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Preface

Nowadays there are plenty of textbooks on Lie groups to choose from, so we
feel we should explain why we decided to add another one to the row. Most
of the readily available books on Lie groups either aim at an elementary in-
troduction mostly restricted to matrix groups or else they try to provide the
background on semisimple Lie groups needed in harmonic analysis and unitary
representation theory with as little general theory as possible. In [HN91] we
tried to exhibit the basic principles of Lie theory rather than specific material
stressing the exponential function as the means of translating problems and
solutions between the global and the infinitesimal level. In that book, writ-
ten in German for the German student population which typically did not
know differential geometry but was well versed in advanced linear algebra, we
avoided abstract differentiable manifolds by combining matrix groups with
covering arguments. Having introduced the basic principles we demonstrated
their power by proving a number of standard and not so standard results
on the structure of Lie groups. The choice of results included owed a lot to
Hochschild’s book [Ho65] which even then was not so easy to come by.

This book builds on [HN91], but after twenty years of teaching and research
in Lie theory we found it indispensable to also have the differential geometry
of Lie groups available. Even though this is not apparent from the text, the
reason for this is the large number of applications and further developments of
Lie theory in which differential manifolds are essential. Moreover, we decided
to include a number of structural results we found to be useful in the past
but not readily available in the textbook literature. The basic line of thought
now is:

• Simple examples: Matrix groups
• Tools from algebra: Lie algebras
• Tools from geometry: Smooth manifolds
• The basic principles: Lie groups, their Lie algebras and the exponential

function
• Structure theory: General Lie groups and special classes
• Testing methods on examples: The topology of classical groups
• A slight extension: Several connected components

While this book offers plenty of tested material for different introduc-
tory courses such as Matrix groups, Lie groups, Lie algebras, or Differentiable
Manifolds, it is not a textbook to follow from A to Z. Moreover, it contains
advanced material one would not typically include in a first course. In fact,
some of the advanced material has not appeared in any monograph before.
This and the fact that we wanted the book to be self-contained, is the reason
for its considerable length. In order to still keep it within reasonable limits, for
some topics which are well-covered in the textbook literature, we decided to
include only what was needed for the further developments in the book. This
applies e.g. to the standard structure and classification theories of semisimple
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Lie algebras. Thus we do not want to suggest that this book can replace pre-
vious textbooks. It is rather meant as a true addition to the existing textbook
literature on Lie groups.

As was mentioned before, we are well aware of the fact that modern math-
ematics abounds with applications of Lie theory while this book hardly men-
tions any of them. The reason is that most applications require additional
knowledge of the field in which these applications occur, so describing them
would have meant either extensive story-telling or else a considerable expan-
sion in length of this book. Neither option seemed attractive to us, so we leave
it to future books to give detailed accounts of the beautiful ways in which Lie
theory enters different fields of mathematics.

Even though there was a forerunner book and many lecture notes produced
for various courses over the years, in compiling this text we produced many
typos and made some mistakes. Many of them were shown to us by a small
army of enthusiastic proof readers to whom we are extremely grateful: Hanno
Becker, Jan Emonds, Hasan Gündogoan, Michael Klotz, Stéphane Merigon,
Norman Metzner, Wolfgang Palzer, Matthias Peter, Henrik Seppänen, and
Stefan Wagner read major parts of the manuscripts and there were others who
looked at particular sections. Of course we know that also the final version
will contain mistake and we assume full responsibility for those.

We also would like to thank Ilka Agricola and Thomas Friedrich for some
background information on the early history of Lie theory.

Paderborn and Erlangen, March 2010
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Introduction

To locate the theory of Lie groups within mathematics, one can say that Lie
groups are groups with some additional structure that permits us to apply
analytic techniques such as differentiation in a group theoretic context.

In the elementary courses on one variable calculus one studies functions
on three levels:

(1) abstract functions between sets,
(2) continuous functions, and
(3) differentiable functions.

Going from level (1) to level (3), we refine the available tools at each step.
At level (1) we have no structure at all to do anything, at level (2) we obtain
results like the Intermediate Value Theorem or the Maximal Value Theorem
saying that each function on a compact interval takes a maximal value. The
latter result is a useful existence theorem, but it provides no help at all to
calculate maximal values. For that we need refined tools such as the derivative
of a function and a translation mechanism between properties of a function
and its derivative. The situation is quite similar when we study groups. There
is a level (1) consisting of abstract group theory which is particularly inter-
esting for finite groups because the finiteness assumption is a powerful tool
in the structure theory of finite groups. For infinite groups G it is good to
have a topology on G which is compatible with the group structure in the
sense that the group operations are continuous, so that we are at level (2),
and G is called a topological group. If we want to apply calculus techniques to
study a group, we need Lie groups 1, i.e. groups which at the same time are
differentiable manifolds such that the group operations are smooth.

For Lie groups we also need a translation mechanism telling us how to pass
from group theoretic properties of G to properties of its “derivative” L(G),
which in technical terms is the tangent space T1(G) of G at the identity.
We think of L(G) as a “linear” object attached to the “nonlinear” object G,
because L(G) is a vector space endowed with an additional algebraic structure
[·, ·], the Lie bracket, turning it into a Lie algebra. This algebraic structure is
a bilinear map L(G) × L(G) → L(G), called the Lie bracket, satisfying the
axioms

[x, x] = 0 and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for x, y, z ∈ L(G),

which can be considered as linearized versions of the group axioms. The con-
necting element between the group and its Lie algebra is the exponential
function
1 The Norwegian mathematician Marius Sophus Lie (1842–1899) was the first to

study differentiability properties of groups in a systematic way. In the 1890s
Sophus Lie developed his theory of differentiable groups (called continuous groups
at a time when the concept of a topological space was not yet developed) to study
symmetries of differential equations.
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expG : L(G) → G

for which we have the Product Formula

expG(x + y) = lim
k→∞

(
expG( 1

kx) expG( 1
ky)

)k

and the Commutator Formula

expG([x, y]) = lim
k→∞

(
expG

(
1
kx

)
expG

(
1
ky

)
expG

(− 1
kx

)
expG

(− 1
ky

))k2

connecting the algebraic operations (addition and Lie bracket on L(G)) to the
group operations (multiplication and commutator). For the important class of
matrix groups G ⊆ GLn(R), the Lie algebra L(G) is a set of matrices and the
exponential function is simply given by the power series expG(x) =

∑∞
n=0

xn

n! .
An important property of the Lie algebra L(G) is that we can extend L

to smooth homomorphism ϕ : G1 → G2 of Lie groups by putting L(ϕ) :=
T1(ϕ) (the tangent map in 1) to obtain the so-called Lie functor, assigning
to Lie groups Lie algebras and to group homomorphisms homomorphisms of
Lie algebras. The compatibility of all that with the exponential function is
encoded in the commutativity of the diagram

L(G1)
L(ϕ)−−−−−−−−−→ L(G2)yexpG1

yexpG2

G1
ϕ−−−−−−−−−→ G2.

The exponential function of a Lie group always maps sufficiently small
0-neighborhoods U in L(G) diffeomorphically to identity neighborhoods in G,
so that the local structure of G is completely encoded in the multiplication

x ∗ y := (expG |U )−1(expG x expG y),

which turns out to be given by a universal power series,

x ∗ y = x + y +
1
2
[x, y] +

1
12

[
x, [x, y]

]
+

1
12

[
y, [y, x]

]
+ . . . .

Its summands are obtained by iterated Lie brackets whose precise structure
we know after fundamental work of H. F. Baker, J. E. Campbell, E. B. Dynkin
and F. Hausdorff.

The basic philosophy of Lie theory now is that the local structure of the
group G is determined by its Lie algebra L(G), and that the description of
the global structure of a Lie group requires additional information that can
be obtained in topological terms involving covering theory.

In Part I of this book, we approach the general concept of a Lie group
by first discussing certain groups of matrices and groups arising in geometric
contexts (Chapter 1). All these groups will later turn out to be Lie groups.
In Chapter 2 we study the central tool in the theory of matrix groups that
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permits us to reverse the differentiation process from a Lie group G to its Lie
algebra L(G): the exponential function expG : L(G) → G, which is obtained
by restriction from the matrix exponential function used in the theory of
linear differential equations with constant coefficients. Chapter 3 treats Lie
algebras of matrix groups and provides methods to calculate these Lie algebras
effectively.

In Part II we study Lie algebras as independent algebraic structures. We
start in Chapter 4 by working out the standard approach: What are the sub-
structures? Under which conditions does a substructure lead to a quotient
structure? What are the simple structures? Does one have composition series?
This leads to concepts like Lie subalgebras and ideals, nilpotent, solvable, and
semisimple Lie algebras. In Chapter 5 we introduce Cartan subalgebras and
the associated root and weight decompositions as tools to study the structure
of (semi)simple Lie algebras. Further, we define abstract root systems and as-
sociated Weyl groups. Even though representation theory is not in the focus
of this book, we provide in Chapter 6 the basic theory as it repeatedly plays
an important role in structural questions. In particular, we introduce the uni-
versal enveloping algebra and prove the Poincaré–Birkhoff–Witt (PBW) The-
orem on the structure of the enveloping algebra which implies in particular
that each finite dimensional Lie algebra sits in an associative algebra which
has the same modules. From this we derive Serre’s Theorem on the presen-
tation of semisimple Lie algebras in terms of generators and relations, the
Highest Weight Theorem on the classification of the simple finite dimensional
modules, and Ado’s Theorem on the existence of a faithful finite dimensional
representation of a finite dimensional Lie algebra. Finally, we introduce basic
cohomology theory for Lie algebras and describe extensions of Lie algebras.

In Part III we provide an introduction to Lie groups based on the theory of
smooth manifolds. The basic concepts and results from differential geometry
needed for this are introduced in Chapter 7. In particular, we discuss vector
fields on smooth manifolds and their integration to local flows. Chapter 8 is
devoted to the subject proper of this book: Lie groups, defined as smooth
manifolds with group structure such that all structure maps are smooth. Here
we introduce the key tools of Lie theory. The Lie functor which associates a
Lie algebra with a Lie group and the exponential function from the Lie algebra
to the Lie group. They provide the means to translate global problems into
infinitesimal ones and to lift infinitesimal solutions to local and, with the
help of some additional topology, global ones. As a first set of applications
of these methods we identify the Lie group structures of closed subgroups of
Lie groups and show how to construct Lie groups from local and infinitesimal
data. Further we explain covering theory for Lie groups. Finally, we prove
Yamabe’s Theorem asserting that any arcwise connected subgroup of a Lie
group carries a natural Lie group structure,, and this allows us to equip any
subgroup of a Lie group with a canonical Lie group structure.

As we have explained before, a key method in Lie theory is to study the
structure of Lie groups by translation group theoretic problems into linear
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algebra problems via the Lie functor, solving these problems and translating
the solutions back using the exponential function. In Part IV we illustrate this
general method by deriving a number of important structural results about
Lie groups. Since in practice Lie groups often occur as symmetry groups which
are not connected but have a finite number of connected components, we prove
the results in this generality whenever it is possible without too much extra
effort.

We start with quotient structures in Chapter 10, which also leads to homo-
geneous spaces, semidirect products, and eventually to a complete description
of connected nilpotent and 1-connected solvable Lie groups.

In Chapter 11 we turn our attention to compact Lie groups and their
covering groups. Again we first study the corresponding Lie algebras which
are, by abuse of notation, called compact. Then we prove Weyl’s Theorem
saying that the simply connected covering of a semisimple compact Lie group
is compact. Further, we prove the important fact that a compact connected
Lie group is the union of its maximal tori and show that such a Lie group is
the semidirect product of its (semisimple) commutator subgroup and a torus
subgroup. We also show that each compact Lie group is linear, i.e., can be
realized as a closed subgroup of some GLn(R). It is possible to describe the
fundamental group in terms of the Lie algebra and the exponential map. In
this context, we introduce the analytic Weyl group and a number of relevant
lattices (i.e., discrete additive subgroups of maximal rank) in the Lie algebra
t of a maximal torus T and its dual t∗. The techniques are finally extended
a little to prove that fixed point sets of automorphisms of simply connected
groups are connected, a fact that is very useful e.g. in the study of symmetric
spaces.

Chapter 12 is devoted to the Cartan and the Iwasawa decomposition of
noncompact semisimple Lie groups. These two decompositions are really only
the starting point for a very rich structure theory which, in contrast to some
other topics we present in this book, is very well covered in the existing liter-
ature (see e.g. [Wa88] and [Kn02]). Therefore, we decided to keep this chapter
brief.

In Chapter 13 we return to the general structure theory and show that
each Lie group with finitely many connected components admits a maximal
compact subgroup which is unique up to conjugation. In fact, it turns out that
the group is diffeomorphic to a product of the maximal compact subgroup and
a finite dimensional vector space (the Manifold Splitting Theorem 13.3.11).
In particular, the topology of a Lie group with finitely many connected com-
ponents is completely determined by any of its maximal compact subgroups.
Before we can prove that we have to characterize the center of a connected Lie
group as a certain subset of the exponential image (Theorem 13.2.8). The tech-
niques developed for the proof of the Manifold Splitting Theorem also allow
us to prove Dixmier’s Theorem which characterizes the 1-connected solvable
Lie groups for which the exponential function is a diffeomorphism. Finally, we
study in detail under which circumstances one finds integral subgroups which
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are not closed, i.e., proper dense subgroups of their closure. In particular, we
give a series of verifiable sufficient conditions for an integral subgroup to be
closed. These results build on the classification of finitely generated abelian
groups for which we provide a proof in Appendix 13.6.

In Chapter 14 we explain how to complexify Lie groups. It turns out that
each Lie group G has a universal complexification GC, but G does in general
not embed into GC. If G is compact, however, it does embed into its universal
complexification, and this gives rise to the class of linearly complex reduc-
tive Lie groups. They can be characterized by the existence of a holomorphic
faithful representation and the fact that all holomorphic representations are
completely reducible, hence the name (see Theorem 14.3.11). On the way to
this characterization, we study abelian complex connected Lie groups in some
detail and introduce the linearizer of a complex group, which measures how
far the group is from being complex linear.

In the literature one finds a lot of different notions of reductive groups, for
many of which one imposes extra linearity properties. This is why in Chap-
ter 15 we take a closer look at the structural implications of the existence
of a faithful continuous finite dimensional representation of a Lie group. In
particular, we introduce a real linearizer and the notion of linearly real re-
ductive groups. Combining these notions with suitable Levi complements we
obtain a characterization of connected Lie groups which admit such faithful
representations (see Theorems 15.2.7 and 15.2.9). The results of this chap-
ter rely heavily on the results of Chapter 14. Conversely, we use the results of
Chapter 15 to complete the discussion of the existence faithful of holomorphic
representations in Section 15.3.

In Chapter 16 we apply the general results to compact and noncompact
classical groups in order to provide explicit structural and topological infor-
mation. In particular, we determine connected components and fundamental
groups. Moreover, we include a rather detailed discussion of spin groups which
builds on the material on Clifford algebras and related groups presented in
Appendix B.3. Here we also explain a number of isomorphisms of low di-
mensional groups. This discussion, as well as the one on conformal groups
in Section 16.4 exemplifies the way Lie theory can be used to study groups
defined in geometric terms. For a more detailed information of this kind we
refer to [GW09] for the classical and to [Ad96] for the exceptional Lie groups.

The examples from Chapter 16 show that many geometrically defined Lie
groups have several connected components. While only the connected com-
ponent of the identity is accessible to the methods built on the exponential
function, there are still tools to analyze nonconnected Lie groups. In Chap-
ter 17 we present some of these tools. The key notion is that of an extension of
a discrete group by a (connected) Lie group. We explain how to classify such
extensions in terms of group cohomology and apply this result to characterize
those Lie groups with finite number of connected components which admit a
simply connected covering group.
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Fundamental notation

Throughout this book K denotes either the field R of real numbers or the
field C of complex numbers. All vector spaces will be K-vector spaces if not
otherwise specified. We write Mn(K) for the ring of (n × n)-matrices with
entries in K, 1 for the identity matrix and GLn(K) for its group of units, the
general linear group. Further, we write N := {1, 2, · · · } for the set of natural
number and denote (half-)open intervals as ]a, b] := {x ∈ R : a < x ≤ b},
[a, b[:= {x ∈ R : a ≤ x < b}, and ]a, b[:= {x ∈ R : a < x < b}.
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Matrix Groups
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Concrete Matrix Groups

In this chapter we mainly study the general linear group GLn(K) of invertible
n×n-matrices with entries in K = R or C and introduce some of its subgroups.
In particular, we discuss some of the connections between matrix groups and
certain symmetry groups of geometric structures like bilinear or sesquilinear
forms. In Section 1.3 we introduce also groups of matrices with entries in the
quaternions H.

1.1 The General Linear Group

We start with some notation. We write GLn(K) for the group of invertible
matrices in Mn(K) and note that

GLn(K) = {g ∈ Mn(K) : (∃h ∈ Mn(K)) hg = gh = 1}.
Since the invertibility of a matrix can be tested with its determinant ([La93,
Prop. XIII.4.6]),

GLn(K) = {g ∈ Mn(K) : det g 6= 0}.
This group is called the general linear group.

On the vector space Kn we consider the euclidian norm

‖x‖ :=
√
|x1|2 + . . . + |xn|2, x ∈ Kn,

and on Mn(K) the corresponding operator norm

‖A‖ := sup{‖Ax‖ : x ∈ Kn, ‖x‖ ≤ 1}
which turns Mn(K) into a Banach space. On every subset S ⊆ Mn(K) we
shall always consider the subspace topology inherited from Mn(K) (otherwise
we shall say so). In this sense GLn(K) and all its subgroups carry a natural
topology.
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Lemma 1.1.1. The group GLn(K) has the following properties:

(i) GLn(K) is open in Mn(K).
(ii) The multiplication map m : GLn(K)×GLn(K) → GLn(K) and the inver-

sion map η : GLn(K) → GLn(K) are smooth and in particular continuous.

Proof. (i) Since the determinant function

det : Mn(K) → K, det(aij) =
∑

σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n)

is continuous and K× := K \ {0} is open in K, the set GLn(K) = det−1(K×)
is open in Mn(K).

(ii) For g ∈ GLn(K) we define bij(g) := det(gmk)m 6=j,k 6=i. According to
Cramer’s Rule, the inverse of g is given by

(g−1)ij =
(−1)i+j

det g
bij(g).

The smoothness of the inversion therefore follows from the smoothness of the
determinant (which is a polynomial) and the polynomial functions bij defined
on Mn(K).

For the smoothness of the multiplication map, it suffices to observe that

(ab)ik =
n∑

j=1

aijbjk

is the (ik)-entry in the product matrix. Since all these entries are quadratic
polynomials in the entries of a and b, the product is a smooth map. ut
Definition 1.1.2. A topological group G is a Hausdorff space G, endowed
with a group structure, such that the multiplication map mG : G × G → G
and the inversion map η : G → G are continuous, when G×G is endowed with
the product topology.

Lemma 1.1.1(ii) says in particular that GLn(K) is a topological group. It
is clear that the continuity of group multiplication and inversion is inherited
by every subgroup G ⊆ GLn(K), so that every subgroup G of GLn(K) also is
a topological group.

We write a matrix A = (aij)i,j=1,...,n also as (aij) and define

A> := (aji), A := (aij), and A∗ := A
>

= (aji).

Note that A∗ = A> is equivalent to A = A, which means that all entries of A
are real. Now we can define the most important classes of matrix groups.

Definition 1.1.3. We introduce the following notation for some important
subgroups of GLn(K):
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(1) The special linear group : SLn(K) := {g ∈ GLn(K) : det g = 1}.
(2) The orthogonal group : On(K) := {g ∈ GLn(K) : g> = g−1}.
(3) The special orthogonal group : SOn(K) := SLn(K) ∩On(K).
(4) The unitary group : Un(K) := {g ∈ GLn(K) : g∗ = g−1}. Note that

Un(R) = On(R), but On(C) 6= Un(C).
(5) The special unitary group : SUn(K) := SLn(K) ∩Un(K).

One easily verifies that these are indeed groups. One simply has to use
that (ab)> = b>a>, ab = ab and that

det : GLn(K) → (K×, ·)
is a group homomorphism.
We write Hermn(K) := {A ∈ Mn(K) : A∗ = A} for the set of hermitian
matrices. For K = C this is not a vector subspace of Mn(K), but it is always
a real subspace. A matrix A ∈ Hermn(K) is called positive definite if for each
0 6= z ∈ Kn we have 〈Az, z〉 > 0, where

〈z, w〉 :=
n∑

j=1

zjwj

is the natural scalar product on Kn. We write Pdn(K) ⊆ Hermn(K) for the
subset of positive definite matrices.

Lemma 1.1.4. The groups

Un(C), SUn(C), On(R) and SOn(R)

are compact.

Proof. Since all these groups are subsets of Mn(C) ∼= Cn2
, we have to show

that they are closed and bounded.
Bounded: In view of

SOn(R) ⊆ On(R) ⊆ Un(C) and SUn(C) ⊆ Un(C),

it suffices to see that Un(C) is bounded. Let g1, . . . , gn denote the rows of the
matrix g ∈ Mn(C). Then g∗ = g−1 is equivalent to gg∗ = 1, which means
that g1, . . . , gn form an orthonormal basis for Cn with respect to the scalar
product 〈z, w〉 =

∑n
j=1 zjwj which induces the norm ‖z‖ =

√
〈z, z〉. Therefore

g ∈ Un(C) implies ‖gj‖ = 1 for each j, so that Un(C) is bounded.
Closed: The functions

f, h : Mn(K) → Mn(K), f(A) := AA∗ − 1 and h(A) := AA> − 1

are continuous. Therefore the groups

Un(K) := f−1(0) and On(K) := h−1(0)

are closed. Likewise SLn(K) is closed, and therefore the groups SUn(C) and
SOn(R) are also closed because they are intersections of closed subsets. ut
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1.1.1 The Polar Decomposition

Proposition 1.1.5 (Polar decomposition). The multiplication map

m : Un(K)× Pdn(K) → GLn(K), (u, p) 7→ up

is a homeomorphism. In particular, each invertible matrix g can be written in
a unique way as a product g = up of a unitary matrix u and a positive definite
matrix p.

Proof. We know from linear algebra that for each hermitian matrix A there
exists an orthonormal basis v1, . . . , vn for Kn consisting of eigenvectors of
A, and that all the corresponding eigenvalues λ1, . . . , λn are real ([La93,
Thm. XV.6.4]). From that it is obvious that A is positive definite if and
only if λj > 0 holds for each j. For a positive definite matrix A, this has two
important consequences:

(1) A is invertible, and A−1 satisfies A−1vj = λ−1
j vj .

(2) There exists a unique positive definite matrix B with B2 = A which
will be denoted

√
A: We define B with respect to the basis (v1, . . . , vn) by

Bvj =
√

λjvj . Then B2 = A is obvious and since all λj are real and the vj

are orthonormal, B is positive definite because

〈
B

(∑

i

µivi

)
,
∑

j

µjvj

〉
=

∑

i,j

µiµj〈Bvi, vj〉 =
n∑

j=1

|µj |2
√

λj > 0

for
∑

j µjvj 6= 0. It remains to verify the uniqueness. So assume that C is
positive definite with C2 = A. Then CA = C3 = AC implies that C preserves
all eigenspaces of A, so that we find an orthonormal basis w1, . . . , wn consisting
of simultaneous eigenvectors of C and A (cf. Exercise 1.1.1). If Cwj = αjwj ,
we have Awj = α2

jwj , which implies that C acts on the λ-eigenspace of A by
multiplication with

√
λ, which shows that C = B.

From (1) we derive that the image of the map m is contained in GLn(K).
m is surjective: Let g ∈ GLn(K). For 0 6= v ∈ Kn we then have

0 < 〈gv, gv〉 = 〈g∗gv, v〉,

showing that g∗g is positive definite. Let p :=
√

g∗g and define u := gp−1.
Then

uu∗ = gp−1p−1g∗ = gp−2g∗ = g(g∗g)−1g∗ = gg−1(g∗)−1g∗ = 1

implies that u ∈ Un(K), and it is clear that m(u, p) = g.
m is injective: If m(u, p) = m(w, q) = g, then g = up = wq implies that

p2 = p∗p = (up)∗up = g∗g = (wq)∗wq = q2,
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so that p and q are positive definite square roots of the same positive definite
matrix g∗g, hence coincide by (2) above. Now p = q, and therefore u = gp−1 =
gq−1 = w.

It remains to show that m is a homeomorphism. Its continuity is obvi-
ous, so that it remains to prove the continuity of the inverse map m−1. Let
gj = ujpj → g = up. We have to show that uj → u and pj → p. Since Un(K)
is compact, the sequence (uj) has a subsequence (ujk

) converging to some
w ∈ Un(K). Then pjk

= u−1
jk

gjk
→ w−1g =: q ∈ Hermn(K) and g = wq. For

each v ∈ Kn we then have

0 ≤ 〈pjk
v, v〉 → 〈qv, v〉,

showing that all eigenvalues of q are ≥ 0. Moreover, q = w−1g is invertible, and
therefore q is positive definite. Now m(u, p) = m(w, q) yields u = w and p = q.
Since each convergent subsequence of (uj) converges to u, the sequence itself
converges to u (Exercise 1.1.9), and therefore pj = u−1

j gj → u−1g = p. ut
We shall see later that the set Pdn(K) is homeomorphic to a vector space

(Proposition 2.3.5), so that, topologically, the group GLn(K) is a product of
the compact group Un(K) and a vector space. Therefore the “interesting” part
of the topology of GLn(K) is contained in the compact group Un(K).

Remark 1.1.6 (Normal forms of unitary and orthogonal matrices).
We recall some facts from linear algebra:

(a) For each u ∈ Un(C), there exists an orthonormal basis v1, . . . , vn con-
sisting of eigenvectors of g ([La93, Thm. XV.6.7]). This means that the unitary
matrix s whose columns are the vectors v1, . . . , vn satisfies

s−1us = diag(λ1, . . . , λn),

where uvj = λjv and |λj | = 1.
The proof of this normal form is based on the existence of an eigenvector

v1 of u which in turn follows from the existence of a zero of the characteristic
polynomial. Since u is unitary, it preserves the hyperplane v⊥1 of dimension n−
1. Now one uses induction to obtain an orthonormal basis v2, . . . , vn consisting
of eigenvectors.

(b) For elements of On(R), the situation is more complicated because real
matrices do not always have real eigenvectors.

Let A ∈ Mn(R) and consider it as an element on Mn(C). We assume that
A does not have a real eigenvector. Then there exists an eigenvector z ∈ Cn

corresponding to some eigenvalue λ ∈ C. We write z = x + iy and λ = a + ib.
Then

Az = Ax + iAy = λz = (ax− by) + i(ay + bx).

Comparing real and imaginary part yields

Ax = ax− by and Ay = ay + bx.
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Therefore the two-dimensional subspace generated by x and y in Rn is invari-
ant under A.

This can be applied to g ∈ On(R) as follows. The argument above implies
that there exists an invariant subspace W1 ⊆ Rn with dim W1 ∈ {1, 2}. Then

W⊥
1 := {v ∈ Rn : 〈v,W1〉 = {0}}

is a subspace of dimension n−dim W1 which is also invariant (Exercise 1.1.14),
and we apply induction to see that Rn is a direct sum of g-invariant subspaces
W1, . . . , Wk of dimension ≤ 2. Therefore the matrix g is conjugate by an
orthogonal matrix s to a block matrix of the form

d = diag(d1, . . . , dk),

where dj is the matrix of the restriction of the linear map corresponding to g
to Wj .

To understand the structure of the dj , we have to take a closer look at the
case n ≤ 2. For n = 1 the group O1(R) = {±1} consists of two elements, and
for n = 2 an element r ∈ O2(R) can be written as

r =
(

a ∓b
b ±a

)
with det r = ±(a2 + b2) = ±1,

because the second column contains a unit vector orthogonal to the first one.
With a = cos α and b = sin α we get

r =
(

cos α ∓ sinα
sin α ± cos α

)
.

For det r = −1, we obtain

r2 =
(

a b
b −a

) (
a b
b −a

)
= 1,

but this implies that r is an orthogonal reflection with the two eigenvalues ±1
(Exercise 1.1.13), hence has two orthogonal eigenvectors.

In view of the preceding discussion, we may therefore assume that the first
m of the matrices dj are of the rotation form

dj =
(

cos αj − sin αj

sinαj cos αj

)
,

that dm+1, . . . , d` are −1, and that d`+1, . . . , dn are 1:
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cos α1 − sin α1

sin α1 cosα1

. . .
cos αm − sin αm

sin αm cosαm

−1
. . .

−1
1

. . .
1




.

For n = 3 we obtain in particular the normal form

d =




cosα − sinα 0
sin α cosα 0

0 0 ±1


 .

From this normal form we immediately read off that det d = 1 is equivalent
to d describing a rotation around an axis consisting of fixed points (the axis
is Re3 for the normal form matrix).

Proposition 1.1.7. (a) The group Un(C) is arcwise connected.
(b) The group On(R) has the two arc components

SOn(R) and On(R)− := {g ∈ On(R) : det g = −1}.
Proof. (a) First we consider Un(C). To see that this group is arcwise con-
nected, let u ∈ Un(C). Then there exists an orthonormal basis v1, . . . , vn of
eigenvectors of u (Remark 1.1.6(a)). Let λ1, . . . , λn denote the corresponding
eigenvalues. Then the unitarity of u implies that |λj | = 1, and we therefore
find θj ∈ R with λj = eθji. Now we define a continuous curve

γ : [0, 1] → Un(C), γ(t)vj := etθjivj , j = 1, . . . , n.

We then have γ(0) = 1 and γ(1) = u. Moreover, each γ(t) is unitary because
the basis (v1, . . . , vn) is orthonormal.

(b) For g ∈ On(R) we have gg> = 1 and therefore 1 = det(gg>) = (det g)2.
This shows that

On(R) = SOn(R)∪̇On(R)−

and both sets are closed in On(R) because det is continuous. Therefore On(R)
is not connected and hence not arcwise connected. If we show that SOn(R)
is arcwise connected and x, y ∈ On(R)−, then 1, x−1y ∈ SOn(R) can be
connected by an arc γ : [0, 1] → SOn(R), and then t 7→ xγ(t) defines an arc
[0, 1] → On(R)− connecting x to y. So it remains to show that SOn(R) is
connected.
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Let g ∈ SOn(R). In the normal form of g discussed in Remark 1.1.6, the
determinant of each two-dimensional block is 1, so that the determinant is the
product of all −1-eigenvalues. Hence their number is even, and we can write
each consecutive pair as a block

(−1 0
0 −1

)
=

(
cosπ − sin π
sin π cosπ

)
.

This shows that with respect to some orthonormal basis for Rn the linear map
defined by g has a matrix of the form

g =




cos α1 − sinα1

sinα1 cos α1

. . .
cos αm − sin αm

sinαm cosαm

1
. . .

1




.

Now we obtain an arc γ : [0, 1] → SOn(R) with γ(0) = 1 and γ(1) = g by

γ(t) :=




cos tα1 − sin tα1

sin tα1 cos tα1

. . .
cos tαm − sin tαm

sin tαm cos tαm

1
. . .

1




.

ut
Corollary 1.1.8. The group GLn(C) is arcwise connected and the group
GLn(R) has two arc-components given by

GLn(R)± := {g ∈ GLn(R) : ± det g > 0}.
Proof. If X = A×B is a product space, then the arc-components of X are the
sets of the form C ×D, where C ⊆ A and D ⊆ B are arc-components (easy
Exercise!). The polar decomposition of GLn(K) yields a homeomorphism

GLn(K) ∼= Un(K)× Pdn(K).

Since Pdn(K) is an open convex set, it is arcwise connected (Exercise 1.1.6).
Therefore the arc-components of GLn(K) are in one-to-one correspondence
with those of Un(K) which have been determined in Proposition 1.1.7. ut
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1.1.2 Normal Subgroups of GLn(K)

We shall frequently need some basic concepts from group theory which we
recall in the following definition.

Definition 1.1.9. Let G be a group with identity element e.
(a) A subgroup N ⊆ G is called normal if gN = Ng holds for all g ∈ G.

We write this as N E G. The normality implies that the quotient set G/N
(the set of all cosets of the subgroup N) inherits a natural group structure by

gN · hN := ghN

for which eN is the identity element and the quotient map q : G → G/N is a
surjective group homomorphism with kernel N = ker q = q−1(eN).

On the other hand, all kernels of group homomorphisms are normal sub-
groups, so that the normal subgroups are precisely those which are kernels of
group homomorphisms.

It is clear that G and {e} are normal subgroups. We call G simple if
G 6= {e} and these are the only normal subgroups.

(b) The subgroup Z(G) := {g ∈ G : (∀x ∈ G)gx = xg} is called the center
of G. It obviously is a normal subgroup of G. For x ∈ G the subgroup

ZG(x) := {g ∈ G : gx = xg}

is called its centralizer. Note that Z(G) =
⋂

x∈G ZG(x).
(c) If G1, . . . , Gn are groups, then the product set G := G1× . . .×Gn has

a natural group structure given by

(g1, . . . , gn)(g′1, . . . , g
′
n) := (g1g

′
1, . . . , gng′n).

The group G is called the direct product of the groups Gj , j = 1, . . . , n. We
identify Gj with a subgroup of G. Then all subgroups Gj are normal subgroups
and G = G1 · · ·Gn.

In the following we write R×+ :=]0,∞[.

Proposition 1.1.10. (a) Z(GLn(K)) = K×1.
(b) The multiplication map

ϕ : (R×+, ·)× SLn(R) → GLn(R)+, (λ, g) 7→ λg

is a homeomorphism and a group isomorphism, i.e., an isomorphism of topo-
logical groups.

Proof. (a) It is clear that K×1 is contained in the center of GLn(K). To
see that each matrix g ∈ Z(GLn(K)) is a multiple of 1, we consider the
elementary matrix Eij := (δij) with the only nonzero entry 1 in position
(i, j). For i 6= j we then have E2

ij = 0, so that (1 + Eij)(1− Eij) = 1 implies
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that Tij := 1 + Eij ∈ GLn(K). From the relation gTij = Tijg we immediately
get gEij = Eijg for i 6= j, so that for k, ` ∈ {1, . . . , n} we get

gkiδj` = (gEij)k` = (Eijg)k` = δikgj`.

For k = i and ` = j we obtain gii = gjj and for k = j = `, we get gji = 0.
Therefore g = λ1 for some λ ∈ K.

(b) It is obvious that ϕ is a group homomorphism and that ϕ is continuous.
Moreover, the map

ψ : GLn(R)+ → R×+ × SLn(R), g 7→ ((det g)
1
n , (det g)−

1
n g)

is continuous and satisfies ϕ ◦ψ = id and ψ ◦ϕ = id. Hence ϕ is a homeomor-
phism. ut
Remark 1.1.11. The subgroups

Z(GLn(K)) and SLn(K)

are normal subgroups of GLn(K). Moreover, for GLn(R) the subgroup GLn(R)+
is a proper normal subgroup and the same holds for R×+1. One can show that
these examples exhaust all normal arcwise connected subgroups of GLn(K).

Exercises for Section 1.1

Exercise 1.1.1. Let V be a K-vector space and A ∈ End(V ). We write
Vλ(A) := ker(A − λ1) for the eigenspace of A corresponding to the eigen-
value λ and V λ(A) :=

⋃
n∈N ker(A− λ1)n for the generalized eigenspace of A

corresponding to λ.
(a) If A, B ∈ End(V ) commute, then

BV λ(A) ⊆ V λ(A) and BVλ(A) ⊆ Vλ(A)

holds for each λ ∈ K.
(b) If A ∈ End(V ) is diagonalizable and W ⊆ V is an A-invariant subspace,

then A|W ∈ End(W ) is diagonalizable.
(c) If A,B ∈ End(V ) commute and both are diagonalizable, then they are

simultaneously diagonalizable, i.e., there exists a basis for V which consists of
eigenvectors of A and B.

(d) If dim V < ∞ and A ⊆ End(V ) is a commuting set of diagonalizable
endomorphisms, then A can be simultaneously diagonalized, i.e., V is a direct
sum of simultaneous eigenspaces of A.

(e) For any function λ : A → V , we write Vλ(A) =
⋂

a∈A Vλ(a)(a) for
the corresponding simultaneous eigenspace. Show that the sum

∑
λ Vλ(A) is

direct.
(f) If A ⊆ End(V ) is a finite commuting set of diagonalizable endomor-

phisms, then A can be simultaneously diagonalized.
(g) Find a commuting set of diagonalizable endomorphisms of a vector

space V which cannot be diagonalized simultaneously.
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Exercise 1.1.2. Let G be a topological group. Let G0 be the identity com-
ponent , i.e., the the connected component of the identity in G. Show that G0

is an open and closed normal subgroup of G.

Exercise 1.1.3. SOn(K) is a closed normal subgroup of On(K) of index 2
and, for every g ∈ On(K) with det(g) = −1,

On(K) = SOn(K) ∪ g SOn(K)

is a disjoint decomposition.

Exercise 1.1.4. For each subset M ⊆ Mn(K) the centralizer

ZGLn(K)(M) := {g ∈ GLn(K) : (∀m ∈ M)gm = mg}

is a closed subgroup of GLn(K).

Exercise 1.1.5. We identify Cn with R2n by the map z = x+iy 7→ (x, y) and
write I(x, y) := (−y, x) for the real linear endomorphism of R2n corresponding
to multiplication with i. Then

GLn(C) ∼= ZGL2n(R)({I})

yields a realization of GLn(C) as a closed subgroup of GL2n(R).

Exercise 1.1.6. A subset C of a real vector space V is called a convex cone
if C is convex and λC ⊆ C for each λ > 0.

Show that Pdn(K) is an open convex cone in Hermn(K).

Exercise 1.1.7. Show that

γ : (R, +) → GL2(R), t 7→
(

cos t sin t
− sin t cos t

)

is a continuous group homomorphism with γ(π) =
(−1 0

0 −1

)
and im γ =

SO2(R).

Exercise 1.1.8. Show that the group On(C) is homeomorphic to the topo-
logical product of the subgroup

On(R) ∼= Un(C) ∩On(C) and the set Pdn(C) ∩On(C).

Exercise 1.1.9. Let (X, d) be a compact metric space and (xn)n∈N a sequence
in X. Show that limn→∞ xn = x is equivalent to the condition that each
convergent subsequence (xnk

)k∈N converges to x.

Exercise 1.1.10. If A ∈ Hermn(K) satisfies 〈Av, v〉 = 0 for each v ∈ Kn,
then A = 0.
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Exercise 1.1.11. Show that for a complex matrix A ∈ Mn(C) the following
are equivalent:
(1) A∗ = A.
(2) 〈Av, v〉 ∈ R for each v ∈ Cn.

Exercise 1.1.12. (a) Show that a matrix A ∈ Hermn(K) is hermitian if and
only if there exists an orthonormal basis v1, . . . , vn for Kn and real numbers
λ1, . . . , λn with Avj = λjvj .

(b) Show that a complex matrix A ∈ Mn(C) is unitary if and only if there
exists an orthonormal basis v1, . . . , vn for Kn and λj ∈ C with |λj | = 1 and
Avj = λjvj .

(c) Show that a complex matrix A ∈ Mn(C) is normal, i.e., satisfies A∗A =
AA∗, if and only if there exists an orthonormal basis v1, . . . , vn for Kn and
λj ∈ C with Avj = λjvj .

Exercise 1.1.13. (a) Let V be a vector space and 1 6= A ∈ End(V ) with
A2 = 1 (A is called an involution). Show that

V = ker(A− 1)⊕ ker(A + 1).

(b) Let V be a vector space and A ∈ End(V ) with A3 = A. Show that

V = ker(A− 1)⊕ ker(A + 1)⊕ kerA.

(c) Let V be a vector space and A ∈ End(V ) an endomorphism for which
there exists a polynomial p of degree n with n different zeros λ1, . . . , λn ∈ K
and p(A) = 0. Show that A is diagonalizable with eigenvalues λ1, . . . , λn.

Exercise 1.1.14. Let β : V × V → K be a bilinear map and g : V → V with
β(gv, gw) = β(v, w) be a β-isometry. For a subspace E ⊆ V we write

E⊥ := {v ∈ V : (∀w ∈ E) β(v, w) = 0}

for its orthogonal space. Show that g(E) = E implies that g(E>) = E>.

Exercise 1.1.15 (Iwasawa decomposition of GLn(R)). Let

T+
n (R) ⊆ GLn(R)

denote the subgroup of upper triangular matrices with positive diagonal en-
tries. Show that the multiplication map

µ : On(R)× T+
n (R) → GLn(R), (a, b) 7→ ab

is a homeomorphism.

Exercise 1.1.16. Let K be a field and n ∈ N. Show that

Z(Mn(K)) := {z ∈ Mn(K) : (∀x ∈ Mn(K)) zx = xz} = K1.
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1.2 Groups and Geometry

In Definition 1.1.3 we have defined certain matrix groups by concrete condi-
tions on the matrices. If we think of matrices as linear maps described with
respect to a basis, we have to adopt a more abstract point of view. Similarly,
one can study symmetry groups of bilinear forms on a vector space V without
fixing a certain basis a priori. Actually it is much more convenient to choose
a basis for which the structure of the bilinear form is as simple as possible.

1.2.1 Isometry Groups

Definition 1.2.1 (Groups and bilinear forms).
(a) (The abstract general linear group) Let V be a K-vector space. We

write GL(V ) for the group of linear automorphisms of V . This is the group
of invertible elements in the ring End(V ) of all linear endomorphisms of V .

If V is an n-dimensional K-vector space and v1, . . . , vn is a basis for V ,
then the map

Φ : Mn(K) → End(V ), Φ(A)vk :=
n∑

j=1

ajkvj

is a linear isomorphism which describes the passage between linear maps and
matrices. In view of Φ(1) = idV and Φ(AB) = Φ(A)Φ(B), we obtain a group
isomorphism

Φ|GLn(K) : GLn(K) → GL(V ).

(b) Let V be an n-dimensional vector space with basis v1, . . . , vn and
β : V × V → K a bilinear map. Then B = (bjk) := (β(vj , vk))j,k=1,...,n is an
(n × n)-matrix, but this matrix should NOT be interpreted as the matrix of
a linear map. It is the matrix of a bilinear map to K, which is something
different. It describes β in the sense that

β
( ∑

j

xjvj ,
∑

k

ykvk

)
=

n∑

j,k=1

xjbjkyk = x>By,

where x>By with column vectors x, y ∈ Kn is viewed as a matrix product
whose result is a (1× 1)-matrix, i.e., an element of K.

We write

Aut(V, β) := {g ∈ GL(V ) : (∀v, w ∈ V )β(gv, gw) = β(v, w)}
for the isometry group of the bilinear form β. Then it is easy to see that

Φ−1(Aut(V, β)) = {g ∈ GLn(K) : g>Bg = B}.
If β is symmetric, we also write O(V, β) := Aut(V, β) and if β is skew-
symmetric, we write Sp(V, β) := Aut(V, β).
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If v1, . . . , vn is an orthonormal basis for β, i.e., B = 1, then

Φ−1(Aut(V, β)) = On(K)

is the orthogonal group defined in Section 1.1. Note that orthonormal bases
can only exist for symmetric bilinear forms (Why?).

For V = K2n and the block (2× 2)-matrix

B :=
(

0 1n

−1n 0

)

we see that B> = −B, and the group

Sp2n(K) := {g ∈ GL2n(K) : g>Bg = B}
is called the symplectic group. The corresponding skew-symmetric bilinear
form on K2n is given by

β(x, y) = x>By =
n∑

i=1

xiyn+i − xn+iyi.

(c) A symmetric bilinear form β on V is called nondegenerate if β(v, V ) =
{0} implies v = 0. For K = C every nondegenerate symmetric bilinear form
β possesses an orthonormal basis (this builds on the existence of square roots
of nonzero complex numbers; see Exercise 1.2.1), so that for every such form
β we get

O(V, β) ∼= On(C).

For K = R the situation is more complicated, since negative real numbers
do not have a square root in R. There might not be an orthonormal basis, but
if β is nondegenerate, there always exists an orthogonal basis v1, . . . , vn and
p ∈ {1, . . . , n} such that β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = −1 for
j = p + 1, . . . , n. Let q := n− p and Ip,q denote the corresponding matrix

Ip,q =
(
1p 0
0 −1q

)
∈ Mp+q(R).

Then O(V, β) is isomorphic to the group

Op,q(R) := {g ∈ GLn(R) : g>Ip,qg = Ip,q},
where On,0(R) = On(R).

(d) Let V be an n-dimensional complex vector space and β : V × V → C
a sesquilinear form, i.e., β is linear in the first and antilinear in the second
argument. Then we also choose a basis v1, . . . , vn in V and define B = (bjk) :=
(β(vj , vk))j,k=1,...,n, but now we obtain

β
( ∑

j

xjvj ,
∑

k

ykvk

)
=

n∑

j,k=1

xjbjkyk = x>By.
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We write

U(V, β) := {g ∈ GL(V ) : (∀v, w ∈ V )β(gv, gw) = β(v, w)}

for the corresponding unitary group and find

Φ−1(U(V, β)) = {g ∈ GLn(C) : g>Bg = B}.

If v1, . . . , vn is an orthonormal basis for β, i.e., B = 1, then

Φ−1(U(V, β)) = Un(C) = {g ∈ GLn(C) : g∗ = g−1}

is the unitary group over C. We call β hermitian if it is sesquilinear and
satisfies β(y, x) = β(x, y). In this case one has to face the same problems as for
symmetric forms on real vector spaces, but there always exists an orthogonal
basis v1, . . . , vn and p ∈ {1, . . . , n} with β(vj , vj) = 1 for j = 1, . . . , p and
β(vj , vj) = −1 for j = p + 1, . . . , n. With q := n− p and

Ip,q :=
(
1p 0
0 −1q

)
∈ Mn(C)

we then define the indefinite unitary groups by

Up,q(C) := {g ∈ GLn(C) : g>Ip,qg = Ip,q}.

Since Ip,q has real entries,

Up,q(C) = {g ∈ GLn(C) : g∗Ip,qg = Ip,q},

where Un,0(C) = Un(C).

Definition 1.2.2. (a) Let V be a vector space. We consider the affine group
Aff(V ) of all maps V → V of the form

ϕv,g(x) = gx + v, g ∈ GL(V ), v ∈ V.

We write elements ϕv,g of Aff(V ) simply as pairs (v, g). Then the composition
in Aff(V ) is given by

(v, g)(w, h) = (v + gw, gh),

(0,1) is the identity, and inversion is given by

(v, g)−1 = (−g−1v, g−1).

For V = Kn we put Affn(K) := Aff(Kn). Then the map

Φ : Affn(K) → GLn+1(K), Φ(v, g) =
(

[g] v
0 1

)
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is an injective group homomorphism, where [g] denotes the matrix of the linear
map with respect to the canonical basis for Kn.

(b) (The euclidian isometry group) Let V = Rn and consider the euclidian
metric d(x, y) := ‖x− y‖2 on Rn. We define

Ison(R) := {g ∈ Aff(Rn) : (∀x, y ∈ V ) d(gv, gw) = d(v, w)}.
This is the group of affine isometries of the euclidian n-space. Actually one
can show that every isometry of a normed space (V, ‖ · ‖) is an affine map
(Exercise 1.2.5). This implies that

Ison(R) = {g : Rn → Rn : (∀x, y ∈ Rn) d(gv, gw) = d(v, w)}.

1.2.2 Semidirect Products

We have seen in Definition 1.1.9 how to form direct products of groups. If
G = G1 × G2 is a direct product of the groups G1 and G2, then we identify
G1 and G2 with the corresponding subgroups of G1 × G2, i.e., we identify
g1 ∈ G1 with (g1, e) and g2 ∈ G2 with (e, g2). Then G1 and G2 are normal
subgroups of G and the product map

m : G1 ×G2 → G, (g1, g2) 7→ g1g2 = (g1, g2)

is a group isomorphism, i.e., each element g ∈ G has a unique decomposition
g = g1g2 with g1 ∈ G1 and g2 ∈ G2.

The affine group Aff(V ) has a structure which is similar. The translation
group V ∼= {(v,1) : v ∈ V } and the linear group GL(V ) ∼= {0} × GL(V ) are
subgroups, and each element (v, g) has a unique representation as a product
(v,1)(0, g), but in this case GL(V ) is not a normal subgroup, whereas V
is normal. The following lemma introduces a concept that is important to
understand the structure of groups which have similar decompositions.

In the following we write Aut(G) for the set of automorphisms of the group
G and note that this set is a group under composition of maps. In particular
the inverse of a group automorphism is an automorphism.

Lemma 1.2.3. (a) Let N and H be groups, write Aut(N) for the group of all
automorphisms of N , and suppose that δ : H → Aut(N) is a group homomor-
phism. Then we define a multiplication on N ×H by

(n, h)(n′, h′) := (nδ(h)(n′), hh′). (1.1)

This multiplication turns N × H into a group denoted by N oδ H, where
N ∼= N × {e} is a normal subgroup, H ∼= {e} × H is a subgroup, and each
element g ∈ N oδ H has a unique representation as g = nh, n ∈ N , h ∈ H.

(b) If, conversely, G is a group, N E G a normal subgroup and H ⊆ G
a subgroup with the property that the multiplication map m : N × H → G is
bijective, i.e., NH = G and N ∩H = {e}, then
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δ : H → Aut(N), δ(h)(n) := hnh−1 (1.2)

is a group homomorphism, and the map

m : N oδ H → G, (n, h) 7→ nh

is a group isomorphism.

Proof. (a) We have to verify the associativity of the multiplication and the
existence of an inverse. The associativity follows from

(
(n, h)(n′, h′)

)
(n′′, h′′)

= (nδ(h)(n′), hh′)(n′′, h′′) = (nδ(h)(n′)δ(hh′)(n′′), hh′h′′)

= (nδ(h)(n′)δ(h)
(
δ(h′)(n′′)

)
, hh′h′′) = (nδ(h)

(
n′δ(h′)(n′′)

)
, hh′h′′)

= (n, h)(n′δ(h′)(n′′), h′h′′) = (n, h)
(
(n′, h′)(n′′, h′′)

)
.

With (1.1) we immediately get the formula for the inverse

(n, h)−1 = (δ(h−1)(n−1), h−1). (1.3)

(b) Since

δ(h1h2)(n) = h1h2n(h1h2)−1 = h1(h2nh−1
2 )h−1

1 = δ(h1)δ(h2)(n),

the map δ : H → Aut(N) is a group homomorphism. Moreover, the multipli-
cation map m satisfies

m(n, h)m(n′, h′) = nhn′h′ = (nhn′h−1)hh′ = m((n, h)(n′, h′)),

hence is a group homomorphism. It is bijective by assumption. ut
Definition 1.2.4. The group N oδ H constructed in Lemma 1.2.3 from the
data (N, H, δ) is called the semidirect product of N and H with respect to δ.
If it is clear from the context what δ is, then we simply write N oH instead
of N oδ H.

If δ is trivial, i.e., δ(h) = idN for each h ∈ H, then N oδ H ∼=
N × H is a direct product. In this sense semidirect products generalize di-
rect products. Below we shall see several concrete examples of groups which
can most naturally be described as semidirect products of known groups.

One major point in studying semidirect products is that for any normal
subgroup N E G, we think of the groups N and G/N as building blocks of
the group G. For each semidirect product G = N o H we have G/N ∼= H,
so that the two building blocks N and G/N ∼= H are the same, although the
groups might be quite different, f.i. Aff(V ) and V ×GL(V ) are very different
groups: In the latter group N = V × {1} is a central subgroup and in the
first group it is not. On the other hand there are situations where G cannot
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be build from N and H := G/N as a semidirect product. This works if and
only if there exists a group homomorphism σ : G/N → G with σ(gN) ∈ gN
for each g ∈ G. An example where such a homomorphism does not exist is

G = C4 := {z ∈ C× : z4 = 1} and N := C2 := {z ∈ C× : z2 = 1} E G.

In this case G 6∼= N oH for any group H because then H ∼= G/N ∼= C2, so
that the fact that G is abelian would lead to G ∼= C2 × C2, contradicting the
existence of elements of order 4 in G.

Example 1.2.5. (a) We know already the following examples of semidirect
products from Definition 1.2.2: The affine group Aff(V ) of a vector space is
isomorphic to the semidirect product

Aff(V ) ∼= V oδ GL(V ), δ(g)(v) = gv.

Similarly, we have

Affn(R) ∼= Rn oδ GLn(R), δ(g)(v) = gv.

We furthermore have the subgroup Ison(R), which, in view of

On(R) = {g ∈ GLn(R) : (∀x ∈ Rn)‖gx‖ = ‖x‖}
(cf. Exercise 1.2.6) satisfies

Ison(R) ∼= Rn oOn(R).

The group of euclidian motions of Rn is the subgroup

Motn(R) := Rn o SOn(R)

of those isometries preserving orientation.
(b) For each group G we can form the semidirect product group

Goδ Aut(G), δ(ϕ)(g) = ϕ(g).

Example 1.2.6 (The concrete Galilei1 group). We consider the vector
space

M := R4 ∼= R3 × R
as the space of pairs (q, t) describing events in a four-dimensional (nonrela-
tivistic) spacetime. Here q stands for the spatial coordinate of the event and
t for the (absolute) time of the event. The set M is called Galilei spacetime.
There are three types of symmetries of this spacetime:
1 Galileo Galilei (1564–1642), was an italian mathematician and philosopher. He

held professorships in Pisa and Padua, later he worked at the court in Florence.
The Galilei group is the symmetry group of nonrelativistic kinematics in three
dimensions.
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(1) The special Galilei transformations:

Gv : R3 × R→ R3 × R, (q, t) 7→ (q + vt, t) =
(
1 v
0 1

)(
q
t

)

describing movements with constant velocity v.
(2) Rotations:

R3 × R→ R3 × R, (q, t) 7→ (Aq, t), A ∈ SO3(R),

(3) Space translations

Tv : R3 × R→ R3 × R, (q, t) 7→ (q + v, t),

and time translations

Tβ : R3 × R→ R3 × R, (q, t) 7→ (q, t + β).

All these maps are affine maps on R4. The subgroup Γ ⊆ Aff4(R) gener-
ated by the maps in (1), (2) and (3) is called the proper (orthochrone) Galilei
group. The full Galilei group Γext is obtained if we add the time reversion
T (q, t) := (q,−t) and the space reflection S(q, t) := (−q, t). Both are not
contained in Γ .

Roughly stated, Galilei’s relativity principle states that the basic physical
laws of closed systems are invariant under transformations of the proper Galilei
group (see [Sch95], Sect. II.2, for more information on this perspective). It
means that Γ is the natural symmetry group of nonrelativistic mechanics.

To describe the structure of the group Γ , we first observe that by (3) it
contains the subgroup Γt

∼= (R4, +) of all spacetime translations. The maps
under (1) and (2) are linear maps on R4. They generate the group

Γ` := {(v, A) : A ∈ SO3(R), v ∈ R3},

where we write (v, A) for the affine map given by (q, t) 7→ (Aq + vt, t). The
composition of two such maps is given by

(v, A).
(
(v′, A′).(q, t)

)
= (A(A′q + v′t) + vt, t) = (AA′q + (Av′ + v)t, t),

so that the product in Γ` is

(v,A)(v′, A′) = (v + Av′, AA′).

We conclude that
Γ`
∼= R3 o SO3(R)

is isomorphic to the group Mot3(R) of motions of euclidian space. We thus
obtain the description

Γ ∼= R4 o (R3 o SO3(R)) ∼= R4 oMot3(R),
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where Mot3(R) acts on R4 by (v,A).(q, t) := (Aq + vt, t), which corresponds
to the natural embedding Aff3(R) → GL4(R) discussed in Example 1.2.2.

For the extended Galilei group one easily obtains

Γext
∼= Γ o {S, T, ST,1} ∼= Γ o (C2 × C2),

because the group {S, T, ST,1} generated by S and T is a four element group
intersecting the normal subgroup Γ trivially. Therefore the description as a
semidirect product follows from the second part of Lemma 1.2.3.

Example 1.2.7 (The concrete Poincaré group). In the preceding ex-
ample we have viewed four-dimensional spacetime as a product of space R3

with time R. This picture changes if one wants to incorporate special rela-
tivity. Here the underlying spacetime is Minkowski space, which is M = R4,
endowed with the Lorentz form

β(x, y) := x1y1 + x2y2 + x3y3 − x4y4.

The group
L := O3,1(R) ∼= O(R4, β)

is called the Lorentz group. This is the symmetry group of relativistic (classi-
cal) mechanics.

The Lorentz group has several important subgroups:

L+ := SO3,1(R) := L ∩ SL4(R) and L↑ := {g ∈ L : g44 ≥ 1}.

The condition g44 ≥ 1 comes from the observation that for e4 = (0, 0, 0, 1)>

we have

−1 = β(e4, e4) = β(ge4, ge4) = g2
14 + g2

24 + g2
34 − g2

44,

so that g2
44 ≥ 1. Therefore either g44 ≥ 1 or g44 ≤ −1. To understand geomet-

rically why L↑ is a subgroup, we consider the quadratic form

q(x) := β(x, x) = x2
1 + x2

2 + x2
3 − x2

4

on R4. Since q is invariant under L, the action of the group L on R4 preserves
the double cone

C := {x ∈ R4 : q(x) ≤ 0} = {x ∈ R4 : |x4| ≥ ‖(x1, x2, x3)‖}.

Let

C± := {x ∈ C : ± x4 ≥ 0} = {x ∈ R4 : ± x4 ≥ ‖(x1, x2, x3)‖}.

Then C = C+∪C− with C+∩C− = {0} and the sets C± are both convex cones,
as follows easily from the convexity of the norm function on R3 (Exercise).
Each element g ∈ L preserves the set C\{0} which has the two arc-components
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C± \ {0}. The continuity of the map g : C \ {0} → C \ {0} now implies that
we have two possibilities. Either gC+ = C+ or gC+ = C−. In the first case,
g44 ≥ 1 and in the latter case g44 ≤ −1.

In the physical literature one sometimes finds SO3,1(R) as the notation for
L↑+ := L+ ∩ L↑, which is inconsistent with the standard notation for matrix
groups.

The (proper) Poincaré group is the corresponding affine group

P := R4 o L↑+.

This group is the identity component of the inhomogeneous Lorentz group
R4 o L. Some people use the name Poincaré group only for the universal
covering group P̃ of P which is isomorphic to R4 o SL2(C), as we shall see
below in Example 8.5.16(3).

The topological structure of the Poincaré- and Lorentz group will become
more transparent when we have refined information on the polar decomposi-
tion obtained from the exponential function (Example 3.3.4). Then we shall
see that the Lorentz group L has four arc-components

L↑+, L↓+, L↑− and L↓−,

where
L± := {g ∈ L : det g = ±1}, L↓ := {g ∈ L : g44 ≤ −1}

and
L↑± := L± ∩ L↑, L↓± := L± ∩ L↓.

Exercises for Section 1.2

Exercise 1.2.1. (a) Let β be a symmetric bilinear form on a finite-dimensional
complex vector space V . Show that there exists an orthogonal basis v1, . . . , vn

with β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = 0 for j > p.
(b) Show that each invertible symmetric matrix B ∈ GLn(C) can be writ-

ten as B = AA> for some A ∈ GLn(C).

Exercise 1.2.2. Let β be a symmetric bilinear form on a finite-dimensional
real vector space V . Show that there exists an orthogonal basis v1, . . . , vp+q

with β(vj , vj) = 1 for j = 1, . . . , p, β(vj , vj) = −1 for j = p+1, . . . , p+ q, and
β(vj , vj) = 0 for j > p + q.

Exercise 1.2.3. Let β be a skew-symmetric bilinear form on a finite-dimen-
sional vector space V which is nondegenerate in the sense that β(v, V ) = {0}
implies v = 0. Show that there exists a basis v1, . . . , vn, w1, . . . , wn of V with

β(vi, wj) = δij and β(vi, vj) = β(wi, wj) = 0.
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Exercise 1.2.4 (Metric characterization of midpoints). Let (X, ‖·‖) be
a normed space and x, y ∈ X distinct points. Let

M0 := {z ∈ X : ‖z − x‖ = ‖z − y‖ = 1
2‖x− y‖} and m :=

x + y

2
.

For a subset A ⊆ X we define its diameter

δ(A) := sup{‖a− b‖ : a, b ∈ A}.

Show that:

(1) If X is a pre-Hilbert space (i.e., a vector space with a hermitian scalar
product), then M0 = {m} is a one-element set.

(2) ‖z −m‖ ≤ 1
2δ(M0) ≤ 1

2‖x− y‖ for z ∈ M0.
(3) For n ∈ N we define inductively:

Mn := {p ∈ Mn−1 : (∀z ∈ Mn−1) ‖z − p‖ ≤ 1
2δ(Mn−1)}.

Then, for each n ∈ N:
(a) Mn is a convex set.
(b) Mn is invariant under the point reflection sm(a) := 2m− a in m.
(c) m ∈ Mn.
(d) δ(Mn) ≤ 1

2δ(Mn−1).
(4)

⋂
n∈NMn = {m}.

Exercise 1.2.5 (Isometries of normed spaces are affine maps). Let
(X, ‖ ·‖) be a normed space endowed with the metric d(x, y) := ‖x−y‖. Show
that each isometry ϕ : (X, d) → (X, d) is an affine map by using the following
steps:

(1) It suffices to assume that ϕ(0) = 0 and to show that this implies that ϕ is
a linear map.

(2) ϕ(x+y
2 ) = 1

2 (ϕ(x) + ϕ(y)) for x, y ∈ X.
(3) ϕ is continuous.
(4) ϕ(λx) = λϕ(x) for λ ∈ 2Z ⊆ R.
(5) ϕ(x + y) = ϕ(x) + ϕ(y) for x, y ∈ X.
(6) ϕ(λx) = λϕ(x) for λ ∈ R.

Exercise 1.2.6. Let β : V × V → V be a symmetric bilinear form on the
vector space V and

q : V → V, v 7→ β(v, v)

the corresponding quadratic form. Then for ϕ ∈ End(V ) the following are
equivalent:

(1) (∀v ∈ V ) q(ϕ(v)) = q(v).
(2) (∀v, w ∈ V ) β(ϕ(v), ϕ(w)) = β(v, w).
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Exercise 1.2.7. We consider R4 = R3 × R, where the elements of R4 are
considered as space time events (q, t), q ∈ R3, t ∈ R. On R4 we have the linear
(time) functional

∆ : R4 → R, (x, t) 7→ t

and we endow ker∆ ∼= R3 with the euclidian scalar product

β(x, y) := x1y1 + x2y2 + x3y3.

Show that

H := {g ∈ GL4(R) : g ker∆ ⊆ ker∆, g|ker ∆ ∈ O3(R)} ∼= R3 o (O3(R)× R×)

and
G := {g ∈ H : ∆ ◦ g = ∆} ∼= R3 oO3(R).

In this sense the linear part of the Galilei group (extended by the space reflec-
tion S) is isomorphic to the symmetry group of the triple (R4, β,∆), where ∆
represents a universal time function and β is the scalar product on ker∆. In
the relativistic picture (Example 1.2.7), the time function is combined with
the scalar product in the Lorentz form.

Exercise 1.2.8. On the four-dimensional real vector space V := Herm2(C)
we consider the symmetric bilinear form β given by

β(A,B) := tr(AB)− tr A trB.

Show that:

(1) The corresponding quadratic form is given by q(A) := β(A, A) = −2 det A.
(2) Show that (V, β) ∼= R3,1 by finding a basis E1, . . . , E4 of Herm2(C) with

q(a1E1 + . . . + a4E4) = a2
1 + a2

2 + a2
3 − a2

4.

(3) For g ∈ GL2(C) and A ∈ Herm2(C) the matrix gAg∗ is hermitian and
satisfies

q(gAg∗) = | det(g)|2q(A).

(4) For g ∈ SL2(C) we define a linear map ρ(g) ∈ GL(Herm2(C)) by
ρ(g)(A) := gAg∗. Then we obtain a homomorphism

ρ : SL2(C) → O(V, β) ∼= O3,1(R).

(5) Show that ker ρ = {±1}.
Exercise 1.2.9. Let β : V × V → K be a bilinear form.
(1) Show that there exists a unique symmetric bilinear form β+ and a unique
skew-symmetric bilinear form β− with β = β+ + β−.
(2) Aut(V, β) = O(V, β+) ∩ Sp(V, β−).
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Exercise 1.2.10. (a) Let G be a group, N ⊆ G a normal subgroup and
q : G → G/N, g 7→ gN the quotient homomorphism. Show that:
(1) If G ∼= N oδ H for a subgroup H, then H ∼= G/N .
(2) There exists a subgroup H ⊆ G with G ∼= N oδ H if and only if there
exists a group homomorphism σ : G/N → G with q ◦ σ = idG/N .

(b) Show that
GLn(K) ∼= SLn(K)oδ K×

for a suitable homomorphism δ : K× → Aut(SLn(K)).

Exercise 1.2.11. Show that Op,q(C) ∼= Op+q(C) for p, q ∈ N0, p + q > 0.

Exercise 1.2.12. Let (V, β) be a euclidian vector space, i.e., a real vector
space endowed with a positive definite symmetric bilinear form β. An element
σ ∈ O(V, β) is called an orthogonal reflection if σ2 = 1 and ker(σ − 1) is a
hyperplane. Show that for any finite-dimensional euclidian vector space (V, β),
the orthogonal group O(V, β) is generated by reflections.

Exercise 1.2.13. (i) Show that, if n is odd, each g ∈ SOn(R) has the eigen-
value 1.

(ii) Show that each g ∈ On(R)− has the eigenvalue −1.

Exercise 1.2.14. Let V be a K-vector space. An element ϕ ∈ GL(V ) is called
a transvection if dimK

(
im (ϕ − idV )

)
= 1 and im (ϕ − idV ) ⊆ ker(ϕ − idV ).

Show that:

(i) For each transvection ϕ, there exist a vϕ ∈ V and a αϕ ∈ V ∗ such that
ϕ(v) = v − αϕ(v)vϕ and αϕ(vϕ) = 0.

(ii) For each transvection ϕ, there exist a vϕ ∈ V and a αϕ ∈ V ∗ such that
ϕ(v) = v − αϕ(v)vϕ and αϕ(vϕ) = 0.

(ii) If dim V < ∞, then det(ϕ) = 1 for each transvection ϕ.
(iii) If ψ ∈ GL(V ) commutes with all transvections, then every element of V

is an eigenvector of ψ, so that ψ ∈ K× idV .
(iv) Z(GL(V )) = K×1.
(v) If dim V < ∞, then Z(SL(V )) = Γ1, where Γ := {z ∈ K× : zn = 1}.
Exercise 1.2.15. Let V be a finite-dimensional K-vector space for K = R or
C and β be a skew symmetric bilinear form on V . Show that:

(i) A transvection ϕ(v) = v − αϕ(v)vϕ preserves β if and only if

(∀v, w ∈ V ) : αϕ(v)β(vϕ, w) = αϕ(w)β(vϕ, v).

If, in addition, β is nondegenerate, we call ϕ a symplectic transvection.
(ii) If β is nondegenerate and ψ ∈ GL(V ) commutes with all symplectic

transvections, then every vector in v is an eigenvector of ψ.



1.3 Quaternionic Matrix Groups 27

Exercise 1.2.16. Let V be a finite-dimensional K-vector space for K = R or
C and and β be a non-degenerate symmetric bilinear form on V . An involution
ϕ ∈ O(V, β) is called an orthogonal reflection if dimK

(
im (ϕ−idV )

)
= 1. Show

that:

(i) For each orthogonal reflection ϕ, there exists a non-isotropic vϕ ∈ V such
that ϕ(v) = v − 2 β(v,vα)

β(vα,vα) .
(ii) If ψ ∈ GL(V ) commutes with all orthogonal reflections, then every non-

isotropic vector for β is an eigenvector of ψ, and this implies that ψ ∈
K× idV .

(iv) Z
(
O(V, β)

)
= {±1}.

1.3 Quaternionic Matrix Groups

It is an important conceptual step to extend the real number field R to the field
C of complex numbers. There are numerous motivations for this extension.
The most obvious one is that not every algebraic equation with real coefficients
has a solution in R, and that C is algebraically closed in the sense that every
nonconstant polynomial, even with complex coefficients, has zeros in C. This is
the celebrated Fundamental Theorem of Algebra. For analysis, the main point
in passing from R to C is that the theory of holomorphic functions permits to
understand many functions showing up in real analysis from a more natural
viewpoint, which leads to a thorough understanding of singularities and of
integrals which can be computed with the calculus of residues.

It therefore is a natural question whether there exists an extension F of the
field C which would similarly enrich analysis and algebra if we pass from C to
F. It is an important algebraic result that there exists no finite-dimensional
field extension of R other than C (cf. Exercise 1.3.4). This is most naturally
obtained in Galois theory, i.e., the theory of extending fields by adding zeros
of polynomials. It is closely related to the fact that every real polynomial is
a product of linear factors and factors of degree 2. Fortunately this does not
mean that one has to give up, but that one has to sacrifice one of the axioms
of a field to obtain something new.

We call a unital (associative) algebra A a skew field or a division algebra
if every nonzero element a ∈ A× is invertible, i.e., A = A× ∪ {0}. Now the
question is: Are there any division algebras which are finite-dimensional real
vector spaces, apart from R and C. Here the answer is yes: there is the four-
dimensional division algebra H of quaternions, and this is the only finite-
dimensional real noncommutative division algebra.

The easiest way to define the quaternions is to take

H :=
{ (

a −b
b a

)
∈ M2(C) : a, b ∈ C

}
.

Lemma 1.3.1. H is a real subalgebra of M2(C) which is a division algebra.
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Proof. It is clear that H is a real vector subspace of M2(C). For the product
of elements of H we obtain

(
a −b
b a

) (
c −d
d c

)
=

(
ac− bd −ad− bc

bc + ad −bd + ac

)
∈ H.

This implies that H is a real subalgebra of M2(C).
We further have

det
(

a −b
b a

)
= |a|2 + |b|2, (1.4)

so that every nonzero element of H is invertible in M2(C), and its inverse

(
a −b
b a

)−1

=
1

|a|2 + |b|2
(

a b
−b a

)
(1.5)

is again contained in H. ut
A convenient basis for H is given by

1, I :=
(

i 0
0 −i

)
, J :=

(
0 −1
1 0

)
and K := IJ =

(
0 −i
−i 0

)
.

Then the multiplication in H is completely determined by the relations

I2 = J2 = K2 = −1 and IJ = −JI = K.

Here C ∼= R1+RI, but H is not a complex algebra because the multiplication
in H is not a complex bilinear map.

Since H is a division algebra, its group of units is H× = H \ {0}, and (1.4)
implies that

H× = H ∩GL2(C).

On H we consider the euclidean norm given by

|x| :=
√

det x,
∣∣∣
(

a −b
b a

) ∣∣∣ =
√
|a|2 + |b|2.

From the multiplicativity of the determinant we immediately derive that

|xy| = |x| · |y| for x, y ∈ H. (1.6)

It follows in particular that S := {x ∈ H : |x| = 1} is a subgroup of H. In
terms of complex matrices, we have S = SU2(C).

Many of the standard results from linear algebra generalize from vector
spaces and matrices over fields to modules and matrices over division rings. If
the division ring is noncommutative, however, one has to be careful on which
side one wants to let the ring act. We want to recover the usual identification
of linear maps with matrices acting from the left on column vectors such that
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the composition of maps corresponds with matrix multiplication. To this end
one has to consider the column vectors with entries in H as a right H-module
via componentwise multiplication. See Exercises 1.3.1 and 1.3.2 for the basics
of quaternionic linear algebra (a systematic treatment of linear algebra on
division rings can be found in [Bou70], Chap. II).

In contrast to bases, linear maps and representing matrices, determinants
do not have a straightforward generalization to linear algebra over division
rings. Thus we cannot characterize the quaternionic general linear group
GLn(H) of invertible elements in the ring Mn(H) of n×n-matrices with entries
in H via an H-valued determinant.

Proposition 1.3.2. View Mn(H) as a real subalgebra of M2n(C) writing each
entry of A ∈ Mn(H) as a complex 2× 2-matrix. Then

GLn(H) = {A ∈ Mn(H) : detC(A) 6= 0},
where detC : M2n(C) → C is the ordinary determinant.

Proof. It suffices to show that Mn(H) ∩ GL2n(C) ⊆ GLn(H). So pick A ∈
Mn(H) which is invertible in M2n(C). Then the left multiplication λA by A on
Mn(H) is injective, hence bijective. Thus we have A−1 = λA(1) ∈ Mn(H). ut

It follows from Proposition 1.3.2 that GLn(H) is a (closed) subgroup of
GL2n(C). Moreover, it allows us to define the quaternionic special linear group

SLn(H) := GLn(H) ∩ SL2n(C).

Observe that H as a subset of M2(C) can be characterized as

H = {A ∈ M2(C) : AJ = JA},

where J =
(

0 1
−1 0

)
is the matrix used to build the symplectic group Sp2(K)

in Definition 1.2.1. Thus GLn(H), viewed as a subgroup of GL2n(C) is given
by

GLn(H) = {A ∈ GL2n(C) : AJn = JnA},
where Jn is the block diagonal matrix in M2n(C) having J as diagonal entries.

It turns out that inside GLn(H) one can define analogs of unitary groups
which are closely related to the symplectic groups. We note first that we can
write the norm on H as

|x| =
√

x∗x,

where x∗ = a1 − bI − cJ − dK for x = a1 + bI + cJ + dK. We extend this
conjugation to matrices with entries in H setting




x11 x12 · · · x1m

x21 x22 · · · x2m

...
. . . . . .

...
xn1 xn2 · · · xmn




∗

=




x∗11 x∗21 · · · x∗m1

x∗12 x∗22 · · · x∗m2
...

. . . . . .
...

x∗1n x∗2n · · · x∗nm


 .
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Note that with respect to the embedding Mn(H) → M2n(C) this involution
agrees with the standard involution A 7→ A∗ = A

>
on M2n(C). Now

Hn ×Hn → H, (v, w) 7→ v∗w

defines a quaternionic inner product on Hn and v 7→ |v| := √
v∗v is a euclidean

norm on the real vector space Hn ∼= R4n.

Definition 1.3.3. For p + q = n ∈ N view the matrix Ip,q as an element of
Mn(H) and define quaternionic unitary groups via

Up,q(H) := {g ∈ GLn(H) : g∗Ip,qg = Ip,q}.
If p or q is zero, then we simply write Un(H).

Proposition 1.3.4. Viewed as a subset of GL2n(C), the quaternionic unitary
group Up,q(H), is given by

Up,q(H) = U2p,2q(C) ∩ Sp(C2n, β),

where β : C2n × C2n → C is the skew-symmetric bilinear form given by the
matrix J>n I2p,2q. The group Sp(C2n, β) is conjugate to Sp2n(C) in GL2n(C).
In particular, Un(H) is isomorphic to a compact subgroup of Sp2n(C).

Proof. Let g ∈ Up,q(H) be viewed as an element of GL2n(C). Then we have
g∗I2p,2qg = I2p,2q and gJn = Jng. Therefore J>n g∗ = g>J>n and

g>J>n I2p,2qg = J>n I2p,2q. ut

Exercises for Section 1.3

For the first two exercises recall that a right module M over a (noncommuta-
tive) ring R is an abelian group M together with a map M×R → M, (m, r) 7→
mr such that r 7→ (m 7→ mr) defines a ring homomorphism R → End(M).

Exercise 1.3.1. Let V be a right H-module. Show that

(i) V is free, i.e. it admits an H-basis.
(ii) If V is finitely generated as an H-module, then it admits a finite H-basis.

In this case all H-bases have the same number of elements. This number
is called the dimension of V over H and denoted by dimH(V ).

Exercise 1.3.2. Let V and W be two rightH-modules withH-bases v1, . . . , vm

and w1, . . . , wn. Given an H-linear map ϕ : V → W , write

ϕ(vj) =
n∑

k=1

wkakj

with akj ∈ H. Show that
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(i) If ϕ(v) = w with v =
∑m

r=1 vrxr and W =
∑s

s=1 wsys, then



y1

y2

...
yn


 =




a11 a12 · · · a1m

a21 a22 · · · a2m

...
. . . . . .

...
an1 an2 · · · amn







x1

y2

...
xm


 .

(ii) The map ϕ 7→ (akj) is a bijection between the set ofH-linear maps ϕ : V →
W and matrices A ∈ Mn(H) intertwining the composition of maps with
the ordinary matrix multiplication (whenever composition makes sense).

Exercise 1.3.3. Show that the group Un(H) is compact and connected.

Exercise 1.3.4. Show that each finite-dimensional complex division algebra
is one-dimensional.

Notes on Chapter 1

The material covered in this chapter is standard and only touches the surfaces
of what is known about the structure of matrix groups. For much more detailed
presentations see [GW09] or [Gr01].
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The Matrix Exponential Function

In this chapter we study one of the central tools in Lie theory: the matrix
exponential function. This function has various applications in the structure
theory of matrix groups. First of all, it is naturally linked to the one-parameter
subgroups, and it turns out that the local group structure of GLn(K) in a
neighborhood of the identity is determined by its one-parameter subgroups.

In the first section of this chapter we provide some tools to show that ma-
trix valued functions defined by convergent power series are actually smooth.
This is applied in the subsequent sections to the exponential and the loga-
rithm functions. Then we discuss restrictions of the exponential function to
certain subsets such as small 0-neighborhoods, the set of nilpotent matrices
and the set of hermitian matrices. Finally, we derive the Baker–Campbell–
Dynkin–Hausdorff formula expressing the product of two exponentials near
the identity in terms of the Hausdorff series which involves only commutator
brackets.

In the following chapter, we shall use the matrix exponential function to
generalize the polar decomposition given in Proposition 1.1.5 to a larger class
of groups. This will lead to topological information on various concrete matrix
groups.

2.1 Smooth Functions Defined by Power Series

First we put the structure that we have on the space Mn(K) of (n×n)-matrices
into a slightly more general context.

Definition 2.1.1. (a) A vector space A together with a bilinear map
A × A → A, (x, y) 7→ x · y (called multiplication) is called an (associative)
algebra if the multiplication is associative in the sense that

(x · y) · z = x · (y · z) for x, y, z ∈ A.

We write xy := x · y for the product of x and y in A.
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The algebra A is called unital if it contains an element 1 satisfying 1a =
a1 = a for each a ∈ A.

(b) A norm ‖ · ‖ on an algebra A is called submultiplicative if

‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A.

Then the pair (A, ‖ · ‖) is called a normed algebra. If, in addition, A is a
complete normed space, then it is said to be a Banach algebra.

Remark 2.1.2. Any finite-dimensional normed space is complete, so that
each finite-dimensional normed algebra is a Banach algebra.

Example 2.1.3. Endowing Mn(K) with the operator norm with respect to
the euclidian norm on Kn defines on Mn(K) the structure of a unital Banach
algebra.

Lemma 2.1.4. If A is a unital Banach algebra, then we endow the vector
space TA := A⊕A with the norm ‖(a, b)‖ := ‖a‖+‖b‖ and the multiplication

(a, b)(a′, b′) := (aa′, ab′ + a′b).

Then TA is a unital Banach algebra with identity (1, 0).
We put ε := (0, 1). Then each element of TA can be written in a unique

fashion as (a, b) = a + bε and the multiplication satisfies

(a + bε)(a′ + b′ε) = aa′ + (ab′ + a′b)ε.

In particular, ε2 = 0.

Proof. That TA is a unital algebra is a trivial verification. That the norm is
submultiplicative follows from

‖(a, b)(a′, b′)‖ = ‖aa′‖+ ‖ab′ + a′b‖ ≤ ‖a‖ · ‖a′‖+ ‖a‖ · ‖b′‖+ ‖a′‖ · ‖b‖
≤ (‖a‖+ ‖b‖)(‖a′‖+ ‖b′‖) = ‖(a, b)‖ · ‖(a′, b′)‖.

This proves that (TA, ‖ · ‖) is a unital normed algebra, the unit being
1 = (1, 0). The completeness of TA follows easily from the completeness
of A (Exercise). ut
Lemma 2.1.5. Let cn ∈ K and r > 0 with

∑∞
n=0 |cn|rn < ∞. Further let A

be a finite-dimensional unital Banach algebra. Then

f : Br(0) := {x ∈ A : ‖x‖ < r} → A, x 7→
∞∑

n=0

cnxn

defines a smooth function. Its derivative is given by

df(x) =
∞∑

n=0

cndpn(x),
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where pn(x) = xn is the nth power map whose derivative is given by

dpn(x)y = xn−1y + xn−2yx + . . . + xyxn−2 + yxn−1.

For ‖x‖ < r and y ∈ A with xy = yx we obtain in particular

dpn(x)y = nxn−1y and df(x)y =
∞∑

n=1

cnnxn−1y.

Proof. First we observe that the series defining f(x) converges for ‖x‖ < r by
the Comparison Test (for series in Banach spaces). We shall prove by induction
over k ∈ N that all such functions f are Ck-functions.
Step 1: First we show that f is a C1-function. We define αn : A → A by

αn(h) := xn−1h + xn−2hx + . . . + xhxn−2 + hxn−1.

Then αn is a continuous linear map with ‖αn‖ ≤ n‖x‖n−1. Furthermore

pn(x + h) = (x + h)n = xn + αn(h) + rn(h),

where

‖rn(h)‖ ≤
(

n

2

)
‖h‖2‖x‖n−2 +

(
n

3

)
‖h‖3‖x‖n−3 + . . . + ‖h‖n

=
∑

k≥2

(
n

k

)
‖h‖k‖x‖n−k.

In particular limh→0
‖rn(h)‖
‖h‖ = 0, and therefore pn is differentiable in x with

dpn(x) = αn. The series

β(h) :=
∞∑

n=0

cnαn(h)

converges absolutely in End(A) by the Ratio Test since ‖x‖ < r:

∞∑
n=0

|cn|‖αn‖ ≤
∞∑

n=0

|cn| · n · ‖x‖n−1 < ∞.

We thus obtain a linear map β(x) ∈ End(A) for each x with ‖x‖ < r.
Now let h satisfy ‖x‖+ ‖h‖ < r, i.e., ‖h‖ < r − ‖x‖. Then

f(x + h) = f(x) + β(x)(h) + r(h), r(h) :=
∞∑

n=2

cnrn(h),

where
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‖r(h)‖ ≤
∞∑

n=2

|cn|‖rn(h)‖ ≤
∞∑

n=2

|cn|
n∑

k=2

(
n

k

)
‖h‖k‖x‖n−k

≤
∞∑

k=2

( ∞∑

n=k

|cn|
(

n

k

)
‖x‖n−k

)
‖h‖k < ∞

follows from ‖x‖+ ‖h‖ < r because

∑

k

∑

n≥k

|cn|
(

n

k

)
‖x‖n−k‖h‖k =

∑
n

|cn|(‖x‖+ ‖h‖)n ≤
∑

n

|cn|rn < ∞.

Therefore the continuity of real-valued functions represented by a power series
yields

lim
h→0

‖r(h)‖
‖h‖ =

∞∑

k=2

( ∞∑

n=k

|cn|
(

n

k

)
‖x‖n−k

)
0k−1 = 0.

This proves that f is a C1-function with the required derivative.
Step 2: To complete our proof by induction, we now show that if all functions
f as above are Ck, then they are also Ck+1. In view of Step 1, this implies
that they are smooth.

To set up the induction, we consider the Banach algebra TA from
Lemma 2.1.4 and apply Step 1 to this algebra to obtain a smooth function

F : {x + εh ∈ TA : ‖x‖+ ‖h‖ = ‖x + εh‖ < r} → TA

F (x + εh) =
∞∑

n=0

cn · (x + εh)n,

We further note that (x + εh)n = xn + dpn(x)h · ε. This implies the formula

F (x + εh) = f(x) + εdf(x)h,

i.e., that the extension F of f to TA describes the first order Taylor expansion
of f in each point x ∈ A. Our induction hypothesis implies that F is a Ck-
function.

Let x0 ∈ A with ‖x0‖ < r and pick a basis h1, . . . , hd for A with
‖hi‖ < r − ‖x0‖. Then all functions x 7→ df(x)hi are defined and Ck on
a neighborhood of x0, and this implies that the function

Br(0) → Hom(A,A), x 7→ df(x)

is Ck. This in turn implies that f is Ck+1. ut
The following proposition shows in particular that inserting elements of a

Banach algebra in power series is compatible with composition.
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Proposition 2.1.6. (a) On the set PR of power series of the form

f(z) :=
∞∑

n=0

anzn, an ∈ K

and converging on the open disc BR(0) := {z ∈ K : |z| < R}, we define for
r < R:

‖f‖r :=
∞∑

n=0

|an|rn.

Then ‖ · ‖r is a norm with the following properties:

(1) ‖ · ‖r is submultiplicative: ‖fg‖r ≤ ‖f‖r‖g‖r.
(2) The polynomials fN (z) :=

∑N
n=0 anzn satisfy ‖f − fN‖r → 0.

(3) If A is a finite-dimensional Banach algebra and x ∈ A satisfies ‖x‖ < R,
then f(x) :=

∑∞
n=0 anxn converges. Moreover,

‖f(x)‖ ≤ ‖f‖r for ‖x‖ ≤ r < R,

and
(f · g)(x) = f(x)g(x) for f, g ∈ PR.

(b) If g ∈ PS with ‖g‖s < R for all s < S and f ∈ PR, then f ◦ g ∈ PS

defines an analytic function on the open disc of radius S, and for x ∈ A with
‖x‖ < S we have ‖g(x)‖ < R and the Composition Formula

f(g(x)) = (f ◦ g)(x). (2.1)

Proof. (1) First we note that PR is the set of all power series f(z) =∑∞
n=0 anzn for which ‖f‖r < ∞ holds for all r < R. We leave the easy

argument that ‖ · ‖r is a norm to the reader. If ‖f‖r, ‖g‖r < ∞ holds for
g(z) =

∑∞
n=0 bnzn, then the Cauchy Product Formula (Exercise 2.1.3) im-

plies that

‖fg‖r =
∞∑

n=0

∣∣∣
n∑

k=0

akbn−k

∣∣∣rn ≤
∞∑

n=0

n∑

k=0

|ak| |bn−k|rkrn−k = ‖f‖r‖g‖r.

(2) follows immediately from ‖f − fN‖r =
∑

n>N |an|rn → 0.
(3) The relation ‖f(x)‖ ≤ ‖f‖r follows from ‖anxn‖ ≤ |an|rn and the

Domination Test for absolutely converging series in a Banach space. The rela-
tion (f · g)(x) = f(x)g(x) follows directly from the Cauchy Product Formula
because the series f(x) and g(x) converge absolutely (Exercise 2.1.3).

(b) We may w.l.o.g. assume that K = C because everything on the
case K = R can be obtained by restriction. Our assumption implies that
g(BS(0)) ⊆ BR(0), so that f ◦ g defines a holomorphic function on the open
disc BS(0). For s < S and ‖g‖s < r < R we then derive
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∞∑
n=0

‖angn‖s ≤
∞∑

n=0

|an|‖g‖n
s ≤ ‖f‖r.

Therefore the series f◦g =
∑∞

n=0 angn converges absolutely in PS with respect
to ‖ · ‖s, and we thus obtain the estimate

‖f ◦ g‖s = lim
N→∞

‖
N∑

n=0

angn‖s ≤
∞∑

n=0

|an|‖g‖n
s ≤ ‖f‖r.

For s := ‖x‖ we obtain ‖g(x)‖ ≤ ‖g‖s < R, so that f(g(x)) is defined. For
s < r < R we then have

‖f(g(x))− fN (g(x))‖ ≤ ‖f − fN‖r → 0.

Likewise

‖(f ◦ g)(x)− (fN ◦ g)(x)‖ ≤ ‖(f ◦ g)− (fN ◦ g)‖s ≤ ‖f − fN‖r → 0,

and we get

(f ◦ g)(x) = lim
N→∞

(fN ◦ g)(x) = lim
N→∞

fN (g(x)) = f(g(x))

because the Composition Formula trivially holds if f is a polynomial. ut

Exercises for Section 2.1

Exercise 2.1.1. Let X1, . . . , Xn be finite-dimensional normed spaces and
β : X1 × . . .×Xn → Y an n-linear map.

(a) Show that β is continuous.
(b) Show that there exists a constant C ≥ 0 with

‖β(x1, . . . , xn)‖ ≤ C‖x1‖ · · · ‖xn‖ for xi ∈ Xi.

(c) Show that β is differentiable with

dβ(x1, . . . , xn)(h1, . . . , hn) =
n∑

j=1

β(x1, . . . , xj−1, hj , xj+1, . . . , xn).

Exercise 2.1.2. Let Y be a Banach space and an,m, n,m ∈ N, elements in
Y with ∑

n,m

‖an,m‖ := sup
N∈N

∑

n,m≤N

‖an,m‖ < ∞.

(a) Show that

A :=
∞∑

n=1

∞∑
m=1

an,m =
∞∑

m=1

∞∑
n=1

an,m

and that both iterated sums exist.
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(b) Show that for each sequence (Sn)n∈N of finite subsets Sn ⊆ N×N, n ∈ N,
with Sn ⊆ Sn+1 and

⋃
n Sn = N× N we have

A = lim
n∈N

∑

(j,k)∈Sn

aj,k.

Exercise 2.1.3 (Cauchy Product Formula). Let X,Y, Z be Banach
spaces and β : X × Y → Z a continuous bilinear map. Suppose that x :=∑∞

n=0 xn is absolutely convergent in X and that y :=
∑∞

n=0 yn is absolutely
convergent in Y . Then

β(x, y) =
∞∑

n=0

n∑

k=0

β(xk, yn−k).

2.2 Elementary Properties of the Exponential Function

After the preparations of the preceding section, it is now easy to see that the
matrix exponential function defines a smooth map on Mn(K). In this section
we describe some elementary properties of this function. As group theoretic
consequences for GLn(K), we show that it has no small subgroups and that
all one-parameter groups are smooth and given by the exponential function.

For x ∈ Mn(K), we define

ex : =
∞∑

k=0

1
k!

xk. (2.2)

The absolute convergence of the series on the right follows directly from the
estimate ∞∑

k=0

1
k!
‖xk‖ ≤

∞∑

k=0

1
k!
‖x‖k = e‖x‖

and the Comparison Test for absolute convergence of a series in a Banach
space. We define the exponential function of Mn(K) by

exp: Mn(K) → Mn(K), exp(x) := ex.

Proposition 2.2.1. The exponential function exp: Mn(K) → Mn(K) is smooth.
For xy = yx it satisfies

d exp(x)y = exp(x)y = y exp(x) (2.3)

and in particular
d exp(0) = idMn(K) .
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Proof. To verify the formula for the differential, we note that for xy = yx,
Lemma 2.1.5 implies that

d exp(x)y =
∞∑

k=1

1
k!

kxk−1y =
∞∑

k=0

1
k!

xky = exp(x)y.

For x = 0, the relation exp(0) = 1 now implies in particular that
d exp(0)y = y. ut
Lemma 2.2.2. Let x, y ∈ Mn(K).

(i) If xy = yx, then exp(x + y) = exp x exp y.
(ii) exp(Mn(K)) ⊆ GLn(K), exp(0) = 1, and (exp x)−1 = exp(−x).
(iii) For g ∈ GLn(K) the relation gexg−1 = egxg−1

holds.

Proof. (i) Using the general form of the Cauchy Product Formula (Exer-
cise 2.1.3), we obtain

exp(x + y) =
∞∑

k=0

(x + y)k

k!
=

∞∑

k=0

1
k!

k∑

`=0

(
k

`

)
x`yk−`

=
∞∑

k=0

k∑

`=0

x`

`!
yk−`

(k − `)!
=

( ∞∑
p=0

xp

p!

)( ∞∑

`=0

y`

`!

)
.

(ii) From (i) we derive in particular expx exp(−x) = exp 0 = 1, which
implies (ii).

(iii) is a consequence of gxng−1 = (gxg−1)n and the continuity of the
conjugation map cg(x) := gxg−1 on Mn(K). ut
Remark 2.2.3. (a) For n = 1, the exponential function

exp: M1(R) ∼= R→ R× ∼= GL1(R), x 7→ ex

is injective, but this is not the case for n > 1. In fact,

exp
(

0 −2π
2π 0

)
= 1

follows from

exp
(

0 −t
t 0

)
=

(
cos t − sin t
sin t cos t

)
, t ∈ R.

This example is nothing but the real picture of the relation e2πi = 1.

Proposition 2.2.4. For each sufficiently small open neighborhood U of 0 in
Md(K), the map

exp |U : U → GLd(K)

is a diffeomorphism onto an open neighborhood of 1 in GLd(K).
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Proof. We have already seen that exp is a smooth map, and that d exp(0) =
idMd(K). Therefore the assertion follows from the Inverse Function Theorem.

ut
If U is as in Proposition 2.2.4 and V = exp(U), we define

logV : = (exp |U )−1 : V → U ⊆ Md(K).

We shall see below why this function deserves to be called a logarithm function.

Theorem 2.2.5 (No Small Subgroup Theorem). There exists an open
neighborhood V of 1 in GLd(K) such that {1} is the only subgroup of GLd(K)
contained in V .

Proof. Let U be as in Proposition 2.2.4 and assume further that U is convex
and bounded. We set U1 := 1

2U . Let G ⊆ V := exp U1 be a subgroup of
GLd(K) and g ∈ G. Then we write g = exp x with x ∈ U1 and assume that
x 6= 0. Let k ∈ N be maximal with kx ∈ U1 (the existence of k follows from
the boundedness of U). Then

gk+1 = exp(k + 1)x ∈ G ⊆ V

implies the existence of y ∈ U1 with exp(k + 1)x = exp y. Since (k + 1)x ∈
2U1 = U follows from k+1

2 x ∈ [0, k]x ⊆ U1, and exp |U is injective, we obtain
(k + 1)x = y ∈ U1, contradicting the maximality of k. Therefore g = 1. ut

A one-parameter (sub)group of a group G is a group homomorphism
γ : (R,+) → G. The following result describes the differentiable one-parameter
subgroups of GLn(K).

Theorem 2.2.6 (One-parameter Group Theorem). For each x ∈ Mn(K),
the map

γ : (R,+) → GLn(K), t 7→ exp(tx)

is a smooth group homomorphism solving the initial value problem

γ(0) = 1 and γ′(t) = γ(t)x for t ∈ R.

Conversely, every continuous one-parameter group γ : R→ GLn(K) is of this
form.

Proof. In view of Lemma 2.2.2(i) and the differentiability of exp, we have

lim
h→0

1
h

(
γ(t+h)−γ(t)

)
= lim

h→0

1
h

(
γ(t)γ(h)−γ(t)

)
= γ(t) lim

h→0

1
h

(
ehx−1

)
= γ(t)x.

Hence γ is differentiable with γ′(t) = xγ(t) = γ(t)x. From that it immediately
follows that γ is smooth with γ(n)(t) = xnγ(t) for each n ∈ N.
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Although we will not need it for the completeness of the proof, we first
show that each one-parameter group γ : R → GLn(K) which is differentiable
in 0 has the required form. For x := γ′(0), the calculation

γ′(t) = lim
s→0

γ(t + s)− γ(t)
s

= lim
s→0

γ(t)
γ(s)− γ(0)

s
= γ(t)γ′(0) = γ(t)x

implies that γ is differentiable and solves the initial value problem

γ′(t) = γ(t)x, γ(0) = 1.

Therefore the Uniqueness Theorem for Linear Differential Equations implies
that γ(t) = exp tx for all t ∈ R.

It remains to show that each continuous one-parameter group γ of GLd(K)
is differentiable in 0. As in the proof of Theorem 2.2.5, let U be a convex
symmetric (i.e., U = −U) 0-neighborhood in Md(K) satisfying the properties
described in Proposition 2.2.4 and U1 := 1

2U . Since γ is continuous in 0, there
exists an ε > 0 such that γ([−ε, ε]) ⊆ exp(U1). Then α(t) := (exp |U )−1(γ(t))
defines a continuous curve α : [−ε, ε] → U1 with exp(α(t)) = γ(t) for |t| ≤ ε.
For any such t we then have

exp
(
2α( t

2 )
)

= exp(α( t
2 )

)2 = γ( t
2 )2 = γ(t) = exp(α(t)),

so that the injectivity of exp on U yields

α( t
2 ) = 1

2α(t) for |t| ≤ ε.

Inductively we thus obtain

α( t
2k ) = 1

2k α(t) for |t| ≤ ε, k ∈ N. (2.4)

In particular, we obtain

α(t) ∈ 1
2k

U1 for |t| ≤ ε

2k
.

For n ∈ Z with |n| ≤ 2k and |t| ≤ ε
2k we now have |nt| ≤ ε, nα(t) ∈ n

2k U1 ⊆ U1,
and

exp(nα(t)) = γ(t)n = γ(nt) = exp(α(nt)).

Therefore the injectivity of exp on U1 yields

α(nt) = nα(t) for n ≤ 2k, |t| ≤ ε

2k
. (2.5)

Combining (2.4) and (2.5), leads to

α( n
2k t) = n

2k α(t) for |t| ≤ ε, k ∈ N, |n| ≤ 2k.

Since the set of all numbers nt
2k , n ∈ Z, k ∈ N, |n| ≤ 2k, is dense in the interval

[−t, t], the continuity of α implies that
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α(t) =
t

ε
α(ε) for |t| ≤ ε.

In particular, α is smooth and of the form α(t) = tx for some x ∈ Md(K).
Hence γ(t) = exp(tx) for |t| ≤ ε, but then γ(nt) = exp(ntx) for n ∈ N leads
to γ(t) = exp(tx) for each t ∈ R. ut

Exercises for Section 2.2

Exercise 2.2.1. Let D ∈ Mn(K) be a diagonal matrix. Calculate its operator
norm with respect to the euclidean norm on Kn.

Exercise 2.2.2. If g ∈ Mn(K) satisfies ‖g − 1‖ < 1, then g ∈ GLn(K).

Exercise 2.2.3. (a) Calculate etN for t ∈ K and the matrix

N =




0 1 0 . . . 0
· 0 1 0 ·
· · · ·
· · 1
0 . . . 0



∈ Mn(K).

(b) If A is a block diagonal matrix diag(A1, . . . , Ak), then eA is the block
diagonal matrix diag(eA1 , . . . , eAk).
(c) Calculate etA for a matrix A ∈ Mn(C) given in Jordan Normal Form.

Exercise 2.2.4. Recall that a matrix x is said to be nilpotent if xd = 0 for
some d ∈ N and y is called unipotent if y − 1 is nilpotent.

Let a, b ∈ Mn(K) be commuting matrices.

(a) If a and b are nilpotent, then a + b is nilpotent.
(b) If a and b are unipotent, then ab is unipotent.

Exercise 2.2.5 (Jordan decomposition).
(a) (Additive Jordan decomposition) Show that each complex matrix X ∈
Mn(C) can be written in a unique fashion as

X = Xs + Xn with [Xs, Xn] = 0,

where Xn is nilpotent and Xs diagonalizable.
(b) A ∈ Mn(C) commutes with a diagonalizable matrix D if and only if A
preserves all eigenspaces of D.
(c) A ∈ Mn(C) commutes with X if and only if it commutes with Xs and Xn.

Exercise 2.2.6 (Multiplicative Jordan decomposition). (a) Show that
each invertible complex matrix g ∈ GLn(C) can be written in a unique fashion
as

g = gsgu, with gsgu = gugs,

where gu is unipotent and gs diagonalizable.
(b) If X = Xs + Xn is the additive Jordan decomposition, then eX = eXseXn

is the multiplicative Jordan decomposition of eX .
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Exercise 2.2.7. Let A ∈ Mn(C). Show that the set eRA = {etA : t ∈ R} is
bounded in Mn(C) if and only if A is diagonalizable with purely imaginary
eigenvalues.

Exercise 2.2.8. Let U ∈ Mn(C). Then the set {Un : n ∈ Z} is bounded if
and only if U is diagonalizable and Spec (U) ⊆ {z ∈ C : |z| = 1}.
Exercise 2.2.9. Show that:
(a) exp(Mn(R)) is contained in the identity component GLn(R)+ of GLn(R).
In particular the exponential function of GLn(R) is not surjective because this
group is not connected.
(b) The exponential function exp : M2(R) → GL2(R)+ is not surjective.
(c) Give also a direct argument why g is not of the form eX .

Exercise 2.2.10. Let V ⊆ Mn(C) be a commutative subspace, i.e., an abelian
Lie subalgebra. Then A := eV is an abelian subgroup of GLn(C) and

exp : (V, +) → (A, ·)

is a group homomorphism whose kernel consists of diagonalizable elements
whose eigenvalues are contained in 2πiZ.

Exercise 2.2.11. For X, Y ∈ Mn(C) the following are equivalent:

(1) eX = eY .
(2) Xn = Yn (the nilpotent Jordan components) and eXs = eYs .

Exercise 2.2.12. For A ∈ Mn(C) the relation eA = 1 holds if and only if A
is diagonalizable with all eigenvalues contained in 2πiZ.

2.3 The Logarithm Function

In this section we apply the tools from Section 2.1 to the logarithm series. Since
its radius of convergence is 1, it defines a smooth function
GLn(K) ⊇ B1(1) → Mn(K), and we shall see that it thus provides a smooth
inverse of the exponential function.

Lemma 2.3.1. The series log(1 + x) :=
∑∞

k=1(−1)k+1 xk

k converges for
x ∈ Md(K) with ‖x‖ < 1 and defines a smooth function

log : B1(1) → Md(K).

For ‖x‖ < 1 and y ∈ Md(K) with xy = yx,

(d log)(1 + x)y = (1 + x)−1y.
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Proof. The convergence follows from

∞∑

k=1

(−1)k+1 rk

k
= log(1 + r) < ∞

for |r| < 1, so that the smoothness follows from Lemma 2.1.5.
If x and y commute, then the formula for the derivative in Lemma 2.1.5

leads to

(d log)(1 + x)y =
∞∑

k=1

(−1)k+1xk−1y = (1 + x)−1y

(here we used the Neumann series; cf. Exercise 2.2.2). ut
Proposition 2.3.2. (a) For x ∈ Md(K) with ‖x‖ < log 2,

log(exp x) = x.

(b) Every g ∈ GLd(K) with ‖g − 1‖ < 1 satisfies exp(log g) = g.

Proof. (a) We apply Proposition 2.1.6 with g = exp ∈ PS , S = log 2,
R = elog 2 = 2 and ‖ exp ‖s ≤ es ≤ eS = 2 for s < S. We thus obtain
log(exp x) = x for ‖x‖ < log 2.

(b) Next we apply Proposition 2.1.6 with f = exp, S = 1 and g(z) =
log(1 + z) to obtain exp(log g) = g. ut

2.3.1 The Exponential Function on Nilpotent Matrices

Proposition 2.3.3. Let

U := {g ∈ GLd(K) : (g − 1)d = 0}
be the set of unipotent matrices and

N := {x ∈ Md(K) : xd = 0} = U − 1

the set of nilpotent matrices. Then expU := exp |N : N → U is a homeomor-
phism whose inverse is given by

logU : g 7→
∞∑

k=1

(−1)k+1 (g − 1)k

k
=

d−1∑

k=1

(−1)k+1 (g − 1)k

k
.

Proof. First we observe that for x ∈ N we have

ex − 1 = xa with a :=
d∑

n=1

1
n!

xn−1.

In view of xa = ax, this leads to (ex − 1)d = xdad = 0. Therefore expU (N) ⊆
U . Similarly we obtain for g ∈ U that
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logU (g) = (g − 1)
d∑

k=1

(−1)k+1 (g − 1)k−1

k
∈ N.

For x ∈ N , the curve

F : R→ Md(K), t 7→ logU expU (tx)

is a polynomial function and Proposition 2.3.2 implies that F (t) = tx for
‖tx‖ < log 2. This implies that F (t) = tx for each t ∈ R and hence that
logU expU (x) = F (1) = x.

Likewise we see that for g = 1 + x ∈ U the curve

G : R→ Md(K), t 7→ expU logU (1 + tx)

is polynomial with G(t) = 1 + tx for ‖tx‖ < 1. Therefore expU logU (g) =
F (1) = 1 + x = g. This proves that the functions expU and logU are inverse
to each other. ut
Corollary 2.3.4. Let X ∈ End(V ) be a nilpotent endomorphism of the K-
vector space V and v ∈ V . Then the following are equivalent:

(1) Xv = 0.
(2) eXv = v.

Proof. Clearly Xv = 0 implies eXv =
∑∞

n=0
1
n!X

nv = v. If, conversely,

eXv = v, then Xv = log(eX)v =
∑∞

k=1(−1)k+1 (eX−1)k

k v = 0. ut

2.3.2 The Exponential Function on Hermitian Matrices

For the following proof, we recall that for a hermitian d×d-matrix A we have

‖A‖ = max{|λ| : det(A− λ1) = 0}

(Exercise 2.2.1).

Proposition 2.3.5. The restriction

expP := exp |Hermd(K) : Hermd(K) → Pdd(K)

is a diffeomorphism onto the open subset Pdd(K) of Hermd(K).

Proof. We have (ex)∗ = ex∗ , which implies that exp x is hermitian if x is her-
mitian. Moreover, if λ1, . . . , λd are the real eigenvalues of x, then eλ1 , . . . , eλd

are the eigenvalues of ex. Therefore ex is positive definite for each hermitian
matrix x.

If, conversely, g ∈ Pdd(K), then let v1, . . . , vd be an orthonormal basis of
eigenvectors for g with gvj = λjvj . Then λj > 0 for each j, and we define
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logH(g) ∈ Hermd(K) by logH(g)vj := (log λj)vj , j = 1, . . . , d. From this
construction of the logarithm function it is clear that

logH ◦ expP = idHermd(K) and expP ◦ logH = idPdd(K) .

For two real numbers x, y > 0, we have log(xy) = log x + log y. From this
we obtain for λ > 0 the relation

logH(λg) = (log λ)1 + logH(g) (2.6)

by following what happens on each eigenspace of g.
The relation

log(x) =
∞∑

k=1

(−1)k+1 (x− 1)k

k

for x ∈ R with |x− 1| < 1 implies that for ‖g − 1‖ < 1 we have

logH(g) =
∞∑

k=1

(−1)k+1 (g − 1)k

k
.

This proves that logH is smooth in B1(1)∩Hermd(K), hence in a neighborhood
of g0 if ‖g0 − 1‖ < 1 (Lemma 2.3.1). This condition means that for each
eigenvalue µ of g0 we have |µ − 1| < 1 (Exercise 2.3.1). If it is not satisfied,
then we choose λ > 0 such that ‖λg‖ < 2. Then ‖λg − 1‖ < 1, and we obtain
with (2.6) the formula

logH(g) = −(log λ)1 + logH(λg) = −(log λ)1 +
∞∑

k=1

(−1)k+1 (λg − 1)k

k
.

Therefore logH is smooth on the entire open cone Pdd(K), so that logH =
exp−1

P implies that expP is a diffeomorphism. ut
With Proposition 1.1.5, we thus obtain:

Corollary 2.3.6. The group GLd(K) is homeomorphic to

Ud(K)× Rm with m := dimR(Hermd(K)) =
{

d(d+1)
2 for K= R
d2 for K= C.

Exercises for Section 2.3.

Exercise 2.3.1. Show that for a hermitian matrix A ∈ Hermn(K) and the
euclidian norm ‖ · ‖ on Kn we have

‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1} = max{|λ| : ker(A− λ1) = 0}.
Exercise 2.3.2. The exponential function exp : Mn(C) → GLn(C) is surjec-
tive.
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2.4 The Baker–Campbell–Dynkin–Hausdorff Formula

In this section we derive a formula which expresses the product exp x exp y
of two sufficiently small elements as the exponential image exp(x ∗ y) of
an element x ∗ y which can be described in terms of iterated commuta-
tor brackets. This implies in particular that the group multiplication in a
small 1-neighborhood of GLn(K) is completely determined by the commuta-
tor bracket. To obtain these results, we express log(exp x exp y) as a power
series x ∗ y in two variables. The (local) multiplication ∗ is called the Baker–
Campbell–Dynkin–Hausdorff Multiplication 1 and the identity

log(exp x exp y) = x ∗ y

the Baker–Campbell–Dynkin–Hausdorff Formula (BCDH). The derivation
of this formula requires some preparation. We start with the adjoint repre-
sentation of GLn(K). This is the group homomorphism

Ad: GLn(K) → Aut(Mn(K)), Ad(g)x = gxg−1,

where Aut(Mn(K)) stands for the group of algebra automorphisms of Mn(K).
For x ∈ Mn(K), we further define a linear map

ad(x) : Mn(K) → Mn(K), ad x(y) := [x, y].

Lemma 2.4.1. For each x ∈ Mn(K),

Ad(expx) = exp(ad x). (2.7)

Proof. We define the linear maps

λx : Mn(K) → Mn(K), y 7→ xy, ρx : Mn(K) → Mn(K), y 7→ yx.

Then λxρx = ρxλx and ad x = λx − ρx, so that Lemma 2.2.2(ii) leads to

Ad(expx)y = exye−x = eλxe−ρxy = eλx−ρxy = ead xy.

This proves (2.7). ut
Proposition 2.4.2. Let x ∈ Mn(K) and λexp x(y) := (exp x)y the left multi-
plication by expx. Then

d exp(x) = λexp x ◦ 1− e− ad x

adx
: Mn(K) → Mn(K),

where the fraction on the right means Φ(ad x) for the entire function

Φ(z) :=
1− e−z

z
=

∞∑

k=1

(−z)k−1

k!
.

The series Φ(x) converges for each x ∈ Mn(K).
1 See [Bak01, Bak05, Cam97, Cam98, Dyn53, Hau06]
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Proof. First let α : [0, 1] → Mn(K) be a smooth curve. Then

γ(t, s) := exp(−sα(t))
d

dt
exp(sα(t))

defines a map [0, 1]2 → Mn(K) which is C1 in each argument and satisfies
γ(t, 0) = 0 for each t. We calculate

∂γ

∂s
(t, s) = exp(−sα(t)) · (−α(t))

d

dt
exp(sα(t))

+ exp(−sα(t)) · d

dt

(
α(t) exp(sα(t))

)

= exp(−sα(t)) · (−α(t))
d

dt
exp(sα(t))

+ exp(−sα(t)) ·
(
α′(t) exp(sα(t)) + α(t)

d

dt
exp(sα(t))

)

= Ad(exp(−sα(t)))α′(t) = e−s ad α(t)α′(t).

Integration over [0, 1] with respect to s now leads to

γ(t, 1) = γ(t, 0) +
∫ 1

0

e−s ad α(t)α′(t) ds =
∫ 1

0

e−s ad α(t) ds · α′(t).

Next we note that, for x ∈ Mn(K),
∫ 1

0

e−s ad x ds =
∫ 1

0

∞∑

k=0

(− adx)k

k!
sk ds =

∞∑

k=0

(− ad x)k

∫ 1

0

sk

k!
ds

=
∞∑

k=0

(− ad x)k

(k + 1)!
= Φ(adx).

We thus obtain for α(t) = x + ty with α(0) = x and α′(0) = y the relation

exp(−x)d exp(x)y = γ(0, 1) =
∫ 1

0

e−s ad xy ds = Φ(ad x)y.

ut
Lemma 2.4.3. For

Φ(z) =
1− e−z

z
:=

∞∑

k=1

(−1)k−1 zk−1

k!
, z ∈ C

and

Ψ(z) =
z log z

z − 1
:= z

∞∑

k=0

(−1)k

k + 1
(z − 1)k for |z − 1| < 1

we have
Ψ(ez)Φ(z) = 1 for z ∈ C, |z| < log 2.
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Proof. If |z| < log 2, then |ez − 1| < 1 and we obtain from log(ez) = z:

Ψ(ez)Φ(z) =
ezz

ez − 1
1− e−z

z
= 1.

ut
In view of the Composition Formula (2.1) (Proposition 2.1.6), the same

identity as in Lemma 2.4.3 holds if we insert matrices L ∈ End(gln(K)) with
‖L‖ < log 2 into the power series Φ and Ψ :

Ψ(exp L)Φ(L) = (Ψ ◦ exp)(L)Φ(L) = ((Ψ ◦ exp) · Φ)(L) = idgln(K) . (2.8)

Here we use that ‖L‖ < log 2 implies that all expressions are defined and in
particular that ‖ expL− 1‖ < 1, as a consequence of the estimate

‖ expL− 1‖ ≤ e‖L‖ − 1. (2.9)

The derivation of the BCDH formula follows a similar scheme as the
proof of Proposition 2.4.2. Here we consider x, y ∈ Vo := B(0, log

√
2). For

‖x‖, ‖y‖ < r the estimate (2.9) leads to

‖ expx exp y − 1‖ = ‖(exp x− 1)(exp y − 1) + (exp y − 1) + (expx− 1)‖
≤ ‖ expx− 1‖ · ‖ exp y − 1‖+ ‖ exp y − 1‖+ ‖ exp x− 1‖
< (er − 1)2 + 2(er − 1) = e2r − 1.

For r < log
√

2 = 1
2 log 2 and |t| ≤ 1 we obtain in particular

‖ expx exp ty − 1‖ < elog 2 − 1 = 1.

Therefore exp x exp ty lies for |t| ≤ 1 in the domain of the logarithm function
(Lemma 2.3.1). We therefore define for t ∈ [−1, 1]:

F (t) = log(exp x exp ty).

To estimate the norm of F (t), we note that for g := exp x exp ty, |t| ≤ 1, and
‖x‖, ‖y‖ < r we have

‖ log g‖ ≤
∞∑

k=1

‖g − 1‖k

k
= − log(1− ‖g − 1‖)

< − log(1− (e2r − 1)) = − log(2− e2r).

For r := 1
2 log(2−

√
2

2 ) < log 2
2 = log

√
2 and ‖x‖, ‖y‖ < r this leads to

‖F (t)‖ < − log(2− e2r) = log( 2√
2
) = log(

√
2). (2.10)

Next we calculate F ′(t) with the goal to obtain the BCDH formula as
F (1) = F (0)+

∫ 1

0
F ′(t) dt. For the derivative of the curve t 7→ expF (t) we get
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(d exp)
(
F (t)

)
F ′(t) =

d

dt
exp(F (t)) =

d

dt
exp x exp ty

= (exp x exp ty)y = (exp F (t))y.

Using Proposition 2.4.2, we obtain

y =
(
expF (t)

)−1(d exp)
(
F (t)

)
F ′(t)

=
1− e− ad F (t)

adF (t)
F ′(t) = Φ(ad F (t))F ′(t). (2.11)

We claim that ‖ ad(F (t))‖ < log 2. From ‖ab− ba‖ ≤ 2‖a‖ ‖b‖ we derive

‖ ad a‖ ≤ 2‖a‖ for a ∈ gln(K).

Therefore, by (2.10),

‖ ad F (t)‖ ≤ 2‖F (t)‖ < 2 log(
√

2) = log 2,

so that (2.11) and (2.8) lead to

F ′(t) = Ψ
(
exp(adF (t))

)
y. (2.12)

Proposition 2.4.4. For ‖x‖, ‖y‖ < 1
2 log(2−

√
2

2 ) we have

log(exp x exp y) = x +
∫ 1

0

Ψ
(
exp(adx) exp(t ad y)

)
y dt ∈ g,

with Ψ as in Lemma 2.4.3.

Proof. With (2.12), Lemma 2.4.1 and the preceding remarks we get

F ′(t) = Ψ
(
exp(adF (t))

)
y

= Ψ
(
Ad(expF (t))

)
y = Ψ

(
Ad(expx exp ty)

)
y

= Ψ
(
Ad(expx)Ad(exp ty)

)
y = Ψ

(
exp(adx) exp(ad ty)

)
y.

Moreover, we have F (0) = log(exp x) = x. By integration we therefore obtain

log(exp x exp y) = x +
∫ 1

0

Ψ
(
exp(adx) exp(t ad y)

)
y dt.

ut
Proposition 2.4.5. For x, y ∈ gln(K) and ‖x‖, ‖y‖ < 1

2 log(2−
√

2
2 ),

x ∗ y := log(exp x exp y)
= x+
∑

k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . . + qk + 1)
(adx)p1(ad y)q1 . . . (ad x)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y.



52 2 The Matrix Exponential Function

Proof. We only have to rewrite the expression in Proposition 2.4.4:
∫ 1

0

Ψ
(
exp(ad x) exp(ad ty)

)
y dt

=
∫ 1

0

∞∑

k=0

(−1)k
(
exp(adx) exp(ad ty)− id

)k

(k + 1)
(
exp(adx) exp(ad ty)

)
y dt

=
∫ 1

0

∑
k≥0

pi+qi>0

(−1)k

(k + 1)
(adx)p1(ad ty)q1 . . . (ad x)pk(ad ty)qk

p1!q1! . . . pk!qk!
exp(adx)y dt

=
∑

k,m≥0
pi+qi>0

(−1)k

(k + 1)
(ad x)p1(ad y)q1 . . . (adx)pk(ad y)qk(ad x)m

p1!q1! . . . pk!qk!m!
y

∫ 1

0

tq1+...+qk dt

=
∑

k,m≥0
pi+qi>0

(−1)k(ad x)p1(ad y)q1 . . . (ad x)pk(ad y)qk(adx)my

(k + 1)(q1 + . . . + qk + 1)p1!q1! . . . pk!qk!m!
.

ut
The power series in Proposition 2.4.5 is called the Hausdorff Series. We

observe that it does not depend on n. For practical purposes it often suffices
to know the first terms of the Hausdorff Series:

Corollary 2.4.6. For x, y ∈ gln(K) and ‖x‖, ‖y‖ < 1
2 log(2−

√
2

2 ),

x ∗ y = x + y +
1
2
[x, y] +

1
12

[x, [x, y]] +
1
12

[y, [y, x]] + . . .

Proof. One has to collect the summands in Proposition 2.4.5 corresponding
to p1 + q1 + . . . + pk + qk + m ≤ 2. ut

Product and Commutator Formula

We have seen in Proposition 2.2.1 that the exponential image of a sum x + y
can be computed easily if x and y commute. In this case we also have for the
commutator [x, y] := xy − yx = 0 the formula exp[x, y] = 1. The following
proposition gives a formula for exp(x + y) and exp[x, y] in the general case.

If g, h are elements of a group G, then (g, h) := ghg−1h−1 is called their
commutator. On the other hand, we call for two matrices A,B ∈ Mn(K) the
expression

[A, B] := AB −BA

their commutator bracket.

Proposition 2.4.7. For x, y ∈ Md(K) the following assertions hold:

(i) (Trotter Product Formula) limk→∞
(
e

1
k xe

1
k y

)k = ex+y.
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(ii) (Commutator Formula) limk→∞
(
e

1
k xe

1
k ye−

1
k xe−

1
k y

)k2

= exy−yx.

Proof. (i) From Corollary 2.4.6 we obtain that limk→∞ k · (x
k ∗ y

k

)
= x + y.

Applying the exponential function, we obtain (i).
(ii) We consider the function

γ(t) := tx ∗ ty ∗ (−tx) ∗ (−ty),

which is defined and smooth on some interval [−ε, ε] ⊆ R, ε > 0. In view of

exp(x ∗ y ∗ (−x)) = exp x exp y exp(−x) = exp
(
Ad(expx)y) = exp(ead xy)

for x, y small enough (Lemma 2.4.1), we have

x ∗ y ∗ (−x) = ead xy, (2.13)

and therefore Taylor expansion with respect to t yields

γ(t) = tx ∗ ty ∗ (−tx) ∗ (−ty) = et ad xty ∗ (−ty)

= (ty + t2[x, y] +
t3

2
[x, [x, y]] + . . .) ∗ (−ty)

= ty + t2[x, y]− ty + [ty,−ty] + t2r(t) = t2[x, y] + t2r(t),

where limt→0 r(t) = 0. We now have

γ(0) = γ′(0) = 0 and
γ′′(0)

2
= [x, y].

This leads to

lim
k→∞

k2 · (1
k

x
) ∗ (1

k
y
) ∗ (− 1

k
x
) ∗ (− 1

k
y
)

=
γ′′(0)

2
= [x, y]. (2.14)

Applying exp leads to the Commutator Formula. ut

Notes on Chapter 2

Many of the results discussed in this chapter are valid in much greater gen-
erality. The Baker–Campbell-Dynkin–Hausdorff formula, for example, holds
for general Lie groups as we will see in Chapter 8. Other results which are
obtained via converging power series can easily be generalized to subgroups
of Banach algebras.





3

Linear Lie Groups

We call a closed subgroup G ⊆ GLn(K) a linear Lie group. In this section
we shall use the exponential function to assign to each linear Lie group G a
vector space

L(G) := {x ∈ Mn(K) : exp(Rx) ⊆ G},
called the Lie algebra of G. This subspace carries an additional algebraic struc-
ture because, for x, y ∈ L(G), the commutator [x, y] = xy−yx is contained in
L(G), so that [·, ·] defines a skew-symmetric bilinear operation on L(G). As a
first step, we shall see how to calculate L(G) for concrete groups and to use
it to generalize the polar decomposition to a large class of linear Lie groups.

3.1 The Lie Algebra of a Linear Lie Group

We start with the introduction of the concept of a Lie algebra.

Definition 3.1.1. (a) Let k be a field and L a k-vector space. A bilinear map
[·, ·] : L× L → L is called a Lie bracket if

(L1) [x, x] = 0 for x ∈ L and
(L2)

[
x, [y, z]

]
=

[
[x, y], z

]
+

[
y, [x, z]

]
for x, y, z ∈ L (Jacobi identity).1

A Lie algebra 2 (over k) is a k-vector space L, endowed with a Lie bracket.
A subspace E ⊆ L of a Lie algebra is called a subalgebra if [E, E] ⊆ E.
A homomorphism ϕ : L1 → L2 of Lie algebras is a linear map with ϕ([x, y]) =
[ϕ(x), ϕ(y)] for x, y ∈ L1. A Lie algebra is said to be abelian if [x, y] = 0 holds
for all x, y ∈ L.
1 Carl Gustav Jacob Jacobi (1804–1851), mathematician in Berlin and Königsberg

(Kaliningrad). He found his famous identity about 1830 in the context of Poisson
brackets, which are related to Hamiltonian Mechanics and Symplectic Geometry.

2 The notion of a Lie algebra was coined in the 1920s by Hermann Weyl.
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The following lemma shows that each associative algebra also carries a
natural Lie algebra structure.

Lemma 3.1.2. Each associative algebra A is a Lie algebra AL with respect
to the commutator bracket

[a, b] := ab− ba.

Proof. (L1) is obvious. For (L2) we calculate

[a, bc] = abc− bca = (ab− ba)c + b(ac− ca) = [a, b]c + b[a, c],

and this implies

[a, [b, c]] = [a, b]c + b[a, c]− [a, c]b− c[a, b] = [[a, b], c] + [b, [a, c]].

ut
Definition 3.1.3. A closed subgroup G ⊆ GLn(K) is called a linear Lie
group. For each subgroup G ⊆ GLn(K) we define the set

L(G) := {x ∈ Mn(K) : exp(Rx) ⊆ G}

and observe that RL(G) ⊆ L(G) follows immediately from the definition.
We could also define this notion in more abstract terms by considering a

finite-dimensional K-vector space V and call a closed subgroup G ⊆ GL(V ) a
linear Lie group. Then

L(G) = {x ∈ End(V ) : exp(Rx) ⊆ G}.

In the following we shall use both pictures.

From Lemma 3.1.2 we know that the associative algebra Mn(K) is a Lie
algebra with respect to the matrix commutator [x, y] := xy − yx. We denote
this Lie algebra by gln(K) := Mn(K)L. We likewise write gl(V ) := End(V )L

for a vector space V .
The next proposition assigns a Lie algebra to each linear Lie group.

Proposition 3.1.4. If G ⊆ GL(V ) is a closed subgroup, then L(G) is a real
Lie subalgebra of gl(V ) and we obtain a map

expG : L(G) → G, x 7→ ex.

We call L(G) the Lie algebra of G.
In particular,

L(GL(V )) = gl(V ) and L(GLn(K)) = gln(K).
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Proof. Let x, y ∈ L(G). For k ∈ N and t ∈ R we then have exp t
kx, exp t

ky ∈ G
and with the Trotter Formula (Proposition 2.4.7), we get for all t ∈ R:

exp(t(x + y)) = lim
k→∞

(
exp

tx

k
exp

ty

k

)k

∈ G

because G is closed. Therefore x + y ∈ L(G).
Similarly we use the Commutator Formula to get

exp t[x, y] = lim
k→∞

(
exp

tx

k
exp

y

k
exp− tx

k
exp−y

k

)k2

∈ G,

hence [x, y] ∈ L(G). ut
Lemma 3.1.5. Let G ⊆ GLn(K) be a subgroup. If Hom(R, G) denotes the set
of all continuous group homomorphisms (R, +) → G, then the map

Γ : L(G) → Hom(R, G), x 7→ γx, γx(t) = exp(tx)

is a bijection.

Proof. For each x ∈ L(G), the map γx is a continuous group homomorphism
(Theorem 2.2.6), and since x = γ′x(0), the map Γ is injective. To see that
it is surjective, let γ : R → G be a continuous group homomorphism and
ι : G → GLn(K) the natural embedding. Then ι ◦ γ : R → GLn(K) is a
continuous group homomorphism, so that there exists an x ∈ gln(K) with
γ(t) = ι(γ(t)) = etx for all t ∈ R (Theorem 2.2.6). This implies that x ∈ L(G),
and therefore that γx = γ. ut
Remark 3.1.6. The preceding lemma implies in particular that for a linear
Lie group the set L(G) can also be defined in terms of the topological group
structure on G as L(G) := Hom(R, G), the set of continuous one-parameter
groups. From the Trotter Formula and the Commutator Formula we also know
that the Lie algebra structure on L(G) can be defined intrinsically by

(λγ)(t) := γ(λt),

(γ1 + γ2)(t) := lim
n→∞

(
γ1( t

n )γ2( t
n )

) 1
n

and

[γ1, γ2](t) := lim
n→∞

(
γ1( t

n )γ2( 1
n )γ1(− t

n )γ2(− 1
n )

) 1
n2

.

This shows that the Lie algebra L(G) does not depend on the special realiza-
tion of G as a group of matrices.
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Example 3.1.7. We consider the homomorphism

Φ : Kn → GLn+1(K), x 7→
(
1 x
0 1

)

and observe that Φ is an isomorphism of the topological group (Kn, +) onto
a linear Lie group.

The continuous one-parameter groups γ : R → Kn are easily determined
because γ(nt) = nγ(t) for all n ∈ Z, t ∈ R, implies further γ(q) = qγ(1) for
all q ∈ Q and hence, by continuity, γ(t) = tγ(1) for all t ∈ R. Since (Kn,+) is
abelian, the Lie bracket on the Lie algebra L(Kn, +) vanishes, and we obtain

L(Kn, +) = (Kn, 0) ∼= L(Φ(Kn)) =
{ (

0 x
0 0

)
: x ∈ Kn

}

(Exercise).

3.1.1 Functorial Properties of the Lie Algebra

So far we have assigned to each linear Lie group G its Lie algebra L(G). We
shall also see that this assignment can be extended to continuous homomor-
phisms between linear Lie groups in the sense that we assign to each such
homomorphism ϕ : G1 → G2 a homomorphism L(ϕ) : L(G1) → L(G2) of Lie
algebras, and this assignment satisfies

L(idG) = idL(G) and L(ϕ1 ◦ ϕ2) = L(ϕ1) ◦ L(ϕ2)

for a composition ϕ1◦ϕ2 of two continuous homomorphisms ϕ1 : G2 → G1 and
ϕ2 : G3 → G2. In the language of category theory, this means that L defines a
functor from the category of linear Lie groups (where the morphisms are the
continuous group homomorphisms) to the category of real Lie algebras.

Proposition 3.1.8. Let ϕ : G1 → G2 be a continuous group homomorphism
of linear Lie groups. Then the derivative

L(ϕ)(x) :=
d

dt t=0
ϕ(expG1

(tx))

exists for each x ∈ L(G1) and defines a homomorphism of Lie algebras
L(ϕ) : L(G1) → L(G2) with

expG2
◦L(ϕ) = ϕ ◦ expG1

, (3.1)

i.e., the following diagram commutes

G1
ϕ−−−−−−−−−→ G2xexpG1

xexpG2

L(G1)
L(ϕ)−−−−−−−−−→ L(G2).

Then L(ϕ) is the uniquely determined linear map satisfying (3.1).
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Proof. For x ∈ L(G1) we consider the homomorphism γx ∈ Hom(R, G1) given
by γx(t) = etx. According to Lemma 3.1.5, we have

ϕ ◦ γx(t) = expG2
(ty)

for some y ∈ L(G2), because ϕ ◦ γx : R → G2 is a continuous group homo-
morphism. Then clearly y = (ϕ ◦ γx)′(0) = L(ϕ)x. For t = 1 we obtain in
particular

expG2
(L(ϕ)x) = ϕ(expG1

(x),

which is (3.1).
Conversely, every linear map ψ : L(G1) → L(G2) with

expG2
◦ ψ = ϕ ◦ expG1

satisfies
ϕ ◦ expG1

(tx) = expG2
(ψ(tx)) = expG2

(tψ(x)),

and therefore
L(ϕ)x =

d

dt t=0
expG2

(tψ(x)) = ψ(x).

Next we show that L(ϕ) is a homomorphism of Lie algebras. From the
definition of L(ϕ) we immediately get for x ∈ L(G1):

expG2
(sL(ϕ)(tx)) = ϕ(expG1

(stx)) = expG2
(tsL(ϕ)(x)), s, t ∈ R,

which leads to L(ϕ)(tx) = tL(ϕ)(x).
Since ϕ is continuous, the Trotter Formula implies that

expG2
(L(ϕ)(x + y)) = ϕ

(
expG1

(x + y)
)

= lim
k→∞

ϕ
(

expG1

1
k

x expG1

1
k

y
)k

= lim
k→∞

(
ϕ
(

expG1

1
k

x
)
ϕ
(

expG1

1
k

y
))k

= lim
k→∞

(
expG2

1
k

L(ϕ)(x) expG2

1
k

L(ϕ)(y)
)k

= expG2

(
L(ϕ)(x) + L(ϕ)(y)

)

for all x, y ∈ L(G1). Therefore L(ϕ)(x + y) = L(ϕ)(x) + L(ϕ)(y) because the
same formula holds with tx and ty instead of x and y. Hence L(ϕ) is additive
and therefore linear.

We likewise obtain with the Commutator Formula

ϕ(exp[x, y]) = exp[L(ϕ)(x),L(ϕ)(y)]

and thus L(ϕ)([x, y]) = [L(ϕ)(x),L(ϕ)(y)]. ut
Corollary 3.1.9. If ϕ1 : G1 → G2 and ϕ2 : G2 → G3 are continuous homo-
morphisms of linear Lie groups, then

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1).

Moreover, L(idG) = idL(G) .
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Proof. We have the relations

ϕ1 ◦ expG1
= expG2

◦L(ϕ1) and ϕ2 ◦ expG2
= expG3

◦L(ϕ2),

which immediately lead to

(ϕ2 ◦ ϕ1) ◦ expG1
= ϕ2 ◦ expG2

◦L(ϕ1) = expG3
◦(L(ϕ2) ◦ L(ϕ1)),

and the uniqueness assertion of Proposition 3.1.8 implies that

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1).

Clearly idL(G) is a linear map satisfying expG ◦ idL(G) = idG ◦ expG, so that
the uniqueness assertion of Proposition 3.1.8 implies L(idG) = idL(G). ut
Corollary 3.1.10. If ϕ : G1 → G2 is an isomorphism of linear Lie groups,
then L(ϕ) is an isomorphism of Lie algebras.

Proof. Since ϕ is an isomorphism of linear Lie groups, it is bijective and ψ :=
ϕ−1 also is a continuous homomorphism. We then obtain with Corollary 3.1.9
the relations idL(G2) = L(idG2) = L(ϕ ◦ ψ) = L(ϕ) ◦ L(ψ) and likewise

idL(G1) = L(ψ) ◦ L(ϕ).

Hence L(ϕ) is an isomorphism with L(ϕ)−1 = L(ψ). ut
Definition 3.1.11. If V is a vector space and G a group, then a homomor-
phism ϕ : G → GL(V ) is called a representation of G on V . If g is a Lie algebra,
then a homomorphism of Lie algebras ϕ : g → gl(V ) is called a representation
of g on V .

As a consequence of Proposition 3.1.8, we obtain

Corollary 3.1.12. If ϕ : G → GL(V ) is a continuous representation of the
linear Lie group G, then L(ϕ) : L(G) → gl(V ) is a representation of the Lie
algebra L(G).

The representation L(ϕ) obtained in Corollary 3.1.12 from the group rep-
resentation ϕ is called the derived representation. This is motivated by the
fact that for each x ∈ L(G) we have

L(ϕ)x =
d

dt t=0
et L(ϕ)x =

d

dt t=0
ϕ(exp tx).

3.1.2 The Adjoint Representation

Let G ⊆ GL(V ) be a linear Lie group and L(G) ⊆ gl(V ) the corresponding
Lie algebra. For g ∈ G we define the conjugation automorphism cg ∈ Aut(G)
by cg(x) := gxg−1. Then
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L(cg)(x) =
d

dt t=0
cg(exp tx) =

d

dt t=0
g(exp tx)g−1

=
d

dt t=0
exp(tgxg−1) = gxg−1

(Proposition 2.2.1), and therefore L(cg) = cg|L(G). We define the adjoint rep-
resentation of G on L(G) by

Ad: G → Aut(L(G)), Ad(g)(x) := L(cg)x = gxg−1.

(That this is a representation follows immediately from the explicit formula).
For each x ∈ L(G), the map G → L(G), g 7→ Ad(g)(x) = gxg−1 is conti-

nuous and each Ad(g) is an automorphism of the Lie algebra L(G). Therefore
Ad is a continuous homomorphism from the linear Lie group G to the linear
Lie group Aut(L(G)) ⊆ GL(L(G)). The derived representation

L(Ad): L(G) → gl(L(G))

is a representation of L(G) on L(G). The following lemma gives a formula for
this representation. First we define for x ∈ L(G):

ad(x) : L(G) → L(G), ad x(y) := [x, y] = xy − yx.

Lemma 3.1.13. L(Ad) = ad.

Proof. In view of Proposition 3.1.8 this is an immediate consequence of the
relation Ad(exp x) = ead x (Lemma 2.4.1). ut

Exercises for Section 3.1

Exercise 3.1.1. (a) If (Gj)j∈J is a family of linear Lie groups in GLn(K),
then their intersection G :=

⋂
j∈J Gj also is a linear Lie group.

(b) If (Gj)j∈J is a family of subgroups of GLn(K), then

L(
⋂

j∈J

Gj) =
⋂

j∈J

L(Gj).

Exercise 3.1.2. Let G := GLn(K) and V := Pk(Kn) the space of homoge-
neous polynomials of degree k in x1, . . . , xn, considered as functions Kn → K.
Show that:

(1) dim V =
(
k+n−1

n−1

)
.

(2) We obtain a continuous representation ρ : G → GL(V ) of G on V by
(ρ(g)f)(x) := f(g−1x).

(3) The elementary matrix Eij with Eijek = δjkei satisfies

L(ρ)(Eij) = −xj
∂

∂xi
.
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Exercise 3.1.3. If X ∈ End(V ) is nilpotent, then ad X ∈ End(End(V )) is
also nilpotent.

Exercise 3.1.4. If X, Y ∈ Mn(K) are nilpotent, then the following are equiv-
alent:

(1) exp X expY = exp Y exp X.
(2) [X, Y ] = 0.

Exercise 3.1.5. If (V, ·) is an associative algebra, then Aut(V, ·) ⊆ Aut(V, [·, ·]).
Exercise 3.1.6. (a) Ad : GLn(K) → Aut

(
gln(K)

)
is a group homomorphism.

(b) For each Lie algebra g, the operators adx(y) := [x, y] are derivations
and the map ad: g → gl(g) is a homomorphism of Lie algebras.

Exercise 3.1.7. Let V be a finite-dimensional vector space, F ⊆ V a sub-
space and γ : [0, T ] → V a continuous curve with γ([0, T ]) ⊆ F . Then for all
t ∈ [0, T ]:

It :=
∫ t

0

γ(τ) dτ ∈ F.

Exercise 3.1.8. On each finite-dimensional Lie algebra g there exists a norm
with

‖[x, y]‖ ≤ ‖x‖‖y‖ ∀x, y ∈ g,

i.e., ‖ adx‖ ≤ ‖x‖.
Exercise 3.1.9. Let g be a Lie algebra with a norm as in Exercise 3.1.8. Then
for ‖x‖+ ‖y‖ < ln 2 the Hausdorff series

x ∗ y = x+
∑

k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . . + qk + 1)
(adx)p1(ad y)q1 . . . (ad x)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y

converges absolutely.

Exercise 3.1.10. Let V and W be vector spaces and q : V × V → W a
skew-symmetric bilinear map. Then

[(v, w), (v′, w′)] :=
(
0, q(v, v′)

)

is a Lie bracket on g := V ×W . For x, y, z ∈ g we have
[
x, [y, z]

]
= 0.

Exercise 3.1.11. Let g be a Lie algebra with
[
x, [y, z]

]
= 0 for x, y, z ∈ g.

Then
x ∗ y := x + y +

1
2
[x, y]

defines a group structure on g. An example for such a Lie algebra is the
three-dimensional Heisenberg algebra

g =








0 x y
0 0 z
0 0 0


 : x, y, z ∈ K



 .
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3.2 Calculating Lie Algebras of Linear Lie Groups

In this section we shall see various techniques to determine the Lie algebra of
a linear Lie group.

Example 3.2.1. The group G := SLn(K) = det−1(1) = ker det is a linear Lie
group. To determine its Lie algebra, we first claim that

det(ex) = etr x (3.2)

holds for x ∈ Mn(K). To verify this claim, we consider

det : Mn(K) ∼= (Kn)n → K

as a multilinear map, where each matrix x is considered as an n-tuple of its
column vectors x1, . . . , xn. Then Exercise 2.1.1(c) implies that

(d det)(1)(x) = (d det)(e1, . . . , en)(x1, . . . , xn)
= det(x1, e2, . . . , en) + . . . + det(e1, . . . , en−1, xn) = x11 + . . . + xnn = tr x.

Now we consider the curve γ : R → K× ∼= GL1(K), t 7→ det(etx). Then γ is a
continuous group homomorphism, hence of the form γ(t) = eat for a = γ′(0)
(Theorem 2.2.6). On the other hand the Chain Rule implies

a = γ′(0) = d det(1)
(
d exp(0)(x)

)
= tr(x),

and this implies (3.2). We conclude that

sln(K) := L(SLn(K)) = {x ∈ Mn(K) : (∀t ∈ R) 1 = det(etx) = et tr x}
= {x ∈ Mn(K) : tr x = 0}.

Lemma 3.2.2. Let V and W be finite-dimensional vector spaces and
β : V × V → W a bilinear map. For (x, y) ∈ End(V )× End(W ) the following
are equivalent:

(1) etyβ(v, v′) = β(etxv, etxv′) for all t ∈ R and all v, v′ ∈ V .
(2) yβ(v, v′) = β(xv, v′) + β(v, xv′) for all v, v′ ∈ V .

Proof. (1) ⇒ (2): Taking the derivative in t = 0, the relation (1) leads to

yβ(v, v′) = β(xv, v′) + β(v, xv′),

where we use the Product and the Chain Rule (Exercise 2.1.1(c)).
(2) ⇒ (1): If (2) holds, then we obtain inductively

yn.β(v, v′) =
n∑

k=0

(
n

k

)
β(xkv, xn−kv′).
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For the exponential series this leads with the general Cauchy Product Formula
(Exercise 2.1.3) to

eyβ(v, v′) =
∞∑

n=0

1
n!

yn.β(v, v′) =
∞∑

n=0

1
n!

( n∑

k=0

(
n

k

)
β(xkv, xn−kv)

)

=
∞∑

n=0

n∑

k=0

β

(
1
k!

xkv,
1

(n− k)!
xn−kv′

)

= β

( ∞∑

k=0

1
k!

xkv,

∞∑
m=0

1
m!

xmv′
)

= β (exv, exv′) .

Since (2) also holds for the pair (tx, ty) for all t ∈ R, this completes the
proof. ut
Proposition 3.2.3. Let V and W be finite-dimensional vector spaces and
β : V × V → W a bilinear map. For the group

Aut(V, β) = {g ∈ GL(V ) : (∀v, v′ ∈ V ) β(gv, gv′) = β(v, v′)},

we then have

aut(V, β) := L(Aut(V, β)) = {x ∈ gl(V ) : (∀v, v′ ∈ V ) β(xv, v′)+β(v, xv′) = 0}.

Proof. We only have to observe that X ∈ L(Aut(V, β)) is equivalent to the
pair (X, 0) satisfying condition (1) in Lemma 3.2.2. ut
Example 3.2.4. (a) Let B ∈ Mn(K), β(v, w) = v>Bw, and

G := {g ∈ GLn(K) : g>Bg = B} ∼= Aut(Kn, β).

Then Proposition 3.2.3 implies that

L(G) = {x ∈ gln(K) : (∀v, v′ ∈ V ) β(xv, v′) + β(v, xv′) = 0}
= {x ∈ gln(K) : (∀v, v′ ∈ V ) v>x>Bv′ + v>Bxv′ = 0}
= {x ∈ gln(K) : x>B + Bx = 0}.

In particular, we obtain

on(K) := L(On(K)) = {x ∈ gln(K) : x> = −x} =: Skewn(K),

op,q(K) := L(Op,q(K)) = {x ∈ glp+q(K) : x>Ip,q + Ip,qx = 0},
and

spn(K) := L(Sp2n(K)) := {x ∈ gl2n(K) : x>B + Bx = 0},

where B =
(

0 −1n

1n 0

)
.
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(b) Applying Proposition 3.2.3 with V = Cn and W = C, considered as
real vector spaces, we also obtain for a hermitian form β : Cn × Cn → C,
(z, w) 7→ w∗Ip,qz:

up,q(C) := L(Up,q(C))
= {x ∈ gln(C) : (∀z, w ∈ Cn)w∗Ip,qxz + w∗x∗Ip,qz = 0}
= {x ∈ gln(C) : Ip,qx + x∗Ip,q = 0}.

In particular, we get

un(C) := L(Un(C)) = {x ∈ gln(C) : x∗ = −x} =: Ahermn(C).

Example 3.2.5. Let g be a finite-dimensional K-Lie algebra and

Aut(g) := {g ∈ GL(g) : (∀x, y ∈ g) g[x, y] = [gx, gy]}.

To calculate the Lie algebra of G, we use Lemma 3.2.2 with V = W = g and
β(x, y) = [x, y]. Then we see that D ∈ aut(g) := L(Aut(g)) is equivalent to
(D, D) satisfying the conditions in Lemma 3.2.2, and this leads to

aut(g) = L(Aut(g)) = {D ∈ gl(g) : (∀x, y ∈ g)D.[x, y] = [D.x, y] + [x, D.y]}

The elements of this Lie algebra are called derivations of g, and aut(g) is also
denoted der(g). Note that the condition on an endomorphism of g to be a
derivation resembles the Leibniz Rule (Product Rule).

Remark 3.2.6. We call a linear Lie group G ⊆ GLn(C) a complex linear Lie
group if L(G) ⊆ gln(C) is a complex subspace, i.e., iL(G) ⊆ L(G). Since
Proposition 3.1.4 only ensures that L(G) is a real subspace, this definition
makes sense.

For example Un(C) is not a complex linear Lie group because

iun(C) = Hermn(C) 6⊆ un(C).

On the other hand On(C) is a complex linear Lie group because

on(C) = Skewn(C)

is a complex subspace of gln(C).

Exercises for Section 3.2

Exercise 3.2.1. Show that the following groups are linear Lie groups and
determine their Lie algebras.

(1) N := {g ∈ GLn(R) : (∀i > j) gij = 0, gii = 1}.
(2) B := {g ∈ GLn(R) : (∀i > j) gij = 0}.
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(3) D := {g ∈ GLn(R) : (∀i 6= j) gij = 0}.
Note that B ∼= N oD is a semidirect product.

(4) A a finite-dimensional associative algebra and

G := Aut(A) := {g ∈ GL(A) : (∀a, b ∈ A) g(ab) = g(a)g(b)}.

Exercise 3.2.2. Realize the two groups Motn(R) and Affn(R) as linear Lie
groups in GLn+1(R).

(1) Determine their Lie algebras motn(R) and affn(R).
(2) Calculate the exponential function exp: affn(R) → Affn(R) in terms of

the exponential function of Mn(R).

Exercise 3.2.3. Let V be a finite-dimensional K-vector space and W ⊆ V a
subspace. Show that

GL(V )W := {g ∈ GL(V ) : gW = W}

is a closed subgroup of GL(V ) with

L(GL(V )W ) = gl(V )W := {X ∈ gl(V ) : X.W ⊆ W}.

Exercise 3.2.4. Show that for n = p + q we have

Op,q(K) ∩On(K) ∼= Op(K)×Oq(K).

3.3 Polar Decomposition of Certain Algebraic Lie
Groups

In this subsection we show that the polar decomposition of GLn(R) can be
used to obtain polar decompositions of many subgroups.

Let G ⊆ GLn(K) be a linear Lie group. If g = uex ∈ G (u unitary and x
hermitian) implies that u ∈ G and ex ∈ G, then g∗ = exu−1 ∈ G. Therefore a
necessary condition for G to be adapted to the polar decomposition of GLn(K)
is that G is invariant under the map g 7→ g∗. So we assume that this condition
is satisfied. For x ∈ L(G), we then obtain from (etx)∗ = etx∗ that x∗ ∈ L(G).
Hence each element x ∈ L(G) can be written as

x =
1
2
(x− x∗) +

1
2
(x + x∗),

where both summands are in L(G). This implies that

L(G) = k⊕ p, where k := L(G) ∩ un(k), p := L(G) ∩Hermn(K).

We also need a condition which ensures that ex ∈ G, x ∈ Hermn(K),
implies x ∈ L(G).
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Definition 3.3.1. We call a subgroup G ⊆ GLn(R) algebraic if there exists a
family (pj)j∈J of real polynomials

pj(x) = pj(x11, x12, . . . , xnn) ∈ R[x11, . . . , xnn]

in the entries of the matrix x ∈ Mn(R) such that

G = {x ∈ GLn(R) : (∀j ∈ J) pj(x) = 0}.

Lemma 3.3.2. Let G ⊆ GLn(R) be an algebraic subgroup, y ∈ Mn(R) diago-
nalizable and ey ∈ G. Then y ∈ L(G), i.e., eRy ⊆ G.

Proof. Suppose that A ∈ GLn(R) is such that AyA−1 is a diagonal matrix.
Then p̃j(x) = pj(A−1xA), j ∈ J , is also a set of polynomials in the entries of
x and ey ∈ G is equivalent to

eAyA−1
= AeyA−1 ∈ G̃ := AGA−1 = {g ∈ GLn(R) : (∀j) p̃j(g) = 0}.

Therefore we may assume that y = diag(y1, . . . , yn) is a diagonal matrix. Now
the polynomial qj(t) := pj(ety) has the form

qj(t) =
∑

(k1,...,kn)∈Nn
0

ak1,...,kn(ety1)k1 · · · (etyn)kn

=
∑

(k1,...,kn)∈Nn
0

ak1,...,knet(k1y1+...+knyn)

(a finite sum). Therefore it can be written as qj(t) =
∑m

k=1 λketbk , with
b1 > . . . > bm, where each bk is a sum of the entries yl of y. If qj does
not vanish identically on R, then we may assume that λ1 6= 0. This leads to

lim
t→∞

e−tb1qj(t) = λ1 6= 0,

which contradicts qj(Z) = {0}, which in turn follows from eZy ⊆ G. Therefore
each polynomial qj vanishes identically, and hence eRy ⊆ G. ut
Proposition 3.3.3 (Polar decomposition for real algebraic groups).
Let G ⊆ GLn(R) be an algebraic subgroup with G = G>. We define K :=
G ∩On(R) and p := L(G) ∩ Symn(R). Then the map

ϕ : K × p → G, (k, x) 7→ kex

is a homeomorphism.

Proof. Let g ∈ G and write it as g = uex with u ∈ On(R) and x ∈ Symn(R)
(Proposition 2.3.5 and the polar decomposition). Then

e2x = g>g ∈ G,
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where x ∈ Symn(R) is diagonalizable. Therefore Lemma 3.3.2 implies that
eRx ⊆ G, so that x ∈ p. Hence u = ge−x ∈ G∩On(R) = K. We conclude that
ϕ is a surjective map. Furthermore Proposition 1.1.5 on the polar decomposi-
tion of GLn(R) implies that ϕ is injective, hence bijective. The continuity of
ϕ−1 also follows from the continuity of the inversion in GLn(R) (cf. Proposi-
tion 1.1.5). ut
Example 3.3.4. Proposition 3.3.3 applies to the following groups:

(a) G = SLn(R) is p−1(0) for the polynomial p(x) = det x − 1, and we
obtain

SLn(R) = K exp p ∼= K × p

with
K = SOn(R) and p = {x ∈ Symn(R) : tr x = 0}.

For SL2(R), we obtain in particular a homeomorphism

SL2(R) ∼= SO2(R)× R2 ∼= S1 × R2.

(b) G = Op,q := Op,q(R) is defined by the condition g>Ip,qg = Ip,q. These
are n2 polynomial equations, one for each entry of the matrix. Moreover,
g ∈ Op,q implies

Ip,q = I−1
p,q = (g>Ip,qg)−1 = g−1Ip,q(g>)−1

and hence gIp,qg
> = Ip,q, i.e., g> ∈ Op,q. Therefore O>p,q = Op,q, and all the

assumptions of Proposition 3.3.3 are satisfied. In this case,

K = Op,q ∩On
∼= Op×Oq,

(Exercise 3.2.4) and topologically we obtain

Op,q
∼= Op×Oq ×(op,q ∩ Symn(R)).

In particular, we see that for p, q > 0 the group Op,q has four arc-components
because Op and Oq have two arc-components (Proposition 1.1.7).

For the subgroup SOp,q we have one additional polynomial equation, so
that it is also algebraic. Here we have

KS := K ∩ SOp,q
∼= {(a, b) ∈ Op×Oq : det(a) det(b) = 1}

∼=
(
SOp× SOq

)∪̇(
Op,−×Oq,−

)
,

so that SOp,q has two arc-components if p, q > 0 (cf. the discussion of the
Lorentz group in Example 1.2.7).

(c) We can also apply Proposition 3.3.3 to the subgroup GLn(C) ⊆
GL2n(R) which is defined by the condition gI = Ig, where I : R2n → R2n

corresponds to the componentwise multiplication with i on Cn. These are
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4n2 = (2n)2 polynomial equations defining GLn(C). In this case we obtain a
new proof of the polar decomposition of GLn(C) because

K = GLn(C) ∩O2n(R) = Un(C)

and
p = gln(C) ∩ Sym2n(R) = Hermn(C).

Example 3.3.5. Let X ∈ Symn(R) be a nonzero symmetric matrix and con-
sider the subgroup G := exp(ZX) ⊆ GLn(R). Since exp X is symmetric, we
then have G> = G. Moreover, if λ1 ≤ . . . ≤ λk are the eigenvalues of X, then

‖ exp(nX)− 1‖ = max(|enλk − 1|, |enλ1 − 1|) ≥ max(|eλk − 1|, |eλ1 − 1|)
implies that G is a discrete subset of GLn(R), hence a closed subgroup, and
therefore a linear Lie group. On the other hand, the fact that G is discrete
implies that L(G) = {0}. This example show that the assumption that G is
algebraic is indispensable for Proposition 3.3.3 because

G ∩On(R) = {1} and L(G) ∩ Symn(R) = {0}.

Exercises for Section 3.3

Exercise 3.3.1. Show that the groups On(C), SOn(C) and Sp2n(R) have po-
lar decompositions and describe their intersections with O2n(R).

Exercise 3.3.2. Let B ∈ Hermn(K) with B2 = 1 and consider the automor-
phism τ(g) = Bg−>B−1 of GLn(K). Show that:
(1) Aut(Cn, B) = {g ∈ GLn(K) : τ(g) = g}.
(2) Aut(Cn, B) is adapted to the polar decomposition by showing that if
g = uex is the polar decomposition of g, then τ(g) = g is equivalent to
τ(u) = u and τ(x) = x.
(3) Aut(Cn, B) is adapted to the polar decomposition by using that it is an
algebraic group.

Notes on Chapter 3

As for Chapter 1 it has to be noted that the results presented are only the tip
of the iceberg. The guiding principle for our choice of material was to present
facts which either generalize to general classes of Lie groups or else serve as
tools in the study of such classes of Lie groups.

The BCDH formula was first studied by J. E. Campbell in [Cam97,
Cam98], and in [Hau06], F. Hausdorff studied the Hausdorff series on a for-
mal level, showing that the formal expansion of log(exey) can be expressed
in terms of Lie polynomials. Part of his results had been obtained earlier by
H. F. Baker ([Bak01, Bak05]). In [Dyn47, Dyn53], E. B. Dynkin determined
the summands in the Hausdorff series explicitly.
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4

Elementary Structure Theory of Lie Algebras

Lie algebras form the infinitesimal counterparts of Lie groups. We have already
seen in the preceding chapters how matrix groups give rise to Lie algebras
of matrices, and we shall also see in Chapter 8 below how to associate a
Lie algebra to any Lie group. This correspondence is the guiding motivation
behind the theory of finite-dimensional Lie algebras to which we now turn in
some depth.

In this part we study Lie algebras as independent objects and thus pro-
vide tools to solve the linear algebra problems which we will encounter when
translating Lie group questions into Lie algebra questions in Part IV. We start
in the present chapter by working out the standard analysis of an algebraic
structure for Lie algebras: What are the substructures? Under which condi-
tion does a substructure lead to a quotient structure? What are the simple
structures? Does one have composition series? This leads to concepts like Lie
subalgebras and ideals, nilpotent, solvable, and semisimple Lie algebras. Key
results in this context are Engel’s Theorems on nilpotent Lie algebras, Lie’s
Theorem for solvable Lie algebras and Cartan’s criteria for solvability and
semisimplicity. The latter are first instances in which one recognizes the use-
fulness of the Cartan–Killing form, which is a specific structural element for
Lie algebras.

4.1 Basic Concepts

In this section we provide the basic definitions and concepts concerning Lie
algebras. In particular, we discuss ideals, quotients, homomorphisms and the
elementary connections between these concepts.

4.1.1 Definitions and Examples

We start by recalling the definition of a Lie algebra from Definition 3.1.1.
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Definition 4.1.1. Let g be a vector space. A Lie bracket on g is a bilinear
map [· , ·] : g× g → g satisfying

(L1) [x, y] = −[y, x] for x, y ∈ g,
(L2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for x, y, z ∈ g (Jacobi identity).

For any Lie bracket on g, the pair (g, [· , ·]) is called a Lie algebra.

Example 4.1.2. (cf. Def. 2.1.1) A vector space A together with a bilinear
map · : A×A → A is called an (associative) algebra, if

a · (b · c) = (a · b) · c for a, b, c ∈ A.

Then the commutator
[a, b] := a · b− b · a

defines a Lie bracket on A (Exercise). We write AL := (A, [·, ·]) for this Lie
algebra.

Example 4.1.3. (a) Let V be a vector space and End(V ) be the set of linear
endomorphisms of V . Then End(V ) is an associative algebra and we write
gl(V ) := End(V )L for the corresponding Lie algebra.

(b) The space Mn(K) of (n×n)-matrices with entries in K is an associative
algebra with respect to matrix multiplication. We write gln(K) := Mn(K)L

for the corresponding Lie algebra.

Definition 4.1.4. (a) Let g and h be Lie algebras. A linear map α : g → h is
called a homomorphism if

α([x, y]) = [α(x), α(y)] for x, y ∈ g.

An isomorphism of Lie algebras is a homomorphism α for which there exists
a homomorphism β : h → g with α ◦ β = idh and β ◦ α = idg. It is easy to see
that this condition is equivalent to α being bijective (Exercise).

A representation of a Lie algebra g on the vector space V is a homomor-
phism α : g → gl(V ). We also write (α, V ) for a representation α of g on V .

(b) Let g be a Lie algebra and U, V be subsets of g. We write

[U, V ] := span{[u, v] : u ∈ U, v ∈ V }

for the smallest subspace containing all brackets [u, v] with u ∈ U and v ∈ V .
(c) A linear subspace h of g is called a Lie subalgebra if [h, h] ⊆ h. We then

write h < g. If we even have [g, h] ⊆ h, we call h an ideal of g and write h E g.

(d) The Lie algebra g is called abelian if [g, g] = {0}, which means that all
brackets vanish.
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Remark 4.1.5. From the definitions it is immediately clear that the image of
a homomorphism α : g1 → g2 of Lie algebras is a subalgebra of g2. Moreover,
α−1(h) is an ideal in g1 if h E g2, and α−1(h) is a subalgebra if h < g2. In
particular, the kernel kerα of a Lie algebra homomorphism α is always an
ideal.

Examples 4.1.6. (i) Let g be Lie algebra. Then the center

z(g) := {x ∈ g | (∀y ∈ g) [x, y] = 0}
of g is an ideal in g.

(ii) For each Lie algebra g, the subspace [g, g] is an ideal, called the commu-
tator algebra of g.

(iii) Every one-dimensional subspace of a Lie algebra is a subalgebra since the
Lie bracket is skew-symmetric.

(iv) The set
on(K) := {x ∈ gln(K) | x = −x>}

is a subalgebra of gln(K), the orthogonal Lie algebra.
(v) The set

un(C) := {x ∈ gln(C) | x = −x∗}
is a real subalgebra of gln(C), the unitary Lie algebra.

(vi) The set
sln(K) := {x ∈ gln(K) | tr(x) = 0}

is an ideal in gln(K), where tr(x) denotes the trace of X. It is called the
special linear Lie algebra.

(vii) Let Jn :=
(

0 1n

−1n 0

)
∈ gl2n(K) and note that J>n = −Jn. Then the set

spn(K) := {x ∈ gl2n(K) : x>Jn + Jnx = 0}
is a Lie subalgebra of gl2n(K), called the symplectic Lie algebra. Writing
elements of gl2n(K) as (2× 2)-block matrices, one easily verifies that

(
A B
C D

)
∈ spn(K) ⇐⇒ B = B>, C = C>, A> = −D.

(viii) The sets
n = {x = (xij) ∈ gln(K) | (∀i ≥ j) xij = 0}

and
b = {x = (xij) ∈ gln(K) | (∀i > j)xij = 0}

are subalgebras of gln(K).
(ix) Let V be a subspace of a Lie algebra g. The normalizer

ng(V ) = {x ∈ g | [x, V ] ⊆ V }
of V in g is a subalgebra of g.
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Example 4.1.7. Let V be a vector space. A tuple F = (V0, . . . , Vn) of sub-
spaces with

{0} = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V

is called a flag in V . Then

g(F) := {x ∈ gl(V ) : (∀j) xVj ⊆ Vj}

is a Lie subalgebra of gl(V ) = End(V )L.
To visualize this Lie algebra, we shall describe linear maps by suitable block

matrices. If V is a vector space which is a direct sum V = W1 ⊕ . . .⊕Wn of
subspaces Wj , j = 1, . . . , n, then we write an endomorphism A ∈ End(V ) as
an (n× n)-block matrix

A = (Ajk)j,k=1,...,n =




A11 · · · A1n

A21 · · · A2n

...
. . .

...
An1 · · · Ann


 ,

where Ajk ∈ Hom(Wk,Wj) is uniquely determined by the requirement that
the image of v = (v1, . . . , vn) ∈ V is

Av =
( n∑

k=1

Ajkvk

)
j=1,...,n

.

Applying this kind of visualization to the Lie algebra g(F), we choose
in Vj a subspace Wj with Vj

∼= Vj−1 ⊕ Wj . For each j we then have
Vj
∼= W1 ⊕ . . .⊕Wj , and in particular V ∼= W1⊕ . . .⊕Wn. Now the elements

of g(F) are those endomorphisms of V corresponding to upper triangular
matrices

A =




A11 A12 · · · A1n

0 A22 · · · A2n

...
. . . . . .

...
0 · · · 0 Ann


 .

Definition 4.1.8. Let g be a Lie algebra. A linear map δ : g → g is called a
derivation if

δ([x, y]) = [δ(x), y] + [x, δ(y)] for x, y ∈ g.

The set of all derivations is denoted by der(g).

Definition 4.1.9. Let g be a Lie algebra and X ∈ g. Then the Jacobi identity
implies that the linear map

ad(x) : g → g, y 7→ [x, y]
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is a derivation. Derivations of this form are called inner derivations. The map
ad: g → gl(g) is called the adjoint representation. That it is a representation
follows directly from the Jacobi identity, which implies that

ad[x, y] = [adx, ad y].

Proposition 4.1.10. For any Lie algebra g,

(i) der(g) < gl(g) and ad(g) E der(g) is an ideal. In particular

[D, adx] = ad(Dx) for D ∈ der(g), x ∈ g. (4.1)

(ii) ker(ad) = z(g)

Proof. (i) The first part is a special case of Exercise 4.1.4 and for the second
one verifies (4.1) by direct calculation.

(ii) is trivial. ut

4.1.2 Representations and Modules

In this short subsection we introduce some terminology concerning represen-
tations of Lie algebras and the corresponding concept of a Lie algebra module.

Definition 4.1.11. Let g be a Lie algebra, and V a vector space. Suppose
that

g× V → V, (x, v) 7→ x · v
is a bilinear map. If

[x, y] · v = x · (y · v)− y · (x · v) for x, y ∈ g, v ∈ V,

then V is called a g-module.

Definition 4.1.12. (a) Let g be a Lie algebra and V a g-module. A subspace
W ⊆ V is called a g-submodule if g ·W ⊆ W .

(b) A g-module V is called simple if it is nonzero and there are no sub-
modules except {0} and V . It is called semisimple, if V is the direct sum of
simple submodules.

(c) If V and W are g-modules, then a linear map ϕ : V → W is called
homomorphism of g-modules if for all x ∈ g and all v ∈ V ,

ϕ(x · v) = x · ϕ(v).

We write Homg(V,W ) for the vector space of all g-module homomorphisms
from V to W and note that the set Endg(V ) := Homg(V, V ) of module endo-
morphisms of V is an associative subalgebra of End(V ).

If ϕ ∈ Homg(V, W ) is bijective, then the inverse map ψ : W → V is also a
homomorphism of g-modules (Exercise) satisfying ϕ◦ψ = idW and ψ◦ϕ = idV .
Therefore ϕ is called an isomorphism of g-modules. The set of isomorphisms
V → V is the group Autg(V ) := Endg(V )× of units in the algebra Endg(V ).
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Example 4.1.13. (a) Any Lie algebra g carries a natural g-module structure
defined by the adjoint representation x ·y := [x, y]. The g-submodules of g are
precisely the ideals (cf. Definition 4.1.9).

(b) If g = K is the one-dimensional Lie algebra and V a K-vector space,
then any endomorphism D ∈ End(V ) determines a g-module structure on V
defined by t · v := tD(v). Clearly, each g-module structure of V is of this form
for D(v) = 1 · v.

Remark 4.1.14. If π : g → gl(V ) is a representation, then a g-module struc-
ture on V is defined by x · v = π(x)v. Conversely, for every g-module V ,
the map π : g → gl(V ) defined by π(x)v = x · v is a representation. Thus
representations of g and g-modules are equivalent concepts.

Definition 4.1.15. A representation (π, V ) of a Lie algebra g is called irre-
ducible if V is a simple g-module. It is called completely reducible if V is a
semisimple g-module.

4.1.3 Quotients and Semidirect Sums

We have already seen that the kernel of a homomorphism of Lie algebras is
an ideal. The following proposition implies in particular that each ideal is the
kernel of a surjective homomorphism of Lie algebras.

Proposition 4.1.16. Let g be a Lie algebra and n be an ideal in g. Then the
quotient space g/n = {x + n : x ∈ g} is a Lie algebra with respect to the
bracket

[x + n, y + n] := [x, y] + n.

The quotient map π : g → g/n is a surjective homomorphism of Lie algebras
with kernel n.

Proof. The decisive step in the proof is to show that the Lie bracket is well
defined. But this immediately follows from the definition of an ideal. All
other properties one can easily derive from the respective properties of the
Lie bracket on g (Exercise). ut
Theorem 4.1.17. Let g and h be Lie algebras.

(i) If α : g → h is a homomorphism, then

α(g) ∼= g/ kerα.

For any ideal i E g with i ⊆ kerα, there is exactly one homomorphism
β : g/i → h with β ◦ π = α, where π : g → g/i is the quotient map.

(ii) If i, j E g are ideals with i ⊆ j, then j/i E g/i, and (g/i)/(j/i) ∼= g/j.
(iii) If i, j E g are two ideals, then i + j and i ∩ j are ideals of g, and

i/(i ∩ j) ∼= (i + j)/j.
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Proof. Exercise. ut
We have already seen that we obtain with each ideal n E g a quotient

algebra g/n, so that we may consider the two Lie algebras n and g/n as two
pieces into which g is decomposed. It is therefore a natural question how we
may build a Lie algebra g from two Lie algebras n and h in such a way that
n E g and g/n ∼= h. The following definition describes one such construction
(cf. Section 6.6 for more information).

Definition 4.1.18. Let n and h be Lie algebras and α : h → der(n) be a
homomorphism. Then the direct sum n ⊕ h of the vector spaces n and h is a
Lie algebra with respect to the bracket

[(x, y), (x′, y′)] := (α(y)x′ − α(y′)x + [x, x′], [y, y′])

for x, x′ ∈ n, y, y′ ∈ h. This Lie algebra is called the semidirect sum with
respect to α of n and h. It is denoted by noα h. If α = 0, then noα h is called
the direct sum of n and h, and it is denoted by n⊕ h.

The subspace {(x, 0) ∈ noα h} is an ideal in n oα h isomorphic to n and
{(0, y) ∈ noα h} is a subalgebra of noα h isomorphic to h (cf. Exercise 4.1.2).

For a derivation D ∈ der n we simply write noD K for the semidirect sum
defined by α(t) := tD.

Example 4.1.19. Let h3(R) be the 3-dimensional vector space with the basis
p, q, z equipped with the skew-symmetric bracket determined by

[p, q] = z, [p, z] = [q, z] = 0.

Then h3(R) is a Lie algebras called the three-dimensional Heisenberg algebra.
It is isomorphic to the algebra n in Example 4.1.6(viii) for n = 3. The linear
endomorphism of h3(R) defined by

Dz = 0, Dp = q and Dq = −p

then is a derivation of h3(R), so that we obtain a Lie algebra
g := h3(R) oD R, called the oscillator algebra. Writing h := (0, 1) for the
additional basis element in g, the nonzero brackets of basis elements are

[p, q] = z, [h, p] = q and [h, q] = −p.

Example 4.1.20. If F = (V0, . . . , Vn) is a flag in the vector space V (Exam-
ple 4.1.7), then we know already the associated Lie algebra

g(F) = {x ∈ gl(V ) : (∀j)xVj ⊆ Vj}.

It is easy to see that
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gn(F) := {x ∈ gl(V ) : (∀j > 0) xVj ⊆ Vj−1}.
is an ideal of g(F).

To find a subalgebra complementary to this ideal, we choose subspaces
W0, . . . , Wn−1 of V with Vj+1

∼= Vj ⊕Wj for j = 0, . . . , n− 1. Then

gs(F) := {X ∈ gl(V ) : (∀j) XWj ⊆ Wj} ⊆ g(F)

is a subalgebra with

g(F) ∼= gn(F)o gs(F) and gs(F) ∼=
n⊕

j=1

gl(Wj).

Describing the elements of g(F) as in Example 4.1.7 by block matrices, the
semidirect decomposition of the Lie algebra g(F) corresponds to the decom-
position of an upper triangular matrix as a sum of a strictly upper triangular
matrix and a diagonal matrix. For n = 3 we have in particular:

A =




A11 A12 A13

0 A22 A23

0 0 A33


 =




A11 0 0
0 A22 0
0 0 A33




︸ ︷︷ ︸
∈gs(F)

+




0 A12 A13

0 0 A23

0 0 0




︸ ︷︷ ︸
∈gn(F)

.

4.1.4 Complexification and Real Forms

Up to now, the base field did not really play a role in our considerations.
Nevertheless, it is important (just think about basic linear algebra) to note
that, for instance, homomorphisms of complex Lie algebras are supposed to be
complex linear. Therefore, we also consider the complexification of a real Lie
algebra. For this, we briefly recall how to calculate with the complexification
of a vector space.

Let V be an R-vector space. The complexification VC of V is the tensor
product C ⊗R V . This is a complex vector space with respect to the scalar
multiplication λ · (z ⊗ v) := λz ⊗ v. Identifying V with the subspace 1⊗ V of
VC, each element of VC can be written in a unique fashion as z = x + iy with
x, y ∈ V . If {v1, . . . , vn} is a real basis for V , then {1 ⊗ v1, . . . , 1 ⊗ vn} is a
complex basis for VC.

Proposition 4.1.21. Let g be a real Lie algebra.

(i) gC is a complex Lie algebra with respect to the complex bilinear Lie bracket,
defined by

[x + iy, x′ + iy′] := ([x, x′]− [y, y′]) + i([x, y′] + [y, x′]),

and satisfying
[z ⊗ v, z′ ⊗ v′] = zz′ ⊗ [v, v′].
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(ii) [gC, gC] ∼= [g, g]C as complex Lie algebras.

Proof. Elementary calculations. ut
Definition 4.1.22. Let g be a complex Lie algebra. A real Lie algebra h with
hC ∼= g is called a real form of g.

We have seen that for every real Lie algebra, we can assign a complexifica-
tion in a unique way. However, nonisomorphic real algebras can have isomor-
phic complexifications, resp., complex Lie algebras can have nonisomorphic
real forms.

Example 4.1.23. Let so3(R) = o3(R) ∩ sl3(R) = o3(R). Then the complexi-
fications of so3(R) and sl2(R) are both isomorphic to sl2(C). To see this, we
consider the bases

h =
(

1 0
0 −1

)
, u =

(
0 1

−1 0

)
, t =

(
0 1
1 0

)

of sl2(R), and

x =




0 1 0
−1 0 0

0 0 0


 , y =




0 0 1
0 0 0

−1 0 0


 , z =




0 0 0
0 0 −1
0 1 0




of so3(R). Then

[h, u] = 2t, [h, t] = 2u, [u, t] = 2h

and
[x, y] = z, [z, x] = y, [y, z] = x.

Let
h = Rih + Ru + Rit.

Then h is a Lie algebra with hC = sl2(C) which is isomorphic to so3(R) via

ih 7→ 2x, u 7→ 2y, it 7→ 2z.

We note that h coincides with su2(C). Since, obviously, sl2(R)C = sl2(C), it
only remains to show that sl2(R) and so3(R) are not isomorphic. For this,
it suffices to check that Rh + R(u + t) is a two-dimensional subalgebra of
sl2(R), while so3(R) has no two-dimensional subalgebra. Namely, the latter
is isomorphic to R3 with the vector product (Exercise 4.1.6), and since the
vector product of two vectors is orthogonal to these vectors, a plane cannot
be a subalgebra.
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Example 4.1.24 (A complex Lie algebra with no real form). On the
abelian Lie algebra V := C2 we consider the linear operator D, defined by
De1 = 2e1 and De2 = ie2 with respect to the canonical basis. Then we
form the three-dimensional complex Lie algebra g := V oD C and note that
V = [g, g] is a 2-dimensional ideal of g.

Suppose that g has a real form. Let σ ∈ Aut(g) be the corresponding
complex conjugation, which is an involutive automorphism of g. Then

σ(V ) = σ([g, g]) = [σ(g), σ(g)] = [g, g] = V,

so that σ induces an antilinear involution σV on V . Let σ(0, 1) = (v0, λ) and
note that σ(V ) = V implies that λ 6= 0. Applying σ again, we see that

(0, 1) = σ2(0, 1) = σV (v0) + λσ(0, 1) = (σV (v0) + λv0, λ · λ).

We conclude that |λ| = 1. Further, σ ◦ ad(0, 1) ◦ σ = ad(σ(0, 1)) = ad(v0, λ)
implies by restricting to V that

σV ◦D ◦ σV = λD.

If v ∈ V is a D-eigenvector with Dv = αv, then

D(σV v) = σV (λDv) = λασV (v).

This means that σV (Vα(D)) = Vλα(D). In particular, σV permutes the
D-eigenspaces. Now |λ| = 1 and |i| 6= 2 show that σV preserves both
eigenspaces. For α = 2, this leads to λ = 1, so that λ = 1. For α = i we
now arrive at the contradiction −i = λα = α = i.

This example is minimal because each complex Lie algebra of dimension
2 has a real form (cf. Example 4.4.2).

Exercises for Section 4.1

Exercise 4.1.1. Let A be an associative algebra and AL be the associated
Lie algebra (cf. Example 4.1.2).

(i) A derivation of A is a linear map δ : A → A such that

δ(ab) = δ(a)b + aδ(b) ∀a, b ∈ A.

Then der(A) ⊆ der(AL), i.e., every derivation of the associative algebra
A is a derivation of the Lie algebra AL, too.

(ii) [a, bc] = [a, b]c + b[a, c] for a, b, c ∈ A.
(iii) In general der(A) 6= der(AL).
(iv) If A is commutative, then A · der(A) ⊆ der(A).
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Exercise 4.1.2. Let U be an open subset of R2n and g = C∞(U,R) be the set
of smooth functions on U and write q1, . . . , qm, p1, . . . , pm for the coordinates
with respect to a basis. Then g is a Lie algebra with respect to the Poisson
bracket

{f, g} :=
n∑

i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

Exercise 4.1.3. Let U be an open subset of Rn, A = C∞(U,R), and
g = C∞(U,Rn). For f ∈ A and X ∈ g, we define

LXf := Xf :=
n∑

i=1

Xi
∂f

∂xi
.

(i) The maps LX are derivations of the algebra A.
(ii) If LX = 0, then X = 0.
(iii) The commutator of two such operators has the form [LX ,LY ] = L[X,Y ],

where the bracket on g is defined by (cf. Definition 7.1.1)

[X,Y ](p) := dY (p)X(p)− dX(p)Y (p),

resp.,

[X,Y ]i =
n∑

j=1

Xj
∂Yi

∂xj
− Yj

∂Xi

∂xj
.

(iv) (g, [·, ·]) is a Lie algebra.
(v) To each A ∈ gln(R), we associate the linear vector field XA(x) := Ax.

Show that, for A,B ∈ Mn(R), we have X[A,B] = −[XA, XB ].

Exercise 4.1.4. Let A be a vector space and m : A×A → A a bilinear map.
Then the space

der(A,m) := {D ∈ gl(A) : (∀a, b ∈ A) Dm(a, b) = m(Da, b) + m(a,Db)}

of derivations is a Lie subalgebra of gl(A).

Exercise 4.1.5. Let g be a Lie algebra, n E g an ideal and h < g a Lie
subalgebra with g = n + h and n ∩ h = {0}. Then

δ : h → der n, δ(x) := ad x|n
defines a homomorphism of Lie algebras and the map

Φ : noδ h → g, (x, y) 7→ x + y

is an isomorphism of Lie algebras.
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Exercise 4.1.6. On R3 we define the vector product by



v1

v2

v3


×




w1

w2

w3


 :=




v2w3 − v3y2

v3w1 − v1w3

v1w2 − v2w1


 .

Show that (R3,×) is a Lie algebra and that the map

Φ : R3 → so3(R), Φ(v) := v1x + v2y + v3z

(in the notation of Example 4.1.23) is an isomorphism of Lie algebras.

Exercise 4.1.7. Show that [gln(K), gln(K)] = sln(K) and z(gln(K)) = K1.

Exercise 4.1.8. On the algebra A := C∞(R,R), consider the operators

Pf(x) := f ′(x), Qf(x) := xf(x) and Zf(x) = f(x).

Then the Lie subalgebra of gl(A) generated by P,Q and Z is isomorphic to
the Heisenberg algebra h3(R), i.e.,

[P, Q] = Z and [P,Z] = [Q,Z] = 0.

Adding also the operator

Hf(x) :=
1
2
(d2f

dx2
(x) + x2f(x)

)
, H =

1
2
(P 2 + Q2),

we obtain a four-dimensional subalgebra, isomorphic to the oscillator algebra
(Example 4.1.19).

Exercise 4.1.9. Show that for two ideals a and b of the Lie algebra g, the
subspace [a, b] also is an ideal.

Exercise 4.1.10. Let (π, V ) be a representation of the Lie algebra g on V
and W ⊆ V a g-invariant subspace, i.e., π(g)W ⊆ W . Then

π : g → gl(V/W ), π(x)(v + W ) := π(x)v + W

defines a representation of g on the quotient space V/W .

Exercise 4.1.11. For the following Lie algebras, find a faithful , i.e., injective,
finite-dimensional representation: sl2(K), the Heisenberg algebra, the oscilla-
tor algebra, and the abelian Lie algebra Rn.
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4.2 Nilpotent Lie Algebras

In the following, we shall encounter several important classes of Lie algebras
that play a central role in the structure theory of finite-dimensional Lie alge-
bras. The first of these two classes, nilpotent Lie algebras, are those for which
iterated brackets [x1, [x2, [x3, [x4, · · · ]]]] of sufficiently large order vanish. The
most important result on nilpotent Lie algebras is Engel’s Theorem which
translates nilpotency of a Lie algebra into a pointwise condition. Typical ex-
amples of nilpotent Lie algebras are Lie algebras of strictly upper triangular
(block) matrices.

Definition 4.2.1. Let g be a Lie algebra. We define its descending (lower)
central series inductively by

C1(g) := g and Cn+1(g) := [g, Cn(g)].

In particular, C2(g) = [g, g] is the commutator algebra. The Lie algebra g
is called nilpotent , if there is an n ∈ N with Cn(g) = {0}. By induction, one
immediately sees that each Cn(g) is an ideal of g, so that Cn+1(g) ⊆ Cn(g).
Hence, for finite-dimensional Lie algebra, the nilpotency of g is equivalent to
the vanishing of the ideal C∞(g) :=

⋂
n∈N Cn(g).

Example 4.2.2. (i) The Heisenberg algebra h3(R) is nilpotent.
(ii) Every abelian Lie algebra is nilpotent.
(iii) If F = (V0, . . . , Vn) is a flag in the vector space V and we put Vi := {0}

for i < 0, then gn(F) is a nilpotent Lie algebra. In fact, an easy induction
leads to

Cm
(
gn(F)

)
Vn ⊆ Vn−m

and therefore to Cn
(
gn(F)

)
= {0}.

Proposition 4.2.3. Let g be a Lie algebra.

(i) If g is nilpotent, then all subalgebras and all homomorphic images of g are
nilpotent.

(ii) If a < z(g) and g/a is nilpotent, then g is nilpotent.
(iii) If g 6= {0} is nilpotent, then z(g) 6= {0}.
(iv) If g is nilpotent, then there is an n ∈ N with ad(x)n = 0 for all x ∈ g,

i.e., the ad(x) are nilpotent as linear maps.
(v) If i E g, then all the spaces Cn(i) are ideals of g.

Proof. (i) If h < g, then [h, h] ⊆ [g, g] and Cn(h) ⊆ Cn(g) follows by induction.
Therefore each subalgebra of a nilpotent Lie algebra is nilpotent.

For a homomorphism α : g → h, we obtain inductively

Cn(α(g)) = α(Cn(g)) for each n ∈ N. (4.2)

Thus, if Cn(g) = {0}, then Cn(im α) = {0}.
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(ii) If g/a is nilpotent, then there is an n ∈ N with Cn(g/a) = {0}, so
that (4.2), applied to the quotient homomorphism q : g → g/a, leads to
Cn(g) ⊆ a ⊆ z(g) and thus to Cn+1(g) ⊆ [g, z(g)] = {0}.
(iii) If g 6= {0} is nilpotent, for some n ∈ N, we have Cn(g) = {0} and
Cn−1(g) 6= {0}. Then [g, Cn−1(g)] = {0} implies that the nontrivial ideal
Cn−1(g) is contained in the center.
(iv) If Cn+1(g) = {0}, then (ad x)ng ⊆ Cn+1(g) = {0}.
(v) In view of Exercise 4.1.9, this follows by induction. ut

In Proposition 4.2.3, we have seen that for every nilpotent Lie algebra, all
the endomorphisms ad(x), x ∈ g, are nilpotent. Now our aim is to show that
a finite-dimensional Lie algebra, for which every adx is nilpotent, is nilpotent
itself. We start with a simple lemma, the proof of which we leave to the reader
as an exercise (cf. Exercises 3.1.3 and 4.1.10).

Lemma 4.2.4. (i) Let V be a finite-dimensional vector space, g ⊆ gl(V ) a
subalgebra and x ∈ g. If x ∈ gl(V ) is nilpotent, then ad(x) : g → g is also
nilpotent.

(ii) Let g be a Lie algebra and h < g. Then

adg/h : h → gl(g/h), adg/h(x)(y + h) := [x, y] + h

defines a representation of h on g/h.

Theorem 4.2.5 (Engel’s Theorem on Linear Lie Algebras). Let V 6=
{0} be a finite-dimensional vector space and g ⊆ gl(V ) a Lie subalgebra. If
all x ∈ g are nilpotent, i.e., xn for some n ∈ N, then there exists a nonzero
vo ∈ V with g(vo) = {0}.
Proof. We proceed by induction on dim g. For dim g = 0 the assertion holds
trivially for each nonzero vo ∈ V .

Next we assume that dim g > 0 and pick a proper subalgebra h < g of
maximal dimension. According to Lemma 4.2.4, for each x ∈ h the operators
adg/h(x) are nilpotent. Now our induction hypothesis implies the existence
of some xo ∈ g\h with adg/h(h)(xo) = {0}, i.e., [h, xo] ⊆ h. This implies
that Kxo + h is a subalgebra of g and, again by maximality of h, it fol-
lows that Kxo + h = g. The induction hypothesis also implies that the space
Vo := {v ∈ V : h(v) = {0}} is nonzero. Moreover,

yx(w) = xy(w)− [x, y](w) ∈ xh(w) + h(w) = {0}
for x ∈ g, y ∈ h, w ∈ Vo, implies that g(Vo) ⊆ Vo. Since xo|Vo is also nilpotent,
there exists a nonzero vo ∈ Vo with xo(vo) = 0. Putting all this together, we
arrive at g(vo) = h(vo) +Kxo(vo) = {0}. ut

Exercise 4.2.8 discusses an interesting Lie algebra of nilpotent endomor-
phisms of an infinite-dimensional space, showing in particular that Engel’s
Theorem does not generalize to infinite-dimensional spaces.
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From Theorem 4.2.5, one also gets the induction step by which one shows
that every subalgebra of gl(V ) which consists of nilpotent elements can be
written as a Lie algebra of triangular matrices.

Definition 4.2.6. Let V be an n-dimensional vector space. A complete flag
in V is a flag (V0, . . . , Vn) with with dim Vk = k for each k.

Corollary 4.2.7. Let V be a finite-dimensional vector space and g < gl(V )
such that all elements of g are nilpotent. Then there exists a complete flag
F in V with g ⊆ gn(F). In particular, there is a basis for V with respect to
which the elements of g correspond to strictly upper triangular matrices. In
particular, g is nilpotent.

Proof. In view of Theorem 4.2.5, there exists a nonzero v1 ∈ V with g(v1) =
{0}. We set V1 := Kv1. Then

α : g → gl(V/V1), α(x)(v + V1) := x(v) + V1

is a representation of g on V/V1 (Exercise 4.1.10), and α(g) consists of nilpo-
tent endomorphisms. We now proceed by induction on dimV , so that the in-
duction hypothesis implies that V/V1 possesses a complete flag
F1 = (W1, . . . , Wk) with α(g) ⊆ gn(F1). Then {0}, together with the preim-
age of the flag F1 in V is a complete flag F in V with g ⊆ gn(F). Since gn(F)
is nilpotent (Example 4.2.2(iii)), the subalgebra g is also nilpotent. ut

Now we are able to prove the announced criterion for the nilpotency of a
Lie algebra.

Theorem 4.2.8 (Engel’s Characterization Theorem for Nilpotent Lie
Algebras). Let g be a finite-dimensional Lie algebra. Then g is nilpotent if
and only if for each x ∈ g the operator ad x is nilpotent.

Proof. We have already seen in Proposition 4.2.3 that for each x ∈ g the
operator ad x is nilpotent. It remains to show the converse.

If ad x is nilpotent for each x ∈ g, then Corollary 4.2.7 implies that the
Lie algebra ad(g) ∼= g/z(g) is nilpotent. Now Proposition 4.2.3(ii) shows that
g is also nilpotent. ut

Exercises for Section 4.2

Exercise 4.2.1. Let V be a finite-dimensional complex vector space and
x ∈ End(V ) with eigenvalues λ1, . . . , λn. Then the eigenvalues of ad x are
all numbers of the form

λi − λj , i, j = 1, . . . , n.

Exercise 4.2.2. Let g be Lie algebra, h a subalgebra and x ∈ ng(h) \h. Then
h + Rx ∼= hoα Rx for α(tx) = ad(tx)|h.
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Exercise 4.2.3. Let g be the Heisenberg algebra. Determine a basis for g
with respect to which ad g consists of upper triangular matrices.

Exercise 4.2.4. Let g be a nilpotent Lie algebra and h be a nonzero ideal in
g. Show that the intersection of h with the center of g is not trivial.

Exercise 4.2.5. Show: If a, b are nilpotent ideals of the Lie algebra g, then
a + b is also nilpotent.

Exercise 4.2.6. Give an example of a Lie algebra g which contains a nilpotent
ideal n for which g/n is nilpotent and g is not nilpotent.

Exercise 4.2.7. For each Lie algebra g, we have

[Cn(g), Cm(g)] ⊆ Cn+m(g) for n,m ∈ N.

Exercise 4.2.8. This exercise shows why Engel’s Theorem does not gener-
alize to infinite-dimensional spaces. We consider the vector space V = K(N)

with the basis {ei : i ∈ N}. In terms of the rank-one-operators Eij ∈ End(V ),
defined by Eijek = δjkei, we consider the Lie algebra

g := span{Eij : i > j}

(strictly lower triangular matrices). Show that:

(a) Cn(g) = span{Eij : i ≥ j + n}, n ∈ N. In particular, we have C∞(g) =⋂
n∈N Cn(g) = {0}, i.e., g is residually nilpotent .

(b) g consists of nilpotent endomorphisms of finite rank.
(c) z(g) = {0}.
(d) V g = {v ∈ V : g · v = {0}} = {0} (compare with Engel’s Theorem).

4.3 The Jordan Decomposition

In this section we develop a tool that will be of crucial importance throughout
the structure theory of Lie algebras: the Jordan decomposition of an endo-
morphism of a finite-dimensional vector space. Although the existence of the
Jordan decomposition can be derived from the Jordan normal form, the proof
of the Jordan decomposition is less involved because it does not specify the
structure of the nilpotent component. Since we need various properties of the
Jordan decomposition, we give a direct self-contained proof which does not
require more than some elementary properties of polynomials.

Definition 4.3.1. Let V be a vector space and M ∈ End(V ).
(a) For λ ∈ K, we define the eigenspace with respect to λ as

Vλ(M) := ker(M − λ1)
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and the generalized eigenspace as

V λ(M) :=
⋃

n∈N
ker(M − λ1)n.

Note that the ascending sequence ker(M −λ1)n is eventually constant if V is
finite-dimensional. We call λ an eigenvalue if Vλ(M) 6= {0}.
(b) We call M diagonalizable if V =

⊕
λ∈K Vλ(M), i.e., V is a direct sum of

the eigenspaces of M .
(c) We call M nilpotent if there exists an n ∈ N with Mn = 0. If M is
nilpotent, then V = V 0(M).
(d) We call M split if there is a nonzero polynomial f ∈ K[X] with f(M) = 0
which decomposes as a product of linear factors. This is always the case for
K = C.
(e) For K = R, we call M semisimple if the endomorphism MC of VC, defined
by MC(z ⊗ v) = z ⊗Mv is diagonalizable (cf. Exercise 4.3.5).

Lemma 4.3.2. For two commuting endomorphisms M, N of the finite-dimen-
sional vector space V , the following assertions hold:

(a) If M and N are diagonalizable, then M + N is diagonalizable.
(b) If M and N are nilpotent, then M + N is nilpotent.

Proof. (a) Exercise 1.1.1(a)-(c).
(b) Suppose that Mm = Nn = 0. Then [M, N ] = 0 implies that

(M + N)k =
∑

i+j=k

(
k

i

)
M iN j .

If k ≥ n + m − 1, then either i ≥ m or j ≥ n, so that all summands vanish.
Hence (M + N)k = 0. ut
Theorem 4.3.3 (Jordan Decomposition Theorem). Let V be a finite-
dimensional vector space and M ∈ End(V ) a split endomorphism. Then there
exists a diagonalizable endomorphism Ms and a nilpotent endomorphism Mn

such that

(i) M = Ms + Mn.
(ii) V λ(Ms) = Vλ(Ms) = V λ(M) for each λ ∈ K.
(iii) There exist polynomials P,Q ∈ K[X] with P (0) = Q(0) = 0 such that

Ms = P (M) and Mn = Q(M).
(iv) If L ∈ End(V ) commutes with M , then it also commutes with Ms and

Mn.
(v) (Uniqueness of the Jordan decomposition) If S, N ∈ End(V ) commute, S

is diagonalizable and N nilpotent with M = S + N , then S = Ms and
N = Mn.
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Proof. Let f ∈ K[X] be the minimal polynomial of M , i.e., a generator of the
ideal IM := {f ∈ K[X] : f(M) = 0} with leading coefficient 1. By assumption,
IM contains a nonzero polynomial which is a product of linear factors, so that
Exercise 4.3.6 implies that f also has this property. Hence there exist pairwise
different λ1, . . . , λm ∈ K and ki ∈ N such that f can be written as

f = (X − λ1)k1(X − λ2)k2 · · · (X − λm)km .

Put fi := f/(X − λi)ki . Then the ideal

I := (f1) + . . . + (fm) ⊆ K[X]

is generated by some element g (K[X] is a principal ideal domain, a simple
consequence of Euclid’s Algorithm) which is the greatest common divisor of
the polynomials fi. The fact that the f1, . . . , fm have no nontrivial common
divisor (cf. Exercise 4.3.6) implies that g is constant, so that I = K[X]. Hence
1 ∈ I, so that there exist polynomials r1, . . . , rm ∈ K[X] with

1 = r1f1 + . . . + rmfm.

Put Ei := (rifi)(M) ∈ End(V ) and note that
∑

i Ei = idV . If i 6= j,
then f divides rifirjfj , so that f(M) = 0 leads to EiEj = 0, and thus
E2

i = Ei

(∑m
j=1 Ej

)
= Ei. Therefore the Ei are pairwise commuting pro-

jections onto subspaces Vi with V =
⊕m

i=1 Vi (since
∑m

i=1 Ei = 1). Now
Ms :=

∑m
i=1 λiEi is diagonalizable with Vi = Vλi(Ms).

Since M commutes with each Ei, it preserves the subspaces Vi, and there-
fore fi(M) preserves Vi. The relation

idVi = Ei|Vi = ri(M)fi(M)|Vi

shows that the restriction of fi(M) to Vi is invertible. Therefore f(M) = 0
leads to

(M − λi1)ki(Vi) = (M − λi1)kifi(M)(Vi) = f(M)(Vi) = {0},

i.e., Vi ⊆ V λi(M).
With Mn := M − Ms and k0 := max{ki : i = 1, . . . , m} we finally get

Mk0
n = 0, proving (i).

(ii) We have to show that Vi = V λi(M). We know already that Vi ⊆ V λi(M).
So let v ∈ V λi(M) and write v as v =

∑m
j=1 vj with vj ∈ Vj . Then the

invariance of Vj under M implies that vj ∈ V λi(M). If vj 6= 0, then there
exists a nonzero eigenvector v′j ∈ Vλi(M) ∩ Vj (put v′j = (M − λi1)kvj ,
where k is maximal with the property that this vector is nonzero). Then
(M − λj1)nj v′j = (λi − λj)nj v′j = 0, hence λj = λi, i.e., j = i. This implies
that v = vi ∈ Vi and therefore V λi(M) = Vi.
(iii) By construction, Ms = P1(M) and Mn = Q1(M) for P1 =

∑
i λirifi and

Q1 = X−P1. It remains to be seen that these polynomials can be chosen with
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trivial constant term. If one eigenvalue λj vanishes, then {0} 6= V0 := kerM ⊆
Vj and Ms|V0 = 0 implies that P1 has no constant term. Then Q1 = X − P1

likewise has no constant term and (iii) holds with P := P1 and Q := Q1.
If all eigenvalues λj are nonzero, then f(0) 6= 0 and (iii) holds with

P := P1 − P1(0)
f(0)

f and Q := Q1 − Q1(0)
f(0)

f.

(iv) is a direct consequence of (iii).
(v) Since N and S commute with M = N + S, (iii) shows that they both
commute with Ms and Mn. Then Lemma 4.3.2 shows that

S −Ms = Mn −N

is nilpotent as well as diagonalizable, which leads to 0 = S−Ms = Mn−N . ut
Definition 4.3.4. The decomposition M = Ms + Mn is called the Jordan
decomposition of M , Ms is called the semisimple Jordan component and Mn

the nilpotent Jordan component of M .

Example 4.3.5. If M is a Jordan block
(

λ 1
0 λ

)
, then the Jordan decomposi-

tion is

M =
(

λ 0
0 λ

)

︸ ︷︷ ︸
Ms

+
(

0 1
0 0

)

︸ ︷︷ ︸
Mn

.

The matrix M =
(

1 2
0 3

)
is diagonalizable and therefore M = Ms. In this case

M =
(

1 2
0 3

)
=

(
1 0
0 3

)
+

(
0 2
0 0

)

is not the Jordan decomposition, but the first summand is diagonalizable and
the second summand is nilpotent. These summands do not commute.

The preceding theorem does not apply to all endomorphisms of real vector
spaces. We now explain how this problem can be overcome, so that we also
obtain a Jordan decomposition for endomorphisms of real vector spaces.

Definition 4.3.6 (Jordan decomposition in the real case). If V is a
real finite-dimensional vector space and M ∈ End(V ), then MC ∈ End(VC),
defined by MC(z ⊗ v) := z ⊗Mv has a Jordan decomposition

MC = MC,s + MC,n.

Let σ : VC → VC be the antilinear map defined by σ(z ⊗ v) := z ⊗ v and
define for any complex linear A ∈ End(VC) the complex linear endomorphism
A := σ ◦A ◦ σ ∈ End(VC). Then MC = MC leads to
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MC = MC = MC,s + MC,n,

where the summands on the right commute, the first is diagonalizable and the
second is nilpotent (Exercise). Hence the uniqueness of the Jordan decompo-
sition yields

MC,s = MC,s and MC,n = MC,n.

In view of Exercise 4.3.1, this implies the existence of Ms ∈ End(V ) and
Mn ∈ End(V ), with

(Ms)C = MC,s and (Mn)C = MC,n.

Then M = Ms + Mn, and this is called the Jordan decomposition of M . It is
uniquely characterized by the properties that [Ms,Mn] = 0, Ms is semisimple
and Mn is nilpotent (Exercise).

Proposition 4.3.7 (Properties of the Jordan decomposition). Let V
be a finite-dimensional vector space and M ∈ End(V ).
(i) If M ′ ∈ End(V ′) and f : V → V ′ satisfy f ◦M = M ′ ◦ f , then

f ◦Ms = M ′
s ◦ f and f ◦Mn = M ′

n ◦ f.

(ii) If W ⊆ V is an M -invariant subspace, then

(M |W )s = Ms|W and (M |W )n = Mn|W .

In particular, W is invariant under Ms and Mn. If M denotes the induced
endomorphism of V/W , then

(M)s = Ms and (M)n = Mn.

(iii) If U ⊆ W are subspaces of V with MW ⊆ U , then MsW ⊆ U and
MnW ⊆ U .

Proof. (i) Let W := V ⊕ V ′, L := M ⊕ M ′, and consider the linear map
ϕ : W → W defined by ϕ(v, v′) =

(
0, f(v)

)
. Then ϕ ◦ L = L ◦ ϕ and thus

ϕLs = Lsϕ and ϕLn = Lnϕ. Further, Ls = Ms ⊕ M ′
s and Ln = Mn ⊕ M ′

n

follows from the uniqueness of the Jordan decomposition (Theorem 4.3.3(v))
and the semisimplicity of Ms ⊕M ′

s. This shows that

M ′
s ◦ f = f ◦Ms and M ′

n ◦ f = f ◦Mn.

(ii) Apply (i) to the inclusion j : W → V and the quotient map p : V → V/W .
(iii) For K = C, this follows from Theorem 4.3.3(iii) and the real case is
obtained by complexification. ut
Proposition 4.3.8. Let V be finite-dimensional and x ∈ gl(V ). If x is nilpo-
tent (diagonalizable), then so is adx.
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This proposition can be obtained by combining Lemma 4.2.4(i) with Ex-
ercise 4.2.1. We give an alternative proof using the Jordan decomposition.

Proof. Put Lx : gl(V ) → gl(V ), y 7→ xy and Rx : gl(V ) → gl(V ), y 7→ yx.
Then ad x = Lx −Rx and [Lx, Rx] = 0. In view of Lemma 4.3.2, it suffices to
see that Lx and Rx are nilpotent, resp., diagonalizable whenever x has this
property.

If xn = 0, then Ln
x = Lxn = 0 = Rn

x . If x is diagonalizable and λ1, . . . , λn

are the eigenvalues of x, we consider the decomposition V =
⊕n

j=1 Vλj
(x).

We write any y ∈ End(V ) as y =
∑n

j,k=1 yjk with yjkVλk
(x) ⊆ Vλj

(x). Then
Lxyjk = λjyjk and Rxyjk = λkyjk imply that Lx and Rx are diagonalizable
on gl(V ) = End(V ). ut
Corollary 4.3.9. For each endomorphism x ∈ gl(V ) of the finite-dimensional
vector space V , the Jordan decomposition of ad x is given by

adx = ad(xs) + ad(xn).

Proof. Proposition 4.3.8 implies for K = C that ad(xs) is diagonalizable and
for K = R that (ad xs)C = ad((xs)C) is diagonalizable. Further ad(xn) is
nilpotent, and [ad(xs), ad(xn)] = ad[xs, xn] = 0, so that the assertion follows
from the uniqueness of the Jordan decomposition of adx. ut
Proposition 4.3.10. If A is a finite-dimensional algebra and D ∈ der(A),
then the Jordan components Ds and Dn are also derivations of A.

Proof. First proof: Let m : A⊗A → A denote the linear map defined by the
algebra multiplication. Then D ∈ der(A) is equivalent to the relation

D ◦m = m ◦ (D ⊗ idA + idA⊗D).

Next we observe that

D ⊗ idA + idA⊗D = (Ds ⊗ idA + idA⊗Ds) + (Dn ⊗ idA + idA⊗Dn)

is the Jordan decomposition (Exercise!), so that Proposition 4.3.7 implies that

Ds ◦m = m ◦ (Ds ⊗ idA + idA⊗Ds),

which means that Ds ∈ der(A), and hence that Dn = D − Ds ∈ der(A)
because der(A) is a linear space.

Second proof: Since der(A) is a vector space, it suffices to show that
Ds ∈ der(A). Furthermore, D ∈ der(A) is equivalent to DC ∈ der(AC), so
that we may assume that K = C.

For a, b ∈ A and λ, µ ∈ K we have for all n ∈ N the formula

(
D − (λ + µ)1

)n(ab) =
n∑

k=0

(
n

k

)
(D − λ1)k(a) · (D − µ1)n−k(b)
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(Exercise 4.3.7). It follows that for a ∈ Aλ(Ds) = Aλ(D) and b ∈ Aµ(Ds) =
Aµ(D), we have ab ∈ Aλ+µ(D) = Aλ+µ(Ds). Furthermore

Ds(a)b + aDs(b) = λab + µab = (λ + µ)ab = Ds(ab).

Since A =
∑

λ∈KAλ(Ds), it follows that Ds ∈ der(A). ut
Lemma 4.3.11 (Fitting decomposition). Let V be a finite-dimensional
vector space and T ∈ End(V ). If V +(T ) :=

⋂
n∈N Tn(V ), then

V = V 0(T )⊕ V +(T ).

Proof. The sequence Tn(V ) is decreasing and dim V < ∞ implies that there
exists some n with Tn+1(V ) = Tn(V ). Then

T |T n(V ) : Tn(V ) → Tn(V )

is surjective, hence bijective, and we see that V +(T ) = V n(T ). On the inter-
section V 0(T ) ∩ V +(T ), the restriction of T is nilpotent and bijective at the
same time. This is only possible if the intersection is {0}. Therefore it remains
to see that V = V 0(T ) + V +(T ).

First we assume that T is split. We consider the generalized eigenspace
decomposition

V = V 0(T )⊕
⊕

λ6=0

V λ(T )

and note that each V λ(T ) is T -invariant. For λ 6= 0, we have V λ(T )∩kerT =
{0}, so that T |V λ(T ) is injective, hence surjective. This implies that

⊕

λ6=0

V λ(T ) ⊆ V +(T )

and thus V = V 0(T ) + V +(T ).
If T is not split, then K = R and we consider the complexification

TC ∈ End(VC). Then the preceding argument implies that

VC = V 0(TC)⊕ V +(TC) = V 0(T )C ⊕ V +(T )C,

where we use Tn(V )C = Tn
C (VC) for n ∈ N in the second equality. We conclude

that (V 0(T ) + V +(T ))C = VC, and this entails that V 0(T ) + V +(T ) = V . ut
The space V +(T ) is called the Fitting one component . In this context the

generalized eigenspace V 0(T ) is called the Fitting null component .
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Exercises for Section 4.3

Exercise 4.3.1. Let V be a real vector space and

VC = C⊗R V = (1⊗ V )⊕ (i⊗ V )

its complexification. We identify V with the real subspace 1⊗ V , so that

VC ∼= V ⊕ iV.

Show that:

(i) σ(z ⊗ v) := z ⊗ v defines an antilinear involution of VC whose fixed point
space is V .

(ii) A complex subspace E ⊆ VC is of the form WC for some real subspace of
V if and only if σ(E) = E.

(iii) For each M ∈ End(V ), the complexification MC ∈ End(VC), defined by
MC(z ⊗ v) := z ⊗Mv commutes with σ.

(iv) For A ∈ End(VC) the following are equivalent
(a) A commutes with σ.
(b) A preserves the real subspace V .
(c) A = MC for some M ∈ End(V ).

Exercise 4.3.2. Let V be a complex vector space and M ∈ End(V ). Show
that M is diagonalizable if and only if each M -invariant subspace W ⊆ V
possesses an M -invariant complement.

Exercise 4.3.3. Let V be a real vector space, A ∈ End(V ) and z ∈ VC an
eigenvector of AC with respect to the eigenvalue λ. Show that if z = x + iy
with x, y ∈ V and λ = a + ib, then

Ax = ax− by and Ay = ay + bx.

In particular, the 2-dimensional subspace E := span{x, y} ⊆ V is invariant
under A.

Exercise 4.3.4. Let A ∈ M2(R) with no real eigenvalue. Then there exists a
basis x, y ∈ R2 and a, b ∈ R with

Ax = ax− by and Ay = ay + bx.

Exercise 4.3.5. Let V be a real vector space and M ∈ End(V ). Show that
M is semisimple if and only if each M -invariant subspace W ⊆ V possesses
an M -invariant complement.

Exercise 4.3.6. Let f ∈ K[X] be a polynomial of the form

f = (X − λ1)k1(X − λ2)k2 · · · (X − λm)km

and g ∈ K[X] a divisor of f with leading coefficient 1. Show that there exist
`i ≤ ki with

g = (X − λ1)`1(X − λ2)`2 · · · (X − λm)`m .
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Exercise 4.3.7. Show that for each algebra A, a derivation D ∈ der(A) and
λ, µ ∈ K, we have for a, b ∈ A:

(
D − (λ + µ)1

)n(ab) =
n∑

k=0

(
n

k

)
(D − λ1)k(a) · (D − µ1)n−k(b).

Exercise 4.3.8. Let V be a finite-dimensional vector space over K and
A ∈ End(V ). Then the multiplicity of the root 0 of its characteristic poly-
nomial det(A−X1) coincides with dim V 0(A).

4.4 Solvable Lie Algebras

In this section we turn to the class of solvable Lie algebras. They are defined in
a similar fashion as nilpotent ones and each nilpotent Lie algebra is solvable.
The central results on solvable Lie algebras are Lie’s Theorem on representa-
tions of solvable Lie algebras and Cartan’s Solvability Criterion in terms of
vanishing of

tr(ad[x, y] ad z) for x, y, z ∈ g.

As we shall see later on, similar techniques apply to semisimple Lie algebras.

Definition 4.4.1. (a) Let g be a Lie algebra. The derived series of g is defined
by

D0(g) := g and Dn(g) := [Dn−1(g), Dn−1(g)]

for n ∈ N.
From D1(g) ⊆ g we inductively see that Dn(g) ⊆ Dn−1(g). Further, an

easy induction shows that all Dn(g) are ideals of g (Exercise 4.1.9). The
derived series is a descending series of ideals.
(b) The Lie algebra g is said to be solvable, if there exists an n ∈ N with
Dn(g) = {0}.
Example 4.4.2. (i) The oscillator algebra is solvable, but not nilpotent.
(ii) Every nilpotent Lie algebra is solvable because Dn(g) ⊆ Cn+1(g) follows
easily by induction.
(iii) Consider R and C as abelian real Lie algebras and write I ∈ EndR(C) for
the multiplication with i. Then the Lie algebra C oI R is solvable, but not
nilpotent. It is isomorphic to g/z(g), where g is the oscillator algebra.
(iv) Let g be a 2-dimensional nonabelian Lie algebra with basis x, y. Then
0 6= [x, y] = ax + by for (a, b) 6= (0, 0). Assume w.l.o.g. that b 6= 0 and put
v := b−1x and w := ax + by. Then [v, w] = w. This implies in particular that
all nonabelian two-dimensional Lie algebras are isomorphic because they have
a basis (v, w), with [v, w] = w. Then D1(g) = Kw and D2(g) = {0}, so that
g is solvable. On the other hand Cn(g) = Kw for each n > 1, so that g is not
nilpotent.
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A natural matrix realization of this Lie algebra is

aff1(K) =
(
K K
0 0

)
with the basis v :=

(
1 0
0 0

)
, w :=

(
0 1
0 0

)
.

Proposition 4.4.3. For a Lie algebra g, the following assertions hold:

(i) If g is solvable, then all subalgebras and homomorphic images of g are
solvable.

(ii) Solvability is an extension property: If i is a solvable ideal of g and g/i is
solvable, then g is solvable.

(iii) If i and j are solvable ideals of g, then the ideal i + j is solvable.
(iv) If i E g is an ideal, then the Dn(i) are ideals in g.

Proof. (i) If h ⊆ g is a subalgebra, then Dn(h) ⊆ Dn(g) follows by induction,
and if α : g → h is a homomorphism of Lie algebras, then we obtain

Dn(α(g)) = α(Dn(g)) (4.3)

by induction. This implies (i).
(ii) Let π : g → g/i be the quotient map. We have already seen in (i) that

π(Dn(g)) = Dn(π(g)) for each n. If g/i is solvable, then π(Dn(g)) vanishes
for some n ∈ N. Now Dn(g) ⊆ kerπ = i, so that Dn+k(g) ⊆ Dk(i) for each
k ∈ N. If i is also solvable, we immediately derive that g is solvable.

(iii) The ideal j of i + j is solvable and (i + j)/j ∼= i/(i∩ j) (Theorem 4.1.17(iii))
is solvable by (i). Hence (ii) implies that i + j is solvable.

(iv) We only have to observe that for each ideal i, its commutator algebra [i, i]
also is an ideal (Exercise 4.1.9). Then (iv) follows by induction. ut
Example 4.4.4. If F = (V0, . . . , Vn) is a complete flag in the n-dimensional
vector space V , then g(F) is a solvable Lie algebra. In fact,

g(F) ∼= gn(F)o gl1(K)n ∼= gn(F)oKn

(Example 4.1.20).
SinceKn ∼= g(F)/gn(F) is abelian and gn(F) nilpotent (Example 4.2.2(iii)),

the solvability of g(F) follows from Proposition 4.4.3(ii). Below we shall see
that Lie’s Theorem provides a converse for solvable subalgebras of gl(V ) and
K = C; they are always contained in some g(F) for a complete flag F .

Definition 4.4.5. Proposition 4.4.3(iii) shows that in every finite-dimensional
Lie algebra g, there is a largest solvable ideal. This ideal is called the radical
of g, and is denoted by rad(g).

Remark 4.4.6. The analog of Proposition 4.4.3(iii) for nilpotent Lie algebras
is also valid (Exercise 4.2.5). Note that nilpotency is not an extension prop-
erty, i.e., the analog of Proposition 4.4.3(ii) is false for nilpotent Lie algebras
(cf. Example 4.4.2(iv)).
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4.4.1 Lie’s Theorem

Now we turn to solvable Lie subalgebras g of gl(V ). In this context we do not
want to make any assumption on the elements of g, as in Corollary 4.2.7.

Theorem 4.4.7. Let V be a nonzero finite-dimensional complex vector space
and g be a solvable subalgebra of gl(V ). Then there exists a nonzero common
eigenvector v for g, i.e., g(v) ⊆ Cv.

