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1. Introduction

Judging by the nomenclature of present-day mathematics Georg Frobenius (1849–
1917) made many contributions of lasting significance to mathematics. One thinks for
example of the Frobenius substitution in the theory of numbers, Frobenius algebras,
Frobenius groups, and Frobenius’s complete integrability theorem in differential equa-
tions. With the notable exception of his ground-breaking work related to group characters
and representations, however, relatively little has been done in the way of an analysis and
assessment of Frobenius’s mathematics within its historical context, that is, on the one
hand an analysis of the considerations that motivated and informed it and on the other
hand an assessment of its impact upon subsequent developments.1 The following study
is intended as a small contribution to such an undertaking.2 It is focused exclusively

1 Regarding Frobenius’s work on group characters and representations, see, eg [17, 38, 39].
2 I wish to express my gratitude to several individuals and institutions for the role they played

in facilitating the final version of this paper: J–P. Serre, whose perceptive critical reading of
preliminary versions induced me to revise the text in a variety of ways; S. Sternberg for illuminat-
ing discussions of Frobenius’s Theorems 8.1 and 9.2; J. Gray for cajoling me into a better, more
concrete explanation of now unfamiliar notions; the Department of Mathematics at BrighamYoung
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382 T. Hawkins

upon a paper written by Frobenius in 1876 [26] and published early the next year on
what had become known as the problem of Pfaff, a problem in the area of differential
equations that was of considerable interest during the 19th century.

Frobenius’s paper marked a watershed in his mathematical career in that it marked
the beginning of his activity in the theory and application of what would now be described
as linear algebra, an area in which he made many important contributions. Most of his
earlier work (1870–75) had been devoted to problems involving Weierstrassian analysis,
especially as applied to linear differential equations in directions suggested by the work
of Fuchs.3 As we shall see, the linear algebra that Frobenius began to investigate was
linear algebra as cultivated at the University of Berlin, where he received his mathemat-
ical education; and the disciplinary ideals that underlay Berlin-style linear algebra were
a significant factor in motivating his work on the problem of Pfaff. I have already shown
this to be the case regarding other work by Frobenius as well as the work of Wilhelm
Killing on Lie algebras [40, 41, 42, 43, 46]. In addition to the novelty of how those same
ideals inspired Frobenius to work on the problem of Pfaff and informed his approach,
here we see as well a greater influence of ideals articulated by Kronecker.

The problem of Pfaff also inspired a paper by Élie Cartan (1869–1951) in 1899 [8]
that represented a landmark in his own mathematical career, and more generally in the
history of mathematics, because it resulted in his development of the exterior calculus of
differential forms, which he went on to use as a tool for investigating systems of partial
differential equations, the structure of continuous groups, and algebraic topology. Since
Cartan wrote his paper in the light of Frobenius’s contribution to the problem, one of the
objectives of the following study is to assess the extent to which Frobenius influenced
Cartan. A byproduct of this assessment is a history of Frobenius’s complete integrability
theorem – how it arose from the mathematics surrounding the problem of Pfaff, what
Frobenius and Cartan contributed to its formulation, and why it bears Frobenius’s name.
This assessment also suggests a principal reason why the mathematics of Frobenius has
had such a widespread impact upon present-day mathematics. In the concluding section
I offer some tentative arguments to this effect.

2. Berlin-style linear algebra

Frobenius grew up in Berlin, and except for one semester spent at the University of
Göttingen his entire university education (1867–1870) was at the University of Berlin,
to which he retained a connection until called in 1875 to a professorship at the Poly-
technicum in Zürich (now the Eidgenössische Technische Hochschule or ETH). During
his student days, Berlin was the most vital center for mathematics within Germany.
The mathematics faculty was small by today’s standards, but it included Kummer, Wei-
erstrass and Kronecker. Weierstrass, in particular, was a charismatic figure, and many
students were drawn to Berlin by his presence. Frobenius was one of Weierstrass’s many

University for their hospitality during the final stages of work on this paper; the NSF Science and
Technology Studies program for partial financial support under grant SES-0312697.

3 Much of this work is discussed thoroughly by Gray in [35].
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doctoral students. His doctoral dissertation (1870) was on the representation of analytic
functions by certain types of infinite series of functions.4 Among Weierstrass’s other
doctoral students at this time were Georg Cantor, whose Weierstrass-style investigations
on the representation of functions by trigonometric series eventually led him to his theory
of sets and transfinite numbers, and Wilhelm Killing, whose application of Weierstrass’s
theory of elementary divisors to the study of pencils of quadric surfaces presaged his
ground-breaking work on the classification of simple Lie algebras.

The theory of determinants and, as an application, Weierstrass’s theory of elementary
divisors was the backbone of Berlin-style linear algebra. Weierstrass had published the
theory in a paper of 1868 [73]. The theory provides necessary and sufficient conditions
that one family of bilinear forms λ�−�, where λ is complex,� = ∑n

i,j=1 aij xiyj , and
� = ∑n

i,j=1 bij xiyj , can be transformed into another such family by means of (possibly
different) nonsingular linear transformations of the x and y variables. The theory was
developed under the assumption that � is nonsingular, i.e., det(aij ) �= 0. Weierstrass
showed that the necessary and sufficient conditions were that the two families have the
same elementary divisors. The elementary divisors were defined in terms of the determi-
nant det [(λaij − bij )] and its minor determinants,5 and the proof that two families with
the same elementary divisors could be transformed into one another utilized a canonical
form for the matrix (λaij −bij ) that is essentially what has become known as the Jordan
canonical form.6

In Berlin, Weierstrass’s paper was viewed as demonstrating more than purely mathe-
matical theorems. He had demonstrated that it was possible to provide a more systematic
and rigorous approach to algebraic analysis than that practiced by most mathematicians
in the 18th and early 19th centuries. Characteristic of that earlier practice was what I
have called generic reasoning. It was a natural byproduct of the analytical revolution of
the 17th century set in motion by the work of Viète and especially Descartes.7 The great
power of the method of analysis was that it involved reasoning with abstract symbols
rather than with specific numbers or geometrical lines. Its power lay in its generality,
which brought with it a tendency to regard the symbols involved as possessing “gen-
eral” values, thereby drawing attention and concern away from potential difficulties that
might arise by assigning certain specific values to such symbols. For example, viewed
generically, the roots of the characteristic equationp(λ) = det[λI−A] of a matrixA are
distinct, and its determinant is nonzero. Sometimes an author would expressly acknowl-
edge the generic nature of the proposition being set forth by the addition of a phrase
such as “in general.” Jacobi was a prime example of a mathematician who practiced
generic reasoning, which of course could be quite ingenious and sophisticated from a
purely formal point of view. Thus he gave determinant-based proofs that a quadratic
form could be diagonalized by means of an orthogonal transformation [50] and also

4 Frobenius’s dissertation was in Latin, but he incorporated its results into a paper [24] written
in German and published in 1871.

5 See [46, p. 106] for the definition of elementary divisors and my paper [41] for study of the
background to Weierstrass’s paper and its influence on the history of linear algebra.

6 See my paper [41, p. 138] for further details.
7 See [46, pp. 108–111] for a fuller exposition of generic reasoning and its historical roots.



384 T. Hawkins

that a bilinear form could be diagonalized [52]. These results indicate the problem with
generic proofs, for the former theorem turns out to be generally true – as Weierstrass first
proved in 1858 [72] – whereas the latter is not – as Weierstrass’s theory of elementary
divisors shows.

Kronecker, who studied the transformation of λ� − � in the formidable case in
which � is singular, seems to have been the main spokesman for the Berlin attitude
towards generic reasoning and related matters. In 1874 he wrote, with Weierstrass’s
1868 paper expressly in mind [58, p. 405]:

It is common – especially in algebraic questions – to encounter essentially new difficulties
when one breaks away from those cases which are customarily designated as general. As
soon as one penetrates beneath the surface of the so-called generality, which excludes
every particularity, into the true generality, which comprises all singularities, the real
difficulties of the investigation are usually first encountered; but, at the same time, also
the wealth of new viewpoints and phenomena which are contained in its depths.

The really interesting – and challenging – mathematics thus involved going beyond
the superficialities of the generic case. Weierstrass had showed through his paper on ele-
mentary divisors that problems could be systematically and rigorously resolved within
a genuinely general context, thereby setting a precedent for his colleagues and students
– including Frobenius, who was particularly receptive to the disciplinary ideal implicit
in Weierstrass’s paper [73] and explicit in Kronecker’s above remarks. Indeed, in Sect. 6
we will see Frobenius quoting, in his paper on the problem of Pfaff, another passage
from Kronecker’s paper [58] involving a different, but related, disciplinary ideal.

As suggested by the above brief summary of Berlin-style linear algebra, the theory
of determinants provided the basis for the linear algebra. Indeed, the theory of bilinear
forms was classified as a part of the theory of determinants. The standard text on that
theory for the Berliners was Richard Baltzer’s book, Theory and Application of Deter-
minants, which went through several editions beginning in 1857. The third edition [3]
was published in 1870 – the year Frobenius obtained his doctorate, and there is little
doubt that he had mastered its contents and absorbed its spirit. Although it was not the
first treatise on the subject, in composing it Baltzer sought to present the material with
Euclidean-style rigor. As he wrote in the preface to the first edition. “In order to unfold
the theoretical kernel of the subject most clearly, I have dealt with the main properties
of determinants and the algorithms based upon them in a synthetic, precisely articulated
format as in the treatises of the ancients” [3, p. v]. In this endeavor he was encouraged
initially by his friend Carl Borchardt, Weierstrass’s close friend and the Berliner who
during this period was editor of the principal journal of the Berlin school, Journal für die
reine und angewandte Mathematik – or Crelle’s Journal as it was often called in honor
of its first editor. Subsequent editions of Baltzer’s book were written in close contact
with Kronecker, who provided him with new material drawn from his Berlin lectures.
An example of such is Theorem 9.1 below.

3. Mathematical preliminaries & caveats

Before entering into the diverse mathematical treatments of the problem of Pfaff,
it will be helpful to make some general comments on the nature of the mathematical
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reasoning in this period. The theory involves functions f = f (x1, . . . , xn) of any num-
ber of variables whose properties are not explicitly specified. It is not even clear whether
the variables are assumed to be real or are allowed to be complex, although it does seem
that the latter possibility is the operative one, since occasionally telltale expressions such
as log(−1) occur.8 In general, mathematicians in this period tended to regard variables as
complex rather than real [35, p. 29]. It is taken for granted that partial derivatives of these
functions exist and frequent use is made of the equality of mixed partial derivatives, e.g.,
∂2f/∂xi∂xj = ∂2f/∂xj ∂xi . Also the inverse function theorem and the implicit function
theorem are applied whenever needed. In the case of Frobenius, who had been trained
in a school emphasizing mathematical rigor, these theorems are never applied without
first showing that the requisite Jacobian determinant does not vanish, but even Frobenius
never expressly points out that these theorems are local in nature. It seems likely to me
that Frobenius regarded the functions under consideration as complex-analytic functions
of complex variables x1, . . . , xn but continued the tradition of not being explicit about
such assumptions.9 Whether or not he was fully aware of the local nature of his results
is far less certain, but the reader should understand them as local results valid in the
neighborhood of any point satisfying the specified conditions. It was not until the 20th
century that the distinction between local and global results began to be taken seriously
by mathematicians.10

In Sect. 2, I pointed out that the Berlin school stressed the importance of going
beyond the generic case in dealing with algebraic matters. As applied, e.g., to a matrix
A = (aij ) this meant not thinking of the coefficients aij as symbols so that (“in general”)
A has full rank. As we shall see, as a student of that school, Frobenius was careful to base
his reasoning upon the rank ofA, which is not presumed to be maximal. In the problem of
Pfaff, however, matrices arise whose coefficients are functions of x = (x1, . . . , xn), so
thatA = A(x) is likewise a function of these variables. Nonetheless, Frobenius spoke of
the rank of A(x) without any clarification, whereas (as he certainly realized) it can vary
with x in the type of matrices that occur in the theory. For example, in the theory as devel-
oped by Frobenius, corresponding to the Pfaffian expression ω = 2x1x2dx1 + 2x1dx2
is the matrix of its associated bilinear covariant

A(x) =
(

0 x1 − 1
−(x1 − 1) 0

)

,

which has rank 2 for points x = (x1, x2) with x1 �= 1 but rank 0 at points with x1 = 1.
By the rank of these matrices Frobenius evidently meant their maximal rank, so that in
the above example the rank of A(x) is 2.

For any matrix A(x), the points at which it has maximal rank r are the points of
C
n that do not lie on the intersection of the hypersurfaces formed by the vanishing of

the degree r minors of A(x). Assuming, e.g., that all functions are complex-valued and
analytic, which appears to be Frobenius’s tacit assumption, the points of maximal rank

8 For example, in a key paper by Clebsch [14, pp. 210–12] discussed in Sect. 5.
9 This assumption is explicitly made in the 1900 treatise on Pfaff’s problem by E. von

Weber [71, Ch.2, §1], although the local nature of the results is glossed over.
10 How this occurred in the theory of Lie groups is depicted in [45]. See also “local vs. global

viewpoint” in the index of [46].
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form an open, dense subset G of C
n. It is the points in G that Frobenius was tacitly

considering. For purposes of reference I will follow Cartan’s book of 1945 [12, p. 45]
and refer to them as the generic points of C

n. Of course, G depends upon the choice
of A(x). It seems reasonable to assume that Frobenius realized in effect that G is open,
for all his analytical proofs implicitly depend upon the rank of A(x) maintaining its
maximal value in a neighborhood of a fixed point x0 ∈ G. Of course, G can now be
seen to form a manifold in the modern sense with charts being, say, open balls in C

n on
which A(x) has maximal rank.

In what follows I will present the deliberations of the various mathematicians in-
volved more or less as they did, and so these preliminary remarks should be kept in
mind. In the case of Frobenius’s main analytical theorems, namely Theorems 8.1 and
9.2, besides stating them as he did I have given my interpretation of them as the local
theorems that his reasoning implies. As proofs of local theorems Frobenius’s reasoning
is rigorous in the sense that the necessary details for a proof by present-day standards
can be filled in. I do not think this is a coincidence. Based upon my continuing study of a
variety of Frobenius’s papers on diverse subjects, I would venture to say that Frobenius
was very careful to to present his mathematics in a clear and precise manner. I believe
that he himself could have filled in the omitted details in his proofs. However, since this
was not the custom in the theory of partial differential and Pfaffian equations at the time,
he omitted them, content to focus on the algebraic aspects of the problem, which were
his primary interest.

One final caveat regarding notation: I have not been entirely consistent in my nota-
tion for vectors, including column (i.e., n × 1) matrices and row matrices. Boldface is
used only when it makes the mathematics easier to follow and thus only in a portion of
Sect. 9.

4. The problem of Pfaff

The problem that became known as Pfaff’s problem had its origins in the theory
of first order partial differential equations, which as a general theory began with Lag-
range.11 Although other 18th century mathematicians such as Euler had studied various
special types of first order partial differential equations, Lagrange was primarily respon-
sible for initiating the general theory of such equations, which I will express with the
notation

F(x1, . . . , xm, z, p1, . . . , pm) = 0, pi = ∂z

∂xi
, i = 1, . . . , m. (4.1)

Here z is singled out as the dependent variable and the goal is to obtain a general (or
complete) solution z = ϕ(x1, . . . , xm, C1, . . . , Cm), where the Ci are arbitrary con-
stants. Here by “obtain a solution” I mean to show how such a solution can be obtained
by means of solutions to one or more systems of ordinary differential equations. This
is what it meant to integrate a partial differential equation throughout the 18th century

11 The following introductory remarks are based on the more extensive discussion in Sect. 2
of my paper [44].
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and up to the time period of Frobenius. As Lagrange put it, “the art of the calculus of
partial derivatives is known to consist in nothing more than reducing this calculus to
that of ordinary derivatives, and a partial differential equation is regarded as integrated
when its integral depends on nothing more than that of one or more ordinary differential
equations” [59, p. 625].

For linear first order equations, Lagrange showed how to do this for any numberm of
variables. He was, however, less successful in dealing with nonlinear equations and was
able to integrate any first order partial differential equation (4.1) only whenm = 2, i.e.,
in the case of two independent variables. The integration of nonlinear equations with
m > 2 was first achieved in 1815 by Johann Friedrich Pfaff (1765–1825), a professor of
mathematics at the University of Halle. Pfaff’s bold and brilliant idea was to consider
the more general problem of “integrating,” in a sense to be discussed, a total differential
equation

ω = a1(x)dx1 + · · · + an(x)dxn = 0 (4.2)

in any number of variables x = (x1, . . . , xn) [66]. The reason he sought to deal with
the integration of total differential equations (in the sense explained below) was that he
had discovered that the integration of any first order partial differential equation in m
variables can be reduced to the integration of a total differential equation in n = 2m
variables.12 Thus, by solving the more general problem of integrating (4.2), he obtained
as a special case what had eluded Lagrange and won thereby the praise of Gauss, who
described Pfaff’s result as “a beautiful extension of the integral calculus” [32, p. 1026].

At the time Pfaff wrote his memoir there was no consensus as what it meant to inte-
grate (4.2) even for n = 3. Pfaff observed [66, p. 6] that Euler had expressed the view
that it only makes sense to speak of the integration of ω = 0 whenMω is exact for some
nonvanishing factorM = M(x1, x2, x3). This means that ifMω = d�, or equivalently
that ω = Nd�withN = 1/M . Then equation�(x1, x2, x3) = C represents an integral
ofω = 0 in the sense that for x1, x2, x3 so constrained d� = 0 and soω = Nd� = 0 for
these x1, x2, x3. In geometrical terms, the integral �(x1, x2, x3) = C defines a surface
with the property that all the vectors (dx1, dx2, dx3) in the tangent plane to the surface at
a point P = (x1, x2, x3) lying on it are perpendicular to the vector (a1, a2, a3) evaluated
at P , i.e., a1dx1 + a2dx2 + a3dx3 = 0.

Pfaff pointed out that Monge had disagreed with Euler and stated that two simul-
taneous equations � = C1, � = C2 could also be regarded as an integral of ω = 0.
That is, viewed geometrically the simultaneous equations � = C1 and � = C2 define
a curve. The equation (4.2) stipulates that the tangent space at each point x of a solution
manifold should consist of vectors (dx1, . . . , dxn) orthogonal to (a1, . . . , an). If this is
true of the tangent to the above curve, then, from Monge’s viewpoint � = C1,� = C2
would constitute a solution to (4.2).

Monge’s viewpoint, which Pfaff accepted, can be stated more analytically and more
generally as follows. A system of k simultaneous equations

�i(x1, . . . , xn) = Ci, i = 1, . . . , k (4.3)

12 A description of this reduction is given in [44, §2].
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is an integral of ω = a1dx1 + · · · + andxn if: (1) the�i are functionally independent in
the sense that the k × n Jacobian matrix

∂(�1, . . . , �k)/∂(x1, . . . , xn)

has full rank k; (2) For the points satisfying the constraints imposed by (4.3)ω = 0. That
is, if (by the implicit function theorem) we express (4.3) in the form xi = �(t1, . . . , td ),
i = 1, . . . n, where d = n− k and t1, . . . , td denotes d of the variables x1, . . . , xn, then
setting

dxi =
d∑

j=1

∂�i

∂xj
dtj

in the expression for ω, makes ω = 0. Of course, as indicated in Sect. 3, all this needs
to be understood locally.

