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Abstract

Evans developed a classical unified field theory of gravitation and elec-
tromagnetism on the background of a spacetime obeying a Riemann-Cartan
geometry. This geometry can be characterized by an orthonormal coframe
ϑα and a (metric compatible) Lorentz connectionΓαβ. These two potentials
yield the field strengths torsionTα and curvatureRαβ. Evans tried to infuse
electromagnetic properties into this geometrical framework by putting the
coframeϑα to be proportional to four extended electromagnetic potentials
Aα; these are assumed to encompass the conventional Maxwellian potential
A in a suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of
gravity was adopted by Evans to describe the gravitational sector of his the-
ory. Including also the results of an accompanying paper by Obukhov and
the author, we show that Evans’ ansatz for electromagnetismis untenable
beyond repair both from a geometrical as well as from a physical point of
view. As a consequence, his unified theory is obsolete.
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1 Introduction

One of the problems in evaluating Evans’ unified field theory is that its content is
spread over hundreds of pages in articles and books of Evans and his associates.
There is no single paper in which the fundamentals of Evans’ theory are formu-
lated in a concise and complete way. Nevertheless, we can take Evans’ papers
[23, 24], which subsume also work done earlier, as a startingpoint. Now and then,
when additional information is required, we will use other publications of Evans
and collaborators, too [19, 25–28]. We will try to put the fundamental equations
of Evans’ theory in a way as condensed as possible; in fact, wewill come up with
the nine equations from (78) to (86) that characterize Evans’ theory. Incidentally,
we came across Evans’ unified field theory in the context of a refereeing process.
And in the present paper, we will formulate our assessment inconsiderable detail.

We use, as Evans does in [24], the calculus of exterior differential forms. A
translation for Evans’ notation into ours is given in Table 1(at the end of the
Introduction).

The evaluation of Evans’ theory is made more demanding sincehis articles
contain many mathematical mistakes and inconsistencies, as has been amply shown
by Bruhn [2–10] and Rodrigues et al. [18, 58]. Let me just illustrate this point with
two new examples. I take Evans’ “Einstein equation” in [24],App.4, Eq.(11),
namelyRa

b = kT a
b . According to Evans’ definition [24], Eq.(16), the left hand

side represents the curvature 2-form in a Riemann-Cartan geometry (i.e.,Rαβ =
−Rβα) and the right hand side is proportional to the components ofthe canonical
energy-momentum tensorT a

b . Clearly, this equation is incorrect since a 2-form
Ra

b = Ra
µνb dxµ ∧ dxν/2 with its 36 components cannot be equated to the 16 com-

ponent of a second rank tensor. If we generously interpretedRa
b as Ricci tensor,

even though Evans denotes the Ricci tensor always asRµν , the equation would be
wrong, too. A second example, we can find nearby: In [24], App.4, Eq.(10),
Evans claims that the energy-momentum of his generalized Einstein equation
obeysD ∧ T a

b = 0. It is well-known, however, that in a spacetime with torsion
there can be no zero on the right-hand-side, rather torsion and curvature dependent
terms must enter, see [35], Eq.(3.12). Similar examples canbe found easily.

One may argue, as I will do in future, that a scientist educated as chemist
may have a great idea in physics even if the mathematical details of his articles
are not quite sound. Accordingly, I sometimes followed not only that subclass of
Evans’ formulas that deemed correct to me, but also his prosein oder to under-
stand Evans’ underlying “philosophy”.

It is clear from [24] that the 4-dimensional spacetime in which Evans’ the-

2



ory takes place obeys a Riemann-Cartan geometry (RC-geometry) [35] or, in the
words of Evans, a “Cartan-geometry”. We decided to take whatEvans calls an
antisymmetric part of the metricϑαβ := ϑα ∧ ϑβ (hereϑα is the coframe of the
RC-spacetime) not seriously as a part of the metric, see Bruhn [7] for a detailed
investigation. The quantityϑαβ = −ϑβα is an antisymmetric tensor-valued 2-form
with 36 independent components and it is a respectable quantity, but it certainly
cannot feature as a metric. Since Evans very often claims to use a RC-geometry,
we take his word for it. Then, an asymmetric metric is ruled out. One cannot have
both, RC-geometry and an asymmetric metric. Both are mutually exclusive.

In a RC-geometry, a linear connectionΓ and a metricg with Minkowskian
signature(+−−−) are prescribed, furthermore metric compatibility is required.
This guarantees thatlengths and anglesare integrable in RC-geometry. Evans
arrives at a RC-geometry by means of what he calls the “tetradpostulate”, see
[24], Eqs.(32) and (33), and Rodrigues et al. [58].

In Sec.2 we will display the geometric properties of a RC-geometry in the 4-
dimensional spacetime in quite some detail. In particular,we define torsion and
curvature and decompose torsion irreducibly under the local Lorentz group. We
introduce the contortion and the Ricci 1-forms and the curvature scalar. Moreover,
the two Bianchi identities are displayed and two irreducible pieces projected out
leading to the Cartan and Einstein 3-forms. The Ricci identity will be mentioned
shortly.

In Sec.3 we will take Evans’ ansatz relating the coframeϑα to a generalized
electromagnetic potentialAα according toAα = a0 ϑα, wherea0 is a scalar factor

of the dimensionmagnetic flux /length
SI
= Wb/m = V s/m, see Evans and Eckardt

[28], p.2. We will point out that in this way one finds four Lorentz-vector valued 1-
forms or, in other words, extended electromagneticSO(1, 3)-covariant potentials
Aα with 16 components, in contrast to what Evans finds, namelyO(3)-covariant
potentials. Then the extended electromagnetic field strengthFα is defined and the
generalized Maxwell equations displayed and discussed.

In Sec.4 we show that Evans just adopted the viable Einstein-Cartan theory
(EC-theory) of gravity for his purpose literally. His generalized Einsteinian field
equation is the same as the first field equation of EC-theory. As a consequence
of the angular momentum law, Evans also used the second field equation of EC-
theory, even though he used it only in words in identifying torsion with the spin of
matter. Then we display the energy-momentum and angular momentum laws. It is
pointed out that the so-called Evans wave equation for the coframeϑα is aredun-
dantstructure since the dynamics ofϑα is already controlled by the generalized
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Notion Evans here

coframe qa = qa
µdxµ ϑα = ei

αdxi

connection ωa
b = ωa

µbdxµ Γα
β = Γiα

βdxi

torsion T a = 1
2
T a

µνdxµ ∧ dxν T α = 1
2
Tij

αdxi ∧ dxj

curvature Ra
b = 1

2
Ra

bµνdxµ ∧ dxν Rα
β = 1

2
Rijα

βdxi ∧ dxj

Ricci tensor/1-form Rµν Ricα = eβ⌋Rα
β = Ricβαϑβ

Evans’ elmg. potential Aa Aα

Evans’ elmg. constant A(0) a0

Evans’ elmg. field strength F a Fα

Evans’ hom. current jν J α
hom

Evans’ inh. current Jν J α
inh

can. energy-mom. density T a
b Σα = Tα

βηβ

spin ang. mom. density ? ταβ = Sαβ
γηγ

Hodge duality Ψ̃a ⋆Ψα

Table 1: Translation of Evans’ notation into ours. Note thatηα = ⋆ϑα. In Evans’
work, T a

b is also sometimes used as symmetric energy-momentum tensor.

Einstein equation together with the Cartan equation.
In Sec.5 we collect the fundamental equations of Evans’ theory in the nine

equations from (78) to (86). We will explain what exactly we call Evans’ unified
field theory. In an accompanying paper by Obukhov and the author [41], we
propose a new variational principle for Evans’ theory and derive the corresponding
field equations of Evans’ theory. It turns out that for all physical cases we can
derive the vanishing of torsion and thus the collapse of Evans’ theory to Einstein’s
ordinary field equation. We discuss our findings, including the results of [41], and
summarize our objections against Evans’ unified theory.

A few historical remarks may be in order. Cartan himself noticed in a letter
to Einstein, see [17], page 7, that one irreducible piece of the torsionT “has
precisely all the mathematical characteristics of the electromagnetic potential”; it
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is apparently the vector pieceTvec that he determined earlier, between 1923 and
1925, in [14]. Thus he discussedTvec ∼ A, whereA is the potential of Maxwellian
electrodynamics. Note that this assumption is totally different from Evans’ ansatz
ϑα ∼ Aα. Moreover, Cartan didnot develop a corresponding electromagnetic
theory. In fact, in the same papers [14], he linked, within a consistent theoretical
framework, torsion to the spin of matter. He laid the groundwork to what we
call nowadays the EC-theory of gravity [1, 35, 68]. This excludes the mentioned
identification of a piece of the torsion with the electromagnetic potential.

