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Abstract

In this paper, we shall review earlier work on canonical forms in linear elasticity,
and applications to the classification of conservation laws (path-independent integrals).

1 Introduction

The detailed investigation of complex mathematical objects can often be simplified through
the use of specially adapted coordinate systems in which the object takes a simple “canon-
ical form”. FElementary examples include the Jordan canonical form of a square matrix,
Sylvester’s Theorem on the representation of a quadratic form as a sum of squares, and
Darboux’ Theorem on the canonical form of Hamiltonian structures. In elasticity, the deter-
mination of canonical forms for elastic materials, either linear or nonlinear, is more recent.
Lekhnitskii, [14], and Ting, [33], discuss canonical forms and invariants for elastic moduli
under the physically based class of rotations. In [22] canonical forms for two-dimensional
materials under general linear transformations were found. These were extended to planar
displacements of three-dimensional materials in [25] with further refinements in [9]. The
classification of canonical forms in fully three-dimensional materials is, however, not known.
Applications of these results to the classification of conservation laws or path-independent
integrals appear in [8, 9, 10, 20, 23]. Using a remarkable mathematical correspondence be-
tween planar elastic and dielectric media, Milton and Movchan, [16], have applied the planar
canonical forms to study waves in an anisotropic dielectric medium.



2 The Equations of Elasticity.

The equations of hyper-elasticity constitute a self-adjoint, quasi-linear system of second-
order partial differential equations for the deformation (or, in the linear case, displacement)
u = f(x). Here u = (u!,...,u?%) € R?% and x = (21,...,2,) are the material coordinates in
the elastic body @ C RP. For planar elasticity, p = ¢ = 2, while p = ¢ = 3 for fully three-
dimensional elastic media. The Stroh formalism discussed below applies to a hybrid case, that
of planar displacements of three-dimensional bodies, where p = 2, while ¢ = 3. When p = 2,
we will sometimes use the notation x = (x1,23) = (z,y) and u = (u*,v?,v*) = (u,v,w).
The equilibrium equations are the Euler-Lagrange equations for the stored energy functional

- /Q W(x, Vu) dx. (2.1)

The physical conditions of frame indifference, strong ellipticity, etc., will restrict stored
energy functions which are of relevance to elasticity, although our initial remarks apply to
quite general variational problems. The stored energy is not uniquely determined by its
Euler-Lagrange equations, since we can add any divergence, replacing W by W + Div P,
although this will, in general, alter the natural boundary conditions associated with the
problem.

At a fixed material point x = b and a fixed value of deformation gradient u = F, we
define the symbol of the variational problem (2.1) to be the “biquadratic” polynomial

QbF X, 11 Z b F) uiuk:ﬁjxl, X € Rp, u € R% (22)
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The symbol is unaffected by the addition of a null Lagrangian to W. The Legendre-
Hadamard condition requires that the symbol () be positive definite in the sense that

Qbr(x,u) >0  whenever x#0, u#0. (2.3)

for all b € Q, and F such that det F' > 0. For simplicity, we will restrict to homogeneous
materials, whereby the stored energy function W(Vu) depends only on the deformation
gradient.

In linear elasticity, the stored energy is a symmetric quadratic function of the displace-
ment gradient

ou’ Ou*
/ Z Aiikl = = dx. (24)
S Oz Oz
The equilibrium equations are the associated Euler-Lagrange equations:
0*u”
; =0, t=1,...,q. 2.5
2 G L e (2:5)
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The values @i are the wariational moduli. For a general quadratic variational problem
(2.4), the symbol @) is independent of the value of the displacement gradient F', and also the



material point b provided the body is homogeneous. It can be found directly by replacing
Vu in W by the rank one tensor xeu = u - x':

Q(X,u) = W(X ®u) = Z A5kl uiuk;vjxl. (26)
ivgok,l
Since every quadratic divergence is a linear combination of the 2 x 2 Jacobian determinants
d(u',u*)/d(x;, ), a homogeneous quadratic stored energy function is uniquely determined
by its symbol up to a divergence.
In the case p = ¢, the assumption of frame indifference requires that the stored energy
(2.4) depends only on the strain tensor e = £(Vu + Vu?), so

Wiu] = /QZUU gij dx Z/Q > cijreien dx, (2.7)
2¥]
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where o = C(¢) is the associated stress tensor. In this case, the equilibrium equations (2.5)

take the form
Div o = 0. (2.8)

The fourth rank tensor C = (¢;;x) is the elasticity tensor. The components of C are called
the elastic moduli or elasticities of the material, and have the following symmetries

Cijkl = Cjikl = Cijlk = Cklij- (2.9)

There are 21 independent elasticities in three-dimensional problems and 6 independent mod-
uli in two-dimensional problems. The symmetry restrictions (2.9) imply that the symbol is
symmetric, i.e. Q(x,u) = Q(u,x).

