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Preface

This book deals with a special subject in the wide field of Geometric Anal-
ysis. The subject has its origins in results by Funk [1913] and Radon [1917]
determining, respectively, a symmetric function on the two-sphere S2 from
its great circle integrals and an integrable function on R2 from its straight
line integrals. (See References.) The first of these is related to a geometric
theorem of Minkowski [1911] (see Ch. III, §1).

While the above work of Funk and Radon lay dormant for a while, Fritz
John revived the subject in important papers during the thirties and found
significant applications to differential equations. More recent applications
to X-ray technology and tomography have widened interest in the subject.

This book originated with lectures given at MIT in the Fall of 1966,
based mostly on my papers during 1959–1965 on the Radon transform and
its generalizations. The viewpoint of these generalizations is the following.

The set of points on S2 and the set of great circles on S2 are both acted
on transitively by the group O(3). Similarly, the set of points in R2 and the
set P2 of lines in R2 are both homogeneous spaces of the group M(2) of
rigid motions of R2. This motivates our general Radon transform definition
from [1965a] and [1966a], which forms the framework of Chapter II:

Given two homogeneous spaces X = G/K and Ξ = G/H of the same
groupG, two elements x = gK and ξ = γH are said to be incident (denoted
x#ξ) if gK ∩ γH �= ∅ (as subsets of G). We then define the abstract Radon

transform f → ̂f from Cc(X) to C(Ξ) and the dual transform ϕ→ ϕ̌ from
Cc(Ξ) to C(X) by

̂f(ξ) =

∫

x#ξ

f(x) dm(x) , ϕ̌(x) =

∫

ξ#x

ϕ(ξ) dμ(ξ)

with canonical measures dm and dμ. These geometrically dual operators
f → ̂f and ϕ → ϕ̌ are also adjoint operators relative to the G-invariant
measures dgK , dgH on G/K and G/H .

In the example R2, one takes G = M(2) and K the subgroup O(2) fixing
the origin xo and H the subgroup mapping a line ξo into itself. Thus we
have

X = G/K = R2 , Ξ = G/H = P2

and here it turns out x ∈ X is incident to ξ ∈ Ξ if and only if their distance
equals the distance p between xo and ξo. It is important not just to consider
the case p = 0. Also the abstract definition does not require the members
of Ξ to be subsets of X . Some natural questions arise for the operators
f → ̂f , ϕ→ ϕ̌, namely:
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(i) Injectivity

(ii) Inversion formulas

(iii) Ranges and kernels for specific function spaces on X and on Ξ

(iv) Support problems (does ̂f of compact support imply f of compact
support?)

We investigate these problems for a variety of examples, mainly in Chap-
ter II. Interesting analogies and differences appear. One such instance is
when the classical Poisson integral for the unit disk turns out to be a cer-
tain Radon transform and offers wide ranging analogies with the X-ray
transform in R3. See Table II.1 in Chapter II, §4.

In the abstract framework indicated above, a specific result for a single
example automatically raises a host of conjectures.

The problems above are to a large extent solved for the X-ray transform
and for the horocycle transform on Riemannian symmetric spaces. When
G/K is a Euclidean space (respectively, a Riemannian symmetric space)
and G/H the space of hyperplanes (respectively, the space of horocycles)

the transform f → ̂f has applications to certain differential equations. If L
is a natural differential operator on G/K, the map f → ̂f transfers it into

a more manageable operator ̂L on G/H by the relation

(Lf)̂= ̂L ̂f .

Then the support theorem

̂f compact support ⇒ f compact support

implies the existence theorem L C∞(G/K) = C∞(G/K) for G-invariant
differential operators L on G/K.

On the other hand, the applications of the original Radon transform on
R2 to X-ray technology and tomography are based on the fact that for
an unknown density f , X-ray attenuation measurements give ̂f directly
and thus yield f itself via Radon’s inversion formula. More precisely, let B
be a planar convex body, f(x) its density at the point x, and suppose a
thin beam of X-rays is directed at B along a line ξ. Then, as observed by
Cormack, the line integral ̂f(ξ) of f along ξ equals log(I0/I) where I0 and
I, respectively, are the intensities of the beam before hitting B and after
leaving B. Thus while f is at first unknown, the function ̂f (and thus f)
is determined by the X-ray data. See Ch. I, §7,B. This work, initiated
by Cormack and Hounsfield and earning them a Nobel Prize, has greatly
increased interest in Radon transform theory. The support theorem brings
in a certain refinement that the density f(x) outside a convex set C can be
determined by only using X-rays that do not enter C. See Ch. I, §7, B.
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This book includes and recasts some material from my earlier book,
“The Radon Transform”, Birkhäuser (1999). It has a large number of new
examples of Radon transforms, has an extended treatment of the Radon
transform on constant curvature spaces, and contains full proofs for the
antipodal Radon transform on compact two-point homogeneous spaces.
The X-ray transform on symmetric spaces is treated in detail with explicit
inversion formulas.

In order to make the book self-contained we have added three chapters
at the end of the book. Chapter VII treats Fourier transforms and distri-
butions, relying heavily on the concise treatment in Hörmander’s books.
We call particular attention to his profound Theorem 4.9, which in spite of
its importance does not seem to have generally entered distribution theory
books. We have found this result essential in our study [1994b] of the Radon
transform on a symmetric space. Chapter VIII contains a short treatment of
basic Lie group theory assuming only minimal familiarity with the concept
of a manifold. Chapter IX is a short exposition of the basics of the theory
of Cartan’s symmetric spaces. Most chapters end with some Exercises and
Further Results with explicit references.

Although the Bibliography is fairly extensive no completeness is at-
tempted. In view of the rapid development of the subject the Bibliograph-
ical Notes can not be up to date. In these notes and in the text my books
[1978] and [1984] and [1994b] are abbreviated to DS and GGA and GSS.

I am indebted to T.H. Danielsen, S. Jensen and J. Orloff for critical read-
ing of parts of the manuscript, to R. Melrose and R. Seeley for suggestions,
to F. Gonzalez, J. Hilgert, A. Kurusa, F. Rouvière and H. Schlichtkrull
for concrete contributions mentioned at specific places in the text, and for
various textual suggestions. Once more my sincere thanks to Jan Wetzel
for skillful preparation of the manuscript and to Kaitlin Leach at Springer
for her patient cooperation.

MIT Sigurdur Helgason
May 2009
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CHAPTER I

THE RADON TRANSFORM ON Rn

§1 Introduction

It was proved by J. Radon in 1917 that a differentiable function on R3

can be determined explicitly by means of its integrals over the planes in
R3. Let J(ω, p) denote the integral of f over the hyperplane 〈x, ω〉 = p, ω
denoting a unit vector and 〈 , 〉 the inner product. Then

f(x) = − 1

8π2
Lx

(∫

S2

J(ω, 〈ω, x〉) dω
)

,

where L is the Laplacian on R3 and dω the area element on the sphere S2

(cf. Theorem 3.1).
We now observe that the formula above has built in a remarkable du-

ality: first one integrates over the set of points in a hyperplane, then one
integrates over the set of hyperplanes passing through a given point. This
suggests considering the transforms f → ̂f, ϕ→ ϕ̌ defined below.

The formula has another interesting feature. For a fixed ω the integrand
x → J(ω, 〈ω, x〉) is a plane wave, that is a function constant on each
plane perpendicular to ω. Ignoring the Laplacian the formula gives a con-
tinuous decomposition of f into plane waves. Since a plane wave amounts
to a function of just one variable (along the normal to the planes) this de-
composition can sometimes reduce a problem for R3 to a similar problem
for R. This principle has been particularly useful in the theory of partial
differential equations.

The analog of the formula above for the line integrals is of importance
in radiography where the objective is the description of a density function
by means of certain line integrals.

In this chapter we discuss relationships between a function on Rn and
its integrals over k-dimensional planes in Rn. The case k = n − 1 will be
the one of primary interest. We shall occasionally use some facts about
Fourier transforms and distributions. This material will be developed in
sufficient detail in Chapter VII so the treatment should be self-contained.
Later chapters involve some Lie groups and symmetric spaces so the needed
background is developed in Chapter VIII and Chapter IX.

Following Schwartz [1966] we denote by E(Rn) and D(Rn), respectively,
the space of complex-valued C∞ functions (respectively C∞ functions of
compact support) on Rn. The space S(Rn) of rapidly decreasing functions
on Rn is defined in connection with (6) below. Cm(Rn) denotes the space of
m times continuously differentiable functions. We write C(Rn) for C0(Rn),
the space of continuous functions on Rn.

S. Helgason, Integral Geometry and Radon Transforms, 
DOI 10.1007/978-1-4419-6055-9_1, © Springer Science+Business Media, LLC 2011
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For a manifold M , Cm(M) (and C(M)) is defined similarly and we write
D(M) for C∞c (M) and E(M) for C∞(M).

§2 The Radon Transform of the Spaces D(Rn) and

S(Rn). The Support Theorem

Let f be a function on Rn, integrable on each hyperplane in Rn. Let Pn

denote the space of all hyperplanes in Rn, Pn being furnished with the
obvious topology. The Radon transform of f is defined as the function
̂f on Pn given by

̂f(ξ) =

∫

ξ

f(x)dm(x) ,

where dm is the Euclidean measure on the hyperplane ξ. Along with the
transformation f → ̂f we consider also the dual transform ϕ→ ϕ̌ which
to a continuous function ϕ on Pn associates the function ϕ̌ on Rn given
by

ϕ̌(x) =

∫

x∈ξ

ϕ(ξ) dμ(ξ)

where dμ is the measure on the compact set {ξ ∈ Pn : x ∈ ξ} which is
invariant under the group of rotations around x and for which the measure
of the whole set is 1 (see Fig. I.1). We shall relate certain function spaces

on Rn and on Pn by means of the transforms f → ̂f , ϕ → ϕ̌; later we
obtain explicit inversion formulas.

x

FIGURE I.1.

}x

0

〈 ω〉x,

ω

ξ

FIGURE I.2.
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Each hyperplane ξ ∈ Pn can be written ξ = {x ∈ Rn : 〈x, ω〉 = p},
where 〈 , 〉 is the usual inner product, ω = (ω1, . . . , ωn) a unit vector
and p ∈ R (Fig. I.2). Note that the pairs (ω, p) and (−ω,−p) give the
same ξ; the mapping (ω, p) → ξ is a double covering of Sn−1 × R onto
Pn. Thus Pn has a canonical manifold structure with respect to which
this covering map is differentiable and regular. We thus identify continuous
(differentiable) function on Pn with continuous (differentiable) functions
ϕ on Sn−1 × R satisfying the symmetry condition ϕ(ω, p) = ϕ(−ω,−p).
Writing ̂f(ω, p) instead of ̂f(ξ) and ft (with t ∈ Rn) for the translated
function x→ f(t+ x) we have

̂ft(ω, p) =

∫

〈x,ω〉=p

f(x+ t) dm(x) =

∫

〈y,ω〉=p+〈t,ω〉

f(y) dm(y)

so

(1) ̂ft(ω, p) = ̂f(ω, p+ 〈t, ω〉) .

Taking limits we see that if ∂i = ∂/∂xi

(2) (∂if)b(ω, p) = ωi
∂ ̂f

∂p
(ω, p) .

Let L denote the Laplacian Σi∂
2
i on Rn and let � denote the operator

ϕ(ω, p)→ ∂2

∂p2
ϕ(ω, p) ,

which is a well-defined operator on E(Pn) = C∞(Pn). It can be proved that
if M(n) is the group of isometries of Rn, then L (respectively �) generates
the algebra of M(n)-invariant differential operators on Rn (respectively
Pn).

Lemma 2.1. The transforms f → ̂f, ϕ→ ϕ̌ intertwine L and �, i.e.,

(Lf)b= �( ̂f) , (�ϕ)∨ = Lϕ̌ .

Proof. The first relation follows from (2) by iteration. For the second we
just note that for a certain constant c,

(3) ϕ̌(x) = c

∫

Sn−1

ϕ(ω, 〈x, ω〉) dω ,

where dω is the usual measure on Sn−1.
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The Radon transform is closely connected with the Fourier transform

˜f(u) =

∫

Rn

f(x)e−i〈x,ω〉 dx u ∈ Rn.

In fact, if s ∈ R, ω a unit vector,

˜f(sω) =

∞
∫

−∞

dr

∫

〈x,ω〉=r

f(x)e−is〈x,ω〉 dm(x)

so

(4) ˜f(sω) =

∞
∫

−∞

̂f(ω, r)e−isr dr .

This means that the n-dimensional Fourier transform is the 1-dimensional
Fourier transform of the Radon transform. From (4) it follows that the
Radon transform of the convolution

f(x) =

∫

Rn

f1(x− y)f2(y) dy

is the convolution

(5) ̂f(ω, p) =

∫

R

̂f1(ω, p− q) ̂f2(ω, q) dq .

Formula (5) can also be proved directly:

̂f(ω, p) =

∫

Rn

( ∫

〈x,ω〉=p

f1(x− y) dm(x)

)

f2(y) dy

=

∫

Rn

( ∫

〈z,ω〉=p−〈y,ω〉

f1(z) dm(z)

)

f2(y) dy

=

∫

Rn

̂f1(ω, p− 〈y, ω〉)f2(y) dy =

∫

R

̂f1(ω, p− q) ̂f2(ω, q) dq .

We consider now the space S(Rn) of complex-valued rapidly decreas-
ing functions on Rn. We recall that f ∈ S(Rn) if and only if for each
polynomial P and each integer m ≥ 0,

(6) sup
x
| |x|mP (∂1, . . . , ∂n)f(x)| <∞ ,

|x| denoting the norm of x. We now formulate this in a more invariant
fashion.
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Lemma 2.2. A function f ∈ E(Rn) belongs to S(Rn) if and only if for
each pair k, � ∈ Z+

sup
x∈Rn

|(1 + |x|)k(L�f)(x)| <∞ .

This is easily proved just by using the Fourier transforms.
In analogy with S(Rn) we define S(Sn−1 ×R) as the space of C∞ func-

tions ϕ on Sn−1 ×R which for any integers k, � ≥ 0 and any differential
operator D on Sn−1 satisfy

(7) sup
ω∈Sn−1,r∈R

∣

∣

∣(1 + |r|k) d
�

dr�
(Dϕ)(ω, r)

∣

∣

∣ <∞ .

The space S(Pn) is then defined as the set of ϕ ∈ S(Sn−1 ×R) satisfying
ϕ(ω, p) = ϕ(−ω,−p).
Lemma 2.3. For each f ∈ S(Rn) the Radon transform ̂f(ω, p) satisfies
the following condition: For k ∈ Z+ the integral

∫

R

̂f(ω, p)pk dp

can be written as a kth degree homogeneous polynomial in ω1, . . . , ωn.

Proof. This is immediate from the relation

(8)

∫

R

̂f(ω, p)pk dp =

∫

R

pk dp

∫

〈x,ω〉=p

f(x) dm(x) =

∫

Rn

f(x)〈x, ω〉k dx .

In accordance with this lemma we define the space

SH(Pn) =

{

F ∈ S(Pn) :
For each k ∈ Z+,

∫

R
F (ω, p)pk dp

is a homogeneous polynomial
in ω1, . . . , ωn of degree k

}

.

With the notation D(Pn) = C∞c (Pn) we write

DH(Pn) = SH(Pn) ∩D(Pn) .

According to Schwartz [1966], p. 249, the Fourier transform f → ˜f maps
the space S(Rn) onto itself. See Ch. VII, Theorem 4.1. We shall now settle
the analogous question for the Radon transform.

Theorem 2.4. (The Schwartz theorem) The Radon transform f → ̂f
is a linear one-to-one mapping of S(Rn) onto SH(Pn).
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Proof. Since

d

ds
˜f(sω) =

n
∑

i=1

ωi(∂i ˜f)

it is clear from (4) that for each fixed ω the function r → ̂f(ω, r) lies
in S(R). For each ω0 ∈ Sn−1 a subset of (ω1, . . . , ωn) will serve as local

coordinates on a neighborhood of ω0 in Sn−1. To see that ̂f ∈ S(Pn), it

therefore suffices to verify (7) for ϕ = ̂f on an open subset N ⊂ Sn−1 where
ωn is bounded away from 0 and ω1, . . . , ωn−1 serve as coordinates, in terms
of which D is expressed. Since

(9) u1 = sω1, . . . , un−1 = sωn−1 , un = s(1− ω2
1 − · · · − ω2

n−1)
1/2 ,

we have

∂

∂ωi
( ˜f(sω)) = s

∂ ˜f

∂ui
− sωi(1− ω2

1 − · · · − ω2
n−1)

−1/2 ∂
˜f

∂un
.

It follows that if D is any differential operator on Sn−1 and if k, � ∈ Z+

then

(10) sup
ω∈N,s∈R

∣

∣

∣(1 + s2k)
d�

ds�
(D ˜f)(ω, s)

∣

∣

∣ <∞ .

We can therefore apply D under the integral sign in the inversion formula
to (4),

̂f(ω, r) =
1

2π

∫

R

˜f(sω)eisr ds

and obtain

(1+r2k)
d�

dr�

(

Dω( ̂f(ω, r))
)

=
1

2π

∫ (

1+(−1)k
d2k

ds2k

)

(

(is)�Dω( ˜f(sω))
)

eisrds .

Now (10) shows that ̂f ∈ S(Pn) so by Lemma 2.3, ̂f ∈ SH(Pn).
Because of (4) and the fact that the Fourier transform is one-to-one it

only remains to prove the surjectivity in Theorem 2.4. Let ϕ ∈ SH(Pn). In

order to prove ϕ = ̂f for some f ∈ S(Rn) we put

ψ(s, ω) =

∞
∫

−∞

ϕ(ω, r)e−irs dr .

Then ψ(s, ω) = ψ(−s,−ω) and ψ(0, ω) is a homogeneous polynomial of
degree 0 in ω1, . . . , ωn, hence constant. Thus there exists a function F on
Rn such that

F (sω) =

∫

R

ϕ(ω, r)e−irs dr .
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While F is clearly smooth away from the origin we shall now prove it to be
smooth at the origin too; this is where the homogeneity condition in the
definition of SH(Pn) enters decisively. Consider the coordinate neighbor-
hood N ⊂ Sn−1 above and if h ∈ C∞(Rn − 0) let h∗(ω1, . . . , ωn−1, s) be
the function obtained from h by means of the substitution (9). Then

∂h

∂ui
=

n−1
∑

j=1

∂h∗

∂ωj

∂ωj
∂ui

+
∂h∗

∂s
· ∂s
∂ui

(1 ≤ i ≤ n)

and

∂ωj
∂ui

=
1

s
(δij − uiuj

s2
) (1 ≤ i ≤ n , 1 ≤ j ≤ n− 1) ,

∂s

∂ui
= ωi (1 ≤ i ≤ n− 1),

∂s

∂un
= (1− ω2

1 − · · · − ω2
n−1)

1/2 .

Hence

∂h

∂ui
=

1

s

∂h∗

∂ωi
+ ωi

⎛

⎝

∂h∗

∂s
− 1

s

n−1
∑

j=1

ωj
∂h∗

∂ωj

⎞

⎠ (1 ≤ i ≤ n− 1)

∂h

∂un
= (1− ω2

1 − · · · − ω2
n−1)

1/2

⎛

⎝

∂h∗

∂s
− 1

s

n−1
∑

j=1

ωj
∂h∗

∂ωj

⎞

⎠ .

In order to use this for h = F we write

F (sω) =

∞
∫

−∞

ϕ(ω, r) dr +

∞
∫

−∞

ϕ(ω, r)(e−irs − 1) dr .

By assumption the first integral is independent of ω. Thus using (7) we
have for constant K > 0

∣

∣

∣

∣

1

s

∂

∂ωi
(F (sω))

∣

∣

∣

∣

≤ K
∫

(1 + r4)−1s−1|e−isr − 1| dr ≤ K
∫ |r|

1 + r4
dr

and a similar estimate is obvious for ∂F (sω)/∂s. The formulas above there-
fore imply that all the derivatives ∂F/∂ui are bounded in a punctured ball
0 < |u| < ε so F is certainly continuous at u = 0.

More generally, we prove by induction that
(11)

∂qh

∂ui1 . . . ∂uiq
=

∑

1≤i+j≤q,1≤k1,··· ,ki≤n−1

Aj,k1...ki(ω, s)
∂i+jh∗

∂ωk1 . . . ∂ωki∂s
j
,

where the coefficients A have the form

(12) Aj,k1...ki(ω, s) = aj,k1...ki(ω)sj−q .
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For q = 1 this is in fact proved above. Assuming (11) for q we calculate

∂q+1h

∂ui1 . . . ∂uiq+1

using the above formulas for ∂/∂ui. If Aj,k1...ki(ω, s) is differentiated with
respect to uiq+1 we get a formula like (12) with q replaced by q + 1. If on
the other hand the (i + j)th derivative of h∗ in (11) is differentiated with
respect to uiq+1 we get a combination of terms

s−1 ∂i+j+1h∗

∂ωk1 . . . ∂ωki+1∂s
j
,

∂i+j+1h∗

∂ωk1 . . . ∂ωki∂s
j+1

,

and in both cases we get coefficients satisfying (12) with q replaced by q+1,
noting sj−q = sj+1−(q+1). This proves (11)–(12) in general. Now

(13) F (sω) =

∞
∫

−∞

ϕ(ω, r)

q−1
∑

0

(−isr)k
k!

dr +

∞
∫

−∞

ϕ(ω, r)eq(−irs) dr ,

where

eq(t) =
tq

q!
+

tq+1

(q + 1)!
+ · · ·

Our assumption on ϕ implies that the first integral in (13) is a polynomial
in u1, . . . , un of degree≤ q−1 and is therefore annihilated by the differential
operator (11). If 0 ≤ j ≤ q, we have

(14) |sj−q ∂
j

∂sj
(eq(−irs))| = |(−ir)q(−irs)j−qeq−j(−irs)| ≤ kjrq ,

where kj is a constant because the function t → (it)−pep(it) is obviously
bounded on R (p ≥ 0). Since ϕ ∈ S(Pn) it follows from (11)–(14) that
each qth order derivative of F with respect to u1, . . . , un is bounded in a
punctured ball 0 < |u| < ε. Thus we have proved F ∈ E(Rn). That F is
rapidly decreasing is now clear from (7), Lemma 2.2 and (11). Finally, if f
is the function in S(Rn) whose Fourier transform is F then

˜f(sω) = F (sω) =

∞
∫

−∞

ϕ(ω, r)e−irs dr ;

hence by (4), ̂f = ϕ and the theorem is proved.

To make further progress we introduce some useful notation. Let Sr(x)
denote the sphere {y : |y − x| = r} in Rn and A(r) its area. Let Br(x)
denote the open ball {y : |y−x| < r}. For a continuous function f on Sr(x)
let (M rf)(x) denote the mean value

(M rf)(x) =
1

A(r)

∫

Sr(x)

f(ω) dω ,
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where dω is the Euclidean measure. Let K denote the orthogonal group
O(n), dk its Haar measure, normalized by

∫

dk = 1. If y ∈ Rn, r = |y|
then

(15) (M rf)(x) =

∫

K

f(x+ k · y) dk .

(Fig. I.3) In fact, for x, y fixed both
sides represent rotation-invariant func-
tionals on C(Sr(x)), having the same
value for the function f ≡ 1. The ro-
tations being transitive on Sr(x), (15)
follows from the uniqueness of such in-
variant functionals. Formula (3) can
similarly be written

(16) ϕ̌(x) =

∫

K

ϕ(x + k · ξ0) dk

x

y0

k   y⋅

x k   y+ ⋅

FIGURE I.3.

if ξ0 is some fixed hyperplane through the origin. We see then that if f(x) =

0(|x|−n),Ωk the area of the unit sphere in Rk, i.e., Ωk = 2 πk/2

Γ(k/2) ,

( ̂f)∨(x) =

∫

K

̂f(x+ k · ξ0) dk =

∫

K

(∫

ξ0

f(x+ k · y) dm(y)

)

dk

=

∫

ξ0

(M |y|f)(x) dm(y) = Ωn−1

∞
∫

0

rn−2

(

1

Ωn

∫

Sn−1

f(x+ rω) dω

)

dr,

so

(17) ( ̂f)∨(x) =
Ωn−1

Ωn

∫

Rn

|x− y|−1f(y) dy .

We consider now the analog of Theorem 2.4 for the transform ϕ → ϕ̌.
But ϕ ∈ SH(Pn) does not imply ϕ̌ ∈ S(Rn). (If this were so and we

by Theorem 2.4 write ϕ = ̂f, f ∈ S(Rn) then the inversion formula in
Theorem 3.1 for n = 3 would imply

∫

f(x) dx = 0.) On a smaller space we
shall obtain a more satisfactory result.

Let S∗(Rn) denote the space of all functions f ∈ S(Rn) which are or-
thogonal to all polynomials, i.e.,

∫

Rn

f(x)P (x) dx = 0 for all polynomials P .
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0 A

ξ

d(0, ) >ξ A

FIGURE I.4.

Similarly, let S∗(Pn) ⊂ S(Pn) be the space of ϕ satisfying
∫

R

ϕ(ω, r)p(r) dr = 0 for all polynomials p .

Note that under the Fourier transform the space S∗(Rn) corresponds to
the subspace S0(R

n) ⊂ S(Rn) of functions all of whose derivatives vanish
at 0.

Corollary 2.5. The transforms f → ̂f, ϕ → ϕ̌ are bijections of S∗(Rn)
onto S∗(Pn) and of S∗(Pn) onto S∗(Rn), respectively.

The first statement is clear from (8) if we take into account the elemen-
tary fact that the polynomials x→ 〈x, ω〉k span the space of homogeneous
polynomials of degree k. To see that ϕ → ϕ̌ is a bijection of S∗(Pn) onto

S∗(Rn) we use (17), knowing that ϕ = ̂f for some f ∈ S∗(Rn). The right
hand side of (17) is the convolution of f with the tempered distribution
|x|−1 whose Fourier transform is by Chapter VII, §6 a constant multiple of
|u|1−n. (Here we leave out the trivial case n = 1.) By Chapter VII, §4 this
convolution is a tempered distribution whose Fourier transform is a con-
stant multiple of |u|1−n ˜f(u). But, by Lemma 6.6, Chapter VII this lies in

the space S0(R
n) since ˜f does. Now (17) implies that ϕ̌ = ( ̂f)∨ ∈ S∗(Rn)

and that ϕ̌ �≡ 0 if ϕ �≡ 0. Finally we see that the mapping ϕ → ϕ̌ is
surjective because the function

(( ̂f)∨)e(u) = c|u|1−n ˜f(u)

(where c is a constant) runs through S0(R
n) as f runs through S∗(Rn).

We now turn to the space D(Rn) and its image under the Radon trans-
form. We begin with a preliminary result. (See Fig. I.4.)

Theorem 2.6. (The support theorem.) Let f ∈ C(Rn) satisfy the
following conditions:
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(i) For each integer k > 0, |x|kf(x) is bounded.

(ii) There exists a constant A > 0 such that

̂f(ξ) = 0 for d(0, ξ) > A ,

d denoting distance.

Then

f(x) = 0 for |x| > A .

Proof. Replacing f by the convolution ϕ∗f , where ϕ is a radial C∞ function
with support in a small ball Bε(0), we see that it suffices to prove the
theorem for f ∈ E(Rn). In fact, ϕ∗f is smooth, it satisfies (i) and by (5) it
satisfies (ii) with A replaced by A+ε. Assuming the theorem for the smooth
case we deduce that support (ϕ ∗ f) ⊂ BA+ε(0) so letting ε→ 0 we obtain
support (f) ⊂ Closure BA(0).

To begin with we assume f is a radial function. Then f(x) = F (|x|)
where F ∈ E(R) and even. Then ̂f has the form ̂f(ξ) = ̂F (d(0, ξ)) where
̂F is given by

̂F (p) =

∫

Rn−1

F ((p2 + |y|2)1/2) dm(y) , (p ≥ 0)

because of the definition of the Radon transform. Using polar coordinates
in Rn−1 we obtain

(18) ̂F (p) = Ωn−1

∞
∫

0

F ((p2 + t2)1/2)tn−2 dt .

Here we substitute s = (p2 + t2)−1/2 and then put u = p−1. Then (18)
becomes

un−3
̂F (u−1) = Ωn−1

u
∫

0

(F (s−1)s−n)(u2 − s2)(n−3)/2 ds .

We write this equation for simplicity

(19) h(u) =

u
∫

0

g(s)(u2 − s2)(n−3)/2 ds .

This integral equation is very close to Abel’s integral equation (Whittaker-
Watson [1927], Ch. XI) and can be inverted as follows. Multiplying both
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sides by u(t2 − u2)(n−3)/2 and integrating over 0 ≤ u ≤ t, we obtain

t
∫

0

h(u)(t2 − u2)(n−3)/2u du

=

t
∫

0

⎡

⎣

u
∫

0

g(s)[(u2 − s2)(t2 − u2)](n−3)/2 ds

⎤

⎦u du

=

t
∫

0

g(s)

⎡

⎣

t
∫

u=s

u[(t2 − u2)(u2 − s2)](n−3)/2 du

⎤

⎦ ds .

The substitution (t2 − s2)V = (t2 + s2) − 2u2 gives an explicit evaluation
of the inner integral and we obtain

t
∫

0

h(u)(t2 − u2)(n−3)/2u du = C

t
∫

0

g(s)(t2 − s2)n−2 ds ,

where C = 21−nπ
1
2 Γ((n−1)/2)/Γ(n/2). Here we apply the operator d

d(t2) =
1
2t

d
dt (n − 1) times whereby the right hand side gives a constant multiple

of t−1g(t). Hence we obtain

(20) F (t−1)t−n = ct

[

d

d(t2)

]n−1
t

∫

0

(t2 − u2)(n−3)/2un−2
̂F (u−1) du

where c−1 = (n − 2)!Ωn/2
n. By assumption (ii) we have ̂F (u−1) = 0 if

u−1 ≥ A, that is if u ≤ A−1. But then (20) implies F (t−1) = 0 if t ≤ A−1,
that is if t−1 ≥ A. This proves the theorem for the case when f is radial.

We consider next the case of a general f . Fix x ∈ Rn and consider the
function

gx(y) =

∫

K

f(x+ k · y) dk

as in (15). Then gx satisfies (i) and

(21) ĝx(ξ) =

∫

K

̂f(x+ k · ξ) dk ,

x + k · ξ denoting the translate of the hyperplane k · ξ by x. The triangle
inequality shows that

d(0, x+ k · ξ) ≥ d(0, ξ)− |x| , x ∈ Rn, k ∈ K .
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Hence we conclude from assumption (ii) and (21) that

(22) ĝx(ξ) = 0 if d(0, ξ) > A+ |x| .
But gx is a radial function so (22) implies by the first part of the proof that

(23)

∫

K

f(x+ k · y) dk = 0 if |y| > A+ |x| .

Geometrically, this formula reads: The surface integral of f over S|y|(x) is
0 if the ball B|y|(x) contains the ball BA(0). The theorem is therefore a
consequence of the following lemma.

Lemma 2.7. Let f ∈ C(Rn) be such that for each integer k > 0,

sup
x∈Rn

|x|k|f(x)| <∞ .

Suppose f has surface integral 0 over every sphere S which encloses the
unit ball. Then f(x) ≡ 0 for |x| > 1.

Proof. The idea is to perturb S in the relation

(24)

∫

S

f(s) dω(s) = 0

slightly, and differentiate with re-
spect to the parameter of the per-
turbations, thereby obtaining addi-
tional relations. (See Fig. I.5.) Re-
placing, as above, f with a suit-
able convolution ϕ ∗ f we see that
it suffices to prove the lemma for
f in E(Rn). Writing S = SR(x)
and viewing the exterior of the ball
BR(x) as a union of spheres with
center x we have by the assump-
tions,

∫

BR(x)

f(y) dy =

∫

Rn

f(y) dy ,

R

0

1
x

S S x= ( )R

FIGURE I.5.

which is a constant. Differentiating with respect to xi we obtain

(25)

∫

BR(0)

(∂if)(x+ y) dy = 0 .
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We use now the divergence theorem

(26)

∫

BR(0)

(divF )(y) dy =

∫

SR(0)

〈F,n〉(s) dω(s)

for a vector field F on Rn,n denoting the outgoing unit normal and dω
the surface element on SR(0). For the vector field F (y) = f(x + y) ∂

∂yi
we

obtain from (25) and (26), since n = R−1(s1, . . . , sn),

(27)

∫

SR(0)

f(x+ s)si dω(s) = 0 .

But by (24)
∫

SR(0)

f(x+ s)xi dω(s) = 0

so by adding
∫

S

f(s)si dω(s) = 0 .

This means that the hypotheses of the lemma hold for f(x) replaced by
the function xif(x). By iteration

∫

S

f(s)P (s) dω(s) = 0

for any polynomial P , so f ≡ 0 on S. This proves the lemma as well as
Theorem 2.6.

Corollary 2.8. Let f ∈ C(Rn) satisfy (i) in Theorem 2.6 and assume

̂f(ξ) = 0

for all hyperplanes ξ disjoint from a certain compact convex set C. Then

(28) f(x) = 0 for x /∈ C .

In fact, if B is a closed ball containing C we have by Theorem 2.6,
f(x) = 0 for x /∈ B. But C is the intersection of such balls. In fact, if
x /∈ C, x and C are separated by a hyperplane ξ. Let z ∈ ξ. The half
space bounded by ξ, containing C is the union of an increasing sequence
of balls B tangential to ξ at z. Finitely many cover C and the largest of
those contains C. Thus, x /∈ ⋂

B⊃C B, so (28) follows.
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Remark 2.9. While condition (i) of rapid decrease entered in the proof of
Lemma 2.7 (we used |x|kf(x) ∈ L1(Rn) for each k > 0) one may wonder
whether it could not be weakened in Theorem 2.6 and perhaps even dropped
in Lemma 2.7.

As an example, showing that the condition of rapid decrease can not be
dropped in either result consider for n = 2 the function

f(x, y) = (x+ iy)−5

made smooth in R2 by changing it in a small disk around 0. Using Cauchy’s
theorem for a large semicircle we have

∫

�
f(x) dm(x) = 0 for every line �

outside the unit circle. Thus (ii) is satisfied in Theorem 2.6. Hence (i)
cannot be dropped or weakened substantially.

This same example works for Lemma 2.7. In fact, let S be a circle
|z − z0| = r enclosing the unit disk. Then dω(s) = −ir dz

z−z0
, so, by ex-

panding the contour or by residue calculus,

∫

S

z−5(z − z0)−1 dz = 0 ,

(the residue at z = 0 and z = z0 cancel) so we have in fact

∫

S

f(s) dω(s) = 0 .

We recall now that DH(Pn) is the space of symmetric C∞ functions
ϕ(ξ) = ϕ(ω, p) on Pn of compact support such that for each k ∈ Z+,
∫

R
ϕ(ω, p)pk dp is a homogeneous kth degree polynomial in ω1, . . . , ωn.

Combining Theorems 2.4, 2.6 we obtain the following characterization of
the Radon transform of the space D(Rn). This can be regarded as the ana-
log for the Radon transform of the Paley-Wiener theorem for the Fourier
transform (see Chapter VII).

Theorem 2.10. (The Paley-Wiener theorem.) The Radon transform
is a bijection of D(Rn) onto DH(Pn).

We conclude this section with a variation and a consequence of Theo-
rem 2.6.

Lemma 2.11. Let f ∈ Cc(Rn), A > 0, ω0 a fixed unit vector and N ⊂ S
a neighborhood of ω0 in the unit sphere S ⊂ Rn. Assume

̂f(ω, p) = 0 for ω ∈ N, p > A .

Then

(29) f(x) = 0 in the half-space 〈x, ω0〉 > A .
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Proof. Let B be a closed ball around the origin containing the support of f .
Let ε > 0 and let Hε be the union of the half spaces 〈x, ω〉 > A + ε as ω
runs through N . Then by our assumption,

(30) ̂f(ξ) = 0 if ξ ⊂ Hε .

Now choose a ball Bε with a center on the ray from 0 through −ω0, with
the point (A + 2ε)ω0 on the boundary, and with radius so large that any
hyperplane ξ intersecting B but not Bε must be in Hε. Then by (30),

̂f(ξ) = 0 whenever ξ ∈ Pn, ξ ∩Bε = ∅ .
Hence by Theorem 2.6, f(x) = 0 for x /∈ Bε. In particular, f(x) = 0 for
〈x, ω0〉 > A+ 2ε; since ε > 0 is arbitrary, the lemma follows.

Corollary 2.12. Let N be any open subset of the unit sphere Sn−1. If
f ∈ Cc(Rn) and

̂f(ω, p) = 0 for p ∈ R, ω ∈ N,
then

f ≡ 0 .

Since ̂f(−ω,−p) = ̂f(ω, p) this is obvious from Lemma 2.11.

§3 The Inversion Formula. Injectivity Questions

We shall now establish explicit inversion formulas for the Radon transform
f → ̂f and its dual ϕ→ ϕ̌.

Theorem 3.1. The function f can be recovered from the Radon transform
by means of the following inversion formula

(31) cf = (−L)(n−1)/2(( ̂f )∨), f ∈ E(Rn) ,

provided f(x) = 0(|x|−N ) for some N > n− 1. Here c is the constant

c = (4π)(n−1)/2Γ(n/2)/Γ(1/2) ,

and the power of the Laplacian L is given in Chapter VII, §6.
Proof. We first give a geometric proof of (31) for n odd. We start with some
general useful facts about the mean value operator M r. It is a familiar fact
that if f ∈ C2(Rn) is a radial function, i.e., f(x) = F (r), r = |x|, then

(32) (Lf)(x) =
d2F

dr2
+
n− 1

r

dF

dr
.

This is immediate from the relations

∂2f

∂x2
i

=
∂2f

∂r2

(

∂r

∂xi

)2

+
∂f

∂r

∂2r

∂x2
i

.
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Lemma 3.2. (i) LM r = M rL for each r > 0.

(ii) For f ∈ C2(Rn) the mean value (M rf)(x) satisfies the “Darboux
equation”

Lx
(

(M rf)(x)
)

=

(

∂2

∂r2
+
n− 1

r

∂

∂r

)

(M rf(x)) ,

that is, the function F (x, y) = (M |y|f)(x) satisfies

Lx(F (x, y)) = Ly(F (x, y)) .

Proof. We prove this group theoretically, using expression (15) for the mean
value. For z ∈ Rn, k ∈ K, let Tz denote the translation x→ x+ z and Rk
the rotation x→ k ·x. Since L is invariant under these transformations, we
have if r = |y|,

(LM rf)(x) =

∫

K

Lx(f(x+ k · y)) dk =

∫

K

(Lf)(x+ k · y) dk = (M rLf)(x)

=

∫

K

[(Lf) ◦ Tx ◦Rk](y) dk =

∫

K

[L(f ◦ Tx ◦Rk)](y) dk

= Ly

⎛

⎝

∫

K

f(x+ k · y)
⎞

⎠ dk ,

which proves the lemma.

Now suppose f ∈ S(Rn). Fix a hyperplane ξ0 through 0, and an isom-
etry g ∈ M(n). As k runs through O(n), gk · ξ0 runs through the set of
hyperplanes through g · 0, and we have

ϕ̌(g · 0) =

∫

K

ϕ(gk · ξ0) dk

and therefore

( ̂f)∨(g · 0) =

∫

K

(∫

ξ0

f(gk · y) dm(y)

)

dk

=

∫

ξ0

dm(y)

∫

K

f(gk · y) dk =

∫

ξ0

(M |y|f)(g · 0) dm(y) .

Hence

(33) (( ̂f))∨(x) = Ωn−1

∞
∫

0

(M rf)(x)rn−2 dr ,
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where Ωn−1 is the area of the unit sphere in Rn−1. Applying L to (33),
using (32) and Lemma 3.2, we obtain

(34) L(( ̂f)∨) = Ωn−1

∞
∫

0

(

d2F

dr2
+
n− 1

r

dF

dr

)

rn−2 dr,

where F (r) = (M rf)(x). Integrating by parts and using

F (0) = f(x) , lim
r→∞

rkF (r) = 0 ,

we get

L(( ̂f)∨) =

{ −Ωn−1f(x) if n = 3 ,
−Ωn−1(n− 3)

∫∞

0
F (r)rn−4 dr (n > 3) .

More generally,

Lx

(

∞
∫

0

(M rf)(x)rk dr
)

=

{

−(n−2)f(x) if k = 1 ,
−(n−1− k)(k−1)

∫ ∞

0
F (r)rk−2dr, (k > 1) .

If n is odd, the formula in Theorem 3.1 follows by iteration. Although we
assumed f ∈ S(Rn) the proof is valid under much weaker assumptions.

Another proof (for all n) uses the Riesz potential in Ch. VII. In fact,
(17) implies

(35) ( ̂f)∨ = 2n−1π
n
2 −1Γ(n/2)In−1f ,

so the inversion formula follows from Theorem 6.11 in Ch. VII.
However, since the fractional power (−L)(n−1)/2 is only defined by means

of holomorphic continuation of the Riesz potential, the geometric proof
above for n odd and the alternative proof of Theorem 1.4 in Ch. III have
to be considered much more explicit and direct inversion formulas.

Remark 3.3. It is interesting to observe that while the inversion formula
requires f(x) = 0(|x|−N ) for one N > n− 1 the support theorem requires
f(x) = 0(|x|−N ) for all N as mentioned in Remark 2.9.

In connection with the inversion formula we shall now discuss the weaker
question of injectivity.

Proposition 3.4. Let f ∈ L1(Rn). Then ̂f(ω, p) exists for almost all

(ω, p) ∈ Sn−1 ×R . Also the map f → ̂f is injective on L1(Rn).

Proof. For a fixed ω ∈ Sn−1, x = x′ + pω where 〈x′, ω〉 = 0, p ∈ R. This
gives a product representation Rn = R×H with H � Rn−1. By the Fubini
theorem ̂f(ω, p) exist for almost all p, and

∫

Rn

f(x) dx =

∫

R

̂f(ω, p) dp .
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Then
∫

Sn−1×R

| ̂f(ω, p)| dω dp ≤
∫

Sn−1×R

|f |b(ω, p) dω dp

=

∫

Sn−1

dω

∫

Rn

|f(x)| dx <∞,

proving the first statement.

Using this on the function f(x)e−i〈x,ω〉, we derive (4) for f ∈ L1(Rn).

Thus ̂f(ω, p) = 0 for almost all ω, p implies ˜f = 0 a.e. so f = 0 by the
injectivity of the Fourier transform.

An example of non-injectivity
We shall now give an example of a smooth function f �≡ 0 on R2 which

is integrable on each line ξ ⊂ R2, yet ̂f(ξ) = 0 for all ξ. Such an example
was first constructed by Zalcman [1982], using a delicate approximation
theorem by Arakelyan [1964]. A more elementary construction, which we
follow below, was given by Armitage [1994].

Lemma 3.5. Let z1, z2 ∈ C and |z1 − z2| < 1. If f1 is holomorphic on
C − {z1} and ε > 0 there exists a function f2 holomorphic on C − {z2}
such that

(36) |f1(z)− f2(z)| < ε

(1 + |z|)2 for |z − z2| > 1 .

Proof. We have a Laurent expansion of f1 centered at z2:

f1(z) = f0(z) +

∞
∑

j=1

aj(z − z2)−j , |z − z2| > |z1 − z2|

f0 being an entire function. For m ∈ Z+ define the function

f2(z) = f0(z) +

m
∑

j=1

aj(z − z2)−j z �= z2

so

f1(z)− f2(z) =

∞
∑

m+1

aj(z − z2)−j .(37)

We shall choose m such that (36) holds. The coefficients aj are given by

aj =
1

2πi

∫

|ζ−z2|=r

f1(ζ)

(ζ − z2)j+1
dζ
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with any r > |z1 − z2|. In order to estimate (37) it is convenient to take
r such that r|z1 − z2| = 2. Let M be the maximum of f1(ζ) on the circle
|ζ − z2| = r. Then

|aj | ≤ M

rj
.

We can then estimate the right hand side of (37) by a geometric series,
noting that r|z − z2| − 1 > r|z1 − z2| − 1. Then

(38) |f1(z)− f2(z)| ≤ M

(r|z − z2|)m .

Given K > 1 we can choose m = m1 such that the right hand side is
≤ ε(1 + |z|)−2 for |z − z2| > K. We can also find m = m2 such that it is
bounded by ε(1 + |z|)−2 for 1 < |z − z2| ≤ K. With m = m1 + m2, (36)
holds.

Theorem 3.6. There exists a holomorphic function f �≡ 0 in C such that
each derivative f (n) is integrable on every line ξ and

(39)

∫

ξ

f (n)(z) dm(z) = 0 , n = 0, 1, 2, . . . .

Proof. Choose a sequence (ζk) on the parabolic arc P = {t + it2|t ≥ 0}
such that

ζ0 = 0 , |ζk − ζk−1| < 1 k ≥ 1 , ζk →∞ .

Let g0(z) = 1/z2. By iteration of Lemma 3.5 we obtain gk holomorphic on

C− {ζk} and

(40) |gk(z)− gk−1(z)| ≤ 1

2k(1 + |z|)2 , k ≥ 1 , |z − ζk| > 1 .

For each z0 there is an integer N and a neighborhood |z−z0| < δ on which
(40) holds for k > N . Thus

|gk+p(z)− gk(z)| ≤ 1

(1 + |z|)2
1

2k
, |z − z0| < δ , p > 0 .

Thus gk(z) converges uniformly to an entire function g(z). Let

Pa = {z : infw∈P |z − w| > a} .

If z ∈ P1 then by (40)

|g(z)− g0(z)| ≤
∞
∑

k=1

|gk(z)− gk−1(z)| ≤ 1

1 + |z|2 < |g0(z))| ,
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so g(z) �≡ 0 and

|g(ζ)| ≤ 2
1

|ζ|2 (ζ ∈ P1) .

For z ∈ P2 consider a circle S1(z) and express g(n)(z) by Cauchy’s formula

g(n)(z) =
n!

2πi

∫

S1(z)

g(ζ)

(ζ − z)n+1
dζ .

Since S1(z) ⊂ P1 we have

|g(ζ)| ≤ 2
1

|ζ|2 ≤ 2
1

(|z| − 1)2
,

so

|g(n)(z)| ≤ 2n!

(|z| − 1)2
, z ∈ P2 .

Since ξ � P2 is bounded for each line ξ we have
∫

ξ

|g(n+1)(z)| dm(z) <∞

and g(n)(z) → 0 as z → ∞ on ξ. Then the function f(z) = g′(z) satisfies
(39).

We shall now prove an inversion formula for the dual transform ϕ → ϕ̌
on the subspace S∗(Pn) similar to Theorem 3.1.

Theorem 3.7. We have

cϕ = (−�)(n−1)/2(ϕ̌)b, ϕ ∈ S∗(Pn) ,

where c is the constant (4π)(n−1)/2Γ(n/2)/Γ(1/2).

Here � denotes as before the operator d2

dp2 and its fractional powers are
again defined in terms of the Riesz’ potentials on the 1-dimensional p-space.

If n is odd our inversion formula follows from the odd-dimensional case
in Theorem 3.1 if we put f = ϕ̌ and take Lemma 2.1 and Corollary 2.5 into
account. Suppose now n is even. We claim that

(41) ((−L)
n−1

2 f)b= (−�)
n−1

2 ̂f f ∈ S∗(Rn) .

By Lemma 6.6 in Chapter VII, (−L)(n−1)/2f belongs to S∗(Rn). Taking
the 1-dimensional Fourier transform of ((−L)(n−1)/2f)b, we obtain

(

(−L)(n−1)/2f
)e
(sω) = |s|n−1

˜f(sω) .
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On the other hand, for a fixed ω, p → ̂f(ω, p) is in S∗(R). By the lemma

quoted, the function p → ((−�)(n−1)/2
̂f)(ω, p) also belongs to S∗(R) and

its Fourier transform equals |s|n−1
˜f(sω). This proves (41). Now Theo-

rem 3.7 follows from (41) if we put in (41)

ϕ = ĝ , f = (ĝ)∨ , g ∈ S∗(Rn) ,

because, by Corollary 2.5, ĝ belongs to S∗(Pn) .
Because of its theoretical importance we now prove the inversion theo-

rem (3.1) in a different form. The proof is less geometric and involves just
the one variable Fourier transform.

Let H denote the Hilbert transform

(HF )(t) =
i

π

∞
∫

−∞

F (p)

t− p dp, F ∈ S(R),

the integral being consideredas the Cauchy principal value (see Lemma 3.9
below). For ϕ ∈ S(Pn) let Λϕ be defined by

(Λϕ)(ω, p) =

{

dn−1

dpn−1ϕ(ω, p) n odd,

Hp dn−1

dpn−1ϕ(ω, p) n even.
(42)

Note that in both cases (Λϕ)(−ω,−p) = (Λϕ)(ω, p) so Λϕ is a function on
Pn.

Theorem 3.8. Let Λ be as defined by (42). Then

cf = (Λ ̂f)∨ , f ∈ S(Rn) ,

where as before
c = (−4π)(n−1)/2Γ(n/2)/Γ(1/2) .

Proof. By the inversion formula for the Fourier transform and by (4),

f(x) = (2π)−n
∫

Sn−1

dω

∞
∫

0

(
∞
∫

−∞

e−isp ̂f(ω, p) dp

)

eis〈x,ω〉sn−1 ds,

which we write as

f(x) = (2π)−n
∫

Sn−1

F (ω, x) dω = (2π)−n
∫

Sn−1

1
2 (F (ω, x)+F (−ω, x)) dω .

Using ̂f(−ω, p) = ̂f(ω,−p) this gives the formula

(43) f(x) = 1
2 (2π)−n

∫

Sn−1

dω

∞
∫

−∞

|s|n−1eis〈x,ω〉 ds

∞
∫

−∞

e−isp ̂f(ω, p) dp .
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If n is odd the absolute value on s can be dropped. The factor sn−1 can

be removed by replacing ̂f(ω, p) by (−i)n−1 dn−1

dpn−1
̂f(ω, p). The inversion

formula for the Fourier transform on R then gives

f(x) = 1
2 (2π)−n(2π)+1(−i)n−1

∫

Sn−1

{

dn−1

dpn−1
̂f(ω, p)

}

p=〈x,ω〉

dω

as desired.

In order to deal with the case n even we recall some general facts.

Lemma 3.9. Let S denote the Cauchy principal value

S : ψ → lim
ε→0

∫

|x|≥ε

ψ(x)

x
dx .

Then S is a tempered distribution and ˜S is the function

˜S(s) = −πi sgn(s) =

{ −πi s ≥ 0
πi s < 0

.

Proof. If supp(ψ) ⊂ (−K,K) we can write
∫

|x|≥ε

ψ(x)

x
dx =

∫

K≥|x|≥ε

ψ(x)− ψ(0)

x
dx+

∫

K≥|x|≥ε

ψ(0)

x
dx

and the last term is 0. Thus S is indeed a distribution. To see that S is
tempered let ϕ ∈ E(R) be such that ϕ(x) = 0 for |x| ≤ 1 and ϕ(x) = 1 for
|x| ≥ 2. For ψ ∈ S(R) we put

ψ = ϕψ + (1− ϕ)ψ = ξ + η .

Then ξ ∈ S(R) but ξ = 0 near 0 and η has compact support. If ψi → 0 in
S(R), then ξi → 0 in S and S(ξi)→ 0. Also S(ηi)→ 0 is obvious. Thus S
is tempered. Also xS = 1 so

2πδ = ˜1 = (xS)e= i(˜S)′ .

But sgn′ = 2δ, so ˜S = −πi sgn+C. But ˜S and sgn are odd, so C = 0.
By Ch. VII, Proposition 4.4, HF is a tempered distribution and by The-

orem 4.6,

(44) (HF )e(s) = sgn(s) ˜F (s) .

This in turn implies (HF ′)(s) = d
dsHF (s) since both sides have the same

Fourier transform. For n even we write in (43), |s|n−1 = sgn(s)sn−1 and
then (43) implies

(45) f(x) = c0

∫

Sn−1

dω

∫

R

sgn(s)eis〈x,ω〉 ds

∫

R

dn−1

dpn−1
̂f(ω, p)e−isp dp ,
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where c0 = 1
2 (−i)n−1(2π)−n. Now we have for each F ∈ S(R) the identity

∫

R

sgn(s)eist
(∫

R

F (p)e−ips dp

)

ds = 2π(HF )(t) .

In fact, if we apply both sides to ˜ψ with ψ ∈ S(R), the left hand side is by
(44)

∫

R

(∫

R

sgn(s)eist ˜F (s) ds

)

˜ψ(t) dt

=

∫

R

sgn(s) ˜F (s)2πψ(s) ds = 2π(HF )e(ψ) = 2π(HF )( ˜ψ) .

Putting F (p) = dn−1

dpn−1
̂f(ω, p) and using (45), Theorem 3.8 follows also for

n even.

For later use we add here a few remarks concerning H. Let F ∈ D have
support contained in (−R,R). Then

−iπ(HF )(t) = lim
ε→0

∫

ε<|t−p|

F (p)

t− p dp = lim
ε→0

∫

I

F (p)

t− p dp,

where I = {p : |p| < R, ε < |t− p|}. We decompose this last integral

∫

I

F (p)

t− p dp =

∫

I

F (p)− F (t)

t− p dp+ F (t)

∫

I

dp

t− p .

The last term vanishes for |t| > R and all ε > 0. The first term on the right
is majorized by

∫

|p|<R

∣

∣

∣

∣

F (t)− F (p)

t− p
∣

∣

∣

∣

dp ≤ 2R sup |F ′| .

Thus by the dominated convergence theorem

lim
|t|→∞

(HF )(t) = 0 .

Also if J ⊂ (−R,R) is a compact subset the mapping F → HF is contin-
uous from DJ into E(R) (with the topologies in Chapter VII, §1).

Later we prove one more version of the inversion formula from the point
of view of double fibrations. See Theorem 1.4 in Chapter III.
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We recall that the functions on Pn have been identified with the functions
ϕ on Sn−1 ×R which are even: ϕ(−ω,−p) = ϕ(ω, p). The functional

(46) ϕ→
∫

Sn−1

∫

R

ϕ(ω, p) dω dp ϕ ∈ Cc(Pn) ,

is therefore a well defined measure on Pn, denoted dω dp. The group M(n)
of rigid motions of Rn acts transitively on Pn: it also leaves the measure
dω dp invariant. It suffices to verify this latter statement for the translations
T in M(n) because M(n) is generated by them together with the rotations
around 0, and these rotations clearly leave dω dp invariant. But

(ϕ ◦ T )(ω, p) = ϕ(ω, p+ q(ω, T ))

where q(ω, T ) ∈ R is independent of p so

∫∫

(ϕ ◦ T )(ω, p) dω dp =

∫∫

ϕ(ω, p+ q(ω, T )) dω dp =

∫∫

ϕ(ω, p) dp dω ,

proving the invariance.
In accordance with the definition of (−L)p in Ch. VII the fractional

power �k is defined on S(Pn) by

(47) (−�k)ϕ(ω, p) =
1

H1(−2k)

∫

R

ϕ(ω, q)|p− q|−2k−1 dq

and then the 1-dimensional Fourier transform satisfies

(48) ((−�)kϕ)e(ω, s) = |s|2kϕ̃(ω, s) .

Now, if f ∈ S(Rn) we have by (4)

̂f(ω, p) = (2π)−1

∫

˜f(sω)eisp ds

and

(49) (−�)
n−1

4 ̂f(ω, p) = (2π)−1

∫

R

|s|n−1
2 ˜f(sω)eisp ds .

Theorem 4.1. The mapping f → �
n−1

4 ̂f extends to an isometry of
L2(Rn) onto the space L2

e(S
n−1 ×R) of even functions in L2(Sn−1 ×R),

the measure on Sn−1 ×R being

1
2 (2π)1−n dω dp .
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Proof. By (49) we have from the Plancherel formula on R

(2π)

∫

R

|(−�)
n−1

4 ̂f(ω, p)|2 dp =

∫

R

|s|n−1| ˜f(sω)|2 ds,

so by integration over Sn−1 and using the Plancherel formula for f(x) →
˜f(sω) we obtain

∫

Rn

|f(x)|2 dx = 1
2 (2π)1−n

( ∫

Sn−1×R

|� n−1
4 ̂f(ω, p)|2 dω dp

)

.

It remains to prove that the mapping is surjective. For this it would suffice
to prove that if ϕ ∈ L2(Sn−1 ×R) is even and satisfies

∫

Sn−1

∫

R

ϕ(ω, p)(−�)
n−1

4 ̂f(ω, p) dω dp = 0

for all f ∈ S(Rn), then ϕ = 0. Taking Fourier transforms we must prove
that if ψ ∈ L2(Sn−1 ×R) is even and satisfies

(50)

∫

Sn−1

∫

R

ψ(ω, s)|s|n−1
2 ˜f(sω) ds dω = 0

for all f ∈ S(Rn), then ψ = 0. Using the condition ψ(−ω,−s) = ψ(ω, s),
we see that

∫

Sn−1

0
∫

−∞

ψ(ω, s)|s| 12 (n−1)
˜f(sω) ds dω

=

∫

Sn−1

∞
∫

0

ψ(ω, t)|t| 12 (n−1)
˜f(tω) dt dω

so (50) holds with R replaced with the positive axis R+. But then the
function

Ψ(u) = ψ

(

u

|u| , |u|
)

|u|− 1
2 (n−1) , u ∈ Rn − {0}

satisfies
∫

Rn

Ψ(u) ˜f(u) du = 0 , f ∈ S(Rn)

so Ψ = 0 almost everywhere, whence ψ = 0.
If we combine the inversion formula in Theorem 3.8 with (51) below we

obtain the following version of the Plancherel formula

c

∫

Rn

f(x)g(x) dx =

∫

Pn

(Λ ̂f)(ξ)ĝ(ξ) dξ .
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It will be proved in a general context in Chapter II (Proposition 2.2) that

(51)

∫

Pn

̂f(ξ)ϕ(ξ) dξ =

∫

Rn

f(x)ϕ̌(x) dx

for f ∈ Cc(Rn), ϕ ∈ C(Pn) if dξ is a suitable fixed M(n)-invariant measure
on Pn. Thus dξ = γ dω dp where γ is a constant, independent of f and
ϕ. With applications to distributions in mind we shall prove (51) in a
somewhat stronger form.

Lemma 5.1. Formula (51) holds (with ̂f and ϕ̌ existing almost anywhere)
in the following two situations:

(a) f ∈ L1(Rn) vanishing outside a compact set; ϕ ∈ C(Pn) .

(b) f ∈ Cc(Rn), ϕ locally integrable.

Also dξ = Ω−1
n dω dp.

Proof. We shall use the Fubini theorem repeatedly both on the product
Rn × Sn−1 and on the product Rn = R × Rn−1. Since f ∈ L1(Rn) we

have (as noted before) that for each ω ∈ Sn−1, ̂f(ω, p) exists for almost all
p and

∫

Rn

f(x) dx =

∫

R

̂f(ω, p) dp .

We also proved that ̂f(ω, p) exists for almost all (ω, p) ∈ Sn−1 ×R. Next
we consider the measurable function

(x, ω)→ f(x)ϕ(ω, 〈ω, x〉) on Rn × Sn−1 .

We have
∫

Sn−1×Rn

|f(x)ϕ(ω, 〈ω, x〉)| dω dx

=

∫

Sn−1

( ∫

Rn

|f(x)ϕ(ω, 〈ω, x〉)| dx
)

dω

=

∫

Sn−1

(∫

R

|f |b(ω, p)|ϕ(ω, p)| dp
)

dω ,

which in both cases is finite. Thus f(x) · ϕ(ω, 〈ω, x〉) is integrable on
Rn × Sn−1 and its integral can be calculated by removing the absolute
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values above. This gives the left hand side of (51). Reversing the integra-
tions we conclude that ϕ̌(x) exists for almost all x and that the double
integral reduces to the right hand side of (51).

The formula (51) dictates how to define the Radon transform and its
dual for distributions (see Chapter VII). In order to make the definitions

formally consistent with those for functions we would require ̂S(ϕ) = S(ϕ̌),

Σ̌(f) = Σ( ̂f) if S and Σ are distributions on Rn and Pn, respectively. But

while f ∈ D(Rn) implies ̂f ∈ D(Pn) a similar implication does not hold

for ϕ; we do not even have ϕ̌ ∈ S(Rn) for ϕ ∈ D(Pn) so ̂S cannot be
defined as above even if S is assumed to be tempered. Using the notation
E (resp. D) for the space of C∞ functions (resp. of compact support) and
D′ (resp. E ′) for the space of distributions (resp. of compact support) we
make the following definition.

Definition. For S ∈ E ′(Rn) we define the functional ̂S by

̂S(ϕ) = S(ϕ̌) for ϕ ∈ E(Pn) ;

for Σ ∈ D′(Pn) we define the functional Σ̌ by

Σ̌(f) = Σ( ̂f) for f ∈ D(Rn) .

Lemma 5.2. (i) For each Σ ∈ D′(Pn) we have Σ̌ ∈ D′(Rn).

(ii) For each S ∈ E ′(Rn) we have ̂S ∈ E ′(Pn).

Proof. For A > 0 let DA(Rn) denote the set of functions f ∈ D(Rn) with
support in the closure of BA(0). Similarly let DA(Pn) denote the set of
functions ϕ ∈ D(Pn) with support in the closure of the “ball”

βA(0) = {ξ ∈ Pn : d(0, ξ) < A} .

The mapping of f → ̂f from DA(Rn) to DA(Pn) being continuous (with
the topologies defined in Chapter VII, §1) the restriction of Σ̌ to each

DA(Rn) is continuous so (i) follows. That ̂S is a distribution is clear from
(3). Concerning its support select R > 0 such that S has support inside
BR(0). Then if ϕ(ω, p) = 0 for |p| ≤ R we have ϕ̌(x) = 0 for |x| ≤ R

whence ̂S(ϕ) = S(ϕ̌) = 0.

Lemma 5.3. For S ∈ E ′(Rn),Σ ∈ D′(Pn) we have

(LS)b= �̂S , (�Σ)∨ = LΣ̌ .

Proof. In fact by Lemma 2.1,

(LS)b(ϕ) = (LS)(ϕ̌) = S(Lϕ̌) = S((�ϕ)∨) = ̂S(�ϕ) = (�̂S)(ϕ) .

The other relation is proved in the same manner.
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We shall now prove an analog of the support theorem (Theorem 2.6) for
distributions. For A > 0 let βA(0) be defined as above and let supp denote
support.

Theorem 5.4 (Support theorem for distributions). Let T ∈ E ′(Rn) satisfy
the condition

supp ̂T ⊂ C�(βA(0)) , (C� = closure) .

Then

supp(T ) ⊂ C�(BA(0)) .

Proof. For f ∈ D(Rn), ϕ ∈ D(Pn) we can consider the “convolution”

(f × ϕ)(ξ) =

∫

Rn

f(y)ϕ(ξ − y) dy ,

where for ξ ∈ Pn, ξ − y denotes the translate of the hyperplane ξ by −y.
Then

(f × ϕ)∨ = f ∗ ϕ̌ .
In fact, if ξ0 is any hyperplane through 0,

(f × ϕ)∨(x) =

∫

K

dk

∫

Rn

f(y)ϕ(x+ k · ξ0 − y) dy

=

∫

K

dk

∫

Rn

f(x− y)ϕ(y + k · ξ0) dy = (f ∗ ϕ̌)(x) .

By the definition of ̂T , the support assumption on ̂T is equivalent to

T (ϕ̌) = 0

for all ϕ ∈ D(Pn) with support in Pn−C�(βA(0)). Let ε > 0, let f ∈ D(Rn)
be a symmetric function with support in C�(Bε(0)) and let ϕ = D(Pn) have
support contained in Pn − C�(βA+ε(0)). Since d(0, ξ − y) ≤ d(0, ξ) + |y| it
follows that f × ϕ has support in Pn − C�(βA(0)); thus by the formulas
above, and the symmetry of f ,

(f ∗ T )(ϕ̌) = T (f ∗ ϕ̌) = T ((f × ϕ)∨) = 0 .

But then

(f ∗ T )b(ϕ) = (f ∗ T )(ϕ̌) = 0 ,

which means that (f∗T )bhas support in C�(βA+ε(0)). But now Theorem 2.6
implies that f ∗ T has support in C�(BA+ε)(0). Letting ε → 0 we obtain
by Prop. 3.4, Ch. VII the desired conclusion, supp(T ) ⊂ C�(BA(0)).
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We can now extend the inversion formulas for the Radon transform to
distributions. First we observe that the Hilbert transform H can be ex-
tended to distributions T on R of compact support. It suffices to put

H(T )(F ) = T (−HF ) , F ∈ D(R) .

In fact, as remarked at the end of §3, the mapping F −→ HF is a continuous
mapping of D(R) into E(R). In particular H(T ) ∈ D′(R).

Theorem 5.5. The Radon transform S −→ ̂S (S ∈ E ′(Rn)) is inverted
by the following formula

cS = (Λ̂S)∨ , S ∈ E ′(Rn) ,

where the constant c = (−4π)(n−1)/2Γ(n/2)/Γ(1/2).
In the case when n is odd we have also

c S = L(n−1)/2((̂S)∨) .

Remark 5.6. Since ̂S has compact support and since Λ is defined by means
of the Hilbert transform, the remarks above show that Λ̂S ∈ D′(Pn), so
the right hand side is well defined.

Proof. Using Theorem 3.8 we have

(Λ̂S)∨(f) = (Λ̂S)( ̂f) = ̂S(Λ ̂f) = S((Λ ̂f)∨) = cS(f) .

The other inversion formula then follows, using the lemma.

In analogy with βA we define the “sphere” σA in Pn as

σA = {ξ ∈ Pn : d(0, ξ) = A} .
From Theorem 5.5 we can then deduce the following complement to The-
orem 5.4.

Corollary 5.7. Suppose n is odd. Then if S ∈ E ′(Rn) ,

supp(̂S) ⊂ σR ⇒ supp(S) ⊂ SR(0) .

To see this let ε > 0 and let f ∈ D(Rn) have supp(f) ⊂ BR−ε(0). Then

supp ̂f ∈ βR−ε and since Λ is a differential operator, supp(Λ ̂f) ⊂ βR−ε.
Hence

cS(f) = S((Λ ̂f)∨) = ̂S(Λ ̂f) = 0 ,

so supp(S) ∩BR−ε(0) = ∅. Since ε > 0 is arbitrary,

supp(S) ∩BR(0) = ∅ .
On the other hand, by Theorem 5.4, supp(S) ⊂ C�(BR(0)). This proves
the corollary.



§5 Radon Transform of Distributions 31

LetM be a manifold and dμ a measure such that on each local coordinate
patch with coordinates (t1, . . . , tn) the Lebesque measure dt1, . . . , dtn and
dμ are absolutely continuous with respect to each other. If h is a function
on M locally integrable with respect to dμ the distribution ϕ → ∫

ϕh dμ
will be denoted Th.

Proposition 5.8. (a) Let f ∈ L1(Rn) vanish outside a compact set.
Then the distribution Tf has Radon transform given by

(52) ̂Tf = T bf .

(b) Let ϕ be a locally integrable function on Pn. Then

(53) (Tϕ)∨ = Tϕ̌ .

Proof. The existence and local integrability of ̂f and ϕ̌ was established
during the proof of Lemma 5.1. The two formulas now follow directly from
Lemma 5.1.

As a result of this proposition the smoothness assumption can be dropped
in the inversion formula. In particular, we can state the following result.

Corollary 5.9. (n odd.) The inversion formula

cf = L(n−1)/2(( ̂f)∨) ,

c = (−4π)(n−1)/2Γ(n/2)/Γ(1/2), holds for all f ∈ L1(Rn) vanishing out-
side a compact set, the derivative interpreted in the sense of distributions.

Examples. If μ is a measure (or a distribution) on a closed submanifold
S of a manifold M , the distribution on M given by ϕ → μ(ϕ|S) will also
be denoted by μ.

(a) Let δ0 be the delta distribution f → f(0) on Rn. Then

̂δ0(ϕ) = δ0(ϕ̌) = Ω−1
n

∫

Sn−1

ϕ(ω, 0) dω ,

so

(54) ̂δ0 = Ω−1
n mSn−1 ,

the normalized measure on Sn−1 considered as a distribution on Sn−1×R.

(b) Let ξ0 denote the hyperplane xn = 0 in Rn, and δξ0 the delta distri-
bution ϕ→ ϕ(ξ0) on Pn. Then

(δξ0)
∨ (f) =

∫

ξ0

f(x) dm(x) ,
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so

(55) (δξ0)
∨ = mξ0 ,

the Euclidean measure of ξ0.

(c) Let χB be the characteristic function of the unit ball B ⊂ Rn. Then
by (52),

χ̂B(ω, p) =

{ Ωn−1

n−1 (1 − p2)(n−1)/2 , |p| ≤ 1

0 , |p| > 1
.

