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I report on a contribution to the point symmetry classification problem for second-order partial differential
equations (PDEs) in z(x, y), i.e. to an overview over all possible symmetry groups admitted by this class
of equations. The article also contains a concise introduction into classical symmetry analysis.

Sophus Lie (1842–1899) determined all continuous transformation groups of the 2D plane and gave
normal forms for any ordinary differential equation that is invariant under one of those groups. I deal with
the extension of Lie’s program to second-order PDEs in z(x, y). The starting point to this endeavour is
a previously unknown paper by Amaldi from 1901, which claims to have completed Lie’s classification
of groups acting in (x, y, z)-space. I also present a Maple procedure (‘LHSO1 PDE Solver’) for solving
systems of linear, homogeneous first-order PDEs that performs better on this class than Maple’s built-in
PDE system solver.

Keywords: differential invariants; Lie groups; (partial) differential equations; symmetry analysis; symme-
try group classification.

1. Introduction

In this paper, I report on a contribution (Hillgarter, 2002) to the point symmetry classification problem
for second-order partial differential equations (PDEs) in z(x, y), i.e. to an overview over all possible
symmetry groups admitted by this class of equations. In addition, Section 2 is written as a concise
introduction into classical symmetry analysis and hence addresses a broader readership, not necessarily
only readers interested in the remaining part.

The study of symmetries has been initiated by Sophus Lie (1842–1899). Roughly speaking, a sym-
metry group is a group of transformations that takes solutions to solutions. The symmetry classification
problem aims at obtaining a complete survey of all possible symmetries for a class of given differential
equations (DEs), e.g. DEs of a given order in a predetermined number of dependent and independent
variables. The starting point of this approach is a list of groups whose differential invariants determine
the general form of a DE that may be invariant under the respective group.

Lie determined all continuous transformation groups of the 2D plane (Lie, 1888) and gave normal
forms for any ordinary differential equation (ODE) that is invariant under one of those groups. Thereby,
higher order equations are given implicitly, since they can be derived recursively from the corresponding
equations of lower order. I deal with the extension of Lie’s program to second-order PDEs in z(x, y),
following the strategy given below.
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(1) List all finite continuous transformation groups of the (x, y, z)-space.

(2) Find the differential invariants of the groups given in (1) where z = z(x, y). For a given group,
the DEs invariant under this group are functions of these invariants.

The contributions in Hillgarter (2002) to the symmetry classification problem for second-order PDEs
in z = z(x, y) are as follows.

(1) A list containing all point transformation groups acting on (x, y, z)-space, based on the work of
Lie and Amaldi, with corrections and compact notation (see Section 3). This list can also serve
as the starting point for the symmetry classification problem for systems of ODEs in y = y(x),
z = z(x)!

(2) A complete overview over the differential invariants up to order two, with the exception of
Amaldi’s groups of type [B] (see Sections 4 and 5).

The paper by Amaldi (1901, 1902), which claims to have completed Lie’s classification of groups
acting in (x, y, z)-space, has been discovered by Fritz Schwarz. This work has not been referenced in the
modern symmetry group literature. Indeed, there are many statements that this classification problem is
still unsolved, and some have claimed that the problem is insoluble in principle.

Differential Invariants are solutions of a system of linear, homogeneous first-order PDEs. I imple-
mented a Maple procedure (‘LHSO1 PDE Solver’) for solving such systems by means of the narrowing
transformation, presented in Subsection 2.7 and Section 5.

In Section 6, I indicate some classical equations to be found among the computed invariants as well
as some comments on applications.

Concluding remarks are given in Section 7. There I show how to compute higher order invariants
from lower ones, and refer to some open problems. Several topics that would destroy the flow of presen-
tation have been moved to the appendix: lower invariants, basic notions for Lie algebras (LAs) of vector
fields (isomorphism and similarity) and systems of imprimitivity.

2. Basic concepts: symmetries of DEs

In this section, I introduce basic notions for symmetries of ODEs. These concepts extend to the case
of PDEs, too. I introduce transformation groups and their differential invariants, which determine the
invariant equations corresponding to the group. The differential invariants are solutions of a system of
PDEs, called the system of differential invariants. Our presentation follows partly Bluman & Kumei
(1996), Ibragimov (1999) and Schwarz (2005). Other recent textbooks on symmetry analysis are those
of Baumann (2000), Cantwell (2002) and Hydon (2000). A comprehensive reference for group analysis
of DEs in general is Ibragimov (1994–1996).

2.1 Transformation groups of DEs

Introducing new variables into a given (O)DE, as taught in standard university courses, is a widely
used method in order to facilitate the solution process. Usually this is done in an ad hoc manner without
guaranteed success. In particular, there is no criterion to decide whether a certain class of transformations
will lead to an integrable equation or not. A critical examination of these methods was the starting point
for Lie’s symmetry analysis. We will now have a look at the behaviour of DEs under special kinds of
transformations.
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Let an ODE of order n be given as

ω(x, y, y′, . . . , y(n)) = 0. (1)

The general solution of such an equation is a set of curves in the x-y-plane depending on n-parameters
C1, . . . , Cn , given by

Θ(x, y, C1, . . . , Cn) = 0. (2)

Invertible analytic transformations between two planes with coordinates x = (x, y) and u = (u, v),
respectively, that are of the form

u = T (x) = (σ (x), ρ(x)) (3)

are called point transformations. We will encounter them in the form of one-parameter groups of point
transformations

u = T (x,ε) = (σ (x,ε), ρ(x,ε)). (4)

Here the real parameter ε ranges over an open interval including 0, such that for any fixed value of ε,
(4) represents a point transformation. In addition, there exists a real group composition Φ such that

x1 = T (x0, ε0), x2 = T (x1, ε1) =⇒ x2 = T (x0, Φ(ε0, ε1)).

Group transformations of this kind may be reparametrized such that we have Φ(ε, ε̄) = ε + ε̄, and such
that ε = 0 represents the identity element.

Equation (1) is said to be invariant under the change of variables u = T (x) if it retains its form
under this transformation, i.e. if the functional dependence of the transformed equation on u is the
same as in the original equation (1), i.e. ω(u, v, v ′, . . . , v(n)) = 0, where v ′ = dv/du etc. Such a
transformation T is called a symmetry of the DE. The same transformation acts on the curves (2). If it
is a symmetry, the functional dependence of the transformed curves on u must be the same as in (2), i.e.
Θ(u, C̄1, . . . , C̄n) = 0. This is not necessarily true for the parameters C1, . . . , Cn because they do not
occur in the DE itself. This means, the entirety of curves described by the two equations is the same,
however, to any fixed values for the constants two different curves may correspond. In other words, the
solution curves are permuted among themselves by a symmetry transformation. It is fairly obvious that
all symmetry transformations of a given DE form a group, the symmetry group of that equation.

EXAMPLE 1 The following table illustrates the notions introduced above. Provided are three simple one-
parameter transformation groups in canonical parametrization and their invariant equations. Invariant
DEs are provided at a later stage. The last column is explained in the following subsection.

Name Transformation Invariant Equation Infinitesimal Generator
Translation u = x + ε, f (y) = 0 x = ∂x

v = y
Dilation u = eεx, f (x/y) = 0 X = x∂x + y∂y

v = eε y
Rotation u = cos(ε)x + sin(ε)y, f (x2 + y2) = 0 X = −y∂x + x∂y

v = −sin(ε)x + cos(ε)y
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2.2 Infinitesimal generators

A Taylor expansion of (4) around ε = 0 gives

u = x + ε
∂T

∂ε
(x, ε)|ε=0 + ε2

2

∂2T

∂2ε
(x, ε)|ε=0 + O(ε3).

