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Preface

This book grew out of two-semester courses given by the second-named author
in 1996/97 and 1999/2000, and the first-named author in 2005/06. These lectures
were directed to graduate students and PhD students having a working knowledge
in calculus, measure theory and in basic elements of functional analysis (as usually
covered by undergraduate courses).

It is one of the main aims of this book to develop at an accessible, moderate
level an L2 theory for elliptic differential operators of second order,

Au D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
C

nX
lD1

al.x/
@u

@xl
C a.x/u; .�/

on boundedC1 domains� in Rn, including a priori estimates for homogeneous and
inhomogeneous boundary value problems in terms of (fractional) Sobolev spaces on
� and on its boundary @�, and a related spectral theory. This will be complemented
by a few Lp assertions mostly connected with degenerate elliptic equations.

This book has 7 chapters. The first chapter deals with the well-known clas-
sical theory for the Laplace–Poisson equation and harmonic functions. It may
also serve as an introduction to the typical questions related to boundary value
problems. Chapter 2 collects the basic ingredients of the theory of distributions,
including tempered distributions and Fourier transforms. In Chapters 3 and 4 we
introduce Sobolev spaces on Rn and in domains, including embeddings, extensions
and traces. The heart of the book is Chapter 5 where we develop an L2 theory
for elliptic operators of type .�/. Chapter 6 deals with some specific problems
of the spectral theory in Hilbert spaces and Banach spaces on an abstract level,
including approximation numbers, entropy numbers, and the Birman–Schwinger
principle. This will be applied in Chapter 7 to elliptic operators of type .�/ and their
degenerate perturbations. Finally we collect in Appendices A–D some basic ma-
terial needed in the text, in particular some elements of operator theory in Hilbert
spaces.

The book is addressed to graduate students and mathematicians seeking for an
accessible introduction to some aspects of the theory of function spaces and its
applications to elliptic equations. However it is not a comprehensive monograph,
but it can be used (so we hope) for one-semester or two-semester courses (as we did).
For that purpose we interspersed some Exercises throughout the text, especially
in the first chapters. Furthermore each chapter ends with Notes where we collect
some references and comments. We hint in these Notes also at some more advanced
topics, mostly related to the recent theory of function spaces, and the corresponding
literature. For this reason we collect in Appendix E a few relevant assertions.



vi

In addition to the bibliography, there are corresponding indexes for (cited) au-
thors, notation, and subjects at the end, as well as a list of figures and selected
solutions of those exercises which are marked by a � in the text. References are
ordered by names, not by labels, which roughly coincides, but may occasionally
cause minor deviations.

It is a pleasure to acknowledge the great help we have received from our col-
leagues David Edmunds (Brighton) and Erich Novak (Jena) who made valuable
suggestions which have been incorporated in the text.

Jena, Fall 2007 Dorothee D. Haroske
Hans Triebel
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Chapter 1

The Laplace–Poisson equation

1.1 Introduction, basic definitions, and plan of the book

Many questions in mathematical physics can be reduced to elliptic differential equa-
tions of second order, their boundary value problems and related spectral assertions.
This book deals with some aspects of the underlying recent mathematical theory on a
moderate level. We use basic notation according to SectionsA.1, A.2 inAppendixA
without further explanations.

Definition 1.1. Let � be an (arbitrary) domain in Rn where n 2 N. Let

fajkgnj;kD1 � C loc.�/; falgnlD1 � C loc.�/; a 2 C loc.�/ (1.1)

with
ajk.x/ D akj .x/ 2 R; x 2 �; j; k D 1; : : : ; n: (1.2)

Then the differential expression A,

.Au/.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (1.3)

of second order is called elliptic if there is a constantE > 0 such that for all x 2 �
and � 2 Rn the ellipticity condition

nX
j;kD1

ajk.x/�j �k � Ej�j2 (1.4)

is satisfied.

Remark 1.2. As usual, A is called an elliptic operator, sometimes also denoted
as uniformly elliptic operator since E in (1.4) is independent of x 2 �. One may
think of u 2 C 2;loc.�/ in (1.3). But later on u might be also an element of more
general Sobolev spaces.

Example 1.3. The most distinguished example is

�� D �
nX

jD1

@2

@x2j
; (1.5)

where � is the Laplace operator. We shall adopt the usual convention to call (1.5)
simply Laplacian.
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Remark 1.4. The following observation will be of some use. Let

� D .�1; : : : ; �n/ 2 Cn with �j D Re �j C i Im �j D �j C i�j ; (1.6)

where �j ; �j 2 R, j D 1; : : : ; n. Then

nX
j;kD1

ajk.x/�j S�k D
nX

j;kD1
ajk.x/S�j �k D

nX
j;kD1

akj .x/�kS�j (1.7)

is real and one thus obtains

nX
j;kD1

ajk.x/�j S�k D
nX

j;kD1
ajk.x/.�j C i�j /.�k � i�k/

D
nX

j;kD1
ajk.x/.�j�k C �j �k/

� Ej�j2: (1.8)

Hence the ellipticity condition (1.4) with S�j in place of �j applies to � with (1.6),
too.

Exercise* 1.5. In which domains � � R2 is

.Au/.x1; x2/ D �@
2u

@x21
.x1; x2/ � x2 @

2u

@x22
.x1; x2/

elliptic?

Typical problems, plan of the book

Let � be a bounded C1 domain in Rn according to Definition A.3, and let A be
an elliptic operator, say, the Laplacian (1.5). Let f be a function in � and ' be a
function on the boundary @�. In the typical boundary value problem we are dealing
with one asks for functions in x� such that the Dirichlet problem,

'.y/

f .x/ �

�
@�

Figure 1.1

(
Au D f in �;

uj@� D ';
(1.9)

and the Neumann problem,˚
Au D f in �;

@u

@�

ˇ̌̌
@�
D '; (1.10)

can be solved.
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Furthermore of interest are eigenvalues � 2 C and (non-trivial) eigenfunctions u
such that, for example,

Au D �u in � and uj@� D 0 on @�: (1.11)

It is the main aim of this book to develop an L2 theory of these problems, subject
to Chapters 5 and 7. The other chapters are not merely a (minimised) preparation
to reach these goals, but self-contained introductions to

• the classical theory of the Laplace–Poisson equation (Chapter 1),

• the theory of distributions (Chapter 2),

• Sobolev spaces in Rn and RnC (Chapter 3) and on domains (Chapter 4),

• the abstract spectral theory in Hilbert spaces and Banach spaces (Chapter 6).

1.2 Fundamental solutions and integral representations

Let n � 2, and r D r.x/ D jxj D
qPn

jD1 x2j be the usual distance of a point

x 2 Rn to the origin. We ask for radially symmetric solutions u.x/ D v.r/ of the
Laplace equation

�u.x/ D
nX

jD1

@2u

@x2j
.x/ D 0 in Rn n f0g: (1.12)

Inserting

@u

@xj
.x/ D dv

dr
.r/

@r

@xj
.x/ D dv

dr
.r/

xj

r
; j D 1; : : : ; n; (1.13)

and
@2u

@x2j
.x/ D d2v

dr2
.r/

x2j

r2
C dv

dr
.r/

�
1

r
� x

2
j

r3

�
(1.14)

in (1.12) one gets
d2v

dr2
C n � 1

r

dv

dr
D 0; r > 0: (1.15)

If n � 3, then v.r/ D c1 r
2�n C c2 is the solution, which must be modified by

v.r/ D c1 C c2 ln r when n D 2, where c1; c2 2 C.
Let j!nj be the volume of the unit sphere !n D fx 2 Rn W jxj D 1g in Rn.

Otherwise we refer for notation to Sections A.1, A.2.
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Definition 1.6. Let n � 2, and � be a bounded C 1 domain in Rn according to
Definition A.3 (ii). Let ˆ 2 C 2.�/ with �ˆ.x/ D 0, x 2 �, and x0 2 �. Then

	x0.x/ D

�
� 1

2

ln jx � x0j Cˆ.x/; n D 2;
1

.n � 2/j!nj
1

jx � x0jn�2 Cˆ.x/; n � 3;
(1.16)

is called a fundamental solution for � and x0 2 �.

Remark 1.7. By the above considerations we have

�	x0.x/ D 0 in � n fx0g: (1.17)

Recall that j!nj can be expressed in terms of the �-function as

j!nj D 2
p

 n

�
�
n
2

� (1.18)

with the well-known special cases j!2j D 2
 , j!3j D 4
 . But (1.18) will not be
needed in the sequel. A proof may be found in [Cou36, Chapter IV, Appendix 3,
p. 303].

Again we refer for notation to the Appendix A. In particular, � stands for the
outer normal on @� according to (A.13), and the related normal derivative is given
by (A.14).

Theorem 1.8 (Green’s representation formula). Let � be a bounded C 1 domain
in Rn where n � 2. Let u 2 C 2.�/ and �u.x/ D f .x/, x 2 �. Let x0 2 �, and
	x0.x/ be a fundamental solution according to Definition 1.6. Then

u.x0/ D
Z
@�

�
	x0.�/

@u

@�
.�/ � u.�/@	x0

@�
.�/

�
d� �

Z
�

	x0.x/ f .x/ dx: (1.19)

Proof. Step 1. By (A.17) withu andˆ in place of f and g, respectively, one obtainsZ
�

ˆ.x/ �u.x/ dx D
Z
@�

�
ˆ.�/

@u

@�
.�/ � u.�/@ˆ

@�
.�/

�
d�; (1.20)

due to �ˆ D 0. Hence it is sufficient to prove (1.19) for ˆ � 0. Furthermore we
may assume x0 D 0 2 �.

Step 2. Let n � 3. In view of ˆ � 0, x0 D 0, (1.16) reads as

	0.x/ D 1

.n � 2/j!njjxjn�2 : (1.21)
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Let " > 0 such that

K" D K".0/ D fx 2 Rn W jxj < "g � �:

We apply (A.17) with u in place of g and 	0 in place of f to the C 1 domain�nK"
and get by (1.17) and �u D f that

�
Z

�nK"

f .x/	0.x/dx D
Z
@�

�
u.�/

@	0

@�
.�/ � 	0.�/@u

@�
.�/

�
d�

�
Z
@K"

�
u.�/

@	0

@�
.�/ � 	0.�/@u

@�
.�/

�
d�;

(1.22)

where � in the last term is now the outer nor-
mal with respect to the ball K" in Figure 1.2.
Lebesgue’s bounded convergence theorem im-
plies ˇ̌̌̌ Z

K"

f .x/	0.x/dx

ˇ̌̌̌
� c "2;

such that the left-hand side of (1.22) tends to the
last term in (1.19) when "! 0. Comparing (1.19)
and (1.22) it remains to prove that

�

@�

@K"

�

"

0

�

Figure 1.2

lim
"!0

Z
@K"

�
	0.�/

@u

@�
.�/ � u.�/@	0

@�
.�/

�
d� D u.0/: (1.23)

By (1.21) it follows thatˇ̌̌̌ Z
@K"

	0.�/
@u

@�
.�/ d�

ˇ̌̌̌
� 1

.n � 2/j!nj"n�2

Z
j� jD"

ˇ̌̌̌
@u

@�
.�/

ˇ̌̌̌
d�

� c

j!nj"n�2

Z
j� jD"

d� D c " �! 0 (1.24)

for "! 0. Furthermore, with

@	0

@�
.�/ D � 1

j!njj� jn�1 D �
1

j!nj"n�1 ; � 2 @K";
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we can continue,

�
Z
@K"

u.�/
@	0

@�
.�/ d� D 1

j!nj"n�1

Z
j� jD"

u.0/ d� C 1

j!nj"n�1

Z
j� jD"

.u.�/ � u.0// d�

D u.0/C 1

j!nj"n�1

Z
j� jD"

.u.�/ � u.0// d�: (1.25)

Since u is continuous the absolute value of the last term can be estimated from
above by

1

j!nj"n�1 sup
j� jD"
ju.�/ � u.0/j

ˇ̌̌̌ Z
j� jD"

d�

ˇ̌̌̌
D sup

j� jD"
ju.�/ � u.0/j ��!

"#0
0: (1.26)

Now (1.24)–(1.26) prove (1.23). �

Exercise 1.9. Prove (1.19) for n D 2 using (1.16).

1.3 Green’s functions

Boundary value problems of type (1.9), (1.10) are at heart of the theory of elliptic
differential equations of second order. The Representation Theorem 1.8 gives a first
impression how u in�may look like if�u D f in� and the behaviour of u at the
boundary @� is known. However, compared with (1.9), (1.10) where A D ��, it
seems to be desirable to simplify the first integral on the right-hand side of (1.19),
i.e., to have only the term with u.�/ on @�, or only the term with @u

@�
on @� in

(1.19). In case of the Dirichlet problem (1.9) this would mean to eliminate the first
term in the integral over @� in (1.19) by choosing ˆ in Definition 1.6 in such a
way that one has 	x0.�/ D 0 for � 2 @�. This is the basic motivation for Green’s
functions.

Definition 1.10. Let � be a bounded C 1 domain in Rn, n � 2, and let x0 2 �.
Then g.x0; x/ is called a Green’s function if

(i) 	x0.x/ D g.x0; x/ is a fundamental solution according to Definition 1.6,

(ii) g.x0; �/ D 0, � 2 @�.

Remark 1.11. As we shall see later on there are good reasons to look at g.x0; x/
as a function of 2n variables in � � x�. This may explain the different notation of
g.x0; x/ (with the separately indicated off-point x0 2 �) compared with 	x0.x/.
It is one of the major problems to prove the existence of Green’s functions which
results in the solution of the Dirichlet problem

�ˆ D 0 in �; and ˆ.�/ D �1
.n � 2/j!nj

1

j� � x0jn�2 if � 2 @� (1.27)
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for the function ˆ in Definition 1.6 (for n � 3, with obvious modification for
n D 2). If a Green’s function g.x0; x/ exists, then (1.19) reduces to

u.x0/ D �
Z
@�

'.�/
@g.x0; �/

@�
d� �

Z
�

g.x0; x/ f .x/ dx (1.28)

with (
�u D f in �;

uj@� D ':
(1.29)

This coincides with the Dirichlet problem (1.9) replacing A by �. But even if
g.x0; x/ exists, then (1.28) does not mean automatically that u.x0/ solves (1.29)
for given f and '. This must be checked in detail and the conditions for f and '
have to be specified. This will be done below in case of balls in Rn,

KR D KR.0/ D fx 2 Rn W jxj < Rg; R > 0; (1.30)

where we are first going to construct g.x0; x/ explicitly.

Theorem 1.12. Let n � 3, R > 0, � D KR � Rn given by (1.30), and x0 2 �.
Then

g.x0; x/ D 1

.n � 2/j!nj

†
1

jx � x0jn�2 �
�
R

jx0j
�n�2

1

jx � x0�jn�2 ; x0 ¤ 0;

1

jxjn�2 �
1

Rn�2 ; x0 D 0;
(1.31)

is a Green’s function in �, where x0� D x0
R2

jx0j2 for x0 ¤ 0.

Proof. Let 0 ¤ x0 2 �; since jx0jjx0�j D R2 for 0 < jx0j < R, it follows from
Definitions 1.6 and 1.10 that 	x0.x/ D g.x0; x/ is a fundamental solution. It re-
mains to check Definition 1.10 (ii), i.e., g.x0; x/ D 0 for jxj D R, or, equivalently,

R2

jx0j2 jx � x
0j2 D jx � x0�j2; jxj D R; 0 < jx0j < R: (1.32)

Let jxj D R; by the definition of x0�, see also Figure 1.3,

jx � x0�j2 D jxj2 � 2hx; x0�i C jx0�j2 D R2 �
2R2

jx0j2 hx; x
0i C R4

jx0j2 ; (1.33)

such that

R2

jx0j2 jx
0 � xj2 D R2

jx0j2 .jx
0j2 � 2hx; x0i CR2/ D jx � x0�j2: (1.34)
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x0�

R

x00

�

Figure 1.3

The case x0 D 0 is obvious. �

Exercise 1.13. Let n D 2, R > 0, and � D KR be given by (1.30).

(a) Justify Figure 1.3 for the reflection point x0� D x0
R2

jx0j2 of x0 2 � n f0g.

(b) Let x0 2 �, and x0� D x0
R2

jx0j2 for x0 ¤ 0. Prove that

g.x0; x/ D � 1

2


�
ln jx � x0j � ln jx � x0�j C ln

R

jx0j ; x0 ¤ 0;

ln jxj � lnR; x0 D 0;
(1.35)

is a Green’s function in the circle �.

Theorem 1.14. Let n � 2, R > 0, and � D KR � Rn given by (1.30). Let
u 2 C 2.�/ and �u.x/ D 0, x 2 �. Then for x0 2 �,

u.x0/ D R2 � jx0j2
R j!nj

Z
j� jDR

u.�/

j� � x0jn d�: (1.36)

Proof. Letn � 3. In view of (1.28) withg.x0; x/ given by (1.31) and�u D f D 0
we have

u.x0/ D �
Z

j� jDR
u.�/

@g

@�
.x0; �/d�: (1.37)

Let x0 ¤ 0. Then one obtains by (1.31) that

@g

@xj
.x0; x/ D � 1

j!nj
�
xj � x0j
jx � x0jn �

�
R

jx0j
�n�2

xj � .x0�/j
jx � x0�jn

�
I (1.38)
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thus (1.32) leads for jxj D R, x0� D x0 R2

jx0j2 , to

@g

@xj
.x0; x/ D � 1

j!nj jx � x0jn
�
xj � x0j �

jx0j2
R2

.xj � .x0�/j /
�

D � xj

jx � x0jn
R2 � jx0j2
R2j!nj : (1.39)

Now (1.36) follows from (1.37) and

@g

@�
.x0; x/ D

nX
jD1

@g

@xj
.x0; x/

xj

R
D �R

2 � jx0j2
Rj!nj

1

jx � x0jn : (1.40)

�

Exercise 1.15. Check the case x0 D 0. Prove (1.36) for n D 2.

Remark 1.16. Rewriting the right-hand side of (1.36) as an integral operator (of u),
the function

K.x; y/ D R2 � jxj2
Rj!nj

1

jx � yjn
is sometimes called Poisson’s kernel for the ball KR, R > 0, and n � 2.

Corollary 1.17. Let n � 2, R > 0, and � D KR according to (1.30). Then

R2 � jx0j2
R j!nj

Z
j� jDR

d�

j� � x0jn D 1; jx
0j < R: (1.41)

Proof. We apply (1.36) to u � 1. �

Exercise* 1.18. (a) One can extend the notion of Green’s function from a bounded
domain � in Rn to, say, the half-space

� D RnC D fx D .x1; : : : ; xn/ 2 Rn W xn > 0g:
Let 	x0.x/ be a fundamental solution according to (1.16) with ˆ 2 C 2.RnC/,
�ˆ.x/ D 0, x 2 RnC. Then g.x0; x/ D 	x0.x/ is a Green’s function for � D RnC
if g.x0; �/ D 0 for � 2 @RnC D fy 2 Rn W yn D 0g.

Determineˆ appropriately, formulate and prove the counterpart ofTheorem 1.14
for � D RnC.

Hint: Use a suitable reflection idea similar to the proof of Theorem 1.12.

(b) Let � D KC
R D fx D .x1; x2; x3/ 2 R3 W jxj < R; x3 > 0g, R > 0.

Determine a Green’s function for KC
R .

Hint: Combine ideas from (a) and Theorem 1.12.
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1.4 Harmonic functions

Again we refer for notation to Appendix A.

Definition 1.19. Let� be a connected domain in Rn. Then u is called a harmonic
function in � if u 2 C 2;loc.�/ and

�u.x/ D 0 for x 2 �: (1.42)

Remark1.20. Obviously the real part and the imaginary part of a harmonic function
are also harmonic functions.

In case of n D 1 the connected domain� is an interval and f is harmonic in�
if, and only if, it is linear, u.x/ D ax C b, a; b 2 C, and x 2 �. For n � 2 there
are many harmonic functions. In the plane R2 all polynomials 1, x, y, xy, x2�y2,
x3 � 3xy2, …, but also eax sin.ay/, eax cos.ay/ with a 2 R are real harmonic
functions.

Definition 1.21. Let� be a connected domain in Rn, and let u be continuous in x�.
Then u is said to have the mean value property if

u.x0/ D 1

Rn�1j!nj
Z

j��x0jDR
u.�/d� (1.43)

for any x0 2 � and any ball

KR.x
0/ D fx 2 Rn W jx � x0j < Rg � �: (1.44)

Remark 1.22. Sinceu is continuous in x�, the right-hand side of (1.43) makes sense
even if @KR.x0/ \ @� ¤ ;. Obviously, j@KR.x0/j D Rn�1j!nj what explains to
call (1.43) a mean value. Recall that a (real or complex) function u in a domain �
is called analytic if it can be expanded at any point x0 2 � into a Taylor series

u.x/ D
X
˛2Nn

0

D˛u.x0/

˛Š
.x � x0/˛; 0 � jx � x0j < r; (1.45)

for some r D r.x0/ > 0. Obviously an analytic function is a C1 function.

Theorem 1.23. Let � be a bounded connected domain in Rn and let u be a real
function which is continuous in x� and harmonic in� according to Definition 1.19.

(i) Then u has the mean value property according to Definition 1.21.

(ii) Furthermore u is an analytic .and hence C1/ function in �.
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(iii) (Maximum–Minimum principle) There are points x1 2 @� and x2 2 @�
such that

u.x1/ D max
x2 x�

u.x/ and u.x2/ D min
x2 x�

u.x/: (1.46)

Proof. Step 1. We prove (i) and assume 0 D x0 2 �. Then KR.0/ in (1.44)
coincides with KR in (1.30), and application of Theorem 1.14 gives the desired
result,

u.0/ D R2

R j!nj
Z

j� jDR

u.�/

Rn
d� D 1

Rn�1 j!nj
Z

j� jDR
u.�/ d�; (1.47)

where one has to apply an additional continuity argument if KR.0/ \ @� ¤ ;.
Step 2. To prove (ii), note first that the kernel j� � x0j�n of the integral (1.36) is a
C1 function on KR � @KR. Hence u is C1 in KR. Furthermore, the coefficients
of the Taylor series in Cn of

j� � zj�n D
� nX
jD1

.�j � zj /2
	�n=2

; z 2 Cn; jzj < "; (1.48)

can be estimated uniformly with respect to j� j D R if " > 0 is chosen sufficiently
small. This results in

jD˛u.0/j � c ˛Š 
�j˛j sup
j� jDR

ju.�/j; ˛ 2 Nn
0; (1.49)

for some c > 0 and 0 < 
 < 1, independent of ˛. Here u is given by (1.36). This
can be proved by elementary reasoning. But it may also be found in [Tri97, (14.22),
14.5, pp. 95, 97] with a reference to the Cn-version of Cauchy’s formula, [Tri97,
(14.62), (14.63), p. 103]. Thus (1.45) with x0 D 0 converges if jxj < 
 .

Step 3. We prove assertion (iii) and restrict ourselves to the maximum. Since the
real function u is continuous on the compact set x� one finds points x1 2 x� with
(1.46).

We assume that there is some x1 2 � with
this property and choose R > 0 such that
KR.x

1/ � x�, see Figure 1.4 aside. Plainly,
u.�/ � u.x1/ for all � 2 @KR.x1/. If there
was some �0 2 @KR.x1/with u.�0/ < u.x1/,
then by continuity one has u.�/ < u.x1/ in a
neighbourhood of �0, and we get a contradic-
tion if we apply (1.43) with x0 D x1,

�0

@�

KR.x
1/

�

x1

Figure 1.4



12 Chapter 1. The Laplace–Poisson equation

u.x1/ D 1

Rn�1j!nj
Z

@KR.x1/

u.�/d� <
1

j@KR.x1/j
Z

@KR.x1/

u.x1/d� D u.x1/: (1.50)

Hence u.x/ D u.x1/ for all x 2 KR.x1/. This argument applies in particular to
balls with @KR.x1/\@� ¤ ;, recall Remark 1.22. Hence there are points x1 2 @�
with (1.46). �

Exercise* 1.24. (a) Prove the estimate (1.49) directly.

Hint: Expand (1.48) for z 2 Rn with jzj < ".
(b) Let u.x1; x2/ D x21 � x22 , .x1; x2/ 2 R2, and KR � R2 given by (1.30),

R > 0. Determine

sup
.x1;x2/2KR

u.x1; x2/ and inf
.x1;x2/2KR

u.x1; x2/:

(c) Why is the function

f .x1; x2; x3/ D .x21 C x22 C x23 � 1/ e sin.x1Cx2Cx3/

not harmonic in the unit ball K1 � R3 according to (1.30)?

Exercise 1.25. (a) Let n � 2, R > 0, and � D KR � Rn according to (1.30).
Let u 2 C 2.�/ be harmonic in � and let u.x/ � 0, x 2 �. Prove Harnack’s
inequality,

Rn�2 R � jxj
.RC jxj/n�1 u.0/ � u.x/ � Rn�2 RC jxj

.R � jxj/n�1 u.0/; x 2 KR:

Hint: Use the Theorems 1.14 and 1.23 (i).

(b) Prove another Harnack’s inequality: Let� be a connected bounded domain
in Rn andK a compact subset of�. Let u be harmonic and u � 0 in�. Then there
exists a constant c > 0 depending only on K and � such that for all x; y 2 K,

c�1 u.x/ � u.y/ � c u.x/:
Hint: Cover K with finitely many balls Kr.xj / according to (1.44) and use (a).

Corollary 1.26. Let � be a bounded connected domain in Rn and let u 2 C.�/
be a real harmonic function in � such that

u.x1/ D max
x2 x�

u.x/ .or u.x2/ D min
x2 x�

u.x/ / (1.51)

for some x1 2 � .or some x2 2 �/. Then u is constant in x�.
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Proof. Any point x 2 � can be connected with x1 2 � having the property
(1.51) by a smooth path in �. Applying the arguments from Step 3 of the proof
of Theorem 1.23 to a suitable finite sequence of balls one gets u.x/ D u.x1/.
Similarly for the minimum. �

There is a converse of Theorem 1.23 (i). The spaces C.�/ and C 2;loc.�/ have
the same meaning as in Section A.1.

Corollary 1.27. Let� be a bounded connected domain in Rn and let u 2 C.�/\
C 2;loc.�/ be a real function satisfying the mean value property according to Defi-
nition 1.21. Then u is harmonic.

Proof. We conclude from (1.43) with x0 D 0 by straightforward calculation that

j!nju.0/ D
Z

j� jD1
u.r�/d�; 0 < r � r0; (1.52)

for some suitably chosen number r0 > 0. Taking the derivative with respect to r
one gets (after re-transformation),

0 D
Z

j� jDr

@u

@�
.�/d� D

Z
jxj<r

�u.x/dx; (1.53)

for small r > 0, where the latter equality comes from (A.17). Then �u.0/ D 0.
An additional translation argument gives the desired assertion �u.x/ D 0 for all
x 2 �. �

Corollary 1.28. Let n � 3, and � be a bounded C 1 domain in Rn according to
Definition A.3 (ii). Let x0 2 � and g.x0; x/ be a real Green’s function according
to Definition 1.10. Then for all x1; x2 2 �, x1 ¤ x2,

0 < g.x1; x2/ <
1

.n � 2/j!nj
1

jx1 � x2jn�2 ; (1.54)

and
g.x1; x2/ D g.x2; x1/: (1.55)

Proof. Step 1. We show (1.54). Let x1 2 � be fixed, then the real harmonic func-
tionˆ in (1.16) is negative on @�, and as a consequence of Theorem 1.23 (iii),ˆ is
negative on x�. This proves the right-hand side of (1.54). Concerning the left-hand
side we remark first that g.x1; 	/ is positive in Kı.x1/ � � for sufficiently small
ı > 0, since ˆ is bounded. Here Kı.x1/ is given by (1.44). Moreover, g.x1; 	/ is
positive on @� [ @Kı.x1/, harmonic in � nKı.x1/, such that Theorem 1.23 (iii)
implies the left-hand side of (1.54).
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Step 2. Let x1; x2 2 �, x1 ¤ x2, and

u1.x/ D g.x1; x/; u2.x/ D g.x2; x/;
such that it remains to show

Kı.x
2/

�

x1

�

x2

Kı.x
1/

Figure 1.5

u1.x
2/ D u2.x1/:

We apply (A.17) to the harmonic functions u1 and
u2 in the domain�ı D �nfKı.x1/[Kı.x2/gwith
sufficiently small ı > 0, Kı.x1/ \ Kı.x2/ D ;.
Since g is a Green’s function,Z
�ı

.u1.x/�u2.x/ � u2.x/�u1.x//dx

D 0 D
Z
@�

�
u1.�/

@u2

@�
.�/ � u2.�/@u1

@�
.�/

�
d�

such that Theorem A.7 (ii) implies

0 D
Z

@Kı.x
1/

�
u1.�/

@u2

@�
.�/ � u2.�/@u1

@�
.�/

�
d�

C
Z

@Kı.x
2/

�
u1.�/

@u2

@�
.�/ � u2.�/@u1

@�
.�/

�
d�:

(1.56)

We are in the same situation now as in (1.23): replacing the off-point 0 by x1, 	0 by
u1 D g.x1; 	/, and u by u2, we obtain that the first integral on the right-hand side
of (1.56) tends to u2.x1/ for ı ! 0, whereas, by parallel arguments, the second
term converges to �u1.x2/. This finishes the proof of (1.55). �

Exercise 1.29. (a) Prove that the .surface/ mean value property according to Def-
inition 1.21 is equivalent to the volume mean value property

u.x0/ D 1

jKR.x0/j
Z

KR.x0/

u.x/dx (1.57)

for any x0 2 � and any ball KR.x0/ � � given by (1.44).

Hint: Use polar coordinates as in (1.52), differentiate and integrate with respect
to r .

(b) Let u 2 C.�/ according to Definition A.1 be harmonic in � and let K be a
compact subset of � with

d D dist.K; @�/ D sup
x2K

inf
y2@�

jx � yj > 0:
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Then

sup
x2K

max
jD1;:::;n

ˇ̌̌̌
@u

@xj
.x/

ˇ̌̌̌
� n

d
sup
x2�
ju.x/j:

Hint: Apply (a) to the harmonic functions
@u

@xj
, j D 1; : : : ; n, in a ball Kd�".x0/,

" > 0, x0 2 K, and use Gauß’s formula (A.15). Let "! 0.

Exercise 1.30 (Sobolev’s mollification method). Let ! be given for x 2 Rn by

!.x/ D
(
c e

� 1

1�jxj2 ; jxj < 1;
0; jxj � 1; (1.58)

where the constant c > 0 is chosen such that
Z

Rn

!.x/dx D 1.

Rn

!.x/
c

0

Figure 1.6

For h > 0, let !h.x/ D 1

hn
!
�x
h

	
, x 2 Rn, that is,

Z
Rn

!h.x/ dx D 1.

!.x/

!h.x/

c

1 10

Figure 1.7

Let u be a locally integrable function in
Rn. The convolution

uh.x/ D .!h � u/.x/
D
Z

Rn

!h.y/u.x � y/dy

D
Z

Rn

!h.x � y/u.y/dy (1.59)

is called Sobolev’s mollification method.
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(a) Prove that !h are C1 functions in Rn for h > 0.

(b) Let u be a locally integrable function in Rn, h > 0. Show that uh is a C1
function in Rn.

Hint: Either use the mean value theorem for differentiable functions and
Lebesgue’s bounded convergence theorem to obtain

@

@xj
uh.x/ D

Z
Rn

@

@xj
!h.x � y/u.y/dy; (1.60)

or consult [Tri92a, Sect. 1.3.6].

(c) Prove that any real continuous function in Rn that satisfies the mean value
property according to Definition 1.21 is a C1 function.

Hint: Show
uh.x/ D u.x/; h > 0; x 2 Rn; (1.61)

where uh is defined by (1.59).

Exercise 1.31. Use Exercise 1.30 (c) to replace the assumption u 2 C.�/ \
C 2;loc.�/ in Corollary 1.27 by u 2 C.�/.
Exercise 1.32 (Liouville’s theorem). Prove that any bounded harmonic function in
Rn is constant.

Hint: Apply the volume mean value property (1.57) to u.0/ and u.x0/ and show
that u.x0/ � u.0/ �! 0 if R!1.

Exercise 1.33. Let� be a connected domain in Rn. Then a real functionu 2 C 2.�/
is called subharmonic or superharmonic in � according as

�u.x/ � 0 or �u.x/ � 0 for x 2 �: (1.62)

For convenience we formulate some results for subharmonic functions merely.
Their counterparts for superharmonic functions are obvious.

(a) Let u be subharmonic in�. Show that for any x0 2 � and any ballKR.x0/ �
� given by (1.44) the mean value properties of harmonic functions (1.43) and
(1.57) can be replaced by

u.x0/ � 1

j@KR.x0/j
Z

@KR.x0/

u.�/d� and u.x0/ � 1

jKR.x0/j
Z

KR.x0/

u.x/dx:

(b) Prove that a subharmonic function u in � satisfies that

max
x2 x�

u.x/ D max
y2@�

u.y/: (1.63)
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(c) Let ˆ W R! R be a smooth convex function and u real harmonic in �. Then
v D ˆ B u is subharmonic. Verify that for any real harmonic u in � the
function v D jruj2 is subharmonic, where ru is given as usual,

ru D
�
@u

@x1
; : : : ;

@u

@xn

�
: (1.64)

(d) Let u 2 C.�/ be real harmonic, v 2 C.�/ subharmonic with uj@� D vj@�.
Then v � u in �.

Hint: As for parts (a)–(b) adapt the corresponding arguments used for harmonic
functions.

Remark 1.34. The last assertion (d) explains and justifies the notation subhar-
monic, i.e., a function that is subharmonic in a bounded domain � is dominated
by any harmonic function in � having the same boundary values. Similarly for
superharmonic functions. For further details see Note 1.7.2.

1.5 The Dirichlet problem

We furnish the compact boundary @� of a bounded domain� in Rn with the usual
Euclidean metric inherited from Rn. Then C.@�/ collects all complex-valued
continuous functions on @�. Otherwise we refer for notation again to Sections A.1
and A.2.

Definition 1.35 (Dirichlet problem for the Laplace equation). Let� be a bounded
connected domain in Rn and let ' 2 C.@�/. Then one asks for functions u 2
C.�/ \ C 2;loc.�/ such that

�u.x/ D 0 if x 2 �; (1.65)

u.y/ D '.y/ if y 2 @�: (1.66)

Remark 1.36. In other words, we look for harmonic functions u according to
Definition 1.19 which are continuous on the compact set x� and take the given
boundary values (1.66).

Theorem 1.37. Let � be a bounded connected domain in Rn, and ' 2 C.@�/.
Then the Dirichlet problem according to Definition 1.35 has at most one solution.

Proof. Let u1, u2 be two solutions of the Dirichlet problem. Then u D u1 � u2
is a harmonic function in � with uj@� D 0. If u is real, then Theorem 1.23 (iii)

implies u � 0 in x�; otherwise u can be decomposed in its real and imaginary part
leading by the same arguments as above to Re u � 0, Im u � 0. �
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Exercise 1.38 (Stability). Let u1 and u2 be real solutions of the Dirichlet problem
according to Definition 1.35 with respect to boundary data '1, '2 2 C.@�/. Prove
that

max
x2 x�
ju1.x/ � u2.x/j � max

y2@�
j'1.y/ � '2.y/j: (1.67)

Remark 1.39. Boundary value problems are one of the central objects of the the-
ory of elliptic equations (of second order). They are subject of Chapter 5 in the
framework of an L2 theory. In Note 1.7.2 we add a few comments as far as classi-
cal methods are concerned. There are only a few cases where the problem (1.65),
(1.66) can be treated in an elementary way and where the solution u can be written
down explicitly. We restrict ourselves to the case where the underlying domain is a
ball. Obviously we may assume that this ball is centred at the origin. The natural
candidate for a solution of the Dirichlet problem in a ball is given by (1.36) with
'.�/ in place of u.�/.

Theorem 1.40 (Poisson’s formula). Let n � 2,� D KR � Rn be given by (1.30),
R > 0, and ' 2 C.@KR/. Then the Dirichlet problem according to Definition 1.35
has a uniquely determined solution u, which is given by

u.x/ D

‚
R2 � jxj2
Rj!nj

Z
j� jDR

'.�/

j� � xjn d�; jxj < R;

'.x/; jxj D R:
(1.68)

Proof. Step 1. Theorem 1.37 covers the uniqueness; so it remains to prove that u
in (1.68) has the required properties. Plainly u 2 C 2;loc.KR/ and we wish to show
that

�x

�
R2 � jxj2
j� � xjn

�
D 0; x 2 KR; j� j D R: (1.69)

Let n � 3 and note that for j� j D R,

R2 � jxj2
j� � xjn D

j� j2 � h.x � �/C �; .x � �/C �i
j� � xjn

D � 1

j� � xjn�2 � 2
nX

jD1
�j

xj � �j
j� � xjn : (1.70)

Since for fixed � both j� � xj�.n�2/ and its derivatives,

@

@xj

1

j� � xjn�2 D .2 � n/
xj � �j
j� � xjn

are harmonic in KR, we obtain (1.69).
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Step 2. It remains to prove that u 2 C.KR/, which reduces to the question whether
for given � 2 @KR and " > 0 one can find a sufficiently small neighbourhood
Kı.�/ \KR of � such that for all x 2 Kı.�/ \KR,

ju.x/ � '.�/j � 2": (1.71)

We decompose @KR into a neighbourhood S1 of � and
S2 D @KR n S1. Application of (1.41) and (1.68) for
jxj < R leads to

u.x/ � '.�/ D R2 � jxj2
R j!nj

Z
j� jDR

'.
/ � '.�/
j
 � xjn d


D R2 � jxj2
R j!nj

Z
S1

	 	 	 C R2 � jxj2
R j!nj

Z
S2

	 	 	 :

Kı.�/

R
0

S2

S1

�

Figure 1.8

Since ' 2 C.@KR/, we may choose S1 sufficiently small such that

sup
�2S1

j'.
/ � '.�/j � ":

This implies together with another application of (1.41) that

R2 � jxj2
R j!nj

ˇ̌̌̌ Z
S1

'.
/ � '.�/
j
 � xjn d


ˇ̌̌̌
� sup
�2S1

j'.
/ � '.�/jR
2 � jxj2
R j!nj

Z
j� jDR

d


j
 � xjn

� " (1.72)

uniformly for x 2 KR. We now choose ı > 0 sufficiently small such that for all
x 2 KR \Kı.�/, as indicated in Figure 1.8, j
 � xj � c1 for 
 2 S2, hence

R2 � jxj2
R j!nj

ˇ̌̌̌ Z
S2

'.
/ � '.�/
j
 � xjn d


ˇ̌̌̌
� R2 � jxj2

R j!nj
c2

cn1

Z
S2

d


� c3 Rn�2 .RC jxj/.R � jxj/ � " (1.73)

for sufficiently small ı > 0. This gives (1.71). �

Exercise* 1.41. Let � D KR, R > 0, according to (1.30) and n D 2.

(a) Prove (1.69).

(b) Let C 2 R be some constant. What is the unique solution for the Dirichlet
problem according to Definition 1.35 in � when ' is given by

'.R cos ;R sin / D C sin 4 ;  2 Œ0; 2
/ ‹



20 Chapter 1. The Laplace–Poisson equation

Exercise* 1.42. Let � D KC
R , R > 0, that is,

KC
R D KC

R .0/ D fx D .x1; : : : ; xn/ 2 Rn W jxj < R; xn > 0g (1.74)

naturally extending Exercise 1.18 (b).

(a) Let n D 3 and ' 2 C.@KC
R /. Solve the Dirichlet problem according to Defi-

nition 1.35 for � D KC
R .

Hint: Apply Exercise 1.18 (b) and proceed similar to the proof of Theo-
rem 1.40.

(b) Let n D 2 and

'.R cos ;R sin / D R2 cos 2 ; 0 �  � 
;
'.0; x2/ D �x22 ; �R � x2 � R:

What is the unique solution u D u.x1; x2/ of the Dirichlet problem in �
according to Definition 1.35?

1.6 The Poisson equation

We refer for notation to Sections A.1, A.2 and the beginning of Section 1.5.

Definition 1.43 (Dirichlet problem for the Poisson equation). Let � be a bounded
connected domain in Rn and f 2 C.�/, ' 2 C.@�/. Then one looks for functions
u 2 C.�/ \ C 2;loc.�/ such that

�u.x/ D f .x/ if x 2 �; (1.75)

u.y/ D '.y/ if y 2 @�: (1.76)

Remark 1.44. If f � 0, then the above Dirichlet problem for the Poisson equa-
tion (sometimes denoted as the Laplace–Poisson equation) reduces to the Dirichlet
problem for the Laplace equation according to Definition 1.35. For given f and '
the Dirichlet problem (1.75), (1.76) has at most one solution. This is an immediate
consequence of Theorem 1.37. One may try dealing with (1.75), (1.76) in two
consecutive steps: first looking for a solution of �v D f , and afterwards solving
�w D 0 with boundary data w.y/ D '.y/ � v.y/. Then u D v C w would give
the desired result. However, there are functions f 2 C.�/ for which�v D f has
no solution v 2 C 2;loc.�/. We return to this question in Note 5.12.11 below.

Theorem 1.45. Let n � 2 and f 2 C 2.Rn/ with f .x/ D 0 for jxj > r and some
r > 0. Let u be the Newtonian potential,

u.x/ D .N f /.x/ D

„
1

2


Z
R2

f .y/ ln jx � yjdy; n D 2;

� 1

.n � 2/j!nj
Z

Rn

f .y/

jx � yjn�2 dy; n � 3;
(1.77)
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where x 2 Rn. Then u 2 C 2;loc.Rn/, and

�u.x/ D f .x/; x 2 Rn: (1.78)

Proof. Let n � 3. It follows from

u.x/ D � 1

.n � 2/j!nj
Z

Rn

f .x � y/
jyjn�2 dy (1.79)

and Lebesgue’s bounded convergence theorem that u is continuous in Rn, since f
is continuous with compact support in Rn. By the same arguments the assumptions
on f imply that u 2 C 2.Rn/ and

@2u

@x2j
.x/ D � 1

.n � 2/j!nj
Z

Rn

@2f

@x2j
.x � y/ dy

jyjn�2 ; x 2 Rn; (1.80)

for j D 1; : : : ; n, such that

�u.x/ D � 1

.n � 2/j!nj
Z

Rn

�xf .x � y/
jyjn�2 dy

D � 1

.n � 2/j!nj
Z

Rn

�f .y/

jx � yjn�2 dy; x 2 Rn:

On the other hand, application of Theorem 1.8 for sufficiently large balls � and
with f in place of u gives

f .x/ D � 1

.n � 2/j!nj
Z

Rn

�f .y/

jy � xjn�2 dy; x 2 Rn: (1.81)

�

Exercise 1.46. Prove Theorem 1.45 for n D 2.

Remark 1.47. Forn � 3 one hasu.x/! 0 if jxj ! 1 andu 2 C 2.Rn/. Ifn D 2,
then it may happen that ju.x/j ! 1 if jxj ! 1 and one has only u 2 C 2;loc.R2/.
Otherwise the assumptions on f in the above theorem are convenient for us. They
assure that u given by (1.77) is a classical solution of (1.78). But one can ensure
u 2 C 2;loc.Rn/ and (1.78) under weaker and more natural conditions for f . We
refer to Note 5.12.11. For more general f it is reasonable to ask for distributional
solutions u of (1.78). We add a corresponding argument in Note 1.7.3 below.

Theorem 1.48. Letn � 2,� D KR � Rn be given by (1.30),R > 0, ' 2 C.@KR/,
and f 2 C 2.Rn/ with f .x/ D 0 for jxj > r and some r > 0. Then the Dirichlet
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problem for the Poisson equation according to Definition 1.43 with� D KR has a
uniquely determined solution u, given by

u.x/ D

‚
.N f /.x/ C R2 � jxj2

Rj!nj
Z

j� jDR

'.�/ � .N f /.�/

j� � xjn d�; jxj < R;

'.x/; jxj D R;
(1.82)

where x 2 Rn, and N f .x/ is the Newtonian potential according to (1.77).

Proof. As mentioned in Remark 1.44 the uniqueness is a consequence of Theo-
rem 1.37. By Theorems 1.40 and 1.45 we have

�u.x/ D �.N f /.x/C�.u �N f /.x/ D f .x/C 0; jxj < R: (1.83)

Furthermore, Theorem 1.40 implies that

.N f /.x/ C R2 � jxj2
Rj!nj

Z
j� jDR

'.�/ � .N f /.�/

j� � xjn d�

can be extended continuously from jxj < R to jxj D R with boundary data

.N f /.x/C .' � .N f //.x/ D '.x/; jxj D R:
This finishes the proof. �

Exercise* 1.49. Solve the Dirichlet problem for the Poisson equation where the
domain � � R2 is the annulus

� D


.x1; x2/ 2 R2 W 1

e2
< x21 C x22 < 1

�
;

�u.x1; x2/ � 1; .x1; x2/ 2 �;
and with boundary data

'.x1; x2/ D

�
2C 1

e2
if x21 C x22 D

1

e2
;

2 if x21 C x22 D 1:

x1

x2

1

�

0 1
e

Figure 1.9

Hint: Use the above decomposition idea foru twice: first find a .simple/ functionu1
which satisfies �u1.x1; x2/ � 1, .x1; x2/ 2 �. Then adjust the boundary values
by means of a harmonic function u2.x1; x2/. Recall, in particular, those radially
symmetric functions, harmonic in �, which satisfy (1.15) for n D 2.
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Remark 1.50. We add a comment about notation. To call (1.75), (1.76) Dirichlet
problem for the Poisson equation comes from the long history of this subject. Later
on we prefer to denote (1.75), (1.76) as the inhomogeneous Dirichlet problem for
the Laplacian, whereas the homogeneous Dirichlet problem for the Laplacian refers
to (1.75), (1.76) with ' D 0. Both will be studied in Chapter 5 in the framework of
an L2 theory for general elliptic differential operators according to Definition 1.1
in bounded C1 domains in Rn. In Note 1.7.4 we comment on the assumption
f 2 C 2.Rn/.
Exercise 1.51. Let u be a solution of the Dirichlet problem for the Poisson equation
according to Definition 1.43. Then u satisfies the following a priori estimate: There
exists a constant c > 0 depending only on �, such that

kujC.�/k � k'jC.@�/k C ckf jC.�/k: (1.84)

Hint: Assume � � fx 2 Rn W 0 � x1 � ag for a suitable a > 0, and consider

h.x/ D k'jC.@�/k C .ea � ex1/kf jC.�/k; x D .x1; : : : ; xn/ 2 Rn:

Show that u� h is subharmonic with .u� h/j@� � 0. Apply Exercise 1.33 (b) and
repeat the argument for zh D �h.

Remark1.52. A priori estimates will play an essential rôle in our later investigations
in Chapter 5.

1.7 Notes

1.7.1. Differential equations of second order play a fundamental rôle in many
branches of mathematics and physics. The material of Chapter 1 is very classical
and the subject of many books and lectures. We followed here the relevant parts of
[Tri92a]. More substantial introduction into the classical theory, including detailed
studies of boundary value problems in the context of Hölder spaces (which will be
shortly mentioned in Exercise 3.21) may be found in [CH53], [CH62], [Mir70],
[GT01], [Hel77], [Pet54], [Eva98], [Jac95].

1.7.2. The solution of the Dirichlet problem according to Definition 1.35, say, in
smooth bounded domains in Rn is one of the most distinguished problems in the
theory of elliptic equations. In Chapter 5 we return to this question in the framework
of anL2 theory. As for the classical theory we have so far only for the ball� D KR
a satisfactory solution in Theorem 1.40. For general bounded (smooth) domains
there are essentially two classical approaches. The method of single-layer and
double-layer potentials reduces (inner, outer) Dirichlet problems and (inner, outer)
Neumann problems to Fredholm integral equations on @�. The theory can be found
for n D 2 in [Pet54] and for n � 3 in [Tri92a] with a reference to [Gün67]. The
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other method goes back to Perron (or Poincaré–Perron according to [Pet54]) and
is characterised by the key words subharmonic and superharmonic functions as
briefly mentioned in Exercise 1.33 and Remark 1.34. This may be found in [Pet54],
[GT01], [Eva98] and [Jac95]. In particular, the Dirichlet problem according to
Definition 1.35 has a unique solution in smooth bounded connected domains.

1.7.3. The Newtonian potential (1.77) makes sense on a much larger scale. Its
kernel,

G.x/ D

�
1

2

ln jxj; n D 2;

� 1

.n � 2/j!nj
1

jxjn�2 ; n � 3;
(1.85)

is called the fundamental solution of the Laplacian �, hence �G D ı, where ı is
the ı-distribution according to Example 2.12 below. If f 2 L2.Rn/with f .x/ D 0
if jxj > r , then u.x/ in (1.77) is locally integrable in Rn and one has (1.78) in the
distributional sense. Details may be found in [Tri92a, Sect. 3.2.3].

1.7.4. The assumption f 2 C 2.Rn/ in Theorem 1.48 looks slightly incongruous.
It can be replaced by the more adequate assumption f 2 C 2.KR/ according to
Definition A.1. This follows from the extension Theorem 4.1 below and the ob-
servation that u is independent of the behaviour of f outside the ball KR in Rn.
But one cannot reduce the smoothness assumptions for f to f 2 C.KR/ which
would be natural by Definition 1.43. There are counter-examples. We discuss these
problems in some detail in Note 5.12.11.

1.7.5. Although Theorem 1.23 is very classical, it is a little bit surprising that mostly
only the C1 smoothness of harmonic functions according to part (ii) is discussed.
An explicit proof of the analyticity in the plane R2 may be found in [Pet54, §30]. As
for an n-dimensional assertion we refer to [Krz71, §31.8, p. 259/260] and [Eva98,
Theorem 2.2.10, p. 31].
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Distributions

2.1 The spaces D.�/ and D 0.�/

We give a brief, but self-contained introduction to the theory of distributions to an
extent as needed later on.

Let n 2 N and � an (arbitrary) domain in Rn. Recall that domain means open
set. We use the notation introduced in Appendix A without further explanations.
For f 2 C loc.�/ we call

suppf D fx 2 � W f .x/ ¤ 0g (2.1)

the support of f . The closure in (2.1) is taken with respect to Rn. In particular,
it may happen that some points y 2 @� D x� n � belong to the support of f . A
function f 2 C loc.�/ is said to have compact support (with respect to �/ if

suppf is bounded (in Rn) and suppf � �: (2.2)

Recall that a set K � Rn is called compact in the domain � if K is a closed
bounded subset in Rn and K � �. In particular, if f 2 C loc.�/ has a compact
support in �, then f 2 C.�/.
Remark 2.1. For continuous functions f 2 C loc.�/ the definition (2.1) of a
support is not only reasonable, but also in good agreement with the support of
a regular distribution Tf generated by f as introduced below. However, if f is
only (locally) integrable in �, then the right-hand side of (2.1) and the support of
an associated regular distribution Tf may be rather different and greater care is
necessary. We return to this point in Remark 2.23 below.

Definition 2.2. Let � be a domain in Rn where n 2 N, and let C1.�/ be as in
(A.9). Then

D.�/ D f' 2 C1.�/ W supp' compact in �g: (2.3)

A sequence f'j g1jD1 � D.�/ is said to be convergent in D.�/ to ' 2 D.�/, we
shall write 'j ��!

D
', if there is a compact set K � � with

supp'j � K; j 2 N; (2.4)

and
D˛'j H) D˛' for all ˛ 2 Nn

0 : (2.5)
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Remark 2.3. Recall that (2.5) means uniform convergence for all derivatives, that
is,

k'j � 'jCm.�/k ! 0 if j !1 (2.6)

for all m 2 N0, where we used the notation (A.8). Plainly, (2.5) implies

supp' � K: (2.7)

Sometimes D.�/ is also denoted as C1
0 .�/ in good agreement with (A.9), and its

elements are occasionally called test functions.

Exercise 2.4. Let f'j g1jD1 be a sequence in D.�/ with (2.4) for some compact set
K � �, and for all m 2 N0, " > 0,

k'j � 'kjCm.�/k � " if j � k � k.";m/: (2.8)

Then there is a function ' 2 D.�/ with (2.5). Thus any such sequence in D.�/

is convergent in D.�/.

Hint: Use Remark A.2. This is the obvious counterpart of the well-known assertion
that any Cauchy sequence in a Banach space is a converging sequence. We also
refer to Note 2.9.3.

Definition 2.5. Let � be a domain in Rn and let D.�/ be as in Definition 2.2.
D 0.�/ is the collection of all complex-valued linear continuous functionals T over
D.�/, that is,

T W D.�/ �! C; T W ' 7! T .'/; ' 2 D.�/; (2.9)

T .�1'1C�2'2/ D �1T .'1/C�2T .'2/; �1; �2 2 CI '1; '2 2 D.�/; (2.10)

and
T .'j /! T .'/ for j !1 whenever 'j ��!

D
'; (2.11)

according to (2.4), (2.5). T 2 D 0.�/ is called a distribution.

Remark 2.6. A few historical comments and some references may be found in the
Notes 2.9.2, 2.9.3, including a remark that one can look at D.�/, D 0.�/ as the
dual pairing of locally convex spaces (just as X 0 as the dual of a Banach space X ).
In particular,

T1 D T2 in D 0.�/ means T1.'/ D T2.'/ for all ' 2 D.�/; (2.12)

and D 0.�/ is converted into a linear space by

.�1T1 C �2T2/.'/ D �1T1.'/C �2T2.'/; ' 2 D.�/; (2.13)
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for all �1; �2 2 C, T1; T2 2 D 0.�/. For our purpose it is sufficient to furnish
D 0.�/ with the so-called simple convergence topology, that is,

Tj ! T in D 0.�/; Tj 2 D 0.�/; j 2 N; T 2 D 0.�/; (2.14)

means that

Tj .'/! T .'/ in C if j !1 for any ' 2 D.�/: (2.15)

If there is no danger of confusion we abbreviate T .'/ D T ' for ' 2 D.�/,
T 2 D 0.�/.

2.2 Regular distributions, further examples

Distributions are sometimes called generalised functions. This notation comes from
the observation that complex-valued locally Lebesgue integrable functions f in a
domain � in Rn can be interpreted as so-called regular distributions Tf 2 D 0.�/.
We describe the underlying procedure assuming that the reader is familiar with basic
measure theory, especially the Lebesgue measure in Rn, and relatedLp spaces. But
we fix some notation and have a closer look at a few more peculiar properties needed
later on.

Again let � be an arbitrary domain in Rn. Then Lp.�/, 1 � p < 1, is the
usual Banach space of all complex-valued Lebesgue measurable functions in �
such that

kf jLp.�/k D
�Z

�

jf .x/jpdx

�1=p
<1; (2.16)

complemented by L1.�/, normed by

kf jL1.�/k D inffN W jfx 2 � W jf .x/j > N gj D 0g: (2.17)

Here j�j is the Lebesgue measure of a Lebesgue measurable set � in Rn. Strictly
speaking, the elements of Lp.�/ are not functions f , but their equivalence classes
Œf � consisting of all Lebesgue measurable functions g that differ from f on a set
of measure zero only,

Œf � D fg W jfx 2 � W f .x/ ¤ g.x/gj D 0g: (2.18)

Replacing f in (2.16), (2.17) by any other representative g 2 Œf � does not change
the value. One must have this ambiguity in mind if one wishes to identify (locally
integrable) Lebesgue measurable functions with (regular) distributions. Otherwise
a detailed discussion of all those questions, including a proof thatLp.�/ are Banach
spaces, may be found in [Tri92a]. This applies also to the following observations,
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but we outline proofs to provide a better understanding of the context. Let for
1 � p � 1,

Lloc
p .�/ D ff W f 2 Lp.K/ for any bounded domain K with xK � �g: (2.19)

Naturally, f 2 Lp.K/ means that the restriction f jK of the Lebesgue measurable

function f is contained in Lp.K/. Again, f 2 Lloc
p .�/ must be interpreted as the

sloppy, but usual version of Œf � 2 Lloc
p .�/.

Proposition 2.7. Let � be an arbitrary domain in Rn.

(i) Let 1 � p <1. Then D.�/ is dense in Lp.�/.

(ii) Let f 2 Lloc
1 .�/. IfZ

�

f .x/'.x/dx D 0 for all ' 2 D.�/; (2.20)

then Œf � D 0.

Proof. Step 1. We begin with part (i). Any f 2 Lp.�/ can be approximated by step

g

�

f

Figure 2.1

functions

g D
mX
jD1

aj�
Qj

; aj 2 C; (2.21)

where�
Qj

are the characteristic functions

of open cubes Qj with SQj � �.

Hence it is sufficient to approximate the characteristic function �
Q

of a cube Q

with xQ � � in Lp.�/ by D.�/-functions.

1

�

�

Q

RnQ

�
�
Q

�
h

Figure 2.2

Let h > 0, and
�
�
Q

�
h

be the molli-
fied characteristic function according to
(1.59). By Exercise 1.30 (or [Tri92a,
1.3.6]) and

supp!h D Kh D fx 2 Rn W jxj � hg
in view of (2.1) and (1.58), see also Fig-
ure 2.2 aside, one has�

�
Q

�
h
2 D.�/ (2.22)

for 0 < h � h0, and
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�
Q

�
h
! �

Q
in Lp.�/ for h! 0: (2.23)

This proves (i).

Step 2. We deal with (ii). Let K1 and K2 be two bounded domains with SK1 �
K2 
 SK2 � �. Let f 2 Lloc

1 .�/ and f2 D f�
K2

, then f2 2 L1.Rn/ (extended
by zero outside �). Using (1.59) with supp!h D Kh, (2.20) implies thatZ

Rn

f2.y/!h.x � y/dy D
Z
�

f .y/!h.x � y/dy D 0; x 2 K1; (2.24)

for 0 < h � h0 and sufficiently small h0 > 0. In view of (1.59), (2.24) can be
reformulated as

.f2/h.x/ D 0; x 2 K1; 0 < h � h0: (2.25)

On the other hand, (1.59) also gives

.f2/h.x/ D
Z

Rn

f2.x � hy/!.y/dy; x 2 Rn; (2.26)

such that

.f2/h.x/ � f2.x/ D
Z

Rn

Œf2.x � hy/ � f2.x/�!.y/dy (2.27)

in view of (1.58). We apply a well-known continuity property for L1 norms (see
also Exercise 2.8 below) to (2.27) and arrive at

k.f2/h � f2jL1.Rn/k �
Z

Rn

kf2. 	 � hy/ � f2. 	/jL1.Rn/k!.y/dy ! 0 (2.28)

for h! 0. Using (2.25) one obtains

kf2jL1.K1/k � kf2 � .f2/hjL1.Rn/k ! 0 for h! 0: (2.29)

Since f2.x/ D f .x/, x 2 K1, it follows finally Œf � D 0 in any K1 � �; thus
Œf � D 0 in �. �

Exercise 2.8. (a) Let 1 � p � 1. Prove that

kfhjLp.Rn/k � kf jLp.Rn/k; f 2 Lp.Rn/; h > 0; (2.30)

as a consequence of the triangle inequality for integrals applied to (2.26).

(b) Let 1 � p < 1. Show that for any f 2 Lp.Rn/ and any " > 0 there is a
number ı.f; "/ > 0 such that

kf .	 C y/ � f . 	/jLp.Rn/k � " for all y; jyj � ı.f; "/: (2.31)
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Hint: Use Proposition 2.7 (i).

(c) Show that (2.31) cannot be extended to p D1 and that D.Rn/ is not dense
in L1.Rn/.

Exercise 2.9. A Banach space is called separable if there is a countably dense set
of elements. Prove that Lp.�/ with 1 � p <1 is separable, unlike L1.�/.
Hint: Reduce the question to the uncountable set of all characteristic functions of
cubes in �.

Let � be a domain (i.e., an open set) in Rn and f 2 Lloc
1 .�/ (that is, Œf � 2

Lloc
1 .�/). Then

Tf .'/ D
Z
�

f .x/'.x/dx; ' 2 D.�/; (2.32)

generates a distribution Tf 2 D 0.�/ according to Definition 2.5. This follows from
f ' 2 L1.�/ which justifies (2.9), (2.10), whereas the continuity (2.11) with (2.4)
is a consequence of

jTf .'/j � kf jL1.K/k sup
x2K
j'.x/j: (2.33)

Obviously, Tf D Tg if g 2 Œf � 2 Lloc
1 .�/. The converse, leading to

Tf D Tg 2 D 0.�/ if, and only if, Œf � g� D 0; (2.34)

where f 2 Lloc
1 .�/, g 2 Lloc

1 .�/, follows immediately from Proposition 2.7 (ii).

Definition 2.10. Let � be a domain in Rn. Then a distribution T 2 D 0.�/ is said
to be regular if there is an f 2 Lloc

1 .�/ such that T can be represented as T D Tf
according to (2.32).

Remark 2.11. By the above considerations, (2.32) generates a one-to-one corre-
spondence

f 2 Lloc
1 .�/ ” Tf 2 D 0.�/ (2.35)

as indicated in Figure 2.3. But one
should always bear in mind that f
must be considered as a represen-
tative of its equivalence class Œf �.
One avoids this ambiguity if one
looks at f as a complex � -finite
Radon measure in �. We comment
on this interpretation in Note 2.9.4.

f

Lloc
1 .�/

Tf

D 0.�/

(2.32)

Figure 2.3
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Lloc
1 .�/

D 0.�/

C1.�/
D.�/

Figure 2.4

But in this book we adopt the usual identification
of f 2 Lloc

1 .�/with Tf according to (2.35) when
it comes to distributions, writing f 2 D 0.�/.
This applies also to subspaces of Lloc

1 .�/, in par-
ticular to the inclusions shown in Figure 2.4, and

D.�/ � C1.�/ � Lloc
p .�/

� Lloc
1 .�/ � D 0.�/;

(2.36)

with 1 � p � 1, where the last but one inclusion
comes from Hölder’s inequality for Lp spaces on
bounded domains.

Example 2.12. Let � be a domain in Rn and a 2 �. Then it follows immediately
from Definition 2.5 that ıa, given by

ıa.'/ D '.a/; ' 2 D.�/; (2.37)

is a distribution, ıa 2 D 0.�/. If a D 0 2 �, then we put ı0 D ı. Both ı and ıa
are called ı-distributions.

Since ıa.'/ D 0 if '.a/ D 0, it follows from Proposition 2.7 (ii) applied to
� n fag that ıa 2 D 0.�/ cannot be regular according to Definition 2.10. Further-
more, ı�a , a 2 �, 	 2 Nn

0 , with

ı�a .'/ D .�1/j� jD�'.a/; ' 2 D.�/; (2.38)

belongs to D 0.�/, and also T ˛
f
2 D 0.�/, where

T ˛f .'/ D .�1/j˛j
Z
�

f .x/D˛'.x/dx; ' 2 D.�/; (2.39)

where ˛ 2 Nn
0 and f 2 Lloc

1 .�/. The factor .�1/j˛j is immaterial, but useful.

Exercise* 2.13. A distribution T 2 D 0.�/ is called singular if it is not regular.

(a) Prove that ı�a in (2.38), a 2 �, 	 2 Nn
0 , is singular.

(b) Show that T ˛
f

in (2.39), ˛ 2 Nn
0 , is regular for some non-trivial f 2 Lloc

1 .�/,

and singular for other f 2 Lloc
1 .�/.

2.3 Derivatives and multiplications with smooth functions

By Remark 2.6 the set D 0.�/ of distributions on a domain � in Rn (according to
Definition 2.5) becomes a linear space. Now we additionally equip D 0.�/with two
distinguished operations: derivatives, and multiplication with smooth functions.



32 Chapter 2. Distributions

Definition 2.14. Let � be a domain in Rn and let D 0.�/ be as introduced in
Definition 2.5 and Remark 2.6.

(i) Let ˛ 2 Nn
0 and T 2 D 0.�/. Then the derivative D˛T is given by

.D˛T /.'/ D .�1/j˛j T .D˛'/; ' 2 D.�/: (2.40)

(ii) Let g.x/ 2 C1;loc.�/ according to (A.7), T 2 D 0.�/. Then the multiplica-
tion gT is given by

.gT /.'/ D T .g'/; ' 2 D.�/: (2.41)

Remark 2.15. One verifies immediately that for T 2 D 0.�/, g 2 C1;loc.�/, and
˛ 2 Nn

0 , D˛T and gT are distributions according to Definition 2.5, in particular,
since 'j ��!

D
' implies

D˛'j ��!
D

D˛'; g'j ��!
D

g' (2.42)

for all ˛ 2 Nn
0 , g 2 C1;loc.�/.

If f 2 Lloc
1 .�/ and g 2 C1;loc.�/, then both f and gf 2 Lloc

1 .�/ can be
interpreted as regular distributions according to Definition 2.10 and (2.32). For
' 2 D.�/ we have

Tgf .'/ D
Z
�

f .x/g.x/'.x/dx D Tf .g'/ D .gTf /.'/; (2.43)

hence Tgf D gTf in D 0.�/. In other words, the above definition extends the
pointwise multiplication of regular distributions in a consistent way to all distri-
butions in D 0.�/. Concerning derivatives, let f 2 C k;loc.�/ and let temporarily
D˛c f 2 C loc.�/, j˛j � k 2 N, denote its classical derivatives. Then it follows by
(2.40) and integration by parts that

.D˛Tf /.'/ D .�1/j˛j Tf .D˛c '/

D .�1/j˛j
Z
�

f .x/.D˛c '/.x/dx

D
Z
�

.D˛c f /.x/'.x/dx D D˛c f .'/ (2.44)

for all' 2 D.�/. Thus classical derivatives (if they exist) are extended consistently
to D 0.�/. This observation finally explains the factor .�1/j˛j appearing in (2.40).
Consequently, in view of the above interpretation, we shall not distinguish between
D˛c and D˛ in the sequel.
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Example 2.16. Let ıa, a 2 �, be the ı-distribution according to (2.37), and let
f 2 Lloc

1 .�/. Then

D�ıa D ı�a and D�Tf D T �f ; 	 2 Nn
0; (2.45)

as defined in (2.38) and (2.39).

Exercise* 2.17. Let � D R.

(a) The function

�.t/ D �
Œ0;1/

.t/ D
(
1; t � 0;
0; t < 0;

is called the Heaviside function. Prove that � 2 Lloc
1 .R/ and

d

dt
� D ı in

D 0.R/.

(b) Let g.x/ D jxj, x 2 R. Determine
dg

dt
and

d2g

dt2
D d

dt

�
dg

dt

�
in D 0.R/.

Proposition 2.18. Let� be a domain in Rn and let derivatives and multiplications
with g 2 C1;loc.�/ be explained as in Definition 2.14. Then

@

@xj
.gT / D @g

@xj
T C g @T

@xj
; T 2 D 0.�/; j D 1; : : : ; n; (2.46)

and

D˛CˇT D D˛.DˇT / D Dˇ .D˛T /; T 2 D 0.�/; ˛; ˇ 2 Nn
0 : (2.47)

Exercise 2.19. Prove this proposition by straightforward reasoning or consult
[Tri92a, p. 47].

Remark 2.20. It is well known that changing the order of classical derivatives
in R2,

@2f

@x1@x2
D @

@x1

�
@f

@x2

�
D @

@x2

�
@f

@x1

�
(2.48)

causes some problems in general – unlike for distributions. They have derivatives
of all order which commute arbitrarily without any additional requirements.

2.4 Localisations, the spaces E 0.�/

Let � be a compact (that means, bounded and closed) set in Rn, n 2 N. Let

dist.x; �/ D inffjx � yj W y 2 �g; x 2 Rn; (2.49)
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and
�" D fx 2 Rn W dist.x; �/ < "g; " > 0; (2.50)

be an open neighbourhood of� . Then one can construct real non-negative functions
 with

 2 D.�"/ and  .x/ D 1; x 2 �: (2.51)

This can be done by mollification of � D �
�"=2

according to (1.59), (2.26),

 .x/ D �
h
.x/ D

Z
Rn

!.y/�.x � hy/dy; x 2 Rn; 0 < h <
"

2
I (2.52)

we also refer to Figure 2.2 as far as this procedure is concerned.

Resolution of unity

Next we describe the so-called resolution of unity. Let the above compact set � be
covered by finitely many open balls Kj of radius rj > 0, j D 1; : : : ; J .

�

�"

Kı2

K2

KJ

K1

Figure 2.5

Let Kıj be a ball concentric with Kj and of
radius ırj , where ı > 0. Then we can even
refine our assumption

� �
J[
jD1

Kj

by

�" �
J[
jD1

Kıj (2.53)

for suitably chosen ı < 1 and " > 0, see Fig-
ure 2.5 aside. This can be verified by standard
reasoning.

In view of our above considerations there are functions  with (2.51) and

 j 2 D.Kj / with  j .x/ D 1; x 2 Kıj ; j D 1; : : : ; J: (2.54)

We extend  outside of �" and  j outside of Kj by zero. Then

'.x/ D
JX
jD1

 j .x/ 2 D.Rn/ and '.x/ � 1; x 2 �": (2.55)

Hence

'j .x/ D  j .x/  .x/

'.x/
2 D.Kj \ �"/; j D 1; : : : ; J; (2.56)
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(extended by zero outside of Kj \ �") makes sense and

JX
jD1

'j .x/ D 1 if x 2 �: (2.57)

Finally, f'j gJjD1 is the desired resolution of unity (subordinate to � �SJ
jD1Kj ).

Let � be a domain in Rn and let, say, f 2 Lloc
1 .�/. Assume that

� D
1[
jD1

Kj where Kj are open balls: (2.58)

Then, plainly, f can be recovered from all its restrictions f jKj

. It is remarkable

that distributions, though introduced globally according to Definition 2.5, admit a
similar localisation. If T 2 D 0.�/, then T jKj

2 D 0.Kj /, where

.T jKj

/.'/ D T .'/; ' 2 D.Kj /; j 2 N: (2.59)

Theorem 2.21. Let � be a domain in Rn, n 2 N. Let T1; T2 2 D 0.�/ according
to Definition 2.5. Let fKj g1jD1 be open balls with (2.58). Then T1 D T2 in D 0.�/
if, and only if,

T1jKj
D T2jKj

in D 0.Kj /; j 2 N: (2.60)

Proof. Obviously T1 D T2 in D 0.�/ implies (2.60). It remains to prove the
converse. Assume that (2.60) is true for T1 2 D 0.�/, T2 2 D 0.�/, let ' 2 D.�/.
Then � D supp' is compact (in�). It can be covered by finitely many of the balls
Kj in (2.58) and we obtain (2.53) for some J 2 N. Let 'j , j D 1; : : : ; J , be as in
(2.56), (2.57). Then ''j 2 D.Kj / such that (2.60) and the linearity of T1, T2 lead
to

T1.'/ D T1
� JX
jD1

''j

	
D

JX
jD1

T1.''j / D
JX
jD1

T2.''j / D T2.'/; (2.61)

where we used (2.60). This is just what we wanted to show. �

In (2.1) we said what is meant by the support of a continuous function, comple-
mented in Remark 2.1 by a warning about possible generalisations. Theorem 2.21
paves the way to define the support of T 2 D 0.�/ in such a way that it is consistent
with (2.1) when the continuous function f is interpreted as a regular distribution
according to Definition 2.10.