(d) Let Ω be a bounded convex region in Rn whose boundary is a smooth
surface. We shall obtain a formula for the characteristic funtion of Ω in
terms of the areas of its hyperplane sections. For simplicity we assume n
odd. The characteristic function χΩ is a distribution of compact support
and (χΩ)b is thus well defined. Approximating χΩ in the L2-norm by a

sequence (ψn) ⊂ D(Ω) we see from Theorem 4.1 that ∂
(n−1)/2
p

̂ψn(ω, p)
converges in the L2-norm on Pn. Since

∫

̂ψ(ξ)ϕ(ξ) dξ =

∫

ψ(x)ϕ̌(x) dx

it follows from Schwarz’ inequality that ̂ψn −→ (χΩ)b in the sense of

distributions and accordingly ∂(n−1)/2
̂ψn converges as a distribution to

∂(n−1)/2((χΩ)b ). Since the L2 limit is also a limit in the sense of distri-

butions this last function equals the L2 limit of the sequence ∂(n−1)/2
̂ψn.

From Theorem 4.1 we can thus conclude the following result:

Theorem 5.10. Let Ω ⊂ Rn (n odd) be a convex region as above. Let
A(ω, p) denote the (n − 1)-dimensional area of the intersection of Ω with
the hyperplane 〈x, ω〉 = p. Then

(56) c0χΩ(x) = L
( 1
2 )(n−1)
x

(

∫

Sn−1

A(ω, (x, ω)) dω
)

, c0 = 2(2πi)n−1

in the sense of distributions.

§6 Integration over d -planes. X-ray Transforms. The

Range of the d -plane Transform

Let d be a fixed integer in the range 0 < d < n. We define the d-
dimensional Radon transform f → ̂f by

(57) ̂f(ξ) =

∫

ξ

f(x) dm(x) , where ξ is a d-plane .
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Because of the applications to radiology indicated in § 7,B) the 1-dimen-
sional Radon transform is often called the X-ray transform. Since a hy-
perplane can be viewed as a disjoint union of parallel d-planes parameter-
ized by Rn−1−d it is obvious from (4) that the transform f → ̂f is injective.
Similarly we deduce the following consequence of Theorem 2.6.

Corollary 6.1. Let f, g ∈ C(Rn) satisfy the rapid decrease condition: For
each m > 0, |x|mf(x) and |x|mg(x) are bounded on Rn. Assume for the
d-dimensional Radon transforms

̂f(ξ) = ĝ(ξ)

whenever the d-plane ξ lies outside the unit ball. Then

f(x) = g(x) for |x| > 1 .

We shall now generalize the inversion formula in Theorem 3.1. If ϕ is
a continuous function on the space of d-planes in Rn we denote by ϕ̌ the
point function

ϕ̌(x) =

∫

x∈ξ

ϕ(ξ) dμ(ξ) ,

where μ is the unique measure on the (compact) space of d-planes passing
through x, invariant under all rotations around x and with total measure
1. If σ is a fixed d-plane through the origin we have in analogy with (16),

(58) ϕ̌(x) =

∫

K

ϕ(x+ k · σ) dk ,

where again K = O(n).

Theorem 6.2. The d-dimensional Radon transform in Rn is inverted by
the formula

(59) cf = (−L)d/2(( ̂f)∨) ,

where c = (4π)d/2Γ(n/2)/Γ((n − d)/2). Here it is assumed that f(x) =
0(|x|−N ) for some N > d.

Proof. We have, in analogy with (34),

( ̂f)∨(x) =

∫

K

(

∫

σ

f(x+ k · y) dm(y)
)

dk

=

∫

σ

dm(y)

∫

K

f(x+ k · y) dk =

∫

σ

(M |y|f)(x) dm(y) .
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Hence

( ̂f)∨(x) = Ωd

∞
∫

0

(M rf)(x)rd−1 dr .

Using polar coordinates around x, in the integral below, we obtain

(60) ( ̂f)∨(x) =
Ωd
Ωn

∫

Rn

|x− y|d−nf(y) dy .

The theorem now follows from Theorem 6.11 in Chapter VII.
As a consequence of Theorem 2.10 we now obtain a generalization, char-

acterizing the image of the space D(Rn) under the d-dimensional Radon
transform.

The set G(d, n) of d-planes in Rn is a manifold, in fact a homogeneous
space of the group M(n) of all isometries of Rn. Let Gd,n denote the
manifold of all d-dimensional subspaces (d-planes through 0) of Rn. The
parallel translation of a d-plane to one through 0 gives a mapping π of
G(d, n) onto Gd,n. The inverse image π−1(σ) of a member σ ∈ Gd,n is
naturally identified with the orthogonal complement σ⊥. Let us write

ξ = (σ, x′′) = x′′ + σ if σ = π(ξ) and x′′ = σ⊥ ∩ ξ .

(See Fig. I.6.) Then (57) can
be written
(61)

̂f(x′′ + σ) =

∫

σ

f(x′ + x′′) dx′ .

For k ∈ Z+ we consider the
polynomial
(62)

Pk(u) =

∫

Rn

f(x)〈x, u〉k dx .

x′′

0

σ
σ

ξ ′′ σ= +x

FIGURE I.6.

If u = u′′ ∈ σ⊥ this can be written
∫

Rn

f(x)〈x, u′′〉k dx =

∫

σ⊥

∫

σ

f(x′ + x′′)〈x′′, u′′〉k dx′ dx′′ ,

so the polynomial

Pσ,k(u
′′) =

∫

σ⊥

̂f(x′′ + σ)〈x′′, u′′〉k dx′′
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is the restriction to σ⊥ of the polynomial Pk.
In analogy with the space DH(Pn) in §2 we define the space

DH(G(d, n)) as the set of C∞ functions

ϕ(ξ) = ϕσ(x
′′) = ϕ(x′′ + σ) (if ξ = (σ, x′′))

on G(d, n) of compact support satisfying the following condition.
(H) : For each k ∈ Z+ there exists a homogeneous kth degree polynomial

Pk on Rn such that for each σ ∈ Gd,n the polynomial

Pσ,k(u
′′) =

∫

σ⊥

ϕ(x′′ + σ)〈x′′, u′′〉k dx′′ , u′′ ∈ σ⊥ ,

coincides with the restriction Pk|σ⊥.

Theorem 6.3 (The Range Theorem). The d-dimensional Radon trans-
form is a bijection of

D(Rn) onto DH(G(d, n)) .

Proof. For d = n − 1 this is Theorem 2.10. We shall now reduce the case
of general d ≤ n − 2 to the case d = n − 1. It remains just to prove the
surjectivity in Theorem 6.3.

Let ϕ ∈ D(G(d, n)). Let ω ∈ Rn be a unit vector. Choose a d-dimensional
subspace σ perpendicular to ω and consider the (n − d − 1)-dimensional
integral

(63) Ψσ(ω, p) =

∫

〈ω,x′′〉=p,x′′∈σ⊥

ϕ(x′′ + σ)dn−d−1(x
′′) , p ∈ R .

We claim that this is independent of the choice of σ. In fact
∫

R

Ψσ(ω, p)p
k dp =

∫

R

pk
(∫

ϕ(x′′ + σ)dn−d−1(x
′′)

)

dp

=

∫

σ⊥

ϕ(x′′ + σ)〈x′′, ω〉k dx′′ = Pk(ω) .

If we had chosen another σ, say σ1, perpendicular to ω, then, by the above,
Ψσ(ω, p) − Ψσ1(ω, p) would have been orthogonal to all polynomials in p;
having compact support it would have been identically 0. Thus we have a
well-defined function Ψ(ω, p) = Ψσ(ω, p) to which Theorem 2.10 applies. In
fact, the smoothness of Ψ(ω, p) is clear from (63) since for ω in a neighbor-
hood of a fixed ω0 we can let σ depend smoothly on ω. From this theorem
we get a function f ∈ D(Rn) such that

(64) Ψ(ω, p) =

∫

〈x,ω〉=p

f(x) dm(x) .
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It remains to prove that

(65) ϕ(x′′ + σ) =

∫

σ

f(x′ + x′′) dx′ .

But as x′′ runs through an arbitrary hyperplane in σ⊥ it follows from (63)
and (64) that both sides of (65) have the same integral. By the injectivity of
the (n− d− 1)-dimensional Radon transform on σ⊥, equation (65) follows.
This proves Theorem 6.3.

Modifying the argument we shall now prove a stronger statement.

Theorem 6.4. Let ϕ ∈ D(G(d, n)) have the property: For each pair σ, τ ∈
Gd,n and each k ∈ Z+ the polynomials

Pσ,k(u) =

∫

σ⊥

ϕ(x′′ + σ)〈x′′, u〉k dx′′ u ∈ Rn

Pτ,k(u) =

∫

τ⊥

ϕ(y′′ + τ)〈y′′, u〉k dy′′ u ∈ Rn

agree for u ∈ σ⊥ ∩ τ⊥. Then ϕ = ̂f for some f ∈ D(Rn).

Proof. Let ϕ = D(G(d, n)) have the property above. Let ω ∈ Rn be a
unit vector. Let σ, τ ∈ Gd,n be perpendicular to ω. Consider again the
(n− d− 1)-dimensional integral

(66) Ψσ(ω, p) =

∫

〈ω,x′′〉=p, x′′∈σ⊥

ϕ(x′′ + σ)dn−d−1(x
′′) , p ∈ R .

We claim that
Ψσ(ω, p) = Ψτ (ω, p) .

To see this consider the moment
∫

R

Ψσ(ω, p)p
k dp

=

∫

R

pk
(∫

ϕ(x′′ + σ)dn−d−1(x
′′)

)

dp =

∫

σ⊥

ϕ(x′′ + σ)〈x′′, ω〉k dx′′

=

∫

τ⊥

ϕ(y′′ + τ)〈y′′, ω〉k dy′′ =

∫

R

Ψτ (ω, p)p
k dp .

Thus Ψσ(ω, p)− Ψτ (ω, p) is perpendicular to all polynomials in p; having
compact support it would be identically 0. We therefore put Ψ(ω, p) =
Ψσ(ω, p). Observe that Ψ is smooth; in fact for ω in a neighborhood of a
fixed ω0 we can let σ depend smoothly on ω, so by (66), Ψσ(ω, p) is smooth.
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Writing

〈x′′, ω〉k =
∑

|α|=k

pα(x′′)ωα , ωα = ωα1
1 . . . ωαn

n

we have
∫

R

Ψ(ω, p)pk dp =
∑

|α|=k

Aαω
α ,

where

Aα =

∫

σ⊥

ϕ(x′′ + σ)pα(x′′) dx′′ .

Here Aα is independent of σ if ω ∈ σ⊥; in other words, viewed as a function
of ω, Aα has for each σ a constant value as ω varies in σ⊥ ∩ S1(0). To see
that this value is the same as the value on τ⊥ ∩ S1(0) we observe that
there exists a ρ ∈ Gd,n such that ρ⊥ ∩ σ⊥ �= 0 and ρ⊥ ∩ τ⊥ �= 0. (Extend
the 2-plane spanned by a vector in σ⊥ and a vector in τ⊥ to an (n − d)-
plane.) This shows that Aα is constant on S1(0) so Ψ ∈ DH(Pn). Thus by
Theorem 2.10,

(67) Ψ(ω, p) =

∫

〈x,ω〉=p

f(x) dm(x)

for some f ∈ D(Rn). It remains to prove that

(68) ϕ(x′′ + σ) =

∫

σ

f(x′ + x′′) dx′ .

But as x′′ runs through an arbitrary hyperplane in σ⊥ it follows from (63)
and (64) that both sides of (68) have the same integral. By the injectivity
of the (n−d−1)-dimensional Radon transform on σ⊥ equation (68) follows.
This proves Theorem 6.4.

Theorem 6.4 raises the following elementary question: If a function f on
Rn is a polynomial on each k-dimensional subspace, is f itself a polynomial?
The answer is no for k = 1 but yes if k > 1. See Proposition 6.13 below,
kindly communicated by Schlichtkrull.

We shall now prove another characterization of the range of D(Rn) un-
der the d-plane transform (for d ≤ n − 2). The proof will be based on
Theorem 6.4.

Given any d + 1 points (x0, . . . , xd) in general position let ξ(x0, . . . , xd)
denote the d-plane passing through them. If ϕ ∈ E(G(d, n)) we shall write
ϕ(x0, . . ., xd) for the value ϕ(ξ(x0, . . ., xd)). We also write V ({xi−x0}i=1,d)
for the volume of the parallelepiped spanned by vectors (xi − x0), (1 ≤ i ≤
d). The mapping

(λ1, . . . , λd)→ x0 + Σdi=1λi(xi − x0)
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is a bijection of Rd onto ξ(x0, . . . , xd) and

(69) ̂f(x0, . . . , xd) = V ({xi − x0}i=1,d)

∫

Rd

f(x0 + Σiλi(xi − x0)) dλ .

The range D(Rn) can now be described by the following alternative to
Theorem 6.4. Let xki denote the kth coordinate of xi.

Theorem 6.5. If f ∈ D(Rn) then ϕ = ̂f satisfies the system

(70) (∂i,k∂j,� − ∂j,k∂i,�)
(

ϕ(x0, . . . , xd)/V ({xi − x0}i=1,d)
)

= 0 ,

where
0 ≤ i, j ≤ d , 1 ≤ k, � ≤ n , ∂i,k = ∂/∂xki .

Conversely, if ϕ ∈ D(G(d, n)) satisfies (70) then ϕ = ̂f for some f ∈
D(Rn).

The validity of (70) for ϕ = ̂f is obvious from (69) just by differentiation
under the integral sign. For the converse we first prove a simple lemma.

Lemma 6.6. Let ϕ ∈ E(G(d, n)) and A ∈ O(n). Let ψ = ϕ ◦ A. Then if
ϕ(x0, . . . , xd) satisfies (70) so does the function

ψ(x0, . . . , xd) = ϕ(Ax0, . . . , Axd) .

Proof. Let yi = Axi so y�i = Σpa�px
p
i . Then, if Di,k = ∂/∂yki ,

(71) (∂i,k∂j,� − ∂j,k∂i,�) = Σnp,q=1apkaq�(Di,pDj,q −Di,qDj,p) .

Since A preserves volumes, the lemma follows.

Suppose now ϕ satisfies (70). We write σ = (σ1, . . . , σd) if (σj) is an
orthonormal basis of σ. If x′′ ∈ σ⊥, the (d+ 1)-tuple

(x′′, x′′ + σ1, . . . , x
′′ + σd)

represents the d-plane x′′ + σ and the polynomial

Pσ,k(u
′′) =

∫

σ⊥

ϕ(x′′+σ)〈x′′, u′′〉k dx′′(72)

=

∫

σ⊥

ϕ(x′′, x′′+σ1,. . ., x
′′+σd)〈x′′, u′′〉k dx′′ , u′′ ∈ σ⊥ ,

depends only on σ. In particular, it is invariant under orthogonal transfor-
mations of (σ1, . . . , σd). In order to use Theorem 6.4 we must show that for
any σ, τ ∈ Gd,n and any k ∈ Z+,

(73) Pσ,k(u) = Pτ,k(u) for u ∈ σ⊥ ∩ τ⊥ , |u| = 1 .

The following lemma is a basic step towards (73).
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Lemma 6.7. Assume ϕ ∈ G(d, n) satisfies (70). Let

σ = (σ1, . . . , σd), τ = (τ1, . . . , τd)

be two members of Gd,n. Assume

σj = τj for 2 ≤ j ≤ d .
Then

Pσ,k(u) = Pτ,k(u) for u ∈ σ⊥ ∩ τ⊥ , |u| = 1 .

Proof. Let ei (1 ≤ i ≤ n) be the natural basis of Rn and ε = (e1, . . . , ed).
Select A ∈ O(n) such that

σ = Aε , u = Aen .

Let
η = A−1τ = (A−1τ1, . . . , A

−1τd) = (A−1τ1, e2, . . . , ed) .

The vector E = A−1τ1 is perpendicular to ej (2 ≤ j ≤ d) and to en (since
u ∈ τ⊥). Thus

E = a1e1 +

n−1
∑

d+1

aiei (a2
1 +

∑

i

a2
i = 1) .

In (72) we write Pϕσ,k for Pσ,k. Putting x′′ = Ay and ψ = ϕ ◦A we have

Pϕσ,k(u) =

∫

ε⊥

ϕ(Ay,A(y + e1), . . . , A(y + ed))〈y, en〉k dy = Pψε,k(en)

and similarly
Pϕτ,k(u) = Pψη,k(en) .

Thus, taking Lemma 6.6 into account, we have to prove the statement:

(74) Pε,k(en) = Pη,k(en) ,

where ε = (e1, . . . , ed), η = (E, e2, . . . , ed), E being any unit vector perpen-
dicular to ej (2 ≤ j ≤ d) and to en. First we take

E = Et = sin t e1 + cos t ei (d < i < n)

and put εt = (Et, e2, . . . , ed). We shall prove

(75) Pεt,k(en) = Pε,k(en) .

With no loss of generality we can take i = d+ 1. The space ε⊥t consists of
the vectors

(76) xt = (− cos t e1 + sin t ed+1)λd+1 +
n

∑

i=d+2

λiei , λi ∈ R .



40 Chapter I. The Radon Transform on R
n

Putting P (t) = Pεt,k(en) we have

(77) P (t) =

∫

Rn−d

ϕ(xt, xt + Et, xt + e2, . . . , xt + ed)λ
k
n dλn . . . dλd+1 .

In order to use (70) we replace ϕ by the function

ψ(x0, . . . , xd) = ϕ(x0, . . . , xd)/V ({xi − x0}i=1,d) .

Since the vectors in (77) span volume 1, replacing ϕ by ψ in (77) does not
change P (t). Applying ∂/∂t we get (with dλ = dλn . . . dλd+1),

P ′(t) =

∫

Rn−d

[ d
∑

j=0

λd+1(sin t ∂j,1ψ + cos t ∂j,d+1ψ)(78)

+ cos t ∂1,1ψ − sin t ∂1,d+1ψ

]

λkn dλ .

Now ϕ is a function on G(d, n). Thus for each i �= j it is invariant under
the substitution

yk = xk (k �= i), yi = sxi + (1− s)xj = xj + s(xi − xj) , s > 0 ,

whereas the volume changes by the factor s. Thus

ψ(y0, . . . , yd) = s−1ψ(x0, . . . , xd) .

Taking ∂/∂s at s = 1 we obtain

(79) ψ(x0, . . . , xd) +

n
∑

k=1

(xki − xkj )(∂i,kψ)(x0, . . . , xd) = 0 .

Note that in (78) the derivatives are evaluated at

(80) (x0, . . . , xd) = (xt, xt + Et, xt + e2, . . . , xt + ed) .

Using (79) for (i, j) = (1, 0) and (i, j) = (0, 1) and adding we obtain

(81) sin t (∂0,1ψ + ∂1,1ψ) + cos t (∂0,d+1ψ + ∂1,d+1ψ) = 0 .

For i ≥ 2 we have

xi − x0 = ei, xi − x1 = − sin t e1 − cos t ed+1 + ei ,

and this gives the relations (for j = 0 and j = 1)

ψ(x0, . . . , xd) + (∂i,iψ)(x0, . . . , xd) = 0 ,(82)

ψ − sin t (∂i,1ψ)− cos t (∂i,d+1ψ) + ∂i,iψ = 0 .(83)
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Thus by (81)–(83) formula (78) simplifies to

P ′(t) =

∫

Rn−d

[cos t (∂1,1ψ)− sin t (∂1,d+1ψ)]λkn dλ .

In order to bring in 2nd derivatives of ψ we integrate by parts in λn,

(84) (k + 1)P ′(t) =

∫

Rn−d

− ∂

∂λn
[cos t (∂1,1ψ)− sin t (∂1,d+1ψ)]λk+1

n dλ .

Since the derivatives ∂j,kψ are evaluated at the point (80) we have in (84)

(85)
∂

∂λn
(∂j,kψ) =

d
∑

i=0

∂i,n(∂j,kψ)

and also, by (76) and (80),

(86)
∂

∂λd+1
(∂j,kψ) = − cos t

d
∑

0

∂i,1(∂j,kψ) + sin t

d
∑

0

∂i,d+1(∂j,kψ) .

We now plug (85) into (84) and then invoke equations (70) for ψ which
give

(87)

d
∑

0

∂i,n∂1,1ψ = ∂1,n

d
∑

0

∂i,1ψ ,

d
∑

0

∂i,n∂1,d+1ψ = ∂1,n

d
∑

0

∂i,d+1ψ .

Using (85) and (87) we see that (84) becomes

−(k + 1)P ′(t) =
∫

Rn−d

[∂1,n(cos tΣi∂i,1ψ−sin tΣi∂i,d+1ψ)] (xt, xt+Et, . . . , xt+ed)λ
k+1
n dλ,

so by (86)

(k + 1)P ′(t) =

∫

Rn−d

∂

∂λd+1
(∂1,nψ)λk+1

n dλ .

Since d+1 < n, the integration in λd+1 shows that P ′(t) = 0, proving (75).
This shows that without changing Pε,k(en) we can pass from ε =

(e1, . . . , ed) to
εt = (sin t e1 + cos t ed+1, e2, . . . , ed) .

By iteration we can replace e1 by

sin tn−d−1 . . . sin t1e1+ sin tn−d−1 . . . sin t2 cos t1ed+1+· · ·+cos tn−d−1en−1,

but keeping e2, . . . , ed unchanged. This will reach an arbitrary E, so (74)
is proved.
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We shall now prove (73) in general. We write σ and τ in orthonormal
bases, σ = (σ1, . . . , σd), τ = (τ1, . . . , τd). Using Lemma 6.7 we shall pass
from σ to τ without changing Pσ,k(u), u being fixed.

Consider τ1. If two members of σ, say σj and σk, are both not orthogonal
to τ1 that is (〈σj , τ1〉 �= 0, 〈σk, τ1〉 �= 0) we rotate them in the (σj , σk)-plane
so that one of them becomes orthogonal to τ1. As remarked after (72) this
has no effect on Pσ,k(u). We iterate this process (with the same τ1) and
end up with an orthogonal frame (σ∗

1 , . . . , σ
∗
d) of σ in which at most one

entry σ∗
i is not orthogonal to τ1. In this frame we replace this σ∗

i by τ1. By
Lemma 6.7 this change of σ does not alter Pσ,k(u).

We now repeat this process with τ2, τ3 . . ., etc. Each step leaves Pσ,k(u)
unchanged (and u remains fixed) so this proves (73) and the theorem.

We consider now the case d = 1, n = 3 in more detail. Here f → ̂f is the
X-ray transform in R3. We also change the notation and write ξ for x0, η
for x1 so V ({x1 − x0}) equals |ξ − η|. Then Theorem 6.5 reads as follows.

Theorem 6.8. The X-ray transform f → ̂f in R3 is a bijection of D(R3)
onto the space of ϕ ∈ D(G(1, 3)) satisfying

(88)

(

∂

∂ξk

∂

∂η�
− ∂

∂ξ�

∂

∂ηk

)(

ϕ(ξ, η)

|ξ − η|
)

= 0 , 1 ≤ k, � ≤ 3 .

Now let G′(1, 3) ⊂ G(1, 3) denote the open subset consisting of the non-
horizontal lines. We shall now show that for ϕ ∈ D(G(1, n)) (and even
for ϕ ∈ E(G′(1, n))) the validity of (88) for (k, �) = (1, 2) implies (87)
for general (k, �). Note that (79) (which is also valid for ϕ ∈ E(G′(1, n)))
implies

ϕ(ξ, η)

|ξ − η| +
3

∑

1

(ξi − ηi) ∂
∂ξi

(

ϕ(ξ, η)

|ξ − η|
)

= 0 .

Here we apply ∂/∂ηk and obtain
(

3
∑

i=1

(ξi − ηi) ∂2

∂ξi∂ηk
− ∂

∂ξk
+

∂

∂ηk

)

(

ϕ(ξ, η)

|ξ − η|
)

= 0 .

Exchanging ξ and η and adding we derive

(89)

3
∑

i=1

(ξi − ηi)
(

∂2

∂ξi∂ηk
− ∂2

∂ξk∂ηi

)(

ϕ(ξ, η)

|ξ − η|
)

= 0

for k = 1, 2, 3. Now assume (88) for (k, �) = (1, 2). Taking k = 1 in (89) we
derive (88) for (k, �) = (1, 3). Then taking k = 3 in (89) we deduce (88) for
(k, �) = (3, 2). This verifies the claim above.

We can now put this in a simpler form. Let �(ξ, η) denote the line through
the points ξ �= η. Then the mapping

(ξ1, ξ2, η1, η2)→ �((ξ1, ξ2, 0), (η1, η2,−1))
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is a bijection of R4 onto G′(1, 3). The operator

(90) Λ =
∂2

∂ξ1∂η2
− ∂2

∂ξ2∂η1

is a well defined differential operator on the dense open set G′(1, 3). If
ϕ ∈ E(G(1, 3)) we denote by ψ the restriction of the function (ξ, η) →
ϕ(ξ, η)/|ξ − η| to G′(1, 3). Then we have proved the following result.

Theorem 6.9. The X-ray transform f → ̂f is a bijection of D(R3) onto
the space

(91) {ϕ ∈ D(G(1, 3)) : Λψ = 0} .
We shall now rewrite the differential equation (91) in Plücker coordinates.

The line joining ξ and η has Plücker coordinates (p1, p2, p3, q1, q2, q3) given
by

∣

∣

∣

∣

∣

i j k
ξ1 ξ2 ξ3
η1 η2 η3

∣

∣

∣

∣

∣

= p1i + p2j + p3k , qi =
∣

∣

∣

ξi 1
ηi 1

∣

∣

∣

which satisfy

(92) p1q1 + p2q2 + p3q3 = 0 .

Conversely, each ratio (p1 : p2 : p3 : q1 : q2 : q3) determines uniquely a line
provided (92) is satisfied. The set G′(1, 3) is determined by q3 �= 0. Since
the common factor can be chosen freely we fix q3 as 1. Then we have a
bijection τ : G′(1, 3)→ R4 given by

(93) x1 = p2 + q2, x2 = −p1 − q1, x3 = p2 − q2, x4 = −p1 + q1

with inverse

(p1, p2, p3, q1, q2) =
(

1
2 (−x2−x4),

1
2 (x1+x3),

1
4 (−x2

1−x2
2+x2

3+x2
4),

1
2 (−x2+x4),

1
2 (x1−x3)

)

.

Theorem 6.10. If ϕ ∈ D(G(1, 3)) satisfies (91) then the restriction
ϕ|G′(1, 3) (with q3 = 1) has the form

(94) ϕ(ξ, η) = |ξ − η| u(p2 + q2,−p1 − q1, p2 − q2,−p1 + q1)

where u satisfies

(95)
∂2u

∂x2
1

+
∂2u

∂x2
2

− ∂2u

∂x2
3

− ∂2u

∂x2
4

= 0 .

On the other hand, if u satisfies (95) then (94) defines a function ϕ on
G′(1, 3) which satisfies (91).
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Proof. First assume ϕ ∈ D(G(1, 3)) satisfies (91) and define u ∈ E(R4) by

(96) u(τ(�)) = ϕ(�)(1 + q21 + q22)−
1
2 ,

where � ∈ G′(1, 3) has Plücker coordinates (p1, p2, p3, q1, q2, 1). On the line
� consider the points ξ, η for which ξ3 = 0, η3 = −1 (so q3 = 1). Then since

p1 = −ξ2, p2 = ξ1, q1 = ξ1 − η1, q2 = ξ2 − η2
we have

(97)
ϕ(ξ, η)

|ξ − η| = u(ξ1 + ξ2 − η2, −ξ1 + ξ2 + η1, ξ1 − ξ2 + η2, ξ1 + ξ2 − η1) .

Now (91) implies (95) by use of the chain rule.
On the other hand, suppose u ∈ E(R4) satisfies (95). Define ϕ by (96).

Then ϕ ∈ E(G′(1, 3)) and by (97),

Λ

(

ϕ(ξ, η)

|ξ − η|
)

= 0 .

As shown before the proof of Theorem 6.9 this implies that the whole
system (88) is verified.

We shall now see what implications Ásgeirsson’s mean-value theorem
Chapter VI, §2 has for the range of the X-ray transform. We have from
(95),

(98)

2π
∫

0

u(r cosϕ, r sinϕ, 0, 0) dϕ =

2π
∫

0

u(0, 0, r cosϕ, r sinϕ) dϕ .

The first points (r cosϕ, r sinϕ, 0, 0) correspond via (93) to the lines with

(p1, p2, p3, q1, q2, q3) = (− r2 sinϕ, r2 cosϕ,− r24 ,− r2 sinϕ, r2 cosϕ, 1)

containing the points
(ξ1, ξ2, ξ3) = ( r2 cosϕ, r2 sinϕ, 0)

(η1, η2, η3) = ( r2 (sinϕ+ cosϕ),+ r
2 (sinϕ− cosϕ),−1)

with |ξ− η|2 = 1 + r2

4 . The points (0, 0, r cosϕ, r sinϕ) correspond via (93)
to the lines with

(p1, p2, p3, q1, q2, q3) = (− r2 sinϕ, r2 cosϕ, r
2

4 ,
r
2 sinϕ,− r2 cosϕ, 1)

containing the points

(ξ1, ξ2, ξ3) = ( r2 cosϕ, r2 sinϕ, 0),

(η1, η2, η3) = ( r2 (cosϕ− sinϕ), r2 (cosϕ+ sinϕ),−1),
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with |ξ − η|2 = 1 + r2

4 . Thus (98) takes the form

2π
∫

0

ϕ( r2 cos θ, r2 sin θ, 0, r2 (sin θ + cos θ), r2 (sin θ − cos θ),−1) dθ(99)

=

2π
∫

0

ϕ( r2 cos θ, r2 sin θ, 0, r2 (cos θ − sin θ), r2 (cos θ + sin θ),−1) dθ .

The lines forming the arguments of ϕ in these
integrals are the two families of generating
lines for the hyperboloid (see Fig. I.7)

x2 + y2 = r2

4 (z2 + 1) .

Definition. A function ϕ ∈ E(G′(1, 3)) is
said to be a harmonic line function if

Λ

(

ϕ(ξ, η)

|ξ − η|
)

= 0 .

Theorem 6.11. A function ϕ ∈ E(G′(1, 3))
is a harmonic line function if and only if for
each hyperboloid of revolution H of one sheet
and vertical axis the mean values of ϕ over
the two families of generating lines of H are
equal. (The variable of integration is the polar
angle in the equatorial plane of H.). FIGURE I.7.

The proof of (99) shows that ϕ harmonic implies the mean value property
for ϕ. The converse is also true since Ásgeirsson’s theorem has a converse;
for Rn this is obvious from the relation between L and M r in Ch. VII, §6.

Corollary 6.12. Let ϕ ∈ D(G(1, 3)). Then ϕ is in the range of the X-
ray transform if and only if ϕ has the mean value property for arbitrary
hyperboloid of revolution of one sheet (and arbitrary axis).

We conclude this section with the following result due to Schlichtkrull
mentioned in connection with Theorem 6.4.

Proposition 6.13. Let f be a function on Rn and k ∈ Z+, 1 < k < n.
Assume that for each k-dimensional subspace Ek ⊂ Rn the restriction f |Ek
is a polynomial on Ek. Then f is a polynomial on Rn.

For k = 1 the result is false as the example f(x, y) = xy2/(x2 + y2),
f(0, 0) = 0 shows. We recall now the Lagrange interpolation formula. Let
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a0, . . . , am be distinct numbers in C. Then each polynomial P (x) (x ∈ R)
of degree ≤ m can be written

P (x) = P (a0)Q0(x) + · · ·+ P (am)Qm(x) ,

where

Qi(x) =
m
∏

j=0

(x − aj)/(x− ai)
∏

j �=i

(ai − aj) .

In fact, the two sides agree at m + 1 distinct points. This implies the
following result.

Lemma 6.14. Let f(x1, . . . , xn) be a function on Rn such that for each i
with xj(j �= i) fixed the function xi → f(x1, . . . , xn) is a polynomial. Then
f is a polynomial.

For this we use Lagrange’s formula on the polynomial x1 −→
f(x1, x2, . . . , xn) and get

f(x1, . . . , xn) =
m
∑

j=0

f(aj , x2, . . . , xm)Qj(x1) .

The lemma follows by iteration.
For the proposition we observe that the assumption implies that f re-

stricted to each 2-plane E2 is a polynomial on E2. For a fixed (x2, . . . , xn)
the point (x1, . . . , xn) is in the span of (1, 0, . . . , 0) and (0, x2, . . . , xn) so
f(x1, . . . , xn) is a polynomial in x1. Now the lemma implies the result.

§7 Applications

A. Partial Differential Equations. The Wave Equation

The inversion formula in Theorem 3.1 is very well suited for applications to
partial differential equations. To explain the underlying principle we write
the inversion formula in the form

(100) f(x) = γ L
n−1

2
x

( ∫

Sn−1

̂f(ω, 〈x, ω〉) dω
)

,

where the constant γ equals 1
2 (2πi)1−n. Note that the function fω(x) =

̂f(ω, 〈x, ω〉) is a plane wave with normal ω, that is, it is constant on
each hyperplane perpendicular to ω.

Consider now a differential operator

D =
∑

(k)

ak1...kn∂
k1
1 . . . ∂kn

n
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with constant coefficients ak1,...,kn , and suppose we want to solve the dif-
ferential equation

(101) Du = f ,

where f is a given function in S(Rn). To simplify the use of (100) we
assume n to be odd. We begin by considering the differential equation

(102) Dv = fω ,

where fω is the plane wave defined above and we look for a solution v which
is also a plane wave with normal ω. But a plane wave with normal ω is
just a function of one variable; also if v is a plane wave with normal ω so
is the function Dv. The differential equation (102) (with v a plane wave)
is therefore an ordinary differential equation with constant coefficients.
Suppose v = uω is a solution and assume that this choice can be made
smoothly in ω. Then the function

(103) u = γ L
n−1

2

∫

Sn−1

uω dω

is a solution to the differential equation (101). In fact, since D and L
n−1

2

commute we have

Du = γL
n−1

2

∫

Sn−1

Duω dω = γL
n−1

2

∫

Sn−1

fω dω = f .

This method only assumes that the plane wave solution uω to the or-
dinary differential equation Dv = fω exists and can be chosen so as to
depend smoothly on ω. This cannot always be done because D might anni-
hilate all plane waves with normal ω. (For example, take D = ∂2/∂x1∂x2

and ω = (1, 0).) However, if this restriction to plane waves is never 0 it
follows from a theorem of Trèves [1963] that the solution uω can be chosen
depending smoothly on ω. Thus we can state the following result.

Theorem 7.1. If the restriction Dω of D to the space of plane waves with
normal ω is �= 0 for each ω, then formula (103) gives a solution to the
differential equation Du = f (f ∈ S(Rn)).

The method of plane waves can also be used to solve the Cauchy problem
for hyperbolic differential equations with constant coefficients. We illustrate
this method by means of the wave equation Rn,

(104) Lu =
∂2u

∂t2
, u(x, 0) = f0(x), ut(x, 0) = f1(x) ,

f0, f1 being given functions in D(Rn).
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Lemma 7.2. Let h ∈ C2(R) and ω ∈ Sn−1. Then the function

v(x, t) = h(〈x, ω〉+ t)

satisfies Lv = (∂2/∂t2)v.

The proof is obvious. It is now easy, on the basis of Theorem 3.8, to write
down the unique solution of the Cauchy problem (104).

Theorem 7.3. The solution to (104) is given by

(105) u(x, t) =

∫

Sn−1

(Sf)(ω, 〈x, ω〉+ t) dω ,

where

Sf =

{

c(∂n−1
̂f0 + ∂n−2

̂f1) , n odd

cH(∂n−1
̂f0 + ∂n−2

̂f1) , n even .

Here ∂ = ∂/∂p and the constant c equals

c = 1
2 (2πi)1−n .

Lemma 7.2 shows that (105) is annihilated by the operator L− ∂2/∂t2,
so we just have to check the initial conditions in (104).

(a) If n > 1 is odd then ω → (∂n−1
̂f0)(ω, 〈x, ω〉) is an even function on

Sn−1 but the other term in Sf , that is the function ω→(∂n−2
̂f1)(ω, 〈x, ω〉),

is odd. Thus by Theorem 3.8, u(x, 0) = f0(x). Applying ∂/∂t to (105)
and putting t = 0 gives ut(x, 0) = f1(x), this time because the function

ω → (∂n ̂f0)(ω, 〈x, ω〉) is odd and the function ω → (∂n−1
̂f1)(ω, 〈x, ω〉) is

even.

(b) If n is even the same proof works if we take into account the fact that
H interchanges odd and even functions on R.

Definition. For the pair f = {f0, f1} we refer to the function Sf in (105)
as the source.

In the terminology of Lax-Philips [1967] the wave u(x, t) is said to be

(a) outgoing if u(x, t) = 0 in the forward cone |x| < t;

(b) incoming if u(x, t) = 0 in the backward cone |x| < −t.

The notation is suggestive because “outgoing” means that the function
x→ u(x, t) vanishes in larger balls around the origin as t increases.

Corollary 7.4. The solution u(x, t) to (104) is
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(i) outgoing if and only if (Sf)(ω, s) = 0 for s > 0, all ω.

(ii) incoming if and only if (Sf)(ω, s) = 0 for s < 0, all ω.

Proof. For (i) suppose (Sf)(ω, s) = 0 for s > 0. For |x| < t we have
〈x, ω〉+t ≥ −|x|+t > 0 so by (105) u(x, t) = 0 so u is outgoing. Conversely,
suppose u(x, t) = 0 for |x| < t. Let t0 > 0 be arbitrary and let ϕ(t) be a
smooth function with compact support contained in (t0,∞).

Then if |x| < t0 we have

0 =

∫

R

u(x, t)ϕ(t) dt =

∫

Sn−1

dω

∫

R

(Sf)(ω, 〈x, ω〉+ t)ϕ(t) dt

=

∫

Sn−1

dω

∫

R

(Sf)(ω, p)ϕ(p− 〈x, ω〉) dp .

Taking arbitrary derivative ∂k/∂xi1 . . . ∂xik at x = 0 we deduce

∫

R

( ∫

Sn−1

(Sf)(ω, p)ωi1 . . . ωik dω

)

(∂kϕ)(p) dp = 0

for each k and each ϕ ∈ D(t0,∞). Integrating by parts in the p variable we
conclude that the function

(106) p→
∫

Sn−1

(Sf)(ω, p)ωi1 . . . ωik dω , p ∈ R

has its kth derivative ≡ 0 for p > t0. Thus it equals a polynomial for
p > t0. However, if n is odd the function (106) has compact support so it
must vanish identically for p > t0.

On the other hand, if n is even and F ∈ D(R) then as remarked at the end
of §3, lim|t|→∞(HF )(t) = 0. Thus we conclude again that expression (106)
vanishes identically for p > t0.

Thus in both cases, if p > t0, the function ω → (Sf)(ω, p) is orthogonal
to all polynomials on Sn−1, hence must vanish identically.

One can also solve (104) by means of the Fourier transform (see
Ch. VII)

˜f(ζ) =

∫

Rn

f(x)e−i〈x,ζ〉 dx .

Assuming the function x→ u(x, t) in S(Rn), for a given t we obtain

ũtt(ζ, t) + 〈ζ, ζ〉ũ(ζ, t) = 0 .
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Solving this ordinary differential equation with initial data given in (104),
we get

(107) ũ(ζ, t) = ˜f0(ζ) cos(|ζ|t) + ˜f1(ζ)
sin(|ζ|t)
|ζ| .

The function ζ → sin(|ζ|t)/|ζ| is entire of exponential type |t| on Cn in
the sense of (18), Ch. VII. In fact, if ϕ(λ) is even, holomorphic on C and
satisfies the exponential type estimate (18) in Theorem 4.7, Ch. VII, then
the same holds for the function Φ on Cn given by Φ(ζ) = Φ(ζ1, . . . , ζn) =
ϕ(λ) where λ2 = ζ2

1 + · · ·+ ζ2
n. To see this put

λ = μ+ iν , ζ = ξ + iη μ, ν ∈ R , ξ , η ∈ Rn .

Then
μ2 − ν2 = |ξ|2 − |η|2 , μ2ν2 = (ξ · η)2 ,

so
|λ|4 = (|ξ|2 − |η|2)2 + 4(ξ · η)2

and
2|Imλ|2 = |η|2 − |ξ|2 +

[

(|ξ|2 − |η|2)2 + 4(ξ · η)2]1/2 .
Since |(ξ · η)| ≤ |ξ| |η| this implies |Imλ| ≤ |η| so the estimate (18) follows
for Φ. Thus by Chapter VII, §4 there exists a Tt ∈ E ′(Rn) with support in
B|t|(0) such that

sin(|ζ|t)
|ζ| =

∫

Rn

e−i〈ζ,x〉 dTt(x) .

Theorem 7.5. Given f0, f1 ∈ E(Rn) the function

(108) u(x, t) = (f0 ∗ T ′
t)(x) + (f1 ∗ Tt)(x)

satisfies (104). Here T ′
t stands for ∂t(Tt).

Note that (104) implies (108) if f0 and f1 have compact support. The
converse holds without this support condition.

Corollary 7.6. If f0 and f1 have support in BR(0) then u has support in
the region

|x| ≤ |t|+R .

In fact, by (108) and support property of convolutions (Ch. VII, §3),
the function x → u(x, t) has support in BR+|t|(0)−. While Corollary 7.6
implies that for f0, f1 ∈ D(Rn) u has support in a suitable solid cone, we
shall now see that Theorem 7.3 implies that if n is odd u has support in a
conical shell (see Fig. I.8).

Corollary 7.7. Let n be odd. Assume f0 and f1 have support in the ball
BR(0).
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0
R n

FIGURE I.8.

(i) Huygens’ Principle. The solution u to (104) has support in the
conical shell

(109) |t| −R ≤ |x| ≤ |t|+R ,

which is the union for |y| ≤ R of the light cones,

Cy = {(x, t) : |x− y| = |t|} .

(ii) The solution to (104) is outgoing if and only if

(110) ̂f0(ω, p) =

∞
∫

p

̂f1(ω, s) ds , p > 0 , all ω ,

and incoming if and only if

̂f0(ω, p) = −
p

∫

−∞

̂f1(ω, s) ds , p < 0 , all ω .

Note that Part (ii) can also be stated: The solution is outgoing (incoming)
if and only if

∫

π

f0 =

∫

Hπ

f1

(

∫

π

f0 = −
∫

Hπ

f1

)

for an arbitrary hyperplane π (0 /∈ π)Hπ being the halfspace with boundary
π which does not contain 0.

To verify (i) note that since n is odd, Theorem 7.3 implies

(111) u(0, t) = 0 for |t| ≥ R .
If z ∈ Rn, F ∈ E(Rn) we denote by F z the translated function y →
F (y+z). Then uz satisfies (104) with initial data fz0 , f

z
1 which have support

contained in BR+|z|(0). Hence by (111),

(112) u(z, t) = 0 for |t| > R+ |z| .
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The other inequality in (109) follows from Corollary 7.6.
For the final statement in (i) we note that if |y| ≤ R and (x, t) ∈ Cy

then |x− y| = t so |x| ≤ |x − y|+ |y| ≤ |t|+ R and |t| = |x − y| ≤ |x| +R
proving (109). Conversely, if (x, t) satisfies (109) then (x, t) ∈ Cy with
y = x− |t| x|x| = x

|x|(|x| − t) which has norm ≤ R.

For (ii) we just observe that since ̂fi(ω, p) has compact support in p, (110)
is equivalent to (i) in Corollary 7.4.

Thus (110) implies that for t > 0, u(x, t) has support in the thinner shell
|t| ≤ |x| ≤ |t|+R.

B. X-ray Reconstruction

The classical interpretation of an X-ray picture is an attempt at recon-
structing properties of a 3-dimensional body by means of the X-ray pro-
jection on a plane.

In modern X-ray technology
the picture is given a more re-
fined mathematical interpreta-
tion. Let B ⊂ R3 be a body
(for example a part of a human
body) and let f(x) denote its
density at a point x. Let ξ be a
line in R3 and suppose a thin
beam of X-rays is directed at
B along ξ. Let I0 and I re-
spectively, denote the intensity
of the beam before entering
B and after leaving B (see

B

I0

I

x

ξ

FIGURE I.9.

Fig. I.9). As the X-ray traverses the distance Δx along ξ it will undergo
the relative intensity loss ΔI/I = f(x)Δx. Thus dI/I = −f(x) dx whence

(113) log(I0/I) =

∫

ξ

f(x) dx ,

the integral ̂f(ξ) of f along ξ. Since the left hand side is determined by
the X-ray picture, the X-ray reconstruction problem amounts to the
determination of the function f by means of its line integrals ̂f(ξ). The
inversion formula in Theorem 3.1 gives an explicit solution of this problem.

If B0 ⊂ B is a convex subset (for example the heart) it may be of interest
to determine the density of f outside B0 using only X-rays which do not
intersect B0. The support theorem (Theorem 2.6, Cor. 2.8 and
Cor. 6.1) implies that f is determined outside B0 on the basis

of the integrals ̂f(ξ) for which ξ does not intersect B0. Thus the
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density outside the heart can be determined by means of X-rays
which bypass the heart.

In practice one can of course only determine the integrals ̂f(ξ) in (113)
for finitely many directions. A compensation for this is the fact that only
an approximation to the density f is required. One then encounters the
mathematical problem of selecting the directions so as to optimize the
approximation.

As before we represent the line ξ as the pair ξ = (ω, z) where ω ∈ Rn is
a unit vector in the direction of ξ and z = ξ ∩ ω⊥ (⊥ denoting orthogonal
complement). We then write

(114) ̂f(ξ) = ̂f(ω, z) = (Pωf)(z) .

The function Pωf is the X-ray picture or the radiograph in the direction
ω. Here f is a function on Rn vanishing outside a ball B around the origin,
and for the sake of Hilbert space methods to be used it is convenient to
assume in addition that f ∈ L2(B). Then f ∈ L1(Rn) so by the Fubini
theorem we have: for each ω ∈ Sn−1, Pωf(z) is defined for almost all
z ∈ ω⊥. Moreover, we have in analogy with (4),

(115) ˜f(ζ) =

∫

ω⊥

(Pωf)(z)e−i〈z,ζ〉 dz (ζ ∈ ω⊥) .

Proposition 7.8. An object is determined by any infinite set of radio-
graphs.

In other words, a compactly supported function f is determined by the
functions Pωf for any infinite set of ω.

Proof. Since f has compact support ˜f is an analytic function on Rn. But
if ˜f(ζ) = 0 for ζ ∈ ω⊥ we have ˜f(η) = 〈ω, η〉g(η) (η ∈ Rn) where g is
also analytic. If Pω1f, . . . , Pωk

f . . . all vanish identically for an infinite set
ω1, . . . , ωk . . . , we see that for each k

˜f(η) =

k
∏

i=1

〈ωi, η〉gk(η) ,

where gk is analytic. But this would contradict the power series expan-
sion of ˜f which shows that for a suitable ω ∈ Sn−1 and integer r ≥ 0,
limt→0

˜f(tω)t−r �= 0.
If only finitely many radiographs are used we get the opposite result.

Proposition 7.9. Let ω1, . . . , ωk ∈ Sn−1 be an arbitrary finite set. Then
there exists a function f ∈ D(Rn), f �≡ 0, such that

Pωif ≡ 0 for all 1 ≤ i ≤ k .
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Proof. We have to find f ∈ D(Rn), f �≡ 0, such that ˜f(ζ) = 0 for ζ ∈
ω⊥
i (1 ≤ i ≤ k). For this let D be the constant coefficient differential oper-

ator such that

(Du)e(η) =

k
∏

1

〈ωi, η〉ũ(η) η ∈ Rn .

If u �≡ 0 is any function in D(Rn) then f = Du has the desired property.

We next consider the problem of approximate reconstruction of the
function f from a finite set of radiographs Pω1f, . . . , Pωk

f .
Let Nj denote the null space of Pωj and let Pj denote the orthogonal

projection of L2(B) on the plane f +Nj ; in other words,

(116) Pjg = Qj(g − f) + f ,

where Qj is the (linear) projection onto the subspace Nj ⊂ L2(B). Put
P = Pk . . . P1. Let g ∈ L2(B) be arbitrary (the initial guess for f) and
form the sequence Pmg,m = 1, 2, . . .. Let N0 = ∩k1Nj and let P0 (resp. Q0)
denote the orthogonal projection of L2(B) on the plane f +N0 (subspace
N0). We shall prove that the sequence Pmg converges to the projection
P0g. This is natural since by P0g − f ∈ N0, P0g and f have the same
radiographs in the directions ω1, . . . , ωk.

Theorem 7.10. With the notations above,

Pmg −→ P0g as m −→∞

for each g ∈ L2(B).

Proof. We have, by iteration of (116)

(Pk . . . P1)g − f = (Qk . . . Q1)(g − f)

and, putting Q = Qk . . . Q1 we obtain

Pmg − f = Qm(g − f) .

We shall now prove that Qmg −→ Q0g for each g; since

P0g = Q0(g − f) + f

this would prove the result. But the statement about Qm comes from the
following general result about abstract Hilbert space.

Theorem 7.11. Let H be a Hilbert space and Qi the projection of H onto
a subspace Ni ⊂ H(1 ≤ i ≤ k). Let N0 = ∩k1Ni and Q0 : H −→ N0 the
projection. Then if Q = Qk . . . Q1,

Qmg −→ Q0g for each g ∈ H .
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Since Q is a contraction (‖Q‖ ≤ 1) we begin by proving a simple lemma
about such operators.

Lemma 7.12. Let T : H −→ H be a linear operator of norm ≤ 1. Then

H = C�((I − T )H)⊕ Null space (I − T )

is an orthogonal decomposition, C� denoting closure, and I the identity.

Proof. If Tg = g then since ‖T ∗‖ = ‖T ‖ ≤ 1 we have

‖g‖2 = (g, g) = (Tg, g) = (g, T ∗g) ≤ ‖g‖‖T ∗g‖ ≤ ‖g‖2 ,

so all terms in the inequalities are equal. Hence

‖g − T ∗g‖2 = ‖g‖2 − (g, T ∗g)− (T ∗g, g) + ‖T ∗g‖2 = 0 ,

so T ∗g = g. Thus I−T and I−T ∗ have the same null space. But (I−T ∗)g =
0 is equivalent to (g, (I − T )H) = 0, so the lemma follows.

Definition. An operator T on a Hilbert space H is said to have property
S if

(117) ‖fn‖ ≤ 1, ‖Tfn‖ −→ 1 implies ‖(I − T )fn‖ −→ 0 .

Lemma 7.13. A projection, and more generally a finite product of projec-
tions, has property (S).

Proof. If T is a projection then

‖(I − T )fn‖2 = ‖fn‖2 − ‖Tfn‖2 ≤ 1− ‖Tfn‖2 −→ 0

whenever

‖fn‖ ≤ 1 and ‖Tfn‖ −→ 1 .

Let T2 be a projection and suppose T1 has property (S) and ‖T1‖ ≤ 1.
Suppose fn ∈ H and ‖fn‖ ≤ 1, ‖T2T1fn‖ −→ 1. The inequality implies
‖T1fn‖ ≤ 1 and since

‖T1fn‖2 = ‖T2T1fn‖2 + ‖(I − T2)(T1fn)‖2

we also deduce ‖T1fn‖ −→ 1. Writing

(I − T2T1)fn = (I − T1)fn + (I − T2)T1fn

we conclude that T2T1 has property (S). The lemma now follows by induc-
tion.
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Lemma 7.14. Suppose T has property (S) and ‖T ‖ ≤ 1. Then for each
f ∈ H

T nf −→ πf as n −→∞ ,

where π is the projection onto the fixed point space of T .

Proof. Let f ∈ H. Since ‖T ‖ ≤ 1, ‖T nf‖ decreases monotonically to a limit
α ≥ 0. If α = 0 we have T nf −→ 0. By Lemma 7.12 πT = Tπ so πf =
T nπf = πT nf so πf = 0 in this case. If α > 0 we put gn = ‖T nf‖−1(T nf).
Then ‖gn‖ = 1 and ‖Tgn‖ → 1. Since T has property (S) we deduce

T n(I − T )f = ‖T nf‖(I − T )gn −→ 0 .

Thus T nh −→ 0 for all h in the range of I −T . If g is in the closure of this
range then given ε > 0 there exist h ∈ (I − T )H such that ‖g − h‖ < ε.
Then

‖T ng‖ ≤ ‖T n(g − h)‖+ T nh‖ < ε+ ‖T nh‖ ,
whence T ng −→ 0. On the other hand, if h is in the null space of I − T
then Th = h so T nh −→ h. Now the lemma follows from Lemma 7.12.

In order to deduce Theorem 7.11 from Lemmas 7.13 and 7.14 we just
have to verify that N0 is the fixed point space of Q. But if Qg = g, then

‖g‖ = ‖Qk . . . Q1g‖ ≤ ‖Qk−1 . . . Q1g‖ ≤ . . . ≤ ‖Q1g‖ ≤ ‖g‖
so equality signs hold everywhere. But the Qi are projections so the norm
identities imply

g = Q1g = Q2Q1g = . . . = Qk . . . Q1g

which shows g ∈ N0. This proves Theorem 7.11.

Exercises and Further Results

1. Radon Transform on Measures. (Hertle [1979], Boman-Lindskog
[2009])

Let C0(R
n) denote the space of continuous complex-valued functions on

Rn vanishing at ∞, taken with the uniform norm. The dual space is the
space M(Rn) of bounded measures on Rn. The Radon transform can be
defined on M(Rn) in analogy with the distribution definition of §5. The
spaces C0(P

n) and M(Pn) are defined in the obvious fashion.

(i) If ϕ ∈ C0(P
n) then ϕ̌ ∈ C0(R

n).

(ii) For μ ∈M(Rn) define μ̂ by

μ̂(ϕ) = μ(ϕ̌) .

Then μ̂ ∈M(Pn).
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(iii) Given μ ∈M(Rn) its Fourier transform μ̃ is defined by

μ̃(ξ) =

∫

Rn

e−i〈x,ξ〉 dμ(x) , ξ ∈ Rn .

Then if σ ∈ R, |ω| = 1,

μ̃(σω) =

∫

R

μ̂(ω, p)e−iσp dp .

(iv) The map μ→ μ̂ is injective.

(v) The measure μ ∈ M(Rn) with norm ‖μ‖ is said to be rapidly de-
creasing at ∞ if ‖χrμ‖ = O(r−m) as r → ∞ for each m > 0. Here χr is
a continuous approximation to the characteristic function of Rn − Br(0)
(i.e., χr(x) = 0 for |x| ≤ r − 1, χr = 1 for |x| ≥ r and 0 ≤ χr(x) ≤ 1 for
all x).

(vi) Let K ⊂ Rn be a compact and convex subset. Assume μ̂ rapidly
decreasing and vanishing on the open set of hyperplanes not intersecting
K. Then μ = 0 on Rn\K. (Use the convolution method of Theorem 5.4.)

2. The Hilbert Transform.

(i) H extends to an isometry of L2(R) into L2(R).

(ii) (Titchmarsh [1948]). For f ∈ L2(R) put

g(x) = i Hf(x) .

Then

f(x) = −i Hg(x) .
The functions f and g are then called conjugate. Thus H2 = I on L2(R).
Moreover, the following conditions are equivalent:

(a) A function Φ0 ∈ L2(R) is the limit of a holomorphic function Φ(z)
in Im z > 0 satisfying

∫

R

|Φ(x+ iy)|2 dx < K .

(b) Φ0(x) = f(x)− ig(x) where f, g ∈ L2 are conjugate.

(c) The Fourier transform of Φ0 ,
∫

Φ0(x)e
−ixξ dx,

vanishes for ξ > 0.
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(iii) Let ϕa be the characteristic function of (0, a). Then

ϕa(x) and
1

π
log

∣

∣

∣

∣

a+ y

a− y
∣

∣

∣

∣

are conjugate; so are the functions

1
1+x2 and y

1+y2 ,

sin(ax)
x and cos(ay)−1

y .

(iv) The Hilbert transform has the following properties:

(a) It commutes with translations.

(b) It commutes with dilations x→ tx, t > 0.

(c) Anticommutes with f(x)→ f(−x).
Conversely, a bounded operator on L2(R) satisfying (a), (b) and (c) is a

constant multiple of H, (see e.g. Stein [1970], p. 55).

3. The Inversion Formula Interpreted in Terms of Distribu-
tions.

Given ω ∈ Sn−1, p ∈ R let Tp,ω denote the distribution on Rn given by

Tp,ω(f) = ̂f(ω, p) .

Then Tp,ω has support in the hyperplane 〈ω, x〉 = p and d
dp (Tp,ω) is the

normal derivative of this distribution. For p = 0 we write this as ∂
∂νTω. For

n odd Theorem 3.8 can be written

δ = c

∫

Sn−1

( ∂n−1

∂νn−1
Tω

)

dω

which is a decomposition of the delta function into plane supported distri-
butions.

4. Convolutions.

With the method of proof of (5) show that with × denoting the convo-
lution in (5),

ϕ̌ ∗ f = (ϕ× ̂f)∨

for ϕ ∈ D(Pn), f ∈ D(Rn). (Natterer [1986].)

5. Exterior Problem.

The transform f → ̂f is a one-to-one mapping of L2(Rn, |x|n−1 dx) into
L2(Sn−1 ×R). If B is the exterior of a ball with center 0 in Rn (n ≥ 3),

then the null space of f → ̂f on L2(B, |x|n−1 dx) is the closure of the span
of functions of the form f(x) = |x|−n−kY�(x/|x|) where 0 ≤ k ≤ �, � − k
is even, and Y� is a homogeneous spherical harmonic of degree � (Quinto
[1982]).
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6. Support Property.

This is a refinement of Lemma 2.7 (Quinto [2008]).

(i) Let f ∈ C∞(Rn) be rapidly decreasing. Fix x0 ∈ Rn and a neighbor-
hood U of x0. Let r0 > 0 and assume

(M rf)(x) = 0 for all x ∈ U , and all r > r0 .

Then f ≡ 0 outside Br0(x0).

(ii) The statement holds for an analytic Riemannian manifold M with
infinite injectivity radius, provided f ∈ C∞c (M).

7. Geometric Inversion.

For d even prove the inversion formula in Theorem 6.2 by the geometric
method used for the hyperplane case (Theorem 3.1).

8. Density in P2.

When parametrizing the set of lines in R2 by using ux + vy = 1, the
M(2) invariant measure is given by

du dv

(u2 + v2)3/2
.

(Cartan [1896].)

9. Generalized Radon Transform.

Let μ ∈ C∞(Rn × Sn−1 × R) be a strictly positive function such that
μ(z, ω, p) = μ(z,−ω,−p), and Rμ the corresponding Radon transform

(Rμf)(ω, p) =

∫

〈ω,x〉=p

f(x)μ(x, ω, p) dx .

Call Rμ invariant if for fa(x) = f(x+ a)

(Rμfa)(ω, p) = ν(a, ω, p)(Rμf)(ω, p+ 〈a, ω〉) a ∈ Rn ,

where ν(a, ω, p) = μ(−a, ω, p)/μ(0, ω, p + 〈a, ω〉). Then Rμ is invariant if
and only if

μ(x, ω, p) = μ1(ω, p)e
〈μ2(ω),x〉 ,

with μ1 ∈ E(Sn−1 × R), μ2 : Sn−1 → R, C∞ maps. In this case, Rμ is

injective on D(Rn) and if (Rμf)(ω, p) ≡ 0 for p > r then supp(f) ⊂ Br(0)
(Kurusa [1991c]).
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10. Topological Properties of the Radon Transform.

(i) The range D(Rn
)
b
is closed in DH(P

n
) and the range E ′

(Rn
)
b
is closed

in E ′
(Pn

) (Helgason [GGA], Chapter I, Ex. B4, B5).

(ii) The transform f → f̂ is a homeomorphism of S(Rn
) onto SH(R

n
).

(The closedness follows as in (i) and since both sides are Fréchet spaces,

the result follows.)

(iii) E(Pn
)
∨
= E(Rn

) (Hertle [1984a]). (This follows from (i) and the

Fréchet space result that if α : E → F is a continuous mapping and E and

F Fréchet spaces then α is surjective iff
tα(F ′

) is weak
∗
closed in E′

and

α′
: F ′ → E′

injective; take α as ˇ and
tα as ̂.)

(iv) The mapping S → Š of D′
(Sn−1 × R) into D′

(Rn
) is not surjective.

In fact, Hertle shows [1984a] that the distribution

T (x) =

∞∑
j=1

( ∂

∂x2

)
jn

δ(x − xj) (xj = j, 0, . . . 0)

is not in the range. Parts (iv) and (v) have not been verified by the author.

(v) The mapping f → f̂ is not a homeomorphism of D(Rn
) onto its

image. (Hertle [1984].) (By the results under (iii) for the LF-space D, the

injectivity of f → f̂ implies that the dual map S → Š of D′
(Pn

)→ D′
(Rn

)

has a dense range. Thus by (iv) the range of S → Š is not closed. Thus by

Schaefer [1971, Ch. IV, 7.5], f → f̂ is not a homeomorphism.)
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§§1-2. The inversion formulas

(i) f(x) = 1
2 (2πi)1−nL

(n−1)/2
x

∫
Sn−1 J(ω, 〈ω, x〉) , dω (n odd)

(ii) f(x) = 1
2 (2πi)−nL

(n−2)/2
x

∫
Sn−1 dω

∫
∞

−∞

dJ(ω,p)
p−(ω,x) (n even)

for a function f ∈ D(X) in terms of its plane integrals J(ω, p) go back to

Radon [1917] and John [1934], [1955]. According to Bockwinkel [1906] the

case n = 3 had been proved before 1906 by H.A. Lorentz, but fortunately,

both for Lorentz and Radon, the transformation f(x) → J(ω, p) was not

baptized “Lorentz transformation”. In John [1955] the proofs are based on

the Poisson equation Lu = f . Other proofs, using distributions, are given

in Gelfand-Shilov [1960]. See also Nievergelt [1986]. The dual transforms,

f → f̂ , ϕ → ϕ̌, the unified inversion formula and its dual,

cf = L(n−1)/2
((f̂)∨) , c ϕ = �

(n−1)/2
((ϕ̌)b) ,



Bibliographical Notes 61

were given by the author in [1964]. The first proof of Theorem 3.1 in the
text is from the author’s paper [1959]. It is valid for constant curvature
spaces as well. The version in Theorem 3.8 is also proved in Ludwig [1966].

The support theorem, the Paley-Wiener theorem and the Schwartz theo-
rem (Theorems 2.4,2.6, 2.10) are from Helgason [1964], [1965a]. The exam-
ple in Remark 2.9 was also found by D.J. Newman, cf. Weiss’ paper [1967],
which gives another proof of the support theorem. See also Droste [1983].
The local result in Corollary 2.12 goes back to John [1935]; our derivation is
suggested by the proof of a similar lemma in Flensted-Jensen [1977], p. 83.
Another proof is in Ludwig [1966].See Palamodov and Denisjuk [1988] for
a related inversion formula.

The simple geometric Lemma 2.7 is from the author’s paper [1965a] and
is extended to hyperbolic spaces in [1980b]. In the Proceedings containing
[1966a] the author raised the problem (p. 174) to extend Lemma 2.7 to each
complete simply connected Riemannian manifold M of negative curvature.
If in additionM is analytic this was proved by Quinto [1993b] and Grinberg
and Quinto [2000]. This is an example of injectivity and support results
obtained by use of the techniques of microlocal analysis and wave front sets.
As further samples involving very general Radon transforms we mention
Boman [1990], [1992], [1993], Boman and Quinto [1987], [1993], Quinto
[1983], [1992], [1993b], [1994a], [1994b], Agranovsky and Quinto [1996],
Gelfand, Gindikin and Shapiro [1979].

Corollary 2.8 is derived by Ludwig [1966] in a different way. There he
proposes alternative proofs of the Schwartz- and Paley-Wiener theorems
by expanding ̂f(ω, p) in spherical harmonics in ω. However, the proof fails
because the principal point—the smoothness of the function F in the proof
of Theorem 2.4 (the Schwartz theorem)—is overlooked. Theorem 2.4 is from
the author’s papers [1964] [1965a].

This proof of the Schwartz theorem in [1965a] is adopted in Palamodov
[2004] and Gelfand–Gindikin–Graev [2003]. These versions do not seem to
me to take sufficiently into account the needed relationship in (11) and
(12), §2. See also Carton–Lebrun [1984] for a generalization.

Since the inversion formula is rather easy to prove for odd n it is nat-
ural to try to prove Theorem 2.4 for this case by showing directly that
if ϕ ∈ SH(Pn) then the function f = cL(n−1)/2(ϕ̌) for n odd belongs
to S(Rn) (in general ϕ̌ �∈ S(Rn)). This approach is taken in Gelfand-
Graev-Vilenkin [1966], pp. 16-17. However, this method seems to offer some
unresolved technical difficulties. For some generalizations see Kuchment
and Lvin [1990], Aguilar, Ehrenpreis and Kuchment [1996] and Katsevich
[1997]. Cor. 2.5 is stated in Semyanisty [1960].
§5. The approach to Radon transforms of distributions adopted in

the text is from the author’s paper [1966a]. Other methods are proposed
in Gelfand-Graev-Vilenkin [1966] and in Ludwig [1966]. See also Ramm
[1995].
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§6. Formula (60) for the d-plane transform was proved by Fuglede
[1958]. The inversion in Theorem 6.2 is from Helgason [1959], p. 284. The
range characterization for the d-plane transform in Theorem 6.3 is from our
book [1980c] and was used skillfully by Kurusa [1991] to prove Theorem 6.5,
which generalizes John’s range theorem for the X-ray transform in R3

[1938]. The geometric range characterization (Corollary 6.12) is also due
to John [1938]. Papers devoted to the d-plane range question for S(Rn)
are Gelfand-Gindikin and Graev [1982], Grinberg [1987], Richter [1986]
and Gonzalez [1991]. This last paper gives the range as the kernel of a
single 4th order differential operator on the space of d-planes. As shown by
Gonzalez, the analog of Theorem 6.3 fails to hold for S(Rn). An L2-version
of Theorem 6.3 was given by Solmon [1976], p. 77. Proposition 6.13 was
communicated to me by Schlichtkrull.

Some difficulties with the d-plane transform on L2(Rn) are pointed out
by Smith and Solmon [1975] and Solmon [1976], p. 68. In fact, the function

f(x) = |x|− 1
2n(log |x|)−1 (|x| ≥ 2), 0 otherwise, is square integrable on Rn

but is not integrable over any plane of dimension ≥ n
2 . Nevertheless, see for

example Rubin [1998a], Strichartz [1981], Markoe [2006] for Lp-extensions
of the d-plane transform.
§7. The applications to partial differential equations go in part back to

Herglotz [1931]; see John [1955]. Other applications of the Radon transform
to partial differential equations with constant coefficients can be found in
Courant-Lax [1955], Gelfand-Shapiro [1955], John [1955], Borovikov [1959],
G̊arding [1961] and Ludwig [1966]. Our discussion of the wave equation
(Theorem 7.3 and Corollary 7.4) is closely related to the treatment in Lax-
Phillips [1967], Ch. IV, where however, the dimension is assumed to be
odd. Applications to general elliptic equations were given by John [1955].

While the Radon transform on Rn can be used to “reduce” partial differ-
ential equations to ordinary differential equations one can use a Radon type
transform on a symmetric space X to “reduce” an invariant differential op-
erator D on X to a partial differential operator with constant coefficients.
For an account of these applications see the author’s monograph [1994b],
Chapter V.

While the applications to differential equations are perhaps the most
interesting to mathematicians, the tomographic applications of the X-ray
transform (see §7, B) have revolutionized medicine. These applications orig-
inated with Cormack [1963], [1964] and Hounsfield [1973]. See §7, B for
the medical relevance of the support theorem. For the approximate recon-
struction problem, including Propositions 7.8 and 7.9 and refinements of
Theorems 7.10, 7.11 see Smith, Solmon and Wagner [1977], Solmon [1976]
and Hamaker and Solmon [1978]. Theorem 7.11 is due to Halperin [1962],
the proof in the text to Amemiya and Ando [1965]. For an account of some
of those applications see e.g. Deans [1983], Natterer [1986], Markoe [2006]
and Ramm and Katsevich [1996]. Applications in radio astronomy appear
in Bracewell and Riddle [1967].



CHAPTER II

A DUALITY IN INTEGRAL GEOMETRY

§1 Homogeneous Spaces in Duality

The inversion formulas in Theorems 3.1, 3.7, 3.8 and 6.2, Ch. I suggest
the general problem of determining a function on a manifold by means
of its integrals over certain submanifolds. This is essentially the title of
Radon’s paper. In order to provide a natural framework for such problems
we consider the Radon transform f → ̂f on Rn and its dual ϕ → ϕ̌ from
a group-theoretic point of view, motivated by the fact that the isometry
group M(n) acts transitively both on Rn and on the hyperplane space Pn.
Thus

(1) Rn = M(n)/O(n) , Pn = M(n)/Z2 ×M(n− 1) ,

where O(n) is the orthogonal group fixing the origin 0 ∈ Rn and
Z2 ×M(n − 1) is the subgroup of M(n) leaving a certain hyperplane ξ0
through 0 stable. (Z2 consists of the identity and the reflection in this
hyperplane.)

We observe now that a point g1O(n) in the first coset space above lies
on a plane g2(Z2 ×M(n − 1)) in the second if and only if these cosets,
considered as subsets of M(n), have a point in common. In fact

g1 · 0 ⊂ g2 · ξ0 ⇔ g1 · 0 = g2h · 0 for some h ∈ Z2 ×M(n− 1)

⇔ g1k = g2h for some k ∈ O(n) .