3 The Stroh formalism

The Stroh formalism, [5, 31, 32, 33] deals with the hybrid case of planar displacements,
p = 2, of a three-dimensional body, ¢ = 3. For any displacement u that satisfies (2.8), there
exist three stress potentials ® = (¢'(x), $*(x), ¢*(x)) such that

9 dg

0,1 = — ay 5 02 = %, l = 1,2,3. (31)
We define the following 3 x 3 matrices:
Q = Qi; = cijn, T =1 = cigjo, R = R;; = caj. (3.2)
We note that () and 7" are symmetric and positive definite. We then construct the following
6 x 6 matrices:
—RT I T 0 o
we |1 ]2 0] 0
The relations (2.8), (3.1), can be rewritten as
Y oY
M, P M, a—y where Y = l :Il) ] € R (3.4)
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The 6 x 6 matrix
_T—IRT T—l

N=M M= prapr o _pp

(3.5)
is called the fundamental elasticity matriz.

The characteristic polynomial s(A) of N is a sixth-degree polynomial known as the “Stroh
sextic”. Since the strain energy is positive definite, so is s()A), [5], and hence its roots come
in three complex conjugate pairs. If the matrix N is diagonalizable, the material is called
nondegenerate. Let py, ps, ps be the eigenvalues with positive imaginary part, and V, € C°
the corresponding complex eigenvectors. In the nondegenerate case, the general solution to

(3.4) has the form
Y= Y[V flea)+ Vo el )
Here the Stroh functions f, are_arbitrary complex-analytic functions of their respective
argument z, = x + p,y; see [33] for details. If we write V, = l ga ] with A,, B, € C3, the
vectors A, are called the Stroh eigenvectors. It is easy to show tcflat they satisfy (no sum):
(Q + palR+ RY) + p2T) A, = 0,

B, = (R" + pT) A, = —pi (@ + paR) Aa,

(3.7)

where p,, is the corresponding root of the Stroh sextic. The solution for degenerate materials,
which includes the isotropic case, is similar, but more complicated; see [33] or [9] for explicit
formulations.

The Stroh formalism reduces to the well-known Muskhelishvili, [17], approach in the
planar case. The Stroh sextic now reduces to a quartic polynomial with two complex-
conjugate pairs of roots. The solution (3.6) is similar, but the sum only goes from 1 to 2.
The Airy stress function is U(x,y) = 2 Re [U1(z1) + Usz(z2)] where U, are arbitrary analytic
functions of z,, with f,(z,) = U.(z,) giving the solution (3.6).

4 Changes of Variable.

In the calculus of variations, the basic equivalence problem is to determine when two vari-
ational problems can be transformed into each other by a suitable change of variables. For
nonlinear variational problems in several independent and dependent variables, there is as yet
no solution, although preliminary analysis based on the powertul Cartan equivalence method,
[27, 28], has been done. The first of the invariants arising from the Cartan method is the
symbol (2.2), and so we must understand canonical forms for linear variational problems
before further progress on the general nonlinear problem is possible.

In the case of linear elasticity, we may restrict our attention to linear changes of variables:

x — Ax, u+— Bu. (4.1)



In the elastic case, we choose B to be a scalar multiple of A= to preserve the symmetry
constraints. Under the change of variables (4.1), the stored energy is transformed according
to

W (Vu) — W(Vu) = W(BVuAd™) |det Al.

Our fundamental problem, then, is to determine matrices A and B which will simplify the
elastic moduli ¢;;5 (or variational moduli a;;5 in the general case) as much as possible.
Stated in this form, the question appears to be quite natural from a mathematical point of
view, even though it may not have an immediate physical motivation. Indeed, the linear
maps determined by the matrices A and B will not in general have any direct physical
interpretation, except in the special case of orthogonal transformations (rotations), when
they represent a physical change of frame, [14, 33].

