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1. Introduction.

One of the most basic constructions of modern physics is the formulation of field
equations (or variational principles) admitting a known symmetry group. It has been
known since the days of Sophus Lie that this can be readily done, in the regular case,
by assembling suitable combinations of differential invariants of the transformation group.
Although Lie’s general theorem would appear to completely resolve the issue of classifying
differential equations admitting prescribed symmetry groups, a more subtle question has
recently been of importance, and cannot be quite so immediately answered. The problem
is to classify invariant differential equations of a specified form admitting a prescribed
symmetry group. For example, the classification of geometric diffusion equations admitting
symmetry groups of visual significance is a problem of importance in computer vision and
image processing. In [12], [13], a complete classification for subgroups of the projective
group was determined. More generally, one can ask for a complete list of invariant evolution
equations admitting a prescribed symmetry group, and the latter problem was completely
solved in [14], using the theory of relative invariants. It was found that any transformation
group in the field and spatial variables (but fixing the time variable) always admits an
infinite collection of invariant evolution equations; see Theorem 4.11 below and also the
work of Sokolov, [17]. The reason why this problem is not an immediate consequence of
the classification of differential invariants for the transformation group in question is that
it may not be so evident which combinations of differential invariants, :f any, can be used
to produce the equation having the specified form. In the case of evolution equations, the
fact that the time variable introduces an additional coordinate into the picture implies
that one needs to compute a new basis of fundamental differential invariants, even when
the purely spatial derivative invariants are known.

In this paper, we shall consider the classification of wave equations in both one and
several space variables, and a single time variable admitting a prescribed finite-dimensional
symmetry group. This problem is of interest in computer vision and other applications,
first since one might desire to use hyperbolic, rather than parabolic, processing on an
image. A second reason arises in image enhancement, in which one uses a hyperbolic
regularization to effect a backwards (and hence ill-posed) parabolic equation, cf. [16].
(See also [6] for equations of Euler-Poisson-Darboux type.) Since the image smoothing
was done in a a group-invariant manner, one might reasonably ask for similarly invariant
hyperbolic enhancers. Surprisingly, the above-mentioned result for evolution equations is
no longer valid — not every spatial transformation group admits an invariant hyperbolic
wave equation. We determine a complete set of conditions that a transformation group
admit an invariant evolutionary or wave equation. Further, using the differential invariants
for the groups, completely characterize all possible invariant equations admitted by a
symmetry group of the prescribed type. In the planar case (one independent spatial
variable and one dependent variable), we then use Lie’s complete classification of groups
of point and contact transformations in the plane to find a complete list of invariant wave
equations.

We shall assume that the reader is familiar with the basic theory of symmetry groups
of differential equations, as presented in [9], [10]. We shall make extensive use of the
theory of differential invariants, as presented in the latter book, as well as [11], [15]. Since
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we are relying on Lie’s classification of finite-dimensional transformation groups acting on
a two-dimensional complex manifold, cf. [8], [10], we shall assume that the variables are,
in general, complex-valued. In the case of point transformation groups, the extension of
these results to real differential equations is not difficult. Unfortunately, there is, as far
as we know, no complete classification of real groups of contact transformations acting in
two dimensions. The present paper can be viewed as a start towards the classification of
differential invariants for surfaces under transformation groups in three-dimensional space,
where the group acts completely trivially on the time coordinate. In [7] Lie describes a
partial classification of three-dimensional transformation groups, and claims that he has
completed it but these results never appeared in print. An important task awaiting com-
pletion is the complete classification of the differential invariants of Lie’s three-dimensional
transformation groups.

2. Jet spaces and Prolongations.

Before proceeding to a detailed discussion of our results, we need to first review the
theory of differential invariants and, more generally, relative differential invariants. Since
all our considerations are local, we will not lose any generality by working in Euclidean
space. We will consider the total space F ~ X x U, where, in the cases considered in
this paper, U ~ R has coordinate u, the scalar dependent variable, whereas X ~ RP, has
coordinates z = (z',...,zP), representing the spatial independent variables. The nth jet
space J”F thus has coordinates (:c,u(“)), where u(™ stands for all partial derivatives

d'u K= (k,..., k),
= h ? 2.1
Uk (aml)kl'-'(amp)kp, winere l:#K:k1++kp§n ( )
We will use the basic multi-indices e, 1 = 0,...,p, which has a single 1 in the it} position
and zeros elsewhere. Thus u; =, = Ou/8z'. Moreover, we write L C K if all entries of

L are less than or equal to those of K, s0 0 <[, <k;, j =0,...,p. Similarly, we write
LCKif L CK,but L# K. Note that the difference K — L is a well-defined multi-index
if and only if L C K. Finally, we write (IE) for the standard multi-nomial coefficient,
which is non-zero provided L C K. A function F(:c,u(”)) depending on independent and
dependent variables and their derivatives is known as a differential function, and n = ord F'
is its order, which means that F' really does depend on nt! order derivatives of u.

We shall consider both point transformation groups, which are local transformation
groups G = G acting on the space E = X x U, and contact transformation groups,
which, by Backlund’s Theorem, [1], [10], are at most first order, and thus realized as a local
transformation group G(!) on the first jet space J'E preserving the contact ideal generated
by the contact form 6 = du—Y " _, u; dz'. In both cases, the group induces a corresponding
transformation group G(™ on the nth jet space J*E, called the nt® prolongation of G, which
can be uniquely characterized as the ntt order contact transformation group projecting
back to the original group action.

We let g denote the Lie algebra of G. Consider an infinitesimal generator of the group
action

p
. 0 0
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corresponding to the Lie algebra element v € g. In the case of point transformations, the
coefficients ¢?, ¢ of v(°) depend on z,u. The group is fiber-preserving (or projectable, [9])
if £ = ¢%(z) only depend on the independent variables. Finally, the group consists of affine
bundle maps if it consists of transformations (z,u) — (®(z), A(z)u+ B(z)) which are fiber-
preserving and affine in the dependent variable u at each point; the infinitesimal generators
have ¢ = a(z)u + 3(z). For instance, most linear partial differential equations have affine
bundle symmetry groups. The infinitesimal generators of a contact transformation group
have the same form (2.2), but the coefficients ¢, ¢, are allowed to depend on the first
order derivatives of u provided they satisfy the contact conditions

dp I BE
= k=1,...,p. 2.3
Ou,, ul@uk’ oo (2:3)

In all cases, the characteristic of the vector field (2.2) is defined to be the first order

differential function
p

Qe,u) = ¢ -3 ¢, (2.4)

i=1

The vector field can be recovered from its characteristic by solving (2.4) for ¢ and using

9Q(z,u?)

i (Y _
é (JB,’LI, ) B’U,z )

(2.5)

which is a consequence of the contact conditions (2.3), to construct the coefficients £¢¢. The
corresponding infinitesimal generator

Y E e 3 o g
: Ozt BuK’
i=1 #K<n

(2.6)

of G(™ defines the nth prolongation of v, whose coefficients are given by the standard
prolongation formula

P
X .
P = DKQ"’ZéZuKi' (2.7)
i=1
Here D is the total derivative corresponding to the multi-index K, and we use the notation
Up; = Ugcye, = Diug-
For later reference, we require some elementary formulas for higher order total deriva-
tives of certain types of differential functions. Both results are easy to prove by induction
using Leibniz’ rule.

Lemma 2.1. Suppose p(z,u) is a zeroth order differential function. Then its first
and second order total derivatives have the form

t (91/, t BQB{L (2 8)
Op & 8¢ 8%y ¢ ’
DDo="Fu +2%0uu. . . LA
i Ou ij + Ou? ity Oudzx? uj Oubzxl it Oz*OzxI
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Furthermore, for any multi-index K with k = #K > 3,

b
Dgo=p,ug + Zki(Di(Pu)uK—e; + F(z,ul*"?), (2.9)

1=1
where F is a differential function depending on at most (k — 2)*d order derivatives of u.

