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Geometric Calculus is developed for curved-space treatments of General Rel-
ativity and comparison with the flat-space gauge theory approach by Lasenby,
Doran and Gull. Einstein’s Principle of Equivalence is generalized to a gauge
principle that provides the foundation for a new formulation of General Rel-
ativity as a Gauge Theory of Gravity on a curved spacetime manifold. Geo-
metric Calculus provides mathematical tools that streamline the formulation
and simplify calculations. The formalism automatically includes spinors so
the Dirac equation is incorporated in a geometrically natural way.

I. Introduction

Using spacetime algebra [1, 2] in an essential way, Cambridge physicists Lasenby,
Doran and Gull have created an impressive new Gauge Theory of Gravity (GTG)
based on flat spacetime [3, 4]. In my opinion, GTG is a huge improvement over
the standard tensor treatment of Einstein’s theory of General Relativity (GR),
both in conceptual clarity and in computational power [5]. However, as the
prevailing preference among physicists is for a curved-space version of GR, a
debate about the relative merits of flat-space and curved-space versions will no
doubt be needed to change the minds of many. This paper aims to contribute
to that debate by providing a conceptual and historical bridge between curved
and flat space theories couched in the unifying language of geometric algebra.

This article sketches the extension of geometric algebra to a geometric cal-
culus (GC) that includes the tools of differential geometry needed for a curved-
space version of GR. My purpose is to demonstrate the unique geometrical
insight and computational power that GC brings to GR, and to introduce math-
ematical tools that are ready for use in research and teaching [6]. I presume
that the reader has some familiarity with standard treatments of GR as well as
with geometric algebra as presented in any of the above references, so certain
concepts, notations and results developed there are taken for granted here. Ad-
ditional mathematical tools introduced herein are sufficient to treat any topic
in GR with GC.

This article introduces three different formulations of GR in terms of a uni-
fied GC that integrates them into a system of alternative approaches. The first
is a coordinate based formulation that facilitates translation to and from the
standard tensor formulation of GR [7]. The second is a deeper gauge theory
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formulation that is the main concern of this paper. The third is an embedding
formulation that deserves mention but will not be elaborated here. Although
our focus is on GR, it should be recognized that the mathematical tools of GC
are applicable to any problem in differential geometry.

Recognition that GR should be formulated as a gauge theory has been a long
time coming, and it is still relegated to a subtopic in most GR textbooks, in
part because the standard covariant tensor formalism is not well suited to gauge
theory. Still less is it recognized that there is a connection between gravitational
gauge transformations and Einstein’s Principle of Equivalence. Gauge theory
is the one strong conceptual link between GR and quantum mechanics, if only
because it is essential for incorporating the Dirac equation into GR. This is
sufficient reason to bring gauge theory to the fore in the formulation of GR.

This article demonstrates that GC is conceptually and computationally ideal
for a gauge theory approach to GR — conceptually ideal, because concepts of
vector and spinor are integrated by the geometric product into its mathematical
foundations — computationally ideal, because computations can be done with-
out coordinates. Much of this article is devoted to demonstrating the efficiency
of GC in computations. Appendix A gives a new treatment of integrability
theorems with important aplications to motions and deformations of material
bodies and fields in flat space as well as curved space.

On the foundational level, GC and gauge theory provide us with new concep-
tual resources for reexamining the physical interpretation of GR, in particular,
the much-debated Principles of Relativity and Equivalence. The analysis leads
to new views on the notions of Special and General Relativity as well as the
relation of theory to measurement. The result is a new Gauge Principle of
Equivalence to serve as the cornerstone for the GC formulation of GR. It is
instructive to compare the GR formulation of gauge equivalence given herein
with the apparently quite different formulation in GTG [5] to see how subtle is
the difference between passive and active interpretations of equivalent transfor-
mations.

Finally, to facilitate detailed comparison of flat space and curved space for-
mulations of differential geometry and GR with GC, the correspondence between
basic quantities is summarized in Appendix B. The details are sufficient to prove
equivalence of these alternative formulations, though no formal proof is given.

II. Spacetime Models

Every real entity has a definite location in space and time — this is the funda-
mental criterion for existence assumed by every scientific theory. In Einstein’s
Theory of Relativity, the spacetime of real physical entities is a 4-dimensional
continuum modeled mathematically by a 4D differentiable manifold M4. As
described in GA2, in the Theory of Special RelativityM4 is identified with a 4D
Minkowski vector space V4. This makes it a flat space model of spacetime. In
this model, spacetime points and vector fields are elements of the same vector
space. The Theory of General Relativity (GR) employs a curved space model of
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spacetime, which places points and vector fields in different spaces. Our primary
task is to describe how to do that with GC.

In the standard definition of a differentiable manifold coordinates play an
essential role. Although GC enables a coordinate-free formulation, we begin
with a coordinate-based definition of the spacetime manifold, because that pro-
vides the most direct connection to standard practice. Moreover, coordinates
are often useful for representing symmetries in vector fields.

To be specific, let x be a generic point in the spacetime manifoldM4 = {x},
and suppose that a patch of the manifold is parametrized by a set of coordinates
{xµ;µ = 0, 1, 2, 3}, as expressed by

x = x(x0, x1, x2, x3) . (1)

The coordinate frame of tangent vectors gµ = gµ(x) to the coordinate curves
parametrized by the {xµ} are then given by

gµ = ∂µx =
∂x

∂xµ
. (2)

At each point x the vectors gµ(x) provide a basis for a vector space V4(x)
called the tangent space to M4 at x. The vectors in V4(x) do not lie in M4.
To visualize that, think of a 2D surface such as sphereM2 embedded in the 3D
vector space V3. The tangent space V2(x) at each point x on the surface is the
2D plane of vectors tangent to the surface at x [8].

At this point we part company with standard treatments of GR by presuming
that the tangent vectors at each point x generate a Minkowski geometric algebra
G4(x) = G(V4(x)) called the tangent algebra at x. Consequently, the inner
product of coordinate tangent vectors gµ = gµ(x) generates the components
gµν = gµν(x) of the usual metric tensor in GR, that is,

gµ · gν = 1
2 (gµgν + gνgµ) = gµν . (3)

Thus, all the rich structure of the spacetime algebra developed in [2] is inherited
by the tangent algebras on the spacetime manifold M4. This defines a gen-
eralized spacetime algebra (STA) of multivector and spinor fields on the whole
manifold.

Such fields are inherently geometrical, so they provide raw material for rep-
resenting real physical entities as geometric objects. It remains to be seen if
this material is sufficient for the purposes of physics. As demonstrated in the
following sections, the STA of the spacetime manifold carries us a long way
towards the ideal of inherently geometrical physics.

One great advantage of STA is that it enables coordinate-free formulation of
multivector fields and field equations. To relate that to the coordinate-based for-
mulation of standard tensor calculus, we return to our discussion of coordinates.
The inverse mapping of (1) is a set of scalar-valued functions

xµ = xµ(x) (4)
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defined on the manifoldM4. The gradient of these functions are vector fields

gµ = gµ(x) = 5xµ , (5)

where 5 = ∂x is the derivative with respect to the spacetime point x. It follows
that

gµ · gν = δν
µ or gµ = gµνgν , (6)

where the standard summation convention on repeated indices is used. Accord-
ingly, we say that the coordinate coframe {gν} is “algebraically reciprocal” to
the coordinate frame {gµ}.

This algebraic reciprocity facilitates decomposition of a vector field a = a(x)
into its covariant components aµ = a · gµ or its contravariant components aµ =
a · gµ; thus,

a = aµgµ = aµgµ , (7)

Likewise, a bivector F = F (x) has the expansion

F = 1
2Fµνgµ ∧ gν , (8)

with its “scalar components” Fµν given by

Fµν = gµ · F · gν = gν · (gµ · F ) = (gν ∧ gµ) · F . (9)

Similarly, the gradient operator can be defined in terms of partial derivatives
by

5 = gµ∂µ, (10)

or vice-versa by

∂µ =
∂

∂xµ
= gµ ·5 . (11)

The action of these operators on scalars is well defined, but differentiation of
vectors on a curved manifold requires additional considerations, to which we
now turn.

III. Coderivative and Curvature

On flat spacetime the vector derivative 5 = ∂x is the only differential operator
we need. For curved spacetime, we introduce the vector coderivative D as an
intrinsic version of 5. Operating on a scalar field φ = φ(x), the two operators
are equivalent:

Dφ = 5φ . (12)
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Like the directional derivative ∂µ = gµ ·5, the directional coderivative Dµ =
gµ · D is a “scalar differential operator” that maps vectors into vectors. Accord-
ingly, we can write

Dµgν = Lα
µνgα , (13)

which merely expresses the derivative as a linear combination of basis vectors.
This defines the so-called coefficients of connexion Lα

µν for the frame {gν}. By
differentiating (5), we find the complementary equation

Dµgα = −Lα
µνgν , (14)

When the coefficients of connexion are known functions, the coderivative of any
multivector field is determined.

Thus, for any vector field a = aνgν we have

Dµa = (Dµaν)gν + aν(Dµgν).

Then, since the aν are scalars, we get

Dµa = (∂µaα + aνLα
µν)gα . (15)

Note that the coefficient in parenthesis on the right is the standard expression
for a “covariant derivative” in tensor calculus.

The derivative of any sum or product of multivector fields is easily computed
by noting that Dµ is a scalar derivation, so it satisfies the usual Leibnitz and
distributive rules of a derivative. In fact, those rules were used in computing
the derivative in (15).

At last we are prepared to define the vector coderivative by

D = gµDµ . (16)

The “directional coderivative” with respect to any vector field a = a(x) can now
be defined by

a · D = aµDµ . (17)

Both differential operators D and a · D are coordinate free. Though they have
been defined with respect to coordinates, they can often be evaluated without
reference to coordinates.

Since D is a vectorial differential operator, we can use the coordinate free
algebraic operations of STA to manipulate it in precisely the same way we did
with 5 in [2]. Thus, the coderivative of any k-vector field F = F (x) can be
decomposed into a codivergence D · F and a cocurl D ∧ F , as expressed by

DF = D · F + D ∧ F . (18)

If F is an electromagnetic bivector field, we have the obvious generalization of
Maxwell’s equation to curved spacetime:

DF = J . (19)
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As done for the vector derivative in [2], this can be decomposed into the vector
and trivector equations

D · F = J , (20)

D ∧ F = 0 . (21)

From the last equation it is tempting to conclude that F = D ∧ A, where A
is a vector potential, but that depends on a property of D that remains to be
proved.