Proof. We may w.l.o.g. assume that g 6= {0}. We proceed by induction on the
dimension of g. If g = Cx, then every eigenvector of x (and such an eigenvector
always exists) satisfies the requirement of the theorem. So let dimC g > 1 and
h be a complex hyperplane in g which contains [g, g] = D1(g). Here we use
that D1(g) is a proper subspace because g is solvable. In view of [g, g] ⊆ h, the
subspace h is an ideal of g. Now the induction hypothesis provides a nonzero
common eigenvector v for h. If x(v) = λ(x)v for x ∈ h, then λ : h → C is a
linear map and

v ∈ Vλ(h) := {w ∈ V | (∀x ∈ h)x(w) = λ(x)w}.

Suppose that Vλ(h) is g-invariant and pick y ∈ g\h. Then there exists a
nonzero eigenvector vo ∈ Vλ(h) for y. Then vo is a common eigenvector for
g = h + Cy and the proof is complete.

It remains to show that Vλ(h) is g-invariant. For this, we calculate as in
the proof of Theorem 4.2.5:

yx(w) = xy(w)− [x, y](w) = λ(y)x(w)− λ([x, y])(w)

for w ∈ Vλ(h), x ∈ g and y ∈ h. Hence it suffices to show that [g, h] ⊆ kerλ.
For fixed w ∈ Vλ(h), x ∈ g and k ∈ N, we consider the space

W k = Cw + Cx(w) + . . . + Cxk(w).

Since
yxk(w) = xy(xk−1w)− [x, y](xk−1w) (4.4)

and y(w) = λ(y)w for y ∈ h, we see by induction on k that h(W k) ⊆ W k for
each k ∈ N.

Now we choose ko ∈ N maximal with respect to the property that

{w, x(w), . . . , xko(w)}

is a basis for W ko . Then W ko+m = W ko for all m ∈ N, and

F = ({0},W 1, . . . , W ko)

is a complete flag in W ko which is invariant under h. Thus, every y ∈ h
corresponds to an upper triangular matrix (yij) with respect to the above
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basis for W ko . The diagonal entries yii of this matrix are all equal to λ(y)
since y(w) = λ(y)w and (4.4) imply by induction that

yxk(w) ∈ λ(y)xk(w) + W k−1.

Since x and y leave the space W ko invariant, we have

[x, y]|W ko = [x|W ko , y|W ko ].

In particular, [x, y]|W ko is a commutator of two endomorphisms so that its
trace vanishes. Finally [x, y] ∈ h leads to

0 = tr([x, y]|W ko ) = (ko + 1)λ([x, y]),

so that λ([x, y]) = 0. ut
Theorem 4.4.8 (Lie’s Theorem). Let V be a finite-dimensional complex
vector space and g be a solvable subalgebra of gl(V ). Then there exists a com-
plete g-invariant flag in V .

Proof. We may assume that V is nonzero. By Theorem 4.4.7, there is a nonzero
common g-eigenvector v1 ∈ V . Put V1 := Cv1. Then

α : g → gl(V/V1), α(x)(v + V1) := x(v) + V1

defines a representation of g on the quotient space V/V1 (Exercise 4.1.10)
and α(g) is solvable. Proceeding by induction on dimV , we may assume that
there exists an α(g)-invariant complete flag in V/V1, and the preimage in V ,
together with {0}, is a complete g-invariant flag in V . ut
Remark 4.4.9. If we apply Lie’s Theorem 4.4.8 to V = g and ad(g), where
g is solvable, we get a complete flag of ideals

{0} = g0 < g1 < . . . < gn = g

of g with dim gk = k. Such a chain is called a Hölder series for g.

Definition 4.4.10. We call a representation (π, V ) of the Lie algebra nilpo-
tent if there exists an n ∈ N with ρ(g)n = {0}.
Corollary 4.4.11. Let π : g → gl(V ) be a representation of the solvable Lie
algebra g. Then the restriction to [g, g] is a nilpotent representation.

Proof. (a) First we assume that K = C. Applying Lie’s Theorem to the solv-
able subalgebra π(g) of gl(V ), we obtain a complete flag F with π(g) ⊆ g(F).
Then

π([g, g]) ⊆ [g(F), g(F)] ⊆ gn(F)

implies the assertion.
(b) If K = R, then
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πC : gC → gl(VC) ∼= C⊗ gl(V ), π(z ⊗ x) = z ⊗ π(x)

defines a representation of the complex Lie algebra gC on the complex vector
space VC. Using Proposition 4.1.21, we see by induction that Dk(g)C ∼= Dk(gC)
for each k ∈ N, so that gC is also solvable. Now (a) applies and we obtain a
complete flag F in VC with πC([g, g]) ⊆ gn(F). In particular, each endomor-
phism π(x), x ∈ [g, g], is nilpotent. Finally Corollary 4.2.7 provides a complete
flag F ′ in V with π([g, g]) ⊆ gn(F ′), and the assertion follows. ut
Corollary 4.4.12. A Lie algebra g is solvable if and only if its commutator
algebra [g, g] is nilpotent.

Proof. If [g, g] is nilpotent, then g is solvable because g/[g, g] is abelian and
solvability is an extension property (Proposition 4.4.3(ii)).

If, conversely, g is solvable, then Corollary 4.4.11 implies that the adjoint
representation of [g, g] on g, and hence on [g, g], is nilpotent. From that we
derive in particular that C∞([g, g]) = {0}, so that [g, g] is nilpotent. ut

4.4.2 The Ideal [g, rad(g)]

Lemma 4.4.13. Let g be a Lie algebra and (ρ, V ) a representation of g. Let
a ⊆ g be a subspace for which there exists an n ∈ N with ρ(a)n = {0} and
x ∈ ng(a) such that ρ(x) is nilpotent. Then there exists an N ∈ N with
ρ(a +Kx)N = {0}.
Proof. Replacing g by ρ(g), we may w.l.o.g. assume that g ⊆ gl(V ). Let m ∈ N
with xm = 0. We claim that (Kx + a)nm = {0}.

Let u = u1 · · ·unm be a product of elements of {x} ∪ a. We have to show
that all such products vanish. For a ∈ a we have

ax = xa + [a, x] ∈ xa + a.

This leads to

u1 · · ·unm ∈
nm∑
r=0

xrat,

where t is the number of indices j with uj ∈ a. Hence this product vanishes
for t ≥ n. If t < n, then there exists a j with uj+1 · · ·uj+m = xm = 0 because
in this case nm − t > n(m − 1) factors are not contained in a, so that we
always find a consecutive product of m such elements. We therefore have in
all cases u1 · · ·unm = 0. ut
Proposition 4.4.14. For any finite-dimensional representation (ρ, V ) of the
Lie algebra g, the restriction to the ideal [g, rad(g)] is nilpotent, i.e., there
exists an m ∈ N with ρ([g, rad(g)])m = {0}.
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Proof. Let r := rad(g) and a := [g, r]. According to Corollary 4.4.11, the rep-
resentation is nilpotent on the ideal [r, r]. Now let t ⊆ [g, r] be a subspace
containing [r, r], which is maximal with respect to the property that the rep-
resentation on V is nilpotent on t. Note that t always is an ideal of r, hence
in particular a subalgebra, because it contains the commutator algebra.

Assume that t 6= [g, r]. Then there exists an x ∈ g and y ∈ r with [x, y] 6∈ t.
The subspace b := r +Kx is a subalgebra of g, r is a solvable ideal of b, and
b/r ∼= K is abelian. Therefore b is solvable (Proposition 4.4.3).

Again, we use Corollary 4.4.11 to see that the representation is nilpotent
on [b, b] and hence that ρ([x, y]) is nilpotent. Since t ⊆ r and [x, y] ∈ [g, r] ⊆ r,
we have

[
[x, y], t

] ⊆ [r, t] ⊆ t. Finally, the preceding Lemma 4.4.13 shows that
the representation is nilpotent on the subspace K[x, y] + t. This contradicts
the maximality of t. We conclude that t = [g, r], so that the representation is
nilpotent on [g, r]. ut

Applying the preceding proposition to the adjoint representation, using
Engel’s Theorem 4.2.8 we get:

Corollary 4.4.15. The ideal [g, rad(g)] is nilpotent. In particular, ad x is
nilpotent on g for each x ∈ [g, rad g].

4.4.3 Cartan’s Solvability Criterion

This subsection is devoted to a characterization of solvable Lie algebras by
properties of its elements. The result will be that g is solvable if and only if
tr(adx ad y) = 0 for x ∈ [g, g] and y ∈ g (Cartan’s criterion). Thus, we have
to study the linear maps ad(x) : g → g.

Lemma 4.4.16. Let V be a finite-dimensional vector space and E ⊆ F be
subspaces of gl(V ). Further, let

x ∈ M := {y ∈ gl(V ) | [y, F ] ⊆ E}.

If tr(xy) = 0 for all y ∈ M , then x is nilpotent.

Proof. Complexifying all vector spaces involved, we may assume without loss
of generality that K = C. In particular, we know that x has a Jordan decom-
position x = xs+xn. Now, let {v1, . . . , vn} be a basis for V consisting of eigen-
vectors of xs. We denote the corresponding eigenvalues by λj for j = 1, . . . , n.
Let Q be the Q-vector space in C which is spanned by the λj . We have to
show that Q = {0}. To do this, we consider an f ∈ Q∗ := HomQ(Q,Q), the
dual space (over Q) of Q. The matrix




f(λ1) 0
. . .

0 f(λn)


 ,
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represents an element y ∈ gl(V ) with respect to the basis {v1, . . . , vn}. As
in the proof of Proposition 4.3.8, if we choose a basis {xij} for gl(V ) with
xij(vk) = δjkvi, we get

ad(xs)xij = (λi − λj)xij and ad(y)xij = f(λi − λj)xij .

Now, choose a polynomial P ∈ C[t] with

P (0) = 0 and P (λi − λj) = f(λi − λj)

for all pairs (i, j) (Exercise 4.4.6). Then

P
(
ad(xs)

)
xij = f(λi − λj)xij = ad(y)xij ,

i.e., P
(
ad(xs)

)
= ad(y). Since ad(xs) is the semisimple part of ad(x) by Corol-

lary 4.3.9, it follows from x ∈ M and Proposition 4.3.7(iii) that ad(xs)F ⊆ E.
But then P (0) = 0 implies ad(y)F ⊆ E, i.e., y ∈ M . Since xy.vi = λif(λi)vi

for each i, our assumption and y ∈ M leads to

n∑

k=1

λkf(λk) = tr(xy) = 0,

and therefore
n∑

k=1

f(λk)2 = f
( n∑

k=1

λkf(λk)
)

= 0.

Hence f(λk) = 0 for all λk which yields f = 0. But since f ∈ Q∗ was arbitrary,
we see that Q = {0}. ut
Theorem 4.4.17 (Cartan’s Solvability Criterion). Let V be a finite-
dimensional vector space and g < gl(V ). Then the following are equivalent

(i) g is solvable.
(ii) tr(xy) = 0 for all x ∈ [g, g] and y ∈ g.

Proof. (ii) ⇒ (i): By Corollary 4.4.12, it suffices to show that [g, g] is nilpo-
tent. But to show that, by Corollary 4.2.7, we only have to prove that every
element of [g, g] is nilpotent. We want to apply Lemma 4.4.16 with E = [g, g]
and F = g, i.e., we set

M := {y ∈ gl(V ) | [y, g] ⊆ [g, g]}.

Since the trace is linear, it is enough to show that tr([x, x′]y) = 0 for x, x′ ∈ g
and y ∈ M . But this follows from [x′, y] ⊆ [g, g] and (ii):

tr([x, x′]y) = tr(x[x′, y]) = 0

(cf. Exercise 4.4.5).
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(i) ⇒ (ii): Since tr(xC) = trx for x ∈ End(V ), we may assume that
K = C (cf. also Exercise 4.4.2). Then by Lie’s Theorem 4.4.8, there is a
basis for V with respect to which all x ∈ g are upper triangular matrices. In
particular, all elements of [g, g] are given by strictly upper triangular matrices.
But multiplying an upper triangular matrix with a strictly upper triangular
matrix yields a strictly upper triangular matrix which has zero trace. ut
Corollary 4.4.18. Let g be a Lie algebra. Then the following statements are
equivalent

(i) g is solvable.
(ii) tr(adx ad y) = 0 for all x ∈ [g, g] and all y ∈ g.

Proof. (ii) ⇒ (i): By the Cartan Criterion (Theorem 4.4.17), ad(g) is solvable.
Then it follows from ad(g) ∼= g/z(g) and Proposition 4.4.3(ii) that g is solvable.

(i) ⇒ (ii): Proposition 4.4.3(i) shows that ad(g) is solvable, so that (ii) is
an immediate consequence of Theorem 4.4.17. ut

Exercises for Section 4.4

Exercise 4.4.1. Let g be a Lie algebra and α : g → gl(V ) be a representation
of g on V . Then V oα g is a Lie algebra which contains V as an abelian ideal.

Exercise 4.4.2. (i) For a real Lie algebra g, we have

Cn(gC) = Cn(g)C, and Dn(gC) = Dn(g)C.

(ii) A finite-dimensional Lie algebra g is nilpotent (solvable) if and only if gC
is nilpotent (solvable).

Exercise 4.4.3. Show that for the Heisenberg algebra h3, the derivation al-
gebra is isomorphic to K2 o gl2(K), where ad(h3) ∼= K2 is an abelian ideal.
Show that this Lie algebra is neither nilpotent nor solvable.

Exercise 4.4.4. Show that a representation (π, V ) of a Lie algebra g on a
vector space V is nilpotent if and only if there is a flag F in V with π(V ) ⊆
gn(F).

Exercise 4.4.5. A symmetric bilinear form κ : g× g → K on a Lie algebra g
is called invariant if

κ([x, y], z) = κ(x, [y, z]) for x, y, z ∈ g.

Show that:

(i) The form κ(x, y) := tr(xy) on gl(V ) is invariant for each finite-dimensional
vector space V .

(ii) For each representation (π, V ) of the Lie algebra g, the form κπ(x, y) :=
tr(π(x)π(y)) is invariant.
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(iii) For each Lie algebra g, the Cartan–Killing form κg(x, y) := tr(ad x ad y)
is invariant.

(iv) For each invariant symmetric bilinear form κ on g, its radical rad(κ) =
{x ∈ g : κ(x, g) = {0}} is an ideal.

(v) For any invariant symmetric bilinear form κ on g, the trilinear map
Γ (κ)(x, y, z) := κ([x, y], z) is alternating, i.e.,

Γ (κ)(xσ(1), xσ(2), xσ(3)) = sgn(σ)Γ (κ)(x1, x2, x3)

for σ ∈ S3 and x1, x2, x3 ∈ g.
(vi) g is solvable if and only if Γ (κg) = 0.

Exercise 4.4.6 (Interpolation polynomials). LetK be a field, x1, . . . , xn ∈
K pairwise different, and λ1, . . . , λn ∈ K. Then there exists a polynomial
f ∈ K[t] with f(xi) = λi for i = 1, . . . , n. Hint: Consider the polynomials
fi(t) :=

∏
j 6=i

t−xj

xi−xj
of degree n− 1.

Exercise 4.4.7. This exercise shows why Lie’s Theorem does not generalize
to infinite-dimensional spaces. We consider the vector space V = K(N) with the
basis {ei : i ∈ N}. In terms of the rank-one-operators Eij ∈ End(V ), defined
by Eijek = δjkei, we consider the Lie algebra

g := span{Eij : i ≥ j}

(lower triangular matrices). Show that:

(a) Dn(g) = span{Eij : i ≥ j+2n−1}, n ∈ N. In particular, we have D∞(g) :=⋂
n∈NDn(g) = {0}, i.e., g is residually solvable.

(b) g =
⋃

n gn for an increasing sequence of finite-dimensional solvable subal-
gebras gn (g is locally solvable).

(c) g has no common eigenvector in V (compare with Lie’s Theorem).

Exercise 4.4.8. Show that:

(a) A finite-dimensional Lie algebra g is solvable if and only if there exists a
sequence

{0} = g0 ⊆ g1 ⊆ . . . ⊆ gn = g

of subalgebras with [gi, gi] ⊆ gi−1 for i = 1, . . . , n.
(b) If g is solvable, then there exists a sequence as in (a), satisfying, in addi-

tion, dim gi = i. Conclude that

gi+1
∼= gi oDi K for some Di ∈ der(gi), i = 1, . . . , n− 1.

This means that

g ∼=
(
· · · ((KoD1 K)oD2 K) · · ·oDn−1 K

)
.
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Exercise 4.4.9. (Is there a Cartan Criterion for nilpotent Lie algebras?)

(a) If g is nilpotent, then κg = 0.
(b) Consider the Lie algebra g = C2 oD C, where C2 is considered as an

abelian Lie algebra and D = diag(1, i). This Lie algebra is not nilpotent,
but κg = 0. If we consider g as a 6-dimensional real Lie algebra, then its
Cartan–Killing form also vanishes. Conclude that it is NOT true that a
Lie algebra is nilpotent if and only if its Cartan–Killing form vanishes.

4.5 Semisimple Lie Algebras

In this section we encounter a third class of Lie algebras. Semisimple Lie
algebras are a counterpart to the solvable and nilpotent Lie algebras because
their ideal structure is quite simple. They can be decomposed as a direct sum
of simple ideals. On the other hand, they have a rich geometric structure
which even makes a complete classification of finite-dimensional semisimple
Lie algebras possible. One can even show that every finite-dimensional Lie
algebra is a semidirect sum of its radical and a semisimple subalgebra (cf.
Levi’s Theorem 4.6.6).

Definition 4.5.1. Let g be a finite-dimensional Lie algebra. Then g is called
semisimple if radical is trivial, i.e., rad(g) = {0}. The Lie algebra g is called
simple if it is not abelian and it contains no ideals other than g and {0}.
Lemma 4.5.2. Each simple Lie algebra is semisimple.

Proof. Let g be a simple Lie algebra. Since the commutator algebra [g, g] is
a nonzero ideal of g, it coincides with g. Hence g is not solvable, so that
rad(g) = {0}. ut

We shall see in Proposition 4.5.11 that a Lie algebra is semisimple if and
only if it is a direct sum of simple ideals.

4.5.1 Cartan’s Semisimplicity Criterion

In this subsection we prove the characterization of semisimple Lie algebras in
terms of the Cartan–Killing form which can be defined for any Lie algebra.

Definition 4.5.3. In connection with the Cartan criterion for solvable Lie
algebras, we have seen that the bilinear form

κg : g× g → K, κg(x, y) := tr(ad x ad y)

on a finite-dimensional Lie algebra is of interest. It is called the Cartan–Killing
form of g. Its compatibility with the Lie algebra structure is expressed by its
invariance
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κg([x, y], z) = κg(x, [y, z]) for x, y, z,∈ g

(Exercise 4.4.5). If g is clear from the context, we sometimes write κ instead
of κg.

Example 4.5.4. (i) With respect to the basis (h, u, t) for sl2(K) given in
Example 4.1.23, the Cartan–Killing form has the matrix

κ =




8 0 0
0 −8 0
0 0 8


 .

(ii) With respect to the basis (x, y, z) for so3(R), given in Example 4.1.23, the
Cartan–Killing form has the matrix

κ =



−2 0 0
0 −2 0
0 0 −2


 .

(iii) With respect to the basis (h, p, q, z) for the oscillator algebra given in
Example 4.1.19, the Cartan–Killing form has the matrix

κ =




−2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

In general, the Cartan–Killing form of a subalgebra h ⊆ g cannot be
calculated in terms of the Cartan–Killing form of g, but for ideals we have:

Lemma 4.5.5. For any ideal i E g, κi = κg|i×i.

Proof. If the image of A ∈ End(g) is contained in i, then we pick a basis for
g which starts with a basis for i. With respect to this basis, we can write A
as a block matrix

A =
(

A|i ∗
0 0

)
,

and this shows tr(A) = tr(A|i). We apply this to A = ad(x) ad(y) for x, y ∈ i
to obtain tr

(
ad(x) ad(y)

)
= tr

(
ad(x)|i ad(y)|i

)
= κi(x, y). ut

Remark 4.5.6. Let g be a finite-dimensional R-Lie algebra. Since a basis for
g is also a (complex) basis for gC, one immediately sees (cf. Exercise 4.5.3)
that

κg = κgC |g×g.

Let V be a vector space and β : V ×V → K be a symmetric bilinear form.
Then we denote the orthogonal set

{v ∈ V | (∀w ∈ W ) β(v, w) = 0}
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of a subspace W with respect to β by W⊥,β . If β is the Cartan–Killing form
of a Lie algebra, we simply write ⊥ instead of ⊥, β. The set rad(β) := V ⊥,β is
called the radical of β. The form is called degenerate if rad(β) 6= {0}. Using
this notation, we can reformulate the Cartan Criterion 4.4.17 as follows:

Remark 4.5.7. In terms of the Cartan–Killing form, Cartan’s Solvability Cri-
terion states that g is solvable if and only if [g, g] ⊆ rad(κg) (cf. Exercise 4.5.7
for a description of the radical of κg for a general Lie algebra).

Lemma 4.5.8. For any ideal j of a Lie algebra g, the following assertions
hold:

(i) Its orthogonal space j⊥ with respect to κg also is an ideal.
(ii) j ∩ j⊥ is a solvable ideal.
(iii) If j is semisimple, then g decomposes as a direct sum g = j ⊕ j⊥ of Lie

algebras.

Proof. (i) For x ∈ j⊥, y ∈ g and z ∈ j, we find κg([x, y], z) = κg(x, [y, z]) = 0,
so that j⊥ is an ideal of g.

(ii) For i := j ∩ j⊥, the Cartan–Killing form κg vanishes on i × i. Hence
rad(κi) = i by Lemma 4.5.5. In particular, i is solvable by Remark 4.5.7.

(iii) If j is semisimple, then (ii) implies that j ∩ j⊥ ⊆ rad(j) = {0}.
Since j⊥ is the kernel of the linear map g → j∗, x 7→ κg(x, ·), we have
dim j⊥ ≥ dim g− dim j, which implies j + j⊥ = g, so that g is a direct sum of
the vector subspaces j and j⊥. As both are ideals, [j, j⊥] ⊆ j ∩ j⊥ = {0}, and
we obtain a direct sum of Lie algebras. ut

We can also characterize semisimplicity in terms of the Cartan–Killing
form.

Theorem 4.5.9 (Cartan’s Semisimplicity Criterion). A Lie algebra g
is semisimple if and only if κg is nondegenerate, i.e., rad(κg) = {0}.
Proof. With Lemma 4.5.8(ii), we see that g∩g⊥ = rad(κg) is a solvable ideal,
so that rad(κg) ⊆ rad(g). In particular, κg is nondegenerate if g is semisimple.

Suppose, conversely, that g is not semisimple and put r := rad(g) 6= {0}.
Let n ∈ N0 be maximal with h := Dn(r) 6= {0}. Then h is an abelian ideal
of g. For x ∈ h and y ∈ g, we then have (ad x ad y)g ⊆ h and therefore
(adx ad y)2 = 0. This implies that κg(x, y) = tr(ad x ad y) = 0. Since y ∈ g
was arbitrary, this means that x ∈ rad(κg), i.e., κg is degenerate. ut
Remark 4.5.10. In view of rad(κg)C = rad(κgC) (cf. Exercise 4.5.2), The-
orem 4.5.9 shows that a real Lie algebra g is semisimple if and only if its
complexification gC is semisimple.

Proposition 4.5.11. Let g be a semisimple Lie algebra. Then there are simple
ideals g1, . . . , gk of g with
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g = g1 ⊕ . . .⊕ gk.

Every ideal i E g is semisimple and a direct sum i =
⊕

j∈I gj for some
subset I ⊆ {1, . . . , k}. Conversely, each direct sum of simple Lie algebras is
semisimple.

Proof. Let j E g. Since g is semisimple, Lemma 4.5.8(ii) shows that j ∩ j⊥ =
{0}, so that κj = κg|j×j is nondegenerate. Hence j is semisimple. According
to Lemma 4.5.8(iii), j⊥ also is an ideal of g with g = j⊕ j⊥ (direct sum of Lie
algebras). As j and j⊥ are semisimple, an induction on dim g now implies that
g decomposes as a direct sum

g = g1 ⊕ . . .⊕ gk

of simple ideals.
Finally, let i 6= {0} be an ideal of g. Let πj : g → gj be the projections.

Then we have πj(i) 6= {0} for at least one j. But since πj is surjective πj(i) is
an ideal of gj and therefore equal to gj . Thus

gj = [gj , gj ] = [gj , πj(i)] = [gj , i] ⊆ i

because [gj , πl(i)] = {0} for l 6= j. The argument shows that every gj with
πj(i) 6= {0} is contained in i. But then i is the direct sum of these gj .

The preceding argument shows in particular that no nonzero ideal of a
direct sum of simple Lie algebras is solvable, hence that any such direct sum
is semisimple. ut
Example 4.5.12. The Lie algebras sl2(K), so3(K) and su2(C) are simple. We
have seen in Example 4.5.4 that the Cartan–Killing forms of sl2(K) and so3(K)
are nondegenerate, so that they are semisimple. Further, su2(C) is a real form
of sl2(C), hence semisimple by Remark 4.5.10. Now we apply Exercise 4.5.1.

Corollary 4.5.13. For a semisimple Lie algebra g, the following assertions
hold:

(i) g is perfect, i.e., g = [g, g].
(ii) All homomorphic images of g are semisimple.
(iii) Each ideal n E g is semisimple and there exists another ideal c with

g = n⊕ c.

Proof. (i) Let g = g1 ⊕ . . . ⊕ gk be the decomposition of g from Proposi-
tion 4.5.11. Since gj is not abelian, we have [gj , gj ] = gj , and therefore

[g, g] =
k∑

j=1

[gj , gj ] =
k∑

j=1

gj = g.

(ii) This follows by combining Proposition 4.5.11 with the Isomorphism The-
orem 4.1.17(i).
(iii) This follows immediately from Proposition 4.5.11. ut
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In Example 4.1.9, we have seen that the adjoint representation gives deriva-
tions on the Lie algebra. In the case of semisimple Lie algebras, this represen-
tation in fact gives all derivations.

Theorem 4.5.14. For a semisimple Lie algebra g all derivations are inner,
i.e.,

ad(g) = der(g).

Proof. By Proposition 4.1.10(i), ad g E der(g) is an ideal, and since z(g) =
{0}, the ideal ad(g) ∼= g is semisimple. Therefore der g decomposes as a direct
sum ad g ⊕ j for the orthogonal complement j of ad(g) with respect to the
Cartan–Killing form of der(g) (Lemma 4.5.8(iii)). For δ ∈ j and x ∈ g we then
have

0 = [δ, adx](y) = δ([x, y])− [x, δ(y)] = [δ(x), y] = ad
(
δ(x)

)
.

This means that δ(x) ∈ z(g) = {0}, i.e., δ = 0. We conclude that j = {0}, so
that der(g) = ad g. ut

4.5.2 Weyl’s Theorem on Complete Reducibility

We have already seen how Engel’s Theorem and Lie’s Theorem provide im-
portant information on the structure of representations of nilpotent, resp.,
solvable Lie algebras. For semisimple Lie algebras, Weyl’s Theorem, which
asserts that each representation of a semisimple Lie algebra is completely re-
ducible, plays a similar role. The crucial tool needed for the proof of Weyl’s
Theorem is the Casimir element.

Definition 4.5.15. Let β be a nondegenerate invariant symmetric bilinear
form on the Lie algebra g, x1, . . . , xk a basis for g and x1, . . . , xk the dual
basis with respect to β, i.e., β(xi, x

j) = δij (Kronecker delta). For any Lie
algebra homomorphism ρ : g → AL, A an associative algebra, we define the
Casimir element

Ω(β, ρ) :=
k∑

i=1

ρ(xi)ρ(xi).

The same argument that shows the independence of the trace of an opera-
tor (defined as the sum of its diagonal elements) of the choice of the basis,
shows that Ω(β, ρ) does not depend on the choice of the basis x1, . . . , xk (cf.
Exercise 4.5.9).

The Casimir element is a useful tool for the study of representation since
it commutes with ρ(g):

Lemma 4.5.16. For each nondegenerate invariant symmetric bilinear form
β on g and each homomorphism ρ : g → A, the Casimir element Ω(β, ρ) ∈ A
commutes with ρ(g).
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Proof. Let z ∈ g. Then we have

ad z(xj) =
n∑

k=1

akjxk and ad z(xj) =
n∑

k=1

akjxk

with two matrices (aij) and (aij) in Mk(K). Then

akj = β([z, xj ], xk) = −β(xj , [z, xk]) = −ajk,

and with this relation we obtain

Ωρ(z)− ρ(z)Ω =
n∑

j=1

ρ(xj)ρ(xj)ρ(z)− ρ(z)ρ(xj)ρ(xj)

=
n∑

j=1

ρ(xj)(ρ(xj)ρ(z)− ρ(z)ρ(xj))− (ρ(z)ρ(xj)− ρ(xj)ρ(z))ρ(xj)

=
n∑

j=1

ρ(xj)ρ([xj , z])− ρ([z, xj ])ρ(xj)

=
n∑

j,k=1

(−akj)ρ(xj)ρ(xk)− akjρ(xk)ρ(xj)

=
n∑

j,k=1

ajkρ(xj)ρ(xk)− akjρ(xk)ρ(xj)

=
n∑

j,k=1

ajkρ(xj)ρ(xk)− ajkρ(xj)ρ(xk) = 0.

ut
Proposition 4.5.17. Let g be a semisimple Lie algebra and (ρ, V ) a finite-
dimensional representation. Then V is the direct sum of the g-modules

V g :=
⋂
x∈g

ker ρ(x) and Veff :=
∑
x∈g

ρ(x)(V ).

Proof. Note that ρ(g)(V g) = {0} and ρ(g)(Veff) ⊆ Veff , so that V g and Veff are
indeed g-invariant. We argue by induction on dim V . The case dim V = {0}
is trivial. Since the statement of the proposition is obvious for ρ = 0, we may
assume that ρ 6= 0.
Step 1: Let βρ(x, y) = tr

(
ρ(x)ρ(y)) denote the trace form on g and

a := rad(βρ) denote the radical of βρ, which is an ideal because βρ is invariant
(Exercise 4.4.5). Let b E g be a complementary ideal, so that g = a ⊕ b is a
direct sum of Lie algebras (Proposition 4.5.11). In view of Cartan’s Solvabil-
ity Criterion (Theorem 4.4.17), the Lie algebra ρ(a) is a solvable ideal of ρ(g)
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because the trace form vanishes on this Lie algebra. Since ρ(g) is semisim-
ple, ρ(a) ⊆ rad(ρ(g)) = {0}, so that a ⊆ ker ρ. Conversely, the ideal ker ρ is
contained in rad(βρ), which leads to a = ker ρ. It follows in particular that
β := βρ|b×b is nondegenerate on the semisimple Lie algebra b.
Step 2: Let

Ω := Ω(β, ρ|b) :=
∑

j

ρ(xj)ρ(xj) ∈ End(V )

be the associated Casimir element (Definition 4.5.15). Then Lemma 4.5.16
implies that

Ω ∈ Endb(V ) := {A ∈ End(V ) : (∀x ∈ b) Aρ(x) = ρ(x)A}.

Since a = ker ρ this implies

Ω ∈ Endg(V ) := {A ∈ End(V ) : (∀x ∈ g) Aρ(x) = ρ(x)A}.

Finally we note that

tr Ω =
∑

j

tr(ρ(xj)ρ(xi)) =
∑

j

β(xj , x
j) = dim b.

Step 3: If V is the direct sum of two nonzero g-invariant subspaces, then V g

and Veff decompose accordingly, and we can use our induction hypothesis. Let
V = V 0(Ω) ⊕ V +(Ω) be the Fitting decomposition of V with respect to Ω.
Since Ω commutes with g, both summands are g-invariant, so that we may
assume that one of these summands is trivial.

Since we assume that b ∼= ρ(g) 6= {0}, we have tr Ω > 0, so that Ω is
not nilpotent and thus V +(Ω) is nonzero. Hence V 0(Ω) = {0} and, conse-
quently, V = V +(Ω). Then Ω is invertible, so that V = V +(Ω) ⊆ Veff and
V g ⊆ V 0(Ω) = {0}. This completes the proof. ut
Proposition 4.5.18. For a finite-dimensional representation (ρ, V ) of the Lie
algebra g, the following are equivalent:

(i) Each g-invariant subspace of V possesses a g-invariant complement.
(ii) (ρ, V ) is completely reducible.
(iii) V is a sum of g-invariant subspaces on which the representation is irre-

ducible.

Proof. (i) ⇒ (ii): For-dimensional reasons, each V contains a minimal nonzero
g-invariant subspace V1. Then there exists a g-invariant complement W , so
that V = V1 ⊕ W . We now argue by induction on dim V and apply the
induction hypothesis to the representation of g on W .
(ii) ⇒ (iii) is trivial.
(iii) ⇒ (ii): Let V1, . . . , Vn be a maximal set of g-invariant subspaces on which
the representation of g is irreducible and whose sum W :=

∑n
i=1 Vi is direct.

We claim that W = V , which implies (ii). If W is a proper subspace, then
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(iii) implies the existence of a minimal nonzero g-invariant subspace U not
contained in W . Then W ∩ U = {0} follows from the minimality of U , so
that the sum U +

∑
i Vi is direct, contradicting the maximality of the set

{V1, . . . , Vn}. This proves W = V .
(ii) ⇒ (i): Let V =

⊕n
i=1 Vi be a direct sum of minimal nonzero g-invariant

subspaces and W ⊆ V a g-invariant subspace. Further, let J ⊆ {1, . . . , n} be
maximal with W ∩ (

∑
i∈J Vi) = {0}. Then W ′ :=

∑
i∈J Vi satisfies W ∩W ′ =

{0} and it remains to see that W + W ′ = V .
Pick i ∈ I. If i ∈ J , then Vi ⊆ W ′ ⊆ W +W ′. If i 6∈ J , then the maximality

of J implies that (W ′+Vi)∩W 6= {0} and hence (W+W ′)∩Vi 6= {0}. Hence the
minimality of Vi implies that Vi ⊆ W +W ′, and this proves V = W +W ′. ut
Lemma 4.5.19. If g is a real Lie algebra and V a finite-dimensional g-
module, then the following are equivalent:

(i) V is semisimple.
(ii) VC is a semisimple complex g-module.

Proof. (i) ⇒ (ii): If V is semisimple, then V is a direct sum of simple submod-
ules Vi, then VC is the direct sum of the submodules (Vi)C. Hence it suffices to
show that the complexification WC of a simple real g-module W is semisimple.
In fact, if WC is not simple, then let U ⊆ WC be a nonzero minimal complex
submodule. This implies in particular that U is simple. Let σ : WC → WC be
the conjugation involution defined by σ(z ⊗ w) = z ⊗ w. Then σ commutes
with the action of g on WC, and therefore σ(U) also is a simple complex
submodule. Now U + σ(U) is a complex σ-invariant submodule of WC, hence
of the form XC for X := W ∩ (U + σ(U)) (Exercise 4.3.1(ii)). Then X is a
nonzero g-submodule of W , so that the simplicity of W yields X = W and
thus U + σ(U) = WC. Now Proposition 4.5.18 shows that WC is semisimple
because it is the sum of two simple submodules.

(ii) ⇒ (i): Let W ⊆ V be a submodule. We have to show that there exists
a module complement U (Proposition 4.5.18). Since VC is semisimple, there
exists a module complement X of WC in VC, i.e., a complex linear projection
p : VC → WC commuting with g. Let q : C → R, q(z) := Re z, denote the
canonical projection onto R. Then q⊗ idV : VC → V is a real linear projection
commuting with g. Hence

P := (q ⊗ idV ) ◦ p|V : V → W

is a g-equivariant real linear map with P (V ) = W and P |W = idW . Hence P
is a projection onto W and kerP is a complementary submodule. ut
Lemma 4.5.20. Let V be a finite-dimensional vector space and g ⊆ gl(V )
a commutative subalgebra consisting of semisimple elements. Then V is a
semisimple g-module.
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Proof. In view of Lemma 4.5.19, it suffices to show that VC is a semisimple
complex g-module, resp., gC. On VC, each x ∈ g is diagonalizable, and since g
is abelian, g is simultaneously diagonalizable (Exercise 1.1.1(d)), so that VC
is a direct sum of one-dimensional submodules, hence semisimple. ut
Theorem 4.5.21 (Weyl’s Theorem on Complete Reducibility). Each
finite-dimensional representation of a semisimple Lie algebra is completely
reducible.

Proof. We argue by induction on the dimension of the representation (ρ, V ) of
the semisimple Lie algebra g. In view of Proposition 4.5.18, it suffices to show
that each g-invariant subspace W ⊆ V possesses a g-invariant complement U .
Step 1: Let W ⊆ V be a g-invariant subspace of codimension 1. Then the rep-
resentation (ρ, V/W ), defined by ρ(x)(v+W ) := ρ(x)v+W is one-dimensional.
Since g = [g, g] is perfect and gl1(K) ∼= K is abelian, ρ = 0, i.e., ρ(g)V ⊆ W .
In view of Proposition 4.5.17, V = V g +Veff , and since Veff is contained in W ,
there exists some vo ∈ V g \W . Then Kvo is a g-invariant complement of W .
Step 2: Now let W ⊆ V be an arbitrary g-invariant subspace. We define a
representation of g on Hom(V, W ) by

π(x)ϕ := ρ(x)|W ◦ ϕ− ϕ ◦ ρ(x)

(Exercise). Then the subspace

U := {ϕ ∈ Hom(V, W ) : ϕ|W ∈ K idW }

is g-invariant because we have for ϕ ∈ U the relation (π(x)ϕ)(W ) = {0}: For
ϕ|W = λ idW and w ∈ W we have

(π(x)ϕ)(w) = ρ(x)ϕ(w)− ϕ(ρ(x)w) = ρ(x)(λw)− λρ(x)w = 0.

Therefore
U0 := {ϕ ∈ U : ϕ(W ) = {0}}

is a g-invariant subspace of U of codimension 1. Step 1 now implies the ex-
istence of a g-invariant ϕ0 ∈ U \ U0. The g-invariance of ϕ0 means that
ϕ0 ∈ Homg(V,W ) and since ϕ0|W ∈ K× idW is invertible, kerϕ0 is a
g-invariant subspace complementing W . ut

Exercises for Section 4.5

Exercise 4.5.1. Show that the dimension of a simple Lie algebra is at least 3.
Conclude that every semisimple Lie algebra of dimension ≤ 5 is simple.

Exercise 4.5.2. For a real Lie algebra g, we have:

(i) rad(gC) = rad(g)C.
(ii) rad(κg)C = rad(κgC).



114 4 Elementary Structure Theory of Lie Algebras

(iii) g is semisimple if and only if gC is semisimple.

Exercise 4.5.3. Let g be a real Lie algebra and gC its complexification. Show
that the Cartan–Killing forms of g and gC are related by

κg(x, y) = κgC(x, y) for x, y ∈ g.

Exercise 4.5.4. Verify the computations of the Cartan–Killing forms of
sl2(K), so3(R) and of the oscillator algebra in Example 4.5.4.

Exercise 4.5.5. (i) Let α : g → gl(V ) be a representation of the Lie algebra
g on V and n E g be an ideal. Then the space

V0(n) := {v ∈ V | (∀x ∈ n) α(x)v = 0}

is g-invariant.
(ii) Let

a0 = {0} ⊆ a1 ⊆ . . . ⊆ an = g

be a maximal chain of ideals of g and n E g a nilpotent ideal. Then
[n, aj ] ⊆ aj−1 for j > 0.

Exercise 4.5.6. Let g be a finite-dimensional Lie algebra. Every nilpotent
ideal n of g is orthogonal to g with respect to the Cartan–Killing form.

Exercise 4.5.7. Show that [g, g]⊥ = rad(g) for every finite-dimensional Lie
algebra. Here ⊥ refers to the Cartan–Killing form.

Exercise 4.5.8. Each one-dimensional representation (π, V ) of a perfect Lie
algebra is trivial.

Exercise 4.5.9. Let V be a finite-dimensional vector space and V ∗ its dual
space. Show that:

(a) The map γ : V ⊗ V ∗ → End(V ), γ(v, α)(w) := α(w)v, is a linear isomor-
phism.

(b) If v1, . . . , vn is a basis for V and v∗1 , . . . , v∗n the dual basis for V ∗, defined
by v∗j (vi) = δij , then γ(

∑n
i=1 vi ⊗ v∗i ) = idV .

(c) If β : V × V → K is a nondegenerate symmetric bilinear form, then

γ̃ : V ⊗ V → End(V ), γ̃(v ⊗ w)(x) := β(x,w)v

is a linear isomorphism. If v1, . . . , vn is a basis for V and v1, . . . , vn ∈ V
with β(vi, ·) = v∗i , i = 1, . . . , n, then γ̃(

∑n
i=1 vi ⊗ vi) = idV .

Exercise 4.5.10. (cf. Exercise 12.1.4)

(i) Let g be a simple Lie algebra over C. Show that each invariant bilinear
form κ on g is a scalar multiple of the Cartan–Killing form κg.

(ii) Show that the result from (i) is false for simple algebras over R.
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4.6 The Theorems of Levi and Malcev

In the preceding sections we dealt in particular with solvable and semisim-
ple Lie algebras separately. Now we shall address the question how a finite-
dimensional Lie algebra g decomposes into its maximal solvable ideal rad(g)
and the semisimple quotient g/ rad(g). The theorems of Levi and Malcev
are fundamental for the structure theory of finite-dimensional Lie algebras.
Levi’s Theorem asserts the existence of a semisimple subalgebra s of g comple-
menting the radical rad(g), also called a Levi complement. As a consequence,
g ∼= rad(g) o s is a semidirect sum. Malcev’s Theorem asserts that all Levi
complements are conjugate under the group of inner automorphisms of g,
which is a uniqueness result.

4.6.1 Levi’s Theorem

Lemma 4.6.1. The quotient Lie algebra g/ rad(g) is semisimple.

Proof. Let q : g → g/ rad(g) be the quotient homomorphism and a E g/ rad(g)
a solvable ideal. Then b := q−1(a) E g is an ideal containing rad(g),
for which a ∼= b/ rad(g) is solvable. Since solvability is an extension prop-
erty, b is solvable, hence b ⊆ rad(g), and thus a = {0}. This proves that
rad(g/ rad(g)) = {0}, i.e., g/ rad(g) is semisimple. ut
Lemma 4.6.2. If α : g → h is a surjective homomorphism of Lie algebras,
then α(rad g) = rad h.

Proof. Let r := rad g. First we note that α(r) is a solvable ideal of h, hence
contained in rad(h). Here we use that images of ideals under surjective homo-
morphisms are ideals: [h, α(r)] = [α(g), α(r)] = α([g, r]) ⊆ α(r).

Let π : h → h/α(r) be the quotient homomorphism. We consider the
homomorphism β := π ◦ α : g → h/α(r). In view of r ⊆ kerβ, β factors
through a surjective homomorphism β̃ : g/r → h/α(r). Since g/r is semisimple
(Lemma 4.6.1), the homomorphic image h/α(r) is also semisimple. Conse-
quently π(rad h) ⊆ rad

(
h/α(r)

)
= {0}, i.e., rad h ⊆ α(r). We thus obtain

rad h = α(r). ut
Definition 4.6.3. An ideal a E g is called characteristic, if it is invariant
under all derivations of g.

Lemma 4.6.4. For the radical of the Lie algebra g, the following assertions
hold:

(i) rad(g) is a characteristic ideal.
(ii) If a ⊆ g is an ideal, then rad(a) = rad(g) ∩ a.



116 4 Elementary Structure Theory of Lie Algebras

Proof. (i) First we note that [g, g] is a characteristic ideal of g because for each
derivation D ∈ der g and x, y ∈ g we have D([x, y]) = [Dx, y]+[x,Dy] ∈ [g, g].
Next we note that the Cartan–Killing from is invariant (cf. Exercise 4.4.5)
under der(g):

κg(Dx, y) = tr
(
ad(Dx) ad y

)
= tr

(
[D, adx] ad y

)

= − tr
(
adx[D, ad y]

)
= − tr

(
adx ad(Dy)

)
= −κg(x, Dy).

Therefore rad(g) = [g, g]⊥,κg (Exercise 4.5.7) is also invariant under der(g).
(ii) Clearly, rad(g) ∩ a is a solvable ideal of a, hence contained in rad(a).
Since rad(a) is a characteristic ideal of a, it is invariant under the adjoint
representation of g on a, hence a solvable ideal of g. This proves that rad(a) ⊆
rad(g). ut

We will need the following technical lemma.

Lemma 4.6.5. Let (ρ, V ) be a representation of g and n E g an ideal. For
v ∈ V let zg(v) := {x ∈ g : ρ(x)v = 0}. If v ∈ V satisfies

ρ(g)v = ρ(n)v and zg(v) ∩ n = {0},

then g ∼= no zg(v).

Proof. Our assumption implies that zg(v) ∩ n = zn(v) = {0}. The linear map
ϕ : g → V, x 7→ ρ(x)v satisfies ϕ(g) = ϕ(n), hence g = n + kerϕ = n + zg(v).
Since zg(v) is a subalgebra, the assertion follows. ut
Theorem 4.6.6 (Levi’s Theorem). If α : g → s is a surjective homomor-
phism of Lie algebras and s is semisimple, then there exists a homomorphism
β : s → g with α ◦ β = ids.

g

α

²²
s

∃β
??¡¡¡¡¡¡¡

ids

// s

Proof. We argue by induction on the dimension of n := kerα. For n = {0},
there is nothing to show. So we assume that n 6= {0}.

Case 1: The ideal n E g is not minimal, i.e., there exists a nonzero ideal
n1 ⊆ n, different from n. Now α factors through a surjective homomorphism
α1 : g/n1 → s with

dim(ker α1) = dim n− dim n1 < dim n.

Therefore our induction hypothesis implies the existence of a homomorphism
β1 : s → g/n1 with α1 ◦ β1 = ids. Let q : g → g/n1 be the quotient map and
b := q−1

(
β1(s)

)
. Then b is a subalgebra of g and the homomorphism
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α2 := q|b : b → β1(s) ∼= s, x 7→ x + n1

is surjective. In view of dim(kerα2) = dim n1 < dim n, the induction hy-
pothesis implies the existence of a homomorphism β2 : β1(s) → b with
α2 ◦ β2 = idβ1(s). Now β := β2 ◦ β1 : s → g is a homomorphism satisfying

α ◦ β = α1 ◦ α2 ◦ β̃2 ◦ β1 = α1 ◦ β1 = ids .

Case 2: The ideal n is minimal. Since s is semisimple, the radical
r := rad(g) of g is contained in n (Lemma 4.6.2). If r = {0}, then g is semisim-
ple, and the assertion follows from Proposition 4.5.11 because g contains an
ideal complementing n. So let us assume that r 6= {0}. Then the minimality
of n shows that n = r is abelian.

The representation ρ : g → gl(n), x 7→ adx|n satisfies n ⊆ ker ρ (n is
abelian), hence factors through a representation ρ of s on n, determined by
ρ◦α = ρ. Since n is a minimal ideal of g, we thus obtain on n an irreducible rep-
resentation of s. If ρ = 0, then n is central in g, and the adjoint representation
ad: g → der(g) factors through a representation of s on g. According to Weyl’s
Theorem, there exists an ideal of g complementing n (Proposition 4.5.18) and
the proof is complete. We may therefore assume that ρ is nonzero.

We are now at the point where we can use Lemma 4.6.5. On V := End(g),
we consider the representation

π(x)ϕ := ad x ◦ ϕ− ϕ ◦ adx = [ad x, ϕ].

We consider the following three subspaces of V :

P := ad n ⊆ Q := {ϕ ∈ V : ϕ(g) ⊆ n, ϕ(n) = {0}}
⊆ R := {ϕ ∈ V : ϕ(g) ⊆ n, ϕ|n ∈ K idn}.

Since Q ⊆ R is the kernel of the linear map χ : R → K, defined by
ϕ|n = χ(ϕ) idn, we see that dim(R/Q) = 1.

We claim that P , Q and R are g-invariant. To this end, let y ∈ g. For
x ∈ n we then have [ad y, adx] = ad[y, x] ∈ P , so that P is g-invariant. To see
that R and Q are g-invariant, we show that π(g)R ⊆ Q. So let x ∈ g, ϕ ∈ R
and ϕ|n = λ idn. For a ∈ n we then have

(π(x)ϕ)(a) = [x, ϕ(a)]− ϕ([x, a]) = [x, λa]− λ[x, a] = 0,

hence x.ϕ ∈ Q. For y ∈ n we get

[ad y, ϕ] = ad y ◦ ϕ− ϕ ◦ ad y = −λ ad y ∈ P.

This proves that π(n)R ⊆ P . The ideal n acts trivially on the quotient space
R/P , which therefore inherits a representation of s ∼= g/n.

According to Weyl’s Theorem 4.5.21, there exists an s-invariant subspace
of R/P complementing Q/P . Clearly, this complement is one-dimensional,
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hence generated by the image v of one element v ∈ R \ Q, of which we may
assume that v|n = idn. As the one-dimensional representation of s on Rv is
trivial because s is perfect (Exercise 4.5.8), we see that π(g)v ⊆ P . Next we
verify the assumptions of Lemma 4.6.5.

For x ∈ n we have already seen that π(x)v = [ad x, v] = − ad x. If π(x)v =
0, then ad x = 0, i.e., x ∈ z(g). Since n is a minimal ideal of g which is not
central, we derive that x = 0. This leads to zn(v) = {0} and π(n)v = ad n =
P = π(g)v. Finally, we apply Lemma 4.6.5 to complete the proof. ut
Definition 4.6.7. If g is a finite-dimensional Lie algebra and rad(g) E g its
solvable radical, then we call a subalgebra s ≤ g complementing the radi-
cal rad(g) a Levi complement. Note that g ∼= rad(g) o s holds for any Levi
complement.

Corollary 4.6.8. Each finite-dimensional Lie algebra g contains a semisim-
ple Levi complement.

Proof. Let s := g/ rad(g) and α : g → s the quotient map. According to
Lemma 4.6.1, s is semisimple. Hence Theorem 4.6.6 provides a homomorphism
β : s → g with α ◦ β = ids. Then β is injective, so that β(s)∩ rad(g) = {0} as
well as β(s) + rad(g) = g. Thus β(s) is a semisimple Levi complement. ut
Corollary 4.6.9. If s is a Levi complement in g, then

[g, g] = [g, rad(g)]o s.

If rad(g) = z(g), then [g, g] is a Levi complement.

Proof. The second assertion immediately follows from the first and the fact
that rad(g) = z(g) is equivalent to [g, rad(g)] = {0}.

For the first assertion we note that [s, s] = s leads to

[g, g] = [g, rad(g)] + [g, s] = [g, rad(g)] + [rad(g), s] + [s, s] = [g, rad(g)] + s.

ut
Corollary 4.6.10. If q : ĝ → g is a surjective homomorphism of finite-
dimensional Lie algebras, s is semisimple and α : s → g is a homomorphism,
then there exists a homomorphism α̂ : s → ĝ with q ◦ α̂ = α.

Proof. Apply Levi’s Theorem to the surjective homomorphism
q : q−1(α(s)) → α(s) and note that the homomorphic image α(s) of s is
semisimple. ut
Example 4.6.11. (a) Let V be a finite-dimensional vector space and
g = gl(V ). Then

rad(g) = z(g) = K1

and sl(V ) is a Levi complement in g (Exercise).
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(b) Let V be a finite-dimensional vector space and F = (V0, . . . , Vn) a flag in
V . Then

rad(g(F)) = {ϕ ∈ g(F) : (∀i)(∃λi ∈ K) (ϕ− λi1)(Vi) ⊆ Vi−1}

(Exercise). Note in particular that

rad(g(F)) ⊇ gn(F) = {ϕ ∈ g(F) : (∀i) ϕ(Vi) ⊆ Vi−1}.

Choosing subspaces W1, . . . , Wn ⊆ V with Vi = W1 ⊕ . . .⊕Wi, we find

g(F) ∼= gn(F)o
n⊕

i=1

gl(Wi),

rad(g(F)) ∼= gn(F)oKn and g(F)/ rad(g(F)) ∼=
n⊕

i=1

sl(Wi).

Remark 4.6.12. If g is a solvable Lie algebra, then g is isomorphic to a nested
semidirect sum

(
. . .

(
(g1 oα1 g2)oα2 g3

)
. . .oαn−1 gn

)

in which every gj is isomorphic to K.
Composing this with Levi’s Theorem and using Proposition 4.5.11, we

obtain a similar factorization for arbitrary finite-dimensional Lie algebras g,
the only difference is that the gj are either one-dimensional or simple. In
particular, we get a sequence

a0 = {0} ⊆ a1 ⊆ . . . ⊆ ak = g

of subalgebras of g for which aj−1 is an ideal in aj and the quotient aj/aj−1 is
either one-dimensional or simple. Such a series is called Jordan–Hölder series
of g.

4.6.2 Malcev’s Theorem

Theorem 4.6.13 (Malcev’s Theorem). For two Levi complements s and
s′ in g, there exists some x ∈ [g, rad(g)] with ead xs′ = s.

Proof. Let r := rad(g). We first consider some special cases.
(a) If [g, r] = {0}, then g = r⊕ s is a direct sum of Lie algebras and r = z(g)
is abelian. Therefore s = [s, s] = [g, g] = [s′, s′] = s′, and there is nothing to
show.
(b) If [g, r] 6= {0} and r is a minimal nonzero ideal of g, then [g, r] = r,
[r, r] = {0} (since D1(r) 6= r), and z(g) = {0} (because r 6⊆ z(g)). We define a
map h : s′ → r by x + h(x) ∈ s for x ∈ s′, i.e., −h is the projection of s′ to s
along r. Since s is a subalgebra and r is abelian, we have
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[x + h(x), y + h(y)] = [x, y] + [x, h(y)] + [h(x), y] ∈ s.

Therefore
h([x, y]) = [x, h(y)] + [h(x), y].

This implies that
π(x)(r, t) := ([x, r] + th(x), 0)

defines a representation of s′ on r×K. The subspace r ∼= r×{0} is s′-invariant.
According to Weyl’s Theorem, there exists an s′-invariant complement K(v, 1)
of r in r⊕K. As s′ is semisimple, π(s′)(v, 1) = {0}, and hence h(x)+[x, v] = 0
for x ∈ s′. Now we have

ead vx = x + [v, x] = x + h(x) ∈ s

for x ∈ s′ and thus ead v(s′) ⊆ s. Equality follows from dim s = dim g/r =
dim s′. This proves the theorem if [g, r] is a nonzero minimal ideal.
(c) Finally, we turn to the general case. We argue by induction on n := dim r.
The case n = 0 is trivial, so that we assume that n > 0 and that the assertion
holds for all Lie algebras h with dim rad(h) < n. In view of (a), we may assume
that [g, r] 6= {0}. As the ideal [g, r] is nilpotent (Corollary 4.4.15), its center
c := z([g, r]) is nonzero. Let m 6= {0} be a minimal ideal of g contained in
c. If m = r, then we are in the situation of (b). We therefore assume m 6= r.
Let π : g → g1 := g/m be the quotient map. Then r1 := π(r) is the radical of
g1 (Lemma 4.6.2), and π(s) and π(s′) are Levi complements in g/m because
both are semisimple (Corollary 4.5.13) and complementing π(r). Now our
induction hypothesis provides an x1 ∈ [g1, r1] with ead x1π(s′) = π(s). Using
π([g, r]) = [g1, r1], we find an x ∈ [g, r] with π(x) = x1. Then ead x1π(s′) =
π(ead xs′) ⊆ π(s), i.e.,

ead xs′ ⊆ h := s + m.

Now ead xs′ and s are two Levi complements in the Lie algebra h with
dim rad(h) = dim m < n = dim r. Hence the induction hypothesis provides
a y ∈ m with ead yead xs′ ⊆ s. Since m is central in [g, r], we have [x, y] = 0
and therefore ead yead xs′ = ead(x+y)s′ ⊆ s. ut

Malcev’s Theorem has interesting consequences:

Corollary 4.6.14. Each semisimple subalgebra of g is contained in a Levi
complement. In particular, the Levi complements are precisely the maximal
semisimple subalgebras of g.

Proof. Let r := rad(g) be the radical of g, h ⊆ g a semisimple subalgebra, and
a := r + h. Then a is a subalgebra of g and r is a solvable ideal of a. Since the
solvable ideal rad(a)∩ h of the semisimple Lie algebra h is trivial, we see that
r = rad(a). The ideal h∩ r of h is solvable and semisimple, hence trivial. This
proves that h is a Levi complement in a.
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Let s be a Levi complement in g. Then a = r + (a ∩ s) is a semidirect
sum and since a ∩ s ∼= a/r ∼= h is semisimple, a ∩ s is a Levi complement
in a. According to Malcev’s Theorem 4.6.13, there exists an x ∈ [a, r] with
ead x(a∩ s) = h, i.e., h is a contained in the Levi complement ead x(s) of g. ut
Corollary 4.6.15. If n E g is an ideal of g and g = ros a Levi decomposition,
i.e., s is a Levi complement, then n = (n∩ r)o (n∩ s) is a Levi decomposition
of n.

Proof. We have already seen in Lemma 4.6.4 that n ∩ r = rad(n). If sn is
a Levi complement in n, then Corollary 4.6.14 implies that the semisimple
Lie algebra sn is contained in a Levi complement s′ of g. For x ∈ [g, r] with
ead xs′ = s we now see that ead xsn ⊆ n ∩ s, because

ead xn ⊆ n + [x, n] ⊆ n.

Since the ideal n ∩ s of s is semisimple (Corollary 4.5.13) and sn is maximal
semisimple in n, we obtain ead xsn = n ∩ s. This shows that n ∩ s is a Levi
complement in n. ut

4.7 Reductive Lie Algebras

We conclude this chapter with a brief discussion of reductive Lie algebras.
This class of Lie algebras is only slightly larger than the class of semisimple
Lie algebras, but they occur naturally. In particular, one often finds them
as stabilizer subalgebras inside semisimple Lie algebras. Thus they appear
frequently in proofs by induction on the dimension.

Definition 4.7.1. We call a finite-dimensional Lie algebra g reductive if g is
a semisimple module with respect to the adjoint representation, i.e., for each
ideal a E g, there exists an ideal b E g with g = a⊕ b.

Lemma 4.7.2. For a reductive Lie algebra g, the following assertions hold:

(i) If n E g is an ideal, then n and g/n are reductive.
(ii) g = z(g)⊕ [g, g] and [g, g] is semisimple.
(iii) g is semisimple if and only if z(g) = {0}.
Proof. (i) Since g is reductive, there exists an ideal b E g with g = n ⊕ b.
Then [b, n] = {0}, so that g is a direct sum of Lie algebras. As submodules
of the semisimple g-module g, the ideals n and b are semisimple g-modules,
and since the complementary ideals do not act on each other, it follows that
n and b ∼= g/n are reductive Lie algebras.
(ii) Let a ⊆ g be an ideal complement of [g, g]. Then g = a ⊕ [g, g], and
[g, a] ⊆ a∩ [g, g] = {0} implies that a is central. Further, (i) implies that [g, g]
is reductive. To see that z(g) is not larger than a, we choose an ideal b of [g, g]
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complementing z(g) ∩ [g, g]. Then [g, g] = [b, b] ⊆ b yields z(g) ∩ [g, g] = {0},
and hence z(g) = a.

Since [g, g] is reductive, it is a direct sum of simple modules g1, . . . , gm

for the adjoint representation. The preceding argument implies that none of
these ideals is abelian, hence they are simple Lie algebras and thus [g, g] is
semisimple.
(iii) If z(g) = {0}, then (ii) implies that g is semisimple. If, conversely, g is
semisimple, then z(g) ⊆ rad(g) = {0}. ut
Proposition 4.7.3. For a finite-dimensional Lie algebra g, the following are
equivalent:

(i) g is reductive.
(ii) [g, g] is semisimple.
(iii) rad(g) is central in g.

Proof. (i) ⇒ (ii) follows from Lemma 4.7.2.
(ii) ⇒ (iii): Let g = ro s be a Levi decomposition of g with r = rad(g). Then
[g, g] = [g, r]o s, so that the semisimplicity of [g, g] implies that [g, r] = {0}.
(iii) ⇒ (i): If r is central in g, then any Levi decomposition g = ros is a direct
sum g = r⊕ s, where r is a central ideal. Since z(s) = {0}, we immediately get
z(g) = r, so that g = z(g) ⊕ s. Thus g is a direct sum of simple submodules
with respect to the adjoint representation, hence a semisimple module and
this means that g is reductive. ut

Exercises for Section 4.6

Exercise 4.7.1. Let F = (V0, . . . , Vn) be a flag in the finite-dimensional vec-
tor space V . Determine a Levi decomposition of the Lie algebra g(F) (Exam-
ple 4.6.11).

Exercise 4.7.2. Show that for every Jordan–Hölder series

a0 = {0} ⊆ a1 ⊆ . . . ⊆ ak = g

of subalgebras of g (i.e., aj−1 is an ideal in aj and the quotient aj/aj−1 is either
one-dimensional or simple), the set of quotients {aj/aj−1 : j = 1, . . . , k} does
not depend on the Jordan–Hölder series (cf. Remark 4.6.12).

Notes on Chapter 4

The Jacobi identity was discovered around 1830 by Carl Gustav Jacob Jacobi
(1804–1851) as an identity for the Poisson bracket {·, ·} on smooth functions
on R2n (Exercise 4.1.2).

The term Lie algebra was introduced in the 1920s by Hermann Weyl,
following a suggestion of N. Jacobson. Lie himself was dealing mainly with
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Lie algebras of vector fields (Exercise 4.1.3), which he called (infinitesimal)
transformation groups. The term Lie group was introduced by É. Cartan.

The Jordan decompositions and the Jordan normal form are due to Camille
Jordan (1838–1922). He wrote in the 1870s a text book on Galois theory of
polynomial equations, thus making Galois’ ideas available to the mathematical
world. This promoted group theoretical ideas considerably. In particular, it
inspired Sophus Lie to work on a “Galois theory” for differential equations,
using symmetries of differential equations to understand the structure of their
solutions.

In the original proof of his theorem, Weyl used the famous “unitary trick”.
For K = C one can derive Weyl’s theorem on complete reducibility from the
representation theory of compact groups (cf. Exercise 12.2.5). For g = sln(R)
this works roughly as follows. One shows that the complex representations of g
are in one-to-one correspondence with the complex representations of sln(C),
resp., its real form sun(C), hence further with unitary representations of the
compact simply connected Lie group SUn(C). For unitary representations
complete irreducibility is trivial. A purely algebraic proof was found later
in the 1935 by H. B. G. Casimir and B. L. van der Waerden [CW35], after
H. B. G. Casimir had dealt with the case sl2(C) using the operator named
after him. Another algebraic proof was found in 1935 by R. Brauer [Br36].
A completely different approach based on Lie algebra cohomology has been
developed by J. H. C. Whitehead (see the first Whitehead Lemma 6.5.26).

The original proof of Levi’s Theorem for complex Lie algebras [Le05] was
based on the classification of simple Lie algebras. The classification free proof
for real Lie algebras given here goes back to J. H. C. Whitehead [Wh36]. The
conjuagacy of the Levi complements was shown by A. I. Malcev in [Ma42].

For a detailed account of the early history of Lie theory up to 1926 we
refer to the book [Haw00] of Th. Hawkins.
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Root Decomposition

Since a simple Lie algebra g has no other ideals than g and {0}, we cannot
analyze its structure by breaking it up into an ideal n and the corresponding
quotient algebra g/n. We therefore need refined tools to look inside simple
Lie algebras. It turns out that Cartan subalgebras and the corresponding root
decompositions provide such a tool.

Roots and root spaces have remarkable properties some of which one turns
into a system of axioms for abstract root systems. We derive a number of
additional properties from these axioms. Moreover, we define certain objects
associated with abstract roots systems like Weyl groups and Weyl chambers.
Using these structural elements one could proceed rather easily to a complete
classification of complex simple Lie algebras, but we refrain from doing this
since our emphasis is on structure rather than classification.

In the present chapter, we first develop the concept of a Cartan subalgebra
and root decompositions for general Lie algebras. Then we turn to semisimple
Lie algebras and we finally discuss the geometry of the root system.

5.1 Cartan Subalgebras

For a better understanding of the structure of a Lie algebra, one decomposes
it into simultaneous eigenspaces of linear maps of the form ad x. Cartan subal-
gebras h ≤ g provide maximal subsets of g, for which there exist simultaneous
generalized eigenspaces for all operators ad x, x ∈ h, whenever g is a complex
Lie algebra.

5.1.1 Weight and Root Decompositions

Root decompositions are the simultaneous eigenspace decompositions of the
type mentioned above. They are special cases of weight decompositions.
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Definition 5.1.1. Let (π, V ) be a representation of the Lie algebra h. For a
function λ : h → K, we define the corresponding weight space and the corre-
sponding generalized weight space by

Vλ(h) :=
⋂

x∈h

Vλ(x)(π(x)) and V λ(h) :=
⋂

x∈h

V λ(x)(π(x)).

Any function λ : h → K for which V λ(h) 6= {0} is called a weight of the
representation (π, V ). We write Ph(V ) for the set of weights of (π, V ).

Remark 5.1.2. Suppose that we have a subalgebra h ⊆ gl(V ) for which

V =
⊕

λ

V λ(h)

is a direct sum of generalized weight spaces which are h-invariant. We claim
that h is nilpotent. For each x ∈ h, let x = xs + xn denote the Jordan
decomposition, hs := {xs : x ∈ h} and hn := {xn : x ∈ h}. For each weight λ
we have

V λ(h) =
⋂

x∈h

Vλ(x)(xs),

so that the weight space decomposition yields a simultaneous diagonaliza-
tion of the set hs. Moreover, for each x ∈ h, all eigenspaces of xs are
h-invariant because they are a sum of certain weight spaces, and this implies
that [h, xs] = 0.

Let πλ : h → gl(V λ(h)) denote the representation of h on the weight space
V λ(h). For any x ∈ h, we then have πλ(x)s = λ(x)1. With n := dim V λ(h) we
now see that

λ(x) =
1
n

tr(πλ(x))

is a linear functional on h vanishing on all brackets. In particular kerλ is an
ideal of h. For x, y ∈ h, we further derive that

[πλ(x)− λ(x)1, πλ(y)− λ(y)1] = [πλ(x), πλ(y)] = πλ([x, y]) ∈ πλ(kerλ),

so that a := {πλ(x)−λ(x)1 : x ∈ h} is a Lie subalgebra of gl(V λ(h)) consisting
of nilpotent elements, hence nilpotent by Corollary 4.2.7. Now

πλ(h) ⊆ a +K1 ∼= a⊕K

is a subalgebra of a nilpotent Lie algebra, hence nilpotent.
Finally, we observe that we have an inclusion h ↪→ ⊕

λ πλ(h) of h into a
nilpotent Lie algebra, so that h is nilpotent.

In the preceding remark we have seen that we can only expect that a repre-
sentation decomposes into invariant generalized weight spaces if h is nilpotent.
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Lemma 5.1.3. Let (π, V ) be a finite-dimensional representation of the nilpo-
tent Lie algebra h such that every π(x), x ∈ h, is split. Then each weight is
linear and V decomposes as

V =
⊕

λ∈h∗
V λ(h).

Moreover, each generalized weight space V λ(h) is h-invariant.

Proof. Since the assertion of the lemma only refers to the Lie algebra π(h), we
may replace h by π(h) and assume that h ⊆ gl(V ) is a nilpotent subalgebra
consisting of split endomorphisms.

For each x ∈ h, we have ad x(h) ⊆ h, so that we also get (ad x)s(h) ⊆ h.
Since ad x|h is nilpotent, Corollary 4.3.9 shows that 0 = (adx)s|h = ad xs|h.
It follows that [xs, h] = {0}. In view of Theorem 4.3.3(iv), we further have
[xs, ys] = 0 for x, y ∈ h, so that hs := {xs : x ∈ h} is a commutative set
of diagonalizable endomorphisms, hence simultaneously diagonalizable (Exer-
cise 1.1.1(d)). Let λ̃ : hs → K be a map and Vλ̃(hs) =

⋂
x∈h Vλ̃(xs)(xs) be the

corresponding simultaneous eigenspace, so that

V =
⊕

λ̃

Vλ̃(hs)

(cf. Exercise 1.1.1(e)).
In view of [h, hs] = {0} and Exercise 1.1.1(a), Vλ̃(hs) is h-invariant. Let πλ̃

denote the representation of h on this subspace. For any x ∈ h, we then have
πλ̃(x)s = λ̃(xs)1. For n := dim Vλ̃(hs) we now see that

λ(x) = λ̃(xs) =
1
n

tr(πλ̃(x))

defines a linear functional on h, satisfying

Vλ̃(hs) =
⋂

x∈h

Vλ(x)(xs) =
⋂

x∈h

V λ(x)(x) = V λ(h).

This completes the proof. ut
Definition 5.1.4. If h is a nilpotent subalgebra of the Lie algebra g, then
the weights of the representation π = ad |h which are different from zero are
called roots of g with respect to h. The set of all roots is denoted ∆(g, h). The
(generalized) weight spaces gλ(h) are called root spaces. Sometimes we write
gλ instead of gλ(h). If 0 6= µ ∈ h∗ is not a root, we put gµ := {0}.
Proposition 5.1.5. Let g be a finite-dimensional Lie algebra and h a nilpo-
tent subalgebra of g.

(i) [gλ, gµ] ⊆ gλ+µ for all λ, µ ∈ h∗.
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(ii) g0 is a subalgebra of g.

Proof. (i) For x ∈ gλ, y ∈ gµ and h ∈ h, we have
(
ad(h)− λ(h)− µ(h)

)n([x, y])

=
n∑

k=0

(
n

k

)
[
(
ad(h)− λ(h)

)k
x,

(
ad(h)− µ(h)

)n−k
y]

(Exercise 4.3.7). If n is sufficiently large, then for every summand either the
left factor or the right factor in the bracket vanishes, so that the whole sum
vanishes. This proves that [x, y] ∈ gλ+µ.

(ii) is a direct consequence of (i). ut

5.1.2 Cartan Subalgebras

In the following we want to decompose a Lie algebra into root spaces with
respect to a nilpotent subalgebra h. Since we want such decompositions to be
as fine as possible, g0(h) should be as small as possible, hence equal to h. The
following result prepares the definition of a Cartan subalgebra.

Proposition 5.1.6. For a subalgebra h of a finite-dimensional Lie algebra g,
the following are equivalent:

(C1) h is nilpotent and self-normalizing, i.e., h = ng(h).
(C2) h = g0(h).

If these conditions are satisfied, then h is a maximal nilpotent subalgebra of g.

Proof. (C1) ⇒ (C2): Since h is nilpotent, we have h ⊆ g0(h). Assume that
g0(h) strictly contains h and consider the representation

π : h → gl(g0(h)/h), π(h)(x + h) := [h, x] + h

whose image consists of nilpotent endomorphisms. By Theorem 4.2.5, there
exists some x ∈ g0(h)\h with ad(h)x ∈ h for all h ∈ h. But this contradicts
ng(h) = h.

(C2) ⇒ (C1): From h ⊆ g0(h) we derive with Engel’s Theorem that h is
nilpotent. To see that h is self-normalizing, let x ∈ ng(h). Then ad(h)x ∈ h
for all h ∈ h, and therefore ad(h)nx = 0 for sufficiently large n ∈ N. Hence
x ∈ g0(h) = h.

If (C1) and (C2) are satisfied and n ⊇ h is a nilpotent subalgebra, then
n ⊆ g0(h) = h. Therefore h is maximally nilpotent. ut
Definition 5.1.7. Let g be a finite-dimensional Lie algebra. A nilpotent sub-
algebra h is called a Cartan subalgebra of g if it is self-normalizing, i.e.,
ng(h) = h.
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Remark 5.1.8. (a) If g is nilpotent, then g is the only Cartan subalgebra of
g because any Cartan subalgebra is maximally nilpotent (Proposition 5.1.6).

(b) If gj are Lie algebras with Cartan subalgebras hj , then
⊕

j hj is a
Cartan subalgebra of

⊕
j gj .

Example 5.1.9. (i) Let g = Rh + Rp + Rq + Rz be the oscillator algebra
(cf. Example 4.1.19). Then h = Rh + Rz is a Cartan subalgebra of g.

(ii) In g = gln(K), the Lie subalgebra h of the diagonal matrices is a Cartan
subalgebra (cf. Exercise 5.1.1).

(iii) Every one-dimensional subspace of g = so3(R) is a Cartan subalgebra.
(iv) Every Cartan subalgebra is maximally nilpotent (Proposition 5.1.6), but

not every maximally nilpotent subalgebra is a Cartan subalgebra. The
subalgebra

n := R
(

0 1
0 0

)
< g = sl2(R)

is maximally nilpotent and not self-normalizing. Its normalizer is the only
proper subalgebra

b := R
(

0 1
0 0

)
+ R

(
1 0
0 −1

)

containing n. It is solvable but not nilpotent.

Definition 5.1.10. Let g be a finite-dimensional Lie algebra and h < g be
a Cartan subalgebra. We call h a splitting Cartan subalgebra if ad x is split
for each x ∈ h. By Lemma 5.1.3 and Proposition 5.1.6, we then have the root
space decomposition

g = h⊕
⊕

λ6=0

gλ. (5.1)

with respect to the Cartan subalgebra h.
If, in addition, each ad x, x ∈ h, diagonalizable, we call h a toral Cartan

subalgebra. In this case gλ = gλ for each λ ∈ h∗ and in particular h = g0

implies that h is abelian.

Proposition 5.1.11. (i) A subalgebra h of the real Lie algebra g is a Cartan
subalgebra if and only if hC is a Cartan subalgebra of gC.

(ii) Let ϕ : g → g̃ be a surjective homomorphism and h < g a Cartan subalge-
bra. Then ϕ(h) is a Cartan subalgebra of g̃.

(iii) If h is a Cartan subalgebra of g contained in the subalgebra k, then h also
is a Cartan subalgebra of k.

Proof. (i) This follows immediately from ng(h)C = ngC(hC) and Exercise 4.4.2.
(ii) By (i), we may assume that K = C. Proposition 4.2.3 shows that h̃ := ϕ(h)
is nilpotent. By Proposition 5.1.6, it suffices to show g̃0(h̃) = h̃. Clearly,
ϕ(g0(h)) = ϕ(h) = h̃ (Proposition 5.1.6). Moreover, Lemma 5.1.3 yields de-
compositions



130 5 Root Decomposition

g = g0(h)⊕
⊕

0 6=λ∈h∗
gλ(h) and g̃ = g̃0(h̃)⊕

⊕

λ̃∈h̃∗

g̃λ̃(h̃). (5.2)

If x ∈ gλ(h), λ 6= 0 and h ∈ h, there is an m ∈ N with (adh−λ(h))mx = 0,
and since ϕ is a homomorphism, (ad ϕ(h)− λ(h))mϕ(x) = 0. If ϕ(x) 6= 0 and
ϕ(h) = 0, then λ(h) = 0, so that we can define λ̃ ∈ h̃∗ via λ̃(ϕ(h)) := λ(h).
We now have

ϕ(gλ(h)) ⊆
{
{0} if ϕ(gλ(h)) = {0},
g̃λ̃(h̃) if ϕ(gλ(h)) 6= {0}.

In particular, for each root λ, the image of gλ(h) is contained in
∑

0 6=λ̃ g̃λ̃(h̃).

Since ϕ is surjective, it follows that h̃ = ϕ(h) = g̃0(h̃).
(iii) The subalgebra h of k is nilpotent and self-normalizing, hence a Cartan

subalgebra. ut

Proposition 5.1.12. Let a ⊆ g be an abelian subalgebra for which all opera-
tors adx, x ∈ a, are semisimple. Then the Cartan subalgebras of the central-
izer zg(a) are precisely the Cartan subalgebras of g containing a. In particular,
such Cartan subalgebras exist.

Proof. Let c := zg(a) and fix a Cartan subalgebra h of c. Since a is central in
c, we find a ⊆ z(c) ⊆ nc(h) = h. For the normalizer n := ng(h), we have

[a, n] ⊆ [h, n] ⊆ h.

Since each adg x, x ∈ a, is semisimple, Lemma 4.5.20 shows that g is a semisim-
ple a-module, so that there exists an a-invariant subspace d ⊆ n with n = h⊕d.
Then [a, d] ⊆ d ∩ h = {0} implies d ⊆ c. Therefore n is contained in c, and
since h is a Cartan subalgebra of c, we get n = h, showing that h is a Cartan
subalgebra of g.

If, conversely, h is a Cartan subalgebra of g containing a, then h ⊆ g0(h) ⊆
g0(a) = g0(a) = c. Since h is self-normalizing in g, it is also self-normalizing
in c, hence a Cartan subalgebra of c. ut
Lemma 5.1.13. For a nilpotent Lie algebra h ⊆ gl(V ), the following asser-
tions hold:

(i) The set hs := {xs : x ∈ h}, consisting of all semisimple Jordan components
of elements in h, is an abelian Lie algebra commuting with h.

(ii) The set hn := {xn : x ∈ h} of all nilpotent Jordan components of elements
in h is a nilpotent Lie subalgebra of gl(V ).

(iii) h̃ := hn + hs is a direct sum of Lie algebras.

Proof. (i) For each x ∈ h, we have ad x(h) ⊆ h, so that we get (ad x)s(h) ⊆ h.
Since ad x|h is nilpotent, and Proposition 4.3.7(ii)) and Corollary 4.3.9 show
that
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0 = (ad x|h)s = (ad x)s|h = ad(xs)|h,

it follows that [xs, h] = {0}. In view of Theorem 4.3.3(iv), [xs, ys] = 0 for
x, y ∈ h, so that hs is a commutative subset of gl(V ).

To see that hs actually is a linear subspace, we may w.l.o.g. assume that
K = C (otherwise we consider the complexification VC). We recall from
Lemma 5.1.3 the generalized weight space decomposition

V =
⊕

λ∈P(V )

V λ(h), where P(V ) = {λ ∈ h∗ : V λ(h) 6= {0}}.

With respect to this decomposition, xs corresponds to the diagonal operator
acting on V λ(h) by λ(x). We may therefore identify hs with the image of h
under the linear map

h → KP(V ), h 7→ (λ(h))λ,

which is a linear subspace. In particular, we see that (x + y)s = xs + ys for
x, y ∈ h.

(ii) As before, we may assume that K = C. In view of (i), h̃ := h + hs is a
Lie subalgebra of gl(V ) and all weights λ : h → C extend to linear functionals
λ̃ : h̃ → C, so that we arrive at the same generalized weight spaces V λ(h) =
V λ̃(h̃). In view of xn = x− xs, h̃ also contains hn. Moreover, each element of
h̃ can be written as a sum x + ys for x, y ∈ h. Since ad x(ys) = 0, the same
holds for ad xn(ys) = (ad x)n(ys), so that x+ys = xn +(xs +ys) is the Jordan
decomposition of x + ys. We further know from (i) that (x + y)s = xs + ys, so
that h̃ = hn + hs.

An element of h̃ is of the form xn for some x ∈ h if and only if its semisimple
component vanishes, i.e., x ∈ ⋂

ker λ̃. Since the functionals λ̃ : h̃ → C vanish
on the commutator algebras (Corollary 4.4.11), the intersection of their kernels
is an ideal in h̃. Since hs is central in h̃ and hn ∩ hs = {0}, h̃ = hn ⊕ hs is a
direct sum of Lie algebras. ut

5.1.3 Cartan Subalgebras and Regular Elements

Next we want to ensure that Cartan subalgebras actually exist. To this end,
for every x ∈ g, we consider the generalized eigenspace g0(adx). This space
is always different from zero since it obviously contains x.

Definition 5.1.14. (a) The number

rank(g) := min{dim g0(ad x) | x ∈ g}
is called the rank of g. An element x ∈ g is called regular if dim g0(ad x) =
rank(g). We write reg(g) for the set of regular elements in g.

(b) Since dim g0(adx) is the multiplicity of 0 as a root of the characteristic
polynomial
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det(ad x− t idg) =
n∑

k=0

pk(x)tk (5.3)

of adx, we have
rank(g) = min{k ∈ N | pk 6≡ 0}.

As the determinant is a polynomial function on End(g), all the functions
pk : g → K in (5.3) are polynomials (cf. Exercise 4.3.8).

Lemma 5.1.15. The set reg(g) of regular elements has the following proper-
ties:

(i) g \ reg(g) is the zero set of a nonconstant polynomial.
(ii) reg(g) is open and dense. For K = C it is connected.
(iii) reg(g) is invariant under the automorphism group Aut(g) of g.
(iv) If K = R, then reg(g) = g ∩ reg(gC) and rank R(g) = rank C(gC).

Proof. (i) Let r := rank (g). Then (i) follows from the fact that the functions
pk : g → K occurring in (5.3) are polynomials and

reg(g) = {x ∈ g : pr(x) 6= 0}.

(ii) Clearly reg(g) = p−1
r (K×) is open because pr is continuous. Further,

the zero set of the nonconstant polynomial pr contains no open subset (Ex-
ercise 5.1.2), so that reg(g) is also dense in g. If g is a complex Lie algebra,
then Exercise 5.1.3 further implies that reg(g) is connected.

(iii) For γ ∈ Aut(g) we have ad γ(x) = γ ◦ adx ◦ γ−1. Therefore ad γ(x)
and ad x have the same characteristic polynomial. We conclude that all poly-
nomials pk are invariant under Aut(g). In particular, reg(g) = p−1

r (K×) is
invariant.

(iv) Since det(MC) = det(M) for each M ∈ End(g), the polynomials
pCk on the complexified Lie algebra gC satisfy pCk |g = pk for each k. Hence
Exercise 5.1.4 shows that pk vanishes if and only pCk does. In particular,
rank R(g) = rank C(gC), and (iv) follows. ut

For the following lemma, we recall from Example 3.2.5 that for each inner
derivation adx, ead x is an automorphism of g. The elements of the group

Inn(g) := 〈ead x : x ∈ g〉

generated by these automorphisms are called inner automorphisms.

Lemma 5.1.16. Let h ⊆ g be a splitting Cartan subalgebra and ∆ := ∆(g, h).
Then the following assertions hold:

(i) reg(g) ∩ h = h \⋃
α∈∆ kerα.

(ii) rank (g) = dim h.
(iii) Inn(g)(h ∩ reg(g)) is an open subset of g.
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Proof. (i), (ii) For each h ∈ h we have g0(adh) = h +
∑

α(h)=0 gα and this
space is minimal if and only if no root vanishes on h. Since ∆ is finite, such
elements exist, and for any such element g0(ad h) = h.

It remains to show that r := rank (g) is not strictly smaller than dim h. To
this end, we consider the map

Φ : g× h → g, (a, b) 7→ ead ab.

Then
dΦ(0, b)(v, w) = [v, b] + w

for v ∈ g, w ∈ h. We therefore have

Im
(
dΦ(0, b)

)
= [b, g] + h ⊇ h +

∑

α(b)6=0

gα

because α(b) 6= 0 implies gα ⊆ [b, g] since ad b|gα is invertible. If no root
vanishes on b, then dΦ(0, b) is surjective, and the Implicit Function Theorem
implies that the image of Φ is a neighborhood of b = Φ(0, b). Since reg(g)
is a dense subset of g (Lemma 5.1.15), the image of Φ contains a regular
element x which we write as x = Φ(a, h) = ead ah for some h ∈ h and a ∈ g.
Then h = e− ad ax is also regular (Lemma 5.1.15) and contained in h. Thus h
contains regular elements and the discussion above yields r = dim h and (i).

(iii) The argument above also shows that dΦ(0, h) is surjective for each
regular element h ∈ h. Since reg(g) ∩ h is open, we see with the Implicit
Function Theorem that there exist neighborhoods Uh of h in h∩ reg(g) and V
of 0 in g such that Φ(V ×Uh) = ead V Uh is an open subset of g. Since ead V Uh

consists of regular elements, h is an interior point of

Inn(g)(reg(g) ∩ h).

As Inn(g) acts by homeomorphisms on g, this shows that each point in
Inn(g)(reg(g) ∩ h) is inner, hence that Inn(g)(reg(g) ∩ h) is open in g. ut
Lemma 5.1.17. Let g be a finite-dimensional Lie algebra and h < g. If x ∈ h
is regular in g, then x is also regular in h.

Proof. For h ∈ h and V := g/h, consider the linear maps

A(h) : V → V, y + h 7→ [h, y] + h

and B(h) = ad(h)|h : h → h. We set

det(A(h)− t id) =
m∑

k=0

ak(h)tk and det(B(h)− t id) =
n∑

j=0

bj(h)tj .

We further put
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dA(h) := dim V 0
(
A(h)

)
, dB(h) := dim h0

(
B(h)

)
,

and
rA := min

h∈h
dA(h), rB := min

h∈h
dB(h).

Then rA = dA(h) if and only if arA
(h) 6= 0, and similarly rB = dB(h) if and

only if brB
(h) 6= 0. We consider the set

S := {h ∈ h | arA
(h) · brB

(h) 6= 0} = {h ∈ h | rA = dA(h), rB = dB(h)}

which is nonempty because brB
does not vanish on the open complement of

the zero-set of arA (Exercise 5.1.2).
Every element of S is clearly regular in h, so that it suffices to show that

x ∈ S. If we identify V = g/h with a vector space complement of h in g, we
can write ad h in block form as

ad h =
(

B(h) ∗
0 A(h)

)

(cf. Example 4.1.7). This leads for h ∈ h to the factorization

det(ad h− t id) = det(A(h)− t id) det(B(h)− t id),

and hence to r := rank (g) ≤ rA + rB since S 6= ∅. On the other hand, the
fact that h contains the regular element x leads to r = rA + rB , so that
arA

(h)brB
(h) = pr(h). We conclude that x ∈ S ⊆ reg(h). ut

The following theorem clarifies the connection between Cartan subalgebras
and regular elements.

Theorem 5.1.18. Let g be a finite-dimensional Lie algebra.

(i) For any regular element x ∈ g, g0(ad x) is a Cartan subalgebra of g.
(ii) Every Cartan subalgebra h contains regular elements and if x ∈ h is regu-

lar, then h = g0(ad x).
(iii) All Cartan subalgebras have the same dimension rank (g).
(iv) For any Cartan subalgebra h, the set Inn(g)(h ∩ reg(g)) is open in g.

Proof. (i) Clearly, x ∈ h := g0(ad x), so by Lemma 5.1.17, x is also regular in
h. Since h = h0(ad x), we have

rank(h) = dim(h) = rank(g).

Hence h0(ad y) = h for all y ∈ h, i.e., each ad(y)|h is nilpotent. Therefore h is
nilpotent by Corollary 4.2.8. We thus arrive at

h ⊆ g0(ad h) ⊆ g0(ad x) = h,

and Proposition 5.1.6 shows that h is a Cartan subalgebra.
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(ii) Let h ⊆ g be a Cartan subalgebra. If x ∈ h ∩ reg(g), then (i) implies
that g0(ad x) is a Cartan subalgebra containing h, so that the fact that Cartan
subalgebras as maximally nilpotent yields h = g0(ad x).

If K = C, then h is splitting and Lemma 5.1.16 implies that h contains
regular elements. For K = R, we note that hC ⊆ gC is a Cartan subalgebra
(Proposition 5.1.11), hence contains regular elements. This means that for
r := rank (g), the polynomial pr : gC → C does not vanish on hC. Hence it
does not vanish on h (Exercise 5.1.4), and this means that h contains regular
elements of g.

(iii) follows immediately from (ii) and dim g0(ad x) = rank (g) for regular
elements.

(iv) We know already that this is the case for K = C. In the real case, we
also consider the map

Φ : g× h → g, (a, b) 7→ ead ab

with
dΦ(0, x)(v, w) = [v, x] + w.

If x ∈ h is regular, then h = g0(ad x), so that the induced map adg/h(y+h) :=
[x, y]+h is invertible because its kernel is trivial. This implies that g ⊆ h+[x, g],
which means that dΦ(0, x) is surjective, so that the Implicit Function Theorem
implies that Φ(g × (reg(g) ∩ h)) is a neighborhood of x = Φ(0, x). Now the
same argument as in the complex case proves (iv) (Lemma 5.1.16). ut

Let g be a finite-dimensional Lie algebra. Define an equivalence relation R
on the set reg(g) of regular elements via

x ∼ y :⇐⇒ ∃g ∈ Inn(g) with g
(
g0(adx)

)
= g0(ad y).

Lemma 5.1.19. The equivalence classes of ∼ are open subsets of reg(g).

Proof. Fix x ∈ reg(g) and set h := g0(ad x). In view of Theorem 5.1.18, the
set Inn(g)(h ∩ reg(g)) is an open neighborhood of x. Each element in this set
is of the form g(y) for y ∈ reg(g) ∩ h, so that

g0(ad(g(y))) = g
(
g0(ad y)) = g(h) = g(g0(adx))

implies that g(y) ∼ x. This proves that all equivalence classes of ∼ are open.
ut

Theorem 5.1.20. If g is a finite-dimensional complex Lie algebra, then the
group Inn(g) acts transitively on the set of Cartan subalgebras of g.

Proof. According to Lemma 5.1.15, reg(g) is connected. On the other hand
it is the disjoint union of the open equivalence classes of the relation ∼ (cf.
Lemma 5.1.19). Hence only one such class exists. Since every Cartan subalge-
bra of g is of the form g0(ad x) by Theorem 5.1.18, the assertion follows. ut
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Exercises for Section 5.1

Exercise 5.1.1. The diagonal matrices form a Cartan subalgebra of gln(K).

Exercise 5.1.2. Let V be a finite-dimensional vector space and p : V → K a
polynomial function vanishing on an open subset U ⊆ V . Show that p = 0.

Exercise 5.1.3. Let V be a complex finite-dimensional vector space and
p : V → K a nonzero polynomial function. Then p−1(C×) is connected.

Exercise 5.1.4. Let V be a finite-dimensional real vector space and VC its
complexification. Show that a polynomial function p : VC → C vanishes if and
only if p|V vanishes.

5.2 The Classification of Simple sl2(K)-Modules

As we shall see in Section 5.3 below, the Lie algebra sl2(K) is of particular
importance because semisimple Lie algebras with splitting Cartan subalge-
bras contain many subalgebras isomorphic to sl2(K) and the collection of
these subalgebras essentially determines the structure of the whole Lie al-
gebra. Therefore the representation theory of sl2(K) plays a key role in the
structure theory of these Lie algebras.

In the following, we shall use the following basis for sl2(K):

h :=
(

1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, (5.4)

satisfying
[h, e] = 2e, [h, f ] = −2f and [e, f ] = h. (5.5)

We start with a discussion of a concrete family of representations of sl2(K).
It will turn out later that the study of this family already provides all irre-
ducible finite-dimensional representations of sl2(K).

Example 5.2.1. Let V := K[Z, Z−1] be the algebra of Laurent polynomials
in Z. For any f ∈ V the operator D := f d

dZ is a derivation of V (Product
Rule) and any derivation of the algebra V is of this kind (Exercise 5.2.2). The
Lie bracket on der(V ) satisfies

[
f

d

dZ
, g

d

dZ

]
= (fg′ − f ′g)

d

dZ
. (5.6)

For λ ∈ K, we consider the operators

E :=
d

dZ
, F := −Z2 d

dZ
+ λZ1, H := −2Z

d

dZ
+ λ1.

With (5.6) we obtain
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[
Zn d

dZ
,Zm d

dZ

]
= (m− n)Zn+m−1 d

dZ

and hence the commutator relations

[H,E] = −2
[
Z d

dZ , d
dZ

]
= 2 d

dZ = 2E,

[H, F ] = −2
[
Z d

dZ ,−Z2 d
dZ + λZ1

]
= 2Z2 d

dZ − 2λZ1 = −2F,

[E, F ] =
[

d
dZ ,−Z2 d

dZ + λZ1
]

= −2Z d
dZ + λ1 = H.

Since these are precisely the commutator relations of g := sl2(K), we obtain
by

e 7→ E, f 7→ F, h 7→ H

a representation ρλ : sl2(K) → End(V ), resp., an sl2(K)-module structure
on V .

To understand the structure of this module, we consider the action of the
operators H, E and F on the canonical basis:

H · Zn = (λ− 2n)Zn, E · Zn = nZn−1, F · Zn = (λ− n)Zn+1. (5.7)

In particular, we see that H is diagonalizable with one-dimensional eigenspaces.
With this information, it is easy to determine all submodules. Any submodule
is adapted to the eigenspace decomposition of H (Exercise 1.1.1(b)). Hence
each submodule is of the form

VJ := span{Zn : n ∈ J}
for a subset J ⊆ Z. From the formulas above we see that VJ is a submodule
if and only if J satisfies the following conditions:
(i) If n ∈ J and n 6= 0, then n− 1 ∈ J .
(ii) If n ∈ J and λ 6= n, then n + 1 ∈ J .

If λ 6∈ Z, then K[Z] = VN0 is the only nontrivial submodule of V . If λ ∈ Z,
then there are two possibilities. For λ < 0, the only proper subsets of Z
satisfying (i) and (ii) are

{. . . , λ− 1, λ}, N0, and {. . . , λ− 1, λ} ∪ N0.

◦ ◦ ◦ ] ◦ ◦ · · · ◦ [ ◦ ◦ · · · .

For λ ≥ 0, then the subsets of Z defining submodules are

N0, {. . . , λ− 1, λ}, {0, 1, . . . , λ− 1, λ}.
◦ ◦ ◦ [ ◦ ◦ · · · ◦ ] ◦ ◦ · · · .

In this case we obtain in particular a finite-dimensional submodule

L(λ) := span{1, Z, . . . , Zλ}.

Since L(λ) contains no nontrivial proper submodule, it is simple.
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We have seen in the preceding example that for each λ ∈ N0, there exists
a simple sl2(K)-module of dimension λ + 1. Our next goal is to show that all
simple finite-dimensional modules are isomorphic to some L(λ).

The following lemma specializes for µ = 1 to an assertion on the Lie
algebra sl2(K).

Lemma 5.2.2. Let (e, h, f) be a triple of elements of an associative algebra
A, satisfying the commutator relations

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

Then the following assertions hold:

(i) [h, en] = 2nen and [h, fn] = −2nfn for n ∈ N0.
(ii) For n > 0,

[f, en] = −nen−1
(
h + (n− 1)

)
= −n

(
h− (n− 1)

)
en−1

and
[e, fn] = nfn−1

(
h− (n− 1)

)
= n

(
h + (n− 1)

)
fn−1.

Proof. (i) Since ad h(a) := ha − ah is a derivation of A and [h, e] = 2e com-
mutes with e, we obtain inductively [h, en] = n[h, e]en−1 = 2nen. The second
part of (i) is obtained similarly.
(ii) We calculate

[f, en] =
n−1∑

j=0

ej [f, e]en−j−1 =
n−1∑

j=0

ej(−h)en−j−1

= −
n−1∑

j=0

ej [h, en−j−1]−
n−1∑

j=0

en−1h = −
( n−1∑

j=0

2(n− j − 1)en−1
)
− nen−1h

= −
( n−1∑

j=0

2jen−1
)
− nen−1h = −n(n− 1)en−1 − nen−1h.

In view of (i), this equals

−n(n− 1)en−1 − nhen−1 + n[h, en−1] = n(n− 1)en−1 − nhen−1.

This is the first part of (ii). The second part is reduced to the first one by
considering the triple (f,−h, e), satisfying the same commutation relations as
(e, h, f). ut
Lemma 5.2.3. Let V be a g-module and h ⊆ g a subalgebra. Then, for any
α, β ∈ h∗,

gα(h) · Vβ(h) ⊆ Vα+β(h).
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Proof. For vβ ∈ Vβ(h), x ∈ h and y ∈ gα(h) we have

x · (y · vβ) = [x, y] · vβ + y · (x · vβ) = α(x)y · vβ + β(x)y · vβ = (α + β)(x)y · vβ .

ut
Proposition 5.2.4. Let V be a finite-dimensional sl2(K)-module and v0 ∈ V
an element with e · v0 = 0 and h · v0 = λv0. Then

(i) λ ∈ N0.
(ii) v0 generates a submodule isomorphic to L(λ).

Proof. (i) Let Vα := Vα(h) be the h-eigenspace corresponding to the eigen-
value α on V , which is a weight space for the representation of the subalgebra
h = Kh. ¿From v0 ∈ Vλ and [h, f ] = −2f , we obtain with Lemma 5.2.3 the
relation h · (fn · v0) = (λ− 2n)(fn · v0).

We further obtain with Lemma 5.2.3:

e·(fn·v0) = [e, fn]·v0+fn·(e · v0)︸ ︷︷ ︸
=0

= nfn−1(h−n+1)·v0 = n(λ−n+1)fn−1·v0.

This shows that the submodule W generated by v0 is

W = span{fn · v0 : n ∈ N0}.
Since V is finite-dimensional, h has only finitely many eigenvalues on V . Hence
there is a minimal N ∈ N0 with fN+1 · v0 = 0. ¿From e · (fN+1 · v0) = 0 we
derive that λ = N ∈ N0.
(ii) To see that W ∼= L(λ), we consider the following basis

vk :=
fk · v0

λ(λ− 1) · · · (λ− k + 1)
, k = 0, . . . , λ,

for W (note that the denominator never vanishes.). For this basis, we have

h · vk = (λ− 2k)vk, f · vk = (λ− k)vk+1,

e · v0 = 0 and, for k > 0,

e · vk =
k(λ− k + 1)

λ(λ− 1) · · · (λ− k + 1)
fk−1 · v0

=
k

λ(λ− 1) · · · (λ− k + 2)
fk−1 · v0 = kvk−1.

With respect to this basis, e, f and h are represented by the same matrices
as on L(λ), and this shows that W ∼= L(λ). ut
Lemma 5.2.5. If V is a finite-dimensional real vector space and a, b ∈ gl(V )
with [a, b] = b, then b is nilpotent.
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Proof. Apply Proposition 4.4.14 to the solvable subalgebra Ka +Kb ⊆ gl(V ).
Then [a, b] = b implies that b is nilpotent. ut
Theorem 5.2.6 (Classification of Simple sl2(K)-Modules). Each finite-
dimensional simple sl2(K)-module is isomorphic to some L(λ), λ ∈ N0. For
each n ∈ N, there exists a simple sl2(K)-module of dimension n which is
unique up to isomorphism.

Proof. Let (ρ, V ) be a simple sl2(K)-module. We consider the solvable subal-
gebra b := span{e, h}. We apply Lemma 5.2.5 to a := 1

2ρ(h) and b := ρ(e),
to see that ρ(e) is nilpotent. Let d ∈ N be minimal with ρ(e)d = 0. Then
Lemma 5.2.2 yields

0 = [ρ(f), ρ(e)d] = −d(ρ(h)− (d− 1)1)ρ(e)d−1,

so that each nonzero v0 ∈ ρ(e)d−1(V ) is an eigenvector of ρ(h). In view of the
simplicity of the module V , it is generated by v0, and Proposition 5.2.4 shows
that V ∼= L(λ). The remaining assertions are immediate from Example 5.2.1.

ut
Remark 5.2.7. A particular interesting representation of sl2(K) is the oscil-
lator representation. Here we consider the space

P = C[x1, . . . , xn]

of complex-valued polynomials on Rn. Let ∆ =
∑

j
∂2

∂x2
j

be the Laplacian.

We put e := 1
2∆ and f = 1

2mr2 (multiplication operator with r2 :=
∑

j x2
j ),

and h := E + n
2 1, where E =

∑
j xj

∂
∂xj

is the Euler operator, for which a
homogeneous polynomial of degree d is an eigenvector of degree d.

It is easily verified that (h, e, f) ∈ End(P) satisfies the commutation rela-
tions of sl2(R), so that P is an sl2(K)-module (Exercise 5.2.3). This module
plays an important role in quantum mechanics of systems on Rn with full ro-
tational symmetry. An important example is the spherical harmonic oscillator
on R3, corresponding to the hydrogen atom.

Proposition 5.2.8. For a finite-dimensional sl2(K)-representation (ρ, V ), the
following assertions hold:

(i) ρ(h) is diagonalizable and the set PV of all eigenvalues is contained in Z.
(ii) PV = −PV .
(iii) (String property) If α, α + 2k ∈ PV for some k ∈ N0, then α + 2j ∈ PV

for j = 0, 1, . . . , k.

Proof. In view of Weyl’s Theorem 4.5.21, V is a direct sum of simple sub-
modules V1, . . . , Vm, and Theorem 5.2.6 implies that Vi

∼= L(λi) for some
λi ∈ N0.
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(i) and (ii) now follow immediately from the corresponding property of the
modules L(λ) (Example 5.2.1).

(iii) In view of (ii), we may w.l.o.g. assume that β := α + 2k satisfies
|β| ≥ |α|. Then we pick some simple submodule Vi

∼= L(λi) of V such that β
is an eigenvalue ρ(h)|Vi . Then λi − β ∈ 2N0 and all integers in

[−|β|, |β]] ∩ (β + 2Z)

are eigenvalues of ρ(h)|Vi . This contains in particular the set of all integers of
the form α + 2j, j = 0, 1, . . . , k, between α and β. ut

We consider the element

θ := ead ee− ad fead e ∈ Aut(sl2(K))

(Example 3.2.5) and

σ := exp(e) exp(−f) exp(e) =
(

1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
=

(
0 1
−1 0

)
∈ SL2(K).

Then Lemma 2.4.1 implies for z ∈ sl2(K) the relation θ(z) = σzσ−1, hence in
particular

θ(h) = −h, θ(e) = −f and θ(f) = −e.

Lemma 5.2.9. Let (ρ, V ) be a finite-dimensional representation of sl2(K) and
σV := eρ(e)e−ρ(f)eρ(e) ∈ GL(V ). Then

σV ρ(z)σ−1
V = ρ(σzσ−1)

for z ∈ sl2(K),
σV (Vα(ρ(h))) = V−α(ρ(h))

for the eigenspaces of ρ(h), and in particular

dim Vα(ρ(h)) = dim V−α(ρ(h)).

Proof. For z ∈ sl2(K) we obtain with Lemma 2.4.1 the relation

σV ρ(z)σ−1
V = ρ(σzσ−1).

This implies that
σV (Vα(ρ(h))) = V−α(ρ(h))

because we have for v ∈ Vα(ρ(h)):

ρ(h)(σV (v)) = σV

(
σ−1

V ρ(h)σV

)
(v) = σV ρ(−h)(v) = −ασV (v).

This completes the proof. ut
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Exercises for Section 5.2

Exercise 5.2.1. We consider the 2-dimensional nonabelian complex Lie alge-
bra g in which we choose a basis (h, e) satisfying [h, e] = e. In the following
V denotes a g-module and ρ : g → gl(V ) the corresponding representation.
Classify all finite-dimensional g-modules V for which ρ(h) is diagonalizable.

Exercise 5.2.2. Let A = K[Z, Z−1] be the algebra of Laurent polynomials
with coefficients in the field K. Show that every derivation of A is of the form
D := f d

dZ for some f ∈ A.

Exercise 5.2.3. On the space V = C∞(Rn) we consider the operators

e :=
1
2

∑

j

∂2

∂x2
j

, and f =
1
2
mr2

(multiplication operator with r2 :=
∑

j x2
j ), and h := n

2 1 +
∑

j xj
∂

∂xj
. Show

that (h, e, f) satisfy the sl2-relations

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

5.3 Root Decompositions of Semisimple Lie Algebras

The technique of root decompositions is particularly fruitful for semisimple
Lie algebras g because, for this class of Lie algebras, all elements h of a Cartan
subalgebra h turn out to be ad-semisimple, i.e., adh is a semisimple endomor-
phism of g. For complex Lie algebras we thus obtain a root space decomposi-
tion diagonalizing ad h.

Proposition 5.3.1. Let g be a semisimple Lie algebra, h a splitting Cartan
subalgebra of g and mλ := dim gλ.

(i) κg(h, h′) =
∑

λ∈∆(g,h) mλλ(h)λ(h′) for h, h′ ∈ h.
(ii) If λ + µ 6= 0, then gλ and gµ are orthogonal with respect to the Cartan–

Killing form.

Proof. (i) Both sides of the equation define a symmetric bilinear form on h.
By polarization, it suffices to verify the equality for h = h′. But λ(h) is the
only eigenvalue of ad h on gλ. Therefore, the Jordan canonical form, together
with the root decomposition (5.1), shows that tr(ad(h)2) =

∑
λ mλλ(h)2.

(ii) By Proposition 5.1.5, we have ad(x) ad(y)gν ⊆ gλ+µ+ν for x ∈ gλ and
y ∈ gµ. Choose a basis for g consisting of elements in the gν . Then since
ν + λ + µ 6= ν, the trace of ad(x) ad(y) equals zero. ut
Proposition 5.3.2. Let g be a semisimple Lie algebra and h ⊆ g be a splitting
Cartan subalgebra.
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(i) The Cartan–Killing form κ of g induces a nondegenerate pairing of gα

and g−α, i.e., for x ∈ gα and y ∈ g−α,

κ(x, g−α) = {0} ⇒ x = 0 and κ(gα, y) = {0} ⇒ y = 0.

In particular, mα = m−α and κ|h×h is nondegenerate.
(ii) The Lie algebra h is a toral Cartan subalgebra. In particular, h is abelian

and gα = gα for each root α.
(iii) ∆(g, h) spans h∗.

Proof. (i) This claim immediately follows from Proposition 5.3.1(ii), since the
Cartan–Killing form is nondegenerate.
(ii) Since the adjoint representation of g is injective (z(g) = {0}) and the set
(ad h)s is commutative because it is diagonalized by the root decomposition,
it suffices to show that for each h ∈ h, the operator ad h is semisimple.

In view of Proposition 4.3.10, the nilpotent Jordan component (adh)n is
a derivation of g, and since all derivations of g are inner (Theorem 4.5.14),
there exists an hn ∈ g with ad(hn) = (ad h)n. Since the derivation (ad h)n

commutes with (ad h)s, we have

ad
(
(ad h)shn

)
= [(ad h)s, adhn] = {0},

so that the injectivity of ad entails that hn ∈ g0(h) = h (cf. Proposition 4.1.10
and Lemma 5.1.13). As ad(hn) is nilpotent, all roots vanish on hn, and the
formula in Proposition 5.3.1(i) implies that κ(hn, h) = {0}. Now hn = 0
follows from (i). This proves that adh is diagonalizable for each h ∈ h and
since ad is injective, h ∼= ad h is abelian.
(iii) As a consequence of (ii) and the injectivity of the adjoint representation,
∆(g, h) ⊆ h∗ separates the points of h, and this is equivalent to (iii). ut

Since the Cartan–Killing form is nondegenerate on the Cartan subalgebra,
we can assign to every root α a uniquely determined element h′α ∈ h via the
equation

κ(h, h′α) = α(h). (5.8)

Further, we can introduce a bilinear form on h∗ via

(α, β) := κ(h′α, h′β) = α(h′β) = β(h′α). (5.9)

Lemma 5.3.3. For α ∈ ∆(g, h),

[x, y] = κ(x, y)h′α for x ∈ gα, y ∈ g−α. (5.10)

Proof. Recall that Proposition 5.3.2(ii) implies that [h, x] = α(h)x for h ∈ h
and x ∈ gα. Both sides of the equation are in h, hence (5.10) follows from

κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(h, κ(x, y)h′α),

since the Cartan–Killing form is nondegenerate on h by Proposition 5.3.2. ut
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5.3.1 sl2-Triples

The following theorem is the starting point of a complete classification of
simple Lie algebras. It emphasizes the special role which the algebra sl2(K)
plays in the theory.

Theorem 5.3.4 (sl2-Theorem). Let g be a semisimple Lie algebra, h ⊆ g
a splitting Cartan subalgebra and α ∈ ∆(g, h).

(i) For every root α ∈ ∆(g, h), we have (α, α) 6= 0 and there are elements
eα ∈ gα, fα ∈ g−α and hα ∈ [gα, g−α] such that

[hα, eα] = 2eα, [hα, fα] = −2fα and [eα, fα] = hα.

In particular, g(α) := span{hα, eα, fα} is a subalgebra isomorphic to
sl2(K).

(ii) mα = dim gα = dim([gα, g−α]) = 1 and Zα ∩∆ = {±α}.
(iii) α(hα) = 2.

Proof. (i) From κ(gα, g−α) 6= {0} and Lemma 5.3.3 we obtain elements
e±α ∈ g±α with [eα, e−α] = h′α. To see that (α, α) = α(h′α) is nonzero, let us
assume the contrary and consider some β ∈ ∆. Then the subspace

V :=
⊕

k∈Z
gβ+kα

of g is invariant under ad(e±α), so that

0 = tr([ad eα|V , ad e−α|V ]) = tr(ad h′α|V ) =
∑

k∈Z
(β + kα)(h′α) ·mβ+kα

= β(h′α) ·
∑

k∈Z
mβ+kα.

Since
∑

k∈Zmβ+kα ≥ mβ > 0, we get β(h′α) = 0 for all roots β. But since the
roots span h∗ (Proposition 5.3.2), this contradicts h′α 6= 0. We conclude that
(α, α) = α(h′α) 6= 0.

Set hα := 2 h′α
α(h′α) . This proves (iii). From Proposition 5.3.2 we get an

element fα ∈ g−α with κ(eα, fα) = 2
α(h′α) , so that Lemma 5.3.3 implies that

[eα, fα] = hα. Now (i) follow from (iii).
(ii) We consider the subspace

V := Kfα + h +
∞∑

n=1

gnα

of g. One verifies easily that this subspace is invariant under ad
(
g(α)

)
because

it is invariant under ad h, [fα, h] = Kfα, and [eα, gβ ] ⊆ gβ+α. According to
Lemma 5.2.9, we therefore have
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dim Vm(adhα) = dim V−m(ad hα)

for all m ∈ Z. This leads to

dim gα = dim V2(ad hα) = dim V−2(ad hα) = 1

and dim gnα = 0 for n > 1. Now (ii) follows from (i). ut
Let g be a semisimple Lie algebra and h ⊆ g a splitting Cartan subalgebra.

Then h is splitting and we obtain a root decomposition of g with respect to
h. For brevity we put ∆ := ∆(g, h). For a root α ∈ ∆, we have already seen
that [gα, g−α] is a one-dimensional subspace of h on which α does not vanish.
Hence there is a unique element

α̌ = hα ∈ [gα, g−α] with α(α̌) = 2,

called the coroot corresponding to α (cf. Theorem 5.3.4).

Lemma 5.3.5 (Root String Lemma). Let α, β ∈ ∆.

(i) For β ∈ ∆ \ {±α} the set {k ∈ Z : β + kα ∈ ∆} is an interval in Z. If it
is of the form [−p, q] ∩ Z with p, q ∈ Z, then p− q = β(α̌). In particular,
β(α̌) ∈ Z.

(ii) If β(α̌) < 0, then β + α ∈ ∆ and if β(α̌) > 0, then β − α ∈ ∆.
(iii) If [gα, gβ ] = {0}, then β(α̌) ≥ 0.
(iv) If α + β 6= 0, then [gα, gβ ] = gα+β .

Proof. (i) We consider the subspace V :=
∑

k∈Z gβ+kα. Note that β 6= {±α}
implies that 0 is not contained in β +Zα (Theorem 5.3.4(ii)). From [gγ , gδ] ⊆
gγ+δ, we derive that V is a g(α)-submodule of g. The eigenvalues of α̌ = hα

on V are given by

PV := {(β + kα)(α̌) : β + kα ∈ ∆} = β(α̌) + 2{k : β + kα ∈ ∆}.

Hence the string property of sl2-modules (Proposition 5.2.8) implies the string
property of the root system.

Next we note that β ∈ ∆ leads to p ≥ 0. In view of Proposition 5.2.8, we
have PV = −PV . Therefore

β(α̌)− 2p = (β − pα)(α̌) = −(β + qα)(α̌) = −β(α̌)− 2q.

(ii) If β(α̌) < 0, then (i) leads to q > 0 and hence to β + α ∈ ∆. The second
assertion follows similarly.
(iii) As all multiplicities of the eigenvalues of α̌ on V are 1 (Theorem 5.3.4(ii)),
the sl2(K)-module V is simple and isomorphic to L(β(α̌) + 2q) (apply Propo-
sition 5.2.4 to a nonzero element of gβ+qα). This immediately shows that

[gα, gβ+kα] = gβ+(k+1)α for k = −p,−p + 1, . . . , q − 1. (5.11)
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If [gα, gβ ] = {0}, then V :=
∑

k≤0 gβ+kα is invariant under g(α) ∼= sl2(K)
and β(α̌) is the maximal eigenvalue of ad(α̌) on V . Hence Proposition 5.2.8
shows that β(α̌) ≥ 0.
(iv) We may assume that β + α ∈ ∆ (otherwise gα+β = {0}), so that q ≥ 1.
Then (iv) follows from (5.11). ut
Lemma 5.3.6. Each root α ∈ ∆ satisfies Kα ∩∆ = {±α}.
Proof. Suppose that α and cα lie in ∆ for some c ∈ K. By Lemma 5.3.5,
2c = cα(α̌) ∈ Z, so that c ∈ 1

2Z. For symmetry reasons, also c−1 ∈ 1
2Z, so

that c ∈ {±2,±1,± 1
2}. From the sl2-Theorem 5.3.4 we know already that

Zα ∩ ∆ = {±α}, which rules out the cases c = ±2. The cases c = ± 1
2 are

likewise ruled out by applying the same argument to cα instead. ut
Lemma 5.3.7. The subspace hR := span{α̌ : α ∈ ∆} has the following prop-
erties:

(i) α(hR) = R for every root α ∈ ∆.
(ii) κ is positive definite on hR.
(iii) hR spans the space h (hR = h for K = R).
(iv) h = hR ⊕ ihR if K = C.

Proof. (i) This follows from β(α̌) ∈ Z for α, β ∈ ∆, which is a consequence of
the Root String Lemma 5.3.5.
(ii) This follows from Proposition 5.3.1 and (i).
(iii) If β ∈ h∗ vanishes on hR, then 0 = β(α̌) = κ(h′β , α̌) for each root α, and
since α̌ is a nonzero multiple of h′α, this implies that α(h′β) = 0. As ∆ spans
h∗, we get β = 0, and this implies that spanC hR = h for K = C.
(iv) 0 ≤ κ(x, x) and 0 ≤ κ(ix, ix) = −κ(x, x) for x ∈ hR∩ihR. Hence κ(x, x) =
0, and therefore, x = 0 by (ii). ut

5.3.2 Examples

The following lemma is a useful tool to see that the examples discussed below
are indeed semisimple Lie algebras.

Lemma 5.3.8. Suppose that g = h +
∑

α∈∆ gα is a Lie algebra and h a toral
Cartan subalgebra, such that

(i) g(α) := gα + g−α + [gα, g−α] ∼= sl2(K) for each root α, and
(ii) z(g) = {0}.
Then g is semisimple.

Proof. Let r := rad(g) be the solvable radical of g. As an ideal, it is h-
invariant, hence adapted to the root space decomposition: r = r0 +

∑
α rα

(Exercise 1.1.1). Since all semisimple subalgebras s of g intersect r trivially
(otherwise s∩ r would be a nontrivial solvable ideal of s), rα ⊆ g(α)∩ r = {0}.
Hence r ⊆ h, and, in view of [r, gα] ⊆ r ∩ gα = {0}, we get r ⊆ ⋂

α∈∆ kerα =
z(g) = {0}. ut
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Example 5.3.9 (The special linear Lie algebra). Let

g := sln(K) := {x ∈ gln(K) : tr x = 0}.

Then the subalgebra h of diagonal matrices in g is abelian, and for the matrix
units Eij with a single nonzero entry 1 in position (i, j), we have

[diag(h), Eij ] = (hi − hj)Eij for h ∈ Kn.

We conclude that h is maximal abelian, g0(h) = g0(h) = h, so that h is a Car-
tan subalgebra, and that the one-dimensional subspace KEij is a root space
corresponding to the root εi− εj , where εi(diag(h)) := hi. The corresponding
root system is

An−1 := {εj − εk : 1 ≤ j 6= k ≤ n}.
Example 5.3.10 (The orthogonal Lie algebras). Let

In,n :=
(
1 0
0 −1

)
∈ M2n(K) ∼= M2(Mn(K))

and recall the Lie algebra

on,n(K) = {x ∈ gl2n(K) : x>In,n + In,nx = 0}.

In terms of block matrices, we then have

on,n(K) =
{ (

a b
c d

)
∈ M2(Mn(K)) : a> = −a, d> = −d, b> = c

}
.

In this matrix presentation, it is quite inconvenient to describe a root decom-
position of this Lie algebra. It is much simpler to use an equivalent description,
based on the following observation. For

g :=
1√
2

(
1 1
−1 1

)

we have

g>In,ng =
(
0 1
1 0

)
=: S.

Hence x ∈ on,n(K) is equivalent to g−1xg being contained in

g := o(K2n, S) := {x ∈ gl2n(K) : x>S + Sx = 0} = g−1on,n(K)g.

From (
a b
c d

)
∈ o(K2n, S) ⇔ d = −a>, b> = −b, c> = −c,

we immediately derive that g has a root decomposition with respect to the
maximal abelian subalgebra
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h = span{Ejj − En+j,n+j : j = 1, . . . , n} = {diag(h,−h) : h ∈ Kn}.

The corresponding root system is

Dn := {±εj ± εk : j, k = 1, . . . , n, j 6= k},

where εj : h → K is the linear functional defined by εk(diag(h,−h)) := hk.
Here the roots in the subsystem An−1 of Dn correspond to the root spaces in
the image of the embedding

sln(K) → o(K2n, S), x 7→
(

x 0
0 −x>

)
.

Further, gεj+εk
= K(Ej,n+k − Ek,n+j) and g−εj−εk

= K(En+k,j − En+j,k).

For the symmetric matrix

T :=




0 1 0
1 0 0
0 0 1


 ∈ M2n+1(K),

we also obtain a Lie algebra

o(K2n+1, T ) := {x ∈ gl2n+1(K) : x>T + Tx = 0}.

Then



a b x
c d y
x̃ ỹ z


 ∈ o(K2n+1, T ) ⇔

(
a b
c d

)
∈ o(K2n, S), x̃ = −y>, ỹ = −x>, z = 0

implies that this Lie algebra has a root decomposition with respect to the
maximal abelian subalgebra

h = span{Ejj − En+j,n+j : j = 1, . . . , n} = {diag(h,−h, 0) : h ∈ Kn}.

The corresponding root system is

Bn := {±εj ,±εj ± εk : j, k = 1, . . . , n, j 6= k},

where εj : h → K is the linear functional defined by εk(diag(h,−h, 0)) := hk.
Here the root spaces corresponding to roots in the subsystem Dn of Bn

correspond to root spaces in the subalgebra o(K2n, S) (corresponding to
x = y = 0), and

gεj = K(Ej,2n+1 − E2n+1,n+j) and g−εj = K(Ej+n,2n+1 − E2n+1,j).
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Example 5.3.11 (The symplectic Lie algebra). For the skew symmetric
matrix

J :=
(

0 1
−1 0

)
∈ M2n(K),

we obtain the symplectic Lie algebra

spn(K) = {x ∈ gl2n(K) : x>J + Jx = 0}.

Using (
a b
c d

)
∈ spn(K) ⇔ d = −a>, b> = b, c> = c,

we see that g := spn(K) has a root decomposition with respect to the maximal
abelian subalgebra

h = span{Ejj − En+j,n+j : j = 1, . . . , n} = {diag(h,−h) : h ∈ Kn}.

The corresponding root system is

Cn := {±2εj ,±εj ± εk : j, k = 1, . . . , n, j 6= k},

where εj : h → K is the linear functional defined by εk(diag(h,−h)) := hk.
Again, the roots in the subsystem An−1 of Cn correspond to the root spaces
in the image of the embedding

sln(K) → spn(K), x 7→
(

x 0
0 −x>

)
.

Further,

gεj+εk
= K(Ej,n+k + Ek,n+j) and g−εj−εk

= K(En+k,j + En+j,k).

Example 5.3.12 (The odd symplectic Lie algebra). There is also an
“odd-dimensional” version of the symplectic Lie algebra, which is not semisim-
ple, due to the fact that no skew-symmetric form on an odd-dimensional space
is nondegenerate.

For the skew symmetric matrix

J :=




0 1 0
−1 0 0
0 0 0


 ∈ M2n+1(K),

we define the odd symplectic Lie algebra

spn+ 1
2
(K) := {x ∈ gl2n+1(K) : x>J + Jx = 0}.

Then
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a b x̃
c d ỹ
x y z


 ∈ spn+ 1

2
(K) ⇔

(
a b
c d

)
∈ spn(K), x̃ = ỹ = 0,

we see that g := spn+ 1
2
(K) has a root decomposition with respect to the

maximal abelian subalgebra

h = {diag(h,−h, z) : h ∈ Kn, z ∈ K}.

The corresponding root system is

{ε̃±j ,±2εj ,±εj ± εk : j, k = 1, . . . , n, j 6= k},

where εj : h → K is the linear functional defined by εk(diag(x,−x, z)) := xk

and ε̃±k (diag(x,−x, z)) := z ± xk. Here the subsystem Cn corresponds to the
subalgebra spn(K) (defined by x̃ = ỹ = 0). Further,

gε̃j
= KE2n+1,n+j and g−ε̃j

= KE2n+1,j .

Note that

r :=








0 0 0
0 0 0
x y z


 : x, y ∈ Kn, z ∈ K





is a nilpotent ideal and that

spn+ 1
2
(K) ∼= ro spn(K)

is a Levi decomposition. Restricting the roots to the Cartan subalgebra
hs := h ∩ spn(K), we obtain the (nonreduced) root system

BCn := {±εj ,±2εj ,±εj ± εk : j, k = 1, . . . , n, j 6= k}.

5.4 Abstract Root Systems and their Weyl Groups

In the previous section we proved a number of results on the set of roots
associated with a given splitting Cartan subalgebra of a semisimple Lie alge-
bra. In this section we distill some of these properties into the definition of
an abstract root system and show how to derive further properties using this
concept.

Definition 5.4.1. Let E be a euclidian space, i.e., a finite-dimensional real
vector space with an inner product (·, ·), i.e., a positive definite symmetric
bilinear form. A reflection in E is a linear map σ ∈ End(E) which induces the
map − id on a line Rα and the identity on the hyperplane

α⊥ = {β ∈ E | (β, α) = 0}.
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If α ∈ E \ {0} is given, then we write Pα := α⊥ and σα for σ. Then

σα(β) = β − 2
(β, α)
(α, α)

α

for all β ∈ E.

Lemma 5.4.2. Let E be a Euclidian space and Φ ⊆ E be a finite subset which
spans E, and which is invariant under all reflections σα with α ∈ Φ. Suppose
that σ ∈ GL(E) fixes a hyperplane P pointwise and maps some nonzero α ∈ Φ
to −α. If σ leaves Φ invariant, then σ = σα.

Proof. Let τ := σσα ∈ GL(E). Then τ(Φ) = Φ (since Φ is finite) and τ(α) = α.
The linear automorphism τ̃ ∈ GL(E/Rα) induced by τ coincides with the
linear automorphism σ̃ ∈ GL(E/Rα) induced by σ. Since E = P + Rα, our
assumption yields σ̃ = id. Together, we obtain that τ is split and 1 is its only
eigenvalue. Therefore τs = id, so that τ − id is nilpotent, i.e., τ is unipotent.
On the other hand, the τ -invariance of the finite set Φ shows that there has to
be a power τk which keeps Φ pointwise fixed. But Φ spans E, so that τk = id.
As τ is unipotent, it follows that τ = id. ut
Definition 5.4.3. Let E be a Euclidian space and ∆ ⊆ E \ {0} be a finite
subset which spans E. Then ∆ is called a reduced root system if it satisfies
the following conditions

(R1) ∆ ∩ Rα = {±α} for all α ∈ ∆,
(R2) σα(∆) ⊆ ∆ for all α ∈ ∆,
(R3) For α ∈ ∆ the coroot α̌ := 2α

(α,α) satisfies (β, α̌) ∈ Z for all β ∈ ∆.

It is called root system if it only satisfies (R2) and (R3). If ∆ is a root system,
then we call the group W = W (∆) generated by the reflections σα, α ∈ ∆,
the Weyl group of the root system.

Remark 5.4.4. Let g be a semisimple Lie algebra and h ⊆ g a splitting Car-
tan subalgebra. Recall the Euclidian space hR from Lemma 5.3.7 together with
the finite subset ∆ = ∆(g, h) of all roots with respect to h. Then Lemma 5.3.6
shows that ∆ ∩ Rα = {±α} for all α ∈ ∆. Moreover, Lemma 5.3.5 yields
(β, α̌) ∈ Z for all α, β ∈ ∆. The same lemma also shows

β − (β, α̌)α ∈ ∆,

since, in the notation of Lemma 5.3.5, we have r ≤ −(β, α̌) ≤ s. Thus ∆ is a
reduced root system. In particular we see that to every pair (g, h) consisting
of a semisimple complex Lie algebra g and a Cartan subalgebra h, a Weyl
group W (g, h) := W (∆) is assigned in a canonical way.

Remark 5.4.5. If ∆ is a nonreduced root system and α, cα ∈ ∆ for some
c > 1, then
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c · (α, α̌) = 2c ∈ Z
implies that c ∈ 1

2Z. Further, (cα)̌ = 1
c α̌ leads to 1

c (α, α̌) = 2
c ∈ Z, so that

c = 2. We therefore get

∆ ∩ Rα = {±α,±2α}.

Remark 5.4.6. The angle θ ∈ [0, π] between α and β is defined by the iden-
tity

‖α‖ ‖β‖ cos θ = (α, β),

where ‖α‖ =
√

(α, α) is the norm of the Euclidian space E. We have

2
‖β‖
‖α‖ cos θ = 2

(β, α)
(α, α)

= (β, α̌) and (α, β̌)(β, α̌) = 4 cos2 θ.

Hence, if (β, α̌), (α, β̌) ∈ Z, then we also have 4 cos2 θ ∈ Z, and there are only
the following possibilities, provided ‖α‖ ≤ ‖β‖:

(α, β̌) 0 1 −1 1 −1 1 −1 1 −1 2 −2

(β, α̌) 0 1 −1 2 −2 3 −3 4 −4 2 −2

θ π
2

π
3

2π
3

π
4

3π
4

π
6

5π
6 0 π 0 π

‖β‖2
‖α‖2 arb. 1 1 2 2 3 3 4 4 1 1

Proposition 5.4.7. Let ∆ ⊆ E be a root system with Weyl group W . If
τ ∈ GL(E) leaves ∆ invariant, then

(i) τσατ−1 = στα for all α ∈ ∆.
(ii) (β, α̌) =

(
τ(β), τ(α)̌

)
for all α, β ∈ ∆.

Proof. (i) Note that τσατ−1(τ(β)) = τσα(β) ∈ τ(∆) ⊆ ∆. Since ∆ is fi-
nite and τ : ∆ → ∆ is injective, we have τ(∆) = ∆. Hence we also have
τσατ−1(∆) ⊆ ∆. Further, τσατ−1 keeps the hyperplane τ(α⊥) pointwise
fixed, and it maps τα to −τα. Hence Lemma 5.4.2 shows that τσατ−1 = στα.
(ii) In view of (i), this follows by comparison of the formulas

τσατ−1(τ(β)) = τ(β − (β, α̌)α) = τ(β)− (β, α̌)τ(α)

and στ(α)(τ(β)) = τ(β)− (
τ(β), τ(α)̌

)
τ(α). ut

Lemma 5.4.8. Let ∆ be a root system, and suppose that α, β ∈ ∆ are not
proportional. If (α, β) > 0, then α− β ∈ ∆.

Proof. Since (α, β) is positive if and only if (α, β̌) is positive, Remark 5.4.6
shows that we have (α, β̌) = 1 or (β, α̌) = 1. If (α, β̌) = 1, then α − β =
σβ(α) ∈ ∆. Similarly, for (β, α̌) = 1, we have β − α = σα(β) ∈ ∆, hence
α− β ∈ ∆. ut
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5.4.1 Simple Roots

Definition 5.4.9. Let ∆ ⊆ E be a root system and Π ⊆ ∆. Then Π is called
a basis for ∆ if Π is a basis for the vector space E, and if every root β ∈ ∆
is of the form β =

∑
α∈Π kαα, where either all kα ∈ N0, or all kα ∈ −N0.

In this case, the elements of Π are called simple roots. The height of the
root β =

∑
α∈Π kαα is the number

∑
α∈Π kα. Roots with positive height are

called positive and roots with negative height are called negative. The set of
positive roots is denoted ∆+, the set of negative roots by ∆−. We define a
partial order ≺ on E by

α ≺ β : ⇐⇒ β − α ∈
∑

γ∈∆+

N0γ.

Lemma 5.4.10. Let ∆ be a root system and Π be a basis for ∆. Suppose that
α, β ∈ Π with α 6= β. Then (α, β) ≤ 0 and α− β is not a root.

Proof. Since Π is a basis for E, α and β cannot be proportional. If we have
(α, β) > 0, then Lemma 5.4.8 shows that α− β ∈ ∆. But this contradicts the
definition of a basis for ∆. ut
Lemma 5.4.11. Let M ⊆ E be contained in an open half space of E, i.e.,
there is a λ ∈ E with (λ, α) > 0 for all α ∈ M , and (α, β) ≤ 0 for all α, β ∈ M
with α 6= β. Then M is linearly independent.

Proof. Suppose that
∑

α∈M rαα = 0 with rα ∈ R, and set

M± := {α ∈ M | ±rα > 0}.
Then

ν :=
∑

α∈M+

|rα|α =
∑

β∈M−

|rβ |β,

and therefore
(ν, ν) =

∑

α∈M+,β∈M−

|rαrβ |(α, β) ≤ 0

which leads to ν = 0. But we then have 0 = (λ, ν) =
∑

α∈M± |rα|(λ, α), which
implies M± = ∅ since we otherwise arrive at the contradiction rα = 0 for some
α ∈ M±. ut
Definition 5.4.12. (a) Let ∆ ⊆ E be a root system and λ ∈ E. Then λ is
called regular if λ 6∈ α⊥ holds for all α ∈ ∆. Otherwise, λ is called singular .
The connected components of the set of the regular elements are called Weyl
chambers. The Weyl chamber which contains the regular element λ ∈ E is
denoted by C(λ).

(b) For any regular element λ ∈ E, the set

∆+(λ) := {α ∈ ∆ | (λ, α) > 0}
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is called the corresponding positive system. An element α ∈ ∆+(λ) is called
decomposable if there are β1, β2 ∈ ∆+(λ) with α = β1 + β2, otherwise, it is
called indecomposable.

Theorem 5.4.13. For each regular element λ ∈ E, the set Π := Π(λ) of
indecomposable elements in ∆+(λ) is a basis for ∆. Conversely, every basis
is of this form.

Proof. Claim 1: Π(λ) is a basis for ∆.
First, we show that every element of ∆+(λ) can be written as a linear

combination of elements of Π(λ) with coefficients in N0. For this, we suppose
that α ∈ ∆+(λ) cannot be written in this form, and that it has the smallest
(α, λ) of all elements with this property. In particular, α 6∈ Π(λ), and there
exist β1, β2 ∈ ∆+(λ) with α = β1 + β2, hence, (α, λ) = (β1, λ) + (β2, λ). But
since (βi, λ) > 0 for i = 1, 2, the minimality of (α, λ) shows that the βi can
be written as linear combination of elements of Π(λ) with coefficients in N0.
Then this also holds for α, contradicting our assumption.

As a consequence, we see that every β ∈ ∆ is of the form β =
∑

α∈Π(λ) kαα,
where either all kα ∈ N0 or all kα ∈ −N0. Since ∆ spans the space E, it re-
mains to be shown that Π(λ) is linearly independent.

Next we show that (α, β) ≤ 0 for all α, β ∈ Π(λ) with α 6= β. In fact,
if (α, β) > 0, then α 6∈ −R+β. By Remark 5.4.5, α and β can only be
proportional if α = 2β or β = 2α which would contradict the indecom-
posability of these elements. Hence we can apply Lemma 5.4.8, and we get
α−β ∈ ∆ = ∆+(λ)∪−∆+(λ). If α−β ∈ ∆+(λ), then α = β +(α−β) which
contradicts the assumption that α is indecomposable. Similarly, β−α ∈ ∆+(λ)
gives a contradiction by β = α+(β−α). Now Claim 1 follows by Lemma 5.4.11,
applied to M = Π(λ).
Claim 2: Every basis Π for ∆ is of the form Π(λ) for some regular element
λ ∈ E.

We arrange Π in the form α1, . . . , αn, and consider the dual basis α̃1, . . . , α̃n

for E which is given by (αi, α̃j) = δij . Set λ :=
∑n

j=1 α̃j . Then (λ, αj) = 1 for
all j = 1, . . . , n, so that (λ, α) > 0 for all α ∈ Π. Since every β ∈ ∆ can be writ-
ten as a linear combination of the α ∈ Π with coefficients of the same sign, λ is
regular. Then the set ∆+ of positive roots defined by Π satisfies ∆+ ⊆ ∆+(λ)
which leads to ∆+ = ∆+(λ) because of ∆+ ∪−∆+ = ∆ = ∆+(λ) ∪−∆+(λ).
From the definition of a basis for ∆, we see that Π consists of indecomposable
elements of ∆+ = ∆+(λ), and therefore it is contained in Π(λ). On the other
hand, the cardinalities of Π and Π(λ) are both equal to n = dim E, since
both sets are bases for E. This proves that Π = Π(λ). ut

5.4.2 Weyl Chambers

Remark 5.4.14. Let ∆ ⊆ E be a root system and λ, λ′ ∈ E be regular
elements.
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(i) C(λ) = C(λ′) ⇔ ∆+(λ) = ∆+(λ′) ⇔ Π(λ) = Π(λ′).
(ii) By (i) and Theorem 5.4.13, there is a bijection between the set of Weyl

chambers and the set of bases for ∆.
(iii) If Π = Π(λ), then we call C(Π) := C(λ) the fundamental chamber asso-

ciated with the basis Π. It is given by

C(Π) = {β ∈ E | (β, α) > 0 for all α ∈ Π}
= {β ∈ E | (β, α) > 0 for all α ∈ ∆+}.

Lemma 5.4.15. Let ∆ ⊆ E be a root system and Π be a basis for ∆.

(i) For α ∈ ∆+ \Π, there exists a β ∈ Π with α− β ∈ ∆+.
(ii) If ∆ is reduced and α ∈ Π, then σα permutes the set ∆+ \ {α}.
(iii) Let α1, . . . , αr ∈ Π and set σi := σαi

. If σ1 · · ·σr−1(αr) ∈ ∆−, then there
is an s ∈ {1, . . . , r − 1} such that

σ1 · · ·σr = σ1 · · ·σs−1σs+1 · · ·σr−1.

Proof. (i) Suppose for all β ∈ Π, we have (α, β) ≤ 0. Then the set Π ∪ {α}
satisfies the assumptions of Lemma 5.4.11, hence is linearly independent. Since
Π is a basis for E, this cannot be the case, i.e., there is a β ∈ Π with (α, β) > 0.

Case 1: α and β are not proportional. Then Lemma 5.4.8 shows that α − β
is a root.

Case 2: α and β are proportional. Then Remark 5.4.5 shows that α = 2β
since β is indecomposable. But then α− β = β is a root.

Since α ∈ ∆+ \Π, it is a linear combination of elements in Π with at least
two positive (integral) coefficients. Subtracting β leaves at least one positive
coefficient, so α− β, being a root, has to be positive.
(ii) Let β ∈ ∆+ \ {α} and β =

∑
γ∈Π kγγ with kγ ∈ N0. Since ∆ is reduced,

β is not proportional to α. Hence there is a γ 6= α with kγ > 0. Since

σα(β) = β − (β, α̌)α = (kα − (β, α̌))α +
∑

γ∈Π\{α}
kγγ,

σα(β) has a positive coefficient kγ in its representation as a linear combination
of simple roots. Thus, all coefficients are nonnegative, and σα(β) ∈ ∆+. By
σα(α) = −α, we also have σα(β) 6= α, i.e., σα(β) ∈ ∆+ \ {α}. Since the latter
set is finite, the claim follows.

(iii) Set

βi :=

{
σi+1 · · ·σr−1(αr) for i = 0, . . . , r − 2,

αr for i = r − 1.

Then β0 ≺ 0 ≺ βr−1, and there is a minimal s ∈ {1, . . . , r − 1} with 0 ≺ βs.
For this s, we have σs(βs) = βs−1 ≺ 0. In view of (ii), this shows βs = αs. By
Proposition 5.4.7, for σ := σs+1 · · ·σr−1, we have
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σs = σβs = σσαr = σσrσ
−1 = (σs+1 · · ·σr−1)σr(σr−1 · · ·σs+1),

which shows the claim. ut
Proposition 5.4.16. Let ∆ ⊆ E be a root system and Π be a basis for ∆.

(i) Every β ∈ ∆+ can be written in the form α1 + . . .+αm with αj ∈ Π such
that

∑k
j=1 αj ∈ ∆+ for each k ∈ {1, . . . , m}.

(ii) Let ∆ be reduced and ρ := 1
2

∑
β∈∆+ β. Then σα(ρ) = ρ−α for all α ∈ Π.

(iii) Let σ = σ1 · · ·σr, where the σj = σαj are reflections associated with the
simple roots αj ∈ Π, and where r is the minimal number of factors needed
to represent σ as such a product. Then σ(αr) ∈ ∆−.

Proof. (i) This immediately follows by induction using Lemma 5.4.15(i).
(ii) In view of σα(α) = −α, this is a direct consequence of Lemma 5.4.15(ii).
(iii) This immediately follows from σ(αr) = σ1 · · ·σr(αr) = σ1 · · ·σr−1(−αr)
and Lemma 5.4.15(iii). ut
Theorem 5.4.17. Let ∆ be a reduced root system, W be the corresponding
Weyl group, and Π a basis for ∆.

(i) For every regular element λ ∈ E, there is a σ ∈ W such that

(σλ, α) > 0 for α ∈ Π,

i.e., σ(C(λ)) = C(Π). In particular, W acts transitively on the set of the
Weyl chambers.

(ii) Let Π ′ be another basis for ∆. Then there is a σ ∈ W with σ(Π ′) = Π,
i.e., the Weyl group also acts transitively on the set of the bases.

(iii) For every root α ∈ ∆, there is a σ ∈ W with σ(α) ∈ Π.
(iv) W is generated by the σα with α ∈ Π.
(v) If σ(Π) = Π for σ ∈ W , then σ = 1.

Proof. Let W ′ be the subgroup of W , generated by the σα with α ∈ Π.
Suppose, (iii) holds for W ′ instead of W . Then for α ∈ ∆, we can find a
σ ∈ W ′ with σα ∈ Π. Then by σσα = σσασ−1 (cf. Proposition 5.4.7), we
obtain that σα = σ−1σσασ ∈ W ′. Since W is generated by the σα with α ∈ ∆,
we get W = W ′, and hence (iv). Then (v) is an immediate consequence of
Proposition 5.4.16(iii) applied to σ. Therefore, we see that it suffices to show
(i)-(iii) for W ′ instead of W .
(i) Choose σ ∈ W ′ such that the number (σλ, ρ) is maximal for the given
λ and ρ = 1

2

∑
β∈∆+ β as above. For α ∈ Π, we have σασ ∈ W ′, hence, by

Proposition 5.4.16(ii), we get

(σλ, ρ) ≥ (σασλ, ρ) = (σλ, σαρ) = (σλ, ρ− α) = (σλ, ρ)− (σλ, α).

This gives (λ, σ−1α) = (σλ, α) ≥ 0 for all α ∈ Π, hence, also for all α ∈ ∆+.
Since λ is regular, all inequalities are strict. By Remark 5.4.14, the claim
follows.
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(ii) By (i), this is an immediate implication of Remark 5.4.14.
(iii) Because of (ii), it suffices to show that α is an element of some basis. If
β 6= ±α is a root, then α and β are not proportional since ∆ is reduced. Thus,
α⊥ 6= β⊥, and we can find a

λ ∈ α⊥ \
⋃

β∈∆\{±α}
β⊥.

By a small modification of λ (add e.g. εα with a small ε > 0), we obtain a
λ′ ∈ E with

|(λ′, β)| > (λ′, α) > 0 for β ∈ ∆ \ {±α}.

Then λ′ is regular, and we have α ∈ Π(λ′) (cf. Theorem 5.4.13). ut
Remark 5.4.18 (The dual root system). If ∆ ⊆ E is a root system, then
we put

∆̌ := {α̌ : α ∈ ∆}.
We claim that ∆̌ also is a root system, called the dual root system. It is reduced
if and only if ∆ is reduced.

To verify (R1) for ∆̌ (if ∆ is reduced), we note that β̌ ∈ Rα̌ implies β ∈ Rα
and hence β = ±α, which in turn leads to β̌ = ±α̌.

Since σα̌ is the orthogonal reflection in α⊥ = α̌⊥, we have σα = σα̌. As σα

is an isometry, it satisfies σα(β̌) = σα(β)̌, so that ∆̌ satisfies (R2). Finally we
note that for α, β ∈ ∆, we have

(α̌, α̌) =
4

(α, α)
,

so that (α̌)̌ = α. Therefore

(α̌, (β̌)̌) = (β, α̌) ∈ Z,

and we conclude that ∆̌ also is a root system.
Now let

∆+ = ∆+(λ) = {α ∈ ∆ : (λ, α) > 0}
be a positive system of ∆. From the definition of the dual root system, it
follows that ∆ and ∆̌ define the same set of regular elements. Therefore

∆̌+ := {α̌ ∈ ∆̌ : (λ, α̌) > 0}

also is a positive system of the dual root system ∆̌.
The elements α of the basis Π = Π(λ) for the positive system ∆+ are

uniquely determined by the property that they generate extremal rays of the
convex cone

D(∆+) :=
∑

α∈∆+

R+α
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and satisfy α
2 6∈ ∆ (cf. Remark 5.4.5).

We define a map ϕ : Π → ∆̌ by ϕ(α) = α̌ if 2α 6∈ ∆ and ϕ(α) := α̌
2 = (2α)̌

otherwise. Then D(∆+) = D(∆̌+) immediately shows that ϕ(Π) is a root
basis for ∆̌. If, in addition, ∆ is reduced, then

Π̌ := {α̌ : α ∈ Π}

is a root basis for ∆̌+.

Notes on Chapter 5

Cartan subalgebras actually occur first in the work of W. Killing who classified
the finite-dimensional simple complex Lie algebras (cf. [Kil89]). Unfortunately,
Killing’s work contained some serious gaps, concerning the basic properties of
Cartan subalgebras which were cleaned up later by Élie Cartan in his thesis
[Ca94].

Serre’s Theorem on the presentation of semisimple Lie algebras with a
splitting Cartan subalgebra can be extended to a construction of a semisimple
Lie algebra from an abstract root system ∆ with a basis Π = {α1, . . . , αr}.
Then we put aij := αj(α̌i) and consider the Lie algebra L(X, R) defined by
the generators hi, ei, fi, i = 1, . . . , r and the relations

[hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj , [ei, fj ] = δijhi

and for i 6= j:
(ad ei)1−aij ej = 0, (ad fi)1−aij fj = 0.

In this context the main point is to show that L(X, R) is a semisimple Lie
algebra with the Cartan subalgebra h = span{h1, . . . , hr} and a root sys-
tem isomorphic to ∆. In the 1960s this description of the finite-dimensional
semisimple Lie algebras was the starting point for the theory of Kac–Moody–
Lie algebras, which are defined by the same set of generators and relations for
more general matrices (aij) ∈ Mr(Z), called generalized Cartan matrices.
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Representation Theory of Lie Algebras

Even though representation theory is not in the focus of this book, we provide
in the present chapter the basic theory for Lie algebras as it repeatedly plays
an important role in structural questions. In this chapter, we first introduce
the universal enveloping algebra U(g) of a Lie algebra g. This is a unital asso-
ciative algebra containing g as a Lie subalgebra and is generated by g. It has
the universal property that each representation of g extends uniquely to U(g),
so that any g-module becomes a U(g)-module. We may thus translate freely
between Lie algebra modules and algebra modules, which is convenient for
several representation theoretic constructions. The Poincaré–Birkhoff–Witt
(PBW) Theorem 6.1.9 provides crucial information on the structure on U(g),
including the injectivity of the natural map g → U(g).

As a first application of the PBW Theorem, we prove Serre’s Theo-
rem 6.2.10, which shows how to construct semisimple Lie algebras from root
systems. The second application is the Highest Weight Theorem 6.3.15 provid-
ing a classification of irreducible finite-dimensional representations of (split)
semisimple Lie algebras. This is the main result of the Cartan–Weyl Theory
of simple modules of semisimple complex Lie algebras. In view of Weyl’s The-
orem that any module over such a Lie algebra is semisimple, the classification
of the simple modules provides a complete picture of the finite-dimensional
representation theory of complex semisimple Lie algebras.

A third application of the PBW Theorem is Ado’s Theorem 6.4.1 which
says that each finite-dimensional Lie algebra has an injective finite-dimensional
representation, i.e., can be viewed as a Lie algebra of matrices. Finally, we
introduce basic cohomology theory for Lie algebras which has many applica-
tions. Here we use it to describe extensions of Lie algebras.

In general, modules of a Lie algebra g are not semisimple, so that sub-
modules need not have module complements. This leads to the concept of
a nontrivial extension of modules which is most naturally dealt with in the
context of Lie algebra cohomology which we develop in Section 6.5. We also
explain how Lie algebra cohomology provides a tool to deal with the nontrivi-
ality of other extension problems such as central and abelian extensions of Lie
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algebras, for which it also provides a classifying parameter space. Several of
the structure theoretic results encountered in Section 4.6 have natural coho-
mological interpretations, such as Weyl’s Theorem and Levi’s Theorem which
are reflected in the two Whitehead Lemmas.

6.1 The Universal Enveloping Algebra

Representing a Lie algebra by linear maps leads to a mapping of the Lie
algebra into an associative algebra such that the Lie bracket turns into the
commutator bracket. A priori it is not clear that an injective map of this type
exists, not even, if we allow the associative algebra to be infinite-dimensional.
The point of the enveloping algebra U(g) of a Lie algebra g is that every
representation of g on V factors through a homomorphism U(g) → End(V )
of associative algebras.

Definition 6.1.1. Let g be a Lie algebra. A pair (U(g), σ), consisting of a
unital associative algebra U(g) and a homomorphism σ : g → U(g)L of Lie
algebras, is called a (universal) enveloping algebra of g if it has the following
universal property. For each homomorphism f : g → AL of g into the Lie
algebra AL, where A is a unital associative algebra, there exists a unique
homomorphism f̃ : U(g) → A of unital associative algebras with f̃ ◦ σ = f .

g
∀f //

σ

²²

A

U(g)
∃f̃

=={{{{{{{{

The universal property determines a universal enveloping algebra uniquely
in the following sense:

Lemma 6.1.2 (Uniqueness of the enveloping algebra). If (U(g), σ) and
(Ũ(g), σ̃) are two enveloping algebras of the Lie algebra g, then there exists
an isomorphism f : U(g) → Ũ(g) of unital associative algebras satisfying
f ◦ σ = σ̃.

Proof. Since σ̃ : g → Ũ(g)L is a homomorphism of Lie algebras, the univer-
sal property of the pair (U(g), σ) implies the existence of a unique algebra
homomorphism

f : U(g) → Ũ(g) with f ◦ σ = σ̃.

Similarly, the universal property of (Ũ(g), σ̃) implies the existence of an alge-
bra homomorphism

g : Ũ(g) → U(g) with g ◦ σ̃ = σ.
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Then g ◦f : U(g) → U(g) is an algebra homomorphism with (g ◦f)◦σ = σ, so
that the uniqueness part of the universal property of (U(g), σ) yields g ◦ f =
idU(g). We likewise get f ◦ g = idŨ(g), showing that f is an isomorphism of
unital algebras. ut

To prove the existence of an enveloping algebra, we recall some basic alge-
braic concepts. Let A be an associative algebra. A subspace J of A is called
an ideal if

AJ ∪ JA ⊆ J.

Let M be a subset of A. Since the intersection of a family of ideals is again
an ideal, the intersection JM of all ideals of A containing M is the smallest
ideal of A containing M . It is called the ideal generated by M . If J is an ideal
of A, then the factor algebra A/J is the quotient vector space, endowed with
the associative multiplication

(a1 + J)(a2 + J) := a1a2 + J for a1, a2 ∈ A.

6.1.1 Existence

Proposition 6.1.3 (Existence of an enveloping algebra). Each Lie al-
gebra g has an enveloping algebra (U(g), σ).

Proof. Let T (g) be the tensor algebra of g (Definition B.1.7) and consider the
subset

M := {x⊗ y − y ⊗ x− [x, y] ∈ T (g) : x, y ∈ g}.
Then

U(g) := T (g)/JM

is a unital associative algebra and

σ : g → U(g), σ(x) := x + JM ,

is a linear map, satisfying

σ([x, y]) = [x, y] + JM = x⊗ y − y ⊗ x + JM = σ(x)σ(y)− σ(y)σ(x),

so that σ is a homomorphism of Lie algebras g → U(g)L.
To verify the universal property for (U(g), σ), let f : g → AL be a homo-

morphism of Lie algebras, where A is a unital associative algebra. In view of
the universal property of T (g) (Lemma B.1.8), there exists an algebra homo-
morphism f̂ : T (g) → A with f̂(x) = f(x) for all x ∈ g. Then M ⊆ ker f̂ ,
and since ker f̂ is an ideal of T (g), we also have JM ⊆ ker f̂ , so that f̂ factors
through an algebra homomorphism

f̃ : U(g) → A with f̃ ◦ σ = f.

To see that f̃ is unique, it suffices to note that σ(g) and 1 generate U(g)
as an associative algebra because g and 1 generate T (g) as an associative
algebra. ut
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Remark 6.1.4. The universal property of (U(g), σ) implies that each repre-
sentation (π, V ) of g defined a representation π̃ : U(g) → End(V ), which is
uniquely determined by π̃ ◦ σ = π. From the construction of U(g) we also
know that the algebra U(g) is generated by σ(g). This implies that for each
v ∈ V , the subspace

U(g) · v ⊆ V

is the smallest subspace containing v and invariant under g, i.e., the g-
submodule of V generated by V . Hence the enveloping algebra provides a
tool to understand g-submodules of a g-module. But before we are able to use
this tool effectively, we need some more information on the structure of U(g).

6.1.2 The Poincaré–Birkhoff–Witt Theorem

Note that the canonical map σ : g → U(g)L by definition is a homomorphism
of Lie algebras. But we do not know yet if it is injective, so that we obtain
an embedding of g into an associative algebra. Our next goal is the Poincaré–
Birkhoff–Witt Theorem which entails in particular that σ is injective.

Let {x1, . . . , xn} be a basis for g and set ξi := σ(xi). For a finite sequence
I = (i1, . . . , ik) of natural numbers between 1 and n, we set ξI := ξi1 · · · ξik

.
If i ∈ N, then we write i ≤ I if i ≤ ij for all j = 1, . . . , k. We write
Up(g) :=

∑
k≤p σ(g)k and note that these subspaces are all finite-dimensional

and satisfy
Up(g)Uq(g) ⊆ Up+q(g) for p, q ∈ N0.

Next we construct a suitable basis for U(g).

Lemma 6.1.5. Let y1, . . . , yp ∈ g and π be a permutation of {1, . . . , p}, then

σ(y1) · · ·σ(yp)− σ(yπ(1)) · · ·σ(yπ(p)) ∈ Up−1(g).

Proof. Since every permutation is a composition of transpositions of neigh-
boring elements, it suffices to prove the claim for π(j) = j for j 6∈ {i, i + 1}
and π(i) = i + 1. But then we have

σ(y1) · · ·σ(yp)− σ(yπ(1)) · · ·σ(yπ(p))

= σ(y1) · · ·σ(yi−1)
(
σ(yi)σ(yi+1)− σ(yi+1)σ(yi)

)
σ(yi+2) · · ·σ(yp)

= σ(y1) · · ·σ(yi−1)σ([yi, yi+1])σ(yi+2) · · ·σ(yp) ∈ Up−1(g). ut

Lemma 6.1.6. The vector space Up(g) is spanned by the ξI with increasing
sequences I of length less than or equal to p.

Proof. It is clear that Up(g) is spanned by the ξI for all sequences I of length
less that or equal to p. By induction on p, we have the claim for Up−1(g). But
since for a rearrangement I ′ of the sequence I, we have ξI − ξI′ ∈ Up−1(g) by
Lemma 6.1.5, we also obtain the claim for Up(g). ut
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Let P := K[z1, . . . , zn] be the associative algebra of polynomials over K in
the commuting variables z1, . . . , zn. For i ∈ N ∪ {0}, let Pi be the set of all
polynomials of degree less or equal to i. As in U(g), we write zI := zi1 · · · zik

for a finite sequence I of natural numbers between 1 and n. For the empty
sequence, we set z∅ = 1.

Lemma 6.1.7. There exists g-module structure on P with

xi · zI = zizI for i ≤ I.

Proof. By induction on k ∈ N0, we construct linear maps

ρk : g → Hom(Pk,Pk+1)

with the following properties:

(ak) ρk(xi)zI = zizI for i ≤ I and zI ∈ Pk.
(bk) ρk(xi)zI − zizI ∈ Pj for zI ∈ Pj and j ≤ k.
(ck) ρk(xi)ρk(xj)zJ − ρk(xj)ρk(xi)zJ = ρk([xi, xj ])zJ for zJ ∈ Pk−1.
(dk) ρk(x)|Pk−1 = ρk−1(x) for k > 0 and x ∈ g.

For k = 0 we put ρ0(xi)1 := zi for i = 1, . . . , k. Then (a0) and (b0)
are satisfied because x1, . . . , xk is a basis for g, and (c0) and (d0) are empty
conditions.

Now we assume that we already have ρk−1. In view of (dk), we have to
show that the maps ρk−1(xi) can be extended to maps Pk → Pk+1 so that
(ak)−(ck) are satisfied. Since P is commutative, the zI with increasing I form
a basis for P. Thus, let I := (i1, . . . , ik) be increasing. For I1 := (i2, . . . , ik),
by (ak−1), we have

zI = zi1zI1 = ρk−1(xi1)zI1 .

By (bk−1),
w(I, i) := ρk−1(xi)zI1 − zizI1 ∈ Pk−1.

We set

ρk(xi)zI :=

{
zizI if i ≤ I

zizI + ρk−1(xi1)w(I, i) + ρk−1([xi, xi1 ])zI1 otherwise.

For this definition, (ak) and (bk) are obviously satisfied. But we still have to
verify (ck). Two cases occur:

Case 1: i 6= j, and one of them is less than J .
In this case, by [xi, xj ] = −[xj , xi], we may assume that j < i and j ≤ J .

Then with (ak−1) and (bk−1), we calculate

ρk(xi)ρk−1(xj)zJ − ρk(xj)ρk−1(xi)zJ

= ρk(xi)zjzJ − ρk(xj)zizJ − ρk−1(xj)
(
ρk−1(xi)zJ − zizJ

)

= zizjzJ + ρk−1(xj)
(
ρk−1(xi)zJ − zizJ

)
+ ρk−1([xi, xj ])zJ

−zizjzJ − ρk−1(xj)
(
ρk−1(xi)zJ − zizJ

)

= ρk−1([xi, xj ])zJ = ρk([xi, xj ])zJ .
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Case 2: J = (j1, . . . , jk−1) and j1 < i, j.
We set l := j1, L := (j2, . . . , jk−1), and abbreviate ρk(xi)zI by xi(zI).

Then it follows from (ak−1) and Case 1 that

xj(zJ) = xj

(
xl(zL)

)
= xl

(
xj(zL)

)
+ [xj , xl](zL)

and, using (ck−1) and Case 1,

xi

(
xj(zJ)

)
= xi

(
xl(xj(zL))

)
+ xi

(
[xj , xl](zL)

)

= xl

(
xi(xj(zL))

)
+ [xi, xl](xj(zL)) + [xj , xl](xi(zL)) + [xi, [xj , xl]](zL).

Combining this with (ck−1) and the Jacobi identity, we obtain

xi

(
xj(zJ )

)− xj

(
xi(zJ )

)

= xl

(
xi

(
xj(zL)

))− xl

(
xj

(
xi(zL)

))
+ [xi, [xj , xl]](zL)− [xj , [xi, xl]](zL)

= xl

(
[xi, xj ](zL)

)
+ [xi, [xj , xl]](zL) + [xj , [xl, xi]](zL)

= [xi, xj ]
(
xl(zL)

)
+ [xl, [xi, xj ]](zL) + [xi, [xj , xl]](zL) + [xj , [xl, xi]](zL)

= [xi, xj ]
(
xl(zL)

)
= [xi, xj ]zJ .

This completes our induction. In view of (dk), we obtain a well-defined map

ρ : g → gl(P) by ρ(x)|Pk
= ρk(x),

and (ck) implies that it is a homomorphism of Lie algebras, so that we obtain
on P a g-module structure, and (ak) ensures that it has the required property.

ut
Proposition 6.1.8. The ξI with increasing I form a basis for U(g). In par-
ticular, the canonical map σ : g → U(g) is injective.

Proof. Let ρ : g → End(P)L be the Lie algebra homomorphism defining the
module structure constructed in Lemma 6.1.7 and ρ̃ : U(g) → End(P) the
algebra homomorphism determined by ρ̃◦σ = ρ. Then the property ρ(xi)zI =
zizI for i ≤ I ensures that for i1 ≤ . . . ≤ ik, we have

ρ̃(ξi1 · · · ξik
)(1) = zi1 · · · zik

.

Then the linear map

ϕ : U(g) → P, ξ 7→ ρ̃(ξ)(1)

maps the set B of the ξI with increasing I to the (linearly independent) set of
the zI with increasing I. Therefore B is linearly independent, and the claim
now follows from Lemma 6.1.6. ut
Theorem 6.1.9 (Poincaré–Birkhoff–Witt Theorem (PBW)). Let g
be a Lie algebra and {x1, . . . , xn} be a basis for g. Then

{xµ1
1 · · ·xµn

n ∈ U(g) | µk ∈ N ∪ {0} }
is a basis for U(g).

Proof. We apply Proposition 6.1.8 and identify the xi with the ξi = σ(xi). ut
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Exercises for Section 6.1

Exercise 6.1.1. Let g be a finite-dimensional Lie algebra and β be a nonde-
generate symmetric bilinear form on g. Suppose that x1, . . . , xn is a basis for
g and let x1, . . . , xn be the dual basis w.r.t. β, i.e., β(xi, x

j) = δij .

(i) Show that the Casimir element Ω :=
∑n

i=1 xixi lies in the center of U(g).
(ii) Show that there is a nondegenerate symmetric invariant bilinear form on

the oscillator algebra. Hence such forms do not only exist on semisimple
Lie algebras.

(iii) Let g = son(R). Show that β(x, y) = − tr(xy) defines an invariant scalar
product on son(R). For an orthonormal basis x1, . . . , xn, we therefore have
Ω :=

∑n
i=1 x2

i ∈ Z
(U(son(R)

))
.

(iv) Show that the operators of angular momentum

xi
∂

∂xj
− xj

∂

∂xi
: C∞(Rn) → C∞(Rn), i, j = 1, . . . , n,

generate a Lie algebra which is isomorphic to son(R).
(v) The Laplace operator ∆ =

∑n
i=1

∂2

∂x2
i

commutes with the operators of
angular momentum.

Exercise 6.1.2. A function f ∈ C∞(Rn) is called harmonic if ∆(f) = 0 for
the Laplace operator ∆ =

∑n
i=1

∂2

∂x2
i
. Show that the subspace H ⊆ C∞(Rn) of

the harmonic functions is invariant under the angular momentum operators
(cf. Exercise 6.1.1).

6.2 Generators and Relations for Semisimple Lie
Algebras

In this section we shall use the root decomposition of a semisimple Lie algebras
to find a description by generators and relations (Serre’s Theorem).

6.2.1 A Generating Set for Semisimple Lie Algebras

Proposition 6.2.1. Let g be a semisimple Lie algebra and h ⊆ g a splitting
Cartan subalgebra. Fix a positive system ∆+ ⊆ ∆ and let Π ⊆ ∆+ be the set
of simple roots. For each α ∈ Π, we fix a corresponding sl2-triple (hα, eα, fα).
Then the following assertions hold:

(i) The subspace n :=
∑

β∈∆+ gβ is a nilpotent subalgebra generated by
{eα : α ∈ Π}.
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(ii) The Lie algebra g is generated by the sl2-subalgebras g(α), α ∈ Π, i.e.,
{hα, eα, fα : α ∈ Π} generates g. These elements satisfy the relations

[hα, hβ ] = 0, [hα, eβ ] = β(α̌)eβ , [hα, fβ ] = −β(α̌)fβ , [eα, fβ ] = δα,βhα

(6.1)
and for α 6= β in Π we further have

(ad eα)1−β(α̌)eβ = 0, (ad fα)1−β(α̌)fβ = 0. (6.2)

The relations (6.1) and (6.2) are called the Serre relations.

Proof. (i) If β, γ ∈ ∆+, then either β + γ ∈ ∆+ or β + γ is not a root. Hence
n is a subalgebra of g. Pick x0 ∈ hR with ∆+ = {β ∈ ∆ : β(x0) > 0} and let

m := min ∆+(x0) and M := max∆+(x0),

where ∆+(x0) = {β(x0) : β ∈ ∆+}. For any N ∈ N with Nm > M we then
have CN (n) = {0}, showing that n is nilpotent.

In view of Proposition 5.4.16(i), every β ∈ ∆+ can be written in the form
α1 + . . . + αm with αj ∈ Π such that

∑k
j=1 αj ∈ ∆+ for each k ∈ {1, . . . ,m}.

Then Lemma 5.3.5 implies that

gβ = [gαm , [gαm−1 , [· · · , [gα2 , gα1 ] · · · ]]],

and this proves (i).
(ii) From (i) we also derive that n :=

∑
α∈−∆+ gα is generated by

{fβ : β ∈ Π}. Therefore the Lie algebra generated by the g(α), α ∈ Π, con-
tains all root spaces and

span{hα : α ∈ Π} = span{h′α : α ∈ Π} = h

follows from span Π = h∗.
It remain to verify the Serre relation. Since hα = α̌, the first three relations

are trivial, and the fact that α−β 6∈ ∆ for α 6= β in Π implies that [eα, fβ ] =
{0} in this case.

If α 6= β, then we consider the g(α)-submodule of g generated by fβ . Since
[eα, fβ ] = 0, this is a highest weight module M with highest weight −β(α̌), so
that Proposition 5.2.4 implies that dimM = 1−β(α̌) and (ad fα)dim Mfβ = 0.

The first relation in (6.2) is obtained with similar arguments, applied to
the sl2-triple (−hα, fα, eα) and the g(α)-submodule generated by eβ . ut
Example 6.2.2. We have seen in Example 5.3.9 how to find a natural root
decomposition of the Lie algebra sln(K) with respect to the Cartan subalgebra
h of diagonal matrices. In the root system

∆ = {εj − εk : 1 ≤ j 6= k ≤ n},

the subset
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∆+ = {εj − εk : 1 ≤ j < k ≤ n}
is a natural positive system with root basis

Π = {ε1 − ε2, . . . , εn−1 − εn}.

Then
n =

∑

α∈∆+

gα = span{Ejk : j < k}

is the Lie algebra of strictly upper triangular matrices. It is generated by the
root vectors Ej,j+1, j = 1, . . . , n− 1. For each pair of indices j 6= k, we have

g(εj − εk) = span{Ejk, Ekj , Ejj − Ekk} ∼= sl2(K),

and the subalgebras

g(ε1 − ε2), . . . , g(εn−1 − εn)

sitting on the diagonal, generate sln(K). Moreover, sln(K) is also generated
by the 2(n− 1) element: Ej,j+1, Ej+1,j , j = 1, . . . , n− 1.

6.2.2 Free Lie Algebras

Free Lie algebras are defined via universal properties. Their existence then
has to be proved separately. The point of introducing them is the possibility
to describe Lie algebras via generators and relations.

Definition 6.2.3. Let X be a set. A pair (L, η) of a Lie algebra L and a
map η : X → L is said to be a free Lie algebra over X if it has the following
universal property. For each map α : X → g into a Lie algebra g, there exists
a unique morphism α̃ : L → g of Lie algebras with α̃ ◦ η = α.

Remark 6.2.4. (a) For two free Lie algebras (L1, η1) and (L2, η2) over X
there exists a unique isomorphism ϕ : L1 → L2 with ϕ ◦ η1 = η2. In fact,
we choose ϕ as the unique morphism of Lie algebras with ϕ ◦ η1 = η2. Then
the unique morphism of Lie algebras ψ : L2 → L1 with ψ ◦ η2 = η1 satisfies
ψ ◦ ϕ ◦ η1 = η1, so that the uniqueness in the universal property implies
ψ ◦ ϕ = idL1 , and likewise ϕ ◦ ψ = idL2 .

(b) If (L, η) is a free Lie algebra over X, then L is generated as a Lie
algebra by η(X). To see this, let L0 ⊆ L be the Lie subalgebra generated
by η(X) and η0 : X → L0 be the corestriction of η. Then (L0, η0) also has
the universal property, so that (a) implies the existence of an isomorphism
ϕ : L0 → L with ϕ ◦ η0 = η. Since L0 is generated by η0(X) = η(X), the Lie
algebra L is generated by η(X), which leads to L = L0.

Proposition 6.2.5. For each set X, there exists a free Lie algebra (L(X), η)
over X.
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Proof. Let X be a set. We put X1 = X and define inductively

Xn :=
⋃

p+q=n,p,q∈N
Xp ×Xq.

The free magma M(X) is defined as the disjoint union

M(X) :=
∞⋃

i=1

Xn.

Elements of the free magma are expressions of the form

((((x1, x2), x3), x4)), ((x1, x2), (x3, x4)), ((x1, x2), ((x3, x4), x5)).

One should think of it as a set containing all possible nonassociative products
of elements of X. The maps Xn ×Xm → Xn+m, (x, y) 7→ x · y := (x, y) can
be put together to a multiplication

M(X)×M(X) → M(X), (x, y) 7→ x · y.

The free vector space AM(X) := K[M(X)], with basis M(X), thus inherits a
bilinear multiplication extending the multiplication on M(X).

Let n ⊆ AM(X) denote the two sided ideal generated by the expressions
of the form

Q(x) := x · x, x ∈ AM(X)

and

J(x, y, z) := x · (y · z) + y · (z · x) + z · (x · y), x, y, z ∈ M(X).

We claim that the quotient algebra L(X) := AM(X)/n is a free Lie algebra
over X with respect to the map η : X → L(X), x 7→ x + n. First we note that
the quotient space L(X) inherits a bilinear multiplication turning it into a
Lie algebra. We have to show that for each map ϕ : X → g into a Lie algebra
g there exists a unique Lie algebra homomorphism L(ϕ) : L(X) → g with
L(ϕ)(x + n) = ϕ(x) for each x ∈ X. In fact, one inductively defines mappings

ϕn : Xn → g, (x, y) 7→ [ϕp(x), ϕq(x)], (x, y) ∈ Xp ×Xq, p + q = n

and puts them together to a map ϕ′ : M(X) → g satisfying ϕ(x · y) =
[ϕ(x), ϕ(y)]. This map extends uniquely to a linear map ϕ′′ : AM(X) → g
with the same property. Since g is a Lie algebra, the map ϕ′′ factors to a
Lie algebra homomorphism L(ϕ) : L(X) → g which is uniquely determined by
L(ϕ)(x + n) = ϕ(x). ut
Definition 6.2.6. (cf. Exercise 6.2.1) (a) In the following we denote a free
Lie algebra over X by (L(X), η).

(b) Let X be a set, R ⊆ L(X) a subset and IR ⊆ L(X) the ideal generated
by R. Then L(X, R) := L(X)/IR is called the Lie algebra defined by the
generators X and the relations R.
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Example 6.2.7. (a) If X = {p, q, z} and R = {[p, q] − z, [p, z], [q, z]}, then
L(X, R) is the 3-dimensional Heisenberg–Lie algebra. It is defined by the
generators p, q, z and the relations [p, q] = z, [p, z] = [q, z] = 0.
(b) If X = {h, e, f} and R = {[e, f ]−h, [h, e]−2e, [h.f ]+2f}, then L(X, R) ∼=
sl2(K).
(c) If X = {x} is a one-element set, then L(X) = Cx is one-dimensional. For a
two-element set X = {x, y}, the free Lie algebra L(X) is infinite-dimensional
(Exercise 6.2.2).

6.2.3 Serre’s Theorem

Now we return to the situation of Proposition 6.2.1. Let

X := {ĥα, êα, f̂β : α ∈ Π}

and consider in the free Lie algebra L(X) the relations

R := {[ĥα, ĥβ ], [ĥα, êβ ]− β(α̌)êβ , [ĥα, f̂β ] + β(α̌)f̂β , [êα, f̂β ]− δα,β ĥα}
∪ {(ad êα)1−β(α̌)êβ , (ad f̂α)1−β(α̌)f̂β : α 6= β ∈ Π}.

Then Proposition 6.2.1(ii) implies the existence of a unique surjective Lie
algebra homomorphism

q : ĝ := L(X, R) → g with q(ĥα) = hα, q(êα) = eα and q(f̂α) = fα.

The goal of this subsection is to prove Serre’s Theorem that q is an iso-
morphism, i.e., that the Lie algebra g is defined by the generating set X and
the relations R. Let

ĝ+ := 〈{êα : α ∈ Π}〉Lie alg and ĝ− := 〈{f̂α : α ∈ Π}〉Lie alg

denote the subalgebras of ĝ generated by the elements êα, resp., f̂α. Since
the elements hα, α ∈ Π, are linearly independent in h, this also holds for the
elements ĥα in ĥ, so that q|ĥ : ĥ → h is a linear isomorphism. For γ ∈ h∗, we

put γ̂ := γ ◦ q ∈ ĥ∗.

Lemma 6.2.8. Let b be a subalgebra of a Lie algebra g and M ⊆ g be a subset.
Then bM := {x ∈ b : [M, x] ⊆ b} is a subalgebra of b.

Proof. This follows from the following calculation for m ∈ M and x, y ∈ bM :
[
m, [x, y]

]
=

[
[m, x], y

]
+

[
x, [m, y]

] ⊆ [b, b] + [b, b] ⊆ b. ut
Lemma 6.2.9. The Lie algebra ĝ has the following properties:

(i) ĝ is the direct sum of ĥ-weight spaces.
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(ii) ĝ = ĝ+ ⊕ ĥ⊕ ĝ− is a direct sum of subalgebras and ĥ = ĝ0. Moreover,

ĝ± ⊆
∑

γ∈∆̂±

ĝγ for ∆̂± := ±spanNΠ̂.

(iii) ĝα̂ = Kêα and ĝ−α̂ = Kf̂α for α ∈ Π.
(iv) The derivations ad êα and ad f̂α of ĝ are locally nilpotent, i.e.,

ĝ = ĝ0(ad êα) = ĝ0(ad f̂α) for each α ∈ Π.
(v) The set ∆̂ of roots of ĝ is invariant under the group Ŵ generated by the

reflections defined by σα̂β̂ := β̂−β̂(ĥα)α̂. This is a finite group isomorphic
to W.

(vi) ∆̂ = ŴΠ̂.

Proof. (i) Let ĝf :=
∑

γ∈ĥ∗ ĝγ be the sume of all ĥ-weight spaces in ĝ. In view

of [ĝγ , ĝδ] ⊆ ĝγ+δ, this is a subalgebra of ĝ. We also have ĥ ⊆ ĝ0 and

êα ∈ ĝα̂ and f̂α ∈ ĝ−α̂,

and since ĝ is generated by these elements, it follows that ĝ = ĝf =
∑

γ∈ĥ∗ ĝγ

is a direct sum of ĥ-weight spaces. The directness of the sum of the weight
spaces can be obtained from Lemma 5.1.3 and the observation that each finite
subset of ĝ is contained in a finite ĥ-invariant subspace, which follows from
ĝ = ĝf .

(ii) Clearly, ĥ + ĝ± are subalgebras of ĝ because ĝ± is generated by
ĥ-eigenvectors. For α ∈ Π, we consider the subalgebra

bα := {x ∈ ĥ + ĝ+ : [x, f̂α] ⊆ ĥ + ĝ+}

(Lemma 6.2.8). For β ∈ Π we have [f̂α, êβ ] = 0 for α 6= β and [f̂α.êα] ⊆ ĥ.
Hence the subalgebra bα contains each êβ and therefore ĝ+. From that we
derive

[f̂α, ĥ + ĝ+] ⊆ ĥ + ĝ+ +Kf̂α,

which in turn implies that each f̂α normalizes the subspace ĝd := ĝ−+ ĥ+ ĝ+.
Similarly, we obtain eα ∈ nĝ(ĝd), so that ĝd is a subalgebra of ĝ. Since it
contains all generators, we obtain ĝ = ĝd.

Next we observe that the set of all ĥ-weights in ĝ± is contained in ∆̂±, so
that we obtain in particular that ĝ0 = ĥ.

(iii) Since ĝ+ is generated by the elements êα ∈ ĝα̂ and Π̂ is linearly
independent, the α̂-weight space is spanned by êα. Similarly, ĝβ̂ = Kf̂β .

(iv) For any derivation D ∈ der(ĝ), the nilspace ĝ0(D) is a subalgebra
because we have

Dn[a, b] =
n∑

k=0

(
n

k

)
[Dka,Dn−kb].
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For D = ad êα, our relations imply that this subalgebra contains each ĥβ , each
êβ and also each f̂β , because (ad êα)3f̂α = 0. This leads to ĝ = ĝ0(ad êα), and
a similar argument shows that ĝ = ĝ0(ad f̂α).

(v) Let ĝ(α) := span{êα, ĥα, f̂α} and note that our relations imply that
ĝ(α) ∼= sl2(K). Since ad êα and ad f̂α are locally nilpotent, for each x ∈ ĝ, the
ĝ(α)-submodule

U(ĝ(α))x =
∑

`,m,n

(ad f̂α)`(ad ĥα)m(ad êα)nx

generated by x is finite-dimensional (here we use the Poincaré–Birkhoff–Witt
Theorem 6.1.9 below). We therefore obtain a well-defined linear operator

σ̂α := eâdeαe−âdfαeâdeα ∈ GL(ĝ) (6.3)

which clearly commutes with ker α̂ ⊆ ĥ and satisfies

σ̂α(ĝλ(ĥα)) = ĝ−λ(ĥα)

(cf. Lemma 5.2.9). Next we observe that σα̂ fixes ĥ⊥α ⊆ ĥ∗ pointwise and
satisfies σα̂α̂ = −α̂. We therefore obtain σ̂α(ĝγ) = ĝσαγ for each γ ∈ ∆̂.
Clearly, q ◦σα̂ = σα ◦ q, and since q|ĥ is a linear isomorphism to h, we see that

Ŵ is a finite group isomorphic to W.
(vi) Since −Π̂ ⊆ ŴΠ̂, it suffices to show that each positive root γ ∈ ∆̂+

lies in ŴΠ̂. For γ =
∑

α∈Π nαα̂ ∈ ∆̂+ we define its height by

ht(γ) :=
∑

α∈Π

nα.

Pick δ ∈ Ŵγ ∩ ∆̂+ with minimal height. If δ 6∈ Π̂, then δ =
∑

α∈Π nαα̂ with
nα1 , nα2 > 0 for two roots α1 6= α2 ∈ Π. Then

σβ̂δ = δ − δ(ĥβ)β̂ = (nβ − δ(ĥβ))β̂ +
∑

α∈Π\β
nαα̂ ∈ ∆̂+,

because nαj > 0 for j = 1, 2 and one of these two roots is different from β.
Therefore the minimality of the height of δ implies δ(ĥβ) ≤ 0 for each β ∈ Π.
For the corresponding linear functional δ ∈ h∗ with δ = δ ◦ q, we then have
δ ∈ ∑

α∈Π N0α and δ(α̌) ≤ 0 for each α ∈ Π. This leads to

(δ, δ) =
∑

α∈Π

nα(δ, α) =
∑

α∈Π

nαδ(h′α) ≤ 0

because h′α is a positive multiple of hα (Theorem 5.3.4). As the scalar product
on h∗ is positive definite, we arrive at a contradiction. This proves that δ ∈ Π̂,
and hence that γ ∈ ŴΠ̂. ut
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Theorem 6.2.10 (Serre’s Theorem). The homomorphism

q : ĝ = L(X,R) → g

is an isomorphism of Lie algebras.

Proof. We know already that q is surjective, so that it remains to see that it
is also injective. Let n := ker q. Then n is an ideal of ĝ, hence in particular
invariant under ĥ, which in turn implies that it is adapted to the ĥ-weight
decomposition of ĝ:

n = (n ∩ ĥ)⊕
∑

γ∈∆̂

(n ∩ ĝγ).

Since q is injective on ĥ +
∑

α∈Π(ĝα̂ + ĝ−α̂) (Lemma 6.2.9(iii)), we have
n ∩ ĝγ = {0} for γ ∈ {0} ∪ ±Π̂.

On the other hand, the invariance of the ideal n under ĝ(α) implies that it
is also invariant under the linear maps σ̂α ∈ GL(ĝ), defined in (6.3), so that

{γ ∈ ∆̂ : n ∩ ĝγ 6= {0}}
is invariant under Ŵ (Lemma 6.2.9). Now ∆̂ = ŴΠ̂ implies that this set is
empty and this proves that n = {0}. ut
Corollary 6.2.11. There exists an automorphism ϕ : g → g with ϕ|h = − idh.

Proof. Let X be as above and define the map

ϕ̂ : X → g, ϕ̂(ĥα) := −hα, ϕ̂(êα) := −fα, ϕ̂(f̂α) := −eα,

which defines a unique homomorphism L(X) → g, and the Serre relations (6.1)
and (6.2) imply that this homomorphism actually factors through a homomor-
phism ϕ̃ : L(X, R) → g. Now ϕ := ϕ̃ ◦ q−1 : g → g is an automorphism of g
with ϕ|h = − idh. ut

Exercises for Section 6.2

Exercise 6.2.1. Let g be a Lie algebra and (bj)j∈J a basis for g. Then the Lie
bracket on g is determined by the numbers ck

ij (called structure constants),
defined by

[bi, bj ] =
∑

k∈J

ck
ijbk.

Show that g ∼= L(B, R), where

B = {bj : j ∈ J} and R =
{

[bi, bj ]−
∑

k∈J

ck
ijbk : i, j ∈ J

}
.

Exercise 6.2.2. Let X = {x, y} be a two element set. Show that the free Lie
algebra L(X) is infinite-dimensional. Hint: Consider the semidirect product
g = K[X] oM K, where K[X] is considered as an abelian Lie algebra and
Mf(X) := Xf(X) is the multiplication with X.
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6.3 Highest Weight Representations

We know already from Weyl’s Theorem 4.5.21 on Complete Reducibility that
any finite-dimensional module over a semisimple Lie algebra g is semisimple.
This reduces the classification of finite-dimensional modules to the classifi-
cation of simple ones. In this section, we address this problem for the class
of those semisimple Lie algebras which are split, i.e., contain a toral Cartan
subalgebra. Note that sln(K) and in particular any complex semisimple Lie
algebra is split.

Throughout this section, g denotes a semisimple Lie algebra and h ⊆ g a
toral Cartan subalgebra. For λ ∈ h∗ and a representation (π, V ) of g, we write

Vλ := {v ∈ V : (∀h ∈ h) π(h)(v) = λ(h)v}
for the corresponding weight space in V and P(V ) := {λ ∈ h∗ : Vλ 6= {0}} for
the set of h-weights of V . We simply write ∆ := ∆(g, h) for the set of roots
and gα := gα(h), α ∈ ∆, for the root spaces.

Proposition 6.3.1. If dim V < ∞, then h acts by diagonalizable operators
on V and V is the direct sum of its weight spaces. All weights take real values
on hR.

Proof. In view of Lemma 5.3.7, h is spanned by the coroots hα = α̌. Therefore
it suffices to see that for each root α ∈ ∆, the element hα ∈ h is diagonalizable
on V . Since the g-representation on V restricts to a representation of

g(α) = gα + g−α +Khα
∼= sl2(K)

on V , it suffices to apply Proposition 5.2.8. Moreover, we see that all eigen-
values of hα are integral, which, since h is abelian, implies that each weight
takes only real values on the real subspace hR. ut
Definition 6.3.2. Let ∆+ ⊆ ∆ be a positive system of roots. (cf. Theo-
rem 5.4.13). Then

b := h +
∑

β∈∆+

gβ

is a solvable subalgebra of g because it is of the form b = noh for a nilpotent
Lie algebra n (Proposition 6.2.1). Subalgebras of this type are called standard
Borel subalgebras with respect to h.

6.3.1 Highest Weights

Definition 6.3.3. A g-module V is called a module with highest weight λ ∈ h∗

if there is a b-invariant line Kv ∈ V with

h · v = λ(h)v for h ∈ h,
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and v generates the g-module V (i.e., V is the smallest submodule contain-
ing v). Then λ is called the highest weight and the nonzero elements of the
generating line Kv are called highest weight vectors.

Proposition 6.3.4. Each finite-dimensional simple g-module is a highest
weight module.

Proof. Let V be a simple g-module. In view of Proposition 6.3.1, V is a direct
sum of its weight spaces V =

⊕
α∈P(V ) Vα. Since V is finite-dimensional, the

set P(V ) of weights is finite.
Pick x0 ∈ hR with

∆+ = {α ∈ ∆ : α(x0) > 0}.

Then P(V )(x0) ⊆ R (Proposition 6.3.1) and we can pick a λ ∈ P(V ) such
that λ(x0) is maximal. Let v ∈ Vλ \ {0}. For each α ∈ ∆+, we then have
gα · v ⊆ Vλ+α, but the choice of λ implies that Vλ+α = {0}. Hence v is a
b-eigenvector of weight λ. Since V is simple, it is generated by v. ut
Remark 6.3.5. If K = C, then we can also use Lie’s Theorem 4.4.8 to see
that a simple g-module V contains a b-eigenvector, hence is a highest weight
module.

For β ∈ ∆+ = {β1, . . . , βm}, we choose an sl2-triple (hβ , eβ , fβ) as in
the sl2-Theorem 5.3.4. As for abstract root systems (see p. 153), we define a
partial order ≺ on h∗ by

λ ≺ µ : ⇐⇒ µ− λ ∈ N0[∆+] :=
∑

β∈∆+

N0β.

Let Π ⊆ ∆+ be the corresponding set of simple roots (Theorem 5.4.13).
The following theorem describes some properties of highest weight modules

which are not necessarily finite-dimensional.

Theorem 6.3.6. Let V be a g-module with highest weight λ and 0 6= v ∈ Vλ

a highest weight vector. Then

(i) V = span{f i1
β1
· · · f im

βm
· v | ij ∈ N0}. In particular, V is the direct sum of

its weight spaces.
(ii) P(V ) ⊆ λ− N0[∆+] = λ−∑

β∈Π N0β.
(iii) dim Vµ < ∞ for all µ ∈ P(V ).
(iv) dim Vλ = 1.
(v) Every g-submodule of V is the direct sum of its weight spaces.
(vi) V contains exactly one maximal proper g-submodule Vmax and V/Vmax is

the unique simple quotient module of V .
(vii) Every nonzero module quotient of V is a module with highest weight λ.
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Proof. (i) Let Π = {α1, . . . , αr}. Then

fβ1 , . . . , fβm
, hα1 , . . . , hαr

, xβ1 , . . . , xβm

is a basis for g, to which we apply the Poincaré-Birkhoff-Witt Theorem 6.1.9.
Then the claim follows from

hj1
α1
· · ·hjr

αr
x`1

β1
· · ·x`m

βm
· v ⊆ Kv

and V = U(g) · v (cf. Remark 6.1.4).
(ii) In view of (i), V is spanned by vectors of the form

f i1
β1
· · · f im

βm
· v,

which are weight vectors of weight λ−∑m
`=1 i`β` by Lemma 5.2.3. Assertion

(ii) now follows, since the positive roots can be written as sums of simple
roots.
(iii) For µ ∈ h∗, there are only finitely many vectors of the form f i1

β1
· · · f im

βm
· v

for which λ −∑m
`=1 i`β` equals µ. In fact, if x0 ∈ hR satisfies βj(x0) > 0 for

each j, then µ = λ−∑m
l=1 i`β` yields

m∑

`=1

i`β`(x0) = (λ− µ)(x0),

and there are only finitely many solutions (i1, . . . , im) ∈ Nm
0 of this equation.

(iv) The equality λ = λ−∑m
l=1 ilβl is only possible for i1 = . . . = im = 0.

(v) Let W be a g-submodule of V . Then Exercise 1.1.1(b) implies that each
element of h is diagonalizable on W , so that h is simultaneously diagonalizable
on W .
(vi) By (v), every proper submodule of V is contained in

∑
µ∈P(V )\{λ} Vµ.

Therefore the union of all proper submodules is still proper, and hence, a
maximal proper submodule Vmax exists. The quotient module V/Vmax is sim-
ple, since for every nontrivial submodule W ⊆ V/Vmax, its inverse image W ′

in V would be a proper submodule of V , strictly containing Vmax. Conversely,
every submodule W of V , for which V/W is simple (and nonzero), is a maxi-
mal submodule, hence equal to Vmax.
(vii) This is obvious. ut
Corollary 6.3.7. If V is a simple highest weight module, then V contains
only one b-invariant line.

Proof. Let Kv be a b-invariant line. Then v is a weight vector for some weight
µ and v generates the simple module V (each simple module is generated by
each nonzero element). Hence P(V ) ⊆ µ− N0[∆+]. If λ is the highest weight
of V , we also have P(V ) ⊆ λ− N0[∆+], which leads to

λ ≺ µ ≺ λ,

and hence to λ = µ. Finally, Theorem 6.3.6(iv) implies that Vλ is one-
dimensional, which completes the proof. ut
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Proposition 6.3.8. Two simple g-modules with the same highest weight λ
are isomorphic.

Proof. Let V and W be two such modules. We choose nonzero elements v ∈ Vλ

and w ∈ Wλ. Set M := V ⊕W and m := v +w. Then Km is a b-invariant line
and the submodule M ′ := U(g) · m of M generated by m is a module with
highest weight λ. Let prV : M ′ → V and prW : M ′ → W be the canonical
projections with respect to the direct sum V ⊕W . Then both, prV and prW ,
are homomorphisms of g-modules. From prV (m) = v and prW (m) = w we see
that prV and prW are surjective. Therefore, we must have ker prV = M ′

max =
ker prW by Theorem 6.3.6(vi), and this implies V ∼= M ′/M ′

max
∼= W . ut

Definition 6.3.9 (Verma modules). Let g be a semisimple Lie algebra, h ⊆
g a splitting Cartan subalgebra, and b = h +

∑
β∈∆+ gβ the Borel subalgebra

of g corresponding to the positive system ∆+ of ∆. For λ ∈ h∗, we extend λ
to a linear functional, also called λ, on b vanishing on all root spaces gα. Then

[b, b] =
∑

β∈∆+

gβ ⊆ kerλ

implies that λ : b → K ∼= gl1(K) is a homomorphism of Lie algebras, hence
defines a one-dimensional representation of b. We write Kλ for the correspond-
ing b-module. The Lie algebra homomorphism λ further extends to an algebra
homomorphism λ̃ : U(b) → K, turning Kλ into a U(b)-module.

In the following we shall use the notation

AB := span{ab : a ∈ A,n ∈ B}

for subsets A, B of an associative algebra. In this sense, we write

M(λ) := U(g)/
(U(g){b− λ(b)1 : b ∈ b}).

The module M(λ) is called the Verma module of highest weight λ. We write
[D], D ∈ U(g), for its elements. Since M(λ) is a quotient by a subspace in-
variant under the natural (left multiplication) action of g on U(g), it carries
a natural g-module structure.

It is indeed a highest weight module of highest weight λ because v := [1]
satisfies for b ∈ b:

b · [1] = [b] = [λ(b)1] = λ(b)[1],

and
U(g) · [1] = [U(g)] = M(λ).

Using Theorem 6.3.6, we conclude that L(λ) := M(λ)/M(λ)max is a simple
highest weight module with highest weight λ. In particular, such a highest
weight module exists for each λ ∈ h∗.
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6.3.2 Classification of Finite-Dimensional Simple Modules

We want to characterize the linear functionals on h which occur as highest
weights of simple g-modules.

Definition 6.3.10. A linear functional λ ∈ h∗ is said to be integral if

λ(α̌) ∈ Z for α ∈ ∆,

and it is called dominant with respect to the positive system ∆+ if

λ(α̌) ≥ 0 for α ∈ ∆+.

We denote the set of all integral functionals on h by Λ, and the set of all
dominant integral functionals by Λ+.

Let Π ⊆ ∆+ be the set of simple roots, which is a basis for h∗. Since the set
Π̌ = {α̌ : α ∈ Π} is a basis for the dual root system ∆̌ ⊆ hR (Remark 5.4.18),

Λ = {λ ∈ h∗ : (∀α ∈ Π) λ(α̌) ∈ Z} ∼= Zr

is a lattice in the real vector space h∗R, called the weight lattice and

Λ+ = {λ ∈ h∗ : (∀α ∈ Π) λ(α̌) ∈ N0} ∼= Nr
0.

Remark 6.3.11. The Weyl group of the root system ∆ is the subgroup
W ⊆ GL(h∗R) generated by the reflections

σα(λ) = λ− λ(α̌)α,

and this formula immediately implies that the weight lattice Λ is invariant
under W (Theorem 5.4.17). Moreover, Theorem 5.4.17 implies that for each
integral element ν ∈ h∗, there exists a w ∈ W with w(ν) ∈ Λ+.

Proposition 6.3.12. If V is a finite-dimensional module with highest weight
λ, then λ is dominant integral.

Proof. Let α ∈ ∆+ and g(α) ∼= sl2(K) be the corresponding 3-dimensional
subalgebra of g. If v ∈ V is a highest weight vector, then we obtain with
Proposition 5.2.4 that λ(hα) = λ(α̌) ∈ N0. ut
Lemma 6.3.13. Let V be a g-module and W = W (∆) the Weyl group of
∆. If, for each α ∈ Π, V is a locally finite g(α)-module, i.e., a union of
finite-dimensional submodules, then each weight µ of V satisfies

dim Vµ = dim Vw(µ).
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Proof. Let ρ : g → gl(V ) denote the representation of g on V and (hα, eα, fα)
an sl2-triple corresponding to α ∈ Π. According to our hypothesis, each v ∈ V
is contained in a finite-dimensional submodule, so that

Φαv := eρ(eα) ◦ e−ρ(fα) ◦ eρ(eα)v

is defined. Moreover, its restriction to each finite-dimensional g(α)-submodule
is invertible, and this implies that Φα actually is an element of GL(V ). Let
µ ∈ h∗ be a weight of V . From Lemma 5.2.9 we know that Φα maps the
hα-eigenspace for the eigenvalue µ(hα) to the hα-eigenspace for the eigenvalue
−µ(hα). If h ∈ h satisfies α(h) = 0, then ρ(h) commutes with Φα, so that Φα

preserves the h-eigenspaces. This implies that

Φα(Vµ) = Vσα(µ),

where σα(µ) = µ−µ(α̌)α is the reflection in W corresponding to α. Composing
the various Φα for α ∈ Π, we see that the set of weights of V is invariant under
the Weyl group W , which is generated by {σα : α ∈ Π} (Theorem 5.4.17).
Moreover it is now clear that dim Vµ = dim Vw(µ) for all w ∈ W . ut
Proposition 6.3.14. Let g be a semisimple Lie algebra and h be a splitting
Cartan subalgebra of g. If λ ∈ h∗ is dominant integral with respect to ∆+,
then the simple highest weight module V = L(λ) of highest weight λ is finite-
dimensional.

Proof. For each simple root α ∈ Π, using Theorem 5.3.4, we choose an sl2-
triple (hα, eα, fα), so that g(α) = span{hα, eα, fα} ∼= sl2(K). Let v+ ∈ V be
a highest weight vector. For α, β ∈ Π, we put mα := λ(hα) = λ(α̌) ∈ N0 and
observe that

eβfmα+1
α v+ =

{
0 if α 6= β,

(mα + 1)fmα
α (hα −mα1)v+ = 0 if α = β.

Here we use that [eβ , fα] ∈ gβ−α = {0} for α 6= β, and for α = β we use the
formulas from Lemma 5.2.2(ii) and eβ · v+ = 0. Since the eα, α ∈ Π, generate
the subalgebra

∑
β∈∆+ gβ (Proposition 6.2.1), the vector fmα+1

α v+ generates a
proper highest weight submodule of V (cf. Theorem 6.3.6 and Corollary 6.3.7),
so that the irreducibility of V yields fmα+1

α v+ = 0. Therefore

span{v+, fαv+, . . . , fmα
α v+}

is a finite-dimensional g(α)-module with highest weight λ(α̌) = mα. Therefore
the subspace V ′

α of V spanned by all finite-dimensional g(α)-submodules is
nonzero.

Let E ⊆ V be a finite-dimensional g(α)-submodule. Then span(g · E) is
finite-dimensional and g(α)-stable, so it is contained in V ′. This implies that
V ′

α is a g-submodule. Since V is simple, we conclude that V = V ′
α. Thus
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Lemma 6.3.13 is applicable and yields dim Vw·µ = dim Vµ for all w ∈ W as
well as the W -invariance of P(λ).

It follows from the definition of the ordering ≺ that the set of dominant
integral elements µ ∈ h∗ with µ ≺ λ is finite. Since all weights of V are
integral, Remark 6.3.11, together with the above, shows that

P(λ) ⊆ W
({µ ∈ Λ+ | µ ≺ λ})

is finite because W is finite and the set {µ ∈ Λ+ | µ ≺ λ} is finite. As all
weight spaces Vµ are finite dimensional by Theorem 6.3.6, this concludes the
proof. ut
Theorem 6.3.15 (Highest Weight Theorem). Let g be a split semisimple
Lie algebra and h a splitting Cartan subalgebra of g. The assignment λ 7→ L(λ)
defines a bijection between the set Λ+ of dominant integral functionals and the
set of isomorphism classes of finite-dimensional simple g-modules.

Proof. First we recall from Proposition 6.3.4 that each finite-dimensional sim-
ple g-module is a highest weight module with some highest weight λ. In view
of Proposition 6.3.12, λ is dominant integral, and Proposition 6.3.8 shows
that it only depends on the isomorphism class of the module. Finally, Propo-
sition 6.3.14 shows that any dominant integral functional is the highest weight
of some finite-dimensional simple g-module. ut

6.3.3 The Eigenvalue of the Casimir Operator

In this section we construct a special element Cg in the center of the enveloping
algebra of g and calculate its (scalar) action in a highest weight module. In
special cases this allows to identify a given simple g-module.

Definition 6.3.16 (Universal Casimir element). Let g be a finite-
dimensional split semisimple Lie algebra with Cartan–Killing form κ. As be-
fore, we choose for each β ∈ ∆+ an sl2-triple (hβ , eβ , fβ) and e∗β ∈ g−β ,
f∗β ∈ gβ with

κ(eβ , e∗β) = 1 = κ(fβ , f∗β).

We further choose a basis h1, . . . , hr for h, and we write h1, . . . , hr for the dual
basis with respect to the nondegenerate restriction of κ to h× h. Then

{hi, eβ , fβ : i = 1, . . . , r; β ∈ ∆+}

is a basis for g and

{hi, e∗β , f∗β : i = 1, . . . , r; β ∈ ∆+}

is the dual basis with respect to κ. We therefore obtain a central element of
U(g) by
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Cg =
k∑

i=1

hih
i +

∑

β∈∆+

eβe∗β + fβf∗β (6.4)

(Lemma 4.5.16). It is called the universal Casimir element .

Lemma 6.3.17. For a positive system ∆+, we put ρ = 1
2

∑
α∈∆+ α. If

(ρV , V ) is a highest weight module with highest weight λ, also considered as a
U(g)-module, then

ρV (Cg) = (λ, λ + 2ρ)1 =
(‖λ + ρ‖2 − ‖ρ‖2)1.

If λ is dominant and nonzero, then ρV (Cg) 6= 0.

Proof. We write the Casimir element Cg in the form (6.4) as described in
Definition 6.3.16. We compute the action of Cg on V . Let v+ be a highest
weight vector in V . Then eβ · v+ = f∗β · v+ = 0 for each β ∈ ∆+, and
[eβ , e∗β ] = h′β (cf. Lemma 5.3.3) implies

eβe∗β · v+ = [eβ , e∗β ] · v+ + e∗βeβ · v+ = λ(h′β)v+ = (λ, β)v+,

so that
∑

β∈∆+(eβe∗β +fβf∗β)·v+ = 2(λ, ρ)v+. On the other hand, we calculate

k∑

i=1

λ(hi)λ(hi) = λ
( k∑

i=1

κ(h′λ, hi)hi

)
= λ(h′λ) = (λ, λ).

Putting these facts together yields

Cgv
+ = (λ, λ + 2ρ)v+ =

(‖λ + ρ‖2 − ‖ρ‖2)v+.

Since Cg is central in U(g) (Exercise 6.1.1), Cg acts by the same scalar on the
entire U(g)-module V = U(g)v+.

Finally, we assume that λ is dominant and nonzero. Then λ(α̌) ≥ 0 for
all α ∈ ∆+ implies that (λ, α) ≥ 0, and hence that (λ, ρ) ≥ 0. This leads to
(λ, λ + 2ρ) ≥ (λ, λ) > 0. ut

Exercises for Section 6.3

Exercise 6.3.1. A g-module V is said to be cyclic if it is generated by some
element v ∈ V . If ρ : g → gl(V ) is the module structure and ρ̃ : U(g) → End(V )
the canonical extension, then the annihilator

I := AnnU(g)(v) := {D ∈ U(g) : ρ̃(D)v = 0}
of v is a left ideal. Show that:

(a) If I ⊆ U(g) is a left ideal, then the quotient U(g)/I carries a natu-
ral g-module structure, defined by x · (D + I) := σ(x)D + I, and this
g-module is cyclic.
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(b) Every cyclic g-module is isomorphic to one of the form U(g)/I, as in (a).

Exercise 6.3.2. Simple g-modules are particular examples of cyclic g-modules.
Show that:

(a) If I ⊆ U(g) is a maximal (proper) left ideal, then the quotient U(g)/I is a
simple g-module.

(b) Every simple g-module is isomorphic to one of the form U(g)/I, where I
is a maximal left ideal in U(g).

Exercise 6.3.3. Let g be a reductive Lie algebra and h ⊆ g a toral Cartan
subalgebra. Let V be a simple g-module on which h acts by diagonalizable
operators (such modules are called weight modules. Identifying the root system
of g with that of its semisimple commutator algebra, the notion of a positive
system makes also sense for g. Show that, in this sense, for each positive
system ∆+ of ∆, V is a highest weight module.

6.4 Ado’s Theorem

In this section we return to the question when a finite-dimensional Lie algebra
can be written as a subalgebra of a finite-dimensional associative algebra
equipped with the commutator bracket. Ado’s Theorem in fact says that this
is always the case.

Theorem 6.4.1 (Ado’s Theorem). Every finite-dimensional Lie algebra
has a faithful, i.e., injective, finite-dimensional representation whose restric-
tion to the maximal nilpotent ideal is nilpotent.

Ado’s Theorem is one of the cornerstones of finite-dimensional Lie theory.
For any Lie algebra g, we have the adjoint representation ad: g → gl(g) which
is faithful if and only if z(g) is trivial. Therefore the main point of Ado’s
Theorem is to find a representation of g which is nontrivial on the center. A
crucial first case is to see how to obtain faithful representations of nilpotent
Lie algebras.

Proposition 6.4.2. Let n be a nilpotent Lie algebra with Ck(n) = {0}.
For j ∈ N0, let U(n)j ⊆ U(n) be the ideal spanned by

∑
i≥j σ(n)i, where

σ : g → U(g) is the canonical embedding. Then the U(n)/U(n)j are finite-
dimensional associative unital algebras, and the canonical homomorphism

σk : n → U(n)/U(n)k

is injective.

Proof. We have to show that U(n)k ∩ σ(n) = {0}.
Let dj := dim Cj(n) for j = 1, . . . , k and choose a basis ei for n with

the property that for each j < k the ei, i ≤ dj , form a basis for Cj(n).
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For a nonzero element x ∈ n, we defined its weight w(x) as the number h
with x ∈ Ch(n) \ Ch+1(n) and w(0) := ∞. Since [Ca(n), Cb(n)] ⊆ Ca+b(n)
(Exercise 4.2.7), we have for any two elements x, y ∈ n the relation

w([x, y]) ≥ w(x) + w(y).

Moreover, if x =
∑

j cjej ∈ Ca(n), then the choice of basis tells us that all
cjej are in Ca(n) as well. For any monomial ei1ei2 · · · eis

∈ U(n), we define
the weight as

w(ei1ei2 · · · eis) :=
s∑

j=1

w(eij
).

Now take a monomial and rewrite it, in the sense of the Poincaré–Birkhoff–
Witt Theorem, as a linear combination of monomials of the form

em1
1 · · · emj

j , m1, . . . , mj ∈ N0.

Each time we have to substitute a product eaeb, b < a, by ebea + [ea, eb], we
obtain in the sum a monomial of lesser degree, but when we write [ea, eb] =∑

j cjej , the weight of each of the resulting monomials is at least as big as the
weight of the monomial we started with. This shows that when we write an
element of the ideal U(n)k in the PBW basis, we have a linear combination
of elements of weight at least k, but all elements of σ(n) have weight at most
k − 1. This completes the proof. ut

It follows immediately from the PBW-Theorem that all ideals U(n)j

have finite codimension. Since left multiplication defines a faithful finite-
dimensional representation for each unital finite-dimensional associative alge-
bra, the preceding proposition already proves Ado’s Theorem for the special
class of nilpotent Lie algebras.

Lemma 6.4.3. Let g be a Lie algebra and σ : g → U(g)L be the canonical ho-
momorphism. For every derivation D ∈ der(g), there exists a unique deriva-
tion D̃ ∈ der(U(g)) with σ ◦D = D̃ ◦ σ.

g ∀D //

σ

²²

g

σ

²²
U(g)

∃D̃

// U(g)

Proof. Let A := M2(U(g)) be the algebra of the 2 × 2-matrices with entries
in U(g). Then the map

ϕ : g → AL, ϕ(x) =
(

x D(x)
0 x

)
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is a homomorphism of Lie algebras. From the universal property of (U(g), σ),
we now obtain a homomorphism ϕ̃ : U(g) → A of unital algebras with ϕ̃ ◦σ =
ϕ. Since U(g) is generated by 1 and σ(g), we have

ϕ̃(x) =
(

x D̃(x)
0 x

)

for some linear map D̃ : U(g) → U(g), and since ϕ̃ is an algebra homomor-
phism, D̃ is a derivation. It immediately follows from the construction that
D̃ ◦ σ = D. The uniqueness of D̃ follows from the fact that σ(g) and 1 gener-
ate U(g) because a derivation annihilates the unit and it is determined by its
values on a generating set. ut
Proposition 6.4.4. If g = noγ l is a semidirect sum of a nilpotent ideal and
a Lie algebra l, then g has a finite-dimensional representation which is faithful
and nilpotent on n.

Proof. Suppose that Ck(n) = {0} and put A := U(n)/U(n)k. Then Proposi-
tion 6.4.2 implies that the natural map σk : n → A is injective. Clearly, this
defines a nilpotent representation of n on A.

In view of the preceding Lemma 6.4.3, the representation γ : l → der(n)
induces a representation γ̃ : l → der(U(n)), and it is clear that the derivations
γ̃(x) preserve the ideal U(n)k, hence induce derivations γ(x) on A. Write
Lx : A → A, a 7→ xa for the left multiplications on A. Then

π : g = noγ l → gl(A), (n, x) 7→ Lσk(n) + γ(x)

defines a representation of g on A whose restriction to n is faithful and nilpo-
tent. ut
Lemma 6.4.5. Let n ⊆ g be a nilpotent ideal and x ∈ g. If there exists an
n ∈ n such that ad(x + n) is nilpotent, then ad x is nilpotent.

Proof. Let F = (g0, . . . , gk) be a maximal flag in g consisting of ideals. This
means in particular that the quotient algebras qj := gj/gj−1, j = 1, . . . , k,
are simple g-modules. As g is a nilpotent n-module, the same holds for all the
simple quotients gj+1/gj , so that n acts trivially on them. This means that
[n, gj+1] ⊆ gj , i.e., ad n ⊆ gn(F). But ad x is nilpotent if and only if all the
induced maps adgj+1/gj

(x) are nilpotent. In view of

adgj+1/gj
(x) = adgj+1/gj

(x + n),

all these maps are nilpotent, so that adx is nilpotent. ut
Lemma 6.4.6. Let r be a solvable Lie algebra and (ρ, V ) a finite-dimensional
representation of r. Then the set

nρ := {x ∈ r : (∃N ∈ N) ρV (x)N = 0}
of those elements in r for which ρV (x) is nilpotent is an ideal of r.
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Proof. After complexification, we may assume that K = C. Then we use
Lie’s Theorem to find a complete flag F in V with ρV (r) ⊆ g(F). Then
nρ = ρ−1

V (gn(F)) is the inverse image of the ideal gn(F) of g(F), hence an
ideal of r. ut
Remark 6.4.7. Applying the preceding lemma to the adjoint representation,
we see that for a finite-dimensional Lie algebra g, the set

nad := {x ∈ rad(g) : (∃N ∈ N) (ad x)N = 0}

is an ideal of r, whose nilpotency follows from Engel’s Theorem. Moreover,
nad contains each nilpotent ideal of g, hence is the maximal nilpotent ideal
of g.

Proof of Ado’s Theorem. We shall prove Ado’s Theorem by embedding g into
a semidirect sum of a nilpotent ideal and a reductive Lie algebra, to which we
apply Proposition 6.4.4.

Let r := rad(g) and g = r o s be a Levi decomposition of g. Applying
Proposition 4.5.17 to the semisimple s-module r, we see that

r = [s, r] + zr(s).

Let h ⊆ zr(s) be a Cartan subalgebra. Then d := (ad h)s ⊆ gl(g) is a com-
mutative subalgebra of derivations of g (Lemma 5.1.13). We consider the Lie
algebra

ĝ := go d.

Our goal is to show that ĝ is the semidirect sum of a reductive Lie algebra
and a nilpotent ideal.

Since ad h annihilates the subspace s of g, the same is true for d, so that
l := s⊕ d is a reductive Lie algebra with center d. We also note that

ĝ = (ro s)o d = r̂o s,

where r̂ := ro d is the solvable radical of ĝ.
Next we recall that the quotient map zr(s) → zr(s)/[zr(s), zr(s)] maps h

surjectively onto the abelian quotient algebra (Proposition 5.1.11(ii)), so that

zr(s) = [zr(s), zr(s)] + h ⊆ [r, r] + h,

and thus
r ⊆ [s, r] + zr(s) ⊆ [g, r] + h.

Let x ∈ r and write it as x = n + h with n ∈ [g, r] and h ∈ h. Then
d := (ad h)s ∈ d, and thus x − d ∈ r̂. Now [g, r] is a nilpotent ideal of ĝ
and adĝ(h − d) is nilpotent on g ⊇ [ĝ, ĝ], where it coincides with adg(h) − d.
We thus conclude with Lemma 6.4.5 that adĝ(x− d) is nilpotent, hence con-
tained in the maximal nilpotent ideal
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n̂ := {x ∈ r̂ : (∃N ∈ N) (ad x)N = 0}

of ĝ (Remark 6.4.7). We conclude that r̂ ⊆ n̂ + d. On the other hand, n̂ ∩ d =
{0} follows from the fact that the nonzero elements of d act by semisimple
endomorphisms on g. Therefore

ĝ = n̂o l

is a semidirect sum of the nilpotent ideal n̂ and the reductive Lie algebra l.
Note that z(g) ⊆ z(ĝ) ⊆ n̂. Finally, Proposition 6.4.4 provides a representation
π̂ : ĝ → gl(V ) which is faithful and nilpotent on n̂. Hence the restriction
π := π̂|g is faithful on z(g). Now the direct sum representation π⊕ ad of g on
V ⊕ g is a faithful finite-dimensional representation of g. Since the maximal
nilpotent ideal n of g is clearly contained in n̂, the representation is nilpotent
on n. ut

Exercises for Section 6.4

Exercise 6.4.1. Let g be a Lie algebra, let b be a characteristic ideal in g
and a be a characteristic ideal in b. Then a is a characteristic ideal in g.

Exercise 6.4.2. Find an example of an ideal of an ideal of a Lie algebra g
which is not an ideal of g.

Exercise 6.4.3. Let g be a finite-dimensional Lie algebra, let U(g) be its
enveloping algebra and σ : g → U(g) be the canonical embedding. By Ui(g),
we denote the subspace spanned by the products of degree less or equal to i
(cf. Lemma 6.1.6). Show:

(i) For every automorphism α of the Lie algebra g, there is precisely one
automorphism U(α) of U(g) with U(α) ◦ σ = σ ◦ α. This automorphism
leaves Ui(g) invariant for every i ∈ N.

(ii) If γ : R→ Aut
(U(g)

)
is a one-parameter group of automorphisms of U(g)

for which
γ(t)Ui(g) ⊆ Ui(g) for i ∈ N,

then D := d
dt |t=0γ(t) exists and it is a derivation of U(g).

(iii) Apply (i) and (ii) to obtain a new proof of Lemma 6.4.3.
By (i), the map U(ead x) is a well defined automorphism of U(g) for every
x ∈ g, and the derivation ad x can directly be continued to U(g) by

ad x(z) := xz − zx for x ∈ g, z ∈ U(g).

(iv) For z ∈ U(g), the following statements are equivalent:
(i) z ∈ Z

(U(g)
)
.