This leads to the following general setup.
Let G be a locally compact group, X and Ξ two left coset spaces of G,

(2) X = G/K , Ξ = G/H ,

where K and H are closed subgroups of G. Let L = K ∩ H . We assume
that the subset KH ⊂ G is closed. This is automatic if one of the groups
K or H is compact.

Two elements x ∈ X , ξ ∈ Ξ are said to be incident if as cosets in G they
intersect. We put (see Fig. II.1)

x̌ = {ξ ∈ Ξ : x and ξ incident}
̂ξ = {x ∈ X : x and ξ incident} .

Let x0 = {K} and ξ0 = {H} denote the origins in X and Ξ, respectively.
If Π : G → G/H denotes the natural mapping then since x̌0 = K · ξ0 we
have

Π−1(Ξ− x̌0) = {g ∈ G : gH /∈ KH} = G−KH .

S. Helgason, Integral Geometry and Radon Transforms, 
DOI 10.1007/978-1-4419-6055-9_2, © Springer Science+Business Media, LLC 2011
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FIGURE II.1.

In particular Π(G−KH) = Ξ− x̌0 so since Π is an open mapping, x̌0 is a
closed subset of Ξ. This proves the following:

Lemma 1.1. Each x̌ and each ̂ξ is closed.

Using the notation Ag = gAg−1 (g ∈ G,A ⊂ G) we have the following
lemma.

Lemma 1.2. Let g, γ ∈ G, x = gK, ξ = γH. Then

x̌ is an orbit of Kg, ̂ξ is an orbit of Hγ ,

and
x̌ = Kg/Lg , ̂ξ = Hγ/Lγ .

Proof. By definition

(3) x̌ = {δH : δH ∩ gK �= ∅} = {gkH : k ∈ K} ,

which is the orbit of the point gH under gKg−1. The subgroup fixing gH
is gKg−1 ∩ gHg−1 = Lg. Also (3) implies

x̌ = g · x̌0 , ̂ξ = γ · ̂ξ0 ,

where the dot · denotes the action of G on X and Ξ.
We often write τ(g) for the maps x→ g · x, ξ → g · ξ and

f τ(g)(x) = f(g−1 · x) , Sτ(g)(f) = S(f τ(g
−1))

for f a function, S a distribution.

Lemma 1.3. Consider the subgroups

KH = {k ∈ K : kH ∪ k−1H ⊂ HK} ,
HK = {h ∈ H : hK ∪ h−1K ⊂ KH} .

The following properties are equivalent:
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(a) K ∩H = KH = HK .

(b) The maps x→ x̌ (x ∈ X) and ξ → ̂ξ (ξ ∈ Ξ) are injective.

We think of property (a) as a kind of transversality of K and H .

Proof. Suppose x1 = g1K, x2 = g2K and x̌1 = x̌2. Then by (3) g1 · x̌0 =
g1 · x̌0 so g · x̌0 = x̌0 if g = g−1

1 g2. In particular g ·ξ0 ⊂ x̌0 so g ·ξ0 = k ·ξ0 for
some k ∈ K. Hence k−1g = h ∈ H so h · x̌0 = x̌0, that is hK ·ξ0 = K ·ξ0. As
a relation in G, this means hKH = KH . In particular hK ⊂ KH . Since
h · x̌0 = x̌0 implies h−1 · x̌0 = x̌0 we have also h−1K ⊂ KH so by (a) h ∈ K
which gives x1 = x2.

On the other hand, suppose the map x → x̌ is injective and suppose
h ∈ H satisfies h−1K ∪ hK ⊂ KH . Then

hK · ξ0 ⊂ K · ξ0 and h−1K · ξ0 ⊂ K · ξ0 .
By Lemma 1.2, h · x̌0 ⊂ x̌0 and h−1 · x̌0 ⊂ x̌0. Thus h · x̌0 = x̌0 whence by
the assumption, h · x0 = x0 so h ∈ K.

Thus we see that under the transversality assumption a) the elements ξ

can be viewed as the subsets ̂ξ of X and the elements x as the subsets x̌
of Ξ. We say X and Ξ are homogeneous spaces in duality.

The maps are also conveniently described by means of the following dou-
ble fibration

G/L

p

�����
���

�� π

��
��

��
��

��

G/K G/H

(4)

where p(gL) = gK, π(γL) = γH . In fact, by (3) we have

x̌ = π(p−1(x)) ̂ξ = p(π−1(ξ)) .

We now prove some group-theoretic properties of the incidence, supple-
menting Lemma 1.3.

Theorem 1.4. (i) We have the identification

G/L = {(x, ξ) ∈ X × Ξ : x and ξ incident}
via the bijection τ : gL→ (gK, gH).

(ii) The property
KHK = G

is equivalent to the property:

Any two x1, x2 ∈ X are incident to some ξ ∈ Ξ. A similar statement
holds for HKH = G.
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(iii) The property

HK ∩KH = K ∪H
is equivalent to the property:

For any two x1 �= x2 in X there is at most one ξ ∈ Ξ incident to both.
By symmetry, this is equivalent to the property:

For any ξ1 �= ξ2 in Ξ there is at most one x ∈ X incident to both.

Proof. (i) The map is well-defined and injective. The surjectivity is clear
because if gK ∩ γH �= ∅ then gk = γh and τ(gkL) = (gK, γH).

(ii) We can take x2 = x0. Writing x1 = gK, ξ = γH we have

x0, ξ incident ⇔ γh = k (some h ∈ H, k ∈ K)

x1, ξ incident ⇔ γh1 = g1k1 (some h1 ∈ H, k1 ∈ K) .

Thus if x0, x1 are incident to ξ we have g1 = kh−1h1k
−1
1 . Conversely if

g1 = k′h′k′′ we put γ = k′h′ and then x0, x1 are incident to ξ = γH .

(iii) Suppose first KH ∩HK = K ∪H . Let x1 �= x2 in X . Suppose ξ1 �= ξ2
in Ξ are both incident to x1 and x2. Let xi = giK, ξj = γjH . Since xi is
incident to ξj there exist kij ∈ K, hij ∈ H such that

(5) gikij = γjhij i = 1, 2 ; j = 1, 2 .

Eliminating gi and γj we obtain

(6) k−1
2 2 k2 1h

−1
2 1h1 1 = h−1

2 2h1 2k
−1
1 2 k1 1 .

This being in KH ∩HK it lies in K ∪H . If the left hand side is in K then
h−1

2 1h1 1 ∈ K, so

g2K = γ1h2 1K = γ1h1 1K = g1K ,

contradicting x2 �= x1. Similarly if expression (6) is in H , then k−1
1 2 k1 1 ∈ H ,

so by (5) we get the contradiction

γ2H = g1k1 2H = g1k1 1H = γ1H .

Conversely, suppose KH ∩ HK �= K ∪ H . Then there exist h1, h2, k1, k2

such that h1k1 = k2h2 and h1k1 /∈ K ∪H . Put x1 = h1K, ξ2 = k2H . Then
x1 �= x0, ξ0 �= ξ2, yet both ξ0 and ξ2 are incident to both x0 and x1.
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Examples

(i) Points outside hyperplanes. We saw before that if in the coset
space representation (1) O(n) is viewed as the isotropy group of 0 and
Z2M(n−1) is viewed as the isotropy group of a hyperplane through 0 then
the abstract incidence notion is equivalent to the naive one: x ∈ Rn is
incident to ξ ∈ Pn if and only if x ∈ ξ.

On the other hand we can also view Z2M(n − 1) as the isotropy group
of a hyperplane ξδ at a distance δ > 0 from 0. (This amounts to a different
embedding of the group Z2M(n−1) into M(n).) Then we have the following
generalization.

Proposition 1.5. The point x ∈ Rn and the hyperplane ξ ∈ Pn are
incident if and only if distance (x, ξ) = δ.

Proof. Let x = gK , ξ = γH where K = O(n), H = Z2M(n − 1). Then if
gK∩γH �= ∅, we have gk = γh for some k ∈ K,h ∈ H . Now the orbit H ·0
consists of the two planes ξ′δ and ξ′′δ parallel to ξδ at a distance δ from ξδ.
The relation

g · 0 = γh · 0 ∈ γ · (ξ′δ ∪ ξ′′δ )

together with the fact that g and γ are isometries shows that x has distance
δ from γ · ξδ = ξ.

On the other hand if distance (x, ξ) = δ, we have g·0 ∈ γ·(ξ′δ∪ξ′′δ ) = γH·0,
which means gK ∩ γH �= ∅.

(ii) Unit spheres. Let σ0 be a sphere in Rn of radius one passing through
the origin. Denoting by Σ the set of all unit spheres in Rn, we have the
dual homogeneous spaces

(7) Rn = M(n)/O(n) ; Σ = M(n)/O∗(n)

where O∗(n) is the set of rotations around the center of σ0. Here a point
x = gO(n) is incident to σ0 = γO∗(n) if and only if x ∈ σ.

§2 The Radon Transform for the Double Fibration

With K, H and L as in §1 we assume now that K/L and H/L have positive
measures dμ0 = dkL and dm0 = dhL invariant underK andH , respectively.
This is for example guaranteed if L is compact.

Lemma 2.1. Assume the transversality condition (a). Then there exists a
measure on each x̌ coinciding with dμ0 on K/L = x̌0 such that whenever
g · x̌1 = x̌2 the measures on x̌1 and x̌2 correspond under g. A similar
statement holds for dm on ̂ξ.
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Proof. If x̌ = g · x̌0 we transfer the measure dμ0 = dkL over on x̌ by the
map ξ → g · ξ. If g · x̌0 = g1 · x̌0 then (g ·x0)

∨ = (g1 ·x0)
∨ so by Lemma 1.3,

g · x0 = g1 · x0 so g = g1k with k ∈ K. Since dμ0 is K-invariant the lemma
follows.

The measures defined on each x̌ and ̂ξ under condition (a) are denoted
by dμ and dm, respectively.

Definition. The Radon transform f → ̂f and its dual ϕ→ ϕ̌ are defined
by

(8) ̂f(ξ) =

∫

bξ

f(x) dm(x) , ϕ̌(x) =

∫

x̌

ϕ(ξ) dμ(ξ) ,

whenever the integrals converge. Because of Lemma 1.1, this will always
happen for f ∈ Cc(X), ϕ ∈ Cc(Ξ).

In the setup of Proposition 1.5, ̂f(ξ) is the integral of f over the two
hyperplanes at distance δ from ξ and ϕ̌(x) is the average of ϕ over the set
of hyperplanes at distance δ from x. For δ = 0 we recover the transforms
of Ch. I, §1.

Formula (8) can also be written in the group-theoretic terms,

(9) ̂f(γH) =

∫

H/L

f(γhK) dhL , ϕ̌(gK) =

∫

K/L

ϕ(gkH) dkL .

Note that (9) serves as a definition even if condition (a) in Lemma 1.3 is
not satisfied. In this abstract setup the spaces X and Ξ have equal status.
The theory in Ch. I, in particular Lemma 2.1, Theorems 2.4, 2.10, 3.1 thus
raises the following problems:

Principal Problems:

A. Relate function spaces on X and on Ξ by means of the transforms
f → ̂f , ϕ→ ϕ̌. In particular, determine their ranges and kernels.

B. Invert the transforms f → ̂f , ϕ→ ϕ̌ on suitable function spaces.

C. In the case when G is a Lie group so X and Ξ are manifolds let D(X)

and D(Ξ) denote the algebras of G-invariant differential operators on X

and Ξ, respectively. Is there a map D → ̂D of D(X) into D(Ξ) and a map

E → Ě of D(Ξ) into D(X) such that

(Df)b= ̂D ̂f , (Eϕ)∨ = Ěϕ̌ ?

D. Support Property: Does ̂f of compact support imply that f has com-
pact support?
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Although weaker assumptions would be sufficient, we assume now that
the groups G, K, H and L all have bi-invariant Haar measures dg, dk, dh
and d�. These will then generate invariant measures dgK , dgH , dgL, dkL,
dhL on G/K, G/H , G/L, K/L, H/L, respectively. This means that

(10)

∫

G

F (g) dg =

∫

G/K

(∫

K

F (gk) dk

)

dgK

and similarly dg and dh determine dgH , etc. Then

(11)

∫

G/L

Q(gL) dgL = c

∫

G/K

dgK

∫

K/L

Q(gkL) dkL

forQ ∈ Cc(G/L) where c is a constant. In fact, the integrals on both sides of
(11) constitute invariant measures on G/L and thus must be proportional.
However,

(12)

∫

G

F (g) dg =

∫

G/L

(∫

L

F (g�) d�

)

dgL

and

(13)

∫

K

F (k) dk =

∫

K/L

(∫

L

F (k�) d�

)

dkL .

We use (13) on (10) and combine with (11) taking Q(gL) =
∫

F (g�) d�.
Then we see that from (12) the constant c equals 1.

We shall now prove that f → ̂f and ϕ → ϕ̌ are adjoint operators. We
write dx for dgK and dξ for dgH .

Proposition 2.2. Let f ∈ Cc(X), ϕ ∈ Cc(Ξ). Then ̂f and ϕ̌ are continu-
ous and

∫

X

f(x)ϕ̌(x) dx =

∫

Ξ

̂f(ξ)ϕ(ξ) dξ .

Proof. The continuity statement is immediate from (9). We consider the
function

P = (f ◦ p)(ϕ ◦ π)

on G/L. We integrate it over G/L in two ways using the double fibration
(4). This amounts to using (11) and its analog with G/K replaced by G/H
with Q = P . Since P (gk L) = f(gK)ϕ(gkH), the right hand side of (11)
becomes

∫

G/K

f(gK)ϕ̌(gK) dgK .

If we treat G/H similarly, the lemma follows.
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The result shows how to define the Radon transform and its dual for
measures and, in case G is a Lie group, for distributions.

Definition. Let s be a measure on X of compact support. Its Radon
transform is the functional ŝ on Cc(Ξ) defined by

(14) ŝ(ϕ) = s(ϕ̌) .

Similarly σ̌ is defined by

(15) σ̌(f) = σ( ̂f) , f ∈ Cc(X) ,

if σ is a compactly supported measure on Ξ.

Lemma 2.3. (i) If s is a compactly supported measure on X, ŝ is a
measure on Ξ.

(ii) If s is a bounded measure on X and if x̌0 has finite measure then ŝ
as defined by (14) is a bounded measure.

Proof. (i) The measure s can be written as a difference s = s+ − s− of
two positive measures, each of compact support. Then ŝ = ŝ+ − ŝ− is a
difference of two positive functionals on Cc(Ξ).

Since a positive functional is necessarily a measure, ŝ is a measure.

(ii) We have
sup
x
|ϕ̌(x)| ≤ sup

ξ
|ϕ(ξ)|μ0(x̌0) ,

so for a constant K,

|ŝ(ϕ)| = |s(ϕ̌)| ≤ K sup |ϕ̌| ≤ Kμ0(x̌0) sup |ϕ| ,
and the boundedness of ŝ follows.

If G is a Lie group then (14), (15) with f ∈ D(X) , ϕ ∈ D(Ξ) serve
to define the Radon transform s → ŝ and the dual σ → σ̌ for distri-
butions s and σ of compact support. We consider the spaces D(X) and
E(X) (= C∞(X)) with their customary topologies (Chapter VII, §1). The
duals D′(X) and E ′(X) then consist of the distributions on X and the
distributions on X of compact support, respectively.

Proposition 2.4. The mappings

f ∈ D(X) → ̂f ∈ E(Ξ)

ϕ ∈ D(Ξ) → ϕ̌ ∈ E(X)

are continuous. In particular,

s ∈ E ′(X) ⇒ ŝ ∈ D′(Ξ)

σ ∈ E ′(Ξ) ⇒ σ̌ ∈ D′(X) .
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Proof. We have

(16) ̂f(g · ξ0) =

∫

bξ0

f(g · x) dm0(x) .

Let g run through a local cross section through e in G over a neighbor-
hood of ξ0 in Ξ. If (t1, . . . , tn) are coordinates of g and (x1, . . . , xm) the

coordinates of x ∈ ̂ξ0 then (16) can be written in the form

̂F (t1, . . . , tn) =

∫

F (t1, . . . , tn ; x1, . . . , xm) dx1 . . . dxm .

Now it is clear that ̂f ∈ E(Ξ) and that f → ̂f is continuous, proving the
proposition.

The result has the following refinement.

Proposition 2.5. Assume K compact. Then

(i) f → ̂f is a continuous mapping of D(X) into D(Ξ).

(ii) ϕ→ ϕ̌ is a continuous mapping of E(Ξ) into E(X).

A self-contained proof is given in the author’s book [1994b], Ch. I, § 3.
The result has the following consequence.

Corollary 2.6. Assume K compact. Then E ′(X)b⊂E ′(Ξ), D′(Ξ)∨⊂D′(X).

Ranges and Kernels. General Features

It is clear from Proposition 2.2 that the range R of f → ̂f is orthogonal to
the kernel N of ϕ→ ϕ̌. When R is closed one can often conclude R = N⊥,
also when ̂ is extended to distributions (Helgason [1994b], Chapter IV,
§2, Chapter I, §2). Under fairly general conditions one can also deduce

that the range of ϕ→ ϕ̌ equals the annihilator of the kernel of T → ̂T for
distributions (loc. cit., Ch. I, §3).

In Chapter I we have given solutions to Problems A, B, C, D in some
cases. Further examples will be given in § 4 of this chapter and Chapter III
will include their solution for the antipodal manifolds for compact two-point
homogeneous spaces.

The variety of the results for these examples make it doubtful that the
individual results could be captured by a general theory. Our abstract setup
in terms of homogeneous spaces in duality is therefore to be regarded as a
framework for examples rather than as axioms for a general theory.
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Nevertheless, certain general features emerge from the study of these
examples. If dimX = dimΞ and f → ̂f is injective the range consists of
functions which are either arbitrary or at least subjected to rather weak
conditions. As the difference dimΞ− dimX increases more conditions are
imposed on the functions in the range. (See the example of the d-plane
transform in Rn.)

In case G is a Lie group there is a group-theoretic explanation for this.
Let X be a manifold and Ξ a manifold whose points ξ are submanifolds
of X . We assume each ξ ∈ Ξ to have a measure dm and that the set
{ξ ∈ Ξ : ξ � x} has a measure dμ. We can then consider the transforms

(17) ̂f(ξ) =

∫

ξ

f(x) dm(x) , ϕ̌(x) =

∫

ξ�x

ϕ(ξ) dμ(ξ) .

If G is a Lie transformation group of X permuting the members of Ξ
including the measures dm and dμ, the transforms f → ̂f , ϕ→ ϕ̌ commute
with the G-actions on X and Ξ

(18) ( ̂f)τ(g) = (f τ(g))b (ϕτ(g))∨ = (ϕ̌)τ(g) .

Let λ and Λ be the homomorphisms

λ : D(G)→ E(X)

Λ : D(G)→ E(Ξ)

in Ch. VIII, §2. Using (13) in Ch. VIII we derive

(19) (λ(D)f )̂ = Λ(D) ̂f , (Λ(D)ϕ)∨ = λ(D)ϕ̌ .

Therefore Λ(D) annihilates the range of f → ̂f if λ(D) = 0. In some cases,
including the case of the d-plane transform in Rn, the range is character-
ized as the null space of these operators Λ(D) (with λ(D) = 0). This is
illustrated by Theorems 6.5 and 6.8 in Ch. I and even more by theorems
of Richter, Gonzalez which characterized the range as the null space of
certain explicit invariant operators ([GSS, I, §3]). Much further work in
this direction has been done by Gonzalez and Kakehi (see Part I in Ch. II,
§4). Examples of (17)–(18) would occur with G a group of isometries of
a Riemannian manifold, Ξ a suitable family of geodesics. The framework
(8) above fits here too but goes further in that Ξ does not have to consist
of subsets of X . We shall see already in the next Theorem 4.1 that this
feature is significant.

The Inversion Problem. General Remarks

In Theorem 3.1 and 6.2 in Chapter I as well as in several later results the
Radon transform f → ̂f is inverted by a formula

(20) f = D(( ̂f )∨) ,
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where D is a specific operator on X , often a differential operator. Rouvière
has in [2001] outlined an effective strategy for producing such a D.

Consider the setup X = G/K, Ξ = G/H from §1 and assume G, K and
H are unimodular Lie groups and K compact. On G we have a convolution
(in the style of Ch. VII),

(u ∗ v)(h) =

∫

G

u(hg−1)v(g) dg =

∫

G

u(g)v(g−1h) dg ,

provided one of the functions u, v has compact support. Here dg is Haar
measure. More generally, if s, t are two distributions on G at least one of
compact support the tensor product s⊗ t is a distribution on G×G given
by

(s⊗ t)(u(x, y)) =

∫

G×G

u(x, y) ds(x) dt(y) u ∈ D(G ×G) .

Note that s⊗t = t⊗s because they agree on the space spanned by functions
of the type ϕ(x)ψ(y) which is dense in D(G×G). The convolution s ∗ t is
defined by

(s ∗ t)(v) =

∫

G

∫

G

v(xy) ds(x) dt(y) .

Lifting a function f on X to G by ˜f = f ◦ π where π : G → G/K is the

natural map we lift a distribution S on X to a ˜S ∈ D′(G) by ˜S(u) = S(
�

u)
where

u̇(gK) =

∫

K

u(gk) dk .

Thus ˜S( ˜f) = S(f) for f ∈ D(X). If S, T ∈ D′(X), one of compact support
the convolution × on X is defined by

(21) (S × T )(f) = (˜S ∗ ˜T )( ˜f) .

If one of these is a function f , we have

(f × S)(g · x0) =

∫

G

f(gh−1 · x0) d˜S(h) ,(22)

(S × f)(g · x0) =

∫

G

f(h−1g · x0) d˜S(h) .(23)

The first formula can also be written

(24) f × S =

∫

G

f(g · x0)S
τ(g) dg
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as distributions. In fact, let ϕ ∈ D(X). Then

(f × S)(ϕ) =

∫

G

(f × S)(g · x0)ϕ(g · x0) dg

=

∫

G

(

∫

G

f(gh−1 · x0) d˜S(h)
)

ϕ(g · x0) dg

=

∫

G

(

∫

G

f(g · x0)ϕ̃(gh) dg
)

d˜S(h)

=

∫

G

∫

G

f(g · x0)(ϕ
τ(g−1))∼(h) dg d˜S(h)

=

∫

G

f(g · x0)S(ϕτ(g
−1)) dg =

∫

G

f(g · x0)S
τ(g)(ϕ) dg .

Now let D be a G-invariant differential operator on X and D∗ its adjoint.
It is also G-invariant. If ϕ = D(X) then the invariance of D∗ and (24)
imply

(D(f × S))(ϕ) = (f × S)(D∗ϕ) =

∫

G

f(g · x0)S
τ(g)(D∗ϕ) dg

=

∫

G

f(g · x0)S(D∗(ϕ ◦ τ(g))) dg =

∫

G

f(g · x0)(DS)τ(g)(ϕ) dg,

so

(25) D(f × S) = f ×DS .
Let εD denote the distribution f → (D∗f)(x0). Then

Df = f × εD ,
because by (24)

(f × εD)(ϕ) =

∫

G

f(g · x0)ε
τ(g)
D (ϕ)

=

∫

G

f(g · x0)D
∗(ϕτ(g

−1))(x0) dg =

∫

G

f(g · x0)(D
∗ϕ)(g · x0) dg

=

∫

X

f(x)(D∗ϕ)(x) dx =

∫

X

(Df)(x)ϕ(x) dx .

We consider now the situation where the elements ξ of Ξ are subsets of
X (cf. Lemma 1.3).
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Theorem 2.7 (Rouvière). Under the assumptions above (K compact)
there exists a distribution S on X such that

(26) ( ̂f)∨ = f × S , f ∈ D(X) .

Proof. Define a functional S on Cc(X) by

S(f) = ( ̂f)∨(x0) =

∫

K

(∫

H

f(kh · x0) dh

)

dk .

Then S is a measure because if f has compact support C the set of h ∈ H
for which kh ·x0 ∈ C for some k is compact. The restriction of S to D(X) is
a distribution which is clearly K-invariant. By (24) we have for ϕ ∈ D(X)

(f × S)(ϕ) =

∫

G

f(g · x0)S(ϕτ(g
−1)) dg ,

which, since the operations ̂ and ∨ commute with the G action, becomes

∫

G

f(g · x0)(ϕ̂)∨(g · x0) dg =

∫

X

( ̂f)∨(x)ϕ(x) dx ,

because of Proposition 2.2. This proves the theorem.

Corollary 2.8. If D is a G-invariant differential operator on X such that
DS = δ (delta function at x0) then we have the inversion formula

(27) f = D(( ̂f)∨) , f ∈ D(X) .

This follows from (26) and f × δ = f .

§3 Orbital Integrals

As before let X = G/K be a homogeneous space with origin o = (K).
Given x0 ∈ X let Gx0 denote the subgroup of G leaving x0 fixed, i.e., the
isotropy subgroup of G at x0.

Definition. A generalized sphere is an orbit Gx0 ·x in X of some point
x ∈ X under the isotropy subgroup at some point x0 ∈ X .

Examples. (i) If X = Rn, G = M(n) then the generalized spheres are
just the spheres.
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(ii) LetX be a locally compact subgroup L andG the product group L×L
acting on L on the right and left, the element (�1, �2) ∈ L × L inducing
action � → �1� �

−1
2 on L. Let ΔL denote the diagonal in L × L. If �0 ∈ L

then the isotropy subgroup of �0 is given by

(28) (L× L)�0 = (�0, e)ΔL(�−1
0 , e)

and the orbit of � under it by

(L× L)�0 · � = �0(�
−1
0 �)L ,

which is the left translate by �0 of the conjugacy class of the element �−1
0 �.

Thus the generalized spheres in the group L are the left (or right) translates
of its conjugacy classes .

Coming back to the general case X = G/K = G/G0 we assume that G0,
and therefore each Gx0 , is unimodular. But Gx0 ·x = Gx0/(Gx0)x so (Gx0)x
unimodular implies the orbit Gx0 · x has an invariant measure determined
up to a constant factor. We can now consider the following general problem
(following Problems A, B, C, D above).

E. Determine a function f on X in terms of its integrals over generalized
spheres.

Remark 3.1. In this problem it is of course significant how the invariant
measures on the various orbits are normalized.

(a) If G0 is compact the problem above is rather trivial because each orbit
Gx0 ·x has finite invariant measure so f(x0) is given as the limit as x→ x0

of the average of f over Gx0 · x.

(b) Suppose that for each x0 ∈ X there is a Gx0-invariant open set Cx0 ⊂
X containing x0 in its closure such that for each x ∈ Cx0 the isotropy group
(Gx0)x is compact. The invariant measure on the orbit Gx0 ·x (x0 ∈ X,x ∈
Cx0) can then be consistently normalized as follows: Fix a Haar measure
dg0 on G0. If x0 = g · o we have Gx0 = gG0g

−1 and can carry dg0 over to a
measure dgx0 on Gx0 by means of the conjugation z → gzg−1 (z ∈ G0).
Since dg0 is bi-invariant, dgx0 is independent of the choice of g satisfying
x0 = g ·o, and is bi-invariant. Since (Gx0)x is compact it has a unique Haar
measure dgx0,x with total measure 1 and now dgx0 and dgx0,x determine
canonically an invariant measure μ on the orbit Gx0 · x = Gx0/(Gx0)x. We
can therefore state Problem E in a more specific form.

E′. Express f(x0) in terms of integrals

(29)

∫

Gx0 ·x

f(p) dμ(p) , x ∈ Cx0 .
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For the case whenX is an isotropic Lorentz manifold the assumptions
above are satisfied (with Cx0 consisting of the “timelike” rays from x0) and
we shall obtain in Ch. V an explicit solution to Problem E′ (Theorem 4.1,
Ch. V).

(c) If in Example (ii) above L is a semisimple Lie group Problem E is a ba-
sic step (Gelfand–Graev [1955], Harish-Chandra [1954], [1957]) in proving
the Plancherel formula for the Fourier transform on L.

§4 Examples of Radon Transforms for Homogeneous

Spaces in Duality

In this section we discuss some examples of the abstract formalism and
problems set forth in the preceding sections §1–§2.

A. The Funk Transform

This case goes back to Funk [1913], [1916] (preceding Radon’s paper [1917])
where he proved, inspired by Minkowski [1911], that a symmetric function
on S2 is determined by its great circle integrals. This is carried out in
more detail and in greater generality in Chapter III, §1. Here we state the
solution of Problem B for X = S2, Ξ the set of all great circles, both
as homogeneous spaces of O(3). Given p ≥ 0 let ξp ∈ Ξ have distance p
from the North Pole o, Hp ⊂ O(3) the subgroup leaving ξp invariant and
K ⊂ O(3) the subgroup fixing o. Then in the double fibration

O(3)/(K ∩Hp)

���������������

���������������

X = O(3)/K Ξ = O(3)/Hp

x ∈ X and ξ ∈ Ξ are incident if and only if d(x, ξ) = p. The proof is

the same as that of Proposition 1.5. We denote by ̂fp and ϕ̌p the Radon

transforms (9) for the double fibration. Then ̂fp(ξ) the integral of f over
two circles at distance p from ξ and ϕ̌p is the average of ϕ̌(x) over the great

circles ξ that have distance p from x. (See Fig. II.2.) We need ̂fp only for

p = 0 and put ̂f = ̂f0. Note that ( ̂f)∨p (x) is the average of the integrals of f
over the great circles ξ at distance p from x (see Figure II.2). As a special
case of Theorem 1.22, Chapter III, we have the following inversion.

Theorem 4.1. The Funk transform f → ̂f is (for f even) inverted by

(30) f(x) =
1

2π

{

d

du

u
∫

0

( ̂f)∨cos−1(v)(x)v(u
2 − v2)−

1
2 dv

}

u=1

.
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o

x

FIGURE II.2.

C

C ′

FIGURE II.3.

We shall see later that this formula can also be written

(31) f(x) =

∫

Ex

f(w) dw − 1

2π

π
2

∫

0

d

dp

(

( ̂f)∨p (x)
) dp

sin p
,

where dw is the normalized measure on the equator Ex corresponding to
x. In this form the formula holds in all dimensions.

Also Theorem 1.26, Ch. III shows that if f is even and if all its derivatives
vanish on the equator then f vanishes outside the “arctic zones” C and C′ if
and only if ̂f(ξ) = 0 for all great circles ξ disjoint from C and C′ (Fig. II.3).

The Hyperbolic Plane H2

We now introduce the hyperbolic plane. This formulation fits well into
Klein’s Erlanger Program under which geometric properties of a space
should be understood in terms of a suitable transformation group of the
space.

Theorem 4.2. On the unit disk D : |z| < 1 there exists a Riemannian
metric g which is invariant under all conformal transformations of D. Also
g is unique up to a constant factor.

For this consider a point a ∈ D. The mapping ϕ : z → a−z
1−āz is a conformal

transformation of D and ϕ(a) = 0. The invariance of g requires

ga(u, u) = g0(dϕ(u), dϕ(u))

for each u ∈ Da (the tangent space to D at a) dϕ denoting the differential
of ϕ. Since g0 is invariant under rotations around 0, g0(z, z) = c|z|2, where
c is a constant. Here z ∈ D0 (= C). Let t→ z(t) be a curve with z(0) = a,
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z′(0) = u ∈ C. Then dϕ(u) is the tangent vector

{

d

dt
ϕ(z(t))

}

t=0

=

(

dϕ

dz

)

a

(

dz

dt

)

0

=

{ |a|2 − 1

(1− āz)2
}

z=a

u,

so

ga(u, u) = c
1

(1− |a|2)2 |u|
2 ,

and the proof shows that g is indeed invariant.
Thus we take the hyperbolic plane H2 as the diskD with the Riemannian

structure

(32) ds2 =
|dz|2

(1 − |z|2)2 .

This remarkable object enters into several fields in mathematics. In par-
ticular, it offers at least two interesting cases of Radon transforms. The
Laplace-Beltrami operator for (32) is given by

L = (1− x2 − y2)2
(

∂2

∂x2
+

∂2

∂y2

)

.

The group G = SU(1, 1) of matrices

{(

a

b

b

a

)

: |a|2 − |b|2 = 1

}

acts transitively on the unit disk by

(33)

(

a

b

b

a

)

· z =
az + b

bz + a

and leaves the metric (32) invariant. The length of a curve γ(t) (α ≤ t≤ β)
is defined by

(34) L(γ) =

β
∫

α

(〈γ′(t), γ′(t)〉γ(t))
1/2 dt .

In particular take γ(t) = (x(t), y(t)) such that γ(α) = 0, γ(β) = x (0 < x <
1), and let γ0(τ) = τx, 0 ≤ τ ≤ 1, so γ and γ0 have the same endpoints.
Then

L(γ) ≥
β

∫

α

|x′(t)|
1− x(t)2 dt ≥

β
∫

α

x′(t)

1− x(t)2 dt ,
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which by τ = x(t)/x, dτ/dt = x′(t)/x becomes

1
∫

0

x

1− τ2x2
dτ = L(γ0) .

Thus L(γ) ≥ L(γ0) so γ0 is a geodesic and the distance d satisfies

(35) d(o, x) =

1
∫

0

|x|
1− t2x2

dt = 1
2 log

1 + |x|
1− |x| .

Since G acts conformally on D the geodesics in H2 are the circular arcs in
|z| < 1 perpendicular to the boundary |z| = 1.

We consider now the following subgroups of G where sh t = sinh t etc.:

K = {kθ =

(

eiθ 0
0 e−iθ

)

: 0 ≤ θ < 2π}

M = {k0, kπ} , M ′ = {k0, kπ , k−π
2
, kπ

2
}

A = {at =

(

ch t sh t
sh t ch t

)

: t ∈ R},

N = {nx =

(

1 + ix, −ix
ix, 1− ix

)

: x ∈ R}

Γ = CSL(2,Z)C−1 ,

where C is the transformation w → (w − i)/(w + i) mapping the upper
half-plane onto the unit disk.

The orbits of K are the circles around 0. To identify the orbit A · z we
use this simple argument by Reid Barton:

at · z =
cht z + sh t

sh t z + cht
=

z + th t

th t z + 1
.

Under the map w → z+w
zw+1 (w ∈ C) lines go into circles and lines. Taking

w = th t we see that A · z is the circular arc through −1, z and 1. Barton’s
argument also gives the orbit nx · t (x ∈ R) as the image of iR under the
map

w → w(t− 1) + t

w(t− 1) + 1
.

They are circles tangential to |z| = 1 at z = 1. Clearly NA · 0 is the whole
disk D so G = NAK (and also G = KAN).

B. The X-ray Transform in H2

The (unoriented) geodesics for the metric (32) were mentioned above.
Clearly the group G permutes these geodesics transitively (Fig. II.4). Let
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Ξ be the set of all these geodesics. Let o denote the origin in H2 and ξo the
horizontal geodesic through o. Then

(36)
X = G/K , Ξ = G/M ′A .

We can also fix a geodesic
ξp at distance p from o and
write
(37)
X = G/K , Ξ = G/Hp ,

where Hp is the subgroup
of G leaving ξp stable.
Then for the homogeneous
spaces (37), x and ξ are
incident if and only if
d(x, ξ) = p. The transform

geodesics
in D

FIGURE II.4.

f → ̂f is inverted by means of the dual transform ϕ → ϕ̌p for (37). The
inversion below is a special case of Theorem 1.11, Chapter III, and is the
analog of (30). Observe also that the metric ds is renormalized by the factor
2 (so curvature is −1).

Theorem 4.3. The X-ray transform in H2 with the metric

ds2 =
4|dz|2

(1− |z|2)2
is inverted by

(38) f(z) = −
⎧

⎨

⎩

d

dr

∞
∫

r

(t2 − r2)− 1
2 t( ̂f)∨s(t)(z) dt

⎫

⎬

⎭

r=1

,

where s(t) = cosh−1(t).

Another version of this formula is

(39) f(z) = − 1

π

∞
∫

0

d

dp

(

( ̂f)∨p (z)
) dp

sinh p

and in this form it is valid in all dimensions (Theorem 1.12, Ch. III).
One more inversion formula is

(40) f = − 1

4π
LS(( ̂f)∨ ) ,

where S is the operator of convolution on H 2 with the function
x→ coth(d(x, o)) − 1, (Theorem 1.16, Chapter III).
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C. The Horocycles in H2

Consider a family of geodesics with the same limit point on the boundary
B. The horocycles in H2 are by definition the orthogonal trajectories of
such families of geodesics. Thus the horocycles are the circles tangential to
|z| = 1 from the inside (Fig. II.5).

One such horocycle is
ξ0 = N · o, the orbit of
the origin o under the
action of N . Now we
take H2 with the metric
(32). Since at · ξ is the
horocycle with diameter
(tanh t, 1) G acts tran-
sitively on the set Ξ of
horocycles. Since G =
KAN it is easy to see
that MN is the sub-
group leaving ξo invari-
ant. Thus we have here
(41)
X = G/K , Ξ = G/MN .

geodesics
and horocycles
in D

FIGURE II.5.

Furthermore each horocycle has the form ξ = kat · ξ0 where kM ∈ K/M
and t ∈ R are unique. Thus Ξ ∼ K/M ×A, which is also evident from the
figure.

We observe now that the maps

ψ : t→ at · o , ϕ : x→ nx · o
of R onto γ0 and ξ0, respectively, are isometries. The first statement follows
from (35) because

d(o, at · o) = d(o, tanh t) = t .

For the second we note that

ϕ(x) = x(x + i)−1 , ϕ′(x) = i(x+ i)−2

so
〈ϕ′(x), ϕ′(x)〉ϕ(x) = (x2 + 1)−2(1− |x(x + i)−1|2)−2 = 1 .

Thus we give A and N the Haar measures d(at) = dt and d(nx) = dx.
Geometrically, the Radon transform on X relative to the horocycles is

defined by

(42) ̂f(ξ) =

∫

ξ

f(x) dm(x) ,
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where dm is the measure on ξ induced by (32). Because of our remarks
about ϕ, (42) becomes

(43) ̂f(g · ξ0) =

∫

N

f(gn · o) dn ,

so the geometric definition (42) coincides with the group-theoretic one in
(9). The dual transform is given by

(44) ϕ̌(g · o) =

∫

K

ϕ(gk · ξo) dk , (dk = dθ/2π) .

In order to invert the transform f → ̂f we introduce the non-Euclidean
analog of the operator Λ in Chapter I, §3. Let T be the distribution on R
given by

(45) Tϕ = 1
2

∫

R

(sh t)−1ϕ(t) dt , ϕ ∈ D(R) ,

considered as the Cauchy principal value, and put T ′ = dT/dt. Let Λ be
the operator on D(Ξ) given by

(46) (Λϕ)(kat · ξ0) =

∫

R

ϕ(kat−s · ξ0)e−s dT ′(s) .

Theorem 4.4. The Radon transform f → ̂f for horocycles in H2 is in-
verted by

(47) f =
1

π
(Λ ̂f)∨ , f ∈ D(H2) .

We begin with a simple lemma.

Lemma 4.5. Let τ be a distribution on R. Then the operator τ̃ on D(Ξ)
given by the convolution

(τ̃ϕ)(kat · ξ0) =

∫

R

ϕ(kat−s · ξ0) dτ(s)

is invariant under the action of G.

Proof. To understand the action of g ∈ G on Ξ ∼ (K/M) × A we write
gk = k′at′n

′. Since each a ∈ A normalizes N we have

gkat · ξ0 = gkatN · o = k′at′n
′atN · o = k′at+t′ · ξ0 .

Thus the action of g on Ξ � (K/M) × A induces this fixed translation
at → at+t′ on A. This translation commutes with the convolution by τ , so
the lemma follows.
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Since the operators Λ, ̂, ∨ in (47) are all G-invariant, it suffices to prove
the formula at the origin o. We first consider the case when f isK-invariant,
i.e., f(k · z) ≡ f(z). Then by (43),

(48) ̂f(at · ξ0) =

∫

R

f(atnx · o) dx .

Because of (35) we have

(49) |z| = tanh d(o, z) , cosh2 d(o, z) = (1 − |z|2)−1 .

Since

atnx · o = (sh t− ix et)/(ch t− ix et)
(49) shows that the distance s = d(o, atnx · o) satisfies

(50) ch2s = ch2t+ x2e2t .

Thus defining F on [1,∞) by

(51) F (ch2s) = f(tanh s) ,

we have

F ′(ch2s) = f ′(tanh s)(2sh s ch3s)−1

so, since f ′(0) = 0, limu→1 F
′(u) exists. The transform (48) now becomes

(with xet = y)

(52) et ̂f(at · ξ0) =

∫

R

F (ch2t+ y2) dy .

We put

ϕ(u) =

∫

R

F (u+ y2) dy

and invert this as follows:
∫

R

ϕ′(u+ z2) dz =

∫

R2

F ′(u + y2 + z2) dy dz

= 2π

∞
∫

0

F ′(u+ r2)r dr = π

∞
∫

0

F ′(u+ ρ) dρ ,

so

−πF (u) =

∫

R

ϕ′(u+ z2) dz .
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In particular,

f(o) = − 1

π

∫

R

ϕ′(1 + z2) dz = − 1

π

∫

R

ϕ′(ch2τ)chτ dτ ,

= − 1

π

∫

R

∫

R

F ′(ch2t+ y2) dy ch t dt ,

so

f(o) = − 1

2π

∫

R

d

dt
(et ̂f(at · ξ0)) dt

sh t
.

Since (et ̂f)(at · ξ0) is even (cf. (52)), its derivative vanishes at t = 0, so the
integral is well defined. With T as in (45), the last formula can be written

(53) f(o) =
1

π
T ′
t(e

t
̂f(at · ξ0)) ,

the prime indicating derivative. If f is not necessarily K-invariant we use
(53) on the average

f �(z) =

∫

K

f(k · z) dk =
1

2π

2π
∫

0

f(kθ · z) dθ .

Since f �(o) = f(o), (53) implies

(54) f(o) =
1

π

∫

R

[et(f �)b(at · ξ0)] dT ′(t) .

This can be written as the convolution at t = 0 of (f �)b(at · ξ0) with the
image of the distribution etT ′

t under t→ −t. Since T ′ is even the right hand

side of (54) is the convolution at t = 0 of ̂f � with e−tT ′
t . Thus by (46),

f(o) =
1

π
(Λ ̂f �)(ξ0) .

Since Λ and ̂ commute with the K action this implies

f(o) =
1

π

∫

K

(Λ ̂f)(k · ξ0) =
1

π
(Λ ̂f)∨(o)

and this proves the theorem.
Theorem 4.4 is of course the exact analog to Theorem 3.6 in Chapter I,

although we have not specified the decay conditions for f needed in gener-
alizing Theorem 4.4.
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D. The Poisson Integral as a Radon Transform

Here we preserve the notation introduced for the hyperbolic plane H2. Now
we consider the homogeneous spaces

(55) X = G/MAN , Ξ = G/K .

Then Ξ is the disk D : |z| < 1. On the other hand, X is identified with the
boundary B : |z| = 1, because when G acts on B, MAN is the subgroup
fixing the point z = 1. Since G = KAN , each coset gMAN intersects eK.
Thus each x ∈ X is incident to each ξ ∈ Ξ. Our abstract Radon transform
(9) now takes the form

̂f(gK) =

∫

K/M

f(gkMAN) dkM =

∫

B

f(g · b) db ,(56)

=

∫

B

f(b)
d(g−1 · b)

db
db .

Writing g−1 in the form

g−1 : ζ → ζ − z
−zζ + 1

, g−1 · eiθ = eiϕ ,

we have

eiϕ =
eiθ − z
−zeiθ + 1

,
dϕ

dθ
=

1− |z|2
|z − eiθ| ,

and this last expression is the classical Poisson kernel. Since gK = z, (56)
becomes the classical Poisson integral

(57) ̂f(z) =

∫

B

f(b)
1− |z|2
|z − b|2 db .

Theorem 4.6. The Radon transform f → ̂f for the homogeneous spaces
(55) is the classical Poisson integral (57). The inversion is given by the
classical Schwarz theorem

(58) f(b) = lim
z→b

̂f(z) , f ∈ C(B) ,

solving the Dirichlet problem for the disk.

We repeat the geometric proof of (58) from our booklet [1981] since it
seems little known and is considerably shorter than the customary solution
in textbooks of the Dirichlet problem for the disk. In (58) it suffices to
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consider the case b = 1. Because of (56),

̂f(tanh t) = ̂f(at · 0) =
1

2π

2π
∫

0

f(at · eiθ) dθ

=
1

2π

2π
∫

0

f

(

eiθ + tanh t

tanh t eiθ + 1

)

dθ .

Letting t→ +∞, (58) follows by the dominated convergence theorem.

The range question A for f → ̂f is also answered by classical results
for the Poisson integral; for example, the classical characterization of the
Poisson integrals of bounded functions now takes the form

(59) L∞(B)b= {ϕ ∈ L∞(Ξ) : Lϕ = 0} .

The range characterization (59) is of course quite analogous to the range
characterization for the X-ray transform described in Theorem 6.9, Chap-
ter I. Both are realizations of the general expectations at the end of §2 that
when dimX < dim Ξ the range of the transform f → ̂f should be given
as the kernel of some differential operators. The analogy between (59) and
Theorem 6.9 is even closer if we recall Gonzalez’ theorem [1990b] that if we
view the X-ray transform as a Radon transform between two homogeneous
spaces of M(3) (see next example) then the range (91) in Theorem 6.9,
Ch. I, can be described as the null space of a differential operator which is
invariant under M(3). Furthermore, the dual transform ϕ→ ϕ̌ maps E(Ξ)
onto E(X). (See Corollary 4.8 below.)

Furthermore, John’s mean value theorem for the X-ray transform (Corol-
lary 6.12, Chapter I) now becomes the exact analog of Gauss’ mean-value
theorem for harmonic functions.

From a non-Euclidean point of view, Godement’s mean-value theorem
(Ch. VI, §1) is even closer analog to John’s theorem. Because of the spe-
cial form of the Laplace–Beltrami operator in H2 non-Euclidean harmonic
functions are the same as the usual ones (this fails for Hn n > 2). Also
non-Euclidean circles are Euclidean circles (because the map (33) sends
circles into circles). However, the mean-value theorem is different, namely,

u(z) =

∫

S

u(ζ) dμ(ζ)

for a harmonic function u, z being the non-Euclidean center of the circle
S and μ being the normalized non-Euclidean arc length measure on X ,
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according to (32). However, this follows readily from the Gauss’ mean-value
theorem using a conformal map of D.

What is the dual transform ϕ → ϕ̌ for the pair (55)? The invariant
measure on MAN/M = AN is the functional

(60) ϕ→
∫

AN

ϕ(an · o) da dn .

The right hand side is just ϕ̌(b0) where b0 = eMAN . If g = a′n′ the
measure (58) is seen to be invariant under g. Thus it is a constant multiple
of the surface element dz = (1−x2− y2)−2 dx dy defined by (32). Since the
maps t → at · o and x → nx · o were seen to be isometries, this constant
factor is 1. Thus the measure (60) is invariant under each g ∈ G. Writing
ϕg(z) = ϕ(g · z) we know (ϕg)

∨ = ϕ̌g so

ϕ̌(g · b0) =

∫

AN

ϕg(an) da dn = ϕ̌(b0) .

Thus the dual transform ϕ→ ϕ̌ assigns to each ϕ ∈ D(Ξ) its integral over
the disk.

Table II.1 summarizes the various results mentioned above about the
Poisson integral and the X-ray transform. The inversion formulas and the
ranges show subtle analogies as well as strong differences. The last item in
the table comes from Corollary 4.8 below for the case n = 3, d = 1.

E. The d-plane Transform

We now review briefly the d-plane transform from a group theoretic stand-
point. As in (1) we write

(61) X = Rn = M(n)/O(n) , Ξ = G(d, n) = M(n)/(M(d)×O(n−d)) ,
where M(d)×O(n−d) is the subgroup of M(n) preserving a certain d-plane
ξ0 through the origin. Since the homogeneous spaces

O(n)/O(n) ∩ (M(d)×O(n− d)) = O(n)/(O(d)×O(n− d))

and

(M(d)×O(n− d))/O(n) ∩ (M(d)×O(n− d)) = M(d)/O(d)

have unique invariant measures the group-theoretic transforms (9) reduce
to the transforms (57), (58) in Chapter I. The range of the d-plane trans-
form is described by Theorem 6.3 and the equivalent Theorem 6.5 in Chap-
ter I. It was shown by Richter [1986a] that the differential operators in
Theorem 6.5 could be replaced by M(n)-induced second order differential
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Poisson Integral X-ray Transform

Coset X = SU(1, 1)/MAN X = M(3)/O(3)
spaces Ξ = SU(1, 1)/K Ξ = M(3)/(M(1)×O(2))

f → ̂f ̂f(z) =
∫

B f(b)1−|z|2

|z−b|2 db
̂f(�) =

∫

� f(p) dm(p)

ϕ→ ϕ̌ ϕ̌(x) =
∫

Ξ ϕ(ξ) dξ ϕ̌(x) = average of ϕ
over set of � through x

Inversion f(b) = limz→b
̂f(z) f = 1

π (−L)1/2(( ̂f)∨)

Range of L∞(X)b= D(X)b=

f → ̂f {ϕ ∈ L∞(Ξ) : Lϕ = 0} {ϕ ∈ D(Ξ) : Λ(|ξ − η|−1ϕ) = 0}

Range Gauss’ mean Mean value property for
characteri- value theorem hyperboloids of revolution
zation

Range of E(Ξ)∨ = C E(Ξ)∨ = E(X)

ϕ→ ϕ̌

TABLE II.1. Analogies between the Poisson Integral and the X-ray Transform.

operators and then Gonzalez [1990b] showed that the whole system could
be replaced by a single fourth order M(n)-invariant differential operator
on Ξ.

Writing (61) for simplicity in the form

(62) X = G/K , Ξ = G/H

we shall now discuss the range question for the dual transform ϕ → ϕ̌ by
invoking the d-plane transform on E ′(X).

Theorem 4.7. Let N denote the kernel of the dual transform on E(Ξ).

Then the range of S → ̂S on E ′(X) is given by

E ′(X)b= {Σ ∈ E ′(Ξ) : Σ(N ) = 0} .

The inclusion ⊂ is clear from the definitions (14),(15) and Proposi-
tion 2.5. The converse is proved by the author in [1983a] and [1994b],
Ch. I, §2 for d = n− 1; the proof is also valid for general d.

For Fréchet spaces E and F one has the following classical result. A
continuous mapping α : E → F is surjective if the transpose tα : F ′ → E′

is injective and has a closed image. Taking E = E(Ξ), F = E(X), α as
the dual transform ϕ → ϕ̌, the transpose tα is the Radon transform on
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E ′(X). By Theorem 4.7, tα does have a closed image and by Theorem 5.5,
Ch. I (extended to any d) tα is injective. Thus we have the following result
(Hertle [1984] for d = n− 1) expressing the surjectivity of α.

Corollary 4.8. Every f ∈ E(Rn) is the dual transform f = ϕ̌ of a smooth
d-plane function ϕ.

F. Grassmann Manifolds

We consider now the (affine) Grassmann manifolds G(p, n) and G(q, n)
where p + q = n − 1. If p = 0 we have the original case of points and
hyperplanes. Both are homogeneous spaces of the group M(n) and we
represent them accordingly as coset spaces

(63) X = M(n)/Hp , Ξ = M(n)/Hq .

Here we take Hp as the isotropy group of a p-plane x0 through the origin
0 ∈ Rn, Hq as the isotropy group of a q-plane ξ0 through 0, perpendicular
to x0. Then

Hp = M(p)×O(n− p) , Hq = M(q)×O(n− q) .
Also

Hq · x0 = {x ∈ X : x ⊥ ξ0, x ∩ ξ0 �= ∅} ,
the set of p-planes intersecting ξ0 orthogonally. It is then easy to see that

x is incident to ξ ⇔ x ⊥ ξ , x ∩ ξ �= ∅ .
Consider as in Chapter I, §6 the mapping

π : G(p, n)→ Gp,n

given by parallel translating a p-plane to one such through the origin. If
σ ∈ Gp,n, the fiber F = π−1(σ) is naturally identified with the Euclidean
space σ⊥. Consider the linear operator �p on E(G(p, n)) given by

(64) (�pf)|F = LF (f |F ) .

Here LF is the Laplacian on F and bar denotes restriction. Then one can
prove that �p is a differential operator on G(p, n) which is invariant under

the action of M(n). Let f → ̂f , ϕ → ϕ̌ be the Radon transform and its

dual corresponding to the pair (61). Then ̂f(ξ) represents the integral of
f over all p-planes x intersecting ξ under a right angle. For n odd this is
inverted as follows (Gonzalez [1984, 1987]).

Theorem 4.9. Let p, q ∈ Z+ such that p + q + 1 = n is odd. Then the
transform f → ̂f from G(p, n) to G(q, n) is inverted by the formula

Cp,qf = ((�q)
(n−1)/2

̂f)∨ , f ∈ D(G(p, n))

where Cp,q is a constant.

If p = 0 this reduces to Theorem 3.6, Ch. I.
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G. Half-lines in a Half-plane

In this example X denotes the half-plane {(a, b) ∈ R2 : a > 0} viewed as
a subset of the plane {(a, b, 1) ∈ R3}. The group G of matrices

(α, β, γ) =

⎛

⎝

α 0 0
β 1 γ
0 0 1

⎞

⎠ ∈ GL(3,R) , α > 0

acts transitively on X with the action

(α, β, γ) � (a, b) = (αa, βa + b+ γ) .

This is the restriction of the action of GL(3,R) on R3. The isotropy group
of the point x0 = (1, 0) is the group

K = {(1, β,−β) : β ∈ R} .

Let Ξ denote the set of half-lines in X which end on the boundary ∂X =
0×R. These lines are given by

ξv,w = {(t, v + tw) : t > 0}

for arbitrary v, w ∈ R. Thus Ξ can be identified with R ×R. The action
of G on X induces a transitive action of G on Ξ which is given by

(α, β, γ)♦(v, w) = (v + γ,
w + β

α
) .

(Here we have for simplicity written (v, w) instead of ξv,w .) The isotropy
group of the point ξ(0,0) (the x-axis) is

H = {(α, 0, 0) : α > 0} = R×
+ ,

the multiplicative group of the positive real numbers. Thus we have the
identifications

(65) X = G/K , Ξ = G/H .

The group K ∩H is now trivial so the Radon transform and its dual for
the double fibration in (63) are defined by

̂f(gH) =

∫

H

f(ghK) dh ,(66)

ϕ̌(gK) = χ(g)

∫

K

ϕ(gkH) dk ,(67)
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where χ is the homomorphism (α, β , γ)→ α−1 of G onto R×
+. The reason

for the presence of χ is that we wish Proposition 2.2 to remain valid even
if G is not unimodular. In ( 66) and (67) we have the Haar measures

(68) dk(1,β−β) = dβ , dh(α,0,0) = dα/α .

Also, if g = (α, β, γ), h = (a, 0, 0), k = (1, b,−b) then

gH = (γ, β/α) , ghK = (αa, βa+ γ)

gK = (α, β + γ) , gkH = (−b+ γ, b+βα )

so (66)–(67) become

̂f(γ, β/α) =

∫

R+

f(αa, βa+ γ)
da

a

ϕ̌(α, β + γ) = α−1

∫

R

ϕ(−b+ γ, b+βα ) db .

Changing variables these can be written

̂f(v, w) =

∫

R+

f(a, v + aw)
da

a
,(69)

ϕ̌(a, b) =

∫

R

ϕ(b− as, s) ds a > 0 .(70)

Note that in (69) the integration takes place over all points on the line ξv,w
and in (70) the integration takes place over the set of lines ξb−as,s all of
which pass through the point (a, b). This is an a posteriori verification of
the fact that our incidence for the pair (65) amounts to x ∈ ξ.

From (69)–(70) we see that f → ̂f, ϕ → ϕ̌ are adjoint relative to the
measures da

a db and dv dw:

(71)

∫

R

∫

R
×
+

f(a, b)ϕ̌(a, b)
da

a
db =

∫

R

∫

R

̂f(v, w)ϕ(v, w) dv dw .

The proof is a routine computation.
We recall (Chapter VII) that (−L)1/2 is defined on the space of rapidly

decreasing functions on R by

(72) ((−L)1/2ψ)∼ (τ) = |τ | ˜ψ(τ)

and we define Λ on S(Ξ)(= S(R2)) by having (−L)1/2 only act on the
second variable:

(73) (Λϕ)(v, w) = ((−L)1/2ϕ(v, ·))(w) .
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Viewing (−L)1/2 as the Riesz potential I−1 on R (Chapter VII, §6) it is
easy to see that if ϕc(v, w) = ϕ(v, wc ) then

(74) Λϕc = |c|−1(Λϕ)c .

The Radon transform (66) is now inverted by the following theorem.

Theorem 4.10. Let f ∈ D(X). Then

f =
1

2π
(Λ ̂f)∨ .

Proof. In order to use the Fourier transform F → ˜F on R2 and on R we
need functions defined on all of R2. Thus we define

f∗(a, b) =

{

1
af( 1

a ,
−b
a ) a > 0 ,

0 a ≤ 0 .

Then

f(a, b) =
1

a
f∗

(

1

a
, − b

a

)

= a−1(2π)−2

∫∫

˜f∗(ξ, η)ei(
ξ
a− bη

a ) dξ dη

= (2π)−2

∫∫

˜f∗(aξ + bη, η)eiξ dξ dη

= a(2π)−2

∫∫

|ξ|˜f∗((a+ abη)ξ, aηξ)eiξ dξ dη .

Next we express the Fourier transform in terms of the Radon transform.
We have

˜f∗((a+ abη)ξ, aηξ) =

∫∫

f∗(x, y)e−ix(a+abη)ξe−iyaηξ dx dy

=

∫

R

∫

x≥0

1

x
f

(

1

x
, − y

x

)

e−ix(a+abη)ξe−iyaηξ dx dy

=

∫

R

∫

x≥0

f

(

1

x
, b+

1

η
+
z

x

)

eizaηξ
dx

x
dz .

This last expression is
∫

R

̂f(b+ η−1, z)eizaηξ dz = ( ̂f)∼(b+ η−1,−aηξ) ,

where ∼ denotes the 1-dimensional Fourier transform (in the second vari-
able). Thus

f(a, b) = a(2π)−2

∫∫

|ξ|( ̂f)∼(b+ η−1,−aηξ)eiξ dξ dη .
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However ˜F (cξ) = |c|−1(Fc)
∼(ξ), so by (74)

f(a, b) = a(2π)−2

∫∫

|ξ|(( ̂f )aη)
∼(b+ η−1,−ξ)eiξ dξ|aη|−1 dη

= (2π)−1

∫

Λ(( ̂f)aη)(b+ η−1,−1)|η|−1 dη

= (2π)−1

∫

|aη|−1(Λ ̂f)aη(b+ η−1,−1)|η|−1 dη

= a−1(2π)−1

∫

(Λ ̂f)(b+ η−1,−(aη)−1)η−2 dη ,

so

f(a, b) = (2π)−1

∫

R

(Λ ̂f)(b− av, v) dv

= (2π)−1(Λ ̂f)∨(a, b) .

proving the theorem.

Remark 4.11. It is of interest to compare this theorem with Theorem 3.8,
Ch. I. If f ∈ D(X) is extended to all of R2 by defining it 0 in the left
half plane then Theorem 3.8 does give a formula expressing f in terms of
its integrals over half-lines in a strikingly similar fashion. Note however
that while the operators f → ̂f, ϕ → ϕ̌ are in the two cases defined by
integration over the same sets (points on a half-line, half-lines through a
point) the measures in the two cases are different. Thus it is remarkable
that the inversion formulas look exactly the same.

H. Theta Series and Cusp Forms

Let G denote the group SL(2,R) of 2× 2 matrices of determinant one and

Γ the modular group SL(2,Z). Let N denote the unipotent group (
1 n
0 1

)

where n ∈ R and consider the homogeneous spaces

(75) X = G/N , Ξ = G/Γ .

Under the usual action of G on R2, N is the isotropy subgroup of (1, 0) so
X can be identified with R2 − (0), whereas Ξ is of course 3-dimensional.

In number theory one is interested in decomposing the space L2(G/Γ)
into G-invariant irreducible subspaces. We now give a rough description of
this by means of the transforms f → ̂f and ϕ→ ϕ̌.

As customary we put Γ∞ = Γ∩N ; our transforms (9) then take the form

̂f(gΓ) =
∑

Γ/Γ∞

f(gγN) , ϕ̌(gN) =

∫

N/Γ∞

ϕ(gnΓ) dnΓ∞ .
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Since N/Γ∞ is the circle group, ϕ̌(gN) is just the constant term in the
Fourier expansion of the function nΓ∞ → ϕ(gnΓ). The null space L2

d(G/Γ)
in L2(G/Γ) of the operator ϕ → ϕ̌ is called the space of cusp forms

and the series for ̂f is called theta series. According to Prop. 2.2 they
constitute the orthogonal complement of the image Cc(X)b.

We have now the G-invariant decomposition

(76) L2(G/Γ) = L2
c(G/Γ)⊕ L2

d(G/Γ) ,

where (− denoting closure)

(77) L2
c(G/Γ) = (Cc(X)b)−

and as mentioned above,

(78) L2
d(G/Γ) = (Cc(X)b)⊥ .

It is known (cf. Selberg [1962], Godement [1966]) that the representation
of G on L2

c(G/Γ) is the continuous direct sum of the irreducible repre-
sentations of G from the principal series whereas the representation of G
on L2

d(G/Γ) is the discrete direct sum of irreducible representations each
occurring with finite multiplicity.

I. The Plane-to-Line Transform in R3. The Range

Now we consider the set G(2, 3) of planes in R3 and the set G(1, 3) of
lines. The group G = M+(3) of orientation preserving isometries of R3

acts transitively on both G(2, 3) and G(1, 3). The group M+(3) can be
viewed as the group of 4× 4 matrices

⎛

⎜

⎜

⎝

x1

SO(3) x2

x3

1

⎞

⎟

⎟

⎠

,

whose Lie algebra g has basis

Ei = Ei4 (1 ≤ i ≤ 3) , Xij = Eij − Eji , 1 ≤ i ≤ j ≤ 3 .

We have bracket relations

[Ei, Xjk] = 0 if i �= j, k , [Ei, Xij ] = Ej − Ei ,(79)

[Xij , Xk�] = −δikXj� + δjkXi� + δi�Xjk − δj�Xik .(80)

We represent G(2, 3) and G(1, 3) as coset spaces

(81) G(2, 3) = G/H , G(1, 3) = G/K ,
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where

H = stability of group of τ0 (x1, x2-plane),

K = stability group of σ0 (x1-axis).

We have G = SO(3)R3, H = SO3(2)R2, K = SO1(2) ×R the first two
being semi-direct products. The subscripts indicate fixing of the x3-axis and
x1-axis, respectively. The intersection L = H ∩ K = R (the translations
along the x1-axis).

The elements τ0 = eH and σ0 = eK are incident for the pair G/H , G/K
and σ0 ⊂ τ0. Since the inclusion notion is preserved by G we see that

τ = γH and σ = gK are incident ⇔ σ ⊂ τ .
In the double fibration

G/L = {(σ, τ)|σ ⊂ τ}

�����������������

�����������������

G(2, 3) = G/H G/K = G(1, 3)

(82)

we see that the transform ϕ→ ϕ̌ in (9) (Chapter II,§2) is the plane-to-line
transform which sends a function on G(2, 3) into a function on lines:

(83) ϕ̌(σ) =

∫

τ�σ

ϕ(τ) dμ(τ) ,

the measure dμ being the normalized measure on the circle.
For the study of the range of (83) it turns out to be simpler to replace

G/L by another homogeneous space of G, namely the space of unit vectors
ω ∈ S2 with an initial point x ∈ R3. We denote this pair by ωx. The action
of G on this space S2 × R3 is the obvious geometric action of (u, y) ∈
SO(3)R3 on ωx:

(84) (u, y) · ωx = (u · ω)(u·x+y) .

The subgroup fixing the North Pole ω0 on S2 equals SO3(2) so S2 ×R3 =
G/SO(2). Instead of (82) we consider

S2 ×R3

π′′

������
������

π′

		
						

				

G(2, 3) G(1, 3)

the maps π′ and π′′ being given by

π′(ωx) = Rω + x (line through x in direction ω),

π′′(ωx) = ω⊥ + x (plane through x ⊥ ω).
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The geometric nature of the action (84) shows that π′ and π′′ commute
with the action of G.

For analysis on S2 × R3 it will be convenient to write ωx as the pair
(ω, x). Note that

(85) (π′)−1(Rω + x) = {(ω, y) : y − x ∈ Rω}

or equivalently, the set of translates of ω along the line x+ Rω. Also

(86) (π′′)−1(ω⊥ + x) = {(ω, z) : x− z ∈ ω⊥} ,

the set of translates of ω with initial point on the plane through x perpen-
dicular to ω.

Let �x denote the gradient (∂/∂x1, ∂/∂x2, ∂/∂x3). Let F ∈ E(S2 ×R3).
Then if θ is a unit vector and 〈 , 〉 the standard inner product on R3,

(87)
d

dt
F (ω, x+ tθ) = 〈(�xF (ω, x+ tθ)), θ〉 .

Thus for Ψ ∈ E(S2 ×R3),

(88) Ψ(ω, x+ tω) = Ψ(ω, x) (t ∈ R)⇔ (�xΨ)(ω, x) ⊥ ω .

Lemma 4.12. A function Ψ ∈ E(S2 ×R3) has the form Ψ = ψ ◦ π′ with
ψ ∈ E(G(1, 3)) if and only if

(89) Ψ(ω, x) = Ψ(−ω, x) , �xΨ(ω, x) ⊥ ω .

Proof. Clearly, if ψ ∈ E(G(1, 3)) then Ψ has the property stated. Con-
versely, if Ψ satisfies the conditions (89) it is constant on each set (85).

Lemma 4.13. A function Φ ∈ E(S2 ×R3) has the form Φ = ϕ ◦ π′′ with
ϕ ∈ E(G(2, 3)) if and only if

(90) Φ(ω, x) = Φ(−ω, x) , �xΦ(ω, x) ∈ Rω .

Proof. If ϕ ∈ E(G(2, 3)) then (87) for F = Φ implies

d

dt
Φ(ω, x+ tθ) = 0 for each θ ∈ ω⊥

so (90) holds. Conversely, if Φ satisfies (90) then by (87) for F = Φ, Φ is
constant on each set (86).

We consider now the action of G on S2 × R3. The Lie algebra g is
so(3)+R3, where so(3) consists of the 3×3 real skew-symmetric matrices.
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For X ∈ so(3) and Ψ ∈ E(S2 ×R3) we have by Ch. VIII, (12),

(λ(X)Ψ)(ω, x) =

{

d

dt
Ψ(exp(−tX) · ω, exp(−tX) · ω)

}

t=0

=

{

d

dt
Ψ(exp(−tX) · ω, x)

}

t=0

+

{

d

dt
Ψ(ω, exp(−tX) · x)

}

t=0

so

(91) λ(X)Ψ(ω, x) = XωΨ(ω, x) +XxΨ(ω, x) ,

where Xω and Xx are tangent vectors to the circles exp(−tX) · ω and
exp(−tX) · x in S2 and R3, respectively.

For v ∈ R3 acting on S2 ×R3 we have

(92) (λ(v)Ψ)(ω, x) =

{

d

dt
Ψ(ω, x− tv)

}

t=0

= −〈�xΨ(ω, x), v〉 .

For X12 = E12 − E21 we have

exp tX12 =

⎛

⎝

cos t sin t 0
− sin t cos t 0

0 0 1

⎞

⎠ etc.

so if f ∈ E(R3)

(93) (λ(Xij)f)(x) =

{

d

dt
f(exp(−tXij) · x)

}

= xi
∂f

∂xj
− xj ∂f

∂xi
.

Given � ∈ G(1, 3) let �̌ denote the set of 2-planes in R3 containing it. If
� = π′(σ, x) then �̌ = {π′′(ω, x) : ω ∈ S2, ω ⊥ σ}, which is identified with
the great circle A(σ) = σ⊥ ∩ S2. We give �̌ the measure μ� corresponding
to the arc-length measure on A(σ). In this framework, the plane-to-line
transform (83) becomes

(94) (Rϕ)(�) =

∫

ξ∈̌�

ϕ(ξ) dμ�(ξ)

for ϕ ∈ E(G(2, 3)), � ∈ G(1, 3). Expressing this on S2 ×R3 we have with
Φ = ϕ ◦ π′′

(95) (Rϕ ◦ π′)(σ, x) =
1

2π

∫

A(σ)

Φ(ω, x) dσ(ω) ,

where dσ represents the arc-length measure on A(σ).
We consider now the basis Ei, Xjk of the Lie algebra g. For simplicity

we drop the tilde in ˜Ei and ˜Xjk.
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Lemma 4.14. (Richter.) The operator

D = E1X23 − E2X13 + E3X12

belongs to the center Z(G) of D(G).

Proof. First note by the above commutation relation that the factors in
each summand commute. Thus D commutes with Ei. The commutation
with each Xij follows from the above commutation relations (79)–(80).