To ascertain the geometric properties of the cocurl, we use (13) to obtain

D ∧ gµ = gα ∧ gβLµ
αβ . (22)

The quantity on the right side of this equation is called torsion. In the Rieman-
nian geometry of GR torsion vanishes, so we leave the interesting consideration
of nonzero torsion to another day. Considering the antisymmetry of the outer
product on the right side of (22), we see that the torsion vanishes if and only if

Lµ
αβ = Lµ

βα . (23)

This can be related to the metric tensor by considering

Dµgαβ = ∂µgαβ = (Dµgα) · gβ + gα · (Dµgβ) ,

whence

∂µgαβ = gανLν
µβ + gβνLν

µα . (24)

Combining three copies of this equation with permuted free indices, we solve for

Lµ
αβ = 1

2gµν(∂αgβν + ∂βgαν − ∂νgαβ) . (25)

This is the classical Christoffel formula for a Riemannian connexion.
To understand the geometric meaning of vanishing torsion, it is helpful to

define a torsion tensor

T (a, b) ≡ a · Db− b · Da− [a, b] , (26)

where [ a, b ] is the Lie bracket of vector fields a and b defined by

[ a, b ] ≡ a ·5b− b ·5a . (27)

For a coordinate frame the torsion tensor reduces to

T (gµ, gν) = gµ · Dgν − gν · Dgµ , (28)

because [ gµ, gν ] = (∂µ∂ν − ∂ν∂µ)x = 0. From (28) we see that vanishing of the
torsion tensor is equivalent to the symmetry condition (23) on the coefficients
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of connexion. Thus, from (26) we can conclude that vanishing torsion implies
that

[ a, b ] = a · Db− b · Da (29)

This relation between Lie bracket and coderivative plays an important role in
our study of integrability in the Appendix.

To look at the significance of vanishing torsion from another angle, note that
since gµ is the gradient of a scalar coordinate function, the equation

D ∧ gµ = 0 (30)

is equivalent to the following general property of the coderivative:

D ∧Dφ = D ∧5φ = 0 , (31)

where φ = φ(x) is any scalar field. This is actually an integrability condition for
scalar fields, as seen by considering

D ∧Dφ = D ∧ gµ∂µφ = gµ ∧5∂µφ = gν ∧ gµ∂ν∂µφ = 0 , (32)

whence

∂ν∂µφ = ∂µ∂νφ . (33)

This commutativity of partial derivatives is the classical condition for integra-
bility.

To investigate the integrability of vector fields, we differentiate (14) to get

[Dµ, Dν ]gα = Rα
µνβgβ , (34)

where the operator commutator has the usual definition

[Dµ, Dν ] ≡ DµDν −DνDµ , (35)

and

Rα
µνβ = ∂µLα

νβ − ∂νLα
µβ + Lα

νσLσ
µβ − Lα

µσLσ
νβ , (36)

is the usual tensor expression for the Riemannian curvature of the manifold.
Vanishing of the curvature tensor is a necessary and sufficient condition for
the manifold to be flat, in which case the coderivative reduces to the vector
derivative of [2].

Using (30) we can recast the curvature equation (34) in terms of the coderiva-
tive:

D ∧Dgα = 1
2Rα

µνβ(gµ ∧ gν)gβ . (37)

This can be analyzed further in the following way:

D2gα = (D · D + D ∧D)gα = D(D · gα + D ∧ gα) . (38)
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Hence, using (30), we obtain

(D ∧D)gα = D(D · gα)− (D · D)gα . (39)

The right hand side of this equation has only a vector part; hence the trivector
part of (37) vanishes to give us

D ∧D ∧ gα = 1
2Rα

µνβ(gµ ∧ gν ∧ gβ) = 0 . (40)

This is equivalent to the well known symmetry property of the curvature tensor:

Rα
µνβ + Rα

βµν + Rα
νβµ = 0 . (41)

However, its deep significance is that it implies

D ∧D ∧A = 0 . (42)

for any k-vector field A = A(x). This answers the question raised above about
the existence of a vector potential for the electromagnetic field. It is a conse-
quence of the condition (30) for vanishing torsion.

Equation (37) reduces to

D ∧Dgα = (D ∧D) · gα = Rα
βgβ , (43)

where

Rα
β = Rα

βµνgµν (44)

is the standard Ricci tensor. Comparing (43) with (39), we get the following
provocative form for the Ricci tensor:

R(gα) ≡ Rα
βgβ = D(D · gα)− (D · D)gα . (45)

We return to this later.

IV. Gauge Principle of Equivalence

General Relativity is a theory of spacetime measurement. Any measurement of
distance or direction in spacetime is a comparison of events with a standard,
and for that purpose over an extended region a reference system is set up. In
Special Relativity theory that purpose is met by inertial reference frames and
encoded in the Principle of Relativity, which holds that the laws of physics (or
measurements, if you will) are equivalent with respect to all inertial frames. A
more precise formulation of this principle is that the equations of physics are
Lorentz invariant, that is, invariant (or covariant) under Lorentz rotations.

In creating GR, Einstein struggled to find a suitable generalization of the
Relativity Principle, and he formulated his conclusions in his Principle of Equiv-
alence. However, the theoretical significance and physical meaning of the Equiv-
alence Principle has remained intensely controversial to this day [9]. We are
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speaking here about the socalled “Strong Principle of Equivalence.” The “Weak
Principle of Equivalence,” expressed by the equivalence of gravitational and in-
ertial mass, is not problematic. The Strong Principle is vaguely described as
equivalence of gravitational forces to accelerating systems. However, the tools
of GC enable us to make a more general and precise formulation of the Principle
that preserves the spirit if not the content of Einstein’s thinking.

Confusion about the Equivalence Principle can be traced to failure to make
crucial distinctions between reference frames and coordinate systems [10]. At
a single spacetime point a reference frame can be unambiguously defined as an
orthonormal frame of vectors {γµ}, which serve as a local standard for measure-
ments of length and direction. This can be extended to a differentiable field of
orthonormal vectors {γµ = γµ(x)}, which I call a “fiducial frame” or fiducial
frame field to emphasize its role as a standard for measurement [11, 12]. It can
be regarded as a generalization of “inertial frame” to curved spacetime, and
visualized as a field of idealized rigid bodies at each point.

In contrast to the concept of a reference system as a fiducial frame field, a co-
ordinate system is merely a means for labelling events, so it does not involve any
spacetime geometry without additional assumptions. In Special Relativity, the
terms “inertial coordinates” and “inertial frames” are often used interchange-
ably. Indeed, the standard choice of rectangular coordinates satisfies both co-
ordinate and frame criteria for a reference system. However, this possibility is
unique to flat spacetime. As can be proved with the mathematical apparatus
developed below, on curved spacetime a fiducial frame cannot be identified with
a coordinate frame, because it is a nonintegrable (or nonholonomic) system of
vector fields. Vanishing of the curvature tensor is a necessary and sufficient con-
dition for integrability of fiducial frames. Indeed, we shall see how to calculate
the curvature tensor from inertial frames. The concept of “integrability” is so
fundamental to differential geometry that an Appendix is devoted to further
discussion of it.

With identification of fiducial frames as the appropriate generalization of
inertial frames, the generalization of the Special Relativity Principle is now fairly
obvious. We simply require equivalence of physics with respect to all fiducial
frames. To mathematize this idea, we note that any given fiducial frame {γµ}
is related to any other fiducial frame {γ′µ} by a differentiable Lorentz rotation
R, which we know from [2] has the canonical form

γ′µ = R(γµ) = RγµR̃ , (46)

where the underbar indicates that R is a linear operator, and R = R(x) is a
differentiable rotor field with the normalization

RR̃ = 1 . (47)

We can now formulate the

Gauge Principle of Equivalence (GPE): The equations of physics are
invariant under Lorentz rotations relating fiducial frames.
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In other words, with respect to fiducial frames all physical measurements are
equivalent.

To justify its name we need to establish that the GPE is indeed a “gauge
principle” and that it is a suitable generalization of Einstein’s Principle of Equiv-
alence. First, in contrast to the Special Relativity Principle that it generalizes,
the GPE is indeed a gauge principle because in requires invariance under a
position dependent symmetry group, the group of local Lorentz rotations (46).
We show below that this is just what is needed to determine the form of grav-
itational interactions. Second, we note that the Lorentz rotation in (46) can
be chosen to be a position dependent boost to a frame that is “accelerating”
with respect to the initial frame, just as Einstein had contemplated in his ver-
sion of the Equivalence Principle. Later we show how to generalize the local
cancellation of apparent gravitational effects noted in his analysis.

We are now in position to conclude that Einstein’s analysis was deficient
in two respects: first, in overlooking the crucial distinction between reference
frames and coordinate systems; second, in analysis that was too limited to as-
certain the full gauge group. Still, we see here one more example of Einstein’s
astounding physical intuition in recognizing seeds of an important physical prin-
ciple before it is given an adequate mathematical formulation.

The above analysis of reference frames and the Equivalence Principle suffices
to motivate a reformulation of General Relativity with fiducial frames and the
GPE at the foundation. First, some definitions and conventions are needed to
streamline the formulation of basic formulas and theorems. The orthonormality
of a fiducial frame {γµ = γµ(x)} is conveniently expressed by

γµ · γν = ηµδµν , (48)

where ηµ = γ2
µ is the signature indicator. The reciprocal frame γµ is then simply

given by

γµ = ηµγµ . (49)

Of course, we assume that the fiducial frame is right-handed, so

i = γ0γ1γ2γ3 (50)

where i = i(x) is the righthanded unit pseudoscalar for the tangent space at x.
Any specified fiducial frame {γµ} is related to a specified coordinate frame

{gµ} by a differentiable linear transformation h called the fiducial tensor:

gµ = h(γµ) = hν
µγν . (51)

The matrix elements of the linear operator h are

hν
µ = γν · h(γµ) = γν · gµ = h(γν) · γµ = gν · γµ , (52)

which shows that the adjoint of h, denoted by h, is

gν = h(γν) = hν
µγµ . (53)
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The fiducial tensor is related to the metric tensor by

gµν = gµ · gν = h(γµ) · h(γν) = hα
µηαhα

ν . (54)

Alternatively, we can write

gµν = γµ · hh(γν) = γµ · g(γν) , (55)

expressing the metric tensor as a symmetric linear transformation g = hh = hh
on the fiducial frame. This shows that the metric tensor can be replaced by the
fiducial tensor as a fundamental geometric object on spacetime. In the present
formulation of GR, the role of the fiducial tensor is to tie fiducial frames to the
spacetime manifold by relating them to coordinate frames.

We are now ready to investigate implications of the GPE. To achieve the
gauge invariant equations required by the GPE, we need to define a gauge
invariant derivative or, as we shall say, a coderivative. It turns out to be the same
as the “coderivative” D defined in the last Section, but its physical significance
is clarified, and its mathematical form is significantly improved. As before, it
will be convenient to define the directional coderivative Dµ = gµ · D first.

Since the fiducial frame {γν} can only rotate under displacement, we know
from [2] that its directional derivatives necessarily have the form

Dµγν = ωµ · γν , (56)

where ωµ = ω(gµ) is a bivector-valued “rotational velocity” for displacements in
the gµ direction. Let us call it the fiducial connexion for the frame {γν}. Gen-
eralizing this, we define action of the operator Dµ on an arbitrary multivector
field M = M(x) by

DµM = ∂µM + ωµ ×M , (57)

where the commutator product of A and B is defined by

A×B = 1
2 (AB −BA) , (58)

and it is assumed that

∂µγν = 0 , (59)

so the the partial derivative ∂µ = gµ ·5 operates only on scalar components of
M relative to the fiducial basis.