Later Eyraud [29] and Infeld [45] and, more recently, Horie [44] tried to link
torsion to the electromagnetic field. But these attempts didlead to nowhere. For
more details, one may consult Tonnelat [66] and Goenner [31].

2 Geometry: Riemann-Cartan geometry of space-
time

2.1 Defining RC-geometry

We assume a 4-dimensional differential manifold. At each point, the basis of
the tangent space are the four linearly independentvectorseα = ei

α∂i , here
α, β, ... = 0, 1, 2, 3, the (anholonomic) tetrad indices, number the vectors and
i, j, k, ... = 0, 1, 2, 3, the (holonomic) coordinate indices, denote the components
of the respective vectors. The basis of the cotangent space is span by the four
linearly independentcovectorsor 1-formsϑ

β = ej
β dxj . The bases of vectors

and covectors are dual to each other. Consequently, we haveei
α ei

β = δβ
α and

ei
β ej

β = δi
j . We call collectively theeα’s and theϑβ ’s alsotetrads. We follow the

conventions1 specified in [37].
On our manifold we impose aconnection1-form Γα

β = Γiα
βdxi that allows

us to define the parallel transport of quantities. Accordingly, we have acovariant
exterior derivativeoperatorD := d+Γα

β fα
β , wherefα

β represents the behavior
of the quantity under linear transformations. Additionally, we impose a symmetric

1 We build from the coframeϑα by exterior multiplication and by applying the Hodge
star the following expressions:ϑαβ := ϑα ∧ ϑβ , ϑαβγ := ϑαβ ∧ ϑγ , etc.; η :=
⋆1 (volume 4-form), ηα := ⋆ϑα , ηαβ := ⋆ϑαβ , etc., see [37, 38]. We denote antisymmetriza-
tion by brackets[ij] = (ij − ji)/2 and symmetrization by parentheses:(ij) = (ij + ji)/2. Anal-
ogously for more indices, as, e.g., for[ijk], where we have[ijk] = (ijk − jik + jki−+ · · · )/3!,
see Schouten [60, 61].
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metric g = gij dxi ⊗ dxj , with gij = gji. Referred to a tetrad, we havegαβ =
ei

αej
β gij.

Metric and connection are postulated to be metric compatible, that is, the non-
metricity 1-formQαβ := −Dgαβ is postulated to vanish:Qαβ = 0. This guaran-
tees that lengths and angles are constant under parallel transport. In accordance
with this fact, it is convenient to choose the tetrads to beorthonormalonce and
for all. Then,gαβ = diag(+1,−1,−1,−1) =: oαβ , whereoαβ is the Minkowski
metric. If we raise theα-index of the connection, thenΓαβ = −Γβα. This is
known as the Lorentz (or spin) connection, since the indicesα andβ transform
locally under the Lorentz groupSO(1, 3). Hence, the variablesϑα andΓαβ , i.e.,
coframe and Lorentz connection, specify the geometry completely.

In the subsequent section, we need to discuss the transformation properties
of the coframeϑα. Under a coordinate transformation, it behaves like a 1-form,
in components,ei′

α = ∂xj

∂xi′
ej

α. Under local SO(1,3) Lorentz rotationsΛβ
α′

, it
transforms as a Lorentz vectorϑα′

= Λβ
α′

ϑβ . The spatial rotation groupO(3) is
a subgroup ofSO(1, 3). But the Lorentz group includes also the boosts. In other
words, whereas a spatialO(3)-rotation ofϑα is an allowed procedure, the theory
is only locally Lorentz covariant — and thus takes place in a RC-geometry — if
the coframeϑα transforms under the completeSO(1, 3). If a theory admitted only
anO(3) transformation, then it would violate Lorentz invariance.

The geometry defined so far is called a RC-geometry. It is alsoclear from
the statements ofEvansthat he usesexactly the same geometry. Thus, we have
a secure platform for our evaluation. In four dimensions, RC-geometry was first
used in the viable Einstein-Cartan(-Sciama-Kibble) theory of gravity, for short
EC-theory [34, 35, 49, 62, 63, 67, 68].

2.2 Torsion and curvature

From our variableϑα andΓa
β, we can extract two Lorentz tensors, thetorsionand

thecurvature2-forms, respectively:

T α := Dϑα = dϑα + Γβ
α ∧ ϑβ , (1)

Rα
β := dΓα

β − Γα
γ ∧ Γγ

β . (2)

In RC-geometry, we have, because of the metric compatibility, Γαβ = −Γβα, and
thus,Rαβ = −Rβα. In four dimensions, torsion and curvature have 24 and 36
independent components, respectively.
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If one applies a Cartan displacement (rolling without gliding) around an in-
finitesimal loop in the manifold, thentorsion is related to thetranslationalmisfit
and the curvature to the rotational misfit; a discussion can be found in [15], see
also Sharpe [65], our book [38], Sec.C.1.6, and the recent article of Wise [70].
Alternatively, one may build up an infinitesimal parallelogram, then thetransla-
tional closure failure is proportional to the torsion. This is important: Geometri-
cally, from the point of view of RC-geometry, torsion has nothing to do with spin,
but rather with translations. It is for this reason that torsion can be understood
as the field strength of a translational gauge theory, see Gronwald [32]. Conse-
quently, when Evans treats torsion and spin (Spin of matter?Spin of gravity?
Spin of electromagnetism?) synonymously, as he does in all of his articles on his
theory,2 then this can only be understood as an additionaldynamical assumption
that is independent from the RC-geometry of the underlying spacetime. We will
see further down in detail that this is, indeed, the case.

The torsion 2-formT α can be contracted byeα⌋ to a covectoreα⌋T
α and

multiplied byϑα to yield a 3-formϑa ∧ T α or, using the Hodge star, to a covector
with twist ⋆ (ϑa ∧ T α). These expressions correspond to the vector and the axial
vector pieces of the torsion. More formally, we can decompose the torsion tensor
irreducibly under the local Lorentz into three pieces:

T α = (1)T α + (2)T α + (3)T α . (3)

The second and the third pieces correspond to the mentionedvector and axial
vectorpieces, respectively,

(2)T α :=
1

3
ϑα ∧ (eβ⌋T

β) , (4)

(3)T α :=
1

3
eα⌋(ϑβ ∧ T β) , (5)

whereas the first piece can be computed by using (3).
For a comparison with Riemannian geoemtry, it is often convenient to de-

compose the connection 1-form into a Riemannian part, denoted by a tilde, and a
tensorial post-Riemannian part according to

Γα
β = Γ̃α

β − Kα
β . (6)

2 “There are two fundamental differential forms...that together describe any spacetime, the
torsion or spin form and Riemann or curvature form.” See Evans [24], p.434. Just by the choice of
Evans’ language, torsion is always identified with spin. We are not told what sort of spin we have
to think of. In Sec.4 we will see that it has to be the total spinof all matter and the electromagnetic
field, with exception of gravity.
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In RC-geometry, theKα
β can be derived by evaluatingDgαβ = 0. We find the

contortion1-form as [37]

Kαβ := 2e[α⌋Tβ] −
1

2
eα⌋eβ⌋(Tγ ∧ ϑγ) = −Kβα . (7)

Resolved with respect to the torsion, we haveT α = Kα
β ∧ ϑβ .

The curvature 2-form yields, by contraction, the Ricci 1-form

Ricα := eβ⌋Rα
β = Ricβα ϑβ = Rγβα

γϑβ. (8)

In a RC-geometry, the components of the Ricci 1-form are asymmetric in general:
Ricαβ 6= Ricβα. By transvection with the metric, we find the curvature scalar

R := gαβ Ricαβ = gαβeα⌋Ricβ = eα⌋eβ⌋R
αβ = −eα⌋

[
eβ⌋

⋆
(

⋆Rαβ
)]

. (9)

After some algebra, see [38], p.338, we find for the curvaturescalar, withηαβ =
⋆ (ϑα ∧ ϑβ), the following:

R = eα⌋eβ⌋R
αβ = ⋆

(
ηαβ ∧ Rαβ

)
. (10)

The expression under the star can be taken as a Lagrangian 4-form of the gravita-
tional field.

The curvature 2-form can be decomposed into 6 different pieces, see [37].
Among them, we find the symmetric tracefree Ricci tensor, thecurvature scalar,
and the antisymmetric piece of the Ricci tensor.