The components of ξ(x) = (ξ(x), η(x)) := ∂T
∂ε (x, ε)|ε=0 are called infinitesimals of (4) and u = x +

εξ(x) is called the infinitesimal transformation of (4). From the infinitesimal generator

X = ξ(x)∂x + η(x)∂y , (5)

the original group u = T (x, ε) can be recovered as solution of the initial value problem

du
dε

= ξ(u), (u = x)|ε=0.

Formally, this solution is also given by the Lie series u = ∑∞
k=0

εk

k! Xkx. The infinitesimal generator
encodes the original transformation group in an economic way.

2.3 Multi-parameter groups

The definitions for one-parameter transformation groups (4) extend to the case of r -parameter groups
by simply replacing ε by ε = (ε1, . . . , εr ) and the real group composition Φ : R → R byΦΦΦ: Rr → R

r .
The main result sufficient to meet the needs of applied group analysis for practical constructions of
multi-parameter groups is as follows: let Lr be an r -dimensional vector space spanned by r generators
{X1, . . . , Xr }. The composition Tε = Tεr . . . Tε1 of r one-parameter groups of transformations Tεi

generated individually by each of the basis operators Xi via the Lie equations

du
dεi

= ξ(u), (u = x)|εi =0, 1 � i � r , (6)

is an r -parameter group Gr if and only if Lr is a LA. The definition of LAs of vector fields and related
basic notions are provided in the appendix.

EXAMPLE 2 We consider the 3D vector space spanned by L3 = {∂x , ∂y, y∂x }. Solution of the Lie equa-
tions (6) leads to Tε1(x, y) = (x + ε1, y), Tε2(x, y) = (x, y + ε2) and Tε3(x, y) = (x + ε3y, y).
Hence, the composition Tε = Tε3 Tε2 Tε1 , where ε = (ε1, ε2, ε3), has the form Tε(x, y) = (x +
ε3y + ε1 + ε2, y + ε2ε3). Consecutive application of Tε and Tδ , where δ = (δ1, δ2, δ3), yields the
transformation (TδTε)(x, y) = (x + y(ε3 + δ3) + ε2(ε3 + δ3) + δ2δ3 + ε1 + δ1, y + ε2 + δ2).
Now solving TδTε = Tγ , where γ = (γ1, γ2, γ3), for γ1, γ2, γ3 yields the group composition law
ΦΦΦ(ε, δ) = (Φ1(ε, δ),Φ2(ε, δ),Φ3(ε, δ)):

Φ1(ε, δ) = ε1 + δ1 − ε3δ2, Φ2(ε, δ) = ε2 + δ2, Φ3(ε, δ) = ε3 + δ3.

2.4 Prolongations

Let a curve in the x-plane described by y = f (x) be transformed under a point transformation of the
form (3) into v = g(u). Now the question arises as to how the derivative y′ = d f

dx corresponds to v ′ = dg
du

under this transformation. A simple calculation leads to the first prolongation

v ′ = dv

du
= ρx + ρy y′

σx + σy y′ ≡ χ(x, y, y′).
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Note that the knowledge of (x, y, y′) and the equations of the point transformation (3) already determine
v ′ uniquely, and the knowledge of the equation of the curve is not required. This may be expressed by
saying that the line element (x, y, y′) is transformed into the line element (u, v, v ′) under the action of
a point transformation. Similarly, the transformation law for derivatives of second order is obtained as

v ′′ = dv ′

du
=

χx + χy y′ + χ
y
′ y′′

σx + σy y′ .

For later applications it would be useful to express the second derivative v ′′ explicitly in terms of σ
and ρ. This more lengthy formula has not been provided here, so instead the prolongation formulas
for one-parameter groups of point transformations are given below. The transformation properties of
the derivatives are expressed in terms of the prolongations of the infinitesimal generator (5). These
prolongations are defined via the operator of total differentiation w.r.t. x

Dx ≡ ∂x +
∑
k�1

y(k)∂y(k−1) ,

as

X (n) = X +
n∑

k=1

ζ (k)(y′, . . . , y(k))∂y(k) , n � 1, where

ζ (1) = Dx (η) − y′Dx (ξ),

ζ (k) = Dx (ζ
(k−1)) − y(k)Dx (ξ), k � 2.

The two lowest ζ ’s are given explicitly:

ζ (1) = ηx + (ηy − ξx )y′ − ξy y′2,

ζ (2) = ηxx + (2ηxy − ξxx )y′ + (ηyy − 2ξxy)y′2

− ξyy y′3 + (ηy − 2ξx )y′′ − 3ξy y′y′′.

These two innocent looking expressions should not divert from the fact that the number of terms in ζ (k)

grows roughly as 2k . But ζ (k) is at least linear and homogeneous in ξ(x) and η(x) and its derivatives
up to order k. In addition, ζ (k) does not depend explicitly on x and y but only on y′, y′′, . . . , y(k). For
k > 1, y(k) occurs linearly and y′ occurs with power k + 1 in ζ (k).

EXAMPLE 3 The infinitesimal generator of the canonical rotation given in Example 1 was X = −y∂x +
x∂y . By ζ (1) = Dx (η) − y′Dx (ξ) = Dx (x) − y′Dx (−y) = 1 + y′2 we obtain X (1) = X + ζ (1)∂y′ =
−y∂x + x∂y + (1 + y′2)∂y′ . The first-order prolongations for the canonical translation and dilation are
trivial, i.e. ζ (1) = 0.

2.5 The system of differential invariants

Consider an r -parameter plane group G = {X1, . . . , Xr } represented by r infinitesimal generators Xi =
ξi (x)∂x + ηi (x)∂y , i = 1, . . . , r . Their m-th order prolongations

X (m)
i = Xi +

m∑
k=1

ζ
(k)
i ∂y(k) , i = 1, . . . , r
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determine the system of differential invariants

X (m)
i Φ ≡ 0, i = 1, . . . , r . (7)

Lie has discussed these systems in detail, for a recent presentation see Schwarz (2005). The group
property guarantees that (7) is a complete system for Φ with d := m + 2 − r fundamental solutions

Φi (x, y, y′, . . . , y(m)), i = 1, . . . , d,

called differential invariants of order m. They are linear in the highest derivative. Any ODE f (x, y,
y′, . . . , y(m)) = 0 invariant under G in the actual variables can be written as

f = F(Φ1, . . . , Φd),

where F is an arbitrary function depending on d arguments. System (7) may be brought into Jacobian
normal form, an analog of the triangular form for matrices, before attempting to solve it. The depend-
encies of the fundamental solutions may then be chosen such that Φ1 ≡ Φ1(x, y, y′, . . . , y(r−1)), Φ2 ≡
Φ2(x, y, y′, . . . , y(r)), . . ., Φd ≡ Φd(x, y, y′, . . . , y(m)).

EXAMPLE 4 The following table provides the first-order differential invariants for the three canonical
transformation groups considered before.

Name X (1) First-order invariants X (1)Φ = 0
Translation ∂x y, y′
Dilation x∂x + y∂y x/y, y′
Rotation −y∂x + x∂y + (1 + y′2)∂y′ x2 + y2, arctan

( x
y

) + arctan(y′)

EXAMPLE 5 We consider the three-parameter transformation group G3 acting on the (x, y)-plane rep-
resented by L3 = {∂x , ∂y, y∂x } from Example 2. Prolongation of its generators up to the third order
yields the following system of differential invariants:

0 = ∂xΦ = ∂yΦ = (y∂x − y′2∂y′ − 3y′y′′∂y′′ − (3y′′2 + 4y′y′′′)∂y′′′)Φ.

Using some strategy for solving systems of linear PDEs (compare Subsection 2.7) we might arrive at
the following two fundamental solutions:

Φ1 ≡ y′′/y′3, Φ2 ≡ (y′y′′′ − 3y′′2)/y′5.

The DEs of order not higher than three that have the respective Lie group G as symmetry group have
the general form F(Φ1, Φ2).