In general it is not at all clear how to determine an integral in this sense for a given
equation ω = 0. Pfaff’s idea was that an integral of ω = 0 is immediate when ω has a
simple form. Consider, for example

ω = dx1 + x2dx3 = 0. (4.4)

Then it turns out that ω = 0 does not have an integral in Euler’s sense, i.e., ω �= Nd�.13

On the other hand, the simultaneous equations x1 = C1, x3 = C3 define a curve on
which dx1 = dx3 = 0 and so ω = 0 there. Pfaff’s idea was to show that by a suitable
variable change a total differential ω could “in general” be put in a comparably simple
form that made finding an integral a trivial matter.

The generic theorem implicit in Pfaff’s memoir may be stated as follows using the
sort of index notation introduced later by Jacobi.

Theorem 4.1 (Pfaff’s theorem) “In general” a change of variablesxi=fi(y1, . . . , yn),
i = 1, . . . , n, exists such thatω as given by (4.2) transforms into an expression involving
m differentials

ω = b1(y)dy1 + · · · + bm(y)dym, (4.5)

where m = n/2 if n is even and m = (n+ 1)/2 if n is odd.

Here it is tacitly understood that a bonafide variable change has a nonvanishing Jaco-
bian, since the inversion of the variable change is necessary to produce an integral of
ω = 0. That is, if yi = �i(x1, . . . , xn), i = 1, . . . , n, denotes the inverse of the variable
transformation posited in Pfaff’s theorem, and if C1, . . . , Cm are constants, then the m
simultaneous equations �i(x1, . . . , xn) = Ci , i = 1, · · · ,m, represent an integral of
ω = 0 because these equations imply that dyi = 0 for i = 1, . . . , m, and whence by
(4.5) that ω = 0 for the values of (x1, . . . , xn) satisfying these equations. This solution

13 The necessary condition for ω = Nd� was given in an elegant form by Jacobi and is
displayed below in (4.6). The Pfaffian equation (4.4) fails to satisfy this condition.
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can be thought of geometrically as the integral manifold formed by the intersection of
m hypersurfaces �i = Ci and hence “in general” of dimension d = n−m. In the case
of ordinary space (n = 3),m = 2 and so d = 1, i.e., the solution to the generic equation
ω = 0 in this case is a curve – the sort of solution envisioned by Monge.

Pfaff pointed out [66, p. 7] that exceptional cases existed for which the number m
of terms in (4.5) could be less than n/2 or (n+ 1)/2, respectively. Indeed, as explained
below, when n = 3 in (4.2) the case envisioned by Euler as the sole meaningful one,
namely ω = Nd�, means that a variable change, namely y1 = �(x1, x2, x3), y2 = x2,
y3 = x3, exists so that ω = N(y1, y2, y3)dy1 and thus m = 1 < (3 + 1)/2, whereas
Monge had argued for the legitimacy of the case m = 2 = (3 + 1)/2, i.e., what turns
out in Pfaff’s Theorem to be the “general” case. Although Pfaff recognized exceptions
to his theorem, he restricted his attention to the generic case stated therein. He worked
out detailed, successive proofs for the generic cases of n = 4, . . . , 10 variables in (4.2)
and then stated the general generic theorem along with a brief proof-sketch reflecting
the approach detailed in the worked out cases n = 4, . . . , 10 [66, §16].

In an important and influential paper of 1827 [49, p. 28] Jacobi expressed the nec-
essary condition that Euler’s relation ω = Nd� hold in the following elegant form:

a1a23 + a2a31 + a3a12 = 0, where aij = ∂ai

∂xj
− ∂aj

∂xi
. (4.6)

The above expressions aij were introduced by Jacobi with the notation (i, j) for aij and
were defined for Pfaffian equations ω = 0 in any number n of variables. Perhaps con-
sideration of the aij was motivated initially by the fact that when ω is exact all aij = 0
necessarily. Then, more generally, (4.6) gives the necessary condition for Euler’s condi-
tion to hold. Thus in general the aij , along with the ai , seem to contain the information
needed to decide about the nature of the integrals of ω = 0.

The main object of Jacobi’s paper [49] was not (4.6) but a general proof, using the
elegant n-variable notation he had introduced into analysis, of Pfaff’s Theorem in the
case of n = 2m variables – the case that was relevant to its application to partial differ-
ential equations. In Pfaff’s proof-method the reduction from n = 2m to n−1 differential
terms was attained by a variable change provided by the complete solution to a system
of ordinary differential equations, and in Jacobi’s rendition he introduced the coefficient
system

A = (aij ), aij = ∂ai

∂xj
− ∂aj

∂xi
, (4.7)

to write down and manipulate the system of differential equations. Since aji = −aij ,
the n × n matrix A is what is now called skew symmetric. In what is to follow I will
refer to it as Jacobi’s skew symmetric matrix.

With the skew symmetry of A evidently in mind, Jacobi remarked that the sys-
tem (4.7) shows “great analogy” with the symmetric linear systems that had arisen in
diverse analytical applications [49, p. 28],14 and at first he apparently believed that skew

14 Although Jacobi implied there were many such applications, the only one he explicitly men-
tioned was the method of least squares, presumably because of the symmetric normal equations
MtMx = Mtb used to obtain a least squares solution to the linear system Mx = b.
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symmetric systems were new in applications of analysis.15 In any case, he realized, as
we shall see below, that the properties of skew symmetric matrices associated to deter-
minants implied many many interesting algebraic relationships. Jacobi stressed that it
was the introduction of the skew symmetric system (4.7) and its application to Pfaff’s
procedure that constituted the original contribution of his paper. Since he was proceeding
on the generic level of Pfaff’s Theorem he took it for granted that detA �= 0, and he
realized that this was permissible because n was assumed even and that when n is odd
the skew symmetry ofA forces detA to vanish identically, i.e., no matter what values are
given to the aij .16 He did briefly discuss what happens when n is odd so that detA = 0,
and again it was on the generic level. Expressed in more modern terms, Jacobi’s tacit
assumption was that A has rank n− 1 when n is odd [49, p. 28].

Pfaff’s method of integrating (4.1), namely by constructing the variable change
leading to the normal form (4.5), reduced the integration of ω = 0 to the integration
of systems of ordinary differential equations, which was also the generally accepted
goal in the theory of partial differential equations as he noted. The variable change
of Theorem 4.1 was obtained by a succession of n − m variable changes, the kth of
which transformed ω from an expression involving n−k differentials into one involving
n − k − 1 differentials, where k = 0, . . . , n − (m + 1). Each such variable change
required completely integrating a system of first order ordinary differential equations.

For n � 2 Pfaff’s method required the complete solution of a large number of sys-
tems of ordinary differential equations, but it was not until after Cauchy and Jacobi had
discovered direct methods of solving nonlinear partial differential equations (4.1) in any
number of variables that the inefficiency of Pfaff’s method was made evident by the new
methods. After Jacobi published his method in 1837 the goal in the theory of first order
partial differential equations became to devise methods for integrating them that were
as efficient as possible, i.e., that reduced the number of systems of ordinary differential
equations that needed to be considered, as well as their size and the number of solutions
to such a system that is required by the method. In this connection Jacobi devised a new
method that was published posthumously in 1862 and which spurred on the quest for
more efficient methods in the late 1860s and early 1870s.17

Although the original motivation for Pfaff’s theory – the integration of first order
partial differential equations – had lost its special significance due to the later direct meth-
ods of Cauchy and Jacobi, during the 1860s and 1870s the interest in partial differential
equations extended to Pfaffian equations as well, since the papers by Pfaff and Jacobi
raised several questions. First of all, there was the matter of the admitted exceptions to
Pfaff’s generic theorem. Given a Pfaffian equation ω = 0, how can one tell whether
or not Pfaff’s theorem applies, and, if it does not, what can one say of the integrals of
ω = 0? For example, what is the minimal number k of equations fi(x1, . . . , xn) = Ci ,

15 Thus at the conclusion of his paper he made a point of noting that after he had written it he
discovered that Lagrange and Poisson had already introduced skew symmetric systems in their
work on the calculus of variations.

16 Since At = −A, detA = detAt = det(−A) = (−1)n detA. Thus when n is odd detA = 0
follows.

17 On Jacobi’s two methods and their influence see Sects. 2–3 of [44].
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i = 1, . . . , k, that are needed to specify an integral? If we express this question in geo-
metrical terms – something rarely done in print in this period – the question becomes:
what is the maximal dimension d = n− k of an integral manifold for ω = 0? Secondly,
there was the problem of determining more efficient ways to integrate a Pfaffian equation,
in the generic case and also the nongeneric ones. These two questions constituted what
was known as “the problem of Pfaff” in the period leading up to the work of Frobenius.

Nowadays the problem of Pfaff is characterized more specifically as the problem of
determining for a given Pfaffian equation ω = 0 in n variables the maximal dimension d
of its integral manifolds [47, p. 1623] or equivalently, since d = n−k, the minimal value
possible for k. Thus in the modern conception of the problem, the second “efficiency”
question is ignored. As we shall see, Frobenius also ignored it, but, utilizing the work of
his predecessors – above all that of Clebsch – and spurred on by the disciplinary ideals of
the Berlin school, he definitively and rigorously resolved the first problem.18 Frobenius
showed that the integration of ω = 0 depends upon the class number p of ω. This may
be defined by p = rank (A a), where A is the Jacobi matrix of ω = ∑m

i=1 ai(x)dxi
and a is the column matrix (a1, . . . , an)

t (t denoting matrix transposition).19

By way of an introduction to Frobenius’s results, let us consider the case n = 5, so
ω = a1(x)dx1 +· · ·+a5(x)dx5. Pfaff’s Theorem gives the generic value of k = m = 3
differential terms in (4.5) and so m = 3 equations defining an integral of ω = 0 and
thus an integral manifold of dimension d = 5−3 = 2. Frobenius showed that a variable
change xi = fi(y1, . . . , y5) exists20 such that, in the z-variables one has, depending on
the value of p:

p = 1 ⇒ ω = dz5,

p = 2 ⇒ ω = z2dz1,

p = 3 ⇒ ω = dz5 + z3dz2,

p = 4 ⇒ ω = z3dz1 + z4dz2,

p = 5 ⇒ ω = dz5 + z3dz1 + z4dz2.

Let zi = gi(x1, . . . , x5) denote the (local) inverse. Then in the case p = 1, ω = dg5 is
exact with integral manifold g5(x1, . . . , x5) = C of dimension d = 5−1 = 4. The case
p = 2 covers the Pfaffian equations integrable in the sense of Euler since ω = N(x)d�

withN(x) = g2(x) and� = g1(x). Here also k = 1 and d = 4. Whenp = 3, k = 2, and
an integral manifold is defined by the simultaneous equations g2(x) = C1, g5(x) = C2
and so has dimension d = 3. Likewise when p = 4, k = 2 and the integral manifold
g1(x) = C1, g2(x) = C2 has dimension d = 3. Finally, when p = 5, k = m = 3
and we are in the generic case of Pfaff’s Theorem with integral manifold defined by
three equations and so of dimension d = 5 − 3 = 2. Thus Pfaff’s Theorem covers just
one of the five possibilities distinguished by Frobenius’s results as expressed below in
Theorem 8.1 in the case of n = 5 variables.

18 Rigorously, in the sense indicated in Sect. 3, which for the 19th century was indeed excep-
tionally rigorous.

19 Frobenius actually definedp as the average of the ranks of two matricesA and Â (Sects 7–8),
the second of which involvesA and a, but realized the above simpler characterization of p as well
(as explained in a footnote relating to Lie’s work in Sect. 10).

20 Strictly speaking, such a transformation exists in the neighborhood of any generic point as
explained in the discussion of Frobenius’s Theorem 8.1.
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5. The contributions of Clebsch

After Jacobi, significant advances on Pfaff’s problem were not made until the early
1860s, when two mathematicians, Clebsch and Natani, independently and almost simul-
taneously took up the matter.21 Natani’s paper appeared first, but it was the work of
Clebsch that made the greatest impression upon Frobenius and so will occupy our atten-
tion here. Some aspects of Natani’s work will be discussed briefly in Sect. 9.

Alfred Clebsch (1833–1873) had obtained his doctorate in mathematics in 1854
from Königsberg in the post-Jacobi era. His teachers were Franz Neumann, Richelot
and Hesse (who had been Jacobi’s student). At Königsberg Clebsch received a broad
and thorough training in mathematical physics, which included on his part a detailed
study of the publications of Euler and Jacobi. He was known personally to the math-
ematicians in Berlin, where Jacobi had ended his career, since during 1854–58 he had
taught in various high schools there as well as (briefly) at the University. Apparently
Borchardt, as editor of Crelle’s Journal, asked him to edit the manuscript by Jacobi that
contained his new method of integrating partial differential equations so that it might be
published in his journal, where it did in fact appear in 1862 [53].22

The study of Jacobi’s new method led Clebsch to ponder the possibility of its exten-
sion to the integration of a Pfaffian equation

ω = a1(x)dx1 + · · · + an(x)dxn = 0. (5.1)

Such an extension would greatly increase the efficiency of integrating a Pfaffian equation
in the sense explained above. Clebsch satisfied himself that he could do this and in fact
do it in complete generality – not just for the case of an even number of variables with a
nonsingular Jacobi matrixA = (aij ). Thus he wrote that, “The extension of this method
[of Jacobi] to the problem of Pfaff in complete generality and in all possible cases is the
subject of the following work” [14, p. 193].

Clebsch’s entire treatment of the problem was based upon a distinction he did not
adequately justify. Let m denote the minimum number of differential terms into which
ω can be transformed by a variable change so that ω = F1(x)df1 +· · ·+Fm(x)dfm and
2m ≤ n. Consider the 2m × n Jacobian matrix ∂(f1, . . . Fm)/∂(x1, . . . , xn). Then (to
use modern terms) either (I) this matrix has full rank or (II) it does not have full rank. In
case (I) the 2m functions f1, . . . , Fm are by definition independent. In the “indetermi-
nate case” (II) they are not, but Clebsch went on to claim without adequate justification
that it is always possible in this case to take F1 ≡ 1 with the remaining functions inde-
pendent [14, pp. 217–20]. For convenience of reference I will refer to the proposition
implicit in Clebsch’s remarks as Clebsch’s Theorem. With a change of notation in case
(II) it may be stated in the following form.

Theorem 5.1 (Clebsch’s theorem) Let m denote the minimal number of differential
terms into which ω can be transformed. Then either (I) 2m independent functions
f1, . . . , fm, F1, . . . , Fm exist such that

21 What follows does not represent a full account of work on the problem of Pfaff up to that of
Frobenius. For more details see [22, 71].

22 For further details about Clebsch’s career, see the anonymous memorial essay [2] and [70,
p. 7ff].
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ω = F1(x)df1 + · · · + Fm(x)dfm (5.2)

or (II) 2m+ 1 independent functions f0, f1, . . . , fm, F1, . . . , Fm exist such that

ω = df0 + F1(x)df1 + · · · + Fm(x)dfm. (5.3)

Clebsch stressed that (I) and (II) represented two general and quite distinct classes
into which Pfaffians ω are divided, and he was apparently the first to emphasize this
distinction [14, p. 217]. He called them the determinate and the indeterminate cases,
respectively, and pointed out that by starting from the assumption of Theorem 5.1, “one
is spared the trouble of carrying out direct proofs that lead to very complicated algebraic
considerations, which, to be sure, are of interest in their own right . . . ” [14, p. 194].
This led him to later refer to this approach as his indirect method.

Clebsch’s Theorem is evidently equivalent to asserting that a change of variables
x = ϕ(z) is possible so that

I : ω = zm+1dz1 + · · · + z2mdzm

II : ω = dz0 + zm+1dz1 + · · · + z2mdzm

For example, in case I, we can add n−2m functions g1, . . . , gn−2m so that z1, . . . , zn
def=

f1, . . . , Fm, g1, . . . , gn−2m have nonvanishing Jacobian determinant and then apply the
inverse function theorem to get the above-mentioned (local) variable change x = ϕ(z).
He believed that he could distinguish the determinate and indeterminate cases by means
of the n×n Jacobi skew symmetric matrixA = (aij ) associated toω by (4.7).According
to him, the determinate case (I) occurred when (in modern parlance) the rank of A is
2m [14, p. 208]. That is – as articulated in Clebsch’s time – when all k × k minors of A
with k > 2m vanish, but some of the 2m× 2m minors do not. In his own paper on the
problem of Pfaff [26], Frobenius also used similar cumbersome language, but in a brief
sequel submitted seven months later (June 1877), he introduced the notion of the rank
of a matrix so that (by his definition of rank) when, e.g., the minors of the matrix A have
the above property it is said to have rank 2m [29, p. 435]. For conciseness I will use
Frobenius’s now-familiar rank terminology in what follows, even though it is slightly
anachronistic. As for the indeterminate case (II), Clebsch claimed that it corresponded
to the case in which the rank of A is 2m + 1 [14, p. 218], although this turns out to be
impossible, since (as Frobenius was to prove) the rank of any skew symmetric matrix is
always even.

In either case (I) or (II), if zi = fi(x) for i ≤ m, then the system of integrals
fi(x) = Ci defines a solution manifold for ω = 0. Taking the above theorem for
granted, Clebsch turned to the real problem of interest to him, namely to determine the
functions fi by means of solutions to systems of first order ordinary differential equa-
tions – and in a way that was more efficient than Pfaff’s original method. Clebsch’s idea
in case (I) was first to determine one of the functions fi , e.g., fm. Then the equation
fm(x1, . . . , xn) = C is used to eliminate, e.g., xn, thereby diminishing both the number
of variables and the number m of differential terms by one unit. This new, reduced case
could then be handled in the same manner to get fm−1, and so on until all m functions
fi were determined [14, p. 204].
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In his indirect method the function fm was a solution to a system of linear homoge-
neous partial differential equations, i.e., equations of the form (in Jacobi’s notation)

Ai(f ) = 0, i = 1, . . . r, where Ai(f ) =
n∑

j=1

αij (x)
∂f

∂xj
. (5.4)

Whereas a single such equation A(f ) = 0 was known already in the 18th century to be
equivalent to a system of first order ordinary differential equations – so that a solution
was known to exist – a simultaneous system need not have a solution. Such systems had
already occurred in Jacobi’s new method,23 and Jacobi showed that when the r equations
in (5.4) are linearly independent,24 then n− r independent solutions exist provided the
system satisfies the integrability condition

Aj [Ak(f )] − Ak[Aj(f )] ≡ 0 for all j �= k. (5.5)

For systems satisfying this condition, Jacobi sketched a method for finding the solutions
via integration of systems of ordinary differential equations. Clebsch argued that the
system Ai(f ) = 0 he had arrived at also satisfied Jacobi’s integrability condition, and
so a solution fm could be obtained by Jacobi’s method of integration, which Jacobi had
already proved to be “efficient” for integrating nonlinear partial differential equations.
However, the reasoning leading to these equations in the nongeneric cases was vague
and sketchy and reflected an incorrect understanding of the algebraic implications of
cases (I) and (II) of Theorem 5.1, implications that Frobenius first correctly determined
(Theorems 7.2 and 8.1). Thus Clebsch’s proof that the partial differential equations at
which one arrives satisfy Jacobi’s integrability condition is not rigorous.

In a paper of 1863 Clebsch himself expressed dissatisfaction with his indirect method
because it assumed the forms (I) and (II) of Theorem 5.1 rather than revealing how they
are obtained. “In the present essay I will therefore directly derive these defining equa-
tions of the problem of Pfaff” [15, p. 146]. One key point he failed to mention in his
introductory remarks was that he had only succeeded in providing a direct derivation of
these defining equations in the case in which n is even and detA �= 0, i.e., the generic
case dealt with by Jacobi in 1827. Within that limited framework, however, his direct
approach was indeed far more satisfying.