To manifest the relation of definition (57) to our previous definition, we
apply it to coordinate frame vectors gν = hα

ν γα and compare with (13) to get

Dµgν = Lα
µνgα = (∂µhα

ν )γα + hα
ν ωµ · γα . (60)

This equation establishes equivalence of the connexion for a coordinate frame to
the connexion for a fiducial frame, but we have no more need for the coordinate
connexion except to relate to literature that uses it.
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Now the GPE requires invariance of Dµ under “change of gauge” to a dif-
ferent fiducial frame, as specified by equation (46). To ascertain necessary and
sufficient conditions for gauge invariance, we differentiate (46) to get

Dµγ′ν = (∂µR)γνR̃ + Rγν∂µR̃ + Rωµ × γνR̃

= [(∂µR)R̃ + 1
2RωµR̃ ]× (RγνR̃) ,

(61)

where we have used (∂µR)R̃ = −R∂µR̃ , which follows from differentiating
RR̃ = 1. It follows that

Dµγ′ν = ω′µ × γ′ν (62)

provided that

ω′µ = RωµR̃ + 2(∂µR)R̃ . (63)

In other words, the directional coderivative Dµ is invariant under a change
of fiducial frame, as specified by the local Lorentz rotation (46), provided the
change of fiducial connection is given by equation (63).

This completes our definition of the coderivative to satisfy the GPE. The def-
inition refers to a coordinate frame only to exploit the well understood properties
of partial derivatives. That inessential reference is eliminated in the following
definition of the directional coderivative a · D with respect to an arbitrary vector
field a = a(x) = aµgµ:

a · DM = a ·5M + ω(a)×M , (64)

where ω(a) = aµωµ is the connexion for any chosen fiducial frame {γµ}, and
a ·5 is the directional derivative of any scalar coefficients with respect to that
frame.

We are now mathematically equipped for a deeper analysis of Einstein’s
Strong Principle of Equivalence (SPE). Without attempting to parse its many
alternative formulations, we adopt the following formulation of the SPE: At
any spacetime point x there exists an inertial (i.e. fiducial) reference frame in
which the gravitational force vanishes. The nub of Einstein’s idea is that the
gravitational force can be cancelled by a suitable acceleration of the reference
frame. Mathematically, this means that there exists a fiducial frame for which
the connexion vanishes. In other words, the rotor field in the equation (46) for
change of frame can be chosen to make ω′µ = 0 in (63), so that

ωµ = −2R̃∂µR . (65)

Read this as asserting that the gravitational force on the left is cancelled by
acceleration of the reference frame on the right. A simple counting of degrees
of freedom is sufficient to show that this condition can be satisfied at a single
point. However, if it is satisfied in a finite neighborhood of that point, then, as
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established in the next Section, the curvature tensor vanishes and the manifold
must be flat. Even so, the condition (65) can be imposed along any curve in
spacetime. Indeed, in Section VII we impose it along timelike curves to get an
equation of motion for a test body. Therefore, a more precise forumlation of the
SPE is the following: Along any spacetime curve there exists an inertial (i.e.
fiducial) reference frame in which the gravitational force vanishes.

In the present formulation of GR based on the GPE, the SPE is a theorem
rather than a defining principle of the theory [9]. Evidently the SPE played a
heuristic role in Einstein’s thinking that helped him identify the gravitational
force with a Riemannian connexion, but it is time to replace it with the deeper
GPE. The necessity for this conclusion comes from recognizing that, to have
physical content, any proposed relativity group must be a symmetry group of the
theory. Thus the GPE expresses equivalence of observers (represented by fiducial
frames) under local Lorentz rotations, and the gauge invariant coderivative is
the theoretical consequence of this symmetry. Some such symmetry of observers
seems to have been at the back of Einstein’s mind, but the SPE is insufficient
to designate a full symmetry group.

Now let us turn to more practical matters about how to perform calculations
in GR. We have introduced the full gauge invariant coderivative by defining it
in terms of directional derivatives with D = gµDµ. However, that was merely
for convenience, and it is worth noting that the operator D can be regarded as
more fundamental than Dµ, as illustrated by the following important theorem:

ω(γµ) = 1
2 (γα ∧D ∧ γα) · γµ −D ∧ γµ . (66)

This formula shows explicitly how to calculate a fiducial connexion from the
cocurl of the frame vectors. We shall see later that this is a practical method
for calculating the curvature tensor.

We can prove theorem (66) by solving the frame coderivative equations (56)
for the connexion. First, we contract those equations to get

D ∧ γν = gµ ∧ [ω(gµ) · γν ] = γµ ∧ [ω(γµ) · γν ] ,

and we note that

[γµ ∧ ω(γµ)] · γν = γµ ∧ [ω(γµ) · γν ] + ω(γν) .

Hence

ω(γν) = −D ∧ γν + [γµ ∧ ω(γµ)] · γν . (67)

To express the last term on the right hand side of this equation in terms of the
cocurl, we return to (56) and observe that

(ωµ · γν)γν = (ωµ · γν) ∧ γν = 2ωµ = (Dµγν)γν ,

whence

2gµ ∧ ωµ = 2γµ ∧ ω(γµ) = (D ∧ γµ) ∧ γµ .
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Inserting this into (67), we get the formula (66) as desired.
Finally, it may be noted that the integrability condition (30) for gµ enables us

to calculate the fiducial cocurl from the fiducial tensor. Writing γµ = h−1(gµ) =
kµ

ν gν , we find

D ∧ γµ = ηµ(5kµ
ν ) ∧ gν . (68)

V. Gravitational Curvature and Field Equations

We have seen in (34) that the curvature tensor derives from the commutator
of coderivatives. From the fiducial definition of the coderivative (57), we easily
derive a more transparent and useful result: For any multivector field M = M(x)
we have

[Dµ, Dν ]M = ωµν ×M , (69)

where

ωµν ≡ ∂µων − ∂νωµ + ωµ × ων = R(gµ ∧ gν) (70)

is the curvature tensor evaluated on the bivector gµ∧gν . It must be remembered
that the partial derivatives here are given by

∂µων = 1
2 (∂µωαβ

ν )γα ∧ γβ , (71)

where the scalar coefficients are ωαβ
ν = γα · ων · γβ = ων ·(γβ ∧ γα).

At this point it is worth noting that if the fiducial connection is derivable
from a rotor field, as specified by the equation ωµ = −2R̃∂µR from (65), then
the curvature tensor (70) vanishes, as is easily proved by direct substitution.
Thus, this is a sufficient condition for vanishing curvature. It is probably also a
necessary condition for vanishing curvature, but I have not proved that.

The rest of this Section is devoted to summarizing and analyzing properties
of the curvature tensor using the coordinate-free techniques of GC to demon-
strate its advantages. For vector fields a = aµgµ and b = bνgν the fundamental
equation (69) can be put in the form

[a · D, b · D ]M = R(a ∧ b)×M , (72)

provided [ a, b ] = 0. Vanishing of the Lie bracket is assumed here merely to
avoid inessential complications.

Equation (72) shows that curvature is a linear bivector-valued function of a
bivector variable that is defined in the tangent algebra at each spacetime point.
Thus, for an arbitrary bivector field B = B(x) we can write

R(B) ≡ 1
2B · (∂b ∧ ∂a) R(a ∧ b) = 1

2BνµR(gµ ∧ gν) , (73)

where ∂a is the usual vector derivative operating on the tangent space instead
of the manifold, and Bνµ = B · (gµ ∧ gν). Note that this use of the vector
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derivative supplants decomposition into basis vectors and summation over in-
dices, a technique that has been developed into a general method for basis-free
formulation and manipulation of tensor algebra [12]. To that end, it is helpful
to introduce the terminology traction, contraction and protraction, respectively,
for the tensorial operations

∂a R(a ∧ b) = gµR(gµ ∧ b) = γµR(γµ ∧ b) , (74)

∂a · R(a ∧ b) = gµ · R(gµ ∧ b) = γµ · R(γµ ∧ b) ,

∂a ∧R(a ∧ b) = gµ ∧R(gµ ∧ b) = γµ ∧R(γµ ∧ b) .

that are employed below. These relations are easily proved by decomposing the
vector derivative with respect to any basis and using the linearity of R(a ∧ b)
as in (73). Of course, the replacement of vector derivatives by basis vectors
and sums over indices in (74) is necessary to relate the following coordinate-free
relations to the component forms of standard tensor analysis.

To reformulate (72) as a condition on the vector coderivative D, note that
for a vector field c = c(x) the commutator product is equivalent to the inner
product and (72) becomes

[a · D, b · D ]c = R(a ∧ b) · c . (75)

To reformulate this as a condition on the vector coderivative, we simply elimi-
nate the variables a and b by traction. Protraction of (75) gives

∂b ∧ [ a · D, b · D ]c = ∂b ∧ [R(a ∧ b) · c ] = R(c ∧ a) + c · [ ∂b ∧R(a ∧ b) ] .

Another protraction together with

D ∧D = 1
2 (∂b ∧ ∂a)[ a · D, b · D ] (76)

gives

D ∧D ∧ c = [ ∂b ∧ ∂a ∧R(a ∧ b) ] · c + ∂a ∧R(a ∧ c) . (77)

According to (42) the left side of this equation vanishes as a consequence of
vanishing torsion, and, because the terms on the right have different functional
dependence on the free variable c, they must vanish separately. Therefore

∂a ∧R(a ∧ b) = 0 . (78)

This constraint on the Riemann curvature tensor is called the Ricci identity.
The requirement (78) that the curvature tensor is protractionless has an

especially important consequence. The identity

∂b ∧ [B · (∂a ∧R(a ∧ b))] = ∂b ∧ ∂aB · R(a ∧ b)−B · (∂b ∧ ∂a)R(a ∧ b) (79)

15



vanishes on the left side because of (78), and the right side then implies that

A · R(B) = R(A) · B . (80)

Thus, the curvature is a symmetric bivector function. This symmetry can be
used to recast (78) in the equivalent form

R
(
(a ∧ b ∧ c) · ∂e

)
· e = 0 . (81)

On expanding the inner product in its argument, it becomes

R(a ∧ b) · c + R(c ∧ a) · b + R(b ∧ c) · a = 0 , (82)

which is closer to the usual tensorial form for the Ricci identity.
As noted in (44), contraction of the curvature tensor defines the Ricci tensor

R(a) ≡ ∂b · R(b ∧ a) . (83)

The Ricci identity (78) implies that we can write

∂b · R(b ∧ a) = ∂bR(b ∧ a) , (84)

and also that the Ricci tensor is protractionless:

∂a ∧R(a) = 0 . (85)

This implies the symmetry

a · R(b) = R(a) · b . (86)

An alternative expression for the Ricci tensor is obtained by operating on
(75) with (76) and establishing the identity

1
2 (∂a ∧ ∂b) · [R(a ∧ b) · c ] = R(c) . (87)

The result is, in agreement with (43),

D ∧D a = (D ∧D) · a = R(a) . (88)

This could be adopted as a definition of the Ricci tensor directly in terms of the
coderivative without reference to the curvature tensor. That might lead to a
more efficient formulation of the gravitational field equations introduced below.