2.6 Symmetries of PDEs

All concepts and notions discussed in the preceding subsections extend to the case of PDEs, too. The
only difference is that we deal with one dependent and n independent variables, i.e. x = (x1, . . . , xn, u).
Partial derivatives ∂xi1

. . . ∂xik
u are represented by formal variables ui1...ik , called differential indetermi-

nates. They are symmetric in their indices. The differential variables of order k are denoted by u(k).
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The k-th Prolongation of an infinitesimal generator

X =
n∑

i=1

ξi (x)∂xi + η(x)∂u

is given by

X (k) = X +
n∑

i=1

ζi (u(1))∂ui + · · · +
∑

i1i2...ik

ζi1i2...ik (u
(1), . . . , u(k))∂ui1i2 ...ik

,

where recursive formulas for the extended infinitesimals ζi1i2...ik are given in terms of the operators of
total differentiation w.r.t. the variables xi

Di = ∂

∂xi
+

∑
k�1

∑
i1i2...ik

uii1...ik
∂

∂ui1...ik
, (8)

by

ζi = Diη −
n∑

j=1

(Diξ j )u j , 1 � i � n, (9)

ζi1i2...ik = Dik ζi1i2...ik−1 −
n∑

j=1

(Dik ξ j )ui1i2...ik−1 j , (10)

where k � 2. Specializing to the case of one dependent variable z and two independent variables x, y,
the second-order prolongation of

X = ξ1(x, y, z)∂x + ξ2(x, y, z)∂y + η(x, y, z)∂z

is given by

X (2) = X + ζ1∂x + ζ2∂y + ζ11∂xx + ζ12∂xy + ζ22∂yy,

where the extended infinitesimals ζ1(z(1)), ζ2(z(1)), ζ11(z(1), z(2)), ζ12(z(1), z(2)), ζ22(z(1), z(2)), with
z(1) = (zx , zy), z(2) = (zxx , zxy, zyy), can be computed by (9) and (10). Explicit formulas can be found,
e.g. in Bluman & Kumei (1996), Hillgarter (2002), Ibragimov (1999) and Olver (1993).

EXAMPLE 6 Consider the six-parameter group denoted in Hillgarter (2002) by

ip22 = {∂x , ∂y, x∂y, x∂x − y∂y, y∂x , x∂x + y∂y + ∂z}.
It is taken from Lie’s listing of imprimitive groups acting on (x, y, z)-space. Prolongations up to order
two leads to the following extended generators:

∂x , ∂y, x∂y − zy∂zx − 2zxy∂zxx − zyy∂zxy ,

x∂x − y∂y − zx∂zx + zy∂zy − 2zxx∂zxx + 2zyy∂zyy ,

y∂x − zx∂zy − zxx∂zxy − 2zxy∂zyy ,

x∂x + y∂y + ∂z − zx∂zx − zy∂zy − 2zxx∂zxx − 2zxy∂zxy − 2zyy∂zyy .
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2.7 Solving systems of differential invariants

The infinitesimal generators Xk = ∑r
i=1 ξi (x)∂xi , for k = 1, . . . , r , corresponding to a point trans-

formation group form an LA and hence satisfy [Xi , X j ] = ∑r
k=1 ci, j,k Xk , for some constants ci, j,k ,

compare Appendix B.1. The same is true for their prolongations, i.e. [X (m)
i , X (m)

j ] = ∑r
k=1 ci, j,k X (m)

k .

Hence, the corresponding system of differential invariants X (m)
k Φ ≡ 0, for k = 1, . . . , r is complete,

i.e. it satisfies the integrability conditions

[X (m)
i , X (m)

j ] =
r∑

k=1

hi, j,k(x)X (m)
k , i, j = 1, . . . , r,

with constant coefficients hi, j,k(x) = ci, j,k . We introduce narrowing transformation for solving such
systems of linear homogeneous first-order PDEs

XkΦ ≡ 0, Xk =
n∑

i=1

ξk,i (x)∂xi , k = 1, . . . , r, (11)

where x = (x1, . . . , xn), and the ξk,i are continuous. The idea is to reduce this problem to solving sin-
gle linear homogeneous PDEs, compare Kamke (1965). More precisely, suppose that we know n − 1
functionally independent solutions1 Ψ1(x), . . . , Ψn−1(x) for the r -th equation. Then we have for an
arbitrary continuously differentiable function ζ(y1, . . . , yn−1) that ζ(Ψ1(x), . . . , Ψn−1(x)) forms an in-
tegral of the m-th equation, too. One may now try to narrow down the domain of functions ζ in such a
way that ζ(Ψ1(x), . . . , Ψn−1(x)) also satisfies the remaining DEs of the system (11). For this purpose,
z(x) = ζ(y1, . . . , yn−1) is plugged via the assumption

y = (y1, . . . , yn) = (Ψ1(x), . . . , Ψn−1(x), xn) =: T (x),

into (11), thereby trying to get a system of DEs for ζ(y1, . . . , yn−1). Working out the details shows
that the integrals of (11) are exactly those functions z(x) = ζ(Ψ1, . . . , Ψn−1) where ζ runs through the
solutions of the system (

n−1∑
i=1

fk,i (y)∂yi

)
ζ = 0, k = 1, . . . , r − 1, (12)

where fk,i (y) := Xk(Ψi )|x=T −1(y). System (12) satisfies the integrability conditions and contains r − 1
equations in n − 1 variables (the identical component xn = yn only serves as a dummy). By a recursive
application of this reduction, we will obtain a fundamental system for (11).

I implemented a Maple procedure2 (‘LHSO1 PDE Solver’) for solving systems of linear homoge-
neous first-order PDEs by means of the narrowing transformation. The need arose since Maple (version

1We assume that Ψ1, . . . , Ψn−1 are twice continuously differentiable functions with

∂(Ψ 1, . . . , Ψ n−1)

∂(x1, . . . , xn−1)
�= 0.

.
2Actually, there is a wealth of software for the computation of the Lie symmetries of a given (system) of equation(s) (Hereman,

1996; Butcher et al., 2003) but the reverse problem of computing invariant equations from given symmetries has received much
less attendance.
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five) did not handle systems of PDEs when I started computing invariants. In between, since version
seven, Maple can deal with systems of PDEs via pdsolve but performs weaker on the indicated class
of equations (it is generally slower and cannot handle several examples that LHSO1 PDE Solver does).
The same is true for the newest routines of pdesolve (written by E. Cheb-Terrab) in version nine. The
computation of differential invariants of order two corresponding to the space group ip22 introduced is
demonstrated in Example 6. The procedure PDEInvariants sets up the system of differential invariants
and solves it by means of LHSO1 PDE Solver.

> read ‘C:/Maple Files/PDEInvariants.mpl‘;
> read ‘C:/Maple Files/LieGroups.mpl‘;

> Gr := IP22;

Gr := [Dx, Dy, x Dy, x Dx − yDy, yDx, x Dx + yDy + Dz]

> Sol := PDEInvariants(Gr,[],2);

6, 8, 6

[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]

Sol := [(z2
x zyy − 2zx zyzxy + z2

yzxx )e(4z), (−zxx zyy + z2
xy)e

(4z)]

In this example, the arguments of PDEInvariants are first a list of generators representing the group,
second an empty list indicating that no special options are chosen and finally an integer indicating the
maximal order of any differential invariant to be computed. The final output assigned to Sol is a list con-
taining a basis of differential invariants up to order two for ip22. The intermediate output 6, 8, 6 denotes
the number of equations, the number of variables and the number of unconnected equations in the system
of differential invariants, respectively. Finally, each list of six zeros in [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
represents the result of plugging an element of Sol into the six equations of the system of differential
invariants. This test assures that everything evaluates to zero.