2.3 Bianchi identities

If we differentiate (1) and (2), we find the two Bianchi identities for torsion and
curvature, respectively:

DT α = Rβ
α ∧ ϑβ , (11)

DRα
β = 0 . (12)

Incidentally, Evans agrees that he and we use the same RC-geometry.3

3M.W. Evans states in his internet blog http://www.atomicprecision.com/blog/2006/12/08/
endorsement-of-ece-by-the-profession/ the following: “The two Cartan structure equations, two
Bianchi identities and tetrad postulate used by Carroll, Hehl and myself are the same.” See, how-
ever, a note of Bruhn [8] on some mistake in the correspondingconsiderations of Evans.
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Both Bianchi identities can be decomposed irreducibly under the local Lorentz
group into 3 and 4 irreducible pieces, respectively; for details, see [36, 37, 53]. We
remind ourselves of the 1-formηαβγ = ⋆(ϑα ∧ ϑβ ∧ ϑγ), where the star denotes
the Hodge operator. Then, by exterior multiplication of theBianchi identities with
this 1-form, we can extract from (11) an irreducible piece with 6 independent
components,

DT γ ∧ ηγαβ = Rδ
γ ∧ ϑδ ∧ ηγαβ , (13)

and from (12) one with 4 independent components,

DRβγ ∧ ηβγα = 0 . (14)

We define theCartanand theEinstein3-forms,

Cαβ :=
1

2
ηαβγ ∧ T γ , (15)

Gα :=
1

2
ηαβγ ∧ Rβγ , (16)

respectively. Now we shift in (13,14) by partial integration the 1-formηαβγ under
D. After some algebra, we find,

DCαβ = −η[α ∧ Ricβ] , (17)

DGα =
1

2
ηαβγδ Rβγ ∧ T δ . (18)

Thus, the Cartan 3-formCαβ and the Einstein 3-formGα are important quantities
since they appear in the two contracted Bianchi identities (17) and (18) under the
differentiation symbol.

Using (16) and the formulaϑ[α ∧ Gβ] = η[α ∧ Ricβ], Eq.(17) can be rewritten
in terms ofGα. Thus, finally we have for the two contracted Bianchi identities,
see also [54, 55],

DCαβ + ϑ[α ∧ Gβ] = 0 , (19)

DGα =
1

2
ηαβγδ Rβγ ∧ T δ . (20)

We will come back to these6 + 4 independent equations below. Note that (20)
is only valid in four dimensions. Inthreedimensions — thenGα is a 2-form —
the term on the right-hand-side of (20) vanishes,4 see [36], that is,DGα = 0 (for
α = 1, 2, 3).

4 É. Cartan [12, 13] worked very intuitively. One of his goals in analyzing Einstein’s theory was
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2.4 Ricci identity

If we differentiate covariantly the vector-valuedp-form Ψα, we find, because of
the Poincaré lemmadd = 0, the Ricci identity

DDΨα = Rβ
α ∧ Ψβ . (21)

This is particularly true for the coframe,

DDϑα = Rβ
α ∧ ϑβ . (22)

Evans is calling the Ricci identity (22) simply “Evans’ lemma”, see [25], p.464.
However, he made a calculational mistake and found for the right-hand-side of
(22) effectively the expressionR ⋆ϑα, instead of the correctRβ

α ∧ ϑβ .

3 Electromagnetism: Evans’ ansatz for extended elec-
tromagnetism

3.1 Evans’ ansatz

Up to now, everything is quite conventional. The RC-geometry, which Evans is
using, has been introduced earlier in gauge theories of gravity and is well un-
derstood, see [33]. However, in the electromagnetic sector, Evans has a highly
unconventional ad hoc ansatz. He assumes the existence of anextended electro-
magnetic potentialAα that is proportional to the coframeϑα,

Aα = a0 ϑα or Ai
α = a0 ei

a , (23)

see Evans [24], Eq.(12). Herea0 denotes a scalar constant of dimension[a0] =
magnetic flux /length;it has supposedly to be fixed by experiment.

to get a geometrical understanding of the Einsteintensor, that is, to get hold of the Einstein tensor
without using analytical calculations. He achieved that for three dimensions, whereDGα = 0.
Obviously Cartan’s intuition worked with three dimensions. There is evidence for this, namely,
he constructed a special 3-dimensional model of a RC-space [12, 13], the Cartan spiral staircase;
for a discussion, see Garcia et al. [30], Sec.V. Apparently over-stretching his intuition, Cartan also
assumedDGα = 0 for four dimensions and run into difficulties with his gravitational theory. We
go into such details here, since Evans [25], p. 464, commits the same mistake as Cartan did and
assumesDGα = 0 for four dimensions, whereas, in fact, (20) is correct. The comparison between
the four-dimensional EC-theory and a three-dimensional continuum theory of lattice defects has
been reviewed by Ruggiero & Tartaglia [59].
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Due to the omnipresence of the coframeϑα, an extended electromagnetic po-
tential Aα is created by (23) everywhere. Thus, one may call such an ansatz
pan-electromagnetic. The constanta0 must be thought of as a universal constant.
Otherwise a geometric theory, which supposedly describes auniversal interaction,
looses its raison d’être. The dimension ofa0 doesn’t point to its universality. Re-
member that universal constants usually have the dimensions of qn1 hn2 , where
q denotes the dimension of a charge andh that of an action, see Post [57] and
[40]. Constants built according to this rule, are 4-dimensional scalars, sinceq
andh carry exactly this property. Observationally it turns out thatn1 andn2 are
integers. Examples for such dimensionful 4-scalars are

q → electric charge,
h

q
→ magnetic flux,

h

q2
→ electric resistance. . . (24)

Thus,n1, n2 = 0,±1,±2, . . . . Accordingly, the impedance of free spaceΩ0 =√
µ0/ε0, for example, is a 4-dimensional scalar and a universal constant, whereas

ε0 andµ0 for themselves are no 4-scalars. And fora0, we have[a0] = h/(q ×
length). This doesn’t smell particularly universal. The constanta0 is not expected
to qualify as a 4-scalar, since it defies the scheme (24).

Evans has the following to say5 ([24], p.435): “HereA(0) denotes aĈ neg-
ative scalar originating in the magnetic fluxon~/e, a primordial and universal
constant of physics.” From [22], p.2 we learn that we have “...a scalar factorA(0),
essentially a primordial voltage.” In fact, the dimension of a0 is neither that of a
magnetic flux nor that of a voltage. Thus, the meaning of this constant is not clear
to us.

For convenience we can parametrizea0 with the help of the magnetic flux
quantumh/(2e). Hereh is the Planck constant ande the elementary charge.
Then,

a0 =
h

2eℓE

. (25)

Thus, the lengthℓE, theE stands for Evans, is the new unknown constant. Ac-
cording to Evans, it should be negative.

The extended electromagnetic potentialAα is represented four 1-forms,

A0 = Ai
0 dxi , A1 = Ai

1 dxi , A2 = Ai
2 dxi , A3 = Ai

3 dxi . (26)

Thus, it has 16 independent components, quite a generalization as compared to
the Maxwellian potentialA = Ai dxi with only 4 independent components. Evans

5 We denote Evans’ constantA(0) by a0, see our Table.
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doesn’t give a Lorentz covariant prescription of how to extract fromAα the Max-
wellian potentialA. According to (23),Aα transforms under a localLorentz trans-
formationΛβ

α′

like the coframe:

Aα′

= Λβ
α′

Aβ . (27)

Suppose we try to identify the MaxwellianA withA0. Then, under a local Lorentz
transformation, this identification is mixed up:

A0′ = Λβ
0′Aβ = Λ0

0′A0 + Λ1
0′A1 + Λ2

0′A2 + Λ3
0′A3 . (28)

In the new frame, indicated by a prime,A0′ cannot be identified withA since it
contains three non-Maxwellian admixtures. However, for the physical description
the new frame isequivalentto the old one. In other words,the identification of
A0 as Maxwellian potential is not Lorentz covariant and has to be abandoned.
This is an inevitable consequence of the fact thatAα transforms as a vector under
the Lorentz groupSO(3, 1), as it does, according to Evans’ ansatz (23). Similar
considerations apply toA1, A2, andA3.

One could try to kill theα-index inAα by some contractions procedure, such
asϑα ∧ Aα or eα⌋A

α; however, the former yields a 2-form, the latter a 0-form.
Also the Hodge star doesn’t help, since⋆ϑα ∧Aα, e.g., represents a 4-form. Since
Maxwell’s theory in a RC-spacetime is locally Lorentz covariant, the extraction
of Maxwell’s potential 1-formA from Aα doesn’t seem to be possible.

Evans also considers 3-dimensional spatial rotationsρβ
α′

. The corresponding
rotation groupO(3), is a subgroup of the Lorentz groupSO(1, 3). Hence we can
study the behavior ofAα under these rotations:

Aα′

= ρβ
α′

Aβ . (29)

This equation is contained in (27), which, additionally, encompassesboostsin
three linearly independent directions. Clearly, theO(3) is not the covariance
group ofAα. It is just a subgroup of theSO(1, 3). An O(3) covariant electro-
magnetic potential cannot be derived from the ansatz (23) ina Lorentz covariant
way — in contrast to what Evans claims [24].

