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Foreword

Harmonic maps between Riemannian manifolds provide a rich display
of both differential geometric and analytic phenomena. These aspects
are inextricably intertwined — a source of undiminishing fascination.

Analytically, the problems belong to elliptic variational theory: har-
monic maps are the solutions of the Euler–Lagrange equation (section
1.2)

∆gu
i + gαβ(x)Γijk(u(x))

∂uj

∂xα
∂uk

∂xβ
= 0 (1)

associated to the Dirichlet integral (section 1.1)

E(u) =
∫
M

|du(x)|2
2

dvolg .

Surely that is amongst the simplest — and yet general — intrinsic
variational problems of Riemannian geometry. The system (1) is second
order elliptic of divergence type, with linear principal parts in diagonal
form with the same Laplacian in each entry; and whose first derivatives
have quadratic growth. That is quite a restrictive situation; indeed,
those conditions ensure the regularity of continuous weak solutions of
(1).

The entire harmonic mapping scene (as of 1988) is surveyed in the
articles [50] and [51].

2-dimensional domains

Harmonic maps u : M −→ N with 2-dimensional domains M present
special features, crucial to their applications to minimal surfaces (i.e. con-
formal harmonic maps) and to deformation theory of Riemann surfaces.
Amongst these, as they appear in this monograph:

ix



x Foreword

(i) The Dirichlet integral is a conformal invariant of M. Conse-
quently, harmonicity of u (characterized via the Euler–Lagrange
operator associated to E) depends only on the conformal struc-
ture of M (section 1.1).

(ii) Associated with a harmonic map is a holomorphic quadratic dif-
ferential on M (locally represented by the function f of section
1.3).

(iii) The inequality of Wente. Qualitatively, that ensures that the Ja-
cobian determinant of a map u (a special quadratic expression
involving first derivatives of u) may have slightly more differen-
tiability than might be expected (section 3.1).

(iv) The C2 maps are dense in H1(M,N )†

To gain a perspective on the use of harmonic maps of surfaces, the
reader is advised to consult [48] and [116] for minimal surfaces and the
problem of Plateau. Applications to the theory of deformations of Rie-
mann surfaces can be found in [68] and [49]. The book [98] provides an
introduction to all these questions.

Regularity

A key step in Morrey’s solution of the Plateau problem is his

Theorem 1 (Morrey) Let M be a Riemann surface, and u : M −→ N
a map with E(u) < +∞. Suppose that u minimizes the Dirichlet integral
EB on every disk B of M (with respect to the Dirichlet problem induced
by the trace of u on the boundary of B). Then u is Hölder continuous.

In particular, u is harmonic (and as regular as the data permits).

The proof is based on Morrey’s Dirichlet growth estimate — related to
the growth estimates in section 3.5.

The main goal of the present monograph is the following result, giving
a definitive generalization of Theorem 1:

Theorem 2 (Hélein) Let (M, g) be a Riemann surface, and (N , h) a
compact Riemannian manifold without boundary. If u : M −→ N is a
weakly harmonic map with E(u) < +∞, then u is harmonic.

† See the proof of lemma 4.1.6 and [145].
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That is indeed a major achievement, made some fifty years after Mor-
rey’s special case. Hélein first established his theorem in certain partic-
ular cases (N = Sn and various Riemannian homogeneous spaces); then
he announced Theorem 2 in [85]. That Note includes a beautifully clear
sketch of the proof, together with a description of the new ideas — an
absolute gem of presentation!

The high quality is maintained here:

Commentary on the text

First of all, the author’s exposition requires only a few formalities from
differential geometry and variational theory. Secondly, the pace is leisurely
and well motivated throughout.

For instance: chapter 1 develops the required background for har-
monic maps. The author is satisfied with maps and Riemannian metrics
of differentiability class C2; higher differentiability then follows from gen-
eral principles. Various standard conservation laws are derived. All that
is direct and efficient.

As a change of scene, chapter 2 is an excursion into the methods of
completely integrable systems, as applied to harmonic maps of a Rie-
mann surface into Sn (or a Lie group; or a homogeneous space), via
conservation laws. One purpose is to illustrate hidden symmetries of
Lax form (e.g. related to dressing action). Another is to provide motiva-
tions for the methods and constructions used in chapter 4 — especially
the role of symmetry in the range.

Chapter 3 describes various spaces of functions — Hardy and Lorentz
spaces, in particular — as an exposition specially designed for applica-
tions in chapters 4 and 5. Those include refinements and modifications
of Wente’s inequality; and come under the heading of compensation
phenomena — certainly delicate and lovely mathematics!

Chapter 4 is the heart of the monograph — as already noted. There
are two new steps required as preparation for the proof of theorem 2:

(i) Lemma 4.1.2, which reduces the problem to the case in which
(N , h) is a Riemannian manifold diffeomorphic to a torus.

(ii) Careful construction of a special frame field on (N , h) — called
a Coulomb frame. Equations (4.10) are derived, serving as some
sort of conservation law. When the spaces of Hardy and Lorentz
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enter the scene, they produce a gain of regularity (see lemma
4.1.7).

Finally, in chapter 5 the methods of Coulomb frames and compensa-
tion techniques are applied to problems of surfaces in Euclidean spaces
whose second fundamental form or mean curvatures are square-integrable.

James Eells



Introduction

The contemplation of the atlas of an airline company always offers us
something puzzling: the trajectories of the airplanes look curved, which
goes against our basic intuition, according to which the shortest path
is a straight line. One of the reasons for this paradox is nothing but
a simple geometrical fact: on the one hand our earth is round and on
the other hand the shortest path on a sphere is an arc of great circle:
a curve whose projection on a geographical map rarely coincides with a
straight line. Actually, choosing the trajectories of airplanes is a simple
illustration of a classical variational problem in differential geometry:
finding the geodesic curves on a surface, namely paths on this surface
with minimal lengths.

Using water and soap we can experiment an analogous situation, but
where the former path is now replaced by a soap film, and for the surface
of the earth — which was the ambient space for the above example —
we substitute our 3-dimensional space. Indeed we can think of the soap
film as an excellent approximation of some ideal elastic matter, infinitely
extensible, and whose equilibrium position (the one with lowest energy)
would be either to shrink to one point or to cover the least area. Thus
such a film adopts a minimizing position: it does not minimize the length
but the area of the surface. Here is another classical variational problem,
the study of minimal surfaces.

Now let us try to imagine a 3-dimensional matter with analogous prop-
erties. We can stretch it inside any geometrical manifold, as for instance
a sphere: although our 3-dimensional body will be confined — since
generically lines will shrink to points — it may find an equilibrium con-
figuration. Actually the mathematical description of such a situation,
which is apparently more abstract than the previous ones, looks like
the mathematical description of a nematic liquid crystal in equilibrium.

xiii
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Such a bulk is made of thin rod shaped molecules (nema means thread
in Greek) which try to be parallel each to each other. Physicists have
proposed different models for these liquid crystals where the mean ori-
entation of molecules around a point in space is represented by a vector
of norm 1 (hence some point on the sphere). Thus we can describe the
configuration of the material using a map defined in the domain filled
by the liquid crystal, with values into the sphere. We get a situation
which is mathematically analogous to the abstract experiment described
above, by imagining we are trying to imprison a piece of perfectly elastic
matter inside the surface of a sphere. The physicists Oseen and Frank
proposed a functional on the set of maps from the domain filled with
the material into the sphere, which is very close to the elastic energy of
the abstract ideal matter.

What makes all these examples similar (an airplane, water with soap
and a liquid crystal)? We may first observe that these three situations
illustrate variational problems. But the analogy is deeper because each
of these examples may be modelled by a map (describing the deformation
of some body inside another one) which maps a differential manifold into
another one, and which minimizes a quantity which is more or less close
to a perfect elastic energy. To define that energy, we need to measure the
infinitesimal stretching imposed by the mapping and to define a measure
on the source space. Such definitions make sense provided that we use
Riemannian metrics on the source and target manifolds.

Let M denote the source manifold, N the target manifold and u a
differentiable map from M into N . Given Riemannian metrics on these
manifolds we may define the energy or Dirichlet integral

E(u) =
1
2

∫
M

|du|2dvol,

where |du| is the Hilbert–Schmidt norm of the differential du of u and
dvol is the Riemannian measure on M. If we think of the map u as the
way to confine and stretch an elastic M inside a rigid N , then E(u)
represents an elastic deformation energy. Smooth maps (i.e. of class C2)
which are critical points of the Dirichlet functional are called harmonic
maps. For the sake of simplicity, let us assume that N is a submanifold
of a Euclidean space. Then the equation satisfied by a harmonic map is

∆u(x) ⊥ Tu(x)N ,
where ∆ is the Laplacian on M associated to the Riemannian metric,
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and Tu(x)N is the tangent space to N at the point u(x). For differ-
ent choices on M and N , a harmonic map will be a constant speed
parametrization of a geodesic (if the dimension of M is 1), a harmonic
function (if N is the real line) or something hybrid.
It is possible to extend the notion of harmonic maps to much less

regular maps, which belong to the Sobolev space H1(M,N ) of maps
from M into N with finite energy. The above equation is true but only
in the distribution sense and we speak of weakly harmonic maps.
Because of the simplicity of this definition, we can meet examples of

harmonic maps in various situations in geometry as well as in physics.
For example, any submanifold M of an affine Euclidean space has a
constant mean curvature (or more generally a parallel mean curvature)
if and only if its Gauss map is a harmonic map. A submanifold M of
a manifold N is minimal if and only if the immersion of M in N is
harmonic. In condensed matter physics, harmonic maps between a 3-
dimensional domain and a sphere have been used as a simplified model
for nematic liquid crystals. In theoretical physics, harmonic maps be-
tween surfaces and Lie groups are extensively studied, since they lead
to properties which are strongly analogous to (anti)self-dual Yang–Mills
connections on 4-dimensional manifolds, but they are simpler to handle.
In such a context they correspond to the so-called σ-models. Recently,
the interest of physicists in these objects has been reinforced since their
quantization leads to examples of conformal quantum field theories —
an extremely rich subject. In some sense the quantum theory for har-
monic maps between a surface and an Einstein manifold (both endowed
with Minkowski metrics) corresponds to string theory (in the absence of
supersymmetries). Other models used in physics, such as the Skyrme
model, Higgs models or Ginzburg–Landau models [12], show strong con-
nections with the theory of harmonic maps into a sphere or a Lie group.

Despite their relatively universal character, harmonic maps became
an active topic for mathematicians only about four decades ago. One
of the first questions was motivated by algebraic topology: given two
Riemannian manifolds and a homotopy class for maps between these
manifolds, does there exist a harmonic map in this homotopy class? In
the case where the sectional curvature of the target manifold is negative,
James Eells and Joseph Sampson showed in 1964 that this is true, using
the heat equation. Then the subject developed in many different direc-
tions and aroused many fascinating questions in topology, in differential
geometry, in algebraic geometry and in the analysis of partial differential
equations. Important generalizations have been proposed, such as the
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evolution equations for harmonic maps between manifolds (heat equa-
tion or wave equation) or the p-harmonic maps (i.e. the critical points of
the integral of the p-th power of |du|). During the same period, and es-
sentially independently, physicists also developed many interesting ideas
on the subject.

The present work does not pretend to be a complete presentation of
the theory of harmonic maps. My goal is rather to offer the reader an
introduction to this subject, followed by a communication of some recent
results. We will be motivated by some fundamental questions in analy-
sis, such as the compactness in the weak topology of the set of weakly
harmonic maps, or their regularity. This is an opportunity to explore
some ideas and methods (symmetries, compensation phenomena, the use
of moving frames and of Coulomb moving frames), the scope of which
is, I believe, more general than the framework of harmonic maps.

The regularity problem is the following: is a weakly harmonic map u
smooth? (for instance if N is of class Ck,α, is u of class Ck,α, for k ≥ 2,
0 < α < 1?). The (already) classical theory of quasilinear elliptic partial
differential equation systems ([117], [103]) teaches us that any continuous
weakly harmonic map is automatically as regular as allowed by the the
regularity of the Riemannian manifolds involved. The critical step is
thus to know whether or not a weakly harmonic map is continuous.
Answers are extremely different according to the dimension of the source
manifold, the curvature of the target manifold, its topology or the type
of definition chosen for a weak solution.

The question of compactness in the weak topology of weakly harmonic
maps is the following problem. Given a sequence (uk)k∈N of weakly har-
monic maps which converge in the weak topology of H1(M,N ) towards
a map u, can we deduce that the limit u is a weakly harmonic map?
Such a question arises when, for instance, one wants to prove the ex-
istence of solutions to evolution problems for maps between manifolds.
This is a very disturbing problem: we will see that the answer is yes in
the case where the target manifold is symmetric, but we do not know
the answer in the general situation.

The first idea which this book stresses is the role of symmetries in
a variational problem. It is based on the following observation, due to
Emmy Noether: if a variational problem is invariant under the action
of a continuous group of symmetries, we can associate to each solution



Introduction xvii

of this variational problem a system of conservation laws, i.e. one, or
several, divergence-free vector fields defined on the source domain. The
number of independent conservation laws is equal to the dimension of the
group of symmetries. The importance of this result has been celebrated
for years in theoretical physics. For example, in the particular case where
the variational problem involves one variable (the time) the conservation
law is just the prediction that a scalar quantity is constant in time
(the conservation of the energy comes from the invariance under time
translations, the conservation of the momentum is a consequence of the
invariance under translations in space. . . ). One of the goals of this book
is to convince you that Noether’s theorem is also fundamental in the
study of partial differential equations such as harmonic maps.

In a surprising way, the exploitation of symmetries for analytical pur-
poses is strongly related to compensation phenomena: by handling con-
servation laws, remarkable non-linear quantities (for an analyst) natu-
rally appear. The archetype of this kind of quantity is the Jacobian
determinant

{a, b} :=
∂a

∂x

∂b

∂y
− ∂a
∂y

∂b

∂x
,

where a and b are two functions whose derivatives are square-integrable
(i.e. a and b belong to the Sobolev space H1). Since Charles B. Morrey,
it is known that such a quantity enjoys the miraculous property of be-
ing simultaneously non-linear and continuous with respect to the weak
topology in the space H1; if aε and bε converge weakly in H1 towards
a and b, then {aε, bε} converges towards {a, b} in the sense of distribu-
tions. This is the subject of the theory of compensated compactness
of François Murat and Luc Tartar. Moreover the same quantity {a, b}
possesses regularity or integrability properties slightly better than any
other bilinear function of the partial derivatives of a and b. It seems that
this result of “compensated regularity” was observed for the first time by
Henry Wente in 1969. For twenty years this phenomenon was used only
in the context of constant mean curvature surfaces, by H. Wente and
by Häım Brezis and Jean-Michel Coron (further properties were pointed
out by these last two authors and also by L. Tartar). But more recently,
at the end of the 1980s, works of Stefan Müller, followed by Ronald Coif-
man, Pierre-Louis Lions, Yves Meyer and Stephen Semmes, shed a new
light on the quantity {a, b}, and in particular it was established that this
Jacobian determinant belongs to the Hardy space, a slightly improved
version of the space of integrable functions L1. All these results played
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a vital role in the progress which has been obtained recently in the reg-
ularity theory of harmonic maps, and are the companion ingredients to
the conservation laws.

The limitation of techniques which use conservation laws is that sym-
metric variational problems are exceptions. Thus the above methods are
not useful, a priori, for the study of harmonic maps with values into a
non-symmetric manifold. We need then to develop new techniques. One
idea is the use of moving frames. It consists in giving, for each point y
in N , an orthonormal basis (e1, . . . , en) of the tangent space to N at y,
that depends smoothly on the point y. This system of coordinates on the
tangent space TyN was first developed by Gaston Darboux and mainly
by Elie Cartan. These moving frames turn out to be extremely suitable
in differential geometry and allow a particularly elegant presentation of
the Riemannian geometry (see [37]). But in the problems with which we
are concerned, we will use a particular class of moving frames, satisfying
an extra differential equation. It consists essentially of a condition which
expresses that the moving frame is a harmonic section (a generalization
of harmonic maps to the case of fiber bundles) of a fiber bundle over M
whose fiber at x is precisely the set of orthonormal bases of the tangent
space to N at u(x). Since the rotation group SO(n) is a symmetry group
for that bundle and for the associated variational problem, our condition
gives rise to conservation laws, thanks to Noether’s theorem. We call
such a moving frame a Coulomb moving frame, inspired by the analogy
with the use of Coulomb gauges by physicists for gauge theories. The
use of such a system of privileged coordinates is crucial for the study of
the regularity of weakly harmonic maps, with values into an arbitrary
manifold. It leads to the appearance of these magical quantities similar
to {a, b}, that we spoke about before.

The first chapter of this book presents a description of harmonic maps
and of various notions of weak solutions. We will emphasize Noether’s
theorem through two versions which play an important role for harmonic
maps. In the (exceptional but important) case where the target manifold
N possesses symmetries, the conservation laws lead to very particular
properties which will be presented in the second chapter. But in con-
strast, there is a symmetry which is observed in general cases and which
is related to invariance under change of coordinates on the source man-
ifold M. It is not really a geometrical symmetry in general and it will
lead to some covariant version of Noether’s theorem: the stress–energy
tensor
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Sαβ =
|du|2
2
gαβ −

〈
∂u

∂xα
,
∂u

∂xβ

〉
always has a vanishing covariant divergence. This equation has a conse-
quence which is very important for the theory of the regularity of weak
solutions: the monotonicity formula. In the case where there is a ge-
ometrical symmetry acting on M, some of the covariant conservation
laws specialize and become true conservation laws. One particular case
is when the dimension of M is 2, since then the harmonic map prob-
lem is invariant under conformal transformations of M, and hence the
stress–energy tensor coincides with the Hopf differential and is holomor-
phic. We end this chapter by a quick survey of the regularity results
which are known concerning weak solutions.

The second chapter is a suite of variations on the version of Noether’s
theorem which concerns harmonic maps with values into a symmetric
manifold N . We present various kinds of results but they are all con-
sequences of the same conservation law. If for instance N is the sphere
S2 in 3-dimensional space, we start from

div(ui∇uj − uj∇ui) = 0, ∀i, j = 1, 2, 3.

Using this conservation law, we will see that it is easy to exhibit the
relations between harmonic maps from a surface into S2, and surfaces
of constant mean curvature or positive constant Gauss curvature in 3-
dimensional space. We hence recover the construction due to Ossian
Bonnet of families of parallel surfaces with constant mean curvature
and constant Gauss curvature. Moreover, we can deduce from this
conservation law a formulation (which was probably discovered by K.
Pohlmeyer and by V.E. Zhakarov and A.B. Shabat) using loop groups,
of the harmonic maps problem between a surface and a symmetric man-
ifold. Such a formulation is a feature of completely integrable systems,
like the Korteweg–de Vries equation (see [150]). Many authors have used
this theory during the last decade in a spectacular way: Karen Uhlen-
beck deduced a classification of all harmonic maps from the sphere S2

into the group U(n) [174]. After Nigel Hitchin, who obtained all har-
monic maps from a torus into S3 by algebraico-geometric methods [94],
Fran Burstall, Dirk Ferus, Franz Pedit and Ulrich Pinkall were able to
construct all harmonic maps from a torus into a symmetric manifold
(the symmetry group of which is compact semi-simple) [24] and more
recently an even more general construction has been obtained by Joseph
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Dorfmeister, Franz Pedit and HongYu Wu [46]. We will give a brief
description of some of these results.

In another direction, the same conservation law allows one to prove
in a few lines some analysis results such as the compactness in the weak
topology of the set of weakly harmonic maps with values into a sym-
metric manifold, or their regularity (complete or partial depending on
other hypotheses): we present the existence result for solutions to the
wave equation for maps with values in a symmetric manifold due to Jalal
Shatah, and my regularity result for weakly harmonic maps between a
surface and a sphere.

The third chapter, which is essentially devoted to compensation phe-
nomena and to Hardy and Lorentz spaces, brings very different ingredi-
ents by constrast with the previous chapter, but complementary. The
main object is the Jacobian determinant {a, b}. We begin by showing
the following result due to H. Wente: if a and b belong to the Sobolev
space H1(Ω,R), where Ω is a domain in the plane R2, and if φ is the
solution on Ω of { −∆φ = {a, b} in Ω

φ = 0 on ∂Ω,

then φ is continuous and is in H1(Ω,R). Moreover, we can estimate the
norm of φ in the spaces involved as a function of the norms of da and
db in L2. Then we will discuss some optimal versions of this theorem
and its relations with the isoperimetric inequality and constant mean
curvature surfaces. Afterwards we will introduce Hardy and Lorentz
spaces and see how they can be used to refine Wente’s theorem. As an
illustration of these ideas, the chapter ends with the proof of a result
of Lawrence Craig Evans on the partial regularity of weakly stationary
maps with values into the sphere.

The fourth chapter deals with harmonic maps with values into mani-
folds without symmetry. We thus need to work without the conservation
laws which were at the origin of the results of chapter 2. For the regular-
ity problem we substitute for the conservation laws the use of Coulomb
moving frames on the target manifold N . Given a map u from M into
N , a Coulomb moving frame consists in an orthonormal frame field on
M which is a harmonic section of the pull-back by u of the orthonormal
tangent frame bundle on N (i.e. the fiber bundle whose base manifold
is M, obtained by attaching to each point x in M the set of (direct)
orthonormal bases of the tangent space to N at u(x)). Using to this
construction and the analytical tools introduced in chapter 3, we may
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extend the regularity results obtained in the two previous chapters, by
dropping the symmetry hypothesis on N : we prove my theorem on the
regularity of weakly harmonic maps on a surface, then a generalization
of it due to Philippe Choné and lastly the generalization of the result of
L.C. Evans proved in chapter 3, obtained by Fabrice Bethuel. Strangely,
we are not able to present a definite answer to the compactness problem
in the weak topology of the set of weakly harmonic maps. Motivated
by this question we end chapter 4 by studying the possibility of build-
ing conservation laws without symmetries. It leads us to “isometric
embedding” problems for covariantly closed differential forms, with co-
efficients in a vector bundle equipped with a connection. Such problems
look interesting by themselves, as this class of questions offers a hybrid
generalization of Poincaré’s lemma for closed differential forms, and the
isometric embedding problem for Riemannian manifolds.
The fifth chapter does not directly concern harmonic maps, but is

an excursion into the study of conformal parametrizations of surfaces.
The starting point is a result of Tatiana Toro which established the re-
markable fact that an embedded surface in Euclidean space which has a
square-integrable second fundamental form is Lipschitz. Soon after, Ste-
fan Müller and Vladimir S̆verák proved that any conformal parametriza-
tion of such a surface is bilipschitz. Their proof relies in a clever way
on the compensation results described in chapter 3 about the quantity
{a, b}, and on the use of Hardy space. We give here a slightly different
presentation of the result and of the proof of their result: we do not use
Hardy space but only Wente’s inequality and Coulomb moving frames.
More precisely, we study the space of conformal parametrizations of sur-
faces in Euclidean space with second fundamental form bounded in L2,
and we show a compactness result for this space. This tour will natu-
rally bring us to an amusing interpretation of Coulomb moving frames:
a Coulomb moving frame associated to the identity map from a surface
to itself corresponds essentially to a system of conformal coordinates.
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Notation

Ω will denote an open subset of Rm.

• Lp(Ω): Lebesgue space. For 1 ≤ p ≤ ∞, Lp(Ω) is the set (of equiv-
alence classes) of measurable functions f from Ω to R such that
||f ||Lp < +∞, where

||f ||Lp :=
(∫

Ω

|f(x)|pdx1...dxm
) 1
p

, if 1 ≤ p <∞,

||f ||L∞ := inf{M ∈ [0,+∞] | |f(x)| ≤M a.e.}.

• Lploc(Ω): space of measurable functions f from Ω to R such that for
every compact subset K of Ω, the restriction of f to K, f|K , belongs
to Lp(K).

• W k,p(Ω): Sobolev space. For each multi-index s = (s1, ..., sm) ∈ Nm,
we define |s| = ∑m

α=1 sα, and Ds =
∂|s|

(∂x1)s1 ...(∂xm)sm . Then, for k ∈ R

and 1 ≤ p ≤ ∞,

W k,p(Ω) := {f ∈ Lp(Ω) | ∀s, |s| ≤ k,Dsf ∈ Lp(Ω)}.

Here, Dsf is a derivative of order |s| of f , in the sense of distributions.
On this space we have the norm

||f ||Wk,p :=
∑
|s|≤k

||Dsf ||Lp .

• W−k,p(Ω): the dual space of W k,p(Ω).
• Hk(Ω) := W k,2(Ω). On this space we have the norm (equivalent to

xxiii
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||f ||Wk,2)

||f ||Hk :=
 ∑

|s|≤k
||Dsf ||2L2

 1
2

.

• Ck(Ω): set of continuous functions on Ω which are k times differen-
tiable and whose derivatives up to order k are continuous (for k ∈ N

or k = ∞).
• Ckc (Ω): set of functions in Ck(Ω) with compact support in Ω.
• D′(Ω): space of distributions over Ω (it is the dual of D(Ω) := C∞

c (Ω)).
• C0,α(Ω): Hölder space. Set of functions f , continuous over Ω, such

that

supx,y∈Ω

|f(x)− f(y)|
|x− y|α < +∞,

(for 0 < α < 1).
• Ck,α(Ω): set of k times differentiable continuous functions such that

all derivatives up to order k belong to C0,α(Ω).
• H1: Hardy space, see definitions 3.2.4, 3.2.5 and 3.2.8.
• BMO(Ω): space of functions with bounded mean oscillation, see def-
inition 3.2.7.

• L(p,q)(Ω): Lorentz space, see definition 3.3.2.
• Lq,λ(Ω): Morrey–Campanato space, see definition 3.5.9.
• Ex,r: see example 1.3.7, section 4.3 and section 3.5.
• The scalar product between two vectors X and Y is denoted by 〈X,Y 〉
or X · Y .

• {a, b} := ∂a
∂x

∂b
∂y − ∂a

∂y
∂b
∂x , see section 3.1.

• {u · v}: if u and v are two maps from a domain in R2 with values into
a Euclidean vector space (V, 〈., .〉), {u · v} := 〈∂u∂x , ∂v∂y 〉 − 〈∂u∂y , ∂v∂x 〉.

• {a, b}αβ : see section 4.3.
• ãb, ãbΩ: see section 3.1.
• ΛpRm: algebra of p-forms with constant coefficients over Rm (p-linear
skew-symmetric forms over Rm). ΛRm =

⊕m
p=0 Λ

pRm.

• ∧: wedge product in the algebra ΛRm (see [47] or [183]).
• d: exterior differential, acting linearly over D′(Ω) ⊗ ΛRm and such
that ∀φ ∈ C∞(Ω), ∀α ∈ ΛRm, d(φ⊗ α) = ∑m

α=1
∂φ
∂xα dx

α ∧ α.
• ×: vector product in R3: x1

x2

x3

×
 y1

y2

y3

 =

 x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

 .
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• tu: for any vector u =

 u1

...
un

, tu = (u1, . . . , un).

• GL(E): if E is a vector space, GL(E) is the group of invertible endo-
morphisms of E.

• M(n × n,R) or M(n × n,C): algebra of (real or complex) square
matrices with n rows (and n columns).

• 1l: identity matrix.
• δab : Kronecker symbol, its value is 1 if a = b and 0 if a �= b.
• O(n) := {R ∈M(n× n,R) | tRR = 1l}.
• SO(n) := {R ∈M(n× n,R) | tRR = 1l,detR = 1}.
• SO(n)C := {R ∈M(n× n,C) | tRR = 1l,detR = 1}.
• so(n) := {A ∈M(n× n,R) | tA+A = 0}.
• SU(n) := {R ∈M(n× n,C) | tR̄R = 1l,detR = 1}.
• su(n) := {A ∈M(n× n,C) | tĀ+A = 0, trA = 0}.
• Spin(3): (2-fold) universal covering of SO(3). It is identified with
SU(2).

• Sn−1 := {y ∈ Rn | |y| = √
(y1)2 + · · ·+ (yn)2 = 1}.
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Geometric and analytic setting

This chapter essentially describes the objects and properties that will
interest us in this work. For a more detailed exposition of the general
background in Riemannian geometry and in analysis on manifolds, one
may refer for instance to [183] and [98]. After recalling how to associate,
to each Riemannian metric on a manifold, a Laplacian operator on the
same manifold, we will give a definition of smooth harmonic map be-
tween two manifolds. Very soon, we will use the variational framework,
which consists in viewing harmonic maps as the critical points of the
Dirichlet functional.

Next, we introduce a frequently used ingredient in this book: Noether’s
theorem. We present two versions of it: one related to the symmetries of
the image manifold, and the other which is a consequence of an invari-
ance of the problem under diffeomorphisms of the domain manifold (in
this case it is not exactly Noether’s theorem, but a “covariant” version).

These concepts may be extended to contexts where the map between
the two manifolds is less regular. In fact, a relatively convenient space
is that of maps with finite energy (Dirichlet integral), H1(M,N ). This
space appears naturally when we try to use variational methods to con-
struct harmonic maps, for instance the minimization of the Dirichlet
integral. The price to pay is that when the domain manifold has dimen-
sion larger than or equal to 2, maps in H1(M,N ) are not smooth, in
general. Moreover, H1(M,N ) does not have a differentiable manifold
structure. This yields that several non-equivalent generalizations of the
notion of harmonic function coexist in H1(M,N ) (weakly harmonic,
stationary harmonic, minimizing, . . . ). We will conclude this chapter
with a brief survey of the known results on weakly harmonic maps in
H1(M,N ). As we will see, the results are considerably different accord-

1



2 Geometric and analytic setting

ing to which definition of critical point of the Dirichlet integral we adopt.

Notation: M and N are differentiable manifolds. Most of the time,
M plays the role of domain manifold, and N that of image manifold;
we will suppose N to be compact without boundary. In case they are
abstract manifolds (and not submanifolds) we may suppose that they are
C∞ (in fact, thanks to a theorem of Whitney, we may show that every C1

manifold is C1-diffeomorphic to a C∞ manifold). Unless stated otherwise,
M is equipped with a C0,α Riemannian metric g, where 0 < α < 1. For
N , we consider two possible cases: either it is an abstract manifold with
a C1 Riemannian metric h, or we will need to suppose it is a C2 immersed
submanifold of RN . The second situation is a special case of the first
one, but nevertheless, Nash’s theorem (see [123], [74] and [77]) assures
us that if h is Cl for l ≥ 3, then there exists a Cl isometric immersion of
(N , h) in (RN , 〈., .〉).

Several regularity results are presented in this book. We will try to
present them under minimal regularity hypotheses on (M, g) and (N , h),
keeping in mind that any improvement of the hypotheses on (M, g)
and (N , h) automatically implies an improvement of the conclusion, as
explained in theorem 1.5.1.

We write m := dimM and n := dimN .

1.1 The Laplacian on (M, g)
For every metric g on M there exists an associated Laplacian operator
∆g, acting on all smooth functions on M taking their values in R (or
any vector space over R or C). To define it, let us use a local coordinate
system (x1, . . . , xm) on M. Denote by

gαβ(x) = g(x)
(
∂

∂xα
,
∂

∂xβ

)
the coefficients of the metric, and by det g(x) the determinant of the
matrix whose elements are gαβ(x). Then, for each real-valued function
φ defined over an open subset Ω of M, we let

∆gφ =
1√
det g

∂

∂xα

(√
det g gαβ(x)

∂φ

∂xβ

)
(1.1)

where we adopt the convention that repeated indices should be summed
over. The metric g induces on the cotangent space T ∗

x M a metric which
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we denote by g#. Its coefficients are given by gαβ = g#(dxα, dxβ). Recall
that gαβ(x) represents an element of the inverse matrix of (gαβ).

Definition 1.1.1 Any smooth function φ defined over an open subset Ω
of M and satisfying

∆gφ = 0

is called a harmonic function.

We can easily check through a computation that the operator ∆g does
not depend on the choice of the coordinate system, but it will be more
pleasant to obtain this as a consequence of a variational definition of
∆g. Let

dvolg =
√

det g(x) dx1 . . . dxm, (1.2)

be the Riemannian measure. For each smooth function φ from Ω ⊂ M
to R, let

E(Ω,g)(φ) =
∫

Ω

e(φ) dvolg (1.3)

be the energy or Dirichlet integral of φ (which may be finite or not).
Here, e(φ) is the energy density of φ and is given by

e(φ) =
1
2
gαβ(x)

∂φ

∂xα
∂φ

∂xβ
. (1.4)

It is easy to check that the Dirichlet integral does not depend on
the choice of the local coordinate system and that, if ψ is a compactly
supported smooth function on Ω ⊂ M, then for all t ∈ R,

E(Ω,g)(φ+ tψ) = E(Ω,g)(φ)− t
∫

Ω

(∆gφ)ψ dvolg +O(t2). (1.5)

Hence, −∆g appears as the variational derivative of EΩ, which pro-
vides us with an equivalent definition of the Laplacian.

Thus, the Laplacian does not depend on the coordinate system used.
However, it depends on the metric. For instance, let us consider the effect
of a conformal transformation on (M, g), i.e. compare the Dirichlet
integrals and the Laplacians on the manifolds (M, g) and (M, e2vg),
where v is a smooth real-valued function on M. We have

dvole2vg = emv dvolg, (1.6)
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and for the energy density (1.4)

ee2vg(φ) = e−2veg(φ). (1.7)

Thus,

E(Ω,e2vg)(φ) =
∫

Ω

e(m−2)veg(φ) dvolg. (1.8)

However, we notice that in case m = 2, the Dirichlet integrals calcu-
lated using the metrics g and e2vg coincide, and thus are invariant under
a conformal transformation of the metric.

Still in the case m = 2, we have

∆e2vg(φ) = e−2v∆gφ . (1.9)

Therefore, for m = 2, every function which is harmonic over (M, g) will
also be so over (M, e2vg). More generally, if (M, g) and (M′, g′) are two
Riemannian surfaces and Ω and Ω′ are two open subsets of M and M′

respectively, then if T : (Ω, g) −→ (Ω′, g′) is a conformal diffeomorphism,
we have

E(Ω,g)(φ ◦ T ) = E(Ω′,g′)(φ),∀φ ∈ C1(Ω′,R) (1.10)

and

∆g(φ ◦ T ) = λ(∆g′φ) ◦ T, (1.11)

where

λ =
1
2
gαβ(x)g′ij(T (x))

∂T i

∂xα
∂T j

∂xβ
.

Thus,

Proposition 1.1.2 The Dirichlet integral, and the set of harmonic func-
tions over an open subset of a Riemannian surface, depend only on the
conformal structure of this surface.

This phenomenon, characteristic of dimension 2, has many conse-
quences, among them the following, which is very useful: first recall
that according to the theorem below, locally all conformal structures
are equivalent.
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Theorem 1.1.3 Let (M, g) be a Riemannian surface. Then, for each
point x0 in (M, g), there is a neighborhood U of x0 in M, and a diffeo-
morphism T from the disk

D = {(x, y) ∈ R2| x2 + y2 < 1}
to U , such that, if c is the canonical Euclidean metric on the disk,
T : (D, c) −→ (U, g) is a conformal map. We say that T−1 is a lo-
cal conformal chart in (M, g) and that (x, y) are conformal coordinates.

Remark 1.1.4 There are several proofs of this result, depending on the
regularity of g. The oldest supposes g to be analytic. Later methods
like that of S.S. Chern (see [36]), where g is supposed to be just Hölder
continuous, have given results that are valid under weaker regularity as-
sumptions. At the end of this book (theorem 5.4.3) we can find a proof
of theorem 1.1.3 under weaker assumptions.

Using theorem 1.1.3, we can express the Dirichlet integral over U of a
map φ from M to R, simply as

∫
U

e(φ) dvolg =
∫
D2

1
2

[(
∂(φ ◦ T )
∂x

)2

+
(
∂(φ ◦ T )
∂y

)2
]
dxdy ,

and φ will be harmonic if and only if

∆(φ ◦ T ) = ∂
2(φ ◦ T )
∂x2

+
∂2(φ ◦ T )
∂y2

= 0 .

Thus, when studying harmonic functions on a Riemannian surface,
we can always suppose, at least locally, that our equations are simi-
lar to those corresponding to the case where the domain metric is flat
(Euclidean).

1.2 Harmonic maps between two Riemannian manifolds

We now introduce a second Riemannian manifold, N , supposed to be
compact and without boundary, which we equip with a metric h. Re-
call that over any Riemannian manifold (N , h), there exists a unique
connection or covariant derivative, ∇, having the following properties.

(i) ∇ is a linear operator acting on the set of smooth (at least C1)
tangent vector fields on N . To each Ck vector field X (where
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k ≥ 1) on N , we associate a field of Ck−1 linear maps from TyN
to TyN defined by

TyN � Y  −→ ∇Y X ∈ TyN .

(ii) ∇ is a derivation, i.e. for any smooth function α from N to R,
any vector field X and any vector Y in TyN ,

∇Y (αX) = dα(Y )X + α∇YX.

(iii) The metric h is parallel for ∇, i.e. for any vector fields X,Y , and
for any vector Z in TyN ,

d(hy(X,Y ))(Z) = hy(∇ZX,Y ) + hy(X,∇ZY ).

(iv) ∇ has zero torsion, i.e. for any vector fields X,Y ,

∇XY −∇YX − [X,Y ] = 0 .

∇ is called the Levi-Civita connection.
Let (y1, . . . , yn) be a local coordinate system on N , and hij(y) the

coefficients of the metric h in these coordinates. We can show (see, for
instance, [47]) that for any vector field Y = Y i ∂∂yi ,

∇X

(
Y i
∂

∂yi

)
=

(
Xj ∂ Y

i

∂yj
+ ΓijkX

jY k
)
∂

∂yi

where

Γijk =
1
2
hil

(
∂hjl
∂xk

+
∂hkl
∂xj

− ∂hjk
∂xl

)
(1.12)

are the Christoffel symbols.
Let u : M −→ N be a smooth map.

Definition 1.2.1 u is a harmonic map from (M, g) to (N , h) if and
only if u satisfies at each point x in M the equation

∆gu
i + gαβ(x)Γijk(u(x))

∂uj

∂xα
∂uk

∂xβ
= 0 . (1.13)
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Once more, the reader may check that this definition is independent
of the coordinates chosen on M and N . However, it is easier to see this
once we notice that harmonic maps are critical points of the Dirichlet
functional

E(M,g)(u) =
∫
M
e(u)(x) dvolg, (1.14)

where

e(u)(x) =
1
2
gαβ(x)hij(u(x))

∂ui

∂xα
∂uj

∂xβ
,

and where u is forced to take its values in the manifold N . The proof
of this result, in a more general setting, will be given later on, in lemma
1.4.10. When we say that u : M −→ N is a critical point of E(M,g), it
is implicit that for each one-parameter family of deformations

ut : M −→ N , t ∈ I ⊂ R,

which has a C1 dependence on t, and is such that u0 ≡ u on M and, for
every t, ut = u outside a compact subset K of M, we have

lim
t→0

E(M,g)(ut)− E(M,g)(u)
t

= 0.

Different types of deformations will be specified in section 1.4. Notice
that, by checking that E(M,g)(u) is invariant under a change of coordi-
nates on (M, g), we show that definition 1.2.1 does not depend on the
coordinates chosen on M (the same is true for the coordinates on N ).

Effect of a conformal transformation on (M, g), if m = 2

As we noticed in the previous section, in dimension 2 (i.e. when M
is a surface), the Dirichlet functional for real-valued functions on M
is invariant under conformal transformations of (M, g). This property
remains true when we replace real-valued functions by maps into a man-
ifold (N , h). An immediate consequence of this is the following general-
ization of proposition 1.1.2.

Proposition 1.2.2 The Dirichlet integral, and the set of harmonic maps
on an open subset of a Riemannian surface, depend only on the confor-
mal structure.
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By theorem 1.1.3, we can always suppose that we have locally confor-
mal coordinates (x, y) ∈ R2 on (M, g). In these coordinates equation
(1.13) becomes

∂2ui

∂x2
+
∂2ui

∂y2
+ Γijk(u)

(
∂uj

∂x

∂uk

∂x
+
∂uj

∂y

∂uk

∂y

)
= 0.

Another definition

Henceforth, we will not use formulation (1.13), but an alternative one
where we think of N as a submanifold of a Euclidean space. In fact,
thanks to the Nash–Moser theorem ([123], [102], [77]), we know that,
provided h is C3, it is always possible to isometrically embed (N , h) into
a vector space RN , with the Euclidean scalar product 〈. , .〉. Then, we
will obtain a new expression for the Dirichlet integral

E(M,g)(u) =
∫
M

1
2
gαβ(x)

〈
∂u

∂xα
,
∂u

∂xβ

〉
dvolg (1.15)

where now we think of u as a map from M to RN satisfying the con-
straint

u(x) ∈ N ,∀x ∈ M. (1.16)

Therefore, we have another definition.

Definition 1.2.3 u is a harmonic map from (M, g) to N ⊂ RN , if and
only if u is a critical point of the functional defined by (1.15), among the
maps satisfying the constraint (1.16). We can then see that u satisfies

∆gu ⊥ Tu(x)N , ∀x ∈ M . (1.17)

The proof of (1.17) will be given, in a more general setting, in lemma
1.4.10. This equation means that for every point x of M, ∆gu(x) is
a vector of RN belonging to the normal subspace to N at u(x). At
first glance, condition (1.17) seems weaker than equation (1.13), since
we just require that the vector ∆gu belongs to a subspace of RN . This
imprecision is illusory: by this we mean that it is possible to calculate the
normal component of ∆gu, a priori unknown, using the first derivatives
of u.
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Lemma 1.2.4 Let u be a C2 map from M to N , not necessarily har-
monic. For each x ∈ M, let P⊥

u be the orthogonal projection from RN

onto the normal subspace to Tu(x)N in RN . Then, for every x in M,

P⊥
u (∆gu) = −gαβA(u)

(
∂u

∂xα
,
∂u

∂xβ

)
, (1.18)

where A(y) is an RN -valued symmetric bilinear form on TyN whose
coefficients are smooth functions of y. A is the second fundamental form
of the embedding of N into RN .

A first way of writing A explicitly is to choose over sufficiently small
open sets ω ofN an (N−n)-tuple of smooth vector fields (en+1, . . . , eN ) :
ω −→ (RN )N−n, such that at each point y ∈ ω, (en+1(y), . . . , en(y)) is
an orthonormal basis of (TyN )⊥. Then, for each pair of vectors (X,Y )
in (TyN )2,

A(y)(X,Y ) =
N∑

j=n+1

〈X,DY ej〉ej ,

where DY ej =
∑N

i=1 Y
i ∂ej
∂yi is the derivative of ej along Y in RN . An-

other possible definition for A is

A(y)(X,Y ) = DXP⊥
y (Y ) . (1.19)

Proof of lemma 1.2.4 We have

P⊥
u

(
gαβ

√
det g

∂u

∂xβ

)
= 0 ,

which implies that

P⊥
u

(
∂

∂xα

(
gαβ

√
det g

∂u

∂xβ

))
+
∂P⊥

u

∂xα

(
gαβ

√
det g

∂u

∂xβ

)
= 0 .

Thus,

P⊥
u (∆gu) =

1√
det g

P⊥
u

(
∂

∂xα

(
gαβ

√
det g

∂u

∂xβ

))
= −gαβD ∂u

∂xα
P⊥
u

(
∂u

∂xβ

)
.
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And we conclude that

P⊥
u (∆gu) = −gαβA(u)

(
∂u

∂xα
,
∂u

∂xβ

)
, (1.20)

where A is given by (1.19).

We come back to harmonic maps according to definition 1.2.3 and
denote, for each y ∈ N , by Py the orthogonal projection of RN onto
TyN . Since Py + P⊥

y = 1l, from lemma 1.2.4 we deduce that for every
harmonic map u from (M, g) to N ,

∆gu+ gαβA(u)
(
∂u

∂xα
,
∂u

∂xβ

)
= 0. (1.21)

Example 1.2.5 Rn
-valued maps

If the image manifold is a Euclidean vector space, such as (Rn, 〈., .〉),
then a map u : (M, g) −→ Rn is harmonic if and only if each of its
components ui is a real-valued harmonic function on (M, g).

Example 1.2.6 Geodesics

If the domain manifold M has dimension 1 (i.e. is either an interval in
R, or a circle), equation (1.21) becomes, denoting by t the variable on
M,

d2u

dt2
+A(u)

(
du

dt
,
du

dt

)
= 0 ,

which is the equation satisfied by a constant speed parametrization of a
geodesic in (N , h).

Example 1.2.7 Maps taking their values in the unit sphere of

R3

In this case we have

N = S2 = {y ∈ R3| |y| = 1},

where |y| =
(

3∑
i=1

(yi)2
) 1

2

is the norm of y. Notice that for each map

u : (M, g) −→ S2, we have

0 = ∆g|u|2 = 2 〈u,∆gu〉+ 4e(u),
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where

e(u) =
1
2
gαβ(x)

〈
∂u

∂uα
,
∂u

∂xβ

〉
,

and thus, since the normal space to S2 at u is Ru,

P⊥
u (∆gu) = 〈u,∆gu〉u

= −2e(u)u . (1.22)

But if u is an S2-valued harmonic map,

Pu(∆gu) = 0 ,

which, together with (1.22), yields

∆gu+ 2e(u)u = 0. (1.23)

Exercises

1.1 Let (M, g) be a Riemannian manifold. Show that a map u :
(M, g) −→ S1 is harmonic if and only if for any simply con-
nected subset Ω of M, there exists a harmonic function f :
(Ω, g) −→ R such that

u(x) = eif(x), ∀x ∈ Ω.

1.3 Conservation laws for harmonic maps

Noether’s theorem is a very general result in the calculus of variations.
It enables us to construct a divergence-free vector field on the domain
space, from a solution of a variational problem, provided we are in the
presence of a continuous symmetry. For 1–dimensional variational prob-
lems, the divergence-free vector field is just a quantity which is conserved
in time (= the variable): for instance in mechanics, the energy or the
momentum. We can find in [124] a presentation of Noether’s theorem,
and of its extensions (see also [140]). We will present here two versions
which are frequently used for harmonic maps. The first is obtained in
the case where the symmetry group acts on the image manifold, and the
second is connected to the symmetries of the domain.
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1.3.1 Symmetries on N
We start with a simple example, that of harmonic maps from an open
set Ω of Rm, taking values in the sphere S2 ⊂ R3. In this case equation
(1.23) of the previous section can be written as

∆u+ u|du|2 = 0, (1.24)

where

|du|2 =
3∑
i=1

m∑
α=1

(
∂ui

∂xα

)2

= 2e(u),

and

∆u =
m∑
α=1

∂2u

(∂xα)2
.

Taking the vector product of equation (1.24) by u, we obtain

u×∆u = 0 , (1.25)

or equivalently,

m∑
α=1

∂

∂xα

(
u× ∂u

∂xα

)
=

m∑
α=1

∂u

∂xα
× ∂u

∂xα
+ u×∆u = 0 . (1.26)

Several authors (see [99], [35], [153]) have noticed and used indepen-
dently equation (1.26). Its interest is that it singles out a vector field
j = (j1, . . . , jm) on Ω, given by

jα = u× ∂u

∂xα

which is divergence-free. It allows us to rewrite (1.24) in the form (1.26)
where the derivatives of u appear in a linear and not quadratic way,
which is extremely useful when we are working with weak regularity
hypotheses on the solution (see the works of Lúıs Almeida [2] and Yuxin
Ge [65] for an example of how to take advantage of this equation under
very weak regularity hypotheses).

We will now see that the existence of this conservation law (div j = 0)
is a general phenomenon, which is due to the symmetries of the sphere
S2. Let Ω be an open subset of M and L be a Lagrangian defined
for maps from Ω to N : we suppose that L is a C1 function defined on
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TN⊗M×N T ∗M := {(x, y,A) | (x, y) ∈ M×N , A ∈ TyN⊗T ∗
xM} with

values in R (here A can be seen as a linear map from TxM to TyN ).
We take a (C1 density) measure dµ(x) on Ω. It is then possible to define
a functional L on the set of maps C1(Ω,N ) by letting

L(u) =
∫

Ω

L(x, u(x), du(x))dµ(x) .

For instance, if we are given metrics g and h over M and N , we may
choose

L(x, u(x), du(x)) = e(u)(x) =
1
2
gαβ(x)hij(u(x))

∂ui

∂xα
∂uj

∂xβ

and

dµ(x) = dvolg(x).

LetX be a tangent vector field onN . We say thatX is an infinitesimal
symmetry for L if and only if

∂L

∂yi
(x, y,A)Xi(y) +

∂L

∂Aiα
(x, y,A)

∂Xi

∂yj
(y)Ajα = 0 . (1.27)

This implies, in particular, the following relation. Suppose that the
vector field X is Lipschitz. It is then possible to integrate the flow of X
for all time (N is compact!). For any y ∈ N , t ∈ R, write

expy tX = γ(t) ∈ N ,
where γ is the solution of

 γ(0) = y
dγ

dt
= X(γ) .

A consequence of (1.27) is that for every map u from Ω to N ,

L(x, expu tX, d(expu tX)) = L(x, u, du) . (1.28)

To check it, it suffices to differentiate equation (1.28) w.r.t. t and use
(1.27).
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Theorem 1.3.1 Let X be a Lipschitz tangent vector field on N , which
is an infinitesimal symmetry for L. If u : Ω −→ N is a critical point of
L, then

div
(
∂L

∂A
·X(u)

)
= 0 (1.29)

or equivalently, using the coordinates (x1, . . . , xm) on Ω such that dµ =
ρ(x)dx1 . . . dxm ,

m∑
α=1

∂

∂xα

(
ρ(x)Xi(u)

∂L

∂Aiα
(x, u, du)

)
= 0 . (1.30)

Remark 1.3.2

(i) In the case where L is the Lagrangian of the harmonic map, this
result was first obtained in [134].

(ii) The vector field J defined over Ω by

Jα = ρ(x)
∂L

∂Aiα
(x, u, du)Xi(u)

is often called the Noether current by physicists. Equations (1.29)
and (1.30) are called conservation laws.

Proof of theorem 1.3.1 To lighten the notation, we can always suppose
that the coordinates (x1, . . . , xm) on Ω are such that dµ = dx1 . . . dxm.
This corresponds to fixing an arbitrary coordinate system, in which dµ
has the density ρ(x), and then changing L(x, u, du)ρ(x) into L(x, u, du).
The proof will be the same. With an analogous simplification purpose,
we will replace expu tX by u+ tX(u)+o(t) in the calculations (for small
t). If we choose to use local charts on N , and hence view u as a map
from Ω to an open subset of Rn, this will not be a big problem. In the
case where we choose to represent N as a submanifold of RN , we should
extend L, a priori defined over TN ⊗M×N T ∗M, to a C1 Lagrangian
function on Ω×RN × (RN ⊗ T ∗

xM). Such a construction does not pose
any particular problem. The fact of u being a critical point of L implies,
in particular, that for every test function φ ∈ C∞

c (Ω,R),

L(expu(tφX)) = L(u+ tφX + o(t))

= L(u) + o(t) . (1.31)
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But

L(u+ tφX + o(t))

=
∫

Ω

L(x, u+ tφX(u), du+ tφd(X(u)) + tdφ ·X(u))dx1 . . . dxm

+ o(t)

=
∫

Ω

L(x, u+ tφX(u), du+ tφd(X(u)))dx1 . . . dxm

+ t
∫

Ω

Xi ∂φ

∂xα
∂L

∂Aiα
(x, u, du)dx1 . . . dxm + o(t) .

By relation (1.28),

L(x, u+ tφX(u), du+ tφd(X(u))) = L(x, u, du) + o(t),

and so

L(u+ tφX+o(t)) = L(u)+
∫

Ω

(Xi ∂L

∂Aiα
(x, u, du))

∂φ

∂xα
dx1 . . . dxm+o(t) .

(1.32)
Comparing (1.31) and (1.32), we obtain

∫
Ω

∂φ

∂xα
(Xi ∂L

∂Aiα
(x, u, du))dx1 . . . dxm = 0, ∀φ ∈ C∞

c (Ω,R) ,

which is the variational formulation of (1.30).

As an example of applying this result, let us consider the case of
harmonic maps. We have

L(x, y,A) = 1
2g

αβ(x)hij(y)AiαA
j
β

= 1
2g

αβ(x) 〈Aα, Aβ〉 ,
and

ρ(x) =
√
det g dx1 . . . dxm .

Then X is an infinitesimal symmetry if the flow generated by X is a
family of isometries of (N , h), i.e. if X is a Killing vector field. Such
fields are characterized by the fact that

LXh = 0,

where L is the Lie derivative. In local coordinates, this is written as
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(LXh)ij = Xk ∂hij
∂yk

+
∂Xk

∂yi
hkj +

∂Xk

∂yj
hik

= hjk∇ ∂

∂yi
Xk + hik∇ ∂

∂yj
Xk = 0 .

The Noether current is then the vector field

J = Jα
∂

∂xα
= gαβ(x)

〈
X(u),

∂u

∂xβ

〉√
det g

∂

∂xα
.

Example 1.3.3 Let us come back to the sphere – this time of arbitrary
dimension n:

N = Sn = {y ∈ Rn+1 | |y| = 1} .

The group of rotations of Rn+1, SO(n+ 1), leaves Sn invariant, and
acts isometrically on Sn. The set of Killing vector fields on Sn can be
identified with the Lie algebra so(n+1) of SO(n+1). We will systemat-
ically identify so(n+1) with the set of (n+1)× (n+1) skew-symmetric
real matrices, and

SO(n+ 1) = {R ∈M((n+ 1)× (n+ 1),R) | tRR = 1l, detR = 1}.

In fact, to each element a ∈ so(n + 1), we may associate the tangent
vector field on Sn given by

Xa : y  −→ a.y ,

and we can obtain all Killing vector fields in this way. The previous
theorem states that the Noether current

J = Jα
∂

∂xα
=

〈
a.u,

∂u

∂xβ

〉
gαβ(x)

√
det g

∂

∂xα
(1.33)

is divergence-free, i.e.

m∑
α=1

∂Jα

∂xα
=

m∑
α=1

∂

∂xα

(
gαβ(x)

〈
a.u,

∂u

∂xβ

〉√
det g

)
= 0 .
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Example 1.3.4 (continuation of the previous example). We restrict
ourselves to the case where Ω is an open subset of Rm equipped with
the Euclidean metric, and where n = 2. By successively choosing for
a ∈ so(3)

a1 =

 0 0 0
0 0 −1
0 1 0

 ,

a2 =

 0 0 1
0 0 0
−1 0 0

 ,

a3 =

 0 −1 0
1 0 0
0 0 0

 ,
we obtain the currents (using (1.30))

j1,α = u2
∂u3

∂xα
− u3 ∂u

2

∂xα
,

j2,α = u3
∂u1

∂xα
− u1 ∂u

3

∂xα
,

j3,α = u1
∂u2

∂xα
− u2 ∂u

1

∂xα
.

We recognize that (j1,α, j2,α, j3,α) are the three components of the vec-
tor u× ∂u

∂xα , and Noether’s theorem yields

3∑
α=1

∂

∂xα

(
u× ∂u

∂xα

)
= 0 .

Thus, we recover (1.26).
This equation is particularly interesting in the case of a sphere (also

for other homogeneous manifolds), since the isometry group SO(n + 1)
acts transitively on Sn and, at an infinitesimal scale, this yields that
at each point y of Sn, the set of all a.y, for a ∈ so(n + 1), is equal
to TySn (equivalently if ai is a basis of so(n + 1), then the ai.y’s span
TyS

n). This implies that equation (1.26) is equivalent to the original
S2-valued harmonic map equation, (1.24). We will take advantage of
this in sections 2.5 and 2.6.
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1.3.2 Symmetries on M: the stress–energy tensor
Let us start with an example: when the manifold M is 2-dimensional,
surprising conservation laws occur. Let us place ourselves in local confor-
mal coordinates (x, y) on M, and consider the C-valued function defined
by

f =
∣∣∣∣∂u∂x

∣∣∣∣2 − ∣∣∣∣∂u∂y
∣∣∣∣2 − 2i

〈
∂u

∂x
,
∂u

∂y

〉
.