Equation (88) shows the fundamental role of the operator D ∧D, but oper-
ating with it on a vector gives only the Ricci tensor. To get the full curvature
tensor from D ∧ D, one must operate on a bivector. To that end, we take
M = a ∧ b in (72) and put it in the form

D ∧D(a ∧ b) = D ∧D × (a ∧ b) = 1
2 (∂d ∧ ∂c)× [R(c ∧ d)× (a ∧ b) ] .
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Although the commutator product has the useful “distributive property” A ×
[B×C] = A×B +A×C, a fair amount of algebra is needed to reduce the right
side of this equation. The result is

D ∧D(a ∧ b) = R(a) ∧ b + a ∧R(b)− 2R(a ∧ b) , (89)

or equivalently

2R(a ∧ b) = (D ∧Da) ∧ b + a ∧ (D ∧Db)−D ∧D(a ∧ b) . (90)

This differential identity is the desired expression for the curvature tensor in
terms of D ∧D.

Contraction of the Ricci tensor defines the scalar curvature

R ≡ ∂aR(a) = ∂a · R(a) . (91)

Since R(a ∧ b), R(a), and R can be distinguished by their arguments, there is
no danger of confusion from using the same symbol R for each.

Besides the Ricci identity, there is one further general constraint on the
curvature tensor that can be derived as follows. The commutators of directional
coderivatives satisfy the Jacobi identity

[a · D, [ b · D, c · D ] ] + [b · D, [c · D, a · D ] ] + [c · D, [a · D, b · D ] ] = 0 . (92)

By operating with this on an arbitrary nonscalar multivector M and using (72),
we can translate it into a condition on the curvature tensor that is known as
the Bianchi identity:

a · DR(b ∧ c) + b · DR(c ∧ a) + c · DR(a ∧ b) = 0 . (93)

Like the Ricci identity (81), this can be expressed more compactly as

R̀[(a ∧ b ∧ c) · D̀ ] = 0 , (94)

where the accent serves to indicate that D differentiates the tensor R but not
its tensor arguments. “Dotting” by free bivector B, we obtain

R̀[ (a ∧ b ∧ c) · D̀] · B = (a ∧ b ∧ c) · (D ∧R(B)) .

Therefore the Bianchi identity can be expressed in the compact form

D̀ ∧ R̀(a ∧ b) = 0 . (95)

This condition on the curvature tensor is the source of general conservation laws
in General Relativity.

Contraction of (95) with ∂a gives

R̀(D̀ ∧ b)−D ∧R(b) = 0 . (96)
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A second contraction yields the differential identity

G̀(D̀) = R̀(D̀)− 1
2DR = 0 , (97)

where

G(a) ≡ R(a)− 1
2aR (98)

is the Einstein tensor.
In General Relativity, for a given energy-momentum tensor T (a), the space-

time geometry is determined by Einstein’s equation

G(a) = κT (a) , (99)

where κ is a constant. The contracted Bianchi identity (97) implies the gener-
alized energy-momentum conservation law

T̀ (D̀) = 0 . (100)

As is well known, this is not a conservation law in the usual sense, because it
is not a perfect divergence and so is not convertible to a surface integral by
Gauss’s theorem.

To solve Einstein’s equation (99) for a given energy-momentum tensor, Ein-
stein’s tensor G(a) must be expressed in a form that makes (99) a differential
equation that describes the dynamics of spacetime geometry. A direct expres-
sion for G(a) in terms of a fiducial connexion and its derivatives is very compli-
cated and its structure is not very transparent. Let us consider an alternative
approach. Using (88), we can put Einstein’s equation (99) in the form.

D ∧Da = κ(T (a) + 1
2aTr T ) , (101)

where Tr T = ∂aT (a).
As already noted in connection with equation (38), we can express this in

alternative forms with the identity

D2a = D ∧Da + D · Da = D(D · a) + D(D ∧ a) . (102)

The last term vanishes if the vector field a is a gradient,

a = Dϕ = 5ϕ , (103)

in which case, (101) can be put in the form

D · Da−D(D · a) = −κ(T (a) + 1
2aTr T ) . (104)

This appears to be a simplification in the form of Einstein’s equation, and it
can be further simplified by adopting the “gauge condition” D · a = 0. Indeed,
in the linear approximation its left hand side reduces immediately to the usual
d’Alembertian wave operator. This formulation of Einstein’s equation was first
derived in ref. [1], but it has never been studied further to see if its apparent
simplicity leads to any practical advantages.
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VI. Curvature Calculations

Equations (68), (66), (71), and (70) provide us with an efficient method for
calculating curvature from the fiducial tensor in the following sequence of steps

hµ
ν → D ∧ γµ → ωµ → ωµν . (105)

Conventional curvature calculations begin by specifying the metric tensor as a
function of coordinates by writing the “line element”

dx2 = dx · dx = gµνdxµdxν = hα
µηαhα

ν dxµdxν . (106)

Of course, we can take the same starting point for calculations with the fiducial
tensor.

For orthogonal coordinates, we can choose the gauge so the γµ are eigenvalues
of the fiducial tensor, and one has the simplifications

hµ
ν = hνδµ

ν (107)

γµ = ηµγµ = ηµhµ5xµ = h−1
µ gµ (108)

ωµ = −hµ5∧ γµ = γµ ∧5hµ = γµ ∧ γαh−1
α ∂αhµ (109)

∂µων = ηα∂µ(h−1
α ∂αhν)]γν ∧ γα . (110)

As an important example, we calculate the curvature tensor from the Schwarz-
schild line element

dx2 = e2Φdt2 − e2λdr2 − r2(dθ2 + sin2 θdφ2)

= h2
t dt2 − h2

rdr2 − h2
θdθ2 + h2

φdφ2, (111)

where Φ = Φ(r, t) and λ = λ(r, t) are scalar functions independent of θ and φ.
Comparing (111) with (108), one can immediately write down

γt = eΦ5t ht = eΦ

γr = −eλ5r hr = eλ

γθ = −r5θ hθ = r

γφ = −r sin θ5φ hφ = r sin θ (112)

Use of the same symbols t, r, θ, φ for indices, coordinates and independent vari-
ables should not cause confusion, as the distinction is clear from the context.

Using (112) in (109), one easily obtains

ωt = −γt ∧ γrΦre
Φ−λ

ωr = γr ∧ γtλte
λ−Φ

ωθ = −γθ ∧ γre
−λ

ωφ = −γφ ∧ (γre
−λ sin θ + γθ cos θ) , (113)
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where Φr ≡ ∂rΦ and λr ≡ ∂rλ.
The simple computation of ωµ in (113) may be compared with the cor-

responding computation from the Friedman metric by Misner, Thorne and
Wheeler [13]. They advocate skillful guessing with differential forms, while,
in the sequence (105) we merely apply equation (66), which has no counterpart
in their method. Indeed, application of (66) is easier as well as more straight-
forward than guessing, because the effort needed to check each guess has been
expended once and for all in the derivation of (66).

In should be noted that the “wedges” in (113) are actually unnecessary
because the γµ are orthogonal. This greatly simplifies evaluation of the commu-
tators ωµ × ων , and one easily determines that the nonvanishing commutators
have the values

ωt × ωθ = γt ∧ γθΦre
Φ−2λ

ωt × ωφ = γt ∧ γφΦre
Φ−2λ sin θ

ωr × ωθ = γθ ∧ γtλte
−Φ

ωr × ωφ = γφ ∧ γtλte
−Φ sin θ

ωθ × ωφ = γφ ∧ (γre
−λ cos θ − γθe

−2λ sin θ) . (114)

Using (110) to compute the relevant fiducial derivatives from (113), one finds
that the nonvanishing terms are

∂rωt = −γt ∧ γr(Φrr + Φ2
r − Φrλr)eΦ−λ

∂tωr = γr ∧ γt(λtt + λ2
t − Φtλt)eλ−Φ

∂tωθ = γθ ∧ γrλte
−λ

∂tωφ = γφ ∧ γrλte
−λ sin θ

∂rωθ = γφ ∧ γrλre
−λ

∂rωφ = γφ ∧ γrλre
−λ sin θ

∂θωφ = (γre
−λ cos θ − γθ sin θ) ∧ γφ . (115)

Finally, one obtains the curvature bivectors by inserting (114) and (115)
into (70). I display the result to show both the coordinate components and the
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fiducial components ω̂µν = R(γµ ∧ γν):

ωtr = eΦ+λω̂tr

= eΦ+λγr ∧ γt[(λtt + λ2
t − Φtλt)e−2Φ − (Φrr + Φ2

r − Φrλr)e−2λ]

ωtθ = eΦrω̂tθ

= eΦrγθ ∧ [γrλtr
−1e−Φ−λ − γtΦrr

−1e−2λ]

ωtφ = eΦr sin θω̂tθ

= eΦr sin θγφ ∧ [γrλtr
−1e−Φ−λ − γtΦrr

−1e−2λ]

ωrθ = eλrω̂rθ

= eλrγθ ∧ [γrλrr
−1e−2λ + γtλtr

−1e−Φ−λ]

ωrφ = eλr sin θω̂rφ

= eλr sin θγφ ∧ [γrλrr
−1e−2λ + γtλtr

−1e−Φ−λ]

ωθφ = r2 sin θω̂θφ

= r2 sin θγθ ∧ γφr−2(e−2λ − 1) . (116)

Of course, if we had so desired, we could have computed any one of these
bivectors independently. Also, many of the coefficients in (116) are equivalent
because of the curvature symmetry property A · R(B) = B · R(A). This redun-
dancy provides a check on the computations.

The orthogonality of the γµ makes it especially easy to contract (116) to get
the Ricci tensor

R(γt) = −2γrλtr
−1e−Φ−λ + γt[(λtt + λ2

t − Φtλt)e−2Φ

(Φrr + Φ2
r − Φrλr + 2Φrr

−1)e−2λ] , (117)

R(γr) = −2γtλtr
−1e−Φ−λ + γr[−(λtt + λ2

t − Φtλt)e−2Φ

+ (Φrr + Φ2
r − Φrλr − 2λrr

−1)e−2λ] , (118)

R(γθ) = γθ[(λr − Φr)r−1e−2λ + (1− e−2λ)r−2] = γφγθR(γφ) . (119)

Setting R(γµ) = 0 to find the “free space” gravitational field according to
Einstein’s theory, we see immediately that (117) and (118) imply that Φt =
λt = 0 and Φ = −λ, so (119) reduces to the equation

2rλr + e2λ − 1 = 0 . (120)

This integrates to the famous Schwarzschild solution

e−2λ = 1− 2κ

r
= e2Φ , (121)

where κ is a constant.
Finally, we can substitute (121) into (113) to get ωµ as an explicit function

of the coordinates. The result can be used to describe the motion of a test body,
but we take a more general approach in the next Section.
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VII. Gravitational Motion and Precession

The spinor equations of motion for classical particles and rigid bodies set forth
in [2] are now easily generalized to include gravitational interactions. This
gives us a general method for evaluating gravitational effects on the motion and
precession of a spacecraft or satellite, and thus a means for testing gravitational
theory.