Thus, instead of the desiredO(3)-covariant extended electrodynamics, Evans
in fact, due to his ansatz (23), constructed willy nilly aSO(1, 3)-covariant ex-
tended electrodynamics. Still, he insists that theO(3)-substructure has a meaning
of its own; however, certainly not in a Lorentz covariant sense.
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If we differentiate Evans’ ansatz, we find for the extended electromagnetic
field strength

Fα := DAα = dAα + Γβ
α ∧ Aβ (30)

the relation6

Fα = a0 T α . (31)

Now we have6×4 components of the extended electromagnetic field strength.As
we have shown in Sec.2, the torsionT α is a quantity related to translations and,
accordingly, to energy-momentum. On the left-hand-side, we have an extended
electromagnetic quantity that is eventually related to hypothetical extended elec-
tric currents. AlsoFα, like the potentialAα, transforms as a vector under Lorentz
transformations:

Fα′

= Λβ
α′

Fβ . (32)

Before we turn to the extended electromagnetic field equations of Evans, let us
first remind ourselves of the fundamental structure of Maxwell’s theory. With the
field strength 2-formF = B +E ∧dt and the excitation 2-formH = D−H∧dt,
the homogeneous and the inhomogeneous Maxwell equations read, respectively,

dF = 0 , dH = J . (33)

HereJ = ρ − j ∧ dt is the electric current 3-form. The homogeneous equation
dF = 0 corresponds tomagnetic fluxconservation and the inhomogeneous one
dH = J is a consequence ofelectric chargeconservationdJ = 0. Both equations
correspond to separate physical facts and are thus independent from each other,
see [38], where a corresponding axiomatic framework was setup.

In order to complete the theory, we have to specify, in addition to the Maxwell
equations, aconstitutive law. In vacuum, that is, in free space without space
charges, the field strength and the excitation are related by

H =
1

Ω0

⋆F , (34)

whereΩ0 =
√

µ0/ε0 is the impedance of free space. Now the Maxwell equations
for vacuum can be put into the form7

dF = 0 , d ⋆F = Ω0 J . (35)
6As we mentioned in the Introduction, Cartan observed that the vector piece of the torsion

eα⌋T
α has the same transformation behavior as Maxwell’s potential A. In contrast, in (31) the

field strengthFα is involved and not the potentialAα.
7 For no obvious reason, Evans writesd ⋆F = µ0 J instead. Apparently theε0 got lost.
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Note that in no sense the inhomogeneous equation is the “dual” of the homoge-
neous one, or vice versa, providedJ 6= 0.

3.2 Lorentz force density

In analogy to Maxwell’s theory, we should have as Lorentz force density

fα = (eα⌋F
β) ∧ Jβ (?), (36)

with a Lorentz covariant electric currentJα, which we will discuss below. How-
ever, we didn’t find a corresponding definition in Evans’ work. Hence we marked
this formula by a question mark.

3.3 “Homogeneous” field equation of extended electromagnetism

The exterior covariant derivative of the extended field strength (30) reads

DFα = Rβ
α ∧ Aβ or dFα = Rβ

α ∧Aβ − Γβ
α ∧ Fβ . (37)

This Ricci identity forAα poses in Evans’ unified field theory as the extension of
the homogeneous Maxwell equations. Eq.(37)1 is the analog of the Maxwellian
dF = 0.

If we follow Evans and substitute Evans’ ansatz (23) into theright-hand-side
of (37)2, we have

dFα = Ω0 J
α
hom , (38)

with what Evans [20] calls the homogeneous current

J α
hom :=

a0

Ω0

(
Rβ

α ∧ ϑβ − Γβ
α ∧ T β

)
. (39)

Eq.(37)1 coincides with Evans [24], Eq.(20). However, [23], Eq.(29), which is
also claimed to represent the homogeneous equation, seems simply wrong. We
are not sure why Evans substitutes his ansatz only into the right-hand-side of (37)2

and not completely into the whole equation, but this is just the way he did it in
order to find his field equation.

It is strange that the “current” (39) depends on the torsion and thus on the
extended electromagnetic field strength itself:Fβ = a0 T β. Moreover, thiscur-
rent is not Lorentz covariantsince its right-hand-side depends on the connection
explicitly. The pseudo-conservation law

dJ α
hom = 0 , (40)

14



which follows from (38), is not Lorentz covariant either. Whereas the whole equa-
tion (38) is Lorentz covariant, as we recognize from (37)1, its left-hand-side and
its right-hand-side for themselves arenotLorentz covariant.

We differentiate (37)1 covariantly and recall the second Bianchi identity (12):

DDFα = Rβ
α ∧ Fβ . (41)

For reasons unknown to us, Evans [24], p.442, calls this equation “the generally
covariant wave equation”. IfRβ

α ∧ Fβ = 0 — this corresponds to 4 conditions
— he speaks of the condition for independent fields (no mutualinteraction of
gravitation and electromagnetism).

If (i) the curvature vanishes,Rβ
α = 0, and (ii) the frames are suitably chosen,

Γβ
α ∗

= 0, then the field equation (37) of Evans’ theory is really homogeneous:
dFα ∗

= 0. Otherwise we have to live with inhomogeneous terms. However, Evans
claims the following ([24], p.440):Experimentallyit is found that (37)2 “must
split into the particular solution”

dFα = 0 , (42)

Γβ
α ∧ Fβ = Rβ

α ∧ Aβ . (43)

Clearly, Eqs.(42) and (43) represent an additional assumption. But note, neither
(42) nor (43) is covariant under local Lorentz transformations of the frame and,
accordingly, they are of very dubious value.

Since torsion is proportional to the extended electromagnetic field strength,
the first Bianchi identity (11) and its contractions (17) and(19) are alternative
versions of (37), provided one substitutes (31). Eq.(19) then reads

D (ηαβγ ∧ Fγ) + 2a0 ϑ[α ∧ Gβ] = 0 . (44)

Now the Evans ansatz is exploited and, in order to get the extension of the
inhomogeneous Maxwell equation, Evans had to invest a new idea.

3.4 Inhomogeneous field equation of extended electromagnetism

According to our evaluation, Evans’ recipe amounts simply to take the homoge-
neous equation (37)1 and to apply the substitution rule

Fα → ⋆Fα and Rα
β → ⋆Rα

β (45)
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to it. Then one finds

D ⋆Fα = ⋆Rβ
α ∧ Aβ or d ⋆Fα = ⋆Rβ

α ∧ Aβ − Γβ
α ∧ ⋆Fβ . (46)

SinceFα as well asRα
β are both 2-forms, the recipe is consistent. Eq.(46)1 is the

analog of the sourceless inhomogeneous Maxwell equationd ⋆F = 0.
We substitute the ansatz (23) only into the right-hand-sideof (46) and find

d ⋆Fα = Ω0 J
α
inh , (47)

with the inhomogeneous current

J α
inh :=

a0

Ω0

(
⋆Rβ

α ∧ ϑβ − Γβ
α ∧ ⋆T β

)
. (48)

Evans [20] claims that (47) can be derived from (38) by applying the Hodge star
to (38). However, this is not possible. Inter alia, he supposes erroneously that
⋆dFα = d ⋆Fa, see also the slides of Eckardt [19]. The inhomogeneous equation
represents a new assumption that can be made plausible by thesubstitution rule
(45).

As with the homogeneous current, we have again a pseudo-conservation law

dJ α
inh = 0 , (49)

which is not Lorentz covariant either. We apply a Lorentz transformation to the
left-hand-side of (49),

Λβ
α′

(dJ α
inh) = dJ α′

inh − (dΛβ
α′

)J β
inh . (50)

The last term destroys Lorentz covariance. If we substitute(49), we find

dJ α′

inh − (dΛβ
α′

)J β
inh = 0 . (51)

Clearly, the law (49) is not Lorentz covariant. Analogous equations are true for
J β

hom.
If we write the inhomogeneous field equation in analogy to theinhomogeneous

Maxwell equation with sourced ⋆F = J , we have

D ⋆Fα = J α with J α := a0
⋆Rβ

α ∧ ϑβ . (52)

The Lorentz covariant currentJ α seems to be the only current that could enter the
definition (36) of the Lorentz force density. The currentsJ α

hom orJ α
inh don’t seem
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to qualify because of their lack of being Lorentz covariant;see, however, the next
section. We differentiateJ α covariantly:

DJ α = a0

[
(D ⋆Rβ

α) ∧ ϑβ + ⋆Rβ
α ∧ ⋆T α

]
. (53)

It is not conserved.Local electric charge conservationof classical electrodynam-
ics dJ = 0 (note that we have only an exterior derivative here) is substituted by
the four extended charge non-conservation laws (53). Localelectric charge con-
servation, a law that is experimentally established to a high degree of accuracy
(see Particle Data Group [56], p.91, and also Lämmerzahl [52]), is irretrievably
lostsince the connectionΓα

β as well as the torsionT α and the curvatureRα
β get

involved in (53). In Maxwell’s theory no such thing happens for dJ = 0.