In Jacobi’s new method the systems Ai(f ) = 0 had been defined in terms of the
Poisson bracket operation [46, p. 47]. Clebsch introduced two bracket operations as
analogs of the Poisson bracket.25 They may be defined as follows. Let n = 2m so
ω = ∑2m

i=1 ai(x)dxi , and let A = (aij ) denote the associated skew symmetric Jacobi
matrix, which is now assumed to be nonsingular. Let Cij (A) denote the (i, j) cofactor
of A, and for any functions ϕ and ψ of x1, . . . , x2m set

23 See [44, p. 209] for details.
24 By “linearly independent” I mean that the r × n matrix (αij ) has full rank r .
25 These operations were already introduced by Clebsch in his 1861 paper [14, p. 243]. There

they are defined in terms of Pfaffians, but the equivalence with the above was also indicated by
Clebsch [15, p. 148].
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(ϕ) =
2m∑

i,j=1

Cij (A)

detA
ai
∂ϕ

∂xj
, [ϕ,ψ] =

2m∑

i,j=1

Cij (A)

detA

∂ϕ

∂xi

∂ψ

∂xj
.

The bracket operation [ϕ,ψ] is a generalization of the Jacobi bracket and, like it, satisfies

[ϕ,ψ] = −[ψ, ϕ] and [[ϕ,ψ], χ ] + [[ψ, χ ], ϕ] + [[χ, ϕ], ψ] = 0. (5.6)

In addition, there is a new identity involving both bracket operations:

[(ϕ), ψ] − [(ψ), ϕ] = ([ϕ,ψ])+ [ϕ,ψ]). (5.7)

The main theorem that results from the direct method may be stated as follows [15,
p. 153].

Theorem 5.2 (Clebsch’s direct method) If f1, . . . , fm are functionally independent
and satisfy the relations

(fi) = 0 and [fi, fj ] = 0 for all i, j, with i �= j (5.8)

then functions F1, . . . , Fm exist so that f1, . . . , fm, F1, . . . , Fm are functionally inde-
pendent and ω = F1df1 + · · · + Fmdfm.

In view of this theorem, what remains is the determination of the functions fi . Clebsch
observed that these functions are solutions to the progression of systems of linear homo-
geneous partial differential equations implied by (5.8) [15, p. 168ff]. The equations (5.8)
may be written as follows.

(1) (f1) = 0
(2) (f2) = 0, [f2, f1] = 0
(3) (f3) = 0, [f3, f1] = 0, [f3, f2] = 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(m) (fm) = 0, [fm, f1] = 0, . . . , [fm, fm−1] = 0.

If we set A(ϕ) = (ϕ) and Bk(ϕ) = [ϕ, fk], then (1) corresponds to the “system”
A(ϕ) = 0 of which f1 denotes a solution, and (2) corresponds to the system A(ϕ) = 0,
B1(ϕ) = 0 of which f2 denotes a solution. In general, once f1, . . . , fk have been
determined by the systems corresponding to (1)–(k), corresponding to (k + 1) is the
system

A(ϕ) = 0, B1(ϕ) = 0, · · · , Bk(ϕ) = 0 (5.9)

where fk+1 denotes a solution.
Of course it remains to show that these systems have solutions and, in addition, that,

e.g., system (5.9) has at least k+ 1 independent solutions so that fk+1 may be chosen to
be independent of f1, . . . , fk . This system does not satisfy Jacobi’s integrability con-
dition (5.5), since, although the identities (5.11) imply that the Bi(ϕ) satisfy Jacobi’s
integrability condition, the identity (5.7) implies that

Bi(A(ϕ))− A(Bi(ϕ)) = Bi(ϕ). (5.10)
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Clebsch was nonetheless able to deal with these systems. In fact in 1866 he published a
paper [16], which presented his solution in a more detailed and systematic fashion.

Given a system Ai(f ) = 0 as in (5.4) and assumed to be linearly independent, the
property in equation (5.10) is a special case of

Ai(Aj (f ))− Aj(Ai(f )) =
r∑

k=1

cijk(x)Ak(f ), i, j = 1, . . . , r, (5.11)

for any function f . A system with this property Clebsch termed a complete system [16,
p. 258], although I will follow Frobenius’s terminology and reserve that term for an
equivalent property. The equations in (5.11) will be referred to as Clebsch’s integrability
condition. It includes as a special case Jacobi’s integrability condition.

Clebsch showed that given any linearly independent system Ai(f ) = 0, i =
1, . . . , r , in n > r variables x1, . . . , xn that satisfies his integrability condition, it is
always possible to determine r operators Bi(f ) that are linear combinations of the
Ai(f ) and satisfy Jacobi’s integrability condition. Since each system is a linear combi-
nation of the other, they have the same solutions, and so the existence of simultaneous
solutions to the system Ai(f ) = 0 follows provided the system Bi(f ) = 0 possesses
them [15, pp. 258–60]. For subsequent reference, I will summarize Clebsch’s result as
follows.

Theorem 5.3 (Jacobi–Clebsch) A system of r < n linearly independent first order par-
tial differential equations Ai(f ) = 0 in n variables is complete in the sense that there
exist n− r functionally independent solutions f1, . . . , fn−r to the system if and only if
the integrability condition (5.11) is satisfied.

This theorem may now be applied to the system (5.9), which consists of k+ 1 equa-
tions in n = 2m variables with k < m and satisfies the integrability condition of the
theorem by virtue of (5.10). Hence it has 2m − (k + 1) ≥ m independent solutions,
and so we may pick a solution fk+1 that is independent of the k independent functions
f1, . . . , fk already determined.

Clebsch’s new method was thus direct in the sense that it avoided reliance upon his
earlier Theorem 5.1. Furthermore, the successive systems of partial differential equa-
tions that need to be integrated are precisely described and consequently the integrability
conditions guaranteeing an adequate supply of solutions are seen to be satisfied – unlike
the situation in the indirect method, where only the first system is written down. But the
direct method was limited to the even-generic case n = 2m and detA �= 0. Inspired by
Clebsch’s efforts, Frobenius sought to deal with the completely general problem of Pfaff
by a direct method, i.e., one that did not start from Theorem 5.1. Indeed the challenge of
the “very complicated algebraic considerations” predicted by Clebsch (in the nongeneric
cases) when that theorem is avoided, evidently appealed to Frobenius, who sought to
deal with the challenge Berlin-style by first seeking to determine the intrinsic algebraic
grounds for Clebsch’s Theorem 5.1.
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6. Kronecker & the quest for intrinsic grounds

The opening paragraphs of Frobenius’s 1877 paper on the problem of Pfaff make it
clear that Clebsch’s work had provided the principal source of motivation. Thus Frobe-
nius wrote [26, pp. 249–50]:

After the preliminary work by Jacobi . . . the problem of Pfaff was made the subject
of detailed investigations primarily by Messrs. Natani . . . and Clebsch . . . . In his first
work, Clebsch reduces the solution of the problem to the integration of many systems of
homogeneous linear partial differential equations by means of an indirect method, which
he himself later said was not suited for presenting the nature of the relevant equations
in the right light. For this reason in the second work he attacked the problem in another,
direct manner but only treated such differential equations . . . [ω = 0] . . . for which the
determinant of the magnitudes aαβ . . . differs from zero.
It seems desirable to me to deal with the more general case . . . by means of a similar direct
method, especially since from the cited works I cannot convince myself that the methods
developed for integrating the Pfaffian differential equation in this case actually attain this
goal . . . . Under the above-mentioned assumption26 in the very first step towards the solu-
tion one arrives at a system of many homogeneous linear partial differential equations,
rather than a single one. Such a system must satisfy certain integrability conditions if it
is to have a nonconstant integral. . . . I fail to see, on the part of either author27 a rigorous
proof for the compatibility of the partial differential equations to be integrated in the case
where the determinant |aαβ | vanishes.
Clebsch distinguishes two cases in the problem of Pfaff, which he calls determinate and
indeterminate. . . . However the criterion for distinguishing the two cases has not been
correctly understood by Clebsch. . . . Were the distinction specified by Clebsch correct,
the indeterminate case would never be able to occur.
For the purposes of integration, the left side of a first order linear differential equation
[ω = 0] is reduced by Clebsch to a canonical form that is characterized by great formal
simplicity. It was while seeking to derive the posited canonical form on intrinsic grounds
(cf. Kronecker, Berl. Monatsberichte 1874, January . . . ) that I arrived at a new way of
formulating the problem of Pfaff, which I now wish to explicate.

Frobenius’s above-quoted words not only indicate the many ways in which Cle-
bsch’s work motivated his own, they also reveal how he hit upon the approach that he
sets forth in his paper, namely by seeking to derive the canonical forms I–II of Clebsch’s
Theorem 5.1 on “intrinsic grounds” (innere Gründen) in the sense of Kronecker. To see
what Kronecker had in mind and how it inspired Frobenius, let us turn to the work of
Kronecker cited by Frobenius. It bears the title “On families of bilinear and quadratic
forms” [58] and is also the source for the quotation given in Sect. 2. The quotation
cited by Frobenius was provoked by a note in the Paris Comptes Rendus of 1873 on
the same subject by Camille Jordan [54]. Jordan’s note was motivated by the papers by
Weierstrass and Kronecker on this subject starting in 1868 with Weierstrass’s paper on
elementary divisors. He found them difficult to follow and proposed his own approach.
Jordan’s note evidently piqued Kronecker, who overreacted with minor criticisms of

26 Namely, that A = (aαβ ) does not have full rank.
27 Meaning Clebsch in his papers [14, 15] and Natani in his paper [65].
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Jordan’s comments. For example, Kronecker criticized the way Jordan used the term
“canonical form,” and this caused him to launch into a discourse on canonical forms,
which was no doubt dismissed by Jordan but made an impression upon the youthful
Frobenius.

Kronecker wrote as follows [58, pp. 367–8]:

In fact the expression “canonical form” . . . has no generally accepted meaning and in
and of itself represents a concept devoid of objective content. No doubt someone who is
faced with the question of the simultaneous transformation of two bilinear forms may, as
an initial vague goal of his efforts have in mind finding general and simple expressions
to which both forms are to be simultaneously reduced. But a “problem” in the serious
and rigorous meaning which justifiably attends the word in scientific discourse certainly
may not refer to such a vague endeavor. In retrospect, after such general expressions have
been found the designation of them as canonical forms may at best be motivated by their
generality and simplicity. But if one does not wish to remain with the purely formal view-
point, which frequently comes to the fore in recent algebra – certainly not to the benefit
of true knowledge – then one must not neglect the justification of the posited canonical
form on the basis of intrinsic grounds. Usually the so-called canonical or normal forms
are merely determined by the tendency of the investigation and hence are only regarded as
the means, not the goal of the investigation. In particular, this is always much in evidence
when algebraic work is performed in the service of another mathematical discipline, from
which it obtains its starting point and goal. But, of course, algebra itself can also supply
sufficient inducement for positing canonical forms; and thus, e.g., in the two works by
Mr. Weierstrass and myself cited by Mr. Jordan the motives leading to the introduction of
certain normal forms are clearly and distinctly emphasized.

It is not difficult to see how Frobenius could view Kronecker’s words as applying to
Clebsch. Formal analysis had led Clebsch to posit the canonical forms (5.2) and (5.3)
of cases (I) and (II) of Theorem 5.1, and Frobenius was heeding Kronecker’s words
that “one must not neglect the justification of the posited canonical form on the basis of
intrinsic grounds.” For Kronecker this meant turning to rigorous Berlin-style algebra,
but of course a Pfaffian form ω = ∑n

i=1 ai(x)dxi was not entirely an algebraic object,
since its coefficients are not constant but vary with x = (x1, . . . , xn), and the transfor-
mations x = ϕ(x′) to which ω is subjected are not generally linear. For this sort of a
situation, however, Frobenius had a paradigm conveniently at hand in the papers on the
transformation of differential forms by Christoffel and Lipschitz, who had independently
developed the mathematics hinted at in Riemann’s 1854 lecture “On the Hypotheses at
the Basis of Geometry,” which had been published posthumously in 1868 [67]. As we
shall see, using ideas gleaned from their work he confirmed Kronecker’s above decla-
ration that “algebra itself can also supply sufficient inducement for positing canonical
forms.”

In papers published back-to-back in Crelle’s Journal in 1869, Christoffel [13] and
Lipschitz [61] concerned themselves, among other things, with the problem of deter-
mining the conditions under which two nonsingular quadratic differential forms∑n
i,j=1 gij (x)dxidxj and

∑n
i,j=1 g

′
ij (x

′)dx′
idx

′
j can be transformed into one another

by means of general (presumably analytic) transformations x = ϕ(x′). Of partic-
ular interest was the question of when

∑n
i,j=1 gij (x)dxidxj could be transformed

into a sum of squares
∑n
i=1(dx

′
i )

2 so as to define (when n = 3) Euclidean
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geometry.28 For the discussion of Lipschitz’s paper below it is helpful to note that if a
transformation x = ϕ(x′) exists for which

∑n
i,j=1 gij (x)dxidxj = ∑n

i,j=1 cij dxidxj ,
where the cij are constants, then when (gij ) is symmetric and positive definite as in Rie-
mann’s lecture, a further linear transformation may be made so that the original quadratic
form becomes a sum of squares

∑n
i=1(dx

′′
i )

2.
As we shall see, Frobenius extracted mathematical ideas from each author’s paper,

ideas which enabled him to formulate a path to the Kroneckerian intrinsic grounds of
Clebsch’s canonical forms. Let us consider first what he found in Lipschitz’s paper. The
approach of Lipschitz was somewhat more general than that of Christoffel in that he
considered homogeneous functions f (dx) of the differentials dx = (dx1, . . . , dxn)

of x = (x1, . . . , xn) of any fixed degree k – the analytic analog of the homogeneous
polynomials of algebra. With those polynomials in mind he suggested that two such
functions f (dx) and f ′(dx′) of the same degree should be regarded as belonging to
the same class if there existed a nonsingular variable transformation x = ϕ(x′) so that
f (dx) = f ′(dx′). Of particular interest was a class containing a function f ′(dx′) with
constant coefficients for the reason indicated above.

By way of illustrative example, Lipschitz considered the case k = 1 so that f (dx) =
a1(x)dx1 + · · · + an(x)dxn [61, pp. 72–3]. He used this example to explain his interest
in what he regarded as the analytical counterpart to a covariant in the algebraic theory
of invariants. As an example he gave the bilinear form in variables dx = dx1, . . . , dxn
and δx = δx1, . . . , δxn

� =
n∑

i,j=1

(
∂ai

∂xj
− ∂aj

∂xi

)

dxiδxj . (6.1)

The coefficient matrix of� is of course the skew symmetric Jacobi matrix of the theory
of Pfaff’s problem, although Lipschitz made no allusion to that theory. However, in what
follows it will be convenient to express (6.1) with the notation � = ∑n

i,j=1 aij dxiδxj
with aij as in (6.1) defining the Jacobi matrix associated to a1, . . . , an.

Using results from Lagrange’s treatment of the calculus of variations in Méchanique
analytique, he showed [61, pp. 75–7]:

Theorem 6.1 (Lipschitz) � is a covariant of ω = f (dx) in the sense that if f (dx) =
f ′(dx′) under x = ϕ(x′) and the concomitant linear transformation of differentials
dϕ : dx → dx′, then one has as well

� =
n∑

i,j=1

aij dxiδxj =
n∑

i,j=1

a′
ij dx

′
iδx

′
j = �′, (6.2)

where also dϕ : δx → δx′.

28 Keep in mind that there is at this time no sensitivity to a distinction between local and global
results and that the actual mathematics is being done on a strictly local level.



400 T. Hawkins

Lipschitz emphasized that � gives the conditions that f (dx) = ∑n
i=1 an(x)dxi can be

transformed into
∑n
i=1 cidx

′
i , namely that the bilinear form vanish identically, i.e.,

aij = ∂ai

∂xj
− ∂aj

∂xi
≡ 0. (6.3)

As Lipschitz observed, these were the well-know conditions that the differential ω =∑n
i=1 an(x)dxi be exact, from which the above transformation property followed.29 All

this was by way of a preliminary to motivate the case of degree k = 2, namely quadratic
differential forms ds2, where the same process leads to a quadrilinear “covariant” form
in four variables that defines what later became known as the Riemann curvature tensor,
so that the vanishing of its coefficients gives the condition that ds2 may be transformed
into a sum of squares.

Of primary interest to Frobenius, however, was Lipschitz’s result in the motivational
case k = 1 – his Theorem 6.1. In keeping with the work on quadratic and bilinear
forms within the Berlin school, as well as the above-mentioned work of Christoffel
and Lipschitz, Frobenius focused on the question of when two Pfaffian expressions
ω = ∑n

i=1 ai(x)dxi and ω′ = ∑n
i=1 a

′
i (x

′)dx′
i are analytically equivalent in the sense

that a nonsingular transformation x = ϕ(x′) exists such that ω = ω′. His goal was to
see if Clebsch’s normal forms characterized these equivalence classes and, if so, to find
the “intrinsic grounds” for this fact. What Lipschitz’s Theorem 6.1 showed him was that
the analytical equivalence of ω and ω′ brought with it the analytical equivalence of their
associated “bilinear covariants” � and �′ – as Frobenius called them in keeping with
Lipschitz’s Theorem and terminology. Today the bilinear covariant � associated to ω
is understood within the framework of the theory of differential forms initiated by Élie
Cartan, where � = −dω. In Sect. 11 the influence of Frobenius’s work on Cartan’s
development of his theory of differential forms will be considered.

It was in seeking to use Lipschitz’s theorem 6.1 that Frobenius drew inspiration from
Christoffel’s paper. To determine necessary and sufficient conditions for the analytical
equivalence of two quadratic differential forms, Christoffel had determined purely alge-
braic conditions involving a quadrilinear form that were necessary for equivalence and
he then asked whether they were sufficient for the analytical equivalence or whether
additional analytical conditions needed to be imposed. He characterized this question as
“the heart (Kernpunkt) of the entire transformation problem” [13, p. 60].

Applying this strategy to the problem at hand, Frobenius began by giving an algebraic
proof of Lipschitz’s Theorem 6.1 [26, p. 252–3] that was elegant, clear, and simple, and,
in particular, did not rely on results from the calculus of variations. His proof makes it
clear to present-day readers that Lipschitz’s theorem follows from a simple calculation
in the tangent space of the manifold of generic points where � and �′ have maximal
rank.

29 If f1(x) is such that ω = df1 in accordance with exactness, then additional functions
f2, . . . , fn may be chosen so that f1, . . . , fn are independent and so define locally a variable
change yi = fi(x), i = 1, . . . , n for which ω = dy1 has constant coefficients.
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Here is the gist of Frobenius’s proof. With the relations between the x- and x′-coor-
dinates given by30

x = ϕ(x′), dx = dϕ · dx′ or x′ = ψ(x), dx′ = dψ · dx, (6.4)

he considered x as an arbitrary function of two parameters, which I will denote by s,
and t . Then the components ui , vi of the n-tuples

∂x/∂s = (∂x1/∂s, . . . , ∂xn/∂s) = (u1, . . . , un) = u

∂x/∂t = (∂x1/∂t, . . . , ∂xn/∂t) = (v1, . . . , vn) = v

are completely arbitrary and so are the vectors u and v. Since x′ = ψ(x) and x = x(s, t)

we have x′ = x′(s, t) and so we may analogously define the vectors u′ = ∂x′/∂s =
(u′

1, . . . , u
′
n) andv′ = ∂x′/∂t = (v′

1, . . . , v
′
n). Then by (6.4)u = dψ ·u′ andv = dψ ·v′.