One can check that when u is a harmonic map taking values in a Rie-
mannian manifold (N , h), f is a holomorphic function of the variable
z = x+ iy. This was first noticed, in some special cases, by H.E. Rauch
and K. Shibata, then by J. Sampson ([143]), in the 1960s, before peo-
ple realized around 1980 that this result is general and related (through
Noether’s theorem) to the problem’s invariance under conformal trans-
formations ([5], [127]).

Remark 1.3.5 A geometric characterization of f is the following: the
inverse image (or pull-back) by u of the metric on N ,

u∗h = |ux|2(dx)2 + 〈ux, uy〉 (dx⊗ dy + dy ⊗ dx) + |uy|2(dy)2 ,
may be decomposed over the complexified tangent space TxM⊗ C, as

u∗h =
1
4
[f(dz)2 + |du|2(dz ⊗ dz + dz ⊗ dz) + f(dz)2] .

This decomposition does not depend on the local (conformal) coordinate
system chosen. Thus, we can define f by the relation 4(u∗h)(2,0) =
f(dz)2 .

We will come back to this in definition 1.3.10. First we will study the
general case where (M, g) is an arbitrary manifold of any dimension.
Let Φ be a diffeomorphism of the open subset Ω ⊂ (M, g) onto itself,

and u be a map from Ω to N . The pull-back of g by Φ is the tensor Φ∗g
defined by

(Φ∗g)αβ = gγδ(Φ(x))
∂Φγ

∂xα
∂Φδ

∂xβ
. (1.34)

Φ∗g defines a new metric over Ω, such that (Ω,Φ∗g) and (Ω, g) are
“geometrically identical” manifolds, in the sense that

Φ : (Ω,Φ∗g) −→ (Ω, g)
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is an isometry. This is why we consider that the two maps

u : (Ω, g) −→ (N , h)
and

u ◦ Φ : (Ω,Φ∗g) −→ (N , h)
are two different representations of a same geometric object. Moreover,
the transformation of u into u◦Φ, which is just a change of coordinates,
preserves the Dirichlet integral, provided that we also transform the
metric. In fact, a change of variable,

φ = Φ(x) ,

yields

E(Ω,Φ∗g)(u ◦ Φ) =
∫

Ω

gγδ(Φ(x))
∂xα

∂Φγ
∂xβ

∂Φδ

〈
∂(u ◦ Φ)
∂xα

,
∂(u ◦ Φ)
∂xβ

〉
√

detΦ∗g dx1 . . . dxm

=
∫

Ω

gγδ(φ)
〈
∂u

∂φα
,
∂u

∂φβ

〉√
det g(φ) dφ1 . . . dφm

= E(Ω,g)(u).

Hence, we notice the invariance of the Dirichlet integral under the
action of the diffeomorphism group

Diff(Ω) = {Φ ∈ C1(Ω,Ω)|Φ is invertible and Φ−1 ∈ C1(Ω,Ω)}
on the pairs (g, u). We expect to find conservation laws. Nevertheless,
two remarkable differences should be pointed out, when compared to the
classical setting of Noether’s theorem (like the one we saw before). First,
the group Diff(Ω) is infinite dimensional. Next, the Lagrangian of the
harmonic map is not exactly invariant under this group action, to the
extent that we need to change the metric g, and thus the Lagrangian
L, at the same time as we change the map u, in order to obtain the
invariance. The result we will obtain will not concern the existence of
divergence-free vector fields, but that of an order 2 symmetric tensor,
whose covariant derivative (w.r.t. the metric g) will vanish. Such a tensor
S will be defined by

S = e(u)g − u∗h , (1.35)
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where e(u) is the energy density. In local coordinates

Sαβ(x) =
1
2
hij(u(x))gγδ(x)

∂ui

∂xγ
∂uj

∂xδ
gαβ − hij(u(x)) ∂u

i

∂xα
∂uj

∂xβ

=
1
2
gγδ(x)

〈
∂u

∂xγ
,
∂u

∂xδ

〉
gαβ(x)−

〈
∂u

∂xα
,
∂u

∂xβ

〉
.

The tensor S is called the stress–energy tensor (this name comes from
general relativity where its variational origin was first pointed out by
David Hilbert [91]). The following result is due to Paul Baird, James
Eells and A.I. Pluzhnikov.

Theorem 1.3.6 [5], [127] Let u : (M, g) −→ (N , h) be a smooth har-
monic map. Then, the stress–energy tensor of u, S, has vanishing co-
variant divergence. This can be stated in two equivalent ways:

(i) For every compactly supported tangent vector field X on M,

∫
M
(LXg#)αβSαβ dvolg = 0 , (1.36)

where

(LXg#)αβ = Xγ ∂g
αβ

∂xγ
− ∂X

α

∂xγ
gγβ − ∂X

β

∂xγ
gαγ

is the Lie derivative of g# with respect to X.
(ii) The tensor S satisfies the following equation for β = 1, . . . ,m,

divg(gαβSγβ) = ∇ ∂
∂xα

(gαγSγβ) = 0 . (1.37)

Proof We first prove (i). Let X be a compactly supported Lipschitz
vector field on M, and Φt the flow generated by X,

 Φ0(x) = x, ∀x ∈ M
∂(Φt(x))
∂t

= X(Φt(x)) .

For all t, Φt exists and is an element of Diff(M).
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Recall that for any tensor field T = Tα1...αa
β1...βb

∂
∂xα1 ⊗· · ·⊗ ∂

∂xαa ⊗dxβ1 ⊗
· · · ⊗ dxβb on M, the Lie derivative of T w.r.t.X is defined by

(LXT )x = lim
t→0

Φ∗
t (TΦt(x))− Tx

t
. (1.38)

Here, Φ∗
tT denotes the tensor field such that

(Φ∗
tT )

α1...αa
x,β1...βb

∂Φα
′
1

t

∂ξα1
· · · ∂Φ

α′
a

t

∂ξαa
= Tα

′
1...α

′
a

Φt(x),β′
1...β

′
b

∂Φβ
′
1
t

∂ξβ1
· · · ∂Φ

β′
b
t

∂ξβb
. (1.39)

Replacing in (1.39) Φt(x) by x + tX(x) + o(t), and (Φ∗
tT )x by Tx +

t(LXT )x + o(t) (a consequence of (1.38)), we obtain

(LXT )α1...αa
xβ1...βb

= Xγ
∂Tα1...αa

xβ1...βb

∂xγ
+ Tα1...αa

xγ...βb

∂Xγ

∂xβ1
+ · · ·+ Tα1...αa

xβ1...γ

∂Xγ

∂xβb

− T γ...αaxβ1...βb

∂Xα1

∂xγ
− · · · − Tα1...γ

xβ1...βb

∂Xαb

∂xγ
.

Since u is harmonic, i.e. a critical point of E(M,g), we have

d

dt

(
E(M,g)(u ◦ Φ−t)

)
|t=0

= 0 . (1.40)

We will take advantage of this relation. We start by noticing that
performing the change of variable

φ = (Φ−t)−1(x) = Φt(x),

we have, writing Eg = E(M,g),

Eg(u ◦ Φ−t) = EΦ∗
t g
(u ◦ Φ−t ◦ Φt)

= EΦ∗
t g
(u) .

We need to estimate EΦ∗
t g
(u) for small t, and in order to do so, we

first calculate Φ∗
t g, up to first order in t:

(Φ∗
t g)αβ = gab(x+ tX(x))(δaα + t∂X

a

∂xα )(δ
b
β + t∂X

b

∂xβ
) + o(t)

= gαβ(x) + t(LXg)αβ(x) + o(t) ,

where

(LXg)αβ = Xγ ∂gαβ
∂xγ

+
∂Xγ

∂xα
gγβ +

∂Xγ

∂xβ
gαγ .

Thus, we deduce that
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det (Φ∗
t g) = det (gαβ + t(LXg)αβ) + o(t)

= det (gαβ) det
(
δαβ + t gαγ(LXg)γβ

)
+ o(t)

= (det g) (1 + t trg(LXg)) + o(t) . (1.41)

We also need to estimate Φ∗
t g

#:

(Φ∗
t g

#) = gab(x+ tX(x))
(
δαa − t∂X

α

∂xa

)(
δβb − t∂X

β

∂xb

)
+ o(t)

= gαβ(x) + t(LXg#)αβ(x) + o(t) . (1.42)

Now we obtain, thanks to (1.41) and (1.42),

EΦ∗
t g
(u) =

∫
M
(gαβ(x) + t(LXg#)αβ)

〈
∂u

∂xα
,
∂u

∂xβ

〉
√
det g

√
1 + t gαβ(LXg)αβdx1 . . . dxm + o(t)

=
∫
M
gαβ(x)

〈
∂u

∂xα
,
∂u

∂xβ

〉√
det g dx1 . . . dxm

+ t
∫
M

[
(LXg#)αβ

〈
∂u

∂xα
,
∂u

∂xβ

〉

+
1
2
gαβ

〈
∂u

∂xα
,
∂u

∂xβ

〉
gγδ(LXg)γδ

]√
det g dx1 . . . dxm

+ o(t) .

But since

0 = LX(gγβgγβ) = (LXg#)αβgαβ + gαβ(LXg)αβ ,

we finally have
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EΦ∗
t g
(u) = Eg(u) + t

∫
M
(LXg#)αβ

[〈
∂u

∂xα
,
∂u

∂xβ

〉

− 1
2
gγδ

〈
∂u

∂xγ
,
∂u

∂xδ

〉
gαβ

]√
det g dx1 . . . dxm + o(t)

= Eg(u)− t
∫
M
(LXg#)αβSαβ dvolg + o(t) .

Thus, for (1.40) to be true it is necessary (and sufficient) that∫
M
(LXg#)αβSαβ dvolg = 0 .

This proves (1.36).

Proof of (ii) First, we notice that for any tangent vector field X,

gαγ∇ ∂
∂xγ
Xβ + gβγ∇ ∂

∂xγ
Xα = gαγ

∂Xβ

∂xγ
+ gβγ

∂Xα

∂xγ
− ∂g

αβ

∂xγ
Xγ

= −(LXg#)αβ . (1.43)

To check this, it suffices to develop the l.h.s. of (1.43). It follows that,
since Sαβ = Sβα,

2 gαγ∇ ∂
∂xγ
XβSαβ = −(LXg#)αβSαβ . (1.44)

Suppose that X is compactly supported. Then, using (1.44) we have
(by Stokes’ formula)

0 =
∫
M

∂

∂xγ

(
gγαXβSαβ

√
det g

)
dx1 . . . dxm

=
∫
M

∇ ∂
∂xγ

(
gγαXβSαβ

)√
det g dx1 . . . dxm

=
∫
M

(
gγα

(
∇ ∂
∂xγ
X
)β
Sαβ +Xβ∇ ∂

∂xγ
(gγαSαβ)

)
dvolg

=
∫
M

−1
2
(LXg#)αβSαβ dvolg +

∫
M
Xβ∇ ∂

∂xγ
(gγαSαβ) dvolg .
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This identity clearly shows that (1.36) is equivalent to

∫
M
Xβdivg(gγαSαβ) dvolg = 0, ∀X compactly supported ,

which is the same as (1.37).

1.3.3 Consequences of theorem 1.3.6

Case A Existence of a Killing vector field

Suppose that there is a tangent vector field X on (M, g) whose flow is a
family of isometries, i.e. that X is Killing. Such a field is characterized
by the equation LXg = 0. Hence, X is an infinitesimal symmetry for
E(M,g), in the sense that

Eg(u ◦ Φ−t) = EΦ∗
t g
(u) = Eg(u) .

We are precisely in a case where Noether’s theorem applies (see [124]):
the Noether current

Jα = gαβSβγXγ
√
det g (1.45)

satisfies

div J =
m∑
α=1

∂Jα

∂xα
= 0 . (1.46)

This can be deduced from the previous theorem since from (1.44) it
follows that

∇ ∂
∂xα

(gαβSβγXγ) = gαβ(∇ ∂
∂xα
X)γSαβ +Xγ∇ ∂

∂xα
(gαβSβγ)

= −1
2
(LXg#)αβSαβ +Xγ∇ ∂

∂xα
(gαβSβγ)

= 0,

using (1.37) and the fact that LXg# = 0.

Case B The metric g is Euclidean
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Suppose that M is an open subset Ω of Rm and that g is the Euclidean
metric. Then, all translations in Rm are symmetries (generated by con-
stant vector fields). Thus, using the preceding results we obtain

m∑
α=1

∂Sαβ
∂xα

= 0, ∀β . (1.47)

This equation gives rise to the following formula: letX be a C1 tangent
vector field on Ω, and consider the tangent vector field Y = Y α ∂

∂xα ,
defined on Ω by

Y α(x) = Sαβ(x)Xβ(x) .

We integrate div Y over an open subset ω of Ω, with smooth boundary,
and use Stokes’ formula∫

ω

div Y dx1 . . . dxm =
∫
∂ω

Y.n dσ(x) .

Using (1.47), we obtain

∫
ω

Sαβ
∂Xβ

∂xα
dx1 . . . dxm =

∫
∂ω

SαβX
β .nαdσ(x). (1.48)

Recall that in Rm, S can be written as

Sαβ =
1
2
|du|2δαβ −

〈
∂u

∂xα
,
∂u

∂xβ

〉
,

where |du|2 =
m∑
α=1

N∑
i=1

(
∂ui

∂xα

)2

. We give two examples of applying

(1.48).

Example 1.3.7 As ω we choose the ball

B(x0, r) = {x ∈ Rm| |x− x0| < r},
and as X, X(x) = x− x0. Then (1.48) yields

(2−m)
∫
B(x0,r)

|du|2dx1 . . . dxm = r
∫
∂B(x0,r)

(
2
∣∣∣∣∂u∂n

∣∣∣∣2 − |du|2
)
dσ(x) .

(1.49)
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For x0 ∈ Ω, and r such that B(x0, r) ⊂ Ω, let

Ex0,r(u) = r
2−m

∫
B(x0,r)

|du|2dx1 . . . dxm .

Differentiating w.r.t. r,

d

dr
Ex0,r(u) = (2−m)r1−m

∫
B(x0,r)

|du|2dx1 . . . dxm

+r2−m
∫
∂B(x0,r)

|du|2dσ(x) ,

and using (1.49), we obtain

d

dr
Ex0,r(u) = r

2−m
∫
∂B(x0,r)

2
∣∣∣∣∂u∂r

∣∣∣∣2 dσ(x) . (1.50)

This identity was first noticed by [131] for the Yang–Mills problem
(see [146]). In the context of harmonic maps it is due to [149]. In
particular, it implies the monotonicity formula d

drEx0,r(u) ≥ 0, which is
an essential ingredient of the regularity theory for minimizing harmonic
maps [146], and of theorems 3.5.1 and 4.3.1 of this book (see [54], [10]).

Example 1.3.8 We suppose that ω and X are such that

(i) the tensor

Aαβ(x) =
1
2
(div X)δαβ − 1

2

(
∂Xα

∂xβ
+
∂Xβ

∂xα

)
is positive definite everywhere (which excludes the case m = 2,
where tr A = 0).

(ii) on ∂ω, X · n ≥ 0. Then (1.48) yields∫
ω

〈
∂u

∂xα
,
∂u

∂xβ

〉
Aαβdx

1 . . . dxm

=
∫
∂ω

(
1
2
|du|2X · n−

〈
∂u

∂xα
,
∂u

∂xβ

〉
Xαnβ

)
dσ(x) . (1.51)

Now suppose that u is constant on the boundary of ω. This implies
that ∂u

∂xα = ∂u
∂nn

α, and that the r.h.s. of (1.51) is equal to
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−
∫
∂ω

1
2
|du|2X · n dσ(x),

which is negative. Thus, we obtain the inequality

∫
ω

〈
∂u

∂xα
,
∂u

∂xβ

〉
Aαβ dx

1 . . . dxm ≤ 0.

But since the tensor
〈
∂u
∂xα ,

∂u
∂xβ

〉
is non-negative and Aαβ is positive, this

implies that

〈
∂u

∂xα
,
∂u

∂xβ

〉
= 0

and thus u is constant over ω.
This type of result was first obtained in [129], in the case of the Yamabe

equation. In the harmonic map context it was settled by John C. Wood,
who showed that every C2 harmonic map over an open star-shaped set of
dimension greater than 2, which is constant on the boundary of this set,
is also constant in its interior [184]. Recall that ω is star-shaped if and
only if there is a point x0 in ω, such that for all x ∈ ∂ω, the segment
[x0, x) belongs to ω. Wood’s result follows from the preceding analysis
by choosing as the vector field X(x) = x− x0. In the case where m = 2,
this method no longer works, but Luc Lemaire proved a similar result
which is valid for every simply connected open set [106].

Case C M is a surface

Let us come back to identity (1.44) which we used in Case A to deduce
a conservation law in the case where there exists a Killing vector field.
Writing Sαβ = gαγSγβ , this identity states that, for any vector field X,

2Sβα∇ ∂

∂xβ
Xα = −(LXgαβ)Sαβ .

If u is harmonic, theorem 1.3.6 (1.37) implies that ∇ ∂
∂xα
Sαβ = 0 for

all β, and thus

∇ ∂

∂xβ
(SβαX

α) = Sβα∇ ∂

∂xβ
Xα +

(
∇ ∂

∂xβ
Sβα

)
Xα

= −1
2
(LXgαβ)Sαβ . (1.52)
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We see that for the vector field Y = SβαX
α ∂
∂xβ

to be covariant divergence-
free, it is necessary and sufficient that

(LXgαβ)Sαβ = 0 . (1.53)

For instance we know that this condition is satisfied when X is an
isometry flow. Let us see what happens when X generates a flow of
conformal diffeomorphisms of (M, g). We call such a field a conformal
Killing field. It is characterized by the fact that there exists a real
function λ on M such that

LXg = λg

and

LXg
# = −λg# .

For such a flow,

(LXgαβ)Sαβ = −λgαβSαβ
= −λ(m− 2)e(u).

It follows that for m = 2 we have

∇ ∂

∂xβ
(SβαX

α) = 0.

Consequently we obtain

Theorem 1.3.9 Suppose m = 2. Then for every conformal Killing field
X and for any harmonic map u : (M, g) −→ (N , h) we have

∇ ∂

∂xβ
(SβαX

α) =
1√
det g

∂

∂xβ
(
√
det g SβαX

α) = 0 . (1.54)

The interest of this theorem is that the group of conformal transforma-
tions of a Riemannian surface is very big. In fact, thanks to proposition
1.1.2 and theorem 1.1.3, it is always possible to use local conformal co-
ordinates, z = x+iy ∈ ω ⊂ C, on M, in which the metric can be written
as

g = e2f ((dx)2 + (dy)2),
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and every holomorphic (or anti-holomorphic) diffeomorphism over ω in-
duces a conformal transformation. Thus, for every holomorphic function
F : ω −→ C, the vector field

X = "(F ) ∂
∂x

+ #(F ) ∂
∂y

is a conformal Killing field.
In these coordinates

(Sαβ) =
|du|2
2

(
1 0
0 1

)
−

( |ux|2 〈ux, uy〉
〈ux, uy〉 |uy|2

)
=

1
2

( −"φ #φ
#φ "φ

)
,

where

|du|2 =
∣∣∣∣∂u∂x

∣∣∣∣2 + ∣∣∣∣∂u∂y
∣∣∣∣2 ,

and

φ =
∣∣∣∣∂u∂x

∣∣∣∣2 − ∣∣∣∣∂u∂y
∣∣∣∣2 − 2i

〈
∂u

∂x
,
∂u

∂y

〉
.

It follows that Sαβ = e−2fSαβ and
√
det g Sαβ = Sαβ . By applying

theorem 1.3.9 successively with X = ∂
∂x and Y = ∂

∂y , we obtain

− ∂
∂x

"φ+ ∂

∂y
#φ = 0 ,

and
∂

∂x
#φ+ ∂

∂y
"φ = 0 .

Thus, it follows that

∂φ

∂z
= 0 . (1.55)

We see a holomorphic function appear, which can “generate” all con-
servation laws due to conformal transformations. If we make a conformal
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change of coordinates, i.e. if we make a change of variables

z = x+ iy = T (X + iZ) = T (Z) ,

where T is an orientation–preserving conformal transformation, then the
new holomorphic function obtained from the stress–energy tensor in the
Z coordinates is given by

φ ◦ T (Z)
(
∂T

∂Z

)2

.

This is the reason why we usually consider the quadratic differential
form

ω = φ(dz)2 (1.56)

which is invariant under a holomorphic coordinate change.

Definition 1.3.10 Let u be a C1 map between a Riemannian surface
(M, g) and a Riemannian manifold (N , h). By the Hopf differential of
u we mean the C-valued bilinear form ω, defined on M by the following
property. In every local conformal coordinate system z = x + iy, on
(M, g), ω is written as

ω =
(∣∣∣∣∂u∂x

∣∣∣∣2 − ∣∣∣∣∂u∂y
∣∣∣∣2 − 2i

〈
∂u

∂x
,
∂u

∂y

〉)
dz ⊗ dz .

A more intrinsic way of defining ω is ω = 1
4 (u

∗h)(2,0) (see remark 1.3.5).

Exercises

Let Ω be an open subset of Rm and N a manifold without boundary.
x = (x1, . . . , xm) are the coordinates on Rm, and y = (y1, . . . , ym) the
local coordinates on N . For each map u from Ω to N , we define

L(u) =
∫

Ω

L(u, du)dx =
∫

Ω

L

(
ui,
∂ui

∂xα

)
dx,

where the Lagrangian L is a C2 function on the set

{(y,A) | y ∈ N , A is a linear map from Rm to TyN} .
Given that L does not depend on x, the variational problem associated
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to L is invariant under the action of the translations of Rm. We define
the Hamiltonian tensor as

Hα
β (y,A) =

∂L

∂Aiα
(y,A)Aiβ − δαβL(y,A)

(see [140]).

1.2 Show that if h is a Riemannian metric on N and L(y,A) =
1
2hij(y)A

i
αA

j
α, then for each map u from Ω to N

Sαβ = −Hα
β (u, du).

1.3 Show that if u : Ω −→ N is a critical point of L, then

∂

∂xα
(Hα

β (u, du)) = 0, ∀β.

1.4 Study the extensions of the results stated above in example 1.3.7
and example 1.3.8 to maps u which are critical points of L.

1.5 Assume further that m = 2. Give a characterization of La-
grangians which are invariant under conformal transformations
of R2 (answer: see the end of section 4.2). For critical points,
prove the existence of a holomorphic generalized Hopf differen-
tial.

1.6 Find all Lagrangians which are invariant under volume–preserving
transformations of Ω and characterize the corresponding Hamil-
tonian tensor. Interpret in this situation the conservation law
proved in exercise 1.3.

1.4 Variational approach: Sobolev spaces

Up to now, we have only considered smooth maps, i.e. at least C2.
If we want to use variational methods, it is necessary to extend the
definitions given, to the case where the maps belong to a “Hilbert space”
derived from the Dirichlet integral by taking the closure of C∞(M,N )
relative to “weak” norms derived from the energy. It then becomes very
convenient (although it is not essential, see [80]) to suppose that (N , h)
is isometrically embedded in an Euclidean space (RN , 〈., .〉), in order to
be able to give the following definition.
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Definition 1.4.1

H1(M,N ) = {u ∈ L1
loc(M,RN )|

∫
M

|du|2dvolg < +∞, u(x) ∈ N a.e.}.

Remark 1.4.2 Since N is compact and u(x) ∈ N a.e., the condition u ∈
L1
loc(M,RN ) could be replaced by u ∈ L∞(M,RN ), without changing the

definition of H1(M,N ).

It is natural to ask if this definition depends on the isometric embed-
ding of (N , h) into RN used. We have:

Lemma 1.4.3 Let J1 : (N , h) −→ N1 ⊂ RN1 and J2 : (N , h) −→
N2 ⊂ RN2 be two C1 isometric embeddings. Then, these two isometric
embeddings lead to equivalent definitions of H1(M,N ) in the following
sense: there exists a C1 map, Φ, from RN1 to RN2 (bounded in C1(RN1)),
coinciding with J2 ◦ J−1

1 on N1, and such that

u ∈ H1(M,N1) ⇐⇒ Φ ◦ u ∈ H1(M,N2) (1.57)

and

∫
M

|du|2 dvolg =
∫
M

|d(Φ ◦ u)|2 dvolg. (1.58)

Proof By considering RN1 and RN2 as subspaces of RN , where N =
sup(N1, N2), we can always reduce to the case where N1 = N2 = N .
Let us construct Φ. Let V2δ(N1) be a tubular neighborhood of N1 in
RN , and let P be a projection from V2δ(N1) to N1. By this we mean
that P maps V2δ(N1) onto N1, and that its restriction to N1 coincides
with the identity map. Moreover, we will assume P to be C1, and that
all over V2δ(N1), the derivative of P , dP , has rank n = dimN (P will
then be a submersion). We leave to the reader the task of showing that
for δ sufficiently small, it is possible to construct such a projection by
using the inverse function theorem and a partition of unity argument
(see exercises 1.7 to 1.11).
We choose a function η ∈ C∞([0,+∞), [0, 1]) such that

η(x) = 1 on [1, δ]
η(x) = 0 on [2δ,+∞),
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and define, for each y ∈ RN ,

{
Φ(y) = η(dist(y,N1))J2 ◦ J−1

1 ◦ P (y) if y ∈ V2δN1

Φ(y) = 0 if y /∈ V2δN1 .

It is clear that

Φ = J2 ◦ J−1
1 over N1 (1.59)

and

Φ(Vδ(N1)) = N2 . (1.60)

Let u ∈ H1(Ω,N1); then it is obvious that Φ◦u(x) ∈ N2 a.e. Moreover,
for any y ∈ N1, the restriction dΦ| TyN1 of dΦ to TyN1 is an isometry
from TyN1 to TΦ(y)N2. This yields

|du(x)|2 = |d(Φ ◦ u)(x)|2 a.e.

which proves (1.58) and, consequently, also (1.57).

Remark 1.4.4 In the proof of this lemma we used, not the orthogonal
projection from V2δ(N1) onto N1 (though it is easy to define), but rather
a non-orthogonal projection. This stems from the fact that if N1 is C1,
then the orthogonal projection is generally only C0.

Remark 1.4.5 Another possibility would have been to use, instead of
H1(M,N ), the space

C2(M,N )
H1

= {u ∈ L∞(M,N )| ∃(φk)k∈N, a sequence in C2(M,N )

such that lim
k→+∞

‖ u− φk ‖H1= 0}.

Nevertheless, it happens that, in general, this space is different from

H1(M,N ), unless m = 2 (see [146], [15], [8]). Moreover, C2(M,N )
H1

seems less appropriate for the calculus of variations than H1(M,N )
since, unlike H1(M,N ), in general it is not closed for the H1 weak
topology (see [8]).

Thus, we have a function space H1(M,N ), over which we can define a
functional, the Dirichlet integral E(M,g). In order to prove the existence
of harmonic maps from M to N , it is natural to attempt to study the



34 Geometric and analytic setting

critical points of E(M,g)in H1(M,N ). This involves the following three
steps:

• to define what we mean by weak solutions;
• to prove the existence of weak solutions, critical points of E(M,g) (ex-
istence);

• to prove that a weak solution is a smooth harmonic map from M to
N (regularity).

Problems will show up at each of these steps. A specialist in non-linear
variational problems will expect to find difficulties, and sometimes barri-
ers, to proving existence and regularity, and this is, in fact, the case. But
it happens that even the definition of what should be a weak solution is
not totally obvious. The reason is that, unless m = 1, H1(M,N ) is not
a manifold, and thus a good notion of tangent space to H1(M,N ) does
not exist. Consequently, we have some problems in defining the varia-
tional derivative of E. This leads to the possibility of giving different
definitions of weak solutions.

It would be difficult to present the main points of this theory in a
book. Below, we will briefly present the simplest approach to proving
the existence of weak solutions: the minimization of E(M,g). We will
then give a list of the different notions of critical points. In the following
section we will present some regularity results, some of which will be
proved in later chapters.

An example of a method to prove the existence of weak

solutions: the minimization of E(M,g)

It consists of choosing a subset E of H1(M,N ), defined by imposing a
constraint such as the boundary condition in a domain, or the homotopy
class, and showing that the infimum

inf
u∈E
E(M,g)(u)

is attained. The map that achieves the minimum is called minimizing
(see below). We can easily show (see exercise 1.12) that H1(M,N ) is
closed for the weak topology of H1(M,RN ), and that E(M,g) is coercive
and lower semi-continuous. Nevertheless, as we will see below, we will
come across several problems that are connected to the choice we made
of the class E .
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The Dirichlet problem

It consists, in the case where ∂M �= ∅, of fixing a boundary condition,
i.e. a map

g : ∂M −→ N ,
and considering the space

H1
g (M,N ) = {u ∈ H1(MN )| u = g on ∂M}.

We then minimize the Dirichlet integral over H1
g (M,N ) in order to find

a harmonic map from M to N that coincides with g on ∂M. The first
thing to check is whether H1

g (M,N ) �= ∅. Some obstructions may show
up.

Example 1.4.6

M = B2 = {(x, y) ∈ R2| x2 + y2 < 1},
N = S1 = {(x, y) ∈ R2| x2 + y2 = 1} = ∂B2, and
g(x, y) = (x, y).

Then, there is no finite energy extension of g in H1
g (B

2, S1). The
reason is a topological obstruction. For each C1 map g : S1 −→ S1 (in
fact it would suffice to suppose that g ∈ H 1

2 (S1)), the following quantity
is called the topological degree (or winding number):

deg(g) =
1
2π

∫
∂B2
g1dg2 − g2dg1.

It is an integer which represents the number of times the point g(x, y)
goes around S1, when (x, y) goes once around S1. We will see that if
u ∈ H1(B2, S1), then the degree of u|∂B2 is necessarily equal to 0. Since
for g(x, y) = (x, y), we have deg(g) = 1, this implies that H1

g (B
2, S1) is

empty.

(i) On the one hand, for any map u ∈ H1(B2,R2), we have, by
Stokes’ formula, ∫

B2
dα =

∫
∂B2
α, (1.61)

where α = u1du2 − u2du1. This is a well-known formula in the
case where u is of class C2. It extends to H1(B2,R2), by using the
density of C2(B2,R2) in H1(B2,R2), and showing that the two
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integrals in (1.61) are continuous functionals over H1(B2,R2)
and H

1
2 (∂B2,R2), respectively.

(ii) On the other hand, if u ∈ H1(B2, S1), we deduce from |u(x, y)|2 =
1 a.e. that

〈u, du〉 = 0 a.e.on B2.

This equation implies that

du1 =
2∑
i=1

ui(uidu1 − u1dui) = −u2α a.e.

and

du2 =
2∑
i=1

ui(uidu2 − u2dui) = u1α a.e.

and thus

du1 ∧ du2 = −u1u2α ∧ α = 0 a.e. (1.62)

(iii) Therefore, if u ∈ H1(B2, S1), we deduce from (1.61) and (1.62)
that the degree of u|∂B2 is zero.

Other difficulties appear when we only have g ∈ H 1
2 (∂M,N ) (the

natural trace space). In fact, in this case, we still do not know exactly
if H1

g (M,N ) is empty or not (see [82], [13], [138]).

Example 1.4.7 (Case where it works). If g is C1, and is homotopic to a
constant, we can show that H1

g (M,N ) �= ∅. Likewise, in case M = B3,
the unit ball in R3, we may extend any map g ∈ H1(∂B3,N ) to all of
B3 by letting

u(x) = g
(
x

|x|
)
.

We can thus show that H1
g (B

3, S2) �= ∅.
Let us recall that if E and F are two topological spaces (in fact, we

are interested in the case where E and F are manifolds), and if u0 and
u1 are two continuous maps from E to F , we say that u0 and u1 are
homotopic if there exists a continuous map H : E × [0, 1] −→ F , called
a homotopy, such that H(x, 0) = u0(x) and H(x, 1) = u1(x).

We can show that homotopy is an equivalence relation, and the equiv-
alence classes are called homotopy classes. (In the case E = F = S1, the
homotopy classes are precisely the subsets of maps in C(S1, S1) which
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have the same degree. Likewise, it is possible to characterize the homo-
topy classes of maps from S2 to S2 by defining a topological degree for
maps from S2 to S2).

Once we know that H1
g (M,N ) �= ∅, it is easy to show that E(M,g)

attains its minimum in H1
g (M,N ) (see exercises 1.12 to 1.14). The map

thus obtained is said to be minimizing (see below).

Harmonic representatives of a homotopy class

The problem here is, given a map φ from M to N , to find a harmonic
map homotopic to φ. To simplify, suppose that ∂M = ∅, and denote
the homotopy class of φ by [φ]. It is then natural to try to minimize

E(M,g) over [φ]
H1

, the closure of [φ] in H1(M,N ). The difficulty here

is that [φ]
H1

may include smooth maps which are not homotopic to φ.

Example 1.4.8 M = N = S3, the unit sphere in R4. Then, if φ = 1l,

[φ]
H1

contains all the constant functions.

In fact, the set [φ]
H1

was thoroughly characterized by [180]. In general,
the only case where homotopy is preserved under H1 strong convergence
is when M is a surface. But even then homotopy is not preserved under
the weak topology of H1 (see [141]).

We will now stop drawing the pessimistic picture of all the difficulties
that show up. Depressed readers may refer to [51] to convince themselves
of the efficacy of the variational techniques, and have an overview of
the set of results obtained. As we mentioned, in general the solutions
obtained using variational methods in H1(M,N ) are not smooth and
hence are “weak solutions”. This is why we need to give a more precise
definition of weak solutions.

Weak solutions

1.4.1 Weakly harmonic maps

Suppose that N is of class C2. Let VδN be the tubular neighborhood of
radius δ of N in RN , and P the projection from VδN onto N , defined
as in lemma 1.4.3. We suppose δ to be sufficiently small for P to be
defined and C1.
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Definition 1.4.9 We say that u ∈ H1(M,N ) is weakly harmonic if and
only if, for any map v in H1

0 (M,RN ) ∩ L∞(M,RN ),

lim
t→0

E(M,g)(P (u+ tv))− E(M,g)(u)
t

= 0. (1.63)

Here H1
0 (M,RN ) is the closure of C∞

c (M,RN ) in H1(M,RN ).

We remark that (1.63) has a meaning for sufficiently small t since v ∈
L∞(M,RN ) and thus u+ tv belongs to VδN if |t| < δ|v|−1

L∞ . In case N
is C2, we can write an Euler equation for u.

Lemma 1.4.10 Suppose that N is C2. Then, every weakly harmonic
map u ∈ H1(M,N ) satisfies

(i) the equation

−∆gu ⊥ TuN

weakly, i.e. ∀v ∈ H1
0 (M,RN )∩L∞(M,RN ), if v(x) ⊥ Tu(x)N a.e.,

then

∫
M
gαβ(x)

〈
∂u

∂xα
,
∂v

∂xβ

〉
dvolg = 0, (1.64)

or equivalently,
(ii) the equation

∆gu+ gαβA(u)
(
∂u

∂xα
,
∂u

∂xβ

)
= 0

weakly, i.e. ∀v ∈ H1
0 (M,RN ) ∩ L∞(M,RN ),∫

M

[
−gαβ(x)

〈
∂u

∂xα
,
∂v

∂xβ

〉

+ gαβ(x)
〈
A(u)

(
∂u

∂xα
,
∂u

∂xβ

)
, v

〉]
dvolg = 0 , (1.65)

where A is the second fundamental form of the immersion of N
in RN (see lemma 1.2.4).
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Proof Suppose v ∈ H1
0 (M,RN ) ∩ L∞(M,RN ). We have

P (u+ tv) = u+ twt,

where wt =
∫ 1

0

∂P

∂yi
(u+ stv)vids. Hence

E(M,g)(P (u+ tv)) = E(M,g)(u)+ t
∫
M
gαβ(x)

〈
∂u

∂xα
,
∂wt
∂xβ

〉
dvolg+o(t)

and thus (1.63) is equivalent to

lim
t→0

∫
M
gαβ(x)

〈
∂u

∂xα
,
∂wt
∂xβ

〉
dvolg = 0 .

Since P is C2, it follows that

wt → w0 = dP (u).(v) in H1 ∩ L∞,

and therefore,

∫
M
gαβ(x)

〈
∂u

∂xα
,
∂

∂xβ
(dP (u)(v))

〉
dvolg = 0. (1.66)

Since v(x) ⊥ Tu(x)N a.e. implies that dP (u)(v) = v a.e., equation
(1.64) follows immediately. We leave to the reader the task of checking
that (1.64) implies (1.65) (see the proof of lemma 1.2.4).

As in lemma 1.4.3, we will check that definition 1.4.9 depends on the
isometric immersion used for (N , h).

Lemma 1.4.11 Let J1 : (N , h) → N1 ⊂ RN1 , and J2 : (N , h) → N2 ⊂
RN2 , be two C2 isometric immersions of (N , h). Let Φ : RN1 → RN2

be the extension of J2 ◦ J−1
1 : N1 → N2 defined in lemma 1.4.3. Then,

Φ is C2, and u ∈ H1(M,N1) is weakly harmonic if and only if Φ ◦ u ∈
H1(M,N2) is weakly harmonic.

Proof As in lemma 1.4.3, we suppose that N1 = N2 = N . It is easy to
check that Φ is C2. Since the desired equivalence is symmetric w.r.t.N1

and N2, it suffices to show that Φ ◦ u weakly harmonic ⇒ u weakly
harmonic. Let u ∈ H1(M,N1). Suppose that Φ ◦ u is weakly harmonic
in H1(M,N2). Let v ∈ H1

0 (M,RN ), and t be a sufficiently small real
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number to ensure that u + tv belongs to VδN1 a.e. (see lemma 1.4.3).
Let

ut = P (u+ tv).

Notice that d(P (u+tv)) takes its values in TutN1, and that dΦut | TutN1

is an isometry from TutN1 to TΦ(ut)N2. It follows that

|dΦut [d(P (u+ tv))]|2 = |d(P (u+ tv))|2 a.e.

But since Φ ◦ P = Φ on VδN1, dΦut ◦ Pu+tv = dΦu+tv, and hence

|d(P (u+ tv))|2 = |d(Φ(u+ tv))|2 a.e. (1.67)

Moreover,

Φ(u+ tv) = Φ(u) + twt, (1.68)

where wt =
∫ 1

0

∂Φ
∂yi

(u+ stv)vids ∈ H1
0 (M,RN ) ∩ L∞(M,RN ).

From (1.67) and (1.68), it follows that

E(M,g)(P (u+ tv)) =
∫
M

1
2
|d(P (u+ tv))|2 dvolg

=
∫
M

1
2
|d(Φ(u+ tv))|2 dvolg

=
∫
M

1
2
|d(Φ(u))|2 dvolg

+ t
∫
M
gαβ(x)

〈
∂Φ(u)
∂xα

,
∂wt
∂xβ

〉
dvolg +O(t2) .

Thus,

lim
t→0

E(M,g)(P (u+ tv))− E(M,g)(u)
t
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= lim
t→0

∫
M
gαβ(x)

〈
∂Φ(u)
∂xα

,
∂wt
∂xβ

〉
dvolg

=
∫
M
gαβ(x)

〈
∂Φ(u)
∂xα

,
∂dΦ(u)(v)
∂xβ

〉
dvolg,

since wt → w0 = dΦ(u)(v) in H1 ∩ L∞. We deduce from this identity
that if Φ ◦ u is weakly harmonic, then u is also weakly harmonic.

Remark 1.4.12 Actually, it is possible to assume that N is only of
class W 2,∞ (i.e. the sectional curvature is bounded) in lemmas 1.4.10
and 1.4.11. But the definition of weakly harmonic maps with values in
manifolds which are not W 2,∞ is a delicate question to which a satisfac-
tory answer is yet to be given. For instance, if the image manifold is a
cone

Cn = {(y, z) ∈ Rn × R | z = τ |y|},
where τ ∈ (0,+∞), or if the image manifold is compact but has a “cone-
like” point, there is no satisfactory definition of a projection from a
tubular neighborhood of Cn onto Cn, and definition 1.4.9 is meaningless.
Likewise, we do not know a generalization of lemma 1.4.11 to the case
where the image manifold is not W 2,∞.

In case the image manifold has symmetries, it is possible to extend
Noether’s theorem to weakly harmonic maps.

Theorem 1.4.13 Suppose that N is C2. Let X be a Lipschitz vector
field on N , which generates an isometry flow (a so-called Killing vector
field). Then, for each weakly harmonic map u ∈ H1(M,N ), the vector
field on M

J = Jα
∂

∂xα
= gαβ(x)

√
det g(x)

〈
X(u),

∂u

∂xβ

〉
∂

∂xα

is weakly divergence-free on M, i.e. for any function φ ∈ H1
0 (M,R) ∩

L∞(M,R),

∫
M
gαβ(x)

〈
X(u),

∂u

∂xβ

〉
∂φ

∂xα

√
det g dx1 . . . dxm = 0.
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Proof The proof is identical to that of theorem 1.3.1. It suffices to check
that all calculations make sense in H1(M,N ).

On the contrary, in general theorem 1.3.6 does not extend to weakly
harmonic maps (see the counterexample 1.4.19 below).

1.4.2 Weakly Noether harmonic maps

Let (Φt)t∈R be a family of diffeomorphisms from M to M, depending
on t in a C1 way, such that Φt(x) = x outside a compact subset of M,
and Φ0(x) = x on M.

Definition 1.4.14 We say that the map u ∈ H1(M,N ) is weakly
Noether harmonic if and only if for each family of diffeomorphisms of
M, of the type described above,

lim
t→0
E(M,g)(u ◦ Φt) = 0 . (1.69)

Copying the proof of theorem 1.3.6 for Noether harmonic maps, we
prove the following.

Theorem 1.4.15 The map u ∈ H1(M,N ) is weakly Noether harmonic,
if and only if the distributional covariant derivative of the stress–energy
tensor

Sαβ = e(u)gαβ −
〈
∂u

∂xα
,
∂u

∂xβ

〉
vanishes. This means that for each C1 vector field X with compact sup-
port (in M), ∫

M
(LXgαβ)Sαβ dvolg = 0 .

1.4.3 Minimizing maps

Definition 1.4.16 A map u ∈ H1(M,N ) is minimizing if and only if
for any point x ∈ M, there exists a compact neighborhood Kx of x, such
that ∀v ∈ H1(M,N ), such that u = v a.e. on M\Kx,
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E(M,g)(v) ≥ E(M,g)(u) . (1.70)

1.4.4 Weakly stationary maps

Definition 1.4.17 A map u ∈ H1(M,N ) is weakly stationary if and
only if it is both weakly harmonic and weakly Noether harmonic.

1.4.5 Relation between these different definitions

What is the relation between these different definitions? It is easy to
show that every minimizing map is weakly stationary. We thus have the
inclusions

{Minimizing Maps}
⊂ {Weakly Stationary Maps}
⊂ {Weakly Harmonic Maps}.

We can also ask ourselves which of the two notions, weakly Noether
harmonic or weakly harmonic, is the “strongest”. The answer depends
on the regularity of u.

If u is C2

(i) Every C2 weakly harmonic map is Noether harmonic. The reason
is that a C2 weakly harmonic map is in fact a classical harmonic
map, and thus we can apply theorem 1.3.6. In fact, for any
tangent field X on M, u∗X = Xα ∂u

∂xα is a C1 map from M to
RN , which can be used as test function in (1.63) (definition 1.4.9).

(ii) The converse is false unless u is a diffeomorphism from M to N .

Example 1.4.18 Let u ∈ C2(M,N ) be a conformal map, and suppose
that M is a surface. Then, we see that the conformality of u is equiv-
alent to Sαβ = 0, and thus u is Noether harmonic. However, u is not
harmonic in general, unless its image u(M) is a minimal surface of N .

In fact, condition (1.69) just means that a Noether harmonic map
“parametrizes its image in a harmonic way ”.

If u is not C2
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There is no connection between being weakly harmonic and being weakly
Noether harmonic.

Example 1.4.19 Choose M = B3, the unit ball in R3. Let

u : S2 \

 0

0
−1

 −→ C

 y1

y2

y3

  −→ y1 + iy2

1 + y3

be the stereographic projection. u is a conformal diffeomorphism which
extends to a diffeomorphism from S2 to C ∪ {∞}. For λ ∈ (0,+∞), let

vλ : B3 −→ S2

x  −→ u−1
(
λu

(
x
|x|

))
.

In spite of having a singularity at 0, vλ belongs to H1(B3, S2) and is
weakly harmonic. However, vλ is not weakly Noether harmonic, unless
λ = 1. In fact, the stress–energy tensor of vλ satisfies the following
equation in the sense of distributions:

3∑
α=1

∂Sαβ
∂xα

= δ0V β ,

where δ0 is the Dirac mass at 0, and V =

 0
0
f(λ)

 with

 f(λ) = − 8π
(λ2 − 1)2

.(λ4 − 4λ2 logλ− 1) if λ �= 1

f(1) = 0.

Exercises

The purpose of these exercises is to show that if k ≥ 1 and N is a
compact Ck submanifold of RN , then there is a neighborhood VN of N
in RN and a Ck submersion P : VN −→ N coinciding with the identity
map over N . Let p = N − n be the codimension of N . We denote
by Grp(N) the Grassmanian of p-dimensional vector subspaces RN , and
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by M(N × N,R) the set of N × N real matrices (equipped with the
Euclidean distance, d, given by the Hilbert–Schmidt norm).

1.7 Show that we can identify Grp(N) with

Pp(N) = {A ∈M(N ×N,R) | A = tA = A2 , trA = p}.
Show that there is a neighborhood V of Pp(N) in M(N ×
N,R) over which the projection Π : V → Pp(N), defined
by d(A,Π(A)) = d(A,Pp(N)), exists and is of class C∞.

1.8 For any point y ∈ N , we define Ay = (TyN )⊥ ∈ Pp(N). Prove
that for every real number ε > 0, we can cover N by a finite
union of balls B(yα, rα) in RN , centered at points in N , such
that ∀y ∈ B(yα, rα) ∩N , d(Ayα , Ay) <

ε
2 .

1.9 We consider a partition of unity (χα)1≤α≤s defined over VN ,
associated to the balls B(yα, rα) (i.e. Supp(χα) ⊂ B(yα, rα)
and

s∑
α=1

χα = 1 in N ).

Check that if ε is sufficiently small, then we can define a map
γ from N to Pp(N) by

γ(y) = Π(
s∑

α=1

Ayαχα(y)) ,

that γ is Ck and that d(γ(y), Ay) < ε .
1.10 Deduce, using the implicit function theorem, that if ε is suffi-

ciently small, the family {(y, γ(y)) | y ∈ N} defines a Ck folia-
tion of VN (up to redefining VN ), where (y, γ(y)) is the affine
subspace of RN passing through y and parallel to γ(y).

1.11 Construct the projection P from VN to N such that P−1(y) =
(y, γ(y))∩ VN , and check that P satisfies all the required con-
ditions.

Exercises

1.12 Using the Rellich–Kondrakov theorem (see [19]) and a diagonal
argument, show that for every sequence (un)n∈N of H1(M,N )
which converges to a map u ∈ H1(M,RN ), in the weak topology
of H1(M,RN ), we have that u ∈ H1(M,N ).

1.13 Let E be a subset of H1(M,N ), closed in the weak topology
of H1(M,RN ), and let (un)n∈N be a minimizing sequence for
E(M,g) in E .
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Suppose that un converges to u in the weak topology ofH1(M,N ).
Show that u is minimizing.

1.14 We suppose that ∂M �= ∅ and that there exists a map g :
∂M → N such that H1

g (M,N ) �= ∅ . Prove the existence of a
minimizing map in H1

g (M,N ) .

1.5 Regularity of weak solutions

What can we say about the regularity of the weak solutions presented
above? First of all we have the following result:

Theorem 1.5.1 Every continuous weakly harmonic map u ∈ H1(M,N )
is smooth. More precisely, if we suppose that g is Ck,α (where k ≥ 0
and 0 < α < 1), and that h (the metric on N ) is Cl,α (where l ≥ 1)
or, which is equivalent, that N is a Cl+1,α submanifold, then u will be
Cinf(k+1,l+1),α.

The proof of this theorem is the result of contributions made over several
years. The first step is to show that every weakly harmonic map u in
H1(M,N ) ∩ C0(M,N ) belongs to C0,α. This is obtained by adapting
a theorem of Olga Ladyzhenskaya and Nina Ural’tseva ([103], chapter
8, see also [93] or [98]). The final result then follows using classical
techniques (see [103] or [69]).

This does not completely answer the previous question since it remains
to be seen whether a weakly harmonic map in H1(M,N ) is continuous.
The answer differs a lot according as we are considering minimizing,

weakly stationary, or weakly harmonic maps. Here is a brief survey of
some known results. For more information see [50], [51].

Case where m = dimM = 1

In this case, every map u ∈ H1(M,N ) is a priori continuous (and even
C0, 12 ), and it is easy to show that every weakly harmonic map is smooth
(as smooth as the smoothness of N allows it to be). A fortiori, weakly
stationary and minimizing harmonic maps are also smooth.

Case where m = 2

This is the limit case, since in dimension 2 the space H1 is continuously
embedded in all Lp spaces for 1 ≤ p < +∞, and even in BMO (see
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chapter 3), but not in L∞ or C0. Nevertheless, weakly harmonic maps
are smooth. This result was obtained for minimizing maps by Charles B.
Morrey [116], then by Michael Grüter for the case of conformal weakly
harmonic maps [78], and by Richard Schoen for weakly stationary maps
[144]. The general proof, due to myself [83], [85], will be presented in
chapters 2 and 4 of this book.

Case where m ≥ 3

More complex phenomena show up. The first case to be completely
solved was that of minimizing maps. Richard Schoen and Karen Uhlen-
beck showed that if u ∈ H1(M,N ) is minimizing, then there exists a
closed subset S of M (called a singular set of u), such that

(i) The Hausdorff (m − 3)–dimensional measure of S, Hm−3(S), is
finite. This means, for instance if m = 3, that S consists of a
finite union of points (see section 3.5 for a definition of Hausdorff
measure).

(ii) u is smooth over M\ S (see [145], [146]).

This result had previously been obtained by Mariano Giaquinta and
Enrico Giusti for the case where the image of u is contained in an open
subset diffeomorphic to an open subset of Rn [70].

This theorem is optimal since we can give examples of minimizing
maps having such a singular set. For instance, if M = Bm = {x ∈
Rm | |x| < 1} and N = Sm−1 = ∂Bn, then the map

u : Bm −→ Sm−1

x  −→ x

|x|
is a minimizing map for all m ≥ 3 (this was shown for m = 3 in [22]
and for m ≥ 3 in [108]). For stationary maps, results were obtained
by Lawrence Craig Evans for the case where N = Sn [54] (see theorem
3.5.1), and then by Fabrice Bethuel for the general case [10] (see theorem
4.3.4): every stationary map u ∈ H1(M,N ) is smooth outside a singular
set S, where S is a closed set whose (m − 2)–dimensional Hausdorff
measure, Hm−2(S), is zero. Subsequently Fang Hua Lin has shown that
if we also suppose that there are no non-constant harmonic maps from S2

to N , then Hm−4(S) is finite [109]. Improvements of these results with
more precise estimates were recently obtained by F.H. Lin and T. Rivière
[110]. (See also [169] and [139] for similar results on Yang–Mills fields.)
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Finally, any hope of establishing a regularity result for weakly har-
monic maps in general was dissipated by Tristan Rivière, who con-
structed everywhere–discontinuous finite energy weakly harmonic maps,
taking values in the sphere S2 [136]. We notice, to conclude, that many
more precise results may be obtained if we make stronger hypotheses on
the image manifold N , as for instance that of [92] for weakly harmonic
maps into a “geodesically convex ball”. For more references on all these
aspects, see the reports [50], [51], [81] or the book [71].



2

Harmonic maps with symmetry

This chapter will be mainly devoted to maps between a surface and a
sphere. This special case is particularly interesting. First, it is the sim-
plest setting, apart from real harmonic functions, which is non-linear.
Second, both differential geometry and physics provide numerous exam-
ples where sphere-valued harmonic maps play a major role (Gauss maps
for constant mean curvature surfaces, σ-models, liquid crystals, etc.).
In particular, in the first section we will consider the link with constant
mean curvature surfaces. Finally, it is a simple model for understand-
ing the special properties of harmonic maps with values in symmetric
manifolds. Recall that over such a manifold N , the isometry group is
sufficiently large to act transitively on N , i.e. we can go from any point
in N to any other point in N through the action of this group. This
hypothesis is very strong and, in particular, implies that N is locally
isometric to a quotient G/K of Lie groups, where G is the isometry
group of N and K is the subgroup of G that fixes a point y0 arbitrar-
ily chosen in N . If, moreover, we suppose that the domain manifold is
2-dimensional, then the simultaneous action of the conformal transfor-
mations of the domain and the isometries of the image creates a very
rich setting where numerous geometric, algebraic and analytical miracles
occur. These miracles stem from the fact that we will be in the pres-
ence of a completely integrable (Hamiltonian) system, as in the famous
example of the Korteweg–de Vries equation. We will present some as-
pects of this complete integrability in sections 2.2, 2.3 and 2.4. Finally,
sections 2.5 and 2.6 concern analysis results, more specifically, the weak
compactness and regularity of weakly harmonic maps in dimension 2.

Notation: We write

49
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Sn = {y ∈ Rn+1 | |y| = 1}
the unit sphere, and

SO(n+ 1) = {R ∈M((n+ 1)× (n+ 1),R) | tRR = 1l, detR = 1}
the group of rotations in Rn+1, acting transitively and isometrically over
Sn.

2.1 Bäcklund transformation

A Bäcklund transformation is a non-local transformation which, to a
solution of a system of partial differential equations, associates a function
which is itself a solution of a system of partial differential equations. A
simple example is that of R-valued harmonic functions on a (simply
connected) open subset Ω of C. Let u be such a function. Knowing that

∆u =
∂

∂y

(
∂u

∂y

)
− ∂

∂x

(
−∂u
∂x

)
= 0, (2.1)

we can show that there exists v from Ω to R, unique up to a constant,
such that


∂v

∂x
= −∂u

∂y

∂v

∂y
=
∂u

∂x
.

(2.2)

Furthermore, v will then be harmonic and F = u+ iv will be a holo-
morphic function of z = x+ iy.

2.1.1 S2-valued maps

Suppose that u is a harmonic map from a simply connected open subset
Ω of C to S2. By Noether’s theorem 1.3.1, we have

∂

∂x

(
u× ∂u
∂x

)
+
∂

∂y

(
u× ∂u
∂y

)
= 0 (2.3)
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(see example 1.3.3). We deduce from (2.3) that there exists a map B
from Ω to R3, unique up to a constant vector of R3, such that

∂B

∂x
= u× ∂u

∂y

∂B

∂y
= −u× ∂u

∂x
.

