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1. INTRODUCTION

Aldo Andreotti liked simple ideas best. He often said "The more simple an idea
is, the better it is". He also liked explicit provocative examples which begged for
the development of a new general theory. We think he would have enjoyed hearing
the story we tell here.

Date: September 14, 2009.
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A para-CR structure is the real analogue of a CR structure (see Definition [2.1).
The main point is that K2 = I, instead of J? = —I, and one does not insist that
dim H* = dim H~, as in the situation of CR structures (where dim H':® = dim H%!
happens accidentally). Here H* are the +1 eigenspaces of K. Assuming that one
is already familiar with CR structures, then here is the simple idea: "Change the
sign and allow the dimensions of the eigenspaces to differ".

What are the provocative examples? One of the goals of this paper is to provide
a few of them.

Rather than overburden this introduction with a lengthy description of what is
contained here, we refer the reader to the detailed table of contents. If we were to
highlight the Sections of the paper that in our opinion are the most interesting, we
would indicate Sections [ and

2. To PARA-CR STRUCTURES viA ODESs

2.1. Geometry of general solutions of ODEs modulo point transforma-
tions. The abstract notion of a para-CR manifold [I] appears naturally in the
context of systems of differential equations considered modulo point transforma-
tions of variables [14] [16]. In the simplest case of a single ordinary differential
equation of nth order,

(2.1) y ™ = Fz,y,y, ..y Y),
for a real function R 5 z +— y(z) € R, such an equation has a general solution
(22) y:¢($aa05a1a"'aan—l)7

depending on n arbitrary real parameters (ag, ay, ..., a,—1). Thus the general solu-
tion of such an equation may be considered as a hypersurface ¥ in R? x R™ defined
by

(2.3) Y ={R*x R" 3 (y,2,a0,01, s an_1) | Y(y,x,a0,a1,...,an_1) = 0},
where U (y, z, a9, a1, ...,an—1) = y—1(x, a9, a1, ..., an—1). Now consider a diffeomor-
phism of R? x R", which preserves the split of R®*™ onto R? and R”. This may
mix the variables y and x, and, separately, may mix the variables ag, a1, -..,an_1;
it cannot however mix y and x with the a;s. Explicitly it is given by

2 o ~ 2
R* x R" 3 (y,z,a0,a1,...,an-1) — (§, T, G0, a1, ..., an—1) € R* x R"

where
y=1y(y ),
(2.4) =y, ),
ai:ai(ao,al,...,an_l), 1=0,1,....,n—1.

This diffeomorphism transforms ¥ to another hypersurface in R? x R™, which defines
the general solution to an ODE which is locally point equivalent to the ODE .

To understand the geometry of general solutions of such ODEs modulo
point transformations better, it is convenient to pass to a bit more general setting.
Thus, without referring to any ODE, we consider R?+") equipped with a linear
operator

Kk R R(24n) such that k2 =id.

The operator x has two eigenvalues: +1 and —1, and we assume that the corre-
sponding eigenspaces are, respectively, x4 = R2, with eigenvalue 41, and y_ = R",
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with eigenvalue —1. We adapt a coordinate system (y,z, ag, ..., an_1) in RG+) so
that x4 = Span(9,,0;) and x_ = Span(Ja,, ..., Oa,_,)-
Given R(?**") with such a k, we consider a smooth real function

¥R LR,

This function is supposed to have zero as a regular value. With this assumption
the set ¥ as in is a codimension one submanifold of R(*™) . In addition we
assume that ¥ is generically embedded, which means that its tangent space at each
point, T}, X, is spanned by the linearly independent vectors

X, = 0,9, V,d,
Yi = U195 — Y0
Yo = W01 — V10,
Ynfl = \I}nflan72 - \Iln72an71

Z = Wed, — W,d.

Here 0; = 52-,i=0,...,(n— 1), and U, = 9,(¥), ¥, = 9,(V), ¥; = 9;(7).
Note that the operator x from the ambient space R*™) defines a vector subspace
H, of T,X by
H,=xr(T,Z)NT,X%.
In the above basis of T, we have
H, = Span(X;,Y1,...,Y,_1).

Moreover, k restricts to H,, defining an operator K, : H, — Hy, K, = g,. Since
Kg = id, it splits H, onto H), = H;r @ H, ; the spaces Hgt correspond to the +
eigenvalues of K,,. We have

H;' = Span(X}), H, =Span(Yy,..., Y, 1).

It further follows that the distributions H* = (J oy, H and H™ = 5, H, are
integrable. They define two foliations on X, one of which has 1-dimensional leaves
tangent to X7, and the other has (n — 1)-dimensional leaves tangent to all the ¥;s.
These two foliations are obtained by the intersections of ¥ with the leaves W;l(v;),
vE € X, of the respective foliations 7 : R?*™) — y_ and 7_ : RC+) — v,
Note also that although both distributions H* and H~ are automatically inte-
grable, the distribution H is in general not integrable. For H to be integrable the

defining function ¥ would have to satisfy the w

Uy Wy — Uy Wy =0,

conditions:

forall i,j =0,1,...,(n—1). Here ¥,,; = 8273 and W, W) = 3(W,, 0, — U, 0,),
etc.

2.2. Abstract para-CR manifolds. The structure on ¥ consisting of K and
H = H* @ H~ is precisely the structure of a para-CR manifold, which abstractly
can be defined, somwhat more generally, as follows:

Definition 2.1. A (k+n)-dimensional manifold M equipped with an n-dimensional
distribution H together with a linear operator K : H — H, such that K? =
id, is called an almost para-CR manifold. If in addition both eigenspaces of K,
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Ht ={X € HHKX = X} and H- = {X € H,KX = —X}, are integrable,
[H*, H*] c H*, then an almost para-CR manifold (M, H, K) is called an abstract
para-CR manifold. The type of the abstract para-CR manifold will be denoted by
(k,r,s) where k is the para-CR codimension, and r = dim H", s = dim H~

In the following we will only consider smooth para-CR structures, i.e. smooth
manifolds M, with both H and K being smooth.

In the case of the hypersurfaces ¥ considered above, ¥ has type (1,1,n — 1).
What is more important, in this case the para-CR structure (H, K) was induced on
Y from the ambient space (R(2+"), k). A natural question arises if an abstractly de-
fined para-CR manifold (M, K, H), as in Definition 2.1} can be (locally) generically
embedded as a submanifold ¥ in some R(™+") equipped with a linear operator
ko RO ROMAR) 2 — jd having R™ as its +1 eigenspace, and R” as its
—1 eigenspace, so that the induced para-CR structure on ¥ coincides with that of
(M,K,H).

To answer this question we need some preparations.

Definition 2.2. Two abstract para-CR structures (M;, Hy, K1) and (Ms, Hy, Ko)
are (locally) equivalent iff there exists a (local) diffeomorphism ® : M; — Mo

such that ®,H; = Hy and ¢, 0 K; = Ky o ®,. Such a ® is called a para-CR
diffeomorphism.

A dual formulation of the para-CR definition is very useful:

Definition 2.3. An almost para-CR structure (of type (k,r,s)) is a (k + n)-
dimensional manifold M equipped with an equivalence class of (k+r+s) one-forms
(M, ooy My M1y e oy fpy V1, .- ., Vg) such that

e r+5s=n,

® M A AL AU ...t Ay ...vs # 0 at each point of M,

o two choices of 1-forms (A1,..., Ak, f1s-- -y frsV1,..., V) and (Af, ..., A%,
T/ V_{, ...,V}) are in an equivalence relation iff there exist real func-
tions aij, V4 Ao, 5, hg, with i,5 = 1,...k A, B =1,...,1; a,3 =
1,...,s, on M such that:

(2.5) No=al g, = sV N, vl = s+,
and det(a’;)det(f*5)det(h%) # 0.
An almost para-CR structure is an integrable para-CR structure iff, in addition,
the following equations
AMAMACAXNAUL A A =0
(26) dpa AMA AN A A oA =0
and

d)\i/\>\1/\.../\Ak/\l/1/\.../\I/s:0

(2.7) Advg AMA ... AXMAVLA...ANve =0

are simultaneously satisfied, for alli =1,...,k, A=1,...,7r, a=1,...,s, and for
one (therefore all) representatives (A1,..., Ak, {1, -+, lr, V1,...,Vs) of an equiva-
lence class [(A1, ..., Aky o1y v oy oy U1y e ey Vs)]e

One observes that Definition [2.3]is the dual version of Definition [2.1] identifying
H~ with the anihilator of (A1,..., g, p1,-.., ) and HT with the anihilator of
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(M, oy Ak, V1, .., V). Thus HT is r-dimensional, and H~ is s-dimensional, with
H = H" @ H- being r + s = n-dimensional. In particular H is integrable iff
dMAMA. AN =0foralli=1,... k.

Example 2.4. Given an n-th order ODE (2.1) we introduce a canonical para-
CR structure on the space J of the (n — 1) jets. Parametrizing this space by
(x,y,y,...,4"" 1) we introduce

A\ =dy — yldz,
(2.8) = dez,
v; = dyt —yda, Vi=1,...,n—2,

V’”/_l = dyn_l - F(x7 y7 y17 A 7yn_1)dx7
and define the class [\, p, o] on J via:
N va) ~ (Vo svl)  iff N =a), @ = fu+bA, and v, = hPus + co),

with functions a,b,c,h?, c, on J, such that af det(hg) # 0. Obviously A A p A
NN AVp1 #F0, dAAAAXA L =0 =du A XA pu, and for dimensional reasons
AANANAANV A AV 1 =E0=dva AAAVIA .. AV foralla=1,...,n— 1.
This shows that (7, [\, i, o)) is an abstract para-CR structure of type (1,1,n—1).
This para-CR structure is called the canonical para-CR structure of an ODE y(™) =

F(x7 y7 y/7 M) y(n_l))'
Returning to the general discussion we have the following Proposition.