If T .'/ D 0 for all ' 2 D.�/, then T is called the null distribution, written as
0 2 D 0.�/. As before, let

Kı.x/ D fy 2 Rn W jy � xj < ıg; ı > 0: (2.62)
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Definition 2.22 (Support of a distribution). Let � be a domain in Rn, n 2 N, and
T 2 D 0.�/. Then

suppT D ˚x 2 x� W T j�\Kı.x/
¤ 0 for any ı > 0

�
(2.63)

is called the support of T .

Remark 2.23. The restriction of T to � \Kı.x/ is defined in analogy to (2.59).
We return to Remark 2.1 and interpret f 2 C loc.�/ as a regular distribution Tf
according to Definition 2.10. Then Proposition 2.7 (ii) implies

suppTf D fx 2 � W f .x/ ¤ 0g (2.64)

in agreement with (2.1). But for arbitrary f 2 Lloc
1 .�/ the right-hand side of (2.64)

and suppTf may be different (see also Exercise 2.24 (b) below). For example, let
� D R,

f .t/ D
(
1; t rational;

0; elsewhere,

then Œf � D 0 and hence suppTf D ;, whereas

ft 2 � W f .t/ ¤ 0g D R:

Convention. We agree here that

suppf D suppTf whenever f 2 Lloc
1 .�/ (2.65)

and f is considered as a distribution (as always in what follows). This does not
contradict with our previous notation since we introduced suppf in (2.1) only for
continuous functions where we have (2.64).

Exercise 2.24. (a) Let T 2 D 0.�/. Prove thatK D �n.�\suppT / is the largest
domain with K � � such that T jK D 0.

Hint: Recall that in this book domain means open set. Use the above resolution of
unity.

(b) Let f 2 Lloc
1 .�/ and Tf 2 D 0.�/ the corresponding distribution given by

(2.35). Show that a weaker version of (2.64), that is,

suppTf 
 fx 2 � W f .x/ ¤ 0g
is always true.

Remark 2.25. Usually it does not matter very much whether one assumes that the
underlying domain is connected or not. But in case of Definition 2.22 the situation is
different. Even if� is assumed to be connected,�\Kı.x/ need not be connected.
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Exercise 2.26. Let a 2 �, D�ıa with 	 2 Nn
0 be the derivative of ıa according to

(2.45). Prove that
supp D�ıa D fag; 	 2 Nn

0 : (2.66)

Definition 2.27. Let � be a domain in Rn where n 2 N.Then

E 0.�/ D fT 2 D 0.�/ W suppT compact in �g: (2.67)

Remark 2.28. One should have in mind that in general suppT is a subset of x�.
The assumption that suppT is compact in�means that � D suppT � � and that
there are functions  2 D.�/ with  .x/ D 1, x 2 � , in analogy to (2.51).

Theorem 2.29. Let � be a domain in Rn and T 2 E 0.�/. Then there is a number
N 2 N and a constant c > 0 such that

jT .'/j � c
X

j˛j�N
sup
x2�
jD˛'.x/j (2.68)

for all ' 2 D.�/.

Proof. We proceed by contradiction. Assume that (2.68) fails and, consequently, for
any c D N D j 2 N there is a counter-example 'j 2 D.�/ of (2.68). Moreover,
since with 'j also �'j yields such a counter-example for any � 2 C n f0g, we can
find a normalised sequence f'j g1jD1 � D.�/ such that

1 D jT .'j /j > j
X

j˛j�j
sup
x2�
jD˛'j .x/j; j 2 N: (2.69)

Let  2 D.�/ with  .x/ D 1 in a neighbourhood of suppT . Then T . 'j / D
T .'j / and hence jT . 'j /j D 1. On the other hand, Definitions 2.2, 2.5 and (2.69)
imply

 'j ��!
D

0 and T . 'j /! 0 if j !1: (2.70)

But this contradicts jT . 'j /j D 1. �

Remark 2.30. Let a 2 �, N 2 N0, a˛ 2 C, and

T D
X

j˛j�N
a˛ D˛ıa with

X
j˛j�N

ja˛j > 0: (2.71)

Then one proves immediately that suppT D fag. There is a remarkable converse
of this assertion.

Theorem 2.31. Let � be a domain in Rn, and let a 2 �, T 2 D 0.�/ with
suppT D fag. Then

T D
X

j˛j�N
a˛ D˛ıa (2.72)

for some N 2 N and suitable a˛ 2 C.
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Proof. We may assume a D 0 andK2" D fx 2 Rn W jxj < 2"g � � for sufficiently
small " > 0. We want to apply (2.68). Let h 2 D.K2"/ � D.�/ with h.x/ D 1,
jxj � ", and hj .x/ D h.2jx/, j 2 N. Let ' 2 D.�/ and

'.x/ D
X

j˛j�N

D˛'.0/

˛Š
x˛ C r.x/ D

X
j˛j�N

b˛ .D
˛'/.0/ x˛ C r.x/ (2.73)

its Taylor expansion at x0 D 0, where r.x/ is the remainder term with

jD�r.x/j � c jxjNC1�j� j for 	 2 Nn
0; j	 j � N:

Thus (2.73) and suppT D f0g lead to

T .'/ D T .h'/ D
X

j˛j�N
b˛ .D

˛'/.0/ T .x˛h/C T .hr/: (2.74)

Since
jDˇhj .x/D�r.x/j � c 2j jˇ j2�j.NC1�j� j/ � c0 2�j (2.75)

if jˇj C j	 j � N , one obtains by (2.68) and suppT D f0g that

jT .hr/j D jT .hj r/j �! 0 if j !1: (2.76)

Hence the last term in (2.74) disappears and we get

T .'/ D
X

j˛j�N
.�1/j˛j b˛ T .x˛h/.D˛ı/.'/; (2.77)

where we used, in addition, (2.38) and (2.45). This proves (2.72). �

2.5 The space S.Rn/, the Fourier transform

In the special case � D Rn we have so far the space D.Rn/ as introduced in
Definition 2.2 and its dual space of distributions D 0.Rn/ according to Definition 2.5.
The Fourier transform is one of the most powerful instruments in the theory of
distributions and, in particular, in the recent theory of function spaces. But for
this purpose, D.Rn/ is too small and, consequently, D 0.Rn/ too large. Asking for
something appropriate in between one arrives at the optimally adapted space S.Rn/
and its dual S 0.Rn/.

Definition 2.32. For n 2 N let

S.Rn/ D f' 2 C1.Rn/ W k'kk;` <1 for all k 2 N0; ` 2 N0g; (2.78)

where
k'kk;` D sup

x2Rn

.1C jxj2/k=2
X

j˛j�`
jD˛'.x/j: (2.79)
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A sequence f'j g1jD1 � S.Rn/ is said to converge in S.Rn/ to ' 2 S.Rn/, we shall
write 'j ��!

S
', if

k'j � 'kk;` �! 0 for j !1 and all k 2 N0; ` 2 N0: (2.80)

Remark 2.33. Let ' 2 S.Rn/ and ` D 0 in (2.79), then j'.x/j � ck.1C jxjk/�1
for all k 2 N and x 2 Rn; similarly for all derivatives D˛'.x/, ˛ 2 Nn

0 . This
explains why S.Rn/ is usually called the Schwartz space of all rapidly decreasing
infinitely differentiable functions in Rn (Schwartz space, for short).

By Definition 2.2,

D.Rn/ � S.Rn/; and 'j ��!
D

' implies 'j ��!
S

': (2.81)

On the other hand, there are functions ' 2 S.Rn/ which do not belong to D.Rn/,
the most prominent example might be

'.x/ D e�jxj2 ; x 2 Rn: (2.82)

For later use, we introduce the notation

h�i D .1C j�j2/1=2; � 2 Rn: (2.83)

Exercise 2.34. (a) Prove that it is sufficient to restrict (2.78)–(2.80) to

k'k` D sup
x2Rn

hxi`
X

j˛j�`
jD˛'.x/j; ` 2 N0: (2.84)

(b) Let f'j g1jD1 � S.Rn/ be a sequence in S.Rn/ such that for all ` 2 N0, and
" > 0,

k'j � 'kk` � " if j � k � k."; `/: (2.85)

Prove that there is a .uniquely determined/ function ' 2 S.Rn/with (2.80). Hence
any such sequence in S.Rn/ is convergent in S.Rn/.

Exercise 2.35. Let for ' 2 S.Rn/,  2 S.Rn/, the functions z% W S.Rn/! Œ0;1/
and % W S.Rn/ � S.Rn/! Œ0;1/ be defined by

z%.'/ D
1X
kD0

2�k k'kk
1C k'kk ; %.';  / D z%.' �  /: (2.86)

Prove that % is a metric and that
�
S.Rn/; %

�
is a complete metric space with the

same topology as S.Rn/: A sequence converges in
�
S.Rn/; %

�
if, and only if, it

converges in S.Rn/ according to Definition 2.32.
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Definition 2.36. Let ' 2 S.Rn/. Then

y'.�/ D .F '/.�/ D .2
/�n=2
Z

Rn

e�ix� '.x/dx; � 2 Rn; (2.87)

is called the Fourier transform of ', and

'_.�/ D .F �1'/.�/ D .2
/�n=2
Z

Rn

eix� '.x/dx; � 2 Rn; (2.88)

the inverse Fourier transform of '.

Remark 2.37. Recall that x� is the scalar product of x 2 Rn and � 2 Rn, see (A.5).
Since j'.x/j � cjxj�n�1 for jxj � 1, both (2.87) and (2.88) make sense and

ky'jL1.Rn/k � ck'knC1;0; ' 2 S.Rn/; (2.89)

and similarly for '_. As we shall see below F ' 2 S.Rn/ if ' 2 S.Rn/ and

F �1F ' D F F �1' D '; ' 2 S.Rn/: (2.90)

This will justify calling F �1 the inverse Fourier transform.

Recall our notation (A.3).

Theorem 2.38. (i) Let ' 2 S.Rn/. Then F ' 2 S.Rn/ and F �1' 2 S.Rn/.
Furthermore, x˛' 2 S.Rn/, D˛' 2 S.Rn/ for ˛ 2 Nn

0 , and

D˛.F '/.�/ D .�i/j˛jF .x˛'.x//.�/; ˛ 2 Nn
0; � 2 Rn; (2.91)

and
�˛.F '/.�/ D .�i/j˛jF .D˛'/.�/; ˛ 2 Nn

0; � 2 Rn: (2.92)

(ii) Let f'j g1jD1 � S.Rn/, and 'j ��!
S

' according to Definition 2.32. Then

F 'j ��!
S

F ' and F �1'j ��!
S

F �1': (2.93)

Proof. Step 1. If ' 2 S.Rn/ and ˛ 2 Nn
0 , then one gets immediately x˛' 2 S.Rn/

and D˛' 2 S.Rn/. Hence the right-hand sides of (2.91) and (2.92) make sense.
The mean value theorem and Lebesgue’s bounded convergence theorem imply

@

@�`
.F '/.�/ D .2
/�n=2

Z
Rn

.�i/ x` e�ix�'.x/dx D .�i/F .x` '.x//.�/: (2.94)
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Iteration gives (2.91). As for (2.92) we first remark that

�`.F '/.�/ D .2
/�n=2 i
Z

Rn

@

@x`
.e�ix�/'.x/dx: (2.95)

Integration by parts in x`-direction for intervals tending to R leads to

�`.F '/.�/ D .�i/ .2
/�n=2
Z

Rn

e�ix� @'
@x`

.x/dx D .�i/ F

�
@'

@x`

�
.�/ (2.96)

and iteration concludes the argument for (2.92).

Step 2. By (2.91), (2.92) and (2.89) one obtains

kF 'kk;` � c k'k`CnC1;k; ' 2 S.Rn/: (2.97)

This proves F ' 2 S.Rn/ and F �1' 2 S.Rn/. Furthermore, (2.93) is now an
immediate consequence of (2.80) and (2.97). �

Exercise* 2.39. What are the counterparts of (2.91), (2.92) for F �1?

Proposition 2.40. (i) Let " > 0 and ' 2 S.Rn/. Then

F .'."	//.�/ D "�n F .'/

�
�

"

�
; � 2 Rn: (2.98)

(ii) Furthermore,

F .e�jxj2=2/.�/ D e�j�j2=2; � 2 Rn: (2.99)

Proof. We replace '.x/ in (2.87) by '."x/ and obtain (2.98) from the dilation
y D "x. In view of the product structure of (2.87) with '.x/ D e�jxj2=2 it is
sufficient to show (2.99) for n D 1. For this purpose we consider

h.s/ D .2
/�1=2
1Z

�1
e�t2=2e�itsdt; s 2 R; (2.100)

and calculate by integration by parts,

h0.s/ D .2
/�1=2 i
1Z

�1

d

dt
e�t2=2 e�itsdt

D �s .2
/�1=2
1Z

�1
e�t2=2e�itsdt D �s h.s/: (2.101)
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Hence
h.s/ D h.0/e�s2=2 D e�s2=2; s 2 R; (2.102)

since h.0/ D 1 (the well-known Gauß integral), cf. [Cou37, Chapter X.6.5, p. 496].
By (2.100) this is nothing else than (2.99) for n D 1. �

Remark 2.41. Due to (2.99), '.x/ D e�jxj2=2 is sometimes called an eigenfunction
of F .

After these preparations we can prove (2.90) now. So far we know by Theo-
rem 2.38 (i) and (2.97) that

F S.Rn/ � S.Rn/ and F �1S.Rn/ � S.Rn/: (2.103)

Theorem 2.42. Let ' 2 S.Rn/. Then

' D F �1F ' D F F �1': (2.104)

Furthermore, both F and F �1 map S.Rn/ one-to-one onto itself,

F S.Rn/ D S.Rn/ and F �1S.Rn/ D S.Rn/: (2.105)

Proof. Step 1. We begin with a preparation. Let ' 2 S.Rn/,  2 S.Rn/. Then we
get by Fubini’s theorem and (2.87) for x 2 Rn thatZ

Rn

.F '/.�/ eix� .�/d� D .2
/�n=2
Z

Rn

'.y/

Z
Rn

e�i.y�x/� .�/d�dy

D
Z

Rn

'.y/.F  /.y � x/dy: (2.106)

A change of variables leads toZ
Rn

.F '/.�/ eix� .�/d� D
Z

Rn

'.x C y/.F  /.y/dy: (2.107)

Let  .x/ D e� "2jxj2

2 for " > 0, x 2 Rn. Then Proposition 2.40 implies that

.F  /.y/ D "�n F .e� jxj2

2 /
�y
"

	
D "�n e� jyj2

2"2 : (2.108)

We insert it in (2.107) and the transformation y D "z givesZ
Rn

.F '/.�/ eix� e� "2j�j2

2 d� D
Z

Rn

'.x C "z/ e� jzj2

2 dz: (2.109)
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With "! 0 it follows by Lebesgue’s bounded convergence theorem thatZ
Rn

.F '/.�/ eix� d� D '.x/
Z

Rn

e�jzj2=2dz D .2
/n=2'.x/; (2.110)

using again the Gauß integral as in connection with (2.102). In view of (2.88) this
proves the first equality in (2.104); similarly for the second equality.

Step 2. We apply (2.104) to  D F �1' with ' 2 S.Rn/ and obtain ' D F  .
This establishes the first equality in (2.105). Similarly for the second equality. If
F '1 D F '2, then one gets by (2.104) that '1 D '2. Hence F and, similarly, F �1
are one-to-one mappings of S.Rn/ onto itself. �

2.6 The space S 0.Rn/

We introduced in Definition 2.5 the space D 0.�/ as the collection of all linear
continuous functionals over D.�/. Now we are doing the same with S.Rn/ in
place of D.�/.

Definition 2.43. Let S.Rn/ be as in Definition 2.32. Then S 0.Rn/ is the collection
of all complex-valued linear continuous functionals T over S.Rn/, that is,

T W S.Rn/ �! C; T W ' 7! T .'/; ' 2 S.Rn/; (2.111)

T .�1'1C�2'2/ D �1T .'1/C�2T .'2/; �1; �2 2 CI '1; '2 2 S.Rn/; (2.112)

and
T .'j / �! T .'/ for j !1 whenever 'j ��!

S
'; (2.113)

according to (2.79), (2.80).

Remark 2.44. We write T 2 S 0.Rn/ and call T a tempered distribution or slowly
increasing distribution. This notation will be justified by the examples given below.
Some comments may be found in Note 2.9.2.

Similarly to Remark 2.6 with respect to D.�/, D 0.�/, we look at S.Rn/,
S 0.Rn/, as a dual pairing of locally convex spaces. In particular,

T1 D T2 in S 0.Rn/ means T1.'/ D T2.'/ for all ' 2 S.Rn/; (2.114)

and S 0.Rn/ is converted into a linear space by

.�1T1 C �2T2/.'/ D �1T1.'/C �2T2.'/; ' 2 S.Rn/; (2.115)

for all �1; �2 2 C and T1; T2 2 S 0.Rn/. Again it is sufficient for us to furnish
S 0.Rn/ with the simple convergence topology, that is,

Tj ! T in S 0.Rn/; Tj 2 S 0.Rn/; j 2 N; T 2 S 0.Rn/; (2.116)
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means that

Tj .'/! T .'/ in C if j !1 for any ' 2 S.Rn/: (2.117)

Remark 2.45. On Rn one can compare (with some care) the three types of distribu-
tions D 0.Rn/, E 0.Rn/, S 0.Rn/, introduced in Definitions 2.5, 2.27 (with � D Rn)
and 2.43, respectively. Appropriately interpreted, one has

E 0.Rn/ � S 0.Rn/ � D 0.Rn/: (2.118)

The second inclusion means that T 2 S 0.Rn/ restricted to D.Rn/ is an element
of D 0.Rn/. As for the first inclusion one extends the domain of definition of
T 2 E 0.Rn/ from D.Rn/ to S.Rn/ by

T .'/ D T .' /; ' 2 S.Rn/; (2.119)

where  2 D.Rn/ and  .x/ D 1 in a neighbourhood of the compact set suppT .
One must prove that this definition is independent of  .

Exercise 2.46. Prove (2.118) in the interpretation given above.

Hint: Use Exercise 2.24 and Theorem 2.29.

Example 2.47. By (2.118) and the given interpretation, (2.66) implies that

D�ıa 2 S 0.Rn/; a 2 Rn; 	 2 Nn
0 : (2.120)

Theorem 2.48. Let T be a linear form on S.Rn/ satisfying (2.111) and (2.112).
Then T 2 S 0.Rn/ if, and only if, there are numbers c > 0, k 2 N0, ` 2 N0, such
that

jT .'/j � c k'kk;` for all ' 2 S.Rn/; (2.121)

with k'kk;` as in (2.79).

Proof. Let T be a linear form on S.Rn/with (2.111), (2.112); then (2.121) implies
(2.113), i.e., T 2 S 0.Rn/. Conversely, let T 2 S 0.Rn/. We prove (2.121) by
contradiction: Assume that for all k 2 N there exists some 'k 2 S.Rn/ with
jT .'k/j > kk'kkk;k . Moreover, for any � 2 C with � ¤ 0, �'k satisfies the same
inequality, k 2 N, such that we can assume

1 D jT .'k/j > kk'kkk;k; k 2 N: (2.122)

This implies that 'k ��!
S

0, and T .'k/! 0 for k !1, since T 2 S 0.Rn/. This

contradicts (2.122). �
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Remark 2.49. Recall that by (2.35) with (2.32) one has, appropriately interpreted,

Lloc
1 .R

n/ � D 0.Rn/: (2.123)

One may ask for which regular distribution f 2 Lloc
1 .R

n/,

Tf .'/ D
Z

Rn

f .x/'.x/dx; ' 2 S.Rn/; (2.124)

generates even a tempered distribution. If this is the case, then it follows by (2.118)
and the discussion in Remark 2.11 that one can identify f , more precisely, its
equivalence class Œf �, with the tempered distribution generated. Having in mind
this ambiguity we write f 2 S 0.Rn/ as in (2.35).

Corollary 2.50. Let 1 � p � 1. Then

Lp.R
n/ � S 0.Rn/ (2.125)

in the interpretation (2.124).

Proof. Letp0 be given by 1
p
C 1
p0 D 1. Then (2.125) follows by Hölder’s inequality,

since for ' 2 S.Rn/,ˇ̌̌̌ Z
Rn

f .x/'.x/dx

ˇ̌̌̌
D kf jLp.Rn/kk'jLp0.Rn/k � kf jLp.Rn/kk'kk;0 (2.126)

for some k 2 N, k � k.p; n/. �

Exercise* 2.51. Determine k.p; n/.

We collect some further examples and counter-examples of distributions in
S 0.Rn/, always interpreted as in (2.124).

Exercise* 2.52. (a) Let for m 2 N0,

p.x/ D
X

j˛j�m
a˛x

˛; a˛ 2 C; ˛ 2 Nn
0; x 2 Rn; (2.127)

be an arbitrary polynomial, recall notation (A.3). Prove that p 2 S 0.Rn/.
(b) Show that g.x/ D ejxj2 62 S 0.Rn/.
(c) Let 1 � p � 1, f 2 Lp.Rn/, p a polynomial .of arbitrary order m 2 N0/

according to (2.127). Prove that

pf 2 S 0.Rn/: (2.128)



46 Chapter 2. Distributions

Remark 2.53. The above examples and counter-examples may explain why the
distributions T 2 S 0.Rn/ are called tempered (or slowly increasing). Note that
Exercise 2.52 (b) implies that one cannot replace D 0.Rn/ in (2.123) by S 0.Rn/.
Remark 2.54. Recall that we furnished S 0.Rn/with the simple convergence topol-
ogy (2.116), (2.117), see Remark 2.44. If ffj g1jD1 � Lp.Rn/ is convergent in
Lp.Rn/, 1 � p � 1,

fj �! f in Lp.R
n/ if j !1; (2.129)

then one gets by (2.126) also

fj �! f in S 0.Rn/ if j !1: (2.130)

Hence, (2.125) is also a topological embedding.

According to Definition 2.14 and (2.43), (2.44), derivatives and multiplications
with smooth functions can be consistently extended from functions to distributions
T 2 D 0.�/. Whereas (2.40) has an immediate counterpart for tempered distri-
butions T 2 S 0.Rn/ the multiplication (2.41) with smooth functions requires now
some growth restriction at infinity. This follows from the above examples and
counter-examples in Exercise 2.52. We restrict ourselves here to

p.x/ D

�
hxi� ; � 2 R;

mX
jD1

aj e
ihj x; m 2 N; aj 2 C; hj 2 Rn;

X
jˇ j�m

aˇx
ˇ ; m 2 N; ˇ 2 Nn

0; aˇ 2 C;

(2.131)

recall notation (2.83).

Definition 2.55. Let ˛ 2 Nn
0 and let p be as in (2.131). Let T 2 S 0.Rn/. Then the

derivative D˛T is given by

.D˛T /.'/ D .�1/j˛j T .D˛'/; ' 2 S.Rn/; (2.132)

and
.pT /.'/ D T .p'/; ' 2 S.Rn/: (2.133)

Corollary 2.56. Let ˛ 2 Nn
0 , and p be as in (2.131). Let T 2 S 0.Rn/. Then

D˛T 2 S 0.Rn/ and pT 2 S 0.Rn/:

Proof. This follows immediately from Theorem 2.48. �

Remark 2.57. Again by Remark 2.15, Definition 2.55 and Corollary 2.56 are
consistent with the above considerations (classical and distributional interpretation
as elements of D 0.Rn/).
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2.7 The Fourier transform in S 0.Rn/

So far we introduced in Definition 2.36 the Fourier transform F and its inverse F �1
on S.Rn/. By (2.125) one can consider S.Rn/ as a subset of S 0.Rn/. In this sense
we wish to extend F and F �1 from S.Rn/ to S 0.Rn/. Temporarily we reserve y'
and '_ for ' 2 S.Rn/ according to Definition 2.36.

Definition 2.58. Let T 2 S 0.Rn/. Then the Fourier transform F T and the inverse
Fourier transform F �1T are given by

.F T /.'/ D T .y'/ and .F �1T /.'/ D T .'_/; ' 2 S.Rn/: (2.134)

Remark 2.59. Theorem 2.38 implies for ' 2 S.Rn/ that y' 2 S.Rn/ and '_ 2
S.Rn/; hence (2.134) makes sense. Furthermore, one gets by (2.121), (2.97) that

j.F T /.'/j � c k'kk;`; ' 2 S.Rn/; (2.135)

for some k 2 N0, ` 2 N0. Then we obtain by Theorem 2.48 that F T 2 S 0.Rn/.
Similarly, F �1T 2 S 0.Rn/.

Let ' 2 S.Rn/, F ' be as in (2.134) and y' according to (2.87). Let 2 S.Rn/;
then Fubini’s theorem leads to

.F '/. / D '. y / D
Z

Rn

'.x/ y .x/ dx

D .2
/�n=2
Z

Rn

Z
Rn

'.x/e�ixy  .y/ dy dx

D
Z

Rn

 .y/.2
/�n=2
Z

Rn

e�ixy'.x/ dx dy

D
Z

Rn

 .y/y'.y/ dy D y'. /: (2.136)

Hence F ' D y'. Similarly, F �1' D '_. In other words, F and F �1 extend the
Fourier transform and its inverse from S.Rn/ to S 0.Rn/, respectively.

Theorem 2.60. (i) Let T 2 S 0.Rn/. Then

T D F F �1T D F �1F T: (2.137)

Furthermore, both F and F �1 map S 0.Rn/ one-to-one onto itself,

F S 0.Rn/ D S 0.Rn/; F �1S 0.Rn/ D S 0.Rn/: (2.138)
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(ii) Let T 2 S 0.Rn/ and ˛ 2 Nn
0 . Then x˛T 2 S 0.Rn/, and D˛T 2 S 0.Rn/.

Furthermore,

F .D˛T / D i j˛j x˛.F T / and F .x˛T / D i j˛j D˛.F T /: (2.139)

Proof. Step 1. By Remark 2.59 one has F T 2 S 0.Rn/ and F �1T 2 S 0.Rn/ if
T 2 S 0.Rn/. Then (2.134) and Theorem 2.42 imply for ' 2 S.Rn/,

.F F �1T /.'/ D .F �1T /.y'/ D T ..y'/_/ D T .'/: (2.140)

This proves (2.137) and also (2.138) by an argument parallel to Step 2 in the proof
of Theorem 2.42.

Step 2. By Corollary 2.56 we have x˛T 2 S 0.Rn/ and D˛T 2 S 0.Rn/ for T 2
S 0.Rn/, ˛ 2 Nn

0 . Let ' 2 S.Rn/. We obtain by (2.134) and (2.132) that

F .D˛T /.'/ D .D˛T /.y'/ D .�1/j˛j T .D˛ y'/
D i j˛j T .bx˛'/ D i j˛j.F T /.x˛'/
D i j˛j.x˛F T /.'/; (2.141)

where we additionally used (2.91). In a similar way one can prove the second
equality in (2.139). �

Exercise* 2.61. What is the counterpart of (2.139) for F �1?

We collect further properties and examples of F on S 0.Rn/.

Exercise 2.62. (a) Let ı D ı0 according to Example 2.12. Prove that

F
� X

j˛j�N
a˛D˛ı

	
D .2
/�n=2

X
j˛j�N

a˛ i
j˛jx˛: (2.142)

Hint: Verify first
F ı D .2
/�n=2 (2.143)

and use (2.139) afterwards.

(b) Let h 2 Rn. Show that the translation

.
h'/.x/ D '.x C h/; x 2 Rn; ' 2 S.Rn/; (2.144)

can be consistently extended to S 0.Rn/ by

.
hT /.'/ D T .
�h'/; T 2 S 0.Rn/; ' 2 S.Rn/: (2.145)

Prove that for T 2 S 0.Rn/, h 2 Rn,

F .
hT / D eihx F T; (2.146)
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and
F .e�ihxT / D 
hF T: (2.147)

(c) Let T 2 S 0.Rn/ with suppT D fag for some a 2 Rn. Prove that F T is
regular.

Hint: Use Theorem 2.31 together with parts (a) and (b) above.

The following simple observation will be of some service for us later on. For
� 2 R, let I� be given by

I�f D F �1h�i�F f; f 2 S 0.Rn/: (2.148)

Proposition 2.63. Let � 2 R and I� be given by (2.148). Then I� maps S.Rn/
one-to-one onto S.Rn/, and S 0.Rn/ one-to-one onto S 0.Rn/, respectively,

I�S.Rn/ D S.Rn/; I�S 0.Rn/ D S 0.Rn/: (2.149)

Proof. The multiplication

f 7! h�i�f with f 2 S.Rn/ or f 2 S 0.Rn/; (2.150)

respectively, maps S.Rn/ onto S.Rn/, and also S 0.Rn/ onto S 0.Rn/. This fol-
lows from Definitions 2.32, 2.43, Theorem 2.48 and Corollary 2.56. In view of
Theorems 2.42 and 2.60 one obtains the desired result. �

Remark 2.64. Later on we shall use I� as lifts in the scale of function spaces with
fixed integrability and varying smoothness. We refer also to Appendix E.

2.8 The Fourier transform in Lp.Rn/

By Corollary 2.50 any f 2 Lp.Rn/ with 1 � p � 1 can be interpreted as
a regular distribution according to Definition 2.10 belonging to S 0.Rn/. Hence
F f 2 S 0.Rn/. Recall that a linear operator T 2 L.H/ in a Hilbert space H is
called unitary if

kT hjHk D khjHk for h 2 H; and TH D H; (2.151)

where the latter means that the range of T , range.T /, coincides with H . As for
basic notation of operator theory one may consult Section C.1.

Theorem 2.65. Let n 2 N.

(i) Let f 2 Lp.Rn/ with 1 � p � 2, then F f 2 S 0.Rn/ is regular.
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(ii) If f 2 L1.Rn/, then

.F f /.�/ D .2
/�n=2
Z

Rn

e�ix�f .x/dx; � 2 Rn: (2.152)

Furthermore, F f is a bounded continuous function on Rn and

sup
�2Rn

j.F f /.�/j � .2
/�n=2kf jL1.Rn/k for all f 2 L1.Rn/: (2.153)

(iii) The restrictions of F and F �1, respectively, to L2.Rn/ generate unitary op-
erators in L2.Rn/. Furthermore,

F F �1 D F �1F D id .identity in L2.R
n//: (2.154)

Proof. Step 1. Part (i) follows from parts (ii) and (iii) and the observation that any
f 2 Lp.Rn/ with 1 � p � 2 can be decomposed as

f .x/ D f1.x/C f2.x/; f1 2 L1.Rn/; f2 2 L2.Rn/; (2.155)

where

f1.x/ D
(
f .x/ if jf .x/j > 1;
0 otherwise:

(2.156)

Step 2. As for part (ii) we first remark that the right-hand side of (2.152), temporarily
denoted by yf .�/, makes sense and that we have (2.153) with yf in place of F f . The
continuity of yf in Rn is again a consequence of Lebesgue’s bounded convergence
theorem. Finally, F f D yf follows in the same way as in (2.136).

Step 3. It remains to show (iii). We apply (2.107) with x D 0 and ' 2 S.Rn/,
 2 S.Rn/ and obtain the so-called multiplication formula,Z

Rn

.F '/.�/  .�/d� D
Z

Rn

'.�/.F  /.�/d�: (2.157)

Let % 2 S.Rn/, then Definition 2.36 gives  .�/ D .F %/.�/ D .F �1x%/.�/ (in
obvious notation). We insert it in (2.157) and obtain for the scalar product in
L2.Rn/ that

hF ';F %iL2.Rn/ D
Z

Rn

.F '/.�/ .F %/.�/d� D
Z

Rn

'.�/x%.�/d�

D h'; %iL2.Rn/:

(2.158)
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By Proposition 2.7 there is for any f 2 L2.Rn/ a sequence ffj g1jD1 � S.Rn/ such
that

fj ! f in L2.R
n/ if j !1: (2.159)

It follows by (2.158) that fF fj g1jD1 � S.Rn/ is a Cauchy sequence in L2.Rn/,
hence for some g 2 L2.Rn/,

F fj ! g in L2.R
n/ if j !1: (2.160)

We use (2.157) with ' D fj , j 2 N, and obtain for j !1 thatZ
Rn

g.�/ .�/d� D
Z

Rn

f .�/.F  /.�/d� D .F f /. / (2.161)

for any  2 S.Rn/. Hence F f D g 2 L2.Rn/ and by (2.158),

kF f jL2.Rn/k D kf jL2.Rn/k; f 2 L2.Rn/; (2.162)

that is, F is isometric onL2.Rn/. The same argument can be applied to F �1 instead
of F . In view of the above approximation procedure, (2.104) can be extended to
(2.154). In particular, the range of F and F �1 is L2.Rn/. Thus both, F and F �1,
are not only isometric, but unitary. �

Remark 2.66. In Note 2.9.5 we add a few comments about Fourier transforms of
functions f 2 Lp.Rn/. In particular, if 2 < p � 1, then there are functions
f 2 Lp.Rn/ such that F f is not regular. The simplest case is p D1. By (2.143)
the Fourier transform of a constant function f .x/ D c ¤ 0 equals c0ı with c0 ¤ 0,
which is not regular.

Exercise 2.67. Let f 2 L1.Rn/.
(a) Prove that

.F f /.�/! 0 for j�j ! 1: (2.163)

Hint: Combine (2.103) and (2.153).

(b) Letg 2 L1.Rn/. Show that the multiplication formula (2.157) can be extended
from S.Rn/ to L1.Rn/, i.e.,Z

Rn

.F f /.�/ g.�/d� D
Z

Rn

f .�/.F g/.�/d�: (2.164)

We add a few standard examples, restricted to the one-dimensional case R, for
convenience.

Exercise* 2.68. Determine the Fourier transforms F fi of the following functions
fi W R! R, i D 1; : : : ; 4 W
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(a) f1.x/ D e�ajxj, a > 0;

(b) f2.x/ D sgn.x/e�jxj D

�
e�x; x > 0;

0; x D 0;
�ex; x < 0I

(c) f3.x/ D �
Œ�a;a	.x/ D

(
1; �a � x � a;
0; otherwise,

where a > 0;

(d) f4.x/ D .1 � jxj/C D
(
1 � jxj; jxj � 1;
0; otherwise.

Hint: Verify that fi 2 L1.R/, i D 1; : : : ; 4, and use Theorem 2.65 (ii).

�1 10

f4

f1

f2

f3

�1

1

�a a

Figure 2.6

Remark 2.69. The more complicated n-dimensional version of Example 2.68 (a)
is given by

F .e�ajxj/.�/ D c a

.j�j2 C a2/nC1
2

; � 2 Rn; (2.165)

where c is a positive constant which is independent ofa > 0 and � 2 Rn. It generates
the so-called Cauchy–Poisson semi-group, see also Exercise 2.70 (c). Details may
be found in [Tri78, 2.5.3, pp. 192–196].

We end this section with a short digression to an important feature of the Fourier
transform: their interplay with convolutions.
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Exercise* 2.70. Let f 2 L1.Rn/, g 2 L1.Rn/. Then their convolution f � g is
defined by

.f � g/.x/ D
Z

Rn

f .x � y/g.y/dy; x 2 Rn: (2.166)

(a) Let 1 � p; r � 1 such that 1 � 1
p
C 1

r
� 2. Let f 2 Lp.Rn/, g 2 Lr.Rn/.

Then f � g 2 Lq.Rn/ with 1
q
D 1

p
C 1

r
� 1,

kf � gjLq.Rn/k � kgjLr.Rn/kkf jLp.Rn/k; (2.167)

that is, the famous Young’s inequality, see Theorem D.1. Prove their special
cases p D r D 1, and p D r D 2, corresponding to q D 1 and q D1.

(b) Prove that for f 2 L1.Rn/, g 2 L1.Rn/,
F .f � g/.�/ D .2
/n=2.F f /.�/ .F g/.�/; � 2 Rn: (2.168)

What is the counterpart for F �1.f � g/?
Hint: Recall that we obtained in (2.106) for '; 2 S.Rn/ that

.2
/n=2 F �1.F ' 	  /.x/ D .' � F �1 /.x/; (2.169)

which leads for f D ' and D F g to (2.168) when f 2 S.Rn/, g 2 S.Rn/.
Adapt the argument to f 2 L1.Rn/, g 2 L1.Rn/. Use Theorem 2.65 (ii).

(c) Let a > 0 and consider for x 2 R

ha.x/ D a


.x2 C a2/ ; ga.x/ D

� sin.ax/


x
; x ¤ 0;

a



; x D 0:

Use .the one-dimensional case of/ (2.168) to show that for any b > 0,

ha � hb D haCb; ga � gb D gmin.a;b/:

Hint: Recall Exercise 2.68 (a), (c).

2.9 Notes

2.9.1. The material in Chapter 2 is rather standard and may be found in many
textbooks and monographs. We followed here essentially the relevant parts of
[Tri92a] restricting ourselves to the bare minimum needed later on. In [Tri92a] one
finds a more elaborated theory of distributions at the same moderate level as here.
In this context we refer also to [Hör83] and [Str94] where the latter book contains
many exercises.
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2.9.2. The theory of distributions goes back to S. L. Sobolev (the spaces D.�/,
D 0.�/, W k

p .�/ on bounded domains) in the late 1930s as it may be found in
[Sob91], and to L. Schwartz (the spaces D.�/, D 0.�/, S.Rn/, S 0.Rn/ and, in
particular, the Fourier analysis of tempered distributions) in [Sch66]. On the one
hand, the theory of distributions has a substantial pre-history (especially when
taking [Sch66], first edition 1950/51, as a starting point). Some comments and also
quotations may be found in [Pie01, Section 4.1.7] and [Går97, Chapter 12], but
it is also hidden in [CH53] (first edition 1924) as sequences of smooth functions
(approximating distributions). On the other hand, according to [Går97, p. 80],

‘At the time (1950) the theory of distributions got a rather lukewarm
and sometimes even hostile reception among mathematicians.’

L. Schwartz’s own description how he discovered distributions may be found in
[Sch01, Chapter VI]. But the breakthrough came soon in the 1950s. Nowadays it is
accepted as one of the most important developments in mathematics in the second
half of the last century influencing significantly not only analysis, but many other
branches of mathematics and physics.

2.9.3. By Definition 2.32 and the Exercises 2.34, 2.35 one gets that S.Rn/ is a linear
topological (locally convex, metrisable) space and that S 0.Rn/ as introduced in Def-
inition 2.43 and characterised in Theorem 2.48 is its topological dual. The situation
for the spaces D.�/ and D 0.�/ as introduced in the Definitions 2.2, 2.5 is more
complicated. But one can furnish D.�/ with a locally convex topology such that
converging sequences f'j g1jD1 with respect to this topology are just characterised
by (2.4), (2.5). The corresponding theory may be found in [Yos80, p. 28, I.8] and
[Rud91, Chapter 6] going back to [Sch66, Chapter III]. In particular, the resulting
linear topological space is no longer metrisable [Rud91, Remark 6.9] in contrast to
S.Rn/. We adopted in Section 2.1 a more direct approach in good company with
many other textbooks and monographs introducing distributions as a tool.

2.9.4. The close connection between � -finite Borel measures in a domain� in Rn

and distributions belonging to D 0.�/ or (in case of � D Rn) to S 0.Rn/ played a
decisive rôle in the theory of distributions from the very beginning and had been used
for (local) representation of distributions in finite sums of derivatives of measures
[Sch66, Chapter III, §7-8]. Theorem 2.31 may serve as a simple example. One may
also consult [Rud91, Theorem 6.28, p. 169]. In connection with the identification
(2.35) and the discussion in Remark 2.11 the following observation is of some
use. Let M loc

1 .�/ be the collection of all � -finite (locally finite) complex Radon
measures on �. Then

T
 W ' 7�!
Z
�

'.x/�.dx/; � 2M loc
1 .�/; ' 2 D.�/; (2.170)
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generates a distribution T
 2 D 0.�/. Moreover, if �1 2 M loc
1 .�/ and �2 2

M loc
1 .�/, then

T
1 D T
2 in D 0.�/ if, and only if, �1 D �2: (2.171)

This follows from the famous Riesz representation theorem according to [Mal95,
Theorem 6.6, p. 97]. We refer for a similar discussion and some further details
to [Tri06, Section 1.12.2, pp. 80/81]. Hence (2.170) is a one-to-one relation and
one may identify M loc

1 .�/ with the generated subset of D 0.�/. Furthermore,
interpreting f 2 Lloc

1 .�/ as f�L 2 M loc
1 .�/ where �L is the Lebesgue measure

in Rn, then one gets

Lloc
1 .�/ � M loc

1 .�/ � D 0.�/ (2.172)

and (2.34), based on Proposition 2.7. In other words, interpreting Lloc
1 .�/ not as

a space of functions (equivalence classes) but as a space of complex measures the
ambiguity we discussed in Remark 2.11 disappears.

2.9.5. Choosing f � 0 and � D 0 in (2.152) it follows that the constant .2
/�n=2 in
(2.153) is sharp. Interpolation of (2.153) and (2.162) gives the famous Hausdorff–
Young inequality

kF f jLp0.Rn/k � .2
/n. 1
2 � 1

p /kf jLp.Rn/k; 1 � p � 2; (2.173)

where 1
p
C 1

p0 D 1, [Tri78, Section 1.18.8]. However, .2
/n.
1
2 � 1

p / is only the best
possible constant when p D 1 or when p D 2. It turns out that

cp;n D
�
.2
/1� 2

pp
1
p .p0/�

1
p0
�n

2 (2.174)

is the sharp constant in

kF f jLp0.Rn/k � cp;nkf jLp.Rn/k; 1 < p � 2: (2.175)

We refer to [LL97, Section 5.7] where the Fourier transform is differently normed.
However, if 2 < p � 1, then there are functions f 2 Lp.Rn/ such that yf 2
S 0.Rn/ is singular, [SW71, 4.13, p. 34]. Hence Theorem 2.65 (i) cannot be extended
to 2 < p � 1. In case of p D1 this follows also immediately from (2.143).
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3.1 The spaces W k
p .Rn/

We always interpret f 2 Lp.Rn/ with 1 � p � 1 as a tempered distribution
according to Remark 2.49 and Corollary 2.50. In particular, D˛f 2 S 0.Rn/makes
sense for any ˛ 2 Nn

0 .

Definition 3.1. Let k 2 N and 1 � p <1. Then

W k
p .R

n/ D ff 2 Lp.Rn/ W D˛f 2 Lp.Rn/ for all ˛ 2 Nn
0; j˛j � kg (3.1)

are the classical Sobolev spaces.

Remark3.2. We incorporate notationallyLp.Rn/ D W 0
p .R

n/. OtherwiseW k
p .R

n/

collects all f 2 Lp.Rn/ such that the distributional derivatives D˛f 2 S 0.Rn/
with j˛j � k are regular and, in addition, belong to Lp.Rn/. Some references
and comments about classical Sobolev spaces on Rn and on domains may also be
found in the Notes 2.9.2, 3.6.1, 3.6.3 and 4.6.1. Strictly speaking, the elements of
W k
p .R

n/ are equivalence classes Œf �. But by (2.40), (2.124) one has D˛f D D˛g
in S 0.Rn/ for g 2 Œf � and all ˛ 2 Nn

0 . If, in addition, D˛f 2 Lp.Rn/, then
D˛g 2 ŒD˛f �. As usual, we do not care about this ambiguity which we discussed
in detail in (2.32)–(2.34), Definition 2.10 and Remark 2.11.

Theorem 3.3. Let 1 � p < 1 and k 2 N0. Then W k
p .R

n/ furnished with the
norm

kf jW k
p .R

n/k D
� X

j˛j�k
kD˛f jLp.Rn/kp

	1=p
(3.2)

becomes a Banach space and

S.Rn/ � W k
p .R

n/ � Lp.R
n/ � S 0.Rn/: (3.3)

Furthermore, D.Rn/ and S.Rn/ are dense in W k
p .R

n/.

Proof. Step 1. By (2.115), (2.132) we have for any ˛ 2 Nn
0 ,

D˛.�1f1C�2f2/ D �1D˛f1C�2D˛f2; f1; f2 2 S 0.Rn/I �1; �2 2 C: (3.4)

In particular, W k
p .R

n/ is a linear space, a subspace of S 0.Rn/. Since both Lp.Rn/
and the related (finite-dimensional) sequence space p̀ are normed spaces, one gets

kf1Cf2jW k
p .R

n/k � kf1jW k
p .R

n/kCkf2jW k
p .R

n/k; f1; f2 2 W k
p .R

n/; (3.5)
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and
k�f jW k

p .R
n/k D j�jkf jW k

p .R
n/k; f 2 W k

p .R
n/; � 2 C: (3.6)

If kf jW k
p .R

n/k D 0, then, in particular, kf jLp.Rn/k D 0, hence Œf � D 0,
that is, f D 0 in S 0.Rn/. This implies that (3.2) is a norm.

Step 2. Let ffj g1jD1 be a Cauchy sequence in W k
p .R

n/. Then fD˛fj g1jD1 are
Cauchy sequences in Lp.Rn/ for j˛j � k. Hence there are f ˛ 2 Lp.Rn/ with

D˛fj ! f ˛ in Lp.R
n/; j˛j � k; and f 0 D f: (3.7)

It follows from (2.40),Z
Rn

D˛fj .x/'.x/dx D .�1/j˛j
Z

Rn

fj .x/.D
˛'/.x/dx; ' 2 S.Rn/; (3.8)

and Hölder’s inequality applied to D˛fj � f ˛ , fj � f 2 Lp.Rn/ and ', D˛' 2
Lp0.Rn/ thatZ

Rn

f ˛.x/'.x/dx D .�1/j˛j
Z

Rn

f .x/.D˛'/.x/dx; ' 2 S.Rn/: (3.9)

Then f ˛ D D˛f , j˛j � k, and f 2 W k
p .R

n/ with

fj ! f in W k
p .R

n/ for j !1: (3.10)

Consequently,W k
p .R

n/ is a Banach space. Furthermore, (3.3) is obvious by Corol-
lary 2.50.

Step 3. Since S.Rn/ � W k
p .R

n/, it remains to prove that D.Rn/ is dense. Let

f 2 W k
p .R

n/. By the mollification according to Exercise 1.30 with the functions
!h 2 D.Rn/, h > 0, especially (1.59), (1.60), one obtains

.D˛fh/.x/ D
Z

Rn

D˛x!h.x � y/f .y/dy

D .�1/j˛j
Z

Rn

D˛y!h.x � y/f .y/dy

D
Z

Rn

!h.x � y/.D˛f /.y/dy D .D˛f /h.x/: (3.11)

The same argument as in (2.28) with (2.30), (2.31) implies

kD˛f � D˛fhjLp.Rn/k ! 0 if h! 0; j˛j � k: (3.12)
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Hence fh 2 C1.Rn/ \W k
p .R

n/ and

fh ! f in W k
p .R

n/ for h! 0: (3.13)

In particular, it is sufficient to approximate functions g 2 C1.Rn/ \ W k
p .R

n/ in

W k
p .R

n/ by functions belonging to D.Rn/. Let ' 2 D.Rn/ and '.x/ D 1 if
jxj � 1. Then

D.Rn/ 3 '.2�jx/g.x/! g.x/ in W k
p .R

n/ if j !1 (3.14)

by straightforward calculation. �

Exercise 3.4. Let k 2 N0 and 1 � p < 1. Prove the following homogeneity
estimates for Sobolev spaces: There are positive constants c, c0 andC , C 0 such that

c R� n
p kf jLp.Rn/k � kf .R	/jW k

p .R
n/k � c0R� n

p kf jW k
p .R

n/k (3.15)

for all f 2 W k
p .R

n/ and all 0 < R � 1, and

C R� n
p kf jW k

p .R
n/k � kf .R	/jW k

p .R
n/k � C 0Rk� n

p kf jW k
p .R

n/k (3.16)

for all f 2 W k
p .R

n/ and all R > 1.

Remark 3.5. Two norms k	k1 and k	k2 on a Banach spaceB are called equivalent,
denoted by k 	 k1 � k 	 k2, if there are two numbers 0 < c1 � c2 <1 such that

c1kbk1 � kbk2 � c2kbk1 for all b 2 B: (3.17)

We do not distinguish between equivalent norms in the sequel and may switch from
one norm to an equivalent one if appropriate. For example,

kf jW k
p .R

n/k� D
X

j˛j�k
kD˛f jLp.Rn/k; f 2 W k

p .R
n/; (3.18)

is equivalent to (3.2).

Exercise 3.6. (a) Let n 2 N, n � 2, and ~ > 0. Consider the radial functions

h~.x/ D '.x/j log jxjj~ ; x 2 Rn;

where ' 2 D.Rn/ is some cut-off function, say, with

'.x/ D 1; jxj � 1

4
and '.x/ D 0; jxj � 1

2
; (3.19)

see Figure 3.1. Show that h~ 2 W 1
n .R

n/ if ~ < 1 � 1
n

.

(b) Let n 2 N, n � 2, and

g.x/ D '.x/ log j log jxjj; x 2 Rn;

with ' 2 D.Rn/ according to (3.19). Prove that g 2 W 1
n .R

n/.
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xn

x1

h~.x/

0

Figure 3.1

Remark3.7. We shall return to these examples in connection with so-calledSobolev
embeddings in Section 3.3 below. We refer, in particular, to Theorem 3.32 and
Exercise 3.33.

3.2 The spaces H s.Rn/

For p D 2 and k 2 N0 the classical Sobolev spaces W k
2 .R

n/ according to Defini-
tion 3.1, Theorem 3.3, equipped with the scalar product

hf; giW k
2
.Rn/ D

X
j˛j�k

Z
Rn

D˛f .x/D˛g.x/dx (3.20)

become Hilbert spaces. We wish to characterise the spaces W k
2 .R

n/ in terms of
the Fourier transform generalising Theorem 2.65 (iii). For this purpose we need
weighted L2 spaces.

Definition 3.8. Let n 2 N and let w be a continuous positive function in Rn. Then

L2.R
n; w/ D ff 2 Lloc

1 .R
n/ W wf 2 L2.Rn/g: (3.21)

Remark 3.9. Quite obviously,L2.Rn; w/ becomes a Hilbert space when furnished
with the scalar product

hf; giL2.Rn;w/ D
Z

Rn

w.x/f .x/w.x/g.x/dx D hwf;wgiL2.Rn/: (3.22)

Furthermore, f 7! wf mapsL2.Rn; w/ unitarily ontoL2.Rn/. Of special interest
are the weights

ws.x/ D hxis D .1C jxj2/s=2; s 2 R; x 2 Rn; (3.23)

recall (2.83).
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Proposition 3.10. Let L2.Rn; ws/ be given by (3.21), (3.23) with s 2 R. Then
L2.Rn; ws/ together with the scalar product (3.22) with w D ws is a Hilbert
space. Furthermore,

S.Rn/ � L2.R
n; ws/ � S 0.Rn/ (3.24)

in the interpretation of Definition 2.55 and Corollary 2.56. Both D.Rn/ and S.Rn/
are dense in L2.Rn; ws/.

Proof. As mentioned above, L2.Rn; ws/ is a Hilbert space. The left-hand side of
(3.24) follows from Definition 2.32 whereas the right-hand side is covered by Corol-
lary 2.56 (and L2.Rn/ � S 0.Rn/). If '.2�j 	/ are the same cut-off functions as in
connection with (3.14), then'.2�j 	/f approximate any givenf 2 L2.Rn; ws/. By
Proposition 2.7 the compactly supported function '.2�j 	/f can be approximated
in L2.Rn/, and hence in L2.Rn; ws/, by functions belonging to D.Rn/. �

According to Definition 2.58 and Theorem 2.60 the Fourier transform F and its
inverse F �1, respectively, are defined on S 0.Rn/. In view of (3.3) and (3.24) one
can restrict F and F �1 to W k

2 .R
n/ and to L2.Rn; ws/ (denoting these restrictions

by F and F �1, respectively, again).

Theorem3.11. Let k 2 N0. The Fourier transform F and its inverse F �1 generate
unitary maps of W k

2 .R
n/ onto L2.Rn; wk/, and of L2.Rn; wk/ onto W k

2 .R
n/,

FW k
2 .R

n/ D F �1W k
2 .R

n/ D L2.Rn; wk/: (3.25)

Proof. Let f 2 W k
2 .R

n/. Equations (3.2), (2.139), and Theorem 2.65 (iii) imply

kf jW k
2 .R

n/k2 D
X

j˛j�k
kD˛f jL2.Rn/k2

D
X

j˛j�k
kF .D˛f /jL2.Rn/k2

D
Z

Rn

� X
j˛j�k

jx˛j2
	
jF f .x/j2dx: (3.26)

Since
P

j˛j�k jx˛j2 � w2
k
.x/, one obtains with respect to this equivalent norm,

denoted by k 	 k�, that

kf jW k
2 .R

n/k D kF f jL2.Rn; wk/k�: (3.27)

Hence F is an isometric map from W k
2 .R

n/ to L2.Rn; wk/. Conversely, let g 2
L2.Rn; wk/ and f D F �1g. By (2.139) and Theorem 2.65 (iii) one has

D˛f D i j˛jF �1.x˛g/ 2 L2.Rn/; j˛j � k: (3.28)

This proves f 2 W k
2 .R

n/. Hence F in (3.27) maps W k
2 .R

n/ unitarily onto
L2.Rn; wk/. Similarly one proceeds for the other cases. �
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Remark 3.12. One can rewrite (3.25) as

W k
2 .R

n/ D F L2.R
n; wk/ D F �1L2.Rn; wk/: (3.29)

In other words, one could defineW k
2 .R

n/ as the Fourier image ofL2.Rn; wk/. But
for such a procedure one does not need that k 2 N0. We have (3.24) for any s 2 R.
The resulting spaces W s

2 .R
n/, especially if s D 1

2
C k, where k 2 N0, will be of

great service for us later in connection with boundary value problems. Furthermore,
one may ask whether one can replace W k

2 .R
n/ in Theorem 3.11 by W k

p .R
n/ with

1 � p < 1. But if p ¤ 2, then the situation is more complicated. We return to
this point in the Notes 3.6.1, 3.6.2.

Definition 3.13. Let s 2 R and ws as in (3.23). Then

H s.Rn/ D ff 2 S 0.Rn/ W wsF f 2 L2.Rn/g: (3.30)

Remark 3.14. It follows by Theorem 3.11 and (3.27) that

H k.Rn/ D W k
2 .R

n/; k 2 N0: (3.31)

One can replace F in (3.30) by F �1. In any case the spaces H s.Rn/ extend
naturally the classical Sobolev spaces W k

2 .R
n/ according to Definition 3.1 from

k 2 N0 to s 2 R. As for a corresponding extension H s
p .R

n/ of W k
p .R

n/ from
k 2 N0 to s 2 R and with 1 < p <1 we refer to Note 3.6.1. It is usual nowadays
to call H s

p .R
n/ Sobolev spaces for all s 2 R, 1 < p <1.

Exercise 3.15. Let k 2 N. Prove that

kf jL2.Rn/k C
nX

jD1





@kf
@xkj
jL2.Rn/





 (3.32)

is an equivalent norm in W k
2 .R

n/.

Hint: Use (3.31).

We start with some elementary examples for s � 0; there are further ones related
to s < 0 in Exercise 3.18 below.

Exercise* 3.16. Let s � 0.

(a) Show that e�jxj 2 H s.R/ if, and only if, s < 3
2

.

Hint: Use Exercise 2.68 (a).

(b) Let a > 0. Prove that �
Œ�a;a	 2 H s.R/ if, and only if, s < 1

2
.

Hint: Use Exercise 2.68 (c).
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(c) Let a > 0 and A D Œ�a; a�n D fx 2 Rn W jxj j � a; j D 1; : : : ; ng. Prove
that �

A
2 H s.Rn/ if, and only if, s < 1

2
.

Hint: Use (b) and the special product structure of A and �
A

.

(d) Let a > 0, r 2 N, and f the r-fold convolution of �
Œ�a;a	,

f .x/ D .�
Œ�a;a	 � 	 	 	 � �Œ�a;a	/„ ƒ‚ …

r-times

.x/; x 2 R:

Prove that f 2 H s.R/ if, and only if, s < r � 1
2

, r 2 N.

Hint: Use Exercises 2.68 (c) and 2.70 (b).

Proposition 3.17. Let s 2 R. The spacesH s.Rn/, furnishedwith the scalar product

hf; giH s.Rn/ D
Z

Rn

ws.x/F f .x/ ws.x/F g.x/dx; (3.33)

are Hilbert spaces. Furthermore,

S.Rn/ � H s.Rn/ � S 0.Rn/; (3.34)

and S.Rn/ is dense inH s.Rn/.

Proof. By definition,

f 7! wsF f W H s.Rn/! L2.R
n/; (3.35)

generates an isometric map into L2.Rn/. Choosing f D F �1.w�sg/ 2 S 0.Rn/
for a given g 2 L2.Rn/ it follows that (3.35) is a unitary map onto L2.Rn/. Hence
H s.Rn/ is a Hilbert space. Furthermore, by the same arguments as in the proof of
Proposition 2.63 it follows that (3.35) maps also S.Rn/ onto itself and S 0.Rn/ onto
itself. Then both (3.34) and the density of S.Rn/ first in L2.Rn/, and subsequently
in H s.Rn/ follow from Theorem 3.3. �

Exercise* 3.18. (a) Prove that

ı 2 H s.Rn/ if, and only if, s < �n
2
: (3.36)

Hint: Use (2.143).

(b) Prove that for given s < 0 there are singular distributions f 2 H s.R/.

Hint: Apply (2.147) to

f .x/ D '.x/
1X
kD0

2k�ei2
kx; x 2 R; 0 < � < jsj; (3.37)
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with ' 2 D.R/ and '.x/ D 1 if jxj � 
 .

(c) Construct a singular distribution which belongs to all H s.R/ with s < 0

simultaneously.

Hint: What about � D 0 in (3.37)? Use Exercise 2.67 (a).

(d) Let n 2 N. Prove that for given s < 0 there are singular distributions
f 2 H s.Rn/.

Hint: Multiply (3.37) with a suitable function belonging to D.Rn�1/.

By (3.30) one has

H s1.Rn/ � H s2.Rn/ if �1 < s2 � s1 <1; (3.38)

and, in particular,

H s1.Rn/ � H s2.Rn/ � L2.R
n/ if 0 � s2 � s1 <1: (3.39)

Hence the gaps between the smoothness parameters k 2 N0 ofW k
2 .R

n/ D H k.Rn/
are filled by the continuous smoothness parameter s.

However, it would be highly desirable to have descriptions of H s.Rn/, s > 0,
parallel to H k.Rn/ D W k

2 .R
n/, k 2 N0, given in Definition 3.1 at our disposal,

avoiding, in particular, the Fourier transform. This is not only of interest for its
own sake, but essential when switching from Rn to (bounded) domains, subject to
Section 4.

It is well known that fractional smoothness, say, for continuous functions, can
be expressed in terms of differences resulting in Hölder spaces. Let

.�hf /.x/ D f .x C h/ � f .x/; h 2 Rn; x 2 Rn: (3.40)

Exercise 3.19. Let �1
h
D �h, and define for m 2 N the iterated differences by

.�mC1
h

f /.x/ D �1h.�mh f /.x/; x 2 Rn; h 2 Rn: (3.41)

(a) Prove that

.�mh f /.x/ D
mX
jD0

 
m

j

!
.�1/m�j f .x C jh/; x 2 Rn; h 2 Rn;

where
�
m
j

� D mŠ
.m�j /Šj Š are the usual binomial coefficients.

(b) Show that for all m 2 N, h 2 Rn, x 2 Rn, and � > 0,

.�mh Œf .�	/�/.x/ D .�m�hf /.�x/:
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(c) Prove that
2.�hf /.x/ D .�2hf /.x/ � .�2hf /.x/ (3.42)

and its iteration

2m.�mh f /.x/ D .�m2hf /.x/C�mC1
h

�m�1X
lD0

am;lf .	 C lh/
	
.x/ (3.43)

for m 2 N, where the real coefficients am;l are independent of f and h.

Hint: One may also consult [Tri83, p. 99].

Let C k.Rn/ be the spaces according to Definition A.1 where k 2 N0. Let
s D k C � with k 2 N0 and 0 < � < 1. Then the fractional extension of (A.8) for
� D Rn are the Hölder spaces normed by

kf jC s.Rn/k D kf jC k.Rn/k C
X

j˛jDk
sup
x¤y

jD˛f .x/ � D˛f .y/j
jx � yj�

D kf jC k.Rn/k C
X

j˛jDk
sup

0¤h2Rn

sup
x2Rn

j.�hD˛f /.x/j
jhj�

� kf jC k.Rn/k C
X

j˛jDk
sup

0<jhj<1
sup
x2Rn

j.�hD˛f /.x/j
jhj� ; (3.44)

the latter being an equivalent norm.

Exercise* 3.20. (a) Prove that C s.Rn/, s > 0, s 62 N, is a Banach space.

(b) Let Lip.Rn/ be normed by

kf jLip.Rn/k D kf jC.Rn/k C sup
x¤y

jf .x/ � f .y/j
jx � yj : (3.45)

Prove that Lip.Rn/ is a Banach space and that

C 1.Rn/ ¨ Lip.Rn/: (3.46)

Exercise 3.21. Let 0 < s D k C � with k 2 N0, 0 < � < 1. Prove that for any
m 2 N and �m

h
given by (3.41),

kf jC k.Rn/k C
X

j˛jDk
sup

0¤h2Rn

sup
x2Rn

j.�m
h

D˛f /.x/j
jhj� (3.47)

is an equivalent norm in C s.Rn/.

Hint: Use Exercise 3.19 (c).

Some further information will be given in the Notes 3.6.1, 3.6.5.
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We ask now for anL2 counterpart of (3.44). Let again s D kC� with k 2 N0,
and 0 < � < 1, and let W k

2 .R
n/ be normed according to (3.2) with p D 2. Then

the appropriate replacement of the two L1 norms in (3.44) is given by

kf jW s
2 .R

n/k

D
�
kf jW k

2 .R
n/k2 C

X
j˛jDk

“
R2n

jD˛f .x/ � D˛f .y/j2
jx � yjnC2� dx dy

�1=2

D
�
kf jW k

2 .R
n/k2 C

X
j˛jDk

Z
Rn

jhj�2�k�hD˛f jL2.Rn/k2 dh

jhjn
�1=2

�
�
kf jW k

2 .R
n/k2 C

X
j˛jDk

Z
jhj�1

jhj�2�k�hD˛f jL2.Rn/k2 dh

jhjn
�1=2

; (3.48)

where the latter is an equivalent norm due to

k�hgjL2.Rn/k � 2kgjL2.Rn/k for any h 2 Rn; (3.49)

and, hence,Z
jhj>1

jhj�2�k�hD˛f jL2.Rn/k2 dh

jhjn � ckD
˛f jL2.Rn/k2: (3.50)

This shows, in addition, that both n and � > 0 in the exponent of the denominator
in (3.48) are needed to compensate the integration (compared with � > 0 in (3.44)).
Furthermore,

k'jW s
2 .R

n/k <1 if ' 2 S.Rn/ (3.51)

as a consequence of

j.�h'/.x/j � c� jhjhxi�� ; jhj < 1; x 2 Rn; (3.52)

for all 	 > 0 and appropriate c� > 0, recall notation (2.83). Here � < 1 is essential.

Definition 3.22. Let s D k C � with k 2 N0, 0 < � < 1. Then

W s
2 .R

n/ D ff 2 L2.Rn/ W kf jW s
2 .R

n/k <1g (3.53)

with k 	 jW s
2 .R

n/k as in (3.48).

Remark 3.23. The norm k 	 jW s
2 .R

n/k is related to the scalar product

hf; giW s
2
.Rn/ D hf; giW k

2
.Rn/C

X
j˛jDk

Z
jhj�1

h�hD˛f;�hD˛giL2.Rn/

jhj2�
dh

jhjn ; (3.54)

where we used (3.20).
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Next we wish to extend (3.31) to all s > 0.

Theorem 3.24. Let 0 < s D k C � with k 2 N0 and 0 < � < 1. LetH s.Rn/ and
W s
2 .R

n/ be the spaces according to Definitions 3.13 and 3.22, respectively. Then

H s.Rn/ D W s
2 .R

n/ (3.55)

.equivalent norms/. Both D.Rn/ and S.Rn/ are dense in W s
2 .R

n/.

Proof. Step 1. Obviously W s
2 .R

n/ is a linear space with respect to the norm
generated by the scalar product (3.54). If f 2 W s

2 .R
n/ and ' 2 S.Rn/, then

f ' 2 W s
2 .R

n/. This follows from (3.48), together with the old trick of calculus,

.'f /.x C h/ � .'f /.x/
D f .x/.'.x C h/ � '.x//C '.x C h/.f .x C h/ � f .x//; (3.56)

and

j'.x C h/ � '.x/j � jhj
nX
lD1

sup
x2Rn

ˇ̌̌̌
@'

@xl
.x/

ˇ̌̌̌
; jhj � 1; x 2 Rn: (3.57)

If we apply this observation to 'jf with 'j .x/ D '.2�jx/, j 2 N, where ' is a
cut-off function, that is, ' 2 D.Rn/ with '.x/ D 1 if jxj � 1, then one obtains
by (3.56), (3.57) with 'j in place of ' uniform estimates. This yields an integrable
upper bound for the corresponding integrals in (3.48) with 'jf in place of f . Thus
'jf tends tof inW s

2 .R
n/ due to .'jf /.x/! f .x/ in Rn and Lebesgue’s bounded

convergence theorem.
We wish to prove that D.Rn/ – and hence, by (3.51) also S.Rn/ – is dense

in W s
2 .R

n/. By the above consideration it is sufficient to approximate compactly
supported functions f 2 W s

2 .R
n/. Let

ft .x/ D
Z

Rn

!.y/f .x � ty/dy; x 2 Rn; 0 < t � 1; (3.58)

be the mollification of a compactly supported function f 2 W s
2 .R

n/ according
to (2.26), based on (1.58), (1.59). The triangle inequality for integrals (and the
translation-invariance of k 	 jL2.Rn/k) imply

kft jW s
2 .R

n/k � kf jW s
2 .R

n/k: (3.59)

Similarly one finds for given " > 0 and ˛ with j˛j � k a number ı > 0 such that� Z
jhj�ı

jhj�2�k�hD˛ft jL2.Rn/k2 dh

jhjn
�1=2

�
� Z

jhj�ı
jhj�2�k�hD˛f jL2.Rn/k2 dh

jhjn
�1=2

� " (3.60)
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uniformly in t , 0 < t � 1. This leads to

ft ! f in W s
2 .R

n/ if t ! 0; (3.61)

in view of (3.60) and Step 3 of the proof of Theorem 3.3. Since ft is a compactly
supportedC1 function, where the latter is covered by Exercise 1.30, it follows that
D.Rn/ is dense in W s

2 .R
n/.

Step 2. By Proposition 3.17 and the above considerations S.Rn/ is dense both in
H s.Rn/ and W s

2 .R
n/. Then (3.55) will follow from the equivalenceZ

Rn

h�i2sj.F f /.�/j2d� � kf jW s
2 .R

n/k2; f 2 S.Rn/; (3.62)

which we are going to show now. Assume first 0 < s D � < 1. By Theo-
rem 2.65 (iii) the Fourier transform F is a unitary operator in L2.Rn/. Hence,Z

Rn

jhj�2�kf .	 C h/ � f . 	/jL2.Rn/k2 dh

jhjn

D
Z

Rn

jhj�2�kF .f .	 C h/ � f . 	//jL2.Rn/k2 dh

jhjn : (3.63)

We insert

F .f .	 C h/ � f . 	//.�/ D .2
/�n=2
Z

Rn

e�i�x.f .x C h/ � f .x//dx

D .ei�h � 1/.F f /.�/ (3.64)

in (3.63) and obtain thatZ
Rn

jhj�2�k�hf jL2.Rn/k2 dh

jhjn

D
Z

Rn

jF f .�/j2
Z

Rn

jei�h � 1j2jhj�2� dh

jhjn d�

D
Z

Rn

j�j2� jF f .�/j2
Z

Rn

jei �
j�j
h � 1j2jhj�2� dh

jhjn d�

D c

Z
Rn

j�j2� jF f .�/j2d� (3.65)

for some c > 0, where we used that the converging integral over h in the last but one
line is independent of � 2 Rn, � ¤ 0. This proves (3.62) in case of 0 < s D � < 1.
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If s D kC� where k 2 N and 0 < � < 1, then one applies (3.65) to D˛f , j˛j D k,
instead of f . By the same arguments as in (3.26) andX

j˛jDk
j�˛j2 � j�j2k

one obtains the desired result as far as the respective second terms in (3.48) are
concerned. Together with Theorem 3.11 and (3.26) this gives (3.62). �

Corollary 3.25. Let W s
2 .R

n/ with s � 0 be the spaces as introduced in Defini-
tion 3.1 if s D k 2 N0 and in Definition 3.22 if s 62 N0, respectively. Let H s.Rn/
be the spaces according to Definition 3.13. Then

H s.Rn/ D W s
2 .R

n/; s � 0; (3.66)

.equivalent norms/. Both D.Rn/ and S.Rn/ are dense in W s
2 .R

n/.

Proof. This is an immediate consequence of (3.31) and the Theorems 3.3 and 3.24.
�

Remark 3.26. In Note 3.6.1 we describe some extensions ofH s.Rn/ andW s
2 .R

n/

from p D 2 to 1 < p <1. But then the situation is more complicated.

Exercise 3.27. Let s D k C � with k 2 N0 and 0 < � < 1. Let �m
h

, m 2 N,
h 2 Rn, be the iterated differences according to (3.41). Prove that

kf jW k
2 .R

n/k C
X

jˇ j�k

�Z
Rn

jhj�2�k�mh Dˇf jL2.Rn/k2 dh

jhjn
�1=2

(3.67)

and

kf jL2.Rn/k C
nX

jD1

�Z
Rn

jhj�2�



�mh @kf

@xkj

ˇ̌
L2.R

n/



2 dh

jhjn
�1=2

(3.68)

are equivalent norms in W s
2 .R

n/ where the integral over Rn can be replaced by an
integral over fh 2 Rn W jhj � 1g.
Hint: Use (3.42), (3.43) first to reduce the question to m D 1. Afterwards, study
the terms with jˇj < k, modify (3.65) and rely on (3.32).