3. The groups of the (x, y, z)-space

Lie used the term type of a point group for the full equivalence class of the respective group w.r.t. point
transformations. Therefore, the type is completely determined by providing a canonical representative
for the class. The group classification of ODEs f (x, y, y′, . . . , y(m)) = 0 in Lie (1888) is based on the
enumeration of all possible LAs (infinitesimal groups in Lie’s terminology) in the (x, y)-plane. These
algebras are maximally simplified by a proper choice of bases and by means of a suitable change of
variables. Associated with these two types of simplifying transformations are two distinctly different
notions: isomorphic and similar LAs, compare Appendix B.2 for more details.

In this section, the notation x = (x, y, z) is used. We are concerned with the point groups of the
x-space. They are divided into primitive groups and three categories of imprimitive groups (compare
Appendix C for this notion). The first two categories of imprimitive groups are given by Lie (1970a,b)
and the third (and by far the largest one) was given by Amaldi (1901, 1902). These three categories are
not claimed to be disjoint, but to represent a complete overview. The listing given in Hillgarter (2002)
includes corrections and features like the group size; it is the basis for the classification problem for
PDEs in z(x, y).

The following subsections deal with conventions on notation, Lie’s primitive groups, Lie’s two cat-
egories of imprimitive groups and Amaldi’s category of imprimitive groups.
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3.1 Notation

In this subsection, I present some notation introduced in Hillgarter (2002) to simplify the presentation
of space groups.

For an integer variable v and an integer constant or variable n we write v → n, for v = 1, . . . , n.
We write v →∗ n, for v = 0, . . . , n. For a term t , we denote by tu

v=l the list t[v = l], t[v = l +
1], . . . , t[v = u]. Similarly, by t v̄=l̄,...,ū

v=l,...,u we denote t[v = l, v̄ = l̄], . . . , t[v = l, v̄ = ū], . . . , t[v =
u, v̄ = l̄], . . . , t[v = u, v̄ = ū]. Also several multi-parameter ranges are allowed, e.g. tk→l

i→m, j→n .

Hence, we have, e.g. {(xi∂y + i xi−1∂z)
s
i=0} = {∂y, x∂y + ∂z, . . . , xs∂y + sxs−1∂z} and {(xi y j )

j→n
i→m} =

{xy, . . . , xyn, x2y, . . . , x2yn, . . . , xm y, . . . , xm yn}.
For a truth value formula b, we denote by [b] the truth value of b w.r.t. its actual arguments, e.g.

[i � t] = 1 if i � t , [i � t] = 0 otherwise. For a generator g = ξ1∂x + ξ2∂y + ξ3∂z and v ∈ {x, y, z}
we denote by gv the generator received by applying the operator ∂v to the coefficients of g, e.g. gx =
2x∂x + sy∂y + (s − 2)z∂z for g := x2∂x + sxy∂y + [(s − 2)zx + sy]∂z .

3.2 The (x, y, z)-space groups

Lie gave a partial classification of the point groups of the x-space. Among them are all primitive space
groups. Any primitive r -parameter group Gr of the x-space is also transitive (Lie, 1970b, p. 221), and
hence contains an (r − 3)-parameter subgroup Gr−3 that leaves an arbitrary point x0 = (x0, y0, z0) in-
variant. We can w.l.o.g.3 assume x0 = (0, 0, 0), and hence the generators of this linear and homogeneous
group Gr−3 are of the form

Xi = (λi · x)∂x + (µi · x)∂y + (ηi · x)∂z , i = 1, . . . , r − 3,

where λi , µi , ηi are (vector) constants and ‘·’ denotes scalar multiplication. If we regard the projective
tangent space of the x-space, denoted by dx = (dx :dy:dz), as being transformed under Gr−3, there are
three possible cases4 (Lie, 1970b, p. 94).

(I) Gr−3 acts on this projective space as an eight-parameter group.

(II) Gr−3 acts on this projective space as the most general three-parameter group leaving a certain
non-degenerate conic of degree 2 invariant.

(III) Gr−3 leaves a linear complex through x0 invariant.

The table on the next page gives an overview of the structure and geometry of the eight arising
groups.

Here IC7 := dz2+y2dx2+x2dy2+(4z−2xy)dxdy−2xdydz−2ydzdx , and S. T. denotes ‘similarity
transformations’. The listing given below is taken from Chapter 7 in Lie (1970b, ‘Bestimmung aller
primitiven Gruppen des dreifach ausgedehnten Raumes’). The presentation follows (Hillgarter, 2002).
Let G := {∂x , ∂y, ∂z}.

p1: G ∪ {(u∂v){u,v}={x,y,z}, (u2∂u + uv∂v + uw∂w){u,v,w}={x,y,z}}, size: 15.

p2: G ∪ {(u∂v){u,v}={x,y,z}}, size: 12.

3The two arising groups are isomorphic.
4Actually there are four cases, but the fourth one does not lead to a primitive group.
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Not. Type Name Invariant complex
p1 I General Projective Group
p2 I General Linear Group
p3 I Special Linear Group
p4 III Projective Group ydx − xdy − dz = 0
p5 II Euclidean Group dx2 + dy2 + dz2 = 0
p6 II Euclidean Group w. S. T. dx2 + dy2 + dz2 = 0
p7 II Non-Euclidean Group IC7 = 0, z − xz = 0
p8 II Conformal Group dx2 + dy2 + dz2 = 0

p3: G ∪ {(x∂x − v∂v)v=y,z, (v∂u, w∂u){u,v,w}={x,y,z}}, size: 11.

p4: {∂z, x∂y, y∂x , x∂x − y∂y, x∂x + y∂y + 2z∂z, z(x∂x + y∂y + z∂z), g, gz, ḡ, ḡz},
g := z∂x − y(x∂x + y∂y + z∂z), ḡ := z∂y + x(x∂x + y∂y + z∂z), size: 10.

p5: G ∪ {(u∂v − v∂u)(u,v)=(x,y),(x,z),(y,z)}, size: 6.

p6: {x∂x + y∂y + z∂z} ∪ p5, size: 7.

p7: {(∂u + v∂z){u,v}={x,y}, (v∂v + z∂z)v=x,y, (u2∂u + (xy − z)∂v + uz∂z){u,v}={x,y}},
size: 6.

p8: G ∪ {(u∂v − v∂u)(u,v)=(x,y),(x,z),(y,z), g, (2ug − S(x)∂v )(u,v)=(x,y),(x,z),(y,z)},
g := x∂x + y∂y + z∂z, S(x) := x2 + y2 + z2, size: 10.

3.3 The imprimitive (x, y, z)-groups given by Lie

In his partial classification of the point groups of the x-space, Lie divided the imprimitive groups into
three categories, according to their imprimitivity systems. He computed the groups of the first two
categories explicitly. The first category is characterized by an imprimitivity system of the form ϕ(x) =
const. The second category has two imprimitivity systems of the form ϕ(x) = const., ψ(x) = const.
that cannot be written as a system of surfaces of the form Ω(ϕ(x), ψ(x)) = const. Both categories
encompass 33 groups, most of them having a parameter-dependent size.

We do not repeat here the listing of these groups given in Hillgarter (2002); they were extracted
from Chapter 8 in Lie (1970b, ‘Bestimmung gewisser imprimitiver Gruppen des dreifach ausgedehnten
Raumes’).

3.4 The imprimitive (x, y, z)-groups given by Amaldi

The imprimitive point groups of the x-space belonging to the third category have two systems of im-
primitivity of the form ϕ(x) = const., ψ(x) = const. that can be written as a system of surfaces of the
form Ω(ϕ(x), ψ(x)) = const. The Italian mathematician Ugo Amaldi (1901, 1902) explicitly computed
the representatives by a method proposed by Lie (1970b). The main result is that there are four different
types of groups of the form presented in the following table.