We begin with the timelike worldline x = x(τ) of a material particle with
velocity v = v(τ) = dx/dτ ≡ ẋ, where, as usual, dτ = | dx | = | (dx)2 | 12 , so
v2 = 1. We attach to this curve a (comoving orthonormal frame) or mobile
{eµ = eµ(x(τ)) = eµ(τ);µ = 0, 1, 2, 3}. The mobile is tied to the velocity by
requiring v = e0. Rotation of the mobile with respect to a given fiducial frame
{γµ} is described by

eµ = R γµR̃ , (122)

where R = R(x(τ)) is a unimodular rotor and {γµ} is any convenient fiducial
frame. As noted in [2], the spinor can be used to model the motion of a small
rigid body or a particle with intrinsic spin. In GR it is especially useful for
modeling gravitational effects on gyroscopic precession.

In accordance with (64), the coderivative of the mobile is

v · Deµ = ėµ + ω(v) · eµ , (123)

where {µ = 0, 1, 2, 3}, ω(v) is the fiducial connection for the frame {γµ}, and
ėµ = v ·5eµ. Note that (123) is equivalent to the spinor equation

v · DR =
( d

dτ
+ 1

2ω(v)
)
R , (124)

The coderivative (123) includes a gauge invariant description of gravitational
forces on the mobile. As explained in [2], effects of any nongravitational forces
can be incorporated by writing

v · Deµ = ėµ + ω(v) · eµ = Ω · eµ , (125)

where Ω = Ω(x) is a bivector field acting on the mobile; for example, Ω =
(e/m)F for an electron with mass m and charge e in a field F = F (x). The
four equations (125) include the equation of motion

dv

dτ
= (Ω− ω(v)) · v (126)

for the particle, and are equivalent to the single rotor equation

dR

dτ
= 1

2 (Ω− ω(v))R . (127)

For Ω = 0 the particle equation becomes the equation for a geodesic, and the
rotor equation describes parallel transfer of the mobile along the geodesic.
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It is noteworthy that gravitational forces are described by the bivector ω(v)
while nongravitational forces are described by specifying Ω. This suggests a
general superposition principle for interactions, namely, that independent forces
make independent contributions to the rotational velocity of a mobile. It gener-
alizes the principle of superposition of forces familiar from classical mechanics.
It considerably simplifies the analysis of complex problems by allowing us to
determine the rotational velocities due to different interactions and add the re-
sults. This superposition principle may be derivable from a deeper gauge theory
of particle interactions, but that remains to be seen.

To facilitate physical interpretation and comparison with the literature and
experimental results, we need to express our results in terms of relative variables
with respect to the specified fiducial reference frame. This is best done by the
general method of spacetime split laid out in [2]. We recall some of its essential
features for present application.

At every spacetime point x the fiducial timelike vector γ0 = γ0(x) determines
a split of the tangent algebra into space and time components. The particle
velocity is split into space and time components by

vγ0 = β(1 + v) , (128)

where

β = v · γ0 =
dt

dτ
=

(
1− v2

)− 1
2 (129)

is the “time dilation” factor, and

v =
v ∧ γ0

v · γ0
=

dx
dt

=
dxk

dt
σk (130)

is the relative velocity in the fiducial reference system, with the timelike bivectors

σk ≡ γk ∧ γ0 = γkγ0 = γ0γ
k (131)

(for k = 1, 2, 3) composing a basis for relative vectors.
Recall the simple split of the electromagnetic bivector F into electric and

magnetic parts:

F = E + iB . (132)

Similarly, the “total rotational velocity” in equations (126) and (127) can be
written in the split form:

Ω− ω(v) = e + ib , (133)

which implicitly defines relative vectors e and b. With this definition, a split
of the particle equation of motion (126) yields a relative equation of motion in
the familiar “Lorentz form”

d(βv)
dt

= e + v × b . (134)
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This makes it easy to compare with the Newton gravitational force, for which
b = 0 and e is given by the inverse square law. An effective perturbation
method for calculating deviations from classical Kepler motion is developed in
my mechanics book [14]. However, as shown in [2], the proper equation of
motion (126) is often easier to solve than the relative equation (134).

To separate the description of rigid body precession from translational mo-
tion, we follow [2] in making a split of the rotor R into the rotor product

R = LU , (135)

where L is defined by

Lγ0L̃ = L2γ0 = v , (136)

so U satisfies

Uγ0Ũ = γ0 . (137)

These equations specify the unique factorization of the mobile Lorentz rotation
(122) into a rotation in the instantaneous fiducial rest frame specified by U
followed by a boost specified by L.

In the the instantaneous fiducial rest frame of γ0, the axes of the rigid body
are represented by the relative vectors

ek = L̃(eke0)L = UσkŨ . (138)

The rotational motion can be described by the three vector equations

dek

dt
= Ω × ek (139)

or, better, by the single rotor equation

dU

dt
= −1

2 iΩU . (140)

We are most interested here in the rotational velocity Ω. The algebraic problem
of solving for Ω in terms of e and b is solved in [2], with the result [15]

Ω = −β−1b + (1 + β)−1v × e . (141)

This is a combination of relativistic Larmor and Thomas precessions.
Considering gravitational effects alone and using (128), the rotational veloc-

ity (133) takes the form

−ω(v) = e + ib = −v · γµω(γµ) = −β[ω(γ0) + v · σkω(γk)] (142)

The problem remains to evaluate ω(γµ) in terms of a given fiducial (or metric)
tensor. The solution is given by the general formula (66), which reduces the
problem to calculating D ∧ γµ.
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To get a sensitive test of GR, we consider a fiducial tensor that is somewhat
more general than the Schwarzschild one. Specifically, we assume that the
fiducial frame is given by

γ0 = eΦ5x0 = γ0

γk = −hk5x0 + eλ5xk = −γk , (143)

where Φ, λ and the hk are scalar functions describing the gravitational field.
From (143) we can read off the components of the fiducial tensor:

h0
0 = eΦ, h0

k = 0, hk
0 = hk, hk

j = eλδk
j , (144)

for j, k = 1, 2, 3.
The coordinate frame gµ = hν

µγν is therefore given by

g0 = eΦγ0 + hkγk, gk = eλγk . (145)

For the purpose of comparison with the literature, we evaluate the metric tensor
gµν = gµ · gν , with the results

g00 = e2Φ −
∑

k

h2
k

g0k = −eλhk

gij = −e2λδij , (146)

We can solve equations (145) to get the reciprocal frame gµ = 5xµ by the
general method in the Appendix. However, this case is so simple that we can
immediately write down the result

g0 = 5x0 = e−Φγ0

gk = 5xk = e−λ(γk − e−Φhkγ0) . (147)

Now, taking the curl of (143) and using (147), we get

D ∧ γ0 = (5Φ) ∧ γ0

D ∧ γk = γk ∧5λ + e−Φγ0 ∧ (5hk − hk5λ)) , (148)

from which we obtain the trivector

T ≡ γµ ∧D ∧ γµ = e−Φγk ∧ γ0 ∧ (5hk − hk5λ)) . (149)

We could substitute (148) and (149) immediately into (66) to get expressions
for the ω(γµ). However, we want our results in terms of relative variables, so
let us first introduce the necessary notation for that end.

We represent the time coordinate by t = x0 and introduce the notations

∂t = γ0 ·5, ∂k = γk ·5 = σk ·∇,
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∇ = γ0 ∧5 = σk∂k, h = hkσk . (150)

Now (148) assumes the form

D ∧ γ0 = −∇Φ,

D ∧ γk = −σk ∧∇λ− σk∂tλ + e−Φ(∇hk − hk∇λ) . (151)

And from (149) we obtain

T ·γ0 = −e−Φ[∇∧ h + h ∧∇λ],

T ·γk = −e−Φ[∂kh− h∂kλ−∇hk + hk∇λ] . (152)

Inserting (151) and (152) into (66), we obtain

ω(γ0) = ∇Φ− 1
2e−Φ[∇∧ h + h ∧∇λ],

ω(γk) = σk ∧∇λ + σk∂tλ− 1
2e−Φ[∂kh− h∂kλ +∇hk − hk∇λ] . (153)

For a weak static gravitational field, the case of greatest experimental interest,
these equations assume the approximate form

ω(γ0) = ∇Φ− 1
2∇∧ h, (154)

ω(γk) = σk ∧∇λ− 1
2∇hk . (155)

Inserting (155) into (142), we get

ω(v) = β[(∇(Φ− 1
2h · v) + i(v ×∇λ− 1

2∇× h)] , (156)

from which one can read off the desired values of e and b. Substituting these
results into (134), we get the relative equation of motion for a particle in a
gravitational field:

dv
dt

= β[(∇(Φ− 1
2h · v) + v × (v ×∇λ− 1

2∇× h)] . (157)

Similarly, the same substitution into (141) yields the standard result for small
velocities [16]:

Ω = v ×∇(λ− 1
2Φ)− 1

2∇× h . (158)

Physical applications of this result are discussed in many textbooks on GR.

VIII. Dirac Equation with Gravitational Interac-
tion

Recall from [2] that a real Dirac spinor field ψ = ψ(x) determines an orthonor-
mal frame of vector fields eµ = eµ(x) defined by

ψγµψ̃ = ρeµ , (159)
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where scalar ρ = ρ(x) is interpreted as electron probability density, and ψγ0ψ̃ =
ρe0 is the Dirac current. We can adopt this relation without change by inter-
preting {γµ} as a fiducial frame and writing

eµ = RγµR̃ , (160)

where R = R(x) is a rotor field. This equation has exactly the same form as the
equation (46) for a change of fiducial frame. Therefore, the Dirac wave function
determines a unique, physically significant fiducial frame {eµ} on spacetime.
Accordingly, its gauge invariant directional coderivative is given by

Dνeµ = ∂νeµ + ων · eµ , (161)

where ων is the fiducial connexion for the frame {γµ}. This is consistent with
defining the coderivative of the Dirac spinor by

Dνψ = (∂ν + 1
2ων)ψ . (162)

The spinor coderivative (162) is form invariant under the spinor gauge trans-
formation

ψ → ψ′ = Λψ , (163)

where Λ = Λ(x) is a rotor field. This induces a transformation of (162) to

Dνψ′ = (∂ν + 1
2ω′ν)ψ′ , (164)

where

ω′ν = ΛωνΛ̃ − 2(∂νΛ)Λ̃ . (165)

We could have used this spinor gauge transformation to define the spinor co-
derivative. But note that it is not (explicitly, at least) related to the gauge
equivalence of fiducial frames, so it raises new issues of physical interpretation.
It is an active transformation that changes the fields on spacetime, rather than
a passive transformation that changes the reference system but leaves fields
unchanged. We shall return to this issue in the sequel to this paper.