(ii) adx(z) = 0 for all x ∈ g.
(iii) U(ead x)z = z for all x ∈ g.
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Exercise 6.4.4. Let α : g → End(V ) be a representation of the Lie algebra g
and α̃ : U(g) → End(V ) be the corresponding representation of the enveloping
algebra. Show: Let z ∈ Z

(U(g)
)

and Vα be an eigenspace of α̃(z), then Vα is
invariant under α(g).

6.5 Lie Algebra Cohomology

The cohomology of Lie algebras is the natural tool to understand how we can
build new Lie algebras ĝ from given Lie algebras g and n in such a way that
n E ĝ and ĝ/n ∼= g. An important special case of this situation arises if n
is assumed to be abelian, so that n is simply a g-module. We shall see, in
particular, how the abelian extensions of Lie algebras can be parameterized
by a certain cohomology space.

We shall also deal with the extension problem for g-modules, i.e., the prob-
lem to determine, for a pair (V, W ) of g-modules, how many nonisomorphic
modules V̂ exist which contain W as a submodule and satisfy V̂ /W ∼= V .

Throughout this section g denotes a Lie algebra over the field K. We do
not have to make any assumption on the dimension of g or the nature of the
field K.

6.5.1 Basic Definitions and Properties

Definition 6.5.1. Let V and W be vector spaces and p ∈ N. A multilinear
map f : W p → V is called alternating if

f(wσ1 , . . . , wσp) = sgn(σ)f(w1, . . . , wp)

for wi ∈ W and sgn(σ) is the sign of the permutation σ ∈ Sp.

Definition 6.5.2. Let g be a Lie algebra and V a g-module.
(a) We write Cp(g, V ) for the space of alternating p-linear mappings gp → V
(the p-cochains) and put C0(g, V ) := V . We also define

C(g, V ) :=
∞⊕

k=0

Ck(g, V ).

On Cp(g, V ) we define the (Chevalley–Eilenberg) differential d by

dω(x0, . . . , xp) :=
p∑

j=0

(−1)jxj · ω(x0, . . . , x̂j , . . . , xp)

+
∑

i<j

(−1)i+jω([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp),
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where x̂j means that xj is omitted. Observe that the right hand side defines
for each ω ∈ Cp(g, V ) an element of Cp+1(g, V ) because it is alternating. To
see that this is the case, it suffices to show that it vanishes if xi = xi+1 for
i = 0, . . . , p− 1. Since ω is alternating, we only to note that for xi = xi+1, we
have

0 = (−1)ixi · ω(x0, . . . , x̂i, xi+1 . . . , xp)

+ (−1)i+1xi · ω(x0, . . . , xi, x̂i+1, . . . , xp)

0 = (−1)i+jω([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xp)

+ (−1)i+j+1ω([xi+1, xj ], . . . , x̂i+1, . . . , x̂j , . . . , xp)

0 = (−1)j+iω([xj , xi], . . . , x̂j , . . . , x̂i, . . . , xp)

+ (−1)j+i+1ω([xj , xi+1], . . . , x̂j , . . . , x̂i+1, . . . , xp).

Putting the differentials on all the spaces Cp(g, V ) together, we obtain a linear
map d = dg : C(g, V ) → C(g, V ).

The elements of the subspace

Zk(g, V ) := ker(d|Ck(g,V ))

as called k-cocycles, and the elements of the spaces

Bk(g, V ) := d
(
Ck−1(g, V )) and B0(g, V ) := {0}

are called k-coboundaries. We will see below that d2 = 0, which implies that
Bk(g, V ) ⊆ Zk(g, V ), so that it makes sense to define the kth cohomology
space of g with values in the module V :

Hk(g, V ) := Zk(g, V )/Bk(g, V ).

(b) We further define for each x ∈ g and p > 0 the insertion map or contraction

ix : Cp(g, V ) → Cp−1(g, V ),
(
ixω

)
(x1, . . . , xp−1) = ω(x, x1, . . . , xp−1).

We further define ix to be 0 on C0(g, V ).

Note 6.5.3. The names (co)cycle, (co)boundary, and (co)boundary operator
are derived from simplicial homology theory which has large formal similarities
with the cohomology theory for Lie algebras. In simplicial homology one con-
siders simplices, such as triangles or tetrahedra. A triangle is described by its
vertices x1, x2, x3. Its faces with inherent orientation given by the ordering of
the indices are denoted by x12, x23, x31. The entire triangle is denoted by x123.
Chains are formal linear combinations of the type

∑
aijxij . Cycles are chains

which have no boundary, for instance x12+x23+x31 or 2x12+2x23+2x31. For
the latter one, the cycle x12+x23+x31 is passed through twice. The boundary
of x12 is x2 − x1, the boundary of x123 is x12 + x23 + x31. Chains which are
themselves boundaries of something have no boundary, i.e., they are cycles.
This corresponds to the relation d2 = 0 in Lie algebra cohomology.
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Remark 6.5.4. For elements of low degree we have in particular:

p = 0 : dω(x) = x · ω
p = 1 : dω(x, y) = x · ω(y)− y · ω(x)− ω([x, y])
p = 2 : dω(x, y, z) = x · ω(y, z)− y · ω(x, z) + z · ω(x, y)

−ω([x, y], z) + ω([x, z], y)− ω([y, z], x)
= x · ω(y, z) + y · ω(z, x) + z · ω(x, y)

−ω([x, y], z)− ω([y, z], x)− ω([z, x], y).

Example 6.5.5. (a) This means that

Z0(g, V ) = V g := {v ∈ V : g · v = {0}}

is the maximal trivial submodule of V . Since B0(g, V ) is trivial by definition,
we obtain

H0(g, V ) = V g.

(b) The elements α ∈ Z1(g, V ) are also called crossed homomorphisms.
They are defined by the condition

α([x, y]) = x · α(y)− y · α(x), x, y ∈ g.

The elements α(x) · v := x · v of the subspace B1(g, V ) are also called princi-
pal crossed homomorphisms. It follows immediately from the definition of a
g-module that each principal crossed homomorphism is a crossed homomor-
phism.

If V is a trivial module, then it is not hard to compute the cohomology
spaces in degree one. In view of {0} = dV = dC0(g, V ) = B1(g, V ), we
have H1(g, V ) = Z1(g, V ), and the condition that α : g → V is a crossed
homomorphism reduces to α([x, y]) = {0} for x, y ∈ g. This leads to

H1(g, V ) ∼= Hom(g/[g, g], V ) ∼= HomLiealg(g, V ).

Example 6.5.6. Let g be a Lie algebra and V := g, considered as a trivial
g-module. Then the Lie bracket

β : g× g → g, β(x, y) := [x, y]

is a 2-cocycle. In fact, the two Lie algebra axioms mean that β ∈ C2(g, g) and
dβ = 0.

Example 6.5.7. Let g be an abelian Lie algebra and V a trivial g-module.
Then d = 0, so that Hp(g, V ) = Cp(g, V ) holds for each p ∈ N0.

Our first goal will be to show that d2 = 0. This can be proved directly by
an awkward computation (Exercise 6.5.7). We will follow another way which
is more conceptual and leads to additional insights and tools which are useful
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in other situations: Let (ρV , V ) be a g-module. Then the representations on
the space Multp(g, V ) of p-linear maps gp → V defined by

ρ+(x)ω := ρV (x) ◦ ω

and
(
ρj(x)ω

)
(x1, . . . , xp) := −ω(x1, . . . , xj−1, adx(xj), xj+1, . . . , xp)

commute pairwise. Therefore the sum of these representations is again a rep-
resentation which implies the following lemma, by restricting to the subspace
Cp(g, V ) ⊆ Multp(g, V ).

Lemma 6.5.8. There exists a representation L = ρ+ + ρ0 = ρ+ +
∑p

j=1 ρj of
g on C(g, V ) given on the subspace Cp(g, V ) by

(Lxω)(x1, . . . ,xp)

=x · ω(x1, . . . , xp)−
p∑

j=1

ω(x1, . . . , xj−1, [x, xj ], xj+1, . . . , xp)

=x · ω(x1, . . . , xp) +
p∑

j=1

(−1)jω([x, xj ], x1, . . . , x̂j , . . . , xp).

Note that ρ0 is the representation on C(g, V ) corresponding to the trivial
module structure on V .

Lemma 6.5.9 (Cartan Formula). The representation L : g → gl
(
C(g, V )

)
satisfies, for x ∈ g, the Cartan formula

Lx = d ◦ ix + ix ◦ d. (6.5)

Proof. Using the insertion map ix0 , we can rewrite the formula for the differ-
ential as
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(
ix0dω

)
(x1, . . . , xp)

=x0 · ω(x1, . . . , xp)−
p∑

j=1

(−1)j−1xj · ω(x0, . . . , x̂j , . . . , xp)

+
p∑

j=1

(−1)jω([x0, xj ], x1, . . . , x̂j , . . . , xp)

+
∑

1≤i<j

(−1)i+jω([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp)

=x0 · ω(x1, . . . , xp)−
p∑

j=1

ω(x1, . . . , xj−1, [x0, xj ], xj+1, . . . , xp)

−
p∑

j=1

(−1)j−1xj · ω(x0, . . . , x̂j , . . . , xp)

−
∑

1≤i<j

(−1)i+jω(x0, [xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xp)

=(Lx0ω)(x1, . . . , xp)− d
(
ix0ω

)
(x1, . . . , xp).

This proves the Cartan formula. ut
Lemma 6.5.10. Any two elements x, y ∈ g satisfy i[x,y] = [ix,Ly].

Proof. The explicit formula for Ly (Lemma 6.5.8) yields for x = x1 the relation
ixLy = Lyix − i[y,x]. ut
Lemma 6.5.11. For each x ∈ g, the Lie derivative Lx commutes with d.

Proof. In view of Lemma 6.5.10, we obtain with the Cartan formula

[Lx,Ly] = [d ◦ ix,Ly] + [ix ◦ d,Ly]
= [d,Ly] ◦ ix + d ◦ i[x,y] + i[x,y] ◦ d + ix ◦ [d,Ly]
= [d,Ly] ◦ ix + L[x,y] + ix ◦ [d,Ly],

so that the fact that L is a representation leads to

[d,Ly] ◦ ix + ix ◦ [d,Ly] = 0. (6.6)

We now prove by induction over k that [d,Ly] vanishes on Ck(g, V ). For
ω ∈ C0(g, V ) ∼= V , we have

(
[d,Ly]ω

)
(x) = d(y · ω)(x)− (

y · (dω)
)
(x)

= x · (y · ω)− (
y · (x · ω)− dω([y, x])

)
= [x, y] · ω + [y, x] · ω = 0.

Suppose that [d,Ly]Ck(g, V ) = {0}. Then (6.6) implies that
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ix[d,Ly]Ck+1(g, V ) = −[d,Ly]ixCk+1(g, V )

⊆ [d,Ly]Ck(g, V ) = {0}

for each x ∈ g. Hence [d,Ly]Ck+1(g, V ) = {0}. By induction, this leads to
[d,Ly] = 0 for each y ∈ g. ut
Proposition 6.5.12. d2 = 0.

Proof. We put Lemma 6.5.11 into the Cartan Formula (6.5) and get

0 = [d,Lx] = d2 ◦ ix − ix ◦ d2. (6.7)

We use this formula to show by induction over k that d2 vanishes on Ck(g, V ).
For ω ∈ C0(g, V ) ∼= V , we have dω(x) = x · ω and

d2ω(x, y) = x·dω(y)−y·dω(x)−(dω)([x, y]) = x·(y·ω)−y·(x·ω)−[x, y]·ω = 0.

If d2(Ck(g, V )) = {0}, we use (6.7) to see that

ixd
2(Ck+1(g, V )) = d2ixCk+1(g, V ) ⊆ d2(Ck(g, V )) = {0}

for all x ∈ g, and hence that d2(Ck+1(g, V )) = {0}. By induction on k, this
proves d2 = 0. ut

Since the differential commutes with the action of g on the graded vector
space C(g, V ) (Lemma 6.5.11), the space of k-cocycles and of k-coboundaries
is g-invariant, so that we obtain a natural representation of g on the quotient
spaces Hk(g, V ).

Lemma 6.5.13. The action of g on Hk(g, V ) is trivial, i.e., LgZ
k(g, V ) ⊆

Bk(g, V ).

Proof. In view of Lemma 6.5.9, we have for ω ∈ Zk(g, V ) the relation

Lxω = ixdω + d
(
ixω

)
= d

(
ixω

) ∈ Bk(g, V ).

Hence the g-action induced on the cohomology space Hk(g, V ) is trivial. ut
Remark 6.5.14. Let M be a smooth manifold and g := V(M) the Lie algebra
of smooth vector fields on M (cf. Chapter 8 below). We consider the g-module
V := C∞(M,R) of smooth functions on M . Then we can identify the space
Ωp(M,R) of alternating C∞(M,R)-multilinear maps gp → C∞(M,R) with a
subspace of Cp(g, V ). The elements of the space Ωp(M,R) are called smooth
p-forms on M , and

Ω(M,R) :=
⊕

p∈N0

Ωp(M,R)

is the space of exterior forms on M . The restriction of d to these spaces
is called the exterior differential. The space Ω(M,R) is invariant under the
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differential d and the g-action given by the Lie derivative. Together with the
exterior derivative, the spaces Ωp(M,R) now form the so called de Rham
complex

Ω0(M,R) = C∞(M,R) d−−→Ω1(M,R) d−−→Ω2(M,R) d−−→ . . .

The cohomology groups of this subcomplex are the de Rham cohomology
groups of M :

H0
dR(M,R) := ker

(
d|Ω0(M,R)

)
, Hp

dR(M,R) :=
ker

(
d|Ωp(M,R)

)

d(Ωp−1(M,R))
for p > 0.

6.5.2 Extensions and Cocycles

In this section we interprete the cohomology spaces in low degrees in terms
of extensions of modules and Lie algebras.

Definition 6.5.15. (a) Each element ω ∈ Z1(g, V ) defines a g-module

Vω := V ×K with x · (v, t) = (x · v + tω(x), 0).

Then the inclusion j : V ↪→ Vω is a module homomorphism, and we thus
obtain a short exact sequence

0 → V ↪→ Vω →→ K→ 0 (6.8)

of g-modules, where K is considered as a trivial g-module.
(b) In the following we write aff(V ) := V o gl(V ) for the affine Lie algebra of
V with the Lie bracket

[(v, A), (v′, A′)] = (A · v′ −A′ · v, [A, A′]).

An affine representation of a Lie algebra g on V is identified with a homomor-
phism π : g → aff(V ). We associate with each pair (v,A) ∈ aff(V ) the affine
map w 7→ Aw + v. The Lie algebra aff(V ) acts linearly on the space V × K
by (v,A) · (w, t) := (Aw + tv, 0).

Proposition 6.5.16. Let (ρ, V ) be a g-module. An element ω ∈ C1(g, V ) is
in Z1(g, V ) if and only if the map

ρω : g → aff(V ) ∼= V o gl(V ), x 7→ (
ω(x), ρ(x)

)

is a homomorphism of Lie algebras.
Let ead V := 1 + ad V ⊆ Aut(aff(V )) denote the group of automorphisms

defined by the abelian ideal V E aff(V ). Then the space H1(g, V ) parame-
terizes the ead V -conjugacy classes of affine representations of g on V whose
corresponding linear representation is ρ. The coboundaries correspond to those
affine representations which are conjugate to a linear representation, i.e.,
which have a fixed point p ∈ V in the sense that ρ(x)p + ω(x) = 0 for all
x ∈ g.
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Proof. The first assertion is easily checked. For v ∈ V we consider the au-
tomorphism of aff(V ) given by ηv = ead v := 1 + ad v. Then ηv(w, A) =
(w −A · v, A), so that

ηv ◦ ρω = ρω−dv,

where (dv)(x) = x·v. Thus two affine representations ρω and ρω′ are conjugate
under some ηv if and only if the cohomology classes of ω and ω′ coincide.
In this sense, H1(g, V ) parameterizes the ead V -conjugacy classes of affine
representations of g on V whose corresponding linear representation coincides
with ρ. The coboundaries correspond to those affine representations which
are conjugate to a linear representation. Moreover, it is clear that an affine
representation ρω is conjugate to a linear representation, if and only if there
exists a fixed point v ∈ V , i.e., ω = −dv. ut
Definition 6.5.17. (a) Let g and n be Lie algebras. A short exact sequence

0 → n
ι−−→ĝ

q−−→g → 0

(this means ι injective, q surjective, and im ι = ker q) is called an extension of
g by n. If we identify n with its image in ĝ, this means that ĝ is a Lie algebra
containing n as an ideal such that ĝ/n ∼= g. If n is abelian (central) in ĝ, then
the extension is called abelian (central). Two extensions n ↪→ ĝ1 →→ g and
n ↪→ ĝ2 →→ g are called equivalent if there exists a Lie algebra homomorphism
ϕ : ĝ1 → ĝ2 such that the diagram

n
ι1−−→ ĝ1

q1−−→ gyidn

yϕ

yidg

n
ι2−−→ ĝ2

q2−−→ g

is commutative. It is easy to see that this implies that ϕ is an isomorphism
of Lie algebras (Exercise).
(b) We call an extension q : ĝ → g with ker q = n trivial, or say that the
extension splits if there exists a Lie algebra homomorphism σ : g → ĝ with
q ◦ σ = idg. In this case the map

noδ g → ĝ, (n, x) 7→ n + σ(x)

is an isomorphism, where the semidirect sum is defined by the homomorphism

δ : g → der(n), δ(x)(n) := [σ(x), n].

For a trivial central extension we have δ = 0 and therefore ĝ ∼= n× g.
(c) A particular important case arises if n is abelian. Then each Lie algebra
extension q : ĝ → g of g by n leads to a g-module structure on n defined by
q(x) · n := [x, n], which is well defined because [n, n] = {0}. It is easy to
see that equivalent extensions lead to the same module structure (Exercise).
Therefore it makes sense to write Extρ(g, n) for the set of equivalence classes
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of extensions of g by n corresponding to the module structure given by the
representation

ρ : g → gl(n) = der(n).

For a g-module V , we also write Ext(g, V ) := ExtρV
(g, V ), where ρV is the

representation of g on V corresponding to the module structure.

Proposition 6.5.18. For an element ω ∈ C2(g, V ), the formula

[(v, x), (v′, x′)] = (x · v′ − x′ · v + ω(x, x′), [x, x′])

defines a Lie bracket on V × g if and only if ω ∈ Z2(g, V ). For a cocycle
ω ∈ Z2(g, V ) we write gω := V ⊕ω g for the corresponding Lie algebra. Then
we obtain for each cocycle ω an extension of g by the abelian ideal V :

0 → V ↪→ gω →→ g → 0.

This extension splits if and only if ω is a coboundary.
The map Z2(g, V ) → Ext(g, V ) defined by assigning to ω the equivalence

class of the extension gω induces a bijection

H2(g, V ) → Ext(g, V ).

Therefore H2(g, V ) classifies the abelian extensions of g by V for which the
corresponding representation of g on V is given by the module structure on V .

Proof. An easy calculation shows that gω = V ⊕ω g is a Lie algebra if and
only if ω is a 2-cocycle, i.e., an element of Z2(g, V ).

To see that every abelian Lie algebra extension q : ĝ → g with ker q = V
(as a g-module) is equivalent to some gω, let σ : g → ĝ be a linear map with
q ◦ σ = idg. Then the map

V × g → ĝ, (v, x) 7→ v + σ(x)

is a bijection, and it becomes an isomorphism of Lie algebras if we endow
V × g with the bracket of gω for

ω(x, y) := [σ(x), σ(y)]− σ([x, y]).

This implies that q : ĝ → g is equivalent to gω, and therefore that the map
Z2(g, V ) → Ext(g, V ) is surjective.

Two Lie algebras gω and gω′ are equivalent as V -extensions of g if and
only if there exists a linear map ϕ : g → V such that the map

ϕ̃ : gω = V × g → gω′ = V × g, (v, x) 7→ (v + ϕ(x), x)

is a Lie algebra homomorphism. This means that

ϕ̃([(v, x), (v′, x′)]) = ϕ̃(x · v′ − x′ · v + ω(x, x′), [x, x′])

=
(
x · v′ − x′ · v + ω(x, x′) + ϕ([x, x′]), [x, x′]

)
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equals

[ϕ̃(v, x), ϕ̃(v′, x′)] = (x · (v′ + ϕ(x′))− x′ · (v + ϕ(x)) + ω′(x, x′), [x, x′])
= (x · v′ − x′ · v + x · ϕ(x′)− x′ · ϕ(x) + ω′(x, x′), [x, x′]),

which is equivalent to

ω′(x, x′)− ω(x, x′) = ϕ([x, x′])− x · ϕ(x′) + x′ · ϕ(x) = −(dϕ)(x, x′).

Therefore gω and gω′ are equivalent abelian extensions of g if and only if ω′−ω
is a coboundary. Hence the map

Z2(g, V ) → Ext(g, V ), ω 7→ [gω]

induces a bijection H2(g, V ) → Ext(g, V ). ut
Example 6.5.19. If g = K is the one-dimensional Lie algebra, then the
g-module structures on a vector space V are in one-to-one correspondence
with endomorphisms D ∈ End(V ).

In this case Cp(g, V ) vanishes for p > 1, and we have

C0(g, V ) = V and C1(g, V ) ∼= V.

With respect to this identification, the map d corresponds to the endomor-
phism D ∈ End(V ), so that

H0(g, V ) = V g = ker D and H1(g, V ) ∼= V/D(V ) = coker (D).

Example 6.5.20. Let g := K2 be the abelian two-dimensional Lie algebra
with the canonical basis e1, e2. Then a g-module structure on a vector space
V corresponds to a pair (D1, D2) of commuting endomorphisms of V .

We have

C1(g, V ) = Hom(K2, V ) ∼= V 2 and C2(g, V ) ∼= V,

where the isomorphism C2(g, V ) → V is given by β 7→ β(e1, e2). As dim g = 2,
we have C3(g, V ) = {0}, so that C2(g, V ) = Z2(g, V ). For (v, w) ∈ V 2 ∼=
C1(g, V ) we have

d(v, w)(e1, e2) = e1 · w − e2 · v = D1(w)−D2(v),

and thus
H2(g, V ) ∼= V/(D1(V ) + D2(V )).

Proposition 6.5.21. If V = g with respect to the adjoint representation, then
Z1(g, g) ∼= der g, B1(g, g) ∼= ad g and

H1(g, g) ∼= out(g) := der g/ ad g

is the space of outer derivations of g.
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Proof. Let V = g with respect to the adjoint representation. For c ∈
C1(g, g) = End(g) we then have

dc(x, y) = [x, c(y)]− [y, c(x)]− c([x, y]),

showing that Z1(g, g) = der g. For c ∈ C0(g, g) ∼= g, we have dc(x) = [x, c],
showing that B1(g, g) = ad g. ut
Definition 6.5.22. Let g be a Lie algebra and V and W modules of g. A short
exact sequence

0 → W
ι−−→V̂

q−−→V → 0 (6.9)

(this means ι injective, q surjective, and im ι = ker q) is called an extension
of V by W . If we identify W with its image in V̂ , this means that V̂ is a
g-module containing W as a submodule such that V̂ /W ∼= V .

Two extensions W ↪→ V̂1 →→ V and W ↪→ V̂2 →→ V are called equivalent if
there exists a module homomorphism ϕ : V̂1 → V̂2 such that the diagram

W
ι1−−→ V̂1

q1−−→ VyidW

yϕ

yidV

W
ι2−−→ V̂2

q2−−→ V

commutes. It is easy to see that this implies that ϕ is an isomorphism of
g-modules (Exercise) and that we thus obtain an equivalence relation on the
class of extensions of V by W . We write Ext(V,W ) for the set of equivalence
classes of module extensions of V by W . We call an extension (6.9) triv-
ial, or say that the extension splits, if there exists a module homomorphism
σ : V → V̂ with q ◦ σ = idV . In this case the map

W ⊕ V → V̂ , (w, x) 7→ ι(w) + σ(x)

is a module isomorphism.

The following proposition gives a cohomological interpretation of the set
Ext(B,A) for two g-modules B and A. In particular it shows that this set
carries a natural vector space structure.

Proposition 6.5.23. For g-modules (ρA, A) and (ρB , B),

Ext(B, A) ∼= H1(g, Hom(B, A)),

where the representation of g on Hom(B, A) is given by

x · ϕ = ρA(x)ϕ− ϕρB(x).

Proof. First we check that a module extension q : C →→ B by the module A
can be written as a space C = A × B on which the g-module representation
is given by



6.5 Lie Algebra Cohomology 197

x · (a, b) = (x · a + ω(x)(b), x · b), (6.10)

where ω ∈ Hom(g, Hom(B, A)) = C1(g, Hom(B,A)). To see this, we simply
choose a linear map σ : B → C with q ◦ σ = idB and define

ω(x)(b) := x · σ(b)− σ(x · b).
Then the linear bijection A×B → C, (a, b) 7→ σ(b)+a is a module isomorphism
with respect to the above module structure.

If ω ∈ C1(g,Hom(B, A)) is given, then the condition that (6.10) defines a
g-module structure on C means that

(
[y, x] · a + ω([y, x])(b), [y, x] · b)

= [y, x] · (a, b) != y · (x · (a, b))− x · (y · (a, b))

=
(
y · (x · a) + y · ω(x)(b) + ω(y)(x · b), y · (x · b)

)

−
(
x · (y · a) + x · ω(y)(b) + ω(x)(y · b), x · (y · b)

)

=
(
[y, x] · a + y · ω(x)(b) + ω(y)(x · b)− x · ω(y)(b)− ω(x)(y · b), [y, x] · b

)

=
(
[y, x] · a + (y · ω(x))(b)− (x · ω(y))(b), [y, x] · b

)

This is equivalent to

ω([y, x]) = y · ω(x)− x · ω(y),

which in turn means that ω ∈ Z1(g, Hom(B,A)). The different parameteriza-
tions of C as B × A correspond to linear maps σ : B → C with q ◦ σ = idB ,
where q : C → B is the quotient map. In this sense we have

ωσ(x)(b) = x · σ(b)− σ(x · b).
For a linear map γ ∈ Hom(B, A), we therefore have

ωσ+γ(x)(b) = ωσ(x)(b) + (x · γ)(b),

i.e., ωσ+γ = ωσ + dγ. We conclude that the different sections lead to co-
homologous cocycles and this observation leads to a bijection Ext(B, A) ∼=
H1

(
g,Hom(B, A)

)
. ut

6.5.3 Invariant Volume Forms and Cohomology

In this subsection we characterize the existence of volume forms in terms of
cohomology. We refer the reader to Appendix B for background material on
exterior products of alternating maps.

Proposition 6.5.24. For a finite-dimensional real Lie algebra g, the follow-
ing are equivalent:
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(i) tr(adx) = 0 for all x ∈ g.
(ii) g carries a volume form µ ∈ Cn(g,R) invariant under the adjoint action.
(iii) Hn(g,R) 6= {0} for n = dim g.
(iv) dimHn(g,R) = 1.

Proof. Let x1, . . . , xn be a basis for g and x∗1, . . . , x
∗
n the dual basis for g∗.

Then
µ = x∗1 ∧ · · · ∧ x∗n

is a nonzero volume form on g, so that Cn(g,R) = Rµ (cf. Definition B.2.27).
(i) ⇔ (ii): For any x ∈ g we have

Lxµ = − tr(adx)µ.

In fact, let [x, xj ] =
∑n

k=1 akjxk. Then

(Lxµ)(x1, . . . , xn) = −
n∑

j=1

µ(x1, . . . , xj−1, [x, xj ], xj+1, . . . , xn)

= −
n∑

j=1

ajjµ(x1, . . . , xj−1, xj , xj+1, . . . , xn) = −
n∑

j=1

ajj = − tr(adx).

(iii) ⇔ (iv) follows from dim Cn(g,R) = 1.
(ii) ⇔ (iii): For each j we have

ixj µ = (−1)j−1x∗1 ∧ · · ·x∗j−1 ∧ x∗j+1 · · · ∧ x∗n,

and these elements form a basis for Cn−1(g,R). Therefore dµ = 0 and the
Cartan Formula imply that

Bn(g,R) = d(igµ) = Lgµ.

This space vanishes if and only if µ is invariant if and only if Hn(g,R) is
nonzero. ut

For reasons that we shall understand later in our discussion of invariant
measures on Lie groups, Lie algebras satisfying the equivalent conditions from
the preceding proposition are called unimodular .

Example 6.5.25. (a) Each perfect real Lie algebra g is unimodular. In fact,

tr ◦ ad: g → R

is a homomorphism of Lie algebras, so that g = [g, g] ⊆ ker(tr ◦ ad). In par-
ticular, each semisimple Lie algebra is unimodular.

(b) Each nilpotent Lie algebra is unimodular because adx is nilpotent for
each x ∈ g, which implies in particular that tr(adx) = 0.

(c) The 2-dimensional nonabelian Lie algebra g = span{e1, e2} with
[e1, e2] = e2 is not unimodular because tr(ad e1) = 1 6= 0.
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6.5.4 Cohomology of Semisimple Lie Algebras

In this subsection, we discuss the connection between Weyl’s and Levi’s The-
orems and a more general theorem of J. H. C. Whitehead, concerning the
cohomology of finite-dimensional modules of semisimple Lie algebras.

If s is a semisimple finite-dimensional Lie algebra, then Weyl’s Theorem
states that every finite-dimensional g-module V is semisimple. This means
that every submodule has a module complement, and therefore that all module
extensions are trivial. In view of Proposition 6.5.23, this is equivalent to

H1(g, Hom(A,B)) = {0}

for each pair of finite-dimensional g-modules A and B. For A = K, the trivial
module, we have Hom(A,B) ∼= B as g-modules, and therefore we obtain
H1(g, B) = {0}. This argument proves the

Lemma 6.5.26 (First Whitehead Lemma). If g is a finite-dimensional
semisimple Lie algebra, then each finite-dimensional g-module V satisfies

H1(g, V ) = {0}.

From the above argument it is easy to see that the First Whitehead Lemma
says essentially the same as Weyl’s Theorem.

Now let ω ∈ Z2(g, V ) be a 2-cocycle and gω := V ⊕ω g the corresponding
abelian Lie algebra extension of g by V . Then V = rad(gω) because V is
an abelian ideal of gω and the quotient gω/V ∼= g is semisimple. Therefore
Levi’s Theorem implies the existence of a Levi complement in ĝω, which means
that there exists a Lie algebra homomorphism σ : g → gω, splitting the exact
sequence V ↪→ gω

q→→ g, i.e., satisfying q ◦ σ = idg. Now Proposition 6.5.18
implies that ω is a coboundary, which leads to the

Lemma 6.5.27 (Second Whitehead Lemma). If g is a finite-dimensional
semisimple Lie algebra, then each finite-dimensional g-module V satisfies

H2(g, V ) = {0}.

Again we see from the argument above that the Second Whitehead Lemma
is essentially the case of Levi’s Theorem where α : g → s is a surjective homo-
morphism onto a semisimple Lie algebra s with abelian kernel, but this was
the crucial case in the proof of Levi’s Theorem.

We now aim at more general results concerning also the higher degree
cohomology of modules of semisimple Lie algebras.

Lemma 6.5.28. If ω ∈ Cp(g, V )g is a g-invariant element with respect to
the action ρ from Lemma 6.5.8, and d0 is the Chevalley–Eilenberg differential
with respect to the trivial g-module structure on V , then dω = −d0ω.
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Proof. First we note that for x0, x1, . . . , xp ∈ g, the invariance of ω implies
that

xi · ω(x0, . . . , x̂i, . . . , xp)
= ω([xi, x0], x1, . . . , x̂i, . . . , xp) + . . . + ω(x0, . . . , x̂i, . . . , [xi, xp])

=
i−1∑

j=0

(−1)jω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

+
p∑

j=i+1

(−1)j+1ω([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xp).

This leads to
p∑

i=0

(−1)ixi · ω(x0, . . . , x̂i, . . . , xp)

=
∑

j<i

(−1)j+iω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

+
∑

j>i

(−1)i+j+1ω([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xp)

=
∑

j<i

(−1)j+iω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

+
∑

j<i

(−1)i+j+1ω([xj , xi], . . . , x̂j , . . . , x̂i, . . . , xp)

=
∑

j<i

(−1)j+iω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

+
∑

j<i

(−1)i+jω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

= 2
∑

j<i

(−1)i+jω([xi, xj ], . . . , x̂j , . . . , x̂i, . . . , xp)

= −2(d0ω)(x0, . . . , xp).

We conclude that dω = −2d0ω + d0ω = −d0ω. ut
Lemma 6.5.29. If V is a finite-dimensional module over the semisimple Lie
algebra g, then

Hp(g, V ) ∼= Zp(g, V )g/Bp(g, V )g,

i.e., each cohomology class can be represented by an invariant cocycle.

Proof. From Proposition 4.5.17 we obtain for each p ∈ N0 the decomposition

Zp(g, V ) = Zp(g, V )g ⊕ g · Zp(g, V ).

Since g acts trivially on the quotient space Hp(g, V ), we have g · Zp(g, V ) ⊆
Bp(g, V ), and the assertion follows. ut
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Proposition 6.5.30. If V is a trivial g-module, then

Hp(g, V ) ∼= Zp(g, V )g = Cp(g, V )g for each p ∈ N0.

Proof. The preceding Lemma 6.5.29 shows that each cohomology class is rep-
resented by an invariant cocycle. Further, Lemma 6.5.28 and the triviality of
V implies that each g-invariant cochain ω satisfies d0ω = dω = −d0ω, so that
ω is a cocycle. This proves Cp(g, V )g = Zp(g, V )g.

To see that Bp(g, V )g vanishes, we note that we have the direct sum de-
composition

Cp−1(g, V ) = Cp−1(g, V )g ⊕ g · Cp−1(g, V ),

and likewise
Bp(g, V ) = Bp(g, V )g ⊕ g ·Bp(g, V ),

so that
Bp(g, V )g = d(Cp−1(g, V )g) = {0},

since Lemma 6.5.11 shows that d
(
g·Cp−1(g, V )

) ⊆ g·d(Cp−1(g, V )
)
. Therefore

Hp(g, V ) = Zp(g, V ), and the proof is complete. ut
Example 6.5.31. For each semisimple Lie algebra g, we have

H3(g,K) 6= {0}.
In fact, the invariance of the Cartan–Killing form κ implies that

Γ (κ)(x, y, z) := κ([x, y], z)

is an invariant alternating 3-form on g, hence a nonzero element of C3(g,K)g ∼=
H3(g,K).

Lemma 6.5.32. If V is a real module over the real Lie algebra g and VC the
corresponding complex gC-module, then

Hp(g, V )C ∼= Hp(gC, VC) for p ∈ N0.

Proof. Since any alternating p-form ω ∈ Cp(g, V ) extends uniquely to a com-
plex p-linear map ωC ∈ Cp(gC, VC), we have an embedding

Cp(g, V ) ↪→ Cp(gC, VC).

The image of this map is the set of all elements η ∈ Cp(gC, VC), whose values
on gp lie in the real subspace V ∼= 1⊗ V ⊆ VC. Since any η ∈ Cp(gC, VC) can
be written in a unique fashion as a η1 + iη2 with ηj(gp) ⊆ V , we see that

Cp(gC, VC) ∼= Cp(g, V )C.

The subspaces of cocycles and coboundaries inherit the corresponding prop-
erty, and from that the assertion follows. ut
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Theorem 6.5.33 (Whitehead’s Vanishing Theorem). If V is a finite-
dimensional module over the semisimple Lie algebra g with V g = {0}, then
Hp(g, V ) = {0} for any p ∈ N0.

Proof. In view of Weyl’s Theorem, the condition V g = {0} implies that V is
a direct sum of simple nontrivial g-modules V =

⊕k
i=1 Vi. Then

Hp(g, V ) ∼=
k⊕

i=1

Hp(g, Vi)

(Exercise), so that we may w.l.o.g. assume that V is a simple nontrivial mod-
ule. By Lemma 6.5.32, we may further assume that g and V are complex.

In view of Lemma 6.5.29, we have to show that Zp(g, V )g ⊆ Bp(g, V )g. For
p = 0, this follows from our assumption Z0(g, V ) = V g = {0}. Let x1, . . . , xm

be a basis for g and x1, . . . , xm the dual basis with respect to the Cartan–
Killing form. For p > 0, we then define a linear map

Γ : Cp(g, V ) → Cp−1(g, V ), Γ (ω) :=
m∑

j=1

ρV (xj) ◦ i(xj)ω.

First we show that Γ is g-equivariant. For x ∈ g, we have

x · Γ (ω) =
m∑

j=1

x · (ρV (xj) ◦ i(xj)ω
)

=
m∑

j=1

ρV ([x, xj ]) ◦ i(xj)ω + ρV (xj) ◦ i([x, xj ])ω + Γ (x · ω).

If

ad x(xj) =
n∑

k=1

akjxk and ad x(xj) =
n∑

k=1

akjxk,

then akj = κ([x, xj ], xk) = −κ(xj , [x, xk]) = −ajk, and this leads to

m∑

j=1

ρV ([x, xj ]) ◦ i(xj)ω + ρV (xj) ◦ i([x, xj ])ω

=
m∑

j,k=1

akjρV (xk) ◦ i(xj)ω + akjρV (xj) ◦ i(xk)ω

=
m∑

j,k=1

akjρV (xk) ◦ i(xj)ω + ajkρV (xk) ◦ i(xj)ω = 0.

We conclude that Γ is g-equivariant, hence maps g-invariant cochains to
g-invariant cochains.
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For ω ∈ Zp(g, V )g, we thus have Γ (ω) ∈ Cp−1(g, V )g. With Lemma 6.5.28
we obtain d0ω = −dω = 0. We also note that the representation L of g
on C(g, V ) can be written as L = ρ0 + ρ+, where ρ0 is the representation
corresponding to the trivial g-module structure on V . Since ω is Lg-invariant,
we therefore have

ρ0(x)ω = −ρV (x) ◦ ω.

Next we calculate with the Cartan formulas for the trivial g-module V and
the corresponding representation ρ0 of g on C(g, V ):

d(Γ (ω)) = −d0(Γ (ω)) = −
m∑

j=1

ρV (xj) ◦ d0
(
ixj ω

)

= −
m∑

j=1

ρV (xj) ◦
(
ρ0(xj)ω − ixjd0ω

)
=

m∑

j=1

ρV (xj)ρV (xj) ◦ ω

= ρV (Cg) ◦ ω,

where Cg ∈ U(g) is the universal Casimir operator of g. Since V is a simple
g-module, ρV (Cg) is a nonzero multiple of idV (Lemma 6.3.17), so that ω is
a coboundary. ut

6.5.5 Cohomology of Nilpotent Lie Algebras

We conclude this section with a short subsection in which we show that a
certain vanishing result for the cohomology of nilpotent Lie algebras implies
that all Cartan subalgebras of a solvable Lie algebra are conjugate.

Proposition 6.5.34. Let V be a finite-dimensional module over the nilpotent
Lie algebra h. If V 0(h) = {0}, then

Hp(h, V ) = {0} for p ∈ N0.

Proof. If V and h are real, then VC carries a natural hC-module structure
with V 0(hC) = V 0(h)C = {0} (Exercise). In view of Lemma 6.5.32, we may
therefore assume that V and h are complex, so that our assumption implies
that

V =
⊕

0 6=λ∈h∗
V λ(h)

(Lemma 5.1.3). We therefore have

Hp(h, V ) =
⊕

0 6=λ∈h∗
Hp(h, V λ(h)),

so that we may assume that V = V λ(h) for some nonzero λ ∈ h∗.
Then the action of h on Cp(g, V ) is given by
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Lxω = ρV (x) ◦ ω + ρ0(x)ω = ρ+(x)ω + ρ0(x)ω,

where ρ0 is the action corresponding to the trivial module structure on V .
The operator ρ0(x) is on the larger space Multp(g, V ) a sum of p + 1 pairwise
commuting linear maps, all of which are nilpotent (cf. Lemma 6.5.8). These
in turn commute with ρ+(x), which is a sum of λ(x)1 and the nilpotent linear
map ρV (x)− λ(x)1. This implies that

Cp(h, V ) = Cp(h, V )λ(h)

under the action of h. We therefore have

Zp(h, V ) = Zp(h, V )λ(h) ⊆ span(LhZp(h, V )) ⊆ Bp(h, V ),

which implies that Hp(h, V ) vanishes. ut
Theorem 6.5.35 (Conjugacy Theorem for Cartan Subalgebras of
Solvable Lie Algebras). Let h and h′ be Cartan subalgebras of the solvable
Lie algebra g. Then there exists an element x ∈ C∞(g) =

⋂
n∈N Cn(g) with

ead xh = h′.

Proof. We use induction on the dimension of g. The case g = {0} is trivial.
Now assume that g 6= {0}. The last nonzero term of the derived series of g is
an abelian ideal of g, so that g possesses a nonzero minimal abelian ideal n.
Let ϕ : g → g/n denote the quotient homomorphism. Then ϕ(h) and ϕ(h′) are
Cartan subalgebras of g/n (Proposition 5.1.11), so that the induction hypoth-
esis implies the existence of an element y = ϕ(x) ∈ C∞(g/n) = ϕ(C∞(g))
with ead yϕ(h) = ϕ(h′). Replacing h by ead xh, we may therefore assume that
ϕ(h) = ϕ(h′), i.e.,

h + n = h′ + n.

Then h and h′ are Cartan subalgebras of the subalgebra h + n (Lem-
ma 5.1.11(iii)). If h + n 6= g, the assertion follows from the induction hy-
pothesis. We may thus assume that g = h + n = h′ + n.

In view of the minimality of n, we either have n = [g, n] or [g, n] = {0}.
In the latter case, n is central in g, so that n ⊆ h ∩ h′, so that h = h + n =
h′ + n = h′. This leaves the first case n = [g, n]. In this case n ⊆ C∞(g) and n
is a simple g-module. As n is abelian and g = n + h, the g-action on n factors
through an action of h, so that n is a simple h-module. If n ∩ h 6= {0}, the
simplicity of the h-module n yields n ⊆ h, and therefore h = g, which leads to
h = h′.

We may therefore assume that h∩n = {0}, so that g ∼= noh is a semidirect
sum. Since h and h′ have the same dimension, we also have h′ ∩ n = {0}, and
there exists a linear map f : h → n for which

h′ = {h + f(h) : h ∈ h}
is the corresponding graph. Since h′ is a subalgebra, we have
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[h + f(h), h′ + f(h′)] = [h, h′] + [h, f(h′)]− [h′, f(h)] ∈ h′,

showing that
f([h, h′]) = [h, f(h′)]− [h′, f(h)],

i.e., f ∈ Z1(h, n). As n is a simple nontrivial h-module, we have n0(h) = {0},
and Proposition 6.5.34 implies that H1(h, n) = {0}. Hence there exists a v ∈ n
with f(h) = [h, v] for all h ∈ h, and then

ead vh = (1 + ad v)(h) = {h + [x, h] : h ∈ h} = h′. ut

Exercises for Section 6.5

Exercise 6.5.1. (a) A central extension q : ĝ → g with kernel z is trivial if
and only if z ∩ [ĝ, ĝ] = {0}.
(b) For a vector space V , the central extension

K1 ↪→ gl(V ) →→ pgl(V ) := gl(V )/K1

is trivial if and only if dimV < ∞ and the characteristic char(K) of the field
K is either 0 or does not divide dim(V ). If this is not the case, then there
exist endomorphisms P,Q ∈ End(V ) with [P,Q] = 1.

Exercise 6.5.2. (a) Let V be a module over the Lie algebra g and V ∗ be the
dual space. Then V ∗ becomes a g-module with

(x · f)(v) := −f(x · v) for x ∈ g, f ∈ V ∗, v ∈ V.

(b) If V1, . . . , Vn and W are g-modules, then the space L of n-linear maps
V1 × · · · × Vn → W carries a g-module structure defined by

(x · f)(v1, . . . , vn) := x · f(v1, . . . , vn)−
n∑

i=1

f(v1, . . . , vi−1, x · vi, vi+1, . . . , vn).

Exercise 6.5.3. Let V1, . . . , Vn be modules of the Lie algebra g. Then the
tensor product E := V1 ⊗ . . .⊗ Vn becomes a g-module with

x · (v1 ⊗ . . .⊗ vn) := x · v1 ⊗ . . .⊗ vn + v1 ⊗ x · v2 ⊗ . . .⊗ vn + v1 ⊗ . . .⊗ x · vn.

Exercise 6.5.4. Let V and W be two finite-dimensional g-modules and con-
sider the linear isomorphism

Φ : V ∗⊗W → Hom(V,W ), Φ(f⊗w)(v) := f(v)w, f ∈ V ∗, w ∈ W, v ∈ V.

Show that Φ is an isomorphism of g-modules if the g-module structure on
Hom(V, W ), defined in Proposition 6.5.23, and the g-module structure which
is defined by Exercises 6.5.2 and 6.5.3.
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Exercise 6.5.5. R2 becomes an sl2(R)-module by x · v := x(v). Show:

(i) R2 is a simple sl2(R)-module.
(ii) The sl2(R)-module R2 ⊗ R2 splits into the direct sum of two simple

sl2(R)-modules.

Exercise 6.5.6. Let κ : g× g → R be an invariant bilinear form and put

Γ (κ)(x, y, z) := κ([x, y], z).

Show that:

(a) If κ is skew-symmetric, then Γ (κ) = 0.
(b) If κ is symmetric, then Γ (κ) ∈ Z3(g,K) is a 3-cocycle.

Exercise 6.5.7. Show directly by computation that the Chevalley–Eilenberg
differential d : C(g, V ) → C(g, V ) satisfies d2 = 0.

6.6 General Extensions of Lie Algebras

In this section we discuss a method to classify extensions of a Lie algebra
g by a Lie algebra n in terms of data associated to these two Lie algebras.
This generalizes the classification of abelian extension of g by a g-module V
in terms of the second cohomology space H2(g, V ).

Throughout this section, we shall denote an extension of g by n by a short
exact sequence

0 → n
ι−−→ĝ

q−−→g → 0,

where we identify n with the ideal ι(n) of ĝ to simplify notation.

6.6.1 g-Kernels

One of the major difficulties of extensions by nonabelian Lie algebras is that
n acts nontrivially on itself by the adjoint action of ĝ, so that the action of
ĝ on n does not factor through an action of g. To overcome this problem, we
introduce the concept of a g-kernel:

Definition 6.6.1. Recall the Lie algebra out(n) := der(n)/ ad(n) of outer
derivations of n and write [D] for the image of a derivation D in out(n). A
g-kernel for n is a homomorphism

s : g → out(n)

of Lie algebras. As ad(n) acts trivially on the center z(n), we have a natural
out(n)-module structure on z(n), so that each g-kernel s : g → out(n) defines
in particular a g-module structure on z(n).
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Remark 6.6.2. If n is abelian, then a g-kernel for n is simply a homomor-
phism s : g → der(n) since ad(n) = {0}.
Lemma 6.6.3. For each extension q : ĝ → g of g by the Lie algebra n, the
adjoint action of ĝ on the ideal n induces a homomorphism

s : g → out(n), q(x) 7→ [adĝ(x)|n],

called the corresponding g-kernel. Equivalent extensions define the same
g-kernel.

Proof. Since the adjoint representation

adn : ĝ → der(n), x 7→ ad(x)|n
maps n onto ad(n), it factors through a homomorphism s : g ∼= ĝ/n → out(n),
satisfying s(q(x)) = [adĝ(x)|n].

If ϕ : ĝ1 → ĝ2 is an equivalence of extensions of g by n, inducing the
identity on n, then q2 ◦ ϕ = q1, and we have for each x ∈ ĝ1 the relation

adĝ1(x)|n = ϕ ◦ adĝ1(x)|n = adĝ2(ϕ(x))|n.

Therefore the corresponding g-kernels satisfy

s1(q1(x)) = [adĝ1(x)|n] = [adĝ2(ϕ(x))|n] = s2(q2(ϕ(x))) = s2(q1(x)).

This proves that s2 = s1. ut
For a given g-kernel s for n, we write Ext(g, n)s for the set of equivalence

classes of extensions of g by n for which s is the corresponding g-kernel in
the sense of Lemma 6.6.3. The classification of all extensions of g by n now
decomposes into two different problems:

(P1) For a fixed g-kernel s we have to parameterize the set Ext(g, n)s.
(P2) We need a method to decide for which g-kernels the set Ext(g, n)s is

nonempty.

Let q : ĝ → g be an extension corresponding to the g-kernel s. To obtain
a suitable description of ĝ in terms of g and n, we choose a linear section
σ : g → ĝ of q. Then the linear map

Φ : n× g → ĝ, (n, x) 7→ n + σ(x)

is an isomorphism of vector spaces. To express the Lie bracket of ĝ in terms
of the corresponding product coordinates, we define the linear map

S : g → der n, S(x) := adn(σ(x)) := (ad σ(x))|n
and the alternating bilinear map
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ω : g× g → n, ω(x, y) := [σ(x), σ(y)]− σ([x, y]).

Then Φ is an isomorphism of Lie algebras if we endow n × g with the Lie
bracket

[(n, x), (n′, x′)] := ([n, n′] + S(x)n′ − S(x′)n + ω(x, x′), [x, x′]). (6.11)

Remark 6.6.4. It is easy to verify directly that if n and g are Lie algebras,
ω ∈ C2(g, n) and S ∈ C1(g, der(n)), then (6.11) defines a Lie bracket on n× g
if and only if

[S(x), S(y)]− S([x, y]) = ad(ω(x, y)) for x, y ∈ g (6.12)

and
(dSω)(x, y, z) :=

∑

cycl.

S(x)ω(y, z)− ω([x, y], z) = 0. (6.13)

Definition 6.6.5. If g and n are Lie algebras, then a factor system for (g, n)
is a pair (S, ω) with S ∈ C1(g,der n) and ω ∈ C2(g, n), satisfying (6.12) and
(6.13).

We write ĝ := n ×(S,ω) g for the corresponding Lie algebra and note
that q : ĝ → g, q(n, x) = x, is a surjective homomorphism with kernel
n ∼= n × {0}. The corresponding g-kernel is given by s : g → out(n), s(x) =
[S(x)]. In order to keep track of the g-action on z(n) induced by s we write
Zk(g, z(n))s, Bk(g, z(n))s, and Hk(g, z(n))s instead of Zk(g, z(n)), Bk(g, z(n)),
and Hk(g, z(n)).

Theorem 6.6.6. Let s : g → out(n) be a g-kernel for n. If Ext(g, n)s 6= ∅ and
S ∈ C1(g, der n) satisfies s(x) = [S(x)] for each x ∈ g, then each extension of
g by n corresponding to s is equivalent to some n ×(S,ω) g, where (S, ω) is a
factor system. For any such factor system we obtain a bijection

Γ : H2(g, z(n))s → Ext(g, n)s, [η] 7→ [n×(S,ω+η) g].

Proof. Let q : ĝ → g be any extension of g by n corresponding to s. If σ : g → ĝ
is a linear section, then we have [S(x)] = s(x) = [adn(σ(x))], so that there
exists a linear map γ : g → n with S(x) = adn(σ(x))+ad(γ(x)) for each x ∈ g.
Then the new section σ̃ := σ + γ satisfies S(x) = adn(σ̃(x)), so that

ω(x, y) := [σ̃(x), σ̃(y)]− σ̃([x, y])

leads to a factor system (S, ω) with ĝ ∼= n×(S,ω) g.
For any other factor system (S, ω̃), we have η := ω̃ − ω ∈ C2(g, z(n)) with

dgη = dSω̃ − dSω = 0.

Here we use that g-module structure on z(n) is given by x · z = S(x)z, so
that the corresponding Chevalley–Eilenberg differential dg coincides with dS

on z(n)-valued cochains. We conclude that the map
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Z2(g, z(n))s → Ext(g, n)s, [η] 7→ [n×(S,ω+η) g]

is surjective.
If ϕ : n×(S,ω)g → n×(S,ω′)g is an equivalence of extensions, then ϕ(n, x) =

(n + γ(x), x) for some linear map γ : g → n. In view of

(S(x)n + [γ(x), n], 0) = [(γ(x), x), (n, 0)] = [ϕ(0, x), (n, 0)] = ϕ(S(x)n, 0)
= (S(x)n, 0),

we have γ(g) ⊆ z(n). Further,

(ω(x, y) + γ([x, y]), [x, y]) = ϕ([(0, x), (0, y)]) = [(γ(x), x), (γ(y), y)]
= (S(x)γ(y)− S(y)γ(x) + ω′(x, y), [x, y])

implies that ω = dgγ+ω′. If, conversely, ω−ω′ = dgγ for some γ ∈ C1(g, z(n)),
then ϕ(n, x) = (n + γ(x), x) defines an equivalence of extensions

ϕ : n×(S,ω) g → n×(S,ω′) g,

as a straight forward calculation shows. We conclude that the extensions de-
fined by two factor systems (S, ω) and (S, ω′) are equivalent if and only if
ω − ω′ ∈ B2(g, z(n)), and this implies the theorem. ut
Remark 6.6.7. The preceding theorem shows that the set Ext(g, n)s, if
nonempty, has the structure of an affine space whose translation group is
H2(g, z(n))s

∼= Ext(g, z(n))s (cf. Proposition 6.5.18).

Remark 6.6.8. The group H2(g, z(n))s very much depends on the g-kernel s.
Let g = K2 and n = K. Then C2(g, z(n)) is 1-dimensional. Further,
dim g = 2 implies C3(g, z(n)) = {0}, so that each 2-cochain is a cocycle.
Since B2(g, z(n))s vanishes if the module z(n) is trivial and coincides with
Z2(g, z(n))s otherwise, we have

H2(g, z(n))s
∼=

{
K for g · z(n) = {0}
{0} for g · z(n) 6= {0}.

Example 6.6.9. If g is finite-dimensional semisimple, then the Second White-
head Lemma 6.5.27 implies that H2(g, z(n))s = {0} for each g-kernel
s : g → out(n). Further, Corollary 4.6.10 implies that s lifts to a homomor-
phism S : g → der(n). Therefore any extension ĝ of g by a finite-dimensional
Lie algebra n is a semidirect product noS g and all the sets Ext(g, n)s consist
of only one element.

Remark 6.6.10. If z(n) = {0}, then H2(g, z(n))s = {0} for each g-kernel s, so
that all sets Ext(g, n)s contain at most one element (Theorem 6.6.6). On the
other hand, we obtain for each g-kernel s : g → out(n) the pullback extension

ĝ := s∗ der(n) := {(x,D) ∈ g× der(n) : [D] = s(x)}
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of g by ad(n) ∼= n. Since this extension obviously corresponds to the g-kernel
s, it follows that Ext(g, n)s 6= ∅ for any g-kernel and further that Ext(g, n)s =
{[s∗ der(n)]}.
Remark 6.6.11 (Split extensions). An extension q : ĝ → g of g by n splits
if and only if there exists a homomorphism σ : g → ĝ with q ◦ σ = idg. Then
S(x) := ad(σ(x))|n defines a homomorphism S : g → der(n) with

ĝ ∼= noS g ∼= n×(S,0) g.

(a) For a g-kernel s : g → out(n), the existence of a split extension in
the set Ext(g, n)s therefore is equivalent to the existence of a homomorphism
S : g → der(n) with [S(x)] = s(x) for each x ∈ g. Such a lift always exists if
the extension der(n) of out(n) by ad n splits, but if this is not the case, then
g = out(n) and s = idg is a g-kernel for which a homomorphic lift does not
exist.

(b) If n is abelian, then each set Ext(g, n)s contains exactly one split exten-
sion, namely nos g, but in general Ext(g, n)s may contain different classes of
split extensions. To understand this phenomenon, consider two homomorphic
lifts S, S′ : g → der(n) of the g-kernel s. Then γ := S′−S : g → ad n is a linear
map with S′ = S + γ, and the requirement that S′ also is a homomorphism
of Lie algebras is equivalent to γ being a crossed homomorphism, i.e.,

[S(x), γ(y)]−[S(y), γ(x)]−γ([x, y])+[γ(x), γ(y)] = 0 for x, y ∈ g. (6.14)

A particularly simple case arises for s = 0. Then Ext(g, n)s contains the
class of the split extension n⊕ g (Lie algebra direct sum). For the lift S = 0,
the other lifts simply correspond to homomorphisms γ : g → ad n. For any
such homomorphism, there exists a linear lift γ̃ : g → n with ad ◦γ̃ = γ, but
in general γ̃ is not a homomorphism of Lie algebras. Then

ω(x, y) := [γ̃(x), γ̃(y)]− γ̃([x, y])

is a Lie algebra cocycle in Z2(g, z(n)), corresponding to the central extension

γ∗n = {(x, n) ∈ g× n : γ(x) = adn}
of g by z(n). We thus obtain a well defined map

Hom(g, ad n) → H2(g, z(n)), γ 7→ [γ∗n] = [ω].

We are interested in a criterion for the split extension noγ g to be equivalent
to the trivial one.

For any lift γ̃ as above, the map

ϕ : n×(γ,ω) g → n⊕ g, (n, x) 7→ (n + γ̃(x), x)

is a homomorphism of Lie algebras, hence an equivalence of extensions because
we have for the n-components:
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[n + γ̃(x), n′ + γ̃(x′)] = [n, n′] + γ(x)n′ − γ(x′)n + [γ̃(x), γ̃(x′)]

=
(
[n, n′] + γ(x)n′ − γ(x′)n + ω(x, x′)

)
+ γ̃([x, x′]).

With Theorem 6.6.6 we therefore see that n oγ g is equivalent to the trivial
extension if and only if the cohomology class [ω] ∈ H2(g, z(n)) vanishes, which
in turn is equivalent to the existence of a homomorphic lift γ̃ of γ.

If g and ad n are abelian, then we have a bracket map

η : ad n× ad n → z(n), η(ad n, ad n′) := [n, n′],

and for a homomorphism γ : g → ad n the extension γ∗n is trivial if and only
if γ∗η vanishes, i.e., γ(g) is isotropic for η.

Example 6.6.12. We have seen above, that the theory of extensions of a Lie
algebra g by a Lie algebra n simplifies significantly if the extension der(n) of
out(n) by ad(n) splits. Here we describe a series of finite-dimensional nilpotent
Lie algebras, for which this is not the case.

For each n ≥ 3, we consider the (n + 1)-dimensional filiform Lie algebra
Ln with a basis e0, . . . , en, where all nonzero brackets between basis elements
are

[e0, ei] = ei+1, i = 1, . . . , n− 1.

Clearly, Ln is generated as a Lie algebra by e0 and e1, and Ln
∼= V oAK, where

V = span{e1, . . . , en} and A ∈ gl(V ) is the nilpotent shift corresponding to
the action of ad e0 on V . Further, z(Ln) = Ken, so that ad(Ln) ∼= Ln−1 is an
n-dimensional Lie algebra. One easily verifies that the following maps define
derivations of Ln:

hk := (ad e0)k and k = 2, . . . , n− 1,

t1(ei) :=
{

0 for i = 0
ei for i > 0,

t2(ei) :=
{

e0 for i = 0
(i− 1)ei for i > 0,

and

t3(ei) :=
{

e1 for i = 0
0 for i > 0

(cf. [GK96]). For the brackets of these derivations, we find

[t1, t2] = 0, [t1, t3] = t3, [t2, t3] = −t3, [hi, hj ] = 0,

[t1, hk] = 0, [t2, hk] = khk, and [t3, hk] = ad(ek).

Considering the action on the hyperplane ideal V , we see that e0, h2, . . . , hk−1,
t1 and t2 lead to a linearly independent set of endomorphisms of V . Taking also
the values on e0 into account, we see that the ti, i = 1, 2, 3, hk, k = 2, . . . , n−1
and ad(ei), i = 0, . . . , n− 1, are linearly independent. Therefore

span{[hk], [ti] : i = 1, 2, 3; k = 2, . . . , n− 1}
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is an (n+1)-dimensional Lie subalgebra of out(Ln) with the bracket relations

[[t1], [hk]] = 0, [[t2], [hk]] = k[hk] and [[t3], [hk]] = 0.

We consider the 3-dimensional Lie subalgebra

g := span{[t1], [t3], [h2]} ⊆ out(Ln)

and claim that the Lie algebra extension

0 → ad(n) ⊆ ĝ := ad(n) + span{t1, t3, h2} →→ g → 0

does not split. This implies in particular that der(n) does not split as an
extension of out(n).

Suppose that ĝ does split, i.e., that there are 3 elements z1, z3, x2 ∈ Ln

such that the derivations

t̃1 := t1 + ad(z1), t̃3 := t3 + ad(z3) and h̃2 := h2 + ad(x2)

satisfy
[t̃1, t̃3] = t̃3 and [t̃1, h̃2] = [t̃3, h̃2] = 0.

The first relation is equivalent to

ad(t1z3 − t3z1 + [z1, z3]) = ad(z3).

Writing z3 = z0
3e0 + z′3 with z′3 ∈ V , this leads to

ad(z′3 − z0
1e1 + [z1, z3]) = ad(z0

3e0 + z′3),

and therefore to
ad(−z0

1e1 + [z1, z3]) = ad(z0
3e0).

Applying this identity to e1, we get z0
3 = 0, so that z3 = z′3 ∈ V .

Next we analyze the relation [t̃3, h̃2] = 0, which is equivalent to

0 = ad(e2 + t3x2 − h2z3 + [z3, x2]).

Since e2 − h2z3 + [z3, x2] ∈ span{e2, . . . , en} and t3x2 ∈ Ke1, it follows that
t3x2 = 0 and hence x2 ∈ V . Then [z3, x2] = 0, and we derive ad(e2−h2z3) = 0,
which leads to the contradiction e2 ∈ h2(V ) +Ken ⊆ span{e3, . . . , en}.

6.6.2 Integrability of g-Kernels

We call a g-kernel s : g → out(n) integrable if there exists a factor system
(S, ω) with s(x) = [S(x)] for each x ∈ g which is equivalent to Ext(g, n)s 6= ∅
(cf. Theorem 6.6.6).
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Remark 6.6.13. Let

Qn : der(n) → out(n) := der(n)/ ad n

denote the quotient homomorphism and s : g → out(n). Then there exists a
linear map S : g → der n with Qn◦S = s. Since s and Qn are homomorphisms,

[S(x), S(y)]− S([x, y]) ∈ ad(n)

for x, y ∈ g, and from that we derive the existence of an alternating bi-
linear map ω ∈ C2(g, n) satisfying (6.12). Indeed, for any linear section
α : ad(n) → n, we may put ω(x, y) := α([S(x), S(y)] − S([x, y])). In gen-
eral, the relation dSω = 0 will not be satisfied.

Definition 6.6.14. For the following calculations, we introduce a product
structure on C(g, n), defined for α ∈ Cp(g, n) and β ∈ Cq(g, n) by

[α, β](x1, . . . , xp+q)

:=
∑

σ∈Sh(p,q)

sgn(σ)[α(xσ(1), . . . , xσ(p)), β(xσ(p+1), . . . , xσ(p+q))],

where Sh(p, q) denotes the set of all (p, q)-shuffles in Sp+q, i.e., all permutations
with

σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(p + q).

For p = 1 and q = 2 we then have

[α, α](x, y) = [α(x), α(y)]− [α(y), α(x)] = 2[α(x), α(y)]

and
[α, β](x, y, z) =

∑

cycl.

[α(x), β(y, z)],

as well as

[β, α](x, y, z) =
∑

cycl.

[β(x, y), α(z)] = −[α, β](x, y, z).

In particular, the Jacobi identity implies that

[α, [α, α]] = 0.

We also put for α ∈ C1(g, n):

(dSα)(x, y) := S(x)α(y)− S(y)α(x)− α([x, y]).

Lemma 6.6.15. Every γ ∈ C1(g, n) satisfies 1
2dS [γ, γ] = [dSγ, γ] = −[γ, dSγ].
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Proof. We calculate

1
2
(dS [γ, γ])(x, y, z) =

∑

cycl.

S(x)[γ(y), γ(z)]− [γ([x, y]), γ(z)]

=
∑

cycl.

[S(x)γ(y), γ(z)] + [γ(y), S(x)γ(z)]− [γ([x, y]), γ(z)]

=
∑

cycl.

[S(x)γ(y), γ(z)] + [γ(z), S(y)γ(x)]− [γ([x, y]), γ(z)]

=
∑

cycl.

[(dSγ)(x, y), γ(z)] = [dSγ, γ](x, y, z). ut

Lemma 6.6.16. If S : g → der(n) is a linear map and ω ∈ C2(g, n) satisfies
(6.12), then dSω ∈ Z3(g, z(n))s, where s = Qn ◦ S.

Proof. First we show that im (dSω) ⊆ z(n):

ad(dSω(x, y, z))

=
∑

cycl.

ad(S(x)ω(y, z))− ad(ω([x, y], z))

=
∑

cycl.

[S(x), ad(ω(y, z))]− [S([x, y]), S(z)]− S([[x, y], z])

=
∑

cycl.

[S(x), [S(y), S(z)]]− [S(x), S([y, z])]− [S([x, y]), S(z)]− S([[x, y], z])

=
∑

cycl.

[S(x), [S(y), S(z)]]− S([[x, y], z]) = 0,

where the last equality follows from the Jacobi identities in der(n) and g. We
conclude that im (dSω) ⊆ z(n).

It remains to see that dSω is a 3-cocycle. Let

g̃ := s∗ der(n) = {(x,D) ∈ g× der(n) : [D] = s(x)}
and note that q(x,D) := x defines a Lie algebra extension of g by ad n. Further,
ρ(x,D) := D defines an action of g̃ on n by derivations, satisfying

[ρ(x,D)] = s(x) = s(q(x, D)).

Since z(n) is g̃-invariant and the action of g̃ on z(n) factors through the given
action of g on z(n), it suffices to see that the pullback q∗(dSω) ∈ C3(g̃, z(n))
is a cocycle. For S̃(x,D) := S(x) and ω̃ := q∗ω, we have

(
q∗(dSω)

)
(x, y, z) =

∑

cycl.

S(q(x))ω(q(y), q(z))− ω([q(x), q(y)], q(z))

=
∑

cycl.

S̃(x)ω̃(y, z)− ω̃([x, y], z) = (dS̃ω̃)(x, y, z).
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Since S̃(x,D)−D = S(x)−D ∈ ad(n) for each x ∈ g, there exists a linear
map β : g̃ → n with

S̃ = ρ + ad ◦β : g̃ → der(n).

With respect to the g̃-module structure on n, we thus have

dS̃ω̃ = dg̃ω̃ + [β, ω̃].

Since

ad(ω̃(x, y)) = [S̃(x), S̃(y)]− S̃([x, y])
= [ρ(x) + ad β(x), ρ(y) + ad β(y)]− ρ([x, y])− ad(β([x, y]))

= ad
(
ρ(x)β(y)− ρ(y)β(x) + [β(x), β(y)]− β([x, y])

)

= ad ◦(dg̃β +
1
2
[β, β]

)
(x, y),

we further get with Lemma 6.6.15 and [β, [β, β]] = 0:

[β, ω̃] =
[
β, dg̃β +

1
2
[β, β]

]
= [β, dg̃β] = −2dg̃[β, β].

This proves that dS̃ω̃ = dg̃(ω̃ − 2[β, β]) is an element of B3(g̃, n)s, hence in
particular a cocycle, and therefore dSω also is a cocycle. ut
Lemma 6.6.17. The cohomology class χ(s) := [dSω] ∈ H3(g, z(n))s only de-
pends on s, as long as s(x) = [S(x)] holds for each x ∈ g.

Proof. If S is fixed and ω′ ∈ C2(g, n) also satisfies (6.12), then ω′ − ω ∈
C2(g, z(n)), so that

dSω′ = dSω + dS(ω′ − ω) = dSω + dg(ω′ − ω) ∈ dSω + B3(g, z(n))s,

and thus [dSω] = [dSω′].
If S′ : g → der(n) is another linear map with [S′(x)] = s(x) for each x ∈ g,

then S′ = S +ad ◦γ for some linear map γ : g → n. A direct calculation shows
that

ω′ := ω + dSγ +
1
2
[γ, γ]

satisfies
ad(ω′(x, y)) = [S′(x), S′(y)]− S′([x, y]).

We claim that dS′ω
′ = dSω, and this will complete the proof. In fact, we

obtain with Lemma 6.6.15

dS′ω
′ = dSω′ + [γ, ω′] = dSω + d2

Sγ +
1
2
dS [γ, γ]− [ω′, γ]

= dSω + d2
Sγ + [dSγ, γ]− [ω′, γ].

Further,
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(d2
Sγ)(x, y, z) =

∑

cycl.

S(x)
(
dSγ(y, z)

)− dSγ([x, y], z)

=
∑

cycl.

S(x)
(
S(y)γ(z)− S(z)γ(y)− γ([y, z])

)

− S([x, y])γ(z) + S(z)γ([x, y]) + γ([[x, y], z])

=
∑

cycl.

S(x)S(y)γ(z)− S(y)S(x)γ(z)− S(x)γ([y, z])

− S([x, y])γ(z) + S(x)γ([y, z])

=
∑

cycl.

[ω(x, y), γ(z)]− S(x)γ([y, z]) + S(x)γ([y, z])

= [ω, γ](x, y, z).

We thus obtain

dS′ω
′ = dSω + [ω + dSγ − ω′, γ] = dSω − 1

2
[[γ, γ], γ] = dSω. ut

Theorem 6.6.18. For a g-kernel s : g → out(n), the set Ext(g, n)s is nonempty
if and only if the cohomology class χ(s) vanishes.

Proof. The set Ext(g, n)s is nonempty if and only if there exists a factor
system (S, ω) corresponding to s with dSω = 0. If this is the case, then
χ(s) = [dSω] = 0. If, conversely, χ(s) = 0 and β ∈ C2(g, z(n)) satisfies
dSω = dgβ, then ω̃ := ω − β also satisfies

ad(ω̃(x, y)) = ad(ω(x, y)) = [S(x), S(y)]− S([x, y])

for x, y ∈ g, and further dSω̃ = dSω − dSβ = dSω − dgβ = 0. Hence (S, ω̃) is
a factor system corresponding to s. ut

Exercises for Section 6.6

Definition 6.6.19. A Lie superalgebra (over a field K with 2, 3 ∈ K×) is a
Z/2Z-graded vector space g = g0 ⊕ g1 with a bilinear map [·, ·] satisfying

(LS1) [α, β] = (−1)pq+1[β, α] for x ∈ gp and y ∈ gq.
(LS2) (−1)pr[[α, β], γ] + (−1)qp[[β, γ], α] + (−1)qr[[γ, α], β] = 0 for α ∈ gp,

β ∈ gq and γ ∈ gr.

Note that (LS1) implies that [α, α] = 0 = [β, [β, β]] for α ∈ g0 and β ∈ g1.

Exercise 6.6.1. Let g and n be Lie algebras. Then the bracket defined in
Definition 6.6.14 defines on the Z/2Z-graded vector space

C(g, n) :=
⊕

p∈N0

Cp(g, n) := Ceven(g, n)⊕ Codd(g, n)

the structure of a Lie superalgebra.
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Notes on Chapter 6

The finite dimension of the Lie algebra g was not essential for the proof of the
Poincaré–Birkhoff–Witt Theorem 6.1.9. Only slight changes yield the same
theorem for any Lie algebra (cf. [Bou89, Ch. 1]).

The origin of Lie algebra cohomology lies in the work of É. Cartan who
reduced the determination of the rational (singular) cohomology of compact
Lie groups to a purely algebraic problem which later led to the invention of Lie
algebra cohomology by C. Chevalley and S. Eilenberg [CE48]. Computational
methods to evaluate Lie algebra cohomology spaces have been developed in
[Kos50], where the cohomology of semisimple Lie algebras is studied in detail.

The proof of Ado’s Theorem we present in Section 6.4 follows an idea of
Y. A. Neretin [Ner02].

In [Ho54a], G. Hochschild shows that, for each g-module V of a Lie algebra
g, each element of H3(g, V ) arises as an obstruction class for a homomorphism
s : g → out(n), where n is a Lie algebra with V = z(n). In [Ho54b] he analyzes
for a finite-dimensional Lie algebra g and a finite-dimensional g-module V , the
question of the existence of a finite-dimensional Lie algebra n with the above
properties. In this case the answer is affirmative if g is solvable, but if g is
semisimple, then all obstructions of homomorphism s : g → out(n) are trivial
because s lifts to a homomorphism S : g → der n by Levi’s Theorem 4.6.6).
The general result is that a cohomology class [ω] ∈ H3(g, V ) arises as an ob-
struction χ(s) of a g-kernel s if and only if its restriction to a Levi complement
s in g vanishes.
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Manifolds and Lie Groups
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Smooth Manifolds

Even though it is possible to prove that each Lie group, up to covering, is
isomorphic to a linear Lie group of the type discussed in Part I, the natural
setting for Lie groups is the category of smooth manifolds. in which Lie groups
can be viewed as the group objects. Thus we will use linear Lie groups rather
as a source of examples and start in Chapter 8 to build the theory of Lie
groups from scratch defining them as groups which are smooth manifolds for
which the group operations are smooth.

We start in the present chapter by reviewing same basic features of differ-
ential analysis on open domains in Rn. Then we introduce smooth manifolds
and their tangent bundles, which allows us to define the Lie algebra vector
fields, thus preparing the grounds for the definition of the Lie algebra of a gen-
eral Lie group. Relating vector fields to ordinary differential equations leads
to integral curves and local flows. These are used later on to define the expo-
nential function of a Lie group. We conclude the chapter with a discussion of
various concepts of submanifolds which naturally play are role in the study of
subgroups of Lie groups.

In basic calculus courses one mostly deals with (differentiable) functions
on open subsets of Rn, but as soon as one wants to solve equations of the
form f(x) = y, where f : U → Rm is a differentiable function and U is open
in Rn, one observes that the set f−1(y) of solutions behaves in a much more
complicated manner than one is used to from linear algebra, where f is lin-
ear and f−1(y) is the intersection of U with an affine subspace. One way to
approach differentiable manifolds is to think of them as the natural objects
arising as solutions of nonlinear equations as above (under some nondegen-
eracy condition on f , made precise by the Implicit Function Theorem). For
submanifolds of Rn, this is a quite natural approach, which immediately leads
to the method of Lagrange multipliers to deal with extrema of differentiable
functions under differentiable constraints. This is the external perspective on
differentiable manifolds, which has the serious disadvantage that it depends
very much on the surrounding space Rn.
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It is much more natural to adopt a more intrinsic perspective: an n-
dimensional manifold is a topological space which locally looks like Rn. More
precisely, it arises by gluing open subsets of Rn in a smooth (differentiable)
way. Below we shall make this more precise.

The theory of smooth manifolds has three levels:

(1) The infinitesimal level, where one deals with tangent spaces, tangent
vectors and differentials of maps,

(2) the local level, which is analysis on open subsets of Rn, and
(3) the global level, where one studies the global behavior of manifolds and

other related structures.

These three levels are already visible in one-variable calculus: Suppose we
are interested in the global maximum of a differentiable function f : R → R
which is a question about the global behavior of this function. The neces-
sary condition f ′(x0) = 0 belongs to the infinitesimal level because it says
something about the behavior of f infinitesimally close to the point x0. The
sufficient criterion for a local maximum: f ′(x0) = 0, f ′′(x0) < 0 provides in-
formation on the local level. Of course, this is far from being the whole story
and one really has to study global properties of f , such as limx→±∞ f(x) = 0,
to guarantee the existence of global maxima.

7.1 Smooth Maps in Several Variables

First we recall some facts and definitions from calculus in several variables,
formulated in a way that will be convenient for us in the following.

Definition 7.1.1 (Differentiable maps).
(a) Let n, m ∈ N and U ⊆ Rn be an open subset. A function f : U → Rm

is called differentiable at x ∈ U if there exists a linear map L ∈ Hom(Rn,Rm)
such that for one norm (and hence for all norms) on Rn we have

lim
h→0

f(x + h)− f(x)− L(h)
‖h‖ = 0. (7.1)

If f is differentiable in x, then for each h ∈ Rn we have

lim
t→0

1
t

(
f(x + th)− f(x)

)
= lim

t→0

1
t
L(th) = L(h),

so that L(h) is the directional derivative of f in x in the direction h. It follows
in particular that condition (7.1) determines the linear map L uniquely. We
therefore write

df(x)(h) := lim
t→0

1
t

(
f(x + th)− f(x)

)
= L(h)

and call the linear map df(x) the differential of f in x.
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(b) Let e1, . . . , en denote the canonical basis vectors in Rn. Then

∂f

∂xi
(x) := df(x)(ei)

is called the i-th partial derivative of f in x. If f is differentiable in each
x ∈ U , then the partial derivatives are functions

∂f

∂xi
: U → Rm,

and we say that f is continuously differentiable, or a C1-map, if all its partial
derivatives are continuous. For k ≥ 2, the map f is said to be a Ck-map if it
is C1 and all its partial derivatives are Ck−1-maps. We say that f is smooth
or a C∞-map if it is Ck for each k ∈ N. We denote the the space of Ck-maps
U → Rm by Ck(U,Rm).

(c) If I ⊆ R is an interval and γ : I → Rn is a differentiable curve, we also
write

γ̇(t) = γ′(t) = lim
h→0

γ(t + h)− γ(t)
h

.

This is related to the notation from above by

γ′(t) = dγ(t)(e1),

where e1 = 1 ∈ R is the canonical basis vector.

Definition 7.1.2. Let U ⊆ Rn and V ⊆ Rm be open subsets. A map
f : U → V is called Ck if it is Ck as a map U → Rm.

For n ≥ 1 a Ck-map f : U → V is called a Ck-diffeomorphism if there
exists a Ck-map g : V → U with

f ◦ g = idV and g ◦ f = idU .

Obviously, this is equivalent to f being bijective and f−1 being a Ck-map.
Whenever such a diffeomorphism exists, we say that the domains U and V are
Ck-diffeomorphic. For k = 0 we thus obtain the notion of a homeomorphism.

Theorem 7.1.3 (Chain Rule). Let U ⊆ Rn and V ⊆ Rm be open subsets.
Further let f : U → V be a Ck-map and g : V → Rd a Ck-map. Then g ◦ f is
a Ck-map, and for each x ∈ U we have in Hom(Rn,Rd):

d(g ◦ f)(x) = dg(f(x)) ◦ df(x).

The Chain Rule is an important tool which permits to “linearize” nonlinear
information. The following proposition is an example.

Proposition 7.1.4 (Invariance of the Dimension). If the nonempty open
subsets U ⊆ Rn and V ⊆ Rm are C1-diffeomorphic, then m = n.
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Proof. Let f : U → V be a C1-diffeomorphism and g : V → U its inverse. Pick
x ∈ U . Then the Chain Rule implies that

idRn = d(g ◦ f)(x) = dg(f(x)) ◦ df(x)

and
idRm = d(f ◦ g)(f(x)) = df(x) ◦ dg(f(x)),

so that df(x) : Rn → Rm is a linear isomorphism. This implies that m = n. ut
Theorem 7.1.5 (Inverse Function Theorem). Let U ⊆ Rn be an open
subset, x0 ∈ U , k ∈ N ∪ {∞}, and f : U → Rn a Ck-map for which the linear
map df(x0) is invertible. Then there exists an open neighborhood V of x0 in U
for which f |V : V → f(V ) is a Ck-diffeomorphism onto an open subset of Rn.

Corollary 7.1.6. Let U ⊆ Rn be an open subset and f : U → Rn be an
injective Ck-map (k ≥ 1) for which df(x) is invertible for each x ∈ U . Then
f(U) is open and f : U → f(U) is a Ck-diffeomorphism.

Proof. First we use the Inverse Function Theorem to see that for each x ∈ U
the image f(U) contains a neighborhood of f(x), so that f(U) is an open
subset of Rn. Since f is injective, the inverse function g = f−1 : f(U) → U
exists. Now we apply the Inverse Function Theorem again to see that for each
x ∈ U there exists a neighborhood of f(x) in f(U) on which g is Ck. Therefore
g is a Ck-map, and this means that f is a Ck-diffeomorphism. ut
Example 7.1.7. That the injectivity assumption in Corollary 7.1.6 is crucial
is shown by the following example, which is a real description of the complex
exponential function. We consider the smooth map

f : R2 → R2, f(x1, x2) = (ex1 cosx2, e
x1 sin x2).

Then the matrix of df(x) with respect to the canonical basis is

[df(x)] =
(

ex1 cos x2 −ex1 sin x2

ex1 sin x2 ex1 cos x2

)
.

Its determinant is e2x1 6= 0, so that df(x) is invertible for each x ∈ R2.
Polar coordinates immediately show that f(R2) = R2 \ {(0, 0)}, which is

an open subset of R2, but the map f is not injective because it is 2π-periodic
in x2:

f(x1, x2 + 2π) = f(x1, x2).

Therefore the Inverse Function Theorem applies to each x ∈ R2, but f is not
a global diffeomorphism.

Remark 7.1.8. The best way to understand the Implicit Function Theorem
is to consider the linear case first. Let g : Rm × Rn → Rm be a linear map.
We are interested in conditions under which the equation g(x, y) = 0 can be
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solved for x, i.e., there is a function f : Rn → Rm such that g(x, y) = 0 is
equivalent to x = f(y).

Since we are dealing with linear maps, there are matrices A ∈ Mm(R) and
B ∈ Mm,n(R) with

g(x, y) = Ax + By for x ∈ Rm, y ∈ Rn.

The unique solvability of the equation g(x, y) = 0 for x is equivalent to the
unique solvability of the equation Ax = −By, which is equivalent to the in-
vertibility of the matrix A. If A ∈ GLm(R), we thus obtain the linear function

f : Rn → Rm, f(y) = −A−1By

for which x = f(y) is equivalent to g(x, y) = 0.

Theorem 7.1.9 (Implicit Function Theorem). Let U ⊆ Rm × Rn be an
open subset and g : U → Rm be a Ck-function, k ∈ N ∪ {∞}. Further let
(x0, y0) ∈ U with g(x0, y0) = 0 such that the linear map

d1g(x0, y0) : Rm → Rm, v 7→ dg(x0, y0)(v, 0)

is invertible. Then there exist open neighborhoods V1 of x0 in Rm and V2 of
y0 in Rn with V1 × V2 ⊆ U , and a Ck-function f : V2 → V1 with f(y0) = x0

such that

{(x, y) ∈ V1 × V2 : g(x, y) = 0} = {(f(y), y) : y ∈ V2}.
Definition 7.1.10 (Higher derivatives). For k ≥ 2, a Ck-map f : U → Rm

and U ⊆ Rn open, higher derivatives are defined inductively by

dkf(x)(h1, . . . , hk)

:= lim
t→0

1
t

(
dk−1f(x + thk)(h1, . . ., hk−1)− dk−1f(x)(h1, . . ., hk−1)

)
.

We thus obtain continuous maps

dkf : U × (Rn)k → Rm.

In terms of concrete coordinates and the canonical basis e1, . . . , en for Rn,
we then have

dkf(x)(ei1 , . . . , eik
) =

∂kf

∂xik
· · · ∂xi1

(x).

Let V and W be vector spaces. We recall that a map β : V k → W is called
k-linear if all the maps

V → W, v 7→ β(v1, . . . , vj−1, v, vj+1, . . . , vk)

are linear. It is said to be symmetric if

β(vσ(1), . . . , vσ(k)) = β(v1, . . . , vk)

holds for all permutations σ ∈ Sk.
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Proposition 7.1.11. If f ∈ Ck(U,Rm) and k ≥ 2, then the functions
(h1, . . . , hk) 7→ dkf(x)(h1, . . . , hk), x ∈ U , are symmetric k-linear maps.

Proof. From the definition it follows inductively that (dkf)(x) is linear in each
argument hi, because if all other arguments are fixed, it is the differential of
a C1-function.

To verify the symmetry of (dkf)(x), we may also proceed by induction. It
suffices to show that for h1, . . . , hk−2 fixed, the map

β(v, w) := (dkf(x))(h1, . . . , hk−2, v, w)

is symmetric. This map is the second derivative d2F (x) of the function

F (x) := (dk−2f)(x)(h1, . . . , hk−2).

We may therefore assume that k = 2.
In view of the bilinearity, it suffices to observe that the Schwarz Lemma

implies

(d2F )(x)(ej , ei) =
( ∂2

∂xixj
F

)
(x) =

( ∂2

∂xjxi
F

)
(x) = (d2F )(x)(ei, ej). ut

Theorem 7.1.12 (Taylor’s Theorem). Let U ⊆ Rn be open and
f : U → Rm of class Ck+1. If x + [0, 1]h ⊆ U , then we have the Taylor
Formula

f(x + h) = f(x) + df(x)(h) + . . . +
1
k!
dkf(x)(h, . . . , h)

+
1
k!

∫ 1

0

(1− t)k
(
dk+1f(x + th)

)
(h, . . . , h) dt.

Proof. For each i ∈ {1, . . . , m} we consider the Ck+1-maps

F : [0, 1] → R, F (t) := fi(x + th) with F (k)(t) = dkfi(x + th)(h, . . . , h)

and apply the Taylor Formula for functions [0, 1] → R to get

F (1) = F (0) + . . . +
F (k)(0)

k!
+

1
k!

∫ 1

0

(1− t)kF (k+1)(t) dt. ut

7.2 Smooth Manifolds and Smooth Maps

Before we turn to the concept of a smooth manifold, we recall the concept of a
Hausdorff space. We assume, however, some familiarity with basic topological
constructions and concepts, such as the quotient topology. A topological space
(X, τ) is called a Hausdorff space if for two different points x, y ∈ X there
exist disjoint open subsets Ox, Oy with x ∈ Ox and y ∈ Oy. Recall that each
metric space (X, d) is Hausdorff.
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Definition 7.2.1. Let M be a topological space.
(a) A pair (ϕ,U), consisting of an open subset U ⊆ M and a homeo-

morphism ϕ : U → ϕ(U) ⊆ Rn of U onto an open subset of Rn is called an
n-dimensional chart of M .

(b) Two n-dimensional charts (ϕ,U) and (ψ, V ) of M are said to be Ck-
compatible (k ∈ N ∪ {∞}) if U ∩ V = ∅ or the map

ψ ◦ ϕ−1|ϕ(U∩V ) : ϕ(U ∩ V ) → ψ(U ∩ V )

is a Ck-diffeomorphism. Since ϕ : U → ϕ(U) is a homeomorphism onto an
open subset of Rn, ϕ(U ∩ V ) is an open subset of ϕ(U) and hence of Rn.

(c) An n-dimensional Ck-atlas of M is a family A := (ϕi, Ui)i∈I of n-
dimensional charts of M with the following properties:

(A1)
⋃

i∈I Ui = M , i.e., (Ui)i∈I is an open covering of M .
(A2) All charts (ϕi, Ui), i ∈ I, are pairwise Ck-compatible. For Uij := Ui∩Uj ,

this means that all maps

ϕji := ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) → ϕj(Uij)

are Ck-maps because ϕ−1
ji = ϕij .

(d) A chart (ϕ,U) is called compatible with a Ck-atlas (ϕi, Ui)i∈I if it is
Ck-compatible with all charts of the atlas A. A Ck-atlas A is called maximal
if it contains all charts compatible with it. A maximal Ck-atlas is also called a
Ck-differentiable structure on M . For k = ∞ we also call it a smooth structure.

Remark 7.2.2. (a) In Definition 7.2.1(b) we required that the map

ψ ◦ ϕ−1|ϕ(U∩V ) : ϕ(U ∩ V ) → ψ(U ∩ V )

is a Ck-diffeomorphism. Since ϕ and ψ are homeomorphisms, this map always
is a homeomorphism between open subsets of Rn. The differentiability is an
additional requirement.

(b) For M = R the maps (M,ϕ) and (M, ψ) with ϕ(x) = x and ψ(x) = x3

are 1-dimensional charts. These charts are not C1-compatible: the map

ψ ◦ ϕ−1 : R→ R, x 7→ x3

is smooth, but not a diffeomorphism, since its inverse ϕ ◦ ψ−1 is not differen-
tiable.

(c) Every atlas A is contained in a unique maximal atlas: We simply add
all charts compatible with A, and thus obtain a maximal atlas. This atlas is
unique (Exercise 7.2.2).

Definition 7.2.3. An n-dimensional Ck-manifold is a pair (M,A) of a Haus-
dorff space M and a maximal n-dimensional Ck-atlas A for M . For k = ∞
we call it a smooth manifold.
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To specify a manifold structure, it suffices to specify a Ck-atlas A because
this atlas is contained in a unique maximal one (Exercise 7.2.2). In the fol-
lowing we shall never describe a maximal atlas. We shall always try to keep
the number of charts as small as possible. For simplicity, we always assume in
the following that k = ∞.

7.2.1 Examples

Example 7.2.4 (Open subsets of Rn). Let U ⊆ Rn be an open subset.
Then U is a Hausdorff space with respect to the induced topology. The inclu-
sion map ϕ : U → Rn defines a chart (ϕ, U) which already defines a smooth
atlas of U , turning U into an n-dimensional smooth manifold.

Example 7.2.5 (The n-dimensional sphere). We consider the unit sphere

Sn := {(x0, . . . , xn) ∈ Rn+1 : x2
0 + x2

1 + . . . + x2
n = 1}

in Rn, endowed with the subspace topology, turning it into a compact space.
(a) To specify a smooth manifold structure on Sn, we consider the open

subsets
Uε

i := {x ∈ Sn : εxi > 0}, i = 0, . . . , n, ε ∈ {±1}.
These 2(n + 1) subsets form a covering of Sn. We have homeomorphisms

ϕε
i : Uε

i → B := {x ∈ Rn : ‖x‖2 < 1}

onto the open unit ball in Rn, given by

ϕε
i (x) = (x0, x1, . . . , xi−1, xi+1, . . . , xn)

and with continuous inverse map

(y1, . . . , yn) 7→
(
y1, . . . , yi, ε

√
1− ‖y‖22, yi+1, . . . , yn

)
.

This leads to charts (ϕε
i , U

ε
i ) of Sn.

It is easy to see that these charts are pairwise compatible. We have
ϕε

i ◦ (ϕε′
i )−1 = idB , and for i < j, we have

ϕε
i ◦ (ϕε′

j )−1(y) =
(
y1, . . . , yi, yi+2, . . . , yj , ε

′
√

1− ‖y‖22, yj+1, . . . , yn

)
,

which is a smooth map

ϕε′
j (Uε

i ∩ Uε′
j ) → ϕε

i (U
ε
i ∩ Uε′

j ).

(b) There is another atlas of Sn consisting only of two charts, where the
maps are slightly more complicated.
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We call the unit vector e0 := (1, 0, . . . , 0) the north pole of the sphere and
−e0 the south pole. We then have the corresponding stereographic projection
maps

ϕ+ : U+ := Sn \ {e0} → Rn, (y0, y) 7→ 1
1− y0

y

and
ϕ− : U− := Sn \ {−e0} → Rn, (y0, y) 7→ 1

1 + y0
y.

Both maps are bijective with inverse maps

ϕ−1
± (x) =

(
± ‖x‖22 − 1
‖x‖22 + 1

,
2x

1 + ‖x‖22
)

(Exercise 7.2.8). This implies that (ϕ+, U+) and (ϕ−, U−) are charts of Sn.
That both are smoothly compatible, hence a smooth atlas, follows from

(ϕ+ ◦ ϕ−1
− )(x) = (ϕ− ◦ ϕ−1

+ )(x) =
x

‖x‖2 , x ∈ Rn \ {0},

which is the inversion at the unit sphere.

Example 7.2.6. Let E be an n-dimensional real vector space. We know from
Linear Algebra that E is isomorphic to Rn, and that for each ordered basis
B := (b1, . . . , bn) for E, the linear map

ϕB : Rn → E, x = (x1, . . . , xn) 7→
n∑

j=1

xjbj

is a linear isomorphism. Using such a linear isomorphism ϕB , we define a
topology on E in such a way that ϕB is a homeomorphism, i.e., O ⊆ E is
open if and only if ϕ−1

B (O) is open in Rn.
For any other choice of a basis C = (c1, . . . , cm) in E we recall from linear

algebra that m = n and that the map

ϕ−1
C ◦ ϕB : Rn → Rn

is a linear isomorphism, hence a homeomorphism. This implies that for a
subset O ⊆ E the condition that ϕ−1

B (O) is open is equivalent to ϕ−1
C (O)

= ϕ−1
C ◦ ϕB ◦ ϕ−1

B (O) being open. We conclude that the topology introduced
on E by ϕB does not depend on the choice of a basis.

We thus obtain on E a natural topology for which it is homeomorphic to
Rn, hence in particular a Hausdorff space. From each coordinate map κB :=
ϕ−1

B we obtain a chart (κB , E) which already defines an atlas of E. We thus
obtain on E the structure of an n-dimensional smooth manifold. That all
these charts are compatible follows from the smoothness of the linear maps
κC ◦ κ−1

B = ϕ−1
C ◦ ϕB : Rn → Rn.
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Example 7.2.7 (Submanifolds of Rn). A subset M ⊆ Rn is called a
d-dimensional submanifold if for each p ∈ M there exists an open neighbor-
hood U of p in Rn and a diffeomorphism

ϕ : U → ϕ(U) ⊆ Rn

onto an open subset ϕ(U) with

ϕ(U ∩M) = ϕ(U) ∩ (Rd × {0}). (7.2)

Whenever this condition is satisfied, we call (ϕ, U) a submanifold chart.
A submanifold of codimension 1, i.e., dim M = n − 1, is called a smooth

hypersurface.
We claim that M carries a natural d-dimensional manifold structure when

endowed with the topology inherited from Rn, which obviously turns it into
a Hausdorff space.

In fact, for each submanifold chart (ϕ,U), we obtain a d-dimensional chart

(ϕ|U∩M , U ∩M),

where we have identified Rd with Rd × {0}. For two such charts coming from
(ϕ,U) and (ψ, V ), we have

ψ ◦ ϕ−1|ϕ(U∩V ∩M) = (ψ|V ∩M ) ◦ (ϕ|U∩M )−1|ϕ(U∩V ∩M),

which is a smooth map onto an open subset of Rd. We thus obtain a smooth
atlas of M .

The following proposition provides a particularly handy criterion to verify
that the set of solutions of a nonlinear equation is a submanifold.

Definition 7.2.8. Let f : U → Rm be a C1-map. We call y ∈ Rm a regular
value of f if for each x ∈ U with f(x) = y the differential df(x) is surjective.
Otherwise y is called a singular value of f . Note that, in particular, each
y ∈ Rm \ f(U) is a regular value.

Proposition 7.2.9 (Regular Value Theorem–Local Version). Let U ⊆
Rn be an open subset, f : U → Rm a smooth map and y ∈ Rm a regular value
of f . Then M := f−1(y) is an (n−m)-dimensional submanifold of Rn, hence
in particular a smooth manifold.

Proof. Let d := n −m and observe that d ≥ 0 because df(x) : Rn → Rm is
surjective for each x ∈ M . We have to show that for each x0 ∈ M there exists
an open neighborhood V of x0 in Rn and a diffeomorphism

ϕ : V → ϕ(V ) ⊆ Rn

with
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ϕ(V ∩M) = ϕ(V ) ∩ (Rd × {0}).
After a permutation of the coordinates, we may w.l.o.g. assume that the

vectors
df(x0)(ed+1), . . . , df(x0)(en)

form a basis for Rm. Then we consider the map

ϕ : U → Rn, x = (x1, . . . , xn) 7→ (x1, . . . , xd, f1(x)− y1, . . . , fm(x)− ym).

In view of

dϕ(x0)(ej) =

{
(ej , df(x0)ej) for j ≤ d

df(x0)(ej) for j > d,

it follows that the linear map dϕ(x0) : Rn → Rn is invertible. Hence the Inverse
Function Theorem implies the existence of an open neighborhood V ⊆ U of
x0 for which ϕ|V : V → ϕ(V ) is a diffeomorphism onto an open subset of Rn.

Since

M = {p ∈ U : ϕ(p) = (ϕ1(p), . . . , ϕd(p), 0, . . . , 0)} = ϕ−1(Rd × {0}),

it follows that ϕ(M ∩ V ) = ϕ(V ) ∩ (Rd × {0}). ut
Example 7.2.10. The preceding proposition is particularly easy to apply for
hypersurfaces, i.e., to the case m = 1. Then f : U → R is a smooth function
and the condition that df(x) is surjective simply means that df(x) 6= 0, i.e.,
that there exists some j with ∂f

∂xj
(x) 6= 0.

(a) Let A = A> ∈ Mn(R) be a symmetric matrix and

f(x) := x>Ax =
n∑

i,j=1

aijxixj

the corresponding quadratic form. We want to show that the corresponding
quadric

Q := {x ∈ Rn : f(x) = 1}
is a submanifold of Rn. To verify the criterion from Proposition 7.2.9, we
assume that f(x) = 1 and note that

df(x)v = v>Ax + x>Av = 2v>Ax

(Exercise; use Exercise 7.2.11). Therefore df(x) = 0 is equivalent to Ax = 0,
which is never the case if x>Ax = 1. We conclude that all level surfaces of f
are smooth hypersurfaces of Rn.

For A = En (the identity matrix), we obtain the (n− 1)-dimensional unit
sphere Q = Sn−1.

For A = diag(λ1, . . . , λn) and nonzero λi we obtain the hyperboloids
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Q =
{

x ∈ Rn :
n∑

i=1

λix
2
i = 1

}

which degenerate to hyperbolic cylinders if some λi vanish.
(b) For singular values the level sets may or may not be submanifolds: For

the quadratic form

f : R2 → R, f(x1, x2) = x1x2

the value 0 is singular because f(0, 0) = 0 and df(0, 0) = 0. The inverse image
is

f−1(0) = (R× {0}) ∪ ({0} × R),

which is not a submanifold of R2 (Exercise).
For the quadratic form

f : R2 → R, f(x1, x2) = x2
1 + x2

2

the value 0 is singular because f(0, 0) = 0 and df(0, 0) = 0. The inverse image
is

f−1(0) = {(0, 0)},
which is a zero-dimensional submanifold of R2.

For the quadratic form

f : R→ R, f(x) = x2

the value 0 is singular because f(0) = 0 and f ′(0) = 0. The inverse image is

f−1(0) = {0},
which is a submanifold of R.

(c) On Mn(R) ∼= Rn2
we consider the quadratic function

f : Mn(R) → Symn(R) := {A ∈ Mn(R) : A> = A}, X 7→ XX>.

Then
f−1(1) = On(R) := {g ∈ GLn(R) : g> = g−1}

is the orthogonal group.
To see that this is a submanifold of Mn(R), we note that

df(X)(Y ) = XY > + Y X>

(Exercise 7.2.11). If f(X) = 1, we have X> = X−1, so that for any Z ∈
Symn(R) the matrix Y := 1

2ZX satisfies

XY > + Y X> =
1
2
(XX>Z + ZXX>) = Z.

Therefore df(X) is surjective in each orthogonal matrix X, and Proposi-
tion 7.2.9 implies that On(R) is a submanifold of Mn(R) of dimension

d = n2 − dim
(
Symn(R)

)
= n2 − n(n + 1)

2
=

n(n− 1)
2

.
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Remark 7.2.11 (The gluing picture). Let M be an n-dimensional man-
ifold with an atlas A = (ϕi, Ui)i∈A and Vi := ϕi(Ui) the corresponding open
subsets of Rn.

Note that we have used the topology of M to define the notion of a chart.
We now explain how the topological space M can be reconstructed from the
atlas A. First we consider the set

S :=
⋃

i∈I

{i} × Vi,

which we consider as the disjoint union of the open subset Vi ⊆ Rn. We endow
S with the topology of the disjoint sum, i.e., a subset O ⊆ S is open if and
only if all its intersections with the subsets {i} × Vi

∼= Vi are open.
Then we consider the surjective map

Φ : S → M, (i, x) 7→ ϕ−1
i (x).

On each subset {i} × Vi this map is a homeomorphism onto Ui. Hence Φ is
continuous, surjective and open, which implies that it is a quotient map, i.e.,
that the topology on M coincides with the quotient topology on S/∼ , where

(i, x) ∼ (j, y) ⇐⇒ ϕi(ϕ−1
j (y)) = x.

In this sense we can think of M as obtained by gluing of the patches
Ui

∼= Vi, where Uij = Ui ∩ Uj and xi ∈ ϕi(Uij) ⊆ Vi is identified with the
point xj = ϕj(ϕ−1

i (xi)) ∈ Vj .

Example 7.2.12. We discuss an example of a “non-Hausdorff manifold”. We
endow the set S := ({1}×R)∪ ({2}×R) with the disjoint sum topology and
define an equivalence relation on S by

(1, x) ∼ (2, y) ⇐⇒ x = y 6= 0.

If [i, x] denotes the class of (i, x) we see that all classes except [1, 0] and [2, 0]
contain 2 points. The topological quotient space

M := S/∼ = {[1, x] : x ∈ R} ∪ {[2, 0]} = {[2, x] : x ∈ R} ∪ {[1, 0]}

is the union of a real line with an extra point, but the two points [1, 0] and
[2, 0] have no disjoint open neighborhoods.

The subsets Uj := {[j, x] : x ∈ R}, j = 1, 2, of M are open, and the maps

ϕj : Uj → R, [j, x] 7→ x,

are homeomorphisms defining a smooth atlas on M (Exercise 7.2.12).

Remark 7.2.13. One can also define manifold structures on sets carrying no
a priori topology. To this end one proceeds as follows. We start with a set M .
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An n-dimensional chart of M is a pair (ϕ,U), where U ⊆ M is a subset and
ϕ : U → Rn an injection with an open image. Two charts (ϕ,U) and (ψ, V )
are called Ck-compatible if both ϕ(U ∩ V ) and ψ(U ∩ V ) are open and

ψ−1 ◦ ϕ : ϕ(U ∩ V ) → ψ(U ∩ V )

is a Ck-diffeomorphism. The notion of a Ck-atlas is introduced as in Defini-
tion 7.2.1(c).

Let A = (ϕi, Ui)i∈I be an n-dimensional Ck-atlas on M . We call a subset
O ⊆ M open if for each i ∈ I the subset ϕi(O∩Ui) ⊆ Rn is open. It is easy to
see that we thus obtain a topology on M . For any subset Oj ⊆ Uj , we have

ϕi(Oj ∩ Ui) = (ϕi ◦ ϕ−1
j )(ϕj(Oj) ∩ ϕj(Ui ∩ Uj)),

showing that Oj is open in M if and only if ϕj(Oj) is open in Rn. Hence each
chart (ϕj , Uj) defines a homeomorphism Uj → ϕ(Uj). As Example 7.2.12
shows, the topology on M need not be Hausdorff, but if it is, then the argu-
ments above show that the pair (M,A) is an n-dimensional Ck-manifold.

A sufficient condition for the Hausdorff property to hold is that for any
pair x 6= y in M either

(H1) there exists an i ∈ I with x, y ∈ Ui,
or
(H2) there exist i, j ∈ I with x ∈ Ui, y ∈ Uj and Ui ∩ Uj = ∅.
In fact, in the second case x and y are separated by the open sets Ui and
Uj , and in the first case the fact that Ui is Hausdorff implies the existence of
disjoint open subsets of Ui, and hence of M , separating x and y.

As an application of the preceding remark, we discuss the Graßmann man-
ifolds of k-dimensional subspaces of an n-dimensional vector space.

Example 7.2.14 (Graßmannians). Let V = Rn and write Grk(V ) =
Grk(Rn) for the set of all k-dimensional linear subspaces of V . We now use
the approach described in Remark 7.2.13 to define on Grk(Rn) the structure
of a smooth manifold of dimension k(n− k).

For an (n− k)-dimensional subspace F ⊆ V , we consider the subset

UF := {E ∈ Grk(V ) : F ⊕ E = V }
of all subspaces complementing F . Fixing an element E0 ∈ UF , we have
V = F ⊕ E0, and each E ∈ UF can be written as the graph

Γ (f) = {(x, f(x)) : x ∈ E0} of some f ∈ Hom(E0, F ).

In terms of the projections prF
E0

: V → E0 and prE0
F : V → F along the de-

composition V = F ⊕ E0, the linear map f can be expressed as

f = prE0
F ◦(prF

E0
|E)−1.



7.2 Smooth Manifolds and Smooth Maps 235

Therefore

ϕF,E0 : UF → Hom(E0, F ), E 7→ prE0
F |E ◦ (prF

E0
|E)−1

is a bijection. Replacing E0 by another subspace E1 ∈ UF , the relation

Γ (f) = Γ (f̃) = E for f ∈ Hom(E0, F ), f̃ ∈ Hom(E1, F ),

leads to the relation x+f(x) = y+ f̃(y), where x ∈ E0 and y = prF
E1

(x) ∈ E1.
But then

f̃(y) = f(x) + x− y = f((prF
E1
|E0)

−1(y)) + (prF
E1
|E0)

−1(y)− y.

This means that

ϕF,E1(E) = f̃ = f ◦ (prF
E1
|E0)

−1 + ϕF,E1(E0).

Therefore the transition between the charts ϕF,E1 and ϕF,E0 is given by an
invertible affine map.

If two sets UF and UF ′ intersect nontrivially, then the set of those f ∈
Hom(E0, F ) for which F ′ ⊕ Γ (f) = V is open in subset of Hom(E0, F ). In
fact, if b1, . . . , bk is a basis for E0 and c′1, . . . , c

′
n−k is a basis for F ′, then the

condition on f is that

det(f(b1), . . . , f(bk), c′1, . . . , c
′
n−k) 6= 0,

which specifies an open subset of Hom(E0, F ) ∼= Rk(n−k).
We further note that, for E0 ∈ UF ∩ UF ′ , we have

ϕF ′,E0(E) = prE0
F ′ ◦(prF ′

E0
|E)−1 = (prE

F ′ |F ) ◦ prE0
F ◦(prF

E0
|E)−1

= (prE
F ′ |F ) ◦ ϕF,E0(E).

Hence all these coordinate changes are given by restrictions of invertible linear
maps. This proves that the collection (ϕF,E0 , UF )F⊕E0=V yields a smooth
k(n−k)-dimensional atlas of Grk(V ) if we identify all the spaces Hom(E0, F )
with Rn(k−n) by some linear isomorphism.

In view of Remark 7.2.13, it now suffices to verify that the topology on
Grk(V ) defined by our smooth atlas is Hausdorff and (H1) shows that it
suffices to find for E0, E1 ∈ Grk(V ) a subspace F with E0, E1 ∈ UF .

Writing V = F1 ⊕ (E0 ∩ E1) for some subspace F1, we have to find a
subspace F2 of F1 ∩ (E0 + E1) complementing E0 ∩F1 and E1 ∩F1. Since the
latter two spaces intersect trivially, we have (Exercise)

F1 ∩ (E0 + E1) = (E0 ∩ F1)⊕ (E1 ∩ F1).

Because of (E0 ∩ F1) ⊕ (E0 ∩ E1) = E0, using standard dimension formulas
from linear algebra, one obtains a linear isomorphism

ϕ : E0 ∩ F1 → E1 ∩ F1.

Then its graph Γ (ϕ) is a linear subspace of F1 ∩ (E0 + E1) complementing
both subspaces Ei ∩ F1.
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Example 7.2.15 (Projective space). As an important special case of a
Graßmann manifold we obtain the real projective space

P(Rn) := Gr1(Rn)

of all 1-dimensional subspaces of Rn. It is a smooth manifold of dimension
n − 1. For n = 2, this space is called the projective line and for n = 3 it is
called the projective plane (it is a 2-dimensional manifold, thus also called a
surface).

We write [x] := Rx ∈ P(Rn) for the subspace generated by a nonzero
element x ∈ Rn. Since each one-dimensional subspace Rx of Rn is not con-
tained in some of the hyperplanes Fi := span{e1, . . . , ei−1, ei+1, . . . , en}, the
manifold P(Rn) is covered by the n open sets

Ui := UFi
= {[x] : xi 6= 0}, i = 1, . . . , n.

The simplest charts are obtained by picking the complement E0 = Rei of the
hyperplane Fi and identifying Hom(E0, Fi) ∼= Fi

∼= Rn−1. For any [x] ∈ Ui,
we then have

Rx = Γ (f) with f(ei) =
(x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn

xi

)
,

which leads to the coordinates

ϕi([x]) =
(x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn

xi

)
.

These charts are called homogeneous coordinates. They play a fundamental
role in projective geometry.

Example 7.2.16. We discuss an example of a manifold which is not sepa-
rable. In particular, its topology has no countable basis. We define a new
topology on R2 by defining O ⊆ R2 to be open if and only if for each y ∈ R
the set

Oy := {x ∈ R : (x, y) ∈ O}
is open in R. This defines a topology on R2 for which all sets Uy := R × {y}
are open and the maps

ϕy : Uy → R, (x, y) 7→ x

are homeomorphisms. We thus obtain a smooth 1-dimensional manifold struc-
ture on R2 for which it has uncountably many connected components, namely
the subsets Uy, y ∈ R.

Remark 7.2.17 (Coordinates versus parameterizations). (a) Let (ϕ,U)
be an n-dimensional chart of the smooth manifold M . Then ϕ : U → Rn

has n components ϕ1, . . . , ϕn which we consider as coordinate functions on
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U . Sometimes it is convenient to write xi(p) := ϕi(p) for p ∈ U , so that
(x1(p), . . . , xn(p)) are the coordinates of p ∈ U w.r.t. the chart (ϕ,U).

If we have another chart (ψ, V ) of M with U ∩V 6= ∅, then any p ∈ U ∩V
has a second tuple of coordinates, x′i(p) := ψi(p), given by the components of
ψ. Now the change of coordinates is given by

x′(x) = ψ(ϕ−1(x)) and x(x′) = ϕ(ψ−1(x′)).

In this sense the maps ψ ◦ϕ−1 and ϕ◦ψ−1 describe how we translate between
the x-coordinates and the x′-coordinates.

(b) Instead of putting the focus on coordinates, which are functions on
open subsets of the manifold, one can also parameterize open subset of M .
This is done by maps ϕ : V → M , where V is an open subsets of some Rn

and (ϕ−1, ϕ(V )) is a chart of M . Then the point p ∈ M corresponding to the
parameter values (x1, . . . , xn) ∈ V is p = ϕ(x). In this picture the lines

t 7→ ϕ(x1, . . . , xi−1, t, xi+1, . . . , xn)

are curves on M , called the parameter lines.

7.2.2 New Manifolds from Old Ones

Definition 7.2.18 (Open subsets are manifolds). Let M be a smooth
manifold and N ⊆ M an open subset. Then N carries a natural smooth
manifold structure.

Let A = (ϕi, Ui)i∈I be an atlas of M . Then Vi := Ui ∩N and ψi := ϕi|Vi

define a smooth atlas B := (ψi, Vi)i∈I of N (Exercise).

Definition 7.2.19 (Products of manifolds). Let M and N be smooth
manifolds of dimensions d, resp., k and

M ×N = {(m,n) : m ∈ M, n ∈ N}

the product set, which we endow with the product topology.
We show that M × N carries a natural structure of a smooth

(d + k)-dimensional manifold. Let A = (ϕi, Ui)i∈I be an atlas of M and
B = (ψj , Vj)j∈J an atlas of N . Then the product sets Wij := Ui×Vj are open
in M ×N and the maps

γij := ϕi × ψj : Ui × Vj → Rd × Rk ∼= Rd+k, (x, y) 7→ (ϕi(x), ψj(y))

are homeomorphisms onto open subsets of Rd+k. On γi′j′(Wij∩Wi′j′) we have

γij ◦ γ−1
i′j′ = (ϕi ◦ ϕ−1

i′ )× (ψj ◦ ψ−1
j′ ),

which is a smooth map. Therefore (ϕij ,Wij)(i,j)∈I×J is a smooth atlas on
M ×N .
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Definition 7.2.20. Let M and N be smooth manifolds.
(a) A continuous map f : M → N is called smooth, if for each chart (ϕ,U)

of M and each chart (ψ, V ) of N the map

ψ ◦ f ◦ ϕ−1 : ϕ(f−1(V ) ∩ U) → ψ(V )

is smooth. Note that ϕ(f−1(V ) ∩ U) is open because f is continuous.
We write C∞(M, N) for the set of smooth maps M → N and abbreviate

C∞(M,R) by C∞(M).
(b) A map f : M → N is called a diffeomorphism, or a smooth isomor-

phism, if there exists a smooth map g : N → M with

f ◦ g = idN and g ◦ f = idM .

This condition obviously is equivalent to f being bijective and its inverse f−1

being a smooth map.
We write Diff(M) for the set of all diffeomorphisms of M .

Lemma 7.2.21. Compositions of smooth maps are smooth. In particular, the
set Diff(M) is a group (with respect to composition) for each smooth mani-
fold M . 1

Proof. Let f : M → N and g : N → L be smooth maps. Pick charts (ϕ,U)
of M and (γ,W ) of L. To see that the map γ ◦ (g ◦ f) ◦ ϕ−1 is smooth on
ϕ((g ◦ f)−1(W )), we have to show that each element x = ϕ(p) in this set has
a neighborhood on which it is smooth. Let q := f(p) and note that g(q) ∈ W .
We choose a chart (ψ, V ) of N with q ∈ V . We then have

γ ◦ (g ◦ f) ◦ ϕ−1 = (γ ◦ g ◦ ψ−1) ◦ (ψ ◦ f ◦ ϕ−1)

on the open neighborhood ϕ
(
f−1(V )∩ (g ◦f)−1(W )

)
of x. Since compositions

of smooth maps on open domains in Rn are smooth by the Chain Rule (The-
orem 7.1.3), γ ◦ (g ◦ f) ◦ ϕ−1 is smooth on ϕ((g ◦ f)−1(W )). This proves that
g ◦ f : M → L is a smooth map. ut
Remark 7.2.22. (a) If I ⊆ R is an open interval, then a smooth map
γ : I → M is called a smooth curve.

For a not necessarily open interval I ⊆ R, a map γ : I → Rn is called
smooth if all derivatives γ(k) exist in all points of I and define continuous
functions I → Rn. Based on this generalization of smoothness for curves, a
curve γ : I → M is said to be smooth, if for each chart (ϕ, U) of M the curves

1 For each manifold M the identity idM : M → M is a smooth map, so that this
lemma leads to the “category of smooth manifolds”. The objects of this category
are smooth manifolds and the morphisms are the smooth maps. In the following
we shall use consistently category theoretical language, but we shall not go into
the formal details of category theory.
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ϕ ◦ γ : γ−1(U) → Rn

are smooth.
A curve γ : [a, b] → M is called piecewise smooth if γ is continuous and

there exists a subdivision x0 = a < x1 < . . . , < xN = b such that γ|[xi,xi+1] is
smooth for i = 0, . . . N − 1.

(b) Smoothness of maps f : M → Rn can be checked more easily. Since
the identity is a chart of Rn, the smoothness condition simply means that for
each chart (ϕ,U) of M the map

f ◦ ϕ−1 : ϕ(f−1(V ) ∩ U) → Rn

is smooth.
(c) If U is an open subset of Rn, then a map f : U → M to a smooth

m-dimensional manifold M is smooth if and only if for each chart (ϕ, V ) of
M the map

ϕ ◦ f : f−1(V ) → Rn

is smooth.
(d) Any chart (ϕ,U) of a smooth n-dimensional manifold M defines a

diffeomorphism U → ϕ(U) ⊆ Rn, when U is endowed with the canonical
manifold structure as an open subset of M .

In fact, by definition, we may use (ϕ,U) as an atlas of U . Then the smooth-
ness of ϕ is equivalent to the smoothness of the map ϕ ◦ϕ−1 = idϕ(U), which
is trivial. Likewise, the smoothness of ϕ−1 : ϕ(U) → U is equivalent to the
smoothness of ϕ ◦ ϕ−1 = idϕ(U).

Exercises for Section 7.2

Exercise 7.2.1. Let M := R, endowed with its standard topology. Show that
Ck-compatibility of 1-dimensional charts is not an equivalence relation.

Exercise 7.2.2. Show that each n-dimensional Ck-atlas is contained in a
unique maximal one.

Exercise 7.2.3. Let If Mi, i = 1, . . . , n, be smooth manifolds of dimension
di. Show that the product space M := M1× . . .×Mn carries the structure of
a (d1 + . . . + dn)-dimensional manifold.

Exercise 7.2.4 (Relaxation of the smoothness definition). Let M and
N be smooth manifolds. Show that a map f : M → N is smooth if and only
if for each point x ∈ M there exists a chart (ϕ,U) of M with x ∈ U and a
chart (ψ, V ) of N with f(x) ∈ V such that the map

ψ ◦ f ◦ ϕ−1 : ϕ(f−1(V )) → ψ(V )

is smooth.
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Exercise 7.2.5. Show that the set A := C∞(M,R) of smooth real-valued
functions on M is a real algebra. If g ∈ A is nonzero and U := g−1(R×), then
1
g ∈ C∞(U,R).

Exercise 7.2.6. Let f1 : M1 → N1 and f2 : M2 → N2 be smooth maps. Show
that the map

f1 × f2 : M1 ×M2 → N1 ×N2, (x, y) 7→ (f1(x), f2(y))

is smooth.

Exercise 7.2.7. Let f1 : M → N1 and f2 : M → N2 be smooth maps. Show
that the map

(f1, f2) : M → N1 ×N2, x 7→ (f1(x), f2(x))

is smooth.

Exercise 7.2.8. (a) Verify the details in Example 7.2.5, where we describe
an atlas of Sn by stereographic projections.

(b) Show that the two atlasses of Sn constructed in Example 7.2.5 and the
atlas obtained from the realization of Sn as a quadric in Rn+1 define the same
differentiable structure.

Exercise 7.2.9. Let N be an open subset of the smooth manifold M . Show
that if A = (ϕi, Ui)i∈I is a smooth atlas of M , Vi := Ui ∩N and ψi := ϕi|Vi ,
then B := (ψi, Vi)i∈I is a smooth atlas of N .

Exercise 7.2.10. Smoothness is a local property: Show that a map
f : M → N between smooth manifolds is smooth if and only if for each p ∈ M
there is an open neighborhood U such that f |U is smooth.

Exercise 7.2.11. Let V1, . . . , Vk and V be finite-dimensional real vector space
and

β : V1 × . . .× Vk → V

be a k-linear map. Show that β is smooth with

dβ(x1, . . . , xk)(h1, . . . , hk) =
k∑

j=1

β(x1, . . . , xj−1, hj , xj+1, . . . , xk).

Exercise 7.2.12. Show that the space M defined in Example 7.2.12 is not
Hausdorff, but that the two maps ϕj([j, x]) := x, j = 1, 2, define a smooth
atlas of M .

Exercise 7.2.13. A map f : X → Y between topological spaces is called a
quotient map if a subset O ⊆ Y is open if and only if f−1(O) is open. Show
that:
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(1) If f1 : X1 → Y1 and f2 : X2 → Y2 are open quotient maps, then the carte-
sian product

f1 × f2 : X1 ×X2 → Y1 × Y2, (x1, x2) 7→ (f1(x1), f2(x2)

is a quotient map.
(2) If f : X → Y is a quotient map and we define on X an equivalence relation

by x ∼ y if f(x) = f(y), then the map f : X/ ∼ → Y is a homeomorphism
if X/ ∼ is endowed with the quotient topology.

(3) The map q : Rn → Tn, x 7→ (e2πixj )j=1,...,n is a quotient map.
(4) The map q : Rn/Zn → Tn, [x] 7→ (e2πixj )j=1,...,n is a homeomorphism.

Exercise 7.2.14. Let M be a compact smooth manifold containing at least
two points. Then each atlas of M contains at least two charts. In particular
the atlas of Sn obtained from stereographic projections is minimal.

Exercise 7.2.15. Let X and Y be topological spaces and q : X → Y a quo-
tient map, i.e., q is surjective and O ⊆ Y is open if and only if q−1(O) is open
in X. Show that a map f : Y → Z (Z a topological space) is continuous if and
only if the map f ◦ q : X → Z is continuous.

Exercise 7.2.16. Let M and B be smooth manifolds. A smooth map π : M →
B is said to defined a (locally trivial) fiber bundle with typical fiber F over
the base manifold B if each b0 ∈ B has an open neighborhood U for which
there exists a diffeomorphism

ϕ : π−1(U) → U × F,

satisfying prU ◦ϕ = π, where prU : U × F → U, (u, f) 7→ u is the projection
onto the first factor. Then the pair (ϕ,U) is called a local trivialization.

Show that:

(1) If (ϕ, U), (ψ, V ) are local trivializations, then

ϕ ◦ ψ−1(b, f) = (b, gϕψ(b)(f))

holds for a function gϕψ : U ∩ V → Diff(F ).
(2) If (γ,W ) is another local trivialization, then

gϕϕ = idF and gϕψgψγ = gϕγ on U ∩ V ∩W.

Exercise 7.2.17. Show that a function f : R→ R is a diffeomorphism if and
only if either
(1) f ′ > 0 and limx→±∞ f(x) = ±∞.
(2) f ′ < 0 and limx→±∞ f(x) = ∓∞.

Exercise 7.2.18. Let B ∈ GLn(R) be an invertible matrix which is symmet-
ric or skew-symmetric. Show that:
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(1) G := {g ∈ GLn(R) : g>Bg = B} is a subgroup of GLn(R).
(2) If B = B>, then B is a regular value of the smooth function

f : Mn(R) → Symn(R), x 7→ x>Bx.

(3) If B = −B>, then B is a regular value of the smooth function

f : Mn(R) → Skewn(R) := {A ∈ Mn(R) : A> = −A}, x 7→ x>Bx.

(4) G is a submanifold of Mn(R).
(5) For B = Ip,q := diag(1, . . . , 1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
q

) the indefinite orthogonal group

Op,q(R) := {g ∈ GLn(R) : g>Ip,qg = Ip,q}

is a submanifold on Mn(R) of dimension n(n−1)
2 .

(6) For J =
(

0 I
−I 0

)
∈ M2(Mn(R)) ∼= M2n(R) the symplectic group

Sp2n(R) := {g ∈ GL2n(R) : g>Jg = J}
is a submanifold on M2n(R) of dimension n(2n + 1).

7.3 The Tangent Bundle

The real strength of the theory of smooth manifolds is due to the fact that it
permits to analyze differentiable structures in terms of their derivatives. To
model these derivatives appropriately, we introduce the tangent bundle TM
of a smooth manifold, tangent maps of smooth maps and smooth vector fields.

We start with the definition of a tangent vector of a smooth manifold. The
subtle point of this definition is that tangent vectors and the vector space
structure can only be defined rather indirectly. The most straight forward
way is to construct tangent vectors as “tangents” to smooth curves.

7.3.1 Tangent Vectors and Tangent Maps

Definition 7.3.1. Let M be a smooth manifold, p ∈ M and (ϕ,U) a chart of
M with p ∈ U . Let γ : I → M be a smooth curve, where I ⊆ R is an interval
containing 0 and γ(0) = p. We call two such curves γi : Ii → M , i = 1, 2,
equivalent, denoted γ1 ∼ γ2, if

(ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0).

Clearly, this defines an equivalence relation. The equivalence classes are called
tangent vectors in p. We write Tp(M) for the set of all tangent vectors in p
and [γ] ∈ Tp(M) for the equivalence class of the curve γ. The disjoint union
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T (M) :=
∐

p∈M

Tp(M)

is called the tangent bundle of M and we write πTM : TM → M for the
projection, mapping Tp(M) to {p}.
Remark 7.3.2. (a) The equivalence relation defining tangent vectors does
not depend on the chart (ϕ, U). If (ψ, V ) is a second chart with p ∈ V and
γ : I → M a smooth curve with γ(0) = p, then

(ψ ◦ γ)′(0) = d(ψ ◦ ϕ−1)(ϕ(p))(ϕ ◦ γ)′(0),

so that we obtain the same equivalence relation on curves through p.
(b) If U ⊆ Rn is an open subset and p ∈ U , then each smooth curve

γ : I → U with γ(0) = p is equivalent to the curve ηv(t) := p+tv for v = γ′(0).
Hence each equivalence class contains exactly one curve ηv. We may therefore
think of a tangent vector in p ∈ U as a vector v ∈ Rn attached to the point
p, and the map

Rn → Tp(U), v 7→ [ηv]

is a bijection. In this sense, we identify all tangent spaces Tp(U) with Rn, so
that we obtain a bijection

T (U) ∼= U × Rn.

As an open subset of the product space T (Rn) ∼= R2n, the tangent bundle
T (U) inherits a natural manifold structure.

(c) For each p ∈ M and any chart (ϕ,U) with p ∈ U , the map

Tp(ϕ) : Tp(M) → Rn, [γ] 7→ (ϕ ◦ γ)′(0)

is well-defined by the definition of the equivalence relation. Moreover, the
curve

γ(t) := ϕ−1(ϕ(p) + tv),

which is smooth and defined on some neighborhood of 0, satisfies
(ϕ ◦ γ)′(0) = v. Hence Tp(ϕ) is a bijection.

Definition 7.3.3. (a) Each tangent space Tp(M) carries the unique structure
of an n-dimensional vector space with the property that for each chart (ϕ,U)
of M with p ∈ U , the map

Tp(ϕ) : Tp(M) → Rn, [γ] 7→ (ϕ ◦ γ)′(0)

is a linear isomorphism.
In fact, since Tp(ϕ) is a bijection, we may define a vector space structure

on Tp(M) by

v + w := Tp(ϕ)−1(Tp(ϕ)v + Tp(ϕ)w) and λv := Tp(ϕ)−1(λTp(ϕ)v)
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for λ ∈ R, v, w ∈ Tp(M). For any other chart (ψ, V ) with p ∈ V we then have

Tp(ψ) = d(ψ ◦ ϕ−1)(ϕ(p)) ◦ Tp(ϕ),

and since d(ψ ◦ ϕ−1)(ϕ(p)) is a linear automorphism of Rn, the vector space
structure on Tp(M) does not depend on the chart we use for its definition.

(b) If f : M → N is a smooth map and p ∈ M , then we obtain a linear
map

Tp(f) : Tp(M) → Tf(p)(N), [γ] 7→ [f ◦ γ].

In fact, we only have to observe that for any chart (ϕ,U) of N with f(p) ∈ U
and any chart (ψ, V ) of M with p ∈ V , we have

Tf(p)(ϕ)[f ◦ γ] = (ϕ ◦ f ◦ γ)′(0) = d(ϕ ◦ f ◦ ψ−1)(ψ(p))(ψ ◦ γ)′(0)

= d(ϕ ◦ f ◦ ψ−1)(ψ(p))Tp(ψ)[γ].

This relation shows that Tp(f) is well-defined, and a linear map.
The collection of all these maps defines a map

T (f) : T (M) → T (N) with Tp(f) = T (f)|Tp(M), p ∈ M.

It is called the tangent map of f .
(c) If M ⊆ R is an open subset, then f : M → N is a smooth curve in N ,

and its tangent vector is f ′(t) := Tt(f)(1), where 1 ∈ Tt(R) ∼= R is considered
as a tangent vector.

(d) If N is a vector space, then we identify T (N) in a natural way with
N ×N . Accordingly we have

Tp(f)(v) = (f(p), df(p)v),

for a map df : T (M) → N with df(p) := df |Tp(M).

Remark 7.3.4. (a) For an open subset U ⊆ Rn and p ∈ U , the vector space
structure on Tp(U) = {p} × Rn is simply given by

(p, v) + (p, w) := (p, v + w) and λ(p, v) := (p, λv)

for v, w ∈ Rn and λ ∈ R.
(b) If f : U → V is a smooth map between open subsets U ⊆ Rn and

V ⊆ Rm, p ∈ U , and ηv(t) = p + tv, then the tangent map satisfies

T (f)(p, v) = [f ◦ ηv] = (f ◦ ηv)′(0) = (f(p), df(p)η′v(0)) = (f(p), df(p)v).

The main difference to the map df is the book keeping; here we keep track of
what happens to the point p and the tangent vector v. We may also write

T (f) = (f ◦ πTU , df) : TU ∼= U × Rn → TV ∼= V × Rn,

where πTU : TU → U, (p, v) 7→ p, is the projection map.
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(c) If (ϕ,U) is a chart of M and p ∈ U , then we identify T (ϕ(U)) with
ϕ(U)× Rn and obtain for [γ] ∈ Tp(M):

T (ϕ)([γ]) = (ϕ(p), [ϕ ◦ γ]) = (ϕ(p), (ϕ ◦ γ)′(0)),

which is consistent with our previously introduced notation Tp(ϕ) (Re-
mark 7.3.2).

Lemma 7.3.5 (Chain Rule for Tangent Maps). For smooth maps
f : M → N and g : N → L, the tangent maps satisfy

T (g ◦ f) = T (g) ◦ T (f).

Proof. We recall from Lemma 7.2.21 that g ◦ f : M → L is a smooth map, so
that T (g ◦ f) is defined. For p ∈ M and [γ] ∈ Tp(M), we further have

Tp(g ◦ f)[γ] = [g ◦ f ◦ γ] = Tf(p)(g)[f ◦ γ] = Tf(p)(g)Tp(f)[γ].

Since p was arbitrary, this implies the lemma. ut
So far we only considered the tangent bundle T (M) of a smooth manifold

M as a set, but this set also carries a natural topology and a smooth manifold
structure.

Definition 7.3.6 (Manifold structure on T (M)). Let M be a smooth
manifold. First we introduce a topology on T (M).

For each chart (ϕ,U) of M , we have a tangent map

T (ϕ) : T (U) → T (ϕ(U)) ∼= ϕ(U)× Rn,

where we consider T (U) =
⋃

p∈U Tp(M) as a subset of T (M). We define a
topology on T (M) by declaring a subset O ⊆ T (M) to be open if for each
chart (ϕ,U) of M , the set T (ϕ)(O∩T (U)) is an open subset of T (ϕ(U)). It is
easy to see that this defines indeed a Hausdorff topology on T (M) for which
all the subsets T (U) are open and the maps T (ϕ) are homeomorphisms onto
open subsets of R2n (Exercise 7.3.1; see also Remark 7.2.13).

Since for two charts (ϕ,U), (ψ, V ) of M , the map

T (ϕ ◦ ψ−1) = T (ϕ) ◦ T (ψ)−1 : T (ψ(V )) → T (ϕ(U))

is smooth, for each atlas A of M , the collection (T (ϕ), T (U))(ϕ,U)∈A is a
smooth atlas of T (M). We thus obtain on T (M) the structure of a smooth
manifold.

Lemma 7.3.7. If f : M → N is a smooth map, then its tangent map T (f) is
smooth.
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Proof. Let p ∈ M and choose charts (ϕ,U) and (ψ, V ) of M , resp., N with
p ∈ U and f(p) ∈ V . Then the map

T (ψ) ◦ T (f) ◦ T (ϕ)−1 = T (ψ ◦ f ◦ ϕ−1) : T (ϕ(f−1(V ) ∩ U)) → T (V )

is smooth, and this implies that T (f) is a smooth map. ut
Remark 7.3.8. For smooth manifolds M1, . . . , Mn, the projection maps

πi : M1 × · · · ×Mn → Mi, (p1, . . . , pn) 7→ pi

induce a diffeomorphism

(T (π1), . . . , T (πn)) : T (M1 × · · · ×Mn) → TM1 × · · · × TMn

(Exercise 7.3.2).

Definition 7.3.9. Let M be a differentiable manifold and V a finite-dimen-
sional vector space. A V -valued Pfaffian form, also called simply a 1-form,
on M is a smooth map ω : TM → V whose restrictions ωp : Tp(M) → V are
linear for each p ∈ M . The set of all V -valued 1-forms on M is denoted by
Ω1(M, V ) and for V = R we abbreviate Ω1(M) := Ω1(M,R) .

Recall the bundle projection πTM : TM → M . Then for any smooth func-
tion f : M → R, the pointwise product

f · ω := (f ◦ πTM ) · ω : TM → V

also is a V -valued 1-form. Combined with the obvious vector space structure
on Ω1(M,V ), defined by pointwise addition and scalar multiplication, we thus
obtain on Ω1(M, V ) the structure of a C∞(M)-module.

Example 7.3.10. If f : M → V is a smooth function, then Tf : TM → TV is
also smooth. Identifying TV in the canonical fashion with V × V and writing
pr2 : TV → V, (x, v) 7→ v for the projection, the map

df := pr2 ◦Tf : TM → V

is a V -valued 1-form and the tangent map Tf can now be written Tf(v) =
(f(p), df(p)v) for v ∈ Tp(M).

Remark 7.3.11. Now let ω ∈ Ω1(M) and X ∈ V(M). For every p ∈ M , we
can apply ωp to X(p). We thus get a smooth function ω(X) = ω◦X : M → R.

Definition 7.3.12. Let ω ∈ Ω1(M,V ) be a V -valued 1-form and f : N → M
a smooth map. Then we obtain a V -valued 1-form

f∗ω := ω ◦ Tf : TN → V,

called the pull-back of ω to N .
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Remark 7.3.13. We clearly have the following rules for pull-backs of 1-forms.
For ω ∈ Ω1(M, V ) and smooth maps ψ : W → N and ϕ : N → M , we have

id∗M ω = ω and (ϕ ◦ ψ)∗ω = ψ∗(ϕ∗ω).

Moreover,
ϕ∗ : Ω1(M, V ) → Ω1(N,V )

is a linear map satisfying ϕ∗(f · ω) = (f ◦ ϕ) · ϕ∗ω for f ∈ C∞(M).

Definition 7.3.14. Let f : M1 → M2 be a smooth map and m ∈ M1. The
map f is called submersive in m if the differential Tm(f) is surjective. Other-
wise m is called a critical point of f .

The map f is said to be a submersion if Tm(f) is surjective for each
m ∈ M1.

Lemma 7.3.15. If f : M1 → M2 is a smooth map which is submersive in
m ∈ M1, then there exists an open neighborhood U ⊆ M2 of p := f(m) and a
smooth map σ : U → M1 with f ◦ σ = idU and σ(p) = m.

Proof. Since the assertion is purely local, we may w.l.o.g. assume that M1 is
an open subset of Rn and M2 is an open subset of Rk. That f is submersive
in m means that df(m) : Rn → Rk is surjective. Let V ⊆ Rn be a linear
subspace for which df(m)|V : V → Rk is a linear isomorphism. Then F :=
f |M1∩V : M1∩V → M2 is a smooth map whose differential Tm(F ) is invertible.
Hence the Inverse Function Theorem implies the existence of a smooth inverse
σ, defined on an open neighborhood of p = F (m). ut
Proposition 7.3.16 (Universal Property of Submersions). Suppose
that f : M1 → M2 is a surjective submersion and N a smooth manifold. Then
a map h : M2 → N is smooth if and only if the map h◦f : M1 → N is smooth.
In particular, for each smooth map g : M1 → N which is constant on all fibers
of f , there exists a unique smooth map h : M2 → N with h ◦ f = g.

Proof. If h is smooth, then also the composition h ◦ f is smooth. Assume,
conversely, that h ◦ f is smooth. To see that h is smooth, pick p ∈ M2 and
an open neighborhood U ⊆ M2 of p on which there exists a smooth section
σ : U → M1 with f ◦σ = idU (Lemma 7.3.15). Then h|U = h◦f ◦σ is smooth.
Hence h is smooth on a neighborhood of p, and since p ∈ M2 was arbitrary,
h is smooth.

The second assertion immediately follows from the first one if we define
the map h : M2 → N by h(f(x)) := g(x), which works if and only if g is
constant on the fibers of f . ut
Corollary 7.3.17. If f : M1 → M2 is a bijective submersion, then f is a
diffeomorphism.

Proof. Apply the preceding proposition with N := M1 and g = idM1 . ut
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Remark 7.3.18. The smooth map f : M1 := R → M2 := R, x 7→ x3 is
submersive in all points x 6= 0. The map g = idR : M1 = R → N := R
is smooth and bijective, hence constant on the fibers of f , but the map
g : M2 → N,x 7→ x

1
3 is not smooth in 0. This shows that the assumption

in Proposition 7.3.16 that f is submersive is really needed.

7.3.2 Algebraic Tangent Spaces

An alternative algebraic approach to the tangent space is to consider not the
velocity vectors of curves, but to study their actions on smooth functions: Let
v ∈ Tp(M) and U be an open neighborhood of p in M . For a smooth function
f : U → R we then put (cf. Definition 7.3.3(d))

v(f) := df(p)v. (7.3)

From the product rule (see Exercise 7.3.7), one immediately derives

v(f · g) = v(f)g(p) + f(p)v(g).

We also observe that v(f) = v(g) if f and g coincide on a neighborhood of p.
This motivates the following definition:

Definition 7.3.19. Let M be a differentiable manifold. For p ∈ M , let

C∞(M,p) =
∐

p∈U

C∞(U)

be the set of smooth functions which are defined on an open subset U contain-
ing p. On C∞(M, p), we consider the equivalence relation defined by f ∼ g
if there exists an open neighborhood U of p in M such that f |U = g|U . We
denote the equivalence class of f ∈ C∞(M, p) with respect to ∼ by fp. It
is called the germ of f in p. The set C∞(M)p := C∞(M,p)/∼ of equiva-
lence classes inherits an algebra structure (given by pointwise addition and
multiplication of functions)

fp + gp := (f + g)p and fpgp := (fg)p.

A linear functional v : C∞(M)p → R is called a derivation in p if

v(fp · gp) = v(fp) · g(p) + f(p) · v(gp)

for fp, gp ∈ C∞(M)p. The algebraic tangent space T alg
p (M) of M in p is

defined to be the set of all derivations v : C∞(M)p → R.

Note that we have assigned a derivation to every v ∈ Tp(M), but we have
not assigned a tangent vector to every derivation. This is nevertheless possible,
and will be done in Proposition 7.3.24.
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Proposition 7.3.20. Let M be a differentiable manifold. Then for p ∈ M the
following is true

(i) T alg
p (M) is a vector space with respect to the pointwise operations.

(ii) If fp ∈ C∞(M)p is such that f is constant on a neighborhood of p, then
v(fp) = 0 for all v ∈ T alg

p (M).

Proof. The first statement is obvious, and for the second, it suffices to prove
that v(1p) = 0 for all v ∈ T alg

p (M), where 1 is the constant function with
value 1. For this, we compute:

v(1p) = v(1p · 1p) = v(1p) · 1 + v(1p) · 1 = 2v(1p),

which implies v(1p) = 0. ut
Note that at this point it is not clear what the size of the tangent space

is. We cannot even say whether it is finite-dimensional. In order to clarify the
structure of T alg

p (M), we describe it in local coordinates.

Definition 7.3.21. Let ϕ : U → V ⊂ Rn be a chart with p ∈ U . We define n
elements ∂

∂xj

∣∣
p
∈ T alg

p (M) for j = 1, . . . , n by

∂

∂xj

∣∣∣
p
(fp) :=

∂(f ◦ ϕ−1)
∂xj

(
ϕ(p)

)
,

where the points in Rn are denoted by x = (x1, . . . , xn). Note that this defi-
nition depends on the choice of the chart.

It turns out that the ∂
∂xj

∣∣
p

form a basis for TpM , which we call the ϕ-basis
for T alg

p (M). To prove this, we start with a lemma:

Lemma 7.3.22 (Hadamard). Let B be an open ball in Rn with center a
and f ∈ C∞(B). Then there exist smooth functions g1, . . . , gn ∈ C∞(B) such
that

(i) f(x) = f(a) +
n∑

j=1

(xj − aj)gj(x) for all x ∈ B.

(ii) gj(a) = ∂f
∂xj

(a).

Proof. For fixed x ∈ B, we consider the function

ξ : [−1, 1] → R, ξ(t) := f
(
a + t(x− a)

)
.

Then, for gj(x) :=
1∫
0

∂f
∂xj

(
a + t(x− a)

)
dt, we have
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f(x) = ξ(0) +
1∫
0

ξ′(t) dt = ξ(0) +
1∫
0

n∑
j=1

∂f
∂xj

(
a + t(x− a)

) · (xj − aj) dt

= f(a) +
n∑

j=1

(xj − aj)
( 1∫

0

∂f
∂xj

(
a + t(x− a)

)
dt

)

= f(a) +
n∑

j=1

(xj − aj)gj(x).

Since f ∈ C∞(B) by assumption, we also have gj ∈ C∞(B) (Exercise). ut
Proposition 7.3.23. Let M be a smooth manifold and (ϕ,U) be a chart on
M with coordinate functions xj : U → R given by ϕ(q) =

(
x1(q), . . . , xn(q)

)
,

see Remark 7.2.17. Then the tangent vectors ∂
∂xj

∣∣
p
, j = 1, . . . , n, form a basis

for T alg
p (M) and for every v ∈ T alg

p (M), the formula holds

v =
n∑

j=1

v
(
(xj)p

) · ∂

∂xj

∣∣∣
p
.

Proof. Fix v ∈ T alg
p (M) and f ∈ C∞(Ṽ ), where Ṽ ⊆ U is an open subset

containing p. Let V = ϕ(Ṽ ) and put F = f ◦ ϕ−1 : V → R. Shrinking the
neighborhoods, we may assume that V is an open ball with center ϕ(p). We
apply Lemma 7.3.22 to F and get functions gj : V → R satisfying F (x) =
F (a) +

∑n
j=1(xj − aj)gj(x). Then, using Proposition 7.3.20, we compute

v(fp) = v
(
(F ◦ ϕ)p

)
= v

(
F (ϕ(p)) +

n∑
j=1

(
xj − xj(p)

)
p
(gj ◦ ϕ)p

)

= v
(
f(p) · 1p

)
+ v

( n∑
j=1

(
xj − xj(p) · 1)

p
· (gj ◦ ϕ

)
p

)

= 0 +
n∑

j=1

(
v
(
(xj)p

) · gj

(
ϕ(p)

)
+ v

(
(gj ◦ ϕ)p

) · (xj(p)− xj(p) · 1))

=
n∑

j=1

v
(
(xj)p

) · ∂(f◦ϕ−1)
∂xj

(
ϕ(p)

)
=

n∑
j=1

v
(
(xj)p

) · ∂
∂xj

∣∣
p
(fp).

Hence, every derivation v ∈ T alg
p (M) is a linear combination of the ∂

∂xj

∣∣
p
, j =

1, . . . , n. It remains to show that the ∂
∂xj

∣∣
p

for j = 1, . . . , n are linearly inde-
pendent. But this is immediate from ∂

∂xj

∣∣
p

(
(xj)p

)
= δij . ut

Proposition 7.3.24. Let M be a smooth manifold and p ∈ M . Then

Γ : Tp(M) → T alg
p (M), Γ (v)(fp) := v(fp) = df(p)v

is a linear isomorphism.



7.3 The Tangent Bundle 251

Proof. It follows from (7.3) and the subsequent calculation that Γ is a linear
map into the algebraic tangent space.

Consider a chart (ϕ, U) with p ∈ U . In view of Proposition 7.3.23, the
condition Γ (v) = 0 is equivalent to 0 = v((xj)p) = dxj(p)v for all coordinate
functions, which in turn is equivalent to Tp(ϕ)v = 0, i.e., to v = 0. Thus
Γ is injective. Since both spaces are of the same dimension, Γ is a linear
bijection. ut

In view of Proposition 7.3.24, we will no longer distinguish between the
geometric and the algebraic tangent spaces.

Recall that with any differential map f : M → N between two manifolds
we associate a linear map Tp(f) : TpM → Tf(p)N as derivative.

(M)

T    (N)f(p)

f(p)p

f

Tp

T (f)p

Remark 7.3.25. For charts (ϕ,U) of M and (ψ, V ) of N , we obtained dis-
tinguished bases for TpM and Tf(p)N . We want to describe the derivative of
f with respect to these bases.

ϕ ψ

ηγ

p f

Let F := ψ ◦ f ◦ ϕ−1 : : ϕ
(
U ∩ f−1(V )

) → ψ(V ) and write Fi for its compo-
nents.
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M
f // N

U
?Â

OO

ϕ

²²

V
?Â

OO

ψ

²²

ϕ(U)

}}{{
{{

{{
{{

!!CC
CC

CC
CC

ψ(V )

}}{{
{{

{{
{{

!!CC
CC

CC
CC

R . . . R R . . . R

Then we find (exercise)

Tp(f)
(

∂
∂xj

∣∣
p

)
=

dim N∑
i=1

∂Fi(ϕ(p))
∂xj

∂
∂yi

∣∣
f(p)

Hence the Jacobian of F in ϕ(p) is exactly the matrix of Tp(f) with respect
to the bases of TpM and Tf(p)N , associated with ϕ and ψ, respectively.

Exercises for Section 7.3

Exercise 7.3.1. Let M be a smooth manifold. We call a subset O ⊆ T (M)
open if for each chart (ϕ, U) of M , the set T (ϕ)(O ∩ T (U)) is an open subset
of T (ϕ(U)). Show that:

(1) This defines a topology on T (M).
(2) All subsets T (U) are open (Remark 7.3.4(b)).
(3) The maps T (ϕ) : TU → T (ϕ(U)) ∼= ϕ(U)×Rn are homeomorphisms onto

open subsets of R2n ∼= T (Rn).
(4) The projection πTM : T (M) → M is continuous.
(5) T (M) is Hausdorff.

Exercise 7.3.2. For smooth manifolds M1, . . . , Mn, the projection maps

πi : M1 × · · · ×Mn → Mi, (p1, . . . , pn) 7→ pi

induce a diffeomorphism

(T (π1), . . . , T (πn)) : T (M1 × · · · ×Mn) → TM1 × · · · × TMn.

Exercise 7.3.3. Let N and M1, . . . , Mn be a smooth manifolds. Show that a
map

f : N → M1 × · · · ×Mn

is smooth if and only if all its component functions fi : N → Mi are smooth.
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Exercise 7.3.4. Let f : M → N be a smooth map between manifolds,
πTM : TM → M the tangent bundle projection and σM : M → TM the zero
section. Show that for each smooth map f : M → N we have

πTN ◦ Tf = f ◦ πTM and σN ◦ f = Tf ◦ σM .

Exercise 7.3.5 (Inverse Function Theorem for manifolds). Let
f : M → N be a smooth map and p ∈ M such that Tp(f) : Tp(M) → Tp(N)
is a linear isomorphism. Show that there exists an open neighborhood U of p
in M such that the restriction f |U : U → f(U) is a diffeomorphism onto an
open subset of N .

Exercise 7.3.6. Let Pn(R) be the n-dimensional projective space over R. For
a point x ∈ Pn(R), let Lx be the line in Rn+1 represented by x. Show that
L :=

∐
x∈M Lx carries the structure of a line bundle, i.e., a vector bundle of

rank 1.

Exercise 7.3.7. Let µ : E×F → W be a bilinear map and M a smooth mani-
fold. For f ∈ C∞(M,E), g ∈ C∞(M, F ) and p ∈ M set h(p) := µ

(
f(p), g(p)

)
.

Show that h is smooth with

T (h)v = µ
(
T (f)v, g(p)

)
+ µ

(
f(p), T (g)v

)
for v ∈ Tp(M).

7.4 Vector Fields

Vector fields are maps which associate with each point in a manifold a tangent
vector at this point. They can be interpreted as a geometric way to formulate
first order differential equations on a manifold, a point of view we will elab-
orate on in Section 7.5. First we introduce the Lie algebra structure on the
space of smooth vector fields.

7.4.1 The Lie Algebra of Vector Fields

Definition 7.4.1. (a) Let πTM : TM → M denote the canonical projection
mapping Tp(M) to p. A (smooth) vector field X on M is a smooth section of the
tangent bundle TM , i.e., a smooth map X : M → TM with πTM ◦X = idM .
We write V(M) for the space of all vector fields on M .

(b) If U ⊆ M is an open subset and f ∈ C∞(U, V ) is a smooth function
on U with values in some finite-dimensional vector space V and X ∈ V(M),
then we obtain a smooth function on U via

LXf := df ◦X|U : U → TU → V.

We thus obtain for each X ∈ V(M) a linear operator LX on C∞(U, V ). The
function LXf is also called the Lie derivative of f with respect to X.
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Remark 7.4.2. (a) If U is an open subset of Rn, then TU = U × Rn with
the bundle projection

πTU : U × Rn → U, (x, v) 7→ x.

Therefore each smooth vector field is of the form X(x) = (x, X̃(x)) for some
smooth function X̃ : U → Rn, and we may thus identify V(U) with the space
C∞(U,Rn) of smooth Rn-valued functions on U .

(b) The space V(M) carries a natural vector space structure given by

(X + Y )(p) := X(p) + Y (p), (λX)(p) := λX(p)

(Exercise 7.4.1).
More generally, we can multiply vector fields with smooth functions

(fX)(p) := f(p)X(p), f ∈ C∞(M,R), X ∈ V(M).

Before we turn to the Lie bracket on the space V(M) of smooth vector
fields on a manifold M , we take a closer look at the local level.

Lemma 7.4.3. Let U ⊆ Rn be an open subset. Then we obtain a Lie bracket
on the space C∞(U,Rn) by

[X, Y ](p) := dY (p)X(p)− dX(p)Y (p) for p ∈ U.

With respect to this Lie bracket, the map

C∞(U,Rn) → End(C∞(U,R)), X 7→ LX , LX(f)(p) := df(p)X(p)

is an injective homomorphism of Lie algebras, i.e., L[X,Y ] = [LX ,LY ].

Proof. (L1) and (L2) are obvious from the definition. To verify the Jacobi
identity, we first observe that the map X 7→ LX is injective. In fact, if LX = 0,
then we have for each linear function f : Rn → R the relation 0 = (LXf)(p) =
df(p)X(p) = f(X(p)), and therefore X(p) = 0.

Next we observe that

LXLY (f)(p) = d(LY f)(p)X(p) = d(df ◦ Y )(p)X(p)

= (d2f)(p)(X(p), Y (p)) + df(p)dY (p)X(p),

so that the Schwarz Lemma implies LXLY f − LY LXf = L[X,Y ]f. Since
End(C∞(U,R)) is a Lie algebra with respect to the commutator bracket
(Lemma 3.1.2) and L[X,Y ] = [LX ,LY ], the Jacobi identity in End(C∞(U,R))
implies the Jacobi identity in C∞(U,Rn). ut
Remark 7.4.4. For any open subset U ⊆ Rn, the map

V(U) → C∞(U,Rn), X → X̃
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with X(p) = (p, X̃(p)) is a linear isomorphism. We use this map to transfer
the Lie bracket on C∞(U,Rn), defined in Lemma 7.4.3, to a Lie bracket on
V(U), determined by

[X, Y ]̃ (p) := [X̃, Ỹ ](p) = dỸ (p)X̃(p)− dX̃(p)Ỹ (p).

Our goal is to use the Lie brackets on the space V(U) and local charts to
define a Lie bracket on V(M). The following lemma will be needed to ensure
consistency in this process.

First, we introduce the concept or related vector fields. If ϕ : M → N is
a smooth map, then we call two vector fields X ′ ∈ V(M) and X ∈ V(N)
ϕ-related if

X ◦ ϕ = Tϕ ◦X ′ : M → TN. (7.4)

With respect to the pullback map

ϕ∗ : C∞(N,R) → C∞(M,R), f 7→ f ◦ ϕ,

the ϕ-relatedness of X and X ′ implies that

LX′(ϕ∗f) = LX′(f ◦ϕ) = d(f ◦ϕ)◦X ′ = df ◦Tϕ◦X ′ = df ◦X ◦ϕ = ϕ∗(LXf),

i.e.,
LX′ ◦ ϕ∗ = ϕ∗ ◦ LX . (7.5)

Lemma 7.4.5. Let M ⊆ Rn and N ⊆ Rm be open subsets. Suppose that
X ′, resp., Y ′ ∈ V(M) is ϕ-related to X, resp., Y ∈ V(N). Then [X ′, Y ′] is
ϕ-related to [X, Y ].

Proof. In view of (7.5), we have

LX′ ◦ ϕ∗ = ϕ∗ ◦ LX and LY ′ ◦ ϕ∗ = ϕ∗ ◦ LY

as linear maps C∞(N,R) → C∞(M,R). Therefore

[LX′ ,LY ′ ] ◦ ϕ∗ = LX′ ◦ LY ′ ◦ ϕ∗ − LY ′ ◦ LX′ ◦ ϕ∗

= ϕ∗ ◦ LX ◦ LY − ϕ∗ ◦ LY ◦ LX = ϕ∗ ◦ [LX ,LY ].

For any f ∈ C∞(N,R), we thus obtain

df ◦ Tϕ ◦ [X ′, Y ′] = L[X′,Y ′](f ◦ ϕ) = (L[X,Y ]f) ◦ ϕ = df ◦ [X,Y ] ◦ ϕ.

Since each linear functional on the space Tx(N) ∼= Rm is of the form df(x)
for some linear map f : Rm → R, the assertion follows. ut
Proposition 7.4.6. For a vector field X ∈ V(M) and a chart (ϕ,U) of M ,
we write Xϕ := Tϕ ◦X ◦ ϕ−1 for the corresponding vector field on the open
subset ϕ(U) ⊆ Rn.

For X, Y ∈ V(M), there exists a vector field [X, Y ] ∈ V(M) which is
uniquely determined by the property that for each chart (ϕ,U) of M , the fol-
lowing equation holds

[X, Y ]ϕ = [Xϕ, Yϕ]. (7.6)
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Proof. If (ϕ,U) and (ψ, V ) are charts of M , the vector fields Xϕ on ϕ(U)
and Xψ on ψ(V ) are (ψ ◦ ϕ−1)-related. Therefore Lemma 7.4.5 implies that
[Xϕ, Yϕ] is (ψ ◦ ϕ−1)-related to [Xψ, Yψ]. This in turn is equivalent to

T (ϕ)−1 ◦ [Xϕ, Yϕ] ◦ ϕ = T (ψ)−1 ◦ [Xψ, Yψ] ◦ ψ,

which is an identity of vector fields on the open subset U ∩ V .
Hence there exists a unique vector field [X, Y ] ∈ V(M), satisfying

[X, Y ]|U = T (ϕ)−1 ◦ [Xϕ, Yϕ] ◦ ϕ

for each chart (ϕ,U), i.e., [X, Y ]ϕ = [Xϕ, Yϕ] on ϕ(U). ut
Lemma 7.4.7. For f ∈ C∞(M,R) and X, Y ∈ V(M), the following equation
holds

L[X,Y ]f = LX(LY f)− LY (LXf).

Proof. It suffices to show that this relation holds on U for any chart (ϕ,U) of
M . For fϕ := f ◦ ϕ−1, we then obtain with (7.5)

L[X,Y ]f = df ◦ [X, Y ] = df ◦ T (ϕ−1) ◦ [X,Y ]ϕ ◦ ϕ

= dfϕ ◦ [Xϕ, Yϕ] ◦ ϕ = ϕ∗
(L[Xϕ,Yϕ]fϕ

)

= ϕ∗
(L(Xϕ)L(Yϕ)fϕ − L(Yϕ)L(Xϕ)fϕ

)

= LX(LY f)− LY (LXf),

because ϕ∗fϕ = f . ut
Proposition 7.4.8. (V(M), [·, ·]) is a Lie algebra.

Proof. Clearly (L1) and (L2) are satisfied. To verify the Jacobi identity, let
X, Y, Z ∈ V(M) and (ϕ,U) be a chart of M . For the vector field J(X, Y, Z) :=∑

cycl.[X, [Y,Z]] ∈ V(M) we then obtain from the definition of the bracket,
Remark 7.4.4 and Proposition 7.4.6:

J(X,Y, Z)ϕ = J(Xϕ, Yϕ, Zϕ) = 0

because [·, ·] is a Lie bracket on V(ϕ(U)). This means that J(X, Y, Z) vanishes
on U , but since the chart (ϕ,U) was arbitrary, J(X, Y, Z) = 0. ut

We shall see later that the following lemma is an extremely important tool.

Lemma 7.4.9 (Related Vector Field Lemma). Let M and N be smooth
manifolds, ϕ : M → N a smooth map, X,Y ∈ V(N) and X ′, Y ′ ∈ V(M). If
X ′ is ϕ-related to X and Y ′ is ϕ-related to Y , then the Lie bracket [X ′, Y ′] is
ϕ-related to [X, Y ].
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Proof. We have to show that for each p ∈ M we have

[X, Y ](ϕ(p)) = Tp(ϕ)[X ′, Y ′](p).

Let (ρ, U) be a chart of M with p ∈ U and (ψ, V ) a chart of N with ϕ(p) ∈ V .
Then the vector fields X ′

ρ and Xψ are ψ ◦ ϕ ◦ ρ−1-related on the domain
ρ(ϕ−1(V ) ∩ U):

T (ψ ◦ ϕ ◦ ρ−1)X ′
ρ = T (ψ ◦ ϕ ◦ ρ−1)(T (ρ) ◦X ′ ◦ ρ−1)

= T (ψ) ◦ T (ϕ) ◦X ′ ◦ ρ−1 = T (ψ) ◦X ◦ ϕ ◦ ρ−1 = Xψ ◦ (ψ ◦ ϕ ◦ ρ−1),

and the same holds for the vector fields Y ′
ρ and Yψ, hence for their Lie brackets

(Lemma 7.4.5).
Now the definition of the Lie bracket on V(N) and V(M) implies that

T (ψ) ◦ T (ϕ) ◦ [X ′, Y ′] = T (ψ ◦ ϕ ◦ ρ−1) ◦ [X ′, Y ′]ρ ◦ ρ

= T (ψ ◦ ϕ ◦ ρ−1) ◦ [X ′
ρ, Y

′
ρ ] ◦ ρ = [Xψ, Yψ] ◦ ψ ◦ ϕ ◦ ρ−1 ◦ ρ

= [Xψ, Yψ] ◦ ψ ◦ ϕ = [X, Y ]ψ ◦ ψ ◦ ϕ = T (ψ) ◦ [X, Y ] ◦ ϕ,

and since T (ψ) is injective, the assertion follows. ut
Example 7.4.10. Let (ϕ, U) be a chart of M and x1, . . . , xn : U → R the
corresponding coordinate functions. Then we obtain on U the vector fields
Xj , j = 1, . . . , n, defined by

Xj(p) := Tp(ϕ)−1ej :=
∂

∂xj
(p) :=

∂

∂xj

∣∣∣
p
,

where e1, . . . , en is the standard basis for Rn. We call these vector fields the
ϕ-basic vector fields on U . The expression basic vector field is doubly justified.
On the one hand,

(
X1(p), . . . , Xn(p)

)
is a basis for Tp(M) for every p ∈ U .

On the other hand, the definition shows that every X ∈ V(U) can be written
as

X =
n∑

j=1

aj ·Xj for aj ∈ C∞(U).

Since basic vector fields are ϕ-related with the constant vector fields on Rn,
they commute (Related Vector Field Lemma 7.4.9), i.e., [Xj , Xk] = 0.

Remark 7.4.11. Let M be a smooth manifold of dimension n, (ϕ,U) be a
chart on M and xj : U → R be the j-th component of ϕ. Then, for p ∈ U , the
differentials

(
dxj(p)

)
j=1,...,n

form the dual basis to
(

∂
∂xj

∣∣
p

)
j=1,...,n

for TpM
∗.

Indeed xj ◦ ϕ−1 : ϕ(U) → R is simply the projection to the j-th coordinate,
so

dxi(p)
( ∂

∂xj

∣∣
p

)
=

∂xi

∂xj
(p) = δij =

{
1 for i = j

0 for i 6= j.

(Kronecker delta).



258 7 Smooth Manifolds

Example 7.4.12. Let (ϕ, U) be a chart of M and x1, . . . , xn : U → R the
corresponding coordinate functions. Then we obtain on U the 1-forms dxj ,
j = 1, . . . , n. We call these 1-forms the ϕ-basic forms on U . As in the case
of ϕ-basic vector fields the expression basic form is doubly justified. On the
one hand,

(
dx1(p), . . . , dxn(p)

)
is a basis for the dual space Tp(M)∗ for every

p ∈ U . On the other hand, setting aj := ω
(

∂
∂xj

)
, the formula dxk

(
∂

∂xj

)
= δkj

implies that every ω ∈ Ω1(U) can be written as

ω =
n∑

j=1

aj · dxj for aj ∈ C∞(U).

7.4.2 Vector Fields as Derivations

Let M be a smooth manifold with tangent bundle TM , and πTM : TM → M
the canonical projection. Recall from Definition 7.4.1 that a vector field on M
is a smooth section of the tangent bundle and that it induces a map

LX : C∞(M) → C∞(M), f 7→ LXf = df ◦X. (7.7)

Then the Product Rule d(fg) = f dg + g df implies

LX(f · g) = LXf · g + f · LXg. (7.8)

Definition 7.4.13. Let A be an associative algebra over K. A linear map
D : A → A is called a derivation of A, if it satisfies the following property:

D(f · g) = D(f) · g + f ·D(g) for f, g ∈ A.

The set of all derivations of A is denoted by der(A).

Remark 7.4.14. The discussion above shows that for a vector field X ∈
V(M) the map LX is a derivation of the algebra C∞(M). We thus obtain a
map

V(M) → der
(
C∞(M)

)
, X 7→ LX .

Below, we will show that this map is a bijection, and after that, we will also
write Xf for LXf . Note that the set der

(
C∞(M)

)
carries several algebraic

structures. It is obvious that we can add derivations and multiply them with
scalars. Derivations can also be multiplied with functions by

(g ·D)(f) := g · (D(f)
) ∀f, g ∈ C∞(M). (7.9)

Moreover, it is easy to check directly that der
(
C∞(M)

)
is closed under the

commutator bracket (this also follows from Lemma 7.4.7 once der
(
C∞(M)

)
is identified with V(M)). One thus obtains that der

(
C∞(M)

)
is at the same

time a Lie algebra and a C∞(M)-module (cf. Exercise 4.1.4).



7.4 Vector Fields 259

Lemma 7.4.15. Let M be a smooth manifold.

(i) Let C be a compact subset of M and V ⊇ C be an open subset. Then there
exists a smooth function f with f |C = 1 and f |M\V = 0.

(ii) For each p ∈ M , the map C∞(M) → C∞(M)p, f 7→ fp is surjective.

Proof. To prove (i), we first claim that for each p ∈ M and each open subset
B containing p, there exists a smooth function f ∈ C∞(B) with f = 0 on
M \B and f = 1 on a neighborhood A of p.

Since this is local property, it suffice s to prove it for balls in Rn. So let
A = Ba(0) and B = Bb(0) be the open balls of radius a and b around 0, where
0 < a < b. Consider the function f : R→ R which is defined by

f(x) =
{

exp
(

1
x−b − 1

x−a

)
for a < x < b

0 otherwise.

It is elementary to check (Exercise) that f and the function F : R→ R defined
by

F (x) =

b∫
x

f(t)dt

b∫
a

f(t)dt

are smooth.

2
a+b

y

x

1

ba

1

a b

We define our desired function by

ζ(x1, . . . , xn) := F
(√

x2
1 + . . . + x2

n

)
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2−b −a a
b2 2 2

One immediately checks that ζ|A ≡ 1 and ζ|Rn\B ≡ 0, so that the claim is
proved.

Now cover C by finitely many open sets Ui ⊆ V such that one has smooth
functions fi ∈ C∞(M) with fi = 0 on M \ V and fi = 1 on Ui. Then
f := 1 − ∏

i(1 − fi) has the desired properties which completes the proof
of (i).

Finally, let U be an open neighborhood of p ∈ M and h ∈ C∞(U). Further,
let W be an open neighborhood of p with compact closure W ⊆ U . Let
f ∈ C∞(M) be a smooth function vanishing on M \W and which is 1 on a
neighborhood of p. Then

H(x) :=

{
f(x)h(x) for x ∈ U

0 for x 6∈ W

defines a smooth function on M whose germ in p is Hp = hp. ut
Lemma 7.4.16. The map V(M) → der

(
C∞(M)

)
, X 7→ LX is injective.

Proof. Let X ∈ V(M) with LX = 0. Then by (7.7) we have

X(p)(fp) = (LXf)(p) = 0

for all f ∈ C∞(M) and all p ∈ M . Since each germ in p comes from a global
smooth function on M by Lemma 7.4.15, this implies X(p) = 0 for each
p ∈ M , hence X = 0. ut
Lemma 7.4.17. Let M be a smooth manifold and D ∈ der

(
C∞(M)

)
.

(i) D(f) = 0 for all constant functions f ∈ C∞(M).
(ii) Let V ⊂ M be an open subset and f ∈ C∞(M) with f |V = 0. Then

D(f)|V = 0 as well.

Proof. Just as Proposition 7.3.20, the assertion (i) is a direct consequence of
the defining equation of a derivation. To show (ii), pick p ∈ V . By Lemma
7.4.15, there exists a function g ∈ C∞(M) which is 1 outside V and which
vanishes in p. Then g · f = f , and therefore,

D(f)(p) = D(f · g)(p) = f(p)
(
D(g)(p)

)
+ g(p)

(
D(f)(p)

)
= 0.

Since p ∈ V was chosen arbitrarily, the lemma is proved. ut
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To finish the program outlined in Remark 7.4.14, we still have to show that
the assignment X 7→ LX is also surjective. So, let D ∈ der

(
C∞(M)

)
be given.

By Lemma 7.4.17 D(f)(p) only depends on fp, so, in view of Lemma 7.4.16,
we can define an element XD(p) ∈ Tp(M) via

XD(p)(fp) := D(f)(p) (7.10)

for all f ∈ C∞(M) and for all p ∈ M .
All that remains to show to complete the proof of the bijectivity of X 7→

LX is the smoothness of XD in each p ∈ M . This is a local property, so it
suffices to verify the smoothness of XD on some neighborhood of p. So let
(ϕ,U) be a chart of M with p ∈ U . Let x̂j ∈ C∞(M) be functions which
coincide with xj on a neighborhood V of p (Lemma 7.4.15). Then Proposition
7.3.23 implies for q ∈ V

XD(q) =
n∑

j=1

XD(q)
(
(xj)q

) · ∂
∂xj

∣∣
q

=
∑n

j=1 D(x̂j)(q) · ∂
∂xj

∣∣
q
.

Therefore XD is smooth on V . This completes the proof of the following
theorem.

Theorem 7.4.18. Let M be a smooth manifold. Then the map

V(M) → der
(
C∞(M)

)
, X 7→ LX ,

defined by LX(f) = df ◦X, is a bijection.

Theorem 7.4.18 is interesting not only in its own right, but also because
of the methods that were used to prove it. We collect some of the facts we
essentially derived in the course of the proof:

Remark 7.4.19. Let M be a smooth manifold and p ∈ M .
(i) Let C ⊆ M be a compact subset, U ⊇ C an open neighborhood and

X ∈ V(U) a vector field on U . Let W ⊆ U be a compact neighborhood of C
in U and f ∈ C∞(M) vanishing on M \W with f |C = 1 (Lemma 7.4.15(i)).
Then fX defines a smooth vector field on M which coincides with X on C.

(ii) For any chart (ϕ,U) with p ∈ U a vector field X ∈ der
(
C∞(M)

) ∼=
V(M) can be written on U as

X|U =
n∑

j=1

aj ·Xj (7.11)

with aj ∈ C∞(U) and Xj ∈ V(U), given by ∂
∂xj

∣∣
q

for all q ∈ U .
(iii) For every v ∈ TpM , there exists a vector field X ∈ V(M) with

X(p) = v.
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Exercises for Section 7.4

Exercise 7.4.1. Let M be a smooth manifold and q : V → M a smooth K-
vector bundle. Show that

(s1 + s2)(p) := s1(p) + s2(p) (λs)(p) := λs(p), λ ∈ K,

defines on the space ΓV of smooth sections of V the structure of a K-vector
space. Show also that the multiplication with smooth K-valued functions de-
fined by

(fs)(p) := f(p)s(p)

satisfies for s, s1, s2 ∈ ΓV and f, g ∈ C∞(M,K):

(1) f(s1 + s2) = fs1 + fs2.
(2) f(λs) = λ · fs = (λf)s for λ ∈ K.
(3) (f + g)s = fs + gs.
(4) f(gs) = (fg)s.

Exercise 7.4.2. Let M be a smooth manifold, X, Y ∈ V(M) and f, g ∈
C∞(M,R). Show that
(1) LX(f · g) = LX(f) · g + f · LX(g), i.e., the map f 7→ LX(f) is a derivation.
(2) LfX(g) = f · LX(g).

Exercise 7.4.3. Let M be a smooth manifold of dimension n and p ∈ M .
Pick a vector vϕ ∈ Rn for each chart (ϕ,U) with p ∈ U . We call the family
(vϕ) of all such vectors a tangent vector (physicists’ definition), if

vψ = d(ψ ◦ ϕ−1)ϕ(p)vϕ.

It is obvious that these tangent vectors form a vector space isomorphic to Rn.
Fix a chart (ϕ,U) with p ∈ U . Consider the map

Rn → TpM, vϕ 7→
n∑

j=1

(vϕ)j
∂

∂xj

∣∣
p

and show that it defines a linear isomorphism between the physicists and the
algebraic version of the tangent space.

Exercise 7.4.4. Let M be a smooth manifold, and let (ϕ,U) and (ψ, V ) be
charts on M . Further, let p ∈ U ∩ V and v ∈ TpM . Express v in the ϕ-basis
for TpM as well as in the ψ-basis for TpM . How are the coefficients related?

Exercise 7.4.5. Let f : M → N be a smooth map between smooth manifolds.
Pick charts (ϕ, U) and (ψ, V ) of M and N , respectively, with p ∈ U and
f(p) ∈ V . Show that the derivative Tpf : TpM → Tf(p)N of f in p in the
physicists’ definition of tangent space is given by

(
Tpf(vϕ)

)
ψ

= d(ψ ◦ f ◦ ϕ−1)ϕ(p)(vϕ).
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Exercise 7.4.6. Show that der
(
C∞(M)

)
is a C∞(M)-module with respect

to the multiplication (7.9). This means that for all D,E ∈ der
(
C∞(M)

)
,

g, f ∈ C∞(M), and r, s ∈ R the following properties are satisfied:

g · (rD + sE) = r(g ·D) + s(g · E),
g · (f ·D) = (g · f) ·D,

(g + f) ·D = g ·D + f ·D.

7.5 Integral Curves and Local Flows

In this section we turn to the geometric nature of vector fields as infinitesimal
generators of local flows on manifolds. This provides a natural perspective on
(autonomous) ordinary differential equations.

7.5.1 Integral Curves

Throughout this subsection M denotes an n-dimensional smooth manifold.

Definition 7.5.1. Let X ∈ V(M) and I ⊆ R an open interval containing 0.
A differentiable map γ : I → M is called an integral curve of X if

γ′(t) = X(γ(t)) for each t ∈ I.

Note that the preceding equation implies that γ′ is continuous and further
that if γ is Ck, then γ′ is also Ck. Therefore integral curves are automatically
smooth.

If J ⊇ I is an interval containing I, then an integral curve η : J → M is
called an extension of γ if η|I = γ. An integral curve γ is said to be maximal
if it has no proper extension.

Remark 7.5.2. (a) If U ⊆ Rn is an open subset of Rn, then we write a vector
field X ∈ V(U) as X(x) = (x, F (x)), where F : U → Rn is a smooth function.
A curve γ : I → U is an integral curve of X if and only if it satisfies the
ordinary differential equation

γ′(t) = F (γ(t)) for all t ∈ I.

(b) If (ϕ,U) is a chart of the manifold M and X ∈ V(M), then a curve
γ : I → M is an integral curve of X if and only if the curve η := ϕ ◦ γ is an
integral curve of the vector field Xϕ := T (ϕ) ◦X ◦ ϕ−1 ∈ V(ϕ(U)) because

Xϕ(η(t)) = Tγ(t)(ϕ)X(γ(t)) and η′(t) = Tγ(t)(ϕ)γ′(t).

Remark 7.5.3. A curve γ : I → M is an integral curve of X if and only if
γ̃(t) := γ(−t) is an integral curve of the vector field −X.

More generally, for a, b ∈ R, the curve η(t) := γ(at+b) is an integral curve
of the vector field aX.
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Definition 7.5.4. Let a < b ∈ [−∞,∞]. For a continuous curve γ : ]a, b[→ M
we say that

lim
t→b

γ(t) = ∞

if for each compact subset K ⊆ M there exists a c < b with γ(t) 6∈ K for
t > c. Similarly, we define

lim
t→a

γ(t) = ∞.

Theorem 7.5.5 (Existence and Uniqueness of Integral Curves). Let
X ∈ V(M) and p ∈ M . Then there exists a unique maximal integral curve
γp : Ip → M with γp(0) = p. If a := inf Ip > −∞, then limt→a γp(t) = ∞ and
if b := sup Ip < ∞, then limt→b γp(t) = ∞.

Proof. We have seen in Remark 7.5.2 that in local charts, integral curves are
solutions of an ordinary differential equation with a smooth right hand side.
We now reduce the proof to the Local Existence- and Uniqueness Theorem
for ODE’s.

Uniqueness: Let γ, η : I → M be two integral curves of X with γ(0) =
η(0) = p. The continuity of the curves implies that

0 ∈ J := {t ∈ I : γ(t) = η(t)}

is a closed subset of I. In view of the Local Uniqueness Theorem for ODE’s, for
each t0 ∈ J there exists an ε > 0 with [t0, t0+ε] ⊆ J , and likewise [t0−ε, t0] ⊆
J (Remark 7.5.3). Therefore J is also open. Now the connectedness of I implies
I = J , so that γ = η.

Existence: The Local Existence Theorem implies the existence of some
integral curve γ : I → M on some open interval containing 0. For any other
integral curve η : J → M , the intersection I ∩J is an interval containing 0, so
that the uniqueness assertion implies that η = γ on I ∩ J .

Let Ip ⊆ R be the union of all open intervals Ij containing 0 on which
there exists an integral curve γj : Ij → M of X with γj(0) = p. Then the
preceding argument shows that

γ(t) := γj(t) for t ∈ Ij

defines an integral curve of X on Ip, which is maximal by definition. The
uniqueness of the maximal integral curve also follows from its definition.

Limit condition: Suppose that b := sup Ip < ∞. If limt→b γ(t) = ∞ does
not hold, then there exists a compact subset K ⊆ M and a sequence tm ∈ Ip

with tm → b and γ(tm) ∈ K. As K can be covered with finitely many closed
subsets homeomorphic to a closed subset of a ball in Rn, after passing to a
suitable subsequence, we may w.l.o.g. assume that K itself is homeomorphic
to a compact subset of Rn. Then a subsequence of (γ(tm))m∈N converges, and
we may replace the original sequence by this subsequence, hence assume that
q := limm→∞ γ(tm) exists.
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The Local Existence Theorem for ODE’s implies the existence of a compact
neighborhood V ⊆ M of q and ε > 0 such that the initial value problem

η(0) = x, η′ = X ◦ η

has a solution on [−ε, ε] for each x ∈ V . Pick m ∈ N with tm > b − ε and
γ(tm) ∈ V . Further let η : [−ε, ε] → M be an integral curve with η(0) = γ(tm).
Then

γ(t) := η(t− tm) for t ∈ [tm − ε, tm + ε],

defines an extension of γ to the interval Ip∪]tm, tm+ε[ strictly containing ]a, b[,
hence contradicting the maximality of Ip. This proves that limt→b γ(t) = ∞.
Replacing X by −X, we also obtain limt→a γ(t) = ∞. ut

If q = γp(t) is a point on the unique maximal integral curve of X through
p ∈ M , then Iq = Ip − t and

γq(s) := γp(t + s)

is the unique maximal integral curve through q. Here Ip is the domain of
definition of the maximal integral curve through p and Iq is the domain of
definition of the maximal integral curve through q.

Example 7.5.6. (a) On M = R we consider the vector field X given by the
function F (s) = 1 + s2, i.e., X(s) = (s, 1 + s2). The corresponding ODE is

γ′(s) = X(γ(s)) = 1 + γ(s)2.

For
γ(0) = 0 the function γ(s) := tan(s) on I := ] − π

2 , π
2 [ is the unique max-

imal solution because

lim
t→π

2

tan(t) = ∞ and lim
t→−π

2

tan(t) = −∞.

(b) Let M := ] − 1, 1[ and X(s) = (s, 1), so that the corresponding ODE
is γ′(s) = 1. Then the unique maximal solution is

γ(s) = s, I = ]− 1, 1[.

Note that we also have in this case

lim
s→±1

γ(s) = ∞

if we consider γ as a curve in the noncompact manifold M .
For M = R the same vector field has the maximal integral curve

γ(s) = s, I = R.
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(c) For M = R and X(s) = (s,−s), the differential equation is γ′(t) =
−γ(t), so that we obtain the maximal integral curves γ(t) = γ0e

−t. For γ0 =
0 this curve is constant, and for γ0 6= 0 we have limt→∞ γ(t) = 0, hence
limt→∞ γ(t) 6= ∞. This shows that maximal integral curves do not always
leave every compact subset of M if they are defined on an interval unbounded
from above.

The preceding example shows in particular that the global existence of
integral curves can also be destroyed by deleting parts of the manifold M ,
i.e., by considering M ′ := M \K for some closed subset K ⊆ M .

Definition 7.5.7. A vector field X ∈ V(M) is said to be complete if all its
maximal integral curves are defined on all of R.

Corollary 7.5.8. All vector fields on a compact manifold M are complete.

7.5.2 Local Flows

Definition 7.5.9. Let M be a smooth manifold. A local flow on M is a
smooth map

Φ : U → M,

where U ⊆ R×M is an open subset containing {0} ×M , such that for each
x ∈ M the intersection Ix := U ∩ (R× {x}) is an interval containing 0 and

Φ(0, x) = x and Φ
(
t, Φ(s, x)

)
= Φ(t + s, x)

hold for all t, s, x for which both sides are defined. The maps

αx : Ix → M, t 7→ Φ(t, x)

are called the flow lines. The flow Φ is said to be global if U = R×M .

Lemma 7.5.10. If Φ : U → M is a local flow, then

XΦ(x) :=
d

dt t=0
Φ(t, x) = α′x(0)

defines a smooth vector field.

It is called the velocity field or the infinitesimal generator of the local
flow Φ.

Lemma 7.5.11. If Φ : U → M is a local flow on M , then the flow lines are
integral curves of the vector field XΦ. In particular, the local flow Φ is uniquely
determined by the vector field XΦ.
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Proof. Let αx : Ix → M be a flow line and s ∈ Ix. For sufficiently small t ∈ R
we then have

αx(s + t) = Φ(s + t, x) = Φ
(
t, Φ(s, x)

)
= Φ

(
t, αx(s)

)
,

so that taking derivatives in t = 0 leads to α′x(s) = XΦ(αx(s)).
That Φ is uniquely determined by the vector field XΦ follows from the

uniqueness of integral curves (Theorem 7.5.5). ut
Theorem 7.5.12. Each smooth vector field X is the velocity field of a unique
local flow defined by

DX :=
⋃

x∈M

Ix × {x} and Φ(t, x) := γx(t) for (t, x) ∈ DX ,

where γx : Ix → M is the unique maximal integral curve through x ∈ M .

Proof. If (s, x),
(
t, Φ(s, x)

)
and (s + t, x) ∈ DX , the relation

Φ(s + t, x) = Φ
(
t, Φ(s, x)

)
and IΦ(s,x) = Iγx(s) = Ix − s

follow from the fact that both curves

t 7→ Φ(t + s, x) = γx(t + s) and t 7→ Φ
(
t, Φ(s, x)

)
= γΦ(s,x)(t)

are integral curves of X with the initial value Φ(s, x), hence coincide.
We claim that all maps

Φt : Mt := {x ∈ M : (t, x) ∈ DX} → M, x 7→ Φ(t, x)

are injective. In fact, if p := Φt(x) = Φt(y), then γx(t) = γy(t), and on [0, t]
the curves s 7→ γx(t − s), γy(t − s) are integral curves of −X, starting in
p. Hence the Uniqueness Theorem 7.5.5 implies that they coincide in s = t,
which mans that x = γx(0) = γy(0) = y. From this argument it further follows
that Φt(Mt) = M−t and Φ−1

t = Φ−t.
It remains to show that DX is open and Φ smooth. The local Existence

Theorem provides for each x ∈ M an open neighborhood Ux diffeomorphic to
a cube and some εx > 0, as well as a smooth map

ϕx : ]− εx, εx[×Ux → M, ϕx(t, y) = γy(t) = Φ(t, y).

Hence ] − εx, εx[×Ux ⊆ DX , and the restriction of Φ to this set is smooth.
Therefore Φ is smooth on a neighborhood of {0} ×M in DX .

Now let Jx be the set of all t ∈ [0,∞[, for which DX contains a neigh-
borhood of [0, t] × {x} on which Φ is smooth. The interval Jx is open in
R+ := [0,∞[ by definition. We claim that Jx = Ix ∩R+. This entails that DX

is open because the same argument applies to Ix∩ ]−∞, 0].
We assume the contrary and find a minimal τ ∈ Ix ∩ R+ \ Jx, because

this interval is closed. Put p := Φ(τ, x) and pick a product set I ×W ⊆ DX ,
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where W is an open neighborhood of p and I = ]− 2ε, 2ε[ a 0-neighborhood,
such that 2ε < τ and Φ : I ×W → M is smooth. By assumption, there exists
an open neighborhood V of x such that Φ is smooth on [0, τ − ε]× V ⊆ DX .
Then Φτ−ε is smooth on V and

V ′ := Φ−1
τ−ε

(
Φ−1

ε (W )
) ∩ V

is a neighborhood of [0, τ + ε]× {x} in DX . Further,

V ′ = Φ−1
τ−ε

(
Φ−1

ε (W )
) ∩ V = Φ−1

τ (W ) ∩ V,

and Φ is smooth on V ′, because it is a composition of smooth maps:

]τ − 2ε, τ + 2ε[×V ′ → M, (t, y) 7→ Φ
(
t− τ, Φ(ε, Φ(τ − ε, y))

)
.

We thus arrive at the contradiction τ ∈ Jx.
This completes the proof of the openness of DX and the smoothness of Φ.

The uniqueness of the flow follows from the uniqueness of the integral curves.
ut

Remark 7.5.13. Let X ∈ V(M) be a complete vector field. If

ΦX : R×M → M

is the corresponding global flow, then the maps ΦX
t : x 7→ ΦX(t, x) satisfy

(A1) ΦX
0 = idM .

(A2) ΦX
t+s = ΦX

t ◦ ΦX
s for t, s ∈ R.

It follows in particular that ΦX
t ∈ Diff(M) with (ΦX

t )−1 = ΦX
−t, so that we

obtain a group homomorphism

γX : R→ Diff(M), t 7→ ΦX
t .

With respect to the terminology introduced below, (A1) and (A2) mean
that ΦX defines a smooth action of R on M . As ΦX is determined by the vector
field X, we call X the infinitesimal generator of this action. In this sense the
smooth R-actions on a manifold M are in one-to-one correspondence with the
complete vector fields on M .

Remark 7.5.14. Let ΦX : DX → M be the maximal local flow of a vector
field X on M . Let Mt = {x ∈ M : (t, x) ∈ DX}, and observe that this is an
open subset of M . We have already seen in the proof of Theorem 7.5.12 above,
that all the smooth maps ΦX

t : Mt → M are injective with ΦX
t (Mt) = M−t

and (ΦX
t )−1 = ΦX

−t on the image. It follows in particular, that ΦX
t (Mt) = M−t

is open, and that
ΦX

t : Mt → M−t

is a diffeomorphism whose inverse is ΦX
−t.
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Proposition 7.5.15 (Smooth Dependence Theorem). Let M be a smooth
manifold, V a finite-dimensional vector space, V1 ⊆ V an open subset, and
Ψ : V1 → V(M) a map for which the map

Ψ̂ : V1 ×M → T (M), (v, p) 7→ Ψ(v)(p)

is smooth (the vector field Ψ(v) depends smoothly on v). Then there exists for
each (p0, v0) ∈ M × V1 an open neighborhood U of p0 in M , an open interval
I ⊆ R containing 0, an open neighborhood W of v0 in V1, and a smooth map

Φ : I × U ×W → M

such that for each (p, v) ∈ U ×W the curve

Φv
p : I → M, t 7→ Φ(t, p, v)

is an integral curve of the vector field Ψ(v) with Φv
p(0) = p.

Proof. The parameters do not cause any additional problems, which can be
seen by the following trick: On the product manifold N := V1×M we consider
the smooth vector field Y , given by

Y (v, p) := (0, Ψ(v)(p)).

Then the integral curves of Y are of the form

γ(t) = (v, γv(t)),

where γv is an integral curve of the smooth vector field Ψ(v) on M . Therefore
the assertion is an immediate consequence on the smoothness of the local flow
of Y on V1 ×M (Theorem 7.5.12). ut

7.5.3 Lie Derivatives

We take a closer look at the interaction of local flows and vector fields. It will
turn out that this leads to a new concept of a directional derivative which
works for general tensor fields.

Let X ∈ V(M) and ΦX : DX → M its maximal local flow. For f ∈ C∞(M)
and t ∈ R we set

(ΦX
t )∗f := f ◦ ΦX

t ∈ C∞(Mt).

Then we find

lim
t→0

1
t
((ΦX

t )∗f − f) = df(X) = LXf ∈ C∞(M).

For a second vector field Y ∈ V(M), we define a smooth vector field on the
open subset M−t ⊆ M by
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(ΦX
t )∗Y := T (ΦX

t ) ◦ Y ◦ ΦX
−t = T (ΦX

t ) ◦ Y ◦ (ΦX
t )−1

(cf. Remark 7.5.14) and define the Lie derivative by

LXY := lim
t→0

1
t
((ΦX

−t)∗Y − Y ) =
d

dt t=0
(ΦX
−t)∗Y,

which is defined on all of M since for each p ∈ M the vector ((ΦX
t )∗Y )(p) is

defined for sufficiently small t and depends smoothly on t.

Theorem 7.5.16. LXY = [X, Y ] for X, Y ∈ V(M).

Proof. Fix p ∈ M . It suffices to show that LXY and [X,Y ] coincide in p. We
may therefore work in a local chart, hence assume that M = U is an open
subset of Rn.

Identifying vector fields with smooth Rn-valued functions, we then have

[X,Y ](x) = dY (x)X(x)− dX(x)Y (x), x ∈ U.

On the other hand,

((ΦX
−t)∗Y )(x) = T (ΦX

−t) ◦ Y ◦ ΦX
t (x)

= d(ΦX
−t)(Φ

X
t (x))Y (ΦX

t (x)) =
(
d(ΦX

t )(x)
)−1

Y (ΦX
t (x)).

To calculate the derivative of this expression with respect to t, we first observe
that it does not matter if we first take derivatives with respect to t and then
with respect to x or vice versa. This leads to

d

dt t=0
d(ΦX

t )(x) = d
( d

dt t=0
ΦX

t

)
(x) = dX(x).

Next we note that for any smooth curve α : [−ε, ε] → GLn(R) with α(0) = 1
we have

(α−1)′(t) = −α(t)−1α′(t)α(t)−1,

and in particular (α−1)′(0) = −α′(0). Combining all this, we obtain with the
Product Rule

LX(Y )(x) = −dX(x)Y (x) + dY (x)X(x) = [X, Y ](x). ut

Corollary 7.5.17. If X,Y ∈ V(M) are complete vector fields, then their
global flows ΦX , ΦY : R → Diff(M) commute if and only if X and Y com-
mute, i.e., [X, Y ] = 0.

Proof. (1) Suppose first that ΦX and ΦY commute, i.e.,

ΦX(t) ◦ ΦY (s) = ΦY (s) ◦ ΦX(t) for t, s ∈ R.

Let p ∈ M and γp(s) := ΦY
s (p) the Y -integral curve through p. We then have
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γp(s) = ΦY
s (p) = ΦX

t ◦ ΦY
s ◦ ΦX

−t(p),

and passing to the derivative in s = 0 yields

Y (p) = γ′p(0) = T (ΦX
t )Y (ΦX

−t(p)) =
(
(ΦX

t )∗Y
)
(p).

Passing now to the derivative in t = 0, we arrive at [X, Y ] = LX(Y ) = 0.
(2) Now we assume [X, Y ] = 0. First we show that (ΦX

t )∗Y = Y holds for
all t ∈ R. For t, s ∈ R we have

(ΦX
t+s)∗Y = (ΦX

t )∗(ΦX
s )∗Y,

so that
d

dt
(ΦX

t )∗Y = −(ΦX
t )∗LX(Y ) = 0

for each t ∈ R. Since for each p ∈ M the curve

R→ Tp(M), t 7→ (
(ΦX

t )∗Y
)
(p)

is smooth, and its derivative vanishes, it is constant Y (p). This shows that
(ΦX

t )∗Y = Y for each t ∈ R.
For γ(s) := ΦX

t ΦY
s (p) we now have γ(0) = ΦX

t (p) and

γ′(s) = T (ΦX
t ) ◦ Y (ΦY

s (p)) = Y (ΦX
t ΦY

s (p)) = Y (γ(s)),

so that γ is an integral curve of Y . We conclude that γ(s) = ΦY
s (ΦX

t (p)), and
this means that the flows of X and Y commute. ut
Remark 7.5.18. Let X,Y ∈ V(M) be two complete vector fields and ΦX ,
resp., ΦY their global flows. We then consider the commutator map

F : R2 → Diff(M), (t, s) 7→ ΦX
t ◦ ΦY

s ◦ ΦX
−t ◦ ΦY

−s.

We know from Corollary 7.5.17 that it vanishes if and only if [X, Y ] = 0, but
there is also a more direct way from F to the Lie bracket. In fact, we first
observe that

∂F

∂s
(t, 0) = (ΦX

t )∗Y − Y,

and hence that
∂2F

∂t∂s
(0, 0) = [Y,X].

Here we use that if I ⊆ R is an interval and

α : I → Diff(M) and β : I → Diff(M)

are maps for which

α̂ : I×M → M, (t, x) 7→ α(t)(x) and β̂ : I×M → M, (t, x) 7→ β(t)(x)

are smooth, then the curve γ(t) := α(t) ◦ β(t) also has this property (by the
Chain Rule), and if α(0) = β(0) = idM , then γ satisfies

γ′(0) = α′(0) ◦ β(0) + T (α(0)) ◦ β′(0) = α′(0) + β′(0).



272 7 Smooth Manifolds

Exercises for Section 7.5

Exercise 7.5.1. Let M := Rn. For a matrix A ∈ Mn(R), we consider the
linear vector field XA(x) := Ax. Determine the maximal flow ΦX of this
vector field.

Exercise 7.5.2. Let M be a smooth manifold and Y ∈ V(M) a smooth vector
field on M . Suppose that Y generates a local flow which is defined on an entire
box of the form [−ε, ε]×M . Show that this implies the completeness of X.

7.6 Submanifolds

In this section we describe subsets of a smooth manifold which themselves
carry manifold structures. In applications there occur subsets with various
degrees of compatibility of their smooth structures with the ambient manifold.
These give rise to different concepts of submanifolds.

Definition 7.6.1 (Submanifolds). (a) Let M be a smooth n-dimensional
manifold. A subset S ⊆ M is called a d-dimensional submanifold if for each
p ∈ S there exists a chart (ϕ, U) of M with p ∈ U such that

ϕ(U ∩ S) = ϕ(U) ∩ (Rd × {0}). (7.12)

A submanifold of codimension 1, i.e., dim S = n− 1, is called a smooth hyper-
surface.

(b) An immersed submanifold of M is a subset S ⊆ M , endowed with
a smooth manifold structure, such that the inclusion map iS : S → M is a
smooth immersion, i.e., its tangent map T (iS) is injective on each tangent
space of S.

(c) An initial submanifold of M is an immersed submanifold2 such that
for each other smooth manifold N a map f : N → S is smooth if and only if
iS ◦ f : N → M is smooth. The latter condition means that a map into S is
smooth if and only if it is smooth, when considered as a map into M .

Remark 7.6.2. For any two initial submanifold structures ι1 : S1 → M and
ι2 : S2 → M on a subset S = ι1(S1) = ι2(S2) of a smooth manifold M , there
exists a diffeomorphism ϕ : S2 → S1 with ι1◦ϕ = ι2. In particular, the smooth
manifold structures on M coincide.

In fact, by the definition of an initial submanifold, the maps

ι−1
1 ◦ ι2 : S2 → S1 and ι−1

2 ◦ ι1 : S1 → S2

are smooth, Since they are mutually inverse, ϕ := ι−1
1 ◦ ι2 : S2 → S1 is a

diffeomorphism with the required properties.
2 Note that the assumption that M be immersed is not redundant (see [KM97],
§27.11)
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We shall see below that submanifolds are initial submanifolds. Later (see
Example 8.3.12) we will see an example of an initial submanifold, which is
not a submanifold. The following example shows that not all immersed sub-
manifolds are initial.

Example 7.6.3 (Figure Eight). Consider the immersed submanifold S ⊆
R2 defined by the immersion ϕ : ]0, 2π[→ R2, t 7→ (sin3 t, sin t cos t). Define a
map ψ : ]0, 2π[→ S via

ψ
(
ϕ(t)

)
:=





ϕ(t + π) for t < π,

0 for t = π,

ϕ(t− π) for t > π.

Then we have ψ(t) = (− sin3 t, sin t cos t), so that iS ◦ ψ : ]0, 2π[→ R2 is
smooth. But the limit limt→π ψ(t) does not exist in S, so ψ is not even con-
tinuous.

Remark 7.6.4. (a) Any discrete subset S of M is a 0-dimensional submani-
fold.

(b) If n = dim M , any open subset S ⊆ M is an n-dimensional sub-
manifold. If, conversely, S ⊆ M is an n-dimensional submanifold, then the
definition immediately shows that S is open.

Lemma 7.6.5. Any submanifold S of a manifold M has a natural manifold
structure, turning it into an initial submanifold.

Proof. (a) We endow S with the subspace topology inherited from M , which
turns it into a Hausdorff space. For each chart (ϕ,U) satisfying (7.12), we
obtain a d-dimensional chart

(ϕ|U∩S , U ∩ S)

of S. For two such charts coming from (ϕ,U) and (ψ, V ), we have

ψ ◦ ϕ−1|ϕ(U∩V ∩S) = (ψ|V ∩S) ◦ (ϕ|U∩S)−1|ϕ(U∩V ∩S),

which is a smooth map onto an open subset of Rd. We thus obtain a smooth
atlas on S.

(b) To see that iS is smooth, let p ∈ S and (ϕ,U) be a chart satisfying
(7.12). Then

ϕ ◦ iS ◦ (ϕ|S∩U )−1 : ϕ(U) ∩ (Rd × {0}) → ϕ(U) ⊆ Rn

is the inclusion map, hence smooth. This implies that iS is smooth.
(c) If f : N → S is smooth, then the composition iS ◦ f is smooth

(Lemma 7.2.21). Suppose, conversely, that iS ◦ f is smooth. Let p ∈ N and
choose a chart (ϕ,U) of M satisfying (7.12) with f(p) ∈ U . Then the map
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ϕ ◦ iS ◦ f |f−1(U) : f−1(U) → ϕ(U) ⊆ Rn

is smooth, but its values lie in

ϕ(U ∩ S) = ϕ(U) ∩ (Rd × {0}).

Therefore ϕ ◦ iS ◦ f |f−1(U) is also smooth as a map into Rd, which means that

ϕ|U∩S ◦ f |f−1(U) : f−1(U) → ϕ(U ∩ S) ⊆ Rd

is smooth, and hence that f is smooth as a map N → S. ut
Remark 7.6.6 (Tangent spaces of submanifolds). From the construc-
tion of the manifold structure on S, it follows that for each p ∈ S and each
chart (ϕ,U) satisfying (7.12), we may identify the tangent space Tp(S) with
the subspace Tp(ϕ)−1(Rd) mapped by Tp(ϕ) onto the subspace Rd of Rn.

Lemma 7.6.7. A subset S of a smooth manifold M carries at most one initial
submanifold structure, i.e., for any two smooth manifold structures S1, S2 on
the same set S the map ϕ = idS : S1 → S2 is a diffeomorphism.

Proof. Since iS2 ◦ϕ = iS1 : S1 → M is smooth, the map ϕ is smooth. Likewise,
we see that the inverse map ϕ−1 : S2 → S1 is smooth, showing that ϕ is a
diffeomorphism S1 → S2. ut
Definition 7.6.8. Let f : M → N be a smooth map. We call n ∈ N regular
value of f if for each x ∈ f−1(n) the tangent map Tx(f) : Tx(M) → Tn(N) is
surjective. Otherwise n is called a singular value of f . Note that, in particular,
each n ∈ N \ f(M) is a regular value.

We are now ready to prove a manifold version of the fact that inverse
images of regular values are submanifolds.

Theorem 7.6.9 (Regular Value Theorem–Global Version). Let M and
N be smooth manifolds of dimensions m, resp., n, and f : M → N a smooth
map. If y ∈ N is a regular value of f , then S := f−1(y) is a submanifold of
M of dimension (m− n).

Proof. We may assume that y ∈ f(M) and note that then d := m − n ≥ 0
because Tx(f) : Tx(M) ∼= Rm → Rn ∼= Tf(x)(N) is surjective for some x ∈ M .

Let p ∈ S and choose charts (ϕ,U) of M with p ∈ U and (ψ, V ) of N with
f(p) ∈ V . Then the map

F := ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V )) → Rn

is a smooth map, and for each x ∈ F−1(ψ(y)) = ϕ(S ∩ U) the linear map

Tx(F ) = Tf◦ϕ−1(x)(ψ) ◦ Tϕ−1(x)(f) ◦ Tx(ϕ−1) : Rm → Rn
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is surjective. Therefore Proposition 7.2.9 implies the existence of an open sub-
set U ′ ⊆ ϕ(U ∩ f−1(V )) containing ϕ(p) and a diffeomorphism
γ : U ′ → γ(U ′) ⊆ Rm with

γ(U ′ ∩ ϕ(U ∩ S)) = (Rd × {0}) ∩ γ(U ′).

Then (γ ◦ ϕ,ϕ−1(U ′)) is a chart of M with

(γ ◦ ϕ)(S ∩ ϕ−1(U ′)) = γ(ϕ(S ∩ U) ∩ U ′) = (Rd × {0}) ∩ γ(U ′).

This shows that S is a d-dimensional submanifold of M . ut
Remark 7.6.10. If S ⊆ M is a submanifold, then we may identify the tangent
spaces Tp(S) with the subspaces im (Tp(iS)) of Tp(M), where iS : S → M is
the smooth inclusion map (cf. Remark 7.6.6). If, in addition, S = f−1(y) for
some regular value y of the smooth map f : M → N , then we have

Tp(S) = kerTp(f) for p ∈ S.

To verify this relation, we recall that we know already that

dim S = n−m = dim Tp(S).

On the other hand, f ◦iS = y : S → N is the constant map, so that Tp(f ◦iS) =
Tp(f) ◦Tp(iS) = 0, which leads to Tp(S) ⊆ kerTp(f). Since Tp(f) is surjective
by assumption, equality follows by comparing dimensions.

The following theorem which we mention without proof, implies in par-
ticular the existence of regular values for surjective smooth maps (cf. [La99,
Thm. XVI.1.4]).

Theorem 7.6.11 (Sard’s Theorem). Let M1 and M2 be smooth second
countable manifolds, f : M1 → M2 a smooth map and M c

1 the set of critical
points of f . Then f(M c

1 ) is a set of measure zero in M2, i.e., for each chart
(ϕ,U) of M2 the set ϕ(U ∩ f(M c

1 )) is of Lebesgue measure zero.

Here we recall that a topological space X is said to be second countable if
its topology has a countable basis, i.e., there exists a countable family (On)n∈N
of open subsets such that any open subset is the union of some of the On.

Notes on Chapter 7

The notion of a smooth manifold is more subtle than one may think on the
surface. One of these subtleties arises from the fact that a topological space
may carry different smooth manifold structures which are not diffeomorphic.
Important examples of low dimension are the 7-sphere S7 and R4. Actually
4 is the only dimension n for which Rn carries two nondiffeomorphic smooth
structures. At this point it is instructive to observe that two smooth structures
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might be diffeomorphic without having the same maximal atlas: The charts
(ϕ,R) and (ψ,R) on R given by

ϕ(x) = x and ψ(x) = x3

define two different smooth manifold structures Rϕ and Rψ, but the map

γ : Rψ → Rϕ, x 7→ x3

is a diffeomorphism.
Later we shall see that there are also purely topological subtleties due to

the fact that the topology might be “too large”. The regularity assumption
which is needed in many situations is the paracompactness of the underlying
Hausdorff space.

Vector fields and their zeros play an important role in the topology of
manifolds. To each manifold M we associate the maximal number α(M) = k
for which there exist smooth vector fields X1, . . . , Xk ∈ V(M) which are
linearly independent in each point of M . A manifold is called parallelizable
if α(M) = dim M (which is the maximal value). Clearly α(Rn) = n, so that
Rn is parallelizable, but it is a deep theorem that the the n-sphere Sn is only
parallelizable if n = 0, 1, 3 or 7. This in turn has important applications on the
existence of real division algebras, namely that they only exist in dimensions
1, 2, 4 or 8 (this is the famous 1-2-4-8-Theorem). Another important result in
topology is α(S2) = 0, i.e., each vector field on the 2-sphere has a zero (Hairy
Ball Theorem).

As we have seen in Theorem 7.5.16, the Lie bracket on the space V(M)
of vector fields is closely related to the commutator in the group Diff(M) of
diffeomorphisms of M . This fact is part of a more general correspondence in
the theory of Lie groups which associates to each Lie group G a Lie algebra
L(G) given by a suitable bracket on the tangent space T1(G) which is defined
in terms of the Lie bracket of vector fields.
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Basic Lie Theory

This chapter is devoted to the subject proper of this book: Lie groups, defined
as smooth manifolds with a group structure such that all structure maps
(multiplication and inversion) are smooth. Here we use vector fields to build
the key tools of Lie theory. The Lie functor which associates a Lie algebra
with a Lie group and the exponential function from the Lie algebra to the Lie
group. They provide the means to translate global problems into infinitesimal
ones and to lift infinitesimal solutions to local ones. To pass from the local to
the global level, usually requires tools from covering theory, resp., topology. In
the process we introduce smooth group actions and the adjoint representation,
and provide a number of topological facts about Lie groups.

Further, we prove the Baker–Campbell–Dynkin–Hausdorff (BCDH) for-
mula which expresses the group multiplication locally in terms of a universal
power series involving Lie brackets. As a first set of applications of the trans-
lation mechanisms, we identify the Lie group structures of closed subgroups
of Lie groups and show how to construct Lie groups from local and infinites-
imal data. The key result is the Integral Subgroup Theorem 8.4.8 describing
the subgroup generated by the exponential image of a Lie subalgebra as a
Lie group. Combined with Ado’s Theorem 6.4.1, it yields Lie’s Third The-
orem 8.4.11 saying that each finite-dimensional real Lie algebra is the Lie
algebra of a Lie group. Then we systematically study coverings of Lie groups,
thus providing the means to classify Lie groups with a given Lie algebra. Fi-
nally, we prove Yamabe’s Theorem 8.6.1 asserting that any arcwise connected
subgroup of a Lie group carries a natural Lie group structure and allows to
equip any subgroup of a Lie group with a Lie group structure.

8.1 Lie Groups and their Lie Algebras

In the context of smooth manifolds, the natural class of groups are those
endowed with a manifold structure compatible with the group structure. Such
groups will be called Lie groups.
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8.1.1 Lie Groups, First Examples and the Tangent Group

Definition 8.1.1. A Lie group is a group G, endowed with the structure of a
smooth manifold, such that the group operations

mG : G×G → G, (x, y) 7→ xy and ιG : G → G, x 7→ x−1

are smooth.

Throughout this section, G denotes a Lie group with multiplication map
mG : G × G → G, (x, y) 7→ xy, inversion map ιG : G → G, x 7→ x−1, and
neutral element 1. For g ∈ G we write λg : G → G, x 7→ gx for the left
multiplication map, ρg : G → G, x 7→ xg for the right multiplication map, and
cg : G → G, x 7→ gxg−1 for the conjugation with g. A morphism of Lie groups
is a smooth homomorphism of Lie groups ϕ : G1 → G2.

Remark 8.1.2. All maps λg, ρg and cg are smooth. Moreover, they are bijec-
tive with λg−1 = λ−1

g , ρg−1 = ρ−1
g and cg−1 = c−1

g , so that they are diffeomor-
phisms of G onto itself.

In addition, the maps cg are automorphisms of G, so that we obtain a
group homomorphism

C : G → Aut(G), g 7→ cg,

where Aut(G) stands for the group of automorphisms of the Lie group G, i.e.,
the group automorphisms which are diffeomorphisms. The automorphisms
of the form cg are called inner automorphisms of G. The group of inner
automorphisms of G is denoted by Inn(G).

One can show that the requirement of ιG being smooth is redundant (Ex-
ercise 8.1.4).

Example 8.1.3. We consider the additive group G := (Rn,+), endowed with
the natural n-dimensional manifold structure. A corresponding chart is given
by (idRn ,Rn), which shows that the corresponding product manifold structure
on Rn×Rn is given by the chart (idRn × idRn ,Rn×Rn) = (idR2n ,R2n), hence
coincides with the natural manifold structure on R2n. Therefore the smooth-
ness of addition and inversion follows from the smoothness of the maps

R2n → Rn, (x, y) 7→ x + y and Rn → Rn, x 7→ −x.

Example 8.1.4. Next we consider the group G := GLn(R) of invertible
(n× n)-matrices. If det : Mn(R) → R denotes the determinant function

det(A) =
∑

σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n),

then det is a polynomial, hence in particular continuous, and therefore
GLn(R) = det−1(R×) is an open subset of Mn(R) ∼= Rn2

. Hence G carries a
natural manifold structure.
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We claim that G is a Lie group. The smoothness of the multiplication map
follows directly from the smoothness of the bilinear multiplication map

Mn(R)×Mn(R) → Mn(R), (A,B) 7→
( n∑

k=1

aikbkj

)
i,j=1,...,n

,

which is given in each component by a polynomial function in the 2n2 variables
aij and bij (cf. Exercise 7.2.11 on the smoothness of bilinear maps).

The smoothness of the inversion map follows from Cramer’s Rule

g−1 =
1

det g
(bij), bij = (−1)i+j det(Gji),

where Gij ∈ Mn−1(R) is the matrix obtained by erasing the i-th row and the
j-th column in g.

Example 8.1.5. (a) (The circle group) We have already seen how to endow
the circle

S1 := {(x, y) ∈ R2 : x2 + y2 = 1}
with a manifold structure (Example 7.2.5). Identifying it with the unit circle

T := {z ∈ C : |z| = 1}
in C, it also inherits a group structure, given by

(x, y) · (x′, y′) := (xx′ − yy′, xy′ + x′y) and (x, y)−1 = (x,−y).

With these explicit formulas, it is easy to verify that T is a Lie group (Exer-
cise 8.1.1).

(b) (The n-dimensional torus) In view of (a), we have a natural manifold
structure on the n-dimensional torus Tn := (S1)n. The corresponding direct
product group structure

(t1, . . . , tn)(s1, . . . , sn) := (t1s1, . . . , tnsn)

turns Tn into a Lie group (Exercise 8.1.2).

Lemma 8.1.6. (a) As usual, we identify T (G×G) with T (G)× T (G). Then
the tangent map

T (mG) : T (G×G) ∼= T (G)× T (G) → T (G), (v, w) 7→ v · w := TmG(v, w)

defines a Lie group structure on T (G) with identity element 01 ∈ T1(G) and
inversion T (ιG). The canonical projection πT (G) : T (G) → G is a morphism
of Lie groups with kernel (T1(G), +) and the zero section σ : G → T (G),
g 7→ 0g ∈ Tg(G) is a homomorphism of Lie groups with πT (G) ◦ σ = idG.

(b) The map

Φ : G× T1(G) → T (G), (g, x) 7→ g.x := 0g · x = T (λg)x

is a diffeomorphism.
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Proof. (a) Since the multiplication map mG : G×G → G is smooth, the same
holds for its tangent map

TmG : T (G×G) ∼= T (G)× T (G) → T (G).

Let εG : G → G, g 7→ 1 be the constant homomorphism. Then the group
axioms for G are encoded in the relations

(1) mG ◦ (mG × idG) = mG ◦ (idG×mG) (associativity),
(2) mG ◦ (ιG, idG) = mG ◦ (idG, ιG) = εG (inversion), and
(3) mG ◦ (εG, idG) = mG ◦ (idG, εG) = idG (unit element).

Using the functoriality (cf. Lemma 7.3.5) of T and its compatibility with
products, we see that these properties carry over to the corresponding maps
on T (G):

(1) T (mG) ◦ T (mG × idG) = T (mG) ◦ (T (mG)× idT (G))
= T (mG) ◦ (idT (G)×T (mG)) (associativity),

(2) T (mG) ◦ (T (ιG), idT (G)) = T (mG) ◦ (idT (G), T (ιG)) = T (εG) (inversion),
and

(3) T (mG) ◦ (T (εG), idT (G)) = T (mG) ◦ (idT (G), T (εG)) = idT (G) (unit ele-
ment).

Here we only have to observe that the tangent map T (εG) maps each
v ∈ T (G) to 01 ∈ T1(G), which is the neutral element of T (G). We conclude
that T (G) is a Lie group with multiplication T (mG), inversion T (ιG), and
unit element 01 ∈ T1(G).

The definition of the tangent map implies that the zero section
σ : G → T (G) satisfies

TmG ◦ (σ × σ) = σ ◦mG, TmG(0g, 0h) = 0mG(g,h) = 0gh,

which means that it is a morphism of Lie groups. That πT (G) also is a mor-
phism of Lie groups follows likewise from the relation

πT (G) ◦ TmG = mG ◦ (πT (G) × πT (G)),

which also is an immediate consequence of the definition of the tangent map
TmG : it maps Tg(G)× Th(G) into Tgh(G).

For v ∈ Tg(G) and w ∈ Th(G) the linearity of T(g,h)(mG) implies that

TmG(v, w) = T(g,h)(mG)(v, w) = T(g,h)(mG)(v, 0) + T(g,h)(mG)(0, w)
= Tg(ρh)v + Th(λg)w,

and in particular T(1,1)(mG)(v, w) = v + w, so that the multiplication on the
normal subgroup kerπT (G) = T1(G) is simply given by addition.