Here j = 1, 2, . . . , h > 0 and ξi (x)∂x + ηi (x, y)∂y for i = 1, 2, . . . , l are the generators of
the corresponding imprimitive (x, y)-plane group. In case [A], the ζi (x) are already determined by
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Type Generators
[A] ξi (x)∂x + ηi (x, y)∂y + ζi (x)∂z

[B] ξi (x)∂x + ηi (x, y)∂y + {ζi,1(x, y)z + ζi,2(x, y)}∂z, ϕ j (x, y)∂z

[C] ξi (x)∂x + ηi (x, y)∂y + ζi (x, y)z∂z, z∂z, ϕ j (x, y)∂z

[D] ξi (x)∂x + ηi (x, y)∂y, ∂z, z∂z, z2∂z

requiring that all commutators [Xi , X j ] belong to the linear hull L(X1, . . . , Xl). Amaldi also derived
some theorems concerning the functions ϕ j (x, y) that occur in types [B] and [C], compare pages 279–
282 in Amaldi (1901, 1902). This category of groups is actually much larger than the first two categories.

Amaldi’s listing of the imprimitive groups of the (x, y)-plane is not organized according to systems
of imprimitivity so that any parameter is given free variability and the number of groups is reduced to
the minimum. The listing encompasses 21 groups and basically looks like this:

ip1: {∂y, x∂y, . . . , xs∂y, ∂x , x∂x + cy∂y}, s � 1.

ip2: {∂y, x∂y, . . . , xs∂y, ∂x , x2∂x + sxy∂y, 2x∂x + sy∂y}, s � 1.

ip3: {∂y, x∂y, . . . , xs∂y, ∂x , x∂x + (sy + xs)∂y}, s � 1.
...
ip21: {(x j eai x∂y)

a0=0, a1=1
i→∗l, j→∗si

, y∂y, ∂x }, l � 0, l + ∑
si � 0.

The order in which the groups are listed has been chosen to shorten the calculations of x-space
groups. Where it was possible, any group Gl is followed by the minimal group Gl+t in which it is con-
tained. This has the advantage demonstrated in the following example. Group names are as in Hillgarter
(2002).

EXAMPLE 7 We consider the calculation of ip5,A, a space group where Amaldi’s calculation was
slightly erroneous. First of all we note that the plane groups

ip4 = {(xs∂y)
s
i=0, y∂y, ∂x , x∂x }, ip5 = ip4 ∪ {g}

differ only by one additional generator g := x2∂x +sxy∂y . We suppose to already know the space group
of type [A] corresponding to ip4:

ip4,A[s, t] =
{(

xi∂y + [i � t]

(
i

t

)
xi−t∂z

)s

i=0
, ∂x , y∂y + z∂z, x∂x − t z∂z

}
.

Let ḡ = g + ζ(x)∂z . It is now possible to make an ansatz for ip5,A of the form ip5,A[s, t] = ip4,A[s, t] ∪
{ḡ}. By considering [∂y, ḡ] = sx∂x + ζy(x)∂z , we conclude that the cases t > 1 are not possible
(this point was overlooked by Amaldi) and that ζy = s, i.e. ζ(x) = sy + ζ̄ (x, z). Now by [∂x , ḡ] =
2x∂x + sy∂y + ζ̄x∂z we conclude that ζ̄x = (s − 2)z, i.e. ζ̄ (x, z) = (s − 2)xz + ζ (z). Finally, by
[x∂y + ∂z, ḡ] = (s − 1)x2∂y + 2(s − 1)x∂z + ζ z∂z we infer that ζ z = 0, i.e. ζ (z) = C, w.l.o.g.
ζ (z) = 0. Hence, we have ḡ = g + (sy + (s − 2)xz)∂z and ip5,A[s] = ip4,A[s, 1] ∪ {ḡ} = {∂x , (xi∂y +
i xi−1∂z)

s
i=0, x∂x − z∂z, y∂y + z∂z, ḡ}.
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4. Differential invariants up to order two

A special chapter in Hillgarter (2002) is devoted to a listing of the differential invariants up to order
two for all space groups with less than eight generators (except for Amaldi’s groups of type [B]), for
groups that have more than seven generators we refer to the next section. Groups with less than eight
generators usually have a differential invariant basis. This is so because the number of variables V =
{x, y, z, zx , zy, zxx , zxy, zyy} involved in (7) is eight, so any n := 8 − r∗ functionally independent
solutions Ψ1(V ), . . . , Ψn(V ) of (7) form a basis of its solution space. Hence, any other solution of (7) has
the form F = Φ(Ψ1(V ), . . . , Ψn(V )), justifying the name differential invariant basis for Ψ1, . . . , Ψn .

The list is organized according to the derived series (compare Appendix B.1) of the LAs. Since
derived series are invariant under point transformations, this organization simplifies the identification
of a given group. The groups themselves are represented by the generators of the corresponding LAs
as usual. Groups with the same derived series are ordered according to the (Lie/Amaldi) class, their
number and their parameters. The scheme of presentation is

〈group identifier〉 = 〈generatorlist〉:〈invariant basis〉.
EXAMPLE 8 We take a look at one particular entry of the invariant list:

Derived Series (7, 4, 0)
...
ip11,C[L = [[0], [0], [0], [0]]] = {∂x , ∂y, z∂z, (eai x+bi y∂z)

4
i=1}: d1,2,3,4,6/d1,2,3,4,5.

Example 8 gives the differential invariant basis of a special instance of the group ip11,C = {∂x , ∂y,

z∂z, (xk yleam x+bm y∂z)
l→∗lm,k
m→p, k→∗km

}, whose parameters satisfy 0 � lm,km � lm,km−1 � · · · � lm,0. The

parameter-dependent size of this group is 3 + p + ∑p
m=1 km + ∑k→∗km

m→p lm,k . The special instance in
Example 8 occurs for the parameter choice p = 4, k1 = k2 = k3 = k4 = 0, l1,0 = l2,0 = l3,0 = l4,0 =
0. This parameter choice is encoded by the matrix L = [[l1,0], [l2,0], [l3,0], [l4,0]] = [[0], [0], [0], [0]],
whose number of lines and their length corresponds to p and ki + 1, respectively.

The single invariant indicated in Example 8 is defined via dJ := det([Di, j ]i→n
j=J ), where J :=

j1, . . . , jn and D := [[z, zx , zy, zxx , zxy, zyy], [1, ai , bi , a2
i , ai bi , b2

i ]5
i=1]. In particular, we have

d1,2,3,4,6

d1,2,3,4,5
= det

⎛
⎜⎜⎜⎜⎜⎜⎝

z zx zy zxx zyy

1 a1 b1 a2
1 b2

1

1 a2 b2 a2
2 b2

2

1 a3 b3 a2
3 b2

3

1 a5 b5 a2
5 b2

5

⎞
⎟⎟⎟⎟⎟⎟⎠

/
det

⎛
⎜⎜⎜⎜⎜⎜⎝

z zx zy zxx zyy

1 a1 b1 a2
1 b2

1

1 a2 b2 a2
2 b2

2

1 a3 b3 a2
3 b2

3

1 a4 b4 a2
4 b2

4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This expression alone would fill a page if written down explicitly as a quotient of differential poly-
nomials. Hence, expressions like dJ (that appear several times in the list) were defined for each
(Lie/Amaldi) class of groups in order to give a compact presentation of the invariant list. The expression
lists for Amaldi’s groups of type [A] and [C] became quite involved, encompassing roughly 70 and 90
definitions, respectively. I used some conventions to keep their presentation concise, too. For example,
if expression Hi contains a subexpression, that appears as Hj at some other place in the expression list
for the groups of type [A], we refer to Hj in order to shorten the presentation . The recursion depth
hereby usually is one, in a few cases it is two.
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EXAMPLE 9 We take a look at another particular entry of the invariant list:

Derived Series (4, 2, 0)
...
ip2

1,A[s = 1, t = 1] = {∂y, x∂y + ∂z, ∂x , x∂x + y∂y + c∂z}: H11, H12, H13, H14.
The last expression in the invariant basis is defined in dependence on other expressions as H14 :=
H18/z2

y + cH33(H39)a=2, where H18 := zxx + 2zzxy + z2zyy , H33 := log(zy), H39 := (czyy H33 +
aH35)/z2

y , H35 := zxy + zzyy .