The generalization of the real Dirac equation in [2] to include gravitational
interaction is obtained simply by replacing the partial derivative ∂µ by the
coderivative Dµ. Thus, we obtain

gµDµψγ2γ1h̄ = gµ(∂µ + 1
2ωµ)ψγ2γ1h̄ = eAψ + mψγ0 . (166)

This is equivalent to the standard matrix form of the Dirac equation with grav-
itational interaction, but it is obviously much simpler in formulation and appli-
cation. This is not the time and place for solving the real gravitational Dirac
equation (166). However, comparison of the spinor coderivative (162) with the
rotor coderivative (124) tells us immediately that gravitational effects on elec-
tron motion, including spin precession, are exactly the same as on classical rigid
body motion.

With the spinor coderivative in hand, the rest of Dirac theory in [2] is easily
adapted to gravitational interactions [3, 4].
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IX. Vector Manifolds

The spacetime manifold M4 = {x} was introduced as a vector manifold in
Section II, and a coordinate frame {gµ = gµ(x)} was generated from partial
derivatives of a parametrized point in the manifold, as expressed by

gµ = ∂µx . (167)

At each spacetime point x the coordinate frame provides a basis for the tangent
space V4(x) and generates the tangent algebra G4(x) = G(V4(x)).

The reader may have noticed that the role ofM4 itself in subsequent devel-
opments is hardly more than a shadow. All the geometry and physics — the
vector, multivector and spinor fields, the connexion and the curvature — occur
in the tangent algebra. It could be argued that even the spacetime points {x}
are superfluous, as coordinates are sufficient to index points of the manifold.
This argument is taken to the extreme in most recent mathematical works on
differential geometry, where the x is eliminated and (167) is replaced by

gµ = ∂µ . (168)

In other words, vectors in a coordinate frame are identified with coordinate
partial derivatives; consequently, all vectors {a = aµgµ} in the tangent space
are identified with the directional derivatives {aµ∂µ}.

The purported problem with (167) is that it is deficient in mathematical
rigor, because the partial derivative is defined as the limit of a difference quotient

∂µx =
4x

4xµ
, (169)

and the difference vector 4x requires subtraction of one point from another,
which is not well defined unless they are vectors in a vector space of higher
dimension. In other words, it is argued that the equation (169) presumes em-
bedding ofM4 in a vector space of higher dimension, whereas GR is concerned
with intrinsic properties of manifolds irrespective of any embedding in a higher
dimensional space. The definition (168) of tangent vectors as differential op-
erators finesses this issue with a “don’t ask, don’t tell” approach that doesn’t
specify what is to be differentiated. Nevertheless, it has been argued that (167)
has great heuristic value [17].

It has been almost universally overlooked in the mathematics and physics
literature that the identification (168) of tangent vectors with differential oper-
ators precludes assigning them the algebraic properties of vectors in geometric
algebra as done in this paper. Such conflation of vectors with differential opera-
tors has enormous drawbacks. It is sufficient to note that if tangent vectors are
not allowed to generate a geometric algebra in the first place, then the algebra
must be artifically imposed on the manifold later on, because it is absolutely es-
sential for spinors and quantum mechanics. Indeed, standard practice [18, 7, 19]
is to attach the Dirac algebra to the spacetime manifold as an afterthought, and
recently the elaborate formalism of fibre bundles has been employed for that [20].
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To avoid all that unnecessary gymnastics, it is necessary to return mathematical
respectability to equation (167) — that requires reconsidering the concept of a
differentiable manifold.

The standard definition of a differentiable manifold employs coordinates to
impose differentiable structures on a set [20]. Alternatively, the definition of a
vector manifold has been expressly designed to incorporate differentiability di-
rectly into the structure of the set [12, 21]. This entails regarding the vectorial
difference quotient (169) as a well-defined quantity with the well-defined limit
(167). Contrary to common belief, it does not require any assumptions about
embedding the spacetime manifold in a (flat) vector space of higher dimension.
Indeed, no mention of an embedding space appears in this paper. However, if
one insists that an embedding vector space must be assumed to make vectorial
operations like (169) meaningful, there is still no loss of generality in represent-
ing the spacetime manifold as a vector manifold, because it has been proved
that every Riemannian manifold can be embedded in a flat manifold of suffi-
ciently high dimension [22]. Indeed, the theory of vector manifolds may be the
ideal venue for investigating embedding theorems, because it offers a powerful
new method for differential geometry that efficiently coordinates characteriza-
tion and analysis of the intrinsic and extrinsic properties of a manifold without
presumptions about embedding [12]. As that method is based on the same
concept of vector manifold employed here, it is an attractive alternative to the
method in this paper, and the two methods can be regarded as complementary.
Sobczyk has taken the first steps in the use of GC for an embedding approach to
spacetime manifolds [23]. The main interest of physicists in studying extrinsic
geometry of spacetime manifolds is the possibility of relating it to fundamental
interactions that have not yet been given a satifactory geometric interpretation.
There has been little research in that direction [22], but for those who are inter-
ested, the theory of vector manifolds with GC can be recommended as providing
ideal mathematical tools [12].

With the above brief background on vector manifolds, we are better able to
assess the significance of equation (167). We can read that equation as extract-
ing the algebraic structure of a Minkowski tangent space from the manifoldM4.
However, in the intrinsic approach to manifold geometry taken in this paper, the
differentiable structure connecting neighboring tangent spaces is not extracted
from the manifold, it is imposed on the manifold by defining a connexion and
curvature. Consequently, differential computations throughout the present pa-
per involve only the STA at a single point, and all the tangent algebras are
isomorphic. This leads one to wonder if we can simplify the theory and get by
with a single copy of the STA. The answer is yes, and the result is the flat space
theory of spacetime geometry in [2, 4, 3]. Finally, one should note that all the
geometry can be extracted from M4 itself only if it is an embedded manifold.
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X. Historical notes

The present approach to GR was initiated in 1966 by my book Space-Time
Algebra [1]. The crucial innovation there was to reduce the standard represen-
tation of spacetime geometry by the metric tensor gµν to representation by a
coordinate frame of vectors gµ that generate a real geometric algebra at each
spacetime point, as described in Section II. I also introduced the local Lorentz
transformations of equation (46) and translated Utiyama’s gauge formulation
of GR [24] into the real STA. However, the gauge concept was not given the
central role it has here. My purpose then was just to incorporate the real Dirac
equation into GR. I could not have anticipated the rise of gauge theory to the
supreme status that it enjoys in theoretical physics today [25].

In 1966 I was blissfully unaware of similar work decades before. Perhaps
that was all to the good, as it might have been intimidating or discouraging. At
any rate it would have been an unnecessary distraction, because, as I believed
then and know now, all my predecessors had missed a key point, namely, the
geometric significance of the Dirac algebra. Thus, Schroedinger [26] and others
made the Dirac matrices spacetime dependent and related their products to the
metric tensor, as in equation (3), in order to incorporate the Dirac equation into
GR. To the same end, Fock and Iwanenko [27, 28] and, independently, Weyl[29]
in his seminal paper on gauge theory, were evidently the first to introduce the
“spin connexion” (165) expressed in terms of Dirac matrices. To do that they
were forced to introduce orthonormal frames called vierbeins or tetrads, which
are equivalent to fiducial frames represented by matrix elements. However, they
all failed to recognize the Dirac matrices as representations of vectors, so they
interpreted their constructions as essentially quantum mechanical rather than
fundamentally geometrical. At the same time, their treatment of tetrads as mere
auxiliary quantities, shows that they failed to recognize the primary physical
significance that we have attributed to fiducial frames.

The main limitation of my 1966 book was the lack of mathematical methods
to solve field equations that take advantage of simplifications introduced by
GA. To remedy that deficiency I embarked on the development of a Geometric
Calculus that culminated in publication of a monograph [12] that, among other
things, first formulated the theory of vector manifolds.

The STA formulation of GR in the present paper was developed by 1976, but
not published until 1986 [11, 30], because I had originally intended to include
it in the GC monograph. The claim in those papers that my method is more
efficient than Cartan’s exterior calculus in geometric computations was soon
supported by direct comparison of computer calculations [31]. However, the
most important consequence of that work was stimulating creation of the flat-
space gauge theory of gravity by Lasenby, Doran and Gull [3, 4]. That, in
turn, stimulated emphasis on gauge theory and the Equivalence Principle in
the present paper. Finally, the present approach will be coordinated with the
flat-space theory in a sequel to this paper.

30



Appendix A. Flows, Frames and Integrability

A differentiable one-parameter family of mappings of spacetime into itself is
called a flow. Although flows appear in a variety of physical contexts, we
are most interested in using them to describe the “physical flow (or motion)”
through spacetime of a material body or some other physical entity such as
electromagnetic radiation. Our main objective will be to define a suitable “flow
derivative” to describe how quantities change along a flow.

Let v = v(x) be a vector defined on some region of spacetime, possibly on the
whole of spacetime, or possibly on some k-dimensional submanifold. A curve
x(τ) is said to be an integral curve of the vector field v(x) if

dx(τ)
dτ

= v(x(τ)) . (170)

According to a fundamental theorem in the theory of differential equations, for
nonvanishing v equation (170) has the unique solution

x(τ) = f(x, τ) (171)

for a given initial value x(0) = f(x, 0). The 1-parameter family of transfor-
mations f(x, τ) describes a congruence of curves, with a single integral curve
through each point of the region. This congruence is called the flow generated
by v.

Sometimes it is convenient to identify an arbitrary x in (171) with an initial
value for the flow. That choice will be indicated with the subscript notation

fτ (x) = f(x, τ) so that fτ (f(x, t)) = f(x, t + τ) . (172)

The function fτ = fτ (x) is called the relative flow to distinguish it from the
flow (171), though the difference is usually obvious in context. The relative
flows have the following properties of a “transformation group”:

(a) Composition: fτ ◦ ft = ft+τ . (173)
(b) Associativity: (fτ ◦ ft) ◦ fs = fτ ◦ (ft ◦ fs), (174)
(c) Identity: f0(x) = x, (175)

(d) Inverse: f−1
τ = f−τ . (176)

Generally the inverse is only a “local inverse,” which is to say that, if the
parameter τ is restricted to some finite open interval, then an inverse may not
exist for “large” values of τ . This is sometimes expressed by saying that the
relative flows compose a pseudogroup.

Given a vector field u = u(x) defined on the same region as v, the differential
fτ of the flow generated by v determines a gauge covariant transformation of
u(x) from any chosen point x to another point along the flow, as defined by

fτ : u(x) → fτu ≡ u ·5fτ (x) = u′(fτ (x)) . (177)
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This transformation is described by saying that u(x) is dragged along or trans-
ported by the flow. In this way the vector u(x) at a given point x is extended
to a vector field u′(fτ (x)) defined on the whole integral curve of v through that
point.

