme
U/k C X/k and P € U"(k). Hence we can cover X" by a finite number of open affine
subsets V,, = U, --- x ...U,, where U, is affine and defined over k. We can form the
quotients U] /3, and now it is obvious how to glue (see 6.2.1) these pieces together to

get X"/%,.

We claim that this construction has the following properties:
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(i) Tt commutes with extensions of the field of scalars, i.e. for any kK — L we have

(X x4 L)/, = X"/, x5 L.

(ii) The scheme X" /3, is again quasi-projective, it is affine if X/k is affine and it is
projective if X/k is projective.

To see the first assertion we assume that X = Spec(A) where A is an affine k-algebra.
This algebra is free as a k-vector space, let eg,e1, -+ ,em, -+ be a basis, we choose ey = 1.
The elements

€ =€ Q- € for (il,"',iT)ENT

r

form a basis of the k-vector space A®". The group X, acts upon N”, let 3, ; be the

stabilizer of i in X,.. We put

Ei = Z €o(i)s

oES, /3

and these elements form a basis of the k-vector space (A®")¥ . Since the eg, -+ €, - -
also form a basis of A ®j L over L, our assertion (i) is clear for affine k-algebras. But
then it is obviously also true for any quasi-projective X/k. The assertion (ii) is obvious
for affine schemes. It suffices to prove it for projective schemes. But now we may write
for instance

X = Proj(kleo, - )

where k[zg, - ,z,] is a graded k-algebra and where the z; have degree one. We have

seen that we can write
X" =Proj(k[---uq - -])

where o = (a1, -+ ,a,) € [0,n]" and
Uy = Ta; & Lo, Q Ty,

Then we get
X"/8, =Proj ((k[---zq---])"").

Proposition 10.1.5. If A/k is an affine k-algebra, then the algebra (A®7)*r /k is gen-
erated by the elementary symmetric functions

U”(f):Zl®“'f®1”‘®f‘“®l’

where we sum over all the possible placements of u(< r) factors f in the above tensor
product.

To see this we start from our basis eg,e1,--- €, --- recall that eg = 1. We consider a
basis element E; as above, and we want to show that it is in the algebra generated by
the elementary symmetric functions. We proceed by downward induction on the number
of times 0 (i.e. g = 1) occurs in i = (41, - ,i,). If 0 occurs r-times the assertion is clear.

Now we write
QZ(O)"'7077/7"'7Z7"'a.77"'7.])
——  N——— —
vo—indices v7—indices vm —indices
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where 0,7, --- ,j are pairwise different. Then

ei=(1® 6@ 0eel-1)(10-0e®e ;@121 (101 10e;@---¢)).

Consider
Ei — Oy (61) Oy, (ej)’

which is in (A®")®". If we look carefully at
(+"'1®"'®€i®"'1®€i®1"')"'("'1®€j®"'1®€j"'®1"'),

and expand, then we see that Fj is exactly that part of the expansion where we multiply
tensors, which have the e;---¢e; at different places. So this part cancels. But for the
remaining terms we see that we get some

...®€Ueu®‘..

in the product. This e e, can be expressed by linear combinations of the e;---¢e; and
hence the number of 1’s in the tensor product goes up in these terms. O

It is clear that the morphism
m: X" — X"/3,

is finite. This implies that we have a surjective map on the set of geometric points
X"(k) — X" /3, (k).

It is obvious that points, which are equivalent under the action of the symmetric group
map to the same point in X" /¥, (k) hence the map factorizes

X"(k)/%, — X" /%,.(k)
Exercise 45. Show that the above map is a bijection.

But over an arbitrary field the map X" (k) — X"/%, (k) may not be surjective. A point

Q € X" /¥, (k) can be lifted to a point P = (Py,--- ,P,) € X"(k) but then we have to
answer the following question

When does a geometric point P = (Py,--- ,P,) € X"(k) give a point 7(P) € X" /%, (k)?

To answer this question we may assume that X = Spec(A4). Then our point P =
(Py--+P.) = (¢1,- -+ ) where the 1); are geometric points of X and this is the same as
®1; : B®" — k. The image of (41, -+ 4, lies in X" /%,.(k) if and only if the restriction
@y : (B®")® — k. Now it follows from proposition 10.1.5

Proposition 10.1.6. We have ®@; : (B®")*" — k if and only if for all f € A the
polynomial

Y = () (Y = 9n(f)) € K[Y].



282 10 The Picard functor for curves and their Jacobians

Now we want to assume that our scheme is a smooth projective curve C/k. A point
P = (P, ,P) € C"(k) gives us a divisor

on the curve C' xj k. We want to discuss the question whether this divisor is the base
extension of a divisor on C/k
D= Z npp.
p

In this case we say that our divisor is rational over k. Of course we must have

deg(D anfdeg ):an[k(p):k].

We have the action of the Galois group Gal(k/k) on the points in the support of our
divisor. An orbit of this action consist of the points P, which lie above one point p, i.e.
of the points P — p. It is clear that we can assume that we have just one orbit, which
means that all the points P; lie over one closed point p on C/k.

Hence we get: The base extension of the divisor p on C/k to the geometric curve is

n (37 P,

P—>p

where the Galois acts transitively on the P — p and where ngi)

rability of the extension k(p)/k (See 247, 9.24)

is the degree of insepa-

We conclude: If we look at our divisor D = pec() ™ pP, and if we divide the points in
its support under the action of the Galois group, then the orbits correspond to points p

on C/k. Our divisor
Z”P > P)

P—>p

is rational over k if and only if for all p we have n, (@) .
We want to show that the condition ny )|np for all (p) is equivalent to the condition that

(P’ ’P) eCT/ET(k)
——
np times

To see that this is the case we can assume that we have only one p and our points lie
in an affine open subset U C C and U = Spec(A). Let k < k be an algebraic closure,
let kg,k; be the maximal separable ( inseparable) sub extension respectively. Our points
are k-homomorphism v, : A — k, they form an orbit under the action of Gal(k/k). For
any f € A the polynomial

[T = v () € kilY]

v

because it is invariant under the action of the Galois group.
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Lemma 10.1.7. The degree of inseparability ngi) = p® is the smallest power of p, for

which all the ¥, (f)P° € ks.

Let us assume this Lemma. Then we know that p¢ is the smallest power of p such that
for all f € A the polynomial

H(Y - 1/111(.}0))176 S k[Y]v

v

and now it follows from proposition 10.1.6 that p€ is the smallest power of p such that

(- Pees P ) py € CT/S(R).
——

p¢ times

It remains to prove the Lemma. We choose an F' € A such that the differential dF
generates the module of differentials at p. Then we know that the extension k[F] — A is
etale at p. This implies that 1, (f)?" € k, for all f € A if we have v, (F)P" € k, (see prop.
7.5.15). But now p Nk[F] = (p(F)) where p(F) € E[F] is an irreducible polynomial. The
field k[F]/(p(F)) has degree of inseparability equal to p¢. Then it follows from elementary
algebra that

p(F) = FPyoq P =0 4 g (FP o,

with some coefficients in k. This polynomial is equal to

[I(F = ¢ ()" € k[F].
If we know remember that this polynomial is irreducible we get the assertion of the
Lemma. Hence we come to the conclusion

Proposition 10.1.8. We have a canonical bijection between the effective divisors on
C/k of degree v and the points on C" /X, (k).

In our special case we have
Theorem 10.1.9. For a smooth curve C/k the quotient C" /%, is again smooth.

We may assume that k is algebraically closed. We can pick a geometric point P € C"/%,,
we find a finite number of points @1, ... ,Qs in C" (k) lying above this point. We can write
Q1 = (P1,...,P.) and the other @; are obtained by permuting the coordinates of Q1.
Now we have two possibilities to proceed. The first one is to pick a meromorphic function
f on C, which is regular at these points Py, ...,P,., and which has the property that df is
a generator of the differentials in these points. We can find an affine scheme Spec(A4) C C
such that our points lie in Spec(A). Now we know that k[f] < A is etale and from this
we conclude that (k[f]®")" — (A®")*" (boring argument omitted). Hence we see that
we have to prove our theorem for the special case C' = Spec(k[f]). But now the theorem
of the elementary symmetric functions says

(K[F127)%r = kX0, X = Ko, 0,]

where the o; are the elementary symmetric functions. This is a polynomial ring and hence
smooth.
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The second possibility is to investigate the completion of the local ring O¢r /5, p at the
point P. We have two extreme possibilities. If all the coordinates of P = (Py,...,P,) are
pairwise different then it clear that for the completions

Ocr/s,.p = Ocr (py,...P)
and smoothness becomes clear. The opposite case is that all the coordinates are equal
say to P’. Then this point (P’,...,P’) is the only point in C"(k), which lies over P and
it is clear o -

(Ocr(pr...p))”" = Ocr s, p-

But now the ring on the left is the power series ring in r variables and then the ring of
invariants is the power series ring in the elementary symmetric functions. To treat the
general case one has to mix the arguments. O

10.1.6 The actual construction of the Picard scheme of a curve.

We start from a smooth, projective and connected curve C/k. Our next aim is to prove

Theorem 10.1.10. Let C/k be smooth, projective and connected and let g be the genus
of C/k. The functor T — PIC%/k(T) is locally representable.

Of course this implies that we construct a scheme PicZ, Jk and a line bundle P (or a
Pic%/,C gerbe {Py,a,5}) on C x Pic%/k , such that the universal property is fulfilled.
Our strategy has been outlined in 10.1.4. We begin with the construction of a line bundle
on C x C9/%,.

In exercise 40 in section 9.6.3 we constructed a line bundle on

CxC9,

which was the product
L' =@0cxcs (D),

where A; was the inverse image of the diagonal under the projection
pgi:Cng—>C><C’

to the zeroe’th and the i'th factor. The symmetric group 3, acts on the second factor
and we have the quotient map

IdxII:Cx C9 — Cx C9/5,.

We construct a line bundle @ on C x C9/3, whose inverse image II*(Q) = LI
P e Cx(C9/%, is a closed point and if we lift this point to a point PeCx CY, then we
can project it to the components and we get a g + 1 tuple (Py,Pi,...,P;). We can find
a function in k(C'), which is holomorphic at all the points Py, ...,P;, and which has the
additional property that df generates the differentials at all these points. In a suitable
neighborhood Vi of P the inverse image of the diagonal A C €' x C under the projection
po; is defined by the ideal generated by
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FF=f®1l---1-1®1--- f---®1,

where we put the f into the i-th place. The inverse of this function trivializes the bundle
Ocxcs(4;) in our given neighborhood. If we start from another point @ and G; in a
neighborhood V@ then the quotient F;/G; will be a unit on VQ N V5. This means that £

is trivialized locally at P by the product (Hii’ F;)~!. This is a meromorphic function
on C x C9/%,. This system of trivializing sections defines Q.

We left it as an exercise (See exercise 40 )to the reader to show that the set
U = {u € C’g\dimk(u)HO(C Xk k(u),Qu) = ].} c 9.

is a non empty open subset in CY. It is clearly invariant under the action of the symmetric
group on C' x U’, we can form the quotient by this action and get an open subset
U=U'/E, C C9/%,. We introduced this open set already earlier and called it Ugen
Our line bundle Q over C' x C9/%,, has a specific properties: If we project my : C' x
C9/%, — C9/%,, and if we restrict this projection to C' X Ugen — Ugen then the sheaf
(70)+(Q) will be locally free of rank one over Ugen. (See Theorem 8.4.5 (2). We want to
denote the restriction of Q to C' X Ugen by ‘P’. Since our sheaf P’ contains the structure
sheaf Ocyco/x, We can even say that the Oy module (mo).((P’) is generated by the
element 1 € H°(C x UgensOCxUyen )-

The following proposition says that our line bundle P’ has a universal property.

Proposition 10.1.11. Let T be a scheme of finite type over k, let us assume that we
have a line bundle Ly over C x;, T, such that for any point t € T we have deg Ly, =
deg L4|C xy k(t) = g and

dimk(t)HO(C Xk k(t),,CLt) =1.
Then there is a unique morphism
VT — Ugen,

such that
(Id xw)*(P/)|C x T ~T £1|C x T.

We want to comment on this proposition. It gives us already a large part of our theorem
10.1.10, it says that the sub functor of PZCY, Ik defined by the generic bundles is locally
represented by (C' X Ugen,P’) . We will consider Uge, to be a open subset of C9/%, and
of Picgy, as well.

The second comment is that we proved the proposition in a special case. This will be

explained in the following exercise.

Exercise 46. Assume that our scheme T is integral then it has a field L = k(T) of
meromorphic function, which is the residue field of the generic point. We can restrict our
line bundle to C' x Spec(L).

a) Show that our considerations in 1.4. imply that this restriction of v gives us an L
valued point in C9/%X4(L).
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b) Show that this L valued point gives us a morphism ¢’ : T — CY9/%, from some
non empty open T’ C T such that (Id x¢")*(P")|C x T" = L1|C x3 T".

¢) Let us assume we have a line bundle £y on C/k, which is generic, it yields a point
P € C9/%,(k). Assume that this point lifts to a point P = (Py,Ps, - -+ ,P;) € C9(k) were
all the components are pairwise different. We consider line bundles £ on T = Spec(k|[e])
whose restriction to C' x Spec(k) give Ly. Clearly these £ form a torsor under the group
of line bundles on C x T', which are trivial on C' x Spec(k) and this group is isomorphic to
to H'(C,0¢). The tangent space to C9/3, at P is (see 10.1.3) the direct sum of tangent
spaces Tp, at the points P; € C(k). Hence our proposition tells us that we should have
an isomorphism

Hl(CvOC) = ZTPi'

Write down this isomorphism!

We come to the proof of the proposition. We consider the projection
p2 : C X Spec(A) — Spec(A).

Our assumption implies that for all ¢ € Spec(A) the k(t) vector space m.(L1+) = H°(C x
{t},£14) is one-dimensional and H'(C x {t},£1;) = 0. The the semi-continuity theorem
(See Theorem 8.4.5 (2) ) implies that (L) is a locally free module of rank 1 over A.
After passing to a neighborhood of ¢ty we may assume that it is free.

Let V(L) be the bundle of one-dimensional vector space over C' x Spec(A) obtained
from £; (see p. 20) let p be the projection morphism. Then we have the zero section in
this bundle 4
C xj Spec(4) x {0} <> V(Ly)
poio ™\ pl
C' X}, Spec(A)

and we use the isomorphism pg o i to identify the zero section and C' x Spec(A). Our
section s defines a subscheme in V' (£1), which is defined locally by one equation. This
subscheme intersected with the zero section defines via our identification a subscheme

[s =0] C C xy Spec(A).

We know that this subscheme is of degree g in any fibre, this means that for any ¢ €
Spec(A) the subscheme

[st = 0] := [s = 0] x, Spec(k(t)) C C xj, Spec(k(t))
is finite and of degree g (see Theorem 8.1.8). But we have something much more precise
Lemma 10.1.12. After passing to a neighborhood of to the scheme [s = 0] is flat over

Spec(A) and therefore, the A-algebra By = B ® A/I is free of rank g (as an A-module).

For this proof we may and do replace A by the local ring at ¢y. In a first step we show
that [s = 0] is a finite affine scheme over Spec(A4). We consider a finite subscheme F' C C,
F # (0 such that F N [sy, =0] =0. We put V = C'\ F, this is affine and we consider
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(F x, Spec(A)) N [s = 0].

This must be empty, because if we project it to Spec(A) we get a closed subscheme, which
does not contain ¢y . Since A is local, it follows that this closed subscheme is empty.

We see that the scheme [s = 0] is an affine scheme. But of course the restriction m : [s =
0] — Spec(A) is also projective we know that 7o .«(Ops—q)) is coherent and therefore,
[s = 0] is finite over Spec(A). We put B = O¢(V), then V = Spec(B) C C, and

[s = 0] = Spec(B® A/I),
where [ is an ideal, which is locally principal.

In the second step we prove the flatness. Assume we know that Tor{'(B® A/I,k(ty)) = 0.
Then we choose a basis for the k() vector space (B ® A/I) ® k(tp) and lift these basis
elements to elements hy - - ,hy in B® A/I, which then will be generators by Nakayama’s
lemma. Hence we get a surjective homomorphism and an exact sequence

0—-R— A9 — A B/I — 0,

where R is the A-module of relations. If we tensorize by A/mg = k(to) the sequence is
still exact, because of the vanishing of the Tor'. The arrow (A/mg)? — (B®A/I)@k(to)
becomes an isomorphism and hence we conclude that R ® A/mg = 0. Again we apply
Nakayama and get the result.

Now we have to show the vanishing of the Tor;. We consider the sequence
0—-1—-B®A—B®A/I—D0,
and since B ® A is free over A we get an exact sequence
0 — Tori(B® A/I,A/mg) — I @ A/mg — B® A/mg — .
We are through, if we show that
I®A/myg — B® A/mg

is injective. We may assume that I is generated by an element f. (We may take our V
above so small that £4 becomes trivial on an open neighborhood of V' x Spec(A/m)).
Then we have to consider elements

yf®1EI®A/mo,

whose image yf in B® A/my is zero. But B® A/my is integral and since f is non-zero in
B ® A/mg, we can conclude y goes to zero in B ® A/my. But then it follows that yf ® 1
is zero and this is the injectivity. O

It is clear that we can recover the line £ from [s = 0], we have £1 = O¢x, spec(a)([s = 0])
or equivalently £1 = I~!. The same consideration applies tp [A = 0] C C x; C9/%, and
the line bundle P’. Hence we see that our requirement on ) in proposition 10.1.11 can
be reformulated
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(Id x)* (PY|C X T ~p L1]C x T <= (Id x9)) " ([A =0]) = [s = 0]

At this point we introduce the notion of a relative divisor on C' x Spec(A). By this we
mean a subscheme Y C C x Spec(A), which is finite and flat over Spec(A4) and where the
sheaf of ideals defining Y is locally principal. The argument in the lemma above shows
that such a subscheme is always contained in an open subscheme Spec(B) x Spec(A)
where B is the algebra of regular functions on a suitable affine subset V' C C', and hence

Y = Spec(B® A/I)

where the ideal I is locally principal. The A/mg algebra (B® A/I) ® (A/mg) has a rank
r, which is called the degree of the relative divisor. Our A-algebra (B ® A)/I is free of
rank 7. (Lemma 1.5.5.)

Our aim is to show that a relative divisor of degree r is nothing else than a Spec(A)
valued point on C"/X,. We observe that in our construction of the line bundle £ on
C xj, C9/%, we can replace g by any integer r > 0. We get a line bundle Q, on C' xy
C"/%,, which has the constant function 1 as a global section, let us call this section
s, € H°(C x; C"/%,,Q,). This section has zeroes and the locus of this zeroes

[sr =0l =[A,=0]C C x, C"/%,

is a relative divisor of degree r.
If we now have a scheme T' — Spec(k) of finite type and a morphism ¢ : T — C" /3,
then we consider Id xx¢) : C' x, T — C X}, C" /%, and clearly

(Id Xk¢)71([AT = 0]) =Y CCxiT

is a relative divisor of degree r. It defines a line bundle £’ = O¢«, r(Y) and by definition
we have

L' = (Id xx)" (Qr).

Now it is clear what we have to prove: We have to show that [A, = 0] is the universal
divisor of degree r. The following assertion (B) makes this precise and it is clear that this
assertion applied to the case r = g implies proposition 10.1.11. We formulate it under
the assumption that 7" = Spec(A) is affine, the assertion (B) is local in 7" anyway.

(B) LetY C CxSpec(A) be a relative divisor of degree r. There exists a unique morphism
1 : Spec(4) — C"/Z,,

such that in the diagram

Id x4

C x Spec(A) — CxC"/3,
U U
Y A, =0]
! !

Spec(A) 2, CT/%,
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the scheme Y is the pull back of [A, = 0] under Id x4, i.e.

(1dx) A, = 0] = V. (*)

The proof of (B) is a little bit technical. We observed already that we can find an affine
sub scheme Spec(B) C C sucht that Y C Spec(B) x, Spec(A). We may have to localize
at a given point to. We write down the affine version of our assertion, we get a diagram
with reversed arrows ( 4 is also the homomorphism between the affine rings)

B® (B®)®r Y Be,A
! L
B® (B¥)"r /14, By, A/ly
T 11
(B®)=r N A

and the condition is that Iy is the image of In_ under Id xv. This means that the image
of a local generator F). of Iy under Id x is a local generator of Iy. We will say that ¢
satisfies the condition (*).

Given to us is the right column in our diagram, we have to find ¥ and prove uniqueness.
We consider the case » = 1. This means that the arrow 4; is an isomorphism, it can be
inverted and we get a homomorphism

. i—l
B—B®ASBeyA/ly 2~ A

and this is our homomorphism . We can insert it into the top line and we have to show
that Iy is the image of Ia, under Id x1, and that it is uniquely determined by this
requirement. But this is clear: The ideal Ia, is locally generated by an element of the
form f®1—1® f, this is mapped to f ® 1 — 1 ®(f) and this is by construction a local
generator of Iy (see prop. 7.5.16). This shows that v has the right property but it is also
clear that ¢ is uniquely determined.