(2.4)

Recall that if v =

 v1

v2

v3

, w =

 w1

w2

w3

,

v × w =

 v2 w3 − v3 w2

v3 w1 − v1 w3

v1 w2 − v2 w1

 .
What can we say about B? First of all, a direct calculation yields

∆B = 2ux × uy = 2Bx ×By, (2.5)

where ux = ∂u
∂x , uy = ∂u

∂y , etc. We come across this type of equation
when studying constant mean curvature surfaces. In fact, for any im-
mersion X of an open subset of R2 in R3, if X is conformal, i.e. if

∣∣∣∣∂X∂x
∣∣∣∣2 − ∣∣∣∣∂X∂y

∣∣∣∣2 =
〈
∂X

∂x
,
∂X

∂y

〉
= 0,

then X satisfies the equation

∆X = 2H
∂X

∂x
× ∂X
∂y
,

where H is equal to the mean curvature of the image surface of X at
the point X(x, y). Thus the conformal parametrizations of surfaces of
constant mean curvature equal to 1 are characterized by the system

|Xx|2 − |Xy|2 − 2i 〈Xx, Xy〉 = 0 (2.6)

∆X = 2 Xx ×Xy. (2.7)

The resemblance between (2.5) and (2.7) is evident, but we do not
know whether B is conformal, i.e. whether B is a solution of (2.6). In
fact, B in general is not conformal except in two special cases:
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(i) u is an orientation-preserving conformal map, i.e.

det(u, ux, uy) ≥ 0.

Then B = −u+A, A ∈ R3 (exercise: check)
(ii) u is an orientation-reversing conformal map, i.e.

det(u, ux, uy) ≤ 0,

and then B = u+A, A ∈ R3 (exercise: check).

However, we remark that B is an immersion if and only if u is an
immersion, and if so the image of B is a surface with constant Gauss
curvature equal to 1. In fact, in this case it is easy to check that u is
the Gauss map of the immersion B, and that the ratio of area swept by
u and by B, given by

det(u, ux, uy)
det(u,Bx, By)

,

is equal to 1, which proves that the Gauss curvature of the image of B
is equal to 1.

As a matter of fact, constant mean curvature surfaces are not far away.
We check that

∆u = −u|du|2 = ux ×By +Bx × uy. (2.8)

Thus, if we write the equations obtained after summing and subtract-
ing (2.5) and (2.8), we have

∆(B + u) =
∂

∂x
(B + u)× ∂

∂y
(B + u), (2.9)

∆(B − u) = ∂

∂x
(B − u)× ∂

∂y
(B − u). (2.10)

Therefore, we are led to consider

X+ = B + u

and

X− = B − u.
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Moreover, we may check that X+ and X− are always solutions of

∣∣∣∣∂X±
∂x

∣∣∣∣2 − ∣∣∣∣∂X±
∂y

∣∣∣∣2 − 2i
〈
∂X±
∂x
,
∂X±
∂y

〉
= 0 . (2.11)

This means that at any point x either dX±(x) = 0 or X± is a confor-
mal immersion of a neighborhood of x. We call every solution of (2.11)
a weakly conformal map. From (2.9), (2.10) and (2.11) we see that if
either X+ or X− is an immersion, then the image surface has constant
mean curvature equal to 1

2 .
Thus, under non-degeneracy hypotheses (u, X+ are X− are immer-

sions), we may associate to a harmonic map u a “sandwich” of three
immersions of surfaces, at a constant distance 1 from each other, with
B(Ω) in the middle (having Gauss curvature 1), and X+(Ω) and X−(Ω)
(having mean curvature 1

2 ) at either side. Conversely, if we start from
one of these three surfaces, it is easy to reconstruct the other two, by
adding or subtracting the Gauss map. It seems that this result has been
known since Ossian Bonnet (see [18] and [42]).

We conclude this subsection with two remarks.

Remark 2.1.1 Suppose that B is an immersion of an open subset Ω
of R2. Then, since the Gauss curvature of B(Ω) is constant, we may
regard B(Ω) as the isometric immersion in R3 of an open subset of the
sphere S2 (at least locally). Furthermore, equation (2.5) implies that

∆B ⊥ B(Ω)
and hence that B : Ω −→ B(Ω) is a harmonic map with values in (an
open subset of) S2. But this open set is not embedded in R3 according
to the canonical embedding. We encourage the reader to think about this
remark until we get to section 2.4 of this chapter, where we will come
back to this phenomenon.

Remark 2.1.2 Imagine now that we replace the Laplacian by an elliptic
(or hyperbolic) operator of the form

L(f) =
2∑

α,β=1

∂

∂xα

(
aαβ(x)

∂f

∂xβ

)
, (2.12)

where (aαβ) is a symmetric matrix whose elements are L∞(Ω) functions
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such that det(aαβ) has a constant sign and never gets too close to zero.
We may decide to look for maps u from Ω to S2 which are solutions of

L(u)//u. (2.13)

We remark that, thanks to the action of SO(3) on S2 and Noether’s
theorem, the solutions of (2.13) satisfy

2∑
α,β=1

∂

∂xα

(
aαβ(x)u× ∂u

∂xβ

)
= 0,

and hence, if Ω is simply connected, there exists a map B from Ω to R3

such that 

∂B

∂x1
=

2∑
β=1

a1β(x) u× ∂u

∂xβ

∂B

∂x2
= −

2∑
β=1

a2β(x) u× ∂u

∂xβ
.

(2.14)

By a calculation analogous to the one we saw, we may then check that
if B is an immersion, then B(Ω) has Gauss curvature equal to

det(aαβ(x))−1.

This may give us ways of constructing surfaces of prescribed Gauss
curvature, as in the Minkowski problem. Such an approach was used by
Yuxin Ge [63].

2.1.2 Maps taking values in a sphere Sn, n ≥ 2

For each integer n, let

Sn = {y ∈ Rn+1 | |y| = 1}.
Let Ω be an open subset of R2, and u : Ω −→ Sn a harmonic map.

Then by Noether’s theorem 1.3.1, u satisfies

∂

∂x

(
ui
∂uj

∂x
− uj ∂u

i

∂x

)
+
∂

∂y

(
ui
∂uj

∂y
− uj ∂u

i

∂y

)
= 0, (2.15)
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for each 1 ≤ i, j ≤ n+ 1. In order to have at our disposal an operation
analogous to the R3 vector product, it is convenient to introduce the
following notation. Every vector a ∈ Rn+1 is identified with the column
vector

a =

 a1

...
an+1

 .
If a, b ∈ Rn+1, we write

a× b := a tb− b ta.
Notice that a×b is an anti-symmetric (n+1)× (n+1) matrix. Below,

we identify the set of (n + 1) × (n + 1) matrices with the Lie algebra
so(n+ 1) of SO(n+ 1). We may rewrite (2.15) as

∂

∂x

(
u× ∂u
∂x

)
+
∂

∂y

(
u× ∂u
∂y

)
= 0. (2.16)

This implies that there exists a map b : Ω −→ so(n+ 1) such that


∂b

∂x
= u× ∂u

∂y

∂b

∂y
= −u× ∂u

∂x
.

(2.17)

Remark 2.1.3 If n = 3, b can be expressed in terms of B, given by
(2.4), as

b =

 0 B3 −B2

−B3 0 B1

B2 −B1 0

 .
A direct calculation using (2.17) yields

∆b = 2
∂u

∂x
× ∂u
∂y
,

and also
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∆b+ 2
[
∂b

∂x
,
∂b

∂y

]
= 0, (2.18)

which generalizes (2.5).

Exercises

2.1 Check that the critical points of the functional

F2(b) =
∫

Ω

( |db|2
2

+
2
3
tr

(
b

[
∂b

∂x
,
∂b

∂y

]))
dxdy

over the set of maps from Ω to so(n + 1), are precisely the
solutions of (2.18).

Just like the map B, constructed in subsection 2.1.1 for the case of S2,
the map b given by (2.17) is not conformal in general. Nevertheless, there
exists a way of associating to u and b a map which possesses interesting
properties and which, in particular, is conformal. This construction
generalizes in a certain way that of the pair of maps (X+, X−) seen
above. Let M be the map from Ω to so(n+ 2) given by

M =
(

0 tu

−u b

)
.

A direct calculation shows that M satisfies

∆M +
[
∂M

∂x
,
∂M

∂y

]
= 0, (2.19)

and hence that M is a critical point of the functional

F1(M) =
∫

Ω

( |dM |2
2

+
1
3
tr

(
M

[
∂M

∂x
,
∂M

∂y

]))
dxdy.

Furthermore, M is conformal.

2.1.3 Comparison

We will see that in case n = 2, equation (2.19) is equivalent to the system
of equations (2.9) and (2.10) for X+ and X−. The reason is that the
Lie algebra so(4) is isomorphic to the product so(3)× so(3) 0 R3 × R3.



2.1 Bäcklund transformation 57

A convenient way of representing so(4) is to identify R4 with the set of
quaternions

H := {t+ xi+ yj + zk | (t, x, y, z) ∈ R4},
where i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i and
ki = −ik = j. Then we notice that a ∈ so(4) has a unique decomposition
as

a = aL + aR

where

aL ∈ so(4)L =




0 −p1 −p2 −p3
p1 0 −p3 p2

p2 p3 0 −p1
p3 −p2 p1 0

 /(p1, p2, p3) ∈ R3


and

aR ∈ so(4)R =




0 q1 q2 q3

−q1 0 −q3 q2

−q2 q3 0 −q1
−q3 −q2 q1 0

 /(q1, q2, q3) ∈ R3

 .
And one may easily see that so(4)L and so(4)R are both isomorphic to

so(3). Because of the identification of H with R4, the map (t, x, y, z)  −→
aL(t, x, y, z) corresponds to the left product

t+ ix+ jy + kz  −→ p(t+ ix+ jy + kz),
where p is a pure imaginary quaternion (i.e. of the form ip1+ jp2+kp3).
Likewise we can represent aR by the right product

t+ ix+ jy + kz  −→ −(t+ ix+ jy + kz)q,

with a pure imaginary quaternion −q.
Therefore, we have: ∀ξ ∈ H,

a(ξ) = pξ − ξq . (2.20)
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It is then easy to see that every element of so(4)L commutes with any
element of so(4)R, because of the associativity of the product in H, since

aL(aR(ξ)) = −p(ξq) = −(pξ)q = aR(aL(ξ)).

Thus, we have the following isomorphisms:

Φ : so(4) −→ #(H)⊕#(H)
a  −→ (p, q) ,

where #(H) is the set of pure imaginary quaternions, and p and q are
defined by (2.20). Φ is a Lie algebra isomorphism, if we equip #(H) ⊕
#(H) with the Lie bracket

[(p, q), (p′, q′)] = (pp′ − p′p, qq′ − q′q).
We may also deduce from Φ another Lie algebra isomorphism

Ψ : so(4) −→ R3 × R3

a  −→
 p1

p2

p3

 ,
 q1

q2

q3

 = (Kp, Kq),

where R3 × R3 is equipped with the Lie bracket

[(Kp, Kq), (Kp′, Kq′)] = 2(Kp× Kp′, Kq × Kq′),
where × is the vector product in R3. Let us come back to the map M
from Ω to so(4), and calculate Ψ ◦M :

Ψ ◦M = −1
2
(X+, X−).

We then see that equation (2.19) for M is equivalent to equations
(2.9) and (2.10) for X+ and X−.

2.2 Harmonic maps with values into Lie groups

To go deeper into the structure of weakly harmonic maps from a sur-
face to a symmetric manifold, it is necessary to introduce one more
concept. The idea is to reformulate the harmonic map equation as an
integrability condition (vanishing curvature) for a differentiable 1-form
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with coefficients in the Lie algebra of the symmetry group (a connection
form), such a 1-form depending on an auxiliary complex parameter.
This may seem very strange at first sight, yet it is this reformulation
which opens the gates of the arsenal of techniques developed for com-
pletely integrable systems, like the Korteweg–de Vries or the non-linear
Schrödinger equations (see [56]).
These ideas were introduced in our context by several authors, both

physicists and mathematicians ([128], [185], [174]). In [174], Karen Uh-
lenbeck uses this formulation to study harmonic maps from a surface to
the Lie group U(n), and in particular classifies all harmonic maps from
S2 to U(n).
Another important result in [174] is the existence of a very big group

(the group of maps from the circle to U(n)), acting on the set of U(n)-
valued harmonic maps. These symmetries had already been found in
their infinitesimal version by [45].

We present here this formulation for the case for harmonic maps with
values into a compact Lie group G (we shall keep in mind the two cases
G = SO(n) and G = U(n)). As a warm-up, we start by considering
the elementary example of real-valued harmonic functions. Let u : Ω ⊂
C −→ R be such a function. Then the function from Ω to C defined by

f =
∂u

∂z
=

1
2

(
∂u

∂x
− i∂u
∂y

)
is holomorphic, i.e.it satisfies

∂f

∂z
= 0 . (2.21)

Another way to write (2.21) is the system

d(du) = 0 (2.22)

d(Ldu) = 0, (2.23)

where Ldu = −∂u
∂y dx +

∂u
∂xdy. Likewise, any constant coefficient linear

combination of du and Ldu will be closed thanks to (2.22) and (2.23).
Hence, we can also write (2.21) as

dgλ = 0, ∀λ ∈ C ∗ (2.24)
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where

gλ =
1
2

(
1− λ+ λ

−1

2

)
du− 1

2
λ− λ−1

2i
(Ldu)

=
1
2
[
(1− λ−1)fdz + (1− λ)fdz] . (2.25)

Why do we choose such a gλ? In fact, in this simple example, consid-
ering (2.25) is a useless complication. On the other hand, it is possible to
generalize (2.24) and (2.25) to the case of harmonic maps taking values
in a non-Abelian group, and gλ is then the right concept.

Let G be some compact Lie group (say SO(n) or U(n)) and let u :
Ω ⊂ C −→ G be a map, not necessarily harmonic. Let


ax = u−1 ∂u

∂x

ay = u−1 ∂u

∂y
.

(2.26)

A direct calculation shows that (2.26) implies

∂ay
∂x

− ∂ax
∂y

+ [ax, ay] = 0 . (2.27)

Conversely, we can show using the Frobenius theorem that if Ω is
simply connected, any pair of C1 maps (ax, ay) from Ω to M(n,C) sat-
isfying (2.27) may be obtained from a map u from Ω to GL(n,C) us-
ing (2.26). (To prove it, for instance consider the vector fields X1 :
(x, y, g)  −→ (1, 0, gax) and X2 : (x, y, g)  −→ (0, 1, gay) tangent to the
manifold Ω × GL(n,C) and observe that condition (2.27) is equivalent
to [X1, X2] = 0.) In our case, the constraint

u ∈ G

will be equivalent to (up to left multiplication by a GL(n,C) constant)

ax, ay ∈ g : the Lie algebra of G,

i.e. g = so(n) for G = SO(n) and g = u(n) for G = U(n). If we now
assume u to be harmonic, Noether’s theorem implies that
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∂ax
∂x

+
∂ay
∂y

= 0 . (2.28)

Hence, the study of harmonic maps from Ω to G reduces, if Ω is simply
connected, to the study of the pairs ax, ay : Ω −→ g satisfying (2.27)
and (2.28). Notice that (2.27) is the non-linear analogue of (2.22), and
(2.28) the analogue of (2.23).

We can rewrite this system using the complex variable z = x + iy.
Writing

f =
1
2
(ax − iay) = u−1 ∂u

∂z
∈ g ⊗ C,

the system (2.27), (2.28) is equivalent to

∂f

∂z
+

1
2
[f, f ] = 0 (2.29)

which looks like a Lax pair formulation.
Finally, we can interpret equation (2.27) in a more geometric way, in

terms of connections on bundles.

Connection and curvature forms on vector bundles

We briefly recall the notions on bundles that we will need (see [101] or
[47] for more details).

If M is a manifold and G is a Lie group, a fiber bundle F over M,
with fiber F and structure group G, is a differentiable manifold equipped
with a differentiable map P , called the projection from F onto M, such
that

(i) There exists a covering of M by open sets Ui such that for all i,
there exists a diffeomorphism Φi : Ui × F −→ P−1(Ui) such that
P ◦ Φi(M,f) =M .

(ii) If Ui ∩ Uj �= ∅, we have for M ∈ Ui ∩ Uj and f ∈ F , (Φi)−1 ◦
Φj(M,f) = (M,Tij(M)(f)), where Tij(M) represents the action
of an element of the group G on F .

The set FM := P−1({M}) is the fiber over M ; it is diffeomorphic to F .

A section of the bundle F over M is a map σ from M to F , such that
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P ◦ σ(x) = x,∀x ∈ M.

One of the main difficulties of differentiable calculus on bundles, mak-
ing the difference between a fiber bundle and a Cartesian product of
manifolds, is that there is no canonical way of comparing two points
“living” in two different fibers, even if they are infinitesimally close.
The extra information that we need is the choice of a connection or co-
variant derivative. Since the situation of interest to us is that when F is
a vector space (for instance Rn), and G is a subgroup of the endomor-
phism group of F , we present the definition of a connection only for the
special case of vector bundles.

A connection or covariant derivative ∇ is an operator acting on the
differentiable sections of F and satisfying the following conditions:

(i) ∇ associates in a differentiable fashion to every M ∈ M, V ∈
TMM and every C1 section σ of F , a vector in FM , denoted by
∇V σ, which depends linearly on V and σ.

(ii) ∇ is a derivation: if φ ∈ C1(M) and σ is a C1 section, then
∇V (φσ) = dφ(V )σ + φ∇V σ.

(iii) ∇ is compatible with the action of the group G. This means that
∀γ ∈ G, ∇V (γσ) = γ∇V σ, where s  −→ γs is the action of γ on
F .

It suffices to know the action of ∇ on a family of sections E =
(E1, ..., En), such that at every point M of M, (E1(M), ..., En(M)) is a
basis of FM . It is determined by the Maurer–Cartan 1-forms ωab on M
(1 ≤ a, b ≤ n) using the relations

∇V Ea = Ebωba(V ).

Thanks to the linearity of ∇ and to (ii), we have for any section σ =
Eas

a, ∇V (σ) = Ea(ωab (V )s
b + dsa(V )).

A remarkable property is that there exists a 2-form Ω∇ on M, with
coefficients in the endomorphisms of FM , called curvature form, such
that ∀V,W ∈ TP (M)M,∇V∇Wσ −∇W∇V σ −∇[V,W ]σ = Ω∇(V,W ).σ.
The curvature is characterized by a family of 2-forms Ωab on M such

that, decomposing a section along σ = Easa, we have Ω(V,W ).σ =
EaΩab (V,W )sb. We can check that Ωab = dωab + ω

a
c ∧ ωcb .

The curvature is a barrier to the existence of parallel sections, i.e. of
sections σ which are solutions of ∇σ = 0. In fact, one can show, using
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the Frobenius theorem, that the local existence of n parallel sections
E1, ..., En forming a moving frame is true if and only if Ω∇ = 0.

As an example, we come back to one case that interests us: M is
an open subset Ω of R2, F is Rn with the canonical Euclidean scalar
product, G = SO(n) and F = Ω × F . Every orthonormal basis E =
(E1, ...,En) of Rn gives a family of (“constant”) sections such that ωab +
ωba = 0, i.e.ω is an so(n)-valued form. Conversely, to every 1-form on Ω

a = axdx+ aydy (2.30)

whose coefficients ax and ay take values in so(n), we can associate a
connection ∇ on F (for which ω = a). The curvature of this connection
is

Ω∇ = da+ a ∧ a =
(
∂ay
∂x

− ∂ax
∂y

+ [ax, ay]
)
dx ∧ dy. (2.31)

Thus, condition (2.27) means that ∇ has vanishing curvature. This
yields that there are sections φi of F such that ∇φi = 0 and that
(φ1, ..., φn) is a basis of Rn. Moreover, we can chose this basis to be
orthonormal (because if it is orthonormal at a point (x, y), it will be
so everywhere, since a has anti-symmetric coefficients). The matrix v
whose columns are the components of the φi belongs to O(n) and sat-
isfies the relation dv = va. Thus, we have a solution of the system
(2.26).

Similarly if G = U(n), ax and ay take values in u(n).

Exercises

We identify R4 with the set of quaternions H, R3 with the set of imag-
inary quaternions #(H) and S3 with the set of quaternions of norm 1
in H. We recall that for any R ∈ SO(3), there exists some p ∈ S3 such
that, ∀ζ ∈ R3,

R(ζ) = pζp,

and that p is unique up to sign.
We denote by Ω a simply connected domain of C.

2.2 Let X : Ω −→ R3 be a conformal immersion into a surface of
constant mean curvature 1

2 . In particular, X is a solution of the
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equation

∆X =
∂X

∂x

∂X

∂y
in H.

Let us consider the map from Ω to so(3) defined by

A :=

 0 X3 −X2

−X3 0 X1

X2 −X1 0

 ,
and consider the connection 1-form on Ω

a = −∂A
∂y
dx+

∂A

∂x
dy.

Show that da + a ∧ a = 0 and deduce that there exists a map
U : Ω −→ SO(3) such that dU = Ua and that U is harmonic
and conformal.

2.3 Prove that there exists a smooth map p : Ω −→ S3 such that
∀ζ ∈ R3 0 #(H),

U(ζ) = pζp in H.

Show that

pdp =
1
2

(
∂X

∂y
dx− ∂X

∂x
dy

)
in H,

and that p is a harmonic conformal immersion in S3 and hence
minimal. Prove that conversely one may associate to each con-
formal minimal immersion of Ω in S3 a conformal constant mean
curvature immersion in R3 (see [104]).

2.4 Let u be a harmonic map from Ω into Sn (for n ≥ 2). Let

M =
(

0 tu

−u b

)
as in in the previous section. Consider the

connection form

θ = −∂M
∂y
dx+

∂M

∂x
dy.

Prove that dθ + θ ∧ θ = 0 and thus that there exists a map
g : Ω −→ SO(n+2) such that dg = gθ. Show that g is harmonic
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and conformal. In the following we will assume that n = 2.

2.5 Prove that for any rotationR ∈ SO(4) there exists a pair (p, q) ∈
S3 × S3 such that ∀ζ ∈ H,

R(ζ) = pζq in H

and that (p, q) is unique up to sign.

2.6 Let g : Ω −→ SO(4) be the harmonic map constructed in ques-
tion 2.4. Prove that one can associate to g a pair of maps
(p, q) : Ω −→ S3 × S3 such that

g(z)(ζ) = p(z)ζq(z),∀ζ ∈ H,∀z ∈ Ω,

and that

dp =
1
2
p

(
∂X+

∂y
dx− ∂X+

∂x
dy

)
in H,

dq =
1
2
q

(
∂X−
∂y
dx− ∂X−

∂x
dy

)
in H,

where X+ and X− are the conformal constant mean curvature
immersions constructed in subsection 2.1.1 (outside degenerate
points). Show that p and q are conformal harmonic maps into
S3. Conclude.

2.2.1 Families of curvature-free connections

After all this talk about different formulations, we will take a big step
and introduce an auxiliary complex parameter λ (which we may call a
“spectral parameter”, see the comments at the end of this section). For
λ ∈ C4, we write

Aλ =
1
2
[(1− λ−1)fdz + (1− λ)fdz]

=
1
2

(
1− λ+ λ

−1

2

)
a− 1

2
λ− λ−1

2i
L a , (2.32)

where a is given by (2.30). We remark that Aλ is a deformation of a, in
the sense that

(i) A−1 = a
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(ii) A1 = 0
(iii) for |λ| = 1, Aλ is a 1-form on Ω with coefficients in g.
(iv) In general, for λ ∈ C4, Aλ is a 1-form on Ω with coefficients in

g ⊗ C.

Let us calculate the curvature of Aλ, i.e.

dAλ +Aλ ∧Aλ

=
(
∂Aλ,y
∂x

− ∂Aλ,x
∂y

+ [Aλ,x, Aλ,y]
)
dx ∧ dy

=
(
∂

∂z
(Aλ,z)− ∂

∂z
(Aλ,z) + [Aλ,z, Aλ,z]

)
dz ∧ dz

=
(
∂

∂z

(
1− λ
2
f

)
− ∂

∂z

(
1− λ−1

2
f

)
+

2− λ− λ−1

4
[f, f ]

)
dz ∧ dz

= −1− λ−1

2

(
∂f

∂z
+

1
2
[f, f ]

)
dz ∧ dz + 1− λ

2

(
∂f

∂z
+

1
2
[f, f ]

)
dz ∧ dz .
(2.33)

Comparing this last expression with (2.29), we can immediately obtain

Theorem 2.2.1 [128], [185], [174] Let u be a map from Ω to G, and Aλ
the connection form on Ω, with coefficients in g ⊗ C, defined by (2.32).
Then u is harmonic if and only if the vanishing curvature relation

dAλ +Aλ ∧Aλ = 0 (2.34)

is true for any value of λ ∈ C ∗.

Remark 2.2.2 By relation (2.33), it is easy to see that it suffices to
have relation (2.34) true for at least two distinct values of λ, different
from 0 and 1, for u to be harmonic.

Theorem 2.2.1 yields an “integrated” version of the characterization
of harmonic maps, for simply connected domains.

Theorem 2.2.3 Suppose that Ω is simply connected. Choose an arbi-
trary point p ∈ Ω, and let u be a map from Ω to G such that u(p) = 1l.
Then, the following properties are equivalent.
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(i) u is harmonic.
(ii) For any λ ∈ S1, there exists a map Eλ from Ω to G such that

Eλ(p) = 1l (2.35)

E−1
λ dEλ = λ−1ξ̂−1 + ξ̂0 + λξ̂1, (2.36)

where ξ̂−1, ξ̂0 and ξ̂1 are smooth 1-forms on Ω with coefficients
in g ⊗ C, and ξ̂−1

(
∂
∂z

)
= 0

E1 = 1l (2.37)

E−1 = u . (2.38)

(iii) For every λ ∈ C ∗, there exists a map Eλ from Ω to GC such that
(2.35), (2.36), (2.37) and (2.38) are satisfied, and moreover,

E
λ
−1 = Eλ. (2.39)

Furthermore, for any z ∈ Ω, λ  −→ Eλ is holomorphic in C ∗.

Remark 2.2.4 Here we denote by SO(n)C := {R ∈ M(n,C)/tRR =
1l,detR = 1} and U(n)C := GL(n,C) the complexifications of SO(n)
and U(n). A map h : C ∗ −→ GC is holomorphic if and only if ∂h

∂z = 0.
On the other hand, the point of view which turns out to be most con-

venient is to see Eλ not as a family of maps from Ω to GC parametrized
by λ, but rather as a map from Ω to the based loop group (based, since
they are equal to 1l at 1)

ΩG = {g• : S1 −→ G/g1 = 1l} .
Here and in the following we systematically denote by g• a map de-

pending on a spectral parameter in the circle S1 (or in C ∗) and its value
at some λ ∈ S1 (or C ∗) will be denoted gλ. The product of g• and
h• ∈ ΩG is defined by (g•h•)λ = gλhλ. It will also be useful below to
consider the complexification of ΩG

ΩGC = {g• : S1 −→ GC | g1 = 1l},
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and the subgroups

ΩholGC := {g• ∈ ΩGC | g• extends in a holomorphic way to C ∗},

ΩholG := ΩG ∩ ΩholGC.

We denote the Lie algebras of these groups by Ωg, ΩgC, ΩholgC, Ωholg.
For instance,

Ωg = {ξ• : S1 −→ g | ξ1 = 0},
and [ξ•, η•]λ = [ξλ, ηλ].

We denote by E• the map

E• : Ω −→ ΩholG ⊂ ΩG

z  −→ [λ  −→ Eλ(z)] .
This map is called an “extended harmonic map”, although it is not a

harmonic map.

Proof of theorem 2.2.3
Proof of (i) ⇒ (ii) This follows essentially from the Frobenius theorem
and theorem 2.2.1. In fact, we know that if u is harmonic,

Aλ =
1
2
[
(1− λ−1)fdz + (1− λ)fdz]

has zero curvature hence for every A ∈ S1, there exists map E• from Ω
to G such that

dEλ = EλAλ . (2.40)

Choosing E• such that E•(p) = 1l, Eλ will be unique.
In particular, since A−1 = u−1du, and Eλ(p) = u(p) = 1l, we obtain

that E−1 = u. Likewise, since A1 = 0, E1 = 1l. Finally, relation (2.36)
follows from (2.40). We remark that it follows from Frobenius’ theorem
and the uniqueness of Eλ that (z, λ)  −→ Eλ(z) is continuous.

Proof of (ii) ⇒ (iii) Consider

Aλ = λ−1ξ̂−1 + ξ̂0 + λξ̂1 = E−1
λ dEλ.
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The fact that dAλ+Aλ ∧Aλ = 0 for λ ∈ S1 implies that this relation
is valid for all λ ∈ C ∗. Repeating the preceding arguments, we can thus
show that we can define Eλ, for λ ∈ C ∗, which extends Eλ on S1, and
satisfies (2.35), (2.36), (2.37) and (2.38). And since Aλ is a holomorphic
function of λ in C ∗, the same is true for Eλ.

Condition (2.39) is called the reality condition. It is automatically
true for λ ∈ S1, since Eλ(z) ∈ G for λ ∈ S1. Thus, we know from (ii)
that for all z, λ  −→ (

E
λ
−1

)−1
.Eλ is an analytic function in C ∗ which

takes the value 1l over S1. Hence, this function is necessarily constant
and equal to 1l in C ∗ by the analytic extension principle. This proves
(2.39).

Proof of (iii) ⇒ (i) Suppose Eλ is as described in (iii) and write

Aλ = E−1
λ dEλ = λ−1ξ̂−1 + ξ̂0 + λξ̂1 .

Condition (2.37) implies that

A1 = 0,

and condition (2.39) that

ξ̂−1 = ξ̂1 and ξ̂0 = ξ̂0 .

Thus, if we write α = −2ξ̂−1, then

Aλ =
1
2
[
(1− λ−1)α+ (1− λ)α] .

But since ξ̂−1

(
∂
∂z

)
= 0, we deduce that there is a map f from Ω to g⊗C

such that

Aλ =
1
2
[
(1− λ−1)fdz + (1− λ)fdz] .

It is then easy to see that

f = u−1 ∂u

∂z
,

and since Aλ must satisfy the vanishing curvature condition, it follows
that
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∂f

∂z
+

1
2
[f, f ] = 0,

and thus u is harmonic (see relation (2.29)).

To present all the results that have been obtained using the setting of
theorem 2.2.3 would take us too far. The interested reader should see
[24] for a Hamiltonian approach, or [25], [26], [174] or the books [62],
[76], [89].

Jacobi fields

The results we have chosen to briefly present here are those that illus-
trate the existence of infinitesimal symmetries, i.e. the symmetries of the
linearized problem.

Given a harmonic map u : Ω −→ G, the “harmonic deformations” of
u are represented, to the first order, by a map v : Ω −→ M(n,R) such
that

(u+ tv)−1(u+ tv) = 1l + o(t) (2.41)

and

d[L(u+ tv)−1d(u+ tv)] = 0 (2.42)

where L(αxdx+ αydy) = −αydx+ αxdy. It is more convenient to write
v = uΛ. Condition (2.41) then becomes

Λ ∈ g, (2.43)

and we can see that (2.42) is equivalent to

d[L(dΛ + [A,Λ])] = 0, (2.44)

where

A = u−1du = fdz + fdz .

Definition 2.2.5 Let u be a harmonic map and A = u−1du. By a Jacobi
field we mean any infinitesimal deformation of u, u + tδu, which is a
harmonic map “up to order 1 in t”, or equivalently, any map Λ : Ω −→ g

which is a solution of (2.44).
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Equation (2.44) has trivial solutions: the constant solutions (because
d L A = 0). These solutions reflect the existence of symmetries for the
harmonic map equation. Other solutions, much less trivial but remark-
able, have been found by Louise Dolan.

Theorem 2.2.6 [45], [174] Suppose a ∈ g. Then, for every λ ∈ C ∗, the
map

Λλ(a) : Ω −→ g ⊗ C

z  −→ E−1
λ (z)aEλ(z)

(2.45)

is a solution of (2.44). Consequently, the real and imaginary parts of
Λλ(a) are Jacobi fields for u.

By a complexified Jacobi field we mean a map which takes values in
g ⊗ C, and is a solution of (2.44). Notice that a complexified Jacobi
field is not a Jacobi field in general, since it does not preserve the reality
condition u ∈ G.

Remark 2.2.7 We can show that the vector space generated by

{"(Λλ(a))/λ ∈ C ∗, a ∈ g ⊗ C}
has a graded Kac–Moody algebra structure (a generalization of Lie alge-
bras). More precisely, this space can be identified with a set of formal
series in one complex variable, with coefficients in g⊗C (see [45], [174]).
Such symmetries have also been observed for the self-dual Yang–Mills
equation in R4 or S4 (see [34], [41]). This Lie algebra action on the
“tangent space” to the set of harmonic maps u is the infinitesimal ver-
sion of the action of a symmetry group on harmonic maps (“dressing”).
This result, shown by [174], will be used below. An analogous result for
self-dual Yang–Mills was proved in [41].

Proof of theorem 2.2.6 In order to lighten the notation let Λλ = Λλ(a).
We start by calculating

dΛλ = −E−1
λ (dEλ)E−1

λ aEλ + E−1
λ adEλ

= [E−1
λ aEλ, E

−1
λ dEλ]
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= −[Aλ,Λλ] , (2.46)

and hence

dΛλ = −1
2
(1− λ−1)[f,Λλ]dz − 1

2
(1− λ)[f,Λλ]dz.

Thus

dΛλ + [A,Λλ] =
(
∂Λλ
∂z

+ [f,Λλ]
)
dz +

(
∂Λλ
∂z

+ [f,Λλ]
)
dz

=
1
2
(1 + λ−1)[f,Λλ]dz +

1
2
(1 + λ)[f,Λλ]dz. (2.47)

Now since Ldz = −idz and Ldz = idz, (2.47) implies

L (dΛλ + [A,Λλ]) = i

(
−1
2
(1 + λ−1)[f,Λλ]dz +

1
2
(1 + λ)[f,Λλ]dz

)
= i

1 + λ
1− λ

(
1
2
(1− λ−1)[f,Λλ]dz +

1
2
(1− λ)[f,Λλ]dz

)
= −i1 + λ

1− λdΛλ,

which proves (2.44).

2.2.2 The dressing

We will now see that there is an infinite-dimensional Lie group acting
on the set of harmonic maps. This action is called the “dressing action”.
It is based on three facts.

(i) There exists a (loop) group G acting on ΩholG. For every g• ∈ G,
and e• ∈ ΩholG, we denote by g•Oe• the image of e• in ΩholG
under the action of g•.

(ii) This induces an action of G on the set of maps from an open
subset Ω of C to ΩholG. For all g• ∈ G, and for all maps E• from
Ω to ΩholG, we write

g•OE• : Ω −→ ΩholG
z  −→ g•O(E•(z)).

(iii) Miracle: if E• is an extended harmonic map, i.e. if it satisfies
(2.36), (2.37), (2.38) and (2.39), then the same is true for g•OE•.
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Conclusion: translating this last fact with the help of theorem 2.2.3,
we deduce that G acts on the set of harmonic maps. The group G is the
set of germs at 0 of holomorphic maps from a neighborhood of 0 in C to
GC. In other words, if for ε ∈ (0, 1], we write

Bε = {ζ ∈ C | |ζ| < ε}, (2.48)

then we can define

G =
⋃
ε>0

{g• : Bε −→ GC | [ζ  −→ gζ ] is a holomorphic function of ζ} .

The group law on this set is given by the pointwise product, i.e. in
general, if X is a domain, a set of maps from X to G or GC is equipped
with a group structure given by the product

∀ζ ∈ X, (g•h•)ζ = gζhζ .

We present here two special cases of the dressing action, simpler to
describe, and corresponding to certain subgroups of G: first

L+GC = {g• : S1 −→ GC | g• has a holomorphic extension to B1

taking values in GC},

and, in the case where G = U(n),

A(S2, U(n)) := {g• : C ∪ {∞} −→ GL(n,C) | g• is meromorphic on
C ∪ {∞}, holomorphic at 0 and +∞, g

λ
−1 = gλ, and g1 = 1l}.

We remark that the inclusion of A(S2, U(n)) in G can be conceived
modulo the restriction of a map in A(S2, U(n)) to a neighborhood of 0.

Action of L+GC

Define

LGC = {g• : S1 −→ GC}.
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Theorem 2.2.8 [130] Assume that G = SO(n) or U(n). Then the
product

ΩG × L+GC −→ LGC

(e•, g•)  −→ e•g•

is a diffeomorphism. In particular, for all v• ∈ LGC, ∃!e• ∈ ΩG, ∃!g• ∈
L+GC,

v• = e•g•. (2.49)

Remark 2.2.9 The proof of this result would be easy if we just needed
to show the linearized version around the identity: we consider

ψ• ∈ LgC := {ψ• : S1 −→ g ⊗ C},
and we look for

γ• ∈ L+gC := {γ• ∈ LgC | γ• extends holomorphically to B1}
and

φ• ∈ Ωg = {φ• : S1 −→ g | φ1 = 0},
such that

(1l + tψ•) = (1l + tφ•).(1l + tγ•) + o(t)

which is equivalent to

ψ• = φ• + γ• . (2.50)

The proof of (2.50) reduces to showing that

L+gC ⊕ Ωg = LgC,

a result that can easily be obtained by doing a series expansion. On
the contrary, the proof of (2.49) cannot be obtained by such a simple
argument, and is a deep result.

Remark 2.2.10 In theorem 2.2.8, it is necessary to choose a topology
on LGC: the result is true if we consider loops in C∞, or in Hs(S1,GC),
for s > 1

2 (see [130]).
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Let us describe the dressing action of L+GC on ΩG: suppose g• ∈
L+GC; for any e• ∈ ΩG,

g•e• ∈ LGC,

and thus, by theorem 2.2.8, ∃!g̃• ∈ L+GC, ∃!ẽ• ∈ ΩG,

g•e• = ẽ•g̃• . (2.51)

Notice that g̃• depends on e• and g• in general (unless G is Abelian).
We denote

g•Oe• = ẽ• = g•e•g̃−1
• ∈ G. (2.52)

(The visual aspect of this expression is the origin of the term “dressing”,
an English translation of the original Russian word.) The expected result
is the following.

Theorem 2.2.11 Let u : Ω −→ G be a harmonic map, and E• : Ω −→
ΩG the associated extended harmonic map. Suppose g• ∈ L+GC then
the map

g•OE• : Ω −→ ΩG

z  −→ g•OE•(z)

is also an extended harmonic map. This implies that

g•Ou := g•OE−1 (2.53)

is still a harmonic map (by theorem 2.2.3).

Proof We start by noticing that the diffeomorphism property stated in
theorem 2.2.8 implies that g•OE• is smooth in Ω. By (2.52), we have for
every z

(g•OE•)(z) = g•E•(z)g̃−1
• (z),

and thus,
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(g•OE•)−1d(g•OE•) = g̃•E−1
• g

−1
• (g•dE•g̃−1

• − g•E•g̃−1
• dg̃•g̃

−1
• )

= g̃•(E−1
• dE• − g̃−1

• dg̃•)g̃
−1
• . (2.54)

Recall first that

(E−1
• dE•)λ = E−1

λ dEλ = Aλ

is a linear combination of λ−1, 1 and λ, and second that since g̃• ∈ L+GC,
both g̃λ and g̃−1

λ may be expressed as a non-negative power series in λ.
Then (2.54) yields

(g•OEλ)−1d(g•OEλ) =
∑
k≥−1

ξ̂kλ
k, (2.55)

where each ξ(k) is a linear form on Ω, and

ξ̂−1 = g̃0(−1
2
f)g̃−1

0 dz . (2.56)

Now, notice that g•OE• ∈ ΩG, and hence it satisfies the reality condi-
tion

g•OEλ−1 = g•OEλ .

This property, together with (2.55), implies that

(g•OEλ)−1d(g•OEλ) = ξ̂−1λ
−1 + ξ̂0 + ξ̂1λ . (2.57)

Recall also that if g•OE• ∈ ΩG then g•OE1 = 1l, and hence

ξ̂−1 + ξ̂0 + ξ̂1 = 0 . (2.58)

We conclude that (2.56), (2.57) and (2.58) imply g•OE• is an extended
harmonic map, which proves our result.



2.2 Harmonic maps with values into Lie groups 77

2.2.3 Uhlenbeck factorization for maps with values in U(n)

A drawback of the dressing action is that it is difficult to picture its effect
without using the loop group machinery. An alternative possibility was
proposed in [174] for the case G = U(n). The interest of considering
the subgroup A(S2, U(n)) defined above is that it is possible to describe
its action “more explicitly”, in particular by decomposing each element
g• ∈ A(S2, U(n)) as a product of elementary factors

g• = g•,1 . . . g•,j ,

where each g•,j ∈ A(S2, U(n)) has one pole and one zero. This is the
approach used in [174] by Uhlenbeck, who obtains in this way a con-
structive proof of

Theorem 2.2.12 Let g• ∈ A(S2, U(n)) and e• ∈ ΩholU(n) then ∃!g̃• ∈
A(S2, U(n)), ∃!ẽ• ∈ ΩholU(n) such that

g•e• = ẽ•g̃• .

More precisely, we may decompose g• as g• = g•,1...g•,k, where each
factor g•,j ∈ A(S2, U(n)) is a homographic function, and obtain g̃• as
g̃• = g̃•,1...g̃•,k where each g̃•,j is also a homographic function which
may be calculated explicitly. We write g•Oe• = ẽ•.

Notice that replacing the group L+U(n)C by A(S2, U(n)), we have
extended the dressing given by theorem 2.2.8 to certain elements which
do not belong to L+U(n)C. This is possible because we are acting on the
subgroup ΩholU(n) of ΩU(n). But the fact of having an action defined
only over ΩholU(n) does not pose any problem for us since, by theorem
2.2.3, every extended harmonic map E• takes its values in ΩholU(n). We
can thus proceed as in theorem 2.2.11, and show that if g• ∈ A(S2, U(n))
and E• : Ω −→ ΩholU(n) is an extended harmonic map, then g•OE• is
also an extended harmonic map (see [174]).

Notice that the dressing action of ΩholU(n) extends to the group G,
by adapting the arguments of [112] and [26].

In order to clarify the connections between the dressing and Dolan’s
Jacobi fields, constructed in theorem 2.2.6, we will study the effect of the
dressing action described in theorem 2.2.12 for g ∈ A(S2, U(n)) close to
1l. To do so, let
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A(S2, u(n)) := {ξ• : C ∪ {∞} −→ u(n)⊗ C|
ξ• is meromorphic on C ∪ {∞},
holomorphic at 0 and ∞,
ξ
λ
−1 = ξλ, and ξ1 = 0}

be the Lie algebra of A(S2, U(n)). Let ξ• ∈ A(S2, u(n)), and u : Ω −→
U(n) be a harmonic map. For small t,

g•,t = 1l + tξ• + o(t) ∈ A(S2, U(n)) ,

and by theorem 2.2.12, ∃!g̃•,t ∈ A(S2, U(n)),∃!Ẽ•,t ∈ ΩholU(n), such
that

g•,tE• = Ẽ•,tg̃•,t .

Writing Ẽ•,t = E• + tδE• + o(t) and g̃•,t = 1l + tξ̃• + o(t), we obtain

δE• = ξ•E• − E•ξ̃• .

Exercise (solved)

Consider

ξλ =
1
2

[
(λ− 1)(γ + 1)

2(λ− γ) a+
(λ− 1)(γ + 1)
2(γλ− 1)

a

]
, (2.59)

where a ∈ u(n) ⊗ C, γ ∈ C ∗. It is easy to show that ξ• ∈ A(S2, u(n)),
and ξ• has poles at γ and γ−1.

Let us try to guess ξ̃•. Since ξ̃• ∈ A(S2, U(n)), it is a rational function
of λ. Since δE• is holomorphic in C ∗, it is necessary that the poles which
show up in ξ•E• are cancelled when we subtract E•ξ̃•, and thus ξ̃• has
poles at γ and γ−1. If we also use the reality condition ξ

λ
−1 = ξλ and

ξ1 = 0, we obtain

ξ̃λ = −1
2

[
(λ− 1)(γ + 1)

2(λ− γ) E−1
γ aEγ +

(λ− 1)(γ + 1)
2(γλ− 1)

E−1
γ−1aEγ−1

]
.

Thus,
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δEλ =
1
2

[
(λ− 1)(γ + 1)

2(λ− γ) (aEλ − EλE−1
γ aEγ)

+
(λ− 1)(γ + 1)

2(γλ− 1)
(aEλ − EλE−1

γ−1aEγ−1)
]
. (2.60)

The same reasoning with ξλ replaced by

ηλ =
1
2i

[
(λ− 1)(γ + 1)

2(λ− γ) a− (λ− 1)(γ + 1)
2(γλ− 1)

a

]
(2.61)

yields

δEλ =
1
2i

[
(λ− 1)(γ + 1)

2(λ− γ) (aEλ − EλE−1
γ aEγ)

− (λ− 1)(γ + 1)
2(γλ− 1)

(aEλ − EλE−1
γ−1aEγ−1)

]
. (2.62)

In equations (2.60) and (2.62), we constructed “extended Jacobi fields”,
i.e. infinitesimal deformations of an extended harmonic map E•. Speci-
fying these relations for the case λ = −1, we obtain Jacobi fields for u,
which are respectively

δu = "(au− uE−1
γ aEγ) ,

and

δu = #(au− uE−1
γ aEγ).

Thus, we recover Dolan’s result (theorem 2.2.8).

2.2.4 S1-action

Another consequence of the formulation using ΩholG is that it enables
us to show that the group S1 acts on the set of harmonic maps u from
Ω to G, generating a family, parametrized by S1, of deformations of a
harmonic map u. For γ ∈ S1, let

Ẽλ := (γOE)λ := EλγE−1
γ .
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Theorem 2.2.13 For any γ ∈ S1, the map f̃ : Ω −→ g ⊗ C defined by

f̃ = γ−1EγfE
−1
γ

is such that

Ẽ−1
λ dẼλ =

1
2

[
(1− λ−1)f̃dz + (1− λ)f̃dz

]
, (2.63)

and hence, in particular, Ẽλ is an extended harmonic map, and γOu =
(γOE)−1 is a harmonic map from Ω to G.

Proof A direct calculation yields

Ẽ−1
λ

∂Ẽλ
∂z

= γ−1 1− λ−1

2
EγfE

−1
γ

Ẽ−1
λ

∂Ẽλ
∂z

= γ
1− λ
2
EγfE

−1
γ ,

which implies (2.63).

Cartan immersion of Sn−1
in SO(n)

Having in mind the study of Sn−1-valued harmonic maps, it is interesting
to notice that there exists an immersion of Sn−1 in SO(n), given by

C : Sn−1 −→ SO(n)
v  −→ u0(2v tv − 1l) ,

such that for every map v : Ω ⊂ C −→ Sn−1, v is harmonic if and only
if C ◦ v is harmonic. Here u0 is just a constant in O(n), chosen so that
u ∈ SO(n) (detu0 = (−1)n−1). In fact, writing u = C ◦ v, we have

u−1du = 2(v tdv − dv tv) = 2v × dv, (2.64)

where we use the notation of the previous section. It follows that

d(Lu−1du) = 2d(Lv × dv),
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which gives the equivalence between the harmonicity of v and that of u.
We can interpret this using a general property characteristic of totally

geodesic maps. A map φ : (N , h) −→ (N ′, h′) is totally geodesic if and
only if its second fundamental form

(∇dφ)iIJ =
∂2φi

∂yI∂yJ
− ΓKIJ

∂φi

∂yK
+ Γ′i

jk

∂φj

∂yI
∂φk

∂yJ

vanishes. (Here ΓKIJ is the Christoffel symbol on (N , h) and Γ′i
jk is

the Christoffel symbol on (N ′, h′).) But for every harmonic map u :
(M, g) −→ (N , h) and for every totally geodesic map φ : (N , h) −→
(N ′, h′), the composition φ ◦ u is still harmonic [51]. And here, C is
precisely a totally geodesic map.

It follows that the preceding results concerning SO(n)-valued har-
monic maps are still valid if the image is a sphere. In particular, the
image of Sn−1 by C in SO(n) is preserved by the different groups which
act on harmonic maps.

Nevertheless, in order to study harmonic maps taking values in the
sphere (or any other homogeneous manifold), it is more convenient to use
an alternative formulation which we will present in the following section.

A mystery remains: what is the meaning of the parameter λ? Al-
though the importance of this parameter is obvious, its meaning is not
clear. It is sometimes called the spectral parameter. We then refer
to an analogous formulation of the Korteweg–de Vries or non-linear
Schrödinger equations (see [105], [56]). For these equations, we asso-
ciate to the unknown function an operator whose evolution is governed
by the Lax equation. The spectrum of this operator has the property of
being conserved in time, and λ then plays the role of an eigenvalue.

Other authors call λ a twistor parameter: this is a comparison with
self-dual Yang–Mills connections on S4 or R4. In fact, in this setting,
we are led to similar equations by lifting the equation to the bundle of
complex structures on S4 or R4. This bundle has fiber S2 0 C ∪ {∞},
and in the case of S4 it is identified with projective space PC 3. We are
then in a well understood situation, thanks to Penrose’s twistor theory
([126]). By Ward’s construction, we obtain a system of equations where
an extra variable λ ∈ C appears: it is precisely a coordinate on the fiber
of the complex structure bundle (see [175], [3], [41]).

But in the case of harmonic maps on a surface, I do not know of a
precise “geometric” interpretation for λ.
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2.3 Harmonic maps with values into homogeneous spaces

A formulation analogous to that we just saw, for maps taking values in a
quotient of Lie groups G/K, where K is a Lie subgroup of the Lie group
G, was developed in [25], [26], [46]. Notice that it is always possible
to embed G/K in G, in such a way that the composition of a harmonic
map taking values in G/K with this embedding is a G-valued harmonic
map (see [27]), and this enables us to use the preceding results. But
the following new formulation turns out to be more convenient. We will
present it for the case where

G := SO(n+ 1), K := SO(n) and G/K 0 Sn .
We start by defining the quotient SO(n + 1)/SO(n). The simplest

way is to consider

SO(n) 0 K :=
{(

1 0
0 R

)
| R ∈ SO(n)

}
⊂ SO(n+ 1) .

But we can also define K in a more “intrinsic” way by considering

P :=
(

1 0
0 −1ln

)
∈ O(n+ 1),

and letting

SO(n) 0 K := {g ∈ G | Pg − gP = 0} .
An equivalent way to define K is to introduce the canonical basis

(E0, ...,En) = E of Rn+1, and to let

K := {g ∈ G | g(E0) = E0}.
In all cases the result is the same, and it is clear that K is a subgroup

of G. Then, we define the following equivalence relation in G:

gRg′ ⇐⇒ g−1g′ ∈ K.

We define, for each g ∈ G,

[g] := g.K,

the class of g, and
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G/K := {[g] | g ∈ G}.
Thanks to the introduction of the basis E on Rn+1, we can easily see

that this space is diffeomorphic to Sn: it suffices to realize that the map

G −→ Sn

g  −→ g(E0)

yields, by passing to the quotient, a diffeomorphism between G/K and
Sn.

The idea is to represent a map u from Ω ⊂ C to Sn (not necessarily
harmonic) by a lifting into G, i.e. a map

F : Ω −→ G ,

such that ∀z ∈ Ω, [F (z)] = u(z). If Ω is contractible, which we will
assume in the sequel, there is no problem in constructing such a lifting.
We remark that giving F corresponds to specifying

u = e0 = EkF
k
0 ∈ Sn,

and

ej = EkF
k
j , for k = 1, ..., n,

i.e. an orthonormal basis (e1, ..., en) of TuSn. Both preceding relations
are condensed in

e = (e0, e1, ..., en) = (E0, ...,En)F = EF .

We should now study the “movement” of u as a function of the variable
z = x+ iy. For this, it is convenient to introduce the 1-form on Ω, with
coefficients in g, given by

θ = F−1dF = tFdF,

called the Maurer–Cartan form. We can think of θ as an anti-symmetric
matrix whose elements are

θij = F ki dF
k
j = 〈EkF

k
i ,EldF

l
j〉 = 〈ei, dej〉 .

For j = 0, we write
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θi0 = 〈ei, du〉 = αi,

and if i, j �= 0,

θij = 〈ei, dej〉 = ωij .

We can also introduce the column vector of 1-forms

α =

 α1

...
αn

 =

 θ10
...
θn0

 ,
and the anti-symmetric n× n matrix,

ω =


0 ω1

2 . . . ω1
n

ω2
1 0 . . . ω2

n
...

...
...

ωn1 ωn2 . . . 0

 .
In this way,

θ =
(

0 − tα

α ω

)
.

We remark that the information contained in α, and that contained
in ω, are of different kinds: α represents the projection of du in the basis
(e1, ..., en), while ω describes the movement of this basis. This is why
sometimes α is compared with a Higgs field and ω with a connection
(see [94]). It is then natural to decompose θ along

θ1 =
(

0 − tα

α 0

)
,

representing du in the moving frame (e1, ..., en), and

θ0 =
(

0 0
0 ω

)
,

representing the connection.
Such a decomposition has a simple Lie algebra interpretation. The

automorphism of G
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τ : g  −→ PgP−1

induces a Lie algebra automorphism in g:

τ : a  −→ PaP−1,

which also has the property of being a linear operator on g with square
equal to 1l. Thus, τ diagonalizes over g, with eigenvalues 1 and −1. Let

g0 = {a ∈ g | τ(a) = a} ,
and

g1 = {a ∈ g | τ(a) = −a} ,
the corresponding eigenspaces. In fact, g0 is the Lie algebra k 0 so(n)
of K 0 SO(n). It is clear (once you think of it) that θ0 is a 1-form with
coefficients in g0, and θ1 is a 1-form with coefficients in g1. Hence, the
decomposition θ = θ0 + θ1 follows from the decomposition

g = g0 ⊕ g1 .

Remark 2.3.1 Suppose that a, b are two elements of g0; then

P [a, b]P−1 = [PaP−1, P bP−1] = [a, b],

and thus [a, b] is also an element of g0. By the same reasoning, we
can also see easily that [g0, g1] ⊂ g1, and [g1, g1] = g0 (we have a Z2-
graduation of g).

In order to write the structure equations for θ, expressing the fact
that θ “derives” from F , we will introduce the following notation. If

β = βxdx+ βydy and γ = γxdx+ γydy

are two 1-forms with matrix coefficients, we let

[β ∧ γ] = [βx, γy]dx ∧ dy + [βy, γx]dy ∧ dx
= ([βx, γy] + [γx, βy])dx ∧ dy
= [γ ∧ β] .
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Now, using the fact that θ = F−1dF , we obtain

dθ +
1
2
[θ ∧ θ] = 0 . (2.65)

Projecting this equation over g0 and g1, respectively, we obtain (using
the Z2-graduation of g)

dθ0 +
1
2
[θ0 ∧ θ0] + 1

2
[θ1 ∧ θ1] = 0 , (2.66)

dθ1 + [θ0 ∧ θ1] = 0 . (2.67)

Remark 2.3.2 Using the variables α and ω, we obtain an equivalent
system

dαi + ωij ∧ αj = 0, (2.68)

dωij + ω
i
k ∧ ωkj = αi ∧ αj , (2.69)

or again

dα+ ω ∧ α = 0, (2.70)

dω + ω ∧ ω = α ∧ tα, (2.71)

i.e. the Cartan system of equations.

Suppose that u is harmonic: what are the extra equations that we can
obtain? Denote by L the Hodge star operator, whose action on 1-forms
is described by

L(βxdx+ βydy) = −βydx+ βxdy,
and observe that

∆u dx ∧ dy = d(Ldu).
Since we have to impose on u the fact that ∆u is everywhere orthog-

onal to TuSn, we obtain
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〈d(Ldu), ei〉 = 0, ∀i = 1, ..., n.