3.5 Lorentz force density revisited

We discussed the Lorentz force density earlier, see (36), since it represents the
key formula for the operational definition of the electromagnetic field strength.
This should be also true in Evans’ framework. However, Evanssupplied no corre-
sponding formula and, accordingly, his field strengthFα has no operational sup-
port. However, after defining the homogeneous and the inhomogeneous currents,
the following observation8 helps:

The homogeneous currentJ hom
α of Evans is of a magnetic type, whereasJ inh

α

is of an electric type. Now we recall that in Maxwell’s theory, if an independent
magnetic current 3-formK is allowed for, the Maxwell equations read

dH = J , dF = K , (54)

compare (33). If the Lorentz force density is adapted to thisnew situation, then
we find, see Kaiser [48] and [39],

fα = (eα⌋F ) ∧ J − (eα⌋H) ∧ K . (55)

Let us translate this into Evans’ framework,

F → Fα , K → Ω0J
hom
α , H →

1

Ω0

⋆Fα , J → J inh
α , (56)

that is,
fα = (eα⌋F

β) ∧ J inh
β − (eα⌋

⋆Fβ) ∧ J hom
β . (57)

8 I owe this observation to Robert G. Flower (private communication). It is also mentioned in
Eckardt’s workshop slides [19], as I found out later.
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We substitute the currents (48) and (39):

fα =
a0

Ω0

[
(eα⌋F

β) ∧ (⋆Rγβ ∧ ϑγ − Γγβ ∧ ⋆T γ)

−(eα⌋
⋆Fβ) ∧ (Rγβ ∧ ϑγ − Γγβ ∧ T γ)

]
. (58)

The noncovariant, connection dependent terms on the right-hand-side of (58) drop
out, provided we substitute the Evans ansatzFα = a0 T α. We are left with

fα =
a0

Ω0
[(eα⌋F

β) ∧ ⋆Rγβ ∧ ϑγ

︸ ︷︷ ︸
el.type cur.

−(eα⌋
⋆Fβ) ∧ Rγβ ∧ ϑγ

︸ ︷︷ ︸
mg.type cur.

] . (59)

This formula fills the bill. The currents are those on the right-hand-sides of the
covariantly extended Maxwell equations (46)1 and (37)1, respectively.

Eq.(59) represents the Lorentz force formula in Evans’ theory. At the same
time (59) supports our earlier conclusions thatJ hom

α andJ inh
α , being non-covariant,

have no legitimate place as physical observables in Evans’ theory. The “real cur-
rents” can only be read off from the right-hand-sides of the covariant electromag-
netic field equations (46)1 and (37)1.

4 Gravitation: Evans adopted Einstein-Cartan the-
ory of gravity

4.1 First field equation of gravity

According to Evans, the Einstein equation of general relativity needs to be gener-
alized such the on the left-hand-side we have an asymmetric Einstein tensor based
on RC-geometry and on the right-hand-side an asymmetric canonical energy-
momentum tensor, see [25], p.103, Eq.(5.31). Then his generalized Einstein equa-
tion, valid for a spacetime obeying a RC-geometry, reads (inexterior calculus)

Gα = κ Σα (first field eq.), (60)

whereGα is the Einstein 3-form (16) andκ := 8πG/c3 (called k by Evans),
with G as Newton’s gravitational constant andc the velocity of light. Accord-
ing to Evans, we have to understandΣα as canonical energy-momentum that “has
an antisymmetric component representing canonical angular energy9/angular mo-
mentum” (see Evans [24], p. 437). Thus, we take the antisymmetric piece of (60),

ϑ[α ∧ Gβ] = κ ϑ[α ∧ Σβ] . (61)

9Whatever angular energy may mean in this context.
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4.2 Second field equation of gravity

It is known from special relativistic field theory, see Corson [16], Eq.(19.23a),
that angular momentum conservation, with the canonical spin angular momentum
current of matterταβ and the canonical energy-momentum current of matterΣα,
can be expressed as10

Dταβ + ϑ[α ∧ Σβ] = 0 . (62)

In this form the law is also valid in a RC-spacetime, see [37].
Let us now take a look at the contracted first Bianchi identity(19). Then (19)

and (62), substituted into (61), yield

D (Cαβ − κ ταβ) = 0 . (63)

In this derivation, we invested the asymmetric Einstein equation à la Evans
(rather à la Sciama-Kibble, see below), the generally accepted angular momentum
law, and the contracted first Bianchi identity. Consequently, up to a gradient term,
we find

Cαβ = κ ταβ (second field eq.). (64)

Now we recall Evans’ insistence that spin and torsion are equivalent (rather pro-
portional to each other, we should say). Provided we drop thegradient term men-
tioned, we arrive at (64) — and this, indeed, expresses the proportionality of spin
and torsion. Therefore, we have shown that (64), which is sometimes called Car-
tan equation, representsa hidden tacit assumption of Evans’ theory. This propor-
tionality between spin and torsion, which isnota geometrical property of torsion,
but rather the result of picking (60) as one field equation forgravity, is always ad-
vocated by Evans in slogans, but never stated in an explicit formula, as far as I am
aware. Because of the angular momentum law (62), it is clear that the spinταβ in
(64) is the spin of all matter, including that of the electromagnetic field. Similarly,
the energy-momentumΣα in (62) and (60) represents the energy-momentum of
all matter, including that of the electromagnetic field.

10 Corson [16] formulates angular momentum conservation in tensor calculus in Cartesian
coordinates as∂kSij

k − 2T[ij] = 0. Here i, j, ... = 0, 1, 2, 3 are holonomic coordinate in-
dices andSij

k and Tij , in Corson’s notation, canonical spin angular momentum andcanoni-
cal energy-momentum, respectively. If we define the 3-formsof spin and energy-momentum as
ταβ = Sαβ

γηγ andΣα = Tαβ ηβ , respectively, and substitute the partial by a covariant exterior
derivative, then Corson’s relation can be translated into (62). Note thatSαβ

γ andTαβ are ordinary
tensors here, not, however, tensor densities. We use the Gothic T for energy-momentum in order
not to confuse it with theT of the torsion.
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Evans’ states repeatedly that, within his theory, electromagnetism is an effect
of spin. Let us translate that prose into a quantitative relation. For this purpose we
have to resolve the second field equation11 (64) with respect to the torsionT γ :

T α = κ ηβγδε

[
δα
β (eγ⌋τδε) −

1

4
ϑα ∧ (eβ⌋eγ⌋τδε)

]
. (65)

Using Evan’s ansatz (31), this transforms into a relation between the extended
electromagnetic fieldFα and the spinτγδ:

Fα = a0κ ηβγδε

[
δα
β (eγ⌋τδε) −

1

4
ϑα ∧ (eβ⌋eγ⌋τδε)

]
. (66)

As soon as we have a source with spin, whatever the source may be, then, as a
consequence of Evans’ ansatz (80), an extended electromagnetic field is created
via (66).

We would like to stress that (64) and (60) arethe field equations of the Einstein-
Cartan theory of gravity12 (1961). In other words, without stating this explicitly
anywhere, Evans just adopted, knowingly or unknowingly, the two field equations
of the Einstein-Cartan theory. This insight makes a lot of his considerations more
transparent.

In the EC-theory, the gravitational field variables are coframeϑα and Lorentz
connectionΓαβ = −Γβα. Thefirst field equation corresponds to the variation of a
Hilbert type Lagrangian with respect to thecoframeand thesecondfield equation
with respect to theLorentz connection. Consequently, the dynamics ofϑα and
Γαβ is controlled by the two field equations (60) and (64).

11We multiply (64), withCαβ substituted according to (15), from the left witheδ⌋,

1

2
(eδ⌋ηαβγ) ∧ T γ −

1

2
ηαβγ eδ⌋ ∧ T γ = κ eδ⌋ταβ .

We haveeδ⌋ηαβγ = ηαβγδ, see [37, 38]. Moreover, in order to kill the free indicesα, β, δ, we
multiply with ηαβδµ and noteηαβγ = ηαβγν ϑν :

−
1

2
ηαβδµηαβδγ ∧ T γ −

1

2
ηαβδµηαβγν ϑν ∧ eδ⌋T

γ = −κ ηµβγδeβ⌋τγδ .

After some algebra with the products of theη’s, we find

T α = −ϑα ∧ eβ⌋T
β + κ ηαβγδeβ⌋τγδ .

We determine the traceeα⌋T
α of the last equation and re-substitute. This yields the desired result.

12Evans calls (60) generously the “Evans field equation of gravity”, see [25], p.465.