Lemma 2.2. Suppose Q(w,u(l)) is a first order differential function. Then its first
and second order total derivatives have the form

1%}
D,Q = § ; 29 it aQi ,
9Q oQ

50 50
-1-2 sy, fuug)+ ———u,  ——— R(z.uY
(8ul<9u wat uit ) ou, 0zt M Qu,Oxi ”) (=, )

where R is a first order differential function. Furthermore, for any multi-index K with

k=#K >3,

0
Dg@Q = Z Bu, K +Quug + Z k;D; (8Q> Ui pey + R(z,ul* D), (2.11)

u
1,l=1
where R is a differential function depending on at most (k — 1)t order derivatives of u.

Note that in both sets of formulae, the multi-indices of orders 1 and 2 do not fit into
the general higher order pattern.

3. Relative Differential Invariants.

Throughout this section, we let G be a transformation group (either point or contact)
acting via prolongation on the jet spaces J®FE over a bundle £ = X x U. Recall that an
(absolute) differential invariant is an invariant differential function for a prolonged group
action. A differential operator is said to be G-invariant if it maps differential invariants
to higher order differential invariants, and thus, by iteration, produces hierarchies of dif-
ferential invariants of arbitrarily large order. A general theorem guarantees the existence
of sufficiently many such differential operators so as to completely generate all the higher
order independent differential invariants of the group by successively differentiating lower
order differential invariants. Thus, a complete description of all the differential invariants
is provided by a collection of low order “fundamental” differential invariants along with
the requisite invariant differential operators.

Theorem 3.1. Suppose that G is a group of point or contact transformations. Then
there exist p = dim X invariant diflerential operators D,,...,D,, and a system of funda-
mental differential invariants J,,...,J  , such that, locally, every differential invariant can
be written as a function of the iterated derivatives D; ---D; J,.



A relative differential invariant is, roughly speaking, a differential function which
is invariant, up to a factor, under the prolonged group action. The theory of relative
differential invariants is a particular case of the general theory of relative invariants of
transformation group actions, in which the group acts by prolongation on a suitable jet
space, cf. [10]. See [4] for a detailed development and recent results describing general
classification of relative invariants.

Definition 3.2. A differential multiplier of order n is a linear map v H, (z,u'™)
that maps each Lie algebra element v € g to a differential function H,(z, u("ﬂ)), and satisfies
the cocycle condition

v (Hy (2,u!™)) — W™ (H,(2,u™)) = Hp, o (2,2™). (3.1)

v, W
The cocycle condition (3.1) implies that the associated infinitesimal generators of the
differential multiplier representation

D, =v\" — H_(z,u™), (3.2)

v

form a Lie algebra of first order differential operators on J” E having the same commutation
relations as the Lie algebra g. In this paper, we only need consider scalar multipliers,
although extensions to matrix-valued multipliers are straightforward, [4], [10].

Definition 3.3. A differential function R(w,u(")) is called a relative differential
invariant for the differential multiplier H, if it satisfies

D, (R)=v"(R)—H,-R=0, forall veg. (3.3)

Thus ordinary (or absolute) differential invariants are relative differential invariants
for the trivial differential multiplier H, = 0. Note that if R is a relative differential
invariant for the multiplier H, and S is a relative differential invariant for the multiplier
K, then the product R- S is a relative differential invariant for the sum H, + K. If R,
is one particular relative differential invariant of weight H_, then every other such relative
differential invariant has the form R = IR, where I is an arbitrary absolute differential
invariant.

Relative differential invariants can be used to construct invariant differential equations.
The following result is standard; see [4] for a proof and [3] for additional applications.

Theorem 3.4. A regular partial differential equation A(m,u(")) = 0 admits G as
a symmetry group if and only if A is a relative differential invariant for some differential
multiplier of G.

Proposition 3.5. Suppose R(:c,u(”)) is a relative differential invariant of weight
H,. Then the partial differential equation R(z,u'™) = S(z,u'™) admits G as a symmetry
group if and only if S(.’B,’u,(n)) is also a relative differential invariant of weight H,.

The existence of relative differential invariants of sufficiently high order is a conse-
quence of general results in [10], [15]; see also [4] for generalizations. Recall that a group
is said to act effectively freely on the manifold M if the quotient group G/G, of G by its
global isotropy subgroup G, = {g € G|g -z = @ for all z € M} acts freely.
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Theorem 3.6. Let H (z,u'™) be an ntt order differential multiplier. If G'™
acts effectively freely on (an open subset of ) J*E, then there exists a nontrivial relative
invariant of weight H,.

The next theorem is originally due to Ovsiannikov, [15]; see also [10; Corollary 5.13].

Theorem 3.7. If G is a local transformation group on E, then, for n sufficiently
large, G acts effectively freely on the open subset of J”E where its orbits have maximal
dimension.

Combining Theorems 3.6 and 3.7, we conclude that any transformation group admits
a nontrivial relative differential invariant, provided we allow it to have a sufficiently high
order.

Theorem 3.8. Any differential multiplier Hv(m,u(")) of a transformation group
G admits a non-zero relative invariant Ro(m,u(m)) # 0. Moreover, every other relative
invariant of weight H , has the form R = I- R, where I is an arbitrary absolute differential
invariant of G.

Example 3.9. The total divergence multiplier D is defined as the total divergence
of the independent variable coefficients of the infinitesimal generator (2.2), so that

p
D, =Div¢ =) D;'. (3.4)
=1

The total divergence multiplier arises in the study of invariant variational problems. The
standard infinitesimal invariance criterion, [9], that G be a strict variational symmetry
group (i.e., without divergence terms) of a variational problem [ L(z,u™)dz is

v("(L)+ LDivé = 0. (3.5)

But (3.5) is just the condition that the Lagrangian L(z,u(™) is a relative differential
invariant for the negative total divergence multiplier D, = — Div §. For example, if X =
R2, then the usual surface area integral

S[u]:/ﬂ/l—l—ui—l—u?jdm/\dy, (3.6)

clearly admits the Euclidean group G = E(3), consisting of translations and rotations in the
three-dimensional space coordinatized by (z,y,u), as a symmetry group. This means that

S = 4/1+ul + u2 is a relative differential invariant for D, = —D £ — D, n, corresponding
to the infinitesimal generator v(%) = £0, +nd, + ¢9,.

Example 3.10. A second important differential multiplier is the characteristic
multiplier

K,=Q,, (3.7)
where Q(z,u(!)) is the characteristic of the vector field (2.2) given in (2.4). The importance

of this differential multiplier lies in its connection with the Euler-Lagrange equations for
invariant variational problems. See [10], [14], for the proof of the following result.
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Theorem 3.11. Let G be a transformation group. Suppose that fL(:c,u(“))dm is
a G-invariant variational problem, so that L is a relative differential invariant for the total
divergence multiplier. Then its FEuler-Lagrange expression E(L) is a relative differential
invariant of weight —Q, — Div §.

If one chooses the G-invariant volume element [ Ldz as the invariant variational
problem, then the Euler-Lagrange equation forms the G-invariant minimal hypersurface
equation in E. For example, if G = E(3) is the Euclidean group in R?, then the Euler-
Lagrange equation for the surface area integral (3.6) is the standard (Euclidean-invariant)
three-dimensional minimal surface equation
—(1+ uz)um + 2u u,u,, — (1+ ui)uyy

(1+u2+ u§)3/2

0=E(S)=-D,(5,,)-D,(5,,) =

The right hand side of this equation is a relative invariant of weight —Q, — D,{ — D, n.

Using the multiplicative property of relative invariants, we readily establish the fol-
lowing useful result.

Corollary 3.12. Every relative invariant for the characteristic multiplier K, = @,
has the form

L
F=gm (3.8)

where I is an arbitrary differential invariant of G, and fL(:c,u(”))d:c is a G-invariant
variational problem having nontrivial Euler-Lagrange expression E(L) # 0.