This equation is equivalent to

d(L〈du, ei〉) + 〈(Ldu) ∧ dei〉 = 0, ∀i = 1, ..., n . (2.72)

We can formulate equation (2.72) in two ways:

d(Lαi) + ωij ∧ (Lαj) = 0, ∀i = 1, ..., n , (2.73)

or

d(Lθ1) + [θ0 ∧ (Lθ1)] = 0. (2.74)

According to [25] and [46], we can condense equations (2.66), (2.67)
and (2.74) by introducing the parameter λ ∈ C ∗ and writing

Θλ := λ−1θ′1 + θ0 + λθ1
′′, (2.75)

where

θ′1 =
θ1 − i(Lθ1)

2

=
1
2

(
θ1

(
∂

∂x

)
− iθ1

(
∂

∂y

))
(dx+ idy)

= θ1

(
∂

∂z

)
dz,

θ1
′′ = θ1

(
∂

∂z

)
dz = θ′1.

Theorem 2.3.3 For any map u from Ω, an open subset of C, to Sn, u
is harmonic if and only if for every λ ∈ C ∗,

dΘλ +
1
2
[Θλ ∧Θλ] = 0. (2.76)

Proof By adding and subtracting equation (2.67) and i times equation
(2.74), we obtain that (2.67) and (2.74) are equivalent to
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dθ′1 + [θ0 ∧ θ′1] = 0, (2.77)

dθ′′1 + [θ0 ∧ θ1′′] = 0. (2.78)

(Notice that these two equations are in fact equivalent by complex con-
jugation.) On the other hand, a direct calculation yields

dΘλ +
1
2
[Θλ ∧Θλ] = λ−1(dθ′1 + [θ0 ∧ θ′1])

+dθ0 +
1
2
[θ0 ∧ θ0] + 1

2
[θ1 ∧ θ1]

+λ(dθ1′′ + [θ0 ∧ θ1′′]), (2.79)

which shows that (2.76) is true if and only if (2.66), (2.67) and (2.74)
are all true.

As in the previous section, condition (2.76) allows us to integrate Θλ

over any simply connected domain Ω. This leads to a new formulation
of harmonic maps using extended harmonic liftings taking their values
in twisted loop groups. The translation between the two problems is
based on the following result.

Theorem 2.3.4 [46] Let u be a map from Ω to Sn. Suppose that u(p) =
E0, where p is a fixed point in Ω. Then,

(i) If, for any λ ∈ S1, there exists a map Fλ from Ω to G such that

[F1] = u , (2.80)

F−1
λ dFλ = λ−1â−1 + â0 + λâ1, (2.81)

where â−1 = ξdz, â0 is a 1-form with coefficients in g0, â1 = ξdz
and ξ is a map from Ω to g1 ⊗ C, then u is harmonic.

(ii) Conversely, if Ω is simply connected and u is harmonic, then for
any λ ∈ S1, there exists a map Fλ from Ω to G such that (2.80)
are (2.81) are satisfied. Moreover, we can choose Fλ such that

Fλ(p) = 1l, ∀λ ∈ S1, (2.82)
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and Fλ will then be unique. Fλ is called an extended harmonic
lifting.

Proof

(i) Let u and Fλ be such that (2.80) and (2.81) are true. Then, (2.80)
expresses the fact that F := F1 is a lifting of u and it follows from
(2.81) (for λ = 1) that â−1 = θ′1, â0 = θ0 and â1 = θ1′′. This
yields that Θλ = λ−1θ′1 + θ0 + λθ1

′′ = F−1
λ dFλ satisfies equation

(2.76), and hence that u is harmonic by theorem 2.3.3.
(ii) Conversely, if u is harmonic, we can construct a lifting F of u,

such that F (p) = 1l (because u(p) = E0), and construct from F a
1-form Θλ, depending on the parameter λ ∈ S1 as in (2.75), which
is a solution of (2.76), thanks to theorem 2.3.3. Using Frobenius’
theorem and the fact that Ω is simply connected, we deduce that
there exists an unique map Fλ from Ω to G such that

dFλ = FλΘλ, (2.83)

satisfying the initial condition (2.82). It is then easy to see that
Fλ satisfies (2.81).

Corollary 2.3.5 Let Fλ : Ω −→ G be given by the preceding theorem.
Then, for any value of λ ∈ S1, the map uλ := [Fλ] is a harmonic map
from Ω to Sn.

Proof It suffices to apply case (i) of theorem 2.3.4 with F̃λ = Fλ/γ , for
any γ ∈ S1.

In this way, we recover the fact that any harmonic map may be con-
tinuously deformed into a family of harmonic maps parametrized by S1.
The relation between theorem 2.2.13, seen earlier, and corollary 2.3.5
will be discussed in section 2.4 of this chapter.

There is an elegant way of characterizing the maps Fλ from Ω to G

depending on the parameter λ ∈ S1 that satisfy (2.81). First of all, it is
convenient to consider the map F• from Ω to the loop group

LG := {g• : S1 −→ G},
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given by

F• : Ω −→ LG

z  −→ [λ  −→ Fλ(z)] .
If we impose on any map F• from Ω o LG the condition

for every fixed z, λ  −→ λFλ(z)−1dFλ(z)

extends holomorphically to the disk |λ| < 1 , (2.84)

then we will have

F−1
λ dFλ =

+∞∑
k=−1

âkλ
k, (2.85)

where each âk is a 1-form on Ω with coefficients in g ⊗ C. But knowing
that Fλ is G-valued for |λ| = 1, we have the reality condition

F
λ
−1 = Fλ,

which implies, using (2.85),

F−1
λ dFλ =

1∑
k=−1

âkλ
k. (2.86)

Let us impose on F• the “twist” condition

τ(Fλ) = PFλP = F−λ. (2.87)

Then, we see that (2.86) and (2.87) are equivalent to (2.86) plus the
condition that â−1 and â1 have coefficients in g1 ⊗ C, and â0 in g0.
Therefore, if we add to the hypotheses (2.84) and (2.87) the condition

that

â−1

(
∂

∂z

)
= 0, (2.88)

then F• satisfies condition (2.81) of theorem 2.3.4, and thus is an ex-
tended harmonic lifting.

Hence, we are led to introduce the set
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LGτ := {g• : S1 −→ G | τ(gλ) = g−λ} .
Note that, since τ2(g•) = g•, it is obvious that LGτ is a subgroup of

LG, called the twisted loop group.
As a result, we have the following reformulation of theorem 2.3.4.

Theorem 2.3.6 Let F• be a map from Ω to LGτ such that

F−1
λ dFλ =

+∞∑
k=−1

âkλ
k, (2.89)

where â−1

(
∂
∂z

)
= 0. Then, F• is an extended harmonic lifting, i.e.u :=

[F1] is an Sn-valued harmonic map. Conversely, if Ω is simply con-
nected, any harmonic map from Ω to Sn can be obtained in this way.

We are no longer very far from being able to prove the following result:
every harmonic lifting (and hence every harmonic map) may be obtained
from a holomorphic map g from Ω to the complexified loop group LGC,
such that

g−1
λ dgλ =

+∞∑
k=−1

ξ̂k(z)λkdz,

where each ξ̂k is a holomorphic function of z in Ω, taking values in
so(n + 1) ⊗ C. This means that there exists an (algebraic) algorithm
which enables us to produce any harmonic map from holomorphic data,
i.e. from solutions of a linear elliptic problem. Such a construction, due
to Joseph Dorfmeister, Franz Pedit and HongYu Wu, makes true the
dream of constructing a Weierstrass-type representation, analogous to
that for minimal surfaces.

But the algorithm is clearly more complicated than for minimal sur-
faces: we will need a version of the decomposition theorem 2.2.8 for the
complexified loop group, which is adapted to the case of twisted loop
groups. An ingredient we need to add is the Iwasawa decomposition.
Let KC be the complexified group of K,

KC =
{(

1 0
0 R

)
| R ∈ SO(n)C

}
.
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Lemma 2.3.7 (Iwasawa decomposition) (see [90]). There exists a
solvable subgroup B of KC such that

∀g ∈ KC, ∃!h ∈ K, ∃!b ∈ B,

g = hb .

Remark 2.3.8 In our case, we can choose as B the subgroup of KC that
leaves invariant the subsets of Cn+1

Vk := (0,+∞)(E2k−1 − iE2k)+C(E2k−3 − iE2k−2)+ · · ·+C(E1 − iE2),

for 1 ≤ 2k ≤ n.
We also define

L+
BGC

τ := {g• : S1 −→ GC | τ(gλ) = g−λ,

λ  −→ gλ has a holomorphic extension inside B1 and g0 ∈ B}.
(See formula (2.48) for a definition of B1.)

The main tool is the following variant of theorem 2.2.8.

Theorem 2.3.9 [46] The product map

LGτ × L+
BGC

τ −→ LGC

(φ•, b•)  −→ φ•b•

is a diffeomorphism. In particular, for any g• in LGC
τ , ∃!φ• ∈ LGτ ,

∃!b• ∈ L+
BGC

τ , such that

g• = φ•b• .

Thanks to this result we have the following construction:

Theorem 2.3.10 [46] Let ξ• be a holomorphic map from Ω to the Lie
algebra LgC

τ of LGC
τ , of the form

ξλ =
+∞∑
k=−1

ξ̂k(z)λkdz, (2.90)
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where each ξ̂k is holomorphic from Ω to g ⊗ C. Such a ξ• is called a
holomorphic potential. Then,

(i) (Integration of ξ• w.r.t. z). There exists a unique map g• from Ω
to LGC

τ such that

g•(p) = 1l , (2.91)

dg• = g•ξ• . (2.92)

(ii) (Decomposition of g•(z), for every fixed value of z). The “com-
ponent” of g• along LGτ , i.e. the map φ• : Ω −→ LGτ such that
for each fixed z,

g•(z) = φ•(z)b•(z), (2.93)

where b• ∈ L+
BGC

τ , is an extended harmonic lifting.
(iii) Consequently, z  −→ [φ1(z)] is a harmonic map from Ω to Sn.

Proof
Step 1 Remark that, since ∂ξ(k)

∂z = 0, ∀k, and dz ∧ dz = 0, we have that

dξ• = 0

and

[ξ• ∧ ξ•] = 0.

Hence,

dξ• +
1
2
[ξ• ∧ ξ•] = 0 . (2.94)

The existence of a solution g• of (2.91) and (2.92) follows from the
Frobenius theorem. Recall that

g−1
λ dgλ =

+∞∑
k=−1

ξ̂kλ
kdz (2.95)

(this will be used below).

Step 2 We use theorem 2.3.9. For any value of z, ∃!b•(z) ∈ L+
BGC

τ ,
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g•(z) = φ•(z)b•(z),

or, equivalently, φ• = g•b−1
• . Moreover, theorem 2.3.9 tells us that g•(z)

and b•(z) are smooth functions of z. It follows that

φ−1
• dφ• = b•[g−1

• dg• − b−1
• db•]b

−1
• . (2.96)

For the moment, let us fix z and analyze equation (2.96) w.r.t.λ,
specifically the Laurent series expansions of both sides of this equation.
Since b• ∈ L+

BGC
τ , bλ, b

−1
λ and b−1

λ dbλ only contain non-negative powers
of λ. Using (2.95), we deduce that

φ−1
λ dφλ =

+∞∑
k=−1

α̂kλ
k, (2.97)

where

α̂−1 = b̂0ξ̂−1b̂
−1
0 dz.

Hence, thanks to theorem 2.3.6, we see that φ• is an extended har-
monic lifting. This proves the second and third points of the theorem.

In [46] the authors show that, conversely, any harmonic map from Ω
to Sn may be obtained in this way. Furthermore, they prove an even
stronger version of this converse, more precisely, that it suffices to apply
the preceding algorithms with potentials ξ• having the special form

ξλ = λ−1ξ̂−1(z)dz,

where ξ̂−1(z) is a meromorphic function of z, taking values in g1 ⊗ C.
This last result uses the “twisted” version of the Birkhoff–Grothendieck
theorem (see [130] and [46]).

To conclude this section (which just gives an overview of a developing
subject), we mention that a study of the dressing action was carried out
in this formalism in [26].

On the other hand, it is useful to remark that we can conveniently
study the special case of S2-valued harmonic maps, by replacing the
group SO(3) by its universal covering
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SU(2) =
{(

a −b
b a

)
| a, b ∈ C, |a|2 + |b|2 = 1

}
,

noticing that S2 0 SU(2)/SO(2), where

SO(2) 0
{(

eiθ 0
0 e−iθ

)
| θ ∈ R

}
.

2.4 Synthesis: relation between the different formulations

Let Ω be a simply-connected domain in R2, choose a point p in Ω, and
consider

H := {u : Ω −→ Sn | u is harmonic, u(p) = E0} .
By what we saw above, we have two approaches using loop groups to

study H.

(i) Thanks to the Cartan immersion C from Sn to SO(n+1), we can
associate an SO(n+ 1)-valued harmonic map

S = C ◦ u = S0(2u tu− 1l),

where S0 is any constant in O(n) such that detS0 = (−1)n. For
instance

S0 = P =
(

1 0
0 −1l

)
,

so that S(p) = 1l. In this way we have a bijection between H and

S := {S : Ω −→ SO(n+ 1) harmonic | ∀z ∈ Ω, S0S(z) is

a symmetry w.r.t. a straight line and S(p) = 1l}.
Furthermore, it is possible for each S ∈ S to construct an

extended harmonic map E•, from Ω to ΩSO(n+ 1), such that

E−1 = S , (2.98)

E•(p) = 1l. (2.99)
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This allows us to define an action of S1 on S, by letting, for any
λ ∈ S1 and S ∈ S,

σλ(S) = E−λE−1
λ .

In fact, we saw (theorem 2.2.13) that σλ(S) was an SO(n +
1)-valued harmonic map. The fact that σλ maps S to itself
(i.e. preserves the condition that S0.S is a symmetry w.r.t. a straight
line) will be shown below.

(ii) The other approach consists of associating to u ∈ H a lifting F
of u, which we choose such that

F (p) = 1l.

Then, we know how to construct an extended harmonic lifting
F•, from Ω to LSO(n+ 1)τ . We define

F := {F : Ω −→ SO(n+ 1) | ∃u harmonic map,

[F ] = u and F (p) = 1l} .
In this way we can also identify H with F/G, where

G := {γ : Ω −→ K/γ(p) = 1l}
can be interpreted as a gauge transformation group. The bundle
on which this gauge group acts is the inverse image by u of the
fiber bundle SO(n+ 1) −→ Sn.
The existence of an extended harmonic lifting F• associated to

F enables us to define an action of S1 on F by letting, for all
λ ∈ S1 and F ∈ F ,

ρλ(F ) = Fλ

(see corollary 2.3.5).

A natural question is to ask whether the two actions σλ and ρλ are in
correspondence via the identification

H 0 S 0 F/G .
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This turns out to be the case. Before proving that σλ and ρλ are
essentially the same, let us prove:

Lemma 2.4.1 Suppose F ∈ F and S ∈ S describe the same harmonic
map u ∈ H. Then, for any λ ∈ C,

Eλ = FλF−1. (2.100)

Proof The first step consists of writing the relation that exists between
S and F , knowing that S = C ◦ u and [F ] = u.
After thinking for a while, one sees that

S = PFPF−1. (2.101)

Thus, we define

T : F −→ S
F  −→ PFPF−1 .

(2.102)

Next, we express a := S−1dS in terms of θ = F−1dF .

a = (PFPF−1)−1d(PFPF−1)

= F (PF−1dFP − F−1dF )F−1

= F (PθP − θ)F−1

= −2Fθ1F−1. (2.103)

Let us calculate

(FλF−1)−1d(FλF−1) = F (F−1
λ dFλ − F−1dF )F−1

= F (Θλ −Θ1)F−1

= −F [(1− λ−1)θ′1 + (1− λ)θ′′1]F−1,(2.104)

and using (2.103) in (2.104)

(FλF−1)−1d(FλF−1) =
1
2
[(1− λ−1)a′ + (1− λ)a′′] = Aλ. (2.105)

Hence, we deduce from (2.105) that

d[(FλF−1)E−1
λ ] = 0 ,
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and hence there exists a matrix M ∈ SO(n+ 1) such that

FλF
−1 =MEλ .

But since Fλ(p) = F (p) = Eλ = 1l, necessarily M = 1l, which proves
(2.100).

It is now easy to show that the action of ρλ and that of σλ coincide
through the map T defined in (2.102).

Theorem 2.4.2 The following diagram commutes for all λ ∈ S1.

T

F −→ S
ρλ ↓ ↓ σλ

F −→ S
T

Proof Let F ∈ F and S = T (F ) = PFPF−1. Define

Sλ = σλ(S) = σλ ◦ T (F ) ,
and

S̃λ = T (Fλ) = T ◦ ρλ(F ).
We have that

S̃−1
λ dS̃λ = (PFλPF−1

λ )−1d(PFλPF−1
λ )

= Fλ(PF−1
λ dFλP − F−1

λ dFλ)F
−1
λ

= Fλ(PΘλP −Θλ)− F−1
λ

= −2Fλ(λ−1θ′1 + λθ
′′
1)F−1

λ . (2.106)

On the other hand, using lemma 2.4.1,

S−1
λ dSλ = (E−λE−1

λ )−1d(E−λE−1
λ )

= (F−λF−1
λ )−1d(E−λE−1

λ )

= Fλ(Θ−λ −Θλ)F−1
λ

= −2Fλ(λ−1θ′1 + λθ
′′
1)F−1

λ . (2.107)
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We deduce from (2.106) and (2.107) that

S̃λ
−1
dS̃λ = S−1

λ dSλ,

and hence that Sλ = S̃λ, since S̃λ(p) = Sλ(p) = 1l.

Remark 2.4.3 By proving this result, we have also shown that σλ really
maps S to itself.

To conclude, we come back to a construction already seen in section
2.1. There we saw that if Ω is simply connected, to each harmonic map
u from Ω to Sn we can associate a map b from Ω to so(n+1) (given by
(2.17)). In fact, the existence of b reflects the action of S1 on harmonic
maps, which was the subject of the preceding theorem. More precisely,
the following result says that b is the infinitesimal variation of u under
the action of S1.

Theorem 2.4.4 Let u ∈ H, and for any λ in S1, let

uλ = [Fλ] = [ρλ(F )]

be the deformation of u along S1. Let b : Ω −→ so(n+ 1) be a solution
of

{
db = − L (u× du)
b(p) = 0 .

(2.108)

Then

d

dt
(ueit)|t=0 = bu. (2.109)

Proof Write

Feit = (1l + tξ)F + o(t),

where ξ : Ω −→ so(n+ 1), and develop the relation

dFeit = FeitΘeit .
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It follows that

d[(1l + tξ)F ] = (1l + tξ)F (θ + t(Lθ1)) + o(t) ,

and hence

dξ = L(Fθ1F−1) . (2.110)

A simple calculation then yields

dξ = L(du× u) = db ,
and thus, since ξ(p) = b(p) = 0, we obtain our result.

A second way of understanding the meaning of b is to see that b
“coincides” with the harmonic map u√−1, in the following sense.

Problem 2.4.5 Let u : Ω −→ Sn be a harmonic map, F : Ω −→
SO(n+ 1) a harmonic lifting of u and let, as in section 2.3,

(e0, ..., en) = (E0, ...,En).F ,

and

αi = 〈de0, ei〉 = 〈du, ei〉, for i = 1, ..., n .

In a Euclidean space RN , let us look for an orthonormal family of n
vectors (f1, ..., fn) depending smoothly on z ∈ Ω (i.e. a smooth map from
Ω to the family of n-tuples of orthonormal vectors in RN ), such that

d[(Lα1)f1 + · · · + (Lαn)fn] = 0. (2.111)

Here we have two solutions to this problem:

Solution given by Noether’s theorem

We choose RN = R
n(n+1)

2 0 so(n+ 1) and

fj = ej × e0 .
Then
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(Lα1)f1 + · · · + (Lαn)fn = db,

which implies (2.111).

Solution given by the extended harmonic frame

We take RN = Rn+1, and

fj = F√−1(Ej).

Then

(Lα1)f1 + · · · + (Lαn)fn = dui .

In case n = 2, we can even push the comparison between B (defined
in section 2.1 in (2.4)) and ui a little further: the inverse images of the
Euclidean metric on R3 by B and ui coincide. Moreover, in case this
metric is non-degenerate, B and ui are harmonic maps taking values in
their image.

Still in the case where n = 2, we can combine the analysis done in sec-
tion 2.1 with the action of the circle described in the following sections.
Thus, we obtain that there exists an action of S1 on the constant Gauss
curvature immersions of surfaces in R3. Then, we recover a result first
proved by Ossian Bonnet (see [17], [113]).

2.5 Compactness of weak solutions in the weak topology

In this and the following sections we consider very different questions
from above. We will be interested in weakly harmonic maps inH1(Ω, Sn),
where Ω is an open subset of Rm. Nevertheless, the following results rest
on the same observation we used in sections 2.1, 2.2 and 2.3: the exis-
tence of a conservation law thanks to Noether’s theorem.

The general problem is the following: M is a manifold with boundary
and N is compact without boundary, as in chapter 1. Let (uk)k∈N

be a sequence of maps in H1(M,N ), and suppose that there exists
u ∈ H1(M,N ) such that

uk ⇀ u weakly in H1(M,N ), (2.112)
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or equivalently, for every function φ ∈ H1(M,RN ),

lim
k→+∞

∫
M
[〈φ, uk〉+ 〈dφ, duk〉]dvolg

=
∫
M
[〈φ, u〉+ 〈dφ, du〉]dvolg . (2.113)

We will then say that uk converges weakly to u in the H1 topology.
Suppose that each uk is weakly harmonic, may we deduce that u is also
weakly harmonic?

We do not know the answer to this question, in general. We do not
know of any example such that the limit u is not harmonic, but cannot
prove the contrary except in certain special cases. But in fact, it suffices
that there exists an isometry group acting transitively on N , in order
to conclude that the weak limit is weakly harmonic. As an example,
consider the case where N is the sphere Sn.

Theorem 2.5.1 Let uk be a sequence in H1(M, Sn) such that

uk ⇀ u weakly in H1(M, Sn), (2.114)

∆uk + uk|duk|2 = 0 in D′(M) . (2.115)

Then u is weakly harmonic, i.e.

∆u+ u|du|2 = 0 in D′(M) . (2.116)

Proof It seems very hard to pass to the limit in (2.115), because of the
quadratic term in duk.

Let us use Noether’s theorem 1.3.1: we obtain that for every map
α ∈ H1

0 (M, so(n+ 1)) ∩ L∞(M, so(n+ 1)),∫
M
〈dα, uk × duk〉dvolg = 0 . (2.117)

Let Ω be any open bounded subset ofM, and suppose that the support
of α is contained in Ω. A consequence of the compact embedding of
H1(Ω,Rn+1) in L2(Ω,Rn+1) (Rellich’s theorem, see [19]), is that

uk → u in L2(Ω,Rn+1).
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This implies that

uk × duk ⇀ u× du weakly in L1(Ω, so(n+ 1)).

Hence, we can pass to the limit in (2.117) and obtain∫
M
〈dα, u× du〉dvolg = 0 . (2.118)

This implies that u is weakly harmonic, i.e. a solution of (2.116). To
check it, let φ ∈ H1

0 (M,Rn+1) ∩ L∞(M,Rn+1), and write

ψ = φ− 〈u, φ〉u .
We have the identity, true a.e.

〈dφ, du〉 − 〈u, φ〉|du|2 = 〈du, dψ〉
= 〈u, u〉〈du, dψ〉 − 〈u, dψ〉 · 〈u, du〉
= 〈u× du, u× dψ〉
= 〈u× du, d(u× ψ)〉
= 〈u× du, d(u× φ)〉 . (2.119)

(Where we used, among other things,

〈u× du, du× ψ〉 = 〈u, du〉 · 〈du, ψ〉 − 〈u, ψ〉〈du, du〉 = 0 .)

Using (2.119) and (2.118) with α = u× φ, we obtain∫
M
(〈dφ, du〉 − 〈u, φ〉|du|2)dvolg =∫
M
〈dα, u× du〉dvolg = 0,

which yields our result.

This type of result has been used independently by numerous authors
([99], [35], [153]), in order to construct weak solutions for sphere-valued
evolution problems. We will examine, as an example, the result due to
Jalal Shatah regarding the Sn-valued wave equation (in fact the work
in [153] concerns O(4)-valued maps).
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It consists of finding Sn-valued maps u, defined on the product I×M,
where I = [0, T ), T ∈ (0,+∞], and (M, g) is a Riemannian manifold
which we suppose to be complete and without boundary, and which are
solutions of

�u+ λ(u)u = 0, (2.120)

where

λ(u) = |dxu|2g −
∣∣∣∣∂u∂t

∣∣∣∣2 ,
and

�u = ∆gu− ∂
2u

∂t2
.

We consider the initial conditions

u(0, x) = f(x), (2.121)

∂u

∂t
(0, x) = g(x), (2.122)

where f : M −→ Sn, and g : M −→ Rn+1 is a map such that

〈f(x), g(x)〉 = 0 . (2.123)

As is shown in [153], the Cauchy problem does not have, in general, a
smooth solution whenm = dim M ≥ 3, even if the initial conditions are
smooth. On the other hand, when m = 1, C.H. Gu [75], J. Ginibre and
G. Vélo [72], and afterwards J. Shatah, proved the existence of a smooth
solution for all times, if the initial conditions are smooth. The case m ≥
2 is still not well understood. The fact that the wave equation “develops”
singularities in general does not exclude the possibility of constructing
weak solutions. Following J. Shatah we define a weak solution of (2.120)
as being a function u in L1

loc(I ×M,Rn+1) such that

�u+ λ(u)u = 0 in D′(I ×M), (2.124)

u(x, t) ∈ Sn a.e. , (2.125)
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I −→ H1(M, Sn)
t  −→ [x  −→ u(t, x)] (2.126)

is continuous for the weak topology of H1, and

I −→ L2(M,Rn+1)

t  −→
[
x  −→ ∂u

∂t
(t, x)

]
(2.127)

is continuous for the weak topology of L2.
Before stating an existence result, we can make the following obser-

vation, made by J. Shatah: if equations (2.125), (2.126) and (2.127) are
satisfied, then the condition (2.124) is equivalent to

− ∂
∂t

(
u× ∂u

∂t

)
+

m∑
α=1

∂

∂xα

(
gαβ

√
det g u× ∂u

∂xβ

)
= 0 in D′(I ×M).

(2.128)
This follows from the following equality whose proof rests on an iden-

tity similar to equation (2.119) given above: for any function φ ∈
C∞
c (I ×M,Rn+1),∫ ∫

I×M

(
−

〈
∂u

∂t
,
∂φ

∂t

〉
+ 〈dxu, dxφ〉 − λ(u)〈u, φ〉

)
dt dvolg

=
∫ ∫

I×M

(〈
u× ∂u

∂t
,
∂

∂t
(u× φ)

〉
− 〈u× dxu, dx(u× φ)〉

)
dt dvolg.

(2.129)

Theorem 2.5.2 [153] Let f ∈ H1(M, Sn) and g ∈ L2(M,Rn+1) satisfy
(2.123). Then there exists a weak solution u ∈ L1

loc(I × M, Sn) to
the wave equation (2.120), i.e. a function u satisfying (2.124), (2.125),
(2.126) and (2.127), and such that u(0, x) = f(x),

∂u

∂t
(0, x) = g(x).

Proof
Step 1 We start by solving an approximation problem. Let W be a C1

function from Rn+1 to R such that

(i) W (y) is a function of |y|.
(ii) W (y) ≥ 0.
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(iii) W (y) = 0 ⇐⇒ |y| = 1.

An example of such a function is W (y) := (1 − |y|2)2. However, it is
better to use a modified version of this function, in order to also have

(iv) ∃C > 0, ∀y ∈ Rn+1, W (y) ≤ C(1 + |y|2).

For ε > 0, we look for maps u from I×M to Rn+1 which are solutions
of

�u+ 1
ε2
∇W (u) = 0, (2.130)

u(0, x) = f(x), (2.131)

∂u

∂t
(0, x) = g(x). (2.132)

Using classical results (see [159]), we can show that problem (2.130),
(2.131), (2.132), has a solution over any time interval I = (0, T ) (T ∈
(0,+∞)). Let uε be such a solution, then

uε ∈ C(I,H1
loc(M,Rn+1)), (2.133)

∂uε
∂t

∈ C(I, L2(M,Rn+1)), (2.134)

and moreover, uε satisfies the following energy conservation identity. For
every time t ∈ I, we have∫
M

(
1
2

∣∣∣∣∂uε∂t
∣∣∣∣2 + 1

2
|dxuε|2 + 1

4ε2
W (uε)

)
dvolg|t

=
∫
M

(
1
2
|g|2 + 1

2
|dxf |2

)
dvolg. (2.135)

In particular, this implies that each term in the l.h.s. of (2.135) is
uniformly bounded for all times. Thus, we deduce that there is a subse-
quence ε′ of ε such that

uε′ ⇀ u0 weak L in L∞(I, weak H1(M,Rn+1)), (2.136)
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∂uε′

∂t
⇀ v0 weak L in L∞(I, weak L2(M,Rn+1)). (2.137)

Here, the convergences are weak L w.r.t. t, and weak w.r.t.x. Notice
that (2.136) implies that

uε′ ⇀ u0 weakly in H1
loc(I ×M,Rn+1). (2.138)

Step 2 By Rellich’s theorem (see [19]), the convergence (2.138) implies
that for any compact K in I ×M, we can extract a subsequence of ε′

(which, for convenience, we still denote by ε′) such that

uε′ −→ u0 in L2(K,Rn+1), (2.139)

and

uε′ −→ u0 a.e. on K. (2.140)

Thus, applying Fatou’s lemma and (2.140), we deduce that∫ ∫
K

W (u0)dt dvolg ≤ lim
ε′→0

inf
∫ ∫

K

W (uε′)dt dvolg.

But since we know, thanks to (2.135), that the r.h.s. of this inequality
vanishes, we obtain ∫ ∫

K

W (u0)dt dvolg = 0,

and because of conditions (ii) and (iii) imposed on W , this yields

u0(t, x) ∈ Sn a.e. on K. (2.141)

Finally, since (2.141) is valid for any compact K, this shows that

u0 ∈ L∞
loc(I,H

1(M, Sn)).
Step 3 We check that v0 = ∂u0

∂t . To do this, it suffices to pass to the
limit in the identity

∫ ∫
I×M

(〈
uε,
∂φ

∂t

〉
+

〈
∂uε
∂t
, φ

〉)
dt dvolg = 0 ,
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valid ∀φ ∈ C∞
c (I ×M,Rn+1).

Step 4 We show that u0 ∈ C(I, weak H1(M, Sn)) and ∂u0
∂t ∈ C(I, weak

L2(M,Rn+1)). Proving the first statement consists in showing that, for
any function ψ ∈ C∞

c (M,Rn+1), the map h0 : I −→ R defined by

h0(t) =
∫
M
〈dψ, dxu0(t, x)〉 dvolg

= −
∫
M
〈∆gψ, u0(t, x)〉 dvolg

is continuous over I. But, by (2.138), we know that h0 is the limit of
hε′ , for the weak topology of H1(I), where

hε′(t) =
∫
M
〈dψ(x), dxuε′(t, x)〉 dvolg

= −
∫
M
〈∆gψ, uε′(t, x)〉 dvolg.

Moreover, we have

h′ε′(t) = −
∫
M
〈∆gψ,

∂uε′

∂t
(t, x)〉 dvolg ,

and
∫
M |∂uε∂t |2dvolg is uniformly bounded in time, by (2.135). This

yields, using the Cauchy–Schwarz inequality, that ||h′ε′ ||L∞ is uniformly
bounded in ε′ and in t. Hence, this implies that, up to passing to a new
subsequence ε′, hε′ converges uniformly to a certain continuous function
k0. But we already know that hε′ converges weakly to h0 in H1(I);
hence we conclude that h0 = k0. This proves that h0 is continuous and
therefore that u0 ∈ C(I, weak H1(M, Sn)). We proceed in the same
way for ∂u0

∂t .

Step 5 It only remains to show that u0 is a weak solution of the wave
equation. In order to achieve this, we notice that (2.140) implies that,
in the sense of distributions,

− ∂
∂t

(
uε × ∂uε

∂t

)
+

m∑
α=1

∂

∂xα

(
gαβ

√
det g uε × ∂uε

∂xβ

)
= 0 (2.142)

(we have also used property (i) of W ). As in theorem 2.5.1, we can pass
to the limit in (2.142) and, using (2.136), (2.137) and (2.139), we show
that u0 satisfies equation (2.142) in the sense of distributions. In view
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of identity (2.129) this proves that u0 is a solution of the wave equation.

2.6 Regularity of weak solutions

We conclude this chapter by showing how the conservation law formula-
tion for the sphere-valued harmonic map equation enables us to prove,
in a rather simple way, the regularity of harmonic maps from a surface
to a sphere.

But first, we need to introduce one more ingredient. It consists of the
compensation phenomenon, which enables us to improve slightly the
classical elliptic estimates, and which is of the same nature as the phe-
nomenon that enables us to pass to the limit in equation (2.115) of the
preceding section. Everything starts with a calculation trick invented by
Henry Wente in 1969 ([177]), in a work about constant mean curvature
surfaces.

We have already seen in the first section of this chapter the equation
verified by a conformal parametrization X of a constant mean curvature
surface in R3. It can be written as

∆X = 2H
∂X

∂x
× ∂X
∂y
, (2.143)

where H is the (constant) value of the mean curvature. The result of H.
Wente mentioned above is the following regularity theorem.

Theorem 2.6.1 [177] Let Ω be an open domain in R2, and suppose X is
a map in H1(Ω,R3) that is a distributional solution of equation (2.143).
Then X is C∞ in Ω.

The crucial point in the proof of this result is that each component
in the r.h.s. of (2.143) is a Jacobian determinant of a map from Ω to R2

(obtained by choosing two distinct components of X). Following [21],
consider a slightly more general problem: let a, b ∈ H1(Ω,R), and define

{a, b} :=
∂a

∂x

∂b

∂y
− ∂a
∂y

∂b

∂x
. (2.144)

Consider the following question: we suppose that the function φ ∈
L1
loc(Ω,R) is a solution of
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{ −∆φ = {a, b} in Ω
φ = 0 on ∂Ω,

(2.145)

(the homogeneous Dirichlet condition has been chosen for simplicity).
We want to know the regularity of φ. More precisely, to which Lebesgue,
Sobolev or continuous function spaces does φ belong?
According to the classical theory, which is based on Calderón–Zygmund

estimates (see [156]), the determinant {a, b} is in L1(Ω), with

||{a, b}||L1 ≤ ||da||L2 ||db||L2 .

And hence it follows that, if Ω is bounded,

φ ∈ Lq(Ω,R), ∀1 ≤ q < +∞, (2.146)

dφ ∈ Lp(Ω,R2), ∀1 ≤ p < 2. (2.147)

This means that φ is very close to belonging to H1(Ω) ∩ L∞(Ω), but
we cannot deduce from classical theory that φ belongs precisely to this
space. We are in a limit case (this is the disadvantage of L1 and L∞

when compared to Lp, for 1 < p < +∞).
But if we use the very special algebraic structure of {a, b}, we can

slightly improve estimates (2.146) and (2.147).

Theorem 2.6.2 [177], [178], [21] Let Ω = B2 be the unit ball in R2. Let
φ ∈ L1(Ω,R) be a solution of (2.145). Then, φ ∈ H1(B2,R)∩C(B2,R),
and moreover,

||φ||L∞ + ||dφ||L2 ≤ C||da||L2 ||db||L2 , (2.148)

where C is a universal constant.

Remark 2.6.3 The fact of having restricted ourselves to the case Ω =
B2 is not essential. The proof and some generalizations of this result
are the subject of chapter 3 (see theorem 3.1.2).

Proof of theorem 2.6.1 Ever since [103], we know that every continuous
solution X of (2.143) is C∞ in the interior of Ω. Thus, it suffices to show
that X is continuous in Ω. Moreover, since we need to prove a local



2.6 Regularity of weak solutions 111

result, we can always reduce to the case where Ω = B2. We notice that
equation (2.143) may be written as


−∆X1 = 2H{X2, X3}
−∆X2 = 2H{X3, X1}
−∆X3 = 2H{X1, X2}

(2.149)

and by theorem 2.6.2, this immediately implies that X is continuous
inside B2 (it suffices to decompose each component of Xi into the sum
φi+ψi where ψi is the harmonic extension of the trace of Xi over ∂B2.
In B2, ψi is C∞ since it is a real harmonic function, and φi is continuous
by theorem 2.6.2).

We now consider the case of weakly harmonic maps.

Theorem 2.6.4 [83] Let (M, g) be a Riemannian surface and u ∈
H1(M, Sn). Then if u is weakly harmonic, u is C∞ on M.

Proof It suffices to study the case where M is the unit ball B2 of R2,
with the standard metric. In fact, the study of the regularity of u in the
neighborhood of a point in M always reduces to this case by using local
conformal coordinates. Therefore we can write that

∂

∂x

(
u× ∂u
∂x

)
+
∂

∂y

(
u× ∂u
∂y

)
= 0 in D′(B2). (2.150)

This implies, since u ∈ L2, that there exists b ∈ H1(B2, so(n + 1))
such that


∂b

∂x
= u× ∂u

∂y
∂b

∂y
= −u× ∂u

∂x
.

(2.151)

Using again the fact that u is weakly harmonic, and the condition
〈u, du〉 = 0 (which is a consequence of |u|2 = 1),
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−∆u = u|du|2

= u

(〈
∂u

∂x
,
∂u

∂x

〉
+

〈
∂u

∂y
,
∂u

∂y

〉)

=
(
u
t∂u

∂x
− ∂u
∂x

tu

)
∂u

∂x
+

(
u
t∂u

∂y
− ∂u
∂y

tu

)
∂u

∂y
·

Thus, we obtain

−∆u =
∂b

∂x

∂u

∂y
− ∂b
∂y

∂u

∂x
, (2.152)

which, rewritten component by component, yields

−∆ui =
n+1∑
j=1

{bij , uj}. (2.153)

Applying Wente’s theorem 2.6.2, as in theorem 2.6.1, we deduce that
u is continuous. Using the results of [103], we conclude that u is C∞.

This result can be extended without major difficulties to the case where
the image manifold is a symmetric space, thanks to Noether’s theorem
[84]. But if the isometry group acting on the image manifold is too small
(which is what happens in the general case), we need to use the methods
presented in chapter 4. In a different direction, we may try to generalize
this theorem to the case where the dimension of the domain manifold is
larger than 2. As announced in chapter 1, there are some results, but
both the hypotheses and the conclusions are quite different. The case
where the image manifold is a sphere was studied by L.C. Evans, and
will be presented at the end of chapter 3, and the case of an arbitrary
image manifold is due to F. Bethuel, and will be presented in chapter
4. In all cases, the compensation phenomena indicated in theorem 2.6.2
play an important role, but other ingredients will also be used: the
ε-regularity techniques of Morrey, and the monotonicity formula. We
must also use deeper versions of theorem 2.6.2 involving Hardy spaces
and apply the Fefferman–Stein theorem concerning the duality between
Hardy and BMO spaces. All these concepts will be introduced in the
next chapter.
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To conclude, we mention that the technique used in theorem 2.6.4 has
been used by several authors for studying the heat equation between a
surface and a sphere, i.e. the weak solutions of

−∂u
∂t

+∆u+ u|du|2 = 0. (2.154)

Among the topics studied we mention the behavior of a solution in the
neighborhood of a singularity, by Jie Qing [133], and the uniqueness of
the solution for the Cauchy problem, done by Tristan Rivière [137] under
small energy hypothesis, and by Alexandre Freire [60] in the general case.

We recall that Michael Struwe [160] had proved an existence theorem
for weak solutions to the Cauchy problem for equation (2.154). He
showed that the solutions are C∞, except maybe at a finite number of
points in space–time. This result is optimal in the sense that Kung Ching
Chang, Wei Yue Ding and Rugang Ye [29] have constructed examples of
solutions to equation (2.154) having point singularities.



3

Compensations and exotic function spaces

In the previous chapter we saw some regularity results for weak solu-
tions of non-linear partial differential equations, whose proofs are based
on the fact that, among the quadratic combinations of derivatives of
functions, the Jacobian determinants have a subtle extra regularity. To
our knowledge, this phenomenon was first used by Henry Wente [177].
It is analogous to the compensations that allow one to pass to the limit
in certain non-linear combinations of weakly convergent sequences, and
which were used by François Murat and Luc Tartar in their compensated
compactness theory [122], [166].

Below, we follow the clear presentation, due to Häım Brezis and Jean-
Michel Coron [21], of H. Wente’s discovery, and we also present some of
its improvements. In particular, twenty years after H. Wente’s result,
works by Stefan Müller and also by Ronald Coifman, Pierre-Louis Li-
ons, Yves Meyer and Stephen Semmes resulted in a finer study of these
compensation phenomena, in particular using Hardy spaces.

Other function spaces, less known to specialists in partial differen-
tial equations, such as Lorentz spaces, have also proven to be useful.
These developments are presented in sections 3.2 (Hardy spaces) and
3.3 (Lorentz spaces) of this chapter. As an example of the use of Hardy
spaces we present the regularity theorem for weakly stationary maps,
due to Lawrence C. Evans, in the last section of this chapter. Most of
the analytic results of this chapter will be applied in chapters 4 and 5,
to other geometrical settings.
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3.1 Wente’s inequality

3.1.1 The inequality on a plane domain

Let a and b be two functions ins H1(Ω,R), where Ω is an open subset
of R2, and define, as in the previous chapter,

{a, b} :=
∂a

∂x

∂b

∂y
− ∂a
∂y

∂b

∂x
.

It is clear that {a, b} belongs to L1(Ω,R), and that

‖{a, b}‖L1(Ω) ≤ ‖da‖L2(Ω)‖db‖L2(Ω) .

This implies, by classical elliptic theory, that if φ is a solution in
W 1,p(Ω,R), for p > 1, of the equation

{ −∆φ = {a, b} in Ω
φ = 0 on ∂Ω ,

(3.1)

then φ ∈
⋂

q<+∞
Lq(Ω,R), and φ ∈

⋂
q<2

W 1,q(Ω,R), and it is possible to

obtain the estimates

‖φ‖Lq(Ω) ≤ C0(q,Ω)‖{a, b}‖L1(Ω), for q < +∞ ,
‖dφ‖Lq(Ω) ≤ C1(q,Ω)‖{a, b}‖L1(Ω), for q < 2 .

Below, we will write

ãbΩ := φ ,

the solution of (3.1), or sometimes ãb = ãbΩ if there is no ambiguity.

Remark 3.1.1 The bilinear operator (a, b)  −→ ãbΩ is invariant un-
der conformal transformations in the sense that if T : Ω1 −→ Ω2 is a
conformal transformation, and if a, b ∈ H1(Ω2,R), then the equation

−∆(ãbΩ2) = {a, b} on Ω2

implies

−∆
[
(ãbΩ2) ◦ T

]
= {a ◦ T, b ◦ T} on Ω1 .

Thus, we conclude that
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ãbΩ2 ◦ T = ˜(a ◦ T )(b ◦ T )Ω1
. (3.2)

We will see that thanks to the special algebraic structure of {a, b},
it is possible to estimate ãb in H1(Ω,R) and L∞(Ω,R), which is better
than what we would expect from (3.1). In what follows, B2 is the unit
ball in R2.

Theorem 3.1.2 [177], [178], [21] Let a, b ∈ H1(B2,R) then

ãb = ãbB2 ∈ C0(B2,R) ∩H1(B2,R),

and

‖ãb‖L∞(B2) + ‖dãb‖L2(B2) ≤ C‖da‖L2(B2)‖db‖L2(B2) . (3.3)

Proof We reproduce here the proof given in [6], improving slightly the
proof of [21] which is based on the ideas in [177]. The difference is that
we take advantage of the conformal invariance property, which allows us
to obtain an optimal estimate for ‖ãb‖L∞(B2).

Step 1 Estimate at 0
In this step, as well as in steps 2 and 3, we consider a, b ∈ H1(B2,R) ∩
C∞(B2,R).

Let us use the integral representation

ãb(0) =
1
2π

∫
B2

{a, b}(x)
(
log

1
r

)
dx1dx2,

where r = |x|. The trick consists in writing {a, b} and the integral in
polar coordinates r and θ = arctan

(
y
x

)
.

ãb(0) =
1
2π

∫ 1

0

dr

∫ 2π

0

(
log

1
r

)
1
r

(
∂a

∂r

∂b

∂θ
− ∂a
∂θ

∂b

∂r

)
rdθ

=
1
2π

∫ 1

0

dr

∫ 2π

0

(
log

1
r

)[
∂

∂r

(
a
∂b

∂θ

)
− ∂

∂θ

(
a
∂b

∂r

)]
dθ

=
1
2π

∫ 1

0

dr

r

∫ 2π

0

a
∂b

∂θ
dθ .

Let us define ar = 1
2π

∫ 2π

0
a(r, θ)dθ. Then we can write
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∣∣∣∣∫ 2π

0

a
∂b

∂θ
dθ

∣∣∣∣ =
∣∣∣∣∫ 2π

0

(a− ar)∂b
∂θ
dθ

∣∣∣∣
≤ ‖a− ar‖L2(0,2π)

∥∥∥∥∂b∂θ
∥∥∥∥
L2(0,2π)

≤
∥∥∥∥∂a∂θ

∥∥∥∥
L2(0,2π)

∥∥∥∥∂b∂θ
∥∥∥∥
L2(0,2π)

.

Hence,

|ãb(0)| ≤ 1
2π

∫ 1

0

∥∥∥∥∂a∂θ
∥∥∥∥
L2(0,2π)

∥∥∥∥∂b∂θ
∥∥∥∥
L2(0,2π)

dr

r

≤ 1
2π

‖da‖L2(B)‖db‖L2(B) . (3.4)

Step 2 Estimate for ‖ãb‖L∞(B2)

For each x ∈ B2, choose a complex homographic transformation of B2,
T , such that T (0) = x †, and apply inequality (3.4) to a ◦ T and b ◦ T .
We obtain

| ˜(a ◦ T )(b ◦ T )(0)| ≤ 1
2π

‖d(a ◦ T )‖L2(B2)‖d(b ◦ T )‖L2(B2) .

But, by (3.2) (see remark 3.1.1) and the conformal invariance of the
Dirichlet integral, this implies

|ãb(x)| = |ãb ◦ T (0)|
≤ 1

2π
‖da‖L2(B2)‖db‖L2(B2) ,

and hence

‖ãb‖L∞(B2) ≤ 1
2π

‖da‖L2(B2)‖db‖L2(B2) . (3.5)

Step 3 Estimate for ‖dãb‖L2(B2)

Using the Dirichlet boundary condition we have

† for instance T (z) = z+x
1+zx
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‖dãb‖2
L2(B2) =

∫
B2

−ãb∆ãbdx1dx2

=
∫
B2
ãb{a, b}dx1dx2

≤ ‖ãb‖L∞(B2)‖{a, b}‖L1(B2)

≤ 1
2π

‖da‖2
L2‖db‖2

L2 ,

which implies inequality (3.3) with C = 1
2π +

1√
2π

, for a, b ∈ H1(B2,R)∩
C∞(B2,R).

Step 4 Conclusion
Let a, b ∈ H1(B2,R), and consider two sequences an, bn ∈ H1(B2,R) ∩
C∞(B2,R) such that

an → a in H1(B2) ,
bn → b in H1(B2) .

Using (3.3), we easily show that ãnbn is a Cauchy sequence in H1(B2,R)
∩ L∞(B2,R). Thus, there exists φ ∈ H1(B2,R) ∩ L∞(B2,R) such that
ãnbn → φ in H1(B2) and L∞(B2), and

‖dφ‖L2(B2) + ‖φ‖L∞(B2) ≤ C‖da‖L2(B)‖db‖L2(B2) .

But since each ãnbn belongs to C∞(B2,R), this implies that φ is con-
tinuous. Moreover, we can independently show that ãnbn converges to
ãb in a bigger space than H1(B2,R), like W 1,p(B2,R), for p < 2. This
implies that φ = ãb, which concludes the proof.

An important question is whether this result extends to the case where
the unit ball B2 is replaced by any open set Ω of R2. In case Ω is
conformally equivalent to B2 the answer is quite simple, if we keep in
mind remark 3.1.1 and the fact that the norms ‖a‖L∞(Ω) and ‖da‖L2(Ω)

are invariant under conformal transformations: theorem 3.1.2 extends
easily to the case of an open subset conformally equivalent to B2, and
inequality (3.3) remains valid with the same constant. However, if Ω has
a non-trivial topology, this will demand more work and a first answer is:
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Theorem 3.1.3 [14] There is a positive constant C, such that for every
open subset Ω of R2, and for any functions a, b ∈ H1(Ω,R),

‖ãb‖L∞(Ω) + ‖dãb‖L2(Ω) ≤ C‖da‖L2(Ω)‖db‖L2(Ω) . (3.6)

The same authors (Fabrice Bethuel and Jean-Michel Ghidaglia) have
also generalized this result to the case where the operator −∆ is replaced
by an elliptic operator of the form

L = −
2∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
,

where the aij are L∞ functions on Ω such that ∃α ∈ R∗
+,∀ξ ∈ R2,

α‖ξ‖2 ≤
2∑

i,j=1

aijξiξj ≤ 1
α
‖ξ‖2 .

It is natural to wonder if the constant C of theorem 3.1.3 is greater
than or equal to that in theorem 3.1.2. More precisely, we may consider
the following two problems and we shall enlarge our setting to Riemann
surfaces.

3.1.2 The inequality on a Riemann surface

Let (M, g) be a Riemannian surface, with or without boundary. For
a, b ∈ H1(M,R), let ãbM be the solution of the equation


−∆φ = {a, b} on M
φ = 0 on ∂M, if ∂M �= ∅

φ(m0) = 0 at a certain m0 ∈ M if ∂M = ∅ .
(3.7)

Notice that ãbM exists even in the case where ∂M = ∅, since then∫
M{a, b}dxdy = 0. Let

C∞(M, g) := sup
a,b �=0

sup(ãbM)− inf(ãbM)
‖da‖L2(M)‖db‖L2(M)

,

C2(M, g) := sup
a,b �=0

‖d(ãbM)‖L2(M)

‖da‖L2(M)‖db‖L2(M)
.

We remark that the norms used in this definition are conformally
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invariant. Therefore, by (3.2), C∞(M, g) and C2(M, g) depend only on
the conformal class of (M, g). So these quantities actually make sense
on a Riemann surface.

Calculation of C2(M) and C∞(M)

3.1.2.1 Study of C2(M)

We start by noticing that because of the symmetry

˜
(ta)

(
b

t

)
= ãb, ∀t ∈ R∗,

and the inequality

‖da‖L2‖db‖L2 ≤ 1
2
(‖da‖2

L2 + ‖db‖2
L2)

=:
1
2
‖d(a, b)‖2

L2 ,

an equivalent definition for C2(M) is

C2(M) = sup
a,b∈H1(M), (a,b) �=0

2‖dãb‖L2(M)

‖d(a, b)‖2
L2(M)

.

Determining C2(M) is equivalent to determining the norm of the op-
erator

H1(M,R2) −→ H1(M,R)
(a, b)  −→ ãb ,

whereH1(M,R) is equipped with the semi-norm ‖dφ‖L2(M). This prob-
lem is analogous to the study of the continuous injection of H1(Rn) into
L

2n
n−2 (Rn). This suggests that the variational problem

inf
‖dãb‖L2=1

‖d(a, b)‖2
L2 (3.8)

is probably of interest. In fact, this variational problem is connected in
a surprising way to constant mean curvature surfaces in R3.

Theorem 3.1.4 Let (a, b) ∈ H1(M,R2) be a critical point of ‖d(a, b)‖2
L2(M),
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satisfying the constraint ‖dãb‖L2(M) = 1. Then a, b and ãb satisfy the
equation 

−∆a = λ{b, ãb}
−∆b = λ{ãb, a}
−∆ãb = {a, b}

(3.9)

on M, with the boundary conditions


∂a

∂n
=

∂b

∂n
= 0 on ∂M

ãb = 0 on ∂M ,

(3.10)

where λ = ‖da‖2
L2(M) = ‖db‖2

L2(M). Equivalently, if we define u from
M to R3 by

u =
1
2


√
λa√
λb

λãb

 ,
then

−∆u = 2
∂u

∂x
× ∂u
∂y
,

in local conformal coordinates. Moreover, a, b and ãb are C∞ on M.

Remark 3.1.5 We may be led to think that the map u constructed above
parametrizes a surface of constant mean curvature equal to 1. However,
this is not so unless u is conformal, which supposes knowing that

∣∣∣∣∂u∂x
∣∣∣∣2 − ∣∣∣∣∂u∂y

∣∣∣∣2 − 2i
〈
∂u

∂x
,
∂u

∂y

〉
= 0.

Furthermore, in case ∂M �= ∅, due to the boundary conditions (3.10),
the image of ∂M by u is contained in the plane u3 = 0, and if u is an
immersion, then u(M) intersects the plane u3 = 0 orthogonally along
u(∂M). Actually, whether u is an immersion or not, the above implies
that we can always construct a C∞ map from M∪∂MM to R3, extending
u by reflection across ∂M. Here M ∪∂M M is the Riemann surface
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obtained by gluing along ∂M, M and M, a copy of M with the opposite
orientation.

The extension v is constructed by letting

v =

 u1

u2

u3

 on M and v =

 u1

u2

−u3

 on M.

In the proof of theorem 3.1.4, we will need the following lemma, whose
proof is left to the reader.

Lemma 3.1.6 Let a, b, c be three functions in H1(M,R). Suppose that
either ∂M �= ∅ and at least one of the three functions has vanishing
trace over ∂M, or ∂M = ∅. Then

∫
M
a{b, c}dxdy =

∫
M
c{a, b}dxdy =

∫
M
b{c, a}dxdy . (3.11)

Proof of theorem 3.1.4 Let (a, b) be a critical point in H1(M) of the
variational problem (3.8). Then, for any functions α, β ∈ H1(M), the
first variation formula of ‖dãb‖2

L2 under the change (a, b)  −→ (a+tα, b+
tβ) is

δ‖dãb‖2
L2 =

∫
M

2〈dãb, d(α̃b+ ãβ)〉dxdy

= −2
∫
M
ãb∆(α̃b+ ãβ)dxdy

= −2
∫
M
ãb({α, b}+ {a, β})dxdy

= −2
∫
M
({b, ãb}α+ {ãb, a}β)dxdy ,

where we used lemma 3.1.6 in the last equality. Likewise,

δ‖d(a, b)‖2
L2(α, β) = 2

∫
∂M

(
α
∂a

∂n
+ β
∂b

∂n

)
ds

−2
∫
M
(∆aα+∆b β)dxdy .
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The assumption that (a, b) is a critical point implies that for any α, β ∈
H1(M) such that δ‖d(a, b)‖2

L2(α, β) = 0, we have δ‖dãb‖2
L2(α, β) = 0.

This yields that there exists a Lagrange multiplier λ ∈ R such that{
−∆a = λ{b, ãb}
−∆b = λ{ãb, a} , (3.12)

and that

∂a

∂n
=
∂b

∂n
= 0

on ∂M.
Multiplying the first equation of (3.12) by a, and integrating over M,

we obtain ∫
M

−∆a adxdy =
∫
M
λa{b, ãb}dxdy . (3.13)

But since ∂a
∂n = 0 on ∂M,∫

M
−∆a adxdy =

∫
M

|da|2dxdy (3.14)

and using lemma 3.1.6 again,

∫
M
a{b, ãb}dxdy =

∫
M
ãb{a, b}dxdy

=
∫
M

−∆(ãb)ãbdxdy

=
∫
M

|dãb|2dxdy . (3.15)

Since by hypothesis ‖dãb‖L2(M) = 1, it follows from (3.13), (3.14) and
(3.15) that

λ = ‖da‖2
L2(M) .