Because of Propositions 1.7 and 2.3 in Ch. VIII, D induces G-invariant
operators λ(D), λ′(D) and λ′′(D) on S2×R3, G(1, 3) and G(2, 3), respec-
tively.

Lemma 4.15. (i) λ(D) = 0 on E(R3).

(ii) λ′′(D) = 0 on E(G(2, 3)).

Proof. Part (i) follows from (λ(Ei)f)(x) = −∂f/∂xi and the formula (93).
For (ii) we take ϕ ∈ E(G(2, 3)) and put Φ = ϕ ◦ π′′. Since π′′ commutes
with the G-action, we have

Φ(g · (ω, x)) = ϕ(g · π′′(ω, x))

so by (13) in Ch.VIII,

(96) λ(D)Φ = λ′′(D)ϕ ◦ π′′ .

By (91)–(92) we have

λ(D)Φ(ω, x) = (λ(E1X23 − E2X13 + E3X12))xΦ(ω, x)(97)

+
[

λ(E1)xλ(X23)ω − λ(E2)xλ(X13)ω + λ(E3)xλ(X12)ω
]

Φ(ω, x) .

By Part (i) the first of the two terms vanishes. In the second term we
exchangeEi andXjk. Recalling that �xΦ(ω, x) equals h(ω, x)ω (h a scalar)
we have

λ(Ei)xΦ(ω, x) = h(ω, x)ωi , 1 ≤ i ≤ 3 .

Since exp tX23 fixes ω1 we have λ(X23)ω1 = 0 etc. Putting this together
we deduce

λ(D)Φ(ω, x) = −ω1λ(X23)ω h(ω, x) + ω2λ(X13)ω h(ω, x)(98)

− ω3λ(X12)ω h(ω, x) .

Part (ii) will now follow from the following.
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Lemma 4.16. Let u ∈ E(S2). Let μ(Xij) denote the restriction of the
vector field λ(Xij) to the sphere. Then

(ω1 μ(X23)− ω2 μ(X13) + ω3 μ(X12))u = 0 .

Proof. For a fixed ε > 0 extend u to a smooth function ũ on the shell
S2
ε : 1 − ε < ‖x‖ < 1 + ε in R3. The group SO(3) acts on S2

ε by rotation
so by (12), Ch. VIII, the vector fields μ(Xij) extend to vector fields μ̃(Xij)
on S2

ε . But these are just the restrictions of the vector fields xi
∂
∂xj
− xj ∂

∂xi

to S2
ε . These vector fields satisfy

x1

(

x2
∂

∂x3
− x3

∂

∂x2

)

−x2

(

x1
∂

∂x3
− x3

∂

∂x1

)

+x3

(

x1
∂

∂x2
− x2

∂

∂x1

)

= 0,

so the lemma holds.

We can now state Gonzalez’s main theorem describing the range of R.

Theorem 4.17. The plane-to-line transform R maps E(G(2, 3)) onto the
kernel of D:

R
(E(G(2, 3))

)

=
{

ψ ∈ E(G(1, 3)) : λ′(D)ψ = 0
}

.

Proof. The operator R obviously commutes with the action of G. Thus by
(13) in Ch. VIII, we have for each E ⊂ D(G),

(99) R(λ′′(E)ϕ) = 0 = λ′(E)Rϕ ϕ ∈ E(G(2, 3)) .

In particular, Lemma 4.15 implies

λ′(D)(Rϕ) = 0 for ϕ ∈ E(G(2, 3)) .

For the converse assume ψ ∈ E(G(1, 3)) satisfies

λ′(D)ψ = 0 .

Put Ψ = ψ ◦ π′. Then by the analog of (96) λ(D)Ψ = 0. In analogy with
the formula (97) for λ(D)Φ (where the first term vanished) we get for each
(σ, x) ∈ S2 ×R3,
(100)
0 = λ(D)Ψ =

[

λ(E1)xλ(X23)σ−λ(E2)xλ(X13)σ+λ(E3)xλ(X12)σ
]

Ψ(σ, x) .

Now Ψ(σ, x) = Ψ(−σ, x) so by the surjectivity of the great circle trans-
form (which is contained in Theorem 2.2 in Ch. III) there exists a unique
even smooth function ω → Φx(ω) on S2 such that

(101) Ψ(σ, x) =
1

2π

∫

A(σ)

Φx(ω) dσ(ω) .
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We put Φ(ω, x) = Φx(ω). The task is now to prove that �xΦ(ω, x) is a
multiple of ω, because then by Lemma 4.13, Φ = ϕ ◦ π′′ for some ϕ ∈
E(G(1, 3)). Then we would in fact have by (95), Rϕ ◦ π′ = Ψ = ψ ◦ π′ so
Rϕ = ψ.

Applying the formula (100) above and differentiating (101) under the
integral sign, we deduce

0 =

∫

A(σ)

[

λ(X23)ωλ(E1)x −λ(X13)ωλ(E2)x +λ(X12)ω(E3)x
]

Φ(ω, x) dσ(ω) .

(102)

For x fixed the integrand is even in ω, so by injectivity of the great circle
transform, the integrand vanishes. Consider the R3-valued vector field on
S2 given by

�G(ω) = −�xΦ(ω, x) = (λ(E1)xΦ(ω, x), λ(E2)xΦ(ω, x), λ(E3)xΦ(ω, x))

= (G1(ω), G2(ω), G3(ω)) ,

where each Gi(ω) is even. By the vanishing of the integrand in (102) we
have

(103) λ(X23)G1 − λ(X13)G2 + λ(X12)G3 = 0 .

We decompose �G(ω) into tangential and normal components, respectively,
�G(ω) = �T (ω)+ �N (ω), with components Ti(ω), Ni(ω), 1 ≤ i ≤ 3. We wish to

show that �G(ω) proportional to ω, or equivalently, �T (ω) = 0. We substitute
Gi = Ti +Ni into (103) and observe that

(104) λ(X23)(N1)− λ(X13)(N2) + λ(X12)(N3) = 0 ,

because writing �N(ω) = n(ω)ω, n is an odd function on S2 and (104) equals

ω1λ(X23)n(ω)− ω2λ(X13)n(ω) + ω3λ(X12)n(ω)

+n(ω)(λ(X23)(ω1)− λ(X13)ω2 + λ(X12)(ω3)) = 0

by Lemma 4.16 and λ(Xjk)ωi = 0, (i �= j, k). Thus we have the equation

(105) λ(X23)T1 − λ(X13)T2 + λ(X12)T3 = 0 .

From Lemma 4.12 〈σ,�xΨ(σ, x)〉 = 0 and by (101) we get

0 =

∫

A(σ)

〈σ,�xΦ(ω, x) dσ(ω) = −
∫

A(σ)

〈σ, �G(ω)〉 dσω

= −
∫

A(σ)

〈σ, �T (ω)〉 dσ(ω)−
∫

A(σ)

〈σ, �N(ω)〉 dσω

= −
∫

A(σ)

〈σ, �T (ω)〉 dσω ,
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since σ ⊥ �N(ω) on A(σ). Thus �T (ω) is an even vector field on S2 satisfying
(105) and

(106)

∫

A(σ)

〈σ, �T (ω)〉 dσω = 0 .

We claim that �T (ω) = gradS2 t(ω), where grad
S2 denotes the gradient on

S2 and t is an odd function on S2. To see this, we extend T (ω) to a smooth

vector field ˜T on a shell S2
ε : 1 − ε < ‖x‖ < 1 + ε in R3 by �T (rω) = �T (ω)

for r ∈ (1 − ε, 1 + ε). Again the SO(3) action on S2
ε induces vector fields

μ̃(Xij) on S2
ε , which are just xi

∂
∂xj
− xj ∂

∂xi
. Thus (105) becomes

〈curl ˜T (x), x〉 = 0 on S2
ε .

By the classical Stokes’ theorem for S2 this implies that the line integral

∫

γ

T1 dx1 + T2 dx2 + T3 dx3 = 0

for each simple closed curve γ on S2. Let τ be the pull back of the form
∑

i Ti dxi to S2. By the Stokes’ theorem for τ on S2 we deduce dτ = 0 on
S2, i.e., τ is closed. Since S2 is simply connected, τ is exact, i.e., τ = dt,
t ∈ E(S2). (This is an elementary case of deRham’s theorem; t can be
constructed as in complex variable theory.) For any vector field Z on S2

dt(Z) = 〈grad
S2t, Z〉 so T (ω) = grad

S2t(ω). Decomposing t(ω) into odd
and even components we see that the even component is constant so we
can take t(ω) odd.

Let H(σ) denote the hemisphere on the side of A(σ) away from σ. Note
that σ located at points of A(σ) form the outward pointing normals of the

boundary A(σ) of H(σ). With �T (ω) = grad
S2t(ω) the integral (106) equals

∫

H(σ)

(LS2t)(ω) dω , σ ∈ S2 ,

by the divergence theorem on S2. Since LS2t is odd the next lemma implies
that LS2t = 0 so t is a constant, hence t ≡ 0 (because t is odd).

Lemma 4.18. Let τ denote the hemisphere transform on S2, τ(h) =
∫

H(σ)
h(ω) dω for h ∈ E(S2). If τ(h) = 0 then h is an even function.

Proof. Let Hm denote the space of degree m spherical harmonics on S2

(m = 0, 1, 2, . . .). Then SO(3) acts irreducibly on Hm. Since τ commutes
with the action of SO(3) it must (by Schur’s lemma) be a scalar operator
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cm on Hm. The value can be obtained by integrating a zonal harmonic Pm
over the hemisphere

cm = 2π

π
2

∫

0

Pm(cos θ) sin θ dθ = 2π

1
∫

0

Pm(x) dx .

According to Erdelyi et al. [1953], I p. 312, this equals

(107) cm = 4π
1
2
Γ(1 + m

2 )

Γ
(

m+1
2

)

1

m(m+ 1)
sin

mπ

2
,

which equals 2π for m = 0, is 0 for m even, and is �= 0 for m odd. Since
each h ∈ E(S2) has an expansion h =

∑∞
0 hm with hm ∈ Hm, τ(h) = 0

implies cm = 0 (so m is even) if hm �= 0. Thus h is even as claimed.

Remark. The value of cm in (107) appears in an exercise in Whittaker–
Watson [1927], p. 306, attributed to Clare, 1902.

J. Noncompact Symmetric Space and Its Family of Horocycles

This example belongs to the realm of the theory of semisimple Lie groups
G. See Chapter IX, §2 for orientation. To such a group with finite center
is associated a coset space X = G/K (a Riemannian symmetric space)
where K is a maximal compact subgroup (unique up to conjugacy). The
group G has an Iwasawa decomposition G = NAK (generalizing the one
in Example C for H2.) Here N is nilpotent and A abelian. The orbits in
X of the conjugates gNg−1 to N are called horocycles. These are closed
submanifolds of X and are permuted transitively by G. The set Ξ of those
horocycles ξ is thus a coset space of G, in fact Ξ = G/MN , where M is
the centralizer of A in K. To this pair

X = G/K , Ξ = G/MN

are associated a Radon transform f → ̂f and its dual ϕ→ ϕ̌ as in formula
(9). More explicitly,

(108) ̂f(ξ) =

∫

ξ

f(x) dm(x) , ϕ̌(x) =

∫

ξ�x

ϕ(ξ) dμ(ξ) ,

where dm is the Riemannian measure on the submanifold ξ and dμ is the
average over the (compact) set of horocycles passing through x.

Problems A, B, C, D all have solutions here (with some open questions);

there is injectivity of f → ̂f (with inversion formulas), surjectivity of ϕ→
ϕ̌, determinations of ranges and kernels of these maps, support theorems
and applications to differential equations and group representations.
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The transform f → ̂f has the following inversion

f = (Λ ̂f)∨ ,

where Λ is a G-invariant pseudo-differential operator on Ξ. In the case when
G has all Cartan subgroups conjugate one has a better formula

f = �(( ̂f)∨) ,

where � is an explicit differential operator on X .
The support theorem for f → ̂f states informally, B ⊂ X being any ball:

̂f(ξ) = 0 for ξ ∩B = ∅ ⇒ f(x) = 0 for x �∈ B .

Here f is assumed “rapidly decreasing” in a certain technical sense.
Thus the conjugacy of the Cartan subgroups corresponds to the case

of odd dimension for the Radon transform on Rn. For complete proofs of
these results, with documentation, see my book [1994b] or [2008].

Exercises and Further Results

1. The Discrete Case.

For a discrete group G, Proposition 2.2 (via diagram (4)) takes the form
(# denoting incidence):

∑

x∈X

f(x)ϕ̌(x) =
∑

(x,ξ)∈X×Ξ,x#ξ

f(x)ϕ(ξ) =
∑

ξ∈X

̂f(ξ)ϕ(ξ) .

2. Linear Codes. (Boguslavsky [2001])

Let Fq be a finite field and Fnq the n-dimensional vector space with its
natural basis. The Hamming metric is the distance d given by d(x, y) =
number of distinct coordinate positions in x and y.

A linear [n, k, d]-code C is a k-dimensional subspace of Fnk such that
d(x, y) ≥ d for all x, y ∈ C. Let PC be the projectivization of C on which
the projective group G = PGL(k − 1,Fq) acts transitively. Let � ∈ PC be
fixed and π a hyperplane containing �. Let K and H be the corresponding
isotropy groups. Then X = G/K, and Ξ = G/H satisfy Lemma 1.3 and
the transforms

̂f(ξ) =
∑

x∈ξ

f(x) , ϕ̌(x) =
∑

ξ�x

ϕ(ξ)

are well defined. They are inverted as follows. Put

s(ϕ) =
∑

ξ∈Ξ

ϕ(ξ) , σ(f) =
∑

x∈X

f(x) .
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The projective space Pm over Fq has a number of points equal to pm =
qm+1−1
q−1 . Here m = k − 1 and we consider the operators D and Δ given by

(Dϕ)(ξ) = ϕ(ξ)− qk−2 − 1

(qk−1 − 1)2
s(ϕ) , (Δf)(x) = f(x)− qk−2 − 1

(qk−1 − 1)2
σ(f) .

Then

f(x) =
1

qk−2
(D ̂f)∨(x) , ϕ(ξ) =

1

qk−2
(Δϕ̌) (̂ξ) .

3. Radon Transform on Loops. (Brylinski [1996])

Let M be a manifold and LM the free loop space in M . Fix a 1-form α
on M . Consider the functional Iα on LM given by Iα(γ) =

∫

γ
α.

With the standard C∞ structure on LM

(dIα, v)γ =

1
∫

0

dα(v(t),
•
γ(t)) dt

for v ∈ (LM)γ . Clearly Iα = 0 if and only if α is exact.

Inversion, support theorem and range description of this transform are
established in the cited reference. Actually Iα satisfies differential equations
reminiscent of John’s equations in Theorem 6.5, Ch. I.

4. Theta Series and Cusp Forms.

This concerns Ch. II, §4, Example H. For the following results see Gode-
ment [1966].

(i) In the identification G/N ≈ R2 − (0) (via gN → g
(

1
0

)

), let f ∈
D(G/N) satisfy f(x) = f(−x). Then, in the notation of Example H,

1
2 ( ̂f)∨(gN) = f(gN) +

∑

(γ)

∫

N

f(gnγN) dn ,

where
∑

(γ) denotes summation over the nontrivial double cosets ±Γ∞γΓ∞

(γ and −γ in Γ identified).

(ii) Let A =
{(

t 0
0 t−1

)

: t > 0
}

be the diagonal subgroup ofG and β(h) = t2

if h =
(

t 0
0 t−1

)

. Consider the Mellin transform

˜f(gN, 2s) =

∫

A

f(ghN)β(h)s dh

and (viewing G/N as R2 − 0) the twisted Fourier transform

f∗(x) =

∫

R2

f(y)e−2πiB(x,y) dy ,
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where B(x, y) = x2y1 − x1y2 for x = (x1, x2), y = (y1, y2). The Eisenstein
series is defined by

Ef (g, s) =
∑

γ∈Γ/Γ∞

˜f(gγN, 2s) , (convergent for Re s > 1) .

Theorem. Assuming f∗(0) = 0, the function s→ ζ(2s)Ef (g, s) extends
to an entire function on C and does not change under s→ (1−s), f → f∗.

5. Radon Transform on Minkowski Space. (Kumahara and Waka-
yama [1993], see Figure II,6)

Let X be an (n + 1)-dimensional real vector space with inner product
〈 , 〉 of signature (1, n). Let e0, e1, . . . , en be a basis such that 〈ei, ej〉 = −1
for i = j = 0 and 1 if i = j > 0 and 0 if i �= j. Then if x =

∑n
0 xiei , a

hyperplane in X is given by

n
∑

0

aixi = c , a ∈ Rn+1 , a �= 0

and c ∈ R. We put

ω0 = −a0/|〈a, a〉| 12 , ωj = aj/|〈a, a〉| 12 , j > 0 , p = c/|〈a, a〉| 12
if 〈a, a〉 �= 0 and if 〈a, a〉 = 0

ω0 = −a0/|a0| , ωj = aj/|a0| j > 0 , p = c/|a0| .
The hyperplane above is thus

〈x, ω〉 = −x0ω0 + x1ω1 + · · ·+ xnωn = p ,

written ξ(ω, p). The semidirect product M(1, n) of the translations of X
with the connected Lorentz group G = SO0(1, n) acts transitively on X
and M(1, n)/SO(1, n) ∼= X .

To indicate how the light cone 〈ω, ω〉 = 0 splits X we make the following
definitions (see Figure II,6).

X+
− = {ω ∈ X : 〈ω, ω〉 = −1 , ω0 > 0}

X−
− = {ω ∈ X : 〈ω, ω〉 = −1 , ω0 < 0}

X+ = {ω ∈ X : 〈ω, ω〉 = +1}
X+

0 = {ω ∈ X : 〈ω, ω〉 = 0 , ω0 > 0}
X−

0 = {ω ∈ X : 〈ω, ω〉 = 0 , ω0 < 0}
S± = {ω ∈ X : 〈ω, ω〉 = 0 , ω0 = ±1} .

The scalar multiples of the Xi fill up X . The group M(1, n) acts on X as
follows: If (g, z) ∈M(1, n), g ∈ G, z ∈ X then

(g, z) · x = z + g · x .
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The action on the space Ξ of hyperplanes ξ(ω, p) is

(g, z) · ξ(ω, p) = ξ(g · ω, p+ 〈z, g · ω〉) .

Then Ξ has the M(1, n) orbit decomposition

Ξ = M(1, n)ξ(e0, 0) ∪M(1, n)ξ(e1, 0) ∪M(1, n)ξ(e0 + e1, 0)

into three homogeneous spaces of M(1, n).

S+

S−

X+
−

X−
−

X+ X+

FIGURE II.6.

Minkowski space for dimension 3

Note that ξ(−ω,−p) = ξ(ω, p) so in the definition of the Radon transform
we assume ω0 > 0. The sets X+

− , X+ and X+
0 have natural G-invariant

measures dμ−(ω) and dμ+(ω) on X+
− ∪X−

− and X+, respectively; in fact

dμ± =
1

|ωi|
∏

j �=i

dωj where ωi �= 0 .

Viewing X+
− ∪X−

− ∪X+ ∪S+ ∪S− as a substitute for a “boundary” ∂X of
X we define

∫

∂X

ψ(ω) dμ(ω) =

∫

X+
−∪X−

−

ψ(ω) dμ−(ω) +

∫

X+

ψ(ω) dμ+(ω)
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for ψ ∈ Cc(X). (S+ and S− have lower dimension.) The Radon transform

f → ̂f and its dual ϕ→ ϕ̌ are now defined by

̂f(ξ) =

∫

ξ

f(x) dm(x) =

∫

〈x,ω〉=p

f(x) dm(x) = ̂f(ω, p) ,

ϕ̌(x) =

∫

ξ�x

ϕ(ξ) dσx(ξ) =

∫

∂X

ϕ(ω, 〈x, ω〉) dμ(ξ) .

Here dm is the Euclidean measure on the hyperplane ξ and a function ϕ
on Ξ is identified with an even function ϕ(ω, p) on ∂X ×R. The measure
dσx is defined by the last relation.

There are natural analogs S(X), S(Ξ) and SH(Ξ) of the spaces S(Rn),
S(Pn) and SH(Pn) defined in Ch. I, §2. The following analogs of the Rn

theorems hold.

Theorem. f → ̂f is a bijection of S(X) onto SH(Ξ).

Theorem. For f ∈ S(X),

f = (Λ ̂f)∨ ,

where

(Λϕ)(ω, p) =

⎧

⎨

⎩

1
2(2π)2

(

∂
i∂p

)n

ϕ(ω, p) n even

1
2(2π)nHp

(

∂
i∂p

)n

ϕ(ω, p) n odd
.

6. John’s Equation for the X-ray transform on R3.

According to Richter [1986b] the equation λ′(D)ψ = 0 in Gonzalez’ The-
orem 4.17 characterizes the range of the X-ray transform on R3. Relate
this to John’s equation Λψ = 0 in Theorem 6.9, Ch. I.
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The Radon transform and its dual for a double fibration

Z = G/(K ∩H)
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X = G/K Ξ = G/H

(1)

was introduced in the author’s paper [1966a]. The results of §1–§2 are from
there and from [1994b]. The definition uses the concept of incidence for
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X = G/K and Ξ = G/H which goes back to Chern [1942]. Even when the
elements of Ξ can be viewed as subsets of X and vice versa (Lemma 1.3) it

can be essential for the inversion of f → ̂f not to restrict the incidence to
the naive one x ∈ ξ. (See for example the classical case X = S2,Ξ = set of
great circles where in Theorem 4.1 a more general incidence is essential.)
The double fibration in (1) was generalized in Gelfand, Graev and Shapiro
[1969], by relaxing the homogeneity assumption.

For the case of geodesics in constant curvature spaces (Examples A, B
in §4) see notes to Ch. III.

The proof of Theorem 4.4 (a special case of the author’s inversion for-
mula in [1964], [1965b]) makes use of a method by Godement [1957] in
another context. Another version of the inversion (47) for H2 (and Hn) is
given in Gelfand-Graev-Vilenkin [1966]. A further inversion of the horocy-
cle transform in H2 (and Hn), somewhat analogous to (38) for the X-ray
transform, is given by Berenstein and Tarabusi [1994].

The analogy suggested above between the X-ray transform and the horo-
cycle transform in H2 goes even further in H3. There the 2-dimensional
transform for totally geodesic submanifolds has the same inversion formula
as the horocycle transform (Helgason [1994b], p. 209).

For a treatment of the horocycle transform on a Riemannian symmetric
space see the author’s paper [1963] and monograph [1994b], Chapter II,
where Problems A, B, C, D in §2 are discussed in detail along with some
applications to differential equations and group representations. See also
Gelfand–Graev [1964] for a discussion and inversion for the case of complex
G. See also Quinto [1993a] and Gonzalez and Quinto [1994] for new proofs
of the support theorem.

Example G is from Hilgert’s paper [1994], where a related Fourier trans-
form theory is also established. It has a formal analogy to the Fourier
analysis on H2 developed by the author in [1965b] and [1972].

Example I is from Gonzalez’s beautiful paper [2001]. Higher dimensional
versions have been proved by Gonzalez and Kakehi [2004]. The relationship
between the operator D and John’s operator Λ in Ch. I, §6 was established
by Richter [1986b].

In conclusion we note that the determination of a function in Rn in terms
of its integrals over unit spheres (John [1955]) can be regarded as a solution
to the first half of Problem B in §2 for the double fibration (4) and (7). See
Exercise 5 in Ch. VI.





CHAPTER III

THE RADON TRANSFORM ON TWO-POINT

HOMOGENEOUS SPACES

Let X be a complete Riemannian manifold, x a point in X and Xx the
tangent space to X at x. Let Expx denote the mapping of Xx into X given
by Expx(u) = γu(1), where t→ γu(t) is the geodesic in X through x with
tangent vector u at x = γu(0).

A connected submanifold S of a Riemannian manifold X is said to be
totally geodesic if each geodesic in X which is tangential to S at a point
lies entirely in S.

The totally geodesic submanifolds of Rn are the planes in Rn. Therefore,
in generalizing the Radon transform to Riemannian manifolds, it is natu-
ral to consider integration over totally geodesic submanifolds. In order to
have enough totally geodesic submanifolds at our disposal we consider in
this section Riemannian manifolds X which are two-point homogeneous
in the sense that for any two-point pairs p, q ∈ X p′, q′ ∈ X , satisfying
d(p, q) = d(p′, q′), (where d = distance), there exists an isometry g of X
such that g · p = p′, g · q = q′. We start with the subclass of Riemannian
manifolds with the richest supply of totally geodesic submanifolds, namely
the spaces of constant curvature.

While §1, which constitutes most of this chapter, is elementary, §2–§4
will involve a bit of Lie group theory.

§1 Spaces of Constant Curvature. Inversion and

Support Theorems

Let X be a simply connected complete Riemannian manifold of dimension
n ≥ 2 and constant sectional curvature.

Lemma 1.1. Let x ∈ X, V a subspace of the tangent space Xx. Then
Expx(V ) is a totally geodesic submanifold of X.

Proof. For this we choose a specific embedding of X into Rn+1, and assume
for simplicity the curvature is ε(= ±1). Consider the quadratic form

Bε(x) = x2
1 + · · ·+ x2

n + εx2
n+1

and the quadric Qε given by Bε(x) = ε. The orthogonal group O(Bε)
acts transitively on Qε. The form Bε is positive definite on the tangent
space Rn × (0) to Qε at x0 = (0, . . . , 0, 1); by the transitivity Bε induces
a positive definite quadratic form at each point of Qε, turning Qε into a
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112 Chapter III. The Radon Transform on Two-Point Homogeneous Spaces

Riemannian manifold, on which O(Bε) acts as a transitive group of isome-
tries. The isotropy subgroup at the point x0 is isomorphic to O(n) and
its acts transitively on the set of 2-dimensional subspaces of the tangent
space (Qε)x0 . It follows that all sectional curvatures at x0 are the same,
namely ε, so by homogeneity, Qε has constant curvature ε. In order to
work with connected manifolds, we replace Q−1 by its intersection Q+

−1

with the half-space xn+1 > 0. Then Q+1 and Q+
−1 are simply connected

complete Riemannian manifolds of constant curvature. Since such mani-
folds are uniquely determined by the dimension and the curvature it follows
that we can identify X with Q+1 or Q+

−1.
The geodesic in X through x0 with tangent vector (1, 0, . . . , 0) will be

left point-wise fixed by the isometry

(x1, x2, . . . , xn, xn+1)→ (x1,−x2, . . . ,−xn, xn+1) .

This geodesic is therefore the intersection of X with the two-plane x2 =
· · · = xn = 0 in Rn+1. By the transitivity of O(n) all geodesics in X
through x0 are intersections of X with two-planes through 0. By the tran-
sitivity of O(Qε) it then follows that the geodesics in X are precisely the
nonempty intersections of X with two-planes through the origin.

Now if V ⊂ Xx0 is a subspace, Expx0(V ) is by the above the intersection
of X with the subspace of Rn+1 spanned by V and x0. Thus Expx0(V ) is
a quadric in V + Rx0 and its Riemannian structure induced by X is the
same as induced by the restriction Bε|(V + Rx0). Thus, by the above, the
geodesics in Expx0(V ) are obtained by intersecting it with two-planes in V+
Rx0 through 0. Consequently, the geodesics in Expx0(V ) are geodesics in
X so Expx0(V ) is a totally geodesic submanifold of X . By the homogeneity
of X this holds with x0 replaced by an arbitrary point x ∈ X . The lemma
is proved.

It will be convenient in the following to use another model of the space
X = Q+

−, namely the generalization of the space H2 in Ch. II, Theorem 4.2.
It is the hyperbolic space Hn which is the unit ball |y| < 1 in Rn with the
Riemannian structure ds2 related to the flat ds20 by

(1) ds2 =
4(dy2

1 + · · ·+ dy2
n)

(1− y2
1 − · · · − y2

n)
2

= ρ2 ds20 .

Consider the mapping y = Φ(x), x ∈ Q+
−, given by

(2) (y1, . . . , yn) =
1

xn+1 + 1
(x1, . . . , xn) ,

with inverse

(3) (x1, . . . , xn) =
2

1− |y|2 (y1, . . . , yn) , xn+1 =
1 + |y|2
1− |y|2 .
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Then Φ is a bijection of Q+
− onto Hn and we shall see that it is an isometry.

For this we compute the pull-back Φ∗(ds2). We have

Φ∗(dyi) = (xn+1 + 1)−1 dxi − xi(xn+1 + 1)−2 dxn+1 ,

so

Φ∗(ds2) =
n

∑

i=1

dx2
i + (xn+1 + 1)−2

n
∑

1

x2
i dx

2
n+1

− 2(xn+1 + 1)−1

(

n
∑

1

xi dxi

)

dxn+1 .

On Q+
− we have

n
∑

1

x2
i = x2

n+1 − 1 ,

n
∑

1

xi dxi = xn+1 dxn+1 ,

so if I : Q+
− → Rn+1 is the identity map

I∗(Φ∗(ds2)) =

n
∑

1

dx2
i +

xn+1 − 1

xn+1 + 1
dx2

n+1 −
2xn+1

xn+1 + 1
dx2

n+1

=

n
∑

1

dx2
i − dx2

n+1 ,

which shows that Φ is an isometry.
Since the totally geodesic submanifolds of Q+

− are the intersections of
Q+

− with plane sections through 0 the mapping Φ (which maps (0, . . . , 0, 1)
into (0, . . . , 0)) shows that the totally geodesic submanifolds in Hn (|y| < 1)
through 0 = (0, . . . , 0) are the plane sections in the ball |y| < 1 through
0. By the description of the geodesics in H2 (Ch. II, §4) we conclude that
the totally geodesic submanifolds in Hn are the spherical caps of various
dimensions perpendicular to the boundary |y| = 1.

Now let X stand for the spaces Rn, Hn and Sn and I(X) the group of
isometries of X . For 1 ≤ k ≤ n− 1 let Ξ denote the space of k-dimensional
totally geodesic submanifolds of X . Then G, the identity component of
I(X), acts transitively both on X and on Ξ. For Hn we use the model (1)
above. We fix an origin o in X (o = 0 for Rn and Hn, o = the North Pole
for Sn) and let K denote the isotropy subgroup of G at o. Fix p = R+, fix
ξp ∈ Ξ at distance d(o, ξp) = p from o and Hp the subgroup of G mapping
ξp into itself. Then we have

(4) X = G/K , Ξ = G/Hp .

Proposition 1.2. The point x ∈ X and the manifold ξ ∈ Ξ are incident
for (4) if and only if d(x, ξ) = p.
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For this we will first prove a simple lemma.

Lemma 1.3. If ξ1 and ξ2 in Ξ have the same distance from o then ξ1 = k ξ2
for some k ∈ K.

Proof. If X = Sn ⊂ Rn+1, ξ1 and ξ2 are the intersection of Sn with (k+1)-
planes π1 and π2 through the center 0 of Sn. Consider the normal planes of
dimension n+ 1− (k+ 1) = n− k to π1 and π2 passing through the North
Pole o. These normal planes are conjugate under K and thus so are ξ1 and
ξ2. For the case Hn let ξ1 and ξ2 be two spherical caps of dimension k
perpendicular to the unit sphere S1(0) Let π1 and π2 be the tangent spaces
to ξ1 and ξ2 at the points closest to o. The corresponding normal planes
through o are conjugate under K and so are π1 and π2 and ξ1 and ξ2. The
same proof works for X = Rn.

To prove Proposition 1.2 let x = gK, ξ = γHp. Then gK ∩ γHp �=
∅ implies γ−1g · o = hp · o for some hp so d(x, ξ) = d(g · o, γ · ξp) =
d(hp · o, ξp) = d(o, ξp) = p. Conversely, if d(x, ξ) = p so d(o, g−1γ · ξp) = p
then by Lemma 1.3

g−1γ · ξp = k · ξp for some k

so g−1γ = kh for some h ∈ Hp so x and ξ are incident.

A. The Euclidean Case Rn

Let f → ̂f where

(5) ̂f(ξ) =

∫

ξ

f(x) dm(x) , ξ ∈ Ξ ,

denote the k-plane transform. In Ch. I, §6 we proved the support theorem
and an inversion formula for this transform. We shall now prove another
inversion formula, more geometric, in the spirit of the double fibration of
Ch. II, §2 which here is

G/L
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G/K G/Hp , L = K ∩Hp .

We denote the corresponding Radon transforms (9), Ch. II, §2 by ̂fp and
ϕ̌p. Then by Proposition 1.2,

(6) ̂fp(ξ) =

∫

d(x,ξ)=p

f(x) dm(x) , ϕ̌p(x) =

∫

d(x,ξ)=p

ϕ(ξ) dμ(ξ) ,
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where dμ is the invariant average over x̌. Here ̂f0 = ̂f in (5). If g ∈ G is
such that g · o = x then ξ = g · ξp has d(x, ξ) = p and

ϕ̌p(g · o) =

∫

K

ϕ(gkg−1 · ξ) dk ,

where dk is the normalized Haar measure on K. If z ∈ Rn has distance r
from 0 then as in (15), Ch.I,

(M rf)(g · o) =

∫

K

f(gk · z) dk .

Thus since d(o, g−1 · y) = d(x, y),

( ̂f)∨p (g · o) =

∫

K

̂f(gkg−1 · ξ) dk =

∫

K

dk

∫

ξ

f(gkg−1 · y) dm(y)

=

∫

ξ

dm(y)

∫

K

f(gkg−1 · y) dk =

∫

ξ

(Md(x,y)f)(x) dm(y) .

Let xo be the point in ξ at minimum distance from x. The integrand
(Md(x,y)f)(x) is constant in y on each sphere in ξ with center xo. Hence
we have

(7) ( ̂f)∨p (x) = Ωk

∞
∫

0

(M qf)(x)rk−1 dr ,

where r = d(x0, y), q = d(x, y). We have q2 = p2 + r2 so putting

F (q) = (M qf)(x) , ̂F (p) = ( ̂f)∨p (x) ,

we have

̂F (p) = Ωk

∞
∫

p

F (q)(q2 − p2)(k−2)/2q dq .(8)

We multiply with p(p2 − r2)(k−2)/2 and compute

∞
∫

r

̂F (p)p(p2 − r2)(k−2)/2 dp

= Ωk

∞
∫

r

⎛

⎝

∞
∫

p

F (q)
[

(q2 − p2)(p2 − r2)](k−2)/2
q dq

⎞

⎠ p dp

= Ωk

∞
∫

q=r

F (q)q

⎛

⎝

q
∫

p=r

[

(q2 − p2)(p2 − r2)](k−2)/2
p dp

⎞

⎠ dq ,
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which by the proof of Theorem 2.6 in Chapter I and Ωk = 2πk/2/Γ(k/2)
becomes

Ck

∞
∫

r

F (q)q(q2 − r2)k−1 dq ,

where

Ck = 21−kπ(k+1)/2/Γ((k + 1)/2) .

Applying
(

d
d(r2)

)k

this reduces to 1
2Ck(k − 1)!(−F (r)). Using the duplica-

tion formula Γ(k) = 2k−1π− 1
2 Γ

(

k
2

)

Γ((k + 1)/2) we get the inversion

(9) F (r) = −c(k)
(

d

d(r2)

)k
∞
∫

r

̂F (p)(p2 − r2)(k−2)/2p dp ,

where c(k) = 2/(πk/2Γ(k/2)). Putting r = 0 we get the formula

(10) f(x) = −c(k)
⎡

⎣

(

d

d(r2)

)k
∞
∫

r

p(p2 − r2)(k−2)/2( ̂f)∨p (x) dp

⎤

⎦

r=0

.

Since

p(p2 − r2)(k−2)/2 =
d

dp
(p2 − r2)k/2 1

k

we can in (9) integrate by parts and the integral becomes

−k−1

∞
∫

r

(p2 − r2)k/2 ̂F ′(p) dp .

Applying d/d(r2) = (2r)−1d/dr to this integral reduces the exponent by 1.

For k even we continue until the exponent is 0 and then replace
∫∞

r
̂F ′(p) dp

by − ̂F (r). This ̂F (r) is an even function so taking (d/d(r2))k/2 at r = 0
amounts to taking a constant multiple of (d/dr)k at r = 0. For k odd we
differentiate by d/d(r2) k+1

2 times and then the exponent in the integral
becomes − 1

2 . Thus we obtain the following refinement of (10). We recall

that ( ̂f)∨p (x) is the average of the integrals of f over the k-planes tangent
to Sp(x).

Theorem 1.4 (Inversion formulas.). The k-plane transform (5) on Rn

is inverted as follows:

(i) If k is even then

f(x) = C1

[

(

d

dr

)k
(

( ̂f)∨r (x)
)

]

r=0

.
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(ii) If k is odd then

f(x) = C2

⎡

⎣

(

d

d(r2)

)(k−1)/2
∞
∫

r

(p2 − r2)−1/2 d

dp
( ̂f)∨p (x) dp

⎤

⎦

r=0

.

(iii) If k = 1 then

f(x) = − 1

π

∞
∫

0

1

p

d

dp
(( ̂f)∨p (x)) dp .

Here C1 and C2 are constants depending only on k. In (iii) the constant
comes from c(1) = 2/π.

Remark. Note that the integral in (ii) is convergent since (p2 − r2)−
1
2

behaves like (p− r)− 1
2 near p = r.

For k even there is an alternative inversion formula. For p = 0 formula
(7) becomes

( ̂f)∨(x) = Ωk

∞
∫

0

(M rf)(x)rk−1 dr

and the proof of Theorem 3.1, Ch. I, for n odd can be imitated. This gives
another proof of Theorem 6.2, Ch. I for k even.

Remark. For k = n − 1 even the formula in (i) is equivalent to (31) in
Ch. I, §3. For ϕ ∈ E(Ξ) we have

ϕ̌r(x) =

∫

Sn−1

ϕ(w, r + 〈w, x〉) dw,

so

{

d2

dr2
ϕ̌r(x)

}

r=0

= (�ϕ)∨(x) = (Lϕ̌)(x) .

By iteration and putting ϕ = ̂f we recover (31) for n− 1 even.
During the proof of Theorem 1.4 we proved the following general relation-

ship (8) and (9) between the spherical average (M rf)(x) and the average

( ̂f)∨p (x) of the integrals of f over k planes at distance p from x.
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Theorem 1.5. The spherical averages and the k-plane integral averages
are related by

( ̂f)∨p (x) = Ωk

∞
∫

p

(M qf)(x)(q2 − p2)(k−2)/2q dq ,(11)

(M rf)(x) = −c(k)
(

d

d(r2

)k
∞
∫

r

( ̂f)∨p (x)(p2 − r2)(k−2)/2p dp ,(12)

where

c(k) =
2

πk/2Γ
(

k
2

) .

Examples.

For k = 2 this reduces to

( ̂f)∨p (x) = 2π

∞
∫

p

(M qf)(x)q dq , (M rf)(x) =
1

2π

1

r

d

dr
( ̂f)∨r (x) .

For k = 1 we have instead

( ̂f)∨p (x) = 2

∞
∫

p

(M qf)(x)(q2 − p2)−
1
2 q dq ,

(M rf)(x) = − 1

π

∞
∫

r

d

dp
(( ̂f)∨p (x))

dp

(p2 − r2)1/2 .

It is remarkable that the dimension n does not enter into the formulas
(11) and (12) nor in Theorem 1.4(iii).

B. The Hyperbolic Space

We take first the case of negative curvature, that is ε = −1. The transform
f → ̂f is now given by

(13) ̂f(ξ) =

∫

ξ

f(x) dm(x) ,

ξ being any k-dimensional totally geodesic submanifold ofX (1 ≤ k ≤ n−1)
with the induced Riemannian structure and dm the corresponding measure.
From our description of the geodesics in X it is clear that any two points in
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X can be joined by a unique geodesic. Let d be a distance function on X ,
and for simplicity we write o for the origin xo in X . Consider now geodesic
polar-coordinates for X at o; this is a mapping

ExpoY → (r, θ1, . . . , θn−1) ,

where Y runs through the tangent space Xo, r = |Y | (the norm given by
the Riemannian structure) and (θ1, . . . , θn−1) are coordinates of the unit
vector Y/|Y |. Then the Riemannian structure of X is given by

(14) ds2 = dr2 + (sinh r)2 dσ2 ,

where dσ2 is the Riemannian structure

n−1
∑

i,j=1

gij(θ1, · · · , θn−1) dθi dθj

on the unit sphere in Xo. The surface area A(r) and volume V (r) =
∫ r

o
A(t) dt of a sphere in X of radius r are thus given by

(15) A(r) = Ωn(sinh r)n−1 , V (r) = Ωn

r
∫

o

sinhn−1 t dt ,

so V (r) increases like e(n−1)r. This explains the growth condition in the
next result where d(o, ξ) denotes the distance of o to the manifold ξ.

Theorem 1.6. (The support theorem.) Suppose f ∈ C(X) satisfies

(i) For each integer m > 0, f(x)emd(o,x) is bounded.

(ii) There exists a number R > 0 such that

̂f(ξ) = 0 for d(o, ξ) > R .

Then
f(x) = 0 for d(o, x) > R .

Taking R→ 0 we obtain the following consequence.

Corollary 1.7. The Radon transform f → ̂f is one-to-one on the space
of continuous functions on X satisfying condition (i) of “exponential de-
crease”.

Proof of Theorem 1.6. Using smoothing of the form

∫

G

ϕ(g)f(g−1 · x) dg
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(ϕ ∈ D(G), dg Haar measure on G) we can (as in Theorem 2.6, Ch. I)
assume that f ∈ E(X).

We first consider the case when f in (2) is a radial function. Let P denote
the point in ξ at the minimum distance p = d(o, ξ) from o, let Q ∈ ξ be
arbitrary and let

q = d(o,Q) , r = d(P,Q) .

Since ξ is totally geodesic d(P,Q) is
also the distance between P and Q in
ξ. Consider now the totally geodesic
plane π through the geodesics oP and
oQ as given by Lemma 1.1 (Fig. III.1).
Since a totally geodesic submanifold
contains the geodesic joining any two
of its points, π contains the geodesic
PQ. The angle oPQ being 90◦ (see
e.g. [DS], p. 77) we conclude by hy-
perbolic trigonometry, (see e.g. Cox-
eter [1957])

P Q

o

p

r

q

ξ

FIGURE III.1.

(16) cosh q = cosh p cosh r .

Since f is radial it follows from (16) that the restriction f |ξ is constant on
spheres in ξ with center P . Since these have area Ωk(sinh r)k−1 formula
(13) takes the form

(17) ̂f(ξ) = Ωk

∞
∫

0

f(Q)(sinh r)k−1 dr .

Since f is a radial function it is invariant under the subgroup K ⊂ G which
fixes o. But K is not only transitive on each sphere Sr(o) with center o,
it is for each fixed k transitive on the set of k-dimensional totally geodesic
submanifolds which are tangent to Sr(o). Consequently, ̂f(ξ) depends only
on the distance d(o, ξ). Thus we can write

f(Q) = F (cosh q) , ̂f(ξ) = ̂F (cosh p)

for certain 1-variable functions F and ̂F , so by (16) we obtain

(18) ̂F (cosh p) = Ωk

∞
∫

0

F (cosh p cosh r)(sinh r)k−1 dr .
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Writing here t = cosh p, s = cosh r this reduces to

(19) ̂F (t) = Ωk

∞
∫

1

F (ts)(s2 − 1)(k−2)/2 ds .

Here we substitute u = (ts)−1 and then put v = t−1. Then (19) becomes

v−1
̂F (v−1) = Ωk

v
∫

0

{F (u−1)u−k}(v2 − u2)(k−2)/2 du .

This integral equation is of the form (19), Ch. I so we get the following
analog of (20), Ch. I:

(20) F (u−1)u−k = c u

(

d

d(u2)

)k u
∫

o

(u2 − v2)(k−2)/2
̂F (v−1) dv ,

where c is a constant. Now by assumption (ii) ̂F (cosh p) = 0 if p > R.
Thus

̂F (v−1) = 0 if 0 < v < (cosh R)−1 .

From (20) we can then conclude

F (u−1) = 0 if u < (cosh R)−1

which means f(x) = 0 for d(o, x) > R. This proves the theorem for f radial.
Next we consider an arbitrary f ∈ E(X) satisfying (i), (ii) . Fix x ∈ X

and if dk is the normalized Haar measure on K consider the integral

Fx(y) =

∫

K

f(gk · y) dk , y ∈ X ,

where g ∈ G is an element such that g · o = x. Clearly, Fx(y) is the average
of f on the sphere with center x, passing through g · y. The function Fx
satisfies the decay condition (i) and it is radial. Moreover,

(21) ̂Fx(ξ) =

∫

K

̂f(gk · ξ) dk .

We now need the following estimate

(22) d(o, gk · ξ) ≥ d(o, ξ) − d(o, g · o) .
For this let xo be a point on ξ closest to k−1g−1 · o. Then by the triangle
inequality

d(o, gk · ξ) = d(k−1g−1 · o, ξ) ≥ d(o, xo)− d(o, k−1g−1 · o)
≥ d(o, ξ)− d(o, g · o) .
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Thus it follows by (ii) that

̂Fx(ξ) = 0 if d(o, ξ) > d(o, x) +R .

Since Fx is radial this implies by the first part of the proof that

(23)

∫

K

f(gk · y) dk = 0

if

(24) d(o, y) > d(o, g · o) +R .

But the set {gk · y : k ∈ K} is the sphere Sd(o,y)(g · o) with center g · o
and radius d(o, y) ; furthermore, the inequality in (24) implies the inclusion
relation

(25) BR(o) ⊂ Bd(o,y)(g · o)

for the balls. But considering the part in BR(o) of the geodesic through o
and g ·o we see that conversely relation (25) implies (24). Theorem 1.6 will
therefore be proved if we establish the following lemma.

Lemma 1.8. Let f ∈ C(X) satisfy the conditions:

(i) For each integer m > 0, f(x)emd(o,x) is bounded.

(ii) There exists a number R > 0 such that the surface integral

∫

S

f(s) dω(s) = 0 ,

whenever the spheres S encloses the ball BR(o).

Then
f(x) = 0 for d(o, x) > R .

Proof. This lemma is the exact analog of Lemma 2.7, Ch. I, whose proof,
however, used the vector space structure of Rn. By using the model (1) of
the hyperbolic space we shall nevertheless adapt the proof to the present
situation. As before we may assume that f is smooth, i.e., f ∈ E(X).

This model is useful here because the spheres in X are the ordinary
Euclidean spheres inside the ball. This fact is obvious for the spheres Σ
with center 0. For the general statement it suffices to prove that if T is
the geodesic symmetry with respect to a point (which we can take on the
x1-axis) then T (Σ) is a Euclidean sphere. The unit disk D in the x1x2-
plane is totally geodesic in X , hence invariant under T . Now the isometries
of the non-Euclidean disk D are generated by the complex conjugation
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x1 + ix2 → x1 − ix2 and fractional linear transformations so they map
Euclidean circles into Euclidean circles. In particular T (Σ∩D) = T (Σ)∩D
is a Euclidean circle. But T commutes with the rotations around the x1-
axis. Thus T (Σ) is invariant under such rotations and intersects D in a
circle; hence it is a Euclidean sphere.

After these preliminaries we pass to the proof of Lemma 1.8. Let S =
Sr(y) be a sphere in X enclosing Br(o) and let Br(y) denote the corre-
sponding ball. Expressing the exterior X − Br(y) as a union of spheres in
X with center y we deduce from assumption (ii)

(26)

∫

Br(y)

f(x) dx =

∫

X

f(x) dx ,

which is a constant for small variations in r and y. The Riemannian measure
dx is given by

(27) dx = ρn dxo ,

where dxo = dx1 . . . dxn is the Euclidean volume element. Let ro and yo,
respectively, denote the Euclidean radius and Euclidean center of Sr(y).
Then Sro(yo) = Sr(y), Bro(yo) = Br(y) set-theoretically and by (26) and
(27)

(28)

∫

Br0 (y0)

f(x0)ρ(x0)
n dxo = const. ,

for small variations in ro and yo; thus by differentiation with respect to ro,

(29)

∫

Sr0(y0)

f(s0)ρ(s0)
n dωo(so) = 0 ,

where dωo is the Euclidean surface element. Putting f∗(x) = f(x)ρ(x)n we
have by (28)

∫

Bro (yo)

f∗(xo) dxo = const. ,

so by differentiating with respect to yo, we get
∫

Bro (o)

(∂if
∗)(yo + xo) dxo = 0 .

Using the divergence theorem (26), Chapter I, §2, on the vector field F (xo) =
f∗(yo+xo)∂i defined in a neighborhood of Bro(0) the last equation implies

∫

Sro (0)

f∗(yo + s)si dωo(s) = 0 ,
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which in combination with (29) gives

(30)

∫

Sro (yo)

f∗(s)si dωo(s) = 0 .

The Euclidean and the non-Euclidean Riemannian structures on Sro(yo)
differ by the factor ρ2. It follows that dω = ρ(s)n−1 dωo so (30) takes the
form

(31)

∫

Sr(y)

f(s)ρ(s)si dω(s) = 0 .

We have thus proved that the function x → f(x)ρ(x)xi satisfies the as-
sumptions of the theorem. By iteration we obtain

(32)

∫

Sr(y)

f(s)ρ(s)ksi1 . . . sik dω(s) = 0 .

In particular, this holds with y = 0 and r > R. Then ρ(s) = constant and
(32) gives f ≡ 0 outside BR(o) by the Weierstrass approximation theorem.
Now Theorem 1.6 is proved.

Now let L denote the Laplace-Beltrami operator on X . (See Ch. V, §1
for the definition.) Because of formula (14) for the Riemannian structure
of X , L is given by

(33) L =
∂2

∂r2
+ (n− 1) coth r

∂

∂r
+ (sinh r)−2LS

where LS is the Laplace-Beltrami operator on the unit sphere in X0. We
consider also for each r ≥ 0 the mean-value operator M r defined by

(M rf)(x) =
1

A(r)

∫

Sr(x)

f(s) dω(s) .

As we saw before this can also be written

(34) (M rf)(g · o) =

∫

K

f(gk · y) dk

if g ∈ G is arbitrary and y ∈ X is such that r = d(o, y). If f is an analytic
function one can, by expanding it in a Taylor series, prove from (34) that
M r is a certain power series in L (e.g. Helgason [1959], pp. 270-272); see
also remark below. In particular we have the commutativity

(35) M rL = LM r .
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This in turn implies the “Darboux equation”

(36) Lx(F (x, y)) = Ly(F (x, y))

for the function F (x, y) = (Md(o,y)f)(x). In fact, using (34) and (35) we
have if g · o = x, r = d(o, y)

Lx(F (x, y)) = (LM rf)(x) = (M rLf)(x)

=

∫

K

(Lf)(gk · y) dk =

∫

K

(Ly(f(gk · y))) dk

the last equation following from the invariance of the Laplacian under the
isometry gk. But this last expression is Ly(F (x, y)).

We remark that the analog of Lemma 2.13 in Ch. VI which also holds
here would give another proof of (35) and (36).

For a fixed integer k(1 ≤ k ≤ n − 1) let Ξ denote the manifold of
all k-dimensional totally geodesic submanifolds of X . If ϕ is a continuous
function on Ξ we denote by ϕ̌ the point function

ϕ̌(x) =

∫

x∈ξ

ϕ(ξ) dμ(ξ) ,

where μ is the unique measure on the (compact) space of ξ passing through
x, invariant under all rotations around x and having total measure one.

Theorem 1.9. (The inversion formula.) For k even let Qk denote the
polynomial

Qk(z)=[z + (k−1)(n−k)][z + (k−3)(n−k+2)] . . . [z+1 · (n−2)]

of degree k/2. The k-dimensional Radon transform on X is then inverted
by the formula

cf = Qk(L)
(

( ̂f)∨
)

, f ∈ D(X) .

Here c is the constant

(37) c = (−4π)k/2Γ(n/2)/Γ((n− k)/2) .

The formula holds also if f satisfies the decay condition (i) in Corollary 2.1,
Ch. IV.

Proof. Fix ξ ∈ Ξ passing through the origin o ∈ X . If x ∈ X fix g ∈ G such
that g · o = x. As k runs through K, gk · ξ runs through the set of totally
geodesic submanifolds of X passing through x and

ϕ̌(g · o) =

∫

K

ϕ(gk · ξ) dk .
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Hence

( ̂f)∨(g · o) =

∫

K

(∫

ξ

f(gk · y) dm(y)

)

dk =

∫

ξ

(M rf)(g · o) dm(y) ,

where r = d(o, y). But since ξ is totally geodesic in X , it has also constant
curvature −1 and two points in ξ have the same distance in ξ as in X . Thus
we have

(38) ( ̂f)∨(x) = Ωk

∞
∫

0

(M rf)(x)(sinh r)k−1 dr .

We apply L to both sides and use (36). Then

(39) (L( ̂f)∨)(x) = Ωk

∞
∫

0

(sinh r)k−1Lr(M
rf)(x) dr ,

where Lr is the “radial part” ∂2

∂r2 + (n − 1) coth r ∂∂r of L. Putting now
F (r) = (M rf)(x) we have the following result.

Lemma 1.10. Let m be an integer 0 < m < n = dimX. Then

∞
∫

0

sinhm rLrF dr

= (m+ 1− n)

[

m

∞
∫

0

sinhm rF (r) dr + (m− 1)

∞
∫

0

sinhm−2 rF (r) dr

]

.

If m = 1 the term (m−1)
∫∞

0
sinhm−2 rF (r) dr should be replaced by F (0).

This follows by repeated integration by parts.
From this lemma combined with the Darboux equation (36) in the form

(40) Lx(M
rf(x)) = Lr(M

rf(x))

we deduce

[Lx +m(n−m− 1)]

∞
∫

0

sinhm r(M rf)(x) dr

= −(n−m− 1)(m− 1)

∞
∫

0

sinhm−2 r(M rf)(p) dr .
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Applying this repeatedly to (39) we obtain Theorem 1.9.
Unfortunately, this proof does not work for k odd, in particular not for

the X-ray transform. Because of Proposition 1.2, the formula (6) remains
valid for the hyperbolic space with the same proof.

We shall now invert the transform f → ̂f by invoking the more general
transform ϕ → ϕ̌p. Consider x ∈ X, ξ ∈ Ξ with d(x, ξ) = p. Select g ∈ G
such that g · o = x. Then d(o, g−1ξ) = p so {kg−1 · ξ : k ∈ K} is the set of
η ∈ Ξ at distance p from o and {gkg−1 · ξ : k ∈ K} is the set of η ∈ Ξ at
distance p from x. Hence

( ̂f)∨p (g · o) =

∫

K

̂f(gkg−1 · ξ) dk =

∫

K

dk

∫

ξ

f(gkg−1 · y) dm(y)

=

∫

ξ

⎛

⎝

∫

K

f(gkg−1 · y) dk
⎞

⎠ dm(y)

so

(41) ( ̂f)∨p (x) =

∫

ξ

(Md(x,y)f)(x) dm(y) .

p

r

q

ξ x

x0 y

FIGURE III.2.

Let x0 ∈ ξ be a point at minimum dis-
tance (i.e., p) from x and let (Fig. III.2)

r = d(x0, y) , q = d(x, y) , y ∈ ξ .

Since ξ ⊂ X is totally geodesic, d(xo, y)
is also the distance between xo and y in
ξ. In (41) the integrand (Md(x,y)f)(x) is
constant in y on each sphere in ξ with
center xo.

Theorem 1.11 (General inversion). The transform f → ̂f is inverted
by

f(x) = −ck
⎡

⎣

(

d

d(r2)

)k ∞
∫

r

(t2 − r2)(k−2)/2tk( ̂f)∨s(t)(x) dt

⎤

⎦

r=1

where s(p) = cosh−1 p and

ck = 2/(πk/2Γ(k/2)) .

As for the flat case the following improvements hold for k even and the
case k = 1.
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Theorem 1.12. (i) If k is even the inversion can be written

f(x) = C

[

(

d

d(r2)

)k/2

(rk−1( ̂f)∨s(r)(x))

]

r=1

, C = const. .

(ii) If k = 1 then

f(x) = − 1

π

∞
∫

0

1

sinh p

d

dp
(( ̂f)∨p (x)) dp .

Proof. Applying geodesic polar coordinates in ξ with center x0 we obtain
from (37),

(42) ( ̂f)∨p (x) = Ωk

∞
∫

0

(M qf)(x) sinhk−1 r dr .

Using the cosine relation on the right-angled triangle (xx0y) we have by
r = d(x0, y), q = d(x, y) and d(x0, x) = p,

(43) cosh q = cosh p cosh r .

With x fixed we define F and ̂F by

(44) F (cosh q) = (M qf)(x) , ̂F (cosh p) = ( ̂f)∨p (x) .

Then by (42),

(45) ̂F (cosh p) = Ωk

∞
∫

0

F (cosh p cosh r) sinhk−1 r dr .

Putting here t = cosh p, s = cosh r this becomes

̂F (t) = Ωk

∞
∫

1

F (ts)(s2 − 1)
k
2−1 ds ,

Putting here u = ts, ds = t−1 du we get the Abel type integral equation

(46) tk−1
̂F (t) = Ωk

∞
∫

t

u−1F (u)(u2 − t2)(k−2)/2u du .

This is inverted just as in the flat case giving

(47) r−1F (r) = −c(k)
(

d

d(r2)

)k
∞
∫

r

tk−1
̂F (t)(t2 − r2)(k−2)/2t dt .
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Here we put r = 1 and derive Theorem 1.11.
If k is even, each time we apply d/d(r2) the exponent (k−2)/2 is lowered

by 1. After k
2 − 1 steps the factor (t2 − r2)(k−2)/2 has disappeared. Then

1
2rd/dr produces rk−1( ̂f)∨s(r) and part (i) of Theorem 1.12 follows.

If k = 1 we note that in (47)

(t2 − r2)− 1
2 t =

d

dt
(t2 − r2) 1

2 ,

so

F (1) = +
c(1)

2

⎡

⎣

d

dr

∞
∫

r

(t2 − r2) 1
2
d

dt
̂F (t) dt

⎤

⎦

r=1

= −c(1)

2

∞
∫

1

(t2 − 1)−
1
2
d

dt
̂F (t) dt .

Now part (ii) follows by putting t = cosh p, dt = sinh p dp.

In the proof we used (46)–(47) only for r = 1. More generally these
formulas give an explicit relationship between spherical averages of f and
averages of integrals of f over k-dimensional totally geodesic submanifolds.

Theorem 1.13. With s(t) = cosh−1 t we have

( ̂f)∨s(t)(x) = Ωkt
1−k

∞
∫

t

(M s(u)f)(x)(u2 − t2)(k−2)/2 du , t ≥ 1 ,

(Ms(r)f)(x) = −c(k)r
(

d

d(r2)

)k
∞
∫

r

tk( ̂f)∨s(t)(t
2 − r2)(k−2)/2 dt ,

where

c(k) =
2

π1/2Γ(k/2)
.

Example.

For k = 2 this reduces to

( ̂f)∨s(t)(x) = 2π
1

t

∞
∫

t

(M s(u)f)(x) du t ≥ 1 ,

(M s(r)f)(x) =
1

2π

d

dr

(

r( ̂f)∨s(r)(x)
)

, r ≥ 1 .
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For k = 1 we have even more symmetric relations between spherical
averages and averages of X-ray transforms:

( ̂f)∨s(t)(x) = 2

∞
∫

t

(M s(u)f)(x)
du

(u2 − t2)1/2 , t ≥ 1 ,

(Ms(r)f)(x) = − 2

π

∞
∫

r

d

dt

(

( ̂f)∨s(t)(x)
) dt

(t2 − r2)1/2 , r ≥ 1 .

Again the dimension n does not enter explicitly in the formulas.

A special case. The case of the hyperbolic plane H2 being particularly in-
teresting we shall now prove one more inversion formula ((31), Ch. II) which
has more resemblance to Theorem 3.1, Ch. I, than the formula above does.
For this we use a few facts about spherical functions on Hn. A spherical
function ϕ on G/K = Hn is by definition a K-invariant function which
is an eigenfunction of the Laplacian L on X satisfying ϕ(0) = 1. Then by
Helgason [1962] or [1984] the eigenspace of L containing ϕ consists of the
functions f on X satisfying the functional equation (cf. [GGA], p. 64)

(48)

∫

K

f(gk · x) dk = f(g · o) ϕ(x) .

Consider now the case H2. Then the spherical functions are the solutions
ϕλ(r) of the differential equation

(49)
d2ϕλ
dr2

+ coth r
dϕλ
dr

= −(λ2 + 1
4 )ϕλ , ϕλ(o) = 1 .

Here λ ∈ C and ϕ−λ = ϕλ. The function ϕλ has the integral representation

(50) ϕλ(r) =
1

π

π
∫

0

(ch r − sh r cos θ)−iλ+
1
2 dθ .

In fact, already the integrand is easily seen to be an eigenfunction of the
operator L in (33) (for n = 2) with eigenvalue −(λ2 + 1/4). It is known
that |ϕλ(r)| ≤ const.re−

r
2 for λ real and large r.

If f ∈ Cc(X) and ψ(x) = Ψ(d(o, x)) the convolution × in Ch. II, §2
satisfies

(51) (f × ψ)(x) =

∫

X

f(y)Ψ(d(x, y)) dy .

If f is a radial function on X its spherical transform ˜f is defined by

(52) ˜f(λ) =

∫

X

f(x)ϕ−λ(x) dx
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for all λ ∈ C for which this integral exists. The continuous radial functions
on X form a commutative algebra C�c(X) under convolution and

(53) (f1 × f2)∼(λ) = ˜f1(λ) ˜f2(λ) .

In fact, using (48) for f = ϕ = ϕ−λ,

(f1 × f2)∼(λ) =

∫

G

f1(h · o)
(

∫

G

f2(g · o)ϕ−λ(hg · o) dg
)

dh

=

∫

G

f1(h · o)
(

∫

G

f2(g · o)
)(

∫

K

ϕ−λ(hkg · o) dk dg
)

dh

= ˜f1(λ) ˜f2(λ) .

We know already from Corollary 1.7 that the Radon transform on Hn is
injective and is inverted in Theorems 1.10 and 1.11. For the case
n = 2, k = 1 we shall now obtain another inversion formula based on
(53).

The spherical function ϕλ(r) in (50) is the classical Legendre function
Pv(cosh r) with v = iλ − 1

2 for which we shall need the following result
([Prudnikov, Brychkov and Marichev], Vol. III, 2.17.8(2)).

Lemma 1.14.

(54) 2π

∞
∫

0

e−prPv(cosh r) dr = π
Γ(p−v2 )Γ(p+v+1

2 )

Γ(1 + p+v
2 )Γ(1+p−v

2 )
,

for

(55) Re (p− v) > 0 , Re (p+ v) > −1 .

We shall require this result for p = 0, 1 and λ real. In both cases, condi-
tions (55) are satisfied.

Let τ and σ denote the functions

(56) τ(x) = sinh d(o, x)−1 , σ(x) = coth(d(o, x)) − 1 , x ∈ X .

Lemma 1.15. For f ∈ D(X) we have

(57) ( ̂f)∨(x) = π−1(f × τ)(x) .
Proof. In fact, the right hand side is, by (51),

∫

X

sinh d(x, y)−1f(y) dy =

∞
∫

0

dr(sinh r)−1

∫

Sr(x)

f(y) dω(y) ,
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so the lemma follows from (38).
Similarly we have

(58) Sf = f × σ ,

where S is the operator

(59) (Sf)(x) =

∫

X

(coth(d(x, y)) − 1)f(y) dy .

Theorem 1.16 (Another inversion of the X-ray transform on H2).

The operator f → ̂f is inverted by

(60) LS(( ̂f)∨) = −4πf , f ∈ D(X) .

Proof. The operators ̂ , ∨, S and L are all G-invariant so it suffices to
verify (60) at o. Let f �(x) =

∫

K
f(k · x) dk. Then

(f × τ)� = f � × τ , (f × σ)� = f � × σ , (Lf)(o) = (Lf �)(o) .

Thus by (57)–(58)

LS(( ̂f)∨)(o) = L(S(( ̂f)∨))�(o) = π−1L(f × τ × σ)�(o)

= LS(((f �)b)∨) )(o) .

Now, if (60) is proved for a radial function this equals cf �(o) = cf(o). Thus
(60) would hold in general. Consequently, it suffices to prove

(61) L(f × τ × σ) = −4πf , f radial in D(X) .

Now f , τϕλ (λ real) and σ are all integrable on X . By the proof of (53) we
have for f1 = τ , f2 = σ, and λ real, the formula (τ × σ)∼(λ) = τ̃(λ)σ̃(λ);
repeating the argument with f1 = f and f2 = τ × σ we deduce that

(62) (f × τ × σ)∼(λ) = ˜f(λ)τ̃ (λ)σ̃(λ) .

Since coth r − 1 = e−r/ sinh r, and since dx = sinh r dr dθ, τ̃ (λ) and σ̃(λ)
are given by the left hand side of (54) for p = 0 and p = 1, respectively.
Thus

τ̃ (λ) = π
Γ( 1

4 − iλ
2 )Γ( iλ2 + 1

4 )

Γ( iλ2 + 3
4 )Γ(3

4 − iλ
2 )

,

σ̃(λ) = π
Γ(3

4 − iλ
2 )Γ( iλ2 + 3

4 )

Γ( iλ2 + 5
4 )Γ(5

4 − iλ
2 )

.
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Using the identity Γ(x + 1) = xΓ(x) on the denominator of σ̃(λ) we see
that

(63) τ̃(λ)σ̃(λ) = 4π2(λ2 + 1
4 )−1 .

Now
L(f × τ × σ) = (Lf × τ × σ) , f ∈ D�(X) ,

and by (49), (Lf)∼(λ) = −(λ2 + 1
4 ) ˜f(λ). Using the decomposition τ =

ϕτ+(1−ϕ)τ where ϕ is the characteristic function of a ballB(0) we see that
f×τ ∈ L2(X) for f ∈ D�(X). Since σ ∈ L1(X) we have f×τ×σ ∈ L2(X).

By the Plancherel theorem, the spherical transform f(r) → ˜f(λ) (λ real)
is injective on (L2)�(X) so we deduce from (62)–(63) that (60) holds with
the constant −4π.

C. The Spheres and the Elliptic Spaces

Now let X be the unit sphere Sn(0) ⊂ Rn+1 and Ξ the set of k-dimensional
totally geodesic submanifolds of X . Each ξ ∈ Ξ is a k-sphere. We shall now
invert the Radon transform

̂f(ξ) =

∫

ξ

f(x) dm(x) , f ∈ E(X)

where dm is the measure on ξ given by the Riemannian structure induced
by that ofX . In contrast to the hyperbolic space, each geodesicX through a
point x also passes through the antipodal point Ax. As a result, ̂f = (f ◦A)b

and our inversion formula will reflect this fact. Although we state our result
for the sphere, it is really a result for the elliptic space, that is the sphere
with antipodal points identified. The functions on this space are naturally
identified with symmetric functions on the sphere.

Again let

ϕ̌(x) =

∫

x∈ξ

ϕ(ξ) dμ(ξ)

denote the average of a continuous function on Ξ over the set of ξ passing
through x.

Theorem 1.17 (Inversion on Sn). Let k be an integer, 1 ≤ k < n =
dimX.

(i) The mapping f → ̂f (f ∈ E(X)) has kernel consisting of the skew
functions (the functions f satisfying f + f ◦A = 0).

(ii) Assume k even and let Pk denote the polynomial

Pk(z)=[z−(k−1)(n−k)][z−(k−3)(n−k+2)] . . . [z−1(n−2)]
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of degree k/2. The k-dimensional Radon transform on X is then inverted
by the formula

c(f + f ◦A) = Pk(L)(( ̂f)∨) , f ∈ E(X)

where c is the constant in (37).

In particular, for f even, f = constant ⇔ ̂f is constant.

(iii) For k = n− 1, Ξ is identified with Sn/Z2 and the mapping f → ̂f is
surjective.

Proof. We first prove (ii) in a similar way as in the noncompact case. The
Riemannian structure in (3) is now replaced by

ds2 = dr2 + sin2 r dσ2 ;

the Laplace–Beltrami operator is now given by

(64) L =
∂2

∂r2
+ (n− 1) cot r

∂

∂r
+ (sin r)−2LS

instead of (33) and

( ̂f)∨(x) = Ωk

π
∫

0

(M rf)(x) sink−1 r dr .

For a fixed x we put F (r) = (M rf)(x). The analog of Lemma 1.9 now
reads as follows.

Lemma 1.18. Let m be an integer, 0 < m < n = dimX. Then

π
∫

0

sinm rLrF dr

= (n−m− 1)

⎡

⎣m

π
∫

0

sinm rF (r) dr − (m− 1)

π
∫

0

sinm−2 rF (r) dr

⎤

⎦ .

If m = 1, the term (m − 1)
∫ π

0 sinm−2 rF (r) dr should be replaced by
F (o) + F (π).

Since (40) is still valid the lemma implies

[

Lx −m(n−m− 1)
]

π
∫

0

sinm r(M rf)(x) dr

= −(n−m− 1)(m− 1)

π
∫

0

sinm−2 r(M rf)(x) dr ,
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and the desired inversion formula follows by iteration since

F (0) + F (π) = f(x) + f(Ax) .

