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Preface

Topological K-theory, the first generalized cohomology theory to be studied thor-
oughly, was introduced around 1960 by Atiyah and Hirzebruch, based on the Periodic-
ity Theorem of Bott proved just a few years earlier. In some respects K-theory is more
elementary than classical homology and cohomology, and it is also more powerful for
certain purposes. Some of the best-known applications of algebraic topology in the
twentieth century, such as the theorem of Bott and Milnor that there are no division
algebras after the Cayley octonions, or Adams’ theorem determining the maximum
number of linearly independent tangent vector fields on a sphere of arbitrary dimen-
sion, have relatively elementary proofs using K-theory, much simpler than the original
proofs using ordinary homology and cohomology.

The first portion of this book takes these theorems as its goals, with an exposition
that should be accessible to bright undergraduates familiar with standard material in
linear algebra, abstract algebra, and point-set topology. Later chapters of the book
assume more, approximately the contents of a standard graduate course in algebraic
topology. A concrete goal of the later chapters is to tell the full story on the stable
J-homomorphism, which gives the first level of depth in the stable homotopy groups
of spheres. Along the way various other topics related to vector bundles that are of
interest independent of K-theory are also developed, such as the characteristic classes
associated to the names Stiefel and Whitney, Chern, and Pontryagin.



Introduction

Everyone is familiar with the Mobius band, the twisted product of a circle and a
line, as contrasted with an annulus which is the actual product of a circle and a line.
Vector bundles are the natural generalization of the Mobius band and annulus, with
the circle replaced by an arbitrary topological space, called the base space of the vector
bundle, and the line replaced by a vector space of arbitrary finite dimension, called the
fiber of the vector bundle. Vector bundles thus combine topology with linear algebra,
and the study of vector bundles could be called Linear Algebraic Topology.

The only two vector bundles with base space a circle and one-dimensional fiber
are the Mobius band and the annulus, but the classification of all the different vector
bundles over a given base space with fiber of a given dimension is quite difficult
in general. For example, when the base space is a high-dimensional sphere and the
dimension of the fiber is at least three, then the classification is of the same order
of difficulty as the fundamental but still largely unsolved problem of computing the
homotopy groups of spheres.

In the absence of a full classification of all the different vector bundles over a
given base space, there are two directions one can take to make some partial progress
on the problem. One can either look for invariants to distinguish at least some of the
different vector bundles, or one can look for a cruder classification, using a weaker
equivalence relation than the natural notion of isomorphism for vector bundles. As it
happens, the latter approach is more elementary in terms of prerequisites, so let us
discuss this first.

There is a natural direct sum operation for vector bundles over a fixed base space
X, which in each fiber reduces just to direct sum of vector spaces. Using this, one can
obtain a weaker notion of isomorphism of vector bundles by defining two vector bun-
dles over the same base space X to be stably isomorphic if they become isomorphic
after direct sum with product vector bundles X xR"™ for some n, perhaps different
n’s for the two given vector bundles. Then it turns out that the set of stable isomor-
phism classes of vector bundles over X forms an abelian group under the direct sum
operation, at least if X is compact Hausdorff. The traditional notation for this group
is KO(X). In the case of spheres the groups KO(S™) have the quite unexpected prop-
erty of being periodic in n. This is called Bott Periodicity, and the values of KO(S™)
are given by the following table:

nmod8 |1 2 3 4 5 6 7 8
Kos™ |z, 2,0 7z 0 0 0 z

For example, KO (S 1) is Z,, a cyclic group of order two, and a generator for this group
is the Mobius bundle. This has order two since the direct sum of two copies of the
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Mobius bundle is the product S' x R?, as one can see by embedding two Mébius bands
in a solid torus so that they intersect orthogonally along the common core circle of
both bands, which is also the core circle of the solid torus.

Things become simpler if one passes from the real vector spaces to complex vector
spaces. The complex version of I?CJ)(X ), called K (X), is constructed in the same way
as KO (X) but using vector bundles whose fibers are vector spaces over C rather than
R. The complex form of Bott Periodicity asserts simply that K(S™) is Z for n even
and 0 for n odd, so the period is two rather than eight.

The groups K(X) and KO (X) for varying X share certain formal properties with
the cohomology groups studied in classical algebraic topology. Using a more general
form of Bott periodicity, it is in fact possible to extend the groups K(X) and KO (X)
to a full cohomology theory, families of abelian groups I?"(X ) and I?OJH(X yforneZ
that are periodic in n of period two and eight, respectively. There is more algebraic
structure here than just the additive group structure, however. Tensor products of
vector spaces give rise to tensor products of vector bundles, which in turn give prod-
uct operations in both real and complex K-theory similar to cup product in ordinary
cohomology. Furthermore, exterior powers of vector spaces give natural operations
within K-theory.

With all this extra structure, K-theory becomes a powerful tool, in some ways
more powerful even than ordinary cohomology. The prime example of this is the very
simple proof, once the basic machinery of complex K-theory has been set up, of the
theorem that there are no finite dimensional division algebras over R in dimensions
other than 1, 2, 4, and 8, the dimensions of the classical examples of the real and
complex numbers, the quaternions, and the Cayley octonions. The same proof shows
also that the only spheres whose tangent bundles are product bundles are S 1 §3 and
$7, the unit spheres in the complex numbers, quaternions, and octonions.

Another classical problem that can be solved more easily using K-theory than
ordinary cohomology is to find the maximum number of linearly independent tangent
vector fields on the sphere S". In this case complex K-theory is not enough, and the
added subtlety of real K-theory is needed. There is an algebraic construction of the
requisite number of vector fields using Clifford algebras, and the harder part is to
show there can be no more than this construction provides. Clifford algebras also
provide a nice explanation for the mysterious sequence of groups appearing the in
real form of Bott periodicity.

Now let us return to the original classification problem for vector bundles over a
given base space and the question of finding invariants to distinguish different vector
bundles. The first such invariant is orientability, the question of whether all the fibers
can be coherently oriented. For example, the Mobius bundle is not orientable since
as one goes all the way around the base circle, the orientation of the fiber lines is
reversed. This does not happen for the annulus, which is an orientable vector bundle.
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Orientability is measured by the first of a sequence of cohomology classes associ-
ated to a vector bundle, called Stiefel-Whitney classes. The next Stiefel-Whitney class
measures a more refined sort of orientability called a spin structure, and the higher
Stiefel-Whitney classes measure whether the vector bundle looks more and more like
a product vector bundle over succesively higher dimensional subspaces of the base
space. Cohomological invariants of vector bundles such as these with nice general
properties are known as characteristic classes. It turns out that Stiefel-Whitney classes
generate all characteristic classes for ordinary cohomology with Z, coefficients, but
with Z coefficients there are others, called Pontryagin and Euler classes, the latter
being related to the Euler characteristic. Although characteristic classes do not come
close to distinguishing all the different vector bundles over a given base space, except
in a few low dimensional cases, they have still proved themselves to be quite useful
objects.



Chapter
Vector Bundles

To motivate the definition of a vector bundle let us consider tangent vectors to
the unit 2-sphere S? in R®. At each point x € S? there is a tangent plane P,. This
is a 2-dimensional vector space with the point
x as its zero vector 0,.. Vectors v, € P, are
thought of as arrows with their tail at x. If
we regard a vector v, in P, as a vector in R3,
then the standard convention in linear algebra
would be to identify v, with all its parallel
translates, and in particular with the unique
translate T(v,) having its tail at the origin in

R3. The association v, — T(v,) defines a
function T:TS>—R> where TS? is the set of all tangent vectors vV, as x ranges
over S%. This function T is surjective but certainly not injective, as every nonzero
vector in R® occurs as T(v,) for infinitely many x, in fact for all x in a great circle
in $%. Moreover 7(0,) =0 forall x 52, SO T’l(O) is a whole sphere. On the other
hand, the function TS*—S*xR>, v, — (x,T(v,)), is injective, and can be used to
topologize TS 2 as a subspace of S?xR?, namely the subspace consisting of pairs
(x,v) with v orthogonal to x.

Thus TS? is first of all a topological space, and secondly it is the disjoint union
of all the vector spaces P, for x € S%. One can think of TS? as a continuous family
of vector spaces parametrized by points of S°.

The simplest continuous family of 2-dimensional vector spaces parametrized by
points of S? is of course the product S?xR?. Is that what TS? really is? More
precisely we can ask whether there is a homeomorphism h:TS?—S%xR? that takes
each plane P, to the plane {x}x R? by a vector space isomorphism. If we had such
an h, then for each fixed nonzero vector v € R? the family of vectors v, = h™!(x, v)
would be a continuous field of nonzero tangent vectors to S. It is a classical theorem
in algebraic topology that no such vector field exists. (See §2.2 for a proof using
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techniques from this book.) So TS? is genuinely twisted, and is not just a disguised
form of the product S?x R?.

Dropping down a dimension, one could consider in similar fashion the space TS*
of tangent vectors to the unit circle S' in R?. In this case there is a continuous

field v, of nonzero tangent vectors to S ! obtained by regarding v
, i ) X
points x € S! as unit complex numbers and letting v, be the h

translation of the vector ix that has its tail at x. This leads to a
homeomorphism S'xR— TS' taking (x,t) to tv,, with {x} xR
going to the tangent line at x by a linear isomorphism. Thus TS*
really is equivalent to the product S'xR!.

Moving up to S*, the unit sphere in R*, the space TS® of tangent vectors is again
equivalent to the product SIxR3. Regarding R* as the quaternions, an equivalence is
the homeomorphism S S R3>TS? sending (x, (t;,{5,t3)) to the translation of the
vector t;ix + t,jx + t3kx having its tail at x. A similar construction using Cayley
octonions shows that TS” is equivalent to S’ x R”. It is a rather deep theorem, proved
in §2.3, that S', $3, and S are the only spheres whose tangent bundle is equivalent
to a product.

Although TS" is not usually equivalent to the product S x R", there is a sense
in which this is true locally. Take the case of the 2-sphere for example. For a point
x € S? let P be the translate of the tangent plane P,. that passes through the ori-
gin. For points y € S? that are sufficiently close to x the map M, : P, — P sending
a tangent vector v, to the orthogonal projection of T(v,) onto P is a linear iso-
morphism. This is true in fact for any y on the same side of P as x. Thus for
v in a suitable neighborhood U of x in S? the map (y,vy) — (y,Try(vy)) is a
homeomorphism with domain the subspace of TS? consisting of tangent vectors at
points of U and with range the product UxP. Furthermore this homeomorphism
has the key property of restricting to a linear isomorphism from P,, onto P for each
v € U. A convenient way of rephrasing this situation, having the virtue of easily gen-
eralizing, is to let p:TS>—S? be the map (x, v, ) — x, and then we have a homeo-
morphism p’l(U) — U XP that restricts to a linear isomorphism p’l (y)—{yixpP
for each y € U.
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1.1 Basic Definitions and Constructions

Throughout the book we use the word map to mean a continuous function.

An n-dimensional vector bundle is a map p :E— B together with a real vector
space structure on p’l(b) for each b € B, such that the following local triviality
condition is satisfied: There is a cover of B by open sets U, for each of which there
exists a homeomorphism h,: p’l (Uy) = Uy X R™ taking p’l (b) to {b}xR™ by avec-
tor space isomorphism for each b € U,. Such an h, is called a local trivialization of
the vector bundle. The space B is called the base space, E is the total space, and the
vector spaces p ! (b) are the fibers. Often one abbreviates terminology by just calling
the vector bundle E, letting the rest of the data be implicit.

We could equally well take C in place of R as the scalar field, obtaining the notion
of a complex vector bundle. We will focus on real vector bundles in this chapter.
Usually the complex case is entirely analogous. In the next chapter complex vector
bundles will play the larger role, however.

Here are some examples of vector bundles:

(1) The product or trivial bundle E = BxR" with p the projection onto the first
factor.

(2) If we let E be the quotient space of I x R under the identifications (0,t) ~ (1,—t),
then the projection I x R— I induces amap p:E—S' which is a 1-dimensional vector
bundle, or line bundle. Since E is homeomorphic to a Mobius band with its boundary
circle deleted, we call this bundle the Mébius bundle.

(3) The tangent bundle of the unit sphere S in R""!

, a vector bundle p:E—S"
where E = {(x,v) € §"x R | x L v} and we think of v as a tangent vector to
S™ by translating it so that its tail is at the head of x, on §". The map p:E—S"
sends (x,v) to x. To construct local trivializations, choose any point x € S" and
let U, c S™ be the open hemisphere containing x and bounded by the hyperplane
through the origin orthogonal to x. Define hx:p’l(UX)ﬁUxxp’l(x) ~ U, xR"
by h,(y,v) = (y,m(v)) where m, is orthogonal projection onto the hyperplane
p’l(x). Then h, is a local trivialization since 7T, restricts to an isomorphism of

p~'(y) onto p~!(x) for each y € U,.

(4) The normal bundle to S™ in R™*!, a line bundle p:E— S™ with E consisting of
pairs (x,v) € S"xR™"! such that v is perpendicular to the tangent plane to S™ at
x, or in other words, v = tx for some t € R. The map p:E—S" is again given by
p(x,v) = x. As in the previous example, local trivializations h, : p U,)—U,xR
can be obtained by orthogonal projection of the fibers p~'(y) onto p~'(x) for y €
U,.

[Rn+1

(5) Real projective n-space RP" is the space of lines in through the origin.

Since each such line intersects the unit sphere S™ in a pair of antipodal points, we
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can also regard RP" as the quotient space of S™ in which antipodal pairs of points
are identified.. The canonical line bundle p:E— RP" has as its total space E the
subspace of RP" x R""! consisting of pairs (£,v) with v € £, and p({,v) = £. Again
local trivializations can be defined by orthogonal projection.

There is also an infinite-dimensional projective space RP* which is the union
of the finite-dimensional projective spaces RP" under the inclusions RP" c RP""!
coming from the natural inclusions R""' ¢ R"™*2. The topology we use on RP® is
the weak or direct limit topology, for which a set in RP* is open iff it intersects each

RP" in an open set. The inclusions RP" c RP"*!

induce corresponding inclusions
of canonical line bundles, and the union of all these is a canonical line bundle over
RP”, again with the direct limit topology. Local trivializations work just as in the

finite-dimensional case.

(6) The canonical line bundle over RP" has an orthogonal complement, the space
E* = {({,v) € RP"XR""! | v 1L £}. The projection p:E*—RP", p({,v) = ¥,
is a vector bundle with fibers the orthogonal subspaces £*, of dimension n. Local
trivializations can be obtained once more by orthogonal projection.

A natural generalization of RP" is the so-called Grassmann manifold G, (R"), the
space of all k-dimenional planes through the originin R". The topology on this space
will be defined precisely in §1.2, along with a canonical k-dimensional vector bundle
over it consisting of pairs (£,v) where £ is a point in G,(R") and v is a vector in
{. This too has an orthogonal complement, an (n — k)-dimensional vector bundle
consisting of pairs (£,v) with v orthogonal to £.

An isomorphism between vector bundles p, : E;, — B and p, : E; — B over the same
base space B is a homeomorphism h:E, —E, taking each fiber p;'(b) to the cor-
responding fiber p, 1(b) by a linear isomorphism. Thus an isomorphism preserves
all the structure of a vector bundle, so isomorphic bundles are often regarded as the
same. We use the notation E; = E, to indicate that E; and E, are isomorphic.

For example, the normal bundle of S in R"™*! is isomorphic to the product bun-
dle S"xR by the map (x,tx) — (x,t). The tangent bundle to S' is also isomorphic
to the trivial bundle S'x R, via (eie,iteie) — (eig, t), for e ¢ S' and t € R.

As a further example, the Mébius bundle in (2) above is isomorphic to the canon-
ical line bundle over RP! ~ S'. Namely, RP! is swept out by a line rotating through
an angle of T, so the vectors in these lines sweep out a rectangle [0, 1] X R with the
two ends {0} xR and {7t} xR identified. The identification is (0,x) ~ (71, —x) since
rotating a vector through an angle of 1t produces its negative.

One can sometimes distinguish nonisomorphic bundles by looking at the comple-
ment of the zero section since any vector bundle isomorphism h:E; — E, must take
the zero section of E; onto the zero section of E,, hence the complements of the zero
sections in E; and E, must be homeomorphic. For example, the Mobius bundle is not
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isomorphic to the product bundle S!x R since the complement of the zero section
in the Mobius bundle is connected while for the product bundle the complement of
the zero section is not connected. This method for distinguishing vector bundles can
also be used with more refined topological invariants such as homology groups.

Sections

A section of a vector bundle p:E— B is amap s:B—E assigning to each b € B a
vector s(b) in the fiber p’l(b). The condition s(b) € p’l(b) can also be written as
ps = 1, the identity map of B. Every vector bundle has a canonical section, the zero
section whose value is the zero vector in each fiber. We often identity the zero section
with its image, a subspace of E which projects homeomorphically onto B by p.

One can sometimes distinguish nonisomorphic bundles by looking at the com-
plement of the zero section since any vector bundle isomorphism h:E; —E, must
take the zero section of E; onto the zero section of E,, so the complements of the
zero sections in E; and E, must be homeomorphic. For example, we can see that the
Mobius bundle is not isomorphic to the product bundle S xR since the complement
of the zero section is connected for the Mobius bundle but not for the product bundle.

At the other extreme from the zero section would be a section whose values are
all nonzero. Not all vector bundles have such a section. Consider for example the
tangent bundle to S™. Here a section is just a tangent vector field to S™. As we shall
show in §2.2, S has a nonvanishing vector field iff n is odd. From this it follows
that the tangent bundle of S" is not isomorphic to the trivial bundle if n is even
and nonzero, since the trivial bundle obviously has a nonvanishing section, and an
isomorphism between vector bundles takes nonvanishing sections to nonvanishing
sections.

In fact, an n-dimensional bundle p: E— B is isomorphic to the trivial bundle iff
it has n sections s;,---,s, such that the vectors s,(b),---,s,(b) are linearly inde-
pendent in each fiber p !(b). In one direction this is evident since the trivial bundle
certainly has such sections and an isomorphism of vector bundles takes linearly inde-
pendent sections to linearly independent sections. Conversely, if one has » linearly
independent sections s;, the map h:BxR" —E given by h(b,ty,---,t,) = >, t;s;(b)
is a linear isomorphism in each fiber, and is continuous since its composition with
a local trivialization p’l (U)—UxR" is continuous. Hence h is an isomorphism by
the following useful technical result:

Lemma 1.1. A continuous map h:E,—E, between vector bundles over the same
base space B is an isomorphism if it takes each fiber pl‘l(b) to the corresponding
fiber pz’l (b) by a linear isomorphism.

Proof: The hypothesis implies that h is one-to-one and onto. What must be checked
is that h™! is continuous. This is a local question, so we may restrict to an open set
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U C B over which E; and E, are trivial. Composing with local trivializations reduces
to the case of an isomorphism h:UxR" —UxR" of the form h(x,v) = (x, g, (v)).
Here g, is an element of the group GL, (R) of invertible linear transformations of
R", and g, depends continuously on x. This means that if g, is regarded as an

I also

nxn matrix, its n° entries depend continuously on x. The inverse matrix Ix
depends continuously on x since its entries can be expressed algebraically in terms
of the entries of g, , namely, g lis 1 /(detg, ) times the classical adjoint matrix of

gy - Therefore h™'(x,v) = (x,g5" (v)) is continuous. u]

As an example, the tangent bundle to S! is trivial because it has the section
(x1,X5) — (=x5,x;) for (x;,x,) € S'. In terms of complex numbers, if we set
z = x; + ix, then this section is z — iz since iz = —x, + ix;.

There is an analogous construction using quaternions instead of complex num-
bers. Quaternions have the form z = x; +1ix, + jx3 + kx,, and form a division algebra
H via the multiplication rules i> = j% = k* = -1, ij = k, jk = i, ki = j, ji = —k,
kj = —i,and ik = —j. If we identify H with R* via the coordinates (x;,x5,X3,X4),
then the unit sphere is $* and we can define three sections of its tangent bundle by
the formulas

Z— iz or (X1, X0, X3,%4) ¥ (=X2,X1, —Xy4,X3)
Z— jz or (X1, X0, X3,X4) ¥ (—=X3,X4, X1, —X>)
zw— kz or (X1, X5, X5, X4) ¥ (—Xy4, —X3,X5,X;)

It is easy to check that the three vectors in the last column are orthogonal to each other
and to (xy,x5,x3,x4), s0 we have three linearly independent nonvanishing tangent
vector fields on S%, and hence the tangent bundle to S is trivial.

The underlying reason why this works is that quaternion multiplication satisfies
|zw| = |z||w|, where || is the usual norm of vectors in R*. Thus multiplication by a
quaternion in the unit sphere S° is an isometry of H. The quaternions 1, 1, Jj, k form
the standard orthonormal basis for R*, so when we multiply them by an arbitrary unit
quaternion z € S 3 we get a new orthonormal basis z,iz, jz, kz.

The same constructions work for the Cayley octonions, a division algebra struc-
ture on R®. Thinking of R® as HxH, multiplication of octonions is defined by
(z1,20) (W, wy) = (zyw, —W»2,,2,W; + W52, ) and satisfies the key property [zw| =
|z||w]|. This leads to the construction of seven orthogonal tangent vector fields on
the unit sphere S’ so the tangent bundle to S’ is also trivial. As we shall show in
§2.3, the only spheres with trivial tangent bundle are S', $3, and 7.

Another way of characterizing the trivial bundle E ~ Bx R" is to say that there is a
continuous projection map E— R" which is a linear isomorphism on each fiber, since
such a projection together with the bundle projection E— B gives an isomorphism
E =~ BxR", by Lemma 1.1.
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Direct Sums

Given two vector bundles p, : E; — B and p, : E, — B over the same base space B,
we would like to create a third vector bundle over B whose fiber over each point of B
is the direct sum of the fibers of E; and E, over this point. This leads us to define
the direct sum of E; and E, as the space

E\®F, = { (v},v,) €E;XE, | p1(v)) = ps(v,) }

There is then a projection E, ® E, — B sending (v, v,) to the point p, (v;) = p,(v,).
The fibers of this projection are the direct sums of the fibers of E;, and E,, as we
wanted. For a relatively painless verification of the local triviality condition we make
two preliminary observations:

(a) Given a vector bundle p:E— B and a subspace A C B, then p:p’l(A)—>A is
clearly a vector bundle. We call this the restriction of E over A .

(b) Given vector bundles p,:E,—B; and p,:E,—B,, then p;xXp,:E; XE,—B;XB,
is also a vector bundle, with fibers the products pl’l(bl)xpz’l(bz). For if we have
local trivializations h,:p; ' (Uy) = UxxR"™ and hg:p; ' (Ug) = UgxR™ for E, and
E,, then h,xhg is alocal trivialization for E; X E,.

Then if E, and E, both have the same base space B, the restriction of the product
E, < E, over the diagonal B = {(b,b) € Bx B} is exactly E; ®E,.

The direct sum of two trivial bundles is again a trivial bundle, clearly, but the
direct sum of nontrivial bundles can also be trivial. For example, the direct sum of
the tangent and normal bundles to S™ in R™*! is the trivial bundle S"xR"*! since
elements of the direct sum are triples (x,v,tx) € S"xR" ' xR""! with x 1 v, and
the map (x,v,tx) — (x,v +tx) gives an isomorphism of the direct sum bundle with
S"xR™!. So the tangent bundle to S™ is stably trivial: it becomes trivial after taking
the direct sum with a trivial bundle.

As another example, the direct sum E @ E* of the canonical line bundle E— RP"
with its orthogonal complement, defined in example (6) above, is isomorphic to the
trivial bundle RP"x R"™! via the map (¢,v,w) — (£,v + w) for v € £ and w L ¢.
Specializing to the case n = 1, the bundle E* is isomorphic to E itself by the map that
rotates each vector in the plane by 90 degrees. We noted earlier that E is isomorphic
to the Mobius bundle over S' = [R.Pl, so it follows that the direct sum of the Mobius
bundle with itself is the trivial bundle. To see this geometrically, embed the Mo6bius
bundle in the product bundle S' x R? by taking the line in the fiber {0} x R® that makes
an angle of 0/2 with the x-axis, and then the orthogonal lines in the fibers form a
second copy of the Mébius bundle, giving a decomposition of the product S'xR? as
the direct sum of two Mo6bius bundles.

Example: The tangent bundle of real projective space. Starting with the isomor-
phism S"xR""! ~ TS"®NS", where NS" is the normal bundle of $" in R""!,
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suppose we factor out by the identifications (x,v) ~ (—x, —v) on both sides of this
isomorphism. Applied to TS™ this identification yields TRP", the tangent bundle to
RP". This is saying that a tangent vector to RP" is equivalent to a pair of antipodal
tangent vectors to S™. A moment’s reflection shows this to be entirely reasonable,
although a formal proof would require a significant digression on what precisely tan-
gent vectors to a smooth manifold are, a digression we shall skip here. What we will
show is that even though the direct sum of TRP" with a trivial line bundle may not
be trivial as it is for a sphere, it does split in an interesting way as a direct sum of
nontrivial line bundles.

In the normal bundle NS the identification (x,v) ~ (-x, —v) can be written as
(x,tx) ~ (=x,t(—x)). This identification yields the product bundle RP" xR since
the section x — (—x,—x) is well-defined in the quotient. Now let us consider the
identification (x,v) ~ (-x,—v) in S"xR"*!. This identification respects the co-

ordinate factors of R™*!

, so the quotient is the direct sum of n + 1 copies of the
line bundle E over RP" obtained by making the identifications (x,t) ~ (-x, —t)
in S"xR. The claim is that E is just the canonical line bundle over RP". To see
this, let us identify S" xR with NS" by the isomorphism (x,t) — (x,tx). hence
(=x,—t) — ((=x,(=t)(=x)) = (—=x,tx). Thus we have the identification (x,tx) ~
(—=x,tx) in NS™. The quotient is the canonical line bundle over RP" since the iden-

R™! and

tifications x ~ —x in the first coordinate give lines through the origin in
in the second coordinate there are no identifications so we have well-defined vectors

tx in these lines.

Thus we have shown that the tangent bundle TRP" is stably isomorphic to the
direct sum of n + 1 copies of the canonical line bundle over RP"*. When n = 3, for
example, TRP? is trivial since the three linearly independent tangent vector fields on
$3 defined earlier in terms of quaternions pass down to linearly independent tangent
vector fields on the quotient RP®. Hence the direct sum of four copies of the canonical
line bundle over RP? is trivial. Similarly using octonions we can see that the direct
sum of eight copies of the canonical line bundle over RP’ is trivial. In §2.5 we will
determine when the sum of k copies of the canonical line bundle over RP" is at least
stably trivial. The answer turns out to be rather subtle: This happens exactly when k
is a multiple of 29™M where @ (n) is the number of integers i in therange 0 <i<n
with i congruent to 0, 1, 2, or 4 modulo 8. For n = 3,7 this gives 2™ = 4,8,
the same numbers we obtained from the triviality of TRP® and TRP’. If there were
a 16-dimensional division algebra after the octonions then one might expect the sum
of 16 copies of the canonical line bundle over RP!® to be trivial. However this is not
the case since 291> =27 = 128.
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Inner Products

An inner product on a vector bundle p:E—B is a map (,):E®E—R which
restricts in each fiber to an inner product, a positive definite symmetric bilinear form.

Proposition 1.2. Aninner product exists for a vector bundle p : E— B if B is compact
Hausdorff or more generally paracompact.

The definition of paracompactness we are using is that a space X is paracom-
pact if it is Hausdorff and every open cover has a subordinate partition of unity, a
collection of maps @z:X—[0, 1] each supported in some set of the open cover, and
with > g ®p = 1, only finitely many of the @, being nonzero near each point of X.
Constructing such functions is easy when X is compact Hausdorff, using Urysohn’s
Lemma. This is done in the appendix to this chapter, where we also show that certain
classes of noncompact spaces are paracompact. Most spaces that arise naturally in
algebraic topology are paracompact.

Proof: An inner product for p:E— B can be constructed by first using local trivial-
izations h:p ' (Uy) — Uyx R™, to pull back the standard inner product in R" to an
inner product (-, -), on p’l(Ua), then setting (v,w) = ZB chp(v)(v,w)(x(B) where
{@p} is a partition of unity with the support of @z contained in Uy g, - a

In the case of complex vector bundles one can construct Hermitian inner products
in the same way.

In linear algebra one can show that a vector subspace is always a direct summand
by taking its orthogonal complement. We will show now that the corresponding result
holds for vector bundles over a paracompact base. A vector subbundle of a vector
bundle p:E— B has the natural definition: a subspace E, C E intersecting each fiber
of E in a vector subspace, such that the restriction p:E,— B is a vector bundle.

Proposition 1.3. If E— B is a vector bundle over a paracompact base B and E, C E
is a vector subbundle, then there is a vector subbundle Ey C E such that Ey®Ey ~ E.

Proof: With respect to a chosen inner product on E, let Ej be the subspace of E
which in each fiber consists of all vectors orthogonal to vectors in E,. We claim
that the natural projection E; — B is a vector bundle. If this is so, then E,®E; is
isomorphic to E via the map (v,w) — v + w, using Lemma 1.1.

To see that Ej satisfies the local triviality condition for a vector bundle, note
first that we may assume E is the product Bx R"™ since the question is local in B.
Since E|, is a vector bundle, of dimension m say, it has m independent local sections
b — (b,s;(b)) near each point b, € B. We may enlarge this set of m independent
local sections of E, to a set of n independent local sections b — (b,s;(b)) of E
by choosing s,,,;,---,s, firstin the fiber p~!(b,), then taking the same vectors for
all nearby fibers, since if s,---,8,,,8,.41, " *,S, are independent at b,, they will
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remain independent for nearby b by continuity of the determinant function. Apply
the Gram-Schmidt orthogonalization process to sy, -+, S;,, S;me1s - *» Sy 1 each fiber,
using the given inner product, to obtain new sections s;. The explicit formulas for
the Gram-Schmidt process show the s;’s are continuous, and the first m of them are
a basis for E, in each fiber. The sections s; allow us to define a local trivialization
h:p 1 (U)—UxR" with h(b,s.(b)) equal to the i'" standard basis vector of R".
This h carries E, to UxR™ and Ey to UxR"™™™, so h|Ey is alocal trivialization of
Egy. i

Note that when the subbundle E, is equal to E itself, the last part of the proof
shows that for any vector bundle with an inner product it is always possible to choose
local trivializations that carry the inner product to the standard inner product, so the
local trivializations are by isometries.

We have seen several cases where the sum of two bundles, one or both of which
may be nontrivial, is the trivial bundle. Here is a general result result along these lines:

Proposition 1.4. For each vector bundle E— B with B compact Hausdorff there
exists a vector bundle E' — B such that E®E’ is the trivial bundle.

This can fail when B is noncompact. An example is the canonical line bundle over
RP*, as we shall see in Example 3.6.

Proof: To motivate the construction, suppose first that the result holds and hence
that E is a subbundle of a trivial bundle Bx RN . Composing the inclusion of E into
this product with the projection of the product onto R" yields a map E—R" that
is a linear injection on each fiber. Our strategy will be to reverse the logic here, first
constructing a map E— R" that is a linear injection on each fiber, then showing that
this gives an embedding of E in BxR" as a direct summand.

Each point x € B has a neighborhood U, over which E is trivial. By Urysohn’s
Lemma there is a map @, :B—[0, 1] thatis 0 outside U, and nonzero at x. Letting
x vary, the sets (p;1 (0,1] form an open cover of B. By compactness this has a finite
subcover. Let the corresponding U,’s and @, ’s be relabeled U; and ;. Define
gi E—R" by g;(v) = ;(p(v))[1;h;(v)] where p is the projection E— B and T1;h;
is the composition of a local trivialization h;:p ' (U;) = U; x R™ with the projection
M; to R"™. Then g; is a linear injection on each fiber over (p{1 (0,1], so if we make
the various g;’s the coordinates of a map g:E— RN with RN a product of copies of
R", then g is a linear injection on each fiber.

The map g is the second coordinate of amap f:E— Bx RN with first coordinate
p. The image of f is a subbundle of the product Bx RN since projection of RN onto
the it" R™ factor gives the second coordinate of a local trivialization over @;*(0,1].
Thus we have E isomorphic to a subbundle of BxR"Y so by preceding proposition
there is a complementary subbundle E’ with E®E’ isomorphic to Bx RN . O
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Tensor Products

In addition to direct sum, a number of other algebraic constructions with vec-
tor spaces can be extended to vector bundles. One which is particularly important
for K-theory is tensor product. For vector bundles p,:E,—B and p,:E,— B, let
E,®E,, as a set, be the disjoint union of the vector spaces pl’l(x)®p2’1(x) for
x € B. The topology on this set is defined in the following way. Choose isomorphisms
h;:p;'(U)—UxR" for each open set U C B over which E; and E, are trivial. Then
a topology 7T, on the set py Luye 123 L(U) is defined by letting the fiberwise tensor
product map h; ®h,:p; (U)®p, ' (U)—Ux (R™ ® R™) be a homeomorphism. The
topology 7 is independent of the choice of the h;’s since any other choices are ob-
tained by composing with isomorphisms of U x R™ of the form (x,v)— (x, g;(x)(v))
for continuous maps g;:U—GL,, (R), hence h, ®h, changes by composing with
analogous isomorphisms of Ux (R™ ® R"™?) whose second coordinates g, ® g, are
continuous maps U— GL,,,,,, (R), since the entries of the matrices g, (x) ® g,(x) are
the products of the entries of g, (x) and g,(x). When we replace U by an open sub-
set V, the topology on pl’l(V) ®p2’1(V) induced by T, is the same as the topology
Jy since local trivializations over U restrict to local trivializations over V. Hence we
get a well-defined topology on E; ® E, making it a vector bundle over B.