4. Invariance Conditions.

Our primary purpose is determining symmetry groups of evolutionary-type equations,
and so we shall extend the preceding considerations to include an additional independent

variable, the “time” ¢. Now, the total space is E~RxE~Zx U, where U ~ R

0

has coordinate u, whereas Z ~ R x RP, has coordinates ¢ = z°, representing time, and

z = (z',...,zP), representing the spatial independent variables . The nt! jet space I"E
thus has coordinates’ (cc,u[”]), where u[™ stands for all partial derivatives
d'u K = (ky,ky,... k),
= h P 4.1
'l,LK (Bt)ko(aml)kl---(amp)kp, wiere ZI#K:kO—I_k]_—}——{_kpSn' ( )

In this framework, an nt® order evolution equation is a partial differential equation of
the form

u, = Flul, (4.2)

where F:J"FE — R is a smooth differential function, depending on spatial derivatives of u
up to order n. More generally, we consider higher order evolutionary-type equations

ug = Flul, (4.3)

T We shall use square brackets to indicate all derivatives, both spatial and temporal, and

parentheses for exclusively spatial derivatives.



where K = L + e, is a multi-index that contains at least one time derivative in it, so
ky, > 1, and F is again a spatial differential function. Particular cases include the wave
equation

uy = Flu], (4.4)
where K = 2e, =(2,0,...,0), and the potential evolution equation
8%u
=y, = F 4.5
ataml uzt [u]7 ( )

where K = ¢, + e;. Note that differentiating the evolution equation (4.2) with respect to
z®, or replacing u by its it potential function u +— u; will convert (4.2) into an equation
of the form (4.5). In each of these examples, one could, of course, go further and allow
F' to also depend on some lower order temporal derivatives of u; for example, one might
allow the right hand side of the wave equation (4.4) to depend on u,. However, for most
of our results, we will restrict attention to purely spatial right hand sides; extensions will
be briefly discussed in Section 6.

We are interested in classifying the spatial symmetry groups of such evolutionary-type
equations. The restriction to spatial implies that the time variable ¢ is not affected by the
group transformations, and so we consider a connected Lie group G of either point or
contact transformations, which acts on the space E = X x U of spatial coordinates, and
hence determines the corresponding spatially prolonged actions G(™ on the jet space J*E.
In addition, one can include the time ¢ as an additional variable not affected by the group
transformations, and thus induce a temporal prolongation GI™ acting on the extended jet
space J"E. In the point transformation case, this is found by prolonging the extended
action (¢,z,u) — (¢,9 - (z,u)) on E~Rx E; in the case of contact transformations, we
extend the action to J'E ~ R? x JIE, so that the ¢ variable is not affected, while the
action on the time derivative coordinate u, is determined by the chain rule:

oL =
Uy = (% — Zﬂl E) Uy, where

1=1

Z(5‘37“(1))7
= @(w,u(l)), U, = \Ili(m,u(l)).

7

[

|

_ -1 __
_t, T’ =

(4.6)

!

In this manner, a contact transformation on J'E extends in a natural way to a contact
transformation on J'E.

Given a Lie algebra element v € g, the corresponding infinitesimal generator v(®) is a
spatial vector field, as in (2.2), whose extended action on E =R x E has the same form,
vl = v(® gsince the time variable is not changed. Let vI”) denote the ntt prolongation of
v to J"E. Note that, according to the prolongation formula, the coefficients of temporal
and mixed derivatives in vI”) are not necessarily trivial even though ¢ is unaffected by the
group transformations; for instance, using (2.5), the coeflicient of 9, is

P
¢'=D,Q+ Z éiuit = Q,u,. (4.7)
=1

Thus v[l](ut) = @, u,, and we discover that u, is a relative differential invariant for the
characteristic multiplier @,. Proposition 3.5 thus implies that the evolution equation (4.2)

9



admits G as a symmetry group if and only if the right hand side F[u] is also a relative
differential invariant of weight ),. Combining this observation with the characterization
of such relative differential invariants in Corollary 3.12 produces the main result of [14].

Theorem 4.1. An evolution equation u, = F[u| admits the connected spatial
transformation group G as a symmetry group if and only if F is relative invariant of
weight @, and hence of the form (3.8).

In particular, every spatial transformation group admits an invariant evolution equa-
tion! The most effective method for analyzing the symmetry groups of differential equa-
tions is by use of infinitesimal generators. Our starting point is the standard infinitesimal
invariance criterion for differential equations.

Theorem 4.2. An evolutionary-type equation uy = F' admits a connected trans-
formation group G as a symmetry group if and only if

v[n](uK -F)=0 whenever uy = F. (4.8)

We proceed to analyze this criterion for spatial transformation groups. The prolon-
gation formula (2.6), coupled with (2.7), (2.4), implies that we can replace (4.8) by

P
DpQ+ Z fiuKi = v("ﬂ)(F) whenever up = F. (4.9)

=1

Recall that £ = #K is the order of K, which contains at least one ¢ derivative. Note first
that the left hand side of (4.9) does not contain any terms involving derivatives of order
k41 since the terms £‘u; cancel the corresponding terms obtained by differentiating the
characteristic. (This still holds for contact transformations due to the contact conditions
(2.5).)

We begin by assuming that K has order ¥ = #K > 3, postponing the analysis of
the second order cases, namely the wave equation (4.4) and potential evolution equations
(4.5), until later. However, unless specifically stated otherwise, the intervening theorems
also apply to second order equations, albeit with slightly different proofs. For #K > 3,
according (2.11), the only terms on the left hand side of (4.9) which involve derivatives of
order k are

p b
Quug — Y k(DN ug . e, (4.10)

i=1 j=0

where we have used (2.5) to identify the derivatives of the characteristic with respect to
the derivative variables u,. On solutions to (4.3) we can replace uy by F, and hence
the terms involving uy in (4.10) only depend on spatial derivatives of u. On the other
hand, because the coefficients ¢, ¢ do not depend on t, all other terms in the left hand
side of (4.9) will involve at least one temporal derivative of u, which cannot be replaced
by a spatial derivative. Therefore, the infinitesimal invariance condition (4.9) splits into
three components. The first part contains only spatial derivatives of v, and is obtained by
equating the terms involving u in (4.10) to the right hand side of (4.9), leading to our
first key result.

10



Theorem 4.3. If the evolutionary type equation uy = F[u] admits a spatial sym-
metry group G, then the right hand side satisfies

p
v("(F) = (Qu - Zkipigi) F, forall veag. (4.11)
i=1

Thus, equation (4.11) says that the right hand side F' of an invariant differential
equation of evolutionary type forms a relative differential invariant for the differential
multiplier

b
HY(2,u®)=Q, - ) kD¢’ (4.12)
i=1

In particular, the order of ¢ differentiation on the left hand side of the equation does not
affect the type of relative invariant that the right hand side assumes.

Corollary 4.4. If a purely temporal evolutionary-type equation,

o"u
= F 4.13

admits G as a symmetry group, then F' is relative invariant of weight @),, and hence of
the form (3.8).

Thus if (4.13) admits G, then so does the evolution equation (4.2) with the same right
hand side. The converse, though, is not true since there are additional invariance conditions
that (4.13) must satisfy that are not required for the invariance of the simple evolution
equation (4.2). The additional terms on the left hand side of the infinitesimal condition
(4.9) will end up providing fairly severe restrictions on the types of transformation groups
which have, say, invariant wave equations.

Corollary 4.5. If an equation of the form (4.13) admits a symmetry group G,
then the corresponding evolution equation u, = F' is also G-invariant. The converse holds
provided G fulfills the symmetry conditions in Theorem 4.11 below.