Proposition 2.5. Every abstract para-CR manifold (M, [\, pa,va)) of type (k, 1, s)
locally admits two overlaping coordinate systems (y;,xa,aq) and (Yi,Ta,aq) in
which the forms (A, pa, Vo) can be written either as:

(2.9) N =dy; + L‘%d:cA, pa =dzy, Vo = dag,

or by

(2.10) i = dg; + L%day, pa =dxy, Vo = dag,

where LA = LA(y,x,a) and L% = L%(g,z,a), i = 1,....k, A=1,....r, a =
1,...,s, are appropriate real functions of the respective variables (y;,xa,as) and
(Ui, A, 00).

Proof. The proof is a simple application of the Frobenius theorem:

On one hand, the Frobenius theorem applied to the integrability conditions (2.6)),
together with the use of transformations (2.5)), imply the existence of functions
(yi,xa, LZ-A) for which \; = dy; + LﬁdxA and 4 = dx 4 holds. On the other hand,
the same argument applied to the integrability conditions , imply the existence
of functions (¥, an, L) for which \; = dg; + L%da, and v, = da, holds. But since
MACAEApLA A e Avr.. Avs # 0, then taking As and ps from the first
representation, and vs from the second we get dy; A...dyx Adxy A...AdzgAday A
... Ndag # 0. Similarly, taking As and vs from the second representation, and us
from the first we get dyz A...dgg Adzi A...AdxsAdas A...Adas # 0. This shows
that both sets of functions (y;, x4, a.) and (g;, x4, a,) form local coordinates on M.
In these coordinates the para-CR forms have the respective desired representation

and (Z10). 0
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2.3. The embedding problem. Once an integrable para-CR, structure is defined
in terms of [(A1,..., Ak, 1, -+, ey V1,-..,Vs)] it is easy to solve the embedding
problem, at least locally.

We have the following embedding theorem.

Theorem 2.6. Every smooth (k + r + s)-dimensional abstract para-CR manifold
(M, H,K) with dim Ht* = 7 and dim H~ = s is locally embeddable in R(F+7)+k+s)
with the embedding ¢ : M — REF)+HELS) peing o para-CR diffeomorphism be-
tween (M, H, K) and the para-CR structure which (M) aquires from the ambient
space (RFHT+H(E+s) o) Here 1 is the canonical linear map r : RUE+T+(k+s)
REA+(E+5) 12 — 4d having R¥T" and R¥t5 as its respective +1 and —1 eigenspaces.
Proof. Choosing a representative (A1, ..., Ag, b1, -ty V1, - - ., Vs) We consider vec-
tor fields (Z1, ..., Zk, X1,..., X;, Y1,...,Y5) which are the respective duals of (Aq,
ooy My 1y - oy My V1, -« -, Vs). Thisin particular means that HT = Span(X3,..., X,.)
and H~ = Span(Yy,...,Y;). Also any differentiable function f: M — R has

df = Zi(f)Ai + Xa(f)pa + Ya(f)va
as its differential. Now, one looks for all functions f and A on M which satsify
(2.11) df AMA. AN ABI A Ay =0, and
(2.12) AR AMA . AMNAVLA ... Avs =0,
or, what is the same,

Yo(f) =0, Va=1,...,s, and X4(h)=0, VA=1,...,r

If, for example, we choose (A1,..., Ak, fi1,y .-, fbr, V1,...,Vs) in the local represen-
tation (2.9), then equations (2.11)-(2.12)) are, respectively,
0
(2.13) %:O7 Va=1,...,s,
oh oh
(2.14) — —ILA— =0, VA=1,...,n
0z a oy’

Thus in this coordinate system equations for the function f are trivial to
solve: they obviously have k + r independent solutions given by f1 = y1,..., fxr =
Yk fl =T1,..., fr = z,. The equations for the function A do not look very
nice in this coordinate system. To analyse them it is convenient to use the other

coordinate system, (7;, Z 4, aq), in which equations (2.11)-(2.12) are, respectively:

of -, 0f
2.15 G e o Ya=1,...,s,
( ) 6@@ 7 8?1 ) « ? Y S
oh
2.16 — =0, VA=1,...,r
( ) 61‘A ? I I T
In this coordinate system equation (2.16) for the function h is trivial: it has k + s
independent solutions, hy = 41,...,hx = Yk, h1 = a1,...,hs = as. Now since both

coordinate systems (y;,Z4,aq) and (J;, T4, aq) are defined over the same region of
M, and because the coordinates (z,a) are the same in both systems, we have:

Ui = ¥i(y, x,a), and  y; = yi(y,z,0).
This shows that the two maps:
M > (yiaanaoz) 'i> (fi)fA?hja Boz) = (yiaangj(y,wva)aaa) S R(k+r)+(k+8)
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and

M 3 (§i, 4, 00) * (fi fashj ha) = (Yi(G, 7, a), w4, Tj, aq) € REFIHEES)

give two local embeddings of the para-CR structure (M, [(\, 1, v)]) in R+ +(k+s)
with coordinates (f;, fa, hj, ha). It follows that the s operator in RUm)+(k+s),
splitting it onto R*+m)+(k+s) — RE+r » RF+s induces two para-CR structures on
the repective images of ¢ and 7. These two para-CR structures are locally equivalent,
and are locally equivalent to the original structure from M. O

Para-CR structures with k& = 1, for obvious reasons, are called para-CR struc-
tures of hypersurface type.

2.4. Para-CR equivalence a’la Cartan. In the following a reformulation of the
(local) equivalence of two para-CR manifolds, in the language of the differential
forms (A1,..., Ak, f1y -« oy fops V1, - -+, Vs), Will be useful. It can be seen that Defini-
tion 2:2]is equivalent to

Definition 2.7. Two para-CR structures (M, [(\;, pta,va)]) and (M’ (N, pa’, va'))),
1=1,.,k,bA=1,...,r,a=1,...,s, on k+r + s dimensional manifolds M and M’
are (locally) equivalent iff there exists a (local) diffeomorphism ® : M — M’ and
real functions a’;, Vo, o, A, h$ on M such that:

*(N)) = a’;\;,
(2.17) (i) = s+ 40,
CI)*(V&> = hﬁa”ﬁ + cjaAj’

and
det(aij)det(f%)det(ho‘ﬁ) #0
foralli,j=1,...k; AB=1,...,r;a,8=1,...,s.

3. PARA-CR STRUCTURES OF TYPE (1,1,n — 1)

In Example we associated a para-CR structure of type (1,1,n — 1) with
every n-th order ODE in the form . A natural question arises: is every para-CR
structure of type (1,1,n—1), at least locally, para-CR equivalent to a canonical type
(1,1,n — 1) para-CR structure of some n-th order ODE (2.1)7 Since all canonical
para-CR structures of n-th order ODEs, as in Example satisfy dA A X =dx A
dy' Ady # 0, and since nonvanishing of dA A X is invariant under any para-CR map
A — X = a), then we have

Proposition 3.1. A type (1,1,n — 1) para-CR structure [\, u,vs] which is lo-
cally equivalent to the canonical para-CR structure of an n-th order ODE y™ =
F(z,y,y,...,y" V) has AN A X # 0.

In view of this proposition, we now ask if every type (1,1, n—1) para-CR structure
with dAA X # 0 is locally equivalent to a structure from Example 2.4 To illustrate
the problems associated with this question we consider low dimensions first.
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3.1. Para-CR structures of type (1,1,1). This case, in a bit different context,
was studied by one of us in [I6]. We have the following proposition.

Proposition 3.2. Every type (1,1,1) para-CR structure (M, [X, p, V]) with AAAX #
0 is locally para-CR equivalent to a type (1,1,1) para-CR structure associated with
a point equivalence class of second order ODEFEs.

Proof. This Proposition was proved in [I6]. For completness we present this proof
also here.

Choosing any representative (X, u, v) of [A, i, v], due to the low dimension of M,
we have AAAAAu = 0 and duAXAp = 0. Thus, by the Frobenius theorem, we have
functions (z,y, A, B,C, E) on M such that A = Adx + Bdy, and pu = Cdx + Edy.
Considering the allowed para-CR gauge of A and p, we can rescale A to the form
A = dy — pdx, with some function p on M, and shift and rescale p to the form
1 = dz. Now our assumption 0 # dA A A shows that 0 # dx A dy A dp and, thus,
(x,y,p) can be considered a coordinate system on M. In this coordinate system
the form p is locally p = adz + Bdy + vdp, where «, 3, are some functions on
M. Because of the allowed para-CR transformations for u, we can, without loss
of generality, take u = dp — Q(z,y, p)dz, with Q@ = Q(z,y,p) being some function
on M. Thus our type (1,1,1) para-CR structure (M, [A, p,v]) with dAAA X # 0 is
locally para-CR equivalent to (M, [\ = dy—pdx, p = da, v = dp—Qdz]). Therefore
M can be locally identified with the first jet space of the equation y”" = Q(x,y,v’).
The (z,y,p) are canonical coordinates (z,y,p) on this jet space and the contact
forms are given by the para-CR forms A\ = dy — pdz, v = dp — Qdz. The para-
CR structure associated with the point equivalent class of ODEs represented by
y" = Q(z,y,y") is locally para-CR equivalent to the para-CR structure we started
with. O

Further details about this case, including relations to the Fefferman construction,
can be found in [16].