We come to the general case, it is not so easy. We think at this point a moment of
meditation is in order. We want to show that our relative divisor Y C C' x; T is the same
as a T-valued point, i.e. an element of ¢» € C"/%,.(T). But how do we get such elements
¥. The map C"(T') — C"/%,(T) is not surjective in general (we have seen this already
in exercise 46 in the case that T' = Spec(k) where k is a non algebraically closed field).
But we can find a faithfully flat extension 7/ — T such that the image ¢’ € C"/%,.(T")
is in the image of C"(T") — C"/%,.(T"). We apply theorem 6.2.17 and we see:

We get a point v € C"/%,.(T) if we find a point
V= (pr...) € CN(T)
! ! )
¥ e Cr(T)/s,

which in addition satisfies p1(¢') = p2(¢)") where py,ps are the two maps obtained from
the two projections py,pe : TV x¢ T" __T".
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To make use of this principle of construction points in C"/%,.(T) we can ask ourselves,
under which conditions a relative divisor Y is given by a morphism ¢ : T — Cx,C" /%,
which lifts to morphism J = (¢1,...,0r) : T —> C". We recall that the bundle £ on
C x C"/%, has a pullback £ = (Id xII)*(£) = Q._; Ocxcs(A;). Therefore,

L1 = (Idx)*(£) = (Id x)*(1d xID)*(£) = QI x:)"(Ocxc)(A).

7

Hence we see that

L1 = Q) Ocur(ldxe;) " (A)) = R) Ocxr(Yi).

Clearly the Y; are relative divisors of degree one.

This leads us to introduce the notion of a decomposable relative divisor. A relative divisor
Y of degree r decomposable if the ideal Iy can be written as a product Iy = [[/_; I;
where I; is locally given by one equation and where Y; C C' x T is a relative divisor of
degree 1.

In a first step we prove (B) for decomposable divisors. The existence of 1 is obvious, we
have proved (B) for the case r = 1, we apply this to the Y; this gives us a )= (D1, 0r)
and 1) is the image of 1) under C"(T') —> C” /S, (T)). But we also have to show uniqueness.
We choose an element f € B whose differential df has no zeroes on Y, this is possible
locally in Spec(A). Then we know (from the case r = 1) that [[(f®1—1® ¢;(f)) is a
local generator of Iy at all points (t,z) where df, # 0. Now let 11 : (B®")* — A be a
homomorphism such that (Id x¢;) "1 (Ia, )(B®A) = Iy. Let fi = 1®---@f---®1 € B®"
be the element where the factor f is at spot i. The element

[[ter1-10f)=f o1+ alf)+...100(f)
lies in Ia, and it is mapped to
frol+ frteg(o(f) +... 1@ ¢i(o.(f)) € Iy

and hence it is a multiple of [[(f ®1—1®¢;(f)) in the ring k[f,5]® A where P describes
the locus where df vanishes. But then it is clear that we must have

[[Fe1-106:(f) = Fro1+ " @o1(d1(f), - br ()4 1@ (d1(f); -6 (f)),

- V1(0u(f) = 0(@1(F), - 6 (F))

This proves the uniqueness in assertion (B) in the case of decomposable divisors.

In a second step we show that for any relative divisor Y € C x; T we can find a
faithfully flat 7/ — T of finite type such that the base change Y xr T' C C x, T
becomes decomposable. This can be done by an easy induction argument. We know that
Y — T is flat. Therefore we can consider the base change diagram
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YXTY C CXTY

Lo
Y

which gives us a relative divisor over Y. This relative divisor is the sum of two relative
divisors namely the diagonal Ay C Y x7 Y and its complement Y/ C C xr Y, this
complement is a relative divisor of degree r — 1. If we apply the same process to Y’ and
after » — 1 faithfully flat base changes we have decomposed out relative divisor.

The rest is clear. Let Y C C' % T be a relative divisor, we choose a faithfully flat 7/ — T
such that Y x¢ T' C C x;, T" decomposes. Then we find a unique v’ : T/ — (C®")>r,
which satisfies (*) . We have the two projections p1,ps : T" x0T’ __T". and this gives us
the two T X7 T" valued points ¥ o p1,1) o pa. But they they also satisfy (*) and hence
they must be equal. But this says that there is a unique ¢ : T — (C®")*r whose base
extension is ¢/, and which satisfies (*). This proves (B) and hence proposition 10.1.11.

The gluing

Our goal is to construct a scheme Pic, /x and a line bundle P over C' x Picf, /. such that
this pair of data provides a local representation of PZC¢/y, -

Our proposition 10.1.11 tells us that we reached this goal for a certain sub functor: We
considered only those families of bundles of degree g, for which dim H°(C x k(t),L£;) = 1.

Our field k is still an arbitrary field. We choose an algebraic closure k and inside it we
have the separable closure k.

Proposition 10.1.13. For any smooth, projective, absolutely irreducible curve C/k of
genus g we can find a finite family of degree zero line bundles

Fioo F

on C xy, kg such that for any line bundle £ on C x; k of degree g we can find an index
1 such that
dim H°(C %, L,L' @ F;) =1

i.e. L' @ F; is generic.

Our proof is based on a general principle namely that the line bundles of degree g on C/k
form a bounded family. In our case this means that we have the bundle Q on C' x;, C9 /%,
and for any line bundle £; of degree g on on C x k we can find a point v € CY/%,(k) such
that Q, — L£;. ( Every line bundle £; ”occurs” (perhaps several times) in the family
Q on C x C9/%,).To see this we simply choose a non zero section in H°(C x k,£1) and
look at the divisor of zeroes of this section, this gives the point v. If now £, is given then
we can find a line bundle F on C X kg such that £; ® F is generic. We can find an open
set V' .C CY9/%, containing the point v such that for all v € V the line bundle Q, ® F
is generic. This yields a covering of C'Y by open sets V; and bundles F; on C' x k4 such
that Q ® F; is generic on C x V; ). This covering has a finite sub covering and gives us
a finite list of F;. For i = 1 we choose V; = U and F; = O¢.
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Now we come back to our line bundle £’ on C' x L. Of course we can assume that L is the
quotient field of a finitely generated k-algebra B, and that £’ is obtained by base change
from a line bundle £* on C'xSpec(B). We have the projection p; : C'xSpec(B) — C. The
pullbacks of F; by p; are still called F;. Now we consider a closed point to € Homy(B,k)
and consider the line bundle £} on C/k. We can find an index 4 such that £} ® F; is
generic. Then it follows from semicontinuity that £ ® F; is generic. O

This makes it clear how to proceed with the construction of Pic?(C'). If we have a line
bundle £, on C x T, where T is of finite type, then we have a finite covering T'= U T;
by open sets such that £; ® F; restricted to C' x T; is generic in all points ¢t € T;. Then
we find a

such that (Id x;)*(P’) is locally isomorphic to £ ® F; or in other words
(Id x¢)*(P' @ F; ~n L1 | C X T

Hence we do the following: We consider the open set U C C9/%, and the line bundle P’
on C' x U. We consider r copies of C' x U and on these copies we put the line bundles
P’ @ F; 1. Our previous consideration shows that C' x U together with P’ @ F; ! is a
universal bundle for families of line bundles of degree g, for which £ ® F; is generic.

We form the disjoint union

OCXU:C’X(UX[L...,T]),

i=1
on which we consider the line bundle £; = P’ ® }71 on the 7’-th component. Remember

that for i =1 we put F1 = O¢. Let us put U; = U x {i}.

For any of the components (C' x U;,P’ ®fi_1) and for any other index j we may consider
the open subset C' x U;; C C x U; where u € U; if and only if P, ®}71 ® Fj is generic.
Then it follows from our previous arguments that we have unique isomorphisms

@Z}ij : Uij = Uji C Uj

such that we have
(Id XT,bij)*('P/ ® .7'-]»71) ~U;, P’ ® .7'-;1.

It is clear that this family of morphisms satisfies v, 0 1;; = ;1 , and
Yjio; =1d.

We get an equivalence relation on our disjoint union and this allows us to glue these copies
of U via the identifications 1;; to a scheme Pic% Ik By construction we have a covering

of Pic%/k by open sets U; and we have the line bundles £; on the products C' x U;. The
restrictions of £;,L; are locally isomorphic on C' x (U; N Uj). (See proposition 10.1.11)

This means that we have proved the weak local representability of PIC”CL /L if L/k is a
finite separable extension, over which all the F; are defined.
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Theorem 10.1.14. If C/k has a rational point then the functor PICcyy p is repre-
sentable, it is the disjoint union of all PICTC/,“P ;v € 7. We denote the representing
objects by (C x Piccy, p ,Pr,s).

Start with » = g. We pass to a finite, normal and separable extension L/k over which
the F; are defined. Then we have weak local representability and we have seen that this
implies representability for PZC¢, ;1 p . We have a universal object (Picc, /1, ,P,s). Now
we can apply the general principles in 6.2.8. We put S = Spec(k),S” = Spec(L), let
Pic%/k’P the representing scheme. For any o € Gal(L/k) we get a unique morphism

¢0’ : ((PiC%L7P)J’,P6780) — (PiC%L)P 7P78)

and because of uniqueness it has to satisfy the cocycle relation, and hence we get a
descend datum. We have to prove that it is effective. Here we have to anticipate 10.2.2,
where we prove that Pi(% /L.P is projective. This implies that we can apply the criterion
on page 48.

Now we take r arbitrary. Again we choose a finite separable extension L/k such that
we can find a second point @ € C(L),Q # P. Now we pass to Cp, and use this point
to identify the functors PZCty, p for the different values of r. For any integer v we
have the line bundle O(vQ) on Cr. This bundle restricted to a neighborhood V' of P
is canonically trivial, we have the section 1 € H(V,0(vQ)) provided Q ¢ V. For any
T — Spec(k) of finite type the bundle p3(O(rQ)) is a bundle on C x T whose restriction
to {P} x T'is equipped with a trivialization. If we have a line bundle £ € PZC¢ /, p(T)
then £® p5(O(rQ)) is a line bundle on C' x T with a trivialization at { P} x T and hence

L@ p3(0(wQ)) € PICGY, p(T).

Therefore, we get a bijection PIC¢, ;1 p(T) = PICTCJ;”/ 1.p(T) and this makes it clear
that all PZCg, /L,p are representable once we have representability for r = g. But now
we apply the argument from 6.2.8 and see that already PZC¢ , p is representable for all
values of r. O

The scheme | | ., Picg/kvp = Picg/g,p is not of finite type, but this does not really
matter, it is a disjoint union (indexed by the integers) of schemes of finite type.

We pick two integers r,s and we consider the scheme
C x Picrc/k’p X Picsc/k’p.

We have the two projections pis to the first and second factor and ps3 to the first and
third factor. We get a new bundle

P12(Pr) @ pi3(Ps)

on C' x Pic" ¢/, p x Pic®c/i p and this line bundle has degree r + s in any point y €
Pic"(C) x Pic®(C'). Therefore, we get a unique morphism

m: Picrc/kyp X PiCsc/k’p — PiCT+SC/k,’p

such that we get a unique isomorphism
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n:p12(Pr) @ pi3(Ps) = (Id xm)*(Prys),

here the trivializations along { P} x second factor are of course important.
It is clear that this defines a structure of a group scheme on

Pico/p,p =] Pic"c/i,p,

which is a scheme over k, which is not of finite type.
As a special case this gives us a group scheme structure on Picl, /k,p» and all the Pice . p
are principal homogeneous spaces under the action of Pic% kP

Proposition 10.1.15. The schemes Picg )y, p /k are smooth, separated and absolutely
irreducible.

It suffices to consider the case r = g. The open dense subset Ugey, is absolutely irreducible,
since our curve is absolutely irreducible this implies the same assertion for Pic% Ik We

write Pi(% k= X. Of course the non empty open subscheme Ugen, C X is smooth and

separated. The non smooth points form a closed subset in Z C X. If Z # () then Z (k) # 0.
Since Picl /k(l_f) acts transitively on X (k) and since Z(k) is invariant under this action it
follows that Z(k) = () because Ugen(k)) # (). A similar argument works for separatedness.
We have to show that the diagonal Ax is closed in X x X. Assume it is not, then we can
find a geometric point (P,Q) € Ax (k) C X (k) x X (k) with P # Q. We have the diagonal

action of Picg,/k(lg) on X (k) x X (k) and clearly Ax (k) and Ax (k) are invariant under
this action. We can find an element u € Pic%/k(l?:) such that T, (P,Q) € Ugen X Ugen.

But since Ugen/k is separated we see that the diagonal is closed in Ugen X Ugen. This is
a contradiction. O

10.1.7 The local representability of PIC%/k
We want to drop the assumption that we have a rational point P € C(k). Now we only
have the functor PZCg /i and we want to investigate what happens to this functor.

Of course we proceed as before and choose a finite, normal and separable extension L/k
such that C has a rational point. Hence we know that PZCr, /1. 18 locally representable,
this provides a scheme Picc, /1, and a line bundle P, on C' x Picg, /1, . We want to discuss
to what extend this object over L descends to an object over k. We will find a canonical
effective descend datum for Picg, ,; , and hence we construct a scheme Picg, /.. But in
general the bundle may not descend.

The descend datum for Pice, /7, is almost obvious. We pick an element o € Gal(L/k) an
conjugate by o, we consider P on C x (Picg, ;1) (See 6.2.9). Then we find a unique
morphism f, : (Picg, /)7 — Picg, ,p, such that (Id x f,)*(Pr) ~ Py

Since these morphisms between the schemes are unique we get the cocycle relation

f‘ro' :f‘rof;—'

Hence we see
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The interpretation as locally representing scheme yields a canonical effective descend
datum on Picg, ,;, and hence we constructed a scheme Picg )y, [k for any r.

But in general we will not be able to construct a bundle (or even only a gerbe) P, on
C x Picp /i » which provides local representability. We want to explain briefly why this
is so. We consider the function field k(Picg/,) = K, and we have the generic point
n : Spec(K,) — Picg . If we have a bundle (or only a gerbe) P, on C' x Piccy, it
will introduce a line bundle P} on C' x 7. We know that we can find such a bundle P,
on C, x ny, after extending the scalars by a finite, normal separable extension. For aﬁy
o € Gal(L/k) we find an isomorphism o, : (P, )7 — P! of line bundles over C, x 1.
These a, are not unique they can be modified by an element ¢, € (K, ® L)*. Now there
is no reason why these o, satisfy the cocycle relation, which would make them into a
descend datum. In general we will get a map

(0,7) = tor = ama;l(a;)*l,

which will be a 2-cocycle, which defines a class [c,] € H*(Gal(K, ® L/K,),(K, ® L)*)
and there is no reason why this class should vanish. Hence there is no reason that we
may be able to change the a, into a descend datum.

I want to stress the analogy between the situation here and the discussion in 9.6.2, in
both cases the violation of the second sheaf condition for a functor leads to obstructions
in certain second cohomology groups. We became modest and wanted to construct a
gerbe P, which was a gerbe for the Zariski-topology on Picg /i but now we see that we
only can construct a gerbe for the étale topology on Picg k-

To give a simple example let us consider a curve C/k of genus one, which does not
have a rational point, i.e. C'(k) = 0. If we take » = 1 then we have Piclc/k = C and
P1 = Owcxcya) (See 10.1.1).

Now ask ourselves whether we have a Py on C' x Picy /i - We have an action of Pic, Jk
on Piclc/,€ = C and it is clear that Picé/k is indeed a Pic%/k-torsor. 6.2.11. We ex-
plained that the isomorphism classes of these torsors correspond to the elements in
H(Gal(ks/k), Picoc/k) and that the class [C] is zero if and only if C'/k has a k-rational
point. It follows from a relatively simple computation with exact sequences that this class
[C] maps under a boundary map to a class in §([C]) € H*(Gal(K, ® L/Ky),(Ko® L)*).
This class is exactly the obstruction class [cg] and it vanishes if and only if [C] vanishes.
Hence we can conclude

For a curve C/k of genus one we have a bundle Py on C' X Picoc/k if and only if C/k has
a k-rational point.

Finally we come to the proof of Theorem 10.1.10. We remains to be proved is that we can
construct a line bundle P, on C' x Picf, Ik such that (Picf, Jk ,Pgy) is a local representation
of PIC%/,C. The case r = g is special because we have the open subset Ugen C Picé/l€

and we have the line bundle P’ on C' X Ugen. On this open subset we may choose our
searched for Py to be P’.
Now we need a simple proposition

Proposition 10.1.16. Our open set Uge,, C Picgc/k has a complement of codimension
> 2 and the line bundle P’ on C XUy, extends uniquely to a line bundle P on C X Pic%/k.
This line bundle P has the property that P|C x U; ~y, L;
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Consider the morphism ¢ : C9/%, — Picé/k. The fibre of a point u € Picé/k consists of
those points (P - -- P;) € C9/%,, for which

L,~O(P +-+P).

Hence we see that the fibre is simply the space of lines in H(C x k(u),L,), this is the
space P(H?(C x k(u),L,)"). Hence its dimension is

dim H°(C x k(u),L,) — 1.

The map v identifies the open set Ugen C C9/%, with its image in Pic%/k by construction,
hence we see that for points u € Pic% Jk \ Ugen the dimension of the fibre is > 1. We
apply the reduction process in the beginning of 7.4.3 to the morphism C9/%, \ Ugen —
Pic% Jk \Ugen and then the first assertion follows from proposition 7.4.6.

To prove the extendability we use a general principle, which says that on smooth, ir-
reducible schemes isomorphism between line bundles or sections in line bundles extend
over closed subset of codimension > 2.

To be more precise: Let V/Ek be a smooth, irreducible scheme of finite type, let £ be
a line bundle over V and let U C V be an open subset such that the complement has
codimension > 2. Let s € H°(U,L) be a section. Then this section extends to a unique
section on V. To see that this is so we pick a point p € V \ U and we choose a local
section s, € H°(V},,L), which is a generator. Then we have s = hs,, over V,NU. We write
h as a ratio of two elements in the local ring at p. Since this local ring factorial (See [Ei],
Thm. 19.19 ) the denominator must be unit and h extends uniquely to a regular function
in Ox(‘/;))

If we have two line bundles £1,£5 over V, which are isomorphic over U then this iso-
morphism is given by non zero sections in s; € H*(U,L; @ L5'),s0 € HO(U,Ly ® L7,
whose product is one. Our argument above shows that these sections extend to sections
on V and their product is still one. This implies that an extension-if it exists- from P’
on C' x U to a line bundle P on C' x Pic?(C) is unique.

Finally we show that P’ extends from C' x U to a line bundle P on C x Pic?(C'). Let us
assume that we extended P’ to a line bundle-still called P’- on C' x U’ where U’ D U is
open. If this open set is not yet Pi(%/k then we pick a point a € Pic?(C) \ U’. We find
an index ¢ such that a € U;. We consider the open subset U/ C U’ N U; where P’ @ F; is
generic. By construction we have U/ C U; and P'|C x U] ~y; L;|C x U/. (The morphism
1, which realizes P’|C' x U/ is now the inclusion). But now we can say that we can find
a line bundle M on U/ such that

P'|C x Ul = L;|C x Ul @ p5(M)
( see 10.1.1) and hence we can glue the bundles P’ on C' x U’ and £; ® p5(M) on C x U;

over C x U/ to a larger extension of P’. This process stops after a finite number of steps.
O

This finishes the proof of theorem 10.1.10, we simply may take the extension of P’ to
Pic, , as our Py.
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10.2 The Picard functor on X and on J

Some heuristic remarks

We want to get a better understanding of the scheme Piccy. Since all its connected
components are isomorphic, we can concentrate on the components. For us it is sometimes
convenient to consider Picf, Ik and Pic, /- Therefore we introduce the notations

X = PiCzC/k

We will see that X/k is a smooth projective scheme. Then J is also smooth projective,
and it is a group scheme, hence an abelian variety. Notice that is always defined, even
if we do not have a rational point. It is already clear that Pic% /1 1s a proper scheme
because we have the surjective morphism

m:C9/%, %Pic%/k,

and that we have identifications Pic%, = Picl, Ik The morphism 7 is birational (see
7.4.3), because it induces an isomorphism on the open subset Ugen. The scheme J/k is
called the Jacobian of the curve.

As in the transcendental case our main objects objects of interest will now be the Picard
functors Picx;, and Pic;/,. We will prove local representability as in volume I Chapter
V. The understanding of the structure of these resulting Picard schemes is the key to
many beautiful results.

10.2.1 Construction of line bundles on X and on J

We remind the reader that the fundamental tool for this study was the existence of the
polarization and the resulting line bundles. (See Volume I, V. 5.2) The following results
are more geometric in nature, therefore, we assume for a while that our base field & is
algebraically closed. We assume that we picked a point Py € C'(k).

We can restrict the bundle P to {FPy} x X ~ X and this gives us a line bundle Pp, on
X. This bundle will play the role of - or is - the principal polarization. We will denote it
by © and it is called the Theta bundle or Theta divisor. It depends on the choice of
Py but its class in the Neron-Severi group N.S(X) is independent of this choice. Actually
it is this class, which is the relevant object.

We have the action of J on X we denote it by m : X x J — X. This allows us to
translate line bundle and divisors. For any = € J(k) we have the translation

T,: X — X, T, : y— m(z,y) or occasionally y — x +y

and we can consider the translated bundle 7;(©) and compare it to © by forming the

quotient
T:O)®e .