(b) The smoothness of Φ follows from the smoothness of the multiplica-
tion of T (G) and the smoothness of the zero section σ : G → T (G), g 7→ 0g.
That Φ is a diffeomorphism follows from the following explicit formula for
its inverse: Φ−1(v) = (πT (G)(v), πT (G)(v)−1.v), so that its smoothness follows
from the smoothness of πT (G) (its first component), and the smoothness of
the multiplication on T (G). ut
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8.1.2 The Lie Functor

The Lie functor assigns a Lie algebra to each Lie group and a Lie algebra
homomorphism to each morphism of Lie groups. It is the key tool to translate
Lie group problems into problems in linear algebra.

Definition 8.1.7 (The Lie algebra of G). A vector field X ∈ V(G) is
called left invariant if

X = (λg)∗X := T (λg) ◦X ◦ λ−1
g

holds for each g ∈ G, i.e., (λg)∗X = X. We write V(G)l for the set of left
invariant vector fields in V(G). Clearly V(G)l is a linear subspace of V(G).

Writing the left invariance as X = T (λg) ◦X ◦ λ−1
g , we see that it means

that X is λg-related to itself (cf. Exercise 8.1.6). Therefore the Related Vector
Field Lemma 7.4.9 implies that if X and Y are left-invariant, their Lie bracket
[X,Y ] is also λg-related to itself for each g ∈ G, hence left invariant. We
conclude that the vector space V(G)l is a Lie subalgebra of (V(G), [·, ·]).

Next we observe that the left invariance of a vector field X implies that for
each g ∈ G we have X(g) = g.X(1) (Lemma 8.1.6(b)), so that X is completely
determined by its value X(1) ∈ T1(G). Conversely, for each x ∈ T1(G), we
obtain a left invariant vector field xl ∈ V(G)l with xl(1) = x by xl(g) := g.x.
That this vector field is indeed left invariant follows from

xl ◦ λh(g) = xl(hg) = (hg).x = h.(g.x) = T (λh)xl(g)

for all h, g ∈ G. Hence

T1(G) → V(G)l, x 7→ xl

is a linear bijection. We thus obtain a Lie bracket [·, ·] on T1(G) satisfying

[x, y]l = [xl, yl] for all x, y ∈ T1(G). (8.1)

The Lie algebra
L(G) := (T1(G), [·, ·]) ∼= V(G)l

is called the Lie algebra of G.

Proposition 8.1.8 (Functoriality of the Lie algebra). If ϕ : G → H is
a morphism of Lie groups, then the tangent map

L(ϕ) := T1(ϕ) : L(G) → L(H)

is a homomorphism of Lie algebras.
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Proof. Let x, y ∈ L(G) and xl, yl be the corresponding left invariant vector
fields. Then ϕ ◦ λg = λϕ(g) ◦ ϕ for each g ∈ G implies that

T (ϕ) ◦ T (λg) = T (λϕ(g)) ◦ T (ϕ),

and applying this relation to x, y ∈ T1(G), we get

Tϕ ◦ xl =
(
L(ϕ)x

)
l
◦ ϕ and Tϕ ◦ yl =

(
L(ϕ)y

)
l
◦ ϕ, (8.2)

i.e., xl is ϕ-related to
(
L(ϕ)x

)
l
and yl is ϕ-related to

(
L(ϕ)y

)
l
. Therefore the

Related Vector Field Lemma implies that

Tϕ ◦ [xl, yl] = [
(
L(ϕ)x

)
l
,
(
L(ϕ)y

)
l
] ◦ ϕ.

Evaluating at 1, we obtain L(ϕ)[x, y] = [L(ϕ)(x),L(ϕ)(y)], showing that L(ϕ)
is a homomorphism of Lie algebras. ut
Remark 8.1.9. We obviously have L(idG) = idL(G), and for two morphisms
ϕ1 : G1 → G2 and ϕ2 : G2 → G3 of Lie groups, we obtain

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1),

from the Chain Rule:

T1(ϕ2 ◦ ϕ1) = Tϕ1(1)(ϕ2) ◦ T1(ϕ1) = T1(ϕ2) ◦ T1(ϕ1).

The preceding lemma implies that the assignments G 7→ L(G) and ϕ 7→ L(ϕ)
define a functor, called the Lie functor,

L : LieGrp → LieAlg

from the category LieGrp of Lie groups to the category LieAlg of (finite-
dimensional) Lie algebras.

Corollary 8.1.10. For each isomorphism of Lie groups ϕ : G → H, the map
L(ϕ) is an isomorphism of Lie algebras, and for each x ∈ L(G), the following
equation holds

ϕ∗xl := T (ϕ) ◦ xl ◦ ϕ−1 =
(
L(ϕ)x

)
l
. (8.3)

Proof. Let ψ : H → G be the inverse of ϕ. Then ϕ ◦ψ = idH and ψ ◦ϕ = idG

leads to L(ϕ) ◦ L(ψ) = idL(H) and L(ψ) ◦ L(ϕ) = idL(G) (Remark 8.1.9).
Further (8.3) follows from (8.2) in the proof of Proposition 8.1.8. ut

8.1.3 Smooth Actions of Lie Groups

We already encountered smooth flows on manifolds in Chapter 7. These can
be viewed as actions of the one-dimensional Lie group (R, +). In particular, we
have seen that these actions are in one-to-one correspondence with complete
vector fields, which is the corresponding Lie algebra picture. Now we describe
the corresponding concept for general Lie groups.
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Definition 8.1.11. Let M be a smooth manifold and G a Lie group. A
(smooth) action of G on M is a smooth map

σ : G×M → M

with the following properties:

(A1) σ(1,m) = m for all m ∈ M .
(A2) σ(g1, σ(g2,m)) = σ(g1g2,m) for g1, g2 ∈ G and m ∈ M .

We also write

g.m := σ(g, m), σg(m) := σ(g,m), σm(g) := σ(g, m) = g.m.

The map σm is called the orbit map.

For each smooth action σ, the map

σ̂ : G → Diff(M), g 7→ σg

is a group homomorphism and any homomorphism γ : G → Diff(M) for which
the map

σγ : G×M → M, (g, m) 7→ γ(g)(m)

is smooth defines a smooth action of G on M .

Remark 8.1.12. What we call an action is sometimes called a left action.
Likewise one defines a right action as a smooth map σR : M ×G → M with

σR(m,1) = m, σR(σR(m, g1), g2) = σR(m, g1g2).

For m.g := σR(m, g), this takes the form

m.(g1g2) = (m.g1).g2

of an associativity condition.
If σR is a smooth right action of G on M , then

σL(g, m) := σR(m, g−1)

defines a smooth left action of G on M . Conversely, if σL is a smooth left
action, then

σR(m, g) := σL(g−1,m)

defines a smooth left action. This translation is one-to-one, so that we may
freely pass from one type of action to the other.
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Examples 8.1.13. (a) If X ∈ V(M) is a complete vector field (cf. Defini-
tion 7.5.7) and Φ : R×M → M its global flow, then Φ defines a smooth action
of G = (R,+) on M .
(b) If G is a Lie group, then the multiplication map σ := mG : G × G → G
defines a smooth left action of G on itself. In this case the (mG)g = λg are
the left multiplications.

The multiplication map also defines a smooth right action of G on itself.
The corresponding left action is

σ : G×G → G, (g, h) 7→ hg−1 with σg = ρ−1
g .

There is a third action of G on itself, the conjugation action:

σ : G×G → G, (g, h) 7→ ghg−1 with σg = cg.

(c) We have a natural smooth action of the Lie group GLn(R) on Rn:

σ : GLn(R)× Rn → Rn, σ(g, x) := gx.

We further have an action of GLn(R) on Mn(R):

σ : GLn(R)×Mn(R) → Mn(R), σ(g, A) = gAg−1.

(d) On the set Mp,q(R) of (p × q)-matrices we have an action of the direct
product Lie group G := GLp(R)×GLq(R) by σ((g, h), A) := gAh−1.

The following proposition generalizes the passage from flows of vector fields
to actions of general Lie groups.

Proposition 8.1.14. Let G be a Lie group and σ : G × M → M a smooth
action of G on M . Then the assignment

σ̇ : L(G) → V(M), σ̇(x)(m) := L(σ)(x)(m) := −T1(σm)(x)

is a homomorphism of Lie algebras.

Proof. First we observe that for each x ∈ L(G) the map L(σ)(x) defines a
smooth map M → T (M), and since L(σ)(x)(m) ∈ Tσ(1,m)(M) = Tm(M), it
is a smooth vector field on M .

To see that σ̇ is a homomorphism of Lie algebras, we pick m ∈ M and
write

ϕm := σm ◦ ιG : G → M, g 7→ g−1.m

for the reversed orbit map. Then

ϕm(gh) = (gh)−1.m = h−1.(g−1.m) = ϕg−1.m(h),

which can be written as
ϕm ◦ λg = ϕg−1.m.
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Taking the differential in 1 ∈ G, we obtain for each x ∈ L(G) = T1(G):

Tg(ϕm)xl(g) = Tg(ϕm)T1(λg)x = T1(ϕm ◦ λg)x = T1(ϕg−1.m)x

= T1(σg−1.m)T1(ιG)x = −T1(σϕm(g))x = σ̇(x)(ϕm(g)).

This means that the left invariant vector field xl on G is ϕm-related to the
vector field L(σ)(x) on M . Therefore the Related Vector Field Lemma 7.4.9
implies that for x, y ∈ L(G) the vector field [xl, yl] is ϕm-related to
[L(σ)(x),L(σ)(y)], which leads for each m ∈ M to

L(σ)([x, y])(m) = T1(ϕm)[x, y]l(1) = T1(ϕm)[xl, yl](1)
= [L(σ)(x),L(σ)(y)](ϕm(1)) = [L(σ)(x),L(σ)(y)](m). ut

8.1.4 Basic Topology of Lie Groups

In this subsection we collect some basic topological properties of Lie groups.

Proposition 8.1.15. The topology of a Lie group G has the following prop-
erties:

(i) G is a locally compact space, i.e., each neighborhood of an element of g
contains a compact one.

(ii) The identity component G0 of G is an open normal subgroup which coin-
cides with the arc-component of 1.

(iii) For a subgroup H of G the following are equivalent:
(a) H is a neighborhood of 1.
(b) H is open.
(c) H is open and closed.
(d) H contains G0.

(iv) If the set π0(G) := G/G0 of connected components of G is countable,
then, in addition, the following statements hold:
(a) G is countable at infinity, i.e., a countable union of compact subsets.
(b) For each 1-neighborhood U in G there exists a sequence (gn)n∈N in G

with G =
⋃

n∈N gnU .
(c) G is second countable, i.e., the topology of G has a countable basis.
(d) If (Ui)i∈I is a pairwise disjoint collection of open subsets of G, then I

is countable.

Proof. (i) This is true for any smooth n-dimensional manifold M . If m ∈ M ,
V is a neighborhood of m and (ϕ,U) is a chart with m ∈ M , then ϕ(U ∩ V )
is a neighborhood of ϕ(m) in Rn. If B ⊆ ϕ(U ∩ V ) is a closed ball around
ϕ(m), which is compact due to the Heine–Borel Theorem, its inverse image
ϕ−1(B) is a compact neighborhood of m, contained in V . Here we use that
M is Hausdorff to see that ϕ−1(B) is compact.

(ii) Since G is a smooth manifold, each point has an open neighborhood
U homeomorphic to an open ball in some Rn. Then U is in particular arcwise
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connected. This implies that the arc-components of G are open, hence that
they coincide with the connected components.

To see that the identity component G0 of G is a subgroup, we first note
that G0G0 is the image of the connected set G0×G0 under the multiplication
map, hence connected. Since it contains 1, we find G0G0 ⊆ G0. Similarly,
we see that the inversion preserves G0, i.e., G−1

0 ⊆ G0, showing that G0 is a
subgroup of G. Each conjugation cg(x) := gxg−1 fixes the identity element 1,
hence maps the identity component G0 into itself. Thus G0 is normal.

(iii) (a) ⇒ (b): If H is a neighborhood of 1, then each coset gH is a
neighborhood of g because the left multiplication maps λg : G → G are home-
omorphism. Hence all left cosets of H are open. In particular, H is open.

(b) ⇒ (c): If H is an open subgroup, then its complement is the union of
all cosets gH, g 6∈ H, hence also open. Therefore H is also closed.

(c) ⇒ (d): If H is open and closed, then the connectedness of G0 implies
G0 ⊆ H.

(d) ⇒ (a) is trivial.
(iv) (a) In view of (i), there exists a compact identity neighborhood U in

G. Replacing U by U ∩ U−1, we may w.l.o.g. assume that U = U−1. Then
each set

Un := {u1 · · ·un : ui ∈ U}
is also compact, because it is the image of the compact topological product
space U×n under the n-fold multiplication map which is continuous.

Now H :=
⋃

n∈N Un is a subgroup of G which is a 1-neighborhood, and
(iii) implies G0 ⊆ H. Hence the set of H-cosets is countable, and since each
coset gH is a union of the countably many compact subsets gUn, we see that
G also is a countable union of compact subsets.

(b) In view of (a), we have G =
⋃

n∈NKn, where each Kn is a compact
subset. For each n, the open sets kU◦, k ∈ Kn, cover the compact set Kn,
so that there exist finitely many kn,1, . . . , kn,mn with Kn ⊆

⋃mn

j=1 kn,jU. Then
G ⊆ ⋃

n∈N
⋃mn

j=1 kn,jU .
(c) Let (Un)n∈N be a countable basis of open 1-neighborhoods, we may

take Un = ϕ( 1
nB), where B ⊆ L(G) is an open ball with respect to some

norm and ϕ : B → G is a diffeomorphism onto an open subset of G with
ϕ(0) = 1. In view of (b), there exists for each n ∈ N a sequence (gn,k)k∈N
in G with G =

⋃
k∈N gn,kUn. We claim that {gn,kUn : n, k ∈ N} is a basis for

the topology of G. In fact, if O ⊆ G is an open subset and g ∈ O, then there
exists some n with gUn ⊆ O. Next we pick m such that U−1

m Um ⊆ Un and
some k ∈ N with g ∈ gm,kUm. Then gm,kUm ⊆ gU−1

m Um ⊆ gUn ⊆ O, and this
proves our claim.

(d) follows immediately from (c). ut

Exercises for Section 8.1

Exercise 8.1.1. Show that the natural group structure on T ∼= S1 ⊆ C×
turns it into a Lie group.
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Exercise 8.1.2. Let G1, . . . , Gn be Lie groups and G := G1 × . . . × Gn, en-
dowed with the direct product group structure

(g1, . . . , gn)(g′1, . . . , g
′
n) := (g1g

′
1, . . . , gng′n)

and the product manifold structure. Show that G is a Lie group with

L(G) ∼= L(G1)× . . .× L(Gn).

Exercise 8.1.3. Let V and W be finite-dimensional real vector spaces and
β : V × V → W a bilinear map. Show that G := W × V is a Lie group with
respect to

(w, v)(w′, v′) := (w + w′ + β(v, v′), v + v′).

For (w, v) ∈ L(G) ∼= T(0,0)(G), find a formula for the corresponding left
invariant vector field (w, v)l, considered as a smooth function G → W × V .

Exercise 8.1.4 (Automatic smoothness of the inversion). Let G be an
n-dimensional smooth manifold, endowed with a group structure for which
the multiplication map mG is smooth. Show that:

(1) T(g,h)(mG) = Tg(ρh) + Th(λg) for λg(x) = gx and ρh(x) = xh.
(2) T(1,1)(mG)(v, w) = v + w.
(3) The inverse map ιG : G → G, g 7→ g−1 is smooth if it is smooth in a

neighborhood of 1.
(4) The inverse map ιG is smooth.

Exercise 8.1.5. Let A be a finite-dimensional unital real algebra and A× its
group of units. We write λa(b) := ab for the left multiplication with a ∈ A.
Show that:

(1) A× = {a ∈ A : det(λa) 6= 0}.
(2) A× is an open subset of A and with respect to the corresponding manifold

structure it is a Lie group.
(3) Identifying vector fields on the open subset A× with smooth A-valued

functions, a vector field X ∈ V(A×) ∼= C∞(A×, A) is left invariant if and
only if there exists an element x ∈ A with X(a) = ax for a ∈ A×.

Exercise 8.1.6. Let G be a Lie group and X a vector field on G, viewed as
a derivation of C∞(G). Show that X is left invariant if and only if

(id⊗X) ◦m∗
G = m∗

G ◦X,

where m∗
Gf(g, h) = f(gh) and (id⊗X)F (g, h) = (XFg)(h) for f ∈ C∞(G),

F ∈ C∞(G×G) and Fg(h) = F (g, h).

Exercise 8.1.7. Let G = Rn. Show that the vector fields Xi := ∂
∂xi

form a
basis for the space of (left) invariant vector fields.
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Exercise 8.1.8. Consider the three-dimensional Heisenberg group

G =








1 x y
0 1 z
0 0 1


 : x, y, z ∈ R





Determine the space of (left) invariant vector fields in the coordinates (x, y, z).

8.2 The Exponential Function of a Lie Group

In the preceding section we have introduced the Lie functor which assigns to
a Lie group G its Lie algebra L(G) and to a morphism ϕ of Lie groups its
tangent morphism L(ϕ) of Lie algebras. In this section, we introduce a key
tool of Lie theory which will allow us to also go in the opposite direction:
the exponential function expG : L(G) → G. It is a natural generalization of
the matrix exponential map, which is obtained for G = GLn(R) and its Lie
algebra L(G) = gln(R). We conclude this section with a discussion of the
naturality of the exponential function (Proposition 8.2.10) and the Lie group
versions of the Trotter Product Formula and the Commutator Formula.

8.2.1 Basic Properties of the Exponential Function

Proposition 8.2.1. Each left invariant vector field X on G is complete.

Proof. Let g ∈ G and γ : I → G be the unique maximal integral curve (cf.
Theorem 7.5.5) of X ∈ V(G)l with γ(0) = g.

For each h ∈ G we have (λh)∗X = X, which implies that η := λh ◦ γ also
is an integral curve of X. Put h = γ(s)g−1 for some s > 0. Then

η(0) = (λh ◦ γ)(0) = hγ(0) = hg = γ(s),

and the uniqueness of integral curves implies that γ(t + s) = η(t) for all t in
the interval I ∩ (I − s) which is nonempty because it contains 0. In view of
the maximality of I, it now follows that I − s ⊆ I, and hence that I − ns ⊆ I
for each n ∈ N, so that the interval I is unbounded from below. Applying the
same argument to some s < 0, we see that I is also unbounded from above.
Hence I = R, which means that X is complete. ut
Definition 8.2.2. We now define the exponential function

expG : L(G) → G, expG(x) := γx(1),

where γx : R → G is the unique maximal integral curve of the left invariant
vector field xl, satisfying γx(0) = 1. This means that γx is the unique solution
of the initial value problem

γ(0) = 1, γ′(t) = xl(γ(t)) = γ(t).x for all t ∈ R.
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Example 8.2.3. (a) Let G := (V, +) be the additive group of a finite-
dimensional vector space. The left invariant vector fields on V are given by

xl(w) :=
d

dt t=0
w + tx = x,

so that they are simply the constant vector fields. Hence (cf. Lemma 7.4.3)

[xl, yl](0) = dyl(xl(0))− dxl(yl(0)) = dyl(x)− dxl(y) = 0.

Therefore L(V ) is an abelian Lie algebra.
For each x ∈ V , the flow of xl is given by Φxl(t, v) = v + tx, so that

expV (x) = Φxl(1, 0) = x, i.e., expV = idV .

(b) Now let G := GLn(R) be the Lie group of invertible (n× n)-matrices,
which inherits its manifold structure from the embedding as an open subset
of the vector space Mn(R).

The left invariant vector field Al corresponding to a matrix A is given by

Al(g) = T1(λg)A = gA

because λg(h) = gh extends to a linear endomorphism of Mn(R). The unique
solution γA : R→ GLn(R) of the initial value problem

γ(0) = 1, γ′(t) = Al(γ(t)) = γ(t)A

is the curve describing the fundamental system of the linear differential equa-
tion defined by the matrix A:

γA(t) = etA =
∞∑

k=0

1
k!

tkAk.

It follows that expG(A) = eA is the matrix exponential function.
The Lie algebra L(G) of G is determined from

[A,B] = [Al, Bl](1) = dBl(1)Al(1)− dAl(1)Bl(1)
= dBl(1)A− dAl(1)B = AB −BA.

Therefore the Lie bracket on L(G) = T1(G) ∼= Mn(R) is given by the com-
mutator bracket. This Lie algebra is denoted gln(R), to express that it is the
Lie algebra of GLn(R).

(c) If V is a finite-dimensional real vector space, then V ∼= Rn, so that we
can immediately use (b) to see that GL(V ) is a Lie group with Lie algebra
gl(V ) := (End(V ), [·, ·]) and exponential function

expGL(V )(A) =
∞∑

k=0

Ak

k!
.
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Lemma 8.2.4. (a) For each x ∈ L(G), the curve γx : R → G is a smooth
homomorphism of Lie groups with γ′x(0) = x.

(b) The global flow of the left invariant vector field xl is given by

Φ(t, g) = gγx(t) = g expG(tx).

(c) If γ : R→ G is a smooth homomorphism of Lie groups and x := γ′(0),
then γ = γx. In particular, the map

Hom(R, G) → L(G), γ 7→ γ′(0)

is a bijection, where Hom(R, G) stands for the set of morphisms, i.e., smooth
homomorphisms, of Lie groups R→ G.

Proof. (a), (b) Since γx is an integral curve of the smooth vector field xl, it
is a smooth curve. Hence the smoothness of the multiplication in G implies
that Φ(t, g) := gγx(t) defines a smooth map R × G → G. In view of the left
invariance of xl, we have for each g ∈ G and Φg(t) := Φ(t, g) the relation

(Φg)′(t) = T (λg)γ′x(t) = T (λg)xl(γx(t)) = xl(gγx(t)) = xl(Φg(t)).

Therefore Φg is an integral curve of xl with Φg(0) = g, and this proves that
Φ is the unique maximal flow of the complete vector field xl.

In particular, we obtain for t, s ∈ R:

γx(t + s) = Φ(t + s,1) = Φ(t, Φ(s,1)) = Φ(s,1)γx(t) = γx(s)γx(t). (8.4)

Hence γx is a group homomorphism (R,+) → G.
(c) If γ : (R, +) → G is a smooth group homomorphism, then

Φ(t, g) := gγ(t)

defines a global flow on G whose infinitesimal generator is the vector field
given by

X(g) =
d

dt t=0
Φ(t, g) = T (λg)γ′(0).

We conclude that X = xl for x = γ′(0), so that X is a left invariant vector
field. Since γ is its unique integral curve through 0, it follows that γ = γx. In
view of (a), this proves (c). ut
Proposition 8.2.5. For a Lie group G, the exponential function

expG : L(G) → G

is smooth and satisfies
T0(expG) = idL(G) .

In particular, expG is a local diffeomorphism in 0 in the sense that it maps
some 0-neighborhood in L(G) diffeomorphically onto some 1-neighborhood
in G.
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Proof. Let n ∈ N. In view of Lemma 8.2.4(c), we have

expG(nx) = γx(n) = γx(1)n = expG(x)n (8.5)

for each x ∈ L(G). Since the n-fold multiplication map

Gn → G, (g1, . . . , gn) 7→ g1 · · · gn

is smooth, the n-th power map G → G, g 7→ gn is smooth. Therefore it
suffices to verify the smoothness of expG in some 0-neighborhood W . Then
(8.5) immediately implies smoothness in nW for each n, and hence on all of
L(G).

The map Ψ : L(G) → V(G), x 7→ xl satisfies the assumptions of Proposi-
tion 7.5.15 because the map

L(G)×G → T (G), (x, g) 7→ xl(g) = g.x

is smooth (Lemma 8.1.6). In the terminology of Proposition 7.5.15, it now
follows that the map

Φ : R× L(G)×G → G, (t, x, g) 7→ gγx(t) = g expG(tx)

is smooth on a neighborhood of (0, 0,1). In particular, for some t > 0, the
map x 7→ expG(tx) is smooth on a 0-neighborhood of L(G), and this proves
that expG is smooth in some 0-neighborhood.

Finally, we observe that

T0(expG)(x) =
d

dt t=0
expG(tx) = γ′x(0) = x,

so that T0(expG) = idL(G). ut
Lemma 8.2.6 (Canonical Coordinates). Let G be a Lie group and b1, . . . , bn

be a basis for its Lie algebra L(G). Then the following maps restrict to dif-
feomorphisms of some 0-neighborhood in Rn to some open 1-neighborhood in
G:

(i) x 7→ expG(x1b1 + . . . + xnbn) (Canonical coordinates of the first kind).
(ii) x 7→ expG(x1b1) · . . . · expG(xnbn) (Canonical coordinates of the second

kind).

Proof. (i) This is immediate from Proposition 8.2.5.
(ii) In view of Proposition 8.2.5, T0(expG) = idL(G), and further

T1(mG)(x, y) = x + y by Lemma 8.1.6. Therefore

Φ : Rn → G, x 7→ expG(x1b1) · . . . · expG(xnbn)

satisfies T0(Φ)(x) =
∑n

i=1 xibi. Hence the claim follows from the Inverse Func-
tion Theorem. ut
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Lemma 8.2.7. If σ : G × M → M is a smooth action and x ∈ L(G), then
the global flow of the vector field σ̇(x) is given by Φx(t, m) = expG(−tx).m.
In particular,

σ̇(x)(m) =
d

dt t=0
expG(−tx).m.

Proof. In the proof of Proposition 8.1.14, we have seen that

Tg(ϕm)xl(g) = σ̇(x)(ϕm(g))

holds for the map ϕm(g) = g−1.m. In view of Proposition 8.2.5 this yields

d

dt t=0
expG(−tx).m = T1(ϕm)T0(expG)x = T1(ϕm)x = σ̇(x)(m),

and hence proves the lemma. ut
Lemma 8.2.8. If x, y ∈ L(G) commute, i.e., [x, y] = 0, then

expG(x + y) = expG(x) expG(y).

Proof. If x and y commute, then the corresponding left invariant vector fields
commute, and Corollary 7.5.17 implies that their flows commute. We conclude
that for all t, s ∈ R we have

expG(tx) expG(sy) = expG(sy) expG(tx). (8.6)

Therefore
γ(t) := expG(tx) expG(ty)

is a smooth group homomorphism. In view of

γ′(0) = T(1,1)(mG)(x, y) = x + y

(Lemma 8.1.6), Lemma 8.2.4(c) leads to γ(t) = expG(t(x + y)), and for t = 1
we obtain the lemma. ut
Lemma 8.2.9. The subgroup 〈expG(L(G))〉 of G generated by expG(L(G))
coincides with the identity component G0 of G, i.e., the connected component
containing 1.

Proof. Since expG is a local diffeomorphism in 0 (Proposition 8.2.5), the In-
verse Function Theorem (see Exercise 7.3.5) implies that expG(L(G)) is a
neighborhood of 1. We conclude that the subgroup H := 〈expG(L(G))〉 gener-
ated by the exponential image is a 1-neighborhood, hence contains G0 (Propo-
sition 8.1.15(iii)(d)). On the other hand, expG is continuous, so that it maps
the connected space L(G) into the identity component G0 of G, which leads
to H ⊆ G0, and hence to equality. ut
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8.2.2 Naturality of the Exponential Function

In this subsection we study how the exponential functions is related to the
Lie functor.

Proposition 8.2.10. Let ϕ : G1 → G2 be a morphism of Lie groups and
L(ϕ) : L(G1) → L(G2) its differential in 1. Then

expG2
◦L(ϕ) = ϕ ◦ expG1

, (8.7)

i.e., the following diagram commutes

G1
ϕ−−−−−−−−−→ G2xexpG1

xexpG2

L(G1)
L(ϕ)−−−−−−−−−→ L(G2).

Proof. For x ∈ L(G1) we consider the smooth homomorphism

γx ∈ Hom(R, G1), γx(t) = expG1
(tx).

According to Lemma 8.2.4, we have

ϕ ◦ γx(t) = expG2
(ty)

for y = (ϕ ◦ γx)′(0) = L(ϕ)x, because ϕ ◦ γx : R → G2 is a smooth group
homomorphism. For t = 1 we obtain in particular

expG2
(L(ϕ)x) = ϕ(expG1

(x)),

which we had to show. ut
Corollary 8.2.11. Let G1 and G2 be Lie groups and ϕ : G1 → G2 be a group
homomorphism. Then the following are equivalent:

(a) ϕ is smooth in an identity neighborhood of G1.
(b) ϕ is smooth.
(c) There exists a linear map ψ : L(G1) → L(G2) satisfying

expG2
◦ψ = ϕ ◦ expG1

. (8.8)

Proof. (a) ⇒ (b): Let U be an open 1-neighborhood of G1 such that ϕ|U is
smooth. Since each left translation λg is a diffeomorphism, λg(U) = gU is an
open neighborhood of g, and we have

ϕ(gx) = ϕ(g)ϕ(x), i.e., ϕ ◦ λg = λϕ(g) ◦ ϕ.

Hence the smoothness of ϕ on U implies the smoothness of ϕ on gU , and
therefore that ϕ is smooth.

(b) ⇒ (c): If ϕ is smooth, then ψ := L(ϕ) satisfies (8.8).
(c) ⇒ (a): If ψ is a linear map satisfying (8.8), then the fact that the

exponential functions expG1
and expG2

are local diffeomorphisms and the
smoothness of the linear map ψ implies (a). ut
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Corollary 8.2.12. If ϕ1, ϕ2 : G1 → G2 are morphisms of Lie groups with
L(ϕ1) = L(ϕ2), then ϕ1 and ϕ2 coincide on the identity component of G1.

Proof. In view of Proposition 8.2.10, we have for x ∈ L(G1):

ϕ1(expG1
(x)) = expG2

(L(ϕ1)x) = expG2
(L(ϕ2)x) = ϕ2(expG1

(x)),

so that ϕ1 and ϕ2 coincide on the image of expG1
, hence on the subgroup

generated by this set. Now the assertion follows from Lemma 8.2.9. ut
Proposition 8.2.13. For a morphism ϕ : G1 → G2 of Lie groups, the follow-
ing assertions hold:

(1) kerL(ϕ) = {x ∈ L(G1) : expG1
(Rx) ⊆ kerϕ}.

(2) ϕ is an open map if and only if L(ϕ) is surjective.
(3) If L(ϕ) is a linear isomorphism and ϕ is bijective, then ϕ is an isomor-

phism of Lie groups.

Proof. (1) The condition x ∈ kerL(ϕ) is equivalent to

{1} = expG2
(RL(ϕ)x) = ϕ(expG1

(Rx)).

(2) Suppose first that ϕ is an open map. Since expGi
, i = 1, 2, are local

diffeomorphisms,
expG2

◦L(ϕ) = ϕ ◦ expG1
(8.9)

implies that there exists some 0-neighborhood in L(G1) on which L(ϕ) is an
open map, hence that L(ϕ) is surjective.

If, conversely, L(ϕ) is surjective, then L(ϕ) is an open map, so that the
relation (8.9) implies that there exists an open 1-neighborhood U1 in G1 such
that ϕ|U1 is an open map. We claim that this implies that ϕ is an open map.
In fact, suppose that O ⊆ G1 is open and g ∈ O. Then there exists an open
1-neighborhood U2 of G1 with gU2 ⊆ O and U2 ⊆ U1. Then

ϕ(O) ⊇ ϕ(gU2) = ϕ(g)ϕ(U2),

and since ϕ(U2) is open in G2, we see that ϕ(O) is a neighborhood of ϕ(g),
hence that ϕ(O) is open because g ∈ O was arbitrary.

(3) From the relation expG2
◦L(ϕ) = ϕ◦ expG1

and the bijectivity of ϕ we
derive that the group homomorphism ϕ−1 satisfies

ϕ−1 ◦ expG2
= expG1

◦L(ϕ)−1,

so that Corollary 8.2.11 implies that ϕ−1 is also smooth. ut
Proposition 8.2.14. Let G be a Lie group with Lie algebra L(G). Then for
x, y ∈ L(G) the following equations hold:
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(1) (Product Formula)

expG(x + y) = lim
k→∞

(
expG( 1

kx) expG( 1
ky)

)k
.

(2) (Commutator Formula)

expG([x, y]) = lim
k→∞

(
expG

(
1
kx

)
expG

(
1
ky

)
expG

(− 1
kx

)
expG

(− 1
ky

))k2

.

Proof. Let U ⊆ L(G) be an open 0-neighborhood for which

expU := expG |U : U → expG(U)

is a diffeomorphism onto an open subset of G. Put

U1 := {(x, y) ∈ U × U : expG(x) expG(y) ∈ expG(U)}

and observe that this is an open subset of U × U containing (0, 0) because
expG(U) is open and expG is continuous.

For (x, y) ∈ U1 we then define

x ∗ y := exp−1
U (expG(x) expG(y))

and thus obtain a smooth map

m : U1 → L(G), (x, y) 7→ x ∗ y.

(1) In view of m(0, x) = m(x, 0) = x, we have

dm(0, 0)(x, y) = dm(0, 0)(x, 0) + dm(0, 0)(0, y) = x + y.

This implies that

lim
k→∞

k · ( 1
kx ∗ 1

ky
)

= lim
k→∞

k ·
(
m

(
1
kx, 1

ky
)−m(0, 0)

)
= dm(0, 0)(x, y) = x + y.

Applying expG, it follows that

expG(x + y) = lim
k→∞

expG

(
k · ( 1

kx ∗ 1
ky

))
= lim

k→∞
expG

(
1
kx ∗ 1

ky
)k

= lim
k→∞

(
expG( 1

kx) expG( 1
ky)

)k

.

(2) Now let x∗l := T (expU )−1 ◦ xl ◦ expU be the smooth vector field on U
corresponding to the left invariant vector field xl on expG(U). Then x∗l and
xl are expU -related, so that the Related Vector Field Lemma 7.4.9 leads to

[x∗l , y
∗
l ](0) = T0(expU )[x∗l , y

∗
l ](0) = [xl, yl](expG(0)) = [xl, yl](1) = [x, y].
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The local flow of xl through a point expU (y) is given by the curve t 7→
expG(y) expG(tx), which implies that the integral curve of x∗l through y ∈
U is given for t close to 0 by Φ

x∗l
t (y) = y ∗ tx. We therefore obtain with

Remark 7.5.18 (on commutators of flows):

∂2

∂s∂t t=s=0
tx ∗ sy ∗ (−tx) ∗ (−sy) =

∂2

∂s∂t t=s=0
Φ

y∗l−s ◦ Φ
x∗l−t ◦ Φ

y∗l
s ◦ Φ

x∗l
t (0)

= [−x∗l ,−y∗l ](0) = [x∗l , y
∗
l ](0) = [x, y].

Note that F (t, s) := tx ∗ sy ∗ (−tx) ∗ (−sy) vanishes for t = 0 and s = 0.
For f(t) := F (t, t) we have

f ′(t) =
∂F

∂t
(t, t) +

∂F

∂s
(t, t),

f ′′(t) =
∂2F

∂t2
(t, t) + 2

∂2F

∂t∂s
(t, t) +

∂2F

∂s2
(t, t),

and
∂2F

∂t2
(0, 0) =

∂2F

∂s2
(0, 0) = f ′(0) = 0.

Therefore
1
2
f ′′(0) =

∂2F

∂t∂s
(0, 0) = [x, y]

leads to

lim
k→∞

k2
(1

k
x ∗ 1

k
y ∗ (−1

k
x) ∗ (−1

k
y)

)
= lim

k→∞
k2f

(1
k

)
=

1
2
f ′′(0) = [x, y].

Applying the exponential function, we obtain the Commutator Formula. ut
Theorem 8.2.15 (One-parameter Group Theorem). Let G be a Lie
group. For each x ∈ g := L(G), the map γx : (R, +) → G, t 7→ expG(tx) is
a smooth group homomorphism. Conversely, every continuous one-parameter
group γ : R→ G is of this form.

Proof. The first assertion is an immediate consequence of Lemma 8.2.4(c). It
therefore remains to show that each continuous one-parameter group γ of G is
a γx for some x ∈ g. Let U = −U be a convex 0-neighborhood in g for which
expG |U is a diffeomorphism onto an open subset of G and put U1 := 1

2U . Since
γ is continuous in 0, there exists an ε > 0 such that γ([−ε, ε]) ⊆ expG(U1).
Then α(t) := (expG |U )−1(γ(t)) defines a continuous curve α : [−ε, ε] → U1

with exp(α(t)) = γ(t) for |t| ≤ ε. With the same arguments as in the proof of
Theorem 2.2.6, we see that α(t) = tx for some x ∈ g. Hence γ(t) = expG(tx)
for |t| ≤ ε, but then γ(nt) = expG(ntx) for n ∈ N leads to γ(t) = expG(tx)
for each t ∈ R. ut
Theorem 8.2.16 (Automatic Smoothness Theorem). Each continuous
homomorphism ϕ : G → H of Lie groups is smooth.
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Proof. From Theorem 8.2.15 we know that the map

L(G) → Homc(R, G), x 7→ γx, γx(t) := expG(tx)

is a bijection, where Homc(R, G) denotes the set of all continuous one-
parameter groups of G. For x ∈ L(G1) we consider the continuous homo-
morphism ϕ ◦ γx ∈ Homc(R, G2). Since this one-parameter group is smooth
(Theorem 8.2.15), it is of the form

ϕ ◦ γx(t) = expG2
(ty)

for y = (ϕ ◦ γx)′(0) ∈ L(G2). We define a map L(ϕ) : L(G1) → L(G2) by
L(ϕ)x := (ϕ ◦ γx)′(0). For t = 1 we then obtain

expG2
◦L(ϕ) = ϕ ◦ expG1

: L(G1) → G2. (8.10)

Next we show that L(ϕ) is a linear map. Our definition immediately shows
that L(ϕ)λx = λL(ϕ)x for each x ∈ L(G1). Further, the Product Formula
(Proposition 8.2.14) yields

expG2
(L(ϕ)(x + y)) = ϕ

(
expG1

(x + y)
)

= lim
k→∞

ϕ
(

expG1

(
1
kx

)
expG1

(
1
ky

))k

= lim
k→∞

(
expG2

(
1
k L(ϕ)x

)
expG2

(
1
k L(ϕ)y

))k

= expG2

(
L(ϕ)x + L(ϕ)y

)
.

This proves that L(ϕ)(x + y) = L(ϕ)x + L(ϕ)y, so that L(ϕ) is indeed a
linear map, hence in particular smooth. Since both maps expGi

are local
diffeomorphisms, (8.10) implies that ϕ is smooth in an identity neighborhood
of G1, hence smooth by Corollary 8.2.11. ut
Corollary 8.2.17. A topological group G carries at most one Lie group struc-
ture.

Proof. If G1 and G2 are two Lie groups which are isomorphic as topological
groups, then the Automatic Smoothness Theorem applies to each topological
isomorphism ϕ : G1 → G2 and shows that ϕ is smooth. It likewise applies to
ϕ−1, so that ϕ is an isomorphism of Lie group. ut

8.2.3 The Adjoint Representation

The Lie functor associates linear automorphisms of the Lie algebra with con-
jugations on the Lie group. The resulting representation of the Lie group is
called the adjoint representation. Its interplay with the exponential function
will be important in the entire theory.
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Definition 8.2.18. (a) We know that for each finite-dimensional vector space
V , the group GL(V ) carries a natural Lie group structure. For a Lie group G,
a smooth homomorphism π : G → GL(V ) is a called a representation of G on
V (cf. Exercise 8.2.3).

Any representation defines a smooth action of G on V via

σ(g, v) := π(g)(v).

In this sense, representations are the same as linear actions, i.e., actions on
vector spaces for which the σg are linear.

(b) If g is a Lie algebra, then a homomorphism of Lie algebras
ϕ : g → gl(V ) is called a representation of g on V (cf. Definition 4.1.4).

As a consequence of Proposition 8.1.8, we obtain

Proposition 8.2.19. If ϕ : G → GL(V ) is a representation of G, then
L(ϕ) : L(G) → gl(V ) is a representation of its Lie algebra L(G).

The representation L(ϕ) obtained in Proposition 8.2.19 from the group
representation ϕ is called the derived representation. This is motivated by the
fact that for each x ∈ L(G) we have

L(ϕ)(x) =
d

dt t=0
et L(ϕ)x =

d

dt t=0
ϕ(expG tx).

Let G be a Lie group and L(G) its Lie algebra. For g ∈ G we recall the
conjugation automorphism cg ∈ Aut(G), cg(x) = gxg−1, and define

Ad(g) := L(cg) ∈ Aut(L(G)).

Then
Ad(g1g2) = L(cg1g2) = L(cg1) ◦ L(cg2) = Ad(g1)Ad(g2)

shows that Ad: G → Aut(L(G)) is a group homomorphism. It is called the
adjoint representation. To see that it is smooth, we observe that for each
x ∈ L(G) we have

Ad(g)x = T1(cg)x = T1(λg ◦ ρg−1)x = Tg−1(λg)T1(ρg−1)x = 0g · x · 0g−1

in the Lie group T (G) (Lemma 8.1.6). Since the multiplication in T (G) is
smooth, the representation Ad of G on L(G) is smooth (cf. Exercise 8.2.3),
and

L(Ad): L(G) → gl(L(G))

is a representation of L(G) on L(G). The following lemma gives a formula for
this representation.

Lemma 8.2.20. L(Ad) = ad, i.e., L(Ad)(x)(y) = [x, y].
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Proof. Let x, y ∈ L(G) and xl, yl be the corresponding left invariant vector
fields. Corollary 8.1.10 implies for g ∈ G the relation

(cg)∗yl =
(
L(cg)y)l =

(
Ad(g)y

)
l
.

On the other hand, the left invariance of yl leads to

(cg)∗yl = (ρ−1
g ◦ λg)∗yl = (ρ−1

g )∗(λg)∗yl = (ρ−1
g )∗yl.

Next we observe that Φxl
t = ρexpG(tx) is the flow of the vector field xl

(Lemma 8.2.4), so that Theorem 7.5.16 implies that

[xl, yl] = Lxl
yl =

d

dt t=0
(Φxl−t)∗yl =

d

dt t=0
(cexpG(tx))∗yl

=
d

dt t=0

(
Ad(expG(tx))y

)
l
.

Evaluating in 1, we get

[x, y] = [xl, yl](1) =
d

dt t=0
Ad(expG(tx))y = L(Ad)(x)(y). ut

Combining Proposition 8.2.10 with Lemma 8.2.20, we obtain the important
formula

Ad ◦ expG = expAut(L(G)) ◦ ad,

i.e.,
Ad(expG(x)) = ead x for x ∈ L(G). (8.11)

Lemma 8.2.21. For a Lie group G, the kernel of the adjoint representation
Ad: G → Aut(L(G)), is given by

ZG(G0) := {g ∈ G : (∀x ∈ G0) gx = xg},

where G0 is the connected component of the identity in G. If, in addition, G
is connected, then

kerAd = Z(G).

Proof. Since G0 is connected, the automorphism cg|G0 of G0 is trivial if and
only if L(cg) = Ad(g) is trivial. This implies the lemma. ut

8.2.4 Semidirect Products

The easiest way to construct a new Lie group from two given Lie groups G
and H, is to endow the product manifold G×H with the multiplication

(g1, h1)(g2, h2) := (g1g2, h1h2).
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The resulting group is called the direct product of the Lie groups G and H.
Here G and H can be identified with normal subgroups of G ×H for which
the multiplication map

(G× {1})× ({1} ×H) → G×H, ((g,1), (1, h)) 7→ (g,1)(1, h) = (g, h)

is a diffeomorphism. Relaxing this condition in the sense that only one factor
is assumed to be normal, leads to the concept of a semidirect product of Lie
groups, introduced below.

Definition 8.2.22. Let N and G be Lie groups and α : G → Aut(N) be a
group homomorphism defining a smooth action (g, n) 7→ α(g)(n) of G on N .
Then the product manifold N ×G is a group with respect to the product (cf.
Lemma 1.2.3)

(n, g)(n′, g′) := (nα(g)(n′), gg′)

and the inversion
(n, g)−1 = (α(g−1)(n−1), g−1).

Since multiplication and inversion are smooth, this group is a Lie group, called
the semidirect product of N and G with respect to α. It is denoted by N oα G.

On the manifold G×N we also obtain a Lie group structure by

(g, n)(g′, n′) := (gg′, α(g′)−1(n)n′),

and this Lie group is denoted Gnα N. It is easy to verify that the map

Φ : N oα G → Gnα N, (n, g) 7→ (g, α(g)−1(n))

is an isomorphism of Lie groups.

Remark 8.2.23. If Ĝ := N oα G is a semidirect product, then

π : Ĝ → G, (n, g) 7→ g, σ : G → Ĝ, g 7→ (1, g)

and ι : N → Ĝ, n 7→ (n,1) are morphisms of Lie groups with π ◦σ = idG and ι

is an isomorphism of N onto the submanifold kerπ of Ĝ (cf. Remark 7.6.10).

Example 8.2.24. Let G be a Lie group and T (G) its tangent Lie group
(Lemma 8.1.6). We have already seen that the map G × L(G) → TG,
(g, x) 7→ g.x = 0g · x is a diffeomorphism, and for similar reasons, the map
L(G) × G → TG, (x, g) 7→ x.g := x · 0g is a diffeomorphism. In these coordi-
nates, the multiplication is given by

(x.g) · (x′.g′) = x · 0g · x′ · 0g′ = x ·Ad(g)x′ · 0g · 0g′ = (x + Ad(g)x′).gg′.

This shows that the tangent bundle is a semidirect product

TG ∼= L(G)oAd G.
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Similarly, the calculation

(g.x) · (g′.x′) = 0gg′ ·Ad(g′)−1x · x′ = (gg′,Ad(g′)−1x + x′)

shows that also
TG ∼= GnAd L(G).

Proposition 8.2.25. The Lie algebra of the semidirect product group Noα G
is given by

L(N oα G) ∼= L(N)oβ L(G),

where β : L(G) → der(L(N)) is the derived representation of L(G) on L(N)
corresponding to the representation of G on L(N) given by g.x := L(α(g))x.

Proof. We identify L(N), resp., L(G), with a subspace of

T1(N)⊕ T1(G) = T(1,1)(N ×G) ∼= L(N oα G).

Since N and G are subgroups, the functoriality of L implies that L(G) and
L(N) are Lie subalgebras of L(N oα G). The normal subgroup N is the
kernel of the projection π : N oα G → G, so that our identification shows that
L(N) = kerL(π) is an ideal of L(N oα G). This already implies

L(N oα G) ∼= L(N)oβ L(G)

for the homomorphism β : L(G) → der(L(N)), given by

(β(x)(y), 0) = [(0, x), (y, 0)].

To determine β in terms of α, we note that the smooth action of G on
N by automorphisms induces a smooth action of G on the tangent bundle
T (N), hence in particular on T1(N) ∼= L(N). We thus obtain a representation
π : G → Aut(L(N)). In N oα G we have (1, g)(n,1)(1, g)−1 = (α(g)(n),1),
so that

π(g)y = L(α(g))y = Ad(1, g)(y, 0).

Now Lemma 8.2.20 immediately shows that L(π)x = ad(0, x) = β(x). ut
To form semidirect products, we need smooth actions of a Lie group G on

a Lie group N . The following lemma is a useful tool to verify smoothness in
this context.

Lemma 8.2.26. Let G and N be Lie groups and α : G → Aut(N) be a group
homomorphism.

(i) The action σ(g, n) := α(g)(n) of G on N is smooth if and only if
(a) L ◦α : G → Aut(L(N)) is smooth as a map into GL(L(N)).
(b) All orbit maps σn : G → N, g 7→ α(g)(n) are smooth.

(ii) If N is connected, then (a) implies (b).
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Proof. (i) If σ is smooth, then (b) is clearly satisfied. Moreover,

expN ◦L(α(g)) = α(g) ◦ expN

holds for each g ∈ G, so that the map

G× L(N) → L(N), (g, x) 7→ L(α(g))x

is smooth in an open neighborhood of (1, 0). This implies that
L ◦α : G → GL(L(N)) is smooth in an open neighborhood of 1, hence smooth
because it is a group homomorphism.

Next we assume that (a) and (b) are satisfied. We have to show that for
any pair (g1, n1) ∈ G×N the expression

σ(g1g2, n1n2) = α(g1)
(
α(g2)(n1)α(g2)(n2)

)
,

is a smooth function of (g2, n2) in a neighborhood of (1,1). In view of the
smoothness of α(g1) and (b), it suffices to prove that σ is smooth in an open
neighborhood of (1,1). According to (a), this follows from

σ(g, expN x) = α(g)(expN (x)) = expN (L(α(g))x). (8.12)

(ii) Since G acts by group automorphisms, the set

S := {n ∈ N : σn ∈ C∞(G,N)}
is a subgroup. In view of (8.12), (a) implies that S contains the image of
expN , hence all of N (Lemma 8.2.9). ut

8.2.5 The Baker–Campbell–Dynkin–Hausdorff Formula

In this subsection we show that the formula

expG(x ∗ y) = expG x expG y,

where x ∗ y, for sufficiently small elements x, y ∈ g = L(G), is given by the
Hausdorff series (cf. Proposition 2.4.5), also holds for the exponential function
of a general Lie group G with Lie algebra g.

The Maurer–Cartan form κG ∈ Ω1(G, g) is the unique left invariant 1-
form on G with κG,1 = idg, i.e., κG(v) = g−1.v for v ∈ Tg(G). The logarithmic
derivative of a smooth function f : M → G is now defined as the pull-back of
the Maurer–Cartan form:

δ(f) := f∗κG ∈ Ω1(M, g).

For each v ∈ Tm(M) we then have

δ(f)mv = f(m)−1 · Tm(f)v.

If α ∈ Ω1(M, g) is a Lie algebra-valued 1-form and f : M → G a smooth
function, then we define Ad(f)α pointwise by (Ad(f)α)m := Ad(f(m))αm.
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Lemma 8.2.27. For two smooth maps f, h : M → G, the logarithmic deriva-
tive of the pointwise products fh and fh−1 is given by the

(1) Product Rule: δ(fh) = δ(h) + Ad(h−1)δ(f), and the
(2) Quotient Rule: δ(fh−1) = Ad(h)(δ(f)− δ(h)).

Proof. Writing fg = mG ◦ (f, g), we obtain from

T(a,b)(mG)(v, w) = v · b + a · w
for a, b ∈ G and v, w ∈ L(G) ⊆ TG the relation

T (fh) = T (mG) ◦ (T (f), T (h)) = T (f) · h + f · T (h) : T (M) → T (G),

where f · T (h), resp., T (f) · h refers to the pointwise product in the group
T (G), containing G as the zero section (Lemma 8.1.6). This immediately leads
to the Product Rule

δ(fh) = (fh)−1·(T (f)·h+f ·T (h)) = h−1·(δ(f)·h)+δ(h) = Ad(h)−1δ(f)+δ(h).

For h = f−1, we then obtain

0 = δ(ff−1) = Ad(f)δ(f) + δ(f−1),

hence δ(f−1) = −Ad(f)δ(f). This in turn leads to

δ(fh−1) = Ad(h)δ(f) + δ(h−1) = Ad(h)δ(f)−Ad(h)δ(h),

which is the Quotient Rule. ut
For any g ∈ G and a smooth function f : M → G, the function λg ◦ f has

the same logarithmic derivative as f because (λg ◦ f)∗κG = f∗λ∗gκG = f∗κG.
The following lemma provides a converse, which is a very convenient tool.

Lemma 8.2.28 (Uniqueness Lemma for Logarithmic Derivatives).
Let G be a Lie group and M a connected manifold. If f, h ∈ C∞(M,G) satisfy
δ(f) = δ(h), then h = λg ◦ f holds for some g ∈ G.

Proof. The Quotient Rule leads to

δ(hf−1) = δ(f−1) + Ad(f)δ(h) = −Ad(f)δ(f) + Ad(f)δ(f) = 0.

Hence Tm(hf−1) = 0 in each m ∈ M , so that h ·f−1 is constant equal to some
g ∈ G. This means that h = λg ◦ f . ut
Proposition 8.2.29. The logarithmic derivative of expG is given by

δ(expG)(x) =
1− e− ad x

adx
: g → g,

where the fraction on the right means Φ(ad x) for the entire function

Φ(z) :=
1− e−z

z
=

∞∑

k=1

(−z)k−1

k!
.

The series Φ(ad x) converges for each x ∈ g.
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Proof. Fix t, s ∈ R. Then the smooth functions f, ft, fs : L(G) → G, given by

f(x) := expG((t + s)x), ft(x) := expG(tx) and fs(x) := expG(sx),

satisfy f = ftfs pointwise on L(G). The Product Rule (Lemma 8.2.27) there-
fore implies that

δ(f) = δ(fs) + Ad(fs)−1δ(ft).

For the smooth curve ψ : R→ L(G), ψ(t) := δ(expG)tx(ty), we now obtain

ψ(t + s) = δ(f)x(y) = δ(fs)x(y) + Ad(fs)−1δ(ft)x(y)
= ψ(s) + Ad(expG(−sx))ψ(t).

We have ψ(0) = 0 and

ψ′(0) = lim
t→0

δ(expG)tx(y) = δ(expG)0(y) = y,

so that taking derivatives with respect to t in 0, leads to

ψ′(s) = Ad(expG(−sx))y = e− ad(sx)y.

Now the assertion follows by integration from

δ(expG)x(y) = ψ(1) =
∫ 1

0

ψ′(s) ds

and
∫ 1

0
e−s ad x ds =

∑∞
k=0

(− ad x)k

(k+1)! = Φ(ad x), which we saw already in the
proof of Proposition 2.4.2. ut
Definition 8.2.30. We have seen in Proposition 8.2.29 that

δ(expG)(x) =
1− e− ad x

adx
.

From Exercise 8.2.13 we now derive that

singexp(g) := {x ∈ g : Spec (ad x) ∩ 2πiZ 6⊆ {0}}
is the set of singular points of expG, and

regexp(g) := {x ∈ g : Spec (ad x) ∩ 2πiZ ⊆ {0}}
is the set of regular points of the exponential function. We note in particular,
that these sets only depend on the Lie algebra g, and not on the group G.

Lemma 8.2.31. Let G be a Lie group with Lie algebra g. Then the following
assertions hold for x ∈ g:

(a) If x ∈ regexp(g) and expG x = expG y for some y ∈ g, then

[x, y] = 0 and expG(x− y) = 1.
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(b) If x ∈ singexp(g), then expG is not injective on any neighborhood of x.

Proof. (a) The whole one-parameter group expG(Ry) commutes with expG y =
expG x, which leads to

expG(x) = cexpG ty(expG x) = expG(et ad yx) for t ∈ R.

Consequently,

d

dt t=0
et ad yx = [y, x] ∈ kerTx(exp) = {0},

and thus [x, y] = 0. This in turn leads to

expG(x− y) = expG(x) expG(−y) = 1

(Lemma 8.2.8).
(b) There exists some 0 6= y ∈ g with Tx(exp)y = 0, resp., Φ(ad x)y = 0

(Proposition 8.2.29). We consider the one-parameter group

α : R→ Aut(G), t 7→ cexpG ty

of automorphisms of G. It is generated by the vector field

X (g) =
d

dt t=0
expG(ty)g expG(−ty)

which has in expG x the value

X (exp x) =
d

dt t=0
cexpG(ty) expG(x) =

d

dt t=0
expG(ead tyx) = Tx(exp)[y, x]

= T1(λexpG x)Φ(ad x)(− ad x)y = T1(λexpG x)(− adx)Φ(adx)y = 0

(Proposition 8.2.29). This implies that α(t)(expG x) = expG(ead tyx) = expG x
for every t ∈ R. In view of y 6= 0 and Φ(adx)y = 0, we have [y, x] 6= 0
(Exercise 8.2.12), so that the curve ead tyx is not constant. Hence expG is not
injective on any neighborhood of x. ut

Let U ⊆ g be a convex 0-neighborhood for which expG |U is a diffeo-
morphism onto an open subset of G and V ⊆ U a smaller convex open 0-
neighborhood with expG V expG V ⊆ expG U . Put logU := (expG |U )−1 and
define for x, y ∈ V

x ∗ y := logU (expG x expG y),

which defines a smooth map V ×V → U . Fix x, y ∈ V . Then the smooth curve
F (t) := x ∗ ty satisfies expG F (t) = expG(x) expG(ty), so that the logarithmic
derivative of this curve is
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δ(expG)F (t)F
′(t) = y.

We now choose U so small that the power series Ψ(z) = z log z
z−1 from

Lemma 2.4.3 satisfies

Ψ(ead z)Φ(ad z) = idg for z ∈ U

(cf. Proposition 2.1.6). For z = F (t), we then arrive with Proposition 8.2.29
at

F ′(t) = Ψ(ead F (t))y.

Now the same arguments as in Propositions 2.4.4 and 2.4.5 imply that

x ∗ y = F (1) = x + y +
1
2
[x, y] + · · ·

is given by the convergent Hausdorff series:

Proposition 8.2.32. If G is a Lie group, then there exists a convex 0-
neighborhood V ⊆ g such that for x, y ∈ V the Hausdorff series

x ∗ y := x+
∑

k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . . + qk + 1)
(adx)p1(ad y)q1 . . . (ad x)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y.

converges and satisfies

expG(x ∗ y) = expG(x) expG(y).

Exercises for Section 8.2

Exercise 8.2.1. Let G be a connected Lie group and x ∈ g = L(G). Show
that the corresponding left invariant vector field xl ∈ V(G) is biinvariant, i.e.,
also invariant under all right multiplications, if and only if x ∈ z(g).

Exercise 8.2.2. Let f1, f2 : G → H be two group homomorphisms. Show that
the pointwise product

f1f2 : G → H, g 7→ f1(g)f2(g)

is a homomorphism if and only if f1(G) commutes with f2(G).

Exercise 8.2.3. Let M be a manifold and V a finite-dimensional vector space
with a basis (b1, . . . , bn). Let f : M → GL(V ) be a map. Show that the fol-
lowing are equivalent:

(1) f is smooth.
(2) For each v ∈ V the map fv : M → V,m 7→ f(m)v is smooth.
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(3) For each i, the map f : M → V, m 7→ f(m)bi is smooth.

Exercise 8.2.4. A vector field X on a Lie group G is called right invariant
if for each g ∈ G the vector field (ρg)∗X = T (ρg) ◦X ◦ ρ−1

g coincides with X.
We write V(G)r for the set of right invariant vector fields on G. Show that:

(1) The evaluation map ev1 : V(G)r → T1(G) is a linear isomorphism.
(2) If X is right invariant, then there exists a unique x ∈ T1(G) such that

X(g) = xr(g) := T1(ρg)x = x · 0g (w.r.t. multiplication in T (G)).
(3) If X is right invariant, then X̃ := (ιG)∗X := T (ιG)◦X◦ι−1

G is left invariant
and vice versa.

(4) Show that (ιG)∗xr = −xl and [xr, yr] = −[x, y]r for x, y ∈ T1(G).
(5) Show that each right invariant vector field is complete and determine its

flow.

Exercise 8.2.5. Let M be a smooth manifold, ϕ ∈ Diff(M) and X ∈ V(M).
Show that the following are equivalent:

(1) ϕ commutes with the flow maps ΦX
t : Mt → M of X, i.e., each set Mt is

ϕ-invariant and ΦX
t ◦ ϕ = ϕ ◦ ΦX

t holds on Mt.
(2) For each integral curve γ : I → M of X the curve ϕ ◦ γ also is an integral

curve of X.
(3) X = ϕ∗X = T (ϕ) ◦X ◦ ϕ−1, i.e., X is ϕ-invariant.

Exercise 8.2.6. Let G be a Lie group. Show that any map ϕ : G → G com-
muting with all left multiplications λg, g ∈ G, is a right multiplication.

Exercise 8.2.7. Let X, Y ∈ V(M) be two commuting complete vector fields,
i.e., [X, Y ] = 0. Show that the vector field X +Y is complete and that its flow
is given by

ΦX+Y
t = ΦX

t ◦ ΦY
t for all t ∈ R.

Exercise 8.2.8. Let V be a finite-dimensional vector space and µt(v) := tv
for t ∈ R×. Show that:

(1) A vector field X ∈ V(V ) is linear if and only if (µt)∗X = X holds for all
t ∈ R×.

(2) A diffeomorphism ϕ ∈ Diff(V ) is linear if and only if it commutes with all
the maps µt, t ∈ R×.

Exercise 8.2.9. Let G be a connected Lie group and H a Lie group. For a
smooth map f : G → H, the following are equivalent:

(1) f is a homomorphism.
(2) f(1) = 1 and there exists a homomorphism ψ : L(G) → L(H) of Lie

algebras with δ(f) = ψ ◦ κG.

Exercise 8.2.10. Let G be a connected Lie group, H a Lie group and
α : G → H a homomorphism defining a smooth action of G on H. For a
smooth map f : G → H, the following are equivalent:



308 8 Basic Lie Theory

(1) f is a crossed homomorphism, i.e.,

f(xy) = f(x) · α(x)(f(y)) for x, y ∈ G.

(2) f(1) = 1 and δ(f) ∈ Ω1(G,L(H)) is equivariant, i.e.,

λ∗gδ(f) = L(α(g)) ◦ δ(f)

for each g ∈ G.
(3) (f, idG) : G → H oα G is a homomorphism.

Exercise 8.2.11. No one-parameter group γ : R → SU2(C) is injective, in
particular, the image of γ(R) is a circle group.

Exercise 8.2.12. (i) Let A be a semisimple endomorphism of the complex
vector space V and let h(z) :=

∑∞
n=0 anzn be a complex power series

converging on C. We define h(A) :=
∑∞

n=0 anAn Then

kerh(A) =
⊕

z∈h−1(0)∩Spec (A)

ker(A− z1).

(ii) Let A be a semisimple endomorphism of the real vector space V , and let
AC : VC → VC be its complex linear extension. Then Spec (A) := Spec (AC)
decomposes into the subsets

Sre := Spec (A) ∩ R and Sim := Spec (A) \ Sre.

Now let h be as above and assume, in addition, that h(z) = h(z). Then
h(A)V ⊆ V and

kerh(A)

=
⊕

z∈h−1(0)∩Sre

ker(A− z1)⊕
⊕

x+iy∈h−1(0)∩Sim,y>0

ker
(
A2 − 2xA + (x2 + y2)

)
.

Exercise 8.2.13. Let A ∈ End(V ), where V is a finite dimensional real vector
space and

f(z) :=
1− e−z

z
=

∞∑

k=0

(−1)kzk

(k + 1)!
.

Show that f(A) is invertible if and only if

Spec (A) ∩ 2πiZ ⊆ {0}.
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8.3 Closed Subgroups of Lie Groups and their Lie
Algebras

In this section, we show that closed subgroups of Lie groups are always Lie
groups and that, for a closed subgroup H of G, its Lie algebra can be computed
as

L(H) = {x ∈ L(G) : expG(Rx) ⊆ H}.
This makes it particularly easy to verify that concrete groups of matrices are
Lie groups and to determine their algebras.

8.3.1 The Lie Algebra of a Closed Subgroup

Definition 8.3.1. Let G be a Lie group and H ≤ G a closed subgroup. We
define the set

Le(H) := {x ∈ L(G) : expG(Rx) ⊆ H}
and observe that RLe(H) ⊆ Le(H) follows immediately from the definition.

Note that, for each x ∈ L(G), the set

{t ∈ R : expG(tx) ∈ H} = γ−1
x (H)

is a closed subgroup of R, hence either discrete cyclic or equal to R (cf. Exer-
cise 8.3.4).

Example 8.3.2. We consider the Lie group G := R × T (the cylinder) with
Lie algebra L(G) ∼= R2 (Exercise 8.1.2) and the exponential function

expG(x, y) = (x, e2πiy).

For the closed subgroup H := R × {1}, we then see that (x, y) ∈ Le(H) is
equivalent to y = 0, but exp−1

G (H) = R× Z.

Proposition 8.3.3. If H ≤ G is a closed subgroup of the Lie group G, then
Le(H) is a real Lie subalgebra of L(G).

Proof. Let x, y ∈ Le(H). For k ∈ N we then have expG
1
kx, expG

1
ky ∈ H, and

with the Product Formula (Proposition 8.2.14), we get

expG(x + y) = lim
k→∞

(
expG

x

k
expG

y

k

)k

∈ H

because H is closed. Therefore expG(x + y) ∈ H, and RLe(H) = Le(H) now
implies expG(R(x + y)) ⊆ H, hence x + y ∈ Le(H).

Similarly, we use the Commutator Formula to get

expG[x, y] = lim
k→∞

(
expG

x

k
expG

y

k
expG−

x

k
expG−

y

k

)k2

∈ H,

hence expG([x, y]) ∈ H, and RLe(H) = Le(H) yields [x, y] ∈ Le(H). ut



310 8 Basic Lie Theory

8.3.2 The Closed Subgroup Theorem and its Consequences

As we shall see below in the Initial Subgroup Theorem 8.6.13, Le(H) is a Lie
algebra for any subgroup H of G. We now address more detailed information
on closed subgroups of Lie groups. We start with three key lemmas providing
the main information for the proof of the Closed Subgroup Theorem.

Lemma 8.3.4. Let W ⊆ L(G) be an open 0-neighborhood for which expG |W
is a diffeomorphism and logW : expG(W ) → W its inverse function. Further,
let H ⊆ G be a closed subgroup and (gk)k∈N be a sequence in H ∩ expG(W )
with gk 6= 1 for all k ∈ N and gk → 1. We put yk := logW gk and fix a norm
‖ · ‖ on L(G). Then every cluster point of the sequence

{
yk

‖yk‖ : k ∈ N
}

is
contained in Le(H).

Proof. Let x be such a cluster point. Replacing the original sequence by a
subsequence, in view of the Bolzano–Weierstraß Theorem, we may assume
that

xk :=
yk

‖yk‖ → x ∈ L(G).

Note that this implies ‖x‖ = 1. Let t ∈ R and put pk := t
‖yk‖ . Then txk = pkyk

and yk → logW 1 = 0, so that

expG(tx) = lim
k→∞

expG(txk) = lim
k→∞

expG(pkyk)

and
expG(pkyk) = expG(yk)[pk] expG

(
(pk − [pk])yk

)
,

where [pk] = max{l ∈ Z : l ≤ pk} is the Gauß function. We therefore have

‖(pk − [pk])yk‖ ≤ ‖yk‖ → 0

and
expG(tx) = lim

k→∞
(expG yk)[pk] = lim

k→∞
g
[pk]
k ∈ H,

because H is closed. This implies x ∈ Le(H). ut
Lemma 8.3.5. Let H ⊆ G be a closed subgroup and E ⊆ L(G) be a vector
subspace complementing Le(H). Then there exists a 0-neighborhood UE ⊆ E
with

H ∩ expG(UE) = {1}.
Proof. We argue by contradiction. If a neighborhood UE with the required
properties does not exist, then for each compact convex 0-neighborhood VE ⊆
E we have for each k ∈ N:

(expG
1
kVE) ∩H 6= {1}.
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For each k ∈ N we therefore find yk ∈ VE with 1 6= gk := expG(yk

k ) ∈ H.
Now the compactness of VE implies that the sequence (yk)k∈N is bounded,
so that yk

k → 0, which implies gk → 1. Now let x ∈ E be a cluster point
of the sequence yk

‖yk‖ which lies in the compact set SE := {z ∈ E : ‖z‖ = 1}.
According to Lemma 8.3.4, we have x ∈ Le(H)∩E = {0} because gk ∈ H∩W
for k sufficiently large. We arrive at a contradiction to ‖x‖ = 1. This proves
the lemma. ut
Lemma 8.3.6. Let E, F ⊆ L(G) be vector subspaces with E ⊕ F = L(G).
Then the map

Φ : E × F → G, (x, y) 7→ expG(x) expG(y),

restricts to a diffeomorphism of a neighborhood of (0, 0) to an open 1-neighbor-
hood in G.

Proof. The Chain Rule implies that

T(0,0)(Φ)(x, y) = T(1,1)(mG) ◦ (T0(expG)|E , T0(expG)|F )(x, y)
= T(1,1)(mG)(x, y) = x + y,

Since the addition map E × F → L(G) ∼= T1(G) is bijective, the Inverse
Function Theorem implies that Φ restricts to a diffeomorphism of an open
neighborhood of (0, 0) in E × F onto an open neighborhood of 1 in G. ut
Theorem 8.3.7 (Closed Subgroup Theorem). Let H be a closed sub-
group of the Lie group G. Then the following assertions hold:

(i) Each 0-neighborhood in Le(H) contains an open 0-neighborhood V such
that expG |V : V → expG(V ) is a homeomorphism onto an open subset
of H.

(ii) H is a submanifold of G and mH := mG|H×H induces a Lie group struc-
ture on H such that the inclusion map ιH : H → G is a morphism of Lie
groups for which L(ιH) : L(H) → L(G) is an isomorphism of L(H) onto
Le(H).

(iii) Let E ⊆ L(G) be a vector space complement of Le(H). Then there exists
an open 0-neighborhood VE ⊆ E such that

ϕ : VE ×H → expG(VE)H, (x, h) 7→ expG(x)h

is a diffeomorphism onto an open subset of G.

In view of (ii) above, we shall always identify L(H) with the subalgebra Le(H)
if H is a closed subgroup of G.

Proof. (i) Let E ⊆ L(G) be a vector space complement of the subspace Le(H)
of L(G) and define
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Φ : E × Le(H) → G, (x, y) 7→ expG x expG y.

According to Lemma 8.3.6, there exist open 0-neighborhoods UE ⊆ E and
UH ⊆ Le(H) such that

Φ1 := Φ|UE×UH
: UE × UH → expG(UE) expG(UH)

is a diffeomorphism onto an open 1-neighborhood in G. In view of Lemma 8.3.5,
we may even choose UE so small that expG(UE) ∩H = {1}.

Since expG(UH) ⊆ H, the condition

g = expG x expG y ∈ H ∩ (expG(UE) expG(UH))

implies expG x = g(expG y)−1 ∈ H ∩ expG UE = {1}. Therefore

H ⊇ expG(UH) = H ∩ (expG(UE) expG(UH))

is an open 1-neighborhood in H. This proves (i).
(ii) Let Φ1, UE and UH be as in (i). For h ∈ H, the set Uh := λh(im (Φ1)) =
h im (Φ1) is an open neighborhood of h in G. Moreover, the map

ϕh : Uh → E ⊕ Le(H) = L(G), x 7→ Φ−1
1 (h−1x)

is a diffeomorphism onto the open subset UE × UH of L(G), and we have

ϕh(Uh ∩H) = ϕh(h im (Φ1) ∩H) = ϕh(h(im (Φ1) ∩H))
= ϕh(h expG(UH)) = {0} × UH = (UE × UH) ∩ ({0} × Le(H)).

Therefore the family (ϕh, Uh)h∈H provides a submanifold atlas for H in G.
This defines a manifold structure on H for which expG |UH

is a local chart
(see Lemma 7.6.5).

The map mH : H × H → H is a restriction of the multiplication map
mG of G, hence smooth as a map H × H → G, and since H is an initial
submanifold of G, Lemma 7.6.5 implies that mH is smooth. With a similar
argument we see that the inversion ιH of H is smooth. Therefore H is a
Lie group and the inclusion map ιH : H → G a smooth homomorphism. The
corresponding morphism of Lie algebras L(ιH) : L(H) → L(G) is injective,
and from expG ◦L(ιH) = ιH ◦expH it follows that its image consists of the set
Le(H) of all elements x ∈ L(G) with expG(Rx) ⊆ H because each element of
Le(H) defines a smooth one-parameter group of H (cf. Lemma 8.2.4).
(iii) Let E be as in the proof of (i) and consider the smooth map

Ψ : E ×H → G, (x, h) 7→ expG(x)h,

where H carries the submanifold structure from (ii). Since expH : Le(H) → H
is a local diffeomorphism in 0, the proof of (i) implies the existence of a
0-neighborhood UE ⊆ E and a 1-neighborhood VH ⊆ H such that
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Ψ1 := Ψ |UE×VH
: UE × VH → expG(UE)VH

is a diffeomorphism onto an open subset of G. We further recall from
Lemma 8.3.5, that we may assume, in addition, that

expG(UE) ∩H = {1}. (8.13)

We now pick a small symmetric 0-neighborhood VE = −VE ⊆ UE such that
expG(VE) expG(VE) ⊆ expG(UE)VH . Its existence follows from the continuity
of the multiplication in G. We claim that the map

ϕ := Ψ |VE×H : VE ×H → expG(VE)H

is a diffeomorphism onto an open subset of G. To this end, we first observe
that

ϕ ◦ (idVE
×ρh) = ρh ◦ ϕ for each h ∈ H,

i.e., ϕ(x, h′h) = ϕ(x, h′)h, so that

T(x,h)(ϕ) ◦ (idE ×T1(ρh)) = Tϕ(x,1)(ρh) ◦ T(x,1)(ϕ).

Since T(x,1)(ϕ) = T(x,1)(Ψ) is invertible for each x ∈ VE , T(x,h)(ϕ) is invertible
for each (x, h) ∈ VE×H. This implies that ϕ is a local diffeomorphism in each
point (x, h). To see that ϕ is injective, we observe that

expG(x)h = ϕ(x, h) = ϕ(x′, h′) = expG(x′)h′

implies that

expG(x)−1 expG(x′) = h(h′)−1 ∈ expG(VE)2∩H ⊆ (expG(UE)VH)∩H = VH ,

where we have used (8.13). We thus obtain expG(x′) ∈ expG(x)VH , so that
the injectivity of Ψ1 yields x = x′, which in turn leads to h = h′. This proves
that ϕ is injective and a local diffeomorphism, hence a diffeomorphism. ut
Example 8.3.8. We take a closer look at closed subgroups of the Lie group
(V, +), where V is a finite-dimensional vector space. From Example 8.2.3 we
know that expV = idV . Let H ⊆ V be a closed subgroup. Then

L(H) = {x ∈ V : Rx ⊆ H} ⊆ H

is the largest vector subspace contained in H. Let E ⊆ V be a vector space
complement for L(H). Then V ∼= L(H) × E, and we derive from L(H) ⊆ H
that

H ∼= L(H)× (E ∩H).

Lemma 8.3.5 implies the existence of some 0-neighborhood UE ⊆ E with
UE ∩ H = {0}, hence that H ∩ E is discrete because 0 is an isolated point
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of H ∩ E. Now Exercise 8.3.4 implies the existence of linearly independent
elements f1, . . . , fk ∈ E with

E ∩H = Zf1 + . . . + Zfk.

We conclude that

H ∼= L(H)× Zk ∼= Rd × Zk for d = dimL(H).

Note that L(H) coincides with the connected component H0 of 0 in H.

In view of Corollary 8.2.17, we may think of Lie groups as a special class
of topological groups. We may therefore ask, which subgroups of a Lie group
G are Lie groups with respect to the subspace topology:

Proposition 8.3.9. A subgroup of a Lie group is a Lie group with respect to
the induced topology if and only if it is closed.

Proof. If H is closed, then the Closed Subgroup Theorem 8.3.7 implies that
H is a submanifold of G which is a Lie group.

Suppose, conversely, that H is a Lie group. Since the inclusion map
ι : H → G is assumed to be a topological embedding, it is in particular contin-
uous, hence smooth by the Automatic Smoothness Theorem 8.2.16 and since
ι is injective, the same holds for L(ι) : L(H) → L(G) (Proposition 8.2.13).

Let V ⊆ L(G) be an open convex 0-neighborhood for which expG |V is
a diffeomorphism onto an open subset of G. Since L(ι) is continuous, there
exists a 0-neighborhood U ⊆ L(H) such that expH |U is a diffeomorphism
onto an open subset of H and L(ι)U ⊆ V . Since H is a topological subgroup
of G, there exists an open subset Ug ⊆ V with

expG(Ug) ∩H = ι(expH(U)) = expG(L(ι)U).

Since L(ι)U is locally closed in L(G), it now follows that H is locally closed
in G, hence closed by Exercise 8.3.3. ut
Definition 8.3.10. Let G be a Lie group. A Lie subgroup of G is a closed
subgroup H together with its Lie group structure provided by Proposition
8.3.9.

8.3.3 Examples

Example 8.3.11 (Closed Subgroups of T). Let H ⊆ T ⊆ (C×, ·) be a
closed proper (=different from T) subgroup. Since dimT = 1, it follows that
L(H) = {0}, so that the Identity Neighborhood Theorem implies that H is
discrete, hence finite because T is compact.

If q : R→ T is the covering projection, q−1(H) is a closed proper subgroup
of R, hence cyclic (this is a very simple case of Exercise 8.3.4), which implies
that H = q(q−1(H)) is also cyclic. Therefore H is one of the groups
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Cn = {z ∈ T : zn = 1}

of n-th roots of unity.

Example 8.3.12 (Subgroups of T2). (a) Let H ⊆ T2 be a closed proper
subgroup. Then L(H) 6= L(T2) implies dim H < dimT2 = 2. Further, H is
compact, so that the group π0(H) of connected components of H is finite.

If dim H = 0, then H is finite, and for n := |H| it is contained in a
subgroup of the form Cn × Cn, where Cn ⊆ T is the subgroup of n-th roots
of unity (cf. Example 8.3.11).

If dim H = 1, then H0 is a compact connected 1-dimensional Lie group,
hence isomorphic to T (Exercise 8.3.5). Therefore H0 = expT2(Rx) for some
x ∈ L(H) with expT2(x) = (e2πix1 , e2πix2) = (1, 1), which is equivalent to
x ∈ Z2. We conclude that the Lie algebras of the closed subgroups are of the
form L(H) = Rx for some x ∈ Z2.

(b) For each θ ∈ R \Q the image of the 1-parameter group

γ : R→ T2, t 7→ (eiθt, eit)

is not closed because γ is injective. Hence the closure of γ(R) is a closed
subgroup of dimension at least 2, which shows that γ(R) is dense in T2. The
subgroup γ(R) is called a dense wind. We leave it as an exercise to the reader
to verify that the dense wind is an initial submanifold of T2.

As we shall see later, in many situations it is important to have some
information on the center of (simply) connected Lie groups. Below we shall
use Lemma 8.2.21 to determine the kernel of the adjoint representation for
various Lie groups. For that we have to know their center.

Example 8.3.13. (a) Let K ∈ {R,C}. First we recall from Proposition 1.1.10
that Z(GLn(K)) = K×1 and from Exercise 1.2.14(v) that

Z(SLn(K)) = {z1 : z ∈ K×, zn = 1}.

In particular,
Z(SLn(C)) = {z1 : zn = 1} ∼= Cn

and

Z(SLn(R)) =
{

1 for n ∈ 2N0 + 1
{±1} for n ∈ 2N.

}

(b) For g ∈ Z(SUn(C)) = kerAd we likewise have gx = xg for all
x ∈ sun(C). From

gln(C) = un(C) + iun(C) = sun(C) + isun(C) + C1,

we derive that g ∈ Z(GLn(C)) = C×1. From that we immediately get

Z(SUn(C)) = {z1 : zn = 1} ∼= Cn
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and similarly we obtain

Z(Un(C)) = {z1 : |z| = 1} ∼= T.

(c) (cf. also Exercise 1.2.16) Next we show that

Z(On(R)) = {±1} and Z(SOn(R)) =





SO2(R) for n = 2
1 for n ∈ 2N+ 1

{±1} for n ∈ 2N+ 2.

If g ∈ Z
(
On(R)

)
, then g commutes with each orthogonal reflection

σv : Rn → Rn, w 7→ w − 2〈v, w〉v

in the hyperplane v⊥, where v is a unit vector. Since Rv is the −1-eigenspace
of σv, this space is invariant under g (Exercise 1.1.1). This implies that for
each v ∈ Rn we have g.v ∈ Rv which by an elementary argument leads to
g ∈ R×1 (Exercise 8.3.11). We conclude that

Z(On(R)) = On(R) ∩ R×1 = {±1}.

To determine the center of SOn(R), we consider for orthogonal unit vectors
v1, v2 the map σv1,v2 := σv1σv2 ∈ SOn(R) (a reflection in the subspace
v>1 ∩ v>2 ). Since an element g ∈ Z(SOn(R)) commutes with σv1,v2 , it leaves
the plane Rv1 + Rv2 = ker(σv1,v2 + 1) invariant. If a linear map preserves
all two-dimensional planes and n ≥ 3, then it preserves all one-dimensional
subspaces. As above, we get g ∈ R×1, which in turn leads to

Z(SOn(R)) = SOn(R) ∩ R×1,

and the assertion follows.

Exercises for Section 8.3

Exercise 8.3.1. If (Hj)j∈J is a family of subgroups of the Lie group G, then
L(

⋂
j∈J Hj) =

⋂
j∈J L(Hj).

Exercise 8.3.2. Let ϕ : G → H be a morphism of Lie groups. Show that

L(kerϕ) = kerL(ϕ).

Exercise 8.3.3. (a) Show that each submanifold S of a manifold M is locally
closed, i.e., for each point s ∈ S there exists an open neighborhood U of s in
M such that U ∩ S is closed.

(b) Show that any locally closed subgroup H of a Lie group G is closed.

Exercise 8.3.4. Let D ⊆ Rn be a discrete subgroup. Then there exist linearly
independent elements v1, . . . , vk ∈ Rn with D =

∑k
i=1 Zvi.
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Exercise 8.3.5 (Connected abelian Lie groups). Let A be a connected
abelian Lie group. Show that

(1) expA : (L(A),+) → A is a morphism of Lie groups.
(2) expA is surjective.
(3) ΓA := ker expA is a discrete subgroup of (L(A),+).
(4) L(A)/ΓA

∼= Rk × Tm for some k, m ≥ 0. In particular, it is a Lie group
and the quotient map qA : L(A) → L(A)/ΓA is a smooth map.

(5) expA factors through a diffeomorphism ϕ : L(A)/ΓA → A.
(6) A ∼= Rk × Tm as Lie groups.

Exercise 8.3.6 (Divisible groups). An abelian group D is called divisible
if for each d ∈ D and n ∈ N there exists an a ∈ D with an = d. Show that:

(1)∗ If G is an abelian group, H a subgroup and f : H → D a homomorphism
into an abelian divisible group D, then there exists an extension of f to
a homomorphism f̃ : G → D.

(2) If G is an abelian group and D a divisible subgroup, then G ∼= D×H for
some subgroup H of G.

Exercise 8.3.7 (Nonconnected abelian Lie groups). Let A be an
abelian Lie group. Show that:

(1) The identity component of A0 is isomorphic to Rk×Tm for some k, m ∈ N0.
(2) A0 is divisible.
(3) A ∼= A0 × π0(A), where π0(A) := A/A0.
(4) There exists a discrete abelian group D with A ∼= Rk × Tm ×D.

Exercise 8.3.8. If q : G → H is a surjective open morphism of topological
groups, then the induced map G/ ker q → H is an isomorphism of topological
groups, where G/ ker q is endowed with the quotient topology.

Exercise 8.3.9. If G is a topological group and 1 ∈ U ⊆ G a connected
subset. Then all sets Un := U · · ·U are connected and so is their union

⋃
n Un.

Exercise 8.3.10. Let G be a topological group. Then for each open subset
O ⊆ G and for each subset S ⊆ G the product sets

OS = {gh : g ∈ O, h ∈ S} and SO = {hg : g ∈ O, h ∈ S}
are open.

Exercise 8.3.11. Let V be a K-vector space and A ∈ End(V ) with Av ∈ Kv
for all v ∈ V . Show that A ∈ K idV .

8.4 Constructing Lie Group Structures on Groups

In this subsection we describe some methods to construct Lie group structures
on groups, starting from a manifold structure on some “identity neighbor-
hood” for which the group operations are smooth close to 1.
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8.4.1 Group Topologies from Local Data

The following lemma describes how to construct a group topology on a group G,
i.e., a Hausdorff topology for which the group multiplication and the inversion
are continuous, from a filter basis of subsets which then becomes a filter basis
of identity neighborhoods for the group topology.

Definition 8.4.1. Let X be a set. A set F ⊆ P(X) of subsets of X is called
a filter basis if the following conditions are satisfied:

(F1) F 6= ∅.
(F2) Each set F ∈ F is nonempty.
(F3) A,B ∈ F ⇒ (∃C ∈ F) C ⊆ A ∩B.

Lemma 8.4.2. Let G be a group and F a filter basis of subsets of G satisfying⋂F = {1} and

(U1) (∀U ∈ F)(∃V ∈ F) V V ⊆ U.
(U2) (∀U ∈ F)(∃V ∈ F) V −1 ⊆ U.
(U3) (∀U ∈ F)(∀g ∈ G)(∃V ∈ F) gV g−1 ⊆ U.

Then there exists a unique group topology on G such that F is a basis of
1-neighborhoods in G. This topology is given by

{U ⊆ G : (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.

Proof. Let
τ := {U ⊆ G : (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.

First we show that τ is a topology. Clearly ∅, G ∈ τ . Let (Uj)j∈J be a family
of elements of τ and U :=

⋃
j∈J Uj . For each g ∈ U , there exists a j0 ∈ J with

g ∈ Uj0 and a V ∈ F with gV ⊆ Uj0 ⊆ U . Thus U ∈ τ and we see that τ is
stable under arbitrary unions.

If U1, U2 ∈ τ and g ∈ U1 ∩ U2, there exist V1, V2 ∈ F with gVi ⊆ Ui.
Since F is a filter basis, there exists V3 ∈ F with V3 ⊆ V1 ∩ V2, and then
gV3 ⊆ U1 ∩U2. We conclude that U1 ∩U2 ∈ τ , and hence that τ is a topology
on G.

We claim that the interior U◦ of a subset U ⊆ G is given by

U1 := {u ∈ U : (∃V ∈ F) uV ⊆ U}.

In fact, if there exists a V ∈ F with uV ⊆ U , then we pick a W ∈ F with
WW ⊆ V and obtain uWW ⊆ U , so that uW ⊆ U1. Hence U1 ∈ τ , i.e., U is
open, and it clearly is the largest open subset contained in U , i.e., U1 = U◦. It
follows in particular that U is a neighborhood of g if and only if g ∈ U◦, and we
see in particular that F is a neighborhood basis at 1. The property

⋂F = {1}
implies that for x 6= y there exists U ∈ F with y−1x 6∈ U . For V ∈ F with
V V ⊆ U and W ∈ F with W−1 ⊆ V we then obtain y−1x 6∈ V W−1, i.e.,
xW ∩ yV = ∅. Thus (G, τ) is a Hausdorff space.
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To see that G is a topological group, we have to verify that the map

f : G×G → G, (x, y) 7→ xy−1

is continuous. So let x, y ∈ G, U ∈ F and pick V ∈ F with yV y−1 ⊆ U and
W ∈ F with WW−1 ⊆ V . Then

f(xW, yW ) = xWW−1y−1 = xy−1y(WW−1)y−1 ⊆ xy−1yV y−1 ⊆ xy−1U

implies that f is continuous in (x, y). ut
Before we turn to Lie group structures, it is illuminating to first consider

the topological variant of Lemma 8.4.3 below.

Lemma 8.4.3. Let G be a group and U = U−1 a symmetric subset contain-
ing 1. We further assume that U carries a Hausdorff topology for which

(T1) D := {(x, y) ∈ U × U : xy ∈ U} is an open subset and the group multi-
plication mU : D → U, (x, y) 7→ xy is continuous,

(T2) the inversion map ιU : U → U, u 7→ u−1 is continuous, and
(T3) for each g ∈ G, there exists an open 1-neighborhood Ug in U with

cg(Ug) ⊆ U , such that the conjugation map cg : Ug → U, x 7→ gxg−1 is
continuous.

Then there exists a unique group topology on G for which the inclusion map
U ↪→ G is a homeomorphism onto an open subset of G.

If, in addition, U generates G, then (T1/2) imply (T3).

Proof. First we consider the filter basis F of 1-neighborhoods in U . Then
(T1) implies (U1), (T2) implies (U2), and (T3) implies (U3). Moreover, the
assumption that U is Hausdorff implies that

⋂F = {1}. Therefore Lemma
8.4.2 implies that G carries a unique structure of a (Hausdorff) topological
group for which F is a basis of 1-neighborhoods.

We claim that the inclusion map U → G is an open embedding. So let
x ∈ U . Then

Ux := U ∩ x−1U = {y ∈ U : (x, y) ∈ D}
is open in U and λx restricts to a continuous map Ux → U with image Ux−1 .
Its inverse is also continuous. Hence λU

x : Ux → Ux−1 is a homeomorphism. We
conclude that the sets of the form xV , where V a neighborhood of 1, form a
basis of neighborhoods of x ∈ U . Hence the inclusion map U ↪→ G is an open
embedding.

Suppose, in addition, that G is generated by U . For each g ∈ U , there
exists an open 1-neighborhood Ug with gUg × {g−1} ⊆ D. Then cg(Ug) ⊆ U ,
and the continuity of mU implies that cg|Ug : Ug → U is continuous.

Hence, for each g ∈ U , the conjugation cg is continuous in a neighborhood
of 1. Since the set of all these g is a submonoid of G containing U , it contains
Un for each n ∈ N, hence all of G because G is generated by U = U−1.
Therefore (T3) follows from (T1) and (T2). ut
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8.4.2 Lie Group Structures from Local Data

The following theorem, the smooth version of the preceding lemma, is an
important tool to construct Lie group structures on groups. It is an important
supplement to the Closed Subgroup Theorem 8.3.7.

Theorem 8.4.4. Let G be a group and U = U−1 a symmetric subset contain-
ing 1. We further assume that U is a smooth manifold and that

(L1) D := {(x, y) ∈ U × U : xy ∈ U} is an open subset and the multiplication
mU : D → U, (x, y) 7→ xy is smooth,

(L2) the inversion map ιU : U → U, u 7→ u−1 is smooth, and
(L3) for each g ∈ G there exists an open 1-neighborhood Ug ⊆ U with cg(Ug) ⊆

U and such that the conjugation map cg : Ug → U, x 7→ gxg−1 is smooth.

Then there exists a unique structure of a Lie group on G such that the inclu-
sion map U ↪→ G is a diffeomorphism onto an open subset of G.

If, in addition, U generates G, then (L1/2) imply (L3).

Proof. From the preceding Lemma 8.4.3, we immediately obtain the unique
group topology on G for which the inclusion map U ↪→ G is an open embed-
ding.

Now we turn to the manifold structure. Let V = V −1 ⊆ U be an open
1-neighborhood with V V × V V ⊆ D, for which there exists a chart (ϕ, V ) of
U . For g ∈ G we consider the maps

ϕg : gV → E, ϕg(x) = ϕ(g−1x)

which are homeomorphisms of gV onto ϕ(V ) ⊆ E. We claim that (ϕg, gV )g∈G

is a smooth atlas of G.
Let g1, g2 ∈ G and put W := g1V ∩ g2V . If W 6= ∅, then g−1

2 g1 ∈ V V −1 =
V V . The smoothness of the map

ψ := ϕg2 ◦ ϕ−1
g1
|ϕg1 (W ) : ϕg1(W ) → ϕg2(W )

given by

ψ(x) = ϕg2(ϕ
−1
g1

(x)) = ϕg2(g1ϕ
−1(x)) = ϕ(g−1

2 g1ϕ
−1(x))

follows from the smoothness of the multiplication V V ×V V → U . This proves
that the charts (ϕg, gU)g∈G form a smooth atlas of G. Moreover, the construc-
tion implies that all left translations of G are smooth maps.

The construction also shows that for each g ∈ G the conjugation map
cg : G → G is smooth in a neighborhood of 1. Since all left translations are
smooth, and

cg ◦ λx = λcg(x) ◦ cg,

the smoothness of cg in a neighborhood of x ∈ G follows. Therefore all conju-
gations and hence also all right multiplications are smooth. The smoothness
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of the inversion follows from its smoothness on V and the fact that left and
right multiplications are smooth. Finally, the smoothness of the multiplication
follows from the smoothness in 1× 1 because

g1xg2y = g1g2cg−1
2

(x)y.

Next we show that the inclusion U ↪→ G of U is a diffeomorphism. So
let x ∈ U and recall the open set Ux = U ∩ x−1U . Then λx restricts to a
smooth map Ux → U with image Ux−1 . Its inverse is also smooth. Hence
λU

x : Ux → Ux−1 is a diffeomorphism. Since λx : G → G also is a diffeomor-
phism, it follows that the inclusion λx ◦λU

x−1 : Ux−1 → G is a diffeomorphism.
As x was arbitrary, the inclusion of U in G is a diffeomorphic embedding.

The uniqueness of the Lie group structure is clear because each locally dif-
feomorphic bijective homomorphism between Lie groups is a diffeomorphism
(Proposition 8.2.13(3)).

Finally, we assume that G is generated by U . We show that in this case (L3)
is a consequence of (L1) and (L2); the argument is similar to the topological
case. Indeed, for each g ∈ U , there exists an open 1-neighborhood Ug with
gUg × {g−1} ⊆ D. Then cg(Ug) ⊆ U , and the smoothness of mU implies
that cg|Ug

: Ug → U is smooth. Hence, for each g ∈ U , the conjugation cg is
smooth in a neighborhood of 1. Since the set of all these g is a submonoid of
G containing U , it contains Un for each n ∈ N, hence all of G because G is
generated by U = U−1. Therefore (L3) is satisfied. ut
Corollary 8.4.5. Let G be a group and N E G a normal subgroup of G that
carries a Lie group structure. Then there exists a Lie group structure on G
for which N is an open subgroup if and only if for each g ∈ G the restriction
cg|N is a smooth automorphism of N .

Proof. If N is an open normal subgroup of the Lie group G, then clearly all
inner automorphisms of G restrict to smooth automorphisms of N .

Suppose, conversely, that N is a normal subgroup of the group G which is
a Lie group and that all inner automorphisms of G restrict to smooth auto-
morphisms of N . Then we can apply Theorem 8.4.4 with U = N and obtain a
Lie group structure on G for which the inclusion N → G is a diffeomorphism
onto an open subgroup of G. ut
Corollary 8.4.6. Let ϕ : G → H be a continuous homomorphism of topolog-
ical groups which is a covering map. If G or H is a Lie group, then the other
group carries a unique Lie group structure for which ϕ is a morphism of Lie
groups which is a local diffeomorphism.

Proof. Since kerϕ is discrete, there exists an open symmetric identity neigh-
borhood UG ⊆ G for which U3

G := UGUGUG intersects ker(ϕ) in {1}. For
x, y ∈ UG with ϕ(x) = ϕ(y), we then have x−1y ∈ U2

G ∩ ker(ϕ) = {1}, so
that ϕ|UG is injective. Since ϕ is an open map, this implies that ϕ|UG is a
homeomorphism onto an open subset UH := ϕ(UG) of H.
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Suppose first that G is a Lie group. Then we apply Theorem 8.4.4 to
UH , endowed with the manifold structure for which ϕ|UG

is a diffeomorphism.
Then (L2) follows from ϕ(x)−1 = ϕ(x−1). To verify the smoothness of the
multiplication map

mUH
: DH := {(a, b) ∈ UH × UH : ab ∈ UH} → UH ,

we first observe that, if x, y ∈ UG satisfy (ϕ(x), ϕ(y)) ∈ DH , i.e., ϕ(xy) ∈ UH ,
then there exists a z ∈ UG with ϕ(xy) = ϕ(z), and xyz−1 ∈ UG

3 ∩ ker(ϕ) =
{1} yields z = xy. We thus have DH = (ϕ× ϕ)(DG) for

DG := {(x, y) ∈ UG × UG : xy ∈ UG}

and the smoothness of mH follows from the smoothness of the multiplication
mUG

: DG → UG and

mUH
◦ (ϕ× ϕ) = ϕ ◦mUG

.

To verify (L3), we note that the surjectivity of ϕ implies that for each h ∈
H there is an element g ∈ G with ϕ(g) = h. Now we choose an open 1-
neighborhood Ug ⊆ UG with cg(Ug) ⊆ UG and put Uh := ϕ(Ug).

If, conversely, H is a Lie group, then we apply Theorem 8.4.4 to UG,
endowed with the manifold structure for which ϕ|UG

is a diffeomorphism onto
UH . Again, (L2) follows right away, and (L1) follows from (ϕ×ϕ)(DG) ⊆ DH

and the smoothness of

mUH ◦ (ϕ× ϕ) = ϕ ◦mUG .

For (L3), we choose Ug as any open 1-neighborhood in UG with cg(Ug) ⊆
U . Then the smoothness of cg|Ug follows from the smoothness of ϕ ◦ cg =
cϕ(g) ◦ ϕ. ut

Corollary 8.4.7. If G is a connected Lie group and qG : G̃ → G its universal
covering space, then G̃ carries a unique Lie group structure for which qG is
a smooth covering map. We call this Lie group the simply connected covering
group of G.

Proof. We first have to construct a (topological) group structure on the uni-
versal covering space G̃. Pick an element 1̃ ∈ q−1

G (1). Then the multiplication
map mG : G × G → G lifts uniquely to a continuous map m̃G : G̃ × G̃ → G̃
with m̃G(1̃, 1̃) = 1̃. To see that the multiplication map m̃G is associative, we
observe that

qG ◦ m̃G ◦ (idG̃×m̃G) = mG ◦ (qG × qG) ◦ (idG̃×m̃G)
= mG ◦ (idG×mG) ◦ (qG × qG × qG) = mG ◦ (mG × idG) ◦ (qG × qG × qG)
= qG ◦ m̃G ◦ (m̃G × idG̃),
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so that the two continuous maps

m̃G ◦ (idG̃×m̃G), m̃G ◦ (m̃G × idG̃) : G̃3 → G,

are lifts of the same map G3 → G and both map (1̃, 1̃, 1̃) to 1̃. Hence the
uniqueness of lifts implies that m̃G is associative. We likewise obtain that
the unique lift ι̃G : G̃ → G̃ of the inversion map ιG : G → G with ι̃G(1̃) = 1̃
satisfies

m̃G ◦ (ιG, idG̃) = 1̃ = m̃G ◦ (idG̃, ιG).

Finally λ1̃ lifts λ1 = idG, so that λ1̃(1̃) = 1̃ leads to λ1̃ = idG̃, and likewise
one shows that ρ1̃ = idG̃, so that 1̃ is a neutral element for the multiplication
on G̃. Therefore m̃G defines on G̃ a topological group structure such that
qG : G̃ → G is a covering morphism of topological groups. Now Corollary 8.4.6
applies. ut

8.4.3 Existence of Lie Groups for a given Lie Algebra

Theorem 8.4.8 (Integral Subgroup Theorem). Let G be a Lie group
with Lie algebra g and h ⊆ g a Lie subalgebra. Then the subgroup H := 〈exp h〉
of G generated by expG h carries a Lie group structure with the following
properties:

(a) There exists an open 0-neighborhood W ⊆ h on which the Hausdorff series
converges, and

exph : h → H, x 7→ expG x

maps W diffeomorphism onto its open image in H and satisfies

exph(x ∗ y) = exph(x) exph(y) for x, y ∈ W.

(b) The inclusion iH : H → G is a smooth morphism of Lie groups and
L(iH) : L(H) → h an isomorphism of Lie algebras. These two properties
determine the Lie group structure on H uniquely.

(c) If H ⊆ H1 for some subgroup H1 for which H1/H is countable, then
h = {x ∈ L(G) : expG(Rx) ⊆ H1}. In particular,

h = Le(H) := {x ∈ L(G) : expG(Rx) ⊆ H}.
(d) H is connected.
(e) H is closed in G if and only if iH is a topological embedding.

Proof. (a) Let V ⊆ g be an open convex symmetric 0-neighborhood for which
the Hausdorff series for x ∗ y converges for x, y ∈ V and satisfies

expG(x ∗ y) = expG(x) expG(y)

(Proposition 8.2.32). We further assume that expG |V is a diffeomorphism onto
an open subset of G.
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Put W := V ∩ h. Then x ∗ y ∈ h for x, y ∈ W because each summand
in the Hausdorff series is an iterated Lie bracket. Further, x ∗ y defines a
smooth function W ×W → h because it is the restriction of a smooth function
V × V → g. We consider the subset U := expG(W ) ⊆ H. From W = −W
we derive U = U−1 and we note that ϕ := expG |W is injective. We may thus
endow U ⊆ H with the manifold structure turning ϕ into a diffeomorphism.

Then
D̃ = {(x, y) ∈ W ×W : x ∗ y ∈ W}

is an open subset of W ×W on which the ∗-multiplication is smooth, so that
the multiplication D → U is also smooth. We further observe that

expG(−x) = expG(x)−1,

from which it follows that the inversion on U is smooth. Since U generates
H, (L3) follows from (L1) and (L2). Therefore U satisfies all assumptions of
Theorem 8.4.4, so that we obtain a Lie group structure on H for which ϕ,
resp., exph induces a local diffeomorphism in 0.

(b) Since the map iH ◦ exph : h → G is smooth and exph is a local diffeo-
morphism in 0, the inclusion iH : H → G is smooth. Now

L(iH) : L(H) → L(G)

is injective, and by construction, its image contains h because each element
of x generates a one-parameter group of H. As dimL(H) = dim H = dim h,
we have L(ιH)L(H) = h.

If Ĥ denotes another Lie group structure on the subgroup H for which
iĤ : Ĥ → G is smooth and L(iĤ) : L(Ĥ) → h ⊆ L(G) is an isomorphism of
Lie algebras, then the relation

iĤ ◦ expĤ = expG ◦L(ιĤ) = exph ◦L(ιĤ)

and (a) imply that the identical map

j := ι−1
H ◦ ιĤ : Ĥ → H

is a bijective morphism of connected Lie groups for which L(j) is an isomor-
phism, hence an isomorphism (Proposition 8.2.13(3)).

(c) Clearly, expG(h) ⊆ H ⊆ H1, so that it remains to show that any
x ∈ L(G) satisfying expG(Rx) ⊆ H1 is contained in h. Let UH ⊆ H
be a 1-neighborhood with respect to the Lie group topology for which
U−1

H UH ⊆ U , where U = expG(W ) is chosen as in (a). In view of Propo-
sition 8.1.15(iv) and the countability of the set H1/H of H-cosets in H1,
there exists a sequence (hn)n∈N with H1 =

⋃
n∈N hnUH . Choose ε > 0 with

expG([−2ε, 2ε]x) ⊆ expG(V ). Since the interval [0, ε] is uncountable, there
exists some n for which {t ∈ [0, ε] : expG(tx) ∈ hnUH} is uncountable. In
particular, there are two such elements t1 < t2 and u1, u2 ∈ UH with
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expG(t1x) = hnu1 6= expG(t2x) = hnu2.

Then

expG((−t1 + t2)x) = expG(t1x)−1 expG(t2x)

= u−1
1 h−1

n hnu2 ∈ U−1
H UH ⊆ U = expG(W ).

In particular, there is a nonzero y ∈ W ⊆ h with

expG y = expG((−t1 + t2)x).

Since y and (t2 − t1)x are contained in V , it follows that x = 1
t2−t1

y ∈ h.
(d) Since H is generated by expH(L(H)), this follows from Lemma 8.2.9.
(e) If H is closed, then the Closed Subgroup Theorem 8.3.7 shows that H

is a Lie group with respect to the subspace topology, so that the uniqueness
part of (b) implies that iH is a topological embedding.

If, conversely, iH is a topological embedding, then the subgroup H of G
is locally compact, hence in particular locally closed and therefore closed by
Exercise 8.3.3. ut
Remark 8.4.9. Example 8.3.12, the dense wind in the 2-torus, shows that
we cannot expect that the group H = 〈expG h〉 is closed in G or that the
inclusion map H → G (which is a smooth homomorphism) is a topological
embedding.

Definition 8.4.10. Let G be a Lie group. An integral subgroup H of G is a
subgroup that is generated by exp h for a subalgebra h of the Lie algebra g of
G.

The Integral Subgroup Theorem implies in particular that each Lie sub-
algebra h of the Lie algebra L(G) of a Lie group G is integrable in the sense
that it is the Lie algebra of some Lie group H.

Combining this with Ado’s Theorem on the existence of faithful linear
representations of a Lie algebra, we obtain one of the cornerstones of the
theory of Lie groups:

Theorem 8.4.11 (Lie’s Third Theorem). Each finite-dimensional Lie
algebra g is the Lie algebra of a connected Lie group G.

Proof. Ado’s Theorem implies that g is isomorphic to a subalgebra of some
gln(R), so that the assertion follows directly from the Integral Subgroup The-
orem. ut

Exercises for Section 8.4

Exercise 8.4.1. Let ϕ : G → H be a surjective morphism of topological
groups. Show that the following conditions are equivalent:
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(1) ϕ is open with discrete kernel.
(2) ϕ is a covering in the topological sense, i.e., each h ∈ H has an open

neighborhood U such that ϕ−1(U) =
⋃

i∈I Ui is a disjoint union of open
subsets Ui for which all restrictions ϕ|Ui

: Ui → U are homeomorphisms.

Exercise 8.4.2. (Refining Lemma 8.4.3) Show that the conclusion of
Lemma 8.4.3 is still valid if the assumption (T1) is weakened as follows: There
exists an open subset D ⊆ U × U with xy ∈ U for all (x, y) ∈ D, containing
all pairs (x, x−1), (x,1), (1, x) for x ∈ U , such that the group multiplication
m : D → U is continuous.

Exercise 8.4.3. Let G be an abelian group and N ≤ G a subgroup carrying
a Lie group structure. Then there exists a unique Lie group structure on G
for which N is an open subgroup.

Exercise 8.4.4. Let G be a connected topological group and Γ E G a discrete
normal subgroup. Then Γ is central.

Exercise 8.4.5. Let X be a topological space and (Xi)i∈I connected sub-
spaces of X with X =

⋃
i∈I Xi. If

⋂
i∈I Xi 6= ∅, then X is connected.

Exercise 8.4.6. We consider the simply connected covering group G :=
S̃L2(R) with L(G) = sl2(R) and we write q : G → SL2(R) for the cover-
ing homomorphism. The map

α : R→ G, t 7→ expG(t2πu), u =:
(

0 1
−1 0

)

is injective.

8.5 Covering Theory for Lie Groups

In this section we eventually turn to applications of covering theory to Lie
groups. Our goal is to see to which extent the Lie algebra and the fundamental
group determine a connected Lie group. From the preceding section we know
that each connected Lie group G has a simply connected covering group G̃
which also carries a Lie group structure. As we shall see below, the kernel of the
covering morphism qG : G̃ → G can be identified with the fundamental group
π1(G). Since L(qG) is an isomorphism of Lie algebras, we then have L(G) ∼=
L(G̃). We further prove the Monodromy Principle which implies that any Lie
algebra morphism L(G) → L(H) can be integrated to a group homomorphism,
provided G is 1-connected, i.e., connected and simply connected. From that we
shall derive that the Lie algebra L(G) determines the corresponding simply
connected group up to isomorphy.
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8.5.1 Simply Connected Coverings of Lie Groups

Proposition 8.5.1. A surjective morphism ϕ : G → H of Lie groups is a
covering if and only if L(ϕ) : L(G) → L(H) is a linear isomorphism.

Proof. If ϕ is a covering, then it is an open homomorphism with discrete
kernel (Exercise 8.4.1), so that L(ker ϕ) = {0}, and Proposition 8.2.13 implies
that L(ϕ) is bijective, hence an isomorphism of Lie algebras.

If, conversely, L(ϕ) is bijective, then Proposition 8.2.13 implies that

L(kerϕ) = kerL(ϕ) = {0},
and the Closed Subgroup Theorem 8.3.7 shows that kerϕ is discrete. Since
L(ϕ) is surjective, Proposition 8.2.13 implies that ϕ is an open map. Finally
Exercise 8.4.1 shows that ϕ is a covering. ut
Proposition 8.5.2. For a covering q : G1 → G2 of connected Lie groups, the
following equalities hold

q
(
Z(G1)

)
= Z(G2) and Z(G1) = q−1(Z(G2)).

Proof. Since q is a covering, L(q) : L(G1) → L(G2) is an isomorphism of Lie
algebras, and the adjoint representations satisfy

AdG2(q(g1)) ◦ L(q) = L(q) ◦AdG1(g1).

Hence
Z(G1) = kerAdG1 = q−1 kerAdG2 = q−1(Z(G2)).

Now the claim follows from the surjectivity of q. ut
Theorem 8.5.3 (Lifting Theorem for Groups). Let q : G → H be a
covering morphism of Lie groups. If f : L → H is a morphism of Lie groups,
where L is 1-connected, then there exists a unique lift f̃ : L → G which is a
morphism of Lie groups.

Proof. Since Lie groups are locally arcwise connected, the Lifting Theo-
rem A.2.9 implies the existence of a unique lift f̃ with f̃(1L) = 1G. Then

mG ◦ (f̃ × f̃) : L× L → G

is the unique lift of mH ◦ (f × f) : L × L → H mapping (1L,1L) to 1G. We
also have

q ◦ f̃ ◦mL = f ◦mL = mH ◦ (f × f),

so that f̃ ◦mL is another lift mapping (1L,1L) to 1G. Therefore

f̃ ◦mL = mG ◦ (f̃ × f̃),

which means that f̃ is a group homomorphism.
Since q is a local diffeomorphism and f̃ is a continuous lift of f , it is also

smooth in an identity neighborhood of L, hence smooth by Corollary 8.2.11.
ut
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Theorem 8.5.4. Let G be a connected Lie group and qG : G̃ → G a universal
covering homomorphism. Then ker qG

∼= π1(G) is a discrete central subgroup
and G ∼= G̃/ ker qG.

Moreover, for any discrete central subgroup Γ ⊆ G̃, the group G̃/Γ is a
connected Lie group with the same universal covering group as G. We thus
obtain a bijection from the set of all Aut(G̃)-orbits in the set of discrete central
subgroups of G̃ onto the set of isomorphy classes of connected Lie groups whose
universal covering group is isomorphic to G̃.

Proof. First we note that ker qG is a discrete normal subgroup of the con-
nected Lie group G̃, hence central by Exercise 8.4.4. Left multiplications by
elements of ker qG lead to deck transformations of the covering G̃ → G, and
this group of deck transformations acts transitively on the fiber ker qG of 1.
Proposition A.2.15 now shows that

π1(G) ∼= ker qG (8.14)

as groups. Since qG : G̃ → G is open and surjective, we have G ∼= G̃/ ker qG as
topological groups (Exercise 8.3.8), hence as Lie groups (Theorem 8.2.16).

If, conversely, Γ ⊆ G̃ is a discrete central subgroup, then the topological
quotient group G̃/Γ is a Lie group (Corollary 8.4.6) whose universal cov-
ering group is G̃. Two such groups G̃/Γ1 and G̃/Γ2 are isomorphic if and
only if there exists a Lie group automorphism ϕ ∈ Aut(G̃) with ϕ(Γ1) = Γ2

(Theorem 8.5.3). Therefore the isomorphism classes of Lie groups with the
same universal covering group G are parameterized by the orbits of the group
Aut(G̃) in the set of discrete central subgroups of G̃. ut

Remark 8.5.5. (a) Since the normal subgroup Inn(G̃) := {cg : g ∈ G̃} of
inner automorphisms acts trivially on the center of G̃, the action of Aut(G̃)
on the set of all discrete normal subgroups factors through an action of the
group Out(G̃) := Aut(G̃)/ Inn(G̃).

(b) Since each automorphism ϕ ∈ Aut(G) lifts to a unique automor-
phism ϕ̃ ∈ Aut(G̃) (Theorem 8.5.3), we have a natural embedding Aut(G) ↪→
Aut(G̃), and the image of this homomorphism consists of the stabilizer of the
subgroup ker qG ⊆ Z(G̃) in Aut(G̃).

Example 8.5.6 (Connected abelian Lie groups). Let A be a connected
abelian Lie group and expA : L(A) → A its exponential function. Then expA is
a morphism of Lie groups with L(expA) = idL(A), hence a covering morphism.
Since L(A) is simply connected, we have L(A) ∼= Ã and ker expA

∼= π1(A) is
the fundamental group of A.

As special cases we obtain in particular the finite-dimensional tori

Td ∼= Rd/Zd with π1(Tn) ∼= Zn.
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If we want to classify all connected abelian Lie groups A of dimension
n, we can now proceed as follows. First we note that Ã ∼= L(A) ∼= (Rn, +)
as abelian Lie groups. Then Aut(Ã) ∼= GLn(R) follows from the Automatic
Smoothness Theorem 8.2.16. Further, Exercise 8.3.4 implies that the discrete
subgroup π1(A) of Ã ∼= Rn can be mapped by some ϕ ∈ GLn(R) onto

Zk ∼= Zk × {0} ⊆ Rk × Rn−k ∼= Rn.

Therefore
A ∼= Rn/Zk ∼= Tk × Rn−k,

and it is clear that the number k is an isomorphy invariant of the Lie group A,
namely, the rank of its fundamental subgroup. Therefore connected abelian
Lie groups A are determined up to isomorphism by the pair (n, k), where
n = dim A and k = rk π1(A). The case where n = k gives the compact
connected abelian Lie groups. The above argument shows that such groups
are always of the form A ∼= L(A)/Γ , where Γ is a discrete subgroup of L(T )
generated by a basis for L(T ). Such discrete subgroups are called lattices.

Example 8.5.7. We show that

π1(SO3(R)) ∼= C2 = {±1}

by constructing a surjective homomorphism

ϕ : SU2(C) → SO3(R)

with kerϕ = {±1}. Since SU2(C) is homeomorphic to S3, it is simply con-
nected (Exercise A.1.3), so that we then obtain π1(SO3(R)) ∼= C2 (Theo-
rem 8.5.4).

We consider

su2(C) = {x ∈ gl2(C) : x∗ = −x, tr x = 0} =
{ (

ai b

−b −ai

)
: b ∈ C, a ∈ R

}

and observe that this is a three-dimensional real subspace of gl2(C). We obtain
on E := su2(C) the structure of a euclidean vector space by the scalar product

β(x, y) := tr(xy∗) = − tr(xy).

Now we consider the adjoint representation

Ad: SU2(C) → GL(E), Ad(g)(x) = gxg−1.

Then we have for x, y ∈ E and g ∈ SU2(C) the relation

β
(
Ad(g)x, Ad(g)y

)
= tr(gxg−1(gyg−1)∗) = tr(gxg−1(g−1)∗y∗g∗)
= tr(gxg−1gy∗g−1) = tr(xy∗) = β(x, y).



330 8 Basic Lie Theory

This means that
Ad(SU2(C)) ⊆ O(E, β) ∼= O3(R).

Since SU2(C) is connected, we further obtain Ad(SU2(C)) ⊆ SO(E, β) ∼=
SO3(R), the identity component of O(E, β).

The derived representation is given by

ad: su2(C) → so(E, β) ∼= so3(R), ad(x)(y) = [x, y].

If ad x = 0, then ad x(i1) = 0 implies that adx(u2(C)) = {0}, so that
adx(gl2(C)) = {0} follows from gl2(C) = u2(C) + iu2(C). This implies that
x ∈ C1, so that tr x = 0 leads to x = 0. Hence ad is injective, and we conclude
with dim so(E, β) = dim so3(R) = 3 that

ad(su2(C)) = so(E, β)

Therefore

ImAd = 〈exp so(E, β)〉 = SO(E, β)0 = SO(E, β).

We thus obtain a surjective homomorphism

ϕ : SU2(C) → SO3(R).

Since SU2(C) is compact, the quotient group SU2(C)/ kerϕ is also compact,
and the induced bijective morphism SU2(C)/ kerϕ → SO3(R) is a homeomor-
phism, hence an isomorphism of topological groups.

We further have
kerϕ = Z(SU2(C)) = {±1}

(Exercise 8.3.8), so that

S̃O3(R) ∼= SU2(C) and π1(SO3(R)) ∼= C2.

8.5.2 The Monodromy Principle and its Applications

To round off the picture, we still have to provide the link between Lie algebras
and covering groups. The main point is that, in general, one cannot integrate
morphisms of Lie algebras L(G) → L(H) to morphisms of the corresponding
groups G → H if G is not simply connected.

Proposition 8.5.8 (Monodromy Principle). Let G be a connected simply
connected Lie group and H a group. Let V be an open symmetric connected
identity neighborhood in G and f : V → H a function with

f(xy) = f(x)f(y) for x, y, xy ∈ V.

Then there exists a unique group homomorphism extending f . If, in addition,
H is a Lie group and f is smooth, then its extension is also smooth.
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Proof. We consider the group G×H and the subgroup S ⊆ G×H generated by
the subset U := {(x, f(x)) : x ∈ V }. We endow U with the topology for which
x 7→ (x, f(x)), V → U is a homeomorphism. Note that f(1)2 = f(12) = f(1)
implies f(1) = 1, which further leads to 1 = f(xx−1) = f(x)f(x−1), so that
f(x−1) = f(x)−1. Hence U = U−1.

We now apply Lemma 8.4.3 because S is generated by U , and (T1/2) di-
rectly follow from the corresponding properties of V and (x, f(x))(y, f(y)) =
(xy, f(xy)) for x, y, xy ∈ V . This leads to a group topology on S, for which
S is a connected topological group. Indeed, its connectedness follows from
S =

⋃
n∈N Un and the connectedness of all sets Un (Exercise 8.4.5). The

projection pG : G × H → G induces a covering homomorphism q : S → G
because its restriction to the open 1-neighborhood U is a homeomorphism
(Exercise A.2.2(c)), and the connectedness of S and the simple connect-
edness of G imply that q is a homeomorphism (Corollary A.2.8). Now
F := pH ◦ q−1 : G → H provides the required extension of f . In fact, for
x ∈ U we have q−1(x) = (x, f(x)), and therefore F (x) = f(x).

If, in addition, H is Lie and f is smooth, then the smoothness of the
extension follows directly from Corollary 8.2.11. ut
Theorem 8.5.9 (Integrability Theorem for Lie Algebra Homomor-
phisms). Let G be a connected simply connected Lie group, H a Lie group
and ψ : L(G) → L(H) a Lie algebra morphism. Then there exists a unique
morphism ϕ : G → H with L(ϕ) = ψ.

Proof. Let U ⊆ L(G) be an open connected symmetric 0-neighborhood on
which the BCH-product is defined and satisfies expG(x∗y) = expG(x) expG(y)
and expH(ψ(x) ∗ ψ(y)) = expH(ψ(x)) expH(ψ(y)) for x, y ∈ U (Theo-
rem 8.4.8). Assume further that expG |U is a homeomorphism onto an open
subset of G (cf. Proposition 8.2.5).

The continuity of ψ and the fact that ψ is a Lie algebra homomorphism
imply that for x, y ∈ U the element ψ(x ∗ y) coincides with the convergent
Hausdorff series ψ(x) ∗ ψ(y). We define

f : expG(U) → H, f(expG(x)) := expH(ψ(x)).

For x, y, x ∗ y ∈ U , we then obtain

f(expG(x) expG(y)) = f(expG(x ∗ y)) = expH(ψ(x ∗ y))
= expH(ψ(x) ∗ ψ(y)) = expH(ψ(x)) expH(ψ(y)) = f(expG(x))f(expG(y)).

Then f : exp(U) → H satisfies the assumptions of Proposition 8.5.8, and
we see that f extends uniquely to a group homomorphism ϕ : G → H. Since
expG is a local diffeomorphism, f is smooth in a 1-neighborhood, and therefore
ϕ is smooth. We finally observe that ϕ is uniquely determined by L(ϕ) = ψ
because G is connected (Corollary 8.2.12). ut

The following corollary can be viewed as an integrability condition for ψ.
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Corollary 8.5.10. If G is a connected Lie group and H is a Lie group,
then for a Lie algebra morphism ψ : L(G) → L(H), there exists a morphism
ϕ : G → H with L(ϕ) = ψ if and only if π1(G) ⊆ ker ϕ̃, where π1(G) is identi-
fied with the kernel of the universal covering map qG : G̃ → G and ϕ̃ : G̃ → H
is the unique morphism with L(ϕ̃) = ψ ◦ L(qG).

Proof. If ϕ exists, then

(ϕ ◦ qG) ◦ expG̃ = ϕ ◦ expG ◦L(qG) = expH ◦ψ ◦ L(qG)

and the uniqueness of ϕ̃ imply that ϕ̃ = ϕ ◦ qG and hence that π1(G) =
ker qG ⊆ ker ϕ̃.

If, conversely, ker qG ⊆ ker ϕ̃, then ϕ(qG(g)) := ϕ̃(g) defines a continuous
morphism G ∼= G̃/ ker qG → H with ϕ ◦ qG = ϕ̃ (Exercise 8.3.8) and

ϕ ◦ expG ◦L(qG) = ϕ ◦ qG ◦ expG̃ = ϕ̃ ◦ expG̃ = expH ◦ψ ◦ L(qG). ut
We recall that a Lie group G is called 1-connected if it is connected and

simply connected.

Corollary 8.5.11. If G is a 1-connected Lie group with Lie algebra g, then
the map

L : Aut(G) → Aut(g)

is an isomorphism of groups. As a closed subgroup of GL(g), the group Aut(g)
carries a natural Lie group structure, and we endow Aut(G) with the Lie group
structure for which L is an isomorphism of Lie groups. Then the action of
Aut(G) on G is smooth.

Proof. First, we recall from Corollary 8.1.10 that for each automorphism ϕ ∈
Aut(G) the endomorphism L(ϕ) of g also is an automorphism. That L is
injective follows from the connectedness of G (Corollary 8.2.12) and that L is
surjective from the Integrability Theorem 8.5.9.

If we endow Aut(G) with the Lie group structure for which L is an isomor-
phism, then the smoothness of the action of Aut(g) on g and Lemma 8.2.26(i)
imply that the action of Aut(G) on G is smooth. ut
Remark 8.5.12. With the Integrability Theorem 8.5.9 we can give a second
proof of Lie’s Third Theorem which does not require Ado’s Theorem.

From the structure theory of Lie algebras, we know that g is a semidirect
sum g = roβ s, where r is solvable and s is semisimple. Since s is semisimple,
z(s) = {0} and the adjoint representation of s is faithful. Therefore the Integral
Subgroup Theorem 8.4.8 implies the existence of a connected Lie group S with
L(S) = s. Now Theorem 8.5.9 yields a homomorphism α : S̃ → Aut(r) of the
simply connected covering group S̃ of S integrating the adjoint representation
of s on the ideal r of g.

Next we recall that the solvable Lie algebra r can be written as an iterated
semidirect sum
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r = r1 oβ1 R, r1 = r2 oβ2 R etc.

If r = dim r, it follows inductively that there exists a simply connected Lie
group Rj , diffeomorphic to Rr−j , with L(Rj) = rj , j = r, r − 1, . . . , 1. In
view of Aut(Rj) ∼= Aut(rj), the action βj of R on rj integrates to a smooth
action αj : R → Aut(Rj) (Corollary 8.5.11), so that Rj−1 := Rj oαj R is a
Lie group diffeomorphic to Rk−j+1 with Lie algebra rj−1 (Proposition 8.2.25).
For j = 1 we obtain a simply connected Lie group R with L(R) = r. Again
we use Corollary 8.5.11 to see that the smooth action of S̃ on r induces a
smooth action of S̃ on R, so that the semidirect product G := R o S̃ is a
simply connected Lie group with Lie algebra ro s = g (Proposition 8.2.25).

8.5.3 Classification of Lie Groups with given Lie Algebra

Let G and H be linear Lie groups. If ϕ : G → H is an isomorphism, then
the functoriality of L directly implies that L(ϕ) : L(G) → L(H) is an isomor-
phism. In fact, if ψ : H → G is a morphism with ϕ◦ψ = idH and ψ ◦ϕ = idG,
then

idL(H) = L(idH) = L(ϕ ◦ ψ) = L(ϕ) ◦ L(ψ)

and likewise L(ψ) ◦ L(ϕ) = idL(G).
In this subsection we ask to which extent a Lie group G is determined by

its Lie algebra L(G).

Theorem 8.5.13. Two connected Lie groups G and H have isomorphic Lie
algebras if and only if their universal covering groups G̃ and H̃ are isomorphic.

Proof. If G̃ and H̃ are isomorphic, then we clearly have

L(G) ∼= L(G̃) ∼= L(H̃) ∼= L(H)

(cf. Proposition 8.5.1).
Conversely, let ψ : L(G) → L(H) be an isomorphism. Using Theorem 8.5.9,

we obtain a unique morphism ϕ : G̃ → H̃ with L(ϕ) = ψ and also a unique
morphism ϕ̂ : H̃ → G̃ with L(ϕ̂) = ψ−1. Then L(ϕ ◦ ϕ̂) = idL(G̃) implies

ϕ ◦ ϕ̂ = idG̃, and likewise ϕ̂ ◦ϕ = idH̃ . Therefore G̃ and H̃ are isomorphic Lie
groups. ut

Combining the preceding theorem with Theorem 8.5.4, we obtain:

Corollary 8.5.14. Let G be a connected Lie group and q : G̃ → G the univer-
sal covering morphism of connected Lie groups. Then for each discrete central
subgroup Γ ⊆ G̃, the group G̃/Γ is a connected Lie group with L(G̃/Γ ) ∼= L(G)
and, conversely, each Lie group with the same Lie algebra as G is isomorphic
to some quotient G̃/Γ .
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Example 8.5.15. We now describe a pair of nonisomorphic Lie groups with
isomorphism Lie algebras and isomorphic fundamental groups.

Let
G̃ := SU2(C)× SU2(C)

whose center is C2 × C2,

G := G̃/(C2 × {1}) ∼= SO3(R)× SU2(C)

and
H := G̃/{(1,1), (−1,−1)} ∼= SO4(R),

where the latter isomorphy follows from Proposition 8.5.21 below. Then
π1(G) ∼= π1(H) ∼= C2, but there is no automorphism of G̃ mapping π1(G)
to π1(H).

Indeed, one can show that the two direct factors are the only nontrivial
connected normal subgroups of G̃, so that each automorphism of G̃ either
preserves both or exchanges them. Since π1(H) is not contained in any of
them, it cannot be mapped to π1(G) by an automorphism of G̃.

Examples 8.5.16. Here are some examples of pairs of linear Lie groups with
isomorphic Lie algebras:

(1) G = SO3(R) and G̃ ∼= SU2(C) (Example 8.5.7).
(2) G = SO2,1(R)0 and H = SL2(R): In this case we actually have a

covering morphism ϕ : H → G coming from the adjoint representation

Ad: SL2(R) → GL(L(H)) ∼= GL3(R).

On L(H) = sl2(R) we consider the symmetric bilinear form given by β(x, y) :=
1
2 tr(xy) and the basis

e1 :=
(

1 0
0 −1

)
, e2 :=

(
0 1
1 0

)
, e3 :=

(
0 1
−1 0

)
.

Then the matrix B of β with respect to this basis is

B :=




1 0 0
0 1 0
0 0 −1


 .

One easily verifies that

Im Ad ⊆ O(L(H), β) ∼= O2,1(R),

and since ad: L(H) → o2,1(R) is injective between spaces of the same dimen-
sion 3 (Exercise), it is bijective. Therefore im Ad = 〈exp o2,1(R)〉 = SO2,1(R)0
and Proposition 8.5.1 imply that

Ad: SL2(R) → SO2,1(R)0
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is a covering morphism. Its kernel is given by Z(SL2(R)) = {±1}.
From the polar decomposition one derives that both groups are homeo-

morphic to T×R2, and topologically the map Ad is like (z, x, y) 7→ (z2, x, y),
a two-fold covering.

(3) G = SL2(C) and H = SO3,1(R)0: This will be explained in detail and
greater generality in Example 16.2.6.

Example 8.5.17. Let G = SL2(R) and H = SO2,1(R)0 and recall that G̃ ∼=
H̃ follows from sl2(R) ∼= so2,1(R) (cf. Example 8.5.16).

We further have qG(Z(G̃)) ⊆ Z(G) = {±1} and π1(G) = ker qG ⊆ Z(G̃)
(cf. Proposition 8.5.2). Likewise qH(Z(G̃)) ⊆ Z(H) = {1} implies

Z(G̃) ∼= π1(H) ∼= π1(O2(R)×O1(R)) ∼= Z,

where the latter is a consequence of the polar decomposition. This implies
that Z(G̃) ∼= Z, where

π1(G) ∼= 2Z and π1(H) ∼= Z = Z(G̃).

Therefore G and H are not isomorphic, but they have isomorphic Lie algebras
and isomorphic fundamental groups.

8.5.4 Nonlinear Lie Groups

We have already seen how to describe all connected Lie groups with a given
Lie algebra. To determine all such groups which are, in addition, linear turns
out to be a much more subtle enterprise. If G̃ is a simply connected group
with a given Lie algebra, it means to determine which of the groups G̃/D
are linear. As the following examples show, the answer to this problem is not
easy. In fact, a complete answer requires detailed knowledge of the structure
of finite-dimensional Lie algebras.

Example 8.5.18. We show that the universal covering group G := S̃L2(R)
of SL2(R) is not a linear Lie group. Moreover, we show that every continuous
homomorphism ϕ : G → GLn(R) satisfies D := π1(SL2(R)) ⊆ kerϕ, hence
factors through G/D ∼= SL2(R).

We consider the Lie algebra homomorphism L(ϕ) : sl2(R) → gln(R). Then
it is easy to see that

L(ϕ)C(x + iy) := L(ϕ)x + iL(ϕ)y

defines an extension of L(ϕ) to a complex linear Lie algebra homomorphism

L(ϕ)C : sl2(C) → gln(C).

Since the group SL2(C) is simply connected, there exists a unique group ho-
momorphism ψ : SL2(C) → GLn(C) with L(ψ) = L(ϕ)C.
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Let α : G → G/D ∼= SL2(R) → SL2(C) be the canonical morphism. Then

L(ϕ) = L(ϕ)C ◦ L(α) = L(ψ) ◦ L(α) = L(ψ ◦ α)

implies ϕ = ψ ◦ α. We conclude that kerϕ ⊇ kerα = D. Therefore G has no
faithful linear representation.

Lemma 8.5.19. If A is a Banach algebra with unit 1 and p, q ∈ A with
[p, q] = λ1, then λ = 0.

Proof. ([Wie49]) By induction we obtain

[p, qn] = λnqn−1 for n ∈ N. (8.15)

In fact,

[p, qn+1] = [p, q]qn + q[p, qn] = λqn + λnqn = λ(n + 1)qn.

Therefore
|λ|n‖qn−1‖ ≤ 2‖p‖‖qn‖ ≤ 2‖p‖‖q‖‖qn−1‖

for each n ∈ N, which leads to

(|λ|n− 2‖p‖‖q‖)‖qn−1‖ ≤ 0.

If λ 6= 0, then we obtain for sufficiently large n that qn−1 = 0. For n > 1 we
derive from (8.15) that qn−2 = 0. Inductively we arrive at the contradiction
q = 0. ut

If A is a finite-dimensional algebra, we may w.l.o.g. assume that it is a
subalgebra of some matrix algebra Mn(K), and then [p, q] = λ1 implies

nλ = tr(λ1) = tr([p, q]) = 0

so that λ = 0.

Example 8.5.20. We consider the three-dimensional Heisenberg group

G =








1 x y
0 1 z
0 0 1


 : x, y, z ∈ R



 with L(G) =








0 x y
0 0 z
0 0 0


 : x, y, z ∈ R



 .

Note that expG : L(G) → G is a diffeomorphism whose inverse is given by

log(g) = (g − 1)− 1
2
(g − 1)2

(Proposition 2.3.3). Let

z :=




0 0 1
0 0 0
0 0 0


 , p :=




0 1 0
0 0 0
0 0 0


 and q :=




0 0 0
0 0 1
0 0 0


 .
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Then [p, q] = z, [p, z] = [q, z] = 0, expRz = 1+Rz ⊆ Z(G) and D := exp(Zz)
is a discrete central subgroup of G. We claim that the group G/D is not a
linear Lie group. This will be verified by showing that each homomorphism
α : G → GLn(C) with D ⊆ kerα satisfies exp(Rz) ⊆ kerα.

The map L(α) : L(G) → gln(C) is a Lie algebra homomorphism and we
obtain linear maps

P := L(α)(p), Q := L(α)(q) and Z := L(α)(z)

with [P,Q] = Z. Now expG z ∈ D = kerα implies that eZ = α(exp z) = 1 and
hence that Z is diagonalizable with all eigenvalues contained in 2πiZ (Exer-
cise 2.2.12). Let Vλ := ker(Z − λ1). Since z is central in L(G), the space Vλ

is invariant under G (Exercise 1.1.1), hence also under L(G) (Exercise 3.2.3).
Therefore the restrictions Pλ := P |Vλ

and Qλ := Q|Vλ
satisfy [Pλ, Qλ] = λ id

in the Banach algebra End(Vλ). In view of the preceding lemma, we have
λ = 0. Therefore the diagonalizability of Z entails that Z = 0 and hence that
Rz ⊆ kerL(α). It follows in particular that the group G/D has no faithful
linear representation.

8.5.5 The Quaternions, SU2(C) and SO4(R)

In this subsection we shall use the quaternion algebra H (Section 1.3) to get
some more information on the structure of the group SO4(R). Here the idea
is to identify R4 with H.

Proposition 8.5.21. There exists a covering homomorphism

ϕ : SU2(C)× SU2(C) → SO4(R) ⊆ GL(H), ϕ(a, b).x = axb−1.

This homomorphism is a universal covering with kerϕ = {±(1,1)}.
Proof. Since |a| = |b| = 1, all the maps ϕ(a, b) : H → H are orthogonal, so
that ϕ is a homomorphism

SU2(C)× SU2(C) → O4(R).

Since SU2(C)×SU2(C) is connected, it further follows that im (ϕ) ⊆ SO4(R).
To determine the kernel of ϕ, suppose that ϕ(a, b) = idH. Then axb−1 = x

for all x ∈ H. For x = b we obtain in particular a = b. Hence ax = xa
for all x ∈ H. With x = I and x = J this leads to a ∈ R1, and hence to
(a, b) ∈ {±(1,1)}. This proves the assertion on kerϕ.

The derived representation is given by

L(ϕ) : su2(C)× su2(C) → so4(R), L(ϕ)(x, y)(z) = xz − zy.

Since kerϕ is discrete, it follows that kerL(ϕ) ⊆ L(kerϕ) = {0}. Hence L(ϕ)
is injective. Next dim so4(R) = 6 = 2dim su2(C) shows that L(ϕ) is surjective,
and we conclude that
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im (ϕ) = 〈exp im L(ϕ)〉 = SO4(R).

Therefore ϕ is a covering morphism (Proposition 8.5.1). Since SU2(C) is sim-
ply connected, S̃O4(R) ∼= SU2(C)2. ut

Let G := SU2(C)2. We have just seen that this is the universal covering
group of SO4(R). On the other hand SU2(C) ∼= S̃O3(R). From Z(SU2(C)) =
{±1} we derive that

Z(G) = {(1,1), (1,−1), (−1,1), (−1,−1)} ∼= C2
2 .

We have
G/Z(G) ∼= SO3(R)× SO3(R),

and therefore

SO4(R)/{±1} ∼= G/Z(G) ∼= SO3(R)× SO3(R).

The group SO4(R) is a twofold covering group of SO3(R)2.

Exercises for Section 8.5

Exercise 8.5.1. Let G be a connected linear Lie group. Show that

L(Z(G)) = z(L(G)) := {x ∈ L(G) : (∀y ∈ L(G)) [x, y] = 0}.

Exercise 8.5.2. Let qG : G̃ → G be a simply connected covering of the con-
nected Lie group G.

(1) Show that each automorphism ϕ ∈ Aut(G) has a unique lift ϕ̃ ∈ Aut(G̃).
(2) Derive from (1) that Aut(G) ∼= {ϕ̃ ∈ Aut(G̃) : ϕ̃(π1(G)) = π1(G)}.
(3) Show that, in general, {ϕ̃ ∈ Aut(G̃) : ϕ̃(π1(G)) ⊆ π1(G)} is not a subgroup

of Aut(G̃).

8.6 Arcwise Connected Subgroups and Initial Subgroups

The central result of this section is Yamabe’s theorem characterizing integral
subgroups of a Lie group by the purely topological property of being arcwise
connected. Groups which are not arcwise connected can then be dealt with
using the concept of initial subgroups.
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8.6.1 Yamabe’s Theorem

Theorem 8.6.1 (Yamabe). A subgroup H of a connected Lie group G is
arcwise connected if and only if it is an integral subgroup. More precisely, H
is of the form 〈expG h〉 for the Lie subalgebra h of L(G), determined by

h = {x ∈ L(G) : expG(Rx) ⊆ H}.

Clearly, each integral subgroup is arcwise connected, so that the main point
of the proof is the converse. For that it is decisive to find the Lie algebra h
associated with an arcwise connected subgroup H. This is our first target.

Definition 8.6.2. Let H ⊆ G be a subgroup and x ∈ L(G). We call x
H-attainable if for each 1-neighborhood U in G there exists a continuous
path γ : [0, 1] → H with γ(0) = 1 and

γ(t) ∈ expG(tx)U

for t ∈ [0, 1]. We write A(H) ⊆ L(G) for the set of H-attainable elements of
L(G).

Remark 8.6.3. For each x ∈ A(H), each neighborhood of expG(x) is of the
form expG(x)U , U an identity neighborhood of G, and all these sets contain
elements of H. This implies that expG(x) ∈ H.

Lemma 8.6.4. Let (X, d) be a compact metric space, G a topological group
and f : X → G a continuous map. Then the following assertions hold:

(a) f is uniformly continuous in the sense that for each 1-neighborhood
U ⊆ G there exists a δ > 0 with

f(y) ∈ f(x)U for d(x, y) < δ.

(b) If (γn) is a sequence of paths γn : [0, 1] → X converging uniformly to
γ : [0, 1] → X, then for each 1-neighborhood U in G, the relation

f(γn(t)) ∈ f(γ(t))U

holds for all t ∈ [0, 1] if n is sufficiently large.
(c) Let K ⊆ G be a compact subset and (X, d) a metric space. Then each

continuous function f : K → X is uniformly continuous in the sense that
for each ε > 0, there exists a 1-neighborhood U in G such that

d(f(x), f(y)) < ε holds for x, y ∈ K, y ∈ xU.

Proof. (a) First, we pick a 1-neighborhood V in G with V −1V ⊆ U . Since
f is continuous, there exists for each x ∈ X a δx such that f(y) ∈ f(x)V
whenever d(x, y) < δx. Now the open balls Ux := {y ∈ X : 2d(x, y) < δx}
form an open cover of X, and the compactness implies the existence of a
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finite subcover. Hence there exist x1, . . . , xn ∈ X with X ⊆ ⋃n
i=1 Uxi . Let

δ := 1
2 min{δxi

: i = 1, . . . , n} and x, y ∈ X with d(x, y) < δ. Then there exists
an xi with 2d(x, xi) < δxi , and then we also have

d(y, xi) ≤ d(y, x) + d(x, xi) < δ +
1
2
δxi ≤

1
2
δxi +

1
2
δxi = δxi .

Hence f(x), f(y) ∈ f(xi)V , and thus f(x)−1f(y) ∈ V −1V ⊆ U.
(b) is an immediate consequence of (a).
(c) Since f is continuous, we find for each x ∈ K a 1-neighborhood Ux in

G with
f(K ∩ xUx) ⊆ U ε

2
(f(x)) :=

{
z ∈ X : d(z, f(x)) <

ε

2

}
.

We pick for each x ∈ K another 1-neighborhood Vx in G with VxVx ⊆ Ux.
Since K is compact, it is covered by finitely many xiVxi

, i = 1, . . . , n. Let
U :=

⋂n
i=1 Vxi .

Now let x, y ∈ K with y ∈ xU . Then x ∈ xiVxi
for some i and therefore

y ∈ xiVxi
U ⊆ xiVxi

Vxi
⊆ xiUxi

. Therefore f(x), f(y) ∈ U ε
2
(f(xi)) and thus

d(f(x), f(y)) < ε. ut
Remark 8.6.5. (a) Let γ : [0, 1] → G be a C1-curve with γ(0) = 1 and
x := γ′(0).

Ug ⊆ g = L(G) be an open 0-neighborhood for which expG |Ug is a diffeo-
morphism onto the open 1-neighborhood UG = expG(Ug) in G. We assume
that im (γ) ⊆ UG, so that

β := (expG |Ug)−1 ◦ γ : [0, 1] → g

is a C1-curve starting in 0. We consider the sequence of curves

βn(t) := nβ
( t

n

)
=

∫ t

0

β′
( s

n

)
ds, 0 ≤ t ≤ 1,

which converges uniformly to the curve β(t) := tx. Since expG is uniformly
continuous on each compact neighborhood of im (β), Lemma 8.6.4 now implies
that the sequence of curves

γn(t) := (expG ◦βn)(t) = γ
( t

n

)n

has the property that for each 1-neighborhood U in 1, the relation

γn(t) ∈ expG(tx)U

holds for all t ∈ [0, 1] whenever n is sufficiently large.
(b) If H is a subgroup of G and im (γ) ⊆ H, then im (γn) ⊆ H for each n,

so that (a) implies that x = γ′(0) ∈ A(H).

Lemma 8.6.6. A(H) is a Lie subalgebra of L(G)
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Proof. We split the proof into several steps.
Step 1: x ∈ A(H) ⇒ −x ∈ A(H):

Let U be a 1-neighborhood in G. Since [0, 1] is compact and the con-
jugation action of G on itself is continuous, we find with Exercise 8.6.2 a
1-neighborhood V of 1 in G with V = V −1 and

expG(tx)V expG(−tx) ⊆ U for t ∈ [0, 1]. (8.16)

Since x ∈ A(H), there exists a continuous path γ : [0, 1] → H starting in 1
with γ(t) ∈ expG(tx)V for t ∈ [0, 1]. We put γ̃(t) = γ(t)−1. Then we find with
(8.16)

γ̃(t) ∈ V −1 expG(−tx) ⊆ expG(−tx)U.

Now γ̃(t) ∈ H implies −x ∈ A(H).
Step 2: Rx ⊆ A(H) for each x ∈ A(H):

It is immediately clear from the definition that sx ∈ A(H) for each
s ∈ [0, 1]. In view of Step 1, we further get [−1, 1]x ⊆ A(H) for x ∈ A(H).
Hence it suffices to show that kx ∈ A(H) holds for k ∈ N and x ∈ A(H). Let
U ⊆ G be a 1-neighborhood. As above, we find a 1-neighborhood V in G with

k+1∏

j=1

(
expG(tjx)V

) ⊆ expG

( k+1∑

j=1

tjx
)
U for tj ∈ [0, 1]. (8.17)

To see that such a V exists, we apply Exercise 8.6.2 to the continuous map

Rk+1 ×Gk+1 → G

(t1, . . . , tk+1, g1, . . . , gk+1) 7→ expG

( k+1∑

j=1

tjx
)−1 k+1∏

j=1

(
expG(tjx)gj

)
,

mapping [0, 1]k+1 × {1}k+1 to 1.
Now let γ : [0, 1] → H be a continuous path starting in 1 with γ(t) ∈

expG(tx)V for t ∈ [0, 1]. For t ∈ [0, 1], we put

γ̃(t) = γ(1)[kt]γ(kt− [kt]),

where [kt] = max{b ∈ N : b ≤ kt}. Then γ̃ is continuous and (8.17) leads to

γ̃(t) ∈ (
expG(x)V

)[kt] expG((kt− [kt])x)V ⊆ expG(tkx)U

for t ∈ [0, 1], and hence to kx ∈ A(H).
Step 3: x + y ∈ A(H) for x, y ∈ A(H):

Let β(t) := expG(tx) expG(ty). Then β : [0, 1] → G is a smooth curve with
β(0) = 1 and β′(0) = x + y. In view of Remark 8.6.5, there exists for each
1-neighborhood V in G an N ∈ N, such that

β
( t

k

)k

=
((

expG

tx

k

)(
expG

ty

k

))k

∈ expG

(
t(x + y)

)
V (8.18)
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for all t ∈ [0, 1] and k > N . For any such k, there exists a 1-neighborhood W
in G with

((
expG

tx

k

)
W

(
expG

ty

k

)
W

)k

⊆
((

expG

tx

k

)(
expG

ty

k

))k

V (8.19)

for all t ∈ [0, 1].
Now let U be a 1-neighborhood in G, choose V such that V V ⊆ U , W as

above. Further, let γx, γy : [0, 1] → H be continuous curves starting in 1 with
γx(t) ∈ (expG

tx
k )W and γy(t) ∈ (expG

ty
k )W for t ∈ [0, 1]. The existence of

such paths is due to x
k , y

k ∈ A(H). Put

γ̃(t) :=
(
γx(t)γy(t)

)k
, (8.20)

so that we obtain with (8.18) and (8.19)

γ̃(t) ∈
((

expG

tx

k

)
W

(
expG

ty

k

)
W

)k

⊆
((

expG

tx

k

)(
expG

ty

k

))k

V

⊆ expG

(
t(x + y)

)
V V ⊆ expG

(
t(x + y)

)
U.

This implies that x + y ∈ A(H).
Step 4: Ad(h)x ∈ A(H) for h ∈ H and x ∈ A(H):

Let h ∈ H and x ∈ A(H). For an identity neighborhood U in G, we then
find an identity neighborhood Uh of G with ch(Uh) ⊆ U . If γx : [0, 1] → H
satisfies γx(t) ∈ expG(tx)U for each t ∈ [0, 1], we then obtain

hγx(t)h−1 ∈ ch(expG(tx))ch(U) ⊆ expG(t Ad(h)x)U,

so that Ad(h)x ∈ A(H).
Step 5: [x, y] ∈ A(H) for x, y ∈ A(H):

The normalizer N := {g ∈ G : Ad(g)A(H) = A(H)} of the subspace
A(H) ⊆ L(G) in G is a closed subgroup, and we know from Step 4 that it
contains H. In view of Remark 8.6.3, it also contains expG(A(H)), so that
et ad xy ∈ A(H) for x, y ∈ A(H) and t ∈ R. Taking derivatives in t = 0, we
obtain [x, y] ∈ A(H). ut
Lemma 8.6.7. If H is an arcwise connected topological subgroup of G, then
for each identity neighborhood U of 1 in G, the arc-component Ua of U ∩H
generates H.

Proof. Let HU ⊆ H denote the subgroup generated by Ua. Further, let h ∈ H
and γ : [0, 1] → H be a continuous path from 1 to h. We consider the set

S := {t ∈ [0, 1] : γ(t) ∈ HU}.

Then the subset γ−1(U) of S is a neighborhood of 0. For any t0 ∈ S, there
exists an ε > 0 with

γ(t0)−1γ(t) ∈ Ua
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for |t− t0| ≤ ε. This implies that S is an open subset of [0, 1]. If t1 ∈ [0, 1] \S,
then we also find an ε > 0 with

γ(t1)−1γ(t) ∈ Ua ⊆ HU

for |t − t1| ≤ ε, so that γ(t1) 6∈ HU leads to γ(t) 6∈ HU for |t − t1| ≤ ε. Thus
[0, 1] \S is also open in [0, 1], and now the connectedness of [0, 1] implies that
S = [0, 1], hence h = γ(1) ∈ HU . ut

It remains to show that the integral subgroup 〈expG A(H)〉 coincides
with H. In the following lemma we show one inclusion.

Lemma 8.6.8. If H is an arcwise connected subgroup of the Lie group G,
then H ⊆ 〈expG(A(H))〉.
Proof. Let (rm)m∈N be any sequence of positive real numbers converging to
0 with rm+1 < rm for m ∈ N. We pick a norm ‖ · ‖ on g and put

Bm := {x ∈ g : ‖x‖ < rm} and Um := expG(Bm).

Let p ⊆ g = L(G) be a vector space complement of the Lie subalgebra A(H).
Then there exist open convex symmetric 0-neighborhoods Vm ⊆ A(H) and
Wm ⊆ p, such that the map

ψm : Vm ×Wm → Um, (x, y) 7→ expG(x) expG(y)

is a diffeomorphism onto an open subset U ′
m := expG(Vm) expG(Wm) of Um

(cf. Lemma 8.3.6). An easy induction shows that we may choose the sets Vm

and Wm in such a way that Vm+1 ⊆ Vm and Wm+1 ⊆ Wm for each m ∈ N.
Let Hm denote the arc-component of H∩U ′

m containing 1. Then Hm gener-
ates H by Lemma 8.6.7. Therefore it remains to show that Hm ⊆ expG(A(H))
for some m ∈ N. If this is not the case, then there exists a sequence

hm = expG(vm) expG(wm) ∈ Hm with vm ∈ Vm, 0 6= wm ∈ Wm.

Then the sequence w̃m := wm

‖wm‖ has a cluster point, and by passing to a
suitable subsequence of (rm)m∈N, we may assume that the sequence (w̃m)m∈N
converges to some w ∈ p with ‖w‖ = 1.

To arrive at a contradiction, we claim that w ∈ A(H). To this end, we
fix some m ∈ N and let U (m) be a 1-neighborhood in G. Then there exists a
smaller 1-neighborhood U ′′

m ⊆ U (m) ∩ Um with

h−1
m U ′′

mhm ⊆ U (m).

Further, −vm ∈ A(H) implies the existence of a continuous path
γm : [0, 1] → H starting in 1 with γm(t) ∈ expG(−tvm)U ′′

m for t ∈ [0, 1]. Since
Hm is arcwise connected, there also exists a continuous path ηm : [0, 1] → Hm

from 1 to hm. Now
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γ̃(t) := γm(t)ηm(t)

satisfies γ̃m(0) = 1 and

γ̃m(1) ∈ expG(−vm)U ′′
mhm ⊆ expG(−vm)hmU (m) = (expG wm)U (m). (8.21)

Moreover,
γ̃m(t) ∈ (expG Vm)U ′′

mHm ⊆ U3
m.

If m is sufficiently large, then we have a smooth inverse log : U ′
m → g of the

exponential function, so that we may put

zm := log
(
γ̃m(1)

)
.

Then (8.21) yields

zm = wm ∗ w with some w ∈ V (m) := log(U (m)).

Next we choose U (m) = expG(V (m)) so small that

‖wm ∗ w − wm‖ ≤ ‖wm‖2 ≤ rm for all w ∈ V (m) (8.22)

and
wm ∗ V (m) ⊆ Bm. (8.23)

Then
lim

m→∞
zm

‖wm‖ = lim
m→∞

(zm − wm

‖wm‖ +
wm

‖wm‖
)

= w.

For pm := ‖wm‖−1 and

γ̂m(t) := γ̃m(1)[tpm]γ̃m(tpm − [tpm])

we also have

γ̂m(t) = expG([tpm]zm)γ̃m(tpm − [tpm])

= expG(tpmzm) expG

(
([tpm]− tpm)zm

)
γ̃m(tpm − [tpm])

∈ expG(tpmzm)UmU3
m ⊆ expG(tpmzm)U4

m.

Finally, let U be any 1-neighborhood in G. Then there exists a k ∈ N with
U5

k ⊆ U and the sequence expG(tpmzm) converges for m → ∞ uniformly in
t ∈ [0, 1] to expG(tw) (Lemma 8.6.4(b)). Hence there exists an m > k with

expG(tpmzm) ⊆ (expG tw)Uk for all t ∈ [0, 1].

Then we finally arrive at

γ̂m(t) ∈ expG(tpmzm)U4
m ⊆ (expG tw)UkU4

m ⊆ (expG tw)U5
k ⊆ expG(tw)U

and thus w ∈ A(H); contradicting w ∈ p \ {0}. ut
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To prove also the converse of Lemma 8.6.8, we need a corollary to
Brouwer’s Fixed Point Theorem, saying that each continuous selfmap of the
closed unit ball in Rm (with respect to any norm) has a fixed point (cf. [Hir76,
p.73]).

Lemma 8.6.9. Let ‖x‖ :=
√∑

i x2
i denote the euclidean norm on Rn. If

f : [−1, 1]m → Rm is a continuous map with

‖f(x)− x‖ ≤ 1
2

for x ∈ [−1, 1]m,

then {x ∈ Rm : ‖x‖ < 1
2} ⊆ f([−1, 1]m).

Proof. Let y ∈ Rm with ‖y‖∞ ≤ ‖y‖ < 1
2 and put g(x) := x− f(x) + y. Then

g : [−1, 1]m → [−1, 1]m

is a continuous map and Brouwer’s Fixed Point Theorem implies that g has
some fixed point xo. Then f(xo) = xo − g(xo) + y = y. ut
Lemma 8.6.10. If H is an arcwise connected subgroup of the Lie group G,
then expG(A(H)) ⊆ H.

Proof. It suffices to show that H contains an open 1-neighborhood in H] :=
〈expG(A(H))〉 with respect to the intrinsic Lie group topology of this group
(Integral Subgroup Theorem 8.4.8). We choose a basis x1, . . . , xm of A(H),
for which the map

ϕ : ]− 2, 2[m→ U, t = (t1, . . . , tm) 7→
m∏

j=1

expG(tjxj)

is a homeomorphism onto an open subset U of H]. The existence of such a
basis follows from the Inverse Function Theorem (cf. Lemma 8.3.6). In view
of the compactness of [−1, 1]m, there exists a compact 1-neighborhood U1 in
H] with

(a) ϕ([−1, 1]m)U1 ⊆ U ,
(b) ‖s−t‖ ≤ 1

2 if s ∈]−2, 2[m, t ∈ [−1, 1]m and ϕ(s) ∈ ϕ(t)U1 (Lemma 8.6.4(c)).

We further find a 1-neighborhood U2 in H] with

m∏

j=1

(
expG(tjxj)U2

) ⊆ ϕ(t1, . . . , tm)U1 for t1, . . . , tm ∈ [−1, 1].

Since±xj ∈ A(H), there exist continuous curves γj : [−1, 1] → H with γj(0) =
1 and γj(t) ∈ (expG(txj))U2 for all t. We then have

m∏

j=1

γj(tj) ∈
m∏

j=1

(
expG(tjxj)U2

) ⊆ ϕ(t1, . . . , tm)U1 ⊆ U.
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Using ϕ, we may thus write

m∏

j=1

γj(tj) =
m∏

j=1

expG(fj(t1, . . . , tm)xj),

and obtain a continuous function

f : [−1, 1]m → Rm, (t1, . . . , tm) 7→ (
f1(t1, . . . , tm), . . . , fm(t1, . . . , tm)

)
.

Note that

ϕ
(
f1(t1, . . . , tm), . . . , fm(t1, . . . , tm)

)
=

m∏

j=1

γj(tj) ∈ ϕ(t1, . . . , tm)U1 ⊆ U,

so that, in view of (b), ‖f(t)− t‖ ≤ 1
2 . Finally we apply Lemma 8.6.9 and see

that f([−1, 1]m) contains a neighborhood of 0 in ]− 2, 2[m. Therefore

γ1([−1, 1]) · · · γm([−1, 1])

contains a 1-neighborhood of H], and this completes the proof. ut
Proof. (of Theorem 8.6.1) Combining Lemmas 8.6.8 and 8.6.10, we see that
H = 〈expG(A(H))〉 is the integral subgroup of G, corresponding to the Lie
subalgebra A(H) of L(G). The definition of A(H) implies in particular that

{x ∈ L(G) : expG(Rx) ⊆ H} ⊆ A(H),

which leads to the equality

A(H) = {x ∈ L(G) : expG(Rx) ⊆ H}. ut

8.6.2 Initial Lie Subgroups

Definition 8.6.11. An injective morphism ι : H → G of Lie groups is called
an initial Lie subgroup if L(ι) : L(H) → L(G) is injective, and for each smooth
map f : M → G from a smooth manifold M to G with im (f) ⊆ H, the
corresponding map ι−1 ◦ f : M → H is smooth.

The following lemma shows that the existence of an initial Lie group struc-
ture only depends on the subgroup H, considered as a subset of G.

Lemma 8.6.12. Any subgroup H of a Lie group G carries at most one struc-
ture of an initial Lie subgroup.

Proof. If ι′ : H ′ ↪→ G is another initial Lie subgroup with the same range as
ι : H → G, then ι−1 ◦ι′ : H ′ → H and ι′−1 ◦ι : H → H ′ are smooth morphisms
of Lie groups, so that H and H ′ are isomorphic. ut
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Theorem 8.6.13 (Initial Subgroup Theorem). Each subgroup H of a
Lie group G carries an initial Lie subgroup structure for which the identity
component H0 coincides with the arc-component of H with respect to the sub-
space topology and

L(H) ∼= {x ∈ L(G) : expG(Rx) ⊆ H}.
Proof. Let Ha ⊆ H be the arc-component of H, viewed as a topological sub-
group of G. According to Yamabe’s Theorem 8.6.1, Ha is an integral subgroup
with Lie algebra

h = {x ∈ L(G) : expG(Rx) ⊆ Ha} = {x ∈ L(G) : expG(Rx) ⊆ H}.
Let HL

a denote the group Ha, endowed with its intrinsic Lie group topology
for which exp = expG |h : h → HL

a is a local diffeomorphism in 0. Then H ⊆
{g ∈ G : Ad(g)h = h} and cg ◦exp = exp ◦Ad(g)|h imply that for each h ∈ H,
the conjugation ch defines a smooth automorphisms on HL

a , so that H carries
a Lie group structure for which HL

a is an open subgroup (Corollary 8.4.5). Let
HL denote this Lie group. Now the inclusion map ι : HL → G is an immersion
whose differential in 1 is the inclusion h ↪→ g.

We claim that ι : HL → G is an initial Lie subgroup. In fact, let f : M → G
be a smooth map from the smooth manifold M to G with f(M) ⊆ H. We
have to show that f is smooth, i.e., that f is smooth in a neighborhood of
each point m ∈ M . Replacing f by f · f(m)−1 and observing that the group
operations in H and G are smooth, we may w.l.o.g. assume that f(m) = 1.

Let U ⊆ h be an open 0-neighborhood, m ⊆ g be a vector space comple-
ment to h and V ⊆ m an open 0-neighborhood for which the map

Φ : U × V → G, (x, y) 7→ expG x expG y

is a diffeomorphism onto an open subset of G. Then

Ha ∩ (expG U expG V ) =
⋃̇

y∈V,expG y∈Ha

expG U expG y,

where the union on the right is disjoint because ϕ is bijective, and each
set expG U expG y contained in Ha also is an open subset of HL. Since
the topology of HL

a is second countable (Proposition 8.1.15(iv)), the set
exp−1

G (Ha)∩V is countable. Every smooth arc γ : I → expG U expG V is of the
form γ(t) = expG α(t) expG β(t) with smooth arcs α : I → U and β : I → V ,
and for every smooth arc contained in Ha, the countability of β(I) implies
that β is constant.

We conclude that if W ⊆ M is an open connected neighborhood of m with
f(W ) ⊆ expG U expG V , then f(W ) ⊆ expG U . Then the map

expG |−1
U ◦ f |W : W → h

is smooth, so that the corresponding map
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ι−1 ◦ f |W = expHL ◦ expG |−1
U ◦ f |W : W → HL

is also smooth. This proves that the map ι−1 ◦ f : M → HL is smooth, and
hence that ι : HL → G is an initial Lie subgroup of G. ut

Exercises for Section 8.6

Exercise 8.6.1. Let X and Y be topological spaces and KX ⊆ X and KY ⊆
Y compact subsets. If V ⊆ X × Y is an open subset containing KX × KY ,
then there exist open subsets UX ⊆ X and UY ⊆ Y with UX × UY ⊆ U .

Exercise 8.6.2. Let X, Y and Z be topological spaces and f : X × Y → Z a
continuous map. If KX ⊆ X and KY ⊆ Y are compact and U ⊆ Z open with
f(KX ×KY ) ⊆ U, then there exist open subsets UX ⊆ X and UY ⊆ Y with
f(UX × UY ) ⊆ U .

Exercise 8.6.3. Construct a subgroup of T2 = R2/Z2 which is connected but
not arcwise connected.

Notes on Chapter 8

In a way this chapter describes the essence of Lie theory, namely the transla-
tion process between global and infinitesimal objects. A subtle point in this
matter is the correspondence of subobjects. Given a Lie group G with Lie al-
gebra L(G), Lie subalgebras generate subgroups of G, via integral manifolds
or the exponential function, but unless they are closed, these groups are Lie
groups only if one changes the topology. On the other hand, the Initial Sub-
group Theorem 8.6.13 shows that any subgroup H can be given a topology
such that it becomes a Lie group whose connected component arises in this
way. Thus in defining the concept of a Lie subgroup one has to decide whether
one wants to include the topology into the structure or not. If not, any sub-
group is a Lie subgroup and the concept is superfluous. If one makes the
topology part of the structure, only closed subgroups will be Lie subgroups,
which explains our Definition 8.3.10. Of course this does not mean that the
nonclosed subgroups associated with Lie subgroups are not important. So
they also get names. In the literature arcwise connected subgroups often go
for instance under the name analytic subgroups. Singling out this class of sub-
groups is of course motivated by Yamabe’s Theorem 8.6.1. We prefer to call
them integral subgroups since they systematically arise as integral manifolds.
If one wants to characterize the Lie group structure of general subgroups, in
view of Lemma 8.6.12 and the Initial Subgroup Theorem 8.6.13, the initial
submanifold property is the crucial one. Our terminology concerning different
kinds of subgroup basically follows Bourbaki (cf. [Bou89], Chap. 3).

In the 1890s Sophus Lie developed his theory of differentiable groups
(called continuous groups at a time when the concept of a topological space
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was not yet developed) to study symmetries of differential equations. The in-
finitesimal and local theory was worked out and further developed by Friedrich
Engel (1861–1941), Wilhelm Killing (1847–1923), and Élie Cartan (1869–
1951). The global theory of Lie groups was initiated by Hermann Weyl (1885–
1955) in the seminal series [We25] of papers from 1925/26, motivated by repre-
sentation theory and harmonic analysis. It inspired Élie Cartan to reconsider
his approach to Lie groups and eventually lead to him to deep insights into
the topology of Lie groups as well as to the invention of symmetric spaces
(see [Ca30]). An important role in the circulation of Lie theoretic ideas was
played by Claude Chevalley (1909–1984) through his papers and in particular
his book [Ch46] (see also [BG81]). Later developments were often motivated
by either representation theory or harmonic analysis, pioneered by Harish-
Chandra (1923–1983) and Israil M. Gelfand (1913–2009).





9

Smooth Actions of Lie Groups

In many areas of mathematics Lie groups appear naturally as symmetry
groups. Examples are groups of isometries of Riemannian manifolds, groups
of holomorphic automorphisms of complex domains or groups of canonical
transformations in hamiltonian mechanics. In all these cases one considers
group actions on manifolds by smooth maps. Even though the focus of this
book is the geometry and structure theory of Lie groups rather than their
applications, we have to study the concept of a smooth action of a Lie group
on a manifold in some detail since it is an essential tool in the smooth ver-
sions of group theoretic considerations like the study of quotient groups and
conjugacy classes.

In the first section we collect some basic facts on orbits and stabilizers
for smooth actions. Section 9.1.2 is devoted to the structure of homogeneous
spaces. Its results are used to provide orbits of smooth actions with manifold
structures. We also introduce frame bundles which turn out to be very use-
ful in the description of bundles with symmetries. With this preparation it
is easy to describe general tensor and density bundles as well as the corre-
sponding sections. Using (invariant) densities and differential forms, one can
then quickly describe a basic integration theory for manifolds together with
its interaction with symmetries. In particular, we find the Haar measure on a
Lie group and its basic properties, which allows us to use averaging techniques
in Lie theory.

A smooth action of a Lie group on a manifold gives rise to a representation
of the Lie algebra by vector fields on the manifold. In Section 9.5 we give a
proof of Palais’ Theorem which gives conditions under which, conversely, a
finite dimensional Lie algebra of vector fields can be integrated to a smooth
group action.
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9.1 Homogeneous Spaces

In this section we begin our study of the structure of smooth actions of Lie
groups on smooth manifolds (cf. Definition 8.1.11) with some elementary ob-
servations on orbits and stabilizers.

9.1.1 Orbits and Stabilizers

Definition 9.1.1. Let σ : G×M → M, (g, m) 7→ g.m be a group action. In the
following we write σg(m) := σ(g, m) for the corresponding diffeomorphisms
of M and σm(g) := σ(g,m) for the orbit map of m. For m ∈ M , the set

Om := G.m := {g.m : g ∈ G} = {σ(g,m) : g ∈ G}

is called the orbit of m. The action is said to be transitive if there exists only
one orbit, i.e., for x, y ∈ M , there exists a g ∈ G with y = g.x. We write
M/G := {Om : m ∈ M} for the set of G-orbits on M .

Remark 9.1.2. If σ : G × X → X is an action of G on X, then the orbits
form a partition of X (Exercise 9.1.1).

A subset R ⊆ X is called a set of representatives for the action if each
G-orbit in X meets R exactly once:

(∀x ∈ X) |R ∩ Ox| = 1.

Examples 9.1.3. (1) We consider the action of the circle group

T = {z ∈ C× : |z| = 1}

on C by
σ : T× C→ C, t.z = tz.

The orbits of this action are concentric circles:

Oz = {tz : t ∈ T} = {w ∈ C : |w| = |z|}.

A set of representatives is given by

R := [0,∞[= {r ∈ R : r ≥ 0}.

(2) For K ∈ {R,C} and the action

σ : GLn(K)×Kn → Kn, (g, x) 7→ gx,

there are only two orbits:

O0 = {0} and Ox = Kn \ {0} for x 6= 0.
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Each non-zero vector x ∈ Kn can be complemented to a basis for Kn, hence
arises as a first column of an invertible matrix g. Then ge1 = x implies that
Ox = Oe1 . We conclude that Kn \ {0} = Oe1 .

(3) For the conjugation action

GLn(K)×Mn(K) → Mn(K), (g,A) 7→ gAg−1,

the orbits are the similarity classes of matrices OA = {gAg−1 : g ∈ GLn(K)}.
Definition 9.1.4. Let σ : G × M → M, (g,m) 7→ g.m, be an action of the
group G on M . For m ∈ M , the subset

Gm := {g ∈ G : g.m = m}

is called the stabilizer of m. For g ∈ G we write

Fix(g) := Mg := {m ∈ M : g.m = m}

for the set of fixed points of g in M . We then have

m ∈ Mg ⇐⇒ g ∈ Gm.

For a subset S ⊆ M we write

GS :=
⋂

m∈S

Gm = {g ∈ G : (∀m ∈ S) g.m = m}

and for H ⊆ G we write

MH := {m ∈ M : (∀h ∈ H) h.m = m}

for the set of points in M fixed by H.

Lemma 9.1.5. For each smooth action σ : G×M → M , the following asser-
tions hold:

(i) For each m ∈ M , the stabilizer Gm of m is a closed subgroup of G.
(ii) For m ∈ M and g ∈ G, the following equality holds: Gg.m = gGmg−1.
(iii) If S ⊆ M is a G-invariant subset, then GS E G is a normal subgroup.

Proof. (i) That Gm is a subgroup is a trivial consequence of the action ax-
ioms. Its closedness follows from the continuity of the orbit map σm and the
closedness of the points of M .

(ii) If h ∈ Gm, then

ghg−1.(g.m) = ghg−1g.m = gh.m = g.m,

hence ghg−1 ∈ Gg.m and thus gGmg−1 ⊆ Gg.m. Similarly, we get g−1Gg.mg ⊆
Gg−1.(g.m) = Gm and therefore gGmg−1 = Gg.m.

(iii) follows directly from (ii). ut
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The normal subgroup GM consisting of all elements of G which do not
move any element of M is called the effectivity kernel of the action. It is the
kernel of the corresponding homomorphism G → Diff(M), g 7→ σg.

Proposition 9.1.6. Let σ : G × M → M be a smooth action of G on M .
Recall the associated Lie algebra homomorphism L(σ) : L(G) → V(M) from
Proposition 8.1.14. Then the following assertions hold:

(i) m ∈ MG ⇒ L(σ)(x)(m) = 0 for each x ∈ L(G). The converse holds if G
is connected.

(ii) If L(σ)(L(G))(m) = Tm(M), then the orbit Om of m is open.

Proof. (i) Suppose first that m is a fixed point and let x ∈ L(G). Then

L(σ)(x)(m) =
d

dt t=0
expG(−tx).m =

d

dt t=0
m = 0.

If, conversely, all vector fields L(σ)(x) vanish in m, then m is a fixed point
for all flows generated by these vector fields, which leads to expG(x).m = m
for each x ∈ L(G). This means that Gm ⊇ 〈expG L(G)〉, which in turn is the
identity component of G (Lemma 8.2.9). If G is connected, we get G = Gm.

(ii) Since the linear map T1(σm) : L(G) → Tm(M), x 7→ L(σ)(x)(m) is
surjective, the Implicit Function Theorem 7.1.9 implies that G.m = σm(G) is
a neighborhood of m. Since all maps σg are diffeomorphisms of M , σg(G.m) =
gG.m = G.m also is a neighborhood of g.m, so that G.m is open. ut
Corollary 9.1.7. For each m ∈ M ,

L(Gm) = {x ∈ L(G) : L(σ)(x)(m) = 0}.

The preceding proposition shows in particular that the orbit Om is a sub-
manifold if m is a fixed point (zero-dimensional case) and if Om is open. Our
next goal is to show that orbits of smooth actions always carry a natural
manifold structure. This leads us to the geometry of homogeneous spaces in
the next section.

Exercises for Section 9.1

Exercise 9.1.1. Show that the orbits of a group action σ : G×M → M form
a partition of M .

Exercise 9.1.2. Show that the following maps define group actions and de-
termine their orbits by naming a representative for each orbit (K = R,C).

(a) GLn(K)×Kn → Kn, (g, v) 7→ gv.
(b) On(R)× Rn → Rn, (g, v) 7→ gv.
(c) GLn(C)×Mn(C) → Mn(C), (g, x) 7→ gxg−1.
(d) Un(K)×Hermn(K) → Hermn(K), (g, x) 7→ gxg−1.
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(e) GLn(K)×Hermn(K) → Hermn(K), (g, x) 7→ gxg∗.
(f) On(R)× (Rn × Rn) → Rn × Rn, (g, (x, y)) 7→ (gx, gy).

Exercise 9.1.3. For a complex number λ ∈ C, consider the smooth action

σ : R× C→ C, σ(t, z) := etλz.

(1) Sketch the orbits of this action in dependence of λ.
(2) Under which conditions are there compact orbits?
(3) Describe the corresponding vector field.

Exercise 9.1.4. For complex numbers λ1, λ2 ∈ C, consider the smooth action

σ : R× C2 → C2, σ(t, (z1, z2)) := (etλ1z1, e
tλ2z2).

(1) For which pairs (λ1, λ2) are there bounded orbits?
(2) For which pairs (λ1, λ2) are there compact orbits?
(3) Describe a situation where the closure of some orbit is compact, but the

orbit itself is not.

Exercise 9.1.5. Let G be a Lie group. For x ∈ g, let xl be the left invariant
vector field on G with xl(1) = x and xr the right invariant vector field on G
with xr(1) = x. Show that

(i) the flow Φxl
t : G → G of xl is given by

Φxl
t (g) = g expG(tx) = expG(t Ad(g)x)g,

whereas the flow Φxr
t : G → G of xr is given by Φxr

t (g) = expG(tx)g,
(ii) xr(g) = T (cg)xl(g),
(iii) for the (left) actions σl : G×G → G, (g, h) 7→ σl(g, h) = λg(h) = gh and

σr : G × G → G, (g, h) 7→ σr(g, h) = ρg−1(h) = hg−1, we have L(σl)x =
−xr and L(σr)(x) = xl,

(iv) xl 7→ −xr yields a Lie algebra isomorphism between the Lie algebra of left
invariant vector fields and the Lie algebra of right invariant vector fields
on G.

Exercise 9.1.6. Let σ : G ×M → M be a smooth action of a Lie group G
on a smooth manifold M . Show that (σg)∗

(
L(σ)(x)

)
= L(σ)

(
Ad(g)x

)
for all

g ∈ G and x ∈ g.

9.1.2 Transitive Actions and Homogeneous Spaces

The main result of this section is that for any smooth action of a Lie group G
on a smooth manifold M , all orbits carry a natural manifold structure. First
we take a closer look at transitive actions, i.e., actions with a single orbit.
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Definition 9.1.8. (a) Let G be a group and H a subgroup. We write

G/H := {gH : g ∈ G}
for the set of left cosets of H in G and qG/H : G → G/H, g 7→ gH for the
quotient map. Then

σ : G×G/H → G/H, (g, xH) 7→ gxH

defines a transitive action of G on the set G/H (easy exercise).
(b) Let G be a group and σ1 : G×M1 → M1 and σ2 : G×M2 → M2 two

actions of the group G on sets. A map f : M1 → M2 is called G-equivariant if

f(g.m) = g.f(m) holds for all g ∈ G,m ∈ M1.

Remark 9.1.9. Let σ : G×M → M be an action of the group G on the set
M . Fix m ∈ M . Then the orbit map (cf. Definition 8.1.11)

σm : G → Om ⊆ M, g 7→ g.m

factors through a bijective map

σm : G/Gm → Om, gGm 7→ g.m

which is equivariant with respect to the G-actions on G/Gm and M (Exercise).

The preceding remark shows that if we want to obtain a manifold structure
on orbits of smooth actions, it is natural to try to define a manifold structure
on the coset spaces G/H for closed subgroups H of a Lie group G.

Theorem 9.1.10. Let G be a Lie group and H ≤ G a closed subgroup. Then
the coset space G/H, endowed with the quotient topology, carries a natural
manifold structure for which the quotient map q : G → G/H, g 7→ gH is a
submersion.

Moreover, σ : G × G/H → G/H, (g, xH) 7→ gxH defines a smooth action
of G on G/H.

Proof. Let E ⊆ L(G) be a vector space complement of the subspace L(H)
and VE be as in the Closed Subgroup Theorem 8.3.7(iii).

Step 1 (The topology on G/H): We endow M := G/H with the quo-
tient topology. Since for each open subset O ⊆ G the product OH is open
(Exercise 8.3.10), the openness of OH = q−1(q(O)) shows that q is an open
map, i.e., maps open subsets to open subsets.

To see that G/H is a Hausdorff space, let g1, g2 ∈ G with g1H 6= g2H,
i.e., g1 6∈ g2H. Since H is closed, there exists a 1-neighborhood U1 in G with
U1g1 ∩ g2H = ∅, and further a symmetric 1-neighborhood U2 with U−1

2 U2 ⊆
U1. Then U2g1H and U2g2H are disjoint q-saturated open subset of G, so that

q(U2g1H) = q(U2g1) and q(U2g2H) = q(U2g2)
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are disjoint open subsets of G/H, separating g1H and g2H. This shows that
G/H is a Hausdorff space.

We also observe that the action map σ is continuous because
idG×q : G × G → G × G/H is a quotient map since q is open (cf. Exer-
cise 7.2.13) and

σ ◦ (idG×q) = q ◦mG : G×G → G/H, (g, x) 7→ gxH

is continuous.
Step 2 (The atlas of G/H): Let W := q(expG(VE)) with VE as above

and define a smooth map

pE : q−1(W ) = expG(VE)H → VE by expG(x)h 7→ x.

Since q−1(W ) is open in G, W is open in G/H. Moreover, a subset O ⊆
W is open if and only if q−1(O) ⊆ q−1(W ) is open. Since q−1(O) =
expG

(
pE(q−1(O))

)
H and q−1(W ) ∼= VE×H, this is equivalent to pE(q−1(O))

being open in VE . Therefore the map ψ : W → VE , q(g) 7→ pE(g) is a homeo-
morphism and (ψ, W ) is a chart of G/H.

For g ∈ G we put Wg := g.W and ψg(x) = ψ(g−1.x). Since all maps
σg : G/H → G/H are homeomorphisms (by Step 1), we thus get charts
(ψg,Wg)g∈G, and it is clear that

⋃
g∈G Wg = G/H.

We claim that this collection of homeomorphisms is a smooth atlas of
G/H. Let g1, g2 ∈ G and assume that Wg1 ∩ Wg2 6= ∅. We then have for
x ∈ VE :

ψg1 ◦ ψ−1
g2

(x) = ψ(g1
−1g2.ψ

−1(x)) = ψ
(
g1
−1g2.q(expG(x))

)

= ψ
(
q(g1

−1g2 expG(x))
)

= pE

(
g1
−1g2 expG(x)

)
.

Since pE is smooth, this map is smooth on its open domain, which shows that
(ψg,Wg)g∈G is a smooth atlas of G/H.

Step 3 (Smoothness of the maps σg): For g1, g2 ∈ G we have
σg1(Wg2) = Wg1g2 and ψg1g2 ◦ σg1 = ψg2 , which immediately implies that
σg1 |Wg2

: Wg2 → Wg1g2 is smooth. Since g2 was arbitrary, all maps σg, g ∈ G,
are smooth. From σg ◦ σg−1 = idM we further derive that they are diffeomor-
phisms.

Step 4 (q is a submersion): The smoothness of q on q−1(W ) follows
from ψ(q(g)) = pE(g) and the smoothness of pE on q−1(W ). Moreover,
T1H(ψ)T1(q) = T1(pE) : L(G) → E is the linear projection onto E with
kernel L(H), hence surjective. This proves that T1(q) is surjective.

For each g ∈ G, we have q ◦ λg = σg ◦ q, so that Step 3 implies that q is
smooth on all of G. Taking derivatives, we obtain

Tg(q) ◦ T1(λg) = T1H(σg) ◦ T1(q),

and since all σg are diffeomorphisms, this implies that all differentials Tg(q)
are surjective, hence that q is a submersion.
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Step 5 (Smoothness of the action of G/H): Since q is a submersion,
the product map idG×q : G×G → G×G/H also is a submersion. In view of
Proposition 7.3.16, it therefore suffices to show that

σ ◦ (idG×q) : G×G → G/H

is a smooth map, which follows from σ ◦ (idG×q) = q ◦mG. ut
For later use we collect some facts from Step 1 of the proof of Theorem

9.1.10 into a separate corollary.

Corollary 9.1.11. Let G be a Lie group and H ≤ G a closed subgroup. Then
for any x ∈ G/H there exists an open neighborhood U ⊆ G/H and a smooth
section σ : U → G for the quotient map q : G → G/H such that

mσ : U ×H → σ(U)H, (u, h) 7→ σ(u)h

is a diffeomorphism onto an open subset of G.

The following corollary shows that for each smooth group action, all orbits
carry natural manifold structures. Not all these manifold structures turn these
orbits into submanifolds, as the dense wind (see Example 8.3.12) shows.

Corollary 9.1.12. Let σ : G ×M → M be a smooth action of the Lie group
G on M . Then for each m ∈ M the orbit map σm : G → M, g 7→ g.m factors
through a smooth injective equivariant map

σm : G/Gm → M, gGm 7→ g.m,

whose image is the set Om.

Proof. The existence of the map σm is clear (Remark 9.1.9). Since the quotient
map q : G → G/Gm is a submersion, the smoothness of σm follows from the
smoothness of the map σm ◦ q = σm (Proposition 7.3.16). ut

The preceding corollary provides on each orbit Om of a smooth Lie group
action the structure of a smooth manifold. Its dimension is given by

dim(G/Gm) = dim G− dim Gm = dimL(G)− dimL(Gm)
= dimL(σ)(L(G))(m),

because L(Gm) is the kernel of the linear map

L(G) → Tm(M), x 7→ L(σ)(x)(m)

(Corollary 9.1.7). In this sense we may identify the subspace L(σ)(L(G))(m) ⊆
Tm(M) with the tangent space of the orbit Om.

We want to show that if G has at most countably many connected com-
ponents, then Om is always an initial submanifold. For this we a lemma.
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Lemma 9.1.13. Let σ : G×M → M be a smooth action and m ∈ M . Suppose
that N is a closed submanifold of an open neighborhood of m in M such that
m ∈ N and Tm(M) = Tm(N)⊕T1(σm)(g). Further suppose that C is a closed
submanifold of an open neighborhood of 1 in G such that g = T1(C) ⊕ gm.
Then there are open neighborhoods Co, No, and Mo of 1 and m in C, N and
M , respectively, such that

Φ := σ|Co×No
: Co ×No → Mo := σ(Co ×No) ⊆ M

is a diffeomorphism.

Proof. We have T(1,m)(Φ)(x, v) = v + T1(σm)x. If this expression vanishes,
then v ∈ Tm(N) ∩ T1(σm)(g) = {0} also implies T1(σm)x = 0. Therefore
T(1,m)(Φ) is injective. From

Tm(M) = Tm(N) + T1(σm)(g) = Tm(N) + T1(σm)(T1(C)),

we further derive that it is bijective. Now the claim follows with the Inverse
Function Theorem 7.1.5. ut
Proposition 9.1.14. Let σ : G ×M → M be a smooth action and m ∈ M .
If G has at most countably many connected components, then the immersion
σm : G/Gm → Om ⊆ M defines on the orbit Om the structure of an initial
submanifold of M .

Proof. Using Lemma 9.1.13 and Corollary 9.1.11, we find submanifolds N and
C of M and G, and a neighborhood U of m in M such that the action gives
a diffeomorphism Φ : C × N → U . Each of the sets σ(C × {n}) belongs a
single G-orbit. We claim that, if that orbit happens to be Om, σ(C × {n})
contains an open subset of Om. In fact, the manifold structure on Om is the
one inherited from G/Gm, so that σ(C × {n}) corresponds to a set of the
form CgoGm ⊆ G/Gm, where σ(go, m) = n and T1(C) ∩ L(Gn) = {0}. This
implies that the map C → G/Gm, c 7→ cgGm has surjective differential in 1, so
that its image CgGm contains an open subset of G/Gm. Next we recall from
Proposition 8.1.15(iv)(d) that every pairwise disjoint family of open subsets
of G is countable, and this property is inherited by G/Gm which carries the
quotient topology. Since the sets σ(C×{n}), n ∈ N , are pairwise disjoint, the
preceding argument implies that N ∩ Om is countable.

Now let f : M ′ → Om be a map for which the composition with the
inclusion map ι : Om

∼= G/Gm → M is smooth. Let m′ ∈ M . We have
to show that ι−1 ◦ f is smooth in a neighborhood of m′. Since G acts on
Om and M by smooth maps, we may w.l.o.g. assume that f(m′) = m, that
f(M ′) ⊆ σ(C × N) and that M ′ is connected. Now Φ−1 ◦ f : M ′ → C × N
is a smooth map and for the N -projection pN : C × N → N , the image
(pN ◦ Φ−1 ◦ f)(M ′) is connected by smooth arcs. On the other hand, it is
contained in the countable subset N ∩ Om, hence trivial because every non-
constant smooth arc is uncountable. This proves that f(M ′) ⊆ σ(C × {m}),
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and the map h := pC ◦ Φ−1 ◦ f : M ′ → C is smooth. Now f(x) = σ(h(x),m),
and the smoothness of G on Om implies that ι−1 ◦ f is smooth. This proves
that ι defines on the subset Om of M the structure of a smooth initial sub-
manifold. ut
Remark 9.1.15. The assumption that G has at most countably many con-
nected components is crucial for Om to be an initial submanifold. To see this,
consider the group Rd, which is the additive group R, endowed with the dis-
crete topology. This is a 0-dimensional Lie group, and σ(x, y) = x + y defines
a transitive action of G = Rd on M = R. In this case the spaces G/Gm

∼= G
are discrete, but Om = R is not.

In some case the orbit Om may already have another manifold structure,
f.i., if it is a submanifold of M . In this case the following proposition says that
this manifold structure coincides with the one induced by identifying it with
G/Gm.

Corollary 9.1.16. Let σ : G×M → M be a smooth action and m ∈ M . We
assume that G has at most countably many connected components. If Om is
a submanifold of M , then the map σm : G/Gm → Om is a diffeomorphism.

Proof. We recall from Lemma 7.6.5 that the submanifold Om of M is ini-
tial. On the other hand, we have seen in Proposition 9.1.14 that the map
σm : G/Gm → M also defines an initial submanifold structure on Om. There-
fore the assertion follows from the uniqueness of initial submanifold structures
(Remark 7.6.2). ut
Corollary 9.1.17. If σ : G×M → M is a transitive smooth action of the Lie
group G on the manifold M and m ∈ M , then the orbit map σm : G/Gm → M
is a G-equivariant diffeomorphism.

Definition 9.1.18. The manifolds of the form M = G/H, where H is a
closed subgroup of a Lie group G, are called homogeneous spaces. We know
already that the canonical action of G on G/H is smooth and transitive,
and Corollary 9.1.17 shows the converse, i.e., that each transitive action is
equivalent to the action on some G/H because there exists an equivariant
diffeomorphism.

9.1.3 Examples

Example 9.1.19 (Graßmannians). Let M := Grk(Rn) denote the set of
all k-dimensional subspaces of Rn, the Graßmann manifold of degree k. We
know from linear algebra that the natural action

σ : GLn(R)×Grk(Rn) → Grk(Rn), (g, F ) 7→ g(F )

is transitive (Exercise). Let F := span{e1, . . . , ek}. Writing elements of Mn(R)
as 2× 2-block matrices, according to
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Mn(R) =
(

Mk(R) Mk,n−k(R)
Mn−k,k(R) Mn−k(R)

)
,

the stabilizer of F in GLn(R) is

GLn(R)F :=
{ (

a b
0 d

)
: a ∈ GLk(R), b ∈ Mk,n−k(R), d ∈ GLn−k(R)

}
,

which is a closed subgroup. Then the homogeneous space GLn(R)/ GLn(R)F

carries a natural manifold structure, and since the orbit map of F induces a
bijection

σF : GLn(R)/ GLn(R)F → Grk(Rn), g GLn(R)F 7→ g(F ),

we obtain a manifold structure on Grk(Rn) for which the natural action of
GLn(R) is smooth.

The dimension of Grk(Rn) is given by

dim GLn(R)− dimGLn(R)F = n2 − (k2 + (n− k)2 + k(n− k)) = k(n− k).

Note that for k = 1 we obtain the manifold structure on the projective
space P(Rn).

Example 9.1.20 (Flag manifolds). A flag in Rn is a tuple

F = (F1, . . . , Fm)

of subspaces of Rn with

F1 ⊆ F2 ⊆ . . . ⊆ Fm.

Let ki := dim Fi and call (k1, . . . , km) the signature of the flag. We write
Fl(k1, . . . , km) for the set of all flags of signature (k1, . . . , km) in Rn. Clearly,

Fl(k1, . . . , km) ⊆ Grk1(Rn)× . . .×Grkm(Rn).

We also have a natural action of GLn(R) on the product of the Graßmann
manifolds by

g.(F1, . . . , Fm) := (g(F1), . . . , g(Fm)).

To describe a base point, let

F 0
i := span{e1, . . . , eki}

and note that

F0 := (F 0
1 , . . . , F 0

m) ∈ Fl(k1, k2, . . . , km).

From basic linear algebra, it follows that the action of GLn(R) on the subset
Fl(k1, . . . , km) is transitive, which is shown by choosing for each flag F of the
given signature a basis (bi)1≤i≤n for Rn such that
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Fi := span{b1, . . . , bki} for i = 1, . . . , m.

Writing elements of Mn(R) as (m × m)-block matrices according to the
partition

n = k1 + (k2 − k1) + (k3 − k2) + . . . + (km − km−1) + (n− km),

the stabilizer of F0 is given by

GLn(R)F0 = {(gij)i,j=1,...,m : (i > j ⇒ gij = 0); gii ∈ GLki−ki−1(R)},

which is a closed subgroup of GLn(R). We now proceed as above to get a man-
ifold structure on the set Fl(k1, . . . , km), turning it into a homogeneous space,
called a flag manifold (Exercise: Calculate the dimension of Fl(1, 2, 3, 4)(R6).)

Example 9.1.21. The orthogonal group On(R) acts smoothly on Rn, and its
orbits are the spheres

S(r) := {x ∈ Rn : ‖x‖ = r}, r ≥ 0.

We know already that all these spheres carry natural manifold structures.
Therefore Corollary 9.1.17 implies that for each r > 0 we have

S(r) ∼= Sn−1 ∼= On(R)/ On(R)e1 ,

where

On(R)e1 =
{ (

a 0
0 d

)
: a ∈ {±1}, d ∈ On−1(R)

} ∼= (Z/2Z)×On−1(R).

9.2 Frame Bundles

Tensor bundles are obtained naturally from the tangent bundle using con-
structions from linear algebra. The sections of these bundles are tensor fields.
Tensor fields of various kinds play an important role in differential geometry
and its applications. In particular, we give a unified construction of tensor
bundles as associated bundles for the frame bundle.

We start by introducing the general concept of a fiber bundle which we
then specialize to vector and principal bundles This construction requires
bundles whose fibers are not necessarily vector spaces.

9.2.1 Fiber Bundles

Definition 9.2.1. (a) A quadruple (F , M, F, π), where F , M and F are
smooth manifolds and π : F → M is a smooth map, is called a fiber bun-
dle with typical fiber F over M if there exists an open covering (Ui)i∈I of M
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and diffeomorphisms Φi : π−1(Ui) → Ui × F, called local trivializations, such
that the following diagram commutes

Ui × F

prUi %%KKKKKKKKKK π−1(Ui)

π

²²

Φioo

Ui.

Then F is called the total space of (F , π), and M is called the base space of
(F , π). The preimage Fm := π−1(m) is called the fiber over m. We also refer
to the family (Φi)i∈I as a local trivialization of the bundle.

(b) A morphism of fiber bundles ϕ : (F1,M1, F1, π1) → (F2,M2, F2, π2),
is a smooth map ϕ : F1 → F2 for which there exists a smooth map
ϕM : M1 → M2 with π2 ◦ ϕ = ϕM ◦ π1, i.e., the following diagram commutes:

F1
ϕ //

π1

²²

F2

π2

²²
M1 ϕM

// M2.

A morphism ϕ : F1 → F2 of fiber bundles is called an isomorphism if there
exists a second morphism of fiber bundles ψ : F2 → F1 with ψ ◦ ϕ = idF1

and ϕ ◦ ψ = idF2 . It is easy to see that a morphism of fiber bundles is an
isomorphism of fiber bundles if and only if it is a diffeomorphism (Exercise).

An isomorphism ϕ : F1 → F2 of fiber bundles over M is called an equiva-
lence if ϕM = idM .

(c) The pair (M × F, prM ) is called the trivial fiber bundle with fiber F .
(d) If (F ,M, F, π) is a fiber bundle, then for each open subset U ⊆ M and

FU := π−1(U), we obtain the fiber bundle (FU , U, F, π|FU
). A bundle chart

(ψ,FU ) is an equivalence ϕ : FU → U × F followed by a chart ρ = ρU × ρF

with ρU : U → Rn and ρF : F → Rm. For i, j ∈ I we put Uij := Ui ∩Uj . Then
the map Φj ◦ Φ−1

i ∈ Diff(Uij × F ) is a self-equivalence of the trivial bundle.
This implies that it has the form

(x, f) 7→ (x, Φji(x)(f)),

for a function Φji : Uij → Diff(F ), called the transition function for F from
Φi to Φj .

The construction of the tangent bundle and the tangent map yields exam-
ples of special bundles with vectors spaces as fibers. These will be call vector
bundles.

Definition 9.2.2. (a) Let M be a differentiable manifold and V a finite-
dimensional vector space. A smooth vector bundle with typical fiber V on M
is a differentiable manifold V, together with a smooth map π : V → M such
that
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(i) All fibers Vp := π−1(p) carry the structure of a vector space.
(ii) For each p ∈ M , there is an open neighborhood U of p in M and a

diffeomorphism ϕU : π−1(U) → U × V , called a local trivialization, with
prU ◦ϕU = π, and for all q ∈ U , the map

prV ◦ϕU

∣∣
Vq

: Vq → V

is a linear isomorphism, where prU (u, v) = u and prV (u, v) = v.

(b) A smooth map σ : M → V with π ◦ σ = idM is called a section of the
bundle. The set Γ (V) of sections of V is a vector space with respect to the
pointwise addition and scalar multiplication.

(c) The vector bundle V = M × V with the projection prM (m, v) := m
and the obvious vector space structure on the fibers {p} × V , is called the
trivial vector bundle with typical fiber V .

Definition 9.2.3. Let πV : V → M and πW : W → N be smooth vector
bundles. A smooth map ϕ : V → W is called a morphism of vector bundles
if there exists a smooth map ϕM : M → N with ϕM ◦ πV = πW ◦ ϕ and

the restrictions ϕp : Vp → Wϕ(p) to the fibers are linear. We then have a
commutative diagram

V
πV

²²

ϕ // W
πW

²²
M ϕM

// N.

Example 9.2.4. The tangent bundle T (M) of a smooth n-dimensional man-
ifold M is a smooth vector bundle with typical fiber V = Rn and the tangent
map T (f) : T (M) → T (N) of a smooth map f : M → N is a morphism of
vector bundles.

Remark 9.2.5. The fiberwise linearity of the local trivializations of a vector
bundle (cf. Definition 9.2.2) show that if a fiber bundle (F , M, F, π) is a vector
bundle, then

(a) The typical fiber F is a vector space.
(b) One can choose a local trivialization Φi in such a way that for i, j ∈ I we

always have Φji(Uij) ⊆ GL(F ).

If, conversely, (a) and (b) are satisfied, then

Φ−1
i (x, v) + Φ−1

i (x,w) := Φ−1
i (x, v + w), λΦ−1

i (x, v) := Φ−1
i (x, λv)

defines on each fiber Fx, x ∈ Ui, a vector space structure, which does not
depend on the choice of i. We thus obtain on F the structure of a vector
bundle.
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Example 9.2.6. Let M be a manifold of dimension n and TM its tangent
bundle. The construction of the manifold structure of TM in Definition 7.3.6
shows that TM is a vector bundle with typical fiber Rn (cf. Example 9.2.4).
A local trivialization is obtained from a smooth atlas (ϕi, Ui)i∈I of M by

Φ−1
i : Ui × Rn → T (Ui) = T (M)Ui

, (p, v) 7→ Tp(ϕi)−1v.

Thus the transition function is given by

Φji(p) = Tp(ϕj)Tp(ϕi)−1 = d(ϕj ◦ ϕ−1
i )

(
ϕi(p)

)
.

Using the atlas (ϕi, Ui)i∈I and the identity as a chart for Rn, the local triv-
ialization yields the atlas for TM described in Definition 7.3.6. If the ϕi-
coordinates are denoted by x1, . . . , xn and the ϕj-coordinates are denoted by
y1, . . . , yn, the transition functions can be written in the form

Φji(p) =
(∂yr(ϕi(p))

∂xs

)
1≤r,s≤n

∈ GLn(R) ∼= GL(Rn).

Definition 9.2.7 (Principal bundles). Let (F ,M, G, π) be a fiber bundle
over a Lie group G. If σ : F ×G → F is a smooth right action of G on F (cf.
Remark 8.1.12), then (F ,M,G, π, σ) is called a principal bundle with structure
group G if there exists a local trivialization (Φi)i∈I consisting of maps

Φi : π−1(Ui) → Ui ×G

which are equivariant with respect to the natural right action (x, h)g := (x, hg)
of G on Ui ×G, i.e.,

Φ−1
i (x, hg) = Φ−1

i (x, h)g, x ∈ Ui, h, g ∈ G.

Remark 9.2.8. For each principal bundle (F ,M,G, π, σ), the action σ of G
on F is free, i.e., xg = x implies g = 1, and transitive on the fibers of π
(Exercise).

Example 9.2.9 (Frame bundles). Let (V,M, V, π) be a vector bundle. We
set

GL(V) :=
∐

p∈M

Iso(V,Vp),

where Iso(V, W ) denotes the set of linear isomorphisms V → W of two vector
spaces. Then the map

π̃ : GL(V) −→ M, ϕ 7−→ p if ϕ ∈ Iso(V,Vp)

is surjective, and

σ : GL(V)×GL(V ) → GL(V), (ϕ, g) 7→ ϕ ◦ g
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defines a right action of the Lie group GL(V ) on GL(V) which is easily seen
to be free.

We want to turn GL(V) into a GL(V )-principal bundle. First, we have
to construct a smooth manifold structure on GL(V). We start with a local
trivialization (Φi)i∈I of V so that Φi : π−1(Ui) → Ui × V . For each i ∈ I, we
have a natural map

Ψ̃i : Ui ×GL(V ) → GL(V), (x, g) 7→ Ψi,x ◦ g,

where Ψi,x : V → Vx, v 7→ Φ−1
i (x, v). Since the action of GL(V ) on GL(V) is

free and transitive on the fibers Iso(V,Vp), the map Ψ̃i is injective with image
π̃−1(Ui). We denote its inverse by Φ̃i. For i, j ∈ I, the maps

Ψ̃−1
j ◦ Ψ̃i : Uij ×GL(V ) → Uij ×GL(V )

(x, g) 7→ (
x, (Ψ−1

j,x ◦ Ψi,x)g
)

are smooth. In fact, Ψ−1
j,x ◦ Ψi,x = Φji(x) is the transition function of V with

respect to the local trivialization (Φi)i∈I .
We now endow GL(V) with the topology for which a subset O ⊆ GL(V)

is open if and only if Ψ̃−1
j (O) is open for each j. Since the maps Ψ̃−1

j ◦ Ψ̃i are
homeomorphisms, each Ψ̃i is an open embedding. Moreover, the projection π̃
is continuous because all compositions

prUi
= π̃ ◦ Ψ̃i : Ui ×GL(V ) → Ui

are continuous. From the continuity of π̃ and the fact that the Ψ̃j ’s are open
embeddings, it follows easily that GL(V) is a Hausdorff space.

From the smoothness of the maps Ψ̃−1
j ◦ Ψ̃i it further follows that GL(V)

carries a unique smooth manifold structure for which the maps Ψ̃i are dif-
feomorphisms onto open subsets. Thus the Φ̃i : π̃−1(Ui) → Ui × GL(V ) are
GL(V )-equivariant local trivializations, so that (GL(V),M, GL(V ), π̃, σ) is a
principal bundle. It is called the frame bundle of V. Note that the transition
functions of the frame bundle with respect to the local trivialization (Φ̃i)i∈I

are given by
Φ̃ji(x) = λΦji(x) : GL(V ) → GL(V ),

where the Φji are the transition functions of V with respect to the local
trivialization (Φi)i∈I and λg denotes left multiplication by g.

If V = TM is the tangent bundle of a smooth manifold M (Example 9.2.4)
with typical fiber V = Rn, we simply write GL(M) := GL(TM) and call it the
frame bundle of M . It is a principal bundle with structure group GL(Rn) ∼=
GLn(R).

Example 9.2.10 (Associated bundles). Let (P, M,G, π, σ) be a principal
bundle and F a smooth manifold with a smooth left action τ : G × F → F .
Then
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(p, f) · g := (p · g, g−1 · f)

defines a smooth right G-action on P × F . For each x ∈ M , each G-orbit in
the invariant subset Px × F ⊆ P × F meets each of the sets {p0} × F exactly
once because G acts freely on P .

Let

P ×G F := P ×τ F := (P × F )/G := {G · (p, f) : p ∈ P, f ∈ F}

be the set of G-orbits in P × F . We write [p, f ] := G.(p, f) for the orbit of
(p, f) and π̃([p, f ]) := π(p) for the projection to M .

To turn P ×G F into a smooth manifold, we start with a G-equivariant
local trivialization (Φi)i∈I of the principal bundle P and consider the maps

Ψ̃i : Ui × F → P ×G F, (x, f) 7→ [Φ−1
i (x,1), f ].

As we have already seen above, all these maps are injective. Moreover, if
Φj ◦ Φ−1

i (x, g) = (x, Φji(x)g), then

Ψ̃−1
j ◦ Ψ̃i(x, f) = Ψ̃−1

j [Φ−1
i (x,1), f ] = (x, Φji(x) · f)

follows from

Ψ̃j(x, Φji(x) ·f) = [Φ−1
j (x,1), Φji(x) ·f ] = [Φ−1

j

(
x, Φji(x)

)
, f ] = [Φ−1

i (x,1), f ].

Now one argues as in Example 9.2.9 to see that P ×G F , endowed with the
quotient topology is a Hausdorff space and that it carries a unique smooth
structure for which all the sets π̃−1(Ui) ⊆ P ×G F are open and the maps
Ψ̃i : Ui × F → π̃−1(Ui) are diffeomorphisms. We thus obtain a fiber bundle
(P ×G F,M,F, π̃), for which the maps Φ̃i := Ψ̃−1

i : π̃−1(Ui) → Ui × F form
local trivializations. It is called the bundle associated with P and the G-space
F . Note that the transition functions of P ×G F with respect to the local
trivialization (Φ̃i)i∈I are given by

Φ̃ji(x)(f) = Φji(x) · f,

where the Φji are the transition functions of P with respect to the local
trivialization (Φi)i∈I .

Example 9.2.11. An interesting special case arises for the one point space
F = {∗} (endowed with the trivial G-action). Then P×GF ∼= P/G is the set of
G-orbits in P . Since the map π : P → M is a submersion whose fibers are the
G-orbits in P , it follows that the map π̃ : P ×G {∗} → M is a diffeomorphism.

Example 9.2.12. Let (V,M, V, π) be a vector bundle as in Example 9.2.9.
Then its frame bundle GL(V) is a GL(V )-principal bundle and we have the
canonical smooth action τ : GL(V )×V → V, (g, v) 7→ gv. From the definition
of the frame bundle GL(V), we immediately obtain a smooth map
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ev : GL(V)× V → V, (p, v) 7→ p(v),

which is a morphism of bundles over M . This map is constant on the GL(V )-
orbits in GL(V)× V under the action g · (p, v) := (p ◦ g−1, gv), hence factors
through a smooth bundle morphism

ev : GL(V)×GL(V ) V → V, [p, v] 7→ p(v)

(cf. Proposition 7.3.16). In each fiber, the map

(Iso(V,Vx)× V )/ GL(V ) → Vx, [p, v] 7→ p(v)

is bijective because for any fixed isomorphism p0 : V → Vx, each GL(V )-orbit
meets the set {p0} × V exactly once (cf. Exercise 9.2.8). This implies that ev
is a bijective submersion, and this implies that it is an equivalence of vector
bundles (cf. Definition 9.2.3).

Corollary 9.2.13. Let G be a Lie group, H a closed subgroup and
q : G → G/H the quotient map. We write g := L(G) and h := L(H). Let
po := 1H = q(1) be the canonical base point for G/H and σg be the left trans-
lation by g on G/H (see Definition 9.1.8). Then Tpo(G/H) ∼= g/h and with
the H-action on g/h given by Adg/h(h)(x + h) = Ad(h)x + h, the map

G×H g/h → T (G/H), [g, x + h] 7→ Tpo(σg)T1(q)x

is a G-equivariant bundle isomorphism.

Proof. The G-equivariance is clear once we have shown that the map is well-
defined. Thus, in view of Theorem 9.1.10, it only remains to show that

Tpo(σg) ◦ T1(q) = Tpo(σgh) ◦ T1(q) ◦Ad(h)−1.

In view of σg ◦ q = q ◦ λg and q ◦ ρh = q, this follows from

Tpo(σgh) ◦ T1(q) ◦Ad(h)−1 = T1(q ◦ λgh ◦ c−1
h ) = T1(q ◦ λg ◦ ρh)

= T1(q ◦ λg) = Tpo(σg) ◦ T1(q). ut

9.2.2 Sections

Sections of bundles can be viewed as generalizations of functions. In particular
in the case of vector bundles they unify a large number of concepts well-known
in classical analysis: Functions, vector fields, differential forms, and tensor
fields.

Definition 9.2.14. Let (F ,M, F, π) be a fiber bundle. A map s : M → F
is called a section of F if π ◦ s = idM . The set of all smooth sections of F
is denoted by Γ (F). If F is a vector bundle, then Γc(F) denotes the vector
space of all smooth sections s with compact support, i.e., s(m) = 0 for all m
outside of a compact set.
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The following proposition explains how smooth sections are described in
terms of local trivializations. It is an elementary consequence of the definitions.

Proposition 9.2.15. Let (F ,M, F, π) be a fiber bundle with local trivializa-
tions Φi : FUi

→ Ui×F , transition functions Φji, and s : M → F be a smooth
section. Then we obtain for each i ∈ I a smooth function si : Ui → F , deter-
mined by

Φi(s(x)) = (x, si(x)) for x ∈ Ui, (9.1)

and these functions satisfy the relation

sj(x) = Φji(x)(si(x)) for x ∈ Ui ∩ Uj . (9.2)

If, conversely, (si)i∈I is a family of smooth functions si : Ui → F satisfying
(9.2), then (9.1) yields a well-defined smooth section of F .

Example 9.2.16 (Density bundles). Let M be a smooth manifold of di-
mension n and π̃ : GL(M) → M be the frame bundle of M . For r > 0, consider
the one-dimensional representation ∆r : GLn(R) → R×+, ∆r(g) := | det g|−r.
Then the line bundle |Λ|r(M) := GL(M) ×∆r

R associated with this rep-
resentation via Example 9.2.10 is called the r-density bundle of M . Using
the notation from Example 9.2.6, the transition functions of |Λ|r(M) can be
written

Φji(p) =
∣∣ det d(ϕj ◦ ϕ−1

i )
(
ϕi(p)

)∣∣−r
.

The sections of |Λ|r(M) are called r-densities. For r = 1 we will simply call
them densities and write |Λ|(M). Their transformation properties under co-
ordinate changes is reminiscent of the change of variables formula in multi-
variable calculus and indeed, they play an important role in the integration
theory on manifolds.

We give an alternative description of the density bundles: Let p ∈ M

and L
(r)
p be the space of r-densities on Tp(M), i.e., all continuous functions

f : Tp(M)n → R satisfying

f(Av1, . . . , Avn) = | detA|rf(v1, . . . , vn)

for all v1, . . . , vn ∈ Tp(M) and A ∈ End
(
Tp(M)

)
. Note that f ∈ L

(r)
p is

uniquely determined by its values on a single basis for Tp(M), so that L
(r)
p is

one-dimensional. Set L(r)(M) =
∐

p∈M L
(r)
p and use a smooth atlas (ϕi, Ui)i∈I

of M to define maps Ψi : Ui × R→ L(r)(M) via

Ψi(p, t)
(

∂

∂x
(i)
1

∣∣
p
, . . . , ∂

∂x
(i)
n

∣∣
p

)
= t,

where the x
(i)
k are the coordinate functions for the chart ϕi. Then Ψi is injec-

tive with image π−1(Ui), where π : L(r)(M) → M is the obvious base point
projection. If now p ∈ Ui ∩ Uj , we have Ψi(p, t) = Ψj(p, s) if and only if
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t = Ψj(p, s)
(

∂

∂x
(i)
1

∣∣
p
, . . . , ∂

∂x
(i)
n

∣∣
p

)

=
∣∣ det

(∂x
(j)
l

∂x
(i)
k

(ϕi(p))
)∣∣rΨj(p, s)

(
∂

∂x
(j)
1

∣∣
p
, . . . , ∂

∂x
(j)
n

∣∣
p

)

=
∣∣ det

(∂x
(j)
l

∂x
(i)
k

(ϕi(p))
)∣∣rs

=
∣∣ det d(ϕj ◦ ϕ−1

i )
(
ϕi(p)

)∣∣rs.

Thus we can equip L(r)(M) with a line bundle structure such that the Φi :=
Ψ−1

i form a local trivialization. The corresponding transition functions are

Φji(p) =
∣∣ det d(ϕj ◦ ϕ−1

i )
(
ϕi(p)

)∣∣−r
,

which shows that L(r)(M) is indeed the bundle of r-densities.
It is also possible to give an explicit isomorphism |Λ|r(M) → L(r)(M): For

ϕ ∈ GL(M) and t ∈ R, let µϕ,t be the r-density on Tπ̃(ϕ)(M) satisfying

µϕ,t

(
ϕ(e1), . . . , ϕ(en)

)
= t,

where e1, . . . , en is the standard basis for Rn. Then µϕg,t = µϕ,∆r(g)−1t and

GL(M)×∆r R→ L(r)(M), [ϕ, t] 7→ µϕ,t (9.3)

is the desired bundle isomorphism.

Proposition 9.2.17. Let (P, M, G, q, σ) be a principal bundle and
τ : G× F → F be a smooth action. We consider the set

C∞(P, F )G := {α ∈ C∞(P, F ) : (∀p ∈ P )(∀g ∈ G) α(pg) = g−1 · α(p)}

of smooth G-equivariant maps. Then each α ∈ C∞(P, F )G defines a smooth
section

sα : M → P ×G F, q(p) 7→ [p, α(p)]

and we thus obtain a bijection

Φ : C∞(P, F )G → Γ (P ×G F ), α 7→ sα.

If, in addition, F is a vector space and τ a linear action, i.e., a representation,
then Φ is linear.

Proof. First we note that sα is well-defined because

[pg, α(pg)] = [p, g · α(pg)] = [p, α(p)]

for each p ∈ P . Since the map P → P ×G F, p 7→ [p, α(p)] is smooth,
the smoothness of sα follows from the fact that q : P → M is a submersion
(Proposition 7.3.16).
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Φ is injective: Suppose that Φ(α) = Φ(β). Then, for each p ∈ P , we have
[p, α(p)] = [p, β(p)], and this implies that α(p) = β(p) because the action of
G on P is free.

Φ is surjective: Let s : M → P ×G F be a smooth section. For each p ∈ P ,
there exists a unique element α(p) with s(q(p)) = [p, α(p)]. For each g ∈ G,
we then have

s(q(p)) = s(q(pg)) = [pg, α(gp)] = [p, g · α(pg)],

so that α : P → F is equivariant. It remains to show that α is smooth. It
suffices to show that for each local trivialization ϕ : PU → U × G, the map
α ◦ ϕ−1 is smooth. For x = q(p) ∈ U we have

s(x) = [ϕ−1(x,1), α(ϕ−1(x,1)] = ϕ̃−1(x, α(ϕ−1(x,1))).

