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Sophus Lie, more than a century ago, investigated the problem of linearization of the equa-
tion y′′ = f(x, y, y′), where ()′ means d/dx [1]. Originally, he investigated the necessary
conditions for linearization by a point transformation and showed that f must be a cubic
in y′ and that other conditions must be satisfied. Later, he and others such as Tresse [2]
worked out actual construction of the linearizing transformations, often using group theory.
The present author will show a method of construction using differential forms, suitable
when certain intermediate equations can be integrated explicitly.

1 Introduction

The possible linearization of the equation

y′′ = f(x, y, y′), (1)

where the prime indicates differentiation with respect to x, might be considered a simple problem,
but it is actually rather complex. It is a very old problem, having been investigated by Sophus
Lie [1] and by other subsequent authors (for example Tresse [2], Ibragimov [3, 4, 5], Berkovich [6],
Grissom et al [7], Kamran et al [8, 9], Bocharov et al [10], Schwarz [11], Steeb [12], and N. Eu-
ler [13]). These methods use group theory or approach the problem as a Cartan equivalence
problem. There are also treatments that consider equivalence of nonlinear and linear partial
differential equations, such as those by Kumei and Bluman [14, 15].

In 1998 the author spent a month at the University of Witwatersrand in South Africa as the
guest of Fazal Mahomed. During that month this was one of the problems that we looked at, and
it became intriguing as the possibility of using differential forms in its treatment emerged. This
talk is a detailed report on that research. The author has reported on it before in a summary
fashion [16].

The previous papers that treat this as a Cartan equivalence problem use the Cartan theory.
The differential forms used here are not part of that theory, but are used to make the treatment
simpler and more obvious. One can carry out the same calculations without forms. The virtue of
this approach is that the linearization can be achieved, in principle, by solving some intermediate
linear differential equations. We will see how this can be done.

2 Basic theory and conditions for linearizability

We begin by adopting Lie’s approach: assume a point transformation given by new variables

X = F (x, y), Y = G(x, y), (2)

and require that

d2Y/dX2 = 0. (3)
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We note that this is a special case of a linear equation. Lie does not consider other cases,
with terms in dY/dX and Y . We will comment on this later.

Now consider the conditions imposed on F (x, y) and G(x, y) by this requirement. We first
construct, using equation (2),

dY/dX = (Gxdx + Gydy)/(Fxdx + Fydy) =
(
Gx + Gyy

′) /
(
Fx + Fyy

′) ,

where subscripts x and y denote differentiation. Now the second derivative equation may be
written simply in terms of a differential d(dY/dX) = 0, or

(
Fx + Fyy

′) d
(
Gx + Gyy

′) − (
Gx + Gyy

′) d
(
Fx + Fyy

′) = 0,

which now may be treated as a differential form equation. We expand the differentials and
obtain

(
Fx + Fyy

′) (
dGx + y′dGy + Gydy′

) − (
Gx + Gyy

′) (
dFx + y′dFy + Fydy′

)
= 0

or

Tdy′ + ρy′2 + (λ + δ)y′ + σ = 0, (4)

where

T = FxGy − FyGx

and we have the 1−forms

ρ = FydGy − GydFy, λ = FydGx − GydFx,

σ = FxdGx − GxdFx, δ = FxdGy − GxdFy. (5)

We note that

dT = δ − λ. (6)

Rewrite equation (4) as

dy′ = α + βy′ + γy′2, (7)

where

α = −σ/T, β = −(λ + δ)/T, γ = −ρ/T. (8)

This sort of equation has occurred in other contexts, such as in searching for Bäcklund
transformations, where y′ may be viewed as a fiber coordinate on a base space parameterized
by x and y.

We remember from differential form calculus that ddω = 0, where ω is any form, and that
1−forms anticommute under the hook product ∧. For integrability of equation (7), we ask
ddy′ = 0, or

0 = dα + dy′ ∧ β + y′dβ + 2y′dy′ ∧ γ + y′2dγ,

and with substitution from equation (7) we have

0 = dα +
(
α + βy′ + γy′2

)
∧ β + y′dβ + 2y′

(
α + βy′ + γy′2

)
∧ γ + y′2dγ.
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The y′3 term vanishes because γ ∧ γ = 0; we equate the coefficients of the other powers of y′ to
zero and get

dα = β ∧ α, dβ = 2γ ∧ α, dγ = γ ∧ β. (9)

Now we go back to equations (5) and expand the differentials:

ρ = Fy(Gxydx + Gyydy) − Gy(Fxydx + Fyydy),
λ = Fy(Gxxdx + Gxydy) − Gy(Fxxdx + Fxydy),
σ = Fx(Gxxdx + Gxydy) − Gx(Fxxdx + Fxydy),
δ = Fx(Gxydx + Gyydy) − Gx(Fxydx + Fyydy),

or

ρ = Adx + Bdy, λ = Cdx + Ady, σ = Ddx + Edy, δ = Edx + Hdy, (10)

where

A = FyGxy − GyFxy, B = FyGyy − GyFyy, C = FyGxx − GyFxx,

D = FxGxx − GxFxx, E = FxGxy − GxFxy, H = FxGyy − GxFyy.