In the case when k is even, Part (i) follows from (ii). Next suppose
k = n − 1, n even. For each ξ there are exactly two points x and Ax at
maximum distance, namely π

2 , from ξ and we write

̂f(x) = ̂f(Ax) = ̂f(ξ) .

We have then

(65) ̂f(x) = Ωn(M
π
2 f)(x) .

Next we recall some well-known facts about spherical harmonics. We
have

(66) L2(X) =

∞
∑

0

Hs ,

where the space Hs consist of the restrictions to X of the homogeneous
harmonic polynomials on Rn+1 of degree s.

(a) Lhs = −s(s+ n− 1)hs (hs ∈ Hs) for each s ≥ 0. This is immediate
from the decomposition

Ln+1 =
∂2

∂r2
+
n

r

∂

∂r
+

1

r2
L

of the Laplacian Ln+1 of Rn+1 (cf. (33)). Thus the spaces Hs are precisely
the eigenspaces of L.

(b) Each Hs contains a function (�≡ 0) which is invariant under the group
K of rotations around the vertical axis (the xn+1-axis in Rn+1). This func-
tion ϕs is nonzero at the North Pole o and is uniquely determined by the
condition ϕs(o) = 1. This is easily seen since by (64) ϕs satisfies the ordi-
nary differential equation

d2ϕs
dr2

+ (n− 1) cot r
dϕs
dr

= −s(s+ n− 1)ϕs , ϕ′
s(o) = 0 .

It follows that Hs is irreducible under the orthogonal group O(n+ 1).

(c) Since the mean-value operator Mπ/2 commutes with the action of
O(n+ 1) it acts as a scalar cs on the irreducible space Hs. Since we have

Mπ/2ϕs = csϕs , ϕs(o) = 1 ,

we obtain

(67) cs = ϕs
(

π
2

)

.
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Lemma 1.19. The scalar ϕs(π/2) is zero if and only if s is odd.

Proof. Let Hs be the K-invariant homogeneous harmonic polynomial
whose restriction to X equals ϕs. Then Hs is a polynomial in x2

1 + · · ·+x2
n

and xn+1 so if the degree s is odd, xn+1 occurs in each term whence
ϕs(π/2) = Hs(1, 0, . . . 0, 0) = 0. If s is even, say s = 2d, we write

Hs = a0(x
2
1 + · · ·+ x2

n)d + a1x
2
n+1(x

2
1 + · · ·+ x2

n)d−1 + · · ·+ adx
2d
n+1 .

Using Ln+1 = Ln + ∂2/∂x2
n+1 and formula (64) in Ch. I the equation

Ln+1Hs ≡ 0 gives the recursion formula

ai(2d− 2i)(2d− 2i+ n− 2) + ai+1(2i+ 2)(2i+ 1) = 0

(0 ≤ i < d). Hence Hs(1, 0 . . . 0), which equals a0, is �= 0; Q.E.D.

Now each f ∈ E(X) has a uniformly convergent expansion

f =

∞
∑

0

hs (hs ∈ Hs)

and by (65)

̂f = Ωn

∞
∑

0

cshs .

If ̂f = 0 then by Lemma 1.19, hs = 0 for s even so f is skew. Conversely
̂f = 0 if f is skew so Part (i) is proved for the case k = n− 1, n even.

If k is odd, 0 < k < n− 1, the proof just carried out shows that ̂f(ξ)=0
for all ξ ∈ Ξ implies that f has integral 0 over every (k + 1)-dimensional
sphere with radius 1 and center 0. Since k+1 is even and < n we conclude
by (ii) that f + f ◦A = 0 so Part (i) is proved in general.

For (iii) (k = n− 1), ̂f in (65) coincides with the map ̂f ◦ j in (97) given
later so the surjectivity in Theorem 2.2 implies (iii) here. This completes

the proof of Theorem 1.17. For k < n − 1 the range of the map f → ̂f is
determined by Gonzalez [1994] and Kakehi [1993] as the kernel of a certain
fourth degree operator. The analog for the complex projective space was
proved by Kakehi [1992]. See also Gonzalez and Kakehi [2003] for a wider
perspective.

Example. (Minkowski’s theorem.)

Let Ω ⊂ R3 be a compact convex body with smooth boundary and 0 in its
interior. For a unit vector ω let

〈x, ω〉 = H(ω)

be the supporting plane with H(ω) > 0, perpendicular to ω. The sum

B(ω) = H(ω) +H(−ω)
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is called the width (Breite) of Ω in the direction ω.
We consider also the projection of Ω onto the plane through 0 perpen-

dicular to ω. The arc length U(ω) of the boundary curve C(ω) is called the
circumference (Umfang) in the direction ω. Using spherical harmonics
Minkowski [1911] proved the following result.

Theorem 1.20. The width B(ω) is constant (in ω) if and only if the
circumference U(ω) is a constant.

His method actually gives the following more general result which com-
bined with Theorem 1.17 (i) implies Theorem 1.20 immediately.

Theorem 1.21. With Ω, B(ω) and U(ω) as above we have

(68) U(ω) =
1

2

∫

Eω

B(σ) ds(σ) ,

where Eω is the equator of S2(0) perpendicular to ω and ds the arc-element
on Eω.

Proof. Let ω0 be the vector (0, 0, 1) and consider the boundary curve C(ω0)
in the x1x2-plane. The vertical tangent planes to Ω intersect the x1x2-plane
in the lines

(69) 〈x, ωϕ〉 = H(ωϕ) , ωϕ = (cosϕ, sinϕ) .

Thus C(ω0) is the envelope of these lines so its parametric equation is
obtained by combining (69) with its derivative with respect to ϕ. Thus,
putting h(ϕ) = H(ωϕ) we get the parametric representation of C(ω0):

x = h(ϕ) cosϕ− ∂h

∂ϕ
sinϕ , y = h(ϕ) sinϕ+

∂h

∂ϕ
cosϕ .

Thus
dx

dϕ
= −

(

h+
∂2h

∂ϕ2

)

sinϕ ,
dy

dϕ
=

(

h+
∂2h

∂ϕ2

)

cosϕ .

Since these cannot simultaneously vanish the arc length of C(ω0) is given
by

U(ω0) =

2π
∫

0

(

h(ϕ) +
∂2h

∂ϕ2

)

dϕ .

The second term integrates to 0 and

2π
∫

0

h(ϕ) dϕ =

2π
∫

0

H(ωϕ) dϕ =

2π
∫

0

H(−ωϕ) dϕ,

so
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U(ω0) =
1

2

2π
∫

0

B(ωϕ) dϕ ,

which proves the theorem.

We shall now extend Theorem 1.17 to arbitrary k, 1 ≤ k < n, with
special form for the X-ray transform where k = 1. The method is similar
to that for Hn but the geometry is a bit more complicated.

For clarity we first work out the case k = 1, n = 2 so X = S2 ⊂ R3

with center the origin 0 and o = (0, 0, 1) the North Pole. Let x ∈ X , ξ ∈ Ξ
with d(x, ξ) = p. Let x0 ∈ ξ with d(x, x0) = p. Thus the geodesic (xx0) is
perpendicular to ξ at x0 and the two-plane through ξ is perpendicular to
the plane E0 through 0, x, and x0.

0

o x
p

x0

y

−y

y∗

r

ξ

FIGURE III.3.

We put r = d(x0, y), q = d(x, y) and select g ∈ G = O(3) such that
g · o = x. Then, as in (41),

(70) ( ̂f)∨p (x) =

∫

ξ

(M qf)(x) dm(y) .

The sphere Sr(x0) in ξ consists of two points y and y∗ (symmetric to y
with respect to the plane E0). From (70) we get

( ̂f)∨p (x) = 2

π
∫

0

(M qf)(x) dr .
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With Kx the isotropy group of x, (M qf)(x) is the average of f over the
Kx−orbit of y. Since f is even it also equals the average of f over the
Kx-orbit of −y. These orbits are circles on S2 with centers x and −x. Thus
we can limit r to the interval (0, π2 ) and write

(71) ( ̂f)∨p (x) = 4

π
2

∫

0

(M qf)(x) dr .

By spherical trigonometry for the right-angled triangle (xx0y) we have

(72) cos q = cos p cos r .

Putting

(73) F (cos q) = (M qf)(x) , ̂F (cos p) = ( ̂f)∨p (x) ,

and v = cos p, u = v cos r = cos q we obtain

(74) ̂F (v) = 4

v
∫

0

F (u)(v2 − u2)−
1
2 du ,

which as in Theorem 2.6, Ch. I inverts to

(75) F (u) =
1

2π

d

du

u
∫

0

(u2 − v2)−
1
2 v ̂F (v) dv .

Figure II,2 (Ch. II, §4) illustrates the geometric meaning of ( ̂f)∨p (x). As
remarked before (41) the set {gkg−1 · ξ : k ∈ K} constitutes the set of
great circles with distance p from x so

(76) ( ̂f)∨p (x) =

∫

K

̂f(gkg−1 · ξ) dk .

We observe now that the left hand side is smooth in p. By the G-invariance
of the operations ̂ and ∨ it suffices to show this for x = o, where

(77) ( ̂f)∨p (o) =

∫

K

̂f(k · ξp) dk , ξp = ξ .

Perturbing ξp to ξp+Δp with the plane of ξp+Δp remaining perpendicular to
E0 we see that (77) extends to a smooth function in p and by its geometric
interpretation is even in p. Thus

d

dp
( ̂f)∨p (o) = 0 for p = 0 .
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Putting u = 1 in (75) we obtain

(78) f(x) =
1

2π

[

d

du

u
∫

0

( ̂f)∨cos−1 v(x)v(u
2 − v2)−

1
2 dv

]

u=1

.

More generally we consider X = Sn and Ξ the set of k-dimensional
totally geodesic submanifolds of X . The members of Ξ are intersections
of X with (k + 1)-dimensional planes in Rn+1 through the origin. Again
we take f even. Let x ∈ X , ξ ∈ Ξ with d(x, ξ) = p. We have X =
O(n + 1)/O(n) where O(n) = K is the isotropy subgroup of the North
Pole o = (0, . . . , 0, 1). Then as in (41)

(79) ( ̂f)∨p (x) =

∫

ξ

(Md(x,y)f)(x) dm(y)

and

(80) (Md(x,y)f)(x) =

∫

K

f(gkg−1 · y) dk .

Since f is even and gkg−1 a linear transformation, (Md(x,y)f)(x) is even
in y.

Again we choose x0 ∈ ξ minimizing d(x, y) for y ∈ ξ, so d(x, x0) = p and
the geodesic arc (xx0) is perpendicular to the (k+1)-plane containing ξ. Let
r = d(x0, x). Then q = d(x, y) is constant for y on each sphere Sr(x0) ⊂ ξ
(cf. (72)). Thus expressing (79) in geodesic polar coordinates in ξ with
center x0 we obtain

(81) ( ̂f)∨p (x) = Ωk

π
∫

0

(M qf)(x) sink−1 dr .

Figure III,4 shows the (k−1)-spheres Sr(x0) and Sπ−r(x0) in the k-sphere ξ.
Note that by (80) (M qf)(x) is the average of f on the Kx-orbit of y, Kx

being the isotropy subgroup of x. By the evenness of f this will also equal
the average Md(−x,−y)(−x) of f over the Kx orbit of −y. Also sin r =
sin(π − r) so in (81) we can restrict r to the interval

(

0, π2
)

. Thus

( ̂f)∨p (x) = 2Ωk

π
2

∫

0

(M qf)(x) sink−1 dr .

Using again the substitution (73) we obtain

vk−1
̂F (v) = 2Ωk

v
∫

0

F (u)(v2 − u2)
k
2 −1 du ,
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FIGURE III.4.

which is inverted as in Theorem 2.6, Ch. I by

(82) F (u) =
c

2
u

(

d

d(u2)

)k
u

∫

0

(u2 − v2)
k
2−1vk ̂F (v) dv ,

c being a constant. Since F (1) = f(x) this proves the following analog of
Theorem 1.11.

Theorem 1.22. The k-dimensional totally geodesic Radon transform
f → ̂f on Sn is for f symmetric inverted by

f(x) =
c

2

[(

d

d(u2)

)k
u

∫

0

( ̂f)∨cos−1(v)(x)v
k(u2 − v2)

k
2−1 dv

]

u=1

,

where
c−1 = (k − 1)!Ωk+1/2

k+1 .

For the case k = 1 we put Theorem 1.22 in more explicit form. Given
x ∈ Sn let Ex be the corresponding “equator” that is the set of points
at distance π/2 from x. For later purpose we state the result without the
evenness assumption for f .

Theorem 1.23. The X-ray transform on Sn is inverted by the formula

1
2 (f(x) + f(−x)) =

∫

Ex

f(ω) dω − 1

2π

π
2

∫

0

d

dp
(( ̂f)∨p (x))

dp

sin p

for each f ∈ E(Sn). Here dω is the normalized measure on the equator Ex.

Remark. Because of the integration over Ex this is not an exact inversion.
However, if f is even and ̂f ≡ 0, then the theorem impliesM

π
2 f = f , which,

together with Theorem 1.1, Ch. VI, implies f ≡ 0. See also Corollary 1.24
below.
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Proof. Replacing f(x) with 1
2 (f(x) + f(−x)) has no effect on ̂f , so with

̂F (cos p) = ( ̂f)∨p (x), we have for the right hand side of (82)

1

2π

⎧

⎨

⎩

d

du

u
∫

0

(u2 − v2)−
1
2 v ̂F (v) dv

⎫

⎬

⎭

u=1

= − 1

2π

⎧

⎨

⎩

d

du

u
∫

0

d

dv
(u2 − v2)

1
2 ̂F (v) dv

⎫

⎬

⎭

u=1

,

which by integration by parts becomes

− 1

2π

⎧

⎨

⎩

d

du

⎡

⎣−u ̂F (0)−
u

∫

0

(u2 − v2)1/2
d

dv
̂F (v) dv

⎤

⎦

⎫

⎬

⎭

u=1

=
1

2π
̂F (0) +

1

2π

1
∫

0

(1− v2)−
1
2
d ̂F

dv
dv

=
1

2π
( ̂f)∨π

2

(x) − 1

2π

π
2

∫

0

d

dp
( ̂f)∨p (x)

dp

sin p
.

The first term is (2π)−1 times the average of the integrals of f over
geodesics at distance π/2 from x which thus lie in Ex. It represents a
rotation-invariant functional on Ex so taking f ≡ 1 the term becomes the
first term on the right in the formula.

Corollary 1.24. Suppose f ∈ E(Sn) has support in the ball B =
{x ∈ Sn : d(o, x) < π

4 }. Then

f(x) = − 1

π

π
2

∫

0

d

dp
(( ̂f )∨p (x))

dp

sin p
, x ∈ B .

In fact, if x ∈ B then f(−x) = 0 and if y ∈ Ex then

d(o, y) ≥ d(x, y) − d(o, x) ≥ π

2
− π

4

so f(y) = 0.

We shall now discuss the analog for Sn of the support theorem (Theo-

rem 1.6) relative to the X-ray transform f → ̂f .
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Theorem 1.25 (The Support Theorem on Sn). Let C be a closed
spherical cap on Sn, C′ the cap on Sn symmetric to C with respect to the
origin 0 ∈ Rn+1. Let f ∈ C(Sn) be symmetric and assume

̂f(γ) = 0

for every geodesic γ which does not enter the “arctic zones” C and C′. (See
Fig. III.4.)

(i) If n ≥ 3 then f ≡ 0 outside C ∪ C′.

(ii) If n = 2 the same conclusion holds if all derivatives of f vanish on
the equator.

Proof. (i) Given a point x ∈ Sn outside C ∪C′ we can (say by the Hahn-
Banach theorem) find a 3-dimensional subspace ξ of Rn+1 which contains
Rx but does not intersect C ∪ C′. Then ξ ∩ Sn is a 2-sphere and f has
integral 0 over each great circle on it. By Theorem 1.17, f ≡ 0 on ξ ∩ Sn,
so f(x) = 0.

(ii) Here we consider the lower hemisphere S2
− of the unit sphere and

its tangent plane π at the South Pole S. The central projection μ from
the origin is a bijection of S2

− onto π which intertwines the two Radon
transforms as follows: If γ is a (half) great circle on S2

− and � the line μ(γ)
in π we have (Fig. III.5)

(83) cos d(S, γ) ̂f(γ) = 2

∫

�

(f ◦ μ−1)(x)(1 + |x|2)−1 dm(x) .

The proof follows by elementary geometry: Let on Fig. III.5, x = μ(s), ϕ
and θ the lengths of the arcs SM,Ms. The plane o′So′′ is perpendicular
to � and intersects the semi-great circle γ in M . If q = |So′′|, p = |o′′x| we
have for f ∈ C(S2) symmetric,

̂f(γ) = 2

∫

γ

f(s)dθ = 2

∫

�

(f ◦ μ−1)(x)
dθ

dp
dp .

Now

tanϕ = q , tan θ =
p

(1 + q2)1/2
, |x|2 = p2 + q2 .

so
dp

dθ
= (1 + q2)1/2(1 + tan2 θ) = (1 + |x|2)/(1 + q2)1/2 .

Thus
dp

dθ
= (1 + |x|2) cosϕ
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l

o′

o′′

x
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q
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γ
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M

θ

ϕ

FIGURE III.5.

and since ϕ = d(S, γ) this proves (83). Considering the triangle o′xS we
obtain

(84) |x| = tan d(S, s) .

Thus the vanishing of all derivatives of f on the equator implies rapid
decrease of f ◦ μ−1 at ∞.

Let C have spherical radius β. If ϕ > β we have by assumption, ̂f(γ) = 0
so by (83) and Theorem 2.6 in Chapter I,

(f ◦ μ−1)(x) = 0 for |x| > tanβ ,

whence by (84),
f(s) = 0 for d(S, s) > β .

Remark. Because of the example in Remark 2.9 in Chapter I the vanishing
condition in (ii) cannot be dropped.

There is a generalization of formula (83) to d-dimensional totally geodesic
submanifolds of Sn as well as of Hn (Kurusa [1992], [1994], Berenstein-
Casadio Tarabusi [1993]). This makes it possible to transfer the range
characterizations of the d-plane Radon transform in Rn (Chapter I, §6)
to the d-dimensional totally geodesic Radon transform in Hn. A very ex-
plicit range description is given by Ishikawa [1997]. In addition to the above
references see also Berenstein-Casadio Tarabusi-Kurusa [1997].
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D. The Spherical Slice Transform

We shall now briefly consider a variation on the Funk transform and con-
sider integrations over circles on S2 passing through the North Pole. This
Radon transform is given by f → ̂f where f is a function on S2,

(85) ̂f(γ) =

∫

γ

f(s) dm(s) ,

γ being a circle on S2 passing through N and dm the arc-element on γ.
It is easy to study this transform by relating it to the X-ray transform

on R2 by means of stereographic projection from N .
We consider a two-sphere S2 of diameter 1, lying on top of its tangent

plane R2 at the South Pole. Let ν : S2 − N → R2 be the stereographic
projection. The image ν(γ) is a line � ⊂ R2. (See Fig. III.6.) The plane
through the diameter NS perpendicular to � intersects γ in s0 and � in x0.
Then Ns0 is a diameter in γ, and in the right angle triangle NSx0, the line
Ss0 is perpendicular to Nx0. Thus, d denoting the Euclidean distance in
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R3, and q = d(S, x0), we have

(86) d(N, s0) = (1 + q2)−1/2 , d(s0, x0) = q2(1 + q2)−1/2 .

Let σ denote the circular arc on γ for which ν(σ) is the segment (x0, x) on
�. If θ is the angle between the lines Nx0, Nx then

(87) σ = (2θ) · 1
2 (1 + q2)−1/2 , d(x0, x) = tan θ(1 + q2)1/2 .

Thus, dm(x) being the arc-element on �,

dm(x)

dσ
=

dm(x)

dθ
· dθ
dσ

= (1 + q2)1/2 · (1 + tan2 θ)(1 + q2)1/2

= (1 + q2)

(

1 +
d(x0, x)

2

1 + q2

)

= 1 + |x|2 .

Hence we have

(88) ̂f(γ) =

∫

�

(f ◦ ν−1)(x)(1 + |x|2)−1 dm(x) ,

a formula quite similar to (83).
If f lies on C1(S2) and vanishes at N then f ◦ ν−1 = 0(x−1) at ∞. Also

of f ∈ E(S2) and all its derivatives vanish at N then f ◦ν−1 ∈ S(R2). As in
the case of Theorem 1.25 (ii) we can thus conclude the following corollaries
of Theorem 3.1, Chapter I and Theorem 2.6, Chapter I.

Corollary 1.26. The transform f → ̂f is one-to-one on the space C1
0 (S2)

of C1-functions vanishing at N .

In fact, (f ◦ ν−1)(x)/(1 + |x|2) = 0(|x|−3) so Theorem 3.1, Chapter I
applies.

Corollary 1.27. Let B be a spherical cap on S2 centered at N . Let f ∈
C∞(S2) have all its derivatives vanish at N . If

̂f(γ) = 0 for all γ through N , γ ⊂ B

then f ≡ 0 on B.

In fact (f ◦ ν−1)(x) = 0(|x|−k) for each k ≥ 0. The assumption on ̂f
implies that (f ◦ ν−1)(x)(1 + |x|2)−1 has line integral 0 for all lines outside
ν(B) so by Theorem 2.6, Ch. I, f ◦ ν−1 ≡ 0 outside ν(B).

Remark. In Cor. 1.27 the condition of the vanishing of all derivatives at
N cannot be dropped. This is clear from Remark 2.9 in Chapter I where
the rapid decrease at ∞ was essential for the conclusion of Theorem 2.6.
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§2 Compact Two-Point Homogeneous Spaces.

Applications

We shall now extend the inversion formula in Theorem 1.17 to compact
two-point homogeneous spaces X of dimension n > 1. By virtue of Wang’s
classification [1952] these are also the compact symmetric spaces of rank
one (see Matsumoto [1971] and Szabo [1991] for more direct proofs), so
their geometry can be described very explicitly. Here we shall use some
geometric and group theoretic properties of these spaces ((i)–(vii) below)
and refer to Helgason ([1959], p. 278, [1965a], §5–6 or [DS], Ch. VII, §10)
for their proofs.

Let U denote the group I(X) of isometries of X . Fix an origin o ∈ X
and let K denote the isotropy subgroup Uo. Let k and u be the Lie algebras
of K and U , respectively. Then u is semisimple. Let p be the orthogonal
complement of k in u with respect to the Killing form B of u. Changing
the distance function on X by a constant factor we may assume that the
differential of the mapping u → u · o of U onto X gives an isometry of p

(with the metric of −B) onto the tangent space Xo. This is the canonical
metric X which we shall use.

Let L denote the diameter of X , that is the maximal distance between
any two points. If x ∈ X let Ax denote the set of points in X of distance
L from x. By the two-point homogeneity the isotropy subgroup Ux acts
transitively on Ax; thus Ax ⊂ X is a submanifold, the antipodal mani-
fold associated to x. With Xx denoting the tangent space to X at x, Expx
denotes the map Xx → X which maps lines through the origin in Xx to
geodesics through x in X . Thus the curve t→ Expx(tA) has tangent vector
A for t = 0.

(i) Each Ax is a totally geodesic submanifold of X; with the Riemannian
structure induced by that of X it is another two-point homogeneous space.

(ii) Let Ξ denote the set of all antipodal manifolds in X; since U acts
transitively on Ξ, the set Ξ has a natural manifold structure. Then the
mapping j : x → Ax is a one-to-one diffeomorphism; also x ∈ Ay if and
only if y ∈ Ax.
(iii) Each geodesic in X has period 2L. If x ∈ X the mapping Expx : Xx →
X gives a diffeomorphism of the ball BL(0) onto the open set X −Ax.

Fix a vector H ∈ p of length L (i.e., L2 = −B(H,H)). For Z ∈ p let TZ
denote the linear transformation Y → [Z, [Z, Y ]] of p, [ , ] denoting the Lie
bracket in u. For simplicity, we now write Exp instead of Expo. A point
Y ∈ p is said to be conjugate to o if the differential dExp is singular at
Y .

The line a = RH is a maximal abelian subspace of p. The eigenvalues of
TH are 0, α(H)2 and possibly (α(H)/2)2, where ±α (and possibly ±α/2)
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are the roots of u with respect to a. Let

(89) p = a + pα + pα/2

be the corresponding decomposition of p into eigenspaces; the dimensions
q = dim(pα), p = dim(pα/2) are called the multiplicities of α and α/2,
respectively.

(iv) Suppose H is conjugate to o. Then Exp(a+pα), with the Riemannian
structure induced by that of X, is a sphere, totally geodesic in X, having o
and ExpH as antipodal points and having curvature π2L2. Moreover,

AExpH = Exp(pα/2) .

(v) If H is not conjugate to o then pα/2 = 0 and

AExpH = Exp pα .

(vi) The differential at Y of Exp is given by

dExpY = dτ(exp Y ) ◦
∞
∑

0

T kY
(2k + 1)!

,

where for u ∈ U , τ(u) is the isometry x→ u · x.
(vii) In analogy with (33) the Laplace-Beltrami operator L on X has the
expression

L =
∂2

∂r2
+

1

A(r)
A′(r)

∂

∂r
+ LSr ,

where LSr is the Laplace-Beltrami operator on Sr(o) and A(r) its area.

(viii) The spherical mean-value operator M r commutes with the Laplace-
Beltrami operator.

Lemma 2.1. The surface area A(r) (0 < r < L) is given by

A(r) = Ωnλ
−p(2λ)−q sinp(λr) sinq(2λr) ,

where p and q are the multiplicities above and λ = |α(H)|/2L.

Proof. Because of (iii) and (vi) the surface area of Sr(o) is given by

A(r) =

∫

|Y |=r

det

(

∞
∑

0

T kY
(2k + 1)!

)

dωr(Y ) ,

where dωr is the surface on the sphere |Y | = r in p. Because of the two-point
homogeneity the integrand depends on r only, so it suffices to evaluate it
for Y = Hr = r

LH . Since the nonzero eigenvalues of THr are α(Hr)
2 with

multiplicity q and (α(Hr)/2)2 with multiplicity p, a trivial computation
gives the lemma.
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We consider now Problems A, B and C from Chapter II, §2 for the
homogeneous spaces X and Ξ, which are acted on transitively by the same
group U . Fix an element ξo ∈ Ξ passing through the origin o ∈ X . If
ξo = Ao′ , then an element u ∈ U leaves ξo invariant if and only if it lies in
the isotropy subgroup K ′ = Uo′ ; we have the identifications

X = U/K , Ξ = U/K ′ ,

and x ∈ X and ξ ∈ Ξ are incident if and only if x ∈ ξ.
On Ξ we now choose a Riemannian structure such that the diffeomor-

phism j : x→ Ax from (ii) is an isometry. Let L and Λ denote the Lapla-

cians on X and Ξ, respectively. With x̌ and ̂ξ defined as in Ch. II, §1, we
have

̂ξ = ξ , x̌ = {j(y) : y ∈ j(x)} ;

the first relation amounts to the incidence description above and the second
is a consequence of the property x ∈ Ay ⇔ y ∈ Ax listed under (ii).

The sets x̌ and ̂ξ will be given the measures dμ and dm, respectively,
induced by the Riemannian structures of Ξ and X . The Radon transform
and its dual are then given by

̂f(ξ) =

∫

ξ

f(x) dm(x) , ϕ̌(x) =

∫

x̌

ϕ(ξ) dμ(ξ) .

However,

ϕ̌(x) =

∫

x̌

ϕ(ξ) dμ(ξ) =

∫

y∈j(x)

ϕ(j(y)) dμ(j(y)) =

∫

j(x)

(ϕ ◦ j)(y) dm(y) ,

so

(90) ϕ̌ = (ϕ ◦ j)b◦ j .

Because of this correspondence between the transforms f → ̂f , ϕ → ϕ̌ it
suffices to consider the first one. Let D(X) denote the algebra of differential
operators on X , invariant under U . It can be shown that D(X) is generated
by L. Similarly D(Ξ) is generated by Λ.

Theorem 2.2 (The Inversion of the Antipodal map). (i) The map-

ping f → ̂f is a linear one-to-one mapping of E(X) onto E(Ξ) and

(Lf)b= Λ ̂f .

(ii) Except for the case when X is an even-dimensional elliptic space

f = P (L)(( ̂f)∨) , f ∈ E(X) ,
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where P is a polynomial, independent of f , explicitly given below, (93)–
(96). In all cases

degree P = 1
2 dimension of the antipodal manifold .

Proof. We first prove (ii). Let dk be the Haar measure on K such that
∫

dk = 1 and let ΩX denote the total measure of an antipodal manifold in
X . Then μ(̌o) = m(Ao) = ΩX and if u ∈ U ,

ϕ̌(u · o) = ΩX

∫

K

ϕ(uk · ξo) dk .

Hence

( ̂f)∨(u · o) = ΩX

∫

K

(

∫

ξo

f(uk · y) dm(y)
)

dk = ΩX

∫

ξo

(M rf)(u · o) dm(y) ,

where r is the distance d(o, y) in the spaceX between o and y. If d(o, y) < L
there is a unique geodesic in X of length d(o, y) joining o to y and since ξ0
is totally geodesic, d(o, y) is also the distance in ξ0 between o and y. Thus
using geodesic polar coordinates in ξ0 in the last integral we obtain

(91) ( ̂f)∨(x) = ΩX

L
∫

0

(M rf)(x)A1(r) dr ,

where A1(r) is the area of a sphere of radius r in ξ0. By Lemma 2.1 we
have

(92) A1(r) = C1 sinp1(λ1r) sinq1(2λ1r) ,

where C1 and λ1 are constants and p1, q1 are the multiplicities for the
antipodal manifold. In order to prove (ii) on the basis of (91) we need the
following complete list of the compact symmetric spaces of rank one and
their corresponding antipodal manifolds (see Nagano [1952], p. 52):

X A0

Spheres Sn(n = 1, 2, . . .) point

Real projective spaces Pn(R)(n = 2, 3, . . .) Pn−1(R)

Complex projective spaces Pn(C)(n = 4, 6, . . .) Pn−2(C)

Quaternion projective spaces Pn(H)(n = 8, 12, . . .) Pn−4(H)

Cayley plane P16(Cay) S8

We list here the multiplicities p and q for the compact rank-one symmetry
space (Cartan [1927], Araki [1962], or [DS], p. 532).
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X = Pn(R)

p = 0, q = n− 1, λ = π/4L

A(r) = Ωn(2λ)−n+1 sinn−1(2λr)

A1(r) = Ωn−1(2λ)−n+2 sinn−2(2λr)

X = Pn(C)

p = n− 2, q = 1, λ = π/2L

A(r) = 1
2Ωn(2λ)−n+1 sinn−2(λr) sin(2λr)

A1(r) = 1
2Ωn−2λ

−n+3 sin(n−4)(λr) sin 2(λr)

X = Pn(H)

p = n− 4, q = 3, λ = π/2L

A(r) = 1
8Ωnλ

−n+1 sin(n−4)(λr) sin3(2λr)

A1(r) = 1
8Ωn−4λ

−n+5 sin(n−8)(λr) sin3(2λr)

X = P16(Cay)

p = 8, q = 7, λ = π/2L

A(r) = (1/27)Ω16λ
−15 sin8(λr) sin7(2λr)

A1(r) = (1/27)λ−7Ω8 sin7(2λr)

Here the superscripts denote the real dimension. For the lowest dimen-
sions, note that

P1(R) = S1 , P2(C) = S2 , P4(H) = S4 .

For the case Sn, (ii) is trivial and the case X = Pn(R) was already done
in Theorem 1.17. The remaining cases are done by classification starting
with (91). The mean-value operator M r still commutes with the Lapla-
cian L,

M rL = LM r ,

and this implies
Lx((M

rf)(x)) = Lr((M
rf)(x)) ,

where Lr is the radial part of L. Because of (vii) above and Lemma 2.1 it
is given by

Lr =
∂2

∂r2
+ λ{p cot(λr) + 2q cot(2λr)} ∂

∂r
.
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For each of the two-point homogeneous spaces we prove the analog of
Lemma 1.18. Then by the pattern of the proof of Theorem 1.17, part (ii)
of Theorem 2.2 can be proved.

The polynomial P is explicitly given in the list below. Note that for
Pn(R) the metric is normalized by means of the Killing form so it differs
from that of Theorem 1.17 by a nontrivial constant.

The polynomial P is now given as follows:
For X = Pn(R), n odd

P (L) = c
(

L− (n−2)1
2n

) (

L− (n−4)3
2n

)

· · ·
(

L− 1(n−2)
2n

)

(93)

c = 1
4 (−4π2n)

1
2 (n−1) .

For X = Pn(C), n = 4, 6, 8, . . .

P (L) = c
(

L− (n−2)2
2(n+2)

) (

L− (n−4)4
2(n+2)

)

· · ·
(

L− 2(n−2)
2(n+2)

)

(94)

c = (−8π2(n+ 2))1−
n
2 .

For X = Pn(H), n = 8, 12, . . .

P (L) = c
(

L− (n−2)4
2(n+8)

) (

L− (n−4)6
2(n+8)

)

· · ·
(

L− 4(n−2)
2(n+8)

)

(95)

c = 1
2 [−4π2(n+ 8)]2−n/2 .

For X = P16(Cay)

(96) P (L) = c
(

L− 14
9

)2 (

L− 15
9

)2
, c = 36π−82−13 .

Since the original computation of P (Helgason [1965a]) was so compli-
cated we give now a unified proof of these formulas, using the method
of Rouvière [2001] for the noncompact case. The compact case has some
complications because of the antipodal set; as a result it is best to leave
out the case Pn(R) which is no harm since this case was done already in
Theorem 1.17.

The simplification results from rewriting (91) in the style of (60), Ch. I.
We have

( ̂f)∨(o) = ΩX

L
∫

0

1

A(r)

∫

Sr(o)

f(ω) dωA1(r) dr ,

where dω is the induced measure on Sr(o). Writing σ(x) = ΩXA1(r)/A(r)
for r = d(o, x) we have if dx is the Riemannian measure on X ,

( ̂f)∨(o) =

∫

X

f(x)σ(x) dx .
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Since ̂ and ∨ commute with the action of U we have

( ̂f)∨(u · o) =

∫

X

f(u · x)σ(x) dx

=

∫

U

f(h · o)σ(u−1h · o) dh =

∫

U

f(h · o)σ(h−1u · o) dh ,

where dh is a suitable Haar measure on U and σ(h · o) = σ(h−1 · o). Thus

( ̂f)∨ = f × σ

as in Theorem 2.7, Ch.II. Here σ is an integrable function on X and in
accordance with Corollary 2.8, Ch.II we shall find a U -invariant differential
operator D on X (a polynomial in the Laplacian) such that Dσ = δ.

Let ga(r) = sina(λr) and consider the radial part Lr of L in the form

Lrf = A−1(Af ′)′ ,

and note that

A(r) = Ωnλ
−n+1gn−1(r) cosq(λr) .

We have

ga(r) = ga−2(r) − ga−2(r) cos2(λr)

g′a(r) = λa ga−1(r) cos(λr) ,

so
(

Lr + λ2a(a+ n+ q − 1)
)

ga = λ2a(a+ n− 2) ga−2 .

Lemma 2.3. Define Ga on X by

Ga(x) = ga(d(o, x)) .

If a+n ≥ 2, Ga is a locally integrable function on X which as a distribution
satisfies

(

L+ λ2a(a+ n+ q − 1)
)

Ga =

{

λ2a(a+ n− 2)Ga−2 if a+ n > 2 ,

λ−n+2Ωn a δ if a+ n = 2 .

Proof. The functional Ga is defined by

Ga(f) =

∫

X

ga(d(o, x))f(x) dx , f ∈ D(X) ,
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and since ga(d(o, x)) is radial, Ga is K-invariant and we can take f radial
and write f(x) = f(d(o, x)). Then

Ga(f) =

L
∫

0

ga(r)f(r)A(r) dr

= Ωn λ
−n+1

L
∫

0

ga+n−1(r) cosq(λr)f(r) dr .

(LGa)(f) = Ga(Lf) =

L
∫

0

ga(r)(Lrf)(r)A(r) dr

=

L
∫

0

ga(r)(Af
′)′(r) dr

=
[

A(r)f ′(r)ga(r)
]L

0
−

L
∫

0

A(r)f ′(r)g′a(r) dr .

The boundary term vanishes both for r = 0 and r = L. Thus the expression
reduces to

−
L

∫

0

f ′(r)A(r)g′a(r) dr

= −[

f(r)A(r)g′a(r)
]L

0
+

L
∫

0

f(r)(Ag′a)
′(r) dr .

If a+ n > 2 the boundary term vanishes at r = 0 and r = L and we have

(LGa)(f) =

L
∫

0

f(r)(Lrga)(r)A(r) dr ,

so the formula for Lr ga gives the lemma in this case.
If a+ n = 2 the boundary term at r = 0 contributes

f(o) lim
r→0

A(r) g′a(r) = f(o)λaΩnλ
−n+1 ,

while the contribution at r = L is 0 because of the formula for g′a and the
relation λ = π/2L. This proves the second part of the lemma.

We shall now use the lemma on the formula

( ̂f)∨ = f × σ ,
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where σ(r) is the radial function

σ(r) = ΩX
A1(r)

A(r)
= ΩX

Ωn−2�

Ωn
λ2� sin−2�(λr) ,

σ(r) = C sin−2�(λr) ,

where C is a constant dealt with later and � = 1, 2, 4 in the three respective
cases Pn(C), Pn(H) and P16(Cay) for which q = 1, 3 and 7. The antipodal
manifolds have dimensions 2k = n − 2� in the three cases. We apply the
lemma k-times to σ = C G−2�, and end up with a multiple of δ. In fact if
we put La = L+ λ2

a(a+ n+ q − 1) and

Pk(L) = L−2�L−2(�−2) . . . L2−n

we deduce from the lemma

Pk(L)σ = c δ c = constant.

We thus recover the formulas (93)–(96) up to the constant c. The constant
c is recovered by using the formula for f ≡ 1, noting the formula

ΩX =

L
∫

0

A1(r) dr ,

and the formula for L,

L2 = p

(

π2

2

)

+ 2q π2

obtained in [GGA], p. 169.
The formula (93) for Pn(R) comes from Theorem 1.17 if we note that the

Killing form metric on Sn is obtained by multiplying the usual Riemannian
metric (with curvature +1) by 2n. The new Laplacian is then 1/2n times
the Laplacian in Theorem 1.17. This verifies (93).

That f → ̂f is injective follows from (ii) except for the case X = Pn(R),
n even. But in this exceptional case, the injectivity follows from Theo-
rem 1.17.

For the surjectivity we use once more the fact that the mean-value op-
erator M r commutes with the Laplacian (property (viii)). We have

(97) ̂f(j(x)) = c(MLf)(x) ,

where c is a constant. Thus by (90),

( ̂f)∨(x) = ( ̂f ◦ j)b(j(x)) = cML( ̂f ◦ j)(x) ,
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so

(98) ( ̂f)∨ = c2MLMLf .

Thus if X is not an even-dimensional projective space f is a constant
multiple of MLP (L)MLf which by (97) shows f → ̂f surjective. For the
remaining case Pn(R), n even, we use the expansion of f ∈ E(Pn(R)) in
spherical harmonics

f =
∑

k,m

akmSkm (k even) .

Here k ∈ Z+, and Skm (1 ≤ m ≤ d(k)) is an orthonormal basis of the space
of spherical harmonics of degree k. Here the coefficients akm are rapidly
decreasing in k. On the other hand, by (65) and (67),

(99) ̂f = ΩnM
π
2 f = Ωn

∑

k,m

akmϕk
(

π
2

)

Skm (k even) .

The spherical function ϕk is given by

ϕk(s) =
Ωn−1

Ωn

π
∫

0

(cos θ + i sin θ cosϕ)k sinn−2 ϕdϕ

so ϕ2k(
π
2 ) ∼ k−

n−1
2 . Thus by Lemma 1.19 every series

∑

k,m bk,mS2k,m

with b2k,m rapidly decreasing in k can be put in the form (99). This verifies

the surjectivity of the map f → ̂f .
It remains to prove (Lf)b= Λ ̂f . For this we use (90), (vii), and (97). By

the definition of Λ we have

(Λϕ)(j(x)) = L(ϕ ◦ j)(x) , x ∈ X,ϕ ∈ E(X) .

Thus

(Λ ̂f)(j(x)) = (L( ̂f ◦ j))(x) = cL(MLf)(x) = cML(Lf)(x) = (Lf)b(j(x)) .

This finishes our proof of Theorem 2.2.

Corollary 2.4. Let X be a compact two-point homogeneous space and
suppose f satisfies

∫

γ

f(x) ds(x) = 0

for each (closed) geodesic γ in X, ds being the element of arc-length. Then

(i) If X is a sphere, f is skew.

(ii) If X is not a sphere, f ≡ 0.
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Taking a convolution with f we may assume f smooth. Part (i) is already
contained in Theorem 1.17. For Part (ii) we use the classification; for X =
P16(Cay) the antipodal manifolds are totally geodesic spheres so using

Part (i) we conclude that ̂f ≡ 0 so by Theorem 2.2, f ≡ 0. For the remaining
cases Pn(C) (n = 4, 6, . . .) and Pn(H), (n = 8, 12, . . .) (ii) follows similarly
by induction as the initial antipodal manifolds, P2(C) and P4(H), are
totally geodesic spheres.

Corollary 2.5. Let B be a bounded open set in Rn+1, symmetric and
star-shaped with respect to 0, bounded by a hypersurface. Assume for a
fixed k (1 ≤ k < n)

(100) Area (B ∩ P ) = constant

for all (k + 1)-planes P through 0. Then B is an open ball.

In fact, we know from Theorem 1.17 that if f is a symmetric function
on X = Sn with ̂f(Sn ∩ P ) constant (for all P ) then f is a constant. We
apply this to the function

f(θ) = ρ(θ)k+1 θ ∈ Sn

if ρ(θ) is the distance from the origin to each of the two points of intersection
of the boundary of B with the line through 0 and θ; f is well defined since
B is symmetric. If θ = (θ1, . . . , θk) runs through the k-sphere Sn ∩ P then
the point

x = θr (0 ≤ r < ρ(θ))

runs through the set B ∩ P and

Area (B ∩ P ) =

∫

Sn∩P

dω(θ)

ρ(θ)
∫

0

rk dr .

It follows that Area (B ∩ P ) is a constant multiple of ̂f(Sn ∩ P ) so (100)
implies that f is constant. This proves the corollary.

§3 Noncompact Two-Point Homogeneous Spaces

Theorem 2.2 has an analog for noncompact two-point homogeneous spaces
which we shall now describe. By Tits’ classification [1955], p. 183, of ho-
mogeneous manifolds L/H for which L acts transitively on the tangents
to L/H it is known, in principle, what the noncompact two-point homoge-
neous spaces are. As in the compact case they turn out to be symmetric. A
direct proof of this fact was given by Nagano [1959] and Helgason [1959].
The theory of symmetric spaces then implies that the noncompact two-
point homogeneous spaces are the Euclidean spaces and the noncompact
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spaces X = G/K, where G is a connected semisimple Lie group with finite
center and real rank one and K a maximal compact subgroup.

Let g = k + p be the direct decomposition of the Lie algebra of G into
the Lie algebra k of K and its orthogonal complement p (with respect to
the Killing form of g). Fix a 1-dimensional subspace a ⊂ p and let

(101) p = a + pα + pα/2

be the decomposition of p into eigenspaces of TH (in analogy with (89)). Let
ξo denote the totally geodesic submanifold Exp(pα/2); in the case pα/2 = 0
we put ξo = Exp(pα). By the classification and duality for symmetric spaces
we have the following complete list of the spaces G/K. In the list the
superscript denotes the real dimension; for the lowest dimensions note that

H1(R) = R , H2(C) = H2(R) , H4(H) = H4(R) .

X ξ0

Real hyperbolic spaces Hn(R)(n = 2, 3, . . .), Hn−1(R)

Complex hyperbolic spaces Hn(C)(n = 4, 6, . . .), Hn−2(C)

Quaternion hyperbolic spaces Hn(H)(n = 8, 12, . . .), Hn−4(H)

Cayley hyperbolic spaces H16(Cay), H8(R) .

Let Ξ denote the set of submanifolds g · ξ0 of X as g runs through G;
Ξ is given the canonical differentiable structure of a homogeneous space.
Each ξ ∈ Ξ has a measure m induced by the Riemannian structure of X
and the Radon transform on X is defined by

̂f(ξ) =

∫

ξ

f(x) dm(x) , f ∈ Cc(X) .

The dual transform ϕ→ ϕ̌ is defined by

ϕ̌(x) =

∫

ξ�x

ϕ(ξ) dμ(ξ) , ϕ ∈ C(Ξ) ,

where μ is the invariant average on the set of ξ passing through x. Let L
denote the Laplace-Beltrami operator on X , Riemannian structure being
that given by the Killing form of g.

Theorem 3.1. The Radon transform f → ̂f is a one-to-one mapping of
D(X) into D(Ξ) and, except for the case X = Hn(R), n even, is inverted
by the formula

f = Q(L)(( ̂f)∨) .

Here Q is given by
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X = Hn(R), n odd:

Q(L) = γ
(

L+ (n−2)1
2n

) (

L+ (n−4)3
2n

)

· · ·
(

L+ 1(n−2)
2n

)

.

X = Hn(C) :

Q(L) = γ
(

L+ (n−2)2
2(n+2)

)(

L+ (n−4)4
2(n+2)

)

· · ·
(

L+ 2(n−2)
2(n+2)

)

.

X = Hn(H) :

Q(L) = γ
(

L+ (n−2)4
2(n+8)

)(

L+ (n−4)6
2(n+8)

)

· · ·
(

L+ 4(n−2)
2(n+8)

)

.

X = H16(Cay) :

Q(L) = γ
(

L+ 14
9

)2 (

L+ 15
9

)2
.

The constants γ are obtained from the constants c in (93)–(96) by multi-
plication by the factor ΩX which is the volume of the antipodal manifold in
the compact space corresponding to X . This factor is explicitly determined
for each X in [GGA], Chapter I, §4.

§4 Support Theorems Relative to Horocycles

In our noncompact two-point homogeneous space X fix a geodesic γ(t),
γ(0) = o. Since X is symmetric the geodesic symmetries are isometries and
at = s t

2
sγ(0) is a one parameter group of “transvections” of X , t ∈ R. Here

sp is the geodesic symmetry with respect to p and st = sγ(t) . Let

N = {g ∈ G | a−1
t gat → 0 as t→ +∞} .

This generalizes the group N in Ch. II, §4. The orbits of N and its conju-
gates are the horocycles in X and again they are permuted transitively
by G. For the hyperbolic space it is clear what is meant by the interior of
a horocycle. For our X the interior of the horocycle N · o is defined as

⋃

t>0

Nat · o .

The point o was arbitrary so the interior of an arbitrary horocycle is well
defined. (Notion introduced in Faraut [1982]).

A function f ∈ E(X) will be said to be exponentially decreasing if
f(x)emd(0,x), x ∈ X is bounded for each m > 0.

Theorem 4.1. Let X be a symmetric space of the noncompact type and
of rank one. Let ξ be a horocycle in X and f ∈ E(X) an exponentially

decreasing function whose X-ray transform ̂f satisfies

(102) ̂f(γ) = 0 whenever γ ∩ ξ = ∅ .
Then

f(x) = 0 for x /∈ interior of ξ .
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Proof. We start with the case when X is the hyperbolic plane with the
Riemannian structure

(103) ds2 =
dx2 + dy2

y2
, y > 0 , o = (0, 1) .

The geodesics are the semi-circles

γu,r : x = u+ r cos θ , y = r sin θ , 0 < θ < π ,

and the half-lines x = const., y > 0. Since the horocycles are permuted
transitively by G we can take ξ as the line y = 1 and o = (0, 1). On γu,r
we have ds = (sin θ)−1 dθ so the X-ray transform becomes

̂f(γu,r) =

π
∫

0

f(u+ r cos θ , r sin θ)(sin θ)−1 dθ .

Thus our assumption (102) amounts to

(104)

∫

γu,r

f(x, y)

y
dω = 0 , r < 1 ,

where dω is the Euclidean arc element. For points (x, y) ∈ γu,r we have by
(103)

d(o, (x, y)) ≥ d((x, 1), (x, y)) = d(o, (0, y)) =

1
∫

y

dt

t
= − log y

so ed(0,(x,y)) ≥ 1
y . Thus the decay of f implies that f(x, y)/y extends (by

reflection) to a smooth function on R2 by F (x, y) = f(x, |y|)/|y|. By (104)
we have

(105)

∫

Sr(x)

F (s) dω(s) = 0 ,

for x on the x-axis and r < 1. With Br(x) as the ball with boundary Sr(x)
we have, since dω is the Euclidean arc element,

(106)

∫

Br(x)

F (u, v) du dv = 0 ,

whence

(107)

∫

Br(0)

(∂1F )(x+ u, v) du dv = 0 ,
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where ∂1 = ∂/∂u. Using the divergence theorem on the vector field
F (x + u, v)∂/∂u we get from (107) since the unit normal is

(

u
r ,

v
r

)

and
our vector field is horizontal,

(108)

∫

Sr(0)

F (x+ u, v)u dω(u, v) = 0 .

Now (105) implies trivially

(109)

∫

Sr(0)

F (x+ u, v)xdω(u, v) = 0

and these formulas imply

∫

Sr(x)

F (s)s1 dω(s) = 0 , s = (s1, s2) .

Iterating the implication (105) ⇒ (109) we obtain

∫

Sr(x)

F (s)P (s1) dω(s) = 0 ,

where P is an arbitrary polynomial. Since F (s1, s2) = F (s1,−s2) and since
the polynomials P (s1) form a separating algebra on γx,r we obtain F ≡ 0
on Sr(x). Thus f ≡ 0 on the strip 0 < y < 1. This proves the theorem for
X = H2.

In the general case we can take ξ as the horocycle N · o as above and
assume that (102) holds. Let θ be the involution of G with fixed points set
K. If Xα is a root vector in the Lie algebra of N , that is an eigenvector
of adH with H in the Lie algebra of {at, t ∈ R} then [Xα, θXα] spans
the Lie algebra of A. If Gα ⊂ G is the analytic subgroup with Lie algebra
RH + RXα + RθXα then Gα · o is a totally geodesic submanifold of X
isometric to H2 (up to a factor). Also the horocycle exp(tXα) · o is the
intersection (Gα · o) ∩ (N · o). By the first part of the proof, f(a−t · o) = 0
for t > 0. Using this on the translated function x→ f(n ·x), n being a fixed
element of N , we get f(na−t · o) for t > 0 and this concludes the proof.

We shall now write out explicitly the horocycle Radon transform (108)
in Chapter II for the hyperbolic space Hn. In §1 we wrote down two models
of Hn, the unit ball model (1) §1 and the quadric model Q+

−. Now it will
be useful to use a third one, namely the upper half space

(x1, . . . , xn) ∈ Rn , xn > 0
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with the metric

(110) ds2 =
dx2

1 + · · ·+ dx2
n

x2
n

,

which is isometric to Q+
− under the map

(x1, . . . , xn) = (yn+1 − yn)−1(y1, . . . , yn, 1) , y ∈ Q+
− ,

(cf. e.g. [GGA], Ch. I, Ex. C). In the metric (110) the geodesics are the
circular arcs perpendicular to the plane xn = 0; among these are the half
lines perpendicular to xn = 0. The horocycles perpendicular to these last
geodesics are the planes xn = const. The other horocycles are the Euclidean
(n− 1)-spheres tangential to the boundary.

Let ξ ⊂ Hn be a horocycle in the half space model. It is a Euclidean
sphere with center (x′, r) (where x′ = (x1, . . . xn−1)) and radius r. We
consider the intersection of ξ with the xn−1xn plane. It is the circle γ :
xn−1 = r sin θ, xn = r(1 − cos θ) where θ is the angle measured from the
point of contact of ξ with xn = 0. The plane xn = r(1−cos θ) intersects ξ in
an (n− 2)-sphere whose points are x′ + r sin θω′ where ω′ = (ω1, . . . , ωn−1)
is a point on the unit sphere Sn−2 in Rn−1. Let dω′ be the surface element
on Sn−2.

Proposition 4.2. Let f be exponentially decreasing on Hn. Then in the
notation above,
(111)

̂f(ξ) =

π
∫

0

∫

Sn−2

f(x′ + r sin θω′ , r(1 − cos θ)) dω′

(

sin θ

1− cos θ

)n−2
dθ

1− cos θ
.

Proof. Since N acts on Hn by translation and since f → ̂f commutes with
the N -action we may assume x′ = 0.

The plane πθ : xn = r(1 − cos θ) has the non-Euclidean metric

dx2
1 + · · ·+ dx2

n−1

r2(1− cos θ)2

and the intersection πθ ∩ ξ is an (n− 2)-sphere with induced metric

r2 sin2 θ(dω′)2

r2(1 − cos θ)2
,

where (dω′)2 is the metric on the (n− 2)-dimensional unit sphere in Rn−1.
The non-Euclidean volume element on ξ ∩ πθ is thus

(

sin θ

1− cos θ

)n−2

dω′ .
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The non-Euclidean arc element on γ is by (110) equal to dθ/(1 − cos θ).
Putting these facts together (111) follows by integrating over ξ by slices
ξ ∩ πθ.

Theorem 4.3. Let ξ0 ⊂ Hn be a fixed horocycle. Let f be exponentially
decreasing and assume

̂f(ξ) = 0

for each horocycle ξ lying outside ξ0. Then

f(x) = 0 for x outside ξ0 .

ξ0

ξ

θ

ξ (x′,r)

xn=r(1−cos θ)

ξ0:xn=1

xn=0

FIGURE III.7.

Ball Model

FIGURE III.8.

Half-space Model

Proof. In the half space model we may take ξ0 as the plane xn = 1. As-
suming ̂f(ξ) = 0 we take the Fourier transform in the x′ variable of the
right hand side of (111), in other words integrate it against e−i〈x

′,η′〉 where
η′ ∈ Rn−1.

Then
π

∫

0

∫

Sn−2

˜f(η′, r(1 − cos θ))e−ir sin θ〈η′,ω′〉 dω′

(

sin θ

1− cosθ
)n−2

dθ

1− cos θ
= 0 .
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By rotational invariance the ω′ integral only depends on the norm |η′|r sin θ
so we write

J(r sin θ|η′|) =

∫

Sn−2

e−ir sin θ〈η′,ω′〉 dω′ .

and thus

π
∫

0

˜f(η′, r(1 − cos θ))J(r sin θ|η′|)
(

sin θ

1− cos θ

)n−2
dθ

1− cos θ
= 0 .

Here we substitute u = r(1 − cos θ) and obtain

(112)

2r
∫

0

˜f(η′, u)J((2ur − u2)1/2|η′|) r

un−1
(2ur − u2)

1
2 (n−3) du = 0 .

Since the distance from the origin (0, 1) to (x′, u) satisfies

d((0, 1), (x′, u)) ≥ d((0, 1), (0, u)) =

1
∫

u

dxn
xn

= − log u

so

ed((0,1),(x
′,u)) ≥ 1

u
,

and since
˜f(η′, u) =

∫

Rn−1

f(x′, u)e−i〈x
′,η′〉 dx′ ,

we see from the exponential decrease of f , that the function u→ ˜f(η′, u)/un−1

is continuous down to u = 0.

The case n = 3. In this simplest case (112) takes the form

(113)

2r
∫

0

˜f(η′, u)u−2J((2ur − u2)1/2|η′|) du = 0 .

We need here standard result for Volterra integral equation (cf. Yosida
[1960]).

Proposition 4.4. Let a < b and f ∈ C[a, b] and K(s, t) of class C1 on
[a, b]× [a, b]. Then the integral equation

(114) ϕ(s) +

s
∫

a

K(s, t)ϕ(t) dt = f(s)

has a unique continuous solution ϕ(t). In particular, if f ≡ 0 then ϕ ≡ 0.
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Corollary 4.5. Assume K(s, s) �= 0 for s ∈ [a, b]. Then the equation

(115)

s
∫

a

K(s, t)ψ(t) dt = 0 implies ψ ≡ 0 .

This follows from Prop. 4.4 by differentiation. Using Cor. 4.5 on (113)

we deduce ˜f(η′, u) = 0 for u ≤ 2r with 2r ≤ 1 proving Theorem 4.3 for
n = 3.

The case n = 2. Here (112) leads to the generalized Abel integral
equation (0 < α < 1).

(116)

s
∫

a

G(s, t)

(s− t)αϕ(t) dt = f(s) .

Theorem 4.6. With f continuous, G of class C1 and G(s, s) �= 0 for all
s ∈ [a, b], equation (116) has a unique continuous solution ϕ. In particular,
f ≡ 0⇒ ϕ ≡ 0.

This is proved by integrating the equation against 1/(x− s)1−α whereby
the statement is reduced to Cor. 4.5 (cf. Yosida, loc.cit. and Ch. I, §2 in
this book).

This proves Theorem 4.3 for n = 2.

The general case. Here the parity of n makes a difference. For n odd
we just use the following lemma.

Lemma 4.7. Assume ϕ = C1([a, b]) and that K(s, t) has all derivatives
with respect to s up to order m−2 equal to 0 on the diagonal (s, s). Assume
the (m − 1)th order derivative is nowhere 0 on the diagonal. Then (115)
still holds.

In fact, by repeated differentiation of (115) one can show that (114) holds
with a kernel

K(m)(s, t)

{K(m−1)
s (s, t)}t=s

and f ≡ 0.
This lemma proves Theorem 4.3 for n odd. For n even we write (112) in

the general form

(117)

s
∫

0

F (u)H((su− u2)1/2)(su− u2)
1
2 (n−3) du = 0 n even ≥ 2 ,

where H(0) �= 0.
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Theorem 4.8. Assume F ∈ C([0, 1]) satisfies (117) for 0 ≤ s ≤ 1 and
H ∈ C∞ arbitrary with H(0) �= 0. Then F ≡ 0 on [0, 1].

Proof. We proceed by induction on n, the case n = 2 being covered by
Theorem 4.6. We assume the theorem holds for n and any function H
satisfying H(0) �= 0. We consider (117) with n replaced by n+ 2 and take
d/ds. The result is with H1(x) = H ′(x)x + (n− 1)H(x),

s
∫

0

F (u)uH1((su − u2)
1
2 )(su− u2)

1
2 (n−3) du = 0 .

Since H1(0) �= 0 we conclude F ≡ 0 by induction. This finishes the proof
of Theorem 4.3.

Remark 4.9. Theorem 4.8 can be viewed as a variation of the uniqueness
part for the Abel integral equation (116). The method would also solve the
equation (117) with a function on the right hand side.

There is a counterpart to Theorem 4.1 for the horocycle transform rela-
tive to balls (X still of rank one). We say a ball B in X is enclosed by a
horocycle ξ if B is contained in the interior of ξ. We say B is exterior to ξ
if it is disjoint from the interior of ξ. Consider now the horocycle transform

̂f(ξ) =

∫

ξ

f(x) dm(x)

dm being the measure on ξ induced by the Riemannian structure of X .

Theorem 4.10. Let f be exponentially decreasing. The following condi-
tions are equivalent for any ball B ⊂ X.

(i) ̂f(ξ) = 0 whenever B is enclosed by ξ.

(ii) ̂f(ξ) = 0 whenever B is exterior to ξ.

(iii) f(x) = 0 for x /∈ B.

The proof is omitted. It is more technical (see Helgason [2005] or [1973],
which also contains a higher rank version) although for H3 an elementary
proof can be given (Lax–Phillips [1979], Theorem 3.13) and also for H2

(Helgason [1983a], Theorem 4.1).
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Exercises and Further Results

1. Radon’s Method for Lines in R2.

Consider for f in S(R2) the integral

(i)

∫

|x|≥q

f(x)(|x|2 − q2)− 1
2 dx

and calculate it in two ways: Let ω be a unit vector and ω⊥ the vector ω
rotated +π

2 . The exterior |x| ≥ q is swept out by half-tangents to |x| = q
in two ways, namely

x = qω + sω⊥ , s ∈ R+ , x = qω + sω⊥ , s ∈ −R+ .

With ω = (cosϕ, sinϕ) and ∂(x1, x2)/∂(s, ϕ) = s the integral (1) equals

2π
∫

0

dϕ

∞
∫

0

f(qω + sω⊥) ds and

2π
∫

0

dϕ

0
∫

−∞

f(qω + sω⊥) ds

as well as their average

1

2

2π
∫

0

̂f(ω, q) dϕ = π( ̂f)∨q (0) ,

in the notation (6)§1. But in polar coordinates (i) evaluates to

2π

∞
∫

q

(M rf)(0)r(r2 − q2)− 1
2 dr .

This yields equation (8) for k = 1, Ωk = 2, which proves Theorem 1.4(iii)
for n = 2.

Remarkably, the identical formula holds for all dimensions n (Theo-
rem 1.4).

2. Alternative Inversion on Sn. (Rubin [1998b]).

For n even, xy = inner product,

f =
1

2(2π)n
P (L)

∫

Sn

̂f(y) log
1

|xy| dy +
(n− 1)!

2(2π)n

∫

Sn

̂f(y) dy ,

where

P (L) =

n/2
∏

k=1

(−L+ 2(k − 1)(n+ 1− 2k)) .
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3. Spheres Through 0. (Cormack–Quinto [1980], Quinto [1982]).

Given f ∈ C(Rn) let

(Sf)(y) = (M |y|/2f)(y/2) ,

the mean-value of f over a sphere with center y/2 passing through 0.

(i) For ω ∈ Sn−1, p ∈ R put

ϕ(ω, p) = f(p ω)|p|n−2 .

Then

(Sf)(y) =

(

2

|y|
)n−2

ϕ̌(y) .

(ii) Let E denote the set of restrictions of entire functions on Cn to Rn.
Then f → Sf is a bijection of E onto E.

(iii) The map S : L2(Rn)→ L2(Rn) is injective.

(iv) If B is a ball with center O then S maps L2(B) into itself and the
kernel is the closure of the span of the functions

f(x) = |x|2−n+kY�(x/|x|) ,
where (n− 4)/2 < k < � and �− k even and Y� is a homogeneous spherical
harmonic of degree �.

(v) Let

(mf)(x) =
2n−1

Ωn
|x|2−2nf(x/|x|2) .

Then if x �= 0, f ∈ C(Rn) ,

(Sf)(x) = |x|1−n(mf) (̂x/|x| , 1/|x|) .

(vi) If f ∈ C∞(Rn) and (Sf)(y) = 0 for |y| ≤ A then f(y) = 0 for |y| ≤ A.

Bibliographical Notes

As mentioned earlier, it was shown by Funk [1916] that a function f on the
two-sphere, symmetric with respect to the center, can be determined by
the integrals of f over the great circles. Minkowski’s Theorem 1.20 played
a role in this involving Lemma 1.19.

The Radon transform on Euclidean, hyperbolic, and elliptic spaces cor-
responding to k-dimensional totally geodesic submanifolds was defined in



Bibliographical Notes 169

the author’s paper [1959]. Here and in [1990] and [2006] are proved the
inversion formulas in Theorems 1.4,1.5, 1.9, 1.11, 1.12, 1.22, and 1.23. Se-
myanisty [1961] then gave a treatment for k odd by analytic continuation
of the Riesz potential and Rubin [1998b] gave a formula for k odd in terms
of the logarithmic potential. The alternative version for H2 was obtained
by Berenstein and Casadio Tarabusi in their paper [1991] which also deals
with the case of Hk in Hn (where the regularization is more complex). Still
another interesting variation of Theorem 1.11 (for k = 1, n = 2) is given by
Lissianoi and Ponomarev [1997]. By calculating the dual transform ϕ̌p(z)
they derive from formula (30) in Chapter II an inversion formula which has
a formal analogy to (47) in Chapter II. The underlying reason may be that
to each geodesic γ in H2 one can associate a pair of horocycles tangential
to |z| = 1 at the endpoints of γ having the same distance from o as γ. For
another inversion for Hn see Gindikin [1995].

The support theorem (Theorem 1.6) was proved by the author ([1964],
[1980b]) and its consequence, Cor. 1.7, pointed out in [1980d]. Interesting
generalizations are contained in Boman [1991], Boman and Quinto [1987],
[1993]. For the case of Sn−1 see Quinto [1983] and in the stronger form of
Theorem 1.25, Kurusa [1994]. The variation (85) of the Funk transform was
considered by Abouelaz and Daher [1993] at least forK-invariant functions.
The theory of the Radon transform for antipodal manifolds in compact
two-point homogeneous spaces (Theorem 2.2) is from Helgason [1965a]. A
substantial simplification of the computation was given by Rouvière [2001].
A simplified proof of Cor. 2.4 is given by Klein, Thorbergsson and Verhóczki
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CHAPTER IV

THE X-RAY TRANSFORM ON A SYMMETRIC
SPACE

The X-ray transform which we studied for Rn of course makes sense for
an arbitrary complete Riemannian manifold X . For a continuous function
f on X , the X-ray transform ̂f is defined by

̂f(γ) =

∫

γ

f(x) ds(x) ,

γ being a complete geodesic and ds the element of arc length. One can
then pose the question of injectivity (keeping in mind the negative result
for Sn) and, if the geodesics are reasonably behaved, hope for an inversion
formula. In this chapter we study these questions for a symmetric space
where the pattern of geodesics is well understood, even globally.

For a general Riemannian manifold little seems known about the X-ray
transform. For a symmetric space X �= Sn we shall see that the X-ray
transform is injective and has an inversion formula. First we deal with the
compact case.

§1 Compact Symmetric Spaces. Injectivity and Local

Inversion. Support Theorem

First we prove the injectivity of the X-ray transform. For X = Sn see
Ch. III, Cor. 2.4.

Theorem 1.1. Let X = U/K be a compact symmetric space (X �= Sn)

and f → ̂f the X-ray transform where f ∈ E(X) and

̂f(ξ) =

∫

ξ

f(x) ds(x) ,

ξ being a closed geodesic. Then ̂f ≡ 0 implies f ≡ 0.

Proof. For X two-point homogeneous (i.e., of rank one) we know this from
Cor. 2.4 in Ch. III. If X has rank � higher than one each x ∈ X lies on a
totally geodesic torus T of dimension 2 (even �).

We view T as R2/Z2 and recall that the geodesics are viewed without
orientation. Separating out the closed geodesics which correspond to hori-
zontal and vertical lines the closed geodesics are parametrized as follows:

S. Helgason, Integral Geometry and Radon Transforms, 
DOI 10.1007/978-1-4419-6055-9_4, © Springer Science+Business Media, LLC 2011
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ξ = ξ(x0, y0, p, q) : (x(t), y(t)) = (x0 + pt, y0 + qt) 0 ≤ t ≤ 1
where p and q are relatively prime integers and p > 0, q /∈ 0.

ξ′ = ξ(x0, y0, 1, 0) : (x(t), y(t)) = (x0 + t, y0), 0 ≤ t ≤ 1.

ξ′′ = ξ(x0, y0, 0, 1) : (x(t), y(t)) = (x0, y0 + t), 0 ≤ t ≤ 1.

Then

̂f(ξ) = (p2 + q2)
1
2

1
∫

0

f(x0 + tp, y0 + tq) dt

and this holds also for ̂f(ξ′) and ̂f(ξ′′) by putting (p, q) = (1, 0) and (p, q) =
(0, 1), respectively.

We can expand f into an absolutely convergent Fourier series,

f(x, y) =
∑

j �=0,k �=0

ajkej,k(x, y) +
∑

k

a0,ke0,k(x, y) +
∑

j �=0

aj,0ej,0(x, y) ,

where ej,k(x, y) = e2πi(jx+ky). Then

êj,k(ξ) = (p2 + q2)1/2ej,k(xo, yo)

1
∫

o

e2πi(jp+kq)t dt ,

which vanishes unless jp + kq = 0. Given (j �= 0, k �= 0) there is just one
pair p, q, p > 0, q �= 0, (p, q) = 1 for which jp + kq = 0. Put cj,k(p, q) =
(p2 + q2)1/2 for this pair p, q. We thus have for j �= 0, k �= 0

êj,k(ξ) = cj,k(p, q) δjp+kq,0 ej,k(x0, y0) ,

êj,k(ξ
′) = δj,0 ej,k(x0, y0) , êj,k(ξ

′′) = δk,0 ej,k(x0, y0)

and

ê0,k(ξ) = (p2 + q2)
1
2 δk,0 e0,k(x0, y0) ,

ê0,k(ξ
′) = e0,k(x0, y0) , ê0,k(ξ

′′) = δk,0 e0,k(x0, y0) ,

êj,0(ξ) = (p2 + q2)
1
2 δj,0 ej,0(x0, y0) ,

êj,0(ξ
′) = δj,0 ej,0(x0, y0) , êj,0(ξ

′′) = ej,0(x0.y0) .

Assume now f satisfies

̂f(ξ) = 0 , ̂f(ξ′) = 0 , ̂f(ξ′′) = 0
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for all ξ, ξ′ and ξ′′. Then by the expansion for f ,

∑

j �=0,k �=0

aj,kcj,k(p, q)δjp+kq,0ej,k(x0, y0) + a0,0(p
2 + q2)

1
2 = 0 ,

∑

j �=0,k �=0

aj,kδj,0ej,k(x0, y0) +
∑

k

a0,ke0,k(x0, y0) + 0 = 0 ,

∑

j �=0,k �=0

aj,kδk,0ej,k(x0, y0)+
∑

k

a0,kδk,0e0,k(x0, y0)+
∑

j �=0

aj,0ej,0(x0, y0) = 0 .