We can view x as a variable or better we can construct the bundle



298 10 The Picard functor for curves and their Jacobians

O=m"©®) @ps©O ) on X xJ (10.5)

This bundle evaluated at x gives the above bundle. The scheme J comes with a distin-
guished point namely the identity ( or zero) element e € J(k) and O, — Ox. Hence we
can view © as an object in PIC())(O/k(J). (See 10.4) The bundle T(0) ® ©~! itself is in
PICY 1, (k).

One of our aims is to prove that this pair (X x J, (:3) gives us a local representation of
the functor PIC(;?/k .

The homomorphisms ¢

Let us consider any line bundle M on X. We apply our construction above to this bundle
and form the bundle Nyg = m* (M) @p35(M~1) on X xjJ. Hence for any scheme T’ — k
( of finite type ) and any k-morphism ¢ : T — J, i.e. ©» € J(T') we get the restricted
bundle (Id x;1)*(Naq) on X X T, i.e. a point in PICg(/k(T). This gives us a functorial
map

S+ J(T) — PIC i (T),

i.e. a morphism from the functor J to the functor PIC?W We want to show that ¢ is
a homomorphism.

Here we are in an amusing trap. We will see that our assertion is a consequence of the
theorem of the cube applied to a suitable line bundle on X x J x J. But recall that that
the basic ingredients of the proof of the theorem of the cube are the finiteness results for
higher direct images of coherent sheaves under projective morphisms and the resulting
semi continuity results. But we don‘t know yet that X, J are projective, they are only
proper. We will prove projectivity later, but in the proof we will need that ¢ is a
homomorphism.

Now we have three options for the reader. The first option is to apply theorem 8.3.7,
which is not proved in this book. The second option is to look up the proofs of the
theorems 8.3.6 and 8.3.7, in [Gr-EGA II] and [Gr-EGA III], Chap. III, §3.). This option
is highly recommendable anyway.

The third option is to follow me and read the direct proof that ¢4 is a homomorphism
if we restrict ¢ o4 to the geometric points. We prove

Proposition 10.2.1. The map
dm : J(k) = Picgy (k) — PICY (k)
defined by
dm(z) =T; (M) @ MY,

is a homomorphism and if M is algebraically equivalent to zero then this homomorphism
is trivial.

We reduce the proof to the proof of the second assertion. Let us pick a point z, then
L =T:M)® M~ is algebraically equivalent to zero. The second assertion says that
T, (L) =~ L therefore,
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Ty (T; (M) @M ™) ~TiM @M
rearranging yields
Ty M) @M =Ty M)@ M @Ty(M)@ M,

and this is the reduction to the second assertion. Hence we consider the case of an M,
which is algebraically equivalent to zero. This means that we have a line bundle

M|X x Z
where Z is of finite type and connected over k and such that

MX x 2 M
M|X X zZy X OX.

12

for some points z1,20 € Z(k). We can pick a point xg € X(k) and tensorize M by
pi(Mlxg x Z)~1); then M|zg x Z ~ Oz. We have two morphisms

pis : XxJxZ — XxZ
mpo XIdy : X xJxZ — XXxUZ,

the first one is the projection, the second one multiplication in the first to factors (times
identity). We consider the bundle

(maz x 1dz)* (M) @ pis (M)~ = I,
which evaluated at a point x € J(k) and z € Z(k) gives us
TH(M.) © M
where M., is of course M|X x {z}. Now we know that
NzgxJxZ and N|XxexZ and  N|X xJ X z

are trivial. Now we are in the situation to apply the theorem of the cube. But for this we
need to know that X,J are projective. Since we don’t know this yet, we have to make a
slight detour at this point.

We remember that we have a morphism
7xIdg : CY/8, x CY/8y x Z — X x J x Z,

which is birational and where the fibers are product of projective spaces. We pull our
line bundle back and apply the theorem of the cube upstairs. To do this we need a little

Lemma 10.2.2. For any line bundle £ on X x J x Z we have (7 xIdz). (7 xIdz)* (L) =
L

We consider the pullback of the bundle

L=(mxIdg)" (L) CI/T, x CIT, X Z.
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The identity in Hom((7 xIdz)*(£),(7 xIdz)* (L)) yields via the adjointness formula (See
Vol. I, 3.4.1 ) a morphism

Ji L — (1 x Idy).((r x Idz)* (L)).

We want to show that this is an isomorphism. This is a local question on X x J x Z and
therefore, we can assume that £ is the trivial bundle Ox « jxz. Then the pullback is by
definition the structure sheaf Ocqs s, «xc9/5,xz. We have to show that

(m x1dz)«(Ocs /s, xco/2,x2) = Oxxixz
Of course this follows if we can show the corresponding assertion for the morphism
T:C9/E, xCY/8, — X x J

because the sheaves in question are simply the pullbacks via the projection p15 to the first
and second factor. Now we have seen that the morphism 7 is projective and therefore,
we can conclude that 7.(Oco /s, xc9/x,) is a coherent sheaf on X x J (See Thm. 8.3.2).
Hence we see that for any open subset V' C X x J the algebra m.(Ocs /s, xco/s,) (V) is
finite over Ox (V). If we pass to the stalks at a point  then we have

lim Oxx;(V)=Oxxsz C lim (Ocos, xcoss,(® (V)
VizeV VizeV

and this is a finite extension. The fibers of m are products of projective spaces and
therefore, connected.
We claim that the limit on the right is a local ring: An element

fe Vlzixrgv(ocg/ﬁg xcoys, (1 (V)

restricted to the fiber is constant, because the fiber is connected. If the value of this
constant is not zero, then the set V(f) of zeroes of f is closed and does not meet the
fiber. Hence its image under 7 is closed in Spec(Oxx ) and does not contain = and
hence empty. So V(f) is empty. This shows that f is invertible and this implies the claim.
The two local rings have the same field of fractions, namely the field of meromorphic
functions on X x J. But since X x J is smooth we know that the local ring Ox s, is
regular, hence factorial and hence integrally closed in its field of fraction (see prop.7.5.19,
Thm. 7.5.20 and exercise 19, 1.), we conclude that the two local rings are equal and this
proves the Lemma. O

Now we know that the first two factors are projective. If we take inverse images of our
points Zo and ¢, then we still have the triviality conditions. Now we can apply the theorem
of the cube and conclude N is locally trivial in Z, i.e. we can cover Z by open schemes
Zy S.t. _

N|CIS, x CI)Sy X Zy

is trivial. But then the lemma above yields that already A is locally trivial in Z. O

We consider the special case of M = Pp,. The tangent bundle T is trivial, a global
section is determined by its value at e. Hence H(JT;) = H'(C,0¢). If we differentiate
we get a homomorphism dp,  : HY(C,0¢) — HY(X,0x). Now the Kiinneth formula
(See 8.2.2) tells us that H'(X,0x) = H'(C,0¢) hence
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(573},0 : Hl(C,Oc) — Hl(C,Oc)
is an endomorphism.
Proposition 10.2.3. The endomorphism 0p,, is the identity

We recall the definition of P by a cocycle and compute its derivative. O

10.2.2 The projectivity of X and J

The above proposition 10.2.1 helps us to prove that the scheme X /k is projective. To do
this we construct a line bundle on X with many sections.

Our bundle P on C' Xy, Pic% Jk has a non zero global section: The constant function 1 is
a global section of the restriction of P to C' X}, Ugen. But since the complement of Ugen
in Pic% Ik has codimension > 2 it is clear that this section extends.

Now we consider the bundle ©. We can restrict the above global section 1 to {Fo} X
Pic% Ik let us call this section sg. I has an effective divisor D of zeroes and

6 = Ox(D).

( The divisor D has as its support |D| those points (P,...,P;) where one of the entries
is equal to Py.) We have

T:0 = O,(I'D)=08L,
75,0 = Ox(IT*,D)=0&L_,

and if we apply proposition 10.2.1we get
70T ,0~0RL, 202 L , ~ 0%

These translated bundles have sections T, (se),T-.(se) and via the above isomorphism
we get sections T, (se) - T-.(se) € H°(X,09?). We can pick any point u € X and we
find an x € Picoc/k such that

ug Tr|D|UT*,|D].

Hence we find a global section of ©®2, that does not vanish at u. This means that ©%?2
has no base point (see definition 8.1.18).

Then we have seen (see Thm. 8.1.8 ) that we get a morphism
ree: : X — PN = P(H°(X,09?)).

We claim that this morphism has finite fibers. We assume that we have a fibre r5 3, (y),
which has positive dimension. This fibre contains an irreducible curve Z. We can find a
section s € H(X,0%%), which does not vanish at a particular point 1 € Z(k) since we
do not have base points, but then this section will not vanish at any point of Z, which
implies that ©%2 | Z is the trivial bundle.

Therefore we know that © and all its translates 7, (0) have degree zero on Z. Since
O = Ox (D) we see that for any translate of D we have
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T:(D)NZ = {@

Z
or in other words we have T (Z) C |D| or T;(Z) N |D| = 0.
Now we show that for any two points 21,20 € Z(k) we have

T, (ID]) = [DI.
Let do € |D|(k) then do = T; _, (21) and it follows
T2, (2) C|DI.

Now T . (22) =T5 . (TZ,_., (=) = T2, ., (T3, ., (21)) = TZ,_., (do) € |DI.
But this is impossible since it would imply that 77, . (©) ~ © for all 23,21 € Z. Now
we pick a smooth point z; and take zo = z; + €V, where V' is a non zero tangent vector
at Z in z1. Then we get dp, (V) = 0 and this contradicts our proposition above.

This implies that the fibers are zero dimensional and we can apply theorem 8.1.20. To
do this we have to verify that the assumption al) is true. We know that the fibers are
finite. But since X is a homogenous space under the action of .J it is also clear that any
of the fibers is contained in an affine open subscheme. To see this let us consider any
finite set {aq,as,...,ay} of points in X (k). Let U C X be a non empty open subset. For
any index ¢ we can define the non empty open set V; = {y € J(k) | y + a; € U}. Since J
is irreducible the intersection of these open subsets is non empty. For any point b € J(k),
which lies in this intersection we have {a1,as,....an} C Tp(U).

We have proved the projectivity of X and J.

The morphisms ¢rq are homomorphisms of functors
We defined the morphism between functors

om:J(T) —  PICS(T)
O 1Y — T;(M)@M_l

and now we have

Proposition 10.2.4. These morphisms ¢ between functors with values in abelian
groups are homomorphisms.

To see this we apply the theorem of the cube. We consider
X xJx J,

we have three morphisms to X x J, namely, the projections p12,p13 and Idx xma3 where
mg is the multiplication in the second and third factor. Then we have the two morphisms
m,p1 : X X J — X, where m is the action of J on X. For any line bundle M on X we
can consider the line bundle

N = (moma3)* (M) ® (mopi2) (M) @ (mopis) (M)"'®
® (p1 @ ma3)* (M)~ @ (p1 0 p12)* (M) ® (p1 0 p13)* (M)
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on X x J xJ.
We pick a point z¢ € X (k) and evaluate this bundle on

xo X J xJ X xexJ X xJ xe,

and find that its restrictions to the second and the third subscheme are trivial. Let A,
be its restriction to the first subscheme, which we identify to J x J. Let

Nl‘o = pES(/\/Io)
then we see that ~
N ®pis(Ngy) 't =N @N!

is trivial on all three subschemes. Hence it follows from the theorem of the cube that
N = p§3 (Nwo)'

This can be formulated differently by saying N' ~jx7 OxxJxJ-
If now z,y € J(T') then  xy : T — J x J is the product of two T valued points. Hence
we have the morphism

Idxzxy: X xT — X xJxJ
and we compute (Id xz x y)*(N'). The observation we just made implies (Id xz X y) *
(N) ~1 Ox 7. Exploiting the definition we get
(Id xz x y)« (N) =T;, (M) @T;(M) '@ T M) ' @M @ Ma M.
Since the left hand side is locally trivial in T' it follows that

dm(x+y) = drm(w) + dm(y)

where of course + means taking the tensor product. 0

We will apply this to the special bundle ©. We can now interpret this as a homomorphism
of functors

bo : J — PIC°(X)

and our goal is -in a certain sense- to show that this is an isomorphism. Recall that in the
definition of © we had to choose a point Py € C'(k). But obviously two different choices
of this point yield divisors, which are algebraically equivalent. Hence proposition 10.2.1
implies that these two divisors define the same ¢g.

10.2.3 Maps from the curve C to X, local representability of PZCx/, , PIC ;s
and the self duality of the Jacobian

To reach this goal we construct a homomorphism in the opposite direction. To get such
homomorphisms we construct certain morphisms from the curve C into X and study the
restriction (via these maps) of © and of other line bundles on X to C. We have seen in
Vol. 1. 5.2.3 that such morphisms explain the self duality of the Jacobian.
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We keep our point Py € C(k). The naive construction of such morphisms is easy to
explain. We choose an array of points

Q = (Qh e an) S Cg(k)
From these data we construct a morphism
jpmg :C — X,

which sends a point P € C(k) to the line bundle Oc(—P + Py + Q1 + --- + Qy), (just
a reminder, we allow first order poles at Py and the @; and require a zero at P.) The
point P is fixed, we consider @) as variable.

We say that (Q1,---,Q,) € C9(k) is generic if the images of the points

(Q17"' an) and (P07Qla"' 7@1'7"' 7Qg)

are all in Ugep.
To give the correct definition of this morphism we consider the curve C' x C' with its two
projections py,p2 to C'. On this surface we have the line bundle

Pi(Oc(Po+ Qi+ + Q) ® Ocxc(—A) = Ly,

where A C C x C is the diagonal. This gives us a family of line bundles on the first
factor, which is parameterized by the second factor. For a point P € C(k) in the second
factor the restriction of Lo to C' x {P} is the bundle Oc(—P + Py + Q1 — - + Q).
Hence we have a unique morphism - and this is our jp, ¢ - such that locally in the second
component a

(Id xjp,,@(P)) ~ Lag-

We want to compute the line bundle

j}k’g,g(e)v

this is a line bundle on C. We assume that @ is generic. We claim that under our above
assumptions the morphism jp, o : C — Pic?(C) factors through the open subset Ugen.
To see this we have to show that

dim H*(C,Oc(—P+ P+ Q1+ + Q) =1

for all points P € C(k). This is of course clear if P is one of our points Py or Q1 ---Qq
because this is our assumption. If P is not equal to any of these points, and if we have

dim H°(C,Oc(—P+ Py + Q1+ +Qy)) > 2,
we can conclude that
dim H%(C,0c(Po + Q1+ + Qg)) > 3,
because this space contains 1 and 1 is not zero at P. But then we can conclude that

dim H°(C,0c(+Q1 + -+ + Qq)) > 2
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and this is again a contradiction to our assumption.

The morphism jp, o sends the point P to a point jp, o(P) = (Q1(P), - ,Q4(P)) where
(Q1(P)---Qy(P)) € Ugen, which is well defined up to an element in the symmetric group.
It is determined by the relation

00(—P+P0+Q1"'+Qg)2OC(Ql(P)+"'+Qg(P))a

or to say it differently Q1 (P)---+...Qq(P) is the divisor of zeroes a a non zero section
s E HO(C,Oc(—P + P+ Qi+ +Qy)).

Now we recall the definition of P and ©. The restriction of P to {Py} x U is the line
bundle, which is induced by the divisor

D=% Cx---CxPyxC---C (10.6)

on CY. This divisor descends to a divisor D on CY9/%, and the line bundle ©|Ugen =
Ocsyx, (D).

Let us assume that all the points Q1,Q2,...,Q, are pairwise different. By definition a
point (Q1(P),...,Qq(P)) lies on D if and only if for some index iy we have Q;, (P) = Po.
Then we get an isomorphism between the two line bundles

Oc(=P+ Q1+ Qy) = Oc(+Q1(P) + -+ Qig—1(P) + Qig+1(P) + - - - + Q4(P)).

Moving the —P to the right hand side we get

Oc(Q1-+Qg) = Oc(+Q1(P)+ -+ + Qig—1(P) + P+ Qiy11(P) + - + Qq(P)).

Since we assumed the Q € Ugen we can conclude that Q = (Q1(P),...,P,...,Q4(P)) (up
to an element in the symmetric group.)
This yields the innocent looking but fundamental relation

JP0,@(0) = Oc(Q1+ -+ + Q) (10.7)

We consider the point @ € Ugen as a variable, more precisely we consider it as a point in
X. We look at the diagram
Pz OxX
CxXxC
P13 C X C p1 C

and the line bundle

P12(P) @ p13(p1(Oc(F)) @ Ocxo(=A)) = £

on €' x X x C. If we evaluate at the point Q € U(k) C X(k), then we get our line
bundle £ above. We view this as a family of degree g bundles on the first factor, which
is parameterized be the product of the second and third factor. The universal property

gives us a unique morphism
ip X xC — X
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such that (Ide xjp,)*(P) is locally in X x C isomorphic to the line bundle £ .

Of course it is quite clear to describe this map on geometric points. If (u,P) is a geometric
point on X x C then u is the isomorphism class of a line bundle £,, of degree g on C x k.
Then £, ® Oc(P — Pp) is a line bundle of degree g on C, hence a geometric point on X
and this point is the image. From this description we get

Proposition 10.2.5. The group scheme J acts on both sides, by the action m x Id on
the left hand side and by m on the right hand side. The morphism jp, is J invariant for
these actions.

This map jp, gives us a line bundle

Jp,(©)
on X x C'. We consider this as a family of line bundles on C', which now is parameterized
by the first factor and find a unique morphism

Yp,: X — X

such that (¢p, x Ide)*(P) ~x jp,(©) where in this case ~ means that the bundles are
locally isomorphic in the first variable X.

But for a dense set of geometric points Q € U(k) we have shown that

VP, (Q) =Q

and since X is reduced we can conclude that ¢p, = Idx. Of course (Idx x Id¢)*(P) ~ P,
and we conclude

P~ jp,(©)
locally in X on X x C.
We have constructed the homomorphism
do : Pict, — PICS
and we have the restriction
j}o’g : PICg(/k — Picoc/k )

The composition of these to homomorphisms is the identity. It suffices to check this on
the set of geometric points. Actually we only check this on the non empty Zariski open
subset of pairs (Q,x) where Q € Ugen(k),T2(Q) € Ugen(k). We to show

it (Ti©) 207 ~ L,

where L, is a line bundle corresponding to . For the computation of left hand side we
use the invariance under translations (proposition 10.2.5) and our formula 10.7

7P0,@(T2(©)) ® jp, (©) ™" = jp, 1) (©) ® 5, @(O) " = Oc(T:(Q) — Q) = La

and this is the claim.
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In section 10.2.1 we constructed the line bundle © on X x J. (See 10.5.) The restriction
Jb,(©) is a bundle on C' x J and hence we find a unique morphism tp, : J — J such

that (Id x¢p,)*(Po) ~5 i, (©). Our computation above shows that on geometric points
z € J(k) we have ¥ p, (x) = « hence we can conclude that

Po ~g j5,(O). (10.8)
Now we can state and prove

Theorem 10.2.6. The scheme X x J together with the line bundle 5) provides a local
representation of the functor PICg(/k : For any line bundle on

L]XxT,

where T is connected and of finite type such that L | X x tg ~ Ox for some point tg € T
we have a unique morphism
YT — J

such that £ ~ (Id x1)*(©).

We start from a line bundle £ on X x T. We just saw that for any jo p, : ¢ — X the

pullback of the line bundle © to C x J is the universal bundle on C x .J (See 10.8). Hence
we can take the pullback of £ on X x T via jp,,q to C x T, and we see that we have a
unique morphism o

T — J

such that _
(Ide x )" (©) =~ (jp,,@ x 1dr)" (L)

here we assume that 71" should be local. We have to show that already
(Idx x ¥)*(0) ~ L.
We have the two elements
(Idx x ¢)*(6),£ € PIC%y(A),

which are trivial in the special fibre and whose images under j3, o in J(7') are equal. We
consider the bundle M = (Idx x ¢)*(0) ® L1, It is trivial in t(;and 3Py.0(M) ~1 Or.
In other words ji o(M) = p5(N) where N is a line bundle on 7. Hence we see that
M @ ps(N) 7L s trivial in ¢y and becomes trivial under the restriction JPy,- We have to

show that it trivial.

We consider the locus of triviality of M and we prove that it contains an open neigh-
borhood of tg. This is obviously enough because then it must be equal to T because T is
connected.

Let A be the local ring at tg,we just saw that it suffices to prove that M|C' x Spec(A) is
trivial. Let m be the maximal ideal of A. Clearly it suffices to prove that

3P0 : PIC% /u(A/mN) — J(A/m™) is injective for all N,
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because this implies that the ideal I, which defines the locus of triviality is contained in
all m¥ and we know Nm" = {0} by the Artin-Rees theorem.