Another convention used is that free variables in an invariant I match the parameters of the group
G, in case that I appears in the invariant basis of G. A simple case is demonstrated in the next example.

EXAMPLE 10 Consider an entry in the invariant list of the following form:

ip6,C[m = [1]] = {∂x , y∂y, x∂x , x2∂x + xy∂y + cxz∂z, z∂z, yc−1∂z, xyc−1∂z}: I29.

The convention implies that the invariant basis of ip6,C[m = [1]] consists of the single invariant

y2zyy − c2z + 3cz − 2z

yzy − cz + z
.

Example 10 deals with a special instance of the group ip6,C = {∂x , y∂y, x∂x , x2∂x+xy∂y + cxz∂z, z∂z,

(xm yc−m j ∂z)
m→∗m j
j→∗l }, whose parameters satisfy m j+1 > m j � 0. The parameter-dependent size of this

group is 6 + l + ∑l
j=0 m j . The special instance in Example 10 occurs for the parameter choice l = 0,

m0 = 1. This parameter choice is encoded by the vector m = [m0] = [1], whose length corresponds to
l + 1 in general. The expression I29 is defined as

I29 := y2zyy − c2z + (2m0 + 1)cz − m0(m0 + 1)z

yzy − cz + m0z
,

its free variable is m0. According to the convention, this free variable should match the parameters of
ip6,C[m = [m0]] = ip6,C[m = [1]]. This implies that the invariant under consideration is given by
I29[m0 = 1], which is just the expression indicated at the end of Example 10.

5. Lower invariants

Groups with more than seven parameters are treated in Chapter 5 of Hillgarter (2002). Included are
all types of (x, y, z)-space groups, except Amaldi’s groups of type [B]. The lower invariants5 were
usually indicated (see Appendix A); in those exceptional cases where the rank r∗ is less than eight, the
invariant basis is indicated. The listing is organized lexicographically according to the derived series of
the corresponding groups. To this end, the structure of any derived series is represented as a function of
the unknown group size, which is always denoted by n.

EXAMPLE 11 The group p3 has the derived series (11). Its lower invariants are found in a listing with
heading ‘Derived Series (n)’.

5In modern nomenclature, they can be regarded as 2D versions of Lie-determinants, compare Olver (1995). They are only
relatively invariant under the transformation group and hence do not represent elements of an invariant basis.
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For example, the lower invariant listing for Lie’s primitive (x, y, z)-space groups looks as follows.
The groups pi are defined in Section 3 and F1 := 1 + z2

x + z2
y, F2 := z2

xy − zxx zyy and F3 :=
z2

x zyy + z2
yzxx − 2zx zyzxy :

Derived Series (n)

p1, p2, p3: F2.

p4: F2, F3 + F,

F := zxx (x2 + 2xzy) + 2zxy(xy − xzx + yzy) + zyy(y2 − 2yzx ).

p8: F1, F2
3 + 2(F2 + z2

xy)F1 + F,

F := z2
xx (1 + 2z2

y) + z2
yy(1 + 2z2

x ) − 4zx zyzxy(zxx + zyy).

EXAMPLE 12 The computation of the lower invariants corresponding to p3 proceeds as indicated in
Appendix A. The determinant of the system of differential invariants specified there turns out to be
d = −8zx zy(zx zyy − zyzxy)F2. Among its four factors, only F2 = z2

xy − zxx zyy passes the test (A.2) in
Appendix A.

The MAPLE procedure PDEInvariants mentioned in Subsection 2.7 also handles the computation
of lower invariants; to this end the second argument has to be chosen as the list [d].

> read ‘C:/Maple Files/PDEInvariants.mpl‘;
> read ‘C:/Maple Files/LieGroups.mpl‘;

> Gr := P3;

Gr := [Dx, Dy, Dz, yDx, zDx, x Dy, zDy, x Dz, yDz, x Dx − yDy, x Dx − zDz]

> Sol := PDEInvariants(Gr,[d],2);

11, 8, 8

Sol := [z2
xy − zxx zyy]

The dependence of the derived series on the group parameters sometimes became quite complicated.
Group parameter-related numbers for several Amaldi Type C groups were defined; they serve to sim-
plify the presentation of derived series in the headings of the lower invariant listings. In the following
example, [·] denotes the truth value function [x] = 1, if x is true, [x] = 0 otherwise. If x is not a truth
value formula, the symbols ‘[’, ‘]’ simply denote square brackets.

EXAMPLE 13 For ip1,C(s, m) with parameters s � 0, m = [m0, . . . , ml ], where l, m j � 0 for j =
0, . . . , l and m j+1 � m j + s for j = 0, . . . , l − 1, we define, d := ∑l−1

i=0[mi+1 − mi > s], e :=
[s �= 0] ·max

(
0,

∑l−1
i=0 mi + (s −1)(l − [m0 = 0])+∑l−2

i=0[mi+1 −mi = s]
)
. One of the lower invariant
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listings that contains instances of ip1,C looks as follows:

Derived Series (n, n − 2, n − 5 − d, e, 0)
ip1,C[s = 0, m = [0, m], m > 1]: zxy, zyy .
...

This reads as follows: under this heading, only groups with derived series (n, n − 2, n − 5 − d, e, 0) for
some 0 � e � d � n − 5 are listed; for each such group their parameter values determine the concrete
values for d, e as defined above.

6. Classical equations, applications

In this section, we discuss some classical equations that appear in the invariant list of Hillgarter (2002)
(Burgers equation and the Korteweg de Vries equation). We also present a specific example (the pipe
current energy equation) chosen from the vast amount of possible applications of symmetry analysis
to second-order PDEs. Generally, applications of Lie groups to DEs include reduction of order for
ODEs, mapping solutions to other solutions, reduction of the number of independent variables of PDEs,
construction of invariant solutions (also for boundary value problems), construction of conservation
laws, detection of linearizing transformations of DEs and many other applications (Bluman & Kumei,
1996; Ibragimov, 1994–1996, 1999; Hydon, 2000; Olver, 1993; Steeb, 1996; Stephani, 1990). The last
30 years have seen a huge resurgence in interest of the application of Lie groups to DEs. Indeed, Daniel
Zwillinger (1998) in his Handbook of Differential Equations remarks: ‘Lie groups analysis is the most
useful and general of all the techniques presented in this book’.

6.1 Classical equations

The Burgers equation zx + zzy + zyy = 0 appears among the invariants of ip1
2,A[s = 1], a group with

derived series (5):

ip1
2,A[s = 1] = {∂y, x∂y + ∂z, ∂x , 2x∂x + y∂y − z∂z, x2∂x + xy∂y + (−xz + y)∂z}:

H21, H22, H34/zyy .

Adding the constant 1 to the third invariant basis element gives the Burgers equation divided by zyy :
H34/zyy +1 = (zx +zzy)/zyy +1 = 0. The Korteweg de Vries equation zx = zzy +zyyy was considered
the first time in the context of soliton solutions; its symmetry group is similar to

ip1
1,A[s = 1, t = 1] = {∂y, x∂y + ∂z, ∂x , x∂x + cy∂y + (c − 1)z∂z}

for c = 1
3 , a group with derived series (4, 3, 1, 0).