3.2. Para-CR structures of type (1,1,2). Let (M, [\, u,v1,12]) be a general
para-CR manifold of type (1,1, 2) with

(3.1) dAA X 0.

By Proposition we can introduce a coordinate system (x,y,ai,as) on M in
which

A =dy — p(z,y,a1,as)dx, = dx, vy = day, vy = dag,

with some function p of the variables (z,y, a1, as).
Our key question is if we can find new coordinates (z,y,y',%%) on M, and
functions Af, ca, F on M, so that the form vj = hiv1 + hivs + ¢\ is equal to

vy =dy' —yide
and the form v = hiv; + h3vs + 2 is equal to
Vé = dy2 - F(x7y7y17y2)dx'

If this were possible, we could bring this para-CR structure, by a para-CR trans-

formation, to the canonical form corresponding to the third order ODE ¢ =

F(z,y,y',y").
When looking for the desired coordinates (z,y,y*, y?) we proceed as follows:
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We set
yl = p(l‘, Y, a1, a‘2)a

and notice that (3.1) implies dz A dy A dy* # 0. Thus the functions (z,y,y*) can

serve as three independent coordinates on M. The condition dz A dy A dy' # 0

also means that at least one of the derivatives g%’l or g% is not equal to zero.

Assuming, without loss of generality, that 8y 7é 0, we can solve y' = p(x,y,a1, as)
for a; obtaining

ay = al(z,y,yl,ag).
This enables us to parametrize M by (z,y,y',az2). In this new parametrization we
have

A =dy — ylda, w=dx, 13 =dla(z, v,y as)), v9 = das.
We note that since
Oay Oaq day 1 Oay
" [a’l(‘r»yvy 7(12)] 833 T + ay y+ 8y1 Yy + 6 ) ag,

and AA A vy Avg # 0, then dy Adz A 8’“dy Aday # 0, and hence 3@1 #£ 0. Thus
we may replace the para-CR form vy by the form

A= ()" o -
L oyt Y 0a Oy
from the same para-CR class, obtaining

vy = dy' — y3da.

Here the function 3?2 is given by

3a1 8a1 8@1 -
Rl
(3.2) y o 7Y oy Ny
Summarizing, starting with an arbitrary type (1, 1,2) para-CR structure (M, [\, u,
v1,19]), with dA A X # 0, we can always choose the coordinate system (x,vy,y*, as)

and the representatives of the basis 1-forms, so that the para-CR structure is rep-
resented by

A =dy — yldz, u=dz, v = dy! —y3dz, vo = dag,

with a function y? = q(x,y,y", az) given by (3.2).
Now, two cases may occur:

o the general case, when 2%2 74 0, or
e the degenerate case, When =0.

In the general case, i.e. in the case When
0 Oaq Oay\ /0ap\ 1
33 5 (e +v' 5y ) (1) ) 7o
(3:3) Oas \\ Oz Ty oy / \oy! 7
we can solve y? = q(x,y,y"', az) for as obtaining
ag = az(z,y,y",y%),
and a system of coordinates (z,y,y',%?) on M, in which

A=dy—y'de, p=dz, v=dy' —yide, o =das(z, Y,y Y7
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Now we have

Odas Oag Oaz . 1 Oaz |
= —d —dy + —dy + = dy-,
2= or T Oy y+8y1 4 Oy? Y
and since A A pu A vy Ave # 0, we get g—zg # 0. This enables us to replace vy by
another representative
o (%)*1(,, _Oaz _%A)
27 Ny oyt oy )
which can be written as:
vy =dy’ — Fz,y,y", y*)dz,

with
8a2 8a2 6a2 8a2 -1
Fon) < (5252 ) 32)”
(9,9, y7) or 7Yy TV o, )52
Summarizing we have the following proposition.

Proposition 3.3. Every type (1,1,2) para-CR structure (M, [\, p, v1,v2]) with dAA
A # 0 can be locally represented by 1-forms

A\ =dy — yldz, u=dz, v = dy! —y3dz, Vo = dag,
with a function y? = q(x,y,y', az) of coordinates (x,y,y*, as) on M. If, in addition,
2

the function y? satisfies g% #£0inU C M, one can introduce a coordinate system
2
(z,y,y%,y%) in U such that the para-CR structure can be represented by

A\ =dy —yldz, u=dz, v = dy! —y2dz, vy = dy? — F(z,y,y", y?)dz.

In such case the para-CR structure is locally para-CR equivalent to the canonical
para-CR structure associated with a third order ODE y"' = F(x,y,y',y").

The nongeneric case in which (3.3)) is not satisfied can be realized in several ways.

The simplest of them is if g%z = 0 in the neighbourhood &/ C M. In such a case we
have

A=dy—y'de, p=dz, v1=dy'—qz,y,y")de, 1o =day,

and locally U = Uz x R, where Us, parametrized by (z,y,y'), is equipped with a
canonical (1,1,1) type para-CR structure of the second order ODE vy = q(z,y,y’).
Thus in such a case the type (1, 1,2) para-CR structure is obtained by extending
the canonical (1,1, 1) type para-CR structure of the equation y” = ¢(x,y,y’), from
the first jet space J with the canonical forms A = dy — y'dz, u = dz, v, = dy' —
q(z,y,y")dz to the Cartesian product J x R =+ 7. If R in J x R is parametrized
by ag, then the type (1,1,2) para-CR structure on J x R is given by the class of
para-CR forms [7*(\), 7*(u), 7*(v1), v2 = dag]. So also in this nongeneric case the
para-CR structure (M, [\, p, v1,12]) is related to the canonical para-CR structure
of an ODE, the only difference with the generic case is that now, the ODE is of
lower order.

This discussion shows that, the structure of type (1,1, 2) para-CR manifolds may
change from point to point: in some regions it is locally equivalent to a para-CR
structure of a third order ODE, in some regions, to a para-CR which is Cartesian
product of a para-CR structure of second order ODE and a real line.

To illustrate the discussion of this section we consider the following example.
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Example 3.4. Consider R* parametrized by (z,y, a1,az) and a type (1,1,2) para-
CR structure on it given in terms of a function

p(z,y,a1,a2) = rai + yas.

By this we mean that the para-CR structure is defined in terms of the class of
para-CR 1-forms [\, p, v1, 2] with representatives

(3.4) A =dy — (zag + yaz)dz, @ =dz, v1 = daq, vy = das.
Proceeding as in our discussion above we define y' = xa; + yas, solve it for a;,
y' —ya
ay = ———»
x

and use (x,y,y", az) as new coordinates, in which

1
—ya
A\ =dy — yldz, = dzx, v = d[w], vy = das.
x

Now because v = “23;?’1 dr — 2dy + dTyl — 2day, we can replace v by a new form

1 1

asy'x —a
v =dy' — WY 2Y 4.
x
Introducing the function
1
—a

(3.5) y? =azy' + =2,
we see that we are in the situation g%z =y - 4 # 0. So we can solve for ay
obtaining;:

y'r —y'

ag = —/———.

ytr—y

Using the coordinates (x,y,y',y?) we get
y'r —yt

]

A =dy — yldz, = dz, v = dy! —y2dz, vy =d[>
Yy r—y
Expanding the differential we have

s y—yia? (y')? — y2yd yiz —yt

1
Vg = ————dy dy” + T+ dy ~
yte —y W'z —y)? (y'z —y)? W'z —y)?
20,1 _ 2
- (a? M@
Yy r—y yr—y
This means that locally the starting para-CR structure is equivalent to
20,2, 1
A =dy —ylde, w=dx, v =dyt —y3da, vy = dy? — wdx,
yr—y
and thus it comes from the third order ODE
Moo o)
(3.6) . (y/ z—y)
yr—y

To solve this equation we may use our result on local embeddability. We can start
with any representation of the class [A, u, 11, 2], then find an embedding, and finally
interpret it as a general solution to . It turns out that the simplest calculations
are in the representation (3.4)):

Obviously the two independent solutions (fi, fl) of the embedding equations
df AAXAp =0 are f; = x and fi = y. Also, two independent solutions of the



12 C. DENSON HILL AND PAWEE NUROWSKI

embedding equation dh AAA vy Avy = dh A (dy — (za; +yas)dz) Ada; Adas = 0 are
obviously hy = as and hy = as. The third independent solution of this equation
can be taken as: hy = e92% (y + 2z + %) Thus the embedding is given by:
2
. a a
R4 2> (l’, Yy,ai, a2) i (.’L', Y,ap,01, a2) = (.’17, Y, e_a2l(y + ailx + ;;)7 ai, a2) S R2+37
2 2

which is a hypersurface in R® with coordinates (x,v,ao, a1, az), given by age®®* =
y+ %ZE + Z—é It is easy to check that, magically,
2

is the general solution to (3.6).