A similar calculation, starting from the second equation in (3.12), leads
to

λ = ‖db‖2
L2(M) .
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Knowing that λ is a strictly positive real, we can define u by

u =
1
2


√
λa√
λb

λãb

 ,
and a simple calculation, using (3.12), yields

−∆u = 2
∂u

∂x
× ∂u
∂y
.

Wente’s theorem 3.1.2 then gives us that u, and consequently a, b and
ãb, are C∞ on M.

Yuxin Ge determined the best constants C2 for every Riemann surface.
We reproduce here part of his proofs, which emphasize the link between
the variational problem (3.8) and the isoperimetric inequality in R3.

Theorem 3.1.7 [64]

(i) If M = B2, then C2(M) =
√

3
16π , and moreover, the minimum

in (3.8) is attained for

(a, b) : B2 −→ R2

(x, y)  −→ 2(x, y)
1 + x2 + y2

.

(ii) If M = S2, then C2(M) =
√

3
32π , and moreover, the minimum

in (3.8) is attained for

(a, b) : S2 −→ R2 x

y

z

  −→ (x, y) .

(iii) If M is a surface with non-empty boundary and is not diffeomor-

phic to B2, then C2(M) =
√

3
16π and the infimum in (3.8) is not

attained.
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(iv) If M is a surface without boundary and is not diffeomorphic to

S2, then C2(M) =
√

3
32π and the infimum in (3.8) is not at-

tained.

Proof of (i) and (ii)
(i) Let (a, b) ∈ C∞(B2,R2) ∩H1(B2,R2). We construct a map u from
S2 to R3 as follows. We identify S2 with C∪ {∞} via the stereographic
projection, and let

u(z) =

 a(z)
b(z)
t ãb(z)

 if |z| ≤ 1 ,

and

u(z) =

 a(z|z|−2)
b(z|z|−2)
−t ãb(z|z|−2)

 if |z| ≥ 1 ,

where t is a real parameter. Let V be the algebraic volume enclosed by
the image of u in R3, and A the area of the image of u.

On the one hand,

V = 2
∫
B2
u3{u1, u2}dxdy

= 2t
∫
B2
ãb{a, b}dxdy

= −2t
∫
B2
ãb∆(ãb)dxdy

= 2t
∫
B2

|dãb|2dxdy . (3.16)

On the other hand,

A = 2
∫
B2

∣∣∣∣∂u∂x × ∂u
∂y

∣∣∣∣ ≤
∫
B2

|du|2dxdy

=
∫
B2

(|da|2 + |db|2 + t2|dãb|2)dxdy . (3.17)
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Using (3.16), (3.17) and the isoperimetric inequality

36πV 2 ≤ |A|3,
we obtain

144πt2‖dãb‖4
L2 ≤

(
‖d(a, b)‖2

L2 + t2‖dãb‖2
L2

)3

.

Choosing

t2 =
‖d(a, b)‖2

L2

2‖dãb‖2
L2

in this inequality, it follows that

‖dãb‖2
L2 ≤ 3

16π

(‖d(a, b)‖2
L2

2

)2

, (3.18)

which yields that C2(B) ≤
√

3
16π , since C∞(B,R2)∩H1(B,R2) is dense

in H1(B,R2).
This value is attained for (a, b) = (2x,2y)

1+x2+y2 since in this case ãb =
1−x2−y2

2(1+x2+y2) , and we have equality in inequality (3.18).

(ii) The approach is the same for C2(S2). We start from (a, b) ∈
C∞(S2,R2), and we consider the map u : S2 −→ R3,

u =

 a

b

tãb

 ,
where t is a real parameter. We estimate the area, A, of the image of u:

A =
∫
S2

∣∣∣∣∂u∂x × ∂u
∂y

∣∣∣∣ dxdy ≤ 1
2
‖d(a, b)‖2

L2 +
t2

2
‖dãb‖2

L2

and the algebraic volume enclosed by the image of u,

V =
∫
S2
u3{u1, u2}dxdy = t‖dãb‖2

L2 .

Then, using the isoperimetric inequality

36πV 2 ≤ |A|3,
we obtain
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36πt2‖dãb‖4
L2 ≤

(
‖d(a, b)‖2

L2 + t2‖dãb‖2
L2

2

)3

.

We then choose t2 =
‖d(a,b)‖2

L2

2‖dãb‖2
L2

which yields C2(S2) ≤
√

3
32π . Finally,

we check that this value is attained for

(a, b, ãb) : S2 −→ R3 x

y

z

  −→ (x, y,
z

2
)

Problem 3.1.8 For a long time it was believed that there was no con-
stant mean curvature immersion of the torus in R3. In 1984, Henry
Wente gave an example of such an immersion, thus contradicting what
used to be called the Hopf conjecture [179]. Two years later, U. Abresch
gave a quasi-explicit expression of such an immersion, using elliptic in-
tegrals [1]. The surfaces constructed by Wente and Abresch have the
common feature of being invariant under symmetry with respect to a
plane.

We can then obtain them by starting from a constant mean curvature
immersion of an annulus of the plane into R3, such that the image of the
boundary of the annulus is contained in a plane P of R3, and the image
of the annulus intersects the plane P orthogonally along the image of the
boundary. In fact, it suffices to complete this immersion by gluing the
immersion of a copy of the annulus, which is the mirror image in P of
the first immersion, to obtain an immersion of a torus.

We recognize here the construction described in remark 3.1.5. We thus
conclude that the immersions of the annulus constructed by Wente and
Abresch correspond to critical points of the variational problem (3.8).

A natural question will then be: can we find these immersions using
a variational method? (see [64], [65] and [66]).

3.1.2.2 Study of C∞(M)

A study similar to the one done above for C2(M) was partially carried
out by Sami Baraket and, very recently, completed by Peter Topping.
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Theorem 3.1.9 [178], [6], [170] For every Riemann surface M, with
or without boundary, we have

C∞(M) =
1
2π
.

We will not prove this result. The inequality C∞(M) ≤ 1
2π was proved

in [178] and [6], in case Ω is conformally equivalent to the ball B2, and
in [170] in the general case. The inverse inequality C∞(M) ≥ 1

2π is due
to [6].

3.2 Hardy spaces

In 1989, Stefan Müller noticed the following property. Let Ω be an open
subset of Rm and denote by L1 logL1(Ω) the set of measurable functions
f from Ω to R (or C) such that

∫
Ω

|f |(1 + log(1 + |f |))dx < +∞ . (3.19)

Theorem 3.2.1 [120] Let u ∈W 1,m(Ω,Rm), and

f(x) = det(du(x)) a.e.

Then, if f(x) ≥ 0 a.e., f ∈ L1 logL1(Ω).

A special case of this result is that if Ω ⊂ R2 and u = (a, b) ∈
H1(Ω,R2), then {a, b} ∈ L1 logL1(Ω), as long as {a, b} ≥ 0 a.e. Hence,
we see that the algebraic structure of det(du(x)) yields a slight improve-
ment of the integrability of this function which, a priori, we would just
expect to be in L1(Ω).

We know a space close to L1(Ω), the Hardy space H1(Ω), which has
an entirely analogous property to the one described in theorem 3.2.1:
H1(Ω) is a subspace of L1(Ω), and any function f in H1(Ω) which is
positive a.e. is necessarily in L1 logL1 (see [156]).

This somehow suggests the following result, due to Ronald Coifman,
Pierre-Louis Lions, Yves Meyer and Stephen Semmes.

Theorem 3.2.2 [39] Let u be a map in W 1,m(Rm). Then f := det(du)
belongs to H1(Rm), and moreover, there exists a constant Cm, depending
only on m, such that
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‖f‖H1(Rm) ≤ Cm‖u‖W 1,m(Rm) . (3.20)

Another result, which coincides with theorem 3.2.2 in case m = 2, is
the following.

Theorem 3.2.3 [39] Let φ be a map in H1(Rm,R), and E a divergence-
free vector field in L2(Rm,Rm). Then the quantity

f := 〈gradφ,E〉 =
m∑
α=1

∂φ

∂xα
Eα

belongs to H1(Rm). Moreover, there is a constant Cm, depending only
on m, such that

‖f‖H1(Rm) ≤ Cm‖φ‖H1(Rm)‖E‖L2(Rm) . (3.21)

Before proceeding, we need to define what H1(Rm) is (the definition
of H1(Ω) being considerably harder). We will give several definitions.
The equivalence between these different definitions is far from obvious,
and relies on a difficult theorem by Charles Fefferman ([57], [58]).

Definition 3.2.4 (Hardy space 1) Let Ψ be a C∞
c (Rm) function such

that ∫
Rm

Ψ = 1 .

For each t > 0, we let Ψt(x) = t−mΨ
(
x
t

)
. Finally, for each function

f ∈ L1(Rm), we define

f∗(x) = sup
t>0

|(Ψt ∗ f)(x)| .

Then, f belongs to Hardy space H1(Rm) if and only if f∗ ∈ L1(Rm).
Hardy space is equipped with the norm

‖f‖H1(Rm) = ‖f‖L1(Rm) + ‖f∗‖L1(Rm) . (3.22)

Definition 3.2.5 (Hardy space 2) For any function f in L1(Rm), we
denote by Rαf the function defined by
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F(Rαf)(ξ) =
ξα
|ξ|F(f)(ξ),

where

F(f)(ξ) =
1

(2π)m/2

∫
Rm

e−i〈x,ξ〉f(x)dx

is the Fourier transform of f . Rαf is the Riesz transform of f . Then f
belongs to H1(Rm) if and only if

∀α = 1, ...,m, Rαf ∈ L1(Rm).

We define a second norm on H1(Rm) by

‖f‖H1(Rm) = ‖f‖L1(Rm) +
m∑
α=1

‖Rαf‖L1(Rm) . (3.23)

Remark 3.2.6 Although we have used the same notation, the norms on
H1(Rm) defined by (3.22) and (3.23) are not the same. Nevertheless,
they are equivalent.

Definition 3.2.7 (VMO and BMO space) For any locally integrable
function f from Rm to R, we define, for each x ∈ Rm, r > 0,

fx,r =
1

|B(x, r)|
∫
B(x,r)

f(y)dy,

and we let

‖f‖BMO(Rm) = sup
x∈Rm

sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)− fx,r|dy .

The space BMO(Rm) (Bounded Mean Oscillations) is the space of
functions f such that ‖f‖BMO(Rm) < +∞. The quantity ‖f‖BMO(Rm)

is a semi-norm (‖f‖BMO(Rm) = 0 if and only if f is equal to a con-
stant a.e.). The quotient BMO(Rm)/R is a Banach space. The space
VMO(Rm) (Vanishing Mean Oscillations) is the subspace of functions
f in BMO(Rm) such that ∀x ∈ Rm,

lim
r→0

1
|B(x, r)|

∫
B(x,r)

|f(y)− fx,r|dy = 0.
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Definition 3.2.8 (Hardy space 3) H1(Rm) is the dual space of VMO(Rm).
The dual space of H1(Rm) is BMO(Rm).

Notice that any of the definitions given enables us to easily show that if
f ∈ H1(Rm), then

∫
Rm
f = 0.

There are several ways of apprehending this strange space. A first way
is to look at a function f in H1(Rm) through a microscope, and to see
that even if f oscillates violently (but not too much, since f ∈ L1(Rm)),
these oscillations are balanced at all scales, i.e. calculating the mean
value of f in a ball of arbitrary position and size, the oscillations cancel
each other out.

Such a point of view is illustrated by other definitions: the atomic one
[40], or that using wavelets [114].

A second way is to think of Hardy space as the biggest subspace of
L1(Rm) for which we can use the recipes valid in Lp(Rm) for 1 < p <
+∞, but which are no longer valid for L1(Rm). An example of such a
property was already mentioned in the previous chapter in relation to
Wente’s lemma. If φ is a solution of

−∆φ = f, with f ∈ Lp(Ω) ,
and 1 < p < +∞, then, if the boundary conditions for φ are sufficiently
smooth, φ ∈ W 2,p(Ω). This follows from classical Calderón-Zygmund
theory (see [156]). Such a result is false for p = 1, but we have:

Theorem 3.2.9 [157] Let φ ∈ L1(Rm) be a solution in Rm of

−∆φ = f ∈ H1(Rm).

Then all the second derivatives of φ belong to L1(Rm), and

∣∣∣∣∣∣∣∣ ∂2φ

∂xα∂xβ

∣∣∣∣∣∣∣∣
L1(Rm)

≤ C ‖ f ‖H1(Rm) .

Likewise, if 1 < p < +∞, every function f ∈ Lp(Rm) satisfies

f∗ ∈ Lp(Rm) and Rαf ∈ Lp(Rm),

but this is no longer true for p = 1, unless we “replace” L1(Rm) by
H1(Rm).

Another property is that in dimension 2, if φ is a solution of
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−∆φ = f ∈ H1(R2),

then φ is continuous. We can deduce this from the fact that the kernel
of −∆ on R2, 1

2π log
(

1
r

)
, belongs to BMO(R2), using definition 3.2.8 of

H1(R2). In fact, we will see more precise results in the following section.
Now that we have quickly described H1(Rm), we see that theorems

3.2.2 and 3.2.3 establish subtle integrability improvements, and suggest
the existence of a compensated integrability theory, analogous to that
of Murat and Tartar. Theorem 3.2.3 is the prototype of a “div–curl”
lemma for such a theory.

What is the interest of this space in the setting of harmonic maps?
or, more generally, of non-linear partial differential equations? A first
example is that of weakly harmonic maps from an open set Ω of Rm

to S2. Then it is clear that Wente’s lemma is no longer very useful for
studying the equation

−∆u = u|du|2 in Ω, (3.24)

if m ≥ 3.
Using H1(Rm), we can draw conclusions from this equation (by using

the conservation laws that are hidden in (3.24)).

Lemma 3.2.10 Let u ∈ H1(Ω, Sn) be a weakly harmonic map. Then
for any ball B(x0, r) whose closure is contained in Ω, there exists f ∈
H1(Rm,Rn+1) such that

−∆u = f inB(x0, r) . (3.25)

Remark 3.2.11 This result seems to be just a slight improvement, but
it enabled Lawrence C. Evans to prove that every stationary weakly har-
monic map taking its values in a sphere is smooth outside a closed set
whose Hausdorff (m − 2)-dimensional measure is zero [54]. His proof
uses in a crucial way the duality between H1(Rm) and BMO(Rm) (see
theorem 3.5.1 below).

Proof of lemma 3.2.10 We know that every solution u of (3.24) satisfies
the conservation law
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div (ui∇uj − uj∇ui) =
m∑
α=1

∂

∂xα

(
ui
∂uj

∂xα
− uj ∂u

i

∂xα

)
= 0 . (3.26)

It is convenient, when we work with an arbitrary number m of vari-
ables, to use the language of differential forms. Let L be the Hodge star
operator acting on the set of differential 1-forms on Ω, Λ1Ω. The action
of L on 1-forms is given by

Ldxα = (−1)α−1dx1 ∧ ... ∧ dxα−1 ∧ dxα+1 ∧ ... ∧ dxm .

Define

βij = L(uiduj − ujdui).
Then (3.26) may be written as

dβij = 0 inΩ. (3.27)

Choose a ball B′ contained in Ω, and containing B(x0, r). Since B′ is
simply connected, there is an (m − 2)-form αij on B′, with coefficients
in H1(B′), such that

dαij = βij inB′ . (3.28)

(see lemma 4.3.6 in the next chapter).
Let χ be a function in C∞

c (B′,R) taking the value 1 over B(x0, r), and
let f i ∈ L1(R) be defined by

 f idx1 ∧ ... ∧ dxm =
n+1∑
j=1

d(χuj) ∧ d(χαij) in B′ ,

f i = 0 on Rm \B′ .

(3.29)

It is then easy to see that f i is a sum of terms of the form 〈gradφ,E〉,
where φ ∈ H1(Rm,R) (in fact, φ = χuj) and E is a divergence-free
L2(Rm,Rm) vector field. Hence, it follows from theorem 3.2.3 that f i ∈
H1(Rm).

Moreover, we can rewrite (3.24) as
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−∆ui =
n+1∑
j=1

m∑
α=1

∂uj

∂xα

(
ui
∂uj

∂xα
− uj ∂u

i

∂xα

)
inΩ ,

or also

−∆uidx1 ∧ ... ∧ dxm =
n+1∑
j=1

duj ∧ βij inΩ .

We deduce from (3.28), (3.29) and (3.2) that −∆ui = f i in B′.

Remark 3.2.12 Compensated compactness and regularity phenomena,
of a quite different nature from those above, have recently been observed.
Let φ ∈ H1(Ω,R) where Ω is an open subset of R2, and suppose that

−∆φ = f inΩ,

where f is either a positive Radon measure or an L1(Ω) function. Then
the quantity (which we write in complex notation for simplicity)

ω =
(
∂φ

∂x

)2

−
(
∂φ

∂y

)2

− 2i
(
∂φ

∂x

)(
∂φ

∂y

)
has compensation properties. More precisely, in the proof of an existence
result for solutions of a 2-dimensional Euler equation for an incompress-
ible fluid whose vorticity is a positive measure, Jean-Marc Delort proved
that for any sequence (φn) converging weakly to φ in H1(Ω,R) such that
(−∆φn) is a bounded sequence of positive measures, the quantity ωn
associated to φn converges to ω in the sense of distributions [44].

In this result, the sign condition on −∆fn may be dropped, provided
that the negative part of −∆fn belongs to L1(Ω) [67]. Following this
result, L.C. Evans and S. Müller showed that ω is in local Hardy space
H1
loc(Ω) [55] (see also [152]).
The surprise is that ω does not have the same structure as the clas-

sical quantities of compensated compactness theory, and the geometric
meaning of this result is unclear. We notice however that ω looks like
the Hopf differential (see definition 1.3.10) and is holomorphic if f = 0.
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3.3 Lorentz spaces

The use of Hardy spaces, and the theorems of the previous section, will
enable us to state improved integrability results that are more precise
than Wente’s lemma. In order to do this, we need to define some new
spaces, the Lorentz spaces, a sort of refinement of Lp spaces.
These spaces were first used in harmonic analysis (see, for instance,

[111] or [158]). It was only later that people realized their impact on
Sobolev embeddings and partial differential equations (see, for instance,
[20], [23] and [165]). Here we will see that these spaces appear naturally
in estimates for solutions of some differential equations.

For an R-valued function f , on an open subset Ω of Rm, the fact
of belonging to a Lorentz space is determined by a condition on the
non-decreasing rearrangement of |f | on [0, |Ω|).

Definition 3.3.1 Let f : Ω −→ R be a measurable function. The non-
increasing rearrangement of |f | on [0, |Ω|) is the unique function, denoted
by f∗, from [0, |Ω|) to R which is non-increasing and such that

measure {x ∈ Ω | |f(x)| ≥ s} = measure {t ∈ (0, |Ω|) | f∗(t) ≥ s}.

Definition 3.3.2 Let Ω be an open subset in Rm, p ∈ (1,+∞), q ∈
[1,+∞]. The Lorentz space L(p,q)(Ω,R) is the set of measurable func-
tions f : Ω −→ R such that

|f |(p,q) =
[∫ +∞

0

(t
1
p f∗(t))q

dt

t

] 1
q

< +∞, if q < +∞ ,

or

|f |(p,∞) = sup
t>0
t

1
p f∗(t) < +∞, if q = +∞.

These quantities |f |(p,q) are not norms since they do not satisfy the
triangular inequality. However, if we define

f∗∗(t) =
1
t

∫ t

0

f∗(s)ds

and
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‖f‖(p,q) =
[∫ +∞

0

(t
1
p f∗∗(t))q

dt

t

] 1
q

, if q < +∞ ,

‖f‖(p,∞) = sup
t>0
t

1
p f∗∗(t) ,

we will have available in the Lorentz spaces norms which satisfy

1
c
|f |p,q ≤‖ f ‖p,q≤ c|f |p,q

(see [186]).
Hence the Lorentz spaces become Banach spaces. Classically these

spaces show up in interpolation theory for linear operators between Lp

spaces, as we will see below.
Each L(p,q) may be seen as a deformation of Lp. For instance, we have

the strict inclusions

L(p,1) ⊂ L(p,q′) ⊂ L(p,q′′) ⊂ L(p,∞),

if 1 < q′ < q′′. Moreover,

L(p,p) = Lp .

Furthermore, if |Ω| is finite, we have that for all q and q′,

p < p′ ⇒ L(p′,q′) ⊂ L(p,q) .

Finally, for 1 < p < +∞ and 1 ≤ q ≤ +∞, L(
p
p−1 ,

q
q−1 ) is the dual of

L(p,q). For more details on Lorentz spaces, see [186], [158], [95] and [7].
The following interpolation result will be repeatedly used and will

enable us to deduce estimates on Lorentz spaces from the corresponding
estimates on Lp spaces.

Theorem 3.3.3 [158], [95] Let Ω be an open subset of Rm and U an
open subset of Rn. Let r0, r1, p0, p1 be real numbers such that

1 ≤ r0 < r1 ≤ ∞ ,
and

1 ≤ p0 �= p1 ≤ ∞ .



3.3 Lorentz spaces 137

Let T be a linear operator whose domain D contains⋃
r0≤r≤r1

Lr(Ω) ,

and which maps continuously Lr0(Ω) to Lp0(U), and Lr1(Ω) to Lp1(U),
with the norms

∀f ∈ Lr0(Ω), ‖Tf‖Lp0 (U) ≤ k0‖f‖Lr0 (Ω) ,

∀f ∈ Lr1(Ω), ‖Tf‖Lp1 (U) ≤ k1‖f‖Lr1 (Ω) .

Then, for each 1 ≤ q ≤ ∞, and for every pair (p, r) such that ∃θ ∈
(0, 1),

1
p
=

1− θ
p0

+
θ

p1
and

1
r
=

1− θ
r0

+
θ

r1
,

f maps continuously L(r,q)(Ω) to L(p,q)(U), and moreover,

∀f ∈ L(r,q)(Ω), ‖Tf‖L(p,q)(U) ≤ Bθ‖f‖L(r,q)(Ω) ,

where

Bθ =
(
r

|γ|p
) 1
q

2
1
p

(
rk0
r − r0 +

r1k1
r1 − r

)
, (3.30)

and

γ =
(

1
p0

− 1
p

)(
1
r0

− 1
r

)−1

=
(
1
p
− 1
p1

)(
1
r
− 1
r1

)−1

.

Below, we will be essentially interested in the family L2, i.e.the spaces
L(2,q), for 1 ≤ q ≤ +∞. Three members of this family are particularly
interesting: the mildest (L(2,1)), the most violent (L(2,∞)), and the best-
known (L(2,2) = L2).

Here are some results which illustrate these spaces (for R2).

Theorem 3.3.4 Let Ω be an open subset of R2, with C1 boundary. Let
f ∈ H1(Ω) and suppose that ∂f

∂x and ∂f
∂y are in L(2,1)(Ω). Then f is

continuous and uniformly bounded in Ω.
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Remark 3.3.5 It is well-known that in general a function in H1(Ω) is
neither bounded nor continuous.

Theorem 3.3.6 Let Ω be an open subset of R2, with C1 boundary. Let
f ∈ L1(Ω), and φ be a solution of

{ −∆φ = f in Ω
φ = 0 on ∂Ω .

(3.31)

Then ∂φ
∂x ,

∂φ
∂y ∈ L(2,∞)(Ω), and there is a constant depending only on Ω,

C(Ω), such that

‖dφ‖L(2,∞)(Ω) ≤ C(Ω)‖f‖L1(Ω) . (3.32)

Remark 3.3.7 It is also well-known that in general a solution φ of
(3.31) does not belong to H1(Ω).

Theorem 3.3.8 Let Ω be an open subset of R2, with C1 boundary. Let
f ∈ H1(R2), and φ be a solution of

{ −∆φ = f in Ω
φ = 0 on ∂Ω .

(3.33)

Then ∂φ
∂x ,

∂φ
∂y ∈ L(2,1)(Ω), and there is a constant depending only on Ω,

C(Ω), such that

‖dφ‖L(2,1)(Ω) ≤ C(Ω)‖f‖H1(R2) . (3.34)

Before proving these results, we will present the deep reason that
makes them be true. The kernel of the Laplacian in R2, i.e. the distri-
bution K ∈ D′(R2) such that

−∆K = δ0 in R2

is given by

K =
1
2π

log
(
1
r

)
,

and its derivative is



3.3 Lorentz spaces 139

dK = − 1
2πr2

(xdx+ ydy) .

We may check that K is in BMO(R2), and that dK has coefficients
in L(2,∞)(R2). Thus, it is the duality between BMO(R2) and H1(R2),
and that between L(2,∞) and L(2,1), that are at the origin of these results.

Proof of theorem 3.3.4 Let f be a function in C∞(Ω) with compact
support. Consequently, its derivatives belong to L(2,1)(Ω). ByWhitney’s
method (see [19]), we may construct a compactly supported extension
of f to R2, f̂ . Since the boundary of Ω is C1, the extension operator
f  −→ f̂ is continuous in all spaces W 1,p for 1 ≤ p ≤ +∞ and hence, by
the interpolation theorem 3.3.3, we may deduce that the derivatives of
f̂ are in L(2,1)(R2), and that

‖df̂ ‖L(2,1)(R2) ≤ C‖df‖L(2,1)(Ω) (3.35)

where C is a constant depending only on Ω. Since f̂ is compactly sup-
ported we have, for all z ∈ R2,

f̂(z) =
∫

R2
δ0(z − ζ)f̂(ζ)dζ

=
∫

R2
−∆K(z − ζ)f̂(ζ)dζ

=
∫

R2
−∇K(z − ζ).∇f̂(ζ)dζ , (3.36)

which yields that

‖f̂(z) ‖ ≤ ‖dK‖L(2,∞)(R2)‖df̂ ‖L(2,1)(R2) . (3.37)

From (3.35) and (3.37) it follows that

‖f‖L∞(Ω) ≤ ‖f̂‖L∞(R2) ≤ C‖dK‖L(2,∞)(R2)‖df‖L(2,1)(R2) . (3.38)

This estimate implies, by the density of C∞
c (Ω) in {f ∈ H1(Ω,R) | df ∈

L(2,1)(Ω)}, that every function in H1(Ω,R) with derivatives in L(2,1)(Ω)
is the uniform limit of a sequence of C∞ functions and therefore is con-
tinuous.
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In the proofs of theorems 3.3.6 and 3.3.8, we will use the interpolation
theorem 3.3.3 with a well chosen operator. This operator is obtained
by a construction which we will use below and which may in general be
useful for obtaining estimates with Lorentz norms. This is why we chose
to present it separately.

Hodge decomposition of a vector field

Proposition 3.3.9 We suppose that Ω is a bounded open subset of R2,
with C1 boundary. To each vector field g = (g1, g2) ∈ L1(Ω,R2), we
associate the functions α, β, v on Ω, which are solutions of

 −∆α = −
(
∂g1
∂x

+
∂g2
∂y

)
in Ω

α = 0 on ∂Ω ,

 −∆β =
∂g1
∂y

− ∂g2
∂x

in Ω

β = 0 on ∂Ω ,

and


g1 =

∂α

∂x
+
∂β

∂y
+
∂v

∂x

g2 =
∂α

∂y
− ∂β
∂x

+
∂v

∂y
,

so that

−∆v = 0 in Ω .

We let

P (g) = dα =
(
∂α

∂x
,
∂α

∂y

)
and

H(g) = dv =
(
∂v

∂x
,
∂v

∂y

)
.

Elliptic theory gives us that for any 1 < p < +∞, P and H map
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continuously Lp(Ω,R2) to itself. Therefore, by theorem 3.3.3, these op-
erators are also continuous between the L(p,q)(Ω,R2), for 1 < p < +∞,
1 ≤ q ≤ +∞.

Proof of theorem 3.3.6 Let f ∈ L1(Ω), and consider the function f̂ ∈
L1(R2), obtained by extending f by 0 outside Ω. Let Ψ be the function
defined on R2 by

Ψ(z) =
∫

R2
K(z − ζ)f̂(ζ)dζ ,

where K(z) = 1
2π log

(
1
|z|

)
. We know that

−∆Ψ = f̂ in R2,

and that

dΨ(z) =
∫

R2
dK(z − ζ)f̂(ζ)dζ.

Since f̂ ∈ L1(R2) and dK ∈ L(2,∞)(R2), we have that dΨ ∈ L(2,∞)(R2)
and

‖dΨ‖L(2,∞)(R2) ≤ ‖dK‖L(2,∞)(R2)‖f‖L1(R2) . (3.39)

A way of seeing equation (3.31) is that dφ is also given by

dφ = P (dΨ|Ω) ,

where P is the operator defined in proposition 3.3.9. This operator is
continuous from L(2,∞)(Ω) to itself, and hence we deduce that dφ ∈
L(2,∞)(Ω), and estimate (3.39) gives (3.32).

Proof of theorem 3.3.8 We will need an extra result: the space W 1,1(R2)
is continuously embedded in L(2,1)(R2). This result is the purpose of
theorem 3.3.10, which we will prove below. Let f ∈ H1(R2). As in the
previous proof, we consider Ψ defined by

Ψ(z) =
∫

R2
K(z − ζ)f(ζ)dζ .

Since
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−∆Ψ = f on R2,

by theorem 3.2.9, all second derivatives of Ψ belong to L1(R2) and Ψ ∈
W 2,1(R2). This implies, using the continuous embedding of W 1,1(R2)
into L(2,1)(R2), that the derivatives of Ψ belong to L(2,1)(R2), and since
all the embeddings are continuous, there is a constant C such that

‖dΨ‖L(2,1)(R2) ≤ C‖f‖H1(R2) .

Using, as in the previous proof, the fact that (3.33) implies

dφ = P (dΨ|Ω),

we deduce that dφ ∈ L(2,1)(Ω) and

‖dφ‖L(2,1)(Ω) ≤ C‖f‖H1(R2),

thanks to the continuity of the operator P , constructed in 3.3.9.

Theorem 3.3.10 For each m ≥ 2, the space W 1,1(Rm) is continuously
embedded in L(

m
m−1 ,1)(Rm).

Remark 3.3.11 The following proof was communicated to us indepen-
dently by Häım Brezis and Pierre-Louis Lions. Other proofs are also
possible; in particular a method of Luc Tartar leads to more general
results [167].

Proof We consider first the case of a function in C∞
c (Rm). The general

case then follows by the density of C∞
c (Rm) in W 1,1(Rm). Suppose

f ∈ C∞
c (Rm). Let f̃ be the non-increasing rearrangement of |f |, i.e. the

unique function in C∞
c (Rm), depending only on r = |x|, non-increasing

as a function of r, and such that

measure {x ∈ Rm | f̃(x) ≥ s} = measure {x ∈ Rm | |f(x)| ≥ s} .

Denote by f∗ the non-increasing rearrangement of f over [0,+∞), and
notice that if we denote by αm = |Sm−1|

m the measure of the unit ball in
Rm, we have the relation
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f∗(αmrm) = f̃(r) .

Using Pólya–Szegö’s inequality (see, for instance, [118]), we have

∫
Rm

|df(x)|dx ≥
∫

Rm

|df̃(x)|dx

=
∫ +∞

0

(∫
Sm−1

−df̃
dr

(r)rm−1dσ(x)

)
dr

= − |Sm−1|
∫ +∞

0

df̃

dr
rm−1dr

= |Sm−1|
∫ +∞

0

f̃(r)(m− 1)rm−2dr .

Performing the change of variable t = αmrm, we obtain

∫
Rm

|df(x)|dx ≥ (m− 1)α
1
m
m

∫ +∞

0

t
m−1
m f∗(t)

dt

t
≥ C(m)‖f‖

L(
m
m−1 ,1)(Rm)

,

which proves our result.

Before ending this section we will show that local Lp estimates on the
gradient of a real harmonic map, of Morrey type, generalize to Lorentz
spaces. We start by recalling a classical result.

Lemma 3.3.12 Suppose that 1 ≤ p < +∞, and let Bm be the unit ball
in Rm. For any function f ∈ Lp(Bm), which is a solution of

−∆f = 0 on Bm,

the function

r  −→ 1
rm

∫
Bmr

|f |pdx (3.40)

is increasing (here Bmr = Bm(0, r)).

Proof We remark that for every smooth convex function K from R to
R, and for every harmonic function f ,
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∆(K(f)) = K
′′
(f)|df |2 ≥ 0.

Hence, integrating this inequality over the ball Bmr , and using Stokes’
formula, if v = K(f),

0 ≤
∫
∂Bmr

∂v

∂r
dσ = rm−1 d

dr

∫
∂Bm1

v(rθ)dσ(θ) .

Therefore, the function r  −→
∫
∂Bm1

v(rθ)dθ is non-decreasing. It follows

that ∫
Bmr

v(x)dx =
∫ r

0

ρm−1dρ

∫
∂Bm1

v(ρθ)dθ

≤
∫ r

0

ρm−1dρ

∫
∂Bm1

v(rθ)dθ

=
rm

m

∫
∂Bmr

v(rθ)dθ =
r

m

d

dr

∫
Bmr

v(x)dx .

Integrating this differential inequality, we see that

r  −→ 1
rm

∫
Bmr

v(x)dx

is non-decreasing. This result applies to Kε(y) = (ε2+y2)p/2, for all ε >

0 and 1 ≤ p <∞. By writing that r−m
∫
Bmr

Kε(f)dx is non-decreasing,

and passing to the limit when ε goes to 0, we obtain our result.

I was not able to obtain the same result for the norm L(p,q), but I
found the following:

Lemma 3.3.13 Suppose that 1 < p < +∞, 1 < q < +∞, and let
0 < γ <

m

p
.

Then, there exists a constant C(p, q, γ) depending on p, q and γ, such
that, for any function f ∈ L1(Bm) such that df ∈ L(p,q)(Bm), the solu-
tion F of

{ −∆F = 0 in Bm

F = f on ∂Bm

satisfies
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‖dF‖L(p,q)(Bmr ) ≤ C(p, q, γ)rγ‖df‖L(p,q)(Bm) . (3.41)

Proof We will just give the proof of this result for m = 2 (we leave
to the reader the task of generalizing this result for all m – for this
purpose, use the Hodge decomposition as in section 4.3). We remark
that dF = H(df), where H was defined in proposition 3.3.9. For any
r ∈ [0, 1], define the restriction operator to Bmr , acting on any function
g defined on Bm, by

Rr : g  −→ g|Bmr .
This operator is obviously continuous in all Lp spaces. The conclusion

of the lemma is equivalent to saying that the operator Rr ◦ H acts on
L(p,q)(B), is continuous and its norm satisfies

‖Rr ◦H‖L(p,q)(B) ≤ C(p, q, γ)rγ .
Choose p1 < p < p2, where p2 is such that γ = 2

p2
, and apply lemma

3.3.12, in Lp1(B) and Lp2(B). This implies, in particular, that Rr ◦H
is bounded in Lp1(B) and Lp2(B) with the estimates

‖Rr ◦H‖Lp1 (B) ≤ Cr
2
p1 , (3.42)

‖Rr ◦H‖Lp2 (B) ≤ Cr
2
p2 . (3.43)

By theorem 3.3.3, we have that Rr ◦H maps L(p,q)(B) to L(p,q)(Br),
and that

‖Rr ◦H‖L(p,q)(B) ≤ C1r
2
p1 + C2r

2
p2 ,

where C1 and C2 are constants depending on p1 and p2. This gives
(3.41).

3.4 Back to Wente’s inequality

By applying Hardy and Lorentz spaces, we will be able to prove finer
versions of theorem 3.1.2.
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Theorem 3.4.1 Let Ω be an open subset of R2, with C1 boundary,
a, b ∈ H1(φ) and φ be a solution of

{ −∆φ = {a, b} in Ω
φ = 0 on ∂Ω .

(3.44)

Then ∂φ
∂x ,

∂φ
∂y ∈ L(2,1)(Ω), and

‖dφ‖L(2,1)(Ω) ≤ C(Ω)‖da‖L2(Ω)‖db‖L2(Ω) , (3.45)

where C(Ω) is a constant depending only on Ω.

Proof Let â, b̂ ∈ H1(R2) be two functions which extend a and b, respec-
tively, to R. We may build these extensions so that the maps a  −→ â

and b  −→ b̂ are continuous from H1(Ω) to H1(R2). By theorem 3.2.2
(or 3.2.3), we know that {â, b̂} ∈ H1(R2), and that

‖{â, b̂}‖H1(R2) ≤ C2‖dâ‖L2(R2)‖db̂‖L2(R2)

≤ C ′‖da‖L2(R2)‖db‖L2(R2) . (3.46)

This shows that −∆φ coincides with an H1(R2) function in Ω. Hence
theorem 3.3.8 implies that dφ ∈ L(2,1)(Ω), and then inequality (3.46)
yields estimate (3.45).

Remark 3.4.2 Lorentz space estimates had previously been proven by
Luc Tartar. In fact, in [165], he shows that the Fourier transform of
dφ (where φ is defined by (3.44) in the previous theorem, i.e. φ = ãbΩ)
belongs to L(2,1)(R2).

Remark 3.4.3 Using theorems 3.3.4 and 3.4.1, we can also see that ãb
is continuous.

Remark 3.4.4 Another proof of theorem 3.4.1 was communicated to
me by Luc Tartar. It uses in a simple way the interpolation between
bilinear operators acting on Hs spaces, and the continuous embedding of
H

1
2 (R2) in L(4,2)(R2). We explain the idea in the case of R2.

We consider the operator
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B : H1(R2)×H1(R2) −→ L2(R2,R2)
(a, b)  −→ d(ãb) .

We will show that B maps H
1
2 (R2)×H 3

2 (R2) to L(2,1)(R2,R2) (and
similarly, that B maps H

3
2 (R2)×H 1

2 (R2) to L(2,1)(R2,R2)). Take a, b ∈
C∞
C (R2), and notice that

{a, b} =
∂

∂x

(
a
∂b

∂y

)
− ∂

∂y

(
a
∂b

∂x

)
.

It follows that

‖dãb‖L(2,1) ≤ C
(∥∥∥∥a ∂b∂y

∥∥∥∥
L(2,1)

+
∥∥∥∥a ∂b∂x

∥∥∥∥
L(2,1)

)
≤ C‖a‖L(4,2)‖db‖L(4,2)

≤ C‖a‖
H

1
2
‖db‖

H
1
2

≤ C‖a‖
H

1
2
‖b‖

H
3
2
.

Here C is a universal constant. In the first inequality we used the fact
that dãb = H(−a ∂b∂y , b ∂a∂x ) (see proposition 3.3.9) and the interpolation
theorem 3.3.3, and in the second inequality, the continuity of the product
L(4,2) × L(4,2) −→ L(2,1), and the continuous embedding H

1
2 −→ L(4,2).

Doing the same forH
3
2 (R2)×H 1

2 (R2), and then interpolating between
the two, we obtain theorem 3.4.1 for Ω = R2. The proof for an arbitrary
C2 bounded domain can be obtained using techniques similar to those
used in the previous section.

To conclude, we present a version of theorem 3.4.1 under weaker hy-
potheses. It is due to Fabrice Bethuel [9], who used it to study the
regularity of weak solutions of the prescribed mean curvature equation.

We start by noticing that if a and b are two functions such that da ∈ Lp
for 1 ≤ p < 2 and db ∈ L2, we can still give a meaning to the quantity
{a, b} by letting

{a, b} :=
∂

∂x

(
a
∂b

∂y

)
− ∂

∂y

(
a
∂b

∂x

)
.
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(See also [2].) In fact, in this case da ∈ Lp and we deduce from the
Sobolev embedding theorems that a ∈ L2. With this convention we
have:

Theorem 3.4.5 Let Ω be a bounded domain of R2, with C2 boundary.
Suppose a and b are two functions on Ω such that da ∈ L(2,∞)(Ω), and
db ∈ L2(Ω). Let φ be the solution of

{ −∆φ = {a, b} in Ω
φ = 0 on ∂Ω .

Then, φ is in H1(Ω), and there is a constant C, depending only on Ω,
such that

‖dφ‖L2(Ω) ≤ C‖da‖L(2,∞)(Ω)‖db‖L2(Ω) . (3.47)

Proof Let U be a smooth bounded open subset of R2, containing Ω,
such that we know how to construct a continuous extension operator for
functions f ∈ H1(Ω) giving functions f̂ ∈ H1

0 (U).
We first show inequality (3.47) for a, b ∈ H1(Ω), and later extend it

to the case where da ∈ L(2,∞).
For any a, b ∈ H1(Ω), let â, b̂ ∈ H1

0 (U) be their extensions. Integrating
by parts we have (temporarily writing â = a and b̂ = b)

‖dãbU‖2
L2(U) = −

∫
U

ãb∆ãb =
∫
U

ãb {a, b}

=
∫
U

a {b, ãb} =
∫
U

a∆(˜
b(ãb))

=
∫
U

da · d(˜
b(ãb))

≤ C ‖da‖L(2,∞)(U)‖d(˜
b(ãb))‖L(2,1)(U)

≤ C2 ‖da‖L(2,∞)(U)‖db‖L2(U)‖dãb‖L2(U) .

We used the fact that ãb = 0 on ∂U , then lemma 3.1.6, the fact that
˜
b(ãb) = 0 on ∂U , and the hypothesis a = 0 on ∂U . Finally, we applied
theorem 3.4.1 twice. Next, since
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{
−∆ãbΩ = −∆ãbU inΩ
ãbΩ = 0 on ∂Ω ,

we deduce that ‖dãbΩ‖L2(Ω) ≤ ‖dãbU‖L2(Ω). The previous inequality
then yields

‖dãbΩ‖L2(Ω) ≤ C2‖da‖L(2,∞)(Ω)‖db‖L2(Ω) .

It remains to prove the theorem in the general case. Let a be such
that da ∈ L(2,∞). Notice that in general there is no sequence (ak)k∈N in
H1(Ω) such that limk→+∞ ||d(a− ak)||L(2,∞) = 0. (This lack of density
is analogous to the fact that C∞ is not dense in L∞.) However, it is
possible to construct a sequence (ak)k∈N in

⋂
1≤p<2W

1,p(Ω) such that

ak → a in W 1,p(Ω), for p < 2, (3.48)

lim
k→+∞

||dak||L(2,∞)(Ω) = ||da||L(2,∞)(Ω). (3.49)

By (3.47) and (3.49), it is clear that ãkbΩ is bounded in H1(Ω) and thus,
up to passing to a subsequence of k,

ãkbΩ ⇀ φ weakly in H1(Ω). (3.50)

Moreover,

||dφ||L2(Ω) ≤ C2||da||L(2,∞)(Ω)||db||L2(Ω).

Thus, in order to conclude we just need to check that φ = ãbΩ. The
convergence (3.48) implies that

{ak, b} −→ {a, b} in W−1,p(Ω), for 1 ≤ p < 2,

(where we used {ak, b} = ∂
∂x (ak

∂b
∂y )− ∂

∂y (ak
∂b
∂x )). And hence,

ãkbΩ −→ {a, b} in W 1,p(Ω) for 1 ≤ p < 2.

It follows from (3.50) that φ = ãbΩ.

Remark 3.4.6 For a more general version of this theorem see [65].
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3.5 Weakly stationary maps with values into a sphere

We end this chapter with a result where Hardy space and BMO play
an essential role: Lawrence Craig Evans’ theorem [54] on partial regu-
larity of weakly stationary maps (see definition 1.4.17). Its proof brings
together the results presented above and more classical arguments due
essentially to Charles B. Morrey and Ennio de Giorgi, as well as the
writing of the harmonic map equation in the form of a conservation law,
as in theorem 2.6.4.

Theorem 3.5.1 Let Ω be an open subset of an m-dimensional Rieman-
nian manifold (M, g), and u ∈ H1(Ω, Sn). Suppose that g ∈ Ck,α, where
k ≥ 0 and 0 < α < 1. Then, if u is weakly stationary, there exists a
closed subset S of Ω (which we call the singular set of u) whose (m−2)-
dimensional Hausdorff measure is zero, and such that u ∈ Ck+1,α in
Ω \ S.

To simplify, in the proof we will suppose that the metric g on M
is Euclidean, and hence that Ω is an open subset of Rm. We start by
explaining what Hausdorff measure is. For each measurable subset S of
(M, g), and for any s ∈ [0,m], is is possible to define a measure (called
s-dimensional Hausdorff measure) of S, which we denote by

Hs(S),
taking values in [0,+∞]. If, for instance, S is a k-dimensional C1 sub-
manifold of (M, g), then

Hs(S) = +∞ if 0 ≤ s < k
Hk(S) = Lebesgue k-dimensional measure of S
Hs(S) = 0 if k < s ≤ m.
The idea consists of covering S by a countable union of balls Cj of

radii rj , and considering

α(s)
∞∑
j=1

rsj , (3.51)

which measures approximately the s-dimensional volume of S. The right
definition will be obtained by choosing coverings that are at the same
time the finest and most economical possible. Concern for economy leads
us to define, for δ > 0,
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Hs
δ(S) = inf

α(s)
∞∑
j=1

rsj | S ⊂
∞⋃
j=1

Cj and rj ≤ δ
 , (3.52)

and to optimize the refinement we will adopt:

Definition 3.5.2 The s-dimensional Hausdorff measure of S is given
by

Hδ(S) = lim
δ→0

Hs
δ(S) = sup

δ>0
Hs
δ(S) .

For details see [186]. Notice that the constant α(s) in (3.51) is just a
normalization coefficient which is present so that when s is an integer,
Hs will coincide with the s-dimensional Lesbesgue measure. We will
now see how the Hausdorff measure plays a role in theorem 3.5.1. We
introduce the following notation: for each x ∈ Ω and r ∈ (0,+∞), such
that B(x, r) is contained in Ω, we let

Ex,r(u) =
1
rm−2

∫
B(x,r)

|du|2dx . (3.53)

Theorem 3.5.1 is a consequence of the following two independent results.

Theorem 3.5.3 (ε-regularity) Let u ∈ H1(Ω, Sn) be a weakly stationary
map. Then, there is a constant ε > 0 such that if for a point x in Ω,
there exists r > 0 such that

Ex,r(u) ≤ ε2, (3.54)

then u is Hölder continuous in a neighborhood of x.

Lemma 3.5.4 Let u ∈ H1(Ω, Sn). Define, for any ε > 0,

S ′ =
{
x ∈ Ω | sup

r>0
Ex,r(u) > ε2

}
. (3.55)

Then, we have

Hm−2(S ′) = 0 . (3.56)
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Proposition 3.5.5 Theorem 3.5.1 is a consequence of theorem 3.5.3
and lemma 3.5.4.

Proof In fact, choosing for ε in lemma 3.5.4 the value given by theorem
3.5.3, if u is weakly stationary, then by theorem 3.5.3, u is Hölder con-
tinuous in a neighborhood of each point in Ω\S ′. Thus there is an open
set ω ⊂ Ω (the union of the neighborhoods given by theorem 3.5.3) such
that Ω \ S ′ ⊂ ω and u|ω is Hölder continuous. Let S := Ω \ ω. It is
closed and contained in S ′. To conclude the proof of theorem 3.5.1, we
just need to show that:

(i) If u is weakly stationary and Hölder continuous in ω = Ω \ S,
then u is Ck+1,α in ω. This follows from theorem 1.5.1.

(ii) Hm−2(S) = 0. Since S ⊂ S ′, this follows from lemma 3.5.4.

We shall first prove lemma 3.5.4 and terminate this section by the
proof of theorem 3.5.3.

Proof of lemma 3.5.4 We will proceed in several steps.

Step 1 Construction of a covering of S ′
of radius δ > 0

Here it will be important that every point in Ω is covered at most N
times, where N is a certain constant depending only on the dimension.
We consider a covering of S ′ by k balls B(xi, δ2 ) such that the balls
B(xi, δ4 ) are pairwise disjoint: we may for instance construct a periodic
lattice of balls of radius δ

2 which cover Ω and then select those which
intersect S ′. For each i, we choose

yi ∈ S ′ ⊂ B
(
xi,
δ

2

)
,

and we consider the family of balls B(yi, δ). We can easily see that this
family covers S ′ and that each point in Ω is covered at most a certain
number N times by these balls. This yields

k∑
i=1

∫
B(yi,δ)

|du|2dx ≤ N
∫
∪ki=1B(yi, δ)

|du|2dx. (3.57)

Step 2 Hm−2(S ′) is bounded
By definition of S ′, we have that for any yi,
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1
δm−2

∫
B(yi,δ)

|du|2dx > ε2. (3.58)

This inequality and (3.57) imply that

kε2δm−2 < N

∫
Ω

|du|2dx, (3.59)

proving that Hm−2
δ (S ′) is bounded by Nε−2 ‖ du ‖2

L2(Ω), independently
of δ, and hence that Hm−2(S ′) is bounded.

Step 3 Hm(S ′) is zero
This follows from

Hm

(
k⋃
i=1

B(yi, δ)

)
≤ α(m)kδm

≤
(
α(m)Nε2

∫
Ω

|du|2dx
)
δ2,

where we used (3.59). Since the coefficient of δ2 in the last inequality is
bounded, this yields that Hm(S ′) = 0.

Step 4 Hm−2(S ′) = 0
We write the following inequality which, like (3.59), follows from (3.57)
and (3.58), but is slightly more precise:

kε2δm−2 < N

∫
∪ki=1B(yi, δ)

|du|2dx. (3.60)

We already know that the Lebesgue measure of the integration domain
on the r.h.s. tends to 0 as δ tends to 0. Hence, it follows from the
Lebesgue dominated convergence theorem that this integral converges
to 0. Passing to the limit in (3.60) will then yield that Hm−2(S ′) = 0.

It remains to prove the ε-regularity theorem 3.5.3. First we will show
a crucial inequality for Ex,r(u). This property, called the “monotonicity
formula”, is a consequence of the fact that u is Noether harmonic. We
remark that theorems 3.5.1 and 3.5.3 would still be valid if instead of
supposing that u is weakly stationary, we supposed only that u is weakly
harmonic and satisfies the monotonicity formula.
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Lemma 3.5.6 Let N be a compact n-dimensional manifold without
boundary, C2 embedded in RN . Let u ∈ H1(Ω,N ) be a weakly Noether
harmonic map. Then, for every x ∈ Ω and 0 < r ≤ r1 such that
B(x, r1) ⊂ Ω, we have the “monotonicity formula”

Ex,r(u) ≤ Ex,r1(u).

Proof This result has already been mentioned in chapter 1 (example
1.3.7) for the smooth case. In the present case the proof is analogous.
Recall that any Noether harmonic map has a divergence-free (in the
sense of distributions) stress–energy tensor (theorem 1.4.15). Define

Sαβ =
1
2
|du|2δαβ −

〈
∂u

∂xα
,
∂u

∂xβ

〉
,

the stress–energy tensor. For each sufficiently small ε > 0, we construct a
C1 function, χε, from (0,+∞) to [0, 1], such that χε = 1 in (0, 1−ε), χε =
0 in (1 + ε,+∞) and χ′ε ≤ 0 everywhere. We fix a point x0 ∈ Ω, and let

Fε(r) =
1
rm−2

∫
Ω

χε

(
ρ

r

)
|du|2 dx ,

where ρ = |x − x0|. We remark that F0(r) = Ex,r(u), and that Fε
converges to F0 in W 1,1((0,dist (x0, ∂Ω))). Moreover, using the fact
that Sαβ is divergence-free (theorem 1.4.15), we obtain

0 =
∫

Ω

∂

∂xα

(
χε

(
ρ

r

)
xβSαβ

)
dx

=
1
2

∫
Ω

χ′ε

(
ρ

r

)
ρ

r

(
|du|2 −

∣∣∣∣∂u∂ρ
∣∣∣∣2)dx

+
1
2

∫
Ω

χε

(
ρ

r

)
(m− 2)|du|2dx.

Differentiating Fε and using the previous identity we see that

F ′
ε(r) = − 2

rm

∫
Ω

χ′ε

(
ρ

r

)
ρ

∣∣∣∣∂u∂ρ
∣∣∣∣2dx ,

which implies that Fε is non-decreasing, and hence, passing to the limit
when ε→ 0, that F0 is also non-decreasing.
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Remark 3.5.7 The quantity Ex,r(u) satisfies another property which
will play an important role: it is homogeneous, i.e. dilation invariant.
This means that for every map u defined in the ball B(a, r), if we denote
by Ta,ru the map defined in B(0, 1) by

Ta,ru(x) = u(rx+ a), ∀x ∈ B(0, 1), (3.61)

then

E0,1(Ta,ru) = Ea,r(u) .

Finally, the knowledge of Ex,r(u) enables us to control the BMO norm
of u since, by the Sobolev–Poincaré inequality, we have that for any map
v

1
rm

∫
B(a,r)

|v − va,r|dx ≤ CEa,r(v),

where va,r := 1
|B(a,r)|

∫
B(a,r)

v dx. Thus, if the Ea,r(v) are uniformly
bounded, v will be bounded in BMO.

Proof of theorem 3.5.3 It relies on the following “discretized” version of
theorem 3.5.3.

Theorem 3.5.8 Let u ∈ H1(Ω, Sn) be a weakly stationary map. Then,
there exist ε > 0 and τ ∈ (0, 1) such that for any y ∈ Ω and r > 0 such
that B(y, r) ⊂ Ω, if

Ey,r(u) ≤ 2m−2ε2, (3.62)

then

Ey,τr(u) ≤ 1
2
Ey,r(u). (3.63)

We will end by proving this result.

Stage A How theorem 3.5.3 follows from theorem 3.5.8?

The essential tool here is the family of Morrey–Campanato spaces.

Definition 3.5.9 Let Ω be an open subset of (M, g), an m-dimensional
manifold. For q ∈ [1,+∞) and λ ∈ (0,+∞), the Morrey–Campanato
space Lq,λ(Ω) is
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Lq,λ(Ω) := {u ∈ Lq(Ω) | [u]q,λ < +∞} ,
where

[u]q,λ := sup
x∈Ω

0<r<diam(Ω)

(
1
rλ

∫
B(x,r)

|u− ux,r|q dvolg
) 1
q

, (3.64)

and

ux,r :=
1

|B(x, r)|
∫
B(x,r)

udvolg.

This space is a Banach space with the norm

‖u‖Lq,λ(Ω) = ‖u‖Lq(Ω) + [u]q,λ,

Morrey–Campanato spaces can be used to obtain the C0,α regularity
in theorem 3.5.3 thanks to the following result.

Theorem 3.5.10 [117], [69] For each m < λ ≤ m+q, the space Lq,λ(Ω)
is isomorphic to the space of Hölder continuous functions C0,α(Ω), where

α =
λ−m
q
. (3.65)

If m+ q < λ, then Lq,λ(Ω) contains only the constant functions.

The missing link for completing the proof of stage A is given by:

Lemma 3.5.11 Let θ, τ ∈ (0, 1), and u ∈ H1(Ω, Sn). We suppose that
at a point y of Ω, there exists r > 0 such that B(y, r) ⊂ Ω and ∀ρ ∈ (0, r)

Ey,τρ(u) ≤ θEy,ρ(u). (3.66)

Then, for all 0 < ρ < r,

Ey,ρ(u) ≤ 1
τm−2θ

(ρ
r

) log θ
log τ
Er,y(u), (3.67)

which implies, using the Sobolev–Poincaré inequality, that for all 1 ≤
q ≤ 2m

m−2 ,
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1
ρm

∫
B(y,ρ)

|u− ux,ρ|qdx ≤ C
(ρ
r

)q log θ
log τ
Ey,r(u), (3.68)

where C is a constant that depends only on τ .