Viewing these as Fourier series in (x0, y0) we deduce for fixed p > 0, q �= 0,
(p, q) = 1,

aj,kcj,k(p, q)δjp+kq,0 = 0 , j �= 0, k �= 0, a0,0 = 0

a0,k = 0 , aj,0 = 0 (j �= 0) .

Now choosing p and q such that jp+ kq = 0 we deduce that all ajk must
vanish so f ≡ 0.

We shall now deal with the inversion problem, using and generalizing
the results from the sphere in Ch. III. Let U/K be an irreducible com-
pact simply connected symmetric space, U being a compact semisimple
Lie group with K as the fixed point group of an involutive automorphism
σ of U . Let u denote the Lie algebra of U , u = k+p its decompositions into
the eigenspaces of dσ. Let a ⊂ p be a maximal abelian subspace of p and
p =

⊕

α pα the decomposition of p into the joint eigenspaces of (adH)2,
(H ∈ a)

pα =
{

Z ∈ p : (adH)2Z = α(H)2Z H ∈ a
}

.

The linear forms α �= 0 are the restricted roots. These have a natural
ordering. Let δ̄ denote the highest, let aδ be the one-dimensional ortho-
complement of the null space of δ̄ in a. Let m(δ̄) denote the multiplicity
of δ̄, that is the dimension of pδ. Our reduction of the X-ray transform to
the sphere is based on the following conjugacy result. (Helgason [1966] or
[DS], Ch. VII). The maximal sectional curvature on X equals |δ̄|2 in the
metric defined by the negative of the Killing form. We normalize the metric
such that the maximal curvature is 1. In addition to Theorem 1.2 we use
Lemma 1.3 and some further results from the above sources.

Theorem 1.2 (The Transitivity of Minimal Geodesics).

(i) The shortest closed geodesics in X have length 2π and they are per-
muted transitively by U .

(ii) X has totally geodesic spheres of curvature 1. Their maximum dimen-
sion is 1 +m(δ̄). All such spheres S1+m(δ̄) are conjugate under U .
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Let aδ and pδ be as above. Then the submanifold Xδ = Exp(aδ + pδ) is
a sphere, totally geodesic in X of dimension 1 +m(δ̄) and curvature 1. Let
A(δ̄) be the first point on the line aδ such that ExpA(δ̄) is the antipodal
point to o in Xδ. By [DS], VII, §11, the subgroup S ⊂ K fixing both o
and ExpA(δ̄) is quite large. In fact, we have the following result. For the
definition of Ad see Ch. VIII, §1.

Lemma 1.3. The restriction of AdU (S) to the tangent space (Xδ)o con-
tains SO((Xδ)o).

Definition. For x ∈ X the midpoint locus Ax associated to x is the set
of midpoints m(ξ) of all the closed minimal geodesics ξ starting at x. Let
e1(ξ), e2(ξ) denote the midpoints of the arcs of ξ which join x to m(ξ).
Let Ex denote the set of these e(ξ) as ξ varies. We call Ex the equator
associated to x.

Lemma 1.4. Ao and Eo are K-orbits and Ao is totally geodesic in X.

Proof. That Ao is a K-orbit is clear from Theorem 1.2 (i). If x ∈ Ao
the geodesic symmetry sx fixes o and thus permutes the closed minimal
geodesics through o. Thus sx maps Ao into itself so by [DS], VII, Cor. 10.5
A0 is totally geodesic in X . Let e1 and e2 be two points in Eo lying on
minimal geodesics γ1, γ2 starting at o. To show them conjugate under K
we may assume by Theorem 1.2 that both γ1 and γ2 have midpoints equal
to ExpAδ̄. But then γ1 and γ2 are K-conjugate, hence S-conjugate. Thus
we can assume e1 and e2 lie on the same minimal geodesic through o and
ExpA(δ̄). But then, by Lemma 1.3, they are S-conjugate.

Definition. The Funk transform for X = U/K is the map f → ̂f where,

(1) ̂f(ξ) =

∫

ξ

f(x) dm(x) ,

ξ being a closed geodesic in X of minimal length and dm the arc element
on ξ.

Let Ξ denote the set of closed minimal geodesics. By Theorem 1.2 we
have the pair of homogeneous spaces

(2) X = U/K , Ξ = U/H ,

where the group H is the stabilizer of some specific ξo ∈ Ξ. We have then
the corresponding dual transform

(3) ϕ̌(gK) =

∫

K

ϕ(gk · ξo) .
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We shall now study the transform (1) using the theory in Chapter III for
the sphere. Given f ∈ E(X) we consider its restriction f |Xδ to the sphere
Xδ. For 0 ≤ p ≤ π

2 we fix a geodesic ξp ⊂ Xδ at a distance p from o. We
consider Xδ and Ξδ (the space of geodesics in Xδ) as in Ch. II, §4, A. Let
f∗ denote the Funk transform (f |Xδ)

b (as a function on the set of great
circles on Xδ) and let ϕ∗

p denote the corresponding dual transform for the
pair Xδ and Ξδ. This means that for x ∈ Xδ, ϕ

∗
p(x) is the average of ϕ over

the set of closed geodesics in Xδ which have distance p from x. For x = o,
the group S permutes these transitively, so

(4) ϕ∗
p(o) =

∫

S

ϕ(s · ξp) ds .

Note that this is (for given p) independent of the choice of ξp. Then Theo-
rem 1.24 in Ch. III implies

(5) 1
2 (f(o) + f(ExpA(δ̄))) =

∫

E′
o

f(ω′) dω′ − 1

2π

π
2

∫

o

d

dp
((f∗)

∗
p(o))

dp

sin p
,

where E′
o is the equator in Xδ corresponding to o and dω′ is the averaging

measure. In view of Lemma 1.3, E′
o = S · Exp

(

1
2A(δ̄)

)

. We shall now use
(5) on the averaged functions

f �(x) =

∫

K

f(k · x) dk , ϕ�(ξ) =

∫

K

ϕ(k · ξ) dk .

Since Ao = K · ExpA(δ̄) the left hand side of (5) becomes

1
2

(

f(o) +

∫

Ao

f(ω) dω
)

,

where dω stands for the average on Ao. The first term on the right is now
replaced by

∫

K

∫

E′
o

f(k · ω′) dω′ =

∫

K

dk

∫

S

f
(

ks · Exp
(

1
2A(δ̄)

)

)

ds

=

∫

K

f
(

k · Exp
(

1
2A(δ̄)

)

)

dk =

∫

Eo

f(ω) dω ,
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where dω is the average. Recall that E0 is contained in Sπ/2(o). For the
second term on the right in (5) we use (4) so

((f �)
*
)∗p(o) =

∫

S

(f �)
*
(s · ξp) ds =

∫

S

(f �)b(s · ξp) ds

=

∫

K

dk

∫

S

( ̂f)�(s · ξp) ds =

∫

S

(∫

K

̂f(ks · ξp) dk
)

ds

=

∫

K

̂f(k · ξp) dk = ( ̂f)∨p (o) ,

where ϕ̌p denotes the dual transform (3) with ξo = ξp. This proves

(6) 1
2

(

f(o) +

∫

Ao

f(ω) dω

)

=

∫

E0

f(ω) dω − 1

2π

π
2

∫

o

d

dp
(( ̂f )∨p (o))

dp

sin p
.

Because of Theorem 1.2 and Lemma 1.3 the orbit Ξp = K ·ξp consists of all
closed minimal geodesics in X each lying in some totally geodesic sphere
S1+m(δ̄) through o having distance p from o. Thus

(7) ( ̂f)∨p (o) =

∫

Ξp

̂f(ξ) dωop ,

where ω0
p is the normalized K-invariant measure on this orbit.

The set Ξp(x) is defined similarly for each x ∈ X . If u ∈ U is such that
u ·o = x then Ξp(x) = u ·Ξp, Ax = u ·Ao and u ·Eo = Ex. Thus (6) implies
the following result.

Theorem 1.5. The Funk transform f → ̂f on the space X = U/K satisfies
the following identity

1
2

(

f(x) +

∫

Ax

f(ω) dω
)

(8)

=

∫

Ex

f(ω) dω − 1

2π

π
2

∫

o

d

dp

(

∫

Ξp(x)

̂f(ξ) dωp(ξ)
) dp

sin p
.

This is not quite an inversion formula since it includes the integrals over
Ax and Ex. However, if we restrict the support of f in advance we can
invert f → ̂f .
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Corollary 1.6. Let f ∈ D(X) have support in Bπ/2(o) (π2 -cap around
North Pole). Then for x ∈ Bπ

2
(o) we have

f(x) = 2

∫

Ex

f(ω) dω − 1

π

π
2

∫

o

d

dp

(

∫

Ξp(x)

̂f(ξ) dωp(ξ)
) dp

sin p
.

In fact, we claim

(9) Ax ∩Bπ
2
(o) = ∅ if x ∈ Bπ

2
(o)

so the left hand side of (5) is just 1
2f(x). To see (9) let g ∈ U be such that

g · o = x. Then gAo = Ax and

d(o, gk · Exp(δ̄)) = d(g−1 · o, k · ExpA(δ̄))

≥ d(o, k · ExpA(δ̄))− d(o, g−1 · o)
≥ π − π

2
=
π

2

so (9) follows.
Shrinking the support further we get a genuine inversion formula.

Corollary 1.7. Let f ∈ D(X) have support in Bπ/4(o). Then if x ∈
Bπ/4(o),

f(x) = − 1

π

π
2

∫

o

d

dp

(

∫

Ξp(x)

̂f(ξ) dωp(x)
) dp

sin p
.

Here we must show

Bπ/4(o) ∩ Ex = ∅ if x ∈ Bπ/4(o)

or better still that

(10) Bπ/4(o) ∩ Sπ/2(x) = ∅ if x ∈ Bπ/4(o) .

However, z ∈ Sπ/2(x) implies

d(o, z) ≥ d(x, z)− d(o, x) ≥ π

2
− π

4
=
π

4

proving (10).
While Corollary 1.7 only gives a restricted inversion formula, injectivity

holds in general.

Theorem 1.8. The Funk transform is injective if X is not a sphere.
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Proof. (Klein, Thorbergsson and Verhóczki [2009].)

Assume f ∈ E(X) real-valued such that ̂f ≡ 0 but f �≡ 0. Then f is not
constant. By Sard’s theorem f has a regular value b in its range. This means
that dfx �= 0 for all x ∈ X for which f(x) = b; it implies that N = f−1(b)
is a submanifold of X of codimension 1. We may assume o ∈ N .

For each of the maximally curved spheres S = S1+m(δ̄) in Theorem 1.2
the great circles are minimal length geodesics in X . Thus (f |S)̂= 0 so by
Funk’s theorem f is odd on each such S. Let q ∈ A0 and fix a sphere S as
above through o and q. Since f(o) = b we have f(q) = −b. The midpoint
locus Aq goes through o and kAq = Akq (k ∈ K). Now kq is the antipodal
point to o in the sphere kS so f(kq) = −f(o) = −b. On the other hand,
each point in Akq is antipodal to kq in some other sphere S1 so on Akq f
has value −f(kq) = b. Hence kAq = Akq ⊂ N so for the tangent spaces
at o we have Ad(k)(Aq)o ⊂ No. Thus the span of the spaces Ad(k)(Aq)o
(k ∈ K) is a proper non zero K-invariant subspace of Xo, contradicting
the irreducibility of X .

We shall now prove a support theorem for X of rank one. As suggested
by Ch. III, Theorem 1.26 we assume rapid decay towards the equator Eo.

Theorem 1.9 (Support theorem). Suppose X has rank one. Let
0 < δ < π

2 . Suppose f ∈ E(Bπ
2
(o)) satisfies

(i) ̂f(ξ) = 0 for d(o, ξ) > δ.

(ii) For each m > 0

f(x) cos d(o, x)−m is bounded.

Then

(11) f(x) = 0 for d(o, x) > δ .

Proof. The restriction f |Xδ can by the decay assumption (ii) be extended
to a symmetric function on the sphere Xδ. By the support theorem for the
sphere, (11) holds for all x ∈ Xδ with d(o, x) > δ. By the K-invariance of
our assumptions (11) holds for all x ∈ Xδ (k ∈ K). Since each x ∈ X lies
on a closed geodesic through o, X =

⋃

k∈K k ·Xδ so the result follows.

§2 Noncompact Symmetric Spaces. Global Inversion

and General Support Theorem

We pass now to the X-ray transform for a symmetric space X = G/K of the
noncompact type (G connected semisimple with finite center, K maximal
compact).
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With d denoting the distance in X and o ∈ X some fixed point we now
define two subspaces of C(X). Let

F (X) = {f ∈ C(X) : sup
x
d(o, x)k|f(x)| <∞ for each k ≥ 0} .

F(X) = {f ∈ C(X) : sup
x
ekd(0,x)|f(x)| <∞ for each k ≥ 0} .

Because of the triangle inequality these spaces do not depend on the choice
of o. We can informally refer to F (X) as the space of continuous rapidly
decreasing functions and to F(X) as the space of continuous expo-
nentially decreasing functions . We shall now prove the analog of the
support theorem (Theorem 2.6, Ch. I, Theorem 1.6, Ch. III) for the X-
ray transform on a symmetric space of the noncompact type. This general
analog turns out to be a direct corollary of the Euclidean case and the
hyperbolic case, already done.

Corollary 2.1 (General Support Theorem). Let X be a symmetric
space of the noncompact type, B any ball in X.

(i) If a function f ∈ F(X) satisfies

(12) ̂f(ξ) = 0 whenever ξ ∩B = ∅ , ξ a geodesic,

then

(13) f(x) = 0 for x /∈ B .

In particular, the X-ray transform is one-to-one on F(X)

(ii) If X has rank greater than one statement (i) holds with F(X)
replaced by F (X).

Proof. Let o be the center of B, r its radius, and let γ be an arbitrary
geodesic in X through o.

Assume first X has rank greater than one. By a standard conjugacy the-
orem for symmetric spaces, γ lies in a 2-dimensional, flat, totally geodesic
submanifold of X . Using Theorem 2.6, Ch. I on this Euclidean plane we
deduce f(x) = 0 if x ∈ γ, d(o, x) > r. Since γ is arbitrary (13) follows.

Next suppose X has rank one. Identifying p with the tangent space Xo

let a be the tangent line to γ. We can then consider the eigenspace de-
composition (89) in Ch. III. If b ⊂ pα is a line through the origin then
S = Exp(a + b) is a totally geodesic submanifold of X (cf. (iv) in the
beginning of §2). Being 2-dimensional and not flat, S is necessarily a hy-
perbolic space. From Theorem 1.6, Ch. III we therefore conclude f(x) = 0
for x ∈ γ, d(o, x) > r. Again (13) follows since γ is arbitrary.



180 Chapter IV. The X-Ray Transform on a Symmetric Space

We shall now prove an inversion formula for the X-ray transform on
Y = G/K, somewhat simpler than that of Theorem 1.5 since now there
is no midpoint locus Ax and no equator. Since the method parallels that
of Theorem 1.5 we shall assume Y = G/K to be irreducible. We also
normalize the metric such that the maximal negative curvature is −1. A
geodesic in Y which lies in a totally geodesic hyperbolic space of curvature
−1 will be called a flexed geodesic. The duality between the symmetric
spaces Y = G/K and X = U/K (see e.g. [DS], Chapter V) shows that
their tangent spaces correspond under multiplication by i inside the joint
complexification of u and g (the Lie algebra of G). This correspondence
commutes with the adjoint action of K. Lie triple systems are mapped into
Lie triple systems and sectional curvatures are mapped into their negatives.
Thus Theorem 1.2 implies the following result.

Theorem 2.2. (i) The space Y = G/K has hyperbolic totally geodesic
submanifolds of curvature −1. Their maximum dimension is 1 +m(δ̄) and
these spaces H1+m(δ̄) are all conjugate under G.

(ii) The flexed geodesics in Y are permuted transitively by G.

We consider now the hyperbolic analog of Xδ, say Yδ of curvature −1,
dimension 1 +m(δ̄), passing through o = eK. As proved in Ch. III, Theo-
rem 1.12,

f(x) = − 1

π

∞
∫

o

d

dp

(

( ̂f)∨p (x)
) dp

sinh p
, x ∈ Yδ .

For p ≥ 0 let Ξp(x) denote the set of all flexed geodesic ξ in Y , each

lying in a totally geodesic H1+m(δ̄) passing through x with d(x, ξ) = p. Let
ωp denote the normalized measure on Ξp(x), invariant under the isotropy
group at x. The proof of Theorem 1.2 then gives the following result.

Theorem 2.3 (Inversion). Let f ∈ C∞c (Y ). Then

f(x) = − 1

π

∞
∫

o

d

dp

(

∫

Ξp(x)

̂f(ξ) dωp(ξ)
) dp

sinh p
.

Another and more elementary proof had been given by Rouvière [2004,
2006]. His proof relied on reduction to H2 only.

§3 Maximal Tori and Minimal Spheres in Compact

Symmetric Spaces

Let u be a compact semisimple Lie algebra, θ an involutive automorphism
of u with fixed point algebra k. Let U be the simply connected Lie group
with Lie algebra u and Int(u) the adjoint group of u. Then θ extends to an
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involutive automorphism of U and Int(u). We denote these extensions also
by θ and let K and Kθ denote the respective fixed point groups under θ.
The symmetric space Xθ = Int(u)/Kθ is called the adjoint space of (u, θ)
([DS], p. 327), and is covered by X = U/K, this latter space being simply
connected since K is automatically connected.

The flat totally geodesic submanifolds of Xθ of maximal dimension are
permuted transitively by Int(u) according to a classical theorem of Cartan.
Let Eθ be one such manifold passing through the origin eKθ in Xθ and
let Hθ be the subgroup of Int(u) preserving Eθ. We then have the pairs of
homogeneous spaces

(14) Xθ = Int(u)/Kθ , Ξθ = Int(u)/Hθ .

The corresponding Radon transform f → ̂f from C(Xθ) to C(Ξθ) amounts
to

(15) ̂f(E) =

∫

E

f(x) dm(x) , E ∈ Ξθ ,

E being any flat totally geodesic submanifold of Xθ of maximal dimension
and dm the volume element. If Xθ has rank one, E is a geodesic and we
are in the situation of Corollary 2.4 in Ch. III. The transform (15) is often
called the flat Radon transform.

Concerning the injectivity of this Radon transform on Xθ see Grinberg
[1992].

The sectional curvatures of the space X lie in an interval [0, κ]. The space
X contains totally geodesic spheres of curvature κ and all such spheres S
of maximal dimension are conjugate under U (Theorem 1.2). Fix one such
sphere S0 through the origin eK and let H be the subgroup of U preserving
S0. The we have another double fibration

X = U/K , Ξ = U/H

and the accompanying Radon transform

̂f(S) =

∫

S

f(x) dσ(x) .

S ∈ Ξ being arbitrary and dσ being the volume element on S.
It is proved by Grinberg [1994a] that injectivity holds in many cases,

although the general question is not fully settled.
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Exercises and Further Results

1. Some Non-Euclidean Identities.

(i) Let D be the non-Euclidean disk (Ch. II, §4), γ a geodesic in D, Γ
the Euclidean chord joining the endpoints of γ.

Then the distances from the origin o satisfy

d(o,Γ) = 2d(o, γ) .

Here d corresponds to

ds2 =
|dz|2

(1 − |z|2)2 .

(ii) Let z, w be any points in D. Let γ be the geodesic joining them and
ξ the horocycle joining them. Let r = dγ(z, w) and ρ = dξ(z, w) their
distances in γ and ξ, respectively. Then (Helgason [1994b], Ch. II, Ex. C1),

ρ = sinh r .

(iii) In D let γ0 be the geodesic from −1 to +1 and z ∈ D. Then the
distance d(z, γ0) is given by

sinh 2d(z, γo) =
2|Im z|
1− |z|2

(Beardon [1983], §7.20).

(iv) Let ξ0 denote the horocycleN ·o inD and γ a geodesic passing through
+1 and a point z on ξ0. Let t = d(o, γ) and r = d(o, z). Then

sinh 2t = 2 sinh r .

(Hint: Write z = nx ·o, and d(o, γ) = d(n−x ·o, γ0). Then use Part (iii) and
sinh r = |x|.)
(v) In the upper half plane with metric

ds2 =
dx2 + dy2

4y2

the non-Euclidean circle Sr(i) equals the Euclidean circle Ssh2r(ich2r).

(vi) In the non-Euclidean disk with diameter γ a circular arc γ̃ connecting
the endpoints of γ has its points at constant distance from γ.

(vii) In Figure IV.1 ξ is perpendicular to γ.
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P = i th t

Q = x(r, t)

ξ = geodesic

r and t non-Euclidean distances

γ r

γ̃

P

ξ

t

Q

FIGURE IV.1.

In the notation of Fig. IV.1 show that the mapping (r, t→ x(r, t)), where

x(r, t) =
i ch r th t+ sh r

i sh r th t+ ch r

is a diffeomorphism of R×R onto D. Show that the arc of γ̃ from P to Q
has length (ch 2t)r and that

∫

D

f(x) dx =

∫

R

∫

R

f(x(r, t))ch 2t dt dr ,

dx denoting the non-Euclidean measure on D. (See [GGA], pp. 77, 555.)
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Range questions for the transforms here have been investigated by many
authors. The conformal equivalence between Rn and Hn (via a stereo-
graphic projection) relates the Radon transforms on the two spaces similar
to (83) in Ch. III. Thus range results for Rn (Ch. I §6) can be transferred to
Hn. (Berenstein, Casadio–Tarabusi and Kurusa [1997]). Another explicit
description is given by Ishikawa [1997].

For compact U/K many explicit range descriptions are known but only
for special cases. See Grinberg [1985], Gonzalez [1994], and Kakehi [1992]–
[1998] for a sample.

The range of the Funk transform for the n-sphere is determined precisely
in Kakehi–Tsukamoto [1993]. For the 3-sphere the space of geodesics is
parametrized by a product of two 2-spheres. This has an ultrahyperbolic
operator (the difference of the two Laplacians) and the range is the kernel of
this operator. Since the Ásgeirsson theorem holds for this product (Ch. VI,
§2), the geometric Theorem 6.11, Ch. I, holds here too.



CHAPTER V

ORBITAL INTEGRALS AND THE WAVE

OPERATOR FOR ISOTROPIC LORENTZ SPACES

In Chapter II, §3 we discussed the problem of determining a function on a
homogeneous space by means of its integrals over generalized spheres. We
shall now solve this problem for the isotropic Lorentz spaces (Theo-
rem 4.1 below). As we shall presently explain these spaces are the Lorentz-
ian analogs of the two-point homogeneous spaces considered in Chapter III.

§1 Isotropic Spaces

Let X be a manifold. A pseudo-Riemannian structure of signature
(p, q) is a smooth assignment y → gy where y ∈ X and gy is a symmetric
non-degenerate bilinear form on Xy × Xy of signature (p, q). This means
that for a suitable basis Y1, . . . , Yp+q of Xy we have

gy(Y ) = y2
1 + · · ·+ y2

p − y2
p+1 − · · · − y2

p+q

if Y =
∑p+q

1 yiYi. If q = 0 we speak of a Riemannian structure and if
p = 1 we speak of a Lorentzian structure. Connected manifolds X with
such structures g are called pseudo-Riemannian (respectively Riemannian,
Lorentzian) manifolds.

A manifold X with a pseudo-Riemannian structure g has a differential
operator of particular interest, the so-called Laplace-Beltrami operator. Let
(x1, . . . , xp+q) be a coordinate system on an open subset U of X . We define
the functions gij , g

ij , and g on U by

gij = g

(

∂

∂xi
,
∂

∂xj

)

,
∑

j

gijg
jk = δik , g = | det(gij)| .

The Laplace-Beltrami operator L is defined on U by

Lf =
1√
g

(

∑

k

∂

∂xk

(

∑

i

gik
√

g
∂f

∂xi

))

for f ∈ C∞(U). It is well known that this expression is invariant under
coordinate changes so L is a differential operator on X .

An isometry of a pseudo-Riemannian manifold X is a diffeomorphism
preserving g. It is easy to prove that L is invariant under each isometry ϕ,
that is L(f ◦ ϕ) = (Lf) ◦ ϕ for each f ∈ E(X). Let I(X) denote the group
of all isometries of X . For y ∈ X let I(X)y denote the subgroup of I(X)

S. Helgason, Integral Geometry and Radon Transforms, 
DOI 10.1007/978-1-4419-6055-9_5, © Springer Science+Business Media, LLC 2011



186 Chapter V. Orbital Integrals

fixing y (the isotropy subgroup at y) and let Hy denote the group of linear
transformations of the tangent space Xy induced by the action of I(X)y.
For each a ∈ R let

∑

a(y) denote the “sphere”

(1) Σa(y) = {Z ∈ Xy : gy(Z,Z) = a , Z �= 0} .

Definition. The pseudo-Riemannian manifold X is called isotropic if for
each a ∈ R and each y ∈ X the group Hy acts transitively on

∑

a(y).

Proposition 1.1. An isotropic pseudo-Riemannian manifold X is homo-
geneous; that is, I(X) acts transitively on X.

Proof. The pseudo-Riemannian structure on X gives an affine connection
preserved by each isometry g ∈ I(X). Any two points y, z ∈ X can be joined
by a curve consisting of finitely many geodesic segments γi(1 ≤ i ≤ p). Let
gi be an isometry fixing the midpoint of γi and reversing the tangents to γi
at this point. The product gp · · · g1 maps y to z, whence the homogeneity
of X .

A. The Riemannian Case

The following simple result shows that the isotropic spaces are natural
generalizations of the spaces considered in the last chapter.

Proposition 1.2. A Riemannian manifold X is isotropic if and only if it
is two-point homogeneous.

Proof. If X is two-point homogeneous and y ∈ X the isotropy subgroup
I(X)y at y is transitive on each sphere Sr(y) in X with center y so X is
clearly isotropic. On the other hand if X is isotropic it is homogeneous
(Prop. 1.1) hence complete; thus by standard Riemannian geometry any
two points in X can be joined by means of a geodesic. Now the isotropy of
X implies that for each y ∈ X, r > 0, the group I(X)y is transitive on the
sphere Sr(y), whence the two-point homogeneity.

B. The General Pseudo-Riemannian Case

Let X be a manifold with pseudo-Riemannian structure g and curvature
tensor R. Let y ∈ X and S ⊂ Xy a 2-dimensional subspace on which gy
is nondegenerate. The curvature of X along the section S spanned by Z
and Y is defined by

K(S) = − gp(Rp(Z, Y )Z, Y )

gp(Z,Z)gp(Y, Y )− gp(Z, Y )2

The denominator is in fact �= 0 and the expression is independent of the
choice of Z and Y .
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We shall now construct isotropic pseudo-Riemannian manifolds of sig-
nature (p, q) and constant curvature. Consider the space Rp+q+1 with the
flat pseudo-Riemannian structure

Be(Y ) = y2
1 + · · ·+ y2

p − y2
p+1 − · · · − y2

p+q + e y2
p+q+1 , (e = ±1) .

Let Qe denote the quadric in Rp+q+1 given by

Be(Y ) = e .

The orthogonal group O(Be) (= O(p, q+1) or O(p+1, q)) acts transitively
on Qe; the isotropy subgroup at o = (0, . . . , 0, 1) is identified with O(p, q).

Theorem 1.3. (i) The restriction of Be to the tangent spaces to Qe
gives a pseudo-Riemannian structure ge on Qe of signature (p, q).

(ii) We have

(2) Q−1
∼= O(p, q + 1)/O(p, q) (diffeomorphism)

and the pseudo-Riemannian structure g−1 on Q−1 has constant curva-
ture −1.

(iii) We have

(3) Q+1 = O(p+ 1, q)/O(p, q) (diffeomorphism)

and the pseudo-Riemannian structure g+1 on Q+1 has constant curva-
ture +1.

(iv) The flat space Rp+q with the quadratic form go(Y ) =
∑p

1 y
2
i −

∑p+q
p+1 y

2
j

and the spaces

O(p, q + 1)/O(p, q) , O(p+ 1, q)/O(p, q)

are all isotropic and (up to a constant factor on the pseudo-Riemannian
structure) exhaust the class of pseudo-Riemannian manifolds of constant
curvature and signature (p, q) except for local isometry.

Proof. If so denotes the linear transformation

(y1, . . . , yp+q, yp+q+1)→ (−y1, . . . ,−yp+q, yp+q+1)

then the mapping σ : g → sogso is an involutive automorphism of O(p, q+1)
whose differential dσ has fixed point set o(p, q) (the Lie algebra of O(p, q)).
The (−1)-eigenspace of dσ, say m, is spanned by the vectors

Yi = Ei,p+q+1 + Ep+q+1,i (1 ≤ i ≤ p) ,(4)

Yj = Ej,p+q+1 − Ep+q+1,j (p+ 1 ≤ j ≤ p+ q) .(5)
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Here Eij denotes a square matrix with entry 1 where the ith row and the
jth column meet, all other entries being 0.

The mapping ψ : gO(p, q) → g · o has a differential dψ which maps m

bijectively onto the tangent plane yp+q+1 = 1 toQ−1 at o and dψ(X) = X ·o
(X ∈ m). Thus

dψ(Yk) = (δ1k, . . . , δp+q+1,k) , (1 ≤ k ≤ p+ q) .

Thus

B−1(dψ(Yk)) = 1 if 1 ≤ k ≤ p and − 1 if p+ 1 ≤ k ≤ p+ q ,

proving (i). Next, since the space (2) is symmetric its curvature tensor
satisfies

Ro(X,Y )(Z) = [[X,Y ], Z] ,

where [ , ] is the Lie bracket. A simple computation then shows for k �= �

K(RYk + RY�) = −1 (1 ≤ k, � ≤ p+ q)

and this implies (ii). Part (iii) is proved in the same way. For (iv) we
first verify that the spaces listed are isotropic. Since the isotropy action of
O(p, q + 1)o = O(p, q) on m is the ordinary action of O(p, q) on Rp+q it
suffices to verify that Rp+q with the quadratic form go is isotropic. But we
know O(p, q) is transitive on ge = +1 and on ge = −1 so it remains to show
O(p, q) transitive on the cone {Y �= 0 : ge(Y ) = 0}. By rotation in Rp and
in Rq it suffices to verify the statement for p = q = 1. But for this case
it is obvious. The uniqueness in (iv) follows from the general fact that a
symmetric space is determined locally by its pseudo-Riemannian structure
and curvature tensor at a point (see e.g. [DS], pp. 200–201). This finishes
the proof.

The spaces (2) and (3) are the pseudo-Riemannian analogs of the spaces
O(p, 1)/O(p), O(p+1)/O(p) from Ch. III, §1. But the other two-point ho-
mogeneous spaces listed in Ch. III, §2–§3 have similar pseudo-Riemannian
analogs (indefinite elliptic and hyperbolic spaces over C, H and Cay). As
proved by Wolf [1967], p. 384, each non-flat isotropic pseudo-Riemannian
manifold is locally isometric to one of these models.

We shall later need a lemma about the connectivity of the groups O(p, q).
Let Ip,q denote the diagonal matrix (dij) with

dii = 1 (1 ≤ i ≤ p) , djj = −1 (p+ 1 ≤ j ≤ p+ q) ,

so a matrix g with transpose tg belongs to O(p, q) if and only if

(6) tgIp,qg = Ip,q .

If y ∈ Rp+q let

yT = (y1, . . . , yp, 0 . . . 0), yS = (0, . . . , 0, yp+1, . . . , yp+q)
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and for g ∈ O(p, q) let gT and gS denote the matrices

(gT )ij = gij (1 ≤ i, j ≤ p) ,
(gS)k� = gk� (p+ 1 ≤ k, � ≤ p+ q)

.

If g1, . . . , gp+q denote the column vectors of the matrix g then (3.6) means
for the scalar products

gTi · gTi − gSi · gSi = 1 , 1 ≤ i ≤ p ,
gTj · gTj − gSj · gSj = −1 , p+ 1 ≤ j ≤ p+ q ,

gTj · gTk = gSj · gSk , j �= k .

Lemma 1.4. We have for each g ∈ O(p, q)

| det(gT )| ≥ 1 , | det(gS)| ≥ 1 .

The components of O(p, q) are obtained by

det gT ≥ 1 , det gS ≥ 1; (identity component)(7)

det gT ≤ −1 , det gS ≥ 1;(8)

det gT ≥ −1 , det gS ≤ −1,(9)

det gT ≤ −1 , det gS ≤ −1 .(10)

Thus O(p, q) has four components if p ≥ 1, q ≥ 1, two components if p or
q = 0.

Proof. Consider the Gram determinant

det

⎛

⎜

⎜

⎜

⎜

⎝

gT1 · gT1 gT1 · gT2 · · · gT1 · gTp
gT2 · gT1 ·

...
gTp · gT1 · · · gTp · gTp

⎞

⎟

⎟

⎟

⎟

⎠

,

which equals (det gT )2. Using the relations above it can also be written

det

⎛

⎜

⎜

⎜

⎜

⎝

1 + gS1 · gS1 gS1 · gS2 · · · gS1 · gSp
gS2 · gS1 · · · ·

...
gSp · gS1 1 + gSp · gSp

⎞

⎟

⎟

⎟

⎟

⎠

,

which equals 1 plus a sum of lower order Gram determinants each of which
is still positive. Thus (det gT )2 ≥ 1 and similarly (det gS)2 ≥ 1. Assuming
now p ≥ 1, q ≥ 1 consider the decomposition of O(p, q) into the four pieces
(7), (8), (9), (10). Each of these is �= ∅ because (8) is obtained from (7) by
multiplication by I1,p+q−1 etc. On the other hand, since the functions g →
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det(gT ), g → det(gS) are continuous on O(p, q) the four pieces above belong
to different components of O(p, q). But by Chevalley [1946], p. 201, O(p, q)
is homeomorphic to the product of O(p, q) ∩ U(p + q) with a Euclidean
space. Since O(p, q) ∩U(p + q) = O(p, q) ∩O(p + q) is homeomorphic to
O(p)×O(q) it just remains to remark that O(n) has two components.

C. The Lorentzian Case

The isotropic Lorentzian manifolds are more restricted than one might at
first think on the basis of the Riemannian case. In fact there is a theorem
of Lichnerowicz and Walker [1945] (see Wolf [1967], Ch. 12) which implies
that an isotropic Lorentzian manifold has constant curvature. Thus we can
deduce the following result from Theorem 1.3.

Theorem 1.5. Let X be an isotropic Lorentzian manifold (signature (1, q),
q ≥ 1). Then X has constant curvature so (after a multiplication of the
Lorentzian structure by a positive constant) X is locally isometric to one
of the following:

R1+q(flat, signature (1, q)) ,

Q−1 = O(1, q + 1)/O(1, q) : y2
1 − y2

2 − · · · − y2
q+2 = −1 ,

Q+1 = O(2, q)/O(1, q) : y2
1 − y2

2 − · · · − y2
q+1 + y2

q+2 = 1 ,

the Lorentzian structure being induced by y2
1 − y2

2 − · · · ∓ y2
q+2.

§2 Orbital Integrals

The orbital integrals for isotropic Lorentzian manifolds are analogs to the
spherical averaging operator M r considered in Ch. I, §2, and Ch. III, §1.
We start with some geometric preparation.

For manifolds X with a Lorentzian structure g we adopt the following
customary terminology: If y ∈ X the cone

Cy = {Y ∈ Xy : gy(Y, Y ) = 0}

is called the null cone (or the light cone) in Xy with vertex y. A nonzero
vector Y ∈ Xy is said to be timelike, isotropic or spacelike if gy(Y, Y ) is
positive, 0, or negative, respectively. Similar designations apply to geodesics
according to the type of their tangent vectors.

While the geodesics in R1+q are just the straight lines, the geodesics in
Q−1 and Q+1 can be found by the method of Ch. III, §1.

Proposition 2.1. The geodesics in the Lorentzian quadrics Q−1 and Q+1

have the following properties:
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(i) The geodesics are the nonempty intersections of the quadrics with
two-planes in R2+q through the origin.

(ii) For Q−1 the spacelike geodesics are closed, for Q+1 the timelike
geodesics are closed.

(iii) The isotropic geodesics are certain straight lines in R2+q.

Proof. Part (i) follows by the symmetry considerations in Ch. III, §1. For
Part (ii) consider the intersection of Q−1 with the two-plane

y1 = y4 = · · · = yq+2 = 0 .

The intersection is the circle y2 = cos t, y3 = sin t whose tangent vector
(0,− sin t, cos t, 0, . . . , 0) is clearly spacelike. Since O(1, q+1) permutes the
spacelike geodesics transitively the first statement in (ii) follows. For Q+1

we intersect similarly with the two-plane

y2 = · · · = yq+1 = 0 .

For (iii) we note that the two-plane R(1, 0, . . . , 0, 1) + R(0, 1, . . . , 0) inter-
sects Q−1 in a pair of straight lines

y1 = t, y2 ± 1, y3 = · · · = yq+1 = 0, yq+2 = t

which clearly are isotropic. The transitivity of O(1, q + 1) on the set of
isotropic geodesics then implies that each of these is a straight line. The
argument for Q+1 is similar.

Lemma 2.2. The quadrics Q−1 and Q+1 (q ≥ 1) are connected.

Proof. The q-sphere being connected, the point (y1, . . . , yq+2) on Q∓1 can
be moved continuously on Q∓1 to the point

(y1, (y
2
2 + · · ·+ y2

q+1)
1/2, 0, . . . , 0, yq+2)

so the statement follows from the fact that the hyperboloids y2
1− y2

1∓ y2
3 =

∓1 are connected.

Lemma 2.3. The identity components of O(1, q+1) and O(2, q) act tran-
sitively on Q−1 and Q+1, respectively, and the isotropy subgroups are con-
nected.

Proof. The first statement comes from the general fact (see e.g. [DS],
pp. 121–124) that when a separable Lie group acts transitively on a con-
nected manifold then so does its identity component. For the isotropy
groups we use the description (7) of the identity component. This shows
quickly that

Oo(1, q + 1) ∩O(1, q) = Oo(1, q) ,

Oo(2, q) ∩O(1, q) = Oo(1, q)
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the subscript o denoting identity component. Thus we have

Q−1 = Oo(1, q + 1)/Oo(1, q) ,

Q+1 = Oo(2, q)/Oo(1, q) ,

proving the lemma.

We now write the spaces in Theorem 1.5 in the form X = G/H where
H = Oo(1, q) and G is either G0 = R1+q ·Oo(1, q) (semi-direct product)
G− = Oo(1, q + 1) or G+ = Oo(2, q). Let o denote the origin {H} in X ,
that is

o = (0, . . . , 0) if X = R1+q

o = (0, . . . , 0, 1) if X = Q−1 or Q+1 .

In the cases X = Q−1, X = Q+1 the tangent space Xo is the hyperplane
{y1, . . . , yq+1, 1} ⊂ R2+q.

The timelike vectors at o fill up the “interior” Coo of the cone Co. The set
Coo consists of two components. The component which contains the timelike
vector

vo = (−1, 0, . . . , 0)

will be called the solid retrograde cone in Xo. It will be denoted by Do.
The component of the hyperboloid go(Y, Y ) = r2 which lies in Do will be
denoted Sr(o). If y is any other point of X we define Cy , Dy, Sr(y) ⊂ Xy

by
Cy = g · Co , Dy = g ·Do , Sr(y) = g · Sr(o)

if g ∈ G is chosen such that g · o = y. This is a valid definition because the
connectedness of H implies that h ·Do ⊂ Do. We also define

Br(y) = {Y ∈ Dy : 0 < gy(Y, Y ) < r2} .

If Exp denotes the exponential mapping of Xy into X , mapping rays
through 0 onto geodesics through y we put

Dy = ExpDy , Cy = ExpCy

Sr(y) = ExpSr(y) , Br(y) = ExpBr(y) .

Again Cy and Dy are respectively called the light cone and solid retro-
grade cone in X with vertex y. For the spaces X = Q+ we always assume
r < π in order that Exp will be one-to-one on Br(y) in view of Prop. 2.1(ii).

Figure V.1 illustrates the situation for Q−1 in the case q = 1. Then Q−1

is the hyperboloid
y2
1 − y2

2 − y2
3 = −1

and the y1-axis is vertical. The origin o is

o = (0, 0, 1)
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0
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FIGURE V.1.

and the vector vo = (−1, 0, 0) lies in the tangent space

(Q−1)o = {y : y3 = 1}

pointing downward. The mapping ψ : gH → g · o has differential dψ : m→
(Q−1)o and

dψ(E1 3 + E3 1) = −vo
in the notation of (4). The geodesic tangent to vo at o is

t→ Exp(tvo) = exp(−t(E1 3 + E3 1)) · o = (− sinh t, 0, cosh t)

and this is the section of Q−1 with the plane y2 = 0. Note that since H
preserves each plane y3 = const., the “sphere” Sr(o) is the plane section
y3 = cosh r, y1 < 0 with Q−1.

Lemma 2.4. The negative of the Lorentzian structure on X = G/H in-
duces on each Sr(y) a Riemannian structure of constant negative curvature
(q > 1).
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Proof. The manifold X being isotropic the group H = Oo(1, q) acts tran-
sitively on Sr(o). The subgroup leaving fixed the geodesic from o with
tangent vector vo is Oo(q). This implies the lemma.

Lemma 2.5. The timelike geodesics from y intersect Sr(y) under a right
angle.

Proof. By the group invariance it suffices to prove this for y = o and the
geodesic with tangent vector vo. For this case the statement is obvious.

Let τ(g) denote the translation xH → gxH on G/H and for Y ∈ m let
TY denote the linear transformation Z → [Y, [Y, Z]] of m into itself. As
usual, we identify m with (G/H)o.

Lemma 2.6. The exponential mapping Exp : m→ G/H has differential

dExpY = dτ(exp Y ) ◦
∞
∑

0

T nY
(2n+ 1)!

(Y ∈ m) .

For the proof see [DS], p. 215.

Lemma 2.7. The linear transformation

AY =

∞
∑

0

T nY
(2n+ 1)!

has determinant given by

detAY =

{

sinh(g(Y, Y ))1/2

(g(Y, Y ))1/2

}q

for Q−1

detAY =

{

sin(g(Y, Y ))1/2

(g(Y, Y ))1/2

}q

for Q+1

for Y timelike.

Proof. Consider the case of Q−1. Since det(AY ) is invariant under H it
suffices to verify this for Y = cY1 in (4), where c ∈ R. We have c2 = g(Y, Y )
and TY1(Yj) = Yj (2 ≤ j ≤ q + 1). Thus TY has the eigenvalue 0 and
g(Y, Y ); the latter is a q-tuple eigenvalue. This implies the formula for the
determinant. The case Q+1 is treated in the same way.

From this lemma and the description of the geodesics in Prop. 2.1 we
can now conclude the following result.

Proposition 2.8. (i) The mapping Exp : m→ Q−1 is a diffeomorphism
of Do onto Do.

(ii) The mapping Exp : m → Q+1 gives a diffeomorphism of Bπ(o) onto
Bπ(o).
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Let dh denote a bi-invariant measure on the unimodular group H . Let
u ∈ D(X), y ∈ X and r > 0. Select g ∈ G such that g · o = y and select
x ∈ Sr(o). Consider the integral

∫

H

u(gh · x) dh .

Since the subgroup K ⊂ H leaving x fixed is compact it is easy to see that
the set

Cg,x = {h ∈ H : gh · x ∈ support (u)}
is compact; thus the integral above converges. By the bi-invariance of dh
it is independent of the choice of g (satisfying g · o = y) and of the choice
of x ∈ Sr(o). In analogy with the Riemannian case (Ch. III, §1) we thus
define the operator M r (the orbital integral) by

(11) (M ru)(y) =

∫

H

u(gh · x) dh .

If g and x run through suitable compact neighborhoods, the sets Cg,x are
enclosed in a fixed compact subset of H so (M ru)(y) depends smoothly on
both r and y. It is also clear from (11) that the operator M r is invariant
under the action of G: if m ∈ G and τ(m) denotes the transformation
nH → mnH of G/H onto itself then

M r(u ◦ τ(m)) = (M ru) ◦ τ(m) .

If dk denotes the normalized Haar measure on K we have by standard
invariant integration

∫

H

u(h · x) dh =

∫

H/K

dḣ

∫

K

u(hk · x) dk =

∫

H/K

u(h · x) dḣ ,

where dḣ is an H-invariant measure on H/K. But if dwr is the volume
element on Sr(o) (cf. Lemma 2.4) we have by the uniqueness of H-invariant
measures on the space H/K ≈ Sr(o) that

(12)

∫

H

u(h · x) dh =
1

A(r)

∫

Sr(o)

u(z) dwr(z) ,

where A(r) is a positive scalar. But since g is an isometry we deduce from
(12) that

(M ru)(y) =
1

A(r)

∫

Sr(y)

u(z) dwr(z) .

Now we have to determine A(r).
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Lemma 2.9. For a suitable fixed normalization of the Haar measure dh
on H we have

A(r) = rq , (sinh r)q , (sin r)q

for the cases

R1+q , O(1, q + 1)/O(1, q) , O(2, q)/O(1, q) ,

respectively.

Proof. The relations above show that dh = A(r)−1 dwr dk. The mapping
Exp : Do → Do preserves length on the geodesics through o and maps
Sr(o) onto Sr(o). Thus if z ∈ Sr(o) and Z denotes the vector from 0 to z
in Xo the ratio of the volume of elements of Sr(o) and Sr(o) at z is given
by det(dExpZ). Because of Lemmas 2.6–2.7 this equals

1,

(

sinh r

r

)q

,

(

sin r

r

)q

for the three respective cases. But the volume element dωr on Sr(o) equals
rqdω1. Thus we can write in the three respective cases

dh =
rq

A(r)
dω1 dk ,

sinhq r

A(r)
dω1 dk ,

sinq r

A(r)
dω1 dk .

But we can once and for all normalize dh by dh = dω1 dk and for this
choice our formulas for A(r) hold.

Let � denote the wave operator on X = G/H , that is the Laplace-
Beltrami operator for the Lorentzian structure g.

Lemma 2.10. Let y ∈ X. On the solid retrograde cone Dy, the wave
operator � can be written

� =
∂2

∂r2
+

1

A(r)

dA

dr

∂

∂r
− LSr(y) ,

where LSr(y) is the Laplace-Beltrami operator on Sr(y).

Proof. We can take y = o. If (θ1, . . . , θq) are coordinates on the “sphere”
S1(o) in the flat space Xo then (rθ1, . . . , rθq) are coordinates on Sr(o). The
Lorentzian structure on Do is therefore given by

dr2 − r2 dθ2 ,

where dθ2 is the Riemannian structure of S1(o). Since AY in Lemma 2.7 is a
diagonal matrix with eigenvalues 1 and r−1A(r)1/q (q-times) it follows from
Lemma 2.6 that the image Sr(o) = Exp(Sr(o)) has Riemannian structure
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r2 dθ2, sinh2 r dθ2 and sin2 r dθ2 in the cases R1+q, Q−1 and Q+1, respec-
tively. By the perpendicularity in Lemma 2.5 it follows that the Lorentzian
structure on Do is given by

dr2 − r2 dθ2 , dr2 − sinh2 r dθ2 , dr2 − sin2 r dθ2

in the three respective cases. Now the lemma follows immediately.

The operatorM r is of course the Lorentzian analog to the spherical mean
value operator for isotropic Riemannian manifolds. We shall now prove that
in analogy to the Riemannian case (cf. (3.41), Ch. III) the operator M r

commutes with the wave operator �.

Theorem 2.11. For each of the isotropic Lorentz spaces X = G−/H,
G+/H or G0/H the wave operator � and the orbital integral M r commute:

�M ru = M r�u for u ∈ D(X) .

(For G+/H we assume r < π.)

Given a function u on G/H we define the function ũ on G by ũ(g) =
u(g · o).
Lemma 2.12. There exists a differential operator ˜� on G invariant under
all left and all right translations such that

˜�ũ = (�u)∼ for u ∈ D(X) .

Proof. We consider first the case X = G−/H . The bilinear form

K(Y, Z) = 1
2 Tr(Y Z)

on the Lie algebra o(1, q + 1) of G− is nondegenerate; in fact K is nonde-
generate on the complexification o(q+2,C) consisting of all complex skew
symmetric matrices of order q+2. A simple computation shows that in the
notation of (4) and (5)

K(Y1, Y1) = 1 , K(Yj , Yj) = −1 (2 ≤ j ≤ q + 1) .

Since K is symmetric and nondegenerate there exists a unique left invariant
pseudo-Riemannian structure ˜K on G− such that ˜Ke = K. Moreover, since
K is invariant under the conjugation Y → gY g−1 of o(1, q + 1), ˜K is also

right invariant. Let ˜� denote the corresponding Laplace-Beltrami operator
on G−. Then ˜� is invariant under all left and right translations on G−. Let
u = D(X). Since ˜�ũ is invariant under all right translations from H there

is a unique function v ∈ E(X) such that ˜�ũ = ṽ. The mapping u → v is
a differential operator which at the origin must coincide with �, that is
˜�ũ(e) = �u(o). Since, in addition, both � and the operator u → v are
invariant under the action of G− on X it follows that they coincide. This
proves ˜�ũ = (�u)∼.
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The case X = G+/H is handled in the same manner. For the flat case
X = G0/H let

Yj = (0, . . . , 1, . . . , 0) ,

the jth coordinate vector on R1+q. Then � = Y 2
1 − Y 2

2 − · · · − Y 2
q+1. Since

R1+q is naturally embedded in the Lie algebra of G0 we can extend Yj to

a left invariant vector field ˜Yj on G0. The operator

˜� = ˜Y 2
1 − ˜Y 2

2 − · · · − ˜Y 2
q+1

is then a left and right invariant differential operator on G0 and again we
have ˜�ũ = (�u)∼. This proves the lemma.

We can now prove Theorem 2.11. If g ∈ G let L(g) and R(g), respectively,
denote the left and right translations � → g�, and � → �g on G. If � · o =
x, x ∈ Sr(o) (r > 0) and g · o = y then

(M ru)(y) =

∫

H

ũ(gh�) dh

because of (11). As g and � run through sufficiently small compact neigh-
borhoods the integration takes place within a fixed compact subset of H
as remarked earlier. Denoting by subscript the argument on which a differ-
ential operator is to act we shall prove the following result.

Lemma 2.13.

˜��

⎛

⎝

∫

H

ũ(gh�) dh

⎞

⎠ =

∫

H

(˜�ũ)(gh�) dh = ˜�g

⎛

⎝

∫

H

ũ(gh�
)

dh

⎞

⎠ .

Proof. The first equality sign follows from the left invariance of ˜�. In fact,
the integral on the left is

∫

H

(ũ ◦ L(gh))(�) dh

so

˜��

⎛

⎝

∫

H

ũ(gh�) dh

⎞

⎠ =

∫

H

[

˜�(ũ ◦ L(gh))
]

(�) dh

=

∫

H

[

(˜�ũ) ◦ L(gh)
]

(�) dh =

∫

H

(˜�ũ)(gh�) dh .
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The second equality in the lemma follows similarly from the right invari-
ance of ˜�. But this second equality is just the commutativity statement in
Theorem 2.11.

Lemma 2.13 also implies the following analog of the Darboux equation
in Lemma 3.2, Ch. I.

Corollary 2.14. Let u ∈ D(X) and put

U(y, z) = (M ru)(y) if z ∈ Sr(o) .

Then
�y(U(y, z)) = �z(U(y, z)) .

Remark 2.15. In Rn the solutions to the Laplace equation Lu = 0 are
characterized by the spherical mean-value theorem M ru = u (all r). This
can be stated equivalently: M ru is a constant in r. In this latter form the
mean value theorem holds for the solutions of the wave equation �u = 0 in
an isotropic Lorentzian manifold: If u satisfies �u = 0 and if u is suitably
small at ∞ then (M ru)(o) is constant in r. For a precise statement and
proof see Helgason [1959], p. 289. For R2 such a result had also been noted
by Ásgeirsson.

§3 Generalized Riesz Potentials

In this section we generalize part of the theory of Riesz potentials (Ch. VII,
§6) to isotropic Lorentz spaces.

Consider first the case

X = Q−1 = G−/H = Oo(1, n)/Oo(1, n−1)

of dimension n and let f ∈ D(X) and y ∈ X . If z = ExpyY (Y ∈ Dy) we

put ryz = g(Y, Y )1/2 and consider the integral

(13) (Iλ−f)(y) =
1

Hn(λ)

∫

Dy

f(z) sinhλ−n(ryz) dz ,

where dz is the volume element on X , and

(14) Hn(λ) = π(n−2)/22λ−1Γ (λ/2) Γ ((λ+ 2− n)/2) .

The integral converges for Reλ ≥ n. We transfer the integral in (13) over
to Dy via the diffeomorphism Exp(= Expy). Since

dz = drdwr = dr

(

sinh r

r

)n−1

dωr
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and since drdωr equals the volume element dZ on Dy we obtain

(Iλf)(y) =
1

Hn(λ)

∫

Dy

(f ◦ Exp)(Z)
( sinh r

r

)λ−1

rλ−n dZ ,

where r = g(Z,Z)1/2. This has the form

(15)
1

Hn(λ)

∫

Dy

h(Z, λ)rλ−n dZ ,

where h(Z, λ), as well as each of its partial derivatives with respect to
the first argument, is holomorphic in λ and h has compact support in
the first variable. The methods of Riesz [1949], Ch. III, can be applied to
such integrals (15). In particular we find that the function λ → (Iλ−f)(y)
which by its definition is holomorphic for Reλ > n admits a holomorphic
continuation to the entire λ-plane and that its value at λ = 0 is h(0, 0) =
f(y). (In Riesz’ treatment h(Z, λ) is independent of λ, but his method still
applies.) Denoting the holomorphic continuation of (13) by (Iλ−)f(y) we
have thus obtained

(16) I0
−f = f .

We would now like to differentiate (13) with respect to y. For this we write
the integral in the form

∫

F
f(z)K(y, z) dz over a bounded region F which

properly contains the intersection of the support of f with the closure of
Dy. The kernel K(y, z) is defined as sinhλ−n ryz if z ∈ Dy, otherwise 0.
For Reλ sufficiently large, K(y, z) is twice continuously differentiable in y
so we can deduce for such λ that Iλ−f is of class C2 and that

(17) (�Iλ−f)(y) =
1

Hn(λ)

∫

Dy

f(z)�y(sinhλ−n ryz) dz .

Moreover, given m ∈ Z+ we can find k such that Iλ−f ∈ Cm for Reλ > k
(and all f). Using Lemma 2.10 and the relation

1

A(r)

dA

dr
= (n− 1) coth r

we find

�y(sinhλ−n ryz) = �z(sinhλ−n ryz)

= (λ−n)(λ−1) sinhλ−n ryz+(λ−n)(λ−2) sinhλ−n−2 ryz .

We also have
Hn(λ) = (λ− 2)(λ− n)Hn(λ− 2) ,
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so substituting into (17) we get

�Iλ−f = (λ− n)(λ− 1)Iλ−f + Iλ−2
− f .

Still assuming Reλ large we can use Green’s formula to express the
integral

(18)

∫

Dy

[

f(z)�z(sinhλ−n ryz)− sinhλ−n ryz(�f)(z)
]

dz

as a surface integral over a part of Cy (on which sinhλ−n ryz and its first
order derivatives vanish) together with an integral over a surface inside Dy

(on which f and its derivatives vanish). Hence the expression (18) vanishes
so we have proved the relations

�(Iλ−f) = Iλ−(�f)(19)

Iλ−(�f) = (λ − n)(λ− 1)Iλ−f + Iλ−2
− f(20)

for Reλ > k, k being some number (independent of f).
Since both sides of (20) are holomorphic in λ this relation holds for all

λ ∈ C. We shall now deduce that for each λ ∈ C, we have Iλ−f ∈ E(X) and
(19) holds. For this we observe by iterating (20) that for each p ∈ Z+

(21) Iλ−f = Iλ+2p
− (Qp(�)f) ,

Qp being a certain pth-degree polynomial. Choosing p arbitrarily large we
deduce from the remark following (17) that Iλ−f ∈ E(X); secondly (19)
implies for Reλ+ 2p > k that

�Iλ+2p
− (Qp(�)f) = Iλ+2p

− (Qp(�)�f) .

Using (21) again this means that (19) holds for all λ.
Putting λ = 0 in (20) we get

(22) I−2
− = �f − nf .

Remark 3.1. In Riesz’ paper [1949], p. 190, an analog Iα of the poten-
tials in Ch. V, §5, is defined for any analytic Lorentzian manifold. These
potentials Iα are however different from our Iλ− and satisfy the equation
I−2f = �f in contrast to (22).

We consider next the case

X = Q+1 = G+/H = Oo(2, n−1)/Oo(1, n−1)

and we define for f ∈ D(X)

(23) (Iλ+f)(y) =
1

Hn(λ)

∫

Dy

f(z) sinλ−n(ryz) dz .
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Again Hn(λ) is given by (14) and dz is the volume element. In order
to bypass the difficulties caused by the fact that the function z → sin ryz
vanishes on Sπ we assume that f has support disjoint from Sπ(o). Then
the support of f is disjoint from Sπ(y) for all y in some neighborhood of o
in X . We can then prove just as before that

(I0
+f)(y) = f(y)(24)

(�Iλ+f)(y) = (Iλ+�f)(y)(25)

(Iλ+�f)(y) = −(λ− n)(λ− 1)(Iλ+f)(y) + (Iλ−2
+ f)(y)(26)

for all λ ∈ C. In particular

(27) I−2
+ f = �f + nf .

Finally we consider the flat case

X = Rn = G0/H = Rn ·Oo(1, n−1)/Oo(1, n−1)

and define

(Iλo f)(y) =
1

Hn(λ)

∫

Dy

f(z)rλ−nyz dz .

These are the potentials defined by Riesz in [1949], p. 31, who proved

(28) I0
of = f, �Iλo f = Iλo �f = Iλ−2

o f .

§4 Determination of a Function from Its Integral

over Lorentzian Spheres

In a Riemannian manifold a function is determined in terms of its spher-
ical mean values by the simple relation f = limr→0 M

rf . We shall now
solve the analogous problem for an even-dimensional isotropic Lorentzian
manifold and express a function f in terms of its orbital integrals M rf .
Since the spheres Sr(y) do not shrink to a point as r → 0 the formula
(cf. Theorem 4.1) below is quite different.

For the solution of the problem we use the geometric description of the
wave operator � developed in §2, particularly its commutation with the
orbital integralM r, and combine this with the results about the generalized
Riesz potentials established in §3.

We consider first the negatively curved spaceX = G−/H . Let n = dimX
and assume n even. Let f ∈ D(X), y ∈ X and put F (r) = (M rf)(y). Since
the volume element dz on Dy is given by dz = dr dwr we obtain from (12)
and Lemma 2.9 ,

(29) (Iλ−f)(y) =
1

Hn(λ)

∞
∫

0

sinhλ−1 rF (r) dr .
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Let Y1, . . . , Yn be a basis of Xy such that the Lorentzian structure is
given by

gy(Y ) = y2
1 − y2

2 − · · · − y2
n , Y =

n
∑

1

yiYi .

If θ1, . . . , θn−2 are geodesic polar coordinates on the unit sphere in Rn−1

we put

y1 = −r cosh ζ (0 ≤ ζ <∞, 0 < r <∞)

y2 = r sinh ζ cos θ1
...

yn = r sinh ζ sin θ1 . . . sin θn−2 .

Then (r, ζ, θ1, . . . , θn−2) are coordinates on the retrograde cone Dy and the
volume element on Sr(y) is given by

dωr = rn−1 sinhn−2 ζ dζ dωn−2

where dωn−2 is the volume element on the unit sphere in Rn−1. It follows
that

dwr = sinhn−1 r sinhn−2 ζ dζ dωn−2

and therefore

(30) F (r) =

∫∫

(f ◦ Exp)(r, ζ, θ1, . . . , θn−2) sinhn−2 ζdζdωn−2 ,

where for simplicity

(r, ζ, θ1, . . . , θn−2)

stands for

(−r cosh ζ, r sinh ζ cos θ1, . . . , r sinh ζ sin θ1 . . . sin θn−2) .

Now select A such that f◦Exp vanishes outside the sphere y2
1+· · ·+y2

n = A2

in Xy. Then, in the integral (30), the range of ζ is contained in the interval
(0, ζo) where

r2 cosh2 ζo + r2 sinh2 ζo = A2 .

Then

rn−2F (r) =

∫

Sn−2

ζo
∫

0

(f ◦ Exp)(r, ζ, (θ))(r sinh ζ)n−2 dζ dωn−2 .

Since

|r sinh ζ| ≤ reζ ≤ 2A for ζ ≤ ζo
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this implies

(31) |rn−2(M rf)(y)| ≤ CAn−2 sup |f | ,
where C is a constant independent of r. Also substituting t = r sinh ζ in
the integral above, the ζ-integral becomes

k
∫

0

ϕ(t)tn−2(r2 + t2)−1/2 dt ,

where k = [(A2 − r2)/2]1/2 and ϕ is bounded. Thus if n > 2 the limit

(32) a = lim
r→0

sinhn−2 rF (r) n > 2

exist and is �≡ 0. Similarly, we find for n = 2 that the limit

(33) b = lim
r→0

(sinh r)F ′(r) (n = 2)

exists.
Consider now the case n > 2. We can rewrite (29) in the form

(Iλ−f)(y) =
1

Hn(λ)

A
∫

0

sinhn−2 rF (r) sinhλ−n+1 r dr ,

where F (A) = 0. We now evaluate both sides for λ = n − 2. Since Hn(λ)
has a simple pole for λ = n−2 the integral has at most a simple pole there
and the residue is

lim
λ→n−2

(λ− n+2)

A
∫

0

sinhn−2 rF (r) sinhλ−n+1 r dr .

Here we can take λ real and greater than n−2. This is convenient since by
(32) the integral is then absolutely convergent and we do not have to think
of it as an implicitly given holomorphic extension. We split the integral in
two parts

(λ−n+2)

A
∫

0

(sinhn−2 rF (r) − a) sinhλ−n+1 r dr

+a(λ− n+ 2)

A
∫

0

sinhλ−n+1 r dr .

For the last term we use the relation

lim
μ→0+

μ

A
∫

0

sinhμ−1 r dr = lim
μ→0+

μ

sinhA
∫

0

tμ−1(1 + t2)−1/2 dt = 1
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by (38) in Chapter VII. For the first term we can for each ε > 0 find a
δ > 0 such that

| sinhn−2 rF (r) − a| < ε for 0 < r < δ .

If N = max | sinhn−2 rF (r)| we have for n− 2 < λ < n− 1 the estimate

∣

∣(λ−n+2)

A
∫

δ

(sinhn−2 rF (r) − a) sinhλ−n+1 r dr
∣

∣

≤ (λ−n+2)(N + |a|)(A− δ)(sinh δ)λ−n+1 ;

∣

∣(λ+n−2)

δ
∫

0

(sinhn−2 rF (r) − a) sinhλ−n+1 r dr
∣

∣

≤ ε(λ− n+ 2)

δ
∫

0

rλ−n+1 dr = εδλ−n+2 .

Taking λ − (n − 2) small enough the right hand side of each of these in-
equalities is < 2ε. We have therefore proved

lim
λ→n−2

(λ − n+ 2)

∞
∫

0

sinhλ−1 rF (r) dr = lim
r→0

sinhn−2 r F (r) .

Taking into account the formula for Hn(λ) we have proved for the inte-
gral (29):

(34) In−2
− f = (4π)(2−n)/2 1

Γ((n− 2)/2)
lim
r→o

sinhn−2 r M rf .

On the other hand, using formula (20) recursively, we obtain for u ∈ D(X),

In−2
− (Q(�)u) = u,

where

Q(�) = (� + (n− 3)2)(� + (n− 5)4) · · · (� + 1(n− 2)) .

We combine this with (34) and use the commutativity �M r = M r�. This
gives

(35) u = (4π)(2−n)/2 1

Γ((n− 2)/2)
lim
r→0

sinhn−2 r Q(�)M ru .

Here we can for simplicity replace sinh r by r.
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For the case n = 2 we have by (29)

(36) (I2
−f)(y) =

1

H2(2)

∞
∫

0

sinh rF (r) dr .

This integral, which in effect only goes from 0 to A, is absolutely convergent
because our estimate (31) shows (for n = 2) that rF (r) is bounded near
r = 0. But using (20), Lemma 2.10, Theorem 2.11 and Cor. 2.14, we obtain
for u ∈ D(X),

u = I2
−�u = 1

2

∞
∫

0

sinh rM r�u dr

= 1
2

∞
∫

0

sinh r�M ru dr = 1
2

∞
∫

0

sinh r

(

d2

dr2
+ coth r

d

dr

)

M ru dr

= 1
2

∞
∫

0

d

dr

(

sinh r
d

dr
M ru

)

dr = − 1
2 lim
r→0

sinh r
d(M ru)

dr
.

This is the substitute for (35) in the case n = 2.
The spaces G+/H and Go/H can be treated in the same manner. We

have thus proved the following principal result of this chapter.

Theorem 4.1. Let X be one of the isotropic Lorentzian manifolds G−/H,
Go/H, G+/H. Let κ denote the curvature of X (κ = −1, 0,+1) and assume
n = dimX to be even, n = 2m. Put

Q(�) = (�− κ(n− 3)2)(�− κ(n− 5)4) · · · (�− κ1(n− 2)) .

Then if u ∈ D(X)

u = c lim
r→0

rn−2Q(�)(M ru) , (n �= 2)

u = 1
2 lim
r→0

r
d

dr
(M ru) (n = 2) .

Here c−1 = (4π)m−1(m−2)! and � is the Laplace-Beltrami operator on X.

§5 Orbital Integrals and Huygens’ Principle

We shall now write out the limit in (35) and thereby derive a statement
concerning Huygens’ principle for �. As r → 0, Sr(o) has as limit the
boundary CR = ∂Do − {o} which is still an H-orbit. The limit

(37) lim
r→0

rn−2(M rv)(o) , v ∈ Cc(X − o) ,
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is by (31)–(32) a positive H-invariant functional with support in the H-
orbit CR, which is closed in X − o. Thus the limit (37) only depends on
the restriction v|CR. Hence it is “the” H-invariant measure on CR and we
denote it by μ. Thus

(38) lim
r→0

rn−2 (M rv)(o) =

∫

CR

v(z) dμ(z) .

To extend this to u ∈ D(X), let A > 0 be arbitrary and let ϕ be a
“smoothed out” characteristic function of ExpBA. Then if

u1 = uϕ , u2 = u(1− ϕ)

we have

∣

∣

∣rn−2(M ru)(o)−
∫

CR

u(z) dμ(z)
∣

∣

∣

≤
∣

∣

∣rn−2(M ru1)(o)−
∫

CR

u1(z) dμ(z)
∣

∣

∣+
∣

∣

∣rn−2(M ru2)(o)−
∫

CR

u2(z) dμ(z)
∣

∣

∣ .

By (31) the first term on the right is O(A) uniformly in r and by (38) the
second tends to 0 as r → 0. Since A is arbitrary (38) holds for u ∈ D(X).

Proposition 5.1 (Huygens’ Principle). Let n = 2m (m > 1) and δ the
delta distribution at o. Then

(39) δ = cQ(�)μ ,

where c−1 = (4π)m−1(m− 2)!.

In fact, by (35), (38) and Theorem 2.11

u = c lim
r→0

rn−2(M rQ(�)u)(o) = c

∫

CR

(Q(�)u)(z) dμ(z)

and this is (39).

Remark 5.2. Formula (39) shows that each factor

(40) �k = �− κ(n− k)(k − 1) k = 3, 5, . . . , n− 1

in Q(�) has fundamental solution supported on the retrograde conical sur-
face CR. This is known to be the equivalent to the validity of Huygens’
principle for the Cauchy problem for the equation �ku = 0 (see Gűnther
[1991] and [1988], Ch. IV, Cor. 1.13). For a recent survey on Huygens’
principle see Berest [1998].
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CHAPTER VI

THE MEAN-VALUE OPERATOR

§1 An Injectivity Result

It is a consequence of a well-known theorem of Godement [1952] that if
X is a two-point homogeneous space and u a harmonic function on X ,
i.e., Lu = 0, then u has the mean-value property

(1) u = M ru for each r .

Conversely (1) implies that u is harmonic. Suitably restated the result holds
for open subsets of X , thus also for compact X .

We shall now see that harmonicity of u for X compact follows from the
validity of (2) for a single r. Let d denote the diameter of X .

Theorem 1.1. Let X = U/K be a compact two-point homogeneous space.

(i) If f ∈ E(X) satisfies the mean-value relation

(2) Mρf = f

for a single ρ, 0 < ρ < d then f is a constant.

Proof. We may assume f real-valued. Let x0 be a maxiumum point for f .
Then

(3) (Mρ(f(x0)− f))(x0) = 0

so since the integrand in this equation is positive on Sρ(x0) we deduce

(4) f = f(x0) on Sρ(x0) .