The following observation will be of some use for us later on.

Proposition 3.28. Let �m
h

, m 2 N, h 2 Rn, be the iterated differences according
to (3.41). Let for s 2 R and f 2 H s.Rn/,

sup
0<jhj<1

jhj�mk�mh f jH s.Rn/k <1: (3.69)
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Then f 2 H sCm.Rn/ and for some c > 0,

kf jH sCm.Rn/k � ckf jH s.Rn/k C c sup
0<jhj<1

jhj�mk�mh f jH s.Rn/k: (3.70)

Proof. Iteration of (3.64) yields that

F .�mh f /.�/ D .ei�h � 1/mF f .�/; � 2 Rn: (3.71)

Then it follows from (3.69) and Definition 3.13 thatZ
Rn

jhj�2mj1 � ei�hj2mh�i2sj.F f /.�/j2d� � C <1 (3.72)

uniformly in h, 0 < jhj < 1. Choosing h D .h1; 0; : : : ; 0/ leads toZ
Rn

j�1j2mh�i2sj.F f /.�/j2d� � C (3.73)

in view of Fatou’s lemma according to [Mal95, I.7.7, p. 38] (or [Tri86, 14.2.5,
p. 125]). Similarly for the other directions. This proves (3.70). �

Exercise* 3.29. (a) Let m 2 N and 0 < s < m. Prove that

kf jL2.Rn/k C
�Z

Rn

jhj�2sk�mh f jL2.Rn/k2
dh

jhjn
�1=2

(3.74)

is an equivalent norm in H s.Rn/ where the integral over Rn can be replaced by an
integral over fh 2 Rn W jhj � 1g.
Hint: The case 0 < s < 1 is covered by (3.68) with k D 0. For m > s � 1 use
(3.71) and modify (3.65). See also Note 3.6.1.

(b) Let 	 > 0 and ' 2 D.Rn/ be some smooth cut-off function, say, as in
connection with (3.14) with supp' � K2. Prove that

f� .x/ D jxj�'.x/; x 2 Rn;

belongs to H s.Rn/ if 0 < s < 	 C n
2

.

Hint: Apply (3.74) with m 2 N, m > 	 C n
2

.

(c) Extend the homogeneity estimates as formulated in Exercise 3.4 for spaces
W k
2 .R

n/ .p D 2/ to spaces H s.Rn/, s � 0.

Hint: Use (3.74) together with Exercise 3.19 (b).
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3.3 Embeddings

Embedding theorems play a central rôle in the theory of function spaces. We
concentrate here on the Sobolev spaces H s.Rn/ as introduced in Definition 3.13.
According to Corollary 3.25 they coincide with the spaces W s

2 .R
n/ for s � 0.

Theorem 3.30. Let

�1 < s1 < s < s2 <1 and s D .1 � �/s1 C �s2 (3.75)

with 0 < � < 1. Then there is a positive constant c such that for any " > 0 and
any f 2 H s2.Rn/,

kf jH s.Rn/k � kf jH s1.Rn/k1�� kf jH s2.Rn/k�

� "kf jH s2.Rn/k C c "� �
1�� kf jH s1.Rn/k: (3.76)

Proof. Equation (3.30) with g D F f and Hölder’s inequality imply

kf jH s.Rn/k D
�Z

Rn

.h�i2s1 jg.�/j2/1�� .h�i2s2 jg.�/j2/�d�

�1=2
� ."� 1

1�� kf jH s1.Rn/k/1�� ." 1
� kf jH s2.Rn/k/� (3.77)

� c0 "� 1
1�� kf jH s1.Rn/k C c0 " 1

� kf jH s2.Rn/k; (3.78)

where we used the well-known inequality ab � ar

r
C br0

r 0 for a; b > 0 and r 2
.1;1/, 1

r
C 1

r 0 D 1 in the last line. Now (3.77) with " D 1 and (3.78) with
"0 D c0"1=� prove (3.76). �

Corollary 3.31. Let W s
2 .R

n/ with s � 0 be the spaces as introduced in Defini-
tions 3.1 and 3.22 for s D k 2 N0 and s 62 N0, respectively. Let t be such that
0 � s < t <1. Then there are constants c > 0 and c0 > 0 such that for all " > 0
and all f 2 W t

2 .R
n/,

kf jW s
2 .R

n/k � ckf jL2.Rn/k t�s
t kf jW t

2 .R
n/k s

t

� "kf jW t
2 .R

n/k C c0 "� s
t�s kf jL2.Rn/k: (3.79)

Proof. This follows from Corollary 3.25 and Theorem 3.30 with s1 D 0 and � D s
t
.

�

Next we are interested in the so-called Sobolev embedding

id W W s
2 .R

n/ ,! C `.Rn/; ` 2 N0; (3.80)
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where C `.Rn/ are the spaces introduced in Definition A.1 with� D Rn. Here id is
the identity interpreted as a linear and bounded map between the spaces indicated,
hence

kf jC `.Rn/k � c kf jW s
2 .R

n/k; f 2 W s
2 .R

n/: (3.81)

As for the use of ‘,!’ one may consult Appendix C.1.
Strictly speaking, W s

2 .R
n/ consists of equivalence classes Œf � whereas the ele-

ments of C `.Rn/ are functions. Then (3.80) must be understood in the sense that
one finds in any equivalence class Œf � 2 W s

2 .R
n/ a representative f 2 C `.Rn/ (be-

ing unique if it exists) with (3.80). If one proves (3.81) first for smooth functions
(being their own unique representatives), then one obtains in the limit just what one
wants. We do not stress this point in the sequel.

Theorem 3.32 (Sobolev embedding). Let C `.Rn/, ` 2 N0, be the spaces in-
troduced in Definition A.1 and let W s

2 .R
n/ be the Sobolev spaces according to

Definitions 3.1 and 3.22, respectively, with s > `C n
2
. Then the embedding

id W W s
2 .R

n/ ,! C `.Rn/ (3.82)

exists in the sense explained above.

Proof. We know by Corollary 3.25 that S.Rn/ is dense in W s
2 .R

n/. In view of the
above explanations it is thus sufficient to prove that there is a number c > 0 such
that

jD˛'.x/j � ck'jW s
2 .R

n/k; j˛j � `; x 2 Rn; (3.83)

for all ' 2 S.Rn/. Equations (2.104), (2.91) and Hölder’s inequality imply that

jD˛'.x/j D jD˛.F �1F '/.x/j D jF �1.�˛F '.�//.x/j
D c

ˇ̌̌̌ Z
Rn

eix��˛.F '/.�/d�

ˇ̌̌̌

� c0
Z

Rn

h�isjF '.�/jh�i`�sd�

� c0
�Z

Rn

h�i2sjF '.�/j2d�

�1=2�Z
Rn

h�i�2.s�`/d�
�1=2

: (3.84)

The last integral converges due to 2.s�`/ > n, and the first term in (3.84) represents
an equivalent norm inW s

2 .R
n/ according to Corollary 3.25 andws.�/ D h�is . �

Exercise* 3.33. Show that (3.82) fails for s D `C n
2

in general.

Hint: Review the examples considered in Exercise 3.6.
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Exercise 3.34. Let C r.Rn/ with r D k C � , k 2 N0, 0 < � < 1, be the Hölder
spaces normed by (3.44). Prove that Theorem 3.32 can be extended to C t .Rn/,

id W W s
2 .R

n/ ,! C t .Rn/ if s � n
2
> t � 0: (3.85)

Hint: Combine (3.84) with the arguments from (3.64), (3.65).

Remark 3.35. By the above proof (and the extension indicated in Exercise 3.34)
it follows that

id W W s
2 .R

n/ ,! VC t .Rn/ if s � n
2
> t � 0; (3.86)

where the latter spaces stand for the completion of S.Rn/ in C t .Rn/. In particular,
one obtains for all f 2 W s

2 .R
n/ and all ˛ with 0 � j˛j < s � n

2
uniformly (with

respect to jxj) that
.D˛f /.x/! 0 if jxj ! 1: (3.87)

Exercise* 3.36. (a) Prove that VC t .Rn/, t � 0, is also the completion of D.Rn/ in
C t .Rn/.

(b) Show that VC t .Rn/ is a closed proper subspace of C t .Rn/, i.e.,

VC t .Rn/ ¨ C t .Rn/:

Hint: What about f � 1?

3.4 Extensions

For arbitrary domains (i.e., open sets) � in Rn we introduced in Definition A.1 the
Banach spaces C `.�/ where ` 2 N0. Now we are interested in Sobolev spaces
on � considered as subspaces of Lp.�/, where the latter has the same meaning as
at the beginning of Section 2.2, always interpreted as distributions on �.

Definition 3.37. Let � be an arbitrary domain in Rn. Let W s
p .R

n/ be either the
classical Sobolev spaces according to Definition 3.1 with 1 � p <1 and s 2 N0,
or the Sobolev spaces as introduced in Definition 3.22 with p D 2 and s > 0,
s 62 N. Then

W s
p .�/ D ff 2 Lp.�/ W there exists g 2 W s

p .R
n/ with g

ˇ̌
�
D f g: (3.88)

Remark 3.38. Here g
ˇ̌
�

denotes the restriction of g to� considered as an element
of D 0.�/, hence g

ˇ̌
�
D f means

g.'/ D f .'/ for all ' 2 D.�/: (3.89)

One can replace f 2 Lp.�/ in (3.88) by f 2 D 0.�/ and extend this definition to
the spaces H s with s < 0 according to Definition 3.13.
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Proposition 3.39. Let� be an .arbitrary/ domain in Rn and let either 1 � p <1,
s 2 N0, or p D 2, s > 0. Then W s

p .�/, furnished with the norm

kf jW s
p .�/k D inffkgjW s

p .R
n/k W g 2 W s

p .R
n/; g

ˇ̌
�
D f g; (3.90)

becomes a Banach space .and a Hilbert space if p D 2/, and

D.�/ � W s
p .�/ � Lp.�/ � D 0.�/: (3.91)

Furthermore, the restriction D.Rn/
ˇ̌
�

of D.Rn/ to � and the corresponding re-
striction S.�/ D S.Rn/

ˇ̌
�

are dense in W s
p .�/.

Proof. Let �c D Rn n� andeW s
p.�

c/ D fh 2 W s
p .R

n/ W supp h � �cg: (3.92)

Since �c is a closed set it follows from

fhkg1kD1 � eW s
p.�

c/ and hk ! h in W s
p .R

n/ (3.93)

that h 2 eW s
p.�

c/ as a consequence of Definition 2.22 and, say, (2.11). HenceeW s
p.�

c/ is a closed subspace of W s
p .R

n/ and

W s
p .�/ � W s

p .R
n/
ı eW s

p.�
c/ (3.94)

is isomorphic to the indicated factor space which, in turn, is a Banach space (and a
Hilbert space if p D 2). As for the latter assertions one may consult [Yos80, I.11,
pp. 59/60] (or [Rud91, pp. 30–32] where factor spaces are called quotient spaces).
Finally, (3.91) is just the interpretation ofW s

p .�/ as a space of distributions (2.36).
The density of D.Rn/

ˇ̌
�

and S.�/ in W s
p .�/ follows from the corresponding

assertions in Theorems 3.3 and 3.24. �

Remark 3.40. Note that (3.91) is the counterpart of (3.3). We return to Sobolev
spaces on smooth bounded domains later on in Chapter 4. At this moment we are
only interested in � D RnC where

RnC D fx D .x1; : : : ; xn/ 2 Rn W xn > 0g; (3.95)

occasionally written as x D .x0; xn/ 2 RnC with x0 D .x1; : : : ; xn�1/ 2 Rn�1,
xn > 0. We shall deal with the extension problem first, asking for linear and
bounded (common) extension operators extL, L 2 N, such that

extL W

‚
C l.RnC/ ,! C l.Rn/; l D 0; : : : ; L;
W l
p .R

nC/ ,! W l
p .R

n/; l D 0; : : : ; L; 1 � p <1;
W s
2 .R

nC/ ,! W s
2 .R

n/; 0 < s < L;

(3.96)



74 Chapter 3. Sobolev spaces on Rn and Rn
C

with
extL f jRn

C

D f: (3.97)

This is the usual somewhat sloppy notation which means that extL is defined on the
union of all these spaces such that its restriction to an admitted specific space has
the properties (3.96), (3.97).

Recall that we said in Remark 3.5 what is meant by equivalent norms.

Theorem 3.41. (i) For any L 2 N there are extension operators extL according to
(3.96), (3.97).

(ii) Let 1 � p <1 and l 2 N0. Then

f jW l
p .R

nC/


� D

� X
j˛j�l



D˛f jLp.RnC/


p	1=p � 

f jW l

p .R
nC/


 (3.98)

is an equivalent norm on W l
p .R

nC/.
(iii) Let s D l C � with l 2 N0 and 0 < � < 1. Then

kf jW s
2 .R

nC/k�

D
� X

j˛j�l
kD˛f jL2.RnC/k2 C

X
j˛jDl

Z
Rn

C

Z
Rn

C

jD˛f .x/ � D˛f .y/j2
jx � yjnC2� dx dy

�1=2
� kf jW s

2 .R
nC/k (3.99)

is an equivalent norm on W s
2 .R

nC/.

Proof. Step 1. Let Zn be as in Section A.1 and let f m W m 2 Zng be a related
resolution of unity in Rn with respect to suitable congruent balls Km centred at
m 2 Zn in adaption of (2.53)–(2.57) where we may assume  m.x/ D  .x �m/,
m 2 Zn, x 2 Rn. Hence

 m 2 D.Km/; 0 �  m � 1;
X
m2Zn

 m.x/ D 1 if x 2 Rn; (3.100)

see the left-hand side of Figure 3.2 below.
Consequently,

f jC l.RnC/

 � sup

m2Zn



 mf jC l.RnC/

; f 2 C l.RnC/: (3.101)

Furthermore one gets by Proposition 2.18 and iterates that

f jW l
p .R

n/


 � � X

m2Zn



 mf jW l
p .R

n/


p	1=p; f 2 W l

p .R
n/: (3.102)
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Zn

Km

Rn�1

xn

m
Zn
0

Km 2 Zn
0

xn

Figure 3.2

We decompose the lattice Zn into finitely many sub-lattices

Zn D
J[
jD0

Zn
j ; Zn

0 D fx 2 Rn W x DMm; m 2 Zng;

Zn
j D m.j / CZn

0; j D 1; : : : ; J;
(3.103)

whereM 2 N andm.j / 2 Zn with j D 1; : : : ; J , are suitably chosen, see the right-
hand side of Figure 3.2. In particular, balls Km belonging to the same sub-lattice
Zn
j have pairwise distance of, say, at least 1. Then one obtains a corresponding

decomposition for the resolution of unity (3.100),

 .j /.x/ D
X
m2Zn

j

 m.x/;

JX
jD0

 .j /.x/ D 1; x 2 Rn; (3.104)

and as in (3.102),



f jW l
p .R

n/


 � JX

jD0



 .j /f jW l
p .R

n/


; f 2 W l

p .R
n/: (3.105)

This localises the extension problem and leads, in particular, to

f jW l
p .R

nC/


 � � X

m2Zn



 mf jW l
p .R

nC/


p	1=p; f 2 W l

p .R
nC/: (3.106)

Step 2. By Step 1 it is sufficient to extend functions f in RnC with

suppf � fy 2 Rn W jyj < 1; yn � 0g (3.107)
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to Rn. Let �1 < �2 < 	 	 	 < �LC1 < �1 and

�
extL f

�
.x/ D

‚
f .x/; xn � 0;
LC1X
kD1

akf .x
0; �kxn/; xn < 0;

(3.108)

for x D .x0; xn/ 2 Rn. If xn < 0,
then �kxn > 0; hence (3.108) makes
sense, see Figure 3.3 aside.

Let f 2 C l.RnC/. We want to choose
the coefficients ak , k D 1; : : : ; LC1,
in such a way that extL f 2 C l.Rn/.
For that reason one has to care for
the derivatives in the xn-direction at
xn D 0. Since

x0 0

�2xn

�1xn

1 Rn�1

xn

xn

suppf�LC1xn

x

Figure 3.3

lim
xn#0

@r

@xrn

�
extL f

�
.x/ D lim

xn#0
@rf

@xrn
.x/ D @rf

@xrn
.x0; 0/; r D 0; : : : ; L; (3.109)

and

lim
xn"0

@r

@xrn

�
extL f

�
.x/ D lim

xn"0

LC1X
kD1

ak�
r
k

@rf

@yrn
.x0; �kxn/

D @rf

@xrn
.x0; 0/

LC1X
kD1

ak�
r
k; r D 0; : : : ; L;

(3.110)

the coefficients have to satisfy

LC1X
kD1

ak�
r
k D 1; r D 0; : : : ; L: (3.111)

We can always choose the ak’s appropriately since Vandermonde’s determinant,ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
1 1 : : : 1

�1 �2 : : : �LC1
:::

:::
:::

�L1 �L2 : : : �LLC1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ D

Y
k>`

.�k � �`/ (3.112)
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is different from zero. In particular, extL f 2 C l.Rn/,

 extL f jC l.Rn/

 � c

f jC l.RnC/

 (3.113)

for some c > 0 and all f 2 C l.RnC/ with (3.107). In addition, one has

supp extL f � fy 2 Rn W jyj < 1g: (3.114)

Step 3. Let 1 � p < 1 and l 2 N with l � L. It follows from Proposition 3.39
that the restriction D.Rn/jRn

C

to RnC is dense inW l
p .R

nC/. But for smooth functions

one gets by Step 2 that

 extL f jW l
p .R

n/


 � c

f jW l

p .R
nC/


� (3.115)

for some c > 0 and l 2 N with l � L where we used (3.98). The rest is now
a matter of completion having in mind the discussion before Theorem 3.32. This
proves part (i) for W l

p and also (ii).

Step 4. Let 0 < s D k C � < L with k 2 N0 and 0 < � < 1. First we claim that
the counterpart of (3.102) is given by

f jW s

2 .R
n/


2 � X

m2Zn



 mf jW s
2 .R

n/


2

�
X
m2Zn

�

 mf jW k
2 .R

n/


2 (3.116)

C
X

j˛jDk

Z
Rn

Z
Rn

ˇ̌
D˛. mf /.x/ � D˛. mf /.y/

ˇ̌2
jx � yjnC2� dx dy

�
which can be reduced to the question whetherZ

jx�mj�c

Z
jx�yj�1

j. mg/.x/ � . mg/.y/j2
jx � yjnC2� dx dy

� c0
Z

jx�mj�c

Z
jx�yj�1

jg.x/ � g.y/j2
jx � yjnC2� dx dy C c0

Z
jx�mj�c

jg.x/j2 dx (3.117)

for some c > 0, c0 > 0. However, the old trick of calculus

. mg/.x/�. mg/.y/ D  m.y/.g.x/�g.y//Cg.x/. m.x/� m.y// (3.118)

and j m.x/� m.y/j2 � cjx�yj2 prove (3.117). By Proposition 3.39 the restric-
tions D.Rn/jRn

C

and S.RnC/ D S.Rn/jRn
C

are dense in W s
2 .R

nC/. Now we are in

the same position as in Step 3 asking for the counterpart of (3.115),

 extL f jW s
2 .R

n/


 � ckf jW s

2 .R
nC/k� (3.119)
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for compactly supported C1 functions as in Figure 3.3. Compared with the pre-
ceding steps it remains to prove thatZ

Rn

Z
Rn

jD˛.extL f /.x/ � D˛.extL f /.y/j2
jx � yjnC2� dx dy

� c
Z

Rn
C

Z
Rn

C

jD˛f .x/ � D˛f .y/j2
jx � yjnC2� dx dy: (3.120)

Let x D .x0; xn/ and y D .y0; yn/. The integration over Rn � Rn on the left-hand
side of (3.120) can be decomposed into

f.x; y/ 2 R2n W xnyn � 0g and f.x; y/ 2 R2n W xnyn < 0g: (3.121)

The corresponding parts with xnyn � 0 can be estimated from above by the right-
hand side of (3.120). As for xn > 0, yn < 0 (and, similarly, for xn < 0, yn > 0)
one has to show thatZ

Rn
C

Z
Rn

�

j1 	 D˛f .x0; xn/ �PLC1
kD1 ak�rk.D

˛f /.y0; �kyn/j2
jx � yjnC2� dx dy

� c
Z

Rn
C

Z
Rn

C

jD˛f .x/ � D˛f .y/j2
jx � yjnC2� dx dy; (3.122)

where r D j˛j with (3.111) and Rn� D fy D .y1; : : : ; yn/ 2 Rn W yn < 0g.
Replacing the factor 1 in front of D˛f .x0; xn/ by the left-hand side of (3.111) this
question can be reduced toZ

Rn
C

Z
Rn

�

jg.x0; xn/ � g.y0; �yn/j2
jx � yjnC2� dx dy � c

Z
Rn

C

Z
Rn

C

jg.x/ � g.y/j2
jx � yjnC2� dx dy

(3.123)

x0

.y0; xn/

y0

.x0; xn/

.y0; �yn/

.y0; yn/

Rn�1

Figure 3.4

with � < �1. If 0 < �yn � xn, then
0 � xn � �yn � xn � yn. If �yn > xn,
then one obtains

jxn � �ynj � j�jjynj
� j�jjxn � ynj; (3.124)

see also Figure 3.4 aside. Hence if one
replaces jx � yj2 on the left-hand side of
(3.123) by

jx0 � y0j2 C .xn � �yn/2 � jx � yj2;
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one obtains an estimate from above which results in (3.123). This proves part (i) of
the theorem and also part (iii). �

Exercise 3.42. Prove the equality in (3.112).

Hint: Develop Vandermonde’s determinant .of order L C 1/ by its last column,
determine the zeros of the corresponding polynomial and reduce by this method the
problem to the corresponding one of order L. Iterate the process.

Exercise 3.43. Justify the counterpart of (3.106) for W s
2 .R

n/, s > 0, s 62 N.

Hint: Rely on (3.48) and the arguments in (3.117).

We give a simple application of Theorem 3.41 (i) which will be of some use for
us later on.

Corollary3.44. LetW s
2 .R

nC/andW t
2 .R

nC/be the same spaces as inTheorem3.41 (i)
with 0 � s < t <1. Then there are constants c > 0 and c0 > 0 such that for all
" > 0 and all f 2 W t

2 .R
nC/,

kf jW s
2 .R

nC/k � ckf jL2.RnC/k
t�s

t kf jW t
2 .R

nC/k
s
t

� "kf jW t
2 .R

nC/k C c0 "� s
t�s kf jL2.RnC/k: (3.125)

Proof. Let extL be a common extension operator for the spaces involved. Then
(3.125) follows from Corollary 3.31 and

kf jW s
2 .R

nC/k � c


 extL f jL2.Rn/



 t�s
t


 extL f jW t

2 .R
n/


 s

t

� c0

f jL2.RnC/

 t�s
t


f jW t

2 .R
nC/


 s

t : (3.126)
�

3.5 Traces

LetC l.Rn/ andC l.RnC/with l 2 N0 be the spaces as introduced in Definition A.1,
where RnC is given by (3.95). Obviously, any f 2 C l.Rn/ or f 2 C l.RnC/ has
pointwise trace

.tr� f /.x/ D f .x0; 0/ (3.127)

on
� D fx D .x0; xn/ 2 Rn W xn D 0g: (3.128)

If C l.Rn/ � S 0.Rn/ and C l.RnC/ � D 0.RnC/ are considered as distributions, then
(3.127) means that the trace is taken for the distinguished (and unique) represen-
tative of the corresponding equivalence class Œf �. But this point of view can be
extended to the Sobolev spaces considered so far, W k

p .R
n/, W k

p .�/ according to
Definitions 3.1, 3.37, and H s.Rn/, W s

2 .R
n/ according to Definitions 3.13, 3.22
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and Theorem 3.24. In other words, one may ask whether there are distinguished
representatives of elements (equivalence classes) of some of these spaces for which
(3.127), (3.128) make sense. In this context one may also consult Note 4.6.3. As
a first, but not very typical example may serve the Sobolev embedding in Theo-
rem 3.32, Exercise 3.34, where the distinguished representatives of f 2 W s

2 .R
n/

according to (3.81), (3.82), (3.85) have (pointwise) traces according to (3.127),
(3.128). It is usual to adopt an easier and slightly different approach (resulting in
the same traces as indicated).

Let A.Rn/ or A.RnC/ be one of the above spaces, for example W 1
p .R

nC/, and
let S.RnC/ D S.Rn/jRn

C

be again the restriction of S.Rn/ to RnC. Then one asks

whether there is a constant c > 0 such that

k'jLp.�/k � ck'jA.RnC/k for all ' 2 S.RnC/; (3.129)

and an obvious counterpart for A.Rn/ and ' 2 S.Rn/. Assuming that S.RnC/ is
dense inA.RnC/ one approximatesf 2 A.RnC/ by'j 2 S.RnC/where j 2 N. If one
has (3.129), then f'j .x0; 0/g1jD1 is a Cauchy sequence in Lp.�/. Its limit element
is called the trace of f 2 A.RnC/ and denoted by tr� f 2 Lp.�/. Completion
implies

k tr� f jLp.�/k � ckf jA.RnC/k; f 2 A.RnC/; (3.130)

and
tr� W A.RnC/ ,! Lp.�/ (3.131)

is a linear and bounded operator. By (3.129) the resulting trace tr� f 2 Lp.�/ is
independent of the approximating sequence f'j g1jD1 � S.RnC/. Later on we deal

in detail with traces of spaces W k
p .�/ and H s.�/ D W s

2 .�/ on the boundary @�
of boundedC1 domains in Rn. At this moment we are more interested in the above
description of the trace problem which will now be exemplified by having a closer
look at the spaces W 1

p .R
nC/ and W 1

p .R
n/.

Theorem 3.45. Let n � 2, 1 � p < 1, and let W 1
p .R

n/ and W 1
p .R

nC/ be the
spaces according to the Definitions 3.1 and 3.37 with� D RnC, respectively. Let �
be as in (3.128). Then the trace operators,

tr� W W 1
p .R

n/ ,! Lp.�/; (3.132)

and
trC
� W W 1

p .R
nC/ ,! Lp.�/; (3.133)

exist and one has for some c > 0,

k tr� f jLp.�/k � ckf jW 1
p .R

n/k; f 2 W 1
p .R

n/; (3.134)
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and

k trC
� f jLp.�/k � ckf jW 1

p .R
nC/k; f 2 W 1

p .R
nC/: (3.135)

Furthermore,

tr� f D trC
� g for f 2 W 1

p .R
n/ and g D f jRn

C

: (3.136)

Proof. Step 1. Let f 2 C 1.RnC/ be real and assume

0x0

xn

Rn�1

x

Figure 3.5

suppf � fx 2 RnC W jxj < 1g: (3.137)

For fixed x0 2 Rn�1, jx0j < 1, we may choose

 D 
.x0/ 2 Œ0; 1� such that

1Z
0

f .x0; xn/dxn D f .x0; 
/: (3.138)

Then one obtains by Hölder’s inequality

jf .x0; 0/jp D
ˇ̌̌̌
f .x0; 
/ �

�Z
0

@f

@xn
.x0; xn/ dxn

ˇ̌̌̌p

� c
1Z
0

�
jf .x0; xn/jp C

ˇ̌̌̌
@f

@xn
.x0; xn/

ˇ̌̌̌p�
dxn: (3.139)

Integration over x0 2 Rn�1 gives (3.135) where one may use (3.98). This inequality
can be extended to complex-valued functions f 2 C 1.RnC/ with (3.137). Recall
that S.RnC/ is dense in W 1

p .R
nC/ according to Proposition 3.39. Then the above

approximation procedure with (3.130) is a consequence of (3.129), and the decom-
position argument (3.106) together with its obvious counterpart for Lp.�/ proves
(3.135).

Step 2. The above arguments cover also (3.134) and one obtains as a by-product
(3.136). �

Remark 3.46. Obviously one can replace W 1
p .R

n/ in (3.134), (3.135) by W l
p .R

n/

with l 2 N and, if p D 2, by W s
2 .R

n/ with s � 1. We refer later on in Section 4.5
to traces of W s

2 .�/ spaces on the boundary @�. Then it comes out that (3.134),
(3.135) with p D 2 remains valid even for s > 1

2
.
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3.6 Notes

3.6.1. It is not the aim of Chapters 3 and 4 to develop the theory of Sobolev spaces
(or even more general spaces) for their own sake. We restrict ourselves to those
topics which are needed later on, that is, we concentrate preferably on the Hilbert
spaces W s

2 on Rn and RnC with s > 0 (Chapter 3) and on bounded C1 domains �
and their boundaries � D @� (Chapter 4). On the other hand, if no additional effort
is needed or if it is simply more natural, then we adopt(ed) a wider point of view.
This applies to the spaces H s.Rn/ which we introduced in Definition 3.13 for all
s 2 R, though we are mainly interested in the case s � 0 where they coincide with
the spacesW s

2 .R
n/ according to Definition 3.22, Theorem 3.24 and Corollary 3.25.

Similarly, the classical Sobolev spaces W k
p .R

n/ have been introduced in (3.1) for
all p, 1 � p < 1 (and k 2 N0) though the Fourier-analytical characterisation of
interest, (3.31), is restricted to p D 2. One may ask to which extent these assertions
and also the descriptions in terms of differences according to (3.48) and (3.74) have
counterparts if L2 is replaced by Lp . It is not the subject of this book and will not
be needed later on, but it seems reasonable to add a few relevant comments. One
may also consult Appendix E for further information.

First we extend H s.Rn/ in (3.30) by

H s
p .R

n/ D ff 2 S 0.Rn/ W F �1.wsF f / 2 Lp.Rn/g (3.140)

from p D 2, s 2 R, to 1 < p < 1, s 2 R, where ws is given by (3.23). (Recall
that in case of p D 2 one has (2.162) both for F and F �1.) Nowadays it is quite
usual to call H s

p .R
n/, naturally normed by

kf jH s
p .R

n/k D kF �1.wsF f /jLp.Rn/k; (3.141)

Sobolev spaces, where the notation classical Sobolev spaces is reserved for the
spacesW k

p .R
n/ as introduced in Definition 3.1. The crucial assertion (3.31) can be

generalised to

H k
p .R

n/ D W k
p .R

n/; 1 < p <1; k 2 N0: (3.142)

In contrast to (3.31) which is an easy consequence of the observation that F and
F �1 are unitary operators in L2.Rn/, (3.142) relies on the Michlin–Hörmander
Fourier multiplier theorem in Lp.Rn/, 1 < p < 1, which is much deeper. It
says that there is a constant c > 0 such that for all m 2 C l.Rn/ according to
Definition A.1 with l 2 N, l > n

2
(one may choose the smallest l with this property,

l D Œn
2
�C 1) and all f 2 Lp.Rn/,

kF �1.mF f /jLp.Rn/k � c sup
x2Rn

sup
j˛j�l
jxj˛jD˛m.x/jkf jLp.Rn/k: (3.143)
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A proof of (a vector-valued version of) (3.143), comments and references may
be found in [Tri78, Section 2.2.4]. Taking (3.143) for granted the justification of
(3.142) is not complicated.

What about Lp counterparts of (3.48), (3.74) (and of (3.50), (3.47)) and also of
Theorem 3.24? It turns out that the situation is now more complicated and it seems
to be reasonable to say what is meant by the classical Besov spacesBsp;q.R

n/, where
s > 0, 1 � p � 1, 1 � q � 1. Let �m

h
be the differences according to (3.41)

and let for 0 < s < m 2 N,

kf jBsp;q.Rn/km D kf jLp.Rn/k C
� Z

jhj�1
jhj�sqk�mh f jLp.Rn/kq

dh

jhjn
�1=q
(3.144)

when q <1, modified by

kf jBsp;1.Rn/km D kf jLp.Rn/k C sup
jhj�1
jhj�sk�mh f jLp.Rn/k: (3.145)

In particular, with C s.Rn/ D Bs1;1.Rn/, s > 0,

kf jC s.Rn/km D kf jC.Rn/k C sup
jhj�1

sup
x2Rn

jhj�sj�mh f .x/j: (3.146)

Then
Bsp;q.R

n/ D ff 2 Lp.Rn/ W kf jBsp;q.Rn/km <1g: (3.147)

These spaces are independent of m (in the sense of equivalence of norms) in gen-
eralisation of the Exercises 3.21, 3.27, 3.29, but with the same hints. Similarly as
in (3.48), (3.67), (3.68) one can replace some differences in (3.144) by derivatives.
In particular,

Bsp;p.R
n/ with 1 < p <1; s D k C �; k 2 N0; 0 < � < 1; (3.148)

can be equivalently normed by

f jBsp;p.Rn/

�

D kf jW k
p .R

n/k C
X

j˛jDk

�“
R2n

jD˛f .x/ � D˛f .y/jp
jx � yjnC�p dx dy

�1=p
: (3.149)

In generalisation of Theorem 3.24 it seems to be natural to ask whether the above
Sobolev spaces H s

p .R
n/ and the special Besov spaces Bsp;p.R

n/ coincide. But this
is not the case whenever p ¤ 2. More precisely, for given s > 0 and 1 < p <1,
then

Bsp;p.R
n/ D H s

p .R
n/ if, and only if, p D 2: (3.150)
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It should be mentioned that the spacesBsp;p.R
n/with (3.148) had been introduced in

the late 1950s, denoted asW s
p .R

n/ and called Slobodeckij spaces. But the notation
W s
p .R

n/ is slightly dangerous as it seems to suggest that W s
p .R

n/ D Bsp;p.R
n/

naturally fill the gaps between the classical Sobolev spaces W k
p .R

n/, k 2 N0.
However, this is not the case if p ¤ 2, also for structural reasons we are going
to discuss now. The natural extension of classical Sobolev spaces W s

p .R
n/ with

s D k 2 N0 to arbitrary s 2 R are the Sobolev spaces H s
p .R

n/ in good agreement
with (3.142).

3.6.2. Two (complex) Banach spaces B1 and B2 are called isomorphic, written as
B1 � B2, if there is a linear and bounded one-to-one map T of B1 onto B2 such
that

kT bjB2k � kbjB1k; b 2 B1 (3.151)

(equivalent norms). Then the inverse T �1 maps B2 isomorphically onto B1. Let,
as usual, p̀ , 1 � p � 1, be the Banach space of all sequences b D fbj g1jD1 with
bj 2 C, j 2 N, such that

kbj p̀k D
� 1X
jD1
jbj jp

	1=p
<1 (3.152)

if p <1, modified by
kbj`1k D sup

j2N
jbj j <1: (3.153)

All Hilbert spaces in the Chapters 3 and 4 are complex and separable and, hence,
isomorphic to `2. This applies especially to the spaces H s.Rn/ in Definition 3.13,
Proposition 3.17 and hence toW s

2 .R
n/ in Corollary 3.25, but also to their restrictions

to boundedC1 domains� in Rn, and to� D @� as considered in Chapter 4 below.
If p ¤ 2, then the situation is different.

Let I D .0; 1/ D ft 2 R W 0 < t < 1g be the open unit interval in R. We collect
some isomorphic relations betweenLp spaces and p̀ spaces going back essentially
to the famous book by S. Banach [Ban32, Chapter 12]:

.L1/ Let � be an arbitrary domain in Rn and let 1 < p <1. Then

Lp.�/ � Lp.I /:

.LL/ Let 1 < p0 <1, 1 < p1 <1. Then

Lp0
.I / � Lp1

.I / if, and only if, p0 D p1:

(``) Let 1 � p0 � 1, 1 � p1 � 1. Then

p̀0
� p̀1

if, and only if, p0 D p1:
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(L`) Let 1 < p0 <1, 1 < p1 <1. Then

Lp0
.I / � p̀1

if, and only if, p0 D p1 D 2:

We followed essentially [Tri78, Section 2.11.1] where one finds the necessary ref-
erences, especially to the original literature. A more recent account on problems of
this type has been given in [AK06]. The isomorphic structure ofH s

p .R
n/ in (3.140),

of Bsp;p.R
n/ in (3.148), and of C s.Rn/ normed by (3.146) is the following:

.H/ Let 1 < p <1 and s 2 R. Then

H s
p .R

n/ � Lp.I /:

.B/ Let 1 < p <1 and s > 0. Then

Bsp;p.R
n/ � p̀:

.C/ Let s > 0. Then
C s.Rn/ � `1:

We refer to [Tri78, Section 2.11.2, pp. 237–240, and p. 343], and, more recently, to
[Tri06, Section 3.1.4, p. 157] where one also finds further isomorphic assertions,
comments, and references to the (original) literature. In particular, in view of .L`/,
.H/ and .B/, the spaces H s

p .R
n/ and Bsp;p.R

n/ belong to different isomorphic
classes (unless p D 2) which sheds some new light on (3.150).

3.6.3. The spaces on Rn and RnC considered in this Chapter 3 and also their restric-
tions to domains� and to the related boundaries @�, treated in Chapter 4, including
H s
p , Bsp;q , C s mentioned above, are special cases of the two scales of spaces

Bsp;q; F
s
p;q; where 0 < p � 1; 0 < q � 1; s 2 R; (3.154)

(p < 1 for F -spaces) which are subject of several books and many papers, es-
pecially of [Tri78], [Tri83], [Tri92b], [Tri06]. We refer, in particular, to [Tri92b,
Chapter 1] and to [Tri06, Chapter 1] which are historically oriented surveys from
the roots up to our time. There one finds many references and discussions, includ-
ing the classical spaces treated in the present book. This will not be repeated here,
but we wish to mention the outstanding Russian contributions subject to [BIN75],
[Maz85], [Nik77], [Sob91]. Here we are mainly interested in Sobolev spaces.
There are several books devoted especially to diverse aspects of Sobolev spaces on
Rn and in domains. We refer, in particular, to [AF03], [Bur98], [Maz85], [Zie89].
In Appendix E we recall briefly the formal definitions of the spaces in (3.154),
complemented by a few properties mentioned in diverse Notes in this book. We list
some special cases covering especially the spaces mentioned in Notes 3.6.1, 3.6.2.
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3.6.4. In the Sections 3.4, 3.5 we dealt with extensions and traces in connection
with RnC. Both topics deserve to be commented. But we return in Chapter 4 to
these outstanding problems in connection with bounded C1 domains and shift
some discussion and also references to the Notes in Section 4.6.

3.6.5. We wish to discuss a peculiar point in connection with the ‘sinister’ rôle
played by the differences �m

h
according to (3.41) in (3.44), (3.47), (3.67), (3.68),

(3.74), but also in (3.144), (3.146). One may have the impression that the more
handsome first differences are sufficient as in (3.44) and (3.149). This is also largely
correct as long as 0 < s 62 N. But if s 2 N, then one needs at least second dif-
ferences �2

h
. This has been observed 1854 in connection with the above spaces

C1.Rn/ D B11;1.Rn/ (different from C 1.Rn/ being a genuine subset of C1.Rn/)
more than 150 years ago by B. Riemann in his Habilitationsschrift (German, mean-
ing habilitation thesis) [Rie54] and has again been treated by A. Zygmund 1945
in [Zyg45]. More details may be found in [Tri01, Section 14.5, pp. 225/226]. A
log-term is coming in which is rather typical for the recent theory of envelopes of
spaces of this type which may be found in [Har07] and the references given there.



Chapter 4

Sobolev spaces on domains

4.1 Basic definitions

For arbitrary domains � in Rn we introduced in Definition A.1 the spaces C `.�/
where ` 2 N0 or ` D1, in Definition 3.37 the spaces

W k
p .�/; 1 � p <1; k 2 N0; (4.1)

and

W s
2 .�/; s � 0: (4.2)

Recall that domain means open set. Plainly,W s
2 .�/ in (4.2) coincides withW k

p .�/

in (4.1) when s D k 2 N0, p D 2. Proposition 3.39 implies that W s
2 .�/, s � 0,

are Hilbert spaces. We wish to extend Theorem 3.41 from RnC to domains. But
this is not possible for arbitrary domains. One needs some specifications. We
rely on bounded C ` domains in Rn and, especially, on bounded C1 domains in Rn

according to Definition A.3. Recall that by definitionC ` domains andC1 domains
are, in particular, connected open sets. We complement Definition A.3, Remark A.4
and Figure A.1 as follows.

Let� be a bounded C1 domain in Rn and let the ballsKj with j D 1; : : : ; J ,
form a suitable covering as in (A.11). Then there are diffeomorphic C1 maps
(curvilinear coordinates)

y D  .j /.x/ W Kj ” Vj D  .j /.Kj /; j D 1; : : : ; J; (4.3)

such that

 .j /.Kj \�/ � RnC;  .j /.Kj \ @�/ � Rn�1; (4.4)

as indicated in Figure 4.1 below.

 .j /

�
 .j /

��1�

@�
Vj

y

y0
 .j / .@� \Kj /

Rn�1

 .j /.� \Kj /Kj

Figure 4.1
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One may assume that Vj is simply connected and that the upper boundary of
 .j /.Kj \ �/ can be described by yn D 
 .j /.y0/, where 
 .j / is a C1 function.
In the canonical situation as sketched in Figure A.1 together with (A.12) one may
choose y0 D x0 and yn D xn � h.x0/ locally. For our later purpose the fibre-
preserving specification of (4.3) as indicated in Figure 4.2 is of some use:

 .j /

�
 .j /

��1�

@�
 .j /.z/ Rn�1

Kjz

�z

Figure 4.2

Here the inner normal directions �z with z 2 @� \ Kj are mapped in normal
yn-directions with the foot-points  .j /.z/.

4.2 Extensions and intrinsic norms

We are looking for the counterpart of Theorem 3.41 with bounded C1 domains�
in place of RnC. One can rely largely on the techniques developed so far.

Kj

�0
�

Figure 4.3

Let Kj with j D 1; : : : ; J be the same balls
as in Definition A.3 and in the preceding
Section 4.1. Let �0 be an inner domain with
�0 � � as indicated in Figure 4.3 aside;
hence

@� �
J[
jD1

Kj

and � � �0 [
� J[
jD1

Kj

	
:

(4.5)

Let f'j gJjD0 be a related resolution of unity of x� according to Section 2.4, hence
'j are non-negative functions with

'0 2 D.�0/; 'j 2 D.Kj /; j D 1; : : : ; J; (4.6)

and
JX
jD0

'j .x/ D 1 if x 2 x�: (4.7)
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Let  .j / be the diffeomorphic maps (4.3). As in (3.96), (3.97) we ask for
(common) extension operators extL�, where L 2 N, such that

extL� W

‚
C `.�/ ,! C `.Rn/; ` D 0; : : : ; L;
W `
p .�/ ,! W `

p .R
n/; ` D 0; : : : ; L; 1 � p <1;

W s
2 .�/ ,! W s

2 .R
n/; 0 < s < L;

(4.8)

with
extL� f j� D f: (4.9)

The understanding of (4.8), (4.9) is the same as the corresponding one for (3.97)
with � in place of RnC.

Theorem 4.1. Let � be a bounded C1 domain in Rn and let C `.�/, W `
p .�/,

W s
2 .�/ be the spaces recalled in Section 4.1.

(i) For any L 2 N there are extension operators extL� according to (4.8), (4.9).

(ii) Let 1 � p <1 and ` 2 N0. Then

kf jW `
p .�/k� D

� X
j˛j�`
kD˛f jLp.�/kp

	1=p � kf jW `
p .�/k (4.10)

is an equivalent norm in W `
p .�/.

(iii) Let 0 < s D � C ` with ` 2 N0 and 0 < � < 1. Then

f jW s
2 .�/



� (4.11)

D
� X

j˛j�`
kD˛f jL2.�/k2 C

X
j˛jD`

“
���

jD˛f .x/ � D˛f .y/j2
jx � yjnC2� dx dy

�1=2
� kf jW s

2 .�/k
is an equivalent norm in W s

2 .�/.

Proof. Let f'j gJjD0 be the resolution of unity according to (4.5)–(4.7) and let

f .j /gJjD1 be the diffeomorphic maps as described in (4.3) and Figure 4.1. We
are essentially in the same position as in the proof of Theorem 3.41. It follows from
Proposition 3.39 that it is sufficient to extend smooth functions f from � to Rn

and to control the norms of the corresponding spaces C `, W `
p and W s

2 . Again we
decompose f according to (4.6), (4.7), hence

f .x/ D '0.x/f .x/C
JX
jD1

'j .x/f .x/; x 2 �; (4.12)
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where the term '0f can be extended outside of � by zero.

Wj

suppgj

Vj

supp extL gj
�

� D @� .y/.x/

supp'jf

�
 .j /

��1
 .j /

yn

�LC1yn

�1yn

Kj

�j

Figure 4.4

The functions 'jf have supports as indicated in Figure 4.4. Using the C1 diffeo-
morphisms  .j / according to (4.3), (4.4) and Figure 4.1 one obtains functions

gj .y/ D .'jf / B . .j //�1.y/; j D 1; : : : ; J; (4.13)

to which Theorem 3.41 can be applied. The procedure as indicated in Figure 3.3
and according to Step 2 of the proof of Theorem 3.41 results in functions

extL gj with supp.extL gj / � Vj D  .j /.Kj /: (4.14)

Returning to the x-variables one gets functions

hj .x/ D .extL gj / B  .j /.x/; supp hj � Kj ; hj j� D 'jf (4.15)

with the desired properties, assuming, in addition, that we put hj .x/ D 0 if x 2
Rn nKj . Then

extL� f D '0f C
JX
jD1

hj (4.16)

is the extension operator we are looking for. Since everything is reduced to the
RnC -case one obtains (4.10) from (3.98) by standard arguments which are also
the subject of Exercise 4.3 below. Transformation of (3.99) gives (4.11), but withP

j˛j�` also in the terms with respect to the integration over � � �. However, if
` 2 N, then Corollary 3.44 implies that

kf jW `�1C�
2 .�/k � ckf jW `

2 .�/k: (4.17)

This shows that the disturbing terms with j˛j < ` in the integration over��� can
be incorporated in the first sum in (4.11). �

Exercise 4.2. Let � D K1=2.0/ � Rn, k 2 N0, 1 � p <1.
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(a) Let ˛ 2 R and g˛.x/ D jxj˛ , x 2 Rn. Show that

g˛ 2 W k
p .�/ if, and only if,

(
either ˛ D 2r; r 2 N0;

or ˛ > k � n
p
:

Hint: Show that for ˛ ¤ 2r with r 2 N0,

j�mg˛.x/j � jxj˛�2m; and
nX

jD1

ˇ̌̌̌
@

@xj
�mg˛.x/

ˇ̌̌̌
� jxj˛�2m�1; m 2 N;

where � D Pn
jD1 @2

@x2
j

, as usual. Use (1.12)–(1.14). Compare it with Exer-

cise 3.29 (b).

(b) Let ‚ D .�1; 1/� .�1; 1/ D f.x1; x2/ 2 R2 W jx1j < 1; jx2j < 1g � R2, and

u.x1; x2/ D
(
1 � jx1j if jx2j < jx1j;
1 � jx2j if jx1j < jx2j;

as indicated in Figure 4.5 below. Show that u 2 W 1
p .‚/ for 1 � p <1.

Hint: Use (2.44) and Exercise 2.17 (b) extended to R2.

u.x1; x2/

x1�1

1

x2

�1

1

Figure 4.5

Exercise 4.3. A continuous one-to-one map of Rn onto itself,

y D  .x/ D . 1.x/; : : : ;  n.x//;
x D  �1.y/ D . �1

1 .y/; : : : ;  �1
n .y//;

(4.18)

is called a diffeomorphism if all components  j .x/ and  �1
j .y/ are real C1 func-

tions on Rn and for j D 1; : : : ; n,

sup
x2Rn

.jD˛ j .x/j C jD˛ �1
j .x/j/ <1 for all ˛ 2 Nn

0 with j˛j > 0: (4.19)
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Extend consistently the composition

f 7! f B  (4.20)

from functions to distributions f 2 S 0.Rn/. Let A.Rn/ be one of the spaces
C `.Rn/,W `

p .R
n/,W s

2 .R
n/ as in (4.8). Prove that (4.20) is a linear and isomorphic

map of A.Rn/ onto A.Rn/. Show that (4.20) maps also S.Rn/ onto itself, and
S 0.Rn/ onto itself.

Hint: Concerning the extension of the composition f B  to S 0.Rn/ the Jacobian
should appear. In case of W `

p .R
n/ and W s

2 .R
n/ one may use the density of S.Rn/

in these spaces.

Exercise 4.4. Let � be a bounded C1 domain in Rn and let

! D  .�/ D fy 2 Rn W there exists an x 2 � with y D  .x/g; (4.21)

where  is the above diffeomorphism. Let A.�/ be one of the spaces C `.�/,
W `
p .�/, W

s
2 .�/ as in (4.8). Prove that (4.20) is a linear and isomorphic map of

A.!/ onto A.�/.

Remark 4.5. In modification of fibre-preserving maps as indicated in Figure 4.2
the following version of the extension procedure will be of some use. If " > 0 is
sufficiently small, then the strip

S" D fx 2 Rn W there exists a y 2 @� with jx � yj < "g; (4.22)

in Figure 4.6 below around the boundary @� of the above bounded C1 domain�
can be furnished at least locally with curvilinear C1 coordinates

� D .� 0; �n/ where � 0 D .�1; : : : ; �n�1/ 2 @�; j�nj < "; (4.23)

�

� 0

@�
�� 0

S"

Figure 4.6

and �n measures the distance to @� along theC1
normal vector field �� 0 (or any other non-trivial,
non-tangential C1 vector field on @�). Also the
resolution of unity in (4.6) can be adapted assum-
ing that 'j 2 D.Kj /, j D 1; : : : ; J , is given by

'j .�/ D '0
j .�

0/'j;n.�n/;

'0
j 2 D.Kj \ @�/;

(4.24)

and 'j;n 2 D..�"; "// with 'j;n.�n/ D 1 when
j�nj < "=2.

Afterwards one can repeat the above extension procedure as indicated in Figure 4.4
with the (local) curvilinear C1 coordinates .� 0; �n/ in place of .y0; yn/.
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Recall that D.Rn/j� and S.�/ D S.Rn/j� are the restrictions of D.Rn/ and
S.Rn/ to �, respectively, as in Proposition 3.39.

Corollary 4.6. Let� be a bounded C1 domain in Rn and let L 2 N. Let C `.�/,
W `
p .�/ and W s

2 .�/ be the same spaces as in (4.8) and Theorem 4.1. Then

D.Rn/j� D S.�/ and CL.�/ (4.25)

are dense in these spaces.

Proof. By Proposition 3.39 both D.Rn/j� and S.�/ are dense in W `
p .�/ and

W s
2 .�/. Since � is bounded these two sets coincide. By Theorem 4.1 any f 2

C `.�/ is the restriction of

g D extL� f 2 C `.Rn/ with suppg compact: (4.26)

By the same mollification argument as in the proof of Proposition 2.7 one can
approximate g in C `.Rn/ by functions belonging to D.Rn/. In particular, S.�/ is
dense in C `.�/ and, as a consequence,

CL.�/ � W `
p .�/; CL.�/ � W s

2 .�/; (4.27)

which completes the proof. �

Exercise* 4.7. Let ` 2 N, 1 � p <1. Prove that for bounded C 1 domains � in
Rn the counterpart of Theorem 3.3 .for � D Rn/ is not true, that is, D.�/ is not
dense in W `

p .�/.

Hint: First reduce the situation toW 1
1 .�/ as a consequence of Hölder’s inequality.

Choose u � 1 on� and show that there is some positive constant c .depending on
� only/ such that

ku � 'jW 1
1 .�/k � c for all ' 2 D.�/:

Exercise* 4.8. (a) Let � D .0; 1/ be the unit interval in R. Prove Poincaré’s
inequality in W 1

p .�/, 1 � p <1, i.e.,

kujLp.�/k � ku0jLp.�/k for all u 2 W 1
p .�/ with

Z
�

u.x/dx D 0: (4.28)

Hint: Integrate u.x/ � u.y/ D R x
y
u0.z/dz over y and apply Hölder’s inequality.

(b) Show that (4.28) does not hold for � D R.

Hint: Construct odd functions uk , k 2 N, with kukjLp.R/k D 1 and
ku0
k
jLp.R/k ! 0 for k !1.
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4.3 Odd and even extensions

Our later considerations of elliptic equations in bounded C1 domains � in Rn

rely at least partly on subspaces and traces of W s
2 .�/ on @�. This section may be

considered as a preparation, but also as a continuation of the preceding section.
The boundary� D @�of a boundedC1 domain� in Rnwill be furnished in the

usual naïve way with a surface measure d� as used in SectionA.3 in connection with
integral formulas and in Section 1. The corresponding complex-valued Lebesgue
spaces Lp.�/, where 1 � p <1, are normed by

kgjLp.�/k D
�Z
�

jg.	/jp d�.	/

�1=p
: (4.29)

Let A.�/ be one of the spaces covered by Corollary 4.6. Then one can look for
traces of f 2 A.�/ on � by the same type of reasoning as in Section 3.5. Since
S.�/ is dense in A.�/ one asks first whether there is a constant c > 0 such that

k'jLp.�/k � ck'jA.�/k for all ' 2 S.�/: (4.30)

If this is the case, then one defines tr� f 2 Lp.�/ for f 2 A.�/ by completion
and obtains

k tr� f jLp.�/k � ckf jA.�/k; f 2 A.�/; (4.31)

for the linear and bounded trace operator

tr� W A.�/ ,! Lp.�/: (4.32)

All this must be done in the understanding as presented in Section 3.5. Parallel to
our discussion in Section 3.5 in connection with Theorem 3.45 one finds that A.�/
can be replaced by A.Rn/ in (4.32) with the same outcome (as a consequence of
the density assertions in Corollary 4.6). In Section 4.5 we shall deal with traces of
W s
2 .�/ in detail. Here we discuss some consequences of Section 3.5.

Let W `
p .�/ with ` 2 N and 1 � p < 1 be the classical Sobolev spaces

as introduced in Definition 3.37 where � is again a bounded C1 domain in Rn.
Combining the decomposition technique of Section 4.2 with Theorem 3.45 it follows
that the spaces W `

p .�/ with ` 2 N have traces on � D @�,

tr� W W `
p .�/ ,! Lp.�/; ` 2 N; 1 � p <1; (4.33)

and
k tr� f jLp.�/k � ckf jW `

p .�/k; f 2 W `
p .�/: (4.34)

Furthermore, by the discussion in Remark 4.5,

@f

@�
2 W `�1

p .S" \�/ with f 2 W `
p .�/; ` 2 N; (4.35)
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makes sense. Taking the trace, (4.33), (4.34) imply that

tr�
@

@�
W W `

p .�/ ,! Lp.�/; ` 2 N; ` � 2; 1 � p <1; (4.36)

and

k tr�
@f

@�

ˇ̌
Lp.�/k � ckf jW `

p .�/k; f 2 W `
p .�/; (4.37)

are well-defined traces. In particular, the following definitions make sense.

Definition 4.9. Let � be a bounded C1 domain in Rn and let 1 � p <1.

(i) Then
W 2
p;0.�/ D ff 2 W 2

p .�/ W tr� f D 0g; (4.38)

and w2p;0.�/ is the completion of

ff 2 C 2.�/ W tr� f D 0g (4.39)

in W 2
p .�/.

(ii) Then

W 2;0
p .�/ D



f 2 W 2

p .�/ W tr�
@f

@�
D 0

�
; (4.40)

and w2;0p .�/ is the completion of

f 2 C 2.�/ W tr�

@f

@�
D 0

�
(4.41)

in W 2
p .�/.

Remark 4.10. In view of the above discussion and Corollary 4.6 the definitions
are reasonable. Furthermore, W 2

p;0.�/, W
2;0
p .�/ as well as w2p;0.�/, w

2;0
p .�/ are

closed subspaces of W 2
p .�/. Corollary 4.6 and the discussion about traces imply

w2p;0.�/ � W 2
p;0.�/ and w2;0p .�/ � W 2;0

p .�/: (4.42)

One can prove that

w2p;0.�/ D W 2
p;0.�/ and w2;0p .�/ D W 2;0

p .�/ if 1 < p <1: (4.43)

But this will not be done here in general. However, in case of p D 2 we return to
(4.43) in Proposition 4.32 and Remark 4.33 below. We postpone this point for the
moment and deal with the w-spaces subject to a special extension procedure.
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x

x�

S"
@� D �

�
�

�c

Figure 4.7

We rely on Remark 4.5 and Figure 4.6 with
the outer normals � D �� 0 . Let again �c D
Rnn�. There is a one-to-one relation between
x 2 S"\�c and its mirror point x� 2 S"\ x�,

x� D x C ��;
dist.x; �/ D dist.x�; �/ � 0; (4.44)

as shown in Figure 4.7 aside.

Let � 2 D.� [ S"/ be a cut-off function with �.y/ D 1 if y 2 � [ S"=2. Then
the odd and the even extensionof f 2 C 2.�/, given by

O- ext f .x/ D
(
�.x/f .x/; x 2 �;
��.x/f .x�/; x 2 S" \�c ;

(4.45)

and

E- ext f .x/ D
(
�.x/f .x/; x 2 �;
�.x/f .x�/; x 2 S" \�c ;

(4.46)

respectively, and extended by zero outside of �[ S", are well-defined. Of course,
O- ext f may be discontinuous at � and E- ext f may have discontinuous first
derivatives at � . But restricted to the spaces introduced in Definition 4.9 one
obtains the following assertion.

Theorem 4.11. Let � be a bounded C1 domain in Rn and let 1 � p <1. Then

O- ext W w2p;0.�/ ,! W 2
p .R

n/ (4.47)

and
E- ext W w2;0p .�/ ,! W 2

p .R
n/ (4.48)

are linear and bounded extension operators for the spaces indicated.

Proof. The above discussions, especially in connection with Remark 4.5, imply
that it is sufficient to deal with the same standard situation as in the proof of The-
orem 3.41, Figure 3.3 and (3.108). But this is essentially a one-dimensional affair.
Hence, let f 2 C 2.RC/ according to Definition A.1 with f .x/ D 0 if x > 1 and
RC D .0;1/ according to (3.95). Then f and its first and second derivatives f 0
and f 00 are continuous in RC D Œ0;1/.

For convenience, we deal with the odd extension only, i.e., we consider (4.47).
Let g D O- ext f be the odd extension of f according to (4.45), which in our case
may be simplified by

g.x/ D O- ext f .x/ D
(
f .x/; x > 0;

�f .�x/; x � 0:
(4.49)
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Let

zg 0.x/ D
(
f 0.x/; x > 0;

f 0.�x/; x � 0;
(4.50)

and

zg 00.x/ D
(
f 00.x/; x > 0;

�f 00.�x/; x � 0;
(4.51)

be the pointwise derivatives. The distributional derivatives are denoted byg0 andg00.
As usual, ı is the ı-distribution with respect to the origin. Then

g0 D 2f .0/ı C zg 0: (4.52)

This can be seen as follows. Let ' 2 S.R/, then integration by parts yields

g0.'/ D �g.'0/ D �
1Z
0

f .x/'0.x/dx C
0Z

�1
f .�x/'0.x/dx

D 2f .0/'.0/C
1Z
0

f 0.x/'.x/dx C
0Z

�1
f 0.�x/'.x/dx

D .2f .0/ı C zg 0/.'/: (4.53)

Since f .0/ D 0 in our case we get g0 D zg 0. As for g00 we are led in a similar way
to g00 D zg 00 since zg 0 is continuous at the origin. In particular, g 2 W 2

p .R/ and

kgjW 2
p .R/k � ckf jW 2

p .RC/k: (4.54)

This proves (4.47). The argument concerning (4.48) is similar and left to the reader.
�

Exercise 4.12. Prove (4.48).

Hint: Modify the above proof appropriately, using this time f 0.0/ D 0.

4.4 Periodic representations and compact embeddings

Let n 2 N, and

Qn D .�
; 
/n D fx 2 Rn W �
 < xj < 
; j D 1; : : : ; ng; (4.55)

as in (B.1), and
K D K1.0/ D fx 2 Rn W jxj < 1g (4.56)
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be the unit ball in Rn, see (1.30). According to Theorem B.1 any f 2 L2.Qn/ can
be represented as

f .x/ D
X
m2Zn

amhm.x/; x 2 Qn; (4.57)

where

hm.x/ D .2
/�n=2 eimx; m 2 Zn; x 2 Qn; (4.58)

is an orthonormal basis in the complex Hilbert space L2.Qn/. In particular,

kf jL2.Qn/k2 D
X
m2Zn

jamj2 where am D .2
/�n=2
Z

Qn

f .x/e�imxdx; (4.59)

are the related Fourier coefficients. With the interpretation of Qn as the n-torus T n

one can develop a theory of periodic Sobolev spacesH s.T n/, s 2 R, andW s
2 .T

n/,
s � 0, which is largely parallel to the theory of spaces H s.Rn/ and W s

2 .R
n/,

respectively, in Section 3.2. This will not be done here. A few comments may be
found in Note 4.6.5. We use expansions of type (4.57) for elements f belonging
to W s

2 .Q
n/, s � 0, according to Definition 3.37 with compact supports in Qn as a

vehicle for a more detailed study of W s
2 .�/ in bounded C1 domains � in Rn.

Theorem 4.13. Let Qn and K be given by (4.55) and (4.56). Let s � 0. Then

f 2 L2.Qn/; suppf � xK; (4.60)

belongs toW s
2 .Q

n/ if, and only if, it can be represented by (4.57)–(4.60) such that

kf jW s
2 .Q

n/kC D
� X
m2Zn

.1C jmj2/sjamj2
	1=2

<1: (4.61)

Furthermore,

kf jW s
2 .Q

n/kC � kf jW s
2 .Q

n/k (4.62)

.equivalent norms/.

Proof. It is sufficient to prove (4.62) for f 2 D.Qn/ with suppf � K. The rest
is a matter of approximation or mollification as in the proof of Corollary 4.6. Let
f 2 D.Qn/ be expanded by (4.57). Then

D˛f .x/ D
X
m2Zn

i j˛jm˛amhm.x/; x 2 Qn; (4.63)
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where ˛ 2 Nn
0 and m˛ D m˛1

1 	 	 	m˛n
n as in (A.3). For s D k 2 N0 one obtains by

Theorem 4.1 with Qn in place of � that

kf jW k
2 .Q

n/k2 D
X

j˛j�k
kD˛f jL2.Qn/k2

D
X

j˛j�k

X
m2Zn

jm˛j2jamj2

� kf jW k
2 .Q

n/k2C (4.64)

in view of suppf � K. If 0 < s < 1, then it follows again by suppf � K and
Theorem 4.1 that

f jW s

2 .Q
n/


2

D kf jL2.Qn/k2 C
Z

Qn

Z
Qn

jf .x/ � f .y/j2
jx � yjnC2s dx dy

� kf jL2.Qn/k2 C
Z

jhj�1
jhj�2s

Z
Qn

jf .x C h/ � f .x/j2 dx
dh

jhjn : (4.65)

The following estimate of the second integral in (4.65) is more or less the discrete
version of (3.65). Consequently we can proceed similarly for its evaluation, that is,

f .x C h/ � f .x/ D .2
/�n=2
X
m2Zn

am.e
imh � 1/eimx

D
X
m2Zn

am.e
imh � 1/hm.x/ (4.66)

impliesZ
jhj�1

jhj�2s
Z

Qn

jf .x C h/ � f .x/j2 dx
dh

jhjn

D
X

jmj>0
jamj2

Z
jhj�1

jhj�2sj1 � eimhj2 dh

jhjn

D
X

jmj>0
jamj2 jmj2s

Z
jhj�jmj

jhj�2sj1 � ei m
jmj
hj2 dh

jhjn (4.67)

where we replaced h by h=jmj. However, the last integral can be estimated uni-
formly in m 2 Zn n f0g from above and below by positive constants. Then (4.65)
and (4.59) prove (4.62). �
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In Corollary 3.31 and Theorem 3.32 we dealt with embeddings and "-inequali-
ties. This can be carried over immediately to spaces on domains including an
"-inequality for (3.82) using

W t
2 .R

n/ ,! W s
2 .R

n/ ,! C `.Rn/ (4.68)

if
t > s > `C n

2
(4.69)

and Corollary 3.31. But we prefer here a direct approach based on Theorem 4.13
since we need later on some technicalities of the arguments given.

Exercise 4.14. Derive an "-version of (3.82).

Hint: Use (4.68), (4.69).

We introduce temporarily�W s
2 .
xK/ D ff 2 W s

2 .Q
n/ W suppf � xKg (4.70)

as a closed subspace ofW s
2 .Q

n/, where one can replaceW s
2 .Q

n/ byW s
2 .R

n/. Here
we assume s � 0 and Qn, K as in (4.55), (4.56). Similarly, let

zC `. xK/ D ff 2 C `.Qn/ W suppf � xKg; ` 2 N0; (4.71)

with zC. xK/ D zC 0. xK/. This notation is consistent with (3.92).

Proposition 4.15. Let Qn and K be as in (4.55), (4.56). Let �W s
2 .
xK/ with s � 0

and zC `. xK/ with ` 2 N0 be as above based onW s
2 .Q

n/ and C `.Qn/ according to
Definitions 3.37 and A.1.

(i) Let 0 � t < s <1. Then the embedding

id W �W s
2 .
xK/ ,! W t

2 .Q
n/ (4.72)

is compact. Furthermore, there is a constant c > 0 such that for all " > 0 and
all f 2 �W s

2 .
xK/,

kf j�W t
2 .
xK/k � "kf j�W s

2 .
xK/k C c "� t

s�t kf jL2.Qn/k: (4.73)

(ii) Let s > `C n
2
. Then the embedding

id W �W s
2 .
xK/ ,! C `.Qn/ (4.74)

is compact. Furthermore, for any " > 0 there is a constant c" > 0 such that
for all f 2 �W s

2 .
xK/,

kf j zC `. xK/k � "kf j�W s
2 .
xK/k C c"kf jL2.Qn/k: (4.75)
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Proof. Step 1. Let f 2 �W s
2 .
xK/ be given by (4.57) with (4.61), (4.62). We obtain

for 0 � t < s and M 2 N that

kf jW t
2 .Q

n/k2 � c M 2t
X

jmj�M
jamj2 C c M�2.s�t/ X

jmj>M
jmj2s jamj2; (4.76)

which reads for " DM�.s�t/ as (4.73). Assume now s > t > `C n
2

, then

kf jC `.Qn/k � c
X
m2Zn

.1C jmj/`jamj

� c
� X
m2Zn

.1C jmj/2t jamj2
	1=2� X

m2Zn

.1C jmj/�2.t�`/
	1=2

(4.77)

by Hölder’s inequality. Since 2.t � `/ > n, the last factor converges,X
m2Zn

.1C jmj/�2.t�`/ �
Z

Rn

.1C jxj/�2.t�`/dx <1: (4.78)

Combining (4.77) with (4.76) or (4.73), respectively, leads to (4.75).

Step 2. We first prove the compactness of the identity (4.72) for t D 0 and split

id W �W s
2 .
xK/ ,! L2.Q

n/; s > 0; (4.79)

into id D idM C idM , where M 2 N, and

idMf D
X

jmj�M
amhm; idMf D

X
jmj>M

amhm; (4.80)

assuming that f 2 �W s
2 .
xK/ is given by (4.57) with the Fourier coefficients am as in

(4.59). Then it follows by (4.59) for the finite-rank operator idM mapping �W s
2 .
xK/

into L2.Qn/ that kidMk � c independently of M . In particular, idM is compact.
As in (4.76) with t D 0 one gets

kid � idMk D kidMk � c M�2s �! 0 for M !1: (4.81)

Thus id is compact. This covers (i) for t D 0. Next we prove that id in (4.72) is also
compact if 0 < t < s. Since the image of the unit ball Us in �W s

2 .
xK/ is precompact

in L2.Qn/ we find for any ı > 0 a finite ı-net

ff`gL`D1; L D L.ı/; kf`j�W s
2 .
xK/k � 1 for ` D 1; : : : ; L; (4.82)

and
min

`D1;:::;L
kf � f`jL2.Qn/k � ı; f 2 Us: (4.83)
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Consequently, (4.73) implies

min
`D1;:::;L

kf � f`j�W t
2 .
xK/k � c"C c "� t

s�t ı � c0 " (4.84)

with ı D " t
s�t C1. It follows that (4.72) is compact. Using (4.75) one obtains in the

same way that id in (4.74) is compact, too. �

Exercise 4.16. Prove that one may choose c" D c"�~ in (4.75) with

~ D `C n
2

s � ` � n
2

and some c > 0 independent of " > 0.

Theorem 4.17. Let� be a boundedC1 domain in Rn according to DefinitionA.3.
Let C `.�/, ` 2 N0, be the spaces as introduced in Definition A.1 and let W s

2 .�/,
s � 0, be the Sobolev spaces as in (4.2).

(i) Let 0 � t < s <1. Then the embedding

id W W s
2 .�/ ,! W t

2 .�/ (4.85)

is compact. Furthermore, there is a constant c > 0 such that for all " > 0 and
all f 2 W s

2 .�/,

kf jW t
2 .�/k � "kf jW s

2 .�/k C c "� t
s�t kf jL2.�/k: (4.86)

(ii) Let ` 2 N0 and s > `C n
2
. Then the embedding

id W W s
2 .�/ ,! C `.�/ (4.87)

is compact. Furthermore, for any " > 0 there is a constant c" > 0 such that
for all f 2 W s

2 .�/,

kf jC `.�/k � "kf jW s
2 .�/k C c"kf jL2.�/k: (4.88)

Proof. We may assume that

� �


x 2 Rn W jxj < 1

2

�
: (4.89)

Let K be the unit ball according to (4.56) and let � 2 D.K/ with �.x/ D 1 when
jxj < 1

2
. If one multiplies the extension operator extL� according to (4.8) and
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Theorem 4.1 with �, then one obtains again an extension operator. In other words,
one may assume that there is a common extension operator

extL� W
(
C `.�/ ,! zC `. xK/; ` D 0; : : : ; L;
W s
2 .�/ ,! �W s

2 .
xK/; 0 < s < L;

(4.90)

using the notation (4.70), (4.71). Denoting temporarily id in (4.72), (4.74) by �id,
then the embedding in (4.85), (4.87) can be decomposed into

id D re B eid B extL�; (4.91)

where re is the restriction operator. Then all assertions of the theorem follow from
(4.91) and the corresponding assertions of Proposition 4.15. �

Exercise 4.18. Give a direct proof of (4.86), (4.88) based on (4.8).

Hint: Use Corollary 3.31 and the "-version of (3.82) subject to Exercise 4.14.