The second set of invariance conditions arise from the other kth order terms in (4.10),
which are equated to 0. We find

Djfi =0, whenever k; >0, j=0,...,p, j#1i. (4.14)

In particular, k, > 1 by assumption, and hence (4.14) implies D,£! = 0,7 =1,...,p. This
automatically requires that &' = £*(z) depends only on the spatial variables, and hence
the symmetry group is fiber-preserving.

Proposition 4.6. If G is a symmetry group of an evolutionary-type equation (4.3)
with left hand side of order # K > 3, then G is necessarily a fiber-preserving transformation

group.
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The contact conditions (2.3) then imply that the characteristic of each infinitesimal
generator of G takes the form

P
QeruV) = p(z,u) — 3 E(@)u,. (4.15)
=1
Given a multi-index K = (kg kq,... ,kp), let us divide the spatial variables into two

sets: the principal spatial variables, which are those appearing in the derivative u, and
the parametric spatial variables, which are all the rest. Thus z/, 1 < j < p, is principal if
k; > 0, and parametric if k; = 0. In particular, for the purely temporal evolutionary-type
equation (4.13), all spatial variables are parametric. For notational convenience, let us
number the spatial variables so that the first s, namely z!,...,z° are principal, while the

remainder z°1!, ..., z? are parametric.

Proposition 4.7. Suppose G is a symmetry group of an evolutionary type equation
g = Flu] in which #K > 3. Let v € g determine an infinitesimal generator (2.2). Then
the coefficients £*11, ..., €P corresponding to the parametric spatial variables z*t1,..., z?
depend only on parametric variables:

¢ =gz, ..., 2P), 1=s+1,...,p, (4.16)
while the coefficients corresponding to the principal spatial variables z',...,z° have the
form: . o

¢ =gzt 2, . 2P), 1=1,...,s. (4.17)

Proposition 4.7 allows us to properly justify the statement in Theorem 4.3. In fact, if
@ is an arbitrary spatial transformation group, then the function (4.12) is, in fact, not an
infinitesimal multiplier. However, the additional conditions contained in Proposition 4.7
are precisely those needed to make (4.12) satisfy the infinitesimal multiplier conditions
(3.1). Indeed, we can readily produce a basic relative invariant that is associated with
(4.12).

Proposition 4.8. Let us split the independent variables into parametric and princi-
pal variables in accordance with the multi-index K. Suppose G is a spatial transformation
group satisfying the conditions in Proposition 4.7. Suppose that

P
w= Z A (z, u(n)) da’ (4.18)
=1

is a G-invariant one-form. Then, for each principal variable x', the coefficient A; satisfies'
viM(4;) + (D) A; = 0, (4.19)

and hence defines a relative invariant of weight —D,£".

T Note that there is not a summation over 7 in (4.19).
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Proof: The infinitesimal invariance conditions for a horizontal one-form (4.18) on J”
(up to contact forms — see [10]) are

p
0=v"(w) =) {vi"(4,)dz’ + 4, D¢}, (4.20)
=1

where

P
D¢ =) D;¢ da’ (4.21)

j=1
is the total (or horizontal) differential of ¢. On the other hand, according to the condi-
tions (4.14), for any principal variable z‘, only the term when j = i contributes to the
coefficient of dz'. Therefore, the coefficient of dz® in (4.20) is precisely the left hand side
of (4.19). Q.E.D.

Theorem 4.9. If the evolutionary type equation uy = F[u] admits a spatial sym-
metry group G, then its right hand side is necessarily of the form
AKX L
F=——1. 4.22
B(L) (4.22)
Here I is an arbitrary absolute differential invariant, [ L(cc,u(”)) dz is a G-invariant vari-
ational problem with Euler-Lagrange expression E(L) # 0, and w = A, dz' +--- + A, dz?
is a G-invariant one form, such that the product

8

AK = H(Az)k ?é 0.

=1

It is worth re-emphasizing at this point that not every spatial transformation group
admits an invariant evolutionary-type equation of a prescribed form. For equations in
more than two spatial variables, Proposition 4.7 provides some restrictions on the types of
symmetry groups allowed. Further restrictions are obtained by analyzing the lower order
terms in the infinitesimal invariance conditions (4.9).

We have already analyzed the terms depending on kt! order derivatives. All remaining
terms in (4.8) must vanish since they involve lower order temporal derivatives of u. We
number the spatial variables so that z!,...,z* are the principal variables, and z**1, ..., z?
are the parametric variables. We now use Leibniz’ rule and (2.9) to find that the terms
involving derivatives of order £ — 1 are

P P
k. .
S kDo - X () D2, =0 (423)
i=0 j=1
In particular, setting ¢+ = 0 in the first summation shows that D,y = 0, and hence
o(o,) = n(z)u + o(a). (4.24)

This implies that the group consists of affine bundle maps.
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Proposition 4.10. A connected symmetry group of a evolutionary-type equation
which is not an evolution equation or a potential evolution equation consists of affine
bundle maps.

(The case of a wave equation will be demonstrated later.) The additional terms in
(4.23) imply that
on  k,—1 9%
ozt 2 (8zi)?’
In the ordinary case, the group is fiber-preserving, and so hence, in terms of the principal
variables,

k; #0, (4.25)

"k -1 0¢
n(e) =30 L aii + (@, 2P, (4.26)
i=1

Furthermore, if k; > 2, then the (k — 2)"d order derivative uy_,, in (4.8) has coefficient

k. k. . l.—2 .
( 1) D?n= ( Z) D3¢, or Din= " D¢k, > 2. (4.27)
2 3 3
But differentiating (4.25) and subtracting, we find
D3¢t =0, whenever k, > 2. (4.28)
Therefore
¢ =a'(z")? + B8z ++", k;>2, (4.29)

where a!, 8%, 4 are functions of the parametric variables z**',...,z? only. This implies

all the lower order derivative terms are also zero; indeed the only term left unaccounted
for is Do = 0, but this is automatic since o only depends on spatial coordinates and K
contains at least one time derivative. We have completed our analysis of the infinitesimal
symmetry conditions (4.8) for # K > 3, and therefore characterized the possible symmetry
groups for higher order evolutionary-type equations.

The analysis in the second order cases proceeds similarly. The wave equation case
(4.4) is completely analogous, using (2.8), (2.10), instead of the higher order counterparts,
and left to the reader. On the other hand, if the equation is a potential evolution equation,
(4.5) (with ¢ = 1 for consistency in notation), then the conditions arising from second order
derivatives in (4.8) require

8%Q B 8%Q B
Ou,0u,, - Ou,;Ox! -

0 whenever I,m#1,

whereas

8%Q 8%Q 8%Q
= = =0 for all =1,...,p.
Oudu;  Ou?  Oudz! ora J L
These imply that the characteristic must have the special form

p

Q(m,u(l)) = 0(z,u,) + (23, ..., aP)u — Zfi(w2, v zP)u,. (4.30)

1=2
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Therefore, potential evolution equations can admit contact symmetry groups, but only of
a very special type, with infinitesimal generators of the form

o6 8 YL d a7 d
- Ha?,. .., 2P) = 2 2P u+ 6 —| = (4
(91/,1 9zl + ;é ("B ’ » L )(9.’131 + C(w ’ )y L )u—l_ (w7u1) +u1 aul du (4 31)

We have thus completed our analysis of the infinitesimal symmetry conditions (4.8),
and have thus proved the following general result governing the possible symmetry groups
of evolutionary-type equations.

Theorem 4.11. Let G be a connected spatial transformation group, and suppose
that uy = Flu|, k, > 0, is an evolutionary-type equation admitting G as a symmetry
group. Assume that z',...,z° are the principal variables, and z**!,...,zP the parametric
variables.

(i) If the equation is an evolution equation, u, = F', then there are no conditions on G.
(ii) If the equation is a potential evolution equation, u,, = F, where z = z', then G can
be a contact transformation group whose generators have the form (4.31).