Let y ∈ X be arbitrary and let S be a sphere in Theorem 1.5, Ch. IV,
totally geodesic in X containing x0 and y. We can join x0 to y by geodesic
arcs in S each of length ρ. Let x0, x1, . . . , xk = y be the endpoints of these
arcs. Then we have from (4)

f(x1) = f(x0)

and since xi+1 ∈ Sρ(xi) we obtain inductively,

(5) f(xi+1) = f(x0)

and finally

(6) f(y) = f(x0) ,

proving the result.

S. Helgason, Integral Geometry and Radon Transforms, 
DOI 10.1007/978-1-4419-6055-9_6, © Springer Science+Business Media, LLC 2011
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We consider now a noncompact two-point homogeneous space X .

Theorem 1.2. For a fixed r > 0 the transform

f(x)→ (M rf)(x)

is injective on L1(X).

Proof. As in Ch. IV we represent X as G/K and the mean-value operator
is for g ∈ G

(M rf)(g · o) =

∫

K

f(gk · z) dk ,

where z ∈ Sr(o). The operator M r is symmetric, that is

(7)

∫

X

(M rf)(x)ϕ(x) dx =

∫

X

f(x)(M rϕ)(x) dx .

Selecting h ∈ G such that h · o = z the left hand side equals
∫

G

(∫

K

f(gkh · o) dk
)

ϕ(g · o) dg .

Interchanging integrations this reduces to
∫

G

f(g · o)ϕ(gh−1 · o) dg ,

which can be written
∫

G

f(g · o)
(∫

K

ϕ(gkh−1 · o) dk
)

dg .

Since d(h−1 · o, o) = r, d denoting distance, (7) follows.
Let μz denote the normalized invariant measure on the orbit K · z. By

(24) in Chapter II,

(f × μz)(ϕ) =

∫

G

f(g · o)μz(ϕτ(g−1)) dg

and

μz(ϕ
τ(g−1)) =

∫

K

ϕ(gk · z) dk = (M rϕ)(g · o) .

Thus (7) implies

(8) f × μz = M rf .
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Thus we must show that the convolution relation

f × μz ≡ 0

implies f = 0 almost everywhere.

Since f ∈ L1(X) we can consider its Fourier transform (Helgason [2005],
Theorem 8.1) and conclude since μz is K-invariant that

˜f(λ, b)μ̃z(λ) = 0 λ ∈ R ,

for almost all b ∈ K/M . (Here M is the centralizer of a in K.)

Since μ̃z is holomorphic on C and �≡ 0 this implies ˜f(λ, b) = 0 for λ ∈ R
so by loc. cit. f = 0.

§2 Ásgeirsson’s Mean-Value Theorem Generalized

In his paper [1937], Ásgeirsson proved the following result. Let u ∈ C2(R2n)
satisfy the ultrahyperbolic equation

(9)
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

=
∂2u

∂y2
1

+ · · ·+ ∂2u

∂y2
n

.

Then for each r ≥ 0 and each point

(x0, y0) = (x0
1, . . . , x

0
n, y

0
1 , . . . , y

0
n) ∈ R2n

the following identity holds for the (n− 1)-dimensional spherical integrals:

(10)

∫

Sr(x0)

u(x, y0) dω(x) =

∫

Sr(y0)

u(x0, y) dω(y) .

The theorem was proved in the quoted paper for u of class C2 in a
suitable region of R2n. We now state and prove a generalization to a two-
point homogeneous space.

Theorem 2.1. Let X be a symmetric space of rank one (or Rn) and let
the function u ∈ C2(X ×X) satisfy the differential equation

(11) Lx(u(x, y)) = Ly(u(x, y))

on X ×X. Then for each r ≥ 0 and each (x0, y0) ∈ X ×X we have

(12)

∫

Sr(x0)

u(x, y0) dω(x) =

∫

Sr(y0)

u(x0, y) dω(y) .
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Proof. If n = 1, the solutions to (11) have the form

u(x, y) = ϕ(x+ y) + ψ(x− y)

and (12) reduces to the obvious relation

u(x0 − r, y0) + u(x0 + r, y0) = u(x0, y0 − r) + u(x0, y0 + r) .

Hence we may assume that n ≥ 2.
First, let u = C2(X ×X) be arbitrary. We form the function

(13) U(r, s) = (M r
1M

s
2u)(x, y) .

The subscripts 1 and 2 indicate that we consider the first and second vari-
ables, respectively; for example,

(M r
1u)(x, y) =

1

A(r)

∫

Sr(x)

u(s, y) dω(s) .

Let o ∈ X be the origin; write X = G/K, where G = Io(X), the identity
component of I(X), and K is the isotropy subgroup of G at o. If g, h ∈ G,
r = d(o, h · o) (d = distance) we have as before

(14) (M rf)(g · o) =

∫

K

f(gkh · o) dk , f ∈ C(X) ,

where dk is the normalized Haar measure on K. Thus we have by inter-
changing the order of integration

(15) U(r, s) = (M r
1M

s
2u)(x, y) = (M s

2M
r
1u)(x, y) .

Keeping y and s fixed, we have since L and M r commute

∂2U

∂r2
+

1

A(r)
A′(r)

∂U

∂r
= Lx(M

r
1M

s
2 )u)(x, y)

= (M r
1L1M

s
2u)(x, y) = (M r

1M
s
2L1u)(x, y) ,

the last identity resulting from the fact that L1 and M s
2 act on different

arguments. Similarly, by using (15),

∂2U

∂s2
+

1

A(s)
A′(s)

∂U

∂s
= (M s

2M
r
1L2u)(x, y) .

Assuming now u is a solution to (11), we obtain from the above

∂2U

∂r2
+

1

A(r)
A′(r)

∂U

∂r
=
∂2U

∂s2
+

1

A(s)
A′(r)

∂U

∂s
.
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rO

M

N

s

FIGURE VI.1.

Now putting F (r, s) = U(r, s)− U(s, r), we obtain the relations

∂2F

∂r2
+

1

A(r)
A′(r)

∂F

∂r
− ∂2F

∂s2
− 1

A(s)
A′(s)

∂F

∂s
= 0 ,(16)

F (r, s) = −F (s, r) .

After multiplication of (16) by 2A(r)∂F/∂s and some manipulation we
obtain

−A(r)
∂

∂s

[

(

∂F

∂r

)2

+

(

∂F

∂s

)2
]

+ 2
∂

∂r

(

A(r)
∂F

∂r

∂F

∂s

)

− 2A(r)

A(s)

dA

ds

(

∂F

∂s

)2

= 0 .

Consider the line MN with equation r + s = const. in the (r, s)-plane
and integrate the last expression over the right-angled triangle OMN (see
Fig. VI,1). Using the divergence theorem (Chapter I, §2, (26)) we then
obtain, if n denotes the outgoing unit normal, d� the element of arc length
and dot the inner product

∫

OMN

(

2A(r)
∂F

∂r

∂F

∂s
,−A(r)

[

(

∂F

∂r

)2

+

(

∂F

∂s

)2
])

· n d�

=

∫∫

OMN

2A(r)

A(s)

dA

ds

(

∂F

∂s

)2

dr ds .

On OMN we have s ≥ r so that for small r, s

A(r)

A(s)
A′(s) ≤ Crn−1s−1 ≤ Crn−2 (C = const.),
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so that the last integral does indeed exist since we have assumed n ≥ 2.
We now use the following data:

On OM : n = (2−1/2,−2−1/2) , F (r, r) = 0 , so that
∂F

∂r
+
∂F

∂s
= 0 .

On MN : n = (2−1/2, 2−1/2) , on ON : A(r) = 0 .

The formula above then reduces to

(17) 2−1/2

∫

MN

A(r)

(

∂F

∂r
− ∂F

∂s

)2

d�+

∫∫

OMN

2A(r)

A(s)

dA

ds

(

∂F

∂s

)2

dr ds = 0 .

Now we consider separately the noncompact case and the compact case.

(I) X noncompact. Here we claim A′(r) ≥ 0 for all r ≥ 0. If X = Rn, this
is obvious, so we may assume that G is semisimple. But then the statement
is clear from the analog of Lemma 2.1 in Ch. III for our noncompact X
because sin has just to be replaced by sinh. Consequently, both terms in
(17) vanish, so we can conclude that F ≡ 0. In particular, U(r, 0) = U(0, r),
and this is the desired formula (12).

(II) X compact. In this case we know that A′(s) ≥ 0 for s in a certain
interval 0 ≤ s ≤ r0. As before, we can conclude that U(r, 0) = U(0, r) for
r in this interval 0 ≤ r ≤ r0. In order to extend this to all r we approx-
imate the solution u to (11) by analytic solutions. Let ϕ, ψ be analytic
functions on the compact Lie group G with Haar measure dg and consider
the convolution

(18) uϕ,ψ(x, y) =

∫∫

GG

u(g−1
1 · x, g−1

2 · y)ϕ (g1)ϕ (g2) dg1 dg2

Then

Lx(uϕ,ψ(x, y)) =

∫∫

GG

(L1u)(g−1
1 · x, g−1

2 · y)ϕ (g1)ψ (g2) dg1 dg2

=

∫

(L2u)(g−1
1 · x, g−1

2 · y)ϕ (g1)ψ (g2) dg1 dg2

= Ly(uϕ,ψ(x, y)) ,

so

(19)

∫

Sr(x0)

uϕ,ψ(x, y0) dω(x) =

∫

Sr(y0)

uϕ,ψ(x0, y) dω(y)

for 0 ≤ r ≤ r0. For f ∈ C(X × Y ) define the function ˜f on G × G by
˜f(g1, g2) = f(g1 · o, g2 · o); then (19) can be written

(20)

∫

K

ũϕ,ψ(g1kh, g2) dk =

∫

K

ũϕ,ψ(g1, g2kh) dk



§3 John’s Identities 215

for all h ∈ G such that d(o, h · o) ≤ r0.
Changing variables in the integral (18), we see that uϕ,ψ is analytic on

X ×X , so ũϕ,ψ is analytic on G×G. Since (20) holds for h varying in an
open subset of G, it holds for all h ∈ G. Substituting the definition (18)
into (20), we see that for each fixed h ∈ G, the function

(21) (z, w)→
∫

K

[

ũ(z−1g1kh,w
−1g2)− ũ(z−1g1, w

−1g2kh)
]

dk

on G×G is orthogonal to all functions of the form ϕ(z)ψ(w), ϕ and ψ being
analytic. By the Peter–Weyl theorem this remains true for ϕ, ψ ∈ E(G).
But by the Stone–Weierstrass theorem these functions ϕ(z)ψ(w) span a
uniformly dense subspace of C(G×G). Thus the function (21) is identically
0 so (12) is proved for all r.

Definition. Let X be a two-point homogeneous space. The Mean-Value
transform is the map f → ̂f where f ∈ C2(X) and

(22) ̂f(r, x) = (M rf)(x) ,

the mean value of f on Sr(x).

This transform could be considered for any Riemannian manifold. One
can also specify for x to lie in a certain set S and investigate whether
(M rf)(x) for x ∈ S and r ≥ 0 determines f .

Theorem 2.2. The range of the map (22) is the null space of the Darboux
operator

(23)
∂2

∂r2
+
A′(r)

A(r)

∂

∂r
− L .

For Hn we have shown (Ch. III, (33) and (36)) that the operator (23)

annihilates ̂f . The proof depends only on the commutation of M r and L
and is thus valid for the present space X .

On the other hand, suppose ϕ(r, x) is in the kernel of (23), ϕ assumed
smooth and even in r. Defining F (y, x) = ϕ(r, x) if r = d(o, y) we have
LyF = LxF so Theorem 2.1 applies. Putting f(x) = ϕ(o, x) the relation

states (M rf)(x0) = ϕ(r, xo) so ̂f = ϕ.

§3 John’s Identities

In his book, [1955] John introduced the iterated spherical mean on Rn by

M(z, r, s) =
1

Ω2
n

∫

Sn−1

∫

Sn−1

f(z + rζ + sξ) dωζ dωξ , f ∈ C(Rn) ,
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x |r-s| r+s

FIGURE VI.2

and proved the identity

M(z, r, s) =
2Ωn−1

Ωn(2rs)n−2
·(24)

×
r+s
∫

|r−s|

[(t+ r − s)(t+ r + s)(t− r + s)(−t+ r + s)]
n−3

2 t(M tf)(z) dt .

This formula reflects the fact that the torus can be swept out by spheres
with center x and radii t |r − s| < t < r + s and also by spheres of radius
s with centers on the spheres Sr(x), Fig. VI, 1.

The identity is easily proved by group theory using the formula

(Mxf)(z) = M rf(z) =

∫

K

f(z + k · x) dk for |x| = r .

Then

M(z, r, s) = (MyMxf)(z) =

∫

K

∫

K

f(z + � · x+ k · y) d� dk

if |y| = s, |x| = r. This equals
∫

K

∫

K

f(z + � · x+ �k · y) dk d� =

∫

K

(Mx+k·yf)(z) dk .

Taking y = sen, x = ren the integral is
∫

Sn−1(0)

(Mx+sωf)(z) dω .
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Let θ denote the angle between en and ω. In the integral we first let ω vary
in the section of Sn−1(0) with the plane (en, y) = − cos θ. Since |x+sω|2 =
r2 + s2 − 2rs cos θ the last integral equals

Ωn−1

Ωn

π
∫

0

(

M (r2+s2−2rs cos θ)1/2

f
)

(z) sinn−2 θ dθ .

Using the substitution

t = r2 + s2 − 2rs cos θ

formula (24) follows by direct computation.
John has also (loc. cit., Ch. IV) proved formulas describing f(x) explicitly

in terms of the iterated mean value.

Exercises and Further Results

Support and Injectivity Results.

1. Given a ∈ Rn let D(a) = B|a|/2

(

a
2

)

. Let G ⊂ R be an open connected

set containing O and let ˜G =
⋃

a∈GD(a). Assume f ∈ C( ˜G) is C∞ at 0
and that

∫

D(a)

f(x) dx = 0 for all a ∈ ˜G .

Then f ≡ 0 on G. (Grinberg-Quinto [1999].)

2. Let ξ ⊂ Rn be a hyperplane and assume f ∈ C(Rn) has the property

(M rf)(x) = 0 for x ∈ ξ , r > 0 .

Then f is odd relative to ξ. (Courant-Hilbert [1937].)

3. A subset S ⊂ Rn is a set of injectivity for the mean value operator M
if

(M rf)(x) = 0 for all x ∈ S , r > 0

and some f ∈ Cc(M) implies f ≡ 0 .

For n = 2 the following results hold. (Agranovsky, Quinto [1996].)

Given N ∈ Z+ let
∑

N denote the set of lines L0, . . . , LN−1 in R2 where

Lk = {teπik/N : t ⊂ R} .

The Lk pass through 0 and through 2N th root of unity. Then
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(i) A set of S ⊂ R2 is a set of injectivity for M if and only if S is not
contained in any set of the form

σ
(P

N

)S
F ,

where σ ∈M(2) and F a finite set.

(ii) By duality this property is equivalent to the density in C(R2) of the
span of the radial functions g(x) = F (|x − a|), a ∈ S.

(iii) Given f ∈ Cc(R2) and k ∈ Z+, let

Qk[f ] = f ∗ |x|2k , S[f ] = {a ∈ R2 : (M rf)(a) = 0 , all r} .
Then

(a) S[f ] =
⋂∞
k=0N(Qk[f ]) where N(Qk) is the zero set of the polyno-

mial Qk.

(b) Assume f �= 0. Then Qk[f ] �= 0 for some k. If k0 is the smallest
such k then Qk0 [f ] = f ∗ |x|2k0 is a harmonic polynomial. In fact, a ∈ S[f ]
if and only if (M rf)(a) = 0 for all r. We have the relation

∞
∫

0

(M rf)(a)r2k dr = (f ∗ |x|2k)(a) = Qk[f ](a) ,

proving (a). We then have by Ch. VII, Lemma 6.3,

LQk0 [f ] = f ∗ L|x|2k0 = cf ∗ |x|2k0−2 = 0

proving (b).

(iv) Show by (i) or (iii) that every closed curve in R2 is a set of injectivity
for M .

4. A very general two radius theorem is given by Zhou [2001] and Zhou-
Quinto [2000]:

Let M be a real analytic manifold with injectivity radius IM > 0. Let
0 < a < b < a + b < 2IM and assume a/b irrational. Suppose f ∈ C(M)
satisfies

(i) M
a
2 f = M

b
2 f = 0.

(ii) f ≡ 0 on some sphere S0 of radius r < IM .

Then f ≡ 0 on M .

5. The double fibration in (7), Ch. II, §2 has the Radon transform

̂f(ξ) =
1

Ωn

∫

ξ

f(x) dm(x) ξ a unit sphere, dm Euclidean measure .
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Writing ξ = y + ξ0 where ξ0 = S1(0)

̂f(y + ξ0) =
1

Ωn

∫

ξ0

f(y + x) dm(x) = (M1f)(y) .

(i) Assume n = 3. Show using (25) that f → ̂f is injective on the space
of f ∈ C(R3) satisfying

|x|f(x)→ 0 as |x| → ∞ .

(ii) If ̂f ≡ 0 and f(x) = 0 for |x| < 1 + ε then f ≡ 0.

(iii) Assuming ̂f(x) and its derivatives O
(

1
|x|3

)

f(x) = −
∞
∑

0

1

2π(2n+ 1)

∫

|y|=2n+1

Lx ̂f(x + y) dm(y) .

For (i), (ii) and (iii) see John [1955], Ch. VI.
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[1966]. Theorem 2.1, generalizing Ásgeirsson’s theorem is from Helgason
[1959], even for arbitrary Riemannian homogeneous spaces. The trans-
form (22), with x restricted to a subset, has been extensively investigated,
see e.g. Agranovski–Quinto [1996] and Agranovski–Berenstein–Kuchment
[1996] for a sample.





CHAPTER VII

FOURIER TRANSFORMS AND DISTRIBUTIONS.

A RAPID COURSE

§1 The Topology of Spaces D(Rn), E(Rn), and S(Rn)

Let Rn = {x = (x1, . . . , xn) : xi ∈ R} and let ∂i denote ∂/∂xi. If
(α1, . . . , αn) is an n-tuple of integers αi ≥ 0 we put α! = α1! · · ·αn!,

Dα = ∂α1
1 . . . ∂αn

n , xα = xα1
1 . . . xαn

n , |α| = α1 + · · ·+ αn .

For a complex number c, Re c and Im c denote respectively, the real part
and the imaginary part of c. For a given compact set K ⊂ Rn let

DK = DK(Rn) = {f ∈ D(Rn) : supp(f) ⊂ K} ,
where supp stands for support. The space DK is topologized by the semi-
norms

(1) ‖f‖K,m =
∑

|α|≤m

sup
x∈K
|(Dαf)(x)|, m ∈ Z+ .

The topology of D = D(Rn) is defined as the largest locally convex topol-
ogy for which all the embedding maps DK → D are continuous. This is
the so-called inductive limit topology. More explicitly, this topology is
characterized as follows:

A convex set C ⊂ D is a neighborhood of 0 in D if and only if for each
compact set K ⊂ Rn, C ∩ DK is a neighborhood of 0 in DK .

A fundamental system of neighborhoods in D can be characterized by
the following theorem. If BR denotes the ball |x| < R in Rn then

(2) D = ∪∞j=0DBj
.

Theorem 1.1. Given two monotone sequences

{ε} = ε0, ε1, ε2, . . . , εi → 0

{N} = N0, N1, N2, . . . , Ni →∞ Ni ∈ Z+

let V ({ε}, {N}) denote the set of functions ϕ ∈ D satisfying for each j the
conditions

(3) |(Dαϕ)(x)| ≤ εj for |α| ≤ Nj, x /∈ Bj .
Then the sets V ({ε}, {N}) form a fundamental system of neighborhoods of
0 in D.

S. Helgason, Integral Geometry and Radon Transforms, 
DOI 10.1007/978-1-4419-6055-9_7, © Springer Science+Business Media, LLC 2011
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Proof. It is obvious that each V ({ε}, {N}) intersects each DK in a neigh-
borhood of 0 in DK . Conversely, let W be a convex subset of D intersecting
each DK in a neighborhood of 0. For each j ∈ Z+, ∃Nj ∈ Z+ and ηj > 0
such that each ϕ ∈ D satisfying

|Dαϕ(x)| ≤ ηj for |α| ≤ Nj , supp(ϕ) ⊂ Bj+2

belongs to W . Fix a sequence (βj) with

βj ∈ D, βj ≥ 0 , Σβj = 1 , supp(βj) ⊂ Bj+2 −Bj
and write for ϕ ∈ D,

ϕ =
∑

j

1

2j+1
(2j+1βjϕ) .

Then by the convexity ofW , ϕ ∈ W if each function 2j+1βjϕ belongs to W .
However, Dα(βjϕ) is a finite linear combination of derivatives Dββj and
Dγϕ, (|β|, |γ| ≤ |α|). Since (βj) is fixed and only values of ϕ in Bj+2 −Bj
enter, ∃ constant kj such that the condition

|(Dαϕ)(x)| ≤ εj for |x| ≥ j and |α| ≤ Nj
implies

|2j+1Dα(βjϕ)(x)| ≤ kjεj for |α| ≤ Nj , all x .

Choosing the sequence {ε} such that kjεj ≤ ηj for all j we deduce for each j

ϕ ∈ V ({ε}, {N})⇒ 2j+1βjϕ ∈W ,

whence ϕ ∈W . This proves Theorem 1.1.
The space E = E(Rn) is topologized by the seminorms (1) for the vary-

ing K. Thus the sets

Vj,k,� = {ϕ ∈ E(Rn) : ‖ϕ‖Bj ,k
< 1/�} j, k, � ∈ Z+

form a fundamental system of neighborhoods of 0 in E(Rn). This system
being countable the topology of E(Rn) is defined by sequences: A point
ϕ ∈ E(Rn) belongs to the closure of a subset A ⊂ E(Rn) if and only if ϕ is
the limit of a sequence in A. It is important to realize that this fails for the
topology of D(Rn) since the family of sets V ({ε}, {N}) is uncountable.

The space S = S(Rn) of rapidly decreasing functions on Rn is topolo-
gized by the seminorms (6), Ch. I. We can restrict the P in (6), Ch. I to
polynomials with rational coefficients.

Lemma 1.2. D(Rn) is dense in S(Rn).
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Proof. Let f ∈ S. Select ψ ∈ D such that ψ ≡ 1 on B1(0). For δ > 0 put
fδ(x) = f(x)ψ(δx). Then fδ ∈ D. Then

fδ(x)− f(x) = f(x)(ψ(δx) − 1) ≡ 0 for |x| < 1

δ
.

We have

(4) xβ
(

Dαfδ(x) −Dαf(x)
)

= xβDαf(x)(ψ(δx) − 1) + Fδ(x) ,

where Fδ(x) is a linear combination of terms containing a power of δ. Given
ε ∈ 0 three exist a δ > 0 such that the first term on the right in (4) is 0 for
|x| ≤ 1

δ and less than ε for |x| > 1
δ (since f ∈ S). Also |Fδ(x)| < ε for all x

if δ is small enough.

In contrast to the space D the spaces DK , E and S are Fréchet spaces,
they are complete and their topologies are given by a countable family of
seminorms.

The spaces DK(M), D(M) and E(M) can be topologized similarly if M
is a manifold.

§2 Distributions

A distribution by definition is a member of the dual space D′(Rn) of
D(Rn). By the definition of the topology of D, T ∈ D′ if and only if the
restriction T |DK is continuous for each compact set K ⊂ Rn. Thus a linear
form on D(Rn) is a distribution if and only if for each K, T (ϕi) → 0 for
each sequence (ϕi) ⊂ DK(Rn) converging to 0. Each locally integrable
function F on Rn gives rise to a distribution ϕ → ∫

ϕ(x)F (x) dx denoted
TF . A measure on Rn is also a distribution. The notion of a distribution
extends in an obvious way to manifolds M .

The derivative ∂iT of a distribution T is by definition the distribution
ϕ → −T (∂iϕ). If F ∈ C1(Rn) then the distributions T∂iF and ∂i(TF )
coincide (integration by parts).

A tempered distribution by definition is a member of the dual space
S′(Rn). Since the imbedding D → S is continuous the restriction of a
T ∈ S′ to D is a distribution; since D is dense in S two tempered distribu-
tions coincide if they coincide on D. In this sense we have S ′ ⊂ D′.

Since distributions generalize measures it is sometimes convenient to
write

T (ϕ) =

∫

ϕ(x) dT (x)

for the value of a distribution T on the function ϕ. A distribution T is said
to be 0 on an open set U ⊂ Rn if T (ϕ) = 0 for each ϕ ∈ D with support
contained in U . Let U be the union of all open sets Uα ⊂ Rn on which
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T is 0. Then T = 0 on U . In fact, if f ∈ D(U), supp(f) can be covered
by finitely many Uα, say U1, . . . , Ur. Then U1, . . . , Ur,R

n − supp(f) is a

covering of Rn. If 1 =
∑r+1

1 ϕi is a corresponding partition of unity we
have f =

∑r
1 ϕif so T (f) = 0. The complement Rn − U is called the

support of T , denoted supp(T ).

A distribution T of compact support extends to a unique element of
E ′(Rn) by putting

T (ϕ) = T (ϕϕ0) , ϕ ∈ E(Rn)

if ϕ0 is any function in D which is identically 1 on a neighborhood of
supp(T ). Since D is dense in E , this extension is unique. On the other
hand let τ ∈ E ′(Rn), T its restriction to D. Then T is a distribution. Also
supp(T ) is compact. Otherwise we could for each j find ϕj ∈ E such that
ϕj ≡ 0 on Bj but T (ϕj) = 1. Then ϕj → 0 in E , yet τ(ϕj) = 1 which is a
contradiction.

This identifies E ′(Rn) with the space of distributions of compact support
and we have the following canonical inclusions:

D(Rn) ⊂ S(Rn) ⊂ E(Rn)
∩ ∩ ∩

E ′(Rn) ⊂ S′(Rn) ⊂ D′(Rn) .

§3 Convolutions

For f and g in L1(Rn) the convolution f ∗ g is defined by

(f ∗ g)(x) =

∫

Rn

f(x− y)g(y) dy .

We now state some simple results (Prop. 3.1–Prop. 3.4) for the extension
of this operation to distributions, referring to Hörmander [1963] Chapter I
or [1983], Chapter 4 for quick and easy proofs.

Proposition 3.1. Given ϕ ∈ D(Rn) and T ∈ D′(Rn) the function ϕ ∗ T
given by

(ϕ ∗ T )(x) =

∫

Rn

ϕ(x− y) dT (y)

belongs to E(Rn). Moreover,

supp(ϕ ∗ T ) ⊂ supp(ϕ) + supp(T )

and
Dα(ϕ ∗ T ) = Dαϕ ∗ T = ϕ ∗DαT .
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Proposition 3.2. Given ϕ, ψ ∈ D(Rn), T ∈ D′(Rn) we have

(5) (T ∗ ϕ) ∗ ψ = T ∗ (ϕ ∗ ψ) .

Proposition 3.3. Given S, T ∈ D′(Rn), one of which has compact sup-
port, there exists a unique distribution, denoted S ∗ T , such that

S ∗ (T ∗ ϕ) = (S ∗ T ) ∗ ϕ , ϕ ∈ D(Rn) .

This convolution is commutative,

(6) S ∗ T = T ∗ S ,

and associative,

(7) T1 ∗ (T2 ∗ T3) = (T1 ∗ T2) ∗ T3 ,

if all Ti, except at most one, has compact support. Moreover, as justified
below,

(8) supp(T ∗ S) ⊂ suppT + supp(S) .

Let ϕ ∈ D(Rn) be ≥ 0,
∫

ϕ(x) dx = 1 and supp(ϕ) ⊂ B1(0). The
following regularization holds.

Proposition 3.4. Let ϕε(x) = ε−nϕ
(

x
ε

)

. Then if T ∈ D′(Rn) and ε→ 0,

(ϕε ∗ T )(ϕ)→ T (ϕ) for ϕ ∈ D(Rn) .

Let f̌(x) = f(−x). Then

(ϕ ∗ T )(0) = T (ϕ̌) .

Let f ∈ D and T ∈ D′ and put g = f ∗ T so

g(x) =

∫

f(x− y) dT (y)

Note that g(x) = 0 unless x − y ∈ supp(f) for some y ∈ supp (T ). Thus
supp(g) ⊂ supp(f) + suppT . More generally,

supp(S ∗ T ) ⊂ supp(S) + supp(T ) ,

as one sees from the special case S = Tg by approximating S by functions
S ∗ ϕε with supp(ϕε) ⊂ Bε(0).

The convolution can be defined for more general S and T , for example if
S ∈ S, T ∈ S′ then S ∗ T ∈ S′ (see Prop. 4.4). Also S ∈ E ′, T ∈ S′ implies
S ∗ T ∈ S′.
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§4 The Fourier Transform

For f ∈ L1(Rn) the Fourier transform is defined by

(9) ˜f(ξ) =

∫

Rn

f(x)e−i〈x,ξ〉 dx, ξ ∈ Rn .

If f has compact support we can take ξ ∈ Cn. For f ∈ S(Rn) one proves
quickly

(10) i|α|+|β|ξβ(Dα
˜f)(ξ) =

∫

Rn

Dβ(xαf(x))e−i〈x,ξ〉 dx

and this together with Theorem 4.2(i) below implies easily the following
result.

Theorem 4.1. The Fourier transform is a linear homeomorphism of S
onto S.

The function ψ(x) = e−x
2/2 on R satisfies ψ′(x)+xψ = 0. It follows from

(10) that ˜ψ satisfies the same differential equation and thus is a constant

multiple of e−ξ
2/2. Since ˜ψ(0) =

∫

e−
x2

2 dx = (2π)1/2 we deduce ˜ψ(ξ) =

(2π)1/2e−ξ
2/2. More generally, if ψ(x) = e−|x|2/2, (x ∈ Rn) then by product

integration

(11) ˜ψ(ξ) = (2π)n/2e−|ξ|2/2 .

Theorem 4.2. The Fourier transform has the following properties.

(i) f(x) = (2π)−n
∫

˜f(ξ)ei〈x,ξ〉 dξ for f ∈ S.
(ii) f → ˜f extends to a bijection of L2(Rn) onto itself and

∫

Rn

|f(x)|2 = (2π)−n
∫

Rn

| ˜f(ξ)|2 dξ .

(iii) (f1 ∗ f2)∼ = ˜f1 ˜f2 for f1, f2 ∈ S.
(iv) (f1f2)

∼ = (2π)−n ˜f1 ∗ ˜f2 for f1, f2 ∈ S.

Proof. (i) The integral on the right equals
∫

ei〈x,ξ〉
(∫

f(y)e−i〈y,ξ〉 dy

)

dξ

but here we cannot exchange the integrations. Instead we consider for g ∈ S
the integral

∫

ei〈x,ξ〉g(ξ)

(∫

f(y)e−i〈y,ξ〉 dy

)

dξ ,
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which equals the expressions

(12)

∫

˜f(ξ)g(ξ)ei〈x,ξ〉 dξ =

∫

f(y)g̃(y − x) dy =

∫

f(x+ y)g̃(y) dy .

Replace g(ξ) by g(εξ) whose Fourier transform is ε−ng̃(y/ε). Then we obtain
∫

˜f(ξ)g(εξ)ei〈x,ξ〉 dξ =

∫

g̃(y)f(x+ εy) dy ,

which upon letting ε→ 0 gives

g(0)

∫

˜f(ξ)ei〈x,ξ〉 dξ = f(x)

∫

g̃(y) dy .

Taking g(ξ) as e−|ξ|2/2 and using (11) Part (i) follows. The identity in (ii)
follows from (12) (for x = 0) and (i). It implies that the image L2(Rn)∼ is
closed in L2(Rn). Since it contains the dense subspace S(Rn) (ii) follows.
Formula (iii) is an elementary computation and now (iv) follows taking (i)
into account. Part (iii) shows that the convolution ∗ is a continuous map
from S × S into S.

If T ∈ S′(Rn) its Fourier transform is the linear form ˜T on S(Rn) defined
by

(13) ˜T (ϕ) = T (ϕ̃) .

Then by Theorem 4.1, ˜T ∈ S ′. Note that

(14)

∫

ϕ(ξ) ˜f (ξ) dξ =

∫

ϕ̃(x)f(x) dx

for all f ∈ L1(Rn), ϕ ∈ S(Rn). Consequently

(15) (Tf)
∼ = T ef for f ∈ L1(Rn)

so the definition (13) extends the old one (9).
If S, T ∈ E ′(Rn) then tensor product S⊗T ∈ E ′(Rn×Rn) is defined by

(S ⊗ T )(ϕ) =

∫

Rn×Rn

ϕ(x, y) dS(x) dT (y) , ϕ ∈ D(Rn ×Rn) .

Since the space spanned by functions of the form ϕ1(x)ϕ2(y) (ϕi ∈ D(Rn))
is dense in D(Rn ×Rn) we have

(16) (S ⊗ T )(ϕ) = (T ⊗ S)(ϕ)

for all ϕ ∈ D(Rn ×Rn) and by continuity for all ϕ ∈ E(Rn ×Rn). Note
that

(S ∗ T )(ϕ) =

∫

ϕ(x+ y) d(S ⊗ T )(x, y) .
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In fact
∫

(

∫

ϕ(x+ y) dS(x)
)

dT (y) =

∫

(S ∗ ϕ̌)(−y) dT (y)

= T (Š ∗ ϕ) = (T ∗ (Š ∗ ϕ)∨)(0)

= (T ∗ S ∗ ϕ̌)(0) = (T ∗ S)(ϕ) .

Proposition 4.3. If T ∈ E ′(Rn) then the distribution ˜T equals the function

(17) ξ →
∫

Rn

e−i〈x,ξ〉 dT (x) , ξ ∈ Rn .

Taking ξ in Cn this function becomes an entire function on Cn.

Proof. Let ϕ ∈ D(Rn). Then

˜T (ϕ) = T (ϕ̃) =

∫

ϕ̃(ξ) dT (ξ) =

(∫

e−i〈x,ξ〉ϕ(x) dx

)

dT (ξ)

which by (16) equals
∫

Rn

ϕ(x)
(

∫

Rn

e−i〈x,ξ〉 dT (ξ)
)

dx,

showing that ˜T equals the function (17). Let eiξ(x) = ei〈x,ξ〉. If ξj → ξ the
function eiξj → eiξ in E(Rn) so the function (17) is continuous. Also with
ϕε as in Prop. 3.4,

(T ∗ ϕε)(e−iξ) = T ∗ (ϕε ∗ eiξ)(0) = T ∗ (eiξϕ̃ε(ξ))(0)

= ϕ̃(εξ)T (e−iξ) .

The left hand side is holomorphic in ξ and ϕ̃(εξ)→ ϕ̃(0) = 1 uniformly on
compact subsets of Cn. Hence T (e−iξ) is holomorphic.

Proposition 4.4. Let T ∈ S′(Rn) and f ∈ S(Rn). Then

f ∗ T ∈ S′(Rn).

Proof. For z ∈ Rn let fz(x) = f(x− z). Then for some C and N

|(f ∗ T )(x)| = |Ty(f̌(y − x))| = T ((f̌)x)|

≤ C sup
y

∑

|α|≤N

∣

∣(1 + |y|)N (Dαf̌)(y − x)∣∣

≤ C sup
z

∑

|α|≤N

∣

∣(1 + |x+ z|)N (Dαf)(z)
∣

∣

≤ C(1 + |x|)N sup
z

∑

|α|≤N

∣

∣(1 + |z|)N (Dαf)(z)
∣

∣ ,
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so f ∗ T is bounded by a polynomial, hence tempered. If zn → z then, by
Theorem 4.1 fzn → fz in S so f ∗ T is continuous.

We now have an analog to Prop. 3.2.

Proposition 4.5. Let T ∈ S′(Rn), ϕ, ψ ∈ S(Rn). Then

(T ∗ ϕ) ∗ ψ = T ∗ (ϕ ∗ ψ) .

Proof. First let ψ ∈ D and let ϕi ∈ D be a sequence converging to ϕ in
S. Since (T ∗ ϕ)(0) = T (ϕ̌) we see that (T ∗ ϕ)(x) = limi(T ∗ ϕi)(x) and
(T ∗ ϕ)(ψ) = limi(T ∗ ϕi)(ψ). Using Prop. 3.2 we conclude

(T ∗ ϕ) ∗ ψ̌ = lim
i

(T ∗ ϕi) ∗ ψ̌ = lim
i
T ∗ (ϕi ∗ ψ̌)

= T ∗ (ϕ ∗ ψ̌)

by continuity of ∗ in S. Taking a sequence (ψj) ⊂ D converging to ψ ∈ S
the result follows.

Theorem 4.6. Let f ∈ S(Rn), T ∈ S′(Rn). Then

(T ∗ f)∼ = ˜f ˜T .

Proof. We have for g ∈ S(Rn) using Prop. 4.5,

(T ∗ f)∼(g) = (T ∗ f)(g̃) = (T ∗ f ∗ (g̃)∨)(0)

= T ∗ ((f̌ ∗ g̃)∨)(0) = T (f̌ ∗ g̃) = (2π)nT (( ˜f)∼ ∗ g̃)

= T (( ˜fg)∼) = ˜T ( ˜fg) = ( ˜f ˜T )(g) .

The classical Paley–Wiener theorem gave an intrinsic description of
L2(0, 2π)∼. We now prove an extension to a characterization of D(Rn)∼

and E ′(Rn)∼.

Theorem 4.7. (i) A holomorphic function F (ζ) on Cn is the Fourier
transform of a distribution with support in BR if and only if for some
constants C and N ≥ 0 we have

(18) |F (ζ)| ≤ C(1 + |ζ|N )eR|Im ζ| .
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(ii) F (ζ) is the Fourier transform of a function in DB̄R
(Rn) if and only

if for each N ∈ Z+ there exists a constant CN such that

(19) |F (ζ)| ≤ CN (1 + |ζ|)−NeR|Im ζ| .

Proof. First we prove that (18) is necessary. Let T ∈ E ′ have support in BR
and let χ ∈ D have support in BR+1 and be identically 1 in a neighborhood
of BR. Since E(Rn) is topologized by the semi-norms (1) for varying K and
m we have for some C0 ≥ 0 and N ∈ Z+

|T (ϕ)| = |T (χϕ)| ≤ C0

∑

|α|≤N

sup
x∈BR+1

|(Dα(χϕ))(x)| .

Computing Dα(χϕ) we see that for another constant C1

(20) |T (ϕ)| ≤ C1

∑

|α|≤N

sup
x∈Rn

|Dαϕ(x)|, ϕ ∈ E(Rn).

Let ψ ∈ E(R) such that ψ ≡ 1 on (−∞, 1
2 ), and ≡ 0 on (1,∞). Then if

ζ �= 0 the function

ϕζ(x) = e−i〈x,ζ〉ψ(|ζ|(|x| −R))

belongs to D and equals e−i〈x,ζ〉 in a neighborhood of BR. Hence

| ˜T (ζ)| = |T (ϕζ)| ≤ C1

∑

|α|≤N

sup |Dαϕζ | .

Now supp(ϕζ) ⊂ BR+|ζ|−1 and for x on this ball

|e−i〈x,ζ〉| ≤ e|x| |Im ζ| ≤ e(R+|ζ|−1)|Im ζ| ≤ eR|Im ζ|+1 .

Furthermore Dαϕζ is a linear combination of terms

Dβ
x(e−i〈x,ζ〉)Dγ

x(ψ(|ζ| |x| −R)) .

The first factor has estimate on this ball

|ζ||β||e−i〈x,ζ〉| ≤ |ζ||β|eR|Im ζ|+1

and the second factor is bounded by a power of |ζ|. Thus ˜T (ζ) satisfies
(18).

The necessity of (19) is an easy consequence of (10).
Next we prove the sufficiency of (19). Let

(21) f(x) = (2π)−n
∫

Rn

F (ξ)ei〈x,ξ〉 dξ .
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Because of (19) we can shift the integration in (21) to the complex domain
so that for any fixed η ∈ Rn,

(22) f(x) = (2π)−n
∫

Rn

F (ξ + iη)ei〈x,ξ+iη〉 dξ .

We use (19) for N = n+ 1 to estimate this integral and this gives

|f(x)| ≤ CNeR|η|−〈x,η〉(2π)−n
∫

Rn

(1 + |ξ|)−(n+1) dξ .

Taking now η = tx and letting t→ +∞ we deduce f(x) = 0 for |x| > R.
For the sufficiency of (18) we note first that F as a distribution on Rn is

tempered. Thus F = ˜f for some f ∈ S ′(Rn). Convolving f with a ϕε ∈ DBε

we see that (f ∗ϕε)∼ satisfies estimates (19) with R replaced by R+ε. Thus
supp(f ∗ ϕε) ⊂ BR+ε. Letting ε→ 0 we deduce supp(f) ⊂ BR, concluding
the proof.

Let HR = HR(C) denote the space of holomorphic functions satisfying
(19) with the topology defined by the seminorms

‖|ϕ|‖N = sup
ζ∈Cn

(1 + |ζ|)Ne−R|Im ζ||ϕ(ζ)| <∞ .

Corollary 4.8. The Fourier transform f → ˜f is a homeomorphism of
DB̄R

(Rn) onto HR.

The range statement is Theorem 4.7 and the continuity statements follow
from (10) extended from ξ to ζ and by differentiating (22).

We shall now prove a refinement of Theorem 4.7 in that the topology of
D is described in terms of ˜D. This has important applications to differential
equations as we shall see in the next section.

Theorem 4.9. A convex set V ⊂ D is a neighborhood of 0 in D if and
only if there exist positive sequences

M0,M1, . . . , δ0, δ1, . . .

such that V contains all u ∈ D satisfying

(23) |ũ(ζ)| ≤
∞
∑

k=0

δk
1

(1 + |ζ|)Mk
ek|Im ζ|, ζ ∈ Cn .

The proof is an elaboration of that of Theorem 4.7. Instead of the contour
shift Rn → Rn + iη used there one now shifts Rn to a contour on which
the two factors on the right in (19) are comparable.

Let W ({δ}, {M}) denote the set of u ∈ D satisfying (23). Given k the
set

Wk = {u ∈ DBk
: |ũ(ζ)| ≤ δk(1 + |ζ|)−Mkek|Im ζ|}
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γm

ξn

ηn

m log(2 + |ξ′|)

FIGURE VII.1.

is contained in W ({δ}, {M}). Thus if V is a convex set containing
W ({δ}, {M}) then V ∩DBk

contains Wk which by Corollary 4.8 is a neigh-
borhood of 0 in DBk

. Thus V is a neighborhood of 0 in D.
Proving the converse amounts to proving that given V ({ε}, {N}) in The-

orem 1.1 there exist {δ}, {M} such that

W ({δ}, {M}) ⊂ V ({ε}, {N}) .
For this we shift the contour in (22) to others where the two factors in (19)
are comparable. Let

x = (x1, . . . , xn), x′ = (x1, . . . , xn−1)

ζ = (ζ1, . . . , ζn) ζ′ = (ζ1, . . . , ζn−1)

ζ = ξ + iη, ξ, η ∈ Rn .

Then

(24)

∫

Rn

ũ(ξ)ei〈x,ξ〉 dξ =

∫

Rn−1

ei〈x
′,ξ′〉 dξ′

∫

R

eixnξn ũ(ξ′, ξn) dξn .

In the last integral we shift from R to the contour in C given by

(25) γm : ζn = ξn + im log(2 + (|ξ′|2 + ξ2n)1/2)

m ∈ Z+ being fixed.
We claim that (cf. Fig. VII.1)

(26)

∫

R

eixnξn ũ(ξ′, ξn) dξn =

∫

γm

eixnζn ũ(ξ′, ζn) dζn .
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Since (19) holds for each N , ũ decays between ξn−axis and γm faster than
any |ζn|−M with M > 0. Also

∣

∣

∣

∣

dζn
dξn

∣

∣

∣

∣

=

∣

∣

∣

∣

1 + im
1

2 + |ξ| ·
∂(|ξ|)
∂ξn

∣

∣

∣

∣

≤ 1 +m.

Thus (26) follows from Cauchy’s theorem in one variable. Putting

Γm = {ζ ∈ Cn : ζ′ ∈ Rn−1, ζn ∈ γm}

we thus have with dζ = dξ1 . . . dξn−1 dζn,

(27) u(x) = (2π)−n
∫

Γm

ũ(ζ)ei〈x,ζ〉 dζ .

Now suppose the sequences {ε}, {N} and V ({ε}, {N}) are given as in The-
orem 1.1. We have to construct sequences {δ} {M} such that (23) implies
(3). By rotational invariance we may assume x = (0, . . . , 0, xn) with xn > 0.
For each n-tuple α we have

(Dαu)(x) = (2π)−n
∫

Γm

ũ(ζ)(iζ)αei〈x,ζ〉 dζ .

It is important to note that here we can choose m at will. Starting with
positive sequences {δ}, {M} we shall modify them successively such that
(23) ⇒ (3). Note that for ζ ∈ Γm

ek|Im ζ| ≤ (2 + |ξ|)km , |ζα|≤ |ζ||α|≤ ([|ξ|2+m2(log(2+|ξ|))2]1/2)|α| .

For (3) with j = 0 we take xn = |x| ≥ 0, |α| ≤ N0 so

|ei〈x,ζ〉| = e−〈x,Im ζ〉 ≤ 1 for ζ ∈ Γm .

Thus if u satisfies (23) we have by the above estimates

|(Dαu)(x)|(28)

≤
∞
∑

0

δk

∫

Rn

(1 + [|ξ|2 +m2(log(2 + |ξ|))2]1/2)N0−Mk(2 + |ξ|)km(1 +m) dξ .

We can choose sequences {δ}, {M} (all δk, Mk > 0) such that this expres-
sion is ≤ ε0. This then verifies (3) for j = 0. We now fix δ0 and M0. Next
we want to prove (3) for j = 1 by shrinking the terms in δ1, δ2, . . . and
increasing the terms in M1,M2, . . . (δ0, M0 having been fixed).

Now we have xn = |x| ≥ 1 so

(29) |ei〈x,ζ〉| = e−〈x,Im ζ〉 ≤ (2 + |ξ|)−m for ζ ∈ Γm
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so in the integrals in (28) the factor (2+|ξ|)km is replaced by (2+|ξ|)(k−1)m.
In the sum we separate out the term with k = 0. Here M0 has been fixed

but now we have the factor (2 + |ξ|)−m which assures that this k = 0 term
is < ε1

2 for a sufficiently large m which we now fix. In the remaining terms
in (28) (for k > 0) we can now increase 1/δk and Mk such that the sum is
< ε1/2. Thus (3) holds for j = 1 and it will remain valid for j = 0. We now
fix this choice of δ1 and M1.

Now the inductive process is clear. We assume δ0, δ1, . . . , δj−1 andM0,M1,
. . . ,Mj−1 having been fixed by this shrinking of the δi and enlarging of the
Mi.

We wish to prove (3) for this j by increasing 1/δk, Mk for k ≥ j. Now
we have xn = |x| ≥ j and (29) is replaced by

|ei〈x,ζ〉| = e−〈x,Im ζ〉 ≤ (2 + |ξ|)−jm

and since |α| ≤ Nj , (28) is replaced by

|(Dαf)(x)|

≤
j−1
∑

k=0

δk

∫

R
n

(1 + [|ξ|2 +m2(log(2 + |ξ|))2]1/2)Nj−Mk(2 + |ξ|)(k−j)m(1 +m)dξ

+
∑

k≥j

δk

∫

R
n

(1 + [|ξ|2 +m2(log(2 + |ξ|))2]1/2)Nj−Mk(2 + |ξ|)(k−j)m(1 +m)dξ.

In the first sum the Mk have been fixed but the factor (2+|ξ|)(k−j)m decays
exponentially. Thus we can fix m such that the first sum is <

εj
2 .

In the latter sum the 1/δk and the Mk can be increased so that the total
sum is <

εj
2 . This implies the validity of (3) for this particular j and it

remains valid for 0, 1, . . . j − 1. Now we fix δj and Mj.
This completes the induction. With this construction of {δ}, {M} we

have proved that W ({δ}, {M}) ⊂ V ({ε}, {N}). This proves Theorem 4.9.

§5 Differential Operators with Constant Coefficients

The description of the topology of D in terms of the range ˜D given in Theo-
rem 4.9 has important consequences for solvability of differential equations
on Rn with constant coefficients.

Theorem 5.1. Let D �= 0 be a differential operator on Rn with constant
coefficients. Then the mapping f → Df is a homeomorphism of D onto
DD.

Proof. It is clear from Theorem 4.7 that the mapping f → Df is injective
on D. The continuity is also obvious.
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For the continuity of the inverse we need the following simple lemma.

Lemma 5.2. Let P �= 0 be a polynomial of degree m, F an entire function
on Cn and G = PF . Then

|F (ζ)| ≤ C sup
|z|≤1

|G(z + ζ)|, ζ ∈ Cn ,

where C is a constant.

Proof. Suppose first n = 1 and that P (z) =
∑m

0 akz
k(am �= 0). Let Q(z) =

zm
∑m

0 akz
−k. Then, by the maximum principle,

(30) |amF (0)| = |Q(0)F (0)| ≤ max
|z|=1

|Q(z)F (z)| = max
|z|=1

|P (z)F (z)| .

For general n let A be an n× n complex matrix, mapping the ball |ζ| < 1
in Cn into itself and such that

P (Aζ) = aζm1 +

m−1
∑

0

pk(ζ2, . . . , ζn)ζk1 , a �= 0 .

Let
F1(ζ) = F (Aζ), G1(ζ) = G(Aζ), P1(ζ) = P (Aζ) .

Then

G1(ζ1 + z, ζ2, . . . , ζn) = F1(ζ1 + z, ζ2, . . . , ζn)P1(ζ + z, ζ2, . . . , ζn)

and the polynomial
z → P1(ζ1 + z, . . . , ζn)

has leading coefficient a. Thus by (30)

|aF1(ζ)| ≤ max
|z|=1

|G1(ζ1 + z, ζ2, . . . , ζn)| ≤ max
z∈C

n

|z|≤1

|G1(ζ + z)| .

Hence by the choice of A

|aF (ζ)| ≤ sup
z∈C

n

|z|≤1

|G(ζ + z)| ,

proving the lemma.

For Theorem 5.1 it remains to prove that if V is a convex neighborhood
of 0 in D then there exists a convex neighborhood W of 0 in D such that

(31) f ∈ D, Df ∈W ⇒ f ∈ V .
We take V as the neighborhood W ({δ}, {M}). We shall show that if W =
W ({ε}, {M}) (same {M}) then (31) holds provided the εj in {ε} are small
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enough. We write u = Df so ũ(ζ) = P (ζ) ˜f (ζ) where P is a polynomial.
By Lemma 5.2

(32) | ˜f(ζ)| ≤ C sup
|z|≤1

|ũ(ζ + z)| .

But |z| ≤ 1 implies

(1 + |z + ζ|)−Mj ≤ 2Mj (1 + |ζ|)−Mj , |Im (z + ζ)| ≤ |Im ζ|+ 1 ,

so if C 2Mjejεj ≤ δj then (31) holds.
Q.E.D.

Corollary 5.3. Let D �= 0 be a differential operator on Rn with constant
(complex) coefficients. Then

(33) DD′ = D′ .

In particular, there exists a distribution T on Rn such that

(34) DT = δ .

Definition. A distribution T satisfying (34) is called a fundamental solu-
tion for D.

To verify (33) let L ∈ D′ and consider the functional D∗u → L(u) on
D∗D (∗ denoting adjoint). Because of Theorem 4.7 this functional is well
defined and by Theorem 5.1 it is continuous. By the Hahn-Banach theorem
it extends to a distribution S ∈ D′. Thus S(D∗u) = Lu so DS = L, as
claimed.

Corollary 5.4. Given f ∈ D there exists a smooth function u on Rn such
that

(35) Du = f .

In fact, if T is a fundamental solution one can put u = f ∗ T .

§6 Riesz Potentials

We shall now study some examples of distributions in detail. If α ∈ C
satisfies Reα > −1 the functional

(36) xα+ : ϕ→
∞
∫

0

xαϕ(x) dx, ϕ ∈ S(R) ,
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is a well-defined tempered distribution. The mapping α → xα+ from the
half-plane Reα > −1 to the space S′(R) of tempered distributions is holo-
morphic (that is α→ xα+(ϕ) is holomorphic for each ϕ ∈ S(R)). Writing

xα+(ϕ) =

1
∫

0

xα(ϕ(x) − ϕ(0)) dx +
ϕ(0)

α+ 1
+

∞
∫

1

xαϕ(x) dx,

the function α→ xα+ is continued to a holomorphic function in the region
Reα > −2, α �= −1. In fact

ϕ(x)− ϕ(0) = x

1
∫

0

ϕ′(tx) dt ,

so the first integral above converges for Reα > −2. More generally, α→ xα+
can be extended to a holomorphic S′(R)-valued mapping in the region

Reα > −n− 1, α �= −1,−2, . . . ,−n ,
by means of the formula

xα+(ϕ)=

1
∫

0

xα
[

ϕ(x) − ϕ(0)− xϕ′(0)−· · ·− xn−1

(n− 1)!
ϕ(n−1)(0)

]

dx(37)

+

∞
∫

1

xαϕ(x) dx +
n

∑

k=1

ϕ(k−1)(0)

(k − 1)!(α+ k)
.

In this manner α → xα+ is a meromorphic distribution-valued function on
C, with simple poles at α = −1,−2, . . .. We note that the residue at α = −k
is given by

(38) Res
α=−k

xα+ = lim
α→−k

(α+ k)xα+ =
(−1)k−1

(k − 1)!
δ(k−1) .

Here δ(h) is the hth derivative of the delta distributionδ. We note that xα+
is always a tempered distribution.

Next we consider for Reα > −n the distribution rα on Rn given by

rα : ϕ→
∫

Rn

ϕ(x)|x|α dx, ϕ ∈ D(Rn) .

Lemma 6.1. The mapping α → rα extends uniquely to a meromorphic
mapping from C to the space S ′(Rn) of tempered distributions. The poles
are the points

α = −n− 2h (h ∈ Z+)

and they are all simple.
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Proof. We have for Reα > −n

(39) rα(ϕ) = Ωn

∞
∫

0

(M tϕ)(0)tα+n−1 dt .

Next we note that the mean value function t→ (M tϕ)(0) extends to an
even C∞ function on R, and its odd order derivatives at the origin vanish.
Each even order derivative is nonzero if ϕ is suitably chosen. Since by (39)

(40) rα(ϕ) = Ωnt
α+n−1
+ (M tϕ)(0)

the first statement of the lemma follows. The possible (simple) poles of rα

are by the remarks about xα+ given by α+ n− 1 = −1,−2, . . .. However if

α+n− 1 = −2,−4, . . ., formula (38) shows, since (M tϕ(0))(h) = 0, (h odd)
that rα(ϕ) is holomorphic at the points α = −n− 1,−n− 3, . . ..

The remark about the even derivatives of M tϕ shows on the other hand,
that the points α = −n − 2h (h ∈ Z+) are genuine poles. We note also
from (38) and (40) that

(41) Res
α=−n

rα = lim
α→−n

(α+ n)rα = Ωnδ .

We recall now that the Fourier transform T → ˜T of a tempered distri-
bution T on Rn is defined by

˜T (ϕ) = T (ϕ̃) ϕ = S(Rn) .

We shall now calculate the Fourier transforms of these tempered distribu-
tions rα.

Lemma 6.2. We have the following identity

(42) (rα)∼ = 2n+απ
n
2

Γ((n+ α)/2)

Γ(−α/2)
r−α−n, −α− n /∈ 2Z+ .

For α = 2h (h ∈ Z+) the singularity on the right is removable and (42)
takes the form

(43) (r2h)∼ = (2π)n(−L)hδ, h ∈ Z+ .

Proof. We use a method due to Deny based on the fact that if ψ(x) =

e−|x|2/2 then ˜ψ(u) = (2π)
n
2 e−|u|2/2 so by the formula

∫

f g̃ =
∫

˜fg we
obtain for ϕ ∈ S(Rn), t > 0,

∫

ϕ̃(x)e−t|x|
2/2 dx = (2π)n/2t−n/2

∫

ϕ(u)e−|u|2/2t du .

We multiply this equation by t−1−α/2 and integrate with respect to t. On
the left we obtain the expression

Γ(−α/2)2−
α
2

∫

ϕ̃(x)|x|α dx ,
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using the formula

∞
∫

0

e−t|x|
2/2t−1−α/2 dt = Γ(−α2 )2−

α
2 |x|α ,

which follows from the definition

Γ(x) =

∞
∫

0

e−ttx−1 dt .

On the right we similarly obtain

(2π)
n
2 Γ((n+ α)/2) 2

n+α
2

∫

ϕ(u)|u|−α−n du .

The interchange of the integrations is valid for α in the strip
−n < Reα < 0 so (42) is proved for these α. For the remaining α it follows
by analytic continuation. Finally, (43) is immediate from the definitions
and (6).

By the analytic continuation, the right hand sides of (42) and (43) agree
for α = 2h. Since

Res
α=2h

Γ(−α/2) = −2(−1)h/h!

and since by (40) and (38),

Res
α=2h

r−α−n(ϕ) = −Ωn
1

(2h)!

[

(

d

dt

)2h

(M tϕ)

]

t=0

we deduce the relation
[

(

d

dt

)2h

(M tϕ)

]

t=0

=
Γ(n/2)

Γ(h+ n/2)

(2h)!

22hh!
(Lhϕ)(0) .

This gives the expansion

(44) M t =

∞
∑

h=0

Γ(n/2)

Γ(h+ n/2)

(t/2)2h

h!
Lh

on the space of analytic functions so M t is a modified Bessel function of
tL1/2. This formula can also be proved by integration of Taylor’s formula.

Lemma 6.3. The action of the Laplacian is given by

Lrα = α(α + n− 2)rα−2, (−α− n+ 2 /∈ 2Z+) ,(45)

Lr2−n = (2− n)Ωnδ (n �= 2) .(46)

For n = 2 this ‘Poisson equation’ is replaced by

(47) L(log r) = 2πδ .
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Proof. For Reα sufficiently large (45) is obvious by computation. For the
remaining α it follows by analytic continuation. For (46) we use the Fourier
transform and the fact that for a tempered distribution S,

(−LS)∼ = r2 ˜S .

Hence, by (42),

(−Lr2−n)∼ = 4
π
n
2

Γ(n2 − 1)
=

2π
n
2

Γ(n2 )
(n− 2)˜δ .

Finally, we prove (47). If ϕ ∈ D(R2) we have, putting F (r) = (M rϕ)(0),

(L(log r))(ϕ) =

∫

R2

log r(Lϕ)(x) dx =

∞
∫

0

(log r)2πr(M rLϕ)(0) dr .

Using Lemma 3.2 in Chapter I this becomes

∞
∫

0

log r 2πr(F ′′(r) + r−1F ′(r)) dr ,

which by integration by parts reduces to

[

log r(2πr)F ′(r)
]∞

0
− 2π

∞
∫

0

F ′(r) dr = 2πF (0) .

This proves (47).

Another method is to write (45) in the form L(α−1(rα − 1)) = αrα−2.
Then (47) follows from (41) by letting α→ 0.

We shall now define fractional powers of L, motivated by the formula

(−Lf)∼(u) = |u|2 ˜f(u) ,

so that formally we should like to have a relation

(48) ((−L)pf)∼(u) = |u|2p ˜f(u) .

Since the Fourier transform of a convolution is the product of the Fourier
transforms, formula (42) (for 2p = −α− n) suggests defining

(49) (−L)pf = I−2p(f) ,

where Iγ is the Riesz potential

(50) (Iγf)(x) =
1

Hn(γ)

∫

Rn

f(y)|x− y|γ−n dy
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with

(51) Hn(γ) = 2γπ
n
2

Γ(γ2 )

Γ(n−γ2 )
.

Note that if −γ ∈ 2Z+ the poles of Γ(γ/2) cancel against the poles of
rγ−n because of Lemma 6.1. Thus if γ − n /∈ 2Z+ we can write

(52) (Iγf)(x) = (f ∗ (Hn(γ)−1rγ−n))(x), f ∈ S(Rn) .

By Theorem 4.6 and Lemma 6.2 we then have

(53) (Iγf)∼(u) = |u|−γ ˜f(u) , γ − n /∈ 2Z+

as tempered distributions. Thus we have the following result.

Lemma 6.4. If f ∈ S(Rn) then γ → (Iγf)(x) extends to a holomorphic
function in the set Cn = {γ ∈ C : γ − n /∈ 2Z+}. Also

I0f = lim
γ→0

Iγf = f ,(54)

IγLf = LIγf = −Iγ−2f .(55)

We now prove an important property of the Riesz’ potentials. Here it
should be observed that Iγf is defined for all f for which (50) is absolutely
convergent and γ ∈ Cn.

Proposition 6.5. The following identity holds:

Iα(Iβf) = Iα+βf for f ∈ S(Rn), Reα,Re β > 0, Re(α+ β) < n ,

Iα(Iβf) being well defined. The relation is also valid if

f(x) = 0(|x|−p) for some p > Reα+ Re β .

Proof. We have

Iα(Iβf)(x) =
1

Hn(α)

∫

|x− z|α−n
(

1

Hn(β)

∫

f(y)|z − y|β−n dy
)

dz

=
1

Hn(α)Hn(β)

∫

f(y)

(∫

|x− z|α−n|z − y|β−n dz
)

dy .

The substitution v = (x− z)/|x− y| reduces the inner integral to the form

(56) |x− y|α+β−n

∫

Rn

|v|α−n|w − v|β−n dv ,

where w is the unit vector (x − y)/|x − y|. Using a rotation around the
origin we see that the integral in (56) equals the number

(57) cn(α, β) =

∫

Rn

|v|α−n|e1 − v|β−n dv ,
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where e1 = (1, 0, . . . , 0). The assumptions made on α and β insure that
this integral converges. By the Fubini theorem the exchange order of inte-
grations above is permissible and

Iα(Iβf) =
Hn(α+ β)

Hn(α)Hn(β)
cn(α, β)Iα+βf .(58)

It remains to calculate cn(α, β). For this we use the following lemma,
which was already used in Chapter I, §2. As there, let S∗(Rn) denote the
set of functions in S(Rn) which are orthogonal to all polynomials.

Lemma 6.6. Each Iα(α ∈ Cn) leaves the space S∗(Rn) invariant.

Proof. We recall that (53) holds in the sense of tempered distributions.

Suppose now f ∈ S∗(Rn). We consider the sum in the Taylor formula for ˜f

in |u| ≤ 1 up to order m with m > |α|. Since each derivative of ˜f vanishes
at u = 0 this sum consists of terms

(β!)−1uβ(Dβ
˜f)(u∗) , |β| = m

where |u∗| ≤ 1. This shows that

(59) lim
u→0
|u|−α ˜f(u) = 0 .

Iterating this argument with ∂i(|u|−α ˜f(u)) etc. we conclude that the limit

relation (59) holds for each derivative Dβ(|u|−α ˜f(u)). Because of (59), re-
lation (53) can be written

(60)

∫

Rn

(Iαf)∼(u)g(u) du =

∫

Rn

|u|−α ˜f(u)g(u) du , g ∈ S ,

so (53) holds as an identity for functions f ∈ S∗(Rn). The remark about

Dβ(|u|−α ˜f(u)) thus implies (Iαf)∼ ∈ S0 so Iαf ∈ S∗ as claimed.

We can now finish the proof of Prop. 6.5. Taking fo ∈ S∗ we can put
f = Iβfo in (53) and then

(Iα(Iβf0))
∼(u) = (Iβf0)

∼(u)|u|−α = ˜f0(u)|u|−α−β
= (Iα+βf0)

∼(u) .

This shows that the scalar factor in (58) equals 1 so Prop. 6.5 is proved.
In the process we have obtained the evaluation

∫

Rn

|v|α−n|e1 − v|β−n dv =
Hn(α)Hn(β)

Hn(α+ β)
.

In recent literature this is often left as an exercise. An entirely differ-
ent proof is in Riesz [1949], using the nonabsolutely convergent integral
∫ ∞

o eir cos θrα−1 dr.
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We shall now prove a refinement of Lemma 6.4. Let CN denote the space
of continuous functions on Rn satisfying

f(x) = 0(|x|−N ) , for x ∈ Rn ,

and put EN(Rn) = CN ∩ E(Rn).

Theorem 6.7. If f ∈ EN(Rn) the Riesz potential

(Iγf)(x) =
1

Hn(γ)

∫

Rn

f(y)|x− y|γ−n dy

is holomorphic for

{γ ∈ C− {n+ 2Z+} : Re γ < N + n− 1}
with simple poles at most in {n+ 2Z+}.
Proof. If f ∈ EN(Rn) the function t → (M tf)(0) belongs to EN (R). For
ϕ ∈ EN (R) we can define tα+(ϕ) by (37) for Reα < N − 1 and then define
rα(f) by (40) for f ∈ EN(Rn). Then by (37) the function

α→ rα(f) = Ωnt
α+n−1
+ (M tf)(0)

is holomorphic for Reα < N − 1 with simple poles at most at

α+ n− 1 = −1,−2, . . . .

Again since the derivative (M tf(0))(h) vanishes at t = 0 for h odd we have
holomorphy in α at the points

α+ n− 1 = −2,−4, . . . .

Thus if f ∈ EN (Rn) the function α→ rα(f) is holomorphic in Reα < N−1
with (simple) poles at most at

α = −n,−n− 2,−n− 4, . . . .

The integral

∫

Rn

f(y)|x− y|γ−n dy = rγ−n(fx) , fx(y) = f(x+ y)

is thus holomorphic in Re γ < N + n − 1 with simple poles at most at
γ−n = −n,−n−2, . . . i.e., γ = 0,−2,−4, . . .. Since these poles are canceled
by Γ(n2 ) the theorem follows.

We now prove a mild extension of Proposition 6.5.
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Proposition 6.8. Let 0 < k < n. Then

I−k(Ikf) = f f ∈ E(Rn) ,

if f(x) = 0(|x|−N ) for some N > n.

Proof. By Prop. 6.5 we have if f(y) = 0(|y|−N),

(61) Iα(Ikf) = Iα+kf for 0 < Reα < n− k .

We shall prove that the function ϕ = Ikf satisfies

(62) sup
x
|ϕ(x)| |x|n−k <∞ .

For an N > n we have an estimate |f(y)| ≤ CN (1 + |y|)−N where CN is a
constant. We then have

(

∫

Rn

f(y)|x− y|k−n dy
)

≤ CN
∫

|x−y|≤
1
2 |x|

(1 + |y|)−N |x− y|k−n dy

+CN

∫

|x−y|≥
1
2 |x|

(1 + |y|)−N |x− y|k−n dy .

In the second integral, |x− y|k−n ≤ ( |x|2 )k−n so since N > n this second

integral satisfies (62). In the first integral we have |y| ≥ |x|
2 so the integral

is bounded by

(

1 +
|x|
2

)−N ∫

|x−y|≤ |x|
2

|x− y|k−n dy =

(

1 +
|x|
2

)−N ∫

|z|≤ |x|
2

|z|k−n dz

which is 0(|x|−N |x|k). Thus (62) holds also for this first integral. This proves
(62) provided

f(x) = 0(|x|−N ) for some N > n .

Next we observe that Iα(ϕ)=Iα+k(f) is holomorphic for 0<Reα<n−k.
For this note that by (39)

(Iα+kf)(0) =
1

Hn(α + k)

∫

Rn

f(y)|y|α+k−n dy

=
1

Hn(α + k)
Ωn

∞
∫

0

(M tf)(0)tα+k−1 dt .

Since the integrand is bounded by a constant multiple of t−N tα+k−1, and
since the factor in front of the integral is harmless for 0 < k + Reα < n,
the holomorphy statement follows.
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We claim now that Iα(ϕ)(x), which as we saw is holomorphic for
0 < Reα < n − k, extends to a holomorphic function in the half-plane
Reα < n−k. It suffices to prove this for x = 0. We decompose ϕ = ϕ1+ϕ2,
where ϕ1 is a smooth function identically 0 in a neighborhood |x| < ε of 0,
and ϕ2 ∈ S(Rn). Since ϕ1 satisfies (62) we have for Reα < n− k,

∣

∣

∣

∣

∫

ϕ1(x)|x|Reα−n dx

∣

∣

∣

∣

≤ C

∞
∫

ε

|x|k−n|x|Reα−n|x|n−1d|x|

= C

∞
∫

ε

|x|Reα+k−n−1d|x| <∞

so Iαϕ1 is holomorphic in this half-plane. On the other hand Iαϕ2 is holo-
morphic for α ∈ Cn which contains this half-plane. Now we can put α = −k
in (61). Thus

I−k(Ikf) = Iof .

Since f is not in S(Rn) we must still prove Iof = f . It suffices to prove
this at x = 0. By Theorem 6.7 (Iof)(0) = limγ→0+(Iγf)(0) and

(Iγf)(0) =
1

Hn(γ)
Ωnt

γ−1
+ (M tf)(0) , 0 < γ < ε .

Putting ϕ(t) = (M tf)(0) we have from (37)

γ

2
tγ−1
+ (ϕ(t)) =

γ

2

1
∫

0

tγ−1 [ϕ(t)− ϕ(0)] +
γ

2

∞
∫

1

tγ−1ϕ(t) dt+
ϕ(0)

2
.