Exercise* 4.19. The assumption that� is bounded is essential for the compactness
of the embedding (4.85) .unlike its continuity/. Take, for instance, � D Rn,
t D ` 2 N0, s D k 2 N, ` < k. Prove that there exists a set ˆ � W k

p .R
n/ which

is bounded but not precompact in W `
p .R

n/.

Hint: Choose ' 2 D.Rn/ with supp' � K1=2.0/, ' 6� 0, and consider the set
ˆ D f'.	 �m/gm2Zn .

4.5 Traces

As in Section 4.3 we furnish the boundary � D @� of a bounded C1 domain �
in Rn, where n � 2, with a surface measure d� . There we introduced the spaces
Lp.�/, 1 � p <1, and explained our understanding of traces as limits of point-
wise traces of smooth functions (which are dense in the spaces considered). This
will not be repeated here. So far we have (4.34) for tr� in (4.33) and (4.37) for
tr� @

@�
in (4.36). We are now interested in the precise trace spaces ofW s

2 .�/ where
the latter have the meaning as in (4.2). This requires the introduction of Sobolev
spaces on� . We rely on the resolution of unity according to (4.6), (4.7) and the local
diffeomorphisms  .j / mapping �j D � \Kj ontoWj D  .j /.�j / as indicated in
Figure 4.4. Let gj .y/ be as in (4.13). Restricted to y D .y0; 0/ 2 Wj ,

gj .y
0/ D .'jf / B . .j //�1.y0/; j D 1; : : : ; J; f 2 L2.�/; (4.92)

makes sense. This results in functions gj 2 L2.Wj / with compact supports in the
.n�1/-dimensional C1 domain inWj . (Strictly speaking, y0 2 Wj in (4.92) must
be interpreted as .y0; 0/ 2 Wj , but we do not distinguish notationally between gj
and . .j //�1 as functions of .y0; 0/ and of y0.)
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Definition 4.20. Let n � 2, and let � be a bounded C1 domain in Rn with
� D @�, and 'j ,  .j /, Wj be as above. Assume s > 0. Then we introduce

W s
2 .�/ D ff 2 L2.�/ W gj 2 W s

2 .Wj /; j D 1; : : : ; J g; (4.93)

equipped with

kf jW s
2 .�/k D

� JX
jD1
kgj jW s

2 .Wj /k2
	1=2

; (4.94)

where gj is given by (4.92).

Remark 4.21. We furnish W s
2 .Wj / with the intrinsic .n � 1/-dimensional norms

(and related scalar products) k	jW s
2 .Wj /k� according to Theorem 4.1. A few further

comments may be found in Note 4.6.4.

Proposition 4.22. Let � D @� be the boundary of a boundedC1 domain� in Rn

with n � 2.
(i) Let s > 0. Then the spaces W s

2 .�/ according to Definition 4.20 are Hilbert
spaces. They are independent of admissible resolutions of unity f'j gj and local
diffeomorphisms f .j /gj .

(ii) If 0 < s1 < s2 <1, then

W
s2
2 .�/ ,! W

s1
2 .�/ ,! L2.�/ (4.95)

are compact embeddings.

(iii) If 0 < s < 1, then

kf jW s
2 .�/k� D

�
kf jL2.�/k2 C

Z
�

Z
�

jf .	/ � f .�/j2
j	 � �jn�1C2s d�.	/ d�.�/

�1=2
(4.96)

is an equivalent norm on W s
2 .�/.

(iv) If s D ` 2 N, then

W `
2 .�/ D ff 2 L2.�/ W D˛t f 2 L2.�/; j˛j � `g; (4.97)

where D˛t are tangential derivatives .in local curvilinear coordinates on �/.

(v) If s D `C � with ` 2 N0 and 0 < � < 1, then

W s
2 .�/ D ff 2 W `

2 .�/ W D˛t f 2 W �
2 .�/ for ˛ 2 Nn

0 with j˛j D `g: (4.98)
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Proof. In view of Definition 4.20 all assertions can be carried over from C1 do-
mains � in Rn to boundaries � D @� using Theorem 4.1 and, as far as the com-
pactness in (4.95) is concerned, from Theorem 4.17. �

Remark 4.23. The assumption n � 2 in Proposition 4.22 is natural. However, in
what follows it is reasonable to incorporate also n D 1where the formulations given
must be interpreted appropriately: If n D 1, then according to Definition A.3 (iv),
� is a bounded interval I D � and its boundary � D @� consists of the endpoints
of I , say, a and b with a < b. By Theorem 3.32,

f .a/; f .b/ make sense if f 2 W s
2 .I /; s >

1

2
; (4.99)

and

f 0.a/; f 0.b/ are well-defined if f 2 W s
2 .I /; s >

3

2
: (4.100)

This is the correct interpretation of tr� and tr� @
@�

if n D 1 in what follows.

Theorem 4.24. Let � be a bounded C1 domain in Rn and let � D @� be its
boundary.

(i) Let s > 1
2
. Then tr� .in the explanations given above/ is a linear and bounded

map of W s
2 .�/ onto W

s� 1
2

2 .�/,

tr� W W s
2 .�/ ,! W

s� 1
2

2 .�/; tr� W
s
2 .�/ D W s� 1

2

2 .�/: (4.101)

(ii) Let s > 3
2
. Then tr� @

@�
.in the explanations given above/ is a linear and

bounded map of W s
2 .�/ onto W

s� 3
2

2 .�/,

tr�
@

@�
W W s

2 .�/ ,! W
s� 3

2

2 .�/; tr�
@

@�
W s
2 .�/ D W s� 3

2

2 .�/: (4.102)

Proof. Step 1. In view of Remark 4.23 we may assume n � 2. By the above local-
isations one can reduce these problems to the functions gj in (4.13) and their traces
in (4.92). Furthermore, the extended functions extL� gj according to Theorem 4.1
and gj have the same traces. We discussed this point in some detail in connection
with Theorem 3.45. This applies not only to tr� but also to tr� @

@�
having in mind

the discussion in Remark 4.5 about fibre-preserving maps. Hence we can restrict
our attention to the model case considered in Theorem 4.13 with

tr� W f .x/ 7�! f .x0; 0/; x 2 Qn D .�
; 
/n; (4.103)

and

tr�
@

@�
W f .x/ 7�! @f

@xn
.x0; 0/; x 2 Qn: (4.104)
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In other words, we may assume that

f 2 W s
2 .Q

n/; suppf � fx 2 Rn W jxj � 1g (4.105)

is represented by

f .x/ D .2
/�n=2
X
m2Zn

ame
imx; am D .2
/�n=2

Z
Qn

f .x/e�imxdx; (4.106)

Q0

Qn

�
 

xn D 0

0
suppf

Figure 4.8

relying on the equivalent norm in (4.61).
Let, as indicated in Figure 4.8 aside,

Qn D .�
; 
/n and

Q0 D .�
; 
/n�1 (4.107)

D fx D .x0; xn/ 2 Qn W xn D 0g:

Step 2. We prove the first assertion in (4.101). Let f be given by (4.106) with

f .x0; 0/ D .2
/�n=2
X

m02Zn�1

bm0eim
0x0

where bm0 D
1X

mnD�1
a.m0;mn/:

(4.108)
Let ~ be chosen such that 2s > ~ > 1. For m0 ¤ 0 one obtains by Hölder’s
inequality that

jbm0 j �
X

jmnj�jm0j
ja.m0;mn/j C

X
jmnj>jm0j

ja.m0;mn/jjmnj
~
2 jmnj� ~

2

� cjm0j 12
� X

jmnj�jm0j
ja.m0;mn/j2

	 1
2

C cjm0j 1�~
2

� X
jmnj>jm0j

ja.m0;mn/j2jmnj~
	 1

2

: (4.109)

Since jm0j � jmj and jmnj � jmj for m D .m0; mn/, we can further estimate

jm0j2s�1jbm0 j2 � cjmj2s
X

jmnj�jm0j
ja.m0;mn/j2 C cjmj~C2s�~ X

jmnj>jm0j
ja.m0;mn/j2

� c0jmj2s
1X

mnD�1
jamj2; (4.110)
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where we used, in addition, that 0 < ~ < 2s. Hence,X
m02Zn�1

.1C jm0j2/s� 1
2 jbm0 j2 � c

X
m2Zn

.1C jmj2/sjamj2 (4.111)

and it follows from Theorem 4.13 applied to Qn and Q0 that

kf .x0; 0/
ˇ̌
W
s� 1

2

2 .Q0/k � ckf jW s
2 .Q

n/k (4.112)

for f with (4.105). By Step 1 we get the first assertion in (4.101) (the map into).

Step 3. We prove that tr� in (4.101) is a map onto, which again can be reduced to
the above model situation. Let

g.x0/ 2 W s� 1
2

2 .Q0/ with suppg � fx0 2 .�
; 
/n�1 W jx0j � 1g (4.113)

be represented by

g.x0/ D
X

m02Zn�1

bm0eim
0x0

; bm0 D .2
/� n�1
2

Z
Q0

g.x0/e�im0x0

dx0; (4.114)

where Q0 is interpreted as in (4.107). By Theorem 4.13 we have

kgjW s� 1
2

2 .Q0/k2 �
X

m02Zn�1

jbm0 j2.1C jm0j2/s� 1
2 : (4.115)

Let famgm2Zn be such that

G.x0; xn/ D
X
m2Zn

ame
imx

D b0 C
X

0¤m02Zn�1

bm0

jm0j e
im0x0

2jm0j�1X
mnDjm0j

eimnxn ; (4.116)

in particular, with am D 0 for the remaining terms. Firstly we observe that

G.x0; 0/ D g.x0/; x0 2 Q0: (4.117)

Secondly, (4.116) implies

X
m2Zn

jamj2.1C jmj2/s D jb0j2 C
X

0¤m02Zn�1

jbm0 j2
jm0j2

2jm0j�1X
mnDjm0j

.1C jmj2/s

�
X

m02Zn�1

jbm0 j2.1C jm0j2/s� 1
2 : (4.118)
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Theorem 4.13 suggests

G.x/ 2 W s
2 .Q

n/; (4.119)

but this is not immediately covered since G need not to have a compact support in
Qn (which would be sufficient to apply Theorem 4.13). We return to this point in
Remark 4.26 below and take temporarily (4.119) for granted. Then

f .x/ D �.x/G.x/ 2 W s
2 .Q

n/ with f .x0; 0/ D g.x0/; (4.120)

where � 2 D.Qn/ with �.x/ D 1 if jxj � 2. But this is just the extension of

g 2 W s� 1
2

2 .Q0/ to f 2 W s
2 .Q

n/ we are looking for. By the above considerations

it follows that tr� in (4.101) maps W s
2 .�/ onto W

s� 1
2

2 .�/.

Step 4. We prove part (ii) which can be reduced to the model situation as described
in Step 1, in particular, in (4.104). If f is given by (4.105) now with s > 3

2
, then

@f

@xn
2 W s�1

2 .Qn/; supp
@f

@xn
� fx 2 Rn W jxj � 1g: (4.121)

Application of part (i) gives the first assertion in (4.102), hence tr� @
@�

is a map from

W s
2 .�/ into W

s� 3
2

2 .�/. It remains to verify that this map is also onto. Let

g.x0/ 2 W s� 3
2

2 .Q0/; suppg � fx0 2 Rn�1 W jx0j � 1g (4.122)

be represented by (4.114) with


gjW s� 3
2

2 .Q0/



2 � X

m02Zn�1

jbm0 j2.1C jm0j2/s� 3
2 (4.123)

as the counterpart of (4.115). The substitute of G in (4.116) is given by

G.x0; xn/ D
X
m2Zn

ame
imx

D b0 C
X

0¤m02Zn�1

bm0

i jm0j e
im0x0

2jm0j�1X
mnDjm0j

eimnxn

mn
; (4.124)

with am D 0 for the remaining terms. Then

@G

@xn
.x0; 0/ D g.x0/ if x0 2 Q0; (4.125)
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and X
m2Zn

jamj2.1C jmj2/s D jb0j2 C
X

0¤m02Zn�1

jbm0 j2
jm0j2

2jm0j�1X
mnDjm0j

.1C jmj2/s
m2n

�
X

m02Zn�1

jbm0 j2.1C jm0j2/s� 3
2 (4.126)

are the counterparts of (4.117), (4.118). The rest is now the same as in Step 3. This
concludes the proof of (4.102). �

Exercise 4.25. Review Theorem 4.24 and its proof in case of n D 1.

Hint: Rely on (4.99), (4.100).

Remark 4.26. We justify (4.119). For this purpose we extendG.x/ periodically to
neighbouring cubes of the same size and multiply the outcome with suitable cut-off
functions. It follows by the same arguments as in the proof of Theorem 4.13 that
these functions belong to W s

2 .R
n/, hence G 2 W s

2 .Q
n/ by restriction. Moreover,

kGjW s
2 .Q

n/k � c
� X
m2Zn

.1C jmj2/sjamj2
	1=2

; (4.127)

where we used (3.90). On the other hand, the reverse estimate follows from the
arguments in the proof of Theorem 4.13. In other words, one obtains not only
(4.119) (which would be sufficient for our purpose), but also the norm-equivalence
(4.61), (4.62) for these periodic functions belonging to W s

2 .Q
n/.

Exercise 4.27. Let k 2 N and s > kC 1
2

. Prove by the same method as explicated
for Theorem 4.24 that

tr�
@k

@�k
W W s

2 .�/ ,! W
s�k� 1

2

2 .�/; tr�
@k

@�k
W s
2 .�/ D W s�k� 1

2

2 .�/; (4.128)

and that

tr� D˛ W W s
2 .�/ ,! W

s�k� 1
2

2 .�/ if ˛ 2 Nn
0 with j˛j � k: (4.129)

Hint: Reduce (4.129) to (4.128).

Remark 4.28. Again let � be a bounded C1 domain in Rn and � D @� its
boundary. Let� D �� with 	 2 � be a non-tangentialC1 vector field on � which
means that the components of �� D .�1� ; : : : ; �n� / are C1 functions on � and that
���� > 0 for the related scalar product of �� and the outer normal �� . Then one
obtains by the same arguments as above that (4.102) can be generalised by

tr�
@

@�
W W s

2 .�/ ,! W
s� 3

2

2 .�/; tr�
@

@�
W s
2 .�/ D W s� 3

2

2 .�/; (4.130)

where s > 3
2

.
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We proved a little bit more than stated. Both the extension of g.x0/ in (4.114) to
G.x/ and to f .x/ in (4.116), (4.120) and its counterpart (4.124) are linear in g and
apply simultaneously to all admitted spaces. Clipping together these model cases
according to Step 1 of the proof of Theorem 4.24 one gets a universal extension
operator

ext� W W s� 1
2

2 .�/ ,! W s
2 .�/; s >

1

2
; (4.131)

such that

tr� B ext� D id .identity in W
s� 1

2

2 .�//: (4.132)

Universal means that ext� is defined on
S
�> 1

2
W
�� 1

2

2 .�/ so that its restriction to

a specific space has the properties (4.131), (4.132). We formulate the outcome.

Corollary 4.29. Let � be a bounded C1 domain in Rn and let � D @� be its
boundary.

(i) Let s > 1
2

and let tr� be the trace operator according to Theorem 4.24 (i). Then
there is a universal extension operator ext� with (4.131), (4.132).

(ii) Let s > 3
2

and let � be a non-tangential C1 vector field on � according to
Remark 4.28 .with the field � of outer normals as a distinguished example/.
Then there is a universal extension operator ext�;
 with

ext�;
 W W s� 3
2

2 .�/ ,! W s
2 .R

n/; s >
3

2
; (4.133)

such that

tr�
@

@�
B ext�;
 D id .identity in W

s� 3
2

2 .�//: (4.134)

Proof. All assertions are covered by the proof of Theorem 4.24 and the above
comments. �

Definition 4.30. Let � be a bounded C1 domain in Rn and let � D @� be its
boundary.

(i) Let s > 1
2

. Then

W s
2;0.�/ D ff 2 W s

2 .�/ W tr� f D 0g: (4.135)

(ii) Let s > 3
2

and let � be a non-tangential C1 vector field on � according to
Remark 4.28 .with the field � of outer normals as a distinguished example/.
Then

W
s;

2 .�/ D



f 2 W s

2 .�/ W tr�
@f

@�
D 0

�
: (4.136)
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Remark 4.31. This complements Definition 4.9 for p D 2. By Theorem 4.24 and
Remark 4.28 the above definition makes sense and both W s

2;0.�/ and W s;

2 .�/

are closed genuine subspaces of W s
2 .�/. The related orthogonal complements are

denoted by W s
2;0.�/

? and W s;

2 .�/?.

Proposition 4.32. Let � be a bounded C1 domain in Rn and let � D @� be its
boundary.

(i) Let s > 1
2
. Then

ff 2 C1.�/ W tr� f D 0g (4.137)

is dense in W s
2;0.�/. Furthermore,

W s
2 .�/ D W s

2;0.�/˚W s
2;0.�/

? (4.138)

and

tr� W W s
2;0.�/

? � W
s� 1

2

2 .�/ (4.139)

is an isomorphic map of W s
2;0.�/

? onto W
s� 1

2

2 .�/.

(ii) Let s > 3
2

and let � be as in Definition 4.30 (ii). Then

f 2 C1.�/ W tr�

@f

@�
D 0

�
(4.140)

is dense in W s;

2 .�/. Furthermore,

W s
2 .�/ D W s;


2 .�/˚W s;

2 .�/? (4.141)

and

tr�
@

@�
W W s;


2 .�/? � W
s� 3

2

2 .�/ (4.142)

is an isomorphic map of W s;

2 .�/? onto W

s� 3
2

2 .�/.

Proof. Both (4.138), (4.141) are obvious by definition. Furthermore, (4.139),
(4.142) follow from Hilbert space theory and (4.101), (4.130). Corollary 4.6 implies
that (4.137) is a subset of W s

2;0.�/ and that (4.140) is a subset of W s;

2 .�/.

It remains to prove the density assertions. Let f 2 W s
2;0.�/. In view of

Corollary 4.6 one finds for any " > 0 a function g" 2 S.�/ with

kf � g"jW s
2 .�/k � " and k tr� g"jW s� 1

2

2 .�/k � ": (4.143)

Then we conclude by (4.131) that

h" D ext� B tr� g" 2 W s
2 .�/ and kh"jW s

2 .�/k � c" (4.144)
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for some c > 0 independent of ". By Corollary 4.29 the extension operator is
universal. Thus h" 2 C1.�/ since tr� g" 2 C1.�/ using Theorem 3.32. With
f" D g" � h" this leads to

kf � f"jW s
2 .�/k � c0" and f" 2 C1.�/; tr� f" D 0: (4.145)

This proves that (4.137) is dense in W s
2;0.�/. Similarly one can show that (4.140)

is dense in W s;

2 .�/. �

Remark 4.33. Note that, in particular, this covers (4.43) when p D 2.

4.6 Notes

4.6.1. The Extension Theorems 3.41 (for spaces on RnC to Rn) and 4.1 (for spaces
on domains to spaces on Rn) are cornerstones of the theory of function spaces not
only for the special cases treated in this book, but also for the more general spaces
briefly mentioned in the Notes 3.6.1, 3.6.3; see also Appendix E. They have a long
history. The procedure described in Step 2 of the proof of Theorem 3.41 and in
Figures 3.3, 4.4, 4.7, is called the reflection method for obvious reasons. The first
step in this direction was taken in 1929 by L. Lichtenstein in [Lic29] extending
C 1 functions in domains in R3 beyond the boundary using ‘dachziegelartige Über-
deckungen’ (German, meaning tiling) on @�, hence (4.5) and Figure 4.3 (referring
to some needs in hydrodynamics as an excuse for publishing such elementary stuff).
The extension of this method as described in Step 2 of the proof of Theorem 3.41
for C ` spaces (not Sobolev spaces as occasionally suggested, which are unknown
at this time, at least in the West) is due to M. R. Hestenes [Hes41]. This method was
extended to Sobolev spaces in smooth domains in [Bab53], [Nik53], [Nik56] in the
1950s and to the classical Besov spaces as briefly described in (3.144) (restricted
to domains) in [Bes62], [Bes67a], [Bes67b] in the 1960s. (The last is O. V. Besov’s
own report of the main results of his doctoral dissertation, doktorskaja, the second
Russian doctor degree.) This method has been extended step by step and could
be applied finally to all spaces briefly mentioned in (3.154). We refer to [Tri92b,
Section 4.5.5] and the literature quoted there. It should be remarked that there is
a second method based on integral representations and (weakly) singular integrals,
especially well adapted for the extension of Sobolev spaces from bounded Lipschitz
domains to Rn. It goes back to [Cal61] and [Smi61] around 1960. But this will
not be used in this book. A more detailed account on these methods and further
references may also be found in [Tri78, Section 4].

4.6.2. According to Definition 3.37 we introduced the spaces W s
p .�/ on domains

� in Rn by restriction of W s
p .R

n/ to �. But at least in case of classical Sobolev

spaces W k
p .�/ with 1 � p < 1, k 2 N, one can also introduce corresponding
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spaces intrinsically, hence

Lkp.�/ D ff 2 Lp.�/ W D˛f 2 Lp.�/; ˛ 2 Nn
0; j˛j � kg; (4.146)

where D˛f 2 D 0.�/ are the distributional derivatives similarly as in Definition 3.1
and Remark 3.2. Obviously, Lkp.�/, normed by

kf jLkp.�/k D
� X

j˛j�k
kD˛f jLp.�/kp

�1=p
; (4.147)

is a Banach space. One may ask under which conditions the spaces

W k
p .�/ and Lkp.�/; 1 � p <1; k 2 N; (4.148)

coincide. According to [Ste70, Theorem 5, p. 181] for bounded Lipschitz domains
� in Rn there exists a universal extension operator

ext W Lkp.�/ ,! W k
p .R

n/; 1 � p <1; k 2 N: (4.149)

In particular, one hasW k
p .�/ D Lkp.�/ in this case. But for more general domains

the situation might be different. This problem has been studied in great detail. We
refer, in particular, to [Maz85, §1.5]. On the one hand, there are easy examples of
(cusp) domains in which the spaces Lkp.�/ and W k

p .�/ differ. On the other hand,
one has for huge classes of bounded domains in Rn with irregular fractal bound-
aries that Lkp.�/ D W k

p .�/, including the snowflake domain in R2 illustrated in
Figure 4.9 below. We refer to [Jon81], [Maz85].

(� D @�)

0 1

0 1

�

� D @�

Figure 4.9

4.6.3. We described our understanding of traces at the beginning of Section 3.5:
First one asks for inequalities of type (3.129) for smooth functions, having pointwise
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traces and defines afterwards the trace operator tr� according to (3.130), (3.131) by
completion avoiding the ambiguity of selecting distinguished representatives within
the equivalence classes both in the source space and the target space. The same
point of view was adopted in the Sections 4.3, 4.5 in connection with Definition 4.9
and Theorem 4.24. Moreover, the interpretation of the embeddings (3.81), (3.82)
requires to select the uniquely determined continuous representative f of the equiv-
alence class Œf � 2 W s

2 .R
n/, s > n

2
. If s � n

2
, then such a continuous distinguished

representative does not exist in general. (It is well known that there are elements
of W s

2 .R
n/ with 0 � s � n

2
which are essentially unbounded. One may consult

[Tri01, Theorem 11.4] and the literature given there in the framework of the more
general spaces briefly mentioned in (3.154).) Nevertheless in any equivalence class
Œf � 2 W s

2 .R
n/ with s > 1

2
, or, more generally,

Œf � 2 H s
p .R

n/; 1 < p <1; s > 1

p
; (4.150)

according to (3.140), there is a uniquely determined distinguished representative
f for which traces on � according to (3.128)–(3.131) or � D @� as in the Sec-
tions 4.3, 4.5 make sense more directly. We give a brief description following
[Tri01, pp. 260/261] where one finds the necessary detailed references, especially
to [AH96].

First we recall that a point x 2 Rn is called a Lebesgue point for f 2 Lloc
1 .R

n/

according to (2.19) if

f .x/ D lim
r!0

1

jKr.x/j
Z

Kr .x/

f .y/dy; (4.151)

where Kr.x/ stands for a ball in Rn centred at x 2 Rn with radius r , 0 < r < 1,
see (1.30). It is one of the outstanding observations of real analysis that one gets
(4.151) with exception of a set � having Lebesgue measure j�j D 0, [Ste70, p. 5].
If Œf � 2 H s

p .R
n/ with s > n

p
, then one has (4.151) for all x 2 Rn and the uniquely

determined continuous representativef 2 Œf �. For the general case Œf � 2 H s
p .R

n/,
with 0 < s � n

p
, one needs the .s; p/-capacity of compact sets K given by

Cs;p.K/ D inffk'jH s
p .R

n/k W ' 2 S.Rn/ real; ' � 1 on Kg; (4.152)

where this definition can be extended to arbitrary sets K � Rn. It turns out that
in each equivalence class Œf � 2 H s

p .R
n/ there is a uniquely determined represen-

tative f 2 Œf � for which (4.151) is true with exception of a set K with capacity
Cs;p.K/ D 0. Furthermore, if � is either given by (3.128) or � D @�, that is,
the boundary of a bounded C1 domain, and if K is a set in Rn with Cs;p.K/ D 0
where 1 < p <1, s > 1

p
, thenK\� has .n�1/-dimensional Lebesgue measure

(surface measure) zero. Hence (4.151) makes sense on � pointwise with exception
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of a subset of .n� 1/-dimensional Lebesgue measure zero. It coincides with tr� f
introduced via a limiting procedure. In other words, these uniquely determined
distinguished representatives pave the way for a direct definition of traces. We refer
to [Tri01, pp. 260/261] for details. This is reminiscent of the famous final slogan
in G. Orwell’s novel ‘Animal farm’, [Orw46, p. 114], which reads, adapted to our
situation, as

All representatives of an equivalence class are equal,
but some representatives are more

equal than others.

4.6.4. In Definition 4.20 we introduced the spacesW s
2 .�/ on the boundary� D @�

of a bounded C1 domain� via finitely many local charts characterised by (4.92).
The description given in Proposition 4.22 is satisfactory but not totally intrinsic.
To get intrinsic norms one can convert � into a compact Riemannian manifold,
characterised by the same local charts. Afterwards one can replace j	 � �j in (4.96)
by the Riemannian distance and D˛t in (4.97), (4.98) by covariant derivatives. One
can do the same with the more general spaces considered in Note 3.6.1 where the
�-counterpart Bsp;p.�/ of Bsp;p.R

n/ in (3.148), (3.149) is of special interest. This
can be extended to all spaces mentioned in (3.154) and to complete (non-compact)
RiemannianC1 manifolds (of bounded geometry and of positive injectivity radius).
We refer to [Tri92b, Chapter 7]. But this is not the subject of this book. The only
point which we wish to mention here is the extension of the characterisation of
the trace of W s

2 .�/ in (4.101) from p D 2 to 1 < p < 1, which is also related
to (4.150). Let H s

p .�/ be the restriction of H s
p .R

n/ according to (3.140) to the
boundedC1 domain� in Rn as in Definition 3.37 where now 1 < p <1, s > 1

p
.

Let Bsp;p.�/ be as indicated above. Then the extension of (4.101) from p D 2 to
1 < p <1 is given by

tr� W H s
p .�/ ,! B

s� 1
p

p;p .�/; tr� H
s
p .�/ D B

s� 1
p

p;p .�/: (4.153)

We refer to the books mentioned after (3.154) where the above special case may be
found in [Tri78, Section 4.7.1]. In Note 3.6.2 we discussed the isomorphic structure
of H s

p .R
n/ and Bsp;p.R

n/. There are counterparts for the two spaces in (4.153),

H s
p .�/ � Lp.I / and B

s� 1
p

p;p .�/ � p̀: (4.154)

According to .L`/ in Note 3.6.2 the spaceH s
p .�/ and its exact trace spaceB

s� 1
p

p;p .�/

belong to different isomorphic classes if 1 < p <1, p ¤ 2.

4.6.5. Let Qn D T n be as in (4.55) and let D.T n/ be the restriction of

ff 2 C1.Rn/ W f .x/ D f .y/ if x � y 2 2
Zng (4.155)
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to T n, the space of C1 functions on the torus T n. It is the periodic substitute of
the Schwartz space S.Rn/ in Definition 2.32. The counterpart of the space S 0.Rn/
according to Definition 2.43 is now the space D 0.T n/ of periodic distributions.
The rôle of the Fourier transform in S.Rn/, S 0.Rn/ is taken over by the Fourier
coefficients,

f 2 D 0.T n/ 7�! famgm2Zn ; am D .2
/�n=2f .eimx/: (4.156)

On this basis one can develop a theory of the periodic counterparts H s.T n/,
W s
2 .T

n/ of the spaces H s.Rn/, W s
2 .R

n/ according to the Definitions 3.13, 3.22
but also of other spaces mentioned above, including the periodic counterpart of the
spaces in (3.154). This may be found in [ST87, Chapter 3]. We relied in Section 4.4
on periodic expansions, but avoided to refer directly to results from the theory of
periodic spaces to keep the presentation self-contained. This caused occasionally
some extra work, for example in connection with the spaces in (4.70), (4.71) and
Proposition 4.15.

4.6.6. The theory of spaces Bsp;q , F sp;q with s; p; q as in (3.154) on Rn and in
domains and their use for the study of pseudo-differential operators relies on some
key problems,

• extensions,

• traces,

• pointwise multipliers,

• diffeomorphisms,

and, in case of spaces on domains,

• intrinsic characterisations.

The full satisfactory solutions of these key problems needed years, even almost
two decades, from the early 1970s up to the early 1990s and is the subject of [Tri92b],
including diverse applications, in particular, to (elliptic) pseudo-differential equa-
tions. In the above Chapters 3, 4 we dealt with the same problems, having applica-
tions to boundary value problems for elliptic differential operators of second order
in mind, the subject of the following chapters, but now restricted mainly to W s

2 in
Rn and on domains. Then the task is significantly easier and we tried to find direct
arguments as simple as possible. But there remains a hard core which cannot be
circumvented and which lies in the nature of the subject. We try to continue in this
way in what follows true to Einstein’s advice,

Present your subject as simply as possible, but not simpler.



Chapter 5

Elliptic operators in L2

5.1 Boundary value problems

In Section 1.1 we outlined the plan of the book. Chapter 1 dealt with some classi-
cal assertions for the Laplace–Poisson equation. For the homogeneous and inho-
mogeneous Dirichlet problem according to the Definitions 1.35, 1.43 we merely got
in case of balls some (more or less) satisfactory assertions in theTheorems 1.40, 1.48.
On the one hand, the Chapters 2–4 are self-contained introductions to the theory
of distributions and Sobolev spaces. On the other hand, they prepare the study of
boundary value problems for elliptic equations of second order as outlined in Sec-
tion 1.1. We stick at the same moderate level as in the preceding chapters avoiding
any additional complications. In particular, we deal mostly (but not exclusively)
with (homogeneous and inhomogeneous) boundary value problems in anL2 setting.

First we recall some definitions adapted to what follows. As for basic notation
we refer to Appendix A. In particular, D˛f indicates derivatives as introduced
in (A.1), (A.2). Domain in Rn means simply open set. Moreover, according to
Definition A.3 a bounded domain � in Rn is called a bounded C ` domain or
bounded C1 domain if it is connected and if its boundary @� has the smoothness
properties described there. We use the notation C.�/ as in Definition A.1 as the
collection of all complex-valued bounded functions which are continuous on the
closure x� of the domain �. Next we recall and adapt Definition 1.1.

Definition 5.1. Let� be a boundedC1 domain in Rn according to Definition A.3.
Let

fajkgnj;kD1 � C.�/; falgnlD1 � C.�/; a 2 C.�/ (5.1)

with
ajk.x/ D akj .x/ 2 R; x 2 x�; j; k D 1; : : : ; n: (5.2)

Then the differential expression A,

.Au/.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (5.3)

of second order is called elliptic if there is a constant E > 0 (ellipticity constant)
such that for all x 2 x� and � 2 Rn the ellipticity condition

nX
j;kD1

ajk.x/�j �k � Ej�j2 (5.4)

is satisfied.
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Remark 5.2. Recall that according to Example 1.3 the most distinguished example
of an elliptic differential expression of second order is the Laplacian

A D �� D �
nX

jD1

@2

@x2j
; (5.5)

where one may choose E D 1 in (5.4). Otherwise we refer for some discussion to
Section 1.1. In particular, Remark 1.4 implies that

nX
j;kD1

ajk.x/�j S�k � Ej�j2 ; � 2 Cn: (5.6)

Furthermore, (1.9) and (1.10) indicate what is meant by boundary value problems.
Now we give some more precise definitions adapted to the L2 theory we have in
mind.

For boundedC1 domains� in Rn we have the equivalent norms for the Sobolev
spaces W s

2 .�/, s > 0, as described in Theorem 4.1. In particular,

kf jW 2
2 .�/k �

� X
j˛j�2
kD˛f jL2.�/k2

	1=2
; f 2 W 2

2 .�/: (5.7)

In the Sections 4.3 and 4.5 we dealt in detail with traces

tr� u and tr�
@

@�
u on � D @� for u 2 W 2

2 .�/; (5.8)

now restricted to s D 2. Here � D �� with 	 2 � is a non-tangential C1
vector field on � as introduced in Remark 4.28 with the usual C1 vector field of
outer normals � D �� , 	 2 � , as a distinguished case. In terms of the Sobolev
spaces W s

2 .�/ at the boundary � D @� according to Definition 4.20 we obtained
in Theorem 4.24 complemented by (4.130) that

tr� W W 2
2 .�/ ,! W

3=2
2 .�/; tr� W

2
2 .�/ D W 3=2

2 .�/; (5.9)

and

tr�
@

@�
W W 2

2 .�/ ,! W
1=2
2 .�/; tr�

@

@�
W 2
2 .�/ D W 1=2

2 .�/: (5.10)

Of interest for us are now the special cases

W 2
2;0.�/ D ff 2 W 2

2 .�/ W tr� f D 0g (5.11)

and

W
2;

2 .�/ D



f 2 W 2

2 .�/ W tr�
@f

@�
D 0

�
(5.12)
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of the spaces introduced in Definition 4.30. They are closed subspaces of W 2
2 .�/

and one has the orthogonal decompositions according to Proposition 4.32 which
(in slight abuse of notation) can be written as

W 2
2 .�/ D W 2

2;0.�/˚W 3=2
2 .�/ (5.13)

and
W 2
2 .�/ D W 2;


2 .�/˚W 1=2
2 .�/; (5.14)

including the density assertion with respect to (4.137), (4.140). As for Lp counter-
parts one may consult Definition 4.9 and Remarks 4.10, 4.33.

Definition 5.3. Let � be a bounded C1 domain in Rn as introduced in Defini-
tion A.3 with the boundary � D @� and let A be an elliptic differential expression
of second order according to Definition 5.1.

(i) Let f 2 L2.�/ and g 2 W 3=2
2 .�/. The inhomogeneous Dirichlet problem

asks for functions u 2 W 2
2 .�/ with

Au D f in � and tr� u D g on �: (5.15)

The homogeneous Dirichlet problem asks for functions u with

Au D f in � and u 2 W 2
2;0.�/: (5.16)

(ii) Let � be a non-tangential C1 vector field on � according to Remark 4.28.
Let f 2 L2.�/ and g 2 W 1=2

2 .�/. The inhomogeneous Neumann problem
asks for functions u 2 W 2

2 .�/ with

Au D f in � and tr�
@u

@�
D g on �: (5.17)

The homogeneous Neumann problem asks for functions u with

Au D f in � and u 2 W 2;

2 .�/: (5.18)

Remark 5.4. Since all coefficients in (5.3) are bounded (5.7) implies that

Au D f 2 L2.�/ if u 2 W 2
2 .�/: (5.19)

Together with (5.9), (5.10) it follows that the above boundary value problems make
sense. Of course, the homogeneous problems are simply the corresponding inho-
mogeneous problems with vanishing boundary data. If A D �� is the Laplacian
according to (5.5) and if � D � is the C1 vector field of the outer normals on � ,
then (1.9), (1.10) give first descriptions of the above boundary value problems. For
A D �� it is natural to choose the vector field � D � of outer normals for the
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Neumann problems. For more generalA this is no longer the case and one may ask
for a distinguished substitute. This is the so-called co-normal on � ,

�A D .�Aj /njD1; �Aj D
nX
kD1

ajk.	/�k.	/; 	 2 �; (5.20)

where � D .�k.	//nkD1 is the outer normal on� . Recall that the coefficients ajk are
continuous on x� and, hence, on� . However, we deal here mainly with the Dirichlet
problem and look at the Neumann problem only if no substantial additional efforts
are needed. This means that in case of the Neumann problem we restrict ourselves
to the Laplacian A D �� and the outer normals � D � on � in (5.17), (5.18). But
we comment on the more general cases in Note 5.12.1.

Exercise 5.5. Prove that �A according to (5.20) generates a continuous non-tangen-
tial vector field on � .

Hint: Show that h�A; �i > 0 for the scalar product of �A and �.

Exercise 5.6. Justify for the co-normal �A according to (5.20) with constant coef-
ficients ajk D akj the generalisationZ

�

nX
j;kD1

ajk
@2f

@xj @xk
.x/g.x/dx

D �
Z
�

nX
j;kD1

ajk
@f

@xj
.x/

@g

@xk
.x/dx C

Z
�

g.	/
@f

@�A
.	/d�.	/ (5.21)

of the Green’s formula (A.16). .This makes clear that for given fajkgnj;kD1 the

co-normal �A is a distinguished vector field on �:/

5.2 Outline of the programme, and some basic ideas

First we discuss what follows on a somewhat heuristical and provisional level. So
far we have for the inhomogeneous Dirichlet problem and the Laplacian
A D ��, given by (5.5), Definition 1.43, the existence and uniqueness Theo-
rem 1.48, and the discussion in Remark 1.50 hinting at the present chapter. Now
we deal with boundary value problems of this type in the framework of anL2 theory
in arbitrary bounded C1 domains in Rn and for general elliptic equations accord-
ing to Definition 5.3. The precise assumptions for the given data f and g in, say,
Definition 5.3 (i) suggest that one gets also precise answers for possible solutions u
in (5.15), their existence, uniqueness and smoothness with the ideal outcome

kujW 2
2 .�/k � kf jL2.�/k C kgjW 3=2

2 .�/k: (5.22)
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The proof of Theorem 1.48 advises, also in the framework of an L2 theory, the
reduction of the inhomogeneous Dirichlet problem (5.15) to the homogeneous one
in (5.16) with the optimal outcome

kujW 2
2 .�/k � kf jL2.�/k; u 2 W 2

2;0.�/: (5.23)

It is usual and one of the most fruitful developments since more than fifty years
to incorporate (homogeneous) boundary value problems into the operator theory
in Hilbert spaces (or, more general, Banach spaces) resulting in our case in the
(unbounded closed) elliptic operator A,

Au D �
nX

j;kD1
ajk

@2u

@xj @xk
C

nX
lD1

al
@u

@xl
C au; dom.A/ D W 2

2;0.�/; (5.24)

inL2.�/, where dom.A/ is its domain of definition. In other words, we interpretA
either as a continuous operator from W 2

2 .�/ or W 2
2;0.�/ into L2.�/ according to

(5.19), or withinL2.�/ as an unbounded operator described by (5.24). The adopted
point of view will be clear from the context. However, if there is any danger of
confusion, the spaces involved will be indicated. In particular, (5.24) reduces the
(homogeneous) Dirichlet problem (5.16) to the study of the mapping properties
of the unbounded operator A. However, the suggested uniqueness according to
Theorem 1.48, tacitly underlying also (5.22), (5.23), cannot be expected in general.
On the contrary, under the influence of the needs of quantum mechanics in the late
1920s, 1930s and (as far as differential operators are concerned) in the 1950s it
came out that it is reasonable to deal not with isolated operators A, but with the
scale

A � � id where � 2 C and id u D u; u 2 dom.A/; (5.25)

is the identity. In this context the non-trivial null spaces or kernels

ker.A � � id/ D fu 2 dom.A/ W Au D �ug (5.26)

(having dimension of at least 1) are of peculiar interest. Then � is called eigenvalue
of A and

Au D �u; u 2 dom.A/; u ¤ 0; (5.27)

are the related eigenfunctions, spanning ker.A � � id/. The spectral theory for A,
in particular, the distribution of its eigenvalues, will be considered later in detail in
Chapter 7. But some decisive preparations will be made in this chapter. This may
explain that we do not deal exclusively with A but also with its translates in (5.25).
As mentioned before, (5.22), (5.23) cannot be expected if 0 is an eigenvalue of A
according to (5.24). The adequate replacement of (5.23) is given by

kujW 2
2 .�/k � kAujL2.�/k C kujL2.�/k; u 2 W 2

2;0.�/; (5.28)
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or, explaining the equivalence �, there are constants 0 < c1 � c2 such that for all
u 2 W 2

2;0.�/,

c1 kujW 2
2 .�/k � kAujL2.�/k C kujL2.�/k � c2 kujW 2

2 .�/k: (5.29)

Usually equivalences of this type are called a priori estimates. Assuming that the
homogeneous Dirichlet problem (5.16) is solved, then one gets (5.28) with little
effort from the operator theory in Hilbert spaces. But usually one follows just
the opposite way of reasoning proving first (i.e., a priori) (5.28) and using these
substantial assertions afterwards to deal with the homogeneous (and then with the
inhomogeneous) Dirichlet problem. One may summarise what follows in the next
three chapters as follows:

• In this Chapter 5 we concentrate first on the indicated a priori estimates,
preferably for the Dirichlet problem, but also for the Neumann problem (if
no additional effort is needed). Afterwards we deal with the boundary value
problems according to Definition 5.3. This will be complemented by some
assertions about degenerate elliptic equations and a related Lp theory.

• In Chapter 7 we have a closer look at the spectral theory of operators of type
(5.24) including assertions about the distribution of eigenvalues.

• It is expected that the reader has some basic knowledge of abstract functional
analysis, and, in particular, of the theory of unbounded closed operators in
Hilbert spaces. But we collect what we need (with references) in Appendix C.
Some more specific assertions, especially about approximation numbers and
entropy numbers, respectively, and their relation to eigenvalues will be the
subject of Chapter 6 preparing, in particular, Chapter 7.

5.3 A priori estimates

Let fav W v 2 V g and fbv W v 2 V g be two sets of non-negative numbers indexed
by v 2 V . If there are two numbers 0 < c1 � c2 <1 such that

c1av � bv � c2av for all v 2 V; then we write av � bv; v 2 V; (5.30)

and call it an equivalence; (5.28) with the explanation (5.29) and V D W 2
2;0.�/

may serve as an example. According to the programme outlined in Section 5.2 we
deal first with the a priori estimate (5.28). Recall that bounded C1 domains in Rn

as introduced in Definition A.3 are connected. The spaces W 2
2 .�/ and W 2

2;0.�/

have the same meaning as in Theorem 4.1 and (5.11), always assumed to be normed
by (5.7).



5.3. A priori estimates 123

Theorem 5.7. Let � be a bounded C1 domain in Rn where n 2 N and let A be
an elliptic differential expression according to Definition 5.1. Then

kAujL2.�/k C kujL2.�/k � kujW 2
2 .�/k; u 2 W 2

2;0.�/: (5.31)

Proof. Step 1. By (5.1), (5.7) we have for some c > 0,

kAujL2.�/k C kujL2.�/k � ckujW 2
2 .�/k; u 2 W 2

2;0.�/: (5.32)

Step 2. As for the converse it is sufficient to prove that there is a constant c > 0

such that

ckujW 2
2 .�/k � kAujL2.�/k C kujL2.�/k; u 2 C1.�/; tr� u D 0: (5.33)

This follows from Proposition 4.32 (i) with s D 2 and a standard completion argu-
ment. In particular, we may assume in the sequel that u has classical derivatives.

We prove (5.33) by reducing it in several steps to standard situations. First we
assume that we had already shown

ck'kujW 2
2 .�/k � kA.'ku/jL2.�/k C k'kujL2.�/k (5.34)

for u 2 C1.�/, tr� u D 0, where f'kgJkD0 is the resolution of unity according to
(4.5)–(4.7) and Figure 4.3. Of course, this implies 'ku 2 C1.�/with tr�.'ku/ D
0 for k D 1; : : : ; J . Then one obtains by (5.3) and Theorem 4.17 that

kujW 2
2 .�/k � ckAujL2.�/k C ckujW 1

2 .�/k
� ckAujL2.�/k C "kujW 2

2 .�/k C c"kujL2.�/k; (5.35)

where " > 0 is at our disposal. This proves (5.33). Hence the proof of (5.33) is a
local matter where the boundary terms in (5.34) are of interest, i.e., k � 1. One
gets the term with '0 as an easy by-product.

Step 3. By Step 2 it is sufficient to prove (5.33) for a local standard situation as
considered in connection with the Figures A.1 and 4.1.

.x/

�

�
supp v

.y/

y D  .x/

x D  �1.y/
0 Rn�1

xn

0

suppu

"
yn
"

Rn�1

Figure 5.1
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We may assume that 0 2 � D @� and that � near the origin is given by

xn D 
.x0/; x0 D .x1; : : : ; xn�1/; jx0j � "; (5.36)

where 
 is a C1 function in Rn�1 with


.0/ D 0 and
@


@xk
.0/ D 0 for k D 1; : : : ; n � 1: (5.37)

Then the indicated locally diffeomorphic map  given by

yk D xk for k D 1; : : : ; n � 1 and yn D xn �  .x0/; (5.38)

flattens �" D � \ fx 2 Rn W jxj < "g and �" D � \ fx 2 Rn W jxj < "g such that

 .�"/ � RnC \ fy 2 Rn W jyj < "g and

 .�"/ � Rn�1 \ fy0 2 Rn�1 W jy0j < "g:
(5.39)

If u 2 C1.�/ with suppu � �" and tr� u D 0, then

v.y/ D .u B  �1/.y/; y 2 RnC and jyj � "; (5.40)

has corresponding properties. In particular, v.y0; 0/ D 0 if jy0j � ". Transforming
Au given by (5.3) according to (5.38), (5.40), leads to

.Au/.x/ D . QAv/.y/

D �
nX

j;kD1
Qajk.y/ @2v

@yj @yk
.y/C

nX
lD1
Qal.y/ @v

@yl
.y/C Qa.y/v.y/ (5.41)

with
Qajk.y/ D ajk. �1.y//C "jk.y/; j"jk.y/j � ı; (5.42)

where ı > 0 is at our disposal (choosing the above " > 0 sufficiently small). In
particular, one obtains a transformed ellipticity condition (5.4),

nX
j;kD1

Qajk.0/�j �k � E

2
j�j2; � 2 Rn; (5.43)

at the origin. Furthermore, since Qajk.y/ are continuous at the origin, we have

Qajk.y/ D Qajk.0/C bjk.y/ with jbjk.y/j � ı; jyj � "; (5.44)

where ı is at our disposal (at the expense of "). Inserting (5.44) in (5.41) results
in the main term now with Qajk.0/ in place of ajk.y/ and perturbations of second
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order terms with small coefficients. Altogether one arrives at the following model
case: Let

.Au/.x/ D �
nX

j;kD1
ajk

@2u

@xj @xk
.x/; x 2 Rn; (5.45)

with constant coefficients ajk satisfying the ellipticity condition (5.4). Then we
wish to prove that there is a constant c > 0 such that

c kujW 2
2 .R

nC/k � kAujL2.RnC/k C kujL2.RnC/k (5.46)

for

u 2 C1.RnC/; suppu � RnC \ fx 2 Rn W jxj < "g; u.x0; 0/ D 0 (5.47)

for small " > 0. Afterwards the above reductions and re-transformations prove
(5.3) in the same way as in Step 2.

Step 4. Next we wish to reduce the desired estimate (5.46) with (5.47) on RnC to
a corresponding estimate on Rn using the odd extension procedure according to

supp v

suppu

x0 0

�xn

xn

Rn�1

Figure 5.2

(4.45) and Theorem 4.11, hence

v.x/ D O- ext u.x/

D
(
u.x/ if xn � 0;
�u.x0;�xn/ if xn < 0:

(5.48)

By Theorem 4.11 one has v 2 W 2
2 .R

n/ and
supp v � fx 2 Rn W jxj < "g. If one replaces
u.x/, x 2 RnC , in (5.45) by v.x/, x 2 Rn,

according to (5.48), then the differential expression is preserved with the exception
of the terms with j D n, 1 � k � n � 1, which change sign. We remove this
unpleasant effect applying first an orthogonal rotation H D .hml/nm;lD1 in Rn and
afterwards dilations with respect to (new) axes of coordinates,

yj D
nX

mD1
hjmxm; zj D yj

dj
; j D 1; : : : ; n; (5.49)

with dj > 0. Analytic geometry tells us that H can be chosen such that

�
nX

j;kD1
ajk

@2u

@xj @xk
.x/ D �

nX
lD1

dl
@2zu
@y2
l

.y/ D ��u�.z/; (5.50)

where u.x/ D zu.y/ D u�.z/ are the transformed functions according to (5.49).
As for the corresponding quadratic forms one has

nX
j;kD1

ajk�j �k D
nX
lD1

dl�
2
l � Ej�j2 D Ej�j2; (5.51)
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and for l D 1; : : : ; n,

E � dl � dM with M D max
j;kD1;:::;n

jajkj; (5.52)

where d � 1 is independent of E and M (this will be of some use for us later on).
If u is given by (5.47), then u�.z/ D u.x/ has similar properties with u�.z/ D 0

on the transformed upper hyper-plane fz 2 Rn W xn.z/ D 0g. We arrive finally at
the Laplacian in a half-space. Of course, we may assume that this half-space is RnC
and we wish to prove that

c kujW 2
2 .R

nC/k � k�ujL2.RnC/k C kujL2.RnC/k (5.53)

for u with (5.47). Hence (5.46), (5.47) can be reduced to (5.53), (5.47). Now we
apply the odd extension (5.48) described above which reduces (5.53) to

c kvjW 2
2 .R

n/k � k�vjL2.Rn/k C kvjL2.Rn/k (5.54)

for v 2 W 2
2 .R

n/.

Step 5. We observe that (5.54) is essentially covered by Theorem 3.11. In particular,
(3.26) implies that

kvjW 2
2 .R

n/k2 D
Z

Rn

X
j˛j�2
jF .D˛v/.�/j2 d� D

Z
Rn

� X
j˛j�2
j�˛j2

	
jF v.�/j2 d�

� c
Z

Rn

j�j4jF v.�/j2 d� C c
Z

Rn

jF v.�/j2 d�

D ck�vjL2.Rn/k2 C ckvjL2.Rn/k2: (5.55)

This completes the proof of the theorem. �

Exercise* 5.8. Justify (5.51). How does � depend on �?

Corollary 5.9 (Gårding’s inequality). Let� be a boundedC1 domain in Rn where
n 2 N. LetA be an elliptic differential expression according toDefinition 5.1 where,
in addition, the functions ajk.x/ are Lipschitz continuous, hence

jajk.x/j �M; jal.x/j �M; ja.x/j �M for x 2 x� (5.56)

and all admitted j; k; l , and

jajk.x/ � ajk.y/j �M jx � yj; x 2 x�; y 2 x�; (5.57)

for j; k D 1; : : : ; n, and someM > 0. Then

kAujL2.�/k � c1 EkujW 2
2 .�/k � c2kujL2.�/k; u 2 W 2

2;0.�/; (5.58)

with positive constants c1; c2 depending only onM andM=E.
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Proof. One can follow the above proof of Theorem 5.7. The additional assumption
(5.57) is helpful in connection with (5.44). The quotient M=E influences the
estimates transforming y in z in (5.50), (5.52). �

Remark 5.10. One may ask for a counterpart of Theorem 5.7 with respect to
homogeneous Neumann problems according to Definition 5.3 (ii). This can be
done but requires some extra efforts which we wish to avoid. Some information
will be given in Note 5.12.1 below. Otherwise we use the same notation as in
Definition 5.3 and Remark 5.4. In particular, � is the C1 vector field of outer
normals on � . Recall that A D �� is the Laplacian (5.5). Furthermore, W 2

2 .�/

andW 2;�
2 .�/ have the same meaning as in Theorem 4.1, Definition 4.30 and (5.12)

with � D � always assumed to be normed by (5.7).

Theorem 5.11. Let � be a bounded C1 domain in Rn where n 2 N. Then

k�ujL2.�/k C kujL2.�/k � kujW 2
2 .�/k; u 2 W 2;�

2 .�/: (5.59)

Proof. We follow the proof of Theorem 5.7 indicating the necessary modifications.
Step 1 remains unchanged. The counterpart of (5.33) is given by

ckujW 2
2 .�/k � k�ujL2.�/k C kujL2.�/k; u 2 C1.�/; tr�

@u

@�
D 0;

(5.60)
where the restriction to smooth functions is justified by Proposition 4.32 (ii). We
now base the localisation described in Step 2 on the special resolution of unity
according to Remark 4.5, in particular, (4.24). Then tr� @u

@�
D 0 is preserved.

Similarly one modifies (5.38) in Step 3 by curvilinear coordinates withyn pointing in
the normal direction as indicated in Figure 4.6. Then one arrives at the counterparts
of (5.45)–(5.47), hence

c kujW 2
2 .R

nC/k � k�ujL2.RnC/k C kujL2.RnC/k (5.61)

for

u 2 C1.RnC/; suppu � RnC \ fx 2 Rn W jxj < "g; @u

@xn
.x0; 0/ D 0: (5.62)

Instead of the odd extension (5.48) we use now the even extension,

v.x/ D E- ext u.x/ D
(
u.x/ if xn � 0;
u.x0;�xn/ if xn < 0:

(5.63)

By Theorem 4.11 (with w2;02 D W
2;�
2 .RnC/) we have v 2 W 2

2 .R
n/. There is no

need now for the rotation and dilations as in Step 4 which would not preserve
@v
@xn
.x0; 0/ D 0 in general. We get immediately (5.54) and its proof in (5.55). �
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Remark 5.12. There is a full counterpart of Theorem 5.7 with u 2 W 2;

2 .�/ in

place of W 2
2;0.�/ where again � is an arbitrary non-tangential C1 vector field on

� D @�. Following the arguments in the proof of Theorem 5.7, then the rotation
and dilations in Step 3 transform � into another non-tangential vector field z� now
on � D Rn�1. This would require an assertion of type (4.48) with, say,W 2;z


2 .RnC/
in place of w2;02 .�/. This can be done, but it is not covered by our arguments. In
addition, application of such an extension to � in RnC does not produce in general
� in Rn which we used stepping from (5.53) to (5.54).

Exercise 5.13. Let faj gnjD1 � C.�/ and a 2 C.�/. Prove Theorem 5.11 for the
perturbed Laplacian

Au D ��uC
nX
lD1

al.x/
@u

@xl
C a.x/u (5.64)

in place of �.

Hint: Use the arguments in Step 2 of the proof of Theorem 5.7.

As outlined in Section 5.2 the spectral theory of elliptic operators A of type
(5.24) requires to deal with the scale (5.25). This will be done in detail below. We
prepare these considerations by the following assertion. Let C 1.�/ be the spaces
as introduced in Definition A.1.

Corollary 5.14. Let � be a bounded C1 domain in Rn where n 2 N.

(i) Let A be an elliptic differential expression according to Definition 5.1 where,
in addition, ajk 2 C 1.�/. Let E be the ellipticity constant and let

kajkjC 1.�/k �M; kal jC.�/k �M; kajC.�/k �M; (5.65)

for all admitted k; j; l and someM > 0. Then there are positive constants �0,
c1; c2 depending only on E,M .and �/ such that

k.AC � id/ujL2.�/k � c1kujW 2
2 .�/k C c2 � kujL2.�/k (5.66)

for all u 2 W 2
2;0.�/ and all � 2 R with � � �0.

(ii) Again let � be the C1 vector field of the outer normals on � D @�. There are
positive constants �0, c1, c2 such that

k.��C � id/ujL2.�/k � c1 kujW 2
2 .�/k C c2 � kujL2.�/k (5.67)

for all u 2 W 2;�
2 .�/ and all � 2 R with � � �0.
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Proof. Step 1. We prove (i). As before it follows from Proposition 4.32 (i) that it is
sufficient to deal with C1 functions u 2 W 2

2;0.�/. Let

A0u D �
nX

j;kD1

@

@xj

�
ajk.x/

@u

@xk

�
; u 2 C1.�/; tr� u D 0; (5.68)

which makes sense since we assumed ajk 2 C 1.�/. Integration by parts implies
for the scalar product hA0u; ui in L2.�/,

hA0u; ui D �
Z
�

nX
j;kD1

@

@xj

�
ajk.x/

@u

@xk

�
xu.x/ dx

D
Z
�

nX
j;kD1

ajk.x/
@u

@xk
.x/

@xu
@xj

.x/ dx � 0; (5.69)

where the last follows from (5.6). Furthermore,

Au D A0uC
nX
lD1

bl
@u

@xl
C bu D A0uC A1u; (5.70)

where bl and b D a can be similarly estimated as in (5.65). Then one obtains for
� > 0,

k.A C � id/ujL2.�/k2
D hAuC �u;AuC �ui
D kAujL2.�/k2 C 2�hA0u; ui C 2�RehA1u; ui C �2kujL2.�/k2
� kAujL2.�/k2 C �2kujL2.�/k2 C 2�RehA1u; ui: (5.71)

Using Theorem 4.17 one can estimate the last term from above by

2�jhA1u; uij � c kujW 1
2 .�/k�kujL2.�/k

� �2

2
kujL2.�/k2 C "kujW 2

2 .�/k2 C c"kujL2.�/k2: (5.72)

We insert (5.72) in (5.71) (estimate from below), use (5.58) and choose " (indepen-
dently of �) sufficiently small. Hence,

k.AC � id/ujL2.�/k2 � c1kujW 2
2 .�/k2 C

�
�2

2
� c

�
kujL2.�/k2 (5.73)

for some c > 0 independent of � > 0. Choosing � � �0 and �0 sufficiently large
results in (5.66).

Step 2. The proof of (ii) is the same using now Theorem 5.11. �
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Exercise 5.15. Let� and A be as in Corollary 5.14 (i) and let �A be the co-normal
according to (5.20). Prove the generalisation of (5.67),

k.AC � id/ujL2.�/k � c1kujW 2
2 .�/k C c2�kujL2.�/k; u 2 W 2;�A

2 .�/;

(5.74)
for some c1 > 0, c2 > 0, �0 > 0 and all � � �0.

Hint: Take the generalisation of (5.59),

kAujL2.�/k C kujL2.�/k � kujW 2
2 .�/k; u 2 W 2;


2 .�/; (5.75)

for non-tangential C1 vector fields � on � D @� for granted and rely on Exer-
cise 5.6.

5.4 Some properties of Sobolev spaces on Rn
C

In the preceding Section 5.3 we always assumed that � is a bounded C1 domain
in Rn according to Definition A.3, where we also explained what is meant by
bounded C ` domains, ` 2 N. By the arguments given it is quite clear that it would
be sufficient for the assertions in Section 5.3 to assume that � is a bounded C 2

domain (or C 3 domain in case of Neumann problems), not to speak about some
minor technicalities. But this is not so interesting and will not be needed in the
sequel. On the other hand, we reduced assertions for bounded C1 domains via
localisations and diffeomorphic maps to Rn and RnC. This technique will also be of
some use in what follows. For this purpose we first fix the RnC counterparts of the
above key assertions complemented afterwards by some density and smoothness
properties playing a crucial rôle in the sequel.

Let C.RnC/ and C 1.RnC/ be the spaces as introduced in Definition A.1 where
again

RnC D fx 2 Rn W x D .x0; xn/; x0 2 Rn�1; xn > 0g; (5.76)

for n 2 N. The spacesW `
2 .R

nC/ have the same meaning as in Theorem 3.41 and are
assumed to be normed by (3.98). Traces must be understood as in (3.127), (3.128)
with the obvious counterparts of Definition 4.30,

W s
2;0.R

nC/ D ff 2 W s
2 .R

nC/ W tr� f D 0g; (5.77)

if s > 1
2

and

W
s;�
2 .RnC/ D



f 2 W s

2 .R
nC/ W tr�

@f

@�
D 0

�
; (5.78)

if s > 3
2

, where we now assume that � is the outer normal, hence

.tr� f /.x/ D f .x0; 0/;
�

tr�
@f

@�

�
.x/ D � @f

@xn
.x0; 0/: (5.79)

We strengthen the RnC counterpart of Definition 5.1 by (5.65) with RnC in place of�.
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Theorem 5.16. (i) Let A be a second order elliptic differential expression in RnC,

.Au/.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (5.80)

with
ajk.x/ D akj .x/ 2 R; x 2 RnC; 1 � j; k � n; (5.81)

nX
j;kD1

ajk.x/�j �k � Ej�j2; x 2 RnC; � 2 Rn; (5.82)

for some E > 0 .ellipticity constant/, and

kajkjC 1.RnC/k �M; kal jC.RnC/k �M; kajC.RnC/k �M (5.83)

for all admitted j; k; l and someM > 0. Then

kAujL2.RnC/k C kujL2.RnC/k � kujW 2
2 .R

nC/k; u 2 W 2
2;0.R

nC/: (5.84)

Furthermore, there are positive constants �0, c1 and c2 depending only on E and
M such that

k.AC � id/ujL2.RnC/k � c1kujW 2
2 .R

nC/k C c2 �kujL2.RnC/k (5.85)

for all u 2 W 2
2;0.R

nC/ and all � 2 R with � � �0.
(ii) Let A D �� be the Laplacian according to (5.5) and let � be the outer

normal as in (5.79). Then

k�ujL2.RnC/k C kujL2.RnC/k � kujW 2
2 .R

nC/k; u 2 W 2;�
2 .RnC/: (5.86)

Furthermore, there are positive constants�0, c1 and c2 depending only onE andM
such that

k.��C � id/ujL2.RnC/k � c1kujW 2
2 .R

nC/k C c2 �kujL2.RnC/k (5.87)

for all u 2 W 2;�
2 .RnC/ and all � 2 R with � � �0.

Proof. As for part (i) one can follow the proof of Theorem 5.7 with a reference
to Corollary 3.44 instead of Theorem 4.17 in connection with the counterpart of
(5.35). Then one obtains (5.84) and also a counterpart of Corollary 5.9. Similarly
one gets (5.85) as a modification of (5.66). Furthermore, part (ii) is the counterpart
of Theorem 5.11 and Corollary 5.14 (ii). �

The theory of elliptic operators in RnC is in some aspects (but not all) parallel to
the corresponding theory in boundedC1 domains. But some technical instruments
are more transparent in RnC. This is the main reason for having a closer look at RnC
in preparation of what follows. Recall (5.77), (5.78) and that S.RnC/ D S.Rn/jRn

Cas in Proposition 3.39.
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Proposition 5.17. Let f 2 L2.RnC/.
(i) Let u 2 W 1

2;0.R
nC/ andZ
Rn

C

nX
jD1

@u

@xj
.x/

@'

@xj
.x/dx D

Z
Rn

C

f .x/'.x/dx (5.88)

for all ' 2 S.RnC/ with tr� ' D 0. Then u 2 W 2
2;0.R

nC/.

(ii) Let u 2 W 1
2 .R

nC/ andZ
Rn

C

nX
jD1

@u

@xj
.x/

@'

@xj
.x/dx D

Z
Rn

C

f .x/'.x/dx (5.89)

for all ' 2 S.RnC/ with tr�
@'

@�
D 0. Then u 2 W 2;�

2 .RnC/.

Proof. Step 1. Let x D .x0; xn/ 2 Rn, x0 2 Rn�1. We insert

'.x0; xn/ D  .x0; xn/ �  .x0;�xn/ with  2 D.Rn/ (5.90)

in (5.88). The arguments in the proof of Theorem 4.11 and Remark 4.33 imply for
the odd extensions

U.x/ D O- ext u.x/ D
(
u.x0; xn/ if xn � 0;
�u.x0;�xn/ if xn < 0;

F.x/ D O- ext f .x/ D
(
f .x0; xn/ if xn � 0;
�f .x0;�xn/ if xn < 0;

(5.91)

that U 2 W 1
2 .R

n/, F 2 L2.Rn/, andZ
Rn

nX
jD1

@U

@xj
.x/

@ 

@xj
.x/dx D

Z
Rn

F.x/ .x/dx;  2 D.Rn/: (5.92)

For the justification of the transformation of the left-hand side of (5.88) into the
left-hand side of (5.92) one may approximate u by smooth functions using the RnC
counterpart of Proposition 4.32 (i). However, one gets by (5.92) and (3.30), (3.31)
that

U ��U D F C U D G 2 L2.Rn/; (5.93)

.1C j�j2/ yU.�/ D yG.�/ 2 L2.Rn/; (5.94)
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and hence U 2 W 2
2 .R

n/. This proves u 2 W 2
2;0.R

nC/.

Step 2. We insert

'.x0; xn/ D  .x0; xn/C  .x0;�xn/ with  2 D.Rn/ (5.95)

in (5.89). Again by the arguments in the proof of Theorem 4.11 this leads for the
even extensions

U.x/ D E- ext u.x/ D
(
u.x0; xn/ if xn � 0;
u.x0;�xn/ if xn < 0;

F.x/ D E- ext f .x/ D
(
f .x0; xn/ if xn � 0;
f .x0;�xn/ if xn < 0;

(5.96)

to U 2 W 1
2 .R

n/, F 2 L2.Rn/, and (5.92). By Proposition 3.39 the set S.RnC/ is
dense in W 1

2 .R
nC/. This justifies by approximation the transformation of the left-

hand side of (5.89) into the left-hand side of (5.92). Otherwise we get by the same
arguments as in Step 1 that U 2 W 2

2 .R
n/ and, hence, u 2 W 2

2 .R
nC/. Furthermore

one obtains

tr�
@U

@�
D @u

@xn
.x0; 0/ D � @u

@xn
.x0; 0/ D 0: (5.97)

Hence u 2 W 2;�
2 .RnC/. �

Remark 5.18. We wish to discuss the effect that the identity (5.89) foru 2 W 1
2 .R

nC/
does not only improve the smoothness properties, u 2 W 2

2 .R
nC/, but even ensures

that @u
@xn
.x0; 0/ D 0 in the interpretation of (5.79) (or (5.97)). Let D.RnC/ be

the restriction of D.Rn/ to RnC (denoted previously for arbitrary domains � by
D.Rn/j�) and let

D.RnC/
� D



f 2 D.RnC/ W

@f

@xn
.x0; 0/ D 0

�
: (5.98)

Proposition 5.19. (i) The set D.RnC/� is dense in W 1
2 .R

nC/.
(ii) The set D.RnC/ is dense both in W 1

2;0.R
nC/ .also denoted by VW 1

2 .R
nC// and

in
VW 2
2 .R

nC/ D


f 2 W 2

2 .R
nC/ W tr� f D tr�

@f

@�
D 0

�
: (5.99)

Proof. Step 1. We prove (i). According to Proposition 3.39 it is sufficient to
approximate f 2 D.RnC/ by functions belonging to (5.98). For f 2 D.RnC/ and
" > 0 let

f " 2 D.RnC/; suppf " � fx 2 RnC W 0 � xn � 2"g (5.100)
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and
f ".x0; xn/ D f .x0; 0/xn if 0 � xn � " and x0 2 Rn�1: (5.101)

There are functions of this type with

kf "jW 1
2 .R

nC/k � c " for some c > 0 and all " with 0 < " � 1: (5.102)

Then f" D f � f " 2 D.RnC/� approximates f in W 1
2 .R

nC/.

Step 2. We prove (ii) for the spaces VW 2
2 .R

nC/. First remark that f 2 VW 2
2 .R

nC/ can
be approximated by functions

'.x0/ .xn/f 2 VW 2
2 .R

nC/ (5.103)

where ' 2 D.Rn�1/,  2 D.R/ with

'.x0/ D 1 if jx0j � c and  .xn/ D 1 if jxnj � c: (5.104)

Hence we may assume that f 2 VW 2
2 .R

nC/ has compact support in RnC. Let fj 2
D.RnC/ be an approximating sequence of f inW 2

2 .R
nC/ if j !1. Then it follows

by Theorem 4.24 and its proof that for 0 � j˛j � 1,

.D˛fj /.x
0; 0/! tr� D˛f D 0 in W

3
2 �j˛j
2 .Rn�1/ if j !1: (5.105)

This is immediately covered by Theorem 4.24 if ˛ D 0 or if D˛ D � @
@�

is the
normal derivative. As for tangential derivatives D˛ D @

@xk
, k D 1; : : : ; n � 1, we

have

tr�
@

@xk
D @

@xk
tr� ; k D 1; : : : ; n � 1: (5.106)

This is obvious if applied to smooth functions and it follows in general from our
definition of traces as limits of traces of smooth functions as indicated several times,
for example in (4.30)–(4.32) (extended to target spaces of type W s

2 .�/). Next we

use (5.105) for the approximating sequence fj ! f 2 VW 2
2 .R

nC/ in W 2
2 .R

nC/ to
prove that for j˛j � 2,Z

Rn
C

.D˛f /.x/'.x/dx D .�1/j˛j
Z

Rn
C

f .x/.D˛'/.x/dx; ' 2 D.Rn/: (5.107)

We use integration by parts for fj 2 D.RnC/ and getZ
Rn

C

.D˛fj /.x/'.x/dx D .�1/j˛j
Z

Rn
C

fj .x/.D
˛'/.x/dx C

Z
Rn�1

	 	 	 ; (5.108)
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with at most first order boundary terms for fj . Then (5.107) follows from (5.108),
(5.105) and j ! 1. We extend f from RnC to Rn by zero. Then one obtains by
(5.107) that

ext f .x/ D
(
f .x/ if xn > 0;

0 if xn < 0;
(5.109)

is a linear and bounded extension operator from VW 2
2 .R

nC/ into W 2
2 .R

n/. If F 2
W 2
2 .R

n/ and

Fh.x/ D F.x C h/; then Fh ! F in W 2
2 .R

n/ for h! 0: (5.110)

This is clear for smooth functions, say, F 2 D.Rn/, and follows for arbitrary
F 2 W 2

2 .R
n/ by approximation. We apply this observation to F D ext f in

(5.109) and h D .0; hn/ with hn < 0 and hn ! 0. This proves that F in W 2
2 .R

n/

and, as a consequence, f 2 VW 2
2 .R

nC/ in RnC can be approximated by fh having
a compact support in RnC. The rest is now a matter of mollification as detailed in

(3.58), (3.61). Hence D.RnC/ is dense in VW 2
2 .R

nC/. But the above arguments also

show that D.RnC/ is dense in VW 1
2 .R

nC/. �

Exercise* 5.20. Construct explicitly functions f " with (5.100)–(5.102).