Proof Iterating inequality (3.66) p times, we obtain that for all p ∈ N,

Ey,τpr(u) ≤ θpEy,r. (3.69)

Let 0 < ρ < r. There exists a unique p ∈ N such that

log
(
ρ
τr

)
log τ

≤ p < log
(
ρ
r

)
log τ

, (3.70)

and for this value of p we have τp+1r ≤ ρ < τpr, and hence

Ey,ρ(u) ≤ 1
τm−2

Ey,τpr(u) ≤ θp

τm−2
Ey,r(u). (3.71)

Still using (3.70), we have

θp

τm−2
≤ 1
τm−2θ

(ρ
r

) log θ
log τ

(3.72)

and we realize that (3.67) is a consequence of (3.71) and (3.72). Using
the Sobolev–Poincaré inequality (see [186]) we obtain that for all 1 ≤
q ≤ 2m

m−2 ,

(
1
ρm

∫
B(y,ρ)

|u− uy,ρ|q
) 1
q

≤ C(Ey,ρ(u)) 1
2 ,

which, together with (3.67), yields (3.68).

Proof of theorem 3.5.3: end of stage A Assume the conclusion of theorem
3.5.8. Let x ∈ Ω and ρ > 0 be such that B(x, 2r) ⊂ Ω and

Ex,2r(u) ≤ ε2 . (3.73)

Then an easy calculation shows that for any y ∈ B(x, r), we have
B(y, r) ⊂ B(x, 2r) and
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Ey,r(u) ≤ 2m−2Ex,2r(u). (3.74)

The monotonicity formula and inequalities (3.73) and (3.74) imply that
∀ρ ∈ (0, r)

Ey,ρ(u) ≤ Ey,r(u) ≤ 2m−2ε2.

We now use theorem 3.5.8 to deduce that at the point y we satisfy the
hypothesis of lemma 3.5.11 with θ = 1

2 . Applying this lemma, and in
particular inequality (3.68) which is valid for all y in B(x, r), we conclude
that the restriction of u to B(x, r) belongs to the Morrey–Campanato
space Lq,λ(B(x, r)), where 1 ≤ q ≤ 2m

m−2 and

λ = m+
q log θ
2 log τ

.

Then, theorem 3.5.10 implies that u is in C0,α in B(x, r), where α =
log θ

2 log τ .

Remark 3.5.12 The slightly artificial use of the coefficient 2m−2 in front
of ε2 in theorem 3.5.8, is what allows us to prove the Hölder continuity
of u in a neighborhood of x, instead of continuity at the point x. Notice
also that we should necessarily have θ < τ2, because if not u would have
to be constant.

Stage B Proof of theorem 3.5.8

It breaks down into several steps.

Step 1 Arguing by contradiction

We will suppose that the conclusion of theorem 3.5.8 is false and rea-
son by contradiction. This means that we suppose that there exists a
sequence of balls B(xk, rk) included in Ω and such that

Exk,rk(u) = λ
2
k → 0 (3.75)

and

Exk,τrk(u) >
1
2
λ2
k, (3.76)

where τ may be arbitrarily chosen in (0, 1). Let us do a scaling: for each
z in B(0, 1), we let
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vk(z) :=
u(xk + rkz)− uxk,rk

λk
,

where uxk,rk = 1
|B(xk,rk)|

∫
B(xk,rk)

u(x)dx = uk. We deduce from (3.75)
and (3.76) that

E0,1(vk) =
∫
B(0,1)

|dvk|2dz = 1, (3.77)

and

E0,τ (vk) =
1
τm−2

∫
B(0,τ)

|dvk|2dz > 1
2
. (3.78)

Moreover, since the mean value of vk over B(0, 1) is zero, it follows
from (3.77) that

sup
k∈N

∫
B(0,1)

|vk|2dz < +∞. (3.79)

Estimates (3.77) and (3.79) imply that there exists a subsequence of
k — which we will still denote by k — such that

vk → v strongly in L2(B(0, 1),Rn+1), (3.80)

vk ⇀ v weakly in H1(B(0, 1),Rn+1). (3.81)

Step 2 The limit v of vk is an Rn+1
-valued harmonic map

In order to prove it, we take any test function φ ∈ C∞
c (B(0, 1),Rn+1),

and let

φk(x) = T− xkrk ,
1
rk

φ(x) = φ
(
x− xk
rk

)
.

The hypothesis of u being weakly harmonic yields∫
B(xk,rk)

〈du, dφk〉 dx =
∫
B(xk,rk)

|du|2〈u, φk〉dx. (3.82)

We make the change of variable x = rkz + xk in both these integrals,
and write u in terms of vk (where u(x) = λkvk

(
x−xk
rk

)
+ uk):
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∫
B(0,1)

〈dvk, dφ〉dz =
∫
B(0,1)

λk|dvk|2〈u(xk + rkz), φ〉dz. (3.83)

When we pass to the limit in (3.83), we obtain, using (3.75), that

∫
B(0,1)

〈dv, dφ〉 dz = 0, (3.84)

i.e. that ∆v = 0. Therefore, we can use lemma 3.3.12 to obtain

1
τm−2

∫
B(0,τ)

|dv|2dz ≤ τ2,

since by (3.77) and (3.80),
∫
B(0,1)

|dv|2dz = 1. This is the moment to
choose τ : if it is sufficiently small, we will certainly have

E0,τ (v) <
1
4
. (3.85)

The idea now is to show that (3.78) and (3.85) are in contradiction,
but this cannot work unless we succeed in proving that vk converges
strongly to v in H1(B(0, 1)).

Step 3 Strong convergence of vk in H
1

We will just prove this convergence inH1(B(0, 12 )): it is clear that choos-
ing τ ≤ 1

2 , this will suffice to give a contradiction. Let ζ ∈ C∞
c (B(0, 1))

be a function which is constant equal to 1 in B(0, 12 ), and write

φk = ζ2(vk − v) ∈ H1
0 (B(0, 1)) .

The idea is to take advantage of the facts that u is weakly harmonic,
and v is harmonic, using φk as a test function, i.e.

∫
B(0,1)

〈dvk, dφk〉 dz = λk
∫
B(0,1)

|dvk|2 〈uk + λkvk, φk〉 dz , (3.86)

∫
B(0,1)

〈dv, dφk〉 dz = 0. (3.87)

Subtracting (3.87) from (3.86), we obtain
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∫
B(0,1)

〈d(vk − v), dφk〉 dz = λk
∫
B(0,1)

|dvk|2 〈uk + λkvk, φk〉 dz .
(3.88)

However, in writing these equations there is a slight problem due to
the integral on the r.h.s. of (3.82) and (3.88). In fact, |dvk|2(z)(uk +
λkvk)(z) = |dvk|2(z)u(rkz + xk) is only bounded in L1(B(0, 1)) and, a
priori, φk is not bounded in L∞(B(0, 1)) as k → ∞. Thus this integral
could tend to infinity.

We disregard this (crucial) difficulty for the moment, and try to see
first, what it is possible to obtain from (3.88). Using the expression of
φk as a function of v and vk, and using (3.80) and (3.81) in the integral
on the l.h.s. of (3.88), we see that the integral satisfies

Lk :=
∫
B(0,1)

ζ2|d(vk − v)|2dz + 2
∫
B(0,1)

ζ 〈d(vk − v), (vk − v)dζ〉 dz

≥
∫
B(0, 12 )

|d(vk − v)|2dz + o(1),

and thus, ∫
B(0, 12 )

|d(vk − v)|2dz ≤ Rk + o(1), (3.89)

where

Rk := λk
∫
B(0,1)

|dvk|2 〈uk + λkvk, φk〉 dz.

As in theorem 2.6.4, we will take advantage of the fact that 2〈u, du〉 =
d(|u|2) = 0, and hence that

〈uk + λkvk, dvk〉 = 0.

This implies, introducing the (n+ 1)× (n+ 1) matrices

bk,α = (uk + λkvk)
t∂vk
∂zα

− ∂vk
∂zα

t(uk + λkvk),

that (summing over α = 1, . . . ,m)

|dvk|2(uk + λkvk) = bk,α. ∂vk
∂zα
,
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and thus,

Rk = λk

∫
B(0,1)

〈
ζbk,α

∂vk
∂zα
, ζ(vk − v)

〉
dz

= λk(Ak +Bk),

where

Ak :=
∫
B(0,1)

〈
bk,α
∂(ζvk)
∂zα

, ζ(vk − v)
〉
dz,

Bk :=
∫
B(0,1)

〈
bk,αvk

∂ζ

∂zα
, ζ(vk − v)

〉
dz.

We need to show that Ak and Bk have a meaning. Moreover, knowing
that λk converges to 0, and because of (3.89), it suffices to show that
Ak and Bk are uniformly bounded in k to conclude that vk → v in
H1(B(0, 12 )), and thus conclude the proof of the theorem.

We start by examining Bk, the simplest of the two. In fact, we can
easily see that bk,α is bounded in L2(B(0, 1)), and therefore it suffices
to show that vk is bounded in L4(B(0, 1)), for Bk to make sense and be
bounded. We will show this in the next step.

The estimate for Ak will pass by a hairbreadth. We notice that

bk,α(z) =
rk
λk

(
u t ∂u

∂xα
− ∂u

∂xα
tu

)
(rkz + xk),

and thus, by Noether’s theorem,

m∑
α=1

∂

∂zα
(bk,α) = 0 .

Since we also have that bk,α is bounded in L2(B(0, 1)), we deduce,
just as in lemma 3.2.10, that bk,α.

∂(ζvk)
∂zα is bounded in the Hardy space

H1(Rm). We will also show in the following step that ζ(vk−v) is bounded
in BMO(Rm). Thus, using the Fefferman–Stein theorem on the duality
between H1(Rm) and BMO(Rm) (see definition 3.2.8), we deduce that

Ak =
∫
B(0,1)

〈
bk,α
∂(ζvk)
∂xα

, ζ(vk − v)
〉
dz

≤ C‖bk,α.∂(ζvk)
∂xα

‖H1(Rm)‖ζ(vk − v)‖BMO(Rm)

≤ C < +∞.
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Step 4 Estimates in L4
and BMO

Lemma 3.5.13 With the hypothesis we made on vk, it is bounded in
L4(B(0, 78 )) and ζ(vk − v) is bounded in BMO(Rm).

Proof Choose z0 ∈ B(0, 78 ) and 0 < r ≤ 1
8 , and let

yk = xk + rkz0 ∈ B(xk, 7rk8 ).

Then, by lemma 3.5.11 (monotonicity formula), we have

Eyk,rrk(u) ≤ 8m−2Eyk,
rk
8
(u)

≤ 8m−2Exk,rk(u)
= 8m−2λ2

k.

Hence, coming back to vk,

Ez0,r(vk) ≤ 8m−2.

Using the Sobolev–Poincaré inequality, this implies that

1
rm

∫
B(z0,r)

|vk − (vk)z0,r|dz ≤ C < +∞

(recall that by (vk)z0,r we mean the average of vk on B(z0, r)), and
since vk is bounded in L2(B(0, 1)) we deduce, using the John–Nirenberg
inequality, that vk is bounded in Lp(B(0, 78 )) for 1 ≤ p < +∞, and thus
in particular for p = 4. This proves the first statement. Concerning the
BMO estimate, we use the fact that ζ ∈ C∞ to deduce that

sup
B(z0,r)

|(ζvk)z0,r − ζ(v)z0,r| ≤
Cr

rm

∫
B(z0,r)

|vk|dz.

Hence, for z0 ∈ B(0, 34 ) and 0 < r ≤ 7
8 ,

1
B(z0, r)

∫
B(z0,r)

|ζvk − (ζvk)z0,r|dz
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≤ 1
rm

∫
B(z0,r)

|vk − (vk)z0,r|dz +
Cr

rm

∫
B(z0,r)

|vk|dz

≤ C +
C

rm−1

∫
B(z0,r)

|vk|dz

≤ C +
C

rm−1

(∫
B(0, 78 )

|vk|mdz
) 1
m

rm−1

≤ C .

A similar inequality is trivially valid for z0 ∈ Rm \B(0, 34 ) (since ζ = 0
on Rm \B(0, 58 )). This implies that ζvk is bounded in BMO(Rm).

Remark 3.5.14 It is interesting to notice that the BMO estimates are
a consequence of the symmetries of the domain manifold, via Noether’s
theorem 1.4.15 and lemma 3.5.6, whereas the Hardy space estimates
come from the symmetries of the image manifold, via Noether’s theorem
1.4.13. And these two facts complement each other precisely, thanks to
the Fefferman–Stein theorem on duality between Hardy space and BMO.

A variant of the above proof, which uses basically the same argument,
but without arguing by contradiction, can be found in [71] or [87].

Let us add also that the ideas used in the proof of Theorems 2.6.4 and
3.5.1 have been applied to other questions concerning maps into spheres
or symmetric manifolds: to the regularity of weakly p-harmonic maps by
L. Mou and P. Yang [119], by P. Strzelecki [161], by H. Takeuchi [162]; to
the compactness of weakly p-harmonic maps by T. Toro and C. Wang
[173]; to subelliptic p-harmonic maps by P. Hajlasz and P. Strzelecki
[79]; to biharmonic maps by S.-Y.A. Chang, L. Wang and P.C. Yang
[31]. In particular it has been realized that the use of Hardy space can
be replaced by other arguments as shown in [79] and one simple such
proof has been found by S.-Y.A. Chang, L. Wang and P.C. Yang [30].
Lastly, beautiful results on wave maps into spheres have recently been

found by T. Tao [163], [164] and generalized to maps into homogeneous
manifolds by S. Klainerman and I. Rodnianski [100] using similar ingre-
dients.



4

Harmonic maps without symmetry

We come back to the study of harmonic maps, but now we drop the
symmetry hypothesis on the image manifold. It is then clear that most
of the methods seen in chapter 3 are no longer valid. Nevertheless, it is
tempting to try to adapt these results to our new situation. This is the
näıve point of view we will adopt in this chapter.

The tool we will use the most, and which will replace the conserva-
tion laws in chapter 3, is an orthonormal moving frame on the image
manifold: it turns out that this choice of representation, used a century
ago by Gaston Darboux for the study of surfaces, and developed by
Elie Cartan, is very efficient for studying harmonic maps. We remark
that, as with all geometric coordinate systems, there is not only one,
but infinitely many ways of defining orthonormal tangent frame fields.
Instead of being an inconvenience, this abundance of choice is an ad-
vantage since one passes from one orthonormal frame field to another
through the action of a gauge group.

In this way, symmetries re-enter, and Noether’s theorem is not far
away: by choosing a “Coulomb frame”, the orthonormal frame selected
satisfies an equation which may be written as a conservation law.

The use of “Coulomb frames” is fundamental for the regularity theo-
rems for harmonic maps which will be presented in the first three sec-
tions. We will also need exotic function spaces (Hardy, BMO, Lorentz)
and some results from the previous chapter. Likewise, in chapter 5, we
will come back to Coulomb frames, and we will give an example of their
use for studying surfaces.

In section 4.4, we will discuss the compactness of weakly harmonic
maps in the weak topology. This problem, which was solved in the case
where the image manifold is symmetric (see theorem 2.5.1), is still open
in general, and we will not be able to solve it. Nevertheless, we will see

165
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that it may be possible to find conservation laws for generalized harmonic
maps, which might enable us to pass to the limit in the equation satisfied
by a sequence of weakly harmonic maps. “Producing” these conservation
laws should be a hard problem since it is analogous to the isometric
embedding of a Riemannian manifold. This is why I doubt that such a
strategy could be an easy way to prove the weak compactness of weakly
harmonic maps. Its interest is that it gives rise to many interesting open
questions.

4.1 Regularity of weakly harmonic maps of surfaces

The purpose of this section is the following result:

Theorem 4.1.1 [85] Let N be a C2 compact Riemannian manifold
without boundary. Let (M, g) be a Riemannian surface, and let u ∈
H1(M,N ). Then, if u is weakly harmonic, u is C1,α. Furthermore, if
the embedding of N into RN is Cl,α, for some l ≥ 2, then u is also Cl,α.
We start by noticing that to prove this theorem, it suffices to show

that it is valid in the neighborhood of each point in M. But, since ev-
ery sufficiently small geodesic ball in (M, g) is conformally equivalent
to the unit ball B2 of R2 equipped with the canonical metric (theorem
1.1.3), and since harmonic maps are preserved under conformal trans-
formation (proposition 1.1.2), it is enough to prove the result for maps
u ∈ H1(B2,N ), where B2 is the Euclidean unit ball.

Plan of the proof of theorem 4.1.1

We start by defining a smooth orthonormal tangent frame field over the
manifold (N , h). If y is a point in N , we denote by

ẽ(y) = (ẽ1(y), ..., ẽn(y))

the “value” of the field in y: ẽ(y) is an orthonormal basis of TyN .
We will write the equations satisfied by a weakly harmonic map u ∈

H1(B2,N ), by projecting them along the moving frame on N . But first,
it will be crucial to optimize the moving frame, adapting it to u. More
precisely, we introduce the “gauge group”

H1(B2, SO(n)) =
{
R ∈ H1(B2,M(n× n,R))|/ R ∈ SO(n) a.e.} ,
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and for each R = (Rab ) ∈ H1(B2, SO(n)), we consider

e(z) = (e1(z), . . . , en(z)) for almost all z ∈ B2

where

ea(z) :=
n∑
b=1

ẽb(u(z))Rba(z) . (4.1)

We choose an R that minimizes the functional

F (R) =
∫
B2

 n∑
a,b=1

〈
∂ea
∂x
, eb

〉2

+
〈
∂ea
∂y
, eb

〉2
 dxdy .

The frame obtained satisfies, in particular, the conservation law

∂

∂x

〈
∂ea
∂x
, eb

〉
+
∂

∂y

〈
∂ea
∂y
, eb

〉
= 0 in B2. (4.2)

We call such a frame a Coulomb frame. An important consequence of
equation (4.2) is that the coefficients

〈
∂ea
∂x , eb

〉
and

〈
∂ea
∂y , eb

〉
belong to

the Lorentz space L(2,1)(B2), instead of just L2(B2). We remark that
this slight improvement is due only to equation (4.2), and is true even
if u is not weakly harmonic.

Next, we use the fact that u is weakly harmonic. Defining

αa :=
〈
∂u

∂x
(z), ea(z)

〉
− i

〈
∂u

∂y
(z), ea(z)

〉
,

and

ωab :=
1
2

〈
∂eb
∂x

(z), ea(z)
〉
+
i

2

〈
∂eb
∂y

(z), ea(z)
〉

=
〈
∂eb
∂z

(z), ea(z)
〉

(where z = x + iy and ∂
∂z = 1

2

(
∂
∂x + i ∂∂y

)
), we see that αa and ωab

satisfy

∂αa

∂z
=

n∑
b=1

ωabα
b . (4.3)
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It is then possible to deduce from this equation that u is locally Lip-
schitz: it all boils down to showing that αa is locally bounded in L∞. A
priori, we know that αa and ωab are in L2(B2) and it seems hard to obtain
such an estimate. However, thanks to the particular choice of orthonor-
mal frame made above, we can show that ωab belongs to L(2,1)(B2), and
this suffices to conclude.

We did not mention a certain number of technical difficulties: can we
be sure that the frame field ẽ, where we start from, exists? Is it possible
to minimize the functional F?

We start by considering these questions.

It is not hard to find examples of manifolds N which, for topological
reasons, do not admit orthonormal frame fields defined everywhere: such
is the case for the spheres Sn, except for n = 1, 3 or 7. Thus, sometimes
it is impossible to construct the frame field (ẽ1, ..., ẽn) mentioned above.
We will see two ways of getting around this difficulty: the first is to
construct an isometric embedding J of N into another manifold N̂ , in
such a way that if u is a weakly harmonic map taking values in N , then
J ◦ u is weakly harmonic with values in N̂ .

At the same time, N̂ will be constructed in such a way that we will
always be able to define a frame field over it (we will have N̂ diffeomor-
phic to a torus). This result is the purpose of lemma 4.1.2 below. The
advantage of this construction is that it is valid for any dimension of the
domain manifold (of u), and we can thus use it to study the regularity
of stationary weakly harmonic maps in dimension bigger than 2 (see
theorem 4.3.1). The drawback is that we need to suppose N to be Ck,
with k ≥ 4, to be able to construct the embedding J .
Once this result is proved, we will need to deform ẽ◦u into a Coulomb

frame; that is the purpose of lemma 4.1.3, which is a generalization to
arbitrary dimension of a result in [43].

The second way to remedy the absence of smooth frame fields over N
is to directly construct a Coulomb frame adapted to u, by approximating
u by smooth maps uε for which there are no problems. We then show
that the Coulomb frames eε, associated to the uε, satisfy sufficiently
good estimates to allow us to pass to the limit when ε goes to 0. This
result is contained in lemma 4.1.6. It is valid as long as N is C2, but it
is necessary for the map u to be defined over a surface. I do not know
whether this result can be generalized to higher dimensions.
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Lemma 4.1.2 Let N be a compact n-dimensional submanifold, without
boundary and Ck embedded in (RN , 〈., .〉), where k ≥ 4. Then there
exists an N -dimensional submanifold, N̂ , Ck−1 isometrically embedded
in (RN̂ , 〈., .〉), and a Ck−1 embedding, J , of N in N̂ , such that

(i) J : (N , 〈., .〉RN ) −→ (N̂ , 〈., .〉
RN̂

) is an isometric embedding.
(ii) N̂ is diffeomorphic to the torus TN = (S1)N .
(iii) For any Riemannian manifold (M, g) of dimension m ≥ 1, for

any open set Ω of M and for any map u ∈ H1(Ω,N ), if u is
weakly harmonic, then so is J ◦ u.

Proof We start by introducing the objects and the notation. Since
N is compact, there exists a cube CN in RN which contains N . By
identifying opposite faces of CN , we obtain an N -dimensional torus TN .
Consider the Euclidean metric 〈., .〉 on TN . Indifferently, we consider N
as a submanifold of CN , TN or RN . Let

V2δN = {z ∈ CN | d(z,N ) < 2δ}
be a tubular neighborhood of N in CN . Choosing δ ∈ R∗

+ sufficiently
small, we may define, using an argument based on the implicit func-
tion theorem and a partition of unity, a (not necessarily orthogonal)
projection

P : V2δN −→ N ,
which will be Ck, if N is Ck (see exercises 1.7 to 1.11, end of section 1.4).
For y ∈ N , we define

Dy = {z ∈ V2δN | P (z) = y}.
Dy is topologically a (N−n)-dimensional disk, cuttingN transversally

at y. We may then define, for any z ∈ V2δN , the orthogonal projection

Vz : TzCN 0 RN −→ TzDP (z)

which, to each ξ ∈ TzCN , associates its “vertical” component Vz(ξ) in
the fibration P : V2δN −→ N .

We remark that Vz will then have a Ck−1 dependence on z.
We also consider the differential of P at z,
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dPz : TzCN 0 RN −→ TP (z)N
which is of class Ck−1.

We define the Ck−1 metric h0 on V2δN by, ∀z ∈ V2δN , ∀ξ, η ∈ TzCN ,

h0(z)(ξ, η) = 〈Vz(ξ), Vz(η)〉RN + 〈dPz(ξ), dPz(η)〉RN .

Then, choosing a function χ ∈ C∞
c (V2δN ) which is equal to 1 over

VδN , we may construct a metric h on TN (or RN ), which coincides with
h0 on VδN and with the Euclidean metric outside V2δN , by letting

h = χh0 + (1− χ)〈., .〉RN .

Using the Nash–Moser theorem (see [123], [102], [77]), since k ≥ 4
and h is Ck−1, we may isometrically embed the manifold (TN , h) in the
Euclidean space (RN̂ , 〈., .〉). Let J be this embedding – it will be Ck−1.
We define N̂ = J(TN ). Again, we consider the tubular neighborhood

V̂δ̂N̂ = {z ∈ RN̂ | d(z, N̂ ) < δ̂},

and we suppose δ̂ to be sufficiently small for us to be able to construct
a Ck−1 projection P̂ : V̂δ̂N̂ −→ N̂ . We also let

V̂δ̂N = {z ∈ RN̂ | d(z,N ) < δ̂} .

We suppose, as well, that δ̂ is sufficiently small to have

V̂δ̂N ∩ N̂ ⊂ J(VδN )

so that, since J is an embedding, we can define the inverse diffeomor-
phism of J

K : V̂δ̂N ∩ N̂ −→ VδN

such that J ◦K is the identity over V̂δ̂N ∩ N̂ .
Finally, for u ∈ H1(Ω,N ), we define

E(u) =
1
2

∫
Ω

gαβ(x)
〈
∂u

∂xα
,
∂u

∂xβ

〉
RN

dvolg
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(where H1(Ω,N ) = {u ∈ H1(Ω,RN ) | u(x) ∈ N a.e.}) and if v ∈
H1(Ω, N̂ ),

Ê(v) =
1
2

∫
Ω

gαβ(x)
〈
∂v

∂xα
,
∂v

∂xβ

〉
RN̂

dvolg .

Once we are this far, it just remains to check (iii) to prove the lemma.
Let u ∈ H1(Ω,N ) be a weakly harmonic map. Define

v = J ◦ u ∈ H1(Ω, N̂ ) .

Let φ ∈ H1
0 (Ω,R

N̂ ) ∩ L∞(Ω,RN̂ ) be a test function and estimate

Ê(P̂ (v + tφ))

to order 1 in t.
We remark thatK is an isometry from (V̂δ̂N∩N̂ , 〈., .〉

RN̂
) to (VδN , h) ⊂

(RN , h). Since P̂ (v + tφ) ∈ N̂ a.e., we can consider

wt = K ◦ P̂ (v + tφ)

and deduce from the fact that K is an isometry

Ê(P̂ (v + tφ)) =
1
2

∫
Ω

gαβ(x)hwt

(
∂wt
∂xα
,
∂wt
∂xβ

)
dvolg . (4.4)

Developing wt we have

wt = K ◦ P̂ (v) + tψt
= u+ tψt ,

where

ψt =
∫ 1

0

∂K ◦ P̂
∂yj

(v + stφ)φjds . (4.5)

Since K ◦ P̂ is bounded in Ck−1 and k ≥ 4, ψt is bounded in H1.
Moreover, for sufficiently small t,
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hwt

(
∂wt
∂xα
,
∂wt
∂xβ

)
=

〈
dPwt

(
∂wt
∂xα

)
, dPwt

(
∂wt
∂xβ

)〉

+
〈
Vwt

(
∂wt
∂xα

)
, Vwt

(
∂wt
∂xβ

)〉
(4.6)

with

dPwt

(
∂wt
∂xα

)
=
∂

∂xα
(P (wt)) . (4.7)

On the other hand,

Vwt = Vu + tδVt ,

where

δVt =
∫ 1

0

∂Vu+stψt

∂zi
ψitds

is bounded in L∞(Ω). And since Vu
(
∂u
∂xα

)
= 0, we have

Vwt

(
∂wt
∂xα

)
= (Vu + tδVt)

(
∂u

∂xα
+ t
∂ψt
∂xα

)

= t

[
δVt

(
∂u

∂xα

)
+ Vu

(
∂ψt
∂xα

)
+ tδVt

(
∂ψt
∂xα

)]
.

Thus,

∫
Ω

gαβ(x)
〈
Vwt

(
∂u

∂xα

)
, Vwt

(
∂wt
∂xβ

)〉
dvolg = O(t2) . (4.8)

Therefore, we deduce from (4.6), (4.7) and (4.8) that

Ê(P̂ (u+ tφ)) = E(P (u+ tψt)) +O(t2). (4.9)

But it is easy to see that when t goes to 0,

ψt → ∂K ◦ P̂
∂yj

(v)φj , in H1(Ω,RN ),

and we can then deduce, from the fact that u is weakly harmonic, that
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lim
t→0

Ê(P̂ (v + tφ))− Ê(v)
t

= 0 .

Thanks to the result we have just proved, it will be possible to re-
duce the study of a weakly harmonic map to the case where the image
manifold is diffeomorphic to a torus (as long as the image manifold we
start with is at least of class C4). The interest will then be that we
will have available a C1 orthonormal frame field over the image man-
ifold, ẽ(y) = (ẽ1(y), . . . , ẽn(y)). We denote by F the fiber bundle of
orthonormal frames over N . Its pull-back by u, which we will denote by
u∗F , is the bundle over Ω whose fiber over a point x ∈ Ω is the set of
orthonormal frames of Tu(x)N . It is not a smooth bundle since the fiber
will depend on x in an H1 fashion. From ẽ, which we may interpret as
a section of F , we construct a section ẽ ◦u of u∗F . In fact, it consists of
the map x  −→ (ẽ1(u(x)), . . . , ẽn(u(x))). We will then need to construct,
using ẽ◦u, a Coulomb frame over Ω, i.e. a finite energy harmonic section
of the fiber bundle u∗F . This is the purpose of the following result.

Lemma 4.1.3 Let N be an n-dimensional compact manifold without
boundary, C2 embedded in RN . Let (M, g) be a Riemannian manifold
and Ω an open subset of (M, g). Let u ∈ H1(Ω,N ) and e = (e1, . . . , en)
be any finite energy section of u∗F . Then, there exists a Coulomb frame
over Ω associated to u, e = (e1, . . . , en), i.e. a finite energy section of
u∗F such that


∂

∂xα

(
gαβ(x)

√
det g(x)

〈
∂ea
∂xβ
, eb

〉)
= 0 in Ω

nα(x)
〈
∂ea
∂xα
, eb

〉
= 0 on ∂Ω ,

(4.10)

where n is the normal vector on ∂Ω. Moreover, we have the estimates

‖ tede‖2
L2(Ω) ≤ ‖ tede‖2

L2(Ω), (4.11)

and

‖de‖2
L2(Ω) ≤ ‖ tede‖2

L2(Ω) + C‖du‖2
L2(Ω) , (4.12)

where C is a constant that depends only on N . In case e = ẽ ◦ u, where
ẽ is a C1 section of F , we deduce from (4.11) and (4.12) that



174 Harmonic maps without symmetry

‖de‖2
L2(Ω) ≤ C‖du‖2

L2(Ω). (4.13)

Remark 4.1.4 We can view e in two different ways. An intrinsic point
of view consists of seeing e as a harmonic section of u∗F . But we can
also consider e as a map in H1(Ω, (RN )n), which to nearly all x ∈ Ω
associates a family of n orthonormal vectors in RN constituting a basis
for Tu(x)N . In what follows, we will in fact represent e as the n × N
matrix of the components in the canonical basis of RN of the n vectors
e1, . . . , en, i.e.

e = (e1, . . . , en) =

 e11 . . . e1n
...

...
eN1 . . . eNn

 .
Thus, in inequalities (4.11) and (4.12), tede should be interpreted as

a matrix product; in this case it will be the n × n matrix whose ele-
ments are the 1-forms 〈dea, eb〉. Likewise, the action of the gauge group
H1(Ω, SO(n)) on u∗F will be represented by the matrix product

e  −→ eR

for any R ∈ H1(Ω, SO(n)) (here ea  −→
n∑
b=1

ebR
b
a).

Proof of lemma 4.1.3 For any map R ∈ H1(Ω, SO(n)), we consider the
moving frame e defined by

ea(x) = eb(x)Rba(x) ,

and we consider the quantity

F (R) =
1
2

∫
Ω

| tede|2dvolg ,

where

| tede|2 = gαβ(x)
n∑

a,b=1

〈
∂ea
∂xα
, eb

〉〈
∂ea
∂xβ
, eb

〉
.
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Step 1 Existence of a minimum for F

Let (Rk)k∈N be a sequence in H1(Ω, SO(n)), minimizing F . Define

ek(x) = e(x)Rk(x) .

We start by showing that (Rk) is bounded in H1(Ω, SO(n)). We can
easily see that

| tekdek|2 = | tede|2 + 2〈 tede, dRk tRk〉+ |dRk tRk|2
≥ (| tede| − |dRk|)2 . (4.14)

But | tede| is bounded in L2(Ω), and since (Rk) minimizes F , | tekdek|
is also bounded in L2(Ω). Thus, we deduce using (4.14) that |dRk| is
bounded in L2(Ω). Therefore, we may extract a subsequence of k (which,
to simplify, we still call k) such that there exists R ∈ H1(Ω, SO(n)),
satisfying

dRk ⇀ dR weakly in L2(Ω,M(n× n,R))
Rk → R in L2(Ω, SO(n))

(4.15)

Rk → R a.e. (4.16)

Using the dominated convergence theorem, we deduce from (4.16) that
| tedeRk − tedeR|2 goes to 0 in L1(Ω), and thus that

tedeRk → tedeR in L2(Ω,M(n× n,R)) . (4.17)

Since 〈 tede, dRk tRk〉 = 〈 tedeRk, dRk〉, the convergences (4.15) and (4.17)
imply that

lim
k→+∞

∫
Ω

〈 tede, dRk tRk〉dvolg =
∫

Ω

〈 tede, dR tR〉dvolg . (4.18)

Likewise, we deduce from (4.15) that

lim
k→+∞

∫
Ω

|dRk tRk|2dvolg ≥
∫

Ω

|dR tR|2dvolg . (4.19)

Therefore, we may conclude, putting together (4.14), (4.18) and (4.19),
that
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lim
k→+∞

F (Rk) ≥ F (R) . (4.20)

This implies that R minimizes F . We denote by e = (e1, . . . , en) the
frame associated to R.

Step 2 Euler–Lagrange equation
Given a test function φ ∈ C∞(Ω, so(n)), and for ε close to zero, let

Rε = R(x)exp(εφ(x))
= R(x)(1l + εφ(x) + o(ε)) ,

and
eε(x) = e(x)Rε(x)

= e(x)(1l + εφ(x) + o(ε)) .

Since R minimizes F , we necessarily have that

F (Rε) = F (R) + o(ε) .

A calculation yields

teεdeε = tede+ ε(dφ− φ tede) + o(ε) .
Thus, ∫

Ω

〈tede, dφ− φ tede〉dvolg = 0 . (4.21)

We now notice that, because φ takes values in so(n), the quantity
〈 tede, φ tede〉 always vanishes. This simplifies (4.21), and, integrating by
parts, we obtain

∫
∂Ω

〈
φ, te

∂e

∂n

〉
dσ −

∫
Ω

〈φ, divg( tede)〉dvolg = 0, (4.22)

where

divg( tede) =
1√
det g

∂

∂xα

(
gαβ(x)

√
det g

(
te
∂e

∂xβ

))
.

It is now obvious that (4.22) implies (4.10).
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Step 3 Estimates (4.11) and (4.12)

Estimate (4.11) is a consequence of the construction of e, obtained by
minimization. We will deduce (4.12).

For any y ∈ N , we denote by P (y) the orthogonal projection of RN

onto TyN , and P⊥(y) = 1lN − P (y). It follows from the hypothesis on
N that P and P⊥ are C1 maps on N . Using the identity

dei = P (u)(dei) + P⊥(u)(dei)

we deduce

‖de‖2
L2(Ω) =

n∑
a=1

‖P (u)(dea)‖2
L2(Ω) +

n∑
a=1

‖P⊥(u)(dea)‖2
L2(Ω)

= ‖ tede‖2
L2(Ω) +

n∑
a=1

‖P⊥(u)(dea)‖2
L2(Ω) . (4.23)

Since d(P⊥(u)ea) = 0, we obtain

n∑
a=1

‖P⊥(u)(dea)‖2
L2(Ω) =

n∑
a=1

‖d(P⊥(u))(ea)‖2
L2(Ω)

≤ ‖P‖2
W 1,∞‖du‖2

L2(Ω) , (4.24)

and (4.23) and (4.24) together imply that

‖de‖2
L2(Ω) ≤ ‖ tede‖2

L2(Ω) + ‖P‖2
W 1,∞‖du‖2

L2(Ω)

which is (4.12).

Remark 4.1.5 We see that the above proof of equation (4.10) repro-
duces that of Noether’s theorem (theorem 1.3.1) with the symmetry group
SO(n). This explains why (4.10) is a conservation law.

Lemma 4.1.6 Let N be a compact submanifold without boundary, C2

embedded in RN . Let B2 be the unit ball in R2 and u a map in H1(B2,N ).
There exists a constant γ0 depending only on N such that if

‖du‖2
L2(B2) ≤ γ0 , (4.25)

then we can construct a finite energy Coulomb orthonormal frame for u
(i.e. a harmonic section of u∗F ).
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Proof This result is proved by essentially following the proof of lemma
5.1.4, of the next chapter. We leave it to the reader as an exercise. The
plan is as follows:

Step 1 We start by working with a map u ∈ C2(B2,N ) ∩ H1(B2,N )
satisfying (4.25). Since u is smooth and B2 is contractible, it is possible
to construct a section e of u∗F (where F is the bundle of orthonormal
tangent frames on N ) belonging to C1(B2) ∩H1(B2).
We will work with e as a map in H1(B2,M(n×N,R)).

Step 2 We let e(z) = e(z)R(z), where R ∈ H1(B2, SO(n)), and we
minimize F (R) = 1

2‖ tede‖2
L2(B2) as in lemma 4.1.3. In this way we obtain

a Coulomb frame which we still denote by e(z) = (e1(z), . . . , en(z)).
Thanks to equation (4.10), there exist maps Aba in H1(B2) such that

(
∂Aba
∂x
,
∂Aba
∂y

)
=

(〈
∂ea
∂y
, eb

〉
,−

〈
∂ea
∂x
, eb

〉)
. (4.26)

A direct calculation then yields

−∆Aba =
N∑
k=1

{eka, ekb} in B2 (4.27)

and the boundary condition in (4.10) implies that we may choose

Aba = 0 on ∂B2. (4.28)

Using theorem 3.1.2, we deduce from (4.27) and (4.28) that there
exists a universal constant C1 such that

‖dA‖2
L2(B2) :=

n∑
i,j=1

‖dAji‖2
L2(B2) ≤ C1‖de‖4

L2(B2) . (4.29)

Step 3 We put together inequality (4.12) of lemma 4.1.3, i.e.

‖de‖2
L2(B2) ≤ ‖dA‖2

L2(B2) + C2‖du‖2
L2(B2)

with inequality (4.29). This yields

C1t
2 − t+ C2‖du‖2

L2(B2) ≥ 0 , (4.30)
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where t = ‖de‖2
L2(B2). We remark that if

‖du‖2
L2(B2) < γ0 := (4C1C2)−1,

then the polynomial in (4.30) would take negative values in a neighbor-
hood of t = (2C1)−1, and hence ‖de‖2

L2(B2) cannot approach this value.

Step 4 We go over the previous steps once again, but this time over balls
of variable size B2

r , 0 < r < 1. We show that ‖der‖2
L2(Br)

is a continuous
function of r, and that if (4.25) is true, then ‖der‖2

L2(Br)
cannot approach

t = (2C1)−1. By a continuity argument we deduce that

‖de‖2
L2(B2) ≤ (2C1)−1.

Step 5 We use a result of [145]: the set C2(B2,N ) is dense in H1(B2,N ),
and applying the previous steps to a sequence uk in C2(B2,N ) approach-
ing u in H1(B2,N ), we construct a sequence of bounded energy har-
monic sections u∗kF . Passing to the limit we obtain our result.

The following result will specify what is the gain of regularity obtained
by using a Coulomb frame in dimension 2. Here we will encounter once
more compensation phenomena for Jacobian determinants, as well as
Hardy and Lorentz spaces.

Lemma 4.1.7 Let N be a compact Riemannian manifold without bound-
ary, C2 embedded in RN . Let u ∈ H1(B2,N ) and e be a Coulomb frame,
i.e. a section of u∗F belonging to H1(B2), and satisfying (4.10). Then,
all the coefficients of tede belong to L(2,1)(B2). Moreover, there exists a
constant C such that

‖ tede‖2
L(2,1)(B2) ≤ C‖de‖4

L2(B2) . (4.31)

Furthermore, in the case where the frame e is obtained by minimiza-
tion, in the gauge orbit of a frame e = ẽ ◦ u (see lemma 4.1.3), we have
the estimate

‖ tede‖2
L(2,1)(B2) ≤ C‖du‖4

L2(B2) . (4.32)
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Proof Inequality (4.32) is an immediate consequence of (4.31) and of
inequality (4.13) in lemma 4.1.3.

In order to prove (4.31) we introduce the quantities Aba ∈ H1(B2)
defined by (4.26). Using equations (4.27) and (4.28) satisfied by Aba,
and applying theorem 3.4.1, we obtain that Aba ∈ L(2,1)(B2) and

‖dAba‖2
L(2,1)(B2) ≤ C‖dea‖2

L2(B2)‖deb‖2
L2(B2) (4.33)

which, because of (4.26), immediately yields (4.31).

Proof of theorem 4.1.1 Let u ∈ H1(B2,N ) be a weakly harmonic map.
We will apply lemma 4.1.6, and for this we need to assume that

‖du‖2
L2(B2) ≤ γ0 .

If such is not the case, it suffices to place ourselves in a smaller ball, so
that this hypothesis is satisfied. Thus, we obtain a finite energy Coulomb
frame e for u (a section of u∗F). Moreover, by lemma 4.1.7 we know
that tede is in L(2,1)(B2). Let

αa =
〈
∂u

∂x
, ea

〉
− i

〈
∂u

∂y
, eb

〉
for a = 1, ..., n

ωab =
〈
∂eb
∂z
, ea

〉
for a, b = 1, ..., n .

Writing

du =
n∑
a=1

〈du, ea〉ea (4.34)

and using the relations

d2u = 0, (4.35)

d(Ldu) = d
(
∂u

∂x
dy − ∂u

∂y
dx

)
= ∆u dx ∧ dy⊥TuN , (4.36)

we obtain that
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∂αa

∂z
=

n∑
b=1

ωabα
b, (4.37)

where the real part of (4.37) corresponds to (4.36) and the imaginary
part to (4.35). Putting

α =

 α1

...
αn

 ∈ Cn,

ω =


0 ω1

2 . . . ω1
n

ω2
1 0 . . . ω2

n
...

...
...

ωn1 ωn2 . . . 0

 ∈ SO(n)⊗ C,

we can also write (4.37) as

∂α

∂z
= ωα . (4.38)

The important fact to retain is that α ∈ L2(B2,Cn), and that, be-
cause of lemma 4.1.7 (and ω = 1

2

(
te ∂e∂x + i te ∂e∂y

)
), ω ∈ L(2,1)(B2, so(n)⊗

C). Using this information we will study equation (4.38).

Existence of solutions of (4.38) in L∞
loc

For any z0 ∈ B2, we choose a ball centered at z0 and contained in B2,
B2
z0 , such that

‖ω|B2
z0
‖L(2,1) <

1
3
√
2π
.

We will construct β ∈ L∞(B2
z0 , GL(n,C)), a solution of

∂β

∂z
= ωβ in B2

z0 . (4.39)

We temporarily denote by ω the function on R2 = C that coincides
with ω in B2

z0 , and takes the value 0 outside B2
z0 . We always have

‖ω‖L(2,1) < 1
2
√

2π
.

We now define the linear operator T on L∞(C,M(n,C)) by
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T (β)(z) =
∫
V

ω(v)β(v)
π(z − v) dv

1dv2

(we remark that T is the composition of two operators, the first one
being the convolution product by 1

πz , the kernel of ∂
∂z , and the second

one being the product on the left by ω).
Here we use the fact that L(2,1)(R2) and L(2,∞)(R2) are in duality

(see [158]), and that 1
πz is in L(2,∞)(R2). This implies that T maps

L∞(C,M(n,C)) continuously to itself, with the bound

‖T‖L∞ ≤ ‖ 1
πz

‖L(2,∞)‖ω‖L(2,1) <
1
3
. (4.40)

Applying T to both sides of equation (4.39), we see that any solution
β of (4.39) should be a solution of

β − T (β) = H , (4.41)

where H : C −→ M(n,C) is holomorphic. Using estimate (4.40), we
deduce, using a fixed point argument, that if H is in L∞(C) (and in
particular if it is constant), equation (4.41) has a unique solution. We
choose H = 1l, so that

‖β − 1l‖L∞ ≤ 2
3
,

and β takes values in the set of regular matrices, GL(n,C). Further-
more, it is clear that β is also a solution of (4.39).

Conclusion We use over B2
z0 the solution β of (4.39) which we have just

constructed. We deduce from (4.38) that

∂

∂z
(β−1α) = β−1(ω − ω)α = 0.

Hence β−1α is holomorphic in B2
z0 , and, in particular, is locally bounded.

This yields that α ∈ L∞
loc(B

2,Cn), i.e. that u is locally Lipschitz. Using
equation (1.65), we deduce that ∆u ∈ L∞

loc, and hence, by the Sobolev
embedding theorems (see [19]), this implies that u is C1,α. All higher
regularity follows from theorem 1.5.1.
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A variant of the proof

It is possible to obtain this result using, instead of complex analysis, esti-
mates in Morrey–Campanato spaces (see section 3.5). These techniques
are more complicated but have the advantage of being more flexible
when we are interested in generalizing theorem 4.1.1 (as we will see in
section 4.2). The method proposed here is a simplification of the result
in [38].

Proof of theorem 4.1.1 (variant) The beginning is similar to the previous
proof: we construct a Coulomb frame e = (e1, ..., en). Then, we know
by lemma 4.1.7 that tede is in L(2,1)(B2), and that ‖ tede‖L(2,1)(B2) is
controlled by ‖du‖L2(B2). Up to working on an even smaller ball, we
can always suppose that

‖ tede‖L(2,1)(B2) ≤
ε0
4
, (4.42)

where ε0 > 0 is a constant which will be chosen later.

Step 1 Rewriting
For each z0 ∈ B2 and r > 0 such that B2(z0, r) ⊂ B2, we decompose
each 1-form 〈du, ei〉 over Br := B2(z0, r) according to



〈
∂u

∂x
, ea

〉
=
∂wa

∂x
− ∂v

a

∂y
in Br,〈

∂u

∂y
, ea

〉
=
∂wa

∂y
+
∂va

∂x

(4.43)

where va = 〈ũ, ea〉, i.e.

{ −∆va = {u, ea} in Br
va = 0 on ∂Br .

(4.44)

We deduce, by a simple calculation using (4.43), that ‖du‖2
L2(Br)

=
‖dv‖2

L2(Br)
+ ‖dw‖2

L2(Br)
.

Having in mind (4.44), we might feel like estimating dva in L(2,1)(Br),
using the results of chapter 3. We will proceed otherwise, rewriting
(4.44) as
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−∆va =
n∑
b=a

(〈
∂u

∂x
, eb

〉〈
eb,
∂ea
∂y

〉
−

〈
∂u

∂y
, eb

〉〈
eb,
∂ea
∂x

〉)
. (4.45)

Likewise, using the fact that u is weakly harmonic and (4.43), we have

−∆wa = −
n∑
b=a

(〈
∂u

∂x
, eb

〉〈
eb,
∂ea
∂x

〉
+

〈
∂u

∂y
, eb

〉〈
eb,
∂ea
∂y

〉)
. (4.46)

For convenience, we condense equations (4.45) and (4.46), using (4.43),
as

−∆U = AdU in Br (4.47)

where U and A = (Ax, Ay) are defined by

U =



v1

...
vn

w1

...
wn


∈ R2n,

Ax =

 − te
∂e

∂x
− te
∂e

∂y

te
∂e

∂y
te
∂e

∂x

 , Ay =


te
∂e

∂y
te
∂e

∂x

− te
∂e

∂x
te
∂e

∂y

 .
Pause Idea of the proof

We will look for Morrey–Campanato-type estimates for U in a well-
chosen norm. The information we will use will be the fact that U is in
L2(Br) and A has its coefficients in L(2,1)(Br), with the estimate

‖A‖L(2,1)(Br) ≤ ε0, (4.48)

thanks to (4.42). The idea is to treat equation (4.47) as a perturbation
of −∆U = 0. In order to do so, we decompose U as

U = U0 + U1,

where



4.1 Regularity of weakly harmonic maps of surfaces 185

{ −∆U0 = 0 in Br
U0 = U on ∂Br,

(4.49)

and

{ −∆U1 = AdU in Br
U1 = 0 on ∂Br.

(4.50)

A second idea will be to work with the L(2,∞) norm. The reason for
this is that because the r.h.s. of (4.47) belongs to L1, we will (unfortu-
nately) not have an estimate of dU in L2 (see theorem 3.3.6).

Step 2 Estimate for U0

Choose α ∈ (0, 1] and apply lemma 3.3.13 to U0, with p = 2 and q = +∞.
We obtain that for each constant γ such that 0 < γ < 2

p , there exists a
constant C(γ), such that

‖dU0‖L(2,∞)(Bαr) ≤ C(γ)αγ ‖ dU ‖L(2,∞)(Br) . (4.51)

It will suffice in what follows to choose, for instance, γ = 1
2 .

Step 3 Estimate for U1

We will use the fact that the r.h.s. of equation (4.50) is in L1(Br), to-
gether with theorem 3.3.6, to estimate dU1 in L(2,∞):

‖dU1‖L(2,∞)(Br) ≤ C‖AdU‖L1(Br). (4.52)

But instead of using the inequality ‖AdU‖L1 ≤ ‖A‖L2‖dU‖L2 , we will
take advantage of the fact that L(2,1) and L(2,∞) are in duality:

‖AdU‖L1(Br) ≤ ‖A‖L(2,1)(Br)‖dU‖L(2,∞)(Br). (4.53)

Then, it follows from (4.52), (4.53) and (4.48) that

‖dU1‖L(2,∞)(Br) ≤ Cε0‖dU‖L(2,∞)(Br). (4.54)

Step 4 Conclusion
We put together estimates (4.51) and (4.54). They imply that

‖dU‖L(2,∞)(Bαr) ≤ (Cε0 + C(γ)αγ)‖dU‖L(2,∞)(Br).
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It remains only to choose ε0 and α sufficiently small for θ := Cε0 +
C(γ)αγ to be strictly smaller than 1. By an argument analogous to that
of lemma 3.5.11, we deduce that there is a constant C such that

‖dU‖L(2,∞)(Br) ≤ Cr
log θ
logα . (4.55)

Then, using the estimate

‖dU‖Lp(Br) ≤ Cr
2−p
p ‖dU‖L(2,∞)(Br)

valid for all 1 ≤ p < 2 (see [95]), and the Sobolev–Poincaré inequality

(
1
r2

∫
Br

|U − Uz0,r|q
) 1
q

≤ Cr1− 2
p ‖dU‖Lp

(for 1 ≤ q < p
2−p ), we deduce from (4.55) that U belongs (locally) to

the Morrey–Campanato space Lq,2+q log θ
logα . Hence, by theorem 3.5.10, U

is locally in C0, log θlogα . We remark that this reasoning is the same as that
used to conclude the proof of theorem 3.5.3. Using theorem 1.5.1, we
deduce our result.

Remark 4.1.8 Theorem 4.1.1 was extended to the case of weakly har-
monic maps on a surface M with boundary by Jie Qing ([132]).

Remark 4.1.9 (a heuristic justification for the use of Coulomb
frames) We can give two reasons why the use of Coulomb frames is well
adapted to the study of weakly harmonic maps. First, we may notice that
the essential difficulty of the problem is connected to the image mani-
fold being curved. The Riemannian curvature is precisely what measures
the lack of flatness. But, when we use Elie Cartan’s description of a
Riemannian manifold in terms of moving frames, the curvature is rep-
resented by a 2-form with coefficients in the Lie algebra so(n). Hence, if
we put ourselves in the place of a map u from B2 to the manifold (which
may require a certain effort), the curvature effects are felt through the
pull-back by u of this curvature form, which is essentially a combination
of order 2 minors of the Jacobian matrix. But then, Wente’s theorem
tells us that this type of non-linearity is not very bad. A second reason
is the difficulty in taking advantage of the Euler equation ∆u ⊥ TuN .
Recall that it is an equation in the sense of distributions which needs
to be tested with functions φ in H1

0 (Ω,R
N ) ∩ L∞(Ω,RN ). But we may
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as well suppose φ to be smooth. Moreover, if we see things on a very
small scale, we can finally think of φ as being a constant: then u can
have a violent behavior, without our being able to measure it using φ.
We are in the situation of the “Young man intrigued by the theft of the
non-euclidean fly” (a drawing by Max Ernst): the mean displacement of
the fly in one direction is nearly null but, nevertheless, it moves a lot.
It is thus necessary to be able to follow the map u in all its movements,
even if it tries to escape. We have seen two procedures to achieve this:
when N is symmetric, the function φ that should be used is given by
composing a Killing vector field on N with u; in the general case, the
test function is constructed using a Coulomb frame.

4.2 Generalizations in dimension 2

The result of the previous section has been extended to other 2-dimensio-
nal variational problems for which the Lagrangian is a quadratic function
of the gradient. One possibility is, for instance, to consider that the
metric over the image manifold depends on both the domain and the
image variables, i.e. that we look at maps from B2 (to simplify) to a
manifold N , which are critical points of

F (u) =
∫

Ω

gαβ(z, u(z))
(
∂u

∂zα
,
∂u

∂zβ

)
dxdy,

where gαβ(z, u(z)) is a positive definite symmetric bilinear form on
Tu(z)N . We can think of such maps as (weakly harmonic) sections of a
fiber bundle over B2 or any other surface. This problem was studied by
Gilles Carbou [28], who proved the regularity of the critical points of F
in the case where gαβ(z, u(z)) = g(z, u(z))δαβ . Another example of a
problem is to study the maps u in H1(B2,N ) which are critical points
of the functional

Eω(u) =
∫
B2

( |du|2
2

+ ω(u)
(
∂u

∂x
,
∂u

∂y

))
dxdy

=
∫
B2

|du|2
2
dxdy +

∫
B2
u∗ω, (4.56)

where ω is a 2-form on N . We will suppose that N is a C2 submanifold
of RN , and that we extended ω to a C2 2-form on RN . A calculation
of the first variation of Eω yields, for any function φ ∈ H1

0 (B
2,RN ) ∩

L∞(B2,RN ) such that 〈φ, u〉 = 0 a.e.,
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δEω(u)(φ) =
∫

Ω

(
〈dφ, du〉+ dω

(
φ,
∂u

∂x
,
∂u

∂y

))
dxdy. (4.57)

Consequently, the critical points of Eω are distributional (weak) solu-
tions of

−∆u+ F ⊥ TuN , (4.58)

where F is the map from B2 to RN such that F (z) ∈ Tu(z)N a.e. and

∀V ∈ TuN , 〈V, F (z)〉 = dω(u)
(
V,
∂u

∂x
,
∂u

∂y

)
. (4.59)

We remark that in the case where N is 3-dimensional, dω may be
written as dω = 2Hdvol, where dvol is the volume form on N and H is
a Lipschitz function on N . We have already seen this type of equation
in chapter 2, for simple cases (N = Rn): this equation is connected to
prescribed mean curvature surfaces because if u is a conformal immersion
satisfying (4.58), then the image of u will have a mean curvature equal
to H(u) (see [78]).

We will prove the following result, due to Philippe Choné, which gen-
eralizes a previous result due to Fabrice Bethuel [9].

Theorem 4.2.1 [38] Suppose that ω is a C2 2-form on RN , and that N
is a C2 compact submanifold of RN with no boundary. Then, any map
u ∈ H1(B2,N ), which is a weak solution of solution (4.58), is smooth.

Proof We start in the same way as in the proof of theorem 4.1.1. Using
lemma 4.1.6 we construct a Coulomb frame e over B2 (up to replacing
B2 by a smaller ball in order to have ‖du‖2

L2(B2) ≤ γ0). Then, using
lemma 4.1.7, we deduce that tede is bounded in L(2,1). Up to changing
once more the size of the ball, we will suppose, once and for all, that

‖ tede‖L(2,1)(B2), ‖de‖L2(B2), ‖du‖L2(B2) ≤ ε0 (4.60)

where ε0 will be chosen later.

Step 1 Using Cartesian coordinates y1, . . . , yN on RN , we may write
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ω =
∑

1≤i≤j≤N
ωij(y)dyi ∧ dyj ,

and

dω =
∑

1≤i<j<k≤N
(dω)ijk(y)dyi ∧ dyj ∧ dyk.