(iii) In all other cases, the group is necessarily a group of affine bundle maps, whose
infinitesimal generators have coefficients of the form (4.16), (4.17), (4.24), (4.26).
Moreover, if the left hand side contains a principal derivative having order 2 or
more, i.e., k; > 2, then the corresponding coefficient has the form (4.29).

In all cases, a group G of the prescribed form does admit a nontrivial invariant evolu-
tionary type equation u, = F, with F,; # 0 a relative invariant of weight (4.12). Moreover,
the most general G-invariant equation of this form is uy, = IF, where I is an arbitrary
absolute differential invariant of G.

Proof: The only part left to demonstrate is the existence of a suitably invariant evo-
lution equation. This follows from the general existence result for relative invariants given

in Theorem 3.8. Q.E.D.

Remark: The equation uy = 01is invariant under any transformation group that meets
the invariance conditions in Theorem 4.11.

Remark: If the right hand side of an evolutionary-type equation is nontrivial, F' # 0,
then uy /F is an (absolute) differential invariant of the group G acting on J"E.

A useful observation is that in every case, the symmetry group admits an invariant
foliation, namely that provided by the vertical fibration {z = c} of either E or, in the
contact case, J'E, and hence, by definition, must form an imprimitive group of transfor-
mations on E. Indeed, Proposition 4.7 implies that the group is “multiply imprimitive”
since any collection of independent variables that includes all the parametric variables also
defines an invariant foliation.

Proposition 4.12. Any connected symmetry group of an evolutionary type equa-
tion uy = F[u] which is not an evolution equation is necessarily an imprimitive transfor-
mation group.

15



This result of of great value in simplifying the classification procedure, since it allows
us to immediately eliminate many geometrically important transformation groups (which
tend to act primitively) from consideration.

An alternative mechanism for generating invariant evolutionary-type equations whose
left hand sides have higher order spatial derivatives is by differentiating lower order equa-
tions of evolutionary type. The preceding remark shows how this may be used to provide
alternative absolute temporal differential invariants.

Theorem 4.13. If the evolutionary-type equation uy = Flu| admits a spatial
symmetry group G, then any spatial derivative uy, ; = Dy F, where [; = 0, also ad-
mits G as a symmetry group provided G satisfies the restrictions for the differentiated
evolutionary-type equation prescribed in Theorem 4.11.

Proof: This is a direct consequence of the standard commutation formula

p
vrt) . p. =D, . vi" ZDgﬂ (4.32)

between prolonged vector fields and total derivatives, cf. [9]. Suppose L = e;, so that z*
is now a principal variable for K + L = K + e;, whether or not it was one for K. Assume
first that G satisfies the conditions of Proposition 4.7, with K replaced by K+ L = K +e,.
Thus, if F satisfies (4.11), then (4.8) implies

p
=D, || Q,-) _k;D;¢/ | F| —(D;¢)D,F
=1 (4.33)

P
=|Q, - leDjfj D, F + [Dﬁo - kzpfél] F.

i=1

Now (4.25), which, according to our hypothesis, must hold with &, replaced by [, = k, +1,
implies that the coeflicient of F' in the final term in (4.33) vanishes, and so D, F' is a relative
invariant of the correct weight for the multi-index L, cf. (4.12). Q.E.D.

An interesting question is how to connect this approach with that in Theorem 4.9.

5. Classification in One Space Dimension.

The previous sections dealt with the general theory of invariant equations of evolution-
ary type in multi-dimensional space. We now restrict our attention to evolutionary-type
equations in one space dimension, so that p = 1 and there is a single spatial variable, .
The advantage here is that the spatial transformation groups act on a two-dimensional
space E ~ R2, or, in the complex case F ~ C?, and hence we can use Lie’s classification of
transformation groups acting on two-dimensional manifolds — see the Tables below, which

16



are based on [8], as simplified in [10]. Our goal now is to classify all the invariant equa-
tions in a single spatial variable for each of the finite-dimensional transformation groups
in the plane. (We leave aside the classification of equations admitting infinite dimensional
pseudo-groups, since, by a linearization theorem of Bluman and Kumei, [2], [10; Theorem
6.46], most of these differential equations can be linearized.) For simplicity, we restrict to
the complex case here, although extensions to the five additional real forms, [5], [10], are
readily done utilizing the same methods.

Thus we consider an evolutionary-type equation

where n > 1, and F depends on z, u, and the spatial derivatives u, = DFu of u. The
symmetry generators are vector fields of the form

v® = ¢(z,u,u,)d, + o(z,u,u,)d,, (5.2)

where the dependence on the derivative v, = u, allows us to also admit contact transfor-
mation groups. Let N = max{m + n,ord F'} denote the order of the partial differential
equation (5.1). Let us begin by restating our basic Theorem 4.11 in the scalar spatial case.

Theorem 5.1. Let G be a connected spatial transformation group acting on E =
X x U ~ R? which is a symmetry group of an evolutionary-type equation (5.1).
(i) m = 0,n = 1: If the equation is an evolution equation, u, = F', then there are no
conditions on G.
(i) m = 0,n > 2: If the equation is purely evolutionary, i.e., of the form 0"u/0t™ = F,
then the infinitesimal generators of G have the form

v(® = &(2)0, + [n(z)u + f(2)]0,, (5.3)

where €,1, f are arbitrary functions of z.
(iii) m = 1,n = 1: If the equation is a potential evolution equation, v, = F, then G can
be a contact transformation group whose infinitesimal generators have the form

vO = ¢(z,u,)d, + [ku + Oz, 1,19, (5.4)

where k is a constant.

iv) m=1,n>2: e equation is the potential form of a higher order purely evolution

[ 1,n > 2: If the equation is the potential f f a high der purely evoluti
equation, u,, = F with n > 2, then the infinitesimal generators of G have the
form

vl = ¢(2)d, + [ku + ()19, (5.5)

where k is a constant and ¢, f are arbitrary functions of x.
(v) m > 2: In all other cases, the infinitesimal generators have the form

vi0 — [azwz + a,x + ay]0, + [(m — 1)a,u + by|0,, (5.6)

where a,,a,,a,,b, are constants. (And thus the symmetry group is at most four-
dimensional.)
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We also generalize Theorem 4.9 to the scalar case. Now the G-invariant one-form can
be taken to be the same as the G-invariant Lagrangian w = L dz.

Theorem 5.2. In one spatial variable, if an evolutionary-type equation (5.1) admits
a spatial transformation group G, then its right hand side satisfies

vIN(F) = (Q, —mD,¢)F, (5.7)

and hence is a relative differential invariant of the form

m+1
F = L
E(L)

I. (5.8)

Here I is an arbitrary differential invariant of G, and w = L(m,u(n))dw is a G-invariant
one-form having nontrivial Euler-Lagrange expression E(L) # 0.

Lie’s local classification of non-singular! transformation groups that act on a two-
dimensional complex manifold appears in Tables 1 and 2 at the end of the paper. Table 1
provides a complete list of canonical forms for the infinitesimal generators of all possible
finite-dimensional transformation groups in the plane. In this case, two transformation
groups are equivalent if they can be mapped to each other by a point transformation. Cases
1.1-11 list the transitive imprimitive groups; Cases 2.1-3 list the primitive transformation
groups; and Cases 3.1-3 the intransitive cases. As for contact transformation groups, there
are three additional cases not equivalent to point transformation groups, given in Table 2.
Any other finite-dimensional contact transformation group is equivalent, now via a contact
transformation, to one of these three or one of the previously listed point transformation
groups. (Some of the point transformation canonical forms are equivalent under a contact
transformation — one example is the two transitive actions of SL(2) given in 1.1 and 1.2.)