We end this example with a comment that if we had started with a function
p(z,y,a1,a2) = zaj, then our procedure would change after equation . In such
case, the function y2 would be independent of ay everywhere, and we would end up
with

1
A =dy — yldz, w=dz, v =dy! — y—da:, vo = das.
x
Thus the (1,1,2) type para-CR structure [A = dy — zadx, p = dz, vy = day,ve =

das] would be equivalent to a Cartesian product of the canonical type (1, 1,1) para-

CR structure of the second order ODE y"” = %, and the real line represented by
ag.

4. PARA-CR STRUCTURES OF TYPE (n—1,1,1)

Returning to Example and using the contact 1-forms (2.8) defining the
canonical para-CR structure of type (1,1,n — 1) corresponding to an ODE 3™ =
F(z,y,y/,...,y™ ), we can define another para-CR structure on the space J of
(n — 1) jets. This para-CR structure is of type (n — 1,1,1), and is obtained from
the contact forms (I3 = A\, lo = v1,...,lh—1 = Vp—2,m = p,n = v,_1) as in (2.8))
by extending them to a class [ly,...,l,—1,m,n] via

li — l; = aijlj,

m — m' = fm + bl;,

n—n'=hn+cql; i,j=1,...,n—1,
where the functions a;;, b;, ¢;, f, h on J satisfy det(a)fh # 0. Since this para-CR
structure has dim H* = dim H~ = 1, the integrability conditions [H*, H¥] ¢ H*
are automatically satisfied here.

Example 4.1. It is instructive to examine this para-CR structure in case of n = 3.
In such case we have

(4.1) Iy =dy —y'dz, o =dy' —y*dze, n=dy* - F(z,y,y",y*)dz, m=dx
and

Iy = a1l + aals,
(4.2) Iy = agily + agly,

n =hn+ c1l1 + eols,

m' = fm+ bily + bala,
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We now consider a contact transformation (x,y,y',y?) — (Z, %, %", §?) of the vari-
ables of the corresponding third order ODE y®) = F(x,y,4/,3"). This changes the
ODE to a new form §©® = F(z,7,%,7"). It follows that, if we started with this
equation and calculated the corresponding forms (I, [y, m, 72) as in , then these
forms would be expressible in terms of forms via

li = anly,
(4.3) Iy = asly + assly,

n = hn+ c1ly + cals,

m = fm+ b1ly + bals,
with functions a;j;, b;, ¢;, f and h which would depend on the particular form of
the contact transformation we considered, and which would satisfy det(a)fh # 0.

Although transformation (4.3) seems to be more restrictive than the one in (4.2)), it
turns out that they are equivalent. Actually, it follows that starting with a general

transformation (4.2) and forms (4.1) there is unique way of killing a1 in (4.2)). This
4.2)

is done by observing that the most general forms (I},15,m’,n’) from (| satisfy
a
Al N AT = ﬁm’m’m’l Al

Thus we can alsways normalize the transformation (4.2)) to one in which a5 = 0.
This proves the following proposition.

Proposition 4.2. The local geometry of the type (2,1,1) para-CR structure defined
n — is identical to the local geometry of a general third order ODE y(®) =
F(z,y,y,y") considered modulo contact transformation of variables.

The geometry described by the above proposition was studied by Chern [4] in the
context of ODEs, and by Tanaka [19] in the context of para-CR structures. Actually
Tanaka in [I9] showed that the natural geometry associated with an n-th order
ODE y™ = F(z,y,v/,...,y" V), considered modulo contact transformations, is
the geometry of type (n—1, 1, 1) para-CR structures, which he called pseudo-product
structures.

Remark 4.3. Tt is interesting to note that the passage from a (1,1,n — 1) para-
CR structure to a type (n — 1,1,1) para-CR structure, in the context of para-CR
structures associated with an ODE y(™ = F(z,y,y,... ,y(”’l)), corresponds to
the passage from the geometry of an ODE given modulo point transformations to
the geometry of an ODE given modulo contact transformations. This is a first
instance of a more general phenomenon, which will be discussed in Section [8.1

5. INVARIANTS

We are interested in objects naturally associated with a given para-CR mani-
fold which are not changed under (local) para-CR diffeomorphisms. We call such
objects (local) invariants. Clearly the simplest invariants of a para-CR manifold
(M, [( A1y ooy Mgy 01y -+ vy oy V1, - - -, Vs)]) are the integers (k,r,s). If k=1, we have
also another obvious invariant. This is defined as follows:

Remark 5.1. Note that the canonical (1,1,n — 1) type para-CR structures corre-
sponding to n-th order ODEs satisfy dA A A # 0 and dA A dX A X = 0. These
conditions are invariant under para-CR transformations, since any such transfor-
mation brings A — X = a), with some a # 0. If we have a general (1,r,s) type
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para-CR structure, a simple local invariant, is the rank of the para-CR form J, i.e.
the integer ¢, such that

dAA . ADAANF#O and dAAN...AAAAN=0.
— —

t times (t+1) times

Immediately there are two questions:

e Are the numbers (k,r,s), (or ¢ when k = 1), the only local invariants of
(M7 [()\17 .. '7)\/67”17 sy My VL -7”5)])?

e And if the answer to the above question is negative, how does one construct
the system of all local invariants of (M, [(A1, ..., Ak, 1y« -y fors V1s ooy Vs)])?

It is rather obvious that the answer for the first question above is ‘no’. We are
thus led to discuss how to construct the invariants. We do not make an exhaustive
discussion in the following. Instead we concentrate on low dimensional cases, pro-
ducing invariants for structures of type (1,1,2) and (1,2,3). These examples are
complicated enough to illustrate the basic features that the general case can have.

5.1. Local invariants for para-CR structures of type (1,1,2). In Section
we proved that every para-CR structure of type (1,1,1) for which d\ A X # 0,
is locally para-CR equivalent to a second order ODE considered modulo point
transformation of variables. Thus all local invariants for such para-CR structures
are in one-to-one correspondence with the local invariants of second oder ODEs
considered modulo point transformations. All such invariants are known since the
times of the classical papers of Lie [11], Tresse [20] and Cartan [3]. We refer an
interested reader to the para-CR treatment of these invariants in [16]. Since we will
need some results about the (1,1,1) case in the following, we quote them here for
completeness.

5.1.1. Brief summary of the (1,1,1) case. As we know (see Proposition or the
proof of Proposition [3.2)) every para-CR structure (M, [X, u, v]) of type (1,1, 1) with
dXA A X #£ 0 can be locally represented by

A=dy —p(r,y,a1)dr, p=dr, v=da,

with a function p = p(z,y, a1) of variables (z,y,a1) on M such that p; = % #0

Consider now the most general forms (0°,01,03) € [\, v, u] in the class [\, v, ).
They are given on M by:

0% = a), 0' = 1\ + hiyv, 0% =bA+ fu,

with some functions a, hi1, ¢1, f and b such that ahi; f # 0 (the strange numbering
of the forms will become clear in the next section). Extending the manifold M
to M x G, where G is parametrized by (a,h11,c1, f,b), we can apply Cartan’s
equivalence method to find the invariants of such structures. This was done by
Cartan in [3]. His result adapted to our situation is summarized in the following
proposition.

Proposition 5.2. Every para-CR manifold (M, [\, u, v]) of type (1,1,1) with dAA
A # 0 uniquely defines an 8-dimensional manifold P with a unique coframe (6°,6*, 6>
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01,Q9,Q3,Q7,Qg) on it, which satisfies the following equations

de® = A0+ 03 A6t
Aot = Qe A0 + Q3 A B!
de® = (Q1 —Q3) A3 + QA 6°
dQ; =205 A%+ Q7 A O — Qy A 63
(5.1) dQy = (3 —U)AQe + Qs A0 + KOO N 63
dQs = Qs A% +2Q7 A0+ Qu A 03
dQ7 = QO A Q3+ Qs A 03 + T A 6L
dQs = Qs AQy + Q7 A Qo + 250" A 0° + 2503 A ¢°.

Here the functions J and K are given by:

(th?lpéll) J =

—15p31 o1 + 10p1p11P111Pw1Pa1 + 15p1pT1Patt — 4PiP111Pe11 +
12p3pT1py1 — 15pplipy1 — 4pip111py1 + 10pp1p1ip11ipy —
12p3p11py11 + 15pp1pTipy11 — 4pPipi11py11 — 6pTP11Pe111 +
4]3%(17% - %ppn)pyul —p%(l + ppy1)piin +P?(le111 + ppy1111)