We introduce on B2 the functions

Baij(z) =
N∑
k=1

(dω)ijk(u(z))eka(z), (4.61)

for a = 1, ..., n and i, j = 1, ..., N , so that

〈F, ea〉 =
∑

1≤i<j≤N
Baij{ui, uj} for a = 1, . . . , n.

We remark that since the (dω)ijk are Lipschitz functions, and because
of (4.60), we have

‖dBaij‖L2(B2) ≤ Cε0. (4.62)

Having introduced the notation Baij we can rewrite equation (4.58) as

−〈∆u, ea〉+
∑

1≤i<j≤N
Baij{ui, uj} = 0, ∀a = 1, . . . , n. (4.63)

Step 2 Let z0 ∈ B2 and r > 0 be such that Br := B2(z0, r) is included
in B2. We decompose the forms 〈du, ea〉 over Br as


〈
∂u

∂x
, ea

〉
=
∂wa

∂x
− ∂v

a

∂y〈
∂u

∂y
, ea

〉
=
∂wa

∂y
− ∂v

a

∂x
,

(4.64)

where

va =
N∑
k=1

ũkekaBr (4.65)

and
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−∆wa = −
n∑
b=1

(〈
∂u

∂x
, eb

〉〈
eb,
∂ea
∂x

〉
+

〈
∂u

∂y
, eb

〉〈
eb,
∂ea
∂y

〉)
−

∑
1≤i<j≤N

Baij{ui, uj} in Br. (4.66)

We also decompose, for 1 ≤ a ≤ n and 1 ≤ j ≤ N ,

N∑
i=1

Baijdu
i = dsaj + Ldt

a
j (4.67)

where

taj =
N∑
i=1

B̃aiju
i
Br
. (4.68)

We deduce from (4.67) that

∑
1≤i<j≤N

Baij{ui, uj} =
1
2

N∑
j=i

{saj , uj} −
1
2

N∑
j=i

〈dtaj , duj〉. (4.69)

We remark that, by the definition of taj , hypothesis (4.60) implies

‖dtaj ‖L(2,1)(Br) ≤ Cε20, (4.70)

which implies, again using (4.60) and (4.67),

‖dsaj ‖L2(Br) ≤ Cε0. (4.71)

We may now condense the system of equations (4.65), (4.66) and
(4.69) in the form

−∆U = 〈AdU〉 − 1
2
{S, u}+ 1

2
〈dT · du〉 (4.72)

where

U =
(
v

w

)
, A = (Ax, Ay),
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Ax =

 − te
∂e

∂x
− te
∂e

∂y
te
∂e

∂y
te
∂e

∂x

 ; Ay =

 te
∂e

∂y
te
∂e

∂x

− te
∂e

∂x
te
∂e

∂y

 ,

S =


0n×N

s11 . . . s1N
...

...
sn1 . . . snN

 ; T =


0n×N

t11 . . . t1N
...

...
tn1 . . . tnN

 ,
and {S, u} = ∂S

∂x
∂u
∂y − ∂S

∂y
∂u
∂x .

We remark that, thanks to (4.64), the norms of dU and du are all
equivalent, i.e.∀p ∈ (1,+∞),∀q ∈ [1,+∞],∃m,M > 0

m‖dU‖L(p,q) ≤ ‖du‖L(p,q) ≤M‖dU‖L(p,q) .

Step 3 We decompose U as U = U0 + U1 + U2, where{ −∆U0 = 0 in Br
U0 = U on ∂Br,{ −∆U1 = 〈AdU〉+ 1

2 〈dT, du〉 in Br
U1 = 0 on ∂Br,{ −∆U2 = − 1

2{S, u} in Br
U2 = 0 on ∂Br.

We now estimate U0, U1 and U2 in L(2,∞).

(i) Using lemma 3.3.13 with U0, p = 2, q = +∞ and γ ∈ (0, 1), we
obtain

‖dU0‖L(2,∞)(Bαr) ≤ C(γ)αγ‖dU‖L(2,∞)(Br), (4.73)

for all α ∈ (0, 1).
(ii) Using (4.60) and the duality between L(2,1) and L(2,∞), we have

‖〈A, dU〉‖L1(Br) ≤ ‖A‖L(2,1)(Br)‖dU‖L(2,∞)(Br)

≤ Cε0‖dU‖L(2,∞)(Br),

and by (4.70)
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‖〈dT, du〉‖L1(Br) ≤ ‖dT‖L(2,1)(Br)‖du‖L(2,∞)(Br)

≤ Cε0‖du‖L(2,∞)(Br).

These two inequalities yield, using theorem 3.3.6,

‖dU1‖L(2,∞)(Br) ≤ Cε0‖dU‖L(2,∞)(Br). (4.74)

(iii) Finally, to deduce from the equation on U2 an estimate for dU2,
we use theorem 3.4.5 to obtain

‖dU2‖L(2,∞)(Br) ≤ ‖dU2‖L2(Br)

≤ C‖dS‖L2(Br)‖du‖L(2,∞)(Br)

≤ Cε0‖du‖L(2,∞)(Br). (4.75)

Step 4 We put together inequalities (4.73), (4.74) and (4.75) to obtain
that for every θ ∈ (0, 1), we may choose ε0 and α sufficiently small in
order to have

‖dU‖L(2,∞)(Bαr) ≤ θ‖dU‖L(2,∞)(Br).

Then we can finish the proof as in the variant of the proof of theorem
4.1.1.

This result is a step towards the proof of the following conjecture due to
Stefan Hildebrandt: in dimension 2, the maps in H1 which are critical
points of a functional which is invariant under conformal transformation,
are smooth. We recall that every functional which is invariant under
conformal transformation on a domain Ω in R2 is of the form

L(u) =
∫

Ω

L(u, du)dxdy,

where it is reasonable to suppose that L is a C1 function and satisfies

∑
i

∂ui

∂x

∂L

∂ ∂u
i

∂x

+
∂ui

∂y

∂L

∂ ∂u
i

∂y

= 2L

∑
i

∂ui

∂x

∂L

∂ ∂u
i

∂y

− ∂ui

∂y

∂L

∂ ∂u
i

∂x

= 0.
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(See [88] for more details on this class of variational problems.)

4.3 Regularity results in arbitrary dimension

In this section we present a result due to Fabrice Bethuel which general-
izes the theorem of L.C. Evans (3.5.1) to the case of stationary harmonic
maps with values in arbitrary manifolds. A part of the procedure is es-
sentially the same, but the lack of symmetry makes the problem more
complex and we need to use Coulomb frames like those introduced for
theorem 4.1.1.

Theorem 4.3.1 [10] Let Ω be an open domain in an m-dimensional
Riemannian manifold (M, g), and let N be a compact Riemannian sub-
manifold, isometrically embedded in a C5 way into (RN , 〈., .〉). We as-
sume g to be C0,α. Let u ∈ H1(Ω,N ) be a weakly stationary map. Then,
there exists a closed subset S of Ω, whose (m−2)-dimensional Hausdorff
measure is zero, and such that u is C1,α in Ω\S.

Remark 4.3.2 In the case where it is possible to construct an orthonor-
mal tangent frame field on N , it suffices to suppose N to be C2 for the
result to be valid. Moreover, depending on the regularity of (M, g) and
of N , the regularity of u outside S may be improved (see theorem 1.5.1).

For simplicity, we will just prove this result for the case where Ω is
an open subset of Rm. Part of the proof of this result is identical to
that of theorem 3.5.1: it consists of the arguments used for deducing
theorem 3.5.1 from theorem 3.5.3. We will not repeat this part and will
concentrate on proving the following (analogous to theorem 3.5.3).

Theorem 4.3.3 With the same hypotheses as in theorem 4.3.1, there
exists ε > 0 such that if for x ∈ Ω and R > 0,

Ex,4R(u) ≤ ε2, (4.76)

then u is Hölder continuous in a neighborhood of x.

Recall that if B(x, r) ⊂ Ω, we write

Ex,r =
1
rm−2

∫
B(x,r)

|du|2dx.
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As in theorem 3.5.1, the hypothesis of u being Noether harmonic is used
only in order to have the monotonicity formula

Ex,r1(u) ≤ Ex,r2(u), ∀r1 < r2, (4.77)

proved in lemma 3.5.4.
We will use the following quantity: for x0 ∈ Ω, r > 0 such that

B(x0, r) ⊂ Ω,

M(x0, r) = sup

{
1
ρm−1

∫
B(x,ρ)

|du| dy | B(x, ρ) ⊂ B(x0, r)
}
.

Notice that, by the Poincaré–Sobolev inequality, M(x0, r) bounds the
BMO norm of u in B(x0, r). But the quantity M(x0, r) is itself con-
trolled by Ex0,2r(u), since by the Cauchy–Schwarz inequality,

1
ρm−1

∫
B(x,ρ)

|du| dy ≤
(
C

ρm−2

∫
B(x,ρ)

|du|2dy
)1/2

= C (Ex,ρ(u))
1/2
.

And, because of (4.77), and the fact that B(x0, 2r) ⊂ Ω,

Ex,ρ(u) ≤ Ex,ρ+r(u) ≤ 2m−2Ex0,2r(u),

and thus, by the definition of M(x0, r),

M(x0, r) ≤ C (Ex0,2r(u))
1/2
< +∞. (4.78)

Theorem 4.3.3 follows from:

Theorem 4.3.4 Under the hypotheses of theorem 4.3.1, there exist ε >
0, θ ∈ (0, 1) and τ < 1

2 such that if B(y, 2r) ⊂ Ω and

Ey,2r(u) ≤ 22−mε2, (4.79)

then

M(y, τr) ≤ θM(y, r). (4.80)

How does theorem 4.3.3 follow from theorem 4.3.4?

Let x ∈ Ω, and choose R > 0 such that B(x, 4R) ⊂ Ω and

Ex,4R(u) ≤ ε2.
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Then an elementary calculation yields that for all y ∈ B(x, 2R), we have
that B(y, 2R) ⊂ Ω and

Ey,2R(u) ≤ 2m−2Ex,4R(u) ≤ 2m−2ε2.

Using the monotonicity formula (4.77), we deduce that ∀r ∈ (0, R),

Ey,2r(u) ≤ Ey,2R(u) ≤ 2m−2ε2. (4.81)

Applying theorem 4.3.4 we deduce from (4.81) that ∃τ ∈ (0, 1/2),
∃θ ∈ (0, 1), ∀r ∈ (0, R),

M(y, τr) ≤ θM(y, r).

By a reasoning identical to that of lemma 3.5.11, this implies that ∀r ∈
(0, R),

M(y, r) ≤ 1
θ

( r
R

) log θ
log τ
M(y,R). (4.82)

In particular,

1
rm−1

∫
B(y,r)

|du| dz ≤ C
( r
R

) log θ
log τ
M(y,R).

Using the Poincaré–Sobolev inequality, we deduce the following inequal-
ity, valid for all y ∈ B(x, 2R), r ∈ (0, R), and 1 ≤ q ≤ m

m−1 :(
1
rm

∫
B(y,r)

|u− uy,r|q
) 1
q

≤ Cr log θ
log τ .

This means that the restriction u|B(x,2R) belongs to the Morrey–Campa-
nato space Lq,λ(B(x, 2R)), where λ = m+ q log θ

log τ and 1 ≤ q ≤ m
m−1 . By

theorem 3.5.10, we deduce that u is C0, log θlog τ in B(x, 2R). We conclude
using theorem 1.5.1.

Hodge decomposition of differential forms

Recall that for weakly harmonic maps on surfaces, in the variant of the
proof of theorem 4.2.1, we used the Hodge decomposition


〈
∂u

∂y
, ea

〉
=

∂wa

∂x
− ∂v

a

∂y〈
∂u

∂x
, ea

〉
=
∂wa

∂y
+
∂va

∂x
.

(4.83)
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Note that Hodge decomposition arguments can also be used for proving
theorem 2.6.4 without using Wente’s lemma or Hardy spaces. This was
actually the original method used in [83] for proving theorem 2.6.4, and
in [84] where theorem 2.6.4 was generalized to weakly harmonic maps
into homogeneous manifolds.

In the proof of theorem 4.3.4, we will be led to consider the generaliza-
tion of this decomposition to arbitrary dimension. We start by noticing
that, using the language of differential forms, (4.83) may be written as

〈du, ea〉 = dwa + Ldva,
where Ldva = L(∂v

a

∂x dx+
∂va

dy dy) = −∂va

∂y dx+
∂va

∂x dy. We will work with
this formalism. A general definition of the Hodge L operator is the fol-
lowing.

Definition 4.3.5 For 0 ≤ k ≤ m, we denote by ΛkRm the vector space
of skew-symmetric multilinear forms on Rm. The Hodge L operator is
the unique linear operator from ΛkRm to Λm−kRm such that

(i) L1 = dx1 ∧ ... ∧ dxm
(ii) ∀α, β ∈ ΛkRm, α ∧ (Lβ) = β ∧ (Lα) = 〈α, β〉dx1 ∧ ... ∧ dxm.

We also use the following notation: if φ belongs to L2(Rm,ΛkRm),

δφ = (−1)mk+m+1 L d L φ

(δ is the adjoint of d for the scalar product in L2(Rm,ΛkRm)).
A generalized version of (4.83) is:

Lemma 4.3.6 Let φ ∈ L2(Rm,Λ1Rm) be a differential 1-form with co-
efficients in L2(Rm). Then, there exists a unique function w ∈ L2�(Rm)
and a unique 2-form v ∈ L2�(Rm,Λ2Rm) (where 24 := 2m

m−2) such that

φ = dw + δv (4.84)

dv = 0. (4.85)

Furthermore, if we write v =
∑

1≤α≤β≤m vαβdx
α ∧ dxβ, then dw and

dvαβ belong to L2(Rm) and we have the estimate

||(w, vαβ)||2L2� + ||d(w, vαβ)||2L2 ≤ C||φ||2L2 . (4.86)
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Remark 4.3.7 We will define

L2
1(R

m) := {f ∈ L2� | df ∈ L2(Rm)}.
This space is the closure of C∞

c (Rm) for the seminorm ||df ||L2 (Gagliardo–
Nirenberg–Sobolev inequality, see [19]). The restriction of a function in
this space to any open bounded subset of Rm belongs to H1.

Proof of lemma 4.3.6 Recall that for any B ∈ L2(Rm,ΛkRm), a differ-
ential k-form, if

B =
∑

1≤α1<...<αk≤m
Bα1...αkdx

α1 ∧ ... ∧ dxαk ,

then

(dδ + δd)B = −
∑

1≤α1<...<αk≤m
∆Bα1...αkdx

α1 ∧ ... ∧ dxαk ,

which justifies the following notation which we will use below:

−∆k := (δd+ dδ)|L2(Rm,ΛkRm).

We look at relation (4.84): φ = dw + δv. Applying δ we obtain

∆w =
m∑
α=1

∂φα
∂xα

in Rm. (4.87)

If we impose the condition w ∈ L2�(Rm), this implies the uniqueness
of w. The existence of w may be proved by minimizing in L2

1(R
m) the

functional ∫
Rm

|df − φ|2dx

(exercise!) We also have the inequality

||dw||2L2(Rm) ≤ ||φ||2L2(Rm),

and using the Gagliardo–Nirenberg–Sobolev inequality, we deduce the
upper bound for ||w||L2� (Rm) given by (4.86). Likewise, applying the
operator d to equation (4.84), and using (4.85), we obtain

−∆2v = dφ in Rm, (4.88)
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or equivalently,

−∆vαβ =
∂φβ
∂xα

− ∂φα
∂xβ
.

The existence, uniqueness and estimates for v in L2
1(R

m,Λ2Rm) are ob-
tained as for w.

To conclude, let us check that we answered the question correctly: is
relation (4.84) satisfied? To see this, it suffices to notice that the 1-form
φ − dw − δv is harmonic and has coefficients in L2

1(R
m), and thus is

identically zero.

Proof of theorem 4.3.4

Strategy of the proof

Choose a point y in Ω, and a real r > 0, such that B(y, 2r) ⊂ Ω and

Ey,2r(u) ≤ 22−mε2, (4.89)

where ε will be chosen later. We start by deducing from (4.89) and the
monotonicity formula, that for any ball B(z, ρ) contained in B(y, r),

Ez,ρ(u) ≤ 2m−2Ey,2r(u) ≤ ε2. (4.90)

The aim is, for a well-chosen real τ ∈ (0, 12 ), to estimate M(y, τr) using
M(y, r). Attending to the definition ofM(y, τr), this involves estimating

1
(τρ)m−1

∫
B(z,τρ)

|du|dx

usingM(y, r), for each z and ρ such that B(z, τρ) ⊂ B(y, τr). We notice
that then B(z, ρ) ⊂ B(y, r) and hence (by definition)

M(z, ρ) ≤M(y, r). (4.91)

Thus, it suffices to prove the intermediate estimate

1
(τρ)m−1

∫
B(z,τρ)

|du|dx ≤ θM(z, ρ). (4.92)

We will then be able to conclude as follows: (4.91) and (4.92) imply
that
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1
(τρ)m−1

∫
B(z,τρ)

|du|dx ≤ θM(y, r), ∀B(z, τρ) ⊂ B(y, r).

Taking the upper bound of the l.h.s. of this inequality, we obtain inequal-
ity (4.80):

M(y, τr) ≤ θM(y, r).

We will now work over B(z, ρ), in order to prove (4.92).

Step 1 Rewriting the equation

Using lemmas 4.1.2 and 4.1.3, we construct a Coulomb frame e =
(e1, ..., em), a section of the bundle u∗F over B(z, ρ). We then know
that

||de||2L2(B(z,ρ)) ≤ C||du||2L2(B(z,ρ)). (4.93)

We use lemma 4.3.6 with the 1-forms

φa = 〈d[ζ(u− uz,ρ)], ea〉,
where ζ ∈ C∞

c (Rm) is a function with support contained in B(z, 5ρ8 ),
taking the value 1 on B(z, 3ρ4 ), and whose gradient is bounded by Cρ−1,
and uz,ρ is the mean value of u over B(z, ρ). This yields

〈d[ζ(u− uz,ρ)], ea〉 = dwa + δva. (4.94)

We remark that in Rm,

−∆wa = −
m∑
α=1

∂φaα
∂xα
,

which implies that in B(z, ρ2 ) (using the fact that u is weakly harmonic)

−∆wa = −
m∑
α=1

∂

∂xα

〈
∂u

∂xα
, ea

〉

= −
m∑
α=1

〈
∂u

∂xα
,
∂ea
∂xα

〉
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= −
m∑
α=1

n∑
b=1

〈
∂u

∂xα

〈
∂ea
∂xα
, eb

〉
, eb

〉
. (4.95)

We now use the fact that e is a Coulomb frame. This means that
δ〈dea, eb〉 = 0, for all a and b, and hence there exist 2-forms Aba ∈
H1(B(z, ρ),Λ2Rm), such that

〈dea, eb〉 = −δAba. (4.96)

Moreover, we may choose Aba in such a way that

||Aba||2H1(B(z,ρ)) ≤ C||de||2L2(B(z,ρ)) ≤ C||du||2L2(B(z,ρ)). (4.97)

Putting Aba =
∑

1≤α<β≤mA
b
aαβdx

α∧dxβ , relation (4.96) can be writ-
ten as

〈dea, eb〉 =
m∑
β=1

(
m∑
α=1

∂Abaαβ
∂xα

)
dxβ .

Substituting this expression into (4.95), we obtain that in B(z, ρ2 )

−∆wa = −
m∑
α=1

m∑
β=1

n∑
b=1

〈
∂Abaβα
∂xβ

∂u

∂xα
, eb

〉

=
∑

1≤α<β≤m

n∑
b=1

〈{u,Abaαβ}αβ , eb〉 , (4.98)

where {f, g}αβ := ∂f
∂xα

∂g
∂xβ

− ∂f
∂xβ

∂g
∂xα .

Likewise, we may obtain an elliptic equation for va: applying the op-
erator d to (4.94) (and using dva = 0), we see that in Rm

−
∑

1≤α<β≤m
∆vaαβdx

α ∧ dxβ = −∆2v
a = d〈ea, d(ζ(u− uz,ρ))〉

=
∑

1≤α<β≤m
{ea, ζ(u− uz,ρ)}αβdxα ∧ dxβ . (4.99)

Finally, we decompose wa in B(z, ρ2 ) as follows:

wa = wa0 + wa1 in B(z,
ρ

2
) (4.100)

and

∆wa0 = 0 in B(z,
ρ

2
),
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and

wa1 = 0 on ∂B(z,
ρ

2
).

And, using (4.94), we have in B(z, ρ2 )

|du| ≤ C
n∑
a=1

|dwa0 |+ |dwa1 |+
∑

1≤α<β≤m
|dvαβ |

 . (4.101)

Step 2 Estimate for dvaαβ
We remark that here it is possible to estimate Ez,ρ(vaαβ) using M(z, ρ),
which is stronger than what we need. In order to achieve this, it suffices
to multiply equation (4.99) by vaαβ , and to integrate over Rm. However,
a difficulty shows up (already found in theorem 3.5.8) when trying to
give a meaning to

∫
Rm

{ea, ζ(u− uz,ρ)}αβvaαβdx.

It is relevant to recall that if f, g, h ∈ L2
1(R

m), then
∫

Rm
{f, g}αβhdx

generally does not have a meaning, unless m = 2. On the other hand,
if h belongs to BMO(Rm) (instead of L

2m
m−2 (Rm)), the Fefferman–Stein

theorem enables us to interpret this integral as a duality product between
Hardy and BMO. As a matter of fact, we can do better:

Lemma 4.3.8 If f, g, h ∈ L2
1(R

m), and if one of these functions, for
instance h, belongs to BMO(Rm), then we can give a meaning to the
quantities∫

Rm

{f, g}αβhdx =
∫

Rm

{h, f}αβgdx =
∫

Rm

{g, h}αβfdx, (4.102)

and, furthermore, we have the estimate∣∣∣∣∫
Rm

{f, g}αβhdx
∣∣∣∣ ≤ C||df ||L2 ||dg||L2 ||h||BMO. (4.103)

Proof Inequality (4.103) is essentially a consequence of theorem 3.2.3
and the Fefferman–Stein H1(Rm)−BMO(Rm) duality theorem (we re-
mark that there is a direct proof of (4.103) without passing through
Hardy space, due to Sagun Chanillo [32]). The proof of (4.102) is
straightforward in case f, g, h belong to C∞

c (Rm). Using this identity
in the smooth case and estimate (4.103), we may define the integrals in



202 Harmonic maps without symmetry

(4.102) using precisely this relation as definition, and using the density
of C∞

c (Rm) in L2
1(R

m).

Back to step 2

After these precautions, we deduce from (4.99) that∫
Rm

|dvaαβ |2dx =
∫

Rm

{ea, ζ(u− uz,ρ)}αβvaαβdx
≤ C||dvaαβ ||L2(Rm)||dea||L2(B(z,ρ))||ζ(u− uz,ρ)||BMO.

(4.104)
By estimate (4.86) in lemma 4.3.6,

||dvaαβ ||2L2(Rm) ≤ C||d(ζ(u− uz,ρ))||2L2(Rm)

≤ C||du||2L2(B(z,ρ)).

Likewise, (4.93) yields an analogous estimate for ||dea||2L2(B(z,ρ)). Using
(4.90), we deduce that

||dvaαβ ||L2(Rm)||dea||L2(B(z,ρ)) ≤ Cρm−2ε2. (4.105)

It remains to estimate ζ(u − uz,ρ) in BMO. We leave it to the reader
to show that

||ζ(u− uz,ρ)||BMO ≤ CM(z, ρ). (4.106)

The proof is essentially the same as step 4 of the proof of theorem 3.5.8
(i.e. lemma 3.5.13).

We deduce from (4.104), (4.105) and (4.106) that∫
Rm

|dvaαβ |2dx ≤ Cρm−2ε2M(z, ρ),

which implies, by the Cauchy–Schwarz inequality,

1
ρm−1

∫
B(z,ρ)

|dvaαβ |dx ≤ CεM(z, ρ). (4.107)

Step 3 Estimate for dwa1
We deduce from (4.95) and (4.100) that wa1 is a solution of

{ −∆wa1 =
∑

1≤α<β≤m
∑n

b=1〈{u,Abaαβ}αβ , eb〉 in B(z, ρ2 )
wa1 = 0 on ∂B(z, ρ2 ).

(4.108)
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The situation is more delicate than before. In fact, if we multiply (4.108)
by ψ and integrate by parts over B(z, ρ2 ), we obtain

∫
B(z, ρ2 )

〈dwa1 , dψ〉 =
∑

1≤α<β≤m

n∑
b=1

∫
B(z, ρ2 )

〈{u,Abαβ}αβ , ψeb〉dx. (4.109)

It would be pleasant to choose ψ = wa1 , but unfortunately this is not
possible. In fact, we cannot show that the product wa1eb belongs to H

1

(unless for instance wa1 is bounded in L∞).
To get around this difficulty, we will take as ψ a function which is

more regular than wa1 : it will be the solution of

{
∆ψ = div

( ∇wa1
|∇wa1 |

)
in B(z, ρ2 )

ψ = 0 on Rm \B(z, ρ2 ).
(4.110)

Since ∇wa1
|∇wa1 | is uniformly bounded in L∞, classic elliptic estimates (see

[69], [155]) imply that ψ belongs to all W 1,q spaces, for 1 < q < +∞,
and hence in particular ψ ∈ L∞(Rm) ∩H1(Rm), with the estimates

||ψ||L∞ ≤ Cρ, (4.111)

||dψ||L2 ≤ Cρm2 . (4.112)

A consequence of this is that, since eb ∈ H1(B(z, ρ))∩L∞(B(z, ρ)), the
product ψeb belongs to H1(Rm) (we extend it by 0 outside B(z, ρ2 )), and

||d(ψeb)||L2(Rm) ≤ ||ψ||L∞ ||deb||L2(B(z,ρ)) + ||dψ||L2 .

Using (4.90) and (4.93), we obtain

||de||2L2(B(z,ρ)) ≤ C||du||2L2(B(z,ρ)) ≤ Cε2ρm−2.

Hence we conclude, using (4.111) and (4.112), that

||d(ψeb)||2L2(Rm) ≤ Cρm. (4.113)

We may now come back to (4.109): we replace u by (u−uz,ρ)ζ (which is
bounded in BMO) in the integral on the l.h.s. and we use lemma 4.3.8.
This yields



204 Harmonic maps without symmetry

∫
B(z, ρ2 )

〈dwa1 , dψ〉 =
∑

1≤α<β≤m

n∑
b=1

∫
Rm

{ζ(u− uz,ρ), ζAbaαβ}αβψebdx.

(4.114)
As in the previous step, we deduce that

∫
B(z, ρ2 )

〈dwa1 , dψ〉 ≤ C||ζ(u− uz,ρ)||BMO||d(ζAbaαβ)||L2 ||d(ψeb)||L2

≤ Cερm−1M(z, ρ),

using (4.90), (4.97), (4.106) and (4.113).

On the other hand, we show, by integrating by parts and using (4.110),
that the integral on the l.h.s. of (4.114) equals

∫
B(z, ρ2 )

|dwa1 |. Thus, we
conclude that

1
ρm−1

∫
B(z, ρ2 )

|dwa1 | ≤ CεM(z, ρ). (4.115)

Step 4 Estimate for dwa0
Since we have almost everywhere

|dwa0 | ≤ |dwa1 |+ |dwa| ≤ |dwa1 |+ C(|du|+ |dvaαβ |),

we deduce from (4.107) and (4.115) that

1
ρm−1

∫
B(z, ρ2 )

|dwa0 | ≤ CM(z, ρ).

Using the fact that wa0 is harmonic and lemma 3.3.13, we see that ∀τ ∈
(0, 12 ),

1
(τρ)m−1

∫
B(z,τρ)

|dwa0 | ≤ CτM(z, ρ). (4.116)

Step 5 Conclusion
From (4.107), (4.115) and (4.116), it follows that

1
(τρ)m−1

∫
B(z,τρ)

|du| ≤ C(ε+ τ)M(z, ρ),

and choosing ε and τ sufficiently small, we obtain (4.92).
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4.4 Conservation laws for harmonic maps without symmetry

We come back to an analysis problem already treated in chapter 2: that
of weak compactness of weakly harmonic maps, i.e. that of determining
whether the limit in the weak topology of H1(M,N ) of a sequence of
weakly harmonic maps is still weakly harmonic. In view of the positive
result obtained in chapter 2 (theorem 2.5.1) for Sn-valued maps, we
have the right to be optimistic, and to think, for instance, that the use
of moving frames might solve the problem. Unfortunately, this problem
still remains open for the moment.

In the case where the image manifold is arbitrary, the only thing we
can do is to “pass to the limit” for sequences of solutions defined on sur-
faces. In fact, when the domain is 2-dimensional, we know from theorem
4.1.1 that every weak solution is smooth. Going over the proof of this
result, we see that we can obtain estimates in norms that are stronger
than H1 (for instance H2) for sequences of weak solutions, wherever the
energy density does not concentrate excessively (see, for instance, [132]
to see how such estimates can be obtained). On the other hand, we
can show that the energy density does not concentrate in the domain Ω,
except maybe over a subset Σ which is a finite union of points. Thus, we
can deduce that there is strong convergence outside Σ, and hence that
the limit is harmonic outside Σ. Using a result in [141], we conclude
that the limit is harmonic everywhere (see also [11]).

Recently, a result was obtained for the wave equation on a surface,
with values in a manifold, by A. Freire, S. Müller and M. Struwe. The
proof relies on the use of Coulomb frames, the duality between Hardy
and BMO spaces as in the regularity results of L.C. Evans and F.
Bethuel, and a detailed analysis of the concentration locus for the energy
density.

Theorem 4.4.1 [61] Let N be a C5 submanifold, embedded in (RN , 〈., .〉).
We also consider the Minkowski space R × R2 = {(t, x, y) ∈ R3}, over
which we define the d’Alembertian

� :=
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
.

Let un be a sequence of maps in L2
loc(R × R2,N ), such that ∂un

∂t , ∂un
∂x ,

∂un
∂y belong to L∞(R, L2(R2,RN )). We suppose that for any n, un is a
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solution of

�un ⊥ TunN in D′(R × R2). (4.117)

We denote the total energy by

E(u(t)) =
1
2

∫
R2

(∣∣∣∣∂u∂t (t)
∣∣∣∣2 + ∣∣∣∣∂u∂x (t)

∣∣∣∣2 + ∣∣∣∣∂u∂y (t)
∣∣∣∣2
)
dxdy,

and moreover, we suppose that the energy is uniformly bounded in time,
i.e.

∃E0 such that ∀t ∈ R, ∀n ∈ N, E(un(t)) ≤ E0. (4.118)

Finally, we suppose that

un → u in L2
loc(R × R2,N )

dun ⇀ du weak L in L∞(R, L2(R2,RN )).
(4.119)

Then u is still a weak solution of the wave equation

�u ⊥ TuN in D′(R × R2). (4.120)

At this time, we do not know more.

Not being able to answer these questions, I will present a possible
strategy to tackle them. This is the purpose of section 4.4.1 below. The
idea, motivated by what we saw in chapter 2, is to try to construct con-
servation laws for harmonic maps, even when the image manifold is not
symmetric. This will naturally lead us to consider a class of new (open)
problems, which will be presented in section 4.4.2. These questions are
a generalization of the isometric embedding problem for Riemannian
manifolds, to know how to embed vector-bundle-valued covariant closed
differentials. In the special case of isometric embedding of surfaces, we
will propose in section 4.4.3 a variational approach. Finally, the aim
of section 4.4.4 is to suggest the existence of a particular structure for
harmonic maps of surfaces, which remains totally undiscovered.

4.4.1 Conservation laws

Let N be a compact manifold without boundary, over which there is a
smooth orthonormal frame field ê = (ê1, ..., ên). We may always assume
that this is the case thanks to lemma 4.1.2. We also suppose that N
is isometrically embedded in (RN , 〈., .〉), and that for each point y ∈ N
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we can complete the family ê to make an orthonormal basis of RN ,
(ê1, ..., êN ), where (ên+1, ..., êN ) is an orthonormal basis of the normal
space to TyN .

Let Ω be an open subset of (M, g) (or, to simplify, of Rm), u be an
H1 map from Ω to N , and define

ea(x) := êa ◦ u(x), 1 ≤ a ≤ N, (4.121)

αa := 〈du, ea〉, 1 ≤ a ≤ n, (4.122)

ωab := 〈deb, ea〉, 1 ≤ a, b ≤ N. (4.123)

These quantities satisfy the structure equations

dαa + ωab ∧ αb = 0, ∀1 ≤ a ≤ n, (4.124)

ωab ∧ αb = 0, ∀n+ 1 ≤ a ≤ N, (4.125)

dωab + ω
a
c ∧ ωcb = 0, ∀1 ≤ a, b ≤ N (4.126)

(we agree that αb = 0 if n+ 1 ≤ b ≤ N) and

du = eaαa, (4.127)

where we sum over repeated indices.
If moreover u is weakly harmonic, we have the additional equations

0 = 〈d(Ldu), eb〉 = d(Lαb) + ωba ∧ (Lαa), ∀1 ≤ b ≤ n. (4.128)

This equation is analogous to the structure equation (4.124). A natural
problem is to try to see (4.128) as part of a system of compatibility
conditions to “integrate” the αb, just as (4.124), (4.125) and (4.126)
(Cartan equations) constitute the necessary (and sufficient) condition
for (4.127): (4.126) implies the existence of a solution e of dea = ebωba,
and then (4.124) and (4.125) together imply that d(eaαa) = 0.

We should thus find N ′ ∈ N, and construct a map e4 from Ω to the set
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of orthonormal frames in RN ′
(which will be identified with SO(N ′)),

where N ′ > n, such that

d(e4b(Lα
b)) = 0. (4.129)

This equation is equivalent to

0 =
n∑
b=1

e4bd(Lαb) + N ′∑
a=1

e4aω
4a
b ∧ (Lαb)


=

n∑
a=1

e4a

[
d(Lαa) +

n∑
b=1

ω4ab ∧ (Lαb)

]
+

N ′∑
a=n+1

e4a

n∑
b=1

ω4ab ∧ (Lαb),

where

ω4ab = 〈de4b , e4a〉.
Hence, (4.129) is also equivalent to the system

d(Lαa) +
n∑
b=1

ω4ab ∧ (Lαa) = 0, ∀1 ≤ a ≤ n, (4.130)

ω4ab ∧ (Lαb) = 0, ∀n+ 1 ≤ a ≤ N. (4.131)

Using (4.128), we see that (4.130) is satisfied if, for instance, ω4ab = ωab ,
for 1 ≤ a, b ≤ n.

Problem 4.4.2 Given a weakly harmonic map u ∈ H1(Ω,N ), and
e = ê ◦ u, is it possible to find a map e4 ∈ H1(Ω, SO(N ′)) such that if
we write

ω4,ab := 〈de4b , e4a〉,
the following conditions are satisfied:

||de4||H1(Ω) ≤ C||du||H1(Ω), (4.132)

ω4,ab = ωab , if 1 ≤ a, b ≤ n, (4.133)

ω4,ab ∧ (Lαb) = 0 if n+ 1 ≤ a ≤ N ′ ? (4.134)
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Remark 4.4.3 This problem is probably hard: apparently the difficulties
are similar to those encountered when constructing an isometric embed-
ding of a Riemannian manifold, with in addition very weak regularity
hypotheses on the metric. It is not certain that it will always be possible
to make such a construction, with estimate (4.132). We will come back
to this point below.

Remark 4.4.4 We may always dream that we know how to solve this
problem. Let us then show how we can use it to deduce a weak-compactness
result for weakly harmonic maps.

Suppose Ω to be bounded. Let uk be a sequence of weakly harmonic
maps in H1(Ω,N ) such that

uk ⇀ u weakly in H1(Ω,N ). (4.135)

Let ek = (ek,1, ..., ek,N ) ∈ H1(Ω, SO(N)) with ek,a = êa ◦ uk and αak =
〈duk, ek,a〉. We have

||dek||L2(Ω) ≤ ||duk||L2(Ω) ≤ C. (4.136)

Now suppose that there exists a sequence e4k ∈ H1(Ω, SO(N ′)) with

||de4k||L2(Ω) ≤ ||duk||L2(Ω) ≤ C, (4.137)

〈de4k,a, e4k,b〉 = 〈dek,a, ek,b〉, ∀1 ≤ a, b ≤ n, (4.138)

n∑
b=1

〈de4k,a, e4k,b〉 ∧ (Lαbk) = 0, ∀n+ 1 ≤ a ≤ N ′, (4.139)

i.e., that it is a solution of problem 4.4.2.
Using the compact embedding of H1(Ω) in L2(Ω) and the Rellich–

Kondrakov theorem (see [19]), we deduce from (4.136) and (4.137) that,
up to extracting a subsequence k,

ek,a, e
4
k,a ⇀ ea, e

4
a weakly in H1(Ω), (4.140)

ek,a, e
4
k,a → ea, e4a in L2(Ω). (4.141)
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Using also the fact that ek,a and e4k,a are bounded in L∞, we deduce the
following. (4.135) and (4.141) imply that

αak ⇀ α
a weakly in L2(Ω),

and also

Lαak ⇀ Lα
a weakly in L2(Ω).

Moreover, using (4.141), we have

Lαake
4
k,a ⇀ Lα

ae4a weakly in L2(Ω). (4.142)

On the other hand, using (4.138), (4.139) and the fact that u is weakly
harmonic, we deduce that

d(Lαake
4
k,a) = 0 in D′(Ω). (4.143)

Hence (4.142) and (4.143) yield

d(Lαae4a) = 0 in D′(Ω). (4.144)

Finally, we can pass to the limit in (4.138), using (4.140) and (4.141),
to obtain

〈de4a, e4b〉 = 〈dea, eb〉, ∀1 ≤ a, b ≤ n. (4.145)

We just have to develop (4.144) to deduce, using (4.145), that

d(Lαa) + ωab ∧ (Lαb) = 0, ∀1 ≤ a ≤ n,
which means that u is weakly harmonic (see (4.128)).

Example 4.4.5 In case N = Sn−1, problem 4.4.2 has an obvious solu-
tion given by N ′ = n(n−1)

2 , RN ′ 0 so(n) and

e4j = ej × e0
(see problem 2.4.5).

We may formulate a little better the statement of problem 4.4.2, not
to simplify it, but to understand better its geometrical content. In doing
so, we will come across a series of problems which, in my opinion, have
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a geometrical interest by themselves.

4.4.2 Isometric embedding of vector-bundle-valued

differential forms

LetM be anm-dimensional manifold, and F be an n-dimensional vector
bundle over M (at each point x ∈ M, the fiber, Fx, is a vector space
isomorphic to Rn). We denote by P : F −→ M the projection associated
to this bundle. We are given a metric h on F , i.e. a scalar product hx
on each Fx (hx and Fx depend smoothly on x). Moreover, we choose
a connection ∇ on F , which is compatible with the metric h. (For an
introduction to fiber bundles see, for instance, [101] or [47]).

To be more explicit, we use local coordinates. Without loss of gener-
ality, we will thus restrict our attention to an open subset Ω of M, on
which is defined a chart taking its values in an open subset of Rm. If Ω
has a trivial topology (which we will assume), we can find a trivializa-
tion of F over Ω, in the sense that if FΩ := P−1(Ω), then there exists
a diffeomorphism ΦΩ between FΩ and Ω × Rn, such that the restric-
tion of ΦΩ to each fiber Fx is a vector space isometry from (Fx, hx) to
(Rn, 〈., .〉).

Every section X of F (i.e. a map X from M to F such that P ◦X =
IdM) is represented in this trivialization by a function X̂ from Ω to Rn

such that

∀x ∈ Ω, ΦΩ(X(x)) = (x, X̂(x)).

For instance, we consider the n sections of FΩ E1, ..., En, whose ex-
pressions in this trivialization are

Ê1 =


1
0
...
0

 , . . . , Ên =


0
...
0
1

 .
It is clear that for all x ∈ Ω, E(x) = (E1(x), ..., En(x)) constitutes an
orthonormal basis of Fx.

The covariant derivative or connection ∇ is known once we have spec-
ified the 1-forms ωba such that

∀ξ ∈ TxM, ∇ξEa = Ebωba(ξ). (4.146)
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These 1-forms, called connection 1-forms, satisfy

ωab + ω
b
a = 0, ∀1 ≤ a, b ≤ n.

Thus, for any section X =
∑n

a=1X
aEa of FΩ,

∇ξX = EadXa(ξ) + Ebωba(ξ)X
a, (4.147)

or equivalently,

(∇ξX)a = dXa(ξ) + ωab (ξ)X
b. (4.148)

We also consider for each integer p between 0 andm the bundle ΛpM⊗
F of skew-symmetric p-forms on M, with coefficients in F . A point
in this bundle corresponds to specifying a point x in M and a skew-
symmetric p-linear form of TxM taking values in the vector space Fx.
A section of this bundle is a differential p-form with coefficients in F .
We may thus define the covariant differential

d∇ : Λp ⊗F −→ Λp+1 ⊗F ,
by letting

d∇Ea = Ebωba, (4.149)

∀X : M −→ F , ∀β ∈ ΛpM, d∇(Xβ) = (d∇X) ∧ β +Xdβ. (4.150)

In the trivialization over Ω we know, for instance, that for any section
X : Ω −→ FΩ,

(d∇X) = EadXa + EbωbaX
a = Ea(dXa + ωabX

b), (4.151)

d∇ ◦ d∇X = EaΩabX
b, (4.152)

where Ωab = dωab + ω
a
c ∧ ωcb is the curvature form.

We are interested in the F-valued closed covariant p-forms. We start
with the case p = 1. A 1-form φ : M −→ Λ1 ⊗ F is said to be closed
covariant if

d∇φ = 0. (4.153)

Writing φ = Eaφa, where φa ∈ Λ1M, equation (4.153) implies, using
(4.146),
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0 = Eadφa + d∇Ea ∧ φa = Ea(dφa + ωab ∧ dφb). (4.154)

Therefore, we obtain the system

dφa + ωab ∧ φb = 0. (4.155)

We remark that this system of equation is similar to that satisfied by the
Maurer–Cartan forms on a Riemannian manifold (see equation (4.124)).
This resemblance will be made more precise below.

Example 4.4.6 Let (N , h) be an n-dimensional Riemannian manifold,
and u : M −→ N be a differentiable map. Then the bundle

F = u∗TN = {(x, V ) | x ∈ M, V ∈ Tu(x)N}
(pull-back of TN by u) is equipped with the metric u∗h and the connec-
tion ∇ξV = ∇h

u(ξ)V where ∇h is the Levi-Civita connection on (N , h).
We can then see φ = du as an F-valued 1-form. Moreover, φ is a

solution of (4.153). Using an orthonormal moving frame e = (e1, ..., en)
on N , and defining ωab = u∗〈deb, ea〉 and αa = 〈du, ea〉, we remark that
these quantities are solutions of equation (4.154).

A natural question is to look for a converse to this example.

Problem 4.4.7 Let M be an m-dimensional manifold, F be an n-
dimensional vector bundle with metric h, and ∇ be a covariant derivative
on F compatible with the metric. We suppose that φ is a closed covariant
F-valued differentiable p-form on M, and hence

d∇φ = 0. (4.156)

Find N ∈ N and an embedding T of F into M×RN given by T (x,X) =
(x, Tx(X)), where Tx is a linear map from Fx to RN , such that

(i) T is isometric, i.e. for every x ∈ M, Tx is an isometry.
(ii) If T (φ) is the image of φ by T , then

dT (φ) = 0. (4.157)

It is not superfluous to write a local version, using local coordinates,
of the above. Let (E1, ..., En) be an orthonormal family of sections of
F , then

e1 = Tx(E1), . . . , en = Tx(En)
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are an orthonormal family in RN , for all x. We complete it to obtain an
orthonormal basis (e1, ..., eN ) (depending on x) of RN . Then if

φ = Eaφa

equation (4.157) means that

d(eaφa) = 0. (4.158)

We write ω̂ab = 〈deb, ea〉 and develop (4.158). This yields

n∑
a=1

ea(dφa + ω̂ab ∧ φb) +
N∑

a=n+1

ea(ω̂ab ∧ φb) = 0,

condition which, given (4.156), is satisfied if, for instance,

ωab = ω̂ab , ∀1 ≤ a, b ≤ n, (4.159)

ω̂ab ∧ φb = 0, ∀n+ 1 ≤ a ≤ N. (4.160)

Thus, it is sufficient (and in generic cases also necessary) to solve the
following problem.

Problem 4.4.8 With the hypotheses of problem 4.4.7, find N ∈ N, and
e : M −→ SO(N) (the set of positively oriented orthonormal frames of
RN ), such that

〈dea, eb〉 = ωba, ∀1 ≤ a, b ≤ n, (4.161)

〈deb, ea〉 ∧ φb = 0, ∀n+ 1 ≤ a ≤ N. (4.162)

Remark 4.4.9 We invite the reader to check that problem 4.4.2, related
to the construction of a conservation law for a harmonic map is – up to
regularity questions – a particular case of problem 4.4.8, for p = m− 1.

Example 4.4.10 Case m = n and p = 1
Suppose that φ is a sufficiently regular (C3 is sufficient) section with
rank m everywhere. This means that for any point x of M, φ is an
isomorphism from TxM to Fx. We can then construct a Riemannian
metric g on M by letting

g = (φ)2 =
m∑
a=1

φa ⊗ φa, where φ = Eaφa.

This metric is of class C3. Using the Nash–Moser theorem we see that
there exists an isometric embedding, u, of (M, g) into the Euclidean
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space (RN , 〈., .〉). For each x ∈ M, we consider the basis of TxM,
f = (f1, ..., fm), dual to the basis (φ1, ..., φm) of T ∗

xM, i.e.

φa(fb) = δab . (4.163)

Let

ea := du(fa). (4.164)

Clearly, f is an orthonormal basis of (TxM, g), and hence (e1, ..., en) is
an orthonormal family in RN . Moreover, we deduce from (4.163) and
(4.164) that

du = eaφa,

and hence that d(eaφa) = 0. Thus, we have found a map T satisfying
(4.157).

4.4.3 A variational formulation for the case m = n = 2 and
p = 1

From example 4.4.10 above, we know that in case m = n = 2 and
p = 1, problem 4.4.7 consists essentially in isometrically embedding a
Riemannian surface. We also remark that the solution of this problem
enables us to produce conservation laws for harmonic maps of surfaces.
Below, Ω will denote an open subset of a surface M, F a plane-bundle
over M, and we consider an F-valued 1-form, such that

φ = E1φ
1 + E2φ

2 in Ω

is a solution of d∇φ = 0, i.e., over Ω,{
dφ1 + ω1

2 ∧ φ2 = 0
dφ2 + ω2

1 ∧ φ1 = 0.
(4.165)

We will study problem 4.4.7 supposing that N = 3. We consider the set
E of maps from Ω to the set of positively oriented orthonormal frames
of R3 — which we identify with SO(3). Over E we define the functional

F (e) =
∫

Ω

φ1 ∧ 〈de3, e2〉+ 〈de3, e1〉 ∧ φ2.

Since I do not have a clear idea on this subject, I will not specify
which topology should be used over E , and what follows is essentially
formal (notice that the H1 topology might be suitable).
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Lemma 4.4.11 Let e ∈ E be a critical point of F . Then, we have
dφ1 + 〈de2, e1〉 ∧ φ2 = 0
dφ2 + 〈de1, e2〉 ∧ φ1 = 0
φ1 ∧ 〈de3, e1〉+ φ2 ∧ 〈de3, e2〉 = 0.

(4.166)

These equations formally imply that e is a solution of problem 4.4.7, i.e.

d(e1φ1 + e2φ2) = 0 .

Proof It consists of calculating the first variation of F . Let A = (Aab ) ∈
C∞
c (Ω, so(3)), and calculate the effect on F (e) of a variation

e  −→ et = e.exp(tA) = e.(Id+ tA) + o(t).
This means that

et,a = ea + teb.Aba + o(t). (4.167)

Write ω̂ab = 〈deb, ea〉 and ω̂at,b = 〈det,b, et,a〉. It follows from (4.167) that

ω̂at,b = ω̂
a
b + t(dA

a
b + ω̂

a
cA

c
b −Aac ω̂cb) + o(t).

Substituting this expression into F (et), we obtain

F (et) = F (e) + t
∫

Ω

d(A1
3φ

2 −A2
3φ

1)

+ t

∫
Ω

A1
2(φ

1 ∧ ω̂1
3 + φ2 ∧ ω̂2

3)

+A3
1(dφ

2 + ω̂2
1 ∧ φ1) +A2

3(dφ
1 + ω̂1

2 ∧ φ2) + o(t).

Thus,

δE(e)(A) =
∫

Ω

A3
1(dφ

2 + ω̂2
1 ∧ φ1) +A2

3(dφ
1 + ω̂1

2 ∧ φ2)

+ A1
2(φ

1 ∧ ω̂1
3 + φ2 ∧ ω̂2

3). (4.168)

And we see that e is a critical point of F if and only if it satisfies
equations (4.166).
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This variational formulation does not seem very convenient since we
might expect critical points of F to be neither minimizing nor maximiz-
ing. A possible use for this variational structure is to try to use linking
or to construct a Floer theory (see [59]). A first step in this direction
consists of calculating the flow equation for F .
To do so, we will suppose φ to be non-degenerate, i.e. for all x ∈ M,

φx : TxM −→ Fx is an isomorphism. We define on Ω the metric g =
(φ)2 = φ1 ⊗ φ1 + φ2 ⊗ φ2, as in example 4.4.10. We also consider the
basis f = (f1, f2) of TxM, dual to (φ1, φ2), which is orthonormal for g.
A solution of the flow equation for F will be a map defined on (a

subset of) {(x, t) ∈ Ω×R}, taking its values in SO(3), such that for any
t

δF (e)(A) =
∫

Ω

〈
A, ω̂(

∂

∂t
)
〉
φ1 ∧ φ2, (4.169)

where 〈A, ω̂〉 = ∑
1≤a<b≤3A

a
b ω̂

a
b and ω̂ab = 〈deb, ea〉.

Lemma 4.4.12 e is a solution of (4.169) if and only if
ω̂1

2(
∂

∂t
) = −ω̂2

3(f1)− ω̂3
1(f2)

ω̂3
1(
∂

∂t
) = ω̂1

2(f2)− ω1
2(f2)

ω̂2
3(
∂

∂t
) = ω̂1

2(f1)− ω1
2(f1).

(4.170)

Proof We leave the proof (using (4.169) and (4.168)) to the reader.

We can also formulate equations (4.170) by introducing a map from Ω
to the Spin(3) group, the universal covering of SO(3) (which is also the
set of norm 1 quaternions). In order to do so, we will suppose Ω to be
simply connected.

We start by remarking that ω̂ = e−1de satisfies

dω̂ + ω̂ ∧ ω̂ = 0,

which we may rewrite as

dθ + θ ∧ θ = 0, (4.171)

where this time

θ =
1
2

(
iω̂1

2 ω̂2
3 − iω̂3

1

−ω̂2
3 − iω̂3

1 −iω̂1
2

)
∈ su(2). (4.172)
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Equation (4.171) implies that there is a map u : Ω× R −→ SU(2) such
that

du = u θ. (4.173)

We introduce the matrices

I =
1
2

(
0 −1
1 0

)
, J =

1
2

(
0 i

i 0

)
, K =

1
2

( −i 0
0 i

)
,

so that θ = −ω̂2
3I − ω̂3

1J − ω̂1
2K. We check by a direct calculation that

(4.170) is equivalent to the following equation of “SU(2)-valued Dirac”
type,

[u−1du(f1), J ]− [u−1du(f2), I] + u−1 ∂u

∂t
= ω1

2(f1)I +ω
1
2(f2)J . (4.174)

4.4.4 Hidden symmetries for harmonic maps on surfaces?

We come back to harmonic maps on surfaces. We saw in chapter 2
that when the image manifold N is symmetric, the set of symmetries
which act on harmonic maps on a surface is very big: apart from the
trivial symmetries (like the action of SO(n) on Sn−1), there are also
the dressing action of the loop group of the manifold, and the action of
the circle. The quasi-algebraic description of the action of these groups
is an exceptional fact, which is characteristic of completely integrable
Hamiltonian systems. It is obvious that all this collapses if the symmetry
of N is broken. A naive question is: what happens to these symmetries?
We will see that something remains from the action of the circle. For the
moment, I find it hard to identify what this residual symmetry is, and
to specify which is the right geometrical setting. We will limit ourselves
to examining two points of view, clearly incomplete, about this circle
action. I hope to convey to the reader a feeling for this phenomenon,
not being able to really explain it.

Remark 4.4.13 In example 4.4.6 above, we saw that to every map u
from a manifold M to a Riemannian manifold (N , h), we can associate
the bundle F = u∗TN over M, which is naturally equipped with a metric
and a connection. Then, φ := du is an F-valued closed covariant 1-form.
Assume, in addition, that M is equipped with a metric g and that u is
a harmonic map. Then, we know that ψ := Ldu (where L is the Hodge
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operator on (M, g)) is an F-valued closed covariant (m− 1) differential
form: this is exactly what equations (4.124) (⇔ d∇φ = 0) and (4.128)
(⇔ d∇ψ = 0) tell us. In the case where M is 2-dimensional, it is
possible to use a conformal complex coordinate z = x + iy over M,
in which equations (4.124) and (4.128) may be condensed into a single
equation:

dαaλ + ωab ∧ αbλ = 0, ∀λ ∈ C4, (4.175)

where

αaλ = λ−1αa(
∂

∂z
)dz + λαa(

∂

∂z̄
)dz̄.

This form recalls the formulation given for harmonic maps between
a surface and a sphere in section 3.2. In particular, denoting by φλ =
cosλφ + sinλψ the F-valued 1-form whose coordinate representation is
αaλ, equation (4.175) is simply

d∇φλ = 0.

Noticing that φ1 = φ and φi = ψ, we thus interpret φλ as an S1-
parametrized deformation of φ, in a family of closed covariant 1-forms.

Remark 4.4.14 Harmonic diffeomorphisms

If u is a diffeomorphism from an open subset Ω of a surface, to an open
subset of (N , h), then it is possible to identify the image of u with Ω
equipped with the pull-back metric of h by u, u∗h = α1 ⊗ α1 + α2 ⊗ α2.
Hence, u is represented by the identity map from (Ω, g) to (Ω, u∗h) 0
(N , h). For λ ∈ S1, we let

h′λ = α1
λ ⊗ α1

λ + α2
λ ⊗ α2

λ ,

and Nλ = (Ω, h′λ). Then, we define the map uλ from (Ω, g) to Nλ as
being the one which is represented by the identity map from (Ω, g) to
(Ω, h′λ).

Since u is a diffeomorphism, h′λ is a metric for all λ ∈ S1, and we as-
sociate to u a family, parametrized by S1, of harmonic diffeomorphisms
taking values in a manifold Nλ, which depends on λ. We check (exer-
cise) that if the curvature of N is constant, then the curvature of Nλ
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will be equal to this same constant, and hence Nλ will be locally isomet-
ric to N (actually, the curvature of the manifold is pointwise invariant
under this action). In this way we recover the results that were known
for sphere-valued maps.



5

Surfaces with mean curvature in L2

We present here another example of the geometric application of com-
pensation phenomena. We will again use Wente’s inequality and the rep-
resentation of equations in moving frames. We will see that orthonormal
Coulomb frames on a surface are linked to conformal coordinates. This
link will be clearly stated in the last section.

The starting point here is the following result, obtained in 1991 by
Tatiana Toro, in her thesis.