Exercise 5.21. Let k 2 N. Prove that D.RnC/ is dense in

VW k
2 .R

nC/ D


f 2 W k

2 .R
nC/ W tr�

@lf

@�l
D 0 for l D 0; : : : ; k � 1

�
: (5.111)

Hint: Use Exercise 4.27. One may also consult Note 5.12.2 for a more general
result.

5.5 The Laplacian

We are mainly interested in boundary value problems for second order elliptic
differential equations in boundedC1 domains in Rn as described in Definition 5.3.
The first candidate is the Laplacian,

Au D ��u D �
nX
kD1

@2u

@x2
k

: (5.112)

Usually we reduced questions for Sobolev spaces and elliptic equations in bounded
C1 domains to corresponding problems on the half-space RnC. The same will be
done in what follows. This may justify dealing with boundary value problems for
the Laplacian first, both in RnC and in bounded C1 domains. We rely now on
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the theory of self-adjoint operators in Hilbert spaces H D L2.�/. We refer to
Appendix C where we collected what we need now. We use the notation introduced
there.

The Dirichlet Laplacian in the Hilbert spaces H D L2.RnC/ is defined by

ADu D ��u with dom.AD/ D D.RnC/; (5.113)

and the Neumann Laplacian by

ANu D ��u with dom.AN/ D D.RnC/
� ; (5.114)

where D.RnC/� is given by (5.98). Integration by parts implies that

hADu; vi D
Z

Rn
C

.��u/.x/v.x/dx D
Z

Rn
C

nX
kD1

@u

@xk
.x/

@xv
@xk

.x/dx (5.115)

for u 2 dom.AD/, v 2 dom.AD/, and similarly,

hANu; vi D
Z

Rn
C

nX
kD1

@u

@xk
.x/

@xv
@xk

.x/dx (5.116)

for u 2 dom.AN/, v 2 dom.AN/. One may consult Section A.3. In particular,

hADu; ui � 0; u 2 dom.AD/ and hANu; ui � 0; u 2 dom.AN/; (5.117)

and hence both AD and AN are symmetric positive operators in L2.Rn/ according
to Definition C.9. If " > 0, then both ADC " id and ANC " id are positive-definite.
We choose " D 1 and abbreviate for convenience,

AD D AD C id and AN D AN C id: (5.118)

Let AD
F and AN

F be the respective self-adjoint Friedrichs extensions according to
Theorem C.13 with spectra �.AD

F / � Œ1;1/ and �.AN
F / � Œ1;1/. In particular,

AD
F W dom.AD

F / � L2.R
nC/; AN

F W dom.AN
F / � L2.R

nC/ (5.119)

are one-to-one mappings, the corresponding inverse operators exist and belong to
L.L2.RnC//. LetW 1

2;0.R
nC/ D VW 1

2 .R
nC/,W 2

2;0.R
nC/, andW 2;�

2 .RnC/ be as in (5.77),
(5.78) and Proposition 5.19.

Theorem 5.22. LetAD andAN be the above operators in the Hilbert spaceL2.RnC/.
Then one has

HAD
F
D VW 1

2 .R
nC/ and HAN

F
D W 1

2 .R
nC/ (5.120)
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for the corresponding energy spaces, and

AD
F u D ��uC u; dom.AD

F / D W 2
2;0.R

nC/; (5.121)

and
AN
F u D ��uC u; dom.AN

F / D W 2;�
2 .RnC/: (5.122)

Proof. Step 1. The density assertions in Proposition 5.19 and (C.36) imply (5.120).

Step 2. In view of the RnC counterpart of Proposition 4.32 (i) any u 2 W 2
2;0.R

nC/
can be approximated in W 2

2 .R
nC/ by functions belonging to

ff 2 D.RnC/ W f .x0; 0/ D 0g: (5.123)

Then integration by parts and approximation imply

˝
.��C id/u; v

˛ D Z
Rn

C

� nX
kD1

@u

@xk

@xv
@xk

.x/C u.x/v.x/
	

dx

D ˝u; .��C id/v
˛

(5.124)

for u 2 W 2
2;0.R

nC/ and v 2 W 2
2;0.R

nC/. In particular, Theorem C.13 leads to

W 2
2;0.R

nC/ � dom
�
.AD/�

� \HAD D dom.AD
F /: (5.125)

Let u 2 dom.AD
F /. Then u 2 W 1

2;0.R
nC/ and AD

F u D g 2 L2.RnC/. In view of
Remark C.14 one obtains for any ' 2 S.RnC/, tr� ' D 0, and with f D g � u 2
L2.RnC/,Z

Rn
C

nX
kD1

@u

@xk
.x/

@'

@xk
.x/dx D ˝AD

F u � u; x'
˛ D Z

Rn
C

f .x/'.x/dx: (5.126)

Now one obtains by Proposition 5.17 (i) that u 2 W 2
2;0.R

nC/. This is the converse
of (5.125). Hence we have (5.121).

Step 3. The proof of (5.122) follows the same line of arguments using the RnC
counterpart of Proposition 4.32 (ii). It follows that D.RnC/� according to (5.98) is
dense in W 2;�

2 .RnC/ and one gets a counterpart of (5.124) resulting in

W
2;�
2 .RnC/ � dom

�
.AN/�

� \HAN D dom.AN
F /: (5.127)

We have (5.126) with u 2 dom.AN
F / � W 1

2 .R
nC/ and ' 2 S.RnC/, tr�

@'
@�
D 0.

Then one obtains by Proposition 5.17 (ii) that u 2 W 2;�
2 .RnC/ which completes the

proof. �
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Remark 5.23. Although HAD D HAD
F
D VW 1

2 .R
nC/ is a genuine subspace of

HAN D HAN
F
D W 1

2 .R
nC/ a corresponding assertion for dom.AD

F / and dom.AN
F /

cannot be valid. We refer to Note 5.12.3, too.

Remark 5.24. As remarked above one has �.AD
F / � Œ1;1/ and �.AN

F / � Œ1;1/
for the spectra of AD

F and AN
F . It turns out that

�.AD
F / D �.AN

F / D Œ1;1/ (5.128)

and
�p.A

D
F / D �p.A

N
F / D ;; (5.129)

where �p.A
D
F / and �p.A

N
F / are the corresponding point spectra (collection of eigen-

values, see Section C.1, (C.9)). Hence neither AD
F nor AN

F possesses eigenvalues.

Exercise 5.25. Justify (5.129).

Hint: Prove first that A, given by

Au D .��C id/u; dom.A/ D W 2
2 .R

n/; (5.130)

is a positive-definite self-adjoint operator in L2.Rn/ and that �p.A/ D ;. Use the
Fourier transform. Reduce (5.129) to this case relying on the above technique of
odd and even extensions. We refer also to Note 5.12.4.

Next we deal with the counterparts of (5.113), (5.114) and Theorem 5.22 in
bounded C1 domains � in Rn as introduced in Definition A.3. First we need the
�-versions of the Propositions 5.17 and 5.19. The spaces W 1

2;0.�/, W
2
2;0.�/ and

W
2;�
2 .�/ with the C1 vector field � of outer normals have the same meaning as in

Definition 4.30. We use C1.�/ as in (A.9).

Proposition 5.26. Let � be a bounded C1 domain in Rn and let f 2 L2.�/.
(i) Let u 2 W 1

2;0.�/ andZ
�

nX
jD1

@u

@xj
.x/

@'

@xj
.x/dx D

Z
�

f .x/'.x/dx (5.131)

for all ' 2 C1.�/ with tr� ' D 0. Then u 2 W 2
2;0.�/.

(ii) Let u 2 W 1
2 .�/ andZ

�

nX
jD1

@u

@xj
.x/

@'

@xj
.x/dx D

Z
�

f .x/'.x/dx (5.132)

for all ' 2 C1.�/ with tr�
@'

@�
D 0. Then u 2 W 2;�

2 .�/.
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Proof. As indicated in Figure 5.3 below we furnish a neighbourhood of 	0 2 � D
@� with orthogonal curvilinear coordinates

yj D hj .x/; j D 1; : : : ; n; (5.133)

such that yn points in the direction of the outer normal �, hence yn D 0 refers
locally to � D @� and the level sets yn D c are parallel to � , where jcj is small.

	0�

.x/ .y/

0

yn

�

�

Figure 5.3

Let

J D
��
@hj

@xk

�n
j;kD1

�
and v.y/ D u.x/;  .y/ D '.x/; g.y/ D f .x/;

(5.134)
where u, ' and f are as in the proposition. Let J � be the adjoint matrix of the
Jacobian J . The integrands on the left-hand sides of (5.131), (5.132) can be written
as the scalar product hgrad u; grad 'i of the related gradients. In [Tri92a, Sections
6.3.2, 6.3.3, pp. 373–378] we discussed in detail the impact of orthogonal curvilinear
coordinates on gradients and the Laplacian. We may assume additionally that J �J

is the unit matrix and that det J D 1 for the Jacobian determinant. Then

hgrad u; grad 'i D hJ �J grad v; grad i D hgrad v; grad i (5.135)

and also

�u.x/ D �v.y/; tr�
@'

@�
D @ 

@yn
.y0; 0/ D 0: (5.136)

(We shall not use directly that the Laplacian is preserved, but it illuminates what
happens.) Restricting (5.131), (5.132) to a neighbourhood of a point 	0 2 � which
corresponds to y D 0 in the curvilinear coordinates, now interpreted as Cartesian
coordinates, then one obtainsZ

Rn
C

nX
jD1

@v

@yj
.y/

@ 

@yj
.y/dy D

Z
Rn

C

g.y/ .y/dy (5.137)

for  2 S.RnC/ with  .y/ D 0 if jyj > 1, and either  .y0; 0/ D 0 or @ 
@yn
.y0; 0/ D

0, respectively. It follows from Proposition 5.17 and its proof withU andF replaced
by V and G, respectively, that

��V D G 2 L2.K/ with, say, K D fy 2 Rn W jyj < 1g; (5.138)
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where V 2 W 1
2 .K/ as a counterpart of (5.93). Let � 2 D.K/, then

��.�V / 2 L2.Rn/; and, hence, �V 2 W 2
2 .R

n/; (5.139)

in the same way as in (5.94). This proves v 2 W 2
2 near � and u 2 W 2

2 .�/.
Furthermore, u 2 W 2;�

2 .�/ in case of part (ii) of the proposition. �

Remark 5.27. The question arises whether one can always find orthogonal curvi-
linear coordinates (5.133) with the desired properties.

If n D 2, then this can be done even globally in a neighbourhood of � . But
otherwise it is a matter of trajectories of the vector field of normals on a sequence of,
say, .n� 1/-dimensional C1 surfaces F.x0; �/ D 0 for a parameter � as indicated
in Figure 5.4. The generated trajectories are orthogonal to the surfacesF.x0; �/ D 0
in Rn. Afterwards one repeats this procedure on a fixed surface F.x0; �/ D 0, and
so on.

xn

�

Rn�1

F.x0; �/ D 0

�

Figure 5.4

Next we deal with the� counterpart of Proposition 5.19 and a crucial inequality.
Recall that bounded C1 domains in Rn according to Definition A.3 are connected.
Furthermore C1.�/ was introduced in (A.9).

Proposition 5.28. Let� be a bounded C1 domain in Rn. Let � be the C1 vector
field of outer normals.

(i) The set

C1.�/� D


f 2 C1.�/ W tr� @f

@�
D 0

�
(5.140)

is dense in W 1
2 .�/.

(ii) The set D.�/ is dense both in W 1
2;0.�/ .also denoted as VW 1

2 .�// and in

VW 2
2 .�/ D



f 2 W 2

2 .�/ W tr� f D tr�
@f

@�
D 0

�
: (5.141)



5.5. The Laplacian 141

(iii) (Friedrichs’s inequality) There is a number c > 0 such that

kf jL2.�/k � c
�Z
�

nX
kD1

ˇ̌̌ @f
@xk

.x/

ˇ̌̌̌2
dx
	1=2

for f 2 VW 1
2 .�/: (5.142)

Proof. Step 1. As for the proof of the parts (i) and (ii) one can follow the proof of
Proposition 5.19. By Proposition 3.39 it is sufficient to approximate f 2 C1.�/
in W 1

2 .�/ by functions belonging to (5.140). But this can be done in obvious
modification of (5.101), (5.102). This proves (i). Concerning part (ii) one can
follow Step 2 of the proof of Proposition 5.19.

Step 2. We prove part (iii) by contradiction and assume that there is no such c with
(5.142). Then there exists a sequence of functions ffj g1jD1 � VW 1

2 .�/ such that

1 D kfj jL2.�/k > j

�Z
�

nX
kD1

ˇ̌̌ @fj
@xk

.x/
ˇ̌̌2

dx

�1=2
: (5.143)

In particular, the sequence ffj g1jD1 is bounded inW 1
2 .�/ and hence Theorem 4.17

implies that it is precompact in L2.�/. We may assume that

fj ! f in L2.�/ with kf jL2.�/k D 1: (5.144)

By (5.143) the sequence ffj g1jD1 converges also in VW 1
2 .�/ (to the same f ) and

one obtains
@f

@xk
.x/ D 0; k D 1; : : : ; n; f 2 VW 1

2 .�/: (5.145)

In particular, �f D 0 in �. If ' 2 D.�/, then

�.'f / 2 L2.�/ and, hence, 'f 2 W 2
2 .�/ (5.146)

as in (5.139). Assuming 'f 2 W l
2 .�/ for some l 2 N, l � 2, then one gets

�.'f / 2 W l�1
2 .�/ and, hence, 'f 2 W lC1

2 .�/: (5.147)

Consequently, iteration and the embedding (4.87) imply that f is a C1 function
on � with (5.144) and (5.145). Since � is connected it follows f D j�j�1=2.
However, this contradicts tr� f D 0. �

Remark 5.29. Note that

ext f .x/ D
(
f .x/ if x 2 �;
0 if x 2 �c D Rn n�;

(5.148)

is a linear and bounded extension operator from VW 1
2 .�/ into W 1

2 .R
n/ and from

VW 2
2 .�/ into W 2

2 .R
n/.
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Exercise 5.30. Let k 2 N. Prove that D.�/ is dense in

VW k
2 .�/ D



f 2 W k

2 .�/ W tr�
@lf

@�l
D 0 for l D 0; : : : ; k � 1

�
; (5.149)

and that ext f in (5.148) is an extension operator from VW k
2 .�/ into W k

2 .R
n/.

Hint: Use Exercise 4.27, compare it with Exercise 5.21.

After these preparations we come now to the counterpart of Theorem 5.22 for
bounded C1 domains � in Rn which may be considered as the main result of
this Section 5.5. As before, �� in Rn is the Laplacian according to (5.112) and �
denotes the C1 vector field of outer normals on � D @�.

The Dirichlet Laplacian in the Hilbert space H D L2.�/ is given by AD,

ADu D ��u with dom.AD/ D D.�/; (5.150)

and the Neumann Laplacian by AN,

ANu D ��u with dom.AN/ D C1.�/� ; (5.151)

where C1.�/� is defined in (5.140). As in (5.115) and in (5.116) one concludes
for the scalar product h	; 	i� in L2.�/ that

hADu; vi� D
Z
�

.��u/.x/v.x/dx D
Z
�

nX
kD1

@u

@xk
.x/

@xv
@xk

.x/dx (5.152)

for u 2 dom.AD/, v 2 dom.AD/, and analogously,

hANu; vi� D
Z
�

nX
kD1

@u

@xk
.x/

@xv
@xk

.x/dx: (5.153)

This follows again by integration by parts according to Theorem A.7. In particular,

hADu; ui� � 0; u 2 dom.AD/; and hANu; ui� � 0; u 2 dom.AN/: (5.154)

Hence both AD and AN are symmetric positive operators in L2.�/ according to
Definition C.9. But compared with the corresponding operators in RnC resulting in
Theorem 5.22 there are now some remarkable differences and the shifting (5.118)
is no longer of any use. Otherwise we rely again on the notation and assertions
in Appendix C. Let in particular AD;F and AN;F be the corresponding self-adjoint
Friedrichs extensions according to Theorem C.13 and Remark C.17. Then AD;F

andAN;F are positive operators in the understanding of Definition C.9 and one finds
(at least) for their spectra,

�.AD;F / � Œ0;1/ and �.AN;F / � Œ0;1/: (5.155)
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Let W 1
2;0.�/ D VW 1

2 .�/, W
2
2;0.�/, and W 2;�

2 .�/ be as in Definition 4.30 and
Proposition 5.28. Recall that � 2 R is called a simple eigenvalue of the self-adjoint
operator A if

dim ker.A � � id/ D 1: (5.156)

Theorem 5.31. Let� be a bounded C1 domain in Rn according to Definition A.3
and let � be the C1 vector field of outer normals.

(i) LetAD;F beFriedrichs extension of theDirichlet Laplacian (5.150). ThenAD;F

is a self-adjoint positive-definite operator with pure point spectrum according
to Definition C.7. Furthermore,

HAD;F
D VW 1

2 .�/; (5.157)

AD;F u D ��u with dom.AD;F / D W 2
2;0.�/; (5.158)

and
�.AD;F / � Œc;1/ (5.159)

with the same constant c > 0 as in (5.142).

(ii) Let AN;F be Friedrichs extension of the Neumann Laplacian (5.151). Then
AN;F is a self-adjoint positive operatorwith pure point spectrum. Furthermore,

HAN;F
D W 1

2 .�/; (5.160)

AN;F u D ��u with dom.AN;F / D W 2;�
2 .�/; (5.161)

and
�.AN;F / � Œ0;1/ (5.162)

where 0 is a simple eigenvalue with the constant functions u.x/ D c ¤ 0 as
the related eigenfunctions.

Proof. Step 1. We conclude from (5.152) and (5.142) that AD is positive-definite.
Then (C.36) and Proposition 5.28 (ii) prove both (5.157) and (5.159) for the Dirich-
let Laplacian. As for the Neumann Laplacian one obtains the corresponding as-
sertions (5.160), (5.162) from (5.153), (C.36) (combined with Remark C.17) and
Proposition 5.28 (i).

Step 2. As for (5.158) and (5.161) one can argue in the same way as in the Steps 2
and 3 of the proof of Theorem 5.22 relying on the one hand on the density assertions
in Proposition 4.32, and on the other hand on Proposition 5.26.

Step 3. Theorem 4.17 and (5.157), (5.160) imply that the embeddings

id W HAD;F
,! L2.�/; id W HAN;F

,! L2.�/; (5.163)
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are compact. Then it follows from Theorem C.15 that AD;F , AN;F C id, and hence
AN;F are operators with pure point spectrum. It remains to clarify what happens at
� D 0 in case of the Neumann Laplacian. Of course, u.x/ D c for x 2 � belongs
to dom.AN;F / and �u.x/ D 0. Hence 0 is an eigenvalue and we must prove that
any eigenfunction is constant. Let u be an eigenfunction for the eigenvalue 0. Then

0 D h��u; ui� D
Z
�

nX
jD1

ˇ̌̌̌
@u

@xj
.x/

ˇ̌̌̌2
dx: (5.164)

Hence @u
@xj
.x/ D 0 and one obtains by the same arguments as at the end of Step 2 of

the proof of Proposition 5.28 that u is constant. Since� is connected it follows that
the eigenvalue0 is simple and that the constant functions are the only eigenfunctions.

�

Remark 5.32. The energy spaces and the domains of definition for the Dirichlet
Laplacian and the Neumann Laplacian on RnC according to Theorem 5.22 on the
one hand, and the corresponding energy spaces and domains of definitions for the
Dirichlet Laplacian and the Neumann Laplacian on a bounded C1 domain � as
described in the above theorem on the other hand are similar. But otherwise there
are some striking differences. As mentioned in (5.129), the operators AD

F and AN
F

in L2.RnC/ have no eigenvalues at all, but the spectra of AD;F and AN;F in L2.�/
consist exclusively of eigenvalues of finite (geometric D algebraic) multiplicity.
Hence both AD;F and AN;F in L2.�/ are outstanding examples of operators with
pure point spectrum. We refer to Remark C.16 where we discussed some con-
sequences. In Chapter 7 we return in detail to the study of the behaviour of the
eigenvalues f�j g1jD1 of such operators. Some comments may also be found in
Note 5.12.5 below.

Exercise 5.33. In Exercise 4.8 we already considered Poincaré’s inequality (4.28)
for 1 � p <1 in an interval. We deal now with p D 2 and arbitrary bounded C1
domains � in Rn.

(a) Prove that

kf jL2.�/k � c
�Z
�

nX
jD1

ˇ̌̌̌
@f

@xj
.x/

ˇ̌̌̌2
dx

�1=2
(5.165)

for f 2 W 1
2 .�/ with

R
�

f .x/dx D 0 and some c > 0. Let

W 1
2;M .�/ D



f 2 W 1

2 .�/ W
Z
�

f .x/dx D 0
�
;
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normed by kf jW 1
2;M .�/k D kjrf j jL2.�/k. Show that

W 1
2 .�/ D W 1

2;M .�/˚ ff is constant on �g;
and AN;F is positive-definite on W 1

2;M .�/.

Hint: Modify the proof of (5.142). Use the last assertion of Theorem 5.31.
Recall that C1 domains are connected.

(b) Use (a) to show that�Z
�

nX
jD1

ˇ̌̌̌
@f

@xj
.x/

ˇ̌̌̌2
dx

�1=2
C
ˇ̌̌̌ Z
�

f .x/dx

ˇ̌̌̌
� kf jW 1

2 .�/k (5.166)

is an equivalent norm on W 1
2 .�/.

Hint: Modify Step 2 of the proof of Proposition 5.28.

5.6 Homogeneous boundary value problems

We always assume now that � is a bounded C1 domain in Rn according to Defi-
nition A.3 and that A, given by

.Au/.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (5.167)

is an elliptic differential expression according to Definition 5.1 and (5.65), hence

kajkjC 1.�/k �M; kal jC.�/k �M; kajC.�/k �M (5.168)

for all admitted j; k; l and some M > 0,

ajk.x/ D akj .x/ 2 R; x 2 x�; 1 � j; k � n; (5.169)

such that
nX

j;kD1
ajk.x/�j �k � Ej�j2; x 2 x�; � 2 Rn; (5.170)

for some ellipticity constant E > 0. As for C 1.�/, C.�/ we refer to Defini-
tion A.1. We are now interested in the homogeneous Dirichlet problem according
to Definition 5.3 (i) inW 2

2;0.�/, where the latter has the same meaning as in (5.11).
So far we got in Theorem 5.31 (i) a satisfactory theory for the Friedrichs extension
AD;F of the Dirichlet Laplacian written now as .��/D,

.��/Du D ��u; dom..��/D/ D W 2
2;0.�/; (5.171)
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and considered as an unbounded operator in L2.�/. What follows is a typical
bootstrapping procedure. We begin with (5.171) and climb up in finitely many steps
from �� to A in (5.167) using the a priori estimates according to Theorem 5.7 and
Corollary 5.14 as an appropriate ladder. As suggested by Corollary 5.14, but also
by the spectral assertions about the Dirichlet Laplacian in Theorem 5.31 (i) it is
reasonable to deal not only with A but with AC � id where � 2 C. The starting
point of this procedure is the following perturbation assertion. Let, as usual,

ıjk D
(
1 if j D k;
0 if j ¤ k; (5.172)

where 1 � j; k � n.

Proposition 5.34. Let� be a boundedC1 domain in Rn and letA be a differential
expression according to (5.167) with bounded complex-valued coefficients such that

nX
j;kD1

sup
x2 x�

ˇ̌
ajk.x/ � ıjk

ˇ̌C nX
lD1

sup
x2 x�
jal.x/j C sup

x2 x�
ja.x/j � " (5.173)

for some " > 0. If " is sufficiently small, then

A W W 2
2;0.�/ � L2.�/ is an isomorphic map: (5.174)

Furthermore,
A�1 W L2.�/ ,! L2.�/ is compact: (5.175)

Proof. Step 1. We write A with dom.A/ D W 2
2;0.�/ as

A D .��/D C QA;
QAu D �

nX
j;kD1

Qajk.x/ @2u

@xj @xk
C

nX
lD1

al.x/
@u

@xl
C a.x/u; (5.176)

where Qajk.x/ D ajk.x/ � ıjk . Then

k QAujL2.�/k � c "kujW 2
2 .�/k; u 2 dom.A/ D W 2

2;0.�/; (5.177)

where c is independent of " in (5.173). Theorem 5.31 (i) implies that the inverse
.��/�1D is an isomorphic map of L2.�/ ontoW 2

2;0.�/. Choosing " > 0 in (5.177)
sufficiently small one obtains

kBk < 1 for B D .��/�1D B QA W W 2
2;0.�/ ,! W 2

2;0.�/: (5.178)

Basic assertions of functional analysis tell us that �1 2 %.B/ D C n �.B/, i.e., �1
belongs to the resolvent set of B according to (C.7). Hence B C id is invertible in
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W 2
2;0.�/, that is, for any f 2 L2.�/ there is a unique solution u 2 W 2

2;0.�/ such
that

BuC u D .��/�1D f 2 W 2
2;0.�/: (5.179)

We apply the isomorphic map .��/D fromW 2
2;0.�/ ontoL2.�/ and conclude that

Au D .��/DuC QAu D f 2 L2.�/ (5.180)

has a unique solution. Now A is an isomorphic map of W 2
2;0.�/ onto L2.�/.

Step 2. We decompose A�1 in (5.175) as

A�1.L2.�/ ,! L2.�//

D id.W 2
2;0.�/ ,! L2.�// B A�1.L2.�/ ,! W 2

2;0.�// (5.181)

where the last operator is the above isomorphic map and id is the compact embedding
according to Theorem 4.17. This proves that A�1 in (5.175) is also compact. �

Remark 5.35. If " > 0 in (5.173) is sufficiently small, then one has (5.170) for
some E > 0. Hence A according to (5.167) with (5.173) is elliptic, but in general
no longer symmetric. In particular, the spectrum �.A�1/ of A�1 in (5.175) need
not to be a subset of R. But one has

�.A�1/ D f0g [ �p.A
�1/ (5.182)

according to Theorem C.1. One can extend the definition of the resolvent set %.A/,
the spectrum �.A/ D Cn%.A/, the point spectrum �p.A/ and the geometric multi-
plicity of eigenvalues from bounded operators T in the Appendix C.1 to unbounded
operators A in a Hilbert space or Banach space, respectively, in an obvious way
(avoiding the struggle with powers of unbounded operators in connection with
algebraic multiplicities of eigenvalues, also discussed in Note 5.12.6). If A�1 is
considered as a compact map inL2.�/ according to (5.175) andA as an unbounded
operator inL2.�/with domain of definitionW 2

2;0.�/, then the following assertions
are true:

� 2 %.A/ if, and only if, ��1 2 %.A�1/ for � ¤ 0; (5.183)

and

� 2 �p.A/ if, and only if, ��1 2 �p.A
�1/ for � ¤ 0; (5.184)

with
dim ker.A � � id/ D dim ker.A�1 � ��1id/ <1: (5.185)

As for (5.184), (5.185) it is sufficient to remark that

Au D �u 2 W 2
2;0.�/ if, and only if, u D �A�1u 2 W 2

2;0.�/; (5.186)
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whereas (5.183) looks natural, but requires some extra care. Assuming that 0 ¤
� 2 %.A/. Then the left-hand side of

.A � � id/A�1 D ��.A�1 � ��1id/ (5.187)

is a one-to-one continuous map ofL2.�/ onto itself (viaW 2
2;0.�/). Then it follows

from the open mapping theorem in the version of [Rud91, Corollary 2.12(c), p. 50]
that the left-hand side of (5.187) has a bounded inverse. Hence ��1 2 %.A�1/.
Conversely, if ��1 2 %.A�1/, then (5.187) implies that .A � � id/ is a one-to-one
continuous map ofW 2

2;0.�/ ontoL2.�/. Its inverse must be bounded fromL2.�/

ontoW 2
2;0.�/ and hence intoL2.�/ by the same reference as above. Consequently

� 2 %.A/. Furthermore, 0 2 %.A/ and 0 2 �.A�1/. Thus the spectrum of A
consists of eigenvalues of finite geometric multiplicity. Some further information
may be found in Note 5.12.6.

Theorem 5.36. Let � be a bounded C1 domain in Rn and let A be an elliptic
differential operator according to (5.167)–(5.170) with its domain of definition
dom.A/ D W 2

2;0.�/. Then there is a positive number �0 .depending only on E,
M and �/ such that

AC � id W W 2
2;0.�/ � L2.�/ is an isomorphic map (5.188)

for all � 2 R with � � �0. Furthermore,

.AC � id/�1 W L2.�/ ,! L2.�/ is compact (5.189)

and
k.AC � id/�1 W L2.�/ ,! L2.�/k � c

�
; � � �0; (5.190)

for some c > 0which depends only onE,M and�. The spectrum �.A/ consists of
isolated eigenvalues of finite geometric multiplicity � D � C i� with � 2 R, � 2 R,
located within a parabola

f.�; �/ 2 R2 W � C �0 � C�2g (5.191)

for someC > 0 and �0 2 R, see Figure 5.5 below, with no accumulation point in C.

Proof. Step 1. We use Corollary 5.14 (i) where �0 > 0 has the same meaning
as there. Recall notation (5.172). We apply the so-called continuity method. For
0 � � � 1 let A� be the family of elliptic operators

A�u D �AuC .1 � �/.��/u

D �
nX

j;kD1
a�jk.x/

@2u

@xj @xk
C

nX
lD1

�al.x/
@u

@xl
C �a.x/u; (5.192)
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���0 0

� C �0 D C�2
�

��0

�

Figure 5.5

where
a�jk.x/ D �ajk.x/C .1 � �/ıjk : (5.193)

One may assume 0 < E � 1 in (5.170). Then

nX
j;kD1

a�jk.x/�j �k � Ej�j2; x 2 x�; � 2 Rn; (5.194)

uniformly in � . Similarly one may assume that

ka�jkjC 1.�/k �M; �kal jC.�/k �M; �kajC.�/k �M (5.195)

for all admitted j; k; l and some M > 0 as the uniform counterpart of (5.168). By
(5.66) one has for some c1 > 0 and c2 > 0,

k.A� C � id/ujL2.�/k � c1kujW 2
2 .�/k C c2�kujL2.�/k; u 2 W 2

2;0.�/;

(5.196)
for all � 2 R with � � �0 and all � with 0 � � � 1. Obviously, A0 D .��/D
is the Dirichlet Laplacian in the notation (5.171). By Theorem 5.31 and (5.175)
(based on (5.181)) one obtains for �0 D 0 that

A�0
C � id W W 2

2;0.�/ � L2.�/ is isomorphic for all � � �0; (5.197)

.A�0
C � id/�1 W L2.�/ ,! L2.�/ is compact; � � �0; (5.198)

and as a consequence of (5.196),

c2�k.A�0
C � id/�1f jL2.�/k � kf jL2.�/k; � � �0: (5.199)



150 Chapter 5. Elliptic operators in L2

This leads to (5.190). Now we assume that we have (5.197) for some 0 � �0 < 1.
We intend to apply the perturbation argument of the proof of Proposition 5.34 to

.A� C � id/u D A�0
uC �u

C .� � �0/
�
�

nX
j;kD1

bjk.x/
@2u

@xj @xk
C

nX
lD1

al.x/
@u

@xl
C a.x/u

�
(5.200)

where bjk.x/ D ajk.x/ � ıjk . If 0 � � � �0 � ı is sufficiently small, then there
is a uniform counterpart of (5.173). Inequality (5.199) implies (5.190) with A
replaced by A�0

uniformly in �0. Then one
obtains (5.197) and also (5.198), (5.199) with
A�0

replaced by A� . Beginning with �0 D 0

one arrives at � D 1 in finitely many steps.
This proves (5.188)–(5.190).

ı

A�0

0

.��/D
1

A

Figure 5.6

Step 2. It follows from the argument in Remark 5.35 that the spectrum �.A/ consists
of isolated eigenvalues of finite (geometric) multiplicity with no accumulation point
in C. It remains to prove that these eigenvalues are located within a parabola of type
(5.191). Let � D � C i� be an eigenvalue and u 2 W 2

2;0.�/ with kujL2.�/k D 1
a related eigenfunction such that � C i� D hAu; ui�. Then integration by parts
leads to

� C i� D
Z
�

� nX
j;kD1

ajk.x/
@u

@xk

@xu
@xj
C

nX
lD1
zal.x/ @u

@xl
xuC za.x/juj2

�
dx;

(5.201)

where the first term on the right-hand side is real and can be estimated from below
by Ejruj2 in view of (5.6). We use the standard notation

ru D
�
@u

@x1
; : : : ;

@u

@xn

�
: (5.202)

The real part of the remaining terms on the right-hand side can be estimated from
below by

�"kjruj jL2.�/k2 � c";
where " > 0 is at our disposal. Consequently we obtain for the real parts,

c1 C c2
Z
�

jru.x/j2dx � � � c3

Z
�

jru.x/j2dx � c4; (5.203)
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and for the corresponding imaginary part that

j�j � c5
�Z
�

jru.x/j2dx

�1=2
C c6: (5.204)

Of interest are only eigenvalues � D � C i� where j�j C j�j is large. Then it
follows by (5.203), (5.204) for � > 0 large that j�j � c7

p
� . This proves (5.191)

as illustrated in Figure 5.5. �

Remark 5.37. If � 2 %.A/ belongs to the resolvent set of the above operator A,
then for any f 2 L2.�/ there is a unique solution of the homogeneous Dirichlet
problem

.A � � id/u D f; u 2 W 2
2 .�/; tr� u D 0; (5.205)

according to (5.15), (5.16). In particular, for � 2 %.A/ one has (5.188) withA�� id
in place ofAC� id. In the next section we deal with corresponding inhomogeneous
problems. But first we comment briefly on the homogeneous Neumann problem
according to Definition 5.3 (ii). So far we have the satisfactory Theorem 5.31 (ii)
for the Neumann Laplacian AN;F D .��/N with respect to the C1 vector field �
of outer normals. To extend these assertions to arbitrary elliptic operators, say, of
type (5.167)–(5.170) by the above method one would require counterparts of the a
priori estimates in Theorem 5.7 and Corollary 5.14 (i). All this can be done, even
for arbitrary non-tangential C1 vector fields � according to Remark 4.28. But it
is not the subject of this book in which we try to avoid any additional technical
complications. Some comments in connection with the above theorem may be
found in Notes 5.12.1, 5.12.7, 5.12.8.

Exercise 5.38. Let A be an elliptic differential operator with (5.167)–(5.170) such
that its co-normal �A according to (5.20) coincides with the outer normal � D �A.
Prove that

AC � id W W 2;�
2 .�/ � L2.�/ is an isomorphic map (5.206)

for � � �0 where �0 > 0 has the same meaning as in (5.74). Formulate and verify
the counterparts of the other assertions in Theorem 5.36.

Hint: Use Theorem 5.31 (ii) as a starter and proceed afterwards as in the proof of
Theorem 5.36 based on (5.74).

5.7 Inhomogeneous boundary value problems

We deal with the inhomogeneous Dirichlet problem as introduced in Definition 5.3 (i)
where A is the elliptic differential expression according to (5.167)–(5.170). We
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denote now the operator A as considered in Theorem 5.36 by VA to avoid misunder-
standings, hence

VA W dom. VA/ D W 2
2;0.�/ ,! L2.�/: (5.207)

Let %. VA/ be its resolvent set. Then its spectrum �. VA/ D C n %. VA/ consists of
isolated eigenvalues of finite multiplicity with no accumulation point in C. We
formalise the inhomogeneous Dirichlet problem by

T� D .A � � id; tr�/ W dom.T�/ D W 2
2 .�/ ,! L2.�/ �W 3=2

2 .�/ (5.208)

with � D @� and � 2 C. Hence

T�u D ..Au/.x/ � �u.x/; tr� u/: (5.209)

Furnished with the norm

k.f; g/jL2.�/ �W 3=2
2 .�/k D .kf jL2.�/k2 C kgjW 3=2

2 .�/k2/1=2; (5.210)

L2.�/ �W 3=2
2 .�/ becomes a Hilbert space where W 3=2

2 .�/ may be normed as in
Definition 4.20.

Theorem5.39. Let� be a boundedC1 domain in Rn and letT� be given by (5.208)
where Au is the elliptic differential expression according to (5.167)–(5.170). Let

� 2 %. VA/ where %. VA/ is the resolvent set of VA in (5.207). Then

T� W W 2
2 .�/ � L2.�/ �W 3=2

2 .�/ (5.211)

is an isomorphic map.

Proof. Obviously, T� is a continuous map from W 2
2 .�/ into L2.�/ � W 3=2

2 .�/.
But it is also a map onto: Let

f 2 L2.�/; g 2 W 3=2
2 .�/ and h 2 W 2

2 .�/ with tr� h D g: (5.212)

We used (4.101). Theorem 5.36 implies for � 2 %. VA/ that there is a function

v 2 W 2
2;0.�/ with Av � �v D f � AhC �h 2 L2.�/: (5.213)

Then one has for u D v C h 2 W 2
2 .�/ that

Au � �u D f and tr� u D tr� h D g: (5.214)

Assuming that for w 2 W 2
2 .�/,

Aw � �w D f and tr� w D g; (5.215)
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then
.A � � id/.u � w/ D 0 in L2.�/; tr�.u � w/ D 0: (5.216)

Hence u � w 2 W 2
2;0.�/. Since � 2 %. VA/, one obtains u D w. This shows that

T� is a continuous one-to-one map of W 2
2 .�/ onto L2.�/ �W 3=2

2 .�/. Thus T �1
�

is also continuous and

kT�ujL2.�/ �W 3=2
2 .�/k � kujW 2

2 .�/k; u 2 W 2
2 .�/: (5.217)

We refer to [Rud91, Corollary 2.12(c), p. 50]. �

Remark 5.40. In other words, if � 2 %. VA/, then the inhomogeneous Dirichlet
problem

Au � �u D f; tr� u D g; (5.218)

has for given f 2 L2.�/ and g 2 W 3=2
2 .�/ a unique solution u 2 W 2

2 .�/ and

kujW 2
2 .�/k � kf jL2.�/k C kgjW 3=2

2 .�/k: (5.219)

Exercise 5.41. Prove the inhomogeneous a priori estimate

kujW 2
2 .�/k � kAujL2.�/k C kujL2.�/k C k tr� u

ˇ̌
W
3=2
2 .�/k (5.220)

for u 2 W 2
2 .�/ which is a generalisation of the .homogeneous/ a priori estimate

(5.31).

Hint: Use (5.219).

Exercise 5.42. Let A be the specific elliptic differential operator according to Ex-
ercise 5.38, hence �A D �, and let � 2 %. xA/ be in the resolvent set of

xA W dom. xA/ D W 2;�
2 .�/ ,! L2.�/; (5.221)

and

U� D .A � � id; tr�
@

@�
/ W dom.U�/ D W 2

2 .�/ ,! L2.�/ �W 1=2
2 .�/ (5.222)

as the Neumann counterpart of (5.207), (5.208). Prove that

U� W W 2
2 .�/ � L2.�/ �W 1=2

2 .�/; � 2 %. xA/; (5.223)

is an isomorphic map. Show the inhomogeneous a priori estimate

kujW 2
2 .�/k � kAujL2.�/k C kujL2.�/k C





 tr�
@u

@�

ˇ̌̌
W
1=2
2 .�/





 (5.224)

for u 2 W 2
2 .�/.

Hint: Consult Definition 5.3 (ii), use the Exercises 5.38, 5.41.
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5.8 Smoothness theory

Theorem 5.39 may be considered as the main assertion of Chapter 5. It solves the
boundary value problem (5.218) for f 2 L2.�/ and g 2 W 3=2

2 .�/ in a satisfactory
way, including the stability assertion (5.219) saying that small deviations off andg
in the respective spaces cause only small deviations of the solution u in W 2

2 .�/.
What can be said about u if one knows more for the given data, typically like

f 2 W k
2 .�/ and g 2 W kC 3

2

2 .�/; k 2 N0 ‹ (5.225)

The boundary data g are harmless. By Theorem 4.24 (i) the corresponding inho-
mogeneous problem can easily be reduced to the related homogeneous problem in
the same way as in the proof of Theorem 5.39. Hence it is sufficient to deal with
homogeneous problems. Let

W k
2;0.�/ D ff 2 W k

2 .�/ W tr� f D 0g; k 2 N; (5.226)

as introduced in Definition 4.30. In the Definitions A.3 and A.1 we said what is
meant by boundedC1 domains and by the spaceC1.�/ in Rn, respectively, where
n 2 N.

Proposition 5.43. Let � be a bounded C1 domain in Rn and let A be an elliptic
differential expression according to Definition 5.1 now assuming, in addition, that

fajkgnj;kD1 � C1.�/; falgnlD1 � C1.�/; a 2 C1.�/: (5.227)

Let u 2 W 2
2;0.�/ and Au 2 W k

2 .�/ where k 2 N0. Then u 2 W kC2
2;0 .�/ and

kujW kC2
2 .�/k � kAujW k

2 .�/k C kujL2.�/k: (5.228)

Proof. Step1. Ifu 2 W kC2
2;0 .�/, then the right-hand side of (5.228) can be estimated

from above by the left-hand side. Hence we have to prove that u 2 W kC2
2 .�/ and

that there is a constant c > 0 such that

kujW kC2
2 .�/k � ckAujW k

2 .�/k C ckujL2.�/k: (5.229)

Step 2. We wish to use the same reductions as in the proof of Theorem 5.7. But
one has to act with caution since one knows only u 2 W 2

2;0.�/. At the end we
argue by induction with respect to k 2 N0. Let us assume that we already knew
u 2 W kC1

2 .�/ in addition to Au 2 W k
2 .�/ where k 2 N. Then one can apply the

localisation argument of Step 2 of the proof of Theorem 5.7. Hence the improved
smoothness u 2 W kC2

2 .�/ and (5.229) is a local matter (under the hypothesis that
induction applies). As in Step 3 of the proof of Theorem 5.7 one can straighten
the problem as indicated there but only up to (5.41). The final reduction to elliptic
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expressions with constant coefficients would cause now some problems. In other
words it is only justified to assume that

0

xChx xC2h
RnC

suppu

� D Rn�1

Figure 5.7

u 2 W 2
2;0.R

nC/;

suppu � fx 2 RnC W jxj < 1g;

Au 2 W k
2 .R

nC/:

Step 3. Let h D .h1; : : : ; hn/ 2 Rn with hn D 0 and let �m
h

be the iterated
differences according to (3.41). Then�m

h
u 2 W 2

2;0.R
nC/ acts parallel to � D Rn�1

and one obtains by Theorem 5.7 (applied to RnC)

k�mh ujW 2
2 .R

nC/k � ckA.�mh u/jL2.RnC/k C ck�mh ujL2.RnC/k: (5.230)

Unfortunately A has variable coefficients of type (5.227) with RnC in place of �.
Recall that for x 2 Rn, h 2 Rn,

.�mh .fg//.x/ D
mX
rD0

 
m

r

!
.�rhf /.x/ .�

m�r
h g/.x C rh/; (5.231)

subject to Exercise 5.44 below, see also Exercise 3.19 (a). This implies

�mh .Au/.x/ DA.�mh u/.x/C

C
nX

j;kD1

mX
rD1

 
m

r

!
.�rhajk/.x/�

m�r
h

@2u

@xj @xk
.x C rh/C zRhu.x/

DA.�mh u/.x/CRhu.x/; (5.232)

where zRhu.x/ collects terms with @u
@xl

and u instead of @2u
@xj @xk

. LetAu 2 W k
2 .R

nC/.
We assume again that we already knew that u 2 W mC1

2 .RnC/ where m 2 N and
m � k. Let extL be the extension operator according to (3.108) where L is
sufficiently large. Then

extL u 2 W mC1
2 .Rn/ and extL.�mh u/ D �mh .extL u/ (5.233)

using that�m
h

is taken parallel to � D Rn�1. By the same commutativity property
it follows from (5.232) that

�mh .extLAu/.x/ D extL.A.�mh u//.x/C extL.Rhu/.x/; (5.234)

where extL.Rhu/ preserves the structure of Rhu. Now (5.230) can be extended
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to Rn, 

�mh .extL u/jW 2
2 .R

n/




� ck�mh .extLAu/jL2.Rn/k C ck extL.Rhu/jL2.Rn/k
C ck�mh .extL u/jL2.Rn/k: (5.235)

By construction extL.Au/ 2 W k
2 .R

n/. We apply Proposition 3.28 and the technique
developed there. With f D extL.Au/ one obtains

jhj�2mk�mh f jL2.Rn/k2 D
Z

Rn

j.ei�h � 1/mj2
jhj2mj�j2m j�j2mj.F f /.�/j2d�

� ckf jW m
2 .R

n/k2 (5.236)

uniformly in h with jhj � 1. The structure of Rhu implies the estimates

jhj�mk extL.Rhu/jL2.Rn/k � c kujW mC1
2 .RnC/k

� k extL ujW mC1
2 .Rn/k (5.237)

uniformly in h. This covers also the last term in (5.235) divided by jhj�m. In view
of (5.235) and the arguments of the proof of Proposition 3.28, especially (3.73),
this leads to

kD˛ujW 2
2 .R

nC/k � ckAujW m
2 .R

nC/k C ckujW mC1
2 .RnC/k (5.238)

for all ˛ D .˛1; : : : ; ˛n/ with ˛n D 0 and j˛j � m. Consequently,

Dˇu 2 L2.RnC/ for all ˇ D .ˇ1; : : : ; ˇn/; jˇnj � 2; jˇj � mC 2: (5.239)

Since A is elliptic one has ann.x/ � E, hence a�1
nn.x/ 2 C1.RnC/. Then

@2u

@x2n
.x/ D a�1

nn.x/
h
Au.x/ �

X
1�j;k�n

0
ajk.x/

@2u

@xj @xk
.x/

�
nX
lD1

al.x/
@u

@xl
.x/ � a.x/u.x/

i
(5.240)

where
P0
1�j;k�n means the summation over all j; k except j D k D n. By

(5.239) one can apply D� with j	 j � m and j	nj � 1 and one obtains (5.239) with
jˇnj � 3. Iteration gives (5.239) for all jˇj � mC 2, and hence u 2 W mC2

2 .RnC/.
Now (5.238) implies that

kujW mC2
2 .RnC/k � ckAujW m

2 .R
nC/k C ckujW mC1

2 .RnC/k
� c0kAujW k

2 .R
nC/k C c0kujL2.RnC/k; (5.241)
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where the latter follows from (4.86).

Step 4. We justify the above induction. By Theorem 5.7 we have (5.228) for k D 0.
Then the Steps 2 and 3 can be applied to k D m D 1, resulting in (5.241) with
m D 1, and hence (5.228) with k D 1. Now it is clear that the above induction
works. �

Exercise 5.44. Prove (5.231).

Hint: Either use induction or .more elegantly/ shift the question to the Fourier side
in view of

F .�mh .fg//.�/ D c.eih� � 1/m
Z

Rn

F f .� � �/F g.�/d�: (5.242)

The question arises whether there is a counterpart of Proposition 5.43 related to
the Neumann problem. Recall that A D �� is the Laplacian (5.5). Furthermore,
W k
2 .�/ andW k;�

2 .�/ have the same meaning as in Theorem 4.1 and Definition 4.30
with the C1 vector field of the outer normals � D �.

Corollary 5.45. Let � be a bounded C1 domain in Rn. Let u 2 W 2;�
2 .�/ and

�u 2 W k
2 .�/ where k 2 N0. Then u 2 W kC2;�

2 .�/ and

kujW kC2
2 .�/k � k�ujW k

2 .�/k C kujL2.�/k: (5.243)

Proof. The case k D 0 is covered by Theorem 5.11. The proof of (5.59) (hence
(5.243)) is reduced to the localised version in RnC according to (5.61), (5.62). But
then one can argue as in the proof of Proposition 5.43. �

Proposition 5.43 and Corollary 5.45 pave the way to complement the homo-
geneous and inhomogeneous boundary value problems as considered in the Sec-
tions 5.6 and 5.7 by a corresponding smoothness theory in a satisfactory way. We
always assume that � is a bounded C1 domain in Rn according to Definition A.3
and that A,

.Au/.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (5.244)

is an elliptic differential expression as introduced in Definition 5.1 now with

fajkgnj;kD1 � C1.�/; falgnlD1 � C1.�/; a 2 C1.�/; (5.245)

whereC1.�/ is given by (A.9). LetW s
2 .�/with � D @� be the same spaces as in

Definition 4.20. Otherwise we use the same notation as in Section 5.7. In particular,
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%. VA/ is the resolvent set of the operator VA with a reference to Theorem 5.36. Let
again

T�u D ..Au/.x/ � �u.x/; tr� u/ (5.246)

as in (5.209), but considered now for k 2 N0 as a bounded map

T� D .A � � id; tr�/ W dom.T�/ D W kC2
2 .�/ ,! W k

2 .�/ �W kC 3
2

2 .�/; (5.247)

where the latter space, furnished with the norm

k.f; g/jW k
2 .�/�W kC 3

2

2 .�/k D .kf jW k
2 .�/k2C kgjW kC 3

2

2 .�/k2/1=2 (5.248)

becomes a Hilbert space.

Theorem 5.46. Let � be a bounded C1 domain in Rn and let T� be given by
(5.247) with k 2 N0 whereA is the above elliptic differential operator (5.244) with

(5.245). Let � 2 %. VA/ where %. VA/ is the resolvent set of VA in (5.207). Then

T� W W kC2
2 .�/ � W k

2 .�/ �W kC 3
2

2 .�/ (5.249)

is an isomorphic map.

Proof. We argue in the same way as in the proof of Theorem 5.39. Let

f 2 W k
2 .�/; g 2 W kC 3

2

2 .�/ and h 2 W kC2
2 .�/ with tr� h D g;

(5.250)
where we used (4.101). By Theorem 5.36 and � 2 %. VA/ there is a function

v 2 W 2
2;0.�/ with Av � �v D f � AhC �h 2 W k

2 .�/: (5.251)

Proposition 5.43 (with A replaced by A � � id) implies that v 2 W kC2
2;0 .�/. The

rest is now the same as in the proof of Theorem 5.39. �

Remark 5.47. In other words, if k 2 N0 and � 2 %. VA/, then the inhomogeneous
Dirichlet problem

Au � �u D f; tr� u D g; (5.252)

where f 2 W k
2 .�/ and g 2 W

kC 3
2

2 .�/ are given has a unique solution u 2
W kC2
2 .�/ and

kujW kC2
2 .�/k � kf jW k

2 .�/k C kgjW kC 3
2

2 .�/k: (5.253)

Furthermore,

kujW kC2
2 .�/k � kAujW k

2 .�/k C kujL2.�/k C k tr� ujW kC 3
2

2 .�/k (5.254)

for u 2 W kC2
2 .�/ in generalisation of Remark 5.40, Exercise 5.41 and the homo-

geneous a priori estimate (5.228).
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Exercise 5.48. Prove (5.254).

Hint: Use (5.253) and (4.86).

Remark 5.49. In view of Theorem 5.46 and the comments in Remark 5.47 one
has a perfect solution of the (homogeneous and inhomogeneous) Dirichlet problem
in the spaces W s

2 .�/ if s D k 2 N0. What about an extension of this theory to
arbitrary Sobolev spaces W s

2 .�/, s � 0, as considered in Chapter 4, especially in
the Theorems 4.1 and 4.24? This is possible. We return to this point in Note 5.12.9.

Let again � be a bounded C1 domain in Rn and � be the C1 vector field of
outer normals. So far we know according to Theorem 5.31 (ii) that the spectrum
�. xA/ of the Neumann Laplacian xA,

xAu D ��u W dom. xA/ D W 2;�
2 .�/ ,! L2.�/ (5.255)

consists of the simple eigenvalue 0 and positive eigenvalues �j of finite multiplicity
tending to infinity if j ! 1. Let %. xA/ be the resolvent set. In particular, if
� 2 %. xA/, then the homogeneous Neumann problem

xAu � �u D f 2 L2.�/; tr�
@u

@�
D 0 (5.256)

has a unique solution in W 2;�
2 .�/. According to Definition 5.3 (ii) (and as used

before in (5.221), (5.222)) the corresponding inhomogeneous Neumann problem
can be reduced to

U� D
�
���� id; tr�

@

@�

�
W dom.U�/ D W 2

2 .�/ ,! L2.�/�W 1=2
2 .�/ (5.257)

with � D @� and � 2 C, hence

U�u D
�
��u.x/ � �u.x/; tr� @u

@�

�
: (5.258)

We ask for a counterpart of Theorem 5.46 and consider U� now as a bounded map

U� D
�
�� � � id; tr�

@

@�

�
W dom.U�/ D W kC2

2 .�/ ,! W k
2 .�/ �W kC 1

2

2 .�/

(5.259)
for k 2 N0 where the latter space, furnished with the norm

k.f; g/jW k
2 .�/�W kC 1

2

2 .�/k D .kf jW k
2 .�/k2CkgjW kC 1

2

2 .�/k2/1=2 (5.260)

becomes a Hilbert space.
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Theorem 5.50. Let� be a bounded C1 domain in Rn and let � be the C1 vector
field of outer normals on � D @�. Let � 2 %. xA/ where %. xA/ is the resolvent set of
xA in (5.255). Then

U� W W kC2
2 .�/ � W k

2 .�/ �W kC 1
2

2 .�/; (5.261)

is an isomorphic map.

Proof. Relying on (4.102) and Corollary 5.45 one can argue as in the proof of
Theorem 5.46 reducing the problem to (5.256). �

Remark 5.51. The above result implies that for k 2 N0 and � 2 %. xA/ the inho-
mogeneous Neumann problem

��u � �u D f; tr�
@u

@�
D g; (5.262)

has for given f 2 W k
2 .�/ and g 2 W kC 1

2

2 .�/ a unique solution u 2 W kC2
2 .�/,

and

kujW kC2
2 .�/k � kf jW k

2 .�/k C kgjW kC 1
2

2 .�/k: (5.263)

Furthermore,

kujW kC2
2 .�/k � k�ujW k

2 .�/k C kujL2.�/k C




 tr�

@u

@�

ˇ̌̌
W
kC 1

2

2 .�/





 (5.264)

for u 2 W kC2
2 .�/. This is the counterpart of Remark 5.47 and Exercise 5.48.

5.9 The classical theory

In Chapter 1 we dealt with harmonic functions�u D 0 and inhomogeneous Dirich-
let problems in bounded connected domains � in Rn according to Definition 1.43
for the Laplacian (called there the Dirichlet problem for the Poisson equation for
historic reasons). But only in case of balls � D KR we obtained in Theorem 1.48
a (more or less) satisfactory (i.e., explicit) solution. According to Remark 1.44
with a reference to Theorem 1.37 one has uniqueness for all admitted domains �
in Rn. We return now to the classical theory, more precisely, the C1 theory as an
aftermath of the above L2 theory.

As in Section 5.8 we now assume that A,

.Au/.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (5.265)

is an elliptic differential expression as introduced in Definition 5.1 with

fajkgnj;kD1 � C1.�/; falgnlD1 � C1.�/; a 2 C1.�/ (5.266)
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in bounded C1 domains � in Rn according to Definition A.3, whereas C1.�/
has the same meaning as in (A.9). If A with dom.A/ D W 2

2;0.�/ is considered as

an (unbounded) operator in L2.�/, then we shall denote it by VA,

VA W dom. VA/ D W 2
2;0.�/ ,! L2.�/ (5.267)

as at the beginning of Section 5.7. Recall that the spectrum �. VA/ consists of
isolated eigenvalues of finite multiplicity located as shown in Figure 5.5. As before,
%. VA/ D C n �. VA/ is the resolvent set. The spaces C l.�/ with l 2 N0 on the
boundary � D @� can be introduced much as in Definition 4.20. Let

C1.�/ D
1\
lD0

C l.�/: (5.268)

Theorem 5.52. LetA be the above elliptic differential expression in a boundedC1
domain � in Rn.

(i) Let f 2 C1.�/, g 2 C1.�/ and � 2 %. VA/. Then .the classical inhomoge-
neous Dirichlet problem/

Au � �u D f in � and tr� u D g on � (5.269)

has a unique solution u 2 C1.�/.

(ii) Let � 2 �. VA/ be an eigenvalue of VA according to (5.267) and let u be a related
eigenfunction,

Au D �u in � and tr� u D 0 on �: (5.270)

Then u 2 C1.�/.

Proof. Step 1. Obviously C l.�/ � W l
2 .�/ and C l.�/ � W l

2 .�/ for any l 2 N0.
Then it follows from Theorem 5.46 and Remark 5.47 that (5.269) has a unique
solution

u 2
1\
kD0

W k
2 .�/ D

1\
lD0

C l.�/ D C1.�/; (5.271)

where we used Theorem 4.17 (ii).

Step 2. If u is an eigenfunction of VA according to (5.270) and (5.267), then u 2
W 2
2;0.�/. Application of Proposition 5.43 with Au 2 W 2

2 .�/ gives u 2 W 4
2;0.�/.

Iteration results in u 2 C1.�/. �

Remark5.53. The Theorems 5.46 and 5.52 give satisfactory answers for the Dirich-
let problem in W k

2 .�/ and in C1.�/. One may ask for corresponding assertions
in other spaces, for example,W k

p .�/ according to (4.1) or C k.�/ as introduced in
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Definition A.1. We add a few comments in Note 5.12.10 as far as Sobolev spaces
and Besov spaces are concerned. As for the spaces C k.�/, k 2 N0, the situation
is different from what would be expected at first glance. It turns out that the spaces
C k.�/ do not fit very well in the above scheme. To get a theory comparable with
the above assertions one must modify them by Hölder spaces as briefly mentioned
in (3.44) and Exercise 3.20. However, this is not the subject of this book. But we
add a comment on the dark side of C k.�/ in connection with elliptic differential
equations. The natural counterpart of assumptions for f and g in the context of
a W k

2 theory according to Theorem 5.46 and Remark 5.47, respectively, would be
f 2 C k.�/ and g 2 C k.�/ for some k 2 N0. If k � 2 and l D k � 2, then one
can apply (5.252) to

f 2 C k.�/ ,! W k
2 .�/ ,! W l

2 .�/;

g 2 C k.�/ ,! W k
2 .�/ ,! W

lC 3
2

2 .�/:
(5.272)

One obtains a unique solution u 2 W lC2
2 .�/ D W k

2 .�/ of (5.252). But this is far
from the desired outcome u 2 C kC2.�/. Assuming that (5.252) with f 2 C k.�/
and g 2 C k.�/ had always a solution u 2 C kC2.�/, then one would get the
counterpart of the a priori estimates (5.253), (5.254),

kujC kC2.�/k � kAujC k.�/k C kujC.�/k C k tr� ujC k.�/k: (5.273)

Questions of this type attracted a lot of attention in the 1960s and 1970s also in
the framework of the theory of function spaces. As a consequence of (5.273) with
A D �� and k D 0, n D 2 one would obtain

c





 @2u

@x1@x2

ˇ̌̌
C.R2/





 � 



@2u
@x21

ˇ̌̌
C.R2/





C 



@2u
@x22

ˇ̌̌
C.R2/





C 



 @u
@x1

ˇ̌̌
C.R2/






C




 @u
@x2

ˇ̌̌
C.R2/





C kujC.R2/k; u 2 D.R2/;

(5.274)

for some c > 0. But this was disproved in [Bom72]. One may also consult [Bes74],
[KJF77, Section 1.9, p. 52], [Tri78, Section 1.13.4, p. 86] and Note 5.12.11 below
where we return to problems of this type.

Exercise 5.54. (a) Construct a function u 2 C.R2/ such that all derivatives on the
right-hand side of (5.274) are also elements of C.R2/ which disproves (5.274).

Hint: Rely on the same function

u.x1; x2/ D x1x2 log log

�
1q

x21 C x22

�
near the origin; (5.275)

as in the above-mentioned literature, see Figure 5.8 below.
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0

x1

u.x1; x2/

x2

Figure 5.8

(b) Why can one not work with zu.x1; x2/ D x1x2 log

�
1q

x21 C x22

�
?

Hint: Check the continuity of
@2zu
@x21

,
@2zu
@x22

at the origin.

Theorem 5.55. Let� be a bounded C1 domain in Rn and let � be the C1 vector
field of outer normals on � D @�. Let xA according to (5.255) be the Neumann
Laplacian with resolvent set %. xA/ and spectrum �. xA/.
(i) Let f 2 C1.�/, g 2 C1.�/ and � 2 %. xA/. Then .the classical inhomoge-

neous Neumann problem/

�uC �u D f in � and tr�
@u

@�
D g on � (5.276)

has a unique solution u 2 C1.�/.

(ii) Let � 2 �. xA/ be an eigenvalue of xA and let u be a related eigenfunction,

��u D �u in � and tr�
@u

@�
D 0 on �: (5.277)

Then u 2 C1.�/.
Proof. This is the counterpart of Theorem 5.52. One can follow the proof given
there relying now on Theorem 5.50, Remark 5.51 and Corollary 5.45. �

Exercise 5.56. (a) Let � be a bounded C1 domain in Rn. Prove that there exist
complete orthonormal systems fuj g1jD1 � C1.�/ in L2.�/.

Hint: Apply Theorem 5.52 or Theorem 5.55 to the (self-adjoint Dirichlet or Neu-
mann) Laplacian.

(b) Apply (a) to prove that
r
2



sin.mx/

�1

mD1
and


r
1




�
[

r

2



cos.mx/

�1

mD1
(5.278)

are complete orthonormal systems in L2.I / with I D .0; 
/.
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5.10 Green’s functions and Sobolev embeddings

One of the main problems in the classical theory of the Dirichlet Laplacian is
the question of whether Green’s functions according to Definition 1.10 exist. We
discussed this point in Remark 1.11. So far we have a satisfactory answer in Theo-
rem 1.12 only in case of balls. We refer also to Exercise 1.18. Recall our definition
of C1.�/ in (A.9).

Theorem 5.57. Let� be a bounded C1 domain in Rn according to Definition A.3
where n � 2. Then there exists a .real uniquely determined/ Green’s function
g.x0; x/ according to Definition 1.10. Furthermore, for any x0 2 � and " > 0,

g.x0; 	/ 2 C1.� nK".x0// (5.279)

if K".x0/ D fy 2 Rn W jy � x0j < "g � �, and

g.x1; x2/ D g.x2; x1/; x1 2 �; x2 2 � with x1 ¤ x2: (5.280)

If n � 3, then

0 < g.x0; x/ <
1

.n � 2/j!nj
1

jx � x0jn�2 ; x 2 �; x0 2 �; x ¤ x0: (5.281)

Proof. If VA D �� is the Dirichlet Laplacian in (5.267), then it follows from
Theorem 5.31 (i) that 0 2 %. VA/. Theorem 5.52 (i) withA D �� and � D 0 implies
that (1.27) (with the usual modifications in case of n D 2) has a unique (and thus
real) solution ˆ 2 C1.�/. This proves the existence (and uniqueness) of the
(real) Green’s function and covers also (5.279). The remaining properties (5.280),
(5.281) follow from Corollary 1.28 (in case of (5.280) extended to n D 2). �

Exercise* 5.58. Is there a direct counterpart of (5.281) for n D 2?

The classical inhomogeneous Dirichlet problem for the Laplacian with f 2
C1.�/ and ' 2 C1.�/, � D @�, as formulated in (1.29), can now be solved
by (1.28). In particular, if VA D �� in (5.267) is the positive-definite self-adjoint
operator with pure point spectrum according to Theorem 5.31 (i), then its compact
inverse .��/�1 in L2.�/ can be represented by

.��/�1f .x/ D u.x/ D
Z
�

g.x; y/ f .y/ dy; x 2 �; (5.282)

at least if f 2 C1.�/. Let � be the characteristic function of a ball in Rn such
that �.x � y/ D 1 if x 2 �, y 2 �. We extend f 2 C1.�/ outside � by zero.
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Let n � 3; then (5.281) implies for x 2 � that

j.��/�1f .x/j � c
Z

Rn

�.x � y/
jx � yjn�2 jf .y/jdy

� c0
Z

Rn

1

jx � yjnC"�2 jf .y/jdy (5.283)

for 0 � " < 2. We apply Theorem D.3, with p D 2, ˛ D n � 2C ", " near 2 and
q > p D 2. Then one obtains for f 2 C1.�/,

k.��/�1f jL2.�/k � ck.��/�1f jLq.�/k � c0kf jL2.�/k: (5.284)

Hence the right-hand side of (5.282) is a bounded operator in L2.�/. Then it
follows by completion that the inverse operator .��/�1 can be represented for all
f 2 L2.�/ by (5.282). But (5.284) shows that one gets more.

Theorem 5.59. Let� be a boundedC1 domain in Rn where n 2 N. Let p�, given
by

1

p� D
1

2
� 2
n

for n � 5; (5.285)

be the Sobolev exponent. Then

id W W 2
2 .�/ ,! Lp.�/ (5.286)

is compact if �
1 � p � 1 for n D 1; 2; 3;
1 � p <1 for n D 4;
1 � p < p� for n � 5:

(5.287)

Furthermore, id in (5.286) is continuous, but not compact if

p D p� for n � 5: (5.288)

Proof. Step 1. Let n D 1, 2 or 3. Then it follows from Theorem 4.17 (ii) with
s D 2 and l D 0 that

id W W 2
2 .�/ ,! C.�/ ,! Lp.�/; 1 � p � 1; (5.289)

is compact where we used the boundedness of� in the last embedding. This covers
the first line in (5.287).

Step 2. Let n � 5 and p� as in (5.285), hence 2 < p� < 1, complemented by
p� D 1 if n D 4. The continuity (compactness) of id in (5.286) can be reduced
to the continuity (compactness) of

id0 W W 2
2;0.�/ ,! Lp.�/ (5.290)
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where W 2
2;0.�/ has the same meaning as before, e.g., as in (5.11). This follows

from the extension Theorem 4.1 where one may assume that the extension operator
in (4.8) is multiplied with a suitable cut-off function in Rn. We decompose id0 into

id0.W
2
2;0.�/ ,! Lp.�//

D .��/�1.L2.�/ ,! Lp.�// B .��/.W 2
2;0.�/ ,! L2.�// (5.291)

where the latter is an isomorphic map according to the above consideration and we
may assume that .��/�1 is given by (5.282). We apply the Hardy–Littlewood–
Sobolev inequality, Theorem D.3, in the same way as in (5.283), (5.284) with
˛ D n�2C", 0 � " < 2, p replaced by 2 and q replaced by p, respectively, hence

2 <
n

2 � " ;
1

p
D n � 2C "

n
� 1
2
D 1

p� C
"

n
; (5.292)

and (
0 < " < 2; 1 � p < p� if n D 4;
0 � " < 2; 1 � p � p� if n � 5; (5.293)

using, in addition, that � is bounded. Then Theorem D.3 covers the continuity
assertions in the above theorem if n � 4.

Step 3. We prove the compactness of id given by (5.286). Theorem 4.17 implies
that the embedding

id W W 2
2 .�/ ,! L2.�/ (5.294)

s D n
p

2 W 2
2

s

1
p

1
p

1
q

1
2

11
p�

Figure 5.9

is compact. Hence the unit ball U in
W 2
2 .�/ is precompact in L2.�/ and for

any " > 0 there exists a finite "-net for the
image of U in L2.�/, that is, there ex-
ist finitely many elements fgkgK."/kD1 � U
such that for any g 2 U there is at least
one k with

kg � gkjL2.�/k � ": (5.295)

Let 2 < p < q < p� as indicated in
Figure 5.9 aside with

1

p
D 1 � �

q
C �

2

for some suitable � 2 .0; 1/.
Since (5.286) with q in place of p is continuous, Hölder’s inequality implies

kg � gkjLp.�/k � ckg � gkjLq.�/k1��kg � gkjL2.�/k� � c0"� (5.296)
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for any g 2 U and appropriately chosen gk . Hence fgkgK."/kD1 is an z" D c0"� -net in
Lp.�/. This proves that id is compact in all cases covered by (5.293) (using again
the boundedness of �).

Step 4. It remains to show that id in (5.286) is not compact when p D p� and
n � 5. Let ' 2 D.Rn/ be a not identically vanishing function and

'j .x/ D 2j.n
2 �2/'.2jx � xj /; xj 2 �; j 2 N; (5.297)

such that

supp'j � �; and supp'j \ supp'k D ;; j ¤ k: (5.298)

'j

xj

�

'k

Figure 5.10

Then one obtains

k'j jW 2
2 .�/k � c and k'j � 'kjLp�.�/k � c0 (5.299)

for some c > 0 and c0 > 0 and all j; k 2 N with j ¤ k. This shows that f'j gj is
bounded in W 2

2 .�/, but not precompact in Lp�.�/. �

Remark 5.60. Continuity and compactness of the embedding in (5.286) are special
examples of the famous Sobolev embedding, the never-ending bargain

‘Give smoothness and you get integrability.’

It goes back to S. L. Sobolev [Sob38] and as far as limiting embeddings of type
(5.285) with p D p� in (5.288) are concerned to [Kon45]. We refer also to [Sob91,
§6] including Sobolev’s own remarks concerning the limiting case. We add a few
comments about these embeddings in Note 5.12.14.
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5.11 Degenerate elliptic operators

So far we considered the homogeneous Dirichlet problem for elliptic differential
expressions A of second order,

.Au/.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (5.300)

according to Definition 5.1 in bounded C1 domains � in Rn (as introduced in
Definition A.3) as (unbounded) operators in L2.�/ with domain of definition

dom.A/ D W 2
2;0.�/ D ff 2 W 2

2 .�/ W tr� f D 0g (5.301)

and � D @�. If we strengthen (5.1) by (5.168), that is,

fajkgnj;kD1 � C 1.�/; falgnlD1 � C 1.�/; a 2 C.�/; (5.302)

then we can apply Theorem 5.36 where we now assume (without restriction of
generality) that 0 2 %.A/. In particular,

A�1 W L2 � W 2
2;0.�/ is isomorphic;

A�1 W L2.�/ ,! L2.�/ is compact:
(5.303)

There are several good mathematical and physical reasons to have a closer look at
degenerate elliptic operators typically of type

d.x/A; Ad.x/; or d1.x/Ad2.x/; (5.304)

where d , d1 and d2 are singular functions, for example, like d.x/ D jx � x0j~ ,
x0 2 �, ~ 2 R (including ~ D 2 � n as in the Newtonian potential (1.77)),
d.x/ D dist.x; �/~ , x 2 �, ~ 2 R, or some singular potentials of quantum
mechanics. We return to related questions later on in the Chapters 6 and 7 in greater
detail.

At this moment we wish to demonstrate how the results of the preceding Sec-
tion 5.10 including the Sobolev embeddings can be used to say something about
degenerate elliptic operators of type (5.304). If d1, d2 are ‘rough’, then there is a
problem with the domain of definition. This suggests to deal with the ‘inverse’,

B D b2A�1 b1 with A�1 as in (5.303); (5.305)

where b1; b2 are (singular) functions. One may think about d1b1 D d2b2 D 1 in
the context of (5.304).