Since ϕ̃ : P ×G F → U × F is a local trivialization, the map U → F,
x 7→ α(ϕ−1(x,1)) is smooth, so that (x, g) 7→ α(ϕ−1(x, g)) = g−1α(ϕ−1(x,1))
is also smooth. ut

9.2.3 Tensor Bundles and Tensor Fields

Recall the concept of a V -valued Pfaffian form ω : TM → V from Defini-
tion 7.3.9. The map ω can also be interpreted as a map

M →
∐

p∈M

Hom(Tp(M), V ), p 7→ ωp

such that ωp ∈ Hom(Tp(M), V ). This suggests to define a suitable vector
bundle for which ω is a section. We will do this in greater generality.

Definition 9.2.18. Let M be a smooth manifold of dimension n and view the
tangent bundle TM as the vector bundle GL(M)×GLn(R) Rn associated with
the frame bundle of M (cf. Example 9.2.9). For any representation of GLn(R)
on a vector space W , we obtain the vector bundleW := GL(M)×GLn(R) W →
M . To make our notation less clumsy we write E := Rn. If W is a GLn(R)-
invariant subspace of the tensor algebra T (E ⊕ E∗), we call πW : W → M a
tensor bundle over M .

On W := T r,s(E) := (E∗)⊗r ⊗E⊗s we have a representation of GL(E) by

g·(α1⊗· · ·⊗αr)⊗(α1⊗· · ·⊗vs) = ((g−1)∗α1⊗· · ·⊗(g−1)∗αr)⊗(gv1⊗· · ·⊗gvs).

We write T r,s(M) forW := GL(M)×GL(E)W and call it the bundle of tensors
of type (r, s). The smooth sections of T r,s(M) are called the tensor fields of
type (r, s). The bundle T ∗(M) := T 1,0(M) is called the cotangent bundle
of M .
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Example 9.2.19. If, in the situation of Definition 9.2.18, W := Hom(E, V ),
then the resulting vector bundle (W,M, W, πW) satisfies

Wp
∼= Hom(Tp(M), V )

because the evaluation map

Iso(E, Tp(M))×Hom(E, V ) → Hom(Tp(M), V ), (ϕ, α) 7→ α ◦ ϕ−1

factors through a bijection
(
Iso(E, Tp(M))×Hom(E, V )

)
/ GL(E) → Hom(Tp(M), V ), [(ϕ, α)] 7→ α◦ϕ−1.

If TM is trivial over an open subset U , then so is GL(M), and thus
WU

∼= GL(M)U ×GL(E) W is also trivial. Therefore Γ (WU ) ∼= C∞(U,W ) =
C∞(U, Hom(E, V )).

Similarly, the elements of Ω1(U, V ) are given by smooth functions ω ∈
C∞(U × E, V ) satisfying ωp := ω(p, ·) ∈ Hom(E, V ). This leads to a linear
isomorphism

Ω1(U, V ) → Γ (WU ), ω 7→ (p 7→ ωp),

which we use to identify these two spaces. Thus the V -valued Pfaffian forms
are simply the sections of W. In particular, the (scalar valued) Pfaffian forms
are the tensor fields of type (0, 1).

Example 9.2.20. Let M be a smooth manifold of dimension n and (ϕ,U) be
a chart on M . In Tp(M) and Tp(M)∗ we consider the ϕ-bases

(
∂

∂xj
|p

)
j=1,...,n

and (dxj(p))j=1,...,n, respectively, and we define nr+s elements of T r,s(M)p

by
(
dx⊗ ∂

∂x

)
(%,σ)

(p) := dx%(1)(p)⊗ . . .⊗ dx%(r)(p)⊗ ∂
∂xσ(1)

|p ⊗ . . .⊗ ∂
∂xσ(s)

|p,

where % : {1, . . . , r} → {1, . . . , n} and σ : {1, . . . , s} → {1, . . . , n} are ar-
bitrary functions. The resulting tensor fields

(
dx ⊗ ∂

∂x

)
(%,σ)

are called the
ϕ-basic fields on U . As for vector fields and Pfaffian forms this terminology
is doubly justified. On the one hand, the

(
dx ⊗ ∂

∂x

)
(%,σ)

(p) form a basis for
T r,s(M)p for every p ∈ U . On the other hand, combining Example 7.4.12 and
Example 7.4.10, we see that every local tensor field T ∈ Γ

(T r,s(U)
)

is of the
form

T |U =
∑

(%,σ)∈{1,...,n}r+s

c(%,σ) ·
(
dx⊗ ∂

∂x

)
(%,σ)

,

where c(%,σ) ∈ C∞(U) are uniquely determined by T .

Fix a smooth manifold M . Let ω ∈ Ω1(M) and X ∈ V(M). For every
p ∈ M , we can apply ω(p) to X(p) and obtain a number ω(p)

(
X(p)

)
. As usual,

if we consider all p ∈ M simultaneously, we get a function ω̃(X) : M → R
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which is defined by ω̃(X)(p) = ω(p)
(
X(p)

)
. This function is smooth, as we

easily see in local coordinates (see Exercise 9.2.1).
The form ω assigns a smooth function to each vector field X ∈ V(M).

Clearly, this assignment is an R-linear map ω̃ : V(M) → C∞(M). Recall from
Remark 7.4.14 that one can multiply vector fields by smooth functions and
in this way turn V(M) into a C∞(M)-module. For f ∈ C∞(M), ω ∈ Ω1(M)
and X ∈ V(M), we calculate:

ω̃(fX)(p) = ω(p)
(
f(p)X(p)

)
= f(p)

(
ω(p)

(
X(p)

))
=

(
f · ω̃(X)

)
(p).

This just means that ω̃ defines a C∞(M)-linear function V(M) → C∞(M).
We denote the set of all these maps by

V(M)∗ := HomC∞(M)(V(M), C∞(M)).

In algebraic terminology, V(M)∗ is the dual C∞(M)-module to V(M). Sim-
ilarly as for the case of vector fields (see Theorem 7.4.18), we want to show
that the map Ω1(M) → V(M)∗ is a bijection.

As before, injectivity is an easy verification:

Lemma 9.2.21. The map Ω1(M) → V(M)∗, ω 7→ ω̃ is injective.

Proof. Let v ∈ Tp(M) and use Remark 7.4.19(iii) to find a smooth vector field
X ∈ V(M) with X(p) = v. If ω̃ = 0, then ωp(v) = ω̃(X)(p) = 0, which implies
that ωp = 0. ut

As in the case of vector fields, for a given F ∈ V(M)∗, we want to construct
a form ω with ω̃ = F . For this, we need to have:

ω(p)(v) = ω̃(X)(p) = F (X)(p) (9.4)

for all v ∈ TpM and X ∈ V(M) with X(p) = v. We can define a map
ω : M → T ∗M with π ◦ω = idM by (9.4) if we are able to show that F (X)(p)
depends only on the value X(p). But, this follows from the following lemma.

Lemma 9.2.22. Let F ∈ V(M)∗ and X ∈ V(M) with X(p) = 0, then
F (X)(p) = 0.

Proof. Step 1: Suppose that V is an open neighborhood of p with X|V ≡ 0.
Remark 7.4.19(i) yields a function χ ∈ C∞(M) such that χ(p) = 1 and
χ|M\V ≡ 0. Then X = (1− χ)X and hence

F (X)(p) = F
(
(1− χ)X

)
(p) = (1− χ)(p)F (X)(p) = 0.

Step 2: Let (ϕ,U) be a chart on M and p ∈ U . Then there exists a vector
field X̃ ∈ V(M) with compact support contained in U such that X − X̃
vanishes on a neighborhood of p (Remark 7.4.19(i)). Then Step 1 implies
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that F (X)(p) = F (X̃)(p), so that we may w.l.o.g. assume that supp(X) is a
compact subset of U .
Step 3: Using Remark 7.4.19(ii), we write X(q) =

∑
aj(q) Xj(q) for q ∈ U

with aj ∈ C∞(U) and Xj ∈ V(U), where Xj(q) = ∂
∂xj

|q for all q ∈ U .
Then the functions aj are compactly supported in U , hence extend to smooth
functions on M . Moreover, there exists a smooth function f : M → R with
f(q) = 1 if X(q) 6= 0 and supp(f) is a compact subset of U . Then X = fX =∑n

j=1 aj(fXj), and each vector field fXj extends by 0 to a smooth vector field
on M . Then X(p) = 0 and Xj(p) = ∂

∂xj
|p imply aj(p) = 0 for all j = 1, . . . , n.

We thus obtain

F (X)(p) = F
( n∑

j=1

aj fXj

)
(p) =

n∑

j=1

aj(p)
(
F (fXj)(p)

)
= 0,

which concludes the proof. ut
Note that in the proof of Lemma 9.2.22 it was decisive that F is not only

R-linear, but even C∞(M)-linear.
To show the bijectivity of the map Ω1(M) → der

(
C∞(M)

)∗
, ω 7→ ω̃, it

only remains to show that the map ω : M → T ∗M defined by (9.4) is smooth
for every F ∈ V(M)∗. For this, we represent the map in local coordinates.
From Remark 7.4.19 we get a chart (ϕ,U) on M , as well as vector fields
Xj ∈ der

(
C∞(M)

)
with Xj(p) = ∂

∂xj

∣∣
p

for all p ∈ U . We obtain

ω(p)
(

∂
∂xj

∣∣
p

)
= F (Xj)(p) =

( n∑
k=1

F (Xk)dxk

)
(p)

(
∂

∂xj

∣∣
p

)

for all j = 1, . . . , n and p ∈ U . Therefore, we have ω|U =
n∑

k=1

F (Xk)dxk

∣∣
U

so

that ω is smooth. Thus, we have proved the following theorem:

Theorem 9.2.23. Let M be a smooth manifold. Then the map

Ω1(M) → V(M)∗, ω 7→ ω̃,

defined by ω̃(X)(p) = ω(p)
(
X(p)

)
, is a bijection.

Just as in Remark 7.4.19, which deals with vector fields, the following
remark expresses the corresponding facts for sections of any vector bundle.
It applies in particular to Pfaffian forms, which are sections of the cotangent
bundle T ∗M .

Remark 9.2.24. Let M be a smooth manifold of dimension and (V,M, V, π)
a vector bundle.

(i) Let C be a compact subset of M , and let U ⊇ C be an open subset of
M . Then, for every section s ∈ Γ (VU ), there exists a global section s̃ ∈ ΓV
which coincides with s on C.
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(ii) Suppose that U ⊆ M is an open subset for which VU is trivial. Then
there exist sections s1, . . . , sk ∈ Γ (VU ) such that s1(x), . . . , sk(x) form a basis
for Vx for each x ∈ U . Then any section s ∈ Γ (VU ) is of the form

s =
k∑

i=1

ai · si

with uniquely determined ai ∈ C∞(U).
(iii) For every v ∈ Vx, there exists a section s ∈ ΓV with with s(x) = v.

9.2.4 Lie Derivatives

Lie derivatives of tensor fields generalize directional derivatives of functions
and Lie derivatives of vector fields. The describe the infinitesimal changes of
tensor fields under flows of vector fields.

Remark 9.2.25. Let M be a smooth manifold, GL(M) be the corresponding
frame bundle, and τ : G × F → F a smooth action of the structure group
G := GLn(R) of GL(M). Further, let U ⊆ M be open and ϕ : U → M be a
diffeomorphism onto an open subset ϕ(U) of M . Then ϕ lifts to a diffeomor-
phism GL(ϕ) : GL(U) → GL(ϕ(U)) via

GL(ϕ)(β) = T (ϕ) ◦ β ∈ Iso
(
Rn, Tϕ(x)(M)

)

for β ∈ Iso
(
Rn, Tx(M)

) ⊆ GL(U).
Applying this construction to a local flow ΦX

t , we see that a vector field
X ∈ V(M) automatically lifts to a vector field X̃ ∈ V(GL(M)) defined by

X̃(β) =
d

dt t=0
GL(ΦX

t )(β).

GL(ϕ) also enables us to let ϕ act on sections. More precisely, suppose
that α ∈ C∞(GL(ϕ(U)), F )G represents a section sα ∈ Γ (GL(ϕ(U)) ×G F )
as explained in Proposition 9.2.17. Then we set

ϕ∗α := α ◦GL(ϕ) ∈ C∞(GL(U), F )

and note that

(ϕ∗α)(βg) = α
(
T (ϕ) ◦ (βg)

)
= α

(
(T (ϕ) ◦ β) g

)

= g−1 · α(T (ϕ) ◦ β) = g−1 · (ϕ∗α)(β).

Therefore ϕ∗α ∈ C∞(GL(U), F )G and ϕ∗α represents a section ϕ∗sα := sϕ∗α.
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Definition 9.2.26. Let M be a manifold, G = GLn(R), and U ⊆ M open.
Given a linear representation τ : G × F → F and a vector field X ∈ V(M),
the Lie derivative LXα of a section α ∈ C∞(GL(U), F )G is defined via the
pull-back (ΦX

t )∗α of α by the local flow of X (Remark 9.2.25). We set

LX(α)p := lim
t→0

1
t

(
(ΦX

t )∗α− α
)
p
,

whence LX(α) is again a section in C∞(GL(U), F )G.

Remark 9.2.27. It is possible to reformulate the Lie derivative LX(Y ) of a
vector field Y ∈ V(M) with respect to X ∈ V(M) in an analogous way:

LX(Y )(p) = lim
t→0

1
t

(
(ΦX

t )∗(Y )− Y
)
(p).

Here we define the pull-back ϕ∗(X) ∈ V(M) of a vector-field X ∈ V(N) by a
diffeomorphism ϕ : M → N via the commutative diagram

TM
T (ϕ)−−−−−−−−−→ TN

ϕ∗X

x
xX

M
ϕ−−−−−−−−−→ N

so that
ϕ∗(X) = T (ϕ−1) ◦X ◦ ϕ.

In order to verify that this is compatible with Remark 9.2.25, observe that,
according to Example 9.2.12, the tangent map

T (ϕ) : GL(M)×GLm(R) Rm → GL(N)×GLn(R) Rn

of a smooth map ϕ : M → N in the realization of the tangent bundles as
associated bundles is given by

T (ϕ)[p, v] = [q0, w],

where p ∈ Iso
(
Rm, Tx(M)

)
, v ∈ Rm, and q0 ∈ Iso

(
Rn, Tϕ(x)(N)

)
, w ∈ Rn

are such that q0(w) = (T (ϕ) ◦ p)(v) = GL(ϕ)(v). If now ϕ : M → N is
a diffeomorphism and α ∈ C∞(GL(N),Rn)GLn(R), then Proposition 9.2.17
yields

T (ϕ) ◦ sϕ∗α(x) = T (ϕ)
(
ϕ∗α(p)

)
= T (ϕ)[p, α(T (ϕ) ◦ p)]

= [T (ϕ) ◦ p, α(T (ϕ) ◦ p)] = sα

(
ϕ(x)

)

since n = m and T (ϕ) ◦ p ∈ Iso
(
Rn, Tϕ(x)(N)

)
.

Proposition 9.2.28. Let M be a differentiable manifold of dimension m and
µ : E × F → W a bilinear equivariant map of GLm(R)-spaces. If α, α1, α2 ∈
C∞(GL(M), E)GLm(R), β ∈ C∞(GL(M), F )GLm(R), and X ∈ V(M), then
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(i) LX(α1 + α2) = LX(α1) + LX(α2).
(ii) LX

(
µ(α, β)

)
= µ

(LX(α), β
)

+ µ
(
α,LX(β)

)
.

In particular, setting E = R with the trivial action and F = Rm with the
natural action, we find LX(fY ) = (Xf)Y + fLX(Y ) for f ∈ C∞(M) and
Y ∈ V(M).

Proof. We leave the verification of (i) as an easy exercise to the reader. For
(ii) we calculate

LX

(
µ(α, β)

)
(p) = limt→0

1
t

(
(ΦX

t )∗µ(α, β)(p)− µ(α, β)(p)
)

= limt→0
1
t

(
µ(α, β)(T (ΦX

t ) ◦ p)− µ(α, β)(p)
)

= limt→0
1
t

(
µ
(
α(T (ΦX

t ) ◦ p), β(T (ΦX
t ) ◦ p)

)− µ
(
α(p), β(p)

))

= limt→0
1
t

(
µ
(
α(T (ΦX

t ) ◦ p)− α(p), β(T (ΦX
t ) ◦ p)

)

+ µ
(
α(p), β(T (ΦX

t ) ◦ p)− β(p)
))

= µ
(LX(α), β

)
(p) + µ

(
α,LX(β)

)
(p). ut

Remark 9.2.29. One can use Proposition 9.2.28, applied to the natural pair-
ing of Rm and (Rm)∗, to calculate the Lie derivatives of a Pfaffian form in
local coordinates: For a vector field of the form X =

∑
k ak

∂
∂xk

we find

(LX(dxj)
)(

∂
∂xi

)
= −dxj

(LX
∂

∂xi

)
= −dxj

(
[X, ∂

∂xi
]
)

= dxj

(∑
k

∂ak

∂xi

∂
∂xk

)
= ∂aj

∂xi

so that
LX(dxj) =

∑

i

∂aj

∂xi
dxi.

Example 9.2.30. Let M and N be smooth manifolds and ϕ : M → N a
diffeomorphism. Then the linear isomorphisms Tp(ϕ) : Tp(M) → Tϕ(p)(N)
induce linear isomorphisms

T r,s
p (ϕ) : T r,s(M)p → T r,s(N)f(p), α 7→ ϕ∗α,

where

(ϕ∗α)x(ω1 ⊗ · · · ⊗ ωr ⊗ v1 ⊗ · · · ⊗ vs)

= αϕ(x)(ω1 ◦ Tx(ϕ)−1, . . . , ωr ◦ Tx(ϕ)−1, Tx(ϕ)v1, . . . , Tx(ϕ)vs)

for x ∈ M , vj ∈ Tx(M) and ωj ∈ T ∗x (M). Together they form a bundle
isomorphism T r,s(ϕ) : T r,s(M) → T r,s(N). This is easily read off from the
isomorphisms

T r,s(M) ∼= GL(M)×GLn(R) T r,s(Rn), T r,s(N) ∼= GL(N)×GLn(R) T r,s(Rn),

because in this picture
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T r,s(ϕ)([α, v]) = [Tp(ϕ) ◦ α, v], α ∈ GL(M)p = Iso(Rn, Tp(M)).

In this picture the pull-back ϕ∗T ∈ Γ
(T r,s(M)

)
of T ∈ Γ

(T r,s(N)
)

is ob-
tained via the following commutative diagram:

T r,s(M)
T r,s(ϕ)−−−−−−−−−→ T r,s(N)

ϕ∗T

x
xT

M
ϕ−−−−−−−−−→ N.

The Lie derivative LX(T ) of T with respect to a vector field X ∈ V(M) is
then given by

LX(T )(p) := lim
t→0

1
t

(
(ΦX

t )∗T − T
)
(p)

for all p ∈ M , where ΦX
t is the local flow of X.

Corollary 9.2.31. Let M be a manifold and X ∈ V(M). Then for two tensor
fields T and T ′ on M the following equality holds

LX(T ⊗ T ′) = LXT ⊗ T ′ + T ⊗ LXT ′.

Proof. Apply Proposition 9.2.28(ii) to the bilinear map (T, T ′) 7→ T ⊗T ′. ut
Remark 9.2.32. While the Lie derivative is a good notion of differentiation
of a tensor field with respect to a vector field, it does not lead to a notion of
differentiation of a tensor field with respect to a tangent vector at a point.
The reason for this is that the value of the Lie derivative of a tensor field at
a point depends on the value of the vector field not only at that point, but in
a neighborhood. It is easy to see that from the algebraic point of view this is
due to the fact that the map X 7→ LX is itself a differential operator and not
a C∞(M)-linear map. For instance, if f ∈ C∞(M) and α ∈ Ω1(M), we have
(cf. Proposition 9.2.28)

(LfXα)(Y ) = fX
(
α(Y )

)− α(LfXY ) = fX
(
α(Y )

)− α([fX, Y ])

= fX
(
α(Y )

)− α(f [X, Y ]− (Y f)X)

= f
(
X

(
α(Y )

)− α(LXY )
)

+ (Y f) · α(X)
= fLXα(Y ) + α(X) df(Y ).

Thus we have
LfXα = fLXα + α(X) df. (9.5)

Exercises for Section 9.2

Exercise 9.2.1. Show that the function ω̃(X) is smooth for ω ∈ Ω1(M) and
X ∈ V(M).
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Exercise 9.2.2. Show that the bidual C∞(M)-module (V(M)∗)∗ of V(M) is
isomorphic to V(M) as a C∞(M)-module.

Exercise 9.2.3. Compute how the coordinates of ω ∈ T ∗p (M) change when
one changes charts for M and uses the associated charts for T ∗(M) con-
structed from T ∗(M) ∼= GL(M) oGLn(R) (Rn)∗ and local trivializations of
GL(M).

Exercise 9.2.4. We denote by
(
dx⊗ ∂

∂x

)
(%,σ)

(p) the element of T r,s(TpM)
which is determined by % and σ. Show that the

dx%(1)(p)⊗ . . .⊗ dx%(r)(p)⊗ ∂

∂xσ(1)

∣∣
p
⊗ . . .⊗ ∂

∂xσ(s)

∣∣
p

form a basis for T r,s(TpM).

Exercise 9.2.5. Compute, how the coordinates of t ∈ T r,s(TpM) change
when one changes charts for M and uses the associated charts for T r,s(M)
constructed from T r,s(M) ∼= GL(M)oGLn(R)T

r,s(Rn) and local trivializations
of GL(M).

Exercise 9.2.6. Generalize Theorem 9.2.23 to general tensor bundles T r,s(M).
More precisely, show that the space of sections Γ

(T r,s(M)
)

is naturally iso-
morphic to

(V(M)∗
)⊗r ⊗ V(M)⊗s as a C∞(M)-module.

Exercise 9.2.7. In Exercise 9.2.5, it was calculated, how the coordinates vary
under a change of coordinates. Conversely, show that a family (ai

(%,σ))i∈I of
coordinate functions transforming as in Exercise 9.2.5 define a tensor field,
which has these functions as coordinate functions (“a tensor is something
that transforms like a tensor”).

Exercise 9.2.8. Let G be a group and τ : G × F → F, (g, f) 7→ g · f be an
action of G on F . Show that:

(a) The map τ : G×F → F factors through a bijection (G×F )/G, where the
G-action on G× F is defined by g(h, f) := (hg−1, g · f).

(b) If V is a vector space, then the evaluation map ev : GL(V ) × V → V
factors through a bijection (GL(V )×V )/ GL(V ), where the GL(V )-action
on GL(V )× V is defined by g(h, f) := (hg−1, g · f).

(c) If V is an n-dimensional vector space, then the evaluation map

ev : Iso(Rn, V )× Rn → V, (ϕ, v) 7→ ϕ(v)

factors through a bijection (GLn(R)× Rn)/ GLn(R), where the GLn(R)-
action on Iso(Rn, V ) × Rn is defined by g(h, f) := (hg−1, g · f). Give an
interpretation of the fibers of ev in terms of bases of V and coordinates
of a vector with respect to a basis.
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Exercise 9.2.9. Let M := Rn. For a matrix A ∈ Mn(R) and b ∈ Rn we
consider the affine vector field

XA,b(x) := Ax + b.

(1) Calculate the maximal flow Φ : R× Rn → Rn of this vector field.
(2) Let

affn(R) :=
(

gln(R) Rn

0 0

)
⊆ gln+1(R)

be the affine Lie algebra on Rn, realized as a Lie subalgebra of gln+1(R),
endowed with the commutator bracket. Show that the map

ϕ : affn(R) → V(Rn),
(

A b
0 0

)
7→ −XA,b

is a homomorphism of Lie algebras.

9.3 Integration on Manifolds

Integration on manifolds is built up from integration on coordinate patches.
Since the integrals on coordinate patches are not invariant under coordinate
changes, the naive approach to integrate functions does not work. What can
be integrated are sections of bundles which transform in the same way as
integrals, i.e., via the absolute value of the Jacobi determinants of the coor-
dinate changes. There are two choices: One either uses densities which have
precisely this transformation behavior or one uses differential forms of degree
dim M . In the latter case one has to make sure that all coordinate changes
have positive Jacobi determinants. This leads to the concept of an orientable
manifold.

9.3.1 Differential Forms

Differential forms are tensor fields with additional symmetry conditions. They
are of central importance in the description of the topology of a manifold.
Moreover, they can be used to build an integration theory for which one has
generalizations of the classical Stokes Theorem.

Let M be a smooth manifold of dimension n and GL(M) its frame bundle.
Realize the tangent bundle TM as the associated bundle GL(M)×GLn(R) Rn

(cf. Definition 9.2.18)

Definition 9.3.1. For k ∈ N0, we consider the GLn(R)-module Altk(Rn,R)
of alternating k-linear forms on E, on which GLn(R) acts by

(g · α)(v1, . . . , vk) := α(g−1v1, . . . , g
−1vk).



9.3 Integration on Manifolds 381

The resulting associated bundle

Altk(TM) := GL(M)×GLn(R) Altk(Rn,R)

is called the k-form bundle over M . Its sections are called alternating k-forms
or simply k-forms on M . One also speaks of differential forms of degree k.
The space of differential forms of degree k on M will be denoted by Ωk(M).
Note that there are no non-zero differential forms of degree greater than the
dimension of M . We set Ω(M) = ⊕dim M

k=0 Ωk(M) = ⊕∞k=0Ω
k(M).

Example 9.3.2. If n = dim M , then Altn(Rn,R) ∼= R and the GLn(R)-
representation on Altn(Rn,R) is the inverse of the determinant. Thus the
transition functions of the line bundle Altn(TM) are the inverses of the Ja-
cobi determinants of the coordinate changes.

Remark 9.3.3. (cf. Exercise 9.2.6) Theorem 9.2.23 generalizes from T ∗(M) =
Alt1(TM) to Altk(TM). More precisely, the space of differential forms Ωk(M)
is naturally isomorphic to the space of alternating C∞(M)-multilinear maps
V(M)k → C∞(M).

Definition 9.3.4. For each vector space E we have a natural bilinear product

∧ : Altp(E,R)×Altq(E,R) → Altp+q(E,R),

called the exterior or wedge product, defined by

(α ∧ β)(v1, . . . , vp+q)

=
1

p!q!

∑

σ∈Sp+q

sgn(σ)α(vσ(1), . . . , vσ(p))β(vσ(p+1), . . . , Xσ(p+q)).

Taking into account that α and β are alternating, this product can also be
written with

(
p+q

p

)
summands instead of (p + q)!:

(α ∧ β)(v1, . . . , vp+q)

=
∑

σ∈Sh(p,q)

sgn(σ)α(vσ(1), . . . , vσ(p))β(vσ(p+1), . . . , vσ(p+q)),

where Sh(p, q) denotes the set of all (p, q)-shuffles in Sp+q, i.e., all permuta-
tions with

σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(p + q).

This product induces a bilinear bundle map

∧ : Altp(TM)×Altq(TM) → Altp+q(TM), ([ψ, α], [ψ, β]) 7→ [ψ, α ∧ β],

and hence a C∞(M)-bilinear product on the spaces of smooth sections

Ωp(M)×Ωq(M) → Ωp+q(M), (α, β) 7→ α ∧ β,

where (α ∧ β)p = αp ∧ βp for each p ∈ M .
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Proposition 9.3.5. If α, β are differential forms on a manifold M , then

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ (9.6)

for each vector field X ∈ V(M).

Proof. Take µ in Proposition 9.2.28(ii) to be (α, β) 7→ α ∧ β. ut
Remark 9.3.6. Let X be a smooth vector field on a manifold M . From Def-
inition 9.2.26 it is easy to deduce that for any section α of a vector bundle V
associated with the frame bundle GL(M) of M , the equality LXA = 0 implies
that A is invariant under the flow ΦX

t of X, i.e., (ΦX
t )∗α = α. Hence we say

such a section is invariant under X if LXA = 0.

Remark 9.3.7. Proposition 9.3.5 can be used to compute LX on differential
forms. We have

(LXω)(Y ) = X ω(Y )− ω([X, Y ])

for a 1-form ω and

(LXα)(X1, . . . , Xk) = X α(X1, . . . , Xk)−
k∑

i=1

α(X1, . . . , [X,Xi], . . . , Xk)

for forms α of degree k (cf. Lemma 6.5.8). This formula follows directly from
Proposition 9.2.28 and LXY = [X, Y ] for X, Y ∈ V(M).

Definition 9.3.8. Let α be a differential form of degree k. Then we define
the exterior derivative dα of α to be the differential form of degree k+1 given
by the formula

(dα)(X0, . . . , Xk) :=
k∑

i=0

(−1)iXiα(X0, . . . , X̂i, . . . , Xk) +

∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

where a hat over a symbol means that the symbol does not occur (cf. Defini-
tion 6.5.2).

Clearly dα defines a (k+1)-linear map V(M)k+1 → C∞(M), and it is easily
seen to be alternating (cf. Definition 6.5.2). We claim that it is also C∞(M)-
linear. Since it is alternating, it suffices to verify the C∞(M)-linearity in X0.
The terms for which the C∞(M)-linearity is not obvious are

k∑

i=1

(−1)iXiα(X0, . . . , X̂i, . . . , Xk)

+
∑

0<i≤k

(−1)iα([X0, Xi], X1, . . . , X̂i, . . . , Xk).
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But the relations

X(fg) = Xf · g + f ·Xg and [X, fY ] = (Xf) · Y + f [X,Y ]

imply that dα is in fact C∞(M)-linear in each argument.

Example 9.3.9. If α is a form of degree 0, i.e., a function f , then the defini-
tion of the exterior derivative gives df(X) = Xf . If α is of degree 1, then

dα(X, Y ) = X α(Y )− Y α(X)− α([X,Y ]).

Definition 9.3.10. If X is a vector field and α is a differential form of degree
k on a manifold, we define the interior product or contraction of α with
respect to X to be a form of degree k − 1 given by

(iXα)(X1, . . . , Xk−1) := α(X, X1, . . . , Xk−1)

for k > 0. For k = 0, i.e., for functions, we set iXf = 0.

Proposition 9.3.11. For forms α, β of degree k,m on a manifold

iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ.

Proof. This is a simple consequence of the definitions. ut
Proposition 9.3.12. The exterior derivative d on a manifold has the follow-
ing properties.

(i) d : Ω(M) → Ω(M) is linear.
(ii) Any vector field X satisfies the Cartan formula

d ◦ iX + iX ◦ d = LX on Ω(M).

(iii) If α and β are differential forms of degree p and q, respectively, then

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

(iv) d ◦ d = 0.

Proof. (i) This is obvious from the definition of d.
(ii) follows from Lemma 6.5.9.
(iii) This is proved by induction on p + q. If one of p, q is 0, then the

assertion is easily seen by direct calculation. So let us assume that p + q > 0.
In order to prove the equality of the differential forms on both sides, it is
enough to show that they are the same after applying iX for any X. Now
we may use (ii) and the induction hypothesis to complete the proof. More
precisely,
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iXd(α ∧ β)
= LX(α ∧ β)− d

(
iX(α ∧ β)

)

(9.6)
= LXα ∧ β + α ∧ LXβ − d

(
iXα ∧ β + (−1)pα ∧ iXβ

)

ind.= iX(dα) ∧ β + (−1)p(iXα) ∧ dβ + (−1)p+1dα ∧ (iXβ) + α ∧ (iXdβ)
= iX(dα ∧ β) + (−1)piX(α ∧ dβ) = iX(dα ∧ β + (−1)pα ∧ dβ).

(iv) follows from Proposition 6.5.12. ut
Remark 9.3.13. Using the Cartan Formula, we find

LfXα = ifXdα + d(ifXα) = fiX(dα) + d(fiXα)
= fiX(dα) + fd(iXα) + df ∧ iXα = fLXα + df ∧ iXα,

i.e.,
LfXα = fLXα + df ∧ iXα.

If α is of degree n = dimR(M), we have

0 = iX(df ∧ α) = iX(df) ∧ α− df ∧ iXα = (Xf)α− df ∧ iXα,

so that LfX(α) = fLXα + (Xf) · α.

Definition 9.3.14. A differential form ω ∈ Ωk(M) satisfying dω = 0 is called
closed . If ω = dν for some ν ∈ Ωk−1(M), then ω is called an exact form. Then
d2 = 0 implies that each exact form is closed. Putting Ω−1(M) := {0}, the
quotient space

Hk
dR(M) :=

ker
(
d : Ωk(M) → Ωk+1(M)

)

im
(
d : Ωk−1(M) → Ωk(M)

)

is called the k-th de Rham cohomology space of M .

Definition 9.3.15. Let M and N be smooth manifolds and f : M → N be a
smooth map. Given a differential form ω ∈ Ωk(N) we can define the pull-back
f∗ω by (f∗ω)p := Tp(f)∗ωf(p), i.e.,

(f∗ω)p(v1, . . . , vp) := ωf(p)(Tp(f)v1, . . . , Tp(f)vp).

The pull-back of ω is a differential form f∗ω ∈ Ωk(M).

Proposition 9.3.16. The pull-back of differential forms is compatible with
the exterior derivative, i.e.,

d(f∗ω) = f∗(dω).
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Proof. In fact, if ω = ϕ ∈ C∞(N) = Ω0(N), then

f∗(dϕ) = dϕ ◦ T (f) = d(ϕ ◦ f) = d(f∗ϕ).

Now suppose that we can write ω as an exterior product of 1-forms:

ω = ϕdyi1 ∧ . . . ∧ dyik
. (9.7)

Then f∗(α ∧ β) = f∗α ∧ f∗β (Exercise!) implies

d(f∗ω)
= d ((ϕ ◦ f)f∗dyi1 ∧ . . . ∧ f∗dyik

) = d ((ϕ ◦ f)d(f∗yi1) ∧ . . . ∧ d(f∗yik
))

= d(ϕ ◦ f) ∧ d(f∗yi1) ∧ . . . ∧ d(f∗yik
) = f∗dϕ ∧ d(f∗yi1) ∧ . . . ∧ d(f∗yik

)
= f∗dϕ ∧ f∗dyi1 ∧ . . . ∧ f∗dyik

= f∗(dϕ ∧ dyi1 ∧ . . . ∧ dyik
)

= f∗(dω).

Locally all differential forms can be written as sums of terms of the type (9.7).
Moreover, if ω vanishes on an open subset U of N , then dω vanishes on U ,
and f∗ω vanishes on f−1(U). But then also d(f∗ω) vanishes on U . Thus the
claim can indeed be checked locally. ut

As a consequence of the preceding argument, pull-backs of closed/exact
forms are closed/exact. We conclude that each smooth map f : M → N leads
to well-defined linear maps (functoriality of de Rham cohomology)

f∗ : Hk
dR(N) → Hk

dR(M), [α] 7→ [f∗α].

Lemma 9.3.17 (Homotopy Lemma). Let M and N be smooth manifolds
and F : M × I → N be a smooth map, where I ⊆ R is an open interval
containing 0 and 1. Then the induced smooth maps F0, F1 : M → N satisfy

F ∗0 = F ∗1 : Hk
dR(N) → Hk

dR(M), k ∈ N0.

Proof. We write it : M → M × {t} ⊆ M × I for the canonical embeddings.
For ω ∈ Ωk(M×I,R), k ≥ 0, we define the fiber integral I(ω) ∈ Ωk−1(M)

by

I(ω)x(v1, . . . , vk−1) :=
∫ 1

0

ω(t,x)

(
∂
∂t , v1, . . . , vk−1

)
dt,

i.e.,

I(ω)x :=
∫ 1

0

i ∂
∂t

ω(t,x) dt.

Let X0, . . . , Xk−1 ∈ V(M) and extend these vector fields in the canonical
fashion to vector fields X̃i on M ×I, constant in the second component. Then
we have [X̃i, X̃j ] = [Xi, Xj ]̃ , and from Cartan’s formula (see Proposition
9.3.12 we further get
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(dMI(ω))(X0, . . . , Xk−1)

= dM

( ∫ 1

0

i ∂
∂t

ω(t,x) dt
)
(X0, . . . , Xk−1)

=
∫ 1

0

(
dM×I i ∂

∂t
ω
)
(X̃0, . . . , X̃k−1) dt

=
∫ 1

0

(L ∂
∂t

ω)(X̃0, . . . , X̃k) dt−
∫ 1

0

i ∂
∂t

(dM×Iω)(X̃0, . . . , X̃k−1) dt

= (i∗1ω)(X0, . . . , Xk−1)− (i∗0ω)(X0, . . . , Xk−1)− I(dM×Iω)(X0, . . . , Xk−1).

This means that we have the homotopy formula

dMI(ω) + I(dM×Iω) = i∗1ω − i∗0ω. (9.8)

We apply this formula to ω = F ∗α for a closed form α of degree k ≥ 1 on
N and obtain

[F ∗1 α− F ∗0 α] = [i∗1ω − i∗0ω] = [I(dM×Iω)] = [I(F ∗dα)] = 0.

For degree k = 0, the space H0
dR(N) consists of locally constant functions

f , and since F ∗t f = f ◦ Ft does not depend on t, we also get F ∗0 = F ∗1 for
k = 0. ut
Corollary 9.3.18. If M is a smooth manifold and n ∈ N0, then the projection
pM : M × Rn → M defines an isomorphism

p∗M : Hk
dR(M) → Hk

dR(M × Rn), [α] 7→ [p∗Mα]

for each k ∈ N0.

Proof. For I = R, we consider the smooth map

F : M × Rn × I → M × Rn, (m,x, t) 7→ (m, tx).

Then F1 = idM×Rn , and F0 is the projection onto M × {0}.
The inclusion i0 : M → M × Rn,m 7→ (m, 0) satisfies pM ◦ i0 = idM and

i0 ◦ pM = F0. In view of Lemma 9.3.17, we have F ∗0 = F ∗1 = id, so that the
pull-back maps p∗M and i∗0 induce mutually inverse isomorphisms between the
spaces Hk

dR(M) and Hk
dR(M × Rn). ut

Definition 9.3.19. A smooth manifold M is called smoothly contractible to
a point p ∈ M if there exists a smooth map F : M × I → M with

F (x, 0) = x and F (x, 1) = p,

for all x ∈ M , where I ⊆ R is an open interval containing [0, 1].

Theorem 9.3.20 (Poincaré Lemma). Suppose that M is a smoothly con-
tractible manifold. Then any closed form of degree at least one is exact.
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Proof. Let F : M × I → M be a smooth contraction of M to p ∈ M and
α ∈ Ωk(M), k > 0. Since F0 = idM and F1 = p is the constant map, the
Homotopy Lemma implies that

[α] = [F ∗0 α] = [F ∗1 α].

But since F1 is constant and k > 0, we have F ∗1 α = 0. ut
Corollary 9.3.21. Suppose that M ⊆ Rn is open and star-shaped. Then any
closed form of degree at least one is exact.

Proof. Contract linearly to any point with respect to which M is star-shaped.
ut

9.3.2 Integration of Densities

Recall the density bundle |Λ|(M) := |Λ|1(M) from Example 9.2.16.

Remark 9.3.22 (Transformation formula for densities). Let (ϕi, Ui)i∈I

be a smooth atlas of the n-dimensional smooth manifold M and (Φi)i∈I be the
corresponding trivialization of GL(M) constructed in Example 9.2.9. Then,
according to Example 9.2.16, the transition functions of |Λ|(M) with respect
to the local trivialization (Φ̃i)i∈I constructed from (Φi)i∈I in Example 9.2.16
are given by

Φ̃ji(p) =
∣∣ det d(ϕj ◦ ϕ−1

i )
(
ϕi(p)

)∣∣−1 =
∣∣ det d(ϕi ◦ ϕ−1

j )
(
ϕj(p)

)∣∣.

Let µ be a density on M . Then we obtain for each i a density µi := (ϕ−1
i )∗µ on

the open subset ϕi(Ui) ⊆ Rn. On this set we write |dx1 · · · dxn| for the density
assigning in each point the value 1 to the canonical basis for Rn. Then we can
write

µi = (ϕ−1
i )∗µ = fi · |dx1 · · · dxn|

for a real-valued function fi : ϕi(Ui) → R. In terms of the local trivializations,
this means that

Φ̃i ◦ µ ◦ ϕ−1
i = (ϕ−1

i , fi) : ϕi(Ui) → Ui × R.

We say that the fi represent µ in the given atlas, resp., the corresponding
local trivialization. The (fi)i∈I satisfy the following transformation property

(fj ◦ ϕj)(p) = Φ̃ji(p) · (fi ◦ ϕi)(p),

which we can rewrite as

fj = (fi ◦ ϕi ◦ ϕ−1
j )

∣∣ det
(
d(ϕi ◦ ϕ−1

j )
)∣∣

on ϕj(Ui ∩ Uj), which corresponds to
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µj = (ϕi ◦ ϕ−1
j )∗µi = (ϕi ◦ ϕ−1

j )∗fj ·
(
(ϕi ◦ ϕ−1

j )∗|dx1 · · · dxn|
)

with

(ϕi ◦ ϕ−1
j )∗|dx1 · · · dxn| =

∣∣ det
(
d(ϕi ◦ ϕ−1

j )
)∣∣ · |dx1 · · · dxn|.

Definition 9.3.23. The transformation behavior allows to define positive
densities by requiring that they be represented by positive functions. Sim-
ilarly, we call a density measurable if the representing functions are (Borel)
measurable. Finally, we say that a positive measurable density µ is a locally
bounded Borel density if the representing functions with respect to the charts
are bounded on compact subsets.

If µ is a positive and measurable density, we set for any open subset O ⊆ Ui:
∫

O

µ :=
∫

ϕi(O)

(ϕ−1
i )∗µ =

∫

ϕi(O)

fi(x) |dx1 · · · dxn| :=
∫

ϕi(O)

fi(x) dx.

The change of variables formula from multi-variable calculus allows us to
calculate

∫

ϕj(Ui∩Uj)

fj(y) dy =
∫

ϕj(Ui∩Uj)

(fi ◦ ϕi ◦ ϕ−1
j )(y)|det d(ϕi ◦ ϕ−1

j )(y)| dy

=
∫

ϕi(Ui∩Uj)

fi(x) dx

which shows that the definition is independent of the choice of the chart.

Definition 9.3.24. Let M be a topological space and (Ui)i∈I be an open
cover of M . An open cover (Vj)j∈J of M is called a refinement of (Ui)i∈I

if for each j ∈ J there exists an i ∈ I such that Vj ⊆ Ui. An open cover
(Ui)i∈I is called locally finite if for each p ∈ M there exists a neighborhood
U in M such that U ∩ Ui 6= ∅ only for finitely many i ∈ I. The space M
is called paracompact if it is Hausdorff and every open cover has a locally
finite refinement. Further M is called σ-compact , if it is a countable union of
compact subsets.

Proposition 9.3.25. Let M be a second countable smooth manifold of dimen-
sion n. Then M is σ-compact and paracompact.

Proof. Let (Wn)n∈N be a countable basis for the topology of M . Since M is
locally compact, we may w.l.o.g. assume that all the closures Wi are compact
because the relatively compact subsets also form a basis for the topology.

Then choose an increasing family (Ak)k∈N of compact sets inductively as
follows: A1 is the closure of W1. If Ak is defined, set

jk := min

{
j ≥ k + 1 | Ak ⊆

j⋃
m=1

Wm

}



9.3 Integration on Manifolds 389

and let Ak+1 be the closure of
⋃jk

m=1 Wm. Then
⋃

k∈NAk = M and Ak is
contained in the interior A◦k+1 of Ak+1. Since each Ak is compact, we see that
M is σ-compact.

Now let (Vj)j∈J be an open cover of M . Then any p ∈ Ak+1 \ A◦k is
contained in some Vj and there exists an open neighborhood

Up,j ⊆ Vj ∩ (A◦k+2 \Ak−1)

of p. Then the sets Up,j cover the compact set Ak+1\A◦k. Pick a finite subcover,
and write Ui for the elements of this subcover. Collecting these sets for all k’s
gives the desired covering. In fact, the relation Uj ⊆ A◦k+2 \Ak−1 proves local
finiteness of the cover. ut
Definition 9.3.26. Let M be a topological space. A partition of unity is a
collection (ρi)i∈I of continuous functions ρi : M → [0, 1] such that each p ∈ M
has a neighborhood U on which only finitely many functions ρi are non-zero
and ∑

i∈I

ρi(p) = 1.

If (Ui)i∈I is an open cover of M and supp(ρi) ⊆ Ui, then the partition of unity
is said to be subordinate to the cover (Ui)i∈I .

Theorem 9.3.27. If M is second countable and (Uj)j∈J is a locally finite
open cover of M , then there exists a smooth partition of unity on M , which
is subordinate to (Uj)j∈J .

Proof. The proof of Proposition 9.3.25 shows that we can find a sequence,
(Ki)i∈N of compact subsets of M with

⋃
n∈NKn = M and Kn ⊆ K◦

n+1. Put
K0 := ∅. For p ∈ M let ip be the largest integer with p ∈ M \ Kip . We
then have p ∈ Kip+1 ⊆ K◦

ip+2. Choose a jp ∈ J with p ∈ Ujp and pick
ψp ∈ C∞(M,R) with ψp(p) > 0 and

supp(ψp) ⊆ Ujp ∩ (K◦
ip+2 \Kip)

(Lemma 7.4.15). Then Wp := ψ−1
p (]0,∞[) is an open neighborhood of p. For

each i ≥ 1, choose a finite set of points p in M whose corresponding neigh-
borhoods Wp cover the compact set Ki \K◦

i−1. We order the corresponding
functions ψp in a sequence (ψi)i∈N. Their supports form a locally finite family
of subsets of M because for only finitely many of them, the supports intersect
a given set Ki. Moreover, the sets ψ−1

i (]0,∞[) cover M . Therefore

ψ :=
∑

j

ψj

is a smooth function which is everywhere positive (Exercise 9.3.5). Therefore
we obtain smooth functions ϕi := ψi

ψ , i ∈ N. Then the functions ϕi form a
smooth partition of unity on M .
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We now define a modified partition of unity, which will be subordinate to
the open cover (Uj)j∈J : For each i ∈ N we pick a ji ∈ J with supp(ϕi) ⊆ Uji

and define
αj :=

∑

ji=j

ϕi.

As the sum on the right hand side is locally finite, the functions αj are smooth
and

supp(αj) ⊆
⋃

ji=j

supp(ϕi) ⊆ Uj

(Exercise 9.3.3). We further observe that only countably many of the αj are
non-zero, that 0 ≤ αj ,

∑
j αj = 1, and that the supports form a locally finite

family because the cover (Uj)j∈J is locally finite. ut
The following corollary is a refinement of Lemma 7.4.15(i).

Corollary 9.3.28. Let M be a paracompact smooth manifold, K ⊆ M a
closed subset and U ⊆ M an open neighborhood of K. Then there exists a
smooth function f : M → R with

0 ≤ f ≤ 1, f |K = 1 and supp(f) ⊆ U.

Proof. In view of Theorem 9.3.27, there exists a smooth partition of unity
subordinate to the open cover {U,M \K}. This is a pair of smooth functions
(f, g) with supp(f) ⊆ U , supp(g) ⊆ M \K, 0 ≤ f, g, and f + g = 1. These
properties immediately imply the claim. ut
Corollary 9.3.29. A second countable manifold M always admits a nowhere
vanishing density.

Proof. Recall from Example 9.2.16 how to construct a local trivialization
(Φi)i∈I of |Λ|(M) from a smooth atlas (ϕi, Ui)i∈I of M . We assume that
(Ui)i∈I is locally finite (Proposition 9.3.25). Pick a partition of unity (ρi)i∈I

subordinate to (Ui)i∈I (Theorem 9.3.27). From the construction of (Φi)i∈I it
is clear that µi(p)

(
∂

∂x
(i)
1

∣∣
p
, . . . , ∂

∂x
(i)
n

∣∣
p

)
= 1 defines a smooth density over Ui.

Therefore ρiµi is a density on M . We claim that µ :=
∑

i∈I ρiµi is a nowhere
vanishing smooth density on M . First the local finiteness of the atlas guar-
antees that µ is a well defined density. To see that µ is nowhere vanishing it
suffices to show that µj |Uj∩Ui with respect to the chart ϕi is represented by
a non-negative function. But since µj is represented by the constant function
1 with respect to the chart ϕj , this is an immediate consequence of

fj = (fi ◦ ϕi ◦ ϕ−1
j )

∣∣ det
(
d(ϕi ◦ ϕ−1

j )
)∣∣

on ϕj(Ui ∩ Uj). ut
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Definition 9.3.30. Let BM be the σ-algebra generated by the open subsets
of the locally compact Hausdorff space M . It is called the Borel σ-algebra, and
its elements are called Borel subsets or (Borel) measurable subsets. A measure
µ on (M, BM ), for which we have µ(K) < ∞ for all compact subsets K ⊆ M ,
is called a Borel measure on M .

Definition 9.3.31. Let M be a locally compact Hausdorff space and Cc(M)
be the space of continuous functions f : M → C with compact support. A
linear functional I : Cc(M) → C is called positive if I(f) ≥ 0 whenever f ≥ 0.

Definition 9.3.32. Let M be a second countable smooth manifold and
(ϕα, Uα)α∈A be an atlas of M corresponding to a locally finite open cover. Fur-
ther, assume that (ρα)α∈A is a subordinate partition of unity. Let µ ∈ |Λn|(M)
be a positive measurable density on M . We define the integral of µ over M
by ∫

M

µ :=
∑

α∈A

∫

Uα

ραµ.

We have to show that this definition is independent of the choice of partition
of unity and the underlying atlas. We know already that the definition of the
integral over Uα is independent of the choice of the coordinates, once the atlas
is chosen. So suppose (Vλ)λ∈Λ and (ηλ)λ∈Λ is another pair of an atlas and a
subordinate partition of unity. Then the calculation

∑

α∈A

∫

Uα

ραµ =
∑

α∈A

∫

Uα

(∑

λ∈Λ

ηλ

)
ραµ =

∑

α∈A

∑

λ∈Λ

∫

Uα

ηλραµ

=
∑

λ∈Λ

∑

α∈A

∫

Uα∩Vλ

ραηλµ =
∑

λ∈Λ

∫

Vλ

(∑

α∈A

ρα

)
ηλµ =

∑

λ∈Λ

∫

Vλ

ηλµ

proves that the integral of µ over M is well-defined.

Proposition 9.3.33. Fix a positive measurable density µ and for a Borel
measurable subset E ⊆ M set

µ̃(E) :=
∫

E

µ :=
∫

M

χE µ ∈ [0,∞],

where χE is the characteristic function of E. Then µ̃ is a positive measure on
M . If µ is a locally bounded Borel density, then µ̃ is a Borel measure.

Proof. Exercise. ut
Remark 9.3.34. Let µ a strictly positive continuous locally bounded Borel
density on M , then

∫
M

f · µ > 0 for each nonzero continuous function f ≥ 0.
In fact, the integral over any Borel subset of M is nonnegative. Moreover we
can find a coordinate patch Uα on which f and the function representing µ
are strictly positive, so that the integral

∫
Uα

f · µ is also strictly positive.
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Remark 9.3.35. (i) Given a locally bounded Borel density µ, we can inte-
grate functions f ∈ Cc(M) with respect to µ̃ via

Iµ(f) :=
∫

M

f(x)dµ̃(x) =
∫

M

f · µ.

Note that Iµ : Cc(M) → R defines a positive linear functional.
(ii) Once one has the measure µ̃ one can also integrate functions f : M → V

with values in finite-dimensional vector spaces using either a basis for V and
coordinates or linear functionals.

(iii) If A : V → W is a linear map, then A commutes with integration:
∫

M

(A ◦ f)µ = A
( ∫

M

fµ
)

for f ∈ Cc(M,V ).

Definition 9.3.36. Let ϕ : M → N be a smooth map between n-dimensional
manifolds and µ an r-density on N . Then we define an r-density f∗µ on M
by

(f∗µ)(p)(v1, . . . , vn) = µ
(
Tpf(v1), . . . , Tpf(vn)

)

for v1, . . . , vn ∈ Tp(M). We call f∗µ the pull-back of µ by f .

Remark 9.3.37 (Global transformation formula for densities). The
well-definedness of the integral associated with a locally bounded Borel density
shows that, given such a density µ on N , for a diffeomorphism ϕ : M → N ,
we have ∫

ϕ−1(U)

(f ◦ ϕ) · ϕ∗µ =
∫

U

f · µ,

where f ∈ Cc(N) and U ⊆ N is a Borel set.

9.3.3 Some Technical Results on Integration

In this section we compile a few technical results on integration, which will
be used in later chapters.

Lemma 9.3.38. Let I : Cc(M) → C be a positive linear functional, and let
K ⊆ M be compact. Then there exists a constant CK such that

|I(f)| ≤ CK‖f‖∞ for f ∈ Cc(M), supp f ⊆ K.

Proof. First we assume that f is a real valued function. By Corollary 9.3.28,
there is a function ϕ ∈ Cc(M) with values in [0, 1] which is identical to the
constant map 1 on K. Now, if f ∈ Cc(M) with supp f ⊆ K then |f | ≤ ‖f‖∞ϕ.
This gives ‖f‖∞ϕ± f ≥ 0, hence, ‖f‖∞I(ϕ)± I(f) ≥ 0, by assumption, and
therefore, |I(f)| ≤ I(ϕ)‖f‖∞.

If f = f1 + if2 is complex-valued, we now obtain with C := I(ϕ):

|I(f)| = |I(f1) + iI(f2)| ≤ |I(f1)|+ |I(f2)| ≤ C(‖f1‖∞ + ‖f2‖∞) ≤ 2C‖f‖∞.

ut
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Remark 9.3.39. If µ is a locally bounded Borel density on M , then by Propo-
sition 9.3.33 it defines a Borel measure µ̃ on M and Lemma 9.3.38 yields the
following estimate for K ⊆ M compact and f ∈ Cc(M):

∣∣∣∣
∫

M

fµ

∣∣∣∣ ≤ c sup
x∈K

|f(x)|.

Here the constant c depends only on K and µ.

Theorem 9.3.40. Let M be a manifold and h ∈ Cc(M ×M) with supp(h) ⊆
V × V for a compact subset V ⊆ M . Then the following statements are true:

(i) The maps
M → C(V ), g 7→ (

x 7→ h(g, x)
)

and
M → C(V ), g 7→ (

x 7→ h(x, g)
)

are continuous, where C(V ) is equipped with the supremum norm ‖ · ‖∞.
(ii) (Fubini) Let µ and µ′ be positive Borel measures on M . Then the functions

y 7→ ∫
M

h(x, y) dµ(x) and y 7→ ∫
M

h(y, x) dµ′(x) are continuous with
∫

M

∫

M

h(x, y) dµ(x)dµ′(y) =
∫

M

∫

M

h(x, y) dµ′(y)dµ(x).

Proof. (i) It suffices to prove the first of the two assertions. Write hx(y) :=
h(x, y). Let x0 ∈ M and ε > 0. Then

U := {(x, y) ∈ M × V : |h(x, y)− h(x0, y)| < ε}

is an open subset of M×V containing the compact subset {x0}×V , hence also
a set of the form W × V , where W is a neighborhood of x0 (Exercise 9.3.6),
and this means that for x ∈ W , we ‖hx − hx0‖∞ ≤ ε.

(ii) By (i) and Lemma 9.3.38, we get the continuity of both functions.
Therefore, since the supports of both functions lie in V , both double inte-
grals are defined because the integrands are compactly supported continuous
functions. By Lemma 9.3.38, the linear maps

α : C(V × V ) → R, f 7→
∫

M

∫

M

f(x, y) dµ(x)dµ′(y)

and
β : C(V × V ) → R, f 7→

∫

M

∫

M

f(x, y) dµ′(y)dµ(x)

are both continuous with respect to ‖f‖ := max{|f(x, y)| : x, y ∈ V }. As we
immediately see, both linear maps coincide on functions of the form f(x, y) =
f1(x)f2(y). By the Stone–Weierstraß Theorem, the subspace which is spanned
by these functions is dense in C(V × V ). This implies α = β. ut
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Lemma 9.3.41 (Integrals with Parameters). Let (M, M, µ̃) be a mea-
sure space, I an interval of positive length, and let f : M × I → C be a
function such that f( ·, t) : M → C is integrable for every t ∈ I. We set
F (t) :=

∫
M

f(x, t) dµ̃(x).

(i) For each integrable, nonnegative function g on M such that |f(x, t)| ≤ g(x)
for all x ∈ M and t ∈ I, and limt→t0 f(x, t) = f(x, t0) for all x ∈ M , we
have

lim
t→t0

F (t) = F (t0).

(ii) Assume that the partial derivative ∂f
∂t exists for t ∈ I◦, and assume fur-

thermore that there exists an integrable, nonnegative function g on M such
that |∂f

∂t (x, t)| ≤ g(x) for all x ∈ M and t ∈ I◦. Then F is differentiable
in ]a, b[, and

F ′(t) =
∫

M

∂f

∂t
(x, t) dµ̃(x).

Proof. (i) Set fn(x) = f(x, tn) where tn → t0 ∈ I for n →∞. By Lebesgue’s
Dominated Convergence Theorem, we get

F (t0) =
∫

M

f(x, t0) dµ̃(x) =
∫

M

lim
n→∞

fn(x) dµ̃(x)

= lim
n→∞

∫

M

fn(x) dµ̃(x) = lim
n→∞

∫

M

f(x, tn) dµ̃(x) = lim
n→∞

F (tn).

(ii) For hn(x) := f(x,tn)−f(x,t0)
tn−t0

we obtain limn→∞ hn(x) = ∂f
∂t (x, t0),

hence, ∂f
∂t ( ·, t0) is measurable. The Mean Value Theorem implies

|hn(x)| ≤ sup
t∈I◦

∣∣∂f
∂t (x, t)

∣∣ ≤ g(x)

for every x ∈ M . Using the Dominated Convergence Theorem again, we get
∫

M

∂f

∂t
(x, t0) dµ̃(x) = lim

n→∞

∫

M

hn(x) dµ̃(x)

= lim
n→∞

1
tn − t0

∫

M

(f(x, tn)− f(x, t0)) dµ̃(x) = lim
n→∞

F (tn)− F (t0)
tn − t0

,

which implies the claim. ut
Proposition 9.3.42. Let M and N be smooth manifolds, µ a locally bounded
Borel density on M , and f : M × N → R a continuous function which is
smooth in the second argument. We make the following assumptions:

(a) Locally, all partial derivatives of f with respect to the N -variables are also
continuous as functions on M ×N .

(b) There exists a subset C ⊆ N such that f |M×C is compactly supported.
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Then
y 7→

∫

M

fyµ, where fy(x) = f(x, y),

defines a smooth function on the interior C◦ of C such that integration over
M and differentiation with respect to the N -variables commute.

Proof. From the hypotheses we see that there exists a compact subset K ⊆ M
such that supp f ⊆ K×N . Pick finitely many open coordinate neighborhoods
U1, . . . , Uk in M covering K and a partition of unity (ρi)i=0,...,k subordinate
to (Ui)i=0,...,k with U0 := M \ K. Then, for each y ∈ C, the function fy is
bounded and we can write

∫

M

fyµ =
k∑

j=1

∫

Uj

ρjf
yµ.

To prove the claim we may now assume that M ⊆ Rm and C◦ ⊆ Rn are open
boxes. But then, by hypothesis, the functions ∂f

∂yj
: M×C → R are compactly

supported and smooth. Therefore one can find a dominating function g as
required in Lemma 9.3.41(ii), whence

∂

∂yj

∫

M

f(x, y)dµ̃(x) =
∫

M

∂
∂yj

f(x, y)dµ̃(x)

exists and is continuous for j = 1, . . . n. In view of (a) Lemma 9.3.41 shows that
y 7→ ∫

M
fyµ has continuous partial derivatives, hence is C1. But (b) implies

that we can apply the same argument to the functions (x, y) 7→ ∂
∂yj

f(x, y), so
we can use induction to complete the proof. ut

9.3.4 Orientations

We have seen in Subsection 9.3.2 that, under suitable conditions like positivity
of compact support, one can integrate densities. In this subsection we show
how to make the connection to the integration of differential forms which is
used for instance in Stokes’ Theorem. The objects that make such a connection
possible are the orientations.

Definition 9.3.43. Let V be an n-dimensional R-vector space and e1, . . . , en,
ẽ1, . . . , ẽn be two bases for V . Define the base change matrix A := (aij)1≤i,j≤n

in GLn(R) via

ei =
n∑

j=1

ajiẽj .

If det(A) > 0, we say that the two bases have the same orientation, and if
det(A) < 0, we say that the two bases have opposite orientation.
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Definition 9.3.44. Let M be an n-dimensional smooth manifold. Two charts
(ϕ,U) and (ψ, V ) of M are said to be equally oriented if

det
(
d(ψ ◦ ϕ−1)(x)

)
> 0 for x ∈ ϕ(U ∩ V ).

An orientation of M is an atlas (ϕα, Uα)α∈J which is maximal with respect
to the property that any two charts in this atlas are equally oriented. The
manifold M is called orientable, if it has an orientation (for connected M in
that case there are precisely two orientations).

Remark 9.3.45. Suppose that xα and xβ are the coordinate functions on Uα

and Uβ for two equally oriented charts of M . If xα = fαβ(xβ) are correspond-
ing coordinate changes, then

det
(∂xβ

i

∂xα
j

)
> 0.

This means that for p ∈ Uα ∩ Uβ the bases

∂

∂xα
1

∣∣
p
, . . . ,

∂

∂xα
n

∣∣
p

and
∂

∂xβ
1

∣∣
p
, . . . ,

∂

∂xβ
n

∣∣
p

of Tp(M) have the same orientation.

Definition 9.3.46 (Orientation bundle). Let M be a smooth manifold of
dimension n and GL(M) → M be the frame bundle of M . Consider the one-
dimensional representation g 7→ sign(det g) of G = GLn(R). Then the line
bundle OR(M) := GL(M)×G R associated with this representation via Def-
inition 9.2.10 is called the orientation bundle of M . The transition functions
of OR(M) are the signs of the Jacobi determinants of the coordinate changes.

The orientation bundle OR(M) can be used to give an elegant character-
ization of the orientability of M .

Proposition 9.3.47. A smooth manifold M is orientable if and only if
OR(M) admits a nowhere vanishing smooth section.

Proof. Given an orientation, we can cover M by charts such that the Jacobi
determinants of all coordinate changes are positive. Thus taking the constant
function 1 on all trivializations defines a smooth nowhere vanishing section of
the orientation bundle (Proposition 9.2.15).

Conversely, suppose we have a nowhere vanishing smooth section σ of
OR(M). Let (Uα)α∈J be a cover of M by connected coordinate neighborhoods
with coordinate functions xα

i on Uα such that OR(M) is trivial over each Uα.
If sα : ϕα(U) → R is the function representing σ on Uα, then changing the
first coordinate xα

1 to −xα
1 if necessary, we may assume that all sα are strictly

positive. But then
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sα(xα) = sβ(xβ) sign
(

det
(∂xα

i

∂xβ
j

))

now implies that det
(

∂xα
i

∂xβ
j

)
> 0, i.e., the charts (ϕα, Uα) and (ϕβ , Uβ) are

equally oriented for all α, β. Hence the cover defines an orientation on M . ut
Remark 9.3.48. Let M be a smooth manifold of dimension n. Then the
tensor product of the line bundles OR(M) and |Λn|(M) is again a line bundle
and it corresponds to the representation det : GLn(R) → R. But then the
transition functions are the Jacobi determinants, i.e., this is the bundle of
n-forms. If M is orientable and σ is a nowhere vanishing smooth section of
OR(M), then multiplication by σ defines isomorphisms between the spaces of
densities (smooth, continuous, compactly supported etc.) and n-forms (with
the corresponding properties). Thus, given σ we can integrate n-forms.

Definition 9.3.49. Let M be a smooth manifold of dimension n. An element
µ ∈ Ωn(M) is called a volume form if it does not vanish anywhere.

Corollary 9.3.50. A second countable manifold M of dimension n is ori-
entable if and only if there exists a volume form µ ∈ Ωn(M).

Example 9.3.51. (i) Consider the 2-torus T = R2/(Ze1 + Ze2) with the
1-forms dx1, dx2, where x1, x2 are the coordinates on R2. Then dx1 ∧ dx2 ∈
Ω2(T ) is never zero.

(ii) Consider the sphere Sn ⊂ Rn+1 and define µ ∈ Ωn(Sn) via µ(x) :=
ix(dx1 ∧ . . . ∧ dxn+1), where we identify the tangent spaces Tx(Sn) with the
corresponding subspaces x⊥ ⊆ Rn+1. Then we find

µ(x) = i∑ xi
∂

∂xj

(dx1 ∧ . . . ∧ dxn+1)

= x1dx2 ∧ . . . ∧ dxn+1 + . . . + (−1)n−1xndx1 ∧ . . . ∧ dxn

=
n+1∑

j=1

(−1)j−1xj dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn+1

(iii) The real projective spaces Pn(R) defined in Example 7.2.15 are not
orientable for n even. To prove this, assume to the contrary that n is even and
that η ∈ Ωn

(
Pn(R)

)
is nowhere zero. Let π : Sn → Pn(R) denote the quotient

map. Then also π∗η is nowhere zero. Recall that µ(x) := ixdx1 ∧ . . . ∧ dxn+1

defines an element µ ∈ Ωn(Sn), which is nowhere zero. Therefore π∗η = fµ
for some f ∈ C∞(Sn) satisfying f(p) 6= 0 for all p ∈ Sn. Since Sn is connected,
we may assume that f(p) > 0 for all p. Consider the map σ : Sn → Sn defined
by σ(x) := −x. Then we have σ∗µ = (−1)n+1µ = −µ (because n is even) and
since

−σ∗f · µ = σ∗f · σ∗µ = σ∗(fµ) = σ∗π∗η = (π ◦ σ)∗η = π∗η = f · µ
implies −f ◦ σ = f , we arrive at a contradiction to the positivity of f .
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Remark 9.3.52. If µ ∈ Ωn(M) is a volume form and ϕ ∈ Diff(M) is a
diffeomorphism of M , then ϕ is called orientation preserving if ϕ∗µ = fµ
for a strictly positive function f ∈ C∞(M). If M is connected, then this
definition does not depend on the choice of the volume form. In fact, if µ̃ is
another volume form, then µ̃ = hµ for a smooth function h : M → R×. Since
M is assumed to be connected, we either have h > 0 or h < 0 which implies
ϕ∗h

h > 0 and further

ϕ∗µ̃ = (ϕ∗h)(ϕ∗µ) =
ϕ∗h
h

fhµ =
ϕ∗h
h

fµ̃

with ϕ∗h
h f > 0.

Proposition 9.3.53 (Orientation of homogeneous spaces). Let G be a
Lie group and H a closed subgroup of G. If there exists an Adg/h H-invariant
volume form on g/h, then there exists a G-invariant volume form on G/H.
In particular, G/H is orientable.

Proof. Let ω0 ∈ Altk(g/h,R) be an Ad H-invariant volume form. The descrip-
tion of AltkT (G/H) as the associated bundle

G×H Altk(g/h,R)

(see Definition 9.3.1 and Corollary 9.2.13) immediately shows that

ω(gH) = [g, ω0] ∈ G×H Altk(g/h,R)

for gH ∈ G/H defines a G-invariant volume form on G/H. ut
Remark 9.3.54. Proposition 9.3.53 in particular shows that each Lie group is
orientable and that for each non-zero ω0 ∈ Altk(g,R) there is a unique choice
of orientation in such a way that the left-invariant volume form ω associated
with ω0 is positive.

Exercises for Section 9.3

Exercise 9.3.1. Let M be a manifold and (E,M,E, π) a vector bundle. A
subset F ⊆ E is called a vector subbundle of E if the sets Fp := F ∩ Ep are
vector subspaces of the fibers Ep such that the restriction π|F : F→ M defines
a vector bundle in its own right.

Exercise 9.3.2. Let X be a topological space and (Kn)n∈N a sequence of
compact subsets of X with

⋃
n∈NKn = X and Kn ⊆ K0

n+1 for each n ∈ N.
Show that for each compact subset C ⊆ X there exists an n ∈ N with C ⊆ Kn.

Exercise 9.3.3. A family (Si)i∈I of subsets of a topological space X is said
to be locally finite if each point p ∈ X has a neighborhood intersecting only
finitely many Si. Show that if (Si)i∈I is a locally finite family of closed subsets
of X, then

⋃
i∈I Si is closed.
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Exercise 9.3.4. Let (Si)i∈I be a locally finite family of subsets of the topo-
logical space X. Show that each compact subset K ⊆ X intersects only finitely
many of the sets Si.

Exercise 9.3.5. Let E be a finite-dimensional vector space. A family (fj)j∈J

of smooth E-valued functions on M is called locally finite if each point p ∈ M
has a neighborhood U for which the set {j ∈ J : fj |U 6= 0} is finite. Show that
this implies that f :=

∑
j∈J fj defines a smooth E-valued function on M .

Exercise 9.3.6. Let X and Y be Hausdorff spaces and K ⊆ X, resp., Q ⊆ Y
be a compact subset. Then for each open subset U ⊆ X×Y containing K×Q,
there exist open subsets UK ⊆ X containing K and UQ ⊆ Y containing Y
with

K ×Q ⊆ UK × UQ ⊆ U.

9.4 Invariant Integration

In this section we show how to construct measures on Lie groups and cer-
tain of their homogeneous spaces which are invariant under the group action.
Following the approach via densities laid out in Section 9.3, we start with
a description of invariant densities which will then give rise to the desired
measures.

9.4.1 Invariant Densities

Definition 9.4.1. Let M be a smooth manifold, G a Lie group, and
σ : G×M → M a smooth action. An r-density µ on M is called G-invariant ,
if σ∗gµ = µ, where σ∗gµ is the pull-back of µ by σg (see Definition 9.3.36).

If M = G, then using left- and right translations as actions we obtain the
notions of left- and right invariant densities on G.

Remark 9.4.2. (i) If a group G acts linearly on a finite-dimensional vector
space V , then this action induces a G-action on the space of r-densities on V
via

(g · µ)(v1, . . . , vn) := µ(g−1v1, . . . , g
−1vn) = |det g|−r(µ)(v1, . . . , vn)

for v1, . . . , vn ∈ V . Thus it makes sense to talk about G-invariant densities
on V .

(ii) Let M be a smooth manifold, G a Lie group, and σ : G × M → M
a smooth action. Recall the two realizations |Λ|r(M) and L(r)(M) of the r-
density bundle from Definition 9.2.16. The action of G lifts to actions on
|Λ|r(M) and L(r)(M) in such a way that the isomorphism [ϕ, t] 7→ µϕ,t be-
tween the two spaces described in (9.3) is G-equivariant: The lift of σ to
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GL(M)×∆r R is obtained by the lift of σ to GL(M) which in turn is provided
by the tangent maps of the σg. On L(r)(M), we set

(g · µ)(v1, . . . , vn) = µ
(
Tp(σg−1)v1, . . . , Tp(σg−1)vn

)

for v1, . . . , vn ∈ Tσg(p)(M) and µ ∈ L
(r)
p (M). To see the G-equivariance, we

have to show that µσg(ϕ),t = g · µσg(ϕ),t for g ∈ G. Denote the canonical pro-
jection GL(M) → M by π̃. For π̃(ϕ) = p and vj = Tp(σg)ϕ(ej) = σg(ϕ)(ej)
we have µσg(ϕ),t(v1, . . . , vn) = t. On the other hand

(g · µϕ,t)(v1, . . . , vn) = µϕ,t

(
ϕ(e1), . . . , ϕ(en)

)
= t,

so that the claim is proved. Note that the corresponding G-action on the
sections of L(r)(M) is the pull-back of densities.

Lemma 9.4.3. Let G be a Lie group and H a closed subgroup. Then the
following conditions are equivalent:

(1) There exists a G-invariant smooth density µ on G/H.
(2) There exists an Adg/h(H)-invariant density µ0 on g/h.
(3)

∣∣ det ◦AdG |H
∣∣ = |det ◦AdH |.

Proof. Recall from Corollary 9.2.13 that we have a G-equivariant bundle iso-
morphism G×Hg/h → T (G/H). Therefore the frame bundle GL(G/H) can be
obtained as G×H GL(g/h), where H acts on GL(g/h) by (h,A) 7→ Adg/h(h)A.
But then the density bundle is

(G×H GL(g/h))×GL(g/h) R = G×H R,

where the action of H on R is given by

(h, t) 7→ ∣∣ det
(
Adg/h(h)

)∣∣−1
t. (9.9)

According to Proposition 9.2.17, the smooth sections of G×HR are of the form
gH 7→ [g, F (g)], where F : G → R is a smooth function such that F (gh) =
h−1 · F (g) for all g ∈ G and h ∈ H. Such a section is G-invariant if and only
if F is constant since G-invariance implies

[gx, F (x)] = g · [x, F (x)] = [gx, F (gx)].

Thus invariant densities on G/H are in one-to-one correspondence with
H-fixed points in the fiber over the base point 1H, i.e. Adg/h(H)-invariant
densities on g/h. But then (9.9) implies the equivalence of (1), (2), and (3),
since

det
(
Adg/h(h)

)
det

(
AdH(h)

)
= det

(
AdG(h)

)
. ut

In view of Proposition 9.3.33 and Remark 9.3.39, we see that any Adg/h H-
invariant density µ defines a positive Borel measure µ̃ on G/H.
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Proposition 9.4.4. Let G be a Lie group, H a closed subgroup, and µ0 an
Adg/h(H)-invariant density on g/h with positive values. Then the associated
smooth G-invariant density µ is positive. The associated measure µ̃ (see Re-
mark 9.3.32) is left invariant and satisfies

∫

G/H

λ∗gfdµ̃ =
∫

G/H

fdµ̃ for f ∈ Cc(G/H).

Proof. The first claim follows immediately from the proof of Lemma 9.4.3.
Thus it suffices to show that µ̃ is G-invariant if and only if µ is G-invariant.
But this follows from the global transformation formula given in Remark
9.3.37, which allows us to write

∫

M

λ∗gfd(λ
∗
gµ)∼ =

∫

M

f dµ̃. ut

Definition 9.4.5 (Haar measure). Let G be a Lie group. A positive Borel
measure µ on G is called a left Haar measure, if it is invariant under left
translations. Similarly, it is called a right Haar measure, if it is invariant
under right translations. We will denote Haar measures on G by µG and
write the corresponding integrals as

∫

G

fdµG =
∫

G

f(g)dµG(g).

Remark 9.4.6. (i) Note that Proposition 9.4.4 guarantees that left Haar mea-
sures exist. The existence of right Haar measures is shown analogously using
right invariant densities.

(ii) The question of uniqueness is more subtle. It can be shown that
left/right Haar integrals Cc(G) → R are unique up to positive scalars. On
the level of measures one first has to observe that on Lie groups with at most
countably many connected components Borel measures automatically satisfy
additional regularity conditions ([Ru86, Thm. 2.17]) ensuring that they are
uniquely determined by the corresponding integrals of compactly supported
continuous functions (which are in particular supported by finitely many con-
nected components). The uniqueness of Haar measure up to positive scalar
multiples then follows from a general theorem on locally compact groups. To-
gether with Proposition 9.4.4 this shows that the left/right Haar integrals
on a Lie group are in one-to-one correspondence with the left/right invariant
densities. In this book we shall avoid arguments using the uniqueness of Haar
measures and replace them by arguments using concrete left/right invariant
densities.

(iii) In view of Proposition 9.3.53 (see also Corollary 9.3.50), Remark 9.3.39
also shows that any Adg/h H-invariant volume form ω0 on g/h defines a left
invariant nonvanishing differential form of degree dimG/H and then a positive
Borel measure on G/H which we denote by ω. As in Proposition 9.4.4 one
shows that ω is a left Haar measure. In many texts on Lie groups this is the
path taken for the construction of Haar measures.
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9.4.2 Integration Formulas

Proposition 9.4.7. If µl is a left invariant density on a Lie group G, then

µr(x) :=
∣∣ detAd(x)

∣∣ µl(x)

is a right invariant density on G and

ρ∗gµl =
∣∣ detAd(g)

∣∣−1
µl. (9.10)

Proof. In view of (ρ∗gµr)(x) =
∣∣ det Ad(xg)

∣∣(ρ∗gµl)(x), it remains to verify
(9.10). As both sides of this equation are left invariant densities, it suffices to
show that their values in 1 coincide. With T1(cg) = Ad(g), this follows from

(ρ∗gµl)(1) = (c∗g−1µl)(1) =
∣∣ det Ad(g−1)

∣∣µl(1). ut

Corollary 9.4.8. If µ is a left invariant density on G, then
∫

G

f(g−1)dµ̃(g) =
∫

G

f(g) | detAd(g)|dµ̃(g).

Proof. Let ηG(g) = g−1 be the inversion on G and note that η∗Gµ is a right
invariant density with the same value as µ in 1. Now Proposition 9.4.7 implies
that

η∗Gµ = | det ◦Ad | · µ,

so that the assertion follows from the transformation formula for integrals
with respect to densities:

∫

G

f(g−1)dµ̃(g) =
∫

G

f(g)d(η∗Gµ)̃ (g) =
∫

G

f(g) | detAd(g)| dµ̃(g). ut

Definition 9.4.9. A Lie group G is called unimodular if |detAd(x)| = 1 for
all x ∈ G. The function ∆G(g) := | det ◦Ad(g)|−1 on G is called the modular
function. It is a continuous group homomorphism ∆G : G → (R×+, ·).

If G is unimodular, any left invariant density is also a right invariant
density measure. Thus the corresponding left Haar measure is also a right
Haar measure.

Remark 9.4.10. For a connected Lie group G, the following properties are
equivalent.

(1) G is unimodular.
(2) det ◦Ad ≡ 1.
(3) tr ◦ ad ≡ 0.

Proposition 9.4.11. The following properties of a Lie group G imply that it
is unimodular:
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(a) G is compact.
(b) G is abelian.
(c) The commutator group G′ of G is dense in G.
(d) G is connected with nilpotent Lie algebra.

Proof. (a) ∆G(G) is a compact subgroup of (R×+, ·), hence trivial.
(b) If G is abelian, then Ad(g) = L(cg) = idg for each g ∈ G.
(c) Since R× is abelian, G′ ⊆ ker∆G, so, by continuity, the hypothesis

implies that ∆G = 1.
(d) Since g is nilpotent, the operators ad(x) for x ∈ g are nilpotent, so

they have zero trace. Hence Ad(exp x) = ead(x) leads to detAd(exp x) =
etr ad(x) = 1, which implies (d) because exp g generates G. ut
Proposition 9.4.12. Let G be a Lie group and H a closed subgroup. Suppose
that µ is the G-invariant density on G/H associated with an
Adg/h(H)-invariant density µ0 on g/h. Then we can find Haar measures µG

and µH such that
∫

G

f(g) dµG(g) =
∫

G/H

( ∫

H

f(gh) dµH(h)
)
dµ̃(gH) (9.11)

for all f ∈ Cc(G).

Proof. Using partitions of unity, it suffices to show formula (9.11) for G re-
placed by open subsets of the form q−1(Uα), where (Uα)α∈A is a locally finite
open covering of G/H. Using Corollary 9.1.11, we can cover G/H by open
sets U for which we have a smooth section σ : U → G for the quotient map
q : G → G/H such that mσ : U × H → σ(U)H, (u, h) 7→ σ(U)H is a diffeo-
morphism onto an open subset of G. Note that σ(U)H = q−1(U).

Pick a basis vk+1, . . . , vn for h and complete it by vectors v1, . . . , vk to
a basis for g. Then the vj := vj + h, j = 1, . . . , k, form a basis for g/h
which we identify with the tangent space Tpo(G/H) of G/H at the base point
po = q(1). We may assume that µ(po)(v1, . . . , vk) = 1. Let νH , resp., νG be
a left invariant density on H, resp., G with µG = ν̃G, resp., µH = ν̃H . We
normalize them in such a way that

νH(1)(vk+1, . . . , vn) = νG(1)(v1, . . . , vn) = 1.

Consider the product density µ⊗ νH on U ×H.

Claim: m∗
σνG = µ⊗ νH .

Before we prove the claim, we show how it implies the proposition: Since
m−1

σ (UH) = U ×H and UH = q−1(U), the transformation formula for den-
sities shows that

∫

U×H

f(σ(u)h) dµ̃(u)dµH(h) =
∫

q−1(U)

f(g) dµG(g),
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where µH and µG are the Haar measures corresponding to the densities νH

and νG. But this is precisely what we had to show since
∫

H
f(σ(u)h) dµH(h)

is independent of the choice of σ(u).
To prove the claim, pick u ∈ U and write g = σ(u). Then mσ(u, h) = gh

and we may choose as a basis for T(u,h)(U ×H) = Tpo(λg)(g/h)× T1(λh)(h)

Tpo(λgh)v1, . . . , Tpo(λgh)vk, T1(λh)vk+1, . . . , T1(λh)vn,

where λg is the (left) translation by g on G/H and vj = vj + h. To calculate
m∗

σνG(u, h), we note first that

Tgh(λ(gh)−1)T(u,h)(mσ)Tpo,1(λgh × ρh) = Tpo,1(λ(gh)−1 ◦mσ ◦ (λgh × λh))

and
λ(gh)−1 ◦mσ ◦ (λgh × λh)(u′, h′) = (gh)−1σ(gh.u′)hh′ ∈ G.

Since gh.po = g.po = u, this implies

(po,1) 7→ ch−1(g−1σ(gh.po)) = ch−1(g−1σ(u)) = ch−1(1) = 1.

We set

wj := Tgh(λ(gh)−1)T(u,h)(mσ)Tpo,1(λgh × λh)(vj , 0) ∈ g, j = 1, . . . , k

wj := Tgh(λ(gh)−1)T(u,h)(mσ)Tpo,1(λgh × λh)(0, vj) ∈ g, j = k + 1, . . . , n

and use

q ◦ λ(gh)−1 ◦mσ ◦ (λgh × λh)(u′, h′) = q
(
(gh)−1σ(gh.u′)hh′

)
= u′ ∈ G/H

to see that
T1(q)(wj) = vj + h, j = 1, . . . , k,

which implies the existence of yj ∈ h, j = 1, . . . , k such that

wj = vj + yj , j = 1, . . . , k.

Moreover,

wj =
d

dt t=0
(gh)−1σ(g.po)h exp tvj =

d

dt t=0
exp tvj = vj , j = k + 1, . . . , n.

Thus the invariance of νG implies

m∗
σνG(u, h)(Tpo(λgh)v1, . . . , Tpo(λgh)vk, T1(λh)vk+1, . . . , T1(λh)vn)

= νG(1)(w1, . . . , wn) = νG(1)(v1 + y1, . . . , vk + yk, vk+1, . . . , vn)
= νG(1)(v1, . . . , vk, vk+1, . . . , vn) = 1

On the other hand, the invariance properties of µ⊗ νH imply
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(µ⊗ νH)(u, h)(Tpo(λgh)v1, . . . , Tpo(λgh)vk, T1(λh)vk+1, . . . , T1(λh)vn)

= µ(po)(Tu(λg−1)Tpo
(λgh)v1, . . . , Tu(λg−1)Tpo

(λgh)vk)
· νH(1)(Th(λh−1)T1(λh)vk+1, . . . , Th(λh−1)T1(λh)vn)

= (µ⊗ νH)(po,1)(Tpo(λh)v1, . . . , Tpo
(λh)vk, vk+1, . . . , vn)

= µ(po)(Ad(h)v1, . . . , Ad(h)vk) · νH(1)(vk+1, . . . , vn)
= µ(po)(v1, . . . , vk) · νH(1)(vk+1, . . . , vn) = 1

and this proves the claim. ut
Proposition 9.4.13. Let G be a Lie group and A,B two integral subgroups
with compact intersection such that g = a + b and the multiplication induces
an open map µ : A×B → G, (a, b) 7→ ab. If G \AB has Haar measure zero,
then, for any two left Haar measures µA and µB on A and B we obtain a left
Haar measure on G by

∫

G

f(g) dµG(g) =
∫

B

∣∣∣detAdG(b)
det AdB(b)

∣∣∣
∫

A

f(ab) dµA(a) dµB(b)

for f ∈ Cc(G).

Proof. The group A×B acts transitively on AB via (a, b) ·x = axb−1 and the
stabilizer of 1 is the compact subgroup K := {(a, a) ∈ A × B : a ∈ A ∩ B}.
Therefore the map

ϕ : (A×B)/K → AB, (a, b)K 7→ ab−1

is a diffeomorphism and for any left invariant density µ on G, we obtain the
formula ∫

G

f dµ̃ =
∫

(A×B)/K

(f ◦ ϕ) d(ϕ∗µ)∼. (9.12)

Since ϕ is a diffeomorphism onto an open subset of G satisfying ϕ ◦ λa =
λa◦ϕ and ϕ◦λb = ρ−1

b ◦ϕ for a ∈ A and b ∈ B, the density ϕ∗µ on (A×B)/K
is left A-invariant and satisfies

λ∗bϕ
∗µ = (ϕ ◦ λb)∗µ = (ρ−1

b ◦ ϕ)∗µ = ϕ∗(ρ−1
b )∗µ = | det(AdG(b))| · ϕ∗µ

(Proposition 9.4.7). Since the subgroup A∩B of G is compact, ∆G(A∩B) is
a compact subgroup of R×+, hence trivial, and therefore the function

s : (A×B)/K → R×+, s((a, b)K) := | det(AdG(b))|

is well defined and the preceding calculations imply that

ω := s−1 · ϕ∗µ
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is an (A×B)-invariant density on (A×B)/K. Since K ∼= A ∩B is compact,
there exists a normalized Haar measure µA∩B , and, for a suitable normaliza-
tion of Haar measure on A × B, we then have (cf. Corollary 9.4.8 and Prop.
9.4.12)

∫

A×B

f(ab) dµA(a) dµB(b)

=
∫

A×B

f(ab−1) |det ◦AdB(b)| dµA(a) dµB(b)

=
∫

(A×B)/K

∫

A∩B

f
(
(ah)(bh)−1)| det ◦AdB(b)| dµA∩B(h) dω̃((a, b)K)

=
∫

(A×B)/K

f(ab−1)| det ◦AdB(b)| dω̃((a, b)K)

=
∫

(A×B)/K

f(ab−1)
|det(AdB(b))|
|det(AdG(b))| d(ϕ

∗µ)̃ ((a, b)K).

Comparing with (9.12), the assertion follows. ut

9.4.3 Averaging

In this subsection we give a few applications of invariant integration. We start
with the construction of invariant inner products for representation spaces of
compact Lie groups, which is a key step in the proof of Weyl’s Trick which pro-
vides an equivalence between unitary representations of compact Lie groups
and holomorphic representations of their complexifications.

Lemma 9.4.14 (Unitarity Lemma for Compact Groups). Let
π : G → GL(V ) be a representation of the compact Lie group on the finite-
dimensional K-vector space V . Then there exists a positive definite hermitian
form β on V with π(G) ⊆ U(V, β).

Proof. Let µG be a normalized Haar measure on G. Using a basis, we obtain
a linear isomorphism ϕ : V → Kn, so that we can use the standard hermitian
form on Kn to obtain on V a positive definite hermitian form β̃. We now put

β(v, w) :=
∫

G

β̃
(
π(g)v, π(g)w)

)
dµG(g) for x, y ∈ V.

This integral is defined because the integrand is a continuous function. It is
clear that β is sesquilinear and hermitian because

β(v, w) =
∫

G

β̃
(
π(g)v, π(g)w)

)
dµG(g)

=
∫

G

β̃
(
π(g)w, π(g)v)

)
dµG(g) = β(w, v).
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For v = w 6= 0, we obtain β(v, v) > 0 because β̃(π(g)v, π(g)v) > 0 holds for
each g ∈ G. Finally, the right invariance of µG implies that

β(π(g)v, π(g)w) =
∫

G

β̃
(
π(hg)v, π(hg)w

)
dµG(h)

=
∫

G

β̃
(
π(h)v, π(h)w

)
dµG(h) = β(v, w).

This proves that π(G) ⊆ U(V, β). ut
Next we turn to differential forms and de Rham cohomology classes.

Definition 9.4.15. Let M be a smooth manifold and G a Lie group acting
smoothly on M . A differential form ω ∈ Ωk(M) is called G-invariant , if
σ∗gω = ω where σg : M → M is the diffeomorphism induced by g on M

via the action, which we denote by σ. We write Ωk(M)G for the space of
G-invariant k-forms on M .

Remark 9.4.16. If σ : G×M → M is a smooth action, then Remark 9.3.16
implies that exterior differentiation commutes with the pullback maps σ∗g so
that we obtain a map d : Ωk(M)G → Ωk+1(M)G. Thus we can define an
invariant version of de Rham cohomology (cf. Definition 9.3.14) via

Hk
dR,G(M) :=

ker
(
d : Ωk(M)G → Ωk+1(M)G

)

im
(
d : Ωk−1(M)G → Ωk(M)G

)

is called the k-th invariant de Rham cohomology space of M . It is clear that
the inclusions Ωk(M)G → Ωk(G) induce natural maps

i∗ : Hk
dR,G(M) → Hk

dR(M).

Proposition 9.4.17. Let σ : G ×M → M be a smooth action of a compact
Lie group G on a smooth manifold M . Then

(Pkω)x(v1, . . . , vk) :=
∫

G

(σ∗gω)x(v1, . . . , vk) dµG(g)

for x ∈ M , k ∈ N0, and v1, . . . , vk ∈ Tx(M) defines linear projections
Pk : Ωk(M) → Ωk(M)G commuting with exterior differentiation.

Proof. The definition of the pull-back of differential form and the chain rule,
together with the right invariance of the Haar measure, allow us to calculate

(
σ∗h(Pkω)

)
x
(v1, . . . , vk) = (Pkω)σh(x)

(
Tx(σh)v1, . . . , Tx(σh)vk

)

=
∫

G

(σ∗gω)σh(x)

(
Tx(σh)v1, . . . , Tx(σh)vk

)
dµG(g)

=
∫

G

ωσgh(x)

(
Tx(σgh)v1, . . . , Tx(σgh)vk

)
dµG(g)

=
∫

G

ωσg(x)

(
Tx(σg)v1, . . . , Tx(σg)vk

)
dµG(g)

= (Pkω)x(v1, . . . , vk).
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This implies the first claim. The second claim follows by integration from the
fact that the exterior derivative commutes with pullbacks (Remark 9.3.16). ut

The averaging operators Pk can be used to show that the maps

i∗ : Hk
dR,G(M) → Hk

dR(M)

are injective:

Theorem 9.4.18. Let M be a smooth manifold and G a compact Lie group
acting smoothly on M . Then the natural maps i∗ : Hk

dR,G(M) → Hk
dR(M) are

linear and injective.

Proof. Linearity is clear, so we assume that ω = dν ∈ Ωk(M)G with ν ∈
Ωk−1(M). Then Pk−1ν ∈ Ωk−1(M)G and

d(Pk−1ν) = Pk(dν) = Pkω = ω.

Thus ω ∈ im
(
d : Ωk−1(M)G → Ωk(M)G

)
induces the zero cohomology class

in Hk
dR(M)G. ut

Remark 9.4.19. If, in the situation of Theorem 9.4.18, G is connected, one
can show that i∗ is indeed an isomorphism (see [GHV73, p. 151]).

Definition 9.4.20. Let G be a Lie group with Lie algebra g, V a vector space
and ρ : G → GL(V ) be a smooth representation of G, so that the derived
representation yields on V the structure of a g-module.

We call a p-form ω ∈ Ωp(G,V ) equivariant if we have for all g ∈ G the
relation

λ∗gω = ρ(g) ◦ ω.

If V is a trivial module, then an equivariant p-form is a left invariant
V -valued p-form on G. An equivariant p-form is uniquely determined by the
corresponding element ω1 ∈ Cp(g, V ) via

ωg(gx1, . . . , gxp) = ρ(g)ω1(x1, . . . , xp) (9.13)

for g ∈ G, xi ∈ g ∼= T1(G), where G× T (G) → T (G), (g, x) 7→ gx denotes the
natural action of G on its tangent bundle T (G) obtained by restricting the
tangent map of the group multiplication.

Conversely, (9.13) provides for each ω ∈ Cp(g, V ) a unique equivariant
p-form ωeq on G with ωeq

1 = ω.

Remark 9.4.21. If ω ∈ Cp(g, V ) and ωeq ∈ Ωp(G,V ) is the correspond-
ing left equivariant p-form on G, then each right multiplication ρg : G → G
satisfies

(ρ∗ωeq)1(x1, . . . , xp) = ωeq(x1g, . . . , xpg) = ρ(g)ω(g−1x1g, . . . , g−1xpg)

= ρ(g)(Ad(g−1)∗ω)(x1, . . . , xp).

Since ρ∗gω
eq is also left equivariant, we see that pullback with right multipli-

cations correspond to the action of G on Cp(g, V ) by (g, ω) 7→ Ad(g−1)∗ω.
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Proposition 9.4.22. For each ω ∈ Cp(g, V ) the equation d(ωeq) = (dgω)eq

holds. Accordingly, the evaluation map

ev1 : Ωp(G,V )eq → Cp(g, V ), ω 7→ ω1 satisfies ev1 ◦d = dg ◦ ev1 .

Proof. For g ∈ G, we have

λ∗gdω
eq = dλ∗gω

eq = d(ρ(g) ◦ ωeq) = ρ(g) ◦ (dωeq),

showing that dωeq is also equivariant.
For x ∈ g we write xl for the corresponding left invariant vector field on

G, i.e., xl(g) = gx. It suffices to calculate the value of dωeq on (p + 1)-tuples
of left invariant vector fields in the identity element. In view of

ωeq(x1,l, . . . , xp,l)(g) = ρ(g)ω(x1, . . . , xp),

we obtain
(
x0,lω

eq(x1,l, . . . , xp,l)
)
(1) = L(ρ)(x0)ω(x1, . . . , xp),

and therefore
(
dωeq(x0,l, . . . , xp,l

))
(1)

=
p∑

i=0

(−1)i L(ρ)(xi,l)ωeq(x0,l, . . . , x̂i,l, . . . , xp,l)(1)

+
∑

i<j

(−1)i+jωeq([xi,l, xj,l], x0,l, . . . , x̂i,l, . . . , x̂j,l, . . . , xp,l)(1)

=
p∑

i=0

(−1)i L(ρ)(xi)ω(x0, . . . , x̂i, . . . , xp)

+
∑

i<j

(−1)i+jω([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp)

= (dgω)(x0, . . . , xp).

This proves our assertion. ut
Corollary 9.4.23. Every differential form ω ∈ Ωp(G,R) on a Lie group G
which is invariant under left and right translations is closed.

Proof. The right invariance of ω implies that ω1 ∈ Cp(g,R) is invariant under
the adjoint action, i.e.,

Ad(g)∗ω1 = ω1 for g ∈ G

(Remark 9.4.21). Taking derivatives, we see that ω ∈ Cp(g,R)g, i.e., ω is g-
invariant. Now Lemma 6.5.28 implies that dgω1 = 0, and Proposition 9.4.22
shows that ωeq is closed. ut
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Corollary 9.4.24. Every non-zero differential form ω ∈ Ωp(G,R) on a com-
pact Lie group G which is invariant under left and right translations is closed,
but not exact, so it defines a nonzero element in Hp

dR(G,R).

Proof. In view of Corollary 9.4.23, it only remains to show that an exact form
ω ∈ Ωp(G,R) which is left and right invariant vanishes. To this end, pick such
a form and let G×G act on G by (g1, g2).x = g1xg−1

2 . This defines a smooth
action for which ω is invariant, i.e., ω ∈ Ωp(G)G×G. But then exactness by
Theorem 9.4.18 implies that there exists a (G×G)-invariant form ν ∈ Ωp−1(G)
with ω = dν. On the other hand, Corollary 9.4.23 implies that ν is closed, so
that ω = dν = 0. ut
Corollary 9.4.25. If G is a compact connected Lie group of dimension n,
then Hn

dR(G,R) 6= {0}.
Proof. The compactness of the Lie algebra g implies in particular that G
is unimodular, i.e., | det(Ad(g))| = 1 for each g ∈ G. Taking derivatives, it
follows that tr(ad x) = 0 for each x ∈ g. Using Proposition 6.5.24, we find a
g-invariant volume form ω ∈ Cn(g,R). As G is connected, the g-invariance of
ω implies that Ad(g)∗ω = ω holds for each g ∈ G. Then the corresponding
left invariant differential form ωeq ∈ Ωn(G,R) is also invariant under right
translations, and Corollary 9.4.24 shows that it defines a non-zero class in
Hn

dR(G,R). ut

Exercises for Section 9.4

Exercise 9.4.1. Let G be a Lie group, µG a left Haar measure. For f, h ∈
Cc(G), define the convolution product

(f ∗ h)(g) :=
∫

G

f(gx−1)h(x) dµG(x) and ‖f‖1 :=
∫

G

|f(x)| dµG(x).

Show that:

(i) The convolution product turns Cc(G) into an associative R-algebra.
(ii) For f, h ∈ Cc(G) we have ‖f ∗ h‖1 ≤ ‖f‖1‖h‖1, i.e.

(
Cc(G), ∗, ‖ · ‖1

)
is a

normed algebra.
(iii) The completion of Cc(G) with respect to the norm ‖ · ‖1 is denoted by

L1(G). It is possible to extend the convolution to an associative multipli-
cation on L1(G), which turns L1(G) into a Banach algebra.

(iv) Write down the convolution for a finite group G.
(v) What is L1(G) for a discrete group, e.g., for Z ?

Exercise 9.4.2. Let G be a locally compact group, and let f ∈ Cc(G). Then
f is uniformly continuous in the sense that for every ε > 0 there is a neigh-
borhood V ⊆ G of unity such that

|f(x)− f(y)| ≤ ε für y ∈ xV.

Exercise 9.4.3. Let µ be a Haar measure on the Lie group G and h ∈ C(G)
with µ(fh) = 0 for all f ∈ Cc(G). Show that h = 0.
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9.5 Integrating Lie Algebras of Vector Fields

In Proposition 8.1.14 we obtained for each smooth action of a Lie group G
on a manifold M a representation of the Lie algebra L(G) in the Lie algebra
V(M) of vector fields on M . In this section we study the converse problem of
integrating such a Lie algebra representation to a smooth action.

9.5.1 Palais’ Theorem

We start with the case where all representation vector fields are known to be
complete, a condition which is hard to verify.

Theorem 9.5.1 (Palais). Let G be a 1-connected Lie group with Lie algebra
g, M a smooth manifold and α : g → V(M) a morphism of Lie algebras whose
image consists of complete vector fields. Then there exists a homomorphism
β : G → Diff(M) defining a smooth G-action σ on M with σ̇ = α.

If X ∈ V(M) is a complete vector field, then we write

exp(X) := ΦX
1 ∈ Diff(M)

for the time-1-flow of X.

Proposition 9.5.2. If M is finite-dimensional and E ⊆ V(M) is a finite-
dimensional subspace consisting of complete vector fields, then the map

E ×M → M, (X, m) 7→ exp(X)(m)

is smooth.

Proof. Let f : Rn → E be a linear isomorphism. Clearly, the map

Rn ×M → T (M), (x,m) 7→ f(x)(m)

is smooth. We thus obtain on the manifold M̂ := Rn × M a smooth vector
field X̂(x,m) := (0, f(x)(m)) with

exp(X̂)(x,m) = (x, exp(f(x))(m)),

so that the assertion follows from the smoothness of exp(X̂) on M̂ (Theo-
rem 7.5.12). ut

We have a natural action of Diff(M) on V(M) by

Diff(M)× V(M) → V(M), (ϕ,X) 7→ ϕ∗X := T (ϕ) ◦X ◦ ϕ−1,

called the adjoint action.
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Definition 9.5.3. Let M and N be smooth manifolds.
(a) Although Diff(M) is certainly not a finite-dimensional Lie group, we

call a map ϕ : N → Diff(M) smooth if the map

ϕ̂ : N ×M → M ×M, (n, x) 7→ (ϕ(n)(x), ϕ(n)−1(x))

is smooth. If N is an interval in R, we obtain in particular a notion of a smooth
curve.

(b) Smooth curves ϕ : J ⊆ R→ Diff(M) have (left) logarithmic derivatives

δ(ϕ) : J → V(M), δ(ϕ)t := T (ϕ(t)−1) ◦ ϕ′(t)

which are curves in the Lie algebra V(M) of smooth vector fields on M , i.e.,
time-dependent vector fields. Here we consider ϕ′(t) : M → TM as the smooth
map defined by

ϕ′(t)(m) =
d

dt
ϕ(t)(m), m ∈ M, t ∈ J.

As we shall see below, for general N , the logarithmic derivatives are V(M)-
valued 1-forms on N which are smooth in the sense that composition with
any evaluation map evp : V(M) → Tp(M) yields a Tp(M)-valued differential
form.

If ϕ : N → Diff(M) is smooth and ϕ̂1 : N × M → M, (n, x) 7→ ϕ(n)(x),
then we have a smooth tangent map

T (ϕ̂1) : T (N ×M) ∼= T (N)× T (M) → T (M)

and obtain for each v ∈ Tp(N) the partial map

Tp(ϕ)v : M → T (M), m 7→ T(p,m)(ϕ̂1)(v, 0).

We define the (left) logarithmic derivative of ϕ in p by

δ(ϕ)p : Tp(N) → V(M), v 7→ T (ϕ(p)−1) ◦ Tp(ϕ)(v).

Then δ(ϕ) is a V(M)-valued 1-form on N .

Lemma 9.5.4. If g is a finite-dimensional Lie algebra and α : g → V(M) is
a homomorphism, then each x ∈ g, for which α(x) is complete, satisfies the
relation

exp(−α(x))∗ ◦ α = α ◦ ead x. (9.14)

Proof. We consider the smooth curve

ψ(t) := exp(tα(x))∗α(et ad xy).

Then the definition of the Lie derivative implies that
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ψ′(t) = exp(tα(x))∗
(− Lα(x)(α(et ad xy))

)
+ exp(tα(x))∗α([x, et ad xy])

= exp(tα(x))∗
(− [α(x), α(et ad xy)]

)
+ exp(tα(x))∗α([x, et ad xy])

= exp(tα(x))∗α
(
[−x, et ad xy] + [x, et ad xy]

)
= 0.

For t = 1 we thus obtain exp(α(x))∗α(ead xy) = ψ(1) = ψ(0) = α(y), and the
assertion follows. ut

For calculations, it is convenient to observe the Product- and Quotient
Rules (cf. Lemma 8.2.27), both easy consequences of the Chain Rule:

Lemma 9.5.5. For two smooth maps f, g : N → Diff(M), define

(fg)(n) := f(n) ◦ g(n) and (g−1)(n) := g(n)−1.

Then the following assertions hold:

(i) Product Rule: δ(fg) = δ(g) + (g−1)∗δ(f), and the
(ii) Quotient Rule: δ(fg−1) = g∗(δ(f)− δ(g)),

where we write (f∗α)n := f(n)∗ ◦ αn for a V(M)-valued 1-form α on N .
(iii) If δ(f) = δ(g), then there exists a ϕ ∈ Diff(M) with f(n) = ϕ ◦ g(n) for

all n ∈ N .

Proof. (i),(ii) The smoothness of f−1 and g−1 follows directly from the defi-
nitions. For the smoothness of the product map fg, we observe that the maps

N2 ×M → M, (t, s, x) 7→ f(t)
(
g(s)(x)

)
= (f(t) ◦ g(s))(x)

and

N2 ×M → M, (t, s, x) 7→ (f(t) ◦ g(s))−1(x) = g(s)−1
(
f(t)−1(x)

)

are smooth because they are compositions of smooth maps.
The Chain Rule now implies

Tp(fg)v = T (f(p)) ◦ (Tp(g)v) + (Tp(f)v) ◦ g(p),

which leads to

δ(fg)p = T (g(p)−1)Tp(g) + T (g(p)−1)T (f(p)−1)Tp(f) ◦ g(p)
= δ(g)p + (g(p)−1)∗δ(f)p,

For g = f−1, we obtain in particular

0 = δ(ff−1) = δ(f−1) + f∗δ(f).

Combining this with (i), we obtain the Quotient Rule.
(iii) From (ii) we immediately derive that the logarithmic derivative of

fg−1 vanishes, hence that it is constant, and this implies (iii). ut
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Lemma 9.5.6. Let X, Y ∈ V(M) be two smooth vector fields with the property
that E := RX +RY consists of complete vector fields. Then Exp := exp |E is
smooth and satisfies (in the pointwise sense)

δ(Exp)X(Y ) =
∫ 1

0

Exp(−tX)∗Y dt for X, Y ∈ E.

Proof. We claim that the smooth function

ψ : I → V(M), ψ(t) := δ(Exp)tX(tY ),

satisfies the functional equation

ψ(t + s) = Exp(−sX)∗ψ(t) + ψ(s). (9.15)

We consider the three smooth functions F, G,H : E → Diff(M), given by
F (X) := Exp((t+s)X), G(X) := Exp(tX) and H(X) := Exp(sX), satisfying
F = G ·H pointwise. The Product Rule (Lemma 9.5.5) implies that

δ(F ) = δ(H) + (H−1)∗δ(G).

Now (9.15) follows from

δ(G)X(Y ) = ψ(t), δ(H)X(Y ) = ψ(s) and δ(F )X(Y ) = ψ(s + t).

Clearly ψ(0) = 0 and

ψ′(0) = lim
t→0

δ(Exp)tX(Y ) = δ(Exp)0(Y ) = Y.

Taking derivatives with respect to t in 0, (9.15) thus leads to

ψ′(s) = Exp(−sX)∗Y,

which implies the assertion by integration:

δ(Exp)X(Y ) = ψ(1) =
∫ 1

0

ψ′(s) ds =
∫ 1

0

Exp(−sX)∗Y ds. ut

Proposition 9.5.7. Let G be a Lie group with Lie algebra g and U ⊆ g
a convex symmetric 0-neighborhood such that expG |U is a diffeomorphism
onto an open subset of G and V ⊆ U an open convex 0-neighborhood with
expG(V ) expG(V ) ⊆ expG(U). For the multiplication

x ∗ y := (expG |U )−1(expG(x) expG(y)), x, y ∈ V,

we then have in Diff(M)

exp(−α(x ∗ y)) = exp(−α(x)) exp(−α(y))

for x, y ∈ V .



9.5 Integrating Lie Algebras of Vector Fields 415

Proof. On I := [0, 1] we define the two smooth functions

γ1 : I → Diff(M), γ1(t) := exp(−α(x)) exp(−tα(y))

and
γ2 : I → Diff(M), γ2(t) := exp(−α(x ∗ ty)).

Then γ1(0) = γ2(0) = exp(−α(x)) and δ(γ1)(t) = −α(y). For the smooth map
exp ◦α : g → Diff(M) we obtain with Lemmas 9.5.4 and 9.5.6

δ(exp ◦α)x(y) =
∫ 1

0

exp(−tα(x))∗α(y) dt =
∫ 1

0

α(et ad xy) dt

= α
( ∫ 1

0

et ad xy dt
)
,

i.e.,

δ(exp ◦α)x(y) = α(κg(−x)y) for κg(x) :=
∫ 1

0

e−t ad x dt.

On the other hand, the relation expG(x ∗ ty) = expG(x) expG(ty) leads with
Proposition 8.2.29 to

y = δ(expG)x∗ty
d

dt
x ∗ ty = κg(x ∗ ty)

d

dt
x ∗ ty,

so that
d

dt
x ∗ ty = κg(x ∗ ty)−1y.

We thus obtain

δ(γ2)(t) = −δ(exp ◦α)(−x∗ty)α
( d

dt
x ∗ ty

)
= −α

(
κg(x ∗ ty)κg(x ∗ ty)−1y

)

= −α(y).

This shows that γ1 and γ2 have the same logarithmic derivative, and since
both curves start in the same point, they coincide (Lemma 9.5.5(iii)). ut
Proof. (of Palais’ Theorem 9.5.1) Let V be as in Proposition 9.5.7 and define

f : expG(V ) → Diff(M), f(expG(x)) := exp(−α(x)).

Then
f(gh) = f(g) ◦ f(h) for g, h ∈ expG(V ),

so that the Monodromy Principle (Proposition 8.5.8) implies the existence of
an extension of f to a homomorphism G → Diff(M). Since f is smooth on
the identity neighborhood expG(V ), it follows easily that f defines a smooth
action σ of G on M , and the definition of f implies that L(σ) = α. ut
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9.5.2 Lie Algebras Generated by Complete Vector Fields

It is part of the assumptions of Theorem 9.5.1 that the Lie algebra α(g) con-
sists of complete vector fields. In this subsection we show that this condition
can be relaxed significantly to the requirement that α(g) is merely generated
by complete vector fields.

To this end, we consider a finite-dimensional Lie subalgebra g ⊆ V(M)
and assume that g is generated, as a Lie algebra, by complete vector fields.
Let C(g) denote the subset of complete vector fields in g.

Lemma 9.5.8. If X,Y ∈ C(g), then ead XY ∈ C(g).

Proof. We consider the smooth flow on M defined by

γ(t) := (exp−X) ◦ exp(tY ) ◦ (exp X) ∈ Diff(M)

and note that
γ′(0) = (exp−X)∗Y = ead XY

by Lemma 9.5.4. Therefore ead XY is a complete vector field. ut
Lemma 9.5.9. g = span C(g).

Proof. Let V := spanC(g) ⊆ g. By Lemma 9.5.8, we have ead XV = V for
each X ∈ C(g), hence [C(g), V ] ⊆ V , so that C(g) ⊆ ng(V ). Since ng(V ) is
a Lie subalgebra of g and C(g) generates g, it follows that [g, V ] ⊆ V , i.e.,
that V is an ideal, hence in particular a subalgebra. Now the fact that C(g)
generates g yields V = g. ut
Proposition 9.5.10. If g ⊆ V(M) is a finite-dimensional Lie subalgebra gen-
erated by complete vector fields, then g consists of complete vector fields.

Proof. In view of Lemma 9.5.9, g is spanned by complete vector fields, so that
there exists a basis X1, . . . , Xn, consisting of complete vector fields. Let G be
a connected Lie group with Lie algebra g and Y ∈ g.

Using canonical coordinates of the second kind on G with respect to the
basis X1, . . . , Xn (Lemma 8.2.6), we obtain smooth functions αi, defined on
some 0-neighborhood [−ε, ε] ⊆ R, satisfying

expG(tY ) = expG(α1(t)X1) · · · expG(αn(t)Xn)

for each t ∈ [−ε, ε]. We then have αi(0) = 0 for each i and Y =
∑n

i=1 α′i(0)Xi.
Since the curve γ(t) := expG(tY ) in G satisfies δ(γ)t = Y for each t ∈ R,

the Product Rule for logarithmic derivatives (Lemma 8.2.27) yields

Y = δ(expG)αn(t)Xn
+

n−1∑

i=1

Ad(expG(−αn(t)Xn)) · · ·Ad(expG(−αi+1(t)Xi+1))δ(expG)αi(t)Xi
α′i(t)Xi
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Since
δ(expG)(αi(t)Xi)α′i(t)Xi = α′i(t)Xi

follows from the Chain Rule, this simplifies to the relation

Y =
n∑

i=1

Ad(expG(−αn(t)Xn)) · · ·Ad(expG(−αi+1(t)Xi+1))α′i(t)Xi.

We now consider the smooth curve

β(t) := exp(−α1(t)X1) · · · exp(−αn(t)Xn) ∈ Diff(M)

and use the Product Formula from Lemma 9.5.5 to obtain

δ(β)t = −α′n(t)Xn −
n−1∑

i=1

exp(αn(t)Xn)∗ · · · exp(αi+1(t)Xi+1)∗α′i(t)Xi.

Further, Lemma 9.5.4 implies that the inclusion homomorphism
α : g → V(M) satisfies

Y =
n∑

i=1

α ◦Ad(expG(−αn(t)Xn)) · · ·Ad(expG(−αi+1(t)Xi+1))α′i(t)Xi

=
n∑

i=1

expG(αn(t)Xn)∗ · · · exp(−αi+1(t)Xi+1)∗α′i(t)Xi = −δ(β)t.

This shows that δ(β)t = −Y for each t ∈ [−ε, ε] and applying this to the two
curves

t 7→ β(s) ◦ β(t), β(s + t) for |t|, |s|, |t + s| ≤ ε,

we see that both have the same logarithmic derivative with respect to t and
the same values for t = 0. Hence Lemma 9.5.5(iii) leads to

β(s) ◦ β(t) = β(s + t) for |t|, |s|, |t + s| ≤ ε.

We conclude that β defines a local flow with generator Y which is defined on
[−ε, ε]×M . This easily implies that Y is complete (see Exercise 7.5.2). ut

Notes on Chapter 9

Historically, the origin of smooth actions of Lie groups lies in Felix Klein’s
“Erlanger Programm” from 1872 1 , in which a geometry on a space S was
1 Christian Felix Klein (1849–1925) held the chair of geometry in Erlangen for a

few years and the “Erlanger Programm” was his “Programmschrift”, where he
formulated his research plans when he came to Erlangen. Later he was a professor
for mathematics in Munich, Leipzig and eventually in Göttingen.
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considered as the same structure as a group acting on this space. Then the
geometric properties2 are those invariant under the action of the group.

Nowadays smooth actions of Lie groups on manifolds form a separate field
of mathematics under the name of Lie transformation groups. In this chapter
we only collected what was needed in the further course of the book. This
explains why there are quite different topics, none of which is explored sys-
tematically. One problem which occurs in this context is that smooth actions
are needed to describe quotient structures and geometric properties of Lie
groups, but conversely detailed knowledge of Lie groups is required for a sys-
tematic treatment of transformation groups. We refer to [Ko95] and [DK00]
for more detailed information.

2 A typical example is the group Mot(E2) of motions (orientation preserving isome-
tries) of the euclidian plane. The length of an interval or the area of a triangle
are properties preserved by this group, hence geometric quantities. It was an im-
portant conceptual step to observe that changing the group means changing the
geometry, resp., the notion of a geometric quantity. For example the automor-
phism group Aff(A2) of the two-dimensional affine plane A2 does not preserve
the area of a triangle (it is larger than the euclidian group), hence the area of a
triangle cannot be considered as an affine geometric quantity.
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Normal Subgroups, Nilpotent and Solvable Lie
Groups

In this chapter we address structural aspects of Lie groups. Here an important
issue is to see that for any closed normal subgroup N of a Lie group G, the
quotient G/N carries a canonical Lie group structure, so that we may consider
N and G/N as two pieces into which G decomposes. With this information
we then address the canonical factorization of a morphism of Lie groups into
a surjective, a bijective and an injective one. In particular, we describe some
tools to calculate fundamental groups of Lie groups and homogeneous spaces.

We continue the structural aspects in Section 10.1.4, where we discuss
extensions of a Lie group G by a Lie group N . In this context semidirect
products are splitting extensions and the Smooth Splitting Theorem 10.1.21
asserts that, for any simply connected Lie group G, any connected normal
integral subgroup N is closed and G ∼= (G/N)×N as smooth manifolds. The
last section of this chapter treats nilpotent and solvable Lie groups. These
groups have a relatively simple structure because of their rich supply of normal
subgroups.

Let us briefly recall the main tools that we have developed so far to deal
with Lie groups. In the following, a smooth homomorphism of Lie groups is
simply referred to as morphism of Lie groups.

(i) For a morphism α : G1 → G2 of Lie groups

L(α) := T1(α) : L(G1) → L(G2)

is a homomorphism of Lie algebras for which the diagram

L(G1)
L(α)−−−−−−−−−→ L(G2)yexpG1

yexpG2

G1
α−−−−−−−−−→ G2

commutes (Proposition 8.1.8)
(ii) Lie’s Third Theorem: For a finite dimensional Lie algebra g, there is,

up to isomorphism, a unique 1-connected Lie group with Lie algebra g.
We denote this group by G(g) (Theorem 8.4.11).
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(iii) Let h be a Lie algebra and β : h → L(G) be a homomorphism into the Lie
algebra of a Lie group G. Then there is a unique morphism α : G(h) → G
such that the diagram

h
β=L(α)−−−−−−−−−→ L(G)yexpG(h)

yexpG

G(h) α−−−−−−−−−→ G

commutes (Proposition 8.2.10).
(iv) The homomorphic images of connected Lie groups H in a Lie group G are

the subgroups of the form 〈expG h〉 for a Lie subalgebra h ⊆ L(G), i.e.,
the integral subgroups.

(v) Closed subgroups are submanifolds which are Lie groups (Closed Sub-
group Theorem 8.3.7).

These five facts provide the basis of a correspondence which allows us to de-
scribe the structure of G by the structure of L(G), and to explore a connected
Lie group by means of its Lie algebra.

10.1 Normalizers, Normal Subgroups, and Semidirect
Products

In this section we study normalizers of subgroups and in particular normal
subgroups. In particular, we show that the quotient by a closed normal sub-
group is a Lie group and consider normal subgroups which give rise to semidi-
rect product decompositions.

10.1.1 Normalizers and Centralizers

Lemma 10.1.1. Let G be a Lie group, g = L(G) and E ⊆ g be a subspace.
We define its normalizer in G, resp., g by

NG(E) := {g ∈ G : Ad(g)E = E} and ng(E) := {x ∈ g : [x,E] ⊆ E}

and its centralizer in G, resp., g, by

ZG(E) := {g ∈ G : Ad(g)|E = idE} and zg(E) := {x ∈ g : [x,E] = {0}}.

Then NG(E) and ZG(E) are closed subgroups of G with the Lie algebras

L
(
NG(E)

)
= ng(E) and L

(
ZG(E)

)
= zg(E).

Proof. The closedness of NG(E) and ZG(E) follows from the continuity of the
adjoint representation. Let x ∈ L(NG(E)) = {y ∈ g : expG(Ry) ⊆ NG(E)}
and z ∈ E. Then
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[x, z] =
d

dt t=0
ead txz ∈ E,

and therefore x ∈ ng(E). Conversely, if x ∈ ng(E), then we inductively get
(adx)nE ⊆ E, and therefore

Ad(expG tx)E = ead txE ⊆ E for t ∈ R.

Replacing t by −t, we see that Ad(expG tx) ∈ NG(E), so that x ∈ L(NG(E)).
The arguments for the centralizer are similar. ut
Proposition 10.1.2. Let G be a Lie group with Lie algebra g and H, N in-
tegral subgroups of G with the Lie algebras h, resp., n. Then the following are
equivalent

(i) [h, n] ⊆ n, i.e., h normalizes n.
(ii) ead xn ⊆ n for all x ∈ h.
(iii) H ⊆ NG(n), i.e., Ad(H)n = n.
(iv) H ⊆ NG(N) = {g ∈ G : gNg−1 = N}, i.e., H normalizes N .

Proof. The equivalence of (i) and (iii) follows immediately from Lemma 10.1.1,
applied to E = n. Further, (iii) implies (ii) because Ad(expG x) = ead x. Since
each ead x is a linear isomorphism of g with (ead x)−1 = e− ad x, (ii) implies
ead xn = n for each x ∈ h, and since H is generated by expG h, we also see
that (ii) implies (iii).
(iii) ⇒ (iv): For h ∈ H, we obtain with (iii) that

ch(N) = 〈ch(expG n)〉 = 〈expG(Ad(h)n)〉 = 〈expG n〉 = N.

(iv) ⇒ (iii): From the Integral Subgroup Theorem 8.4.8(c), we recall that

n = {x ∈ g : expG(Rx) ⊆ N}.

For h ∈ H and x ∈ g, we have ch(expG(Rx)) = expG(RAd(h)x), so that (iv)
entails Ad(h)n = n. ut

Specializing the preceding proposition to h = g, i.e., to H = G0, we obtain:

Corollary 10.1.3. For a Lie group G with Lie algebra g and the integral
subgroup N with Lie algebra n, the following are equivalent

(i) n is an ideal of g.
(ii) ead xn ⊆ n for all x ∈ g.
(iii) Ad(G0)n = n.
(iv) N is a normal subgroup of G0.

The following proposition is proved along the same lines as Proposi-
tion 10.1.2.
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Proposition 10.1.4. Let G be a Lie group with Lie algebra g and H, N in-
tegral subgroups of G with the Lie algebras h, resp., n. Then the following are
equivalent

(i) [h, n] = {0}, i.e., h centralizes n.
(ii) ead xy = y for x ∈ h and y ∈ n.
(iii) H ⊆ ZG(n), i.e., Ad(H)|n = {idn}.
(iv) H ⊆ ZG(N), i.e., the subgroups H and N commute.

10.1.2 Quotients of Lie Groups and Canonical Factorization

In this subsection we turn our attention to quotients of Lie grous by closed
normal subgroups.

Theorem 10.1.5 (Quotient Theorem). If N is a closed normal subgroup
of the Lie group G, then the quotient group G/N carries a unique Lie group
structure for which the quotient homomorphism q : G → G/N, g 7→ gN , is a
submersion. In particular, L(q) : L(G) → L(G/N) is a surjective morphism
of Lie algebras with kernel L(N), so that

L(G/N) ∼= L(G)/L(N).

Proof. Theorem 9.1.10 provides the manifold structure on G/N for which q
is a submersion. Let mG/N denote the multiplication map on G/N . Since

q × q : G×G → G/N ×G/N

also is a submersion, the smoothness of mG/N follows from the smoothness of

mG/N ◦ (q × q) = q ◦mG : G×G → G/N

(Proposition 7.3.16). Likewise, the smoothness of the inversion ιG/N follows
from the smoothness of ιG/N ◦ q = q ◦ ιG. ut
Corollary 10.1.6 (Canonical Factorization). Let ϕ : G → H be a mor-
phism of Lie groups and endow G/ kerϕ with its natural Lie group struc-
ture. Then ϕ factors through a smooth injective morphism of Lie groups
ϕ : G/ kerϕ → H, g kerϕ 7→ ϕ(g).

If, in addition, L(ϕ) is surjective, then ϕ is a diffeomorphism onto an open
subgroup of H.

Proof. First we note that the smoothness of ϕ implies that kerϕ is a closed
normal subgroup. Therefore the Quotient Theorem 10.1.5 provides a Lie
group structure on the quotient G/ kerϕ, for which the quotient map
q : G → G/ kerϕ is a submersive morphism of Lie groups. The existence of
the map ϕ is clear. It is also easy to see that it is a group homomorphism.
Since q is a submersion, the smoothness of ϕ follows from the smoothness of
ϕ ◦ q = ϕ.
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If, in addition, L(ϕ) is surjective, then ϕ is a morphism of Lie groups whose
differential is an isomorphism. Since it is also injective, the Inverse Function
Theorem implies that it is a diffeomorphism onto an open subgroup of H. ut
Remark 10.1.7. The preceding corollary shows how a morphism ϕ : G → H
of Lie groups induces an injective morphism ϕ : G/ kerϕ → H. We further
know from Theorem 8.6.13 that the subgroup ϕ(G) of H carries an initial Lie
subgroup structure, so that the corestriction ϕ : G → ϕ(G) also is a morphism
of Lie groups. Accordingly, the corresponding morphism

ϕ : G/ kerϕ → ϕ(G)

is a smooth bijection of Lie groups.
As we know from the dense wind in the 2-torus (Example 8.3.12), inclu-

sions of initial Lie subgroups need not be topological embeddings. Moreover,
smooth bijections of Lie groups need not be isomorphisms because we obtain
on any Lie group G another Lie group structure by endowing G with the dis-
crete topology. Writing Gd for this new 0-dimensional Lie group, the identity
map Gd → G is smooth, but not an isomorphism of Lie groups if dim G > 0.
If dimG > 0, then G is an uncountable set, so that Gd is neither second
countable nor a countable union of compact subsets.

Theorem 10.1.8 (Open Mapping Theorem). If ϕ : G → H is a surjec-
tive morphism of Lie groups and π0(G) := G/G0 is countable, then L(ϕ) is
surjective and the induced bijective morphism ϕ : G/ kerϕ → H is an isomor-
phism of Lie groups.

Proof. First we note that

ϕ(G0) = ϕ(〈expG L(G)〉) = 〈expH

(
L(ϕ)L(G)

)〉 = 〈expH(im L(ϕ))〉

is an integral subgroup of H and H/ϕ(G0) = ϕ(G)/ϕ(G0) is countable, so
that Part (c) of the Integral Subgroup Theorem 8.4.8 implies that

im (L(ϕ)) = {x ∈ L(H) : expH(Rx) ⊆ H} = L(H).

Therefore L(ϕ) is surjective, and thus L(ϕ) is bijective. Since ϕ is a group
homomorphism ϕ ◦ λg = λϕ(g) ◦ ϕ yields

Tg(ϕ) ◦ T1(λg) = T1(λϕ(g)) ◦ L(ϕ), (10.1)

so that Tg(ϕ) is bijective for every g ∈ G/ kerϕ. We conclude that ϕ is a
diffeomorphism, hence an isomorphism of Lie groups. ut
Remark 10.1.9. Alternatively, one can also use Sard’s Theorem to prove the
preceding proposition. Indeed, if L(ϕ) is not surjective, then (10.1), applied
to ϕ instead of ϕ, implies that Tg(ϕ) is not surjective for any g ∈ G. If ϕ is
surjective and G is second countable, this contradicts Sard’s Theorem 7.6.11.
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Proposition 10.1.10. Let ϕ : G1 → G2 be a quotient morphism of Lie groups
and H2 ⊆ G2 be a closed subgroup. Then H1 := ϕ−1(H2) is a closed subgroup
of G1, and the induced map

ψ : G1/H1 7→ G2/H2, g 7→ ϕ(g)H2

is a diffeomorphism.

Proof. Let qi : Gi → Gi/Hi denote the quotient map and recall that it is
a submersion. Clearly, ψ is well-defined, and since q1 is a submersion, its
smoothness follows from the smoothness of ψ ◦q1 = q2 ◦ϕ. It is also clear that
ψ is a bijection. Further, ψ satisfies the equivariance condition ψ(gxH1) =
ϕ(g)ψ(xH1), which implies that the tangent maps Tp(ψ) all have the same
rank because Gi acts on Gi/Hi by diffeomorphisms. Identifying T1Hi

(Gi/Hi)
with L(Gi)/L(Hi), it follows that the tangent map T1H1(ψ) corresponds to
the projection

L(G1)/L(H1) → L(G2)/L(H2), x 7→ L(ϕ)x + L(H2),

and since L(H1) = L(ϕ)−1(L(H2)), it is a linear isomorphism. Now the Inverse
Function Theorem implies that ψ is a diffeomorphism. ut

10.1.3 Fundamental Groups of Quotients and Homogeneous Spaces

In this subsection we develop some tools that are needed to calculate fun-
damental groups of Lie groups and to relate them to fundamental groups of
homogeneous spaces.

Lemma 10.1.11. Let H be a closed subgroup of the Lie group G and H0 its
identity component. Then any subgroup H1 ⊆ H containing H0 is an open
closed subgroup of H, and the map

α : G/H1 → G/H, xH1 7→ xH

is a covering. The group H acts transitively on the fiber α−1(H), which leads
to an identification with H/H1.

Proof. Since H is a Lie group by the Closed Subgroup Theorem 8.3.7, H0

is open in H and any subgroup H1 of H containing H0 is open and closed
(Proposition 8.1.15(iii)). We write π1 : G → G/H1 and π : G → G/H for the
quotient maps which are both submersions. Since π1 is a submersion, the
smoothness of α follows from the smoothness of α ◦π1 = π (Theorem 9.1.10).

In view of the Closed Subgroup Theorem 8.3.7(iii), for any vector space
complement E ⊆ L(G) of L(H), there exists an open 0-neighborhood VE ⊆ E
such that

ϕ : VE ×H → expG(VE)H, (x, h) 7→ expG(x)h
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is a diffeomorphism onto an open subset U := expG(VE)H of G. In these prod-
uct coordinates, the map α|UH1 : U/H1 → U/H is equivalent to the projection
map

VE ×H/H1 → VE ,

which clearly is a covering map because H/H1 is a discrete space.
If gH is an arbitrary point in G/H, gU/H is an open neighborhood of gH

and
α−1(gU/H) = gU/H1

∼= g expG(VE)H/H1

is a disjoint union of the open subsets g expG(VE)hH1, where the h are taken
from a set of representatives for the quotient space H/H1. Since α is G-
equivariant, its restriction to all these open subsets is a diffeomorphism onto
gU/H. This proves that α is a covering.

The inverse image of H ∈ G/H under α is the subset H/H1 of G/H1, on
which H obviously acts transitively. ut
Remark 10.1.12. Since, in this book, we do not want to go so far into homo-
topy theory as to derive the long exact homotopy sequence of fiber bundles,
we will systematically look for the information on the fundamental groups
which we are able to obtain directly. We consider the following situation:

Let H be a closed subgroup of the connected Lie group G and i : H → G
be the inclusion. We write qG : G̃ → G and qH : H̃0 → H0 for the respective
simply connected covering groups. Via L(i) : L(H) → L(G), this map induces
a homomorphism ĩ : H̃0 → G̃ of the simply connected universal coverings, and
a homomorphism of the homotopy groups π1(i) : π1(H) → π1(G) which we
may consider as subgroups of the respective coverings by Theorem 8.5.4. If
q : G → G/H is the projection onto the left-cosets, q also induces a homo-
morphism π1(q) : π1(G) → π1(G/H). The map q ◦ qG : G̃ → G/H factors to
a covering qG/H : G̃/H1 → G/H ∼= G̃/q−1

G (H) (Proposition 10.1.10), where
H1 := ĩ(H̃0) = q−1

G (H)0 (Lemma 10.1.11). Here we use that, since H is closed,
the subgroup q−1

G (H) and its identity component H1 are also closed, and since
they are Lie groups, H1 is generated by the exponential image of L(H1), hence
equal to ĩ(H̃0). By Theorem 8.5.4, the kernel of ĩ can be identified with π1(H1).
We write q̃ : G̃ → G̃/H1 for the corresponding quotient map and collect all
that information in the following diagram.

π1(H)
π1(i)−−−−−−−−−→ π1(G)

π1(q)−−−−−−−−−→ π1(G/H)y
y

H̃0
ĩ−−−−−−−−−→ G̃

q̃−−−−−−−−−→ G̃/H1yqH

yqG

yqG/H

H0
i−−−−−−−−−→ G

q−−−−−−−−−→ G/H0

The commutativity of the diagram is clear if one recalls that the homo-
morphism π1(i) is obtained by restriction of ĩ to the subgroup ker qH

∼= π1(H)
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of H̃0. The group H̃0 is simply connected, so that ĩ : H̃0 → H1 is the univer-
sal covering of H1 because L(̃i) : L(H̃0) → L(H1) is an isomorphism of Lie
algebras.

Lemma 10.1.13. If the group H is connected, the natural homomorphism
π1(q) : π1(G) → π1(G/H) is surjective

Proof. Let γ : [0, 1] → G/H be a continuous path starting in H. Since the
quotient map q : G → G/H is a submersion, there exists an open neighborhood
U of H in G/H and a smooth map σ : U → G with σ(H) = 1 and q ◦σ = idU .

To construct a continuous lift γ̃ : [0, 1] → G of γ, starting in 1, we cover
the compact subset γ([0, 1]) by finitely many open sets of the form gU , g ∈ G,
and use the Lebesgue Lemma A.2.3, applied to the open cover

(
γ−1(gU)

)
g∈G

of [0, 1], to find a subdivision

0 = t0 < t1 < t2 < . . . < tn = 1,

such that γ([ti, ti+1]) ⊆ giU for some gi ∈ G. We define γ̃ on [t0, t1] by
γ̃(t) := σ

(
γ(t)

)
. Then we proceed by induction. If γ̃ is already defined in

[t0, tk] and k < n, then we define γ̃ on [tk, tk+1] by

γ̃(t) := gk · σ(g−1
k γ(t)) · σ(g−1

k γ(tk))−1g−1
k γ̃(tk).

This defines a continuous extension of γ̃ to [t0, tk+1], and that it actually
defines a lift of γ follows from

σ(g−1
k γ(tk))−1g−1

k γ̃(tk) ∈ H,

which in turn follows from

q(gkσ(g−1
k γ(tk))) = gk.(g−1

k γ(tk)) = γ(tk) = q(γ̃(tk)).

We thus obtain a continuous lift γ̃ : [0, 1] → G of γ.
If γ is a loop, i.e., γ(1) = γ(0) = H, then γ̃(1) ∈ q−1(H) = H. Since H is

connected, there exists a path β : [0, 1] → H with β(0) = γ̃(1) and β(1) = 1.
Therefore, with the notation of Definition A.1.1 for concatenation of paths,
γ̃ ∗ β is a loop in G with

π1(q)[γ̃ ∗ β] = [γ ∗ (q ◦ β)] = [γ ∗H] = [γ].

Hence, π1(q) is surjective. ut
Corollary 10.1.14. If H is a closed subgroup of a 1-connected Lie group G,
then

π1(G/H) ∼= π0(H) := H/H0.

In particular, H is connected if and only if G/H is simply connected.
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Proof. Lemma 10.1.13 implies that G/H0 is simply connected, and

qG/H : G/H0 → G/H, xH0 7→ xH

is a simply connected covering of G/H (Lemma 10.1.11), where q−1
G/H(H) ∼=

H/H0. Therefore the group π0(H) = H/H0 acts by deck transformations from
the right on G/H0 via

G/H0 × π0(H) → G/H0, (gH0, hH0) 7→ gH0hH0 = ghH0,

and since it acts simply transitively on the fiber over H0, it follows from
Proposition A.2.15 that π0(H) ∼= Deck(G/H0, qG/H) ∼= π1(G/H). ut

In view of G/H ∼= G̃/q−1
G (H) (Proposition 10.1.10), we can identify

the fundamental group π1(G/H) with π0(q−1
G (H)) = q−1

G (H)/H1 (Corol-
lary 10.1.14 and Remark 10.1.12). We thus obtain an inclusion
j : π1(G/H) → G̃/H1. Adding j to the above diagram, we obtain:

Theorem 10.1.15 (Homotopy Group Theorem). For a closed connected
subgroup H of the connected Lie group G, the following diagram is commu-
tative. In addition, all arrows pointing away from the boundary are injective,
and all arrows pointing to the boundary are surjective. In all other positions,
the image of the ingoing arrow coincides with the kernel of the outgoing arrow,
resp., the inverse image of the canonical base point. In this sense, the diagram
is “exact”.

π1(H1)
π1(qG|H1 )−−−−−−−−−→ π1(H)

π1(i)−−−−−−→ π1(G)
π1(q)−−−−−−→ π1(G/H)y∼=

y
y

yj

π1(H1) −−−−−−−−−→ H̃
ĩ−−−−−−→ G̃

q̃−−−−−−→ G̃/H1yqH

yqG

yqG/H

H
i−−−−−−→ G

q−−−−−−→ G/H

Proof. Since qG|H1 : H1 → H is a covering, π1(H1) can be identified with
a subgroup of π1(H) (Corollary A.2.7). Thus, the injectivity of the arrows
pointing away from the boundary is clear. The surjectivity statement follows
from Lemma 10.1.13. The exactness of the columns is clear, as well as the
exactness of the two bottom rows, since ĩ : H̃ → H1 is the universal covering
of H1. Because of

im
(
π1(qG|H1)

)
= π1(H1) = ker ĩ = ker

(
π1(i)

)
,

(cf. Corollary A.2.7 for the first equality) the upper row is exact at π1(H).
We further have

im
(
π1(i)

)
= H1 ∩ π1(G) = ker

(
π1(q)

)

since j ◦ π1(q) = q̃|π1(G). This proves the exactness at π1(G). ut
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Remark 10.1.16. For every connected Lie group, one can show that the
second homotopy group π2(G) vanishes. In view of π2(G̃) ∼= π2(G), the Man-
ifold Splitting Theorem 13.3.8, and the Structure Theorem for Groups with
Compact Lie Algebra 11.1.18, it suffices to verify this for compact simple Lie
groups. The long exact homotopy sequence for the fiber bundle G → G/H
thus leads to an exact sequence

{1} = π2(G) → π2(G/H) → π1(H) → π1(G) → π1(G/H) → π0(H) = {1}
if H is connected, i.e., the group which appears above as π1(H1) is iso-
morphic to π2(G/H). If H is a normal subgroup of G, then G/H is a Lie
group (Theorem 10.1.5). Then π2(G/H) ∼= π1(H1) = {1}, and therefore,
π1(G/H) ∼= π1(G)/π1(H). But the triviality of π1(H1) also is a direct conse-
quence of Theorem 10.1.21 below. Thus the Homotopy Group Theorem 10.1.15
implies that

1
π1(qG|H1 )−−−−−−−−−→ π1(H)

π1(i)−−−−−−→ π1(G)
π1(q)−−−−−−→ π1(G/H)

is exact for H normal in G.

Remark 10.1.17. If the subgroup H is not connected, then we still have

G/H ∼= G̃/q−1
G (H),

so that qG induces a map

π1(G/H) ∼= π0(q−1
G (H))

qG−−−−−−−−−→π0(H)

which obviously is surjective. Further,

ker qG = q−1
G (H0)/q−1

G (H)0 = (H1 · ker qG)/H1.

Identifying ker qG with π1(G), we see that the right hand side coincides with
the image of the natural homomorphism π1(G) → π1(G/H), so that we obtain
an exact sequence

π1(G) → π1(G/H) → π0(H) → 1.

10.1.4 Semidirect Products and Smooth Splitting of Extensions

An extension of Lie groups is a short exact sequence

1 → N
ι−−→G

q−−→H → 1

of Lie group morphisms for which ι : N → ker q is an isomorphism of Lie
groups. A particularly important class of extensions of a Lie group H by a
Lie group N are the semidirect products N oα H. We start this section with
a criterion for a Lie group to decompose as a semidirect product and we
also prove the important Splitting Theorem 10.1.21 on quotients of simply
connected groups by normal integral subgroups.
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Proposition 10.1.18. Let G be a Lie group and N and H be closed subgroups
with H ⊆ NG(N). Then α(h)(n) := hnh−1 defines a smooth action of H on
N , so that we can form the semidirect product group N oα H. Further, the
multiplication map

µ : N oα H → G, (n, h) 7→ nh

is a morphism of Lie groups whose image is the subgroup NH. The map µ is
bijective if and only if

N ∩H = {1} and NH = G.

If, in addition, π0(G) is countable, µ is an isomorphism of Lie groups.

Proof. Since N and H are closed subgroups, the Closed Subgroup Theo-
rem 8.3.7 implies that they are submanifolds with a natural Lie group struc-
ture. Hence the smoothness of α follows by restriction from the smoothness
of the conjugation action of G on itself. It is immediate from the definition of
the multiplication in the semidirect product that µ is a group homomorphism
whose smoothness follows from the smoothness of the multiplication on G. In
view of

kerµ ∼= {(n, n−1) : n ∈ H ∩N} ∼= H ∩N,

the injectivity of µ is equivalent to H ∩N = {1}. Its surjectivity means that
NH = G. If both these conditions are satisfies, then µ is a bijective smooth
morphism of Lie groups. If, in addition, π0(G) is countable, then µ is an
isomorphism of Lie groups by the Open Mapping Theorem 10.1.8. ut
Proposition 10.1.19. Let G, H and N be simply connected Lie groups with
the Lie algebras g, h and n. Suppose that g ∼= n oβ h is a semidirect
sum of the two subalgebras n and h. Then there is a unique smooth action
γ : H → Aut(N) ∼= Aut(n) with L(γ) = β : h → der n and the two natural
homomorphisms ιH : H → G, ιN : N → G combine to an isomorphism

µ : N oγ H → G, (n, h) 7→ ιN (n)ιH(h).

Proof. First we use Theorem 8.5.9 to obtain a homomorphism α : H → Aut(n)
integrating the homomorphism β : h → der(n). Since N is simply connected,

L : Aut(N) → Aut(n)

is a bijection, which leads to a smooth action of Aut(N) ∼= Aut(n) on N
(Corollary 8.5.11). Composing with α, we obtain a smooth action of H on N ,
defined by a homomorphism γ : H → Aut(N) with L ◦γ = α. We now form
the simply connected group Noγ H whose Lie algebra noβ h is isomorphic to
g (Proposition 8.2.25). Hence the isomorphism s : noβ h → g, (x, y) 7→ x + y
integrates to an isomorphism of Lie groups µ : N oγ H → G. ut
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Corollary 10.1.20. Let G be a Lie group and h, n ⊆ g = L(G) be subalgebras
with [h, n] ⊆ n. If H and N are the corresponding integral subgroups of G, then
HN is the integral subgroup corresponding to the Lie subalgebra n + h of g.

Proof. We define β : h → der(n) by β(x)(y) = [x, y]. Then Proposition 10.1.19
implies that the simply connected covering group H̃ of H acts smoothly on
the simply connected covering group Ñ of N , so that we obtain a Lie group
G1 := Ñ oγ H̃ with L(G1) ∼= noβ h. The summation map

s : no h → g, (n, h) 7→ n + h

is a morphism of Lie algebras whose image is n + h. Since G1 is simply con-
nected, s integrates to a smooth group homomorphism S : G1 → G, whose
image is

〈expG(n + h)〉 = 〈expG(s(g1))〉 = S(G1) = S(Ñ)S(H̃) = NH. ut

Theorem 10.1.21 (Smooth Splitting Theorem). Let G be a simply con-
nected Lie group and N ⊆ G be a normal integral subgroup. Then N is closed
and there exists a smooth section σ : G/N → G, so that the map

G/N ×N → G, (p, n) 7→ σ(p)n

is a diffeomorphism, but in general not an isomorphism of Lie groups. In
particular, the groups N and G/N are simply connected.

Proof. By Proposition 10.1.2, L(N) is an ideal in L(G). According to Re-
mark 4.6.12, applied to the quotient Lie algebra L(G)/L(N), there exists an
increasing sequence of subalgebras

L(N) = g0 ⊆ g1 ⊆ . . . ⊆ gn = L(G)

such that gi is an ideal in gi+1, and the quotients qi := gi/gi−1 are either
isomorphic to R or simple. Using Levi’s Theorem 4.6.6, we conclude that

gi
∼= gi−1 o qi for i = 1, . . . , n.

Now we can inductively apply Proposition 10.1.19 to see that

G ∼=
((

. . .
((

G(g0)o G(q1)
)
o G(q2)

)
. . .

)
o G(qn)

)
.

This implies in particular that N = 〈expG L(N)〉 ∼= G(g0) is a closed simply
connected subgroup of G. In particular, we obtain diffeomorphisms

G → N ×G(q1)× . . .×G(qn) and G/N → G(q1)× . . .×G(qn).

Hence the normal subgroup N is closed and there exists a smooth section
σ : G/N → G. Finally, the existence of a diffeomorphism G/N × N → G
implies that N and G/N are connected and simply connected (cf. Re-
mark A.1.7(b)). ut
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In the following remark we briefly discuss general extensions of Lie groups.

Remark 10.1.22. (a) Let q : Ĝ → G be a surjective morphism of Lie groups
with kernel N and σ : G → Ĝ a map with q ◦ σ = idG. Then the map

µ : N ×G → Ĝ, (n, g) 7→ nσ(g)

is a bijection. To express the group structure on Ĝ in the corresponding “prod-
uct coordinates”, we define the maps

S : G → Aut(N), S(g)(n) := σ(g)nσ(g)−1 = cσ(g)|N
and

ω : G×G → N, ω(g, g′) := σ(g)σ(g′)σ(gg′)−1.

Then
nσ(g)n′σ(g′) = nS(g)(n′)ω(g, g′)σ(gg′)

implies that µ is an isomorphism of groups if we define the multiplication on
N ×G by

(n, g)(n′, g′) := (nS(g)(n′)ω(g, g′), gg′). (10.2)

(b) According to the Smooth Splitting Theorem 10.1.21, there always ex-
ists a smooth splitting map σ, provided the group Ĝ is simply connected.
Then S and ω are also smooth, and (10.2) defines a smooth group structure
on the product manifold N ×G.

(c) In general, we can use the fact that q is a submersion to find a smooth
section σ : U → Ĝ on some open identity neighborhood U in G. Then we may
extend σ to a not necessarily continuous section σ : G → Ĝ by choosing for
g 6∈ U an arbitrary element σ(g) ∈ q−1(g). In this case the maps S and ω are
still smooth on a neighborhood of 1, resp., (1,1).

(d) If, conversely, we start with two Lie groups G and N , we may ask
under which conditions two maps

S : G → Aut(N) with S(1) = idN

and

ω : G×G → N with ω(g,1) = ω(1, g) = 1 for g ∈ G,

define via (10.2) a group structure on the product set N×G. The associativity
condition is easily seen to be equivalent to the two conditions

S(g)S(g′) = cω(g,g′) ◦ S(gg′) for g, g′ ∈ G (10.3)

and

S(g)(ω(g′, g′′))ω(g, g′g′′) = ω(g, g′)ω(gg′, g′′) for g, g′, g′′ ∈ G. (10.4)
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If these two conditions are satisfied, then we obtain on N×G an associative
multiplication for which (1,1) is an identity element. Moreover, each element
(n, g) is invertible with

(n, g)−1 = (S(g)−1
(
n−1ω(g, g−1)−1

)
, g−1) = (ω(g−1, g)−1S(g−1)(n−1), g−1),

so that we actually obtain a group. It is denoted by N×(S,ω) G. If S and ω are
smooth, then we thus obtain a Lie group structure on the product manifold
N ×G.

If S and ω are only smooth on an open symmetric neighborhood UG of 1,
resp., UG × UG of (1,1), then the subset U := N × UG of Ĝ := N ×(S,ω) G
is symmetric and carries a natural product manifold structure and on the set
D := {(x, y) ∈ U × U : xy ∈ U}, the group multiplication and the inversion
are smooth.

For (n, g) ∈ Ĝ let Vg ⊆ UG be an open identity neighborhood with cg(Vg) ⊆
UG. Then c(n,g)(q−1(Vg)) ⊆ U . That the conjugation map

c(n,g) : q−1(Vg) → U

is smooth in an identity neighborhood follows immediately from

(n, g)(n′, g′)(n, g)−1

=
(
nS(g)(n′)ω(g, g′)ω(gg′g−1, g)−1S(gg′g−1)−1(n−1), gg′g−1

)
.

Therefore Theorem 8.4.4 implies that there exists a unique Lie group struc-
ture on Ĝ for which the inclusion of U is a diffeomorphism onto an open subset.
For this Lie group structure, the map

q : Ĝ → G, (n, g) 7→ g

clearly is a surjective morphism of Lie groups with kernel N , i.e., an extension
of G by N .

(e) In general, the quotient map q : Ĝ → G does not have a smooth section.
Typical examples arise if N is discrete, so that q is a covering morphism, the
simplest example being the squaring map

q : T→ T, z 7→ z2

with kernel N = {±1}. The nonexistence of a smooth section follows from

π1(q) : π1(T) ∼= Z→ π1(T) ∼= Z

being multiplication with 2, which is not surjective.
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10.2 Commutators, Nilpotent and Solvable Lie Groups

In this section we study subgroups of Lie groups generated by commutators.
This leads naturally to the concepts of nilpotent and solvable Lie groups. We
then verify that, for connected Lie groups, these concepts are compatible with
the corresponding ones on the Lie algebra level and derive detailed results on
the structure of nilpotent and solvable Lie groups.

10.2.1 Subgroups Generated by Commutators

In this subsection we study how subgroups generated by commutators give
rise to Lie subalgebras generated by Lie brackets.

Definition 10.2.1. Let G be a group. For two subgroups A,B ⊆ G, we define
(A,B) as the subgroup generated by the commutators xyx−1y−1 for x ∈ A
and y ∈ B. If we set

C1(G) := G and Cn(G) := (G,Cn−1(G)) for n > 1,

then (Cn(G))n∈N is called the lower central series of G.
If we set D0(G) := G and Dn(G) := (Dn−1(G), Dn−1(G)), then the se-

quence (Dn(G))n∈N0 is called the derived series of G.
A group G is called nilpotent if there is an n ∈ N with Cn(G) = {1} and

it is called solvable if there is an n ∈ N0 with Dn(G) = {1}. The subgroup
C2(G) = D1(G) is called the commutator subgroup of G and often denoted
by G′.

Lemma 10.2.2. If A,B ⊆ G are integral subgroups with the Lie algebras a
and b, then (A,B) also is an integral subgroup and its Lie algebra contains
[a, b].

Proof. Since A and B are arcwise connected, the set

S := {aba−1b−1 : a ∈ A, b ∈ B}

is arcwise connected, as a continuous image of A×B. This in turn implies that
the set T := S ∪ S−1 is arcwise connected because 1 ∈ S ∩ S−1. We further
conclude that all cartesian products T × . . . × T are arcwise connected, and
therefore the subgroup (A,B) =

⋃
n∈N Tn is arcwise connected because it is an

increasing union of arcwise connected subsets. Now Yamabe’s Theorem 8.6.1
implies that the arcwise connected subgroup (A, B) is integral. Furthermore,
the Initial Subgroup Theorem 8.6.13 provides on (A,B) the structure of an
initial Lie subgroup with Lie algebra

h = {x ∈ g : expG(Rx) ⊆ (A,B)}.

To see that [a, b] ⊆ h, let x ∈ a and y ∈ b. Then
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γ : R→ (A,B),

γ(t) := expG(x) expG(ty) expG(−x) expG(−ty) = expG(x) expG(−et ad yx)

is a smooth curve in (A,B) with γ(0) = 1, so that Proposition 8.2.29 leads to

h 3 γ′(0) = δ(γ)(0) = δ(expG)−x(−[y, x]) = (ead x − 1)y.

We conclude that, for each s ∈ R, es ad xy−y ∈ h, and by taking the derivative
at s = 0, we finally obtain [x, y] ∈ h. ut
Proposition 10.2.3. Let A,B and C be integral subgroups of the connected
Lie group G with Lie algebras a, b and c, satisfying

[a, c] ⊆ c, [b, c] ⊆ c and [a, b] ⊆ c.

Then (A,B) ⊆ C and if, in addition, [a, b] = c, then (A, B) = C.

Proof. From our assumptions, it immediately follows that a + b + c is a sub-
algebra of L(G), and we may assume that it coincides with L(G). Then c is
an ideal of L(G). First, we assume that G is simply connected. Now C is a
closed subgroup of G by Theorem 10.1.21, so that G/C carries a natural Lie
group structure. Let q : G → G/C be the quotient morphism with ker q = C.
The relation ker(L(q)) = c yields

[L(q)a,L(q)b] ⊆ L(q)[a, b] = {0}.
Therefore the two subalgebras L(q)a and L(q)b commute, which implies that
the corresponding integral subgroups q(A) = 〈expG/C L(q)a〉 and q(B) =
〈expG/C L(q)b〉 commute (Proposition 10.1.4). This implies that (A,B) ⊆
ker q = C.

Now let G be arbitrary, qG : G̃ → G be the universal covering of G, and
Ã, B̃, and C̃, resp., the integral subgroups of G̃ corresponding to a, b and c.
By what we have just seen, (Ã, B̃) ⊆ C̃, and this implies that

(A,B) = qG

(
(Ã, B̃)

) ⊆ qG(C̃) = C.

If, in addition, [a, b] = c, then Lemma 10.2.2 implies that c = [a, b] ⊆
L((A,B)), so that the integral subgroups (A, B) and C must coincide. ut

As an immediate consequence of Proposition 10.2.3, we obtain:

Proposition 10.2.4. For any connected Lie group G with Lie algebra g, the
groups Dn(G) in the derived series and Cn(G) in the lower central series are
normal integral subgroups with the Lie algebras

L(Dn(G)) = Dn(g) and L(Cn(G)) = Cn(g) for n ∈ N.

Since an integral subgroup is trivial if and only if its Lie algebra is, we
derive the following important theorem connecting nilpotency and solvability
of Lie groups and Lie algebras.

Theorem 10.2.5. A connected Lie group G is abelian, nilpotent, resp., solv-
able, if and only if its Lie algebra is abelian, nilpotent, resp., solvable.
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10.2.2 Nilpotent Lie Groups

In this subsection we have a closer look at the structure of nilpotent Lie
groups.

Theorem 10.2.6 (Local-Global Theorem for Nilpotent Lie Groups).
If g is a nilpotent Lie algebra, then the Dynkin series defines a polynomial
map

∗ : g× g → g, (x, y) 7→ x + y +
1
2
[x, y] + . . . .

We thus obtain a Lie group structure (g, ∗) with expg = idg and L(g, ∗) = g.

Proof. Since g is nilpotent, there is an n ∈ N with Cn(g) = {0}. Hence all
terms of order ≥ n in the Dynkin series vanish, so that only finitely many
terms remain. Therefore ∗ : g× g → g is a polynomial map. It is clear that

0 ∗ x = x ∗ 0 = x and x ∗ (−x) = (−x) ∗ x = 0 for x ∈ g.

Now let G be a simply connected Lie group with L(G) = g (Theo-
rem 8.4.11) and expG : g → G its exponential function. By Proposition 8.2.32,
there exists an open convex 0-neighborhood Ug ⊆ g with

expG(x ∗ y) = expG(x) expG(y) for x, y ∈ Ug (10.5)

and for which expG |Ug is a diffeomorphism onto an open subset of G.
Let V ⊆ Ug be an open convex 0-neighborhood for which

(V ∗ V ) ∗ V ∪ V ∗ (V ∗ V ) ⊆ Ug.

For x, y, z ∈ V we then also have x ∗ y, y ∗ z ∈ Ug and

expG(x ∗ (y ∗ z)) = expG(x) expG(y) expG(z) = expG((x ∗ y) ∗ z),

so that the injectivity of expG on Ug implies that

x ∗ (y ∗ z) = (x ∗ y) ∗ z for x, y, z ∈ V. (10.6)

Since both maps

µ1/2 : g3 → g, µ1(x, y, z) := x ∗ (y ∗ z), µ2(x, y, z) := (x ∗ y) ∗ z

are polynomial, they coincide with their Taylor series in the point (0, 0, 0),
which coincide because of (10.6). We conclude that µ1 = µ2, i.e., that (g, ∗)
is a Lie group with identity element 0 and x−1 = −x.

Identifying T0(g) with g, we may now consider the exponential function

exp(g,∗) : L(g, ∗) ∼= (g, [·, ·]) → (g, ∗).
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The relation tx ∗ sx = (t + s)x for t, s ∈ R and x ∈ g, which is a direct
consequence of the explicit form the Dynkin series, implies that

exp(g,∗)(x) = x for x ∈ g,

so that exp(g,∗) = idg. Therefore the bracket in L(g, ∗) can be calculated with
the Commutator Formula

[x, y]L(g,∗) = lim
k→∞

k2 · ((x/k) ∗ (y/k) ∗ (−x/k) ∗ (−y/k)) = [x, y].

This shows that g ∼= L(g, ∗). ut
Corollary 10.2.7. Let G be a connected nilpotent Lie group with Lie alge-
bra g. Then g is nilpotent and expG : (g, ∗) → G is the universal covering
morphism of G. In particular, the exponential function of G is surjective.

Proof. In view of Theorem 10.2.5, g is nilpotent, so that Theorem 10.2.6 im-
plies that (g, ∗) is a 1-connected Lie group with Lie algebra g. Let qG : (g, ∗) →
G be the unique morphism of Lie groups with L(qG) = idg (Proposi-
tion 8.2.10). Then

qG(x) = qG(exp(g,∗)(x)) = expG(L(qG)x) = expG(x)

implies that expG = qG. ut
We know already that any connected Lie group G is isomorphic to

G̃/π1(G), where π1(G) is identified with a discrete central subgroup of the
universal covering group G̃ (Theorem 8.5.4). To understand the structure of
connected nilpotent Lie groups, we therefore need more information on the
center of the simply connected groups (g, ∗).
Lemma 10.2.8. If g is a nilpotent Lie algebra, then the center of the group
(g, ∗) coincides with the center z(g) of the Lie algebra g.

Proof. The inclusion z(g) ⊆ Z(g, ∗) follows immediately from the definition of
∗ in terms of the Dynkin series, which implies that x∗z = x+z for z ∈ z(g). If,
conversely, z ∈ Z(g, ∗), then idg = Ad(exp(g,∗) z) = ead z, and thus, ad z = 0
since ad z is nilpotent and the exponential function is injective on the set of
nilpotent elements of End(g) (Proposition 2.3.3). ut
Proposition 10.2.9. If G is a connected nilpotent Lie group with Lie algebra
g, then Z(G) = expG(z(g)) is connected.

Proof. Since expG : (g, ∗) → G is the universal covering morphism of G, we
obtain with Lemma 10.2.8

Z(G) = kerAdG = expG(kerAd(g,∗)) = expG(z(g)). ut
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We are now ready to extend the description of the structure of connected
abelian Lie groups (Example 8.5.6) to connected nilpotent Lie groups.

Theorem 10.2.10 (Structure Theorem for Connected Nilpotent Lie
Groups). Let G be a connected nilpotent Lie group with Lie algebra g. Then
there exists a discrete subgroup Γ ⊆ (z(g),+) with

G ∼= (g, ∗)/Γ.

In particular, G is diffeomorphic to the abelian Lie group g/Γ . Moreover,
t := span Γ ⊆ z(g) is a central Lie subalgebra for which T := expG(t) is a
torus, and G is diffeomorphic to the product manifold (G/T )× T .

Proof. Let expG : (g, ∗) → G be the universal covering of G. Then Γ :=
ker expG ⊆ Z(g, ∗) = z(g) is a discrete subgroup with G ∼= (g, ∗)/Γ
(Lemma 10.2.8). Since x ∗ z = x + z for z ∈ z(g) and x ∈ g, we may identify
the manifold G with the abelian Lie group g/Γ , only the group structure may
be different.

Let t := span Γ . Then Γ is a discrete generating subgroup of t, and it
follows from the discussion in Example 8.5.6 that expG(t) ∼= t/Γ is a torus.
Moreover, T is central and in particular a normal subgroup, so that G/T ∼=
(g, ∗)/t also is a Lie group, which is obviously isomorphic to (g/t, ∗).

Now, let m ⊆ g be a vector space complement for t. Then x ∗ z = x+ z for
x ∈ m and z ∈ t ⊆ z(g) implies that the map

m× t → g, (x, z) 7→ x ∗ z = x + z

is a diffeomorphism. Hence

m× T → G, (x, z) 7→ x ∗ (z + Γ ) = x + z + Γ

also is a diffeomorphism. Since the quotient map g → g/t induces a linear
isomorphism m → g/t, we obtain a diffeomorphism G ∼= m×T ∼= G/T×T . ut
Corollary 10.2.11. Any compact connected nilpotent Lie group is abelian.

Proof. In terms of the preceding theorem, the compactness of G implies the
compactness of the quotient g/Γ , and hence that g = span Γ ⊆ z(g). Therefore
g, and hence also G, is abelian. ut
Remark 10.2.12. The major difference between the abelian and the nilpo-
tent case is that the exact sequence of groups

{1} → T → G
q−−−−→G/T → {1}

does need not split in the nilpotent case, i.e., that there may be no smooth ho-
momorphism α : G/T → G with q ◦α = idG/T (cf. Example 8.5.6). We obtain
an easy example from the 3-dimensional Heisenberg–Lie algebra g spanned by
basis elements p, q, z satisfying



440 10 Normal Subgroups, Nilpotent and Solvable Lie Groups

[p, q] = z, and [z, p] = [z, q] = 0.

For the quotient Lie group G := (g, ∗)/Zz we obtain a 1-dimensional torus
T = Rz/Zz ∼= R/Z = T, so that we get a diffeomorphism

G ∼= (G/T )× T ∼= R2 × T.

Since the quotient Lie group G/T ∼= R2 is abelian and T is central, there
is no morphism of Lie groups σ : G/T → G splitting the quotient map, be-
cause otherwise G ∼= (G/T )× T would be abelian. Another argument for the
nonexistence of such a homomorphism is that the short exact sequence of Lie
algebras

{0} → Rz → g → g/Rz → {0}
does not split.

Lemma 10.2.13. Let n be a nilpotent Lie algebra. Suppose that n = a + b
holds for subalgebras a and b. Then the multiplication map

µ : a× b → n, (x, y) 7→ x ∗ y

is surjective. If, in addition, a ∩ b = {0}, then it is a diffeomorphism.

Proof. Let N := (n, ∗), A := (a, ∗) and B := (b, ∗). We prove the assertion
by induction on dim n. If dim n = 0, there is nothing to prove. Suppose that
n 6= {0}. Then z := z(n) 6= {0} (Proposition 4.2.3), we apply induction to
n1 := n/z. With Z := (z,+) we then obtain N1 := (n1, ∗) = A1B1 for A1 :=
AZ/Z and B1 := BZ/Z. From this we derive N = AZBZ = AZB. Since
A and B are subgroups, the surjectivity of µ will follow if we can show that
Z ⊆ AB. To see this, let z ∈ z. We write z = a + b, where a ∈ a and b ∈ b.
Then [a, b] = [a, z] = 0 implies that z = a + b = a ∗ b ∈ AB. Therefore µ is
surjective.

Now we assume, in addition, that a∩ b = {0}. Then µ is injective because
µ(a1, b1) = µ(a2, b2) implies that a−1

1 a2 = b1b
−1
2 ∈ a∩ b = {0}. Therefore µ is

a smooth bijection. That it is a diffeomorphism follows from the observation
that (a, b).x := a ∗ x ∗ (−b) defines a smooth action of the product Lie group
A×B on N , so that µ(a, b) = a ∗ b = (a,−b).0 is an orbit map. This implies
that µ has constant rank. In (0, 0) the differential T(0,0)(µ) : a× b → n is the
addition map, hence a linear isomorphism. We now conclude with the Inverse
Function Theorem that µ−1 also is a smooth map. ut

10.2.3 Solvable Lie Groups

The structure of solvable Lie groups is substantially more complicated than
the structure of the nilpotent ones. In particular, the exponential function
of a solvable Lie group need not be surjective. A simple example with this
property is the simply connected covering of the motion group Mot2(R) ∼=
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R2 o SO2(R) of the euclidian plane (cf. Exercise 10.2.1). In Section 13.4, we
will obtain a characterization of those simply connected solvable Lie groups
with a surjective exponential function in terms of the condition g = regexp(g)
on their Lie algebras. Other difficulties arise from the fact that the center of
a connected solvable Lie group is not connected (again Mot2(R) provides an
example). Therefore, the description of the center of the universal covering
group and hence the classification of all solvable Lie groups with a given Lie
algebra is more complicated than in the nilpotent case, where everything boils
down to factorization of a discrete subgroup of z(g). In Theorem 13.2.8 below,
we shall also see how to master this difficulty. Presently, we can only show
that 1-connected solvable Lie groups are diffeomorphic to vector spaces by
showing the existence of global canonical coordinates of the second kind (cf.
Lemma 8.2.6).

Theorem 10.2.14. If G is a 1-connected solvable Lie group, then there exists
a basis x1, . . . , xn for its Lie algebra g such that the map

Φ : Rn → G, (t1, . . . , tn) 7→
n∏

j=1

expG(tjxj)

is a diffeomorphism, the subgroups Rj := expG(Rxj) of G are closed, and

G ∼=
((

. . .
((

R1 o R2

)
o R3

)
. . .

)
o Rn

)
.

Proof. We proceed as in the proof of Theorem 10.1.21. First, we observe that
there exist subalgebras

g0 = {0} ⊆ g1 ⊆ g2 ⊆ . . . ⊆ gn = g with gi E gi+1,

such that gi+1/gi
∼= R. Then we pick xi ∈ gi \ gi−1 and obtain

g ∼=
((

. . .
((
Rx1 o Rx2

)
o Rx3

)
. . .

)
o Rxn

)
.

Now the assertion follows from Theorem 10.1.21 and Corollary 10.1.19. ut
We have already seen that integral subgroups of connected Lie groups need

not be closed, even for abelian groups, such as the 2-dimensional torus T2 (cf.
Example 8.3.12). However, the situation is much better for simply connected
solvable groups, as the following proposition shows.

Proposition 10.2.15. Any integral subgroup H of a simply connected solv-
able Lie group G is closed and simply connected and G/H is diffeomorphic to
Rdim G/H .
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Proof. (a) We use the notation of Theorem 10.2.14 and its proof. Let h ⊆ g
be a Lie subalgebra and H := 〈exp h〉 the corresponding integral subgroup.
Let k = dim h, and let i1 < . . . < ik be the indices with gij−1 ∩ h 6= gij ∩ h.
Then we may choose the basis x1, . . . , xn in the proof of Theorem 10.2.14 in
such a way that xij ∈ h for j = 1, . . . , k. Since these elements are linearly
independent, {xi1 , . . . , xik

} is a basis for h. Let qH : H̃ → H be the universal
covering morphism and α : H̃ → G, h 7→ qG(h) the morphism of solvable Lie
groups for which L(α) : h → L(G) is the inclusion map. Then

h ∼=
((

. . .
((
Rxi1 o Rxi2

)
o Rxi3

)
. . .

)
o Rxik

)
,

and we obtain accordingly H̃ = expH̃(Rxi1) · · · expH̃(Rxik
). Applying α, this

leads to
H = α(H̃) = expG(Rxi1) · · · expG(Rxik

).

Since the map Φ in Theorem 10.2.14 is a diffeomorphism, it now follows that
qH is injective, so that H is simply connected, and we also see that in the global
chart of G defined by Φ, the subgroup H corresponds to a vector subspace of
Rn, so that it is in particular a closed submanifold.

(b) Let d := dim(G/H). We show that G/H is diffeomorphic to Rd by
induction over dimG. For dimG = 0, the assertion holds trivially. So let us
assume that dim G > 0. Then D1(G) is a proper integral normal subgroup.
We distinguish two cases.

Case 1: H ⊆ D1(G). Then we find subgroup R1, . . . , Rk
∼= R, k > 0, with

G ∼=
( · · · (D1(G)oR1) · · ·oRk

)
, and then

G/H ∼= H\G ∼= (H\D1(G))× Rk,

so that the assertion follows from the induction hypothesis, applied to the
subgroup H of D1(G).

Case 2: H 6⊆ D1(G). Then we pick some x ∈ L(H) \ L(D1(G)). Let
g1 ⊆ g be a hyperplane containing the commutator algebra D1(g) = L(D1(G))
(Proposition 10.2.4) but not x. Then g ∼= g1 o Rx is a semidirect product.
Accordingly, the simply connected group G is of the form G ∼= G1 o R with
R = expG(Rx) ∼= R. From x ∈ h we derive that h1 := h ∩ g1 satisfies h =
h1 oRx, so that H ∼= H1 oR (Proposition 10.1.19). This implies that

G/H = (G1 oR)/(H1 oR) ∼= G1/H1
∼= Rd

by the induction hypothesis. ut

Exercises for Section 10.2

Exercise 10.2.1. Let α : R → Aut(C) ∼= C× be defined by α(t)z = eitz.
Show:
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(i) G := CoαR is a three-dimensional, simply connected, solvable Lie group.
(ii) Z(G) = {0} × 2πZ. In particular, Z(G) is not connected.
(iii) G/Z(G) is isomorphic to the group Mot2(R) of motions of the Euclidian

plane.
(iv) Identifying L(G) with the corresponding semidirect product Co R of Lie

algebras (Proposition 8.2.25), the exponential function of G is given by

expG(z, t) =

{
(z, 0) for t = 0(
z eit−1

it , t
)

for t 6= 0.

(v) The exponential function of G is not surjective.

Exercise 10.2.2. Let A and B be subgroups of a topological group G. Then
the following statements hold (here the overline denotes closure in G):

(i) (A, B) = (A,B).
(ii) Dn(A) = Dn(A) and Cn(A) = Cn(A) for each n ∈ N.
(iii) A is nilpotent, resp., solvable if and only if this holds for A.

Exercise 10.2.3. Let α : R→ GL(V ) be a smooth homomorphism and G :=
V oα R the corresponding semidirect product. Show that the exponential
function of G is given by

expG(v, t) := (β(t)v, t) with β(t)v =
∫ 1

0

α(st)v ds. (10.7)

Show that, for α(t) = etD, D ∈ gl(V ), we have

β(t) =
∫ 1

0

estD ds =
etD − 1

tD
for t 6= 0.

Exercise 10.2.4. Show that the exponential map for the Lie group

G =
{ (

a b
0 1

)
: a > 0, b ∈ R

}

is a diffeomorphism.

Exercise 10.2.5. Consider the Lie group

G =
{ 


cos t sin t a
− sin t cos t b

0 0 1




∣∣∣t, a, b ∈ R
}

.

(i) Show that the exponential map for G is surjective.
(ii) Show that the exponential map for the simply connected covering group

of G is not surjective.
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10.3 The Automorphism Group of a Lie Group

In this section we take a closer look at the automorphism group Aut(G) of a
Lie group G. In particular, we are interested in a Lie group structure on this
group for which a map f : M → Aut(G), M a smooth manifold, is smooth
if and only if the corresponding map f∧ : M × G → G, (m, g) 7→ f(m)(g) is
smooth. It is easy to see that any such Lie group structure is unique, and
our main result is its existence if the group π0(G) of connected components is
finitely generated. We shall also see examples, where no such finite dimensional
Lie group structure on Aut(G) exists.

10.3.1 A Lie Group Structure on Aut(G)

What we have already seen is that, if G is 1-connected, then Aut(G) carries
a Lie group structure for which L : Aut(G) → Aut(g) is an isomorphism of
Lie groups, and in this case Aut(G) acts smoothly on G (Corollary 8.5.11). If
G is connected and qG : G̃ → G its simply connected covering group, then we
have an injection Aut(G) ↪→ Aut(G̃) whose image consists of the normalizer
of the discrete subgroup ker qG

∼= π1(G) (Remark 8.5.5). Since this normalizer
is closed, we also obtain in this case a Lie group structure on Aut(G) for which
the canonical action on G̃, and hence also on G, is smooth.

Definition 10.3.1. Let G be a Lie group. We say that a Lie group structure
on Aut(G) is adapted if for each smooth manifold M , a map f : M → Aut(G)
is smooth if and only if the corresponding map

f∧ : M ×G → G, (m, g) 7→ f(m)(g)

is smooth.
Applying this condition to M = Aut(G), it follows that the action of

Aut(G) on G is smooth. If, conversely, this action is smooth, then the smooth-
ness of f implies the smoothness of f∧.

Lemma 10.3.2 (Uniqueness of the adapted Lie group structure). Let
G be a Lie group. Then there exists at most one adapted Lie group structure
on Aut(G).

Proof. Let A1 and A2 denote two Lie group structures on Aut(G) satisfying
our requirements. Applying the adaptedness condition with M = Aj and
f = idAut(G), it follows that for both groups the action of Aj on G is smooth.
With M = A1, we thus obtain that the identity map α : A1 → A2 is smooth,
and with M = A2, we also see that α−1 is smooth. Therefore α is an isomor-
phism of Lie groups. ut
Lemma 10.3.3. If G is connected, then the canonical Lie group structure on
Aut(G) for which L : Aut(G) → Aut(g) is an isomorphism onto a closed
subgroup, is adapted.
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Proof. We have already argued that Aut(G) acts smoothly on G. This im-
plies that for any smooth map f : M → Aut(G), the corresponding map
f∧ : M ×G → G is smooth.

Suppose, conversely, that f∧ is smooth. Then so is the tangent map

T (f∧) : TM × TG → TG.

Restricting to M × T1(G) implies that L ◦f : M → Aut(g) is also smooth. As
L : Aut(G) → Aut(g) is an isomorphism onto a Lie subgroup of Aut(g), it
follows that f is smooth. ut
Definition 10.3.4. If G is a Lie group, we write Aut1(G) for the normal
subgroup consisting of all automorphisms acting trivially on π0(G), i.e., which
preserve all connected components.

Theorem 10.3.5. If G is a Lie group for which π0(G) is finitely generated,
then Aut(G) carries a Lie group structure with the property that, for any
smooth manifold M , a map f : M → Aut(G) is smooth if and only if the
corresponding map f∧ : M ×G → G is smooth.

Proof. Step 1: Let g1, . . . , gn be elements of G whose connected components
generate the group π0(G). Since the action of Aut(G0) on G0 is smooth, the
same holds for the diagonal action on Gn

0 , so that we may form the semidirect
product Lie group

P := Gn
0 oAut(G0).

Then

ζ : Aut1(G) → P, ζ(ϕ) :=
(
(g−1

1 ϕ(g1), . . . , g−1
n ϕ(gn)), ϕ0

)
, ϕ0 := ϕ|G0

satisfies

ζ(ϕ)ζ(ψ)

=
(
(g−1

1 ϕ(g1), . . . , g−1
n ϕ(gn)), ϕ0

)(
(g−1

1 ψ(g1), . . . , g−1
n ψ(gn)), ψ0

)

=
(
(g−1

1 ϕ(g1)ϕ(g−1
1 ψ(g1)), . . . , g−1

n ϕ(gn)ϕ(g−1
n ψ(gn)), ϕ0ψ0

)

=
(
(g−1

1 (ϕψ)(g1), . . . , g−1
n (ϕψ)(gn)), (ϕψ)0

)
= ζ(ϕψ),

so that ζ is a group homomorphism. Further, our choice of g1, . . . , gn implies
that ζ is injective. In particular, ζ(ϕ) = (w1, . . . , wn, ϕ0) implies the relation

ϕ(gi) = giwi, i = 1, . . . , n. (10.8)

Step 2: We claim that the image of ζ is closed. In fact, suppose that

((w1, · · · , wn), α) ∈ P

is the limit of a sequence ζ(ϕn). Then the sequence (ϕn)0 converges pointwise
to α, and (10.8) implies that ϕn converges pointwise on all of G to a map
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ϕ : G → G. Then ϕ is an endomorphism of the Lie group G preserving all
connected components and whose restriction to G0 is an automorphism. This
implies that ϕ ∈ Aut(G), and then ζ(ϕ) = ((w1, . . . , wn), α) shows that ζ has
closed range.

We now endow Aut1(G) with the unique Lie group structure for which ζ is
an isomorphism onto a Lie subgroup of P . To see that the action of Aut1(G) on
G is smooth, we have to verify that the map L : Aut1(G) → Aut(g) is smooth
and that all orbit maps are smooth (Lemma 8.2.26). The first assertion follows
from L(ϕ) = L(ϕ0) and the definition of the Lie group structure on Aut(G0).
For the smoothness of the orbit maps, we observe that the smoothness of the
action of Aut(G0) on G0 implies that the orbit maps of elements of G0 are
smooth. Further, (10.8) implies that the orbit maps of g1, . . . , gn are smooth.
Since the set of all elements with smooth orbit maps is a subgroup and G is
generated by G0 and g1, . . . , gn, all orbit maps are smooth.

Step 3: Next we show that the Lie group structure on Aut1(G) has the
property that a map f : M → Aut1(G), M a smooth manifold, is smooth if and
only if the corresponding map f∧ : M×G → G is smooth. Since Aut1(G) acts
smoothly on G, the smoothness of f implies the smoothness of f∧. Suppose,
conversely, that f∧ is smooth. We have to show that the map ζ ◦f : M → P is
smooth. Lemma 10.3.3 implies that the map f0 : M → Aut(G0),m 7→ f(m)0
is smooth, and the maps M → G, m 7→ g−1

j f(m)(gj) = g−1
j f∧(m, gj) are also

smooth. Therefore f is smooth.
Step 4: For any ϕ ∈ Aut(G), the conjugation map cϕ restricts to an auto-

morphism of the group Aut1(G). In view of the preceding step, the smoothness
of cϕ follows from the smoothness of the map

c∧ϕ : Aut1(G)×G → G, (ψ, g) 7→ ϕ(ψ(ϕ−1(g))).

Therefore Corollary 8.4.5 implies the existence of a unique Lie group structure
on Aut(G) for which Aut1(G) is an open subgroup.

With respect to this Lie group structure, the smoothness of the action of G
on Aut(G) follows immediately from the smoothness of the action of Aut1(G).
If, moreover, f : M → Aut(G) is a map for which f∧ is smooth, then we claim
that f is smooth. In fact, we may w.l.o.g. assume that M is connected. Then
the continuity of f∧ implies that f(M) ⊆ Aut1(G), so that Step 3 implies the
smoothness of f . ut

10.3.2 Infinitesimal Automorphisms

So far we have not said anything on the Lie algebra of the group Aut(G).
The adaptedness condition implies that the smooth one-parameter groups of
Aut(G) are in one-to-one correspondence with the smooth actions of the group
R by automorphisms of G. We therefore take a closer look at the vector fields
generating such flows.
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Definition 10.3.6. Let G be a Lie group. A vector field X ∈ V(G) is said to
be an infinitesimal automorphism if X : G → TG is a morphism of Lie groups,
i.e.,

X(gh) = X(g)h + gX(h) for g, h ∈ G, (10.9)

with respect to the canonical Lie group structure on the tangent bundle TG.
Note that (10.9) implies X(1) = 0 and

X(g−1) = −g−1X(g)g−1 for g ∈ G.

We write IAut(G) ⊆ V(G) for the set of infinitesimal automorphisms of G.

We now justify this terminology:

Proposition 10.3.7. If Φ : R × G → G is a smooth action of R on the Lie
group G by automorphisms, then its infinitesimal generator X ∈ V(G) is an
infinitesimal automorphism. Conversely, every infinitesimal automorphism of
G generates a smooth global flow by automorphisms.

Proof. The first part follows immediately by taking derivatives in t = 0 in the
relation

Φ(t, gh) = Φ(t, g)Φ(t, h), t ∈ R, g, h ∈ G.

Suppose, conversely, that X ∈ IAut(G) and that Φ : D → G is the corre-
sponding local flow, where D ⊆ R × G is its open domain (Theorem 7.5.12).
Let ε > 0 be such that

Dε := {g ∈ G : [−ε, ε]× {g} ⊆ D}
is a 1-neighborhood in G. If γ, η : [−ε, ε] → G are integral curves of X, then
their pointwise product also is an integral curve:

(γη)′(t) = γ′(t)η(t) + γ(t)η′(t) = X(γ(t))η(t) + γ(t)X(η(t)) = X(γ(t)η(t)).

Further, the relation X(g−1) = −g−1X(g)g−1 leads to

(γ−1)′(t) = −γ(t)−1γ′(t)γ(t)−1 = −γ(t)−1X(γ(t))γ(t)−1 = X(γ(t)−1),

so that the pointwise inverse γ−1 also is an integral curve of X. Therefore Dε

is a subgroup of G, and since it contains a 1-neighborhood of G, it is open.
Let g ∈ G. Choosing ε small enough, we may assume that g ∈ Dε. Then

Dε is an open submanifold on which the flow of X is defined on [−ε, ε]×Dε,
which implies that X|Dε is complete (Exercise 7.5.2). Therefore R×{g} ⊆ D,
and since g ∈ G was arbitrary, it follows that X is complete.

Let ΦX
t ∈ Diff(G) denote the corresponding global flow. To see that each

ΦX
t ∈ Aut(G), let g1, g2 ∈ G and γ1, γ2 : R→ G be the corresponding integral

curves with γj(0) = gj . Then the pointwise product γ1γ2 is the integral curve
through g1g2, and this implies that

ΦX
t (g1g2) = γ1(t)γ2(t) = ΦX

t (g1)ΦX
t (g2),

so that ΦX
t ∈ Aut(G). ut



448 10 Normal Subgroups, Nilpotent and Solvable Lie Groups

Corollary 10.3.8. For an adapted Lie group structure on Aut(G) we have
L(Aut(G)) ∼= IAut(G).

Remark 10.3.9. The set IAut(G) of infinitesimal automorphisms of G can
be made more explicit by writing the tangent bundle TG as a semidirect
product goAd G, where the isomorphism is simply obtained by restricting the
multiplication of TG to the subset g×G = T1(G)×G (Example 8.2.24).

Then any vector field X ∈ V(G) can be written as X(g) = (α(g), g), where
α : G → g is a smooth function. The condition that X : G → TG is a group
homomorphism now is equivalent to α being a 1-cocycle (cf. Definition 11.1.5
below):

α(gh) = α(g) + Ad(g)α(h), g, h ∈ G.

Clearly, the set Z1(G, g) of all smooth 1-cocycles is a vector space. In view
of the preceding proposition, it is the natural candidate for the Lie algebra of
the group Aut(G).

For any smooth 1-cocycle α, we have

α(ghg−1) = α(gh) + Ad(gh)α(g−1) = α(g) + Ad(g)α(h) + Ad(gh)α(g−1),

so that L(α) := T1(α) satisfies

L(α) ◦Ad(g) = Ad(g) ◦ L(α)−Ad(g) ◦ ad(α(g−1))

= Ad(g) ◦ L(α) + Ad(g) ◦ ad(Ad(g)−1α(g))
= Ad(g) ◦ L(α) + ad(α(g)) ◦Ad(g).

Taking derivatives in g = 1, we thus find with α(1) = 0 that

L(α) ◦ adx = ad x ◦ L(α) + ad(L(α)x),

and this means that L(α) ∈ der(g).
The passage from a derivation D ∈ der(g) = Z1(g, g) to a one-parameter

group of infinitesimal automorphisms requires an integration process. The
best way to see this, is to consider the corresponding homomorphism

D̃ : g → goad g, D̃(x) := (Dx, x).

If G is 1-connected, it can be integrated to a unique morphism α : G → TG
with L(α) = D̃, but in general it leads to a homomorphism π1(G) → g whose
triviality characterizes the integrability of D to an infinitesimal automorphism
(cf. Corollary 8.5.10).

Examples 10.3.10. (a) If G is 1-connected, then Aut(G) ∼= Aut(g) and
L(G) ∼= der(g) (cf. Example 3.2.5).

(b) If G is not connected, then there may be infinitesimal automorphisms
vanishing on G0. They correspond to 1-cocycles α : G → g with α(G0) = {0}.
If G0 is abelian, then G0 acts trivially on g, so that the adjoint action factors



10.3 The Automorphism Group of a Lie Group 449

through an action Ad of π0(G) on g, and all 1-cocycles α : π0(G) → g yield
infinitesimal automorphisms vanishing on G0.

(c) For a torus G = Td, we have G̃ ∼= Rd, and

Aut(G) ∼= {ϕ ∈ GLd(R) : ϕ(Zd) = Zd} ∼= GLd(Z)

is a discrete group. Since G ⊆ TG ∼= g ×G is a maximal compact subgroup,
the zero section of TG is the only homomorphism G → TG which is a vector
field. Therefore IAut(Td) = {0}.

(d) For the abelian Lie group G = R × Z(N), the group π0(G) ∼= Z(N) is
not finitely generated. Since the adjoint action is trivial, we have

IAut(G) ∼= Z1(G, g) = Hom(G, g) ∼= Hom(G,R) ∼= R× R(N),

and this space is infinite dimensional. As a consequence of Corollary 10.3.8, we
now see that Aut(G) carries no finite dimensional adapted Lie group structure.

We have seen in the preceding example that there exist Lie groups G with
countably many connected components for which Aut(G) carries no adapted
Lie group structure. In view of Corollary 10.3.8, the finite dimensionality of
the space IAut(G) is necessary. However, we have the following

Theorem 10.3.11. If IAut(G) is finite dimensional, then Aut(G) carries the
structure of a Lie group with Lie algebra IAut(G) for which the action on G
is smooth.

Proof. Clearly, the subspace IAut(G) ⊆ V(G) is invariant under all auto-
morphisms of G, hence in particular under all flow maps ΦX

t , X ∈ IAut(G)
(Proposition 10.3.7). We therefore obtain for X, Y ∈ IAut(G):

[X,Y ] = LXY =
d

dt t=0
(ΦX
−t)∗Y ∈ IAut(G).

This means that IAut(G) is a finite dimensional Lie subalgebra of V(G). Since
it consists of complete vector fields (Proposition 10.3.7), Palais’ Theorem 9.5.1
ensures the existence of a smooth action σ of the 1-connected Lie group H
with Lie algebra h = IAut(G). The smoothness of this action implies that its
kernel is closed, so that we may use H/ kerσ to turn the subgroup

Aut0(G) := {ΦX
1 : X ∈ IAut(G)} ⊆ Aut(G)

into a Lie group whose action on G is smooth. For each ϕ ∈ Aut(G), the
relation cϕ(ΦX

t ) = Φϕ∗X
t implies that

(cϕ ◦ expAut0(G))(X) = expAut0(G)(ϕ∗X),

and hence that cϕ defines a smooth automorphism of Aut0(G). Therefore
Corollary 8.4.5 implies the existence of a unique Lie group structure on Aut(G)
for which Aut0(G) is an open subgroup. Since Aut0(G) acts smoothly on G,
the same hold for Aut(G). ut
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Notes on Chapter 10

Our discussion of the fundamental group of a homogeneous space in Sec-
tion 10.1 that culminates in the Homotopy Group Theorem avoids the use of
the long exact homotopy sequence of fiber bundles to keep the presentation
more self-contained.

Most of the material covered in this chapter can also be found in Hochschild’s
book [Ho65] and in Bourbaki [Bou89, Ch. 3]. In particular, our discussion of
the automorphism group of a Lie group closely follows Bourbaki.



11

Compact Lie Groups

As we have seen in Chapter 4, Levi’s Theorem 4.6.6 is a central result in the
structure theory of Lie algebras. It often allows to split problems: one sepa-
rately considers solvable and semisimple Lie algebras, and one puts together
the results for both types. Naturally, this strategy also works to some extent
for Lie groups. After dealing with nilpotent and solvable Lie groups in Chap-
ter 10, we turn to the other side of the spectrum, to groups with semisimple
or reductive Lie algebras. Here an important subclass is the class of compact
Lie groups and the slightly larger class of groups with compact Lie algebra.
Many problems can be reduced to compact Lie groups, and they are much
easier to deal with than noncompact ones. The prime reason for that is the
existence of a finite Haar measure whose existence was shown in Section 9.4.

In Section 11.1 we introduce the class of compact Lie algebras k as those
carrying an invariant scalar product and show that this condition is equivalent
to the existence of a compact Lie group K with L(K) = k. The main result of
that section is a structure theorem for connected groups with a compact Lie
algebra, saying that any such group is a direct product of a compact group
with a vector group. In Section 11.2 we then turn to the internal structure of
compact groups, which is approached by studying maximal torus subgroups.
Here one of the main insights is that all maximal tori are conjugate under inner
automorphisms and that each element of a compact connected Lie group is
contained in some maximal torus. In the third section of this chapter we show
that any compact Lie group has a faithful unitary representation, so that it
can be realized as a subgroup of some unitary group Un(C). In the last section
we provide some more topological information and use it to show that fixed
point sets of automorphisms in 1-connected compact Lie groups are connected
(Theorem 11.4.26).
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11.1 Lie Groups with Compact Lie Algebra

In this section we study the structure of Lie algebras which occur as Lie
algebras of compact groups. We use the results to prove a number of structure
theoretic theorems on Lie groups with such Lie algebras. As technical tools
in this context, we introduce 1-cocycles and certain averaging integrals for
cosets.

Definition 11.1.1. A Lie algebra g is called compact if there exists a positive
definite, invariant and symmetric bilinear form on g.

Lemma 11.1.2. (i) Every subalgebra of a compact Lie algebra is compact.
(ii) A direct sum g =

⊕n
i=1 gi of Lie algebras gi is compact if and only if all

the gi are compact.
(iii) If a E g is an ideal, then the orthogonal complement a⊥ with respect to

any invariant scalar product is also an ideal, and g ∼= a ⊕ a⊥ is a Lie
algebra direct sum.

(iv) Every compact Lie algebra is reductive.

Proof. (i) Let g be a compact Lie algebra, and let β be a positive definite,
symmetric and invariant bilinear form on g. The restriction of β to any sub-
algebra also is invariant and positive definite. Hence every subalgebra of g is
compact.

(ii) Exercise.
(iii) Since β is positive definite, a⊥ is a vector space complement for a. For

a ∈ a, x ∈ g and y ∈ a⊥, we have

β(a, [x, y]) = β([a, x], y) = 0

since [a, x] ∈ a. Hence, [g, a⊥] ⊆ a⊥, and therefore, a⊥ is an ideal.
(iv) This is a consequence of (iii) (Definition 4.7.1). ut

Definition 11.1.3. Let g be a Lie algebra, and let ad: g → der(g) be the
adjoint representation. For a subalgebra a ⊆ g, we set

Inng(a) := 〈ead a〉 ⊆ Aut(g) and INNg(a) := Inng(a).

We also write Inn(g) := Inng(g) and recall that L(Aut(g)) = der(g) (Exam-
ple 3.2.5).

The following proposition gives two alternative characterizations of com-
pact Lie algebras.

Proposition 11.1.4. Let g be a finite-dimensional Lie algebra. Then the fol-
lowing are equivalent:

(i) There exists a compact Lie group G with L(G) ∼= g.
(ii) INNg(g) ⊆ Aut(g) is compact.
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(iii) g is compact.

Proof. (i) ⇒ (ii): Let G be a compact connected Lie group with L(G) = g.
Then Ad(G) = 〈ead g〉 is compact, so that INNg(g) = 〈ead g〉 = Ad(G) also is
compact.

(ii) ⇒ (iii): We apply the Unitarity Lemma 9.4.14. It implies the existence
of an INN(g)-invariant scalar product β on g. Then INN(g) ⊆ O(g, β) leads to
ad(g) ⊆ L(O(g, β)) = o(g, β), from which we derive that

β([x, y], z) = β
(− ad y(x), z

)
= −β

(
x, ad y>(z)

)

= β
(
x, ad y(z)

)
= β(x, [y, z]).

for x, y, z ∈ g. Hence β is invariant.
(iii) ⇒ (i): By Lemma 11.1.2(iv), g is reductive, hence the direct sum of

an abelian Lie algebra a and a semisimple compact Lie algebra s. If a ∼= Rn,
then we set A := Rn/Zn, and we get a compact group with L(A) = a. By
Lemma 11.1.2(i), there is a positive definite symmetric invariant bilinear form
β on s. Then

Inns(s) ⊆ O(β) ∩Aut(s).

By the Integral Subgroup Theorem 8.4.8 and Theorem 4.5.14, we have

L(Inns(s)) = ad(s) = der(s) = L(Aut(s)),

and therefore, Inns(s) is the identity component of Aut(s), in particular, it is
closed, and thus compact. Since ker(ads) = {0}, it follows that

L(A×Aut(s)) = L(A× Inns(s) ∼= a⊕ s ∼= g. ut

Now we turn to the structure theory of Lie groups with compact Lie al-
gebra. As for Lie algebras in Chapter 4, we also obtain splitting theorems for
Lie groups with cohomological methods.

Definition 11.1.5. Let G and N be Lie groups and α : G → Aut(N) be a
homomorphism defining a smooth action of G on N .

A smooth function f : G → N is called a 1-cocycle or a crossed homomor-
phism with respect to α if

f(g1g2) = f(g1) · α(g1)(f(g2)) for g1, g2 ∈ G.

Note that this condition is equivalent to

(f, idG) : G → N oα G

being a morphism of Lie groups.
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Example 11.1.6. Let G be a Lie group and α : G → Aut(G) define a smooth
action of G on G.

(a) If α(G) = {idG} is trivial, then idG is a 1-cocycle.
(b) If α(g) = cg is the conjugation action, then the inversion ιG(g) = g−1

is a 1-cocycle because

ιG(g1g2) = g−1
2 g−1

1 = g−1
1 g1g

−1
2 g−1

1 = ιG(g1)cg1(ιG(g2)).

The connection to semidirect product decompositions is provided by the
following lemma.

Lemma 11.1.7. Let G be a Lie group and N a closed normal subgroup. Then
G acts smoothly on N by α(g)(n) = gng−1, and the following are equivalent:

(i) The short exact sequence 1 → N → G → G/N → 1 of Lie groups splits.
(ii) There exists a closed subgroup H ⊆ G for which the multiplication map

µ : N oα H → G, (n, h) 7→ nh

is an isomorphism of Lie groups.
(iii) There exists a 1-cocycle f : G → N with f(n) = n−1 for n ∈ N .

Proof. (i) ⇒ (ii): Let q : G → G/N be the quotient morphism and
σ : G/N → G be a morphism of Lie groups with q ◦ σ = idG/N . Then the
map

Φ : N ×G/N → G, (n, gN) 7→ n · σ(gN)

is a smooth bijection with Φ−1(g) = (gσ(q(g))−1, q(g)). Hence Φ is a diffeo-
morphism. This implies that H := σ(G/N) is a closed subgroup for which (ii)
holds.

(ii)⇒ (iii): On G ∼= NoαH we consider the map f : G → N, (n, h) 7→ n−1.
Then f is a 1-cocycle because for g1 = n1h1 and g2 = n2h2 we have

f(g1g2) = f(n1h1n2h2) = (n1h1n2h
−1
1 )−1 = h1n

−1
2 h−1

1 n−1
1

= n−1
1 n1h1n

−1
2 h−1

1 n−1
1 = f(g1)(g1f(g2)g−1

1 ),

i.e., f is a 1-cocycle.
(iii) ⇒ (i): Let f : G → N be a 1-cocycle with f(n) = n−1 for n ∈ N .

Then the map σ̃ : G → G, g 7→ gf(g−1)−1 is a morphism of Lie groups:

σ̃(g1g2) = g1g2f(g−1
2 g−1

1 )−1 = g1g2(g−1
2 f(g−1

1 )−1g2)f(g−1
2 )−1

= g1f(g−1
1 )−1g2f(g−1

2 )−1 = σ̃(g1)σ̃(g2).

Since N ⊆ ker σ̃, it factors through a smooth morphism σ : G/N → G,
gN 7→ σ̃(g). Clearly, q(σ(gN)) = q(gf(g−1)−1) = q(g) = gN implies (i). ut
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Lemma 11.1.8. Let V be a finite-dimensional vector space and G a Lie
group. Further, let H ⊆ G be a closed subgroup, f : G → V be a compactly
supported smooth function and µH be a left Haar measure on H. Then the
function

F : G → V, F (g) :=
∫

H

f(gh) dµH(h)

is smooth.

Proof. For a fixed x ∈ G, pick a compact neighborhood Cx in G and consider
the continuous map γ : Cx × H → G, (x, h) 7→ xh. Then f ◦ γ is compactly
supported and we can apply Proposition 9.3.42 to see that F is smooth on
C◦x. Since x ∈ G was arbitrary, we see that F is smooth. ut

To prove existence of certain 1-cocycles, the following lemma is a key tool.

Lemma 11.1.9. Let G be a Lie group and H ⊆ G a closed subgroup for which
G/H is compact. Then there is a nonnegative smooth function w : G → R with
compact support such that

∫

H

w(gh) dµH(h) = 1 for all g ∈ G,

where µH is a left Haar measure on H.

Proof. Let C be a compact 1-neighborhood in G, C◦ its interior, and
π : G → G/H, g 7→ gH be the quotient map. Then the sets π(gC◦) = gπ(C◦)
form an open covering of the compact space G/H, so that there exist
g1, . . . , gn ∈ G such that

G/H =
n⋃

i=1

giπ(C) =
n⋃

i=1

π(giC) = π
( n⋃

i=1

giC
)
.

Therefore D :=
⋃n

i=1 giC is a compact subset of G with G = DH. In view
of Lemma 7.4.15, there exists a smooth nonnegative function χ : G → R with
compact support such that χ(D) = {1}. We set

ϕ(x) :=
∫

H

χ(xh) dµH(h) for x ∈ G

and observe that ϕ is smooth (Lemma 11.1.8).
For each x ∈ G = DH, there are h ∈ H and d ∈ D with x = dh, so that

χ(xh−1) = χ(d) = 1 leads to ϕ(x) > 0. We put

w(x) := χ(x)/ϕ(x) for x ∈ G.

Then w has compact support since χ has compact support. For y ∈ H, the
relation ϕ(xy) = ϕ(x) (a consequence of the left invariance of µH) leads to

∫

H

w(xh) dµH(h) =
1

ϕ(x)

∫

H

χ(xh) dµH(h) = 1

for x ∈ G. ut
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Remark 11.1.10. The function w in the preceding lemma can be used to
define for each finite-dimensional vector space V a projection

P : C∞(G,V ) → C∞(G,V )H , P (f)(g) :=
∫

H

w(gh)f(gh) dµH(h),

where C∞(G,V )H denotes the subspace of all smooth functions f : G → V
which are constant on the H-left cosets, so that they correspond to smooth
functions f : G/H → V via f(gH) := f(g).

That P (f) is smooth follows from Lemma 11.1.8 since f ·w is smooth with
compact support. The right H-invariance is a direct consequence of the left
invariance of the measure µH . If f is already H-right invariant, then

P (f)(g) =
∫

H

w(gh)f(g) dµH(h) =
∫

H

w(gh) dµH(h) · f(g) = f(g),

and this implies that P is indeed a projection.

Before we prove the key lemma for the splitting theorem, we observe some
properties of cocycles:

Remark 11.1.11. Let ρ : G → GL(V ) be a representation of G and N E G
a normal subgroup with N ⊆ ker ρ.

(a) If f : G → V is a 1-cocycle with respect to ρ, then

f(gn) = f(g) + ρ(g)(f(n)) for g ∈ G,n ∈ N

and
f(ng) = f(n) + f(g) for g ∈ G,n ∈ N.

In particular, f |N : N → (V, +) is a group homomorphism, and we also have

f(gng−1) = f(g) + ρ(g)(f(ng−1)) = f(g) + ρ(g)(f(n)) + ρ(g)
(
f(g−1)

)

= ρ(g)(f(n))

because 0 = f(1) = f(gg−1) = f(g) + ρ(g)
(
f(g−1)

)
(cf. Exercise 11.1.3).

Lemma 11.1.12. Let G be a Lie group and N ⊆ G a closed normal sub-
group for which G/N is compact. Suppose that ρ : G → GL(V ) is a finite-
dimensional smooth representation of G with N ⊆ ker ρ and f : N → V is a
smooth homomorphism which is G-equivariant, i.e.,

f(gng−1) = ρ(g)
(
f(n)

)
for g ∈ G,n ∈ N.

Then there exists a 1-cocycle f∗ : G → V with respect to ρ extending f .

Proof. We use w ∈ C∞c (G,R) from Lemma 11.1.9 to define the function

F : G → V, F (g) :=
∫

N

w(g−1n)f(n) dµN (n).
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Its smoothness follows from Lemma 11.1.8. For n ∈ N , the left invariance of
the Haar measure µN immediately implies that

F (ng) =
∫

N

w(g−1n−1n′)f(n′) dµN (n′) =
∫

N

w(g−1n′)f(nn′) dµN (n′)

=
∫

N

w(g−1n′)
(
f(n) + f(n′)) dµN (n′) = f(n) + F (g).

In this respect F already behaves like a cocycle (cf. Remark 11.1.11). From
this we further derive

F (gn) = F (gng−1g) = f(gng−1) + F (g) = ρ(g)(f(n)) + F (g).

For each x ∈ G, we now define the smooth function hx ∈ C∞(G,V ) by

hx(g) := ρ(g)−1(F (gx)− F (g))

and observe that, whenever F is a cocycle, this function is constant with value
F (x). Although hx need not be constant, it is constant on the cosets of N :

hx(ng) = ρ(g)−1(F (ngx)− F (ng)) = ρ(g)−1(f(n) + F (gx)− f(n)− F (g))
= hx(g).

We thus obtain a smooth map hx : G/N → V , defined by hx(gN) := hx(g).
With the normalized Haar measure µG/N of the compact Lie group G/N , we
now define

f∗ : G → V, f∗(x) :=
∫

G/N

hx(gN) dµG/N (gN).

The smoothness of f∗ follows from Proposition 9.3.42 since the map

G×G/N → V, (x, y) → hx(y)

is smooth as the quotient map G×G → G× (G/N) is a submersion.
For n ∈ N , the relation

hn(g) := ρ(g)−1(F (gn)− F (g)) = f(n)

implies that f∗(n) = f(n). We further observe that

hxy(g) = ρ(g)−1(F (gxy)− F (g)) = ρ(g)−1(F (gxy)− F (gx) + F (gx)− F (g))
= ρ(x)hy(gx) + hx(g),

so that integration leads to the cocycle identity

f∗(xy) = ρ(x)f∗(y) + f∗(x),
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because
∫

G/N

ρ(x)hy(gxN) dµG/N (gN) = ρ(x)
∫

G/N

hy(gN · xN) dµG/N (gN)

= ρ(x)
∫

G/N

hy(gN) dµG/N (gN) = ρ(x)f∗(y)

follows from Remark 9.3.39 and the right invariance of Haar measure on the
compact Lie group G/N (cf. Proposition 9.4.11). This proves that f∗ is a
smooth 1-cocycle extending f . ut
Theorem 11.1.13 (Splitting Theorem). Let G be a Lie group and V ⊆ G
be a normal vector subgroup such that G/V is compact. Then there exists a
compact subgroup K ⊆ G such that G ∼= V oK.

Proof. This follows from Lemmas 11.1.7 and 11.1.12 for N = V , ρ(g)v :=
gvg−1, and f(v) := v−1 = −v (see also Theorem 10.1.15). ut

One should perceive the Splitting Theorem as a theorem of the type of
the structure theorem for nilpotent Lie groups (Theorem 10.2.10). Just as
that theorem, the Splitting Theorem provides a product decomposition of a
Lie group G into a compact group and a manifold, diffeomorphic to a vector
space. If the groups G and N in the definition of a 1-cocycle are abelian
and N ⊆ G is a subgroup, then f : G → N is a 1-cocycle if and only if it
is a homomorphism. In this sense, the following lemma also is an extension
theorem for 1-cocycles.

Lemma 11.1.14 (Torus Splitting Lemma). Let T be a torus and A ⊆ T
be a closed connected subgroup. Then there is a homomorphism f : T → A with
f |A = idA. This implies in particular, that for the closed subgroup B := ker f ,
the multiplication map

ϕ : A×B → T, (a, b) 7→ ab

is an isomorphism of Lie groups with inverse ϕ−1(t) = (f(t), f(t)−1t).

Proof. We consider the exponential function expT : t = L(T ) → T . Then D :=
exp−1(A) is a closed subgroup of the vector space t. Its identity component
is the set of all elements x ∈ t with expT (Rx) ⊆ A, i.e., the Lie algebra a
of A. If E ⊆ t is a complement of a, then E ∩ D is discrete by the Closed
Subgroup Theorem 8.3.7, and Exercise 8.3.4 provides linearly independent
elements e1, . . . , ek ∈ E with

D = a + Ze1 + Ze2 + . . . + Zek.

Since ker expT ⊆ D and T ∼= t/ ker(expT ) is compact, t is spanned by a and
e1, . . . , ek. By assumption, expT (ei) ∈ A = expT (a), so that there also exists
an element ai ∈ a with expT (ai) = expT (ei). Then we also have
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D = a⊕ Z(e1 − a1)⊕ Z(e2 − a2)⊕ . . .⊕ Z(ek − ak),

and

ker(expT ) =
(
ker(expT ) ∩ a

)
+ Z(e1 − a1) + Z(e2 − a2) + . . . + Z(ek − ak).

Let β : t → a be a linear map with β|a = ida and β(ei − ai) = 0 for i =
1, . . . , k. Then β(ker(expT )) ⊆ ker(expT ) implies the existence of a group
homomorphism f : T → A with L(f) = β. For a = expT x with x ∈ a, we then
have f(expT (x)) = expT (β(x)) = expT (x), which means that f |A = idA. ut
Definition 11.1.15. We call a connected Lie group G semisimple, resp.,
simple1 if its Lie algebra L(G) is semisimple, resp., simple.

We want to show that connected semisimple Lie groups with compact Lie
algebra are always compact. The following lemma is an important step.

Lemma 11.1.16. Let G be a connected locally compact group and D ⊆ G a
discrete central subgroup such that G/D is compact and the commutator group
is dense in G/D. Then D is finite and G is compact.

Proof. First we show that D is finitely generated. For a subset C ⊆ G, we
write C◦ for its interior. As in the proof of Lemma 11.1.7, we find a compact
subset C ⊆ G with G = C◦D. We may assume that C generates the group G
because the connectedness of G implies that it is generated by any compact
identity neighborhood. Therefore the open sets dC◦, d ∈ D, cover in particular
the compact subset C2, and there exist s1, . . . , sn ∈ D with C2 ⊆ ⋃n

i=1 siC
◦.

Let Γ ⊆ D be the subgroup generated by s1, . . . , sn. Then C2 ⊆ ΓC, and one
inductively obtains Cn ⊆ ΓC, which in turn leads to G = ΓC. Now every d
in D can be written as d = γc with γ ∈ Γ and c ∈ C. Then Γ ⊆ D implies
that c ∈ D, and thus c ∈ C ∩D. Consequently, D is generated by s1, . . . , sn

and the finite set C ∩ D. This shows that D is a finitely generated abelian
group, and therefore isomorphic to Zr × F for a finite abelian group F .

It remains to show that r = 0. For this, we assume that r > 0. Then
there exists a nonconstant homomorphism f : D → Z ⊆ R. To apply Lemma
11.1.12, we put ρ(g) = idR for g ∈ G and N := D. This lemma now provides
a 1-cocycle f∗ : G → R extending f . As the action of G on R was trivial, f∗

is a homomorphism. The subgroup f∗(G) is connected and contains Z, hence
coincides with R, and thus f∗ is surjective. In view of f∗(D) ⊆ Z, we obtain by
factorization a surjective homomorphism f̃∗ : G/D → R/Z. This contradicts
the density of the commutator group in G/D because R/Z is abelian. We
conclude that r = 0, so that D is finite and G = CD is compact. ut
Theorem 11.1.17 (Weyl’s theorem on Lie groups with simple com-
pact Lie algebra). If G is a connected semisimple Lie group with compact
Lie algebra, then G is compact and Z(G) is finite.
1 Note that with this definition a simple Lie group need not be simple as a group

(consider e.g. SL2(R) which has nontrivial center).
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Proof. First we recall that the semisimplicity of g := L(G) implies that
ad(g) = der(g) = L(Aut(g)) (Theorem 4.5.14, Example 3.2.5), so that
Inn(g) = Aut(g)0 is a closed subgroup of GL(g). We therefore have G/Z(G) ∼=
Ad(G) = Inn(g) = INN(g), and Proposition 11.1.4 implies that G/Z(G) is
compact. Further, the center of the semisimple Lie algebra g is trivial, so that
L(Z(G)) = z(g) = {0}, and thus Z(G) is discrete. By Proposition 10.2.4, the
semisimple, connected Lie group Ad(G) coincides with its commutator group.
Hence we can apply Lemma 11.1.16 with D = Z(G) to complete the proof. ut
Theorem 11.1.18 (Structure Theorem for Groups with Compact Lie
Algebra).

(i) Every connected Lie group G with compact Lie algebra is a direct product
of a vector group V and a uniquely determined maximal compact group K
of G which contains all other compact subgroups.

(ii) If k = z(k)⊕ k1⊕ · · ·⊕ km is the decomposition of the reductive Lie algebra
k := L(K) into its center and simple ideals, then the corresponding integral
subgroups Z(K)0 and K1, . . . ,Km are compact, and the multiplication map

Φ : Z(K)0 ×K1 × · · · ×Km → K, (z, k1, . . . , km) 7→ zk1 · · · km

is a covering morphism of Lie groups with finite kernel.
(iii) The commutator subgroup G′ of G is compact.

Proof. The Lie algebra g := L(G) of G is compact, so that g = z(g) ⊕ g′,
where g′ = D1(g) is compact and semisimple (Lemma 11.1.2). The identity
component Z(G)0 of the center of G is a connected abelian Lie group. By
Exercise 8.3.5, there exists a closed vector group V ⊆ Z(G)0 and a torus T ⊆
Z(G)0 with Z(G)0 ∼= V ×T . By Weyl’s Theorem 11.1.17, the normal subgroup
G′ = 〈exp g′〉 (cf. Proposition 10.2.4) is compact since it is a continuous image
of a connected semisimple Lie group with compact Lie algebra. Consequently,
K := G′T is a compact subgroup of G. From L(V ) + L(K) = L(G), we
derive that G = 〈expG(L(K))〉 expG(L(V )) = KV , and since V contains
no nontrivial compact subgroups, we have V ∩ K = {1}, thus G ∼= V × K
(Proposition 10.1.18). If U ⊆ G is any compact subgroup, then the projection
of U along K onto V is trivial, so that U is contained in K. Thus (i) and (iii)
are proven.

To prove also (ii), we observe that Z(K)0 is closed, hence compact, and
that the compactness of the simple factors Kj follows from the simplicity of
their Lie algebra and Weyl’s Theorem. Since all groups Kj commute pairwise,
Φ is a morphism of Lie groups which is surjective because the Lie algebra
of its image exhausts k. Its kernel Γ is a discrete normal subgroup, hence
central. Since it intersects Z(K)0 trivially, the projection onto

∏m
j=1 Kj maps

it injectively into
∏m

j=1 Z(Kj) which is finite again by Weyl’s Theorem. This
proves that Γ is finite. ut
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Remark 11.1.19. The preceding structure theorem often permits to reduce
questions on connected Lie groups G with compact Lie algebra g to questions
on vector groups and compact Lie groups. For the latter, we have on the Lie
algebra level the decomposition g = z(g) ⊕ g′, but the intersection Γ of the
corresponding integral subgroups Z(G)0 and the commutator group G′ :=
C1(G) may be nontrivial. Since G′ is compact semisimple and Γ ⊆ Z(G′), it
is finite by Weyl’s Theorem 11.1.17, and the multiplication homomorphism
Z(G)0 ×G′ → G, (z, g) 7→ zg is a finite covering homomorphism with kernel

{(γ, γ−1) : γ ∈ Γ} ∼= Γ.

Here is a concrete example, where Γ is nontrivial.

Example 11.1.20. The group G := U2(C) is a simple example. Its Lie alge-
bra is g = u2(C) with z(g) = iR1 and g′ = su2(C). Therefore

Z(G)0 = expG(iR1) = {z1 : |z| = 1} ∼= T,

and G′ = 〈expG g′〉 = SU2(C). We now observe that

Z(G)0 ∩ SU2(C) = {z1 : 1 = det(z1) = z2} = {±1}

is nontrivial.

Although it cannot be decomposed as a direct product, we will see below
that a compact connected Lie group K always splits as a semidirect product
of K ′ and a torus group A (in general not central), so that K ∼= K ′ o A
(Hofmann–Scheerer Splitting Theorem 11.2.6). Before we can give a proof, we
need some information on maximal tori in compact Lie groups.