We proceed to classify the possible evolutionary-type equations that admit a finite-
dimensional symmetry groups. We leave aside evolution equations, since any transforma-
tion group admits an invariant evolution equation. Thus, according to Proposition 4.12
we can immediately restrict our attention to the imprimitive groups. The first step of the
classification is to check if the representative Lie algebra of a class fulfills the invariance
conditions. If this is so, then, according to Theorem 5.2, knowledge of the fundamental
absolute invariants, a relative invariant R = L / E(L) and a non-trivial Lagrangian L of
the group allows to generate all invariant equations (5.1). In Tables 3 and 4 we give all the
fundamental absolute invariants and invariant derivatives of the algebras acting over E
(two-dimensional action) and E. The Lagrangian L is the reciprocal of the coeflicient
of D, in the invariant two-dimensional derivative. In Table 5 we give the simplest in-
variant evolution equations, its right hand side serving as the needed relative invariant R
(not necessarily equal to L / E(L)), together with the corresponding invariant wave and
potential evolution equations.

Regardless of the existence of invariant equations for the representative algebra, the
possibility remains that a change of variables could yield a point or contact-equivalent

T A transformation group is singular if it admits a fixed point, i.e., a zero-dimensional orbit.
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algebra satisfying the invariance conditions, and hence admitting invariant equations in
the new coordinates. Alternatively, we can think that the representative algebra admits an
invariant equation which is not of the prescribed form (4.2), but that can be converted into
one by an appropriate equivalence transformation, which leave its invariance untouched.

The second step is to find the required changes of variables, and the corresponding
additional invariant equations. We begin with the case of point transformations, which,
by Theorem 5.1, covers all but the potential evolution equations. Consider a change of
variables

T = X(:I},u), u = 1/)(337“) (5‘9)

If the transformed group admits an invariant equation, it must be generated by vector

fields of the form

v ={(2)0; + [k(z)2 + £(2)]0; = £(x)9; + [k(O)¥ + f(x)]0%,

with the appropriate form of k¥ depending on the type of the invariant equation considered.
This means that ~
v(x) = &(x),

v(¥) =&, + o, = k()Y + F(x),

and thus the level sets of the function ¢ form an invariant foliation. In terms of the

(5.10)

intermediate variables
- - (x(=),u), if x, #0,
0= { Xk B70

we have
v =¢(2)9; +¢(2,14)0;.
Differentiating (5.10) with respect to @ we obtain
Ebsa + Pathy + Fas = kg,
that is to say
V() — (b — @3)¥; = 0.

Therefore the function ¢, must be a relative invariant of weight £k — ¢.. Explicitly in
original variables we have

X X .
~ - =, — e f 0,
(‘Paﬂﬁa) = (cpu Xz Ve ¢u Xz ¢$> T Xa 7&

Contact transformations can be treated analogously. Consider a contact transforma-
tion,

z :X(w7u)uz)7 ﬁ:¢(m7u7uz)7 XDz’L/} :¢sz
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The transformed group is now generated by vector fields of the form

V= {(2,1,)0, + [k(z,a,)a + f(z,1,))0,,
— D vy D _+
f(Xaui)ai + [k (Xa D X) v+ f <X7 D X)] aa'

T T

Beginning with an invariant foliation by lines x(z,u,u,) = A, n(z,u,u,) = p of the
space J'E, we conclude that the function
XoMu, — Xu, s

U =V(z,u,u,)=— + 9,

must be a relative invariant:

v(¥) - (k N (XuTu, =Xu, 10)Ps = (XuTle =X )Pu, gou) v_o
XoTu, — Xu, M
In Table 6 we give the invariant foliations of the actions of the considered groups,
needed for determining changes of variables discussed above. We have found that there
exists only one class of algebras having two inequivalent representatives with invariant
equations. It is class 1.1, and the additional representative is studied in Table 7.

6. Generalizations.

So far we have restricted our attention to evolutionary-type equations in which the
right hand side is purely a function of the spatial variables and spatial derivatives of
the dependent variable. In this section, we relax this condition by permitting the right
hand side to also depend on time derivatives of w. Here the computations become more
complicated because there is not an immediate separation in the infinitesimal symmetry
criteria into purely spatial and temporal parts.

According to Theorem 3.4, a general scalar differential equation

R(z,u(™)=0 (6.1)

is invariant under a group of transformations if and only if R forms a relative differential
invariant of the group, and so satisfies (3.3) for some differential multiplier H,. However,
if we solve the differential equation (6.1) for one of the derivatives,

ug = Flul, F:J"E >R, (6.2)

then the two components u, and F' may or may not form individual relative differential
invariants. (If they do, then Proposition 3.5 implies that they must have the same weight.)
As we have seen, this splitting of the equation into relative invariants does occur if (6.2) is
of evolutionary type, meaning that K has at least one time derivative, and F' depends on
purely spatial derivatives. However, in more general situations, F' is an “inhomogeneous
relative differential invariant”, and the existence is more problematic, cf. [4]. This has an
advantage and a disadvantage. The disadvantage of studying equations with an isolated
variable is then the inhomogeneity of the associated relative invariant. The advantage
is that the weights are precisely determined, allowing a more systematic approach. The
following result, which is analogous to Theorem 4.3 for an evolutionary-type equation,
characterizes the right hand side of the general equation (6.2) as an inhomogeneous relative
differential invariant.
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Proposition 6.1. If the general equation uy = F[u| admits a spatial symmetry
group G, then the right hand side satisfies

p
virl(F) = (Qu— ZkiDifi) F +

1=1

p
DpQ — (Qu— > kiDigi) uK] , (6.3)
=1

for all infinitesimal generators v € g.

Our first result characterizes those equations that impose an affine symmetry condition
on its symmetry group.

Proposition 6.2. Consider a differential equation
U = F(3, @, u, Uy tyye ey Upyenn g, .00, (6.4)
with right hand side depending on variables u; with temporal derivatives of lower order
than the one in the left hand side. That is to say, if K = (kg,k;,...,k,) and L =
(lo,ll,...,lp), then I, < k, for all variables u; in F. If K is not a purely temporal
multi-index, K # kge,, then any connected spatial symmetry group of equations (6.4) is
composed of affine bundle maps.

Proof: Apply Theorem 4.2, and expand the infinitesimal symmetry condition (4.8) to
obtain

P
DRQ+ Y Euy, = vIU(F), (6.5)

=1
in analogy to (4.9). Consider terms in the left hand side of maximal and submaximal
orders k and k — 1, but with maximal temporal order k,. The right hand side of (6.5) does
not contain temporal derivatives of order k, and then equating to zero the corresponding
coeflicients we obtain conditions (4.14) and D;Q, = 0, where j runs over principal spatial

variables. Q.E.D.

In the case of an equation (6.4), the right hand side of (6.5) contains terms depending
on temporal derivatives (compare with (4.9)). This means that now the expression on the
left can contain them also, and that the term on u, will not be the only one different from
zero, i.e. G # 0 and instead of Theorem 4.3, Proposition 6.1 must be used.

Theorem 6.3. Let G be a connected spatial symmetry group of an equation of type
Mty
Oz™Ot™
i.e., with right hand sides that can depend on temporal derivatives of order [ < n.

ce? ct?

:F(az,u(N),ut):F(az,u,u$,ut,u Upyeen s Uppye-s)s [y < k. (6.6)

(i) If the equation is purely evolutionary, i.e., of the form 8™u/0t™ = F, then there are
no restrictions on G.

(ii) If the equation is the potential form 8" 1'u/dzdt™ of a purely evolutionary equation,
then G can be a contact transformation group whose infinitesimal generators have
the form

v = ¢(z,u,)0, + (ku+ f(z,u,))d,, (6.7)
where k is a constant.

(iii) All the remaining equations, with m > 2, have the same type of symmetry groups
as the corresponding evolutionary-type equations (5.1).
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We can also generalize Theorem 4.9 and Theorem 5.2 to this case. (The existence of
suitable inhomogeneous relative invariants is, however, not immediate.)