15
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and
(6f°h11p}) K =
—15p11p3, + 15p1p21pat1 + L10P1P11Pw1Peat — APTPe11Pwt —
prpmpmn - p%pllpxmzl + P?Pmmu - 2P41mey1 - 3pp%p11pmzy1 +
3PP Paayil — PP11P21Pay + PiP211Pey — 3D1P11PaPayl + O6PiP21 Py +
20pP1P11P21Payl — 8PPiP211Payt + 3D DaPay11 — 12PPiPa1Payit + 201 Payy —
AppiPayy1 — 30°PIP11Dayy1 + 30°PiPayy11 + 10p1p11D%1 Py — 10pTP21De11Py —
3pIP11Pwa1 Py + 3D3Pwa11Py — 6P1Poy1Py — IPPIP11Pey1Py + 9P Pay11Py —
203 p11P21Ds + 2P3Pa11P; + 10p1D11P2P21Py1 — 6PIPA Dy — 45PP1IDE Py —
APIP2Pr11Py1 + 30PP1De1De11Py1 — PIP11PraPyt + 2D Dua1 Pyt +
10pp1P11Pea1 Pyt — 6DDIPr11Dy1 — 2D1PayDyt — 3DDIP1IPayDy1 +
10pP3pay1Py1 + 200°P1D11Pay1Py1 — 127 PIPay11Py1 — ADTPLIPPyDY1 +
8P Pa1PyPy1 + 30pP111Pa1PyPy1 — 14PPTPa11PyPyL — 4P1DEPY1 —
6P P1LPLPy1 + 2P5Papiy + 10pp1p11papy) — 120P3 Pa1piy —
45p*p11pa1pyy + 15p°prpe1ipyy + 10ppipypiy + 20p°prp1ipypi, — 6p°Pips, —
15p°p11py1 — 6pipapa1Py11 + 15pp1D51Py11 + DiPaaPy1n — 4PPIPra1Py11 +
3ppIPaypy11 — 8P PIPay1Py11 + AP DaPyPy11 — 16pPTIPa1PyPy11 + OpPIDI DL —
10ppip2py1Py11 + 30p°P1pe1pyipy11 — 20p° P pypy1py11 + 159 p1plipy11 —
2p1P21Pyy — PPIPLLD21Dyy + PP P211Pyy + 4DTDyDyy — 4DPIDy1Dyy —
20 DIP11Py1Pyy + 20°PiPy11Pyy — 2D1PePyy1 — 3PPIP1PLPyy1 + OPPi a1 Pyy1 +
10p*p1p11P21Dyy1 — 4P DIP211Pyy1 — 8PPIPyPyy1 — 6D°DIP1LIDYDyy1 +
80°Pipy1pyy1 + 10p°PLp11Py1Pyy1 — 4D°PIDY 11Dy + 3PPEPeDyy11 —
6p° D3 Pe1Pyy11 + 60°PiPyPyy11 — 60°PiPy1Pyy11 + 2003 Pyyy — 207 D1Pyyy1 —
psp%pl 1Pyyy1 + psp?pyyyll )

and % and % denote the coframe derivatives of functions J and K with respect

to the coframe element 0> and 6, respectively.

Two type (1,1,1) para-CR manifolds (M, [\, u,v]) and (M' [N, u',v']), with
dAA X #£ 0 and AN AN # 0 are locally para-CR equivalent iff there exists a local
diffeomorphism ¢ : P — P’, of the corresponding 8-manifolds P and P’, which pulls
back the coframe (0"°,0',603, O, Q% Q4. QL QL) to (6°,0,603, Q1,09,Q3,Q7,Qs).

In particular the vanishing of each of the functions J and K is a para-CR in-
variant property. These functions are para-CR versions of the classical two point
invariants wy and ws (see [16]) of the corresponding second order ODE, which were
known to Lie and Tresse [I1], 20]. This proposition solves the local equivalence
problem for type (1,1, 1) para-CR structures: they are either locally equivalent to
[A = dy, u = da, v = dag], or they are described by the above proposition.

5.1.2. The simplest relative invariant for type (1,1,2). Passing to the (1,1,2) case
we consider a para-CR structure (M, [\, p, 1, 1)), and since all para-CR structures
with dA A X = 0 are locally equivalent to (R [\ = dy, p = dz, vy = day,ve =
das]), we will assume dA A A # 0 in the following. As at the begining of Section
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we may introduce a local coordinate system (z,y, a1, as) on M so that the para-CR
structure is represented by

A =dy - p(z,y,a1,az)dx, p = dz, vy = day, vo = day.
Here p is an appropriate function p = p(z,y, a1,a2) on M which satisfies dz A dy A
dp # 0. Without loss of generality we can assume in the following that
_Op
- 8&1 '
Now we introduce the most general forms (N, i/, v1,v5) from the class [\, p, vy, v2].
These are:

D1

A N a 0 0 0 A 6°
1 vi| |ea hin hiz O v | der | 61
(52) 1) - Z/é o Co h21 h22 0 1% o (92
I i b 0 0 f) \u 6°

Now we are in a position to determine the first relative invariant. We do it using
Cartan’s equivalence method (see e.g. [17]) in the following steps:

(1) We first calculate the invariant form df° A €°. This is given by

0 . 70 a(haapr — ha1p2) 0 g1« 43, @huip2 —hiap1) 0 0 43
= by —huhan)” T Fhihar — ke N
(Here and in the following the partial derivatives with respect to a; are
denoted by a subscript ¢ at the differentiated function; derivatives with
respect to z and y are denoted by the respective subscript x or y.)
(2) Then we impose the invariant condition d§° A 80 = —0° A 8 A 3. This is
achieved by taking

h
a= 1/ and his =
P1 P1

(3) Then, on an 11-dimensional manifold M (") parametrized by (z,y, a1, as, c1, ca,
hi1, ha1, hoo, b, f), we introduce a 1-form €, so that we have
de® =0 A0+ 6% N O
The form ; is given by
d dh d b h —
:i+ u_dpr by hupy —aps
f h1 P huf hi1f

where f, is an additional function on M ™).
(4) It is easy to check that at this stage we have

hi1
p1(haopr — hoipa) f

(5.4) 0 6 + f,0°,

doP AO NG = —T 0° A O A BO2 A 63,

where
I = p1(Pa2 + ppy2) — P2(Pe1 + PPy1)-

Comparing this with

a 0 0

c1 hit hi2

c2 ha1  hao
b 0 0

det = (haap1 — hoipa) 2R3 p1 "t # 0,

~- O O O
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we see that the condition that I vanishes or not is a para-CR invariant
property of the class [\, u, v1, v2]. This shows that I is a relative invariant
for the considered para-CR structure.

(5) For example if I # 0 in the considered neighborhood, we can normalize
dOt A GO A6 to dOE A OO A O = —6° A O A G2 A 63, by choosing

(h2ap1 — ho1p2)p1f
Fi .
Such a normalization is obviously impossible if I = 0 in the considered
region.

(6) It can be checked that it is this invariant that distinguishes between the
(1,1,2) para-CR structures that correspond to the extension of (1, 1,1) type
structures by R and the type (1, 1,2) para-CR structures equivalent to the
canonical para-CR structures corresponding to third order ODEs.

hii =

5.1.3. Branch I # 0. Actually, further application of Cartan’s equivalence method
proves the following theorem.

Theorem 5.3. Every type (1,1,2) para-CR structure (M, [, u,v1,v2]) with dX A
A # O for which the invariant I is non vanishing, is locally para-CR equivalent to a

canonical para-CR structure of a certain point equivalence class of 3-rd order ODFEs
"

y" =F(z,y,y,y").

In particular, if I # 0, all the local invariants of such para-CR structures are
identical with the local point invariants of the corresponding point equivalence
classes of 3rd order ODEs. For example the lowest order relative invariant, next
after I, is the Wiinschmann invariant [21] of the corresponding class of ODEs. This
can be written explicitly in terms of the function p = p(z,y, a1,az2) used above.
Although we calculated this invariant in terms of p we do not display it here. It is
given by quite a lengthy and complicated expression in terms of p and its derivatives
up to the 5th order.

The above proposition enables us to find the para-CR structures with I # 0
and large symmetry groups. Since third order ODEs with large symmetry groups
of point symmetries are classified in [8 9], we know that such para-CR manifolds
have a maximal group of para-CR symmetries of dimension seven. They are locally
para-CR equivalent to the para-CR structure corresponding to the point equivalent
class of the simple equation y”’ = 0. The I # 0 para-CR structures with a group
of symmetries of dimension 6, 5 and 4 are also easily obtained from the results of
[8,9]. We have the following proposition.

Proposition 5.4. All homogeneous type (1,1,2) para-CR structures are locally
para-CR equivalent to the canonical para-CR structure of the following point equiv-
alent classes of 3rd order ODFEs:

ey =0; in 2thi& case the symmetry algebra is co(2,1) ® R® of dimension 7;

oy = %(y;,) ; symmetry algebra 0(2,2) of dimension 6;
oy = 31({(2,2)%/; symmetry algebra 0(4) of dimension 6;

111

oy = —2uy’ +y; each u € R defines a nonequivalent para-CR structure with
a 5-dimensional symmetry algebra, with generators V; satisfying [V1, V4] =
—uVa + Vs, [V, V5] = Vi, [Vo, Vi = Vi — V3, [V, V5] = Vi [V3, V4] = Vs,
[Vs, V5] = V3;
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o Yy = (y")3; symmetry algebra of dimension 4 with generators V; satisfying
Vi, Va] = 2V3, [V, V4] = 5Va, [Va, V3] = Vi, [V3, Vi] = =5 V5;
11\2
oy = ,u(yy,) ; here each p > % such that i # 3, defines a nonequivalent para-

CR structure having a 4-dimensional symmetry algebra, with generators V;
satisfying [Vi, Vo] = V1, [V, V4] = V3;

oy = 1::1_’(/7;,‘)‘2; for each p > 0 we have a nonequivalent para-CR structure
with a 4-dimensional symmetry algebra; its generators V; satisfy [V1,Va] =
Vs, [V3, Vi] = Va, [V3,Vi] = V3, [V, Vi] = Va.

5.1.4. Branch I = 0. This case is a bit easier to describe explicitly than the above
I # 0 case. Thus we choose this case to present all the details of constructing
invariants for such para-CR structures, rather then those with I # 0.