There is another way to look at this construction that takes as its point of depar-
ture a general method for constructing vector bundles we have not mentioned previ-
ously. If we are given a vector bundle p : E— B and an open cover {U,} of B with lo-
cal trivializations h,:p ' (U,) — U,xR", then we can reconstruct E as the quotient
space of the disjoint union [[,(U,xR") obtained by identifying (x,v) € UyxR"
with hﬁh;l (x,v) € Ug X R"™ whenever x € Uy N Ug. The functions hBh;l can
be viewed as maps ggy:Uy N Ug—GL,(R). These satisfy the ‘cocycle condition’
9yp9pa = Iya 0N Uy N Ug N U,,. Any collection of ‘gluing functions’ gg, satisfying
this condition can be used to construct a vector bundle E— B.

In the case of tensor products, suppose we have two vector bundles E; — B and
E,— B. We can choose an open cover {U,} with both E, and E, trivial over each U,,
and so obtain gluing functions géa :Uy N Ug—GL,, (R) for each E;. Then the gluing
functions for the bundle E, ® E, are the tensor product functions géa ® géa assigning
toeach x e Uy n Ug the tensor product of the two matrices géa(x) and gfm(x).

It is routine to verify that the tensor product operation for vector bundles over a
fixed base space is commutative, associative, and has an identity element, the trivial
line bundle. It is also distributive with respect to direct sum.

If we restrict attention to line bundles, then the set Vect' (B) of isomorphism
classes of one-dimensional vector bundles over B is an abelian group with respect
to the tensor product operation. The inverse of a line bundle E— B is obtained by
replacing its gluing matrices gﬁa(x) € GL,(R) with their inverses. The cocycle con-
dition is preserved since 1x 1 matrices commute. If we give E an inner product, we
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may rescale local trivializations h, to be isometries, taking vectors in fibers of E to
vectors in R! of the same length. Then all the values of the gluing functions 9py are
+1, being isometries of R. The gluing functions for E®E are the squares of these
9p’s, hence are identically 1, so E®E is the trivial line bundle. Thus each element of
Vect! (B) is its own inverse. As we shall see in §3.1, the group Vect! (B) is isomorphic
to a standard object in algebraic topology, the cohomology group H'(B;Z,) when B
is homotopy equivalent to a CW complex.

These tensor product constructions work equally well for complex vector bundles.
Tensor product again makes the complex analog Vect}c (B) of Vect! (B) into an abelian
group, but after rescaling the gluing functions gz, for a complex line bundle E, the
values are complex numbers of norm 1, not necessarily +1, so we cannot expect E® F
to be trivial. In §3.1 we will show that the group Vecté(B ) is isomorphic to H 2 (B;Z)
when B is homotopy equivalent to a CW complex.

We may as well mention here another general construction for complex vector
bundles E— B, the notion of the conjugate bundle E— B. As a topological space, E
is the same as E, but the vector space structure in the fibers is modified by redefining
scalar multiplication by the rule A(v) = Av where the right side of this equation
means scalar multiplication in E and the left side means scalar multiplication in E.
This implies that local trivializations for E are obtained from local trivializations for
E by composing with the coordinatewise conjugation map C"— C" in each fiber. The
effect on the gluing maps gg, is to replace them by their complex conjugates as
well. Specializing to line bundles, we then have E®E isomorphic to the trivial line
bundle since its gluing maps have values zz = 1 for z a unit complex number. Thus
conjugate bundles provide inverses in Vecté(B) .

Besides tensor product of vector bundles, another construction useful in K-theory
is the exterior power AX(E) of a vector bundle E. Recall from linear algebra that
the exterior power AK(V) of a vector space V is the quotient of the k-fold tensor
product V® --- ®V by the subspace generated by vectors of the form v, ¢ --- e v} —
SgN(0) V(1) ® -+ ® Vy(y) Where o is a permutation of the subscripts and sgn(o) =
+1 is its sign, +1 for an even permutation and —1 for an odd permutation. If V has
dimension n then Ak(V) has dimension (Z) . Now to define }\k(E ) for a vector bundle
p : E— B the procedure follows closely what we did for tensor product. We first form
the disjoint union of the exterior powers 2\"(7[)’1 (x)) of all the fibers p’l (x), then we
define a topology on this set via local trivializations. The key fact about tensor product
which we needed before was that the tensor product @ ® ¢ of linear transformations
@ and ¢ depends continuously on @ and y . For exterior powers the analogous fact
is that a linear map @ : R"™— R" induces a linear map A* (@) : AK(R™) — A¥(R™) which
depends continuously on ¢. This holds since A¥(p) is a quotient map of the k-fold
tensor product of @ with itself.
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Associated Fiber Bundles

If we modify the definition of a vector bundle by dropping all references to vector
spaces and replace the model fiber R" by an arbitrary space F, then we have the more
general notion of a fiber bundle with fiber F. This is a map p:E— B such that there
is a cover of B by open sets U, for each of which there exists a homeomorphism
h“:p’l(Ua)—>Ua><F taking p’l(b) to {b}xF for each b € U,. We will describe
now several different ways of constructing fiber bundles from vector bundles.

Having an inner product on a vector bundle E, lengths of vectors are defined, and
we can consider the subspace S(E) consisting of the unit spheres in all the fibers. The
natural projection S(E) — B is a fiber bundle with sphere fibers since we have observed
that local trivializations for E can be chosen to be isometries in each fiber, so these
local trivializations restrict to local trivializations for S(E). Similarly there is a disk
bundle D (E)— B with fibers the disks of vectors of length less than or equal to 1. Itis
possible to describe S(E) without reference to an inner product, as the quotient of the
complement of the zero section in E obtained by identifying each nonzero vector with
all positive scalar multiples of itself. It follows that D(E) can also be defined without
invoking a metric, namely as the mapping cylinder of the projection S(E)— B. This
is the quotient space of S(E)x [0, 1] obtained by identifying two points in S(E) x {0}
if they have the same image in B.

The canonical line bundle E— RP™ has as its unit sphere bundle S(E) the space
of unit vectors in lines through the origin in R™*!. Since each unit vector uniquely
determines the line containing it, S(E) is the same as the space of unit vectors in
R™! ie., S™.

Here are some more examples.

(1) Associated to a vector bundle E— B is the projective bundle P(E) — B, where P(E)
is the space of all lines through the origin in all the fibers of E. We topologize P(E) as
the quotient of the sphere bundle S(E) obtained by factoring out scalar multiplication
in each fiber. Over a neighborhood U in B where E is a product U x R", this quotient
is UxRP" !, so P(E) is a fiber bundle over B with fiber RP" !, with respect to the
projection P(E)— B which sends each line in the fiber of E over a point b € B to b.

(2) For an n-dimensional vector bundle E— B, the associated flag bundle F(E)— B
has total space F(E) the subspace of the n-fold product of P(E) with itself consisting
of n-tuples of orthogonal lines in fibers of E. The fiber of F(E) is thus the flag
manifold F(R") consisting of n-tuples of orthogonal lines through the origin in R™.
Local triviality follows as in the preceding example. More generally, for any k < n one
could take k-tuples of orthogonal lines in fibers of E and get a bundle F; (E) — B.

(3) As arefinement of the last example, one could form the Stiefel bundle V, (E) — B,
where points of V} (E) are k-tuples of orthogonal unit vectors in fibers of E, so V; (E)
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is a subspace of the product of k copies of S(E). The fiber of V,(E) is the Stiefel
manifold V, (R") of orthonormal k-frames in R".

(4) Generalizing P(E), there is the Grassmann bundle G, (E)— B of k-dimensional
linear subspaces of fibers of E. This is the quotient space of V) (E) obtained by
identifying two k-frames in a fiber if they span the same subspace of the fiber. The
fiber of G4 (E) is the Grassmann manifold G;(R™) of k-planes through the origin in
R™.

Exercises
1. Show that a vector bundle E— X has k independent sections iff it has a trivial
k-dimensional subbundle.

2. For a vector bundle E— X with a subbundle E’ c E, construct a quotient vector
bundle E/E'— X.

3. Show that the orthogonal complement of a subbundle is independent of the choice
of inner product, up to isomorphism.
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1.2 Classifying Vector Bundles

As was stated in the Introduction, it is usually a difficult problem to classify all
the different vector bundles over a given base space. The goal of this section will be to
rephrase the problem in terms of a standard concept of algebraic topology, the idea of
homotopy classes of maps. This will allow the problem to be solved directly in a few
very simple cases. Using machinery of algebraic topology, other more difficult cases
can be handled as well, as is explained in §??. The reformulation in terms of homotopy
also offers some conceptual enlightment about the structure of vector bundles.

For the reader who is unfamiliar with the notion of homotopy we give the basic
definitions in the Glossary [not yet written], and more details can be found in the
introductory chapter of the author’s book Algebraic Topology.

Pullback Bundles

We will denote the set of isomorphism classes of n-dimensional real vector bun-
dles over B by Vect"(B). The complex analogue, when we need it, will be denoted
by Vect¢ (B). Our first task is to show how a map f:A— B gives rise to a function
f*:Vect(B)— Vect(A), in the reverse direction.

Proposition 1.5. Given a map f:A— B and a vector bundle p :E— B, then there
exists a vector bundle p’ :E'— A with a map f :E'—E taking the fiber of E' over
each point a € A isomorphically onto the fiber of E over f(a), and such a vector
bundle E’ is unique up to isomorphism.

From the uniqueness statement it follows that the isomorphism type of E’ de-
pends only on the isomorphism type of E since we can compose the map f  with
an isomorphism of E with another vector bundle over B. Thus we have a function
f*:Vect(B)— Vect(A) taking the isomorphism class of E to the isomorphism class
of E’. Often the vector bundle E’ is written as f*(E) and called the bundle induced
by f, or the pullback of E by f.

Proof: First we construct an explicit pullback by setting E' = { (a,v) € AXE | f(a) =
p(v)}. This subspace of AxE fits into the diagram at the right where p’(a,v) = a

and f'(a,v) = v. Notice that the two compositions fp’ and pf’ .7
from E’ to B are equal since they both since a pair (a,v) to f(a). E ) E
The formula fp' = pf  looks a bit like a commutativity relation, lp ¥ lp

A —

which may explain why the word commutative is used to describe a
diagram like this one in which any two compositions of maps from one point in the
diagram to another are equal.

If we let Iy denote the graph of f, all points (a, f(a)) in AXB, then p’ factors
as the composition E'—»Ff—>A, (a,v) — (a,p(v)) = (a,f(a)) — a. The first of
these two maps is the restriction of the vector bundle 1 xp:AXE— AXB over the
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graph Iy, so it is a vector bundle, and the second map is a homeomorphism, so their
composition p’:E'— A is a vector bundle. The map f' obviously takes the fiber E’
over a isomorphically onto the fiber of E over f(a).

For the uniqueness statement, we can construct an isomorphism from an arbitrary
FE’ satisfying the conditions in the proposition to the particular one just constructed by
sending v’ € E’ to the pair (p’(v'), f (v')). This map obviously takes each fiber of E’
to the corresponding fiber of f*(F) by a vector space isomorphism, so by Lemma 1.1
it is an isomorphism of vector bundles. O

One can be more explicit about local trivializations in the pullback bundle f* (E)
constructed above. If E is trivial over a subspace U C B then f*(E) is trivial over
f7Y(U) since linearly independent sections s; of E over U give rise to independent
sections a — (a,s;(f(a))) of f*(E) over f~1(U). In particular, the pullback of a
trivial bundle is a trivial bundle. This can also be seen directly from the definition,
which in the case E = Bx R" just says that f*(F) consists of the triples (a, b,v) in
AxBxR" with b = f(a), so b is redundant and we have just the product AxR".

Now let us give some examples of pullbacks.

(1) The restriction of a vector bundle p:E— B over a subspace A C B can be viewed
as a pullback with respect to the inclusion map A < B since the inclusion p ' (A) > E
is certainly an isomorphism on each fiber.

(2) Another very special case is when the map f is a constant map, having image a
single point b € B. Then f*(F) is just the product Ax p’l(b), a trivial bundle.

(3) The tangent bundle TS" is the pullback of the tangent bundle TRP" via the quo-
tient map S" — RP". Indeed, TRP" was defined as a quotient space of TS" and the
quotient map takes fibers isomorphically to fibers.

(4) An interesting example which is small enough to be visualized completely is the
pullback of the Mobius bundle E—S! by the two-to-one map f:S'—S! given by
f(z) = z% in complex notation. One can regard the Mobius bundle as the quotient
of S'x R under the identifications (z,t) ~ (-z,—t), and the quotient map for this
identification is the map f’ exhibiting the annulus S' xR as the pullback of the Mébius
bundle. More concretely, the pullback bundle can be thought of as a coat of paint
applied to ‘both sides’ of the Mobius bundle, and the map f’ sends each molecule
of paint to the point of the Moébius band to which it adheres. Since E has one half-
twist, the pullback has two half-twists, hence is the trivial bundle. More generally, if
E,, is the pullback of the Mobius bundle by the map z — z", then E,, is the trivial
bundle for n even and the Mobius bundle for n odd. This can be seen by viewing
the Mobius bundle as the quotient of a strip [0,1]x R obtained by identifying the
two edges {0} xR and {1} xR by a reflection of R, and then the bundle E,, can be
constructed from n such strips by identifying the right edge of the i'" strip to the
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left edge of the i + 15t strip by a reflection, the number i being taken modulo n so
that the last strip is glued back to the first.

(5) At the end of the previous section we defined the flag bundle F(E) associated to
an n-dimensional vector bundle E— B to be the space of orthogonal direct sum de-
compositions of fibers of E into lines. The vectors in the i line form a line bundle
L;— F(E), and the direct sum L, & --- & L,, is nothing but the pullback of E with re-
spect to the projection F(E)— E since a point in the pullback L,&0L,—>E
consists of an n-tuple of lines #; 1L --- 1 £, in a fiber of E | |
B
uniquely as a sum v = vy + --- + v,, with v; € £;. This construction for pulling

together with a vector v in this fiber, and v can be expressed F(E)

an arbitrary bundle back to a sum of line bundles is a key ingredient the so-called
‘splitting principle’ which is important in §2.3 and §3.1.

Here are some elementary properties of pullbacks:
i) (f@)"(E) =~ g* (f*(E)).

(i) 1*(E) ~ E.
(iii) f*(E; ®E,) ~ f*(E;) ® f*(E,).
(iv) f*(E;®E,) ~ f*(E;)® f*(E,).
The proofs are easy applications of the preceding proposition. In each case one just
checks that the bundle on the right satisfies the characteristic property of a pullback.
For example in (iv) there is a natural map from f* (Ey) ®f* (E,) to E; ®E, thatis an
isomorphism on each fiber, so f* (Ey) ® f* (E,) satisfies the condition for being the
pullback f*(E;®E,).

Now we come to the make technical result about pullbacks:

Theorem 1.6. Given a vector bundle p:E— B and homotopic maps fy, f,:A—B,
then the induced bundles f; (E) and f,*(E) are isomorphicif A is compact Hausdorff
or more generally paracompact.

Proof: Let F: AxI— B be a homotopy from f;, to f;. The restrictions of F*(E) over
Ax {0} and Ax {1} are then fJ (E) and f;*(E). So the theorem will be an immediate
consequence of the following result:

’ Proposition 1.7. The restrictions of a vector bundle E— XXI over Xx {0} and
Xx {1} are isomorphic if X is paracompact.

Proof: We need two preliminary facts:

(1) A vector bundle p:E— XX [a,b] is trivial if its restrictions over X x[a,c] and
XX [c,b] are both trivial for some ¢ € (a,b). To see this, let these restrictions
be E;, = p '(Xx[a,c]) and E, = p '(Xx[c,b]), and let h,:E;—Xx[a,c]xR"
and h,:E,— XX [c,b]x R" be isomorphisms. These isomorphisms may not agree on
p (X x{c}), but they can be made to agree by replacing h, by its composition with
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the isomorphism X x [¢,b]x R"— X x [c,b]x R"™ which on each slice X x {x}xR" is
given by hihy': Xx {c}xR"—Xx {c}xR". Once h, and h, agree on E; N E,, they
define a trivialization of E.

(2) Foravectorbundle p: E— X X1, there exists an open cover {U,} of X so thateach
restriction p ! (UyxI)— U, xI is trivial. This is because for each x € X we can find
open neighborhoods U, ;,---,U, in X and a partition 0 =, <t; <--- <t =1 of
[0, 1] such that the bundle is trivial over U, ;X [t;_;,t;], using compactness of [0, 1].
Then by (1) the bundle is trivial over U, xI where Uy = U, N --- N Uy .

Now we prove the proposition. By (2), we can choose an open cover {U,} of X
so that E is trivial over each UyxI. Let us first deal with the simpler case that X
is compact Hausdorff. Then a finite number of U,’s cover X. Relabel these as U;
for i =1,2,---,m. As shown in Proposition 1.4 there is a corresponding partition
of unity by functions ¢; with the support of @; contained in U;. For i = 0, let
Y; = @, + -+ @,;, soin particular ¢; = 0 and y,, = 1. Let X; be the graph of y;,
the subspace of X xI consisting of points of the form (x, y;(x)), and let p;:E;— X;
be the restriction of the bundle E over X;. Since E is trivial over U;xI, the nat-
ural projection homeomorphism X;— X; ; lifts to a homeomorphism h;:E;—E; ;
which is the identity outside p; ' (U;) and which takes each fiber of E; isomorphically
onto the corresponding fiber of E; ;. The composition h = h,h, --- h,, is then an
isomorphism from the restriction of E over X x {1} to the restriction over X x {0}.

In the general case that X is only paracompact, Lemma 1.21 asserts that there is
a countable cover {V;};»; of X and a partition of unity {g;} with @; supported in
Vi, such that each V; is a disjoint union of open sets each contained in some U,. This
means that E is trivial over each V;xI. As before we let ¢; = @, + --- + @; and let
p;:E;— X, be the restriction of E over the graph of ;. Also as before we construct
h;:E;—E;_; using the fact that E is trivial over V;xI. The infinite composition h =
h,h, - -- is then a well-defined isomorphism from the restriction of E over Xx {1} to
the restriction over X x {0} since near each point x € X only finitely many ;’s are
nonzero, which implies that for large enough i, h; = 1 over a neighborhood of x.
]

Corollary 1.8. A homotopy equivalence f:A— B of paracompact spaces induces a
bijection f*:Vect"(B)— Vect"(A). In particular, every vector bundle over a con-
tractible paracompact base is trivial.

Proof: If g is a homotopy inverse of f then we have f*g* = 1* = 1 and g*f* =
1*=1. ]

We might remark that Theorem 1.6 holds for fiber bundles as well as vector bun-
dles, with the same proof.
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Clutching Functions

Let us describe a way to construct vector bundles E— S* with base space a sphere.
Write S¥ as the union of its upper and lower hemispheres D’j and DX, with Dﬁ nDk =
Ss¥=1. Given a map f:Sk_1—>GLn([R), let E; be the quotient of the disjoint union
D’j x R™ 11 D¥ x R™ obtained by identifying (x,v) € aD’j x R™ with (x, f(x)(v)) €
dD* x R™. There is then a natural projection E =S * and this is an n-dimensional
vector bundle, as one can most easily see by taking an equivalent definition in which
the two hemispheres of S k are enlarged slightly to open balls and the identification
occurs over their intersection, a product S k=1 (—¢,¢&), with the map f used in each
slice S 1x {t}. From this viewpoint the construction of E risa special case of the
general construction of vector bundles by gluing together products described earlier
in the discussion of tensor products.

The map f is called the clutching function. for Ej, presumably in reference to
the mechanical clutch which engages and disengages gears in machinery. The same
construction works equally well with C in place of R, so fromamap f:S* ' — GL,(C)
one obtains a complex vector bundle E;—S§ k.

Example 1.9. Let us see how the tangent bundle TS? to S? can be described in these
terms. Define two orthogonal vector fields v, and w, on the northern hemisphere
Di of $? in the following way. Start with a standard pair of orthogonal vectors at
each point of a flat disk D? as in the left-hand figure below, then stretch the disk over
the northern hemisphere of $2, carrying the vectors along as tangent vectors to the
resulting curved disk. As we travel around the equator of S* the vectors v, and w,
then rotate through an angle of 27 relative to the equatorial direction, as in the right
half of the figure.

Reflecting everything across the equatorial plane, we obtain orthogonal vector fields
v_ and w_ on the southern hemisphere D?. The restrictions of v_ and w_ to the
equator also rotate through an angle of 277, but in the opposite direction from v,
and w, since we have reflected across the equator. The pair (v,,w,) defines a
trivialization of TS* over D7 taking (v.,w.) to the standard basis for R*. Over the
equator S' we then have two trivializations, and the function f:S'— GL,(R) which
rotates (v,,w,) to (v_,w_) sends 8 € § 1 , regarded as an angle, to rotation through
the angle 20. For this map f we then have E; = TS 2,

Example 1.10. Let us find a clutching function for the canonical complex line bundle
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over CP! = $%. The space CP! is the quotient of C> — {0} under the equivalence
relation (zy, z;) ~ A(zg, z;). Denote the equivalence class of (z,,z;) by [z, z;]. We
can also write points of CP! asratios z = z1/zy € CU{o} = $2. Points in the disk D?
inside the unit circle S! c C can be expressed uniquely in the form [1, z1/z9l = [1,2]
with |z| < 1, and points in the disk Di outside S! canbe written uniquely in the form
[29/21,1] = [z7},1] with |z7!| < 1. Over D? a section of the canonical line bundle is
then given by [1,z,/z,]— (1,z,/z,) and over Di asectionis [zg/z;, 1]+ (25/21,1).
These sections determine trivializations of the canonical line bundle over these two
disks, and over their common boundary S' we pass from the Di trivialization to the
D? trivialization by multiplying by z = z,/2z,. Thus the canonical line bundle is E
for the clutching function f:Sl—>GL1(<C) defined by f(z) = (2).

A basic property of the construction of bundles E;— S k via clutching functions
f:Sk_1 —GL,(R) is that E; ~ E, if f and g are homotopic. For if we have a homo-
topy F:sk1 xI—GL, (R) from f to g, then we can construct by the same sort of
clutching construction a vector bundle E.— S¥xI restricting to E £ over § k% {0} and
E, over § kx{1}. Hence E + and E, are isomorphic by Proposition 1.7. Thus if we
denote by [X, Y] the set of homotopy classes of maps X —Y, then the association
f — E; gives a well-defined map &: [sk-1, GL,(R)] — Vect™(s¥).

There is a similar map for complex vector bundles, and this happens to have
simpler behavior than in the real case:

| Proposition 1.11. The map ®:[S*"!,GL, (C)]— Vect?(S*) is a bijection.

Proof: An inverse mapping ¥ can be constructed as follows. Given an n-dimensional
vector bundle p:E—SX, its restrictions E, and E_ over D¥ and D* are trivial
since D¥ and D* are contractible. Choose trivializations h, :E, —DXxC". Then
h_h;1 defines a map k=1 — GL, (C), whose homotopy class is by definition ¥(E) €
M1 GL,,(C). To see that ¥(E) is well-defined, note first that any two choices of h,
differ by a map D’; —GL, (C). Since D’; is contractible, such a map is homotopic to
a constant map by composing with a contraction of D';. Now we need the fact that
GL,, (C) is path-connected. The elementary row operation of modifying a matrix in
GL, (C) by adding a scalar multiple of one row to another row can be realized by a
path in GL, (C), just by inserting a factor of ¢ in front of the scalar multiple and let-
ting t go from O to 1. By such operations any matrix in GL, (C) can be diagonalized.
The set of diagonal matrices in GL,,(C) is path-connected since it is homeomorphic
to the product of n copies of C — {0}.

From this we conclude that h, and h_ are unique up to homotopy, hence the
composition h_ h;l — gkt — GL, (C) is also unique up to homotopy, which means
that ¥ is a well-defined map Vectg(sk) — [Sk’l, GL, (Q)]. Itis clear that ¥ and ¢ are
inverses of each other. O
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Example 1.12. Every complex vector bundle over S' is trivial, since by the proposi-
tion this is equivalent to saying that [s°, GL, (Q)] has a single element, or in other
words that GL,, (C) is path-connected, which is the case as we saw in the proof of the
proposition.

Example 1.13. Let us show that the canonical line bundle H — CP! satisfies the rela-
tion (H®H)®1 ~ H® H where 1 is the trivial one-dimensional bundle. This can be
seen by looking at the clutching functions for these two bundles, which are the maps
st— GL,(C) given by

ZI—><22 0) and ZI—><Z 0)

0 1 0 z

More generally, let us show the formula E;, ®n ~ E,®E, for n-dimensional vec-
tor bundles E; and E, over Sk with clutching functions f,g:S*! —GL,(C), where
fg is the clutching function obtained by pointwise matrix multiplication, fg(x) =
f(x)g(x).

The bundle E; ® E; has clutching function the map feg:S k=1, GL,,(C) having
the matrices f(x) in the upper left nxn block and the matrices g(x) in the lower
right nxn block, the other two blocks being zero. Since GL,, (C) is path-connected,
there is a path «; € GL,,,(C) from the identity matrix to the matrix of the trans-
formation which interchanges the two factors of C"xC". Then the matrix product
(fol)x (1 ®g)x; gives a homotopy from f @ g to fg @ 1, which is the clutching
function for E;,&n.

The preceding analysis does not quite work for real vector bundles since GL,, (R)
is not path-connected. We can see that there are at least two path-components since
the determinant function is a continuous surjection GL,(R)—R — {0} to a space
with two path-components. In fact GL,(R) has exactly two path-components, as
we will now show. Just as in the complex case we can construct a path from an
arbitrary matrix in GL, (R) to a diagonal matrix. Then by a path of diagonal matrices
we can make all the diagonal entries +1 or —1. Two —1’s represent a 180 degree
rotation of a plane so they can be replaced by +1’s via a path in GL,,(R). This shows
that the subgroup GL, (R) consisting of matrices of positive determinant is path-
connected. This subgroup has index 2, and GL,,(R) is the disjoint union of the two
cosets GL;,(R) and &GL;,(R) for « a fixed matrix of determinant —1. The two cosets
are homeomorphic since the map B — «f is a homeomorphism of GL,(R) with
inverse the map B +— « !B. Thus both cosets are path-connected and so GL, (R) has
two path-components.

The closest analogy with the complex case is obtained by considering oriented
real vector bundles. Recall from linear algebra that an orientation of a real vector
space is an equivalence class of ordered bases, two ordered bases being equiivalent
if the invertible matrix taking the first basis to the second has positive determinant.
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An orientation of a real vector bundle p :E— B is a function assigning an orientation
to each fiber in such a way that near each point of B there is a local trivialization
h: p’l (U)—UxR" carrying the orientations of fibers in p’l (U) to the standard ori-
entation of R™ in the fibers of Ux R". Another way of stating this condition would
be to say that the orientations of fibers of E can be defined by ordered n-tuples of
independent local sections. Not all vector bundles can be given an orientation. For
example the Mobius bundle is not orientable. This is because an oriented line bundle
over a paracompact base is always trivial since it has a canonical section formed by
the unit vectors having positive orientation.

Let Vect” (B) denote the set of isomorphism classes of oriented n-dimensional
real vector bundles over B, where isomorphisms are required to preserve orientations.
The clutching construction defines a map : [sk1, GL,(R)]— Vectf(Sk), and since
GL;([R) is path-connected, the argument from the complex case shows:

H Proposition 1.14. The map & [Sk‘l, GL:L([R)] — Vectf(Sk) is a bijection. O

To analyze Vect™(S¥) let us introduct an ad hoc hybrid object VectS(Sk), the
n-dimensional vector bundles over S¥ with an orientation specified in the fiber over
one point x, € S k=1 with the equivalence relation of isomorphism preserving the
orientation of the fiber over x,. We can choose the trivializations h, over D to
carry this orientation to a standard orientation of R", and then h, is unique up to
homotopy as before, so we obtain a bijection of Vect{ (S k) with the homotopy classes
of maps S¥"'—GL, (R) taking x, to GL; (R).

The map Vectg(Sk)—>Vect”(Sk) that forgets the orientation over x, is a sur-
jection that is two-to-one except on vector bundles that have an automorphism (an
isomorphism from the bundle to itself) reversing the orientation of the fiber over x,,
where it is one-to-one.

When k = 1 there are just two homotopy classes of maps SO—>GLn([R) taking
x, to GL; (R), represented by maps taking x, to the identity and the other point
of S° to either the identity or a reflection. The corresponding bundles are the trivial
bundle and, when n = 1, the Mobius bundle, or the direct sum of the Mobius bundle
with a trivial bundle when n > 1. These bundles all have automorphisms reversing
orientations of fibers. We conclude that Vect™(S') has exactly two elements for each
n = 1. The nontrivial bundle is nonorientable since an orientable bundle over S! is
trivial, any two clutching functions $°— GL; (R) being homotopic.

When k > 1 the sphere S¥ ! is path-connected, so maps S¥"!' —GL, (R) tak-
ing x, to GL}(R) take all of $*"! to GL; (R). This implies that the natural map
Vect’ﬁ(Sk) —>Vect3($k) is a bijection. Thus every vector bundle over Sk is orientable
and has exactly two different orientations, determined by an orientation in one fiber.
It follows that the map Vectf(Sk) —Vect"(5¥) is surjective and at most two-to-one.
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It is one-to-one on bundles having an orientation-reversing automorphism, and two-
to-one otherwise.

Inside GL,(R) is the orthogonal group O(n), the subgroup consisting of isome-
tries, or in matrix terms, the nxn matrices A with AAT =1 , that is, matrices whose
columns form an orthonormal basis. The Gram-Schmidt orthogonalization process
provides a deformation retraction of GL, (R) onto the subspace O(n). Each step of
the process is either normalizing the i'" vector of a basis to have length one or sub-
tracting a linear combination of the preceding vectors from the it" vector in order
to make it orthogonal to them. Both operations are realizable by a homotopy. This
is obvious for rescaling, and for the second operation one can just insert a scalar
factor of t in front of the vectors being subtracted. and let t go from O to 1. The
explicit algebraic formulas show that both operations depend continuously on the
initial basis and have no effect on an orthonormal basis. Hence the sequence of op-
erations provides a deformation retraction of GL,,(R) onto O(n). Restricting to the
component GL, (R), we have a deformation retraction of this component onto the
special orthogonal group SO(n), the orthogonal matrices of determinant +1. This
is the path-component of O(n) containing the identity matrix since deformation re-
tractions preserve path-components. The other component consists of orthogonal
matrices of determinant —1.

In the complex case the same argument applied to GL,,(C) gives a deformation
retraction onto the unitary group U(n), the nxXn matrices over C whose columns
form an orthonormal basis using the standard Hermitian inner product.

Composing maps $¥1—50(n) with the inclusion SO(n) — GL; (R) gives a
function [Sk’l,SO(n)]—> [Sk’l, GL;([R)]. This is a bijection since the deformation
retraction of GL,;(R) onto SO(n) gives a homotopy of any map skt —GL;(R) to
a map into SO(n), and if two such maps to SO(n) are homotopic in GL;([R{) then
they are homotopic in SO(n) by composing each stage of the homotopy with the
retraction GL,*[([R) — SO (n) produced by the deformation retraction.

The advantage of SO(n) over GL;([R) is that it is considerably smaller. For
example, SO(2) is just a circle, since orientation-preserving isometries of R> are
rotations, determined by the angle of rotation, a point in S L Taking k = 2 as well,
we have for each integer m € Z the map f,,,:S ' gl 2z z™ which is the clutching
function for an oriented 2-dimensional vector bundle E,, — S°. We encountered E, in
Example 1.9 as TS?, and E 1 is the real vector bundle underlying the canonical complex
line bundle over CP' = $?, as we saw in Example 1.10. It is a fact proved in every
introductory algebraic topology course that an arbitrary map f:S'—S! is homotopic
to one of the maps z — z" for some m uniquely determined by f, called the degree
of f. Thus via the bundles E,, we have a bijection Vect2+ (S 2) ~ Z. Reversing the

orientation of E,, changesitto E_,,, so elements of Vect®(S?) correspond bijectively
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with integers m = 0, via the bundles E,,. Since U(1) is also homeomorphic to S 1 we
obtain a similar bijection Vect%(s 2) = /7.

Another fact proved near the beginning of algebraic topology is that any two maps
sk=1 - g! are homotopic if k > 2. (Such a map lifts to the covering space R of S',
and R is contractible.) Hence every 2-dimensional vector bundle over S k is trivial
when k > 2, as is any complex line bundle over S k for k > 2.

It is a fact that any two maps SZ—>SO(n) or Sz—>U(n) are homotopic, so all
vector bundles over S$° are trivial. This is not too hard to show using a little basic
machinery of algebraic topology, as we show in §??, where we also compute how many
homotopy classes of maps $3—S0(n) and S®—U(n) there are.

For any space X the set [X,SO(n)] has a natural group structure coming from
the group structure in SO(n). Namely, the product of two maps f,g:X—S0(n) is
the map x — f(x)g(x). Similarly [X,U(n)] is a group. For example the bijection
[$1,50(2)] ~ Z is a group isomorphism since for maps S'—S!, the product of
z—z"and z— z"is z — z™z",and zMz" = Z"",

The groups [S i,S O(n)] and [S i, U(n)] are isomorphic to the homotopy groups
m;SO(n) and m;U(n), special cases of the homotopy groups ;X defined for all
spaces X and central to algebraic topology. To define ;X requires choosing a base-
point x, € X, and then 1, X is the set of homotopy classes of maps S X taking a
chosen basepoint s, € S* to x,,, where homotopies are also required to take s, to x,
at all times. This basepoint data is needed in order to define a group structure in ;X
when i > 0. (When i = 0 there is no natural group structure in general.) However, the
group structure on ;X turns out to be independent of the choice of x, when X is
path-connected. Taking X = SO (n), there is an evident map ;SO (n)— [Si,SO(n)]
obtained by ignoring basepoint data. To see that this is surjective, suppose we are
given a map f:Si—>SO(n). Since SO(n) is path-connected, there is a path «; in
SO(n) from the identity matrix to f(s,), and then the matrix product «; ' f defines
a homotopy from f to amap S'—SO(n) taking s, to the identity matrix, which we
choose as the basepoint of SO(n). For injectivity of the map m;SO(n)— [St,S0(n)]
suppose that f,, and f; are two maps S 'S0 (n) taking s, to the identity matrix,
and suppose f; is a homotopy from f;, to f; that may not take basepoint to base-
point at all times. Then [f,(s,)]" f, is a new homotopy from f, to f; that does take
basepoint to basepoint for all £. The same argument also applies for U(n).