20



4.3 Trace of the first field equation

The trace of the first field equation (60) plays a big role in Evans’ publications.
Hence we want to determine it exactly. We multiply (60) byϑα. Then we get a
scalar-valued 4-form with only one independent component:

ϑα ∧ Gα =
1

2
ϑα ∧ ηαβγ ∧ Rβγ = κ ϑα ∧ Σα . (67)

After some light algebra, we find the 4-form (recallΣa = Tα
βηβ)

ηβγ ∧ Rβγ = κ ϑα ∧ Σα = κ Tη , (68)

with the trace of the canonical energy-momentum tensorT := Tα
α. By taking its

Hodge dual, remembering (10) and⋆η = ⋆⋆1 = −1, we can put it into the scalar
form

R = −κ T . (69)

This is the generalization of Einstein’s trace of his field equationR̃ = −κ t to
the more general case of EC-theory. With atilde we denote theRiemannianpart
of a certain geometrical quantity (not to be confused with Evans’ Hodge duality
symbol). In general relativity, the source of Einstein’s equation is the symmetric
Hilbert energy-momentum tensortαβ = tβα; its trace we denote byt := tα

α. The
corresponding 3-form isσα = tα

βηβ.
In order to make a quantitative comparison with general relativity, we decom-

pose, within a RC-spacetime, the canonical Noether energy-momentumΣα =
Tαβ ηβ into the symmetric Hilbert energy-momentumσα and spin dependent terms
according to [37]

Σα = σα − eβ⌋(T
β ∧ µα) + Dµα . (70)

The spin energy potentialµα, a 2-form, is related to the spin angular momentum
3-form as follows:ταβ = ϑ[α ∧µβ]. Similarly, we decompose the curvature scalar
R into its Riemannian part̃R and torsion dependent terms. The calculations are
quite involved. We defer them to the Appendix. We end up with the final relation

R̃αβ ∧ ηαβ = κ
(
ϑα ∧ σα + Kαβ ∧ ταβ

)
. (71)

HereKαβ is the contortion 1-form defined in (7). The scalar version of(71) reads

R̃ = −κ
[
t + ⋆(ταβ ∧ Kαβ)

]
. (72)
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Thus we recognize that in the EC-theory the Riemannian pieceR̃ of the curvature
scalarR obeys a relation like in general relativity, however, the Einsteinian source
t has to be supplemented by aspin-contortion term.

Our trace formula (72) of the first field equation, which is an exact conse-
quence of the EC-theory, should be distinguished from Evans’ corresponding
hand-waving expression like, e.g., [21], Eq.(17). TheT in Evans’ formula changes
its meaning within that paper several times; moreover, he uses the “Einstein
Ansatz” R = −k T (in our notationR̃ = −κ t) even though he is in a RC-
spacetime, where (72) should have been used instead.

4.4 Energy-momentum and angular momentum laws

Within the EC-theory, the energy-momentum law reads, see [35, 37, 55],

DΣα = (eα⌋T
β) ∧ Σβ + (eα⌋R

βγ) ∧ τβγ . (73)

Evans assumes incorrectly (as did Cartan in his original papers) that there has to be
a zero on the right-hand-side of (73), see Evans [25], p. 464.This basic mistake,
which has far-reaching consequences, if (73) is compared with (20), apparently
induced Cartan to abandon his gravitational theory in a RC-spacetime. We rec-
ognize from (73) that, instead of a zero, there rather emergegravitational Lorentz
type forces of the structuremass× torsion+ spin× curvature. Remember, in
electrodynamics we havecharge× field strength.

The angular momentum law, as we saw in (62), keeps its form as in flat space-
time, namely

Dταβ + ϑ[α ∧ Σβ] = 0 . (74)

4.5 Evans’ wave equation as a redundant structure

It is puzzling, besides the structure we discussed up to now,Evans provides ad-
ditionally a wave equation for the coframeϑα. He derives it, see [25], p.149,
Eq.(8.8), from the gravitational Lagrangian (in his notation)

LEv = −
c2

k

[
1

2
(∂µq

a
ν)(∂

µqν
a) +

R

2
qa
νq

ν
a

]
. (75)

It is astonishing, Evans presupposes a RC-spacetime; nevertheless, he takes partial
derivatives that are not diffeomorphism invariant. In order to translate (75) into a
respectable Lagrangian, we (i) substitute the partial by covariant derivatives∂µ →
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Dµ, (ii) interpretDµq
a
ν as2D[µq

a
ν], and (iii) insert a missing factor13 1

4
. Then we

have (in our notation)

LEv′ = −
1

2κ
(Dϑα ∧ ⋆Dϑα + ⋆R) . (76)

With the definition of torsion and with (10), we can rewrite itas

LEv′ = −
1

2κ

[
T α ∧ ⋆Tα + ⋆(ϑα ∧ ϑβ) ∧ Rαβ

]
. (77)

It is now obvious, this is a purely gravitational Lagrangian; note also the ap-
pearance of the gravitational constant in it. Lagrangians of this type have been
widely investigated in the framework of the Poincaré gaugetheory of gravity, see
[33, 54]. There, in contrast to EC-theory with itsR-Lagrangian, propagating tor-
sion occurs. However, for Evans’ theory, (77) is an incorrect Lagrangian. Only if
we dropped the quadratic torsion term, would we recover the generalized Einstein
equation (60) that Evans used from the very beginning. Therefore the Lagrangian
LEv′ is false. But it is more, it is a redundant structure at the same time.

Our argument is independent of the details of our translation procedure from
(75) to (76). Evans’ Lagrangian (75) depends on the gravitational constant and
the only field variables present areϑα andΓαβ, i.e., it is a gravitational field La-
grangian. However, since Evans postulates the validity of the generalized Einstein
equation (60) and of the Cartan equation (64), the dynamics of the variableϑa is
already taken care of by (60) and (64). There is no place for a further wave equa-
tion.

In the framework of Evans’ theory, the subculture that developed around Evans’
wave equation, is largely inconsistent with Evans’ theory proper, the latter of
which will be defined exactly in Sec.5.2. Apparently, Evans is misunderstand-
ing his own theory.

5 Assessment

5.1 Summary of the fundamental structure of Evans’ theory

Since the publications of Evans and associates are not very transparent to us, we
distilled from all their numerous papers and books the “spirit” of Evans’ theory.

13Evans equates his expressionqa
ν qν

a always consistently to 1, whereas 4 is correct, namely
eα⌋ϑ

α = δα
α = 4. The trace of the unit matrix in 4 dimensions is 4.

23



Geometry: Spacetime obeys a RC-geometry that can be described by an or-
thonormal coframeϑα, a metricgαβ = diag(+1,−1,−1,−1), and a Lorentz con-
nectionΓαβ = −Γβα. In terms of these quantities, we can define torsion and
curvature by, respectively,

T α := Dϑα , (78)

Rα
β := dΓα

β − Γα
γ ∧ Γγ

β . (79)

The Bianchi identities (11,12) and their contractions (19,20) follow therefrom.

Electromagnetism: Evans’ ansatz relates an extended electromagnetic potential
to the coframe,

Aα = a0 ϑα . (80)

The electromagnetic field strength is defined according to

Fα := DAα . (81)

The extended homogeneous and inhomogeneous Maxwell equations read in
Lorentz covariant form

DFα = Rβ
α ∧ Aβ and D⋆Fα = ⋆Rβ

α ∧ Aβ , (82)

respectively. Alternatively, with Lorentz non-covariantsources and with partial
substitution of (80) and (81), they can be rewritten as

dFα = Ω0 J
α
hom , J α

hom :=
a0

Ω0

(
Rβ

α ∧ ϑβ − Γβ
α ∧ T β

)
, (83)

d ⋆Fα = Ω0 J
α
inh , J α

inh :=
a0

Ω0

(
⋆Rβ

α ∧ ϑβ − Γβ
α ∧ ⋆T β

)
. (84)

Gravitation: Evans assumes the EC-theory of gravity. Thus, the field equations
are those of Sciama [62, 63] and Kibble [49], which were discovered in 1961:

1

2
ηαβγ ∧ Rβγ = κ Σα = κ

(
Σmat

α + Σelmg
α

)
, (85)

1

2
ηαβγ ∧ T γ = κ ταβ = κ

(
τmat
αβ + τ elmg

αβ

)
. (86)

Hereηαβγ = ⋆(ϑα ∧ ϑβ ∧ ϑγ). The total energy-momentum of matter plus elec-
tromagnetic field is denoted byΣα, the corresponding total spin byταβ .
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5.2 Five cornerstones define Evans’ unified field theory

In order to prevent misunderstandings, I’d like to define clearly what I understand
as Evans’ unified field theory. Such a statement, which overlaps with the last sub-
section, seems necessary since there are numerous inconsistencies and mistakes in
Evans’ work, see Bruhn [2–11] and Rodrigues et al. [18, 58], such that it is neces-
sary to distiguish between the relevant and the irrelevant parts of Evans’ articles.
Let me formulate what I consider to be the five cornerstones ofEvans’ theory:

1. Physics takes place in a Riemann-Cartan spacetime, see (78) and (79).

2. The extended electromagnetic potential is proportionalto the coframe, see
(80), and the extended electromagnetic field strength to thetorsion, see (81).