Corollary 11.1.21. Let G be a Lie group with finitely many connected com-
ponents and L(G) compact. Then there exists a compact subgroup K and a
vector group V with G ∼= V oK.

Proof. From Theorem 11.1.18 we know that the identity component G0 is
a product W × K0, where K0 is the unique maximal compact subgroup of
G0. Then K0 is in particular invariant under all automorphisms and therefore
normal in G. Since W is central in G0, we have W ⊆ kerAd, so that the
adjoint representation factors through a representation of the group G/W . As
it has only finitely many connected components and its identity component
is a quotient of K0, hence compact, G/W is compact. Now the Unitarity
Lemma 9.4.14 implies the existence of an Ad(G)-invariant scalar product on
g = L(G). Since K0 is a normal subgroup, L(K0) is Ad(G)-invariant, so that
there exists an invariant vector subspace v ⊆ g. The group K0 acts trivially
on G/K0

∼= W , so that Ad(G)|v is a finite group, and thus v ⊆ z(g). Let
V := expG(v), w := L(W ), and k := L(K0), so that g = w ⊕ k. The vector
space complement v of k can be written as Γ (α) = {(w, α(w)) : w ∈ w},
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where α : w → k is a linear map, and since v ⊆ z(g), α is a homomorphism
of Lie algebras, hence integrates to a group homomorphism β : W → K with
L(β) = α. Then

Γ (β) = {(w, β(w)) : w ∈ W} ∼= W

is a closed subgroup of G0 whose Lie algebra is Γ (α) = v. This shows that
V = Γ (β) is a closed vector subgroup of Z(G0) satisfying G0

∼= V ×K0. Hence
G/V is compact and the Splitting Theorem 11.1.13 implies the existence of a
compact subgroup K of G with G ∼= V oK. ut
Remark 11.1.22. If G is not connected, then we cannot expect a direct de-
composition, because the group G may be of the form G = V o F , where F
is a finite group acting nontrivially on the vector space V .

Exercises for Section 11.1

Exercise 11.1.1. Let G and N be Lie groups, α : G → Aut(N) be a homo-
morphism defining a smooth action of G on N . Then

(g, n)(g′, n′) := (gg′, α(g′)−1(n)n′)

defines a Lie group structure on the product set G×N , and we denote it by
Gnα N (a “right” semidirect product). Show that:

(1) The map Φ : Noα G → Gnα N, (n, g) 7→ (g, α(g)−1(n)) is an isomorphism
of Lie groups.

(2) For a map f : G → N , the corresponding map f̃ := (idG, f) : G → Gnα N
is a homomorphism if and only if f is a right crossed homomorphism, i.e.,

f(g1g2) = α(g2)−1
(
f(g1)

) · f(g2) for g1, g2 ∈ G.

Exercise 11.1.2. Let G and N be Lie groups, α : G → Aut(N) be a homo-
morphism defining a smooth action of G on N , and N oα G be the corre-
sponding semidirect product. Show that:

(1) If f : G → N is a crossed homomorphism, f̃(g) := (f(g), g), and n ∈ N ,
then c(n,1) ◦ f̃ = h̃ holds for the crossed homomorphism defined by

h(g) := nf(g)α(g)(n−1).

(2) For each n ∈ N , the map fn : G → N, fn(g) := nα(g)(n−1) is a crossed
homomorphism. These crossed homomorphisms are called trivial.

(3) (n ∗ f)(g) := nf(g)α(g)(n−1) defines an action of the group N on
the set Homα(G,N) of crossed homomorphisms. The set H1(G,N) :=
Homα(G,N)/N of orbits for this action is called the first cohomology set
of G with values in N .
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(4) Each crossed homomorphism f : G → N defines a smooth action of G on
the manifold N by

g ∗ n := f(g)α(g)(n).

This action has a fixed point if and only if f is trivial.
(5) If f : G → N is a crossed homomorphism and n = L(N), then its logarith-

mic derivative δ(f) ∈ Ω1(G, n) is a left equivariant 1-form, i.e.,

λ∗gδ(f) = L(α(g)) ◦ δ(f) for g ∈ G.

(6) Let α̇ : g → der(n) denote the derived action of g on n, corresponding
to the G-action on n by (g, x) 7→ L(α(g))x. If f : G → N is a crossed
homomorphism, then L(f) := T1(f) : g → n is a crossed homomorphism
of Lie algebras, i.e.,

L(f)([x, y]) = α̇(x)(y)− α̇(y)(x) + [L(f)x,L(f)y] for x, y ∈ g.

Exercise 11.1.3. Let f : G → N be a 1-cocycle with respect to a homomor-
phism α : G → Aut(N). Show that f(1G) = 1N .

Exercise 11.1.4. Let g be a compact real Lie subalgebra of sl2(C). Show that
g is isomorphic to su2(C).

11.2 Maximal Tori in Compact Lie Groups

In accordance with our philosophy to study Lie groups by means of their Lie
algebras, we approach maximal tori via their Lie algebras, which turn out to
be the Cartan subalgebras. From this we derive that every compact connected
Lie group is the union of its maximal tori, a fact which has many important
consequences.

11.2.1 Basic Results on Maximal Tori

Lemma 11.2.1. Let g be a compact Lie algebra.

(a) A subalgebra t ⊆ g is a Cartan subalgebra if and only if it is maximal
abelian.

(b) For any such subalgebra t of g we have g = Inn(g)t, i.e., each element is
conjugate to an element of t.

(c) Any other Cartan subalgebra of g is conjugate under Inn(g) to t.

Proof. (a) Let t be a Cartan subalgebra of g. By Lemma 11.1.2, t is compact
as a subalgebra of g, hence in particular reductive. Since it is nilpotent, it is
abelian. Since t is self-normalizing, it is maximal abelian. Conversely, let t ⊆ g
be a maximal abelian subalgebra. To show that t is a Cartan subalgebra, we
have to show that it is self-normalizing. For any x ∈ ng(t), t+Rx is a solvable
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subalgebra of g, and since it is also compact (Lemma 11.1.2), it is abelian.
Now x ∈ t follows from the maximality of t.

(b), (c) If x ∈ g, there exists a maximal abelian subalgebra containing x,
simply take one of maximal dimension.

To complete the proof and (b) and (c), it remains to show that any two
Cartan subalgebras h, h′ of g are conjugate under Inn(g). Using Proposi-
tion 11.1.4, we find a compact connected Lie group G with L(G) = g and an
Ad(G)-invariant scalar product β on g. Let x and x′ be regular elements with
h = g0(ad x) and h′ = g0(ad x′) (Theorem 5.1.18). Since G is compact, there
exists an element g0 ∈ G for which the function

G → R, g 7→ β
(
Ad(g)x, x′

)

assumes its minimum in g0. For y ∈ g, we then have

0 =
d

dt t=0
β
(

Ad
(
expG(ty)g0

)
x, x′

)
=

d

dt t=0
β
(
ead ty Ad(g0)x, x′

)

= β([y, Ad(g0)x], x′) = β(y, [Ad(g0)x, x′]).

Then [Ad(g0)x, x′] = 0 because β is positive definite, and thus Ad(g0)x ∈
g0(x′) = h′. Consequently,

h′ ⊆ g0
(
Ad(g0)x

)
= Ad(g0)g0(x) = Ad(g0)h,

and since h′ is maximal abelian, h′ = Ad(g0)h. ut
Theorem 11.2.2 (Main Theorem on Maximal Tori). For a compact
connected Lie group G, the following assertions hold:

(i) A subalgebra t ⊆ g is maximal abelian if and only if it is the Lie algebra
of a maximal torus of G.

(ii) For two maximal tori T and T ′, there exists a g ∈ G with gTg−1 = T ′.
(iii) Every element of G is contained in a maximal torus.

Proof. (i) Let t ⊆ g be a maximal abelian subalgebra. Then T := 〈expG t〉 is
a connected abelian subgroup of G. Since its closure also centralizes t and t
is maximal abelian, it follows that T = ZG(t)0 is closed (cf. Lemma 10.1.1),
hence a torus. As t is maximal abelian, T is a maximal torus.

Conversely, let T ⊆ G be a maximal torus. Then t = L(T ) is an abelian
subalgebra of g and for any abelian subalgebra a ⊇ t, the closure A := expG(a)
is a torus containing T . From the maximality of T we now derive A ⊆ T , so
that a ⊆ L(T ) = t.

(ii) This immediately follows by (i) and Lemma 11.2.1.
(iii) Let T be a maximal torus. In view of (ii), M :=

⋃
g∈G gTg−1 is the

union of all maximal tori of G. Since M is the image of the continuous map
G × T → G, (g, t) 7→ gtg−1 and G × T is compact, M is compact. As G is
connected, we can complete the proof by showing that M is also open.
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In view of the invariance of M under conjugation, it suffices to show that
each element a = expG(z) ∈ T , z ∈ t = L(T ) is an interior point of M . We
show this by induction on the dimension of G, and we distinguish two cases:

Case 1: a ∈ Z(G): It suffices to show that a expG(y) belongs to M for
all y ∈ g because a expG(g) is a neighborhood of a in G. Pick y ∈ g and use
Lemma 11.2.1 to find a maximal abelian subalgebra t′ of g containing y. By
(i), T ′ := expG(t′) is a maximal torus of G. Since T ′ = gTg−1 for some g ∈ G,
we also have a = gag−1 ∈ T ′, and therefore, a expG(y) ∈ T ′ ⊆ M .

Case 2: a 6∈ Z(G): Let H := ZG(a)0 be the identity component of the
centralizer of a. Then H is a proper subgroup of G containing T , so that
dim H < dim G. Our induction hypothesis implies that each element of H is
contained in a maximal torus of H, but this implies that it is also contained
in a maximal torus of G, so that H ⊆ M . The Lie algebra of

H = {g ∈ G : ca(g) = g}0
coincides with the fixed space of the automorphism L(ca) = Ad(a) = ead z of
g, i.e.,

h := L(H) = ker(ead z − 1).

Let b := im (ead z − 1) ⊆ g and note that this subspace is ad(z)-invariant and
complements h (Exercise 11.2.6). We consider the map

Φ : G×H → G, (g, h) 7→ cg(h) = ghg−1

whose range is entirely contained in M . In view of the Implicit Function
Theorem, it suffices to show that the tangent map

T(1,a)(Φ) : g⊕ Ta(H) → Ta(G)

is surjective to see that a is an interior point of M . It is clear that

Ta(G) = T1(ρa)g = T1(ρa)h⊕ T1(ρa)b.

Clearly, Ta(H) = T1(ρa)h is contained in the image of T(0,a)(Φ) because
Φ(1, h) = h. With Φa(g) := gag−1, we further find

T(1,a)(Φ)(y, 0) = T1(Φa)(y) = T1(ρa)y − T1(λa)y = T1(ρa)(y − T1(ρ−1
a λa)y)

= T1(ρa)(y − L(ca)y) = T1(ρa)(y −Ad(a)y) = T1(ρa)((1− ead z)y).

From this formula we see that T1(ρa)b = T(1,a)(Φ)(g×{0}). This proves that
T(1,a)(Φ) is surjective and hence that M is a neighborhood of a. ut

With the main theorem on maximal tori, we now have a powerful tool to
study compact Lie groups.

Corollary 11.2.3. The exponential function of a connected Lie group with
compact Lie algebra is surjective.
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Proof. Let G be a connected Lie group with compact Lie algebra. By the
Structure Theorem 11.1.18, G is a direct product V ×K of a vector group V
and a compact Lie group K. Let g = (v, k) ∈ G. Since every element of K is
contained in a maximal torus T (Theorem 11.2.2), g ∈ V × T , and this group
is a quotient of V × L(T ), so that its exponential function is surjective. This
proves that g ∈ expG(g). ut
Corollary 11.2.4. The center of a connected compact Lie group is the inter-
section of all maximal tori.

Proof. Let G be a connected compact Lie group. If z ∈ Z(G), then it is
contained in some maximal torus T (Theorem 11.2.2). Since all other maximal
tori are conjugate to T and z is fixed under conjugation, every maximal torus
contains z. If, conversely, g ∈ G is not central, then there is an element g′ not
commuting with g. Now if T is maximal torus containing g′ (Theorem 11.2.2),
then g 6∈ T . ut
Corollary 11.2.5. Let G be a compact connected Lie group and g ∈ G. Then
g belongs to the connected component ZG(g)0 of its centralizer ZG(g). More-
over, ZG(g)0 is the union of all maximal tori of G containing g.

Proof. By Theorem 11.2.2(iii) g is contained in some maximal torus, hence in
ZG(g)0. Since ZG(g)0 is a compact connected Lie group, the same theorem
shows that it is a union of its maximal tori. As g is central in ZG(g)0, these
tori all contain g (see Corollary 11.2.4). Hence they are maximal not only in
ZG(g)0, but also in G. This shows that ZG(g)0 is contained in the union of
all maximal tori of G containing g. The converse inclusion is clear. ut

11.2.2 Complementing the Commutator Group

Now we can prove the announced splitting theorem:

Theorem 11.2.6 (Hofmann–Scheerer Splitting Theorem). Let G be
a connected compact Lie group and G′ be its commutator group. Then there
exists a torus B ⊆ G with

G ∼= G′ oB.

Proof. Let Z := Z(G)0 be the identity component of the center. Then Z∩G′ is
central in G′, hence contained in any maximal torus A ⊆ G′ (Corollary 11.2.4).
Now T := ZA is a compact connected abelian Lie group, hence a torus, since
A is closed and connected in T . By the Torus Splitting Lemma 11.1.14, there
is a torus B ⊆ T with B ∩A = {1} and AB = T . Therefore,

G = ZG′ = ZAG′ = BAG′ = BG′

and
B ∩G′ ⊆ BA ∩G′ = ZA ∩G′ = (Z ∩G′)A = A
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leads to B ∩G′ ⊆ B ∩A = {1}. Now the multiplication map

µ : G′ oB → G, (g, b) 7→ gb

is a smooth bijection of connected Lie groups. Since both groups are compact,
µ is a topological isomorphism, hence an isomorphism of Lie groups by the
Automatic Smoothness Theorem 8.2.16. Alternatively, one can argue with the
Open Mapping Theorem 10.1.8. ut
Corollary 11.2.7. For a compact connected Lie group G with dim Z(G) = r,
we have

π1(G) ∼= Zr × π1(G′),

where π1(G′) is finite.

Proof. From the Hofmann–Scheerer Splitting Theorem 11.2.6, we know that
G is homeomorphic to G′ ×B, where dim B = dim Z(G)0 = r. Since

π1(X × Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0)

holds for products of pointed topological spaces (Remark A.1.7), we see that
π(G) ∼= π1(G′)×π1(B), and B ∼= Tr implies π1(B) ∼= Zr. Finally we note that
π1(G′) is finite because its simply connected covering group G̃′ is semisim-
ple with compact Lie algebra, so that its center is finite by Weyl’s Theo-
rem 11.1.17. As π1(G′) is isomorphic to a subgroup of Z(G̃′), it is finite. ut
Example 11.2.8. The connectedness is an essential assumption in the pre-
ceding theorem. Here are some illustrative examples.

(a) In the algebra H of quaternions (Section 1.3), we consider the finite
subgroup

Q := {±1,±I,±J,±K},
called the quaternion group. It is easy to see that its commutator group is
Q′ = {±1} and that Q/Q′ ∼= (Z/2Z)2. In particular, Q′ is central, but since
Q is not abelian, the short exact sequence

1 → Q′ → Q → Q/Q′ ∼= (Z/2Z)2 → 1

does not split. This example shows that finite groups do not behave like com-
pact connected Lie groups K, for which the short exact sequence

1 → K ′ → K → K/K ′ → 1

always splits by the Hofmann–Scheerer Theorem.
(b) To obtain examples with a nontrivial identity component, we note that

for any reflection σ ∈ O2(R), we have

O2(R) ∼= SO2(R)o {1, σ} ∼= T o C2,
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where Cn := {z ∈ C× : zn = 1} is the group of n-th roots of unity. On O2(R)
the involution acts by inversion, so that σtσ−1t−1 = t−2 for t ∈ O2(R)0 implies
that O2(R)′ = SO2(R).

To obtain a group whose commutator group does not split, we modify
O2(R) a little by considering

G := (SO2(R)oγ C4)/{±(1, 1)},
where γ(i)(g) := σgσ defines the action of C4 = {±1,±i} on SO2(R). We
write [(g, h)] for the image of the pair (g, h) in G. Then G′ = G0

∼= SO2(R)
and G/G′ ∼= π0(G) ∼= Z/2Z. Therefore G ∼= G′ o Z/2Z holds if and only if
there exists an element [(g, i)] = [(−g,−i)] of order 2, but

[(g, i)]2 = [(gσgσ,−1)] = [(gg−1,−1)] = [(1,−1)] 6= [(1, 1)]

shows that G contains no such element. 2

(c) We now discuss a third example, the most complicated one, where
G′ = G0

∼= SU2(C) and G/G′ = π0(G) ∼= (Z/2Z)4 does not split.
To construct this example, we start with a finite group F which is an

extension of (Z/2Z)4 by C2 = {±1}, where the inverse images ei of the four
generators of (Z/2Z)4 satisfy the relations

e2
i = −1 and eiej = −ejei for i 6= j.3

Now we form the group

G := (SU2(C)× F )/{(1,1), (−1,−1)}
to obtain a 3-dimensional compact Lie group with

G′ = G0
∼= SU2(C) and G/G′ ∼= π0(G) ∼= (Z/2Z)4.

We claim that there is no subgroup A ⊆ G complementing G′. Suppose that
A is such a subgroup. Then its generators can be written as ẽi = [(gi, ei)] =
[(−gi,−ei)]. We then have the relations

1 = ẽ2
i = [(g2

i ,−1)] = [(−g2
i ,1)],

which are equivalent to g2
i = −1, and for i 6= j:

[(gigj , eiej)] = ẽiẽj = ẽj ẽi = [(gjgi, ejei)] = [(−gjgi, eiej)],

which is equivalent to gigjg
−1
i = −gj for i 6= j. We now show that there is no

quadruple (g1, g2, g3, g4) of elements of SU2(C), satisfying these relations.
2 One can show that G ∼= Pin2(R) is the pin group in dimension 2, sitting in

the Clifford algebra C2
∼= H (cf. Definition B.3.20 and Example B.3.24, where i

corresponds to I ∈ H).
3 One can find this group F as a subgroup of the 16-dimensional Clifford algebra

C4 (cf. Definition B.3.4).
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Realizing SU2(C) as the set {z ∈ H : ‖z‖ = 1} of unit quaternions, it is
easy to see that the set

{g ∈ SU2(C) : g2 = −1} = {aI + bJ + cK : a2 + b2 + c2 = 1}

is a 2-sphere on which SU2(C) acts transitively by conjugation. We may there-
fore w.l.o.g. assume that g1 = I. Then

{g ∈ SU2(C) : g2 = −1, IgI = −g} = {bJ + cK : b2 + c2 = 1}

is a circle, on which the subgroup {x1 + yI : x2 + y2 = 1} = eRI ⊆ H acts
transitively by conjugation, so that we may w.l.o.g. assume that g2 = J . Then

{g ∈ SU2(C) : g2 = −1, IgI = −g, JgJ = −g} = {±K},

leads, w.l.o.g. to g3 = K, but there is no element g ∈ SU2(C) satisfying
gjgg−1

j = −g for j = 1, 2, 3.

11.2.3 Centralizers of Tori and the Weyl Group

In this subsection we show that centralizers of tori in compact connected Lie
groups are connected, so that in particular maximal tori are maximal abelian.
Moreover, we introduce the analytic Weyl group associated with a maximal
torus and compare it to the algebraic Weyl groups form Chapter 5.

Lemma 11.2.9. If G is a compact abelian Lie group such that G/G0 is cyclic,
then G contains a dense cyclic subsemigroup.

Proof. Since G0 is a torus, it contains a dense cyclic subsemigroup generated
by some g0 ∈ G0 (Exercise 11.2.10). If g1G0 generates G/G0 and n is the order
of G/G0, then gn

1 ∈ G0 and we find a g′0 ∈ G0 such that gn
1 (g′0)

n = g0. But
then the cyclic semigroup generated by g1g

′
0 contains g0 and representatives

of each coset in G/G0, hence is dense in G. ut
Theorem 11.2.10. Let G be a compact connected Lie group, T ⊆ G a torus,
and g ∈ ZG(T ). Then there exists a torus T ′ ⊆ G containing g and T .

Proof. Let A be the closure of
⋃

n∈Z gnT in G. Then A is a compact abelian
subgroup of G such that T ⊆ A0. Since the cyclic subgroup generated by gA0

is dense in the (finite) group A/A0, it is equal to A/A0. Then Lemma 11.2.9
shows that there is an h ∈ A whose powers are dense in A. If h = expG(x)
with x ∈ g and T ′ is the closure of expG(Rx), then T ′ is a torus containing
A, hence g and T . ut
Corollary 11.2.11. Let G be a compact connected Lie group and T a torus
in G.

(i) The centralizer ZG(T ) of T in G is connected.
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(ii) If T is a maximal torus, then ZG(T ) = T , i.e., maximal tori are maximal
abelian.

Definition 11.2.12. Let G be a compact connected Lie group and T a max-
imal torus in G. Then the group W (G, T ) := NG(T )/ZG(T ) = NG(T )/T is
called the analytic Weyl group associated with (G,T ).

Proposition 11.2.13. Let G be a compact connected Lie group and T ⊆ G a
maximal torus.

(i) If t1, t2 ∈ T are conjugate under G, then there exists a g ∈ NG(T ) such
that gt1g

−1 = t2.
(ii) The set of conjugacy classes of G is parameterized by the set T/W (G,T )

of W (G,T )-orbits in T .
(iii) A continuous function f : T → C extends to a continuous function

F : G → C invariant under conjugation if and only if it is
W (G,T )-invariant.

Proof. (i) Suppose that gt1g
−1 = t2 and consider the closed subgroup ZG(t2)

of G. Then T and gTg−1 are both maximal tori in ZG(t2)0. Thus by Theorem
11.2.2 there exists an h ∈ ZG(t2)0 such that T = hgT (hg)−1. But then hg ∈
NG(T ) satisfying

hgt1(hg)−1 = ht2h
−1 = t2.

(ii) In view of Theorem 11.2.2, this follows from (i).
(iii) The restriction to T of a conjugation invariant continuous func-

tion F : G → C clearly is W (G,T )-invariant. So assume, conversely, that
f : T → C is a W (G,T )-invariant continuous function. By (ii), we can de-
fine F : G → C by F (gtg−1) = f(t) for t ∈ T and it only remains to
show that this function is continuous. So assume that gn ∈ G and tn ∈ T
are such that limn→∞ gntng−1

n = x ∈ G exists. We have to show that
F (gntng−1

n ) = f(tn) → F (x). If this is not the case, there exists a neighbor-
hood U of F (x) such that f(tn) 6∈ U for infinitely many n. We may therefore
assume that f(tn) 6∈ U for every n ∈ N. Since G and T are compact, there
exist convergent subsequences (gnk

)k∈N in G and (tnk
)k∈N in T with gnk

→ g
and tnl

→ t. Then gtg−1 = x, and this leads to f(tnk
) → f(t) = F (x),

contradicting our assumption. This proves that f(tn) → F (x). ut
In Lemma 11.2.16 below we shall show that the analytic Weyl group

W (G,T ) from Definition 11.2.12 is isomorphic to the algebraic Weyl group
W (gC, tC) introduced in Remark 5.4.4. We need some preparation.

Remark 11.2.14. The Killing form κ of a semisimple compact Lie algebra g
is negative definite. In fact, by Weyl’s Theorem 11.1.17, the simply connected
group G with Lie algebra g is compact so the Unitarity Lemma 9.4.14 shows
that g admits an Ad(G)-invariant inner product. Therefore, the linear en-
domorphisms ad(x) ∈ End(g), being generators of orthogonal one-parameter
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groups are semisimple with purely imaginary spectrum (cf. Exercise 2.2.7).
Thus tr(ad(x)2) ≤ 0, and κ is negative semidefinite. On the other hand, it is
nondegenerate by Cartan’s Criterion 4.5.9, so it has to be negative definite.

Lemma 11.2.15. Let G be a semisimple compact connected Lie group and
T a maximal torus in G. Further, let t be the Lie algebra L(T ) of T and
denote the complexification tC of t by h so that h is a Cartan subalgebra of
gC = L(G)C.

(i) For each α ∈ ∆(gC, tC) we can choose hα, eα, fα ∈ gC(α) spanning a copy
of sl2(C) with the following properties:
(a) eα = −fα, where x 7→ x is the complex conjugation of gC with respect

to the real form g.
(b) If

xα :=
1
2
(eα + eα) and yα :=

1
2i

(eα − eα),

then
(

i 0
0 −i

)
7→ ihα,

1
2

(
0 1
−1 0

)
7→ xα,

1
2i

(
0 1
1 0

)
7→ yα

defines an isomorphism ζα : su2(C) → gC(α) ∩ g.
(ii) In the notation of Lemma 5.3.7 we have t = ihR.

Proof. (i) Choose hα, eα, fα ∈ gC(α) as in the sl2-Theorem 5.3.4. Then
α(hα) = 2 and

2κ(eα, fα) = κ([hα, eα], fα) = κ(hα, [eα, fα]) = κ(hα, hα) > 0.

Remark 11.2.14 implies α ∈ it∗, so that have α(x) = −α(x) for x ∈ t, and
hence eα ∈ g−α

C . Thus fα = ceα and

0 > κ(eα + eα, eα + eα) = 2κ(eα, eα)

(cf. Remarks 4.5.6 and 11.2.14) shows that c < 0. Now we can replace eα and
fα by

√−ceα and
√−c

−1
fα such that the conclusion of the sl2-Theorem is

still valid and, in addition, we have fα = −eα. Note that

adxα(yα) = 1
4i [eα+eα, eα−eα] = 1

2i [eα, eα] = 1
2i [−fα, eα] = 1

2ihα ∈ t. (11.1)

Now it is easy to check the remaining claims.
(ii) Part (i) implies ihR ⊆ g. Since tC = hR+ihR we obtain t = tC∩g = ihR. ut

We call a triple (ihα, xα, yα) as constructed in Lemma 11.2.15(i) an su2-
triple.

Lemma 11.2.16. Let G be a connected compact Lie group and T a maximal
torus in G. Then ι̃ : NG(T ) → Aut(t∗), g 7→ Ad∗(g) := Ad(g−1)∗|t∗ induces
an isomorphism ι : W (G,T ) ∼= NG(T )/T → W

(
∆(gC, tC)

)
.
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Proof. Note first that Ad∗(g)|t∗ = idt∗ implies that Ad(g)|t = idt, and hence
cg|T = idT . Thus, by Proposition 11.2.13, ι̃ indeed factors to an injective
homomorphism ι : W (G, T ) → Aut(t∗C).
Claim 1: W

(
∆(gC, tC)

) ⊆ ι
(
W (G,T )

)
.

It suffices to show that for each α ∈ ∆(gC, tC), the reflection σα ∈
Aut(it∗) ⊆ Aut(t∗C) is contained in the image of ι. To this end, we apply
Lemma 11.2.15(ii) to α. For h ∈ tC we have

adxα(h) = 1
2 [eα + eα, h] = −α(h)

2 (eα − eα) = −iα(h)yα.

Together with (11.1), this implies ad(xα)2(ihα) = −ihα. Therefore,

es ad xα(ihα)

=
∞∑

m=0

s2m

(2m)!
ad(xα)2m(ihα) +

∞∑
m=0

s2m+1

(2m + 1)!
[xα, ad(xα)2m(ihα)]

=
∞∑

m=0

(−1)ms2m

(2m)!
ihα +

∞∑
m=0

(−1)ms2m+1

(2m + 1)!
[xα, ihα]

= cos(s)ihα + sin(s)[xα, ihα],

so for s = π and h ∈ it we obtain

eπ ad xα(h) = h− α(h)hα.

Thus Ad∗(exp πxα) = σα, and this proves Claim 1.
Claim 2: W

(
∆(gC, tC)

) ⊇ ι
(
W (G,T )

)
.

Note first that the action of g ∈ NG(T ) on t∗C permutes the roots as the
following calculation shows

[h,Ad(g)eα] = Ad(g)[Ad(g)−1(h), eα] = α
(
Ad(g)−1(h)

)
Ad(g)eα

=
(
Ad∗(g)α

)
(h)

(
Ad(g)eα

)
.

In particular, W (G,T ) acts on the set of bases for the root system ∆(gC, tC).
Fix such a basis Π and an element g ∈ NG(T ). By Theorem 5.4.17, there
exists a σ ∈ W

(
∆(gC, tC)

)
such that σ ◦Ad∗(g)(Π) = Π. By Claim 1 we can

find an h ∈ NG(T ) such that Ad∗(h)|t∗C = σ. Then we have Ad∗(hg)(Π) = Π
and it suffices to show that hg ∈ T .

Since hg permutes Π, it fixes ρ = 1
2

∑
α∈∆+ α, where ∆+ is the positive

system associated with Π. Therefore hg ∈ ZG(S), where S is the closure of
exp iRh0, where h0 ∈ it is defined by ρ(h) = κ(h0, h) for h ∈ t. Corollary
11.2.11 and Lemma 10.1.1 imply that ZG(S) is connected with Lie algebra
zg(s), where s := L(S). Thus it only remains to show that zg(s) ⊆ t.

Proposition 5.4.16 implies

σα(ρ) = ρ− α = ρ− ρ(α̌)α
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for each α ∈ Π, so that ρ(α̌) = 1. This leads to α(h0) = (ρ, α) > 0 for all
positive roots α. Thus

zg(s) = g ∩ zgC(s) ⊆ g ∩ zgC(h0) = g ∩ tC = t. ut

Exercises for Section 11.2

Exercise 11.2.1. Show: If G is a Lie group and H ⊆ G is a compact subgroup
for which G/H is compact, then G is compact.

Exercise 11.2.2. Let g be a compact Lie algebra, β be an invariant scalar
product on g, and let x1, . . . , xn be an orthonormal basis for β. Show that:

(i) The element Ω :=
∑n

i=1 x2
i lies in the center of the universal enveloping

algebra U(g) (cf. Exercise 6.1.1).
(ii) Let G be a compact Lie group with L(G) = g and α : G → GL(V ) be a

finite-dimensional representation of G on V and consider the representa-
tion

U(L(α)) : U(g) → End(V ),

defined by the derived representation L(α) of g on V . Then U(L(α))Ω is
a negative definite operator for every G-invariant scalar product on V .

(iii) Let ϕ : so3(R) → gl3(R) be the canonical representation on R3. Compute
U(ϕ)Ω for an invariant scalar product on so3(R).

One can use the concepts of this section to prove some linear algebra
results, resp., to put them into a broader conceptual framework.

Exercise 11.2.3. Show that the diagonal matrices in sun(C) and in un(C),
resp., form a maximal abelian subalgebra.

Exercise 11.2.4. Let A ∈ gln(C) be a skew-hermitian (hermitian) matrix.
Then there is a unitary matrix g ∈ SUn(C) for which gAg−1 is a diagonal
matrix.

Exercise 11.2.5. Let g ∈ Un(C) be a unitary matrix. Then there is a unitary
matrix u ∈ Un(C) such that ugu−1 is a diagonal matrix.

Exercise 11.2.6. Let (V, β) be a euclidian vector space, i.e., β is a positive
definite symmetric bilinear form on V . Show that each g ∈ O(V, β) and each
X ∈ Sym(V, β) is a semisimple endomorphism of V . Conclude in particular
that

V = (g − 1)V ⊕ ker(g − 1) = XV ⊕ ker(X).

Exercise 11.2.7. We consider the connected compact Lie group Un(C). Show
that

Un(C)′ = SUn(C),
(
Z(Un(C))

)
0

= T1 and SUn(C)∩Z(Un(C))0 ∼= Cn,
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where Cn = {z ∈ C× : zn = 1}. Show also that the subgroup

A := {diag(z, 1, . . . , 1) : z ∈ T} ∼= T

of Un(C) satisfies
Un(C) ∼= SUn(C)oA.

Exercise 11.2.8. If α : G1 → G2 is a quotient homomorphism of topologi-
cal groups, i.e., an open surjective continuous group homomorphism, then a
subgroup H ⊆ G2 is dense if and only if α−1(H) is dense in G1.

Exercise 11.2.9. We consider the torus Tn := Rn/Zn with the exponential
function

exp: Rn → Tn, x 7→ x + Zn.

We want to know for which subspaces V ⊆ Rn, the subgroup exp(V ) is dense
in Tn. Step by step, show that the following statements are equivalent:

(a) exp V is dense in Tn.
(b) V + Zn is dense in Rn.
(c) There exists no 0 6= a ∈ Zn such that a>V = {0}.
(d) For any basis B = {v1, . . . , vm} for V , the Q-vector space

∑
i v>i ·Qn ⊆ R

has dimension n.

Exercise 11.2.10. For the special case V = Rx, Exercise 11.2.9 implies that
expRx is dense in the torus Tn if and only if the components of x are linearly
independent over Q. Additionally, we now assume that they are linearly inde-
pendent from 1, which can always be achieved by rescaling. In this case, show
that the semigroup S := expNx is already dense in Tn by the following steps:

(a) A := S is compact and a subsemigroup of Tn, i.e., AA ⊆ A.
(b) There exists a sequence nk ∈ N with exp(nkx) → 1.
(c) A is a group.
(d) There exists an n0 ∈ N with exp(n0x) ∈ A0.
(e) If A0 6= G, then there exists a z ∈ Zn \ {0} with z>x ∈ Z. This would be

a contradiction to the assumption.
(f) Show the converse: S 6= Tn if {1, x1, . . . , xn} is linearly independent overQ.

Exercise 11.2.11. With the notation in Exercise 11.2.9, show that dim exp V
coincides with the dimension of

∑m
i=1 v>i Qn over Q in R.

11.3 Linearity of Compact Lie Groups

The goal of this section is to show that each compact Lie group G has a faithful
finite-dimensional unitary representation π : G → Un(C). In particular, each
compact Lie group is linear. This is done in three steps. First we construct
the regular representation on L2(G,µG), where µG is a Haar measure on G,
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then we observe that this representation contains enough finite-dimensional
subrepresentations to separate the points of G, and then we argue that finitely
many of these can be combined to a faithful representation.

Definition 11.3.1. (a) Let H be a complex Hilbert space with the hermitian
scalar product 〈·, ·〉 which is linear in the first argument and antilinear in the
second. Then ‖v‖ :=

√
〈v, v〉 is the corresponding norm. We write

U(H) := {g ∈ GL(H) : (∀v ∈ H) ‖gv‖ = ‖v‖}

for the unitary group of H.
We write B(H) for the set of all bounded operators on H. An element

A ∈ B(H) is said to be symmetric if

〈Av, w〉 = 〈v, Aw〉 for v, w ∈ H.

(b) Let G be a topological group. A homomorphism

π : G → U(H)

is called a (continuous) unitary representation of G if for each v ∈ H, the
orbit map

πv : G → H, g 7→ π(g)v

is continuous. We often denote unitary representations as pairs (π,H).
(c) An operator A ∈ B(H) is called an intertwining operator of a unitary

representation (π,H) if

A ◦ π(g) = π(g) ◦A for all g ∈ G.

We write BG(H) ⊆ B(H) for the set of intertwining operators.

In the following, µG denotes a Haar measure on the Lie group G.

Definition 11.3.2. Let G be a Lie group. On the space Cc(G) := Cc(G,C)
of all complex-valued continuous functions on G with compact support

〈f, g〉 :=
∫

G

f(x)g(x) dµG(x)

defines a positive definite hermitian form because 0 6= f implies that
∫

G

|f(x)|2 dµG(x) > 0

(cf. Remark 9.3.34). The corresponding norm ‖f‖2 :=
√
〈f, f〉 is called the

L2-norm. We write L2(G) := L2(G,µG) for the completion of Cc(G) with
respect to the L2-norm.
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Remark 11.3.3. (a) Suppose that G is compact and µG is normalized by
µG(G) = 1. Then |f(x)| ≤ ‖f‖∞ := sup{|f(y)| : y ∈ G} yields the estimate

‖f‖2 ≤ ‖f‖∞.

(b) IfH is a Hilbert space and V ⊆ H a dense subspace, then each isometry
g : V → V extends to a unique isometry of H. In fact, if v ∈ H is written as
v = limn vn with vn ∈ V , then ‖gvn− gvm‖ = ‖vn− vm‖ shows that (gvn)n∈N
is a Cauchy sequence, hence convergent in H, and we put

g̃v := lim
n

gvn.

Since g is isometric, we obtain the same limit for any other sequence (wn)n∈N
with wm → v because g(vn−wn) → 0. We also note that ‖gvn‖ = ‖vn‖ → ‖v‖
implies that ‖gv‖ = ‖v‖, so that g̃ is isometric.

If g is surjective, we apply this process also to g−1 and see that g−1 extends
to an isometry inverting g̃.

Lemma 11.3.4. Let G be a topological group, H a complex Hilbert space and
π : G → U(H) a group homomorphism. If there exists a dense subspace V ⊆ H
such that the orbit maps πv : G → H are continuous for each v ∈ V , then π
is a continuous unitary representation.

Proof. Let v ∈ H, g0 ∈ G and ε > 0. We pick w ∈ V with ‖v − w‖ < ε
3 and

choose a neighborhood U of g0 in G with ‖π(g)w − π(g0)w‖ < ε
3 for g ∈ U .

Then

‖π(g)v − π(g0)v‖
≤ ‖π(g)v − π(g)w‖+ ‖π(g)w − π(g0)w‖+ ‖π(g0)w − π(g0)v‖
≤ ε

3
+

ε

3
+

ε

3
= ε.

Therefore the orbit map of v is continuous. ut
Proposition 11.3.5. Let G be a Lie group. For each g ∈ G, the operator
g ∗ f := f ◦ λg−1 on Cc(G) extends to a unitary operator π(g) on L2(G), and

π : G → U(L2(G))

is a faithful unitary representation of G.

This representation is called the (left) regular representation of G.

Proof. The relation

‖g ∗ f‖22 =
∫

G

|f(g−1x)|2 dµG(x) =
∫

G

|f(x)|2 dµG(x) = ‖f‖22
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follows for f ∈ Cc(G) from the left invariance of µG. We also note that
g−1 ∗ (g ∗ f) = f , so that we obtain bijective isometries of (Cc(G), ‖ · ‖2). Now
we use Remark 11.3.3(b) to extend these isometries to unitary operators π(g)
on L2(G).

From the relation g ∗ (h ∗ f) = (gh) ∗ f we immediately derive that
π(g)π(h) = π(gh), so that π is a homomorphism of groups. To verify the
continuity of all orbit maps, we use Lemma 11.3.4 to see that it suffices to do
that for f ∈ Cc(G).

Let f ∈ Cc(G). We claim that f is uniformly continuous in the sense that
for each ε > 0 there exists a 1-neighborhood U in G with |f(x)−f(y)| < ε for
yx−1 ∈ U . In fact, since f is continuous, there exists for each x ∈ G an open
1-neighborhood Ux such that |f(y)− f(x)| < ε

2 for y ∈ U2
x · x. Since the open

sets Ux ·x cover G, the compactness of the support of f implies the existence of
a finite subcover of supp(f). Hence there exist x1, . . . , xn ∈ G with supp(f) ⊆⋃n

i=1 Uxi
· xi. Let U :=

⋂n
i=1 Uxi

and x, y ∈ G with yx−1 ∈ U . If both are not
contained in the support of f , then f(x) = f(y). So let us assume that x is
contained in the support of f , hence in some Uxi

·xi. Then y ∈ Ux ⊆ U2
xi
·xi,

which leads to |f(y) − f(xi)| ≤ ε
2 . Since also |f(x) − f(xi)| ≤ ε

2 , we obtain
|f(x)− f(y)| ≤ ε.

Fix f ∈ Cc(G) and a compact neighborhood C of g in G. Then for g′ ∈ C
we have the relation

‖g ∗ f − g′ ∗ f‖2 ≤ ‖g ∗ f − g′ ∗ f‖∞
√

µG(C supp f).

The uniform continuity of f implies that there exists a symmetric 1-neighbor-
hood U in G such that |f(x) − f(y)|

√
µG(C supp f) ≤ ε for y ∈ Ux. Then

g′ ∈ C ∩ gU implies ‖g ∗ f − g′ ∗ f‖2 ≤ ε, and this proves that π is a unitary
representation.

To see that it is faithful, let 1 6= g ∈ G. With Lemma 7.4.15 we find
a continuous function f ∈ Cc(G) with f(1) = 0 and f(g−1) = 1. Then
(π(g)f)(1) = 1 implies π(g)f 6= f , so that π(g) 6= idL2(G), and we see that π
is injective. ut

There are many possibilities to get to invariant subspaces. For instance,
one obtains them as eigenspaces of intertwining operators.

Lemma 11.3.6. If A ∈ BG(H) is an intertwining operator for the unitary
representation (π,H), then its eigenspaces ker(A − λ1) are invariant under
π(G).

Proof. For v ∈ ker(A− λ1) and g ∈ G we have

Aπ(g)v = π(g)Av = π(g)λv = λπ(g)v. ut

We have already seen that each Lie group has a faithful unitary representa-
tion on L2(G), and we are looking for finite-dimensional representations. Our
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goal is to find them in finite-dimensional eigenspaces of intertwining opera-
tors. So we need intertwining operators with finite-dimensional eigenspaces,
which exist if the operator is compact (see Definition C.1.4).

Lemma 11.3.7. Let G be a compact Lie group and χ ∈ C(G,R) be real with
χ(x) = χ(x−1) for each x ∈ G. Then

Kχ : L2(G) → L2(G), Kχ(f)(g) :=
〈
f, π(g)χ

〉

defines a symmetric compact intertwining operator for the regular representa-
tion.

Proof. First we observe that the continuity of π implies that all functions
Kχ(f) are continuous, hence in particular contained in L2(G).

To show the compactness of Kχ, we want to apply Ascoli’s Theorem C.1.5.
From the Cauchy–Schwarz inequality we obtain

‖Kχ(f)‖∞ ≤ ‖f‖2‖χ‖2 ≤ ‖f‖2‖χ‖∞,

so that the image of any bounded subset of L2(G) under Kχ is bounded in
C(G). We claim that it is equicontinuous, which is the main assumption in
Ascoli’s Theorem: For ε > 0 and g ∈ G the continuity of the orbit map πχ

implies the existence of a neighborhood U of g with

‖π(g′)χ− π(g)χ‖2 < ε for g′ ∈ U.

For f ∈ L2(G) we then find

|Kχ(f)(g)−Kχ(f)(g′)| = |〈f, π(g)χ− π(g′)χ〉| ≤ ‖f‖2ε.

Now Ascoli’s Theorem implies that Kχ maps bounded subsets of L2(G) into
relatively compact subsets of (C(G), ‖ · ‖∞), and since the inclusion

(C(G), ‖ · ‖∞) ↪→ L2(G)

is continuous, Kχ is a compact operator.
To see that Kχ is symmetric, it suffices to verify 〈Kχ(f), f ′〉 = 〈f,Kχ(f ′)〉

for f, f ′ ∈ C(G): With Fubini’s Theorem 9.3.40, we obtain

〈
f, Kχ(f ′)

〉
=

∫

G

f(g)
〈
f ′, π(g)χ

〉
dµG(g)

=
∫

G

∫

G

f(g)f ′(x)χ(g−1x) dµG(x)dµG(g)

Fubini=
∫

G

∫

G

f(g)f ′(x)χ(x−1g) dµG(g)dµG(x)

=
∫

G

f ′(x)
〈
f, π(x)χ

〉
dµG(x) =

〈
Kχ(f), f ′

〉
,
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showing that Kχ is symmetric. Finally,
(
π(g)Kχ(f)

)
(x) =

〈
f, π(g−1x)χ〉 =

〈
π(g)f, π(x)χ

〉
= Kχ

(
π(g)f

)
(x)

shows that Kχ is an intertwining operator. ut
Proposition 11.3.8. For every element g 6= 1 of a compact Lie group G,
there exists a finite-dimensional unitary representation (ρ,H) with ρ(g) 6= 1.

Proof. Let U ⊆ G be a symmetric identity neighborhood with g 6∈ U2. Then
U ∩ gU = ∅ and there exists a nonnegative continuous real-valued function η
with supp(η) ⊆ U and η(1) = 1 (Lemma 7.4.15). Then χ(x) := η(x)η(x−1)
is symmetric, supp(χ) ⊆ U , and supp

(
π(g)χ

) ⊆ gU implies that Kχ(χ)(g) =
0. But we also have Kχ

(
π(g)χ

)
(g) = ‖π(g)χ‖2 > 0. This proves that

π(g)Kχ 6= Kχ, so that Theorem C.3.2(4) implies that, for some λ 6= 0, π(g)
acts nontrivially on one of the eigenspaces L2(G)λ of Kχ (cf. Lemma 11.3.6).
Since L2(G)λ is finite-dimensional (Lemma 11.3.7), ρ(g) := π(g)|L2(G)λ

de-
fines a finite-dimensional unitary representation of G with g 6∈ ker ρ. ut

At this point, one could go much deeper into the representation theory of
compact Lie groups, but our focus in this book is on structural results. We
have developed this machinery to prove that all compact Lie groups are linear,
which we now derive from Proposition 11.3.8.

Theorem 11.3.9 (Linearity Theorem for Compact Lie Groups).
Each compact Lie group K has a faithful finite-dimensional unitary repre-
sentation. So each compact Lie group is isomorphic to a matrix group.

Proof. Step 1: We claim that K contains no properly decreasing sequence
(Fn)n∈N of closed subgroups. We prove this claim by induction on the di-
mension of K. If dimK = 0, K is a finite group, and our claim is trivial.
If dim K > 0 and (Fn)n∈N is a properly decreasing sequence of subgroups,
then not each Fn contains the identity component K0, because we other-
wise obtain a properly decreasing sequence of subgroups of the finite group
π0(K) = K/K0. If FN does not contain K0, then dim FN < dim K, so that
the induction hypothesis, applied to FN , yields a contradiction.

Step 2: We now show that K has a faithful finite-dimensional unitary
representation by showing that its nonexistence leads to an infinite properly
decreasing sequence of closed subgroups (Fn)n∈N. Let F0 := K. Suppose we
do already have a finite properly decreasing sequence of subgroups

F0 ⊇ F1 ⊇ . . . ⊇ Fn

and finite-dimensional unitary representations (ρj ,Hj) of K with

Fj = Fj−1 ∩ ker ρj for j = 1, . . . , n.

Then
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ρ :=
n⊕

j=1

ρj : K → U(⊕n
j=1Hj)

is a finite-dimensional unitary representation of K with

ker ρ =
n⋂

j=1

ker ρj = Fn.

Therefore our hypothesis implies that Fn contains some element
kn+1 6= 1, and we use Proposition 11.3.8 again to find a finite-dimensional
unitary representation (ρn+1,Hn+1) of K with kn+1 6∈ ker ρn+1 and put
Fn+1 := Fn ∩ ker ρn+1. This procedure produces a properly decreasing se-
quence of closed subgroups of K, contradicting Step 1. ut
Remark 11.3.10. Although each properly decreasing sequence of closed sub-
groups of a compact Lie group is finite, compact Lie groups may contain in-
finite properly increasing sequences of subgroups. A simple example is the
sequence (C2n)n∈N in T.

Exercises for Section 11.3

Exercise 11.3.1. Let H be a Hilbert space and U(H) be its unitary group.

(i) If (gi) is a net in U(H) that converges weakly to some g ∈ U(H), i.e.,

〈giv, w〉 → 〈gv, w〉 for all v, w ∈ H,

then it also converges pointwise to g, i.e., giv → gv for each v ∈ H.
(ii) The topology of pointwise convergence turns U(H) into a topological

group.
(iii) A continuous unitary representation (π,H) of a topological group is the

same as a continuous homomorphism π : G → U(H) of topological groups.

11.4 Topological Properties

We conclude this chapter with some results on the topology of compact Lie
groups. As for the representation theory of compact groups, we will only have
a brief look at the tip of the iceberg.

11.4.1 The Fundamental Group

We start with a description of the fundamental group of a connected compact
Lie group in terms of its Lie algebra and the exponential function. It turns
out that certain discrete additive subgroups of Cartan subalgebras and their
dual spaces play an important role in this context.
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Definition 11.4.1. Let T be a torus. Then Γ (T ) := exp−1
T (1) is a lattice, i.e.

a discrete additive subgroup of full rank, in t := L(T ), and

0 → Γ (T ) → t
expG−−−−→T → 1

is an exact sequence of groups. Thus Γ (T ) is canonically isomorphic to the
fundamental group π1(T ) of T . We call Γ (T ) the unit lattice of T . Functions
on T can thus be lifted to functions on t invariant under Γ (T ).

Recall that L : Hom(R, T ) → Hom(R, t) ∼= t is a bijection (Lemma 8.2.4).
Identifying T with R/Z, it follows that the image of Hom(T, T ) under L cor-
responds to Γ (T ), so that

Γ (T ) ∼= Hom(T, T ), (11.2)

where the group structure on the right hand side is given by pointwise multi-
plication.

Remark 11.4.2. Let G be a compact connected Lie group with Lie algebra
g and T ⊆ G a maximal torus with Lie algebra t. The dimension of T , and
hence of any maximal torus (cf. Theorem 11.2.2), is called the rank of G. By
Lemma 11.2.1 and Proposition 5.1.11, tC is a Cartan subalgebra of gC, which
is reductive by Theorem 11.1.18 and Exercise 4.5.2 (cf. also Proposition 4.7.3).
The restriction Ad |T is compatible with the root decomposition of gC with
respect to tC: If we extend the Ad(t) to complex linear endomorphisms of gC,
we see that the root spaces gα

C for α ∈ ∆ := ∆(gC, tC) are Ad(T )-invariant
with

Ad(expG x)|gα
C = eα(x) idgα

C

for x ∈ t. Since T is compact, eRα(x) idgα
C is relatively compact in GL(gα

C),
which is impossible unless α(x) is purely imaginary. Thus we have α ∈ it∗ ∼=
Hom(t, iR) (cf. Lemma 5.3.7). Therefore,

Γ (T ) ⊆ Γc(T ) := {x ∈ t : (∀α ∈ ∆)α(x) ∈ 2πiZ}, (11.3)

which is called the central lattice because it coincides with exp−1
T (Z(G)). This

follows from Theorem 13.2.8 below, but can also be checked directly using the
root decomposition. Note that Corollary 11.2.4 implies that Z(G) ⊆ T =
expT (t), whence

Z(G) ∼= Γc(T )/Γ (T ). (11.4)

Definition 11.4.3. For a compact Lie group G with Lie algebra g we write

X(G) := Hom(G,T)

for the set of continuous homomorphisms G → T ⊆ C×. Since T is maximal
compact in C×, the range of any continuous homomorphism G → C× lies in
T. The set X(G) is an abelian group under pointwise multiplication, called the
character group of G. Identifying L(C×) with C and, accordingly, L(T) with
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iR, the Automatic Smoothness Theorem 8.2.16 and Proposition 8.1.8 show
that each element χ ∈ X(G) defines an element L(χ) ∈ Hom(g, iR) = ig∗ ⊆ g∗C
and 1

2πi L(χ) may be viewed as an element of g∗.
If G = T is a torus, then L(χ) maps the unit lattice Γ (T ) into 2πiZ =

ker expC× . Thus we can define a Z-bilinear form X(T )× Γ (T ) → Z by

〈χ, x〉 := 1
2πi L(χ)(x)

for χ ∈ X(T ) and x ∈ Γ (T ) ⊆ t.
Note that Hom(T,T) ∼= Γ (T) ∼= Z, where the endomorphism correspond-

ing to n ∈ Z is simply the power map pn(z) = zn. Identifying Γ (T ) with
Hom(T, T ), the pairing from above simply amounts to the composition map

Hom(T, T )×Hom(T,T) → Hom(T,T) ∼= Z, (χ, γ) 7→ χ ◦ γ

which is clearly biadditive.

Proposition 11.4.4. Let T be a torus. Then the maps

X(T ) → HomZ(Γ (T ),Z) and Γ (T ) → HomZ(X(T ),Z)

induced from the Z-bilinear form 〈·, ·〉 : X(T ) × Γ (T ) → Z are isomorphisms
of abelian groups.

Proof. Writing T as a product of one-dimensional tori, we see that it suffices to
proof this proposition for the unit circle. But in this case it is immediate. ut

Note that the map χ 7→ L(χ) embeds X(T ) as a lattice into t∗. Viewing
X(T ) in this way as a subset of t∗, Proposition 11.4.4 can be rewritten as

X(T ) = {λ ∈ t∗ : (∀x ∈ Γ (T )) λ(x) ∈ 2πiZ}, (11.5)
Γ (T ) = {x ∈ t : (∀λ ∈ X(T )) λ(x) ∈ 2πiZ}. (11.6)

Definition 11.4.5. Let G be a compact connected Lie group and V a finite-
dimensional C-vector space. For a continuous homomorphism ρ : G → GL(V ),
we set

Vχ(ρ) := {v ∈ V : (∀g ∈ G) ρ(g)v = χ(g)v} for χ ∈ X(G).

If T a maximal torus in G, the χ ∈ X(T ) such that Vχ(ρ|T ) 6= {0} are called
the weights of ρ with respect to T . For Ad : G → GL(g) let ρ : G → GL(gC)
be the natural extension by complex linear maps. Then the nontrivial weights
of ρ are called roots. The set of roots will be denoted by ∆(G,T ). The weight
space for χ ∈ ∆(G,T ) is called root space and denoted by gχ

C. The subgroup
of X(T ) generated by ∆(G,T ) is called the root lattice denoted by Γr(T ).

Lemma 11.4.6. Let G be a compact connected Lie group and T a maximal
torus in G. Further, let S be a closed subgroup of T . Then the identity com-
ponent H := ZG(S)0 of ZG(S) contains T as a maximal torus and satisfies
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(i) ∆(H, T ) =
{
χ ∈ ∆(G,T ) : α(S) = {1}}.

(ii) Z(H) =
⋂

χ∈∆(H,T ) kerχ.

Proof. x ∈ L
(
ZG(S)

)
if and only if expG(Rx) ⊆ ZG(S), so that

L
(
ZG(S)

)
= L(H) = {x ∈ g : (∀g ∈ S) Ad(g)(x) = x}.

Therefore, L(H)C is the direct sum of tC and all root spaces gχ
C with χ(g) = 1

for all g ∈ S. This proves (i). To prove (ii) we recall from Lemma 8.2.21
that Z(H) is the kernel of the adjoint representation. Since Z(H) ⊆ T by
Corollary 11.2.4, the claim follows. ut
Remark 11.4.7. Let G be a compact connected Lie group and T a maximal
torus in G. For χ ∈ ∆(G,T ) the derived homomorphism L(χ) : L(G) → L(T)
can be viewed as an element L(χ) ∈ ∆(gC, tC). Comparing the weight decom-
positions of Ad |T and ad |t, we see that ∆(G,T ) → ∆(gC, tC),
χ 7→ L(χ) is a bijection. For any χ ∈ ∆(G, T ), set

xχ := 2πiL(χ)̌ ,

where L(χ)̌ is the coroot of L(χ) (cf. the sl2-Theorem 5.3.4). We call

{2πiα̌ : α ∈ ∆(gC, tC)} = {xχ ∈ t : χ ∈ ∆(G,T )} (11.7)

the set of nodal vectors for T and note that it only depends on the Lie algebra
L(T )C = tC.

Proposition 11.4.8. Let G be a compact connected Lie group and T a max-
imal torus in G. For any root χ ∈ ∆(G,T ) we have the following properties.

(i) ZG(ker χ) = ZG

(
(kerχ)0

)
is a closed connected subgroup of dimension

2 + dim T . Its complexified Lie algebra is

L
(
ZG(kerχ)

)
C = gχ

C + gχ−1

C + tC. (11.8)

(ii) The commutator group Gχ of ZG(ker χ) is a closed connected subgroup of
rank 1 and dimension 3.

(iii) ∆(ZG(kerχ), T ) = {χ, χ−1}.
(iv) Gχ ∩ T is a maximal torus in Gχ.

Proof. From Corollary 11.2.11 we know that the group ZG

(
(kerχ)0

)
is con-

nected. Lemma 11.4.6(i) implies that ∆
(
ZG

(
(kerχ)0

)
, T

)
consists of all η ∈

∆(G,T ) with η
(
(kerχ)0

)
= {1}. Therefore the linear functional L(η) vanishes

on the kernel of L(χ) and hence is a multiple of L(χ). In view of Remark 11.4.7
it now follows from Remark 5.4.4 that η ∈ {χ, χ−1}. Thus we have shown

∆
(
ZG

(
(ker χ)0

)
, T

)
= {χ, χ−1},
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so that Lemma 11.4.6(ii) implies

Z
(
ZG

(
(kerχ)0

))
= ker χ. (11.9)

We clearly have ZG(ker χ) ⊆ ZG((kerχ)0) and (11.9) implies the converse
inclusion, so that ZG

(
(kerχ)0

)
= ZG(kerχ). This proves the connectedness

of ZG(kerχ) and (iii). But then Theorem 11.1.18 implies that Gχ is closed,
connected, and semisimple. Note that

L
(
ZG

(
(kerχ)0

))
C = gχ

C + gχ−1

C + tC, (11.10)

Theorem 11.2.2, and Corollary 11.2.11 imply that (T ∩ Gχ)0 is a maximal
torus in Gχ, hence maximal abelian. Therefore T ∩ Gχ is connected, i.e., a
maximal torus in in Gχ. The remaining claims are now clear. ut
Remark 11.4.9. Let G be a compact connected Lie group and H ≤ G a
closed connected subgroup. Then the rank of H is less or equal to the rank
of G. If they are equal, then H is called a subgroup of maximal rank of G.
This is equivalent to H containing a maximal torus of G. If Z ≤ G is a closed
central subgroup, then by Corollary 11.2.4, Z is contained in every maximal
torus. Therefore T/Z is a torus subgroup of G/Z for each maximal torus T in
G. Now Theorem 11.1.18 shows that T/Z is indeed a maximal torus in G/Z
and then the conjugacy of maximal tori (see Theorem 11.2.2) implies that the
maximal tori of G are precisely the preimages of the maximal tori in G/Z
under the canonical projection.

All closed connected subgroups of maximal rank in G contain Z and they
are precisely the preimages of the closed connected subgroups of maximal rank
in G/Z under the canonical projection. All these preimages are connected
because Z is contained in any maximal torus T , so that any subgroup H ⊆ G
containing T for which H/Z ⊆ G/Z is connected is connected because T and
H/T are connected (Exercise 11.4.1).

Proposition 11.4.10. Let G be a compact connected Lie group, T a maximal
torus in G, and χ ∈ ∆(G,T ). Then there exists a morphism of Lie groups
ϕ : SU2(C) → G satisfying the following conditions.

(a) The image of ϕ commutes with the kernel of χ.

(b) For all a ∈ T we have ϕ

(
a 0
0 a

)
∈ T and χ ◦ ϕ

(
a 0
0 a

)
= a2.

Proof. Recall the isomorphism ζα : su2(C) → gC(α) ∩ g for α = L(χ) ∈
∆(gC, tC) from Lemma 11.2.15 (cf. Remark 11.4.7). Since SU2(C) is simply
connected (see Example 8.5.7), it follows from Proposition 11.4.8, the Inte-
grability Theorem 8.5.9, and Proposition 8.5.1 that there exists a covering
morphism ϕ : SU2(C) → Gχ with L(ϕ) = ζα. Note that

L(χ ◦ ϕ)
(

i 0
0 −i

)
= α ◦ ζα

(
i 0
0 −i

)
= iα(hα) = 2i.
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Therefore

χ ◦ ϕ

(
eit 0
0 e−it

)
= e2it

and this proves the claim. ut
Remark 11.4.11. Let G be a compact connected Lie group and T a maximal
torus in G. Given χ ∈ ∆(G,T ) fix ϕ : SU2(C) → G as in Proposition 11.4.10.
Then ϕT : T→ T , defined by

ϕT (a) = ϕ

(
a 0
0 a

)
,

induces a homomorphism Γ (ϕT ) : Γ (T) → Γ (T ). Since Γ (T) = 2πiZ we may
consider x̃χ := Γ (ϕT )(2πi) ∈ Γ (T ) ∩ [gχ

C, g
χ−1

C ] ⊆ t. Then

〈χ, x̃χ〉 =
1

2πi
L(χ)

(
Γ (ϕ)(2πi)

)
= L(χ ◦ ϕT )(1) = 2

and
x̃χ = 2πiL(χ)̌ .

Thus in the terminology of Remark 11.4.7 we have xχ = x̃χ ∈ Γ (T ) and we see
that all nodal vectors for T are contained in Γ (T ). We denote the subgroup
of Γ (T ) generated by the nodal vectors by Γ0(T ) and call it the nodal group
of T .

Remark 11.4.12. We collect some information on the various lattices we
have encountered in this chapter. From Remark 11.4.11 and (11.3) we know

Γ0(T ) ⊆ Γ (T ) ⊆ Γc(T ). (11.11)

These inclusions are not always strict. For instance, if the center of G is trivial,
then the characterization Γc(T ) = exp−1

T

(
Z(G)

)
shows that Γ (T ) = Γc(T ).

Moreover, in this case Z(G) ∼= Γ (T )/Γ0(T ) (see Remark 11.4.2) also shows
Γ (T ) = Γ0(T ). We define the dual lattice Γ ∗ of a lattice Γ ⊆ t by

Γ ∗ := {ν ∈ it∗ : (∀x ∈ Γ ) ν(x) ∈ 2πiZ}.
Equation (11.11) yields the following chain of lattices

Γ0(T )∗ ⊇ Γ (T )∗ ⊇ Γc(T )∗. (11.12)

Embedding X(T ) into it∗ via χ 7→ L(χ), Proposition 11.4.4 implies that
Γ (T )∗ = X(T ). Comparing Definition 6.3.10 with (11.7), we see that Γ0(T )∗

is the weight lattice Λ of integral linear functionals in it∗. Finally (11.3) shows
that Γc(T )∗ is the root lattice

R(G,T ) := 〈∆〉grp.

Thus (11.12) can be rewritten as

Λ ⊇ X(T ) ⊇ R(G,T ). (11.13)
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Proposition 11.4.13. Let G be a compact connected Lie group and H ≤ G
a closed connected subgroup of maximal rank.

(i) The homogeneous space G/H is 1-connected.
(ii) The natural homomorphism π1(H) → π1(G) induced by the inclusion

H ↪→ G is surjective.

Proof. According to the Homotopy Group Theorem 10.1.15 and Remark
10.1.17, we have an exact sequence π1(H) → π1(G) → π1(G/H) → 1, so
(i) is equivalent to (ii). Note that, in order to prove (i), Remark 11.4.9 allows
us to first replace G by the semisimple group Ad(G), and then Ad(G) by
its compact simply connected covering (cf. Weyl’s Theorem 11.1.17). In other
words, we may assume that G is semisimple and 1-connected. But under these
hypotheses (ii) is trivially true. ut
Theorem 11.4.14. If G is a compact connected Lie group and T a maximal
torus in G, then the canonical homomorphism Γ (T ) ∼= π1(T ) → π1(G) induces
an isomorphism

π1(G) ∼= Γ (T )/Γ0(T ).

Proof. Proposition 11.4.13 implies that the homomorphism

ΦG,T : Γ (T ) ∼= π1(T ) → π1(G),

induced by the inclusion T ↪→ G, is surjective. We have to show that its kernel
is the nodal group Γ0(T ) of T . To do that, we prove the assertion
A(G,T ): kerΦG,T is generated by the nodal vectors for T

for all pairs (G,T ) satisfying the hypotheses above. Before we can do this, we
have to consider two special cases:
Case 1: G is 1-connected.

In this case A(G,T ) amounts to showing that Γ0(T ) = Γ (T ). Since
G is compact, the hypothesis implies that in this case g, and hence also
gC, is semisimple (Theorem 11.1.18). Let λ ∈ t∗C be any dominant inte-
gral weight (see Definition 6.3.10). Then by Proposition 6.3.14 there exists
a finite-dimensional representation of gC having λ as highest weight. Since
G is 1-connected, the Integrability Theorem 8.5.9 shows that this represen-
tation integrates to a representation of G, so that λ is of the form L(χ) for
some χ ∈ X(T ). In view of Remark 11.4.12, in particular (11.13), this implies
Λ = X(T ), and hence Γ0(T ) = Γ (T ).
Case 2: G is the direct product of a 1-connected group G] with a torus S.

In this case T = T ] × S, where T ] is a maximal torus in G], Γ (T ) =
Γ (T ])×Γ (S), and π1(G) ∼= π1(G])×π1(S). Moreover, ΦG,T = ΦG],T ] ×ΦS,S .
Since the map ΦS,S is an isomorphism, A(G], T ]), which was shown in Case 1,
implies A(G,T ).
Case 3: General case: The Structure Theorem 11.1.18 shows that there is
a covering morphism p : G] → G such that G] is the direct product of a
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1-connected group with a torus. In particular, we may assume that L(G]) =
L(G) and L(p) idL(G). Corollary 11.2.4 implies that

ker p ⊆ Z(G]) ⊆ T ] := expG](L(T )) = p−1(T ).

Therefore we have T ∼= T ]/ ker p and Γ (T ) = exp−1
T ] (ker p), so that ker p ∼=

Γ (T )/Γ (T ]). Further we have the following commutative diagram with exact
rows

0 // Γ (T ])Ä _

²²

// L(T ])
exp

T ] // T ]

p

²²

// 1

0 // Γ (T ) // L(T )
expT // T // 1

Since the inverse of the natural isomorphism ker p → Γ (T )/Γ (T ]) is induced
by expT ] : Γ (T ) → T ], we have another commutative diagram

0 // ker(ΦG],T ])

²²

// ker(ΦG,T )

²²

// 0

²²
0 // Γ (T ])

Φ
G],T ]

²²

Â Ä // Γ (T )

ΦG,T

²²

// ker p // 1

0 // π1(G]) // π1(G) // ker p // 1

in which the second line is exact. Remark 10.1.17 and Corollary A.2.7 show
that also the third line is exact. Then a simple diagram chase shows that the
first line exact as well. In other words, ker(ΦG],T ]) and ker(ΦG,T ) agree, and
this implies the claim, because Case 2 applies to (G], T ]). ut

11.4.2 Fixed Points of Automorphisms

We conclude this chapter with a topological result which is very useful in
the study of symmetric spaces: The set of fixed points of an automorphism
of a compact connected Lie group is connected. To prove this result we need
substantial preparation. In particular, we have to take a closer look at regular
and singular points in a compact connected Lie group. Further, we introduce
the diagram D(G,T ) of a maximal torus and the resulting alcoves as technical
tools.

Definition 11.4.15. A pinning of a compact connected Lie group G is a
triple E = (T, Π, {vα}α∈Π), where T is a maximal torus of G, Π a basis for
the root system ∆(gC, tC), and vα ∈ (gα

C ⊕ g−α
C ) ∩ g satisfies −κ(vα, vα) = 1

for the Killing form κ on g.

It is clear that Aut(G) acts on the set E(G) of all pinnings.
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Proposition 11.4.16. Let G be a compact connected Lie group. Then the
group of inner automorphisms of G acts simply transitively on E(G).

Proof. Let e = (T, Π, {vα}α∈Π) and e′ = (T ′,Π ′, {v′α}α∈Π′) be two pinnings
of G. By Theorem 11.2.2(iii), there exists a g ∈ G such that cg(T ) = T ′.
Thus we may assume that T = T ′. By Theorem 5.4.17, there exists a σ ∈
W

(
∆(gC, tC)

)
such that σ(Π) = Π ′. According to Lemma 11.2.16, we can

find an element g ∈ NK(T ) such that Ad∗(g)|t∗ = σ. Thus we also may
assume that Π = Π ′. So to show the transitivity, it remains to show that T
acts transitively on the set of tuples {vα}α∈Π with

vα ∈ g[α] := (gα
C ⊕ g−α

C ) ∩ g and κ(vα, vα) = −1.

The spaces g[α] have real dimension 2, by Lemma 11.2.15. We equip them
with the scalar products coming from −κ. Then it suffices to show that the
morphism ι : T → ∏

α∈Π SO(g[α]), obtained by the restriction of the adjoint
action, is surjective. But L(ι) : t → ⊕

α∈Π so(g[α]) ∼= RΠ is simply given by
x 7→ (

iα(x)
)
α∈Π

. Since Π is a basis for t∗ this implies that L(ι), and hence
also ι, is surjective. Thus we have shown that G acts transitively on E(G).

To conclude the proof, we have to show that g · e = e implies g ∈ Z(G).
It is clear from cg(T ) = T that g ∈ NG(T ), and g ·Π = Π implies that g ∈ T
(see Theorem 5.4.17). Pick x ∈ t with g = expT x. Then, for each α ∈ Π,
the relation g · vα = vα implies eiα(x) = 1. Therefore α(2πix) ∈ Z for all
α ∈ ∆(gC, tC), whence x ∈ Γc(T ) = exp−1

T

(
Z(G)

)
by Remark 11.4.2. ut

Lemma 11.4.17. Let σ be an automorphism of the compact connected Lie
group G and F its group of fixed points. If the identity component F0 of F is
central in G, then G is abelian, hence a torus.

Proof. By Proposition 10.2.4, the group G is abelian if and only if its com-
mutator subgroup D1(G) is commutative. Since D1(G) is invariant under σ,
we may therefore assume that G is semisimple.

If F0 is central in G, its Lie algebra L(F ) is trivial, because the center of g
is trivial. It follows that L(σ)− id is bijective, because its kernel is contained
in L(F ). The map f : G → G defined by f(g) = σ(g)−1g is a submersion since
its differential, which is given in g by

Tg(f)(xg) = σ(g)−1xg−σ(g)−1T1(σ)(x)σ(g)σ(g)−1g = σ(g)−1
(
x−T1(σ)(x)

)
g

for x ∈ g and g ∈ G, is bijective. In particular, f(G) is open in G. Since G is
compact and connected, f is surjective.

By Proposition 11.4.16, for E ∈ E(G) one finds a unique h ∈ G such that
σ(E) = ch(E). Pick g ∈ G such that h = f(g) = σ(g)−1g. Then

σ ◦ cg = cσ(g) ◦ σ = cg ◦ c−1
h ◦ σ.

Therefore, by the choice of h, the pinning cg(E) is stable under σ. In particular,
L(σ)

∑
α∈B vα =

∑
α∈B vα, so that

∑
α∈B vα = 0. This implies that the vα are
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zero as the root space decomposition is direct. This contradicts κ(vα, vα) = −1
unless g = {0}, proving the claim. ut
Definition 11.4.18. Let G be a compact connected Lie group and T a max-
imal torus in G. Each root α ∈ ∆ = ∆(gC, tC) corresponds to a character
χα : T → C× satisfying χα(exp x) = eα(x) (Remark 11.4.7). The sets

Uα := kerχα = {t ∈ T : t = expG x; α(x) ∈ 2πiZ}
are closed subgroups of T of codimension 1.

(a) We define the diagram D(G,T ) of G with respect to T as the union of
the sets

exp−1
T (Uα) = {x ∈ t : α(x) ∈ 2πiZ}

for α ∈ ∆. Each of these sets is a countable union of parallel affine hyperplanes,
hence the diagram is a countable union of affine hyperplanes as well. The
connected components of t \D(G, T ) are called alcoves.

(b) For α ∈ ∆ and k ∈ Z, the reflection σα,k : t → t at the affine hyperplane

Hα,k := {x ∈ t : α(x) = 2πik}
is given by σα,k(x) = x − (α(x) − 2πi k)α̌. The group generated by all σα,k

with α ∈ ∆+ and k ∈ Z is called the affine Weyl group of (gC, tC) and denoted
by Waff .

(c) For an alcove A ⊆ t, we call Hα,k a bounding hyperplane if

A ⊆ {x ∈ t : (2πi)−1α(x) < k}
and there exists a boundary point a ∈ A with α(a) = 2πik and β(a) 6∈ 2πiZ
for any root β 6= ±α.

Remark 11.4.19. (i) The hyperplanes of D(G,T ) containing the origin di-
vide t into the Weyl chambers (cf. Definition 5.4.12). In each Weyl chamber
C we find precisely one alcove A containing 0 in its closure, which shows that
W acts transitively on the set of all these alcoves.

(ii) Note that Waff leaves the diagram invariant and hence acts on the set
of alcoves. The σα,0 coincide with the reflections in the linear hyperplanes
generating the Weyl group of the dual root system ∆̌ (cf. Remark 5.4.18). As
a group this Weyl group is isomorphic to W , but here it is represented on t
rather than t∗. A simple calculation shows that

σα,k(x) = τk
2πiα̌ ◦ σα,0(x), (11.14)

where τy : t → t is the translation x 7→ x + y. Multiplying by σα,0 this implies
that

{τy : y ∈ Γ0(T )} ∼= Γ0(T )

is contained in Waff . Identifying Γ0(T ) in this way with a subgroup of Waff

another short calculation shows
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σα,k ◦ τy ◦ σα,k = τσαy,

so that Γ0(T ) is normal in Waff . In fact, (11.14) and

W = {w ∈ Waff : w(0) = 0}
imply that

Γ0(T )oW → Waff , (y, w) 7→ τy ◦ w

is an isomorphism of groups.
(iii) Let A be an alcove and Hαj ,kj

, j = 1, . . . , n, be the hyperplanes
bounding A. Then

A = {x ∈ t : (∀j) (2πi)−1αj(x) < kj}.

In fact, the right hand side is an open convex set Ã containing A. If it is
larger than A, then Ã contains a boundary point a ∈ A which is contained
in some hyperplane Hβ,m. Replacing a by a nearby point, we may further
assume that ±β are the only roots with (2πi)−1β(a) ∈ Z. Then Hβ,m is a
bounding hyperplane of A, contradicting the definition of Ã.

Proposition 11.4.20. The affine Weyl group has the following properties:

(i) For any alcove A ⊆ t, the reflections in its boundary hyperplanes generate
Waff .

(ii) Let A be an alcove, σj, j = 1, . . . , n be the reflections in its bounding
hyperplanes H1, . . . , Hn. For w ∈ Waff we define the length `(w) to be the
smallest number r such that w can be written in the form w = σj1 · · ·σjr .
Then `(w) coincides with the number of hyperplanes in D(G,T ) separating
A and w(A).

(iii) Waff acts simply transitively on the set of alcoves.
(iv) For any alcove A, the closure contains a unique element of Γ0(T ).

Proof. (i) Let W (A) ⊆ Waff be the subgroup generated by the boundary
reflections σ1, . . . , σn of A, B be some alcove, x ∈ A, and y ∈ B. Since the
orbit W (A)y intersects each compact subset of t in a finite set, there exists
an element w ∈ W (A) for which ‖wy − x‖ is minimal. This implies that wy
lies on the same side of each hyperplane Hα,k bounding A because otherwise
σα,kwy would be closer to x. Hence Remark 11.4.19 implies that wy ∈ A.
Since wB is the unique alcove containing wy, we obtain wB = A. This shows
that W (A) acts transitively on the set of all alcoves.

Since each reflection σ = σα,k ∈ Waff corresponds to a bounding hyper-
plane of some alcove B, we obtain with any w ∈ W (A) satisfying wB = A,
that wσw−1 is a reflection in some bounding hyperplane of A, hence contained
in W (A). Then σ ∈ w−1W (A)w = W (A) yields Waff = W (A). This proves
(i).

(ii) Fix j = 1, . . . , n and w ∈ Waff . Suppose that A and wA are on the
same side of Hj . For any hyperplane H ′ in the diagram which is different from
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Hj , the fact that Hj is a bounding hyperplane of A implies that A and σj(A)
lie on the same side of H ′. Therefore H ′ separates A from σjw(A) if and only
if it separates σjA from σjw(A), which in turn means that σj(H ′) separates A
from w(A). Therefore the set of hyperplanes in the diagram separating A and
σjwA consists of Hj and all other hyperplanes σj(H ′), where H ′ separates A
and w(A).

We now assume that w = σj1 · · ·σjr
with `(w) = r and prove the following

claim by induction on r.
Claim: The hyperplanes in the diagram separating A and w(A) are pre-

cisely r pairwise different hyperplanes

σj1 · · ·σjr−1(Hjr ), σj1 · · ·σjr−2(Hjr−1), . . . , σj1(Hj2),Hj1 .

The case r = 1 is trivial, so assume the claim is true for `(w) = r − 1 and
set w′ = σj2 · · ·σjr . Then clearly `(w′) = r − 1. By induction we see that the
hyperplanes

σj2 · · ·σjr−1(Hjr ), σj2 · · ·σjr−2(Hjr−1), . . . , σj2(Hj3),Hj2

are pairwise different and are precisely the hyperplanes in the diagram sepa-
rating A and w′(A). But then also the hyperplanes

σj1 · · ·σjr−1(Hjr ), σj1 · · ·σjr−2(Hjr−1), . . . , σj1(Hj2)

are pairwise different. Suppose that Hj1 is one of them, say

Hj1 = σj1 · · ·σjm(Hjm+1).

Then
σj1 = (σj1 · · ·σjm)σjm+1(σj1 · · ·σjm)−1

and hence

w = σj2 · · ·σjmσjm+1σjm · · ·σj2σj2 · · ·σjr = σj2 · · ·σjmσjm+2 · · ·σjr .

This contradicts `(w) = r, so

σj1 · · ·σjr−1(Hjr ), σj1 · · ·σjr−2(Hjr−1), . . . , σj1(Hj2),Hj1 (11.15)

are pairwise different and Hj1 does not separate A and w′(A). Thus the ob-
servation made at the beginning of the proof shows that the hyperplanes from
(11.15) are precisely the ones separating A and σi1w

′(A) = w(A).
(iii) We have already seen in (i) that Waff acts transitively on the set of

alcoves. To see that it acts simply transitively, let A be an alcove and w ∈ Waff

with wA = A. Then (ii) implies that `(w) = 1, and hence that w = id.
(iv) Since Waff acts transitively on the set of alcoves and w(A ∩ Γ0(T )) =

wA ∩ Γ0(T ), we may w.l.o.g. assume that A is an alcove containing 0. It
remains to show that any other element y ∈ Γ0(T ) ∩ A vanishes. Now τ−yA
is an alcove whose closure contains 0, so that Remark 11.4.19(i) implies the
existence of some w ∈ W with wτ−yA = A. This means that the element
wτ−y ∈ Waff fixes A, and (iii) implies that w = τy, hence y = 0. ut
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Definition 11.4.21. Let G be a connected compact Lie group. We call an
element g ∈ G regular if it is contained in exactly one maximal torus. If g is
contained in more than one maximal torus, it is called singular .

Proposition 11.4.22. Let G be a connected compact Lie group and T a max-
imal torus in G. An element t ∈ T is regular if and only if it lies in no Uα

with α ∈ ∆(gC, tC). Thus the diagram D(G,T ) is the inverse image under
expT of the set of singular elements of G which lie in T .

Proof. Corollary 11.2.5 shows that that t = expT x =∈ T is regular if and
only if ZG(t)0 = T . This in turn is equivalent to

t = Fix(Ad(t)) = t +
∑

α(x)∈2πiZ
g[α],

and hence to χα(t) = eα(x) 6= 1 for each α ∈ ∆. ut
Lemma 11.4.23. Let t ∈ T and S be a subtorus of T . If the identity compo-
nent of ZG(t)∩ZG(S) equals T , then there exists an element s ∈ S such that
ts is regular.

Proof. For α ∈ ∆ set Sα = {s ∈ S : χα(ts) = 1}. Then the Sα cover S if
and only if all ts with s ∈ S are singular. Assume that this is the case. Then
one of the Sα coincides with S, because S cannot be a finite union of proper
closed submanifolds. Thus there is a root α ∈ ∆ such that χα(ts) = 1 for
all s ∈ S, and in particular χα(t) = 1. Hence S ∪ {t} ⊆ kerχα = Uα and
therefore ZG(Uα) ⊆ ZG(S)∩ZG(t). Since Uα is a subgroup of T , the equality
(ZG(S) ∩ ZG(t))0 = T implies T = ZG(Uα)0.

Pick x ∈ g ∩ (gα
C + g−α

C ). Then x = x+ + x− with x± ∈ g±α
C , so that for

g ∈ Uα we have

cg(expG x) = expG(Ad(g)(x)) = expG(χα(g)x+ + χ−α(g)x−)
= expG(x+ + x−) = expG(x),

since χα(g) = χ−1
α (g) = 1. This shows that g and expG(x) commute for all

g ∈ Uα, i.e., expG(Rx) ∈ ZG(Uα)0 = T . Thus x ∈ t which is a contradiction,
proving the claim. ut
Proposition 11.4.24. Let G be a compact connected Lie group and σ an
automorphism of G. Further, let Gσ the group of fixed points of σ and Gσ

0 its
identity component. Then for every g ∈ Gσ there is an s ∈ Gσ

0 such that gs
is regular.

Proof. Let g ∈ Gσ. Let S be a maximal torus in ZGσ (g), and R be the identity
component of ZG(g)∩ZG(S). Then R is a connected compact group. As S is a
torus in G and g centralizes S, by Theorem 11.2.10, there is a maximal torus
of G containing g and S, which has to be contained in R. So R is of maximal
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rank in G. It is stable under σ, because σ leaves ZG(g)∩ZG(S) invariant and
then also its identity component. Note that S ⊆ (Rσ)0. Conversely, (Rσ)0 is
contained in the centralizer of S in ZGσ (g)0, which is equal to S by Corollary
11.2.11. Thus we have S = (Rσ)0. Since S is central in R, we can apply Lemma
11.4.17 to R and σ|R to conclude that R is abelian. As R is connected and of
maximal rank, it is a maximal torus in G. It contains g and S and is equal to
the identity component of ZG(g) ∩ ZG(S). We can apply Lemma 11.4.23 to
the torus R with subtorus S and get an element s ∈ S such that gs is regular.
As S = (Rσ)0 ⊆ Gσ

0 , the element s lies in the identity component of Gσ. ut
Lemma 11.4.25. Let G be a compact 1-connected Lie group, T a maximal
torus in G, and C the closure of an alcove in t. Then C contains precisely
one element of Γ (T ).

Proof. Since G is simply connected, we know from Theorem 11.4.14 that
Γ (T ) = Γ0(T ), so that the assertion follows from Proposition 11.4.20(iv). ut
Theorem 11.4.26. Let G be a compact 1-connected Lie group and σ be an
automorphism of G. Then the set Gσ of fixed points of σ is connected.

Proof. Let Gσ
0 be the identity component of Gσ. For any g ∈ Gσ we show

that g ∈ Gσ
0 . First let g ∈ Gσ be a regular element of G, so that there is a

unique maximal torus T containing g. Then σ restricts to an automorphism of
T , because σ(T ) is a maximal torus containing g, hence equal to T . Further,
σ maps singular elements of T to singular elements, thus the corresponding
automorphism L(σ) of t leaves the unit lattice Γ := Γ (T ) = Γ0(T ) (cf. Theo-
rem 11.4.14) and the diagram D(G) invariant.

Pick a point x ∈ exp−1
G (g) and let C be the closure of the alcove in t which

contains x. By Lemma 11.4.25 there exists an element γ ∈ Γ ∩ C. Therefore
C − γ is the closure of an alcove containing 0 and x′ := x − γ ∈ exp−1

G (g).
Replacing x by x′, we may therefore assume that 0 ∈ C. As σ(g) = g, Then
η := L(σ)x − x ∈ Γ follows from the invariance of Γ under L(σ). Therefore
L(σ)C is the closure of the unique alcove containing the regular L(σ)x, which
leads to L(σ)C = C + η. Therefore L(σ)(C) contains both 0 and η, so that
the uniqueness part of Lemma 11.4.25 leads to η = 0, i.e., x is fixed under
L(σ). Then g ∈ expRx ⊆ Gσ

0 , proving the claim for regular g.
Now let g ∈ Gσ be arbitrary. By Proposition 11.4.24, there is an s ∈ Gσ

0

such that gs is regular. We apply the first part of the proof to gs ∈ Gσ and
obtain gs ∈ Gσ

0 which implies g ∈ Gσ
0 . ut

Corollary 11.4.27. Let G be a 1-connected compact Lie group.

(i) ZG(x) is connected for any x ∈ G.
(ii) If x, y ∈ G are commuting elements, then there is a maximal torus T ⊆ G

containing x and y.
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Proof. (i) Apply Theorem 11.4.26 to the inner automorphism cx to show that
ZG(x) is a connected subgroup of G.

(ii) By (i), ZG(x) is connected, and it contains y by hypothesis. By Theo-
rem 11.2.2(iii), we find a maximal torus T ′ ⊆ ZG(x) ⊆ G containing y. Since
x is in the center of ZG(x), by Corollary 11.2.4 it is contained in T ′. This im-
plies the claim since every torus T ′ ⊆ G is contained in some maximal torus
T of G. ut
Remark 11.4.28. (a) The simple connectedness is crucial in the preceding
corollary. We claim that SO3(R) contains a commuting pair which is not
contained in a maximal torus. Indeed, let

g1 := diag(−1,−1, 1) and g2 := diag(1,−1,−1).

Then the centralizer of g1 and g2 in GL3(R) coincides with the subgroup of
diagonal matrices, so that

ZSO3(R)({g1, g2}) = 〈g1, g2〉 ∼= (Z/2Z)× (Z/2Z)

is finite, hence does not contain a non-trivial torus.
(b) For some compact Lie groups, all commuting n-tuples are contained in

a maximal torus. For example, any commuting n-tuple in SUm(C) is simulta-
neously diagonalizable, hence contained in a maximal torus.

Exercises for Section 11.4

Exercise 11.4.1. Let G be a topological group and H be a closed connected
subgroup for which G/H is connected. Show that G is connected.

Notes on Chapter 11

Most of the material of compact groups discussed in this chapter is quite
standard. For an in depth treatment of compact Lie groups in the context
of topological groups, we refer to [HM06]. A quite systematic treatment of
compact Lie groups and in particular of their diagrams and related concepts
can be found in [Bou82].

In [BFM02], Borel, Friedman and Morgan determine the space of com-
muting ordered pairs and triples in compact connected semisimple Lie groups.
In particular, they show that commuting triples in compact 1-connected Lie
groups are in general not contained in a maximal torus because the moduli
space

{(x, y, z) ∈ G3 : xyx−1y−1 = xzx−1z−1 = yzy−1z−1 = 1}/G,

where G acts by g.(x1, x2, x3) = (cg(x1), cg(x2), cg(x3)), is not connected.
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Semisimple Lie Groups

In the preceding chapter, we studied groups with a compact Lie algebra. For
these groups, we have seen how to split them into a direct product of a compact
and a vector group, how to complement the commutator group by an abelian
Lie group, and that all compact Lie groups are linear. We now proceed with
our program to obtain similar results for arbitrary Lie groups with finitely
many connected components. First, we turn to the important special case of
semisimple Lie groups.

The main results in this chapter will be the Cartan decomposition and the
Iwasawa decomposition of a connected semisimple Lie group. Both provide
diffeomorphisms of G with product manifolds K × V , where K is a compact
subgroup of G and V is diffeomorphic to a vector space. In the case of the
Cartan decomposition, V has the advantage that it is invariant under conju-
gation by K, and in the case of the Iwasawa decomposition, V is a solvable
subgroup of G.

12.1 Cartan Decompositions

In this section we study the properties of a Cartan decomposition defined by
a given Cartan involution. The existence of Cartan involutions will be treated
in Section 12.2. It is instructive to first have a closer look at the example
G = SLn(R). On this group, θ(g) := (g>)−1 defines an involution and its
group of fixed points is

Gθ = {g ∈ G : g> = g−1} = SOn(R).

If x is a symmetric matrix in sln(R), then θ
(
ex) = e−x. The differential

τ := L(θ), x 7→ −x> on g = sln(R) is also an involutive automorphism for
which

sln(R) = son(R)⊕ Symn(R),
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is the corresponding eigenspace decomposition. By Proposition 1.1.5, the polar
map

Φ : SOn(R)× Symn(R) → SLn(R), (g, x) 7→ gex

is a homeomorphism. We also note that the symmetric bilinear form β(x, y) :=
tr(xy) on sln(R) is positive definite on Symn(R) and negative definite on
son(R) because for a symmetric matrix x = x>, the matrix x2 is positive
semidefinite, and for a skew-symmetric matrix x = −x>, the matrix x2 is
negative semidefinite. Finally, we recall that β is a positive multiple of the
Cartan–Killing form (apply Exercise 4.5.10 to the complexification son(C) of
son(R)). After these introductory remarks, we now turn to general semisimple
Lie groups.

Definition 12.1.1. Let g be a real semisimple Lie algebra and κ be the
Cartan–Killing form of g. Since a complex Lie algebra is semisimple if and only
if the underlying real Lie algebra is semisimple, all definitions below apply to
the complex case as well (Exercise 12.1.3).

An automorphism τ of g is called a Cartan involution if

(i) τ2 = idg,
(ii) κ is negative definite on k := {x ∈ g : τ(x) = x}, and
(iii) κ is positive definite on p := {x ∈ g : τ(x) = −x}.

The eigenspace decomposition g = k⊕ p is called a Cartan decomposition
of g. It is a direct sum of vector spaces not of Lie algebras (cf. Lemma 12.1.2).

In the following g always denotes a semisimple real Lie algebra and κ its
Cartan–Killing form.

Lemma 12.1.2. If τ is a Cartan involution of g, then the following assertions
hold:

(i) k and p are orthogonal with respect to κ.
(ii) [k, k] ⊆ k, [k, p] ⊆ p and [p, p] ⊆ k.

Proof. (i) For α ∈ Aut(g) we have ad α(x) = α ◦ ad x ◦ α−1, which implies
that

κ(α(x), α(y)) = tr(ad(α(x)) ad(α(y)))

= tr(α ◦ adx ◦ α−1 ◦ α ◦ ad y ◦ α−1) = tr(ad x ad y) = κ(x, y).

For τ(x) = x and τ(y) = −y, this immediately leads to κ(x, y) = 0.
(ii) This follows from τ ∈ Aut(g). ut

Lemma 12.1.3. If τ is a Cartan involution on g, then the symmetric bilinear
form

κτ : g× g → R, (x, y) 7→ −κ(x, τy),

has the following properties:
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(i) κτ is positive definite.
(ii) ad k ⊆ o(g, κτ ) := {A ∈ gl(g) : (∀x, y ∈ g) κτ (Ax, y) + κτ (x, Ay) = 0}.
(iii) ad p ⊆ Sym(g, κτ ) := {A ∈ gl(g) : (∀x, y ∈ g) κτ (Ax, y) = κτ (x,Ay)}.
Proof. (i) With Lemma 12.1.2(i), we get for x = y + z with y ∈ k and z ∈ p

κτ (x, x) = −κ(y + z, y − z) = −κ(y, y) + κ(z, z).

Now (i) follows by the definition of a Cartan involution.
(ii), (iii) For x, y, z ∈ g, we have

κτ (ad z(x), y) = −κ([z, x], τy) = κ(x, [z, τy])

= −κτ

(
x, τ([z, τy])

)
= −κτ

(
x, ad(τz)(y)

)
. ut

Recall the group Inng(k) of inner automorphisms generated by ead k from
Definition 11.1.3.

Lemma 12.1.4. If g is a semisimple Lie algebra, then Inn(g) is the identity
component Aut(g)0 of Aut(g). If τ is a Cartan involution and g = k ⊕ p the
corresponding Cartan decomposition, then

Inng(k) = {γ ∈ Aut(g) : γτ = τγ}0.

Proof. Since g is semisimple, ad g = der g = L(Aut g) (Theorem 4.5.14 and
Example 3.2.5). Hence Inn(g) = 〈ead g〉 = Aut(g)0 implies that Inn(g) is closed
(see Definition 11.1.17).

The group

K := {γ ∈ Aut(g) : γτ = τγ} = {γ ∈ Aut(g) : τγτ = γ}

is closed, it contains Inng(k), and its Lie algebra is

L(K) = {adx : x ∈ g, τ adxτ = ad(τx) = adx}

(Lemma 10.1.1), so that the injectivity of ad yields

L(K) = ad{x ∈ g : τx = x} = ad k,

and thus Inng(k) = K0. ut
Proposition 12.1.5. If τ is a Cartan involution of the semisimple Lie algebra
g and K := Aut(g)τ = {γ ∈ Aut(g) : τγ = γτ}, then K is compact and the
map

Ψ : K × p → Aut(g), (k, x) 7→ kead x

is a diffeomorphism.
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Proof. Clearly, Ψ is a smooth map. To apply Proposition 3.3.3, we observe
that Aut(g) ⊆ GL(g) is an algebraic subgroup, because it is defined by the
quadratic equations

g([x, y]) = [g(x), g(y)], x, y ∈ g.

Further, κτ is a scalar product on g, and the invariance of κ under γ ∈ Aut(g)
(Exercise 12.1.1) implies that

κτ (γ(x), y) = −κ(γ(x), τ(y)) = −κ(x, γ−1τ(y)) = κτ (x, τγ−1τ(y)),

so that transposition with respect to κτ is given by

γ> = τγ−1τ ∈ Aut(g). (12.1)

In particular, Aut(g) is invariant under transposition and

Aut(g) ∩O(g, κτ ) = {γ ∈ Aut(g) : τγ−1τ = γ−1} = K.

Choosing an orthonormal basis for g to identify it with Rn, we can now apply
Proposition 3.3.3, to see that ad p = ad g ∩ Sym(g, κτ ) implies that Ψ is a
homeomorphism. Its inverse is given by

Ψ−1(γ) =
(
γe−

1
2 ad log(γ>γ), ad−1

(
1
2 log(γ>γ)

))
,

and since log : Pd(g, κτ ) → Sym(g, κτ ) is a diffeomorphism by Proposi-
tion 2.3.5, Ψ−1 is a smooth map and thus Ψ is a diffeomorphism. ut
Lemma 12.1.6. Let G be a real semisimple connected Lie group with Lie
algebra g, and let τ be a Cartan involution of g. Let K := 〈exp k〉. Then

Z(G) ⊆ K and K = Ad−1(Inng k).

Proof. By Lemma 8.2.21, Z(G) = kerAd because G is connected. Let H :=
Ad−1(Inng k). We consider a path γ : [0, 1] → G with γ(0) = 1 and γ(1) = h ∈
H. By Proposition 12.1.5 and Lemma 12.1.4 we have

Ad
(
γ(t)

)
= k(t)ead x(t)

with paths k : [0, 1] → Inng k and x : [0, 1] → p. Further, x(0) = x(1) = 0 since
Ad

(
γ(1)

) ∈ Inng k. Now we set γ̃(t) := γ(t) exp
( − x(t)

)
and observe that γ̃

is a path in H which connects 1 with h. Therefore H is connected. Finally,

L(H) = ad−1(L(Inng k)) = ad−1(ad k) = k

leads to H = K. In particular, Z(G) = kerAd ⊆ K. ut
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Theorem 12.1.7 (Cartan Decomposition). Let G be a Lie group with
semisimple Lie algebra g, τ a Cartan involution of g, and g = k ⊕ p the
corresponding Cartan decomposition. If K := {g ∈ G : τ Ad(g) = Ad(g)τ},
then L(K) = k, and

Φ : K × p → G, (k, x) 7→ k expG x

is a diffeomorphism.

Proof. First we show that Φ is bijective. Let g ∈ G and write Ad(g) =
k0e

ad x0 = k0 Ad(expG x0) with x0 ∈ p and k0 commuting with τ (Propo-
sition 12.1.5). Then g expG(−x0) ∈ K implies that Φ is surjective. For
k expx = k′ exp x′, we have that Ad(k)ead x = Ad(k′)ead x′ , and therefore
x = x′, again by Proposition 12.1.5. This implies k = k′ and hence Φ is
bijective. The commutativity of the diagram

K × p
Φ−−−−−−−−−→ GyAd |K×idp

yAd

Aut(g)τ × p
Ψ−−−−−−−−−→ Ad(G)

and the fact that all vertical maps and Ψ are local diffeomorphisms now imply
that Φ is regular, and therefore a diffeomorphism. But then also L(K) = k
follows. ut
Corollary 12.1.8. With the notation of Theorem 12.1.7, K is self-normalizing,
i.e., K = NG(K).

Proof. If g = k expG x ∈ NG(K), then also expG x ∈ NG(K), which leads to
ead xk = Ad(expG x)k = k. Since ead x ∈ Aut(g) preserves the Cartan–Killing
form it also leaves p = k⊥κ invariant (Lemma 12.1.2). Hence ead x preserves
both eigenspaces of τ , i.e., it commutes with τ , and this means that

ead x = τead xτ = eτ◦ad x◦τ = ead τ(x) = e− ad x.

Next we use the injectivity of the exponential function on ad p to derive that
x = −x, hence x = 0 (see Exercise 12.1.2 for an alternative argument). ut
Lemma 12.1.9. Let G be a Lie group with semisimple Lie algebra g and
g = k⊕p be a Cartan decomposition defined by the Cartan involution τ . Then
there exists a unique involutive automorphism θ ∈ Aut(G) with L(θ) = τ
fixing K = {g ∈ G : τ Ad(g) = Ad(g)τ} pointwise. It satisfies

θ(k expG x) = k expG(−x) for k ∈ K, x ∈ p.

The involution θ of G is called a Cartan involution.
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Proof. Step 1: First we assume that G is connected. Let qG : G̃ → G be a
simply connected covering of G with L(qG) = idg and write τ for the Cartan
involution of g, whose eigenspaces are k and p. Then there exists a unique
automorphism θ̃ ∈ Aut(G̃) with L(θ̃) = τ (Theorem 8.5.9). For the subgroup

K̃ := {g ∈ G̃ : Ad(g)τ = τ Ad(g)}

the relation Ad(θ̃(g)) = τ Ad(g)τ−1 implies that the group

G̃θ̃ := {g ∈ G̃ : θ̃(g) = g}

of fixed points of θ̃ is contained in K̃. From the Cartan decomposition of G̃
we obtain a diffeomorphism G̃ ∼= K̃ × p, so that K̃ is seen to be connected.
Its Lie algebra is

{x ∈ g : ad x ◦ τ = τ ◦ adx} = {x ∈ g : ad x = ad τ(x)} = k,

so that L(G̃θ̃) = k implies that K̃ = G̃θ̃. By Lemma 12.1.6 θ̃ leaves Z(G̃)
pointwise fixed, and since ker qG ⊆ Z(G̃) (Theorem 8.5.4), it factors through
an automorphism θ : G → G such that the diagram

G̃
θ̃−−−−−−−−−→ G̃yqG

yqG

G
θ−−−−−−−−−→ G

commutes.
Step 2: Now we consider the general case. We already have a Cartan

involution θ on the identity component G0 of G with L(θ) = τ . For k ∈ K we
then observe that

L(ck ◦ θ) = Ad(k) ◦ τ = τ ◦Ad(k) = L(θ ◦ ck),

showing that θ(kgk−1) = kθ(g)k−1 for g ∈ G0 and k ∈ K (Corollary 8.2.12).
Now use the resulting Cartan decomposition G = K exp(p) from Theorem
12.1.7 to extend θ to G via

θ(k expG x) := k expG(−x).

It simply remains to see that θ is an automorphism of G. Writing g ∈ G as
kg0 with k ∈ K, g0 ∈ G0 and likewise g′ = k′g′0, we find

θ(gg′) = θ(kg0k
′g′0) = kθ(g0k

′g′0) = kk′θ((k′)−1g0k
′g′0)

= kk′θ((k′)−1g0k
′)θ(g′0) = kθ(g0)k′θ(g′0) = θ(g)θ(g′). ut

Proposition 12.1.10. For a Cartan decomposition g = k⊕ p of the semisim-
ple Lie algebra g, the following assertions hold:
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(i) If m ⊆ p is a k-invariant subspace, then m + [m, m] E g is an ideal.
(ii) If g is simple noncompact, then p is a simple k-module with k = [p, p], k is

a maximal Lie subalgebra of g, and dim z(k) ≤ 1.
(iii) If g is simple noncompact and k is abelian, then g ∼= sl2(R).

Proof. (i) Clearly, the subspace h := m+[m,m] of g is k-invariant, but we also
have

[p, h] ⊆ [p, m] + [[m, p], m] ⊆ [p, m] + [k, m] ⊆ [p, m] + m,

so that it suffices to show that [p, m] ⊆ [m,m]. Let m⊥ ⊆ p be the orthogonal
complement of m with respect to the Cartan–Killing form κ, which is positive
definite on p and k-invariant, so that m⊥ is also k-invariant. Now

κ(k, [m, m⊥]) = κ([k, m], m⊥) ⊆ κ(m, m⊥) = {0},
and since κ is negative definite on k, we derive from [m, m⊥] ⊆ k that [m, m⊥] =
{0}, which in turn yields [p, m] = [m, m].

(ii) From (i) we derive immediately that the k-module p is simple if g is a
simple Lie algebra. We also obtain g = [p, p] + p, which proves that k = [p, p].
If b ⊇ k is a Lie subalgebra of g containing k, then b = k⊕ (b∩ p), where b∩ p
is a k-submodule, hence {0} or p. This shows that k is a maximal subalgebra
of g.

Let ρ : k → gl(p) be the adjoint representation of k on p, i.e., ρ(x) = adx|p.
Each central element z ∈ z(k) acts by a skew-symmetric endomorphism on the
euclidean vector space p, endowed with the Cartan–Killing form. Then ρ(z)2

is symmetric and commutes with the k-action, so that all its eigenspaces are
k-invariant. Now the simplicity of the k-module p shows that ρ(z)2 = λ1 for
some λ ∈ R. As ρ(z) is skew-symmetric, λ ≤ 0, and if it is nonzero, we may
w.l.o.g. assume that I := ad z|p satisfies I2 = −1, hence defines a complex
structure on p, turning (p, I) into a complex k-module. For any other element
y ∈ z(k), the endomorphism ρ(y) commutes with I and ρ(k), so that Schur’s
Lemma (Exercise 12.1.4) implies ρ(y) ∈ C1, and the skew-symmetry therefore
leads to ρ(y) ∈ RI = ρ(Rz). This proves that dim ρ(z(k)) ≤ 1.

Finally we note that in view of g = [p, p] + p the relation x ∈ ker ρ implies
x ∈ z(g) = {0}, so that ρ is injective.

(iii) If k is abelian, then (ii) implies that dim k = 1, so that the simple
k-module p must be 2-dimensional. This proves already that dim g = 3. From
the proof of (ii) we know that we may pick u ∈ k with ρ(u)2 = −4 · 1. Then
there exist t, h ∈ p with

[u, t] = 2h and [u, h] = −2t.

In view of [p, p] = k = Ru, we have [h, t] = λu for some λ ∈ R×. Then

(ad h)2t = [h, λu] = 2λt,

and since ad h is symmetric with respect to the scalar product κτ , we have
λ > 0. Normalizing h and t appropriately, we may now assume that λ = 2,
which leads to the relations
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[u, t] = 2h, [h, u] = 2t, [h, t] = 2u,

so that Example 4.1.23 implies that g ∼= sl2(R). ut

Exercises for Section 12.1

Exercise 12.1.1. Let g be a Lie algebra and κ be its Cartan–Killing form.
Show that β is invariant under Aut(g), i.e.,

κ(γx, γy) = κ(x, y) for γ ∈ Aut(g), x, y ∈ g.

Exercise 12.1.2. Let g = k⊕ p be a Cartan decomposition of the semisimple
Lie algebra g. Let x ∈ p. Then

{y ∈ k : ead xy ∈ k} = k∩ker(adx) and {y ∈ p : ead xy ∈ p} = p∩ker(adx).

Exercise 12.1.3. Show that a complex Lie algebra g is semisimple if and only
if the underlying real Lie algebra gR is semisimple.

Exercise 12.1.4 (Schur’s Lemma). Let V be a finite-dimensional complex
vector space and S ⊆ End(V ) be a set of operators for which {0} and V are
the only S-invariant subspaces of V . Then

EndS(V ) = {A ∈ End(V ) : (∀ϕ ∈ S)ϕA = Aϕ} = C1.

12.2 Compact Real Forms

In the preceding section, we derived consequences of the existence of a Cartan
involution τ of a semisimple Lie algebra g. In particular, we proved the ex-
istence of a corresponding decomposition of any Lie group G with L(G) = g
and of an involutive automorphism θ of G with L(θ) = τ . What we still have
to show is that Cartan involutions always exist.

First we recall some concepts from Section 4.1 (cf. Definition 4.1.22). Let
g be complex Lie algebra. Then g can be considered as real Lie algebra gR. A
real form of g is a real subalgebra g0 of gR for which gR = g0 ⊕R ig0, which is
equivalent to (g0)C ∼= g. Then the map

σ : g → g, x + iy 7→ x− iy

is an antilinear automorphism of the complex Lie algebra g.

Lemma 12.2.1. Let g be a complex Lie algebra. Then the Cartan–Killing
form κ of g and the Cartan–Killing form κR of gR are related by

κR(x, y) = 2Re κ(x, y) for x, y ∈ gR.
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Proof. From Exercise 12.2.1 we obtain for x, y ∈ g the relation

κR(x, y) = trR((ad x)R(ad y)R) = trR((ad x ad y)R)
= 2 Re trC(ad x ad y) = 2Re κ(x, y). ut

Lemma 12.2.2. A real form g0 of a complex semisimple Lie algebra g is
semisimple. It is compact if and only if κR = 2 Re κg is negative definite
on g0.

Proof. We recall from Remark 4.5.10 that the semisimplicity of the complex
Lie algebra g ∼= (g0)C implies that g0 is semisimple.

For x, y ∈ g0, the operators ad x and ad y preserve the two subspaces g0

and ig0 of g, which leads to

κR(x, y) = trR(ad x ad y) = 2κg0(x, y).

If g0 is compact and β is an invariant scalar product on g0, then the operators
adx, x ∈ g0, are β-skew symmetric, so that (ad x)2 is negative semidefinite,
and thus

κR(x, x) = 2κg0(x, x) = 2 tr((ad x)2) ≤ 0.

Therefore κR is negative definite on g0.
If, conversely, κR is negative definite on g0, then −κR is an invariant scalar

product, whose existence implies that g0 is compact. ut
Lemma 12.2.3. If g0 is a compact real form of the complex semisimple Lie
algebra g, then g = g0 ⊕ ig0 is a Cartan decomposition.

Proof. By definition, the complex conjugation σ w.r.t. g0 is a Cartan involu-
tion of gR if and only if the Cartan–Killing form κR of gR is negative definite on
g0 and positive definite on ig0. If κR is negative definite on g0 (Lemma 12.2.2),
we obtain

κR(ix, iy) = 2Re κg(ix, iy) = −2Re κg(x, y) = −κR(x, y)

for x, y ∈ g0. Hence κR is positive definite on ig0, and thus σ is a Cartan
involution. ut
Example 12.2.4. We consider the complex simple Lie algebra g = sl2(C)
with the complex basis

h =
(

1 0
0 −1

)
, t =

(
0 1
1 0

)
and u =

(
0 1
−1 0

)
.

With respect to this basis, the Cartan–Killing form κ is represented by the
matrix

B =




8 0 0
0 8 0
0 0 −8


 . (12.2)
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Therefore its real part is negative definite on the subalgebra u := su2(C) =
Rih+Rit+Ru, which implies that su2(C) is a compact real form of sl2(C). The
corresponding Cartan involution τ leaves the real form g0 = sl2(R) invariant.
Let τ0 := τ |g0 . Then k0 := Ru is the 1-eigenspace of τ0, and p0 := Rh + Rt is
the −1-eigenspace of τ0. By (12.2), κ is negative definite on k0 and positive
definite on p0. Since the Cartan–Killing form κ0 of g0 is the restriction of κ
to g0 × g0 (Exercise 4.5.3), τ0 is a Cartan involution of g0.

The construction of Example 12.2.4 works in general. It reduces the proof
of the existence of a Cartan involution of g to the existence of a compact real
form of gC, for which g is invariant under the corresponding involution.

Proposition 12.2.5. (i) Let g be a real semisimple Lie algebra and u be a
compact real form of gC with the corresponding involution σ. If g is in-
variant under σ, then τ := σ|g is a Cartan involution of g.

(ii) If g = k + p is a Cartan decomposition of the semisimple real Lie algebra
g, then u := k + ip is a compact real form of gC.

Proof. (i) Since g is σ-invariant, τ is an involutive automorphism of g whose
eigenspaces are k := g ∩ u and p := g ∩ iu. If κgC is the Cartan–Killing form
of gC, then κg = κgC |g×g is the Cartan–Killing form of g (Exercise 4.5.3), and
thus

κg|k×k = κgC |k×k = ReκgC |k×k = 1
2κRgC |k×k

is negative definite. Similarly, we see that the restriction to p × p is positive
definite, so that g = k⊕ p is a Cartan decomposition.

(ii) Let x ∈ k and y ∈ p with x + iy 6= 0. Then

κRgC(x + iy, x + iy) = 2Re κgC(x + iy, x + iy) = 2κg(x, x)− 2κg(y, y) < 0.

Hence the subalgebra u = k + ip is a compact real form of gC because it also
satisfies u⊕ iu = (k⊕ ip)⊕ (ik⊕ p) = g⊕ ig = gC. ut
Corollary 12.2.6. Let g = k + p be a Cartan decomposition of the real
semisimple Lie algebra g and GC be a connected Lie group with L(GC) = gC.
Then K := 〈expGC k〉 is a compact subgroup of GC.

Moreover, for every homomorphism π : g → gln(R), the subgroup
〈eπ(k)〉 ⊆ GLn(R) is compact, and the center of 〈eπ(g)〉 is finite.

Proof. Let u := k + ip ⊆ gC be the corresponding compact real form of gC
(Proposition 12.2.5). Then u is a semisimple compact Lie algebra, and thus
U := 〈expGC u〉 is a compact subgroup of GC (Theorem 11.1.17). Therefore the
subgroup K of U is relatively compact. Since K is contained in the normalizer
NGC(g) of g and L

(
NGC(g)

)
= NgC(g) = g (Lemma 10.1.1, Exercise 12.2.3),

we have
L(K) ⊆ u ∩ g = k.

Therefore the connectedness of K leads to K = 〈expGC L(K)〉 ⊆ 〈expGC k〉 =
K, so that K is closed.
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Now let π : g → gln(R) be a representation of g and assume that the group
GC is simply connected (which we may after passing to a suitable covering
group). Then π extends to a complex linear homomorphism πC : gC → gln(C),
so that there exists a unique morphism α : GC → GLn(C) of Lie groups with
L(α) = πC. Since K is compact, the group

α(K) = 〈eπ(k)〉 ⊆ GLn(R) ⊆ GLn(C)

is also compact. The finiteness of the center of 〈eπ(g)〉 now follows from its
discreteness (π(g) is semisimple), the compactness of α(K), the fact that
π(k) + π(p) is a Cartan decomposition of π(g) (Exercise 12.2.4), and Lemma
12.1.6. ut

12.2.1 Existence of a Compact Real Form

Now we take first steps towards the existence proof for compact real forms
which we shall derive from a root decomposition of gC. In the following propo-
sition we use the notation from Lemma 5.3.7, where g is a complex semisimple
Lie algebra with a root decomposition g = h ⊕⊕

α∈∆ gα and hR ⊆ h is the
real form spanned by the coroots.

Proposition 12.2.7. Let g be a semisimple complex Lie algebra and h ⊆ g a
Cartan subalgebra. Then there exists a compact real form u of g such that ihR
is a Cartan subalgebra of u.

Proof. By Corollary 6.2.11, there exists an automorphism ϕ of g with ϕ|h =
− idh. Let ∆ be the root system of g with respect to h, and xα ∈ gα

with κg(xα, x−α) = 1. Then ϕ(gα) = g−α for every α ∈ ∆, and therefore
ϕ(xα) = cαx−α for some cα ∈ C×. Since ϕ preserves the Cartan–Killing form
(Exercise 12.1.1), cαc−α = 1. We choose complex numbers aα, α ∈ ∆, such
that aαa−α = 1 and a2

α = −c−α. Let yα := aαxα. We define Nα,β := 0 for
α, β ∈ ∆ with α + β 6∈ ∆, and via

[yα, yβ ] = Nα,βyα+β ,

otherwise. Using cαc−α = 1, we now find that ϕ(yα) = −y−α for all roots α.
Then ϕ([yα, yβ ]) = −Nα,βy−α−β and

[ϕ(yα), ϕ(yβ)] = N−α,−βy−α−β

lead to
N−α,−β = −Nα,β .

From the definition of the yα we see that κg(yα, y−α) = 1, and therefore

κ([yα, yβ ], [y−α, y−β ]) = Nα,βN−α,−βκ(yα+β , y−α−β) = Nα,βN−α,−β = −N2
α,β .

To show that the Nα,β are real, we only have to verify



506 12 Semisimple Lie Groups

κ([yα, yβ ], [y−α, y−β ]) ≤ 0.

For this verification we need some information on sl2(C)-modules. First
we put

e := yα and f :=
2

(α, α)
y−α

and note that α̌ = hα = [e, f ], so that (h, e, f) satisfies the commutation
relations of sl2. Since the α-string through β defines a simple module over the
Lie algebra g(α) = gα + g−α +Cα̌, it follows from the calculation in the proof
of Proposition 5.2.4 that

[y−α, [yα, yβ ]] = cyβ

for some c ≥ 0. This leads to

κ([yα, yβ ], [y−α, y−β ]) = −κ(
[
y−α, [yα, yβ ]

]
, y−β) = −cκ(yβ , y−β) = −c ≤ 0.

Now we set

u := ihR ⊕
⊕

α∈∆

R(yα − y−α)⊕
⊕

α∈∆

Ri(yα + y−α).

Applying

[yα + εy−α, yβ + δy−β ] = Nα,βyα+β + εN−α,βy−α+β

+δNα,−βyα−β + εδN−α,−βy−α−β

= Nα,β(yα+β − εδy−α−β) + N−α,β(εy−α+β − δyα−β),

to the cases ε = δ = −1, ε = δ = 1 and ε = −δ = 1, we see that u is a real
subalgebra of g. The relation gR = u⊕ iu is obvious. By Lemma 12.2.1, it only
remains to show that κ(x, x) < 0 for 0 6= x ∈ u. In view of Proposition 5.3.1,
this follows from

κ(yα − y−α, yα + y−α) = 1− 1 = 0

and

κ(yα − y−α, yα − y−α) = −2, κ
(
i(yα + y−α), i(yα + y−α)

)
= −2. ut

Lemma 12.2.8. Let g be a complex Lie algebra and u be a compact real form
of g with corresponding involution τ . Then for each γ ∈ Aut(g), γ(u) is a
compact real form of g with involution γ ◦ τ ◦ γ−1.

Proof. Since γ is an automorphism, γ(u) again is a real form of g and its
compactness follows from u ∼= γ(u). Clearly γτγ−1 is the unique antilinear
involution of g fixing γ(u) pointwise. ut
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12.2.2 Existence of a Cartan Involution

Now let g be a real semisimple Lie algebra and u be a compact real form of
gC. We want to use u to obtain a Cartan involution, resp., decomposition of
g. If the antilinear involution τ of gC with (gC)τ = u preserves the subalgebra
g, then

g = (g ∩ u)⊕ (g ∩ iu)

is a Cartan decomposition of g (Proposition 12.2.5(i)), and

ig = i(u ∩ g)⊕R (u ∩ ig).

This means that τ and the involution σ corresponding to the real form g of
gC have a simultaneous eigenspace decomposition, so that they commute. If,
conversely, σ and τ commute, then they are simultaneously diagonalizable
over R, so that g is τ -invariant and τ restricts to a Cartan involution on g.

We are therefore looking for a compact real form u of gC whose involution
commutes with σ. To find such an involution, we have to replace u by ϕ(u)
for a suitable automorphism ϕ. To get an idea for how to find ϕ, consider
the commutator ρ := στσ−1τ−1 = στστ . Then ρ is complex linear, hence in
Aut(gC), and we have

ρσ = σρ−1 = (ρσ)−1 and ρτ = τρ−1 = (ρτ)−1.

Now ρ(u) is a compact real form of gC and ρτρ−1 is the corresponding invo-
lution. If

σ(ρτρ−1) = (ρτρ−1)σ,

or, equivalently, (σρτρ−1)2 = idg, we may take ϕ := ρ, but

(σρτρ−1)(σρτρ−1) = στρ−2σρτρ−1 = στσρ3τρ−1 = στστρ−4 = ρ−3.

Thus ρ(u) still is not the desired compact real form. But if one can find an
automorphism γ of g with γ4 = ρ, γσ = σγ−1 and γτ = τγ−1, then γ(u) is a
compact real form of the desired kind because

σ(γτγ−1)σ(γτγ−1) = στγ−2σγ2τ = στσγ4τ = στσρτ = 1.

To find γ, we introduce a scalar product for which ρ is positive definite. Since
the roots should also be complex linear, one needs a hermitian scalar product
and the following lemma:

Lemma 12.2.9. Let g be a semisimple real Lie algebra and u a compact real
form of gC with corresponding involution τ . Let κ be the Cartan–Killing form
of gC and σ be the involution of gC corresponding to the real form g. We then
have:

(i) κτ (x, y) := −κ(x, τy) for x, y ∈ gC defines a hermitian scalar product
on gC.
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(ii) στ is a hermitian automorphism of gC.
(iii) ρ := (στ)2 is positive definite.
(iv) There is a hermitian derivation δ ∈ der(gC) with eδ = ρ, σδσ = −δ and

τδτ = −δ.

Proof. (i) In view of Exercise 12.2.2, we have

κτ (x, y) = −κ(x, τy) = −κ(τx, τ2y) = −κ(y, τx) = κτ (y, x).

For 0 6= x = a + ib with a, b ∈ u, we get

κτ (x, x) = −κ(a, a)− κ(ib,−ib) = −κ(a, a)− κ(b, b)
= −κu(a, a)− κu(b, b) > 0.

Hence κτ is positive definite.
(ii) κτ (στx, y) = −κ(στx, τy) = −κ(τx, στy) = −κ(x, τστy) = κτ (x, στy).
(iii) follows from (ii).
(iv) Since ρ is positive definite, δ := log ρ is a hermitian endomorphism

of (gC, κτ ) and Proposition 12.1.5 on the polar decomposition of Aut
(
(gC)R

)
implies that δ ∈ der gC. From σρσ = ρ−1 we further derive that σδσ = −δ,
and we likewise get τδτ = −δ. ut

By the remarks above, we now have that στγ = τγσ for γ = e
1
4 δ and

τγ = γτγ−1, i.e., the compact real form γ(u) is invariant under σ. We thus
obtain:

Theorem 12.2.10. Every real semisimple Lie algebra has a Cartan decom-
position.

12.2.3 Conjugacy of Cartan Decompositions

Next we turn to the variety of all Cartan decompositions of a real semisimple
Lie algebra. The next theorem is the key to the fact that any two Cartan
decompositions are conjugate.

Theorem 12.2.11. Let g be a real semisimple Lie algebra, τ ∈ Aut(g) be a
Cartan involution and U ⊆ Aut(g) be a compact subgroup. Then there exists
a γ ∈ Aut(g)0 with

γUγ−1 ⊆ Aut(g)τ = {ϕ ∈ Aut(g) : ϕτ = τϕ}.

Proof. Let κτ be the scalar product on g associated with τ . Then

U × Sym(g, κτ ) → Sym(g, κτ ), (u,A) 7→ π(u)A := uAu>,

defines a linear action of the compact group U on the vector space Sym(g, κτ ).
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Let ϕ be a positive definite automorphism of g which is fixed under this
action. Using the polar decomposition of Aut(g) (Proposition 12.1.5), we write
ϕ = ead x with x ∈ p. We set γ := e−

1
2 ad x ∈ Aut(g)0. Then

uγ−2 = uϕ = ϕ(u>)−1 = γ−2(u>)−1,

and therefore

(γuγ−1)> = (γ−1u>γ) = γ−1u−1γ = (γuγ−1)−1.

In view of (12.1) this is equivalent to γuγ−1 ∈ Aut(g)τ so that γUγ−1 ⊆
Aut(g)τ .

Hence it remains to find a positive definite fixed point of U in Aut(g). As
a first step, we define

ψ :=
∫

U

π(u)1 dµU (u) =
∫

U

uu> dµU (u),

where dµU is the normalized Haar measure on U . Then ψ> = ψ. For x ∈
g \ {0}, we have

κτ (ψx, x) = κτ

( ∫

U

uu> dµU (u)x, x
)

=
∫

U

κτ

(
uu>x, x

)
dµU (u) =

∫

U

κτ

(
u>x, u>x

)
dµU (u) > 0,

because κτ (x, x) > 0. Thus ψ is positive definite, and ψ is fixed under the
action of U because

π(u0)ψ =
∫

U

π(u0u)1 dµU (u) =
∫

U

π(u)1 dµU (u)

follows from the left invariance of µU .
For a linear action of a compact group which leaves a pointed convex cone

with nonempty interior invariant, the above construction gives a fixed point
in the interior of this cone. Hence we would have achieved our goal if ψ were
a Lie algebra automorphism of g. But this will not be the case in general
(cf. Example 12.2.12). However, we can use ψ to find ϕ as required. To this
end, we define

H : Aut(g)+ := Aut(g) ∩ Pds(g, κτ ) = ead p → R, g 7→ tr(ψg−1 + gψ−1).

Note that Aut(g)+ is a closed subset of End(g) because tr(ad x) = 0 for x ∈ g
implies that | det g| = 1 for g ∈ Aut(g)+. For u ∈ U , we have ugu> ∈ Aut(g)
by (12.1), so that

H
(
π(u)g

)
= tr(ψ(u−1)>g−1u−1 + ugu>ψ−1)

= tr(uψu>(u−1)>g−1u−1 + ugu>(u−1)>ψ−1u−1)
= tr(uψg−1u−1 + ugψ−1u−1) = tr(ψg−1 + gψ−1) = H(g).
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Because of
H(g) = tr(ψ

1
2 g−1ψ

1
2 + ψ−

1
2 gψ−

1
2 ),

we get H(g) > 0 for all g ∈ ead p. Our strategy is to show that H has a unique
minimum, which will be the required automorphism ϕ.
Existence of a minimum: We choose an orthonormal basis x1, . . . , xn for
g consisting of eigenvectors of ψ. Let e1, . . . , en be the corresponding rank-1
operators on g defined by ei(xj) = δijxi. Then ψ =

∑n
i=1 eriei with ri ∈ R,

and we have

H(g) =
n∑

i=1

(
eri tr(eig

−1) + e−ri tr(gei)
)
.

For M > 0, we consider the set CM := {g ∈ Aut(g)+ : H(g) ≤ M}. This is a
closed subset of Aut(g)+ and hence of End(g) because Aut(g)+ is closed. For
H(g) ≤ M , we have eri tr(eig

−1) + e−ri tr(gei) ≤ M for all i, and there exists
an M ′ > 0 with tr(gei) = tr(eigei) ≤ M ′ for all i and g ∈ CM . In particular,
tr(g

1
2 (g

1
2 )>) = tr(g) ≤ nM ′, and this is the sum of the squares of the entries

of g
1
2 . Hence this closed set is bounded and therefore compact. If we choose

M := H(id), then the existence of a minimum of H immediately follows from
the fact that we can restrict our attention to a compact set.
Uniqueness of the minimum: We suppose that there are two minima B
and C. Then we find P and Q in ad p with e2P = B and eQ = e−P Ce−P . We
set η(t) := eP etQeP , so that η(0) = B and η(1) = C, and show that H ◦ η is
strictly convex. For this, we set ψ′ := e−P ψe−P , choose a basis as above such
that Q has diagonal form Q =

∑n
i=1 siei, and calculate as follows:

H(η(t)) = tr(ψe−P e−tQe−P + eP etQeP ψ−1)
= tr(eP e−P ψe−P e−tQe−P + eP etQeP ψ−1eP e−P )

= tr(ψ′e−tQ + etQψ′−1) =
n∑

i=1

(
e−tsi tr(ψ′ei) + etsi tr(eiψ

′−1)
)
.

Since ψ′ is positive definite, we have tr(ψ′ei) = κτ (ψxi, xi) > 0 for every i,
and therefore the above function is strictly convex. By H(η(0)) = H(η(1)), it
thus follows that η(0) = B = η(1) = C. This proves the existence of a unique
minimum ϕ. For u ∈ U , we have H(π(u)ϕ) = H(ϕ), so that the uniqueness
of the minimum leads to π(u)ϕ = ϕ. ut
Example 12.2.12. Let g = sl2(R) with the basis h, t, u as in Example 12.2.4.
We set

γ := ead h, θ := e
π
2 ad u and α := γθγ−1.

Then θ2 = idg and α2 = idg. In particular, V := {idg, α} is a compact
subgroup of Aut(g). We show that the linear map ψ in the proof of Theo-
rem 12.2.11 is not an automorphism of g, in general. In our case, we have

ψ =
1
2
(1 + αα>) and αα> = γθγ−2θγ = γ3θ2γ = γ4.
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Therefore [h, t± u] = ±2(t± u) leads to

ψ(t± u) =
1
2
(1 + e±8)(t± u).

On the other hand [t + u, t − u] = 2[u, t] = 4h = ψ(4h), so that
(1 + e8)(1 + e−8) 6= 4 implies that ψ is not an automorphism of g.

Corollary 12.2.13. If g = k⊕ p = k̃⊕ p̃ are two Cartan decompositions of g,
then there exists a γ ∈ Aut(g)0 such that

γ(k) = k̃ and γ(p) = p̃.

Proof. Let θ and θ̃ be the corresponding Cartan involutions. If θ and θ̃ com-
mute, then

k̃ = (̃k ∩ k)⊕ (̃k ∩ p),

but since all nonzero elements in p are symmetric with respect to κθ (hence
generate unbounded one-parameter groups) and all elements in k̃ gener-
ate bounded one-parameter groups of automorphisms of g, it follows that
k̃ ∩ p = {0}, and likewise p̃ ∩ k = {0}. This implies that k̃ = k and p̃ = p.

Since θ̃ is an involution, Theorem 12.2.11 provides a γ ∈ Aut(g)0 with
θ′ := γθ̃γ−1 ⊆ Aut(g)θ. Then θ and θ′ are two commuting Cartan involutions,
hence coincide. This leads to θ = cγ(θ̃), and the assertion follows. ut
Proposition 12.2.14. Let G be a Lie group with semisimple Lie algebra and
τ a Cartan involution of its Lie algebra g, and

K := {g ∈ G : τ Ad(g) = Ad(g)τ}.

Then for each subgroup U ⊆ G for which Ad(U) is relatively compact there
exists an element g ∈ G0 with gUg−1 ⊆ K.

Proof. By Theorem 12.2.11, there exists a g ∈ G0 with

Ad(g)Ad(U)Ad(g)−1 = Ad(gUg−1) ⊆ Aut(g)τ .

Then gUg−1 ⊆ Ad−1(Aut(g)τ ) = K ut

Exercises for Section 12.2

Exercise 12.2.1. Let V be a finite-dimensional complex vector space and
A ∈ End(V ) be a complex linear endomorphism, which can also be considered
as a real linear endomorphism AR of the underlying real vector space. Show
that

trR(AR) = 2 Re trR(A).
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Exercise 12.2.2. Let g be a complex Lie algebra, κ its Cartan–Killing form
and σ : g → g an antilinear automorphism of g. Then

κ
(
σ(x), σ(y)

)
= κ(x, y) for x, y ∈ g.

Exercise 12.2.3. Let g be a real semisimple Lie algebra and gC its complex-
ification. Show that

ngC(g) = {z ∈ gC : [z, g] ⊆ g} = g.

Exercise 12.2.4. Let g be a semisimple Lie algebra, g =
⊕n

i=1 gi the decom-
position into simple ideal and g = k ⊕ p be a Cartan decomposition. Show
that

(i) k =
∑n

i=1 k ∩ gi.
(ii) p =

∑n
i=1 p ∩ gi, and that

(iii) gi = (k ∩ gi)⊕ (p ∩ gi) is a Cartan decomposition of gi.

Exercise 12.2.5. Prove Weyl’s theorem on complete reducibility 4.5.21 using
representation theory of compact groups.

12.3 The Iwasawa Decomposition

In Section 12.1 we have seen how to use the polar decomposition of GLn(R)
to obtain a Cartan decomposition of semisimple Lie groups. Now we turn to
another decomposition of this class of Lie groups, the Iwasawa decomposi-
tion. At the end of this section, we will see how the Cartan and the Iwasawa
decomposition are connected.

In this section, g denotes a real semisimple Lie algebra and g = k + p
is a Cartan decomposition with the involution τ . Further, G is a connected
Lie group with L(G) = g. We write κ for the Cartan–Killing form of g and
κτ (x, y) := −κ(x, τy) for the corresponding scalar product.

Definition 12.3.1. Let a ⊆ p be a maximal abelian subalgebra. With respect
to κτ , all operators ad x, x ∈ a, are symmetric, hence in particular diagonaliz-
able. By Lemma 5.1.3, we thus have a simultaneous eigenspace decomposition

g = g0 ⊕
⊕

α∈∆

gα with gα := gα(a) = {x ∈ g : (∀a ∈ a)[a, x] = α(a)x}

and we call
∆ := ∆(g, a) :=

{
α ∈ a∗ \ {0} : gα 6= {0}}

the root system of g with respect to a.

Lemma 12.3.2. For each α ∈ ∆ ∪ {0}, we have τ(gα) = g−α.
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Proof. For x ∈ gα, α ∈ a∗ and a ∈ a, we have

[a, τ(x)] = τ [τ(a), x] = −τ [a, x] = −α(a)τ(x),

which implies the lemma. ut
The root system ∆ is finite, so that there exists some a0 ∈ a with α(a0) 6= 0

for all α ∈ ∆. We set

∆+ := ∆+(a0) := {α ∈ ∆ : α(a0) > 0} and ∆− := −∆+.

Then ∆ is the disjoint union of ∆+ and ∆−. We set

n :=
∑

α∈∆+

gα and b := a + n.

Theorem 12.3.3 (Iwasawa Decomposition of a Semisimple Lie Alge-
bra). The subspace n is a nilpotent Lie subalgebra of g, b ∼= noa is a solvable
subalgebra, and g is the vector space direct sum

g = k + a + n.

Proof. First we observe that for α, β ∈ ∆+ with α + β ∈ ∆, the root α + β
is positive, i.e., an element of ∆+. Therefore [gα, gβ ] ⊆ gα+β (Proposition
5.1.5) implies that b and n are Lie subalgebras of g. If c := min ∆+(a0),
c′ := max∆+(a0) and kc > c′, then no sum of k roots α1, . . . , αk in ∆+ is a
root, and this leads to Ck(n) = {0}, i.e., n is nilpotent. As a ∼= b/n is abelian
and [b, b] ⊆ n, the Lie algebra b is solvable.

Now let x ∈ g. According to the root decomposition with respect to a, it
can be written as

x = a + k +
∑

α∈∆

xα

with xα ∈ gα, a ∈ a and k ∈ k∩g0. Here we use that g0 is τ -invariant (Lemma
12.3.2), which leads to

g0 = (g0 ∩ k)⊕ (g0 ∩ p) = (g0 ∩ k)⊕ a.

For α ∈ −∆+, we write

xα = (xα + τxα)− τxα.

Here the first summand is contained in k because it is τ -invariant, and the
second one is contained in g−α ⊆ n. Hence x ∈ k + a + n. It remains to show
that the sum k + a + n is direct. So let x + y + z = 0 with x ∈ k, y ∈ a and
z ∈ n. Applying τ , we obtain x − y + τ(z) = 0. Substituting x now gives
2y = τ(z)− z. By Lemma 5.1.3, the sum a + n + τ(n) is direct, and therefore
y = z = 0, which also implies x = 0. ut
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Lemma 12.3.4. If α, β ∈ a∗ with α + β 6= 0, then κ(gα, gβ) = 0.

Proof. Let x ∈ gα, y ∈ gβ and a ∈ a with (α + β)(a) = 1. Then

−α(a)κ(x, y) = κ([x, a], y) = κ(x, [a, y]) = β(a)κ(x, y)

leads to κ(x, y) = (α + β)(a)κ(x, y) = 0. ut
Lemma 12.3.5. There is a basis for g such that the matrix representing ad x
is:

(i) skew-symmetric for x ∈ k.
(ii) diagonal for x ∈ a.
(iii) strictly lower triangular for x ∈ n.

Proof. We choose a κτ -orthonormal basis h1, . . . , hn for g0 and an orthonormal
basis e1

α, . . . , enα
α ∈ gα for α ∈ ∆+. We show that

{h1, . . . , hn} ∪ {ei
α, τei

α : α ∈ ∆+, i = 1, . . . , nα}

is a basis for g with the desired properties. Since κτ is invariant under τ ,
all basis vectors have length 1. In view of Lemma 12.3.4, the basis is κτ -
orthogonal. Clearly, (i) and (ii) are fulfilled. Now we order ∆+ as follows:

α1, . . . , αk and αi(a0) ≤ αj(a0) for i ≤ j

(with a0 from the definition of ∆+), and we set

B := (τe
nαk
αk , . . . , τe1

αk
, . . . , τe1

α1
, h1, . . . , hn, e1

α1
, . . . , e

nαk
αk )

If x is a basis vector in gα and n ∈ gβ ⊆ n, then [n, x] ∈ gα+β with
(α + β)(a0) > α(a0), which implies (iii). ut
Example 12.3.6. An Iwasawa decomposition of g = sln(R) can be ob-
tained as follows. With respect to the Cartan involution τ(x) = −x> we
have k = son(R), the Lie algebra of skew-symmetric matrices and p =
{x ∈ Symn(R) : tr x = 0}. Therefore the subspace a of all diagonal matri-
ces in p is maximal abelian and for a suitable ordering of the corresponding
roots, n is the subalgebra of strictly lower triangular matrices in g.

Lemma 12.3.7. Let G be a Lie group with Lie algebra g, and let k, b be
subalgebras with g = k + b and k ∩ b = {0}. For the integral subgroups K :=
〈exp k〉 and B := 〈exp b〉, endowed with the intrinsic Lie group structure, the
map

Φ : K ×B → G, (k, b) 7→ kb

is everywhere regular.
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Proof. From Φ(kk′, b′b) = kΦ(k′, b′)b we obtain the relation

T(k,b)(Φ)
(
T1(λk)x, T1(ρb)y

)
= Tb(λk)T1(ρb)T(1,1)(Φ)(x, y)
= Tb(λk)T1(ρb)(x + y)

for x ∈ k and y ∈ b. Since the addition map k×b → g is a linear isomorphism,
it follows that T(k,b)(Φ) is an isomorphism for any k ∈ K and b ∈ B. ut
Theorem 12.3.8 (Iwasawa Decomposition of a Semisimple Lie Group).
Let g = k + a + n be an Iwasawa decomposition of the semisimple Lie alge-
bra g and G be a connected Lie group with L(G) = g. Then the subgroups
K := 〈expG k〉, A := expG a and N := expG n are closed and the multiplica-
tion map

Φ : K ×A×N → G, (k, a, n) 7→ kan

is a diffeomorphism. Moreover, the groups A and N are simply connected.

Proof. Step 1: First we assume that Z(G) = {1}, so that G ∼= Ad(G). We
choose a basis for g according to Lemma 12.3.5. Then the elements of K are
represented by orthogonal matrices, the elements of A by diagonal matrices
with positive entries, and the elements of N are represented by unipotent
matrices.

We start with the injectivity of Φ. If kan = k′a′n′, then k−1k′ =
ann′−1a′−1 is an orthogonal lower triangular matrix with positive diagonal
entries, hence the identity matrix. This implies that k′ = k, a = a′, and hence
also n′ = n.

Since n is nilpotent, N = ead n is an integral subgroup of G (cf. Corol-
lary 10.2.7), and Proposition 2.3.3 implies that n → N, x 7→ ead x is a homeo-
morphism onto a closed subset of G. It follows in particular that N is simply
connected. That A is also simply connected and closed follows from the fact
that the exponential function of

D := {diag(a1, . . . , ad) : ai ∈ R×+} ⊆ GLd(R)

is a diffeomorphism. Since A normalizes N , B := AN is a subgroup of G. Since
the group of lower triangular matrices is a semidirect product of D and the
group U of unipotent lower triangular matrices, the group B = AN ∼= A×N
is closed (as a product of two closed subsets of a product space) and the map
A×N → B, (a, n) 7→ an is a diffeomorphism (Lemma 12.3.7). The subgroup
K of G is compact by Proposition 12.1.5, and B is closed, so that the product
KB also is closed (Exercise 12.3.5). In view of Lemma 12.3.7 and the Inverse
Function Theorem, the relation g = k⊕b implies that the set KB is also open.
Since G is connected, KB = G, i.e., Φ is surjective. This proves the assertion
for the group Ad(G) = Aut(g)0.

Step 2: Now we turn to the general case. Then the groups A, and N ,
resp., coincide with the identity components of the preimages of Ad(A) and
Ad(N), resp., so that they are closed. Note also that [a, n] ⊆ n implies that A
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normalizes N , so that AN is a subgroup. Since the group Ad(AN) is simply
connected by Part 1, Z(G)∩AN = ker(Ad |AN ) = {1}, and therefore Ad |AN

is a diffeomorphism of AN onto Ad(AN). Further, Ad(K) ∩ Ad(AN) = {1}
leads to K ∩ AN ⊆ kerAd = Z(G), and hence to K ∩ AN = {1}. This
implies the injectivity of Φ. To see that Φ is also surjective, let g ∈ G and
write Ad(g) = Ad(k)Ad(a)Ad(n) with k ∈ K, a ∈ A and n ∈ N . Then
gn−1a−1k−1 ∈ Z(G) ⊆ K (Lemma 12.1.6), and thus Φ is surjective, too. The
regularity of Φ follows again by applying Lemma 12.3.7 twice. ut

The following result provides the connection between Cartan and Iwasawa
decomposition.

Corollary 12.3.9. With the notation of Theorem 12.3.8, let B = AN , P :=
expG p, and θ be the corresponding Cartan involution of G. Then the map

ψ : b 7→ θ(b)b−1

is a diffeomorphism of B onto P .

Proof. Let b ∈ B and write it as b = expG(x)k with x ∈ p and k ∈ K
(Theorem 12.1.7). Then θ(b)b−1 = expG(−2x) ∈ P . In particular, ψ(B) ⊆ P .

Claim 1: ψ is injective. For θ(b)b−1 = θ(b′)b′−1, we have θ(b−1b′) = b−1b′,
and thus b−1b′ ∈ K ∩B = {1}.

Claim 2: ψ is surjective. Let p = expG x ∈ P with x ∈ p. Then there
exist b ∈ B and k ∈ K with expG( 1

2x) = kb−1 (Theorem 12.3.8), and then
ψ(b) = p.

The smoothness of ψ−1 follows from the fact that it is a composition
of the maps (expG |p)−1 : P → p, ex 7→ x, the multiplication with 1

2 on p,
the projection onto the B-component G = KB → B, g = kb → b, and the
inversion b 7→ b−1. ut

Exercises for Section 12.3

In this section, we encountered several methods to decompose noncompact
semisimple Lie groups. To see how these decompositions look like in concrete
cases, we will have a closer look at the most important example SL2(R).

Exercise 12.3.1. Let exp: sl2(R) → SL2(R) be the exponential function, and
let k(x) := 1

2 tr(x2). Then we have

exp x = C
(
k(x)

)
1 + S

(
k(x)

)
x for x ∈ sl2(R),

where the functions C, S : R→ R are defined by

C(t) =

{
cosh

√
t, for t ≥ 0,

cos
√−t, for t < 0,

and S(t) =





1√
|t| sinh

√
t, for t ≥ 0,

1√
|t| sin

√−t, for t < 0.
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Exercise 12.3.2. A one-parameter group expRx of SL2(R) is compact if and
only if tr(x2) < 0.

As before, we use the following basis for sl2(R):

h =
(

1 0
0 −1

)
, t =

(
0 1
1 0

)
and u =

(
0 1
−1 0

)
.

Exercise 12.3.3. With respect to this basis, we have:

(a) k(αh + βt + γu) = 1
2 tr

(
(αh + βt + γu)2

)
= α2 + β2 − γ2.

(b) exp(αh + βt) = cosh
√

α2 + β21 + 1√
α2+β2

sinh
√

α2 + β2 · (αh + βt).

(c) det(δ1 + αh + βt + γu) = δ2 + γ2 − β2 − α2.
(d) SL2(R) is a three-dimensional hyperboloid in gl2(R) = span{1, h, t, u}.
(e) Use the Cartan decomposition SL2(R) = SO2(R) exp(Rh + Rt) to obtain

a parameterization of this hyperboloid.

Exercise 12.3.4. With e := 1
2 (t + u) =

(
0 1
0 0

)
, we have

(a) exp(ζe) = 1 + ζe.
(b) g = Ru ⊕ Rh ⊕ Re is an Iwasawa decomposition of sl2(R) with k = Ru,

a = Rh and n = Re. Hint: Choose a0 := h ∈ a to define ∆+.
(c) Compute the parameterization of SL2(R) that one obtains from the Iwa-

sawa decomposition SL2(R) = SO2(R) exp(Rh) exp(Re).

Exercise 12.3.5. Let G be a topological group, K ⊆ G be a compact sub-
group and F ⊆ G be a closed subset. Show that the product set KF is closed.

Notes on Chapter 12

The existence of a Cartan decomposition is a crucial step in the understanding
of the structure of semisimple Lie groups. The path we follow to obtain this
result builds heavily on the theory of Lie algebras developed in Chapters 4 and
5 and in particular on Serre’s Theorem. An alternative route to the existence
of a Cartan decomposition, based on the Riemannian manifold of positive
definite matrices (cf. [La99]) and, more generally, Riemannian manifolds with
seminegative curvature, has been described by S. K. Donaldson in [Do07].

For a more detailed structure theory of semisimple Lie groups as it is
needed for representation theory, we refer to [Wa88] and [Kn02].
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General Structure Theory

In this chapter we shall reach our first main goal, namely the Manifold Split-
ting Theorem, that a Lie group G with finitely many connected components is
diffeomorphic to K×Rn, where K is a maximal compact subgroup. Many re-
sults we proved so far for special classes of groups, such as nilpotent, compact
and semisimple ones, will be used to obtain the general case. This approach is
quite typical for Lie theory. To prove a theorem for general Lie groups, one first
deals with special classes such as abelian, nilpotent and solvable groups, and
then one turns to the other side of the spectrum, to semisimple Lie groups.
Often the techniques required for semisimple and solvable groups are quite
different. To obtain the Manifold Splitting Theorem for general Lie groups,
Levi’s Theorem is a crucial tool to combine the semisimple and the solvable
pieces because the Levi decomposition g = r o s of a Lie algebra implies a
corresponding decomposition G = R o S of the corresponding 1-connected
Lie group G. This is already the central idea for the simply connected case.
To deal with a general Lie group G, we need a better understanding of the
center of a connected Lie group, because G is a quotient of its simply con-
nected covering by a discrete central subgroup. We have to understand how
this influences the splitting of G̃ to obtain a solution of the general case.

Similar strategies can be applied to many problems in Lie theory. Often it
is not easy to say on which level the difficulties will appear. For the splitting
problem, most of the work has been done already in the semisimple case, where
we had to prove the existence of Cartan decompositions and the Conjugacy
Theorem 12.2.11.

13.1 Maximal Compact Subgroups

In this section, we show that every Lie group G with finitely many connected
components contains a maximal compact subgroup K, and that any other
compact subgroup U ⊆ G is conjugate to a subgroup of K under inner auto-
morphisms.
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Lemma 13.1.1. If the Lie group G = V oγ K is a semidirect product, where
V is a vector group and K is compact, then for every compact subgroup U ⊆ G,
there exists a v ∈ V with vUv−1 ⊆ K.

Proof. We write the elements u ∈ U as u = σ(u)τ(u), where σ(u) ∈ V and
τ(u) ∈ K. Then

σ(u1u2) = σ(u1) + γ(τ(u1))σ(u2),

so that
α(u)v := γ(τ(u))v − σ(u)

defines a smooth affine action of U on V . The condition vUv−1 ⊆ K is equiv-
alent to

(v,1)(σ(u), τ(u))(−v,1) = (v+σ(u)−γ(τ(u))v, τ(u)) = (v−α(u)v, τ(u)) ∈ K

for all u ∈ U, which is equivalent to α(u)v = v. Therefore we have to show
that the affine action α of U on V admits a fixed point.

Such a fixed point can easily be constructed with a normalized Haar mea-
sure µU on U . For some v0 ∈ V , we consider the center of mass of its U -orbit

v :=
∫

U

α(u)v0 dµU (u)

and claim that v is a fixed point. In fact, since µU is normalized, we have for
any w ∈ V and A ∈ End(V ) the relation

∫

U

(Af(u) + w) dµU (u) = A

∫

U

f(u) dµU (u) + w,

which leads for g ∈ U to

α(g)v =
∫

U

α(g)α(u)v0 dµU (u) =
∫

U

α(gu)v0 dµU (u) = v

by left invariance of the Haar measure. ut
Lemma 13.1.2. A Lie group G whose Lie algebra g is not semisimple either
contains a nontrivial closed normal vector subgroup or a nontrivial normal
torus.

Proof. Since g is not semisimple, its radical r is nonzero. The last nonzero
element a = Dn(r) of its derived series is a nonzero abelian ideal of g which
is invariant under all automorphisms of g (Exercise 13.1.1), hence in partic-
ular under Ad(G). Therefore A := 〈expG a〉 is a nontrivial connected closed
normal abelian subgroup of G. If A is not a vector group, then A ∼= V ×K,
where V is a vector group and K is the unique maximal compact subgroup
of A (cf. Example 8.5.6). In view of the uniqueness, K is invariant under all
automorphisms of A, hence in particular under conjugation by elements of G,
and therefore a normal subgroup of G. Since K is abelian and connected, it
is a torus. ut
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Theorem 13.1.3 (Maximal Compact Subgroups). Any Lie group G
with finitely many connected components contains a compact subgroup C with
the property that for every other compact subgroup U of G, there exists a
g ∈ G such that cg(U) ⊆ C. This subgroup has the following properties:

(i) C is maximal compact.
(ii) C ∩ G0 is connected and C intersects each connected component of G.

In particular, the inclusion C ↪→ G induces a group isomorphism
π0(C) → π0(G).

(iii) Any other maximal compact subgroup of G is conjugate to C under some
element of G0.

(iv) C0 = C ∩G0 is maximal compact in G0.
(v) If U ⊆ G is a compact subgroup intersecting each connected component

and for which U ∩ G0 is maximal compact in G0, then U is maximal
compact in G.

Proof. First we deal with two special cases.
Case a: L(G) is a compact Lie algebra. Then Corollary 11.1.21 implies

the existence of a vector subgroup V and a compact subgroup C with G ∼=
V oC. Since all compact subgroups of V are trivial, C is clearly maximal and
Lemma 13.1.1 implies that any other compact subgroup U of G is conjugate
under G0 to a subgroup of C. Property (ii) follows from the semidirect product
structure of G.

Case b: L(G) is semisimple. Let g = k⊕p be a Cartan decomposition and
τ be the corresponding involution. Then K := {g ∈ G : Ad(g)τ = τ Ad(g)} is
a closed subgroup of G whose Lie algebra L(K) = k is compact (cf. Theorem
12.1.7). Hence Case (a) implies that K contains a maximal compact subgroup
C. If U ⊆ G is compact, then Proposition 12.2.14 implies that U is conjugate
under G0 to a subgroup of K, and conjugating with a suitable element in K0

(Case (a)), we see that it is even conjugate to a subgroup of C. Property (ii)
follows from Case (a) and the polar decomposition diffeomorphism K×p ∼= G
(Theorem 12.1.7).

Now we prove the theorem, including property (ii), by induction on the
dimension n of G. If dim G = 0, then G = π0(G) is finite, so that we may put
C := G. Let us assume that the theorem holds for all Lie groups of dimension
< n and with finitely many connected components. The case where G is
semisimple has already been treated above. If G is not semisimple, then one
of the two cases from Lemma 13.1.2 occurs.
Case c.1: G contains a nontrivial normal torus T . Then our induction hy-
pothesis implies the assertion for the quotient Lie group Q := G/T and some
compact subgroup CQ. Let q : G → Q denote the quotient map and put
C := q−1(CQ).

This is a compact subgroup of G for which C ∩ G0 = q−1(CQ ∩ Q0) is
connected because T is connected and CQ ∩ Q0 is connected. It is also clear
that C intersects each connected component of G because CQ intersects each
connected component of Q. Let U ⊆ G be another compact subgroup. Then
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q(U) is compact in Q, and there exists some x ∈ Q with cx(q(U)) ⊆ CQ =
q(C). Writing x = q(g) for some g ∈ G, we have q(C) ⊇ q(cg(U)), which leads
to cg(U) ⊆ q−1(q(C)) = C.
Case c.2: G contains a nontrivial normal vector subgroup V . Then the theo-
rem holds for Q := G/V and we write CQ ⊆ Q for the corresponding maximal
compact subgroup. Then M := q−1(CQ) is a closed subgroup of G containing
the normal vector group V and for which M/V ∼= CQ is compact. By Theo-
rem 11.1.13, M ∼= V o C for a compact Lie group C. Since V is connected,
G0 = q−1(Q0), which leads to M ∩G0 = q−1(CQ∩Q0), and the connectedness
of CQ ∩Q0 and V imply that M ∩G0 is connected. Hence the connectedness
of C ∩G0 follows from C ∩G0

∼= q(C ∩G0) = q(M ∩G0) = CQ ∩Q0. Since V
is connected and M intersects each connected component of G, the subgroup
C also intersects each connected component of G.

Let U ⊆ G be another compact subgroup. Then q(U) is a compact sub-
group of Q, so that there exists an element x = q(g) ∈ Q with q(cg(U)) =
cx(q(U)) ⊆ CQ. This leads to cg(U) ⊆ M . Now we use Lemma 13.1.1 to find
an m ∈ M with cm(cg(U)) = cmg(U) ⊆ C.

(i) Let U ⊇ C be a compact subgroup and pick g ∈ G with cg(U) ⊆ C.
Then cg(U) ⊆ C is a compact subgroup of the same dimension, hence open.
Next we observe that C and cg(C) have the same finite number of connected
components, which leads to C = cg(C), and hence to cg(U) = cg(C), and
finally to C = U .

(ii) follows from the construction.
(iii) Let U ⊆ G be another maximal compact subgroup of G. Then there

exists a g ∈ G with cg(U) ⊆ C, so that the maximality of U implies that
cg(U) = C. Since G = CG0 by (ii), we may write g = kg0, so that ck(C) = C
leads to C = cg(U) = cg0(U).

(iv) We have already seen that the subgroup C0 := C ∩ G0 is connected,
hence equal to the identity component of C. To see that C0 is maximal com-
pact in G0, let U ⊇ C0 be a compact subgroup of G0 containing C0. Then U
is also a compact subgroup of G, so that there exists a g ∈ G with cg(U) ⊆ C.
Then cg(U) ⊆ C ∩ G0 = C0, and cg(C0) ⊆ C0 is a compact connected sub-
group of the same dimension, hence equal to C0. Therefore U ⊆ cg−1(C0) = C0

yields U = C0, showing that C0 is maximal compact in G0.
(v) Since U is conjugate to a subgroup of C, we may w.l.o.g. assume that

U ⊆ C. Then the maximality of U ∩ G0 ⊆ C0 implies U ∩ G0 = C0. Since
U intersects each connected component of G, it contains all other connected
components of C, which leads to the equality C = U . ut
Corollary 13.1.4. Any two maximal tori of a Lie group G are conjugate
under the group of inner automorphisms.

Proof. Since each maximal torus T of G is contained in the identity component
G0, we may w.l.o.g. assume that G is connected. Then Theorem 13.1.3 implies
that T is contained in a maximal compact subgroup C, and that any other
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maximal torus T ′ is conjugate to a maximal torus of C. Now the assertion
follows from Theorem 11.2.2. ut

Exercises for Section 13.1

Exercise 13.1.1. We call an ideal n of a Lie algebra g fully characteristic if
it is invariant under all automorphisms and it is called characteristic if it is
invariant under all derivations. Prove the following assertions:

(i) If n E g is an ideal and b E n is characteristic, then b E g is an ideal.
(ii) The ideals Dn(g) and Cn(g) are characteristic and fully characteristic.
(iii) If g is finite-dimensional, then its radical r is fully characteristic and so

are the ideals Dn(r) and Cn(r) for each n.
(iv) If g is a finite-dimensional real Lie algebra, then each fully characteristic

ideal of g is characteristic.

Exercise 13.1.2. Let G be a compact Lie group and K ⊆ G a subgroup
isomorphic to G. Show that K = G.

13.2 The Center of a Connected Lie Group

In this section we show that the center of a connected Lie group G is contained
in the exponential image. Further we explain how it can be described in terms
of the Lie algebra g, which leads to the concept of a compactly embedded
subalgebra.

Theorem 13.2.1. For each connected Lie group G, we have

Z(G) ⊆ expG g.

Proof. If qG : G̃ → G is the simply connected covering group, then qG(Z(G̃)) =
Z(G) (Proposition 8.5.2), and since qG(expG̃(g)) = expG(g), we may assume
that G is 1-connected.

If g = r o s is a Levi decomposition of g (cf. Theorem 4.6.6 and Def-
inition 4.6.7), we have G ∼= R o S, where R and S are the 1-connected
Lie groups with Lie algebras r and s, respectively (Proposition 10.1.19). Let
z = (r, s) ∈ Z(G). Since the projection onto S is a group homomorphism,
s ∈ Z(S). By Lemma 12.1.6, s is contained in a connected subgroup K of S
with compact Lie algebra. According to Corollary 11.2.3, there exists a y ∈ s
with s = expG y. Hence it suffices to consider the group G1 := Ro expG(Ry)
which is solvable and contains (r, s) in its center.

Replacing G1 by its universal covering, we may thus assume that G is
simply connected and solvable. If N is a nilpotent Lie group, then its center
is connected (Proposition 10.2.9) and Z(N) = expN (z(n)). The commutator
group G′ of G is nilpotent. Since the connected group G/G′ is abelian, there
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exists an element y ∈ g with z ∈ expG(y)G′. Now it suffices to consider the
subgroup G′ o expG(Ry). Then, by Corollary 10.2.7, z = expG(y) expG(x)
with x ∈ g′, and z ∈ Z(G) implies that expG x and expG y commute. Thus

expG x = cexpG y(expG x) = expG(ead yx)

leads to x = ead yx because the exponential function of the simply connected
nilpotent Lie group G′ is injective (Corollary 10.2.7). As ad y is nilpotent, we
conclude that [y, x] = 0, which finally gives

z = expG y expG x = expG(x + y). ut
The preceding theorem is an important first step to access the center of a

connected Lie group from its Lie algebra. However, it is not explicit enough
to be really useful in practice. Below, we shall see that there even exists an
abelian subalgebra t ⊆ g with Z(G) ⊆ expG t.

Definition 13.2.2. A subalgebra k ⊆ g is called compactly embedded if the
subgroup

INNg(k) = 〈expG ad k〉 ⊆ Aut(g)

is compact (cf. Definition 11.1.3). An element x ∈ g is called compact if Rx is
compactly embedded. We write comp(g) for the set of compact elements of g.

Lemma 13.2.3. If k ⊆ g is compactly embedded, then k is a compact Lie
algebra.

Proof. Clearly, k ⊆ g is invariant under the compact group INNg(k), so that
INNg(k)|k ⊇ ead k implies that INNk(k) is also compact, i.e., k is a compact Lie
algebra. ut
Lemma 13.2.4. If ϕ : g1 → g2 is a surjective homomorphism of Lie algebras
and k be compactly embedded in g1, then ϕ(k) is compactly embedded in g2.

Proof. Since INNg1(k) is compact, there exists an Inng1(k)-invariant scalar
product on g1, and then the orthogonal complement E of kerϕ in g1 is invari-
ant under Inng1(k). Since ϕ is surjective, ϕ|E : E → g2 is a linear isomorphism.
For x ∈ k we have

ϕ ◦ (ad x|E) = ad(ϕ(x)) ◦ ϕ|E ,

showing that
INNg2(ϕ(k)) = ϕ ◦ INNg1(k) ◦ (ϕ|E)−1

is compact. ut
Definition 13.2.5. Let G be a connected Lie group with Lie algebra g. We
fix a maximal compactly embedded subalgebra k, a Cartan subalgebra h ⊆ k
(which is maximal abelian because k is compact). Further, let t ⊆ h be the
Lie algebra of a maximal torus in H := expG h. We set K := 〈expG k〉 and
T := expG t.
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Lemma 13.2.6. The subgroups H and K of G are closed.

Proof. Since INNg k is compact, this also holds for INNg

(
L(K)

)
because

Ad(K) ⊆ Ad(K) = INNg k. Hence the the maximality of k shows that K is
closed. The fact that H is closed in K (and hence in G) follows from the rela-
tion H = NK(h)0, which in turn follows from h = nk(h) and Lemma 10.1.1. ut
Theorem 13.2.7. (a) Two maximal compactly embedded subalgebras of g are

conjugate under INNg g.
(b) The Cartan subalgebras of the maximal compactly embedded subalgebras

are the maximal compactly embedded abelian subalgebras.
(c) Two maximal compactly embedded abelian subalgebras of g are conjugate

under INNg g.

Part (a) of this theorem will be sharpened in Exercise 13.5.1 below.

Proof. (a) By the Maximal Compact Subgroup Theorem 13.1.3, we may as-
sume that INNg k is contained in a maximal compact subgroup U of INNg g.
Since k is maximal compactly embedded, we then have k = ad−1(L(U)). Let
k̃ be another maximal compactly embedded subalgebra of g. Theorem 13.1.3
implies the existence of γ ∈ INNg g with Inng γ(̃k) = cγ(Inng k̃) ⊆ U . Therefore

γ(̃k) ⊆ ad−1(L(U)) = k.

By the maximality of γ(̃k), it now follows that γ(̃k) = k.
(b) If h is a maximal compactly embedded abelian subalgebra, then it is

contained in some maximal compactly embedded subalgebra k, and by maxi-
mality it is maximal abelian in k, hence a Cartan subalgebra (Lemma 11.2.1).

Conversely, let h be a Cartan subalgebra of a maximal compactly em-
bedded subalgebra k of g. We have to show that every compactly embedded
abelian subalgebra a containing h coincides with h. To this end, we choose a
maximal compactly embedded subalgebra k̃ containing a. Then a is contained
in a Cartan subalgebra of k̃. By (a), k̃ is isomorphic to k. In particular, k and
k̃ have the same rank. Consequently, dim a ≤ dim h, and therefore, a = h.

(c) This follows from (a) and Lemma 11.2.1. ut
Theorem 13.2.8 (Fundamental Theorem on the Center). The center
of a connected Lie group G is given by

Z(G) = expG{x ∈ h : Spec (ad x) ⊆ 2πiZ}

for every maximal compactly embedded abelian subalgebra h of g.

Proof. In view of Proposition 8.5.2, it suffices to assume that G is simply con-
nected. By Theorem 13.2.1, Z(G) is contained in the image of the exponential
function. Let z ∈ Z(G). Then there exists an x ∈ g with expG x = z and
Rx is a compactly embedded abelian subalgebra of g. Hence there exists a
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γ ∈ INNg g with γ(x) ∈ h (Lemma 13.2.7). By the simple connectedness of G,
the automorphism γ of g induces an automorphism γ̃ of G with L(γ̃) = γ.
Since every such automorphism α̃ for α ∈ Inn(g) = 〈ead g〉 fixes the center of
G pointwise, this also holds for γ. Therefore

expG

(
γ(x)

)
= γ̃(expG x) = γ̃(z) = z ∈ expG h.

Any x ∈ h with expG x = z satisfies Ad(expG x) = ead x = idg, and con-
sequently Spec (ad x) ⊆ 2πiZ = exp−1

C×(1) (cf. Exercise 2.2.7). The converse
follows from Ad(exp x) = ead x because all operators ad x, x ∈ h, are semisim-
ple (cf. Exercise 2.2.7). ut
Remark 13.2.9. If , then

We know already from Lemma 8.2.4 that for a Lie group G the map
L(G) → Hom(R, G), x 7→ γx, defined by γx(t) := expG(tx) is bijective. For
T = R/Z, the quotient map qT : R→ T is the universal covering and

Hom(T, G) → Hom(R, G), γ 7→ q∗Tγ = γ ◦ qT

is an injection. For an element x ∈ L(G) the homomorphism γx factors
through a homomorphism γx : T → G if and only if γx(1) = expG x = 1,
which leads to a bijection

{x ∈ g : expG x = 1} → Hom(T, G).

Corollary 13.2.10. For any connected Lie group G, the following assertions
hold:

(i) Each homotopy class in π1(G) is represented by a curve of the form
γx(t) := expG(tx), where expG x = 1, i.e., γx defines a homomorphism
T→ G.

(ii) If G is connected abelian, then the assignment

π1(G) ∼= ker expG → Hom(T, G), x 7→ γx

is an isomorphism of abelian groups, where the group structure on the set
Hom(T, G) is given by the pointwise product.

(iii) If T ⊆ G is a maximal torus, then the inclusion i : T → G induces a
surjective homomorphism π1(i) : π1(T ) → π1(G) and if qG : G̃ → G is the
universal covering morphism, then ker qG ⊆ expG̃ t, where t = L(T ).

(iv) π1(G) is a finitely generated abelian group.
(v) For a maximal torus T ⊆ G, we have π1(G/T ) = {1}.

Proof. (i) Let [α] ∈ π1(G) be a homotopy class, and let qG : G̃ → G be the
universal covering of G. By Theorem 8.5.4 (cf. also Theorem A.2.5), there
exists a lifting α̃ : [0, 1] → G̃ of α with α̃(0) = 1 and d := α̃(1) ∈ Z(G̃).
Using Theorem 13.2.8, we find an x ∈ L(G) with expG̃ x = d. Since the paths
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γ : [0, 1] → G̃, t 7→ exp(tx) and α̃ are homotopic in the simply connected group
G̃, we have [α] = [qG ◦ γ], where

qG(γ(t)) = expG(tx) and expG(x) = qG(d) = 1.

(ii) Since the exponential map expG : g → G is the universal covering of
G, we have a natural isomorphism π1(G) ∼= ker expG, so that (ii) follows from
Remark 13.2.9 and γx · γy = γx+y.

(iii) Let t = L(T ) and observe that t is abelian compactly embedded. Let
h ⊇ t be maximal compactly embedded abelian, and H be the corresponding
integral subgroup which is closed (Lemma 13.2.6) and contains T as a maximal
torus. In the proof of (i) we saw that each element of π1(G) is represented
by a loop of the form t 7→ expG(tx) with x ∈ h satisfying expG x = 1. By
Theorem 11.1.18 any such x is contained in t, which implies that expG(Rx) ⊆
T , and this proves (iii).

(iv) In view of (iii), π1(G) is a quotient of π1(T ) ∼= Zdim T .
(v) If T is the maximal torus in (iii), then q−1

G (T ) = expG̃(t) follows from
ker qG ⊆ Z(G̃) ⊆ expG̃ t. Consequently, G/T ∼= G̃/q−1

G (T ) is simply connected
because q−1

G (T ) is connected (Corollary 10.1.14). ut

Exercises for Section 13.2

Exercise 13.2.1. Let G be a connected Lie group. Show that for x ∈ g the
following are equivalent:

(a) ead x = idg.
(b) expG(x) ∈ Z(G).
(c) adx is semisimple with Spec (ad x) ⊆ 2πiZ.

Exercise 13.2.2. Find a finite-dimensional connected Lie group G and an
element x ∈ L(G) with Spec (ad x) ⊆ 2πiZ for which expG x is not central
in G.

Exercise 13.2.3. Show that in a connected Lie group G any discrete sub-
group Γ ⊆ Z(G) is finitely generated. Why is the discreteness needed for this
conclusion?

It is natural to ask to which extent the condition that Γ is central is
necessary, or whether one can even show that every discrete abelian (or even
more general) subgroup of a connected Lie group is finitely generated.

Exercise 13.2.4 (Discrete subgroups which are not finitely gener-
ated). Show that the two matrices

(
1 2
0 1

)
and

(
1 0
−2 1

)
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generate a free subgroup of SL2(R), hence in particular a discrete subgroup
(cf. [dlH00, Ex. II.5, 25]). This example shows that the free group F2 with
two generators embeds as a discrete subgroup into SL2(R). The commutator
group N := (F2, F2) of F2 is a normal subgroup whose quotient F2/N ∼= Z2

is infinite, and one can show that this implies that N , which also is a discrete
subgroup of SL2(R), is not finitely generated (cf. [dlH00, Ex. III.A.3]).

In view of the preceding example, general discrete subgroups of connected
Lie groups need not be finitely generated. However, this is true for solv-
able discrete subgroups. More generally, for every closed solvable subgroup
H of a connected Lie group G, the group π0(H) is finitely generated ([Ra72,
Prop 3.8]). In particular, discrete abelian subgroups of connected Lie groups
are finitely generated. Conversely, the Structure Theorem for finitely gener-
ated abelian groups implies that all these groups (see Appendix 13.6 below)
occur as discrete subgroups of some (C×)n. For solvable groups the situation
is more subtle. If a solvable group Γ occurs as a discrete subgroup of a con-
nected Lie group, then all its subgroups also do, hence are finitely generated.
This is not true for all finitely generated solvable groups:

Exercise 13.2.5 (Finitely generated solvable groups with non-finitely
generated subgroups). Let Γ ⊆ Aff1(Q) ∼= Q o Q× ⊆ GL2(R) be the
subgroup generated by the two elements a := (0, 2) and b := (1, 0). Then

Γ ∼=
( 1

2∞
Z

)
o Z,

and the abelian subgroup 1
2∞Z :=

⋃
n

1
2nZ is not finitely generated.

Exercise 13.2.6. Let
1 → A → B → C → 1

be a short exact sequence of groups. Show that A and C have the property
that each subgroup is finitely generated if and only if B does.

Exercise 13.2.7. A finitely generated solvable group Γ has the property that
all its subgroups are finitely generated if and only if Γ is polycyclic, i.e., if it
has a normal series

Γ0 = {1} E Γ1 E Γ2 · · · E Γn = Γ

with cyclic factors Γi/Γi−1 for i = 1, . . . , n.

According to a theorem of Malcev and Auslander, a group is polycyclic
if and only if it is isomorphic to a solvable subgroup of some GLn(Z) (cf.
Chapters 2 and 3 in [Seg83]), so that the preceding discussion yields a char-
acterization of those finitely generated solvable groups that arise as discrete
subgroups of connected Lie groups.
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13.3 The Manifold Splitting Theorem

In Section 13.1 we proved the existence of a maximal compact subgroup K
in a Lie group G with finitely many connected components. Now we want to
prove that G is diffeomorphic to K×Rn for some n. To obtain this result, we
shall combine the Cartan decomposition of a semisimple Lie group with tech-
niques related to maximal compactly embedded subalgebras. According to our
guiding philosophy, we first decompose the Lie algebra in an appropriate way,
then prove the theorem in the simply connected case, and finally, we derive
the general case from the simply connected one. This technique in particular
provides quite explicit information on how to find the manifold splitting in
terms of the Lie algebra. But before we can address the decomposition of the
Lie algebra, we have to provide a few basic tools from representation theory.

Theorem 13.3.1. If π : g → gl(V ) is a finite-dimensional representation of
the Lie algebra g and U := 〈eπ(g)〉 is the closed subgroup of GL(V ) generated
by eπ(g), then a subspace W ⊆ V is a g-submodule if and only if it is U -
invariant.

Proof. Any g-submodule W of V is closed, hence invariant under eπ(x) for all
x ∈ g, and then also under U . If, conversely, W is U -invariant and x ∈ g, then
we obtain for each w ∈ W

π(x)w =
d

dt t=0
etπ(x)w ∈ W,

so that W is a g-submodule. ut
Lemma 13.3.2. Let π : k → gl(V ) be a finite-dimensional representation of a
Lie algebra k for which the group K := 〈eπ(k)〉 is compact. Then the following
assertions hold:

(a) The k-module V is semisimple, i.e., for every submodule W of V , there
exists a complementary submodule W ′ with V ∼= W ⊕W ′.

(b) V = Vfix ⊕ Veff with

Vfix :=
{
v ∈ V : π(k)v = {0}} and Veff := span π(k)V.

Proof. (a) Since the group K is compact, V carries a K-invariant scalar prod-
uct (Proposition 9.4.14). Now if W is a k-submodule, then W , and thus W⊥,
is invariant under K and a k-submodule by Lemma 13.3.1.

(b) In view of (a), there exists a k-submodule W ⊆ V complementing the
submodule Veff . Then π(k)W ⊆ W ∩ Veff = {0} shows that V = Vfix + Veff . If
W1 is a k-submodule of Veff complementing Vfix ∩ Veff , then

π(k)V ⊆ π(k)Veff = π(k)W1 ⊆ W1

implies that W1 = Veff , and therefore that the sum of Veff and Vfix is direct. ut
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Lemma 13.3.3. For every maximal compactly embedded subalgebra k of g,
there exists a Levi decomposition g = ro s with the following properties:

(1) [k, s] ⊆ s.
(2) [k ∩ r, s] = {0}.
(3) k = (k ∩ r)⊕ (k ∩ s).
(4) k′ ⊆ s, where k′ denotes the commutator algebra of k.
(5) k ∩ s is maximal compact in s.

Proof. Set a := k ∩ r. As a compact subalgebra of a solvable Lie algebra, a
is abelian. Now we decompose the semisimple a-module g into g = gfix ⊕ geff

(Lemma 13.3.2). Note that gfix = zg(a) is a subalgebra of g, and because of
geff = [g, a] ⊆ r, we have g = r + gfix, so that g/r ∼= gfix/(r ∩ gfix) (Theorem
4.1.17). This Lie algebra is semisimple, whence r∩gfix = rad(gfix) is the maxi-
mal solvable ideal in gfix. Applying Levi’s Theorem 4.6.6 to gfix, it follows that
gfix contains a Levi complement s̃ of g. Now we choose a Cartan decomposi-
tion s̃ = ks + p of s̃ (Theorem 12.2.10), and put k̃ := a + ks. Then [a, ks] = {0}
follows from s̃ ⊆ gfix. By Corollary 12.2.6, ks is compactly embedded in g,
so that [a, ks] = {0} implies that k̃ is a compactly embedded subalgebra of g
which satisfies (1)-(5) with respect to s̃.

We still have to prove that k̃ is maximal compactly embedded. Let k̂ ⊇ k̃ be
compactly embedded. By Lemma 13.2.4, the projection of k̂ in s̃ is compactly
embedded in s̃, hence cannot be strictly larger than ks, which leads to k̂ ⊆ roks,
and thus to k̂ = (̂k ∩ r) o ks. Since k̂ and k are conjugate under Aut(g) and
r is Aut(g)-invariant, k̂ ∩ r and a = k ∩ r have the same dimension, so that
a ⊆ k̂ leads to a = k̂ ∩ r. This in turn implies that k̃ = k̂, i.e., k̃ is maximal
compactly embedded. Finally we use Theorem 13.2.7 again to see that there
exists an automorphism γ ∈ Aut(g) with γ(̃k) = k. Then s := γ(s̃) and k
satisfy (1)-(5). ut
Lemma 13.3.4. Let n be a nilpotent Lie algebra with the Campbell-Hausdorff
multiplication ∗ : n × n → n, let a ⊆ z(n) be a subspace, and n+ be a vector
space complement to a in n. Then the map

Φ : a× n+ → n, (x, y) 7→ x ∗ y = x + y

is a diffeomorphism.

Proof. This is an easy exercise. ut
Lemma 13.3.5. A compactly embedded subalgebra a of a nilpotent Lie algebra
n is central.

Proof. For x ∈ a, the operator ad x is semisimple and nilpotent at the same
time, so that ad x = 0. ut
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Lemma 13.3.6. Let R be a simply connected, solvable Lie group with Lie
algebra r, n ⊆ r a nilpotent ideal containing the commutator algebra r′, a ⊆ r
be a subspace with a ∩ n = {0}, and N := 〈expR n〉. Then the map

Φ : N × a → 〈expR(a + n)〉, (n, x) 7→ expR(x)n

is a diffeomorphism.

Proof. Let M := 〈expR(a+n)〉 be the integral subgroup of R corresponding to
the Lie subalgebra m := n+a. Since m contains r′, it is an ideal, and therefore
M is normal, hence simply connected and closed (Theorem 10.1.21). W.l.o.g.,
we may now assume that R = M , i.e., g = n + a.

First we note that Φ is smooth. If Φ(n, x) = Φ(n′, x′), then

expR/N (x) = expR(x)N = expR(x′)N = expR/N (x′),

and therefore, x = x′ since the exponential function of the vector group R/N
is injective. The surjectivity of Φ also follows from the surjectivity of the
exponential function of R/N . It remains to prove that the differential of Φ
is injective in every point. So let (n, x) ∈ N × a, v ∈ n and w ∈ a with
T(n,x)(Φ)(v, w) = 0. If π : R → R/N denotes the quotient map, then

π ◦ Φ(n, x) = expG/N (x)

implies that

Tx(expG/N )w = TΦ(n,x)(π)T(n,x)(Φ)(v, w) = 0,

so that the regularity of expG/N (which even is a diffeomorphism) leads to
w = 0. This in turn implies that 0 = T(n,x)(Φ)(v, 0) = v. Hence Φ is a
local diffeomorphism, and since we know already that it is bijective, it is a
diffeomorphism. ut

In the following, n denotes the maximal nilpotent ideal of g and r is the
radical of g (cf. Remark 6.4.7).

Theorem 13.3.7. Let G be a 1-connected Lie group with Lie algebra g. We
choose a maximal compactly embedded subalgebra k ⊆ g and a Levi subalgebra
s as in Lemma 13.3.3. In addition, we choose k-submodules e and n+ of g such
that

k ∩ r = (k ∩ n)⊕ e and n = (k ∩ n)⊕ n+

are direct sums of k-modules. For any k-module complement f of k∩ r in r, we
then have

r = n⊕ e⊕ f with [k ∩ r, f] = {0},
and find a Cartan decomposition s = ks ⊕ p with ks = k ∩ s of s. If K :=
〈expG k〉, then the map

Φ : n+ × f× p×K → G, (x, f, p, k) 7→ exp(x) exp(f) exp(p)k

is a diffeomorphism.
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Proof. The existence of the required k-submodules follows from Lemma 13.3.2.
Since (k ∩ r) + n contains the commutator algebra of r, this subspace is an
ideal of r, hence is invariant under k ∩ r. Let f be a k-module complement of
(k ∩ r) + n = n + e in r. Then we have

[f, k ∩ r] ⊆ (
(k ∩ r

)
+ n) ∩ f = {0}.

Now K := 〈exp k〉 is a closed subgroup (Lemma 13.2.6) and K∩R = exp(k∩r)
is a closed vector group since R is a 1-connected solvable Lie group, hence does
not contain a nontrivial torus (Theorem 10.2.15). We put KS := 〈exp ks〉, to
obtain an isomorphism of Lie groups

Ψ : (k ∩ n)× e×KS → K, (an, ae, k) 7→ exp(an) exp(ae)k.

For x ∈ n+, by [p, k ∩ r] = {0} and [f, k ∩ n] = {0}, we obtain that

Φ
(
x, f, p, exp(an) exp(ae)k

)
= exp(x) exp(f) exp(p) exp(an) exp(ae)k

=
(
exp(x) exp(an)

)(
exp(f) exp(ae)

)(
exp(p)k

)
.

Since G ∼= R o S and p × KS → S, (p, k) 7→ exp(p)k is a diffeomorphism
(Theorem 12.1.7), we may now assume that G = R is solvable.

Applying Lemma 13.3.6 twice, we see that the map

(N × f)× e → R, (x, f, ae) 7→
(
x exp(f)

)
exp(ae)

is a diffeomorphism. Therefore it remains to show that

n+ × (k ∩ n) → N, (x, k) 7→ exp(x) exp(k)

is a diffeomorphism. But this follows from Lemma 13.3.4 and Lemma 13.3.5.
ut

To get this theorem for general connected Lie groups, we have to control
the behavior of our decompositions under coverings. This is not very hard
since we already know that the center is entirely contained in the subgroup
K = 〈expG k〉.
Theorem 13.3.8 (First Manifold Splitting Theorem). Let G be a con-
nected Lie group and keep the notation from Theorem 13.3.7. Then the map

Φ : n+ × f× p×K → G, (x, f, p, k) 7→ exp(x) exp(f) exp(p)k

is a diffeomorphism. It is K-equivariant with respect to the conjugation action
on G and the action k · (x, f, p, g) := (Ad(k)x, Ad(k)f, Ad(k)p, kgk−1) on the
left.
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Proof. This theorem holds for the simply connected covering G̃ of G by
Theorem 13.3.7. Let qG : G̃ → G be the universal covering morphism and
K̃ := 〈expG̃ k〉. Then ker qG ⊆ Z(G̃) ⊆ Z(K̃) is discrete (Theorem 13.2.8).
If Φ̃ is the respective map for G̃, then we have the following commutative
diagram:

n+ × f× p× K̃
Φ̃ //

idn+×f×p ×qG|K̃
²²

G̃

qG

²²
n+ × f× p×K

Φ
// G

From this diagram, we immediately read off the bijectivity of Φ. Since both
vertical maps and Φ̃ are local diffeomorphisms, this also follows for Φ. Hence
Φ is a diffeomorphism. ut
Remark 13.3.9. If g is reductive, then n+ = f = {0}, so that we have a
diffeomorphism

Φ : p×K → G, (x, k) 7→ exp(x)k.

Moreover, g = z(g)⊕s, where s = [g, g] is semisimple, and k = z(g)⊕ ks, where
s = ks ⊕ p is a Cartan decomposition.

Corollary 13.3.10. If G is a connected Lie group, then the following asser-
tions hold:

(i) If t ⊆ g is compactly embedded abelian, then the centralizer ZG(t) =
{g ∈ G : Ad(g)|t = idt} is connected.

(ii) If T ⊆ G is a torus, then its centralizer ZG(T ) is connected.

Proof. (i) Let k ⊇ t be maximal compactly embedded and K := 〈expG k〉.
Then the First Manifold Splitting Theorem 13.3.8 implies that

Φ : n+ × f× p×K → G, (x, f, p, k) 7→ expG(x) expG(f) expG(p)k

is a K-equivariant diffeomorphism. For T := expG t ⊆ K and an Ad(T )-
invariant subspace V ⊆ g, we write V T := {v ∈ V : Ad(t)v = v} for the
subspace of T -invariant elements. Then Φ induces a diffeomorphism

(n+)T × fT × pT × ZK(t) → ZG(t).

Therefore it suffices to show that ZK(t) is connected.
Using the Structure Theorem 11.1.18 for groups with compact Lie algebra,

we write K = V × C, where V is a vector subgroup and C is compact. Then
we accordingly have k = v⊕ c and write a := (t + v)∩ c for the projection of t
to c. Since v is central in k,

ZK(t) = ZK(t + v) = V × ZC(a) = V × ZC(expC(a)),
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and since A := expC(a) is a torus in C, the centralizer ZC(A) is connected
by Corollary 11.2.11. This proves that ZK(t) and therefore also ZG(t) are
connected.

(ii) follows from (i) because ZG(T ) = ZG(L(T )) and L(T ) is compactly
embedded abelian. ut
Theorem 13.3.11 (Second Manifold Splitting Theorem). Let G be a
Lie group with finitely many connected components and C ⊆ G be a maximal
compact subgroup. Then there exists a closed submanifold M of G diffeomor-
phic to some Rn, such that the map

M × C → G, (m, k) 7→ mc

is a diffeomorphism.

Proof. Clearly, L(C) is a compactly embedded subalgebra of g, hence con-
tained in a maximal compactly embedded subalgebra k. Let K ⊆ G0 be the
corresponding integral subgroup. In view of the Maximal Compact Subgroup
Theorem 13.1.3, C0 is maximal compact in G, and since it is contained in K,
it is also maximal compact in K. As k = L(K) is a compact Lie algebra, there
exists a vector group V with K ∼= C0 × V (Theorem 11.1.18).

Using the construction from Theorem 13.3.7 we put

M := exp(n+) exp(f) exp(p)V.

Then Theorem 11.1.18 and Theorem 13.3.8 imply that the map

µ : M × C → G, (m, c) 7→ mc

restricts to a diffeomorphism M × C0 → G0.
Note that µ(m, cd) = µ(m, c)d for c, d ∈ C. Since C by the Maximal

Compact Subgroup Theorem intersects each connected component of G, µ is
surjective. To see that it is also injective, note that mc = m′c′ implies that
c′c−1 ∈ G0∩C = C0, so that the injectivity of the restriction to M×C0 implies
that c = c′ and hence that m = m′. The regularity of µ on M × C follows
from the regularity on M ×C0. We conclude that µ is a regular bijection, i.e.,
a diffeomorphism. ut
Theorem 13.3.12. For a 1-connected Lie group G, the following are equiva-
lent

(i) G is diffeomorphic to some Rn.
(ii) G contains no nontrivial compact subgroup.
(iii) For any maximal compactly embedded subalgebra k of g, the corresponding

integral subgroup K of G is a vector group.
(iv) The maximal compactly embedded subalgebras k of g are abelian.
(v) The maximal compactly embedded subalgebras ks of the semisimple quotient

s := g/r are abelian.
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(vi) s ∼= sl2(R)n for some n ∈ N0.

Proof. (i) ⇒ (ii): Suppose that G is diffeomorphic to Rn for some n > 0. Then
the Poincaré Lemma 9.3.20 implies that Hj

dR(G) = {0} for j > 0. If C ⊆ G
is a maximal compact subgroup, then the existence of a manifold splitting
G ∼= Rk × C implies that Hn−k

dR (G) ∼= Hn−k
dR (C) (Corollary 9.3.18), and since

C is compact and connected,

Hn−k
dR (C) 6= {0}

(Corollary 9.4.25). This proves that k = n, so that C = {1}.
(ii) ⇒ (i) is an immediate consequence of the manifold splitting.
(ii)⇔ (iii): This follows from the fact that K ∼= C×V , where C is maximal

compact in G and V is a vector group (Theorem 11.1.18), combined with the
conjugacy of maximal compact subgroups and Theorem 13.3.8.

(iii) ⇔ (iv): Since K is 1-connected by Theorem 13.3.8, L(C) = k′ is the
commutator algebra of k, hence trivial if and only if k is abelian.

(iv) ⇔ (v): With k and s as in Lemma 13.3.3, k ∩ r is central in k, so that
k′ = k′s. Therefore k is abelian if and only if ks has this property.

(v) ⇔ (vi): Since any Cartan decomposition of s is adapted to the de-
composition into simple ideals (Exercise 12.2.4) this follows from Proposi-
tion 12.1.10. ut
Theorem 13.3.13 (Maximal Compact Subgroups and Normal Sub-
groups). Let G be a Lie group, N ⊆ G be a closed normal subgroup and
p : G → G/N be the quotient map. If π0(G) and π0(N) are finite, then the
following assertions hold:

(i) If T ⊆ G is a maximal torus and K ⊆ G a maximal compact subgroup,
then
(a) K∩N , resp., p(K), are maximal compact subgroups of N , resp., G/N .
(b) T ∩N0, resp., p(T ) are maximal tori in N , resp., G/N .
(c) Suppose that G and N are connected. If G or the two groups N and

G/N are 1-connected, then all these groups are 1-connected.
(ii) If N contains a maximal compact subgroup of G and V is an integral

subgroup with G = V N , then V ∩N is connected.

Proof. (i) (c) Let qG : G̃ → G be the universal covering homomorphism. The
integral subgroup N1 of G̃ corresponding to n := L(N) is 1-connected (The-
orem 5.1.11), so that the first row of the diagram in the Homotopy Group
Theorem 10.1.15 and Remark 10.1.17 yield a short exact sequence

1 → π1(N) → π1(G) → π1(G/N) → 1. (13.1)

This proves (i)(c).
(i)(a) Let KN ⊆ N be a maximal compact subgroup and K1 be a maximal

compact subgroup of G containing KN . Then there exists a g ∈ G such
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that gKg−1 = K1 (Theorem 13.1.3). Hence g−1KNg is a maximal compact
subgroup of N contained in K ∩ N . Since the group K ∩ N is compact, we
conclude that g−1KNg = K∩N , hence that K∩N is maximal compact in N .

To see that p(K) is maximal compact in G/N , we first note that, as a
homomorphic image of a compact group, p(K) is compact, so that it remains
to prove maximality. Since p(K) intersects each connected component of G/N ,
it suffices to show that p(K0) is maximal compact in (G/N)0 ∼= G0/(N ∩G0)
(Theorem 13.1.3(v)). For the proof of the maximal compactness of p(K) in
G/N , we may therefore assume that G is connected. The natural projection
q : G/N0 → G/N, gN0 7→ gN is a finite covering, so that inverse images of
compact subgroups of G/N are compact subgroups of G/N0. Hence a subgroup
U ⊆ G/N0 is maximal compact if and only if q(U) is maximal compact in G/N
and ker q ⊆ U . As KN is maximal compact in N , it intersects each connected
component of N , so that the image of K in G/N0 contains the subgroup N/N0.
Therefore it is maximal compact if and only if p(K) is maximal compact in
G/N , and we may thus also assume that N is connected.

Let K1 ⊇ p(K) be a maximal compact subgroup of G/N . First we show
that the commutator groups p(K)′ and K ′

1 are equal. Let k1 := L(K1). Then
k′1 is a compact semisimple Lie algebra, so that there exists a homomorphism
β : k′1 → g with L(p) ◦ β = idk′1 (Corollary 4.6.10). Let Q1 := 〈expG β(k′1)〉
denote the integral subgroup of G corresponding to β(k′1). Then Q1 is com-
pact because k′1 is semisimple. Then there exists an element x ∈ G with
xQ1x

−1 ⊆ K (Theorem 13.1.3). Then p(K) ⊇ p(x)p(Q1)p(x)−1 contains the
group p(x)K ′

1p(x)−1. So p(K) contains the commutator group of the maxi-
mal compact subgroup p(x)K1p(x)−1 of G/N . Therefore p(K)′ is a maximal
compact semisimple integral subgroup of G/N , so that p(K)′ = K ′

1.
It remains to show that dim Z

(
p(K)

)
= dim Z(K1). To see this, we recall

that
rk π1(G/N) = rk π1(K1) = dim Z(K1), (13.2)

where the first equality follows from the Second Manifold Splitting Theo-
rem 13.3.11 and the second one from Corollary 11.2.7. We likewise have
rkπ1(G) = rk π1(K) = dim Z(K). Next we note that (13.1) implies

rk π1(G) = rk π1(N) + rk π1(G/N0) (13.3)

(see Proposition 13.6.6 in the appendix to this chapter). Further, the homo-
topy sequence for the quotient G/N = (G/N0)/(N/N0) (Remark 10.1.17)
implies that π1(G/N0) is of finite index |N/N0| in π1(G/N). In particular
rkπ1(G/N0) = rk π1(G/N). Combining all this, we now obtain

dim Z(K) = dim Z(K ∩N) + dim Z(K1).

Since Z(K)∩N ⊆ Z(K ∩N), we have dim Z(K)∩N ≤ dim Z(K ∩N), hence

dim p
(
Z(K)

) ≥ dim Z(K)− dim Z(K ∩N) = dim Z(K1).
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On the other hand, p
(
Z(K)

)
commutes with K ′

1 and therefore with K1, hence
is contained in Z(K1). In view of the estimate of the dimension, this proves
that Z(K1)0 = p

(
Z(K)0

)
. Finally, K1 = K ′

1Z(K1)0 ⊆ p(K) shows that p(K)
is maximal compact in G/N .

(i)(b) Let K ⊇ T be a maximal compact subgroup of G. Then K ∩N is a
normal subgroup of K, and (a) implies that it is a maximal compact subgroup
of N . Therefore, in view of (a), it remains to show that T ∩N0 is a maximal
torus in K ∩ N and that p(T ) is a maximal torus in p(K). Thus, we may
w.l.o.g., assume that G = K is compact and connected.

We have a direct decomposition k = n ⊕ a, where a is a complementary
ideal. Since the Cartan subalgebra t = L(T ) decomposes accordingly, we con-
clude that t∩n is a Cartan subalgebra of n and that t∩a ∼= L(p)(t) ⊆ k/n is a
Cartan subalgebra. Therefore expK(t∩n) = (N ∩T )0 is a maximal torus in N
and since maximal tori of compact connected Lie groups are maximal abelian
(Corollary 11.2.11), we conclude that N0 ∩ T is connected, hence a maximal
torus of N0 and therefore also of N .

To see that p(T ) is a maximal torus in G/N we first note that, as a
homomorphic image of a torus, p(T ) is a torus. Since p(T ) = expG/N (L(p)t)
is of the same dimension as a ∩ t, we conclude further that it is a maximal
torus in K/N .

(ii) Let K ⊆ N be a maximal compact subgroup of G. In view of (i),
q(K) = {1} is a maximal compact subgroup of G/N . Therefore the group
G/N is 1-connected by the Second Manifold Splitting Theorem 13.3.11. The
mapping q|V : V → G/N is surjective with kernel V ∩ N , which leads to
G/N ∼= V/(V ∩ N) if V is endowed with its intrinsic Lie group topology. It
follows in particular that V/(V ∩N) is simply connected. The canonical map
V/(V ∩N)0 → V/(V ∩N) is a covering (Lemma 10.1.11), hence trivial since
the image is simply connected. This proves that V ∩N is connected. ut

13.4 The Exponential Function of Solvable Groups

We return to the structure of connected solvable Lie groups in the light of
the Manifold Splitting Theorem. For solvable groups, any maximal compactly
embedded subalgebra is abelian. As a special case of Theorem 13.3.11, we
thus have:

Theorem 13.4.1. Let G be a connected solvable Lie group and T ⊆ G be a
maximal torus. Then T is maximal compact in G and there exists a closed
submanifold M ∼= Rn ⊆ G such that the map

M × T → G, (m, t) 7→ mt

is a diffeomorphism.
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If G is simply connected, this also holds for T , so that T is trivial. Theorem
13.3.8 provides a decomposition of G into three exponential manifold factors
exp(n+) exp(f) exp(k). Since [k, f] = {0}, we have exp(f + x) = exp(f) exp(x)
for f ∈ f and x ∈ k. Hence exp(f) exp(k) = exp(f + k), and therefore,

G = exp(n+) exp(k + f).

The question arises, under which circumstances a single exponential factor
suffices. This in particular requires the exponential function to be regular.

Definition 13.4.2. A Lie algebra g is called exp-regular if (cf. Definition 8.2.30)

g = {x ∈ g : Spec (ad x) ∩ iR ⊆ {0}} = R regexp(g).

If g = L(G) for a connected Lie group, then this condition is equivalent to
expG being regular in each x ∈ g (Definition 8.2.30).

Remark 13.4.3. Any exp-regular complex Lie algebra g is nilpotent. In fact,
if g is not nilpotent, then Engel’s Theorem implies the existence of some x ∈ g
for which ad x is not nilpotent. Multiplying x with a suitable nonzero scalar,
we may assume that i ∈ Spec (ad x), so that g is not exp-regular.

Lemma 13.4.4. For an exp-regular real Lie algebra g, the following assertions
hold:

(i) comp(g) = z(g), i.e., z(g) is maximal compactly embedded.
(ii) All subalgebras of g are exp-regular.
(iii) All quotients of g are exp-regular.
(iv) g is solvable.

Proof. (i) If x ∈ comp(g), then ad x is semisimple with Spec (ad x) ⊆ iR.
Since Rx ⊆ R regexp(g), we obtain Spec (ad x) = {0}, so that ad x = 0 by
semisimplicity. This proves that comp(g) = z(g).

(ii) Let h ⊆ g be a subalgebra. For x ∈ h we then have Spec (adh x) ⊆
Spec (adg x), so that the exp-regularity of g implies that Spec (adh x) ∩ iR =
{0}, hence that h is exp-regular.

(iii) If q = g/n is a quotient of g and q : g → q is the quotient map, then
we also have for each x ∈ g the relation Spec (ad q(x)) ⊆ Spec (ad x), which
immediately shows that q is exp-regular.

(iv) Let s := g/r be the semisimple quotient g. In view of (iii), it is exp-
regular, and (i) implies that {0} = z(s) is maximal compact. Hence the sub-
algebra ks in any Cartan decomposition s = ks ⊕ p is trivial. This leads to
s = [s, s] = [p, p] ⊆ ks = {0}, so that g is solvable. ut

The preceding lemma shows that all Lie groups for which the exponential
function is a diffeomorphism, are solvable.
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Example 13.4.5. If G is a solvable Lie group with Lie algebra g, then the
condition that z(g) is maximal compactly embedded does not imply exp-
regularity. A typical example is given by

g := C2 oα R with α(t) = t

(
i 1
0 i

)
,

and G := C2 oβ R with β(t) := eα(t). Then g is solvable, z(g) = {0} is
maximal compactly embedded, and {0} ⊕R is a Cartan subalgebra of g (Ex-
ercise 13.4.1). Despite these facts, (0, 2π) is a singular point of the exponential
function because 2πi ∈ Spec (ad(0, 2π)).

Proposition 13.4.6. A solvable real Lie algebra g is exp-regular if and only
if there exists a Cartan subalgebra h ⊆ g such that for all roots α of gC with
respect to hC, we have

α(h) ∩ iR = {0}.
Proof. If there exists a Cartan subalgebra h ⊆ g, an element h ∈ h and a root
α ∈ ∆(gC, hC) with α(h) ∈ iR×, then 0 6= α(h) ∈ Spec (ad h) ∩ iR. Therefore
g is not exp-regular.

Assume, conversely, that g is not exp-regular and that

Spec (ad x) ∩ iR 6= {0}.

We denote the maximal nilpotent ideal of g by n and let h ⊆ g be any Cartan
subalgebra (Theorem 5.1.18). Because of [h, g] ⊆ g′ ⊆ n, all root spaces of gC
are contained in nC, and therefore g = n + h. In particular, there exists an
n ∈ n with y := x + n ∈ h. If we consider the action of ad y on the flag

{0} ⊆ Ck(n) ⊆ . . . ⊆ C2(n) ⊆ C1(n) = n,

then we see that Spec (ad y) = Spec (ad x), since both induce the same maps
on the quotient spaces Ci(n)/Ci+1(n). Therefore Spec (ad y) ∩ iR 6= {0}. As
the nonzero spectrum of ad y coincides with the values of the roots of gC on
y, there exists a root α with α(y) ∈ iR×. ut

As we already mentioned above, we want to know whether the exponential
function of a simply connected Lie group with exp-regular Lie algebra is a
diffeomorphism. For this, we need the following lemma.

Lemma 13.4.7. If G is a connected Lie group with exp-regular Lie algebra,
then the exponential function of G is surjective.

Proof. If qG : G̃ → G is the simply connected covering group, then
qG(im expG̃) = im (expG), so that we may w.l.o.g. assume that G is simply
connected.

We prove the assertion by induction on dimG. If dim G ≤ 1, then G is
abelian, so that its exponential function is surjective. Now we assume that
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the exponential functions of all connected Lie groups H with exp-regular Lie
algebra and dim H < dim G are surjective. Let n be the maximal nilpotent
ideal of g := L(G) and let g ∈ G. By the induction hypothesis and Lemma
13.4.4, the exponential function of G/ exp z(n) is surjective since exp z(n) is a
closed vector group in G by Theorem 10.2.15. Hence there exists an element
z ∈ z(n) and x ∈ g with g = expG(x) expG(z). The ideal z(n) of n is invariant
under all automorphisms of n, and since n is invariant under all automorphisms
of g, this property is inherited by z(n). We conclude that z(n) is an ideal of g.
Hence a := z(n)+Rx is a subalgebra of g and therefore exp-regular by Lemma
13.4.4.

Now it suffices to show that the exponential function of the integral sub-
group A := 〈exp a〉 is surjective. If x ∈ z(n), then a = z(n) is abelian, so
that expA(a) = A follows. If x 6∈ z(n), then a ∼= z(n) oad x R is a semidirect
product of the abelian Lie algebra V := z(n) and R, defined by the derivation
D := ad x with Spec (D)∩ iR = {0}. It remains to show that the exponential
function of the group A ∼= V oαR with α(t) = etD is surjective. For this group
it is given explicitly by

expA(x, t) =

{
(x, 0), for t = 0,(

etD−1
tD x, t

)
, for t 6= 0

(Exercise 10.2.3). For every t 6= 0, the linear map etD−1
tD is invertible because

Spec (D)∩iR ⊆ {0} (Exercise 8.2.13). This implies that expA is surjective. ut
We can now prove the following theorem:

Theorem 13.4.8 (Dixmier’s Theorem). For a 1-connected Lie group G
with Lie algebra g, the following are equivalent:

(i) expG is a diffeomorphism.
(ii) expG is injective.
(iii) expG is a regular map.
(iv) g is an exp-regular Lie algebra.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) follows from Lemma 8.2.31(b).
(iii) ⇔ (iv) since R regexp(g) = g if and only if regexp(g) = g.
(iii) ⇒ (i): By assumption, expG is regular, and it is surjective by Lemma

13.4.7. If expG is not injective, then Lemma 8.2.31 implies the existence of a
nontrivial torus in G. This contradicts Theorem 13.4.1 because G is simply
connected. ut
Remark 13.4.9. The characterization of exp-regular solvable Lie algebras is
originally due to Saito [Sai57] and Dixmier [Dix57]. Saito even develops a
testing device, characterizing the exp-regular Lie algebras as the solvable Lie
algebras not containing a subalgebra isomorphic to mot2, the Lie algebras
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of the motion group of the euclidian plane, or its four-dimensional central
extension osc, the oscillator algebra. These Lie algebras can be described in
terms of commutator relations as follows. The 3-dimensional Lie algebra mot2
has a basis u, p, q with

[u, p] = q, [u, q] = −p and [p, q] = 0,

whereas osc has a basis u, p, q, z, where z is central with

[u, p] = q, [u, q] = −p and [p, q] = z.

One implication of Saito’s result is trivial, because in both Lie algebras we
have i ∈ Spec (u), so that the occurrence of any such subalgebra in a Lie
algebra g implies that g is not exp-regular.

Conversely, any finite-dimensional non-exp-regular Lie algebra g contains
a triple (u, p, q) satisfying

[u, p] = q and [u, q] = −p. (13.4)

One finds more such pairs as follows: Put p1 := p, q1 := q and z1 := [p, q]
and, recursively, pi+1 := [zi, pi], qi+1 := [zi, qi], zi+1 := [pi+1, qi+1]. If g is
solvable, then it is easy to see that for some n the elements u, pn, qn, zn span
a subalgebra either isomorphic to mot2 or osc ([Sai57]). Here the main point
is that zi ∈ Di(g) vanishes if i is large enough.

Exercises for Section 13.4

Exercise 13.4.1. Let g ∼= no h, where n and h are nilpotent. If there exists
no 0 6= v ∈ n with [h, v] = {0}, then h is a Cartan subalgebra in g.

Exercise 13.4.2. Find a solvable Lie group with a surjective exponential
function whose Lie algebra is not exp-regular.

The following exercise shows that for 1-connected solvable Lie groups, the
surjectivity of the exponential function already implies exp-regularity of the
Lie algebra.

Exercise 13.4.3. Let G be a solvable Lie group whose exponential function
expG : g → G is surjective. Show that g is exp-regular. For the proof, proceed
along the following steps:

(a) We call a solvable Lie algebra g exponential if the exponential function of
the corresponding simply connected Lie group is surjective.

(b) If g is an exponential Lie algebra, then this also holds for all homomorphic
images of g.

(c) Let g be exponential, and let a ⊆ g be an ideal such that g/a is exp-regular,
then every subalgebra b of g containing a is also exponential.
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(d) Let g = a o Rx be exponential, where a is abelian. Show that g is exp-
regular.

(e) Let g be exponential, and let a ⊆ g be an abelian ideal such that g/a is
exp-regular. Then g is also exponential.

(f) Now show by induction that every exponential Lie algebra is exp-regular.

Exercise 13.4.4. Let G be a connected semisimple Lie group and G = KAN
be an Iwasawa decomposition of G (cf. Theorem 12.2.12). Show that the Lie
algebra of B := AN is exponential.

Exercise 13.4.5. We consider the solvable Lie group G from Exercise 10.2.1.
Why is expG not surjective? How can this be concluded without computing
the exponential function explicitly as in the proof of Dixmier’s Theorem? Hint:
Exercise 13.4.1.

13.5 Dense Integral Subgroups

We have already seen in the Integral Subgroup Theorem 8.4.8 that for each Lie
subalgebra h of the Lie algebra g of a Lie group G, the subgroup H := 〈expG h〉
of G carries a natural Lie group topology for which

L(H) ∼= h = {x ∈ g : expG(Rx) ⊆ H}.
The corresponding inclusion morphism ι : H → G is a topological isomor-
phism onto its image if and only if H is closed in G (Integral Subgroup The-
orem 8.4.8). If this is not the case, then H is a closed connected subgroup
of G, hence a Lie group. In this section we analyze the passage from H to
its closure. In particular, we shall derive an important criterion for the inte-
gral subgroups to be closed. In the process, the results on maximal compactly
embedded subalgebras and the center developed in Section 13.2 will be im-
portant tools. It is clear that we can restrict ourselves from the outset to the
case where H is dense in G (otherwise we may replace G by the Lie group H).

In this section, H = 〈expG h〉 always denotes a dense subgroup of the Lie
group G with Lie algebra g. In particular, G is connected.

Lemma 13.5.1. Every normal integral subgroup of H is normal in G. In
particular, H is a normal subgroup of G and h is an ideal in g.

Proof. By Theorem 10.1.2, an integral subgroup N ⊆ H is normal in H if and
only if its Lie algebra n := L(N) is invariant under Ad(H), and it is normal in
G if n is invariant under Ad(G). Since Ad(H) is dense in Ad(G), every ideal
of h is also invariant under Ad(G). ut

Since h is an ideal of g by Lemma 13.5.1, Theorem 10.1.21 implies that the
corresponding integral subgroup Ĥ := 〈expG̃ h〉 of the universal covering group
G̃ of G is a closed normal subgroup. Recall that G ∼= G̃/Γ , where Γ = ker qG
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is the discrete central kernel of the covering homomorphism qG : G̃ → G, and
this implies that q−1

G (H) = Ĥ · Γ is dense in G̃ (Exercise 11.2.8). Therefore,
Γ is nontrivial, so that G is not simply connected. We therefore have to take
a closer look at how discrete central subgroups of G̃ can be positioned with
respect to Ĥ.

This is a situation that often occurs in Lie theory. One wants to solve a
problem for general Lie groups, and one already controls it for simply con-
nected Lie groups. Then one studies what happens after factorization of dis-
crete central subgroups. As we already know from Lemma 13.2.10, the sub-
groups which appear here are always finitely generated, so that we shall need
some of results in Appendix 13.6 on finitely generated abelian groups.

Lemma 13.5.2. Let G be a 1-connected Lie group, k ⊆ g = L(G) be a max-
imal compactly embedded subalgebra, and D be a discrete central subgroup.
Then

rank
(
D ∩ exp z(k)

)
= rank D.

Proof. Let K := 〈expG k〉. First we recall that D ⊆ Z(K) (Theorem 13.2.8),
and note that K is 1-connected (Theorem 13.3.7), so that K ∼= K ′ × Z(K)0,
where K ′ is the commutator subgroup of K. The group K ′ is semisimple,
hence compact with finite center (Theorem 11.1.17) and Z(K)0 = exp z(k) is
a vector group. Now we apply Corollary 13.6.7 to the projection α : D → K ′.
Then α(D) ⊆ Z(K ′) is finite, so that

rank D = rank α(D) + rank kerα = rank
(
D ∩ Z(K)0

)
. ut

Theorem 13.5.3. For a dense integral subgroup H of the Lie group G, the
following assertions hold:

(1) The commutator groups G′ of G and H ′ of H coincide.
(2) Let k be a maximal compactly embedded subalgebra of g. Then there exists

a subalgebra u ⊆ z(k) complementing h such that U := expG u is a torus
satisfying G = UH.

(3) g ∼= ho u.
(4) U ∩H = U .
(5) If S ⊆ G is a closed subgroup containing U , then S ∩H = S.
(6) There exists a vector group V ⊆ H such that V is a torus with V H = G.

Proof. (1) Let qG : G̃ → G be the universal covering morphism of G with
L(qG) = idg, D := ker qG ⊆ Z(G̃), and H̃ := 〈expG̃ h〉, which by Lemma
13.5.1 is a closed simply connected normal subgroup by the Smooth Splitting
Theorem 10.1.21. Then B := DH̃ is a closed subgroup of G̃ containing D.
Since qG is a quotient map and B contains the kernel of qG, qG(B) is closed in
G. As it contains the dense subgroup H = qG(H̃), we obtain qG(B) = G, and
therefore B = G̃. From this we derive that every commutator of elements of G̃
is a limit of commutators of elements of DH̃, but since D is central, all these
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commutators are contained in H̃ ′. Using Theorem 10.1.21 and Proposition
10.2.4, we see that H̃ ′ is closed in G̃, so that the preceding argument leads to
G̃′ = H̃ ′. Another application of Proposition 10.2.4 now yields g′ = h′, and
thus G′ = H ′.

(2), (3) From g′ = h′ it follows in particular that the quotient group
G̃/H̃ is abelian. By Theorem 10.1.21 it is even isomorphic to a vector space.
Let p : G̃ → G̃/H̃ be the quotient map. Then the group p(D) = p(DH̃) is
dense in p(G̃). We recall from Theorem 13.2.8 that D ⊆ expG̃(k). Hence the
integral subgroup p(expG̃ k) = expG̃/H̃(L(p)k) is dense in the vector space

G̃/H̃, and since integral subgroups of vector spaces are linear subspaces, we
have p(expG̃ k) = G̃/H̃. This in turn implies that k + h = g.

Using k′ ⊆ g′ ⊆ h, we find that z(k)+h = k+h = g. Furthermore, the group
D1 := D∩expG̃

(
z(k)

)
has finite index in D by Lemma 13.5.2. Therefore p(D1)

spans the vector space G̃/H̃ (Corollary 13.6.8), and we thus find elements
x1, . . . , xn ∈ z(k) with expG̃(xi) ∈ D1 such that p(expG̃ x1), . . . , p(expG̃ xn)
form a basis for G̃/H̃. Let u := span{x1, . . . , xn}. Then g = h + u is a direct
vector sum, and g ∼= h o u follows from the fact that u is a subalgebra and
that h is an ideal. The group U := expG u is a continuous image of the torus
u/(Zx1 + . . . +Zxn), and therefore a torus, which clearly satisfies G = HU =
UH.

(4) Let H be endowed with its intrinsic Lie group structure. Proposi-
tion 10.1.19 and (3) imply that G̃ ∼= H̃ o Ũ , where qU : Ũ → U denotes the
simply connected covering of U . From the smoothness of the action of Ũ on
H̃, we now derive that the conjugation action of the torus U on H is also
smooth, so that we can form the semidirect product H o U and obtain a
surjective smooth homomorphism µ : H o U → G, (h, u) 7→ hu which induces
an isomorphism

(H o U)/ kerµ ∼= G

by the Open Mapping Theorem 10.1.8. This entails that the inverse image
µ−1(H) = H o (U ∩H) is dense in H oU , which implies that H ∩U is dense
in U .

(5) S contains U , so in view of (4), G = HU leads to S = (H ∩ S)U ⊆
(H ∩ S)H ∩ U ⊆ H ∩ S.

(6) Let T be a maximal torus of G containing U , and t := L(T ) be its Lie
algebra. Then g = hou yields t = u⊕(h∩t). The abelian subgroup expH(h∩t)
is a direct product of a torus T1 with Lie algebra t1 ⊆ h∩ t and a vector group
V . We set v := L(V ) ⊆ h ∩ t. The normality of H implies that the product
set V H is a subgroup of G. Therefore it suffices to show that it contains U ,
hence coincides with G.

Clearly V H contains expG(h ∩ t) = expG(t1)expG(v) = T1V . Here we
use that products of closed and compact subsets are closed (Exercise 12.3.5).
Thus it remains to prove that U ⊆ expG(h ∩ t). By (4), it suffices to show
that U ∩H ⊆ expG(h∩ t). So let x ∈ u with expG x ∈ H. Then there exists an
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element d ∈ D with expG̃(x)d ∈ H̃. By Corollary 13.2.10(iii), D ⊆ expG̃(t),
so that there exists a y ∈ t with d = expG̃(y). Consequently, expG̃(x + y) =
expG̃(x)d ∈ H̃. Recall that we also have G̃ = H̃ o Ũ . Now projection onto Ũ ,
together with the injectivity of the exponential function of Ũ implies x+y ∈ h.
Hence expG(x) = expG(x + y) ∈ U ∩H. This proves our claim. ut
Corollary 13.5.4. If H ⊆ G is a dense integral subgroup, then HT = G holds
for every maximal torus T of G.

Proof. Since maximal tori of G are conjugate under Aut(G) (Corollary 13.1.4),
and the torus V from Theorem 13.5.3(6) is contained in a maximal one, the
claim follows. ut
Corollary 13.5.5. The maximal compact subgroups/tori of G are conjugate
under H.

Proof. We adopt the notation from Theorem 13.5.3. Let U be a maximal
compact subgroup of G contained in K := 〈exp k〉. Then we obtain all other
maximal compact subgroups as gUg−1 with g ∈ G (Theorem 13.1.3). From
Theorem 13.5.3(2) we derive in particular G = HZ(K), and conjugation with
elements of Z(K) fixes K. This proves that H acts transitively by conjugation
on the set of all maximal compact subgroups.