Since Γ(γ)γ → 1 as γ → 0 we see that

lim
γ→0+

(Iγf)(0) =
Γ
(

n
2

)

πn/2
Ωn

ϕ(0)

2
= ϕ(0) = f(0)

as claimed.
Denoting again by CN the class of continuous functions f on Rn sat-

isfying f(x) = 0(|x|−N ) we proved in (62) that if N > n, 0 < k < n,
then

(63) IkCN ⊂ Cn−k .
More generally, we have the following result.

Proposition 6.9. If N > 0 and 0 < Re γ < N , then

IγCN ⊂ Cs ,
where s = min(n,N)− Re γ (n �= N).
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Proof. Modifying the proof of Prop. 6.8 we divide the integral

I =

∫

(1 + |y|)−N |x− y|Re γ−n dy

into integrals I1, I2 and I3 over the disjoint sets

A1 = {y : |y − x| ≤ 1
2 |x|}, A2 = {y : |y| < 1

2 |x| ,
and the complement A3 = Rn −A1 −A2. On A1 we have |y| ≥ 1

2 |x| so

I1 ≤
(

1 +
|x|
2

)−N∫

A1

|x− y|Re γ−n dy=

(

1 +
|x|
2

)−N ∫

|z|≤|x|/2

|z|Re γ−n dz

so

(64) I1 = 0(|x|−N+Re γ) .

On A2 we have |x|+ 1
2 |x| ≥ |x− y| ≥ 1

2 |x| so

|x− y|Re γ−n ≤ C|x|Re γ−n, C = const. .

Thus

I2 ≤ C|x|Re γ−n

∫

A2

(1 + |y|)−N .

If N > n then
∫

A2

(1 + |y|)−N dy ≤
∫

Rn

(1 + |y|)−N dy <∞ .

If N < n then
∫

A2

(1 + |y|)−N dy ≤ C|x|n−N .

In either case

(65) I2 = 0(|x|Re γ−min(n,N)) .

On A3 we have (1 + |y|)−N ≤ |y|−N . The substitution y = |x|u gives (with
e = x/|x|)

(66) I3 ≤ |x|Re γ−N

∫

|u|≥
1
2 ,|e−u|≥

1
2

|u|−N |e− u|Re γ−n du = 0(|x|Re γ−N) .

Combining (64)–(66) we get the result.
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Lemma 6.10. Let 0 < k < N ≤ n. Let f ∈ EN(Rn). Then Ikf is smooth
and Ikf ∈ EN−k(R

n).

Proof. From Prop. 6.9 we see that Ikf ∈ CN−k. For the smoothness let B =
BR(0) To prove Ikf smooth on B we split f = f1 + f2 where f1 ∈ D(Rn)
and f2 ≡ 0 on B. Then Ikf splits into two pieces I1(x) and I2(x). Then
I1(x) is the convolution of f1 with a tempered distribution so is smooth by
Proposition 3.1. For I2 we have f2(x) = 0(|x|−N ) and the integral

∫

|y|≥R

|y|−N |x− y|k−n dy

is smooth for |x| < R.

The following result extending Prop. 6.8 has a significant application to
Radon transform theory.

Theorem 6.11. Let 0 < k < N ≤ n where k is an integer. Suppose
f ∈ EN (Rn). Then

I−k(Ikf) = f .

Proof. Since Ikf ∈ EN−k(R
n), the mapping α → Iα(Ikf)(x) is by Theo-

rem 6.7 holomorphic in

(67) {α ∈ Cn : Reα < N − k + n− 1} .

Also α→ (Iα+kf)(x) is composed of the maps α→ α+k and γ → (Iγf)(x)
and by Theorem 6.7 holomorphic for

{α|α+ k ∈ Cn : Re(α+ k) < N + n− 1} =

{α ∈ Cn − k : Reα < N − k + n− 1} .(68)

The regions (67) and (68) have a half plane in common where Iα(Ikf)(x)
and (Iα+kf)(x) are both analytic in α. According to Proposition 6.5 they
coincide if N > k + Reα that is, Reα < N − k. Hence they coincide when
both are holomorphic. This includes the point α = −k which belongs to
both (67) and (68). Thus I−k(Ikf) = Iof . Finally Iof = f by the final
argument in the proof of Proposition 6.8 because this relied only on the
property (Iof)(o) = limγ→o(I

γf)(o), which we know from Theorem 6.7.
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Exercises and Further Results

Results on Distributions (1 – 5)

1. Extend formula (10) §4 to S′(Rn).

2. Let H be the Heaviside function H(x) = +1 for x > 0, 0 for x ≤ 0.
Let S be Cauchy Principal value (Ch. I, §3). Then

˜H = −iS + πδ .

3. Here and in 4 we list various examples from Gelfand-Shilov [1960],
Hörmander [1983] and Schwartz [1966].

(i) Let xα+ be defined as in §6 (α �= −1,−2, . . .) and define xα− by

xα−(ϕ) =

∞
∫

0

xαϕ(−x) dx , ϕ ∈ D(R) .

Prove that

d

dx
xα+ = αxα−1

+ ,
d

dx
xα− = −αxα−1

− ,

d

dα
xα+ = xα+ log+ ,

d

dα
xα− = xα− log x− ,

where by definition,

(xα+ log x+)(ϕ) =

∞
∫

0

xα log x ϕ(x) dx

(xα− log x−)(ϕ) =

∞
∫

0

xα log x ϕ(−x) dx .

(ii) The distributions

χα+ =
xα+

Γ(α+ 1)
, χα− =

xα−
Γ(α+ 1)

exist for all α ∈ C (as residues).

(iii) As usual let Log z denote the principal branch of the logarithm, holo-
morphic in the slit plane with the negative real axis x ≤ 0, removed. With
H and S as in Exercise 2, the distribution

log(x± i0) = lim
y→+O

Log (x± iy) , x �= 0

equals



Exercises and Further Results 249

log(x± i0) = log |x| ± iπH(−x)
and

d

dx
log(x± i0) = S ± iδ .

(iv) With zα defined as eαLog z put

(x± i0)α = lim
y→+0

(x± iy)α α ∈ C , x �= 0 .

Then
(x± i0)α = xα+ + e±iαπxα− (α �= −1,−2, . . .) .

4. With χα± as in 3(ii) its Fourier transform is

e∓iπ(α+1)/2(ξ ∓ i0)−α−1

and
χα−1

+ ∗ χβ−1
+ = χα+β−1

+ for α > 0 , β > 0 .

5. In S′(R2) we have

( 1

x1 + ix2

)∼

=
2πi

ξ1 + iξ2
.

6. Fourier Series. Let G be a compact abelian group with character
group ̂G. Let A denote the Banach algebra Lp(G)(1 ≤ p ≤ 2). In addition
to the usual norm ‖ ‖p, each f ∈ Lp(G) has a spectral norm

‖f‖sp = sup
χ∈ bG
| ̂f(χ)| = ‖ ̂f‖∞ ,

the supremum of the absolute value of the Fourier coefficients ̂f(χ). Let
A0 denote the derived algebra, that is the algebra of f ∈ A such that the
convolution ϕ → f ∗ ϕ on A is continuous from the ‖ ‖sp topology to the
‖ ‖p topology. Then (cf. Helgason [1956], [1957] for (i)–(iv)).

(i) A0 is a Banach algebra under the norm

‖f‖0 = sup
ϕ
{‖f ∗ ϕ‖p : ‖ϕ‖sp ≤ 1} .

(ii) If A = L∞(G) with the uniform norm and A0 defined as in (i) then A0

is the algebra of functions with absolutely convergent Fourier series. Also

‖f‖0 =
∑

χ∈ bG
| ̂f(χ)| .
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(iii) If A = LP (G) (1 ≤ p ≤ 2) then A0 = L2(G). Also

‖f‖2 ≤
√

2 sup
ϕ
{‖f ∗ ϕ‖1 : ‖ϕ‖sp ≤ 1} ≤

√
2 ‖f‖2 .

(iv) Let G be nonabelian and compact and consider for ϕ ∈ L1(G) the
Peter–Weyl expansion

ϕ(g) ∼
∑

λ∈ bG
dλ Tr(AλUλ(g)) ,

where ̂G is the unitary dual of G, dλ the degree of λ, Uλ a member of the
class λ and Aλ the Fourier coefficient defined by

Aλ =

∫

G

ϕ(g)Uλ(g
−1) dg .

Again we put

‖ϕ‖sp = sup
λ∈ bG
‖Aλ‖ ‖ , ‖ = operator norm.

The inequality in (iii) is still valid.

(v) For G abelian the constant
√

2 in (iii) can be replaced by h = 2/
√
π

and this is the best constant (Edwards and Ross [1973] and Sawa [1985]).
For G nonabelian the best constant is apparently not known, not even
whether it depends on G.
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CHAPTER VIII

LIE TRANSFORMATION GROUPS AND
DIFFERENTIAL OPERATORS

Since the theory of the Radon transform and its variations becomes much
richer in the context of manifolds and Lie groups we give here a short self-
contained account of the relevant background in the theory of Lie transfor-
mation groups. More details can be found in [DS], [GGA], but this should
not be needed.

§1 Manifolds and Lie Groups

Let X be a manifold, E(X) and D(X), respectively, the spaces of complex-
valued C∞ functions (respectively C∞ functions of compact support) on X .
For p ∈ X let Xp denote the tangent space at p. If Ξ is another manifold
and Φ : X → Ξ a differentiable mapping its differential dΦp at p is the
linear map of Xp into ΞΦ(p)

given by

(dΦp(A)f) = A(f ◦ Φ) for A ∈ Xp ,

f being any C∞ function on Ξ. Here ◦ denotes composition. Geometrically,

if t → γ(t) is a curve in M with tangent vector
�

γ(t0) at p = γ(t0) then

dΦp(
�

γ(t0)) equals the tangent vector to the image curve Φ(γ(t)) at Φ(p). A
differentiable mapping Φ : X → Ξ is a diffeomorphism if it is injective,
surjective and has a differentiable inverse. A linear map D : D(X)→ D(X)
is a differential operator if for each local chart (U,ϕ) on M there exists
for each open relatively compact set W with W ⊂ U , a finite family of
functions aα ∈ E(W ) such that

Df =
∑

α

aα(Dα(f ◦ ϕ−1)) ◦ ϕ , f ∈ D(W ) ,

with Dα as in VII, §1. Let E(X) denote the algebra of all differential
operators on X .

A vector field Y on X is a derivation of the algebra E(X). Equivalently,
it is a smooth family of tangent vectors to X . In a local chart (U,ϕ),
ϕ(q) = (x1(q), . . . , xm(q)), Y can be written

∑

i Y
i ∂
∂xi

(Y i ∈ E(U)) and

Y is thus a differential operator on X . Here ∂
∂xi

denotes the vector field

f(x)→
(

∂
∂xi

(f ◦ ϕ−1)
)

(ϕ(x)), f ∈ E(U), on U .

Given a point p ∈ U an integral curve to Y through p is a curve t→ γ(t),
t ∈ I satisfying

S. Helgason, Integral Geometry and Radon Transforms, 
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(A) Yγ(t) =
�

γ(t) γ(0) = p.

In the local chart above let ai = xi(p), 1 ≤ i ≤ m, and put xi(t) =
xi(γ(t)). Then (A) takes the form

(B) dxi

dt = (Y i ◦ ϕ−1)(x1(t), . . . , xm(t)), xi(0) = ai, (1 ≤ i ≤ m).

By standard theory, (B) has a solution smooth in t and (a1, . . . , am).

Let τ be a diffeomorphism of X . If f ∈ E(X), T ∈ D′(X), E ∈ E(X),
we put for ϕ ∈ D(X)

(1) f τ = f ◦ τ−1 , T τ(ϕ) = T (ϕτ
−1

) , Eτf = (E(f τ
−1

))τ .

Then Eτ is again in E(X). We say E is invariant under τ if Eτ = E, that
is

(2) E(f ◦ τ) = (Ef) ◦ τ , f ∈ E(X) .

A Lie group G is an analytic manifold which is also a group such that
the group operations are analytic. Let e ∈ G denote the identity element.
Let Lg (or L(g)) and Rg (or R(g)), respectively, denote the translations
h → gh and h → hg and (dLg)h, (dRg)h their differentials at h. For each

Y ∈ Ge consider the vector field ˜Y on G given by ˜Yg = (dLg)e(Y ). Let Γ(t)

(|t| ≤ ε) be the integral curve of ˜Y through e with Γ(0) = e. Thus

�

Γ(t) = ˜YΓ(t) for |t| ≤ ε .
Defining successively for n ∈ Z,

Γ(t) = Γ(nε)Γ(t− nε) , nε ≤ t ≤ (n+ 1)ε ,

Γ extends to R. On the interval nε ≤ t ≤ (n+ 1)ε we have

Γ = LΓ(nε)
◦ Γ ◦ L−nε

so

�

Γ(t) = dΓ

(

d

dt

)

t

= dLΓ(nε) ◦ dΓ ◦ dL−nε

(

d

dt

)

t

= dLΓ(nε)
˜YΓ(t−nε) = ˜YΓ(t) .

Thus
�

Γ(t) = ˜YΓ(t) for all t ∈ R. Fix s ∈ R and consider the curve

Γs : t→ Γ(s)Γ(t− s) = LΓ(s) ◦ Γ ◦ L−s(t) .

Again we have

dΓs

(

d

dt

)

t

= dLΓ(s)dΓ

(

d

dt

)

t−s

= dLΓ(s)

�

Γ(t− s) = dLΓ(s)
˜YΓ(t−s)

= ˜YΓ(s)Γ(t−s) = ˜YΓs(t)
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so

�

Γs(t) = ˜YΓs(t) .

Thus Γs is another integral curve of ˜Y and since it agrees with Γ at the
point t = s we have Γs ≡ Γ so Γ is a one-parameter subgroup. We put

expY = Γ(1) .

Then for each s ∈ R, t → Γ(st) is a one-parameter group with tangent
vector sY at t = 0. Thus by the last formula

exp sY = Γ(s) .

By the left invariance of ˜Y we have

(3) (˜Y f)(g) =

{

d

dt
f(g exp(tY ))

}

t=0

, f ∈ E(G) .

The bracket [˜Y1, ˜Y2] = ˜Y1 ◦ ˜Y2− ˜Y2 ◦ ˜Y1 is another left invariant vector field
so we define [Y1, Y2] ∈ Ge by

(4) [Y1, Y2] = [˜Y1, ˜Y2]e Y1, Y2 ∈ Ge .

The vector space Ge with this rule of composition (Y1, Y2) → [Y1, Y2] is
by definition the Lie algebra g of G. If we had chosen the right invariant
vector field Y given by Y g = (dRg)e(Y ) we would have

(5) (Ȳ f)(g) =

{

d

dt
f(exp tXg)

}

t=0

.

Lemma 1.1.

(6) [Ȳ1, Ȳ2] = −[Y1, Y2]
− .

Proof. Let J(g) = g−1(g ∈ G). Then dJg(˜Yg) = −Ȳg−1 so (6) follows since
a diffeomorphism is a homomorphism of the Lie algebra of vector fields.

We shall now prove that the map exp of g into G is analytic. For Z ∈ g

let gZ denote the tangent space to g at Z. Consider the product group
G× g and the vector field Y on G× g given by

Y (σ, Z) = ( ˜Zσ, Z) ∈ Gσ ⊕ g .

The integral curve of Y through σ, Z is given by

η(t) = (σ exp tZ, Z) = Yt(σ, Z) .
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The differential equation (B) for γ(t) has analytic coefficients so the solution
is analytic in the initial data (a1, . . . , am). Using this for η(t) in G×g, we see
that Yt is analytic on G× g. in particular, the map X → expX is analytic.
It’s Jacobian at 0 is clearly nonsingular so exp is a diffeomorphism between
neighborhoods N0 of 0 in g and Ne of e in G.

Iterating (3) we obtain

(7) (˜Y nf)(g exp tY ) =
dn

dtn
f(g exp tY ) .

Lemma 1.2 (The Taylor formula). If f is analytic near g, then

(8) f(g expX) =

∞
∑

0

1

n!
( ˜Xnf)(g)

for X near 0 in g.

Proof. Let (Xi) be a basis of g and X =
∑n

1 xiXi. Then

f(g expX) = P (x1, . . . , xn) ,

where P is a power series. Also for t ≤ 1

f(g exp tX) = P (tx1, . . . , txn) =

∞
∑

0

1

m!
amt

m

and by (7)

am = ( ˜Xmf)(g)

proving the lemma.

Let S(g) be the symmetric algebra over g and D(G) the algebra of dif-
ferential operators on G invariant under all left translations.

Theorem 1.3 (The Symmetrization). There exists a unique linear bi-
jection

λ : S(g)→ D(G)

such that λ(Xm) = ˜Xm (X ∈ g;m ∈ Z+). For any basis Xi of g, P ∈ S(g),

(9) (λ(P )f)(g) = {P (∂1, . . . , ∂n)f(g exp(t1X1 + · · ·+ tnXn))}t=0 ,

for f ∈ E(G); ∂i = ∂/∂ti.

Furthermore, D(G) is generated by ˜Y , Y ∈ g.
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Proof. The formula (9) defines an operator λ(P ) on E(G) which is left

invariant. Clearly λ(Xi) = ˜Xi and by linearity λ(X) = ˜X. Putting

F (x1, . . . , xn) = f(g expX) for X =
∑

xiXi ,

we have

dm

dtm
F (tx1, . . . , txn) =

∑

xi1 . . . xim(∂i1 · · · ∂imF )(tx1, . . . , txn) .

Putting t = 0 and using (7) we deduce

( ˜Xmf)(g) =
∑

xi1 . . . ximλ(Xi1 . . .Xim)f(g) = λ(Xm)f(g)

so

(10) λ(Xm) = ˜Xm .

Thus λ(P ) ∈ D(G). From algebra we know that the powers Xm (X ∈ g)
span the space of mth degree elements in S(g). Thus λ is unique and is
independent of the choice of basis.

Next λ is injective. Suppose P �= 0 but λ(P ) = 0. Let aXm1
1 . . .Xmn

n be
a nonzero term in P . Let f be a C∞ function near e in G such that

f(exp(t1X1 + · · ·+ tnXn)) = tm1
1 . . . tmn

n

for small t. Here we used the above property of exp. Then (λ(P )f)(e) �= 0
contradicting λ(P ) = 0.

Finally, λ is surjective. Given u ∈ D(G) there exists a polynomial P such
that

(uf)(e) = {P (∂1, . . . , ∂n)f(exp(t1X1 + · · ·+ tnXn))}t=0 .

By the left invariance of u, we have u = λ(P ) concluding the proof. The

proof showed that D(G) is spanned by the powers ˜Y m so the last statement
of the theorem is obvious.

While (9) defines the map λ by analysis it can be described algebraically
as follows:

λ(Y1 . . . Yp) =
1

p!

∑

σ∈Sp

˜Yσ(1) . . . ˜Yσ(p) , Yi ∈ g ,

where Sp is the symmetric group of p letters. Thus λ goes by the name
symmetrization. The formula follows from (10) used on (t1Y1+· · ·+tpYp)p
by equating the coefficients to t1 . . . tp.

Let T (g) denote the tensor algebra of the vector space g and let J denote
the two-sided ideal in T (g) generated by all elements of the form X ⊗ Y −
Y ⊗X − [X,Y ]. The factor algebra U(g) = T (g)/J is called the universal
enveloping algebra of g. Let x→ x∗ denote the natural mapping of T (g)
onto U(g).
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Lemma 1.4. Given a representation ρ of g on a vector space V there exists
a representation ρ∗ of U(g) on V such that

ρ(Y ) = ρ∗(Y ∗) Y ∈ g .

Each representation of U(g) on V arises in this way.

The proof is straightforward.
In our basis Xi above put X∗(t) =

∑

tiX
∗
i . Let M = (m1, . . . ,mn) be

a positive integral n-tuple, let tM = tm1
1 . . . tmn

n , |M | = m1 + · · ·+mn and
let

X∗(M) = coefficient to tM in
X∗(t)|M|

|M |! .

Proposition 1.5. The elements X∗(M) span U(g).

Proof. We must prove that each element X∗
i1 . . .X

∗
ip (1 ≤ i1, . . . , ip ≤ n)

can be expressed in the form
∑

|M|≤p aMX
∗(M), aM ∈ R. Consider the

element

up =
1

p!

∑

σ

X∗
iσ(1)

. . . X∗
iσ(p)

,

where σ runs over all permutations of the set {1, . . . , p}. It is not hard to
show that up = cX∗(M) where c ∈ R and M a suitable integral n-tuple.
(Actually c = m1! . . .mn! where mk = the number of entries in (i1, . . . ip)
which equal k andM = (m1, . . . ,mn).) Using the relationX∗

jX
∗
k−X∗

kX
∗
j =

[Xj , Xk]
∗ repeatedly we see that

X∗
i1 . . . X

∗
ip −X∗

iσ(1)
. . . X∗

iσ(p)

is a linear combination of elements of the form X∗
j1
. . .X∗

jp−1
. The desired

formula follows by induction on p.

With the basis Xi we now define ˜X(t) and ˜X(M) just as X∗(t) and
X∗(M) above.

Proposition 1.6. (i) The elements ˜X(M) form a basis of D(G).

(ii) The universal enveloping algebra U(g) is isomorphic to D(G).

Proof. If f is analytic near g, (8) implies

f(g expX(t)) =
∑

tM ( ˜X(M)f)(g) .

Comparing with the usual Taylor formula for F (t1, . . . , tn) = f(g expX(t))
we get

( ˜X(M)f)(g) =
1

m1! . . .mn!

{

∂|M|

∂tm1
1 . . . ∂tmn

n
f(g expX(t))

}

t=0 ,
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and this shows that the ˜X(M) are linearly independent. The mapping

ρ : X → ˜X (where ˜X is viewed as an operator on E(G)) is a representation
of g on E(G). The corresponding ρ∗ from Lemma 1.4 gives a homomorphism

of U(g) into D(G) sending X∗
i . . .X

∗
ip into ˜Xi1 . . . ˜Xip and X∗(M) into

˜X(M). Since the X∗(M) are linearly independent this proves the result.

Consider now the automorphism h→ ghg−1 of G and the corresponding
automorphism Ad(g) of g. It is a simple exercise to prove

(Ad(g)X)∼ = ˜XR(g−1) X ∈ g

in the sense of (1). Thus we define for D ∈ D(G)

(11) Ad(g)D = DR(g−1) .

Then Ad(g) is an automorphism of D(G).
We also have for adX : X → [X,Z],

(ad(X)(Y ))∼ = ˜X ˜Y − ˜Y ˜X

and define for D ∈ D(G)

adX(D) = XD −DX .

The Ad(expX) and eadX are automorphisms of D(G) which coincide on
g̃, hence on all of D(G),

Ad(expX)D = eadX(D) .

From this we deduce

lim
t→0

1

t
(DR(exp(−tX)) −D) = ˜XD −D ˜X

and if ˜XD = D ˜X then DR(exp tX) = D, t ∈ R. If Z(G) denotes the center
of D(G) we thus have

Proposition 1.7. Assume G connected, Then

Z(G) = {D ∈ D(G) : DR(g) = D for all g ∈ G} .
The mapping exp sets up a correspondence between Lie subgroups H

of G and Lie subalgebras h of g. Given such H in G the identity map
I : H → G has an injective differential dIe : h→ g making h a subalgebra
of g.

On the other hand if h ⊂ g is a subalgebra the (abstract) subgroup H
of G generated by exph can be made into a Lie subgroup of G with Lie
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algebra h. By a theorem of von Neumann and Cartan each closed subgroup
H of G can be given an analytic structure in which it is a topological Lie
subgroup of G. Its Lie algebra is given by

h = {X ∈ g : exp tX ∈ H for t ∈ R} .
The mapping g → Ad(g) defined above is a representation of G on g, the

adjoint representation. It satisfies

Ad(expX) = eadX , exp Ad(g)X = g expXg−1 .

The adjoint group Ad(G) is a Lie subgroup of GL(g). For G connected,
Ad(G) is analytically isomorphic to G/Z where Z is the center of G. In Lie
algebra terms, the adjoint group coincides with the connected Lie subgroup
of GL(g) with Lie algebra adg ⊂ gl(g) and is then denoted Int(g).

The Killing form of a Lie algebra g is defined by

B(X,Y ) = Tr(adXadY ) .

This is clearly invariant under each element of Aut(g), the group of auto-
morphisms of g, i.e., Aut(g) ⊂ O(B). By definition g is semisimple if B is
nondegenerate.

Definition. A Lie algebra g over R is compact if the adjoint group Int(g)
is compact.

Proposition 1.8. (i) Let g be a semisimple Lie algebra over R. Then g

is compact if and only if the Killing form of g is negative definite.

(ii) Every compact Lie algebra is the direct sum g = z + [g, g] where z is
the center of g and the ideal [g, g] is semisimple and compact.

Proof. (i) If the Killing form is negative definite then O(B) is compact.
Thus Aut(g) is compact. Since g is semisimple, Int(g) is known to have the
same Lie algebra as Aut(g) so equals its identity component. Thus Int(g)
is compact.

On the other hand, if Int(g) is compact it leaves invariant a positive
definite quadratic form Q on g. Let (Xi)1≤i≤n be a basis such that

Q(X) =

n
∑

1

xiXi if X =

n
∑

1

xiXi .

In this basis each σ ∈ Int(g) is an orthogonal matrix so if X ∈ g , adX is
skewsymmetric, i.e., tadX = −adX . But then

B(X,X) = Tr(adXadX) = −Tr(adXtadX) = −
∑

i,j

x2
ij .

This proves (i). Part (ii) is proved similarly.
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§2 Lie Transformation Groups and Radon

Transforms

Let X be a manifold and G a Lie transformation group of X . To each g ∈ G
is thus associated a diffeomorphism x→ g · x of X such that

(i) g1 · (g2 · x) = g1g2 · x gi ∈ G, x ∈ X .

(ii) The mapping (g, x)→ g · x from G×X to X is differentiable.

We sometimes write τ(g) for the map x→ g · x.
If Y ∈ g, the Lie algebra of G, and ˜Y the corresponding left invariant

vector field on G we define the vector field λ(˜Y ) on X by

(12) (λ(˜Y ))(x) =

{

d

dt
f(exp(−tY ) · x)

}

t=0

, x ∈ X .

Theorem 2.1 (Lie). The mapping ˜Y → λ(˜Y ) is a homomorphism of g̃

into the Lie algebra of all vector fields on X.

Proof. Fix x ∈ X and consider the map Φ : g ∈ G→ g · x ∈ X . With Y as
in (5)

dΦg(Ȳg)f = Ȳg(f ◦ Φ) =

{

d

dt
(f ◦ Φ)(exp tY g)

}

t=0

=

{

d

dt
f(exp tY · x)

}

t=0

= −λ(˜Y )Φ(g)f ,

which is expressed by saying that the vector fields Ȳ and −λ(˜Y ) are Φ-
related. The same is easily seen to hold for the bracket of Ȳ1 and Ȳ2, that
is

dΦg
(

[Ȳ1, Ȳ2]g
)

= [λ(˜Y1), λ(˜Y2)]Φ(g) .

By (6) the left hand side is

−dΦg ([Y1, Y2]
−) = λ ([Y1, Y2]

∼)Φ(g)

so [λ(˜Y1), λ(˜Y2)]Φ(g) = λ
(

[˜Y1, ˜Y2]
)

Φ(g)
. Taking g = e the result follows.

Theorem 2.2. The homomorphism λ extends uniquely to a homomor-
phism λ of D(G) into E(X).

Proof. The map Y → λ(˜Y ) is a representation of g on the vector space
E(X). By Lemma 1.4 and Prop. 1.6 it extends to a homomorphism of
D(G) into E(X) as stated. Explicitly, we have for Y1, . . . , Yp ∈ g

(13)

(λ(˜Y1 · · · ˜Yp)f)(x) =

{

∂p

∂t1 . . . ∂tp
f(exp(−tpYp) . . . exp(−t1Y1) · x)

}

t=0

.
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For the action of G on X we have the following result.

Proposition 2.3. Let D ∈ D(G), g ∈ G. Then

λ(D)(f τ(g)) = (λ(DR(g))f)τ(g) , f ∈ E(G) .

Proof. Since the maps λ and D → DR(g) are homomorphisms it suffices to
prove this for D = ˜Y ∈ g̃. We have

λ(˜Y )(f τ(g))(x) =

{

d

dt
f(g−1 exp(−tY ) · x)

}

t=0

=

{

d

dt
f(g−1 exp(−tY )gg−1 · x)

}

t=0

=

{

d

dt
f(exp(Ad(g−1)(−tY ))g−1 · x)

}

t=0

= (λ((Ad(g−1)Y )∼)f)(g−1 · x) = (λ(˜Y R(g))f)τ(g)(x)

as claimed.

We consider now the case when G is unimodular, separable and acts
transitively on X . Thus X = G/K for some K and we have the natural
map π : G → G/K given by π(g) = gK which intertwines the maps L(g)
on G and τ(g) on G/K.

Proposition 2.4. Let D ∈ D(G), f ∈ E(X). Then, superscript ∗ denoting
adjoint,

(λ(D)f)(π(g)) = ((D∗)R(g)(f ◦ π))(g) .

Proof. If Y ∈ g, g ∈ G we have

(λ(˜Y )f)(π(g)) =

{

d

dt
f(exp(−tY ) · π(g))

}

t=0

=

{

d

dt
((f ◦ π)(g exp Ad(g−1)(−tY )))

}

t=0
so

(λ(˜Y )f)(π(g)) = [(Ad(g−1)(−Y ))∼(f ◦ π)](g) .

Let Y1, . . . , Yr ∈ g. We shall prove by induction on r that

(14) (λ(˜Y1 . . . ˜Yr)f)(π(g)) = (−1)r[(Ad(g−1)(˜Yr . . . ˜Y1))(f ◦ π)](g) .
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For r = 1 this is proved; assuming it for fixed r we have for Y0 ∈ g,

(λ(˜Y0 . . . ˜Yr)f)(π(g))

=(λ(˜Y0)λ(˜Y1 . . . ˜Yr)f)(π(g))

=

{

d

dt
λ(˜Y1 . . . ˜Yr)f(π(exp(−tY0)g))

}

t=0

=(−1)r
{

d

dt
[Ad(g−1)Ad(exp(tY0))(˜Yr . . . ˜Y1)(f ◦ π)](exp(−tY0)g)

}

t=0

=(−1)r
{

Ad(g−1)
(

[˜Y0, ˜Yr . . . ˜Y1]
)

(f ◦ π)
}

(g)

+ (−1)r
{

Ad(g−1)(−˜Y0)Ad(g−1)(˜Yr . . . ˜Y1)(f ◦ π)
}

(g) ,

where the unique derivation of D(G) extending the endomorphism ˜Y →
[˜Y0, ˜Y ] of g̃ has been denoted [˜Y0, D]. However, it is clear that [˜Y0, D] =
˜Y0D −D˜Y0, so the two last expressions add up to

(−1)r+1
{

Ad(g−1)(˜Yr . . . ˜Y1
˜Y0)(f ◦ π)

}

(g) .

This proves (14). Since G is unimodular
∫

G(˜Y F )(g) dg = 0. Using this on

F1F2 we see that ˜Y ∗ = −˜Y . This proves the proposition.

If X = G/K is a reductive homogeneous space (that is Ad(K) acting on
g has an invariant subspace complementary to k, the Lie algebra of K) then
there is a surjective homomorphism μ of D(G) onto D(X), the algebra of
G-invariant differential operators on X . This μ is given by (μ(D)f) ◦ π =
D(f ◦ π). For D ∈ Z(G), μ(D) = λ(D∗) by Prop. 2.3.

Consider now another homogeneous space of G, say Ξ = G/H and the

transform f → ̂f , ϕ → ϕ̌ in Ch. II, §2 (9). They commute with the G
action

(f τ(g))b= ( ̂f)τ(g) , (ϕτ(g))∨ = (ϕ̌)τ(g)

so by (13) if D ∈ D(G)

(15) (λ(D)f)b= Λ(D) ̂f , (Λ(D)ϕ)∨ = λ(D)ϕ)∨

for D ∈ D(G), Λ being the analog of λ for Ξ. If λ(D(G)) = D(X) this
would be close to an answer to Problem C (Ch. I, §2). In the case when X
is a symmetric space of the noncompact type and Ξ the space of horocycles
one has an isomorphism D → ̂D of D(X) into D(Ξ) such that

Df = ̂D ̂f , ( ̂Dϕ)∨ = Dϕ̌ , D ∈ D(X)

which is a step toward the quoted Problem C.





CHAPTER IX

SYMMETRIC SPACES

Since Cartan’s symmetric spaces have entered in some chapters of this book
we give here a short description of the basics of their theory but with some
proofs omitted. Detailed proofs can be found in my book [1978].

§1 Definition and Examples

A complete Riemannian manifold M is symmetric (in the sense of É. Car-
tan) if for each p ∈ M the geodesic symmetry of sp in p extends to an
isometry of the whole space onto itself. The Euclidean space Rn and the
sphere Sn are obvious examples. The hyperbolic space Hn (Ch. III, §1 (1))
is also symmetric. In fact s0 is an isometry so by the homogeneity Hn is
symmetric. The two-point homogeneous spaces (Ch. III, §1) are also known
to be symmetric (Ch. III, §2, §3).

A symmetric space M is homogeneous in that the group G = I(M) of
isometries acts transitively on M . In fact, given any p, q ∈M the symmetry
in the midpoint of a geodesic joining p to q maps p into q. Fix o ∈M . Then
the mapping

σ : g → sogso

is an automorphism of I(M). The group I(M) is known to be a Lie group
in the compact open topology and the subgroup K fixing o is compact.
Thus M = G/K. If k ∈ K then k and sokso fix o and induce the same
mapping of the tangent space Mo. Considering the geodesics from o we see
that k = sokso, in other words, K ⊂ Kσ, the fixed point group of σ. On
the other hand, if X is in the Lie algebra of Kσ, then so exp tXso = exp tX
(t ∈ R). Thus exp tX · o is a fixed point of so. Since the fixed points of s0
are isolated, exp tX · o = o for t small, hence for t ∈ R. Thus exp tX ∈ K
and

(Kσ)o ⊂ K ⊂ Kσ ,

where the subscript o denotes identity component.

Theorem 1.1. (i) A symmetric space M can be written

M = G/K , G = I(M) ,

where G has an involutive automorphism σ and (Kσ)o ⊂ K ⊂ Kσ.

(ii) Conversely, if G is a Lie group with an involutive automorphism σ
whose fixed point group K is compact then G/K is a symmetric space in
any G-invariant Riemannian metric.

S. Helgason, Integral Geometry and Radon Transforms, 
DOI 10.1007/978-1-4419-6055-9_9, © Springer Science+Business Media, LLC 2011
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Proof. Part (i) was already done. For (ii) note first that any positive definite
K-invariant quadratic form on the tangent space (G/K)o (o = eK) induces
a G-invariant Riemannian structure Q on G/K. If π : G → G/K is the
natural projection we consider the map so of G/K onto itself given by
so ◦ π = π ◦ σ. Then (dso)o = −I.

To see that so is an isometry let as usual τ(g) denote the map xK → gxK
of G/K. Let p = τ(g) · o and X,Y ∈ (G/K)p. Then Xo = dτ(g−1)X ,
Yo ∈ dτ(g−1)Y belong to (G/K)o. The formula so ◦ π = π ◦ σ implies for
each x ∈ G,

so ◦ τ(g)(xK) = σ(gx)K = σ(g)σ(x)K

= (τ(σ(g)) ◦ so)(xK)

so

so ◦ τ(g) = τ(σ(g)) ◦ so .
Hence

Q(dso(X), dso(Y )) = Q(dsodτ(g)Xo , dso dτ(g)Yo)

= Q(dτ(σ(g)) dso(Xo), dτ(σ(g)) dso(Yo)) = Q(Xo, Yo) = Q(X,Y ) .

Thus so is an isometry and by (dso)o = −I it is the geodesic symmetry.
Since sp = τ(g) ◦ so ◦ τ(g−1), sp is an isometry and G/K symmetric.

With M as above, let γ be a geodesic starting at o. Let p and q be
two points on γ such that so(p) = q. Let τo and τ denote the parallel
translation (along γ) from p to o and from p to q, respectively. Let L ∈Mp.
The vectors L and τoL are parallel with respect to the geodesic po. Since
so is an isometry the vectors dso(L) and dso(τoL) are parallel with respect
to the geodesic so(po) = oq. Since dso(τoL) = −τoL it follows that

(*) dso(L) = −τL .
Again, let g denote the Lie algebra of G = I(M) and g = k + p the

decomposition of g into the eigenspaces of dσ for eigenvalues +1 and −1,
respectively. The map dπ is a linear map of g onto Mo with kernel k. Let
X ∈ p and t → pt the geodesic in M from o with tangent vector dπ(X).
Put st = spt and Tt = st/2so. By the relation (*) (dTt)o is the parallel
transport along the geodesic from o to pt. Consider sτsost and st+τ . Both
fix the point pt+τ :

sτsost(pt+τ ) = sτso(pt−τ ) = pt+τ ,

and using (*) repeatedly, we see that their differentials induce the same
map of Mpt+τ . Thus sτsost = st+τ so t→ Tt is a one parameter subgroup
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of G, say Tt = exp tZ, Z ∈ g, t ∈ R. Now σTt = sost/2 = s−t/2so = T−t so
doZ = −Z whence Z ∈ p. But πTt = pt so dπ(Z) = dπ(X) and X = Z.

Thus the geodesics in M from o are the curves

γX : t→ exp tX · o , X ∈ p .

The isometries Tt are called transvections. They slide the manifold along
the geodesic γX . This is of course familiar for R2 and S2.

Remarkably enough, if M is a simply connected symmetric space, the
isometry group I(M) is the product Go × Gs where Go is an isometry
group of a Euclidean space and Gs is semisimple. Decomposing Gs into
simple components and combining the compact ones and the noncompact
ones, the space M is a product of three:

(1) M = Rn ×Mc ×Mn

where Mc and Mn have semisimple isometry groups, and are compact and
noncompact, respectively.

§2 Symmetric Spaces of the Noncompact Type

We shall now explain how the symmetric spaces Mn arise from noncompact
semisimple Lie groups G. Consider first a semisimple Lie algebra g over C.
Under the isomorphism X → adX the study of g amounts to a study of
the family adX (X ∈ g) and the first tool is of course diagonalization.

Definition. A Cartan subalgebra of g is a subalgebra h such that

(i) h ⊂ g is a maximal abelian subalgebra; and

(ii) for each H ∈ g, adH is a semisimple endomorphism of g.

For g = sl(n,C) the diagonal matrices serve as a Cartan subalgebra and
a modified choice can be made for the other classical simple algebras. The
general proof of existence is however somewhat complicated.

Given a linear form α �= 0 on h let

(2) gα = {X ∈ g : adH(X) = α(H)X for all H ∈ h} .
The space gα is one-dimensional. The linear form α is called a root if gα �= 0.
Let Δ denote the set of all roots. By (2)

(3) g = h +
∑

α∈Δ

gα (direct sum).

The pair (h,Δ) determines g in the sense that if g′, h′,Δ′ is another triple
as above and ϕ : h → h′ a linear bijection such that tϕ maps Δ′ onto Δ



268 Chapter IX. Symmetric Spaces

then ϕ extends to an isomorphism ϕ̃ of g onto g′. In particular since α ∈ Δ
implies −α ∈ Δ the map H → −H extends to an automorphism of g. The
Killing form B is nondegenerate on h so to each α there is an assigned a
vector Hα ∈ h such that B(H,Hα) for H ∈ h.

Using these facts the decomposition (3) can be made more explicit:

Theorem 2.1. For each α ∈ Δ a vector Xα ∈ gα can be chosen such that
for all α, β ∈ Δ

[Xα, X−α] = Hα , [H,Xα] = α(H)Xα H ∈ h

[Xα, Xβ] = 0 if α+ β �= 0 and α+ β �∈ Δ

[Xα, Xβ] = Nα,βXα,β if α+ β ∈ Δ ,

where the constants Nα,β satisfy

Nα,β = −N−α−β .

A real form of g is a real linear subspace b of g which is closed under
the bracket operation and satisfies g = b + ib (direct sum). The mapping
X + iY → X − iY is called the conjugation of g with respect to b. The
algebras sl(n,R) and su(n) are both real forms of sl(n,C), the latter one
a compact real form.

Using Theorem 2.1 the following basic result can be proved.

Theorem 2.2. Each semisimple Lie algebra g over C has a real form gk
which is compact.

In fact gk can be constructed as

gk =
∑

α∈Δ

R(iHα) +
∑

α∈Δ

R(Xα −X−α) +
∑

α∈Δ

R(i(Xα +X−α)) .

Consider now a semisimple Lie algebra g over R with Killing form B.
There are of course many possible ways of decomposing g = g+ ⊕ g− such
that B is positive definite on g+, negative definite on g−. We would like
such a decomposition directly related to the Lie algebra structure of g.

Definition. A Cartan decomposition of g is a direct decomposition g = k+p

such that

(i) B < 0 on k; B > 0 on p.

(ii) The mapping θ : T +X → T −X (T ∈ k , X ∈ p) is an automor-
phism of g.

In this case θ is called a Cartan involution of g and the positive definite
bilinear form (X,Y )→ −B(X, θY ) is denoted by Bθ.

We shall now establish the existence and essential uniqueness of a Cartan
decomposition of g.



§2 Symmetric Spaces of the Noncompact Type 269

Theorem 2.3. Suppose θ is a Cartan involution of a semisimple Lie al-
gebra g over R and σ an arbitrary automorphism of g. There then exists
an automorphism ϕ of g such that the Cartan involution ϕθϕ−1 commutes
with σ.

Proof. The product N = σθ is an automorphism of g and if X,Y ∈ g,

−Bθ(NX,Y ) =B(NX, θY ) = B(X,N−1θY ) = B(X, θNY )

so

Bθ(NX,Y ) = Bθ(X,NY )

that is, N is symmetric with respect to the positive definite bilinear form
Bθ. Let X1, . . . , Xn be an orthonormal basis of g diagonalizing N . Then
P = N2 has a positive diagonal, say, with elements λ1, . . . , λn. Take P t

t ∈ R with diagonal elements λt1, . . . , λ
t
n and define the structural constants

cijk by

[Xi, Xj ] =

n
∑

k=1

cijkXk .

Since P is an automorphism, we conclude

λiλjcijk = λkcijk

which implies
λtiλ

t
jcijk = λtkcijk (t ∈ R)

so P t is an automorphism. Put θt = P tθP−t. Since θNθ−1 = N−1, we have
θPθ−1 = P−1, that is θP = P−1θ. In matrix terms (using still the basis
X1, . . . , Xn) this means (since θ is symmetric with respect to Bθ)

θijλj = λ−1
i θij

so

θijλ
t
j = λ−ti θij

that is, θP tθ−1 = P−t. Hence

σθt = σP tθP−t = σθP−2t = NP−2t

θtσ = (σθt)
−1 = P 2tN−1 = N−1P 2t

so it suffices to take ϕ = P 1/4 (which could be viewed as
√
σθ).

Corollary 2.4. Let g be a semisimple Lie algebra over R, gc = g + ig
its complexification, u any compact real form of gc, σ and τ the conju-
gations for gc with respect to g and u, respectively. Then there exists an
automorphism of gc such that ϕ · u is invariant under σ.
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Proof. Let gR
c denote the Lie algebra gc considered as a Lie algebra over R,

BR the Killing form. It is not hard to show thatBR(X,Y ) = 2 Re(Bc(X,Y ))
if Bc is the Killing form of gc. Thus σ is an involution of gR

c and τ is a
Cartan involution of gR

c and the corollary follows (note that since στ is a
(complex) automorphism of gc, ϕ is one as well).

Here we used the remark that since σ commutes with ϕτϕ−1 the space
ϕ u, which is the fixed point set of ϕτϕ−1, is invariant under σ.

Corollary 2.5. Each semisimple Lie algebra g over R has Cartan decom-
positions and any two such are conjugate under an automorphism of g.

Proof. Let gc denote the complexification of g, σ the corresponding conju-
gation, and u a compact real form of gc invariant under σ (Theorems 2.2–
2.3). Then put k = g ∩ u, p = g ∩ iu. Then B < 0 on k, B > 0 on p, and
since θ : T +X → T −X (T ∈ k, X ∈ p) is an automorphism, B(k, p) = 0.
It follows that g = k + p is a Cartan decomposition.

Finally, let σ and τ be two Cartan involutions. To prove their conjugacy
we may by Theorem 2.3 assume that they commute. The corresponding
Cartan decompositions

g = kσ + pσ , g = kτ + pτ

are thus compatible, σkτ ⊂ kτ , etc. so

g = kτ ∩ kσ + kτ ∩ pσ + kσ ∩ pτ + pσ ∩ pτ .

Considering the form B we see that the two middle terms vanish so σ = τ .

Example.

Let g = sl(n,R), the Lie algebra of the group SL(n,R). The group
SO(n) of orthogonal matrices is a closed subgroup, hence a Lie subgroup,
and by Ch. VIII, §1, its Lie algebra, denoted su(n), consists of those ma-
trices X ∈ sl(n,R) for which exp tX ∈ SO(n) for all t ∈ R. But

exp tX ∈ SO(n)⇔ exp tX exp t(tX) = 1 det(exp tX) = 1

so
so(n) = {X ∈ sl(n,R)|X + tX = 0}

the set of skew-symmetric n × n matrices (which are automatically of
trace 0).

The mapping θ : X → −tX is an automorphism of sl(n,R) and θ2 = 1.
It is easy to prove that B(X,X) = 2nTr(XX), B(X, θX) < 0. Thus θ is a
Cartan involution and

sl(n,R) = so(n) + p ,
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where p is a set of n×n symmetric matrices of trace 0, is the corresponding
Cartan decomposition.

Consider now a Cartan decomposition g = k+p, G a connected Lie group
with Lie algebra g, and K ⊂ G a Lie subgroup with Lie algebra k. Then θ
extends to an involutive automorphism ofG and K is closed, connected and
is the fixed point set of θ. Thus by Theorem 2.1, X = G/K is symmetric
and is in fact simply connected. Since θ is an automorphism

(4) [k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k .

The Killing form B is negative definite on k, positive definite on p. Being
invariant under the adjoint action of K on p, B induces a G-invariant
Riemannian structure on X = G/K. Let d denote the distance, and |Y | =
B(Y, Y )1/2. As proved earlier the geodesics through o = eK are the orbits
exp tY · o with Y ∈ p and d(o, exp Y · o) = |Y |. More generally, the totally
geodesic submanifolds of X through o are given by exp s · o where s ⊂ p is
a Lie triple system. In fact, s + [s, s] is a subalgebra of g and if G1 is the
corresponding connected Lie subgroup the orbit G1 · o equals the manifold
exp s · o.

The curvature tensor R can be shown to be

(5) R(X,Y ) · Z = −[[X,Y ], Z] .

If e, f is an orthonormal basis of a plane section in Xo the corresponding
sectional curvature equals

−B(R(e, f) · e, f) = B([[e, f ], e], f) = B([e, f ], [e, f ]) ≤ 0

by the invariance of B.
Examples discussed in the text are

Hp = SO0(p, 1)/SO(p) , H2 = SU(1, 1)/SO(2) ,

SO0(p, 1) being the identity component of the Lorentz group. Here the
geodesic symmetry is an isometry. Other examples are

SO0(p, q)/SO(p)× SO(q) , SL(n,R)/SO(n)

with the Cartan involutions

g → Ip,qgIp,q g → tg−1 ,

respectively. (Here Ip,q is the diagonal matrix with diagonal (−1, . . . ,−1,
1, . . . , 1).)

Each adX(X ∈ p) is symmetric relative to the positive definite symmetric
bilinear form Bθ(Y, Z) = −B(Y, θZ). Thus adX can be diagonalized by
means of a basis of g. Thus if a ⊂ p is a maximal abelian subspace, the
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commutative family adH(H ⊂ a) can be simultaneously diagonalized. For
each real linear form λ on a let

gλ = {X ∈ g : [H,X ] = λ(H)X for H ∈ a} .
Then

(6) θgλ = g−λ and [gλ, gμ] ⊂ gλ+μ .

If λ �= 0 and gλ �= 0 then λ is called a root of g with respect to a. If Σ
denotes the set of all roots,

g = g0 +
⊕

λ∈Σ

gλ .

The maximal abelian subspaces of p are all conjugate under AdG(K). The
components of the regular set

a′ = {H ∈ a : λ(H) �= 0 for all λ ∈ Σ}
are pyramids, called the Weyl chambers and they are all conjugate under
the set of Ad(k), which leave a invariant.

Let a+ be a fixed component of a′ and Σ+ the set of α ∈ Σ which are
> 0 on a+. Then

(7) n =
⊕

λ∈Σ+

gλ

is a subalgebra and we have the Chevalley-Iwasawa decomposition

g = k + a + n

and the corresponding decomposition of G,

G = KAN .

The dimension of gλ is called the multiplicity mλ of the root λ. For simple
g the triple (a,Σ,m) determines g up to isomorphism. The dimension of a

is called the rank of G/K and the real rank of G.
A horocycle in X is an orbit of a group conjugate to N . The group G

permutes the horocycles transitively (so they all have the same dimension).
The subgroup of G which maps the horocycle N · o into itself equals MN
where M is the centralizer of A in K. Thus G/MN can be identified with
the space of all horocycles in X .

The Radon transform and its dual for the dual homogeneous spaces

X = G/K , Ξ = G/MN

is indicated in Ch. II, §4, J. A detailed treatment is given in our book
[1994b].

The manifold exp a · o = A · o is totally geodesic in X and it is flat. In
fact, if Y, Z ∈ a then d(expY ·o , expZ ·o) = d(exp(Y −Z) ·o, o) = |Y −Z|.
The flat manifold A · o and the horocycle N · o are perpendicular at o.
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These spaces are the coset spaces X = U/K where U is a compact semisim-
ple Lie group and K is the subgroup of fixed points of an involutive auto-
morphism σ of U . Again u decomposes into the eigenspaces of dσ,

(8) u = k + p∗ .

The negative of the Killing form B is positive definite on p∗ (and on u)
and thus induces a U -invariant Riemannian structure on X . The geodesics
through o = eK are again of the type t → exp tY · o for Y ∈ p∗. We put
ExpY = expY · o for Y ∈ p∗.

There is a simple duality between all the noncompact types G/K and
all the compact types X . This is based on the correspondence

(9) g = k + p↔ u = k + p∗ , p∗ = ip ,

within the complexification gc = uc. A special case is the analogy between
hyperbolic spaces and spheres. Under the correspondence (9), Lie triple
systems s ⊂ p correspond to Lie triple systems is = s∗ ⊂ p∗. Again exp s∗ ·o
a totally geodesic submanifold of X . If a∗ ⊂ p∗ is maximal abelian, then
just as Exp a the manifold Exp(a∗) is a flat totally geodesic submanifold
of maximal dimension. All such are conjugate under U . Their dimension is
the rank � of X .

Assume now X simply connected and let δ > 0 denote the maximal sec-
tional curvature. Then X contains totally geodesic spheres of curvature δ.
All such spheres of maximal curvature are U -conjugate. Similar conjugacy
holds for the closed geodesics of minimal length (cf. Ch. IV, Theorem 1.2.)
The midpoint locus Ao for o is the set of midpoints of these closed geodesics
through o of minimal length. It is a K-orbit and a totally geodesic sub-
manifold of X .

The root theory for (g, a) in §2 applies also for (u, a∗), because of the
duality (9) in which a∗ = ia. Then each α ∈ Σ is purely imaginary on
a∗. For each H ∈ a∗, (adH)2 maps p∗ into itself and we denote by TH its
restriction to p∗ (see Ch. III, §2). We then have

(10) p∗ = a∗ +
∑

λ∈Σ+

pλ ,

where
pλ = {X ∈ p∗ : (adH)2X = λ(H)2X for H ∈ a∗} .

Consider now the case when the rank ofX is one. As mentioned in Ch. III,
§2 these are the compact two-point homogeneous spaces. Except for the
space Pn(R), which is doubly covered by Sn, they are simply connected.
Now the midpoint locus Ao becomes the antipodal set, the set of points of
maximal distance from o.
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For the case of rank one, the decomposition (10) becomes

(11) p∗ = a∗ + pα + pα/2 ,

where the last term is 0 for Pn(R) and Sn. The subspaces pα have the
following geometric significance:

(i) Exp(a∗ + pα) is a maximal dimensional totally geodesic sphere in M .

(ii) If o′ is the point on this sphere antipodal to o then for the correspond-
ing antipodal manifold

Ao′ = Exp(pα/2) .

(iii) If pα/2 = 0 and if H ∈ a∗ has length the diameter of U/K then for
o′ = ExpH

Ao′ = Exp(pα) .

The geometric picture of X (�= Sn) used in Chapter IV is thus the
following:

Through the origin o = eK we have totally geodesic spheres of maximum
dimension 1 +mα and maximum curvature −B(α, α). All these spaces are
conjugate under K and so are the geodesics issuing from o. The midpoint
locus Ao is again a K-orbit of dimension dim pα/2. It is totally geodesic
in X and is another symmetric space. For X = Pn(C) and Pn(H) the
midpoint locus is a space of the same type, for X = P (Cay) it is the
sphere S8.
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(1927), 345–467.

Carton-Lebrun, C.

1984 Smoothness properties of certain integrals and the range of the
Radon transform. Bull. Soc. Roy. Sci. Liège, 53 (1984), 257–262.
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Paris, 1957.

1966 The decomposition of L2(G/Γ) for Γ = SL(2, Z), Proc. Symp.
Pure Math. 9 (1966), 211–224.

Goldschmidt, H.

1990 The Radon transform for symmetric forms on real symmetric
spaces, Contemp. Math. 113 (1990), 81–96.

Goncharov, A.B.

1989 Integral geometry on families of k-dimensional submanifolds,
Funct. Anal. Appl. 23 1989, 11–23.

Gonzalez, F.

1984 Radon transforms on Grassmann manifolds, thesis, MIT, Cam-
bridge, MA, 1984.

1987 Radon transforms on Grassmann manifolds, J. Funct. Anal. 71

(1987), 339–362.
1988 Bi-invariant differential operators on the Euclidean motion group

and applications to generalized Radon transforms, Ark. Mat. 26

(1988), 191–204.
1990a Bi-invariant differential operators on the complex motion group

and the range of the d-plane transform on Cn, Contemp. Math.
113 (1990), 97–110.

1990b Invariant differential operators and the range of the Radon d-
plane transform, Math. Ann. 287 (1990), 627–635.



282 Bibliography

1991 On the range of the Radon transform and its dual, Trans. Amer.
Math. Soc. 327 (1991), 601–619.

1994 “Range of Radon transform on Grassmann manifolds,” in: Proc.
Conf. 75 Years of Radon Transform, Vienna, 1992, International
Press, Hong Kong, 1994, 81–91.

2001 “John’s equation and the plane to line transform on R
3”, in Har-

monic Analysis and Integral Geometry Safi (1998), 1–7. Chapman
and Hall/RCR Research Notes Math., Boca Raton, FL, 2001.

Gonzalez, F. and Kakehi, T.

2003 Pfaffian systems and Radon transforms on affine Grassmann man-
ifolds Math. Ann. 326 (2003), 237–273.

2004 Dual Radon transforms on affine Grassmann manifolds, Trans.
Amer.Math. Soc. 356 (2004), 4161–4180.

2006 Invariant differential operators and the range of the matrix Radon
transform, J. Funct. Anal. 241 (2006), 232–267.

Gonzalez, F. and Quinto, E.T.

1994 Support theorems for Radon transforms on higher rank symmet-
ric spaces, Proc. Amer. Math. Soc. 122 (1994), 1045–1052.

Goodey, P. and Weil, W.

1991 Centrally symmetric convex bodies and the spherical Radon
transform, preprint, 1991.

Grinberg, E.

1985 On images of Radon transforms, Duke Math. J. 52 (1985),
939–972.

1986 Radon transforms on higher rank Grassmannians, J. Differential
Geom. 24 (1986), 53–68.

1987 Euclidean Radon transforms: Ranges and restrictions, Contemp.
Math. 63 (1987), 109–134.

1992 Aspects of flat Radon transform, Contemp. Math. 140 (1992),
73–85.

1994a “Integration over minimal spheres in Lie groups and symmet-
ric spaces of compact type,” in: Proc. Conf. 75 Years of Radon
Transform, Vienna, 1992, International Press, Hong Kong, 1994,
167–174.

1994b “That kappa operator”, in Lectures in Appl. Math. 30, 1994, 93–
104.

Grinberg, E. and Quinto, E.T.

1999 “Morera theorems for spheres through a point in C
N”, in Re-

cent Developments in Complex Analysis and Commutative Alge-
bra, (Gilbert et al. eds) Kluwer Acad. Publ., 267–275.

2000 Morera theorems for complex manifolds, J. Funct. Anal. 178

(2000), 1–22.



Bibliography 283

Guillemin, V.

1976 Radon transform on Zoll surfaces, Adv. in Math. 22 (1976), 85–99.
1985 The integral geometry of line complexes and a theorem of
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tions, Nové Mesto, Czechoslovakia, 1983, 59–75.

1984 [GGA] Groups and Geometric Analysis: Integral Geometry, Invariant
Differential Operators and Spherical Functions, Academic Press,
New York, 1984. Now published by American Mathematical So-
ciety, Providence, R.I., 2000.

1987 Some results on Radon transforms, Huygens’ principle and X-ray
transforms, Contemp. Math. Vol. 63 (1987).

1990 The totally geodesic Radon transform on constant curvature
spaces, Contemp. Math. 113 (1990), 141–149.

1992 The flat horocycle transform for a symmetric space, Adv. in Math.
91 (1992), 232–251.

1994a “Radon transforms for double fibrations: Examples and view-
points,” in: Proc. Conf. 75 Years of Radon Transform, Vienna,
1992, International Press, Hong Kong, 1994, 163–179.

1994b [GSS] Geometric Analysis on Symmetric Spaces, Math. Surveys and
& 2008 Monographs No. 39, American Mathematical Society, Providence,

RI, 1994. Second Edition, 2008.

2005 The Abel, Fourier and Radon transforms on symmetric spaces.
Indag. Math. NS. 16 (2005), 531–551.

2006 “Non-Euclidean Analysis”, in (Prékopa and Molnár Eds.) Non-
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Ólafsson, G., et al. (Eds.)
2008 Radon Transforms, Geometry and Wavelets, Contemp. Math.

Vol. 464, Amer. Math. Soc. 2008.

Olevsky, M.

1944 Some mean value theorems on spaces of constant curvature, Dokl.
Akad. Nauk. USSR 45 (1944), 95–98.

Orloff, J.

1985 Limit formulas and Riesz potentials for orbital integrals on sym-
metric spaces, thesis, MIT, Cambridge, MA, 1985.

1987 “Orbital integrals on symmetric spaces,” in: Non-Commutative
Harmonic Analysis and Lie Groups, Lecture Notes in Math. No.
1243, Springer-Verlag, Berlin and New York, 1987, 198–219.

1990a Invariant Radon transforms on a symmetric space, Contemp.
Math. 113 (1990), 233–242.

1990b Invariant Radon transforms on a symmetric space, Trans. Amer.
Math. Soc. 318 (1990), 581–600.

Ortner, N.

1980 Faltung hypersingularer Integraloperatoren, Math. Ann. 248

(1980), 19–46.

Palamodov, V.

1996 An inversion method for the attenuated X-ray transform, Inverse
Problems 12 (1996), 717–729.

2004 Reconstructive Integal Geometry. Birkhauser, Boston, (2004).

Palamodov, V. and Denisjuk, A.

1988 Inversion de la transformation de Radon d’apres des données
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Notational Conventions

Algebra As usual, R and C denote the fields of real and complex numbers,
respectively, and Z the ring of integers. Let

R+ = {t ∈ R : t ≥ 0}, Z+ = Z ∩R+ .

If α ∈ C, Reα denotes the real part of α, Imα its imaginary part,
|α| its modulus.

If G is a group, A ⊂ G a subset and g ∈ G an element, we put

Ag = {gag−1 : a ∈ A} , gA = {aga−1 : a ∈ A} .
The group of real matrices leaving invariant the quadratic form

x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

p+q

is denoted by O(p, q). We put O(n) = O(o, n) = O(n, o), and write
U(n) for the group of n×n unitary matrices. The group of isometries
of Euclidean n-space Rn is denoted by M(n).

Geometry The (n−1)-dimensional unit sphere in Rn is denoted by Sn−1,
Ωn = 2πn/2/Γ(n/2) denotes its area. The n-dimensional manifold of
hyperplanes in Rn is denoted by Pn. If 0 < d < n the manifold of
d-dimensional planes in Rn is denoted by G(d, n); we put Gd,n =
{σ ∈ G(d, n) : o ∈ σ}. In a metric space, Br(x) denotes the open ball
with center x and radius r; Sr(x) denotes the corresponding sphere.
For Pn we use the notation βA(0) for the set of hyperplanes ξ ⊂ Rn

of distance < A from 0, σA for the set of hyperplanes of distance = A.
The hyperbolic n-space is denoted by Hn and the n-sphere by Sn.

Analysis If X is a topological space, C(X) (resp. Cc(X)) denotes the
sphere of complex-valued continuous functions (resp. of compact sup-
port). If X is a manifold, we denote:

Cm(X) =

{

complex-valued m-times continuously
differentiable functions on X

}

C∞(X) = E(X) = ∩m>0C
m(X) .

C∞c (X) = D(X) = Cc(X) ∩ C∞(X) .

D′(X) = {distributions on X} .
E ′(X) = {distributions on X of compact support} .
DA(X) = {f ∈ D(X) : support f ⊂ A} .
S(Rn) = {rapidly decreasing functions on Rn} .
S′(Rn) = {tempered distributions on Rn} .

The subspaces DH , SH , S∗, So of S are defined in Ch. I, §§1–2.

S. Helgason, Integral Geometry and Radon Transforms, 
DOI 10.1007/978-1-4419-6055-9, © Springer Science+Business Media, LLC 2011
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While the functions considered are usually assumed to be complex-
valued, we occasionally use the notation above for spaces of real-
valued functions.

The Radon transform and its dual are denoted by f → ̂f , ϕ → ϕ̌,
the Fourier transform by f → ˜f and the Hilbert transform by H.

Iα, Iλ−, Iλo and Iλ+ denote Riesz potentials and their generalizations.
M r the mean value operator and orbital integral, L the Laplacian on
Rn and the Laplace-Beltrami operator on a pseudo-Riemannian man-
ifold. The operators � and Λ operate on certain function spaces on
Pn; � is also used for the Laplace-Beltrami operator on a Lorentzian
manifold, and Λ is also used for other differential operators.
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Frequently Used Symbols

Ad: adjoint representation of a Lie group, 259
ad: adjoint representation of a Lie algebra, 259
a, a∗: abelian subspaces, 272
a′: regular set, 272
a+: Weyl chamber, 272
Ax: antipodal set to x , 147
A(r): spherical area, 148
Br(p): open ball with radius r, center p, 8
βR: ball in Ξ, 28
B: Killing form, 260
Cn: special set, 241
C(X): space of continuous functions on X , 1
D(X): C∞c (X), 1
D′(X): space of distributions on X , 70, 223
dgk: invariant measure on G/K, 69
DK(X): set of f ∈ D(X) with support in K, 221
D(G): algebra of left-invariant differential operators on G, 256
E(X): set of all differential operators on X , 253
E ′(X): space of compactly supported distributions on X , 70
F (X): space of rapidly decreasing functions, 179
F(X): space of exponentially decreasing functions, 179

f →
�

f : mapping from G to G/K, 73

f → ̂f , f → ̂fp: Radon transforms, 77, 114
ϕ→ ϕ̌, ϕ→ ϕ̌p: dual transforms, 77, 114
ϕλ: spherical function, 130
G(d, n): manifold of d-planes in Rn, 34
Gd,n: manifold of d-dimensional subspaces of Rn, 34
Hn: hyperbolic space, 78, 118
H: Hilbert transform, 22, 57
Iα: Riesz potential, 199, 236
Im : imaginary part
L1(X): space of integrable functions, 18
L = LX : Laplace-Beltrami operator, 3, 185
L(g) = Lg: left translation by g, 254
Λ: operator on Pn, 22, 43
Mp: tangent space to a manifold M at p, 253
M r: mean value operators, 8, 209
M(n): group of isometries of Rn, 3
O(n), O(p, q): orthogonal groups, 9, 187
Ωn: area of Sn−1, 9
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298 Frequently Used Symbols

Pn: set of hyperplanes in Rn, 2
p: part of Cartan decomposition, 268
rα: special distribution, 237
Re: real part
Res: residue, 237
Sn: n-sphere, 3
Sr(p): sphere of radius r, center p, 8
S(Rn): space of rapidly decreasing functions, 5
S∗(Rn), S0(R

n): subspaces of S(Rn), 10
S′(Rn): space of tempered distributions, 223
sgn(s): signum function, 28
SH(Pn): subspace of S(Pn), 5
τ(x): translation gH → xgH on G/H , 64
θ: Cartan involution, 268
U(g): universal enveloping algebra, 257
Ξ: dual space, 63
xα+: special distribution, 236
Z(G): center of D(G), 259
∼: Fourier transform, 4, 226
̂: Radon transform, incidence, 2, 68
∨: Dual transform, incidence, 2, 68
〈 , 〉: inner product, 106
�: K-invariance, 175
�: operator, wave operator, 3, 196
| |: norm, 4
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A

Abel’s integral equation 11
Adjoint group 260
Adjoint representation 260
Adjoint space 181
Antipodal manifold 147
Approximate reconstruction 54
Ásgeirsson’s mean-value theorem

44, 211

C

Cartan decomposition 268
Cartan involution 268
Cartan subalgebra 267
Cauchy principal value 23
Cauchy problem 47
Cayley plane 150
Circumference 137
Compact Lie algebra 260
Cone

backward 48
forward 48
light 51, 190, 192
null 190

retrograde 192, 196
solid 50

Conjugacy class 76
Conjugate point 147
Conjugation 268
Curvature 186, 188
Cusp forms 95

D

Darboux equation 17, 125, 199
Delta distribution 31, 207
Differential operator 253
Dirichlet problem 86
Distribution 223

derivative 223
Fourier transform of 226
Radon transform of 27, 28
support of 224
tempered 223

Divergence theorem 14
Double fibration 67
Duality 65
Dual transform 2, 90
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E

Elliptic space 133
Euclidean case 114
Exponentially decreasing 179

F

Flat Radon transform 181
Flexed geodesic 180
Fourier transform 226
Fundamental solution 236
Funk transform 77, 174

G

Generalized sphere 75
Gram determinant 189
Grassmann manifold 34, 90

H

Harmonic line function 45
Hilbert transform 22
Homogeneous spaces in duality 63,

65
Horocycle 82, 103, 159, 272
Huygens’ principle 51, 206, 207
Hyperbolic space 118

Cayley 158
complex 158
quaternion 158
real 158

I

Incident 63
Inductive limit 221
Interior of a horocycle 159
Invariant differential operators 3,

185, 254
Inversion formula 16, 30, 31, 33,

46, 81, 83, 116, 125, 127,
128, 132, 133, 135, 141

Inversion problem
general remarks 72

Isometry 3, 25, 185

Isotropic 186, 188
geodesic 190
Lorentz manifold 77, 190
vector 190

J

John’s mean value theorem 45,
87

K

Klein’s Erlanger program 78

L

Laplace-Beltrami operator 185
Laplacian 3
Lie algebra 255
Lie triple system 271
Light cone 51, 190, 192
Lorentzian 185

manifold 185
structure 185

M

Mean value operator 8, 124, 148,
195, 209

Mean value transform 215
Mean value theorem 44, 45
Midpoint locus 273
Modular group 94
Multiplicity 148, 272

N

Null cone 190

O

Orbital integrals 75, 190, 195

P

Paley-Wiener theorem 15, 229
Plancherel formula 25
Plane wave 1



Index 301

normal of 46
Plücker coordinates 43
Poisson

equation 239
integral 86
kernel 86

Projective spaces
Cayley 150
complex 150
quaternion 150
real 150

Property (S) 55
Pseudo-Riemannian

manifold 185
structure 185

R

Radial function 11
Radiograph 53
Radon transform 2, 68

d-dimensional 32
for a double fibration 67
of distributions 70
of measures 70

Ranges and kernels
general features 71

Rank 273
Rapidly decreasing functions 4,

179
Reductive homogeneous space 263
Regularization 225
Residue 237
Retrograde cone 192, 196

solid 192
Riesz potential 236, 240

generalized 199

S

Schwartz theorem 5
Sectional curvature 271
Seminorms 5, 221
Semisimple 260
Source 48
Spacelike 190

geodesic 190
vectors 190

Spherical function 130
Spherical slice transform 145
Spherical transform 130
Support 224
Support theorem 2, 10, 119
Symmetric space 265
Symmetrization 257

T

Theta series 95
Timelike 190

geodesic 190
vectors 190

Totally geodesic 111, 147
Transvection 267
Transversality 65
Two-point homogeneous 111

U

Universal enveloping algebra 257

V

Vector field 253
Volterra integral equation 164

W

Wave 1, 46
incoming 48
outgoing 48

Wave equation 46
Wave operator 196
Weyl chamber 272
width 137

X

X-ray
reconstruction 52
transform 32, 42, 81
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