The vector field u = u(x) is said to be an invariant of the flow generated by
v if its value at every point along the flow is equal to its “dragged along” value,
so that

u(fτ (x)) = fτu(x) = u′(fτ (x)) . (178)

To measure the deviation from this invariance we define the flow derivative,
more commonly known as the Lie derivative and denoted by Lv. The definition
can be given in the equivalent forms

Lvu ≡ lim
τ→0

1
τ

[
u(fτ (x))− fτu(x)

]
= lim

τ→0

1
τ

[
f−1

τ u(fτ (x))− u(x)
]

=
d

dτ
f−1

τ u
∣∣∣
τ=0

= f
d

dτ

[
f−1u

]
. (179)

The last form has the advantage of applying to the arbitrary parametrization
of points by (171) and so holds for any value of τ . The second form simplifies
evaluation of the derivative.

Recalling the definition (27) of the Lie bracket and its relation (29) to the
coderivative when torsion vanishes, we find

Lvu = v ·5u− u ·5v ≡ [ v, u ] = v · Du− u · Dv . (180)

The Lie derivative can also be expressed in terms of the codivergence using the
differential identity

[ v, u ] = D · (v ∧ u)− uD · v + vD · u . (181)

The Lie derivative definition (179) is easily generalized to any multivector
field A = A(x) by extending the differential fτu, which is a linear transfor-
mation of tangent vectors, to a differential fτA on the whole tangent algebra.
Such an extension is called an outermorphism of fτu. We define it first for a
a simple or decomposable k-vector field K = K(x), for which there exist vector
fields vi = vi(x) such that

K = v1 ∧ v2 ∧ . . . ∧ vk . (182)

This decomposition is only local, however, for it may not be possible to find
a set of such vector fields covering the whole region on which K is defined.
For example, a 2-sphere has a non-vanishing tangent bivector, but for any two
vector fields tangent to it, their outer product v1∧v2 must vanish at some point.
This expresses the fact that a 2-sphere cannot be completely covered by a single
coordinate system. Despite this proviso, we can define the differential of K by

fτK = fτ (v1 ∧ v2 ∧ . . . ∧ vk) = (fτv1) ∧ (fτv2) ∧ . . . ∧ (fτvk) , (183)
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and the result is independent of the particular vectors into which K is factored.
As it applies to all k-vector components of any multivector, it determines a
unique differential for any multivector.

Now we can define the Lie derivative of an arbitrary differentiable multivec-
tor field A = A(x) by

LvA =
d

dτ
fτ
−1A

∣∣∣
τ=0

= f
d

dτ

[
f−1A

]
, (184)

which evaluates to

LvA = v · DA− v̀ ∧ (D̀ · A) ≡ [ v, A ] , (185)

defining a “generalized Lie-bracket” [v, A]. A further generalization of the
bracket to arbitrary fields is treated in [12]. Equation (181) likewise generalizes
to

[ v, A ] = D · (v ∧A)−AD · v + v ∧ (D · A) . (186)

For a bivector field A = a ∧ b, we find

[ v, a ∧ b ] = [ v, a ] ∧ b + a ∧ [ v, b ] . (187)

This generalizes to the “derivation property”

Lv(A ∧B) = (LvA) ∧B + A ∧ (LvB) . (188)

Thus, the Lie derivative is a derivation with respect to the outer product.
Although the formula (185) does not apply to a scalar field, the definition

(184) does hold, since outermorphisms do not alter scalars. Thus, for a scalar
field ϕ = ϕ(x) we find

Lvϕ = v · Dϕ = v ·5ϕ . (189)

With the generalized Lie derivative in hand, we are equipped to survey the
main integrability theorems relating multivector fields to curves and surfaces.
These theorems are fundamental in the mathematical analysis of fields and field
equations in physics, so it is important to further applications to have them
formulated in the language of geometric calculus.

Our next task is to study the composition of flows. Let gs be the flow
generated by the vector field u = u(x), while, as before, fτ is the flow generated
by v = v(x). The question is: When are these flows “layered” into surfaces?
The answer is given by the following theorem:

fτ gs = gs fτ iff [ v, u ] = 0 . (190)

In other words, the differentials of two flows commute if and only if the Lie
bracket of their generating fields vanishes. This means that the integral curves
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of u are “preserved” by fτ , while the integral curves of v are preserved by gs.
More specifically, (190) implies that the two parameter function

x(s, τ) ≡ fτ ◦ gs(x0) = gs ◦ fτ (x0) (191)

describes a 2-dimensional surface passing through a given point x0. The integral
curves of x(s, τ) sweep out a surface parametrized by “coordinates” s and τ . At
each point the tangent vectors to the coordinate curves are given by

∂sx(s, τ) = u(x(s, τ)), ∂τx(s, τ) = v(x(s, τ)) . (192)

Using this in (180) we find that

[ v, u ] = (∂τx) ·∇(∂sx)− (∂sx) ·∇(∂τx) = (∂τ∂s − ∂s∂τ )x(s, τ) = 0 . (193)

The vanishing of the Lie bracket is therefore a necessary and sufficient condition
for the commutivity of partial derivatives in a (local) parametrization of surfaces
swept out by integral curves of u and v.

The bivector K = K(x(s, τ)) ≡ (∂τx)∧ (∂sx) = u∧ v is everywhere tangent
to the surface. It determines a directed area element

d2x = Kdτds = (dτ ∂τx) ∧ (ds∂sx) = (vdτ) ∧ (uds) . (194)

This is the directed area element for a directed integral over the surface as an it-
erated integral with respect to the scalar parameters. The surface parametrized
by (191) is said to be an integral surface of K.

The bivector field K = K(x) is well-defined throughout the region of interest.
Through each point there passes a unique integral surface of K, while the entire
region is “filled” with such surfaces. Each surface is called a leaf or folium of K,
and the region is said to be foliated by the leaves of K. The foliation of a region
by the leaves of a bivector field obviously generalizes the foliation (filling) of a
region by a congruence of integral curves (leaves) generated by a vector field.

We aim to generalize the concept of an integral curve to a k-dimensional inte-
gral surface generated by a k-vector field. To be tangent to a surface a k-vector
must be decomposable like K = K(x) in (182). Unlike a vector field, which
always has integral curves, a k-vector field might not have an integral surface.
If it does, it is said to be integrable. The general criterion for integrability of a
simple k-vector field is called the Frobenius Integrability Theorem. We present
it in several forms, each of which offers its own insight. To facilitate comparison
with standard treatments [20], it is helpful to adapt some of the nomenclature
from the language of differential forms.

A k-vector field W is said to be closed if D ∧W = 0 and exact if there is
a field A such that W = D ∧ A. According to the Poincaré Lemma, if k is
differentiable in a simply-connected region, then it is closed if and only if it is
exact. More generally, subject to the same conditions, every multivector field
M = M(x) has (nonunique) “multivector potentials” A and B such that

M = D ∧A + D · B . (195)
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This generalizes the well known Helmholtz Theorem of vector analysis [12].
A scalar field λ = λ(x) is said to be an integrating factor for a field W =

W (x) if

D ∧ (λW ) = 0 . (196)

A field which has an integrating factor is also said to be integrable or holonomic;
however, as we shall see, this notion of integrability is dual to the one adopted
above. Introducing adjectives to distinguish the two complementary kinds of
integrability when necessary, we may say that K in (182) is directly integrable,
while W in (196) is normally integrable. The reason for saying “normally”
appears below.

Now we are ready to state and discuss the

Frobenius theorem: For k ≥ 0, a simple k-vector field K = K(x) is integrable
if and only if any of the following four conditions is satisfied:

(1) For every vector field v = v(x) satisfying v ∧K = 0,

LvK = [ v, K ] = 0 . (197)

(2) If u = u(x) is also a vector field satisfying u ∧K = 0, then

[ v, u ] ∧K = 0 . (198)

(3) The dual of K has an integrating factor so that

D ∧ (λKi) = 0 . (199)

(4) If w = w(x) is a vector field satisfying w · K = 0, then

K · (D ∧ w) = 0 . (200)

The first two of these integrability critera are “direct versions” of the usual
Frobenius theorem, while the last two are “dual versions.” Accordingly, we
discuss them in pairs.

The direct integrability conditions (197) and (198) are essentially the same.
The equation v ∧ K = 0 can be interpreted as “v is contained in K.” Then
(198) can be given the reading: “if u and v are contained in K, then so is their
Lie bracket.” Alternatively, it might be better to interpret v ∧ K = 0 as “v
is tangent to K,” because if K is integrable, v is indeed tangent to its integral
surfaces. Then (13.11b) can be interpreted as the statement “The tangent vector
fields on an integral surface are closed under composition by the Lie bracket.”
This assertion can be elaborated by noting that the vectors vi in (182) form a
complete set of vectors “contained in K,” and therefore the Lie bracket closure
condition (198) implies that

[ vi, vj ] = αm
ij vm , (201)
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where the αm
ij are scalar-valued functions with i, j, m = 1, 2, . . . , k (and sum-

mation on the repeated index is understood). Equation (201) is a “classical
form” for the integrability condition. Its equivalence to (197) is easily proved
by inserting (182) into (197) and using properties of the Lie derivative.

To prove that (201) or (198) are sufficient conditions for integrability, one
can use them to construct an integral surface through any point x0, using flows
through x0 to construct a set of coordinate curves for the surface according to
the argument at the beginning of this section. To summarize the main idea: the
various forms of the integrability condition ensure that Lie transport of “vector
fields in K” along “integral curves in K” remain tangent to integral surfaces of
K.

Turn now to the dual versions of the Frobenius theorem (199,200). The
condition w · K = 0 on the vector w in (200) means that w is normal to the
integral surfaces of K. The (n− k)-vector

K̂ ≡ Ki , (202)

where i is the unit pseudoscalar, is properly regarded as the normal to the
integral surfaces, because the condition w · K = 0 implies that any normal
vector w is “contained in K̂.” (Of course n = 4 for spacetime, but it costs
nothing to keep the dimension unspecified for the sake of generality.)

When k = n − 1, so that K is a pseudovector, then the integral surfaces
are hypersurfaces and K̂ is a vector, so that every other normal vector w is
proportional to it. The condition (200) can then be written (iw) · (D ∧ w) = 0
or, equivalently,

w ∧D ∧ w = 0 . (203)

We can write w = K̂, so that (199) becomes

D ∧ (λw) = (Dλ) ∧ w + λD ∧ w = 0 , (204)

which is equivalent to (203). It is now clear that (196) and (199) are called
“normal integrability conditions” because they are conditions on the normals
of integral surfaces. The normal integrability condition (203) was first formu-
lated for vector fields on Euclidean 3-space by Kelvin in 1851, possibly the first
published example of an integrability condition.