Note to the reader: The rest of this chapter will not be needed until Chapter 3.

The Universal Bundle

We will show that there is a special n-dimensional vector bundle E,, — G,, with the
property that all n-dimensional bundles over paracompact base spaces are obtainable
as pullbacks of this single bundle. When n = 1 this bundle will be just the canonical
line bundle over RP*, defined earlier. The generalization to n > 1 will consist in
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replacing RP®, the space of 1-dimensional vector subspaces of R”, by the space of
n-dimensional vector subspaces of R*.

First we define the Grassmann manifold Gn([Rk) for nonnegative integers n < k.
As a set this is the collection of all n-dimensional vector subspaces of RX, that is,
n-dimensional planes in R¥ passing through the origin. To define a topology on
Gn([R{k) we first define the Stiefel manifold Vn([Rk) to be the space of orthonormal
n-frames in [Rk, in other words, n-tuples of orthonormal vectors in RX. This is a
subspace of the product of n copies of the unit sphere S k=1, namely, the subspace
of orthogonal n-tuples. It is a closed subspace since orthogonality of two vectors can
be expressed by an algebraic equation. Hence Vn([Rk) is compact since the product
of spheres is compact. There is a natural surjection Vn([Rk)—>Gn([Rk) sending an
n-frame to the subspace it spans, and Gn([Rk) is topologized by giving it the quotient
topology with respect to this surjection. So Gn([Rk) is compact as well. Later in this
section we will construct a finite CW complex structure on Gn([Rk) and in the process
show that it is Hausdorff and a manifold of dimension n(k — n).

The inclusions R ¢ R¥*! ¢ ... give inclusions G,(R¥) c G, (R¥"!) c ---, and
we let G, (R®) = U, G, (R¥). This is the set of all n-dimensional vector subspaces of
the vector space R* since if we choose a basis for a finite-dimensional subspace of
R*, each basis vector will lie in some [Rk, hence there will be an R¥ containing all the
basis vectors and therefore the whole subspace. We give G,,(R”) the weak or direct
limit topology, so a setin G, (R”) is open iff it intersects each Gn([Rk) in an open set.

There are canonical n-dimensional vector bundles over G,(R¥) and G,(R%).
Define En([Rk) ={{,v) € Gn([Rk)x[Rk | v € £}. The inclusions R¥ ¢ R¥*! ¢ ...
give inclusions En(le) C En(Rk“) C --- and we set E,,(R®) = U, En([Rk), again with
the weak or direct limit topology.

‘ Lemma 1.15. The projection p :E, (RY— G, (RN, p(8,v) = £, is a vector bundle.,
both for finite and infinite k.

Proof: First suppose k is finite. For £ € G,,(R), let 1r,: RK — £ be orthogonal projec-
tion and let Uy = {£' € G,,(R¥) | 11,(£’) has dimension n }. In particular, £ € U;. We
will show that U, is open in G, (R¥) and that the map h:p ' (U)) > Uyx £ ~ Uy x R"
defined by h(£,v) = (£',1y(v)) is a local trivialization of E, (R¥).

For U, to be open is equivalent to its preimage in Vn([Rk) being open. This
preimage consists of orthonormal frames vy, ---,v,, such that my(v,),---,m(v,,)
are independent. Let A be the matrix of 7, with respect to the standard basis in
the domain R¥ and any fixed basis in the range £. The condition on vy, ---,v, is
then that the nxn matrix with columns Av,,---, Av,, have nonzero determinant.
Since the value of this determinant is obviously a continuous function of vy, ---,v,,
it follows that the frames v,,---,v,, yielding a nonzero determinant form an open
set in Vn(le).
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It is clear that h is a bijection which is a linear isomorphism on each fiber. We
need to check that h and h™! are continuous. For €' € U, there is a unique invertible
linear map L, : R¥— R¥ restricting to 1, on £’ and the identity on £* = Ker ;. We

claim that L, , regarded as a kx k matrix, depends continuously on £’. Namely, we
1

can write Ly as a product AB™" where:
— B sends the standard basis to vy, -+, V,,Vyiq, *, Vg With vy, ---,v, an or-
thonormal basis for ¢ and v,,,,, - -, v, a fixed basis for £*.
— A sends the standard basis to my(vy), -, Tp(V,), Vyyi1s ="+ » Vi -
Both A and B depend continuously on v, ---,v,. Since matrix multiplication and

matrix inversion are continuous operations (think of the ‘classical adjoint’ formula for
the inverse of a matrix), it follows that the product L, = AB~! depends continuously
on vy, ---,v,. Butsince L, depends only on £’ , not on the basis vy, -, v, for £, it
follows that L, depends continuously on £’ since Gn([R{k) has the quotient topology
from V, (R¥). Since we have h(£,v) = (£',m,(v)) = (£',Ly (v)), we see that h is
continuous. Similarly, h™!'(£',w) = (¢',L,'(w)) and L,' depends continuously on
£’ , matrix inversion being continuous, so h~! is continuous.

This finishes the proof for finite k. When k = « one takes U, to be the union of
the U,’s for increasing k. The local trivializations h constructed above for finite k
then fit together to give a local trivialization over this Uy, continuity being automatic
since we use the weak topology. |

We will mainly be interested in the case k = c now, and to simplify notation we
will write G,, for G,,(R”) and E, for E,(R”). As earlier in this section, we use the
notation [X, Y] for the set of homotopy classes of maps f:X—Y.

Theorem 1.16. For paracompact X, the map [X,G,]1—Vect"(X), [f1+— f*(E,),
is a bijection.

Thus, vector bundles over a fixed base space are classified by homotopy classes
of maps into G,,. Because of this, G,, is called the classifying space for n-dimensional
vector bundles and E,, — G,, is called the universal bundle.

As an example of how a vector bundle could be isomorphic to a pullback f*(E,),
consider the tangent bundle to S™. This is the vector bundle p:E—S" where E =
{(x,v) € S"xR™! | x L v}. Each fiber p~!(x) is a pointin G, (R"*!), so we have
a map S”—»Gn([R"“), x — p~Y(x). Via the inclusion R""! < R* we can view this
asamap f:8"—G,(R”) =G, and E is exactly the pullback f*(E,).

Proof of 1.16: The key observation is the following: For an #n-dimensional vector
bundle p:E— X, an isomorphism E ~ f*(E,) is equivalent to a map g:E—R® that
is a linear injection on each fiber. To see this, suppose first that we have a map
f:X—G,, and an isomorphism E ~ f*(E,). Then we have a commutative diagram
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E ~ f(E) -1 E, T R"

1,

Gy

where 1T(£,v) = v. The composition across the top row is a map g:E— R® that is
a linear injection on each fiber, since both f and 1t have this property. Conversely,
given a map g:E— R® that is a linear injection on each fiber, define f:X—G, by
letting f(x) be the n-plane g(p’l(x)). This clearly yields a commutative diagram
as above.

To show surjectivity of the map [X,G,,] — Vect™(X), suppose p:E— X is an
n-dimensional vector bundle. Let {U,} be an open cover of X such that E is trivial
over each U,. By Lemma 1.21 in the Appendix to this chapter there is a countable
open cover {U;} of X such that E is trivial over each U;, and there is a partition
of unity {g;} with @; supported in U;. Let gi:p’l(Ui)—>[R” be the composition
of a trivialization p~'(U,)— U;x R"™ with projection onto R™. The map (@;p)g;,
v — @;(p(v))g;(v), extends to a map E—R" that is zero outside p’l(Ui). Near
each point of X only finitely many @;’s are nonzero, and at least one @, is nonzero,
so these extended (@;p)g;’s are the coordinates of amap g:E— (R™)® = R™ that is
a linear injection on each fiber.

For injectivity, if we have isomorphisms E ~ f(E,) and E ~ f;"(E,) for two
maps f, f;:X—G,, then these give maps g,, g, : E— R® that are linear injections
on fibers, as in the first paragraph of the proof. We claim g, and g, are homotopic
through maps g, that are linear injections on fibers. If this is so, then f;, and f; will
be homotopic via f;(x) = gt(p_l(x)).

The first step in constructing a homotopy g; is to compose g, with the homotopy
L;:R*” =R defined by L,(x, x5, -+) = (1 = t)(xy, X5, --+) + t(x,0,x5,0,---). For
each t this is a linear map whose kernel is easily computed to be 0, so L; is injective.
Composing the homotopy L; with g, moves the image of g, into the odd-numbered
coordinates. Similarly we can homotope g, into the even-numbered coordinates. Still
calling the new g’s g, and g,, let g, = (1 — t)g, + tg;. This is linear and injective
on fibers for each t since g, and g, are linear and injective on fibers. O

An explicit calculation of [X, G,,] is usually beyond the reach of what is possible
technically, so this theorem is of limited usefulness in enumerating all the different
vector bundles over a given base space. Its importance is due more to its theoretical
implications. Among other things, it can reduce the proof of a general statement to
the special case of the universal bundle. For example, it is easy to deduce that vector
bundles over a paracompact base have inner products, since the bundle E,, — G,, has
an obvious inner product obtained by restricting the standard inner product in R®
to each m-plane, and this inner product on E,, induces an inner product on every
pullback f*(E,).
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The preceding constructions and results hold equally well for vector bundles over
C, with Gn((Ck) the space of n-dimensional C-linear subspaces of (Ck, and so on. In
particular, the proof of Theorem 1.16 translates directly to complex vector bundles,
showing that Vect¢ (X) ~ [X, G, (C*)].

There is also a version of Theorem 1.16 for oriented vector bundles. Let @n([R{k)
be the space of oriented n-planes in RX, the quotient space of Vn([Rk) obtained by
identifying two n-frames when they determine the same oriented subspace of RX.
Forming the union over increasing k we then have the space én([R{‘”). The universal
oriented bundle E,(R®) over G, (R*) consists of pairs (£,v) € G,(R*)xR* with
v € £. In other words, fn([R%‘”) is the pullback of E, (R*) via the natural projection
G,(R*®)—G,(R”). Small modifications in the proof that Vect®(X) =~ [X,G,(R®)]
show that Vect (X) ~ [X, @n([R“’)].

Both G, (R*) and én([R‘”) are path-connected since Vect"(X) and Vect” (X)
have a single element when X is a point. The natural projection G,(R*)— G, (R%)
obtained by ignoring orientations is two-to-one, and readers familiar with the no-
tion of a covering space will have no trouble in recognizing that this two-to-one
projection map is a covering space, using for example the local trivializations con-
structed in Lemma 1.15. In fact G, (R) is the universal cover of G, (R™) since it
is simply-connected, because of the triviality of Vect’j(S 1) ~[S 1, én([R"")]. One can
also observe that a vector bundle E ~ f*(E, (R™) is orientable iff its classifying map
f:X—G,(R%) lifts to a map f:X—»@n([R”), and in fact orientations of E corre-
spond bijectively with lifts f

Cell Structures on Grassmannians

Since Grassmann manifolds play a fundamental role in vector bundle theory, it
would be good to have a better grasp on their topology. Here we show that G, (R*)
has the structure of a CW complex with each Gn([Rk) a finite subcomplex. We will also
see that Gn([Rk) is a closed manifold of dimension n(k —n). Similar statements hold
in the complex case as well, with Gn(<Ck) a closed manifold of dimension 2n(k —n).

For a start let us show that Gn([R{k) is Hausdorff, since we will need this fact later
when we construct the CW structure. Given two n-planes £ and ¢’ in Gn([le), it
suffices to find a continuous map f': Gn(IRk) — R taking different values on £ and {’.
For a vector v € RF let f, (£) be the length of the orthogonal projection of v onto £.
This is a continuous function of £ since if we choose an orthonormal basis v, - - -, v,
for £ then f,(£) = (v -v)? + - + (v - vn)z)l/z, which is certainly continuous in
vy, -+, V, hencein £ since Gn([R{k) has the quotient topology from Vn([Rk). Now for
an n-plane ¢’ # £ choose v € £ — {', and then f,(¥) = [v| > f,({').

There is a nice description of the cells in the CW structure on G, (R¥) in terms
of the familiar concept of echelon form for matrices. Recall that any nx k matrix A
can be put into an echelon form by a finite sequence of elementary row operations
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consisting either adding a multiple of one row to another, multiplying a row by a
nonzero scalar, or permuting two rows. In the standard version of echelon form one
strives to make zeros in the lower left corner of the matrix, but for our purposes it will
be more convenient to make zeros in the upper right corner instead. Thus a matrix in
echelon form will look like the following, with the asterisks denoting entries that are
arbitrary numbers:

¥ X% X %
* % X %
S O O =
* % % O
S O = O
S = O O
% O O O
% O O O
— o O O
o O O O

We are assuming that our given nx k matrix A has rank n and that n < k. The
shape of the echelon form is specified by which columns contain the special entries
1, say in the columns numbered oy < --- < 0,,. The n-tuple (oy,---,0,) is called
the Schubert symbol o (A). To see that this depends only on the givnhe matrix A and
not any particular reduction of A to echelon form, consider the n-plane £, in RX
spanned by the rows of A. This is the same as the n-plane spanned by the rows of
an echelon form of A since elementary row operations do not change the subspace
spanned by the rows. Let p;: R —R" be projection onto the last n — i coordinates.
As i goes from 0 to k the dimension of the subspace p;(£,) of R* decreases from
n to 0 in n steps and the decreases occur precisely when i hits one of the values o,
as is apparent from the echelon form since p;(£,) has basis the rows of the matrix
obtained by deleting the first i columns of the echelon form. Thus the Schubert
symbol only depends on the n-plane spanned by the rows of A.

In fact the echelon form itself depends only on the n-plane spanned by the rows.
To see this, consider projection onto the n coordinates of R given by the numbers
o; . This projection is surjective when restricted to the n-plane, hence is also injective,
and the n rows of the echelon form are the vectors in the n-plane that project to the
standard basis vectors.

As noted above, the numbers ¢; in the Schubert symbol of an n-plane { are the
numbers i for which the dimension of the image p,(¥) decreases as i goes from 0
to n. Equivalently, these are the i’s for which the dimension of the kernel of the
restriction p; | ¢ increases. This kernel is just £ n R’ where R’ is the kernel of p;, the
subspace of RX spanned by the first i standard basis vectors. This gives an alternative
definition of the Schubert symbol o (¥).

Given a Schubert symbol o one can consider the set e(o) of all n-planes in R¥
having o as their Schubert symbol. In terms of echelon forms, the various n-planes
in e(o) are parametrized by the arbitrary entries in the echelon form. There are o; -1
of these entries in the it" row, for a total of B; -1)+--- (0, —n) entries. Thus e(0)
is homeomorphic to a euclidean space of this dimension, or equivalently an open cell.
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H Proposition 1.17. The cells e(o) are the cells of a CW structure on G, (R¥).

For example GZ([R4) has six cells corresponding to the Schubert symbols (1,2),

(1,3), (1,4), (2,3), (2,4), (3,4), and these cells have dimensions 0, 1, 2, 2, 3, 4
respectively. In general the number of cells of Gn([R{k) is (fl) , the number of ways of
choosing the n distinct numbers o; < k.
Proof: Our main task will be to find a characteristic map for e(o). This is a map
from a closed ball of the same dimension as e(c) into G, (R¥) whose restriction
to the interior of the ball is a homeomorphism onto e(o). From the echelon forms
described above it is not clear how to do this, so we will use a slightly different sort
of echelon form. We allow the special 1’s to be arbitrary nonzero numbers and we
allow the entries below these 1’s to be nonzero. Then we impose the condition that
the rows be orthonormal and that the last nonzero entry in each row be positive. Let
us call this an orthonormal echelon form. Once again there is a unique orthonormal
echelon form for each n-plane £ since if we let £; denote the subspace of £ spanned
by the first i rows of the standard echelon form, or in other words ¢; = £ n R,
then there is a unique unit vector in #; orthogonal to ¢;_, and having positive ¢;"
coordinate.

The i" row of the orthonormal echelon form then belongs to the hemisphere H;
in the unit sphere $% ! c R% c R¥ consisting of unit vectors with non-negative ;"
coordinate. In the Stiefel manifold V,,(R¥) let E(o) be the subspace of orthonormal
frames (vy,---,v,) € (Sk’l)” such that v; € H; for each i. We claim that E(0) is
homeomorphic to a closed ball. To prove this the main step is to show that the pro-
jecdon m:E(o)—H,, (v, --,v,) = vy, is a trivial fiber bundle. This is equivalent
to finding a projection p:E(0) — ! (vy) which is a homeomorphism on fibers of
m, where v, = (0,---,0,1) € R?' C [Rk, since the map TrXp:E((r)—»Hlxrr’l(vo) is
then a continuous bijection of compact Hausdorff spaces, hence a homeomorphism.
The map p:n’l(v)—wr’l(vo) is obtained by applying the rotation p, of R¥ that
takes v to v, and fixes the (k — 2)-dimensional subspace orthogonal to v and v,.
This rotation takes H; to itself for i > 1 since it affects only the first o; coordinates
of vectors in R¥. Hence p takes Tr’l(v) onto Tr’l(vo).

The fiber 71! (v,) can be identified with E(¢’) for ¢’ = (0, —1,---,0, —1). By
induction on n this is homeomorphic to a closed ball of dimension (o, —2) + -+ +
(0,,—mn), so E(0) is a closed ball of dimension (o; —1) + - - -+ (0,,—n). The boundary
of this ball consists of points in E(o) having v; in 0H; for at least one i. This too
follows by induction since the rotation p, takes 0H; to itself for i > 1.

The natural map E(o)— G,, sending an orthonormal n-tuple to the n-plane it
spans takes the interior of the ball E(o) to e(o) bijectively. Since G,, has the quotient
topology from V,,, the map intE(o)—e(0) is a homeomorphism. The boundary of
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E(o) maps to cells e(o’) of G,, where o’ is obtained from o by decreasing some
0;’s, so these cells e(o’) have lower dimension than e(o).

To see that the maps E (O')—>Gn([Rk) for the cells e(o) are the characteristic
maps for a CW structure on Gn([Rk) we can argue as follows. Let X ’ be the union of
the cells e(o0) in Gn([R{k) having dimension at most i. Suppose by induction on i that
X'isaCwW complex with these cells. Attaching the (i+1)-cells e(o) of X 1 1o X' via
the maps 0E(0) — X' produces a CW complex Y and a natural continuous bijection
Y — X" Since Y is a finite CW complex it is compact, and X! is Hausdorff as a
subspace of Gn([Rk), so the map Y — X'*! is a homeomorphism and X' is a CW
complex, finishing the induction. Thus we have a CW structure on Gn([Rk) . O

Since the inclusions Gn([Rk) C Gn([Rk”) for varying k are inclusions of subcom-
plexes and G, (R”) has the weak topology with respect to these subspaces, it follows
that we have also a CW structure on G,,(R%).

Similar constructions work to give CW structures on complex Grassmann mani-
folds, but here e(o) will be a cell of dimension (20, -2)+ (20, —-4)+---+(20,,—2n).
The hemisphere H; is defined to be the subspace of the unit sphere § 20i=1 jn C% con-
sisting of vectors whose o, coordinate is real and nonnegative, so H; is a ball of
dimension 20; — 2. The transformation p, € SU (k) is uniquely determined by spec-
ifying that it takes v to v, and fixes the orthogonal (k — 2)-dimensional complex
subspace, since an element of U(2) of determinant 1 is determined by where it sends
one unit vector.

The highest-dimensional cell of G,,(R¥) is e(o) for o = (k—n+1,k-n+2,---,k),
of dimension n(k — n), so this is the dimension of Gn([Rk). Near points in these top-
dimensional cells G,,(R¥) is a manifold. But G, (R¥) is homogeneous in the sense that
given any two points in Gn([Rk) there is a homeomorphism Gn([Rk) —>Gn([Rk) taking
one point to the other, namely, the homeomorphism induced by an invertible linear
map R* — Rk taking one n-plane to the other. From this homogeneity it follows that
Gn([R{k) is a manifold near all points. Since it is compact, it is a closed manifold.

There is a natural inclusion i:G,, — G,,, i(£) = Rx j(f) where j:R* —R" is
the embedding j(x;, Xy, ) = (0,x;,Xy,-++). f () = (0q,---,0,) then o (i(£)) =
(1,00 +1,---,0,+1),s0 i takes cells of G,, to cells of G, of the same dimension,
making i(G,,) a subcomplex of G,,,;. Identifying G, with the subcomplex i(G,),
we obtain an increasing sequence of CW complexes G, ¢ G, C --- whose union
G, = U, G, is therefore also a CW complex. Similar remarks apply as well in the
complex case.
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Appendix: Paracompactness

A Hausdorff space X is paracompact if for each open cover {U,} of X there
is a partition of unity {gg} subordinate to the cover. This means that the @g’s are
maps X —1I such that each @y has support (the closure of the set where @z + 0)
contained in some U,, each x € X has a neighborhood in which only finitely many
@p’s are nonzero, and zﬁ @p = 1. An equivalent definition which is often given is
that X is Hausdorff and every open cover of X has a locally finite open refinement.
The first definition clearly implies the second by taking the cover {(pgl (0,1]}. For the
converse, see [Dugundji] or [Lundell-Weingram)]. It is the former definition which is
most useful in algebraic topology, and the fact that the two definitions are equivalent
is rarely if ever needed. So we shall use the first definition.

A paracompact space X is normal, for let A; and A, be disjoint closed sets in X,
and let {(pB} be a partition of unity subordinate to the cover {X - A;, X —-A,}. Let @;
be the sum of the @g’s which are nonzero at some point of A;. Then @;(4;) =1, and
@, + @, < 1 since no @ can be a summand of both ¢, and @,. Hence @1 Yy, 1]
and @, ! (1/,,1] are disjoint open sets containing A; and A,, respectively.

Most of the spaces one meets in algebraic topology are paracompact, including:

(1) compact Hausdorff spaces

(2) unions of increasing sequences X; C X, C --- of compact Hausdorff spaces X;,
with the weak or direct limit topology (a set is open iff it intersects each X; in an
open set)

(3) CW complexes

(4) metric spaces

Note that (2) includes (3) for CW complexes with countably many cells, since such
a CW complex can be expressed as an increasing union of finite subcomplexes. Using
(1) and (2), it can be shown that many manifolds are paracompact, for example R".

The next three propositions verify that the spaces in (1), (2), and (3) are paracom-
pact.

H Proposition 1.18. A compact Hausdorff space X is paracompact.

Proof: Let {U,} be an open cover of X. Since X is normal, each x € X has an open
neighborhood V, with closure contained in some U, . By Urysohn’s lemma there is a
map @, :X—I with ¢, (x) =1 and @, (X -V, ) = 0. The open cover {09§1(0, 1]} of
X contains a finite subcover, and we relabel the corresponding @,.’s as @g’s. Then
2.3 Pp(x) > 0 for all x, and we obtain the desired partition of unity subordinate to
{Uy} by normalizing each @y by dividing it by >z @g. O

Proposition 1.19. If X is the direct limit of an increasing sequence X; C X, C ---
of compact Hausdorff spaces X;, then X is paracompact.
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Proof: A preliminary observation is that X is normal. To show this, it suffices to find
amap f:X—1 with f(A) =0 and f(B) = 1 for any two disjoint closed sets A and B.
Such an f can be constructed inductively over the X;’s, using normality of the X;’s.
For the induction step one has f defined on the closed set X; U(ANX; ;) U(BnNX;,,)
and one extends over X;,; by Tietze’s theorem.

To prove that X is paracompact, let an open cover {U,} be given. Since X; is
compact Hausdorff, there is a finite partition of unity {g,;} on X; subordinate to
{Uy N X;}. Using normality of X, extend each @;; to amap @;;:X—I with support
in the same U,. Let 0; = >; @;;. This sum is 1 on X, so if we normalize each @;;
by dividing it by max{!/,, 0;}, we get new maps @; j with 0; = 1 in a neighborhood
Vi of X;. Let @;; = max{0, @;; — X.; 03} . Since 0 < y;; < @;;, the collection {y;;}
is subordinate to {U,}. In V; all (,Ukj's with k > i are zero, so each point of X has a
neighborhood in which only finitely many y;;’s are nonzero. For each x € X there
is a ;; with @;;(x) > 0, since if @;;(x) > 0 and i is minimal with respect to this
condition, then y; j(x) =@, j(x). Thus when we normalize the collection {y; j} by
dividing by >.; j W;j we obtain a partition of unity on X subordinate to {U,}. ]

H Proposition 1.20. Every CW complex is paracompact.

Proof: Given an open cover {U,} of a CW complex X, suppose inductively that we
have a partition of unity {@z} on X" subordinate to the cover {U, n X"}. For a
;“ with characteristic map @, D"l X {ppP,} is a partition of unity on
S$™ = 3D"™"!. Since S™ is compact, only finitely many of these compositions PP, can

cell e

be nonzero, for fixed y. We extend these functions @g®, over D™ by the formula
pe(r)@gd, (x) using ‘spherical coordinates’ (r,x) € IxS™ on D"*!, where peil—1
isOon[0,1-¢]and 1 on[1-¢/,,1]. If € = &
functions P:Pp®, will be subordinate to the cover {<I>; 1(Uo()}. Let {(,Uy j} be a finite
partition of unity on D! subordinate to {<I>;,1 (Uy)}. Then {p,@y®,, (1-p)w,;} is

is chosen small enough, these extended

a partition of unity on D™ subordinate to {®, Lw «) 1. This partition of unity extends
the partition of unity {@®,} on § ™ and induces an extension of {g g} to a partition
)’}“ and subordinate to {U,}. Doing this for all (n+1)-cells

gives a partition of unity on X™*!. The local finiteness condition continues to

of unity defined on X" Ue
en+1
Y
hold since near a point in X" only the extensions of the @ p’s in the original partition
;‘“ the only other functions that can be
nonzero are the ones coming from ¢, ;’s. After we make such extensions for all n,

we obtain a partition of unity defined on all of X and subordinate to {U,}. O

of unity on X" are nonzero, while in a cell e

Here is a technical fact about paracompact spaces that is occasionally useful:
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Lemma 1.21. Given an open cover {U,} of the paracompact space X, there is a
countable open cover {V,} such that each V, is a disjoint union of open sets each
contained in some U,, and there is a partition of unity {@,} with @, supported in
Vi -

Proof: Let {@ B} be a partition of unity subordinate to {U,}. For each finite set S of
functions @ let Vg be the subset of X where all the @’s in § are strictly greater
than all the @4’s notin S. Since only finitely many gg’s are nonzero near any x € X,
Vg is defined by finitely many inequalities among @;’s near x, so Vy is open. Also,
Vg is contained in some U,, namely, any U, containing the support of any @z € S,
since @4 € S implies @g > 0 on V. Let V} be the union of all the open sets Vg such
that § has k elements. This is clearly a disjoint union. The collection {V,} is a cover
of X sinceif x € X then x € Vg where S = {@g | @g(x) >0}.

For the second statement, let {@,} be a partition of unity subordinate to the
cover {Vy}, and let @} be the sum of those @, ’s supported in V} but not in V; for
j<k. O

Exercises

1. Show that the projection Vn(Rk) —»Gn([Rk) is a fiber bundle with fiber O(n) by
showing that it is the orthonormal n-frame bundle associated to the vector bundle
E,(RY)—G, (RF).



Chapter 2
K-Theory

The idea of K-theory is to make the direct sum operation on real or complex vector
bundles over a fixed base space X into the addition operation in a group. There are
two slightly different ways of doing this, producing, in the case of complex vector
bundles, groups K(X) and I%(X) with K(X) = I?(X) @ 7, and for real vector bundles,
groups KO(X) and KO(X) with KO(X) ~ KO(X) ®7Z. Complex K-theory turns out
to be somewhat simpler than real K-theory, so we concentrate on this case in the
present chapter.

Computing K(X) even for simple spaces X requires some work. The case X = S"
is the Bott Periodicity Theorem, which gives isomorphisms K (S™) ~ K($"*?) for all
n, and more generally K (X) ~ K (S ’x ) where S X is the double suspension of X.
This is a deep theorem, so it is not surprising that it has applications of real substance.
We give some of these in §2.3, notably:

(1) The nonexistence of division algebras over R in dimensions other than 1, 2, 4,
and 8, the dimensions of the real and complex numbers, quaternions, and Cayley
octonions.

(2) The nonparallelizability of spheres other than S!, $3, and §”.

The proof of the Bott Periodicity Theorem divides into two parts. The first is the hard
technical work, proving an isomorphism K (X x S%) ~ K(X) ® K(S%). This takes about
ten pages, forming the bulk of §2.1. The other half is easier, being more formal in
nature, and this is contained in §2.2 where the cohomological aspects of K(X) are
the main focus.
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2.1. The Functor K(X)

Since we shall be dealing exclusively with complex vector bundles in this chapter,
let us take ‘vector bundle’ to mean ‘complex vector bundle’ unless otherwise specified.
Base spaces will always be assumed to be compact Hausdorff, so that the results of
the preceding chapter which have this hypothesis will be available to us.

For the purposes of K-theory it is convenient to take a slightly broader defini-
tion of ‘vector bundle’ which allows the fibers of a vector bundle p :E— X to be vec-
tor spaces of different dimensions. We still assume local trivializations of the form
h:p 1 (U)—UxC", so the dimensions of fibers must be locally constant over X, but
if X is disconnected the dimensions of fibers need not be globally constant.

Consider vector bundles over a fixed base space X. The trivial n-dimensional
vector bundle we write as €"*— X. Define two vector bundles E; and E, over X to be
stably isomorphic, written E, ~ E,, if E; ®&" ~ E, ®¢" for some n. In a similar vein
we set E; ~ E, if E;®&™ ~ E, ®¢" for some m and n. It is easy to see that both =~
and ~ are equivalence relations. On equivalence classes of either sort the operation
of direct sum is well-defined, commutative, and associative. A zero element is the
class of €°.

Proposition 2.1. If X is compact Hausdorf{f, then the set of ~-equivalence classes of

vector bundles over X forms an abelian group with respect to @ .
This group is called K (X).

Proof: Only the existence of inverses needs to be shown, which we do by showing
that for each vector bundle 1:E— X there is a bundle E'— X such that E®F ~ ™
for some m. If all the fibers of E have the same dimension, this is Proposition 1.4.
In the general case let X; = {x € X| dimTr’l(x) =i}. These X;’s are disjoint open
sets in X, hence are finite in number by compactness. By adding to E a bundle which
over each X; is a trivial bundle of suitable dimension we can produce a bundle whose
fibers all have the same dimension. O

For the direct sum operation on = -equivalence classes, only the zero element, the
class of €, can have an inverse since E®E’ R~ " implies E®E ®&" ~ £" for some
n, which can only happen if E and E’ are 0-dimensional. However, even though
inverses do not exist, we do have the cancellation property that E; ®E, =, E, ®E;
implies E, =; E; over a compact base space X, since we can add to both sides of
E,®E, ~, E; ®E; abundle E; such that E; ®E] ~ &" for some n.

Just as the positive rational numbers are constructed from the positive integers
by forming quotients a/b with the equivalence relation a/b = c/d iff ad = bc, so we
can form for compact X an abelian group K (X) consisting of formal differences E —E’
of vector bundles E and E’ over X, with the equivalence relation E, — E; = E, — E}
iff £, ®E, ~, E, ® E]. Verifying transitivity of this relation involves the cancellation
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property, which is why compactness of X is needed. With the obvious addition rule
(E; —E}) +(E, —E}) = (E;®E,) — (E; ®E)), K(X) is then a group. The zero element is
the equivalence class of E — E for any E, and the inverse of E—E’ is E' — E. Note that
every element of K(X) can be represented as a difference E — &" since if we start with
E — F" we can add to both E and E’ abundle E” such that E' ®E"” ~ £" for some n.

There is a natural homomorphism K (X )—»I? (X) sending E — £" to the ~-class
of E. This is well-defined since if E — " = E' — ™ in K(X), then E®¢™ ~, E' ®¢",
hence E ~ E’. The map K (X) —K(X) is obviously surjective, and its kernel consists of
elements E —&" with E ~ €°, hence FE ~ ; €™ for some m, so the kernel consists of the
elements of the form €™ — £". This subgroup {¢™ — "} of K(X) is isomorphic to Z.
In fact, restriction of vector bundles to a basepoint x, € X defines a homomorphism
K(X)—K(xy) ~ Z which restricts to an isomorphism on the subgroup {&" — £"}.
Thus we have a splitting K(X) ~ K (X) ®7, depending on the choice of x;,. The group
K (X) is sometimes called reduced, to distinguish it from K(X).

Ring Structure

Besides the additive structure in K(X) there is also a natural multiplication com-
ing from tensor product of vector bundles. For elements of K(X) represented by
vector bundles E; and E, their product in K(X) will be represented by the bundle
E, ®E,, so for arbitrary elements of K(X) represented by differences of vector bun-
dles, their product in K(X) is defined by the formula

(E; —E})(E, — Ey) =E,®E, — E,®E, —E{®F, + E;®E,

It is routine to verify that this is well-defined and makes K (X) into a commutative ring
with identity &!, the trivial line bundle, using the basic properties of tensor product
of vector bundles described in §1.1. We can simplify notation by writing the element
" € K(X) just as . This is consistent with familiar arithmetic rules. For example,
the product nE is the sum of n copies of E.

If we choose a basepoint x, € X, then the map K(X)—K(x,) obtained by re-
stricting vector bundles to their fibers over x is a ring homomorphism. Its kernel,
which can be identified with K (X) as we have seen, is an ideal, hence also a ring in its
own right, though not necessarily a ring with identity.