For N = 1 both line bundles are trivial by assumption, we also have by definition
PICg(/k(A/m) = 0. We get the two exact sequences (see 10.1.3)

0 — HYX,0x)omV/mMN-1 — HI(XN,O}N)(O) — HI(XN_l,O}N_l)H

! ! !
0 — HYC,0Oc)@wmlN/mN=1 — HYCyN,0; )0) — HY(Cn-1,0%, )

The last arrow in the second row is surjective because we have H?(C,0¢) = 0.
Therefore, we get that jp, g : PICOX/k(A/mN) — J(A/m™)(0) is an isomorphism for
all N, provided we can prove that jp, o : H'(X,0x) — H'(C,0¢) is an isomorphism.

It is clear that j}:’o,Q is surjective because ¢g gives us a homomorphism from H*(C,0¢) —
H'(X,0x) and we know the composition with jp, , is the identity. We have the mor-
phisms B

c9 L, o9 /E, — X,

which provide k-linear maps

HY(X,0x) =5 HY(C?/5,,0005,) ~ HY(C9,000)%.

We claim that these two maps are injective. To see this for the first morphism we recall
that
m: 098, — X

is birational and projective. This implies that
T (Ocsyn) = Ox

(See proof of Lemma 10.2.2) The edge homomorphism of the spectral sequence yields

0— H'(X,0x) — H'(C?/%4.0cs5,) — HY(X,R'm.(Ocass,)) —

and the injectivity becomes obvious.

To prove the injectivity of ¢! we go back to the general principles of the computation
of coherent cohomology. We obtained © from the line bundle O¢y /5, (D) on C9/%, and
this bundle was obtained from the divisor D’ on CY (see 10.6.) Both divisors are ample
and hence the sheaves O¢q/x, (rD),Ocs(rD’) are acyclic if r >> 0 (See Thm. 8.3.3).
Hence we get two exact sequences

0 — Ocy — Ocy(rD") — L. 5 — 0

and
0— ch/gg — ch/zg(TD) — L,p — 0

of sheaves, where the to sheaves at the right are defined as quotients.
Taking global sections we get the exact sequences
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0 — HY(CY,00) — HO(C9,0cs (rD")) — HYCI L) -

U U U
0 — HO(CY/34,0c0/s,) — HO(C9/34,0c0s,(rD)) — HO(CI/S4,L,p)

2, HY(C9,0¢s) — 0
Tq
=, HY(09/%4,004/5,) — 0

The modules in the top row are 3, modules, and the inclusions U from the bottom line
to the top line always go into the 3, invariants. We have a X, invariant splitting of the
sequences on the left end. To get this we choose a point @ € C(k) different from P,
and get a ¥, invariant linear form \g : H(CY9,Ocs(rD’)) — k, which is given by the
evaluation at the point (Q,Q,...,Q) € C9(k). Denoting the kernel of this linear form by
adding a (0) at the left end we get shorter exact sequences

0 — HO(C9,0¢4(rD’))(0) — HY(C9.L! ) — HY(C9,0¢5) — 0
U U Tqt
0 — H(CY/%,,0c¢a/s,(rD))(0) — H°(CY/Sy,L.p) — HY(C9/24,0c0/5,) — 0

If a class € € Hl(Cg/Eg,ch/zg) goes o zero under ¢! we represent it by a class n €
H°(C9/%,,L,p). Wesend i ton’ € H(C9,L]1,,)%s and since this element is going to zero
in HY(C9,0¢q) it is in H*(C9,L. ) ®sNHY(C9,0cq (rD"))(0) = H°(CY9,0cs (rD"))(0)%s.
But from the definition of the symmetric product it follows that

H(C9,0cy (rD"))(0)% = H(C?/54,0c4 5, (rD))(0)

and hence we see that 7 itself is zero. ]

The last theorem also gives us the local representability of the functor PZCY k- We

assume that we have a point P € C(k), the we can identify ip : J — X. Using this
identification we get the divisor ip(©) on J, we call it again ©. We consider the diagram

P1
—

JxJ o (10.9)

P2
—

and define the line bundle

© =m"(0)®pi(0)" ®p5(©)~ (10.10)

on J x J. It is a symmetric version of the bundle in 10.5. It is clear that (J x J,é) provides
a local representation of PZCY /i over k despite of the fact that © may not be defined
over k. Another choice of the point @ yields another ig(©), but it yields the same bundle

O. We see from the definition of © that we have canonical identifications

Ol{e} x J = Ofyx1,01 x {e} = Oxfe.
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The first identification is a trivialization s € HO({e} x J,0|{e} x J) and hence we get

The functor PIC(}/,M is represented by (J x5, J,0,s)

10.2.4 The self duality of the Jacobian

This explains of course the self duality of J, the choice of the line bundle © (up to
algebraic equivalence) provides a canonical isomorphism

po : J S Pich ), = JV. (10.11)

Since J has the structure of a group scheme, we have a canonical choice of a rational point,
namely the identity element e € J(k). This means that we have a canonical rigidification
of PICJ/k .

In certain situations is better to forget the self duality of the Jacobian. Since we have a
canonical point e € J(k) we can consider the functor PZCY ke - Our results imply that
this functor is representable. We get a variant of Theorem 10.2.6

We can construct an abelian variety J¥ /k and a line bundle N (the Poincaré-bundle) on
J xp JV, which satisfies

N{e} x JV = Opv N|J x {e} = Oy, (10.12)

and for which an isomorphism

s Neev = k (10.13)

is given.(This isomorphism also fixes the isomorphisms in 10.12.) Finally the triplet
(J xy JV,N,s) represents the functor PIC(}/,M i.e. for any T of finite type over k and

for any line bundle L|J x;, T and a given trivialization st : L|{e} x T = Or we find a
unique ¥ : T — JV and a unique isomorphism

U (Id x)*(N) = L such that V(s) = sp.
Mutatis mutandis the triplet (J xj, JY N ,s) also represents PIC(OIV,GV .

All this is an obvious consequence of the Theorem 10.2.6 above. We have to extend
the ground field such that the divisor ©® becomes available. By then we have proved
representability of a functor over this extension, and then our general descend arguments
work. The new formulation has the advantage that it actually considers J and JV as two
different objects. Their identification via the choice of © is somewhat artificial. We will
see this also in the next section, when we briefly discuss arbitrary abelian varieties.
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10.2.5 General abelian varieties

We want to say a few words about arbitrary abelian varieties A/k. This subject is treated
extensively in the book of D. Mumford ([Mul]), we will be somewhat brief. We know
that for any abelian variety A/k the local representability of PZCY /1 1s equivalent to the
representability of PZCY ke -

We have a simple general theorem

Theorem 10.2.7. An abelian variety variety is a commutative group scheme, any mor-
phism f : Ak — G/k from an abelian variety to an arbitrary group scheme, which
maps the identity element es € A(k) to the identity eq € G(k) is a homomorphism.

Consider any morphism H : A x; A — G, which satisfies H(a,ea) = H(ea,b) = ea
for all a,b € A(k). Such a morphism must be constant. To see this look at an affine
neighborhood U C G of the identity element. Show that we can find an open neighbor-
hood V' C A of e4 such that H(A x W) C U. Then for any w € W (k) we get the map
H, : Ax{w} — U. But A is projective and connected and U is affine. Since any regular
function on a connected projective variety must be constant, it follows that H,, must be
constant. But then it is clear that the value of this constant is eg. Since A x W is open
in A x A it follows that H is constant. Now take G = A and apply this argument to the
commutator map (a,b) — aba~'b~1. For the case of a morphism f apply the argument

o (a,b) = fla+0)f(a)~ f(b)~". 0

Proposition 10.2.8. Let A/k be an abelian variety and let £ be an ample line bundle
on it. Then the kernel of the homomorphism

¢r: A— PICY ),
is a finite group scheme.

We can replace £ be a very ample £%" then ker(¢z) C ker((¢%™). Then any z €
ker(¢,)®") (k) defines an automorphism T : HO(A,L®") — HO(ATF(LO7™)) L=
HO(A,(L£®™)), where 1, is induced by the choice of an isomorphism £&" = T (L)®".
This gives us a faithful representation

p: ker(¢€") — PGL(H(A,T:(L®™)) = GL(H (AT (£L%™)) /G
The "projective linear” group PGL = GL/G,, is affine. If ker(¢£™) is not finite then its
connected component of the identity is an abelian variety. But a morphism of a connected

projective scheme to an affine scheme is constant, the homomorphism p must be trivial
on this connected component, hence we have a contradiction. 0

Mumford uses this construction to prove that PZC% /k,e is representable, he simply defines
A/ ker(¢r) = Pic?q/k’e = AV and constructs a universal bundle A on A x; AV. This is

not so easy, it is done in Chap. III, 13 of [Mul].
We can also derive this from our results on Jacobians. We start from a

Lemma 10.2.9. : If J/k is the jacobian of a curve C/k and if A C J is an abelian
subvariety, then we can find another subvariety B/k C J/k such that the homomorphism
A x B — J has finite kernel and is surjective.
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We start from the isomorphism ¢g : J — JV. Now we use the general result that we
can form the quotient J/A = B (See [Ro], Thm. 2) . To prove this theorem Rosenlicht
proceeds as follows. The subvariety A acts on the function field k(J) by translations and it
defines a fixed field L/k. This fixed field is big enough to rediscover A. (This step is not so
easy.) The functions in L have divisors which are invariant under A and from this we can
conclude that we can find an effective divisor © 4 such that the connected component
of the identity of ker(¢g,)® = A We consider the homomorphism ¢g, : J — JV,
The image is an abelian subvariety BY C JY. But then B = (i)éi (BY) C J maps
isomorphically back to BY under ¢g, this shows that A x B — J is surjective and that
the intersection A N B finite. O

A homomorphism ¢ : A — B between two abelian varieties is called an isogeny if it is
surjective and its kernel is finite.

Finally we observe that for any abelian variety A/k we can construct a non trivial homo-
morphism A — Jo where J¢ is the Jacobian of a suitable curve C'/k. To get such a ho-
momorphisms we intersect A C P™/k with a suitable number of generic hyperplanes and
get a smooth curve j : C' — A. Then we have the restriction j* : ’PIC?q/k — JY =Jc

and we can compose it with any ¢, : A — PZC?L‘/,C , L ample. The following is true

Proposition 10.2.10. For any abelian variety A/k we can find a curve j : C — A such
that j* o ¢p : A — Jo is non trivial.

We cannot prove this result here, it depends on some finiteness properties of the Picard
functor Picg( Jk for arbitrary projective schemes X/k. But we can explain some of the
basic ideas of the proof. The first thing we need is that the line bundles on X, which are
algebraically (or only numerically) equivalent to zero form a bounded family. (See [K1],
Thm. 6.3). This means that we can find a scheme T" — Spec(k) of finite type and a line
bundle £ on X x T such that any bundle on Picx , is obtained by evaluation at a point
to.

We assume dim(X/k:) > 2. If now X/k < IP™/k then we choose a I/k C P"/k, which is
alP" 2 and a P'/k C P"/k such that [ N P! = (). This defines a family of hyperplanes
H, ;, which are parameterized by the points = € IPk here H, ; is simply the hyperplane
containing [ and x. We can arrange our data in such a way X N1 is smooth and that for
an open subset U C P! the intersection Xo1 =X NH,, is smooth. Now we blow up our
P™ along the ”line” [ and get a diagram

X — P
! !
X — DP7

By definition of the blow up we have a morphism P» — P! whose fibers are the
hyperplanes H; ., and hence we get a morphism

X — P!

whose fibers are the hyperplane sections H; , N X. We have seen that Picg(/k — Pic)?/k

is injective. (See argument in the proof of Lemma 10.2.2). Let 7 be the generic point in
P!. Our considerations in the proof of the theorem of the cube can be applied to show
that a bundle £ in Pic% /1 » which is trivial on H;, is in fact trivial on X and hence on

X. Hence we see that for any £ € Pch/k ,L # Ox we can find a point ¢ € U(k) such that
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L] X is non trivial. Applying our considerations about the locus of triviality again we see
that the bundles in our family, which are trivial on X;; form a proper closed subscheme
of T. Then it becomes clear that we can find a finite number of points t1,to,...,t,. such
that Picx/, — @; Picy, R becomes injective.

We apply the same reasoning to the X N H; .+, and eventually the resulting hyperplane
sections will be curves. This implies our proposition above, but we also get

Theorem 10.2.11. For any abelian variety A/k we can find a finite number of curves
Jv: Cy, — A such that A — @, Jc, has a finite kernel.

This theorem has been proved in [La2], Chapter VIII, §2, Corollary 2, using Chow’s
theory of the K/k-trace and K/k image. It can be used to reduce the theory of the
Picard functor Picy or more generally Picx/y , to the theory of Jacobians.

We mentioned already that Mumford constructs in his book [Mul] a dual abelian variety
AV /k for any abelian variety A/k. On the product he constructs a Poincaré bundle N
such that the pair (A x, AV, A) provides a local representation of PIC%/k and the two

homomorphisms
= N|{z} xp AY, resp. © — A x, {x}

are isomorphisms from A = AYY = A, (resp.) AV 1d4v,
This result we have proved for the special case of Jacobians, We have the bundle © on
J x J and the isomorphism ¢g : J — JV. Then we put

N = (Id x0~1)*(0)

and this is the Poincaré bundle. The case of arbitrary abelian varieties can be reduced
to the case of Jacobians if we apply theorem 10.2.11 and investigates the behavior of the
dual abelian variety under isogenies.

In the introduction to his book Mumford adopts the point of view that he stubbornly
avoids to use the crutch of "reduction to the Jacobian”. He considers the abelian varieties
is the basic objects of interest and Jacobians are just special abelian varieties.

Our point of view is the opposite and more classical one. We consider the category
of abelian varieties over an algebraically closed field k& up to isogeny, this means that
isogenies become isomorphisms. An abelian variety A/k is called simple if it does not
contain any non trivial subvariety. Then we have seen that we can embed A into a suitable
Jacobian J such that we have (up to isogeny)

J=A®B.

From this we can derive easily that any Jacobian and hence any abelian variety A is
isomorphic to a direct sum of simple abelian varieties and this means the category of
abelian varieties (up to isogeny) over k is semi simple. For k = C it is the complete
reducibility theorem of Poincaré.

Unfortunately we missed to state and prove this theorem in Vol. I. But in this case it is
not so difficult to prove: An abelian variety over C is a triplet (I', < , > ,[:I'g — R)
(see Vol. I, 5.2.1.) , for which the resulting hermitian form is positive definite (see Vol. I,
5.2.21). An abelian subvariety is given by a sub lattice I'y C I" such that I'; ® R is stable
under I. But then the positivity implies that the alternating form < , > restricted to
I'; is rationally non degenerate and we can consider its complement I's with respect to
< , > . Clearly I'; ® R is stable under I and hence it defines a complement up to
isogeny.
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With this in mind we can say that understanding abelian varieties means to understand
Jacobians and their decomposition into simple pieces. To get an understanding of this
decomposition another object comes into play, namely the ring of correspondences of
a curve. For a given smooth, projective, absolutely irreducible curve C/k define a ring
structure on A'(C' x (), where the Chow ring is defined by any of the equivalence
relations. If we have two codimension one cycles 11,15 C C' x C' we consider the cycles
T1 T xC c(Cx C><C’T2 =CxTy CC CC xC x C and take their intersection
product o
T, Ty € A2(C xC xC).

To this element we apply the projection p§ : A%(C x C x C) — C x C, which is induced
by the projection to the first and third factor. Then we put

Ty 0Ty = p3(Ty - T),

and this defines the ring structure on A'(C x C) and this is the ring of correspondences.
The ring has an identity element, it is given by the diagonal. Of course this construction
also applies to varieties of higher dimension.

In the next section we study the ring of endomorphisms End(J¢ ;) and we will establish
a relationship to A'(C' x C). It will turn out that we have to look for idempotent elements
p € End(J). Each such idempotent p defines a decomposition

J =A@ B,

where p is the identity on A and zero on B.

Hence we see that the construction and understanding of other abelian varieties besides
the Jacobians is intimately linked to the understanding of the ring of correspondences of
curves.

10.3 The ring of endomorphisms End(J) and the /(-adic modules
Ty(J)

Some heuristics and outlooks

We resume briefly: Let k be a field, let ks be a separable closure and let & O k, be
an algebraic closure. We start from a smooth projective curve C/k. We constructed the
schemes Picf, Ik , Pic2, /1 as projective schemes over k. We will use the notation Picy Ik =
J/k. Sometimes we drop the field k in the notation.

We also constructed the schemes Pic% /k , PicY s under the assumption that C'(k) # 0.
But as before it is clear that both schemes have a canonical descend datum hence they
are well defined as schemes over k. The abelian variety Pic) /i, 18 called the dual of J/k
and will be denoted by JV/k. The theta divisor- which as a divisor is only defined over
some separable extension- defines a isomorphism ¢g : J — JV. This isomorphism is
indeed defined over k because it does not depend on the choice of Py € C(k,) and two
such choices are algebraically equivalent. We apply proposition 10.2.1

A key tool for understanding the structure of J is its ring of endomorphisms. Of course
an endomorphism is a morphism ¢ : J — J, which respects the group structure. The
endomorphism form a ring, where the multiplication is given by composition.
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This endomorphism ring End(J/k) may become larger if we perform a base change with
an extension L/k especially we may define End(.J) := End(J ® k/k). On this ring we
have an action of the Galois group, we recover the endomorphisms defined over k if we
take the Galois-invariant endomorphisms.

Any endomorphism ¢ : J — J induces an endomorphism of the Picard functor

©* : Picy/, — Picy

for a line bundle £ on J x T' (i.e. essentially an element in Pic;/,(7T")) we define

" (L) = (¢ x Idr)*(L).

This is of course a homomorphism with respect to the group structure on Pic;/, . We
want to study the properties of the function ¢ — @*.

Let us assume that we have a point Py € C(k). We restrict ¢* to the sub functor Picg/k,
since this sub functor is locally represented by (J X J,(:)) this restriction is given by an
endomorphism ‘¢ : JV — JV.

We will show that ¢ —! ¢ is an additive homomorphism i.e. we have

Ho+y) =" o+

In the case of Riemann surfaces the ring End(J) could be considered as a subring of
the endomorphisms of the first homology group (Vol. 1.5.3.2) and from this we get easily
insight into the structure of End(J). For instance it is clear that End(J) is a finitely
generated torsion free algebra over Z. But these homology groups are not available in
the algebraic context. Hence we have to look at this object as it is and get our insights
from elsewhere.

The endomorphism ¢* also induces an endomorphism

5" NS(J) — NS(J).

We also should have in mind that NS(J) is related to the second cohomology. In 1.5.2.1
we explained that NS(.J) can be identified to a subgroup of Hom(A?I',Z). This had the
consequence that ¢ — @* was quadratic. Hence we expect that also in the algebraic
context ¢ — * is a quadratic function. This means that we expect hat

(p+9)" =" —y" = (p¥)
where (p,) € End(Pic;/;) and (¢,1) = (p,1) is biadditive.

The study of End(J)

Since the following considerations are more geometric in nature we assume that k is
algebraically closed. We want a formula for the endomorphism ¢ of JV. The key is of
course the representability of Pic) /i~ We have the divisor © on J and the bundle © on
J x JY. Then the universality and the definition of ¢* yields the defining formula for ‘¢ :

(¢ x 1d)*(0) ~ v (Id xp)*(©) (10.14)
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On the geometric points this specializes to

P (T20) 207 17, ,(0)© 0,

oz

Since ¢* is a homomorphism this gives us the additivity

lo+y)="p+'y (10.15)
To understand the properties of ¢ — ¢* we need

Theorem 10.3.1. Let p,1p,n € End(J) and let L be a line bundle on J. Then the bundle

e+ +n)" (L)@ (@+)*L) " (e+n) (L) o @W+n(L) e
R (L)Y (L)@n* (L) ® (O*EY1 (10.16)

is trivial (here 0 : J — J is the zero homomorphism).

This is again a consequence of the theorem of the cube. We consider the threefold product
J x J x J, and we consider the following 8 homomorphisms from J x J x J to J

mig3z:J X JxJ—J  sum of all components
Ma3 © pP1,M13 © P2,Mi2 © P3

P12,P13,P23

and

0 (10.17)
We consider the bundle

No =mig3(L) @ (mas op1)* (L)~ @ (miz @ ps)* (L) @ (Mg o p2)* (L) '®
® pia(L) © pi3(L) @ pis (L) @ (0%L) (10.18)

If we restrict this bundle to one of the subvarieties
exJxJ |, JxexJ , JxJxe |,

then in any case two of the 8 maps become equal and occur with opposite signs in the
product. Hence the restriction becomes trivial. Then the theorem of the cube tells us
that the bundle N is trivial.

To get our theorem we use ¢,1,n to map

((p7¢777):‘]—)‘]x‘]><‘]7

and the bundle in question is the pullback of Ny, hence trivial. O

For any pair of endomorphisms ¢,1) € End(J) we defined (¢ + ¥)* — ¢* — ¢* = (p,)
where now (p,¢) € End(Pic ).

Perhaps this is a good place to summarize the properties of ¢ — ©*.
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Theorem 10.3.2. i) If we have two endomorphism @) then
(pop)" =yT o™
11) The pairing
End(J) x End(J) — End(Pic(J))
1s biadditive in both variables.
iii)
ot+y)="p+'d

iv) The endomorphism (@,)) € End(Picyy) is trivial on Pic?,/k and hence it is an
endomorphism of NS(J).