The equivalence ω = ω′ implies in particular that, regarded as functions of s and t ,
ω(u) = ∑

i aiui equals ω′(u′) = ∑
i a

′
iu

′
i and likewise ω(v) = ω′(v′). Thus

∂ω(u)

∂t
− ∂ω(v)

∂s
= ∂ω′(u′)

∂t
− ∂ω′(s)

∂s
, (6.5)

and when (6.5) is computed out using the definition (4.7) of the Jacobi coefficients aij ,
a′
ij , the result is that for any two vectors u and v, if u′ = dψ · u and v′ = dψ · v, then

�(u, v)
def≡

∑

i,j

aij uivj =
∑

i,j

a′
ij u

′
iv

′
j

def≡ �′(u′, v′),

which is the conclusion of Lipschitz’s Theorem expressed in a notation that makes its
meaning clearer. That is, for each fixed x, ω is seen to be a linear form, ω = ω(u), and
� and alternating bilinear form, � = �(u, v) and likewise for ω′ and �′.

Frobenius could readily see that a necessary consequence of the analytical equiv-
alence of ω and ω′ is the algebraic equivalence of the form-pairs (ω,�) and (ω′, �′)
in the following sense: Fix x at x0 and x′ at x′

0 = ϕ(x0).31 Then we have two form-
pairs (ω,�)x0 , (ω′, �′)x′

0
with constant coefficients that are equivalent in the sense that

ωx0(u) = ω′
x′

0
(u′) and �x0(u, v) = �′

x′
0
(u′, v′) by means of a nonsingular linear trans-

formation u = Pu′, v = Pv′, where P = dϕx0 . The question that Frobenius posed
to himself was whether the algebraic equivalence of the form-pairs was sufficient to
guarantee the (local) analytical equivalence of ω and ω′. Thus it was first necessary
to study the algebraic equivalence of form-pairs (w,W) under a nonsingular linear
transformation u = Pu′, v = Pv′, where w(u) = ∑n

i=1 aiui is a linear form and
W(u, v) = ∑n

i,j=1 aijuivj is an alternating bilinear form (aji = −aij ) and all coeffi-
cients ai , aij are constant. The hope would be that the algebraic analog of Clebsch’s
two canonical forms (5.2) and (5.3) of cases (I) and (II) of Theorem 5.1 would yield
the distinct equivalence classes for (w,W). As we shall see in the following section,

30 In what follows I have used a more compact notation than Frobenius, who expressed all trans-
formations in terms of coordinate equations, e.g., xα = ϕα(x

′
1, . . . , x

′
n) rather than x = ϕ(x ′).

31 As indicated in Sect. 3, strictly speaking x0 and x ′
0 should be generic points, i.e., points at

which the bilinear forms �,�′ have maximal rank.
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Frobenius confirmed that this was the case. Indeed, his proof provided a paradigm which
led him by analogy to a proof of Clebsch’s Theorem 5.1 – including a correct way to
algebraically distinguish the two cases – and thereby to the conclusion that the algebraic
equivalence of (ω,�) and (ω′, �′) at generic points x0 and x′

0 (in the sense of Sect. 3)
implies the analytical equivalence of ω and ω′ at those points. In this manner he found
what he perceived to be the true “intrinsic grounds” in Kronecker’s sense for Clebsch’s
canonical forms.

Clebsch had shied away from a direct approach in the nongeneric case in favor of
his indirect approach because “In this way, one is spared the trouble of carrying out
direct proofs that lead to very complicated algebraic considerations, which, to be sure,
are of interest in their own right . . . ” [14, p. 194]. It was just these sorts of “complicated
algebraic considerations” that attended nongeneric reasoning in linear algebra and that
Weierstrass and Kronecker had shown could be successfully transformed into a satisfy-
ing theory, and the paradigm of their work clearly encouraged Frobenius to deal in the
above-described manner with the theory of Pfaffian equations. Indeed, Frobenius real-
ized that his friend Ludwig Stickelberger, a fellow student at Berlin and a colleague at
the ETH in Zürich when Frobenius wrote [26], had already considered the simultaneous
transformation of a bilinear or quadratic form together with one or more linear forms in
his 1874 Berlin doctoral thesis [26, p. 264n].

7. The algebraic classification theorem

In discussing form-pairs (w,W) I will use more familiar matrix notation and write
W = utAv, whereA is skew symmetric (At = −A), andw = atu, with a, u and v here
being regarded as n × 1 column matrices, e.g., a = (a1, . . . , an)

t . Frobenius began to
develop such notation himself shortly after his work on Pfaffian equations.32

The first algebraic question that Frobenius considered concerned the rank of A,
i.e., the rank of a skew symmetric matrix or, as he called it, an alternating system [26,
pp. 255–261]. I would guess that this was also one of the first questions related to Pfaffi-
an equations he investigated, since the resultant answer plays a fundamental role in the
ensuing theory. For ease of reference I will name it the even rank theorem.

Theorem 7.1 (Even rank theorem) IfA is skew symmetric then its rank r must be even.

Following Frobenius, let us say that a principal minor33 is one obtained fromA by delet-
ing the same numbered rows and columns, e.g., the n − 3 × n − 3 minor obtained by
deletion of rows 1,3,5 and columns 1,3,5 of A. It is easy to give examples of matrices
of rank r for which all the principal minors of degree r vanish, but Frobenius showed
that when A is symmetric or skew symmetric of rank r then there is always a principal
minor of degree r which does not vanish. From this result Theorem 7.1 follows directly,
since the matrix of a principal minor of A is also skew symmetric and as we saw in

32 He did this in a paper of 1878 [27], which is discussed in historical context in my paper [41].
33 Literally “principal determinant” (Hauptdeterminant) [26, p. 261].
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Sect. 4, Jacobi had already observed that skew symmetric determinants of odd degree
must vanish. Thus the degree r of the nonvanishing principal minor must be even.

With this theorem in mind, let us consider the two canonical forms of cases (I) and
(II) of Clebsch’s Theorem 5.1. In (I) ω = zm+1dz1 + · · · + z2mdzm, where the total
number of variables is n = 2m+ q, q ≥ 0. In this case

� = (dz1δzm+1 − dzm+1δz1)+ · · · + (dzmδz2m − dz2mδzm)

The corresponding pair of algebraic forms (w,W) is obtained by setting the variables zi
equal to constants and the differentials dzi , δzi equal to variables ui , vi , respectively, to
obtainw = c1u1 +· · ·+cmum andW = (u1vm+1 −um+1v1)+· · ·+(umv2m−u2mvm).
Thus W = utAv, where in block matrix form

A =



0 Im 0

−Im 0 0
0 0 0



 . (7.1)

Here Im denotes the m × m identity matrix. For case (II) where ω is given by ω =
dz0 + zm+1dz1 + · · · + z2mdzm, n = 2m + q, q ≥ 1, the algebraic form-pair is
w = u0 + c1u1 + · · · cmum and W = utAv with

A =







0 0 0 0
0 0 Im 0
0 −Im 0 0
0 0 0 0





 . (7.2)

In both cases the matrix A has rank 2m, so that contrary to Clebsch’s claim the rank of
the skew symmetric Jacobi matrix A does not distinguish the two cases a priori.

On the algebraic level considered here, where the link between ω and � no longer
exists, one could say that this is because we are seeking an invariant of a form-pair
(w,W) = (atu, utAv) under linear transformations but only looking at A and ignor-
ing a. In his Berlin doctoral thesis of 1874 [69, §2] Stickelberger had already introduced
an appropriate invariant for a system consisting of a bilinear form and several linear
forms. Stickelberger’s thesis was well known to Frobenius, who along with Killing was
one of the three appointed “adversaries” at Stickelberger’s thesis defense. Consider,
for example, 
 = utCv, γ1 = ctu, γ2 = dtu. From Weierstrass’s paper on elementary
divisors it was well-known that by virtue of a theorem on minor determinants due to Cau-
chy, the rank of the bilinear form is invariant under nonsingular linear transformations
u = P ū, v = Qv̄, i.e., if

utCv = ūt (P tCQ)v̄ ≡ ūt C̄v̄,

then rank (C̄) = rank C. Since the linear forms transform by

ctu = utc = ūt (P t c) ≡ c̄t ū,

Stickelberger observed that if one introduces the bilinear form 
̂ in n+ 1 variables with
n+ 1 × n+ 1 coefficient matrix

Ĉ =
(
C c

dt 0

)

,
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which amalgamates the original bilinear and linear forms into a single bilinear form,
then under the linear transformations u = P̂ ū, v = Q̂v̄, where

P̂ =
(
P 0
0 1

)

, Q̂ =
(
Q 0
0 1

)

,

one has

Ĉ → P̂ t ĈQ̂ =
(
C̄ c̄

d̄ t 0

)

.

This shows that the rank of Ĉ is an invariant of the system (
, γ1, γ2).
To apply this to the pair (w,W) = (atu, utAv) with A skew symmetric, Frobenius

introduced the analogous alternating form Ŵ with coefficient matrix

Â =
(
A a

−at 0

)

. (7.3)

Then it follows that the rank of Â is an invariant of the system (w,W). Since Â is skew
symmetric it follows readily from the even rank theorem that either rank Â = rank A
or rank Â = rank A+ 2.

Going back to the pairs (w,W) obtained above corresponding to Clebsch’s cases (I)
and (II) with coefficients given in (7.1) and (7.2), respectively, it follows that rank Â =
rank A = 2m in case (I) but rank Â = rank A+ 2 = 2m+ 2 in case (II). For example
when m = 2 and n = 5 so that Â is 6 × 6 we get in cases (I) and (II), respectively,
matrices of ranks 4 and 6, namely:

Â =











0 0 1 0 0 0
0 0 0 1 0 0

−1 0 0 0 0 c1
0 −1 0 0 0 c2
0 0 0 0 0 0
0 0 −c1 −c2 0 0











, Â =











0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 −1 0 0 0 c1
0 0 −1 0 0 c2

−1 0 0 −c1 −c2 0











.

These examples suggest that Clebsch was at least partly right in thinking that the rank
of a skew symmetric matrix would distinguish a priori the two cases, but the relevant
matrix would seem to be Â and not A. Frobenius proved that this was in fact the case.
His main result may be summarized as follows.

Theorem 7.2 (Algebraic classification theorem) Let w = atu be a linear form and
W = utAv an alternating bilinear form. Then p = (rank A+ rank Â)/2 is an integer
and is invariant with respect to nonsingular linear transformations of the pair (w,W),
which is thus said to be of class p . When rank Â = rank A = 2m, p = 2m is
even; and when rank Â = rank A + 2 = 2m + 2, p = 2m + 1 is odd. If (w,W)
is of class p = 2m, then there exists a nonsingular linear transformation u = P ū,
v = P v̄ such that w = cm+1ū1 + · · · + c2mūm, and W = ūt Āv̄ with Ā as in (7.1).
When p = 2m+ 1 a nonsingular linear transformation exists so that w takes the form
w = ū0 + cm+1ū1 + · · · + c2mūm andW = ūt Āv̄ with Ā as in (7.2). Consequently, two
form-pairs (w,W) and (w′,W ′) are equivalent if and only if they are of the same classp.
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The developments leading up to this theorem as well as collateral results regarding
Pfaffian determinants were presented in Sects. 6–11 of Frobenius’s paper and totaled
21 pages. Turning next to the analytical theory of the equivalence of differential forms
ω = ∑n

i=1 ai(x)dxi , however, Frobenius explained that, in effect, his Theorem 7.2
would not serve as the mathematical foundation of the analytical theory but rather as a
guide. In developing the analytical theory “I will rely on the developments of §§. 6–11
as little as possible, and utilize them more by analogy than as a foundation” [26, p. 309].
No doubt he took this approach to encourage analysts not enamored (as he was) by
algebra to read the largely self-contained analytical part. Comparison of the two parts
shows that the algebraic part, however, provided the blueprint for the analysis, for the
reasoning closely parallels the line of reasoning leading to the algebraic classification
theorem. Indeed, as we shall see in Sect. 10, it proved too algebraic for the tastes of
many mathematicians primarily interested in the integration of differential equations.

The fact that Frobenius deemed the purely algebraic results sufficiently noteworthy
in their own right to present them carefully worked out in Sects. 6–11 is indicative of
his appreciation for Berlin-style linear algebra, and indeed the theory presented in Sects.
6–11 and culminating in Theorem 7.2 was the first but hardly the last instance of Frobe-
nius’s creative involvement with linear algebra. For example, undoubtedly inspired by the
theory of Sects. 6–11, during 1878–1880 Frobenius published several highly important
and influential memoirs on further new and important aspects of the theory of bilinear
forms [27, 28, 30]. 34

8. The analytic classification theorem

The main theorem in the analytical part of his paper is the result at which Frobenius
arrived by developing the analog of the reasoning leading to the above algebraic clas-
sification theorem. Thus given a Pfaffian form ω = ∑n

i=1 ai(x)dxi , he considered the
form-pair (ω,�) determined by ω and its bilinear covariant

� =
n∑

i,j=1

aij (x)uivj , aij = ∂ai

∂xj
− ∂aj

∂xi
. (8.1)

Corresponding to this form-pair we have by analogy with (7.3) the augmented skew
symmetric matrix

Â(x) =
(
A(x) a(x)

−at (x) 0

)

, A = (aij (x)). (8.2)

Since the ranks of A and Â figure prominently in what is to follow, recall from Sect. 3
that by the rank of, e.g., A = A(x) Frobenius apparently meant the maximal rank of
A(x). What Frobenius tacitly showed [26, p. 309] was that the maximal rank of Â(x)
is also invariant with respect to nonsingular transformations x = ϕ(x′) at the generic
points corresponding to Â(x). Hence p = (1/2)[rank A(x) + rank Â(x)] is also an
invariant in this sense on the (open and dense) set of generic points x where both A(x)

34 See [40, 41] for a discussion of these papers and their historical significance.
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and Â(x) attain their maximal ranks, and p so defined can therefore be used to define the
class of ω. The main goal of his paper was to establish the following analytical analog
of the algebraic classification theorem, which should be interpreted as a theorem about
the existence of local transformations at the above-mentioned generic points.

Theorem 8.1 (Analytical classification theorem) Let ω be of class p. If p = 2m there
exists a transformation x = ϕ(z) such that

(I) ω = zm+1dz1 + · · · + z2mdzm;
and if p = 2m+ 1, then a transformation x = ϕ(z) exists so that

(II) ω = dz0 + zm+1dz1 + · · · + z2mdzm.

Consequently ω and ω′ are equivalent if and only if they are of the same class p.

This theorem implies Clebsch’s Theorem 5.1 and, in addition, provides through the
notion of the class of ω a correct algebraic criterion distinguishing cases (I) and (II).
The theorem also shows that the algebraic equivalence of two form-pairs (ω,�) and
(ω′, �′) is sufficient for the analytical equivalence of ω and ω′. That is, if x and x′ are
fixed generic points with respect to bothω andω′, and if they are algebraically equivalent
for the fixed values x and x′, then by the algebraic classification theorem, (ω,�)x and
(ω′, �′)x′ must be of the same class p. But this then means that ω and ω′ are of the same
class p and so by the analytical classification theorem each of ω and ω′ can both be
locally transformed into the same canonical form (I) or (II) and hence into each other,
i.e., they are analytically equivalent.

The proofs of both the algebraic and analytical classification theorems are quite
similar in most respects, with the analytical version evidently inspired by the algebraic
version. Both are lengthy, but the analytical version is longer by virtue of a complication
attending the analytical analog of one point in the proof. It is this complication that
led Frobenius to formulate his integrability theorem for systems of Pfaffian equations,
which is discussed in the next section. The remainder of this section is devoted to a brief
summary of the complication.35

In proving the Algebraic Classification Theorem Frobenius at one point was faced
with the following situation, which I describe in the more familiar vector space terms into
which his reasoning readily translates. Given k linearly independent vectorsw1, . . . , wk
in Cn, determine a vector w �= 0 such that w is linearly independent of w1, . . . , wk and
also w is perpendicular to a certain subspace V, with basis vectors v1, . . . , vd . Thus w
needs to be picked so that

w · vi = 0, i = 1, ..., d. (8.3)

This means w is to be picked from V⊥, the orthogonal complement of V. The problem
is complicated by the fact that the vectors w1, . . . , wk also lie in V⊥ and w must be

35 Frobenius’s proof is spread out over pp. 309–331 of [26] and also draws on results from
other parts of the paper.
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linearly independent of them. However, it is known that the dimension d of V satisfies
the inequality d ≤ n+ 1 + k − 2m, where m is a given fixed integer such that k < m.
Since the dimension of V⊥ is n− d ≥ n− (n+ 1 + k− 2m) = 2m− (k+ 1) ≥ m > k,
it is possible to pick w to be linearly independent of w1, . . . , wk as desired.

In the analytical version of this situation that arises en route to the Analytical Clas-
sification Theorem, k functions f1, . . . , fk of x1, . . . , xn are given that are functionally
independent, i.e., their gradient vectors ∇f1, . . . ,∇fk are linearly independent in the
sense that the k× nmatrix with the ∇fi as its rows has full rank k (in the neighborhood
of the point under consideration). In lieu of the d vectors v1, . . . , vd of the algebraic
proof, there are now d vector-valued functions vi = (bi1(x), ..., bin(x), where again
d ≤ n+ 1 + k − 2m and m is a given fixed integer such that k < m. The problem now
is to determine a function f , so that ∇f1, . . . ,∇fk,∇f are linearly independent and in
lieu of (8.3) f must satisfy

∇f · vi = 0, i.e., Bi(f )
def=

n∑

j=1

bij (x)
∂f

∂xj
= 0, i = 1, . . . d. (8.4)

By analogy with the algebraic proof, the situation is complicated by the fact that the
functions f1, . . . , fk are also solutions to this system of partial differential equations.
Thus for the desired f to exist the system (8.4) must have at least k + 1 functionally
independent solutions. This, of course is the type of system considered by Jacobi and
Clebsch and by the Jacobi–Clebsch Theorem 5.3, if the system satisfies Clebsch’s inte-
grability condition (5.11) for completeness – [Bi, Bj ] = ∑d

l=1 cijkBl – it will have n−d
independent solutions, and since (as we already saw) n− d ≥ m > k, the existence of
the desired function f will then follow. The system, however, was not explicitly given
(see [26, pp. 312-13]) – as was also the case with the systems in Clebsch’s indirect
method. It was consequently uncertain whether Clebsch’s integrability condition was
satisfied. As the quotation given at the beginning of Sect. 6 shows, Frobenius had criti-
cized Clebsch for glossing over a similar lack of certainty in his indirect method. He was
certainly not about to fall into the same trap now! But how to salvage the proof? To this
end, he turned to a general duality between systems such as Bi(f ) = 0 and systems of
Pfaffian equations. As we shall see in the next section, this duality had come to light in
reaction to the work of Clebsch and Natani, but Frobenius developed it in a more elegant
and general form than his predecessors.

9. Frobenius’s integrability theorem

In his paper of 1861 on Pfaff’s problem [65], Leopold Natani, who was unfamiliar
with the still unpublished new method of Jacobi that had inspired Clebsch, did not seek
to determine the functions f1, . . . , fm in ω = ∑2m

i=1 aidxi = ∑m
i=1 Fidfi by means of

partial differential equations. Instead he utilized successive systems of special Pfaffian
equations. With the representation ω = F1df1 + · · · + Fmdfm as the goal, Natani first
constructed a system of Pfaffian equations out of the coefficients ai, aij that yielded f1 as
a solution. Then he constructed a second system using as wellf1 to obtainf2, and so on.36

36 For a clear exposition of the details of Natani’s method, see [37].
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The contrasting treatments of Pfaff’s problem by Natani and Clebsch turned the
attention of some mathematicians to the connections between: (1) systems of linear
homogeneous partial differential equations, such as Clebsch’s systems, and (2) systems
of Pfaffian equations, such as Natani’s. It turns out that associated to a system of type (1)
is “dual” system of type (2) with the property that the independent solutions f to (1) are
precisely the independent integrals f = C to (2). This general duality was apparently not
common knowledge in 1861, since, judging by Clebsch’s remarks on Natani’s work [15,
p. 146n], he failed to realize that Natani’s successive systems of Pfaffian equations were
the duals in the above sense to the systems of partial differential equations in his direct
method. This was pointed out by Hamburger in a paper of 1877 [37] to be discussed
below.