The rings K(X) and K(X) canbe regarded as functors of X. Amap f:X—Y in-
ducesamap f*:K(Y)—K(X), sending E—E’ to f*(E)— f*(E’). This is aring homo-
morphism since f*(E;®E,) ~ f*(E;)® f*(E,) and f*(E;®E,) ~ f*(E;)® f*(E,).
The functor properties (fg)* = g*f* and 1* = 1 as well as the fact that f = g
implies f* = g* all follow from the corresponding properties for pullbacks of vector
bundles. Similarly, we have induced maps f* K (V) —K (X) with the same properties,
except that for f* to be a ring homomorphism we must be in the category of base-
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pointed spaces and basepoint-preserving maps since our definition of multiplication
for K required basepoints.

An external product u:K(X)®K(Y)—K(XxXY) can be defined by pu(aeb) =
pi(a)py(b) where p, and p, are the projections of XxY onto X and Y. The tensor
product of rings is a ring, with multiplication defined by (a¢ b)(c®d) = ac ® bd, and
y is a ring homomorphism since p((aeb)(ced)) = p(acebd) = py(ac)p; (bd) =
pi(a)pi (©)p; (b)p;(d) = pi(@p3 (D)p{(c)p; (d) = plasb)u(ced).

Taking Y to be S? we have an external product

W:K(X)®K(S5%) > K(XxS?)

Most of the remainder of §2.1 will be devoted to showing that this map is an isomor-
phism. This is the essential core of the proof of Bott Periodicity.

The external product in ordinary cohomology is called ‘cross product’ and written
ax b, but to use this symbol for the K-theory external product might lead to confusion
with Cartesian product of vector bundles, which is quite different from tensor product.
Instead we will sometimes use the notation a * b as shorthand for u(aeb).

The Fundamental Product Theorem

The key result allowing the calculation of K(X) in nontrivial cases is a certain for-
mula that computes K(X XS 2 ) in terms of K (X). For example, when X is a point this
will yield a calculation of K (S%). In the next section we will deduce other calculations,
in particular K(S") for all n.

Let H be the canonical line bundle over $? = CP'. We showed in Example ?? that
(H®H)®1 ~ H®H. In K(S%) this is the formula H> + 1 = 2H, so H®> = 2H — 1.
We can also write this as (H — 1)> = 0, so we have a natural ring homomorphism
ZIH]/(H — 1)2—>K (52) whose domain is the quotient ring of the polynomial ring
Z[H] by the ideal generated by (H —1)2. In particular, note that an additive basis for
Z[H1/(H - 1)* is {1,H}.

We define a homomorphism pu as the composition

u:K(X)®Z[H]/(H - 1)> > K(X) ®K(S?) — K(XxS§?)
where the second map is the external product.

’ Theorem 2.2. The homomorphism u:K(X)®Z[H]/(H — 1)2—>K(X><52) is an iso-
morphism of rings for all compact Hausdorff spaces X .

Taking X to be a point we obtain:

|| Corollary 2.3. The map Z[H]/(H — 1)2—K(S?%) isan isomorphism of rings.

Thus if we regard K(S?%) as the kernel of K(S?) —K(x,), then it is generated as
an abelian group by H — 1. Since we have the relation (H — 1)? = 0, this means that
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the multiplication in K(S?) is completely trivial: The product of any two elements
is zero. Readers familiar with cup product in ordinary cohomology will recognize
that the situation is exactly the same as in H*(SZ;Z) and PNI*(SZ;Z), with H - 1
behaving exactly like the generator of H?(S%;Z). In the case of ordinary cohomology
the cup product of a generator of H?(S%;Z) with itself is automatically zero since
H*(5%;7) = 0, whereas with K-theory a calculation is required.

The present section will be devoted entirely to the proof of the preceding theorem.
Nothing in the proof will be used elsewhere in the book except in the proof of Bott
periodicity for real K-theory in §2.4, so the reader who wishes to defer a careful
reading of the proof may skip ahead to §2.2 without any loss of continuity.

The main work in proving the theorem will be to prove the surjectivity of u.
Injectivity will then be proved by a closer examination of the surjectivity argument.

Clutching Functions

From the classification of vector bundles over spheres in §1.2 we know that vec-
tor bundles over S° correspond exactly to homotopy classes of maps S'— GL,(O),
which we called clutching functions. To prove the theorem we will generalize this con-
struction, creating vector bundles over X x S° by gluing together two vector bundles
over XxD? by means of a generalized clutching function.

We begin by describing this more general clutching construction. Given a vector
bundle p:E—X, let f:ExS'—ExS! be an automorphism of the product vector
bundle px1:ExS'—XxS'. Thus for each x € X and z € S', f specifies an
isomorphism f(x, z): p‘l (x) —»p_l (x). From E and f we construct a vector bundle
over XxS° by taking two copies of ExD? and identifying the subspaces Ex S via
f. We write this bundle as [E, f], and call f a clutching function for [E, f]. If
i "ExS'—>ExS'isa homotopy of clutching functions, then [E, f;] = [E, f;] since
from the homotopy f; we can construct a vector bundle over X x §?x I restricting
to [E, f,] and [E, f;] over XxS5%°%x{0} and XxS%°x{1}. From the definitions it is
evident that [E, f11® [E,, f>]1 = [E;®E,, f] & f>].

Here are some examples of bundles built using clutching functions:

1. [E, 1] is the external product E *x 1 = u(E, 1), or equivalently the pullback of E via
the projection X xS%—X.

2. Taking X to be a point, then we showed in Example 1.10 that [1,z] ~ H where ‘1’
is the trivial line bundle over X, ‘z’ means scalar multiplication by z € § 1 C, and
H is the canonical line bundle over S* = CP'. More generally we have [1,z"] ~ H",
the n-fold tensor product of H with itself. The formula [1,z"] = H"™ holds also for
negative n if we define H! = [1,z!], which is justified by the fact that H® H ' ~ 1.
3. [E,z2" ]~ E* H" = u(E,H"™) for n € 7.

4. Generalizing this, [E,z"f] ~ [E, f1® H"™ where H" denotes the pullback of H"
via the projection X x 252,
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Every vector bundle E'— X x $° is isomorphic to [E, f] for some E and f. To
see this, let the unit circle S*' ¢ CU {o} = §? decompose $? into the two disks D,
and D, and let E, for & = 0,0 be the restriction of E’ over XxD,, with E the
restriction of E* over Xx {1}. The projection XxD,— Xx {1} is homotopic to the
identity map of X xD,, so the bundle E, is isomorphic to the pullback of E by the
projection, and this pullback is Ex D, so we have an isomorphism h,:E,—EXD,.
Then f = hoh;} is a clutching function for E’.

We may assume a clutching function f is normalized to be the identity over
XX {1} since we may normalize any isomorphism h,:E,— ExD, by composing it
over each X x {z} with the inverse of its restriction over X x {1}. Any two choices of
normalized h, are homotopic through normalized h,’s since they differ by amap g,
from D, to the automorphisms of E, with g,(1) = 1, and such a g, is homotopic
to the constant map 1 by composing it with a deformation retraction of D, to 1.
Thus any two choices f, and f; of normalized clutching functions are joined by a
homotopy of normalized clutching functions f;.

The strategy of the proof will be to reduce from arbitrary clutching functions
to successively simpler clutching functions. The first step is to reduce to Laurent
polynomial clutching functions, which have the form £(x, z) = stn ai(x)zi where
a;:E—E restricts to a linear transformation a;(x) in each fiber p~!(x). We call
such an a; an endomorphism of E since the linear transformations a;(x) need not
be invertible, though their linear combination »; ai(x)zi is since clutching functions
are automorphisms.

Proposition 2.4. Every vector bundle [E, f] is isomorphic to [E, ] for some Laurent
polynomial clutching function {. Laurent polynomial clutching functions €, and
£, which are homotopic through clutching functions are homotopic by a Laurent
polynomial clutching function homotopy €, (x,z) = >, a,;(x, t)zt.

Before beginning the proof we need a lemma. For a compact space X we wish
to approximate a continuous function f: X x ! — C by Laurent polynomial functions
SinleN An(X)Z" = 3N a,(x)e™®
Motivated by Fourier series, we set

a,(x) = % Llf(x,e)e*i"@de

, where each a,, is a continuous function X — C.

For positive real v let u(x,r,0) = >, <z an(x)r'"'eme. For fixed v < 1, this series
converges absolutely and uniformly as (x, ) ranges over X xS', by comparison with
the geometric series >, *", since compactness of X x §! implies that |f(x,0)| is
bounded and hence also |a, (x)|. If we can show that u(x, 7, 0) approaches f(x, 6)
uniformly in x and 6 as r goes to 1, then sums of finitely many terms in the series
for u(x,r,0) with » near 1 will give the desired approximations to f by Laurent
polynomial functions.
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|| Lemma 2.5. As r—1, u(x,r,0)— f(x,0) uniformly in x and 6.

Proof: For v < 1 we have

[ee]

1 Inl in(6—t)
Z T L]r e fx,t)dt

Nn=—o

:J LSy mlein®=0 £y 1 at
N

u(x,r,0)

1270
where the order of summation and integration can be interchanged since the series
in the latter formula converges uniformly, by comparison with the geometric series

>, ¥". Define the Poisson kernel

P(r,p) = L > rmei™®  for0<vr<1and @ €R
21
Then u(x,r,0) = L,l P(r,0 —t)f(x,t)dt. By summing the two geometric series for
positive and negative n in the formula for P(v, @), one computes that

1 1-7?
Pr,@) = 2 1-2rcos@ + 12

Three basic facts about P (7, @) which we shall need are:

(a) As a function of @, P(7, @) is even, of period 21, and monotone decreasing
on [0, 1], since the same is true of cos @ which appears in the denominator of
P(r,p) with a minus sign. In particular we have P(r,@) = P(v, 1) > 0 for all
r<l1.

(b) SlP(r,cp) dp = 1 for each v < 1, as one sees by integrating the series for
P(r,q@) term by term.

(c) For fixed @ € (0, 1), P(r,p)—0 as r —1 since the numerator of P(r,@) ap-
proaches 0 and the denominator approaches 2 — 2 cos @ = 0.

Now to show uniform convergence of u(x,r, 0) to f(x, 0) we first observe that, using
(b), we have

ulx,r, 0 - £, 0| = | [ Por0-0fxndt- | Por0-0fx0a]
< I P(r,0 —t)|f(x,t)— f(x,0)]|dt
Sl

Given ¢ > 0, there exists a 6 > 0 such that | f(x,t) — f(x,0)| < & for |t — 0] < 6 and
all x, since f is uniformly continuous on the compact space X xS!. Let Is denote
the integral IP(V, 0—1t)|f(x,t)— f(x,0)|dt over the interval |t — 0] < § and let I}
denote this integral over the rest of S'. Then we have

Iés[ P(r,@—t)edtseJ P(r,0—-t)dt =¢
lt-0]<5 st
By (a) the maximum value of P(r,0 —t) on |t — 0] = 6 is P(+,9). So

I5 < P(r,d) Ll |f(x,t) = f(x,0)]dt
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The integral here has a uniform bound for all x and 0 since f is bounded. Thus by (c)
we can make I§ < € by taking » close enough to 1. Therefore |u(x,r,0) - f(x,0)| <
Is + I < 2. i

Proof of Proposition 2.4: Choosing a Hermitian inner product on E, the endomor-
phisms of ExS' form a vector space End(Ex S!) with a norm ||| = sup, -1 lx(v)].
The triangle inequality holds for this norm, so balls in End(ExS') are convex. The
subspace Aut(ExS!) of automorphisms is open in the topology defined by this norm
since it is the preimage of (0, ) under the continuous map End(E xS 1)—»[0, ),
o« — inf . cx.g1ldet(ax(x,z))|. Thus to prove the first statement of the lemma it
will suffice to show that Laurent polynomials are dense in End(E xS 1), since a suf-
ficiently close Laurent polynomial approximation £ to f will then be homotopic to
f via the linear homotopy t£ + (1 — t)f through clutching functions. The second
statement follows similarly by approximating a homotopy from ¢, to ¢, , viewed as
an automorphism of ExS'x1I, by a Laurent polynomial homotopy 0}, then combin-
ing this with linear homotopies from ¢, to £;, and ¥, to ¥ to obtain a homotopy ¥,
from £, to ¢, .

To show that every f € End(ExS') can be approximated by Laurent polynomial
endomorphisms, first choose open sets U; covering X together with isomorphisms
h;:p ' (U;) = U;xC". We may assume h; takes the chosen inner product in p~* (U,)
to the standard inner product in C"™, by applying the Gram-Schmidt process to h{l
of the standard basis vectors. Let {g;} be a partition of unity subordinate to {U;}
and let X; be the support of @;, a compact setin U;. Via h;, the linear maps f(x, z)
for x € X; can be viewed as matrices. The entries of these matrices define functions
X; X8 ! C. By the lemma we can find Laurent polynomial matrices £;(x,z) whose
entries uniformly approximate those of f(x,z) for x € X;. It follows easily that ¥;
approximates f in the || - || norm. From the Laurent polynomial approximations ¥;
over X; we form the convex linear combination ¢ = >; @;¥;, a Laurent polynomial
approximating f over all of XxS?. |

A Laurent polynomial clutching function can be written £ = z~™q for a polyno-
mial clutching function g, and then we have [E,¥] = [E, q] ® H™™. The next step is
to reduce polynomial clutching functions to linear clutching functions.

’ Proposition 2.6. If q is a polynomial clutching function of degree at most n, then
[E,q]®[nE,1] = [(n+1)E,L"q] for a linear clutching function L"q.
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Proof: Let g(x,z) = a,(x)z" + -+ + ay(x). Each of the matrices

1 -z 0 - 0 0 1 0 O 00
0 1 -z - 0 0 o010 --- 00
0 0 1 o 0 0 o001 --- 00
A= . : : : : B=1|. . . Do
0 0 0 N R 4 O 00 --- 10
A, QAu_1 QAu_o -+ a; Ay 000 --- 0g

defines an endomorphism of (n + 1)E by interpreting the (i, j) entry of the matrix as
a linear map from the j summand of (n+1)E to the i" summand, with the entries
1 denoting the identity E— F and z denoting z times the identity, for z € S'. We can
pass from the matrix A to the matrix B by a sequence of elementary row and column
operations in the following way. In A, add z times the first column to the second
column, then z times the second column to the third, and so on. This produces 0’s
above the diagonal and the polynomial g in the lower right corner. Then for each
i < n, subtract the appropriate multiple of the it" row from the last row to make all
the entries in the last row 0 except for the final g. These row and column operations
are not quite elementary row and column operations in the traditional sense since
the entries of the matrices are not numbers but linear maps. However, by restricting
to a fiber of E and choosing a basis in this fiber, each entry in A becomes a matrix
itself, and then each of the preceding row and column operations can be realized by
a sequence of traditional row and column operations on the expanded matrices.

The matrix B is a clutching function for [nE, 1] @ [E, q], hence in each fiber the
expanded version of B has nonzero determinant. Since elementary row and column
operations preserve determinant, the expanded version of A is also invertible in each
fiber. This means that A is an automorphism of (n + 1)E for each z € S 1, and
therefore determines a clutching function which we denote by L"g. Since L"g has
the form A(x)z + B(x), itis a linear clutching function. The matrices A and B define
homotopic clutching functions since the elementary row and column operations can
be achieved by continuous one-parameter families of such operations. For example
the first operation can be achieved by adding tz times the first column to the second,
with t ranging from 0 to 1. Since homotopic clutching functions produce isomorphic
bundles, we obtain an isomorphism [E,q]® [nE, 1] = [(n + 1)E,L"q]. m|

Linear Clutching Functions
For linear clutching functions a(x)z + b(x) we have the following key fact:
Proposition 2.7. Given a bundle [E,a(x)z + b(x)], there is a splitting E ~ E, ®F_
with [E,a(x)z +b(x)] = [E_,1]®[E_, z].

Proof: The first step is to reduce to the case that a(x) is the identity for all x.
Consider the expression:

(%) (1+tz)alx)

Z: L b(0)] = [alx) + th(x)]z + ta(x) + b(x)

1+tz
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When t = 0 this equals a(x)z + b(x). For 0 <t < 1, (%) defines an invertible
linear transformation since the left-hand side is obtained from a(x)z + b(x) by first
applying the substitution z — (z + t)/(1 + tz) which takes S I to itself (because if
|z| =1then |(z+t)/(1+tz)| =|Z(z+t)/(1+tz)| = |(1+t2)/(1+tz)| = lw/w]| =1),
and then multiplying by the nonzero scalar 1+ tz. Therefore () defines a homotopy
of clutching functions as t goes from 0 to t;, < 1. In the right-hand side of (x) the
term a(x) + tb(x) is invertible for t = 1 since it is the restriction of a(x)z + b(x)
to z = 1. Therefore a(x) + tb(x) is invertible for ¢ = t;, near 1, as the continuous
function f — inf, .y | det[a(x) + th(x)] | is nonzero for t = 1, hence also for t near
1. Now we use the simple fact that [E, fg] = [E, f] for any isomorphism g:E—E.
This allows us to replace the clutching function on the right-hand side of (%) by the
clutching function z + [toa(x) + b(x)][a(x) + tyb(x)]"!, reducing to the case of
clutching functions of the form z + b(x).

Since z + b(x) is invertible for all x, b(x) has no eigenvalues on the unit circle
st

Lemma 2.8. Let b:E—E be an endomorphism having no eigenvalues on the unit

circle S. Then there are unique subbundles E, and E_ of E such that:

(@) E=E,®FE_.

(b) b(E,) CE..

(c) The eigenvalues of b|E, all lie outside S' and the eigenvalues of b|E_ all lie
inside S*.

Proof: Consider first the algebraic situation of a linear transformation T:V —V with
characteristic polynomial g(t). Assuming g (t) has norootson S, we may factor q(t)
in C[t] as q.(t)qg_(t) where g, (t) has all its roots outside S and q_(t) has all its
roots inside S!. Let V. be the kernel of g, (T):V—V. Since g, and q_ are relatively
prime in C[t], there are polynomials * and s with rq, +sq_ = 1. From q, (T)q_(T) =
q(T) = 0, we have Imq_(T) C Kerq,(T), and the opposite inclusion follows from
v(T)q,(T) +q_(T)s(T) = 1. Thus Kerq,(T) =Imq_(T), and similarly Kerq_(T) =
Imqg (T). From q (T)v(T) + q_(T)s(T) = 1 we see that Imq,(T) +Imq_(T) =V,
and from v(T)q ., (T) + s(T)q_(T) = 1 we deduce that Kerg_ (T) nKerqg_(T) = 0.
Hence V=V _ @®V_. Wehave T(V,) C V, since q,(T)(v) = 0 implies q, (T)(T(v)) =
T(q.(T)(v)) = 0. All eigenvalues of T |V, are roots of q, since q.(T) =0 on V,.
Thus conditions (a)-(c) hold for V, and V_.

To see the uniqueness of V, and V_ satisfying (a)-(c), let q'i be the characteristic
polynomial of T|V,, so g = q’.q_. All the linear factors of g, must be factors of
q.. by condition (c), so the factorizations q = q.q_ and q = g, q_ must coincide up
to scalar factors. Since g, (T) is identically zero on V., so must be g, (T), hence
V., cKerq (T). Since V =V, ®V_ and V = Kerq, (T) ® Kerq_(T), we must have
V., =Kerq,(T). This establishes the uniqueness of V.
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As T varies continuously through linear transformations without eigenvalues on
§!, its characteristic polynomial q(t) varies continuously through polynomials with-
out roots in S'. In this situation we assert that the factors q. of g vary continuously
with g, assuming that g, g, and g_ are normalized to be monic polynomials. To
see this we shall use the fact that for any circle C in C disjoint from the roots of g,
the number of roots of g inside C, counted with multiplicity, equals the degree of
the map y: C—»Sl, y(z) = q(z)/1q(z)|. To prove this fact it suffices to consider the
case of a small circle C about aroot z = a of multiplicity m, so q(t) = p(t)(t —a)™
with p(a) = 0. The homotopy

psa+(1-s5)2)(z-a)™
lp(sa+(1-3s)z)(z—a)™|

Ys (z) =

gives a reduction to the case (t —a)™, where it is clear that the degree is m.

Thus for a small circle C about a root z = a of g of multiplicity m, small per-
turbations of g produce polynomials q" which also have m roots a,, - - -, a,, inside
C, so the factor (z —a)™ of g becomes a factor (z — a;)---(z—-a,,) of the nearby
q’. Since the a;’s are near a, these factors of g and gq" are close, and so g, is close
to q,.

Next we observe that as T varies continuously through transformations without
eigenvalues in S!, the splitting V = V. , ®V_ also varies continuously. To see this,
recall that V, =Imq_(T) and V_ =Imgq, (T). Choose a basis v,,---,v,, for V such
that q_(T)(vy),--+,q_(T)(vy) is abasis for V, and q,(T)(vi,1), - -,q,.(T)(v,) is
a basis for V_. For nearby T these vectors vary continuously, hence remain indepen-
dent. Thus the splitting V = Imq_(T)® Imq_(T) continues to hold for nearby T,
and so the splitting V = V, @ V_ varies continuously with T.

It follows that the union E, of the subspaces V, in all the fibers V of E is a
subbundle, and so the proof of the lemma is complete. O

To finish the proof of Proposition 2.7, note that the lemma gives a splitting [E, z +
b(x)] = [E,,z+ b, (x)]®[E_,z+ b_(x)] where b, and b_ are the restrictions of
b. Since b, (x) has all its eigenvalues outside Sl, the formula tz + b_(x) for 0 <
t < 1 defines a homotopy of clutching functions from z + b, (x) to b, (x). Hence
[E,,z+ Db, (x)] = [E.,b, (x)] = [E,,1]. Similarly, z+tb_(x) defines a homotopy of
clutching functions from z + b_(x) to z,s0 [E_,z+ b_(x)] =~ [E_, z]. O

For future reference we note that the splitting [E,az + b] = [E,,1]®[E_,z]
constructed in the proof of Proposition 2.7 preserves direct sums, in the sense that
the splitting for a sum [E; ® E,, (a;z+b,)®(a,z+b,)] has (E; ®E,), = (E;), ®(E,),.
This is because the first step of reducing to the case a = 1 clearly respects sums, and
the uniqueness of the +-splitting in Lemma 2.8 guarantees that it preserves sums.
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Conclusion of the Proof

Now we address the question of showing that the homomorphism
WK(X)®Z[H]/(H - 1)’ —>K(XxS>

is an isomorphism. The preceding propositions imply that in K(X xS %) we have
[E, f1=[E,z""q]
= [E,qleH™
=[(n+1)E L"ql®H ™™ — [nE, 1]eH™™
=[((n+DE),11®H ™+ [((n+ 1)E)_,z]®A™ ™ — [nE, 1]1eH ™™
=((n+1E),®H "™+ ((n+1)E)_®H" ™ —nE®H ™
This last expression is in the image of u: K(X) ®K(SZ) —K(Xx 5’2) . Since every vector

bundle over X xS? has the form [E, f], it follows that u is surjective.

To show u is injective we shall construct v:K(XxSZ)—>K(X) ®Z[H]/(H — 1)2
such that vy = 1. The idea will be to define v([E, f]) as some linear combination of
terms E® H* and (m+1)E). ® H* which is independent of all choices.

To investigate the dependence of the terms in the formula for [E, f] displayed
above on m and n we first derive the following two formulas, where degq < n:

(1) [(m+2)E,L"q]l ~ [(n+ 1)E,L"q]®[E, 1]
(2) [(n+2)E,L"(zq)] ~ [(n + 1)E,L"q] ®E, z]

The matrix representations of L""'q and L"*'(zq) are:
1 -z 0 ..o 0 1 -z 0 -0 0
0 1 -z - 0 0 1 -z - 0 O
P : : and : : : Do
0 O 0 1 -z 0 0 0 N B
0 ap, an1 -+ Qg ay Ap-1 An-2 -+ Qo 0

In the first matrix we can add z times the first column to the second column to
eliminate the —z in the first row, and then the first row and column give the summand
[E, 1] while the rest of the matrix gives [(n + 1)E,L"q]. This proves (1). Similarly,
in the second matrix we add z~! times the last column to the next-to-last column to
make the —Zz in the last column have all zeros in its row and column, which gives the
splitting in (2) since [E, —z] = [E, z], the clutching function —z being the composition
of the clutching function z with the automorphism —1 of E.

In view of the appearance of the correction terms [E, 1] and [E, z] in (1) and (2),
it will be useful to know the ‘+’ splittings for these two bundles:

(3) For [E,1] the summand E_is O and E, = E.
(4) For [E,z] the summand E, is O and E_ = E.

Statement (4) is obvious from the definitions since the clutching function z is already
in the form z + b(x) with b(x) = 0, so 0O is the only eigenvalue of b(x) and hence
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E, = 0. To obtain (3) we first apply the procedure at the beginning of the proof of
Proposition 2.7 which replaces a clutching function a(x)z + b(x) by the clutching
function z + [{ya(x) + b(x)][la(x) + tolo(x)]’1 with 0 < t; < 1. Specializing to the
case a(x)z + b(x) = 1 this yields z + t; 1. Since t, 1 has only the one eigenvalue
t(jl > 1,we have E_ = 0.

Formulas (1) and (3) give ((n + 2)E)_ ~ ((n + 1)E)_, using the fact that the
+-gplitting preserves direct sums. So the ‘minus’ summand is independent of n.

Suppose we define

V([E,z™q]) =((n+1)E)_ ®(H-1)+E®H ™ e K(X)®Z[H]/(H — 1)?

for n > degqg. We claim that this is well-defined. We have just noted that ‘minus’
summands are independent of n, so v([E,z"™q]) does not depend on n. To see
that it is independent of 1 we must see that it is unchanged when z~™q is replaced
by z7 ™ 1(zq). By (2) and (4) we have the first of the following equalities:
V(IE,z™ Y zg)]) = (n+ 1)E)_®(H - 1) + E®(H — 1) + E@H ™!
=(m+1)E)_®H-1)+E®H "™ ~-H ™)+ FEeH ™!
=((n+1)E)_®H-1)+E®H™ ™
= v([E,z""ql)

To obtain the second equality we use the relation (H — 1) = 0 which implies H(H —
1) =H-1andhence H—1 = H ™ —H ™! for all m. The third and fourth equalities
are evident.

Another choice which might perhaps affect the value of v([E,z ™q]) is the con-
stant £, < 1 in the proof of Proposition 2.7. This could be any number sufficiently
close to 1, so varying t, gives a homotopy of the endomorphism b in Lemma 2.8. This
has no effect on the +-splitting since we can apply Lemma 2.8 to the endomorphism
of ExI given by the homotopy. Hence the choice of t, does not affect v([E,z"™q]).

It remains to see that v([E, z~"q]) depends only on the bundle [E,z"™q], not on
the clutching function z~™g for this bundle. We showed that every bundle over X x §°
has the form [E, f] for a normalized clutching function f which was unique up to
homotopy, and in Proposition 2.5 we showed that Laurent polynomial approximations
to homotopic f’s are Laurent-polynomial-homotopic. If we apply Propositions 2.6
and 2.7 over XxI with a Laurent polynomial homotopy as clutching function, we
conclude that the two bundles ((n +1)E)_ over Xx {0} and X x {1} are isomorphic.
This finishes the verification that v([E,z"™q]) is well-defined.

It is easy to check through the definitions to see that v takes sums to sums since
L"(q,9q,) = L"q, ®L"q, and, as previously noted, the +-splitting in Proposition 2.7
preserves sums. So v extends to a homomorphism K (X x 52)—>K(X) ®Z[H]/(H —
1)°.

The last thing to verify is that vu = 1. The group Z[H]/(H — 1)2 is generated by
1 and H, so in view of the relation H + H™ ' = 2, which follows from (H — 1) = 0,
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we see that K(S?) is also generated by 1 and H~'. Thus it suffices to show vy = 1
on elements E®H ™ for m = 0. We have VU(E®H ™) = v([E,z™]) = E_® (H —
1)+ E®H ™ =E®H ™ since E_ = 0, the polynomial g being 1 so that (3) applies.

This completes the proof of Theorem 2.2. O

2.2 Bott Periodicity

In this section we develop a few basic tools that make it possible to compute K(X)
for more complicated spaces X, and in particular for all spheres, yielding the Bott
Periodicity Theorem. These tools are formally very similar to the basic machinery of
algebraic topology involving cohomology, and in fact they make K-theory into what
was classically called a generalized cohomology theory, but now is called simply a
cohomology theory.

Exact Sequences

We will be going back and forth between the two versions of K-theory, K(X) and
K (X). Sometimes one is more convenient for stating a result, sometimes the other.
We begin by examining a key property of the reduced groups R(X).

Proposulon 29. If X is Compact Hausdorff and A C X is a closed subspace, then the
mcluszon and quotient maps A — X -4 X/A induce homomorphlsms R(x/A)
R(X) - K(A) for which the kernel of i* equals the image of q*.

Since we assume A is a closed subspace of a compact Hausdorff space, it is also
compact Hausdorff. The quotient space X/A is compact Hausdorff as well, with
the Hausdorff property following from the fact that compact Hausdorff spaces are
normal, hence a point x € X — A and the subspace A have disjoint neighborhoods in
X, projecting to disjoint neighborhoods of x and the point A/A in X/A.

There is some standard terminology to described the conclusion of the propo-
sition. A sequence of homomorphisms G, —G,— --- — G, is said to be exact if at
each intermediate group G; the kernel of the outgoing map equals the image of in-
coming map. Thus the proposition states that R(X/A) z, R(X) iR K(A) is exact.
We will be deriving some longer exact sequences below.

Proof: The inclusion Img* c Keri* is equivalent to i*q™ = 0. Since qi is equal to
the composition A—A/A — X/A and K(A/A) = 0, it follows that i*g* = 0.

For the opposite inclusion Keri* ¢ Img*, suppose the restriction over A of a
vector bundle p: E— X is stably trivial. Adding a trivial bundle to E, we may assume
that F itself is trivial over A. Choosing a trivialization h: p’l (A)—AxC",let E/h be
the quotient space of E under the identifications h ™! (x,v) ~ h™1(y,v) for x,y € A.
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There is then an induced projection E/h— X/A. To see that this is a vector bundle
we need to find a local trivialization over a neighborhood of the point A/A.

We claim that since E is trivial over A, it is trivial over some neighborhood of A.
In many cases this holds because there is a neighborhood which deformation retracts
onto A, so the restriction of E over this neighborhood is trivial since it is isomorphic
to the pullback of p’l(A) via the retraction. In the absence of such a deformation
retraction one can make the following more complicated argument. A trivialization
of E over A determines sections s;:A— E which form a basis in each fiber over A.
Choose a cover of A by open sets U; in X over each of which E is trivial. Via a local
trivialization, each section s; can be regarded as a map from A N U; to a single fiber,
so by the Tietze extension theorem we obtain a section s;;:U; —E extending s;. If
{pj, @} is a partition of unity subordinate to the cover {U;, X — A} of X, the sum
> j @jSi; gives an extension of s; to a section defined on all of X. Since these sections
form a basis in each fiber over A, they must form a basis in all nearby fibers. Namely,
over U; the extended s;’s can be viewed as a square-matrix-valued function having
nonzero determinant at each point of A, hence at nearby points as well.

Thus we have a trivialization h of E over a neighborhood U of A. This induces
a trivialization of E/h over U/A, so E/h is a vector bundle. It remains only to verify
that E =~ q*(E/h). In the commutative diagram at the right the F — E/h
quotient map E—E/h is an isomorphism on fibers, so this map 101 l
and p give an isomorphism E = g*(E/h). o X—1-Xx/A

There is an easy way to extend the exact sequence I%(X/A) —>I?(X) —>I?(A) to the
left, using the following diagram, where C and S denote cone and suspension:
Ao X > XUCAs (XUCA)UCX —((XUCA)UCX)uC(XUCA)
| l |
X/A SA SX
In the first row, each space is obtained from its predecessor by attaching a cone on the
subspace two steps back in the sequence. The vertical maps are the quotient maps
obtained by collapsing the most recently attached cone to a point. In many cases the
quotient map collapsing a contractible subspace to a point is a homotopy equivalence,
hence induces an isomorphism on K. This conclusion holds generally, in fact:

Lemma 2.10. If A is contractible, the quotient map q: X — X /A induces a bijection
q* :Vect"(X/A) — Vect" (X) forall n.

Proof: A vector bundle E— X must be trivial over A since A is contractible. A
trivialization h gives a vector bundle E/h— X/A as in the proof of the previous
proposition. We assert that the isomorphism class of E/h does not depend on h.
This can be seen as follows. Given two trivializations h, and h;, by writing h; =
(hyhg')hy we see that h, and h, differ by an element of g, € GL,(C) over each
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point x € A. The resulting map g:A— GL,,(C) is homotopic to a constant map
X — & € GL,(C) since A is contractible. Writing now h; = (hlh(}l(x_l)((xho), we
see that by composing h, with « in each fiber, which does not change E/h,, we may
assume that « is the identity. Then the homotopy from g to the identity gives a
homotopy H from h, to h;. In the same way that we constructed E/h we construct
a vector bundle (ExI)/H— (X/A)xI restricting to E/h, over one end and to E/h,
over the other end, hence E/hy = E/h,.

Thus we have a well-defined map Vect"(X) — Vect"(X/A), E — E/h. This is an
inverse to q* since g*(E/h) = E as we noted in the preceding proposition, and for a
bundle E— X/A we have g*(E)/h =~ E for the evident trivialization h of g* (E) over
A a

From this lemma and the preceding proposition it follows that we have a long
exact sequence of K groups

. > K(SX)>R(SA)—>K(X/A)—-K(X)—>K(A)

For example, if X is the wedge sum A v B then X/A = B and the sequence breaks
up into split short exact sequences, which implies that the map R(X)—K(A)®K(B)
obtained by restriction to A and B is an isomorphism.