The linear change of variables (4.1) acts on the symbol via Q(x,u) — Q(Ax, Bu).
(Actually, one should replace A by a multiple of A=7, but this does not affect the discus-
sion.) Thus we are led to the purely algebraic problem of determining canonical forms for
biquadratic polynomials under the change of variables.

We now discuss the relevant algebraic properties of biquadratic symbols, concentrating
on the cases p = ¢ =2 and p = 2, ¢ = 3. (Note that if either p =1 or ¢ = 1, the symbol is
an ordinary quadratic polynomial, whose canonical forms, determined by Sylvester’s law of
inertia, are well known. In particular, only the rank and signature are invariants, and there
are no canonical moduli in these special cases.) Let us write the symbol in the matrix form

Q(x,u) = u’ R(x)u, (4.2)

where, assuming strong ellipticity, R(x) is a real ¢ x ¢ symmetric, positive-definite matrix
of homogeneous quadratic polynomials of the variables x. Just as the analysis of ordinary
real polynomials requires an understanding of their complex roots, and so we may regard
x and u as complex vectors, and () as a complex-valued biquadratic polynomial. By the
strong ellipticity assumption, for generic vectors x € C?, the matrix R(x) has full rank; it is
important to distinguish the exceptional points where R has less than maximal rank. Define
the discriminant

Au(x) = det R(x), (1.3)

which is a homogeneous polynomial of degree 2g. A root of A,(x) is a nonzero vector
0 # x € CP satisfying Ay(x) = 0. Homogeneity of the symbol polynomial implies that
we should identify roots that are complex scalar multiples of each other. The roots of the
discriminant play a crucial role in the classification of these biquadratic polynomials, and
hence of quadratic variational problems. Strong ellipticity implies that the roots always
appear in complex conjugate pairs. Interestingly, in cases covered by the Stroh formalism,
the discriminant is the same as the Stroh quartic or sextic: s(A) = Au(A, 1).

Clearly, one can interchange the roles of x and u in the above discussion, producing a
corresponding discriminant Ax(u). Except in the symmetric elastic case with p = ¢, these
two polynomials are not the same (indeed, if p # ¢, they do not even depend on the same
number of variables), nor are their roots easily compared. Nevertheless, there are subtle and
remarkable relations between the roots of the two discriminants. For example, in the planar
case p = ¢ = 2, the discriminant A, (x) has simple roots if and only if Ax(u) does. However,



it is not true that if Ay(x) has a double root then Ax(u) has a double root, although it does
have a root of multiplicity at least two; see [24].

5 Canonical Elastic Moduli.

The number of canonical moduli can be determined directly by a simple dimension count. A
general biquadratic polynomial or symbol Q(x,u) depending on x € R?, and u € R? has a
total of +p(p + 1)g(¢ + 1) independent variational moduli. The possible changes of variables
(4.1) will involve p*+ ¢* arbitrary parameters, but the transformation just rescaling x (where
A is a multiple of the identity) has the same effect as that rescaling u, so there are p* +¢*—1
independent parameters at our disposal. Thus, in general, we expect the canonical quadratic
variational problem to depend on

+ 1)g(g+1
p(p )f(q )_p2_q2+1

canonical moduli. For planar elasticity, p = ¢ = 2, so we will find just 2 canonical elastic
moduli. In three dimensions, we should obtain 19 canonical elastic moduli; however, impos-
ing the symmetry conditions (2.9) reduces the count to 12. In the case p = 2, ¢ = 3 covered
by the Stroh formalism, we expect 6 independent canonical elastic moduli.

5.1 The Planar Case

In the case of planar elasticity, p = ¢ = 2, the discriminant A,(x) is a homogeneous quartic
polynomial of the two variables x = (z,y), which has either two complex conjugate pairs
of simple roots, or a complex conjugate pair of double roots. In the former case, we can
find a real linear change of variables which moves the roots onto the imaginary axis, to
(1,477),(1,£77%), for some 7 > 1. (The constant 7 is an invariant associated with the
roots of the quartic.) In the latter case, we move the roots to (1, £¢). Performing the same
change of variables on the other discriminant Ax(u) (where, according to theory, the value
of 7 is necessarily the same), it can be proved, [22], that the symbol thereby reduces to one
of “strongly orthotropic” form