Thus, from equations (8) and (10),

α = −(Ddx + Edy)/T, β = −(Cdx + Edx + Ady + Hdy)/T,

γ = −(Adx + Bdy)/T. (11)

We now substitute α, β, and γ into equation (7) for dy′, divide by dx to convert the differential
forms to functions, and rewrite it as:

y′′ + f0 + f1y
′ + f2y

′2 + f3y
′3 = 0, (12)

where the fk are given by

f0 = D/T, f1 = (C + 2E)/T, f2 = (H + 2A)/T, f3 = B/T.

We define K and L as

K = E/T, L = A/T, (13)

and replace D, C, H, and B in the 1−forms in equation (11) in favor of the fk, K, and L,
obtaining

α = −f0dx − Kdy, β = (K − f1)dx + (L − f2)dy, γ = −Ldx − f3dy. (14)

We also note from equation (6) for dT that now

dT/T = (3K − f1)dx + (f2 − 3L)dy. (15)

We see from the above that it is necessary, for the original assumption of linearizability to
hold, that the expression f(x, y, y′) in equation (1) be a cubic in y′. Thus the original form of
the equation which we have is to be that in equation (12) above, with the fk known functions
of x and y. We see that the 1−forms α, β, γ, and dT/T are now expressed in terms of these
four known functions fk and two other functions K and L. The first three of these 1−forms can
now be substituted into equations (9) to find conditions on the various functions.
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If we do that, the first equation, for dα, gives the equation

f0y − Kx = −K(K − f1) + f0(L − f2),

which is nonlinear in K. The other equations give similar results. However, we can simplify the
situation by defining new variables:

T = 1/W 3, E = U/W 4, A = V/W 4,

so that from equation (13)

K = U/W, L = V/W. (16)

Equation (15) now becomes

3dW/W = (f1 − 3K)dx + (3L − f2)dy. (17)

We now have this situation. The dW equation (17) gives expressions for Wx and Wy. The
dα equation in equation (9) gives, after substitution for Wx, an expression for Ux which is linear
in U , V , and W . The dγ equation gives an expression for Vy, which is also linear. The dβ
equation gives a linear expression for Vx−Uy. The integrability condition on W , ddW = 0, gives
a linear expression for Vx + Uy. The latter two equations can be solved for Vx and Uy. Thus we
have expressions for all derivatives of U , V , and W , all of which are linear and homogeneous
(no constant terms) in the same variables.

We summarize all these relations in a nice matrix equation

dr = Mr, (18)

where

r =


 U

V
W


 and M = Pdx + Qdy, (19)

where

P = (1/3)


 −2f1 −3f0 3f0y + 3f0f2

0 f1 2f2x − f1y − 3f0f3

−3 0 f1




and

Q = (1/3)


 −f2 0 2f1y − f2x + 3f0f3

3f3 2f2 3f3x − 3f1f3

0 3 −f2


 .

For integrability, ddr = 0, or 0 = dMr − M ∧ dr = dMr − M ∧ Mr, giving

dM = M ∧ M

which is not zero since M is a matrix. Substitution for M in terms of P and Q gives the
condition

Qx − Py = [P, Q],
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the necessary condition on the fk for linearization to be possible. This matrix condition reduces
to two equations:

f0yy + f0(f2y − 2f3x) + f2f0y − f3f0x + (1/3)(f2xx − 2f1xy + f1f2x − 2f1f1y) = 0 (20)

and

f3xx + f3(2f0y − f1x) + f0f3y − f1f3x + (1/3)(f1yy − 2f2xy + 2f2f2x − f2f1y) = 0. (21)

To summarize, we note that linearizability requires the original differential equation to be a
cubic in y′, with the coefficients satisfying equations (20) and (21). These conditions are written
out in Lie [1] and in Ibragimov [3], for example.

3 Construction of the linearizing point transformations

In the following, we will need U , V, and W, so we will need to solve equations (18). It is
important to note that the most general solution is apparently not necessary; special solutions
will suffice. Thus one can make simplifying assumptions in the solution. Once the equations are
solved, then we construct K and L from equations (16).