Deducing Periodicity from the Product Theorem

We can use the exact sequence displayed above to obtain a reduced version of
the external product, a ring homomorphism K (X) ®K (Y) —K (XAY) where X AY =
XXY/XVvY and X VY = XX {yy} U{xy} XY c XxY for chosen basepoints x, € X
and y, € Y. The space X A Y is called the smash product of X and Y. To define the
reduced product, consider the long exact sequence for the pair (XxY,XVY):

R(S(XXY))— K(S(XVY)) — K(XAY)— K(XXY) — K(XVY)
0 0
K(SX)®K(SY) K(X)®K(Y)

The second of the two vertical isomorphisms here was noted earlier. The first vertical
isomorphism arises in similar fashion by using a reduced version of the suspension
operator which associates to a space Z with basepoint z, the quotient space X7
of SZ obtained by collapsing the segment {z,}xI to a point. The quotient map
SZ—3>7 induces an isomorphism R(S7Z) ~ R(2Z) by the preceding lemma. For
reduced suspension we have (X vY) = XX v XY, which gives the first isomorphism
in the diagram. The last horizontal map in the sequence is a split surjection, with
splitting K(X) ®K(Y)—=K(XxY), (a,b) — p{(a)+ pi (b) where p, and p, are the
projections of Xx Y onto X and Y. Similarly, the first map splits via (Spl)* + (sz)* .
So we get a splitting K(XxY) ~K(X AY)®K(X)@K(Y).
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For a € K(X) = Ker(K(X)—K(x,)) and b € K(Y) = Ker(K(Y)—K(y,)) the
external product a x b = pj(a)p;(b) € K(XxY) has p;i(a) restricting to zero in
K(Y) and p; (b) restricting to zero in K(X), so p; (a)p; (b) restricts to zero in both
K(X) and K(Y), hence in K(X Vv Y). In particular, a * b lies in I?(Xx Y), and from
the short exact sequence above, a x b pulls back to a unique element of R(XAY).
This defines the reduced external product RX)eR(Y)—R(X AY). Itis essentially
a restriction of the unreduced external product, as shown in the following diagram,

U

K(X)®K(Y) = (K(X)®K(Y)) e K(X)®K(Y)® Z

| | I [ [
K(X XY) K(XAY) @ K(X)eK(Y)eZ

Q

so the reduced external product is also a ring homomorphism, and we shall use
the same notation a * b for both reduced and unreduced external product, leaving
the reader to determine from context which is meant.

Since S™ A X is the n-fold iterated reduced suspension "X, which is a quotient
of the ordinary n-fold suspension S X obtained by collapsing an n-disk in S"X to a
point, the quotient map S™X—S"™ A X induces an isomorphism on K by Lemma 2.10.
Then the reduced external product gives rise to a homomorphism

B:R(X)—K($°X), Ba)=H-1)%a

where H is the canonical line bundle over S° = CP'. Here at last is the Bott Periodicity
Theorem:

Theorem 2.11. The homomorphism B:I%(X)—»I%(SZX), Bla)=(H-1) xa,isan
isomorphism for all compact Hausdorff spaces X .

By the diagram displayed above this is equivalent to the Product Theorem proved
in the previous section.

Corollary 2.12. R(5*"*') = 0 and K(S*") ~ 7, generated by the n-fold reduced
external product (H—1) x --- % (H—1).

Extending to a Cohomology Theory

As we saw earlier, a pair (X, A) of compact Hausdorff spaces gives rise to an exact
sequence of R groups, the first row in the following diagram:

K(S2X) — K(S°A) — K(S(X/A)) — K(SX) — K(SA) — K(X/A) — K(X) — K(A)
[ [ [ [ [ I [ I
K4(X)—K*A) — K YX,A)— K (X) =K (A —K%X,A~ K°(X)— K°A)
Bl~ B~
K%X)— K°A)
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If we set K(X) = K(S"X) and K™"(X,A) = K(S"(X/A)), this sequence can be
written as in the second row. Negative indices are chosen here so that the ‘coboundary’
maps in this sequence increase dimension, as in ordinary cohomology. The lower
left corner of the diagram containing the Bott periodicity isomorphisms  commutes
since external tensor product with H —1 commutes with maps between spaces. So the
long exact sequence in the second row can be rolled up into a six-term periodic exact
sequence. It is reasonable to extend the definition of K" to positive n by setting
R%*(X) = K(X) and K**'(X) = K(SX). Then the six-term exact sequence can be
written

K%X,A) — K°%X) — K°A)

I l

KYA) — K'(X) —KUX,A)

A product K (X)®K’/(Y)—K™/(X A Y) is obtained from the external product
I?(X) ®I?(Y)—>I?(X/\Y) by replacing X and Y by S'X and S’Y. If we define I?*(X) =
R°(X)® K" (X), then this gives a product K*(X) ® K*(Y) —=K*(X A Y). The relative
form of this is a product K* (X, A) ® K* (Y, B) = K* (XX Y,XxBUAXY), coming from
the products K(Z'(X/A))®K(S/(Y/B)) — K(E"/(X/A A Y/B)) using the natural
identification (XXY)/(XXBUAXY) =X/AAY/B.

If we compose the external product K* (X) ®K* (X) —K* (X A X) with the map
K*(X A X)—K*(X) induced by the diagonal map X— X A X, x — (x,x), then we
obtain a multiplication on K* (X) making it into a ring, and it is not hard to check that
this extends the previously defined ring structure on R°(X). The general relative form
of this product on K*(X) is a product K* (X, A)® K*(X,B) —K* (X, A U B) which is
induced by the relativized diagonal map X/(AUB)—X/A A X/B.

Example 2.13. Suppose that X = A U B where A and B are compact contractible
subspaces of X containing the basepoint. Then the product K*(X) ® K* (X) — K* (X)
is identically zero since it is equivalent to the composition

R*(X,A)®K*(X,B)—>K*(X,A U B)—K*(X)

and K* (X, AUB) = 0 since X = AUB. For example if X is a suspension we can take A
and B to beits two cones, with a basepoint in their intersection. As a particular case we
see that the product in K*(S™) ~ 7 is trivial for n > 0. For n = 0 the multiplication
in K*(°) ~ Z is just the usual multiplication of integers since R™ ® R" ~ R™". This
illustrates the necessity of the condition that A and B both contain the basepoint of
X, since without this condition we could take A and B to be the two points of S°.
More generally, if X is the union of compact contractible subspaces A;,---,A,
containing the basepoint then the n-fold product
K*(X,A])® --- ®K*(X,A,) >K*(X,A;U---UA

n)
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is trivial, so all n-fold products in K*(X) are trivial. In particular all elements of
K*(X) are nilpotent since their n'"* power is zero. This applies to all compact mani-
folds for example since they are covered by finitely many closed balls, and the condi-
tion that each A; contain the basepoint can be achieved by adjoining to each ball an
arc to a fixed basepoint. In a similar fashion one can see that this observation applies
to all finite cell complexes, by induction on the number of cells.

Whereas multiplication in R(X) is commutative, in K* (X) this is only true up to
sign:

|| Proposition 2.14. af = (-1)YBx for x € K'(X) and B e K'(X).
Proof: The product is the composition
K(STAX)®K(STAX) —K(S'ASIAXAX)—K(STASI AX)

where the first map is external product and the second is induced by the diagonal
map on the X factors. Replacing the product «f by the product fx amounts to
switching the two factors in the first term R (S IAX ) ®K (Sj A X), and this corresponds
to switching the St and S/ factors in the third term K(S' A §7 A X). Viewing Siast
as the smash product of i + j copies of S', then switching S’ and S’ in S' A 7 is
a product of ij transpositions of adjacent factors. Transposing the two factors of
S' A S! is equivalent to reflection of S? across an equator. Thus it suffices to see that
switching the two ends of a suspension SY induces multiplication by —1 in R(SY). If
we view K (8Y) as (Y, U), then switching ends of SY corresponds to the map U—U
sending a matrix to its inverse. We noted in the proof of Proposition 2.2 that the group
operation in K(SY) is the same as the operation induced by the product in U, so the
result follows. O

Proposition 2.15. The exact sequence at the right is an

exact sequence of R*(X)-modules, with the maps homo- K (X’A\) /K %)
morphisms of K* (X)-modules. K*(A)

The K*(X)-module structure on K * (A) is defined by &-« = i* (§) x where i is the
inclusion A — X and the product on the right side of the equation is multiplication
in the ring K *(A). To define the module structure on K *(X,A), observe that the
diagonal map X — X A X induces a well-defined quotient map X/A—X A X/A, and
this leads to a product K*(X) ® K* (X, A) —K* (X, A).

Proof: To see that the maps in the exact sequence are module homomorphisms we
look at the diagram
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K(S7SA) K(S7(X/A)) K(57X) K(S'A)

| | | |
K(S'XAS'SA) —> K(S'X A SH(X/A)) — K(S'XAS'X) —> K(S'X A S’A)
| | | |
K(s™IsA) R(5™(x/A) R(s™7X) R(s'A)

where the vertical maps between the first two rows are external product with a fixed

element of K(S'X) and the vertical maps between the second and third rows are
induced by diagonal maps. What we must show is that the diagram commutes. For the
upper two rows this follows from naturality of external product since the horizontal
maps are induced by maps between spaces. The lower two rows are induced from
suspensions of maps between spaces,

XASA— XAX/A XAX XANA

I I I I

SA X/A X A

so it suffices to show this diagram commutes up to homotopy. This is obvious for the
middle and right squares. The left square can be rewritten

XASA— XA(XUCA)

I I

SA XUCA

where the horizontal maps collapse the copy of X in XUCA to a point, the left vertical
map sends (a,s) € SA to (a,a,s) € X A SA, and the right vertical map sends x € X
to (x,x) € XU CA and (a,s) € CA to (a,a,s) € X A CA. Commutativity is then
obvious. O

It is often convenient to have an unreduced version of the groups K "(X), and this
can easily be done by the simple device of defining K" (X) to be R™(x +) where X, is
X with a disjoint basepoint labeled ‘+’ adjoined. For n = 0 this is consistent with the
relation between K and K since K°(X) = K°(X,) = K(X,) = Ker(K(X,)—K(+)) =
K(X). For n = 1 this definition yields K'(X) = I?l(X) since S(X,) = SX Vv s and
R(SXVvSYH ~K(SX)®K(S') ~ K(SX) since K(S') = 0. For a pair (X,A) with A = @
one defines K"(X,A) = I%"(X ,A), and then the six-term long exact sequence is valid
also for unreduced groups. When A = @ this remains valid if we interpret X/@ as
X,.

Since X, AY, = (XX Y),, the external product K*(X) ® K*(Y) —K*(X AY) gives
a product K*(X)®K*(Y)—>K*(XxY). Taking X = Y and composing with the map
K*(XxX)—K*(X) induced by the diagonal map X—XxX, x — (x,x), we get a
product K*(X) ® K*(X) — K™ (X) which makes K*(X) into a ring.

There is a relative product Ki(X,A) ®Kj(Y,B)—>K”j(X>< Y, XXB U AXY) de-
fined as the external product K (SH(X/A)) ®K(S/(Y/B)) — K(Z"/(X/A A Y/B)), us-
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ing the natural identification (XxY)/(XXBUAXY) = X/A A Y /B. This works when
A = @ since we interpret X/@ as X, , and similarly if Y = &. Via the diagonal map
we obtain also a product Ki(X,A) ®Kj(X,B)—>K”j(X,A U B).

With these definitions the preceding two propositions are valid also for unreduced
K-groups.

Elementary Applications

With the calculation K*(S™) ~ Z completed, it would be possible to derive many
of the same applications that follow from the corresponding calculation for ordinary
homology or cohomology, as in [AT]. For example:

— There is no retraction of D" onto its boundary S"!, since this would mean that
the identity map of K*(S™!) factored as K*(S" ') —»K*(D™)—K*(S" 1), but
the middle group is trivial.

— The Brouwer fixed point theorem, that for every map f:D"— D" there is a point
x € D™ with f(x) = x. For if not then it is easy to construct a retraction of D"
onto S"°!.

— The notion of degree for maps f:S"—S", namely the integer d(f) such that the
induced homomorphism f*:K*(S")—K*(S™) is multiplication by d(f). Rea-
soning as in Proposition 2.2, one sees that d is a homomorphism 1, (S") —Z.
In particular a reflection has degree —1 and hence the antipodal map of S",
which is the composition of n + 1 reflections, has degree (—1)"*! since d(fg) =
d(f)d(g). Consequences of this include the fact that an even-dimensional sphere
has no nonvanishing vector fields.

However there are some things homology can do that would be harder using K-theory
since K*(S™) only distinguishes even-dimensional spheres from odd-dimensional
spheres. Also, since we have so far only defined K-theory for compact spaces, it
would take more work to derive some of the other classical applications of homology
such as Brouwer’s theorems on invariance of dimension and invariance of domain, or
the Jordan curve theorem and its higher-dimensional analogs.
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2.3. Division Algebras and Parallelizable Spheres

With the hard work of proving Bott Periodicity now behind us, the goal of this
section is to prove Adams’ theorem on the Hopf invariant, with its famous applications
including the nonexistence of division algebras beyond the Cayley octonions:

Theorem 2.16. The following statements are true only for n =1, 2, 4, and 8:

(@) R™ is a division algebra.

(b) S* 1 is parallelizable, i.e., there exist n — 1 tangent vector fields to S™ 1 which
are linearly independent at each point, or in other words, the tangent bundle to S n-1
is trivial.

A division algebra structure on R" is a multiplication map R"xR"—R" such
that the maps x — ax and x — xa are linear for each a € R" and invertible if a = 0.
Since we are dealing with linear maps R"™ — R", invertibility is equivalent to having
trivial kernel, which translates into the statement that the multiplication has no zero
divisors. An identity element is not assumed, but the multiplication can be modified
to produce an identity in the following way. Choose a unit vector e € R". After
composing the multiplication with an invertible linear map R"™ — R" taking e toe
we may assume that e = e. Let « be the map x+— xe and B themap x — ex. The new
product (x,y) — & 1 (x)B 1 (») then sends (x,e) to & (x)B 1 (e) = a t(x)e = x,
and similarly it sends (e, y) to y. Since the maps x — ax and x — xa are surjective
for each a + 0, the equations ax = e and xa = e are solvable, so nonzero elements
of the division algebra have multiplicative inverses on the left and right.

H-Spaces

The first step in the proof of the theorem is to reduce it to showing when the
sphere S™! is an H-space.

To say that S ! is an H-space means there is a continuous multiplication map
§" 1 §"1 — §"~1 having a two-sided identity element e € $" . This is weaker than
being a topological group since associativity and inverses are not assumed. For exam-
ple, S1, S 3 and S are H-spaces by restricting the multiplication of complex numbers,
quaternions, and Cayley octonions to the respective unit spheres, but only S' and $°
are topological groups since the multiplication of octonions is nonassociative.

Lemma 2.17. If R" is a division algebra, or if S~ " is parallelizable, then S is

an H-space.

Proof: Having a division algebra structure on R" with two-sided identity, an H-space
structure on S ! is givenby (x,y)— xy/|xy|,which is well-defined since a division
algebra has no zero divisors.

Now suppose that ™! is parallelizable, with tangent vector fields vy, ---,v,,_;
which are linearly independent at each point of ™~ !. By the Gram-Schmidt process we
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may make the vectors x,v,(x),--,v,_;(x) orthonormal for all x s we may
assume also that at the first standard basis vector e, the vectors v, (ey), -+, v,_;(e;)
are the standard basis vectors e,, - - -, e,,, by changing the sign of v,,_; if necessary to

get orientations right, then deforming the vector fields near e, . Let &,, € SO(n) send
the standard basis to x,v,(x),---,v,_;(x). Then the map (x,y) — «,(y) defines
an H-space structure on S ' with identity element the vector e, since «,, is the
identity map and «,(e;) = x for all x. O

Before proceeding further let us list a few easy consequences of Bott periodicity
which will be needed.

(1) We have already seen that K(S™) is Z for n even and 0 for n odd. This comes
from repeated application of the periodicity isomorphism R(X) ~ K(§°X), a—
o * (H — 1), the external product with the generator H — 1 of K(S?%), where H is
the canonical line bundle over $? = CP!. In particular we see that a generator of
K (52%) is the k-fold external product (H —1) % --- x (H — 1). We note also that
the multiplication in K (S 2k) is trivial since this ring is the k-fold tensor product
of the ring K(S?), which has trivial multiplication by Corollary 2.3.

(2) The external product I?(SZ") ®I?(X) —»I?(SZk A X) is an isomorphism since it is
an iterate of the periodicity isomorphism.

(3) The external product K(SZk) ®K(X)—>K(52k><X) is an isomorphism. This fol-
lows from (2) by the same reasoning which showed the equivalence of the reduced
and unreduced forms of Bott periodicity. Since external product is a ring homo-
morphism, the isomorphism R(S* A X) ~ RS @R(X) isa ring isomorphism.
For example, since K(SZk) can be described as the quotient ring Z[a]/((xz), we
can deduce that K (S%x 52‘[’)) is 7] «, B]/((xz, BZ) where « and S are the pullbacks
of generators of I?(SZk) and I%(SZ‘{)’) under the projections of 2k §2¢ onto its
two factors. An additive basis for K(SkaSZ"}) is thus {1, «, B, xp}.

We can apply the last calculation to show that S %k is not an H-space if k > 0.
Suppose u:SkaSZk—>52k is an H-space multiplication. The induced homomor-
phism of K-rings then has the form p* :Z[y]/(yz) -7 «, ﬁ]/(O(Z, Bz). We claim that
u*(y) = o+ B +map for some integer m. The composition g2k L, g2ky g2k K, g2k
is the identity, where i is the inclusion onto either of the subspaces 52k {e} or
{e} x ¢, with e the identity element of the H-space structure. The map i* for i the
inclusion onto the first factor sends « to y and S8 to 0, so the coefficient of & in pu*(y)
must be 1. Similarly the coefficient of 8 must be 1, proving the claim. However, this
leads to a contradiction since it implies that u*(y?) = (x + B + maB)? = 2B = 0,
which is impossible since y? = 0.

There remains the much more difficult problem of showing that $™! is not an
H-space when n is even and different from 2, 4, and 8. The first step is a simple
construction which associates to amap g:5" 'xS" ' —-8"! amap §:5°" ' >S".
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To define this, we regard S$?* ! as 3(D"xD") = dD"xD" U D"x3D", and S" we
take as the union of two disks DY and D! with their boundaries identified. Then
g is defined on 0D"xD" by g(x,y) = |¥|g(x,y/ly]) € DI and on D"xoD" by
gx,y) = |xlg(x/|x|,v) € D". Note that g is well-defined and continuous, even
when |x| or |y| is zero, and § agrees with g on §" 'xS"!.

Now we specialize to the case that n is even, or in other words, we replace n
by 2n. For amap f:S*" 1 —52" let C; be $2" with a cell e*" attached by f. The
quotient C;/S*" is then $*", and since K'(5*") = K'(§*") = 0, the exact sequence
of the pair (Cf, 52") becomes a short exact sequence

0— K(s*™) —K(Cp) = K($™) —0

Let x € I?(Cf) be the image of the generator (H — 1) % --- x (H—1) of I?(S‘m) and
let B € I?(Cf) map to the generator (H—1) % --- % (H—1) of R(S%*™). The element
B? maps to 0 in K(5°™) since the square of any element of K(S®™) is zero. So by
exactness we have 2 = h« for some integer h. The mod 2 value of h depends only
on f, not on the choice of B, since § is unique up to adding an integer multiple of
«, and (B + mx)? = B° + 2map since &’ = 0. The value of h mod 2 is called the
mod 2 Hopf invariant of f. In fact 8 = 0 so h is well-defined in Z not just Z,, as
we will see in §4.1, but for our present purposes the mod 2 value of h suffices.

Lemma 2.18. If g:5°" ' x$?" ' = §2"! s an H-space multiplication, then the as-

sociated map §:S*""'—S*" has Hopf invariant +1.

Proof: Let e € ™! be the identity element for the H-space multiplication, and let
f = g. In view of the definition of f it is natural to view the characteristic map ® of
the 4n-cell of C; as a map (D*"x D", B(DZ"XDZ"))ﬁ(Cf,SZ"). In the following
commutative diagram the horizontal maps are the product maps. The diagonal map is
external product, equivalent to the external product K ($°™) ® K (5°™) — K (5*™), which
is an isomorphism since it is an iterate of the Bott periodicity isomorphism.

K(C)) ® K(C)) K(C))
K(C,,D™) ® K(C;,DY") K(C,, %)
e 9" | o* |~

K(D*"x D™ aD*"xD*") ® K(D*"xD*" D*"x dD*") — K(D*"xD*"a(D*"xD*"))

K(D*"x{e},0D"" x{e}) ® K(le}xD*"{e}xoD")

By the definition of an H-space and the definition of f, the map & restricts to a
homeomorphism from D" x {e} onto Di" and from {e}xDZ" onto D?™. Tt follows
that the element B ® § in the upper left group maps to a generator of the group in the
bottom row of the diagram, since B restricts to a generator of R(S%™) by definition.
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Therefore by commutativity of the diagram, the product map in the top row sends
B® B to +« since & was defined to be the image of a generator of I?(Cf, 5‘2”). Thus
we have % = +«, which says that the Hopf invariant of f is +1. O

In view of this lemma, Theorem 2.16 becomes a consequence of the following
theorem of Adams:

’ Theorem 2.19. If £:5**' —S%" is a map whose mod 2 Hopf invariant is 1, then
n=1, 2,or4.

The proof of this will occupy the rest of this section.

Adams Operations

The Hopf invariant is defined in terms of the ring structure in K-theory, but in
order to prove Adams’ theorem, more structure is needed, namely certain ring homo-
morphisms qjk :K(X)—K(X). Here are their basic properties:

Theorem 2.20. There exist ring homomorphisms L[Jk :K(X)—K(X), defined for all
compact Hausdor(ff spaces X and all integers k > 0, and satisfying:

(1) g*f* = F*y* for all maps f:X—Y. (Naturality)

() ¢*(@L) = L* if L is a line bundle.

B) whew! = ¢t

4) ?’ () = «” mod p for p prime.

This last statement means that ¢” (x) — «” = pB for some B € K(X).

In the special case of a vector bundle E which is a sum of line bundles L;, prop-
erties (2) and (3) give the formula @*(L,® --- ®L,) = LY + --- + LX. We would like
a general definition of (,Uk(E ) which specializes to this formula when E is a sum of
line bundles. The idea is to use the exterior powers AK(E). From the corresponding
properties for vector spaces we have:

(i) AM(E, ®E,) ~ @, (AU(E)) @AY (E,)).

(i) A°(E) = 1, the trivial line bundle.
(ili) A'(E) = E.
@iv) Ak(E ) = 0 for k greater than the maximum dimension of the fibers of E.
Recall that we want ¢/*(E) to be L’f +-- +L’,‘l when E=L,® --- &L, forline bundles
L;. We will show in this case that there is a polynomial s, with integer coefficients
such that LY + -+ + LX = s, (AL(E), ---,AK(E)). This will lead us to define y*(E) =
sk(Al(E), - ,Ak(E)) for an arbitrary vector bundle E.

To see what the polynomial s, should be, we first use the exterior powers AL(E)
to define a polynomial A, (E) = ; ANE)t' € K(X)[t]. This is a finite sum by property
(iv), and property (i) says that A (E; ®E,) = A;(E})A(Ey). When E =L, ® --- ®L,
this implies that A,(E) = [[;A,(L;), which equals [I;(1 + L;t) by (ii), (iii), and (iv).
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The coefficient A (E) of t/ in Ad(E) = l_[i(l + L;t) is the j th elementary symmetric
function o; of the L;’s, the sum of all products of j distinct L;’s. Thus we have

(%) M(E)=o0(Ly,-+,L,) fE=L&-- &L,

To make the discussion completely algebraic, let us introduce the variable ¢; for
L;. Thus (1+¢,)---(1+t,) =1+0,+---+0,,where o is the j" elementary sym-
metric polynomial in the ¢;’s. The fundamental theorem on symmetric polynomials,
proved for example in [Lang, p. 134] or [van der Waerden, §26], asserts that every
degree k symmetric polynomial in ¢;,---,t, can be expressed as a unique polyno-
mial in oy, -+, 0. In particular, t{‘ + -+ tﬁ is a polynomial s, (o, ---,0}), called a
Newton polynomial. This polynomial s; is independent of n since we can pass from
n to n — 1 by setting t,, = 0. A recursive formula for s; is

k-2 k-1
S = O01Sk_1 — OpS_o + -+ (=1)"" 0418, + (=1)" "koy,

To derive this we may take n = k, and then if we substitute x = —t; in the identity

(x+t) - (x+t) =xF+oxF T+ o, weget th = oyt - 4 (—D¥ Loy
Summing over i then gives the recursion relation. The recursion relation easily yields

for example

S =0, Sy = 012 - 20, S3 = 013 - 30,0, + 303
Sy = oy - 40120'2 +40,03 + 20% — 40,
Summarizing, if we define (pk(E) = Sk(Al (E),--- ,Ak(E)), then in the case that E
is a sum of line bundles L, & --- &L, we have
WH(E) = s (AN (E), -+, A(E))

=sp(oy(Ly, -+, L), -+, 00 (Ly,--+,Ly,)) by (%)

= L’f + o+ Lfl
Verifying that the definition (,Uk(E ) = sk(Al(E ), - ,Ak(E )) gives operations on

K(X) satisfying the properties listed in the theorem will be rather easy if we make
use of the following general result:

The Splitting Principle. Given a vector bundle E— X with X compact Hausdorf{f,
there is a compact Hausdorff space F(E) and a map p :F(E)— X such that the in-
duced map p* :K*(X)—K*(F(F)) is injective and p™(E) splits as a sum of line
bundies.

This will be proved later in this section, but for the moment let us assume it and
proceed with the proof of Theorem 2.20 and Adams’ theorem.

Proof of Theorem 2.20: Property (1) for vector bundles, f*((,uk(E)) = (,Uk(f*(E)),
follows immediately from the relation f*(AL(E)) = A'(f*(E)). Additivity of @* for
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vector bundles, (,Uk(El ®FE,) = (,Uk(El) + (,Uk(Ez), follows from the splitting principle
since we can first pull back to split E; then do a further pullback to split E,, and the
formula ¢*(L,® --- ®L,) = L¥ + .. + LX preserves sums. Since ¥ is additive on
vector bundles, it induces an additive operation on K (X) defined by y*(E, — E,) =
Wr(E) — @M (E,).

For this extended (pk the properties (1) and (2) are clear. Multiplicativity is also
easy from the splitting principle: If E is the sum of line bundles L; and E’ is the sum
of line bundles L', then E®E’ is the sum of the line bundles L;® L, so YMESE') =
S wker) = 3 (et = 3, ke = 1k s 1 = y*E)WHE). Thus
([Jk is multiplicative for vector bundles, and it follows formally that it is multiplicative
on elements of K(X). For property (3) the splitting principle and additivity reduce
us to the case of line bundles, where ka((pg(L)) = ¥ = ([Jkg(L). Likewise for (4), if
E=L;+---+L,,then ?(E) =LY +---+LF =(L, +---+L,)" =E’F modp. O

By the naturality property (1), L[lk restricts to an operation t,Uk :K(X)—K(X) since
K (X) is the kernel of the homomorphism K(X)— K(x,) for x, € X. For the external
product I%(X) ®I?(Y)—>I?(X A'Y), we have the formula (,Uk(a *x ) = (,Uk((x) * (,Uk(B)
since if one looks back at the definition of « % B, one sees this was defined as

pi (x)p;(B), hence
Wr (o B) = w*(pi (0pF (B))

= gk (pF () ek (pi(B))
= pF(P* () pd (Pr(B))
= y*(x) * yR(p).

This will allow us to compute ka on K(5°™) ~ Z. In this case (,Uk must be
multiplication by some integer since it is an additive homomorphism of 7.

| Proposition 2.21. ¢*:K(S%")—K(S*") is multiplication by k™.

Proof: Consider first the case n = 1. Since l[/k is additive, it will suffice to show
l[Jk(O() =k« for o a generator of I%(SZ). We can take & = H — 1 for H the canonical
line bundle over §? = CP'. Then
w*(e) = y¥(H-1) = H* -1 by property (2)
—(1+x)k-1
=1+kx-1 sinceai=(H—1)i=0f0ri22
=k«

When n > 1 we use the external product K(5%) ®K(S>"?)—K(S*"), which is
an isomorphism, and argue by induction. Assuming the desired formula holds in
K(5°"%), we have ¢*(ax B) = ¢ () * ¢X(B) = ko x k"' = k" (o % B), and we
are done. o
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3,2

Now we can use the operations ? and ° and the relation y?y? = ¢°® = ¢
to prove Adams’ theorem.

W

Proof of Theorem 2.19: The definition of the Hopf invariant of a map f:5*" ! —§%"
involved elements «, 8 € E(Cf). By Proposition 2.21, (,Uk((x) = k’™« since « is the
image of a generator of K(S*"). Similarly, ¢*(8) = k"B + e for some p;, € Z.
Therefore

wrpl(B) = W "B + ppo) = K" B + (K" py + 0" ) o

Since yXy! = y* = P!y, the coefficient k?"u, + €y, of « is unchanged when k
and £ are switched. This gives the relation

k2nure +€‘Vluk _ yZnuk + anJg, or (kZTl _ k‘}’l)u{) _ (#211 _‘g‘}’l)uk

By property (6) of @2, we have w?(B) = B2 mod 2. Since B° = ha with h the Hopf
invariant of f, the formula @?(B) = 2"B + U implies that py, = h mod 2, so u, is
odd if we assume h = +1. By the preceding displayed formula we have (22" —2")p; =
(3°" — 3" uy, or 2"(2" — 1)py = 3" (3" - 1)u,, so 2" divides 3" (3" — 1)u,. Since 3"
and p, are odd, 2" must then divide 3" — 1. The proof is completed by the following
elementary number theory fact. ]

| Lemma 2.22. 1f 2" divides 3" — 1 then n = 1,2, or 4.

Proof: Write n = 2Ym with m odd. We will show that the highest power of 2 dividing
3" —1is 2 for £ = 0 and 2/*? for £ > 0. This implies the lemma since if 2" divides
3™ — 1, then by this fact, n < £ + 2, hence 2l <o2lm=n<t+2, which implies £ < 2
and n < 4. The cases n =1, 2, 3,4 can then be checked individually.

We find the highest power of 2 dividing 3" — 1 by induction on ¢. For £ = 0
we have 3" —1 = 3™ -1 = 2 mod 4 since 3 = -1 mod 4 and m is odd. In the next
case £ = 1 we have 3" —1 = 32™ —1 = (3™ — 1)(3™ + 1). The highest power of 2
dividing the first factor is 2 as we just showed, and the highest power of 2 dividing
the second factor is 4 since 3™ + 1 = 4 mod 8 because 3° = 1 mod 8 and m is
odd. So the highest power of 2 dividing the product (3" — 1)(3™ + 1) is 8. For the
inductive step of passing from ¥ to £ + 1 with £ > 1, or in other words from n to
2n with n even, write 3°" =1 = (3" = 1)(3" + 1). Then 3" + 1 = 2 mod 4 since n
is even, so the highest power of 2 dividing 3" + 1 is 2. Thus the highest power of 2
dividing 3°" — 1 is twice the highest power of 2 dividing 3" — 1. O

The Splitting Principle

The splitting principle will be a fairly easy consequence of a general result about
the K-theory of fiber bundles called the Leray-Hirsch theorem, together with a calcu-
lation of the ring structure of K*(CP™). The following proposition will allow us to
compute at least the additive structure of K™ (CP").
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Proposition 2.23. If X is a finite cell complex with n cells, then K*(X) is a finitely
generated group with at most n generators. If all the cells of X have even dimension
then K*(X) = 0 and K°(X) is free abelian with one basis element for each cell.

The phrase ‘finite cell complex’ would normally mean ‘“finite CW complex’ but we
can take it to be something slightly more general: a space built from a finite discrete set
by attaching a finite number of cells in succession, with no conditions on the dimen-
sions of these cells, so cells are not required to attach only to cells of lower dimension.
Finite cell complexes are always homotopy equivalent to finite CW complexes (by de-
forming each successive attaching map to be cellular) so the only advantages of finite
cell complexes are technical. In particular, it is easy to see that a space is a finite cell
complex if it is a fiber bundle over a finite cell complex with fibers that are also finite
cell complexes. This is shown in Proposition 2.28 in a brief appendix to this section.
It implies that the splitting principle can be applied staying within the realm of finite
cell complexes.

Proof: We show this by induction on the number of cells. The complex X is obtained
from a subcomplex A by attaching a k-cell, for some k. For the pair (X,A) we
have an exact sequence K*(X/A) — K*(X) — K*(A). Since X/A = S, we have
K*(X/A) ~ Z, and exactness implies that K*(X) requires at most one more generator
than K*(A).

The first term of the exact sequence K!'(X/A)—K!(X)—K!'(A) is zero if all
cells of X are of even dimension, so induction on the number of cells implies that
K'(X) = 0. Then there is a short exact sequence 0—K°(X/A)—K°(X)—>K°(A)—0
with I?O(X/A) ~ Z. By induction E(A) is free, so this sequence splits, hence KO(X) =
Z®K°(A) and the final statement of the proposition follows. a

This proposition applies in particular to CP", which has a cell structure with one
cell in each dimension 0, 2,4, - --,2n, so K'(CP") = 0 and K°(CP") ~ Z"*!. The ring
structure is as simple as one could hope for:

Proposition 2.24. K(CP") is the quotient ring Z[L]/(L— 1)"*! where L is the canon-
ical line bundle over CP".

Thus by the change of variable x = L—1 we see that K(CP") is the truncated poly-
nomial ring Z[x]/(x™*!), with additive basis 1, x, - - -, x™. It follows that 1,L,---,L"
is also an additive basis.