6.2 Other applications

I recently came across the pipe flow energy equation

(A − Br2)
∂T

∂z
+ ∂2T

∂z2
+ 1

r

∂

∂r

(
r
∂T

∂r

)
= (C − Dr2), (13)

where T = T (r, z), r > 0 and A, B, C, D > 0 are constant parameters. In order to study the dependence
of solutions on the parameters, an analysable symbolic solution would be helpful. The symmetries of
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(13) are {X1, X2, X3} = {F(r, z)∂T , T ∂T , ∂z}, where F(r, z) satisfies (13) with the right-hand side
multiplied by an arbitrary constant. The commutator table of this group is

⎡
⎣ 0 X1 −Fz(r, z)∂T

−X1 0 0
Fz(r, z)∂T 0 0

⎤
⎦ .

If we request the LA to be 3D via Fz(r, z) = cF(r, z), we obtain6 F(r, z) = f (r)ecz . Plugging this
similarity solution into (13) gives

ecz[r f ′′(r) + f ′(r) + c(Ar − Br3 + cr) f (r)] − Cr + Dr3 = 0,

i.e. we receive a second-order ODE for f (r). Its general solution can be found and expressed in terms
of WhittakerM and WhittakerW functions.

Some further directions of possible applications could be analysis of Darboux integrability of PDEs
in two variables (Anderson & Kamran, 1997; Sokolov & Zhiber, 1995) and the classification of first-
order differential operators (Draisma, 2003) with applications in quantum mechanics.

7. Related questions, outlook

In this last section, I show how to compute higher order invariants and finally mention the steps necessary
to complete the symmetry classification for the considered class of PDEs.

7.1 Higher invariants

In this subsection, I explain why it suffices in principle to list the differential invariants of lower order.
Lie (1888) gave for each transformation group of the (x, y)-plane the two lowest invariants Φ1 and Φ2.
The higher order ones may then be obtained recursively by differentiation according to Φ j = Φ ′

j−1/Φ
′
1,

for j � 3. The generalization to the higher dimensional case is given (Tresse, 1884; Ovsiannikov,
1982) in modern language as follows: let Gr be any r -parameter group of point transformations with
infinitesimal generators

Xl =
n∑

i=1

ξl,i (x, u)
∂

∂xi
+

m∑
j=1

ηl, j (x, u)
∂

∂u j
, l = 1, . . . , r ,

where x = (x1, . . . , xn), u = (u1, . . . , um). Then there exist n independent invariant derivations (oper-
ators that transform invariants into higher order ones) D j = ∑n

i=1 λi (x, u, u(1), u(2), . . .)Di , where Di

is the operator of total differentiation w.r.t. xi (8), and the λi are differential functions determined by

X (k)
l (λi ) =

n∑
j=1

λ j D j (ξl,i ), i = 1, . . . , n, l = 1, . . . , r, (14)

6In Hillgarter (2002), this 3D symmetry group appears among the groups with derived series (3, 1, 0) as ip9,C[L = [[1]]] =
{∂y , z∂z , Ψ1,1(x)ec1 y∂z}.
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for a sufficiently high7 k. That way, differential invariant bases of higher order can be produced from
lower order ones.

EXAMPLE 14 The group ip2
15,A, a group with derived series (4, 3), whose differential invariants up to

order two are given (Hillgarter, 2002) by

ip2
15,A = {∂x , ∂y, y∂y, y2∂y}: z, zx , zxx , zy/zxy is considered.

These invariants were computed by solving the system of differential invariants (7). To compute n = 2
independent invariant derivations of the form λ1 Dx + λ2 Dy , we set up the system (14) for8 λ1 =
λ1(x, y, z, zx , zy), λ2 = λ2(x, y, z, zx , zy):

(λ1)x = (λ2)x = (λ1)y = (λ2)y = 0,

y(λ1)y − zy(λ1)zy = 0,

y(λ2)y − zy(λ2)zy = λ2,

y2(λ1)y − 2yzy(λ1)zy = 0,

y2(λ2)y − 2yzy(λ2)zy = 2yλ2.

The four equations in the first line just express that λ1, λ2 do not depend on x and y. The general
solution for the remaining equations is given by λ1(z, zx , zy) = f (z, zx ), λ2(z, zx , zy) = z−1

y g(z, zx )
for arbitrary functions f, g. Hence, we know that the two independent invariant derivations are of the
form D = f (z, zx )∂x + z−1

y g(z, zx )∂y . Choosing ( f, g) to be (1, 0) and (0, 1), respectively, we get the
two independent invariant derivations

D1 = ∂x , D2 = z−1
y ∂y .

Now the infinite-order differential invariant basis of ip2
15,A is represented by

ip2
15,A = {∂x , ∂y, y∂y, y2∂y}: z, z−4

y (2zyzyyy − 3z2
yy); D1,D2.

The implicit meaning is that the (iterated) applications ofD1,D2 to the two given invariants successively
produce all differential invariant basis elements of any order. To this end, let Bi be the (differential)
invariant basis of order i for ip2

15,A. Then, we have B0 = {z}, B1 = {zx }, B2 = {zxx , zy/zxy} and

B3 = {zxxx , z−1
y zxxy, z−3

y (zyzxyy −zxyzyy), z−4
y (2zyzyyy −3z2

yy)}. The effect of the iterated applications
of the invariant derivations D1,D2 on the invariant z is as follows:

D1 B0 = {zx } = B1,

{D1,D2} ◦ B1 = {zxx , zy/zxy} = B2,

{D1,D2} ◦ B2 = {z−1
y zxxy, zxxx , z−3

y (zyzxyy − zxyzyy), z−2
y (z2

xy − zxxyzy)}.
The first three invariants in the last set are also in B3, whereas the fourth one z−2

y (z2
xy − zxxyzy) =

(z−1
y zxy)

2−z−1
y zxxy is functionally dependent on previous invariants. We see that successive application

7The number of variables Nv in X (k)
l (or equivalently, the number of variables on which the λi (x, u, u(1), . . . , u(k)) explicitly

depend) is Nv = n + m
(n+k

n
)
. The rank R of the system (14) satisfies R � l · n, since it is bound by the number of equations. The

condition for the existence of n independent solutions λi is now n · Nv − R � n − 1. Choosing R = l · n, this leads to the simple
criterion Nv − l � 1. For m = 1, n = 2 this amounts to k = ⌈

(
√

8l − 7 − 3)/2
⌉

.
8The prolongation order k chosen according to my criterion in the previous footnote is k = ⌈

(
√

8 · 4 − 7 − 3)/2
⌉ = 1.
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of D1,D2 to z delivers all differential invariant basis elements up to order three, with the exception
of z−4

y (2zyzyyy − 3z2
yy). Including this invariant in the infinite-order basis completes the latter, since

problems of this kind do not occur anymore.

7.2 Open problems

The differential invariants for Amaldi’s groups of type [B] have not been determined within Hillgarter
(2002). In addition, since any group list contains just representatives of equivalence classes of similar
groups, the group types have to be determined. This means one has to find criterions that allow to identify
the symmetry group for a given second-order DE in z(x, y). Due to the huge number of transformation
groups of the (x, y, z)-space, this normal form problem is not considered in Hillgarter (2002).9 This
step has been carried out so far only for ODEs up to order three (see Schwarz, 2003).
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Appendix

A. Lower invariants

The notion of lower invariants is introduced. This is a type of invariant that may even exist when the
system of differential invariants has as many unconnected equations as variables, thus allowing only
trivial (constant) solutions.