Apparently the first mathematician to call attention to the general existence of a
dual relation between systems of Pfaffian equations and systems of linear homogeneous
partial differential equations was Adolph Mayer (1839–1908) in a paper of 1872 [62].
Consideration of Mayer’s way of looking at and establishing this reciprocity is of inter-
est by way of comparison with the approach to the matter taken by Frobenius. We will
see that on the local level where both tacitly reasoned, Mayer’s approach lacked the
complete generality and strikingly modern algebraic elegance achieved by Frobenius.

Ever since the late 18th century mathematicians had realized that the integration of
a single linear homogeneous partial differential equation

ξ1
∂z

∂x1
+ · · · + ξn

∂z

∂xn
= 0 (9.1)

was equivalent to the integration of a system of first order ordinary differential equations,
namely the system that – with xn picked as independent variable – can be written as

dx1

dxn
= ξ1

ξn
, . . . ,

dxn−1

dxn
= ξn−1

ξn
. (9.2)

Jacobi, for example, gave an elegant treatment of this equivalence in a paper of 1827
on partial differential equations [48].37 Mayer began by noting the above-described
equivalence between (9.1) and (9.2), which evidently inspired his observation that “in
an entirely similar way” it is easy to establish a reciprocal connection between systems
of linear homogeneous partial differential equations and Pfaffian systems, which “in
particular cases . . . has already been observed and utilized many times” [62, p. 448].

Mayer began with a system of m linearly independent partial differential equations
Ai(f ) = 0 in n > m variables. Normally, the Ai(f ) would be written in general form
Ai(f ) = ∑n

j=1 αij (x)∂f/∂xj , but Mayer assumed they were written in the special form

Ai(f ) = ∂f

∂xi
+

n∑

k=m+1

aik(x)
∂f

∂xk
, i = 1, . . . , m. (9.3)

In other words, he assumed them×nmatrixM(x) = (αij (x)) can be put in the reduced
echelon form (Im A). It was well known that any particular equation Ai(f ) = 0 of

37 For an exposition of the equivalence presented in the spirit of Jacobi see [44, p. 201ff.].



Frobenius, Cartan, and the Problem of Pfaff 409

the system could be replaced by a suitable linear combination of the equations. In other
words, elementary row operations may be performed on the matrix M(x). In this man-
ner for a fixed value of x, M(x) can be transformed into its reduced echelon form, and
then by permuting columns, which corresponds to reindexing the variables x1, . . . , xn,
the form (Im A) can be obtained. However, Mayer apparently did not realize that this
cannot be done analytically, i.e., for all x in a neighborhood of a fixed point x0.

For example with m = 2 and n = 3 consider

M(x, y, z) =
(
x y 1
z −1 + x + y z

x
3 + z

x

)

in the neighborhood of (x, y, z) = (1, 1, 1). ThereM(x, y, z) has full rank, which means
that the corresponding partial differential equations are linearly independent as Mayer
evidently assumed. The reduced echelon forms of M(1, y, z) and of M(x, y, z) with
x �= 1, for all (x, y, z) close to (1, 1, 1) are, respectively,

(
1 y 1
0 0 1

)

and

(
1 0 x−3y−1

x(x−1)
0 1 3

x−1

)

,

so that it is impossible to bring M(x, y, z) into the form (I2 A) for all (x, y, z) in a
neighborhood of (1, 1, 1). Hence his treatment of duality on the customary local level
was not completely general. That being said, let us consider his introduction of the dual
to system (9.3).

Since simultaneous solutions to this system are precisely the solutions to

Aλ(f ) = λ1(x)A1(f )+ · · · + λmAm(f ) = 0,

for any choice of functions λi(x) the generic equation Aλ(f ) = 0 is equivalent to the
system. Now this is a single equation and so corresponds in the above-described manner
to a system of ordinary differential equations, namely

(1)
dxi

dxn
= λi, i = 1, . . . , m, (2)

dxk

dxn
=

m∑

i=1

λiaik

Substituting (1) in (2) and multiplying through by dxn then yields the system of n−m

Pfaffian equations

dxk =
m∑

i=1

aik(x1, . . . , xn)dxi, k = m+ 1, . . . , n. (9.4)

Thus (9.4) is the Pfaffian system which corresponds to (9.3).
Mayer defined a Pfaffian system in the form (9.4) and thus consisting of n − m

equations to be “completely integrable” (unbeschränkt integrable) if n − m indepen-
dent integrals fk(x1, . . . , xn) = Ck , k = m + 1, . . . , n, exist in the sense that if this
integral system is solved for the variables xm+1, . . . , xn to get the functions xk =
ϕk(x1, . . . , xm−1, Cm, . . . , Cn), k = m+ 1, . . . , n, then (9.4) is satisfied identically if
these functions are substituted, i.e., if xk is replaced by ϕk(x1, . . . , xm, Cm+1, . . . , Cn)

and dxk is replaced by
∑m
i=1(∂ϕk/∂xi)dxi for k = m+ 1, . . . , n.

It follows that if (9.4) is completely integrable in this sense and the above-mentioned
substitutions are made, then by comparing the two sides of the resulting equation
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∂ϕk

∂xi
= aik(x1, . . . , xm, Cm+1, . . . , Cn).

From this and the chain rule Mayer then obtained the condition

0 = ∂2ϕk

∂xj ∂xi
− ∂2ϕk

∂xi∂xj
= ∂aik

∂xj
− ∂ajk

∂xi
+

n∑

l=m+1

ajl
∂aik

∂xl
− ail

∂ajk

∂xl
,

which in Jacobi operator notation is

Aj(aik)− Ai(ajk) = 0, i, j = 1, . . . , m, k = m+ 1, . . . , n.

Since this condition must hold for all x1, . . . , xm and any values ofCm+1, . . . Cn, it must
hold identically in x1, . . . , xn and so is equivalent to the condition that Ai(Aj (f )) −
Aj(Ai(f )) = 0 for all f and all i, j = 1, . . . , m− 1, which is the Jacobi integrability
condition (5.5). This then is a necessary condition of the complete integrability of the
Pfaffian system (9.4): the corresponding system (9.3) of partial differential equations
must satisfy Jacobi’s integrability condition. According to Mayer, implicit in his discus-
sion of the integration of (9.4) was proof that this condition on (9.4) is also sufficient.

Mayer’s interest in the above duality was motivated by his interest in the goal of
integration efficiency mentioned in Sect. 4, which was of interest to many analysts at
this time. His idea was to start with a system of partial differential equations satisfy-
ing Jacobi’s integrability condition – the type of system involved in the integration of
nonlinear partial differential equations in accordance with Jacobi’s new method and its
extensions – and then go over to the dual system of Pfaffian equations and integrate it
to see if it yielded a more efficient method. He showed that it did, that the number of
integrations needed could be reduced by almost 50% over what the latest theories offered.

Although Mayer had indeed established a reciprocity or duality between systems
of linear homogeneous partial differential equations and systems of Pfaffian equations,
he had done so by assuming the systems in a special form so that the duality could be
obtained from the well-known equivalence of a single linear homogeneous partial differ-
ential equation and a system of ordinary differential equations.As we shall see, by taking
a more algebraic and elegant approach and by virtue of a powerful new construct – the
bilinear covariant – Frobenius, who never mentions Mayer’s paper, was able to establish
the reciprocity without assuming the systems in a special generic form. This enabled
him to formulate a criterion for complete integrability that was directly applicable to
any system of Pfaffian equations. Frobenius was no better than Mayer when it came to
glossing over distinctions between local and global results, but his more elegant alge-
braic approach does seem to point the way to a more rigorous, modern interpretation and
for that reason the integrability theorem at which he arrived (Theorem 9.2) does seem
to represent an indication of the modern Frobenius integrability theorem. In presenting
Frobenius’s treatment, I will first present it as he did, glossing over any mention of the
values of x for which the reasoning makes sense, and then I will indicate what his proof
actually established.

Given the special form of the systems required for duality in Mayer’s sense and the
focus of his attention on efficiency matters, it is not clear that he himself realized that
the systems of partial differential equations of Clebsch’s direct method and the Pfaffian
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systems of Natani were in fact duals of one another. This was pointed out by Meyer
Hamburger (1838–1903) in a paper [37] submitted for publication a few months after
Frobenius had submitted his own paper on the problem of Pfaff. Although Hamburger’s
paper [37] is not mentioned by Frobenius, Hamburger’s method for establishing the
duality between Natani’s systems of Pfaffian equations and Clebsch’s systems of partial
differential equations was probably known to him because Hamburger had presented it
in the context of a different problem in a paper of 1876 [36, p. 252] in Crelle’s Journal
that Frobenius did cite in his paper. Hamburger’s method is more algebraic than Mayer’s
and does not require that the systems be put in a special generic form. It may have
encouraged Frobenius’s own simpler algebraic method.

In accordance with the approach of Hamburger but especially that of Frobenius [26,
§13], who unlike Hamburger presented everything with elegant simplicity and algebraic
clarity, let us consider a system of r linearly independent Pfaffian equations

ωi = ai1(x)dx1 + · · · + ain(x)dxn = 0, i = 1, . . . , r. (9.5)

Frobenius regarded theωi as linear forms in (dx1, . . . , dxn), and since linear forms may
be identified with linear functionals or elements in the dual of the tangent space, his way
of thinking translates readily into the modern view of differentials, as will be seen.

Every Pfaffian equation ω = ∑n
i=1 bi(x)dxi = 0 that is a linear combination of the

ωi is said by Frobenius to belong to the system (9.5). As he observed, this is equivalent to
saying that then-tuple b = (b1, . . . , bn) is a linear combination of the rows ofA = (aij ).
He then defined f (x) = C to be an integral of the system (9.5) if f is such that its differ-
ential df belongs to the system (9.5), or, equivalently, if ∇f = (∂f/∂x1, . . . , ∂f/∂xn)

is a linear combination of the rows of A. (This simple, algebraically oriented definition
should be compared with the one given by Mayer.) There can exist at most r independent
functions defining integrals of the system. When this is the case the system (9.5) is said
to be complete [26, p. 286].

In his approach to duality, Hamburger tacitly assumed for convenience that since
A = (aij ) has rank r the r × r minor matrix Ar of A defined by the first r rows and
columns of A has nonzero determinant. Suppose f (x1, . . . , xn) = C in an integral of
the Pfaffian system (9.5) so that ∇f is a linear combination of the the rows ofA.38 Then
the (r + 1)× n matrix

A∗ =
(
A

∇f
)

=









a
(1)
1 · · · a(1)n
...
. . .

...

a
(r)
1 · · · a(r)n
∂f
∂x1

· · · ∂f
∂xn









has rank r , i.e., every (r + 1)× (r + 1) minor matrix of A∗ has vanishing determinant.
These determinants set equal to 0 yield a system of linear homogeneous partial differen-
tial equations having f as solution. Not all of these equations are independent, however,

38 Hamburger’s presentation is not as clear as I am indicating. He never defined what it means
for f = C to be an integral, but concluded that the equations (9.5) imply that df = 0 and that
this in turn implies the n− r vanishing determinants indicated below.
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and Hamburger singled out the n− r systems that arise by forming minors using the first
r columns of M∗ plus one of the remaining n− r columns. Hamburger’s approach was
thus more algebraic and general than Mayer’s, and that is undoubtedly why Frobenius
mentioned it. Hamburger, however, never justified that his equations were independent.
Frobenius avoided the need for this by proceeding somewhat differently after mentioning
Hamburger’s approach.

Frobenius considered the linear homogeneous system of equations associated to the
Pfaffian system (9.5), namely,

ai1u1 + · · · + ainun = 0, i = 1, . . . , r, (9.6)

or in more familiar notation Au = 0, where A = (aij ) is the r × n matrix of the coeffi-
cients and u is now used to denote the vector with ui as components. It was well-known
at this time that the system Au = 0 – with A a matrix of constants and of rank r – has
n− r linearly independent solutions. For example, in the 1870 edition of Baltzer’s text
on determinants, which is often cited by Frobenius, there is a theorem due to Kronecker
which gives a formula for the general solution to Au = 0 [3, pp. 66–7].

Theorem 9.1 (Kronecker’s theorem) Given an m × n matrix M = (aij ) of rank r ,
suppose for specificity that the minor determinant ofM formed from its first r rows and
columns is nonzero. Then the solutions to the homogeneous system Mu = 0 are given
as follows. Consider the (r + 1)× (r + 1) matrix








a11 · · · a1r a1r+1ur+1 + · · · + a1nun
...
. . .

...
...

ar1 · · · arr arr+1ur+1 + · · · + arnun
∗ · · · ∗ ∗







,

where the last row can be anything. Then the general solution to Mu = 0 is ut =
(C1/Cr+1, . . . , Cr/Cr+1, ur+1, . . . un), where C1, . . . , Cr+1 denote the cofactors
along the last row.

The general solution thus involves n− r “free variables” ur+1, . . . , un, which occur in
the cofactors Ci , i �= r + 1, and by successively setting one of the ui equal to 1 and the
rest 0, we obtain n− r solutions that can be shown to be linearly independent. Frobenius
surely knew this theorem, but in the purely algebraic part of his paper, he presented a
more elegant, perfectly general way of establishing the n − r independent solutions,
which seems to have originated with him.39 It is of historical interest because it shows
how he was compelled by a penchant for algebraic elegance and generality to a type
of linear algebra with strikingly modern overtones despite the continued reliance upon
determinants.

Frobenius proceeded as follows [26, p. 255ff]. Consider an r×n system of equations
Au = 0 with the coefficients ofA assumed constant and r = rank A. Then we may pick

39 Judging by his remarks some thirty years later [31, p. 349f.].
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n − r n-tuples wk = (wk1, . . . , wkn) so that the n × n matrix D with rows consisting
of the r rows ai = (ai1, . . . , ain) of A followed by the n− r rows wk , viz.

D =








A

w1
...

wn−r







,

satisfies detD �= 0. Then let bkj denote the cofactor of detD corresponding to the wkj
coefficient. IfD is modified toD∗ by replacing row wk by row ai , then detD∗ = 0 since
it has two rows equal. Expanding detD∗ by cofactors along the changed row yields the
relation

n∑

j=1

aij bkj = 0, i = 1, . . . , r, k = 1, . . . n− r. (9.7)

I will express this relation in the more succinct form ai · bk = 0 for any i = 1, . . . , r
and any k = 1, . . . , n− r , where bk = (bk1, . . . , bkn). Using well-known determinant-
theoretic results that go back to Jacobi, Frobenius easily concluded that the (n− r)× n

matrix B with the bk as its rows has full rank n− r so that the bk represent n− r linearly
independent solutions to the homogeneous system Au = 0. He also showed that no
more than n − r independent solutions of Au = 0 can exist. However, he did not stop
with this result.

Frobenius defined the two coefficient systems A = (aij ) and B = (bij ) to be “asso-
ciated” or “adjoined”; likewise the two systems of equations Au = 0 and Bv = 0 are
said to be adjoined. The reason for this terminology was the following immediate con-
sequence of (9.7): a · b = 0, where a is any linear combination of the rows of A and b
is any linear combination of the rows of B. In other words, as we could now say it, the
row space of A, Row A, and Row B are orthogonal. In fact, given the ranks of A and
B, Frobenius realized that any a such that a · b = 0 for all b ∈ Row B must belong to
Row A and vice versa, i.e., he realized what would now be expressed by

Row A = [Row B]⊥ and Row B = [Row A]⊥. (9.8)

Furthermore, adjoinedness meant “the coefficients of the one system of equations are
the solutions of the other” [26, p. 257], i.e., in modern terms

Row A = Null B and Row B = Null A, (9.9)

where, e.g., Null A denotes the nullspace of A. This was an immediate consequence
of the obvious fact, frequently used by Frobenius, that u is a solution to a system of
equations Au = 0 if and only if u · a = 0 for any a that is a row of A or a linear
combination thereof, i.e., what would now be expressed by

Null A = [Row A]⊥. (9.10)

Returning now from this excursion into Frobenius-style linear algebra, let us con-
sider how he applied the key relation (9.8) as it relates to the matrix A of (9.6) to obtain
the dual of the Pfaffian system (9.5). By his definition f = C is a solution to the Pfaffian
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system (9.5) if and only if ∇f is a linear combination of the rows of A = (aij ), and by
(9.8) this is equivalent to saying that ∇f is perpendicular to the rows of B, i.e.,

Xk(f )
def= bk1

∂f

∂x1
+ · · · + bkn

∂f

∂xn
= 0, k = 1, . . . , n− r. (9.11)

The above system is then defined to be the system of linear partial differential equations
adjoined to the Pfaffian system (9.5) – the dual system as I will call it. Likewise, as
Frobenius showed, if one starts with a system Xk(f ) = 0, k = 1, . . . , n− r , the above
reasoning can be reversed to define the associated Pfaffian system ωi = 0, i = 1, . . . , r .

Frobenius used the correspondence between the systems Xν(f ) = 0 of (9.11) and
ωi = 0 of (9.5) to translate Clebsch’s integrability condition (5.11) for the system
Xν(f ) = 0 into an integrability condition for the systemωi = 0 [26, §14]. His reasoning
utilized his version of (9.8)–(9.9). With this fact in mind, note the following implications
of the duality correspondence Xk(f ) = 0 ↔ ωi = 0. First of all, ω = ∑n

i=1 ai(x)dxi
belongs to the system ωi = 0 if and only if a = (a1, . . . , an) ∈ Row A = [Row B]⊥ =
Null B. Secondly, X(f ) = ∑n

i=1 bi(x)∂f/∂xi = 0 belongs to the system Xk(f ) = 0,
i.e., X(f ) is a linear combination of the Xk(f ), if and only if b = (b1, . . . , bn) is a
linear combination of the bk , i.e., b ∈ Row B = [Null B]⊥.

Let us now consider, along with Frobenius, Clebsch’s integrability condition (5.11).
It implies that if the equations

X(f ) =
n∑

i=1

bi(x)∂f/∂xi = 0 and Y (f ) =
n∑

i=1

ci(x)∂f/∂xi = 0

belong to the system Xk(f ) = 0, then so does X(Y(f ))− Y (X(f )) = 0, where

X(Y(f ))− Y (X(f )) =
n∑

i=1

n∑

j=1

(

bj
∂ci

∂xj
− cj

∂bi

∂xj

)
∂f

∂xi
. (9.12)

In view of the above preliminary remarks, the integrability condition may be stated as
follows. Let b = (b1, . . . , bn) and c = (c1, . . . , cn) and let [b, c] denote the coefficient
n-tuple of X(Y(f ))− Y (X(f )) as given in (9.12), i.e.,

[b, c]i =
n∑

j=1

(

bj
∂ci

∂xj
− cj

∂bi

∂xj

)

, i = 1, . . . , n.

Then the integrability criterion is that if b ∈ [Null B]⊥ and c ∈ [Null B]⊥, then also
[b, c] ∈ [Null B]⊥. Since a ∈ Null B, this says that if b · a = 0 and c · a = 0
for all a ∈ Null B, then [b, c] · a = 0 for all a ∈ Null B. In terms of the Pfaffian
expression ω = ∑n

i=1 ai(x)dxi defined by a, the criterion takes the following form. Let
ω(b) = ∑n

i=1 ai(x)bi = a · b. (In effect ω is being evaluated at the vector b in the
tangent space at x ∈ G, which in a natural way is a complex-analytic manifold.) The
above considerations may then be summarized in the following form.