Proof: The exact sequence for the pair (CP", CP" ') gives a short exact sequence
0 — K(CP", CP" 1) — K (CP") & K(CP* 1) — 0
We shall prove:

(a,) (L —1)" generates the kernel of the restriction map p.
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Hence if we assume inductively that K(CP"!) = Z[L]/(L — 1)", then (a,) and the
preceding exact sequence imply that {1,L —1,---,(L — 1)"} is an additive basis for
K(CP™). Since (L — 1)*! = 0 in K(CP") by (ay,.,), it follows that K(CP") is the
quotient ring Z[L]/(L — 1)”“, completing the induction.

A reason one might expect (a,) to be true is that the kernel of p can be identi-
fied with K(CP"™, CP" ') = K(5°™) by the short exact sequence, and Bott periodicity
implies that the n-fold reduced external product of the generator L — 1 of K(s?)
with itself generates R(S*™). To make this rough argument into a proof we will have
to relate the external product I?(SZ) ® --- ®I?(52) —»I?(SZ") to the ‘internal’ product
K(CP")® --- ® K(CP™") —K(CP™).

The space CP" is the quotient of the unit sphere $2**! in C""! under multipli-
cation by scalars in S* c C. Instead of $°""! we could equally well take the boundary
of the product D3 x - -- x D> where D? is the unit disk in the it" coordinate of C"*!,
and we start the count with i = 0 for convenience. Then we have

(D3 -+ xD2) = U;(DEx +++ x3D?x -+- xD2)

The action of S* by scalar multiplication respects this decomposition. The orbit space
of D3x --- xdD?x --- x D2 under the action is a subspace C; ¢ CP" homeomorphic
to the product D3 x - -+ x D2 with the factor D? deleted. Thus we have a decomposi-
tion CP" = |J; C; with each C; homeomorphic to D*" and with C; n Cj =09C;naC;
for i+ j.

Consider now C, = Dix --- xD3. Its boundary is decomposed into the pieces
0,Co = Dix --- x3dD?x --- xD2. The inclusions (D7,dD7) c (C,,9;,C,) € (CP",C;)
give rise to a commutative diagram

K(D?,0D?) ® -+ ® K(D?,0D?)
I~ \
K(CO,aICO) ® -+ ® K(Co,anCO) ~ K(Co,aCO)
l [~
K(CP",C,) ® --- ® K(CP",C,,) — K(CP".C, U+~ U C,)) —— K(CP",CP" ")

!

K(CP")

K(CP") ® -+ ® K(CP")

where the maps from the first column to the second are the n-fold products. The
upper map in the middle column is an isomorphism because the inclusion C, — CP"
induces a homeomorphism C,/0C, ~ CP"/(C;U---UC,). The CP™ ! at the right side
of the diagram sits in CP" in the last n coordinates of C"*!, so is disjoint from C,,
hence the quotient map CP"/CP" ' —CP"/(C,uU---UC,) is a homotopy equivalence.

The element x; € K(CP", C;) mapping downward to L—1 € K(CP") maps upward
to a generator of K(Cy,0;Cy) = K (Dl-z, 6Di2). By commutativity of the diagram, the
product x; ---x, then generates K(CP",C; U --- U (C,)). This means that (L — 1)"
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generates the image of the map K(CP", CP"!)— K(CP"), which equals the kernel of
p, proving (a,). O

Since CP" is the union of the n+1 balls C;, Example 2.13 shows that all products
of n + 1 elements of K(CP") must be zero, in particular (L — 1)™*! = 0. But as we
have just seen, (L — 1)" is nonzero, so the result in Example 2.13 is best possible in
terms of the degree of nilpotency.

Now we come to the Leray-Hirsch theorem for K-theory, which will be the major
theoretical ingredient in the proof of the splitting principle:

Theorem 2.25. Let p :E— B be a fiber bundle with E and B compact Hausdorff and
with fiber F such that K*(F) is free. Suppose that there exist classes c,,--+,Cy €
K*(E) that restrict to a basis for K*(F) in each fiber F. If either

(a) B is a finite cell complex, or

(b) F is a finite cell complex having all cells of even dimension,

then K*(E), as a module over K* (B), is free with basis {c,, -+ ,¢;} -

Here the K*(B)-module structure on K*(E) is defined by 8-y = p*(B)y for
B € K*(B) and y € K*(E). Another way to state the conclusion of the theorem is
to say that the map ®:K*(B)®K*(F)—>K*(E), ®(3;b;®i*(c;)) = >;p*(b;)c; for i
the inclusion F < E, is an isomorphism.

In the case of the product bundle E = F x B the classes c¢; can be chosen to be the
pullbacks under the projection E— F of a basis for K*(F). The theorem then asserts
that the external product K*(F) ® K*(B) — K™ (Fx B) is an isomorphism.

For most of our applications of the theorem either case (a) or case (b) will suffice.
The proof of (a) is somewhat simpler than (b), and we include (b) mainly to obtain the
splitting principle for vector bundles over arbitrary compact Hausdorff base spaces.

Proof: For a subspace B’ C B let E' = p~!(B’). Then we have a diagram

— K*(B,B’)® K'(F) —> K*(B) ® K*(F) — K*(B') ® K*(F) —
(%) |® |® |®
K*(E,E’) K*(E) K*(E) ——
where the left-hand ® is defined by the same formula ®(>; b; ®i*(c;)) = >, p*(b;)c;,
but with p* (b;)c; referring now to the relative product K*(E,E") x K* (E) > K*(E,E’).
The right-hand @ is defined using the restrictions of the ¢;’s to the subspace E'. To

see that the diagram () commutes, we can interpolate between its two rows the row
— K*(E,E'")®K*(F) - K*(E)®K*(F) — K*(E')® K*(F) —

by factoring ® as the composition > ; b; & i*(¢;) — >; p*(b;) ®i*(c;) — >; p*(b;)c;.
The upper squares of the enlarged diagram then commute trivially, and the lower
squares commute by Proposition 2.15. The lower row of the diagram is of course
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exact. The upper row is also exact since we assume K*(F) is free, and tensoring
an exact sequence with a free abelian group preserves exactness, the result of the
tensoring operation being simply to replace the given exact sequence by the direct
sum of a number of copies of itself.

The proof in case (a) will be by a double induction, first on the dimension of B,
then within a given dimension, on the number of cells. The induction starts with the
trivial case that B is zero-dimensional, hence a finite discrete set. For the induction
step, suppose B is obtained from a subcomplex B’ by attaching a cell ", and let
E' = p~1(B’) as above. By induction on the number of cells of B we may assume the
right-hand & in (%) is an isomorphism. If the left-hand & is also an isomorphism,
then the five-lemma will imply that the middle & is an isomorphism, finishing the
induction step.

Let @: (D", S”’l) — (B, B’) be a characteristic map for the attached n-cell. Since
D" is contractible, the pullback bundle @™ (F) is a product, and so we have a com-
mutative diagram

K*(B,B')® K*(F) == K*(D"S" ") ® K*(F)

| o ™=

K*(E,E") = K*(@*(E),p*(E")) = K(D"X F,S"'xF)

The two horizontal maps are isomorphisms since @ restricts to a homeomorphism
on the interior of D", hence induces homeomorphisms B/B’ ~ D"/S""! and E/E' ~
@*(E)/@™(E"). Thus the diagram reduces the proof to showing that the right-hand
®, involving the product bundle D" x F— D", is an isomorphism.

Consider the diagram (*) with (B,B’) replaced by (D”,S"’l). We may assume
the right-hand ® in (%) is an isomorphism since S ! has smaller dimension than
the original cell complex B. The middle ¢ is an isomorphism by the case of zero-
dimensional B since D" deformation retracts to a point. Therefore by the five-lemma
the left-hand @ in (%) is an isomorphism for (B,B’) = (D", S™!). This finishes the
proof in case (a).

In case (b) let us first prove the result for a product bundle E = F x B. In this case
¥ is just the external product, so we are free to interchange the roles of F and B.
Thus we may use the diagram () with F an arbitrary compact Hausdorff space and
B a finite cell complex having all cells of even dimension, obtained by attaching a cell
e" to a subcomplex B'. The upper row of (%) is then an exact sequence since it is
obtained from the split short exact sequence 0—K*(B,B’) —>K*(B)—K*(B')—0 by
tensoring with the fixed group K* (F). If we can show that the left-hand ® in (%) is
an isomorphism, then by induction on the number of cells of B we may assume the
right-hand & is an isomorphism, so the five-lemma will imply that the middle & is
also an isomorphism.

To show the left-hand @ is an isomorphism, note first that B/B’ = S" so we may
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as well take the pair (B,B’) to be (D", S™1). Then the middle ® in (x) is obviously
an isomorphism, so the left-hand ® will be an isomorphism iff the right-hand & is
an isomorphism. When the sphere " ! is even-dimensional we have already shown
that & is an isomorphism in the remarks following the proof of Lemma 2.17, and
the same argument applies also when the sphere is odd-dimensional, since K' of an
odd-dimensional sphere is K° of an even-dimensional sphere.

Now we turn to case (b) for nonproducts. The proof will once again be inductive,
but this time we need a more subtle inductive statement since B is just a compact
Hausdorff space, not a cell complex. Consider the following condition on a compact
subspace U C B:

For all compact V ¢ U the map ®:K*(V)®K*(F)—=K*(p~1(V)) is an isomor-
phism.

If this is satisfied, let us call U good. By the special case already proved, each point of
B has a compact neighborhood U that is good. Since B is compact, a finite number
of these neighborhoods cover B, so by induction it will be enough to show that if U;
and U, are good, then sois U; U U,.

A compact V ¢ U; U U, is the union of V; =V nU; and V, =V n U,. Consider
the diagram like (x) for the pair (V,V,). Since K *(F) is free, the upper row of this
diagram is exact. Assuming U, is good, the map ® is an isomorphism for V,, so ®
will be an isomorphism for V if it is an isomorphism for (V,V,). The quotient V/V,
is homeomorphic to V,/(V; NnV,) so ® will be an isomorphism for (V,V,) if itis an
isomorphism for (V,V; nV,). Now look at the diagram like (x) for (V;,V; nV,).
Assuming U, is good, the maps & are isomorphisms for V; and V; nV,. Hence ® is
an isomorphism for (V;,V; nV,), and the induction step is finished. O

Example 2.26. Let E— X be a vector bundle with fibers C" and compact base X.
Then we have an associated projective bundle p:P(E) — X with fibers cp! , Where
P(E) is the space of lines in E, that is, one-dimensional linear subspaces of fibers of
E. Over P(E) there is the canonical line bundle L — P(E) consisting of the vectors in
the lines of P(E). In each fiber CP""! of P(E) the classes 1,L,---,L" ! in K*(P(E))
restrict to a basis for K* (CP"!) by Proposition 2.24. From the Leray-Hirsch theorem
we deduce that K* (P(E)) is a free K* (X)-module with basis 1,L,---,L" !,

Proof of the Splitting Principle: In the preceding example, the fact that 1 is among the
basis elements implies that p™:K*(X)—K*(P(E)) is injective. The pullback bundle
p*(E)—P(E) contains the line bundle L as a subbundle, hence splits as L®E’ for
E'—P(F) the subbundle of p™(E) orthogonal to L with respect to some choice of
inner product. Now repeat the process by forming P(E’), splitting off another line
bundle from the pullback of E’ over P(E’). Note that P(E’) is the space of pairs
of orthogonal lines in fibers of E. After a finite number of repetitions we obtain
the flag bundle F(E) — X described at the end of §1.1, whose points are n-tuples of
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orthogonal lines in fibers of E, where n is the dimension of E. (If the fibers of E
have different dimensions over different components of X, we do the construction
for each component separately.) The pullback of E over F(E) splits as a sum of line
bundles, and the map F(E)— X induces an injection on K* since it is a composition
of maps with this property. m]

In the preceding Example 2.26 we saw that K*(P(E)) is free as a K*(X)-module,
with basis 1,L,--- ,L"’l. In order to describe the multiplication in K*(P(E)) one
therefore needs only a relation expressing L" in terms of lower powers of L. Such
a relation can be found as follows. The pullback of E over P(E) splits as L&E for
some bundle E’ of dimension n — 1, and the desired relation will be A"(E") = 0. To
compute A" (E’) = 0 we use the formula A, (E) = A,(L)A,(E") in K*(P(E))[t], where
to simplify notation we let ‘E’ also denote the pullback of E over P(E). The equation
A (E) = A,(L)A,(E") can be rewritten as A,(E') = A;(E)A,(L)"' where A, (L)™' =
S, (=1)'Lt" since A, (L) = 1 + Lt. Equating coefficients of t" in the two sides of
AE) = A (E)A (L)Y, we get A™(E') = 3, (=1)"'AY(E)L""". The relation A" (E') = 0
can be written as Zi(—l)iAi(E)L"_i = 0, with the coefficient of L™ equal to 1, as
desired. The result can be stated in the following form:

Proposition 2.27. For an n-dimensional vector bundle E— X the ring K(P(E)) is
isomorphic to the quotient ring K* (X)[L]/(Z;(~1)'A"(E)L""Y). o

For example when X is a point we have P(E) = cpP™ ! and Ai(E) = C* for k = (?)
so the polynomial > ; (- 1)'AY(E)L™ ' becomes (L—1)" and we see that the proposition
generalizes the isomorphism K* (CP"* ') =~ Z[L]/(L — 1)™).

Appendix: Finite Cell Complexes

As we mentioned in the remarks following Proposition 2.23 it is convenient for
purposes of the splitting principle to work with spaces slightly more general than finite
CW complexes. By a finite cell complex we mean a space which has a finite filtration
Xy C Xy C -++ C X} = X where X, is a finite discrete set and X, is obtained from
X; by attaching a cell " via amap @;:S™ ' —X;. Thus X,,, is the quotient space
of the disjoint union of X; and a disk D™ under the identifications x ~ @;(x) for
x € D™ = gni~1,

Proposition 2.28. If p:E— B is a fiber bundle whose fiber F and base B are both
finite cell complexes, then E is also a finite cell complex, whose cells are products of
cells in B with cells in F.

Proof: Suppose B is obtained from a subcomplex B" by attaching a cell e”. By induc-
tion on the number of cells of B we may assume that p~'(B’) is a finite cell complex.
If ®:D"— B is a characteristic map for e" then the pullback bundle ®*(E) —D" is
a product since D™ is contractible. Since F is a finite cell complex, this means that
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we may obtain ®* (E) from its restriction over $" ! by attaching cells. Hence we may
obtain E from p !(B’) by attaching cells. O



Chapter
Characteristic Classes

Characteristic classes are cohomology classes in H*(B;R) associated to vector
bundles E— B by some general rule which applies to all base spaces B. The four
classical types of characteristic classes are:

1. Stiefel-Whitney classes w;(E) € Hi(B; Z,) for areal vector bundle E.

2. Chern classes c;(E) € HZi(B; Z) for a complex vector bundle E.

3. Pontryagin classes p;(E) € H4i(B; Z) for areal vector bundle E.

4. The Euler class e(E) € H™(B;Z) when E is an oriented n-dimensional real vector
bundle.

The Stiefel-Whitney and Chern classes are formally quite similar. Pontryagin classes
can be regarded as a refinement of Stiefel-Whitney classes when one takes Z rather
than 7, coefficients, and the Euler class is a further refinement in the orientable case.

Stiefel-Whitney and Chern classes lend themselves well to axiomatization since
in most applications it is the formal properties encoded in the axioms which one uses
rather than any particular construction of these classes. The construction we give,
using the Leray-Hirsch theorem (proved in §4.D of [AT]), has the virtues of simplicity
and elegance, though perhaps at the expense of geometric intuition into what prop-
erties of vector bundles these characteristic classes are measuring. There is another
definition via obstruction theory which does provide some geometric insights, and
this will be described in the Appendix to this chapter.
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3.1. Stiefel-Whitney and Chern Classes

Stiefel-Whitney classes are defined for real vector bundles, Chern classes for com-
plex vector bundles. The two cases are quite similar, but for concreteness we shall em-
phasize the real case, with occasional comments on the minor modifications needed
to treat the complex case.

A technical point before we begin: We shall assume without further mention that
all base spaces of vector bundles are paracompact, so that the fundamental results
of Chapter 1 apply. For the study of characteristic classes this is not an essential
restriction since one can always pass to pullbacks over a CW approximation to a given
base space, and CW complexes are paracompact.

Axioms and Construction

Here is the main result giving axioms for Stiefel-Whitney classes:

Theorem 3.1. Thereisa unique sequence of functions wy, w,, - - - assigning to each
real vector bundle E— B a class w,(E) € H \(B; Z,), depending only on the isomor-
phism type of E, such that

(@ w;(f*(E)) = f*(w;(E)) for a pullback f*(E).

(b) wW(E;®E,) =w(E)) vw(Ey) forw=1+w, +w,+--- € H*(B;Z,).

() w;(E) =0 ifi>dimE.

(d) For the canonical line bundle E— RP%, w, (E) is a generator of H! (RP%;Z,).

The sum w(E) = 1+w, (E)+w,(E)+-- - is the total Stiefel-Whitney class. Note that
(c) implies that the sum 1+ w, (E) +w,(E) + - - - has only finitely many nonzero terms,
so this sum does indeed lie in H* (B; Z,), the direct sum of the groups Hi(B; Z,). From
the formal identity

IT+wy+wy+ - )A+wy +wy+ ) =1+ (w; +wy) + (Wy + Wywi +wy) + - -

it follows that the formula w(E, ®E,) = w(E;) « w(E,) is just a compact way of
writing the relations w,, (E; ®E,) = ;. ;_, w;(E;) v w;(E,), where w, = 1. This
relation is sometimes called the Whitney sum formula.

For complex vector bundles there are analogous Chern classes:

Theorem 3.2. There is a unique sequence of functions c,,c,, - - - assigning to each

complex vector bundle E— B a class c;(E) € H2i(B;Z), depending only on the iso-

morphism type of E, such that

@) ¢;(f*(E)) = f*(c;(E)) for apullback f*(E).

(b) c(Ey®E,) =c(Ey)~c(E,) forc=1+c;+c, +--- € H*(B; 7).

() ¢;(E)=0ifi>dimE.

(d) For the canonical line bundle E— CP*, c,(E) is a generator ofH2 (CP*;Z) spec-
ified in advance.
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As in the real case, the formula in (b) for the total Chern classes can be rewritten
in the form ¢, (E; ® E,) = X, ;_p, ¢;(E;) < ¢ (E;), where ¢, = 1.

Proof of 3.1 and 3.2: Associated to a vector bundle 1r:E— B with fiber R" is the
projective bundle P(1r):P(E)— B, where P(E) is the space of all lines through the
origin in all the fibers of E, and P(7r) is the natural projection sending each line in
m1(b) to b € B. We topologize P(E) as a quotient of the complement of the zero
section of E, the quotient obtained by factoring out scalar multiplication in each fiber.
Over a neighborhood U in B where E is a product U x R", this quotient is Ux RP" !,
so P(E) is a fiber bundle over B with fiber RP" .

We would like to apply the Leray-Hirsch theorem for cohomology with Z, co-
efficients to this bundle P(E)—B. To do this we need classes x; € H'(P(E);Z,)
restricting to generators of Hi(RP"’l;ZZ) in each fiber RP""! for i = 0,---,m—1.
Recall from the proof of Theorem 1.16 that there is a map g:E— R* that is a linear
injection on each fiber. Projectivizing the map g by deleting zero vectors and then
factoring out scalar multiplication produces amap P(g) : P(E) — RP®. Let « be a gen-
erator of HI(RP”;ZZ) and let x = P(g)*(x) € Hl(P(E);ZZ). Then the powers x! for
i=0,---,n—1 are the desired classes x; since a linear injection R" —R* induces
an embedding RP"! < RP® for which « pulls back to a generator of H 1 ([RP"’l; Z,),
hence «' pulls back to a generator of H'(RP"!; Z,). Note that any two linear injec-
tions R"— R* are homotopic through linear injections, so the induced embeddings
RP" ! < RP” of different fibers of P(E) are all homotopic. We showed in the proof of
Theorem 1.16 that any two choices of g are homotopic through maps that are linear
injections on fibers, so the classes x! are independent of the choice of g.

The Leray-Hirsch theorem then says that H* (P (E); Z,) isafree H *(B; Z,)-module

with basis 1,x,---,x" ! n

. Consequently, x" can be expressed uniquely as a linear
combination of these basis elements with coefficients in H* (B; Z,). Thus there is a

unique relation of the form
X"+ w (E)x" '+ +w,(E)-1=0

for certain classes w;(E) € H'(B;Z,). Here w;(E)x' means P(1)*(w;(E)) « x', by
the definition of the H* (B; Z,)-module structure on H *(P(E); Z,). For completeness
we define w;(E) = 0 for i > n and wy(E) = 1.

To prove property (a), consider a pullback f*(E) = E’, fitting 7
into the diagram at the right. If g:E— R is a linear injection on ,
fibers then so is gf, and it follows that P(f)* takes the canonical ln ln
class x = x(E) for P(E) to the canonical class x(E’) for P(E’). Then B —f’ B

PH* (X P * (wi(B)) « x(E)"') = X P(F)*P(10)* (w; (B)) — P(f)* (x(E)")

= > P(r)* f*(wi(E)) « x(E)""
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so the relation x(E)"™ + wl(lf:“)x(l’:")”’1 + -+ +w,(E) -1 = 0 defining w;(E) pulls
back to the relation x (E")" + f*(w, (E)x(E)" ' + - + f*(w,(E)) - 1 = 0 defining
w;(E"). By the uniqueness of this relation, w;(E") = f*(w;(E)).

Proceeding to property (b), the inclusions of E;, and E, into E;®E, give in-
clusions of P(E;) and P(E,) into P(E,®E,) with P(E;) n P(E,) = &. Let U, =
P(E,®E,) — P(E) and U, = P(E,®E,) — P(E,). These are open sets in P(E, ®E,)
that deformation retract onto P(E,) and P(E,), respectively. A map g:E; ®E, —R”
which is a linear injection on fibers restricts to such a map on E;, and E,, so the
canonical class x € H' (P(E, ®E,);Z,) for E, ®E, restricts to the canonical classes
for E, and E,. If E; and E, have dimensions m and n, consider the classes w; =
ijj(El)xm‘j and w, = ijj(Ez)x"‘j in H*(P(E, ®E,);Z,), with cup product
Wy W, =3[, o j wy (E)w(Ey) |x™™ /. By the definition of the classes w;(E;),
the class w, restricts to zero in H™(P(E;);Z,), hence w; pulls back to a class in
the relative group H™(P(E, ®E,),P(E;);Z,) ~ H™(P(E, ®E,),U,;Z,), and similarly
for w,. The following commutative diagram, with Z, coefficients understood, then
shows that w;w, = 0:

H™P(E,®E,),U,) x H(P(E,®E,),U;) ——— H™*"(P(E,®E,),U,uU,) =0

| |

H™P(E,®E,)) x H"(P(E,®E,)) = H™™"(P(E,®E,))

Thus w w, = 3[3,—;w, (E)w (E,)]x™*™~J = 0 is the defining relation for the
Stiefel-Whitney classes of E; ®E,, and so w;(E; ®E) = X, w, (E))w(E,).

Property (c) holds by definition. For (d), recall that the canonical line bundle is
E={{,v) € RP°XxR” | v € £}. The map P(rr) in this case is the identity. The
map g:E— R* which is a linear injection on fibers can be taken to be g(f,v) = v.
So P(g) is also the identity, hence x(E) is a generator of H 1([RP""; Z,). The defining
relation x(E) + w, (E) - 1 = 0 then says that w, (E) is a generator of Hl([RiP“’;ZZ).

The proof of uniqueness of the classes w; will use a general property of vector
bundles called the splitting principle:

Proposition 3.3. For each vector bundle 1 :E— B there is a space F(E) and a map
p :F(E)— B such that the pullback p*(E)— F(E) splits as a direct sum of line bun-
dles, and p* :H* (B;Z,) —H* (F(E);Z,) is injective.

Proof: Consider the pullback P(1r)*(E) of E via the map P () :P(E)— B. This pull-
back contains a natural one-dimensional subbundle L = { ({,v) € P(E)XE |v € {}.
An inner product on E pulls back to an inner product on the pullback bundle, so we
have a splitting of the pullback as a sum L& L* with the orthogonal bundle L* hav-
ing dimension one less than E. As we have seen, the Leray-Hirsch theorem applies
to P(E)—B, so H*(P(E);Z,) is the free H*(B;Z,)-module with basis 1,x,---,x""!
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and in particular the induced map H* (B; Z,) —H*(P(E); Z,) is injective since one of
the basis elements is 1.

This construction can be repeated with L* — P(E) in place of E— B. After finitely
many repetitions we obtain the desired result. O

Looking at this construction a little more closely, L* consists of pairs (£,v) €
P(E)xE with v 1 £. At the next stage we form P(L"*), whose points are pairs (£,£’)
where £ and £  are orthogonal lines in E. Continuing in this way, we see that the
final base space F(E) is the space of all orthogonal splittings £; @ - -- @ £,, of fibers
of E as sums of lines, and the vector bundle over F(E) consists of all n-tuples of
vectors in these lines. Alternatively, F(E) can be described as the space of all chains
V, ¢ --- c V, of linear subspaces of fibers of E with dimV; = i. Such chains are
called flags, and F(E) — B is the flag bundle associated to E. Note that the description
of points of F(E) as flags does not depend on a choice of inner product in E.

Now we can finish the proof of Theorem 3.1. Property (d) determines w; (E)
for the canonical line bundle E— RP*. Property (c) then determines all the w;’s for
this bundle. Since the canonical line bundle is the universal line bundle, property (a)
therefore determines the classes w; for all line bundles. Property (b) extends this
to sums of line bundles, and finally the splitting principle implies that the w;’s are
determined for all bundles.

For complex vector bundles we can use the same proof, but with Z coefficients
since H*(CP®;Z) ~ Z[ ], with &« now two-dimensional. The defining relation for the
¢;(E)’s is modified to be

X"~ (E)x" '+ 4 (1) (E)-1=0

with alternating signs. This is equivalent to changing the sign of «, so it does not
affect the proofs of properties (a)-(c), but it has the advantage that the canonical line
bundle E— CP® has c,(E) = « rather than —c, since the defining relation in this
caseis x(E) —c¢;(E) -1 =0 and x(E) = «. |

Note that in property (d) for Stiefel-Whitney classes we could just as well use the
canonical line bundle over RP' instead of RP® since the inclusion RP! — RP® induces
an isomorphism H'(RP™; Z,) = H'(RP'; Z,). The analogous remark for Chern classes
is valid as well.

Example 3.4. Property (a), the naturality of Stiefel-Whitney classes, implies that a
product bundle E = BxR" has w;(E) = 0 for i > 0 since a product is the pullback
of a bundle over a point, which must have w; = 0 for i > 0 since a point has trivial
cohomology in positive dimensions.

Example 3.5: Stability. Property (b) implies that taking the direct sum of a bundle
with a product bundle does not change its Stiefel-Whitney classes. In this sense Stiefel-
Whitney classes are stable. For example, the tangent bundle TS" to S" is stably
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R™!. which is a trivial

trivial since its direct sum with the normal bundle to S" in
line bundle, produces a trivial bundle. Hence the Stiefel-Whitney classes w,(TS™) are

zero for i > 0.
From the identity
I+w+wy+ - )A+wy+wy+ ) =1+ (w; +wy) + (Wy + wywi +wy) + -+
we see that w(E;) and w(E,; ®E,) determine w(E,) since the equations
wy +wy = a,

Wy + W W] + Wy =ay

!
2iWp_ Wi = ady

can be solved successively for the w;’s in terms of the w;’s and a;’s. In particular, if
E, ® E, is the trivial bundle, then we have the case that a; = 0 for i > 0 and so w(E;)
determines w (E,) uniquely by explicit formulas that can be worked out. For example,
w) = —w, and wj = —w,w; — w, = wi — w,. Of course for Z, coefficients the signs
do not matter, but the same reasoning applies to Chern classes, with Z coefficients.

Example 3.6. Let us illustrate this principle by showing that there is no bundle
E— RP® whose sum with the canonical line bundle E;(R*) is trivial. For we have
w(E;(R*)) =1+ w where w is a generator of Hl([RP"";ZZ), and hence w(E) must
be (1+w)™t =1+w+w?+--- since we are using Z, coefficients. Thus w;(E) = w’,
which is nonzero in H *([RP“’;ZZ) for all i. However, this contradicts the fact that
w;(E) =0 for i > dimE.

This shows the necessity of the compactness assumption in Proposition 1.4. To
further delineate the question, note that Proposition 1.4 says that the restriction
El(IR"“) of the canonical line bundle to the subspace RP" c RP* does have an
‘inverse’ bundle. In fact, the bundle E; (R™"!) consisting of pairs (£,v) where ¥
is a line through the origin in R""! and v is a vector orthogonal to ¢ is such an
inverse. But for any bundle E— RP" whose sum with E; (R""!) is trivial we must
have w(E) = 14+ w + -+ + w™, and since w,(E) = w™ * 0, E must be at least
n-dimensional. So we see there is no chance of choosing such bundles E for varying
n so that they fit together to form a single bundle over RP”.

Example 3.7. Let us describe an n-dimensional vector bundle E— B with w; (E)
nonzero for each i < n. This will be the n-fold Cartesian product (El)”—> (Gl)" of
the canonical line bundle over G, = RP® with itself. This vector bundle is the direct
sum 11, (E;) @ - -- &, (E;) where T1;: (G,)" — G, is projection onto the i" factor, so
w((Ep™ =LA + &) € Zr[oq, -+, 00,1 = H*((RP®)™;Z,) . Hence w;((E;)™) is the
it" elementary symmetric polynomial o; in the o ;’s, the sum of all the products of i
different «;’s. For example, if n = 3 then 0 = o; + 0+ 3, 05 = XX+ 03+ X3,
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and 03 = oy x,x3. Since each o; with i < n is nonzero in Z,[«x;, -+, &, 1, we have
an n-dimensional bundle whose first n Stiefel-Whitney classes are all nonzero.

The same reasoning applies in the complex case to show that the n-fold Cartesian
product of the canonical line bundle over CP* has its first n Chern classes nonzero.

In this example we see that the w;’s and c;’s can be identified with elementary
symmetric functions, and in fact this can be done in general using the splitting princi-
ple. Given an n-dimensional vector bundle E— B we know that the pullback to F(E)
splitsasasum L;® --- ®L,, —F(E). Letting «; = w,(L;), we see that w(E) pulls
backto w(L;® ---®L,))=1+¢&) - 1+x,)=1+0,+ -+ 0,,s0 w,;(E) pulls
back to o;. Thus we have embedded H*(B; Z,) in alarger ring H*(F(E); Z,) such that
w;(E) becomes the it" elementary symmetric polynomial in the elements «, - - -, o,
of H*(F(E); Z,).

Besides the evident formal similarity between Stiefel-Whitney and Chern classes
there is also a direct relation:

Proposition 3.8. Regarding an n-dimensional complex vector bundle E—B as a
2n-dimensional real vector bundle, then w,; ,(E) = 0 and w,;(E) is the image of
c;(E) under the coefficient homomorphism H*'(B;Z)— H*'(B; Z,) .

For example, since the canonical complex line bundle over CP® has ¢, a generator
of H?(CP%;Z), the same is true for its restriction over S° = CP', so by the proposition
this 2-dimensional real vector bundle E— S? has ws(E) = 0.

Proof: The bundle E has two projectivizations RP(E) and CP(E), consisting of all the
real and all the complex lines in fibers of E, respectively. There is a natural projection
p :RP(E) — CP(E) sending each real line to the complex line containing it, since a real
line is all the real scalar multiples of any nonzero vector in it and a complex line is all
the complex scalar multiples. This projection p fits into a commutative diagram

RP" —, RP(E) —2@) ,ppx

J r l

CP"! —— CP(E) —2@), cpe

where the left column is the restriction of p to a fiber of E and the maps RP(g)
and CP(g) are obtained by projectivizing, over R and C, a map g:E— C* which
is a C-linear injection on fibers. It is easy to see that all three vertical maps in
this diagram are fiber bundles with fiber RP!, the real lines in a complex line. The
Leray-Hirsch theorem applies to the bundle RP® — CP*, with Z, coefficients, so if
B is the standard generator of HZ((CP‘”;Z), the Z,-reduction E IS HZ((CP“’;ZZ) pulls
back to a generator of H 2([R%P°°;Zz), namely the square o’ of the generator « €
HI(RP‘”;ZZ). Hence the Z,-reduction X (E) = (CP(g)*(E) S HZ(CP(E);ZZ) of the
basic class x¢(E) = CP(g)*(B) pulls back to the square of the basic class xg(E) =
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RP(g)*(x) € H 1 (RP(E); Z,). Consequently the Z,-reduction of the defining relation
for the Chern classes of E, which is X¢(E)" + ¢, (E)Y((E)"‘l +--+C,(E)-1=0,
pulls back to the relation x[R(E)Z’"L +c, (lf:“)x[,g(]:")z’“"2 +-+-4+C,(E)-1 =0, whichis the
defining relation for the Stiefel-Whitney classes of E. This means that w,;,;(E) =0
and w,;(E) = ¢;(E). O

Cohomology of Grassmannians

From Example 3.7 and naturality it follows that the universal bundle E, — G,
must also have all its Stiefel-Whitney classes w, (E,,), - -+, w, (E,) nonzero. In fact a
much stronger statement is true. Let f: (RP®)" —G,, be the classifying map for the
n-fold Cartesion product (E;)" of the canonical line bundle E;, and for notational
simplicity let w; = w;(E,). Then the composition

Zlwy, - wy] — H* (G, Zy) L H* (RP™)7,) ~ Zol oy, -+, ]

sends w; to 0;, the i" elementary symmetric polynomial. It is a classical algebraic re-
sult that the polynomials o; are algebraically independent in Z,[«;, -+, &, ]. Proofs
of this can be found in [van der Waerden, §26] or [Lang, p. 134] for example. Thus
the composition Z,[wy,---,w,1—=Z,[x;, -+, x,] is injective, hence also the map
Z,[wy, -+, w,1—H"(G,;Z,). In other words, the classes w;(E,) generate a poly-
nomial subalgebra Z,[w,,---,w,] C H*(Gn; Z,). This subalgebra is in fact equal to
H* (G,; Z,), and the corresponding statement for Chern classes holds as well:

Theorem 3.9. H*(G,;Z,) is the polynomial ring Z,[w,,---,w,] on the Stiefel-
Whitney classes w; = w;(E,) of the universal bundle E,— G, . Similarly, in the
complex case H* (G, (C*);Z) ~ Z[c,,---,c,] where ¢; = ¢;(E, (C*)) for the univer-
sal bundle E, (C*)— G, (C%).