In the general case, K̂ is simple because K is simple, so locally K̂ can be
decomposed into r = n− k vector fields wi = wi(x):

K̂ = w1 ∧ w2 ∧ . . . ∧ wr . (205)

Such a set of linearly independent vector fields is called a Pfaff system of rank r.
A set of vector fields becomes a Pfaff system by requiring normal integrability
rather than direct integrability. In terms of the Pfaff system, the integrability
condition (200) can be written

w1 ∧ w2 ∧ . . . ∧ wr ∧D ∧ wi = 0 (206)
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for i = 1, 2, . . . , r. This is an obvious generalization of (203).
By virtue of the Poincaré Lemma, the integrability condition (199) implies

that K̂ is locally exact, so that

λK̂ = D ∧A , (207)

where A is an (r − 1)-vector field. If K̂ = w is a vector, this becomes

λw = Dϕ = 5ϕ , (208)

where ϕ = ϕ(x) is a scalar field. The equation

ϕ(x) = µ (209)

describes a 1-parameter family of hypersurfaces, the leaves of the pseudovector
field K = K(x).

In the general case, we say that a scalar field ϕ is a first integral of K if

K · Dϕ = K ·5ϕ = 0 , (210)

in other words, if Dϕ = 5ϕ is normal to K. A set of r = n − k first integrals
ϕi = ϕi(x) is said to be maximal if their gradients are linearly independent.
Then

(Dϕ1) ∧ (Dϕ2) ∧ . . . ∧ (Dϕr) = λK̂ (211)

satisfies the integrability condition (199), and a specific A for (207) can easily be
written down in r different ways. A maximal set of first integrals characterizes
each integral surface of K as the intersection of r hypersurfaces. The foliation
of K is an r-parameter family of (k = n− r)-dimensional surfaces.

Next we turn to a general treatment of frames and coordinates, both as a
practical means to implement integrability conditions, and to clarify points of
potential confusion. A set of vector fields {eµ = eµ(x); µ = 0, 1, 2, 3} is said to
be a frame for a spacetime region if the pseudoscalar field e = e(x), defined by

e ≡ e0 ∧ e1 ∧ e2 ∧ e3, (212)

does not vanish at any point of the region. A frame {eµ} reciprocal to the frame
{eµ} is determined by the set of equations

eµ · eν = δµ
ν , (213)

where µ, ν = 0, 1, 2, 3. These equations can be explicitly solved for the reciprocal
vectors eµ, with the result

eµ = (−1)µ(e0 ∧ . . . ∧ ∨eµ ∧ . . . ∧ e3)e−1 , (214)

where
∨
eµ indicates that eµ is omitted from the product. Moreover,

e−1 =
e

e2
= e0 ∧ e1 ∧ e2 ∧ e3 . (215)
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To interrelate derivatives of the frames {eµ} and {eµ}, we consider

(eµ ∧ eν) · (D ∧ eα) = eµ · (eµ · Deα)− eν · (eµ · Deα) = [ eµ, eν ] · eα , (216)

where the last step involves differentiating (213). Solving for the Lie bracket,
we obtain

[ eµ, eν ] = eα(eµ ∧ eν) · (D ∧ eα) . (217)

This is the integrability condition (201), and it gives an explicit expression for
the scalar coefficients on the right side of (201). Alternatively, (216) can be
solved for

D ∧ eα = 1
2eµ ∧ eν [ eµ, eν ] · eα . (218)

Since the frames {eµ} and {eµ} are dually related, the cocurls of the first should
be related to codivergences of the second. To derive the relation, note that
e = ±| e |i, where the plus sign means that e has the same orientation as the
unit pseudoscalar i. Since i is constant, the duality identity (a · K)i = a∧ (Ki)
gives

| e |D · (| e |−1eµ) = [D ∧ (eµe−1) ]e . (219)

On the other hand, using (215) we obtain

D ∧ (eµe−1) = (D ∧ eν) ∧ (eν ∧ eµe−1) = (D ∧ eν) · (eν ∧ eµ)e−1 .

Inserting this in (219), we obtain the desired “duality relations”

| e |D · (| e |−1eµ) = (D ∧ eν) · (eν ∧ eµ) . (220)

Using (216) to express the right side of this expression in terms of Lie brackets,
we find that

eν · [ eν , eµ ] = D · eµ − eν · (eµ · Deν) , (221)

whence

eµ · D ln | e | = eν · (eµ · Deν) = −eν · (eµ · Deν) . (222)

This completes our collection of “differential identities” for arbitrary frames.
A frame {eµ} is said to be holonomic or integrable if

[ eν , eµ ] = 0 (223)

for all its vectors. By virtue of (217), this is equivalent to the condition

D ∧ eµ = 0 . (224)

As mentioned already in Section III coordinate frames are holonomic.
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The above theory of flows has extensive applications to motions and defor-
mations of material bodies and fields. We must be content here with a single
simple example to illustrate the method, derivation of the equation for geodesic
deviation.

The location of a material filament or string at a given instant is described
by a spacelike curve x(λ) = gλ(x0). As the filament flows through spacetime
with proper time τ , it generates a timelike surface

x = x(τ, λ) = fτ ◦ gλ(x0) . (225)

The particles of the filament are parametrized by λ with separation vector n =
n(x) = ∂λx tangent to the filament and velocity v = v(x) = ∂τx normalized to
v2 = 1.

As explained above, the vector fields v(x) and n(x) generate the flow (225)
if and only if

Lv(n) = [ v, n ] = v · Dn− n · Dv = 0 . (226)

Consequently, the directional coderivative of n is given by

δn

δτ
≡ v · Dn = n · Dv . (227)

This describes how n changes along the flow.
To get an equation of motion for n, consider the second coderivative

δ2n

δτ2
= (v · D)2n = v · D(n · Dv) = n · D(v · Dv) + [ v · D, n · D ]v . (228)

Recall that [ v · D, n · D ]v = R(v∧n) · v, where R(v∧n) is the curvature tensor.
Also, for a material particle on the filament subject to a net non-gravitational
proper force F , the equation of motion is

δv

δτ
= v · Dv = F , (229)

and the differential of the force along the filament is

F(n) ≡ n · DF = n · D(v · Dv) . (230)

Consequently, (228) gives us the equation of motion

δ2n

δτ2
= (v · D)2n = R(v ∧ n) · v + F(n) . (231)

This equation measures the relative acceleration of neighboring points in a fil-
ament. For a geodesic flow F vanishes, and (231) reduces to the equation for
geodesic deviation. The term R(v ∧ n) · v is a gravitational tidal force, while
F(n) is a non-gravitational “deformation force.”
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Appendix B. Comparison of flat and curved space
formulations

This appendix is for readers who wish compare the gauge theory formulation of
GR for curved space given in this paper with the flat space formulation given
in [5].

Table 1. Coordinate frames for flat and curved spacetime

Flat spacetime Curved spacetime

x = x(x0, . . . , x3) x = x(x0, . . . , x3)

eµ = ∂µx gµ = ∂µx

gµ ≡ h−1(eµ) gµ = h(γµ)

xµ = xµ(x) xµ = xµ(x)

gµ = h(eµ) gµ = 5(xµ)

eµ = 5xµ gµ = h−1(γµ)

gµ · gν = δµ
ν gµ · gν = δµ · δν = δµ

ν

gµ · gν = eµ · (h−1h−1eν) = gµν gµ · gν = γµ · (hhγν)

∂µ = eµ · 5 = (hgµ) · 5 = gµ · 5 ∂µ = gµ · 5
5 = eµ∂µ 5 = gµ∂µ

5 = h(5) = gµ∂µ 5 = gµ∂µ

The flat space and curved space theories differ primarily in their use of
coordinates. Corresponding quantities are listed in Table 1. I have deliberately
used the same symbol h for the fiducial tensor in curved space and for the
gauge tensor in flat space to facilitate comparison. In surveying Table 1 it
will be noticed that the fiducial tensor corresponds to the inverse of the gauge
tensor. That trivial difference has been introduced for notational reasons, but
it emphasizes that the two tensors map most naturally in opposite directions.
The really significant difference is that the fiducial tensor is coordinate dependent
whereas the gauge tensor is not. This comes about because {γµ = h−1(∂µx)}
is necessarily an orthonormal frame in the fiducial case, whereas in the gauge
case, {eµ = ∂µx} is an arbitrary coordinate frame that is completely decoupled
from the gauge tensor. In other words, the remapping of events in spacetime is
completely decoupled from changes in coordinates in the gauge theory, whereas
the curved space theory has no means to separate passive coordinate changes
from shifts in physical configurations. This crucial fact is the reason why in
Gauge Theory Gravity the Displacement Gauge Principle has clear physical
consequences, whereas in the curved space theory Einstein’s General Relativity
Principle does not.
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Table 2. Comparison of Coderivatives and Connexions

Flat spacetime Curved spacetime

g′µ = Rgµ = h′−1(eµ) γ′µ = Rγµ = RγµR̃

ωµ = ω(gµ) ωµ = ω(gµ) = gµ · γνω(γν)

Dµγν ≡ ωµ·γν , ∂µγν ≡ 0

DµM = ∂µM + ωµ ×M DµM = ∂µM + ωµ ×M

ω′µ = RωµR̃ − 2(∂µR)R̃ ω′µ = RωµR̃ + 2(∂µR)R̃

D ∧ gµ = D ∧ /5xµ = 0 D ∧ gµ = D ∧5xµ = 0

H ≡ gµ ∧ ωµ = − 1
2gµ ∧H(gµ) H ≡ gµ ∧ ωµ = 1

2γµ ∧ (D ∧ γµ)

ωµ = H(gµ) + gµ · H ω(γµ) = −D ∧ γµ + H · γµ

Dµgν = Lα
µνgα Dµgν = Lα

µνgα

Mathematical features of the coderivative for flat and curved spacetime are
compared in Table 2. Note, in particular, that expressions for DµM have the
same form in each case. However, they behave differently under rotation gauge
transformations. Whereas the “curved version” simply changes its functional
form, the “flat version” transforms according to

L : DµM → L (DµM) = D′µM ′ = ∂µM ′ + ω′µ ×M ′ , (232)

induced by the active rotation gauge transformation

L : M → M ′ = L M ≡ LML̃ . (233)

In other words, rotation gauge transformations are represented as passive in
the curved version but active in the flat version. This difference translates to a
difference in physical interpretation. In this paper we have interpreted passive
rotations as expressing equivalence of physics with respect to different inertial
reference frames. In the flat theory, however, covariance under active rotations
expresses physical equivalence of different directions in spacetime. Thus, “pas-
sive equivalence” is an equivalence of observers, while “active equivalence” is an
equivalence of states. This distinction generalizes to the interpretation of any
relativity (symmetry group) principle: Active transformations relate equivalent
physical states; passive transformations relate equivalent observers.

As Table 2 shows, the use of common tools of Geometric Calculus for both
curved and flat space versions of GR has enabled us to define a coderivative with
the same form on both versions, despite differences in the way that fields are at-
tached to the base manifold. It follows that all computations with coderivatives
have the same mathematical form in both versions; this includes the curvature
tensor and all its properties as well as the whole panoply of GR. Accordingly,
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all such results in this paper and in [5] are identical, so further discussion is
unnecessary. By the way, this fact can be regarded as a proof of equivalence of
Einstein’s curved space GR with flat space Gauge Theory Gravity.
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