If ω(b) = 0 and ω(c) = 0 for all ω in (9.5), then ω([b, c]) = 0. (9.13)
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Now

ω([b, c]) =
n∑

i=1

n∑

j=1

(

bj
∂ci

∂xj
− cj

∂bi

∂xj

)

ai. (9.14)

Frobenius observed that he could rewrite this expression by utilizing the relationsω(b) =
0 and ω(c) = 0. For example, differentiating the first equation with respect to xj yields

0 = ∂

∂xj

(
n∑

i=1

aibi

)

=
n∑

i=1

∂ai

∂xj
bi +

n∑

i=1

ai
∂bi

∂xj
,

which gives
∑n
i=1 ai∂bi/∂xj = −∑n

i=1 bi∂ai/∂xj . Doing the same to ω(c) = 0
likewise shows that

∑n
i=1 ai∂ci/∂xj = −∑n

i=1 ci∂ai/∂xj . If these expressions are
substituted in (9.14), the result is that

ω([b, c]) =
n∑

i,j=1

(
∂ai

∂xj
− ∂aj

∂xi

)

bicj .

Thus ω([b, c]) = �(b, c), where � is the bilinear covariant associated to ω, and so
(9.13) can be reformulated in terms of bilinear covariants. In this manner Frobenius
showed that the Jacobi–Clebsch Theorem 5.3, which asserts that the systemXk(f ) = 0
is complete if and only if it satisfies the Clebsch integrability condition (5.11), translates
into the following completeness theorem for the system ωi = 0 [26, p. 290].

Theorem 9.2 (Frobenius integrability theorem) Given a system of r linearly indepen-
dent Pfaffian equations ωi = ∑n

j=1 aij dxj = 0, i = 1, . . . , r , it is complete if and only
if the following integrability condition holds: whenever ωi(b) = 0 and ωi(c) = 0 for
all i, it follows that�i(b, c) = 0 for all i, where�i is the bilinear covariant associated
to ωi .

Frobenius’s theorem has been stated more or less as he did, i.e., with all reference to
the dependency of everything upon the x-variables suppressed as was customary at the
time. However, the theorem and its attendant definitions, as well as Frobenius’s direct
proof (mentioned below) make sense only for x ∈ G, the set of generic points x where
rank

(
aij (x)

) = r (Sect. 3). For example, consider Frobenius’s definition of the dual
system (9.11). It is based upon the existence of the n− r linearly independent n-tuples
bk comprising B. In view of how the coordinates of bk were defined above – as certain

cofactors of D(x) =
(
A(x)

W(x)

)

– it is clear that we can choose W(x) to be analytic

and of full rank n − r in a neighborhood of a fixed x ∈ G but not necessarily for all
x ∈ Cn. In other words the desired coefficients bkj (x) and hence the dual system (9.11)
is only defined locally, in a neighborhood of some x ∈ G. Likewise, the coordinate
representation of ωi as

∑n
ı=1 aij (x)dxj is really a local one, valid in a neighborhood

of x ∈ G. Thus the definition of a solution f = C to a Pfaffian system is implicitly
a local one as well as the attendant definition of completeness, meaning that at each
x ∈ G there is a neighborhood in which independent functions f1, . . . , fr exist such
that fi = Ci are integrals of the Pfaffian system in the sense defined by Frobenius and
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given above. The integrability condition must hold for all x ∈ G, where ωi(b), ωi(c),
and�i(b, c) are computed for vectors b, c in the tangent space ofG at x, using the local
coordinate representations of ωi and�i in a neighborhood of x. Of course, none of this
is in Frobenius’s paper, but the point here is that in his Theorem 9.2 we have in tacitly
local form what was to become, in modern times, the Frobenius integrability theorem.
Indeed, the direct proof of Theorem 9.2 given by Frobenius [26, pp. 291–5] can be made
rigorous by interpreting it locally along the lines indicated above. Although the modern
Frobenius integrability theorem is essentially a local result, it is usually set within the
global context of a manifold. Such a notion seems to have been foreign to Frobenius’s
way of thinking in 1876, as it was to most mathematicians at that time.40

Theorem 9.2 is the source of the appellation “Frobenius’s Theorem” which is now
commonplace. The first to so name it appears to have been Élie Cartan in his 1922
book on invariant integrals.41 Singling out Frobenius’s name to attach to this theorem
is a bit unfair to Jacobi and Clebsch, since the above theorem is just the dual of the
Jacobi–Clebsch Theorem 5.3. Furthermore, although Frobenius also gave a proof of the
theorem that is independent of the Jacobi–Clebsch Theorem and the consideration of
partial differential equations, that proof was, as he explained [26, p. 291], simply a more
algebraic and “symmetrical” version of one by Heinrich Deahna (1815–1844) that he
had discovered in Crelle’s Journal for 1840 [20].

Deahna’s name is not a familiar one to mathematicians nowadays, although it seems
likely this is largely due to his untimely death at age 29. He had studied at the universities
in Göttingen and Marburg and at Göttingen won a prize for work on the moments of
inertia of regular solids. He was an assistant teacher (Hülfslehrer) at the Gymnasium
in Fulda when he died. In 1840 he published two papers in Crelle’s Journal. One gave
a new proof of the fundamental theorem of algebra and the other was the paper cited
by Frobenius. That paper was motivated by the the necessary and sufficient conditions
that a total differential equation ω = ∑n

i=1 ai(x)dxi = 0 be such that it has an integral
solution f (x1, . . . , xn) = C. Deahna complained that although necessary conditions
for the existence of an integral solution were known (as indicated near the beginning of
Sect. 4 above), their sufficiency had not been established. He proposed to fill this gap by
stating and proving necessary and sufficient conditions for integrability. He then went
on to do the same for a system of total differential equations ωi = 0, i = 1, . . . , m.

Deahna did not write his equation in the symmetric form ω = 0 given above, but
rather in the form

40 Although a notion of a manifold can be traced back to Riemann [68], a careful definition
such as Frobenius would have accepted was first given by Weyl in his 1913 book on Riemann
surfaces – a book, incidentally, that Frobenius admired [23, pp. 12–15]. For a discussion of that
aspect of Weyl’s book, see [46, §9.5].

41 Chapter X is on completely integrable Pfaffian systems and the first section is entitled “Le
théorème de Frobenius” [11, p. 99ff]. Immediately after stating Frobenius’s theorem (as above)
Cartan pointed out that the integrability condition could be formulated differently using his cal-
culus of differential forms. This formulation, which he first published in 1901, is given in (11.5)
below. In his monograph of 1945 on differential forms [12, p. 49], Cartan gave the necessary and
sufficient condition for completeness in his own form (11.5) and no mention is made of Frobenius.
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dx =
n∑

i=1

Xidxi, Xi = Xi(x, x1, . . . , xn).

He articulated the completeness condition as follows: The variation of X1, . . . , Xn
should vanish “when x1, . . . , xn increase by arbitrary variations δx1, . . . , δxn while x
increases by δx = ∑n

i=1Xiδxi” [20, p. 340]. Likewise, for a system of total differ-
ential equations, Deahna articulated the completeness condition in terms of variational
notions [20, pp. 333–4]. Thus there is no concept of a bilinear covariant in Deahna’s
work, although as noted earlier, Lipschitz had also used variational principles to show
in Theorem 6.1 that �(b, c) was indeed the analytical analog of a bilinear covariant.
Frobenius, equipped with the concept of a bilinear covariant, could see that Deahna’s
condition was equivalent to his own and that, in addition, Deahna’s proof was viable.

There are thus bona fide historical reasons for renaming Frobenius’s Theorem 9.2 the
Jacobi–Clebsch–Deahna–Frobenius Theorem.42 That Cartan should focus upon Frobe-
nius is nonetheless also understandable on historical grounds.As we shall see in Sect. 11,
from Cartan’s perspective it was Frobenius who had first revealed the important role the
bilinear covariant can play in the theory of Pfaffian equations. Such a role is exempli-
fied by the above theorem, and inspired by such applications Cartan sought to apply
the bilinear covariant – the derivative of a 1-form in his calculus – to a wider range of
problems. In the concluding section I will offer some tentative arguments to the effect
that the phenomenon of the Frobenius Integrability Theorem is paradigmatic of one
of the principal ways in which the work of Frobenius has affected the emergence of
present-day mathematics.

Let us now briefly return to the reason Frobenius had established his complete inte-
grability theorem. As we saw at the end of Sect. 8, Frobenius’s proof of the Analytical
Classification Theorem 8.1 required establishing the completeness of a certain sys-
tem of partial differential equations Ai(f ) = 0, i = 1, . . . , d. By means of a rather
involved line of reasoning involving duality considerations among other things, Frobe-
nius argued [26, pp. 313–16] that the desired completeness would follow provided the
following special type of Pfaffian system is complete. Let ω = ∑n

i=1 aidxi denote
any Pfaffian expression in n variables x1, . . . , xn with associated bilinear covariant
�(u, v) = ∑n

i,j=1 aijuivj . The coefficients of � define a system of Pfaffian equations,
namely ωi = ∑n

j=1 aij dxj = 0, i = 1, . . . , n. These equations are not necessarily
linearly independent but if r = rank (aij ), then r of them are, and it is this system
of r independent equations that needs to be complete. In other words, the system of
all n equations needs to have r independent integrals. Clearly this will follow from
Frobenius’s Theorem 9.2 if ωi(b) = 0 and ωi(c) = 0 for i = 1, . . . , n, implies that
�i(b, c) = 0 for i = 1, . . . , n, where �i is the binary covariant of ωi .

Frobenius proved this as follows [26, §22]. By virtue of the special nature of the
system ωi = 0, the relations ωi(b) = 0, ωi(c) = 0 can be written in the form

42 Upon reading an early draft of this essay, the late Armand Borel suggested that such a
renaming would be more appropriate were it not too cumbersome. At his suggestion I have now
accorded more space to Deahna’s work and its motivation and wish to register my gratitude to
Borel for yet another well-informed suggestion aimed at improving my work.
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(a)

n∑

i=1

aij bi = 0 and (b)

n∑

j=1

aij cj = 0,

where the skew symmetry aji = −aij has been used in (a). Then if (b) is differentiated
with respect to xk and the resulting equation multiplied by bi and summed over i one
gets using (a)

n∑

i,j=1

∂aij

∂xk
bicj = 0. (9.15)

Clebsch [15, p. 162] had introduced the identity

∂aij

∂xk
+ ∂ajk

∂xi
+ ∂aki

∂xj
= 0,

to obtain the key relation (5.11) of his direct method. Frobenius used the identity to
rewrite (9.15) as

n∑

i,j=1

(
∂aki

∂xj
− ∂akj

∂xi

)

bicj = 0.

This of course shows that�k(b, c) = 0, where�k is the bilinear covariant ofωk , thereby
fulfilling the integrability condition of Theorem 9.2.

With the proof of the Existence Theorem, Frobenius’s proof of the Analytical Classi-
fication Theorem was accomplished for the case of a Pfaffian of classp = 2m. To handle
the case in whichω is of classp = 2m+1 – meaning rank A = 2m and rank Â = 2m+2
– he sought to slightly modify ω by replacing ai(x) with a∗

i (x) = ai(x) + ∂f (x)/∂xi
for some function f . For any such modification the bilinear covariant matrix A is easily
seen to be unaltered, and the idea is to choose f so that the rank of Â would drop to
2m, thereby making the modified Pfaffian of class p = 2m. In order to establish the
existence of a suitable function f Frobenius once again applied his integrability theorem
to a system ωi = 0 generated by the bilinear covariant of a Pfaffian ω [26, pp. 323–31].

10. Initial reactions

Compared to the work on Pfaff’s problem by his predecessors, Frobenius’s contribu-
tion was unique in two fundamental respects. It was the first clear and systematic attempt
to deal with the problem in complete algebraic generality and by methods – dominated
by rank considerations – well-suited to such generality. It was a Berlin-style solution
to the problem of Pfaff. The other unique feature was the introduction of the bilinear
covariant of a Pfaffian as a key theoretical tool. Of course, the skew symmetric Jacobi
matrix had been central to the theory since its introduction in 1827, but by thinking of
it as defining a bilinear form � associated to a linear form ω and by establishing the
importance to the theory of its invariance under variable changes as in the Analytical
Classification Theorem 8.1 and the integrability theorem (Theorem 9.2), Frobenius had
added a new dimension to the theory that was eventually explored more deeply and
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broadly by Cartan starting in 1899 as will be seen in the next section. Here I consider
briefly the reaction to Frobenius’s paper in the intervening years.

The appearance of Frobenius’s paper prompted two mathematicians, Sophus Lie
(1842–1899) and Gaston Darboux (1842–1917), to publish papers containing some
analogous results that had been discovered independently of his work.

Lie’s interest in the problem of Pfaff was a natural part of his interest during the
early 1870s in the theory of first order partial differential equations. Indeed, the the-
ory of contact transformations that he developed in this connection was directly related
to Pfaffian equations, since by 1873 he was characterizing contact transformations as
transformations in 2n+ 1 variables z, x1, . . . , xn, p1, . . . , pn which leave the Pfaffian
equation dz−∑n

i=1 pidxi = 0 invariant.43 In this period Lie claimed that all his work
on partial differential equations and contact transformations could be extended to the
general problem of Pfaff, but the only work he published concerned an efficient method
of integrating a Pfaffian equation in an even number of variables in the generic case. It
was not until Klein called his attention to Frobenius’s paper [26] on the general problem
that Lie composed his own paper on the subject, which he published in 1877 in the
Norwegian journal that he edited [60].

Invoking without proof theorems “from the theory of partial differential equations”
that were actually based more specifically on his (largely unpublished) theory of contact
transformations, Lie quickly arrived at Clebsch’s Theorem 5.1 as his Theorem I: either
(I) 2m independent functions Fi , fi exist such that ω = ∑m

i=1 Fidfi or (II) 2m + 1
independent functions �i , ϕi exist such that ω = dϕ0 +∑m

i=1�idϕi . Lie called these
expressions normal forms of ω. He focused upon the number of functions in a normal
form. This number is of course precisely the Frobenius class number p, although Lie
made no reference to Frobenius’s paper, even though he knew through Klein of its exis-
tence.44 Whether Lie ever looked at Frobenius’s paper is unclear, but he gave his own
proof that p is the sole invariant of ω, i.e., that any two normal forms of ω have the same
p and two Pfaffians ω and ω′ with the same p can be transformed into one another [60,
§2]. Lie also described a procedure for determining p for a given Pfaffian ω that was
a development of observations made by Jacobi [51, §22] and Natani [65, §8] in case
(I) [60, §4]. Like the formulations of his predecessors, Lie’s was cumbersome. In the
light of Frobenius’s paper it is easily seen that ifA = (aij ) is the Jacobi skew symmetric
matrix associated to ω = ∑n

i=1 aidxi , and at = (a1, . . . , an), then one always has

43 A discussion of the evolution of Lie’s theory of contact transformations and its relation to
the origins of his theory of transformation groups is given in Chapters 1–2 of my book [46].

44 In a letter to Mayer in March 1873 he wrote, “Frobenius’s work is probably very good? Since
I have little time, I have not been able to bring myself to read it” [21, p. 713]. In his reply [21,
p. 714] Mayer pointed out that it was rather strange that Frobenius did not mention work of either
of them in his paper, and this may have prompted Lie’s decision not to cite Frobenius’s paper.
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p = rank

(
A

at

)

(as Frobenius surely realized45), and this is what Lie was getting at by

his procedure, albeit without seeming to fully realize it.
The title of Lie’s paper, “Theory of the Pfaffian Problem I” suggested a sequel, and

Lie had indeed entertained the idea of a sizable second part containing an extension to
the general problem of Pfaff of his theory of contact transformations, first order partial
differential equations, and transformation groups. This part never materialized. In 1883
Lie explained to Mayer that “Because of Frobenius I have lost interest in the problem
of Pfaff . . . . I have already written too much that goes unread” [21, p. 714]. No doubt
to Lie Frobenius’s paper was representative of the “analytical” mathematical style of
the Berlin school, which he and Klein opposed in favor of a more intuitive, geometri-
cal or “synthetic” approach. Since in the 1870s the Berlin school was one of the most
prestigious and influential centers for mathematics, Lie’s remarks probably reflect the
seeming hopelessness of competing with the Berlin treatment of the problem of Pfaff
presented by Frobenius.

While Frobenius was working on the problem in 1876, so was Gaston Darboux,
although what he wrote up was not immediately submitted for publication. Instead he
gave his notes to Bertrand, who wished to incorporate them into his lectures at the
Collège de France during January 1877. As Darboux explained in 1882 when he even-
tually published his work [19, p. 15n],

Shortly thereafter a beautiful memoir by Mr. Frobenius appeared . . . bearing a date earlier
than that of January 1877 (September 1876) and there this learned geometer proceeded in
a manner somewhat analogous to what I had communicated to Mr. Bertrand in the sense
that it was based upon the use of invariants and of the bilinear covariant of Mr. Lips-
chitz. Upon returning recently to my work, it seemed to me that my exposition was more
calculation-free and, in view of the importance the method of Pfaff has assumed, that it
would be of interest to make it known.

This passage makes it fairly certain that it was by virtue of Frobenius’s “beautiful” (but
calculation-laden) treatment of the problem of Pfaff that Darboux was now publish-
ing his own approach. By considering the problem in such great generality and detail,
I suspect that Frobenius had contributed greatly to the perception of “the importance
the method of Pfaff has assumed,” and it was because Darboux’s own approach was
more calculation-free than Frobenius’s that he now thought it worthwhile to publish it. It
would seem from Darboux’s remarks that the first part of his memoir, discussed below,
represented what he had written in 1876 and given to Bertrand.

45 Frobenius apparently never explicitly gave the above expression for p, but it is an immediate
consequence of his remark directly following the Even Rank Theorem, namely that Theorem 7.1

implies that Â =
(
A a

−at 0

)

has the same rank 2m as A (whence p = 2m) if and only if this

is true of the rank of

(
A

at

)

[26, p. 263]. Thus the latter matrix has rank 2m + 1 precisely when

p = 2m+ 1. At this point in his paper Frobenius had not yet introduced the class number p and
so was not in a position to explain this point to his readers.
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Like Frobenius, Darboux began by establishing the “fundamental formula” that
shows that

∑n
i,j=1 aij dxiδj is a bilinear covariant, i.e., Lipschitz’s Theorem 6.1.46 How-

ever, he did not make Frobenius’s bilinear covariant�(u, v) the conceptual basis for his
theory but rather focused on the associated system of linear differential equations

ai1(x)dx1 + · · · + ain(x)dxn = λai(x)dt, i = 1, . . . , n,

where t denotes an auxiliary variable (so the xi can be regarded as any functions of t)
and λ is “a quantity that could be chosen arbitrarily as 0, a constant, or a function of t ,
according to the case” [19, p. 19]. For brevity I will denote this system in matrix notation
by Adx = λadt . Given two Pfaffians ω and ω′ in variables xi and x′

i , respectively, and
with respective systemsAdx = λadt andA′dx′ = λa′dt , Lipschitz’s Theorem 6.1 then
implied that if ω = ω′ by virtue of x = ϕ(x′) and dϕ : dx → dx′, then the corre-
sponding systems are likewise equivalent in the sense that Adx = λadt transforms into
A′dx′ = λa′dt .