In order to find the F (x, y) and G(x, y) for which we are seeking, we revert to equations (5)
and solve for dFx, dFy, dGx, and dGy. Solution for the first two gives

dFx = (Fyσ − Fxλ)/T, dFy = (Fyδ − Fxρ)/T.

Solution for the second two, dGx and dGy, shows that they satisfy the same equation, so we will
write only equations for the derivatives of F . We note that δ + λ = −Tβ and that δ − λ = dT ,
so we can solve these equations for δ and λ. We can also substitute for σ and ρ in terms of α
and γ. We get finally

dFx = −Fyα + Fx(β + dT/T )/2, dFy = Fxγ + Fy(−β + dT/T )/2.

We substitute for α, β, γ, and dW in terms of the expressions obtained above, with the fk, K,
and L. The dW terms disappear and we are left with two equations which we can express in
matrix form as follows.

Write

R =
[

Fx

Fy

]
and S =

[
Gx

Gy

]
.

Now

dR = ZR, dS = ZS, (22)

where

Z =
[

(2K − f1)dx − Ldy f0dx + Kdy
−Ldx − f3dy Kdx + (f2 − 2L)dy

]
.

This linear equation set can be solved for R; there will be two independent solutions, which can
be taken as R and S. See equation (22). (Integrability is guaranteed by the previous conditions,
as can be seen by setting ddR = 0.) Finally, one can solve

dF = [dx dy]R, dG = [dx dy]S (23)

for F and G.



32 B.K. Harrison

We can summarize the procedure.
1. Make sure that the original differential equation is a cubic in y′.

2. Test the coefficients fk to see whether they satisfy equations (20) and (21). If equations (1)
and (2) are satisfied, then the equation is linearizable in principle.

3. Construct the 3 × 3 matrix M and solve equation (18) (linear!) for the three components
of r – a special solution is usually sufficient – and construct K and L.

4. Construct the 2 × 2 matrix Z and solve equation (22) (linear!) for R or S.

5. Solve equation (23); the two independent solutions may be taken as F and G.

Steps (1) and (2) test for linearizability; steps (3)–(5) perform the construction (in principle).

4 Examples

4.1 The general linear equation

We first consider the equation

y′′ + a(x)y′ + b(x)y + c(x) = 0.

We see that f2 = f3 = 0, f1 = a(x), and f0 = b(x)y + c(x). Equations (20) and (21)
are satisfied, so this equation can in principle be cast into the form (3). However, when one
writes out equation (18), one sees quickly that the resulting linear equations give a second-order
equation for U , say, which is as difficult to solve as the original equation. Thus this method is
not a magic way to simplify the general linear second-order equation.

4.2 An equation considered by Ibragimov

Ibragimov [3] considered the equation

y′′ = x−1
[
ay′3 + by′2 +

(
1 + b2/3a

)
y′ + b/3a + b3/27a2

]
,

which has f3 = −a/x, f2 = −b/x, f1 = − (
1 + b2/a

)
/x, f0 = − (

b/3a + b3/27a3
)
/x, and which

satifies the linearizability conditions. Inspection shows that one may take a = 1 without loss of
generality, and that, by defining new variables U/x, V/x, and W/x2, one can write an equation
like the r equation (18) for which the matrix coefficients are constants, so that it can be solved
directly. The details are rather messy, but one eventually gets the linearizing transformation

X = F = y + cx, Y = G = [y + c(x − 1)]2 + x2,

where c = b/3. However, this does not save any labor, because the original equation is separable
in y′ and x and can be integrated quickly!

4.3 A trial equation

We consider the equation

y′′ + (2/x)y′ +
(
18x2 y3 − 2x/y2

)
y′3 = 0, (24)

which satisfies the linearizability conditions. We see that f0 = f2 = 0, f1 = 2/x, and f3 =
18x2y3 − 2x/y2. Thus the matrices P and Q are

P =


 −4/3x 0 0

0 2/3x 0
−1 0 2/3x


 and Q =


 0 0 0

18x2y3 − 2x/y2 0 2/y2

0 1 0


 .
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From equations (18) and (19), we see that dU = −(4U/3x)dx; so we take U = 0. Then we
have

dV = (2V/3x)dx +
(
2W/y2

)
dy and dW = (2W/3x)dx + V dy,

so that Wx = 2W/3x. Integrating, we get W = x2/3a(y), for some function a(y). We also see
that V = Wy = x2/3a′(y), and further that a′′ = 2a/y2. We use the special solution a(y) = y2,
yielding finally

U = 0, V = 2x2/3y, W = x2/3y2, so that K = 0, L = 2/y.

We can now construct the matrix Z. It is

Z =
[ −2dx/x − 2dy/y 0
−2dx/y − (

18x2 y3 − 2x/y2
)
dy −4dy/y

]
.