The proof we give here for this basic result will be a fairly quick application of the
CW structure on G,, constructed at the end of §1.2. A different proof will be given
in §3.2 where we also compute the cohomology of G,, with Z coefficients, which is
somewhat more subtle.

Proof: Consider a map f:(RP*)"—G, which pulls E, back to the bundle (E;)"
considered above. We have noted that the image of f* contains the symmetric poly-
nomials in Z,[o, -+, &,] ~ H*((RP®)";Z,). The opposite inclusion holds as well,
since if 1T: (RP®)" — (RP®)" is an arbitrary permutation of the factors, then 1 pulls
(E;)™ back to itself, so f1r ~ f, which means that f* = 7v* f*, so the image of f* is
invariant under ¥ : H* ((RP*)";Z,) — H* ((RP*)"; Z,), but the latter map is just the
same permutation of the variables «;.

To finish the proof in the real case it remains to see that f* is injective. It suffices
to find a CW structure on G,, in which the ¥-cells are in one-to-one correspondence
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with monomials w;' --- w," of dimension r = 1| + 27, + - - - + nr,,, since the number

of r-cells in a CW complex X is an upper bound on the dimension of H" (X;Z,) as a
Z, vector space, and a surjective linear map between finite-dimensional vector spaces
is injective if the dimension of the domain is not greater than the dimension of the
range.

Monomials w1 -+ w," of dimension r correspond to n-tuples (,,---,¥,) with
¥ =7, + 27, + -+ + nr,. Such n-tuples in turn correspond to partitions of * into at
most n integers, via the correspondence

(ry, o=+, 1) < ¥V, <V, +7, 1< <V, +Vp_ 1+ +71].

Such a partition becomes the sequence 0, -1 <0,-2 < --- < g, —n, corresponding
to the strictly increasing sequence 0 < oy < 0, < +-- < 0,,. For example, when n = 3

we have:
(r1,75,73) (o7 —1,0p, - 2,05 —3) (01,07,03) dimension
1 000 0 0 0 1 2 3 0
w, 100 0 0 1 1 2 4 1
w, 010 0 1 1 1 3 4 2
w? 200 0 0 2 125 2
ws 001 1 1 1 2 3 4 3
Wi W, 110 0 1 2 1 35 3
wi 300 0 0 3 1 26 3

The cell structure on G, constructed in §1.2 has one cell of dimension (o; — 1) +
(0p —2) + --+ + (0, — n) for each increasing sequence 0 < 0y < 05 < -+ < 0,. SO
we are done in the real case.

The complex case is entirely similar, keeping in mind that ¢; has dimension 2i
rather than i. The CW structure on G,,(C™) described in §1.2 also has these extra fac-
tors of 2 in the dimensions of its cells. In particular, the cells are all even-dimensional,
so the cellular boundary maps for G, (C%) are all trivial and the cohomology with Z
coefficients consists of a Z summand for each cell. Injectivity of f* then follows
from the algebraic fact that a surjective homomorphism between free abelian groups
of finite rank is injective if the rank of the domain is not greater than the rank of the
range. O

One might guess that the monomial w;' --- w," corresponding to a given cell of
G,, in the way described above was the cohomology class dual to this cell, represented
by the cellular cochain assigning the value 1 to the cell and 0 to all the other cells.
This is true for the classes w; themselves, but unfortunately it is not true in general.
For example the monomial w{ corresponds to the cell whose associated partition is
the trivial partition i = i, but the cohomology class dual to this cell is w; where
1+wj +wj+ --- is the multiplicative inverse of 1 +w; + w, + - - -. If one replaces the
basis of monomials by the more geometric basis of cohomology classes dual to cells,
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the formulas for multiplying these dual classes become rather complicated. In the
parallel situation of Chern classes this question has very classical roots in algebraic
geometry, and the rules for multiplying cohomology classes dual to cells are part of
the so-called Schubert calculus. Accessible expositions of this subject from a modern
viewpoint can be found in [Fulton] and [Hiller].

Applications of w; and ¢;

We saw in §1.1 that the set Vect'(X) of isomorphism classes of line bundles
over X forms a group with respect to tensor product. We know also that Vect! (X) =
[X,G,(R®)], and G,(R%) is just RP*, an Eilenberg-MacLane space K(Z,,1). Itis a
basic fact in algebraic topology that [X,K(G,n)] =~ H"(X;G) when X has the homo-
topy type of a CW complex; see Theorem 4.56 of [AT], for example. Thus one might
ask whether the groups Vectl(X ) and H 1(X ;Z») are isomorphic. For complex line
bundles we have G, (C%) = CP”, and this is a K(Z, 2), so the corresponding question
is whether Vect}[(X ) is isomorphic to H 2 (X;2).

Proposition 3.10. The function w, :Vect! (X) —H' (X;Z5) is a homomorphism, and
is an isomorphism if X has the homotopy type of a CW complex. The same is also
true for c, :Vecté(X) —>H2(X; Z).

Proof: The argument is the same in both the real and complex cases, so for def-
initeness let us describe the complex case. To show that c; :Vect} (X)—H?(X) is
a homomorphism, we first prove that c¢; (L;®L,) = ¢;(L;) + ¢;(L,) for the bundle
L,®L,— G, xG, where L, and L, are the pullbacks of the canonical line bundle
L— G, = CP” under the projections p,,p,:G; x G; — G, onto the two factors. Since
¢y (L) is the generator « of H?(CP*), we know that H*(G;XG,) =~ Z[y, &, ] where
o; = pF (&) = ¢;(L;). Theinclusion G,vG, C G, x G, induces anisomorphism on H?,
so to compute ¢, (L, ® L,) it suffices to restrict to G; VG, . Over the first G; the bundle
L, is the trivial line bundle, so the restriction of L, ® L, over this G; is L; ®1 = L;.
Similarly, L, ®L, restricts to L, over the second G,. So c¢,(L,®L,) restricted to
G, VG, is &)+, restricted to G, vG; . Hence ¢, (L ®L,) = ot + &, = ¢;(L;)+¢;(Ly).
The general case of the formula ¢, (E; ®E,) = ¢, (E;) + ¢, (E,) for line bundles E;
and E, now follows by naturality: We have E; ~ f;*(L) and E, ~ f5 (L) for maps
f1,f>:X—G,. For the map F = (f}, f»):X—G;XG, we have F*(L;) = f(L) ~ E;,
SO
¢, (Ey®E,) = ¢, (F*(L))®F*(L,)) = ¢y (F*(L,®L,)) = F*(c;(L;®L,))
= F*(Cl(Ll) +c,(Ly)) = F*(Cl(Ll)) +F*(C1(L2))
= ¢ (F*(Ly)) + ¢, (F*(Ly)) = ¢, (E;) + ¢1(Ey).
As noted above, if X is a CW complex, there is a bijection [X,CP®] ~ H*(X;Z),

and the more precise statement is that this bijection is given by the map [ f]+— f*(u)
for some class u € H*>(CP*;Z). The class u must be a generator, otherwise the map
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would not always be surjective. Which of the two generators we choose for u is
not important, so we may take it to be the class «. The map [f] — f*(«x) factors
as the composition [X,CP*]— Vect:(X)—H?*(X;2), [f]1 — f*(L) — ¢, (f*(L)) =
f*(cy(L)) = f*(x). The first map in this composition is a bijection, so since the
composition is a bijection, the second map ¢; must be a bijection also. m]

The first Stiefel-Whitney class w, is closely related to orientability:

‘ Proposition 3.11. A vector bundle E— X is orientable iff w,(E) = 0, assuming that
X is homotopy equivalent to a CW complex.

Thus w, can be viewed as the obstruction to orientability of vector bundles. An
interpretation of the other classes w; as obstructions will be given in the Appendix
to this chapter.

Proof: Without loss we may assume X is a CW complex. By restricting to path-
components we may further assume X is connected. There are natural isomorphisms

() H'(X;2,) — Hom(H, (X),Z,) — Hom(,(X),Z,)

from the universal coefficient theorem and the fact that H; (X) is the abelianization of
1, (X). When X = G,, we have m,(G,,) ~ Z,, and w, (E,) € H'(G,;Z,) corresponds
via (%) to this isomorphism 1, (G,) = Z, since w,(E,,) is the unique nontrivial el-
ement of H 1(Gn;Zz). By naturality of (x) it follows that for any map f:X—G,,
f*(wl(En)) corresponds under (x) to the homomorphism f, : 1 (X) — 1, (G,,) =
Z,. Thus if we choose f so that f*(E,) is a given vector bundle E, we have w, (E)
corresponding under (x) to the induced map f,:m (X)—m(G,) =~ Z,. Hence
w; (E) = 0 iff this f, is trivial, which is exactly the condition for lifting f to the
universal cover én, i.e., orientability of E. m]
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3.2. Euler and Pontryagin Classes

A characteristic class can be defined to be a function associating to each vector
bundle E— B of dimension n a class x(E) € Hk(B; G), for some fixed n and k, such
that the naturality property x(f*(E)) = f*(x(E)) is satisfied. In particular, for the
universal bundle E,, — G,, there is the class x = x(E,,)) € H k(Gn; G). Conversely, any
element x € H k(Gn; G) defines a characteristic class by the rule x(E) = f*(x) where
E ~ f*(E,) for f:B—G,. Since f is unique up to homotopy, x(E) is well-defined,
and it is clear that the naturality property is satisfied. Thus characteristic classes
correspond bijectively with cohomology classes of G,,.

With Z, coefficients all characteristic classes are simply polynomials in the Stiefel-
Whitney classes since we showed in Theorem 3.9 that H*(G,;Z,) is the polyno-
mial ring Z,[w,,---,w,]. Similarly for complex vector bundles all characteristic
classes with Z coefficients are polynomials in the Chern classes since H™* (G,(C);2) =
Z[cy,--,c,]. Our goal in this section is to describe the more refined characteristic
classes for real vector bundles that arise when we take cohomology with integer coef-
ficients rather than Z, coefficients.

The main tool we will use will be the Gysin exact sequence associated to an
n-dimensional real vector bundle p: E— B. This is an easy consequence of the Thom
isomorphism ®:H'(B) —H"""(D(E), S(E)) defined by ®(b) = p*(b) - ¢ for a Thom
class ¢ € H"(D(E),S(F)), a class whose restriction to each fiber is a generator of
H" (D", S =1y The map ¢ is an isomorphism whenever a Thom class exists, as shown
in Corollary 4D.9 of [AT]. Thom classes with Z coefficients exist for all orientable real
vector bundles, and with Z, coefficients they exist for all vector bundles. This is
shown in Theorem 4D.10 of [AT].

Once one has the Thom isomorphism, this gives the Gysin sequence as the lower
row of the following commutative diagram, whose upper row is the exact sequence
for the pair (D(E),S(E)):

. — H(D(E),S(E)) == H'(D(E)) — H'(S(E)) — H'"(D(E),S(E)) —> ---

=le e ~[o
+ —— H""(B) —=— H'(B) L= H'(S(E)) —— H'""'(B) —— -+

The vertical map p™ is an isomorphism since p is a homotopy equivalence from
D(E) to B. The Euler class e € H"(B) is defined to be (p*)’lj*(c) , or in other words
the restriction of the Thom class to the zero section of E. The square containing
the map —e commutes since for b € H""(B) we have j*®(b) = j*(p*(b) — ) =
p*(b) -« j*(c), which equals p*(b —e) = p*(b) — p™(e) since p*(e) = j*(c). The
Euler class can also be defined as the class corresponding to ¢ — ¢ under the Thom
isomorphism, since ®(e) = p*(e) v c = j*(c) v c=cvc.

As a warm-up application of the Gysin sequence let us use it to give a different
proof of Theorem 3.9 computing H*(G,;;Z,) and H*(G, (C);Z). Consider first the
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real case. The proof will be by induction on n using the Gysin sequence for the univer-
sal bundle E, LI G,,- The sphere bundle S(E,) is the space of pairs (v,¥) where ¢
is an n-dimensional linear subspace of R* and v is a unit vector in €. There is a nat-
ural map p:S(E,) —G,_, sending (v,¥) to the (n — 1)-dimensional linear subspace
v* c £ orthogonal to v. Itis an exercise to check that p is a fiber bundle. Its fiber is
S$*, all the unit vectors in R® orthogonal to a given (n — 1)-dimensional subspace.
Since S* is contractible, p induces an isomorphism on all homotopy groups, hence
also on all cohomology groups. Using this isomorphism p™* the Gysin sequence, with
Z, coefficients, has the form

"_’Hi(Gn)Le’HiJrn(Gn)_n’Hi+n(Gn_1)_’Hi+1(Gn)_’"'

where e € H"(G,;;Z,) is the Z, Euler class.

We show first that n(wj(En)) = wj(En,l). By definition the map n is the com-
position H*(G,,) —H* (S(E,)) <= H*(G,,_,) induced from G, ; <= S(E,) = G,,.
The pullback 1w*(E,,) consists of triples (v,w,¥) where £ € G, and v,w € { with
v a unit vector. This pullback splits naturally as a sum L& p*(E,,_;) where L is the
subbundle of triples (v,tv,¥), t € R, and p*(En_l) consists of the triples (v, w,¥)
with w € v*. The line bundle L is trivial, having the section (v, v,¥). Thus the coho-
mology homomorphism 7v* takes w;(E,)) to w;(L&p*(E,_;)) = w;(p*(E,_1)) =
p*(w;(E,_1)), 50 n(w;(E,)) = w;(E,_;).

By induction on n, H*(G,,_,) is the polynomial ring on the classes w;(E,_;),
Jj < m. The induction can start with the case n = 1, where G, = RP* and H*(RP®) ~
Z,[w,] since w, (E,) is a generator of H' (RP™;Z,). Or we could start with the trivial
case n = 0. Since n(wj(En)) = w;(E,_;), the maps n are surjective and the Gysin

J
sequence splits into short exact sequences

0— H'(G,) =% HI'™(G,) -1 H'™(G,_,) — 0

The image of ve:HO(Gn)—>H"(Gn) is a Z, generated by e. By exactness, this Z,
is the kernel of r):H"(Gn)—>H"(Gn,1). The class w,,(E,)) lies in this kernel since
w, (E,_;) = 0. Moreover, w,(E,) # 0, since if w, (E,) = 0 then w,, is zero for all
n-dimensional vector bundles, but the bundle E— RP* which is the direct sum of n
copies of the canonical line bundle has total Stiefel-Whitney class w (E) = (1 + o)",
where « generates Hl([RP‘”), hence w, (E) = o™ # 0. Thus e and w, (E,) generate
the same Z,, so e = w, (E,).

Now we argue that each element & € H k(Gn) can be expressed as a unique poly-
nomial in the classes w; = w;(E,), by induction on k. First, n(§) is a unique polyno-
mial f in the w;(E,,_;)’s by the basic induction on n. Then & - f(w,,---,w,_;) isin
Kern = Im(-~w,,), hence has the form ¢-w,, for € € Hk‘”(Gn) which is unique since
~w,, is injective. By induction on k, T is a unique polynomial g in the w;’s. Thus
we have & expressed uniquely as a polynomial f(w, -+, w,_;) + w,g(w,---,w,).
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Since every polynomial in wy, - --,w,, has a unique expression in this form, the theo-
rem follows in the real case.

Virtually the same argument works in the complex case. We noted earlier that
complex vector bundles always have a Gysin sequence with Z coefficients. The only
elaboration needed to extend the preceding proof to the complex case is at the step
where we showed the Z, Euler class is w,,. The argument from the real case shows
that c,, is a multiple me for some m € Z, e being now the Z Euler class. Then
for the bundle E— CP* which is the direct sum of n copies of the canonical line
bundle, classified by f:CP*—G, (C”), we have &" = ¢, (E) = f*(c,,) = mf*(e) in
H*"(CP™;7) ~ 7, with «" a generator, hence m = +1 and e = +c,,. The rest of the
proof goes through without change.

We can also compute H *(gn;Zz) where @n is the oriented Grassmannian. To
state the result, let 1r: (N}n—>Gn be the covering projection, so fn = Tr*(En), and let
W, = w,(E,) = m*(w,) € H(G,;Z,), where w; = w,(E,).

Proposition 3.12. w* :H*(Gn;Zz)—>H*(CN;n; Z,) is surjective with kernel the ideal
generated by w,, hence H* (G,;Z,) = Z,[W,, -+, Wy,].

This is just the answer one would hope for. Since 5n is simply-connected, w; has
to be zero, so the isomorphism H*(CN;n;ZZ) ~ Z,[W,,---,w,] is the simplest thing
that could happen.

Proof: The 2-sheeted covering 1: G,,— G,, can be regarded as the unit sphere bundle
of a 1-dimensional vector bundle, so we have a Gysin sequence beginning

~ X
0— H%(G,;2,) — H°(G,;Z,) — H°(G,;Z,) —> H'(G,; Z,)

where x € H'(G,;Z,) is the Z,-Euler class. Since én is connected, Ho(én;zz) ~
Z, and so the map —x is injective, hence x = w;, the only nonzero element of
HY(G,;Z,). Since H*(G,;Z,) ~ Z,[w;,---,w,], the map —w, is injective in all
dimensions, so the Gysin sequence breaks up into short exact sequences

. W . * .
0— HY(G,;Z,) —> H'(G,;Z,) = H'(G,;Z,) — 0

from which the conclusion is immediate. O

The goal for the rest of this section is to determine H*(Gn;Z) and H*(én;Z),
or in other words, to find all characteristic classes for real vector bundles with 7Z
coefficients, rather than the Z, coefficients used for Stiefel-Whitney classes. It turns
out that H* (G,;;Z), modulo elements of order 2 which are just certain polynomials
in Stiefel-Whitney classes, is a polynomial ring Z[p,, p,, - - -] on certain classes p; of
dimension 4i, called Pontryagin classes. There is a similar statement for H* (én; 7),
but with one of the Pontryagin classes replaced by an Euler class when n is even.
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The Euler Class

Recall that the Euler class e(E) € H"(B;Z) of an orientable n-dimensional vector
bundle E— B is the restriction of a Thom class ¢ € H"(D(E),S(E);Z) to the zero
section, that is, the image of ¢ under the composition

H"(D(E),S(E);Z)—H"(D(E); Z) —~H" (B; Z)

where the first map is the usual passage from relative to absolute cohomology and the
second map is induced by the inclusion B D(E) as the zero section. By its definition,
e(E) depends on the choice of c. However, the assertion (*) in the construction of a
Thom class in Theorem 4D.10 of [AT] implies that ¢ is determined by its restriction to
each fiber, and the restriction of ¢ to each fiber is in turn determined by an orientation
of the bundle, so in fact e(E) depends only on the choice of an orientation of E.
Choosing the opposite orientation changes the sign of c. There are exactly two choices
of orientation for each path-component of B.

Here are the basic properties of Euler classes e(E) € H™(B;Z) associated to ori-
ented n-dimensional vector bundles E— B:

Proposition 3.13.

(@) An orientation of a vector bundle E— B induces an orientation of a pullback
bundle f*(E) such that e(f*(E)) = f*(e(E)).

(b) Orientations of vector bundles E,— B and E,— B determine an orientation of
the sum E| ® E, such that e(E,®E,) = e(E;) —e(E>).

(c) For an orientable n-dimensional real vector bundle E, the coefficient homomor-
phism H"(B;Z)— H" (B; Z,) carries e(E) to w,, (E). For an n-dimensional com-
plex vector bundle E there is the relation e(E) = ¢, (E) € H*™(B;Z), for a suitable
choice of orientation of E.

(d) e(E) = —e(E) if the fibers of E have odd dimension.

(e) e(E) =0 if E has a nowhere-zero section.

Proof: (a) For an n-dimensional vector bundle E, let E' ¢ E be the complement of
the zero section. A Thom class for E can be viewed as an element of H"(E,E’;Z)
which restricts to a generator of H"(R", R" — {0};Z) in each fiber R". For a pullback
f*(E), we have a map f: f*(E)—E which is a linear isomorphism in each fiber, so
F*(c(E)) restricts to a generator of H"(R™,R" — {0};Z) in each fiber R" of f*(E).
Thus f*(c(E )) = ¢(f*(E)). Passing from relative to absolute cohomology classes
and then restricting to zero sections, we get e(f*(E)) = f*(e(E)).

(b) There is a natural projection p,:E; ®E,— E, which is linear in each fiber, and
likewise we have p,:E; ®E,—E,. If E; is m-dimensional we can view a Thom class
c(E;) as lying in H™(E,,E}) where E; is the complement of the zero section in E; .
Similarly we have a Thom class c(E,) € H”(EZ,EQ) if E, has dimension n. Then
the product p;(c(E;)) « py(c(E,)) is a Thom class for E; ®E, since in each fiber
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R™xR" = R™*" we have the cup product
Hm([Rern [Rm+n _ [Rn) XHn(RTan Rm+n _ Rm)z_)Hm+n(Rm+n Rm+n _ {O})

which takes generator cross generator to generator by the calculations in Example 3.11
of [AT]. Passing from relative to absolute cohomology and restricting to the zero sec-
tion, we get the relation e(E; ® E,) = e(E;) — e(E,).

(c) We showed this for the universal bundle in the calculation of the cohomology of
Grassmannians a couple pages back, so by the naturality property in (a) it holds for
all bundles.

(d) When we defined the Euler class we observed that it could also be described as the
element of H"(B;Z) corresponding to ¢ — ¢ € HZ”(D(E),S(E), 7Z) under the Thom
isomorphism. If n is odd, the basic commutativity relation for cup products gives
c~Cc=-c~c,s0e(E)=—e(E).

(e) A nowhere-zero section of E gives rise to a section s:B— S(FE) by normalizing
vectors to have unit length. Then in the exact sequence

H™(D(E), S(E);7) <> H™(D(E); 7) - H™ (S (E); 2)

the map i* is injective since the composition D(E) — B = S(E) = D(E) is homo-
topic to the identity. Since i* is injective, the map j* is zero by exactness, and hence
e(E) = 0 from the definition of the Euler class. O

Consider the tangent bundle TS" to S™. This bundle is orientable since its base
S™ is simply-connected if n > 1, while if n = 1, TS' is just the product S'xR.
When 7 is odd, e(TS™) = 0 either by part (d) of the proposition since H*(S";Z) has
no elements of order two, or by part (e) since there is a nonzero tangent vector field
to S™ when n is odd, namely s(xy,---,X,.1) = (=X, Xy, -+, =Xy, ,1,X,). However,
when 7 is even e(TS") is nonzero:

| Proposition 3.14. For even n, e(TS™) is twice a generator of H"(S™;7).

Proof: Let E' ¢ E = TS™ be the complement of the zero section. Under the Thom
isomorphism the Euler class e(TS") corresponds to the square of a Thom class
c € H"(E,E’), so it suffices to show that ¢? is twice a generator of H>"(E,E’). Let
A c §"xS™ consist of the antipodal pairs (x,—-x). De-

fine a homeomorphism f:5"xS" — A—FE sending a pair p
(x,y) € S"xS™ — A to the vector from x to the point of
intersection of the line through —x and 7y with the tangent
plane at x. The diagonal D = {(x,x)} corresponds under
f to the zero section of E. Excision then gives the first of

the following isomorphisms:

H*(E,E') = H*(§"xS",S"xS" = D) ~ H*(S"xS",A) ~ H*(S"xS", D),
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The second isomorphism holds since S"xS" — D deformation retracts onto A by
sliding a point y # +x along the great circle through x and y to —x, and the third
comes from the homeomorphism (x,y) — (x,—y) of S"xS" interchanging D and
A. From the long exact sequence of the pair (§"xS", D) we extract a short exact
sequence

0—-H"(S"xS",D)—>H"(S"xS")—>H"(D)—0

The middle group H"(S"xS") has generators «, B which are pullbacks of a gener-
ator of H"(S™) under the two projections S$"xS"—S". Both « and B restrict to
the same generator of H" (D) since the two projections S"™x S"™ — S" restrict to the
same homeomorphism D = S", so & — B generates H" (S xS™, D), the kernel of the
restriction map H"(S"xS")—H"(D). Thus « — B corresponds to the Thom class
and (x — B)? = —aB — B, which equals —2«p if n is even. This is twice a generator
of H*"(S"xS™, D) ~ H*"(§"xS"). O

It is a fairly elementary theorem in differential topology that the Euler class of
the unit tangent bundle of a closed, connected, orientable smooth manifold M" is
| X (M)| times a generator of H" (M), where X (M) is the Euler characteristic of M;
see for example [Milnor-Stasheff]. This agrees with what we have just seen in the case
M = S™, and is the reason for the name ‘Euler class.’

One might ask which elements of H"(S™) can occur as Euler classes of vector
bundles E— S" in the nontrivial case that n is even. If we form the pullback of the
tangent bundle TS" by amap S"—S" of degree d, we realize 2d times a generator,
by part (a) of the preceding proposition, so all even multiples of a generator of H™(S™)
are realizable. To investigate odd multiples, consider the Thom space T(E). This
has integral cohomology consisting of Z’s in dimensions 0, n, and 2n by the Thom
isomorphism, which also says that the Thom class c¢ is a generator of H" (T (E)). We
know that the Euler class corresponds under the Thom isomorphism to ¢« c, so e(E)
is k times a generator of H"(S™) iff ¢« c is k times a generator of HZ"(T(E)). This
is precisely the context of the Hopf invariant, and the solution of the Hopf invariant
one problem in Chapter 2 shows that ¢ — ¢ can be an odd multiple of a generator
only if n = 2, 4, or 8. In these three cases there is a bundle E— S™ for which ¢ - ¢
is a generator of H 2”(T(E )), namely the vector bundle whose unit sphere bundle is
the complex, quaternionic, or octonionic Hopf bundle, and whose Thom space, the
mapping cone of the sphere bundle, is the associated projective plane CP?, HP?, or
OP?. Since we can realize a generator of H"(S™) as an Euler class in these three cases,
we can realize any multiple of a generator by taking pullbacks as before.
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Pontryagin Classes

The easiest definition of the Pontryagin classes p;(E) € H4i(B; Z) associated to
a real vector bundle E— B is in terms of Chern classes. For a real vector bundle
E— B, its complexification is the complex vector bundle E®— B obtained from the
real vector bundle E®E by defining scalar multiplication by the complex number i
in each fiber R"®R" via the familiar rule i(x,y) = (-¥,x). Thus each fiber R"
of E becomes a fiber C" of E¢. The Pontryagin class p;(E) is then defined to be
(—1)iC2i(EC) € H*(B; 7). The sign (-1)* is introduced in order to avoid a sign in the
formula in (b) of the next proposition. The reason for restricting attention to the even
Chern classes c,;(E®) is that the odd classes c,;,;(E®) turn out to be expressible in
terms of Stiefel-Whitney classes, and hence give nothing new. The exercises at the
end of the section give an explicit formula.

Here is how Pontryagin classes are related to Stiefel-Whitney and Euler classes:

Proposition 3.15.

(@) For a real vector bundle E—B, p,(E) maps to wZi(E)2 under the coefficient
homomorphism H*(B;7)—H*(B; Z,).

(b) For an orientable real 2n-dimensional vector bundle with Euler class e(E) €
H*"(B;2), p,(E) = e(E)*.

Note that statement (b) is independent of the choice of orientation of E since the
Euler class is squared.

Proof: (a) By Proposition 3.4, czl-(E(C) reduces mod 2 to wy;(E®E), which equals
Wy (E ) since w(E®FE) = w(E)? and squaring is an additive homomorphism mod 2.
(b) First we need to determine the relationship between the two orientations of E Cx
E®E, one coming from the canonical orientation of the complex bundle EC, the
other coming from the orientation of E®E determined by an orientation of E. If

vy, -+, Uy, is a basis for a fiber of E agreeing with the given orientation, then E©
is oriented by the ordered basis vy,ivy, -, Vy,,1V,,, While E®E is oriented by
VU, -, VUsy, 1Vy, -+, 1V, . To make these two orderings agree requires (2n — 1) +

2n-2)+---+1=2n(2n-1)/2 = n(2n — 1) transpositions, so the two orienta-
tions differ by a sign (—1)"?""Y = (=1)". Thus we have pn(E) = (—1)"c2n(E(C) =
(—=1)"e(E®) = e(E®F) = e(E)°.

Pontryagin classes can be used to describe the cohomology of G, and @n with 7
coefficients. First let us remark that since G,, has a CW structure with finitely many
cells in each dimension, so does én, hence the homology and cohomology groups of
G, and G, are finitely generated. For the universal bundles E,— G, and E,—G,
let p; = p;(E,), P; = pi(fn), and e = e(fn), the Euler class being defined via the
canonical orientation of E,, .



Euler and Pontryagin Classes Section 3.2 | 91

—

Theorem 3.16.

(@) All torsion in H* (G,,;Z) consists of elements of order 2, and H* (G,; Z)/ torsion
is the polynomial ving Z[p,, - --,px] for n =2k or 2k + 1.

(b) All torsion in H* (én; Z) consists of elements of order 2, and H* (én; 7) | torsion
is Z[Py, -+, Pl for n =2k+1 and Z[p,, - -, Pyx_1,e] for n = 2k, with e’ = Py
in the latter case.

The torsion subgroup of H*(G,;Z) therefore maps injectively to H*(G,;Z,),
with image the image of the Bockstein B:H *(Gn;ZZ)—>H * (G,;Z,), which we shall
compute in the course of proving the theorem; for the definition and basic properties
of Bockstein homomorphisms see §3.E of [AT]. The same remarks apply to H* (én; 7).
The theorem implies that Stiefel-Whitney and Pontryagin classes determine all char-
acteristic classes for unoriented real vector bundles, while for oriented bundles the
only additional class needed is the Euler class.

Proof: We shall work on (b) first since for orientable bundles there is a Gysin sequence
with Z coefficients. As a first step we compute H* (CN;n;R) where R = Z[1/,] C Q, the
rational numbers with denominator a power of 2. Since we are dealing with finitely
generated integer homology groups, changing from Z coefficients to R coefficients
eliminates any 2-torsion in the homology, that is, elements of order a power of 2, and
Z summands of homology become R summands. The assertion to be proved is that
H*(én;R) is R[Py, -+,Px) for n = 2k + 1 and R[P,, -+, Pk_1,e] for n = 2k. This
implies that H *(&n;Z) has no odd-order torsion and that H *(CN}n;Z)/torsion is as
stated in the theorem. Then it will remain only to show that all 2-torsion in H* (én; 7)
consists of elements of order 2.

As in the calculation of H*(G,,;Z,) via the Gysin sequence, consider the sphere
bundle $" ! — S(En) SELIN CN;n, where S(En) is the space of pairs (v,¥) where ¥ is
an oriented n-dimensional linear subspace of R* and v is a unit vector in £. The
orthogonal complement v+ C £ of v is then naturally oriented, so we get a projection
p:S(E,)— 5n_1. The Gysin sequence with coefficients in R has the form

) _,Hi(gn) ;e,Him(én) L g G ) _’Hi+1(5n) .

n
where n takes p;(E,) to p;(E, ;).

If n = 2k, then by induction H*(énfl) ~ R[pP}, -, Pk_1], SO n is surjective and
the sequence splits into short exact sequences. The proof in this case then follows
the H*(G,,;Z,) model.

If n =2k + 1, then e is zero in H"(én;R) since with Z coefficients it has order
2. The Gysin sequence now splits into short exact sequences

0_>Hi+n(&n) _H>Hi+n(@,n71) _>Hi+1(6n) —0

Thus n injects H*((?n) as a subring of H*(én,l) ~ R[Py, ", Px_1,¢], where e now
means e(E, ;). The subring Imn contains R[p,,---,,] and is torsionfree, so we
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can show it equals R[p;, -, P,] by comparing ranks of these R-modules in each
dimension. Let r; be the rank of R[p;,---,P,] in dimension j and rjf the rank
of Hf(én). Since R[pPy, -, Pk_1,¢€] is a free module over R[p,, -, P] with basis
{1,e}, the rank of H*(én_l) ~ R[pP,, **,Pk_1,e] in dimension j is vj + 7y, the
class e = e(E,_;) having dimension 2k. On the other hand, the exact sequence above
says this rank also equals ¥ + 7;_,. Since 7, > 7, for each m, we get r; = v;, and
so H* (én) = R[p;, -+, Px], completing the induction step. The induction can start
with the case n = 1, with G, ~ S®.

Before studying the remaining 2-torsion question let us extend what we have just
done to H*(G,;Z), to show that for R = Z['/,1, H*(G,;R) is R[py,---,px], where
n = 2k or 2k + 1. For the 2-sheeted covering 7t: én—>Gn consider the transfer ho-
momorphism 7, : H* (&n;R) — H*(G,;; R) defined in §3.G of [AT]. The main feature
of 1, is that the composition 77, 77" :H*(Gn;R)—>H*(§n;R)—>H*(Gn;R) is multi-
plication by 2, the number of sheets in the covering space. This is an isomorphism
for R = Z['/,], so " is injective. The image of 7* contains R[P;,---,P,] since
m*(p;) = P;. So when n is odd, 7* is an isomorphism and we are done. When n
is even, observe that the image of " is invariant under the map t* induced by the
deck transformation T: CN}n—> (N}n interchanging sheets of the covering, since w7 = 11
implies T*7r* = 7%, The map T reverses orientation in each fiber of £, —G,,, so T*
takes e to —e. The subring of H*(CN;n;R) ~ R[Py,- ", Pk_1,e] invariant under 7* is
then exactly R[P,, -, P[,,21], finishing the proof that H*(G,;R) = R[py,---, p;].