The corresponding assertion for maximal tori follows similarly because K
contains a maximal torus T of G, and this torus is centralized by Z(K). ut

From the preceding results we now derive the following criteria for integral
subgroups to be closed:

Corollary 13.5.6 (Closed Integral Subgroups – Criteria). Let G be a
Lie group, H be an integral subgroup of G with Lie algebra h and T ⊆ G be a
maximal torus with Lie algebra t. Then the following conditions imply that H
is closed:

(a) H contains T .
(b) h intersects the Lie algebra of each torus in G trivially.
(c) H is normal and (H ∩ T )0 = expG(h ∩ t) is closed.
(d) For each x ∈ h, the closure of expG(Rx) is contained in H (Malcev’s

Criterion).
(e) There exists a maximal compactly embedded abelian subalgebra a of h for

which expG(a) is closed in G.

Proof. (a) If T ⊆ H, then T also is a maximal torus of the closed subgroup
H of G. Since maximal tori of H are conjugate under H (Corollary 13.5.5),
and the torus V from Theorem 13.5.3(6) is contained in a maximal one, we
obtain H = HT ⊇ HV = H.

(b) Let V ⊆ H be as above an abelian integral subgroup for which V is
a torus with H = HV . Since L(H) intersects the Lie algebras of all tori in
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G trivially, we obtain L(V ) ⊆ L(H) ∩ L(V ) = {0}, so that V = {1} leads to
H = H.

(c) Since all maximal tori are conjugate under the group of inner automor-
phisms (Corollary 13.1.4), H intersects any maximal torus of G in a closed
subgroup. In view of Theorem 13.5.3(6), there exists a subgroup V ⊆ H for
which V is a torus and H = HV . Let T ⊆ G be a maximal torus contain-
ing V . Then L(V ) ⊆ L(H) ∩ L(T ), and since expG(L(H) ∩ L(T )) is closed
V ⊆ H ∩ T , which leads to H = H.

(d) Suppose that H is not closed, and w.l.o.g. dense in G. We choose a
vector group V ⊆ H such that V is a torus with G = HV (Theorem 13.5.3(6)).
If v1, . . . , vn is a basis for V , then the subgroups expG(Rvi) are tori whose
product is V . We conclude that there exists some i for which expG(Rvi) is
not contained in H.

(e) We may w.l.o.g. assume that H is dense in G. If H is not closed, then
Theorem 13.5.3(6) implies the existence of an x ∈ h such that T := expG(Rx)
is a torus with T ∩H 6⊆ H. Now

Innh(Rx) ⊆ Inng(T )|h = Ad(T )|h
implies that x ∈ comp(h). We extend Rx to a maximal compactly embedded,
abelian subalgebra a′ of h. By Exercise 13.5.1, there exists an h ∈ H with
Ad(h)a = a′. Hence expG(a′) is closed, a contradiction. ut

Now we turn to some important consequences of these results.

Corollary 13.5.7. If ϕ : G → GLn(R) is a representation of the connected
semisimple Lie group G, then ϕ(G) is closed.

Proof. We may w.l.o.g. assume that ϕ is injective. Let a ⊆ g = L(G) be a
maximal compactly embedded abelian subalgebra. Then there exists a maxi-
mal compactly embedded subalgebra k ⊆ g containing a. By Corollary 12.2.6,
the image ϕ(K) of K := 〈expG k〉 is compact. From that it follows that K
is compact because K is closed in G by Lemma 13.2.6, so that ϕ|K is an
isomorphism of Lie groups. Since expK a is closed in K (Lemma 13.2.6), also
ϕ(expG a) is closed, and we apply Corollary 13.5.6(e) to finish the proof. ut
Lemma 13.5.8. If H is a proper dense integral subgroup of the Lie group G,
then the quotient group G/H is uncountable.

Proof. Let qG : G̃ → G be the universal covering of G. We set
H̃ := 〈expG̃ L(H)〉. Then the groups G/H and G̃/q−1

G (H) are isomorphic.
We have G̃ ∼= H̃ o V for a vector group V (Theorem 13.5.3(3)) and
q−1
G (H) = (ker qG)H̃. Therefore G̃/q−1

G (H) ∼= V/V ∩ (ker qGH̃). The group
V ∩ (ker qGH̃) is the projection of the countable group ker qG

∼= π1(G) onto
V (Corollary 13.2.10), hence countable. If H 6= G, then V 6= {0}, and the
quotient G/H is uncountable because of the uncountability of V . ut
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Theorem 13.5.9. If H is a semisimple integral subgroup of the Lie group G,
and G is either simply connected or compact, then H is closed.

Proof. First we assume that G is simply connected. Choose a Levi subalgebra
s ⊆ g containing h := L(H) (Corollary 4.6.14). Then S := 〈expG s〉 is a
semidirect factor by Proposition 10.1.19. In particular, S is closed and simply
connected. Because of H ⊆ S, we may thus assume that G = S is semisimple.
By Corollary 13.5.7, Ad(H) is closed in Aut(g), and therefore it is also closed
in Ad(G). Hence the preimage Ad−1

(
Ad(H)

)
= HZ(G) is also closed in G,

and consequently H/H is countable because Z(G) ∼= π1

(
Ad(G)

)
is countable

(Corollary 13.2.10). Therefore H is closed by Lemma 13.5.8.
Now we assume that G is compact. Then L(G) is compact, and L(H)

inherits this property. Since H is compact by Theorem 11.1.17, it is closed. ut
Example 13.5.10. We describe an example of a connected Lie group whose
commutator group is semisimple and dense. First, we recall that

Z := Z(SL2(R)̃ ) ∼= Z,

which follows easily by applying Theorem 13.2.8 to the maximal compactly
embedded abelian subalgebra so2(R) ⊆ sl2(R). Let α : Z ∼= Z → T2 be a
homomorphism with dense image (cf. Exercise 11.2.10). Consider the group
G :=

(
SL2(R)̃ × T2

)
/D, where D = {(z, α(z)) : z ∈ Z} is the graph of α,

a discrete central subgroup of the product group. Then G is a 5-dimensional
Lie group containing G′ ∼= SL2(R)̃ as a dense integral subgroup.

Proposition 13.5.11. If k ⊆ g is a subalgebra contained in comp(g), i.e.,
consisting of compact elements, then k is compactly embedded in g.

Proof. Let k0 = {0} ⊆ k1 ⊆ . . . ⊆ kn = k be a Jordan-Hölder series of k
(Remark 4.6.12). By induction on the dimension, we show that every ideal ki

of k is compactly embedded. For i = 0, there is nothing to show. Assume that
ki is compactly embedded for some i < n. Then there exists a ki-invariant
complement bi in ki+1, and this implies that [ki, bi] ⊆ bi∩ ki = {0}. Two cases
occur:

Case 1: ki+1/ki
∼= R. Then ki+1

∼= ki ⊕ bi, and therefore

Inng ki+1 ⊆ (INNg ki)(INNg bi)

is relatively compact because bi
∼= R is compactly embedded by assumption.

Case 2: b := ki+1/ki is simple. We claim that b is compact. By Levi’s
Theorem 4.6.6, there exists a subalgebra s of k isomorphic to b with ki+1 =
ki o s. If s = ks + p is a Cartan decomposition of s, then no nonzero element
of p is compact (Proposition 12.1.5). Thus s = ks is compact, and therefore

INNg ki+1 ⊆ (INNg ki)(Inng ks)

is compact because both factors on the right are compact (Corollary 12.2.6).
ut
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Theorem 13.5.12. Let H be a dense integral subgroup of the Lie group G,
and let exp(Rx) be compact for all x ∈ h, then G is compact.

Proof. By Proposition 13.5.11, h is compactly embedded in g, and

Ad(G) = Ad(H)

thus is compact. Hence g is a compact Lie algebra, and G is a direct product of
a vector group V and a compact group K (Theorem 11.1.18). Let pV : G → V
be the projection onto the direct factor V . Then pV (H) is dense, and the
closure of any one-parameter subgroup of H is compact in G. This implies
V = {0}. ut

Exercises for Section 13.5

Exercise 13.5.1. Prove the following strengthening of Theorem 13.2.7(a):
Let k1 and k2 be two maximal compactly embedded (abelian) subalgebras of
g. Then there exists a γ ∈ Inn g with γ(k1) = k2. Hint: Corollary 13.5.5 and
the proof of Theorem 13.2.7.

Exercise 13.5.2. Let γ : R → T2 = {(z1, z2) ∈ C2 : |z1| = |z2| = 1} be a ho-
momorphism with dense image. In the following, we consider C2 as an algebra
with the componentwise multiplication (z1, z2)(w1, w2) = (z1w1, z2w2). Show
that:

(a) The map R× C2 → C2 : (t, x) 7→ γ(t)x defines an action of R on C2.
(b) G := C2 oγ R is a solvable Lie group of dimension 5, and Z(G) = {1}.
(c) k := {0} × R is a maximal compactly embedded subalgebra and a Cartan

subalgebra of L(G) = C2 oL(γ) R.
(d) The map α(z)(x, t) := (zx, t) defines a homomorphism α : T2 → Aut(G).
(e) α(T2) ⊆ INNg k, but α(T2) 6⊆ Inng k.

Exercise 13.5.3. Let H1,H2 be integral subgroups of the Lie group G such
that H2 normalizes H1. Show that H1H2 is an integral subgroup of G with

L(H1H2) = L(H1) + L(H2).

Exercise 13.5.4 (Non-closed commutator groups). Define a central ex-
tension G of R2 by T2 via

(t1, t2, x1, x2)(t′1, t
′
2, x

′
1, x

′
2) := (t1t′1e

ix1x′2 , t2t
′
2e

i
√

2x1x′2 , x1 + x′1, x2 + x′2)

and show that the commutator group G′ of the nilpotent group G is a dense
wind in Z(G) ∼= T2.
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13.6 Appendix: Finitely Generated Abelian Groups

Lemma 13.6.1. Consider the action of the group GLn(Z) = Aut(Zn) on Zn

by (g, z) 7→ gz, where we write the elements z ∈ Zn as column vectors.
If d := gcd(z1, . . . , zn), then the orbit Oz := GLn(Z)z contains the element

de1 and the orbit Oz meets N0e1 only in this point, so that the orbits are
classified by the invariant function

gcd: Zn → N0.

Proof. For 0 6= z ∈ Zn we have

gcd(z) = max{m ∈ N : 1
mz ∈ Zn}.

For g ∈ GLn(Z), the condition 1
mgz ∈ Zn is equivalent to 1

mz ∈ Zn. We
therefore have

gcd(gz) = gcd(z) for g ∈ GLn(Z), z ∈ Zn,

i.e., the function gcd is invariant.
For i 6= j and k ∈ Z, the matrix g := 1+ kEij ∈ GLn(Z) is invertible with

g−1 = 1− kEij , and

z′ := gz = z + kEijz = z + kzjei.

Therefore z′` = z` for ` 6= i and z′i = zi + kzj . This means that subtracting
the k-fold multiple of one entry of z from another entry leads to an element
in the same GLn(Z)-orbit.

If zi is minimal and positive, then we may repeat this process to obtain
a vector z′ with 0 ≤ z′j < |zi| for all j 6= i and z′j = zj . If there exists a
j 6= i with 0 < z′j , then we repeat this procedure with j instead of i. Since
the maximal absolute value of the entries decreases at least by one in each
step, the procedure stops when we have achieved a vector z′′ with at most
one nonzero entry. After multiplication with a permutation matrix we thus
arrive at z′′ = ke1, and since −1 ∈ GLn(Z), we may assume that k ∈ N0.
Then k = gcd(z), which shows that gcd(z)e1 = z′′ ∈ Oz.

For z = ke1 and k ∈ N, we have gcd(z) = k, so that we obtain for different
k ∈ N0 different orbits Oke1 . ut
Proposition 13.6.2 (Subgroups of Zn). For each subgroup Γ ≤ Zn, there
exists a g ∈ GLn(Z) and a sequence of natural numbers

d1|d2| . . . |dr, i.e., di+1 ∈ diZ, r ≤ n,

such that
gΓ = Zd1e1 + Zd2e2 + . . . + Zdrer.

In particular, Γ ∼= Zr.
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Proof. We argue by induction on n. For n = 0, we have Zn = {0}, and the
assertion is trivial.

Let n > 0. If Γ = {0}, then we take g = 1 and put r := 0. If Γ 6= {0},
then let

d1 := min{gcd(z) : 0 6= z ∈ Γ}
and z1 ∈ Γ with d1 = gcd(z1). In view of Lemma 13.6.1, there exists a
g1 ∈ GLn(Z) with g1z1 = d1e1. We consider the subgroup Γ1 := g1Γ . It
contains d1e1 and

d1 = min{gcd(z) : 0 6= z ∈ Γ1}.
If z ∈ Γ1 \ Zd1e1, then gcd(z + kd1e1) ≥ d1 for each k ∈ Z, which implies
that the first component z1 + kd1 of this vector never is contained in the set
{1, . . . , d1 − 1}. Therefore, z1 ∈ Zd1 and z1e1 ∈ Γ1, hence

z− z1e1 ∈ Γ1 ∩ 〈e2, . . . , en〉, 〈e2, . . . , en〉 ∼= Zn−1.

For Γ2 := Γ1 ∩ 〈e2, . . . , en〉 we thus obtain Γ1 = Zd1e1 + Γ2, and
Zd1e1 ∩ Γ2 = {0} implies that this sum is direct: Γ1

∼= Zd1e1 ⊕ Γ2. We
now apply the induction hypothesis to the subgroup Γ2 of Zn−1 and obtain a
matrix g′ ∈ GLn−1(Z) and numbers d2, . . . , dr with

g′Γ2 = Zd2e2 + . . . + Zdrer and d2|d3| · · · |dr.

For the matrix

g2 :=
(

1 0
0 g′

)
∈ GLn(Z)

we then obtain

g2g1Γ = g2Γ1 = g2(Zd1e1+Γ2) = Zd1e1+g′Γ2 = Zd1e1+Zd2e2+ . . .+Zdrer.

Our construction implies that d1 ≤ gcd(d1e1 + d2e2) = gcd(d1, d2) and there-
fore d1 = gcd(d1, d2) implies d1|d2. This completes the proof. ut
Theorem 13.6.3 (Structure Theorem for Finitely Generated Abelian
Groups). For every finitely generated abelian group A, there exist k, r ∈ N0

and d1, . . . , dk ∈ N with
d1|d2| . . . |dk,

such that
A ∼= Zr ⊕ Z/d1Z⊕ . . .⊕ Z/dkZ.

Proof. Let {g1, . . . , gn} ⊆ A be a finite set of generators. Then

Φ : Zn → A, (z1, . . . , zn) 7→ z1g1 + . . . + zngn

is a surjective group homomorphism. Its kernel Γ := kerΦ is a subgroup of
Zn, and

A = im (ϕ) ∼= Zn/ kerΦ = Zn/Γ.
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According to Proposition 13.6.2, there exists a g ∈ GLn(Z) ∼= Aut(Zn)
and a sequence d1|d2| . . . |dk of natural numbers with

gΓ = Zd1e1 + Zd2e2 + . . . + Zdkek.

Then the map

Ψ : Zn/Γ → Zn/gΓ, z + Γ 7→ g(z + Γ ) = gz + gΓ

is an isomorphism of groups, and

Zn/gΓ = (Ze1 + . . . + Zen)/(Zd1e1 + Zd2e2 + . . . + Zdkek)
∼= Z/d1Z⊕ . . .⊕ Z/dkZ⊕ Zn−k.

This proves the assertion with r = n− k. ut
Corollary 13.6.4. For every finitely generated abelian group A, there exists
an r ∈ N0 with A ∼= Zr ⊕ tor(A), where

tor(A) := {a ∈ A : (∃n ∈ N) na = 0}

is a finite subgroup and

r = rk(A) := rank (A) := max{k ∈ N0 : Zk embeds into A}

does not depend on the decomposition.

Proof. From the Structure Theorem 13.6.3 we derive that A ∼= Zr⊕F , where
F is finite. Then each element of F is of finite order, and since Zr contains no
nonzero element of finite order, F = tor(A). We then have Zr ∼= A/ tor(A), so
that it remains to observe that if there exists an injection ϕ : Zk → Zr, then
k ≤ r (Proposition 13.6.2), so that r is the maximal number k for which Zk

embeds into A. ut
Definition 13.6.5. The number r = rk(A) = rank (A) in the preceding corol-
lary is called the rank of the finitely generated abelian group A, and tor(A) is
called the torsion subgroup.

Proposition 13.6.6. Any subgroup S of a finitely generated abelian group A
is finitely generated, and we have the rank formula

rk A = rk S + rk(A/S).

In particular, rkS = rk A is equivalent to A/S being finite.

Proof. Let r := rk A, s := rk S, q : Zn → A be a surjective homomorphism
and Ŝ := q−1(S). Then we use Proposition 13.6.2 to see that we may w.l.o.g.
assume that there exist natural numbers d1| · · · |dm, m ≤ n, with
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Ŝ = Zd1e1 + · · ·+ Zdmem ⊆ Zn.

Note that

A/S = q(Zn)/q(Ŝ) ∼= Zn/Ŝ ∼= tor(A/S)⊕ Zn−m.

Applying Proposition 13.6.2 to the subgroup Γ := ker q of Ŝ ∼= Zm, we obtain
a basis e′1, . . . , e

′
m for Ŝ and d′1, . . . , d

′
k with

Γ = Zd′1e
′
1 + . . . + Zd′ke′k.

We conclude that S = q(Ŝ) ∼= Ŝ/Γ ∼= tor(S)⊕Zm−k, and finally, A ∼= Zn/Γ ∼=
tor(A)⊕ Zn−k. This immediately implies that

rk(A) = n− k = n−m + m− k = rk(A/S) + rk(S). ut

Corollary 13.6.7. For a surjective homomorphism α : A1 → A2 of finitely
generated abelian groups, we have

rank A1 = rank A2 + rank (kerα).

Proof. In view of A2
∼= A1/ kerα, this follows from Proposition 13.6.6. ut

Corollary 13.6.8. If D is a discrete subgroup of a finite dimensional real
vector space V , then D is finitely generated with

dim(span D) = rank D.

Proof. This follows from Exercise 8.3.4. ut

Notes on Chapter 13

In Theorem 13.3.12 we have seen a characterization of all Lie groups dif-
feomorphic to Rn. Such Lie groups play an important role in Riemannian
geometry and topology because many of them arise as simply connected cov-
erings of compact manifolds with interesting properties. Such manifolds are of
the form G/Γ , where G is a Lie group diffeomorphic to Rn and Γ is a discrete
subgroup which is cocompact, i.e., for which G/Γ is compact. Such subgroups
are called lattices ([Ra72]). In dimension ≤ 2 all such manifolds are tori, so
that the situation starts to become interesting in dimension 3, for which a
classification can be found in [RV81]. In this case the Lie group G is either
the abelian (R3,+), the nilpotent 3-dimensional Heisenberg group, SL2(R)̃ ,
or a solvable group with a very special structure, which is required for the
existence of a lattice.

In view of the Second Manifold Splitting Theorem 13.3.11, more general
homogeneous manifolds diffeomorphic to Rn arise as G/K, where G is a con-
nected Lie group and K a maximal compact subgroup, and one obtains a
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more general class of compact manifolds by considering those whose universal
covering is some G/K. These constructions lie at the heart of the solution of
the proof of the Poincaré Conjecture, resp., Thurston’s Geometrization Con-
jecture, because in dimension 3 they provide the geometric building blocks
from which, according to Perelman’s Theorem, 3-manifolds can be obtained
(cf. [Mi03]).

The question whether the exponential function of a given Lie group is sur-
jective has attracted attention even in recent years. Various authors provided
new criteria not only for solvable, but also for semisimple and mixed groups
(see [DH97], [Wu98], [Wu03], [Wu05], [MS08]). In particular, [Wu98] contains
characterizations of connected solvable Lie groups which are not necessarily
simply connected as in Dixmier’s Theorem 13.4.8.
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Complex Lie Groups

In this chapter we discuss complex Lie groups. Since we did not go into the
theory of complex manifolds, we do this in a quite pedestrian fashion, but
this will be enough for our purposes which are of a group theoretic nature.
In particular, we define a complex Lie group as a real Lie group G whose Lie
algebra L(G) is a complex Lie algebra and for which the adjoint representation
maps into the group AutC(L(G)) of complex linear automorphisms of L(G)
(the latter condition is automatically satisfied if G is connected). One can
show that this is equivalent to G carrying the structure of a complex manifold
such that the group operations are holomorphic, but we shall never need this
additional structure.

First we discuss the passage from real to complex Lie groups. In Sec-
tion 14.1 we show that for every Lie group G, there exists a universal com-
plexification ηG : G → GC, i.e., GC is a complex Lie group and all other
morphisms of G to complex Lie groups factor uniquely through ηG.

One of the most important classes of complex Lie groups are the complexi-
fications of compact Lie groups. These groups are also called linearly complex
reductive because all their holomorphic representations are completely re-
ducible, which is one instance of Weyl’s Unitary Trick. The theory of these
groups and their structure is studied in Section 14.2. Here an interesting issue
is that linearly complex reductive Lie groups are reductive in the sense that
their Lie algebra is reductive, but not every connected reductive Lie group is
linearly complex reductive. A typical example is the additive group C, which
has no non-trivial compact subgroup.

As we shall see, the property of being linearly complex reductive is com-
pletely decided by the structure of the center. Therefore it is necessary to take
a closer look at connected abelian complex Lie groups. Although connected
real abelian Lie groups have a quite simple structure because they are products
of a torus and a vector space, the structure is substantially richer in the com-
plex case. In this situation we always have a product G = T ∗×V , where V is
a complex vector space and T ∗ is the smallest complex integral subgroup con-
taining the unique maximal torus. This factor has a relatively simple structure
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if T ∗ ∼= TC, because then it is isomorphic to some (C×)n ∼= Tn
C. In general

the natural map TC → T ∗ is only surjective, but far from being injective.
In Section 14.3 we study this situation in some detail. Interesting examples
of complex one-dimensional groups are the elliptic curves G = C/Γ , where
Γ ∼= Z2 is a lattice. Here G is compact, so that G = T 6∼= TC. Finally we
shall use the insights into the structure of abelian groups to obtain a charac-
terization of the linearly complex reductive Lie groups among the connected
reductive ones.

14.1 The Universal Complexification

Definition 14.1.1. (a) A complex Lie group is a real Lie group G whose Lie
algebra g = L(G) is a complex Lie algebra, and for which Ad(G) ⊆ AutC(g)
(the group of complex linear automorphisms of g). Note that if G is connected,
then Ad(G) = 〈ead g〉 automatically consists of complex linear automorphisms
of g.

(b) A homomorphism α : G1 → G2 of complex Lie groups is called holo-
morphic if L(α) is complex linear. It is called antiholomorphic if L(α) is
antilinear. If G2 = GL(V ) for a complex vector space, then a holomorphic
homomorphism α : G1 → G2 is also called a holomorphic representation of
G1 on V .

(c) A subgroup H of a complex Lie group G is called a complex Lie sub-
group if H is closed and its Lie algebra L(H) is a complex subspace of L(G).
For a subset M of a complex Lie group G, we write 〈M〉C−grp for the smallest
complex Lie subgroup of G containing M (Exercise 14.1.3).

Definition 14.1.2. Let G be a real Lie group. A pair (ηG, GC) of a complex
Lie group GC and a morphism ηG : G → GC of real Lie groups, is called a
universal complexification of G if for every homomorphism α : G → H to a
complex Lie group H, there exists a unique holomorphic homomorphism

αC : GC → H with αC ◦ ηG = α.

This is also called the universal property of GC (compare, for instance, with
the enveloping algebra).

Remark 14.1.3 (Uniqueness of Universal Complexifications). As we
have already seen in many other contexts, the universal property determines
the universal object up to isomorphism. More precisely, suppose that (ηG, GC)
and (η′G, G′C) are two universal complexifications of the Lie group G. Then the
universal property implies the existence of a unique morphism α : GC → G′C of
complex Lie groups with α◦ηG = η′G and of a unique morphism α′ : G′C → GC
with α′ ◦ η′G = ηG. Then α′ ◦α ◦ ηG = ηG, so that the uniqueness requirement
leads to α′ ◦ α = idGC , and, likewise, α ◦ α′ = idG′C . Therefore α : GC → G′C is
an isomorphism of complex Lie groups.
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Theorem 14.1.4 (Existence of a Universal Complexification). For
each Lie group G, there exists a universal complexification (ηG, GC). It has
the following properties:

(i) If G is 1-connected, then GC is also 1-connected, and ηG has discrete kernel.
(ii) If G is connected, then ker ηG is central in G.
(iii) The restriction ηG0 := ηG|G0 : G0 → GC,0 is a universal complexifi-

cation of the identity component G0 and ηG induces an isomorphism
π0(G) → π0(GC).

(iv) There exists a unique antiholomorphic involution σ on GC with
σ ◦ ηG = ηG. The identity component of its group Gσ

C of fixed points
is (Gσ

C)0 = ηG(G0).
(v) The inclusion ηG(G0) ↪→ (GC)0 is a universal complexification of ηG(G0).

Proof. Step 1: First we assume that G is connected with Lie algebra g. Let
ι : g → gC be the inclusion, qG : G̃ → G be a universal covering map with
L(qG) = idg, and G̃C be a 1-connected Lie group with Lie algebra gC. Then
we have a canonical morphism ηG̃ : G̃ → G̃C with L(ηG̃) = ι. Let D := ker qG

and A := 〈ηG̃(D)〉C−grp ⊆ G̃C be the smallest complex Lie subgroup of G̃C
containing ηG̃(D). Note that ηG̃(D) ⊆ kerAdG̃C

= Z(G̃C) implies that A is
central, hence in particular normal, so that GC := G̃C/A carries a natural
complex Lie group structure with Lie algebra gC/L(A). We claim that the
induced map

ηG : G → GC, qG(g) 7→ ηG̃(g)A

is a universal complexification of G.
Let α : G → H be a homomorphism into a complex Lie group. Then

L(α) : g → L(H) induces a complex linear homomorphism
L(α)C : gC → L(H). This induces a homomorphism α̃C : G̃C → H with
L(α̃C) = L(α)C. Therefore α ◦ qG and α̃C ◦ ηG̃ are two homomorphisms
whose differential coincides with L(α), hence they are equal. In particu-
lar, ηG̃(D) ⊆ ker α̃C, and therefore α̃C factors through a homomorphism
αC : GC → H with αC ◦ π = α̃C, where π : G̃C → GC is the canonical pro-
jection. We thus obtain a commutative diagram:

G̃
ηG̃−−−−−−−−−→ G̃C

α̃C−−−−−−−−−→ HyqG

yπ

yidH

G
ηG−−−−−−−−−→ GC

αC−−−−−−−−−→ H.

Now

L(αC◦ηG) = L(αC◦ηG◦qG) = L(αC◦π◦ηG̃) = L(α̃C◦ηG̃) = L(α◦qG) = L(α),

and consequently αC◦ηG = α. The uniqueness of αC immediately follows from
the construction.
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Step 2: If G is not connected, we proceed as follows, starting with a
universal complexification (ηG0 , G0,C) of the identity component G0.

Observe that G acts on G0 by conjugation, and that this induces a homo-
morphism γ : G → Authol(G0,C), the group of holomorphic automorphisms of
G0,C, determined uniquely by the relation

γ(g) ◦ ηG0 = ηG0 ◦ cg|G0 , g ∈ G. (14.1)

We consider the semidirect product group S := G0,C oγ G and the subset
B := {(ηG0(g), g−1

)
: g ∈ G0} ⊆ ZS

(
ηG0(G0)

)
. Then

(
ηG0(x), x−1

)(
ηG0(y), y−1

)
= (ηG0(y),1)

(
ηG0(x), x−1

)
(1, y−1)

=
(
ηG0(yx), x−1y−1

)

implies that B is a subgroup of S. We claim that it is normal. Since it com-
mutes with G0,C × {1}, it remains to verify the invariance under {1} × G.
Using (14.1), this follows from

(1, g)(ηG0(x), x−1)(1, g−1) = (γ(g)(ηG0(x)), cg(x)−1) =
(
ηG0(cg(x)), cg(x)−1

)
.

Now it is easy to check that the map

ηG : G → GC := S/B, g 7→ (1, g)B

defines a universal complexification of G. The identity component of GC is
isomorphic to G0,C, hence a complex Lie group, and the action of GC by
conjugation induces an action by complex linear maps on L(G0,C). Hence GC
is a complex Lie group.

(i) If G is 1-connected, then D = {1} and therefore A = {1}. This leads
to ηG = ηG̃ and GC = G̃C.

(ii) Since the adjoint representation Ad: G → Aut(gC) factors through
ηG : G → GC, it is clear that ker ηG ⊆ kerAd = Z(G).

(iii) follows immediately from our construction.
(iv) On the Lie algebra h := L(GC), we define a new complex vector

space structure by the scalar multiplication λ ∗ x := λx and write h for the
complex Lie algebra obtained in this way. Accordingly, we obtain on GC an-
other complex Lie group structure, denoted GC. From the universal prop-
erty, we obtain a unique morphism σ̃ : GC → GC of complex Lie groups with
σ ◦ ηG = ηG. We write σ : GC → GC for the underlying morphism of real Lie
groups. Since L(σ̃) : h → h is complex linear, L(σ) : h → h is antilinear. There-
fore σ2 : GC → GC is holomorphic with σ2 ◦ ηG = ηG, so that the uniqueness
in the universal property implies that σ2 = idGC .

The relation σ◦ηG = ηG implies that ηG(G) is contained in the fixed point
group Gσ

C, hence that im (L(ηG)) is contained in the set of fixed points of the
antilinear involution L(σ), which is a real form of L(GC). On the other hand,
our construction of GC implies that L(GC) = im (L(ηG))+i im (L(ηG)), which
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leads to the equality im (L(ηG)) = L(GC)L(σ), and hence to ηG(G0) = (Gσ
C)0

because both groups are connected with the same Lie algebra.
(v) Let α : ηG(G0) → H be a morphism of Lie groups where H is complex.

In view of (iii), the universal property of (GC)0 ∼= (G0)C implies the existence
of a unique morphism of complex Lie groups β : (GC)0 → H with β ◦ ηG =
α ◦ ηG. This shows that β|ηG(G0) = α and that β is uniquely determined by
this property. ut
Remark 14.1.5. Suppose that G is connected and that, in the notation of
the proof of Theorem 14.1.4, ηG̃(D) is discrete. Then A = ηG̃(D) and therefore

GC ∼= G̃C/ηG̃(D)

(cf. Exercises 14.1.3, 14.1.4). In particular, this is the case if G is semisimple
because ηG̃(D) ⊆ Z(G̃C), and the latter group is discrete.

Examples 14.1.6. (a) If (V, +) is the additive group of a real vector space,
then Theorem 14.1.4(i) implies that the inclusion ηV : V → VC into the com-
plexification is the universal complexification.

If Γ ⊆ V is a discrete subgroup, then ηV (Γ ) is discrete in VC, so that
Remark 14.1.5 implies that (V/Γ )C ∼= VC/Γ .

For T = {z ∈ C : |z| = 1} ⊆ C× we have T ∼= iR/2πiZ and, accordingly,
C× ∼= C/2πiZ, so that the inclusion

ηT : T→ C×

is a universal complexification. Similarly, we obtain (Tn)C ∼= (C×)n.
(b) If G and H are real Lie groups, then GC×HC is a complex Lie group,

and it is easy to verify that

ηG×H := ηG × ηH : G×H → GC ×HC

is a universal complexification (cf. Exercise 14.1.6).
(c) If G is a connected semisimple Lie group and G̃C is the 1-connected

Lie group with the semisimple Lie algebra gC, then Z(G̃C) ⊇ ηG̃(π1(G)) is
discrete, so that

GC ∼= G̃C/ηG̃(π1(G)),

where ηG̃ : G̃ → G̃C is the canonical map and G ∼= G̃/π1(G).
If, in addition, g is compact, then Proposition 12.2.5 implies that g is

a compact real form of gC, so that gC = g ⊕ ig is a Cartan decomposition
(Lemma 12.2.3). Then the Cartan Decomposition Theorem 12.1.7 now implies
that the integral subgroup of G̃C corresponding to g is simply connected, so
that the complexification map ηG̃ : G̃ → G̃C is injective. This implies that

ηG : G → GC ∼= G̃C/π1(G)
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is also injective. The Cartan Decomposition Theorem also shows that the
polar map

Φ : G× g → GC, (g, x) 7→ g expGC(ix)

is a diffeomorphism.

Remark 14.1.7. If σ is an antiholomorphic involution of the complex con-
nected Lie group G, then it is in general false that the inclusion (Gσ)0 → G
is a universal complexification (cf. Theorem 14.1.4(v)). A simple example is
the inclusion R→ C×, t 7→ et and σ(z) = z.

We conclude this section with a simple observation which will be important
in our discussion of linear Lie groups.

Proposition 14.1.8. If G has a faithful representation ρ : G → GLn(R) and
(ηG, GC) is a universal complexification, then ηG is injective.

Proof. The induced holomorphic morphism ρ̃ : GC → GLn(C) satisfies
ρ̃ ◦ ηG = ρ, and since ρ is injective, ηG is also injective. ut

Exercises for Section 14.1

Exercise 14.1.1. The group SL2(C) is simply connected.

Exercise 14.1.2. Let G be a connected real Lie group and ηG : G → GC be
the universal complexification of G. Show that:

(a) Show that if ηG is injective, then, for every discrete central subgroup
D ⊆ G, we have:
(1) ηG(D) is closed in GC.
(2) (G/D)C ∼= GC/ηG(D).
(3) The complexification map ηG/D is injective.
Hint: Consider the antiholomorphic involution σ on G̃C to see that ηG(D)
is closed.

(b) Let qG : G̃ → G be the universal covering group of G. If ηG̃ : G̃ → G̃C is
injective, then GC ∼= G̃C/ηG̃(ker qG) and dimCGC = dimRG.

Exercise 14.1.3. Let G be a complex Lie group. Show that

(a) If (Hi)i∈I are complex Lie subgroups, then
⋂

i∈I Hi is a complex Lie sub-
group, too.

(b) For every subset M of G, there is a smallest complex Lie subgroup
〈M〉C−grp containing M . If M is invariant under a holomorphic auto-
morphism ϕ ∈ AutC(G), then this also holds for 〈M〉C−grp.

(c) If N ⊆ G is a normal subgroup, then 〈N〉C−grp is also normal.
(d) Every discrete subgroup of a complex Lie group is a complex Lie subgroup.
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Exercise 14.1.4. With the notation in Theorem 14.1.4, show that the group
ηG̃(D) is not always closed, i.e., in general dimCGC < dimRG.

Exercise 14.1.5. Let G be a connected complex Lie group, H be a real Lie
subgroup and D be central in H. If L(H) + iL(H) = L(G), then D is also
central in G.

Exercise 14.1.6. If H and G are Lie groups, then the map

ηH × ηG : H ×G → HC ×GC

is a universal complexification.

Exercise 14.1.7. Let γ : G → Aut(N) be a homomorphism defining a smooth
action of G on N . From the universal property of NC, we thus obtain a ho-
momorphism γ̂ : G → AutC(NC), defined by

γ̂(g) ◦ ηN = ηN ◦ γ(g) for g ∈ G.

Show that:

(a) γ̂ induces a unique homomorphism γC : GC → AutC(NC) for which

NC oγC GC

is a complex Lie group.
(b) ηNoG(n, g) := (ηN (n), ηG(g)) is a universal complexification of N oγ G.

Exercise 14.1.8. Let G be a complex Lie group. Suppose that H is a closed
subgroup of G such that L(G) = L(H) ⊕R iL(H) and H intersects each
connected component of G. Show that

(a) G = HG0, where G0 is the identity component of G.
(b) Z(H) = Z(G) ∩H.

14.2 Linearly Complex Reductive Lie Groups

In this section we discuss the class of linearly complex reductive Lie groups
which plays an important role in geometry and representation theory. There
are many characterizations of this class of groups. One is that these are pre-
cisely the complexifications KC of compact Lie groups K. Another is that
these are precisely the complex linear Lie groups (with finitely many connected
components) whose holomorphic representations are completely reducible.
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14.2.1 Complexifications of Compact Lie Groups

Proposition 14.2.1. If K is a compact Lie group, then the following asser-
tions hold

(a) ηK is injective.
(b) ηK(K) is a maximal compact subgroup of KC.
(c) L(KC) ∼= kC and the polar map

Φ : K × k → KC, (k, x) 7→ k expKC(ix)

is a diffeomorphism.
(d) If α : K → GL(V ) is a representation of the compact Lie group K on the

complex vector space V , then the holomorphic extension αC : KC → GL(V )
satisfies ker(αC) ∼= (kerα)C and αC(KC) ∼= α(K)C is a closed subgroup of
GL(V ) which is compact if and only if it is trivial.

(e) KC admits a faithful holomorphic linear representation.

Proof. (a) Since K has a faithful finite-dimensional unitary representation
ρ : K → Un(C) (Corollary 11.3.9), the injectivity of ηK follows from Proposi-
tion 14.1.8.

(b), (c) Step 1: First we assume that K is connected. We follow the
explicit construction of the universal complexification. Since K is compact, k =
L(K) is reductive and thus k = z(k)⊕ k′, where k′ is compact and semisimple.
Therefore K̃ ∼= Z̃ × K̃ ′, where Z̃ ∼= Z(K̃)0 is a vector group, and this leads to

K̃C ∼= Z̃C × K̃ ′
C

(Example 14.1.6(c)), which already implies that L(KC) ∼= kC. It also follows
that the induced map ηK̃ : K̃ → K̃C is injective because Z̃C is the complexi-
fication of the vector space Z̃ and K̃ ′ is compact (Theorem 11.1.17, Exercise
14.1.6). Since k′ is a compact real form of the complex semisimple Lie algebra
k′C, k′C = k′ ⊕ ik′ is a Cartan decomposition (Lemma 12.2.3), and the Cartan
Decomposition Theorem 12.1.7 implies that the polar map of K ′

C, and hence
also the polar map

ΦK̃ : K̃ × k → K̃C, (g, x) 7→ g exp(ix),

is a diffeomorphism because the corresponding assertion for the central factor
is trivial. It follows in particular that the image of π1(K) in K̃C is discrete,
which implies that KC = K̃C/ηK(π1(K)) (Remark 14.1.5), and this in turn
yields (c).

Step 2: If K is not connected, then the preceding argument implies
that the polar map ΦK0 : K0 × k → (KC)0 ∼= (K0)C is a diffeomorphism.
Φ : K × k → KC is a K-left equivariant map, and since the inclusion K → KC
induces an isomorphism π0(K) → π0(KC) (Theorem 14.1.4), Φ maps each
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connected component of K × k diffeomorphically onto the corresponding con-
nected component of KC. Therefore Φ is a diffeomorphism.

This implies that K ∼= ηK(K) is a maximal compact subgroup of KC
because for each non-zero x ∈ k, the subgroup expKC(Zx) is closed and non-
compact.

(d) We use the polar decomposition KC = K expKC(ik). In view of

αC(k expKC ix) = α(k)ei L(α)x for k ∈ K, x ∈ k,

the uniqueness of the polar decomposition in GLn(C) implies that the relation
αC(k expKC ix) = 1 is equivalent to α(k) = 1 and L(α)x = 0. Therefore

ker(αC) = (ker α) expKC(iL(kerα)) ∼= (ker α)C.

We also derive from the polar decomposition that

αC(KC) = α(K) exp(iL(α)k)

is a closed subset of GLn(C).
(e) From the Linearity Theorem for Compact Lie Groups 11.3.9, we obtain

the existence of a faithful unitary representation α : K → Un(C). Then (d)
implies that its holomorphic extension αC : KC → GLn(C) is faithful. ut
Example 14.2.2. If G is a connected Lie group with compact Lie algebra,
then the Structure Theorem 11.1.18 implies that G ∼= K×V is a direct product
of a compact Lie group K and a vector group V . Combining (a), (b) and (c)
in Example 14.1.6 with Proposition 14.2.1, we see that the complexification
map

ηG = ηK × ηV : G = K × V → KC × VC

is injective and that the polar map

Φ : G× g → GC, (g, x) 7→ g expGC(ix)

is a diffeomorphism because this holds for K by Proposition 14.2.1.

Remark 14.2.3. Proposition 14.2.1 shows that, for a compact Lie group K,
the universal property of KC can also be interpreted in such a way that every
representation α : K → GLn(C) can be extended to a holomorphic representa-
tion αC : KC → GLn(C) because we can identify K with the subgroup ηK(K)
of KC.

The following proposition provides a kind of converse to Proposition 14.2.1.

Proposition 14.2.4 (Recognizing Complexifications). Let K be a max-
imal compact subgroup of the complex Lie group G with finite π0(G) and as-
sume that L(G) = L(K)C. Then the inclusion K ↪→ G is a universal com-
plexification, in particular, G ∼= KC.
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Proof. Let ηK : K → KC be the universal complexification of K. Because
of the universal property of KC, there exists a unique holomorphic homo-
morphism β : KC → G with L(β) = idL(K)C . Since ηK and the inclusion
K → G induce isomorphisms π0(K) → π0(KC) (Theorem 14.1.4), resp.,
π0(K) → π0(G) (Second Manifold Splitting Theorem 13.3.11), β is clearly
surjective and ker β ⊆ KC,0.

It remains to show injectivity. So let d ∈ kerβ. Then d ∈ Z(KC,0) because
β is a covering, and there exists an element x ∈ L(K)C with expKC(x) = d
(Theorem 13.2.8). Then the subgroup β(expKC Rx) ⊆ G is compact, hence
conjugate to a subgroup of K (Theorem 13.1.3). We may therefore assume
that x ∈ L(K). From that it follows that d ∈ ηK(K), and thus d = 1 because
β ◦ ηK is injective. ut
Example 14.2.5. The polar decomposition implies that Un(C) is a maximal
compact subgroup of GLn(C), and since gln(C) = un(C)⊕ iun(C) ∼= un(C)C,
we obtain Un(C)C ∼= GLn(C).

For any compact subgroup K ⊆ Un(C), the polar decomposition of KC
implies that the holomorphic extension KC → GLn(C) of the inclusion of
K → Un(C) maps KC onto the subset K exp(ik), and Proposition 14.2.1
yields

KC ∼= K exp(ik) ⊆ GLn(C).

In particular, it follows that the product set K exp(ik) actually is a subgroup.
This observation applies to many concrete groups with polar decomposi-

tion (cf. Proposition 3.3.3). In particular, we obtain

SUn(C)C ∼= SLn(C) and On(R)C ∼= On(C).

Proposition 14.2.6. Let G be a complex semisimple Lie group with finitely
many connected components and Lie algebra g. Furthermore, k ⊆ g be a com-
pact real form and K0 := 〈expG k〉 be the corresponding integral subgroup.
Then the following assertions hold:

(a) K0 is maximal compact in G0 and contained in a maximal compact sub-
group K. The inclusion K ↪→ G is a universal complexification, so that
G ∼= KC.

(b) Z(G0) is a finite subgroup of K.
(c) G has a faithful finite-dimensional holomorphic representation.

Proof. First we recall from Proposition 12.2.7 that g has a compact real form
k. This is a compact semisimple Lie algebra with g ∼= kC.

(a) We observe that k by Lemma 12.1.3 is maximal compactly embedded.
Since k is semisimple, K0 is compact (Theorem 11.1.17). Now Theorem 12.2.14
implies that K0 is maximal compact in G0.

Let U be a maximal compact subgroup of G. Then the Maximal Compact
Subgroup Theorem 13.1.3 implies that U0 is maximally compact in G0 and
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that all maximal compact subgroups of G0 are conjugate under inner auto-
morphisms. We may therefore assume that U0 = K0 and put K := U . Now
Proposition 14.2.4 yields G ∼= KC.

(b) By Theorem 13.2.8, Z(G0) is contained in K0, and it is finite since it
is discrete in the compact semisimple Lie group K0.

(c) follows from (a) and Proposition 14.2.1. ut

14.2.2 Linearly Complex Reductive Lie Groups

In the following we call a complex Lie group G reductive if its Lie algebra g is
reductive. The notion of a reductive Lie group has to be handled with great
care since there exist many notions of reductivity specifying certain classes of
reductive Lie groups.

Definition 14.2.7. A complex Lie group G is said to be linearly complex
reductive if there exists a compact Lie group K with G ∼= KC. The complexifi-
cations TC of torus groups T are called complexified tori. They are isomorphic
to some (C×)n, n = dim T (Example 14.1.6(a)).

At this point it is not clear why one would call this class of groups linearly
complex reductive. We will see in Theorem 14.3.11, however, that linearly
complex reductive Lie groups are characterized by the fact that they admit
faithful holomorphic representations and all holomorphic representations are
completely reducible.

Remark 14.2.8. Clearly, the Lie algebra L(KC) ∼= kC of any linearly reduc-
tive complex Lie group G = KC is reductive, but G = C is a reductive complex
Lie group which is not linearly reductive.

Theorem 14.2.9 (Characterization of Linearly Complex Reductive
Groups 1). A complex Lie group G with reductive Lie algebra and finite
π0(G) is linearly complex reductive if and only if Z(G0)0 is a complexified
torus.

Proof. First, we assume that G = KC for a compact Lie group K. Then
Z := Z(K0)0 is a torus and (K0)′ is compact semisimple. Moreover, the group
Γ := Z ∩ (K0)′ is finite and the multiplication map Z × (K0)′ → K0, (z, k) 7→
zk induces an isomorphism

(Z × (K0)′)/Γ ∼= K0.

This in turn induces an isomorphism

(ZC × (K0)′C)/Γ ∼= (K0)C ∼= (KC)0

(Exercises 14.1.6 and 14.1.2(a)). In particular, Z((KC)0)0 ∼= ZC is a complex-
ified torus.
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Suppose, conversely, that G is a complex Lie group with finite π0(G),
reductive Lie algebra for which Z(G0)0 is a complexified torus.

Step 1: First we assume that G is connected. Then Z(G)0 is a com-
plexified torus and we consider a maximal compact subgroup K ⊆ G. In
view of Proposition 13.3.13, Z := K ∩ Z(G)0 is a maximal torus of Z(G)0
and U := K ∩ G′ is a maximal compact subgroup of the connected complex
semisimple Lie group G′. We conclude that Z(G)0 ∼= ZC and G′ ∼= UC. Since
Z(G′) is finite (Proposition 14.2.6), the intersection Γ := Z(G)0 ∩G′ is finite,
hence contained in Z. As Γ is fixed under conjugation and contained in some
conjugate of U , we also obtain Γ ⊆ U , i.e., Γ = Z ∩ U . The multiplication
Z(G)0 ×G′ → G induces an isomorphism

µ : (ZC × UC)/Γ ∼= (Z(G)0 ×G′)/Γ → G

mapping the maximal compact subgroup Z × U of Z(G)0 ×G′ onto the sub-
group ZU ∼= (Z × U)/Γ of K. As the kernel of µ is finite, the maximal
compactness of Z × U in Z(G)0 × G′ implies that µ−1(K) = Z × U , which
leads to K = ZU . This in turn implies that Z = Z(K)0 and U = K ′. We thus
obtain

KC ∼= (ZC × UC)/Γ ∼= G.

Therefore G is linearly complex reductive.
Step 2: For the general case we pick a maximal compact subgroup K ⊆ G.

Then K ∩G0 is maximal compact in G0 (Maximal Compact Subgroup The-
orem 13.1.3), and the argument above implies that G0

∼= (K0)C. Therefore
the natural map ϕ : KC → G induced by the inclusion K ↪→ G induces an
isomorphism (KC)0 ∼= (K0)C → G0, and it also induces an isomorphism
π0(K) ∼= π0(KC) → π0(G). Therefore ϕ is an isomorphism of complex Lie
groups. ut
Theorem 14.2.10 (Weyl’s Unitary Trick). Every holomorphic represen-
tation of a linearly complex reductive Lie group G is completely reducible.

Proof. We write G = KC for a compact Lie group K. Let ρ : G → GL(V ) be
a holomorphic representation. We apply the Unitarity Lemma 9.4.14 to find
a K-invariant positive definite hermitian form on V , so that we may identify
V with Cn and assume that ρ(K) ⊆ Un(C). Then

ρ(G) = ρ(K expG(ik)) = ρ(K)ei L(ρ)(k)

implies that each K-invariant subspace W ⊆ V is also G-invariant.
If W ⊆ V is G-invariant, it is in particular K-invariant, hence W⊥ is K-

invariant, and therefore also G-invariant. As V = W⊕W⊥, the representation
(ρ, V ) is completely reducible. ut
Definition 14.2.11. If H is a subgroup of the complex Lie group G and
h = {x ∈ L(G) : expG(Rx) ⊆ H} its Lie algebra, we write
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H∗ := H〈expG(h + ih)〉
for the smallest subgroup of G containing H and expG(h+ ih). If H is arcwise
connected, then H = 〈expG h〉 by Yamabe’s Theorem 8.6.1, so that H∗ is the
integral subgroup corresponding to the complex subalgebra h+ ih ⊆ L(G) (cf.
the Integral Subgroup Theorem 8.4.8).

The following lemma will be useful in providing the characterization of
linearly complex reductive Lie groups in terms of holomorphic representations
alluded to before.

Lemma 14.2.12. Let G be a reductive complex Lie group with finitely many
connected components and K ⊆ G be a maximal compact subgroup. Then the
following assertions hold:

(i) There exists a complex vector group V such that Z(G0)0 ∼= V × T ∗Z , where
TZ ⊆ Z(G0)0 is a maximal torus and V is normal in G.

(ii) G ∼= V ×K∗.
(iii) K0 = K ′

0TZ .

Proof. (i) Since the identity component G0 acts trivially on L(Z(G0)) = z(g),
the group Ad(G)|z(g) is finite. Hence there exists an Ad(G)-invariant scalar
product on z(g), which implies the existence of an Ad(G)-invariant comple-
ment v ⊆ z(g) of L(T ∗Z) = L(TZ) + iL(TZ). We put V := expG v and note
that the Ad(G)-invariance of v implies that V is normal in G. We now have
Z := Z(G0)0 = T ∗ZV .

Since T ∗Z contains a maximal torus of Z, Proposition 13.3.13(ii) implies
that T ∗Z ∩ V is connected. Therefore L(T ∗Z) ∩ v = {0} yields V ∩ T ∗Z = {1}
and that V is closed (Corollary 13.5.6). The subgroup T ∗Z of Z is also closed
because it contains a maximal torus (Corollary 13.5.6), hence a Lie group.
Finally we note that the multiplication map V × T ∗Z → Z, (v, t) 7→ vt is an
isomorphism of complex Lie groups because it is bijective, holomorphic and
open since its differential is bijective everywhere (cf. Proposition 10.1.18).

(ii) We note that Z is a complex normal Lie subgroup, so that G/Z is a
complex semisimple Lie group, hence linearly complex reductive by Proposi-
tion 14.2.6. Let q : G → G/Z denote the projection morphism. Then q(K) is
maximal compact in G/Z (Proposition 13.3.13) and G/Z is linearly complex
reductive. This implies that q(K∗) = q(K)∗ = G/Z, which leads to G = ZK∗.
In particular, K∗ is a normal subgroup of G.

This implies in particular that Z(K0) ⊆ Z(G0), so that the maximal torus
TZ of Z coincides with Z(K0)0 = Z ∩K0 (cf. Proposition 13.3.13). Therefore
K0 = K ′

0Z(K0)0 = K ′
0TZ . From (i) we know that Z ∼= T ∗Z × V holds for a

vector group V which is normal in G. In view of T ∗Z ⊆ K∗, we thus have
G = ZK∗ = V K∗. To see that the intersection of V and K∗ is trivial, we use
Proposition 13.3.13(ii) to see that it is connected and L(K∗∩V ) = L(K∗)∩v =
L(T ∗Z) ∩ v = {0}. Finally, we obtain G ∼= V ×K∗ from (Proposition 10.1.18).

ut
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We end this section by introducing the linearizer LinC(G) of a complex
Lie group G which measures how far G is from being complex linear.

Definition 14.2.13. For a complex Lie group G, we write LinC(G) for the
linearizer of G, i.e., for the common kernel of all finite-dimensional holomor-
phic representations of G. This subgroup is the obstruction for G to admit
a faithful finite-dimensional holomorphic linear representation. We will see in
Section 15.2 below that LinC(G) = {1} characterizes the groups admitting
faithful finite-dimensional holomorphic linear representations.

Lemma 14.2.14. Let G be a connected complex Lie group. Then the following
assertions hold:

(i) LinC(G) is a complex normal Lie subgroup of G.
(ii) LinC(G) ⊆ Z(G).
(iii) LinC

(
G/ LinC(G)

)
= {1}, i.e., the finite-dimensional holomorphic repre-

sentations of the group G/ LinC(G) separate the points.

Proof. (i) Since LinC(G) is an intersection of kernels, it is a closed normal
subgroup. Its Lie algebra is the intersection of the kernels of the differentials
of a set of complex linear representations, so it is a complex subalgebra. Hence
LinC(G) is a complex Lie subgroup of G.

(ii) The kernel of the adjoint representation is the center. Therefore
LinC(G) ⊆ Z(G) = kerAd.

(iii) Let g 6∈ LinC(G). Then there exists a finite-dimensional holomorphic
representation α : G → GL(V ) with α(g) 6= 1. Since LinC(G) ⊆ kerα, this
representation factors through a holomorphic representation

α̃ : G/ LinC(G) → GL(V ) with α̃
(
g LinC(G)

)
= α(g) 6= 1. ut

Exercises for Section 14.2

Exercise 14.2.1. Let g be a complex Lie algebra and gR the underlying real
Lie algebra. Show that

(a) The space g, endowed with the same bracket and the opposite complex
structure, defined by the scalar multiplication z∗x := zx also is a complex
Lie algebra. We write g for this Lie algebra.

(b) gC ∼= g⊕ g, where the natural inclusion is given by x 7→ (x, x).

Exercise 14.2.2. Show that:

Sp2n(R)C ∼= Sp2n(C) ∼= Un(H)C and Op,q(R)C ∼= Op+q(C) ∼= Op+q(R)C

and that these complexifications are linearly complex reductive Lie groups.
Determine a maximal compact subgroup.
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Exercise 14.2.3. Let G be a complex Lie group. Then G is in particular a
real Lie group, and we write GR for the underlying real Lie group. We also
write G for the opposite complex Lie group, which is determined by G

R
= GR

and L(G) = L(G) in the sense of Exercise 14.2.1. Show that:

(1) If G is connected and simply connected, then the embedding

ηG : G → G×G, g 7→ (g, g)

is a universal complexification.
(2) If G is connected and π1(G) ⊆ G̃0 is the kernel of the universal covering

map, then
GC ∼= (G̃× G̃)/{(g, g) : g ∈ π1(G)}.

(3) Show that in general GC 6∼= G×G.

14.3 Complex Abelian Lie Groups

In this section we take a look into the interesting world of abelian complex
Lie groups. From a real perspective, one would not expect complicated phe-
nomena because connected abelian real Lie groups are all isomorphic to some
product Tn×Rm, hence classified by two discrete parameters. As we shall see
in the first subsection below, for complex Lie groups, the situation is drasti-
cally different, even in dimension 1, where one-dimensional compact connected
abelian Lie groups are classified by a complex parameter, although the under-
lying real group is always the torus T2. In this section we study the structure
of connected complex abelian Lie groups more systematically. In particular,
we show that a complex vector space can always be split off and that all
complications lie in the groups of the form T ∗, where T is the maximal torus.

14.3.1 One-dimensional Complex Lie Groups

In this subsection we present the classification of one-dimensional connected
complex Lie groups G. Then G is abelian, g = L(G) ∼= C, as a complex vector
space, and G is isomorphic to C/Γ , where Γ ⊆ C is a finitely generated
discrete subgroup isomorphic to π1(G) (see Corollaries 13.2.10 and 13.6.8).
We distinguish 3 cases:

(1) G is simply connected: Then G ∼= C is a one-dimensional complex vector
space.

(2) Γ ∼= Z: Then there exists a λ ∈ C× with λΓ = 2πiZ, and then

C/Γ → C×, z 7→ eλz

is an isomorphism of complex Lie groups.
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(3) Γ ∼= Z2. Then G is called an elliptic curve or a complex torus of dimen-
sion 1.

Clearly, the third case is the most interesting. In this case the underlying
real group is GR ∼= T2, but not all these groups are isomorphic. If

ϕ : C/Γ1 → C/Γ2

is an isomorphism of complex Lie groups, then L(ϕ) : C → C is a complex
linear isomorphism, hence multiplication with some λ ∈ C×, mapping Γ1 into
Γ2. If, conversely, Γ1, Γ2 ⊆ C are discrete subgroups and λ ∈ C× satisfies
λΓ1 = Γ2, then

ϕ : C/Γ1 → C/Γ2, z + Γ1 7→ λz + Γ2 = λ(z + Γ1)

is an isomorphism of complex Lie groups.
Therefore the isomorphism classes of compact complex one-dimensional

Lie groups are parameterized by the orbits of C× in the set of all lattices
Γ ⊆ C. To describe this set, we note that, after multiplication with a complex
number, we can move each lattice Γ into one generated by 1 and a complex
number τ with Im τ > 0. It therefore suffices to consider lattices of the form

Γ = Γ (τ) := Z+ Zτ with Im τ > 0.

We want to determine for which pairs (τ, τ ′) the groups E(τ) := C/Γ (τ) and
E(τ ′) are isomorphic as complex Lie groups. This is the case if and only if
there exists a complex number λ with λΓ (τ) = Γ (τ ′). If this is the case,
then λ and λτ form a basis of the lattice Γ (τ ′). Hence there exists a matrix

g =
(

a b
c d

)
∈ GL2(Z) with

λ = cτ ′ + d and λτ = aτ ′ + b.

Then

τ = g · τ ′ :=
aτ ′ + b

cτ ′ + d
. (14.2)

In view of

0 < Im τ =
Im τ ′

|cτ ′ + d|2 det
(

a b
c d

)
,

it follows that g ∈ SL2(Z). If, conversely, g =
(

a b
c d

)
∈ SL2(Z) and τ = g · τ ′,

then λΓ (τ) = Γ (τ ′) for λ = cτ ′ + d.
This completes the proof of the following proposition:

Proposition 14.3.1. Let SL2(Z) act on X := {z ∈ C : Im z > 0} by
(

a b
c d

)
τ :=

aτ + b

cτ + d
.
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Then the isomorphism classes of one-dimensional compact compact connected
complex Lie groups are parameterized by the space X/SL2(Z) of orbits where
one associates the isomorphism class of the group E(τ) with an orbit SL2(Z)τ .

One can sharpen the preceding classification by showing that

D :=
{

z ∈ X : |z| ≥ 1, |Re z| ≤ 1
2

}

meets each orbit of SL2(Z) on X, and calculating which boundary points
belong to the same orbit (cf. [Se88, p. 129]).

14.3.2 The Structure of Connected Complex Abelian Lie Groups

In view of Lemma 14.2.12(ii), the intricacies of complex abelian Lie groups all
lie in the structure of the subgroup T ∗. Therefore we now take a closer look at
groups for which G = T ∗. This means that G is the minimal complex integral
subgroup (i.e., integral subgroup with complex Lie algebra) containing the
maximal torus.

Lemma 14.3.2. Let T be a torus and A ⊆ T be a subtorus. Then there exists
a torus B ⊆ T for which the multiplication map A×B → T, (a, b) 7→ ab is an
isomorphism of Lie groups.

Proof. Let a = L(A) and t = L(T ). Then ker expT
∼= Zn is a discrete gener-

ating subgroup of t ∼= Rn. Then a ∩ Zn is a subgroup, and Proposition 13.6.2
implies that there exists a basis e1, . . . , en for t such that ker expT =

∑n
i=1 Zei

and ker expA =
∑k

i=1 Zei. Then b := span{ek+1, . . . , en} is a subspace of t for
which B := expT (b) ∼= b/(Zek+1 + · · · + Zen) is a torus with the required
properties. ut
Definition 14.3.3. We call a function f : G → C on a complex connected
abelian Lie group G holomorphic if the function F := f ◦ expG : g → C is
holomorphic in the sense that it is differentiable with complex linear differen-
tial dF (x) in each x ∈ g.

Proposition 14.3.4. Let G be a connected complex abelian Lie group satis-
fying G = T ∗ for the unique maximal torus T of G. Let A := expG(t ∩ it) and
B ⊆ T be a subtorus with T ∼= A×B. Then the following assertions hold:

(i) T ∗ ∼= A∗ ×B∗ and B∗ ∼= BC.
(ii) All holomorphic functions on A∗ are constant.
(iii) LinC(G) = A∗.
(iv) A∗ is the smallest complex Lie subgroup of G containing expG(t ∩ it).
(v) There exists a torus C ⊆ T such that C∗ ∼= CC, A∗ = TC∗, T ∩ C∗ = C

and A∗/C∗ is compact.
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Proof. (i) To avoid confusion between the complex structures of g = L(G)
and tC, we write tC as t× t, where the complex structure is given by I(x, y) :=
(−y, x). Accordingly, we have TC ∼= tC/D, D = ker expT , for the universal
complexification of T . We consider the induced homomorphisms γ : TC → T ∗

and γ′ := γ ◦ expTC : tC → T ∗.
We claim that

ker γ′ = {(x, iy) : y ∈ t ∩ it, x− y ∈ D}. (14.3)

If y ∈ t ∩ it and x− y ∈ D, then (x, iy) = (x− y, 0) + (y, iy) yields

γ′(x, iy) = expT (x− y) expT (y) expT (−y) = 1.

If, conversely, γ′(x, y) = 1, then expG(R(x + iy)
)

is a compact one-parameter
group of T ∗, hence contained in T , so that x + iy ∈ t. Thus x ∈ t implies that
iy ∈ t and therefore that y ∈ t ∩ it. Now (x, y) = (x + iy, 0) + (−iy, y) and
expT (x + iy) = γ′(x, y) = 1, so that x + iy ∈ D. This proves (14.3).

Let e ⊆ t be a subspace with e ∩ it = {0}. Then (14.3) implies that

eC ∩ ker γ′ = D ∩ e. (14.4)

In fact, if (x, y) ∈ eC = e×e is contained in ker γ′, then y ∈ e∩it = {0} implies
that (x, y) = (x, 0) ∈ e ∩D. Put E := expG(e), so that E∗ = E expG(ie). For
x ∈ e with expG(ix) = γ′(0, x) ∈ T , there exists a y ∈ t with γ′(0, x) = γ′(y, 0),
so that (−y, x) ∈ ker γ′ which implies x = 0. Therefore

E∗ ∩ T = E. (14.5)

For e = b, this leads to bC ∩ ker γ′ = D ∩ b = ker expB , so that B∗ ∼= BC.
In view of (14.5), we also have B∗ ∩T = B, which is a closed subgroup. Since
Corollary 13.5.6 implies that a subgroup H of G is closed if (and only if)
H ∩ T is closed, it follows that B∗ is closed.

We claim that A∗ is also closed. Let a := L(A) and note that, since A =
expG(a) is a torus, DA := D ∩ a is a generating discrete subgroup of a.
If q : a → a/(t ∩ it) denotes the quotient map, then q(DA) generates the
vector space a/(t ∩ it). Hence there exist elements d1, . . . , dk ∈ DA such that
q(d1), . . . , q(dk) form a basis of a/(t ∩ it). Let c := span{d1, . . . , dk} ⊆ a.
Then a = (t ∩ it) ⊕ c and aC = (t ∩ it)C ⊕ cC. From (14.4) and (14.5) we
derive that ker γ′ ∩ cC = D ∩ c and that the torus C := expG c satisfies
C∗ ∩ T = C. Therefore C∗ is a closed subgroup of G isomorphic to CC. Now
A∗ = exp

(
(t ∩ it) + c

)
exp(ic) = T exp(ic) implies that A∗ ∩ T = T , so that

A∗ is closed (Corollary 13.5.6).
Next we show that A∗ ∩B∗ = {1}. If g ∈ A∗ ∩B∗ = (A exp ic)∩B∗, then

there exist x ∈ a, y ∈ bC and z ∈ c such such that g = exp x exp iz = exp y.
Now (x, z) − y ∈ ker γ′ ⊆ t × (t ∩ it). We conclude that y ∈ b, which leads
to expG(iz) = expG(y − x) ∈ T . Therefore iz ∈ t + ker γ′ ⊆ t × (t ∩ it) and
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consequently z = 0. Thus g ∈ A ∩B = {1}. This proves that A∗ ∩B∗ = {1},
so that T ∗ ∼= A∗ ×B∗ follows from Proposition 10.1.18.

(ii) Let f : A∗ → C be a holomorphic function. Then the holomorphic
function

f̃ : a∗ = a + ia → C, x 7→ f(expA∗ x)

is bounded on t∩ it because expG(t∩ it) is contained in the torus A. Therefore
f̃ is constant on t ∩ it by Liouville’s Theorem. Since f is continuous, it is
constant on A, so that f̃ is constant on a. Since a contains a real form of
the complex vector space a∗ = a + ia, the Identity Theorem for Holomorphic
Functions implies that f̃ is constant, so that f is also constant.

(iii) Since all holomorphic functions on A∗ are constant, all its holomorphic
representations are trivial, i.e., LinC(A∗) = A∗. The direct product decompo-
sition G ∼= A∗ × B∗ with B∗ ∼= BC ∼= (C×)m for m := dim B implies that
LinC(G) = A∗.

(iv) Since A∗ is closed it is the smallest complex Lie subgroup of G con-
taining expG(t ∩ it). (v) follows from the proof of (i). ut
Corollary 14.3.5. A connected abelian complex Lie group G admits a faithful
finite-dimensional holomorphic linear representation if and only if

G ∼= Cn × (C×)m for some n, m ∈ N0.

Proof. It is clear that Cn × (C×)m admits a faithful finite-dimensional lin-
ear representation (Exercise 14.3.1). If, conversely, G admits a faithful finite-
dimensional linear representation, then LinC(G) = {1} and the assertion fol-
lows from Proposition 14.3.4(iii), combined with Lemma 14.2.12(i). ut
Remark 14.3.6. As a consequence of Proposition 14.2.1(d), a complex torus
G := Cn/(Zn + iZn) has no faithful holomorphic representation. In this case
T = G and t ∩ it = g.

Proposition 14.3.7. Any compact connected complex Lie group is abelian.

Proof. If G is a compact connected complex Lie group, then Proposition 14.2.1
implies that each holomorphic representation of G is trivial. Therefore Ad(G) =
{1}, and thus G is abelian. ut
Definition 14.3.8. A complex connected Lie group G is called toroidal if it
contains a connected normal subgroup H which is a complexified torus (i.e.,
isomorphic to (C×)m) such that G/H is compact.

Proposition 14.3.9. For a connected complex Lie group G with the maximal
torus T , the following assertions hold:

(a) G is toroidal if and only if G = T ∗. In particular, toroidal groups are
abelian.
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(b) If G is toroidal and C∗ ⊆ G is a closed complexified torus such that G/C∗

is compact, then t = c⊕ (t ∩ it).

Proof. Let us first assume that G is a connected complex abelian Lie group
with G = T ∗. We recall the groups A, B and C from Proposition 14.3.4. Then

G/(C∗ ×B∗) ∼= A∗/C∗ ∼= T/(C∗ ∩ T )

is a torus. This means that the group A∗ is an extension of a compact complex
Lie group by a complexified torus.

Suppose, conversely, that G is toroidal and that C∗ ⊆ G is a closed com-
plexified torus for which M := G/C∗ is compact. Then the fact that C∗ ∼= CC
is a complexified torus implies that g is a semisimple C∗-module with respect
to the adjoint action (Weyl’s Unitary Trick 14.2.10). Therefore C∗, which acts
trivially on L(C∗), being normal, also acts trivially on the quotient space,
L(G)/L(C∗) ∼= L(M). This implies that C∗ ⊆ kerAd = Z(G) so that Ad(G)
is a homomorphic image of M . But M has no nontrivial holomorphic repre-
sentation. Thus Ad(G) is trivial, i.e., G is abelian.

(a),(b) Let T ⊆ G be the unique maximal torus and C denote the maximal
torus in C∗, so that C ⊆ T and C∗ ∩ T = C. The latter relation implies in
particular that L(C∗) ∼= cC intersects t only in c.

Since G/C∗ is in particular a real torus, Proposition 13.3.13(a) implies
that T maps surjectively onto G/C∗, so that G = C∗T . Hence g = t + c∗

implies that g = t∗ and therefore G = T ∗. This completes the proof of (a).
To prove that t = c ⊕ (t ∩ it), we note that g = t + c∗ = t ⊕ ic implies

g = c⊕ it, so that we obtain for the subspace t the relation t = c⊕ (t∩ it). ut
Example 14.3.10. In the additive group C2, we consider the discrete abelian
group Γ := Z2 ⊕ Z(i,

√
2i) and put G := C2/Γ . Then the Lie algebra of the

maximal torus T is t = R2⊕R(i,
√

2i), so that t∩it = C(1,
√

2). As expG(t∩it)
contains in particular the dense one-parameter group expG(R(1,

√
2)) in

R2/Z2, it follows that T = expG(t ∩ it). In the terminology of Proposi-
tion 14.3.4, this means that A = T , so that we also have G = T ∗ = A∗,
which implies that all holomorphic functions on G are constant. Since G is
noncompact, actually isomorphic to T3 × R as a real Lie group, this is a
remarkable property.

Finally, we can prove the announced characterization of linearly complex
reductive Lie groups in terms of their holomorphic representations.

Theorem 14.3.11 (Characterization of Linearly Complex Reductive
Groups 2). For a complex reductive Lie group G with finitely many connected
components and with reductive Lie algebra g, the following are equivalent:

(i) G admits a faithful finite-dimensional holomorphic linear representation
and all holomorphic representations of G are completely reducible.

(ii) G = K∗ for a maximal compact subgroup K and G admits a faithful
finite-dimensional holomorphic linear representation.
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(iii) Z(G0)0 ∼= (C×)m.
(iv) G is the universal complexification KC of a compact connected Lie group

K, i.e., G is linearly complex reductive.

Proof. (i) ⇒ (ii): We have seen in Lemma 14.2.12 that G ∼= K∗ × V , where
V ∼= Cn is a vector group. We claim that V = {1} if G is linearly complex
reductive. For any linear functional α on v = L(V ) and any linear operator
X ∈ gln(C), we obtain a holomorphic representation γ : G → GLn(C) by
γ(k, exp z) = eα(z)X for z ∈ v and k ∈ K∗. If X is not semisimple, then this
representation is not completely reducible. Therefore V = {1}, i.e., G = K∗

is a necessary condition for G to be linearly complex reductive.
(ii) ⇒ (iii): Using Lemma 14.2.12, we conclude from G = K∗ that Z :=

Z(G0)0 = T ∗Z holds for a maximal torus TZ in Z. Since Z admits a faithful
finite-dimensional holomorphic representation, Corollary 14.3.5 yields Z ∼=
(C×)m.

(iii) ⇒ (iv): First we use Lemma 14.2.12(i) to see that (iii) implies that
G = K∗. Write k = z(k)⊕ k′. Then k′ is a compact real form of g′. Moreover,
the facts that Z(K0)0 ⊆ Z(K∗

0 ) = Z(G0) and TZ := K∩Z is a maximal torus
in Z (Proposition 13.3.13(b)) imply that z(k) = L(TZ) = k ∩ z(g). Therefore
k∩ ik = z(k)∩ iz(k) = {0} follows from (iii). Now Proposition 14.2.4 shows that
the induced surjective map KC → K∗ = G is injective, hence an isomorphism.

(iv) ⇒ (i) is Weyl’s Unitary Trick 14.2.10. ut
Corollary 14.3.12. If G is a connected complex reductive Lie group, then

LinC(G) = LinC
(
Z(G)0

)
,

and this subgroup is connected.

Proof. In view of Proposition 14.3.4, the group LinC
(
Z(G)0

)
is connected.

The inclusion LinC
(
Z(G)0

) ⊆ LinC(G) is trivial.
Let L := LinC

(
Z(G)0

)
. To complete the proof, it suffices to show that

G1 := G/L admits a faithful finite-dimensional holomorphic linear represen-
tation. We have Z(G1)0 ∼= Z(G)0/L and this group admits a faithful finite-
dimensional holomorphic linear representation by Lemma 14.2.14. Now we
write G1 = V1 × K∗

1 according to Lemma 14.2.12(ii). Then Z(K∗
1 )0 is con-

tained in Z(G1)0. Finally, Theorem 14.3.11 shows that K∗
1 and therefore G1

admits a faithful finite-dimensional holomorphic linear representation. ut

Exercises for Section 14.3

Exercise 14.3.1. Show that the product Cn× (C×)m is a linear complex Lie
group.
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14.4 The Automorphism Group of a Complex Lie Group

In this short section we use the results on automorphism groups of real Lie
groups to show that whenever the automorphism group of the underlying real
Lie group carries a Lie group structure, then we actually obtain a complex
Lie group structure.

Proposition 14.4.1. If G is a complex Lie group for which the space IAut(G)
of infinitesimal automorphisms (cf. Definition 10.3.6) is finite-dimensional,
then Aut(G) carries the structure of a complex Lie group with Lie algebra
IAut(G).

Proof. The description of IAut(G) as the space Z1(G, g) of g-valued 1-cocycles
given in Remark 10.3.9 shows immediately that the complex structure on g
also provides a complex structure on this space.

For X ∈ IAut(G) with X(g) = α(g)g for g ∈ G and ϕ ∈ Aut(G), we find
the transformation formula

(ϕ∗X)(g) = αϕ(g)g with αϕ(g) = L(ϕ) ◦ α ◦ ϕ−1.

This formula shows that the adjoint action of Aut(G) on its Lie algebra
IAut(G) is an action by complex linear maps. Since the Lie bracket on IAut(G)
can be obtained from the formula for the Lie derivative, it follows that all
operators ad X are also complex linear, so that the Lie bracket is complex bi-
linear. Therefore IAut(G) is a complex Lie algebra and Aut(G) is a complex
Lie group. ut

Notes on Chapter 14

The product decomposition in Proposition 14.3.4(ii) was first obtained by
Morimoto ([Mo66, Thm. 3.2]). He also obtained far reaching classification
results of groups of type LinC(T ∗) which are called H.C. groups in [Mo66]
because every holomorphic function on such a group is constant (cf. Propo-
sition 14.3.4(iii)). His results include in particular a classification of all con-
nected complex abelian Lie groups up to dimension 3.

It is quite remarkable that the exponential function of a complex Lie group
behaves quite differently from the one for real Lie groups. A particularly
interesting fact is that the groups PSLn(C) are the only simple complex Lie
groups with a surjective exponential function ([Lai77, Lai78]). This result
has recently been put in a much more general perspective by Moskowitz and
Sacksteder who proved that the exponential function of a connected complex
Lie group G is surjective if and only if its center Z(G) is connected and
the adjoint group Ad(G) has a surjective exponential function ([MS08]). That
these two conditions are sufficient for the exponential function to be surjective
is an easy exercise, and it is also clear that the surjectivity of the exponential
function of G implies the same property for all quotient groups, hence in
particular for Ad(G). In [Wu98] one finds a similar criterion for the surjectivity
of the exponential function of a real solvable Lie group.
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Linearity of Lie Groups

In this chapter we will make a connection to the topic of the first chap-
ters by characterizing the connected Lie groups which admit faithful finite-
dimensional representations. Eventually, it turns out that these are precisely
the semidirect products of normal simply connected solvable Lie groups with
linearly real reductive Lie groups, where the latter ones are, by definition,
groups with reductive Lie algebra, compact center and a faithful finite dimen-
sional representation. We complement this result by several other characteri-
zations, e.g. in terms of linearizers or properties of a Levi decomposition. More-
over, we characterize the complex Lie groups which admit finite-dimensional
holomorphic linear representations, thus completing the discussion from Chap-
ter 14.

15.1 Linearly Real Reductive Lie Groups

In this section we carry out our program for the case of real Lie groups with
reductive Lie algebra. We start, however, by introducing the real analog of
the linearizer LinC(G).

Definition 15.1.1. As for complex Lie groups, we also define for a real Lie
group G its linearizer as the subgroup LinR(G) which is the intersection of
the kernels of all finite-dimensional continuous representations of G. This sub-
group is the obstruction for G to admit a faithful finite-dimensional linear
representation. In particular, we shall see that LinR(G) = {1} characterizes
such groups.

Remark 15.1.2. Let G be a real Lie group and ηG : G → GC be its universal
complexification.

(a) Every representation ρ : G → GL(V ) on a complex vector space V
determines a holomorphic representation ρC : GC → GL(V ) with ρC ◦ ηG = ρ.
Therefore ker ηG ⊆ ker ρ, and this implies that
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ker ηG ⊆ LinR(G).

(b) If G is connected, then kerAd = Z(G) implies that

LinR(G) ⊆ Z(G).

In general, we have
LinR(G) ⊆ kerAd = ZG(G0).

It is easy to determine the linearizer for semisimple Lie groups.

Proposition 15.1.3. For a semisimple real Lie group G with finitely many
connected components, we have LinR(G) = ker ηG.

Proof. In view of Remark 15.1.2, we have ker ηG ⊆ LinR(G). By Proposi-
tion 14.2.6 the universal complexification GC admits a faithful finite-dimensional
representation. Therefore we also have LinR(G) ⊆ ker ηG. ut
Definition 15.1.4. A connected real Lie group H is called linearly real re-
ductive, if

(1) L(H) is reductive,
(2) Z(H) is compact1 and
(3) H admits a faithful finite-dimensional representation.

The following proposition characterizes the linearly real reductive Lie
groups among linear Lie groups.

Proposition 15.1.5. For a closed connected subgroup G ⊆ GLn(R), the fol-
lowing statements are equivalent:

(i) G is linearly real reductive.
(ii) There is a scalar product γ on Rn such that G is invariant under trans-

position and Z(G)0 is a compact subgroup of SO(Rn, γ).

Proof. (i) ⇒ (ii): By definition, the Lie algebra g of G is reductive, i.e., g =
z⊕g′, where z = z(g). Now we choose a Cartan decomposition of the semisim-
ple Lie algebra g′ = k + p (Theorem 12.2.10). Then u := z + k + ip ⊆ gln(C)
is a subalgebra and u′ = k + ip is compact and semisimple. Hence the group
U := 〈exp u〉 ⊆ GLn(C) is compact and there exists a U -invariant positive
definite hermitian form β on Cn (Theorem 9.4.14). Therefore the operators in
u are skew-hermitian, which implies that the elements of p are hermitian. This
entails that g is invariant under ∗, which coincides with transposition with re-
spect to the scalar product γ = Re β on Rn. The invariance of G under > now
follows from (ex)> = ex> for x ∈ g. That Z(G)0 is contained in U(Cn, β) fol-
lows from the connectedness of Z(G)0. Since SO(Rn, γ) = O(Rn, γ)0 (Propo-
sition 1.1.7), the claim follows.

1 Compare this to Definition 14.2.7
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(ii)⇒ (i): We only have to show that g := L(G) is reductive if g is invariant
under transposition. We set

k := {x ∈ g : x> = −x} and p := {x ∈ g : x> = x}.

Since θ(x) := −x> is an automorphism of g, k is a subalgebra,

[k, p] ⊆ p, and [p, p] ⊆ k.

Let r be the radical of g. We have to show that r ⊆ z(g). The radical, as
a characteristic ideal, is also θ-invariant, so that r = (r ∩ k) ⊕ (r ∩ p). Then
r̃ := r ∩ k + i(r ∩ p) ⊆ g̃ := k + ip ⊆ un(C) is a solvable ideal of the compact
Lie algebra g̃, hence central. This implies that r ⊆ z(g). ut

The problem of characterizing linearly real reductive Lie groups can be
reduced to the semisimple case via the results in Section 14.1.

Proposition 15.1.6. A connected real Lie group H with reductive Lie algebra
h for which Z(H)0 is compact is linearly real reductive if and only if the
commutator subgroup H ′ is linearly real reductive.

Proof. If H is linearly real reductive, then H ′ also is linearly real reductive be-
cause it is semisimple and admits a faithful finite-dimensional representation,
so that its center is finite (Corollary 12.2.6).

Conversely, assume that h is reductive, H ′ is linearly real reductive and
Z := Z(H)0 is compact. Since H ′ admits a faithful finite-dimensional repre-
sentation, ηH′ : H ′ → H ′

C is injective (Proposition 14.1.8). This also holds for
ηZ : Z → ZC (Proposition 14.2.1), and ηZ(Z) is a maximal compact subgroup
of ZC. Hence ηZ×H′ is injective. This property is inherited by quotients with
respect to discrete central subgroups (Exercise 14.1.2), and therefore also by
H = ZH ′ because the kernel of the multiplication map Z×H ′ → H is discrete
and central. Thus ηH : H → HC is injective.

Now it suffices to show that HC admits a faithful finite dimensional rep-
resentation. It is a connected complex reductive Lie group whose center
Z(HC)0 ∼= ZC is a complexified torus. Therefore Theorem 14.2.9 implies that
HC is linearly complex reductive, hence by Proposition 14.2.1 admits a faithful
finite-dimensional representation. ut
Proposition 15.1.7. Let G be a connected semisimple Lie group, g = k + p
be a Cartan decomposition of its Lie algebra g and K := 〈expG k〉. Further, let
u := k + ip be the corresponding compact real form of gC and U be the corre-
sponding simply connected compact group. Then the following are equivalent:

(i) G admits a faithful finite-dimensional representation.
(ii) G is linearly real reductive.
(iii) The universal complexification ηG : G → GC is injective.
(iv) KU := 〈expU k〉 is a covering of K.
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This property is inherited by quotients G/D, where D is a discrete central
subgroup of G.

Proof. The equivalence of (i) and (ii) follows from the fact that the center
of semisimple Lie groups which admit faithful finite-dimensional representa-
tions is finite (Corollary 12.2.6). The equivalence of (i) and (iii) follows from
Proposition 14.1.8 and the fact that GC admits a faithful finite-dimensional
representation (Proposition 14.2.6).

(iii) ⇒ (iv): From (iii) we derive that K ∼= ηG(K) is equal to 〈expGC k〉 ⊆
〈expGC(k + ip)〉, and the latter group is a quotient of U .

(iv) ⇒ (iii): Suppose that π : KU → K is a covering, and let
ηG : G → GC be the universal complexification of G. Further, let ηG̃ : G̃ → G̃C
be the universal complexification of the universal covering group G̃ of G.
We have to show that ker ηG̃ is contained in the kernel of the covering map
qG : G̃ → G, because this implies that ηG is injective (Exercise 14.1.2). Re-
call that G̃C is isomorphic to the universal complexification UC of U (Remark
14.1.5) since this group is simply connected and L(UC) = gC = L(G̃C). There-
fore, in view of Proposition 14.2.1, we can identify U with the corresponding
integral subgroup of G̃C. Now let d ∈ ker ηG̃, which is a discrete normal sub-
group, hence central (Exercise 8.4.4). By Lemma 12.1.6, there is an x ∈ k with
d = expG̃ x, so that

expU x = expG̃C
x = ηG̃(expG̃ x) = ηG̃(d) = 1.

Therefore qG(d) = expG x = expK x = π(expU x) = 1. Hence d ∈ ker qG.
The last claim follows from the fact that the injectivity of ηG is inherited

by quotients with respect to discrete central subgroups (Exercise 14.1.2). ut
Example 15.1.8. The preceding criteria can be checked quite easily, pro-
vided the simply connected group U with Lie algebra u = k+ ip is known. For
groups of the form G = SL2(R)̃ /D, D discrete central, we have U ∼= SU2(C)
with Z(U) = {±1}. Hence G admits a faithful finite-dimensional linear rep-
resentation if and only if |Z(G̃)/D| ≤ 2.

The following proposition generalizes the polar decomposition of GLn(C)
to linearly real reductive Lie groups. It will be an important tool later on.

Proposition 15.1.9 (Polar Decomposition of linearly real reductive
Lie groups). Let G ⊆ GLn(C) be a subgroup which is a zero set of polyno-
mials in the 2n2 real matrix entries, and which is invariant under the trans-
position g 7→ g∗ = g>. We set

k := {x ∈ g : x∗ = −x}, p := {x ∈ g : x∗ = x},

and K := G ∩ Un(C). Then L(K) = k, the subgroup K is maximal compact
in G, and the map
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Φ : K × p → G, (k, x) 7→ k exp x

is a diffeomorphism.

Proof. It follows from Proposition 3.3.3 that Φ is a homeomorphism. Clearly,
Φ is smooth. Its inverse is given by

Φ−1(g) =
(
ge−

1
2 log(g∗g),

1
2

log(g∗g)
)
,

and since log : Pdn(C) → Hermn(C) is a diffeomorphism by Proposition 2.3.5,
Φ−1 is a smooth map and thus Φ is a diffeomorphism. ut
Proposition 15.1.10. A semisimple connected Lie group G is linearly real
reductive if and only if all simple normal integral subgroups are linearly real
reductive.

Proof. For semisimple connected Lie groups, linear real reductivity is equiva-
lent to the existence of faithful finite-dimensional linear representations since
then the center is finite (Proposition 15.1.7). Evidently, this property is in-
herited by all simple integral subgroups.

Conversely, assume that all simple normal integral subgroups G1, . . . , Gn

are linearly real reductive. Then their complexification maps ηGi are injective,
a property that is inherited by the product group H := G1 × . . .×Gn. Since
the injectivity of the complexification map is inherited by finite quotients
(Exercise 14.1.2) and the multiplication map H → G is a finite covering,
ηG is also injective. Now Proposition 15.1.7 shows that G is linearly real
reductive. ut

15.2 The Existence of Faithful Finite-dimensional
Representations

In this section we characterize connected Lie groups with a faithful finite-
dimensional representation in terms of semidirect product decompositions.
At the same time we show that the existence of faithful finite-dimensional
representation is characterized by LinR(G) = {1}. Evidently, our task splits
into two subproblems. First, we have to show that every Lie group with
LinR(G) = {1} has a semidirect product structure as described at the be-
ginning of this chapter. Here we shall make use of the theory of compactly
embedded subalgebras, which has already been fruitful to obtain the mani-
fold splitting. Conversely, we have to prove that every such semidirect product
has a faithful finite-dimensional representation. Here the essential idea is to
use Ado’s Theorem to find a representation which is injective on the maxi-
mal normal nilpotent integral subgroup. This eventually leads to an inductive
argument. We start with the solvable case.
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Definition 15.2.1. Let G be a Lie group with Lie algebra g, r be the solvable
radical of g, and n be the maximal nilpotent ideal. We define the radical of
G by R := 〈exp r〉 and write N := 〈exp n〉 for the maximal normal nilpotent
integral subgroup of G.

Proposition 15.2.2. The normal integral subgroups R and N of G are closed.

Proof. We may w.l.o.g. assume that G is connected. Then N and R are normal
subgroups. Moreover, N is nilpotent and R is solvable by Exercise 10.2.2.
Hence the Lie algebra of N is a nilpotent ideal of g, so that the maximality
of n implies that N = N . Similarly we argue that R is closed. ut
Lemma 15.2.3. Let R be a connected solvable Lie group and T ⊆ R be a
maximal torus.

(i) R′ ∩ T ⊆ LinR(R), where R′ is the commutator subgroup of R.
(ii) If LinR(R) = {1}, then

R ∼= B o T,

holds for some simply connected normal subgroup B.

Proof. Let π : R → GLn(C) be a representation. Let r := L(R) and t := L(T ).
By Lie’s Theorem 4.4.8, there exists a complete flag in Cn which is invariant
under r. Therefore, we may assume that r, and thus also R, is represented
by upper triangular matrices. Then r′ = [r, r] is represented by strictly upper
triangular matrices and π(R′) consists of unipotent upper triangular matri-
ces. In particular, π(R′) cannot contain nontrivial compact subgroups. This
implies that R′ ∩ T ⊆ kerπ, and hence proves (i).

Under the hypotheses of (ii) we have R′∩T ⊆ LinR(R) = {1}. Then Corol-
lary 13.5.6(c) implies that R′ is closed. Let p : R → R/R′ be the quotient map.
Then p(T ) is a maximal torus in the abelian group R/R′ (Theorem 13.3.13).
Hence there exists a vector subgroup V of R/R′ with R/R′ ∼= p(T )×V (The-
orem 10.2.10), and we set B := p−1(V ). Then B is a closed normal subgroup
of R with BT = R. If g ∈ B ∩ T , then p(g) ∈ p(B) ∩ p(T ) = V ∩ p(T ) = {1},
and therefore g ∈ R′∩T = {1}. Hence B∩T = {1}, which leads to R ∼= BoT
(Proposition 10.1.18). Since R/T is simply connected (Theorem 13.3.8), this
also holds for B. ut
Proposition 15.2.4. If a connected Lie group G satisfies LinR(G) = {1},
then

G ∼= B oH

holds for some simply connected solvable group B and some linearly real re-
ductive group H.

Proof. Let R be the radical of G and T be a maximal torus in R. By Lemma
15.2.3, we have a semidirect decomposition R ∼= M o T , where M is simply
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connected and solvable. Now we choose a maximal compactly embedded sub-
algebra k of g containing t := L(T ), and further a Levi complement s in g
with

[k, s] ⊆ s and [s, k ∩ r] = {0}
(Lemma 13.3.3). We then have [s, t] = {0}, and the subspace a := t + r′ ∼=
t ⊕ r′ of r is invariant under s. Since the s-module r is semisimple by Weyl’s
Theorem 4.5.21, there exists an s-submodule a1 complementing a (Proposition
4.5.18). Since b := r′ + a1 is invariant under s and r, it is an ideal of g. We
now have r ∼= bo t and put B := 〈exp b〉 to obtain BT = R.

To show that B is closed, we consider for the subgroup A := TR′ the
surjective homomorphism

α : B/R′ → R/A ∼= M/R′, xR′ 7→ xA.

Note that R′ is closed as a normal subgroup of the simply connected solvable
Lie group M (Theorem 10.1.21). Thus A = TR′ is also closed. The group
M/R′ is abelian and simply connected (Theorem 10.1.21), hence a vector
group. The kernel of α is discrete because b∩(a+r′) = r′. Thus α is a covering,
and therefore a diffeomorphism since M/R′ is simply connected. In particular,
B/R′ is simply connected and contains no nontrivial compact subgroups since
each of these groups would be contained in a maximal torus, hence trivial
(Theorem 13.4.1). We conclude that B ∩ T ⊆ R′ ∩ T = {1}. This implies
in particular that B is closed in R because it is normal (Corollary 13.5.6),
and hence it is also closed in G. Finally, R ∼= B o T follows from Proposition
10.1.18. Since B is homeomorphic to R/T , we see that B is simply connected
(Theorem 13.4.1).

Set S := 〈exp s〉 and H := ST = 〈exp s⊕ t〉. Then

LinR(S) ⊆ S ∩ LinR(G) = {1}

in view of Proposition 15.1.3, and Theorem 14.3.11 (see also Corollary 12.2.6)
implies that S is linearly real reductive and in particular has finite center.
The normal subgroup S ∩ R is discrete in S, hence central, and thus finite.
Therefore the group (S ∩R)T is compact (Exercise 12.3.5). Since

BH = BTS = RS = G and H ∩B = (ST ) ∩B =
(
(S ∩R)T

) ∩B,

this implies that B ∩H is a compact subgroup of B, hence trivial. Consider
the semidirect product BoH, where H acts on B by conjugation, and B and
H are equipped with their natural Lie group structures as integral subgroups
of G. Then the homomorphism

B oH → BH = G, (b, h) → bh

is a smooth bijection, hence an isomorphism by the Open Mapping Theorem
10.1.8. In particular, H is closed in G.
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To see that H is linearly real reductive, we observe first that L(H) = s⊕ t
is reductive. Moreover, Z(H) = Z(S)T is compact because Z(S) is finite, as
we have seen above. It remains to be seen that H admits a faithful finite-
dimensional representation. But this follows from Proposition 15.1.6, since we
have already seen that S = H ′ is linearly real reductive. ut

The preceding proposition constitutes one half of the characterization of
connected Lie groups admitting faithful finite dimensional representations. For
the other half, we have to construct representations of semidirect products.
The following lemma describes an important method to find such representa-
tions. We recall that the conjugation with an element g is denoted by cg, and
the right multiplication is denoted by ρg.

Lemma 15.2.5. Let G = B oH be a semidirect product of Lie groups. Then
the following assertions hold:

(i) For g = (b, h) ∈ G, the map α(b, h) := λb ◦ ch|B defines a smooth action of
G on B.

(ii) The maps
π(g) : C(B) → C(B), f 7→ f ◦ α(g−1)

define a representation of G on the space C(B) of continuous functions
on B.

(iii) Let β : G → GL(V ) be a continuous representation of G and

F := {ω ◦ β|B : ω ∈ End(V )∗} ⊆ C(B).

Then F is a finite-dimensional G-invariant subspace of C(B). Further-
more, π(b)|F 6= idF if β(b) 6= idV .

Proof. (i) It is clear that the map (g, b) 7→ α(g)b is smooth and that each α(g)
maps B into itself. Let g = (b, h) and g′ = (b′, h′). Then

α(gg′) = λbhb′h−1 ◦ chh′ = λb ◦ ch ◦ λb′ ◦ c−1
h ◦ chh′

= λb ◦ ch ◦ λb′ ◦ ch′ = α(b, h) ◦ α(b′, h′) = α(g)α(g′).

(ii) follows immediately from (i).
(iii) Since V is finite-dimensional, so is End(V ), and thus F is finite-

dimensional. For ω ∈ End(V )∗, h ∈ H and x ∈ B, we have
(
π(h)(ω ◦ β)

)
(x) = (ω ◦ β)

(
ch−1(x)

)
= (ω ◦ cβ(h−1))

(
β(x)

)
,

and cβ(h−1) : End(V ) → End(V ) is linear. For b ∈ B, we obtain
(
π(b)(ω ◦ β)

)
(x) = ω ◦ β ◦ λb−1(x) = (ω ◦ λβ(b−1))

(
β(x)

)
.

Since λβ(b) : End(V ) → End(V ) is also linear, we see that F is invariant under
π(G).



15.2 The Existence of Faithful Finite-dimensional Representations 585

If b ∈ B satisfies π(b)|F = idF , then the above calculation shows that

ω(1) = ω ◦ β(1) = (ω ◦ λβ(b) ◦ β)(1) = ω(β(b))

for all ω ∈ End(V )∗, and hence β(b) = 1. ut
Proposition 15.2.6. If G = BoH is a semidirect product, where B is simply
connected solvable and H is linearly real reductive, then G admits a faithful
finite-dimensional representation.

Proof. We argue by induction on dim B. For dim B = 0, the claim follows by
the definition of a linearly real reductive group. So let dimB > 0, and let
N be the largest normal nilpotent integral subgroup of B. Then N 6= {1}
and therefore Z(N) 6= {1}. The subgroups N and Z(N) are both charac-
teristic in B, i.e., invariant under all automorphisms. Therefore both groups
are normal in G, simply connected, and the quotient B/Z(N) likewise is sim-
ply connected (Theorem 10.1.21). Now we apply the induction hypothesis to
G/Z(N) ∼=

(
B/Z(N)

)
oH to obtain a faithful finite-dimensional representa-

tion α̃1 : G/Z(N) → GLn1(R). This leads to a representation

α1 : G → GLn1(R) with kerα1 = Z(N).

Ado’s Theorem 6.4.1 provides a faithful finite dimensional representation
α : g := L(G) → gl(V ) such that V is a nilpotent module over the maximal
nilpotent ideal of g. Since L

(
Z(N)

)
is a nilpotent ideal of g, α

(
L

(
Z(N)

)) ⊆
gl(V ) consists of nilpotent endomorphisms. We now integrate α to a represen-
tation β : G̃ ∼= Bo H̃ → GL(V ) of the simply connected covering group of G,
satisfying L(β) = α. Here we use Proposition 10.1.19 and Corollary 10.1.20
to see that G̃ = B o H̃. For 0 6= x ∈ L

(
Z(N)

)
, we then have

β(exp x) = eα(x) 6= idV

since α(x) 6= 0 is nilpotent. Now we apply Lemma 15.2.5 to find a finite-
dimensional representation π : G̃ → GL(F ) on a space F of continuous func-
tions on B such that the restriction to Z(N) is injective, and

π(h)f = f ◦ ch−1 for h ∈ H.

Now let qG : G̃ = B o H̃ → G = B o H be the universal covering map,
and let h ∈ H̃ be such that qG(h) = 1. Then h ∈ Z(G̃), and consequently,
ch = idG̃. Therefore π(ker qG) = {1}, and the representation π factors to a
representation α2 of G which is injective on Z(N) ⊆ B. We now define

α : g 7→ α1(g)⊕ α2(g) ∈ GL
(
Rn ⊕ F

)
.

The kernel of this representation is kerα1 ∩ kerα2 = {1}. ut
Combining Propositions 15.2.4 and 15.2.6, we get:
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Theorem 15.2.7 (Existence of Faithful Finite Dimensional Repre-
sentations). For a connected Lie group G the following statements are equiv-
alent.

(i) G admits a faithful finite-dimensional representation.
(ii) LinR(G) = {1}.
(iii) G = B o H, where B is simply connected solvable and H is linearly

real reductive. Here Z(H)0 is a maximal torus in the radical R of G and
R ∼= B o Z(H)0.

Corollary 15.2.8. If a Lie group G admits a faithful finite-dimensional rep-
resentation, then the commutator group G′ is closed in G.

Proof. In view of the Characterization Theorem 15.2.7, G = B o H for a
linearly real reductive group H and a simply connected solvable group B. Let
R be the radical of G, and note that S = H ′ is a maximal semisimple integral
subgroup. On the Lie algebra level, we have a decomposition

g = b + z + s,

where b := L(B), s = L(S), and z = z
(
L(H)

)
. Hence

g′ = [b+z+s, b+z+s] ⊆ [b+z, b+z]+[s, s]+[b+z, s] ⊆ b+[b, z]+[b, s]+s ⊆ b+s,

and because s is perfect, s ⊆ g′, so that g′ = s + (b ∩ g′). Therefore G′ =
〈exp(b ∩ g′)〉S. The factor on the left is closed in B by Theorem 10.2.15, and
S is closed by Corollary 13.5.7. Therefore G′ is closed in G = RoH. ut
Theorem 15.2.9. Let G be a connected Lie group, R E G be its solvable
radical with the Lie algebra r E g, and S ⊆ G be an integral subgroup corre-
sponding to a Levi complement s. Further, let TR ⊆ R be a maximal torus.
Then G admits a faithful finite-dimensional representation if and only if

(a) S admits a faithful finite-dimensional representation, and
(b) L(TR) ∩ [g, g] = {0}.

The intersection L(TR) ∩ [g, g] is always central in g.

Proof. First we assume that G admits a faithful finite-dimensional represen-
tation, hence is a semidirect product G = BoL, where B is simply connected
solvable and L is linearly real reductive (Theorem 15.2.7). Then S admits a
faithful finite-dimensional representation, and it remains to verify (b). Since
the quotient map q : G → L ∼= G/B satisfies L(q)[g, g] ⊆ [l, l], we have

[g, g] ⊆ bo [l, l].

We conclude that L(TR) ∩ [g, g] ⊆ L(TR) ∩ b = L(TR ∩ B). Since B is a
simply connected solvable Lie group, it contains no nontrivial torus (Propo-
sition 10.2.15), which leads to L(TR ∩B) = {0} and hence to (b).
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For the converse, assume that G satisfies (a) and (b). If g = r o s is
a Levi decomposition, then [g, g] = [g, r] o s implies that [g, g] ∩ r = [g, r].
In view of (b), L(TR) intersects [g, r] trivially, so that there exists a vector
space complement b of L(TR) in r, containing [g, r]. Then [g, b] ⊆ [g, r] ⊆ b
implies that b is an ideal of g, so that the corresponding integral subgroup B
is normal in G. Since L(B) ∩ L(TR) = {0}, Corollary 13.5.6 implies that the
normal integral subgroup B is closed in R, hence also in G. As TR ∩ B is a
maximal torus of B (Theorem 13.3.13), it is trivial, and therefore B is simply
connected by the Second Manifold Splitting Theorem 13.3.11.

In view of Lemma 13.3.3, there exists a TR-invariant Levi complement in
g, and since all Levi complements are conjugate under inner automorphisms
by Malcev’s Theorem 4.6.13, we may w.l.o.g. assume that s := L(S) is TR-
invariant. Then L := TRS is an integral subgroup of G which is reductive, and
Z(L)0 = TR is compact. Since S = L′ admits a faithful finite-dimensional rep-
resentation, it is linearly real reductive by Proposition 15.1.7, so that Propo-
sition 15.1.6 implies that L is linearly real reductive.

In view of g = b+L(TR)+L(S) = b+L(L), it follows from Corollary 10.1.20
that, endowing L with its intrinsic Lie group structure, the multiplication
map µ : B o L → G, (b, l) 7→ bl is a surjective morphism of Lie groups. In
view of b ∩ L(L) = {0}, its kernel, which is isomorphic to the intersection
B ∩ L, is discrete, hence central in both groups. Z(S) is finite because S
admits a faithful finite-dimensional representation (Corollary 12.2.6). Now
Z(L) = TRZ(S) shows that each element of B ∩ L is contained in a compact
subgroup of G. But since B is a simply connected solvable closed subgroup
of G, all its compact subgroups are trivial, which leads to B ∩ L = {1}.
Therefore µ is a bijective morphism of Lie groups whose differential L(µ) is
an isomorphism of Lie algebras, and this implies that µ is an isomorphism
(Proposition 8.2.13). Now use Proposition 15.2.6 to obtain a faithful finite-
dimensional representation of G.

To see that the intersection L(TR) ∩ [g, g] is always central in g, we recall
from Proposition 4.4.14 that for each x ∈ [g, g]∩ r, the operator adx is nilpo-
tent. If, in addition, x ∈ L(TR), then eR ad x is bounded, which implies that
adx is semisimple (cf. Exercise 2.2.7), and therefore ad x = 0, which means
that x ∈ z(g). ut

We conclude this section with the observation that a Lie group which
admits a faithful finite-dimensional representation also admits a faithful finite-
dimensional representation with closed image. The proof of this nontrivial
theorem is deferred to a sequence of exercises below. In a way this result
justifies the fact that we only called closed subgroups of GLn(K) linear Lie
groups in Chapter 3.

Theorem 15.2.10. For a real Lie group G the following properties are equiv-
alent.

(i) G admits a faithful finite-dimensional representation.
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(ii) G admits a faithful finite-dimensional representation with closed image.

Exercises for Section 15.2

In the following, it is shown that a Lie group always which admits a faith-
ful finite-dimensional representation also admits a faithful finite-dimensional
representation as a closed subgroup of GLn(R).

Exercise 15.2.1. Let G be a Lie group with Lie algebra g. Suppose that G
admits a faithful finite-dimensional representation.

(a) There is a maximal compactly embedded abelian subalgebra a of g,
and b, h as in Theorem 15.2.4, such that

a = (a ∩ b) + (a ∩ h), z(h) ⊆ a and [a ∩ b, h] = {0}.

From now on, let a be as in (a).
(b) a ∩ h is maximal compactly embedded abelian in h.
(c) a ∩ b ∩ g′ ⊆ z(n), where n is the maximal nilpotent ideal of g.

Exercise 15.2.2. Let G be linearly real reductive and t ⊆ L(G) be a maximal
compactly embedded abelian subalgebra. Then T := expH t is a torus.

Exercise 15.2.3. Let γ : R→ G be a one-parameter subgroup of a Lie group.
If γ(R) is not relatively compact in G, then γ(R) is closed and γ is a homeo-
morphism onto the image.

Exercise 15.2.4. Let e = Rx1 ⊕ t be an abelian subalgebra of gln(R), where
et is a torus. If eRx1 is a noncompact closed subgroup, then this also holds for
eR(λx1+x2) if λ 6= 0 and x2 ∈ t.

Exercise 15.2.5. Let a be as in Exercise 15.2.1 and ϕ1 : G → GLn1(R) be a
faithful representation of G. If ϕ1(G) is not closed, then there is an x ∈ a ∩ b
such that ϕ1(expRx) is not closed.

Exercise 15.2.6. Let a ∩ b = a1 ⊕ (a ∩ b ∩ g′) be a direct decomposition.
Then there is a representation ϕ2 of G on Rn2 such that ϕ2(exp a1) is a closed
subgroup of GLn2(R) which is isomorphic to some Rn.

Exercise 15.2.7. Let ϕ1 and ϕ2 be the two representations from Exercise
15.2.5 and Exercise 15.2.6. Then the representation

ϕ = (ϕ1, ϕ2) : G → GLn1(R)×GLn2(R) ⊆ GLn1+n2(R), g 7→ (ϕ1(g), ϕ2(g))

has closed image.
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15.3 Linearity of Complex Lie Groups

We are aiming at a characterization of the connected complex Lie groups
which admit faithful finite-dimensional holomorphic representations as those
which are semidirect products of simply connected solvable groups and lin-
early complex reductive groups. First we derive a structural condition which
is necessary for the existence of a faithful finite-dimensional holomorphic rep-
resentation and leads to the semidirect product structure. For the following
proposition recall the notation from Definitions 10.2.1 and 14.2.11.

Proposition 15.3.1. Let G be a connected complex Lie group, R its solvable
radical, and K a maximal compact subgroup. If K∗∩ (G,R) = {1}, then there
exists a simply connected normal solvable subgroup B such that G ∼= B oK∗.

Proof. Since the normal subgroup (G,R) intersects K trivially, it intersects
all maximal compact subgroups of G trivially. Therefore it is closed and
simply connected (Corollary 13.5.6, Theorem 13.3.11). The quotient group
L := G/(G,R) is reductive. First we use Theorem 13.3.13 to see that, if
q : G → L denotes the quotient map, then q(K) is a maximal compact sub-
group of L. Then we use Lemma 14.2.12 to find a vector group V ⊆ L such
that L ∼= V × q(K)∗ = V × q(K∗).

Let B := q−1(V ). Then B is closed and simply connected (Theorem
13.3.13(i)(c)). Moreover, q(B ∩ K∗) ⊆ V ∩ q(K∗) = {1} yields B ∩ K∗ ⊆
(G,R) ∩K∗ = {1}. Finally, we note that K∗ is closed because it contains a
maximal torus (Corollary 13.5.6), so that G ∼= B oK∗ follows. ut
Remark 15.3.2. We resume the situation of the proposition above. Let U ⊆
AutC(G) be a group of holomorphic automorphisms of G such that g is a
semisimple U -module. Then the characteristic subgroup (G,R) is U -invariant
so that U also acts on the quotient G/(G,R) in such a way that g/[g, r] is a
semisimple U -module. Therefore the complement for the image of K∗ can be
chosen in a U -invariant fashion (cf. proof of Lemma 14.2.12), and therefore
the normal subgroup B obtained is invariant under U .

Remark 15.3.3. Let G = BoK∗ be a decomposition as in Proposition 15.3.1
and K1 a second maximal compact subgroup of G. Then there exists an inner
automorphism cg : x 7→ gxg−1 such that cg(K) = K1 (Theorem 13.1.3(iii)).
Since inner automorphisms of complex Lie groups are holomorphic, we con-
clude that cg(K∗) = K∗

1 . Using that B is also invariant under inner automor-
phisms, we see that K∗

1 ∩B = {1}, whence G ∼= BoK∗
1 . Therefore we obtain

a similar decomposition for each maximal compact subgroup.

Lemma 15.3.4. If G is a connected complex Lie group, R the solvable radical
of G, and K ⊆ G a maximal compact subgroup, then

K∗ ∩ (G,R) ⊆ LinC(G).
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Proof. Let α : G → GL(V ) be a holomorphic representation of G and

V0 = {0} ⊆ V1 ⊆ . . . ⊆ Vn = V

a Jordan–Hölder series for the G-module V , i.e., all subspaces Vi are submod-
ules and the quotients Vi+1/Vi are simple modules.

Then V is a unipotent module over the group (G,R) because it is an
integral subgroup with Lie algebra [g, r], and V is a nilpotent [g, r]-module
(Proposition 4.4.14). Therefore [g, r], and hence also (G,R), acts trivially on
the quotients Vi+1/Vi.

On the other hand the group α(K∗) = α(K)∗ is isomorphic to α(K)C
(Proposition 14.2.1(d)), hence linearly complex reductive. Therefore, Theo-
rem 14.3.11 implies that each Vi+1 contains a K∗-invariant subspace comple-
mentary to Vi. Now the representation of α(K∗) on

⊕n
i=1(Vi/Vi−1) is faithful.

We conclude that

α
(
K∗ ∩ (G, R)

) ⊆ α(K∗) ∩ α
(
(G,R)

)
= {1}.

Since α was arbitrary, K∗ ∩ (G,R) ⊆ LinC(G). ut
Proposition 15.3.5. If G is a connected complex Lie group with LinC(G) =
{1}, then G ∼= BoK∗, where B is simply connected solvable, K is a maximal
compact subgroup of G, and K∗ ∼= KC is linearly complex reductive.

Proof. First we note that Lemma 15.3.4 implies that (G,R) ∩K∗ = {1} and
K∗ ∼= KC holds for any maximal compact subgroup K ⊆ G because K∗ ⊆ G is
linear (Theorem 14.3.11). Therefore Proposition 15.3.1 provides the required
semidirect decomposition G ∼= B o K∗, where B is simply connected and
solvable. ut

So far we have seen that a connected complex Lie group which admits a
faithful finite-dimensional holomorphic representation has some special struc-
tural features which, combining Lemma 15.3.4 with Proposition 15.3.1, lead
to a semidirect decomposition into a simply connected solvable group and a
linearly reductive Lie group K∗ ∼= KC. Next we prove a converse.

Proposition 15.3.6. If G is a connected complex group which is a semidirect
product G = B o L, where B is simply connected solvable and L is linearly
complex reductive, then G admits a faithful finite dimensional holomorphic
representation.

Proof. The proof is almost the same as for Proposition 15.2.6. The only step
which is different is that if β : G̃ ∼= B o L̃ → GL(V ) is a holomorphic repre-
sentation and

F := {ω ◦ β|B : ω ∈ End(V )∗}
is the corresponding finite-dimensional subspace of C(B) on which we have a
representation of B o L̃, given by
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πF (b, h)(f) = f ◦ c−1
h ◦ λ−1

b , f ∈ F,

then πF is holomorphic. This follows from the fact the evaluation maps
evb : F → C, f 7→ f(b), separate the points of F , and for each x ∈ B and
f = ω ◦ β|B ∈ F , the map B o L̃ → C,

(b, h) 7→ (πF (b, h)f)(x) = ω(β(c−1
h λ−1

b x))

= ω(β(hb−1xh−1)) = ω(β(h)β(b)−1β(x)β(h)−1)

has in (1,1) the differential

(y, z) 7→ −ω(L(β)(y) · β(x)) + ω([L(β)(z), β(x)]),

which is complex linear. ut
Summing up the results of this section we obtain the following character-

ization theorem:

Theorem 15.3.7. For a connected complex Lie group G, the following are
equivalent:

(i) G it is a semidirect product G = B o L, where B is simply connected
solvable and L is linearly complex reductive.

(ii) G admits a faithful finite-dimensional holomorphic representation.
(iii) LinC(G) = {1}.
(iv) If K ⊆ G is maximal compact, then G ∼= B o K∗, where B is simply

connected solvable and K∗ is linearly complex reductive.
(v) If K ⊆ G is maximal compact, then K∗ is linear and K∗ ∩ (G,R) = {1}.
For any such decomposition G = BoL, a maximal compact subgroup K of L
is also maximal compact in G and L = K∗ ∼= KC.

Proof. (i) ⇒ (ii) follows from Proposition 15.3.6.
(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i): If LinC(G) = {1}, then the existence of a semidirect decompo-

sition with the required properties follows from Proposition 15.3.5.
(i) ⇔ (iv): Let K ⊆ G be a maximal compact subgroup. Then its image

KL in G/B ∼= L is maximal compact (Theorem 13.3.13), so that any maximal
compact subgroup KL of L is also maximal compact in G. Since L is linearly
complex reductive, we have L = K∗

L. Any other maximal compact subgroup
of G is conjugate to KL under some inner automorphism, which leads to
G ∼= B oK∗.

(iii) ⇒ (v): Lemma 15.3.4 implies K∗ ∩ (G,R) = {1}. We know already
that K∗ is linearly complex reductive, hence by Theorem 14.3.11 it admits a
faithful finite dimensional holomorphic representation.

(v) ⇒ (iv): Proposition 15.3.1 and Theorem 14.3.11(ii). ut
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Corollary 15.3.8. A simply connected complex Lie group admits a faithful
finite dimensional holomorphic representation.

Proof. If g = ros is a Levi decomposition of the Lie algebra g of G, then G ∼=
RoS. The group R is simply connected and solvable and S is simply connected
and semisimple, hence linearly complex reductive (Proposition 14.2.6). Now
the assertion follows from Theorem 15.3.7. ut

The preceding results contrast the real case, where the universal covering
group of SL2(R) constitutes the simplest example of a simply connected real
Lie group which does not admit a faithful finite-dimensional representation.

Corollary 15.3.9. Let G be a connected complex Lie group and D ⊆ Z(G) a
finite subgroup. Then the following statements are equivalent.

(i) G admits a faithful finite-dimensional holomorphic representation.
(ii) G/D admits a faithful finite-dimensional holomorphic representation.

Proof. If G admits a faithful finite-dimensional holomorphic representation,
we have G ∼= B o K∗, where K is a maximal compact subgroup (Theo-
rem 15.3.7). Then D ⊆ K implies that G/D ∼= B o (K∗/D). The group B is
simply connected solvable and K∗/D ∼= KC/D ∼= (K/D)C is linearly complex
reductive. Therefore G/D admits a faithful finite dimensional holomorphic
representation by Theorem 15.3.7.

If, conversely, G/D admits a faithful finite-dimensional holomorphic rep-
resentation and G/D ∼= B1 o K∗

1 , where K1 ⊆ G1 := G/D is a maximal
compact subgroup, then the inverse image K of K1 is a maximal compact
subgroup in G. Let B := 〈expG L(B1)〉 and write q : G → G/D for the quo-
tient map. Then q(K∗∩B) ⊆ K∗

1 ∩B = {1} yields K∗∩B ⊆ D. The mapping
q|B : B → B1 is a covering, hence injective because B1 is simply connected
and thus B is also simply connected. Therefore B ∩ D = {1} which entails
that K∗ ∩ B = {1}. This proves that G ∼= B o K∗. The group Z(K)0 is a
finite covering of Z(K1)0 ∼= (C×)m, so it is also isomorphic to (C×)m. We
conclude with Theorem 14.3.11 that K∗ is linearly complex reductive so that
the assertion follows from Theorem 15.3.7. ut

We conclude this section with some examples explaining some of the pos-
sible pathologies.

Example 15.3.10. We construct a solvable complex Lie group G which does
not admit a faithful finite-dimensional holomorphic representation, whereas
its maximal connected nilpotent normal subgroup N does. We put

G := (C× C× × C)oγ C,

where the action of C on C3 is described by

γ(z)(a, eb, c) := (eza, eb+zc, c).
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Then N = C × C× × C is the maximal nilpotent integral subgroup, which
admits a faithful finite-dimensional representation. On the other hand, in the
notation of Theorem 15.3.7, K∗ = {1} × C× × {1} we have K∗ ⊆ G′, so G
does not admit a faithful finite-dimensional holomorphic representation.

Example 15.3.11. Let A := (C×)2, T = T2 be the maximal torus in A,
t := L(T ), and x ∈ a with Cx∩ t = {0}. Then B := expA Cx is a complex Lie
subgroup of A and b ∩ t = b ∩ R2 = {0} implies that B is simply connected
(Theorem 13.3.13). Therefore B ∼= C.

Now let H = (h, ∗) denote the simply connected three-dimensional Heisen-
berg group which we identify with its Lie algebra h = span{p, q, z} endowed
with the BCH multiplication x ∗ y := x + y + 1

2 [x, y].
Let α : Z(H) → B be an isomorphism, put G := H ×A and

D := {(x, α(x)
)
: x ∈ Z(H)}.

Then D ∼= C is a closed central subgroup of G. Let G1 := G/D and write
q : G → G1 for the quotient homomorphism. Then T1 := q(T ) is a maximal
torus in G1 (Theorem 13.3.13(b)) and (G1, G1) = q((G,G)) = q

(
Z(H)

)
=

q(B) together with T ∗1 = q(T ∗) = q(A) yields

(G1, G1) ∩ T ∗1 = q(B) ∼= C.

Therefore G1 does not admit a faithful finite-dimensional holomorphic rep-
resentation but T ∗1 = q(A) ∼= A does. So we have an example of a nilpotent
group G1 with

LinC(G1) 6= LinC(T ∗1 ).

The quotient A/B is compact because the image of T in this group is a
maximal torus which is two-dimensional. Therefore q(A) ⊆ LinC(G) and since
G1/q(A) ∼= C2, we see that LinC(G1) = q(A).

Example 15.3.12. We have seen above that complex Lie groups admitting
faithful finite-dimensional holomorphic representations are characterized by
the existence of a semidirect decomposition G = B oK∗, where B is simply
connected and solvable. We construct an example, where we have two essen-
tially different decompositions of this type. One where B is abelian and one
where B is not even nilpotent.

Let G := C × Aff(1,C) ∼= C2 o C×, where C× acts on C2 by z · (a, b) =
(a, zb). We fix a basis (e1, e2, x) for the Lie algebra g with

[e1, e2] = 0, [x, e1] = 0, and [x, e2] = e2.

Then g′ = Ce2 and t = ix is the Lie algebra of a maximal torus. Put b :=
span{e2, e1 + x}. Then b contains the commutator algebra, hence is an ideal
of g. Moreover, b∩ t = {0} which implies that B := exp b is closed and simply
connected (Theorem 13.3.13). We have T ∗ = expCx ∼= C× and globally we
find that T ∗ ∩ B = {1}. Thus we also have a semidirect decomposition G ∼=
B o T ∗, where B is a two-dimensional nonabelian simply connected complex
Lie group.



594 15 Linearity of Lie Groups

Notes on Chapter 15

The results described in this chapter are classical (cf. [Ho65]). The problem
to characterize connected Lie groups which admit faithful finite-dimensional
representations has various natural generalizations. Since these Lie groups are
precisely the ones which can be embedded into a finite-dimensional associa-
tive algebra, it is natural to ask for a characterization of connected Lie groups
injecting continuously into unit groups of Banach algebras. This problem has
been solved by Luminet and Valette in [LV94], where it is shown that any con-
nected Lie group for which the continuous homomorphisms into unit groups
of Banach algebras separate the points is already a linear Lie group.

There is a natural class of topological algebras generalizing Banach alge-
bras, the so-called continuous inverse algebras. A complete unital associative
locally convex algebra A is said to be a continuous inverse algebra if its unit
group A× is open and the inversion map ιA : A× → A, a 7→ a−1 is continuous.
For this considerably larger class of algebras, the problem of characterizing
connected finite-dimensional Lie groups G for which the homomorphisms into
continuous inverse algebras separate the points is solved by Beltita and Neeb
in [BN08], where it is shown that any such group is also a linear Lie group.

These two results show that linearity of a connected Lie group is a very
strong property with many different characterizations which, a priori, look
much weaker than the linearity requirement.

The criterion for the existence of faithful finite-dimensional representations
in Theorem 15.2.9 is due to N. Nahlus (cf. [Na97]).
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Classical Lie Groups

In this chapter we apply the general theory to classical matrix groups such
as GLn(C),SLn(C), SOn(C), Sp2n(C) and some of their real forms to provide
explicit structural and topological information. We will start with compact
real forms, i.e., Un(K) and SUn(K), where K is R, C, or H, since many results
can be reduced to compact groups.

16.1 Compact Classical Groups

In this section we take a closer look at the groups Un(K) and SUn(K), where K
is R, C or H (cf. Definitions 1.1.3 and 1.3.3). Recall that Un(R) = On(R) and
note that Proposition 1.3.4 implies that Un(H) ⊆ SLn(H), so that SUn(H) :=
Un(H) ∩ SLn(H), which we did not define explicitly in Section 1.3, coincides
with Un(H).

16.1.1 Unitary Groups

We recall from Lemma 1.1.4 that Un(C) is compact and from Proposition 1.1.7
that it is connected.

Proposition 16.1.1. The Lie algebra un(C) = L(Un(C)) consists of the
skew-hermitian matrices in gln(C). It is compact, and

[un(C), un(C)] = sun(C), z
(
un(C)

)
= Ri1 and un(C) = sun(C)⊕ Ri1.

Proof. We have already seen in Example 3.2.4(b) that

un(C) = {x ∈ gln(C) : x∗ = −x}.

The compactness of the Lie algebra un(C) follows from the compactness of
Un(C) and Theorem 11.1.4. By Lemma 11.1.2, the compact Lie algebra un(C)
is the direct sum of the semisimple Lie algebra un(C)′ and its center.



596 16 Classical Lie Groups

To determine the center, let x ∈ z
(
un(C)

)
. Then x also commutes with

gln(C) = un(C) ⊕ iun(C), hence is a multiple of 1 (Exercise 1.1.16), which
leads to z(un(C)) = iR1. It is clear that un(C)′ ⊆ sun(C), and, in view of
sun(C) ∩ iR1 = {0}, we have equality. ut
Lemma 16.1.2. For K ∈ {R,C,H} and d := dimRK, the group Un(K) acts
transitively on the unit sphere

Sdn−1 = {z ∈ Kn : ‖z‖ = 1}.

For n > 1 and K ∈ {R,C}, SUn(K) also acts transitively.

Proof. If x ∈ Kn with ‖x‖ = 1, then we extend x to an orthonormal basis
{x, x2, . . . , xn} for Kn and define a K-linear map U : Kn → Kn by Uei := xi,
i = 1, . . . , n, where e1, . . . , en is the canonical basis for Kn. Then U is unitary
and Ue1 = x. This proves that Un(K) acts transitively on the unit sphere in
Kn.

For n > 1 and K ∈ {R,C}, we replace xn by x′n := (det U)−1xn to obtain
an element U ′ ∈ SUn(C) with U ′e1 = x. ut
Proposition 16.1.3. The groups SUn(C) and Un(H) are 1-connected for each
n ∈ N.

Proof. For n ∈ N and K ∈ {C,H}, we put Gn := SUn(C) for K = C and
Gn := Un(H) for K = H. We also put d := dimRK. To see that Gn it is
simply connected, we consider the surjective orbit map

α : Gn → Sdn−1, g 7→ ge1

(Lemma 16.1.2). The stabilizer H = (Gn)e1 of e1 is isomorphic to Gn−1. It
only acts on the last n−1 components. The map α factors through a bijective
continuous map

β : Gn/H → Sdn−1,

and since Gn is compact, β is a homeomorphism. Now we prove the claim by
induction on n. For n = 1 and K = C, the group G1 = SU1(C) = {1} is trivial,
hence in particular 1-connected. For K = H, we have U1(H) ∼= SU2(C) ∼= S3

(by the map β), and we also see in this case that G1 is 1-connected.
We now assume that n > 1 and that Gn−1

∼= H is 1-connected. Since
H ∼= Gn−1 and Gn/H ∼= Sdn−1 are connected, the group Gn is connected
(Exercise 11.4.1). Next we use the Fundamental Group Diagram (Theo-
rem 10.1.15) whose upper row provides an exact sequence

{1} = π1(H) → π1(Gn) → π1(Gn/H).

Since π1(Gn/H) = π1(Sdn−1) vanishes for n > 1 (Exercise A.1.3), the ho-
momorphism π1(H) → π1(Gn) is an isomorphism, showing that π1(Gn) also
vanishes. ut
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Next we analyze how Un(C) decomposes into its commutator group
SUn(C) and the center.

Proposition 16.1.4. Z
(
Un(C)

)
= T1 = {z1 : |z| = 1} and Z

(
SUn(C)

)
=

{z1 : zn = 1} is cyclic of order n.

Proof. Let g be in the center of Un(C). Then Ad(g)x = gxg−1 = x for each
x ∈ un(C) implies that g commutes with each x ∈ gln(C) = un(C) + iun(C),
so that g ∈ C1 (Exercise 1.1.16). Along the same lines, we argue for SUn(C),
using that un(C) = sun(C)⊕Ri1 (cf. Exercise 11.2.7, Proposition 16.1.1). ut
Proposition 16.1.5. The multiplication map

Z
(
Un(C)

)× SUn(C) → Un(C), (z, g) 7→ zg

is a connected n-fold covering morphism of Lie groups. The subgroup

A := {diag(z, 1, . . . , 1) : |z| = 1} ∼= T,

satisfies Un(C) = SUn(C)oA (cf. Theorem 11.2.6).

Proof. Since SUn(C) is connected, the first claim follows immediately from
Proposition 16.1.4 and

Z
(
Un(C)

) ∩ SUn(C) = Z
(
SUn(C)

)
.

The second claim is a consequence of Proposition 10.1.18 and the triviality of
the intersection A ∩ SUn(C) = {1}. ut

16.1.2 Orthogonal Groups

In this section, we write si ∈ On(R) for the orthogonal reflection in the hy-
perplane e⊥i , i.e.,

si(ej) =

{
ej for j 6= i,

−ei for j = i,

Proposition 16.1.6. Z
(
On(R)

)
= {±1}, Z

(
SO2(R)

)
= SO2(R), and

Z
(
SOn(R)

)
= SOn(R) ∩ Z

(
On(R)

)
=

{
{1} for n ≥ 3 odd,

{±1} for n ≥ 4 even.

Proof. (cf. also Exercise 1.2.16) If g ∈ Z
(
On(R)

)
, then g commutes with

each si, hence is diagonal. Since g also commutes with all maps induced by
permutations of the basis vectors, all diagonal entries of g are equal. As g is
orthogonal, we obtain g ∈ {±1}.

It is clear that the group SO2(R) of rotations of the plane is abelian. Hence
we may assume that n > 2. The products sisj are contained in SOn(R). If g ∈



598 16 Classical Lie Groups

Z
(
SOn(R)

)
, then g commutes with all of these maps, and a similar argument

as above shows that g is diagonal. Further, g commutes with the maps induced
by even permutations of the basis elements. But since the alternating group
An ⊆ SOn(R) acts transitively on the basis vectors (here we need again that
n > 2), g ∈ {±1}. In view of det(−1) = (−1)n, −1 ∈ SOn(R) is equivalent to
n being even. ut
Corollary 16.1.7. For n ≥ 3, the groups On(R) and SOn(R) are semisimple.
The Lie algebra son(R) is semisimple and compact.

Proof. Since SOn(R) is a compact connected group (Lemma 1.1.4) with finite
center (Theorem 16.1.6),

L
(
On(R)

)
= L

(
SOn(R)

)
= son(R)

is a compact semisimple Lie algebra (Lemma 11.1.2 and Theorem 11.1.4). ut
Corollary 16.1.8. The group SOn(R) is the identity component of On(R)
and On(R) = SOn(R)o {±s1}. There exists a direct decomposition On(R) ∼=
SOn(R)× Z/2Z if and only if n is odd.

Proof. The first claim follows from Proposition 1.1.7. If n is odd, then evi-
dently On(R) = {±1} × SOn(R). Conversely, if On(R) = {a,1} × SOn(R) for
some a ∈ On(R), then a ∈ Z

(
On(R)

)
= {±1} (Proposition 16.1.6) implies

that a = −1. Since a 6∈ SOn(R), n is odd. ut
The relation between SOn(R) and On(R) is much simpler than the one

between SUn(C) and Un(C). However, it is more difficult to compute the
fundamental group of SOn(R).

Proposition 16.1.9. For n > 2, the group π1

(
SOn(R)

)
has at most two

elements.

Proof. For n = 3, the Lie algebra so3(R) is isomorphic to su2(C) (Exam-
ple 4.1.23). Since the group SU2(C) is simply connected

˜SO3(R) ∼= SU2(C).

We saw already that Z
(
SU2(C)

)
= {±1}, and that Z

(
SO3(R)

)
= {1}, so

that
π1

(
SO3(R)

) ∼= Z/2Z.

Now let n ≥ 3 and e1 ∈ Rn be the first basis vector. The stabilizer subgroup
H := {g ∈ SOn(R) : ge1 = e1} is isomorphic to SOn−1(R). If we set G :=
SOn(R), then we obtain a homeomorphism Sn−1 ∼= G/H (Lemma 16.1.2).
Now we use the Fundamental Group Diagram (Theorem 10.1.15), whose upper
row provides an exact sequence

π1(H) → π1(G) → π1(G/H).



16.1 Compact Classical Groups 599

For n > 2, the group π1(G/H) ∼= π1(Sn−1) is trivial (Exercise A.1.3), so
that the homomorphism π1(H) → π1(G) is surjective. Inductively, we thus
conclude from π1

(
SO3(R)

) ∼= Z/2Z that |π1

(
SOn(R)

)| ≤ 2 for n ≥ 3. ut
To show that π1

(
SOn(R)

)
actually has two elements, we will construct a

connected 2-fold covering. We shall find these groups as subgroups of the unit
groups of certain Clifford algebras (cf. Appendix B.3).

We recall from Remark B.3.22 the short exact sequence

1 → {±1} → Spinn(R) Φ−−→SOn(R) → 1

and note that the definitions immediately imply that Spinn(R) is a closed
subgroup of the Clifford algebra Cn, hence in particular a Lie group, and that
Φ is continuous.

Proposition 16.1.10. The restriction of Φ to Spinn(R) is a double covering

{1} → Z/2Z→ Spinn(R) → SOn(R) → {1}

with kernel {±1}. Further, Spinn(R) is connected for n > 1.

Proof. Since SOn(R) is connected (Corollary 16.1.8) and its fundamental
group has at most two elements (Proposition 16.1.9), we only have to show
that Spinn(R) is connected, i.e., that −1 ∈ Pinn(R)0. Identifying the basis
elements e1, . . . , en with the corresponding elements of the Clifford algebra
Cn, we set

γ(t) := cos(t)1 + sin(t)e1e2.

Recall the grading automorphism ω from Definition B.3.7. From (e1e2)2 = −1,
it follows that γ(t) = ete1e2 , which implies for t ∈ R that

ω(γ(t)) = γ(t) and γ(t)−1 = γ(−t).

We now have

ω
(
γ(t)

)
e1γ(t)−1 = cos(2t)e1 + sin(2t)e2,

ω
(
γ(t)

)
e2γ(t)−1 = − sin(2t)e1 + cos(2t)e2,

ω
(
γ(t)

)
eiγ(t)−1 = ei for i ≥ 3.

Hence γ(t) is in Γ (Rn, β), the Clifford group, where −β is the euclidian inner
product on Rn. Further, γ(t)γ(t)∗ = γ(t)γ(−t) = 1, and consequently γ(t) ∈
Pinn(R). Finally, γ(π) = −1, which completes the proof. ut

Combining Propositions 16.1.9 and 16.1.10, we obtain:

Theorem 16.1.11. The group Spinn(R) is the universal covering of SOn(R)
and, for n > 2, π1

(
SOn(R)

) ∼= Z/2Z.
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Example 16.1.12. (a) From Example 8.5.7 we recall that

SU2(C) ∼= S̃O3(R) ∼= Spin3(R).

(b) Proposition 8.5.21 yields an isomorphism

SU2(C)× SU2(C) ∼= S̃O4(R) ∼= Spin4(R).

16.1.3 Symplectic Groups

Viewing Mn(H) as a real subalgebra of M2n(C) as in Proposition 1.3.2, it was
shown in Proposition 1.3.4 that

Un(H) = U2n(C) ∩ Sp(C2n, β), where β(z, w) = z>Jnw,

and Jn is the skew-symmetric (2n × 2n)-block diagonal matrix with entries

J =
(

0 1
−1 0

)
. Since all nondegenerate skew-symmetric bilinear forms on C2n

are equivalent (Exercise 1.2.3), Sp(C2n, β) ∼= Sp2n(C), and since Sp(C2n, β) is
∗-invariant, it follows that Un(H) is a maximal compact subgroup. Moreover,
the universal complexification Un(H)C of Un(H) is isomorphic to the group
Sp2n(C) (cf. Exercise 14.2.2, Proposition 3.3.3). We conclude in particular that
Un(H) is isomorphic to the maximal compact subgroup U2n(C) ∩ Sp2n(C) of
Sp2n(C), which also called the (compact) symplectic group.

Remark 16.1.13. We have already seen in Proposition 16.1.3 that Un(H)
is connected. To determine its center, it is useful to use the realization as
symplectic group. Then Exercise 14.1.8 together with Exercise 1.2.15 shows
that

Z
(
Sp2n(C)

)
= Z

(
Un(H)

)
= {±1}.

16.2 Noncompact Classical Groups

For noncompact groups information on connected components and the funda-
mental group will be derived from the corresponding information for the max-
imal compact subgroups via the polar decomposition (cf. Proposition 15.1.9).

Proposition 16.2.1. For the complex semisimple Lie group SLn(C),

(1) SUn(C) is a maximal compact subgroup.
(2) SLn(C) is simply connected.
(3) sun(C) is a compact real form of sln(C).
(4) Z

(
SLn(C)

)
= {z1 : zn = 1} ∼= Cn.
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Proof. Since the condition det(g) = 1 can also be written as two real poly-
nomial equations Re(det(g) − 1) = 0 and Im(det(g) − 1) = 0, Proposition
15.1.9 applies, so that (1) follows immediately, and (2) follows since SUn(C)
is 1-connected (Proposition 16.1.3).

(3) From Proposition 16.1.1, we know that sun(C) is compact and semisim-
ple. That sun(C) is a compact real form of sln(C) follows from sln(C) =
sun(C)⊕ isun(C).

(4) In view of GLn(C) = C× SLn(C), we have

Z(SLn(C)) = Z(GLn(C)) ∩ SLn(C) = {z1 : det(z1) = zn = 1} ∼= Cn.

(Proposition 1.1.10). ut
Proposition 16.2.2. For GLn(C),

(1) Un(C) is a maximal compact subgroup.
(2) GLn(C) is connected.
(3) π1

(
GLn(C)

) ∼= Z.
(4) Z

(
GLn(C)

)
= C×1.

(5) The multiplication map C× × SLn(C) → GLn(C), (z, g) 7→ zg is an n-fold
covering.

Proof. (1) follows from Proposition 15.1.9.
(2) follows from Corollary 1.1.8.
(3) In view of the polar decomposition (Proposition 15.1.9), since SUn(C)

is 1-connected (Propositions 16.1.3 and 16.1.5), this follows from Un(C) ∼=
SUn(C)o T.

(4) is a consequence of Proposition 1.1.10.
(5) follows from C×1 ∩ SLn(C) = Z

(
SLn(C)

) ∼= Cn (Proposition 16.2.1).
ut

Proposition 16.2.3. For SLn(R), n ≥ 2,

(1) SOn(R) is a maximal compact subgroup.
(2) SLn(R) is connected.

(3) π1

(
SLn(R)

) ∼=
{
Z for n = 2,

Z/2Z for n > 2.

(4) SLn(R) is semisimple.

(5) Z
(
SLn(R)

)
=

{
{1} for n ≥ 1 odd,

{±1} for n ≥ 2 even.

Proof. (1) is a consequence of the polar decomposition (Proposition 15.1.9).
Since SOn(R) is connected (Proposition 1.1.7), (2) follows from (1) and

the polar decomposition.
(3) follows from (1), the polar decomposition, Theorem 16.1.11 and

SO2(R) ∼= T.



602 16 Classical Lie Groups

(4) follows from the fact that sln(C) ∼= sln(R)C is semisimple (Proposition
16.2.1).

(5) follows from Exercise 1.2.14(v). ut
Proposition 16.2.4. For GLn(R),

(1) On(R) is a maximal compact subgroup.
(2) GLn(R) has 2 connected components.

(3) π1

(
GLn(R)

) ∼=
{
Z for n = 2,

Z/2Z for n > 2.

(4) Z
(
GLn(R)

)
= R×1.

(5) The multiplication map R×+ × SLn(R) → GLn(R)0 is a homeomorphism.

Proof. (1) follows from Proposition 15.1.9, (2) from Corollary 1.1.8, (4) and
(5) from Proposition 1.1.10, and finally (3) is a consequence of (5) and Propo-
sition 16.2.3. ut
Proposition 16.2.5. Let p, q ≥ 1. For the pseudo-orthogonal group Op,q(R) ⊆
GLp+q(R),

(1) Op(R) × Oq(R) is a maximal compact subgroup, where Op(R) acts on
Rp × {0} and Oq(R) on {0} × Rq.

(2) Op,q(R) has 4 connected components, 2 of them are contained in SOp,q(R).
(3) π1

(
Op,q(R)

) ∼= π1

(
SOp(R)

)× π1

(
SOq(R)

)
.

(4) Z
(
Op,q(R)

)
= {±1}.

(5) The group Op,q(R) is semisimple.

Proof. (1) follows from the polar decomposition (Proposition 15.1.9) and

Op,q(R) ∩Op+q(R) ∼= Op(R)×Oq(R),

as asserted.
(2) and (3) follow from the polar decomposition and Corollary 16.1.8.
(4) (cf. also Exercise 1.2.16) Let g ∈ Z

(
Op,q(R)

)
. In view of (1), g com-

mutes with the matrix

B =
(
1p 0
0 −1q

)
,

hence is a block diagonal matrix g =
(

A 0
0 C

)
, where A commutes with Op(R),

and C commutes with Oq(R). There are four possibilities: A = ±1p, and C =
±1q (Proposition 16.1.6). If g 6∈ {±1}, then it has proper eigenspaces which
are invariant under the whole group Op,q(R), hence also under its Lie algebra

op,q(R) which contains all matrices of the form
(

0 X
X> 0

)
for X ∈ Mp,q(R).

We thus arrive at a contradiction which completes the proof of (4).
(5) The complexification of the Lie algebras sop,q(R) and sop+q(R) are

isomorphic (Exercise 16.2.1). Hence sop,q(R) is a real form of sop+q(R)C, and
therefore semisimple. ut



16.2 Noncompact Classical Groups 603

Example 16.2.6. For K ∈ {R,C,H}, we consider the spaces

Herm2(K) := {A ∈ M2(K) : A∗ = A} =
{ (

a b
b∗ d

)
: a, d ∈ R, b ∈ K

}

and
Aherm2(K) := {A ∈ M2(K) : A∗ = −A}

of hermitian and antihermitian 2× 2-matrices. If s := dimRK, then

dimHerm2(K) = 2 + s.

If a 6= 0, then

detR

(
a b
b∗ d

)
= detR

(
a b

0 d− b∗
a b

)
= detR

(
a b

0 d− |b|2
a

)
= (ad− |b|2)s,

and this implies that

detR

(
a b
b∗ d

)
= (ad− |b|2)s

for all elements in Herm2(K). This means that the quadratic form

q : Herm2(K) → R, q

(
a b
b∗ d

)
:= ad− |b|2

of signature (1, s + 1) satisfies qs = detR.
The group GL2(K) acts linearly on Herm2(K) by

π(g)A := gAg∗,

and we clearly have

detR(π(g)A) = detR(A) detR(g) detR(g∗) = detR(A) detR(g)2.

For each g ∈ GL2(K) we therefore have

q(π(g)A)s = |derR(g)|2q(A)s, A ∈ Herm2(K),

which leads to
q(π(g)A) = ±|derR(g)|2/sq(A).

In particular, g preserves the open subset

Herm2(K)× := GL2(K) ∩Herm2(K) = {A ∈ Herm2(K) : q(A) 6= 0}.

Since q has Lorentzian signature, this set has three connected components, all
of which are preserved under the action of the identity component GL2(K)0.
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It follows in particular that for g ∈ GL2(K)0, q(π(g)A) always has the same
sign as q(A), so that

q ◦ π(g) = | derR(g)|1/2q for g ∈ GL2(K)0.

For K ∈ {R,C}, the action of SL2(K) on Herm2(K) thus defines a homo-
morphism

π : SL2(K) → SO(Herm2(K), q) ∼= SO1,s+1(R).

For K = H, we put

SL2(H) := {g ∈ GL2(H) : detR g = 1}
and note that, as a subgroup of GL8(R), this group has a polar decomposition
(cf. Proposition 15.1.9) with

SL2(H) ∩O8(R) = U2(H),

where we use Aherm2(H) = L(U2(H)) ⊆ sl8(R) to see that U2(H) ⊆ SL2(H).
Since U2(H) is connected, the same holds for SL2(H), and we also obtain a
homomorphism

π : SL2(K) → SO(Herm2(K), q) ∼= SO1,s+1(R)

for K = H.
To determine the kernel of π, we note that π(g) = 1 implies in particular

that 1 = π(g)1 = gg∗, so that g ∈ U2(K). Hence π(g) = 1 means that g
commutes with Herm2(K), hence in particular with all real diagonal matrices.
Therefore g = diag(a, d) is a diagonal matrix, where a, d ∈ U1(K). For A =(

0 b
b∗ 0

)
∈ Herm2(K), the relation π(g)A = A now implies that abd−1 = b for

all b ∈ K. For K = R,C, this is equivalent to a = d, and for K = H, we obtain,
in addition, that a = d ∈ Z(H) = R. In all cases the requirement det(g) = 1
leads to g = ±1. We therefore have

kerπ = {±1}.
Next, we observe that

dimR SL2(K) =





3 for K = R,

6 for K = C,

15 for K = H.

This is in accordance with (cf. Exercise 16.2.1)

dimSO1,s+1(R) = dim SOs+2(R) =
(s + 2)(s + 1)

2
=





3 for s = 1 (K = R),
6 for s = 2 (K = C),
15 for s = 4 (K = H).
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Since kerπ is discrete, it follows that L(π) : sl2(K) → so1,s+1(R) is an iso-
morphism of Lie algebras, so that π : SL2(K) → SO1,s+1(R)0 is a covering
morphism of Lie groups.

The maximal compact subgroup of SO1,s+1(R)0 is isomorphic to

(O1(R)×Os+1(R))0 ∼= SOs+1(R),

so that the polar decomposition implies that

π1(SO1,s+1(R)) ∼=
{
Z for s = 1 (K = R),
Z/2 for s = 2, 4 (K = C,H).

In each case π is a connected 2-fold covering, which is uniquely determined
up to isomorphism. This implies that, for s = 2, 4,

SL2(K) ∼= S̃O1,s+1(R)0

is the simply connected covering group of SO1,s+1(R)0.
A slight modification of the argument in the proof of Proposition 16.1.10

shows that for p ≥ 2, we still have −1 ∈ Pinp,q(R)0 = Spinp,q(R). From the
discussion in Remark B.3.22(c) we know that the homomorphism

Φ : P̂inp,q(R) := {γ ∈ Γ : N(γ)2 = 1} → Op,q(R)

is surjective with kernel

{λ ∈ R× : N(λ)2 = λ4 = 1} = {±1}.
The partition of the group Op,q(R) into four connected components is reflected
in the fact that Pinp,q(R) is a subgroup of index 2 in P̂inp,q(R) which is mapped
onto a subgroup of index 2 of Op,q(R). This group consists of all products of
reflections σv1 · · ·σvn , where an even number of factors corresponds to vi with
positive square length with respect to the quadratic form

βp,q(x, x) = −x1
1 − . . .− x2

p + x2
p+1 + . . . + x2

p+q.

For p = s + 1 and q = 1, we thus obtain a connected 2-fold covering

Φ : Spins+1,1(R) → SOs+1,1(R)0.

Since π1(SOs+1,1(R)) ∼= π1(SOs+1(R)) is cyclic, this covering is unique, which
leads to an isomorphism

SL2(K) ∼= Spins+1,1(R)

is all cases K ∈ {R,C,H}. In particular, we obtain

SL2(R) ∼= Spin2,1(R), SL2(C) ∼= Spin3,1(R) and SL2(H) ∼= Spin5,1(R)

(cf. Exercise 8.5.16).
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Exercises for Section 16.2

Exercise 16.2.1. (a) Show that sop,q(R)C ∼= sop+q(C).
(b) Show that dim sop,q(R) = (p+q)(p+q−1)

2 .

Exercise 16.2.2. Let ψ be the antilinear map of C2n = Cn × Cn defined by
ψ(z, w) = (w,−z) for z, w ∈ Cn. Define

SU∗2n(C) := {g ∈ SL2n(C) | g ◦ ψ = ψ ◦ g}.

Show that

(i) ψ2 = −1, so that Jv := ψ(v) and Iv := iv define a representation of the
algebra H on C2n, turning C2n into an H-vector space isomorphic to Hn.

(ii) SU∗2n(C) ∼= SLn(H) as a Lie group.

Exercise 16.2.3. * Let G be one of the groups Sp2n(R), Up,q(C), Up,q(H).

(a) Determine a Cartan decomposition K exp p for G using Proposition 3.3.3,
and conclude that G is connected.

(b) Determine a maximal torus T in K.
(c) Use Theorem 13.2.8 to determine Z(G).

16.3 More Spin Groups

We have seen in Proposition 16.1.10 that, for each n > 1, the map

Φ : Spinn(R) → SOn(R)

is a connected twofold covering which is universal for n > 2. For n = 1,
SO1(R) = {1}, so that Spin1(R) = {±1} is not connected. We now take a
closer look at the corresponding homomorphism

Φ : Spinp,q(R) → SOp,q(R)

obtained from the Clifford algebra Cp,q = Cl(Rp+q, βp,q).

Proposition 16.3.1. The image of Φ is the identity component SOp,q(R)0,
and

Φ : Spinp,q(R) → SOp,q(R)0

is a twofold covering with kernel {±1}.
We further have

Spin0,q(R) ∼= Spinq(R),

and from the inclusions Cp,0, C0,q ↪→ Cp,q, we obtain the subgroup

Spinp,0(R) · Spin0,q(R) ∼= (Spinp,0(R)× Spin0,q(R))/{±1},



16.3 More Spin Groups 607

which is maximal compact in Spinp,q(R). In particular, Spinp,q(R) is connected
if and only if p > 1 or q > 1, and it is 1-connected for p > 2, q ≤ 1 and for
p ≤ 1, q > 2.

The restriction of Φ to this maximal compact subgroup corresponds to the
map

Spinp,0(R) · Spin0,q(R) → SOp(R)× SOq(R), gh 7→ Φ(g)Φ(h),

which specifies Spinp,q(R) as a covering group of SOp,q(R)0.

Proof. (a) From Remark B.3.22 we know that, in all cases, kerΦ = {±1}.
From Theorem B.3.16 we further derive that

dim Spinp,q(R) = dimPinp,q(R) = dim Γ (Rp+q, βp,q)− 1 = dim Op,q(R),

so that the image of Φ is open and Φ is a twofold covering of its image.
(b) First we consider the case (p, q) = (0, 2). Then C0,2 is 4-dimensional

and dimSpin0,2(R) = dimSO2(R) = 1. To identify the Lie algebra of this
group, we note that the basis elements 1, e1, e2 and e1e2 of C0,2 satisfy

e2
1 = e2

2 = 1 and (e1e2)2 = −1.

Then I := e1e2 satisfies ω(I) = I,

I∗ = (e1e2)∗ = (−e2)(−e1) = e2e1 = −e1e2 = −I,

[I, e1] = e1e2e1 − e2
1e2 = −2e2, and [I, e2] = e1e

2
2 − e2e1e2 = 2e1.

This implies that ω(etI) = etI for each t ∈ R, and hence that Ad(etI) =
et ad I preserves V = span{e1, e2}. Further, (etI)∗ = e−tI shows that eRI ⊆
Pin0,2(R). Since the latter group is 1-dimensional, we have

eRI = Pin0,2(R)0 ⊆ Spin0,2(R).

Since SO2(R) connected, eπI = −1 implies that Spin0,2(R) is connected, and
that

Φ : Spin0,2(R) → SO2(R)

is a 2-fold covering.
(c) For p = 0 and q > 2, we recall from Remark B.3.22(b) that

Spin0,q(R) = Pin0,q(R), and since SO0,q(R) ∼= SOq(R) is connected,

Φ : Spin0,q(R) → SOq(R)

is surjective. From the embedding Spin0,2(R) ↪→ Spin0,q(R) and −1 ∈
Spin0,2(R), we now derive that Spin0,q(R) is connected. Since the fundamental
group of SOq(R) has two elements, it has a unique connected twofold covering,
which leads to

Spin0,q(R) ∼= Spinq(R) = Spinq,0(R).
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(d) Now we turn to the case where p, q > 0 and (p, q) 6= (1, 1). From Re-
mark B.3.22(c) we know that Φ(Spinp,q(R)) is a proper subgroup of SOp,q(R).
Since SOp,q(R) has two connected components, Φ(Spinp,q(R)) = SOp,q(R)0.

As a consequence of the polar decomposition, the subgroup
SOp(R) × SOq(R) of SOp,q(R)0 is maximal compact (Proposition 15.1.9).
If p = 1, then SOp(R) is trivial, and if p > 1, then the restriction of Φ
to Spinp(R) ⊆ Spinp,q(R) is a 2-fold connected covering of SOp(R) (Propo-
sition 16.1.10). In view of (c), the same statements apply to the covering
Spin0,q(R) → SOq(R).

We conclude that Spinp,q(R) is connected with maximal compact subgroup

Φ−1(SOp(R)× SOq(R)) = Spinp,0(R) Spin0,q(R)
∼= (Spinp(R)× Spinq(R))/{±(1,1)}

(cf. Exercise B.3.7). This picture shows that for p ≤ 1, q > 2 or q ≤ 1, p > 2,

Spinp,q(R) ∼= S̃Op,q(R).

For p, q > 2 the image of the homomorphism

π1(Φ) : π1(Spinp,q(R)) ∼= Z/2 → π1(SOp,q(R))

coincides with the subgroup

{±(1,1)} ⊆ π1(SOp,q(R)) ∼= {±1} × {±1}. ut

Remark 16.3.2. For p = q = 1, SO1,1(R) ∼= R×, and thus SO1,1(R)0 ∼= R×0
is simply connected. Therefore Spin1,1(R) is not connected and

Spin1,1(R) ∼= {±1} × R×+ ∼= R×.

Example 16.3.3 (Complex spin groups). From Remark B.3.22(d) we re-
call the short exact sequence

1 → {±1} → Spinn(C) Φ−−→SOn(C) → 1

and that Spinn(C) is a closed subgroup of the Clifford algebra Cn(C) :=
Cl(Cn, β) with β(z, w) =

∑n
j=1 zjwj .

On the other hand, we know from the polar decomposition of SOn(C)
(Exercise 3.3.1) that its maximal compact subgroup is

SOn(R) = SOn(C) ∩GLn(R) = SOn(C) ∩Un(C),

so that SOn(C) is connected (Corollary 16.1.8) and

π1(SOn(C)) ∼= π1(SOn(C)) ∼= Z/2 for n > 2

(Proposition 16.1.10).
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Next we observe that the subspace iRn ⊆ Cn on which β restricts to the
form βn,0 leads to an inclusion Cn ↪→ Cn(C) of Clifford algebras. This in turn
leads to an embedding Spinn(R) ↪→ Spinn(C), so that −1 ∈ Spinn(R)0 implies
that Spinn(C) is also connected. We thus obtain, as in the real case, that the
map Φ : Spinn(C) → SOn(C) is a universal covering.

Example 16.3.4 (The isomorphism SL4(C) ∼= Spin6(C)). Let V :=
Λ2(C4) and pick a non-zero element ω ∈ Λ4(C4) ∼= C. Then the wedge product
defines a symmetric complex bilinear map β on Λ2(C4) by

x ∧ y = β(x, y)ω.

Then V is an orthogonal direct sum of the three subspaces

span{e1 ∧ e2, e3 ∧ e4}, span{e1 ∧ e3, e2 ∧ e4} span{e1 ∧ e4, e2 ∧ e3}, (16.1)

from which it easily follows that β is nondegenerate. As g∗ω = det(g)ω for
g ∈ GL4(C), we have

SL4(C) = {g ∈ GL4(C) : g∗ω = ω},
so that the natural representation of SL4(C) on Λ2(C4) preserves β, which
leads to a homomorphism

γ : SL4(C) → O(V, β) ∼= O6(C).

Next we observe that

dimSL4(C) = 15 =
5 · 6
2

= dimO6(C).

Since SL4(C) is connected and SO6(C) is the identity component of O6(C),
we have γ(SL4(C)) ⊆ SO6(C). We claim that ker γ = {±1}. That −1 ∈ ker γ
follows that γ(−1)(x ∧ y) = (−x) ∧ (−y) = x ∧ y. If, conversely, γ(g) = idV ,
then g preserves each 2-dimensional subspace E ⊆ C2 because

E = {v ∈ C4 : v ∧ x ∧ y = 0}
holds if (x, y) is a basis for E. Since every one-dimensional subspace is the
intersection of two two-dimensional ones, we see that g also preserves each
one-dimensional subspace, i.e., each vector is an eigenvector, and thus g = λ1
for some λ ∈ C with λ4 = 1. Then g(x∧y) = λ2(x∧y) further leads to λ2 = 1,
so that g ∈ {±1}.

Since ker γ is discrete, L(γ) is injective, hence surjective because both
groups have the same dimension. This implies that γ : SL4(C) → SO6(C) is
a covering morphism (Proposition 8.5.1). Since SL4(C) is simply connected
(Proposition 16.2.1), we have

SL4(C) ∼= S̃O6(C) ∼= Spin6(C) (16.2)
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(cf. Example 16.3.3). As an isomorphism of noncompact connected groups
induces an isomorphism of maximal compact subgroups, we further derive
that

SU4(C) ∼= S̃O6(R) ∼= Spin6(R). (16.3)

Example 16.3.5 (The isomorphism SL4(R) ∼= Spin3,3(R)). The same con-
struction as in the preceding example can also be carried out for K = R. Here
we obtain on V = Λ2(R4) a nondegenerate symmetric real-valued bilinear
form β. As V is an orthogonal direct sum of the three two-dimensional sub-
spaces on which the form is indefinite, it follows that (V, β) ∼= (R6, β3,3), so
that SO(V, β) ∼= SO3,3(R), and we obtain a covering

γ : SL4(R) → SO3,3(R)0

with ker γ = {±1}, so that

SO3,3(R)0 ∼= SL4(R)/{±1}. (16.4)

For the maximal compact subgroups, we find accordingly

SO3(R)× SO3(R) ∼= SO4(R)/{±1}, (16.5)

which also follows from Proposition 8.5.21.
Recall that SL4(R) is not simply connected, so that it is not the simply

connected covering group of SO3,3(R). However, the relation

SO4(R) ∼= (Spin3(R)× Spin3(R))/{±(1,1)}

and Proposition 16.3.1 imply that

SL4(R) ∼= Spin3,3(R). (16.6)

Example 16.3.6 (The isomorphism SU2,2(C) ∼= Spin2,4(R)). We endow
the complex vector space C4 with the hermitian form defined by

γ(z, w) = z1w1 + z2w2 − z3w3 + z4w4

whose isometry group is U2,2(C). Now we use γ to define a hermitian form on
the 6-dimensional space Λ2(C4) by

β(a ∧ b, c ∧ d) := γ(a, c)γ(b, d)− γ(b, c)γ(a, d).

The basis ej ∧ ek, j < k, for Λ2(C4) is β-orthogonal. The quadratic form
q(v) := β(v, v) satisfies

q(e1 ∧ e2) = q(e3 ∧ e4) = 1

and
q(e1 ∧ e3) = q(e1 ∧ e4) = q(e2 ∧ e3) = q(e2 ∧ e4) = −1,



16.3 More Spin Groups 611

so that β has signature (2, 4) and the action of U2,2(C) on Λ2(C4) leads to a
homomorphism U2,2(C) → U2,4(C).

Next we observe that there exists a unique antilinear map

∗ : Λ2(C4) → Λ2(C4)

satisfying

v ∧ ∗w = β(v, w)ω, v, w ∈ Λ2(C4), ω = e1 ∧ e2 ∧ e3 ∧ e4.

This map satisfies

∗(e1 ∧ e2) = e3 ∧ e4, ∗(e1 ∧ e3) = e2 ∧ e4, ∗(e1 ∧ e4) = −e2 ∧ e3

and

∗(e2 ∧ e3) = −e1 ∧ e4, ∗(e2 ∧ e4) = e1 ∧ e3, ∗(e3 ∧ e4) = e1 ∧ e2.

In particular, we see that ∗2 = id, so that

V := {x ∈ Λ2(C4) : ∗ x = x}

is a real form. Next we observe that

β(∗v, ∗w)ω = (∗v) ∧ (∗ ∗ w) = w ∧ ∗v = β(w, v)ω

implies that ∗ is a β-isometry. This in turn implies that β is the unique
hermitian extension of the real symmetric bilinear form βr := β|V×V and in
particular βr is non-degenerate of signature (2, 4) (Exercise 16.4.5).

The fact that the action of U2,2(C) on Λ(C4) is compatible with the wedge
product and its restriction to Λ2(C4) preserves β implies that it also commutes
with ∗, hence preserves V . We thus obtain a homomorphism

α : SU2,2(C) → O2,4(R),

and since SU2,2(C) is connected (exercise), the image of α is contained in
SO2,4(R)0. From Example 16.3.4 we know already that kerα = {±1}. There-
fore

dimSU2,2(C) = dimC SL4(C) = 15 = dimC SO6(C) = dim SO2,4(R)

implies that α is a twofold covering. Since π1(SO2,4(R)) ∼= Z× Z/2 has three
different subgroups of index 2:

Z× {0}, 2Z× Z/2, 〈(1, 1)〉, (16.7)

the group SO2,4(R)0 has three non-equivalent twofold coverings.
We therefore have to take a closer look at the restriction of α to the

maximal compact subgroup
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S(U2(C)×U2(C)) := {(a, b) ∈ U2(C)×U2(C)) : det a det b = 1}.

This group is a semidirect product

(SU2(C)× SU2(C))o T,

and therefore its fundamental group is cyclic. A generator is given by the
homomorphism

σ : T→ SU2,2(C), t 7→ diag(t, 1, t−1, 1).

The form βr on V is positive definite on the subspace spanned by the elements
of the form

ze1 ∧ e2 + ze3 ∧ e4, z ∈ C,

and negative definite on its orthogonal complement, spanned by the elements
of the form

ze1 ∧ e3 + ze2 ∧ e4, ze1 ∧ e4 − ze2 ∧ e3, z ∈ C.

We have
σ(z)(e1 ∧ e2 + e3 ∧ e4) = ze1 ∧ e2 + ze3 ∧ e4,

e1 ∧ e3 + e2 ∧ e4 is fixed by σ(z), and

σ(z)(e1 ∧ e4 − e2 ∧ e3) = ze1 ∧ e2 − ze3 ∧ e4.

Therefore σ defines a homomorphism T → SO2(R) × SO4(R) ⊆ SO2,4(R)
which projects on each factor to a generator of the fundamental group. From
this observation we derive that the image of π1(SU2,2(C)) in π1(SO2,4(R)) is
neither of the two factors. From Proposition 16.3.1 and (16.7) we now easily
derive that

SU2,2(C) ∼= Spin2,4(R). (16.8)

16.4 Conformal Groups

In this section we briefly discuss the conformal completion of a quadratic space
because it nicely illustrates the use of Lie theoretic techniques in a geometric
context. Here we shall also encounter some of the exceptional isomorphisms
discussed in the preceding section.

16.4.1 The Conformal Completion

Let (V, β) be a nondegenerate finite-dimensional quadratic space, i.e., a vector
space V over the field K ∈ {R,C}, endowed with a nondegenerate symmetric
bilinear form β.
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Definition 16.4.1. We write P(V ) for the projective space of V . Then

Q(V, β) := {[v] = Kv ∈ P(V ) : β(v, v) = 0}

is called the projective quadric of (V, β). If β is nondegenerate, this is either
empty or a submanifold of P(V ) (Exercise 16.4.4).

Example 16.4.2. (a) If β is positive or negative definite, then Q(V, β) = ∅.
(b) We write Rp,q for the quadratic space (V, β) = (Rp+q, β), where

β(x, y) :=
p∑

j=1

xjyj −
p+q∑

j=p+1

xjyj

and we write v = (v+, v−) with v+ ∈ Rp and v− ∈ Rq. Then

Qp,q := Q(V, β) = {[(v+, v−)] : ‖v+‖ = ‖v−‖ = 1}

implies that the map

q : Sp−1 × Sq−1 → Q(V, β), (x, y) 7→ [(x, y)]

is surjective. It is easy to see that this map is a twofold covering, which leads
to a diffeomorphism

(Sp−1 × Sq−1)/{±1} ∼= Qp,q.

For q = 1 we obtain in particular Qp,1
∼= Sp−1.

On the extended space Ṽ := V ⊕ K2, we consider the symmetric bilinear
form

β̃((v, s, t), (v′, s′, t′)) := β(v, v′) + ss′ − tt′

and the corresponding quadric

Q := Q(Ṽ , β̃) = {[(v, s, t)] : β(v, v) + s2 − t2 = 0}.

Then we have a smooth map

η : V → Q, η(v) =
[(

v, 1
2 (1− β(v, v)), 1

2 (1 + β(v, v))
)]

.

Lemma 16.4.3. The map η has the following properties:

(i) η(V ) = {[(v, s, t)] ∈ Q : s + t 6= 0} = {[x] ∈ Q : β̃(x, v∞) 6= 0} for v∞ =
(0, 1,−1).

(ii) η is injective.
(iii) η(V ) is open and dense in Q.
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Proof. (i) If [ṽ] = η(v), then we obviously have s + t 6= 0. If, conversely, this
is the case for an isotropic vector ṽ = (v, s, t), then we may w.l.o.g. assume
that s + t = 1, because (s + t)−1ṽ generates the same ray. Then

β(v, v) = t2 − s2 = (t− s)(t + s) = t− s

implies that

t = 1
2 (1 + β(v, v)) and s = 1

2 (1− β(v, v)),

which leads to [ṽ] = η(v).
(ii) Suppose that η(v) = η(w) for some v 6= 0. Then w = λv for some

λ ∈ K×, and thus

η(v) =
[(

v, 1
2 (1− β(v, v)), 1

2 (1 + β(v, v))
)]

=
[(

λv, 1
2 (1− λ2β(v, v)), 1

2 (1 + λ2β(v, v))
)]

,

leads to

λ(1± β(v, v)) = 1± λ2β(v, v), i.e., λ− 1 = ±(λ2 − λ)β(v, v),

which leads to λ = 1, and hence to v = w.
(iii) From (i) we immediately derive that η(V ) is an open subset of Q.

Suppose now that [(v, s, t)] ∈ Q\η(V ). Then s = −t and β(v, v) = 0. If s = 0,
then v 6= 0 and

η(nv) = [(nv, 1
2 , 1

2 )] =
[(

v,
1
2n

,
1
2n

)] → [(v, 0, 0)].

If s 6= 0, then we may assume that s = 1 and pick some w ∈ V with
β(v, w) 6= 0. Then

β(v + xw) = x2β(v, w) + x2β(w, w) 6= 0

for x sufficiently close to 0. Further, ṽ := (v + xw, s + y,−s) ∈ Ṽ is isotropic
if and only if

0 = β(v + xw, v + xw) + (s + y)2 − s2 = β(v + xw, v + xw) + 2sy + y2,

so that, if x is sufficiently small, there exists a y(x) ∈ K with y(x) → 0 for
x → 0, such that [(v + xw, s + y,−s)] ∈ Q. This implies that [ṽ] is contained
in the closure of η(V ), so that Q = η(V ). ut
Remark 16.4.4. For an isotropic vector ṽ = (v, s, t) with s + t = 0, we have
[ṽ] ∈ Q\η(V ), and two cases occur. If s 6= 0, then a multiple of ṽ has the form
(v, 1,−1), where β(v, v) = 0, and if s = 0, then ṽ = (v, 0, 0) with β(v, v) = 0.
Accordingly, the set Q \ η(V ) contains a copy of

Q(V, β) = {[v] ∈ P(V ) : β(v, v) = 0}
and of the subset of isotropic vectors in V .
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The fact that the projective quadric Q = Q(Ṽ , β̃) contains V , resp., η(V )
as a dense open subset justifies the name conformal completion of V for Q.
Here an interesting point is that Q is a homogeneous space of the orthogonal
group G := O(Ṽ , β̃) (Exercise 16.4.3), and since V is realized via η as an
open subset of Q, we obtain a partially defined action of G on V by so-called
conformal maps. The group G is also called the conformal group of Q.

Example 16.4.5. (a) For the euclidian space V = Rn = Rn,0 we have Ṽ =
Rn+1,1 and the corresponding quadric Qn+1,1

∼= Sn is a sphere. In this case
the map η can also be written as

η(v) =
[( 2v

1 + ‖v‖2 ,
1− ‖v‖2
1 + ‖v‖2 , 1

)]
,

which is the inverse of the stereographic projection (cf. Example 7.2.5).
(b) We know from Proposition 8.5.21 that

SO4(R) ∼= (SU2(C)× SU2(C))/{±1} ∼= (S3 × S3)/{±1},

which implies the projective completion Q4,4 of R3,3 is diffeomorphic to
SO4(R).

(c) The multiplication map µ : T1×SU2(C) → U2(C) induces a diffeomor-
phism

(S1 × S3)/{±1} ∼= U2(C),

so that the compact group U2(C) is the conformal completion Q2,4 of the
Minkowski space R3,1.

16.4.2 Conformal Maps

We take a closer look at various types of conformal maps on V . First we
observe that O(V, β) embeds canonically into G as the pointwise stabilizer of
the plane {0} ×K2. From the definition of η it follows immediately that η is
equivariant with respect to the action of O(V, β) on V and the corresponding
action on Q, obtained by the embedding into G.
Dilations on V : For r ∈ K×, we consider the element

g :=
1
2r

(
1 + r2 1− r2

1− r2 1 + r2

)
∈ SO1,1(R)

(Exercise 16.4.2). Identifying O1,1(K) with a subgroup of G, acting on the last
two components, we then find for s := 1

2 (1− β(v, v)) the relation

g.η(v) = g.[(v, s, 1− s)]

= [(rv, 1
2 ((1 + r2)s + (1− r2)(1− s)), 1

2 ((1− r2)s + (1 + r2)(1− s))]

= [(rv, 1
2 (1− r2 + 2r2s), 1

2 (1 + r2 − 2r2s)] = η(rv).
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Note that, for K = R and t = − log r we have

1 + r2

2r
= cosh t and

1− r2

2r
= sinh t.

Translations on V : We write linear operators on Ṽ = V ⊕K2 as (2×2)-block
matrices

X =
(

A b
c d

)
, where A ∈ gl(V ), b = (b1, b2) ∈ Hom(K2, V ) ∼= V 2,

and

c =
(

c1

c2

)
∈ Hom(V,K2) ∼= (V ∗)2 and d ∈ M2(K).

Evaluating the conditions that X ∈ o(Ṽ , β̃), leads to

A ∈ o(V, β), d ∈ o1,1(K) = K
(

0 1
1 0

)
, c1 = −β(b1, ·) and c2 = β(b2, ·).

To simplify notation, we put b[ := β(b, ·).
For H :=

(
0 1
1 0

)
∈ o1,1(K) ⊆ o(Ṽ , β̃), we obtain the eigenspace decompo-

sition of g := o(Ṽ , β̃):
g0 = o(V, β)⊕ o1,1(K),

g1 =

{


0 v −v
−v[ 0 0
−v[ 0 0


 : v ∈ V

}
and g−1 =

{ 


0 v v
−v[ 0 0
v[ 0 0


 : v ∈ V

}
.

For

X =




0 v v
−v[ 0 0
v[ 0 0


 ∈ g−1, we find X2 =




0 0 0
0 −β(v, v) −β(v, v)
0 β(v, v) β(v, v)




and X3 = 0, so that

eX = 1 + X + 1
2X2 =




1 v v
−v[ 1− 1

2β(v, v) − 1
2β(v, v)

v[ 1
2β(v, v) 1 + 1

2β(v, v)


 .

From

eX




w
1
2 (1− β(w,w))
1
2 (1 + β(w,w))


 =




v + w
1
2 (1− β(v + w, v + w))
1
2 (1 + β(v + w, v + w))


 ,

it follows that eX .η(w) = η(v + w), so that the abelian subgroup exp(g−1) ∼=
(V, +) acts by translations on V ∼= η(V ).
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Inversion in the sphere: For the element σ :=
(−1 0

0 1

)
∈ O1,1(K) we have

σ.[(v, s, t)] = [(v,−s, t)], so that σ.η(v) ∈ η(V ) is equivalent to β(v, v) 6= 0. A
direct calculation shows that the corresponding induced map on

V × = {v ∈ V : β(v, v) 6= 0}

is given by σ.η(v) = η(β(v, v)−1v), which is the inversion in the unit sphere
{v ∈ V : β(v, v) = 1} of (V, β).

Exercises for Section 16.4

Exercise 16.4.1. Show that for any field K with 2 ∈ K× the map

α : K× → SL2(K), α(r) :=
1
2r

(
1 + r2 1− r2

1− r2 1 + r2

)

is a group homomorphism.

Exercise 16.4.2. Show that for any field K with 2 ∈ K×, we have

SO1,1(K) =
{ (

a b
b a

)
: a2 − b2 = 1

}
=

{ 1
2r

(
1 + r2 1− r2

1− r2 1 + r2

)
: r ∈ K×

}

and

O1,1(K) = SO1,1(K)∪̇
{ (

a b
−b −a

)
: a2 − b2 = 1

}
.

Exercise 16.4.3. Let β be a nondegenerate symmetric bilinear form on the
K-vector space V , and 2 ∈ K×. Show that the group O(V, β) acts transitively
on the set Q̃ := {v ∈ V : 0 6= v, β(v, v) = 0} of isotropic vectors, i.e., that
for two elements v, w ∈ Q̃, there exists a g ∈ O(V, β) with gv = w. Proceed
according to the following steps:

(i) Prove the assertion for V = K2, endowed with the form β((s, t), (s′, t′)) =
ss′ − tt′.

(ii) If w ∈ Kv, then any vector u ∈ V with β(u, v) 6= 0 leads to a nondegener-
ate subspace W := span{v, u}, and the assertion follows from (i) and the
embedding O(W,βW ) ↪→ O(V, β) for βW := β|W×W .

(iii) If β(v, w) 6= 0 and v, w are linearly independent isotropic vectors, then
W := span{v, w} is a nondegenerate subspace, and the assertion follows,
as in (ii), from (i).

(iii) If β(v, w) = 0 and v, w are linearly independent, then use the nonde-
generacy of β to find u ∈ V with β(u, v) = β(u,w) = 1. Replacing u by
u+tv for a suitable t ∈ K, we may assume, in addition, that u is isotropic.
Applying (i) to the nondegenerate subspaces span{v, u} and span{w, u}
now implies that v, w and u lie in the same orbit of O(V, β).
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Exercise 16.4.4. Let (V, β) be a finite-dimensional nondegenerate quadratic
space over K ∈ {R,C}. Show that

(i) For any affine hyperplane

H = {v ∈ V : α(v) = 1}, 0 6= α ∈ V ∗,

the map ϕ : H → P(V ), v 7→ [v], is a diffeomorphism onto an open subset
of P(V ).

(ii) The 0-level set of q(v) := β(v, v) on H is a submanifold. Hint: Since
dq(v) = 2β(v, ·), the singularity of q in v ∈ H implies that 2β(v, ·) ∈ K×α
because β is nondegenerate. Now α(v) = 1 leads to β(v, v) 6= 0, so that
all points in the 0-level set of q are regular.

(iii) The projective quadric

Q = {[v] ∈ P(V ) : β(v, v) = 0}

is a submanifold of P(V ).

Exercise 16.4.5. (a) Let (V, β) be a real quadratic space and VC be the
complexification of V . Show that there exists a unique hermitian form βC on
V with

βC|V×V = β.

(b) Let γ be a hermitian form on the complex vector space V and
σ : V → V be an antilinear involution leaving γ invariant, i.e.,

γ(σv, σw) = γ(w, v) for v, w ∈ V.

Show that the subspace V σ := {v ∈ V : σv = v} is a real form of V , the
restriction β of γ to V σ is real-valued, and γ = βC in the sense of (a).

Notes on Chapter 16

The discussion of concrete matrix groups in this chapter supplements the
rather elementary discussion from Chapter 1. Here we focus on the quite easily
accessible class of unitary groups over R, C and H, and some non-compact
groups containing unitary groups as maximal compact subgroups.

A systematic discussion of the spin groups corresponding to indefinite
forms and the exceptional isomorphisms between low-dimensional groups
seems to be hard to find in the literature. We hope that Sections 16.3 and
16.4 close this gap to some extent. Far more details on classical Lie groups
can be found in [GW09] or [Gr01].
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Nonconnected Lie Groups

The examples from Chapter 16 show that many geometrically defined Lie
groups have several connected components. While only the connected compo-
nent of the identity is accessible to the methods built on the exponential func-
tion, there are still tools to analyze nonconnected Lie groups. In the present
chapter, we present some of these tools. The key notion is that of an extension
of a discrete group by a (connected) Lie group.

Any Lie group G is an extension of the discrete group π0(G) of connected
components by the connected Lie group G0. In addition, there is a character-
istic homomorphism s : π0(G) → Out(G0) = Aut(G0)/ Inn(G0). One of the
main results of Section 17.1 states that, up to equivalence of extensions, the
Lie groups corresponding to the same s are parameterized by the cohomology
group H2

s (π0(G), Z(G0)). Some basic facts and definitions on group cohomol-
ogy are provided in Appendix 17.3. In Section 17.2 we discuss coverings of
nonconnected Lie groups and in particular the obstruction for the existence
of a simply connected covering group.

17.1 Extensions of Discrete Groups by Lie Groups

In this section we discuss the basic concepts related to extensions of discrete
groups by Lie groups. Since any Lie group G is an extension of the group
π0(G) = G/G0 of connected components by its identity component, the tech-
niques described in this section can be used to classify all Lie groups G for
which π0(G) and G0 are given.

Definition 17.1.1. Recall that an extension of Lie groups is a short exact
sequence

1 → N
ι−−→Ĝ

q−−→G → 1

of Lie group morphisms for which ι : N → ker q is an isomorphism of
Lie groups. In the following we shall often identify N with the subgroup
ι(N) E Ĝ. We write
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CN : Ĝ → Aut(N), CN (ĝ)(n) := ι−1(ĝι(n)ĝ−1)

for the canonical homomorphism defined by the conjugation action of Ĝ on N .
We call two extensions N ↪→ Ĝ1 →→ G and N ↪→ Ĝ2 →→ G of the Lie

group G by the Lie group N equivalent if there exists a Lie group morphism
ϕ : Ĝ1 → Ĝ2 such that the following diagram commutes:

N
ι1−−−−−−−−−→ Ĝ1

q1−−−−−−−−−→ GyidN

yϕ

yidG

N
ι2−−−−−−−−−→ Ĝ2

q2−−−−−−−−−→ G

It is easy to see that any such ϕ is in particular an isomorphism of Lie groups.
We write Ext(G,N) for the set of equivalence classes of Lie group extensions
of G by N .

We call an extension q : Ĝ → G with ker q = N split or trivial if there
exists a Lie group morphism σ : G → Ĝ with q ◦ σ = idG.

Remark 17.1.2. (a) If G is a Lie group, then the short exact sequence

1 → G0−−→G−−→π0(G) → 1

shows that G is an extension of the discrete group π0(G) by the connected
Lie group G0. Thus the study of Lie groups with given identity component G0

reduces to the study of extensions of discrete groups by G0 up to equivalence.
The fact that we are interested primarily in extensions of discrete groups
simplifies the discussion considerably because we do not have to worry about
certain continuity and smoothness issues.

(b) Suppose that σ : G → Ĝ is a splitting homomorphism for the extension

1 → N−−→Ĝ
q−−→G → 1,

i.e., q ◦ σ = idG. Then the homomorphism

S := CN ◦ σ : G → Aut(N)

defines a smooth action of the discrete Lie group G on N (cf. Proposi-
tion 10.1.18), so that N oS G carries a natural Lie group structure. It is
easy to see that the multiplication map N oS G → Ĝ, (n, g) 7→ nσ(g) is an
isomorphism.

Definition 17.1.3. Let 1 → N
ι−−→Ĝ

q−−→G → 1 be a Lie group extension
and Inn(N) = {cn : n ∈ N} be the group of inner automorphisms of N . Then

Out(N) := Aut(N)/ Inn(N) = {[ϕ] := ϕ · Inn(N) : ϕ ∈ Aut(N)}
is called the group of outer automorphisms of N . Note that, in general, Inn(N)
will not be closed in Aut(N) (Exercise 17.1.2), so we do not consider a topology
on Out(N).
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For g ∈ G we pick an element ĝ ∈ q−1(g), i.e., we consider a map
σ : G → Ĝ satisfying q ◦ σ = idG, and set ĝ = σ(g). We call σ a section
of q. Then [CN ◦ σ] ∈ Out(N) does not depend on the choice of σ, so we can
define

s(g) := [CN (ĝ)] ∈ Out(N).

One easily verifies that the resulting map

s : G → Out(N)

is a group homomorphism. We call it the characteristic homomorphism of the
extension.

Remark 17.1.4. (a) If N is abelian, then Aut(N) = Out(N), so that
we simply have s(g) = cĝ|N , which does not depend on ĝ. In this case
s : G → Aut(N) is a well-defined action of G on the abelian group N .

(b) If Ĝ = N oS G is a semidirect product defined by the homomorphism
S : G → Aut(N), then s(g) = [S(g)] is the corresponding characteristic ho-
momorphism.

Examples 17.1.5. (a) If G is a Lie group, then the short exact sequence

1 → G0−−→G−−→π0(G) → 1

leads to a characteristic homomorphism of G:

sG : π0(G) → Out(G0).

To obtain some extra information on the group Out(G0), let qG0 : G̃0 → G0

denote the universal covering map and recall that we have an embedding
Aut(G0) ↪→ Aut(G̃0) whose image consists of those automorphisms preserv-
ing ker(qG0) ∼= π1(G) (cf. Remark 8.5.5, Exercise 8.5.2). On the other hand,
Aut(G̃0) ∼= Aut(g) (Corollary 8.5.11), and the corresponding embedding is

Aut(G0) → Aut(g), ϕ 7→ L(ϕ).

Clearly,

Inn(g) = 〈{ead x : x ∈ g}〉 = 〈{Ad(expG x) : x ∈ g}〉 = Ad(G0) ∼= Inn(G0),

so that Out(G0) can be identified with a subgroup of

Out(g) := Aut(g)/ Inn(g) ∼= Out(G̃0).

(b) If G is a connected compact Lie group and T ⊆ G a maximal torus,
then ZG(T ) = T (Corollary 11.2.11), and its normalizer is an extension

1 → T−−→NG(T )−−→W (G,T ) → 1

of the finite Weyl group W (G,T ) by the torus group T (cf. Definition 11.2.12).
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Lemma 17.1.6. Equivalent extensions of G by N define the same character-
istic homomorphism. In particular, we have a map

Ext(G,N) → Hom
(
G, Out(N)

)
.

Proof. Let
N

ι1−−−−−−−−−→ Ĝ1
q1−−−−−−−−−→ GyidN

yϕ

yidG

N
ι2−−−−−−−−−→ Ĝ2

q2−−−−−−−−−→ G

(17.1)

be an equivalence of two extensions of G by N and sj : G → Out(N), j = 1, 2,
be the corresponding characteristic homomorphisms. For ĝ ∈ Ĝ1 we then have
q1(ĝ) = q2(ϕ(ĝ)). Further, ϕ ◦ ι1 = ι2 implies that CN (ϕ(ĝ)) = CN (ĝ), and
hence that s2(g) = [CN (ϕ(ĝ))] = [CN (ĝ)] = s1(g). ut
Remark 17.1.7. According to Lemma 17.1.6, it makes sense to consider, for
a given homomorphism s : G → Out(N), the set Exts(G,N) of equivalence
classes of all extensions whose characteristic homomorphism is s. The main
questions to be asked in this chapter are then:

(Q1) When is Exts(G,N) nonempty?
(Q2) How can we parameterize the set Exts(G,N) if it is nonempty.

To approach an answer to these questions for the case where G is discrete,
we first recall from Remark 10.1.22 how to introduce product coordinates on
group extensions:

Remark 17.1.8. Let 1 → N
ι−−→Ĝ

q−−→G → 1 be a Lie group extension of
the discrete group G by the Lie group N . Let σ : G → Ĝ be a section of q which
is normalized in the sense that σ(1) = 1. Then, according to Remark 10.1.22,
the map

Φ : N ×G → Ĝ, (n, g) 7→ nσ(g)

is an isomorphism of Lie groups, where N ×G is equipped with the multipli-
cation

(n, g)(n′, g′) = (nS(g)(n′)ω(g, g′), gg′), (17.2)

where S := CN ◦ σ, and

ω : G×G → N, (g, g′) 7→ σ(g)σ(g′)σ(gg′)−1. (17.3)

The maps S and ω satisfy the relations

σ(g)σ(g′) = ω(g, g′)σ(gg′), (17.4)

S(g)S(g′) = CN (ω(g, g′))S(gg′), (17.5)

and
ω(g, g′)ω(gg′, g′′) = S(g)

(
ω(g′, g′′)

)
ω(g, g′g′′) (17.6)

(cf. Remark 10.1.22(a),(d)). Since G is discrete, Φ and its inverse ĝ 7→(
ĝσ(g)−1, q(ĝ)

)
are smooth so that Φ is a diffeomorphism.
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Lemma 17.1.9. Let G be a group and N a Lie group. Further, let (S, ω) be
a pair of maps

S : G → Aut(N), ω : G×G → N

with
S(1) = idN and ω(g,1) = ω(1, g) = 1, g ∈ G. (17.7)

Then (17.2) defines a Lie group structure on N ×G if and only if (17.5) and
(17.6) are satisfied.

Proof. The associativity of the multiplication on N × G is equivalent to the
equality of

(
(n, g)(n′, g′)

)
(n′′, g′′) = (nS(g)(n′)ω(g, g′), gg′)(n′′, g′′)

= (nS(g)(n′)ω(g, g′)S(gg′)(n′′)ω(gg′, g′′), gg′g′′)

and

(n, g)
(
(n′, g′)(n′′, g′′)

)
= (n, g)(n′S(g′)(n′′)ω(g′, g′′), g′g′′)

= (nS(g)
(
n′S(g′)(n′′)ω(g′, g′′)

)
ω(g, g′g′′), gg′g′′)

= (nS(g)(n′)(S(g)S(g′)(n′′))S(g)(ω(g′, g′′))ω(g, g′g′′), gg′g′′)

for all g, g′, g′′ ∈ G and n, n′, n′′ ∈ N . This means that

ω(g, g′)S(gg′)(n′′)ω(gg′, g′′) = (S(g)S(g′)(n′′))S(g)(ω(g′, g′′))ω(g, g′g′′).

For n′′ = 1, this leads to (17.6). If, conversely, (17.6) is satisfied, then the
associativity condition is equivalent to

ω(g, g′)S(gg′)(n′′)ω(gg′, g′′) = (S(g)S(g′)(n′′))ω(g, g′)ω(gg′, g′′)

and hence to (17.5). Therefore these two conditions are equivalent to the
associativity of the multiplication on N ×G.

To see that we actually obtain a group, we first observe that S(1) = idN

and ω(g,1) = ω(1, g) = 1 imply that 1 := (1,1) is an identity element of
Ĝ := N ×G, so that (Ĝ,1) is a monoid. For (n, g) ∈ Ĝ, the element

(S(g)−1
(
n−1ω(g, g−1)−1

)
, g−1)

is a right inverse and likewise (ω(g−1, g)−1S(g−1)(n−1), g−1) is a left inverse.
Now the associativity of Ĝ implies that left and right inverse are equal, hence
an inverse of (n, g). Therefore Ĝ is a group. ut
Definition 17.1.10. The pairs (S, ω) satisfying (17.5), (17.6) and (17.7)
are called factor systems for (G,N). For a factor system (S, ω), we write
N ×(S,ω) G for the set N ×G, endowed with the (twisted) group multiplica-
tion (17.2).
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Remark 17.1.11. Combining the proof of Lemma 17.1.9 with the calcula-
tions in Remark 10.1.22(d), we see that, for any factor system (S, ω) for
(G,N), the short exact sequence

1 → N
ι−−→N ×(S,ω) G

q−−→G → 1

with ι(n) = (n,1) and q(n, g) = g, is an extension of Lie groups, when G is
equipped with the discrete topology. Moreover,

σ : G → N ×(S,ω) G, g 7→ (1, g),

is a normalized section of q, so that the corresponding characteristic homo-
morphism s : G → Out(N) is given s(g) = [CN ◦ σ(g)] = [S(g)].

Definition 17.1.12. Since the group Out(N) acts naturally on Z(N) by
[ϕ]z := ϕ(z), each homomorphism s : G → Out(N) defines on Z(N) the
structure of a G-module. We write ρs : G → Aut(Z(N)) for the corresponding
homomorphism.

The following theorem answers question (Q2) from Remark 17.1.7 in terms
of the second cohomology of the G-module Z(N). It is also an important step
to a cohomological answer to question (Q1). We refer to the Appendix 17.3
for the relevant definitions from group cohomology.

Theorem 17.1.13. Let G be discrete and s : G → Out(N) a homomorphism
and S : G → Aut(N) be any normalized lift, i.e., S(1) = idN and s(g) =
[S(g)]. We also fix some extension class [Ĝ] ∈ Exts(G,N). Then the following
assertions hold:

(a) There exists an ω : G×G → N such that Ĝ ∼= N ×(S,ω) G. In particular,
(S, ω) is a factor system.

(b) For a map ω′ : G×G → N , the pair (S, ω′) is a factor system if and only
if there exists a 2-cocycle η ∈ Z2(G,Z(N)) with ω′ = ωη.

(c) The map

Γ : H2
ρs

(G,Z(N)) → Exts(G,N), [η] 7→ [N ×(S,ωη) G]

is a bijection.

Proof. (a) Let q : Ĝ → G be the quotient map defining the extension. Then
we choose a section σ : G → Ĝ in such a way that S(g) = cσ(g)|N and define
ω by (17.3). Now (a) follows from Remark 17.1.8.

(b) If (S, ω′) is a factor system, then (17.5) implies that CN (ω(g, g′)) =
CN (ω′(g, g′)), so that

η(g, g′) := ω(g, g′)−1ω′(g, g′) ∈ Z(N) for g, g′ ∈ G.

Comparing (17.6) for (S, ω) and (S, ω′), it follows that dGη = 0, i.e., that η
is a 2-cocycle. If, conversely, η ∈ Z2(G,Z(N)), then ω′ := ωη satisfies (17.5)
because η(g, g′) ∈ Z(N), and finally (17.6) follows from dGη = 0.
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(c) Let ϕ : N ×(S,ω′) G → N ×(S,ω) G be an equivalence of extensions.
Then there exists a function h : G → N with h(1) = 1 such that ϕ is of the
form ϕ(n, g) = (nh(g), g), and since (1, g) induces in both groups the same
automorphism S(g) on N , we have h(g) ∈ Z(N). We now observe that

ϕ(n, g)ϕ(n′, g′) = (nh(g), g)(n′h(g′), g′) = (nh(g)S(g)(n′h(g′))ω(g, g′), gg′)

=
(
nS(g)(n′)ω(g, g′)h(gg′)(dGh)(g, g′), gg′

)
,

and
ϕ((n, g)(n′, g′)) = (nS(g)(n′)ω′(g, g′)h(gg′), gg′).

This implies that ω′ = ω · dGh. If, conversely, ω−1ω′ ∈ Z2(G,Z(N)) is a
coboundary dGh, then ϕ, as defined above, is an equivalence of extensions.
This proves that Γ is well-defined and a bijection from H2

ρs
(G,Z(N)) onto

Exts(G,N). ut
Remark 17.1.14 (Abelian extensions). Suppose that N = A is an
abelian Lie group. Then the adjoint representation of A is trivial and a fac-
tor system (S, ω) for (G,A) consists of a homomorphism S : G → Aut(A)
and an element ω ∈ Z2(G,A) because (17.6) is the cocycle condition. In this
case we write A ×ω G for this Lie group, which is A × G, endowed with the
multiplication

(a, g)(a′, g′) = (a + ga′ + ω(g, g′), gg′).

Here, we suppress S from the notation by writing ga′ for S(g)(a′). Accord-
ing to Remark 17.1.11, the characteristic homomorphism s : G → Out(A) =
Aut(A) in this case reduces to S. Theorem 17.1.13 now yields a bijection

H2(G,A) → Exts(G,A), [ω] 7→ [A×ω G].

Remark 17.1.15. The parameterization of Exts(G,N) by H2
ρs

(G,Z(N))
given in Theorem 17.1.13(c) under the condition that Exts(G,N) is nonempty,
depends on the choice of a base point [N ×(S,ω) G]. A more conceptual way
to formulate this parameterization is to say that the map

H2
ρs

(G,Z(N))×Exts(G,N) → Exts(G,N), ([η], [N×(S,ω)G]) 7→ [N×(S,ωη)G]

is a simply transitive group action (Exercise).

Remark 17.1.16. (a) If s lifts to a homomorphism S : G → Aut(N), then
(S,1) is a factor system and N oS G is a split extension corresponding to s.

(b) The condition that s lifts to a homomorphism S : G → Aut(N) is
equivalent to the triviality of the group extension

1 → Inn(N) → s∗Aut(N) → G → 1,

where
s∗Aut(N) := {(g, ϕ) ∈ G×Aut(N) : s(g) = [ϕ]}.

Therefore the nontriviality of this extension is the obstruction to the existence
of a homomorphic lift.
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Now we turn to the answer of question (Q1). Starting with a homomor-
phism s : G → Out(N), we can always lift it to a map S : G → Aut(N) with
S(1) = idN , and Theorem 17.1.13 implies that that Exts(G,N) 6= ∅ if and
only if there exists a map ω : G×G → N for which (S, ω) is a factor system.

Proposition 17.1.17. Let G be a discrete group and N be a Lie group. Fur-
ther, let s : G → Out(N) be a homomorphism and S : G → Aut(N) be a lift of
s with S(1) = idN . Then there exists a map ω : G×G → N satisfying (17.5)
and (17.7), so that (17.6) is equivalent to the vanishing of

(dSω)(g, g′, g′′) := S(g)(ω(g′, g′′))ω(g, g′g′′)ω(gg′, g′′)−1ω(g, g′)−1 ∈ N.

Proof. For g, g′ ∈ G, the automorphism S(g)S(g′)S(gg′)−1 of N is inner,
hence of the form CN (ω(g, g′)) for some ω(g, g′) ∈ N . If either g or g′ is 1,
then it is idN , and we may put ω(g, g′) := 1. ut

To understand the nature of the condition from Proposition 17.1.17, we
first observe that:

Lemma 17.1.18. The function dSω : G × G × G → N has values in Z(N)
and it is a 3-cocycle.

Proof. First we show that (dSω)(g, g′, g′′) ∈ Z(N). Let

G] := s∗Aut(N) = {(g, ϕ) ∈ G×Aut(N) : s(g) = [ϕ]},

and note that this is a subgroup of G×Aut(N). The projection

pG : G] → G, (g, ϕ) 7→ g

is a surjective group homomorphism with kernel Inn(N), so that we can think
of it as an extension of G by Inn(N). The map

σ] : G → G], σ(g) := (g, S(g))

clearly is a set-theoretic section satisfying

ω](g, g′) := σ](g)σ](g′)σ](gg′)−1 = S(g)S(g′)S(gg′)−1 = CN (ω(g, g′)),

and for ϕ ∈ Aut(N) we have cσ](g)ϕ = cS(g)ϕ. Putting S](g) := cS(g), it
follows that the pair (S], ω]) is a factor system for (G, Inn(N)), which implies
that dS]ω] = 0. We thus obtain

CN

(
(dSω)(g, g′, g′′)

)

= S(g)CN (ω(g′, g′′))S(g)−1CN (ω(g, g′g′′))CN (ω(gg′, g′′))−1CN (ω(g, g′))−1

= (dS]ω])(g, g′, g′′) = 1,

which means that dSω(g, g′, g′′) ∈ Z(N).
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In the following calculation we write the group structure on Z(N) mul-
tiplicatively. We shall use several times that the values of dSω are central
in N , so that they commute with all values of ω. We have to show that for
g, g′, g′′, g′′′ ∈ G, the following expression vanishes:

dG(dSω)(g, g′, g′′, g′′′)

= S(g)
(
(dSω)(g′, g′′, g′′′)

)
(dSω)(g, g′g′′, g′′′)(dSω)(g, g′, g′′)

(dSω)(g, g′, g′′g′′′)−1(dSω)(gg′, g′′, g′′′)−1.

This will be achieved by calculating the expression

L := S(g)
(
S(g′)(ω(g′′, g′′′))ω(g′, g′′g′′′)

)
ω(g, g′g′′g′′′)

in two ways. First we use

S(g)(ω(g′, g′′))ω(g, g′g′′) = (dSω)(g, g′, g′′)ω(g, g′)ω(gg′, g′′) (17.8)

to evaluate the inner expression:

L = S(g)
(
(dSω)(g′, g′′, g′′′)ω(g′, g′′)ω(g′g′′, g′′′)

)
ω(g, g′g′′g′′′)

= S(g)
(
dSω)(g′, g′′, g′′′)

)
S(g)(ω(g′, g′′))S(g)(ω(g′g′′, g′′′))ω(g, g′g′′g′′′)

= S(g)
(
dSω)(g′, g′′, g′′′)

)
(dSω)(g, g′, g′′)ω(g, g′)ω(gg′, g′′)ω(g, g′g′′)−1

(dSω)(g, g′g′′, g′′′)ω(g, g′g′′)ω(gg′g′′, g′′′)

= S(g)
(
dSω)(g′, g′′, g′′′)

)
(dSω)(g, g′, g′′)(dSω)(g, g′g′′, g′′′)

ω(g, g′)ω(gg′, g′′)ω(gg′g′′, g′′′).

Then we evaluate L by using S(g)S(g′) = CN (ω(g, g′))S(gg′) to obtain

L = ω(g, g′)S(gg′)(ω(g′′, g′′′))ω(g, g′)−1S(g)(ω(g′, g′′g′′′))ω(g, g′g′′g′′′)

= ω(g, g′)(dSω)(gg′, g′′, g′′′)ω(gg′, g′′)ω(gg′g′′, g′′′)ω(gg′, g′′g′′′)−1

ω(g, g′)−1(dSω)(g, g′, g′′g′′′)ω(g, g′)ω(gg′, g′′g′′′)
= (dSω)(gg′, g′′, g′′′)(dSω)(g, g′, g′′g′′′)ω(g, g′)ω(gg′, g′′)ω(gg′g′′, g′′′).

Comparing the two expressions for L, we see that dG(dSω) vanishes. ut
Lemma 17.1.19. The cohomology class χ(s) := [dSω] ∈ H3(G,Z(N)) does
not depend on the choices of ω and S.

Proof. First we show that the class [dSω] does not depend on the choice of ω
if S is fixed. So let ω̃ : G×G → N be another map with

ω̃(g,1) = ω̃(1, g′) = 1 and S(g)S(g′) = CN (ω̃(g, g′))S(gg′), (17.9)

Then β := ω̃ · ω−1 has values in Z(N). As all values of β commute with all
values of ω, this leads to
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dSω̃ = dSβ + dSω = dGβ + dSω ∈ dSω + B3(G,Z(N)).

Therefore the choice of ω has no effect on the cohomology class [dSω].
Now we consider another section S̃ : G → Aut(N) of s with S̃(1) = idN .

Then there exists a function α : G → N with α(1) = 1 and S̃ = (CN ◦ α) · S.
With the notation

δS(g, g′) := S(g)S(g′)S(gg′)−1 = CN (ω(g, g′)),

we now obtain

δS̃(g, g′) = CN (α(g))S(g)CN (α(g′))S(g′)S(gg′)−1CN (α(gg′))−1

= CN (α(g))cS(g)(CN (α(g′)))δS(g, g′)CN (α(gg′))−1

= CN

(
α(g)S(g)(α(g′))ω(g, g′)α(gg′)−1

)
.

Therefore the prescription

ω̃(g, g′) = α(g)S(g)(α(g′))ω(g, g′)α(gg′)−1

defines a function ω̃ : G2 → N with

ω̃(1, g′) = ω̃(g,1) = 1 and CN ◦ ω̃ = δS̃ .

We now calculate

(dS̃ω̃)(g, g′, g′′)

= S̃(g)(ω̃(g′, g′′))ω̃(g, g′g′′)ω̃(gg′, g′′)−1ω̃(g, g′)−1

= α(g)︸︷︷︸
1

S(g)
(
α(g′)S(g′)(α(g′′))ω(g′, g′′)α(g′g′′)−1

︸ ︷︷ ︸
5

)
α(g)−1

︸ ︷︷ ︸
2

α(g)︸︷︷︸
2

S(g)(α(g′g′′))︸ ︷︷ ︸
5

ω(g, g′g′′)α(gg′g′′)−1

︸ ︷︷ ︸
3

α(gg′g′′)︸ ︷︷ ︸
3

ω(gg′, g′′)−1S(gg′)(α(g′′))−1 α(gg′)−1

︸ ︷︷ ︸
4

α(gg′)︸ ︷︷ ︸
4

ω(g, g′)−1S(g)(α(g′))−1 α(g)−1

︸ ︷︷ ︸
1

= S(g)α(g′)︸ ︷︷ ︸
1

[S(g)S(g′)(α(g′′))]S(g)(ω(g′, g′′))ω(g, g′g′′)ω(gg′, g′′)−1

S(gg′)(α(g′′))−1ω(g, g′)−1 S(g)(α(g′))−1

︸ ︷︷ ︸
1

.

With the relation S(g)S(g′) = CN (ω(g, g′))S(gg′), we finally arrive at

(dS̃ω̃)(g, g′, g′′) = ω(g, g′)(S(gg′)α(g′′))ω(g, g′)−1(dSω)(g, g′, g′′)ω(g, g′)

S(gg′)(α(g′′))−1ω(g, g′)−1

= (dSω)(g, g′, g′′). ut
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Now we can answer question (Q2) from Remark 17.1.7:

Theorem 17.1.20. Let G be a discrete group, N a Lie group, and
s : G → Out(N) be a homomorphism. Let χ(s) ∈ H3

ρs
(G,Z(N)) be the co-

homology class associated with s via Lemma 17.1.19. Then the following are
equivalent.

(i) There exists a factor system (S′, ω′) such that [N×(S′,ω′) G] ∈ Exts(G,N).
(ii) χ(s) ∈ H3

ρs
(G,Z(N)) vanishes.

Proof. In view of Proposition 17.1.17, (ii) is an immediate consequence of
(i). For the converse, let (S, ω) be the maps associated with s in Proposi-
tion 17.1.17 and its proof. Then χ(s) is the cohomology class of dSω, i.e.,
(ii) implies that dSω is a 3-coboundary. This means that there is a map
β ∈ C2

(
G,Z(N)

)
such that dSω = dGβ. Set ω′ := β−1ω : G × G → Z(N).

Then the definition of C2
(
G,Z(N)

)
implies that (S, ω′) still satisfy (17.5) and

(17.7). Further,

dSω′ = −dSβ + dSω = −dGβ + dSω = 0,

so that Proposition 17.1.17 shows that (S′, ω′) is a factor system such that s
is the characteristic homomorphism of N ×(S′,ω′) G. ut
Remark 17.1.21. (a) The results developed in this section have the follow-
ing implications for the classification of Lie groups G with a given identity
component G0 and given component group Γ := π0(G). We think of these
groups as extensions of Γ by G0 and want to classify them up to equivalence
of extensions.

Step 1: First one has to describe the set of those homomorphisms
s : Γ → Out(G0) for which χ(s) ∈ H3

ρs
(Γ, Z(G0)) vanishes.

Step 2: If χ(s) = 0 is fixed, then by we know that Exts(Γ, G0) 6= ∅ is
acted upon in a simply transitive fashion by the group H2

ρs
(Γ, Z(G0)) (Theo-

rem 17.1.20), so that we obtain the desired classification by constructing one
extension G corresponding to s and then determining the group H2

ρs
(Γ, Z(G0))

(Theorem 17.1.13).
(b) For the special case where s lifts to a homomorphism

S : Γ → Aut(G0), we have in particular χ(s) = 0 and G := G0 oS Γ is
an extension of Γ by G0 corresponding to s. All other extensions are now
determined by elements of the group H2

ρs
(Γ, Z(N)) ∼= Exts(Γ, Z(N)).

(c) For the 2-element group Γ = Z/2, a homomorphism s : Γ → Out(G0) is
specified by an involution τ ∈ Out(G0). If this involution lifts to an involution
in Aut(G0), then the corresponding set of extension classes is parameterized
by

H2
s (Γ,Z(G0)) ∼= Z(G0)τ/(1 + τ)(Z(G0))

(cf. Example 17.3.5 below).
If τ does not lift to an involution of Aut(G0), then we have to evaluate

the obstruction class
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χ(s) ∈ H3
s (Γ,Z(G0)) ∼= Z(G0)−τ/(1− τ)(Z(G0))

(see also Example 17.3.5 below).

Example 17.1.22. (a) For the group GLn(R), we have

GLn(R)0 = GLn(R)+ := {g ∈ GLn(R) : det g > 0} ∼= SLn(R)× R×+
and π0(GLn(R)) ∼= Z/2. The matrix τ := diag(−1, 1, . . . , 1) satisfies det τ =
−1 and τ2 = 1, so that

GLn(R) ∼= GLn(R)0 o {1, τ}.

We have

Z := Z(GLn(R)0) = Z(SLn(R))× R×+ =

{
R× for n even,

R×+ for n odd,

and τ commutes with this group. This implies that the corresponding coho-
mology group is

H2(Z/2, Z) = Z/{z2 : z ∈ Z} =

{
Z/2Z for n even,

{1} for n odd.

We conclude that, for n odd, there are no twisted variants of GLn(R) in the
sense that they are extensions of Z/2 by GLn(R)0 with the same characteristic
homomorphism, but for n even, there is one non-trivial twisted group G. This
group can be described as

G := (GLn(R)0 oα C4)/{(1, 1), (−1,−1)},

where the generator i ∈ C4 acts on GLn(R)0 by α(i)(g) = τgτ . Then G
is a Lie group with G0 = GLn(R)0, π0(G) ∼= Z/2Z, and the corresponding
characteristic homomorphism is the same as for GLn(R). However, any ele-
ment of the form [g,±i] ∈ G satisfies [g,±i]2 = [gτgτ,−1], and this equals
[1, 1] = [−1,−1] if and only if (gτ)2 = −1. This relation means that gτ is
a complex structure on Rn, which implies that det(gτ) = 1, so that this is
never the case for g ∈ GLn(R)0. We conclude that the extension of π0(G) by
G0 does not split.

(b) The situation changes if we replace GLn(R) by a covering group. Let
G̃Ln(R)0 denote the simply connected covering of GLn(R)0. Since the inclu-
sion

SO2(R) → GL2(R) ↪→ GLn(R)

induces surjective homomorphisms

π1(SO2(R)) ∼= Z
∼=−−→π1(GL2(R)) ∼= Z→→ π1(GLn(R)) ∼= π1(SLn(R))



17.2 Coverings of Nonconnected Lie Groups 631

(cf. Proposition 16.2.4) and τgτ = g−1 for g ∈ SO2(R), τ acts (via the
automorphism induced by conjugation) on π1(GLn(R)) by inversion. From
G̃Ln(R)0 ∼= S̃Ln(R)× R×+, we further obtain

Z(G̃Ln(R)0) ∼= Z(S̃Ln(R))× R×+ ∼=





Z× R×+ for n = 2,

Z/2Z× R×+ for n ∈ 2N+ 1,

Z/4Z× R×+ for n ∈ 2N+ 2,

and (the lift of) τ acts on this group by τ · (x, y) = (−x, y). We thus obtain

H2(Z/2, Z(G̃Ln(R)0)) ∼= Z(G̃Ln(R)0)τ/{z · τ.z : z ∈ Z(G̃Ln(R)0)}

∼=
{
{0} for n = 2,

Z/2Z for n > 2.

(cf. Example 17.3.5).

Exercises for Section 17.2

Exercise 17.1.1 (Baer products). Let

N
ι1−−→Ĝ1

q1−−→G

and Z(N) ι2−−→Ĝ2
q2−−→G be two extensions of G, where the G-module structure

on Z(N) induced from Ĝ2 coincides with the one induced from Ĝ1. Show that:

(a) G] := Ĝ1 ×G Ĝ2 := {(ĝ1, ĝ2) ∈ Ĝ1 × Ĝ2 : q1(ĝ1) = q2(ĝ2)} is an extension
of G by Z(N)×N .

(b) Z := {(z, z−1) : z ∈ Z(N)} is a normal subgroup of G] and Ĝ3 := G]/Z
is another extension of G by N .

(c) If we identify H2
s (G, Z(N)) with Exts(G,Z(N)), then the map

([Ĝ1], [Ĝ2]) 7→ [Ĝ3]

corresponds to the action of the group H2
s (G,Z(N)) on the set Exts(G,N).

Exercise 17.1.2. (The Mautner group) Let θ ∈ R be irrational and consider

the semidirect product Lie group G := C2 oα R for α(t) =
(

eit 0
0 eiθt

)
. Show

that the group Ad(G) = Inn(G) of inner automorphisms of G is not closed.

17.2 Coverings of Nonconnected Lie Groups

Let G be a nonconnected Lie group. Then it is a natural question whether
G has a simply connected covering group qG : G̃ → G, i.e., qG is a group
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homomorphism which is a covering and π1(G̃) is trivial. Any such group is
an extension of π0(G) ∼= π0(G̃) by the simply connected group G̃0 for which
the characteristic homomorphism coincides with the characteristic homomor-
phism

sG : π0(G) → Out(G0) ⊆ Out(G̃0),

if we consider Out(G0) as a subgroup of Out(G̃0) (cf. Example 17.1.5). Ac-
cordingly, we have two cohomology classes χ(sG) ∈ H3(π0(G), Z(G0)) and
χ̃(sG) ∈ H3(π0(G), Z(G̃0)). From Theorem 17.1.20, we conclude that χ̃(sG)
vanishes if G has a simply connected covering group G̃.

Assume, conversely, that χ̃(sG) = 0, and let G] be a G̃0-extension of π0(G)
with [G]] ∈ ExtsG

(π0(G), G̃0). Then G] is simply connected, and we know that
the equivalence classes of all other simply connected covering groups of G are
parameterized by the group H2(π0(G), Z(G̃0)) which acts simply transitively
on ExtsG

(π0(G), G̃0) (Theorem 17.1.13). Since the image of sG preserves the
subgroup ker qG0

∼= π1(G) ⊆ Z(G̃0), the group ker qG is normal in G], so that
the quotient group G]/ ker qG is an extension of π0(G) by G0, and there exists
a unique class c ∈ H2(π0(G), Z(G0)) with

c · [G] = [G]/ ker qG] ∈ ExtsG
(π0(G), G0)

(see Remark 17.1.15).
Recall that the covering qG0 : G̃0 → G0 induces a short exact sequence

1 → π1(G) ∼= ker(qG0) ↪→ Z(G̃0)
qG0−−−−−−→Z(G0) → 1 (17.10)

(Proposition 8.5.2). Passing from [G]] to another element of Exts(π0(G), G̃0)
changes c by an element of the image of the canonical homomorphism

H2(π0(G), Z(G̃0)) → H2(π0(G), Z(G0)).

On the other hand, the short exact sequence of abelian groups (17.10) leads
to a long exact cohomology sequence

· · · → H2(π0(G), π1(G)) → H2(π0(G), Z(G̃0)) → H2(π0(G), Z(G0))
δ−−→H3(π0(G), π1(G)) → H3(π0(G), Z(G̃0)) → H3(π0(G), Z(G0)) → · · ·

(see Remark 17.3.4 below), and the preceding discussion now shows that the
cohomology class

χG := δ(c) ∈ H3(π0(G), π1(G))

does not depend on the choice of G]. It turns out to be the obstruction for
the existence of a simply connected covering group of G:

Theorem 17.2.1. The Lie group G has a simply connected covering group G̃
if and only if the cohomology class χG ∈ H3(π0(G), π1(G)) vanishes.
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Proof. The group G] from above is a simply connected covering group of G if
and only if c = 0, i.e., G]/ ker qG is equivalent to G as an extension of π0(G)
by G0.

If G̃ → G is a simply connected covering group of G, then G] := G̃ leads to
χG = δ(c) = 0. If, conversely, 0 = χG = δ(c), then the exactness of the long ex-
act cohomology sequence implies the existence of some c̃ ∈ H2(π(G0), Z(G̃0))
with H2(π(G0), qG0)c̃ = c. This means that −c̃.[G]] = [G̃] for some
G̃0-extension q̃G : G̃ → G of π0(G) by G̃0 satisfying G̃/ ker q̃G

∼= G. Hence
G̃ is a simply connected covering group of G. ut
Example 17.2.2. (a) If π0(G) is a free abelian group, then Hn(π0(G), A)
vanishes for every π0(G)-module A and n > 0 ([ML63, Thm. 7.3]), and this
implies that G has a simply connected covering group.

(b) If G = G0oS π0(G) is a semidirect product, then G̃ := G̃0oS̃ π0(G) is a
simply connected covering group, where S̃ : π0(G) → Aut(G̃0) is the canonical
lift of S. This group defines an extension class [G̃] ∈ ExtsG

(π0(G), G̃0). We
also know that the group H2

sG
(π0(G), Z(G̃0)) acts simply transitively on this

set, and, for an extension [G]] = c · [G̃], c ∈ H2
sG

(π0(G), Z(G̃0)), the extension
G]/π1(G) of π0(G) by G̃0/π1(G) ∼= G0 is equivalent to G if and only if the
image of c in H2

sG
(π0(G), Z(G0)) vanishes. According to the long exact coho-

mology sequence from above, this happens if and only if c is contained in the
image of H2

sG
(π0(G), π1(G)). This proves that the group H2

sG
(π0(G), π1(G))

acts transitively on the fiber over [G] in ExtsG
(π0(G), G̃0). This action need

not be effective. In view of the long exact cohomology sequence, its kernel is
the image of H1

sG
(π0(G), Z(G0)) in H2

sG
(π0(G), π1(G)).