When constructing these invariants we proceed as follows:

Starting with the defining forms (I = dy — pdz,n; = day, n2 = daz, m = dz) as
in (4.1)), for which the function p = p(z,y, a1, a2) satisfies

p1 #0 and I=0,

we consider the most general forms (6°,6%,62 63) from the class [I,n1,n2,m] as in
(5.2). Then we repeat the entire Cartan’s procedure for these forms we performed
in Section from item up to item . After this we have forms 6° and 6!
normalized so that

d6® =Q; A"+ 6° N 6!
and
do* AO° A O = 0.
This second equation holds since we assumed that
I1=0.

The form € is given by (5.4), and the normalizations for a and hi2 are as in ([5.3)).
Continuing with Cartan’s equivalence method we now make the following steps:

o First we introduce forms Q9 and Q3 so that the form 4! satisfies:
dot = Qo A 00+ Q3 A 0L,
This defines forms €25 and €3 to be:
0, = pider  apidhi | ap(Pipiz — pup2) + hii(p1pes — pzpm)eg _

B fhi fh% fhnp(hzzpl - h21P2)
cipi(c1p1 g hllpy)93 4 e100° + c1, 0L,
f2h11

Q3 = dlog(hi1) +
(011f2h%1 —beip?  cap(pipiz — p11p2) + hot (p1pas — p2px1)>90 i
f2h%1 fh11p(h22101 - h21p2)
P11pP2 — P12P1 2 CiP1 .3 1
0° + 0° + h1110".
pl(h22p1 - h21p2) fhi t
As we see the forms Q) and Q3 are defined modulo the terms 6° and 6! (the

form €2,), and 6 (the form Q3), respectively. Thus to write them down in
full generality one has to introduce additional parameters c1g, ¢11 and hi1;.
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e At the next step we introduce forms 4, Q5 and Qg such that the form 62
satisfies
do? = Qs A0 — Q5 A OY + Qu A 62

These forms are defined as follows:

dh dh
Op—Cl) PICR2 1 ysg0° + hog1 00 + hos?
ha1p2 — hoop1 haap1 — ho1p2
dhaoy ha1 (h11h221 + h21h222) 2 C2P1 ,3 0 1
0 — haig, - 62— 2PLps g 60 1 hoii6
° hi1 * hay hi1 fh11 a0l e
b1 C2P1 C1p1
O = dey — Q4 + Qs —
T Fhu 2 fha 0 fhag
S?h11(ha1hoto + hathaso) + p1(caf(harhatr + hothoot) — c2(bpr + fhithoot))
f?hi
pi(crhoot +cahaoa)\ o | CaP1Py 3 o
(h220+ it )9 + F2hy, 0° — c00".

Here we had to introduce new parameters hosg, hoo1, h2a, hoio, ho11 and
c20, which take care of the undefined terms in the expressions for 4, s,
and Q6.

e Analysing d9? we first observe that

AP AN 0% = (Q3 — Q) AO° NG +

fhithir1(hoopr — ho1p2) + hoo(fp11 — 2bpT) + ho1 (2bp1p2 — fpi2)

fhll(h22p1 - h21p2)

This enables us to fix hi11:

hiyg = ho2(2bpT — fp11) + ho1 (fp12 — 2bp1p2)

fhii(hoapr — ha1p2)
e After this normalization an introduction of a form

p1dd bp1 0
= + Q3 — ) +b0° — (c11 — fot+ 5 +
fhi fhn( 3~ fh) +bo ( 1= Jo f2hi

b cop(p1p12 — p2pi1) + ho1 (P12 — P2Pz1)\ 3
L (Pa1 — 2p1py + DPy1) + )6,
f?h1 (po1 = 2p1py + pPi) Jhiip(hoapr — ha1p2)

brings d#? into the form:
do® = Q7 A 0%+ (2 — Q3) A 6.

Again we had to introduce a new parameter which we denoted by by here.

N AN ER

2bc1p?

Qr

Summarizing our efforts in this section so far, we conclude that the invariant forms
69,601,602, 63 of a para-CR structure with I = 0 can be gauged in such a way that
they have the following differentials:

de® = A0° + 03 N 6*
(5.5) do' = Qu A 0% + Q3 A O
d6? = Qs A% — Qs A O + Qu A 62
de® = Q7 A% + (1 — Q3) A O3,
Now we pass to the analysis of this system in terms of Cartan’s characters and

Cartan’s test for the involutivity (see [I7], pp. 350-355 for definitions; for a one
page description of the procedure see e.g. [15], pp. 4066-4067). Since the forms '

0! +
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are given up to the action of the residual (r = 7)-dimensional group parametrized by
fyb,c1, ¢, hi1, hao1, hoo, we easily calculate the four Cartan characters associated to
this system. They are s = 4, s5 = 2, s = 1, sj = 0. Moreover, since the new forms
Q1,Q9,0Q3,Q4, Qs5, Q6, Q7 transversal to the respective residual group directions 9y,
Ders Ohyys> Ohoss Ohays Ocyy Op, are determined modulo r(1) = 10 parameters fo, cio,
c11, ha2o, hao1, ho22, ho10, ho11, €20, by, we have

18} + 25h + 3sh + 45y, =11 #£10 = V),
Thus the system ([5.5)) is not involutive, and has to be prolonged. Calculating d(2q,
dQsy, dQ23, dQ27 we fix ¢19, c11 and by in such a way that the forms €, Qs, (25 and
Q7 satisfy:

Ay =205 A 00 + Q7 A 0" — Qy A6
(5.6) dQy = Qo A (Q) — Q3) + Qs A O + K6 A 63

dQs = Qs A0 +2Q0; A O+ QA 03

dQ7 = QA Q3+ Qs A 0> + J° A

Here the form Qg and functions J and K are totally determined by the above
equations. The form Qg is given by:

bp1 ha1p12 — hoop11 Pip12 — P2p11
y —
fhii  hii(haoopr — hoipa) p1(ho2p1 — ha1p2)

c1pi + hi1per — huipipy +h11ppy1Q7 4 (0t (2 ()
fhiipr
where we skip writing down very compliceted, yet still totally determined, coeffi-
cients at the terms 6°, ', 62 and 63. It turns out, and this is the result of our
calculations, that the functions J and K are given by the same formulae as in
Proposition [5.2] This is not surprising, if one notices the identical forms of the
systems and with the equation for d9? and d2g removed. Actually,
after calculating dQ2g in the present situation, we get

5.7 dQg = Qs A Qy + Q7 A Qo + 2LV A0 + 2K g3 A g0,
o0 00

2Qg = dfo + foh + ( Q6 —

which again agrees with the system (5.1). Now we are ready to perform the Cartan
analysis of the the composed system —. We have here m = 4+5 differentials
de®, dot, de?, do3, dQy, dQ,, dQs, dQy, dQg, of the forms 6°, 01, 62, 63, Q,
Qa, Q3, Q4, Q5, which are given modulo the (r = 3)-dimensional residual group
parametrized by co, ho1 and hos. The new forms 4, 25 and g, transversal to
the respective vector fields Op,,, On,, and 9., are given up to r(!) = 6 parameters
hggo, hggl, h222 (94), hglo, h211 (95), and C20 (QG) Slmple linear algebra giVGS the
following Cartan’s characters of the system (5.5)-(5.7): s} = sh =s5=1,s; =0
for all i =4,...9. Thus for this system we have

18} + 28 + 353 + 48 + 55k + 655 + Tsh + 85 + 9sp = 6 = rD),

and, hence, the system is involutive. This result together with Cartan’s Theorem
11.16, [17], p. 367, tells us that there is no para-CR invariant information encoded in
the forms €4, Q5 and Qg. Hence we can take them in the most simple representation
Q4 = Q5 = Q¢ = 0. (Note that this can be achieved by setting co = ha1 = hoy =
Co0 = h210 = h211 = h220 = h221 = h222 = 0, 92 = dag. Cartan’s theorem says also
that we can do it in many ways. Since we are in the involutive case, the local group
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of para-CR symmetries is infinite dimensional; it depends on s)_; = 1 arbitrary
real function of k = 3 variables.) Concluding we have the following theorem.

Theorem 5.5. All type (1,1,2) para-CR structures (M, [\, p,v1,v2]) with dX A
A # 0, and with the invariant I = 0, are locally equivalent to one of the para-CR
structures (M, [\ = dy — pdz,v; = dp — Q(x,y,p)dz,ve = dag, p = dz]). Thus
they are obtained by extending by vo = dag the type (1,1,1) para-CR structure
defined by [N = dy — pdz, 1y, = dp — Q(z,y,p)dz, u = dx]. All local invariants of
such (M, [X, u,v1,12]) are given by the point invariants of the corresponding point
equivalence class of second order ODEs represented by y" = Q(x,y,y").

It is convenient to introduce the following definition.

Definition 5.6. A type (1, 1,2) para-CR manifold (M, [\, u, v1,v2]) with AAAX #£ 0
is regular if the invariant [ is either not equal to zero in M or it is zero everywhere
in M.

Now comparing Theorems [5.3] and [5.5] we obtain:

Corollary 5.7. All regular type (1,1,2) para-CR manifolds (M, [\, p, v1,v2]) with
dA A X # 0 are locally equivalent either to canonical para-CR structures of point
equivalence classes of 8rd order ODEs (if I # 0), or to the trivial extensions of
the cananical para-CR structures of point equivalent classes of 2nd order ODEs (if
I1=0).