Theorem 6.4. In one spatial variable, if an equation (6.4) admits a spatial trans-
formation group G, then its right hand side satisfies

v\N(F) - (Q, —mD,¢)F = H, (6.8)

where the form of H follows from (6.3). Thus F' is an inhomogeneous relative differential

invariant of the form
Lm—l—l

E(L)
where I is an absolute differential invariant of G depending on temporal derivatives of u

of order less than n, w = L(cc,u(”)) dz is a G-invariant one-form having nontrivial Euler-
Lagrange expression E(L) # 0, and F| is a particular inhomogeneous differential invariant

F =

I+ F,, (6.9)

of the same weight as F'.

As our final examples, let us apply the previous ideas to general wave equations of
type (6.4) and to potential-evolution equations with an additional dependence on u, in the
right hand side.

Example 6.5. In this example we discuss invariant wave equations of type (6.4)

m—17um—1,t)7 (610)

i.e., those whose right hand sides are allowed to depend on spatial derivatives of v and on
first order time derivatives. According to Theorem 6.3, the symmetry group G can be any

uy = F(z,u,u,u,,u ... u

group of transformations — imprimitive, primitive, and contact. Moreover F' must be an
inhomogeneous relative invariant (6.9) satisfying

V(N)(F) -Q,F=u,D,Q, —u,DZE. (6.11)

In Table 8 we give the simplest homogeneous part of F', corresponding to some relative
invariant R = L? [/E(L), and the simplest inhomogeneous part F,.

Example 6.6. In this example we discuss invariant potential evolution equations
Uy, = Fle,u,uy,u,,uy,,,...,u,,) (6.12)

whose right hand sides are allowed to depend on spatial derivatives of u and the time
derivative u,. Note that potential evolution equations do not belong to the class (6.4), and
can be invariant, in principle, under any kind of transformation group. We find that the
right hand side F' must be an inhomogeneous relative invariant (6.9) satisfying

In Table 9 we give the simplest homogeneous part R and the simplest inhomogeneous part

F, of the right hand side F.

22



1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.

1.11.

2.1.
2.2.
2.3.
3.1.
3.2.
3.3.

In Cases 1.5 and 1.6, the functions »,(z),..

Table 1

Lie algebras of point transformations in C?

Generators
d,,z0, —ud,,z*d, — 2zud,
8,,z0, —ul,,z*d, — (2zu + 1),
8,,z0,,ud,,z*d, — zud,
d,,z0,,2%8,,08,,ud,,u*d,
9,,m(2)0,, ... m(2)0,
8,,ud,,n,(x)d,,...n.(x)0,
d,,0,,20, + aud,,zd,,...,z" 719,

d,,8,,20,,...,2"7*8,,28, + (ku + z*)d,

a,,8,,2d,,ud,,zd,,z%d,,...,z"8,

8,,8,,2z8, + (k — 1)ud,,z*8, + (k — 1)zud,,
:c@u,:c2<9u,...,mk_13u

a,,0,,20,,ud,,z*d, + (k — 1)zud,,
m@u,cc2<9u,...,mk_18u

9,,0,,z0, —ud,,ud, ,zd,

9,,0,,z0,,ud,,z0,,ul,

d,,0,,20,,ud,,z8,,ud,,z*8, + zud,, zud, + u>d,

T? u?

G (2)9,,. -, (i (2)0,
¢ (2)d,,...,¢(2)d,,ud,
d,,z0,,2%0,

Dim

E+1
k+2
k+2
k+2
k+3

k+3

k+4
5
6
8
k
E+1
3

Structure

(a(1)eC) x C

sl(2) x CF

., (z) satisfy a k*® order constant coefficient

homogeneous linear ordinary differential equation D[u] = 0. In Cases 3.1 and 3.2, the

functions ¢, (z),...

,C(z) are arbitrary. In Cases 1.5 — 1.11 we require k > 1.

Note: We use a(n) to denote the Lie algebra of the affine group of C*, and sa(n) for
the Lie algebra of the special affine group consisting of volume-preserving affine transfor-

mations.
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Table 2

Lie algebras of contact transformations in C?

Generators
41 9,, z9,, 9,, =0, ©*0,, 2u,d,+u>d,
42 9, z9,, ud,, 8,, 8, 0, 2u, 0, +u’d,
43 9,, z9,, 9,, z0,, ©*9,, ud,, (2—z)zd,, 2u, 0, +u’d,,

wui@u—2(u—wu$)8 2z(2u—=zu,)0,+(2u—zu,)(2u+tzu,)d,

T?

It is convenient to separate some special cases of the families of algebras given in
Tables 1 and 2. Thus 1.7a, 1.7b and 1.7c denote family 1.7 with o # k, a =0 and a = k
respectively. Any starred designation 1.5*-1.11* means the respective family of algebras
with the parameter k& set to 1. Analogously, 1.11** is 1.11 with k£ = 2.

In the following tables we give the fundamental differential invariants and invariant
derivatives of the algebras of tables 1 and 2. Firstly the action on the jet space of vari-
ables (z,u) is considered, denoted as “2-D”. The last two columns refer to the action on
the jet space of (¢,z,u). When no invariant derivative with a component in D, is given in
the third column, D, is meant to be the second invariant derivative.
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1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7a.

1.7b.

1.7c.

1.8.

1.9.

1.10.
1.10*.

1.11.

1.11%.

1.11%*,

2-D Invariant

Table 3

Differential Invariants

2-D Fundamental

Derivative Invariant(s)
2
-1 '11,1;1; 3’11,1;
v us 2t
D, u,,—6uu, +4u®
u,—u? (u,—u?)3/?
—1/2 —3/2
UQZ / ‘D:I: QZ / S3
u,D, U,
V@3 Q3
D, Dlu]
D, D, log(Dl[u])
1/(a—k) 1/(a—k)—-1
uk/( 'D, “k/( s
—1/k “1/k-1
/ D, Uy / Upt1
D, Upto
k>
Uk+1 ui+1
euk/k!D$ euk/k!uk+1
up D, UpUpyo
Ukt1 ui+1
—2/(k+1) —2—-4/(k+1)
Uy 4 ‘D, / "Qrta2
u, D, u, *Qy
Ug —3/2
D, Qriz Skts
V@2
Uy —3/2
D, Q3775
V@
u’zz —3/2
—£.D, Q:'"s,
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Invariant
Derivatives

uw D

E Y

-1
u, D

E 4

-1
u o u,D,

Fundamental
Invariants

2
Ug Ugp 3,

?
u ' ud 2ut

Uy
u,—u?
u g, Q2_3/253
E Uyt U%Q3
u w,  u?
1 T T
u, Dlu]
Uy, Uy Dlul
u,  u, u,

Uypy Uy Uy

1-1/k? ? u kE—1)!
ut / ’u,t e k/( )
k—1
Ugy UgUpzy Uy U

) 2 A
Uy Uzt Uyt

-1 k41 k—1
Uy Uy, Uy Uy
-1 —4

Uy Uy Uy, Uy @

5 2k—1
Uy gy U Uy

» N2 0 A
u, Y Y,

2
Uy Uy U Q3

? ? 4
Uy Uy Uy
el 7W3 Yot
’ 3
ut ’Ll,t’l,l,m z u:n T



2.1

2.2

2.3

3.1

3.2a.

3.2b.

3.3

4.1.

4.2.

4.3.

2-D Invariant
Derivative

-1/3
uil}il} 'D(ll

u
T
D(l:

1/3
uz:/vz

u(l}(l}

(IID:B

u(l}(l}(l}

75/2

ZQDz

2-D Fundam-

ental Invariants

R,

8/3
u:vc/n

T, 5% 7,

Table 4

Differential Invariants

Invariant
Derivatives

D

Y

1/3°
Uz

MD - D

Uy

VUZ‘D:B

t

Fundamental
Invariants
Usy Up Vs
3. 4%, 5
up up ud
U, Vi X,
’ 1/2 3/2° .2
utuzz ’Ll/t/ u;l;;/l; uzz
L, M, N,
3 " 3/2 9/2°,2.6
utuzz ’Ll,t/ ’ll,;l;;/g utuzz

z,uy, Dlu]
Dlu]

?