Like Lie, Darboux first quickly established Clebsch’s Theorem 5.1. His proof was
based upon a theorem (stated at the end of Sect. IV) that he proved carefully in the
two generic cases, namely n is even and detA �= 0 and n is odd (so detA = 0) and
rank A = n − 1 [19, §III]. He considered briefly only the nongeneric case when n is
even [19, §IV], and in this connection he made an assumption that can be briefly sum-
marized as follows. Suppose C = C(x) is an n× nmatrix of rank r < n. (Here, as with
Frobenius, we grant Darboux the tacit assumption that r is the maximal rank and holds
in a neighborhood of some fixed x.) Then without loss of generality we can assume that
in this neighborhood a minor involving the first r row indices does not vanish, so that the
first r rows of C(x) are linearly independent – or “distinct” as Darboux said. Darboux
then took for granted that n− r functions ϕ1(x), . . . , ϕn−r (x)may be chosen so that the
first r rows ofC(x) together with the n−r gradients ∇ϕi(x) form a linearly independent
set, i.e., that the n× n matrix formed from Row1(C), . . . ,Rowr (C),∇ϕ1, . . . ,∇ϕn−r
does not vanish (in a neighborhood of x). Certainly it is easy to pick the ϕi so the n− r

gradients ∇ϕi are linearly independent, but how to pick the ϕi so that each ∇ϕi is also
independent of the first r rows of C(x)? One way is to pick them in the orthogonal com-
plement of these rows, which means that Xj(ϕ) = Rowj (C) · ∇ϕ = 0, j = 1, . . . , r
must have n−r independent solutions. By the Jacobi–Clebsch Theorem 5.3 this requires
that the system Xj(ϕ) = 0, j = 1, . . . , r be complete, but this is not at all apparent.
Darboux thus glossed over precisely the same sort of problem that (as indicated at the
end of Sect. 8) had compelled Frobenius into a lengthy detour that involved among other
things duality considerations and his Integrability Theorem 9.2.

From the above-mentioned theorem at the end of Sect. IV, Clebsch’s Theorem 5.1
then followed readily but of course was not rigorously established due to its dependence
on that theorem. Darboux expressed the forms (I) and (II) of Clebsch’s Theorem as
follows:47 Let x → y, z denote the variable change such that either

46 Darboux referred to Lipschitz’s Theorem in an 1882 footnote added to Part I of his paper, but
there is no such reference in the paper itself so that Darboux may have rediscovered Lipschitz’s
Theorem in 1876.

47 For notational consistency I have ordered the two cases as in the earlier discussion of Clebsch
and Frobenius; Darboux reversed the order.
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(I ) ω = z1dy1 + · · · + zmdym or (II ) ω = dy − [z1dy1 + · · · + zmdym] .

He then asked: given a Pfaffian ω in the original variables x (a) how can one determine
whether (I) or (II) holds, and (b) how can the number m be determined [19, p. 27]? He
claimed that by putting ω in one of the two forms (I) or (II) as per Clebsch’s Theorem,
it is easy to answer these questions since the answers are “invariant” under coordinate
change and are immediately clear in the y, z variables.

Consider, e.g., the case (II) of Clebsch’s Theorem. Then in the new variablesA′dx′ =
λa′dt becomes upon calculation

dyi = 0, dzi = −λdzi, i = 1, . . . , m, and 0 = λdt. (10.1)

Thus a solution can only exist for λ = 0 in case (II), and the system A′dx′ = λa′dt
reduces to a completely integrable system of 2m equations dyi = 0, dzi = 0, i =
1, . . . m. (If yi = φi(x), and zi = ψi(x) give the variable change, then the solutions
are φi(x) = Ci, ψi(x) = Di, i = 1, . . . m.) Likewise in case (I) in the new variables
A′dx′ = λa′dt takes the form

dyi = 0, dzi = λzidt, i = 1, . . . , m, (10.2)

which has solutions with λ = const. �= 0, namely yi = Ci, i = 1, . . . m and, since
zi = C′

ie
λt , zi/z1 = Di, i = 2, . . . m upon elimination of t [19, pp. 28–9].

Although Darboux didn’t mention it explicitly, note that in case (I) Adx = λadt in
its transformed form (10.2) also has a solution for λ = 0, namely yi = Ci and zi = Di .
Also note that in case (I) for both λ = 0 and λ = 1 the system Adx = λadt reduces to
2m equations, whereas in case (II) the number of equations is 2m for λ = 0 and 2m+ 1
in the impossible case λ = 1. Given the invariant property of these conclusions the same
results hold regarding the number of distinct equations in Adx = λadt for λ = 0 and
λ = 1 in the two cases.

Darboux’s main theorem [19, pp. 28–9] may be summarized as follows.

Theorem 10.1 (Darboux) If the system of differential equations Adx = λadt associ-
ated to the Pfaffian equation ω = 0 has solutions only when λ = 0, then a variable
change x → y, z is possible so that

(II ) ω = dy − [z1dy1 + · · · + zmdym],

and hence the number of distinct equations to which Adx = λadt reduces when λ = 0
is 2m [but this number is 2m + 1 for λ = 1]. If Adx = λadt has solutions for λ �= 0,
then ω may be put in the form

(I ) ω = z1dy1 + · · · zmdym,
and the number of equations to whichAdx = λadt reduces is 2m [regardless of whether
λ = 0 or λ = 1].

The parts of the theorem in square brackets were not stated explicitly by Darboux,
although they are immediate consequences of his (10.1)–(10.2).
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By way of an example, Darboux applied his results to the “most general case” by
which he meant what I have called the generic case [19, pp. 29–30] – the sole case for
which Darboux’s Theorem was proved rigorously. That is, he supposed first that: (a) n
is even and that detA �= 0 (the case dealt with by Pfaff and Jacobi). Then “one can solve
the equations . . . [Adx = λadt] . . . for the differentials dxi .” That is, dx/dt = λA−1a

and so by the theory of ordinary differential equations a solution with λ �= 0 exists and
case (I) obtains. Hence by Darboux’s Theorem, 2m = rank

(
A λa

) = rank A = n, and
so m = n/2. Next he supposed that: (b) n is odd so that necessarily the skew symmetry
of A forces detA = 0. “[B]ut its minors of the first order are not zero in general. As we
have seen, it is thus necessary, save for an exceptional case, that λ = 0 and thus that
the equations reduce to n− 1 distinct ones . . . .” This statement is full of the ambiguity
that attends generic reasoning (which, as noted above, Darboux tended to favor). The
“exceptional case” could be interpreted as the case in which rank A < n−1, but I believe
Darboux must have meant that, assuming rank A = n−1, then “in general” a will not lie
in the (n−1)-dimensional column space ofA, i.e., “in general” rank (A a) > rank A.
The exceptional case ignored by Darboux would then be when rank (A a) = rank A =
n− 1. (This exception occurs, e.g., for ω = 2(x1dx1 − x1dx2 + x1dx3).) If, following
Darboux, we ignore this exceptional case, then the caseλ �= 0 could not hold. For if it did,
then by Darboux’s Theorem we would have 2m = rank (A λa) = rank (A a) = n,
which is impossible since n is odd. Thus we are in the λ = 0 case, as Darboux concluded.

The above application of Darboux’s Theorem did not make use of the parts in square
brackets, the parts not stated explicitly by Darboux. With these parts included Darboux’s
Theorem gives a simple, essentially algebraic criterion to distinguish cases (I) and (II):
Case (I) holds if and only if the system Adx = λadt has the same number of distinct
equations for λ = 0 and λ �= 0, i.e., if and only if rank (A a) = rank A. From this
criterion, the exception to case (b), namely when rank (A a) = rank A, is seen to fall
under case (I), i.e., the λ �= 0 case.

It should also be noted that the above criterion is equivalent to Frobenius’sAnalytical
Classification Theorem 8.1. That is, as already explained above in a footnote to the dis-
cussion of Lie’s work, it follows readily from Frobenius’s results that his class number

p is given by p = rank
(
A

−at
)

= rank (A a). His Analytical Classification Theorem

thus says that case (I) occurs if and only if p = rank (A a) is even. The above criterion
states that case (I) occurs if and only if rank (A a) = rank A and Darboux’s Theorem
then implies that this common number is 2m and so is even.

Even if we grant Darboux the parts of Theorem 10.1 left unstated by him – and
hence the above criterion – it must be kept in mind that Darboux’s proof of his theo-
rem in the nongeneric cases was fatally flawed. Compared to Frobenius’s proof of the
Analytical Classification Theorem, Darboux had achieved great brevity but he had not
achieved it with a comparable degree of rigor. Darboux’s predilection for thinking in
terms of differential equations and their solutions may have caused him to gloss over the
above essentially algebraic criterion. That same predilection prompted him to discuss
the “efficiency issues” involved in integrating a Pfaffian system [19, §VII], something
Frobenius, with his own predilection for algebra, ignored.

What seems to have impressed Cartan about Darboux’s paper is the idea that if one
can rigorously deduce the canonical forms (I) and (II) of Clebsch’s Theorem 5.1, then
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the invariance of the binary covariant under coordinate transformations allows one to use
the algebraic simplicity of these forms to avoid the extensive calculations of Frobenius,
who did not prove Clebsch’s Theorem as a first step but rather incorporated it into his
Analytical Classification Theorem, the proof of which is extremely lengthy and laden
with calculations.

Although analysts appear to have been generally impressed by the masterful com-
mand of algebra manifested in Frobenius’s lengthy paper, some found his entire approach
too algebraic and regretted his focus upon the equivalence theory of Pfaffian forms to
the neglect of the issue of efficient methods of actually integrating Pfaffian equations.
Mayer’s review of Frobenius’s paper in the 1880 volume of Fortschritte der Mathema-
tik [63] was along these lines. Although admitting that Frobenius’s paper was “ample
(reich) in both scope and content,” he proceeded to contrast, somewhat unfavorably,
Frobenius’s approach with the “entirely different one” of Lie. Lie “at the very outset
with the help of a few simple theorems on partial differential equations” quickly estab-
lished Clebsch’s Theorem 5.1 and the necessary and sufficient conditions for equivalence
of two Pfaffians and showed how one can algebraically determine the number p of vari-
ables in the normal form of ω. These matters thus quickly dispatched, he then “focused
his attention primarily on the reduction to normal form by the smallest possible number
of integrations . . . .” But Frobenius “conceives of the problem in purely algebraic terms
and, as a consequence of this, while the algebraic side of the problem is more deeply
grounded, leaves the question of how to best integrate each successively occurring com-
plete system entirely untouched” [63, p. 250]

Mayer’s attitude seems to have been fairly typical of most analysts of the period who
were primarily interested in the integration of differential equations. Thus A. R. Forsyth
in the historical remarks to the 1890 volume of his Theory of Differential Equations,
which was devoted to Pfaffian equations, wrote that “Lie’s results constitute a distinct
addition to the theory. . . . . About the time of publication of the memoir by Lie just
referred to, Frobenius had . . . completed his memoir dealing with Pfaff’s problem. He
discusses the theory of the normal form rather than the integration of the equation; and
the analysis is more algebraic than differential” [22, p. 87]. Not surprisingly, only a very
slim chapter – Chapter X – was devoted to “Frobenius’ Method,” and it began with a
justification for its brevity: “The investigations of Frobenius . . . deal rather with the
general theory of the reduction of the [Pfaffian] expression to a normal form than with
any process for the integration of equations which occur in the reduction . . . [22, p. 272]

Forsyth’s book was more a compendium of diverse methods for treating Pfaff’s prob-
lem than a synthesis of those methods into a coherent theory. The first attempt at such
a synthesis was made in 1900 by Eduard von Weber [71], an instructor (Privatdozent)
at the University of Munich. In von Weber’s book Frobenius’s work was given a more
fundamental role to play, but in reality von Weber’s whole approach was destined for
obsolescence because in 1899 Élie Cartan had begun to develop an entirely new approach
to the theory of Pfaffian equations.

11. Cartan’s calculus of differential forms

Cartan had obtained his doctorate in 1894 with a brilliant thesis that provided a
rigorous foundation for Killing’s ground-breaking theory of finite-dimensional complex
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semisimple Lie algebras and its most impressive consequence – a complete classifi-
cation of simple Lie algebras.48 During the following four years most of his attention
was focused on developing applications of the ideas and results of his thesis, but he
was also on the lookout for new areas of research. One such area he seems to have
been considering at the time was the application of Lie’s theory of groups to Poin-
caré’s theory of invariant integrals. This comes out in a little paper of 1896 on Dar-
boux-style differential geometry [7], which is especially relevant to the present account
because in it we see that Cartan already realized that the variable change formulas in
multiple integrals could be derived by submitting the differentials involved to certain
rules of calculation. In a footnote he made the following observation.49 Consider an
oriented surface integral in n-dimensional space such as

∫∫
�
dxidxj where � denotes

a 2-manifold. Then if new variables xi = fi(y1, . . . , yn) are introduced the multiple
integral transformation formula may be derived by formally multiplying out dxidxj =
[
∑n
k=1(∂xi/∂yk)dyk][

∑n
l=1(∂xj /∂yl)dyl] using the rules

dykdyk = 0 and dyldyk = −dykdyl (k �= l) (11.1)

to obtain for dxidxj the expression
n∑

k,l=1

∂xi

∂yk

∂xj

∂yl
dykdyl =

∑

k<l

(
∂xi

∂yk

∂xj

∂yl
− ∂xi

∂yl

∂xj

∂yk
)dykdyl =

∑

k<l

∂(xi, xj )

∂(yk, yl)
dykdyl.

Since this formalism is to be applied to an integral over �, which is represented para-
metrically by yk = ϕk(s, t) for all k, Cartan added another rule:

dykdyl = ∂(yk, yl)

∂(s, t)
dsdt, (11.2)

so that
∫∫

�

dxidxj =
∫∫

D

∑

k<l

∂(xi, xj )

∂(yk, yl)

∂(yk, yl)

∂(s, t)
dsdt,

where D is the parameter domain in the st-plane.
Thus already in 1896 we see that Cartan was in possession of the fundamental rules

upon which the now-familiar exterior algebra of differential forms is built. But it was
not until 1899 that he found in the problem of Pfaff a sufficiently good reason to system-
atically develop a differential calculus based upon those rules when they are combined
with the key new notion of exterior differentiation. As he explained in the introductory
remarks to an 1899 paper on the problem [8, pp. 241–2],

The present work constitutes an exposition of the problem of Pfaff based upon the con-
sideration of certain differential expressions . . . [which] . . . are subject to the usual rules

48 Cartan’s thesis work is the subject of Chapter 6 of [46].
49 See [7, p. 143n]. For expository reasons, I have changed Cartan’s notation and expanded his

brief remarks. On earlier work, e.g., by Poincaré, on the transformation of multiple integrals and
the relation of this work to the generalized Stokes theorem of the exterior calculus of differential
forms, see [56, 57].
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of calculation as long as the order of differentials in a product is not permuted. In sum
the calculus of these quantities is that of the differential expressions that are placed under
the multiple integral sign. This calculus has many analogies with that of Grassmann; in
addition it is identical to the geometrical calculus used by Mr. Burali–Forti in a recent book.

The similarity of his calculus with the “Grassmann algebra” underlying Grassmann’s the-
ory of extension (Ausdehnungslehre) was thus recognized by him by 1899, although the
above quotation together with Cartan’s observations of 1896 make it clear that Cartan’s
calculus was not suggested by Grassmann’s work but by the consideration of multiple
integrals. In fact, like most 19th century mathematicians, Cartan may not have attempted
to penetrate the unusual notation of the Ausdehnungslehre (1862) so as to digest it
contents. His knowledge of the latter may have been indirectly obtained through the
above-mentioned Burali–Forti book, Introduction à la géométrie différentielle suivant
la méthode de H. Grassmann, which appeared in 1897 [6].

It is possible, however, that Grassmann’s work helped encourage Cartan to apply
his calculus of differential forms to the problem of Pfaff because through his familiarity
with Forsyth’s 1890 volume on the problem he would have known that Grassmann had
considered the problem in the 1862 version of his Ausdehnungslehre [33, §§500–527].50

Noting the “remarkable formal conciseness” that Grassmann had achieved with his alge-
braic apparatus [22, p. 84], Forsyth included a brief chapter on Grassmann’s work despite
his suspicion that it would be unintelligible to most readers because “adequate knowl-
edge of the analytical method of the Ausdehnungslehre” was “probably not common at
present” [22, p. 120n]. The possibility that his calculus of differential forms might also
lend itself to a concise treatment of the problem of Pfaff, may thus have been suggested
by Grassmann’s work. But Cartan’s overall approach drew more definite inspiration from
Frobenius, who, Cartan wrote, “in his beautiful memoir in Crelle’s Journal employs an
entirely new method. It is based on consideration of what he calls the bilinear covariant
of a Pfaffian expression” [8, p. 241].

It was the bilinear covariant introduced by Frobenius and then emphasized from a
slightly different perspective by Darboux that prompted Cartan to introduce something
not found in Grassmann or Burali–Forti: the idea of what is now called the exterior
derivative of a differential form. Indeed, if the rules (11.1) Cartan gave in 1896 are ap-
plied provisionally in the spirit of the above multiple integral calculations to formally
calculate a derivative dω of the Pfaffian ω = ∑n

i=1 aidxi , the result is

dω = ∑n
i=1 d(aidxi) = ∑n

i=1 d(ai)dxi +∑n
i=1 aid(dxi)

= ∑n
i=1

{∑n
j=1

∂ai
∂xj
dxj

}
dxi +∑n

i=1 aid(dxi)

= −∑n
i<j (

∂ai
∂xj

− ∂aj
∂xi
)dxidxj +∑n

i=1 aid(dxi).

This suggests defining d(dxi) = 0 so that

dω ≡
n∑

i=1

d(ai)dxi = −
n∑

i<j

aij dxidxj . (11.3)

50 Forsyth’s book [22] is cited by Cartan [8, p. 239n1] as a source of information on the problem
of Pfaff.
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For Cartan an expression such as that in (11.3) was regarded as symbolical. To evaluate
it, the rule (11.2) is applied to the dxidxj to obtain

dxidxj = ∂(xi, xj )

∂(s, t)
dsdt =

(
∂xi

∂s

∂xj

∂t
− ∂xi

∂t

∂xj

∂s

)

dsdt = uivj − ujvi,

where uk = (∂xk/∂s)ds and vk = (∂xk/∂t)dt .51 In effect dxidxj was for Cartan an
alternating bilinear function of u, v (as is dxi ∧ dxj for us today); and the identification
of dω as given in (11.3) with −�(u, v) would thus have been evident to Cartan – as
well as the all-important fact that differentiation is invariant under coordinate changes
so that if ω = ω′ under x = ϕ(x′), then also dω = dω′ [8, pp. 251–2].

In view of the above considerations it is not surprising to find Cartan defining the
derivative of a Pfaffian expression (1-form) as – in his notation –ω′ = ∑n

i=1 d(ai)dxi .
52

Indeed, immediately after presenting this definition he remarked that “consideration of
ω′ or, what amounts to the same thing, of the bilinear covariant of ω, forms the basis
of the beautiful investigations on the problem of Pfaff by Frobenius and Darboux” [8,
p. 252n].