To show that all 2-torsion in H*(Gn;Z) and H*(CN}n; Z) has order 2 we use the
Bockstein homomorphism B associated to the short exact sequence of coefficient
groups 0—7,—7Z,—Z,—0. The goal is to show that Ker f/Im 8 consists exactly
of the mod 2 reductions of nontorsion classes in H*(G,;Z) and H*(G,,;Z), that is,
polynomials in the classes w3; in the case of G,, and 52k +1,and for §2k, polynomials
in the wy;’s for i < k together with w,,, the mod 2 reduction of the Euler class. By
general properties of Bockstein homomorphisms proved in §3.E of [AT] this will finish
the proof.

| Lemma 3.17. Bw, ;.\, = wywyiyy and Bwy; = wy,y + wywy,.

Proof: By naturality it suffices to prove this for the universal bundle E, — G, with
w; = w;(E,). As observed in §3.1, we can view w), as the k" elementary symmetric
polynomial ¢} in the polynomial algebra Z,[«y, -, ®,] ~ H*((RP*)";Z,). Thus
to compute fw; we can compute Bo;. Using the derivation property B(x « y) =
Bx — ¥y + x — By and the fact that f«&; = (x?, we see that Boy is the sum of all
products «;; -+ &%; -+ &, for iy < --- < i, and j = 1,---,k. On the other hand,

J
multiplying o, 0}, out, one obtains oy + (k +1)0y, - a

Now for the calculation of Ker f/Im . First consider the case of Gy, ;. The ring
Z5[wy, -+, Wy ] is also the polynomial ring Z,[w,, w,, Bws, - -+, Wy, Bws ] since
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the substitution w, — wy, Wy; — Wy, Wy — Wajq + WiWy; = Bwy; for i > 0 is
invertible, being its own inverse in fact. Thus Z,[w,, - -+, w,,,] splits as the tensor
product of the polynomial rings 7Z,[w; ] and Z,[w,;, Bw,;], each of which is invariant
under B. Moreover, viewing Z,[w,, -+, Ww,,,;] as a chain complex with boundary
map B, this tensor product is a tensor product of chain complexes. According to
the algebraic Kiinneth theorem, the homology of Z,[w,, ---,w,;,,] with respect to
the boundary map S is therefore the tensor product of the homologies of the chain
complexes Z,[w,;] and Z,[w5;, Bw,;].

For Z,[w;] we have B(w'f) = wa”, so Ker B is generated by the even powers
of wy, all of which are also in Im 8, and hence the S-homology of Z,[w,] is trivial in
positive dimensions; we might remark that this had to be true since the calculation is
the same as for RP®. For Z,[w,;, Bw,;] we have B(wi; (Bw,)™) = bwi T (Bw,)™* 1,
so Ker B is generated by the monomials wfi( Bw,;)™ with £ even, and such monomials
with m > 0 are in Im 8. Hence Ker §/Im 8 = Zz[wzzi].

For n = 2k, Z,[w,,---,w,] is the tensor product of the Z,[w,;, Bw,;]’s for
i <kand Z,[w,wy ], with B(w,,) = wywy, . We then have the formula B(wfwg?() =
LwiTwl + mw!{Twi = @+ m)w T wl. For w!wl? tobein Ker  we must have
£ + m even, and to be in Im B we must have in addition £ > 0. So KerB/ImfB =
Z,[w3,].

Thus the homology of Z,[w,, - -+, w,, ] with respect to 8 is the polynomial ring in
the classes wzzi, the mod 2 reductions of the Pontryagin classes. By general properties
of Bocksteins this finishes the proof of part (a) of the theorem.

The case of G, is simpler since w; = 0, hence Bw,; = wy;,; and Bfw,;,; = 0.
Then we can break Z,[w,, ---,w,] up as the tensor product of the chain complexes
Z5[wy;, wyiq1, Plus Z,[w,, ] when n = 2k. The calculations are quite similar to those
we have just done, so further details will be left as an exercise. ]

Exercises

1. Show that every class in H 2k (CP*) canbe realized as the Euler class of some vector
bundle over CP® that is a sum of complex line bundles.
2. Show that ¢y;,1 (E®) = B(ws,; (E)wy;, 1 (E)).

3. For an oriented (2k + 1)-dimensional vector bundle E show that e(E) = Bwo (E).



Chapter 4
The J-Homomorphism

Homotopy groups of spheres are notoriously difficult to compute, but some par-
tial information can be gleaned from certain naturally defined homomorphisms

J:m(0(n))—m,,(S™)

The goal of this chapter is to determine these J-homomorphisms in the stable dimen-
sion range n >> i where both domain and range are independent of », according to
Proposition 1.14 for O(n) and the Freudenthal suspension theorem [AT] for S". The
real form of Bott periodicity proved in Chapter 2 implies that the domain of the stable
J-homomorphism 7r;(O) — 11} is nonzero only for i = 4n — 1 when ;(0) is Z and
for i = 8n and 8n + 1 when 1;(0) is Z,. In the latter two cases we will show that J
is injective. When i = 4n — 1 the image of J is a finite cyclic group of some order a,,
since 7t} is a finite group for i > 0 by a theorem of Serre proved in [SSAT].

The values of a,, have been computed in terms of Bernoulli numbers. Here is a
table for small values of n:

n| 1 2 3 4 5 6 7 8 9 10 11
anl 24 240 504 480 264 65520 24 16320 28728 13200 552

In spite of appearances, there is great regularity in this sequence, but this becomes
clear only when one looks at the prime factorization of a,,. Here are the rules for
computing a,,:

1. The highest power of 2 dividing a,, is 203 where 2¢ is the highest power of 2
dividing n.

2. An odd prime p divides a,, iff n is a multiple of (p — 1)/2, and in this case
the highest power of p dividing a,, is p”l where pe is the highest power of p
dividing n.

The first three cases p = 2, 3,5 are shown in the following diagram, where a vertical
chain of k connected dots above the number 4n — 1 means that the highest power of
p dividing a,, is pk.
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4.1 Lower Bounds for Im J

After starting this section with the definition of the J-homomorphism, we will
use a homomorphism K(X)— H™*(X; Q) known as the Chern character to show that
a, /2 is a lower bound on the order of the image of J in dimension 4n — 1. Then
using real K-theory this bound will be improved to a,,, and we will take care of the
cases in which the domaim of the J-homomorphism is Z,.

The simplest definition of the J-homomorphism goes as follows. An element
[f] € m;(O(n)) is represented by a family of isometries f, € O(n), x € St with Sf
the identity when x is the basepoint of S*. Writing $"" as (D! xD") = §'xD" U
D xS™ ! and S™ as D"/aD", let Jf(x,y) = f.(y) for (x,y) € S'xD" and let
Jf(D™x 8" 1) = 3D™, the basepoint of D"/dD™. Clearly f ~ g implies Jf = Jg,
so we have a map J:m;(0O(n))—1m,,,;(S™). We will tacitly exclude the trivial case
i=0.

H Proposition 4.1. ] is a homomorphism.

Proof: We can view Jf as a map I""'—S" = D"/dD™ which on S'xD" c I""! is
given by (x,v) — f, (v) and which sends the complement of S i D" to the basepoint
o0D". Taking a similar view of Jg, the sum Jf + Jg is obtained by juxtaposing these
two maps on either side of a hyperplane. We may assume f, is the identity for x in
the right half of S  and Jd, 1s the identity for x in the left half of S !, Then we obtain
a homotopy from Jf + Jg to J(f + g) by moving the two S'xD™’s together until
they coincide, as shown in the figure below.

CUCI Rl CIEd €D

We know that m;(O(n)) and Trnﬂ-(S") are independent of n for n > i + 1, so
we would expect the J-homomorphism defined above
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m(0m) —> (0 +1))
to induce a stable J-homomorphism J:1;(O) —»Trf , via Iy l 7
commutativity of the diagram at the right. We leaveitas  (gn) S, Ty (ST

an exercise for the reader to verify that this is the case.

Composing the stable J-homomorphism with the map ;(U) — 1;(0) induced by
the natural inclusions U(n) C O(2n) which give an inclusion U C O, we get the stable
complex J-homomorphism J : ;(U) — ;. Our goal is to define via K-theory a homo-
morphism e:rrf—»Q/Z for i odd and compute the composition eJq:m,;(U)—Q/Z.
This will give a lower bound for the order of the image of the real J-homomorphism
;(0)— 1] when i =4n-1.

The Chern Character

The total Chern class ¢ = 1 + ¢; + ¢, + --- takes direct sums to cup products,
and the idea of the Chern character is to form an algebraic combination of Chern
classes which takes direct sums to sums and tensor products to cup products, thus
giving a natural ring homomorphism from K-theory to cohomology. In order to make
this work one must use cohomology with rational coefficients, however. The situation
might have been simpler if it had been possible to use integer coefficients instead, but
on the other hand, the fact that one has rational coefficients instead of integers makes
it possible to define a homomorphism e:,,,_; (S 2”) — Q/Z which gives some very
interesting information about the difficult subject of homotopy groups of spheres.

In order to define the Chern character it suffices, via the splitting principle, to do
the case of line bundles. The idea is to define the Chern character ch(L) for a line
bundle L—X tobe ch(L) = e“'Y) = 1 + ¢ (L) + ¢;(L)?/2! + --- € H*(X;Q), so that
ch(L,®L,) = 1L ®La) _ palltala) _ par(ln)gerla) ch(Ly)ch(L,). If the sum
1+c;(L)+c; (L)?/2!+- - has infinitely many nonzero terms, it will lie not in the direct
sum H*(X;Q) of the groups H"(X;Q) but rather in the direct product. However, in
the examples we shall be considering, H" (X; Q) will be zero for sufficiently large n,
so this distinction will not matter.

For a direct sum of line bundles E = L, ® --- ®L,, we would then want to have

Ch(E) =Y ch(Ly) =Y e i=n+(ty+ - +t,) + -+ 5+ + Kkl + -
i i

where {; = ¢, (L;). The total Chern class c(E) is then (1 +¢;)---(1+t,) =1+0; +
.-+ +0,,where o;=c¢ j(E ) is the jth elementary symmetric polynomial in the ¢;’s, the
sum of all products of j distinct ¢;’s. As we saw in §2.3, the Newton polynomials s;
satisfy tf +ee tfl = s (0q, -+, 0%). Since o= cj(E), this means that the preceding
displayed formula can be rewritten
Ch(E) = dimE + > sp(c;(E), -+, ¢ (E))/k!
k>0

The right side of this equation is defined for arbitrary vector bundles E, so we take
this as our general definition of ch(E).
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H Proposition 4.2. ch(E\®E,) = ch(E;) + ch(E,) and ch(E,®E,) = ch(E,)ch(E,).

Proof: The proof of the splitting principle for ordinary cohomology in Proposition
2.3 works with any coefficients in the case of complex vector bundles, in particular
for Q coefficients. By this splitting principle we can pull E; back to a sum of line
bundles over a space F(E;). By another application of the splitting principle to the
pullback of E, over F(E,), we have amap F(E;, E,)— X pulling both E; and E, back
to sums of line bundles, with the induced map H*(X;Q) —»H*(F(El,EZ);Q) injec-
tive. So to prove the proposition it suffices to verify the two formulas when E; and E,
are sums of line bundles, say E; = & ;L;; for i = 1,2. The sum formula holds since
Cch(E; ®E;) = ch(®,;;L;j) =2, eCrilis) — ch(E;) +ch(E,), by the discussion preced-
ing the definition of ch. For the product formula, ch(E; ® E;) = ch(&® ;(Ly;®Ly;)) =
2k Ch(Ly;®Lyy) = X ch(Ly;)ch(Ly) = ch(E;)ch(E,). O

In view of this proposition, the Chern character automatically extends to a ring
homomorphism ch:K(X)—H™*(X;Q). By naturality there is also a reduced form
ch:R(X)—H*(X;Q) since these reduced rings are the kernels of restriction to a
point.

As a first calculation of the Chern character, we have:

‘ Proposition 4.3. ch:K(S*") — H?™(S°™: Q) is injective with image equal to the sub-
group H*"(S*";Z) c H™(S*™;Q).

Proof: Since ch(xe (H — 1)) = ch(x) -« ch(H — 1) we have the commutative dia-
gram shown at th.e right, where -the .uppelj map is e>.<ternal ? (X) = e (S2X)
tensor product with H — 1, which is an isomorphism by lCh lCh

Bott periodicity, and the lower map is cross product with
ch(H—-1) =ch(H)—-ch(1) =1+c¢(H)-1=c¢(H),a
generator of H 2 (S 2; 7). From Theorem 3.16 of [AT] the lower map is an isomorphism
and restricts to an isomorphism of the Z-coefficient subgroups. Taking X = $", the

H(X;Q) = H*(S%X;Q)

result now follows by induction on n, starting with the trivial case n = 0. ]

An interesting by-product of this is:

’ Corollary 4.4. A classin HZ”(SZ”; Z) occurs as a Chern class c,, (E) iff it is divisible
by (n-1).

Proof: For vector bundles E— S°" we have c(E) =+ =¢c,_1(E) =0, s0 ch(E) =
dimE +s,,(¢cy, -+, ¢,)/nl = dimE+nc, (E)/n! by the recursion relation for s,, derived
in §2.3, namely, s, = 07S,,_1 — 028, >+ -+ + (—1)”’20”_151 +(-1)""'no,. |

Even when H*(X;Z) is torsionfree, so that H*(X;Z) is a subring of H*(X;Q),
it is not always true that the image of ch is contained in H*(X;Z). For example, if



98 | Chapter 4 The J-Homomorphism

RS

L € K(CP") is the canonical line bundle, then ch(L) = 1+c+c?/2+---+c™/n! where
¢ = ¢ (L) generates HZ((CP”;Z), hence c* generates HZk((CP”;Z) for k < n.

The Chern character can be used to show that for finite cell complexes X, the
only possible differences between the groups K*(X) and H*(X;Z) lie in their tor-
sion subgroups. Since these are finitely generated abelian groups, this will follow if
we can show that K*(X)®Q and H*(X;Q) are isomorphic. Thus far we have de-
fined the Chern character K°(X)— H®*"(X;Q), and I’ZO(SX)c_h>ﬁeven(SX;Q)
it is easy to extend this formally to odd dimensions by [ Q
the commutative diagram at the right. K'(X) — Odd(X; Q)

Proposition 4.5. The map K* (X)®Q— H*(X;Q) induced by the Chern character
is an isomorphism for all finite cell complexes X .

Proof: We proceed by induction on the number of cells of X. The result is triv-
ially true when there is a single cell, a 0-cell, and it is also true when there are two
cells, so that X is a sphere, by the preceding proposition. For the induction step,
let X be obtained from a subcomplex A by attaching a cell. Consider the five-term
sequence X/A—SA—>SX—>S5X/SA—S 2A. Applying the rationalized Chern charac-
ter K*(-)®Q—H™*(—; Q) then gives a commutative diagram of five-term exact se-
quences since tensoring with Q preserves exactness. The spaces X/A and SX/SA
are spheres. Both SA and S*A are homotopy equivalent to cell complexes with the
same number of cells as A, by collapsing the suspension or double suspension of
a 0-cell. Thus by induction four of the five maps between the two exact sequences
are isomorphisms, all except the map K*(SX)® Q—H™*(SX;Q), so by the five-lemma
this map is an isomorphism as well. Finally, to obtain the result for X itself we may
replace X by $°X since the Chern character commutes with double suspension, as
we have seen, and a double suspension is in particular a single suspension, with the
same number of cells, up to homotopy equivalence. m]

The e Invariant

Now let us define the main object we will be studying in this section, the homo-
morphism e:1,,, ;(S*")—Q/Z. For a map f:5°™ ' —$°" we have the mapping
cone C; obtained by attaching a cell e’™ to S by f. The quotient Cf/SZ" is §2m
so we have a commutative diagram of short exact sequences

0 —— K($*™) K(Cy) K(§*™)—— 0

lch lch 1511

0 — H*(S*™;Q) — H'(C;;Q) — H(S*;Q) — 0

There are elements o, 3 € K (C f) mapping from and to the standard generators
(H=1)%---% (H-1) of K(5°™) and K(5°"), respectively. In a similar way there
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are elements a,b € a* (C I Q) mapping from and to generators of H 2m(S 2m; 7Z) and
H?"($™; 7). After perhaps replacing a and b by their negatives we may assume that
ch(x) =a and ch(B) = b +ra for some v € Q, using Proposition 4.3. The elements
B and b are not uniquely determined but can be varied by adding any integer mul-
tiples of & and a. The effect of such a variation on the formula ch(B) = b + ra is
to change v by an integer, so v is well-defined in the additive group Q/Z, and we
define e(f) to be this element v € Q/Z. Since f ~ g implies Cf ~ Cg, we have a
well-defined map e:m,, _; (§™)—>Q/Z.

|| Proposition 4.6. e is a homomorphism.

Proof: Let C g be obtained from $2" by attaching two 2m-cells by f and g, so
Cy 4 contains both Cy and C,. There is a quotient map q:Cy,,;—Cy, collapsing
a sphere S°™! that separates the 2m-cell of C g Into a pair of 2m-cells. In the
upper row of the commutative dia-gram at the right we I?( C.) a* I?(wa)
have generators o« and &, mapping to «,, and B¢, lCh h
mapping to , and similarly in the second row with ~ *
PPINg 10 fy.g Y (G Q) S H Gy @)
generators ay, ag, s, g4, by 4,and by, . By restriction ‘ ‘
to the subspaces Cf and Cg of Cf,g we obtain ch(ﬁf’g) = bf‘g +reagp+ ngg, SO

Ch(ﬁf+g):bf+g+(1’f+1’g)af+g. ]

There is a commutative diagram involving the double suspension:

SZ
T"znfl(Szm) - 7T2n+1(52m+2)

o~ 7
Q/z

Commutativity follows from the fact that Cgop = § ’c r and ch commutes with the
double suspension, as we saw in the proof of Proposition 4.3. From the commutativity
of the diagram there is induced a stable e-invariant e: nzsk_l —Q/Z for each k.

Theorem 4.7. Ifthe map f - §2k=1_, U(n) represents a generator of Ty,_, (U), then
e(Jcf) = £By/k where By, is defined via the power series

x/(e¥=1) =Y Bix'/i!
Hence the image of J in 1t5,_, has order divisible by the denominator of By /k.
The numbers B, are known in number theory as Bernoulli numbers. After proving
the theorem we will show how to compute the denominator of §;/k.
Thom Spaces

For a vector bundle E— B with unit disk bundle D(E) and unit sphere bundle
S(E) the quotient space D(E)/S(E) is called the Thom space T (E). When B is compact
this can also be regarded as the one-point compactification of E. Thom spaces arise
in the present context through the following:
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Lemma4.8. C 1¢ Is the Thom space of the bundle Ey— S 2k determined by the clutch-
ing function f: sl L Uum).

Proof: By definition, E  is the union of two copies of D?*x C" with the subspaces
0Dk % C" identified via (x,v) ~ (x, f,(v)). Collapsing the second copy of D%k x C"
to C" via projection produces the same vector bundle E 5,80 E, can also be obtained
from D**x C" 11 C" by the identification (x,v) ~ fx(v) for x oDk . Restricting to
the unit disk bundle D(Ef), we have D(Ef) expressed as a quotient of D*x D% 11
Dé” by the same identification relation, where the subscript O labels this particular
disk fiber of D(Ef). In the quotient T(Ef) = D(Ef)/S(Ef) we then have the sphere
S*" = D§"/oD§", and T(E,) is obtained from this $°" by attaching a cell e****"
with characteristic map the quotient map D%**x D" —D(E f) —T(E f) . The attaching
map of this cell is precisely J f, since on dD**x D?™ it is given by (x,v) — frr(v) e
D?"/3D*" and all of D?*x9D?™ maps to the point dD>"/dD". O

In order to compute eJ.(f) we need to compute ch(f) where 8 € I?(ij) =
I?(T(Ef)) restricts to a generator of K(S2"). The $2" here is D3"/dD32" for a fiber
DS" of D(E f). For a general complex vector bundle E— X a class in K (T(E)) that
restricts to a generator of R(S™) for each sphere S" coming from a fiber of E is called
a Thom class for the bundle.

Let us show how to find a Thom class U € K(T(E)) for a complex vector bundle
E— X with X compact Hausdorff. We may view T (E) as the quotient P(E®1)/P(E)
since in each fiber C" of E we obtain P(C" @ C) = CP" from P(C") = CP""! by attach-
ing the 2n-cell C"*x {1}, so the quotient P(C" & C)/P(C") is $*", which is the part of
T(E) coming from this fiber C". From Example 2.24 we know that K*(P(E® 1)) is the
free K*(X)-module with basis 1,L,---,L"™, where L is the canonical line bundle over
P(E®1). Restricting to P(E) C P(E®1),K*(P(F)) is the free K*(X)-module with
basis the restrictions of 1,L,---,L"! to P(E). So we have a short exact sequence

0— K*(T(E)) > K*(P(E®1)) 5 K*(P(E)) — 0

and Ker p must be generated as a K*(X)-module by some polynomial of the form
L™ + a, L™ + --- + a1 with coefficients a; € K*(X), namely the polynomial
Zi(—l)i)\i(E)L”_i in Proposition 2.25, regarded now as an element of K(P(E®1)).
The class U € I?(T(E)) mapping to Zi(—l)iAi(E)L”’i is the desired Thom class
since when we restrict over a point of X the preceding considerations still apply, so
the kernel of K (CP")— K (CP"!) is generated by the restriction of Zi(—l)i/\i (E)L"
to a fiber.

Observe that K* (T (E)) is a free K*(X)-module with the single basis element U
since K*(P(E®1)) is a free K*(X)-module with basis 1,L,---,L" !, U. In particular
we have an isomorphism K*(T(E)) ~ K*(X), known as the Thom isomorphism.

Similar constructions can be made for ordinary cohomology. The defining relation
for H*(P(E)) as H*(X)-module has the form >,(-1)'c;(E)x"™" = 0 where x =
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x(E) € H? (P(E)) restricts to a generator of HZ((CP"’I) in each fiber. Viewed as an
element of H*(P(E®1)), the element Zi(—l)ici(E)x"_i, with x = x(E®1) now,
generates the kernel of the map to H*(P(E)) since the coefficient of x™ is 1. So
S.(-1)ic;(E)x""" € H*(P(E®1)) is the image of a Thom class u € H*"(T(E)). For
future reference we note two facts:

(1) x =¢,(L) € H*(P(E®1)), since the defining relation for ¢, (L) is x(L)—c;(L) =0
and P(L) = P(E®1), the bundle L—-E®1 being a line bundle, so x(E®1) =
x(L).

(2) If we identify u with Zi(—l)ici(E)x"’i € H*(P(E®1)), then xu = 0 since the
defining relation for H* (P(E®1)) is Zi(—l)ici(EEB Dx™11 =0 and c;(E®1) =
c;(E).

For convenience we shall also identify U with Zi(—l)iAi(E)L"’i € K(P(E®1)).
We are omitting notation for pullbacks, so in particular we are viewing E as already
pulled back over P(E@®1). By the splitting principle we can pull this bundle E back
further to a sum ; L; of line bundles over a space F(E) and work in the cohomology
and K-theory of F(E). The Thom class u = Zi(—l)ici(E)x"’i then factors as a
product [];(x — x;) where x; = ¢,(L;), since ¢;(E) is the i'"* elementary symmetric
function o; of xy,---,x,,. Similarly, for the the K-theory Thom class U we have

U=S,(-DAYE)L"" = L"A(E) = L"T[;A,(L;) = L"[1,(1 + L;t) for t = ~L™", so

U =[I;(L - L;). Therefore we have

h(U) = Iljch(L - L;) = I1;(e¥ — e*) = ull;[(e¥ — ¥)/(x; — x)]

This last expression can be simplified to u[[;[(e¥ — 1)/x;] since after writing it as
ull;e®T1,[(1-e* )/ (x; - x)] and expanding the last product out as a multivariable
power series in x and the x;’s we see that because of the factor # in front and the
relation xu = 0 noted earlier in (2) all the terms containing x can be deleted, or what
amounts to the same thing, we can set x = 0.

Since the Thom isomorphism ®: H*(X)— H*(D(E),S(E)) ~ H*(T(E)) is given
by cup product with the Thom class u, the result of the preceding calculation can be
written as cIflch(U) = Hi[(exi —1)/x;]. When dealing with products such as this it
is often convenient to take logarithms. There is a power series for log[(e” — 1)/y]
of the form }; txjyj /j! since the function (e” —1)/y has a nonzero value at y = 0.
Then we have

log®~'ch(U) = logIT[(e* = 1)/x;1 = 3 log[(e¥ — 1)/x;1 = >, . o;x] /!
=2, x;ch’ (E)
where ch’ (E) is the component of ch(E) in dimension 2j. Thus we have the general
formula log® ch(U) = ¥ j jchj (E) which no longer involves the splitting of the

bundle E— X into the line bundles L;, so by the splitting principle this formula is
valid back in the cohomology of X.
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Proof of 4.7: Let us specialize the preceding to a bundle E =S 2k with clutching
function f:S 2k=1_, 7 (n) where the earlier dimension m is replaced now by k. As
described earlier, the class B € I?(ij) = E(T(Ef)) is the Thom class U, up to a sign
which we can make +1 by rechoosing f if necessary. Since ch(U) = ch(B) = b+ra,
we have <I>’lch(U) = 1+ rh where h is a generator of H2k(52k). It follows that
log® 'ch(U) = rh since log(1 + z) = z—z?/2 + --- and h® = 0. On the other hand,
the general formula 10g<I>’1ch(U) = Zj ajchj(E) specializes to logCIJ’lch(U) =
(xkchk(Ef) in the present case since H*(§%%;Q) = 0 for j # k. If f represents a
suitable choice of generator of TT,,_;(U(n)) then chk(E f) = h by Proposition 4.3.
Comparing the two calculations of log® 'ch(U), we obtain v = . Since e(Jcf)
was defined to be ¥, we conclude that e(J.f) = «; for f representing a generator of
o1 (U(n)).
Torelate «; to Bernoulli numbers §; we differentiate both sides of the equation
S o x* 7kl = log[(e¥ — 1)/x] = log(e* — 1) — log x, obtaining
Zkzl (xkxk’l/(k —I =X/ -1)—xt=1+"-1)t-x"!
=1-x""+> _ Bx K
=1+ Bk
where the last equality uses the fact that §, = 1, which comes from the formula

x/(e*-1) = ZiBixi/i!. Thus we obtain & = B;/k for k >1 and 1 + 8, = «;. Itis
not hard to compute that 8, = —-1/2,s0 &; = 1/2 and &, = —B;/k when k=1. 0O

Bernoulli Denominators

The numbers By, are zero for odd k > 1 since the function x/(e*-1)-1+x/2 =
S .., B;x'/il is even, as a routine calculation shows. Determining the denominator of
Bi/k for even k is our next goal since this tells us the order of the image of eJ. in
these cases.
Theorem 4.9. For even k > 0 the denominator of By /k is the product of the prime
powers p”l such that p — 1 divides k and pf is the highest power of p dividing k.
More precisely:
(1) The denominator of B, is the product of all the distinct primes p such that p —1
divides k.
(2) A prime divides the denominator of B, /k iff it divides the denominator of B .

The first step in proving the theorem is to relate Bernoulli numbers to the numbers
Sp(m) =1+ 2k 4.4 (m - Dk,

H Proposition 4.11. Se(n) = Zlfzo (’;)Bk,ini”/(i +1).

Proof: The function f(t) = 1 +e' +e?' + -+ +e™ V! has the power series expansion
n—-1 00 )
Do Do K=Y S ()t Tk
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On the other hand, f(t) can be expressed as the product of (e™—-1)/t and t/(et 1),
with power series

S Y B = S e G DY Byt
Equating the coefficients of t* we get
Sk = 3 nT B /(i + DIk — i)
Multiplying both sides of this equation by k! gives the result. a

Proof of 4.9: We will be interested in the formula for S, (1) when 7 is a prime p:
(%) Skp) = Bip + (§)Biap® 12+ -+ Bop*H (k + 1)

Let Z(,) C Q be thering of p-integers, that is, rational numbers whose denominators
are relatively prime to p. We will first apply (%) to prove that pB; is a p-integer
for all primes p. This is equivalent to saying that the denominator of f; contains no
square factors. By induction on k, we may assume pp;_; is a p-integer for i > 0.
Also, p'/(i + 1) is a p-integer since p' > i + 1 by induction on i. So the product
Bk,ipi“/(i + 1) is a p-integer for i > 0. Thus every term except S;p in (%) is a
p-integer, and hence B,p is a p-integer as well.

Next we show that for even k, pB; = Sy(p) mod p in Ly, that is, the difference
pBix — Sk(p) is p times a p-integer. This will also follow from (%) once we see that
each term after B, p is p times a p-integer. For i > 1, pl/(i+1) is a p-integer by
induction on i as in the preceding paragraph. Since we know f;_;p is a p-integer, it
follows that each term in (%) containing a f;_; with i > 1 is p times a p-integer. As
for the term containing B;_,, this is zero if k is even and greater than 2. For k = 2,
this term is 2(—1/2)p2/2 = —p2/2, which is p times a p-integer.

Now we assert that S;(p) = —1 mod p if p —1 divides k, while S, (p) = 0 mod p
in the opposite case. In the first case we have
)k

Sy =1+ 4+ p-1k=1+.--.+1=p-1=-1modp

since the multiplicative group Z; =7,—1{0} hasorder p—1 and p —1 divides k. For
the second case we use the elementary fact that Z;; is a cyclic group. (If it were not
cyclic, there would exist an exponent n < p — 1 such that the equation x" — 1 would
have p —1 roots in Z,,, but a polynomial with coefficients in a field cannot have more
roots than its degree.) Let g be a generator of Z5;, so {1,g',g% -+-,g" °} = Z};. Then

Spy=1F+ -+ (p-Dk =11 gty g% ... L glP~2k

and hence (g* - 1)S,(p) = g" V¥ -1 = 0 since g" ! = 1. If p — 1 does not divide
k then gk #+ 1, so we must have S, (p) = 0 mod p.

Statement (1) of the theorem now follows since if p — 1 does not divide k then
pBi = Sk(p) =0 mod p so B is p-integral, while if p — 1 does divide k then pf; =
Sx(p) = -1 mod p so B is not p-integral and p divides the denominator of B.

To prove statement (2) of the theorem we will use the following fact:
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|| Lemma 4.12. For all n € z, n*(n* - 1)B /k is an integer.

Proof: Recall the function f(t) = (e™ — 1)/(e' — 1) considered earlier. This has
logarithmic derivative

f1 () f(t) = Qog £(t))" = [log(e™ — 1) —log(e' = 1)]" = ne™/(e™ —1) —e'/(e' = 1)
We have
/(e -1 =1/1—e ™) =x[-x/(e*-1]=3 (~D*Bx*"1/ki
So
/ I e koo k k-1
S/ fE) = Zk:l(_l) (n" —1)Bt" " /k!

where the summation starts with k = 1 since the k = 0 term is zero. The (k — 1)t
derivative of this power series at 0 is =+ (nk —1)Bi/k. On the other hand, the (k — 1)st
derivative of f’(t)(f(t))’1 is (f(t))’k times a polynomial in f(t) and its derivatives,
with integer coefficients, as one can readily see by induction on k. From the formula
F(t) = Diso Sk(n)tk/k! derived earlier, we have f(i)(O) = S;(n), an integer. So the
(k — 1)t derivative of f'(£)/f(t) at 0 has the form m/f(O)k = m/n* for some
m e Z. Thus (nk - 1)B/k = im/nk and so nk(nk —1)Bi/k is an integer. O

Statement (2) of the theorem can now be proved. If p divides the denominator
of B, then obviously p divides the denominator of §;/k. Conversely, if p does not
divide the denominator of B, then by statement (1), p — 1 does not divide k. Let g
be a generator of Z; as before, so gk is not congruent to 1 mod p. Then p does not
divide gk(gk — 1), hence B, /k is the integer gk(gk — 1)B/k divided by the number
gk(gk — 1) which is relatively prime to p, so p does not divide the denominator of
Bilk.

The first statement of the theorem follows immediately from (1) and (2). O

There is an alternative definition of e purely in terms of K-theory and the Adams
operations ([Jk. By the argument in the proof of Theorem 2.17 there are formulas
Y*(x) = k™o and @ (B) = k"B + . for some p;, € Z satisfying /(K™ — k™) =
o/ (€™ — £™). The rational number p,/(k™ — k™) is therefore independent of k. It
is easy to check that replacing B by B + p« for p € Z adds p to p/ (k™ — k™), so
M/ (K™ — k™) is well-defined in Q/Z.

H Proposition 4.13. e(f) = u /(K™ — k") in Q/Z.

Proof: This follows by computing ch (,Uk(B) in two ways. First, from the formula
for y*(B) we have chy*(B) = k"ch(B) + uych(x) = k"b + (k"r + )a. On the
other hand, there is a general formula ch? (,Uk(E) = kch?(&) where ch? denotes the
component of ch in H??. To prove this formula it suffices by the splitting principle
and additivity to take & to be a line bundle, so (,Uk(g) = Ek, hence

chiyk (€) = ch®(EX) = [, (E¥)19/q! = [ke, (8)19/q! = k¢, (§)/q! = kch(E)
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In the case at hand this says ch™y@*(B) = k™ch™(B) = k™ra. Comparing this with

the coefficient of a in the first formula for ch ¢*(B) gives py = r (k™ — k™). O
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