5.2. Local invariants for para-CR structures of type (1,1,n — 1). We be-
lieve that the situation described in Cotrollary is typical for any regular type
(1,1,n — 1) para-CR structures (M, [A, u, V4]) with dAA XA # 0 and any n > 3. By
this we mean the following. In the generic case, such para-CR structures should be
locally equivalent to the canonical para-CR structures associated with point equiva-
lent classes of nth order ODEs. This generic case should be distinguished by the si-
multaneous nonvanishing of a finite number ¢ of relative invariants (11, ..., I;), gen-
eralizing our invariant /. These invariants should have some hierarchical structure,
so that if all invariants above some level, say ng, in the hierarchy identically vanish,
then the para-CR structure is a trivial extension of a canonical para-CR structure
of type (1,1,n—ng—1), by adding ng forms v,—1 =dan—1, ..., Un—ny = dan—n, to
the canonical contact forms [, g, v1, ..., Un—ny—1]. Proving or disproving our belief
goes beyond this article.

6. RELATIONS WITH OTHER DIFFERENTIAL EQUATIONS

Given a para-CR structure of type (k,r,s) we consider its local embedding in
RF+7)+(E+5) a5 in Theorem [2.6l The obtained codimension-k submanifold ¥ we
intend to interprete as a general solution of a certain system of differential equations.
We know how to do it in the case of para-CR structures of type (1,1,n — 1): in
this case X describes the general solution of an nth order ODE considered modulo
point transformations of variables. In the case of a general (k,r,s) we expect that
> corresponds to the general solution of a system of ODFEs, or more generally, to
the general solution of a system of PDEs of finite type.

6.1. Systems of ODEs. Given a system of first order ODEs
dy’
dx

(6.1) = F'(x,y', ..., y"), i=1,2,...n,
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we consider its general solution
Y :w(l‘vaOva‘lv"')an—l)a 221,2,...71,

where the constants a,, u = 0,1,...,n — 1, are the constants of integration. This
defines a codimension n submanifold

Y= {R(”+1’") > (av,yl7 eyt ao, e, an-1) | Yl = wi}

in RO*+1L7) which aquires a para-CR structure from the split 2n +1 = (n+1) +n
in the ambient R("*1™) given by the linear operator x(9,) = —0,, #(dy) = O,
k(0yi) = Oyi. Interestingly this para-CR structure is of type (n,1,0).

Indeed, the tangent space TX to X is spanned by

X =0, + L0y
Z, = 8H + w;@w

Since £(Z,) N TY = {0}, for all p = 0,...,n — 1, and k(X) = X, then x(TX) N
TY. = HT = Span(X), and the k(= n) codimensions of the (n,1,0)-type para-CR,
structure on ¥ are spanned by the n vectors Z,,.

Hence a typical representantive of para-CR structures of type (n, 1,0) is a system
of n first order ODEs for n scalar functions of one wvariable, considered modulo
point transformations of the variables. The study of invariants of such para-CR
structures, as well as para-CR structures representing systems of ODEs of higher
orders, will be performed elsewhere.

6.2. PDEs of finite type. Recall that the finite type property of a system of PDEs
means that its most general solution depends on a finite number of parameters.
Instead of studying the para-CR structures associated with the most general PDEs
of finite type, in the next few sections we will study the para-CR structures of
type (1,2,3) and (3,2,1). They include, as the simplest example, the para-CR
structure corresponding to z,, = 0 & z,, = 0, i.e. a system of two PDEs for one
real function z = z(x,y) of two real variables z and y, with the general solution
z = ag + a1z + agy + azzy, depending on four real parameters ag, a1, as and
as. Generalization of this example to the finite type PDEs of the form z,, =
R(x,y,2, 22, 2y, Zay) & 2yy = T(2,y, 2, 2, 2y, Zzy), provides examples of (1,2,3)
and (3,2,1) type para-CR structures with very nice properties.

7. PARA-CR STRUCTURES OF TYPE (1,2,3)
7.1. The flat model. Consider a pair of second order PDEs
(7.1) Zez =0 & Zyy = 0,

for a real function z = z(x,y) of two real variables  and y. The general solution
for this system is clearly

(7.2) z=ap+ a1z + agy + aszy.

This means that the solution space of this system is 4-dimensional, and that its
points are parametrized by a = (ag, a1, as,a3) € R*. Thus we have here a generi-
cally embedded hypersurface

Y= {R7 3 (z,y,2,a0,a1,a2,a3) | 2= ap + a1v + axy + azzry},
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in the ‘correspondence space’ R” = R3 x R, with the respective coordinates (x, vy, 2)
and (ag, a1, as,a3). The linear map « : R” — R7, such that

n(x, Y,z,0a0,01,02, a3) = ((E, Y,z,—agp, —ay, —az, _a3)7
induces a para-CR-structure of type (1,2,3) on X. Indeed, the tangent space to X
is spanned by
X1 :alay 7(1281, X2 :a282+8y,
Y1 =20y — 01, Yo = y01 — 202, Y3 =20y — 03,
Z =0, + 0,
and we have a (k,r, s) = (1,2, 3)-type para-CR structure, with k£ = 1 corresponding
to Span(Z), r = 2 corresponding to the eigenspace H* = Span(X1, X5), and s = 3
corresponding to the eigenspace H~ = Span(Y1, Y2, Y3). Obviously H = HT® H ™.
Any diffeomorphism of R7 of the form
(I)(x7 Y,z ai) = (‘f('xa Y, Z)a g(ﬂf, Y, Z)a 2(1‘7 Y, Z)7 ai(a'j))

is, on the one hand, a para-CR diffeomorphism of the para-CR manifold ¥, and on

the other hand, can be interpreted as coming from a point transformation of the
variables of the system ([7.1)).
Dually this para-CR manifold is defined on ¥ in terms of the forms

A =dag + zda; + ydas + xydas

p1 =dz
(7.3) pe = dy,
vy = da
vy = das
vz = das

given up to the transformation

A N a 0 0 0 0 0 A 0%
4! 2 by fi1 fiz fiz 0 0 ” 6);
2 iz by for fo2 fa3 O O vy | der | 6
7-4 pu— —
(74) vs | 7 78 b3 fa1 fs2 fsz 0 O U3 63
H1 1y cc 0 0 0 hyy hio 2 Q3
2 1 c2 O 0 0  hor ha 142 Qs

In this formulation the question of local equivalence of a given para-CR structure

of type (1,2,3) to the one defined by (7.3)-(7.4) can be solved by using Cartan’s
equivalence method, see e.g. [17]. Using it we get the following theorem.

Theorem 7.1. The para-CR structure - defines a unique I1-dimensional
manifold P on which the forms (0,02,0°,6% Q5,93), as defined in , can be
supplemented by the unique 1-forms (1, Qq, 05, Qg, A) in such a way that the eleven
1-forms (Gi,Qu,A), 1=1,2,3,4, u=1,2,3,4,5,6, constitute a coframe on P, and
that they satisfy the exterior differential system

(7.5) A" +T"; A6 =0
(7.6) dr’, + T, AT*, =0,
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with
(7.7) Fij = g'* Ty, Ti; =Ty + 2 Agij
where
01 0 O
1 0 0 O
ik
(7 8) g _glk_ 0 O O 1 9
0 01 0
and
0 04 Qy W
- 0 Q3 Qs

- —Q3 0 Q
-y Q5 —Qs 0

Moreover, if (%, [(\, ji1, fiz, 1, V2, 73)]) is an arbitrary 6-dimensional para-CR struc-
ture of type (1,2,3), then it is locally para-CR-equivalent to the para-CR structure

— if and only if its corresponding forms

64 a 0 0 0 0 0 A
6! by fuu fiz fiz O O i
62 b2 for fe2 fas O O | _ |2
63 bs fa1 fs2 fsz O 0 U3
Q3 ca 00 0 hin hie i
Qo 2 0 0 0 ha hx fl2

can be suplemented by five 1-forms (Q1,Q4,Q5, 06, A) in such a way that on some
11-dimensional manifold P they satisfy the exterior differential system —.

Proof. The proof of this fact is a standard application of Cartan’s method of equiv-
alence. It requires massive calculations to show that the 1-forms (7.3)-(74) can
be uniquely brought to the form, in which they satisfy (7.5)-(7.9) with unique
(Q1,904,Q5,Q6, A). Actually Cartan’s method of equivalence constructs the mani-
fold P with a natural parametrization of P by (z,y, ag, a1, as, as, a, fi1, fo2, f31, f32),
and gives, in an algorithmic way, the explicit formulae for the coframe 1-forms
(9i7QH,A), 1=1,2,3,4, p = 1,2,3,4,5,6, which correspond to — on P.
These coframe 1-forms read:

gl — _afsp (dao + ydas) + Ji1f22 — wafso (da1 + ydas),
J22 f22
6? = _afan (dao + xzdaq) + fufz —yafs (dag + xdas),
Jin Jin
03 _ _af31f32da i fa1(fi1fo2 — $af32)da i fa2(fi1fo2 — yaf31)da B
fufer " fi1 e ' fi1fe ’
(fi1fo2 — zafs2)(fi1fo2 — yaf31)da3
afi1 foo ’
6* = a(dag + zda; + ydas + zydas), Qo = idac, Q3 = idy,
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fu

= §dlog( )+ 5 (Fandy = frade),
LT afs af3

o= gdlosl o) 2, W
_ J32 afs2 af32

s = g dloel 7 7)) T f11f22d

0n = balog(P122) =~ (fudy + fnde),

A = —dlog(fi1fa2)-
It can be checked by a direct calculation that these forms satsify ([7.5)-(7.9)). O

7.2. Newman’s construction. After E. Ted Newman [6, [7] we recall that the
system has the interesting property that its solution space R* is naturally
equipped with a conformal metric of split signature. This is defined as follows.