Example 17.2.3. (a) An important 2-fold covering group of GLn(R) is the
metalinear group

MLn(R) := {(g, z) ∈ GLn(R)× C× : det g = z2}
(cf. [Bl73]). Then

q : MLn(R) → GLn(R), (g, z) 7→ g

is a covering morphism with kernel {(1, 1), (1,−1)}. On the identity compo-
nent GLn(R)0 = {g ∈ GLn(R) : det g > 0}, we have a homomorphism

√
det : GLn(R)0 → R× ⊆ C×, g 7→

√
det(g),

and then
σ : GLn(R)0 → MLn(R), g 7→ (g,

√
det(g))

is a homomorphism splitting the covering map q over GLn(R)0. With τ :=
diag(−1, 1, . . . , 1) and

Γ := q−1({1, τ}) = {(1, 1), (1,−1), (τ, i), (τ,−i)} ∼= C4,
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we then obtain an isomorphism

MLn(R) ∼= GLn(R)0 o Γ ∼= GLn(R)0 o C4.

(b) From the inclusion O2(R) ↪→ GL2(R) it follows that the nontrivial
element [τ ] ∈ π0(GLn(R)) acts by inversion on the cyclic group π1(GLn(R))
(cf. Example 17.1.22). With Example 17.3.5(b) below, we conclude that

H2(π0(GLn(R)), π1(GLn(R))) ∼=
{

1 for n ≤ 2
π1(GLn(R)) ∼= Z/2 for n > 2.

Hence there is only one simply connected covering of GL2(R), and, for n > 2,
we have at most one twist. The same arguments apply to the subgroup On(R)
which has the same groups π0 and π1.

However, there are twisted coverings of GL2(R) that are not simply con-
nected. If τ ∈ C2 = {1, τ} acts by inversion on the cyclic group Cm = Z/mZ,
then Example 17.3.5(b) below implies that

H2(C2, Cm) ∼=
{

1 for m odd
Z/2 for m even.

For n = 2, this implies, for each even integer m, the existence of a nontrivial
covering of GL2(R) with fundamental group Z/mZ. In particular, the twofold
cover admits a nontrivial twist. For O2(R), this twist is realized by the group
Pin2(R) (Example B.3.24).

Example 17.2.4. We consider the special case where G0 = T ∼= Td is a
torus group and Γ = π0(G) is finite, acting on T by S : Γ → Aut(T ). Then
Z(G̃0) = G̃0

∼= Rd and Z(G0) = G0. In view of [ML63, Cor. IV.5.4], the
cohomology groups Hn(Γ,Z(G̃0)) vanish for n > 0, so that the long exact
cohomology sequence corresponding to the short exact sequence

1 → Zd = π1(T ) → Rd = T̃ → Td = T → 1

of Γ -modules (Remark 17.3.4) leads to isomorphisms

δn : Hn(Γ, T ) → Hn+1(Γ, π1(T )) for n > 0.

Any Lie group G with π0(G) = Γ and G0 = T is determined, up to equiva-
lence, by the corresponding cohomology class [f ] ∈ H2(Γ, T ) ∼= H3(Γ, π1(T )).
Then

G = T ×f Γ with (t, γ)(t′, γ′) = (t · γ(t′) · f(γ, γ′), γγ′).

In this case we may choose G] := T̃ oS̃ Γ , where S̃ : Γ → Aut(T̃ ) is the
canonical lift of S. Then [G]/π1(T )] = c · [G] for c = −[f ] implies that

χG = −δ2([f ]) ∈ H3(Γ, π1(T )).
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Since δ2 is an isomorphism, G has a simply connected covering group if and
only if [f ] = 0, i.e., if G ∼= T oS Γ is a semidirect product.

The simplest example of a Lie group without a simply connected covering
group is

G := (T oS C4)/{(1, 1), (−1,−1)},
where C4 = {1, i,−1,−i} acts on T by S(i)(t) = t−1. In this case G0

∼= T,
and π0(G) ∼= C2 acts on T by inversion. Each element g = [t, z] which is
not contained in the identity component, satisfies z2 = −1, so that g2 =
[tS(z)(t),−1] = [1,−1] 6= [1, 1]. This implies that the short exact sequence

1 → G0 = T→ G → π0(G) ∼= C2 → 1

does not split. Since

(T×S C4)/{(1, 1), (1,−1)} ∼= O2(R) ∼= SO2(R)o C2,

G is a twisted form of O2(R). The possible twists are parameterized by the
group

H2
S(C2,T) = TS = {1,−1} ∼= C2.

17.3 Appendix: Group Cohomology

In this appendix we provide definitions and basic facts concerning group co-
homology. Here G denotes a group and A a G-module, i.e., an abelian group
(written additively), endowed with an action of G, defined by a homomor-
phism ρ : G → Aut(A). We write ga := ρ(g)a for this action.

Definition 17.3.1. For p ∈ N0, we write Cp(G,A) for the space of all maps
Gp → A vanishing if at least one argument is 1. The elements of Cp(G,A) are
called p-cochains. The set Cp(G,A) carries a natural group structure, defined
by pointwise addition. We define additive maps

dG : Cp(G, A) → Cp+1(G,A)

by

(dGf)(g0, . . . , gp) := g0f(g1, . . . , gp) +
p∑

j=1

(−1)jf(g0, . . . , gj−1gj , . . . , gp)

+ (−1)p+1f(g0, . . . , gp−1).

A quick inspection shows that dGf also vanishes if one of its arguments van-
ishes. We now combine them to an additive map

dG : C(G,A) :=
∞⊕

p=0

Cp(G,A) → C(G, A).



636 17 Nonconnected Lie Groups

It is not hard to verify that d2
G = 0 (cf. Exercise 17.3.2(c)). This implies that

the subgroup Zp(G,A) := ker(dG|Cp(G,A)) of p-cocycles contains the subgroup
Bp(G,A) := dG(Cp−1(G,A)) of p-coboundaries. The quotient group

Hp
ρ (G,A) := Hp(G,A) := Zp(G, A)/Bp(G,A)

is the pth cohomology group of G with values in the G-module A. We write [f ]
for the cohomology class of f ∈ Zp(G,A).

Example 17.3.2. (a) For any G-module A, we have C0(G,A) ∼= A, Z0(G, A) ∼=
AG, the set of fixed points, and

H0(G,A) ∼= AG.

(b) A map f : G → A is a 1-cocycle if and only if

f(gg′) = f(g) + gf(g′) for g, g′ ∈ G,

and the 1-coboundaries are of the form (dGa)(g) = ga− a.
A geometric interpretation of 1-cocycles is that each 1-cocycle f defines

an “affine” action of G on A by

g ∗ a := ga + f(g),

and this action has a fixed point if and only if the cohomology class [f ] ∈
H1(G,A) vanishes (Exercise).

Another interpretation of 1-cocycles is that they provide splitting homo-
morphisms

σf := (f, idG) : G → Aoρ G,

and two such homomorphisms σf and σf ′ are conjugate under the normal
subgroup A of Aoρ G if and only if [f ] = [f ′] in H1(G,A).

(c) The group H2(G,A) parameterizes equivalence classes of abelian ex-
tensions of G by A by associating to the cocycle ω ∈ Z2(G,A), the abelian
extension A×ω G, consisting of the set A×G, endowed with the product

(a, g)(a′, g′) = (a + ga′ + ω(g, g′), gg′)

(cf. Remark 17.1.14).

Definition 17.3.3. Let A and B be G-modules and ϕ : A → B be a morphism
of G-modules, i.e., a G-equivariant homomorphism of abelian groups. Then
we obtain corresponding homomorphisms

Cn(G,ϕ) : Cn(G,A) → Cn(G,B), f 7→ ϕ ◦ f,

with
Cn+1(G,ϕ) ◦ dG = dG ◦ Cn(G,ϕ). (17.11)

This implies that Cn(G, ϕ) maps cocycles into cocycles and coboundaries into
coboundaries, hence induces a homomorphism

Hn(G,ϕ) : Hn(G,A) → Hn(G,B), [f ] 7→ [ϕ ◦ f ].
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Remark 17.3.4. Let 0 → A
α−−→B

β−−→C → 0 be a short exact sequence of
G-modules. Then we obtain short exact sequences

0 → Cn(G, A)
Cn(G,α)−−−−−−−−−→Cn(G,B)

Cn(G,β)−−−−−−−−−→Cn(G,C) → 0,

which, in view of (17.11), combine to a short exact sequence of chain com-
plexes. Now basic homological algebra provides connecting maps

δn : Hn(G,C) → Hn+1(G,A),

which lead to a long exact cohomology sequence

· · · → Hn(G, A)
Hn(G,α)−−−−−−−−−→Hn(G,B)

Hn(G,β)−−−−−−−−−→Hn(G,C)
δn−−−−→Hn+1(G,A)

Hn+1(G,α)−−−−−−−−−→Hn+1(G, B) · · ·
(cf. [ML63, Thm. II.4.1]).

Example 17.3.5. (a) Let Cn
∼= Z/nZ be the cyclic group with n elements

and write ρ ∈ Cn for a generator. Then a Cn-module structure on an abelian
group is given by an automorphism ϕ ∈ Aut(A) with ϕn = idA. It defines an
endomorphism N ∈ End(A) by

Na := a + ϕ(a) + . . . + ϕn−1(a)

whose range lies in Aϕ = {a ∈ A : ϕ(a) = a} and which commutes with the
Cn-action. We then have

H2k(Cn, A) ∼= Aϕ/N(A), H2k−1(Cn, A) ∼= kerN/ im (ϕ− 1), k > 0

(cf. [ML63, Thm. IV.7.1]).
(b) We take a closer look at the case n = 2. Then each f ∈ Cp(C2, A)

vanishes in all tuples containing 1, hence is determined by f(ρ, . . . , ρ), so that
we obtain an isomorphism

Cp(C2, A) → A, f 7→ f(ρ, . . . , ρ)

of groups. Identifying Cp(C2, A) accordingly with A, it follows immediately
from the formula for the group differential that, for a ∈ A ∼= Cp(C2, A), we
have

da = ϕ(a) + (−1)p+1a = (ϕ + (−1)p+11)a.

We conclude that

Z2k(C2, A) = Aϕ = ker(ϕ− 1) and Z2k+1(C2, A) = A−ϕ = ker(ϕ + 1).

We also derive that

H2k(C2, A) = Aϕ/ im (ϕ + 1) and H2k+1(C2, A) = A−ϕ/ im (ϕ− 1).

For more interpretations of the cohomology groups in low degree, we refer
to [We95] or [ML63].
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Exercises for Section 17.3

Exercise 17.3.1. Let X be a set and A be an abelian group. For p ∈ N0,
we consider the group Cp

AS(X,A) of all functions F : Xp+1 → A. The group
structure on Cp

AS(X,A) is given by pointwise addition. We define an additive
map dAS : Cp

AS(X,A) → Cp+1
AS (X, A) by

(dASF )(x0, . . . , xp+1) :=
p+1∑

i=0

(−1)iF (x0, . . . , x̂i, . . . , xp+1),

where ̂ denotes omission. 1 Putting all these maps together, we obtain an
additive map

dAS : CAS(X, A) :=
∞⊕

p=0

Cp
AS(X,A) → CAS(X, A).

Show that d2
ASF = 0.

Exercise 17.3.2. Now let G be a group and A be a G-module. We define
maps Φn : Cn(G,A) → Cn

AS(G, A) by

Φn(f)(g0, . . . , gn) := g0f(g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn).

Show that:

(a) Each Φn is injective.
(b) The image of Φn consists of all elements F ∈ Cn

AS(G,A) with

F (x0, . . . , xp) = 0 whenever xi = xi+1 for some i ∈ {0, . . . , p−1}
and

F (gg0, . . . , ggn) = gF (g0, . . . , gn), g, g0, . . . , gn ∈ G.

(c) The map Ψn : im (Φn) → Cn(G,A), define by

Ψn(F )(g1, . . . , gn) := F (1, g1, g1g2, . . . , g1 · · · gn).

in an inverse of Φn.
(d) dAS ◦ Φn = Φn+1 ◦ dG.
(e) d2

G = 0.

Notes on Chapter A

For the extension theory of abstract groups, we refer to MacLane’s classic
[ML63]. In Section 17.1 we interpret this theory in the context of extensions
of discrete groups by connected Lie groups. For a detailed discussion of the
subtleties of extensions of arbitrary Lie groups by Lie groups, we refer to
[Ne07], where these issues are treated for infinite-dimensional Lie groups.
1 The subscript AS refers to Alexander–Spanier because this differential leads to

the Alexander–Spanier cohomology in algebraic topology.
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A

Basic Covering Theory

In this appendix we provide the main results on coverings of topological spaces
needed to develop coverings of Lie groups and manifolds. In particular, this
material is needed to show that, for each finite-dimensional Lie algebra g,
there exists a 1-connected Lie group G with Lie algebra L(G) = g which is
unique up to isomorphism.

A.1 The Fundamental Group

To define the notion of a simply connected space, we first have to define
its fundamental group. The elements of this group are homotopy classes of
loops. The present section develops this concept and provides some of its basic
properties.

Definition A.1.1. Let X be a topological space, I := [0, 1], and x0, x1 ∈ X.
We write

P (X, x0) := {γ ∈ C(I, X) : γ(0) = x0}
and

P (X, x0, x1) := {γ ∈ P (X, x0) : γ(1) = x1}.
We call two paths α0, α1 ∈ P (X, x0, x1) homotopic, written α0 ∼ α1, if there
exists a continuous map

H : I × I → X with H0 = α0, H1 = α1

(for Ht(s) := H(t, s)) and

(∀t ∈ I) H(t, 0) = x0, H(t, 1) = x1.

It is easy to show that ∼ is an equivalence relation (Exercise A.1.2), called
homotopy. The homotopy class of α is denoted by [α].
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We write Ω(X, x0) := P (X,x0, x0) for the set of loops based at x0. For
α ∈ P (X, x0, x1) and β ∈ P (X, x1, x2) we define a product α∗β in P (X,x0, x2)
as the concatenation

(α ∗ β)(t) :=
{

α(2t) for 0 ≤ t ≤ 1
2

β(2t− 1) for 1
2 ≤ t ≤ 1.

Lemma A.1.2. If ϕ : [0, 1] → [0, 1] is a continuous map with ϕ(0) = 0 and
ϕ(1) = 1, then for each α ∈ P (X, x0, x1) we have α ∼ α ◦ ϕ.

Proof. Use H(t, s) := α(ts + (1− t)ϕ(s)). ut
Proposition A.1.3. The following assertions hold:

(1) α1 ∼ α2 and β1 ∼ β2 implies α1 ∗ β1 ∼ α2 ∗ β2, so that we obtain a
well-defined product

[α] ∗ [β] := [α ∗ β]

of homotopy classes.
(2) If x also denotes the constant map I → {x} ⊆ X, then

[x0] ∗ [α] = [α] = [α] ∗ [x1] for α ∈ P (X, x0, x1).

(3) (Associativity) [α ∗ β] ∗ [γ] = [α] ∗ [β ∗ γ] for α ∈ P (X, x0, x1),
β ∈ P (X,x1, x2) and γ ∈ P (X,x2, x3).

(4) (Inverse) For α ∈ P (X,x0, x1) and α(t) := α(1− t) we have

[α] ∗ [α] = [x0].

(5) (Functoriality) For any continuous map ϕ : X → Y with ϕ(x0) = y0 we
have

(ϕ ◦ α) ∗ (ϕ ◦ β) = ϕ ◦ (α ∗ β)

and α ∼ β implies ϕ ◦ α ∼ ϕ ◦ β.

Proof. (1) If Hα is a homotopy from α1 to α2 and Hβ a homotopy from β1

to β2, then we put

H(t, s) :=
{

Hα(t, 2s) for 0 ≤ s ≤ 1
2

Hβ(t, 2s− 1) for 1
2 ≤ s ≤ 1

(cf. Exercise A.1.1).
(2) For the first assertion we use Lemma A.1.2 and

x0 ∗ α = α ◦ ϕ for ϕ(t) :=
{

0 for 0 ≤ t ≤ 1
2

2t− 1 for 1
2 ≤ t ≤ 1.

For the second, we have

α ∗ x1 = α ◦ ϕ for ϕ(t) :=
{

2t for 0 ≤ t ≤ 1
2

1 for 1
2 ≤ t ≤ 1.
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(3) We have (α ∗ β) ∗ γ = (α ∗ (β ∗ γ)) ◦ ϕ for

ϕ(t) :=





2t for 0 ≤ t ≤ 1
4

1
4 + t for 1

4 ≤ t ≤ 1
2

t+1
2 for 1

2 ≤ t ≤ 1.

(4)

H(t, s) :=





α(2s) for s ≤ 1−t
2

α(1− t) for 1−t
2 ≤ s ≤ 1+t

2

α(2s− 1) for s ≥ 1+t
2 .

(5) is trivial. ut
Definition A.1.4. From the preceding definition, we derive in particular that
the set

π1(X, x0) := Ω(X,x0)/ ∼
of homotopy classes of loops in x0 carries a natural group structure. This
group is called the fundamental group of X with respect to x0.

A space X is called simply connected if π1(X, x0) vanishes for all x0 ∈
X. If X is pathwise connected it suffices to check this for a single x0 ∈ X
(Exercise A.1.4).

Lemma A.1.5 (Functoriality of the Fundamental Group). If
f : X → Y is a continuous map with f(x0) = y0, then

π1(f) : π1(X, x0) → π1(Y, y0), [γ] 7→ [f ◦ γ]

is a group homomorphism. Moreover, we have

π1(idX) = idπ1(X,x0) and π1(f ◦ g) = π1(f) ◦ π1(g).

Proof. This follows directly from Proposition A.1.3(5). ut
Remark A.1.6. The map

σ : π1(X, x0)×
(
P (X,x0)/ ∼

) → P (X,x0)/ ∼, ([α], [β]) 7→ [α∗β] = [α]∗ [β]

defines an action of the group π1(X,x0) on the set P (X, x0)/ ∼ of homotopy
classes of paths starting in x0 (Proposition A.1.3).

Remark A.1.7. (a) Suppose that the topological space X is contractible,
i.e., there exists a continuous map H : I × X → X and x0 ∈ X with
H(0, x) = x and H(1, x) = x0 for x ∈ X. Then π1(X,x0) = {[x0]} is trivial
(Exercise).

(b) π1(X × Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0).
(c) π1(Rn, 0) = {0} because Rn is contractible.
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More generally, if the open subset Ω ⊆ Rn is starlike with respect to x0,
then H(t, x) := x+ t(x−x0) yields a contraction to x0, and we conclude that
π1(Ω, x0) = {1}.

(d) If G ⊆ GLn(R) is a linear Lie group with a polar decomposition, i.e.,
for K := G ∩On(R) and p := L(G) ∩ Symn(R), the polar map

p : K × p → G, (k, x) 7→ kex

is a homeomorphism, then the inclusion K → G induces an isomorphism

π1(K,1) → π1(G,1)

because the vector space p is contractible.

The following lemma implies in particular, that fundamental groups of
topological groups are always abelian.

Lemma A.1.8. Let G be a topological group and consider the identity element
1 as a base point. Then the path space P (G,1) also carries a natural group
structure given by the pointwise product (α · β)(t) := α(t)β(t) and we have

(1) α ∼ α′, β ∼ β′ implies α · β ∼ α′ · β′, so that we obtain a well-defined
product

[α][β] := [α] · [β] := [α · β]

of homotopy classes, defining a group structure on P (G,1)/ ∼.
(2) α ∼ β ⇐⇒ α · β−1 ∼ 1, the constant map.
(3) (Commutativity) [α] · [β] = [β] · [α] for α, β ∈ Ω(G,1).
(4) (Consistency) [α] · [β] = [α] ∗ [β] for α ∈ Ω(G,1), β ∈ P (G,1).

Proof. (1) follows by composing homotopies with the multiplication map mG.
(2) follows from (1).
(3)

[α][β] = [α∗1][1∗β] = [(α∗1)(1∗β)] = [(1∗β)(α∗1)] = [1∗β][α∗1] = [β][α].

(4) [α][β] = [(α ∗ 1)(1 ∗ β)] = [α ∗ β] = [α] ∗ [β]. ut
As a consequence of (4), we can calculate the product of homotopy classes

as a pointwise product of representatives and obtain:

Proposition A.1.9 (Hilton’s Lemma). For each topological group G, the
fundamental group π1(G) := π1(G,1) is abelian.

Proof. We only have to combine (3) and (4) in Lemma A.1.8 for loops α, β ∈
Ω(G,1). ut
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Exercises for Section A.1

Exercise A.1.1. If f : X → Y is a map between topological spaces and X =
X1 ∪ . . . ∪ Xn holds with closed subsets X1, . . . , Xn, then f is continuous if
and only if all restrictions f |Xi

are continuous.

Exercise A.1.2. Show that the homotopy relation on P (X, x0, x1) is an
equivalence relation.

Exercise A.1.3. Show that for n > 1 the sphere Sn is simply connected. For
the proof, proceed along the following steps:
(a) Let γ : [0, 1] → Sn be continuous. Then there exists an m ∈ N such that
‖γ(t)− γ(t′)‖ < 1

2 for |t− t′| < 1
m .

(b) Define α̃ : [0, 1] → Rn+1 as the piecewise affine curve with α̃( k
m ) =

γ( k
m ) for k = 0, . . . ,m. Then α(t) := 1

‖α̃(t)‖ α̃(t) defines a continuous curve
α : [0, 1] → Sn.
(c) α ∼ γ.
(d) α is not surjective. The image of α is the central projection of a polygonal
arc on the sphere.
(e) If β ∈ Ω(Sn, y0) is not surjective, then β ∼ y0 (it is homotopic to a
constant map).
(f) π1(Sn, y0) = {[y0]} for n ≥ 2 and y0 ∈ Sn.

Exercise A.1.4. Let X be a topological space, x0, x1 ∈ X and α ∈ P (X,x0, x1)
a path from x0 to x1. Show that the map

C : π1(X,x1) → π1(X,x0), [γ] 7→ [α ∗ γ ∗ α]

is an isomorphism of groups. In this sense the fundamental group does not
depend on the base point if X is arcwise connected.

Exercise A.1.5. Let σ : G ×X → X be a continuous action of the topolog-
ical group G on the topological space X and x0 ∈ X. Then the orbit map
σx0 : G → X, g 7→ σ(g, x0) defines a group homomorphism

π1(σx0) : π1(G) → π1(X, x0).

Show that the image of this homomorphism is central, i.e., lies in the center
of π1(X, x0).

A.2 Coverings

In this section we discuss the concept of a covering map. Its main application
in Lie theory is that it provides, for each connected Lie group G, a simply
connected covering group qG : G̃ → G and hence also a tool to calculate its
fundamental group π1(G) ∼= ker qG. In the following chapter we shall inves-
tigate to which extent a Lie group is determined by its Lie algebra and its
fundamental group.
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Definition A.2.1. Let X and Y be topological spaces. A continuous map
q : X → Y is called a covering if each y ∈ Y has an open neighborhood U
such that q−1(U) is a nonempty disjoint union of open subsets (Vi)i∈I , such
that for each i ∈ I the restriction q|Vi

: Vi → U is a homeomorphism. We call
any such U an elementary open subset of X.

Note that this condition implies in particular that q is surjective and that
the fibers of q are discrete subsets of X.

Examples A.2.2. (a) The exponential function exp: C → C×, z 7→ ez is a
covering map.

(b) The map q : R→ T, x 7→ eix is a covering.
(c) The power maps pk : C× → C×, z 7→ zk are coverings.
(d) If q : G → H is a surjective open morphism of topological groups with

discrete kernel, then q is a covering (Exercise A.2.2). All the examples (a)-(c)
are of this type.

Lemma A.2.3 (Lebesgue Number). Let (X, d) be a compact metric space
and (Ui)i∈I an open cover. Then there exists a positive number λ > 0, called
a Lebesgue number of the covering, such that any subset S ⊆ X with diameter
≤ λ is contained in some Ui.

Proof. Let us assume that such a number λ does not exist. Then for each n ∈ N
there exists a subset Sn of diameter ≤ 1

n which is not contained in some Ui.
Pick a point sn ∈ Sn. The sequence (sn) has a subsequence converging to
some s ∈ X and s is contained in some Ui. Since Ui is open, there exists an
ε > 0 with Uε(s) ⊆ Ui. If n ∈ N is such that 1

n < ε
2 and d(sn, s) < ε

2 , we
arrive at the contradiction Sn ⊆ Uε/2(sn) ⊆ Uε(s) ⊆ Ui. ut
Remark A.2.4. (1) If (Ui)i∈I is an open cover of the unit interval [0, 1],
then there exists an n > 0 such that all subsets of the form

[
k
n , k+1

n

]
,

k = 0, . . . , n− 1, are contained in some Ui.
(2) If (Ui)i∈I is an open cover of the unit square [0, 1]2, then there exists

an n > 0 such that all subsets of the form
[k

n
,
k + 1

n

]
×

[ j

n
,
j + 1

n

]
, k, j = 0, . . . , n− 1,

are contained in some Ui.

Theorem A.2.5 (Path Lifting Theorem). Let q : X → Y be a covering
map and γ : [0, 1] → Y a path. Let x0 ∈ X be such that q(x0) = γ(0). Then
there exists a unique path γ̃ : [0, 1] → X such that

q ◦ γ̃ = γ and γ̃(0) = x0.

Proof. Cover Y by elementary open sets Ui, i ∈ I. By Lemma A.2.3, there
exists an n ∈ N such that all sets γ(

[
k
n , k+1

n

]
), k = 0, . . . , n− 1, are contained

in some Ui. We now use induction to construct γ̃. Let V0 ⊆ q−1(U0) be an
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open subset containing x0 for which q|V0 is a homeomorphism onto U0 and
define γ̃ on

[
0, 1

n

]
by

γ̃(t) := (q|V0)
−1 ◦ γ(t).

Assume that we have already constructed a continuous lift γ̃ of γ on the
interval

[
0, k

n

]
and that k < n. Then we pick an open subset Vk ⊆ X containing

γ̃( k
n ) for which q|Vk

is a homeomorphism onto some Ui and define γ̃ for t ∈[
k
n , k+1

n

]
by

γ̃(t) := (q|Vk
)−1 ◦ γ(t).

We thus obtain the required lift γ̃ of γ.
If γ̂ : [0, 1] → X is any continuous lift of γ with γ̂(0) = x0, then γ̂(

[
0, 1

n

]
)

is a connected subset of q−1(U0) containing x0, hence contained in V0. This
shows that γ̃ coincides with γ̂ on

[
0, 1

n

]
. Applying the same argument at each

step of the induction, we obtain γ̂ = γ̃, so that the lift γ̃ is unique. ut
Theorem A.2.6 (Covering Homotopy Theorem). Let I := [0, 1] and
q : X → Y be a covering map and H : I2 → Y be a homotopy with fixed
endpoints of the paths γ := H0 and η := H1. For any lift γ̃ of γ there exists
a unique lift G : I2 → X of H with G0 = γ̃. Then η̃ := G1 is the unique
lift of η starting in the same point as γ̃ and G is a homotopy from γ̃ to η̃.
In particular, lifts of homotopic curves in Y starting in the same point are
homotopic in X.

Proof. Using the Path Lifting Property (Theorem A.2.5), for each t ∈ I
we find a unique continuous lift I → X, s 7→ G(s, t), starting in γ̃(t) with
q(G(s, t)) = H(s, t). It remains to show that the map G : I2 → X obtained in
this way is continuous.

So let s ∈ I. Using Lemma A.2.3, we find a natural number n such that
for each connected neighborhood Ws of s of diameter ≤ 1

n and each i =
0, . . . , n, the set H

(
Ws ×

[
k
n , k+1

n

])
is contained in some elementary subset

Uk of Y . Assuming that G is continuous in Ws × { k
n}, G maps this set into a

connected subset of q−1(Uk), hence into some open subset Vk for which q|Vk

is a homeomorphism onto Uk. But then the lift G on Ws ×
[

k
n , k+1

n

]
must be

contained in Vk, so that it is of the form (q|Vk
)−1 ◦H, hence continuous. This

means that G is continuous on Us ×
[

k
n , k+1

n

]
. Now an inductive argument

shows that G is continuous on Us × I and hence on the whole square I2.
Since the fibers of q are discrete and the curves s 7→ H(s, 0) and

s 7→ H(s, 1) are constant, the curves G(s, 0) and G(s, 1) are also constant.
Therefore η̃ is the unique lift of η starting in γ̃(0) = G(0, 0) = G(1, 0) and G
is a homotopy with fixed endpoints from γ̃ to η̃. ut
Corollary A.2.7. If q : X → Y is a covering with q(x0) = y0, then the cor-
responding homomorphism

π1(q) : π1(X, x0) → π1(Y, y0), [γ] 7→ [q ◦ γ]

is injective.
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Proof. If γ, η are loops in x0 with [q◦γ] = [q◦η], then the Covering Homotopy
Theorem A.2.6 implies that γ and η are homotopic. Therefore [γ] = [η] shows
that π1(q) is injective. ut
Corollary A.2.8. If Y is simply connected and X is arcwise connected, then
each covering map q : X → Y is a homeomorphism.

Proof. Since q is an open continuous map, it remains to show that q is in-
jective. So pick x0 ∈ X and y0 ∈ Y with q(x0) = y0. If x ∈ X also satisfies
q(x) = y0, then there exists a path α ∈ P (X, x0, x) from x0 to x. Now q ◦ α
is a loop in Y , hence contractible because Y is simply connected. Now the
Covering Homotopy Theorem implies that the unique lift α of q ◦ α starting
in x0 is a loop, and therefore that x0 = x. This proves that q is injective. ut

The following theorem provides a powerful tool, from which the preceding
corollary easily follows. We recall that a topological space X is called locally
arcwise connected if each neighborhood U of a point x ∈ X contains an arcwise
connected neighborhood.

Theorem A.2.9 (Lifting Theorem). Assume that q : X → Y is a cov-
ering map with q(x0) = y0, that W is arcwise connected and locally arcwise
connected, and that f : W → Y is a given map with f(w0) = y0. Then a
continuous map g : W → X with

g(w0) = x0 and q ◦ g = f (A.1)

exists if and only if

π1(f)(π1(W,w0)) ⊆ π1(q)(π1(X, x0)), i.e., im (π1(f)) ⊆ im (π1(q)). (A.2)

If g exists, then it is uniquely determined by (A.1). Condition (A.2) is in
particular satisfied if W is simply connected.

Proof. If g exists, then f = q ◦g implies that the image of the homomorphism
π1(f) = π1(q) ◦ π1(g) is contained in the image of π1(q).

Let us, conversely, assume that this condition is satisfied. To define g, let
w ∈ W and αw : I → W be a path from w0 to w. Then f ◦ αw : I → Y is
a path which has a continuous lift βw : I → X starting in x0. We claim that
βw(1) does not depend on the choice of the path αw. Indeed, if α′w is another
path from w0 to w, then αw ∗α′w is a loop in w0, so that (f ◦αw) ∗ (f ◦α′w) is
a loop in y0. In view of (A.2), the homotopy class of this loop is contained in
the image of π1(q), so that it has a lift η : I → X which is a loop in x0. Since
the reverse of the second half η|[ 12 ,1] of η is a lift of f ◦ α′w, starting in x0, it
is β′w, and we obtain

β′w(1) = η
(1

2

)
= βw(1).

We now put g(w) := βw(1), and it remains to see that g is continuous. This
is where we shall use the assumption that W is locally arcwise connected. Let



A.2 Coverings 649

w ∈ W and put y := f(w). Further, let U ⊆ Y be an elementary neighborhood
of y and V be an arcwise connected neighborhood of w in W such that f(V ) ⊆
U . Fix a path αw from w0 to w as before. For any point w′ ∈ V we choose
a path γw′ from w to w′ in V , so that αw ∗ γw′ is a path from w0 to w′. Let
Ũ ⊆ X be an open subset of X for which q|Ũ is a homeomorphism onto U

and g(w) ∈ Ũ . Then the uniqueness of lifts implies that

βw′ = βw ∗
(
(q|Ũ )−1 ◦ (f ◦ γw′)

)
.

We conclude that
g(w′) = (q|Ũ )−1(f(w′)) ∈ Ũ ,

hence that g|V is continuous.
Finally, we show that g is unique. In fact, if h : W → X is another lift

of f satisfying h(w0) = x0, then the set S := {w ∈ W : g(w) = h(w)} is
nonempty and closed. We claim that it is also open. In fact, let w1 ∈ S
and U be a connected open elementary neighborhood of f(w1) and V an
arcwise connected neighborhood of w1 with f(V ) ⊆ U . If Ũ ⊆ q−1(U) is the
open subset on which q is a homeomorphism containing g(w1) = h(w1), then,
since V is arcwise connected, we have that g(V ), h(V ) ⊆ Ũ , whence V ⊆ S.
Therefore S is open, closed and nonempty. Since W is connected this implies
that S = W , i.e., g = h. ut
Corollary A.2.10 (Uniqueness of Simply Connected Coverings).
Suppose that Y is locally arcwise connected. If q1 : X1 → Y and q2 : X2 → Y
are two simply connected arcwise connected coverings, then there exists a
homeomorphism ϕ : X1 → X2 with q2 ◦ ϕ = q1.

Proof. Since Y is locally arcwise connected, both covering spaces X1 and X2

also have this property. Pick points x1 ∈ X1, x2 ∈ X2 with y := q1(x1) =
q2(x2). According to the Lifting Theorem A.2.9, there exists a unique lift
ϕ : X1 → X2 of q1 with ϕ(x1) = x2. We likewise obtain a unique lift
ψ : X2 → X1 of q2 with ψ(x2) = x1. Then ϕ ◦ ψ : X1 → X1 is a lift of
idY fixing x1, so that the uniqueness of lifts implies that ϕ ◦ ψ = idX1 . The
same argument yields ψ ◦ ϕ = idX2 , so that ϕ is a homeomorphism with the
required properties. ut
Definition A.2.11. A topological space X is called semilocally simply con-
nected if each point x0 ∈ X has a neighborhood U such that each loop
α ∈ Ω(U, x0) is homotopic to [x0] in X, i.e., the natural homomorphism

π(iU ) : π1(U, x0) → π1(X, x0), [γ] 7→ [iU ◦ γ]

induced by the inclusion map iU : U → X is trivial.

Theorem A.2.12 (Existence of simply connected coverings). Let Y
be arcwise connected and locally arcwise connected. Then Y has a simply con-
nected covering space if and only if Y is semilocally simply connected.
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Proof. If q : X → Y is a simply connected covering space and U ⊆ Y is a
pathwise connected elementary open subset. Then each loop γ in U lifts to
a loop γ̃ in X, and since γ̃ is homotopic to a constant map in X, the same
holds for the loop γ = q ◦ γ̃ in Y .

Conversely, let us assume that Y is semilocally simply connected. We
choose a base point y0 ∈ Y and let

Ỹ := P (Y, y0)/ ∼ :=
⋃

y1∈Y

P (Y, y0, y1)/ ∼

be the set of homotopy classes of paths starting in y0. We shall provide Ỹ
with a topology such that the map

q : Ỹ → Y, [γ] 7→ γ(1)

defines a simply connected covering of Y .
Let B denote the set of all arcwise connected open subsets U ⊆ Y for

which each loop in U is contractible in Y and note that our assumptions on Y
imply that B is a basis of the topology of Y , i.e., each open subset is a union
of elements of B. If γ ∈ P (Y, y0) satisfies γ(1) ∈ U ∈ B, let

U[γ] := {[η] ∈ q−1(U) : (∃β ∈ C(I, U)) η ∼ γ ∗ β}.

We shall now verify several properties of these definitions, culminating in the
proof of the theorem.

(1) [η] ∈ U[γ] ⇒ U[η] = U[γ].
To prove this, let [ζ] ∈ U[η]. Then ζ ∼ η ∗ β for some path β in U . Further

η ∼ γ ∗ β′ for some path β′ in U . Now ζ ∼ γ ∗ β′ ∗ β, and β′ ∗ β is a path in
U , so that [ζ] ∈ U[γ]. This proves U[η] ⊆ U[γ]. We also have γ ∼ η ∗ β′, so that
[γ] ∈ U[η], and the first part implies that U[γ] ⊆ U[η].

(2) q maps U[γ] injectively onto U .
That q(U[γ]) = U is clear since U and Y are arcwise connected. To show

that it is one-to-one, let [η], [η′] ∈ U[γ], which we know from (1) is the same
as U[η]. Suppose η(1) = η′(1). Since [η′] ∈ U[η], we have η′ ∼ η ∗ α for some
loop α in U . But then α is contractible in Y , so that η′ ∼ η, i.e., [η′] = [η].

(3) U, V ∈ B, γ(1) ∈ U ⊆ V , implies U[γ] ⊆ V[γ].
This is trivial.
(4) The sets U[γ] for U ∈ B and [γ] ∈ Ỹ form a basis of a topology on Ỹ .
Suppose [γ] ∈ U[η] ∩ V[η′]. Let W ⊆ U ∩ V be in B with γ(1) ∈ W . Then

[γ] ∈ W[γ] ⊆ U[γ] ∩ V[γ] = U[η] ∩ V[η′].
(5) q is open and continuous.
We have already seen in (2) that q(U[γ]) = U , and these sets form a basis

of the topology on Ỹ , resp., Y . Therefore q is an open map. We also have for
U ∈ B the relation
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q−1(U) =
⋃

γ(1)∈U

U[γ],

which is open. Hence q is continuous.
(6) q|U[γ] is a homeomorphism.
This is because it is bijective, continuous and open.
At this point we have shown that q : Ỹ → Y is a covering map. It remains

to see that Ỹ is arcwise connected and simply connected.
(7) Let H : I × I → Y be a continuous map with H(t, 0) = y0. Then

ht(s) := H(t, s) defines a path in Y starting in y0. Let h̃(t) := [ht] ∈ Ỹ . Then
h̃ is a path in Ỹ covering the path t 7→ ht(1) = H(t, 1) in Y . We claim that
h̃ is continuous. Let t0 ∈ I. We shall prove continuity at t0. Let U ∈ B be
a neighborhood of ht0(1). Then there exists an interval I0 ⊆ I which is a
neighborhood of t0 with ht(1) ∈ U for t ∈ I0. Then α(s) := H(t0 +s(t− t0), 1)
is a continuous curve in U with α(0) = ht0(1) and α(1) = ht(1), so that
ht0 ∗α is curve with the same endpoint as ht. Applying Exercise A.2.1 to the
restriction of H to the interval between t0 and t, we see that ht ∼ ht0 ∗ α, so
that h̃(t) = [ht] ∈ U[ht0 ] for t ∈ I0. Since q|U[ht0 ] is a homeomorphism, h̃ is
continuous in t0.

(8) Ỹ is arcwise connected.
For [γ] ∈ Ỹ put ht(s) := γ(st). By (7), this yields a path γ̃(t) = [ht] in Ỹ

from ỹ0 := [y0] (the class of the constant path) to the point [γ].

(9) Ỹ is simply connected.
Let α̃ ∈ Ω(Ỹ , ỹ0) be a loop in Ỹ and α := q ◦ α̃ its image in Y . Let

ht(s) := α(st). Then we have the path h̃(t) = [ht] in Ỹ from (7). This path
covers α since ht(1) = α(t). Further, h̃(0) = ỹ0 is the constant path. Also, by
definition, h̃(1) = [α]. From the uniqueness of lifts we derive that h̃ = α̃ is
closed, so that [α] = [y0]. Therefore the homomorphism

π1(q) : π1(Ỹ , ỹ0) → π1(Y, y0)

vanishes. Since it is also injective (Corollary A.2.7), π1(Ỹ , ỹ0) is trivial, i.e.,
Ỹ is simply connected. ut
Definition A.2.13. Let q : X → Y be a covering. A homeomorphism
ϕ : X → X is called a deck transformation of the covering if q ◦ ϕ = q. This
means that ϕ permutes the elements in the fibers of q. We write Deck(X, q)
for the group of deck transformations.

Example A.2.14. For the covering map exp: C→ C×, the deck transforma-
tions have the form

ϕ(z) = z + 2πin, n ∈ Z.
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Proposition A.2.15. Let q : Ỹ = (P (Y, y0)/ ∼) → Y be the simply con-
nected covering of Y with base point ỹ0 = [y0]. For each [γ] ∈ π1(Y, y0) we
write ϕ[γ] ∈ Deck(Ỹ , q) for the unique lift of idY mapping [y0] to the endpoint
[γ] = γ̃(1) of the canonical lift γ̃ of γ starting in ỹ0. Then the map

Φ : π1(Y, y0) → Deck(Ỹ , q), Φ([γ]) = ϕ[γ]

is an isomorphism of groups.

Proof. For γ, η ∈ Ω(Y, y0), the composition ϕ[γ] ◦ϕ[η] is a deck transformation
mapping ỹ0 to the endpoint of ϕ[γ] ◦ η̃ which coincides with the endpoint of
the lift of η starting in γ̃(1). Hence it also is the endpoint of the lift of the
loop γ ∗ η. Therefore Φ is a group homomorphism.

To see that Φ is injective, we note that ϕ[γ] = idỸ implies that γ̃(1) = ỹ0,
so that γ̃ is a loop, and hence that [γ] = [y0] = ỹ0.

For the surjectivity, let ϕ be a deck transformation and y := ϕ(ỹ0). If α
is a path from ỹ0 to y, then γ := q ◦ α is a loop in y0 with α = γ̃, so that
ϕ[γ](ỹ0) = y, and the uniqueness of lifts implies that ϕ = ϕ[γ]. ut

Exercises for Section A.2

Exercise A.2.1. Let F : I2 → X be a continuous map with F (0, s) = x0 for
s ∈ I and define

γ(t) := F (t, 0), η(t) := F (t, 1), α(t) := F (1, t), t ∈ I.

Show that γ ∗ α ∼ η.

Exercise A.2.2. Let q : G → H be an morphism of topological groups with
discrete kernel Γ . Show that:

(1) If V ⊆ G is an open 1-neighborhood with (V −1V ) ∩ Γ = {1} and q is
open, then q|V : V → q(V ) is a homeomorphism.

(2) If q is open and surjective, then q is a covering.
(3) If q is open and H is connected, then q is surjective, hence a covering.

Exercise A.2.3. A map f : X → Y between topological spaces is called a
local homeomorphism if each point x ∈ X has an open neighborhood U such
that f |U : U → f(U) is a homeomorphism onto an open subset of Y .

(1) Show that each covering map is a local homeomorphism.
(2) Find a surjective local homeomorphism which is not a covering. Can you

also find an example where X is connected?
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Some Multilinear Algebra

In this appendix we provide some tools from multilinear algebra. Some are
needed in Chapter 6 on Lie algebras, where we construct the universal envelop-
ing algebra and some other tools are needed for the discussion of differential
forms on manifolds in Chapter 9. Section B.3 on Clifford algebras plays a
crucial role in Chapter 16 on classical groups. Throughout, K is an arbitrary
field of characteristic zero.

B.1 Tensor Products and Tensor Algebra

Let V and W be vector spaces. A tensor product of V and W is a pair
(V ⊗W,⊗) of a vector space V ⊗W and a bilinear map

⊗ : V ×W → V ⊗W, (v, w) 7→ v ⊗ w

with the following universal property. For each bilinear map β : V ×W → U
into a vector space U , there exists a unique linear map β̃ : V ⊗ W → U
satisfying

β̃(v ⊗ w) = β(v, w) for v ∈ V,w ∈ W.

Taking (U, β) = (V ⊗W,⊗), we conclude immediately that idV⊗W is the
unique linear endomorphism of V ⊗W fixing all elements of the form v⊗w.

Before we turn to the existence of tensor products, we discuss their unique-
ness. In category theory, one gives a precise meaning to the statement that
objects with a universal property are determined up to isomorphism. The
following lemma makes this precise for tensor products.

Lemma B.1.1 (Uniqueness of tensor products). If (V ⊗ W,⊗) and
(V ⊗̃W, ⊗̃) are two tensor products of the vector spaces V and W , then there
exists a unique linear isomorphism

f : V ⊗W → V ⊗̃W with f(v ⊗ w) = v⊗̃w for v ∈ V, w ∈ W.



654 B Some Multilinear Algebra

Proof. Since ⊗̃ is bilinear, the universal property of (V ⊗W,⊗) implies the
existence of a unique linear map

f : V ⊗W → V ⊗̃W with f(v ⊗ w) = v⊗̃w for v ∈ V, w ∈ W.

Similarly, the universal property of (V ⊗̃W, ⊗̃) implies the existence of a linear
map

g : V ⊗̃W → V ⊗W with g(v⊗̃w) = v ⊗ w for v ∈ V, w ∈ W.

Then g ◦ f ∈ End(V ⊗W ) is a linear map with (g ◦ f)(v ⊗ w) = v ⊗ w for
v ∈ V and w ∈ W , so that the uniqueness part of the universal property of
(V ⊗W,⊗) yields g ◦ f = idV⊗W . We likewise get f ◦ g = idV ⊗̃W , showing
that f is a linear isomorphism. ut

Now we turn to the existence of the tensor product.

Definition B.1.2. Let S be a set. We write F (S) := K(S) for the free vector
space on S. It is the subspace of the cartesian product KS , the set of all
functions f : S → K for which the set {s ∈ S : f(s) 6= 0} is finite.

For s ∈ S, we define δs(t) := δst, which is 1 for s = t, and 0 otherwise.
Then (δs)s∈S is a basis for the vector space F (S) and we have a map

δ : S → F (S), s 7→ δs.

Now the pair (F (S), δ) has the universal property that, for each map
f : S → V to a vector space V , there exists a unique linear map f̃ : F (S) → V

with f̃ ◦ δ = f .

Proposition B.1.3 (Existence of tensor products). If V and W are
vector spaces, then there exists a tensor product (V ⊗W,⊗).

Proof. In the free vector space F (V ×W ) over V ×W , we consider the subspace
N , generated by elements of the form

δ(v1+v2,w) − δ(v1,w) − δ(v2,w), δ(v,w1+w2) − δ(v,w1) − δ(v,w2),

and
δ(λv,w) − δ(v,λw), λδ(v,w) − δ(λv,w),

for v, v1, v2 ∈ V , w, w1, w2 ∈ W and λ ∈ K. We put

V ⊗W := F (V ×W )/N and v ⊗ w := δ(v,w) + N.

The bilinearity of ⊗ follows from the definition of N . In particular, we
have

(v1 + v2)⊗ w = δ(v1+v2,w) + N = δ(v1,w) + δ(v2,w) + N = v1 ⊗ w + v2 ⊗ w



B.1 Tensor Products and Tensor Algebra 655

and
(λv)⊗ w = δ(λv,w) + N = λδ(v,w) + N = λ(v ⊗ w).

The linearity in the second argument is verified similarly.
To show that (V ⊗ W,⊗) has the required universal property, let

β : V × W → U be a bilinear map. We use the universal property of
(F (V ×W ), δ) to obtain a linear map

γ : F (V ×W ) → U with γ(δ(v,w)) = β(v, w)

for v ∈ V, w ∈ W . The bilinearity of β now implies that N ⊆ ker γ, so that γ
factors through a unique linear map

β̃ : V ⊗W = F (V ×W )/N → U with β̃(v ⊗ w) = γ(δ(v,w)) = β(v, w).

That β̃ is uniquely determined by this property follows from the fact that the
elements of the form v ⊗ w generate V ⊗ W linearly, which in turn follows
from δ(V ×W ) being a linear basis for F (V ×W ). ut

Tensor products of finitely many factors are defined in a similar fashion as
follows.

Definition B.1.4. Let V1, . . . , Vk be vector spaces. A tensor product of
V1, . . . , Vk is a pair

(V1 ⊗ V2 ⊗ · · · ⊗ Vk,⊗)

of a vector space V1 ⊗ V2 ⊗ · · · ⊗ Vk and a k-linear map

⊗ : V1 × · · · × Vk → V1 ⊗ V2 ⊗ · · · ⊗ Vk, (v1, . . . , vk) 7→ v1 ⊗ · · · ⊗ vk,

with the following universal property. For each k-linear map

β : V1 × · · · × Vk → U

into a vector space U , there exists a unique linear map β̃ : V1 ⊗ · · · ⊗ Vk → U
satisfying

β̃(v1 ⊗ · · · ⊗ vk) = β(v1, . . . , vk) for vi ∈ Vi.

For (U, β) = (V1 ⊗ · · · ⊗ Vk,⊗), we conclude immediately that idV1⊗···⊗Vk

is the unique linear endomorphism of V1 ⊗ · · · ⊗ Vk fixing all elements of the
form v1 ⊗ · · · ⊗ vk.

Again, the universal property determines k-fold tensor products.

Lemma B.1.5 (Uniqueness of k-fold tensor products). If

(V1 ⊗ · · · ⊗ Vk,⊗) and (V1⊗̃ · · · ⊗̃Vk, ⊗̃)

are two tensor products of the vector spaces V1, . . . , Vk, then there exists a
unique linear isomorphism

f : V1 ⊗ · · · ⊗ Vk → V1⊗̃ · · · ⊗̃Vk with f(v1 ⊗ · · · ⊗ vk) = v1⊗̃ · · · ⊗̃vk

for vi ∈ Vi.
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We omit the simple proof of the uniqueness. The existence is easily reduced
to the two-fold case:

Lemma B.1.6. If V1, . . . , Vk are vector spaces and k ≥ 2, then the iterated
two-fold tensor product

V1 ⊗ · · · ⊗ Vk := (V1 ⊗ · · · ⊗ Vk−1)⊗ Vk

and
v1 ⊗ · · · ⊗ vk := (v1 ⊗ · · · ⊗ vk−1)⊗ vk

is a tensor product of V1, . . . , Vk.

Proof. Since we know already that this is true for k = 2, we argue by induction
and assume that the assertion holds for (k− 1)-fold iterated tensor products.
In this way we immediately see that (v1 ⊗ · · · ⊗ vk−1)⊗ vk is k-linear.

To verify the universal property, let β : V1 × · · · × Vk → U be a k-linear
map. We first use the induction hypothesis to obtain for each vk ∈ Vk a unique
linear map β̃vk

: V1 ⊗ · · · ⊗ Vk−1 → U with

β̃vk
(v1 ⊗ . . .⊗ vk−1) = β(v1, . . . , vk−1, vk) for vi ∈ Vi, i ≤ k − 1.

From the uniqueness of β̃vk
we further derive that

β̃λvk+λ′v′k = λβ̃vk
+ λ′β̃v′k

for λ, λ′ ∈ K and vk, v′k ∈ Vk. Hence the map

(V1 ⊗ · · · ⊗ Vk−1)× Vk → U, (x, vk) 7→ β̃vk
(x)

is bilinear. Now the universal property of the two-fold tensor product provides
a unique linear map

β̃ : (V1 ⊗ · · · ⊗ Vk−1)⊗ Vk → U

with β̃((v1⊗· · ·⊗vk−1)⊗vk) = β̃vk
(v1⊗· · ·⊗vk−1) = β(v1, . . . , vk−1, vk). ut

Definition B.1.7 (The tensor algebra of a vector space). Let V be
a K-vector space and V ⊗n the n-fold tensor product of V with itself. For
n = 0, 1, we put V ⊗0 := K and V ⊗1 := V .

We claim that, for n,m ∈ N, there exists a bilinear map

µn,m : V ⊗n × V ⊗m → V ⊗(n+m)

with

µn,m

(
(v1 ⊗ . . .⊗ vn), (vn+1 ⊗ . . .⊗ vn+m)

)
= v1 ⊗ . . .⊗ vn+m

for v1, . . . , vn+m ∈ V . In fact, for each x ∈ V ⊗n, the map
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µx : V m → V ⊗(n+m), (w1, . . . , wm) 7→ x⊗ w1 ⊗ . . .⊗ wm

is m-linear, hence determines a linear map

µ̃x : V ⊗m → V ⊗(n+m) with µ̃x(w1 ⊗ · · · ⊗ wm) = µx(w1, . . . , wm).

Since µx is also linear in x, we obtain a unique bilinear map

µn,m : V ⊗n × V ⊗m → V ⊗(n+m)

with

µn,m

(
(v1 ⊗ . . .⊗ vn), (vn+1 ⊗ . . .⊗ vn+m)

)

= µ̃(v1⊗...⊗vn)(vn+1 ⊗ . . .⊗ vn+m) = v1 ⊗ . . .⊗ vn ⊗ vn+1 ⊗ . . .⊗ vn+m.

We further define bilinear maps

µ0,n : V ⊗0 × V ⊗n = K× V ⊗n → V ⊗n, (λ, v) 7→ λv

and
µn,0 : V ⊗n ⊗ V ⊗0 = V ⊗n ×K→ V ⊗n, (v, λ) 7→ λv.

Putting all maps µn,k, n, k ∈ N0, together, we obtain a bilinear multiplication
on the vector space

T (V ) := ⊕∞n=0V
⊗n.

It is now easy to show that this multiplication is associative and has an identity
element 1 ∈ V ⊗0 (Exercise B.1.5). The algebra obtained in this way is called
the tensor algebra of V .

Lemma B.1.8 (Universal property of the tensor algebra). Let V be
a vector space and η : V → T (V ) the canonical embedding of V as V ⊗1.Then
the pair (T (V ), η) has the following property. For any linear map f : V → A
into a unital associative K-algebra A, there exists a unique homomorphism
f̃ : T (V ) → A of unital associative algebras with f̃ ◦ η = f .

Proof. For the uniqueness of f̃ we first note that the requirement of being
a homomorphism of unital algebras determines f̃ on 1 via f̃(1) = 1A. On
η(V ) = V ⊗1 it is determined by f̃ ◦ η = f , and on T (V ) it is thus determined
since the algebra T (V ) is generated by the subspace K1 + V .

For the existence of f̃ , we note that, for each n ∈ N, the map

V n → A, (v1, . . . , vn) 7→ f(v1) · · · f(vn)

is n-linear, so that there exists a unique linear map

f̃n : V ⊗n → A with f̃(v1 ⊗ · · · ⊗ vn) = f(v1) · · · f(vn)

for vi ∈ V . We now combine these linear maps f̃n to a linear map
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f̃ : T (V ) → A with f̃n(1) = 1A, f̃ |V ⊗n = f̃n.

Then the construction implies that f̃ ◦ η = f . That f̃ is an algebra homomor-
phism follows from

f̃
(
(v1 ⊗ · · · ⊗ vn) · (w1 ⊗ · · · ⊗ wm)

)
= f(v1) · · · f(vn)f(w1) · · · f(wm)

= f̃(v1 ⊗ · · · ⊗ vn)f̃(w1 ⊗ · · · ⊗ wk)

for v1, . . . , vn, w1, . . . , wk ∈ V . ut

Exercises for Section B.1

Exercise B.1.1. Let U , V and W be finite-dimensional vector spaces. Show
that there are isomorphisms:

(i) U ⊗ V ∼= V ⊗ U .
(ii) (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ).

Exercise B.1.2. The aim of this exercise is to get a more concrete picture
of the tensor product of two vector spaces in terms of bases. Let V and W
be vector spaces. We consider a basis BV = {ei : i ∈ I} for V and a basis
BW = {fj : j ∈ J} for W . Show that:

(i) Each function f : BV × BW → K has a unique bilinear extension
f̃ : V ×W → K.

(ii) The set BV ⊗BW = {ei ⊗ fj : i ∈ I, j ∈ J} is a basis for V ⊗W .
(iii) Each element x ∈ V ⊗ W has a unique representation as a finite sum

x =
∑

i∈I ei ⊗ wi with wi ∈ W .
(iv) If V1 and V2 are vector spaces, then (V1⊕V2)⊗W ∼= (V1⊗W )⊕(V2⊗W ).

Exercise B.1.3. Let V := Kn and W := Km. Show that one can turn the
space Mn,m(K) of (n ×m)-matrices with entries in K into a tensor product
(Kn ⊗Km,⊗) satisfying

ei ⊗ ej := Eij ,

where e1, . . . , en denotes the canonical basis vectors in Kn and Eij is the
matrix which has a single nonzero entry in the i-th row and the j-th column.

Exercise B.1.4. If V and W are finite-dimensional, then the map

Φ : V ∗ ⊗W → Hom(V, W ), Φ(α⊗ w)(v) := α(v)w

is a linear isomorphism.

Exercise B.1.5. Let V be a vector space and T (V ) =
⊕

n∈N0
V ⊗n. Show that

the multiplication on T (V ) defined by Definition B.1.7 yields an associative
K-algebra.
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Exercise B.1.6. Let Vi and Wi be K-vector spaces (for i = 1, 2) and A ∈
HomK(V1, V2), B ∈ HomK(W1,W2). Show that there exists a unique K-linear
map C : V1 ⊗ V2 → W1 ⊗W2 such that

C(v1 ⊗ v2) = A(v1)⊗B(v2)

for all v1 ∈ V1 and v2 ∈ V2. The map C is usually denoted by A⊗B.

Exercise B.1.7. Suppose that V1, . . . , Vk are vector spaces and that a group
G acts linearly on each of them. Show that

g · (v1 ⊗ . . .⊗ vk) := g · v1 ⊗ . . .⊗ g · vk

for g ∈ G and vj ∈ Vj defines a linear action on V1 ⊗ . . .⊗ V2.

B.2 Symmetric and Exterior Products

B.2.1 Symmetric and Exterior Powers

Definition B.2.1. Let V be a vector space and n ≥ 2. We define

Sn(V ) := V ⊗n/U,

where U is the subspace spanned by all elements of the form

v1 ⊗ . . .⊗ vn − vσ(1) ⊗ . . .⊗ vσ(n), σ ∈ Sn.

The space Sn(V ) is called the n-th symmetric power of V . We put

v1 ∨ · · · ∨ vn := v1 ⊗ · · · ⊗ vn + U

and observe that this product is symmetric in the sense that

v1 ∨ · · · ∨ vn = vσ(1) ∨ · · · ∨ vσ(n)

for each σ ∈ Sn and v1, . . . , vn ∈ V . For n = 1, we put S1(V ) := V and also
S0(V ) := K.

If X and Y are sets, then a map f : Xn → Y is said to be symmetric if,
for each permutation σ ∈ Sn, we have

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for x ∈ Xn.

Lemma B.2.2 (Universal property of symmetric powers). Let V and
X be vector spaces and f : V n → X be a symmetric n-linear map. Then there
exists a unique linear map f̃ : Sn(V ) → X with

f̃(v1 ∨ · · · ∨ vn) = f(v1, . . . , vn) for v1, . . . , vn ∈ V.
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Proof. From the universal property of the n-fold tensor product V ⊗n, we
obtain a unique linear map f0 : V ⊗n → X with

f0(v1 ⊗ · · · ⊗ vn) = f(v1, . . . , vn) for v1, . . . , vn ∈ V.

In view of the symmetry of f , the linear map f0 vanishes on U , hence factors
through a linear map f̃ : Sn(V ) → X with the desired property. ut
Definition B.2.3. Let V and W be K-vector spaces, n ∈ N, and

sgn: Sn → {1,−1}
be the signature homomorphism mapping all transpositions to −1. An n-linear
map f : V n → W is called alternating if

f(v1, . . . , vn) = sgn(σ)f(vσ(1), . . . , vσ(n))

holds for all σ ∈ Sn and v1, . . . , vn ∈ V .
We write Altn(V,W ) for the set of alternating n-linear maps V n → W .

Clearly, sums and scalar multiples of alternating maps are alternating, so that
Altn(V, W ) carries a natural vector space structure. For n = 0, we shall follow
the convention that Alt0(V, W ) := W is the set of constant maps, which are
considered to be 0-linear.

Example B.2.4. From linear algebra, we know the n-linear map

(Kn)n → K, det(v1, . . . , vk) :=
∑

σ∈Sk

sgn(σ)v1,σ(1) · · · vk,σ(k).

Here we identify the space Mn(K) of (n× n)-matrices with entries in K with
the space (Kn)n of n-tuples of (column) vectors ([La93, Sect. XIII.4]).

Definition B.2.5. Let V be a vector space and n ≥ 2. We define

Λn(V ) := V ⊗n/W,

where W is the subspace spanned by the elements of the form

v1 ⊗ · · · ⊗ vn − sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n), σ ∈ Sn.

The space Λn(V ) is called the n-th exterior power of V . We put

v1 ∧ · · · ∧ vn := v1 ⊗ · · · ⊗ vn + W

and note that this product is alternating, i.e.,

v1 ∧ · · · ∧ vn = sgn(σ)vσ(1) ∧ · · · ∧ vσ(n)

for all σ ∈ Sn and (v1, . . . , vn) ∈ V n. For n = 2, this means that

v1 ∧ v2 = −v2 ∧ v1.

We also put Λ1(V ) := V and Λ0(V ) := K.
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Lemma B.2.6 (Universal property of the exterior power). Let V and
X be vector spaces and f ∈ Altn(V, X). Then there exists a unique linear map
f̃ : Λn(V ) → X with

f̃(v1 ∧ · · · ∧ vn) = f(v1, . . . , vn) for v1, . . . , vn ∈ V.

We thus obtain a linear bijection

Altn(V,X) → Hom(Λn(V ), X), f 7→ f̃ .

Proof. The proof is completely analogous to the symmetric case. ut

B.2.2 Symmetric and Exterior Algebra

Definition B.2.7. Let V be a vector space and (T (V ), η) the tensor alge-
bra of V (cf. Lemma B.1.8). We define the symmetric algebra S(V ) over V
as the quotient T (V )/Is, where Is is the ideal generated by the elements
η(v)⊗ η(w)− η(w)⊗ η(v). We write

ηs : V → S(V ), v 7→ η(v) + Is

for the canonical map induced by η. The product in S(V ) is denoted by ∨.
Likewise, we define the exterior algebra Λ(V ) over V as the quotient

T (V )/Ia, where Ia is the ideal generated by the elements

η(v)⊗ η(w) + η(w)⊗ η(v), v, w ∈ V.

We write
ηa : V → Λ(V ), v 7→ η(v) + Ia

for the canonical map induced by η. The product in Λ(V ) is denoted by ∧.

Lemma B.2.8 (Universal property of the symmetric algebra). Let
V be a vector space and (S(V ), ηs) its symmetric algebra. Then S(V ) is a
commutative unital algebra and for any linear map f : V → A into a uni-
tal commutative associative algebra A, there exists a unique homomorphism
f̃ : S(V ) → A of unital associative algebras with f̃ ◦ ηs = f .

Proof. Using the universal property of the tensor algebra T (V ), we see that
there exists a unique unital algebra homomorphism f̂ : T (V ) → A with
f̂ ◦ η = f . Since A is commutative, for any v, w ∈ V , the element
η(v) ⊗ η(w) − η(w) ⊗ η(v) is contained in ker f̂ , and therefore Is ⊆ ker f̂

shows that f̂ factors through an algebra homomorphism f̃ : S(V ) → A with
f̃ ◦ ηs = f . The uniqueness of f̃ follows from the fact that T (V ) is generated,
as a unital algebra, by η(V ), so that S(V ) is generated by the image of ηs.
Since the generators ηs(v), v ∈ V , of S(V ) commute, the algebra S(V ) is
commutative. ut
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Remark B.2.9. (a) The structure of the symmetric algebra can be made
more concrete as follows. Let T (V )k := V ⊗k and U2 ⊆ T (V )2 the subspace
spanned by the commutators [η(v), η(w)], v, w ∈ V . Then the ideal Is is of the
form

Is = T (V )U2T (V ) =
∑

p,q∈N0

T (V )p ⊗ U2 ⊗ T (V )q =
∞⊕

n=2

Is,n,

where Is,n :=
∑

p+q=n−2 T (V )p⊗U2⊗T (V )q. This implies that the symmetric
algebra S(V ) is a direct sum

S(V ) =
∞⊕

n=0

S(V )n, where S(V )n := T (V )n/Is,n.

Let

µn : V n → S(V )n, (v1, . . . , vn) 7→ ηs(v1) ∨ · · · ∨ ηs(vn)

denote the n-fold multiplication map. Since S(V ) is commutative, this map
is symmetric, hence induces a linear map

µ̃n : Sn(V ) → S(V )n,

determined by

µ̃n(v1 ∨ · · · ∨ vn) = ηs(v1) ∨ · · · ∨ ηs(vn).

On the other hand, it is clear that the subspace Is,n of V ⊗n is contained in
the kernel of the quotient map V ⊗n → Sn(V ), so that there exists a linear
map fn : S(V )n → Sn(V ), with

fn(ηs(v1) ∨ · · · ∨ ηs(vn)) = v1 ∨ · · · ∨ vn.

Then fn ◦ µ̃n = idSn(V ) and, similarly, µ̃n ◦ fn = idS(V )n
. This proves that µ̃n

is a linear isomorphism. In the following we therefore identify Sn(V ) with the
subspace S(V )n of the symmetric algebra and write ηs(v) simply as v.

Note that Sn(V ) ∨ Sm(V ) ⊆ Sn+m(V ), so that the direct sum

S(V ) =
⊕

n∈N
Sn(V )

defines the structure of a graded algebra on S(V ) with S0(V ) = K1 containing
the identity element.

(b) A similar argument applies to the exterior algebra and shows that the
ideal Ia has the form Ia =

⊕∞
n=2(Ia ∩ V ⊗n), so that

Λ(V ) =
∞⊕

n=0

Λ(V )n, where Λ(V )n := T (V )n/Ia,n.
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Let µn : V n → Λ(V )n, (v1, . . . , vn) 7→ ηa(v1) ∧ · · · ∧ ηa(vn) denote the
n-fold multiplication map. Then the relation ηa(vi)ηa(vj) + ηa(vj)ηa(vi) = 0
and the fact that Sn is generated by transpositions imply that µn is alternat-
ing. Hence it induces a linear map µ̃n : Λn(V ) → Λ(V )n, determined by

µ̃n(v1 ∧ · · · ∧ vn) = ηa(v1) ∧ · · · ∧ ηa(vn).

On the other hand, it is clear that the subspace Ia,n of V ⊗n is contained in
the kernel of the quotient map V ⊗n → Λn(V ), so that there is a linear map
fn : Λ(V )n → Λn(V ) with

fn(ηa(v1) ∧ · · · ∧ ηa(vn)) = v1 ∧ · · · ∧ vn.

As in the symmetric case, we now see that µ̃n is a linear isomorphism. In
the following we therefore identify Λn(V ) with the subspace Λ(V )n of the
symmetric algebra and write ηa(v) simply as v.

Each subspace Λn(V ) is spanned by elements of the form v1∧· · ·∧vn, and
this implies that for α ∈ Λn(V ) and β ∈ Λm(V ) we have

α ∧ β = (−1)mnβ ∧ α. (B.1)

In this sense the graded algebra Λ(V ) is graded commutative. The even part
of this algebra is the subspace

Λeven(V ) :=
∞⊕

k=0

Λ2k(V )

which is a central subalgebra, and the odd part is

Λodd(V ) :=
∞⊕

k=0

Λ2k+1(V ).

For two elements α, β of this subspace we have α ∧ β = −β ∧ α.

Lemma B.2.10 (Universal property of the exterior algebra). Let V
be a vector space and (Λ(V ), ηa) be its exterior algebra. Then Λ(V ) is a graded
commutative unital algebra and for any linear map f : V → A into a unital
associative algebra A, satisfying

f(v)f(w) = −f(w)f(v) for v, w ∈ V,

there exists a unique homomorphism f̃ : Λ(V ) → A of unital associative alge-
bras with f̃ ◦ ηa = f .

Proof. Using the universal property of the tensor algebra T (V ), we see that
there exists a unique unital algebra homomorphism f̂ : T (V ) → A with
f̂ ◦ η = f . Then we have for v, w ∈ V



664 B Some Multilinear Algebra

f̂
(
η(v)⊗ η(w) + η(w)⊗ η(v)

)
= f(v)f(w) + f(w)f(v) = 0.

Therefore Ia ⊆ ker f̂ shows that f̂ factors through a unital algebra homomor-
phism f̃ : Λ(V ) → A with f̃ ◦ ηa = f . The uniqueness of f̃ follows from the
fact that T (V ) is generated, as a unital algebra, by η(V ), so that Λ(V ) is
generated by the image of ηa. ut

B.2.3 Exterior Algebra and Alternating Maps

Below we shall see how general alternating maps can be expressed in terms
of determinants.

Proposition B.2.11. For any ω ∈ Altk(V, W ) we have:

(i) For b1, . . . , bk ∈ V and linear combinations vj =
∑k

i=1 aijbi, we have

ω(v1, . . . , vk) = det(A)ω(b1, . . . , bk), and A := (aij) ∈ Mk(K).

(ii) ω(v1, . . . , vk) = 0 if v1, . . . , vk are linearly dependent.
(iii) For b1, . . . , bn ∈ V and linear combinations vj =

∑n
i=1 aijbi we have

ω(v1, . . . , vk) =
∑

I

det(AI)ω(bi1 , . . . , bik
),

where A := (aij) ∈ Mn,k(K), I = {i1, . . . , ik} is a k-element subset of
{1, . . . , n}, 1 ≤ i1 < . . . < ik ≤ n, and AI := (aij)i∈I,j=1,...,k ∈ Mk(K).

Proof. (i) For the following calculation we note that if σ : {1, . . . , k} →
{1, . . . , k} is a map which is not bijective, then the alternating property im-
plies that ω(vσ(1), . . . , vσ(k)) = 0. We therefore get

ω(v1, . . . , vk) = ω
( k∑

i=1

ai1bi, . . . ,

k∑

i=1

aikbi

)

=
k∑

i1,...,ik=1

ai11 · · · aikk · ω(bi1 , . . . , bik
)

=
∑

σ∈Sk

aσ(1)1 · · · aσ(k)k · ω(bσ(1), . . . , bσ(k))

=
∑

σ∈Sk

sgn(σ)aσ(1)1 · · · aσ(k)k · ω(b1, . . . , bk) = det(A) · ω(b1, . . . , bk).

(ii) follows immediately from (i) because the linear dependence of v1, . . . , vk

implies that det A = 0.
(iii) First we expand
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ω(v1, . . . , vk) = ω
( n∑

i=1

ai1bi, . . . ,

n∑

i=1

aikbi

)

=
n∑

i1,...,ik=1

ai11 · · · aikk · ω(bi1 , . . . , bik
).

If |{i1, . . . , ik}| < k, then the alternating property implies that ω(bi1 , . . . , bik
) =

0 because two entries coincide. If |{i1, . . . , ik}| = k, there exists a permutation
σ ∈ Sk with iσ(1) < . . . < iσ(k). We therefore get

ω(v1, . . . , vk) =
∑

1≤i1<...<ik≤n

∑

σ∈Sk

aiσ(1)1 · · · aiσ(k)k · ω(biσ(1) , . . . , biσ(k))

=
∑

1≤i1<...<ik≤n

∑

σ∈Sk

sgn(σ)aiσ(1)1 · · · aiσ(k)k · ω(bi1 , . . . , bik
)

=
∑

I

det(AI)ω(bi1 , . . . , bik
),

where the sum is to be extended over all k-element subsets I = {i1, . . . , ik} of
{1, . . . , n}, where i1 < . . . < ik. ut
Corollary B.2.12. (i) If dim V < k, then Altk(V, W ) = {0}.
(ii) Let dim V = n and b1, . . . , bn be a basis for V . Then the map

Φ : Altk(V,W ) → W (n
k), Φ(ω) = (ω(bi1 , . . . , bik

))i1<...<ik

is a linear isomorphism. We obtain in particular dim
(
Altk(V,K)

)
=

(
n
k

)
.

(iii) If dim V = k and b1, . . . , bk is a basis for V , then the map

Φ : Altk(V,W ) → W, Φ(ω) = ω(b1, . . . , bk)

is a linear isomorphism.

Proof. (i) In Proposition B.2.11(i), we may choose bk = 0.
(ii) First we show that Φ is injective. So let ω ∈ Altk(V, W ) with Φ(ω) = 0.

We now write any k elements v1, . . . , vk ∈ V with respect to the basis elements
as vj =

∑n
i=1 aijbi and obtain with Proposition B.2.11:

ω(v1, . . . , vk) =
∑

1≤i1<...<ik≤n

det(AI)ω(bi1 , . . . , bik
) = 0.

To see that Φ is surjective, we pick for each k-element subset I =
{i1, . . . , ik} ⊆ {1, . . . , n} with 1 ≤ i1 < . . . < ik ≤ n an element wI ∈ W .
Then the tuple (wI) is a typical element of W (n

k).
Expressing k elements v1, . . . , vk in terms of the basis elements b1, . . . , bn

via vj =
∑n

i=1 aijbi, we obtain an (n× k)-matrix A. We now define an alter-
nating k-linear map ω ∈ Altk(V, W ) by
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ω(v1, . . . , vk) :=
∑

I

det(AI)wI .

The k-linearity of ω follows directly from the k-linearity of the maps

(v1, . . . , vk) 7→ det(AI).

For i1 < . . . < ik we further have ω(bi1 , . . . , bik
) = wI because in this case AI ∈

Mk(K) is the identity matrix and all other matrices AI′ have some vanishing
columns. This implies that Φ(ω) = (wI), and hence that Φ is surjective.

(iii) is a special case of (ii). ut
Definition B.2.13 (Alternator). Let V and W be vector spaces. For a k-
linear map ω : V k → W , we define a new k-linear map by

Alt(ω)(v1, . . . , vk) :=
1
k!

∑

σ∈Sk

sgn(σ)ω(vσ(1), . . . , vσ(k)).

Writing
ωσ(v1, . . . , vk) := ω(vσ(1), . . . , vσ(k)),

we then have
Alt(ω) =

1
k!

∑

σ∈Sk

sgn(σ)ωσ.

The map Alt(·) is called the alternator. We claim that it turns any k-linear
map into an alternating k-linear map. To see this, we first note that for σ, π ∈
Sk, we have

(ωσ)π(v1, . . . , vk) = (ωσ)(vπ(1), . . . , vπ(k))
= ω(vπσ(1), . . . , vπσ(k)) = ωπσ(v1, . . . , vk).

This implies that

Alt(ω)π =
1
k!

∑

σ∈Sk

sgn(σ)(ωσ)π =
1
k!

∑

σ∈Sk

sgn(σ)ωπσ =
1
k!

∑

σ∈Sk

sgn(π−1σ)ωσ

=
1
k!

∑

σ∈Sk

sgn(π) sgn(σ)ωσ = sgn(π)Alt(ω) =
1
k!

∑

σ∈Sk

sgn(σπ−1)ωσ

=
1
k!

∑

σ∈Sk

sgn(σ)ωσπ =
1
k!

∑

σ∈Sk

sgn(σ)(ωπ)σ = Alt(ωπ).

In particular, we see that Alt(ω) is alternating.

Remark B.2.14. (a) We observe that if ω is alternating, then ωσ = sgn(σ)ω
for each permutation σ, and therefore

Alt(ω) =
1
k!

∑

σ∈Sk

sgn(σ) sgn(σ)ω =
1
k!

∑

σ∈Sk

ω = ω.
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(b) For k = 2 we have Alt(ω)(v1, v2) = 1
2 (ω(v1, v2)−ω(v2, v1)), and for k = 3:

Alt(ω)(v1, v2, v3) =
1
6
(ω(v1, v2, v3)− ω(v2, v1, v3) + ω(v2, v3, v1)

− ω(v3, v2, v1) + ω(v3, v1, v2)− ω(v1, v3, v2)
)
.

Definition B.2.15. Let p, q ∈ N0. For two multilinear maps

ω1 : V1 × . . .× Vp → K and ω2 : Vp+1 × . . .× Vp+q → K

we define the tensor product ω1 ⊗ ω2 : V1 × · · · × Vp+q → K by

(ω1 ⊗ ω2)(v1, . . . , vp+q) := ω1(v1, . . . , vp)ω2(vp+1, . . . , vp+q).

It is clear that ω1 ⊗ ω2 is a (p + q)-linear map.
For λ ∈ K (the set of 0-linear maps), and a p-linear map ω as above, we

obtain in particular
λ⊗ ω := ω ⊗ λ := λω.

For two alternating maps α ∈ Altp(V,K) and β ∈ Altq(V,K) we define
their exterior product:

α ∧ β :=
(p + q)!

p!q!
Alt(α⊗ β) =

1
p!q!

∑

σ∈Sp+q

sgn(σ)(α⊗ β)σ. (B.2)

It follows from (B.2) that α ∧ β is alternating, so that we obtain a bilinear
map

∧ : Altp(V,K)×Altq(V,K) → Altp+q(V,K), (α, β) 7→ α ∧ β.

On the direct sum
Alt(V,K) :=

⊕

p∈N0

Altp(V,K)

we now obtain a bilinear product by putting
(∑

p

αp

)
∧

( ∑
q

βq

)
:=

∑
p,q

αp ∧ βq.

As before, we identify Alt0(V,K) with K and obtain

λα = λ ∧ α = α ∧ λ

for λ ∈ Alt0(V,K) = K and α ∈ Altp(V,K).

We take a closer look at the structure of the algebra (Alt(V,K), ∧ ).
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Lemma B.2.16. For α ∈ Altp(V,K), β ∈ Altq(V,K) and γ ∈ Altr(V,K), we
have

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

In particular the algebra (Alt(V,K), ∧ ) is associative.

Proof. First we recall from Definition B.2.13 that for any n-linear map
ω : V n → W and π ∈ Sn we have

Alt(ωπ) = sgn(π)Alt(ω). (B.3)

We identify Sp+q in the natural way with the subgroup of Sp+q+r fixing the
numbers p + q + 1, . . . , p + q + r. We thus obtain

(α ∧ β) ∧ γ =
(p + q + r)!
(p + q)!r!

Alt((α ∧ β)⊗ γ)

=
(p + q + r)!
p!q!(p + q)!r!

∑

σ∈Sp+q

sgn(σ)Alt((α⊗ β)σ ⊗ γ)

=
(p + q + r)!
p!q!(p + q)!r!

∑

σ∈Sp+q

sgn(σ)Alt((α⊗ β ⊗ γ)σ)

(B.3)
=

(p + q + r)!
p!q!(p + q)!r!

∑

σ∈Sp+q

Alt(α⊗ β ⊗ γ)

=
(p + q + r)!

p!q!r!
Alt(α⊗ β ⊗ γ) =

(p + q + r)!
p!q!r!

Alt(α⊗ (β ⊗ γ))

= . . . =
(p + q + r)!
p!(q + r)!

Alt(α⊗ (β ∧ γ)) = α ∧ (β ∧ γ). ut

From the associativity asserted in the preceding lemma, it follows that the
multiplication in Alt(V,K) is associative. We may therefore suppress brackets
and define

ω1 ∧ . . . ∧ ωn := (. . . ((ω1 ∧ ω2) ∧ ω3) · · · ∧ ωn).

Remark B.2.17. (a) From the calculation in the preceding proof we know
that for three elements αi ∈ Altpi(V,K), the triple product in the associative
algebra Alt(V,K) satisfies

α1 ∧ α2 ∧ α3 =
(p1 + p2 + p3)!

p1!p2!p3!
Alt(α1 ⊗ α2 ⊗ α3).

Inductively this leads for n elements αi ∈ Altpi(V,K) to

α1 ∧ . . . ∧ αn =
(p1 + . . . + pn)!

p1! · · · pn!
Alt(α1 ⊗ · · · ⊗ αn)

(Exercise B.2.2).
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(b) For αi ∈ Alt1(V,K) ∼= V ∗, we in particular obtain

(α1 ∧ . . . ∧ αn)(v1, . . . , vn) = n! Alt(α1 ⊗ · · · ⊗ αn)(v1, . . . , vn)

=
∑

σ∈Sn

sgn(σ)α1(vσ(1)) · · ·αn(vσ(n)) = det(αi(vj)).

Proposition B.2.18. The exterior algebra is graded commutative, i.e., for
α ∈ Altp(V,K) and β ∈ Altq(V,K) we have

α ∧ β = (−1)pqβ ∧ α.

Proof. Let σ ∈ Sp+q denote the permutation defined by

σ(i) :=
{

i + p for 1 ≤ i ≤ q
i− q for q + 1 ≤ i ≤ p + q

which moves the first q elements to the last q positions. Then we have

(β ⊗ α)σ(v1, . . . , vp+q) = (β ⊗ α)(vσ(1), . . . , vσ(p+q))
= β(vp+1, . . . , vp+q)α(v1, . . . , vp) = (α⊗ β)(v1, . . . , vp+q).

This leads to

α ∧ β =
(p + q)!

p!q!
Alt(α⊗ β) =

(p + q)!
p!q!

Alt((β ⊗ α)σ)

= sgn(σ)
(p + q)!

p!q!
Alt(β ⊗ α) = sgn(σ)(β ∧ α).

On the other hand sgn(σ) = (−1)F , where

F := |{(i, j) ∈ {1, . . . , p + q} : i < j, σ(j) < σ(i)}|
= |{(i, j) ∈ {1, . . . , p + q} : i ≤ q, j > q}| = pq

is the number of inversions of σ. Putting everything together, the lemma
follows. ut
Corollary B.2.19. If α ∈ Altp(V,K) and p is odd, then α ∧ α = 0.

Proof. In view of Proposition B.2.18, we have α∧α = (−1)p2
α∧α = −α∧α,

which leads to α ∧ α = 0. ut
Corollary B.2.20. If α1, . . . , αk ∈ V ∗ = Alt1(V,K) and βj =

∑k
i=1 aijαi,

then

β1 ∧ . . . ∧ βk = det(A) · α1 ∧ . . . ∧ αk for A = (aij) ∈ Mk(K).
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Proof. The k-fold multiplication map

Φ : (V ∗)k → Altk(V,K), (γ1, . . . , γk) 7→ γ1 ∧ . . . ∧ γk

is alternating by Proposition B.2.18 because Sk is generated by transpositions.
Hence the assertion follows from Proposition B.2.11. ut
Corollary B.2.21. If dim V = n, b1, . . . , bn is a basis for V , and b∗1, . . . , b

∗
n

the dual basis for V ∗, then the products

b∗I := b∗i1 ∧ . . . ∧ b∗ik
, I = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ n,

form a basis for Altk(V,K).

Proof. For J = (j1, . . . , jk) with j1 < . . . < jk, we get with Remark B.2.17(b)

b∗I(bj1 , . . . , bjk
) = det(b∗il

(bjm
)l,m=1,...,k) =

{
1 for I = J
0 for I 6= J.

If follows in particular that the elements bI are linearly independent, and since
dimAltk(V,K) =

(
n
k

)
(Corollary B.2.12), the assertion follows. ut

Remark B.2.22. (a) From Corollary B.2.12 it follows in particular that

dimAlt(V,K) =
dim V∑

k=0

(
dim V

k

)
= 2dim V

if V is finite-dimensional.
(b) If V is infinite-dimensional, then it has an infinite basis (bi)i∈I (this

requires Zorn’s Lemma). In addition, the set I carries a linear order ≤
(this requires the Well Ordering Theorem), and for each k-element subset
J = {j1, . . . , jk} ⊆ I with j1 < . . . < jk, we thus obtain an element

b∗J := b∗j1 ∧ . . . ∧ b∗jk
.

Applying the b∗J to k-tuples of basis elements shows that they are linearly in-
dependent, so that for each k > 0 the space Altk(V,K) is infinite-dimensional.

Definition B.2.23. Let ϕ : V1 → V2 be a linear map and W a vector space.
For each p-linear map α : V p

2 → W we define its pull-back by ϕ:

(ϕ∗α)(v1, . . . , vp) := α(ϕ(v1), . . . , ϕ(vp))

for v1, . . . , vp ∈ V1. It is clear that ϕ∗α is a p-linear map V p
1 → W and that

ϕ∗α is alternating if α has this property.

Remark B.2.24. If ϕ : V1 → V2 and ψ : V2 → V3 are linear maps and
α : V p

3 → W is p-linear, then

(ψ ◦ ϕ)∗α = ϕ∗(ψ∗α).
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Proposition B.2.25. Let ϕ : V1 → V2 be a linear map. Then the pull-back
map

ϕ∗ : Alt(V2,K) → Alt(V1,K)

is a homomorphism of algebras with unit.

Proof. For α ∈ Altp(V2,K) and β ∈ Altq(V2,K) we have

ϕ∗(α ∧ β) =
(p + q)!

p!q!
ϕ∗(Alt(α⊗ β)) =

(p + q)!
p!q!

Alt(ϕ∗(α⊗ β))

=
(p + q)!

p!q!
Alt(ϕ∗α⊗ ϕ∗β) = ϕ∗α ∧ ϕ∗β. ut

Remark B.2.26. The results in this section remain valid for alternating
forms with values in any commutative algebra A. Then

Alt(V, A) =
⊕

p∈N0

Altp(V,A)

also carries an associative, graded commutative algebra structure defined by

α ∧ β :=
(p + q)!

p!q!
Alt(α⊗ β),

where

(α⊗ β)(v1, . . . , vp+q) := α(v1, . . . , vp) · β(vp+1, . . . , vp+q)

for α ∈ Altp(V, A), β ∈ Altq(V, A).
This applies in particular to the 2-dimensional real algebra A = C.

B.2.4 Orientations on Vector Spaces

Throughout this subsection, all vector spaces are real and finite-dimensional.

Definition B.2.27. (a) Let V be an n-dimensional real vector space. Then
Altn(V,R) is one-dimensional. Any nonzero element µ of this space is called
a volume form on V .

(b) We define an equivalence relation on the set Altn(V,R)\{0} of volume
forms setting µ1 ∼ µ2 if there exists a λ > 0 with µ2 = λµ1. We write [µ] for
the equivalence class of µ. These equivalence classes are called orientations of
V . If O = [µ] is an orientation, then we write −O := [−µ] for the opposite
orientation.

An oriented vector space is a pair (V, O), where V is a finite-dimensional
real vector space and O = [µ] an orientation on V .

(c) An ordered basis (b1, . . . , bn) for (V, [µ]) is said to be positively oriented
if µ(b1, . . . , bn) > 0, and negatively oriented otherwise.
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(d) An invertible linear map ϕ : (V, [µV ]) → (W, [µW ]) between oriented
vector spaces is called orientation preserving if [ϕ∗µW ] = [µV ]. Otherwise ϕ
is called orientation reversing.

(e) We endow Rn with the canonical orientation, defined by the determi-
nant form

µ(x1, . . . , xn) := det(x1, . . . , xn) = det(xij)i,j=1,...,n.

Remark B.2.28. (a) If B := (b1, . . . , bn) is a basis for V , then Corol-
lary B.2.21 implies that we obtain a volume form by

µB := b∗1 ∧ . . . ∧ b∗n,

and since µB(b1, . . . , bn) = det(b∗i (bj)) = det(1) = 1, the basis B is positively
oriented with respect to the orientation [µB ]. We call [µB ] the orientation
defined by the basis B.

(b) The terminology “volume form” corresponds to the interpretation of
µ(v1, . . . , vn) as an “oriented” volume of the flat

[0, 1]v1 + . . . + [0, 1]vn

generated by the n-tuple (v1, . . . , vn). Note that µB(v1, . . . , vn) = det(b∗i (vj)).

Lemma B.2.29. If µV is a volume form on V and ϕ ∈ End(V ), then

ϕ∗µV = det(ϕ)µV .

In particular, ϕ is orientation preserving if and only if det(ϕ) > 0.

Proof. Let B = (b1, . . . , bn) be a positively oriented basis for V and A = (aij)
the matrix of ϕ with respect to B, i.e., ϕ(bj) =

∑
i aijbi. Then

(ϕ∗µV )(b1, . . . , bn) = µV (ϕ(b1), . . . , ϕ(bn)) = det(A)µV (b1, . . . , bn)
= det(ϕ)µV (b1, . . . , bn)

follows from Proposition B.2.11(i), and this implies the assertion. ut
Example B.2.30. (a) If V = R2 and ϕ ∈ GL(V ) is the reflection in a line,
then det(ϕ) < 0 implies that ϕ is orientation reversing. The same holds for
the reflection in a hyperplane in Rn.

(b) Rotations of R3 around an axis are orientation preserving.
(c) In V = C, considered as a real vector space, we have the natural basis

B = (1, i). A corresponding volume form is given by

µ(z, w) := Im(zw) = Re z Im w − Im z Rew

because µ(1, i) = Im(i) = 1 > 0.
Each complex linear map ϕ : C→ C is given by multiplication with some

complex number x + iy, and the corresponding matrix with respect to B is
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(
x −y
y x

)
,

so that det(ϕ) = x2 + y2 > 0 whenever ϕ 6= 0. We conclude that each nonzero
complex linear map V → V is orientation preserving.

Proposition B.2.31 (Real vs. complex determinant). Let V be a com-
plex vector space, viewed as a real one, and ϕ : V → V a complex linear map.
Then detR(ϕ) = | detC(ϕ)|2. In particular, each invertible complex linear map
is orientation preserving.

Proof. Let BC = (b1, . . . , bn) be a complex basis for V , so that

B = (b1, . . . , bn, ib1, . . . , ibn)

is a real basis for V . Further, let b∗j ∈ HomC(V,C), j = 1, . . . , n, denote the
complex dual basis. In Alt2n(V,C) ∼= C we then consider the element

µ := b∗1 ∧ . . . ∧ b∗n ∧ b∗1 ∧ . . . ∧ b∗n.

That µ is nonzero follows from

µ(b1, . . . , bn, ib1, . . . , ibn) = det
(
1n i1n

1n −i1n

)
= det

(
1 i
1 −i

)n

= (−2i)n 6= 0.

If A = (aij) ∈ Mn(C) is the matrix of ϕ with respect to BC, then we have

ϕ∗b∗j =
n∑

k=1

ajkb∗k and ϕ∗b∗j =
n∑

k=1

ajkb∗k.

As in the proof of Lemma B.2.29, we now see that

ϕ∗(b∗1 ∧ . . . ∧ b∗n) = detC(A) · b∗1 ∧ . . . ∧ b∗n

and
ϕ∗(b∗1 ∧ . . . ∧ b∗n) = detC(A) · b∗1 ∧ . . . ∧ b∗n,

which leads with Proposition B.2.25 and Lemma B.2.29 to

detR(ϕ)µ = ϕ∗µ = detC(A)detC(A)µ = |detC(A)|2µ = | detC(ϕ)|2µ. ut

Exercises for Section B.2

Exercise B.2.1. Fix n ∈ N. Show that:

(1) For each matrix A ∈ Mn(K), we obtain a bilinear map

βA : Kn ×Kn → K, βA(x, y) :=
n∑

i,j=1

aijxiyj .
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(2) A can be recovered from βA via aij = βA(ei, ej).
(3) Each bilinear map β : Kn × Kn → K is of the form β = βA for a unique

matrix A ∈ Mn(R).
(4) βA>(x, y) = βA(y, x).
(5) βA is skew-symmetric if and only if A is so.

Exercise B.2.2. Show that for αi ∈ Altpi(V,K), i = 1, . . . , n, the exterior
product satisfies

α1 ∧ . . . ∧ αn =
(p1 + . . . + pn)!

p1! · · · pn!
Alt(α1 ⊗ · · · ⊗ αn)

Exercise B.2.3. Show that (Alt(V,K), ∧ ) is an exterior algebra over V ∗.

B.3 Clifford Algebras, Pin and Spin Groups

A quadratic space is a pair (V, β), where V is a vector space and β : V ×V → K
is a symmetric bilinear form. We write q(v) := β(v, v) for the corresponding
quadratic form. In this section, K can be any field of characteristic 6= 2.

Definition B.3.1. A Clifford algebra for (V, β) is a pair (C, ι) of a unital
associative algebra C and a linear map ι : V → C satisfying

ι(x)ι(y) + ι(y)ι(x) = 2β(x, y)1 for x, y ∈ V (B.4)

and the universal property that for each linear map f : V → A, A a unital
algebra, satisfying

f(x)f(y) + f(y)f(x) = 2β(x, y)1 for x, y ∈ V, (B.5)

there exists a unique algebra homomorphism f̃ : C → A with f̃ ◦ ι = f .

Remark B.3.2. If V is a vector space over a field K of characteristic 6= 2,
then β can be reconstructed from q via

β(x, y) =
1
2
(
q(x + y)− q(x)− q(y)

)
.

Accordingly, the relation (B.5) is equivalent to

f(x)2 = q(x)1 for all x ∈ V. (B.6)

Proposition B.3.3. For each quadratic space (V, β), there exists a Clifford
algebra (C, ι). It is unique up to isomorphism in the sense that for any
other Clifford algebra (C ′, ι′) of (V, β), there exists an algebra isomorphism
ϕ : C → C ′ with ϕ ◦ ι = ι′.
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Proof. Uniqueness: As usual, the uniqueness follows from the universal
property. If (C, ι) and (C ′, ι′) are Clifford algebras for (V, β), there exist
uniquely determined unital algebra morphisms f : C → C ′ with f ◦ ι = ι′

and f ′ : C ′ → C with f ′ ◦ ι′ = ι. Then f ′ ◦ f : C → C is an algebra endomor-
phism with (f ′ ◦ f) ◦ ι = ι, so that the uniqueness in the universal property
of (C, ι) implies that f ′ ◦ f = idC . We likewise obtain f ◦ f ′ = idC′ , so that f
is an isomorphism of unital algebras.

Existence: Let T (V ) be the tensor algebra of V (Definition B.1.7) and
consider the subset

M := {x⊗ x− β(x, x) : x ∈ V }.

We write JM for the ideal generated by M . Then

C := T (V )/JM

is a unital associative algebra and

ι : V → C, ι(v) := v + JM

is a linear map satisfying

ι(x)2 = x⊗ x + JM = β(x, x)1.

To verify the universal property, let f : V → A be a linear map into the
unital algebra A, satisfying (B.5). In view of the universal property of T (V )
(Lemma B.1.8), there exists a unital algebra homomorphism f̂ : T (V ) → A

with f̂(x) = f(x) for all x ∈ V . Then M ⊆ ker f̂ by (B.5), and since ker f̂

is an ideal of T (V ), we also have JM ⊆ ker f̂ , so that f̂ factors through an
algebra homomorphism

f̃ : C → A with f̃ ◦ ι = f.

To see that f̃ is unique, it suffices to note that ι(V ) and 1 generate C as an
associative algebra because V and 1 generate T (V ). ut
Definition B.3.4. Justified by the existence and uniqueness assertion of the
preceding proposition, we write (Cl(V, β), ι) for a Clifford algebra of (V, β).

For K = R we consider on Rp+q the nondegenerate symmetric bilinear
forms

βp,q(x, y) := −
p∑

j=1

xjyj +
p+q∑

j=p+1

xjyj

and write
Cp,q := Cl(Rp+q, βp,q)

for the corresponding real Clifford algebras. For the negative definite form
βn := βn,0, we also put Cn := Cn,0.
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Examples B.3.5. (a) If β = 0, then Cl(V, β) ∼= Λ(V ) is the exterior algebra,
over V (Lemma B.2.10).

(b) We discuss the Clifford algebras associated to one-dimensional vector
spaces. Let 0 6= e ∈ V be a basis element. Then Cl(V, β) is generated as an
associative algebra by 1 and x := ι(e), which satisfies x2 = a := β(e, e), so
that Cl(V, β) ∼= K[x]/(x2−a). We also write Cl(K, a) for this Clifford algebra.

For β = 0 we thus obtain the ring K[ε] = K1 + Kε of dual numbers over
K, defined by the relation ε2 = 0.

For β 6= 0, two cases occur. If a is a square, i.e., a = b2 for some b ∈ K, then
f := b−1e is a basis element of V satisfying β(f, f) = 1, so that Cl(V, β) ∼=
K[x]/(x2 − 1). For c1 := 1

2 (1 + x) and c2 := 1
2 (1 − x) we then obtain two

idempotents in Cl(V, β) satisfying c1c2 = 0 and c1 + c2 = 1, which leads to
Cl(V, β) ∼= K⊕K, as an associative algebra.

If a is not a square in K, then Cl(V, β) ∼= K[x]/(x2 − a) is field. In fact, if
λg(h) = gh denotes left multiplication in this algebra, then the norm function

N : Cl(V, β) → K, r + sx 7→ r2 − as2 = det(λr+sx),

is multiplicative and nonzero on nonzero elements, which easily leads to

(r + sx)−1 = N(r + sx)−1(r − sx) for α, β 6= 0.

(c) For K = R and n = 1, we have

C1
∼= R[x]/(x2 + 1) ∼= C

(cf. Definition B.3.4), and C0,1
∼= R[x]/(x2 − 1) ∼= R⊕ R.

The key to a systematic understanding of Clifford algebras is the under-
standing of how the Clifford algebra of an orthogonal direct sum
(V1⊕V2, β1⊕β2) of two quadratic spaces can be described in terms of the Clif-
ford algebras Cl(V1, β1) and Cl(V2, β1). First, we have to observe that Clifford
algebras are 2-graded:

Lemma B.3.6. There exists a unique involutive automorphism ω of Cl(V, β)
with ω ◦ ι = −ι.

Proof. The map −ι : V → Cl(V, β) also satisfies

(−ι(x))2 = ι(x)2 = β(x, x)1 for x ∈ V.

Therefore, the universal property of Cl(V, β) implies the existence of a ho-
momorphism ω : Cl(V, β) → Cl(V, β) of unital algebras with ω ◦ ι = −ι.
Then ω2 ◦ ι = ι and the uniqueness part in the universal property imply that
ω2 = idCl(V,β). ut
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Definition B.3.7. (a) Let Z/2 = {0, 1}, considered as an abelian group. The
eigenspaces

Cl(V, β)0 := ker(ω − 1) and Cl(V, β)1 := ker(ω + 1)

of the involution ω define a 2-grading on Cl(V, β), i.e.,

Cl(V, β) = Cl(V, β)0 ⊕ Cl(V, β)1

and
Cl(V, β)a Cl(V, β)b ⊆ Cl(V, β)a+b, a, b ∈ Z/2.

The involution ω is also called the grading automorphism of Cl(V, β).
Since Cl(V, β) is generated by ι(V ) as a unital algebra, it is spanned by

elements of the form1 ι(v1) · · · ι(vk). On these elements we have

ω(ι(v1) · · · ι(vk)) = (−1)kι(v1) · · · ι(vk),

so that
Cl(V, β)0 = span{ι(v1) · · · ι(vk) : vi ∈ V, k ∈ 2N0}

and
Cl(V, β)1 = span{ι(v1) · · · ι(vk) : vi ∈ V, k ∈ 2N0 + 1}.

(b) If A = A0 ⊕ A1 and B = B0 ⊕ B1 are Z/2-graded algebras, then we
define their graded tensor product as the vector space C := A ⊗ B, endowed
with the multiplication defined by

(a⊗ b)(a′ ⊗ b′) = (−1)deg(b) deg(a′)aa′ ⊗ bb′

for homogeneous elements a, a′ ∈ A and b, b′ ∈ B. It is easy to verify that we
thus obtain an associative Z/2-graded algebra, denoted A⊗̂B.

Proposition B.3.8. For an orthogonal direct sum (V, β) = (V1, β1)⊕(V2, β2)
of quadratic spaces, we have

Cl(V1 ⊕ V2, β1 ⊕ β2) ∼= Cl(V1, β1)⊗̂Cl(V2, β2).

Proof. In view of the uniqueness assertion of Proposition B.3.3, it suffices to
show that the pair (C, ι) with C := Cl(V1, β1)⊗̂Cl(V2, β2) and

ι : V1 ⊕ V2 → C, v1 ⊕ v2 7→ ι1(v1)⊗ 1 + 1⊗ ι2(v2)

defines a Clifford algebra for (V1 ⊕ V2, β1 ⊕ β2). First we observe that
(
ι1(v1)⊗ 1 + 1⊗ ι2(v2)

)2

= ι1(v1)2 ⊗ 1 + ι1(v1)⊗ ι2(v2) + (1⊗ ι2(v2))(ι1(v1)⊗ 1) + 1⊗ ι2(v2)2

= β1(v1, v1)1⊗ 1 + ι1(v1)⊗ ι2(v2)− ι1(v1)⊗ ι2(v2) + β2(v2, v2)1⊗ 1

= (β1(v1, v1) + β2(v2, v2))1⊗ 1.

1 By convention, the empty product corresponding to k = 0 is 1.
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To verify the universal property, let f : V1 ⊕ V2 → A be a linear map into a
unital associative algebra satisfying

f(v1 ⊕ v2)2 = (β1(v1, v1) + β2(v2, v2))1.

Then the universal property of the Clifford algebras (Cl(Vj , βj), ιj) implies
the existence of unique algebra homomorphisms f̃j : Cl(Vj , βj) → A with
f̃j ◦ ιj = ι|Vj

. We combine these two maps to a linear map

f̃ : C → A, c1 ⊗ c2 7→ f̃1(c1)f̃2(c2).

For v1 ∈ V1 and v2 ∈ V2, we have

f(v1, 0)f(0, v2) = −f(0, v2)f(v1, 0).

From Definition B.3.7, we therefore derive that

f̃1(a1)f̃2(a2) = (−1)deg(a1) deg(a2)f̃2(a2)f̃1(a1)

holds for homogeneous elements aj ∈ Cl(Vj , βj). For homogeneous elements
aj , a

′
j ∈ Cl(Vj , βj), we thus obtain

f̃((a1 ⊗ a2)(a′1 ⊗ a′2)) = (−1)deg(a2) deg(a′1)f̃(a1a
′
1 ⊗ a2a

′
2)

= (−1)deg(a2) deg(a′1)f̃1(a1a
′
1)f̃2(a2a

′
2)

= (−1)deg(a2) deg(a′1)f̃1(a1)f̃1(a′1)f̃2(a2)f̃2(a′2)

= f̃1(a1)f̃2(a2)f̃1(a′1)f̃2(a′2) = f̃(a1 ⊗ a2)f̃(a′1 ⊗ a′2),

and therefore f̃ is an algebra homomorphism. It remains to show that f̃ is
uniquely determined. But this follows from the uniqueness of f̃1, f̃2 and the
fact that C is generated by 1⊗ Cl(V2, β2) and Cl(V1, β1)⊗ 1. ut

The preceding proposition has a number of interesting consequences:

Corollary B.3.9. If (V, β) is a quadratic space, then the following assertions
hold:

(i) If dim V < ∞, then dimCl(V, β) = 2dim V .
(ii) If v1, . . . , vn ∈ V is an orthogonal basis, then the ordered products

ι(vi1) · · · ι(vik
), 1 ≤ i1 < · · · < ik ≤ n

form a basis for Cl(V, β).
(iii) The structure map ι : V → Cl(V, β) is injective.
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Proof. (i) First, we recall that V possesses an orthogonal basis v1, . . . , vn.
This can be shown by induction on dim V : We may w.l.o.g. assume that
dim V > 0 and that β 6= 0. Then there exists some v1 ∈ V with β(v1, v1) 6= 0
and V = Kv1 ⊕ v⊥1 is an orthogonal decomposition, so that the induction
hypothesis implies the existence of an orthogonal basis v2, . . . , vn in v⊥1 .

Now V = Kv1⊕ · · · ⊕Kvn is an orthogonal decomposition, so that Propo-
sition B.3.8 implies that

Cl(V, β) ∼= Cl(K, β(v1, v1))⊗̂ · · · ⊗̂Cl(K, β(vn, vn)).

Since we know already that Clifford algebras of one-dimensional quadratic
spaces are two-dimensional (Examples B.3.5), (i) follows.

(ii) follows immediately from Cl(Kvj , β(vj , vj)) = K1 ⊕ Kι(vj) and the
tensor product decomposition in (i).

(iii) Let 0 6= v ∈ V . We have to show that ι(v) 6= 0. We claim that there
exists a subspace V1 3 v of V with dim V1 ≤ 2 and a subspace V2, such
that V is the orthogonal direct sum of V1 and V2. In fact, if β(v, V ) = {0},
then we put V1 := Kv and let V2 be any complementary hyperplane in V . If
β(V, v) 6= {0} and β(v, v) = 0, then we choose some w ∈ V with β(v, w) 6= 0
and put V1 := Kv + Kw and V2 := V ⊥

1 . If β(v, v) 6= 0, we put V1 := Kv and
V2 := V ⊥

1 . This proves our claim. Now we apply Proposition B.3.8 to obtain

Cl(V, β) ∼= Cl(V1, β1)⊗̂Cl(V2, β2),

where βj := β|Vj×Vj , and ι(v) 6= 0 follows from (ii) because V1 possesses an
orthogonal basis. ut

B.3.1 The Clifford Group

In the following we simply write v for ι(v), which is justified by the injectivity
of ι. We also write C := Cl(V, β) for the Clifford algebra of (V, β).

Definition B.3.10. The twisted adjoint action of the unit group Cl(V, β)×

on Cl(V, β) is defined by

Ad(a)x := ω(a)xa−1.

This defines a representation because ω is an algebra isomorphism. We define
the Clifford group as the stabilizer of the subspace V of Cl(V, β):

Γ (V, β) := {a ∈ Cl(V, β)× : Ad(a)V = V }

and thus obtain a representation Φ : Γ (V, β) → GL(V ), Φ(a) := Ad(a)|V .

Lemma B.3.11. There exists a unique antiautomorphism x 7→ x∗ of Cl(V, β)
satisfying v∗ = −v for each v ∈ V . This involution commutes with ω.
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Proof. Let Cl(V, β)op be the opposite algebra, endowed with the product
x]y := yx. Then

f : V → Cl(V, β)op, f(v) := −v

satisfies f(v)]f(v) = (−v)2 = v2 = β(v, v)1, so that the universal prop-
erty of Cl(V, β) implies the existence of a unital algebra homomorphism
f̃ : Cl(V, β) → Cl(V, β)op with f̃(v) = −v for v ∈ V . This means that,
considered as a linear endomorphism of Cl(V, β), f̃(xy) = f̃(y)f̃(x) for
x, y ∈ Cl(V, β), and thus f̃2 is an algebra endomorphism with f̃2(v) = v for
each v ∈ V , hence f̃2 = idCl(V,β). Therefore x∗ := f̃(x) defines an involutive
antiautomorphism of Cl(V, β).

To see that ∗ commutes with ω, we note that x 7→ (ω(x∗))∗ is an algebra
automorphism fixing V pointwise, hence equal to the identity. We conclude
that ω(x∗) = x∗ for x ∈ Cl(V, β). ut
Examples B.3.12. (a) On C1 = Cl(R,−1) ∼= C (cf. Definition B.3.4) we
have

(x + iy)∗ = ω(x + iy) = x− iy.

Therefore the adjoint action is given by

Ad(z)w = zwz−1 = zz−1 · w,

which immediately shows that the Clifford group is

Γ (R,−1) =
{

z ∈ C× : zz−1 =
z2

|z|2 ∈ R
}

= R×1 ∪̇R×i.

(b) The four-dimensional Clifford algebra C2 has the linear basis

1, I := e1, J := e2 and K := e1e2,

satisfying
I2 = J2 = K2 = −1 and K = IJ = −JI,

so that C2
∼= H as associative algebras. Here V = RI + RJ implies that the

involution ∗ satisfies

(α1 + βI + γJ + δK)∗ = α1− βI − γJ − δK,

which is the canonical involution on H.
As I and J are odd and 1,K are even elements of H, it follows from

KIK−1 = −I and KJK−1 = −J that

ω(z) = KzK−1 for z ∈ H.

Therefore
Ad(g)v = ω(g)vg−1 = KgK−1vg−1.
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As KV = K span{I, J} = span{I, J} = V , the condition g ∈ Γ (V, β) is
equivalent to gV g−1 ⊆ V . We write g = ‖g‖ ·u with ‖u‖ = 1, where the norm
is the one on the quaternions. Observing that conjugation with u preserves the
natural scalar product on H, we derive from V ⊥ = R1 +RK that cu(V ) = V
is equivalent to cu(R1 + RK) = R1 + RK. In the subalgebra R1 + RK, the
identity is fixed by cu and cu(K)2 = −1. Hence cu(V ) = V is equivalent to
cu(K) ∈ ±K, i.e., uKu−1K−1 = ±1, which can also be written as KuK−1 =
±u. Therefore

Γ (V, β) = R× ·
(
{α1 + δK : α2 + δ2 = 1}∪̇{βI + γJ : β2 + γ2 = 1}

)
.

(c) If dimV = 1 and Cl(V, β) = Cl(K, a) = K1 + Kx with x2 = a, then
ω(x) = −x = x∗. For a 6= 0 and g ∈ Cl(V, β) invertible,

Ad(g)x = ω(g)xg−1 ∈ Kx

is equivalent to ω(g) ∈ Kg, i.e., g is an eigenvector of ω. Therefore

Γ (V, β) = K×1∪̇K×x if a 6= 0.

For a = 0, we have ω(g)x = xg for any g ∈ Cl(K, 0), so that Γ (V, β) =
K×1 +Kx = Cl(K, a)×.

Lemma B.3.13. The Clifford group Γ (V, β) is invariant under ω and ∗.
Proof. Let g ∈ Γ (V, β) and v ∈ V . Then Ad(g)v = ω(g)vg−1 ∈ V implies
that

V 3 Ad(g)v = −ω(Ad(g)v) = −gω(v)ω(g)−1 = Ad(ω(g))v,

which leads to ω(g) ∈ Γ (V, β). We likewise obtain

V 3 Ad(g)v = −(Ad(g)v)∗ = −(g∗)−1v∗ω(g∗) = Ad(ω(g∗)−1)v ∈ V,

which shows that ω(g∗) ∈ Γ (V, β), and hence that g∗ ∈ Γ (V, β). ut
Proposition B.3.14. If (V, β) is nondegenerate and finite-dimensional, then
the kernel of the representation Φ : Γ (V, β) → GL(V ) is K×1.

Proof. For λ ∈ K× and v ∈ V we clearly have Φ(λ)v = λvλ−1 = v, so that
K×1 ⊆ kerΦ.

For the converse, we argue by induction on dim V . If dim V = 1 and
Cl(V, β) = K1⊕Kv, then Example B.3.12(c) shows that Γ (V, β) = K×1∪̇K×v
and kerΦ = {g ∈ Γ (V, β) : ω(g) = g} = K×1. Now we assume that dim V > 1.
Let g ∈ kerΦ and write it as g = g+ + g−, according to the Z/2-grading of
Cl(V, β). Then Φ(g)v = v is equivalent to ω(g)v = vg, and decomposing into
homogeneous summands leads to

g+v = vg+ and g−v = −vg− for all v ∈ V.
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Let v1 ∈ V be a nonisotropic vector. Then V = Kv1⊕ V1 with V1 := v⊥1 is
an orthogonal decomposition, so that Cl(V, β) decomposes accordingly as

Cl(V, β) ∼= Cl(K, β(v1, v1))⊗̂Cl(V1, β1) ∼= (K1 +Kv1)⊗̂Cl(V1, β1),

where β1 = β|V1×V1 . The grading is given by

Cl(V, β)0 = 1⊗ Cl(V1, β1)0 ⊕ v1 ⊗ Cl(V1, β1)1

and
Cl(V, β)1 = 1⊗ Cl(V1, β1)1 ⊕ v1 ⊗ Cl(V1, β1)0

(cf. Proposition B.3.8). Accordingly, we write

g± = 1⊗ a± + v1 ⊗ b∓.

As 1⊗ a+ commutes with v1⊗1 and v1⊗ b− anticommutes with v1⊗1, from
g+v1 = v1g+ we obtain

0 = v2
1 ⊗ b− = β(v1, v1)1⊗ b−,

which leads to b− = 0. Likewise g−v1 = −v1g− leads to b+ = 0, so that
g = 1 ⊗ (a+ + a−) ∈ Cl(V1, β1), and our induction hypothesis implies that
g ∈ K×1. ut
Corollary B.3.15. For g ∈ Γ (V, β) we have gg∗ ∈ K×1 and

N : Γ (V, β) → K×, gg∗ = N(g)1,

defines a group homomorphism, called the norm homomorphism, satisfying

N(ω(g)) = N(g) and N(Ad(g)h) = N(h) for g, h ∈ Γ (V, β).

Proof. Since Γ (V, β) is invariant under ∗, we have gg∗ ∈ Γ (V, β). In view of the
preceding proposition, gg∗ ∈ K×1 will follow if we can show that gg∗ ∈ kerΦ.

For x ∈ Cl(V, β), we put S(x) := ω(x∗) and note that this defines an invo-
lutive antiautomorphism fixing V pointwise (Lemma B.3.11). Since Γ (V, β) is
invariant under ∗, we have to show that Φ(g−1) = Φ(g∗) for g ∈ Γ (V, β). For
g ∈ Γ (V, β) and v ∈ V , the element Φ(g∗)v = ω(g∗)v(g−1)∗ = S(g)v(g−1)∗ ∈
V is fixed by S, which leads to

Φ(g∗)v = S(S(g)v(g−1)∗) = S((g−1)∗)vg = ω(g−1)vg = Φ(g−1)v,

i.e., Φ(g∗) = Φ(g−1). This proves that gg∗ ∈ kerΦ = K×1, so that N(g) is
defined. To see that N is a group homomorphism, we calculate

N(gh)1 = ghh∗g∗ = g(N(h)1)g∗ = N(h)gg∗ = N(h)N(g)1.

Applying ω to gg∗ = N(g)1, we obtain N(ω(g))1 = ω(g)ω(g)∗ = N(g)1,
so that N(ω(g)) = N(g), and this further implies that N(Ad(g)h) =
N(ω(g)hg−1) = N(h). ut
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Theorem B.3.16. If (V, β) is nondegenerate and finite-dimensional, then
im (Φ) = O(V, β), so that Φ defines a short exact sequence

1 → K× ↪→ Γ (V, β) Φ−−→O(V, β) → 1, (B.7)

where Φ(v) = σv is the reflection in v⊥ for each nonisotropic element v ∈ V ⊆
Cl(V, β).

Proof. For v ∈ V we have

vv∗ = −v2 = −β(v, v)1, (B.8)

and for g ∈ Γ (V, β) we have

(Φ(g)v)(Φ(g)v)∗ = ω(g)vg−1(ω(g)vg−1)∗ = ω(g)vg−1(g−1)∗(−v)ω(g)∗

= −N(g−1)β(v, v)ω(gg∗) = −N(g−1)β(v, v)ω(N(g)1) = −β(v, v)1.

In view of (B.8), this proves that Φ(g) ∈ O(V, β).
To identify the image of Φ, we observe that for any nonisotropic element

v ∈ V , we have ω(v) = −v and v−1 = β(v, v)−1v, so that

Ad(v)x = −β(v, v)−1vxv = β(v, v)−1v(vx− 2β(v, x)1) = x− 2
β(v, x)
β(v, v)

v,

which is the orthogonal reflection σv in the hyperplane v⊥. We conclude in
particular that Γ (V, β) contains all nonisotropic elements of V , considered as
a subspace of Cl(V, β), and that Im(Φ) contains all orthogonal reflections.

If (V, β) is finite-dimensional and nondegenerate, then O(V, β) is generated
by reflections (Exercise B.3.1), so that this argument shows that Im(Φ) =
O(V, β). ut
Remark B.3.17. If β = 0, then Cl(V, β) ∼= Λ(V ) is the exterior algebra of V ,
and Λ(V )× = K×1 ⊕ ∑

k≥1 Λk(V ). Since Λ(V ) is graded commutative (see
Lemma B.2.10), the even part is central and any two odd elements anticom-
mute. This shows that for each invertible element g = g+ + g−, with g+ even
and g− odd, we have

g+v = vg+ and g−v = −vg−

for all v ∈ V . This means that ω(g)v = vg, so that Λ(V )× = Γ (V, β) = kerΦ.

Remark B.3.18. The proof of Theorem B.3.16 has several interesting con-
sequences:

(a) As the image of Φ is generated by orthogonal reflections, it follows that
Γ (V, β) is generated by K×1 = ker Φ and the set

V × := {v ∈ V : β(v, v) 6= 0}
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of nonisotropic vectors in V . For λ ∈ K× and v ∈ V ×, the relation
λ1 = (λv)v−1 implies that Γ (V, β) is actually generated by V ×. It follows
in particular that ω(g) = ±g for each g ∈ Γ (V, β) and that

ω(g) = det(Φ(g))g for g ∈ Γ (V, β).

(b) From N(v) = −β(v, v) for v ∈ V × it follows that the image N(Γ (V, β))
of Γ (V, β) under N is the subgroup generated by the square classes represented
by −β.

Remark B.3.19. Alternatively, one can introduce the Clifford group more
directly as the subgroup Γ ′ of Cl(V, β) generated by the subset V × of non-
isotropic vectors. Since Ad(v)V = V for each such element and, as we have
seen in the proof of Theorem B.3.16, Ad(v)|V is the orthogonal reflection in the
hyperplane v⊥, we directly obtain a homomorphism Φ : Γ ′ → O(V, β) whose
image is the subgroup generated by all reflections, hence all of O(V, β) if (V, β)
is nondegenerate. For any v ∈ V × and λ ∈ K×, we have λ1 = v−1 · (λv) ∈ Γ ′,
so that Γ ′ contains K×, which immediately leads to the short exact sequence

1 → K× → Γ ′ → O(V, β) → 1.

However, the advantage of the approach via the Clifford group is that it is
specified by equations, hence in particular closed if K is R or C.

B.3.2 Pin and Spin Groups

Definition B.3.20. We define the pin group2

Pin(V, β) := {g ∈ Γ (V, β) : N(g) = 1} = ker(N : Γ (V, β) → K×)

and the spin group

Spin(V, β) := Pin(V, β) ∩ Φ−1(SO(V, β)).

Note that

kerΦ ∩ Pin(V, β) = {λ1 : λ ∈ K×, λ2 = 1} = {±1}
consists of 2 elements and that

ω(g) = g for g ∈ Spin(V, β) (B.9)

(cf. Remark B.3.18). We also write

Pinp,q(K) := Pin(Kp+q, βp,q) and Spinp,q(K) := Spin(Kp+q, βp,q)

for βp,q(x, y) = −x1y1 − · · · − xpyp + xp+1yp+1 + · · · + xp+qyp+q. For q = 0,
we put

Pinn(K) := Pin(Kn, βn,0) and Spinn(K) := Spin(Kn, βn,0).
2 The name “pin” is due to J. P. Serre; see [ABS64] for the first occurrence of these

groups.
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Remark B.3.21. Our definition of the pin group follows [ABS64], but one
finds slightly different definitions in the literature, all of which lead to the
same spin group. F.i., Scharlau [Sch85] uses a different homomorphism

Ñ : Γ (V, β) → K×,

defined by gω(g)∗ = Ñ(g)1. To see how Ñ differs from N , we note that the
group Γ (V, β) decomposes into the two subsets

Γ (V, β)± := {γ ∈ Γ (V, β) : ω(γ) = ±γ}

and that ε : Γ (V, β) → {±1}, ω(γ) = ε(γ)γ defines a group homomorphism
satisfying

Ñ = N · ε.
Accordingly, the pin group {γ ∈ Γ (V, β) : Ñ(γ) = 1} defined in [Sch85] is the
union of

Pin(V, β)+ = Spin(V, β) and {γ ∈ Γ (V, β)− : N(γ) = −1}.

We also note that ε(γ) = det(Φ(γ)) follows from the fact that it holds
on the generators, the nonisotropic elements of V . Therefore Γ (V, β)+ =
Φ−1(SO(V, β)), and both homomorphisms N and Ñ , lead to the same spin
group

Spin(V, β) = ker(N |Γ (V,β)+) = ker(Ñ |Γ (V,β)+).

Remark B.3.22. (a) If K = R and β is negative definite, then N(v) =
−β(v, v) > 0 for each 0 6= v ∈ V , and each nonzero vector v has a multi-
ple v′ normalized by β(v′, v′) = −1. Then v′ ∈ Pin(V, β), and this implies
that the restriction

Φ : Pin(V, β) → O(V, β)

is still surjective, which leads to an exact sequence

1 → {±1} → Pin(V, β) → O(V, β) → 1

and, accordingly, to an exact sequence

1 → {±1} → Spin(V, β) → SO(V, β) → 1.

(b) If K = R and β is positive definite, then N(Γ (V, β)−) ⊆ R×− implies
that Pin(V, β) ⊆ Γ (V, β)+, and hence that Pin(V, β) = Spin(V, β). However,
the alternative definition of the pin group, based on Ñ , yields a larger group
(cf. Remark B.3.21).

(c) In general, the homomorphism

Φ : Spin(V, β) → SO(V, β)
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is not surjective. In fact, if K = R and β is indefinite, then pick v1, v2 ∈ V with
β(v1, v1) = 1 = −β(v2, v2). Now the product g := σv1σv2 of the corresponding
orthogonal reflections is an element of SO(V, β), and in Γ (V, β) we have

N(v1v2) = N(v1)N(v2) = β(v1, v1)β(v2, v2) = −1.

Then Φ(v1v2) = g, and for any element γ ∈ Φ−1(g), we have γ = λv1v2,
λ ∈ K×, and therefore N(γ) = −λ2 < 0. This implies that γ 6∈ Spin(V, β),
and hence that Φ(Spin(V, β)) is a proper subgroup of SO(V, β).

(d) Suppose that K = C and (V, β) = (Cn, β) with the standard form
β(z, w) =

∑n
j=1 zjwj . Since every complex number is a square, N(v) =

−β(v, v) implies that each nonisotropic vector v ∈ Cn has a scalar multiple ṽ
with N(ṽ) = 1. This proves that the homomorphism

Φ : Pinn(C) → On(C)

is surjective, which leads to exact sequences

1 → {±1} → Pinn(C) → On(C) → 1

and
1 → {±1} → Spinn(C) → SOn(C) → 1.

Example B.3.23. We recall from Example B.3.12(a) that for n = 1, we have
C1

∼= C, ω(z) = z and
Γ (V, β) = R× ∪ iR×.

From N(z) = |z|2 we derive that

Pin1(R) = {z ∈ Γ (V, β) : |z| = 1} = {±1,±i} and Spin1(R) = {±1}.
Example B.3.24. For n = 2, we have C2

∼= H and we recall from Exam-
ple B.3.12(b) that

Γ (V, β) = {α1 + δK : α2 + δ2 > 0}∪̇{βI + γJ : β2 + γ2 > 0}.
Further N(x) = ‖x‖2 follows from xx∗ = ‖x‖21. This implies that

Pin2(R) = {α1 + δK : α2 + δ2 = 1}∪̇{βI + γJ : β2 + γ2 = 1}
is a union of two circles and

Spin2(R) = {α1 + δK : α2 + δ2 = 1} = Pin2(R)0 ∼= T.

The complement of the identity component in Pin2(R) is the set

{βI + γJ : β2 + γ2 = 1},
and for all these elements we have (βI + γJ)2 = −1, so that the short exact
sequence

1 → Spin2(R) → Pin2(R) → π0(Pin2(R)) ∼= Z/2 → 1

does not split.
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Remark B.3.25. For the negative definite form βn on Rn, we have a short
exact sequence

1 → Spinn(R) → Pinn(R) → {±1} → 1,

so that it makes sense to ask when this sequence splits, i.e., if there exists an
involution τ ∈ Pinn(R), not contained in Spinn(R).

In the preceding two examples, we have seen that this is not the case
for n = 1, 2. However, it is true for n > 2, which can be seen as follows.
Let e1, . . . , en be an orthonormal basis for Rn, so that βn(ei, ej) = −δij . For
n ≥ 3 we put τ := e1e2e3. As N(ej) = −β(ej , ej) = 1 for each j, we have
τ ∈ Pinn(R) \ Spinn(R). Moreover,

τ2 = e1e2e3e1e2e3 = e2
1e2e3e2e3 = e2e

2
3e2 = 1,

so that τ is an involution in Pinn(R) \ Spinn(R) (cf. Exercise B.3.5).

Exercises for Section B.3

Exercise B.3.1. Show that if (V, β) is a nondegenerate finite-dimensional
quadratic space, then the orthogonal group O(V, β) is generated by orthogonal
reflections.

Exercise B.3.2. Show that if β is a positive definite form on R2, then C0,2
∼=

Cl(R2, β) ∼= M2(R).

Exercise B.3.3. Establish isomorphisms

C⊗R C ∼= C⊕ C, C⊗R H ∼= M2(C), H⊗R H ∼= M4(R).

Exercise B.3.4. (a) Write C ′n := C0,n for the Clifford algebra of Rn, endowed
with the positive definite form β0,n. Establish isomorphisms

Cn+2
∼= C ′n ⊗R C2 and C ′n+2

∼= Cn ⊗R C ′2.

Hint: Let e1, . . . , en+2 be an orthonormal basis for Rn+2, so that e2
i = −1 in

Cn+2. Then for the first isomorphism map ei 7→ e′i⊗ e1e2 for i = 1, . . . , n and
map en+1 and en+2 on 1⊗ e1 and 1⊗ e2 respectively.

(b) Show that Cn+4
∼= Cn ⊗R M2(H) ∼= M2(Cn)⊗R H,

(c) Prove that Cn+8
∼= Cn ⊗R M16(R) ∼= M16(Cn). This is called the

periodicity property.

Exercise B.3.5. Let Dn = Cl(Cn, βn) with βn(z, w) =
∑n

j=1 zjwj . Show
that

D1
∼= C⊕ C, D2

∼= M2(C),

and establish the periodicity property

Dn+2
∼= Dn ⊗C M2(C) ∼= M2(Dn), n ≥ 1.
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Exercise B.3.6. In the unit group C×n of the Clifford algebra Cn associated
to the negative definite form βn on Rn, we consider the subgroup F , generated
by the canonical basis vectors e1, . . . , en. Show that:

(a) Φ(F ) ∼= (Z/2)n.
(b) Φ induces a short exact sequence 1 → Z/2 → F → (Z/2)n → 1.
(c) F is 2-step nilpotent, i.e., C3(F ) = {1}, with C2(F ) = F ′ = {±1} (for

n > 1). Here Cn(F ) denotes the central series for the group F .
(d) Each element f ∈ F can be written as f = ±ei1 · · · eik

with
1 ≤ i1 < . . . < ik ≤ n. It satisfies f2 = (−1)(

k+1
2 ). Conclude that for

n ≤ 2 all elements 6= ±1 are of order 4.

Exercise B.3.7. Consider the decomposition

Cl(V1 ⊕ V2, β1 ⊕ β2) ∼= Cl(V1, β1)⊗̂Cl(V2, β2)

from Proposition B.3.8, where β1 and β2 are non-degenerate. Show that the
subgroups Spin(V1, β1) and Spin(V2, β2) commute.



C

Some Functional Analysis

C.1 Bounded Operators

Definition C.1.1. Let X and Y be a normed spaces and A : X → Y be a
linear map; also called an operator in this context. We define the (operator)
norm of A by

‖A‖ := sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1} ∈ [0,∞].

The linear operator A is said to be bounded if ‖A‖ < ∞. We write B(X, Y )
for the set of bounded linear operators from X to Y . It is easy to see that
(B(X, Y ), ‖ · ‖) is a normed space. For X = Y we simply write B(X) :=
B(X, X).

Remark C.1.2. Note that boundedness of an operator A does not mean that
its range A(X) is a bounded subset of Y . If BX denotes the closed unit ball
in X, then A is bounded if and only if A(BX) is a bounded subset of Y and
‖A‖ is the radius of the smallest ball in Y centered in 0 containing A(BX).

Lemma C.1.3. For a linear map A : X → Y between normed spaces, the
following are equivalent

(1) A is continuous.
(2) A is continuous in 0.
(3) A is bounded.

Definition C.1.4. Let X and Y be Banach spaces. Then a linear map
A : X → Y is called compact if the image of every bounded sequence in
X under A has a convergent subsequence. Since convergent sequences are in
particular bounded, one easily shows that any compact operator is continuous
(Exercise C.3.3).

To determine whether a given operator is compact, one needs some tools
to determine under which circumstances bounded sequences in Banach spaces
possess convergent subsequences. One such tool is the following theorem:
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Theorem C.1.5 (Ascoli’s Theorem). Let X be a compact space, C(X) be
the Banach space of all continuous functions f : X → K, K ∈ {R,C}, endowed
with the sup-norm

‖f‖ := sup{|f(x)| : x ∈ X}
and M ⊆ C(X) a subset satisfying the following conditions:

(a) M is pointwise bounded, i.e., sup{|f(x)| : f ∈ M} < ∞ for each x ∈ X.
(b) M is equicontinuous, i.e., for each ε > 0 and each x ∈ X there exists a

neighborhood Ux with

|f(x)− f(y)| ≤ ε for f ∈ M, y ∈ Ux.

Then each sequence in M possesses a convergent subsequence.

Proof. Let (fn)n∈N be a sequence in M . For each k ∈ N we find with (b)
points xk

1 , . . . , xk
mk

in X and neighborhoods V k
1 , . . . , V k

mk
of these points, such

that X ⊆ ⋃mk

i=1 V k
i and

|f(x)− f(xk
i )| < 1

k
for f ∈ M, x ∈ V k

i , i = 1, . . . , mk.

We order the countable set {xk
i : k ∈ N, i = 1, . . . , mk} as follows to a sequence

(ym)m∈N:
x1

1, . . . , x
1
m1

, x2
1, . . . , x

2
m2

, . . .

For each ym, the set {fn(ym) : n ∈ N} ⊆ K is bounded, hence contains
a subsequence f1

n, converging in y1. This sequence has a subsequence f2
n,

converging in y2, etc. The sequence (fn
n )n∈N is a subsequence of the original

sequence, converging on the set {ym : m ∈ N}. To simplify notation, we may
now assume that the sequence fn converges pointwise on this set.

Next we show that the sequence (fn) converges pointwise. Pick x ∈ X. In
view of the completeness of K, it suffices to show that the sequence (fn(x))n∈N
is Cauchy. So let ε > 0. Then there exists a k ∈ N with 3

k < ε and ym, such
that

|fn(x)− fn(ym)| < 1
k

for n ∈ N.

We choose n0 ∈ N, such that

|fn(ym)− fn′(ym)| < 1
k

for n, n′ > n0.

Then

|fn(x)− fn′(x)| ≤ |fn(x)− fn(ym)|+ |fn(ym)− fn′(ym)|+ |fn′(ym)− fn′(x)|
≤ 3

k
≤ ε.

Let F (x) := limn→∞ fn(x). It remains to show that fn converges uniformly
to F . Let ε > 0 and choose k ∈ N with 3

k < ε. We pick n0 ∈ N so large that
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|fn(xk
i )− F (xk

i )| ≤ 1
k

for n ≥ n0, i = 1, . . . ,mk.

Since each element x ∈ X is contained in one of the sets V k
i ,

|fn(x)−F (x)| ≤ |fn(x)−fn(xk
i )|+ |fn(xk

i )−F (xk
i )|+ |F (xk

i )−F (x)| ≤ 3
k
≤ ε,

because |F (xk
i )− F (x)| = limn→∞ |fn(xk

i )− fn(x)| ≤ 1
k . This proves that fn

converges uniformly to F , and the proof is complete. ut

C.2 Hilbert Spaces

Definition C.2.1. A Banach space X is called a Hilbert space if there exists
a sesquilinear positive definite hermitian form 〈·, ·〉 on X with ‖v‖2 = 〈v, v〉
for each v ∈ X.

Lemma C.2.2. Let E be a closed subspace of the Hilbert space H and E⊥ :={
x ∈ H : 〈x,E〉 = {0}}. Then H = E ⊕ E⊥.

Proof. Clearly, E ∩ E⊥ = {0}, so we have to show that each x ∈ H can be
written as a sum of an element x0 ∈ E and an element x1 ∈ E⊥. The idea is
to find x0 as the point in E minimizing the distance to x.

Pick xn ∈ E with ‖xn − x‖ → d := inf{‖y − x‖ : y ∈ E}. In the Parallelo-
gram Equation (Exercise C.3.1)

‖xn + xm − 2x‖2 + ‖xn − xm‖2 = 2‖xn − x‖2 + 2‖xm − x‖2,
the right hand side is arbitrarily close to 4d2 if n and m are large enough. On
the other hand 1

2 (xn + xm) ∈ E implies that

‖xn + xm − 2x‖2 = 4
∥∥∥1

2
(xn + xm)− x

∥∥∥
2

≥ 4d2.

Therefore (xn)n∈N is a Cauchy sequence in E, hence converges to some x0 ∈ E
with ‖x− x0‖ = d. For y ∈ E, the function

‖x + λy − x0‖2 = ‖x− x0‖2 + |λ|2‖x0‖2 + 2Re λ〈x− x0, y〉
is minimal at λ = 0, which implies that x− x0 ∈ E⊥ (Exercise C.3.2). There-
fore x = x0 + (x− x0) ∈ E + E⊥. ut

C.3 Compact Symmetric Operators on Hilbert Spaces

Definition C.3.1. Let H be a complex Hilbert space. A bounded operator A
on H is said to be symmetric if

〈Av, w〉 = 〈v, Aw〉 for v, w ∈ H.
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Theorem C.3.2. For a compact symmetric operator A : H → H and Hλ :=
ker(A− λ1), the following assertions hold:

(1) ‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}.
(2) ‖A‖ or −‖A‖ is an eigenvalue of A.
(3)

⊕
|λ|>εHλ is finite-dimensional for every ε > 0.

(4)
⊕

λ∈RHλ is dense in H.

Proof. (1) Let M := sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}. Since

〈Ax, x〉 ≤ ‖Ax‖‖x‖ ≤ ‖A‖‖x‖2

follows from the Cauchy–Schwarz inequality, M ≤ ‖A‖.
It remains to verify ‖A‖ ≤ M . For A = 0 there is nothing to show.

So pick x ∈ H with ‖x‖ = 1 and Ax 6= 0 and put y := 1
‖Ax‖Ax. Then

〈Ax, y〉 = ‖Ax‖ = 〈x,Ay〉, leads to

4‖Ax‖ =
〈
A(x+y), x+y

〉−〈
A(x−y), x−y

〉 ≤ M(‖x+y‖2+‖x−y‖2) = 4M.

(2) In view of (1), there exists a sequence xn of unit vectors with
|〈Axn, xn〉| → ‖A‖. Passing to a subsequence, we may assume that the se-
quence 〈Axn, xn〉 converges in R. If A = 0, the assertion is trivial, so that we
may assume A 6= 0. Then either 〈Axn, xn〉 → ‖A‖ or 〈Axn, xn〉 → −‖A‖. We
assume the former, the other case is treated in a similar fashion. Now

0 ≤ ‖Axn − ‖A‖xn‖2 = ‖Axn‖2 − 2‖A‖〈Axn, xn〉+ ‖A‖2
≤ 2‖A‖(‖A‖ − 〈Axn, xn〉

) → 0.

Because of the compactness of A, we may assume that Axn converges to some
x ∈ H. From the above calculation we infer that ‖A‖xn → x and in particular
‖x‖ = ‖A‖ > 0. For y := 1

‖A‖x, we now find xn → y and therefore

Ay − ‖A‖y = lim
n→∞

Axn − ‖A‖xn = 0,

sot that ‖A‖ is an eigenvalue of A.
(3) Let λ 6= 0 be an eigenvalue of A. Then A|Hλ

is a compact operator.
Therefore the identical map on Hλ is compact, and thus dimHλ < ∞. In fact,
every infinite-dimensional Hilbert space H contains an orthonormal sequence
(en)n∈N. Then (en) is bounded, but ‖en− em‖2 = 2 for n 6= m implies that it
contains no convergent subsequence.

Next we observe that if x ∈ Hλ and y ∈ Hµ with µ 6= λ, then

(λ− µ)〈x, y〉 = 〈Ax, y〉 − 〈x,Ay〉 = 0

implies that eigenspaces for different eigenvalues are orthogonal. If there are
infinitely many different eigenvalues λn with |λn| > ε, then we pick unit
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vectors xn ∈ Hλn and observe that the sequence (xn) is bounded, but the se-
quence Axn = λnxn has no convergent subsequence because ‖Axn−Axm‖2 =
λ2

n + λ2
m ≥ 2ε2. This contradicts the compactness of A.

(4) If λ is an eigenvector of A and x a corresponding unit eigenvector,
then λ = 〈Ax, x) ∈ R. Let E :=

⊕
λ∈RHλ. Then E is A-invariant, and for

y ∈ E⊥ and x ∈ E the relation 〈Ay, x〉 = 〈y, Ax〉 = 0 implies that E⊥ is
also A-invariant. If E⊥ 6= {0}, then AE⊥ 6= {0} because H0 ⊆ E. Further,
(2) implies the existence of an eigenvector in E⊥, which is a contradiction.
We conclude that E⊥ = {0}, and therefore E = H follows from (Lemma
C.2.2). ut

Exercises for Section C.3

Exercise C.3.1. Show that in each Hilbert space H, we have for x, y ∈ H
the Parallelogram Law

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Exercise C.3.2. We consider a function f : C→ R, given by

f(z) = a + 2 Re(zb) + c2|z|2, a, c ∈ R, b ∈ C.

Show that b = 0 if and only if f attains a minimal value at z = 0.

Exercise C.3.3. Show that each compact operator A : X → Y between Ba-
nach spaces is continuous.
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Hints to Exercises

Exercise 1.1.1:
(b) If w ∈ W is written as a finite sum w =

∑
λ vλ with Avλ = λvλ, then

each vλ is contained in W . This can be proved by induction on the length of
the sum.

(e) Suppose that
∑n

i=1 vλi = 0 with vλi ∈ Vλi(A) and show by induction
on n that all summands vanish.
Exercise 1.1.6: The verification of the convexity is easy. To see that Pdn(K)
is open, show first that for each r > 0 we have Br(r1) = rB1(1) ⊆ Pdn(K)
(here Br(x) denotes the open ball of radius r around x) by considering the
eigenvalues and using that for A ∈ Hermn(K) we have

‖A‖ = max{|λ| : det(A− λ1) = 0}.

Now observe that Pdn(K) =
⋃

r>0 Br(r1) because for A ∈ Pdn(K) with
maximal eigenvalue r we have A ∈ Br(r1).
Exercise 1.1.8: Show that for g ∈ On(C) with polar decomposition g =
up both components u and p are contained in On(C). Compare the polar
decomposition of (g>)−1 and g. Why is (p>)−1 ∈ Pdn(C)?
Exercise 1.1.9: For metric spaces compactness is equivalent to sequential
compactness, which means that every sequence has a convergent subsequence.
Exercise 1.1.10: The hermitian form b(x, y) := 〈A.x, y〉 satisfies the polar-
ization identity

b(x, y) = 1
4

(
b(x+y, x+y)−b(x−y, x−y)+ib(x+iy, x+iy)−ib(x−iy, x−iy)

)

for K = C, and for K = R we have

b(x, y) = 1
4

(
b(x + y, x + y)− b(x− y, x− y)

)
.

Exercise 1.1.11(2): Write A = B + iC with B,C hermitian and use Exer-
cise 1.1.10 to show that C = 0 if (2) holds.
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Exercise 1.1.13(c): The subalgebra K[A] := span{Ak : k ∈ N0} ⊆ End(V ) is
isomorphic to Kn with pointwise multiplication and the basis vectors ej ∈ Kn

(which are idempotents of this algebra) correspond to the projections onto
the eigenspace of A.
Exercise 1.1.15: Interpret invertible (n × n)-matrices as bases of Rn. Use
the Gram–Schmidt algorithm to see that µ is surjective and that it has a
continuous inverse map.
Exercise 1.1.16: Argue as in the proof of Proposition 1.1.10.
Exercise 1.2.1:

(a) Use induction on dim V . If β 6= 0, then there exists v1 ∈ V with
β(v1, v1) = 1 (polarization identity). Now proceed with the space v⊥1 := {v ∈
V : β(v1, v) = 0}.

(b) Consider the symmetric bilinear form β(x, y) = x>By.
Exercise 1.2.3: Pick v1 ∈ V \ {0} and find w1 ∈ V with β(v1, w1) = 1. Then
consider the restriction β1 of β to the subspace

V1 := {v1, w1}⊥ = {x ∈ V : β(x, v1) = β(x, v2) = 0}

and argue by induction. Why is β1 nondegenerate?
Exercise 1.2.5(2): Exercise 1.2.4.
Exercise 1.2.6: Use the polarization identity β(v, w) = 1

4

(
q(v+w)−q(v−w)

)
.

Exercise 1.2.10(b): Consider the homomorphism

ϕ : K× → GLn(K), λ 7→ diag(λ, 1, . . . , 1).

Exercise 1.2.13(ii): Consider the characteristic polynomial.
Exercise 1.2.15(ii): For vϕ ∈ V , take αϕ(w) := β(vϕ, w).
Exercise 1.3.4: Consider the eigenvectors with respect to left multiplication.
Exercise 2.1.1(a): Choose a basis in each space Xj and expand β accord-
ingly.
Exercise 2.1.3: Use Exercise 2.1.2(b).
Exercise 2.2.2: For x := 1− g the Neumann series y :=

∑∞
n=0 xn converges

in Mn(K). Show that y is an inverse of g.
Exercise 2.2.5:
(a) Existence (Jordan normal form), Uniqueness (what can you say about
nilpotent diagonalizable matrices?)
(c) If A commutes with X, it preserves the generalized eigenspaces of X (Exer-
cise 1.1.1), and this implies that it commutes with Xs, which is diagonalizable
and whose eigenspaces are the generalized eigenspaces of X.
Exercise 2.2.6(a): Existence: Put gu := 1 + g−1

s gn.
Exercise 2.2.7: Choose a matrix g ∈ GLn(C) for which A′ := gAg−1 is in
Jordan normal form A′ = D+N (D diagonal and N strictly upper triangular).
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Then show that the boundedness of eRA implies N = 0 and the boundedness
of the subset eRD.
Exercise 2.2.8: Jordan decomposition.
Exercise 2.2.9:
(b) Use the Jordan normal form to derive some information on the eigenvalues
of matrices of the form ex which is not satisfied by all elements of GL2(R)+.
(Either the spectrum is contained in the positive axis or its consists of two

mutually conjugate complex numbers). The matrix g :=
(−1 0

0 −2

)
is not

contained in the image of exp.
(c) eX commutes with X.
Exercise 2.2.10: Use Proposition 2.2.1 and Exercise 2.2.7.
Exercise 2.2.12: Use Exercise 2.2.11.
Exercise 2.3.1: Write x ∈ Kn as a sum x =

∑
j xj , where Axj = λjxj and

calculate ‖Ax‖2 in these terms.
Exercise 2.3.2: Use the multiplicative Jordan decomposition: Each g ∈
GLn(C) can be written in a unique way as g = du with d diagonalizable
and u unipotent with du = ud; see also Proposition 2.3.3.
Exercise 3.1.2(3): (1 + tEij)−1 = 1− tEij .
Exercise 3.1.3: adX = λX − ρX and both summands commute.
Exercise 3.1.4: (1) implies exp X expY exp−X = exp(ead X .Y ) = exp Y .
Now conclude that ead X .Y = Y (Proposition 2.3.3) and then use Exer-
cise 3.1.3 and Corollary 2.3.4.
Exercise 3.1.7: Use the linearity of the integral to see that every linear
functional vanishing on F vanishes on It. Why does this imply the assertion?
Exercise 3.1.8: If ‖ · ‖1 is any norm on g, then the continuity of the bracket
implies that ‖[x, y]‖1 ≤ C‖x‖1‖y‖1. Modify ‖ · ‖1 to obtain ‖ · ‖.
Exercise 3.1.9: Show that

‖x ∗ y‖ ≤ ‖x‖+ e‖x‖‖y‖
∑

k>0

1
k + 1

(e‖x‖+‖y‖ − 1)k.

Exercise 4.1.1(iii): If A is commutative with unit 1, then der(AL) =
End(A), but every derivation D of A satisfies D1 = 0.
Exercise 4.1.7: Consider the matrix units Eij with a single nonzero entry 1
in position (i, j) and calculate their brackets.
Exercise 4.2.1: Write V =

⊕n
i=1 Vi with Vi := Vλi(x) for the generalized

eigenspace decomposition of x and write accordingly each A ∈ End(V ) as a
matrix A = (Aij) with Aij ∈ Hom(Vj , Vi). Then show that ad x− (λi − λj)1
acts nilpotently on each space Hom(Vj , Vi) (cf. Exercise 3.1.3).
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Exercise 4.2.5: Show that C2m+1(a + b) ⊆ Cm+1(a) + Cm+1(b) for each
m ∈ N by writing each (2m + 1)-fold bracket of elements of a + b as a sum of
iterated brackets of elements of a, resp., b.
Exercise 4.2.7: Use a suitable induction.
Exercise 4.3.2: Use Exercise 1.1.1(b) to find invariant complements.
Exercise 4.3.5: Use exercises 4.3.2, 4.3.3, and 4.3.4.
Exercise 4.3.6: Proceed by induction on the degree of f . If f = g · h, then
either g(λ1) = 0 or h(λ1) = 0. Then split off one factor X − λ1.
Exercise 4.3.8: Use the Fitting decomposition (Lemma 4.3.11) to find an
A-invariant complement of V 0(A) on which A is invertible.
Exercise 4.4.6: Consider the polynomials fi(t) :=

∏
j 6=i

t−xj

xi−xj
of degree n−1.

Exercise 4.5.1: Example 4.4.2(iv) and Theorem 4.5.11.
Exercise 4.5.5(ii): Corollary 4.2.7 and Exercise 4.1.9.
Exercise 4.5.6: Use Exercise 4.5.5 to see that ad x ad y is nilpotent for x ∈ g
and y ∈ n.
Exercise 4.5.7: Proceed by the following steps: Let a := [g, g]⊥.

(i) [a, a] ⊆ g⊥.
(ii) Apply the Cartan criterion 4.4.17 to [a, a] in order to show that a is a

solvable ideal.
(iii) a ⊆ rad(g).
(iv) [rad(g), g] ⊆ g⊥ (Corollary 4.4.15 and Exercise 4.5.6).
(v) rad(g) ⊆ a.

Exercise 4.5.8: Use that gl(V ) is abelian.
Exercise 4.5.10:

(i) Consider the eigenspaces of the linear endomorphism ϕ ∈ End(g) defined
by κ(x, y) = κ(ϕ(x), y) for all x, y ∈ g. They are ideals in g.

(ii) Consider a simple Lie algebra over C, viewed as a real Lie algebra. It is
simple, but its complexification is not.

Exercise 4.7.2: Use a Levi decomposition of g.
Exercise 5.1.2: Consider the Taylor expansion of p in some point x ∈ U .
Exercise 5.1.3: For p(x), p(y) 6= 0, consider the affine line x + C(y − x)
spanned by x and y and show that it intersects p−1(C×) in a connected set.
Exercise 5.1.4: Show that the Taylor expansion of p vanishes if p vanishes
on V .
Exercise 5.2.1: Proceed along the following steps:

(i) If V is generated by v0 ∈ Vλ(h), then there exists a basis (v0, . . . , vn) of V
with
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h · vk = (λ + k)vk and e · vk =

{
vk+1 if k < n,

0 if k = n
.

We write V (λ, n) for the (n + 1)-dimensional g-module, defined by these
relations.

(ii) If k ≤ n, then V (λ + k, n− k) is a submodule of V (λ, n).
(iii) Use Lie’s Theorem to show that each simple finite-dimensional g-module

is isomorphic to some V (λ, 0).
(iv) For each finite-dimensional representation (ρ, V ) of g, the operator ρ(e)

is nilpotent and for each n the subspaces ker
(
ρ(e)n

)
and im

(
ρ(e)n

)
are

invariant under ρ(h), hence g-submodules.
(v) Show that each finite-dimensional representation (ρ, V ) for which ρ(h) is

diagonalizable is a direct sum of modules of the form V (λ, n). Hint: Derive
a Jordan normal form of ρ(e), adapted to the eigenspace decomposition
of ρ(h).

Exercise 6.1.1:

(ii) Let p, q, z, h be the basis in Example 4.1.19, then put

β(ap + bq + cz + dh, a′p + b′q + c′z + d′h) = aa′ + bb′ + cd′ + c′d.

(v) With (iii) and (iv), conclude that ∆ lies in the center of the associative
subalgebra of End

(
C∞(Rn)

)
generated by the angular momentum oper-

ators.

Exercise 6.2.2: Consider the semidirect product g = K[X] oM K, where
K[X] is considered as an abelian Lie algebra and Mf(X) := Xf(X) is the
multiplication with X.
Exercise 6.4.3(i): Universal property of U(g).
Exercise 6.5.1(b): If dim V = ∞, then V contains a copy of the polynomial
algebra K[X]. Then consider the operators

P (f) = f ′ and Q(f) = Xf.

If char(K) divides n := dim V < ∞, then we think of V as K[X]/(Xn). Since
P (Xn) = nXn−1 = 0, both operators P and Q preserve the ideal (Xn) and
induce operators on K[X]/(Xn) with [P, Q] = 1.
Exercise 6.5.5(ii): Show that the sl2(R)-module R2 ⊗ R2 is isomorphic to
the sl2(R)-module gl2(R) with x · y := [x, y].
Exercise 7.2.1: Consider the two charts from Remark 7.2.2(b) and the chart
(ζ, W ) with ζ(x) = x and W =]1, 2[.
Exercise 7.2.2: Add all n-dimensional charts which are Ck-compatible with
the atlas.
Exercise 7.2.18(2): df(x)y = y>Bx + x>By = z can be solved with the
Ansatz y := 1

2xz.
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Exercise 7.3.1(5): Use (4) to separate points in different tangent spaces by
disjoint open sets.
Exercise 8.1.4(4): Apply the Inverse Function Theorem to the map

Φ : G×G → G×G, (x, y) 7→ (x, xy).

Exercise 8.1.5(2): For a ∈ A× we have λa−1 = λ−1
a .

Exercise 8.2.9: Apply the Uniqueness Lemma to functions of the form f ◦λx,
x ∈ G.
Exercise 8.2.10: Apply the Uniqueness Lemma to functions of the form
f ◦ λx, x ∈ G.
Exercise 8.2.11: Every skew-symmetric matrix x ∈ su2(C) is conjugate to a

diagonal matrix λ

(
i 0
0 −i

)
.

Exercise 8.2.13: Use Exercise 8.2.12
Exercise 8.3.3(b): Let g ∈ H and U an open 1-neighborhood in G for which
U ∩H is closed. Show that:

(1) g ∈ HU−1, i.e., g = hu−1 with h ∈ H, u ∈ U .
(2) H is a subgroup of G.
(3) u ∈ H ∩ U = H ∩ U = H ∩ U .
(4) g ∈ H.

Exercise 8.3.4: Use induction on dim span D.

(1) Show that D is closed.
(2) Show that we may w.l.o.g. assume that span D = Rn.
(3) Every compact subset C ⊆ Rn intersects D in a finite subset.
(4) Assume that span D = Rn and assume that there exists a basis f1, . . . , fn

of Rn, contained in D, such that the hyper-plane F := span{f1, . . . , fn−1}
satisfies F ∩D = Zf1 + . . . + Zfn−1. Show that

δ := inf
{

λn > 0: (∃λ1, . . . , λn−1 ∈ R)
n∑

i=1

λifi ∈ D
}

> 0.

Hint: It suffices to assume 0 ≤ λi ≤ 1 for i = 1, . . . , n and to observe (4).
(5) Apply induction on n to find f1, . . . , fn as in (4) and pick f ′n :=∑n

i=1 λifi ∈ D with λn = δ. Show that D = Zf1 + . . . + Zfn−1 + Zf ′n.

Exercise 8.3.6:

(1) Use Zorn’s Lemma to reduce the situation to the case where G is generated
by H and one additional element.

(2) Extend idD : D → D to a homomorphism f : G → D and define H :=
ker f .
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Exercise 8.4.4: For γ ∈ Γ , consider the map G → Γ, g 7→ gγg−1.
Exercise 8.4.6: α is the unique lifting of γ : [0, 1] → SL2(R), t 7→ et2πu. If
α is not injective and α(n) = 1, then q ◦ α|[0,n] homotopic to the zero map,
contradicting to the relation [q ◦ α|[0,n]] = n[γ] in π1(SL2(R)) ∼= Z.
Exercise 8.5.2(3): Consider qG : R→ T, x 7→ e2πix.
Exercise 8.6.1: Show first that for each y ∈ KY there exists an open subset
Uy of Y with KX × Uy ⊆ V , then use the compactness of Y .
Exercise 9.2.1: S Note that ω̃(X) = ω ◦X if we consider ω as a function on
TM .
Exercise 9.2.2: Use Theorems 7.4.18 and 9.2.23, as well as the fact that the
double dual of a finite-dimensional vector space is isomorphic to this vector
space.
Exercise 9.2.5: see Remark 7.3.25 for the case T 0,1(TpM).
Exercise 9.2.9(1): For each t ∈ R, the map Φt is affine and the translation
part is etA−1

A b.
Exercise 9.4.3: If 0 ≤ f ∈ Cc(G), then µ(fh2) = 0, too. Now, for any g ∈ G,
use Corollary 9.3.28 to find a function 0 ≤ f ∈ Cc(G) with f(g) = 1. Then
use Remark 9.3.34.
Exercise 10.2.1(iii): Identify C with R2 and define the homomorphism
β : G → Mot2(R) by α(z, t)(x) := eitx + z.
Exercise 11.1.4: Pick a nonzero element x ∈ g and note that Cx is a Cartan
subalgebra of sl2(C). Then use the corresponding root decomposition and the
complex conjugation with respect to the real form g of sl2(C).
Exercise 11.2.2(ii): Every element of the Lie algebra g is represented by a
skew-symmetric matrix E and E2 is negative semi-definite. Now apply (i).
Exercise 11.2.4: Lemma 11.2.1 and Exercise 11.2.3.
Exercise 11.2.5: Main Theorem on Maximal Tori and Exercise 11.2.3.
Exercise 11.2.9(c): Lemma 11.1.14.
Exercise 11.2.10:

(b) Consider a limit point g of the sequence exp(nx) with exp(mkx) → g.
Then exp

(
(mk+1 −mk)x

) → 1.
(c) For n ∈ N and exp(nkx) → 1, we have exp

(
(nk − n)x

) → exp(−nx).

Exercise 11.3.1:

(i) Show that ‖giv − gv‖2 = 2‖v‖2 − 2Re〈giv, gv〉.
(ii) Show first that gi → g and hi → h implies that g−1

i hi → g−1h holds
weakly.

Exercise 11.4.1: If G = U ∪ V is a decomposition into disjoint open sets,
then UH = U , V H = V , and the images of of these sets give a decomposition
of G/H into disjoint open sets.
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Exercise 12.1.2: Write ead xy = cosh(ad x)y + sinh(ad x)y and show that
sinh(ad x)y = 0 implies [y, x] = 0. Use that ad x is diagonalizable with real
eigenvalues.
Exercise 12.1.3: The critical implication is to see that if g is complex and
semisimple, then any real solvable ideal r is trivial, which follows from the
solvability of the complex ideal r + ir.
Exercise 12.1.4: Consider the generalized eigenspaces of elements A ∈
EndS(V ) and ker(A− λ1)n for n ∈ N.
Exercise 12.2.1: Choose a complex basis B = (b1, . . . , bn) for V to write it
as W ⊕ iW for W := spanRB. Then AR can be represented by a block matrix

(
C −D
D C

)
∈ M2(Mn(R)).

Now verify that trR(AR) = 2 tr(C) and trC(A) = tr(C) + i tr(D).
Exercise 12.2.5: Given a representation π : g → End(V ) of a semisimple Lie
algebra g, extend it to gC, then restrict to a compact real form u, and finally
lift the resulting representation of u to the simply connected group U with
Lie algebra u.
Exercise 12.3.1: x2 = −(detx)1 = k(x)1 for all x ∈ sl2(R) (Cayley–
Hamilton).
Exercise 12.3.3(e): Exercise 12.3.1 and (b).
Exercise 12.3.4(b): Choose a0 := h ∈ a to define ∆+.
Exercise 13.2.7: Use Exercise 13.2.6 for one direction and argue for the
converse direction that all compositions factors Dk(Γ )/Dk+1(Γ ) of the derived
series are finitely generated abelian groups, hence polycyclic.
Exercise 13.4.3:

(c) Consider the simply connected group G with L(G) = g and use that the
exponential function of G/〈expG a〉 is bijective.

(d) Compute the exponential function as in Lemma 13.4.7.
(e) Show that expG is injective if G is simply connected. Assuming the con-

trary, there exists an x ∈ g such that expG is not injective on the sub-
algebra b := a o Rx. By (c), b is exponential, and one thus obtains a
contradiction to (d).

Exercise 13.4.4: Exercise 13.4.1.
Exercise 13.4.5: Exercise 13.4.1.
Exercise 13.5.1: Corollary 13.5.5 and the proof of Theorem 13.2.7.
Exercise 14.1.1: Exercise A.1.3.
Exercise 14.1.2(a): Consider the antiholomorphic involution σ on G̃C to see
that ηG(D) is closed.
Exercise 14.1.4: Consider the group G :=

(
SL2(R)̃ × R)

/D, where
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D = 〈(exp πu, 1), (exp(−πu),
√

2)〉 and u =
(

0 1
−1 0

)
∈ sl2(R).

In this case, G̃ = SL2(R)̃ × R, G̃C ∼= SL2(C)× C, and we have

ηG(D) = 〈(−1, 1), (−1,
√

2)〉 ⊇ {0} × (Z+
√

2Z) in Z(G̃C) = {±1} × C.

Exercise 14.1.5: AdG(D) = {idL(G)}.
Exercise 14.1.8: Note that h ∈ Z(H) implies that Ad(h)|L(H) = idL(H),
which implies h ∈ ZH(G0).
Exercise 15.2.1:

(a) Lemma 13.3.3 and the construction of b in the proof of Proposition 15.2.4.
(c) Corollary 4.6.9, Remark 6.4.7, and Lemma 13.3.5.

Exercise 15.2.2: t contains the center and is closed by Lemma 13.2.6.
Exercise 15.2.3: Without loss of generality, G may assumed to be connected
and abelian. Then use Exercise 8.3.5.
Exercise 15.2.4: Exercise 15.2.3.
Exercise 15.2.5: Corollary 13.5.6(e) and Exercise 15.2.4.
Exercise 15.2.6: Use Corollary 15.2.8 to find a faithful representation of
G/G′ with closed range. To this end, it is useful to show that

G/G′ ∼= B/(B ∩G′)×H/H ′,

where B/(B ∩ G′) is a vector group and H/H ′ is a torus. This follows from
G′ ∼= (B ∩G′)oH ′.
Exercise 15.2.7: If this is not the case, then, by Exercise 15.2.5, one finds an
x ∈ a ∩ b such that ϕ(expG Rx) is not contained in ϕ(G). By Exercise 15.2.6,
x ∈ a ∩ b ∩ g′. But this element lies in the center of the maximal nilpotent
ideal (Exercise 15.2.1(c)).
Exercise 16.2.1 (a): In GLn(C), we have

(
1p 0
0 i1q

)(
1p 0
0 −1q

)(
1p 0
0 i1q

)>
=

(
1p 0
0 1q

)
.

Exercise 16.4.4(ii): Since dq(v) = 2β(v, ·), the singularity of q in v ∈ H
implies that 2β(v, ·) ∈ K×α because β is nondegenerate. Now α(v) = 1 leads
to β(v, v) 6= 0, so that all points in the 0-level set of q are regular.
Exercise 17.3.2(e): Use (b) and Exercise 17.3.1.
Exercise A.1.2: Exercise A.1.1 helps to glue homotopies.
Exercise A.1.3:
(c) Consider H(t, s) := (1−s)γ(t)+sα(t)

‖(1−s)γ(t)+sα(t)‖ .
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(e) Let p ∈ Sn \ im β. Using stereographic projection, where p corresponds
to the point at infinity, show that Sn \ {p} is homeomorphic to Rn, hence
contractible.
Exercise A.1.5: Mimic the argument in the proof of Lemma A.1.8.
Exercise A.2.1: Consider the map

G : I2 → I2, G(t, s) :=





(2t, s) for 0 ≤ t ≤ 1
2 , s ≤ 1− 2t,

(1, 2t− 1) for 1
2 ≤ t ≤ 1, s ≤ 2t− 1,

(t + 1−s
2 , s) else

and show that it is continuous. Take a look at the boundary values of F ◦G.
Exercise B.1.2(iii): Use (ii) and collect suitable terms. Conclude that

V ⊗W ∼=
⊕

i∈I

ei ⊗W ∼= W (I).

Exercise B.3.1: Use induction on the dimensional on V and compose g ∈
O(V, β) with a suitable reflection to set up the induction.
Exercise B.3.3: For the third one use the map

f : H×H→ EndR(H), f(x, y)(z) := xzy∗.

Exercise B.3.7: Use (B.9) and the fact that each element of Spin(V, β) is a
product of elements of V ×.
Exercise C.3.3: It suffices to show that the image of the unit ball is bounded.
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[Bou70] Bourbaki, N., “Algèbre,” Hermann, Paris, 1970
[Bou89] —, “Lie Groups and Lie Algebras, Chs. 1-3”, Springer, 1989
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∆(G, T ), root system, 482

∆̌, dual root system, 157

∆(g, a), root system, 127, 512

∆±, positive/negative roots, 153, 513

∆r, density character, 369

∆+(λ), positive roots, 153

∆G, modular function, 402

Γ , proper Galilei group, 21

Γ0(T ), nodal group, 485

Γ (F), smooth sections of F , 368

Γ (T ), unit lattice of a maximal torus,
481

Γ (V), sections of V, 364

Γ (V, β), Clifford group, 679

Γ (V, β)±, Clifford subsets, 685

Γc(T ), central lattice of a compact Lie
group, 481

Γc(F), smooth sections of F with
compact support, 368

Γr(T ), root lattice, 482

Γext, full Galilei group, 21

Λ, integral functionals, 177

Λ(V ), exterior algebra, 661

Λ(V )k, exterior power, 662

Λeven(V ), even exterior powers, 663

Λn(V ), exterior power, 660

Λodd(V ), odd exterior powers, 663

Λ+, dominant integral functionals, 177

Ω1(M), 1-forms on M , 246

Ω1(M, V ), V -valued 1-forms on M , 246

Ω(M), differential forms, 381

Ω(X, x0), loops based at x0, 642

Ω(β, ρ), Casimir element, 109

Ωk(M), k-forms, 381

Ωp(M,R), p-forms, 191

Ωk(M)G, G-invariant k-forms, 407

Φ, Clifford group representation, 679

(ΦX
t )∗Y , push-forward of Y , 269

ΦX , global flow, 268

Φi, local trivialization, 363

Φij , transition function, 363

Π(λ), simple roots, 154

Π̌+, dual root basis, 158

βn, bilinear form, 675

βp,q, bilinear form, 675

χ(s), cohomology class, 215

δn, connecting map, 637

δ(A), diameter, 24

δ(f), logarithmic derivative of f , 302

ηG, universal complexification, 556

γ̇, tangent vector, 223

γ′, tangent vector, 223

ρ, half-sum of roots, 156

ι, Weyl group isomorphism, 471

ι̃, lifted Weyl group isomorphism, 471

ιG, group inversion, 278

κG, Maurer–Cartan form, 302

κg, Cartan–Killing form, 104, 105

κπ(x, y), trace form, 103

κτ , inner product on g, 496

λg, left translation, 278

λx, left multiplication, 48, 676

µB , volume form, 672

µG, Haar measure, 401

ω, grading automorphism, 676

ωeq, equivariant form, 408
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ϕ, canonical factorization, 424
ϕ∗xl, push-forward of xl, 282
ϕ∗T , pull-back of a tensor field, 378
ϕ∗(X), pull-back of a vector field, 376
ϕ∗α, pull-back of a section, 375
πv, orbit map, 476
π1(X, x0), fundamental group, 643
π1(G), fundamental group, 644
π1(f), induced morphism in homotopy,

643
π0(G), group of path components, 428
σi, reflection, 155
ρg, right translation, 278
ρs, induced homomorphism, 624
ρx, right multiplication, 48
σα, reflection, 151
σ̇, derived action, 284
σg, diffeomorphism, 283, 352
σm, orbit map, 283, 352, 356
σm, factorized orbit map, 356
θ, Cartan involution, 495, 499
ζα, su2(C)-isomorphism, 471
A(H), attainable set, 339
An, root system, 147
Aut(V, β), isometry group of β, 15
aut(V, β), orthogonal Lie algebra, 64
Ad, adjoint representation, 48, 61
Ad(g), adjoint action, 298
ad, adjoint representation, 48, 61, 77
Adg/h, adjoint action, 368
Ad(a), twisted adjoint representation,

679
Aff(V ), affine group, 17
aff(V ), affine Lie algebra, 192
aff1(K), affine Lie algebra, 97
Affn(K), affine group, 17
affn(R), affine Lie algebra, 66
Ahermn(C), antihermitian matrices, 65
Alt(V, A), alternating maps, 671
Alt(V,K), alternating maps, 667
Altk T ∗(M), k-form bundle, 381
Alt(ω), alternator, 666
Altn(V, W ), alternating maps, 660
AnnU(g)(v), annihilator, 180
Aut0(G), automorphism group, 449
Aut1(G), automorphism group, 445
Aut(G), automorphism group, 18, 278
Aut(g), automorphism group, 65
Autg(V ), module automorphisms, 77

aut(g), Lie algebra of Aut(g), 65
B(X), bounded operators, 475, 689
BX , closed unit ball in X, 689
B(X, Y ), bounded operators, 689
Bk(g, z(n))s, coboundaries, 208
Bk(g, V ), coboundaries, 187
Bn, root system, 148
Bp(G, A), coboundaries, 636
BCn, root system, 150
BM , Borel σ-algebra, 391
CN , canonical homomorphism, 619
C(Π), Weyl chamber, 155
Cc(G), continuous functions with

compact support, 475
C(g), space of complete vector fields,

416
Cg, universal Casimir, 179
cg, conjugation, 60, 278
C(λ), Weyl chamber, 153
Cn, root system, 149, 150
Cn(G, ϕ), cochain homomorphism, 636
Cp(g, V ), cochains, 186
Cp(G, A), cochains, 635
C∞(M), smooth functions, 238
C∞(M, N), smooth maps, 238
C∞(M)p, germs of smooth functions,

248
C∞(M, p), smooth functions around p,

248
C∞(P, F )G, smooth sections, 370
Ck(U,Rm), Ck-maps, 223
Cl(K, a), Clifford algebra, 676
Cl(V, β), Clifford algebra, 675
Cl(V, β)i, Clifford grading, 677
Cl(V, β)×, unit group of Cl(V, β), 679
Cn, Clifford algebra, 675
Cn, cyclic group, 314
Cn(G), lower central series, 435
Cn(g), lower central series, 85
comp(g), compact elements of g, 524
Cp,q, Clifford algebra, 675
df , differential, 222, 244, 246
dkf , higher derivative, 225
dG, coboundary map, 635
D(G, T ), diagram of G, 489
dSα, twisted differential, 213
dα, exterior derivative of α, 382
Dn, root system, 148
dxj , basic 1-forms, 258
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D(∆+), cone spanned by ∆+, 158
∂f
∂xi

, partial derivative, 223
∂

∂xj
|p, derivation in coordinates, 249(

∂
∂x
⊗ dx

)
(%,σ)

(p), tensor, 379

Deck(X, q), deck transformations, 651
der(A), derivations of A, 258
der(A, m), derivations w.r.t. m, 83
der(g), derivations, 65, 76
Diff(M), diffeomorphism group, 238
dimH(V ), quaternionic dimension, 30
Dn, Clifford algebra, 687
Dn(G), derived series, 435
Dn(g), derived series, 96
(dxj(p))j=1,...,n, ϕ-basis, 372(
dx⊗ ∂

∂x

)
(%,σ)

, ϕ-basis, 372

E(G), set of pinnings of G, 487
ex, exponential, 39
Endg(V, W ), module endomorphisms,

77
exp, matrix exponential function, 39
expG, exponential map, 56, 288
exp(X), time-1-flow, 411
Ext(G, N), extensions, 620
Exts(G, N), extensions, 622
Ext(V, W ), extensions, 196
Extρ(g, n), extensions, 193
Ext(g, n)s, extensions, 207
F (S), free vector space, 654
f∗ω, pull-back, 384
f∗µ, pull-back, 392
Fix(g), set of fixed points, 353
Fl(k1, . . . , km), flag manifold, 362
gχ
C, root space, 482

g(F), flag preserving maps, 76
g(α), sl2-subalgebra, 144
gλ, root space, 127
gλ, root space, 512
Gm, stabilizer, 353
gω, extension, 194
gn(F), flag preserving maps, 80
gs(F), flag preserving maps, 80
G/H, coset space, 356
GL(M), frame bundle of M , 366
GL(ϕ), lifted diffeomorphism, 375
GL(V ), invertible endomorphisms of V ,

15
GL(V), frame bundle of a vector bundle,

365

GL(V )W , 66
GLn(K), invertible matrices, 3, 29
GLn(R), general linear group, 278
GLn(R)±, components of GLn(R), 10
gl(V ), general linear Lie algebra, 56, 74,

289
gl(V )W , 66
gln(K), general linear Lie algebra, 56,

74
gln(R), general linear Lie algebra, 289
Grk(V ), Graßmann manifold, 234, 360
H, quaternions, 27
h3(R), Heisenberg algebra, 79
hR, real form of a Cartan subalgebra,

146
hα, Cartan algebra element, 143
Hα,k, affine hyperplane, 489
Hp

dR(M), de Rham cohomology, 192,
384

Hk(g, z(n))s, cohomology, 208
Hk(g, V ), cohomology, 187
Hn(G, ϕ), cohomology homomorphism,

636
Hp(G, A), cohomology, 636
H×, invertible quaternions, 28
Hk

dR,G(M), invariant de Rham
cohomology, 407

Hermn(K), hermitian matrices, 5
Hom(R, G), continuous group homo-

morphisms, 57
Homg(V, W ), module homomorphisms,

77
Iµ(f), integral, 392
Ip,q, 17
IAut(G), infinitesimal automorphisms,

447
INNg(a), closure of the inner automor-

phisms, 452
iXα, contraction, 383
Inn(G), inner automorphisms, 278
Inn(g), inner automorphisms, 132, 452
Inng(a), inner automorphisms, 452
Iso(V, W ), isomorphisms, 365
Ison(R), affine isometries, 18
ix, contraction for Lie algebra cochains,

187
Jn, 75
K, real or complex numbers, xv
ker α, kernel, 75
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L, Lie functor, 282
L, Lie derivative on cochains, 189
L(G), Lie algebra, 56, 281
L(G), one-parameter groups, 57
L(X), free Lie algebra, 168
LX , vector field as derivation, 253
LX , Lie derivative, 270
L(X, R), Lie algebra defined by

generators and relations, 168
L(λ), sl2(K)-module, 137
L(λ), irreducible highest weight module,

176
L(ϕ), derived Lie algebra homomor-

phism, 58, 281
L(r)(M), r-density bundle, 370
`(w), length of w, 490
LX(Y ), Lie derivative, 376
LXα, Lie derivative, 376
Le(H), Lie algebra of a closed subgroup,

309
LieAlg, category of Lie algebras, 282
LieGrp, category of Lie groups, 282
LinC(G), linearizer, 568
LinR(G), linearizer, 577
Ln, filiform Lie algebra, 211
log, matrix logarithm, 44
logV , matrix logarithm, 41
L+, subgroup of the Lorentz group, 22
L↑+, subgroup of the Lorentz group, 23

L↑, subgroup of the Lorentz group, 22
M/G, space of orbits, 352
MH , set of fixed points, 353
M(X), magma, 168
M(λ), Verma module, 176
mλ, root multiplicity, 142
mG, group multiplication, 278
MLn(R), metalinear group, 633
Mg, set of fixed points, 353
Mn(K), square matrices, xv, 29
Motn(R), euclidian motions, 20
motn(R), motion algebra, 66
N(g), norm homomorphism, 682
ng(V ), normalizer, 75, 422
ng(E), normalizer, 422
Om, orbit, 352
OR(M), orientation bundle, 396
O(V, β), isometry group of β (symmet-

ric), 15
On(K), orthogonal group, 5

on(K), orthogonal Lie algebra, 64, 75
On(R)−, component of On(R), 9
op,q(K), orthogonal Lie algebra, 64, 147
Op,q(R), indefinite orthogonal group, 16
osc, oscillator algebra, 541
Out(N), outer automorphisms, 620
Out(g), outer automorphisms, 621
out(g), outer derivations, 195
P, polynomial algebra, 163
P(V ), projective space, 613
P(V ),weights, 173
P(X), power set, 318
P (X, x0), paths, 641
P (X, x0, x1), paths, 641
Pα, fixed hyperplane, 151
Ph(V ), weights, 126
Pdn(K), positive definite matrices, 5
Pin(V, β), pin group, 684
Pinn(K), pin group, 684
Pinp,q(K), pin group, 684
Pk, projection operator, 407
Q(V, β), projective quadric, 613
Qp,q, projective quadric, 613
R(G, T ), root lattice, 485
Rp,q, quadratic space, 613
rad, radical, 97, 107
rank(g), rank, 131
rank (A), rank of A, 551
reg(g), regular elements, 131
regexp(g), exp-regular elements, 304,

538
rk(A), rank of A, 551
S, unit quaternions, 28
Sn, sphere, 228
sG, characteristic homomorphism of an

extension, 621
s(g), characteristic homomorphism of

an extension, 621
S(r), sphere, 362
s∗Aut(N), extension, 625
S1, circle, 279
S̃L2(R), covering group, 335
SLn(K), special linear group, 5, 29
SO4(R), 337
SOn(K), special orthogonal group, 5
Sp(V, β), isometry group of β (skew

symmetric), 15
SU∗2n(C), 606
SUn(K), special unitary group, 5
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S(V ), symmetric algebra, 661
S(V )k, symmetric power, 662
s∗ der(n), extension, 209
Sh(p, q), shuffle permutations, 381
sgn, signature homomorphism, 660
singexp(g), singular points, 304
sln(K), special linear Lie algebra, 63,

75, 147
Sn(V ), symmetric power, 659
so3(R), special orthogonal Lie algebra,

81
Spin(V, β), spin group, 684
Spinn(K), spin group, 684
Spinp,q(K), spin group, 684
Sp2n(K), symplectic group, 16
spn(K), symplectic Lie algebra, 64, 75,

149
Sym(g, κτ ), symmetric endomorphisms,

497
Symn(R), symmetric matrices, 495
Sp, symmetric group, 186
T, circle, 279
TA, tangent algebra, 34
T (M), tangent bundle, 242
Tf , tangent map, 244
Tp(M), tangent space, 242
T alg

p (M), algebraic tangent space, 248
Tp(ϕ), tangent map, 243
T ∗(M), cotangent bundle, 371
T (V ), tensor algebra, 657
T (V )k, tensor power, 662
Tn, torus, 279
tor(A), torsion subgroup of A, 551
tr(x), trace of x, 75
T r,s(E), tensor space, 371
T r,s(E), tensor bundle, 371
U(H), unitary group, 475
U(g), enveloping algebra, 160
Up,q(K), indefinite unitary group, 17, 30
U(V, β), isometry group of β, 17
un(C), unitary Lie algebra, 65, 75
Un(K), unitary group, 5, 30
Up(g), filtration of enveloping algebra,

162
up,q(C), unitary Lie algebra, 65
V(G)l, left invariant vector fields, 281
V(M), vector fields, 253
V(M)∗, dual module, 373
Vχ(ρ), weight space, 482

Veff , effective part, 110, 529
Vfix, fixed points, 529
V g, space of invariants, 188
Vmax, maximal proper submodule of V ,

175
Vp, fiber of V at p, 364
V+(T ), Fitting one component of T , 94
V0(T ), Fitting null component of T , 94
V λ(A), generalized eigenspace, 12, 89
Vλ(A), eigenspace, 12, 88
V λ(h), generalized weight space, 126
Vλ(h), joint eigenspace, 173
Vλ(h), weight space, 98, 126
W (∆), Weyl group, 151
W (G, T ), Weyl group, 470
Waff , affine Weyl group, 489
W (g, h), Weyl group, 151
X(G), character group of G, 481
XΦ, velocity field, 266
xχ, nodal vector, 483
Xf , derivative w.r.t. a vector field, 253
Xj , basic vector fields, 257
xl, left invariant vector field, 281
Xϕ, push-forward of vector fields, 255
Z(G), center, 11
ZG(M), centralizer, 299
ZG(x), centralizer, 11
z(g), center, 75
zg(v), centralizer, 116
Zk(g, z(n))s, cocycles, 208
Zk(g, V ), cocycles, 187
Zp(G, A), cocycles, 636
ZG(E), centralizer, 422
zg(E), centralizer, 422
(A, B), subgroup generated by

commutators, 435
A×ω G, twisted product, 625, 636
N ×(S,ω) G, twisted product, 623
[U, V ], span of the brackets, 74

Ĝ1 ×G Ĝ2, Baer product, 631
V ⊕ω g, extension, 194
A⊗̂B, graded tensor product, 677
Gnα N , semidirect product, 300
N oδ H, semidirect product, 18, 300
P ×G F , associated bundle, 367
V ⊗n, tensor power, 656
noα h, semidirect sum, 79
n ×(S,ω) g, extension w.r.t. a factor

system, 208
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V T , fixed point set, 533
[D], class of D in out(n), 206
[α], homotopy class of α, 641
[p, f ], bundle element, 367
[x], homogeneous coordinates, 236
[x1, . . . , xn], homogeneous coordinates,

236
χ(s), cohomology class, 627
fp, germ of f in p, 248
χG, cohomology class, 632
A ⊗ B, tensor product of linear maps,

659
(α, β), inner product, 143
α ∗ β, concatenation of paths, 642
α ∧ β, wedge product, 381
∨, symmetric product, 659
∧, exterior product, 660, 667
f ∗ h, convolution, 410
x ∗ y, BCDH-multiplication, 48, 51
(hα, eα, fα), sl2-triple, 165
(ihα, xα, yα), su2-triple, 471
A∗, complex conjugate transpose, 4
A>, transpose, 4
AL, Lie algebra, 56, 74
C◦, interior of C, 455
E⊥, orthogonal space, 14, 691
G′, commutator subgroup, 435
Gσ, fixed points, 492
G0, identity component, 13
GS , stabilizer, 353
Gd, discrete version of G, 425
H∗, subgroup generated by H and

exp(hC), 566
Mn, nilpotent component, 89, 91
Ms, semisimple component, 89, 91
V g, annihilated part of V , 110
V ×, nonisotropic vectors, 683
VC, complexification, 80
W⊥,β , orthogonal space, 107
Γ ∗, dual lattice, 485
α̌, coroot, 145
gR, real form, 502
〈M〉C−grp, complex Lie subgroup

generated by M , 556
A, complex conjugate, 4
b[, associated functional, 616
f∗, induced map in cohomology, 385
f∧, associated map, 444
α0 ∼ α1, homotopic paths, 641

g/n, quotient Lie algebra, 78
h E g, ideal, 74
h < g, Lie subalgebra, 74
γ1 ∼ γ2, equivalence of curves, 242
〈·, ·〉, hermitian form, 691
〈f, g〉, inner product, 475
≺, root ordering, 153

abelian
extension, 625
Lie algebra, 74
Lie group

complex, 571
real Lie groups, 328

action
left, 283
linear, 298
right, 283
smooth, 283

of R, 268
transitive, 352

adapted
Lie group structure, 444

adjoint
action

of Diff(M), 411
representation, 48, 61, 77, 298

twisted, 679
Ado, Igor Dmitrievich (1910–1983), 181
affine

group, 17
isometries, 18
Lie algebra, 192
representation, 192
Weyl group, 489

alcove
for a compact Lie group, 489

algebra, 33, 74
associative, 74
Banach, 34
Clifford, 674
continuous inverse, 594
enveloping, 160
exterior, 661
graded, 662
Lie, 55
normed, 34, 410
symmetric, 661
unital, 34
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algebraic
linear group, 67
tangent space, 248

alternating
forms, 381
map, 660

and exterior algebras, 664
multilinear map, 186

alternator, 666
analytic

subgroup, 348
analytic Weyl group, 470
annihilator, 180
antiholomorphic homomorphism, 556
arcwise connected

locally, 648
Ascoli, Giulio (1843–1896), 690
associated bundle, 367
atlas, 227

maximal, 227
attainable set, 339
automatic smoothness

of homomorphisms, 296
of the inversion, 287

automorphism
group

of a Lie group, 278
infinitesimal, 447
inner, 132
outer, 620

averaging, 406

Baer product, 631
Baer, Reinhold (1902–1979), 631
Baker, Henry Frederick (1866–1956), 48
Baker–Campbell–Dynkin–Hausdorff

formula (BCDH), 48, 306
multiplication, 48

Banach algebra, 34
Banach, Stefan (1892–1945), 34
base

manifold, 241
space

of a fiber bundle, 363
basis

for a root system, 153
bilinear form

invariant, 103
Birkhoff, Garrett (1911–1996), 164

Borel
density

locally bounded, 388
measure, 391
σ-algebra, 391
subalgebra

standard, 173
subset, 391

Borel, Armand (1923–2003), 173
Borel, Emile (1871–1956), 388
bounded

operator, 475, 689
bundle

associated, 367
cotangent, 371
fiber, 241
line, 253
of k-forms, 381
of densities, 369
tangent, 243
tensor, 371
vector, 363

Campbell, John Edward (1862–1924),
48

canonical coordinates
of the 1. kind, 291
of the 2. kind, 291

canonical factorization
for Lie groups, 424

Cartan
criterion

for semisimplicity, 107
for solvability, 102

decomposition, 496, 499
formula, 383

on Lie algebra cochains, 189
involution, 496

existence, 507
of a Lie group, 499

subalgebra, 128
splitting, 129
toral, 129

subalgebras
and Jordan decomposition, 130
and regular elements, 131
conjugacy, 135, 204

Cartan, Élie (1869–1951), 102, 104, 105,
107, 123, 128, 159, 189, 302, 349
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Cartan, Henri (1904–2008), 383
Cartan–Killing form, 104, 105
Casimir

element, 109, 165
universal, 179, 180

Casimir, Hendrik (1909–2000), 109, 165
category

of Lie algebras, 282
of Lie groups, 282

Cauchy
product formula, 39

Cauchy, Augustin Louis (1789–1857),
39

center
of a connected Lie group, 523
of a group, 11
of a Lie algebra, 75
of mass, 520

central lattice
of a compact Lie group, 481

central series
decreasing

of a Lie algebra, 85
lower

of a group, 435, 688
of a Lie algebra, 85

centralizer
in a group, 11
in a Lie algebra, 116
in a Lie group, 422, 424
of a torus, 469

chain rule, 223, 245
for tangent maps, 245

character
group, 481

characteristic homomorphism
of a Lie group, 621
of an extension, 621

characteristic ideal
in a Lie algebra, 115

chart, 227
compatibility, 227
submanifold, 230

Chevalley, Claude (1909–1984), 186, 349
Ck-map, 223
classification

of finite-dimensional simple modules,
177

of Lie algebra extensions, 207

Clifford
algebra, 674
group, 679

Clifford, William Kingdon (1845–1879),
674

closed
differential form, 384
subgroups of T, 314

coboundaries
for group cohomology, 636
for Lie algebra cohomology, 187

cochains
for group cohomology, 635
for Lie algebra cohomology, 186

cocycles
for group cohomology, 636
for Lie algebra cohomology, 187

codimension, 230
cohomology

de Rham, 192, 384
invariant, 407

of groups, 636
of Lie algebras, 186
of nilpotent Lie algebras, 203
set, for Lie groups, 462

commutator, 52
algebra

of a Lie algebra, 75
bracket, 52
formula, 53

for Lie groups, 295
subgroup, 435

compact
element in a Lie algebra, 524
group of automorphisms, 508
Lie algebra, 452
Lie group, 451

linearity, 479
linear map, 689
real form

of a Lie algebra, 505
compactly embedded Lie subalgebra,

524
compatibility

between a chart and an atlas, 227
between charts, 227

complete
flag, 87
vector field, 266
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completely reducible representation, 78
completion

conformal, 615
complex

Lie group, 556
H.C., 576
opposite, 569
reductive, 565

Lie subgroup, 556
linearly reductive Lie group, 565
torus, 570

complexification
of a Lie algebra, 80
of a Lie group, 556
of a vector space, 80
of compact Lie groups, 562
recognition, 563
universal, 556

existence, 557
uniqueness, 556

complexified torus, 565
composition formula, 37
concatenation

of paths, 642
conformal

completion, 615
group, 615
map, 615

conjugacy
of Cartan subalgebras, 135, 204
of maximal compactly embedded Lie

algebras, 525
of maximal tori, 522

conjugation action, 284
connecting map, 637
continuous inverse algebra, 594
continuously differentiable function, 223
contractible

smoothly, 386
contraction

for Lie algebra cochains, 187
of a differential form, 383

convolution, 410
coordinate

canonical, 291
function, 250
homogeneous, 236

coroot, 145
coset

manifold, 356
space, 356

cotangent bundle, 371
covering, 646

group
simply connected, 322

of nonconnected Lie group, 631
critical point, 247
crossed homomorphism, 188, 210, 308,

453
for Lie algebras, 463
principal, 188
right, 462

curve
equivalence, 242
integral, 263

maximal, 263
piecewise smooth, 239
smooth, 238

cyclic
g-module, 180

cylinder, 232

de Rham
cohomology, 192, 384
cohomology, invariant, 407
complex, 192

de Rham, George (1903–1990), 192,
384, 407

deck transformation, 651
decomposable

element of a positive system, 154
decomposition

Cartan, 496, 499
Iwasawa

of GLn(R), 14
of a semisimple Lie algebra, 513
of a semisimple Lie group, 515

polar, 580
root, 125
weight, 125

degenerate
bilinear form, 107

degree
of a differential form, 381

dense
integral subgroups, 542
wind, 315

density
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bundle, 369
invariant, 399
measurable, 388
on a manifold, 369
on a vector space, 369
positive, 388
transformation formula

global, 392
local, 387

derivation
in p, 248
inner, 77
of a Lie algebra, 65, 76
of an associative algebra, 82, 258

derivative
directional, 222
exterior, 382
higher, 225
Lie, 270
logarithmic, 302

of expG, 303
partial, 223
under an integral, 394

derived
representation, 60, 298
series

of a group, 435
of a Lie algebra, 96

determinant
real vs. complex, 673

diagram
of a compact Lie group, 489

diameter, 24
diffeomorphism, 223, 238

orientation preserving, 398
differentiable

map, 222
structure, 227

differential, 222
for Lie algebra cohomology, 186
form, 191, 381

closed, 384
equivariant, 408
exact, 384
invariant, 407

dilation, 615
dimension

of a manifold, 227
of an H-module, 30

direct
product

of groups, 11
of Lie groups, 300

sum
of Lie algebras, 79

discrete
subgroup

cocompact, 552
not finitely generated, 527

division algebra, 27
Dixmier, Jacques (∗1924), 540
dual

basis, 109
C∞(M)-module, 373
lattice, 485
root system, 157

Dynkin, Evgeniy Borisovich (∗1924), 48

effectivity kernel, 354
eigenspace, 12, 88

generalized, 12, 89
eigenvalue, 89
eight (figure), 273
Eilenberg, Samuel (1913–1998), 186
elementary open subset, 646
elliptic curve, 570
endomorphism

diagonalizable, 89
nilpotent, 89
semisimple, 89
split, 89

Engel, Friedrich (1861–1941), 86, 87,
349

enveloping algebra, 160
existence, 161
uniqueness, 160

equicontinuous
family of functions, 690

equivalent
curves through a point, 242
extensions, 620

equivariant
differential form, 408
map, 356
1-form, 463

euclidian
isometry group, 18
motion, 20
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norm, 3
space, 150

Euler operator, 140
Euler, Leonhard (1707–1783), 140
exact

differential form, 384
exp-regular Lie algebra, 538
exponential

function, 288
of a solvable Lie group, 537

Lie algebra, 541
map, 288

extension
abelian, 625
equivalence, 620
of g-modules, 196

equivalence, 196
split, 196
trivial, 196

of integral curves, 263
of Lie algebras, 193

abelian, 193
central, 193
equivalence, 193
split, 193
trivial, 193

of Lie groups, 430, 433
property

of solvable Lie algebras, 97
split, 620
trivial, 620

exterior
algebra, 661

and alternating maps, 664
derivative, 382
differential, 191
forms, 191
power, 660
product, 381

of alternating maps, 667

factor
algebra, 161
system, 208, 623

faithful
representation, 84

fiber
bundle, 241, 362

morphism, 363

principal, 365
trivial, 363

of a vector bundle, 364
typical, 241, 362, 363

filiform
Lie algebra, 211

filter
basis, 318

finitely generated
abelian group, 549

rank, 551
structure theorem, 550

Fitting
decomposition, 94
null component, 94
one component, 94

Fitting, Hans (1906–1938), 94
flag, 361

complete, 87
in a vector space, 76
manifold, 361

flow
global, 266
line, 266
local, 266

form
1-, on a manifold, 246

frame
bundle

of V, 366
of M , 366

free
Lie algebra, 167
magma, 168
vector space, 168, 654

Fubini, Guido (1897–1943), 393
functoriality

of concatenation, 642
of de Rham cohomology, 385
of the fundamental group, 643
of the Lie algebra, 281

fundamental
group, 643

functoriality, 643
of a compact Lie group, 480
of a Lie group, 328
of homogeneous spaces, 426
of quotients, 426

Weyl chamber, 155
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g-kernel, 206
integrable, 212

g-module, 77
cyclic, 180
extension, 196

equivalence, 196
split, 196
trivial, 196

homomorphism, 77
isomorphism, 77
semisimple, 77
short exact sequence, 196
simple, 77

g-submodule, 77
Galilei

group
concrete, 20
full, 21
proper, 21

relativity principle, 21
spacetime, 20
transformations, 21

Galilei, Galileo (1564–1642), 20
Gelfand, Israil M. (1913–2009), 349
general linear group, 3

abstract, 15
generalized

eigenspace, 12, 89
weight space, 126

generating set
for semisimple Lie algebras, 165

generator
infinitesimal, 266

germ
of a function, 248

global
flow, 266

gluing picture, 233
G-module, 635

morphism, 636
graded

algebra, 662
commutative, 663, 669
tensor product, 677

grading, 677
automorphism, 677

Graßmann manifold, 234, 360
Graßmann, Hermann (1809–1877), 234
group

abelian
finitely generated, 549

affine, 17
character, 481
Clifford, 679
conformal, 615
divisible, 317
fundamental, 643
general linear, 3

abstract, 15
quaternionic, 29

Heisenberg, 288, 336
Lie, x, 278
linear

Lie, 56
real algebraic, 67

Mautner, 631
metalinear, 633
nilpotent, 435
nodal, 485
one-parameter, 41
orthogonal, 5, 232, 597
pin, 684
quaternion, 467
representation, 60
simple, 11
solvable, 435
special

linear, 5
linear quaternionic, 29
orthogonal, 5
unitary, 5

spin, 684
symplectic, 16, 600
topological, x, 4
topology, 318

from local data, 318
unitary, 5, 475, 595

abstract, 17
indefinite, 17
quaternionic, 30

Weyl, 469

Haar
measure, 401

Haar, Alfred (1885–1933), 401
Hadamard, Jacques (1865–1963), 249
Harish-Chandra, (1923–1983), 349
harmonic function, 165
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Hausdorff
series, 306
space, 226

Hausdorff series, 52
Hausdorff, Felix (1868–1942), 48
H.C. groups, 576
height

of a root, 153
Heisenberg

algebra, 62, 79
group, 288, 336

Heisenberg, Werner (1901–1976), 62, 79
hermitian

form, 17
matrices, 5

higher derivatives, 225
highest weight, 174

theorem, 179
vector, 174

Hilbert space, 475, 691
Hilbert, David (1862–1943), 691
Hilton

Lemma, 644
Hilton, Peter (∗1923), 644
Hölder series, 99
Hölder, Ludwig Otto (1859–1937), 99
Hofmann, Karl Heinrich (∗1932), 466
holomorphic

function on a complex abelian Lie
group, 571

homomorphism of Lie groups, 556
representation, 556

homeomorphism, 223
local, 652

homogeneous
coordinates, 236
polynomials, 61
space, 360

homotopy, 641
hyperboloid, 231
hyperplane

bounding, 489
hypersurface, 230, 272

ideal
characteristic, 523
fully characteristic, 523
generated by a set, 161
of a Lie algebra, 74

of an associative algebra, 161
identity component, 13
immersion, 272
indecomposable element

of a positive system, 154
infinitesimal

automorphism, 447
generator, 266

initial
Lie subgroup, 346
submanifold, 272

inner automorphism
of a Lie algebra, 132
of a Lie group, 278

insertion map
for Lie algebra cochains, 187

integrable
g-kernels, 212
Lie algebra, 325

integral
curve, 263
linear functional, 177
of a positive measurable density, 391
of an n-form, 391

integration formulas
for Lie groups, 402

interior
of a set, 455
product, 383

interpolation polynomials, 104
intertwining operator, 475, 477
invariance

of dimension, 223
under a vector field, 382

invariant
bilinear form

on a Lie algebra, 103, 104
density, 399
differential form, 407
volume form, 398

inversion in a sphere, 617
involution, 14
isometry group

euclidian, 18
of a bilinear form, 15
of a sesquilinear form, 17

isomorphism
of fiber bundles, 363
smooth, 238
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Iwasawa decomposition
of GLn(R), 14
of a semisimple Lie algebra, 513
of a semisimple Lie group, 515

Iwasawa, Kenkichi (1917–1998), 512

Jacobi identity, 74
Jacobi, Carl Gustav (1804–1851), 55, 74
Jordan decomposition, 43, 89, 91

additive, 43
and Cartan subalgebras, 130
multiplicative, 43
properties, 92
real case, 91

Jordan, Camille (1838–1922), 43, 89
Jordan–Hölder series, 119, 590

kernel
of a Lie algebra homomorphism, 75

Killing, Wilhelm (1847–1923), 105, 349
Klein, (Christian) Felix (1849–1925),

417

L2-norm, 475
L2-space, 475
Laplace operator, 140, 165
Laplace, Pierre Simon, (1748–1827), 165
lattice, 329, 481, 552

central, 481
dual, 485
root, 482, 485
unit, 481
weight, 485

Lebesgue number, 646
Lebesgue, Henri (1875–1941), 646
left

action, 283
equivariant 1-form, 463
invariant vector field, 281

length
of a Weyl group element, 490

Levi complement, 118
Levi, Eugenio Elia (1883–1917), 116
Lie

bracket, 55, 74
of vector fields, 254, 256

derivative, 192
of a function, 253
of a section, 376

of a tensor field, 378
of a vector field, 270, 376

functor, 282
subalgebra, 55, 74
subgroup, 314

complex, 556
initial, 346

superalgebra, 216
transformation group, 418

Lie algebra, 55, 74
abelian, 55, 74
affine, 192
center, 75
cochains

bracket, 213
cohomology, 187

and invariant volume forms, 197
coboundaries, 187
cochains, 186
cocycles, 187
differential, 186

compact, 452
complexification, 80
defined by generators and relations,

168
derivation, 76
exponential, 541
extension, 193

abelian, 193
central, 193
classification, 207
equivalence, 193
split, 193, 210

factor system, 208
filiform, 211
free, 167
generated by complete vector fields,

416
Heisenberg, 62
homomorphism, 55, 74
ideal, 74
integrable, 325
isomorphism, 74
module, 77

highest weight, 173
homomorphism, 77
isomorphism, 77
semisimple, 77
simple, 77, 177
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nilpotent
cohomology, 203

of a Lie group, 281
of a linear Lie group, 56
orthogonal, 75, 147
perfect, 108
quotient, 78
radical, 97
reductive, 121
representation, 60, 74, 298

completely reducible, 78
irreducible, 78

residually nilpotent, 88
residually solvable, 104
semisimple, 105
short exact sequence, 193
simple, 105
solvable, 96
special linear, 75, 147
split, 173
submodule, 77
symplectic, 75, 149

odd, 149
trivial, 193
unimodular, 198
unitary, 75
without real form, 82

Lie group, x, 278
automorphism group, 278
compact

fundamental group, 480
linearity, 479
rank, 481

complex, 556
1-dimensional, 569
abelian, 571
linear, 65, 589
toroidal, 573

connected abelian, 328
structure, 317

determined by local data, 320
extension, 430, 619
linear, 56
morphism, 278, 421
nonconnected abelian, 317
nonlinear, 335
real

linearly reductive, 578
representation, 298

semisimple, 459
simple, 459
solvable, 440

Lie, Marius Sophus (1842–1899), x, 74,
99, 325, 348, 421

lift, normalized, 624
line bundle, 253
linear

action, 298
functional

positive, 391
Lie group

complex, 589
map

compact, 689
linear functional

dominant, 177
integral, 177

linearizer
of a complex Lie group, 568
of a real Lie group, 577

linearly
complex reductive Lie group, 565
real reductive Lie group, 578

local
flow, 266
homeomorphism, 652
trivialization, 241

of a fiber bundle, 363
of a vector bundle, 364

locally
arcwise connected, 648
finite

cover, 388
family of functions, 399
family of sets, 398

logarithm function, 41
logarithmic derivative, 302
long exact homotopy sequence, 427
loop, 642
Lorentz

form, 22
group, 22

inhomogeneous, 23
Lorentz, Hendrik (1853–1928), 22

magma, 168
Malcev

criterion for closed subgroups, 545
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Malcev, Anatoly (1909–1967), 119
manifold, 227

non-Hausdorff, 233
nonseparable, 236
orientable, 396
splitting theorem, 532, 534
structure on T (M), 245

matrix exponential function, 39
Maurer, Ludwig (1859–1927), 302
Maurer–Cartan form, 302
Mautner

group, 631
maximal

atlas, 227
compact

subgroup, 521, 535
integral curve, 263

maximal tori, 464
measurable

density, 388
subset, 391

metalinear
group, 633

Minkowski space, 22
Minkowski, Hermann (1864–1909), 22
modular function, 402
monodromy principle, 330
morphism

of Lie groups, 278
of fiber bundles, 363
of vector bundles, 364

motion algebra, 541
multilinear

map, 225
symmetric, 225

Neumann series, 696
Neumann, Carl Gottfried (1832–1925),

696
nilpotent

endomorphism, 89
group, 435
Jordan component, 91
Lie algebra, 85
matrix, 43
representation, 99

nodal
group, 485
vector, 483

nondegenerate bilinear form, 16
nonlinear Lie groups, 335
norm

operator, 689
submultiplicative, 34
sup, 690

norm homomorphism
for the Clifford group, 682

normal
forms, 7
matrix, 14
subgroup, 11

normalizer
in a Lie algebra, 75
in a Lie group, 422, 423

normed algebra, 410

1-form, 246
1-cocycle

of Lie groups, 453
1-connected, 326
one-parameter (sub)group, 41
operator

angular momentum, 165
bounded, 475, 689
intertwining, 475, 477
norm, 3
symmetric, 475, 691

orbit, 352
map, 283, 352, 356

orientability of Lie groups, 398
orientable manifold, 396
orientation

bundle, 396
defined by a basis, 672
of bases, 395
of charts, 396
of homogeneous spaces, 398
of manifolds, 396
of vector spaces, 671
opposite, 671
preserving

diffeomorphism, 398
map, 672

reversing map, 672
oriented

vector space, 671
negatively, 671
positively, 671
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orthogonal
group, 5, 232, 597

indefinite, 242
Lie algebra, 75
reflection, 26, 27
space, 14

oscillator
algebra, 79, 541
representation, 140

outer automorphism, 620

pairing
on two vector spaces, 143

Palais, Richard (∗1931), 411
paracompact, 388
parallelizable, 276
parallelogram equation, 691, 693
parameter lines, 237
parameterization, 236
partial

derivative, 223
partition of unity, 389

subordinate to a cover, 389
path, 641

lifting property, 646
PBW

basis, 164
theorem, 164

perfect
Lie algebra, 108

periodicity
for Clifford algebras, 687

Pfaff, Johann Friedrich (1765–1825),
246

Pfaffian
form, 372

on a manifold, 246
ϕ-basic

forms, 258
vector fields, 257

ϕ-basis
for T alg

p (M), 249
for one-forms, 372
for tensor fields, 372

ϕ-relatedness, 255
piecewise smooth curve, 239
pin group, 684
pinning, 487
Poincaré

group
concrete, 22
proper, 23

lemma, 386
Poincaré, Henri (1854–1912), 22, 164,

386
Poisson bracket, 83
Poisson, Siméon (1781–1840), 83
polar decomposition

for linear real algebraic groups, 67
of GLn(K), 6
of linearly real reductive Lie groups,

580
polarization identity, 695
positive

definite
hermitian form, 691
matrix, 5

density, 388
linear functional, 391
root, 153
system of roots, 154

principal
crossed homomorphism, 188
fiber bundle, 365

product
Baer, 631
exterior, 381
formula

for Lie groups, 295
Trotter, 52

interior, 383
of manifolds, 237
on Lie algebra cochains, 213
rule, for logarithmic derivatives, 303,

413
wedge, 381

projection
stereographic, 229

projective
line, 236
plane, 236
quadric, 613
space

real, 236
pull-back

of a density, 392
of a differential form, 384
of a form, 246
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of a multilinear map, 670
of a section, 376
of a vector-field by a diffeomorphism,

376
of tensor fields, 378

quadratic space, 612, 674
quadric, 231

projective, 613
quaternion, 27, 680

group, 467
quaternionic

general linear group, 29
inner product, 30
special linear group, 29
unitary group, 30

quotient
Lie algebra, 78
Lie group, 424
map

between topological spaces, 240
rule, for logarithmic derivatives, 303,

413

radical
of a bilinear form, 107
of a Lie algebra, 97
of a Lie group, 582

rank
maximal, 484
of a compact Lie group, 481
of a finitely generated abelian group,

551
of a Lie algebra, 131

real form
of a Lie algebra, 81, 502

compact, 505
reductive

Lie algebra, 121
Lie group

complex, 565
complex linearly, 565
real linearly, 578

refinement
of covers, 388

reflection, 150
regular

element
and Cartan subalgebras, 131

of a compact Lie group, 492
of a Lie algebra, 131

points of expG, 304
representation, 476
value, 230, 274
w.r.t. a root system, 153

relatedness, 255
representation

adjoint, 48, 61, 77, 298
completely reducible, 78
derived, 60, 298
faithful, 84, 181

finite dimensional, 586
holomorphic, 556
irreducible, 78
nilpotent, 99
of a group, 60
of a Lie algebra, 60, 74, 298
of a Lie group, 298
regular, 476
unitary, 475

representatives for an action, 352
residually nilpotent Lie algebra, 88
residually solvable Lie algebra, 104
right action, 283
root

lattice, 482, 485
negative, 153
of a Lie algebra, 127
of a maximal torus, 482
ordering, 153, 174
positive, 153
simple, 153
space, 127, 512

decomposition, 129
of a maximal torus, 482

system, 151, 512
An, 147
Bn, 148
Cn, 149, 150
Dn, 148
dual, 157
reduced, 151

Sard, Arthur (1909–1980), 275
Scheerer, H. (∗????), 466
Schur’s Lemma, 502
Schur, Issai (1875–1941), 502
second countable topological space, 275
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section, 253
of a fiber bundle, 368
of a Lie group extension, 622

normalized, 622
of a quotient map, 358
of a vector bundle, 364
of an extension, 621

semidirect
product, 19

of Lie groups, 300, 431
sum of Lie algebras, 79, 431

semilocally simply connected, 649
semisimple

endomorphism, 89
Jordan component, 91
Lie algebra, 105
Lie algebra module, 77
Lie group, 459
submodule, 529

series
central, 85
descending, 96
Hölder, 99
Jordan–Hölder, 119

Serre
relations, 166
theorem, 172

Serre, Jean-Pierre (∗1926), 166
sesquilinear form, 16
short exact sequence

of g-modules, 196
of Lie algebras, 193

shuffle permutation, 381
σ-compact, 388
signature

homomorphism, 660
of a flag, 361

simple
group, 11
Lie algebra, 105
Lie algebra module, 77
Lie group, 459
root, 153

simplex, 187
simply connected, 643

covering
existence, 649
group, 322
uniqueness, 649

semilocally, 649
singular

element
of a compact Lie group, 492

points of expG, 304
value, 230, 274
w.r.t. a root system, 153

skew field, 27
sl2-triple, 165
sl2(K)-modules, 136
smooth

action, 283
of R, 268

contraction, 386
curve, 238
isomorphism, 238
map, 223, 238, 239

Diff(M)-valued, 412
structure, 227

on T (M), 245
solvable

group, 435
Lie algebra, 96
Lie group, 440

special
linear group, 5
linear Lie algebra, 75
orthogonal group, 5
unitary group, 5

sphere, 228
spin group, 684
split

endomorphism, 89
extension, 620
Lie algebra, 173

splitting
Cartan algebra, 129
theorem

for topological groups, 458
stabilizer, 353
stereographic projection, 229
string property, 140
structure

group of a principal bundle, 365
of Lie groups with compact Lie

algebra, 460
su2-triple, 471
subgroup

of T2, 315
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of Zn, 549
of maximal rank, 484
torsion, 551

submanifold, 272
chart, 230
immersed, 272
initial, 272
of Rn, 230
tangent spaces, 274

submersion, 247
submultiplicative norm, 34
surface, 236
symmetric

algebra, 661
multilinear map, 225
operator, 475, 691
power, 659

symplectic
group, 16, 242, 600

compact, 600
Lie algebra, 75

odd, 149

tangent
bundle, 243
space

algebraic version, 248
geometric version, 242
of submanifolds, 274
physicists’ definition, 262

vector, 242
physicists’ definition, 262

Taylor formula, 226
Taylor, Brook (1685–1731), 226
tensor

algebra, 656, 657
bundle, 371
field, 371

ϕ-basic, 372
algebraic interpretation, 372

product, 653
k-fold, 655
existence, 654, 655
graded, 677
of multilinear maps, 667
uniqueness, 653

theorem
Hofmann–Scheerer splitting, 466
Ado, 181

Ascoli, 690
automatic smoothness, 296
Cartan

decomposition, 499
semisimplicity criterion, 107
solvability criterion, 102

characterization of linearly complex
reductive groups 1, 565
reductive groups 2, 574

closed integral subgroup – criteria,
545

closed subgroup, 311
conjugacy of Cartan subalgebras, 204
covering homotopy, 647
Dixmier, 540
Engel

characterization of nilpotent Lie
algebras, 87

on linear Lie algebras, 86
existence

and uniqueness of integral curves,
264

of a universal complexification, 557
of faithful finite-dimensional

representations, 586
of simply connected coverings, 649

Fubini, 393
fundamental theorem on the center,

525
Hadamard’s Lemma, 249
highest weight, 179
Hilton’s Lemma, 644
homotopy

group, 429
lemma, 385

implicit function, 225
initial subgroup, 347
integrability of Lie algebra homomor-

phisms, 331
integral subgroup, 323
integrals with parameters, 394
inverse function, 224

for manifolds, 253
Levi, 116
Lie, 99
Lie’s third, 325, 421
lifting, 648

for groups, 327
linearity of compact Lie groups, 479
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local-global for nilpotent Lie groups,
437

Malcev, 119
manifold splitting

first, 532
second, 534

maximal compact subgroups, 521
and normal subgroups, 535

maximal tori, 464
no small subgroups, 41
one-parameter group, 41, 296
open mapping for Lie groups, 425
Palais, 411
path lifting, 646
Poincaré Lemma, 386
Poincaré–Birkhoff–Witt, 164
quotients by closed normal subgroups,

424
recognition of complexifications, 563
regular value

global version, 274
local version, 230

related vector field lemma, 256
root string lemma, 145
Sard, 275
Serre, 172
sl2(K), 144
sl2(K)-modules, 140
smooth dependence, 269
smooth splitting for Lie groups, 432
splitting, 458
structure

of finitely generated abelian groups,
550

of Lie groups with compact Lie
algebra, 460

of nilpotent Lie groups, 439
Taylor, 226
torus splitting lemma, 458
uniqueness lemma for logarithmic

derivatives, 303
unitarity lemma for compact groups,

406
Weyl

Lie groups with simple compact Lie
algebra, 459

on complete reducibility, 113, 512
unitary trick, 566

Whitehead

first lemma, 199
second lemma, 199
vanishing, 202

Yamabe, 339
topological group, x, 4
toral Cartan subalgebra, 129
toroidal complex Lie group, 573
torsion subgroup, 551
torus, 279

complex, 570
complexified, 565
splitting lemma, 458

total space
of a fiber bundle, 363

trace of an endomorphism, 75
transformation formula

for densities
global, 392
local, 387

transition function, 363
transitive action, 352
translation, 616
transvection, 26

symplectic, 26
trivial extension, 620
trivialization

local, 241
of a fiber bundle

local, 363
Trotter

product formula, 52
Trotter, Hale F. (∗1931), 52
type of a tensor, 371
typical fiber, 241, 363

of a fiber bundle, 362

unimodular, 402
Lie algebra, 198

unipotent matrix, 43
unit lattice

of a maximal torus, 481
unitary

group, 5, 475, 595
abstract, 17
indefinite, 17

Lie algebra, 75
representation, 475
trick, 566

universal
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complexification, 556
enveloping algebra, 160

universal property
Clifford algebra, 674
complexification, 556
enveloping algebra, 160
exterior algebra, 663
exterior power, 661
free Lie algebra, 167
free vector space, 654
submersion, 247
symmetric algebra, 661
symmetric power, 659
tensor algebra, 657
tensor product, 653
tensor product, k-fold, 655

vector
bundle, 363

morphism, 364
trivial, 364

field, 253
as derivation, 258
complete, 266
left invariant, 281
on a manifold, 258

nodal, 483
subbundle, 398

velocity field, 266
Verma module, 176
Verma, Daya-Nand (∗1932), 176
volume form, 672

and cohomology, 197
invariant, 398
on a manifold, 397
on a vector space, 671

wedge product, 381
weight

lattice, 177, 485
module, 181
of a group representation, 482
of a representation, 126
space, 126

generalized, 126
Weyl

chamber, 153
fundamental, 155

group, 469
algebraic, 471
analytic, 470, 471
for (g, h), 151
of a root system, 151

unitary trick, 566
Weyl group

affine, 489
Weyl, Hermann (1885–1955), 55, 113,

151, 349, 459
Whitehead, John H.C. (1904–1960),

199, 202
Wielandt, Helmut (1910–2001), 336
Witt, Ernst (1911–1991), 164

Yamabe, Hidehiko (1923–1960), 339