Uy
Uyy Uy Dlu]

2
uz uz
U uzzz A3 B3 3
1 3 9 3 > 3> 3
u:nt u:nt u’:nt u:nt

3 3 1,37 3
uzt u’zt u:vt utu’zt
D3 E3 F4

8/3 4/3 7 ,,4,2 ? 2.2
‘Ll,t/ ’Ll,;l;;/ug utu’zzz utuzzz



In the previous tables, given functions n,(z),...,n,(z), we let D be a k-th order linear
ordinary differential operator whose kernel is spanned by n,(z),...,n,(z), and let W(z)
denote their Wronskian determinant. Furthermore

Qk—|—2 = (k—l—l)ukuk+2 - (k—|—2)ui+1,
R, = 3uyu, — 5u§,
j%s = 3uguy; — 5ui,

Sk—|—3 = (k‘H) ukuk—|—3 (k+1)(k+3)ukuk+1uk+2 + 2(k—|—2)(k—|—3)ui+1,
56 = 9u3u6 45u3u4u5 + 40u4,

Us = u% [QsDiQs_Z(DzQ3)2] T uuy @3 D, Q5 — (2u1u3—u§)Q§,

7 1
Vi= ug [SsDiss_E(Dzss)ﬂ + upuy S5 D, S5 — 5(97‘2“4_7“3)552,

Zy = ug [T7D2T7—§(D$T7)2] + ugu, 7D, T — :(7'“3“5 5“4)T

T, = 10u§u7 — 70u§u4u6 — 49u§u§ + 280u3uiu5 — 175ui,

Uy =ty uy — “itv

Vs = uyu,,, — ugu,,,

Wi = gty + 3u 4,

Xy = UppUpyy — Uyl

Yy = uyUyyy — Upyliyy,
Zis = (b=1)uju,y, — (k—2)ujul,,

Ly =12u uiwm 9umuit 6t = Uy U

M; = 54u uzzuztt - 18“ Uy UypaWpas — DUy u sUetloet T 27uzz ot 54“ Uit

+ 2Tugug ug gy, + 9“tum%t%m +ugug,,,
2

N, = 288utuwuttt 144u
+ 144u umu

432utu uztuztt —I_ 24’11, uzzuzzzuzzt

— 81u* ut p —|—432uw ztutt

:w TTT (l:tt

t + 216w, u uitu

(l:(l:(l: TT czzt TT T

— 432u utt 108u, u uituzw + 14411%16mumuttuwz — 54utuwuituim
- 12u§uzzuztuizz - u’%“’izz’

A3 = UpiUgpy — UggUppzs

B, = uituztt = 2y Uy Uy g+ u%tuzz:w

Cy = uituttt - 3uituttuztt + 3uwtu§tuzzt - ugtuzzz7

‘D3 = 4u3uzzzuztt 4’11,2 2 zt + 4u uituzzt —4u tUgtllytlpze — uiﬂ

E3 - 4’11,3 izzuttt 12ut zzzuzztuztt —I_ 6’11,2 ituzzzuztt —I_ 8“’? :B:ct 12’11, ztuizt
+ 12u§uztuttu’zzz Uyt + 6u uztuzzt 6ut uttuizz - 6utuituttu’zzz - u’gﬂ

_ 2 2 2
F4 - 2utuzzzuzzzt - 2utuzztuzzzz —I_ utuztuzzazz - 4utuztuzzzuazzt —I_ ututtu’zzz

3
+ 2u’ztuzzz‘
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Table 5

Evolution, u_, and u,,-invariant equations

u, =F u, =F u,=F
1.1. u ”
1.2. ’u,m—fu,2 um_u2
1.3. u ”
u2
1.4. z
A%
1.5. 1 1 1
1.7ab. uz/(a_k) uz/(a—k) ugca—l)/(a—k)
—k ~k —k+1
1.7c. Up g Up e ui
1.8. etk /(k=1)! euk/(k=1)t  (k—1)ug/k!
k+1 k+1 k
1.9 Yk Uy, uy
o k k E—1
Uk+1 Upiq upL )

110, up FTD/GAD

1.10%. 1 1 u,
k+1
U
1.11. k
k]2
Qk+2
1.11%. 172 s u,
3 3
2.1. uié?’
R4
2.2. —3
uld
2.3. zz
2/3
s/
3.1. 1 1 1
3.3. u, u, u,
4.1. 1 1 u;;:,{g
o 3 /2 ~3/2 :
Rs/ Rs/ R,
ut
4.3 Zzzw
3/4
T3/
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Table 6

Invariant foliations

Algebra Invariant Foliation
1.1,1.2,1.3,1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 3.1, 3.2 z =\
1.4, 1.9*, 1.10%, 1.11*,3.2*,3.3 z=\ u=p
1.5%,1.6*, 1.7bc* ar + bu = A
3.1* u— f(z)=A
4.1, 4.2 = u, =4
Table 7

Additional algebra with invariant equations

Change Algebra Inv'arla,'nt 2-D Fund‘amental
Derivative Invariant
0. .,xz0. — 0O D 2 —u2
J— -1 T? T w? it Ly~ Uy
1.1 ¢Yp=u 228, - 220, o or
Fundamental w — F v — F
Invariants i ot
U 2uyy — ui 2u,, — ui 2Uyy — ui
t? 62u 62“ o
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Table 8

Invariant equations of the form u,, = F[z,u,]

R F,
1.1 u? Uy Uy
' i
1.2 u? — U, 2uu,
i U, U
1.3 A/ —2Q, -2t
i i
1.4 u Uy
¢ uzQ3
1.5 1 0
1.6 u, 0
1.7 ulo /e 0
1.7b up/® 0
1.8 ulFm/E 0
1.9 (uk=tu,)t/k 0
110 LF/GeD kLUt
) t E+1 wu,
1.10* u, 0
_ k—1u U
111 W FTOR R 2T T
E+1 wu,
2.1 u2/3 0
2.2 VU,
2.3 uzs51/3 quG
. U, U
tee 32/3uzz uzzSS
3.1 u, 0
3.2 u, 0
utuzz
3.3 U,
u(ll
4.1 ull® 0
4.2 (ulu,, )'/? 0
T /% u 7
4.3 2 1/3  Uglq 48
(utumz) u:c:n:n 2uzzzT7
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Table 9

Invariant equations of the form u,, = Flz,u,,u,,,...]

R F,
1.1 i 0
1.2 U, 0
1.3 N 0
1.4 u, il
ufll
1.5 1 0
1.6 u, 0
1.7 u, 0
1.8 U, 0
1.9 U, 0
1.10 u, 0
1.10* 1 0
1.11 Uy 0
2
2.1 u, Lot
u(ll(ll
2
2.2 u, ot
u(l:(ll
G,
2.3 u, 302
3.1 1 0
3.2 U, 0
3.2 1 0
4‘1 1 u(l:tu:l::l:t
u(ll:l}:l}
42 ut uztuzzt
ufl:fl:(l:
—F,
4.3 u, )
t7zzx
We have used the notations
U, = —6u23 + 6uu,uy — u12u4,

G, = 3utuiz — 12umuit — 8u,u,,u ufu
Ve = 120u34 — 185u2'uJ32'uJ4 -+ 30u22u42 -+ 45u22u3u5 — 6u23u6,
Zy = —1400u,”® + 2870u,u, uy — 1085u,%u,uy® — 7T70u, u,%u,

+ 252u33u5u6 + 140u33u4u7 — 15u34u8.

zTT + 18utuzzuzzt - zrTT)
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