The assertion i) is obvious, iii) is the additivity of ¢ —* ¢. The assertion iv) is an
obvious consequence of iii), It remains to prove ii). Let us replace ¢ by 1 + 2 and apply
our formula above to the sum 1 + @2 + 1. Then we see

(01 + 2+ ) (L) ® (91 +92)" (L)' @™ (L)' =
(o1 +9) (L) @ I(L) T @Y(L) T @ (w2 + ) (L) @ 93(L) " @y(L)™h (10.19)

the term on the left hand side is

(1 + 02,0) (L),

and on the right hand side we get

{P1,9)(L) @ (p2,9) (£).

Since the expression (p,1) is symmetric, the rest is clear. O

We have the isomorphism ¢g : J — JY and use it to identify these two abelian varieties.
Hence we can interpret ‘@ also as an element in End(J). The map ¢ —¢ ¢ from End(J)
into itself is called the Rosati involution. This notation is a little bit problematic,
because the involution depends on the choice of the line bundle ©,. In our situation
this bundle is a ”very canonical” choice of an ample bundle on J, this means for abelian
varieties, which are given as the Jacobian of a curve, the Rosati involution is ” canonical”.

For arbitrary abelian varieties A/k we do not have a canonical choice of a class (modulo
algebraic equivalence) of ample line bundles. We always find ample line bundles £ on
A, Such an ample bundle defines a homomorphism ¢, : A — PIC%/,M = AV. We
showed that ¢, has a finite kernel (See prop. 10.2.8 ). Again we have the homomorphism
© —' ¢ from End(A) to End(AY). Since ¢, has a finite kernel we can find a a non zero
integer n and a ¢’ : AY — A such that ¢, o9’ = nld. Therefore, we can define an
inverse ¢, = (1/n)y’ to ¢ and get a Rosati involution

@ (pc) ' o' poyl
on Endg(A).
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It can be shown-and we will show this in our special case of jacobians - that End(A) is
a finitely generated and torsion free Z-module and then Endg(A4) = End(4) ® Q is a
finite dimensional Q- algebra.

The choice of an ample bundle £ and the resulting morphism ¢, is called a polarization
of A. Such a polarization is called principal polarization if ¢, is an isomorphism. Not
all abelian varieties admit a principal polarization, but Jacobians of curves do.

Mutatis mutandis the results, which will be proved in the next section for the Jacobians,
will be true for arbitrary abelian varieties.

The degree and the trace

For an endomorphism ¢ : J — J we can define the kernel ker(¢) = ¢~1(0). This is a
subgroup scheme. If ¢ is an isogeny then it is a finite group scheme over k and in this
case we define the degree of ¢ as

deg(p) = Rank(p~'(0))

If the kernel is not finite then we put deg(y) = 0. An endomorphism ¢ : J — J
with finite kernel is an isogeny of J. The degree is multiplicative, i.e. deg(¢ o ¢)) =
deg() deg(v)). The following is quite clear:

If p : J — J is an isogeny then the morphism ¢ is finite and locally free of rank deg(p).
For any point y € J the fibre =1 (y) is finte of rank deg(yp) over k(y).

We apply our formula for the degree: Let £ be an ample bundle on J. In section 8.4.2 we
defined the g-fold intersection number £9 =L -L----- L. We have the formula

deg(p) L9 = (¢*(£))? (10.20)

(To see this we can replace £ by a power L& so that it becomes very ample. Then we
can write £L®" = O ;(D;) where Dy, ...,D, are divisors, which intersect transversally in
nIL9 points. Then the divisors ¢ ~1(D;) intersect in deg(¢)n9L9 points and this is the
formula.)

We compute (n1d)*. It is clear how to do this, we have
(nId)* = ((n—1)Id+1d)* = ((n — 1) Id)* + Id* + (n — 1)(Id , Id)
or since Id" = Idpjc(y) = Id
(n1d)* — ((n — 1)Id)* = Id +(n — 1)(1d,, Id).
Since (O -1d)* = 0 we get

(n—1)

(nId)* = nld +~ (1, 1d). (10.21)

We can also say something about (Id, Id). We have

Id+(—1d) =0
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as endomorphism on .J. Then
0=(Id+(-Id))* =Id+(—1d)* — (Id, 1d),
and hence we see
(Id,Id) = Id* +(—1d)". (10.22)

We want to evaluate this formula on a line bundle £. We put £_ = (—1d)*(£) and our
formula yields

n(n—1) ®w

(nId)*(L) = L% @ L% 7 oL (10.23)

This allows us to compute the degree of nld. As we explained. we may take any ample
line bundle £ on J, we may even assume it to be very ample. We may replace £ by
L ® (—1d)*(L), since —Id is an automorphism, it is clear that (—Id)*(L) is very ample
and hence the tensor product is so too. Then we have the formula

L£7deg(nld) = (nId)* (L)Y

71,2 —n 7’!,2 —n

and (nId)*(L)=L"®@ L ®L (because (—Id)*(£) = L) and hence

(n1d)*(L) = Lo
And now (£&")9 = £9 - n29 and it follows
deg(nId) = n?9. (10.24)

Since we have seen that the group law J x J — J induces the addition on the tangent
space Ty, (see 7.5.6) we conclude that the multiplication by n on the tangent space. We
conclude:

Theorem 10.3.3. The kernel of the multiplication by n is a finite group scheme
J[n] — Spec(k)

of rank n?9. If the characteristic p of k does not divide n, then this group scheme is étale.
In this case B
J[n)(k) ~ (Z/n7)9.

We consider the function
n — deg(¢ + nl1d),

we know how to express it in terms of intersection numbers. We choose an ample line
bundle £ on J and then we have

deg(¢ +nld) - L9 = ((¢ +n1d)* (L))
We can expand the right hand side and find

deg(¢) +nlId)- L9 =---n?971L97 1. (4, 1d) (L) 4+ n29 - LI,
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This expression looks pretty much like a characteristic polynomial of an endomorphism
and in the next section we will see that this is indeed the case. In view of this expectation

we define L9~ (9, 1d)(L)
tr(y) = E—;.

In any case it is clear that deg(y + n1d) is a polynomial in n of degree 2g with rational
coefficients and this polynomial takes integer values. If we have an ample bundle £ with
L = L_ and an endomorphism ¢ = Y. n;¢; then it follows from 10.23

T
2 o
(mr + -+ mep)*(£) = [T 05 (£)%™ @) @icy < pinpy > (£)27
and if we now apply 10.20 and take the g-fold self intersection then we get that

deg(nipr + -+ + nripr)
is a homogenous polynomial with integer coefficients in the n; of degree 2g  (10.25)

If we have two endomorphisms ¢, then we can look at the diagram

P1

—
TSR T g

P2,

and for any line bundle £ on J we have the formula

<t > (L) = ((p x ¥) 0 A))*(m* (L) @ pi (L)' @ p3(L)7")
by definition. If we apply this to © we get
<> (0) 5 ((p x 1) 0 A))*(0) = A o (9 x 1)*(©)
We have the defining relation for the transpose (see 10.14) and get
<t > (0) 5 Afo(*hpxId)*(0) =5 A*o(Id xtph)* (0) Zo<t 9, Id > () Zs<t pip, Id > (O)

If we take b = Id then we get
tr(*p) = tr(¢).

Now we are ready for the famous

Theorem 10.3.4. Positivity of the Rosati involution
The bilinear form

(p) = tr("py)

is a symmetric positive definite form.
We have to prove the positivity. We have seen
<P > (0) S< Yy, 1d > (9)).
We multiply by ©9~! and observing the definition of the trace we get

09l < > (0) = 0971 < i, 1d > (8) = tr("))©F
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Our formula for < Id,Id > implies < ¢, > (0) = ¢*(0) ® 1*(—1d(0©)) and hence we
find

©7 tr("yn)) = 0971 (1" (0) ® ¥* (- 1d(0))

Since © is ample we have 69 > 0. We claim that also the intersection number on the
right is strictly positive if ¢ # 0.(Obviously this implies the theorem). To see this last
point we consider the image A = (J), this is an abelian subvariety of strictly positive
dimension. We may assume that A ¢ © or A ¢ (—1d)(©) (otherwise we replace © by a
suitable translate © + ) Then AN©,AN (—1d)(O) are of codimension 1 in A and hence
0 1(©),071(O_) are subschemes of codimension 1 in J, from this we get a non zero
divisor Y nyY (see 9.4) where the coefficients at the components are strictly positive.
The © restricted to any of the components is ample and therefore, ©9=! .Y > 0. O

The /-adic modules
Now we can pick a prime ¢, which is different from the characteristic of k, and we define

7,(7) = lim J[£°]

@

as before.
The group of geometric points is
Ty(J)(F) = 27,
but we have to observe that the Galois group acts upon this module.

This is now the replacement for the cohomology groups, which were available in the
transcendental case. But these ¢-adic cohomology groups have the defect that they are
Z¢-modules and not Z-modules. (It has been pointed out by J.-P. Serre that cohomology
groups, which are free Z-modules of rank 2¢ cannot exist.)

Of course it is clear that we get a homomorphism
End(J) — End(T,(J)),

and hence we can define a trace try(¢) = tr(pe | T¢(J)) and a determinant dety(p) =
det(pp | T¢). A priori these numbers are ¢-adic numbers it is not clear how they depend
on /. But we have

Theorem 10.3.5. The number tr(p, | T¢) and det(wy | Ty) are integers, which do not
depend on £. More precisely we have

det, () = deg(), tre(p) = tr(p)

Looking at det(p + n1d) it becomes clear that it suffices to prove the first assertion.
Before we can prove this theorem we have to prove two more theorems:
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Theorem 10.3.6. The Z-module End(J) is finitely generated and for any prime £ the
natural map
End(J) ® Zy — End(Ty(J))

is an inclusion.

Proof: Let M C End(J) be any finitely generated submodule, which is stable under the
involution. The trace defines an integer valued pairing

tr : MxM-—77
tr o (p1,p2) — tr(er fea)

which is positive definite. We see that this bilinear pairing is non degenerate over @, i.e.
if we take a basis ¢; - - - . of the Z-module M, we can conclude that

det(tr(ei "p;))

is a non zero integer.

Let us assume that M ® Z; does not embed into End(7y(J)), this means that we can
find aq,--- ,ap € Zg, which are not all congruent zero mod £ such that the linear
combination >, ; «;p; is zero. If we approximate the «; by integers m; such that
a; =n; mod %, then the element

is zero on the group of ¢* division points. this implies that ¢ = £%¢)’ where ¢’ € End(J).
(We have the diagram

and since 1) is zero on the kernel of /%, we can see easily that we can find a ¢’ : J — J
completing the diagram.)
We get a system of linear equations for the n;:

D i tr(ps o) =07 tr(y) fpy)

where the tr(¢)" ‘p;) are integers. We solve this system for the n; using Cramer’s rule
and find

Ay
det(tr(e; “¢;))
where the A; are integers. The maximal power of ¢ dividing the denominator does not
depend on «. Hence we get a contradiction to the assumption that not all of the n; are
divisible by ¢. For this we conclude that End(J) is a finitely generated Z-module.

ni:a
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The homomorphism End(J) ® Z, — End(7T}(J)) is called the ¢-adic representation of the
endomorphism ring.

We form the Q-algebra End(J) ®z Q = End(J)qg, it is finite dimensional. If ¢ : J — J
is an isogeny then we can find a non zero integer n such that ker(¢) C ker(nId). This
implies we can find another isogeny v : J — J such that ¥ o ¢ = nld and this tells
that ¢ ® % € End(J)q is the inverse of ¢. This implies that the invertible elements in
End(J)q are the elements of the form 1/1®% where 1 is an isogeny. The map ¢ — deg(¢)
extends to a multiplicative function on End(J)g. An element ¢ € End(J)q is invertible
iff deg(¢) # 0. We need a second theorem.

Theorem 10.3.7. The algebra End(J) ®z Q = End(J)q is a finite dimensional semi-
simple Q-algebra.

A finite dimensional algebra A over a field k is called semi simple, if its radical is trivial.
The radical is the maximal two sided ideal consisting of nilpotent elements.

To see this, we consider the radical a, which is the maximal two-sided ideal consist-
ing of nilpotent elements. Clearly, a is stable under the Rosati involution, and hence
we see: If a # 0, then we find non zero ¢ € a with ‘¢ = 4. But then ©? # 0 since
tr(¢?) = £tr(p '), and this is non zero by the positivity of the Rosati involution. But
then ¢ cannot be nilpotent, we have a contradiction to a # 0. ]

Now we are ready for the proof of Thm. 10.3.5. The structure theory of semi-simple
algebras advises us to consider the center Z; of End(J)q. It is a finite dimensional
commutative @ algebra and has no nilpotent elements # 0. We have seen in the Chapter
on commutative algebra that there is a maximal set of orthogonal idempotent elements
ey -e. € Zj,such that

1 = Z €;
e, ifi=7.
eie;
B 0 else

Then Z; = &7 je; is a direct sum of fields and

r

End(J)q = @) End(J)qe; = P A (10.26)

i=1

where the A; are central simple algebras with center Zje;. The Rosati involution has to
fix these e; because of the positivity it can not send one of the idempotents into another
one. Hence te; = e; for all i.

The e; are not endomorphisms of J but, if we multiply them by an integer d; # 0, then

Ei = dz €;
will be an endomorphism of J. Now we can consider the endomorphisms
;=Y E
J#i

and let jz be the connected component of the kernel of ®;. Then we have of course that
J; is an abelian subvariety of J and it is clear that the map
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17—
is surjective with finite kernel, in other words, this map is an isogeny. The algebra A; z =
A; NEnd(J) acts trivially on the jj with j # 4 and it injects into End(ji) and is clearly
of finite index in this ring of endomorphisms. It is clear that the Rosati involution is the
identity on the e; and hence it induces involutions on the A; and on End(J;). Recall that
we still want to prove the equality deg(y) = det(pyp).

In the decomposition 10.26 we have End(J;)q = A;. In other words, for any ¢ € End(.J)q
we find a non zero integer m such that

R

where ¢; € End(.J;). This means that we have a diagram

I17; — J
1@ L my
I17; — J

where ® = (---¢;---) and ¢; € End(J;). This implies that deg(®) = [ deg(;). The
same relation holds for the det(®|Ty)) = [ det(p;|Ty(J;))). Hence it is sufficient to prove
our equality for the J;.

We have reduced the proof of theorem 10.3.6 to the case where Endg(J) is a central
simple algebra over its center F//Q. It is a well known theorem that such a central simple
algebra is of the form M,,(D), where D/F is a division algebra of dimension d3 over F' and
M,,(D) is the algebra of (n,n)-matrices with entries in D. Then dimp Endg(J) = n?d3. If
we choose an embedding o : F' — @Q then Endg(J) ®r, Q = M4, (Q). We put d = ndy.
From this it follows that

Endg(/) xqQ= @ Mu@)

o F—®@Q

where o runs over the set of embeddings of F into Q, where d?[F : Q] = dimg Endg/(J).
It is clear that the group of invertible elements Endg(J)* is the group of Q valued points
of an algebraic group G ;/Q whose Q) rational points are M, (D)*, and for which

GJ XQ(D: H GLd/Q

O':F—>Q

Let 7, be the projection from G; xg @ to its o-component. The homomorphism deg :
G;(Q) — Q* is actually the evaluation of a group scheme homomorphism vgeg :
G;/Q — G,n/Q, a so called rational character on G;/Q. (This is clear from 10.25).
We have the rational characters

det o, = det, : H GL4/Q — G,,.
o F—®Q

An arbitrary rational character v: Gy x Q — G,, is of the form
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v = H dety, where n, € Z.
o:F—®Q

Such a rational character is defined over @ if and only if n, = n, for all o,7, i.e n, = n.
Hence we can conclude that y4.; must be a power of 11 P det,. The character det,
has degree d hence the product over all o has degree d[F' : Q]. Therefore we get that
d[F : Q] divides 2¢g and with r = 2¢g/(d[F : Q]) we get

Ydeg = ( H detg)r.

o:F—@Q

We apply the same consideration to
dety : (End(J) @ Qo))" — Q7.

This is not directly possible because F' ® Q, will not be a field in general. We need a
little bit of number theory. We have a decomposition

F®QZZ®F[

e

and hence we get a decomposition

GjsRq Q= H Gy

e

where G j,/Q¢ and its Q, rational points are M, (D ®p F).
Now we can apply our above considerations to the individual factors, we choose an
algebraic closure Q¢ <— @, and find that

det(d) = [J( ] deto)™

e o:Fi—@Q,

where we (only) know that (3 ,[F1 : Q¢]ri)d = 2g. Since we have [F': Q] = 3 ,[F1 : Q]
we have to show that 7 = 7 for all [|[£. We can find an embedding @ — @Q;. The valuation
| |¢ extends to a unique valuation also denoted by | [, on @, then the set {0 : F — Q}
gets divided into the subsets {o : F{ < Q}, these are the embeddings o, which induce
a given [on F.

So far we have not yet used the definition of the function ¢ — deg(¢). If ¢ is not
an isogeny then we have clearly deg(¢) = dety(¢) = 0. Hence it suffices to consider
the case that ¢ is an isogeny. In this case deg(¢) = Rank(¢~1(0)). The group scheme
#~1(0) has its - Sylow subgroup ¢~1(0)[¢], this is simply the étale group scheme, which
is annihilated by high powers of £. The order of ¢~1(0)[¢][k] is the power of ¢ dividing
deg(¢). This is also the order of the kernel ¢ : J[¢N] — J[¢V] provided N is sufficiently
large. But this is also the order of the kokernel of this homomorphism and hence the
order of the kokernel of ¢ : Ty(J) — Ty(J). This order is now equal to the power of ¢
dividing the determinant dety(¢). In terms of ¢-adic valuations this says

| deg(@)]¢ = | det(¢e)e-
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We choose an element a € F, which is integral at all places [|¢, which is a uniformizing
element at one of these places say lp and a unit at all the others.
Now we have

deg(@)(a) =[] o) det(ee) =[[C ] o@™)

U:F%Qz e UZF!*’QZ

If we now take absolute values with respect to the f-adic valuation then the factors
corresponding to [ # [y contribute by the factor 1. For the o corresponding to [y we have
lo(a)|¢ = € with h > 0 and hence

[deg(@)(@)le =[] lo(a) |, = ¢"FoRldr

o F—®,

det(@)@le = [[ lota)l,™ = et
o:Fy— Qe

Now the equality of the f-adic absolute values show that r, = r and hence we have
proved theorem 10.3.5

The Weil Pairing
We consider a Jacobian J/k. for a moment we drop the assumption that & is algebraically

closed. For any integer n > 0, which is not divisible by the characteristic p of k field we
consider the endomorphism nId we want to denote it by [n].

J[n] = ker(J I, J).
We have seen that [n] is an étale morphism, the kernel is a finite étale group scheme and
J[n)(k) = J[n](ks) = (Z/nZ)*.

On this group of n-torsion points we have an action of the Galois group Gal(k/k).

We can also say that J[n] is the Galois group of the covering J 7] J, this means that
any a € J[n](ks) induces a translation

J —Ta o (10.27)

and for any affine open subset V' C J, the open set (nId)~!(V) =V’ C J is affine, and
05 (V) = 0,(V")',

i.e. the algebra downstairs is the algebra of invariants under Jn].
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Our aim is the construction of a non degenerate, Galois invariant, alternating pairing
wop : J[n] x J[n] — p, = group of n ’th roots of unity.
(This corresponds to the alternating pairing on I" in Vol. I, 5.2.1.)

We recall the construction of the bundle A (see 10.9.) If we pick a point £ € J[n], then

this gives us a line bundle
[,5 =N | J x f

on J. This line bundle is algebraically equivalent to zero and satisfies E?" =0y.
We take the pull back of this line bundle under

[n]:J —J
and clearly we have [n]*(L¢) = E?” =0,.

Hence we see that [n]*(L¢) is trivial and we conclude that H?(J,[n]*(L¢)) is a one di-
mensional k-vector space.

Since [n]*(L¢) is a pull back of a bundle on J under [n], we see that we have an action
of J[n] (the Galois group of the covering) on [n]*(L¢) and hence an action of J[n| on
HO°(J,[n]*(L¢)), which then defines a homomorphism

Xe : J[n] — p, C K.

One thing is clear: This homomorphism is trivial if and only if L¢ is trivial in other words
if € =0.

We put
wo(§:m) = Xe(n)
for (&,m) € J[n] x J[n]. It is linear in n by definition. But if £ = & + &2, then we have

Le=Le @ Le,
and this provides a non zero bilinear map
HO(J,[n]*(Le,)) x HO(J[n]*(Le,)) — HO(J[n]*(Le)),
which commutes with the action of J[n]. Hence we see that

Xér1+& = Xé - Xée

and this shows that wq is bilinear.

We show that wy(£,€) = xe(€) = 1, once we have done this, then it is clear that the map
is alternating and non degenerate.

We assume that our element £ is of order n. We can define the quotient J/ < & > | i.e.
divide J by the cyclic subgroup generated by £&. We get a diagram
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g — .y
qi\‘ /95

J/<€&>

(10.28)

The Galois group of the covering g¢ is the cyclic group < £ > . Hence we see that
Xe(€) = 1 holds if and only if the pull back of the line bundle £, by pe is trivial on
J/ < &> . This means that we have to prove that ‘pe(Le) = Oy ces.