2?u? + y*o? + a(y*u® + 2%0?) + 2Bzyuv, (5.1)
where the canonical moduli «, 3 satisty the inequalities
a >0, 8 >0, o — 1] > 3, (5.2)
in the case when the discriminant has simple roots, or
0<a<l, B=1-a, (5.3)

in the case of double roots. The corresponding stored energy function is given by the or-
thotropic Lagrangian

ui + ozuf/ + 2Buzv, + ozvz + vj. (5.4)
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In fact, the Lagrangian (5.4) is, modulo a null Lagrangian, just a rescaled version of the
standard stored energy of a linear, planar orthotropic elastic material

2 2, 2
cr1t; + crz12(uy + v1)% 4 2¢1122u50y + C22220,. (5.5)

Indeed, after adding the null Lagrangian ¢i212(uzv, — uyv;), a simple rescaling will place this
stored energy into the form (5.4), where

C1212 C1122

“ v/ C1111€2222 7 b v/ €C1111€2222 ' (5'6)
The discriminant has a complex conjugate pair of double roots if and only if the ma-
terial is equivalent to an isotropic material, with o = p/(2p + X), B = (g + A)/ (2 + A),
where A and p are the classical Lamé moduli. Moreover, the isotropic stored energies are
distinguished by the presence of a one-parameter symmetry group corresponding to the ro-
tational invariance of (5.4) when a 4+ 3 = 1. Two isotropic Lagrangians determine the same
orthotropic Lagrangian if and only if they have the same value for Poisson’s ratio. The cases
when the discriminant has simple roots, and the Lagrangian has at most discrete symmetries,
correspond to “truly” anisotropic materials.

Theorem 5.1 Let W(Vu) be a homogeneous first order planar quadratic Lagrangian which
satisfies the Legendre-Hadamard strong ellipticity condition. Then W s equivalent to a
orthotropic Lagrangian (5.4), where the canonical elastic moduli o and B satisfy the strong
ellipticity inequalities a > 0, || < a + 1. The corresponding Fuler-Lagrange equations are
thus equivalent to the “orthotropic Navier equations”

Upe + QUyy + Brgy = 0, Bigy + vz + vy = 0. (5.7)
The six components of the elastic tensor C can be summarized in matrix form by

€11 C12 Cis
C= Ca2 Co6 |,

Ce6

where ¢;; represents the standard contracted notation, [7]. In this version, the canonical
form is found to be

cnn ciz 0
C = C11 0
Ce6

Note that it is possible to rescale so that ¢;; = 1.

See [22] for the explicit formulas for the change of variables taking a given stored energy
function into its canonical orthotropic form. One can reduce a general strongly elliptic
orthotropic stored energy (5.4) to a unique strongly orthotropic Lagrangian satisfying the
more restrictive inequalities (5.2) or (5.3) using one or more of the three basic discrete
equivalences taking the moduli (a, ) to either

1 1 l+a—03 2-2a«a
(057_/3)7 or (575)7 or (1+a+ﬂ’1+a+/3) (58)
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Therefore, except in a few “exceptional” cases, each orthotropic Lagrangian is equivalent to
seven different orthotropic Lagrangians.

Remark: A complete set of canonical forms for general quadratic variational problems in
the case p = ¢ = 2 is known; see [24] for details.

5.2 The Stroh Case

Turning to the case of planar deformations of a three-dimensional material, i.e. p =2, ¢ = 3,
we must determine canonical forms for a positive definite “bi-ternary quadratic”

Q(z,y;u,v,w) >0, (z,y) #0, (u,v,w)#0. (5.9)

Such a symbol will be the planar restriction of a three-dimensional elastic stored energy
function W provided it satistfies

Q(:E7y;’u7v70) = Q(‘u7v;x7y70)' (5'10)

The discriminant Ay(x) is a homogeneous sextic polynomial in x = (x,y), which, according
to the strong ellipticity assumption, has three complex conjugate pairs of roots.

A stored energy function is called separable it there exist coordinates x, u such that its
symbol takes the form

Q(z,y;u,v,w) = R(x,y;u,v) + s(z, y)w’. (5.11)

Note that in this case, the Euler-Lagrange equations separate into a linear system for u, v,
and a single separate second order elliptic equation for w, so that the problem essentially
reduces to a problem for purely planar elasticity (with a separate anti-planar problem). If
R is isotropic, then the rotational symmetry group can be used to diagonalize the quadratic
polynomial s(x), but, in general, we are left with the 4 parameter class of separable canonical
forms

ui + ozuf/ + 2Buzv, + avi + 'vi + ’y'wi + 20w, w, + e'wf/. (5.12)

(One of the parameters 7,6, can be eliminated by rescaling w.) Thus, the equilibrium
equations reduce to the orthotropic Navier equations (5.7) together with a second order
elliptic equation for w, which can be easily transformed into Laplace’s equation, although
not without changing the orthotropic form of the planar part.