3. The extended Maxwell equations are given by (82).

4. The Einstein equation gets generalized such that on its left-hand-side we
have the asymmetric Einstein tensor of a Riemann-Cartan spacetime and on
its right-hand-side, multiplied with the gravitational constant, there acts as
source the asymmetic canonical energy-momentum tensor of the extended
electromagnetic field plus that of matter, see (85).

5. Torsion is proportional to spin.

One may wonder what Evans understood exactly as spin. However, since he spec-
ified the canonical energy-momentum tensor under cornerstone 4, we concluded
that he opts likewise for the corresponding spin angular momentum tensor under
cornerstone 5. This all the more, since Evans [24], p. 437, mentioned thecanoni-
cal spin explicitly. Starting from cornerstone 4, we were able to show, using only
the angular momentum law and a piece of the first Bianchi identity, that corner-
stone 5 implies the second field equation (86).

There is not more than these five cornerstones. Our conclusions in this paper
and the one accompaying it [41] are derived only from these 5 cornerstones by the
use of the appropriate mathematics.

We disregarded the following two main points:

A) The antisymmetric part of the metric. Evans has some smalltalk about it
mixed with partially incorrect formulas, see Bruhn [7]. Because of cornerstone 1,
an asymmetric metric is excluded. Hence we didn’t follow this train of thoughts
of Evans any longer.
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B) Evans derived a wave equation for thecoframein a not too transparent
way, see [25], p.149, Eq.(8.5). All the results in the context of this wave equation
we don’t consider to belong to Evans’ theory proper, as defined above. Since the
generalized Einstein equation of cornerstone 4, together with cornerstone 5, rules
already the dynamics of the coframe — after all, one can find the generalized
Einstein equation by variation of the curvature scalar withrespect to the coframe
— there is no place for a further equation of motion for the coframe.

In the accompanying paper [41] we propose a variational principle for Evans’
theory that reproduces the facts mentioned in cornerstones1 to 5. In this context,
there emerges an additional pieceD ⋆Tα on the right-hand-side of the general-
ized Einstein equation, which, because ofD ⋆Tα = D ⋆Dϑα, is, indeed, in the
linearized version a wave operator applied to the coframe. And this structure is
reminiscent of those in Evans’ wave equation. However, our result was achieved
by just taking the five cornerstones for granted and by constructing an appropriate
Lagrangian. We didn’t use any additional assumption, whereas Evans introduces
his wave equation as an ad hoc structure without consistent motivation.

5.3 Points against Evans’ theory

5.3.1 Electrodynamics has nothing to do with the geometry ofspacetime

In gravity the experimentally well established equality ofinertial and gravitational
massmin = mgr is a fundamental feature. It is the basis of Einstein’s equivalence
principle and of ageometricinterpretation of gravity in the framework of general
relativity. Theuniversalityof this feature is decisive. Since there is no physical
object without energy-momentum, the equivalence principle applies equally well
to all of them, without any known exception.

Is there a similar physical effect known in electromagnetism? No, not to my
knowledge. Rather, the decisive features of electromagnetism are electric charge
and magnetic flux conservation (yielding the Maxwell equations [38]). And these
conservation laws have nothing to do with spacetime symmetries, whereas energy-
momentum, the source in Einstein’s gravitational theory, is related, via Noether’s
theorem, totranslationsin spacetime. In the Maxwell-Dirac theory (Maxwell’s
theory with a Dirac electron as source), electric charge conservation emerges due
to the U(1) phase (gauge) invariance of the theory, that is, due to aninternal
symmetry (unrelated to external, i.e., spacetime symmetries). Moreover, charge
conservation is universally valid. However, it has nothingto say about electrically
and magneticallyneutralmatter, as, e.g., the neutrinosνe, νµ, ντ , the photonγ, the
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gauge bosonZ, the neutral pionπ0, etc.
Evans providesno new insightinto this question. His only argument is that any

ansatz (like hisAα = a0ϑ
α) must be permitted and only experiments can decide

on its validity. However, Evans’ ansatzAα = a0ϑ
α presupposesthat electro-

magnetism, like the coframeϑα, is a universal phenomenon, which it isn’t, since
neutral matter is exempt from it. The lack of universality ofelectromagnetism
makes its geometrization a futile undertaking.

This argument is sufficient for me to exclude Evans’ theory right from the
beginning. However, some people, like Evans himself, don’tfind it so convincing.
Therefore we collect more evidence.

5.3.2 Uncharged particles with spin and charged particles without spin cause
unsurmountable problems for Evans’ theory

Take a neutrino, say the electron neutrinoνe. It has no electric charge (< 10−14

electron charges), no magnetic moment (< 10−10 Bohr magnetons), and no charge
radius squared [< (−2.97 to 4.14) × 10−32 cm2], see [56]. Hence theνe is elec-
tromagnetically neutral in every sense of the word. But is carries spin1/2. Conse-
quently, according to Evans’ doctrine, see (66), it should create an electromagnetic
field, But halt, this cannot be true! A neutrino creating an electromagnetic field?
Even Evans abhors such an idea. And his remedy? For a neutrinowe have to put
a0 = 0, is Evans’ stunning answer to a corresponding question, seeEvans’ blog.14

A unifiedfield theory ofgeometrictype that switches off a coupling constant for
a certain type of matter, doesn’t it lose all credentials?

Complementary is the charged pionπ±. It carries electric charge butno spin.
Evan concludes15 that it cannot carry an electromagnetic field either!

Of course, according to Evans’ ansatzAα = a0ϑ
α, electromagnetism is as-

sumed to be an universal phenomenon. Since this assumption is incorrect, Evans’
theory must run into difficulties for neutral and for spinless matter willy nilly.

14http://www.atomicprecision.com/blog/2007/02/19/elementary-particles-charge-and-spin-of-
ece-theory-2/

15http://www.atomicprecision.com/blog/2007/02/19/elementary-particles-charge-and-spin-of-
ece-theory/
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5.3.3 There doesn’t exist a scalar electric charge, electric charge conserva-
tion is violated

In Maxwell’s theory the currentJ integrated over a (3-dimensional) spacelike
hypersurfaceΩ3 yields a 4-dimensional scalar charge

∫
Ω3

J . In Evans’ theory
no such structure is available since any currentJ α, because it is vector-valued,
doesn’t qualify as an integrand. Accordingly, in Evans’ theory, a global electric
charge cannot be defined in a Lorentz covariant way.

By the same token, as was shown in (53), electric charge conservation is vi-
olated: DJ α 6= 0. Under such circumstances even the concept of a test charge
is dubious. Charge conservation is a law of nature. Exceptions are not known,
see the experimental results collected by the Particle DataGroup [56]. Therefore
Evans’ theory grossly contradicts experiment.

To take Evans’J α
hom or J α

inh as a substitute for a decent conserved current is
impossible, even whendJ α

hom = 0 anddJ α
inh = 0. They both,J α

hom andJ α
inh,

depend explicitly on the connection and don’t transform as Lorentz vectors. Their
physical interpretation, as given by Evans, since not Lorentz covariant, is null and
void. The expressiondJ α

hom = DJ α
hom − Γβ

α ∧ J β
hom is not Lorentz covariant

either and thus unsuitable for the formulation of a law of physics, in contrast to
Evans’ claims to the opposite. An analogous consideration applies toJ α

inh.

5.3.4 There doesn’t exist a well-defined Maxwellian limit, the superposition
principle is violated

According to our considerations in Sec.3.1, we cannot extract from theSO(1, 3)
electrodynamics proposed by Evans in a Lorentz covariant way an O(3) sub-
electrodynamics, the latter of which Evans claims to be a physical theory. More-
over, we have shown that the indexα in Aα cannot be compensated in a Lorentz
covariant way such as to find the Maxwellian potentialA in some limit. Thus, we
have a potentialAα with 16 independent components and we don’t know what to
do with them, provided we insist on Lorentz covariance.

Bruhn [3] has even shown explicitly that a plane wave in Evans’ O(3) electro-
dynamics, if subject to a Lorentz transformation, will not be any longer a plane
wave. A proof cannot be more telling. In addition, Bruhn [10]pointed out in
detail how Evans suppresses the undesiredA0 component of his potential in order
to arrive at hisO(3) structure, compare also Bruhn and Lakhtakia [11, 51].

