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Abstract.

Based on the Liouville-Weyl definition of the fractional derivative, a new direct
fractional generalization of higher order derivatives is presented. It is shown, that
the Riesz and Feller derivatives are special cases of this approach.

PACS numbers: 11.15.-q, 12.40.Yx, 45.10.Hj

1. Introduction

The fractional calculus [1],[4] provides a set of axioms and methods to extend the
coordinate and corresponding derivative definitions in a reasonable way from integer
order n to arbitrary order α:

{xn,
∂n

∂xn
} → {xα,

∂α

∂xα
} (1)

The definition of the fractional order derivative is not unique, several definitions e.g.
the Riemann, Caputo, Liouville, Weyl, Riesz, Feller, Grünwald fractional derivative
definition coexist [7]-[12]. In the last decade, there has been a steadily increasing
interest in applications of the fractional calculus on such different fields of research
like mechanics, anomalous diffusion or fractional wave equations.

Most work is dedicated to the special case of the first order derivative operator
(n = 1) replaced by an appropriately chosen fractional derivative operator. This
approach is tempting in that sense, that higher order derivatives my be replaced in
a natural way by a consecutive sequence of first order derivatives and consequently
may be replaced by the corresponding sequence of the fractional extension of the first
order derivative.

Until now, there exists no general approach for a direct fractional extension of
higher order derivatives, except for (n = 2). For that case, Riesz and Feller have
derived a fractional generalization of the second order derivative operator directly.

In this letter, we will derive a general definition of a direct fractional generalization
of higher order derivatives. For that purpose, we will first collect the necessary tools,
which are currently used for a fractional generalization of the first- and second order
derivative. We will then propose an extension of the fractional derivative definition to
higher order derivatives.
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2. Definitions

The Liouville-Weyl fractional integrals of order 0 < α < 1 are defined as

Iα
+φ(x) =

1

Γ(α)

∫ x

−∞

(x − ξ)α−1φ(ξ)dξ (2)

Iα
−φ(x) =

1

Γ(α)

∫ ∞

x

(ξ − x)α−1φ(ξ)dξ (3)

The Liouville-Weyl fractional derivatives of order 0 < α < 1 are defined as the left-
inverse operators of the corresponding Liouville-Weyl fractional integrals

Dα
+φ(x) = I−α

+ φ(x) = +
∂

∂x
I1−α
+ φ(x) (4)

Dα
−φ(x) = I−α

− φ(x) = −
∂

∂x
I1−α
− φ(x) (5)

The definitions (4) and (5) may be written in an alternative form:

Dα
+φ(x) =

α

Γ(1 − α)

∫ ∞

0

φ(x) − φ(x − ξ)

ξα+1
dξ (6)

Dα
−φ(x) =

α

Γ(1 − α)

∫ ∞

0

φ(x) − φ(x + ξ)

ξα+1
dξ (7)

which may be derived via

Dα
+φ(x) = I−α

+ φ(x) = +
∂

∂x
I1−α
+ φ(x) (8)

=
1

Γ(1 − α)

∂

∂x

∫ x

−∞

(x − ξ)−αφ(ξ)dξ (9)

=
1

Γ(1 − α)

∂

∂x

∫ ∞

0

ξ−αφ(x − ξ)dξ (10)

=
1

Γ(1 − α)

∫ ∞

0

ξ−α(−
∂

∂ξ
φ(x − ξ))dξ (11)

=
α

Γ(1 − α)

(∫ ∞

0

φ(x)

ξα+1
dξ −

∫ ∞

0

φ(x − ξ)

ξα+1
dξ

)

(12)

A specific linear combination of the Liouville-Weyl fractional integrals results in the
Riesz fractional integral Iα

R:

Iα
Rφ(x) =

Iα
+ + Iα

−

2 cos(απ/2)
φ(x) =

∫ ∞

−∞

|x − ξ|α−1φ(ξ)dξ α > 0, α 6= 1, 3, 5...(13)

The Riesz fractional derivative is then given by

Dα
Rφ(x) = −

Dα
+ + Dα

−

2 cos(απ/2)
φ(x) (14)

or, according to (6),(7):

Dα
Rφ(x) = Γ(1+α)

sin(απ/2)

π

∫ ∞

0

φ(x + ξ) − 2φ(x) + φ(x − ξ)

ξα+1
dξ, 0 < α < 2(15)

Feller has proposed a generalization of the Riesz fractional derivative of the form

Iα
θ φ(x) = (c−(θ, α)Iα

+ + c+(θ, α)Iα
−)φ(x) (16)
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with

c−(θ, α) =
sin((α − θ)π/2)

sin(πθ)
(17)

c+(θ, α) =
sin((α + θ)π/2)

sin(πθ)
(18)

The Feller fractional derivative is defined as

Dα
θ φ(x) = −

(

c+(θ, α)Dα
+ + c−(θ, α)Dα

−

)

φ(x) (19)

Setting θ = 0 we obtain

c−(θ = 0, α) = c+(θ = 0, α) =
1

2 cos(απ/2)
(20)

which coincides with the definition of the Riesz fractional derivative (14).
Another special case results for setting θ = 1

c−(θ = 1, α) = −c+(θ = 1, α) =
1

2 sin(απ/2)
(21)

which leads to the simple form of the fractional derivative:

Dα
1 φ(x) =

Dα
+ − Dα

−

2 sin(απ/2)
φ(x) (22)

= Γ(1 + α)
cos(απ/2)

π

∫ ∞

0

φ(x + ξ) − φ(x − ξ)

ξα+1
dξ (23)

This derivative should be interpreted as the regularized Liouville-Weyl fractional
derivative (14).