In the Stroh formalism, the essential elasticities can be summarized with the three sym-
metric matrices ), R + RT, and T, given by

C11 Ci6 Cis 2c16 c12 4 ce6 14+ Cs6 Cgs C26 Ca6
Cge  Ce5 2¢96 C46 + C25 Co2 Ca4
Cs5 2¢45 Caq

One can see that there are 15 independent moduli. The material is separable when the third
columns of these matrices are of the form [0 0 *]T. In [9] it was shown that a material is
separable if and only if one of the Stroh eigenvectors is a real vector.



If the material if not separable, we have the canonical form, [25],

en 00 cs 0 ci2+cs6 0 ces 0

Ca6
Cee  Ce5 0 0 C11 €24
Cs5 0 Caq

Note again that we may scale so that ¢;; = 1. These can further be refined if the material
is degenerate. It turns out that there are two inequivalent classes of degenerate materials,

8, 9],

w0 s o drtem ] orazear ]
€11 — €12 2 2 513
2 €36 0 0 Ci11 Css ( . )

caq + 2cn1 0 Caq |

ci 0 cat 0 cia4+c1 O ci1 O Cag ]
o N 0 0 en 0 (5.14)

0 (c12+ 011)_2 i

(c12+ 611)_2

If, in addition, there is only one Stroh eigenvalue, so N is “extraordinarily degenerate”, then
2 2 2 ]
en (2e1y 656), or (5.14) with

5.2 2
2¢1) + 36

the canonical forms are either (5.13) with ¢;5 = 0 and ¢;5 =
—1

2\/011'

For a discussion of inseparable, degenerate materials, see [34].

C46 =

5.3 Three-Dimensional Case

Complete canonical forms for the fully three dimensional elastic tensor under the action of
the general linear group remains an open problem. Lodge [15] has provided a set of necessary
a sufficient conditions on the elasticities that guarantee that the tensor can transformed into
an isotropic form. The general problem is difficult due to the complexity of the expressions
involved. A promising approach seems to lie in constructing the invariants under the action
of the general linear group. However, this too is an open problem. For corresponding work
with respect to the action of the orthogonal group, see [11, 36] and the references therein.

6 Conservation Laws

By a conservation law for a system of partial differential equations, we mean a divergence
expression Div P = 0 which vanishes on all solutions. The conservation law is called trivial
if either P = 0 vanishes on all solutions, or Div P = 0 vanishes for all u. Two conservation
laws are equivalent if and only if they differ by a trivial conservation law. So far, only first
order conservation laws, meaning that P(x, u, Vu) depends on at most first order derivatives,
have been classified up to equivalence.

The most well-known example of a conservation law or path-independent integral in
elasticity is the celebrated Eshelby energy-momentum tensor, [4, 29], which governs the



energy release rate at a singularity, [1]. In general, Noether’s Theorem, [18, 26], provides
a one-to-one correspondence between conservation laws and symmetries of the variational
problem. Surprisingly, this fundamental result was not systematically applied in elasticity
until the work of Giinther, [6], and Knowles and Sternberg, [13]. The latter claimed to have
a complete classification of all possible elastic conservation laws, but they failed to take
into account more general types of symmetries as well as particular constitutive relations
which can increase the number of laws. This prompted Edelen, [3], to propose that “...a
detailed cataloging of all invariance transformations and conservation laws in linear elasticity
would seem a worthy task”. This served to motivate us to initiate a systematic classification
program for conservation laws, [19, 20, 23, 9]. In this section we review what is known to
date.

6.1 Betti Reciprocity

Any self-adjoint linear system admits a special class of conservation laws that arise from
Betti’s reciprocal theorem [7, Sect. 30]. A Betti-reciprocity law takes the explicit form

Div P =0, where P=o0;- i — Tij u’. (6.1)

Here u,u are any two solutions of the equilibrium equations, with corresponding stress
tensors o, 0.