Theorem 5.61. Let � be a bounded C1 domain in Rn where n 2 N and let A be
the above elliptic operator according to (5.300)–(5.303).
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(i) Let 1 � n � 3, 2 � p � 1, and

b1 2 Lq.�/ with
1

q
D 1

2
� 1

p
and b2 2 Lp.�/: (5.306)

Then B ,
B D b2A�1 b1 W Lp.�/ ,! Lp.�/ (5.307)

is compact.

(ii) Let n � 4 and p� be given by 1
p� D 1

2
� 2
n
. Assume 2 � p < p�, 1 � r1 � 1,

1 � r2 � 1, and

b1 2 Lr1.�/; b2 2 Lr2.�/ with
1

r1
D 1

2
� 1

p
and

1

r1
C 1

r2
<
2

n
: (5.308)

Then B according to (5.307) is compact.

Proof. Let n � 4; then we have the situation as indicated in Figure 5.11 below.

„ƒ‚…
1

r1„ ƒ‚ …
2
n

„ƒ‚…
1

r2

2

b1

A�1

b2

id

W 2
2;0.�/

s D n
p

s

1
p

1
p

1
u

1
2

1
p� 1

Figure 5.11

It follows from Hölder’s inequality,
(5.303) and Theorem 5.59 that

B D b2 B id B A�1 B b1 (5.309)

with

b1 W Lp.�/ ,! L2.�/;

A�1 W L2.�/ ,! W 2
2;0.�/;

id W W 2
2;0.�/ ,! Lu.�/;

b2 W Lu.�/ ,! Lp.�/:

(5.310)

is compact since id is compact. If 1 �
n � 3, then one may choose u D 1
and (5.306) implies thatB is compact.

�
Remark 5.62. According to the Riesz Theorem C.1 the spectrum of the compact
operatorB inLp.�/ consists of the origin and at most countably many eigenvalues
different from zero. Let 0 ¤ � 2 �p.B/ and f 2 Lp.�/ be a related eigenfunction,

b2A
�1 b1f D Bf D �f: (5.311)

Assume that b2 ¤ 0, then substituting f D b2g, b D b1b2, �� D 1 leads formally
to

Ag D �b. 	/g: (5.312)
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This type of modified eigenvalue problem attracted some attention originating from
physical questions. One may consider the above theorem (combined with Theo-
rem C.1) as a rigorous reformulation of (5.312) trying to compose given b D b1b2
optimally and looking for a suitable p such that Theorem 5.61 and (5.311) can be
applied. We add a few comments in Note 5.12.15.

5.12 Notes

5.12.1. Chapter 5 dealt with Dirichlet and Neumann boundary value problems for
elliptic differential expressions of second order according to the Definitions 5.1 and
5.3 in the framework of an L2.�/ theory where � is a bounded C1 domain in
Rn. In case of the Neumann problem we mostly restricted our considerations to
the Laplacian (5.5) and the C1 vector field � D � in (5.17) of outer normals on
� D @�. This theory can be extended to other basic spaces than L2.�/ and to
more general (elliptic) differential operators, say, of order 2m with m 2 N,

Au D
X

j˛j�2m
a˛.x/D

˛u D f in �; a˛ 2 C1.�/; (5.313)

called properly elliptic if (5.4) is replaced byX
j˛jD2m

a˛.x/�
˛ ¤ 0 for all x 2 x�; 0 ¤ � 2 Rn: (5.314)

Typically the boundary conditions in (5.15), (5.17) are generalised by

Bju D
X

jˇ j�kj

bjˇ .	/ tr� Dˇu D gj on �; bjˇ 2 C1.�/; (5.315)

where j D 1; : : : ; m, and kj 2 N0 with

0 � k1 < k2 < 	 	 	 < km < 2m: (5.316)

Several other conditions both forA in (5.313), the boundary operatorsBj in (5.315)
and, in particular, their interplay are needed to obtain a satisfactory theory general-
ising the Theorems 5.39, 5.46, 5.50. This is one of the major subjects of research in
analysis since the late 1950s up to our time. As far as anL2 theory is concerned we
refer to the celebrated book by S. Agmon [Agm65]. The extension of this theory
to Lp spaces with 1 < p < 1 is more difficult and attracted a lot of attention.
It may be found in [Tri78] including many references, especially to the original
papers. One can replace Lp with 1 < p < 1 by Hölder–Zygmund spaces C s

or spaces of type Bsp;q , F sp;q as mentioned briefly in Notes 3.6.1, 3.6.3 (restricted
to �). The corresponding theory in full generality has been developed in [FR95]
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and may be found in [RS96, Chapter 3]. We restrict ourselves here to an outstand-
ing example which goes back to [Agm62] (we refer for formulations also to [Tri78,
Sections 4.9.1, 5.2.1]):

Let m 2 N and k 2 N0 with k � m. Let � be a bounded C1 domain in Rn

and � be a non-tangential C1 vector field on � D @�. Let A in (5.313) and Bj
in (5.315) be specified by

Au D .��/mu; Bju D tr�

�
@kCj�1u
@�kCj�1 C

X
jˇ j<kCj�1

bjˇ .	/D
ˇu

�
; (5.317)

where j D 1; : : : ; m and bjˇ 2 C1.�/. Then one has full counterparts of the
appropriately modified Theorems 5.36, 5.46 in the framework of an Lp theory with
1 < p <1 .may be with exception of (5.191)/.

5.12.2. Proposition 5.19 plays a crucial rôle in our arguments. The density asser-
tions proved there can be extended in several directions. Let W l

p .R
nC/ with l 2 N

and 1 < p <1 be the spaces considered in Theorem 3.41. Then D.RnC/ is dense
in

VW l
p .R

nC/ D


f 2 W l

p .R
nC/ W tr�

@kf

@�k
D 0 with k D 1; : : : ; l � 1

�
(5.318)

where we used the same notation as in connection with (5.99), in particular,

tr�
@kf

@�k
D @kf

@xkn
.x0; 0/ D 0; k D 1; : : : ; l � 1: (5.319)

The case p D 2 is covered by Exercise 5.21. Otherwise we refer to [Tri78, Sec-
tion 2.9.1, p. 211] where one finds also further assertions of this type.

5.12.3. In Appendix C, especially in the Sections C.2, C.3 we collected some as-
sertions about self-adjoint and positive-definite operators in Hilbert spaces where
the energy spaces and Friedrichs extension according to Theorem C.13 and Re-
mark C.14 were of special interest for us. For operators AF as in (C.34) there is
an elaborated spectral theory which, in particular, gives the possibility to introduce
fractional powers A~F , ~ 2 R, of AF with their domains of definition dom.A~F /.
Of special interest is the observation that

dom
�p
AF

� D HA (the energy space): (5.320)

We refer for details again to [Tri92a, Chapter 4]. In the concrete case as considered
in Theorem 5.22 and the Remarks 5.23, 5.24 one gets for the shifted Dirichlet
Laplacian and Neumann Laplacian,

dom
�q

AD
F

	
D VW 1

2 .R
nC/; dom

�q
AN
F

	
D W 1

2 .R
nC/: (5.321)
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5.12.4. In connection with the (abstract) Theorem C.3 and the concrete assertions
about the spectrum of the Dirichlet Laplacian and the Neumann Laplacian, respec-
tively, in Remark 5.24 and Exercise 5.25 we add a comment about the resolvent set
%.A/ and the spectrum �.A/ D C n %.A/ of a self-adjoint operator A in a Hilbert
space. We prove in Theorem 6.8 below that � 2 %.A/ if, and only if, there is a
number c > 0 such that

kAh � �hjHk � ckhjHk for all h 2 dom.A/: (5.322)

Hence � 2 �.A/ if, and only if, there is no such c > 0with (5.322). In other words,
� 2 �.A/ if, and only if, there is a sequence

fhj g1jD1 � dom.A/; khj jHk D 1; Ahj � �hj ! 0 if j !1: (5.323)

If there is a converging subsequence fzhj g1jD0 of fhj g1jD1, then h D limj!1 zhj is
an eigenelement of A and, hence, � 2 �p.A/ belongs to the point spectrum. On the
other hand, a sequence fhj gj according to (5.323) is called a Weyl sequence (of A
corresponding to � 2 C) if it does not contain a converging subsequence and

�e.A/ D f� 2 C W there is a Weyl sequence of A corresponding to �g (5.324)

is called the essential spectrum of A. Then

�.A/ D �p.A/ [ �e.A/ � R: (5.325)

In particular, by (5.128), (5.129) one has

�.AD
F / D �e.A

D
F / D Œ1;1/; �.AN

F / D �e.A
N
F / D Œ1;1/ (5.326)

for the shifted Dirichlet Laplacian and Neumann Laplacian in RnC, respectively. If
one replaces RnC by a bounded C1 domain � in Rn, then Theorem 5.31 implies a
totally different assertion,

�e.AD;F / D �e.AN;F / D ;: (5.327)

A discussion of various types of spectra in the context of quasi-Banach spaces may
be found in [ET96, Section 1.2]. We return to problems of this type in the Chapters 6
and 7 in greater detail.

5.12.5. Let � be a bounded C1 domain in Rn according to Definition A.3 which
means in particular that � is connected. According to Theorem 5.31 (ii) the Neu-
mann Laplacian (5.161) is a positive operator in L2.�/ with pure point spectrum.
Its smallest eigenvalue is 0 and this eigenvalue is simple in the understanding of
(5.156), the related eigenfunctions are constant in �. By the same theorem the
Dirichlet Laplacian

AD;F u D ��u; dom.AD;F / D W 2
2;0.�/; (5.328)
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is a positive-definite operator inL2.�/with pure point spectrum. Its smallest eigen-
value, denoted by �, is positive (obviously) and simple (remarkably). Furthermore,
according to Theorem 5.52 one has

u 2 C1.�/ for the eigenfunctions ��u D �u in �: (5.329)

It has been observed by R. Courant in 1924, [CH53, pp. 398/399] that any such
(non-trivial) eigenfunction (5.329) has no zeros in� (called ‘Nullstellenfreiheit’by
him) and, hence,

u.x/ D c U.x/; c 2 C; c ¤ 0; U.x/ > 0 in �: (5.330)

Courant’s strikingly short elegant proof of (5.329), (5.330) on less than one page
entitled

‘Charakterisierung der ersten Eigenfunktion durch ihre Nullstellenfreiheit’

indicates what follows in a few lines. Based on quadratic forms Courant relies (as
we would say nowadays) onW 1

2 arguments. But he did not bother very much about
the technical rigour of his proof. A more recent version may be found in [Tay96,
pp. 315/316].

5.12.6. The Riesz theory as presented and discussed in Theorem C.1 and Re-
mark C.2 stresses the algebraic multiplicity of the non-zero eigenvalues of compact
operators in (quasi-) Banach spaces. Formally one can extend the notion of alge-
braic multiplicity according to (C.11) to unbounded operators A in Hilbert spaces
and Banach spaces, respectively. But then one may have some trouble with the
domains of definition of the powers of A whereas the geometric multiplicity does
not cause any problems at all. We discussed this point in Remark 5.35 where A
is the elliptic operator (5.167) underlying Proposition 5.34 and Theorem 5.36. As
for the algebraic multiplicity of � 2 �p.A/ it might be better to shift this ques-
tion to its compact inverse T D A�1 and ��1 D � 2 �p.T / in (C.11) (assuming
0 2 %.A/). One may replace A�1 by any .A � ~ id/�1 with ~ 2 %.A/. A detailed
discussion about these questions may be found in [Agm65, Section 12, especially
pp. 179–181]. Recall that

u 2
1[
kD1

ker.A�1 � ��1id/k; � 2 �p.A/; (5.331)

is called an associated (or generalised) eigenelement with respect to A and �. As
discussed in Theorem C.15 and Remark C.16 the eigenelements of self-adjoint
(positive-definite) operators with pure point spectrum span the underlying Hilbert
space. One may ask for conditions ensuring that associated eigenelements of non-
self-adjoint operators span the underlying Hilbert space. The abstract theory has
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been developed in [GK65]. Some information may also be found in [Tri78, Sec-
tion 5.6.1, pp. 394/395]. Corresponding assertions with respect to elliptic dif-
ferential operators of order 2m as briefly mentioned in Note 5.12.1 (covering, in
particular, elliptic operators of second order as treated in this chapter) may be found
in [Agm65, Section 16] and also in [Agm62]. We return later on in Section 7.5 to
this point.

5.12.7. Let A be a (closed) densely defined operator in a Hilbert space or a Banach
space such that .�1; �0� � %.A/ for some �0 � �1. If there is a d > 0 such that

k.A � � id/�1k � d

j�j for all � � �0; (5.332)

then one says that the resolvent R� D .A� � id/�1 has minimal growth. A typical
example in our context is the operator A in Theorem 5.36 with (5.190). There is no
better decay than in (5.332). We must even have d � 1. We prove this assertion by
contradiction assuming that we have (5.332) with d < 1. Obviously

A � � id D .A � � id/Œid � .� � �/R�� for � 2 C: (5.333)

However, both operators on the right-hand side are invertible for some � � �0, the
second one according to the Neumann series applied to

j� � �jkR�k � d j� � �jj�j �! d < 1 if j�j ! 1: (5.334)

Furthermore,
kR
k � C kR�k �! 0 if j�j ! 1; (5.335)

where C may be chosen independently of �. Hence R
 D 0 which is a contra-
diction. Operators A in Hilbert spaces and Banach spaces with resolvents hav-
ing minimal growth according to (5.332) are the best possible generalisations of
(unbounded) self-adjoint operators in Hilbert spaces. Several properties of self-
adjoint operators in Hilbert spaces can be extended to this distinguished class of
(unbounded) operators, including integral representations (as a weak version of
spectral representations), fractional powers and their domains of definition in terms
of (real and complex) interpolation spaces. One may consult [Tri78, Sections 1.14,
1.15] where one finds also the necessary references to the original papers.

5.12.8. In Step 1 of the proof of Theorem 5.36 we relied on the so-called continuity
method which has been used before in [LU64, Chapter III, §§1,3] and [GT01,
Section 6.3] for similar purposes.

5.12.9. For a bounded C1 domain � in Rn with boundary � D @� we have by
Theorem 4.24 that for s � 0,

tr� W W sC2
2 .�/ ,! W

sC 3
2

2 .�/; tr� W
sC2
2 .�/ D W sC 3

2

2 .�/: (5.336)
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We used this observation with s D k 2 N0 in the proof of Theorem 5.46. In
particular T�, given by (5.246), generates the isomorphic map according to (5.249).
It is quite natural to ask whether this assertion can be extended from the classical
Sobolev spaces W k

2 .�/ with k 2 N0 to arbitrary Sobolev spaces W s
2 .�/ with

s � 0. By Theorem 4.1 and Proposition 4.22 we have for all spaces W s
2 .�/ and

W s
2 .�/ with s � 0 natural intrinsic norms. One can extend (5.249) from k 2 N0

to s � 0 by real or complex interpolation. The corresponding theory is beyond the
scope of this book, but all that one needs can be found in [Tri78]. An interpolation
method, say, the so-called complex method Œ	; 	�� , constructs a new Banach space

X� D ŒX0; X1�� ; 0 < � < 1; (5.337)

from two given (complex) Banach spaces X0, X1, say, with X1 � X0. In case of
the above Sobolev spaces one obtains for 0 � s0 < s1 <1,

W s
2 .�/ D ŒW s0

2 .�/;W
s1
2 .�/�� ; s D .1 � �/s0 C �s1; (5.338)

hence an ‘intermediate’ space. One can replace� in (5.338) by � D @�. Then the
so-called interpolation property extends immediately (without any further consid-
erations) the isomorphism (5.249) from 0 � s0 D k0 2 N0 and s0 < s1 D k1 2 N
to all s � 0. In other words one gets the following assertion:

Under the hypotheses of Theorem 5.46 the operator T� given by (5.246) generates
for all s � 0 an isomorphic map

T� W W sC2
2 .�/ � W s

2 .�/ �W sC 3
2

2 .�/: (5.339)

5.12.10. We asked in Remark 5.53 for extensions and modifications of theL2 theory
subject of this chapter and also of the preceding Note 5.12.9. Recall that we have
for the spaces W k

p .�/ with k 2 N0 and 1 < p < 1 satisfactory intrinsic norms

according to Theorem 4.1 (ii). An extension of the classical Sobolev spacesW k
p .�/

to the Sobolev spaces H s
p .�/ with 1 < p < 1 and s � 0 has been indicated in

Note 4.6.4 as the restriction of the corresponding spaces on Rn according to (3.140)–
(3.142). In particular,

H k
p .�/ D W k

p .�/ if k 2 N0 and 1 < p <1: (5.340)

As for traces of H s
p .�/ on � D @� we recall (4.153). Then (5.336) can be

generalised by

tr� W H sC2
p .�/ ,! B

sC2� 1
p

p;p .�/; tr� H
sC2
p .�/ D BsC2� 1

p
p;p .�/; (5.341)

where B�p;p.�/ are the same Besov spaces on � as in Note 4.6.4. One can extend
the isomorphism (5.339) as follows:
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Under the hypotheses of Theorem 5.46 the operator T� given by (5.246) generates
for all s � 0 and all 1 < p <1 an isomorphic map

T� W H sC2
p .�/ � H s

p .�/ � B
sC2� 1

p
p;p .�/: (5.342)

For a proof of this assertion, diverse modifications and also the generalisations to
elliptic differential equations of higher order as indicated in Note 5.12.1 we refer
to [Tri78]. In case of p D 1 one must replace the Sobolev–Besov spaces in
(5.342) by respective Hölder–Zygmund spaces C s on � and on � as restrictions
of corresponding spaces C s.Rn/ according to Note 3.6.1, especially (3.146), to �
and � . Then one gets that T� is an isomorphic map

T� W C sC2.�/ � C s.�/ � C sC2.�/ (5.343)

for all s > 0. One may consult [Tri78, Section 5.7.3] or, better, [Tri83, Sec-
tion 4.3.4].

5.12.11. Whereas the assertions of the preceding Note 5.12.10 for the Sobolev
spacesH s

p .�/ and the Hölder–Zygmund spaces C s.�/ are satisfactory we indicated
in Remark 5.53 that nothing of this type can be expected in terms of the spaces
C k.�/ with k 2 N0. Let

� D K D K1.0/ D fx 2 R2 W jxj < 1g (5.344)

be the unit circle in the plane R2 and let � D @� D fy 2 R2 W jyj D 1g be its
boundary. Let  2 D.K/ with  .0/ ¤ 0 and  .y/ D 0 if jyj > ". Then

f .x/ D �.u /.x/ 2 C.K/; (5.345)

where u is the same function as in (5.275), assuming that " > 0 is sufficiently small.
Then the homogeneous Dirichlet problem

�v.x/ D f .x/ if x 2 K; v.y/ D 0 if jyj D 1; (5.346)

has a unique solution which belongs toW 2
2;0.K/ as a consequence of Theorem 5.31.

By Exercise 5.54 the unique solution v D u of (5.346) does not belong toC 2.K/.
This disproves (5.273) with k D 0 and makes clear that nothing like (5.343) can
be expected. Essentially, the end of Remark 5.53 and Exercise 5.54 are refor-
mulations of this negative assertion in terms of function spaces. There one finds
also a few related references. As a consequence the Dirichlet problem for the
Poisson equation according to Definition 1.43 has not always a classical solution
u 2 C.�/ \ C 2;loc.�/ for given f 2 C.�/ and ' 2 C.�/. This nasty effect
is known for a long time and usually discussed in literature in terms of counter-
examples. Almost the same counter-example as above was used in [LL97, p. 223],
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whereas different ones may be found in [GT01, Problem 4.9, p. 71] and [Fra00,
Exercise A.29, pp. 217/218]. Closely related to assertions of type (5.343) for the
Laplacian in terms of Hölder–Zygmund spaces, but also to the questions discussed
above is the problem of the smoothness of the Newtonian potential N f according
to (1.77) in dependence on the smoothness of f . This was the decisive ingredient
in Theorem 1.48. So far we proved in Theorem 1.45 that u D N f 2 C 2;loc.Rn/
if f 2 C 2.Rn/ has compact support in Rn. But this assertion can be strengthened
(with some additional efforts) in a natural way as follows. Let C s.Rn/ be again the
Hölder–Zygmund spaces as used in Note 5.12.10 with a reference to Note 3.6.1.
Then

u D N f 2 C2Cs.Rn/ locally, if f 2 C s.Rn/; (5.347)

0 < s < 1, and suppf compact. Furthermore,

�u.x/ D f .x/; x 2 Rn: (5.348)

A proof of this well-known assertion may be found in [Fra00, Theorem A.16,
p. 211]. Moreover, the above-mentioned counter-example [Fra00, Exercise A.29,
pp. 217/218] makes also clear that there are compactly supported functions f 2
C.R2/ such that u D N f satisfies (5.348), but does not belong to C 2;loc.R2/.

5.12.12. Let� be a bounded C1 domain in Rn. Then it follows from Friedrichs’s
inequality in Proposition 5.28 (iii) that

hu; vi VH1.�/
D

nX
jD1

Z
�

@u

@xj
.x/

@xv
@xj

.x/ dx (5.349)

is a scalar product generating an equivalent norm in VH 1.�/ D VW 1
2 .�/. One obtains

by the same inequality that for given f 2 L2.�/,

v 2 VH 1.�/ 7�! hf; xviL2.�/ D
Z
�

f .x/v.x/dx; (5.350)

is a linear and bounded functional on VH 1.�/. Hence there is a uniquely determined
u 2 VH 1.�/ such that

hu; 'i VH1.�/
D hf; 'iL2.�/; ' 2 D.�/: (5.351)

Here we used that D.�/ is dense in VH 1.�/which is covered by Proposition 5.28 (ii).
By (5.349) with xv D ' 2 D.�/, and standard notation of the theory of distributions
according to (2.40) one gets

.��u/.'/ D f .'/ for all ' 2 D.�/: (5.352)
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Usually one calls the uniquely determined u originating from (5.351) and (5.352)
a weak solution of

��u D f 2 L2.�/; u 2 VH 1.�/: (5.353)

But one can say more than this. First we remark that by Proposition 5.28 (ii) or
Remark 5.29, anyu 2 VH 1.�/, extended by zero outside of�, belongs toH 1.Rn/ D
W 1
2 .R

n/. Then it follows easily from Definition 3.13 that �u 2 H�1.Rn/ and by
restriction as in Definition 3.37 that �u 2 H�1.�/. One obtains

�� W VH 1.�/ ,! H�1.�/: (5.354)

Let ! be an arbitrary bounded domain in Rn (that is, an arbitrary open set in Rn).
Let H 1.!/ and H�1.!/ be defined by restriction of the corresponding spaces on
Rn to ! as in Definition 3.37, and let VH 1.!/ be the completion of D.!/ inH 1.!/.
Then it follows by standard arguments that VH 1.!/ can be equivalently normed by



uj VH 1.!/


 D � nX

jD1




 @u
@xj

ˇ̌
L2.!/




2	1=2 (5.355)

generated by the scalar product (5.349) with ! in place of �. Within the dual
pairing .D.!/;D 0.!// one gets for the dual space of VH 1.!/ that

. VH 1.!//0 D H�1.!/: (5.356)

We refer for details, proofs and explanations to [Tri01, Proposition 20.3, pp. 296–
298].

Let� be again a boundedC1 domain in Rn. Then one can extend the arguments
in (5.351)–(5.353) from L2.�/ to H�1.�/. Together with (5.354) one gets that

�� W VH 1.�/ ,! H�1.�/ is an isomorphic map. (5.357)

This complements the previous assertion that

�� W W 2
2;0.�/ ,! L2.�/ is an isomorphic map, (5.358)

which is covered by Theorem 5.31 (i) and which can also be obtained from the above
considerations if one applies, in addition, Proposition 5.26 (i). However, the main
advantage of the method of weak solutions is not so much that one can complement
(5.358) by (5.357), but that it can be applied to more general situations.

Let now ! be an arbitrary bounded domain in Rn and let fajk.x/gnj;kD1 �
L1.!/ with

ajk.x/ D akj .x/ 2 R; x 2 x!; 1 � j; k � n; (5.359)
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such that
nX

j;kD1
ajk.x/�j �k � Ej�j2; x 2 x!; � 2 Rn; (5.360)

for someE > 0 as in (5.169), (5.170). Then for given f 2 L2.!/ there is a unique
u 2 VH 1.!/, called weak solution, such thatZ

!

nX
j;kD1

ajk.x/
@u

@xj
.x/

@x'
@xk

.x/ dx D
Z
!

f .x/x'.x/dx (5.361)

for all ' 2 D.!/. This follows from the above considerations and the observation
that the left-hand side of (5.361) is a scalar product generating a norm which is
equivalent to the norm in (5.355). The above arguments and (5.356) imply that
one can replace the right-hand side of (5.361) by f .x'/ with f 2 H�1.!/ and
' 2 D.!/. One gets again a uniquely determined weak solution u 2 VH 1.!/.
Some additional smoothness assumptions for the coefficients ajk ensure also a
counterpart of (5.354). Altogether one obtains the following assertion:

Let ! be an arbitrary bounded domain in Rn. Let A,

.Au/.x/ D �
nX

j;kD1

@

@xj

�
ajk.x/

@u

@xk

�
; u 2 VH 1.!/; (5.362)

be an elliptic differential operator with fajkgnj;kD1 � C 1.!/, (5.359), and (5.360).
Then

A W VH 1.!/ � H�1.!/ is an isomorphic map. (5.363)

By the above comments it remains to justify the counterpart of (5.354). This
follows from ajkv 2 H�1.!/ if v 2 H�1.!/ obtained by the above duality (5.356)

from ajku 2 VH 1.!/ if u 2 VH 1.!/. Finally, we refer to [Tri92a, Section 6.2]
dealing in detail with weak solutions for boundary value problems for second order
elliptic operators.

5.12.13. It is quite natural to ask how (strong) solutions of second order elliptic
equations with (5.358) as a proto-type, weak solutions as indicated in the preceding
Note 5.12.12, and classical solutions as briefly mentioned in the Notes 1.7.1 and
1.7.2 are related to each other. This is not the subject of this book, but a few
comments and references may be found in [Tri01, Section 20.14, pp. 309/310].

5.12.14. So far we discussed in Theorem 4.17 (ii) compact embeddings ofW s
2 .�/

inC l.�/ and in Theorem 5.59 Sobolev embeddings in a rather specific case. These
are two examples of a far-reaching theory of embeddings between function spaces,
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one of the major topics of the theory of function spaces as it may be found in [Tri78],
[Tri83], [Tri92b]. We restrict ourselves to a few assertions which are directly related
to the above spaces. In particular, let H s

p .�/ with s > 0, 1 < p <1, and C s.�/

with s > 0 be the same spaces as in Note 5.12.10 where again� is a bounded C1
domain in Rn. Then one has the following assertions which generalise and modify
the above-mentioned results.

(i) Let 1 < p <1, s > 0, and s � n
p
> � > 0, 1 � q � 1. Then both

id W H s
p .�/ ,! C� .�/ and id W H s

p .�/ ,! Lq.�/ (5.364)

are compact.

(ii) Let 1 < p <1, s > 0, and s � n
p
D 0, 1 � q <1. Then

id W H s
p .�/ ,! Lq.�/ (5.365)

is compact.

(iii) Let 1 < p <1, s > 0, and s � n
p
D � n

p� < 0. Then

id W H s
p .�/ ,! Lq.�/; 1 � q < p�; (5.366)

is compact and
id W H s

p .�/ ,! Lp�.�/ (5.367)

is continuous, but not compact.

Although these are special cases of a more general embedding theory, they com-
plement and illustrate the specific assertion in the Theorems 4.17 and 5.59. In
connection with l D 0 in (4.87) and also n D 4 in (5.285) one may ask whether
(5.367) can be extended to the limiting situation

id W Hn=p
p .�/ ,! L1.�/; 1 < p <1; (5.368)

which is also illustrated in Figure 5.9. But this is not the case, recall also Exer-
cises 3.6 and 3.33. Problems of this type have been studied in detail in literature
and resulted finally in the theory of envelopes as it may be found in [Har07].

5.12.15. The interest in eigenvalue problems of type (5.312) where A might be an
elliptic operator of second order (or higher order as outlined briefly in Note 5.12.1)
and b is a singular function comes from physics. For example, the eigenfrequencies
ei�t (where t represents the time) of a vibrating drum (or membrane) in a bounded
domain � � R2 can be characterised as the eigenvalues �2 of the boundary value
problem

��u.x/ D �2m.x/u.x/; x 2 �; tr� u D 0; (5.369)
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where m.x/ is the mass density. We return in Example 6.1 below to this point. If
the mass is unevenly or even discontinuously distributed on the membrane, then one
gets a problem of type (5.312) or (5.369) with non-smooth m. 	/. Other examples
come from quantum mechanics where m. 	/ stands for (singular) potentials. One
may consult Note 6.7.1. The first comprehensive study may be found in [BS72],
[BS73]. Theorem 5.61 might be considered as an example in the context of this
book. Otherwise we refer to [ET96] dealing systematically with problems of this
type. Recently there is a growing interest in the replacement of (possibly singular)
functions b. 	/ in (5.312) or m. 	/ in (5.369) by finite Radon measures in Rn. This
comes again from quantum mechanics but also from fractal analysis, resulting in
the fractal counterpart of (5.305), say,

B D .��/�1 B �; � finite Radon measure: (5.370)

Of course, first one has to clarify what this means. We refer to [Tri97], [Tri01],
[Tri06] where problems of this type have been considered systematically.



Chapter 6

Spectral theory in Hilbert spaces and Banach
spaces

6.1 Introduction and examples

So far we got in Chapter 5 a satisfactory L2 theory for (Dirichlet and Neumann)
boundary value problems for second order elliptic differential equations in bounded
smooth domains. This covers first qualitative assertions about the spectrum of the
operators considered. Of special interest is the question whether these operators
have a pure point spectrum or whether related inverse operators are compact. We
refer to the Theorems 5.31 (Laplace operator), 5.36 (second order operators, not
necessarily self-adjoint), and 5.61 (degenerate operators). In Note 5.12.4 we dis-
cussed some types of spectra, mostly to illuminate what had been said before.
Now we return to these questions in greater detail, mainly interested in quantitative
assertions, especially the

distribution of eigenvalues.

This Chapter 6 deals with the abstract background, especially approximation num-
bers, entropy numbers and their relations to spectra. This will be used in Chapter 7
to discuss the spectral behaviour of elliptic operators.

The distribution of eigenvalues of elliptic operators is one of the outstanding
problems of mathematics in the last century up to our time. This interest comes not
only from challenging mathematical questions, but even more from its numerous
applications in physics. We give some examples for both.

Example 6.1 (Vibrating membrane). We suppose that a membrane fills a bounded,
say, C1 domain � in the plane R2, fixed at its boundary � D @� and buckling
under the influence of a force with the continuous density p.x/, x 2 �, in vertical
directions, see Figure 6.1 below.

Let v 2 C 2.�/ with tr� v D 0 be the elongation resulting in a surface F which
can be described as

x3 D v.x/; x D .x1; x2/ 2 x� � R2

with v.x/ D 0 if x 2 � . Let jF j be the surface area and

�F D jF j � j�j
be the enlargement of the membrane under the influence of p.
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� D @�

x3
p.x/

x1

x2
x D .x1; x2/

�

v.x/

Figure 6.1

The corresponding potential J.v/ is given by

J.v/ D �F C
Z
�

p.x/v.x/dx

D
Z
�

 vuut1C
2X

jD1

�
@v

@xj
.x/

�2
� 1C p.x/v.x/

!
dx

�
Z
�

�
1

2
jrv.x/j2 C p.x/v.x/

�
dx D VJ .v/; (6.1)

where we first used Theorem A.8 and afterwards assumed that the elongation is so
small that v and its first derivatives are small. The wisdom of nature (i.e., to be as
stable as possible) or the calculus of variations (resulting in the Euler–Lagrange
equations) propose that

d

d"
VJ .v C "'/j"D0 D 0 for all ' 2 D.�/; (6.2)

where " � 0. Then (6.1) and integration by parts imply

0 D
Z
�

� 2X
jD1

@v

@xj
.x/

@'

@xj
.x/C p.x/'.x/

	
dx

D
Z
�

.��v.x/C p.x//'.x/dx for all ' 2 D.�/: (6.3)

Using Proposition 2.7 (ii) it follows that v is the solution of the Dirichlet problem

�v.x/ D p.x/; x 2 �; vj@� D 0: (6.4)

Assume now that the membrane is vibrating in the vertical elongation and that
v D v.x; t/ with x 2 x� and the time t � 0. Then one has to replace p.x/ in (6.4)
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by the acceleration

m.x/
@2v

@t2
.x; t/; x 2 �; t � 0;

wherem.x/ is the mass density of the membrane at the point x 2 �. Consequently
one obtains for t � 0,

�v.x; t/ D m.x/ @
2v

@t2
.x; t/; x 2 �; and v.y; t/ D 0; y 2 �: (6.5)

Of interest are eigenfrequencies, hence non-trivial solutions v.x; t/ D ei�tu.x/,
� 2 R, of (6.5). This results in the eigenvalue problem for the (degenerate) Dirichlet
Laplacian,

��u.x/ D �2 m.x/ u.x/; x 2 �; tr� u D 0; (6.6)

and fits in the scheme of Theorem 5.61 and of Note 5.12.15 where we discussed
problems of this type. If the mass density is constant, say, m.x/ D 1, x 2 �,
then one has Theorem 5.31 (i) and Courant’s remarkable observation described in
Note 5.12.5. By the above considerations it is clear that the distribution of the
eigenvalues of the Dirichlet Laplacian is not only of mathematical interest, but also
of physical relevance. It will be one of the main concerns in Chapter 7, we refer in
particular to Theorem 7.13.

Example 6.2 (The hydrogen atom and semi-classical limits). The classical Hamil-
tonian function for the (neutral) hydrogen atom H with its nucleus fixed at the

0

e, m

Figure 6.2

origin in R3 and a revolving electron having mass m and
charge e is given by

ˆ.x; p/ D 1

2m
.p21 C p22 C p23/ �

e2

jxj ; (6.7)

where x 2 R3 is the position of the electron and p 2 R3 its
momentum, see Figure 6.2 aside. Recall that �e2jxj�1 is
the Coulomb potential. Quantisation requires the replace-
ment

xj 7! xj 	 (multiplication operator) and pj 7! „
i

@

@xj
(6.8)

in (6.7) resulting in the hydrogen operator

HHf D � „
2

2m
�f � e2

jxjf; dom.HH / D W 2
2 .R

3/; (6.9)

in L2.R3/ where „ D h
2


and h is Planck’s quantum of action. HH is called the
Hamiltonian operator of the hydrogen atom. In Note 6.7.1 we add a few further
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comments about the quantum-mechanical background. We compare HH in (6.9)
with

Hˇf D ��f C f C ˇV.x/f; ˇ � h�2; dom.Hˇ / D W 2
2 .R

3/; (6.10)

where we transferred „2

2m
in (6.9) to the potential V.x/ D jxj�1 and shifted the

outcome by id. Only the dependence of ˇ on h will be of interest. As indicated
so far in Exercise 5.25 and Note 5.12.4 (and considered later on in Section 7.7) we
know that A, given by

Af D ��f C f; dom.A/ D W 2
2 .R

3/; (6.11)

is self-adjoint, positive-definite in L2.R3/ and

�.A/ D �e.A/ D Œ1;1/; �p.A/ D ;: (6.12)

Furthermore, if for real V.x/ the multiplication operator B ,

Bf D V.x/f; dom.B/ 
 dom.A/; (6.13)

is relatively compact with respect to A, that is, BA�1 is compact, then

Hˇ D AC ˇB; dom.Hˇ / D dom.A/ D W 2
2 .R

3/; (6.14)

is also self-adjoint and

�e.Hˇ / D �e.A/ D Œ1;1/; (6.15)

where ˇ > 0 is the coupling constant. One asks for the behaviour of possible
negative eigenvalues if ˇ !1, in particular, for the cardinal number

#f�.Hˇ / \ .�1; 0�g: (6.16)

This is the problem of the negative spectrum we are dealing with in Section 6.5
on an abstract level and returning in Section 7.7 to operators of type (6.10). The
interest in these questions comes from quantum mechanics. Planck’s quantum of
action h is so small that it developed (by the wisdom of physicists) the ability of
tending to zero, what means that the coupling constant ˇ � h�2 in (6.10) tends to
infinity. This is called the semi-classical limit and the physicists extract information
from the cardinality of the set (6.16). But the physical side of this problems is not
the subject of this book. We add some references in Note 6.7.10.

Example 6.3 (Weyl exponent). Let

Au D ��u; dom.A/ D W 2
2;0.�/; (6.17)
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be the Dirichlet Laplacian in a bounded C1 domain � in Rn as considered in
Theorem 5.31 (i) and let

0 < �1 < �2 � 	 	 	 � �j � 	 	 	 ; �j !1 if j !1; (6.18)

be its eigenvalues repeated according to their (geometricD algebraic) multiplicities.
(By Note 5.12.5 the first eigenvalue is simple.) Of interest is the distribution of these
eigenvalues, also for physical reasons as outlined in Example 6.1. To smooth out
possible local irregularities in the behaviour of �j it is usual to consider the spectral
counting function

N.�/ D #fj 2 N W �j < �g; � > 0: (6.19)

The first systematic treatment of problems of this type goes back to H. Weyl in 1912
[Wey12a], [Wey12b] resulting in the question under which circumstances one has

N.�/ D .2
/�nj!njj�j�n
2 � ~nj@�jn�1�

n�1
2 .1C o.1// for �!1: (6.20)

Here j!nj is the volume of the unit ball in Rn mentioned in (1.18), ~n is some positive
number depending only on n, j�j is the Lebesgue measure of � and j@�jn�1 is
the surface area of � D @� which can be calculated according to Theorem A.8
(for smooth surfaces). As usual, o.1/ indicates a remainder term tending to zero if
� ! 1. Generations of mathematicians dealt with this problem up to our time.
The state-of-the-art at the end of the 1990s may be found in [SV97]. We add a
few further comments in Note 6.7.2. Sharp asymptotic assertions of type (6.20) are
beyond the scope of this book. We are interested in the simple consequence

�j � j 2=n; j 2 N; (6.21)

inserting � D �j and N.�j / D j in (6.20). Sometimes n
2

in (6.20) or 2
n

in (6.21),
respectively, is called Weyl exponent.

Remark 6.4 (Our method, generalisations). Our proof of (6.21) will be based on
approximation numbers and entropy numbers of compact embeddings as consid-
ered in Theorems 4.17, 5.59 on the one hand, and isomorphic mappings of elliptic
operators according to Theorems 5.31, 5.36 or continuous mappings as in Theo-
rem 5.61 on the other hand. These are qualitative assertions and nothing like (6.20)
can be obtained in this way. However, this type of arguments can be applied to all
the operators in the just-mentioned theorems, hence self-adjoint, not self-adjoint,
regular and degenerate elliptic operators. As said, Chapter 6 provides the abstract
background, whereas Chapter 7 deals with applications to function spaces and el-
liptic operators including the above examples.
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6.2 Spectral theory of self-adjoint operators

In this book we encounter three types of linear operators in complex Banach spaces
and Hilbert spaces. First there are bounded operators in or between Banach spaces.
If such an operator acts compactly in a given Banach space, then the related spectral
theory is covered by the Riesz Theorem C.1. Secondly we deal with (unbounded)
self-adjoint operators in (complex separable) Hilbert spaces. Thirdly, in cases where
the operator A considered in a Hilbert space is unbounded and not necessarily self-
adjoint, then we know in addition that its inverse A�1 (or the inverse .A � � id/�1
for some � 2 C) is compact which gives the possibility to reduce spectral assertions
to compact operators in Hilbert spaces. Typical examples are the operators A in
Proposition 5.34 and Theorem 5.36. We discussed the somewhat delicate question
of related spectral assertions in Remark 5.35 and Note 5.12.6. We return later on
briefly to this point in connection with the density of the linear hull of associated
eigenvectors in the Sections 6.6 and 7.5. At this moment it is sufficient for us to
collect and complement what had been said so far about the spectrum of (unbounded)
self-adjoint operators.

As always we assume that the reader is familiar with the basic elements of
operator theory in Hilbert spaces. We collected some related notation and assertions
inAppendix C, especially in Section C.2. In particular, we recalled in (C.14)–(C.19)
under which conditions a (linear, densely defined, not necessarily bounded) operator
A is called self-adjoint. As in Section C.1 we let L.H/ be the space of all linear and
bounded operators in the Hilbert spaceH . Let id be the identity inH according to
(C.4) with X D Y D H .

Definition 6.5. LetA be a self-adjoint operator in the .complex, separable/Hilbert
space H .

(i) Then

%.A/ D f� 2 C W .A � � id/�1 exists and belongs to L.H/g (6.22)

is the resolvent set of A and

�.A/ D C n %.A/ (6.23)

is called the spectrum of A.

(ii) A number � 2 C is an eigenvalue of A if there exists an element h,

h 2 dom.A/; h ¤ 0; with Ah D �h: (6.24)

Furthermore,

ker.A � � id/ D fh 2 dom.A/ W .A � � id/h D 0g (6.25)
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is the kernel .or null space) of A � � id, and

dim ker.A � � id/ (6.26)

the multiplicity of the eigenvalue �. The point spectrum �p.A/ is the collection
of all eigenvalues of A.

(iii) For � 2 C a sequence

fhj g1jD1 � dom.A/; khj jHk � 1; Ahj � �hj ! 0 if j !1; (6.27)

is called a Weyl sequence .with respect to A and �/ if fhj gj has no convergent
subsequence. The essential .or continuous/ spectrum �e.A/ is the collection
of all � 2 C for which such a Weyl sequence exists.

Remark 6.6. We collected what we need in the sequel. Otherwise we refer again
to Appendix C, where now Sections C.1, C.2 are of relevance. Furthermore, one
may consult Note 6.7.3 below for additional information especially about Weyl
sequences which will be of some use for us later on. In connection with (C.10),
(C.11), naturally extended to (not necessarily bounded) self-adjoint operators (what
does not cause any problems), we recall that

ker.A � � id/k D ker.A � � id/ for any k 2 N; (6.28)

what makes clear that there is no need to distinguish between the algebraic mul-
tiplicity and the geometric multiplicity of an eigenvalue of a self-adjoint operator
(speaking simply of multiplicity). In Note 5.12.4 we discussed briefly the point spec-
trum, the essential spectrum and Weyl sequences in connection with the Dirichlet
Laplacian and the Neumann Laplacian. Now we return to these questions in greater
detail. One comment seems to be appropriate. In abstract spectral theory (of
self-adjoint operators) it is desirable to collect in the point spectrum �p.A/ only
eigenvalues of finite multiplicity. This is supported by Rellich’s Theorem C.15. If
� 2 �p.A/ is a (real) eigenvalue of infinite multiplicity of a self-adjoint operator
A, then � 2 �e.A/ (subject to Exercise 6.7 below). However, self-adjoint elliptic
differential operators (of second order) do not have eigenvalues of infinite multi-
plicity. This may justify that we stick at the above definition of the point spectrum
�p.A/.

Exercise* 6.7. Prove that eigenvalues of infinite multiplicity of a self-adjoint op-
erator A belong to �e.A/. Construct operators having eigenvalues of infinite mul-
tiplicity.

Hint: Use orthonormal bases in ker.A � � id/ and determine the spectrum of
Ad D d 	 id with d 2 R.
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Theorem 6.8. Let A be a self-adjoint operator in a Hilbert space H . Let %.A/,
�.A/, �p.A/ and �e.A/ be as in Definition 6.5. Then

� 2 %.A/ if, and only if, k.A � � id/hjHk � ckhjHk (6.29)

for some c > 0 and all h 2 dom.A/. Furthermore,

�.A/ � R and �.A/ D �p.A/ [ �e.A/: (6.30)

Proof. Step 1. If � 2 %.A/, then there is some C > 0 such that

k.A � �id/�1hjHk � CkhjHk; h 2 H: (6.31)

This implies the right-hand side of (6.29) with c D C�1. Conversely we rely on
Theorem C.3 (i). In particular, any � 2 C with Im� ¤ 0 belongs to %.A/, also
subject of Exercise 6.9 below. It remains to check that the right-hand side of (6.29)
implies � 2 %.A/ for � 2 R.

�

c
2

R

C
�

Figure 6.3

We choose � 2 C n R with j� � �j < c
2

as indicated in
Figure 6.3 aside. Then � 2 %.A/ and

k.A�� id/hjHk � c

2
khjHk; h 2 dom.A/: (6.32)

For some g 2 H the question whether there exists a
(unique) h 2 dom.A/ with

Ah � �h D g (6.33)

is equivalent to the question whether there is an h 2 H with

.idC T /h D .A � � id/�1g with T D .� � �/.A � � id/�1: (6.34)

Since (6.32) implies kT k < 1 one can solve (6.34), and hence (6.33) uniquely
(Neumann series) and obtains � 2 %.A/.
Step 2. We prove (6.30) where, as said, the assertion �.A/ � R is taken for granted.
If � 2 �.A/, then it follows by (6.29) that there is a sequence

fhj g1jD1 � dom.A/; khj jHk D 1; Ahj � �hj ! 0 if j !1: (6.35)

When there is a converging subsequence of fhj gj , identified with fhj gj for con-
venience, then we have hj ! h in H for some h 2 H , khjHk D 1, and for any
v 2 dom.A/,

hAv; hi D lim
j!1hAv; hj i D lim

j!1hv;Ahj i D hv; �hi: (6.36)

Thus h 2 dom.A�/ D dom.A/, Ah D �h, and hence � 2 �p.A/.



190 Chapter 6. Spectral theory in Hilbert spaces and Banach spaces

If fhj gj is not precompact, then we find for some " > 0 a subsequence of fhj gj ,
again identified with fhj gj for convenience, such that khj � hkjHk � " if j ¤ k.
Consequently fhj gj is a Weyl sequence and hence � 2 �e.A/. �

Exercise* 6.9. Let A be a self-adjoint operator in a Hilbert space H . Prove that

H D range.A � � id/˚ ker.A � x� id/; � 2 C; (6.37)

ker.A � � id/ D ker.A � x� id/ D f0g; � 2 C; Im � ¤ 0; (6.38)

and

k.A � � id/hjHk � j Im �jkhjHk; h 2 dom.A/; � 2 C: (6.39)

As a consequence of (6.37)–(6.39) show that �.A/ � R.

6.3 Approximation numbers and entropy numbers:
definition and basic properties

As indicated in Remark 6.4 we rely on approximation numbers and entropy numbers
to get assertions of type (6.21). This Section 6.3 deals with basic properties of these
numbers in Banach spaces. Spectral properties are shifted to the next Section 6.4.
Recall that all Banach spaces considered are complex. Let

UX D fx 2 X W kxjXk � 1g (6.40)

be the (closed) unit ball in the Banach space X .

Definition 6.10. Let X and Y be Banach spaces and let T 2 L.X; Y /, k 2 N.

(i) The kth .dyadic/ entropy number ek.T / of T is defined as the infimum of all
" > 0 such that

T .UX / �
2k�1[
iD1
fyi C "UY g for some y1; : : : ; y2k�1 2 Y: (6.41)

(ii) The kth approximation number ak.T / of T is defined by

ak.T / D inffkT � Sk W S 2 L.X; Y /; rank S < kg; (6.42)

where rank S D dim rangeS .
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Remark 6.11. Obviously fy C "UY g D K".y/ is a ball in Y centred at y and
of radius " > 0. In the Notes 6.7.5 and 6.7.6 we give some references and add a
few historical comments. Here we restrict ourselves to basic properties. We follow
essentially [ET96].

Theorem 6.12. Let X , Y , Z be Banach spaces and T 2 L.X; Y /. Let hk stand
for either the entropy numbers, i.e., hk D ek , or the approximation numbers, i.e.,
hk D ak , respectively.

(i) (Monotonicity) Then

kT k D h1.T / � h2.T / � 	 	 	 � 0: (6.43)

(ii) (Additivity) Let S 2 L.X; Y /. Then for all k;m 2 N,

hkCm�1.S C T / � hk.S/C hm.T /; (6.44)

in particular,
jhk.S/ � hk.T /j � kS � T k; k 2 N: (6.45)

(iii) (Multiplicativity) Let R 2 L.Y;Z/. Then for all k;m 2 N,

hkCm�1.R B T / � hk.R/hm.T /: (6.46)

Proof. Step 1. The monotonicity (6.43) and a1.T / D kT k are obvious. Defini-
tion 6.10 (i) with y1 D 0 gives e1.T / � kT k. As for the converse, assume that
" > e1.T / � 0 and let y 2 Y be such that T .UX / � fyC"UY g. Then for arbitrary
x 2 UX there are z1; z2 2 UY such that T x D y C "z1, T .�x/ D y C "z2 which
leads to kT xjY k � ". Taking the supremum over UX and afterwards the infimum
over all " > e1.T / results in kT k � e1.T /.
Step 2. We first consider approximation numbers, i.e., hk D ak . The additivity
(6.44) is a consequence of

.S � L/C .T �M/ D S C T �N (6.47)

and optimally chosen finite rank operatorsL andM . More precisely, let� > ak.S/,
� > am.T /, and L 2 L.X; Y /, M 2 L.X; Y / be such that

rankL � k � 1; kS � Lk < �; and rankM � m � 1; kT �Mk < �:
Since N 2 L.X; Y /, rankN � k Cm � 2, and k.S C T / �N k < �C �, (6.44)
follows. In a similar way one can prove the multiplicativity of approximation
numbers (6.46) (with hk D ak), this time using the counterpart of (6.47) in the
form

.R � L/ B .T �M/ D R B T �N (6.48)
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for optimally chosen finite rank operators L and M related to ak.R/ and am.T /,
respectively.

Step 3. We prove the additivity of entropy numbers, i.e., (6.44) with hk D ek . Let
" > 0, then there exist elements fy1; : : : ; y2k�1g � Y and fz1; : : : ; z2m�1g � Y

such that

S.UX / �
2k�1[
iD1
fyi C ."C ek.S//UY g; T .UX / �

2m�1[
jD1
fzj C ."C em.T //UY g;

according to (6.41). Hence for any x 2 UX there are yr 2 fy1; : : : ; y2k�1g and
zl 2 fz1; : : : ; z2m�1g such that

k.S C T /x � yr � zl jY k � ek.S/C em.T /C 2"; (6.49)

that is, .S C T /.UX / can be covered by 2k�1 	 2m�1 balls of radius ek.S/ C
em.T / C 2", where " > 0 can be chosen arbitrarily small. This proves (6.44).
As for the multiplicativity property (6.46) with hk D ek , one first covers T .UX /
by 2m�1 balls fzj C ." C em.T //UY g in Y and afterwards each of their images
R.fyiC."Cem.T //UY g/ inZ by 2k�1 balls of radius ."Cem.T //."Cek.R//. This
gives a covering of .RBT /.UX /with 2kCm�2 balls inZ of radius ek.R/em.T /C"0
where "0 > 0 can be chosen arbitrarily small. This concludes the proof of (6.46).

�

Remark 6.13. Let T 2 L.X; Y /. Then

T is compact if, and only if, lim
k!1

ek.T / D 0: (6.50)

This is obvious since T .UX / is precompact in Y if, and only if, one finds for any
" > 0 a finite "-net which can be taken as centres of "-balls.

If T 2 L.X; Y / is an operator of finite rank, i.e., rank T D dim range T <1,
then

am.T / D 0 if, and only if, rank T < m: (6.51)

Furthermore, if T 2 L.X; Y /, then

lim
k!1

ak.T / D 0 implies that T is compact. (6.52)

This is a consequence of the approximation of T by finite rank operators. However,
in contrast to (6.50) the converse is not true in general, but for Hilbert spaces subject
to Exercise 6.14 (c). We add also a corresponding comment in Note 6.7.9.

Exercise* 6.14. (a) Let X be a Banach space with dimX � m, and T D idX 2
L.X/ the identity in X . Prove the norm property of approximation numbers,

ak.idX / D 1; k D 1; : : : ; m: (6.53)
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Hint: Apply (6.43) and the fact .proof ‹/ that for any L 2 L.X/ with rankL < m
there exists an x0 2 X with L.x0/ D 0 and x0 ¤ 0.

(b) Prove the rank property of approximation numbers (6.51).

Hint: The if-part is obvious; for the converse use (6.46), (6.53) and the fact that
rank T � m implies the existence of a Banach space Z with dimZ D m, and of
operators S 2 L.Z;X/, R 2 L.Y;Z/ such that RTS D idZ is the identity in Z,
cf. [CS90, Lemma 2.1.2].

(c) Let H1, H2 be .separable complex/ Hilbert spaces and T 2 L.H1;H2/.
Prove that

T is compact if, and only if, lim
k!1

ak.T / D 0: (6.54)

Hint: Use the orthogonal projections on subspaces spanned by finite "-nets men-
tioned in Remark 6.13 or consult [EE87, Theorem II.5.7], [Tri92a, Theorem 2.2.6,
p. 97].

Exercise* 6.15. (a) Let X and Y be real Banach spaces and T 2 L.X; Y /. Prove
that

rank T D m if, and only if, c 2� k�1
m � ek.T / � 4kT k2� k�1

m (6.55)

for some c > 0 and all k 2 N. This implies for a finite-dimensional real Banach
space X with dimX D m <1 and T D idX 2 L.X/ that

ek.idX / � 2� k�1
m ; k 2 N: (6.56)

(b) Prove that for a finite-dimensional complex Banach space X with dimX D
m <1 the equivalence (6.56) must be replaced by

ek.idX / � 2� k�1
2m ; k 2 N: (6.57)

Hint: Reduce the complex case to the real one in the same way as in the proof of
Theorem 6.25 below. Compare this result with the rank property (6.51) and the
norm property of approximation numbers (6.53).

Example 6.16. Let p̀ , 1 � p � 1, be given by (3.152), (3.153). We consider the
diagonal operator D� W p̀ �! p̀ , defined by

D� W x D .�k/k 7�! .�k�k/k (6.58)

where .�k/k2N is a monotonically decreasing sequence of non-negative numbers
�1 � �2 � 	 	 	 � 0. For convenience, let p̀ be real. Then

ak.D� / D �k; k 2 N; (6.59)
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and
ek.D� / � sup

m2N
2� k�1

m .�1 	 	 	 �m/ 1
m ; k 2 N: (6.60)

We refer to [CS90, Proposition 1.3.2, (1.5.11)] and to [Pie78] for a proof of (6.60)
and to Exercise 6.17 below concerning (6.59). Obviously, (6.53) and (6.55) coincide
with (6.59) and (6.60), respectively, for X D p̀ .

Exercise* 6.17. Prove (6.59).

Hint: For the estimate from above, ak.D� / � �k , one may approximateD� byD�
with 
j D �j for j � k � 1 and 
j D 0 for j � k. Conversely, when �k > 0, the
idea is to consider first the k-dimensional matrix operator Dk

� corresponding to the
‘upper left corner’ suggested by D� and to prove ak.D

k
� / � �k , using (6.46) and

(6.53). Afterwards, represent Dk
� as Pk BD� B idk , where Pk and idk are a suitable

projection and identity, respectively, such that (6.46) concludes the argument.

Exercise 6.18. Of interest are universal estimates between entropy numbers and
approximation numbers. Prove that in general there cannot exist constants c > 0

or C > 0 such that for arbitrary operators T 2 L.X; Y / in some Banach spaces X
and Y the inequalities

ek.T / � c ak.T /; k 2 N; or ak.T / � C ek.T /; k 2 N; (6.61)

are true, respectively.

Hint: To disprove the first estimate, recall either (6.51) in connection with (6.55),
or use (6.59), (6.60) for an appropriately chosen sequence .�k/k2N. As far as the
second estimate is concerned, review Remark 6.13 together with Note 6.7.9.

Remark 6.19. Though universal estimates of type (6.61) cannot be true, there
exist rather general inequalities using weighted means of entropy numbers and
approximation numbers, respectively. We refer to Note 6.7.8, in particular, to
(6.155) and (6.156).

Exercise* 6.20. According to Exercise 6.18 there cannot exist general term-wise
estimates of type (6.61). However, for arbitrary Banach spaces X and Y and
T 2 L.X; Y / it is not difficult to prove that

lim
k!1

ek.T / � an.T / for all n 2 N: (6.62)

Hint: Approximate T by finite rank operators and use their compactness.

6.4 Approximation numbers and entropy numbers:
spectral assertions

As indicated in Remark 6.4 we wish to discuss the distribution of eigenvalues of
elliptic differential operators, where (6.21) may serve as a proto-type, by reducing
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these problems to the study of approximation numbers and entropy numbers, re-
spectively, of compact embeddings between function spaces. In this Section 6.4 we
develop the necessary abstract background.

Notational agreement. If the compact self-adjoint operator T in the Hilbert space
H has only finitely many non-vanishing eigenvalues �1.T /; : : : ; �k.T / according
to Theorem C.5, then we put �m.T / D 0 for m > k.

Theorem6.21. LetT bea compact self-adjoint operator in the .complex, separable,
infinite-dimensional/ Hilbert space H . Let for k 2 N, �k.T / be the eigenvalues
of T according to Theorem C.5 and let ak.T / be the corresponding approximation
numbers as introduced in Definition 6.10 (ii). Then

j�k.T /j D ak.T /; k 2 N: (6.63)

Proof. Step 1. We apply Theorem C.5, in particular (C.27), and represent T as

T h D
1X
jD1

�j hh; hj ihj ; h 2 H; (6.64)

where �j D �j .T / and fhj gj is a corresponding orthonormal system of eigenele-
ments, T hj D �jhj . Plainly, a1.T / D kT k D j�1j in view of (6.43) for ak and
Remark C.6. Let k � 2. Then

ak.T / �



T � k�1X

jD1
�j h	; hj ihj




 D 


 1X
jDk

�j h	; hj ihj



 � j�kj: (6.65)

Step 2. It remains to show the converse, i.e., j�kj � ak.T /, k 2 N, k � 2. Let
S 2 L.H/ with rank S � k � 1. We shall prove that there exists an hB 2 H such
that ShB D 0 and khBj Hk D 1. Let fv1; : : : ; vk�1g be an orthonormal system
spanning rangeS such that

Sh D
k�1X
jD1
hSh; vj ivj ; h 2 H: (6.66)

Let fhj gj be the above orthonormal system of eigenvectors, T hj D �jhj ; then

S
� kX
rD1

�rhr

	
D

kX
rD1

�rShr D
k�1X
jD1

� kX
rD1

�rcjr

	
vj (6.67)

with�r 2 C and cjr D hShr ; vj i. Since there is a non-trivial solution f�B
1; : : : ; �

B
k
g

of
kX
rD1

�rcjr D 0; j D 1; : : : ; k � 1;
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we have found hB DPk
rD1 �B

rhr with ShB D 0 and hB ¤ 0. Without restriction of

generality we may assume that khBjHk D �Pk
rD1 j�B

r j2
�1=2 D 1. Consequently,

kT hBjHk D



 kX
rD1

�B
r �rhr jH




 D � kX
rD1
j�B
r j2 j�r j2

	1=2 � j�kj: (6.68)

Moreover, khBjHk D 1 and ShB D 0 imply that

kT � Sk � 

T hB � ShBjH

 D 

T hBjH

 � j�kj; (6.69)

and finally taking the infimum over all admitted S concludes the argument. �

Remark 6.22. The proof uses that H is a Hilbert space and that T is compact and
self-adjoint. Otherwise an assertion of type (6.63) cannot be expected. This can be
illustrated by the following example due to [EE87, pp. 59/60].

Example 6.23. Let X D C2 and T 2 L.X/ be connected with the matrix

T D
�
2 0

1 1

�
having eigenvalues �1.T / D 2; �2.T / D 1:

However, according to [EE87, pp. 59/60] the corresponding approximation numbers
satisfy

a1.T / D
q
3Cp5 > �1.T / and a2.T / D

q
3 �p5 < �2.T /:

Remark 6.24. In other words, a result like (6.63) cannot be expected in general.
Some further comments may be found in Note 6.7.5. On the other hand, for arbitrary
compact operators in Banach spaces there is a remarkable relation between entropy
numbers and eigenvalues we are going to discuss now.

Let T 2 L.X/ be a compact operator in the infinite-dimensional (complex)
Banach space X . By the Riesz Theorem C.1 the spectrum of T , apart from the
origin, consists solely of eigenvalues of finite algebraic multiplicity according to
(C.11), denoted by f�k.T /gk , repeated according to their algebraic multiplicity
and ordered so that

kT k � j�1j � j�2j � 	 	 	 � j�kj � 	 	 	 > 0: (6.70)

Recall our notational agreement on p. 195, i.e., if T has only finitely many distinct
eigenvalues different from zero and k is the sum of their algebraic multiplicities,
then we put again �m.T / D 0 for m > k.
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Theorem 6.25 (Carl’s inequality). Let T 2 L.X/ be a compact operator in the
infinite-dimensional .complex/Banach spaceX . Let f�k.T /gk be its eigenvalue se-
quence as described above and let ek.T / be the related entropy numbers according
to Definition 6.10 (i). Then

� kY
jD1
j�j .T /j

�1=k
� inf
m2N

2
m
2k em.T /; k 2 N: (6.71)

Proof. Step 1. We begin with a preparation and assume that � ¤ 0 is an eigenvalue
of T with algebraic multiplicity m. Let b be an (associated) eigenvector such that

.T � � id/r�1 b ¤ 0; and .T � � id/r b D 0 for r 2 N; r � m: (6.72)

Then the elements fb1; : : : ; brg,

bj D .T � � id/j�1b; j D 1; : : : ; r; (6.73)

are linearly independent. Since

bjC1 D .T � � id/bj for j D 1; : : : ; r � 1; (6.74)

one obtains

T bj D bjC1 C �bj for j D 1; : : : ; r � 1; and T br D �br : (6.75)

In particular, for a DPr
jD1 	j bj with 	j 2 C one gets for r � 2,

Ta D
r�1X
jD1

	j .bjC1 C �bj /C �	rbr D 	1�b1 C
rX

jD2
.	j�1 C 	j�/bj : (6.76)

Let T be the related matrix so that

T

0BBBBB@
	1

:::

	r

1CCCCCA D
0BBBBB@
� 0 	 	 	 0

1 � 0 	 	 	 0

0 1 � 0
:::

: : :
: : :

: : :
:::

0 	 	 	 0 1 �

1CCCCCA

0BBBBB@
	1

:::

	r

1CCCCCA W Cr �! Cr : (6.77)

In particular, ƒ D spanfb1; : : : ; brg is an invariant subspace of T with Tƒ D ƒ,
since � ¤ 0. We interpret Cr as R2r equipped with the Lebesgue measure and
decompose � and 	j into their real and imaginary parts, respectively. Let T R be
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the corresponding matrix, then

T R

0BBBBBBBBB@

Re 	1
Im 	1

:::

Re 	r
Im 	r

1CCCCCCCCCA
D

0BBBBBBBBBB@

Re� � Im �

Im � Re�
0 	 	 	 0

1 	 	 	 0
:::

: : :
: : :

:::

0 	 	 	 0 1
Re� � Im �

Im � Re�

1CCCCCCCCCCA

0BBBBBBBBB@

Re 	1
Im 	1

:::

Re 	r
Im 	r

1CCCCCCCCCA
(6.78)

as a map in R2r . If M is a bounded set in ƒ, interpreted in R2r , one obtains

vol.T .M// D j�j2r vol.M/: (6.79)

Now let
j�1.T /j � j�2.T /j � 	 	 	 � j�k.T /j > 0: (6.80)

Then the counterparts of (6.77), (6.78) have a block structure with (6.77), (6.78) as
blocks. We add a comment about this argument in Remark 6.26 below. Parallel to
(6.79) one obtains

vol.T .M// D
kY

jD1
j�j .T /j2 vol.M/; (6.81)

whereM is a bounded set in the span of the (associated) eigenelements correspond-
ing to �1.T /, …, �k.T /.

Step 2. Letƒ D spanfb1; : : : ; bkg be the span of the (associated) eigenelements of
�1.T /, …, �k.T / and let T .UX / be covered by 2m�1 balls of radius cem.T / for

ƒ

UX

UX \ƒ

Figure 6.4

some c > 1 where we may assume that
those balls having non-empty intersection
with ƒ are centred in ƒ (at the expense
of c). We apply (6.81) to M D UX \ƒ,
see Figure 6.4 aside. Since

T .M/ � T .UX /\ T .ƒ/ D T .UX /\ƒ;
one obtains by (6.81) that

kY
jD1
j�j .T /j2 vol.UX \ƒ/ � vol.T .UX / \ƒ/

� 2m�1 .c em.T //2k vol.UX \ƒ/: (6.82)
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This leads to � kY
jD1
j�j .T /j

	 1
k � c 2m�1

2k em.T / � c 2 m
2k em.T /: (6.83)

Step 3. It remains to care about the constant c in (6.83). We apply (6.83) to S D T r
with r 2 N. Note that �m.T r/ D �rm.T / (including algebraic multiplicities) which
can be justified by looking at the canonical situation in (6.77) (or (6.86) below),
where T r is again the triangular matrix with �r in place of �. Inserted in (6.83)
with m replaced by m0 D rm one obtains� kY

jD1
j�j .T /j

	 r
k � c 2 rm

2k erm.T
r/ � c 2 rm

2k erm.T /; (6.84)

where we used (6.46) with hk D ek . This implies� kY
jD1
j�j .T /j

	 1
k � c 1

r 2
m
2k em.T /; (6.85)

and finally (6.71) when r !1. �

Remark 6.26. We proved (6.77) under the assumption (6.72) and obtained the so-
called Jordan canonical form for the restriction of T to ƒ D spanfb1; : : : ; brg. As
indicated, but not proved in detail, this can be extended to the first k eigenvalues
with (6.80) (always counted with respect to their algebraic multiplicities). One
obtains

T

0BBBBBBBBBBBBBBBBBBBBB@

	1

:::

:::

:::

	k

1CCCCCCCCCCCCCCCCCCCCCA

D

0BBBBBBBBBBBBBBBBBBBBBB@

�1 0
1 �2 0
: : :
: : :
: : :

1 �l

0 	 	 	 0

0

�lC1 0

1
: : :
: : : �s

: : :
:::

:::
: : :

: : : 0

0 	 	 	 0

�r 0
1 �rC1 0
: : :

: : :
: : :

1 �k

1CCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBB@

	1

:::

:::

:::

	k

1CCCCCCCCCCCCCCCCCCCCCA

(6.86)

with the Jordan �-blocks as in (6.77). A detailed proof may be found in [HS74,
Chapter 6, §4]. One may also consult [Gre81, Chapter 13]. This sharp Jordan
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canonical form is not needed. It is sufficient to know that T in (6.86) is a triangular
matrix. This is the version used in [CS90, Theorem 4.2.1, Lemma 4.2.1, Supple-
ment 1, pp. 139–143] where it comes out as a refinement of the Riesz Theorem C.1.

Corollary 6.27. Let T 2 L.X/ be a compact operator in the infinite-dimensional
.complex/ Banach space X . Let f�k.T /gk be its eigenvalue sequence ordered by
(6.70) and let ek.T / be the related entropy numbers according to Definition 6.10 (i).
Then

j�k.T /j �
p
2 ek.T /; k 2 N: (6.87)

Proof. This follows immediately from (6.71) due to the monotonicity (6.70) on the
left-hand side, and with m D k on the right-hand side. �

Remark 6.28. In Note 6.7.7 we add a few comments about the history of Theo-
rem 6.25 and Corollary 6.27.

6.5 The negative spectrum

In Example 6.2 we discussed the problem of the so-called negative spectrum and
its relations to physics. Now we deal with the abstract background and return later
on in Section 7.7 to some applications.

Again we assume that the reader is familiar with basic operator theory in Hilbert
spaces collected in Appendix C, especially in Sections C.2 and C.3. Furthermore,
we rely on Section 6.2, in particular Definition 6.5 and Theorem 6.8.

Definition 6.29. Let A be a self-adjoint positive-definite operator according to
(C.19) and Definition C.9 in a (complex, infinite-dimensional, separable) Hilbert
space H and B be a symmetric operator in H with dom.A/ � dom.B/. Then B
is said to be relatively compact (with respect to A) if BA�1 2 L.H/ is compact.

Remark 6.30. One can replace A�1 in this definition by any other resolventR� D
.A � � id/�1 with � 2 %.A/. This follows from the so-called resolvent equation
which will also play a rôle in what follows. Let � 2 %.A/ and � 2 %.A/. Then
(5.333) implies that

id D .A � � id/Œid � .� � �/R��R
 (6.88)

and
R� �R
 D .� � �/R�R
: (6.89)

In particular, R�R
 D R
R�. Furthermore, for � 2 %.A/ and � 2 %.A/,

BR� is compact if, and only if, BR
 is compact: (6.90)
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The resolvent equation (6.89) suggests that R� is an analytic function in %.A/ and
that (formally)

dR�
d�
D R2�; � 2 %.A/: (6.91)

The following exercise clarifies what is meant by (6.91).

Exercise 6.31. A vector-valued function � 7! h.�/ 2 H defined in an open set
ƒ � C is called analytic in ƒ if for any � 2 ƒ there exists an element h0.�/ 2 H
such that

h.�/ � h.�/
� � � �! h0.�/ in H for �! �: (6.92)

The above vector-valued function h.�/ is called weakly analytic in ƒ if for any
� 2 ƒ there is an element h0.�/ 2 H such that for any g 2 H ,�

h.�/ � h.�/
� � � ; g

�
�! hh0.�/; gi in C for �! �: (6.93)

Prove that h.�/ D R�h is an analytic function and a weakly analytic function in
%.A/ and that

R�h �R
h
� � � �! R2�h D h0.�/ for �! � 2 %.A/: (6.94)

Hint: Use (6.89) and similar arguments as in (5.333), (5.334).

Theorem 6.32. Let A be a self-adjoint positive-definite operator and let B be a
symmetric relatively compact operator according to Definition 6.29 in the Hilbert
space H . Let �p be the point spectrum and �e be the essential spectrum as in-
troduced in Definition 6.5. Then the eigenvalues f�kgk of BA�1 are real, and
.BA�1/� D A�1B is the adjoint operator after extension by continuity from
dom.B/ toH . Furthermore,

C D AC B; dom.C / D dom.A/; (6.95)

is self-adjoint,
�e.C / D �e.A/; (6.96)

and

#f�p.C / \ .�1; 0�g D #f�.C / \ .�1; 0�g
D #fk 2 N W �k.BA�1/ � �1g <1: (6.97)

Proof. Step 1. If � is an eigenvalue of BA�1, then one gets from BA�1v D �v,
v ¤ 0, that

Bw D �Aw with w D A�1v 2 dom.A/; w ¤ 0:
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By hAw;wi > 0 it follows from

hBw;wi D �hAw;wi; (6.98)

that � is real. Since

hBA�1v;wi D hA�1v; Bwi D hv;A�1Bwi; v 2 H; w 2 dom.B/; (6.99)

this leads to .BA�1/� D A�1B (recall that dom.B/ is dense in H ).