By viewing Lipschitz’s bilinear covariant as an alternating bilinear form�, Frobenius
certainly made the connection between ω and the idea of its derivative dω more readily
apparent than did Darboux with his focus upon the system Adx = λadt (Sect. 10). But
it was Darboux who pointed out how the invariance of this system under coordinate
changes to canonical forms can be used to avoid many of the complicated calculations
that had attended the approach of Frobenius. Cartan developed this idea of Darboux’s by
defining the class number p of a Pfaffian ω as the smallest integer p for which a coordi-
nate change x = ϕ(y) exists such thatω = ∑p

i=1 Bi(y)dyi , where theBi depend only on
the first p variables y1, . . . , yp. Cartan’s rendition of the problem of Pfaff then consisted
in proving that ω can be transformed into the form (I) or (II) of Frobenius’s Analytical
Classification Theorem 8.1 according to whether p is even or odd, respectively. This
not only established the equivalence of his definition of p with that of Frobenius, it
also established the end result of Frobenius’s memoir, his analytical classification theo-
rem; and the route there, which is outlined below, was far more calculation-free due to
Cartan’s use of invariance in the spirit Darboux’s paper.

For 1-forms ω Cartan defined what he called higher derivatives as follows.53 With
ω′ = dω, let ω′′ = ω∧ω′, ω′′′ = (1/2)(ω′)2, and in general ω(2m−1) = (1/m!)(ω(m))2

while ω(2m) = ω ∧ ω(2m−1). If followed from the invariance properties of his calculus
that if ω → � under x = ϕ(y) then ω(q) → �(q), and Cartan proved that ω is of class
p if and only if p is the smallest integer such that ω(p) = 0, thereby demonstrating
the succinctness possible with his notational apparatus [8, p. 255]. As with the method
of Frobenius, Cartan’s route to the analytical classification theorem also required the

51 The evaluation of differential expressions, a natural consequence of their origin under multi-
ple integral signs, became essential to Cartan’s method of establishing relations among differential
expressions.

52 In his 1945 monograph [12] Cartan followed the lead of Kähler [55] and replaced the notation
ω′ with dω.

53 The wedge product notation was not used by Cartan.
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solutions to successive systems of partial differential equations Ak(f ) = 0 [8, p. 258].
We saw that the completeness of the systems Ak(f ) = 0 was not directly evident in
Frobenius’s method and required extensive mathematics, including his integrability the-
orem, to establish. Not so with Cartan. For example, the first such system arises from
the equation ω(p−2)∧df = 0. Since ω(p−2) is a (p−1)-form, ω(p−2)∧df is a p-form,
and if its coefficients are all set equal to zero the system Ak(f ) = 0 results. To see that
this system is complete, it is only necessary to make the variable change x = ϕ(y) that
puts ω in the form � = ∑p

i=1 Bi(y)dyp in accordance with the definition of p. Then
ω(p−2)∧df = 0 takes the form�(p−2)∧dg = 0, where g(y) = f (ϕ(x)), and by virtue
of the simple nature of � it is easily seen that the system corresponding to Ak(f ) = 0
in the new variables satisfies Jacobi’s integrability condition and so is complete by the
Jacobi–Clebsch Theorem 5.3.

Although Cartan had no need of Frobenius’s Integrability Theorem 9.2 in his proof
of the analytical classification theorem, he incorporated Theorem 9.2 and, more gen-
erally, its characterization of complete integrability into his papers of 1901 [9, 10] on
incomplete systems of Pfaffian equations

ω(i) =
n∑

j=1

a
(i)
j (x)dxi = 0, i = 1, . . . , r. (11.4)

Central to his study and classification of such systems was the assumption of a chain
of integral manifolds through a general point x: x ∈ M1 ⊂ M2 ⊂ · · · ⊂ Mg , where
dim Md = d and the integer g, called the genre of system (11.4), is such that there is
no integral manifold Mg+1 through x and containing Mg [9, pp. 254–63]. To obtain
conditions guaranteeing the existence of such a chain, Cartan turned to the bilinear co-
variants of the ω(i) [9, p. 249–50]. As Lipschitz [61, p. 77], Frobenius [26, p. 254], and
Darboux [19, p. 17] had all pointed out, if d and δ denote differentials in two different
directions in the tangent plane, then δ(

∑
j a

(i)
j dxj ) − d(

∑
j a

(i)
j δj ) = ∑

jk a
(i)
jk dxj δk .

Cartan concluded that if b and c are two vectors in the tangent plane determining these
two directions, then ω(i)(b) = 0 and ω(i)(c) = 0, and so the above relation implies that
�(i)(b, c) = 0, where as usual �(i) denotes the bilinear covariant of ω(i). Thus corre-
sponding to point x is a chain of vector spaces (the tangent spaces at x to the Md ) V1 ⊂
V2 ⊂ · · · ⊂ Vg such that each Vd is integral in the sense that ω(i)(b) = 0 for all b ∈ Vd
and in addition any two vectors b, c ∈ Vd are in involution54 in the sense that�(i)(b, c) =
0 for all i.Also there is no Vg+1 ⊃ Vg consisting entirely of integral vectors that are pair-
wise in involution. Cartan then argued that the existence of such a chain of vector spaces
at each x is not only necessary but sufficient for the existence of the above chain of inte-
gral manifolds.55 In this manner the integrability condition in Frobenius’s Theorem 9.2
was transformed by Cartan into the integrability condition for his own theorem.

Cartan found a use for Frobenius’s integrability theorem per se in his study of incom-
plete systems (11.4) with “characteristic elements” passing through any point x, thereby
affording a simplified integration process. The characteristic elements are determined

54 Cartan spoke of b and c as associated [9, p. 250].
55 Actually, certain regularity conditions need to be imposed [1, p. 132].
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by a system of Pfaffian equations, which I will call the characteristic equations. The
fundamental theorem of Cartan’s theory of characteristics is that the characteristic equa-
tions form a complete system. Cartan’s initial proof of this theorem [9, p. 304] was
brief and did not use Frobenius’s Integrability Theorem; but shortly thereafter he pre-
sented an exposition of his results within the framework of his calculus of differential
forms [10, Ch. 1–2], and then he used Frobenius’s Integrability Theorem to establish
the completeness of the characteristic equations. To do this, however, he first translated
the integrability condition of Frobenius’s theorem into a form more congenial to his
calculus of differential forms.

He did this as follows [10, p. 496]. If ωi = 0, i = 1, . . . , r , is a given system of
linearly independent Pfaffians, n − r additional Pfaffians �j , j = 1, . . . , n − r , may
be added so as to obtain n linearly independent Pfaffians ωi,�j . From the calculus of
these forms it followed that any 2-form could be expressed as a linear combination of
two-fold products of these n 1-forms, namely �j ∧ �k , �j ∧ ωi , and ωi ∧ ωj . This
applies in particular to the 2-forms dωi , and so

dωi =
∑

j<k

bijk�j ∧�k +
r∑

j=1

θij ∧ ωj ,

where the θij are the 1-forms obtained by factoring out ωj from the terms of dωi involv-
ing�k ∧ωj or ωi ∧ωj . According to Frobenius’s integrability condition dωi(b, c) = 0
whenever ωi(b) = 0 and ωi(c) = 0 for all i. Since the�j are independent of the ωi , the
only way this can happen is if all the coefficients bijk are identically zero. The integrabil-
ity condition in Cartan’s rendition of Frobenius’s theorem thus becomes the condition that

dωi =
r∑

j=1

θij ∧ ωj , i = 1, . . . , r, (11.5)

or, as he expressed it, dωi ≡ 0 (mod ω1, . . . , ωr).
Although the problem of Pfaff had supplied the initial impetus for Cartan to develop

his calculus of differential forms, his contribution to that problem pales in magnitude and
significance with the subsequent applications he made of his calculus. Even his paper
of 1899 contains considerably more than his new derivation of Frobenius’s Analyti-
cal Classification Theorem – the theorem that had formed the goal of Frobenius’s own
paper. From the outset Cartan seems to have been interested in Pfaffian equations as a new
means of dealing with partial differential equations of any order, and his 1899 paper con-
tains much along these lines. Likewise Cartan’s papers of 1901 on incomplete systems
of Pfaffian equations (discussed briefly above) provided a new, geometrically informed
approach to systems of partial differential equations, which in 1934 was extended by
Kähler [55] to include systems involving k-forms with k > 1.56 Cartan also developed
his theory of Pfaffian systems into the basis for his theory of the structure of infinite-
dimensional Lie transformation groups, which concluded in 1909 with a classification
of the simple types.57

56 In 1945 Cartan gave his own exposition of his and Kähler’s results in his monograph on the
exterior calculus of differential forms and its geometrical applications [12].

57 See Sects. 8.1–8.2 of my book [46].
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In all of this work by Cartan the consideration of bilinear covariants – derivatives of
1-forms – played a key role, and the idea that they should play such a role was some-
thing that Cartan evidently took away from the papers of Frobenius and Darboux. The
following passage from Cartan’s first paper of 1901 on incomplete systems is typical
of the many such remarks in his papers which signal his debt to them. Before Cartan
incomplete systems had been considered by Otto Biermann in 1885 [4] but only in the
generic case. Since then, Cartan wrote [9, p. 241],

nothing has been done except to demonstrate the same results in another form but without
ever achieving perfect rigor, and almost nothing has been done on the case in which the
coefficients of the system are not generic [quelconque].
Precise and general results can be achieved by taking into consideration the bilinear co-
variants of the right-hand sides of the equations of the system, whose introduction by
Frobenius and Darboux has proved to be so fertile in the theory of a single Pfaffian
equation.

The second paragraph of this passage indicates that Cartan had come to see the bilin-
ear covariant dω as a key mathematical tool. It also suggests that in seeking to assess
the influence that Frobenius’s paper had on Cartan, it is impossible to fully extricate the
influence of Frobenius from that of Darboux because invariably both men are mentioned
together when a reference to the introduction of dω is made. Granted that caveat, the
contents of the two papers in question are sufficiently different that it seems reasonable
to assume they impressed Cartan in different ways. From Darboux’s paper Cartan got the
idea of avoiding complicated calculations by invoking the invariance of his forms and
their derivatives under variable change to canonical forms – as in his proof (sketched
above) of Frobenius’s analytical classification theorem. That constitutes the principal
contribution made exclusively by Darboux. And what would have impressed Cartan
when reading Frobenius’s paper? It is there that the bilinear covariant as alternating
bilinear form � actually occurs as a central concept (as opposed to Darboux’s systems
Adx = λadt), thereby making the idea of introducing the derivative of a Pfaffian more
palpable. Furthermore, through his Integrability Theorem and the applications he made
of it, Frobenius did far more than Darboux to suggest the idea that the bilinear covar-
iant is the key to the study of Pfaffian equations. Indeed as we have seen, Frobenius’s
manner of characterizing integrability is central to the constructs by means of which
Cartan obtained “precise and general results ... by taking into consideration the bilinear
covariants” in his work on incomplete systems.

Frobenius’s treatment of the problem of Pfaff, although encumbered more by calcu-
lations, was also more carefully worked out and self-contained than Darboux’s. Frobe-
nius was the first and only mathematician prior to Cartan to correctly understand and
systematically analyze the completely general case of the problem of Pfaff, i.e., com-
pletely general in the algebraic sense as per Sect. 3; and this precedent setting work
must have impressed Cartan, who saw himself faced with the same sort of challenge
with regard to the theory of incomplete Pfaffian systems, as indicated in the preceding
quotation. Whereas Frobenius had systematically applied Berlin-style linear algebra,
Cartan drew upon the multilinear algebra behind his calculus of differential forms – as
well as his fertile geometrical imagination – to deal with the more formidable problems
he faced.
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12. Frobenius’s mathematics & its impact

Frobenius was the founder of one major mathematical theory of lasting importance,
the theory of characters and representations of finite groups, and yet the many the-
orems, concepts and constructs that bear his name today and are unrelated to group
representation theory suggest that his influence upon present-day mathematics goes far
beyond his role in creating that theory. What was it about his mathematics that caused
this to be the case? No doubt there are several reasons for this phenomenon. One such
reason, which I offer here on a tentative basis, is supported by my studies of various
of Frobenius’s publications and is subject to any modifications that arise as I continue
my study of his work in preparation for a book on his role in the history of linear
algebra.

Frobenius’s paper on the problem of Pfaff is, I suggest, paradigmatic of one of the
principal ways in which his work has left its mark on present-day mathematics. That
work was initiated, rather typically, by a specific problem, a problem of the sort encour-
aged by his experiences at Berlin: to deal successfully with the problem of Pfaff on
the nongeneric level, something that Clebsch had first attempted but without complete
success. It was, again as it typically was for Frobenius, a problem formulated within the
context of a body of earlier mathematical results on, in this case, the problem of Pfaff
– the work of Pfaff, Jacobi, Clebsch and Natani being the most significant – and Frobe-
nius read the literature as a scholar, carefully and thoroughly. The novel approach to the
problem he posed was also very much in harmony with his Berlin schooling: By means
of Lipschitz’s passing observations on the bilinear covariant of a 1-form (Theorem 6.1),
Frobenius was able to view his problem within the context of the simultaneous trans-
formation of a 1-form and its associated binary covariant and so to use the construct his
friend and fellow student Stickelberger had introduced in his Berlin doctoral dissertation.
Then in accordance with the procedure used by Christoffel and the disciplinary ideal
articulated by Kronecker, he sought to reduce the problem to an algebraic one involving
the canonical forms of a pair consisting of a linear and a skew symmetric bilinear form.
Having thus formulated an appropriate way to go about resolving the problem he had
posed, Frobenius then applied his creative talent to develop the new approach system-
atically so that the end result – his paper on the problem of Pfaff – was essentially a
carefully worked out and original “monograph” on the problem.

Like Weierstrass’s cycle of lectures on analysis, Frobenius’s publications convey the
conviction that the clear and systematic presentation of results in the proper manner, i.e.,
developed from the proper unifying mathematical viewpoint, was just as important as
the discovery of new results by whatever means.58 This penchant on Frobenius’s part is
clearly set forth in a paper of 1875 (thus predating his Pfaff paper) on the application of the
theory of determinants – the foundation of Berlin-style linear algebra – to metric geome-
try [25]. Frobenius’s own account of why he published this paper is worth quoting in full:

58 As Weierstrass wrote to Sonja Kowalewsky, “was ich aber von einer wissenschaftlichen Ar-
beit verlange, ist Einheit der Methode, consequente Verfolgung eines bestimmten Plans, gehörige
Durcharbietung des Details und, dass ihr der Stempel selbständiger Forschung aufgeprägt sei.”
Letter dated 1 January 1875 and published in [5]. Also quoted by Mittag-Leffler [64, p. 155].
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In 1868 I was induced by a prize question set by the philosophical faculty of the University
of Berlin to concern myself with the application of the theory of determinants to metric
geometry, and at that time I wrote some works on this subject, which have hitherto been
held back from publication by other work. In the meantime the work of Mr. Darboux . . .
[18] . . . came to my attention, just as I was putting together a brief sketch of my investiga-
tions. In it I found a large part of the metric relations and geometrical constructions treated
by me developed in a very elegant and original manner. Whereas with Mr. Darboux there
is no connection between the metric relations and the geometrical constructions, a main
objective of my work is to show how the solution to complicated geometrical problems
can be read off simply and easily from a few metrical relations.
Partly on these grounds and partly on account of the difficulty of presenting those of my
results that are not found in that work [by Darboux] separated from the rest, I wish to
communicate here in abbreviated form [im Auszuge] my developments.

Thus despite the elegant approach of Darboux and the fact that his memoir contained
many of the same results, Frobenius felt compelled and justified in presenting those
same results by means of his own approach, which he clearly deemed superior for the
reason given, even though it required sixty-two pages to do this.

Frobenius had a genuinely scholarly approach to his mathematics in the sense that
once interested in a particular problem he made a thorough search of the literature, which
he then creatively viewed and developed from the unifying approach that he deemed the
proper one for the subject at hand. In the case of his paper on metrical geometry it
was the idea of a small set of geometrical relations from which, with the aid of the
theory of determinants, a multitude of complicated geometrical constructions could be
immediately obtained. In the case of the problem of Pfaff the approach was that of the
transformational equivalence of Pfaffian expressions (or 1-forms) and the key unifying
concept was the bilinear covariant. In developing his own approach to the material he
of course drew as needed upon his broad-based knowledge of the mathematical litera-
ture. Thus he borrowed the key notion of the bilinear covariant from Lipschitz, which
thanks to Jacobi’s introduction of his skew-symmetric matrix into the problem of Pfaff,
Frobenius could see as central to the problem of Pfaff. And of course from Clebsch’s
work he obtained not only the mathematical problem that motivated his work, but also
the two canonical forms I and II of his equivalence theory. Likewise, as noted in Sect. 9,
his complete integrability theorem drew upon the results of Jacobi, Clebsch, and Deahna,
as well as the general realization in the literature of a duality between systems of linear
homogeneous differential equations and systems of Pfaffian equations.

Frobenius’s genius was to combine these elements in a clear, systematic manner
unified by a central concept, that of the bilinear covariant. He had a considerable talent
for clear mathematical exposition – more so than his mentor Weierstrass. His contem-
poraries, including Cartan, regarded his work as exceptionally thorough and rigorous.
The resulting “monograph” that Frobenius produced did not appeal to everyone, as we
saw in Sect. 10. Yet top mathematicians such as Darboux and Cartan were impressed by
Frobenius’s “beautiful” essay on the problem of Pfaff, and they paid him the compliment
by seeking to improve and build upon it.

Thus Darboux pointed out the value of quickly establishing and then utilizing the
covariance of the bilinear covariant as a means of avoiding some of Frobenius’s exten-
sive algebraic calculations; and Cartan, besides taking full advantage of Darboux’s
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suggestion, saw that the central role played in Frobenius’s work by the bilinear covariant
could be incorporated into his still fragmentary, incomplete and seemingly insignificant
calculus of differential forms, thereby providing it with the central notion of the exte-
rior derivative of a 1-form so as to obtain the associated bilinear covariant and make
his calculus applicable to the problem of Pfaff. Frobenius had not only formulated the
results of Jacobi, Clebsch and Deahna in terms of the bilinear covariant as the Integra-
bility Theorem 9.2 but he also made several applications of it, thereby suggesting its
further utility; and Cartan, after reformulating it within the context of his now-complete
calculus of differential forms, went on to demonstrate its utility within the framework
of the problems of interest to him in the theory of partial differential equations.

Of course, as indicated in Sect. 11, Cartan went on to apply his calculus of differ-
ential forms to more than just the problem of Pfaff, thereby establishing that calculus
as a basic tool in the repertory of present-day mathematics and advancing the theory
of partial differential equations, Lie group theory, and algebraic topology in brilliant
ways far removed from the work and interests of Frobenius. Yet it seems to me that
Frobenius’s “monograph” on the problem of Pfaff, which by 19th century standards was
remarkably clear and conceptually coherent, was, for the above reasons, as well as by
virtue of Frobenius’s attempt (like Cartan’s) to deal with problems on an algebraically
nongeneric level, a major influence upon Cartan as he initiated the theory and application
of his calculus of differential forms. That Frobenius’s name alone has remained attached
to his complete integrability theorem, although not at all historically accurate, has a
kind of historical validity in the sense that it is a reflection of the way Frobenius’s work
influenced Cartan and, through him, present-day mathematics. Cartan’s work rendered
Frobenius’s “monograph” obsolete, but some of its central ideas were subsumed in the
work of Cartan and thereby eventually into contemporary mathematics. The association
of Frobenius’s name with the Integrability Theorem is a telltale of this phenomenon.
Many of Frobenius’s other monographic essays on various mathematical problems, I
believe, also influenced the development of mathematics in similar ways, as I hope to
show in the above-mentioned prospective book.
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26. G. Frobenius. Über das Pfaffsche Problem. Jl. für die reine u. angew. Math., 82:230–315,
1877. Reprinted in Abhandlungen 1, 249–334.
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58. L. Kronecker. Über Schaaren von quadratischen und bilinearen Formen. Monatsberichte der
Akademie der Wiss. zu Berlin, pages 59–76, 1874. Reprinted in Werke 1, 349–372.
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