In the linear case, each symmetry provides a recursion operator that produces symmetries
and conservation laws of arbitrarily high order. We conjecture that, like the Laplace equation,
[30], every higher order symmetry and conservation law is generated by the first order ones.
The higher order conservation laws have not been investigated so far.

6.2 Two Independent Variables

The approaches and results for the planar case and the Stroh formalism are similar and we will
present them together. We consider first order conservation laws DivP = D, P, + D, P, = 0.
The conditions can be presented in the convenient matrix form

0 QT-!

VP =MVPE where M = ~1 (R+ RO |’

(6.2)
and V denotes the gradient with respect to to the derivative variables u; = Ju'/dz;. The
matrix in (6.2) is similar to — N, cf. (3.5), and hence its characteristic polynomial is essentially
same as the Stroh polynomial. The general solution to the equation (6.2) depends on the
Jordan structure of the matrix M and can be found in [12]. For each complex conjugate pair
of eigenvalues, we define the complex variables

1
Ne = bl - Vu, where b, = _p_OAQACY
TA,

is the corresponding eigenvector of M, and A, is the corresponding Stroh eigenvector. The
index « ranges from 1 to either 2 in the planar case, or 3 in the Stroh case. If the matrix is
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not semisimple, we use the generalized eigenvectors to similarly define variables ¢ (and ¢ if
there are two generalized eigenvectors). The first result appears in [9, 23, 37]; see also [35].

Theorem 6.1 FEvery nontrivial first order conservation law for a nondegenerate material
is a linear combination of the Betti reciprocal laws and the laws P® corresponding to the
eigenvalues p, of the elasticity matriz, where Fy(zq,1.) = P 4 paPs are complex analytic
functions of their arqguments z, = & + pay, Mo = Na1 + Maz = fL(24).

If the material is degenerate (i.e. the matrix in (6.2) is irreducible), there are several
different cases.

6.3 Planar, Irreducible

In the planar case, the material is equivalent to an isotropic material. If the material is
isotropic, one can solve for the eigenvectors explicitly. The explicit form of the conservation
laws in isotropic materials was first given in [20].

Theorem 6.2 Fvery degenerate planar material s equivalent to an isotropic material. Ev-
ery nontrivial conservation law ts a combination of Betti reciprocity and the laws given by

1 oG — oG
Pi 4 pP, = F(z,n) — 2[;”) (ZngG(Z,n)) +€% +ezon'+we. (6.3)

Here F' and G are analytic functions of n = gy +1n2, and z = x + py, ¢ ts a complex scalar,
w is a certain linear combination of the displacements u,v.

6.4 Stroh, Irreducible

In the Stroh formalism, if the matrix is irreducible, one can have either two distinct pairs
(one pair doubled) or one tripled pairs of roots. The following results appear in [9].

Theorem 6.3 Suppose M is irreducible with two real Jordan blocks. Let p; be the double
root and py the simple root with positive imaginary parts. Then every nonlrivial conservation
law is a combination of Betti reciprocity and the laws P, P, where

7 oG — oG
P1+P1P2:F1(21,T]1)—m<21a—21+ (hﬂ]l))‘l‘fa—m—l-czrnf—l-w'?h

151 -|-p_21‘~72 = Fy(zq,72).

Here F; and G are analytic in 1, = bl -Vu and z, =  +p,y, ¢ is a complex scalar, and w is
a certain linear combination of the displacements u. The terms ¢z -ni +w-ny are nontrivial
if and only if the material is separable.

11



Theorem 6.4 Suppose that M s irreducible with one real Jordan block, and let p = p; 4 1ps
be the corresponding triple root with positive imaginary part. Every nontrivial conservation
law is a combination of Betti reciprocity and the laws P with components

oG T - O*°H oH ? oH 1 -
Pi+pP=F+¢(—— —G+¢& 22— —— b=+
1P +£0n 2pa e on? * Cé’n p2 Oy +2p§

where

1 0G, 1 [(Z20*H o0H

F=F oo - (2T T 2 :
o(zm) 2p22 0z 2p3 (2 0z2 +Zaz czn @
v OH 1
G—GO(Z,T])—])—QZE—ECQE 772
H = H(z,n).

The functions Fo, Gy and H complex analytic in their arguments, the ¢; are complex scalars,
and w is a certain linear combination of the displacements u'.