Theorem 5.0.15 [171] Let Ω ⊂ R2 be a domain with Lipschitz bound-
ary, and u a map in H2(Ω,R). Let Γu = {(z, u(z)) ∈ R3 | z ∈ Ω} be the
graph of u.

Then Γu is homeomorphic to a subdomain Ω′ of R2 through a bilip-
schitz homeomorphism. More precisely, there exists a homeomorphism
Φ : Ω′ −→ Γu, and L > 0 such that


|Φ(z)− Φ(z′)| ≤ L|z − z′| , ∀x, y ∈ Ω′

|Φ−1(Z)− Φ−1(Z ′)| ≤ L|Z − Z ′| , ∀Z,Z ′ ∈ Γu
(5.1)

and furthermore,

L ≤ (1 + C‖u‖2
H2(Ω))

1
2 . (5.2)

Moreover, on Ω′, the inverse image by Φ of the metric induced on Γu,
g = Φ∗〈., .〉, is comparable to the standard metric on Ω′, in the sense
that

221
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sup
z∈Ω′

|gij(z)− δij | ≤ C‖u‖2
H2(Ω). (5.3)

This result is rather surprising. In fact, a map u ∈ H2(Ω) is generally
Hölder continuous, but might not be Lipschitz. A counterexample is the
map u ∈ H2(B(0, 12 ),R) defined by

u(x, y) = x log | log
√
x2 + y2|. (5.4)

This map is not Lipschitz, since its gradient is not bounded in a neigh-
borhood of 0. In fact, close to 0 we have

∂u

∂x
= log | log r|+O(| log r|−1),

∂u

∂y
= O(| log r|−1),

(5.5)

where r =
√
x2 + y2. We could conclude naively that the graph of u

is not Lipschitz. But this is false, as is stated in the previous theorem
(we may show, in this particular example, that the graph of u is a C1

surface). Other examples given in [171] show that theorem 5.0.15 is op-
timal, in the sense that there exist functions in H2(B(0, 12 ),R) whose
graph is a Lipschitz surface, but not C1.

This theorem follows from the more general result shown in [171].

Theorem 5.0.16 There exists ε > 0, such that every surface S in Rn

satisfying the following hypotheses, is Lipschitz:

(i) There exists a sequence of smooth surfaces Sk in Rn, which con-
verges in measure in Rn to S.

(ii) ∀x ∈ Rn, there exists a ball B(x, ρ) of Rn, and β > 0 such that

H2(Sk ∩B(x, ρ)) ≤ β, (5.6)

i.e. the 2-dimensional Hausdorff measure (= the area) of Sk ∩
B(x, ρ) is uniformly bounded, and

∫
Sk∩B(x,ρ)

|Ak|2dH2 ≤ ε2, (5.7)
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where Ak is the second fundamental form of the embedding of Sk
in Rn.

In reality, a precise statement of this result requires working in the
varifold setting, but we will not follow this path. The proof of this result
is very delicate, and relies on the construction of a sequence of piecewise
affine bilipschitz maps, which converge to a bilipschitz homeomorphism
on S.

After this theorem, other proofs and more general results were ob-
tained. T. Toro, in the spirit of the Reifenberg theorem [135], showed
that if a locally compact subset of Rn, of Hausdorff dimension m, is
“locally well approximated” by pieces of m-dimensional affine spaces,
then this subset is a Lipschitz submanifold [172]. It was also noticed by
Stephen Semmes that this result implies theorem 5.0.16.

Remark 5.0.17 An important motivation for the study of surfaces sat-
isfying (5.7) is the Willmore surface problem. A brief description of this
subject will be given in section 5.3.

In another direction, Stefan Müller and Vladimir S̆verák have shown
that all conformal parametrizations of surfaces with square-integrable
second fundamental form are locally bilipschitz homeomorphisms [121].
Their proof reveals the presence of compensation phenomena, and uses
Hardy space. In sections 5.1 and 5.2, we present variants of their results.
Their approach is based on the following observation.

Let X : Ω ⊂ R2 −→ R3 be a smooth conformal immersion. We write
the first fundamental form of X in the form

g = e2f [(dx)2 + (dy)2]. (5.8)

Then f is a solution of the equation

−∆f = Ke2f , (5.9)

where K is the Gauss curvature of the surface. But the quantity Ke2f

is precisely equal to the inverse image by u ◦X of the volume form on
S2 (where u : X(Ω) −→ S2 is the Gauss map). The volume form on S2

is a closed (but not exact) 2-form, and hence its inverse image by u ◦X
is locally expressed in terms of Jacobian determinants of maps in H1.
By the results of chapter 3, we deduce that f is continuous and
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bounded, and hence that X is a bilipschitz immersion, either by Wente’s
inequality, or via Hardy spaces.

The approach we adopt here uses an orthonormal moving frame (e1, e2)
on the surface X(Ω), preferably in the “Coulomb gauge”

d L 〈de2, e1〉 = 0. (5.10)

An interesting point here is that (e1, e2) := 1
|dX|

(
∂X
∂x ,

∂X
∂y

)
is such a

frame, as long as X is a conformal immersion, and in this case we even
have

L〈de2, e1〉 = df, (5.11)

where f is defined by (5.8). Thus, the “Coulomb” orthonormal moving
frames on a surface are closely related to the conformal coordinates on
this surface.

We will study this point in more detail in section 5.4.

5.1 Local results

We start by defining for all γ > 0 the set

Cγ(B) := {X ∈ C∞(B,Rn) | X is a conformal immersion,
and

∫
B
|A|2dσ ≤ γ} (5.12)

where B is the unit ball of R2 0 C, dσ represents the area element over
the surface S := X(B), and A is the second fundamental form of the
immersion of S in Rn. We also define Cγ(B) as being the closure of
Cγ(B) for the weak topology of H1(B,Rn). Then, we have

Theorem 5.1.1 For all γ ≤ 8π
3 , every map X ∈ Cγ(B) is either

(i) a constant map; or
(ii) a bilipschitz conformal immersion. In this case, for any compact

subset K of B, there is a constant C > 0, such that

∀z ∈ K, 1
C

≤ |dX(z)| ≤ C, (5.13)

and the inverse image of the Euclidean metric in Rn by X is a
continuous metric.
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Remark 5.1.2 We recall the definition of the second fundamental form
A of a surface: A is the symmetric bilinear form over S, taking values
in the normal bundle of S in Rn, such that if e := (e1, e2, e3, ..., en) is
an orthonormal moving frame defined locally over S, in such a way that
b := (e1, e2) is an orthonormal basis of the tangent plane TmS, then

∀(V,W ) ∈ (TmS)2, A(m)(V,W ) =
n∑
a=3

〈V,DW ea〉ea

=
2∑

b=1

n∑
a=3

〈V, eb〉〈dea, eb〉(W )ea.

(5.14)
Thus we let

|A|2 :=
2∑

b=1

n∑
a=3

|〈dea, eb〉|2. (5.15)

An equivalent definition for |A|2 consists of introducing the Gauss
map, defined over S, which assigns to each point m of S the (oriented)
tangent plane to S atm. The image space is Gr2(Rn), the grassmannian
of 2-dimensional oriented subspaces of Rn. We denote this map by

u : S −→ Gr2(Rn). (5.16)

It is then convenient to identify Gr2(Rn) with SO(n)/(SO(2) ×SO(n−
2)) as follows. Choose a positively oriented reference orthonormal basis
E := (E1,E2, ...,En) in Rn, and for each g ∈ SO(n), denote by e = E.g
the frame obtained from E using the rotation g. Introduce the following
equivalence relation on SO(n),

gRg′ ⇐⇒ (g(E1), g(E2)) and (g′(E1), g′(E2)) are two bases of
the same plane of Rn, with the same orientation.

(5.17)
Then, it is easy to see that SO(2)×SO(n−2) is the equivalence class

of 1l, and to identify Gr2(Rn) with SO(n)/R. In this way we can define
a homogeneous metric on Gr2(Rn), by letting

|du|2 =
2∑

b=1

n∑
a=3

|〈dea, eb〉|2, (5.18)
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where e = (e1, e2, ..., en) = E.g is such that (e1, e2) is a positively ori-
ented basis of u. Comparing (5.15) and (5.18), we see that

|A|2 = |du|2. (5.19)

The interest of this definition is that, sinceX is a conformal immersion
and the Dirichlet integral is invariant under conformal transformations,
we have

∫
S
|A|2dσ =

∫
S
|du|2dσ =

∫
B

|d(u ◦X)|2dxdy. (5.20)

Remark 5.1.3 It is natural to wonder what happens to theorem 5.1.1
when we no longer assume that γ ≤ 8π

3 . I do not know if the result is
valid for larger γ, but I think that it should be possible to replace the
condition γ ∈ [0, 8π3 ] by γ ∈ [0, 8π).

A partial global result will be given in section 5.2 (theorem 5.2.4).

Before proving theorem 5.1.1, we will need the following lemma.

Lemma 5.1.4 For every map u ∈ H1(B,Gr2(Rn)), such that

‖du‖2
L2(B) ≤ γ :=

8π
3
, (5.21)

there exists a map b := (e1, e2) in H1(B,Rn×Rn), such that for almost
every z ∈ B, b(z) is a positively oriented basis of u(z). Furthermore, the
energy of b is controlled by

‖db‖2
L2(B) ≤ a(‖du‖2

L2(B)), (5.22)

where

a : [0, 8π3 ] −→ R

t  −→ 16π
3

[
1−

√
1− 3t

8π

]
.

(5.23)

Moreover, b satisfies the equation

d(L〈e1, de2〉) = 0. (5.24)
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Remark 5.1.5 Below, we will prefer to consider b as a section of a
fiber bundle. Let F := {(u, b) ∈ Gr2(Rn) × Rn × Rn | b := (e1, e2) is a
positively oriented orthonormal basis of u}.
F is a fiber bundle over Gr2(Rn), with fiber S1. The projection defin-

ing this fibration is just (u, b)  −→ u.
There exists a canonical connection on this bundle. For each u ∈

Gr2(Rn), denote by Pu the orthogonal projection from Rn onto u. Then,
every local section b : Gr2(Rn) −→ F may be seen as an Rn×Rn-valued
map. We then let

∇(e1, e2) = (Pu ◦ de1, P ◦ de2). (5.25)

Surely, this connection has non-vanishing curvature — if not, locally
it would be possible to define parallel sections of F .

The pull-back of F by u is the bundle u∗F = {(z, b) ∈ B×Rn×Rn | b
is an orthonormal basis of u(z)}. The lemma above essentially says that
if the energy of u is sufficiently small, we are able to construct sections
of u∗F , whose energy may be controlled.

Remark 5.1.6 Again, we may wonder if lemma 5.1.4 remains true
without the assumption ‖du‖2

L2(B) <
8π
3 . We will prove such a result

in section 5.2, but then we will lose control of the energy of the frame
constructed (theorem 5.2.1).

Proof of lemma 5.1.4
Step 1 Construction of a frame in the smooth case

We will consider in this step, as well as in steps 2, 3, 4, 5, that u ∈
H1(B,Gr2(Rn)) is C∞ on B. Then the bundle u∗F is smooth, and since
the base manifold, Bx, is contractible, we can trivialize it. This means
that there exists a section b̃ = (ẽ1, ẽ2) of u∗F .

Step 2 Choice of a Coulomb frame

In spite of being smooth, the frame b̃ may have an arbitrarily large
energy. To avoid this, we will consider, for each θ ∈ H1(B,R), the
frame b = (e1, e2) obtained by letting

b := b̃
(

cos θ − sin θ
sin θ cos θ

)
(5.26)

and look for the Coulomb frames in the gauge orbit of H1(B,R). Actu-
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ally, we need to consider a family of such problems: for each r ∈ (0, 1],
we will minimize over H1(B,R) the functional

Fr(θ) =
1
2

∫
Br

(|∇e1|2 + |∇e2|2)dxdy

=
∫
Br

|ω1
2 |2dxdy, (5.27)

where ω1
2 = 〈de2, e1〉.

As in the proof of theorem 4.1.1, we may show that for each r, the min-
imum of Fr is attained, and that the frame, br := (er,1, er,2), minimizing
Fr, satisfies

d(Lω1
2) = 0 in Br, (5.28)

ω1
2

(
∂

∂n

)
= 0 on ∂Br. (5.29)

Using equation (5.28), we deduce that there exists fr ∈ H1(Br,R)
such that

dfr = Lω1
2 in Br. (5.30)

Then, it follows from (5.29) that fr is constant on ∂Br, and hence it is
possible to choose fr such that

fr = 0 on ∂Br. (5.31)

A direct calculation using (5.30) yields

−∆fr =
〈
∂er,1
∂x
,
∂er,2
∂y

〉
−

〈
∂er,1
∂y
,
∂er,2
∂x

〉
= {er,1 · er,2}. (5.32)

In particular, (5.31) and (5.32) show that we may write fr = fr,1 +
· · ·+ fr,n where the fr,j are solutions of

{ −∆fr,j = {ejr,1, ejr,2} inBr
fr,j = 0 on ∂Br.

(5.33)

Thus we deduce, using theorem 3.1.7, that
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‖dfr,j‖2
L2(Br)

≤ 3
16π

‖dejr,1‖2
L2(Br)

‖dejr,2‖2
L2(Br)

(5.34)

which implies, summing the inequalities over j, that

2‖dfr‖L2(Br) ≤
√

3
16π

(‖der,1‖2
L2(Br)

+ ‖der,2‖2
L2(Br)

). (5.35)

Step 3 A priori estimate for the energy of fr
We complete the basis br = (er,1, er,2) to obtain a moving frame of Rn,
er = (er,1, er,2, er,3, . . . , er,n), and write ωir,j = 〈der,j , er,i〉.

From the identities

der,1 =
n∑
k=1

ωkr,1ek (5.36)

and

der,2 =
n∑
k=2

ωkr,2ek (5.37)

we deduce that

|der,1|2 + |der,2|2 = 2|ω1
2 |2 +

2∑
k=1

n∑
j=3

|ωjr,k|2

= 2|ω1
2 |2 + |du|2 (5.38)

and hence that

‖der,1‖2
L2(Br)

+ ‖der,2‖2
L2(Br)

= 2‖dfr‖2
L2(Br)

+ ‖du‖2
L2(Br)

. (5.39)

Eliminating ‖dbr‖2
L2(Br)

between (5.35) and (5.39), we obtain

2‖dfr‖L2(Br) ≤
√

3
16π

(2‖dfr‖2
L2(Br)

+ ‖du‖2
L2(Br)

). (5.40)

Hence, letting t = ‖dfr‖L2(Br), we notice that t is a solution of

P (t) = 2t2 − 8
√
π

3
t+ ‖du‖2

L2(Br)
≥ 0. (5.41)
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The reduced discriminant of P is ∆′ = 16π
3 − 2‖du‖2

L2(Br)
. It follows

that

• if ‖du‖2
L2(Br)

≥ 8π
3 , P is always non-negative, and (5.41) gives no

information.
• if ‖du‖2

L2(Br)
< 8π

3 , the polynomial P takes negative values be-
tween its two roots α < β, and it follows from (5.41) that

‖dfr‖L2(Br) = t ∈ [0, α] ∪ [β,+∞), (5.42)

where α =
√

4π
3 −

√
4π
3 − 1

2‖du‖2
L2(Br)

, and

β =
√

4π
3 +

√
4π
3 − 1

2‖du‖2
L2(Br)

.

The purpose will now be to show that, in the second case, we have
‖dfr‖L2(Br) < α.

Step 4 The function r  −→ ‖dfr‖2
L2(Br)

is continuous

We define the function g : [0, 1] −→ R by

g(0) = 0

g(r) = inf
H1(Br,R)

Fr(θ) = ‖dfr‖2
L2(Br)

, if r > 0 (5.43)

and show that g is continuous.
In order to achieve this, we will show that g is equal to the infimum

of a uniformly Lipschitz family of functions.
For any r ∈ [0, 1], we define ur ∈ C∞(B2, Gr2(Rn)) by

ur(z) = u(rz), ∀z ∈ B2.

We will denote Sr ∈ C∞(B2, O(n)), the map which to each z associates
the orthogonal symmetry of Rn around ur(z).

Lemma 5.1.7 There exists a constant C0 > 0, depending only on u,
such that for any r0 ∈ [0, 1] and any basis br0 = (er01 , e

r0
2 ), a smooth

section of u∗r0F over B2, there exists a family br0r = (er0r,1, e
r0
r,2) of sections

of u∗rF , parametrized by r ∈ [0, 1], such that

br0r0 = br0 ,

and

gbr0 (r) :=
∫
B2

|〈der0r,1, er0r,2〉|2dxdy



5.1 Local results 231

is a Lipschitz function such that

|gbr0 (r)− gbr0 (r′)| ≤ C0(1 + ||dbr0 ||L2)|r − r′|. (5.44)

Proof We will construct br0r by parallel transport along the deformation
of ur0 into ur defined by t  −→ u(1−t)r0+tr. For r0, r ∈ [0, 1], let

Rr0r : B −→ SO(n)
be the unique solution of the system of equations

Rr0r0(z) = 1l, ∀z ∈ B, (5.45)

∂Rr0r
∂r

(z) = −1
2
S−1
r (z).

∂Sr
∂r

(z).Rr0r (z), ∀z ∈ B. (5.46)

We can easily check, using (5.46), that Rr0r takes values in O(n), and
that (Rr0r )−1SrR

r0
r does not depend on r. Hence, taking into account

(5.45), we deduce that SrRr0r = Rr0r Sr0 . This implies that

br0r (z) := (Rr0r (z)(er01 ), Rr0r (z)(er02 ))

is an orthonormal basis of ur(z).
We may then show that for every r, r′ ∈ [0, 1],

|gbr0 (r)− gbr0 (r′)|
≤ (

2||dbr0 ||L2 + ||dRr0r ||L2 + ||dRr0r0 ||L2

) || tRr0r dRr0r − tRr0r′ dR
r0
r′ ||L2 ,

which implies (5.44), using the fact that Sr(z), and hence also Rr0r (z),
are C∞ functions in all the variables z ∈ B2 and r, r0 ∈ [0, 1].

A corollary of the preceding lemma is that

g(r) = inf
r0,br0

gbr0 (r).

Notice that, thanks to the existence of a section b̃ of u∗F such that
M := ||db̃||L2 < +∞, we know that g(r) ≤M , and hence that

g(r) = inf
r0,b

r0

||dbr0 ||L2≤M

gbr0 (r).

We leave to the reader the task of showing, using this identity and (5.44),
that |g(r)− g(r′)| ≤ C0(1 +M)|r − r′|.

Step 5 Estimates for the energy of fr and br
It follows from Step 3 that if
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‖du‖2
L2(B) ≤

8π
3

(5.47)

then, ∀r ∈ [0, 1], ‖dfr‖L2(Br) ∈ [0, α]∪ [β,+∞), where α < β. Moreover,
by Step 4, r  −→ ‖dfr‖L2(Br) is a continuous function, which vanishes at
0. This implies for all r ∈ [0, 1]

‖dfr‖L2(B) <

√
4π
3

−
√

4π
3

− 1
2
‖du‖2

L2(Br)
. (5.48)

Going back to the identity (5.39), for r = 1, we now obtain

‖db‖2
L2(B) ≤ a(‖du‖2

L2(B)), (5.49)

where a(t) = 16π
3

(
1−

√
1− 3

8π‖du‖2
L2(B)

)
.

Step 6 Conclusion
Suppose u ∈ H1(B,Gr2(Rn)) is such that ‖du‖2

L2(B) ≤ 8π
3 . Then

(see [145]) we can construct a smooth approximating sequence uε ∈
H1(B,Gr2(R

n)) ∩ C∞, such that

‖duε‖2
L2(B) <

8π
3
, ∀ε > 0 (5.50)

and

uε → u ∈ H1(B), when ε→ 0. (5.51)

By Step 4, it is possible to construct, for each ε > 0, a frame bε, a
section of u∗εF , whose energy is bounded according to (5.49). Using the
weak compactness in H1(B), and the compact injection of H1(B) in
L2(B), it is then simple to show that there exists a subsequence ε′ of ε,
and a map (e1, e2) ∈ H1(B,Rn × Rn), such that

(eε′,1, eε′,2)⇀ (e1, e2) weakly in H1(B) (5.52)

(eε′,1, eε′,2) → (e1, e2) in L2(B) and a.e. (5.53)

‖d(e1, e2)‖2
L2(B) ≤ lim

ε′→0
inf ‖d(eε′,1, eε′,2)‖2

L2(B). (5.54)
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In particular, the a.e. convergence implies that (e1, e2) is a section of
u∗F , and (5.54) implies that its energy is bounded.

Step 7 Proof of (5.24)
Using (5.52) an (5.53), it is easy to show that

〈eε,1, deε,2〉 → 〈e1, de2〉 in D′(B) (5.55)

and hence, by (5.28), (e1, e2) satisfies

d(L〈e1, de2〉) = 0. (5.56)

This concludes the proof of lemma 5.1.4.

Proof of theorem 5.1.1 Let γ ≤ 8π
3 , and choose any X ∈ Cγ . Then, there

exists a sequence of conformal immersions (Xk)k∈N, in C∞(B,Rn), such
that

Xk ⇀ X weakly in H1(B,H) (5.57)

and ∫
B

|d(u ◦Xk)|2dxdy ≤ 8π
3
. (5.58)

From lemma 5.1.4 and (5.58), it follows that it is possible to construct,
for each k, a section bk := (e1,k, e2,k) of (u ◦ Xk)∗F , whose energy is
bounded by a

(
8π
3

)
. Moreover, the bk are solutions of (5.56).

Since each immersion Xk is conformal, ∃fk, θk ∈ C∞(B,R) such that

dXk = efk [(cos θkek,1 + sin θkek,2)dx

+ (− sin θkek,1 + cos θkek,2)dy] . (5.59)

In particular, projecting the equation d2Xk = 0 along ek,1 and ek,2, we
see that


∂θk
∂x

+
∂fk
∂y

= ω1
k,2

(
∂

∂x

)
∂θk
∂y

− ∂fk
∂x

= ω1
k,2

(
∂

∂y

)
,

(5.60)
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where ω1
k,2 = 〈dek,2, ek,1〉.

Step 1 Estimates for fk and θk
Equation (5.60) has several consequences. On the one hand, because of
(5.58), we have that

∆θk = 0. (5.61)

On the other hand,

−∆fk = {ek,1.ek,2} =
n∑
j=1

{ejk,1, ejk,2}. (5.62)

Decompose fk = fk,0 + fk,1 + · · ·+ fk,n, where{ −∆fk,0 = 0 in B
fk,0 = fk on ∂B

(5.63)

and fk,j =
˜(ejk,1) (e

j
k,2). By theorem 3.1.2, we have that

∥∥∥∥∥∥
n∑
j=1

fk,j

∥∥∥∥∥∥
L∞(B)

+

∥∥∥∥∥∥
n∑
j=1

dfk,j

∥∥∥∥∥∥
L2(B)

≤ C‖dek,1‖L2(B)‖dek,2‖L2(B).

(5.64)
Estimate for fk,0
To estimate fk,0, we start by using the fact that fk,0 is smooth harmonic
in B and by applying the Poisson formula over every ball Br ⊂ B, where
r ∈ (0, 1]. This gives

∀z ∈ Br, rfk,0(z) = 1
2π

∫
∂Br

fk,0(v)
r2 − |z|2
|v − z|2 ds(v). (5.65)

Integrating this formula for 1− δ < r < 1, we obtain

∀z ∈ Br, fk,0(z) = 1
π(2− δ)δ

∫
B\B1−δ

fk,0(v)
|v|2 − |z|2
|v − z|2 dv

1dv2.

(5.66)
The second fact we will use is that if f+

k,0 = sup(fk,0, 0), then∫
B

f+
k,0dxdy is uniformly bounded in k. (5.67)
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To prove (5.67), we remark that

∫
B

e2fkdxdy =
1
2
‖dXk‖2

L2(B) (5.68)

is bounded, and that, by (5.64), λ := inf
k∈N

∞∑
j=1

fk,j > −∞. It follows that

∫
B

f+
k,0dxdy ≤ 1

2e1+2λ

∫
B

e2(fk,0+λ)dxdy

≤ 1
2e1+2λ

∫
B

e2fkdxdy

=
1

4e1+2λ
‖dXk‖2

L2(B) (5.69)

which, since Xk converges weakly to X in H1(B), implies (5.67).
We now derive the consequences of (5.66) and (5.67). First of all, for

each compact K ⊂ B, there exists a constant B(K) such that

∀z ∈ K, fk,0(z) ≤ B(K). (5.70)

In fact, to see this it suffices to choose δ > 0 such that K ⊂ B1−2δ,
and to use (5.66). Then,

∀z ∈ K, fk,0(z) ≤ 1
π(2− δ)δ

∫
B

f+
k,0dxdy (5.71)

which yields (5.70).

Next, there are the following two alternatives.

(i) (Collapse) There exists a subsequence k′ of k such that

lim
k′→+∞

∫
B

f−k′,0dxdy = −∞, (5.72)

where f−k′,0 = inf(fk′,0, 0). Then,

fk′,0(0) =
1
π

∫
B

fk′,0(v)dv1dv2 → −∞. (5.73)

But since by (5.67) we also have that
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fk′,0(0) =
1

π(2− δ)δ
∫
B\B1−δ

fk′,0(v)dv1dv2. (5.74)

We deduce that for all δ ∈ (0, 1),
∫
B\B1−δ

f−k′,0(v)dv
1dv2 tends to

−∞, and hence, by (5.66) and (5.67), fk′,0 converges uniformly
on every compact subset of B1−δ to −∞, and hence, δ being
arbitrary, also on every compact K ⊂ B. Since Xk′ ⇀ X in H1,
it follows that

‖dX‖2
L2(K) ≤ lim inf

k′→∞
‖dXk′‖2

L2(K) = lim inf
k′→∞

∫
K

e2fk′dxdy = 0.

(5.75)
And this being true for every compact K ⊂ B, we deduce that
‖dX‖L2(B) = 0, which means that X is a constant map.

(ii)
∫
B
f−k,0dxdy is bounded and, by (5.66), this implies that for any

compact K ⊂ B, ∃A(K),

∀z ∈ K, A(K) ≤ f0,k(z). (5.76)

From now on, we will exclude the case where X is the constant map.
This implies that uniform lower bound over every compact (5.76) is valid.
We remark that, since f0,k is harmonic, estimates (5.70) and (5.76) also
imply that ‖df0,k‖L2(K) will be a bounded function of k, for any compact
K ⊂ B. Putting together this estimate and (5.64), we conclude that

∀ compact K ⊂ B, ‖dfk‖L2(K) + ‖fk‖L∞(K) is bounded. (5.77)

Now, since bk is bounded in H1(B), ω1
k,2 is bounded in L2, and hence,

by (5.60) and (5.77), we have

∀ compact K ⊂ B, ‖dθk‖L2(K) is bounded. (5.78)

Step 2 Passing to the limit

Chose a compact K ⊂ B. Using the previous estimates and standard
theorems on Sobolev spaces, we may extract a subsequence k′ of k, such
that

(bk′ , θk′ , fk′)⇀ (b, θ, f) weakly in H1(K) (5.79)
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(bk′ , θk′ , fk′) → (b, θ, f) in L2(K) (5.80)

(bk′ , θk′ , fk′) → (b, θ, f) a.e. in B. (5.81)

Together with (5.77), this yields that we can pass to the limit in
equation (5.59), which gives

dX = ef [(cos θe1 + sin θe2)dx+ (− sin θe1 + cos θe2)dy] (5.82)

and because of the a.e. convergence (5.81), (e1, e2) will be a section of
(u ◦X)∗F .

This implies that X is a conformal immersion satisfying

einfK f ≤ |dX| ≤ esupK f on K. (5.83)

The pull-back byX of the Euclidean metric on Rn is e2f [(dx)2+(dy)2].
This metric is continuous since f is a solution of

−∆f = {e1 · e2}, (5.84)

and hence is continuous by Wente’s lemma. This concludes the proof of
theorem 5.1.1.

5.2 Global results

We will now deduce, using the results of the previous section, more global
versions of theorem 5.1.1 and lemma 5.1.4, without the hypothesis that
the Gauss map’s energy is bounded by a critical constant M (as, for
instance, M = 8π

3 ). However, we should be careful since, as is shown by
example 5.2.2 below, if this energy is bigger than 8π (which corresponds
more or less to the case where u “has the possibility to cover the sphere
S2 once”), then new phenomena may show up, and we can no longer
control the energy of the moving frame. We start by a direct consequence
of lemma 5.1.4.

Theorem 5.2.1 Let Ω be a simply connected open subset of C. Let
u ∈ H1(Ω, Gr2(Rn)); then there is a moving frame b, a section of u∗F ,
belonging to H1

loc(Ω,R
n × Rn).
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Proof
Step 1 Covering of Ω
We cover Ω by a finite family of simply connected open sets U1, ..., Up,
such that for each j = 1, ..., p,∫

Uj

|du|2dxdy ≤ 8π
3
. (5.85)

To construct this covering we may, for instance, consider the sequence
of compact (Km)m∈N, such that Km ⊂ Ω, ∀m ∈ N, and

Kl is contained in the interior of Km, if l < m, (5.86)

and lim
l→+∞

Kl = Ω. There exists m such that∫
Km

|du|2dxdy >
∫

Ω

|du|2dxdy − 8π
3
. (5.87)

Then we choose as the first open set, V0 = Ω\Km. Next, we cover the
compact setKm+1 by open balls V1, ..., Vq of Ω such that

∫
Vj

|du|2dxdy <
8π
3 . In case certain open subsets are not diffeomorphic to balls, we cover
them by smaller simply connected open sets. In this way we obtain a
family U1, ..., Up satisfying (5.85). Denote by uj the restriction of u to
Uj .

Step 2 Work in each Uj
Each open set Uj is conformally diffeomorphic to the ball B. Thus, we
can apply lemma 5.1.4 to each of these open sets (the L2 norms of the
derivatives being invariant under conformal transformations), thanks to
condition (5.85). We obtain that, for j = 1, ..., p, there exists a section
bj := (ej,1, ej,2) of u∗jF with bounded energy. Define Uij = Ui ∩ Uj .
Over each non-empty Uij , there exists θij ∈ H1(Uij ,R) such that

in Uij , bj = biRij , where Rij =
(

cos θij − sin θij
sin θij cos θij

)
. (5.88)

This equation implies that

〈dej,2, ej,1〉 = 〈dei,2, ei,1〉 − d θij . (5.89)

And hence, since d(L〈dej,2, ej,1〉) = d(L〈dei,2, ei,1〉) = 0, θij is a solution
of
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∆θij = 0 in Uij . (5.90)

Notice that θij + θ
j
i = 0 in Uij , and that in every Uijk = Ui ∩Uj ∩Uk,

the θij satisfy the cocycle condition

θij + θ
j
k + θ

k
i = 0. (5.91)

Step 3 Gluing
We use an elementary result of sheaf theory: the Čech cohomology group
of the sheaf of real harmonic functions over Ω is trivial, since Ω is a
simply connected (see [73]). In our case this implies, by (5.91), that
over each Uj there exists a real harmonic function hj such that

θij = hi − hj in Uij . (5.92)

Moreover, since each θij ∈ H1(Uij ,R), we deduce that for any compact
subset K of Ω,

hj |K ∈ H1(Uj ∩K,R). (5.93)

Using (5.92), we may now rewrite (5.88) as

in Uij , bj

(
cos hj − sin hj
sin hj cos hj

)
= bi

(
cos hi − sin hi
sin hi cos hi

)
(5.94)

and thus, over Ω we can define the section b of u∗F by

b := bi

(
cos hi − sin hi
sin hi cos hi

)
in Ui, (5.95)

and b has a finite energy over every compact K in Ω.

Example 5.2.2 The stereographic projection

We will see in this example that the constant γ in inequality (5.21) of
lemma 5.1.4 cannot be bigger than 8π, and that the function a such that

inf
b section of u∗F
‖du‖2

L2(B)=t

‖db‖2
L2(B) = a(t) (5.96)

cannot be smaller than a(t) = −8π log
(
1− t

8π

)
.
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Define on Br ⊂ C, u(z) =
1

1 + |z|2

 2x
2y

1− |z|2

. This map takes

its values in S2, and is conformal. The inverse image of the standard
metric on S2 by u is

4
(1 + |z|2)2 [(dx)

2 + (dy)2], (5.97)

and

‖du‖2
L2(Br)

= 16π
∫ R

0

rdr

(1 + r2)2
=

8πR2

1 +R2
. (5.98)

Let b = (e1, e2) be a minimizing section of u∗F . We necessarily have,
denoting by ω the volume form on S2, that coincides with the curvature
form of the bundle F ,

d〈de2, e1〉 = u∗ω =
4

(1 + |z|2)2 dx ∧ dy. (5.99)

We integrate this identity over the ball Br, for 0 < r < R,

4πr2

1 + r2
=

∫
Br

u∗ω

=
∫
∂Br

〈de2, e1〉

≤
√∫

∂Br

ds

√∫
∂Br

|〈de2, e1〉|2ds. (5.100)

Recall that df = L〈de2, e1〉. Therefore, we deduce from inequality (5.100)
that

∫
∂Br

|df |2ds ≥ 8πr3

(1 + r2)2
. (5.101)

Integrating this inequality over [0, R], we obtain

∫
Br

|df |2dxdy ≥
∫ R

0

8πr3dr
(1 + r2)2

= 4π log(1 +R2)− 4πR2

1 +R2
. (5.102)
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Hence, for any section b of u∗F ,

‖db‖2
L2(Br)

= 2‖df‖2
L2(Br)

+ ‖du‖2
L2(Br)

≥ 8π log(1 +R2). (5.103)

Eliminating R between (5.98) and (5.103), we see that

‖db‖2
L2(Br)2

≥ −8π log
(
1− 1

8π
‖du‖2

L2(Br)

)
, (5.104)

so that the function a cannot be smaller than a(t) = −8π log
(
1− t

8π

)
.

On the other hand, this also proves that the constant γ cannot be bigger
than 8π, since here lim

t→8π
a(t) = +∞.

Notice that inequality (5.103) is optimal since for



e1 =
1 + |z|2

2
du

(
1
0

)
=

 1
0
0

− 2x
1 + |z|2

 x

y

1



e2 =
1 + |z|2

2
du

(
0
1

)
=

 0
1
0

− 2y
1 + |z|2

 x

y

1


(5.105)

we obtain equality in (5.103).
In fact, this example seems to be the most “efficient” to make ‖db‖2

L2(Br)

big, while keeping ‖du‖2
L2(Br)

constant. This leads us to the following
problem.

Conjecture 5.2.3 Prove that for any u ∈ H1(B,Gr2(Rn)) such that
‖du‖2

L2(Br)
< 8π, there exists a frame b in H1(B,Rn×Rn), a section of

u∗F , such that

‖db‖2
L2(Br)

≤ a(‖du‖2
L2(Br)

), (5.106)

where a(t) = −8π log
(
1− t

8π

)
.

Let us come back to conformal immersions:

Theorem 5.2.4 Suppose that S is a connected Riemannian surface,
and X ∈ H1(S,Rn) is such that there exists a sequence (Xk)k∈N in
C∞ ∩H1(S,Rn) satisfying the following hypotheses.
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(i) For each k, Xk is a conformal immersion.
(ii) For any x ∈ S, there is a ball B(x, ρx) in S, such that ∀k ∈ N,

∫
B(x,ρx)

|Ak|2dxdy < 8π
3
. (5.107)

(iii) Xk ⇀ X, weakly in H1(S,Rn).

Then X is either a constant map or a bilipschitz conformal immersion.

Proof Applying theorem 5.1.1 over each ball B(x, ρx), we obtain right
away that either X|B(x,ρx) is a constant map, or X|B(x,ρx) is a bilipschitz
conformal immersion. Hence, we deduce that the set

{x ∈ S | dX = 0} (5.108)

is both open and closed. Since S is connected, this yields our result.

Remark 5.2.5 Again, we can ask what happens when we do not con-
trol ‖Ak‖L2 locally, as in the preceding result, but just assume that
‖Ak‖2

L2 ≤ C. Things are not clear. For instance, it could happen that
the immersion X thus obtained has branch points, but this is not certain.

5.3 Willmore surfaces

An important motivation for the preceding results is the study of im-
mersed surfaces in R3, which are critical points of the functional

W (S) =
∫
S

H2dH2, (5.109)

where H = k1+k2
2 is the mean curvature and dH2 the 2-dimensional

Hausdorff measure. This functional was proposed by Tom Willmore in
1960, and is also called the Willmore functional [182]. Its critical points
are called Willmore surfaces, and satisfy the equation

∆H + 2H(H2 −K) = 0, (5.110)

where K = k1k2 is the Gauss curvature. Notice that in dimension 3, we
have
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H2 =
|A|2
4

+
K

2
, (5.111)

where A is the second fundamental form. Thus, if the surface S has no
boundary and genus g ∈ N, we have, by the Gauss–Bonnet theorem,

W (S) =
1
4

∫
S

|A|2dH2 + 2π(1− g), (5.112)

and consequently, the problem is, from the variational point of view,
equivalent to the study of the critical points of

∫
S
|A|2dH2. A natural

question is to consider, for each g ∈ N, the set Eg of smooth compact
surfaces of genus g, without boundary and smoothly embedded in R3,
and, inside each class Eg, to look for the surfaces which minimize W .
For g = 0, it is easy to show that all the round spheres in R3 minimize
W in E0, using the identity

W (S) =
∫
S

(
k1 − k2

2

)2

dH2 +
∫
S

KdH2. (5.113)

For g = 1, Tom Willmore proved that the torus of revolution obtained
by making a unit circle turn around a straight line contained in the plane
of the circle, and located a distance

√
2 from the center of the circle, is

a Willmore surface. This torus was given the name of its author, who
conjectured that it minimizes W in E1.
In spite of some partial answers (see, for instance, [107] and [115]),

this conjecture has still not been proved. On the other hand, a deep
work of Leon Simon [154] shows the existence of a smooth surface in
E1 minimizing W . However, we still do not know if this torus coincides
with that of Willmore.

To conclude, we mention that this problem had been considered by
Thomsen and Shadow in 1923 [168], Blaschke in 1929 [16] and Konrad
Voss in 1950.

For a more detailed presentation of Willmore surfaces, see the last
chapter of [183]. A study of Willmore surfaces in the framework of
integrable systems and loop groups, like the theory for harmonic maps
presented in the second chapter of this book, was made in [86].
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5.4 Epilogue: Coulomb frames and conformal coordinates

As we saw at the beginning of this chapter, the existence of a Coulomb
orthonormal frame field is closely connected to the existence of conformal
coordinates on the same surface.

The following result sheds some light onto this connection.

Lemma 5.4.1 Let Ω be an open subset of a smooth Riemannian surface.
Then, for any Lipschitz orthonormal frame field (e1, e2) on Ω, and any
function f ∈W 1,∞(Ω,R), we have, writing ω1

2 = 〈∇e2, e1〉,

[efe1, efe2] = e2f [(Lω1
2 − df)(e2)e1 − (Lω1

2 − df)(e1)e2]. (5.114)

Consequently, if Ω is simply connected, we have the equivalence (i) ⇐⇒
(ii), where

(i) There exists a conformal diffeomorphism u, in W 2,∞
loc , from an

open subset ω in R2 to Ω, such that
∂u

∂x
=

∣∣∣∣∂u∂x
∣∣∣∣ e1(u)

∂u

∂y
=

∣∣∣∣∂u∂y
∣∣∣∣ e2(u).

(5.115)

(ii) (e1, e2) is an orthonormal frame field belonging toW 1,∞
loc (i.e. locally

Lipschitz) in Ω, such that

d(L〈∇e2, e1〉) = 0. (5.116)

Proof
Step 1 We have

[efe1, efe2] = e2f ([e1, e2] + df(e1)e2 − df(e2)e1)
= e2f [∇e1e2 −∇e2e1 + df(e1)e2 − df(e2)e1]
= e2f [(ω1

2(e1)− df(e2))e1 + (ω1
2(e2) + df(e1))e2].

(5.117)
We recall that if (α1, α2) is the basis of T ∗

mΩ , which is the dual of (e1, e2),
we have

Lα1 = α2, Lα2 = −α1, (5.118)



5.4 Epilogue: Coulomb frames and conformal coordinates 245

which implies that

Lω1
2 = L(ω1

2(e1)α
1 + ω1

2(e2)α
2)

= ω1
2(e1)α

2 − ω1
2(e2)α

1. (5.119)

It follows that

[efe1, efe2] = e2f [(Lω1
2(e2)−df(e2))e1+(−Lω1

2(e1)−df(e1))e2] (5.120)

which implies (5.114).

Step 2 To show that (i) =⇒ (ii), it suffices to apply (5.114) with f =
log

∣∣∂u
∂x

∣∣. This yields
Lω1

2 = df (5.121)

which implies (ii).

Step 3 Conversely, if (ii) is true, then there exists f : Ω −→ R such that

df = Lω1
2 . (5.122)

But since (e1, e2) is a pair of linearly independent locally Lipschitz vector
fields, it is necessary that the metric g, for which (e1, e2) is an orthonor-
mal basis, whose expression in local coordinates is

gkl = (gij)−1, where gij = ei1e
j
1 + e

i
2e
j
2, (5.123)

is itself locally Lipschitz and non-degenerate, and hence that the co-
efficients of the Levi-Civita connection ∇, associated to g, are locally
bounded. Therefore,

ω1
2 = 〈∇ e2, e1〉 (5.124)

is also locally bounded, and (5.122) implies that f is a locally Lipschitz
function on Ω. Thus, we consider the vector fields on Ω

X1 = efe1 and X2 = efe2. (5.125)

By (5.114) and (5.122), X1 and X2 commute, i.e.

[X1, X2] = 0 (5.126)
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and moreover, these vector fields are locally Lipschitz. Hence, we can
integrate them, and using the fact that Ω is simply connected, we deduce
that there exists an unique map u from an open subset ω of R2 to Ω,
such that

u(0, 0) = m0 (chosen point in Ω)

∂u

∂x1
(x) = X1(u(x))

∂u

∂x2
(x) = X2(u(x)),

(5.127)

and hence u is a conformal diffeomorphism of class W 2,∞
loc .

Remark 5.4.2 In the previous lemma, if we also suppose that there
exists a constant δ > 0 such that det(e1, e2) > δ in Ω, then the result
remains true if we replace all the locally Lipschitz quantities by globally
Lipschitz ones.

This result suggests that it should be possible to construct conformal
coordinates over a Riemannian surface using “Coulomb” orthonormal
moving frames. This idea is used in the following theorem, which is a
sort of converse of the results in section 5.1.

Theorem 5.4.3 Let (Ω, g) be an open subset of a Riemannian surface,
whose non-degenerate metric written in some local coordinates satisfies

(i) the coefficients of g belong to H1(Ω) ∩ L∞(Ω);
(ii) if K denotes the Gauss curvature of (Ω, g), then

K
√

det gij ∈ H1
loc(Ω) (5.128)

(the local Hardy space).

Then, if Ω is simply connected, there exists a bilipschitz diffeomor-
phism from an open subset ω of R2 to (Ω, g), which is conformal.

Remark 5.4.4 There is no difficulty in giving a sense to K
√
det gij if

g is in H1 ∩ L∞. In fact, in this case, we can construct (by orthonor-
malizing) an orthonormal frame field (e1, e2) over Ω, which also belongs
to H1 ∩ L∞, and we can define
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ω1
2 = g(∇e2, e1) = gij [e1, e2]idxj , (5.129)

which is clearly in L2. Then, the equation

dω1
2 = K

√
det gijdx1 ∧ dx2 (5.130)

enables us to calculate K
√

det gij, and gives us that this quantity is in
H−1(Ω,R).

For a definition of the space H1
loc(Ω), see [157]. Notice that we can

replace the hypothesis (5.128) by the hypothesis that K
√
det gij is the

restriction to Ω of a H1(R2) function.

Remark 5.4.5 The following proof has some similarities with the one
given by S.S. Chern [36]. Nevertheless, it does not involve integral equa-
tions in a complex variable, but elliptic estimates (although must admit
that often, hidden behind an elliptic estimate, there is an estimate on a
singular integral).

Proof of theorem 5.4.3
Step 1 Construction of a Coulomb frame

Starting from the simplest frame field,
(

∂
∂x1 ,

∂
∂x2

)
, we construct, using a

standard algebraic procedure, a positively oriented orthonormal frame
field for the metric g, which we denote by (e1, e2). Since H1 ∩L∞ is an
algebra and g is supposed to be non-degenerate, (e1, e2) also belongs to
H1 ∩ L∞. For θ ∈ H1(Ω,R), we let

(eθ,1, eθ,2) = (e1, e2)
(

cos θ − sin θ
sin θ cos θ

)
, (5.131)

and write ω1
θ,2 = g(∇eθ,2, eθ,2) = g(∇e2, e1) − dθ. We choose, as in

lemma 4.1.3, or lemma 5.1.4, a θ which minimizes the energy∫
Ω

|ω1
θ,2|2

√
det gijdx1dx2. (5.132)

It follows that ω1
θ,2 is of class L2 in Ω, and is a solution of

d(Lω1
θ,2) = 0 in Ω

ω1
θ,2

(
∂

∂n

)
= 0 on ∂Ω,

(5.133)
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where the Hodge L operator is that corresponding to the metric g. Hence-
forth, we denote by (e1, e2) the frame thus obtained.

Step 2 Construction of a commuting pair of vectors

By (5.133), there exists a function f ∈ H1(Ω,R), satisfying

{
f = 0 on ∂Ω
df = Lω1

2 in Ω.
(5.134)

It follows from this equation that −√
det gij∆gfdx

1∧dx2 = dω1
2 , and

hence that

−∆gf = K in Ω. (5.135)

Do not forget that the Laplacian used here is that for the metric g. This
equation yields

−
∑
i,j

∂

∂xi

(
gij

√
det gkl

∂f

∂xj

)
= K

√
det gij in Ω (5.136)

The r.h.s. of this equation belongs to local Hardy space. This im-
plies that f is locally bounded and continuous. To show this we use
a generalization of theorem 3.1.2 to the case of elliptic operators with
non-constant coefficients which are bounded in L∞; see [33] (see also
[14]). Let

X1 := efe1 and X2 := efe2. (5.137)

We are tempted to integrate these two vector fields. However, there
is a difficulty that shows up: although it is simple to check that X1 and
X2 belong to H1 ∩ L∞, it is in general not true that these fields are
Lipschitz, which poses a problem.

Step 3 Integration
Consider the basis of T ∗Ω, dual of (e1, e2), which we denote by (α1, α2).
Again, it is easy to show that the 1-forms α1 and α2 are in H1 ∩ L∞.
We let

A1 = e−fα1 and A2 = e−fα2. (5.138)

Likewise, A1 and A2 are in H1 ∩ L∞. Now we remark that since
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df ∧ α1 = (Ldf) ∧ (Lα1) = −ω1
2 ∧ α2, (5.139)

we have

dA1 = e−f (dα1 − df ∧ α1) = e−f (dα1 + ω1
2 ∧ α2) = 0. (5.140)

[Recall that by Cartan’s formula,

dα1(e1, e2) = e1.α
1(e2)− e2.α1(e1)− α1([e1, e2])

= −α1(∇e1e2 −∇e2e1)

= −ω1
2(e1), (5.141)

and hence, dα1 + ω1
2 ∧ α2 = 0].

Likewise, dA2 = 0. This implies that there exists a map F : Ω −→ R2,
of class H2 ∩W 1,∞, such that

dF =
(
A1

A2

)
. (5.142)

It is now easy to conclude that F is a conformal Lipschitz diffeomor-
phism, whose inverse is the parametrization we were looking for.

Remark 5.4.6 It would be interesting to take advantage of the geomet-
rical properties of Coulomb frames in other situations, for instance on
Riemannian manifolds of dimension larger than 2. As a curiosity, we
will conclude with a study of “special” Coulomb frames, over a symplec-
tic surface (the structure group involved being SL(2,R)).

Special Coulomb frames over a symplectic surface

We start by giving some definitions. A symplectic surface is a surface
equipped with a symplectic form which — in this special case — is the
same as a volume form. Let (M, ω) be such a symplectic surface: M is
a surface and ω is a volume form on M. If Ω is an open subset of M,
we define a special frame on Ω to be the assignment, to each point z in
Ω, of a basis (e1(z), e2(z)) of TzM such that

ω(e1, e2) = 1.

In spite of the small amount of geometric structure we assume, it is
possible to define a functional on the set of special frames on (Ω, ω),
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which generalizes what we saw for Riemannian surfaces. For any special
frame e := (e1, e2), we define

F (e) :=
∫

Ω

(
ω(e1, [e1, e2])2 + ω([e1, e2], e2)2

)
ω.

We leave to the reader the task of checking that if (M, g) is a Rie-
mannian surface, ω = dvolg and e is an orthonormal frame field, then
F (e) =

∫
Ω
|〈de1, e2〉|2dvolg.

It will be convenient to replace a frame by its dual coframe, i.e. at
each point z, the basis of T 4zM dual to (e1(z), e2(z)): if we denote this
basis by α = (α1, α2), we then have

αa(eb) = δab , for a, b = 1, 2.

The condition of e being special is equivalent to

α1 ∧ α2 = ω.

We define S(Ω) := {α = (α1, α2) coframe field on Ω, such that α1 ∧
α2 = ω}. We show, using the Cartan formula given above, that if we
define the quantities λ1 and λ2 such that

{
dα1 = λ1ω

dα2 = λ2ω,

then

λ1 = −ω([e1, e2], e2)
λ2 = −ω(e1, [e1, e2])

and thus,

F (e) = F 4(α) :=
∫

Ω

((λ1)2 + (λ2)2)ω.

We will say that α ∈ S(Ω) is a critical point of F 4, if F 4(α) is stationary
w.r.t. infinitesimal compactly supported variations in Ω.

Lemma 5.4.7 Suppose α ∈ S(Ω) is a smooth critical point of F 4. Then,
there exists a function f : Ω −→ R, and a chart (u, v) : Ω −→ R2, such
that

(efα1, efα2) = d(u, v). (5.143)
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Moreover, we may consider the metric g defined over Ω by

g = α1 ⊗ α1 + α2 ⊗ α2, (5.144)

and this metric has a constant Riemannian curvature.

Proof
Step 1 Existence of (u, v)
It consists of showing that if α ∈ S(Ω) is a critical point of F 4, then
there exists f such that d(efα1) = d(efα2) = 0. To show this, we simply
use the fact that= F 4(α) is stationary for a transformation of the type

(α1, α2)  −→ (α1 cos(εφ) + α2 sin(εφ),−α1 sin(εφ) + α2 cos(εφ))
= (α1 + εφα2, α2 − εφα1) + o(ε).
= (α1

ε , α
2
ε ),

where φ ∈ C∞
c (Ω,R) (action of SO(2)). We see that

dα1
ε = dα

1 + ε(dφ ∧ α2 + φλ2α1 ∧ α2) + o(ε),

dα2
ε = dα

2 + ε(α1 ∧ dφ− φλ1α1 ∧ α2) + o(ε),

and hence that the first variation of F 4(α) is

δF 4(α)(φα2,−φα1) = 2
∫

Ω

λ1dφ ∧ α2 + λ2α1 ∧ dφ

= 2
∫

Ω

d(φ(λ1α2 − λ2α1))− φd(λ1α2 − λ2α1).

(5.145)
We deduce from (5.145) that

d(λ1α2 − λ2α1) = 0, (5.146)

and hence, that there exists f : Ω −→ R such that

λ1α2 − λ2α1 = df. (5.147)

It is now easy to see that this yields that d(efα1) = d(efα2) = 0 and
also the existence of (u, v) satisfying (5.143). We consider the metric
g defined by (5.144). The moving frame e = (e1, e2) (dual basis to α)
will then be an orthonormal moving frame for this scalar product. The
associated connection form is ω1

2 = −ω2
1 such that dea = ωbaeb. This

relation is also equivalent to
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dα1 + ω1
2 ∧ α2 = dα2 + ω2

1 ∧ α1 = 0.

Then, we can easily deduce that

ω1
2 = −λ1α1 − λ2α2. (5.148)

Step 2 The complete Euler–Lagrange system
We can apply two other types of infinitesimal variations α  −→ αε where

αε = (α1 + εφα2, α2 + εφα1) + o(ε), (5.149)

and

αε = (α1 + εφα1, α2 − εφα2) + o(ε). (5.150)

For the first type (5.149), we have

δF 4(α)(φα2, φα1) = 2
∫

Ω

dφ ∧ (λ1α2 + λ2α1) + 2φλ1λ2α1 ∧ α2.

For the second type of variation (5.150), we obtain

δF 4(α)(φα1,−φα2) = 2
∫

Ω

dφ∧ (λ1α1−λ2α2)+φ((λ1)2− (λ2)2)α1∧α2.

From these two relations we deduce two Euler equations which should
be added to equation (5.146) obtained before,

d(λ1α2 + λ2α1) = 2λ1λ2α1 ∧ α2, (5.151)

d(λ1α1 − λ2α2) = ((λ1)2 − (λ2)2)α1 ∧ α2. (5.152)

Step 3 Interpretation of the Euler equations

Let K be the curvature of the Riemannian surface (Ω, g). This function
is defined on Ω by

−d(λ1α1 + λ2α2) = dω1
2 = Kα1 ∧ α2. (5.153)

From (5.146), (5.151), (5.152) and (5.153), we deduce
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d(λ1α1) = 1

2 ((λ
1)2 − (λ2)2 −K)α1 ∧ α2

d(λ2α1) = λ1λ2α1 ∧ α2

d(λ1α2) = λ1λ2α1 ∧ α2

d(λ2α2) = 1
2 (−(λ1)2 + (λ2)2 −K)α1 ∧ α2.

(5.154)

Developing the relations d(λaαb) = dλa ∧ αb + λadαb, and using
(5.154), we obtain {

dλ1 = 1
2 (|λ|2 +K)α2

dλ2 = − 1
2 (|λ|2 +K)α1,

(5.155)

where |λ|2 = (λ1)2 + (λ2)2.
We remark that α1 = e−fdu and α2 = e−fdv, by (5.143). Therefore,

(5.155) imply that if we consider λ1 and λ2 as functions of (u, v),

∂λ1

∂u
=
∂λ2

∂v
= 0,

or equivalently, λ1 = λ1(v) and λ2 = λ2(u).
Still because of (5.155), we have

dλ1

dv
(v) = −dλ

2

du
(u) =

1
2
(|λ|2 +K)e−f ,

which implies that this quantity is equal to a constant γ. Hence, (5.155)
yields dλ1 = γdv and dλ2 = −γdu, and integrating (denoting by u0 and
v0 certain constants) {

λ1 = γ(v − v0)
λ2 = −γ(u− u0).

Substituting this into (5.147), we obtain

df = e−fγ[(u− u0)du+ (v − v0)dv].
We deduce from this equation that

ef =
γ

2
((u− u0)2 + (v − v0)2) + δ,

where δ is an integration constant. Knowing that 1
2 (|λ|2 +K)e−f = γ,

we conclude that

K = 2γδ.
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Birkhäuser, Boston 1994.

[13] F. Bethuel, F. Demengel, Extensions for Sobolev mappings between
manifolds, Calc. Var. 3 (1995), 475–491.

[14] F. Bethuel, J.-M. Ghidaglia, Improved regularity for solutions of
elliptic equations involving Jacobian and applications, J. Maths.
Pures et Appliquées 72 (1993), 441–475.

[15] F. Bethuel, X. Zheng, Density of smooth functions between two
manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60–75.

254



References 255

[16] W. Blaschke, Vorlesungen über Differentialgeometrie III, Springer,
Berlin 1929.

[17] A.I. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new
integrable systems, in [62].

[18] O. Bonnet, Note sur une propriété de maximum relative à la sphère,
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