Consider an r -parameter (r � 8) point transformation group Gr acting on (x, y, z)-space. We
write the second-order prolongations of its generators Xi as X (2)

i = ∑
v∈V ξi,v ∂v , for i = 1, . . . , r ,

where V = {x, y, z, zx , zy, zxx , zxy, zyy}. Note that |V | = 8. We assume that the (generic) rank
r∗ := rank([ξi,v ]v∈V

i=1,...,r ) of the coefficient matrix of the system of differential invariants is eight, w.l.o.g.
we assume that the first eight equations

X (2)
i (F) ≡ 0, i = 1, . . . , 8 (A.1)

are unconnected. A non-trivial solution of (A.1) can only exist if the determinant d := det([ξi,v ]v∈V
i=1,...,8)

of its square coefficient matrix vanishes. We call any irreducible factor f of d that satisfies

X (2)
i ( f ) ≡ f 0, i = 1, . . . , 8, (A.2)

a lower invariant of Gr . The computation proceeds by factoring the determinant d into irreducible
factors and applying the test (A.2) for each factor. Lower invariants f1, . . . , fk are differential invariants
of Gr , but they do not form an invariant basis, i.e. Φ( f1, . . . , fk) in general is not an invariant of Gr .
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B. Basic notions for LAs

I introduce several basic notions for LAs of vector fields, the only type of LAs considered in this work.
The notions introduced are dimension, commutator table, structure constants, derived series, isomorph-
ism and similarity. Details and the purely algebraic theory of LAs as introduced by Killing may be found
in the book by Jacobson (1962).

B.1 LAs of vector fields. A LA of vector fields is a vector space L of operators X = ∑
i ξi (x)∂xi

endowed with the commutator [·, ·] such that [X, Y ] := XY − Y X ∈ L for X, Y ∈ L . The commutator
is bilinear, skew-symmetric and satisfies the Jacobi identity [X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X, Y ]] = 0
for X, Y, Z ∈ L . We say that the finite LA L has dimension r , written dim(L) = r , if L is the linear span
of r linearly independent operators X1, . . . , Xr with constant coefficients, written L = {X1, . . . , Xr }.
We call X1, . . . , Xr a basis of L . The matrix [[Xi , X j ]]

j=1,...,r
i=1,...,r is called the commutator table of L

w.r.t. X1, . . . , Xr . The constants ci, j,k in the relations [Xi , X j ] = ∑r
k=1 ci, j,k Xk for i, j = 1, . . . , r are

called structure constants. The commutator table is skew-symmetric and has only zeros in the diagonal.

EXAMPLE B1 Let L = {X1, X2, X3}, where X1 = ∂x , X2 = ∂y and X3 = y∂x . The commutator table
of L is ⎡

⎣0 0 0
0 0 X1
0 −X1 0

⎤
⎦ . (B.1)

The derived algebra L(1) of a LA L is the LA generated by all commutators of L , i.e. L(1) :=
[L,L] = {[X, Y ] | X, Y ∈ L}. Derived algebras of higher order are defined recursively by L(i+1) =
(L(i))(1), for i � 1. The derived series of a finite LA is the sequence of dimensions of its derived
algebras. The derived series in the form of the finite sequence (dim(L), dim(L(1)), . . . , dim(L(t))) is
presented, where t is the smallest number 0 � t � dim(L) + 1 such that L(t) = L(t+i), for all i � 1.

EXAMPLE B2 Consider again L = {∂x , ∂y, y∂x } with dim(L) = 3. From the commutator table (B.1)
we see that L(1) = [L,L] = {∂x }, and hence dim(L(1)) = 1. Since L(2) = [L(1),L(1)] = {0}, we have
dim(L(2)) = 0. Hence, the derived series is (dim(L), dim(L(1)), dim(L(2))) = (3, 1, 0).

B.2 Isomorphic and similar LAs. Let L and K be two LAs, and let dim(L) = dim(K ). A linear
one-to-one map f of L onto K is called an isomorphism if it preserves the commutation relation, i.e. if
f ([X, Y ]) = [ f (X), f (Y )] for X, Y ∈ L . If the LAs L and K can be related by an isomorphism, they
are termed isomorphic LAs. Two finite-dimensional LAs are isomorphic if and only if one can choose
bases for the algebras such that the algebras have, in these bases, equal structure constants, i.e. the same
table of commutators.

The LAs of vector fields L and L are similar if one is obtained from the other by a change of
variables. It means that the operators X = ∑

ξi (x)∂xi and X = ∑
ξ̄i (x̄)∂x̄i of L and L are related by

x̄i = x̄i (x), ξ̄i = X (x̄i )|x=x̄−1(x̄), for i = 1, . . . , n, where x̄−1(x) denotes the inverse of the change of
variables x̄(x).

EXAMPLE B3 Let X = ∂y be the operator of translation in y in the (x, y)-plane. The transformed
operator X under the change of variables x̄ = x+y, ȳ = x−y is computed. We get ξ̄x = ∂y(x̄)|x=x̄−1 =
1, ξ̄y = ∂y(ȳ)|x=x̄−1 = −1, i.e. X = ∂x̄ − ∂ȳ .
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In order that two LAs with the same dimension and the same number of variables are similar, it
is necessary that they are isomorphic. The converse is not true. It is precisely similarity that is of use
in group analysis as a criterion of reducibility of one DE to another by a suitable change of variables.
Nonetheless, establishing isomorphism is important as a first step for the determination of similarity.

C. Systems of imprimitivity

In this section, I introduce systems of imprimitivity. Lie used their number and type to obtain a clas-
sification of groups allowed by various manifolds Lie (1970a,b). The presentation of plane and space
groups in Hillgarter (2002) is also organized that way. Transitivity and primitivity are notions from sub-
stitution theory; Lie extended them to transformation groups. Details may be found in Lie (1970a) and
Schwarz (2005).

Let D be a domain in Rn . An r -parameter transformation group Ta : D → D with parameter space
P ⊆ R

r is called transitive iff for all x̄, ȳ ∈ D there exists ā ∈ P such that Tā(x̄) = ȳ. Otherwise, we
call T intransitive.

EXAMPLE C1 The translation group T(a1,a2)(x1, x2) = (x1 + a1, x2 + a2) of the plane is obviously
transitive. For every choice of two points (x̄1, x̄2), (ȳ1, ȳ2) we have T(ȳ1−x̄1,ȳ2−x̄2)(x̄1, x̄2) = (ȳ1, ȳ2).
The transformation group T(a1,a2)(x1, x2) = (x1, x2 + a1x1 + a2) is obviously intransitive. For every
choice of two points (x̄1, x̄2), (ȳ1, ȳ2) with x̄1 �= ȳ1, there is no choice of parameters (ā1, ā2) such that
T(ā1,ā2) maps the first point into the latter.

A group of the n-dimensional space with r infinitesimal generators Xk = ∑n
i=1 ξk,i (x)∂xi for

k = 1, . . . , r is transitive iff rank([ξk,i ]
i=1,...,r
k=1,...,n) = n, where rank denotes the maximal number of

unconnected lines of the matrix.

EXAMPLE C2 Consider p6 = {∂x , ∂y, ∂z, x∂y − y∂x , x∂z − z∂x , y∂z − z∂y}. By

rank

⎛
⎜⎝

⎡
⎣ 1 0 0 y 0 −z

0 1 0 −x z 0
0 0 1 0 −y x

⎤
⎦

�⎞
⎟⎠ = 3,

we conclude that p6 is transitive. Now consider ip1 = {∂x , ∂y, x∂x , y∂x , x∂y, y∂y,
x2∂x + xy∂y, y2∂y + xy∂x }. By

rank

⎛
⎜⎜⎝

⎡
⎢⎣

1 0 x y 0 0 x2 xy

0 1 0 0 x y xy y2

0 0 0 0 0 0 0 0

⎤
⎥⎦

�⎞
⎟⎟⎠ = 2,

we conclude that ip1 is intransitive.

Finally, a transitive group is called primitive iff its action leaves no foliation invariant, otherwise it
is called imprimitive.