Step 2. Theorem C.3 (ii) implies that the symmetric operator C is self-adjoint if for
any � 2 C with Im � ¤ 0,

range.C C � id/ D H: (6.100)

In other words, one has to ask whether one finds for given v 2 H an element
u 2 dom.A/ D dom.C / such that

AuC BuC �u D v: (6.101)

Since �� 2 %.A/ the question (6.101) can be reduced to

w C B.AC � id/�1w D v with .AC � id/u D w: (6.102)

According to (6.90) the operator B.AC � id/�1 is compact. By Theorem C.1 the
equation (6.102) is uniquely solvable if, and only if, �1 is not an eigenvalue of the
related operator. We proceed by contradiction. Let us assume that there exists a
non-trivial solution of (6.102) with v D 0. This implies the existence of a non-
trivial solution u 2 dom.C / of (6.101) with v D 0. However, this is not possible
since Im � ¤ 0 and

hCu; ui C �kujHk2 D 0: (6.103)

Step 3. We prove (6.96) and assume � 2 �e.A/. Thus one finds a Weyl sequence
according to (6.27). By the spectral theory of self-adjoint operators it follows that
one may assume in addition that both

fhj g1jD1 and fAhj g1jD1 are orthogonal and khj jHk � c (6.104)

for some c > 0. We refer to [Tri92a, Section 4.3.7, especially Remark 1, p. 252].
Some additional explanations may be found in Note 6.7.3 below. We rely on this
refinement and ask whether

Ahj C Bhj � �hj �! 0 if j !1: (6.105)

This is equivalent to the question whether

gj C BA�1gj � �A�1gj �! 0 if j !1 where gj D Ahj : (6.106)
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Since BA�1 is compact we may assume in addition that

BA�1gj �! g in H: (6.107)

Let uj D g2j � g2j�1, j 2 N, then

fuj g1jD1 is orthogonal and BA�1uj �! 0 in H: (6.108)

Hence,
uj C BA�1uj � �A�1uj �! 0 if j !1; (6.109)

and one obtains (6.105) for zhj D h2j �h2j�1 instead of hj . This proves that f Qhj gj
is a Weyl sequence for C D AC B if � 2 �e.A/. Consequently �e.A/ 
 �e.C /

and by a parallel argument, interchanging the rôles of A and C , also (6.96).

Step 4. Next we prove that

#f�p.C / \ .�1; 0�g <1: (6.110)

We proceed by contradiction and assume that C has infinitely many eigenvalues
�j � 0. Let fuj gj be a related orthonormal system of eigenelements,

.AC B/uj D �juj ; �j � 0; j 2 N: (6.111)

Then
uj C A�1Buj D �jA�1uj ; j 2 N; (6.112)

and

1C hA�1Buj ; uj i D huj C A�1Buj ; uj i D �j hA�1uj ; uj i � 0 (6.113)

since A is positive-definite. Recall that A�1B is the adjoint operator of BA�1,
hence it is compact and we may assume A�1Buj ! u in H such that

jhA�1Buj ; uj ij � "C jhu; uj ij; j � j0."/: (6.114)

However, since fhu; uj igj 2 `2 are the Fourier coefficients of u 2 H , this leads to
a contradiction with (6.113),

0 � 1C hA�1Buj ; uj i ! 1 for j !1:
Step 5. It remains to prove (6.97). We begin with a preparation. We replace C D
ACB by the family of operatorsC" D AC"B for " 2 R with dom.C"/ D dom.A/.
Of course, one has the obvious counterparts of (6.96) and (6.110). If c > 0 has the
same meaning as in (C.29), then A� d id with 0 � d < c is also positive-definite.
This shows that (6.110) can be strengthened by

#f�p.C"/ \ .�1; d �g <1; " 2 R: (6.115)
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If �j ."/ � d is a possible eigenvalue of C", ordered by �1."/ � �2."/ � 	 	 	 , then
it follows from the Max–Min principle as it may be found in [EE87, Section XI.1,
pp. 489–490] that

�j ."/ D sup inf
˝
.AC "B/h; h˛; j 2 N; (6.116)

where the supremum is taken over all linear subspacesMj�1 inH of dimension at
most j � 1 and the infimum is taken over

fh 2 dom.A/ W h?Mj�1; khjHk D 1g: (6.117)

From this observation it follows easily that possible eigenvalues �j ."/ < c depend
continuously on " (including multiplicities). In particular, if j"j is small, then C"
has no negative eigenvalues. We assume �j ."/ � 0.

We wish to prove that

�j .�/ � �j ."/ < 0 if � � " and lim
�""

�j .�/ D �j ."/; (6.118)

where the latter again means continuity. Let " > 0 and 0 < ~ � 1. Then one has
for hBh; hi � 0 and hAh; hi > 0 in (6.116) with �j ."/ < 0,

"hBh; hi � �hAh; hi � �~hAh; hi (6.119)

and with � D "=~ that

�hBh; hi � �hAh; hi if "hBh; hi � �hAh; hi: (6.120)

This proves by (6.116) the first assertion in (6.118). As for the second assertion one
may insert an optimal systemMj�1 (the orthonormal eigenvectors for C"). Letting
�! " one gets lim�"" �j .�/ � �j ."/. Now the second assertion in (6.118) follows
from the first one.

Step 6. We prove (6.97). For small " > 0

we know that C" D A C "B has no nega-
tive eigenvalues. If �j < 0 is an eigenvalue
of C D A C B , then (6.118) implies that
there must be an " with 0 < " � 1 such that
�j ."/ D 0. (One is sitting at the origin and
observes what is passing by when " " 1, see
also Figure 6.5 aside.) Hence

�mC1

�1."/ �m."/

1 "! 0

�1 �m
0

�.A/

Figure 6.5

#f�.AC B/ \ .�1; 0�g D #fj 2 N W �j ."/ D 0 for some 0 < " � 1g: (6.121)

However, if for some u 2 dom.A/,

AuC "Bu D 0; then v C "BA�1v D 0 where v D Au; (6.122)

and vice versa. Hence (6.121) coincides with the number of eigenvalues of BA�1
which are smaller than or equal to �1. This concludes the proof of (6.97) and the
theorem. �
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Remark 6.33. In Note 6.7.10 we give some references and add a few comments.

6.6 Associated eigenelements

In Note 5.12.6 we discussed the question of associated eigenelements of unbounded
operatorsA in Hilbert spaces or Banach spaces. Under the assumption that %.A/ ¤
;, say, 0 2 %.A/, we advocated to shift the question of associated eigenelements to
A�1 as done in (5.331). However, under some restriction the more direct definition
of an associated eigenelement is successful.

An element

0 ¤ v 2
1\
jD1

dom.Aj /

of a linear operatorA in a .complex/Banach space is called an associated eigenele-
ment if

.A � � id/kv D 0 for some � 2 C and k 2 N: (6.123)

Then � is an eigenvalue. Similarly as in (C.11),

dim
1[
kD1

ker.A � � id/k with � 2 C (6.124)

is called the algebraic multiplicity of the eigenvalue �. IfA is a self-adjoint operator
in a Hilbert space H , then one has again

ker.A � � id/k D ker.A � � id/; k 2 N: (6.125)

In particular, the algebraic multiplicity coincides with the geometric multiplicity
(the dimension of the null space). If, in addition, A is a self-adjoint (positive-
definite) operator with pure point spectrum, then the corresponding eigenelements
spanH . We refer to Section C.3, especially, Remark C.16. Of course, the assump-
tion that A is positive-definite is immaterial. One may ask whether this assertion
can be extended to (unbounded) operators and their associated eigenelements. In
general, this is impossible, but we formulate an interesting result which fits in
the scheme of the above considerations. Recall that ak.T / are the approximation
numbers according to Definition 6.10 of an operator T , in our case T 2 L.H/.

Theorem 6.34. Let A be a self-adjoint operator in a Hilbert space H with pure
point spectrum according to Definition C.7. Let B be a linear operator inH with

dom.A/ � dom.B/ and
1X
kD1

ak.BR�/
p <1 (6.126)
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for some � 2 %.A/, R� D .A�� id/�1, and some 1 � p <1. Then the spectrum
of

C D AC B; dom.C / D dom.A/; (6.127)

consists of isolated eigenvalues of finite algebraic multiplicity and the linear hull
of corresponding associated eigenelements is dense inH .

Remark 6.35. Algebraic multiplicity must be understood as explained above in
(6.123), (6.124). It follows from the resolvent equation (6.89) and Theorem 6.12
that the assumption (6.126) is independent of the chosen point � 2 %.A/. The
above formulation has been taken over from [Tri78, Theorem 3, pp. 394/395] with
a reference to [GK65, Chapter V, § 10] for a proof. We apply later on in Section 7.5
this assertion to elliptic differential operators, complementing Theorem 5.36.

6.7 Notes

6.7.1. The application of the quantisation rules (6.8) to (6.7) results in the Hamilto-
nian HH in (6.9) for the (non-relativistic) hydrogen atom (without spin). This is the
most distinguished example of a so-called Schrödinger operator. The underlying
mathematical foundation of quantum mechanics was formulated in the 1920s, see,
for example, [Hei26], [HvNN28], [vN32], and can be found nowadays in several
books, e.g., in [Tri92a, Chapter 7] (and in a more extended version in its German
original, 1972). The operator in (6.11) is self-adjoint. One can prove that B ,

.Bf /.x/ D jxj�1f .x/; dom.B/ D W 2
2 .R

3/; (6.128)

is a symmetric operator in L2.R3/, which is relatively compact with respect to A
according to Definition 6.29, hence

jxj�1.��f C f /�1 is compact in L2.R
3/: (6.129)

Then Theorem 6.32 implies that HH is self-adjoint and

�e.HH / D �e.��/ D Œ0;1/: (6.130)

Furthermore, the point spectrum �p.HH / consists of negative eigenvalues,

�p.HH / D fEN g1ND1 with EN D � me4

2„2N 2
; N 2 N; (6.131)

0

E1 �e.HH /EN

Figure 6.6

of (geometric) multiplicity N 2, see Figure 6.6
aside, wherem, e, and „ have the same meaning as
in Example 6.2. A detailed proof may be found in
[Tri92a]. In physics eigenvalues of Hamiltonians
are identified with the energy of related stationary
states. By Bohr’s postulate a quantum mechani-
cal system jumping from one stationary state of
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energyE into another stationary state of energyE� can emit or absorb electromag-
netic radiation of frequency

� D jE �E
�j

h
; (6.132)

where h is Planck’s quantum of action. This underlines the importance of eigen-
values and their distributions also from a physical point of view. In case of the
hydrogen atom one gets one of the most famous formulas of quantum mechanics,

�N;M D jEN �EM j
h

D R
�
1

N 2
� 1

M 2

�
; M > N � 1; (6.133)

where R D 2
2me4h�3 is the Rydberg constant. Assuming that all constants are
fixed (the usual destiny of constants), but that Planck’s constant h tends to zero,
h # 0, one obtains

#f�e.HH / \ .�1;�1�g � h�3 (6.134)

(with equivalence constants which are independent ofh). This is a concrete example
of the negative spectrum as considered in (6.14)–(6.16) with Theorem 6.32 as the
abstract background. We return to problems of this type in Section 7.7. Further
references may be found in Note 6.7.10.

6.7.2. Let .��/D D AD;F and .��/N D AN;F be the Dirichlet Laplacian and
Neumann Laplacian, respectively, in a bounded C1 domain � in Rn according to
Theorem 5.31. Then the spectral counting function N.�/ in (6.19), (6.20) can be
detailed by

N.�/ D .2
/�nj!njj�j�n
2 ˙ .2
/�nC1

4
j!n�1jj@�jn�1�

n�1
2 .1Co.1// (6.135)

for �!1 with the same explanations as in connection with (6.20). Here the ‘�’
corresponds to .��/D and the ‘C’ to .��/N. We refer to [SV97, Example 1.6.16,
p. 47], where a corresponding assertion is formulated for the Laplace–Beltrami
operator with respect to an n-dimensional Riemannian manifold. One may ask
what happens if one replaces the Laplacian �� by a more general self-adjoint
operator of second order, typically of type

Au D �
nX

j;kD1

@

@xj

�
ajk.x/

@u

@xk

�
C a.x/u; dom.A/ D W 2

2;0.�/; (6.136)

where ajk and a are C1 coefficients satisfying (5.169), (5.170), (5.227), or of
higher order as discussed briefly in Note 5.12.1, or of even more general fractional
powers of elliptic operators or pseudo-elliptic operators. Problems of this type
have been considered with great intensity since a long time beginning with H. Weyl



208 Chapter 6. Spectral theory in Hilbert spaces and Banach spaces

[Wey12a], [Wey12b]. A detailed account and recent techniques may be found in
[SV97] and [Sog93, Section 4.2]. In case of (6.136) we are typically led to

N.�/ D c0�n
2 CO.�

n�1
2 / as �!1; (6.137)

with

c0 D .2
/�n
ˇ̌̌n
.x; �/ 2 � � Rn W

Xn

j;kD1 ajk.x/�j �k � 1
oˇ̌̌
; (6.138)

and
lim
�!1

�� n�1
2 jO.�n�1

2 /j <1: (6.139)

This coincides in the case of the Dirichlet Laplacian with the main term in (6.135).
Assertions of type (6.135)–(6.139) are beyond the scope of this book. We are in-
terested in the Weyl exponent as indicated in (6.21), subject of Chapter 7. On the
other hand, our method relies on entropy numbers and approximation numbers of
compact embeddings between Sobolev spaces. This applies also to rough ellip-
tic operators and even degenerate elliptic operators where nothing like the sharp
assertions (6.135) or (6.137) can be expected.

6.7.3. Let A D .ajk/nj;kD1 be a real symmetric matrix which can be interpreted as
a self-adjoint mapping A in the complex n-dimensional Hilbert space H D Cn.
Let

�1 < �1 � 	 	 	 � �n <1; Aej D �j ej ; ej 2 H;
be the ordered eigenvalues �j and the related orthonormal eigenelements ej . Then
A can be written formally (in a strong or weak sense similarly as explained in
connection with (6.93), (6.94)) as a (vector-valued or scalar) Riemann–Stieltjes
integral

Ah D
1Z

�1
�dE�h D

nX
jD1

�j h	; ej iej ; h 2 H; (6.140)

where E� is the projection of H onto spanfej W �j < �g. This is illustrated
formally in Figure 6.7 (a) below. It is one of the most spectacular (and most beau-
tiful) achievements of the analysis of the last century that there is a counterpart
of (6.140) for arbitrary self-adjoint operators A in (infinite-dimensional) complex
Hilbert spaces H ,

Ah D
1Z

�1
�dE�h; h 2 dom.A/; (6.141)

where fE�g�2R is a so-called spectral family consisting of projections such that

E�h! 0 if �! �1; E�h! h if �!1; h 2 H; (6.142)
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and
E�E
 D E
E� D Emin.�;
/; � 2 R; � 2 R; (6.143)

illustrated in Figure 6.7 (b) below.

E�

id

R�1 �n�2

Figure 6.7 (a)

E�

id

R� �j

Figure 6.7 (b)

This may be found in many books, for example in [Rud91] or [Tri92a, Sections 4.3,
4.4]. Roughly speaking, � 2 �p.A/ if, and only if, E
 is discontinuous at � and,
more precisely,

� 2 �e.A/ if, and only if, dimŒ.E�C" �E��"/H� D1 (6.144)

for any " > 0. If we assume (without restriction of generality) that for � 2 �e.A/,

dimŒ.E�j
�E�j C1

/H� D1; �j D �C 2�j ; j 2 N; (6.145)

then there are orthonormal sequences hj 2 .E�j
�E�j C1

/H such that

fAhg1jD1 is orthogonal and Ahj � �hj ! 0: (6.146)

Hence fhj gj is a special Weyl sequence according to Definition 6.5 (iii). For details
we refer to [Tri92a, Section 4.3.7, Remark 1, p. 252]. We used these special Weyl
sequences in Step 3 of the proof of Theorem 6.32.

6.7.4. Some (apparently) typical assertions of spectral theory in Hilbert spaces can
be extended to quasi-Banach spaces. This applies in particular to (6.29) and to
the second half of (6.30). This is of some use for a theory of elliptic operators
in quasi-Banach spaces. We refer to [ET96, Section 1.2] for the abstract part and
subsequent applications.

6.7.5. An early proof of (6.63) may be found in [GK65, Chapter II, § 2.3, Theo-
rem 3.1] with a reference to [All57]. The approximation numbers in Banach spaces
according to (6.42) had been introduced in [Pie63]. Afterwards it turned out that
there are many other useful numbers to characterise subclasses of compact operators
in Banach spaces, called s-numbers (including, e.g., Kolmogorov numbers, Weyl
numbers, Gel’fand numbers, …). All this has been studied with great intensity from
the middle of the 1960s up to the end of the 1980s (with some modest contributions
of the second-named author of this book). The standard references of the abstract
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theory are [Pie78], [Pie87], [Kön86], [CS90], [EE87]. They are in common use up
to our time. The step from Hilbert spaces to Banach spaces is crucial in this context
and the diverse s-numbers coincide when reduced to Hilbert spaces. Then one is
back to H. Weyl’s seminal paper [Wey49]. There one finds what has been called
later on Weyl’s inequalities:

Let T 2 L.H/ be a compact operator in an .infinite-dimensional complex/Hilbert
space and let f�k.T /gk be its eigenvalues .counted with respect to their algebraic
multiplicity/ and let ak.T / be the corresponding approximation numbers as intro-
duced in Definition 6.10 (ii). Then

mY
kD1
j�k.T /j �

mY
kD1

ak.T /; m 2 N; (6.147)

and
mX
kD1
j�k.T /jp �

mX
kD1

ak.T /
p; m 2 N; 0 < p <1: (6.148)

Of course, if T is self-adjoint, then both (6.147) and (6.148) follow from (6.63). It
is one of the main subjects of the above-mentioned books to study in detail gener-
alisations of these results, for example, replacing p̀ in (6.148) by other sequence
spaces and, in particular, to extend this theory to Banach spaces. For example, if X
is an arbitrary Banach space and T 2 L.X/ compact, then (6.63) can always be
replaced by the weaker assertion that

j�k.T /j D lim
m!1 ak.T

m/1=m; k 2 N;

see [Kön79].
The entropy numbers do not fit perfectly in the scheme of s-numbers, although

they have a lot of properties in common, recall Theorem 6.12. On the other hand, in
contrast to approximation numbers they obviously do not satisfy one of the consti-
tutive features of s-numbers, that is, the rank property (6.51), recall Exercise 6.15.
But they have their own history which we outline next.

6.7.6. The idea to measure compactness in terms of "-entropy goes back to [PS32]
and, in particular, to [KT59]. LetM be a precompact set in a Banach space Y . Let
N.";M/ denote the finite minimal number of balls of radius " > 0 in Y needed to
cover M . Then

H.";M/ D logN.";M/; (6.149)

is called the "-entropy, where log is taken to base 2. The idea to use the inverse func-
tions came up in [MP68] and in [Tri70]. Based on [MP68] themth entropy number
"m.M; Y / of the precompact set M in the Banach space Y had been introduced in
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[Tri70] as the infimum of all " > 0 such that

M �
m[
iD1
fyi C "UY g for some y1; : : : ; ym 2 Y; m 2 N; (6.150)

2k�1
N.";M/

m

""m.M/ek.M/

Figure 6.7

where we used the same notation as in connection with (6.41). In [Pie78, Sec-
tion 12.1] it had been suggested to work only with the dyadic sequencem D 2k�1,
k 2 N, hence

ek.M; Y / D "2k�1.M; Y /; k 2 N: (6.151)

With M D T .UX / one gets the numbers ek.T / D ek.T .UX /; Y / according to
Definition 6.10 (i). For a while they had been denoted as dyadic entropy numbers.
But especially after the discovery of the spectral assertions (6.71), (6.87) in 1979 it
became clear that ek might be the better choice for many purposes. The motivation
in [Tri70] to deal with the (original) entropy numbers

"m.T / D "m.T .UX /; Y /; T 2 L.X; Y /; m 2 N; (6.152)

using the same notation as in Definition 6.10, came from the proposal to study
so-called entropy ideals Ep;q with 0 < p <1, 0 < q � 1,

Ep;q.X; Y / D

� n
T 2 L.X; Y / W

1P
mD2

"
q
m.T /.logm/

q
p �1m�1 <1

o
; q <1;n

T 2 L.X; Y / W sup
m�2

"m.T /.logm/
1
p <1

o
; q D1;

D

‚ n
T 2 L.X; Y / W

1P
kD1

e
q

k
.T /k

q
p �1 <1

o
; q <1;n

T 2 L.X; Y / W sup
k�1

ek.T /k
1
p <1

o
; q D1;

(6.153)

where the second line makes clear again that the use of ek simplifies the matter
considerably. These entropy ideals (also called entropy classes) attracted afterwards
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some attention especially the distinguished case 0 < p D q < 1, hence Ep;p
selecting those compact operatorsT 2 L.X; Y / for which fek.T /gk 2 p̀ (and their
weighted counterparts). We refer in particular to [Pie78, Section 14.3.1, p. 197],
[Car81b] and [CS90, Section 1.5].

6.7.7. In 1979 B. Carl discovered (6.87) in the even a little bit sharper version

j�k.T /j � inf
m2N

2
m�1

2k em.T /; k 2 N; (6.154)

published in [Car81b] as suggested by the first inequality in (6.83). Discussing this
remarkable formula with the second-named author of this book it came out more
or less instantaneously (within hours) that this assertion can be improved by (6.71)
using geometric arguments, published in [CT80]. The proof given there became
standard (with some modifications). It is not only the same as the above one in
connection with Theorem 6.25, but was taken over in all books known to us dealing
with this subject, including [CS90], [EE87], [ET96], [Kön86], [Pis89].

6.7.8. The systematic study of entropy numbers in Banach spaces is not subject of
this book. We refer to [Pie78], [Kön86] and in particular to [CS90] which is the
standard reference in this field of research. Some generalisations to quasi-Banach
spaces may be found in [ET96]. One may ask how the entropy numbers are related
to other s-numbers, in particular, to approximation numbers. We restrict ourselves
to the typical, but rather useful observations,

sup
kD1;:::;m

k� ek.T / � C sup
kD1;:::;m

k� ak.T /; m 2 N; (6.155)

and

sup
kD1;:::;m

.log.1C k//� ek.T / � C sup
kD1;:::;m

.log.1C k//� ak.T /; m 2 N;

(6.156)
where � > 0 and C is some positive constant (which may depend on �, but not
on m). This goes back to [Car81b], [CS90, p. 96] (for Banach spaces) and [ET96,
p. 17].

6.7.9. One has (6.50) as a characterisation of compact operators T 2 L.X; Y /

acting between Banach spaces X and Y in terms of their corresponding entropy
numbers ek.T /. In case of approximation numbers ak.T / there is (6.52) based on
the observation (6.51) for finite rank operators. Is there a converse or an extension
of (6.54) from couples of Hilbert spaces to Banach spaces? The answer is negative.
We illustrate the situation and first recall the notion of the approximation property
in Banach spaces.

A Banach space X is said to have the approximation property if for every
precompact set M � X , and every " > 0 there is a finite rank operator L 2 L.X/

such that
kx � LxjXk � " for every x 2M: (6.157)
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One gets as an immediate consequence of [LT77, Theorem 1.e.4, p. 32] that the
following two assertions are equivalent to each other:

(i) X has the approximation property,

(ii) for any Banach space Y and any T 2 L.Y;X/,

T is compact if, and only if, lim
k!1

ak.T / D 0: (6.158)

This is the converse of (6.52) and the perfect counterpart of (6.50). The question
whether each Banach space has the approximation property was one of the most
outstanding problems of Banach space theory for a long time. It was solved finally
by P. Enflo in [Enf73] negatively: there exist separable Banach spaces which do
not have the approximation property. We refer to [LT77, Section 1.e] and [Pie78,
Chapter 10] for further information.

6.7.10. In Example 6.2 we discussed the problem of the negative spectrum and its
physical relevance. Theorem 6.32 is the abstract background. In particular, (6.97)
is called the Birman–Schwinger principle. It goes back to [Bir61], [Sch61]. Proofs
may be found in [Sim79, Chapter 7] and [Sch86, Chapter 8, § 5]. A short description
has also been given in [ET96, Section 5.2.1, p. 186]. Our formulation is different
and adapted to our later needs. Nevertheless a few decisive ideas of the proof have
been borrowed from [Sim79, p. 87]. This applies in particular to the continuously
moving eigenvalues as described in (6.118). But our justifications via (6.116) and
the use of the Max–Min principle might be new. Using (6.87) with T D BA�1 one
obtains by (6.97) that

#f�.C / \ .�1; 0�g � #fk 2 N W p2ek.BA�1/ � 1g: (6.159)

This entropy version of the Birman–Schwinger principle appeared first in [HT94a,
Theorem 2.4], cf. also [ET96, Corollary, p. 186].

6.7.11. There are further interesting connections between (the limits of) entropy
numbers and approximation numbers on the one hand, and spectral assertions as
well as famous inequalities on the other hand. This concerns, for example, the
first eigenvalues of .��/D and .��/N in a bounded domain �, the (essential)
spectral radius of compact embeddings of type id W W 1

2 .�/ ,! L2.�/, as well as
connections to Poincaré’s inequality (5.165) and Friedrichs’s inequality (5.142).
First results may be found in [Ami78] and [Zem80], we refer to [EE87, Section V.5]
and [EE04, Section 4.1] for a comprehensive account on this topic.



Chapter 7

Compact embeddings, spectral theory of elliptic
operators

7.1 Introduction

In Section 5.6 we dealt with the homogeneous Dirichlet problem for regular elliptic
differential operators A,

Au.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (7.1)

in L2.�/, where � is a bounded C1 domain in Rn and A is interpreted as an
unbounded operator in L2.�/ with

dom.A/ D W 2
2;0.�/ D ff 2 W 2

2 .�/ W tr� f D 0g (7.2)

according to (5.11) as its domain of definition. Theorem 5.36 solves this problem in
a satisfactory way including an assertion about the spectrum �.A/ of A, consisting
of isolated eigenvalues of finite multiplicities located as indicated in Figure 5.5.
One may ask whether one can say more about the distribution of eigenvalues and
the (associated) eigenelements. For self-adjoint operators A,

Au D �
nX

j;kD1

@

@xj

�
ajk.x/

@u

@xk

�
C a.x/u; dom.A/ D W 2

2;0.�/; (7.3)

according to (6.136), we described in Note 6.7.2 and in Example 6.3 far-reaching
assertions about the distribution of eigenvalues of these operators with pure point
spectrum according to Definition C.7 and Theorem C.15.

The most distinguished case is the Dirichlet Laplacian A D .��/D. In Sec-
tion 6.1 we stressed the physical relevance of eigenvalue problems. In Remark 6.4
we outlined our method to get assertions of type (6.21) (the Weyl exponent) based
on approximation numbers and entropy numbers. To apply the corresponding ab-
stract theory as developed in Chapter 6 we rely on Theorem 4.13 reducing Sobolev
spaces to weighted `2 spaces. This may justify our dealing first in Section 7.2 with
approximation numbers and entropy numbers for compact embeddings between
weighted sequence spaces. This will be employed in Section 7.3 to study corre-
sponding problems in function spaces. Equipped with these assertions we discuss
afterwards in the Sections 7.4–7.6 eigenvalue problems for self-adjoint, regular,
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and degenerate elliptic operators. Finally we deal in Section 7.7 with the problem
of the negative spectrum as considered so far in Example 6.2 (physical relevance)
and in Section 6.5 (abstract background).

7.2 Compact embeddings: sequence spaces

Let M 2 N and 1 � p � 1. By `Mp we shall mean the linear Banach space of all
complex M -tuples � D .�1; : : : ; �M / 2 CM such that

k�j`Mp k D

„ � MX
jD1
j�j jp

	1=p
; 1 � p <1;

max
jD1;:::;M j�j j; p D1;

(7.4)

is finite. We further need p̀ sequence spaces consisting of weighted blocks of the
above type (7.4).

Definition 7.1. Let d > 0, ı � 0, 1 � p � 1. LetMj 2 N be such thatMj � 2jd
for j 2 N0. For

b D fbj;m 2 C W j 2 N0; m D 1; : : : ;Mj g (7.5)

we introduce



 b ˇ̌ p̀.2jı`Mj
p /



 D
„ � 1X

jD0
2jıp

MjX
mD1
jbj;mjp

	1=p
; p <1;

sup
j2N0

2jı sup
mD1;:::;Mj

jbj;mj; p D1:
(7.6)

Then
p̀.2

jı`
Mj
p / D ˚b W 

 b ˇ̌ p̀.2jı`Mj

p /


 <1�: (7.7)

Remark 7.2. Recall that Mj � 2jd means that there are two constants 0 < c1 �
c2 <1 such that

c1 2
jd �Mj � c2 2jd for all j 2 N0: (7.8)

If ı D 0, then p̀ D p̀.2
jı`

Mj
p / are the usual p̀ spaces. In any case, p̀.2

jı`
Mj
p /

is a Banach space. These are special cases of the larger scale of spaces `q.2jı`
Mj
p /

with 0 < q � 1, 0 < p � 1, where (7.7) is generalised by



 b ˇ̌`q.2jı`Mj
p /



 D
† 


n2jı� MjX

mD1
jbj;mjp

	1=po
j2N0

j`q



; p <1;


n2jı sup

mD1;:::;Mj

jbj;mj
o
j2N0

j`q



; p D1:

(7.9)
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These sequence spaces play a crucial rôle in the recent theory of function
spaces of type Bsp;q.R

n/ as briefly mentioned in the Notes 3.6.1, 3.6.3 and in Ap-
pendix E. Here we are mainly interested in the case q D p and, in particular,
q D p D 2. But we add a few comments in Note 7.8.3 below about the more
general spaces.

Since particular attention should be paid to approximation numbers and entropy
numbers for compact embeddings between the spaces according to Definition 7.1,
we deal first with the above spaces `Mp . Approximation numbers and entropy
numbers have been introduced in Definition 6.10.

Proposition 7.3. Let 1 � p � 1 and M 2 N. Let `Mp be the above .complex/
spaces and let

id W `Mp ,! `Mp (7.10)

be the identity. Then

ak.id W `Mp ,! `Mp / D
(
1 if 1 � k �M;
0 if k > M;

(7.11)

and

ek.id W `Mp ,! `Mp / �
(
1 if 1 � k � 2M;
2� k

2M if k > 2M;
(7.12)

where the equivalence constants are independent of k 2 N,M and p.

Proof. Step 1. Plainly, (7.11) coincides with (6.53) in Exercise 6.14 (a).

Step 2. One may interpret the complex space `Mp as R2M furnished with the norm
generated by (7.4). Let jU j be the volume of the unit ball U in `Mp (in the above
interpretation). Then 2�2M jU j is the volume of a ball of radius 1=2; hence (6.43)
(with hk D ek) implies e2M .id W `Mp ,! `Mp / � 1

2
and the first line in (7.12). Let

k > 2M and let K" be the maximal number of points yr 2 U with

kyr � yl j`Mp k > " D 2� k
2M ; r ¤ l: (7.13)

Since the balls centred at yr , r D 1; : : : ; K", and of radius " cover U ,

1 � K" "2M D K"2�k; thus; K" � 2k : (7.14)

On the other hand, balls of radius "=2 are pairwise disjoint and contained in 2U ,
such that

K"

�
"

2

�2M
� 22M ; that is; K" � 2kC4M : (7.15)
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Consequently, (7.14) and (7.15) lead to

ekC4MC1
�
id W `Mp ,! `Mp

� � 2� k
2M � ek

�
id W `Mp ,! `Mp

�
: (7.16)

This proves the second line in (7.12). �

Remark 7.4. This is a simplified version of a corresponding proof in [ET96,
pp. 98/99] dealing with the more complicated situation of embeddings (7.10) be-
tween `Mp spaces with different p-parameters for source and target space, see also
Exercise 7.5 below. We return to this point in Note 7.8.2 where we also give some
further references.

Exercise* 7.5. Prove the following .partial/ counterpart of Proposition 7.3 in the
more general situation

id W `Mp1
,! `Mp2

; 0 < p1 � p2 � 1; M 2 N: (7.17)

Then

ek.id W `Mp1
,! `Mp2

/ � 1; k � log.2M/; (7.18)

where the equivalence constants are independent of k 2 N, M 2 N. Here log is
taken to base 2.

Hint: Concerning the lower estimate in (7.18) one may consider the 2M ‘corner’
points .0; : : : ;˙1; : : : ; 0/ of U and estimate the radius that is necessary to cover
these points with 2k�1 � 2M balls. Further details are given in Note 7.8.2.

Theorem 7.6. Let d > 0, ı > 0, 1 � p � 1, and let p̀.2
jı`

Mj
p / be the spaces

according to Definition 7.1 withMj as in (7.8). Then

id.p/ W p̀.2
jı`

Mj
p / ,! p̀ (7.19)

is compact and

ek.id.p/ W p̀.2
jı`

Mj
p / ,! p̀/ � k�ı=d ; k 2 N: (7.20)

Furthermore, if in addition p D 2, then

ak.id.2/ W `2.2jı`Mj

2 / ,! `2/ � k�ı=d ; k 2 N: (7.21)

Proof. Step 1. The compactness of id.p/ follows from ı > 0.
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Step 2. First we show (7.21). Let

D˙ D

0BBBBBBBBBBBBBBBBBB@

2˙ı : : :
: : : 2˙ı„ ƒ‚ …
M1 �2d

0 	 	 	 0 	 	 	

0
: : :

:::

::: 0

2˙jı 	 	 	 0
:::

: : :
:::

0 	 	 	 2˙jı„ ƒ‚ …
Mj �2jd

0 	 	 	

:::
: : :

1CCCCCCCCCCCCCCCCCCA
be the indicated diagonal operators in `2 inverse to each other. Then D� is a
compact self-adjoint operator in `2 with eigenvalues

�k.D�/ � 2�jı � k�ı=d if k 2 N; k � 2jd ; (7.22)

since

D� D

0BBBBBBBBBBBBBBB@

2�ı : : :
: : : 2�ı 0 	 	 	 0 	 	 	

0
: : :

:::

::: 0

2�jı 	 	 	 0
:::

: : :
:::

0 	 	 	 2�jı„ ƒ‚ …
Mj �2jd

0 	 	 	

:::
: : :

k

1CCCCCCCCCCCCCCCA
Thus (6.63) implies

ak.D� W `2 ,! `2/ � k�ı=d ; k 2 N; (7.23)

see also (6.59). We use the factorisations

D�
�
`2 ,! `2

� D id.2/
�
`2
�
2jı`

Mj

2

�
,! `2

� BD�
�
`2 ,! `2

�
2jı`

Mj

2

��
(7.24)

and

id.2/
�
`2
�
2jı`

Mj

2

�
,! `2

� D D�
�
`2 ,! `2

� BDC
�
`2
�
2jı`

Mj

2

�
,! `2

�
; (7.25)
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where the second operators on the corresponding right-hand sides are isomorphic
maps. Consequently, by (6.46),

ak
�
id.2/ W `2

�
2jı`

Mj

2

�
,! `2

� � ak.D� W `2 ,! `2/ � k�ı=d ; k 2 N: (7.26)

This proves (7.21).

Step 3. We split the proof of (7.20) into two steps. For j 2 N we decompose

Idj
�
`
Mj
p ,! `

Mj
p

� D idj B id.p/ B idj ; j 2 N0; (7.27)

as represented in the following commutative diagram,

`
Mj
p

idj

����! p̀

�
2jı`

Mj
p

�
Idj

???y ???yid.p/

`
Mj
p  ����

idj

p̀

(7.28)

where

idj W `Mj
p ,! p̀

�
2jı`

Mj
p

�
;

.xj;1; : : : ; xj;Mj
/ 7! .0; : : : ; 0; xj;1; : : : ; xj;Mj

; 0; : : : /;

idj W p̀ ,! `
Mj
p ;

.x0;1; x1;1; : : : ; xj;1; : : : ; xj;Mj
; xjC1;1; : : : / 7! .xj;1; : : : ; xj;Mj

/:

Plainly,

idj W `Mj
p ,! p̀

�
2jı`

Mj
p

�

 D 2jı and


idj W p̀ ,! `

Mj
p



 D 1: (7.29)

Then by (6.46),

ek
�
Idj W `Mj

p ,! `
Mj
p

� � 2jıek�id.p/ W p̀

�
2jı`

Mj
p

�
,! p̀

�
; k 2 N; (7.30)

and (7.12) with k � 2jd �Mj implies for some c > 0 and c0 > 0 that

1 � c 2jıek
�
id.p/ W p̀

�
2jı`

Mj
p

�
,! p̀

�
and hence

ek
�
id.p/ W p̀

�
2jı`

Mj
p

�
,! p̀

� � c0 2�jı � k�ı=d : (7.31)

This is the estimate from below in (7.20).
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Step 4. It remains to prove the estimate from above in (7.20). For this it is sufficient
to show that there are two positive constants c and c0 such that

ec2Ld .id.p/ W p̀

�
2jı`

Mj
p

�
,! p̀/ � c02�Lı for all L 2 N: (7.32)

Let e�. 	/ D eŒ�	. 	/ for � 2 R, � � 1, for simplicity, where Œ�� D maxfk 2 Z W
k � �g. We decompose

id.p/
�
p̀

�
2jı`

Mj
p

�
,! p̀

� D LX
jD0

idj C
1X

jDLC1
idj ; L 2 N; (7.33)

where

idj W p̀

�
2jı`

Mj
p

�
,! p̀; x 7�! .0; : : : ; 0; xj;1; : : : ; xj;Mj

; 0; : : : /; j 2 N0:

Since kidj W p̀.2
jı`

Mj
p / ,! p̀k � 2�jı , one obtains


 1X

jDLC1
idj W p̀.2

jı`
Mj
p / ,! p̀




 � c 2�Lı ; L 2 N: (7.34)

By an argument similar to Step 3 we may decompose idj as idj D eidj B Idj B eidj ,

`
Mj
p

�idj

 ���� p̀

�
2jı`

Mj
p

�
Idj

???y ???yidj

`
Mj
p ����!�idj

p̀

with

eidj W p̀

�
2jı`

Mj
p

�
,! `

Mj
p ; x 7! .xj;1; : : : ; xj;Mj

/;

eidj W `Mj
p ,! p̀; .xj;1; : : : ; xj;Mj

/ 7! .0; : : : ; 0; xj;1; : : : ; xj;Mj
; 0; : : : /;

such that

eidj W p̀

�
2jı`

Mj
p

�
,! `

Mj
p



 D 2�jı and


eidj W `Mj

p ,! p̀



 D 1; j 2 N0:

Thus (6.46) (with hk D ek) implies

em
�
idj W p̀

�
2jı`

Mj
p

�
,! p̀

� D em� eidj B Idj .`
Mj
p ,! `

Mj
p / B eidj �

� c 2�jı em
�
Idj W `Mj

p ,! `
Mj
p

�
; m 2 N: (7.35)
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Let 0 < " < d and

kj D 2Ld 2�.L�j /"; j D 0; : : : ; L; (7.36)

i.e.,
kj D 2jd 2.L�j /.d�"/ � 2jd �Mj ; j D 0; : : : ; L; (7.37)

and

k D
LX
jD0

kj � 2Ld ; L 2 N: (7.38)

We apply (7.35) and the second line in (7.12) with kj �Mj � 2jd and obtain

LX
jD0

ekj
.idj / � c1

LX
jD0

2�jı 2� kj
2Mj

� c2 2�Lı
LX
jD0

2.L�j /ı 2�2.L�j /.d�"/ � c3 2�Lı ; (7.39)

where c1, c2, c3 are positive constants which are independent of L. Now (7.32)
follows from (6.44) (with hk D ek), (7.38), together with (7.34) and (7.39). �

Remark 7.7. The proof of (7.20) is a simplified version of corresponding assertions
in [Tri97, Theorem 8.2, p. 39]. There we dealt with

id W `q1

�
2jı`

Mj
p1

�
,! `q2

�
`
Mj
p2

�
; ı > 0; (7.40)

for 0 < p1 � p2 � 1, 0 < q1; q2 � 1, d > 0, and Mj � 2jd , j 2 N0, using
the notation (7.9). The space on the right-hand side refers to the unweighted case,
hence 1 in place of 2jı in (7.9). If p1 D p2 D p, then one can easily replace the
outer p’s in (7.19) by q1 and q2 (in the interpretation of (7.40)). The case p1 ¤ p2
is more difficult, but of great use in the theory of function spaces as indicated in
Remark 7.2. We return to theses questions in Note 7.8.3 below where we give also
some references.

7.3 Compact embeddings: function spaces

Theorems 4.13 and 4.17 open the possibility to transfer problems of compact em-
beddings

id W W s
2 .�/ ,! L2.�/; s > 0; (7.41)

to corresponding questions for sequence spaces of the above type. We use the same
notation as in Section 4.4, in particular,
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Qn D .�
; 
/n D fx 2 Rn W �
 < xj < 
; j D 1; : : : ; ng; (7.42)

and
K D K1.0/ D fx 2 Rn W jxj < 1g: (7.43)

We always assume that � is a bounded C1 domain in Rn. If, in addition,

� �


x 2 Rn W jxj � 1

2

�
; (7.44)

then we can apply the common extension operator

extL� W W s
2 .�/ ,! �W s

2 .
xK/; 0 � s < L; (7.45)

according to (4.90) with �W s
2 .
xK/ as in (4.70). Now we can complement Theo-

rem 4.17 as follows.

Theorem 7.8. Let � be a bounded C1 domain in Rn according to Definition A.3
and let W s

2 .�/ with s > 0 be the Sobolev spaces as in (4.2) .with a reference to
Definition 3.37/. Then the embedding

id W W s
2 .�/ ,! L2.�/ (7.46)

is compact. Let ak.id W W s
2 .�/ ,! L2.�// and ek.id W W s

2 .�/ ,! L2.�// be the
corresponding approximation numbers and entropy numbers according to Defini-
tion 6.10. Then

ak.id W W s
2 .�/ ,! L2.�// � ek.id W W s

2 .�/ ,! L2.�//

� k�s=n; k 2 N; (7.47)

where the equivalence constants are independent of k.

Proof. Step 1. By Theorem 4.17 we know that id is compact.

x1


�


�


xn



Qn

K

0
�

Figure 7.1

Without restriction of generality we may assume
that� satisfies (7.44) as shown in Figure 7.1. Let
`s2 be the space of all sequences b D fbm 2 C W
m 2 Zng normed by

kbj`s2k D
� X
m2Zn

.1C jmj2/sjbmj2
	 1

2

; (7.48)

used (implicitly) in Theorem 4.13. Then

eid W `s2 ,! `02 D `2 is compact: (7.49)
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Furthermore, id according to (7.46) can be factorised as

id.W s
2 .�/ ,! L2.�// D re� B T B eid.`s2 ,! `2/ B S B extL� (7.50)

with extL� given by (7.45),

S W �W s
2 .
xK/ ,! `s2; f 7! fbm.f /gm2Zn (7.51)

with bm.f / D .2
/� n
2

Z
Qn

f .x/e�imxdx; m 2 Zn; (7.52)

T W `2 ,! L2.Q
n/; fbmgm2Zn 7! f D .2
/� n

2

X
m2Zn

bme
imx; (7.53)

and the restriction
re� W L2.Qn/ ,! L2.�/: (7.54)

By the above comments, (4.59) and Theorem 4.13 it follows that all operators are
bounded. With hk replaced by either ak or ek , respectively,

hk.id W W s
2 .�/ ,! L2.�// � chk.eid W `s2 ,! `2/; k 2 N; (7.55)

is a consequence of Theorem 6.12.

Step 2. We wish to prove the converse
of (7.55) assuming without restriction of
generality that Qn and � are located as
indicated in Figure 7.2. There is a lin-
ear and bounded extension operator from
W s
2 .Q

n/ according to Definition 3.37 into
W s
2 .�/. But we did not prove this .Qn is

not a C1 domain, unfortunately). How-
ever, one can circumvent this problem as
follows.

Qn �

Figure 7.2
Let 0 < s < 1 and f be given by

f .x/ D .2
/� n
2

X
m2Zn

bme
imx; x 2 Qn; b D fbmgm2Zn 2 `s2; (7.56)

normed as in (4.65) by

kf jW s
2 .Q

n/
k D
�
kf jL2.Qn/k2C

“
Qn�Qn

jf .x/ � f .y/j2
jx � yjnC2s dx dy

�1=2
; (7.57)

where 
 refers to periodic. (One may first assume that only finitely many coef-
ficients bm are different from zero, the rest is afterwards a matter of completion.)
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Then we extend f periodically into adjacent cubes and multiply the outcome with
a cut-off function  2 D.�/ with  � 1 on Qn. The resulting function f �,

f �.x/ D  .x/.2
/� n
2

X
m2Zn

bme
imx; x 2 �; b 2 `s2; (7.58)

belongs to W s
2 .�/ and one gets by the same arguments as in (4.65)–(4.67) that

kf �jW s
2 .�/k � kf jW s

2 .Q
n/
k � kbj`s2k: (7.59)

These arguments can be extended to W k
2 .Q

n/, k 2 N, and then to all W s
2 .Q

n/,
s > 0. In particular, at least the periodic subspace W s

2 .Q
n/
 of W s

2 .Q
n/ spanned

by (7.56) has the desired extension operator. Now one can prove the converse of
(7.55) factorising eid in (7.49) as

eid.`s2 ,! `2/ D V B reQn B id.W s
2 .�/ ,! L2.�// B U; (7.60)

with
U W `s2 ,! W s

2 .�/ according to (7.58); (7.61)

the restriction reQn from L2.�/ to L2.Qn/, and the isomorphic map V in (4.59).
In that way one obtains the converse of (7.55) and hence

hk.id W W s
2 .�/ ,! L2.�// � hk.eid W `s2 ,! `2/; k 2 N: (7.62)

Step 3. For j 2 N one has

2jC1
2j

0

m

Figure 7.3

#fm 2 Zn W 2j � jmj < 2jC1g �Mj
� 2jn (7.63)

as indicated in Figure 7.3. Then it follows from
(7.48) and Definition 7.1 that (after a suitable
re-numbering)

`s2 D `2.2jı`Mj

2 / (7.64)

withd D n, ı D s. Now (7.62) and Theorem 7.6
prove (7.47). �

Exercise* 7.9. Consider the embedding

id W W s
2 .�/ ,! W t

2 .�/; 0 < t < s <1; (7.65)
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and show that

ak.id W W s
2 .�/ ,! W t

2 .�// � ek.id W W s
2 .�/ ,! W t

2 .�//

� k� s�t
n ; k 2 N; (7.66)

for the corresponding approximation numbers and entropy numbers.

Hint: The extension of V from L2 to W t
2 causes some trouble. Use

W s
2 .�/ ,! W t

2 .�/ ,! L2.�/ (7.67)

and what is already known.

Remark 7.10. The above theorem is a rather special case of a far-reaching theory
of approximation numbers and entropy numbers for compact embeddings between
function spaces. One may consult Note 7.8.5 below where we also give some
references. But we formulate a specific result which will be of some use for us later
on as a corollary of the compact embedding in Theorem 5.59.

Corollary 7.11. Let � be a bounded C1 domain in Rn where n 2 N. Let

id W W 2
2 .�/ ,! Lp.�/ (7.68)

be the compact embedding (5.286), (5.287). Then

ek.id W W 2
2 .�/ ,! Lp.�// � k�2=n; k 2 N: (7.69)

Proof (of a weaker assertion). A full proof of (7.69) is beyond the scope of this
book. It is a special case of more general properties mentioned in Note 7.8.5. But
one can prove some weaker estimates supporting (7.69).

Step 1. Let, in addition, p � 2. Then

ek.id W W 2
2 .�/ ,! Lp.�// � c k�2=n (7.70)

for some c > 0 and all k 2 N as a consequence of (7.47) and

W 2
2 .�/ ,! Lp.�/ ,! L2.�/: (7.71)

Let n � 5 and 2 < p < p� with p� as in (5.285). For some c > 1 one finds for all
k 2 N elements fgj g2k�1

jD1 � W 2
2 .�/ with kgj jW 2

2 .�/k � 1 such that

min
j
kf � gj jL2.�/k � c ek.id W W 2

2 .�/ ,! L2.�//

for all f 2 W 2
2 .�/; kf jW 2

2 .�/k � 1:
(7.72)

Using

kgjLp.�/k � kgjL2.�/k1��kgjLp�.�/k1�� ;
1

p
D 1 � �

2
C �

p� ; (7.73)
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and the continuity of the embedding (7.68) with p replaced by p� according to
Theorem 5.59, (7.72) and (7.47) imply that

ek.id W W 2
2 .�/ ,! Lp.�// � c e1��

k .id W W 2
2 .�/ ,! L2.�//

� c0 k� 2
n C 1

2 � 1
p ; k 2 N: (7.74)

The exponent can be calculated directly or obtained by arguing that it must depend
linearly on 1

p
with � 2

n
if p D 2 and 0 if p D p�, given by (5.285). Obviously this

is a weaker estimate than the desired one (7.69).

Step 2. Let 1 � p < 2. Then one obtains

ek.id W W 2
2 .�/ ,! Lp.�// � c k�2=n (7.75)

for some c > 0 and all k 2 N as a consequence of (7.47) and

W 2
2 .�/ ,! L2.�/ ,! Lp.�/: (7.76)

We prove the converse and choose a number r > 2 satisfying (5.287) withp replaced
by r . Let

1

2
D 1 � �

p
C �

r
; 0 < � < 1: (7.77)

We cover the unit ball U in W s
2 .�/ with 2k�1 balls Kj in Lr.�/ having radius

.1C "/ek.id W W 2
2 .�/ ,! Lr.�// for given " > 0. Each of the sets Kj \ U can

be covered by 2k�1 balls in Lp.�/ of radius 2.1C "/ek.id W W 2
2 .�/ ,! Lp.�//

with centres in Kj \ U (the number 2 comes from the triangle inequality and the
assumption that the centres should lie inKj \U ). There are 22k�2 such centres gl .
Hence for given f 2 U there is one such centre gl with

kf � gl jLr.�/k � c ek.id W W 2
2 .�/ ,! Lr.�// (7.78)

and
kf � gl jLp.�/k � c ek.id W W 2

2 .�/ ,! Lp.�//: (7.79)

Using (7.77) and the counterpart of (7.73) one gets by (7.47) that

k�2=n � c e2k�1.id W W 2
2 .�/ ,! L2.�//

� c0 e1��
k .id W W 2

2 .�/ ,! Lp.�//e
�
k.id W W 2

2 .�/ ,! Lr.�// (7.80)

for some c > 0 and c0 > 0 and all k 2 N. Now we take (7.69) for r D p > 2 for
granted and insert it in (7.80). Hence,

ek.id W W 2
2 .�/ ,! Lp.�// � c k�2=n; k 2 N; (7.81)

for some c > 0. This is the converse of (7.75) and proves (7.69) for 1 � p � 2.
�

Remark 7.12. This is a special case of a more general assertion mentioned in
Note 7.8.5. The arguments in Step 2 reflect the so-called interpolation property of
entropy numbers. We return to this point in Note 7.8.4 including some references.
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7.4 Spectral theory of elliptic operators: the self-adjoint case

Equipped with Theorem 7.8 and the assertions about approximation numbers and
entropy numbers as obtained in Chapter 6 on an abstract level we can now com-
plement the theory of elliptic differential operators as developed in Chapter 5 by
some spectral properties. We outlined the programme in Section 7.1. For sake of
convenience we recall and refine some basic notation.

We always assume that � is a bounded C1 domain in Rn according to Defini-
tion A.3 and that C.�/ and C 1.�/ are the spaces as introduced in Definition A.1.
Let A,

.Au/.x/ D �
nX

j;kD1
ajk.x/

@2u

@xj @xk
.x/C

nX
lD1

al.x/
@u

@xl
.x/C a.x/u.x/; (7.82)

be an elliptic differential operator according to Definition 5.1 now with

fajkgnj;kD1 � C 1.�/; falgnlD1 � C.�/; a 2 C.�/; (7.83)

and
ajk.x/ D akj .x/ 2 R; x 2 x�; j; k D 1; : : : ; n; (7.84)

such that
nX

j;kD1
ajk.x/�j �k � Ej�j2; x 2 x�; � 2 Rn; (7.85)

for some ellipticity constant E > 0. The spaces W 2
2 .�/, W

2
2;0.�/, and W 2;�

2 .�/

have the same meaning as in Definitions 3.37 and 4.30 where � is the C1 vector
field of outer normals on � D @�. As in Theorem 5.36 elliptic expressions of type
(7.82)–(7.85) are considered as unbounded operators in L2.�/ with W 2

2;0.�/ or

W
2;�
2 .�/ as their respective domains of definition.

Theorem 7.13. Let � be a bounded C1 domain in Rn.

(i) Let A,

.Au/.x/ D �
nX

j;kD1

@

@xj

�
ajk.x/

@u

@xk
.x/

�
C a.x/u.x/; (7.86)

be an elliptic operator with real coefficients,

fajkgnj;kD1 � C 1.�/; a 2 C.�/; a.x/ � 0; (7.87)
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(7.84), (7.85) and dom.A/ D W 2
2;0.�/ as its domain of definition. Then A is

a positive-definite self-adjoint operator with pure point spectrum according to
Definitions C.7 and C.9. Let

0 < �1 � �2 � 	 	 	 � �j � 	 	 	 ; �j !1 as j !1; (7.88)

be its ordered eigenvalues repeated according to theirmultiplicities. Then there
are two constants 0 < c1 � c2 <1 such that

c1 k
2=n � �k � c2 k2=n; k 2 N: (7.89)

(ii) Let A,
.Au/.x/ D ��u.x/; dom.A/ D W 2;�

2 .�/; (7.90)

be the Neumann Laplacian. Then A is a self-adjoint positive operator with
pure point spectrum according to Definitions C.7 and C.9. Let

0 D �0 < �1 � �2 � 	 	 	 � �j � 	 	 	 ; �j !1 as j !1; (7.91)

be its ordered eigenvalues repeated according to their multiplicities. Then
�0 D 0 is a simple eigenvalue and �k with k 2 N satisfy (7.89).

Proof. Step 1. We prove (i) in two steps. Let u 2 C1.�/, v 2 C1.�/, and
tr� u D tr� v D 0 for � D @�. Integration by parts implies

hAu; vi D �
Z
�

nX
j;kD1

@

@xj

�
ajk.x/

@u

@xk
.x/

�
v.x/dx C

Z
�

a.x/u.x/v.x/dx

D
Z
�

� nX
j;kD1

ajk.x/
@u

@xk
.x/

@xv
@xj

.x/C a.x/u.x/xv.x/
�

dx

D hu;Avi (7.92)

since ajk.x/ and a.x/ are real. By the density assertion of Proposition 4.32 (i) we
can argue by completion that

hAu; vi D hu;Avi; u 2 dom.A/; v 2 dom.A/: (7.93)

Hence A is a symmetric operator. By the Theorems 5.36 and C.3 (ii) it follows that
A is self-adjoint. Furthermore, due to the ellipticity condition (7.85), a � 0, and
Friedrichs’s inequality (5.142) one gets for u 2 dom.A/ that

hAu; ui � c

Z
�

nX
jD1

ˇ̌̌ @u
@xj

.x/
ˇ̌̌2

dx � c0
Z
�

ju.x/j2dx; (7.94)
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for some positive constants c and c0. Hence A is a positive-definite self-adjoint
operator. Following the same arguments as in Step 3 of the proof of Theorem 5.31
one concludes that A is an operator with pure point spectrum and we have (7.88)
for its eigenvalues.

Step 2. To complete the proof of (i) it remains to verify (7.89). It follows by
Theorem 7.8 and the same restriction and extension arguments as used there that

ak.id W W 2
2 .�/ ,! L2.�// � ak.id W W 2

2;0.�/ ,! L2.�// � k�2=n (7.95)

for the approximation numbers of the corresponding embeddings. We factorise the
inverse A�1 of the above operator A as

A�1.L2.�/ ,! L2.�//

D id.W 2
2;0.�/ ,! L2.�// B A�1.L2.�/ ,! W 2

2;0.�//
(7.96)

where the latter is an isomorphic map according to Theorem 5.36. Application of
Theorem 6.12 and (7.95) leads to

ak.A
�1 W L2.�/ ,! L2.�// � c k�2=n; k 2 N: (7.97)

The factorisation

id.W 2
2;0.�/ ,! L2.�//

D A�1.L2.�/ ,! L2.�// B A.W 2
2;0.�/ ,! L2.�//

(7.98)

results in the converse of (7.97). Hence,

ak.A
�1 W L2.�/ ,! L2.�// � k�2=n; k 2 N: (7.99)

Now (7.89) is a consequence of (7.99) and (6.63).

Step 3. The proof of (ii) follows from Theorem 5.31 (ii) and the same type of
arguments as in Step 2. �

Remark 7.14. We obtained the Weyl exponent 2
n

as discussed in (6.21). Otherwise
we refer to Example 6.3 and Note 6.7.2 for further comments and sharper results.

7.5 Spectral theory of elliptic operators: the regular case

For self-adjoint elliptic operators (7.86) we got the satisfactory Theorem 7.13 in-
cluding the assertion (7.89) about the distribution of eigenvalues. Furthermore,
according to Remark C.16 the corresponding eigenfunctions span L2.�/ (there is
even a complete orthonormal system of eigenfunctions inH D L2.�/). The ques-
tion arises whether there are similar properties for the more general regular elliptic
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operators (7.82)–(7.85) with dom.A/ D W 2
2;0.�/. So far we have Theorem 5.36.

We may assume without restriction of generality that 0 belongs to the resolvent set
%.A/ of A. Then

A�1 W L2.�/ ,! L2.�/ is compact (7.100)

and one can apply the Riesz Theorem C.1. We discussed in Remark 5.35 how the
spectra �.A/, �.A�1/ and the point spectra �p.A/, �p.A

�1/ are related to each other
with a satisfactory outcome as far as the geometric multiplicities of eigenvalues are
concerned. Furthermore, the spectrum is located as indicated in Figure 5.5. In
Note 5.12.6 we dealt with the more delicate question of the algebraic multiplicity
of � 2 �p.A/ advocating that it might be better (at least in an abstract setting) to
shift this question to the algebraic multiplicity of ��1 2 �p.A

�1/. However, if one
has additional information, then it is reasonable to define the algebraic multiplicity
of � 2 �p.A/ as

dim
�

dom.A1/ \
1[
kD1

ker.A � � id/k
	

with dom.A1/ D
1\
jD1

dom.Aj /:

(7.101)
In other words, only

u 2 dom.A1/ with .A � � id/ku D 0 for some k 2 N (7.102)

are admitted. On dom.A1/ one can freely operate with powers of A and A�1. In
particular, if u 2 dom.A1/ and

.A � � id/ku D 0; then .A�1 � ��1id/ku D 0; (7.103)

leading to

dim
�

dom.A1/\
1[
kD1

ker.A�� id/k
	
� dim

� 1[
kD1

ker.A�1���1id/k
	

(7.104)

where the latter is the algebraic multiplicity of ��1 with respect to the bounded
operator A�1 according to (C.11). In other words, we adopt now the same point of
view as in Section 6.6 with the possibility to apply Theorem 6.34. We complement
Theorem 5.36 as follows.

Theorem 7.15. Let� be a boundedC1 domain in Rn and letA be an elliptic oper-
ator according to (7.82)–(7.85) with its domain of definition dom.A/ D W 2

2;0.�/.
Then the spectrum �.A/ consists of isolated eigenvalues � D � C i� with � 2 R,
� 2 R, of finite algebraic multiplicity according to (7.101) located in a parabola

f.�; �/ 2 R2 W � C �0 � C�2g for some C > 0; �0 2 R; (7.105)
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see Figure 5.5. Let

0 < j�1j � j�2j � 	 	 	 � j�j j � 	 	 	 ; j�j j ! 1 as j !1; (7.106)

be the ordered eigenvalues repeated according to their algebraic multiplicities.
Then there is a positive number c such that

j�kj � c k2=n; k 2 N: (7.107)

Furthermore, the linear hull of all associated eigenfunctions is dense in L2.�/.

Proof. Step 1. In view of Theorem 5.36 it remains to prove (7.106), (7.107) and
the density of the linear combinations of all associated eigenfunctions in L2.�/.
The inverse A�1 can be factorised by

A�1.L2.�/ ,! L2.�//

D id.W 2
2;0.�/ ,! L2.�// B A�1.L2.�/ ,! W 2

2;0.�//
(7.108)

where the latter is an isomorphic map. Using (7.95) with the entropy numbers ek
in place of the approximation numbers ak , Theorem 7.8 and (6.46) with hk D ek ,
leads to

ek.A
�1 W L2.�/ ,! L2.�// � c k�2=n; k 2 N: (7.109)

Application of (6.87) to A�1 and its eigenvalues �k ¤ 0 (counted with respect to
their algebraic multiplicities) gives

j�kj � c k�2=n; k 2 N; (7.110)

for some c > 0. By (7.104) one obtains j�kj�1 � j�kj, thus leading to (7.107).

Step 2. The operator A can be written as

.Au/.x/ D �
nX

j;kD1

@

@xj

�
ajk.x/

@u

@xk
.x/

�
C

nX
lD1
zal.x/ @u

@xl
.x/C a.x/u.x/

D . VAu/.x/C .Bu/.x/; (7.111)

where VA refers to the first sum with dom. VA/ D dom.B/ D W 2
2;0.�/. Theorem 7.13

implies that VA is a self-adjoint positive-definite operator with pure point spectrum.
We may assume that 0 2 %. VA/. Then B VA�1 can be decomposed into

B VA�1.L2.�/ ,! L2.�//

D id.W 1
2 .�/ ,! L2.�// B B.W 2

2;0.�/ ,! W 1
2 .�// B VA�1.L2.�/ ,! W 2

2;0.�//:

(7.112)
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The last operator is an isomorphic map, B is bounded and one can apply (7.47)
to id W W 1

2 .�/ ,! L2.�/. Together with the multiplicativity of approximation
numbers (6.46) (with hk D ak) this results in

ak.B VA�1 W L2.�/ ,! L2.�// � c k�1=n; k 2 N: (7.113)

Using Theorem 6.34 gives both (7.106) as far as the existence of infinitely many
eigenvalues is concerned and the density of the linear hull of all associated eigen-
functions in L2.�/. �

Remark 7.16. In Note 7.8.7 we give some references and add a few comments.

7.6 Spectral theory of elliptic operators: the degenerate case

Although we did not give a complete proof of Corollary 7.11 we apply this result
now to the degenerate elliptic operator B in Theorem 5.61.

Theorem 7.17. Let� be a boundedC1 domain in Rn where n � 4 and letA be an
elliptic operator according to (7.82)–(7.85) such that 0 2 %.A/. Let 1

p� D 1
2
� 2
n

and 2 � p < p�. Let 1 � r1 � 1, 1 � r2 � 1 and

b1 2 Lr1.�/; b2 2 Lr2.�/ with
1

r1
D 1

2
� 1

p
;
1

r1
C 1

r2
<
2

n
: (7.114)

Then B ,
B D b2A�1b1 W Lp.�/ ,! Lp.�/ (7.115)

is compact. If there are infinitely many non-vanishing eigenvalues �k which are
counted with respect to their algebraic multiplicities and ordered by

j�1j � j�2j � 	 	 	 � j�kj � 	 	 	 > 0; (7.116)

then there is a positive number c such that

j�kj � c k�2=n; k 2 N: (7.117)

Proof. According to Theorem 5.61 (and Theorem C.1) it remains to prove (7.117).
We use the decomposition (5.309), (5.310), that is,

B D b2 B id B A�1 B b1
with

b1 W Lp.�/ ,! L2.�/;

A�1 W L2.�/ ,! W 2
2;0.�/;

id W W 2
2;0.�/ ,! Lu.�/;

b2 W Lu.�/ ,! Lp.�/:

(7.118)
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Figure 7.4

By Corollary 7.11 we have for the embedding id W W 2
2;0.�/ ,! Lu.�/ in (7.118)

that
ek.id W W 2

2;0.�/ ,! Lu.�// � k� 2
n (7.119)

for k 2 N. Consequently, Theorem 6.12 (iii) (with hk D ek) implies that

ek.B W Lp.�/ ,! Lp.�// � c k� 2
n (7.120)

for k 2 N; hence (7.117) follows from (6.87). �

Remark 7.18. If A is the positive-definite self-adjoint operator studied in Theo-
rem 7.13, then one obtains

�k.A
�1/ � k�2=n; k 2 N; (7.121)

for its eigenvalues. If B is given by (7.115) with (7.114), then one has at least
the estimate (7.117) from above with the same Weyl exponent 2

n
. This somewhat

surprising assertion is a consequence of the miraculous properties of entropy num-
bers with (7.69) as a special case and their relations to spectral theory according to
Theorem 6.25 and Corollary 6.27. We add a few comments in Note 7.8.8 below.

Exercise* 7.19. Formulate and prove the counterpart of Theorem 7.17 for the di-
mensions n D 1; 2; 3.

Hint: Rely on Theorem 5.59 and Corollary 7.11.
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Exercise 7.20. Let

b 2 L1.�/ be real with 0 < c1 � b.x/ � c2; x 2 �; (7.122)

for some 0 < c1 � c2 < 1. Let A be the same operator as in Theorem 7.13 and
Remark 7.18. Prove that B , given by

B D b B A�1 B b W L2.�/ ,! L2.�/; (7.123)

is a self-adjoint, positive, compact operator with

�k.B/ � k�2=n; k 2 N; (7.124)

for its eigenvalues. The corresponding eigenfunctions span L2.�/.

Hint: Prove
ak.A

�1/ � ak.B/; k 2 N; (7.125)

and use Theorem 6.21.

7.7 The negative spectrum

In Example 6.2 we discussed the physical relevance of the so-called negative spec-
trum. The abstract foundation of this theory was subject of Theorem 6.32. Now we
are in Rn and it appears reasonable to illuminate what follows by glancing first at
the Laplacian A,

A D �� D �
nX

jD1

@2

@x2j
; dom.A/ D W 2

2 .R
n/; (7.126)

as an unbounded operator in L2.Rn/. Throughout the text we scattered comments
about this operator, but not in a very systematic way (Remark 5.24, Exercise 5.25,
(6.11), (6.12)). Recall thatW 2

2 .R
n/ is the Sobolev space according to Definition 3.1.

Otherwise we use the same notation as in Appendix C. In particular, we fixed in
Definition C.9 what is meant by a positive operator in a Hilbert space H , here
H D L2.Rn/. Furthermore, the resolvent set %.A/, the spectrum �.A/, the point
spectrum �p.A/, and the essential spectrum �e.A/ of a self-adjoint operatorA have
the same meaning as in Definition 6.5. Recall Theorem 6.8.

Proposition 7.21. The Laplacian A according to (7.126) is a self-adjoint positive
operator in L2.Rn/. Furthermore,

�.A/ D �e.A/ D Œ0;1/; �p.A/ D ;: (7.127)
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Proof. Let L2.Rn; ws/ be the weighted L2 spaces as considered in Definition 3.8,
Remark 3.9 and Proposition 3.10. By Theorem 3.11 the Fourier transform F and
its inverse F �1 generate unitary maps

FW 2
2 .R

n/ D F �1W 2
2 .R

n/ D L2.Rn; w2/: (7.128)

For f 2 W 2
2 .R

n/ one obtains by (2.139) that

Af D F �1F Af D F �1.j�j2F f /: (7.129)

Hence A is a unitary equivalent to the multiplication operator B in L2.Rn/,

.Bg/.x/ D jxj2g.x/; x 2 Rn; dom.B/ D L2.Rn; w2/; (7.130)

and it is sufficient to prove the proposition for B in place of A. Of course, B is a
symmetric, positive operator in L2.Rn/. If � < 0 and f 2 L2.Rn/, then

g 2 dom.B/ where g.x/ D 1

jxj2 � �f .x/; x 2 Rn: (7.131)

Furthermore, .B � � id/g D f and hence range.B � � id/ D L2.Rn/. By Theo-
rem C.3 the operator B is self-adjoint. If for some g 2 dom.B/ and � � 0

.Bg/.x/ D jxj2g.x/ D �g.x/; (7.132)

then g D 0 (in L2.Rn/). Hence �p.B/ D ;. If � � 0, then one finds a
Weyl sequence f'j g1jD1 � D.Rn/ of functions with pairwise disjoint supports,
k'j jL2.Rn/k D 1, and

kB'j � �'j jL2.Rn/k2 D
Z

Rn

ˇ̌̌
jxj2 � �

ˇ̌̌2j'j .x/j2 dx ! 0 if j !1; (7.133)

as indicated in Figure 7.5 (a) below (for n D 1), see also Figure 7.5 (b) below.

'j

'k

R

0
p
�

p
�C2�j p

�C2�jC1

Figure 7.5 (a)

Hence � 2 �e.B/ according to Definition 6.5 (iii). This proves (7.127) for B
and hence for A. �
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Exercise* 7.22. Let � � 0. Construct such a sequence f'j g1jD1 � D.Rn/ with
supp'j \ supp'k D ; for j ¤ k, k'j jL2.Rn/k D 1, j 2 N, and (7.133).

Hint: One may take Figures 7.5 (a) .for n D 1/ and 7.5 (b) as inspiration.

'j

'k

Rn0
p
�

Figure 7.5 (b)

After this preparation we deal with the negative spectrum of the operator Hˇ ,

Hˇf D .��C id/f C ˇV. 	/f
D H0f C ˇV. 	/f; dom.Hˇ / D W 2

2 .R
n/; (7.134)

whereV is a suitable real potential andˇ � 0 is a parameter. Of course, H0 D ACid
is the shifted Laplacian A D �� as considered in Proposition 7.21.