There is some subtlety between repeated roots and irreducible matrices. In general,
distinct eigenvalues implies that a given matrix is semisimple but not the other way around.
If the Stroh sextic has one tripled pair of complex conjugate roots, then the matrix N will
have one real Jordan block if and only if the material is inseparable. If the material is
separable, there are exactly two real Jordan blocks. On the other hand, if the Stroh sextic
has one doubled pair of roots and a second distinct pair, then the matrix N is semisimple
if and only if the material is separable and the two root pairs corresponding to the planar
part are distinct. See [9] for details.

6.5 Three independent variables

Finally, let us consider the full three-dimensional case. In general, the number of conservation
laws a material may have depends whether or not the elasticities satisty certain nondegen-
eracy conditions; these are closely related to the symmetry class of the elastic tensor. In
particular, certain materials have more conservation laws than a generic material. We first
state all the conservation laws which exist in all three-dimensional materials, regardless of
its symmetry, [2].

Theorem 6.5 FEvery nontrivial conservation law which exists for all three dimensional ma-
terials is a linear combination of the following laws: i) the stress o;; = ikl ii) the Eshelby
energy-momentum tensor Pj;l = Clipi - uj, - uﬁn - %(53710%” - uy - ul where (5;1 ts the Kronecker
§, iii) the “scaling” density Y' = :L‘ij + %ujaij, and iv) the Betti reciprocal relations.

Theorem 6.6 All conservation laws of a three-dimensional isotropic material are linear

combinations of those listed in Theorem 6.5 along with the densities

R; = &kl (:cka — ukdik)
P Ik 2 3.1 ) 1 o ko 1
Q% = cricestj uf + iU (uZ — u}) + 5 (ce6 + c12) cr1dufu;

T; = Ejml ((c66 + c12) Q) + cos(crr + C66)Uk0il) +

12 k.l ; Ik
+ 5Cs6 (ces + c12) (5jklu u; + 5}€k1mu um) ;

12



where €5 ts the alternating tensor.

The isotropic classification appears in [20]. If the material is transversely isotropic, the
most general conservation laws are those listed in Theorem 6.5, and R} and a generalization of
Q% in 6.6; see [10]. In this reference, it is also shown that under certain degeneracy conditions,
a transversely isotropic material may have generalizations of Q! and Q! as well. There are
no more laws unless the material is equivalent to an isotropic material. An open problem
is determining precisely when an anisotropic material has conservation laws beyond those
of Theorem 6.5. This problem is closely related to the canonical forms problem mentioned
earlier.

7 Acknowledgments

The research of the second author was supported in part by NSF Grant DMS 95-00931. This
work was presented at the Fourth Meeting on Current Ideas in Mechanics and Related Fields,
in Krakéw, Poland, August 1997. We would also like to thank the organizers, particularly
Marek Elzanowski, for a most productive conference.

References

[1] Budiansky, B., and Rice, J.R., Conservation laws and energy release rates, J. Appl.
Mech. 40 (1973) 201-203.

[2] Caviglia, G., and Morro, A., Conservation laws in anisotropic elastostatics, Int. J. Eng.

Sei. 26 (1988) 393-400.

[3] Edelen, D.G.B., Aspects of variational arguments in the theory of elasticity: fact and
folklore, Int. J. Solids Structures 17 (1981) 729-740.

[4] Eshelby, J.D., The force on an elastic singularity, Phil. Trans. R. Soc. A 244 (1951)
57-112.

[5] Eshelby, J.D., Read, W.T., and Shockley, W., Anisotropic elasticity with applications
to dislocation theory, Acta Metal. 1 (1953) 251-259.

[6] Gilinther, W., Uber einige Randintegrale der Elastomechanik, Abh. Braunschw. Wiss.
Ges. 14 (1962) 53-72.

[7] Gurtin, M.E., The linear theory of elasticity, in Mechanics of Solids Vol. 2 (ed. C.
Truesdell), Springer—Verlag, New York, 1973, pp. 1-295.

[8] Hatfield, G.A., Conservation laws in anisotropic elasticity, Ph.D. Thesis, University of
Minnesota, 1994.

[9] Hatfield, G.A., Conservation laws and canonical forms in the Stroh formalism of

anisotropic elasticity, Q. Appl. Math. 54 (1996) 739-758.

13



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
23]

Hatfield, G.A., Conservation laws in transversely isotropic linear elastic materials, Proc.