Our line bundle can be described in terms of divisors. Our bundle @ is of the form O;(D).
Then L¢ = O(T-,(D) — D) Now (nId)*(L¢) is trivial, hence (nId)~Y(T_,(D)) — D)
is trivial, hence a divisor of a function g. Our aim is to prove that this g is already a
function on J/ < £ >, this means that it is invariant under the translations by &.

We solve nn = &n € J(k), let E = (n1d)~!(D) then

Div(g) = (T;'(E) - B).

The divisor is invariant under translations by elements in J[n|(k) and therefore, T¢(E) =
E. Clearly

Div(T},(9)) = T3, 41y, (B) = T3 (E)
and hence S
Div( [ (T @) = (T L), (B) ~ Tk (B) =0
v=0 v
This tells us that S
hw) = ] (ol +om)
v=0

is constant. Then

L et L2 e+ w1 gz +6)

h(x) =0 gla + vn) g9(z)

The Neron-Severi groups NS(J),NS(J x J) and End(J)

We resume the assumption that k is algebraically closed. Let C'/k be a smooth, projective,
absolutely irreducible curve, and let J/k be its Jacobian. We want to study the Neron-
Severi NS(J) = Picy/, / Pic(}/k, and relate it to the endomorphism ring End(J). For any
line bundle £ on J we defined the homomorphism ¢, : J — JY. On the other hand we
have the principal polarization given by the line bundle ©. For this line bundle ¢g : J —
JV is an isomorphism. If we take the composition we get an element (¢g) top, € End(J),
this yields a homomorphism

®: NS(J) — End(J).

We want to study this homomorphism.
We defined the involution ¢ —* ¢ € End(J). This allows us to define Endgyy, (J), which
consists of those ¢, which satisfy ¢ = .
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We start the Neron-Severi group NS(J x J). The two projections J x J — J yield pull
backs
NS(J) S NS(J x J),

and we have the two homomorphisms

NS(J x J) == NS(J)

given by restriction to {e} x J and J x {e}.

This allows us to write
NS(J xJ)=N(J)dNS'(JxJ)o NSJ) (10.29)

the two extremal summands are the images obtained from the restriction composed with
the pullbacks, the summand in the middle is the kernel of the sum of the two restrictions.
Let £ be a line bundle on J x J whose Chern class (image in the Neron-Severi group)
c1(L) € NS'(J x J). Then we know that

L|Jxe and L|exJ

lie in Pic) /i After tensorization by bundles of the form pj(M;) we may assume that
these restrictions of £ are even trivial

Our theorem 10.2.6 implies that we find a unique ¢ : J — J such that
£~ (Id x)*(©),

we have really an isomorphism, because £|{e} x J = O;. The map ¢ — (Id x1h)*(©)
gives us a homomorphism

U : End(J) — NS'(J x J) (10.30)
which is surjective (as we just saw) and injective because 1) is unique. We formulate a

theorem

Theorem 10.3.8. The above homomorphism is an isomorphism. The homomorphism
® yields an injective homomorphism

® : NS(J) — Endyym(J).
The image of ® contains 2 Endgym(J).

(In the transcendental context in Vol. I, 5.2.3 we proved that ® is actually isomorphism,
this is also true in our situation here, but we do not give the proof (See [Mul], §23)).

Now we consider the diagonal embedding

A:id—JxJ,
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and we put B
Ly = Ao (1dx1)* (),

this yields a homomorphism

§oW¥:End(J) — NS'(J xJ) — NS(J),

Y= Ly =60V())

We have the following formula

D(Ly) =0 +" (10.31)
To see this we start from the definition £, = (Id +¢)*(0) ®1*(0) " ®©~1. We compute
¢r, this sends the point 2 € J(k) to

Ty ((1d+¥)"(0) @ ¥*(0) ' @ 07 @ ((1d+¥)"(©) @ ¢ (©) ' 0 e™!) ' =
(Id+9)* (T4 4(2)0)) @ ¥ (Ty) (©) T @ T (071 @ ((Id+¢)*(0) ' @ ¥*(0) ® ©).

Rearranging the terms yields that this is equal to

(1 +0)* (T4 ) (©) © 071 @ 0°(T5,) (©) ' @ ©) ® (T3(0) ' ® ©).

The argument in (Id +1)* is in Pic?,/k and hence we can apply theorem 10.3.2 iii) and
after expanding this term and looking at the cancellations we get

P(T;(0) 00 )@ Ty, (0)0e~!

and this is our formula above.

If on the other hand L is a bundle on J, then we get by the usual construction the bundle
L=m"(L)@pi (L)t @p5(L)~ on J x J. Again it is clear that £ | J x e ~ O; and
E| e x J ~ Oy, and hence we find a ¢ : J — J such that

L = (Id x))*(O).
Restriction to the diagonal yields
A*(L) = L2 = L.

The shows that the image of the homomorphism ¢ o ¥ contains 2N.S(J). This implies
that
®: NS(J) — Endgym(J) C End(J)

because End(J) is torsion free and formula 10.31 implies that 2N S(J) is mapped into
the symmetric tensors.

We also have seen that 6o Wo® is the multiplication by two and hence we see that N.S(J)
has at most 2-torsion and the kernel of ® consists of 2-torsion elements.

We want to exclude 2-torsion. Here we assume that the characteristic of k£ is not equal
to 2.

Let us consider a line bundle £ on J, for which the 2¢1(£) = 0, i.e.

L = M € Pic] (k).
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We can write M = M$? with M; € Picg/k(k}) and hence we get

(LoMM)™ =0,

We consider the homomorphism [2] : J — J this is an étale covering. The Galois group
of this covering is J[2](k). Clearly we have '[2](£) = O; ="' [2](O). This means that £ is
a J-form of the trivial bundle (See 6.2.11), hence the isomorphism class of £ determines
a cohomology class in H'(.J A, J,G,) = Hom(J[2](k),uz2). But we have seen above that
the elements of this cohomology group are in one two one correspondence to the elements

in J[2](k), hence we can conclude that £ is isomorphic to one of the elements in J[2](k).
O

If the characteristic is 2, a similar argument should work if we replace the Galois-
2
cohomology argument, by a computation in flat topology, i.e. we consider J 1, J as a
covering in the flat topology. Then it is clear that the isomorphism classes of line bun-
2
dles, which become trivial under the pullback J G J are in one to one correspondence

with classes in H'(J 1, J,J[2]). If we exploit the structure theory for such finite group
schemes it follows again that this cohomology group is equal to J[2](k).

The ring of correspondences

We want to review section 5.3 of Volume I and reformulate our above results in terms of
our given curve C'/k. We assume that C'/k has a rational point Py. We had the morphisms
jpg: C — Picgc/k. If we identify Picé/k to Picoc/,C =J we get amap j:C — J, we
assume that j(Py) = e. Hence we get a morphism

jxIdy:CxJ— JxJ.

By construction we have (j x Id;)*© = Py, the isomorphism is determined by the rigidi-
fication. By restriction we get a homomorphism NS(J x J) — N.S(C x C'). The two pro-
jections yield summands pi (NS(J)),p5(NS(J)) € NS(JxJ) and p;(NS(C)),p5(NS(C)) C
NS(C x C). As before this yields a decomposition

NS(C x C) =p{(NS(C)) @ NS'(C x C) @ p5(NS(C)).

The Neron-Severi group N.S(C x C) is equal to the Chow group A'(C' x C) provided
we define the Chow group using algebraic equivalence of cycles. We introduced a ring
structure on A'(C' x C) (see section 10.2.5). Inside this ring we have the two classes
obtained from the cycles { Py} x C,C x {Fy}. It is clear from the definition of the product
that the Z- linear combinations of these two classes define an ideal Z. This is the ideal
given by the first and the third summand in the above decomposition. If we divide by
this ideal, we get the ring of correspondences

Cor(C) = Al(C x C)/T =NS'(C x C)
Theorem 10.3.9. The restriction

r:NS'(J xJ) — NS§'(C % C)

is an isomorphism of rings.
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An element in NS'(C x C) is uniquely (theorem of the cube) represented by a line
bundle £ whose restriction to {Py} x C,C' x {Py} is trivial. Hence we find a morphism
f:C — J such that f(Py) = e and (Id x f)*(Py) = L. We extend this morphism to

JXCId‘]—X>fJ><Jandweget
(j x Idy)*(Ids x £)*(©) = (Id x f)*(Po) = (Id x f)*(j x Id;)*(©) = L.

By the same token the elements in NS’(J x C) are in one to one correspondence with
the morphisms f : C — J,f(Py) = e, hence we see that the restriction NS'(J x C') —
NS'(C x () is an isomorphism. We apply the same argument to the restriction N.S’(J x
J) — NS'(J x C) : An element in NS’(J x C) is represented by a bundle £ which is
trivialized on {e} x C and .J x {Py} and hence given by an element f : J — .J such that
L= (f x Idc)*(Idy x§)*(©). But again these f are in one to one correspondence with
elements in N.S’(J x J) and we have shown that the restriction NS’ (JxJ) — NS'(C'xC)
is an isomorphism.

We do not prove that this is actually a homomorphism of rings, to do this we need some
Chow ring technology, especially the theory of cycle classes in a suitable cohomology
theory. (See next section 7). This also applies to the followings assertions.

The set

Mor((C,Py),(J,e)) = {Morphisms f : C — J|f(Py) = e} = Cor(C)

and we have seen that we have a canonical bijection with End(J). We leave it as an
exercise that this bijection is given by the rule

¢—doj,

i.e. that the elements in Mor((C,P),(J,e)) are given by the composition of j with an
endomorphism. If we have two elements 77,75 € Cor(C) and T; = ¢; o j then we have

TyoTs=¢10¢20].

We define the trace of an element 7' = ¢ o j simply by tr(7T") = tr(¢) then we have the
trace formula (See Vol. I ,Thm. 5.3.9)

tr(T) = —T - (A — {Py} x C — C x {Ry}).

A slight generalization of this formula yields for the intersection number of two cycles in

45(C)

Ty T = —tr(pr 0" ¢o) = =T ' T

and we see that the Hodge index theorem (See Thm. 9.7.1) translates into the positivity
of the Rosati involution.

In a short summary we say that any curve C'//k comes with a Q-algebra Cor(C/k)® Q.
This algebra is semi simple, it has an involution * : Cor(C/k) ® Q@ — Cor(C/k) ® Q,
which on the level of cycles is given by interchanging the factors and it has a trace
tr: Cor(C/k) ® Q — @, which is Q-linear. The bilinear form

(Tl,TQ) = tr(T1 Ot Tg) = _Tl . TQ

is positive definite.
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This algebra depends on the ground field &k (See p. 247) If we extend the ground field, we
may find some new cycles. Since we have finite generation, we can find a finite extension
k1 C k such that A(C xy C xy k1) is saturated , i.e. if we extend further the Chow
ring does not change anymore. For the following we assume that already A(C xj C) is
saturated.

This algebra tells us among other things how the Jacobian J/k decomposes into simple
abelian varieties (up to isogeny). Our considerations in 10.2.5 imply

Proposition 10.3.10. An abelian variety A/k with saturated endomorphism ring End(A/k)
is simple if and only if End(A/k) @ Q is a field.

We apply the considerations on p. 323 to Cor(C/k) @ Q. Our algebra Cor(C/k) @ Q
has a center Zo which decomposes

Zc = ®Zce;,

and this yields a decomposition up to isogeny J = @®J; = ®e;J. Then End(e;J) =
My, (D;), where D; is a division algebra over its center Zce; and J; = (Jl(o))di where
Ji(o) is a simple abelian variety with End(Ji(O)) =D;.

For a ”generic” curve C/k we will have Cor(C/k) = Z and the identity is the diagonal.
This means that the ring of correspondences is not very interesting in this case.

In general it is difficult to compute Cor(C/k), even if the defining equations for the curve
are explicitly given (see the theorems of Tate and Faltings further down).

Exercise 47. Consider the two elliptic curves over @, which are give by the equations
y? = 23 — z,y?> = 2% — 1. Show that their endomorphisms rings after extension of the

scalars to Q(i),Q(p),p third root of unity are Z[i], resp. Z[p].
These two curves are curves with complex multiplication.

Exercise 48. Let k be a field of characteristic zero, let C'/k be a curve of genus 2, let us
assume that Jeoy is simple. Then Cor(C/k) is either @, or a quadratic extension K/Q
or a totally imaginary extension K/Q of degree 4.

This is more an exercise in linear algebra that in algebraic geometry. We may assume
that k = C and then we apply the methods of Vol. I, 5.3.
The following exercise might be considered as a little bit unfair.

Exercise 49. Let k = IF, a finite field and C/k a curve of genus one. Let Cor(C/k)
be saturated. Then Cor(C/k) ® Q is either an imaginary quadratic extension or it is
the quaternion algebra over @Q, which is described in example 11 and which given by

{a,b, —ab} = {p,— 1, — p}.

This exercise requires some knowledge of class field theory.
The next exercise is also unfair

Exercise 50. Write down an elliptic curve over @, which has an endomorphism ¢ with
2
p° = —163.



334 10 The Picard functor for curves and their Jacobians

10.4 Etale Cohomology

In the previous sections we gave some indications that the Tate-modules T;(.J) should be
considered a substitute for the first homology group of J. If our ground field is C, and if

J(C) = €9,

then I' = Hy(J(C),Z) and

T ® Z ~ Ty(J).
The right hand side has a definition in purely algebraic terms and hence H; (J(C),Z) ®Zy
has a definition in purely algebraic terms.
Therefore, we can start from an abelian variety J/k over an arbitrary ground field k. We
fix an algebraic closure k, and let k, C k the separable closure contained in it. We pick
a prime ¢, which is different from char(k) = p, then we have seen that

T (k) = (/e B)*,

and since the map ¢™ : J — J is separable, we even see that all the ¢™-division points
are ks-valued points.

Hence we get an action of the Galois group Gal(ks/k) = Gal(k/k) on J[¢™](k) and
passing to the limit we get a continuous homomorphism

p: Gal(k/k) — GL(T,(J)).

This means that T;(J) has a much richer structure than just the structure of a free Z-
module. Observe that any abelian variety J/k is actually a base extension J = Jy X, k
where ko C k is a field, which is finitely generated over the prime field inside k. This field
is far away from being algebraically closed and we get a very strong action of the Galois
group Gal(kg/ko) on the Tate modules T;(Jp), which contains a lot of information on the
abelian variety Jy/ko. (See further down.)

The cyclotomic character.

There is a much simpler construction of such Galois modules. We consider the multiplica-
tive group scheme G, (see section 7.5.7). Again we can pick a prime ¢ # p = char(k),

and consider the kernel G, [¢"] = ker(G,, , G). This kernel is of course equal to pign

— — —% n n
pen (k) = pon (k) = {C €k | ¥ =1} ~ 2/,
the last isomorphism is obtained by selecting a primitive £"-th root of unity. We can also
can identify Ty(Gy,) = lim  pie» (k) to Zj if we choose a consistent £" th root of unity for
n=12...
This gives us a representation of the Galois group

a: Gal(k/k) — GL(Ty(G,,)) = 7,

which does not depend on the choice of consistent roots of unity. For any o € Gal(k/k)
and any ¢"-th root of unity ¢ we have by definition o(¢) = ¢*(?). This homomorphism
is called the Tate character or the cyclotomic character. For any integer m we denote by
Zy(m) the module Z,, on which Gal(k/k) acts by the character a™.
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10.4.1 Etale cohomology groups

A. Grothendieck introduced the étale cohomology group for schemes. We want to give
some very general ideas how this can be done. The decisive step is to extend the notion
of a topological space or the notion of a topology on a space.

Let us fix a field k and let us consider schemes X/ Spec(k) of finite type. We define some
new “topology” on X by saying that the open sets are morphisms

U—UcX

where U C X is Zariski open and U — U is finite étale morphism. These new open sets
form a category Etx in an obvious sense. A morphism is a diagram

[71 e ﬁg
! 1
U1 — U2

where Uy — Uy is an inclusion and the diagram is commutative (the vertical arrows being
finite étale morphisms).

This category has fibered products. For an ordinary topology this fibered product of two
objects (open subsets in the space) is given by the intersection of the two open subsets.
In the general context this becomes more complicated. Another difference is this: For an
ordinary topological space the set of morphisms between two subjects is either empty or
consists of just one element. This is no longer true.

The étale topology is already extremely interesting for X = Spec(k). There are not so
many Zariski open subsets, but an étale open set is simply a finite separable extension
Spec(k’) = X’ — X. The fibered product is

X' xx X" = Spec(k’ @ k'),

which then suddenly may consist of several points. If for instance k’/k is a finite normal

extension, then
K @ k'~ D K
o:o0€Homy (k' k")

If we have a morphism X’ EX X, and if U is open in X, then f~(U) is open in X’ and
if U — U is an étale covering, then U’ = U’ xy U is an étale covering of U’.

For an object U — U is Etyx we can introduce the notion of a covering. This is a family
of finite étale morphisms

U —UcU i€l
such that |J U; = U.
Now we can define sheaves. This are contravariant functors

f:Etx—>C
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where C is any reasonable category (for instance sets, rings, abelian groups and so on),
which satisfy the two sheaf conditions: For any covering {U;} of U € Etx we have

FU) — [[F70) — [] 7 xv U;)
i (4,9)

is an exact sequence. For any X and any abelian group we can define the constant A,

which is defined by the rule
A= P A4

con. comp. of U

Galois cohomology

This notion is already non trivial for the case X = Spec(k). What does it mean that M
is a sheaf on X, say with values in the category of abelian groups?

This means that we have a functor M, which attaches to any finite separable extension
k' /k, an abelian group M (k') and for any morphism of k-algebras

k! 9 k!
NS
k

we have a group homomorphism
o  M(K') — M(K").

If our separable extension k’/k is not a field, then k" = @k} where these k; are fields and

MK = SM(K]).

We have to formulate what the sheaf conditions mean. A covering of Spec(k’) — Spec(k)
is a k-algebra homomorphism
K — L
NS
k

i.e. Spec(L) — Spec(k’), which sends the identity of &’ to the identity of L (Note that &’
is not necessarily a field.).

Now it is clear that it suffices to know the value of M on finite separable field extensions

L/k.

If Ly /L is a finite separable and normal extension, then it is clear that the Galois group
Gal(L1/L) acts upon M(Lq). The sheaf condition then means: For any L; D L D k as
above we have

M(L) — M(L1),
and M (L) is exactly the module of fixed points under the action of Gal(Ly/L) on M(L1).
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We can reformulate this slightly. If we choose a separable closure k,/k, then we can
restrict the functor M to finite extensions

k C L C k.

If now k C Ly C Ly C ks, then we have M(k) C M(Ly) C M(L3) and we can form the
limit
M = lim M(L) =U M(L).
K/k

This is now a continuous module for the Galois group. The group Gal(k,/k) = lim Gal(L/k)

acts on M and for any m € M the stabilizer of m is an open subgroup in the Galois
group. If in turn M is a module, on which we have a continuous action of Gal(ks/k) (i.e.
for any m € M we have a finite extension k C L C k4 such that Gal(ks/L)m = m, then
we can define M (L) = MG (*</L) and L — M(L) defines an étale sheaf on Spec(k).)

This generalizes. If X, X, are two (irreducible) schemes and 7 : Xo — X a finite étale
morphism, then we say that 7 is normal or galois if the fibered product decomposes
into connected components, which are isomorphic to Xy, i.e.

Xo XxX(): U XOa

a:Xo—Xo

where the o are of course automorphisms of 7 : Xg — X. These o form the Galois group
Gal(Xo/X) and this Galois group is of course also the Galois group of the extension of
the function fields of X,Xy. Whenever we have such a Galois extension Xg — X and
a (finite) Gal(Xo/X)- module Fy, then this defines an étale sheaf on X, which is also
denoted by Fp and whose restriction to Xy is the constant sheaf F,.

We return to the more general situation. We have our X/ Spec(k). If we consider sheaves
with values in (Ab) (or modules over some ring R), then we have the notion of an exact
sequence of sheaves on Etx: This is a sequence

0—-F —-F—F"—0,

such that
a)for any U € Etx the sequence

0— F(U) = F(U) — F'(U)

is exact and
b) the last arrow is ” locally” exact: For any s” € F”(U) we can find a covering

{Uula Ua—UsCU
such that for any « the restriction s/, of s, to U, is in the image of F(Uy) — F"(Uy).
Now it can be shown that we can define the derived functor to the functor

F — F(X) = H(X,F),

and we call the derived group H, g’t(X ,F). Our short exact sequence yields a long exact
sequence in cohomology
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0 —Hg (X.F') — HGX.F) — HG (X, F")
H (X F') — Hy X, F) — Hiy(X.F")

§
—

8
—

(10.32)

(The only thing we need to know is the existence of enough injective objects.)