Therefore the Feller fractional derivative may be rewritten as a linear combination
of Dα

1 and Dα
0 :

Dα
θ φ(x) =

(

A1(θ, α)(Dα
+ − Dα

−) + A2(θ, α)(Dα
+ + Dα

−)
)

φ(x) (24)

with

A1(θ, α) = −
1

2
(c+(θ, α) − c−(θ, α)) = −

1

2 sin(απ/2)
sin(θπ/2) (25)

A2(θ, α) = −
1

2
(c+(θ, α) + c−(θ, α)) = −

1

2 cos(απ/2)
cos(θπ/2) (26)

which finally reads:

Dα
θ φ(x) = (sin(θπ/2)Dα

1 + cos(θπ/2)Dα
R)φ(x) (27)

In this form of the Feller fractional derivative the parameter θ may be interpreted
rather as a rotation parameter instead of a skewness parameter, proposed by other
authors. In addition, this form is better suited for a generalization to higher order
derivatives, which will be performed in the following section.

3. The fractional generalization of higher order derivatives

Using the basic properties of the central differences operators

δ 1

2

φ(x) = φ(x +
1

2
ξ) − φ(x −

1

2
ξ) (28)

δ1φ(x) =
1

2
(φ(x + ξ) − φ(x − ξ)) (29)
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we define the central differences operator D
k of order k

D
kφ(x) =







δk
1

2

φ(x) for k even

δ1δ
k−1
1

2

φ(x) for k odd
(30)

or explicitely, using (28) and (29):

D
kφ(x) =

2[(k+1)/2]
∑

n=0

ak
nφ(x − ([(k + 1)/2]− n)ξ) (31)

with the summation coefficients

ak
n = (−1)n















(

k
n

)

for k even

1

2

[(

k − 1
n

)

−

(

k − 1
n − 2

)]

for k odd

(32)

The renormalized fractional derivative is then given as:

Dk;αφ(x) =
1

Nk

∫ ∞

0

dξ

ξα+1
D

kφ(x) (33)

and the normalization factor

Nk = 2
Γ(1 − α)

α





[(k+1)/2]
∑

n=0

ak
n(k − n − 1)α





{

cos(πα/2) for k even

sin(πα/2) for k odd
(34)

With (33) based on the Liouville definition of the fractional derivative we therefore
have given all fractional derivatives, which extend the ordinary derivative of order k:

lim
α→k

kDα =
dk

dxk
(35)

In addition, for these derivatives the invariance of the scalar product follows:
∫ ∞

−∞

(kDα∗f∗(x)) g(x)dx = (±)k

∫ ∞

−∞

f(x)∗ (kDαg(x)) dx (36)

The first four fractional derivative definitions according (33) follow as:

1D
αf(x) = Γ(1 + α)

cos(απ/2)

π
× (37)

∫ ∞

0

f(x + ξ) − f(x − ξ)

ξα+1
dξ

0 ≤ α < 1

2D
αf(x) = Γ(1 + α)

sin(απ/2)

π
× (38)

∫ ∞

0

f(x + ξ) − 2f(x) + f(x − ξ)

ξα+1
dξ

0 ≤ α < 2

3D
αf(x) = Γ(1 + α)

cos(απ/2)

π

1

2α − 2
× (39)

∫ ∞

0

−f(x + 2ξ) + 2f(x + ξ) − 2f(x − ξ) + f(x − ξ)

ξα+1
dξ

0 ≤ α < 3
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4D
αf(x) = Γ(1 + α)

sin(απ/2)

π

1

2α − 4
× (40)

∫ ∞

0

−f(x + 2ξ) + 4f(x + ξ) − 6f(x) + 4f(x − ξ) − f(x − 2ξ)

ξα+1
dξ

0 ≤ α < 4

(41)

These definitions are valid for 0 ≤ α < k. Setting α > k

kDα =
dnk

dxnk kDα−nk , n ∈ N (42)

and chosing n so that 0 ≤ α − nk < k the definitions given are valid for all α > 0.
In the same manner the Feller fractional derivative definition may extended to

fractional derivatives of higher order.
We introduce hyper sperical coordinates on the unit sphere on Rn:

x1 = cos(θn−1) (43)

x2 = sin(θn−1) cos(θn−2) (44)

...

xn−1 = sin(θn−1) sin(θn−2)... cos(θ1) (45)

xn = sin(θn−1) sin(θn−2)... sin(θ1) (46)

With these coordinates the Feller definition of a fractional derivative may be extended
to

FDα
{θk}

=

n
∑

k=1

xk kDα (47)

4. Conclusion

Based on central differences a generalized fractional derivative of arbitrary order has
been propsed.
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[9] Riesz M Acta Math. 81, (1949) 1.

[10] Feller W Comm. Sem. Mathem. Univerite de Lund, (1952) 73-81.
[11] Grünwald A K Z. angew. Math. und Physik 12, (1867) 441.
[12] Podlubny I 1999 Fractional Differential equations, Academic Press, New York.


	Introduction
	Definitions
	The fractional generalization of higher order derivatives
	Conclusion
	References