Wielandt [69] demonstrated that the superposition principle, valid in Maxwell’s
theory, breaks down in Evans’O(3) electrodynamics. In a non-linear theory this
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is inevitable. However, the superposition principle cannot even be recovered for
small amplitudes and under suitable supplementary conditions. In this sense,
Maxwell’s theory as a limiting case seems to be excluded.

5.3.5 Evans’ theory is not really unified

The energy-momentum and spin angular momentum 3-forms of matter Σmat
α and

τmat
αβ , entering the two field equations (85) and (86), have to be determined form

other physical theories, like from Dirac’s electron theory. Thus Evans’ theory is
not really unified.

On top of these five main counterarguments — remember that oneconclu-
sive counterargument is enough to kill a theory — we were ableto formulate a
variational principle for Evans’ theory:

5.3.6 Evans’ theory is trivial and collapses to general relativity in all physi-
cal cases

As Obukhov and the author have shown in an accompanying paper[41], Evans
theory can be characterized by a dimensionless constant

ξ :=
a2

0κ

Ω0
, (87)

a fact that was apparently overlooked by Evans. If Evans’ ansatz for a unified
field theory is to be taken seriously, then certainly one would expecta0, and thus
ξ, to be an universal constant that cannot be adjusted freely (see, however, Evans’
treatment of the neutrino that was discussed above).

We proposed a variational principle [41] with a Lagrange multiplier term that
enforces Evans’ ansatz. This approach reproduces all features of Evans’ theory.
We find two field equations with 10 + 24 independent components, respectively.
The second field equation, it is (64) with the spin of theAα field on its right-hand-
side, is algebraically linear in torsion and can be solved. In all physical cases,
the torsion vanishes completely and, because ofFα = a0 T α, Evans’ extended
electromagnetic field vanishes, too. Consequently, in all physical cases Evans’
theory collapses to the Einstein vacuum field equation.

Probably Evans will argue that he doesn’t like our variational principle and that
our principle ammends the inhomogeneous electromagnetic field equation (82)2
and the first gravitational field equation (85) with terms induced by the Lagrangian
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multiplier. And that these terms are not contained in his original theory. This is
true. However, we have shown a consistent way (we believe, itis the only way) to
include Evans’ ansatzAα = a0 ϑα into the the electromagnetic and gravitational
field equations of Evans’ theory. If Evans rejects our variational principle, he will
have a problem. If he substitutes his ansatz into the extended Maxwell equations
(82), he will get field equations forϑα andΓαβ, which are of second order inϑα

(basically wave type equations); if he substitutes his ansatz also into the gravita-
tional field equations (85) and (86), which, after an elimination prodecure, are also
of second order inϑα, how will he guarantee that these two different sets of wave
type equations are consistent with each other? Clearly, this cannot be guaranteed.
However, our Lagrange multiplier method does guarantee consistency.

We put this point at the end of our list, since this consequence isnot inevitable.
By abolishing a Hilbert type Lagrangian and going over to a Lagrangian quadratic
in torsion and/or in curvature (“Poincaré gauge theory”),one could ameliorate
this situation, see, e.g., Itin and Kaniel [46, 47], Obukhov[54], and Heinicke et
al. [43]. However, we won’t do that because the reasons givenabove exclude an
approach à la Evans. Still, for more than 20 years it is knownof how to make
torsion a propagating field, see Sezgin and van Nieuwenhuizen [64] and Kuhfuss
and Nitsch [50]. Evans’ theory just documents that his author is not clever enough
to propose a nontrivial model.

6 Conclusion

Around the year 2003, Evans grafted his ill-conceivedO(3)-electrodynamics on
the viable Einstein-Cartan theory of gravity, calling it a unified field theory. The
hybrid that he created has numerous genetic defects; some ofthem are lethal.
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7 Appendix: Decomposing the trace of the first field
equation

We start from (70), namely

Σα = σα − eβ⌋(T
β ∧ µα) + Dµα , (88)

and fromταβ = ϑ[α ∧ µβ]. The inverse of the latter relation reads [37]

µα = −2eβ⌋τα
β +

1

2
ϑα ∧ (eβ⌋eγ⌋τ

βγ) , (89)

and its contraction is
ϑα ∧ µα = 2eα⌋(ϑ

β ∧ τβ
α) . (90)

Now we recall, see (68), that we only need the contraction of (88) withϑα:

ϑα ∧ Σα = ϑa ∧ σα + eβ⌋
(
ϑα ∧ µα ∧ T β

)
− d (ϑα ∧ µα) . (91)

This will be substituted in (68). By using (90), we find

Rαβ ∧ ηαβ = κ
{
ϑα ∧ σα + 2eα⌋

[
T α ∧ eβ⌋(ϑγ ∧ τγβ)

]

−2d
[
eα⌋(ϑ

β ∧ τβ
α)

]}
. (92)

Obviously, we can now eliminate the spinταβ by contracting the second field
equation (64),

κ ϑβ ∧ τβα = ηαβ ∧ T β , (93)

and substituting it in (92). This yields

Rαβ ∧ ηαβ = κ ϑα ∧ σα + 2eα⌋
[
T α ∧ eβ⌋(ηβγ ∧ T γ)

]

−2d
[
eα⌋(η

α
β ∧ T β)

]
. (94)

Some algebra shows that the second term on the right-hand-side vanishes and that
eα⌋(η

α
β ∧ T β) = ϑα ∧ ⋆Tα. Thus,

Rαβ ∧ ηαβ = κ ϑα ∧ σα − 2d (ϑα ∧ ⋆Tα) . (95)

This is a remarkably simple formula. The first termκ ϑα ∧ σa is the Einsteinian
trace, the second one represents a correction by torsion andhence by spin.
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We can now study the effect of spin on the Riemannian pieceR̃ of the cur-
vature scalarR. For that purpose, we start from the geometrical decomposition
formula [37, 42, 54]

Rαβ ∧ ηαβ = R̃αβ ∧ ηαβ + Kαµ ∧ Kµ
β ∧ ηαβ − Kαβ ∧ T γ ∧ ηαβγ

−2d(ϑα ∧ ⋆Tα) . (96)

The second and the third terms on the right-hand-side can be collected. Then,

Rαβ ∧ ηαβ = R̃αβ ∧ ηαβ −
1

2
Kαβ ∧ T γ ∧ ηαβγ − 2d(ϑα ∧ ⋆Tα) . (97)

The latter equation is substituted into (95). The derivatives drop out and we are
left with

R̃αβ ∧ ηαβ = κ ϑα ∧ σα −
1

2
ηαβγ ∧ T γ ∧ Kαβ . (98)

Clearly, the second field equation can be re-substituted andwe arrive16 at

R̃αβ ∧ ηαβ = κ
(
ϑα ∧ σα + Kαβ ∧ ταβ

)
. (99)
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[1] M. Blagojević: Gravitation and Gauge Symmetries,Institute of Physics Publishing, Bristol,

UK (2002).

[2] G.W. Bruhn,No energy to be extracted from the vacuum, Physica Scripta74(2006) 535–536.

[3] G.W. Bruhn,No Lorentz property of M W Evans’ O(3)-symmetry law, Physics Scripta74
(2006) 537–538.

[4] G.W. Bruhn,On the non-Lorentz invariance of M.W. Evans’ O(3)-symmetrylaw,

arXiv.org/physics/0607186 (3 pages).

[5] G.W. Bruhn,The central error of M.W. Evans’ ECE theory - a type mismatch,

arXiv.org/physics/0607190 (6 pages).

[6] G.W. Bruhn,Refutation of Myron W. EvansB(3) field hypothesis,

http://www.mathematik.tu-darmstadt.de/˜bruhn/B3-refutation.htm

16Often exterior calculus is more effective and straightforward than tensor calculus. However,
when the connection is split in a Riemannian and a post-Riemannian piece, then computations in
tensor calculus are usually more direct and simpler. This isalso the case in the derivation of (99)
or rather of (72).

32



[7] G.W. Bruhn,Comments on M.W. Evans’ preprint Chapter 2: Duality and the Antisymmetric
Metric (p.21 - 30)

http://www.mathematik.tu-darmstadt.de/˜bruhn/Comment-Chap2.htm

[8] G.W. Bruhn,Remarks on Evans’ 2nd Bianchi Identity,

http://www.mathematik.tu-darmstadt.de/˜bruhn/EvansBianchi.html

[9] G.W. Bruhn,Comments on Evans’ Duality,

http://www.mathematik.tu-darmstadt.de/ bruhn/EvansDuality.html

[10] G.W. Bruhn,ECE Theory and Cartan Geometry,

http://www.mathematik.tu-darmstadt.de/ bruhn/ECE-CartanGeometry.html

[11] G.W. Bruhn and A. Lakhtakia,Commentary on Myron W. Evans’ paper “The Electromag-
netic Sector ...”,

http://www.mathematik.tu-darmstadt.de/˜bruhn/EvansChap13.html
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