If for instance X = Spec(k), then we have see that an étale sheaf with values in (Ab) is
simply a Gal(ks/k)-module M with continuous action. An exact sequence of such sheaves
is nothing else than an exact sequence of such modules

0— M —M-— M —0.
But if we look at sections over X = Spec(k), then we get
0 — M'(k) — M(k) — M"(k),

and the last arrow needs not to be surjective. For m” € M (k) we can find an extension
L/k (normal over k) such that m’ lifts to an element m in M (L) and the obstruction to
lift m” to an element in M (k) lies in (See Vol. I, 5.3.)

H(Gal(L/k),M'(L)).
Hence it is more or less clear that

HLX,M') = liLnHl(Gal(L/k),M(L)) = H*(Gal(k,/k),M).

In this case we are back in the situation of ordinary group cohomology. There is a slight
difference to the situation in Volume I, since our group is the projective limit of finite
groups. This requires some harmless continuity considerations. The groups H{, (X,M) =
Hi(Gal(ks/k),M) are called the Galois cohomology groups.

The geometric étale cohomology groups.

From now on the exposition will become very informal, we will try to explain some of the
fundamental ideas and formulate some basic results. But the proofs will be very sketchy
and also the definitions will be somewhat imprecise. As a general references we can give
SGA 43 and Milne’s book [Mi].

Let us consider a scheme of finite type X/k. We choose a separable closure ks and an
algebraic closure k O ky. We form the scheme X = X X Spec(k) Spec(k)).

Let us assume that we have a sheaf F over X with values in (Ab) or modules over a ring
R. Then it is clear that

HY(X.F) = F(X) = F(X Xspec(r) Spec(ks))

is a module for the Galois group Gal(k/k) = Gal(ks/k), and hence we see that all the
cohomology groups

Hét (ij:)

are modules for Gal(k/k). These are the geometric cohomology groups.

We want to “compute” these cohomology groups in a couple of simple cases. Here “com-
pute” means that we assume that the usual tools are available.
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We consider a smooth, projective and absolutely irreducible curve C/k. On this curve
we have the étale sheaf OF, ;: For any U — U C C in Etc we put

OtLu(U)=0(U)"

i.e. we consider the invertible regular functions on U.

Let £ be a prime, which is different from the characteristic of &, let n be an integer > 0.
For any U we can consider the homomorphism ¢ : O(U)* — O(U)* given by z + z*".
This defines a homomorphism of sheaves

n . * *
0" Oc gy — Of e

Here we see the whole point of the story. This map is certainly not surjective for the
sheaf O, 7, — this is our sheaf restricted to the Zariski topology. But if we have an étale

morphism U — C, Uaffine and an element f € 0(17)*, then
U’ = Spec(O(D) [ fvﬂ) — U = Spec(0(D))
is an étale covering, and “/f € (’)([7 ")* maps to f under ¢". Hence we see that
Ot Ot
is surjective. The kernel is the sheaf jp» where
pen(U) = {f € 0Oc(U)" | 1 =1}.

This is the sheaf of £"-roots of unity. Hence we get an exact sequence

L= pun = Oger = Ofer — 1
of sheaves for the étale topology.

Since we assume that the usual tools are available we can write down the long exact
sequence in cohomology. But before we do that we want to make it plausible that

Hélt(c’oé’,ét) = Héar(cvoé’) = PiCC/k(k)'

This is a consequence of Hilbert’s Theorem 90 (see 7.5.23) This can be exploited to
prove that any class € € H, étC,(’)aét) becomes trivial on a suitable small Zariski open
subset, and this implies the assertion above.

We write our exact cohomology sequence, but we restrict the cohomology to C' = C x;, k.
We get - -
(’)aét(C)* =k

and .

is surjective. Hence the sequence starts in degree one and we find
0— Hélt (éhu[") - H%ar (670*6) - H%ar(éao%)
— HZ(Cpan) — 0. (10.33)
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(Is it entirely obvious why it stops in degree 27)

Now we have by definition - B
H%ar(cvo%) = PlCC’/k(k)

and this sits in the exact sequence (recall J = Pic%/k,)

0 — J(k)(k) = Piccs(k) <% 7 — 0,

and this implies

(anuln )

HY(C ) = Jo(B)0) = (2/072)%
HA(Cpen) =~ Bt

/T
and finally - B
HE(Copam) = pugn (K).

Again we recall that these étale cohomology groups are not just abelian groups, but they
come with an action of the Galois group Gal(k/k), and of course it is as it must be:
The exact sequence is an exact sequence of Galois modules. Therefore we see that the
isomorphisms above are isomorphisms of Galois modules.

It may look a little bit strange that we took the coefficient sheaf pyn. Indeed we could
also take the constant sheaf Z/¢"Z on C, this is simply

ZJ0VL(U) = o Z.)0"T.
components of U

This sheaf is certainly not isomorphic to s, but if we restrict to C, these two sheaves
become isomorphic. Hence we can construct an isomorphism

Hét(67Z/ZnZ) =~ Hét(é,‘uzn).

But this is not necessarily an isomorphism of Galois modules, this is already clear in
degree zero: The cohomology group HS (C,Z /(" Z) = 7./"Z is the trivial Galois module
whereas HY, (C,Z/{"Z) = pen (k) is non trivial, it is the Galois module of £"-th roots of
unity.

This Galoismodule is also denoted by Z/¢"Z(1), we can define
Z)0"Z(—1) = Hom(Z /" Z(1),Z/ " Z),
and Z/("Z(n) for any integer n.
It is at least very plausible that we have an isomorphism of Galois modules
HL(CZ/0"7) ~ H. (C puen) ® L) 7(—1)

and especially o B
HY(C\Z)0"T) ~ J&(k)[("] ® Z/0"Z(-1).

Now we may vary the n, we get a projective system, and we put
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H. (C.\Zy) =: lim H. (C,Z./("7),

and we showed

HY(CZy) = Zy
Hé}t(gvzl) ~ Tg(J)@Z[(*l)
He(C\Ze) =~ Zo(—1)

as modules under the Galois group. (It turns out that the reasonable approach is: We start
from torsion sheaves and define cohomology with coefficients in Z, by taking projective
limits.)

The above definition of f-adic cohomology groups works in full generality. We can take
an arbitrary scheme X/k of finite type and we define

H}, (X Ze) = lim HY (X, Z/0"Z),

and these modules are modules for the Galois group Gal(k/k). After that we define
H (X,Qe) = Hi(X Ze) ® Qe

(Observe that the left hand sides could have an alternate meaning as cohomology with
coefficients in the sheaf Zy,Q¢, but these are not reasonable objects.)
(We may of course also consider cohomology groups

H. (X, 7Z) = lim HY (X.7./0"7.)
but they are still much more complicated.)

We have a more general class of sheaves on a scheme X, this are the Z; sheaves F. They
are projective systems of Z,/(¢"**) module sheaves {F,, },, on X together with morphisms
On : Fn — {Fn_1}, which satisfy certain conditions. (See [Del] , [Rapport],2) Among
these Z; we have those, which could be called local systems (See Vol. I , 4.8). To get
these we consider infinite a tower of finite Galois module morphisms over X

— Xpy — Xy — ... — Xg— X

and a compatible system of homomorphisms

pn s Gal(X,,/X) — GL.(Z/{" ' 7).
For any n we get a sheaf F,, whose restriction to X, is isomorphic to the trivial sheaf
(Z.]0"T7)" on X,,. The compatibility condition guarantees that these sheaves fit together
to a Zg sheaf F = lim F,.
For any scheme X and any Z, sheaf F we define
Hl (X, F) = lim H, (X, Fn).

We list some basic results:

1) If we have a scheme X/k of finite type, then the cohomology groups
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Hét (Y7ZZ)
are finitely generated, and if X is irreducible, then H(X,Z;) = 0 for i > 2dim X.

2) If X/k is an irreducible affine scheme, then we even have
H. (X, 7)) =0 for i>dimX

and
0 i>0

H! (A™7,) =
él k2 2 {Zz for i = 0.

If X =P"/k then

HE (X 7o) = @ HE (X T0)
=0

and o
HéQt;Z(X?ZI) = Z(_Z)

3) If we have a morphism f : X — Y and a torsion sheaf F for the étale topology on X
then we can define the higher direct image sheaves RY, f.(F) and this is a torsion sheaf
on Y. Of course we we have a spectral sequence

ERY = Hgt(Y,Rgtf*(]:)) = Hg (X5 F).
In this context we have the following fundamental theorem

Theorem 10.4.1. ( Proper base change) If F is a finite sheaf for the étale topology
on X and if f: X — Y a proper morphism. Then for any point y € Y we have

Ri’tf*(}—)y = Hgt(vafy)~

This is the analogue of theorem 4.4.17 in Vol. 1.

4) If the field k = C, then we can consider the étale topology on X but we also have the
analytic topology on X (C). A little bit of thinking yields that we can have a continuous
map

Xgp «— Xan((]j)a

which induces a map in cohomology
H'(Xeo /0" L) — H' (Xan(C),Z/C"T),
and the comparison theorem asserts that this map is an isomorphism.
5) If X/k is projective non singular and absolutely irreducible, then we have in addition
HE (X, Zy) = To(—d),
and the cup product , which of course has to be defined, induces a non degenerate pairing

Hi (X, 7)) ® Qe x H2H(X ) ® Qo—HEZ (X, Z¢) © Qp ~ Qe(—d).
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6) We have a Kiinneth formula for products

HZ}?(Y X ?7Q€) = @Hgt(yﬂgf) ® H;?_l(yﬂg@)

7) If we have a subscheme Y C X, let us assume that it is absolutely irreducible of

codimension r, then we can attach a cycle class
c(Y) € HE (X, Q)

to it. The subspace Qc(Y) is isomorphic to Q¢(—r) as a module under the Galois group
Gal(k/k).

We can extend this cycle map to arbitrary cycles in codimension r. First of all, if Y € X
is not irreducible, then Y x k = >_Y; where the Y; are permuted by the Galois group.
Then

oY) =c(Y xp k) =Y cYs),

and Qe(Y;) = Qe(—7) under the Galois group Gal(k/L;) if Gal(Q/L;) is the stabilizer
of Y;. Finally we extend this homomorphism to arbitrary cycles by linearity.

Of course we want: If we have two cycles Y1,Ys in codimension r1,ry respectively, and if
they are intersecting in a reasonable manner, then

C(Yl . YQ) = C(Yl) U C(Yg).
Especially if D is a divisor, then we want
DY=D.—.D=¢/(D)"

8) These formal properties imply a Lefschetz fixed point formula. If we have a morphism

f: X — X of a smooth projective, absolutely irreducible variety into itself, then we may

consider the two cycles
F'FrcXxX,ACXxX,

where A is the diagonal. Let us assume, (it is not really necessary) that I'; and A intersect
transversally (See Def. 7.5.21). Then the intersection number

Ty A=#(T;NA) = #fixed points of f.

Now we look at the cycle classes and apply the Kiinneth formula, then we get

2d
co(Tp)Ue(d) = (~1) tr(f* | Hi(X.Q0)),
i=0

and we get (under our assumption) # fixed points of f = Y274 (=1)¢ tr(f* | H, (X,Qq)).

If the intersection is not proper, then we have to be more careful in counting the fixed
points.
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10.4.2 Schemes over finite fields

We apply these theorems to the special case of an absolutely irreducible projective,
smooth variety over a finite field F,, let us write X/IF,. We define the (geometric)
Frobenius morphism @, : X/IF, — X/IF,, which on the geometric points acts by

a = (ag,a1,...,an) — P4(a) = (ad,af,...al).

(Remember that X C IP" and the defining equations have coefficients in FFy.)
The intersection of I's,_ and the diagonal is transversal, this gives us

#fixed points of e, = #X (Fy) = > _(=1)" tx(®] | H (X, Q0)).

Of course we can apply this to all powers ®7, and then

Z(t) _ n_
t- 0 _; #X(Fyp)t" =
co  2d
DO (1) (@ | HE(X,Qe))t" (10.34)
n=0 =0

and this yields the formula

2g )
Zx(t) = [ ] det(1d —t@, | H (X,Q0) D"
i=0

for the Z-function of X. This is Grothendieck’s theorem. (See [Del],[Rapport])

Of course we know that

PPy, s
Py Py

but for the individual factors we only know

Zx(t) = € Z[[t]),

Pi(t) = det(Id —t®, | H{ (X, Q) € Zd[t).

But then in 1973 P. Deligne proved the following theorem, which was anticipated or
conjectured by A. Weil in [We3].

Theorem 10.4.2. (Weil conjectures):
1) The polynomials o
Pi(t) = det(Id —t®, | H(X,Q¢)) € Z[t]

and they are independent of €.
2) If we write

v=b;

Pit)= [ (0 - wit)

v=1

then he reciprocal roots w;, are algebraic integers and

|lwiv| = ¢*/*  for all v.



10.4 Etale Cohomology 345

We can not prove this theorem here. But we almost prove it for curves C/IF, and
their Jacobians J/F,, except that we replace H'(C,Q;) by the ad hoc defined groups
Qe(0), Te(J) ® Qe(—1) = Ty(J)(—1), Q¢(—1) and for the Jacobian we assume that
H*(J,Z¢) = A*(Ty(J)®@Qe(—1))). The Frobenius defines an endomorphism ®, € End(.J)
(See Theorem 10.2.7). We assume for simplicity that the line bundle © is defined over IFy.
We claim that ®;(©) = ©7. To see this we describe © by a 1-cocycle g;; € O(U; NU;)*.
This means that ®;(©) is given by the cocycle g;’j € O(U; NU;)* and this is the claim.
This implies for the Weil-pairing < , >: Ty(J)(—1) x Ty(J)(—1) — Q¢(—1) the rule

<Dy (),@4(n) >=¢° < & > (10.35)
and hence
‘2,8, = [q]. (10.36)

We look at the eigenvalues w; of ®, on Ty(J)(—1) ® Qg, for any of them we have a

generalized eigenspace X (w;) C T¢(J)(—1)®Q,. It has an orthogonal complement X (w;)*
and the quotient Ty (J)(—1)®@Qs/ X (w;)* is a generalized eigenspace with eigenvalue ¢/w;.
This implies:

Proposition 10.4.3. If we list the eigenvalues with multiplicities {w1,wa, ... waq} then
there exists a permutation o of the indices such that w,(;y = q/w;. Especially 10.35 implies
that ®, and '®, have the same eigenvalues (with multiplicities) and tr(®,) = tr(*®,)

For any pair m,n of integers we consider the endomorphisms (m®, +nId), the positivity
of the Rosati involution yields

tr(m'®, + n1d)(m®, + nld) = 2ggm? + nm(tr(®, +' ®,) + 2gn* > 0 (10.37)
This implies
16qg® > 4tr(®,)?

and hence we get
2g
499° > Y w;
i

We can base change our abelian variety to any finite extension I, — Fy» and then our
inequality says

2g

4q"g? > Zw? for all integers n > 0 (10.38)

K3

and this implies |w;| < /g for all indices . But then our previous proposition implies
that we must have equality. B
Since we have J(IF,) = {z € J(IF,)|®4(z) = x} and since Id — P, is separable we know

29

#J(Fy) = deg(Id —0,) = [[(1 —wi) = Ztr@q\Ai((Tg(J) ®Qu(-1))  (10.39)

i=1
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and this also verifies the trace formula for Jacobians and hence also for abelian varieties.
If we accept the trace formula and our computations above then we also proved the above
theorem for curves C/IF,. We get a formula for the number of IF, rational points:

29
#OF) =q—> wi+1 (10.40)
1=1

We already proved such a formula in section 9.7.7, and we also proved |w;| = ,/q. But
there the w; were the zeroes of the Zeta-function and we did not have the interpretation
as eigenvalues of the Frobenius.

We consider an arbitrary scheme X/IF, of finite type. Recall that we have the action of
the Galois group Gal(F,/F,) on the cohomology groups H*(X,Z,). The Galois group
Gal(IFq /IF,) is a profinite cyclic group, which is topologically generated by the Frobenius
automorphism o, :  — x9. Hence o, induces an automorphism also called o, on the
cohomology groups H(X,Z;).

Proposition 10.4.4. For the action on the cohomology groups we have

o4 1 - @,
To see this we consider the scheme X = X x Spec([F,) this is a scheme (of infinite
type) over Spec(IF,). The automorphism o, acts on the first factor, the base extension
P, xp, Fy : X — X, is a morphism over Spec(IFy). It is clear that the composition
040 ®, : X — X is the identity on the underlying topological space of X and it acts on
the structure sheaf by raising every section f € Ox(U) into its ¢-th power, therefore, it
is not the identity. But since it acts as the identity on the underlying topological space
implies that the composition o, o ®, induces the identity on the cohomology.

The global case

We consider a smooth, projective and absolutely irreducible scheme X/ Spec(K) over a
number field K. It is clear that we can extend X/ Spec(K) to a smooth projective scheme
X /U where U is a non empty open subset of Spec(Ok). For any p € U we have a finite
residue field k(p) = O, /p. We can consider the reduction X' xy k(p), this is a smooth
projective scheme over k(p).

We pick a prime ¢ and consider the etale cohomology groups H'(X xx K,Q/). This is
a finite dimensional vector space with an action of the Galois group Gal(K/K) on it. If
we recall that

Héit(X XK K,Qg) = h&lHét(X XK K,Z/fmZ) [ Qg,

then it is clear that we get a tower of extensions Ky ,,,/K such that the Galois action on
H (X xx K,Z/I™Z) factors over Gal(Ky,,/K). Now it follows from the base change
theorem in f-adic cohomology that the extension Gal(Ky,,/K) is unramified over all
those primes p € U, which in addition do not divide £.

The choice of a prime 9,,, which lies above p, gives us a Frobenius element og, €
Gal((Ky¢m/K), its conjugacy class does not depend on the chosen prime (VII.2.4). Now
it is more or less obvious that we get a conjugacy class {®q} of elements in Gal(K,/K) =
lim Gal(Ky,m/K). Hence it makes sense to speak of the characteristic polynomial
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det(Id —oy T HE (X x x K,Qp)).-

Now we apply the proper base change theorem we see

det(Id —oy ' T|H (X xx K,Qr)) = det(Id —@pT|Hj (X xu k(p),Qr)) € Z[T]

and if we apply Deligne’s theorem then we see that this characteristic polynomial does
not depend on /.

Such a system of Galois modules (£ varying) is called a compatible system of Galois
modules. This allows us to define the L-function of the smooth projective scheme X /U:
At any prime p € U we define N(p) = #k(p) and we substitute N(p)~* for T. Then

; 1
L(Hi(X),s) = , .
b)) ,Efdet(ld—q’pN(P)“s\Hét(X xu k(p),Qe))

Deligne’s theorem implies that the denominator is a polynomial in N(p)~* with coeffi-
cients in 7 and this polynomial does not depend on £. Hence we can view this denominator
as a holomorphic function in the variable s. The same theorem provides estimates for
the eigenvalues of ®, they are of absolute value N(p)z. Hence it is easy to see that this
infinite product converges for Re (s) > % + 1 and defines a holomorphic function in this
halfspace.

We say that Ly, (H{ (X),s) = det(Id =@, N (p) ~*|H., (X X k(p),Q¢)) ! is the local Euler
factor of X /U at p. We observe that for p € U the inertia group Iy C K, (see 7.3.12)
is trivial and hence the local local Euler factor can be defined without reference to the
smooth model X' /U. For p ¢ U we may define

Ly(Hi(X),5) = det(Id —op N (p) ™ [H, (X Qo) ™) 7

Here we have to assume that these Euler factors are in Z[N(p)~*] and are independent
of £, this is not known in general. It is also possible to define Euler factors at the infinite
places, they are products of I'- factors depending on the Hodge numbers h?'? with p+q =
i. (See [De2]) Putting all this together we can define a global L-function

L(HE(X),5) = Loo(Hiy (X)) [ ] Lo (Ha (X),8) = Loo (HE(X).8) L (Hi (X).5).
P

We resume the discussion from the last pages of Volume I. These cohomology groups
H{ (X,Q¢) together with their structure as modules for the Galois group belong to
the most interesting and most fascinating objects of study in the field which is called
arithmetic algebraic geometry. Here X should be a smooth projective scheme over I, or
over a number field K or even more generally a field which is finitely generated over the
prime field in it. The bare cohomology groups, or for instance the Betti numbers alone,
contain little information on X. If for instance, X is a curve then they merely give us the
genus, but if we add the Galois-module structure then the amount of information grows
considerably. For instance, if we have two such curves X;/K,X>/K we may be able to
rule out the existence of non trivial morphisms f : X;/K — X5/K by looking at the
Galois-module structure of H}, (X1,Z¢) and H} (X2,Zs).
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This kind of question is related to the Tate conjecture. We look at the cohomology
in even degree 2r. In item 7) above we explained the cycle map A™(X) — HZ'(X,Q¢)
and said that the absolutely irreducible cycles yield a copy Q¢(—r) C HZ'(X,Q¢) where
Q¢(—r). The Tate conjecture asserts

After a suitable finite extension K'/K the image of the cycle map A" (X) — HZ'(X,Qu)
is the mazimal Gal(K /K') subspace of the form Q(—r)™, this subspace is a direct sum-
mand in HZ (X ,Qy).

This conjecture is proved in very few cases. If » = 1 then it amounts to the determination
of the image of NS(X) — HZ(X,Q). Even in this special case the conjecture is not
known for surfaces over IFy.