Roy. Soc. Lond. A 453 (1997) 1005-1017.

Huo, Y-Z., and Del Piero, G., On the completeness of the crystallographic symmetries in
the description of the symmetries of the elastic tensor, J. Elasticity 25 (1991) 203-246.

Jodeit, M., and Olver, P.J., On the equation grad f = M grad ¢, Proc. Roy. Soc.
FEdinburgh 116 A (1990) 341-358.

Knowles, J.K., and Sternberg, E., On a class of conservation laws in linearized and finite
elastostatics, Arch. Rat. Mech. Anal. 44 (1972) 187-211.

Lekhnitskii, S.G., Theory of FElasticity of an Anisotropic Body, MIR Publishers,
Moscow, 1981.

Lodge, A.S., The transformation to isotropic form of the equilibrium equations for a

class of anisotropic elastic solids, @). J. Mech. Appl. Math. 8 (1955) 211-225.

Milton, G.W., and Movchan, A.V., A correspondence between plane elasticity and the
two-dimensional real and complex dielectric equations in anisotropic media, Proc. Roy.

Soc. London A 450 (1995) 293-317.

Muskhelishvili, N.I., Some Basic Problems in the Mathematical Theory of Elasticity,
translated by J.R.M. Radok. Noordhoff, Groningen, 1953.

Noether, E., Invariante Variationprobleme, Gottigner Nachr., Math. Phys. Klasse 2
(1918) 235-257.

Olver, P.J., Conservation laws in elasticity I. General results. Arch. Rat. Mech. Anal. 85
(1984) 119-129.

Olver, P.J., Conservation laws in elasticity II. Linear homogeneous isotropic elastostat-

ics, Arch. Rat. Mech. Anal. 85 (1984) 131-160; Errata in 102 (1988) 385-387

Olver, P.J., Conservation laws in elasticity III. Planar linear anisotropic elastostatics,

Arch. Rat. Mech. Anal. 102, 167-181, 1988.
Olver, P.J., Canonical elastic moduli, J. Flasticity 19 (1988) 189-212.

Olver, P.J., Conservation laws in elasticity III. Planar linear anisotropic elastostatics,

Arch. Rat. Mech. Anal. 102 (1988) 167-181.

Olver, P.J., The equivalence problem and canonical forms for quadratic Lagrangians,

Adv. Appl. Math 9 (1988) 226-257.

Olver, P.J., Canonical anisotropic elastic moduli, in Modern Theory of Anisotropic Elas-
ticity and Applications (J. Wu, T. C. T. Ting, and D. Barnett eds.), STAM, Philadelphia,
1990, pp. 325-339.

14



[26] Olver, P.J., Applications of Lie Groups to Differential Equations, Second Ed., Graduate
Texts in Mathematics, vol. 107, Springer—Verlag, New York, 1993.

[27] Olver, P.J., Equivalence and the Cartan form, Acta Appl. Math. 31 (1993) 99-136.

(28] Olver, P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cam-
bridge, 1995.

[29] Rice, J.R., A path-independent integral and the approximate analysis of strain concen-

trations by notches and cracks, J. Appl. Mech. 35 (1968) 376-386.

[30] Shapovalov, A.V., and Shirokov, [.V., Symmetry algebras of linear differential equations,
Theor. Math. Phys. 92 (1992) 697-705.

[31] Stroh, A.N., Dislocation and cracks in anisotropic elasticity, Philos. Mag. 3 (1958) 625
646.

[32] Stroh, A.N., Steady state problems in anisotropic elasticity, J. Math. and Phys. 41
(1962) 77-103.

[33] Ting, T.C.T., Anisotropic Elasticity, Oxford Engineering Science Series 45, Oxford
University Press, Oxford, 1996.

[34] Ting, T.C.T., Existence of an extraordinary degenerate matrix N for anisotropic elastic

materials, Q. J. Mech. Appl. Math. 49 (1996) 405-417.

[35] Tsamasphyros, G., Path-independent integrals in anisotropic media, Int. J. Frac. 40
(1988) 203-219.

[36] Xiao, H., On isotropic invariants of the elasticity tensor, J. Flast. 46 (1997) 115-149.

[37] Yeh, C.-S., Shu, Y.-C., and Wu, K.-C., Conservation laws in anisotropic elasticity I.
Basic framework, Proc. R. Soc. Lond. A 443 (1993) 139-151.

15