Write R =
[

b
c

]
. Then from equation (22) we have db = −2(dx/x + dy/y)b, which enables

immediate integration: b = k/
(
x2y2

)
, where k is a constant. We also have cx = by, which when

integrated gives c = 2k/
(
xy3

)
+ g(y).

Finally, we have cy =
(
18x2 y3 − 2x/y2

)
b− 4c/y, or, after simplification, g′ + 4g/y = −18ky.

Solution gives g(y) = −3ky2 +m/y4, where m is another constant. Integration of equation (23),
dF = [dx dy]R, now gives two solutions, one proportional to k and the other proportional to m.
We take these two solutions as F and G:

X = F (x, y) = 1/
(
xy2

)
+ y3, Y = G(x, y) = 1/y3,

the linearizing transformation. Construction of d2Y/dX2 shows that it is zero provided the
original differential equation (24) is satisfied.

Equation (24) was constructed by trial and error in order to provide a useful example of the
use of the method. It turns out to have a eight-parameter symmetry group. One can naively try
a reduction of order based on a scale transformation together with the usual tricks. Inspection of
scale in the equation shows that y has the scale x−1/5, so that y = x−1/5u produces the equation

x2u′′ + (8/5)xu′ − (4/25)u +
(
18u3 − 2/u2

)
(xu′ − u/5)3 = 0.

We continue by defining s = lnx, v = du/ds, and by converting the independent variable
to u, with the dependent variable v. We find

vdv/du + 3u/5 − 4v/25 +
(
18u3 − 2/u2

)
(v − u/5)3 = 0,

a rather nasty Abel equation.
Of course, this naive procedure applied to second order equations in general produces an

Abel equation. Application of more sophisticated techniques such as used by Stephani [17] may
produce a solution more easily when there are a number of symmetries (which has not been tried
here). But the matter does raise the question, is it necessary for an equation to have a certain
number of symmetries in order for this method to work well? Ibragimov [3] and Euler [13]
note that the answer is yes; a necessary and sufficient condition for linearization by a point
transformation is that the equation admit the sl(3, R) Lie point symmetry algebra, or that it
admit eight point symmetries. So this is another way to test for linearizability, although the
calculation of the symmetries may be lengthy.
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4.4 The general Kepler problem

The radial Newtonian central force equation, after substitution for the angular momentum and
change of independent variable to θ, can be written

(

/r2

)
(d/dθ)

[(

/mr2

)
dr/dθ

] − 
2/
(
mr3

) − f(r) = 0,

where f(r) is the force. If f(r) = −(
2A/m)rn, where A is constant, and we let r → y, θ → x,
we have, where k = n + 4,

y′′ − (2/y)y′2 − y + Ayk = 0.

Thus f3 = 0, f2 = −2/y, f1 = 0, f0 = Ayk − y. The linearizability conditions require k = 1 or 2
so that n = −3 or −2. Why are not more values of n allowed? Because of the restriction of the
original assumption of equations (2) and (3).

4.5 Geodesics on a sphere

This equation,

y′′ = 2y′2 cot y + sin y cos y,

(which also has an eight-parameter symmetry algebra) is treated by Stephani [17, p. 78]. We
have

f1 = f3 = 0, f2 = −2 cot y, f0 = − sin y cos y,

and it is easily seen that the linearization conditions are satisfied. A special solution for r gives
V = 0, U = sinx(sin y)2/3, W = cos x(sin y)2/3, so that K = tan x and L = 0. The components
of R may be found to be (b−a sinx cot y)(sec x)2 and a sec x(csc y)2. We may take the coefficients
of a and b to be two independent solutions; then integration for F and G gives X = F = tan x
and Y = G = cot y sec x, and integration of equation (2) gives

cot y = c sinx + d cos x,

where c and d are constants, the known solution.

4.6 Example from Stephani

The equation,

y′′ = (x − y)y′3,

is also treated in Stephani [17] and has an eight-parameter symmetry algebra. One sees easily
that the linearization conditions are satisfied. The equation for U is dU = 0, so that we may take
U = 0. Then dV = −Wdy and dW = V dy, which are satisfied by V = sin y and W = − cos y,
giving K = 0 and L = − tan y. Solution for R and S, and then for F and G, gives F = X = tan y
and G = Y = (x− y) sec y. Now Y = aX + b, where a and b are constants, gives the solution of
the equation essentially as suggested by Stephani:

x = y + a sin y + b cos y.

5 Third-order equation

Some authors have studied the third-order ordinary differential equation [18, 12]. The approach
used in the present paper, however, does not readily yield a solution to the third-order problem.
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