The Tate conjecture has a compagnon for smooth projective algebraic varieties over C.
If X/C is smooth projective then X (C). In this case X (C) has the structure of a Kahler
manifold and we have the Hodge decomposition (See Vol. I, Thm. 4.11.15)

H*(X(C),Q)®C=H"(X(C),C)= @ H"(X(C),0).
p+q=2r

Then the Hodge conjecture asserts

im(A"(X) — H*(X(€),0) = B (X(T),Q) N H""((X(T),T),

this conjecture is actually much older than the Tate conjecture. It is proved for r = 1 for
any X/C.

If X/K = A/K is an abelian variety, then we can use the relationship between the
Neron-Severi group and the ring of endomorphisms End(A), which we discussed in 10.3.
We have the ¢ adic representation j : End(A) ® Z; — End(Ty(A)). The action of the
Galois group on Ty(A) induces an action of the Galois group on End(7;(A) clearly j sends
End(A) into the Galois invariants. From this it follows easily that the Tate conjecture
for the HZ (A,Q;) is a consequence of the following assertion

j:End(A) ® Z; = End(T,(A))SE/K),

This last assertion has been proved by Tate in the case where K is a finite field (See [Ta])
and it is a celebrated theorem of Faltings ([Fa]) if K is a finitely generated extension of
Q. As already mentioned at the end of Volume I this implies the Mordell conjecture.

Another circle of problems concerns the deeper understanding of the L-functions L(H}, (X),s)
in the case where K is a number field. For the following we refer to [De2] .

It is conjectured that this L— functions has a meromorphic continuation into the entire
complex plane and satisfy a functional equation. Let d the dimension of X, we assume
that X is absolutely irreducible. Then one expects a functional equation of the form

L(H{(X),5) = e(HL(X),8) L(HE' ™' (X),2d — 1~ s).

where the so called e-factors are product of local factors e,(HZ (X),s) = N(p)®* for
p € U and a constant.

It is also expected that the finite part Lg,(HY (X),s) has holomorphic continuation if i
is odd and if ¢ = 2r then the only poles are at s = r + 1 and the order of the pole is the
number m in the formulation of the Tate conjecture.
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If X/Q = P"/Q then it is clear from 3) above that Lg,(HZ (X),s) = ((i + s), where of
course ((s) is the Riemann ¢ function. In this case all the conjectures are true.

We can define a larger class of objects, to which we can attach L-functions. These are
so called (pure) motives. If X/K is smooth projective and irreducible then we may
consider correspondences T' C X x g X, this are cycles of codimension dim(X). They
induce endomorphisms p$. : HS,(X,Q,) — H} (X,Q,). If such an endomorphism of the
cohomology turns out to be an idempotent, then we consider the pair (X,pr) = M and
call it a motive. Whatever this object is, it has f-adic cohomology groups namely

Hg (M) = {c € HY{(X,Qu) | pr(c) = c}.

Obviously we can attach an L-function to these motives M and we get a product decom-
position

L(H}(X),8) = L(Hg, (M),s) L(Hg, (M'),5),

where of course M’ = (X,1 — pr).

In [Del] Deligne has formulated conjectures concerning special values of these L-functions
attached to motives. At certain integer arguments, which he calls critical, these values
divided by a suitable period are rational numbers. We do not give a precise statement
here, we rather refer to his article. But it is certainly worth to mention that in the case
X =P%Q, i.e. X = Spec(Q) the conjecture says that for any integer m > 0

Lan(X,2m) = ((2m) = 72™ x rational number

and this was known to L. Euler.

At the present time we have only one method to gain some insight into the mysteries
of these L-function. This method is based on the fact that there exists a second class
of L-functions namely the automorphic (or modular) L-functions. These L-functions are
also products over all places of the algebraic number field

L(m,s,r) = H L(my,s,r),

where 7 = ®m, is an automorphic form on a reductive group G/K, and r is a representa-
tion of the Langlands dual group “G(C). (We refer to [Bo] for further explanation). For
almost all finite primes p the local component , is determined by its Satake-parameter
A(my) and this Satake-parameter is a semi-simple conjugacy class in “G(C). This allows
us to write down the local Euler factor of the automorphic L-function at these places

L(my,s,r) = det(Id —r()\(wp))N(p)’s)’l.

In this generality these L-functions have been introduced by Langlands, the origin of this
concept goes back to Hecke. He attached an L-function to any holomorphic modular cusp
form f of weight & for SL(2,Z). If this cusp form is an eigenform for the Hecke operators
Ty, i.e. Tp(f) = ap f, then this L-function is given by the infinite product

r 1
L(fas) = (25.;?))5 H 1— app—s +pk—1—2s'
p
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(See Zagier's exposition in [1-2-3].) In this case the reductive group is GLo/Q and the
Langlands dual group is GLy(C). To our cusp form corresponds an automorphic form 7
and if we write 1—a,p~S+p" 1725 = (1—a,p=*)(1-Bpp %), i.e. ap+Bp = ap,ap8, = p"*
then the Satake parameter at p is given by the matrix

«a 0
M) =[P
m = (7 5)
The argument r is suppressed, since in this case r is the tautological representation of

GLy(T).

Now we can formulate a very challenging questions:

What is the relationship between automorphic and and motivic L-functions? Is every
motivic L- function equal to a automorphic L-function? Which modular L-functions are
motivic?

It is conjectured that there is a very strong connection between these two kinds of L-
function. These conjectures are embedded in a much larger network of conjectures, which
run under the name Langlands program or Langlands philosophy. The above questions
are motivated by abelian class field theory and the Artin reciprocity law and the Shimura-
Taniyama -Weil conjecture, which we discuss next.

The most spectacular result in this direction is the proof Shimura-Taniyama -Weil con-
jecture by Wiles-Taylor. This conjecture asserts that any elliptic curve E/Q is modular
and this means that there exists a holomorphic cusp-eigenform f of weight 2 with rational
eigenvalues such that we have an equality of L-functions

L(Helt(E)vS)) = L(f75)'

The original proof of Wiles-Taylor made some assumptions on the reduction behavior
of E/Q, these assumptions have been removed in a paper by Christophe Breuil, Brian
Conrad, Fred Diamond and Richard Taylor. It is common knowledge in the mathematical
community that this result implies Fermat’s last theorem.

I plan to write a third volume of this book, its title will be ” Cohomology of arithmetic
groups”. In this book I will come back to the questions raised above. A preliminary ver-
sion of this book exists on my home page http://www.math.uni-bonn.de/people/harder.
There is a folder buch, which contains several .pdf files chap2.pdf-chap.6.pdf. It does not
have a chapter I because the chapter I of Vol. III is essentially chapter I-IV of Volume
I of this book. This text will undergo some changes but I will not remove it from my
home-page before this Volume III goes into print.

The degenerating family of elliptic curves

We come back to the discussion in Vol. I Chap. V, 5.2.8. We start from the ring R = Z[%},
we consider the power series ring R][q]] and the ring of Laurent series R[[q}][%] Inside
this ring we have the power series

Mq) = 2 + 64q + 512¢% + 2818¢% + . . .,
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which is explicitly written down in formula (5.164). We also consider the polynomial ring
R[t] and map it to R[[q]] by sending t — A(q) — 2 = 64¢q + 512¢*--- (See Vol. I p.262,
there is a misprint, we have to insert a + between the 2 and the 64). Again we consider
the curve

E — SpeC(R[t7t_1]) XSpeC(R) ]P2 g — SpeC(R[t]) ><SpeC(R] IP2

N ! — N !
Spec(RJt,t™1)) Spec(R[t]),

which was defined by the equation

vz =a® — 2+ t)atz + 22
Its affine part lies in the affine plane z # 0.We can easily compute its j invariant

(1+4t+1%)3
t(t+4)

We are interested to understand what happens locally at ¢t = 0. We invert in addition
t+4, then the restriction & — Spec(R[t,t’l,ﬁ]) is an elliptic curve, but its extension
& — Spec(R[t,H%]) is not an elliptic curve anymore. The fiber &) over ¢t = 0 is given
by the equation

j = 256

vz =a® —22% 4 o = x2(x — 2)?,

the point (r,y,2) = (1,0,1) is singular, it is easy to see that is an ordinary double point. We
can find a morphism 1 : P*/R — &}/ Spec(R) and two "disjoint” points P,Q € P1(R)
such that 1 induces an isomorphism

[ P! \{PvQ} = g(/) \ {(1’071)}

and maps P,Q to (1,0,1). We say that the fiber &)/ Spec(R) is a P! with two points
identified to a double point. At the point ¢ = 0 the family of elliptic curve ”degenerates”
in a very specific way into a singular curve.

We may also do something else: We have the group scheme structure on & — R[t,t 71, tﬁ],
obviously this group scheme structure does not extend to a group scheme structure on
& — R[t,ﬁ}. But if we remove the singular point (1,0,1) € &} from the fiber, then it
is easy to see that the group scheme structure of £ extends to a group scheme structure
on

EN{(1,0,1)} — Spec(R[t]) Xspec(r) P?
\ !
Spec(R[t]),

and the fiber at ¢t = 0 is G,/ Spec(R).

Hence we learn that we have to pay a price: If we want to extend the projective scheme
E— Spec(R[t,t’l,tﬁ]) to a scheme over Spec(R[t,tﬁ])7 then we can extend it to a
projective scheme, but we get a singular fiber (with a very mild singularity), or we extend
it to a group scheme and then it is not projective anymore.

We now assume that we have chosen a homomorphism Z[%] — k and we consider the
base change of our curve
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)

1 1
& XSpcc(Z[%}[t,%,ﬁ]) X SpOC(k[t,;,t+ 4
let us call it £ again. If now n is coprime to the characteristic of our field k, then we
know that the kernel £[n] = n=1(0) is a finite etale covering of Spec(k[t,%tﬁ]). We can
find a normal finite connected covering U,, — Spec(k[t,%,tﬁ}) such that

E[n] Xspec(rit, 1,17 Un = (Z/HZ)QU

trt+4

i.e. over this covering it becomes a constant sheaf. Then we get a homomorphism

1 1
Gal(U,,/ Spec(k[t,;,m]) — GLy(Z/n7),

from which we can reconstruct £[n] (See above). Now we encounter the fundamental
problem to obtain some information concerning the image of the Galois group. To get
this information we return to the variable q.
We make a second base change to k((¢g)). We can also base change the scheme &[n] to
Spec(k((q)) and we get a separable extension K/k((g)), over which £[n] x K becomes
trivial. In Vol. T we wrote down sections in E(R][[q]]) (formula 5.180)). This provides a
homomorphism

(k[[qﬂ[é])x/ <q>— E(K[[d]])

and a variant of a theorem of Tate asserts that this is even an isomorphism. Let us assume
that n is odd. We can extend our field to K = k((q))[¢"/™,Cn,] where ¢, is a primitive
n-th root of unity. We also extend our homomorphism to

K* — E(K).

and this implies that the group of n-division points E[n](K) is the free Z/nZ-module
generated by ¢*/™.(, mod <gq>.
We get an an exact sequence of Galois groups

1 — Gal(K/k((q))[¢n]) — Gal(K/k((q))) — Gal(k[Ca]/k) — 1.

The Galois group acts on the generators by matrices

= ()

where « : Gal(k[(,]/k) — (Z/nZ)* is the Tate character, which is defined by o(¢,) =
Ca(a) and O.(ql/n) _ ql/nC;lL(U)'
It follows from elementary algebra that the homomorphism

Gl /K@) — (o "7) 1uto) e 2nmy = zjn

is in fact an isomorphism.

Now we pick a prime ¢, which should be different from the characteristic p of k and for
convenience also different from 2. We choose n = ¢™ where m runs over all integers. The
projective limit
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lim £[0™](k((q))) = Te(€) = Z{

is the so called Tate module of our curve. It is a module for the projective limit of Galois
groups

lim Gal(k((q))lg""*" Gen]/K((2))) = Gal(k((a))[a"*™ Ce=]/K((a))

we get a representation
po.e,  Gal(k((9))[a"/*" Ce=]1/k((0)) — GLa(Ze) = GUZeq""*™ & LuGe=).

Our previous considerations imply:
The image of the subgroup Gal(k((q))[qg"/*" (e]/k((q)))[Ce]) under the above represen-
tation is the group

{(é ;’) be T} = U(L).

Now we suggest to consider Spec(k[[¢]]) as an infinitesimally small disk around zero in
Spec(k[t,%,ﬁ}). As T explained above we have the projective system of finite, connected
etale schemes Upmn — SI;)ec(k[t,%,t_‘%4

tation

1), which trivialize £[¢™] and we have the represen-

1 1
: lim Gal(Uym / Spec(klt,~,——
pe, : lim Gal(Upn / Spec(klt, -
If we consider the restriction of these Uym to Spec(k((q))) they decompose into connected
components, if we pick one of these components, which we can identify to
Spec(k((q))[q"*" ,¢m]), then we get an embedding

[) — GUT(E))-

lim Gal(Spec(k(())[a/" Cen])/ Spec(k((@))) — lim Gal(Ugn / Spec(klt,,——])

and we conclude that the image of pg, contains the subgroup N(Z;) = {<1 w) | €

0 1
Zy}.
Now we need a fact classical result, which is called the irreducibility of the modular

equation. Let us put U = Spec(k[t,%,tﬁ])). We choose n =/, i.e. m=1

Theorem 10.4.5. The image pg,(Gal(Uy/U) in GLo(IF,) is not contained in
t1 b %
B(]Fg):{ 0 t |t1,t2 E]Fe ,bEJFg}

This is a consequence of Theorem 3 in [Lal, I. 5, in principle it is also in [Web] , Achter
Abschnitt. For the case that the ground field k has positive characteristic it is Thm. 1 in

[Tg].
The next thing we need is a simple lemma, which is easy to prove

Lemma 10.4.6. If a subgroup H of GLa(Z;) contains N(Z¢) and its reduction mod ¢
is not contained in B(FFy) then this subgroup contains Sla(Zy).
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A digression into representation theory: If we have any field k¥ and a subgroup H C
GL,, (k) then we may consider its Zariski closure H: It is the smallest algebraic subgroup
of GL,,/k, for which its group of k- rational points H (k) contains H. If for instance k is
infinite then the Zariski closure of Si, (k), (resp. )GLy (k) is Si,,/k(resp.) GL, /k.

A representation r : GL,/k — GI(V)/k is r is a homomorphism between the two
algebraic groups over k. Such a representation is called irreducible, if there is no non
trivial subspace W C V,WW # (0), V which is invariant under GL,, /k (i.e. for any k — A
W®A CV®A is invariant under GL,,(A4).) The following is more or less clear by
definition.

Ifr: GLn/k — GU(V) [k is irreducible and H C GL, (k) is a subgroup. If the restriction
from r to the algebraic group H/k is irreducible then V' 'V is also irreducible under the
abstract group H.

We apply this to the subgroup pg, (lim Gal(Upn /U) C GLa(Qy). The Zariski closure of an
open subgroup of SLy(Qy) is SLy/Q,. Hence by our two observations above we conclude
that the Zariski closure of the image of the Galois group contains Sls/Q,. We can say
something else. If we pass to the geometric situation and consider the base extension
Uxik — U, then Upm Xy kE — U xj k then Upm xj, k will not be connected, the
connected components are labelled by the primitive £™ -roots of unity (the value of the
Weil-pairing). Taking just one of the components, we get

Gal(Upn xi k)Y JU x4, k = SLo(Z /(™).

If we pass to the limit, then the set of connected components will be a profinite set,
labelled by the choice of an £°°-th root of unity and we may say

lim(Gal((Upm xj k)" /U x4 k) = SLa(Zy) (10.41)

The tensor product Te, ®Qr = Ty (€)q, is a GLa(Q) module, even better we can consider
it as a module for GLy/Qy. The classical theory of representations tells us how r -fold
tensor products

Ti(E)q, @T(€)q, @ - Ty €)q, = Te(E)%Z

decompose into irreducibles. First of all we have that
AQ(TZ(E)Qe) = Q¢ ® det,

where this means that the group GLy acts via the determinant on Q. Furthermore
the symmetric tensors Sym”(7Ty(€)q,) form an irreducible submodule in (Ty(£)q,)®",
to which we can find a complement ( complete reducibility of representations of GLs).
Finally we have

Sym"(Te(€)q,) © Te(€)q, = Sym™  (T1(€)q,) @ Sym" ™ (Te(€)q,) © det

where Sym®(T,(€)q,) = Q is the module with trivial action.
It follows that

v=I5)

Ty(E)E = € (Sym™ ™ @ det”))™ ™) (10.42)

v=0



10.4 Etale Cohomology 355

where the m(r,v) are multiplicities.

The Weil conjectures for elliptic curves in the spirit of Weil 1

In this last section we give another proof of the the Weil conjectures (see 9.7.7, 10.4.2)
but only in the simplest case, namely for elliptic curves. The reason for doing this is,
that this proof provides a toy model for the general strategy of Deligne ([Del]) to prove
the Weil conjectures. The decisive point is that he puts the elliptic curves into a family
such that we have large ”monodromy”; then he applies the ”Rankin method” to tensor
powers of the sheaf of cohomology groups.

The family, which we will consider, is our elliptic curve £& —— Spec(k[t,%,t_ﬁ]) and we
choose for k the finite field IF,, with p elements, where p # 2. We have large "monodromy”
because the image of the Galois action is as large as possible. (See 10.41).

Ty(€) ® Qe(—1) = Ty(£)(-1) = R'm.(Qe)

and this is an ¢— adic local system of rank 2 on U = Spec(k[t,1,725]). We have the Weil
pairing

Ty(E)(—1) x Ty(E)(—1) — Qu(—1) = R*71.(Qy).

The sheaf R%,(Qy) is geometrically trivial, i.e. if we base change to U XF, qu it becomes
trivial. For any L

p: Fp[t,t,t _4] — Fy,
the (geometric) Frobenius ®, has two eigenvalues ayp,8,, the sum a, + 8, € Z and
apfy = N(p) = p/». This implies for our sheaf F = Sym?*(7;(€)) ® Q,(—1)?* that the
trace of @, on Fy, is (ap+ ﬁp)% and hence positive. We can define the cohomology groups
with compact support H{ (U xw, IF,,, 7)) (See [Del] [Arcatal, 5).
Since our sheaf is a local system it vanishes for i = 0, it is complicated for ¢ = 1 and for
i = 2 it is the module of coinvariants as in the topological situation(See Vol. I, 4.8.5)
For this cohomology with compact supports we have a Grothendieck-Lefschetz fixed point
formula. For this consider the function

_ det(Id —®,t| H' (U xg, F),F))

Zr(t) = :
(1) det(Id —®,t| H2(U x, Fp,F)’

and the fixed point formula says

glizi) _ Z Z tr((I)p‘]-'p)t" — Z( Z (ag/fp +ﬂ;/fp)2k)tn

n p:fpln no p:fpln

t

~—

We can compute the module of coinvariants for the action of SLy(Z;) using the above
formula 10.42. The only contribution comes from the term v = k. The coinvariants for
the geometric fundamental group SLa(Z,) form still a module for Gal(FF,/IF,,) and more
precisely we have

fSLg(Z[) _ QZ(_k)m(Qk,k)

i.e. the eigenvalues of the inverse Frobenius on these coinvariants are ¢". This implies
that
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HX(U xy, FpF)) = HX(U xr, Fp,Q0) @ F = Qo(—k — 1)™H0),

Let B1,...3: € Qg be the eigenvalues of CI)q_l on HX(U XF, F,,F). We choose any
embedding ¢ : Q(f1,...,0:) — C. Then we get

Z}:(t) = L(ﬁi)t pk+1t _ - n/fp n/ fp\2kyn
Zro) T 2T T = 2D (s

i
The right hand side is a power series with positive coefficients, it has a radius of conver-
gence r and since the coefficients are positive we must have a pole for ¢ = r. This pole
can only be one of the numbers +(3; ') or p~#~1. But since the poles are first order poles

3
and since the value r?; E;; = +00 the residue of the pole must be positive and hence we

must have r = p~*~1. But then any of the formulae for the radius of convergence implies
that for any p : Fp[t,%,ﬁ] — F, (¢ = p™) we there exists a constant C}, such that
Z (ag/fp +ﬁ;1/fp)2k < Cppn(k+1).
p:fpln

If we take the Weil pairing into account, i.e. a8, = Np = plr we obtain
o™, |B3F| < Npttt

If we pass to the limit £ — oo then we can conclude

|| = 18] = N (p)"/2.

and hence we gave another proof of the Riemann hypothesis for elliptic curves. This
proof contains the beautiful central idea of Deligne’s proof of the Weil conjecture in
[Del]. Of course our argument also gives that |¢(3;)| < p**!, independently of the chosen
embedding. This implies that the (; must be algebraic numbers. If one of them were
transcendent over Q we could choose a ¢ which sends it to any non zero number in C.
But the above estimate is by far not the best, the actual truth is that for a given i we

have
L(Bi)| = pFT/% or =1.

This we can not prove here, because we have not yet put H'(U xr, F,,F)) into a family
of cohomology groups.

I think its a good moment to stop here. I hope that I gave a motivating introduction
into the fascinating field of algebraic geometry and an incentive for further study and
research in this area of mathematics.
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