Theorem 7.23. Let n 2 N, r � 2, 0 � 1
r
< 2

n
, and let

V 2 Lr.Rn/ be real with suppV compact: (7.135)

Then the multiplication operator B ,

.Bf /.x/ D V.x/f .x/; dom.B/ D W 2
2 .R

n/; (7.136)

is relatively compact with respect to H0 according to Definition 6.29. Furthermore,
Hˇ given by (7.134) with ˇ � 0, is a self-adjoint operator in L2.Rn/, with

�e.Hˇ / D �e.H0/ D Œ1;1/; (7.137)

and
#f�.Hˇ / \ .�1; 0�g � c ˇn=2 (7.138)

for some c > 0 and all ˇ � 0.
Proof. Step 1. First we prove that B makes sense and that BH �1

0 is compact in
L2.Rn/. We rely on the same arguments as in connection with Theorem 5.59 and
Figure 5.9 with p D 2 now being Figure 7.6. In particular, for any ball K with
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s D n
p
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� 2
n

1
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Figure 7.6

suppV � K the embedding

id W W 2
2 .K/ ,! Lu.R

n/;
1

u
D 1

2
� 1
r
; (7.139)

is compact. Then one obtains by Hölder’s inequality that

B W W 2
2 .R

n/ ,! L2.R
n/ (7.140)

makes sense and is compact. Since V is real it follows that B is symmetric. Let  
be a smooth cut-off function with respect to the above ball K 
 suppV . Then the
factorisation

BH �1
0 .L2.R

n/ ,! L2.R
n//

D V .Lu.Rn/ ,! L2.R
n// B id.W 2

2 .K/ ,! Lu.R
n//

B  .W 2
2 .R

n/ ,! W 2
2 .K// BH �1

0 .L2.R
n/ ,! W 2

2 .R
n//

(7.141)

and (7.139) show that BH �1
0 is compact. Now it follows from Definition 6.29 and

Theorem 6.32 that Hˇ is self-adjoint and

10 �e.Hˇ /

Figure 7.7

�e.Hˇ / D �e.H0/ D Œ1;1/: (7.142)

Step 2. We apply Corollary 7.11 to id W W 2
2 .K/ ,! Lu.Rn/ in (7.139) such that

(7.141) implies for some c > 0,

ek.BH �1
0 W L2.Rn/ ,! L2.R

n// � c k�2=n; k 2 N: (7.143)



238 Chapter 7. Compact embeddings, spectral theory of elliptic operators

Using again Corollary 6.27 leads to

j�k.BH �1
0 /j � c0 k�2=n; k 2 N; (7.144)

for the ordered eigenvalues of BH �1
0 . Application of (6.97) to ˇBH �1

0 results in
the question for which k 2 N,

ˇk�2=n � c; that is, k � c0ˇn=2 (7.145)

for some c > 0 and c0 > 0. This proves (7.138). �

Remark 7.24. A comment is added in Note 7.8.9 below. We return to the hydrogen
operator HH according to (6.9). The Coulomb potential c jxj�1 in R3 fits in the
above scheme at least locally if one chooses V.x/ D jxj�1 .x/ in (7.134) where
 .x/ is an appropriate cut-off function. Then one obtains by (7.138) that

#f�.Hˇ / \ .�1; 0�g � c ˇ3=2: (7.146)

But this is just what one would expect according to (6.134) with ˇ � „�2 as
suggested by (6.10). If one wishes to deal with V.x/ D jxj�1 instead of jxj�1 .x/
one needs some splitting arguments. This may be found in [HT94b] and [ET96,
Sections 5.4.8, 5.4.9].

7.8 Notes

7.8.1. A quasi-norm on a complex linear space X is a map k 	 jXk from X to the
non-negative reals such that

kxjXk D 0 if, and only if, x D 0; (7.147)

k�xjXk D j�jkxjXk for all � 2 C and all x 2 X; (7.148)

and there exists a constant C � 1 such that for all x1 2 X , x2 2 X ,

kx1 C x2jXk � C.kx1jXk C kx2jXk/: (7.149)

If C D 1 is admitted, then k 	 jXk is a norm. X is called a quasi-Banach space
(Banach space if C D 1) if any Cauchy sequence in the quasi-normed space X
converges (to an element in X ). In this book we dealt mainly with Hilbert spaces
and occasionally with Banach spaces. Recall that for given p with 0 < p � 1, a
p-norm on a complex linear space X is a map k 	 jXk from X to the non-negative
reals satisfying (7.147), (7.148) and

kx1 C x2jXkp � kx1jXkp C kx2jXkp; x1 2 X; x2 2 X; (7.150)
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instead of (7.149). Of course, any p-norm is a quasi-norm. There is a remarkable
converse. The equivalence of norms according to (C.1) can be extended to quasi-
Banach spaces verbatim. It can be shown that for any quasi-norm k 	 jXk1 on a
quasi-Banach space X there is an equivalent p-norm k 	 jXk2 for some p with
0 < p � 1. We refer to [Kön86, p. 47], [Köt69, §15.10] or [DL93, Chapter 2,
Theorem 1.1]. But otherwise the theory of abstract quasi-Banach spaces is rather
poor, compared with the rich theory of abstract Banach spaces. However, in case
of the function spaces

Bsp;q.R
n/; F sp;q.R

n/ with s 2 R; 0 < p � 1; 0 < q � 1; (7.151)

according to Appendix E (with p <1 for the F -spaces) and briefly mentioned in
Note 3.6.3 and their restrictions to domains � in Rn,

Bsp;q.�/; F
s
p;q.�/ with s 2 R; 0 < p � 1; 0 < q � 1; (7.152)

as in Definition 3.37 (with p < 1 for the F -spaces) the situation is completely
different. These are quasi-Banach spaces and s, p, q as above are the natural
restrictions. Another useful extension from Banach spaces to quasi-Banach spaces
are the sequence spaces

`Mp and `q.2
jı`

Mj
p /; 0 < p � 1; 0 < q � 1; (7.153)

according to (7.4) and (7.9) naturally extended to all p and q as above. Obvi-
ously there is no problem to extend the Definition 6.10 of entropy numbers and
approximation numbers from Banach spaces to quasi-Banach spaces.

7.8.2. Proposition 7.3 can be extended from 1 � p � 1 to 0 < p � 1. But
the situation is more complicated if one asks for the entropy numbers ek.id/ of the
compact embedding

id W `Mp1
,! `Mp2

; 0 < p1 � p2 � 1; M 2 N; (7.154)

for the above complex quasi-Banach spaces. One obtains for k 2 N,

ek.id W `Mp1
! `Mp2

/ �

„
1; 1 � k � log.2M/;

.k�1 log.1C 2M
k
//

1
p1

� 1
p2 ; log.2M/ � k � 2M;

2� k
2M .2M/

1
p2

� 1
p1 ; k � 2M;

(7.155)
where log is taken to base 2 and the equivalence constants are independent of M
and k. Recall Exercise 7.5. Obviously, (7.12) follows from (7.155) with p1 D p2.
The case 1 � p1 � p2 � 1 is due to Schütt [Sch84]. The extension to all
parameters 0 < p1 � p2 � 1 was done in [ET96, Section 3.2.2, pp. 98–101],
[Tri97, Theorem 7.3, p. 37]. But there remained a gap as far as the estimate from
below in the middle line in (7.155) is concerned. This was finally sealed in [Küh01].
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7.8.3. Theorem 7.6 can be easily extended from 1 � p � 1 to 0 < p � 1.
Furthermore, (7.155) is the main ingredient to study the behaviour of the entropy
numbers of the compact embedding

id W `q1
.2jı`

Mj
p1
/ ,! `q2

.`
Mj
p2
/; (7.156)

where the first space is quasi-normed by (7.9) and the latter refers to a corresponding
space with 1 in place of the weight factors 2jı . Otherwise we again assume as in
(7.8) that

ı > 0; d > 0; Mj � 2jd for j 2 N0: (7.157)

Let

0 < p1 � 1; 1

p�
D 1

p1
C ı

d
; p� < p2 � 1; (7.158)

and 0 < q1 � 1, 0 < q2 � 1. Then id W `q1
.2jı`

Mj
p1
/ ,! `q2

.`
Mj
p2
/ is compact

with

ek.id W `q1
.2jı`

Mj
p1
/ ,! `q2

.`
Mj
p2
// � k� ı

d
C 1

p2
� 1

p1 ; k 2 N: (7.159)

This is a rather sharp and final assertion. The first step was taken in [Tri97, The-
orem 8.2, p. 39]. The above version is due to [HT05, Theorem 3.5, p. 115] and
may also be found in [Tri06, Theorem 6.20, p. 274]. More general situations were
studied in [KLSS06a], [KLSS06b], [KLSS07], whereas corresponding assertions
for approximation numbers ak.id/ of id given by (7.156) were obtained in [Skr05].

The main interest in the above sequence spaces and assertions of type (7.159)
comes from the possibility to reduce compact embeddings between the function
spaces in (7.152) to these sequence spaces, for example via wavelet expansions.
But this is beyond the scope of this book. Details may be found in [Tri97], [Tri01],
[Tri06]. As far as further types of useful sequence spaces are concerned one may
consult [Tri06, Section 6.3] where one finds also relevant references.

7.8.4. In Step 2 of the proof of Corollary 7.11 we used the interpolation property
of entropy numbers in a special situation. Recall that two complex quasi-Banach
spaces X0 and X1 are called an interpolation couple fX0; X1g if they are (linearly
and continuously) embedded in a linear Hausdorff spaces X which may be identified
(afterwards) with the quasi-Banach spaces X0 C X1, consisting of all x 2 X such
that x D x0 C x1 for some x0 2 X0, x1 2 X1, and quasi-normed by Peetre’s
K-functional

K.t; x/ D K.t; xIX0; X1/ D inf.kx0jX0k C tkx1jX1k/ (7.160)

for some fixed t > 0, where the infimum is taken over all representations x D
x0 C x1 with x0 2 X0 and x1 2 X1. Plainly, K.t1; x/ � K.t2; x/ for fixed
0 < t1 � t2 < 1. As mentioned in Note 7.8.1 any quasi-Banach space is also
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a p-Banach space for some p with 0 < p � 1. Then the following assertions
are called the interpolation property for entropy numbers . As usual, X0 \ X1 is
quasi-normed by kxjX0 \X1k D max.kxjX0k; kxjX1k/.

(i) LetX be a quasi-Banach space and let fY0; Y1g be an interpolation couple of
p-Banach spaces. Let 0 < � < 1 and let Y� be a quasi-Banach space such
that Y0 \ Y1 ,! Y� ,! Y0 C Y1 and

kyjY�k � kyjY0k1��kyjY1k� for all y 2 Y0 \ Y1: (7.161)

Let T 2 L.X; Y0 \ Y1/. Then for all k0; k1 2 N,

ek0Ck1�1.T W X ,! Y� /

� 21=p e1��
k0

.T W X ,! Y0/ e
�
k1
.T W X ,! Y1/:

(7.162)

(ii) Let fX0; X1g be an interpolation couple of quasi-Banach spaces and let Y be
a p-Banach space. Let 0 < � < 1 and let X� be a quasi-Banach space such
that X� ,! X0 CX1 and

t��K.t; x/ � kxjX�k for all x 2 X� and all 0 < t <1: (7.163)

Let T W X0CX1 ,! Y be a linear operator such that its restrictions toX0 and
X1, respectively, are continuous. Then its restriction toX� is also continuous
and for all k0; k1 2 N,

ek0Ck1�1.T W X� ,! Y /

� 21=p e1��
k0

.T W X0 ,! Y / e�k1
.T W X1 ,! Y /:

(7.164)

(i)

Y1 X1

T Y0 X0

Y� X�

T jX0

T jX1

X Y(ii)

Figure 7.8

Figure 7.8 illustrates the situations. By (7.73) one obtains (7.74) as a special case of
(7.161), (7.162). The above assertions have a little history. The first step was taken
by J. Peetre in [Pee68] which corresponds (after reformulation in terms of entropy
numbers) to the casesX D Y0 in (7.162) andX0 D Y in (7.164). A complete proof
of the above assertions (again after reformulation in terms of entropy numbers) for
Banach spaces was given in [Tri70]. One may also consult [Tri78, Section 1.16.2,
pp. 112–115] for further results and references (at that time). The extension to
quasi-Banach spaces including the above constants goes back to [HT94a] and this
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formulation coincides with [ET96, Section 1.3.2, pp. 13/14]. From the point of
view of interpolation theory both (i) and (ii) as illustrated in Figure 7.8 are special
situations.

Let fX0; X1g and fY0; Y1g be two interpolation couples. What can be said about
the entropy numbers of

T W X� ,! Y� ; 0 < � < 1; (7.165)

in dependence on the entropy numbers of

T W X0 ,! Y0 and T W X1 ,! Y1 ‹ (7.166)

This is an open problem.

7.8.5. As just explained, the interest in the entropy numbers of compact embeddings
between sequence spaces according to (7.156) comes mainly from the possibility
to transfer these results to function spaces of type (7.152). We formulate here a key
result of this theory and add afterwards a few comments. As far as the function
spaces Bsp;q.�/ are concerned one may consult Appendix E.

Let � be a bounded domain .i.e., a bounded open set/ in Rn. Let s1 2 R, s2 2 R,

0 < p1 � 1; 0 < p2 � 1; 0 < q1 � 1; 0 < q2 � 1; (7.167)

and

s1 � s2 > max
�
0;
n

p1
� n

p2

�
: (7.168)

Then
id W Bs1p1;q1

.�/ ,! Bs2p2;q2
.�/ (7.169)

is compact and

ek
�
id W Bs1p1;q1

.�/ ,! Bs2p2;q2
.�/

� � k� s1�s2
n ; k 2 N: (7.170)

s
s1

. 1
p2
; s2/

. 1
p1
; s1/

1
p1

1
p

1

Figure 7.9

Let W s
p .�/ with 1 < p < 1 and

s 2 N be the classical Sobolev spaces
on � according to Definition 3.37 and
Theorem 4.1. Then it follows from
the above assertion and the embeddings
mentioned in Theorem E.8 (ii) below
that

id W W s
p .�/ ,! Lq.�/;

1 < q <1; s > n� 1
p
� 1
q

�
;

(7.171)

is compact and

ek.id/ � k�s=n; k 2 N: (7.172)
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Corollary 7.11 based on Theorem 5.59 is a special case of (7.171), (7.172). Also the
second equivalence in (7.47) is covered by (7.170) since W s

2 D Bs2;2. Assertions
of the above type have a long and substantial history. First of all we mention that
(7.171), (7.172) is due to [BS67], [BS72] using sophisticated piecewise polynomial
approximations in the spaces under consideration, extending (7.171), (7.172) also
to fractional s > 0, s 62 N, where W s

p D Bsp;p . The first proof of (7.168)–(7.170)
for bounded C1 domains in Rn and

1 < p1 <1; 1 < p2 <1; 1 � q1 � 1; 1 � q2 � 1; (7.173)

was given in [Tri78, Theorem 4.10.3, p. 355] based on [Tri70], [Tri75] using (7.171),
(7.172) and interpolation for entropy numbers as indicated in Note 7.8.4. In [Tri78]
one finds also further references to related papers at that time. Restricted to n D 1
and an interval the above assertions had been extended in [Car81a] to 1 � p1 � 1,
1 � p2 � 1 reducing this problem for the Bsp;q spaces to corresponding sequence
spaces of the same type as in (7.156) using the so-called Ciesielski isomorphism in
terms of splines. We refer in this context also to [Kön86, Section 3.c, especially
Proposition 3.c.9, p. 191]. On the one hand, the Ciesielski isomorphism gives the
possibility to reduce some Besov spaces Bsp;q to sequence spaces introduced in
Remark 7.2, but on the other hand, this method is rather limited and there is no
hope to prove (7.169) for all parameters according to (7.167), (7.168). This was
done in [ET89], [ET92] by a direct approach using the Fourier-analytical definition
of the Bsp;q spaces as indicated in Appendix E. The rather long proof (14 pages) for
bounded C1 domains� in Rn may also be found in [ET96, Sections 3.3.1–3.3.5].
Finally one can remove the smoothness assumption for �. This was indicated in
[ET96, Section 3.5] and detailed (based on a new method) in [Tri97, Section 23].
However, the main advantage of [Tri97] compared with [ET96] and the underlying
papers was the observation that there are constructive elementary building blocks,
called quarks, which allows us to reduce problems of type (7.167)–(7.170) to their
sequence counterparts (7.156)–(7.159). This technique has been elaborated over
the years. It is quite standard nowadays employed in many papers and also in the
books [Tri97], [Tri01], [Tri06]. Moreover, it can be used for function spaces on
rough structures such as fractals and quasi-metric spaces. This was even the main
motivation to look for such possibilities. In case of Rn or domains in Rn one can
use nowadays also wavelet isomorphisms as explained in [Tri06] and the references
given there.

7.8.6. For entropy numbers one has the final satisfactory assertion (7.167)–(7.170),
whereas the outcome for approximation numbers is more complicated. For our
purpose, (7.47) is sufficient. Nevertheless, we formulate a partial counterpart of
Corollary 7.11 and (7.167)–(7.170), complementing Theorem 7.8.

Let � be a bounded C1 domain in Rn and let

s > 0; 1 � p � 1; s � n
2
> �n

p
: (7.174)
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Then
id W W s

2 .�/ ,! Lp.�/ (7.175)

is compact and for k 2 N,

ak.id W W s
2 .�/ ,! Lp.�// �

(
k� s

n if p � 2;
k� s

n C 1
2 � 1

p if p > 2:
(7.176)

By (7.170) entropy numbers and approximation numbers behave differently ifp2 >
p1 D 2. For general compact embeddings of type (7.167)–(7.169) the behaviour of
approximation numbers is rather complicated. The (almost) final outcome may be
found in [Tri06, Theorem 1.107, pp. 67/68] going back to [ET89], [ET92], [ET96,
Section 3.3.4, p. 119] and [Cae98].

7.8.7. The self-adjoint operator A in Theorem 7.13 has a pure point spectrum. In
particular, its eigenelements span L2.�/, their linear hull is dense in L2.�/. This
applies also to the more general elliptic operators of higher order mentioned briefly
in Note 5.12.1 as long as they are self-adjoint. We reduced the corresponding ques-
tion for regular non-self-adjoint second order elliptic equations in Theorem 7.15
to the abstract Theorem 6.34. This can be done for higher order elliptic operators,
too. We refer to [Tri78, Theorem 5.6.3, p. 396]. The same arguments apply also to
several types of degenerate higher order elliptic operators, [Tri78, Theorems 6.6.2,
7.5.1, pp. 425, 449]. A different approach to problems of this type using the ana-
lyticity of the resolvent R� and its minimal growth as considered in Remark 6.30,
Exercise 6.31 and Note 5.12.7 was given in [Agm62] and [Agm65, Section 16].
One may also consult Note 5.12.6.

7.8.8. The distribution (7.117) of the eigenvalues �j of the degenerate operator B
based on the elliptic operator A of second order according to (7.82)–(7.85) might
be considered as a typical example of a more general theory. One can replace
A by higher order elliptic operators, their fractional powers or pseudodifferential
operators and one can rely on more general assertions for entropy numbers of related
embeddings of type (7.170). This theory started in [ET94], [HT94a], [HT94b] and
has been presented in detail in [ET96, Chapter 5].

7.8.9. Much as in the preceding Note 7.8.8 one may consider Theorem 7.23 with
Hˇ as in (7.134)–(7.136) as a typical example which fits in the context of this
book. But again there are many generalisations. We refer to [HT94a], [HT94b] and
[ET96, Sections 5.4.7–5.4.9], also for some new aspects.



Appendix A

Domains, basic spaces, and integral formulae

A.1 Basic notation and basic spaces

We fix some basic notation. Let N be the collection of all natural numbers and
N0 D N [ f0g. Let Rn be Euclidean n-space, where n 2 N. Put R D R1 whereas
C is the complex plane and Cn stands for the complex n-space. As usual, Z is the
collection of all integers, and Zn, where n 2 N, denotes the lattice of all points
m D .m1; : : : ; mn/ 2 Rn with mj 2 Z, j D 1; : : : ; n. Let Nn

0 , where n 2 N, be
the set of all multi-indices, ˛ D .˛1; : : : ; ˛n/ with j̨ 2 N0 and

j˛j D
nX
iD1

˛i ; ˛Š D ˛1Š 	 	 	˛nŠ: (A.1)

As usual, derivatives are abbreviated by

D˛ D @j˛j

@x
˛1

1 	 	 	 @x˛n
n

; ˛ 2 Nn
0; x 2 Rn; (A.2)

and
�˛ D �˛1

1 	 	 	 �˛n
n ; ˛ 2 Nn

0; � 2 Rn: (A.3)

We shall often use the notation

h�i D .1C j�j2/1=2; � 2 Rn: (A.4)

For x 2 Rn, y 2 Rn, let

xy D hx; yi D
nX

jD1
xjyj ; x D .x1; : : : ; xn/; y D .y1; : : : ; yn/: (A.5)

If a 2 R, then

aC D max.a; 0/ D
(
a; a � 0;
0; a < 0:

(A.6)

For a set M of finitely many elements, we denote by #M its cardinality, i.e., the
number of its elements.

An open set in Rn is called a domain. If it is necessary or desirable that the do-
main considered is connected, then this will be mentioned explicitly. The boundary
of a domain � in Rn is denoted by @�, whereas x� stands for its closure.
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Let� be an (arbitrary) domain in Rn. Then C loc.�/ D C 0;loc.�/ is the collec-
tion of all complex-valued continuous functions in �. For m 2 N let Cm;loc.�/

be the collection of all functions f 2 C loc.�/ having all classical derivatives
D˛f 2 C loc.�/ with j˛j � m, and let

C1;loc.�/ D
1\
mD0

Cm;loc.�/ (A.7)

be the collection of all C1 functions in �.

DefinitionA.1. Let� be an (arbitrary) domain in Rn and letm 2 N0. ThenCm.�/
is the collection of all f 2 Cm;loc.�/ such that any function D˛f with j˛j � m
can be extended continuously to x� and

kf jCm.�/k D
X

j˛j�m
sup
x2�
jD˛f .x/j <1: (A.8)

Furthermore, C.�/ D C 0.�/ and

C1.�/ D
1\
mD0

Cm.�/: (A.9)

Remark A.2. Recall that Cm.�/ with m 2 N0 normed by (A.8) is a Banach
space. Details may be found in [Tri92a]. Some other notation are in common use
in literature, especially, if � is unbounded and, in particular, if � D Rn. We are
mostly interested in bounded smooth connected domains.

A.2 Domains

Recall that domain means open set.

Definition A.3. (i) Let n 2 N, n � 2, and k 2 N. Then a special C k domain in
Rn is the collection of all points x D .x0; xn/ with x0 2 Rn�1 such that

h.x0/ < xn <1; (A.10)

where h 2 C k.Rn�1/ according to Definition A.1.

(ii) Let n 2 N, n � 2, and k 2 N. Then a bounded C k domain in Rn is a
bounded connected domain � in Rn where the boundary @� can be covered by
finitely many open balls Kj in Rn, j D 1; : : : ; J , centred at @� such that

Kj \� D Kj \�j with j D 1; : : : ; J; (A.11)

where �j are rotations of suitable special C k domains in Rn.
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(iii) Let n 2 N, n � 2. If � is a bounded C k domain for every k 2 N, then it
is called a bounded C1 domain.

(iv) If n D 1, then bounded C1 domain simply means open bounded interval.

Remark A.4. In other words, for n � 2 we have the illustrated situation

xn

0

�

@�

Rn�1� 0

�

�

@�

h.x0/�

Ki

�i

Figure A.1

where one may assume that @� \Ki can be represented in local coordinates by

xn D h.x0/ with h.0/ D 0 and
@h

@xr
.0/ D 0; r D 1; : : : ; n � 1: (A.12)

Using these local coordinates the outer normal � D �.�/ at a point .� 0; �n/ D � 2
@� is given by

�.�/ D ��1.�/; : : : ; �n.�/�
D 1q

1CPn�1
rD1 j @h@xr

.� 0/j2
�
@h

@x1
.� 0/; : : : ;

@h

@xn�1
.� 0/;�1

�
: (A.13)

A.3 Integral formulae

Let�be a boundedC 1 domain in Rn according to DefinitionA.3 and letf 2 C 1.�/
as introduced in Definition A.1. Then

@f

@�
.�/ D

nX
jD1

@f

@xj
.�/�j .�/; � 2 @�; (A.14)

is the normal derivative at the point � 2 @�, where � is the outer normal (A.13).
Let d� be the surface element on @� (in the usual naïve understanding).

Theorem A.5 (Gauß’s formula). Let n � 2, � be a bounded C 1 domain in Rn,
and f 2 C 1.�/. ThenZ

�

@f

@xj
.x/dx D

Z
@�

f .�/�j .�/d�; j D 1; : : : ; n: (A.15)
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RemarkA.6. Usually the above assertion is formulated for more general domains,
called normal domains or standard domains, as it can be found in Calculus books,
cf. [Cou36, Chapter V, Section 5]. As for a short proof one may consult [Tri92a,
Appendix A.3].

More or less as a corollary one gets the following assertions. Recall that

� D
nX

jD1

@2

@x2j

is the Laplacian.

Theorem A.7 (Green’s formulae). Let n � 2, � be a bounded C 1 domain in Rn,
and f 2 C 2.�/.
(i) Let g 2 C 1.�/. ThenZ

�

g.x/.�f /.x/dx

D �
nX

jD1

Z
�

@g

@xj
.x/

@f

@xj
.x/dx C

Z
@�

g.�/
@f

@�
.�/d�: (A.16)

(ii) Let g 2 C 2.�/. ThenZ
�

.g.x/.�f /.x/ � .�g/.x/f .x//dx

D
Z
@�

�
g.�/

@f

@�
.�/ � @g

@�
.�/f .�/

�
d�: (A.17)

A.4 Surface area

We have a closer look at the area (volume) of smooth .n� 1/-dimensional surfaces
in Rn again adopting the usual naïve point of view in the Riemannian spirit. Sim-
ilarly as in (A.12) and in modification of (A.13) we assume that the surface ˆ is
given by

xn D h.x0/; x0 2 Rn�1; h 2 C 1.!/; (A.18)

where ! � Rn�1 is a smooth bounded domain as indicated in Figure A.2 below,
that is, x D .x0; h.x0// 2 ˆ for x0 2 !, and

z�.x0/ D
�
� @h

@x1
.x0/; : : : ;� @h

@xn�1
.x0/; 1

�
; x0 2 !; (A.19)
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is the modified normal to ˆ of length

jz�.x0/j D
vuut1C

n�1X
jD1

ˇ̌̌̌
@h

@xj
.x0/

ˇ̌̌̌2
; x0 2 !: (A.20)

xn
ˆ

x

x0
!

Rn�1

ˆ

dx0

e�
d�

1

Figure A.2

Theorem A.8. Let the smooth surface ˆ be given by (A.18). Then

jˆj D
Z
!

jz�.x0/jdx0 D
Z
!

vuut1C
n�1X
jD1

ˇ̌̌̌
@h

@xj
.x0/

ˇ̌̌̌2
dx0 (A.21)

is its surface area .volume/.

Proof. Let d� be the surface element at x D .x0; xn/ 2 ˆ. Then one has – as
indicated in Figure A.2 – that d� D jz�.x0/jdx0. Using (A.20) one obtains (A.21)
by Riemannian arguments. �
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Orthonormal bases of trigonometric functions

Let n 2 N, and

Qn D .�
; 
/n D fx 2 Rn W �
 < xj < 
; j D 1; : : : ; ng; (B.1)

where x D .x1; : : : ; xn/. LetL2.Qn/ be the usual complex Hilbert space according
to (2.16) where p D 2, furnished with the scalar product

hf; giL2
D
Z

Qn

f .x/g.x/dx: (B.2)

Theorem B.1. Let hm.x/ D .2
/� n
2 eimx , m 2 Zn, x 2 Qn. Then

fhm. 	/ W m 2 Zng (B.3)

is a complete orthonormal system in L2.Qn/.

Proof. Step 1. One checks immediately that (B.3) is an orthonormal system in
L2.Qn/. It remains to prove that this system spans L2.Qn/. If one knows this
assertion for n D 1, then it follows for n � 2 by standard arguments of Hilbert
space theory.

Step 2. Hence it remains to show that the (one-dimensional) trigonometric polyno-
mials

p.x/ D
LX

mD�L
am

1p
2


eimx; x 2 Q D .�
; 
/; (B.4)

are dense in L2.Q/. By Proposition 2.7 (i) it is sufficient to prove that any f 2
D.Q/ D C1

0 .Q/ can be represented in L2.Q/ by

f .x/ D
1X

mD�1
am

1p
2


eimx; x 2 Q; (B.5)

with

am D 1p
2



Z
�


f .x/e�imxdx; m 2 Z: (B.6)
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By

am D 1p
2
 .im/k


Z
�


dkf

dxk
.x/e�imxdx; m 2 Z n f0g; k 2 N; (B.7)

it follows that jamj decreases rapidly. In particular,

g.x/ D
1X

mD�1
am

1p
2


eimx; x 2 Q; (B.8)

converges absolutely and g.x/ is a continuous function. We prove f .x/ D g.x/

by contradiction, assuming that h.x/ D f .x/ � g.x/ does not vanish everywhere.
The functions f and g have the same Fourier coefficients and, hence,


Z
�


h.x/p.x/dx D 0 (B.9)

for any p with (B.4). Then xh.x/, and, consequently, Re h.x/, Im h.x/, possess the
same property. In other words, if h D f � g is not identically zero, then there is
a real continuous function h0 with (B.9) and h0.x0/ > 0 for some x0 2 Q. For
ı > 0 sufficiently small, let

p0.x/ D 1C cos.x � x0/ � cos ı; x 2 Q: (B.10)

Then p0.x/ � 1 if, and only if, jx � x0j � ı. One obtains


Z
�


h0.x/p
k
0 .x/dx !1 if k 2 N and k !1; (B.11)

what contradicts (B.9) with p D pk0 and h D h0. �

RemarkB.2. Basic properties for trigonometric functions may be found in [Edw79].
As for a theory of function spaces on the n-torus parallel to the Euclidean n-space
we refer to [ST87].



Appendix C

Operator theory

C.1 Operators in Banach spaces

We assume that the reader is familiar with basic elements of functional analysis,
in particular, of operator theory in Banach spaces and in Hilbert spaces. Here we
fix some notation and formulate a few key assertions needed in this book. More
specific notation and properties which are beyond standard courses of functional
analysis will be explicated in the text, especially in Chapter 6.

All Banach spaces and Hilbert spaces considered in this book are complex. The
norm in a Banach space Y is denoted by k 	 jY k. Usually we do not distinguish
between equivalent norms in a given Banach space Y , that is, where

kyjY k1 � kyjY k2 means c1kyjY k1 � kyjY k2 � c2kyjY k1 (C.1)

for some numbers 0 < c1 � c2 <1 and all y 2 Y .
Let X and Y be two complex Banach spaces. Then L.X; Y / is the Banach

space of all linear and bounded operators acting from X into Y furnished with the
norm

kT k D supfkT xjY k W kxjXk � 1; x 2 Xg; T 2 L.X; Y /: (C.2)

If X D Y , then we put L.Y / D L.Y; Y /. As usual nowadays,

T W X ,! Y stands for T 2 L.X; Y /: (C.3)

If for X � Y the continuous embedding of X into Y is considered as a map, then
this will be indicated by the identity .operator/ id,

id W X ,! Y; hence id x D x for all x 2 X (C.4)

and
kxjY k � ckxjXk for all x 2 X and some c � 0: (C.5)

If T 2 L.X; Y / is one-to-one, hence T x1 D T x2 if, and only if, x1 D x2, then
T �1 stands for its inverse,

T x D y ” x D T �1y; x 2 X: (C.6)

Of course, T �1 is linear on its domain of definition dom.T �1/; this is the range
of T , range.T /. But T �1 need not be bounded.
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For T 2 L.Y / the resolvent set %.T / of T is the set

%.T / D f� 2 C W .T � �id/�1 exists and belongs to L.Y /g: (C.7)

Here id stands for the identity of Y to itself, hence (C.4) with X D Y . As usual,

�.T / D C n %.T / (C.8)

is called spectrum ofT . By the point spectrum�p.T /we mean the set of eigenvalues
of T ; that is, � 2 �p.T / if, and only if, � 2 C and

Ty D �y for some y ¤ 0: (C.9)

Then
ker.T � �id/ D fy 2 Y W .T � �id/y D 0g (C.10)

is called the kernel or null space of T � �id. It is a linear subspace of Y and its
dimension, dim ker.T ��id/, is the geometric multiplicity of the eigenvalue � of T .
Furthermore,

dim
1[
kD1

ker.T � �id/k with � 2 C (C.11)

is denoted as the algebraic multiplicity of�. It is at least 1 if, and only if, � 2 �p.T /.
An operator T 2 L.X; Y / is called compact if the image T UX of the unit ball

UX D fx 2 X W kxjXk � 1g (C.12)

inY is pre-compact (its closure is compact). The following assertion is a cornerstone
of the famous Fredholm–Riesz–Schauder theory of compact operators in Banach
spaces.

Theorem C.1. Let Y be a .complex/ infinite-dimensional Banach space and let
T 2 L.Y / be compact. Then

�.T / D f0g [ �p.T /: (C.13)

Furthermore, �.T / n f0g consists of an at most countably infinite number of eigen-
values of finite algebraic multiplicity which may accumulate only at the origin.

Remark C.2. Detailed presentations of the Fredholm–Riesz–Schauder theory may
be found in [EE87, pp. 1–12] and [Rud91, Chapter 4]. For a short proof of the above
theorem and further discussions about the spectral theory of compact operators in
quasi-Banach spaces one may consult [ET96, Section 1.2, especially p. 5]. As for
the Riesz–Schauder theory in Hilbert spaces we refer also to [Tri92a, Section 2.4].
It is remarkable that some basic assertions of the above theorem go back to F. Riesz
in 1918 ([Rie18]) more than ten years before the theory of Banach spaces was
established formally, [Ban32].
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C.2 Symmetric and self-adjoint operators in Hilbert spaces

We collect some assertions about bounded and (preferably) unbounded operators
in complex separable infinite-dimensional Hilbert spaces H furnished in the usual
way with a scalar product h	; 	i D h	; 	iH and a norm kf jHk D phf; f i, f 2 H .
Again we assume that the reader is familiar with basic Hilbert space theory as it
may be found in many books, for example [Tri92a, Chapter 2].

Up to the end of this Section C we now follow [Tri92a, Chapter 4] essentially;
there one finds further details, explanations and proofs. We also refer to [RS75,
Chapter X.1, 3] in this context.

We say that A is a linear operator in H if it is defined on a linear subset of H ,
denoted by dom.A/, the domain of definition of A, and

A.�1h1 C �2h2/ D �1Ah1 C �2Ah2; �1; �2 2 C; h1; h2 2 dom.A/; (C.14)

and Ah 2 H for h 2 dom.A/. The range (or image) of A is denoted by

range.A/ D fg 2 H W there is an h 2 dom.A/ with Ah D gg: (C.15)

We shall always assume that dom.A/ is dense in H unless otherwise expressly
agreed. Then the adjoint operator A� makes sense, defined on

dom.A�/ D fg 2 H W there is g� 2 H such that

for all h 2 dom.A/: hAh; gi D hh; g�ig; (C.16)

and A�g D g�. In particular,

hAh; gi D hh;A�gi for all h 2 dom.A/ and g 2 dom.A�/: (C.17)

A linear operator A is called symmetric if, again, dom.A/ is dense in H , and

hAh; gi D hh;Agi for all h 2 dom.A/ and g 2 dom.A/: (C.18)

In particular, the adjoint operator A� of a symmetric operator A is an extension of
A, written as A � A�. A (densely defined) linear operator

A is called self-adjoint if A D A�: (C.19)

Hence any self-adjoint operator is symmetric. The converse is not true. It is just one
of the major topics of operator theory in Hilbert spaces to find criteria ensuring that
a symmetric operator is self-adjoint. The notion of the resolvent set in (C.7), the
spectrum (C.8), the point spectrum and also of (C.9), (C.10) are extended obviously
to arbitrary linear operators A; one may consult also Section 6.2.



C.2. Symmetric and self-adjoint operators in Hilbert spaces 255

Theorem C.3. (i) Let A be a self-adjoint operator inH . Then

�.A/ � R and range.A � �id/ D H if � 2 C; Im � ¤ 0: (C.20)

(ii) A symmetric operator A is self-adjoint if, and only if, there is a number
� 2 C such that

range.A � �id/ D range.A � x�id/ D H: (C.21)

Remark C.4. If � 2 %.A/, then exists, by definition, .A � �id/�1 2 L.H/. In
particular,

range.A � �id/ D H if � 2 %.A/: (C.22)

Hence the second part of (C.20) follows from the first one. Furthermore, for a self-
adjoint operator A any eigenvalue � 2 �p.A/ is real and its algebraic multiplicity
coincides with the geometric multiplicity,

dim
1[
kD1

ker.A � �id/k D dim ker.A � �id/; � 2 �p.A/: (C.23)

We combine Theorems C.1 and C.3.

Theorem C.5. Let A be a compact self-adjoint operator inH . Then

�.A/ � � � kAk; kAk� and 0 2 �.A/: (C.24)

Furthermore, �.A/ n f0g consists of an at most countably infinite number of eigen-
values �j of finite multiplicity which can be ordered by magnitude including their
multiplicity,

j�1j � j�2j � 	 	 	 ; �j ! 0 for j !1; (C.25)

.if there are infinitely many eigenvalues/. There is an orthonormal system fhj gj of
related eigenelements,

hhj ; hki D 0 if j ¤ k; khj jHk D 1; Ahj D �jhj : (C.26)

Furthermore,
Ah D

X
j

�j hh; hj ihj for any h 2 H: (C.27)

Remark C.6. One obtains (C.24) from Theorem C.1 and (C.20). Moreover,
j�1j D kAk. Here we have the situation as indicated in Figure C.1.

�1 �4 �2D�3�5 �6

0 kAk�kAk

Figure C.1
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By (C.23) there is no need to distinguish between geometric and algebraic multi-
plicity.

Definition C.7. A self-adjoint operator is called an operator with a pure point
spectrum if its spectrum consists of eigenvalues with finite (geometricD algebraic)
multiplicity.

Proposition C.8. An operatorAwith pure point spectrum does not belong to L.H/

.it is not bounded/. Furthermore, if � 2 %.A/, then .A � �id/�1 is compact. The
eigenvalues have no accumulation point in C.

C.3 Semi-bounded and positive-definite operators
in Hilbert spaces

Not every symmetric operator can be extended to a self-adjoint operator. But this
is the case for an important sub-class we are going to discuss now. First we remark
that for symmetric operators A,

hAh; hi D hh;Ahi D hAh; hi; h 2 dom.A/; (C.28)

is real.

Definition C.9. A (linear, densely defined) symmetric operator inH is called semi-
bounded (or bounded from below) if there is a constant c 2 R such that

hAh; hi � ckhjHk2 for h 2 dom.A/: (C.29)

If c D 0 in (C.29), then A is called positive, if c > 0 in (C.29), then A is called
positive-definite.

Remark C.10. IfA is semi-bounded, thenAC�id is positive definite for�Cc > 0.
Hence, at least in the framework of the abstract theory one may assume without
restriction of generality that A is positive-definite.

Definition C.11. Let A be a positive-definite operator according to Definition C.9.
Then the energy spaceHA is the completion of dom.A/ in the norm

khjHAk D
p
Œh; h�A where Œh; g�A D hAh; gi (C.30)

for h 2 dom.A/ and g 2 dom.A/.

Remark C.12. The idea is to collect all elements h 2 H for which there is a
Cauchy sequence fhj g1jD1 � dom.A/ in the norm k 	 jHAk (which is also a Cauchy
sequence in H ). As mentioned above, we closely followed [Tri92a]; in this case
one may consult [Tri92a, Sections 4.1.8, 4.1.9, 4.4.3]. Furthermore,

dom.A/ ,! HA ,! H; (C.31)
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which is even a continuous embedding (hence ‘,!’), if one furnishes dom.A/ with
the norm

khjdom.A/k D
p
kAhjHk2 C khjHk2 � kAhjHk; h 2 dom.A/: (C.32)

If A0 and A1 are symmetric operators, then it follows from

A0 � A1 that A�
1 � A�

0 : (C.33)

In particular, if one looks for a self-adjoint extension A1 of the symmetric operator
A0, hence A1 D A�

1 , then it must be a restriction of A�
0 . It turns out that in case

of positive-definite operatorsA D A0 (and hence also for semi-bounded operators)
there exist restrictions of A� which are self-adjoint extensions of A.

Theorem C.13 (Friedrichs extension). Let A be a positive-definite operator in the
Hilbert spaceH with (C.29) for some c > 0. LetHA be the energy space according
to Definition C.11. Then

AF h D A�h; dom.AF / D HA \ dom.A�/; (C.34)

is a self-adjoint extension of A and

hAF h; hi � ckhjHk2; h 2 dom.AF /; (C.35)

with the same constant c as in (C.29). Furthermore,

�.AF / � Œc;1/ and HAF
D HA: (C.36)

Remark C.14. By (C.31) and A � A� it is clear that AF is an extension of A, that
is,A � AF . Moreover, (C.36) implies that 0 2 %.AF /; in particular,A�1

F 2 L.H/

exists. Furthermore,

Œh; g�A D hAF h; gi if h 2 dom.AF /; g 2 dom.AF /: (C.37)

Theorem C.15 (Rellich’s criterion). A self-adjoint positive-definite operator ac-
cording to Definition C.9 is an operator with pure point spectrum in the sense of
Definition C.7 if, and only if, the embedding

id W HA ,! H (C.38)

of the energy space as introduced in Definition C.11 is compact.

Remark C.16. In view of (C.35) the spectrum of a positive-definite self-adjoint
operator A with pure point spectrum consists of isolated positive eigenvalues �j of
finite (geometricD algebraic) multiplicity,

0 < �1 � �2 � 	 	 	 ; �j !1 for j !1; (C.39)
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where the latter assertion follows from A 62 L.H/. Hence

Auj D �juj ; j 2 N; (C.40)

and uj 2 dom.A/ are related eigenelements spanning H . In particular one may
assume that fuj g1jD1 is an orthonormal basis in H . Furthermore, A�1 is compact,

A�1uj D ��1
j uj ; j 2 N; (C.41)

and
�.A�1/ D f0g [ f��1

j g1jD1: (C.42)

The latter result follows from Theorem C.1.

Remark C.17. The restriction to positive-definite operators in Theorem C.13 is
convenient but not necessary. IfA is semi-bounded according to Definition C.9 and
�C c > 0, then AC �id is positive-definite and AF ,

AF h D .AC �id/F h � �h; h 2 dom.AC �id/F ; (C.43)

is a self-adjoint extension of A which is independent of � with the same bound c
as in (C.29) (in analogy to (C.35)).
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Some integral inequalities

Integral inequalities for convolution operators play a decisive rôle in the theory of
function spaces. Not so in this book where they are needed only in connection with
a few complementing considerations. We collect very few assertions which are of
interest for us in this context. The spaces Lp.Rn/ with 1 � p � 1 have the same
meaning as in Section 2.2. Let, as usual, 1

p
C 1

p0 D 1 for 1 � p � 1.

Theorem D.1. Let k 2 Lr.Rn/ where 1 � r � 1. Let

1 � p � r 0 and
1

q
D 1

p
� 1

r 0 D
1

r
� 1

p0 D
1

r
C 1

p
� 1: (D.1)

Then the convolution operator K,

.Kf /.x/ D
Z

Rn

k.x � y/f .y/dy D
Z

Rn

k.y/f .x � y/dy; x 2 Rn; (D.2)

maps Lp.Rn/ continuously into Lq.Rn/,

kKf jLq.Rn/k � kkjLr.Rn/k kf jLp.Rn/k: (D.3)

Remark D.2. This well-known assertion, often called Young’s inequality, follows
from Hölder’s inequality. We refer, for example, to [Tri78, Section 1.18.9, p. 139];
see also Exercise 2.70 (a). Combining this inequality with some real interpolation,
then one obtains the following famous (and deeper) Hardy–Littlewood–Sobolev
inequality.

Theorem D.3. Let

0 < ˛ < n; 1 < p <
n

n � ˛ and
1

q
D ˛

n
� 1

p0 D
1

p
C ˛

n
� 1: (D.4)

Then K, given by

.Kf /.x/ D
Z

Rn

f .y/

jx � yj˛ dy; x 2 Rn; (D.5)

maps Lp.Rn/ continuously into Lq.Rn/,

kKf jLq.Rn/k � ckf jLp.Rn/k: (D.6)
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Remark D.4. The integral .Kf /.x/ in (D.5) is called the Riesz potential of f .
This inequality has some history. The case n D 1 goes back to Hardy and

Littlewood, [HL28], [HL32]. This was extended by Sobolev in [Sob38] to n 2 N,
and may also be found in [Sob91, §6] (first edition 1950). Furthermore, one can
prove (D.6) by real interpolation of (D.3). This was observed by Peetre in [Pee66].
Short proofs (on two pages) of both theorems using interpolation may be found in
[Tri78, Section 1.18.9, pp. 139/140].
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Function spaces

E.1 Definitions, basic properties

This book deals with the Sobolev spaces

W k
p .R

n/; H s.Rn/; W s
2 .R

n/; (E.1)

as introduced in the Definitions 3.1, 3.13, 3.22 and their restrictions

W k
p .�/; W s

2 .�/; (E.2)

to domains� in Rn according to Definition 3.37. However, in the Notes we hint(ed)
occasionally at more general spaces covering the above spaces and their properties
as special cases. To provide a better understanding what is meant there we collect
some basic definitions and assertions, and list a few special cases.

We use the same basic notation as in Section A.1. In particular, arbitrary open
sets� in Rn are called domains. We extend the definition of the complex Lebesgue
space Lp.�/ as introduced at the beginning of Section 2.2 naturally from 1 � p �
1 (Banach spaces) to 0 < p � 1 (quasi-Banach spaces according to Note 7.8.1
consisting of equivalence classes (2.18) quasi-normed by (2.16), (2.17) now for
0 < p � 1). Let S.Rn/, S 0.Rn/ as in the Definitions 2.32, 2.43 furnished
with the Fourier transform and its inverse according to Definitions 2.36, 2.58. Let
'0 2 S.Rn/ with

'0.x/ D 1 if jxj � 1 and '0.y/ D 0 if jyj � 3

2
; (E.3)

and let

'k.x/ D '0.2�kx/ � '0.2�kC1x/; x 2 Rn; k 2 N; (E.4)

see also Figure E.1 below.

3
2

0 1 2

'0

3 4

'1 '2

jxj

Figure E.1
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Since 1X
jD0

'j .x/ D 1 for x 2 Rn;

the f'j g1jD0 form a dyadic resolution of unity. The entire analytic functions

.'j yf /_.x/ make sense pointwise for any f 2 S 0.Rn/.

Definition E.1. Let ' D f'j g1jD0 be the above dyadic resolution of unity.

(i) Let
0 < p � 1; 0 < q � 1; s 2 R: (E.5)

Then Bsp;q.R
n/ is the collection of all f 2 S 0.Rn/ such that

kf jBsp;q.Rn/k' D
� 1X
jD0

2jsqk.'j yf /_jLp.Rn/kq
	1=q

<1 (E.6)

.with the usual modification if q D1/.
(ii) Let

0 < p <1; 0 < q � 1; s 2 R: (E.7)

Then F sp;q.R
n/ is the collection of all f 2 S 0.Rn/ such that

kf jF sp;q.Rn/k' D



� 1X

jD0
2jsqj.'j yf /_. 	/jq

	1=q ˇ̌̌
Lp.R

n/



 <1 (E.8)

.with the usual modification if q D1/.
Remark E.2. It is not our aim to give a brief survey of the above spaces. We wish to
support some Notes in the main body of this book where we hinted on spaces of the
above type and to provide some background information. We refer, in particular, to
the Notes 3.6.1–3.6.3 where we gave also a list of relevant books for further reading
and to Note 7.8.5.

Theorem E.3. The spaces Bsp;q.R
n/ and F sp;q.R

n/ are independent of ' .in the
sense of equivalent quasi-norms/. They are quasi-Banach spaces. Furthermore,

S.Rn/ � Bsp;q.Rn/ � S 0.Rn/; (E.9)

S.Rn/ � F sp;q.Rn/ � S 0.Rn/; (E.10)

and
Bsp;min.p;q/.R

n/ ,! F sp;q.R
n/ ,! Bsp;max.p;q/.R

n/ (E.11)

for all admitted parameters.



E.1. Definitions, basic properties 263

Let D.�/ and D 0.�/ be as in Definitions 2.2 and 2.5. Furthermore, g
ˇ̌
�
2

D 0.�/ for g 2 S 0.Rn/ means�
g
ˇ̌
�

�
.'/ D g.'/ for ' 2 D.�/: (E.12)

Definition E.4. Let � be a domain in Rn. Let Asp;q.R
n/ be either Bsp;q.R

n/ with
(E.5) or F sp;q.R

n/ with (E.7). Then

Asp;q.�/ D ff 2 D 0.�/ W there exists g 2 Asp;q.Rn/ with g
ˇ̌
�
D f g; (E.13)

quasi-normed by
kf jAsp;q.�/k D inf kgjAsp;q.Rn/k; (E.14)

where the infimum is taken over all g 2 Asp;q.Rn/ with g
ˇ̌
�
D f in D 0.�/.

Remark E.5. This is a generalisation of Definition 3.37.

Theorem E.6. Let � be a domain in Rn. Then

Bsp;q.�/; 0 < p � 1; 0 < q � 1; s 2 R; (E.15)

and
F sp;q.�/; 0 < p <1; 0 < q � 1; s 2 R; (E.16)

are quasi-Banach spaces. Furthermore,

D.�/ � Bsp;q.�/ � D 0.�/; (E.17)

D.�/ � F sp;q.�/ � D 0.�/; (E.18)

and
Bsp;min.p;q/.�/ ,! F sp;q.�/ ,! Bsp;max.p;q/.�/ (E.19)

for all admitted parameters.

Remark E.7. For bounded domains � the assertion (7.170) is independent of q1
and q2 in (7.169). Then it follows from (E.19) that one can replace thereB by F on
one side or on both sides. In particular, with the special cases listed in Section E.2
below one gets for

s > 0; 1 < p <1; s � n
2
> �n

p
; (E.20)

that
ek.id W W s

2 .�/ ,! Lp.�// � k� s
n ; k 2 N; (E.21)

complementing Corollary 7.11.

Theorem E.8. Let Asp;q be either Bsp;q with (E.5) or F sp;q with (E.7).
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(i) Let

s1 � n

p1
> s2 � n

p2
; p2 � p1: (E.22)

Then
id W As1p1;q1

.Rn/ ,! As2p2;q2
.Rn/ (E.23)

is continuous, but not compact.

(ii) Let � be a bounded domain. Then

id W As1p1;q1
.�/ ,! As2p2;q2

.�/ (E.24)

is compact if, and only if,

s1 � s2 > max
�
0;
n

p1
� n

p2

�
: (E.25)

Remark E.9. Below we have sketched the different situations for Rn and for a
bounded domain � in Figure E.2 (i) and (ii), respectively.

s
s1 . 1

p1
; s1/

. 1
p2
; s2/

1
p1

1
p

s
s1

. 1
p2
; s2/

. 1
p1
; s1/

1
p1

1
p

(i) Rn (ii) bounded domain �

Figure E.2

By (E.19) the assertions (7.167)–(7.170) strengthen part (ii) of the theorem,
specifying the degree of compactness.

E.2 Special cases, equivalent norms

Although we discussed in Note 3.6.1 some generalisations of the spaces (E.1), (E.2)
it seems reasonable to complement the preceding Section E.1 by a few properties,
special cases and equivalent quasi-norms.
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Lifting. For � 2 R let

I�f D F �1h�i�F f; f 2 S 0.Rn/; (E.26)

as in (2.148), recall notation (2.83). According to Proposition 2.63 the operator I�
maps S.Rn/ onto itself and S 0.Rn/ onto itself. Let Asp;q.R

n/ be either Bsp;q.R
n/

with (E.5) or F sp;q.R
n/ with (E.7). Then

I�A
s
p;q.R

n/ D As��p;q .R
n/; � 2 R: (E.27)

We used assertions of this type in Section 3.2 in connection with the spacesH s.Rn/.

Spaces of regular distributions. According to Definition 2.10 a distribution f 2
S 0.Rn/ is called regular if, in addition, f 2 Lloc

1 .R
n/ (in the interpretation given

there). With Asp;q.R
n/ as above one has

Asp;q.R
n/ � S 0.Rn/ \ Lloc

1 .R
n/ if s > �p D n

�
1

p
� 1

�
C
: (E.28)

This refers to the shaded area in Fig-
ure E.3 aside. If s < �p , then (E.28)
is not true (which means that there
are singular distributions belonging
to Asp;q.R

n/). The case s D �p is
somewhat tricky. One may consult
[Tri01, Theorem 11.2, pp. 168/169]
and the references given there. In
addition, Exercise 3.18 illuminates
the situation.

s

1

s D n. 1
p
� 1/

1
p

Figure E.3

Sobolev spaces. Let 1 < p <1 and s 2 R. It is usual nowadays to call

H s
p .R

n/ D I�sLp.Rn/; kf jH s
p .R

n/k D kI�sf jLp.Rn/k; (E.29)

Sobolev spaces (fractional Sobolev spaces, Bessel potential spaces). If 1 < p <1
and s D k 2 N0, then they contain classical Sobolev spaces

W k
p .R

n/ D H s
p .R

n/; kf jW k
p .R

n/k D
X

j˛j�k
kD˛f jLp.Rn/k (E.30)

as special cases. Furthermore,

H s
p .R

n/ D F sp;2.Rn/; s 2 R; 1 < p <1; (E.31)

is called the Paley–Littlewood property of the Sobolev spaces. Obviously, the norms
in (E.29), (E.30) and in connection with (E.31) are equivalent to each other (for the
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indicated parameters). We dealt with spaces of this type in Sections 3.1, 3.2 where
we had been interested in the case p D 2 especially. Then these spaces are Hilbert
spaces,

H s.Rn/ D H s
2 .R

n/ D F s2;2.Rn/ D Bs2;2.Rn/; s 2 R: (E.32)

One may also consult Note 3.6.1.

Hölder–Zygmund spaces. The spaces

C s.Rn/ D Bs1;1.Rn/; s 2 R; (E.33)

are usually called Hölder–Zygmund spaces, sometimes restricted to s > 0, where
one has

C s.Rn/ ,! C.Rn/; s > 0: (E.34)

Here C.Rn/ has the same meaning as in Definition A.1. Let again

.�hf /.x/ D f .x C h/ � f .x/; x 2 Rn; h 2 Rn; (E.35)

be the usual differences in Rn. Let �h D �1h and for m 2 N, m � 2,

.�mh f /.x/ D �1h.�m�1
h f /.x/; x 2 Rn; h 2 Rn; (E.36)

be the iterated differences. Let

0 < s D `C �; ` 2 N0; s > `: (E.37)

Assume � < m 2 N. Then C s.Rn/ is the collection of all f 2 C.Rn/ such that

kf jC s.Rn/k`;m D sup
x2Rn

jf .x/j C sup jhj�� j�mh .D˛f /.x/j <1; (E.38)

where the second supremum is taken over all x 2 Rn, all h 2 Rn with 0 < jhj < 1
and all ˛ 2 Nn

0 with j˛j � ` (equivalent norms). In particular, if 0 < s < 1, then
one obtains the usual Hölder norm

kf jC s.Rn/k0;1 D kf jC s.Rn/k
D sup
x2Rn

jf .x/j C sup
x 2 Rn;
0 < jhj < 1

jhj�sjf .x C h/ � f .x/j: (E.39)

If s D 1, this leads to the so-called Zygmund class C1.Rn/ which can be normed
by

kf jC1.Rn/k D sup
x2Rn

jf .x/j C sup
x 2 Rn;
0 < jhj < 1

jhj�1j�2hf .x/j: (E.40)

We refer also to (3.44) and Exercises 3.20, 3.21.
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Besov spaces. The spaces Bsp;q.R
n/ according to Definition E.1 are called Besov

spaces. Let

0 < p � 1; 0 < q � 1 and s > �p D n
�
1

p
� 1

�
C
: (E.41)

Then (E.28) can be strengthened by

Bsp;q.R
n/ ,! Lmax.p;1/.R

n/: (E.42)

Furthermore, let �m
h

be as in (E.36) with s < m 2 N. Then

kf jLp.Rn/k C
� Z

jhj�1
jhj�sqk�mh f jLp.Rn/kq

dh

jhjn
�1=q

(E.43)

(usual modification if q D1) is an equivalent quasi-norm inBsp;q.R
n/. This covers

in particular the classical Besov spaces

Bsp;q.R
n/; s > 0; 1 � p � 1; 1 � q � 1: (E.44)

We also refer to Note 3.6.1.

Remark E.10. We de not give specific references. All may be found in the books
mentioned in Note 3.6.3, especially in [Tri83], [Tri92b], [Tri06]. This appendix is
not a brief survey. We wanted to make clear that some assertions for the special
spaces on (E.1), (E.2) proved in this book are naturally embedded in the larger
framework of the recent theory of function spaces.
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Exercise 1.5. inffx2 W .x1; x2/ 2 �g > 0.

Exercise 1.18. (a) Let x0 D .x01 ; : : : ; x0n/ 2 RnC, x0H D .x01 ; : : : ; x0n�1;�x0n/,

gRn
C
.x0; x/ D

�
� 1

2

.ln jx � x0j � ln jx � x0Hj/; n D 2;
1

.n � 2/j!nj
�

1

jx � x0jn�2 �
1

jx � x0Hjn�2

�
; n � 3;

u.x0/ D 2x0n
j!nj

Z
�nD0

u.�/

j� � x0jn d�; x0 2 RnC:

(b) Let x0 D .x01 ; : : : ; x0n/ 2 KC
R ,

x0� D x0
R2

jx0j2 ,

x0H D .x01 ; : : : ; x0n�1;�x0n/, 0

x0

x0H

x0�

KC
R

R

g.x0; x/ D gKR
.x0; x/ � gKR

.x0H; x/

D gRn
C
.x0; x/ � R

jx0jgRn
C
.x0�; x/:

Let n D 3, x0 2 KC
R � R3C,

u.x0/ D R2 � jx0j2
4
R

Z
j� j D 1;
�3 > 0

u.�/

�
1

j� � x0j3 �
1

j� � x0Hj3
�
d�

C x03
2


Z
�2

1 C �2
2 � 1;

�3 D 0

u.�/

�
1

j� � x0j3 �
R3

jx0j3
1

j� � x0�j3
�
d�:

Exercise 1.24. (b) �u D 0, then Theorem 1.23 (iii) gives

sup
.x1;x2/2KR

u.x1; x2/ D R2; inf
.x1;x2/2KR

u.x1; x2/ D �R2:
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(c) f .0; 0; 0/ D �1, f .x1; x2; x3/ � 0 if .x1; x2; x3/ 2 @K1, thus Theo-
rem 1.23 (iii) fails and f cannot be harmonic in K1.

Exercise 1.41. (b) u.x1; x2/ D 4C

R4
.x31x2 � x1x32/.

Exercise 1.42. (a) Let ' 2 C.@KC
R /, then for x 2 KC

R ,

u.x/ D R2 � jxj2
4
R

Z
j� j D 1;
�3 > 0

'.�/

�
1

j� � xj3 �
1

j� � xHj3
�
d�

C x3

2


Z
�2

1 C �2
2 � 1;

�3 D 0

'.�/

�
1

j� � xj3 �
R3

jxj3
1

j� � x�j3
�
d�

with xH D .x1; x2;�x3/, x� D x R2

jxj2 , and

u.x/ D '.x/; x 2 @KC
R :

(b) u.x1; x2/ D x21 � x22 .

Exercise 1.49. u.x1; x2/ D 1

4
.x21 C x22/ C

7

4
� 1
8

�
1 C 3

e2

�
log.x21 C x22/; log

taken with respect to base e.

Exercise 2.13. (b) For the regular case one may choose a smooth function f such
that T ˛

f
D TD˛f ; in the singular case, say, with n D 1, � D .�1; 1/, ˛ D 1, let

f .x/ D
(
x� ; x > 0;

0; x � 0;

with �1 < � < 0. Then f 2 Lloc
1 .�/, but there is no g 2 Lloc

1 .�/ with Tg D T 1f
since f 0 62 Lloc

1 .�/.

Exercise 2.17. (b)
dg

dt
D �.t/ � �.�t /, d2g

dt2
D 2ı.

Exercise 2.39. D˛.F �1'/.�/ D i j˛j F �1.x˛'.x//.�/;

�˛.F �1'/.�/ D i j˛j F �1.D˛'/.�/:
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Exercise 2.51. k >
n

p0 , e.g., k D 1Cmax


m 2 N0 W m � n

p0

�
:

Exercise 2.52. (b) Recall that '.x/ D e�jxj2 2 S.Rn/.

Exercise 2.61. F �1.D˛T / D .�i/j˛j x˛.F �1T /,
F �1.x˛T / D .�i/j˛j D˛.F �1T /.

Exercise 2.68. (a) F .e�ajxj/.�/ D 1p
2


2a

a2 C �2 .

(b) F .sgn.x/e�jxj/.�/ D 1p
2


�2i�
1C �2 .

(c) F .�
Œ�a;a	.x//.�/ D

2ap
2


˚
sin.a�/

a�
; � ¤ 0;

1; � D 0:

(d) F ..1 � jxj/C/.�/ D 1p
2


˚
2.1 � cos �/

�2
; � ¤ 0;

1; � D 0:

Exercise 2.70. (b) F �1.f � g/.�/ D .2
/n=2.F �1f /.�/ .F �1g/.�/.

(c) ha D 1p
2


F .e�aj�j/, ga D 1p
2


F .�
Œ�a;a	/, thus (2.168) and Exer-

cise 2.68 (a), (c) imply,

ha � hb D F .F �1.ha � hb//
D p2
 F

�
1p
2

.e�aj�j/

1p
2

.e�bj�j/

�
D haCb;

ga � gb D
p
2
 F

�
1p
2


�
Œ�a;a	

1p
2


�
Œ�b;b	

�
D gmin.a;b/:

Exercise 3.16. (a) ws F .e�j�j/ � hxi s
2 �1 2 L2.R/ if, and only if, s < 3

2
.

(b) ws F �
Œ�a;a	 � hxi

s�1
2 2 L2.R/ if, and only if, s < 1

2
.

(c) ws.x/F .�
A
.�//.x/ D ws.x/Qn

jD1 F �
Œ�a;a	.xj /, thus

wsF .�
A
/ 2 L2.Rn/ if, and only if, s <

1

2
:
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(d) F f � .F �
Œ�a;a	/

r , hence

ws F f 2 L2.Rn/ if, and only if, s < r � 1
2
:

Exercise 3.18. (a) ws F ı � hxis=2 2 L2.Rn/ if, and only if, s < �n
2

.

(b), (c) f 62 Lloc
1 .R/ for � � 0, and

kws F f jL2.R/k2 �
1X
kD0

22k.sC�/ <1

if s C � < 0, i.e., � < jsj.
(d) Choose � with 0 < � < jsj, let f be given by (3.37), then

g.x/ D f .x1/ .x2; : : : ; xn/; x D .x1; : : : ; xn/ 2 Rn;

with  2 D.Rn�1/, supp � Œ0; 1�n�1, is an example.

Exercise 3.20. (b) f .x/ D min.jxj; 1/ 2 Lip.Rn/ n C 1.Rn/.
Exercise 3.29 (b) First estimate

R
jhj>1 	 	 	 by c kf� jL2.Rn/k, using s > 0, Exer-

cise 3.19 (a) and f� 2 L2.Rn/.
Secondly, for small h, 0 < jhj < 1, by similar arguments�Z

jxj<2mjhj
j�mh f� .x/j2dx

�1=2
� c jhj�C n

2 ;

for c independent of h.
Finally, for 2mjhj < jxj < m C 2 all differences of f� are smooth (since

supp.�m
h
f� / � KmC2) and can be estimated by their derivatives leading to

j�m
h
f� .x/j � c0jhjmjxj��m; thus�Z

2mjhj<jxj<mC2
j�mh f� .x/j2dx

�1=2
� c00 jhj�C n

2 ;

since m > 	 C n
2

, i.e., k�m
h
f� jL2.Rn/k � C jhj�C n

2 ; in view of s < 	 C n
2

this
completes the argument.

Exercise 3.33. Let s D 1, ` D 0, n D p D 2, then there are functions (e.g., h~ and
g as in Exercise 3.6) in W s

2 .R
n/ D W 1

2 .R
n/ which are not bounded.

Exercise 3.36. (b) Let f � 1, then for all ' 2 D.Rn/

kf � 'jC t .Rn/k � kf � 'jC.Rn/k � 1:
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Exercise 4.7. [EE87, Section V.3.1, pp. 222/223].

Exercise 4.8. (b) Let u be such that kujLp.R/k D 1, ku0jLp.R/k � c, e.g.,
u.x/ D cp.!1=p.x � 2/ � !1=p.x C 2// where ! is given by (1.58) (with n D 1)
and cp appropriately chosen; put

uk.x/ D k�1=pu.k�1x/;

then kukjLp.R/k D kujLp.R/k D 1, but

ku0
kjLp.R/k D k�1ku0jLp.R/k � ck�1 ! 0 for k !1:

Exercise 4.19. Let ' 2 D.Rn/, ' � 0, be such that k'jW k
p .R

n/k D 1, hence
k'jLp.Rn/k > 0 (take, e.g., '.x/ D cp!.4x/ with ! from (1.58) and appropriate
cp > 0); let 'm D '.	 �m/, m 2 Zn, then k'mjW k

p .R
n/k D 1, m 2 Zn, but

k'm � 'r jW `
p .R

n/k � k'm � 'r jLp.Rn/k
D 21=pk'jLp.Rn/k > 0;

since supp'm \ supp'r D ;, m; r 2 Zn.

Exercise 5.8. If the rotation H and its transpose H > D H �1 are such that

H >AH D

0B@d1 0 	 	 	
0

: : : 0

	 	 	 0 dn

1CA ; A D .ajk/nj;kD1;

and di > 0 are the eigenvalues of A, then � D H � and � D H >� .

Exercise 5.20. f ".x0; xn/ D  .xn/xnf .x
0; 0/ with  2 D.Œ0; 2"�/,  .y/ D 1

for 0 � y � ".

Exercise 5.58. g.x0; x/ > 0 by the same arguments as for Corollary 1.28, but
g.x0; x/ < � 1

2

ln jx � x0j only when maxy2@� jx0 � yj < 1, recall also Exer-

cise 1.13; in general we obtain

g.x0; x/ � 1

2


�
max
y2@�

ln jy � x0j � ln jx � x0j
	

and

g.x0; x/ � 1

2


�
min
y2@�

ln jy � x0j � ln jx � x0j
	

C

which improves g.x0; x/ > 0 if jx � x0j < dist.x0; @�/.
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Exercise 6.7. An orthonormal basis fhng1nD1 � dom.A/ in ker.A�� id/ is a Weyl
sequence for �.

Exercise 6.9. [Tri92a, Lemma 4.1.6, Theorem 4.1.6/2, Lemma 4.2.2].

Exercise 6.14. [CS90, Section 2.1], [EE87, Proposition II.2.3, Corollary II.2.4].

Exercise 6.15. [EE87, Proposition II.1.3], [CS90, Section 1.3].

Exercise 6.17. [CS90, Section 2.1].

Exercise 6.20. [CS90, Lemma 2.5.2], [EE87, Lemma II.2.9].

Exercise 7.5. [ET96, Proposition 3.2.2].

Exercise 7.9. For the upper estimates in (7.66) proceed as in Step 1 of the proof of
Theorem 7.8, using that obviously

hk.eid W `s2 ,! `t2/ � hk.eid W `s�t2 ,! `2/; k 2 N:

For the converse apply (7.67), the multiplicativity in Theorem 6.12 (iii), and Theo-
rem 7.8.

Exercise 7.19. For n � 3, assume that 2 � p � 1, and

b1 2 Lr1.�/; b2 2 Lp.�/ with
1

r1
D 1

2
� 1

p
;

replacing (7.114). The remaining assumptions (on� andA) are the same. ThenB ,
given by (7.115), is compact with (7.116), (7.117).

Exercise 7.22. For n D 1, take 'j .x/ D 2
j C1

2  .2j .x2 � �//, with  2 D.R/
such that

supp � .1; 2/ � R;

Z 2

1

 2.y/dy D 1;

(e.g.  .y/ Dp!.2y � 3/ and ! given by (1.58) with n D 1); it then follows that
k'j jL2.R/k D 1, supp'j \ supp'k D ; for j ¤ k, andZ

R

jx2 � �j2j'j .x/j2dx � 22.1�j /k'j jL2.R/k2 ! 0 if j !1;

similarly for n 2 N.
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[Bab53] V. M. Babič. On the extension of functions. Uspechi Matem. Nauk,
8 (2(54)):111–113, 1953 (in Russian). 112

[Ban32] S. Banach. Théorie des opérations linéaires. Monogr. Mat. 1, Warszawa, 1932.
84, 253

[Bes62] O. V. Besov. On the continuation of functions with preservation of the second-
order integral modulus of smoothness. Mat. Sb., 58 (100):673–684, 1962 (in
Russian). 112

[Bes67a] O. V. Besov. Extension of functions fromLl
p andW l

p . Trudy Mat. Inst. Steklov.,
89:5–17, 1967 (in Russian). 112

[Bes67b] O. V. Besov. On the theory of embeddings and extensions of classes of differen-
tiable functions. Mat. Zametki, 1:235–244, 1967; English transl.: Math. Notes,
1:156–161, 1967. 112

[Bes74] O. V. Besov. The growth of the mixed derivative of a function in C .l1; l2/. Mat.
Zametki, 15:355–362, 1974; English transl.: Math. Notes, 15:201–206, 1974.
162

[BIN75] O.V. Besov,V. P. Il’in, and S. M. Nikol’skiı̆. Integral representations of functions
and imbedding theorems. Nauka, Moscow, 1975; English transl.: Vols. 1 & 2,
V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons],
New York–Toronto, Ont.–London, 1978/79. 85



276 Bibliography

[Bir61] M. S. Birman. On the number of eigenvalues in a quantum scattering problem.
Vestnik Leningrad. Univ., 16 (13):163–166, 1961 (in Russian). 213

[Bom72] J. Boman. Supremum norm estimates for partial derivatives of functions of
several real variables. Illinois J. Math., 16:203–216, 1972. 162

[BS67] M. S. Birman and M. Z. Solomjak. Piecewise polynomial approximations of
functions of the classes W ˛

p . Mat. Sb., 73 (115):331–355, 1967 (in Russian).
243

[BS72] M. S. Birman and M. Z. Solomjak. Spectral asymptotics of nonsmooth elliptic
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[Krz71] M. Krzyżański. Partial differential equations of second order.Vol. I. Monografie
Matematyczne 53, PWN Polish Scientific Publishers, Warsaw, 1971. 24
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