Consider two neighboring solutions of corresponding to two points a and
a+da in R*. These two solutions can be considered as two surfaces, the graphs of
two functions,

z2(x,y) = ap+ a1x+ asy + azxy &
(z+dz)(z,y) = (ao+dag)+ (a1 +dar)x + (ag + dag)y + (a3 + das)xy,

in R? with coordinates (x,y, 2). One can ask what conditions the two points a and
a+da in the solution space R* must satisfy for these two surfaces to be tangent at
some point (x,y,2) in R, An elementary argument shows that the point (z,v, 2)
at which the two surfaces are tangent satisfies the following equations:

dz = dag + dayx + dasy + daszy = 0,
(dz)s =da1 +dasy =0 & (dz), =das +dagz =0.

The first of the above equations says that the two surfaces intersect at a point
(z,y,2(x,y)), and the second two equations say that they are tangent at the same
point (x,y,z(z,y)). These three equations for the two unknowns (z,y) have a
solution if and only if da satisfies a compatibility condition, which is obtained
by eliminating z and y from the two second equations, and by inserting the so
determined x and y in the first equation. This compatibility condition is:

daoda3 — daldag = 0.

Thus: two neighboring solutions a and a 4 da of (7.1) are tangent to each other
at some point (x,y,z) in R? if and only if they are null separated in the flat split
signature metric

(7.10) g = 2(dapdaz — dajdas)

in R*. This shows that the solution space of is naturally equipped with a
conformal structure. This gives a correspondence between the incidence relations
between two solutions of treated as surfaces in R and conformal properties of
points in the solution space R%. This description is very similar to the well known
correspondences in the Lie sphere geometry, or more generally, in Penrose’s twistor
theory.

A new view of Newman’s construction, stressing the Weyl geometric aspect of
it, follows from our Theorem [7.1] and is included in the following theorem.
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Theorem 7.2. Every para-CR structure of type (1,2,3) which is para-CR equiva-
lent to the para-CR structure - uniquely defines an 11-dimensional prin-
cipal fiber bundle CO(2,2) — P — S, with the 7-dimensional homothetic structure
group CO(2,2), over a 4-dimensional manifold S, which can be identified with the
solution space of a pair of PDEs on the plane: zy; = 0 = z,,. It also defines a flat
Weyl geometry [g, A] on S, in which the (2,2)-signature metric g and the 1-form
A change conformally, g — ¢*®g, A — A — 2d¢, when the system z,, = 0 = z,,
undergoes a point transformation of the variables (x,y, z).

Proof. Given a para-CR manifold locally equivalent to — we use the previ-
ous theorem and construct an 11-dimensional manifold P with the coframe (6*,€2,,, A)
satisfying (7.5)-(7.8). It is convenient to write down these equations explicitly.
Equations (7.5, when written in the coframe (6°,€,,, A) read:

dot = (4 — %A)/\é’1 — Q3 A0 — Q5 N0
(7.11) d6® = (—Q1 — A AP — QN> — Qg N 6*
d6® = Qu A O" + Q5 N 0% + (6 — LA) A 6P
do* = Qe A 0" + Q3 N 0% + (—Q6 — $A) A O,
whereas equations read:
dQ1 = Qo AQs — Q3 AQy
dQs = QA (D + Q)
dQs = (Q1 — Q) A Q3
(7.12) Ay = QA (2 — Q)
dQs = (21 + Q) A Qs
dQg = Qo A Q5+ Q3 Ay
dA=0.

The appearance of only constant coefficients in front of the 2-forms on the right hand
sides of equations — enables us to identify the coframe forms (6°,,,, A)
with the Maurer-Cartan forms on an 11-dimensional Lie group with a Lie algebra
having structure constants equal to these coeficients. This shows that P is a Lie
group. A look at the structure constants of the corresponding Lie algebra given
by —, shows that this Lie group is P = R* x CO(2,2). The CO(2,2)
principal fibre bundle structure on P = R* x CO(2,2) corresponds to the fibration
CO(2,2) — R* x CO(2,2) — R*, i.e. to the natural principal CO(2,2) fibration
over the homogeneous space R* ~ (R* x CO(2,2))/CO(2,2). Existence of this
fibration on P is guaranteed by the equations (or what is the same )
They say that the 1-forms (1,62, 62, 6*) form a closed differential ideal, so that their
annihilator defines a foliation of P by 7-dimensional manifolds. On each of these 7-
dimensional manifolds the forms (6, #2, #%, #*) vanish identically, and the additional
seven 1-forms (1,9, Q3,Qy, Q5,Q6, A) form a coframe. The differentials of this
coframe, on each leaf of the foliation, satisfies a closed exterior differential system
with constant coefficients . Thus each leaf can be identified with the same
Lie group, whose Lie algebra has structure constants determined by (7.12). It
is easy to see that this 7-dimensional Lie algebra is the homothetic Lie algebra
c0(2,2) of homothetic motions in 4-dimensions associated with a metric of signature
(+’ +, - 7)'
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The appearance of the Lie group CO(2,2) as a subgroup of P suggests that
S =R* ~ (R* x CO(2,2))/CO(2,2) is naturally equipped with a conformal metric
of signature (4, +, —, —). This is indeed the case. The metric is obtained as follows:
consider the bilinear form G on P defined by:

G = 2(0"0% + 630").

This form is highly degenerate on P, but its degenerate directions are precisely
along the fiber directions of the foliation CO(2,2) — P — M; actually G has
signature (+,+,—,—,0,0,0,0,0,0,0). Morever, using the sytem it can be
easily checked that the Lie derivatives of G along all the directions tangent to the
fibres are just multiples of G. In particular, if Z is any vector field on P tangent
to the fibres, we have Z_1§° = 0, and as a consequence of we get

L;G = —(Z_\ A)G

Thus G descends to a conformal metric [g] of signature (+, 4+, —, —) on the quotient
space S = P/CO(2,2).
Using the last equation (7.12) we also get

LzA=d(Z1A),

so we see that the pair (G, A), changes as (G, A) — (G',A") = (e**G, A — 2d¢)
when it is Lie dragged along the fibres of CO(2,2) — P — S. Thus it descends
to a split signature Weyl geometry [g, A] on §. The equations , when pulled
back to S, show that this Weyl geometry is flat.

To interpret the quotient S = P/CO(2,2) as the solution space of the pair of
equations zy, = 0 = z,, we use the corresponding para-CR forms (7.3), together
with the explicit expressions for the invariant forms (9!,62,63%,0%) and A in coor-
dinates (z,y, ag, a1, az, as, a, f11, fa2, f31, f32) on P, as in the proof of Theorem [7.1
A short calculation shows that

G = 2(9192 + 9394) = —2f11f22(da0da3 — daldag).

This, together with A = —dlog(fi1f22), shows that the representative (g, A) €
[g, A] can be taken as

g = 2(dagdaz — daidas), A=0,

and that S is parametrized by (ag, a1, as, ag). Since these parameters constitute all
the integration constants of the equations z,, = 0 = z,, the quotient S can be
naturally identified with the solution space of these equations. (Il

7.3. The principal bundle point of view and Weyl geometry. In the previous
section we have shown how to associate an 11-dimensional principal fiber bundle
CO(2,2) — P — S to any flat para-CR structure of type (1,2, 3). Here we reverse
this construction.
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Proposition 7.3. Every 11-dimensional manifold P with a coframe (6°,9,, A),
1=1,2,3,4, pn=1,2,3,4,5,6, satisfying the differential system

do' = (Q1 — A N0 — Q3 A 0P — Q5 A O

d0? = (- — LA AN — W AP — QN 0!

d6? = Qu N 0" + Q5 A 0% + (6 — 2A) N OP

do* = Qa A O" + Q3 AN 0% + (—Q6 — $A) A7,
(7.13) A = Qo A Q5 — Q3 AQu + Lky;0° N 07

dQ = Qu A (U + Q) + Sr2i;0° N O

dQs = (Q1 — Q6) A Qs + Sk3i;0° NG

Ay = Qu A (1 — Q) + Sr4550° NG

dQs = () + Q6) A Q5 + 2k5:;0" A 67

dQ = Qo A Q5+ Q3 A Qq + Srgi;0° A 60

dA = JF;0° N6,
with Kqij, Fij being functions on P, is locally o principal fiber bundle CO(2,2) —
P — S over a 4-dimensional manifold S naturally equipped with a Weyl geometry
[g, 4], in which the split signature conformal metric g is determined by a bilinear

form G = 2(0102 +030*) on P, and the Weyl potential 1-form is determined by the
1-form A on P. The curvature of this Weyl geometry is given by

0 K1+ %f %) R4

R_ | + %f 0 K3 K5
o —K2 —K3 0 Kg + %f ’

—Kq —Ks5 —kg+ 1 F 0

where K, = %/«vmjei NG and F = %Fijei NGI.

Proof. As in the proof of Theorem [7.2] we easily see that the 7-dimensional distribu-
tion annihilating (6!, 62,63, 6%) is integrable, and hence we have a local projection
m: P — S, identifying points along the same leaves of the corresponding foliation.
Since on the leaves the forms 6 vanish, and since the differentials d2,,s differ from
those in by terms that vanish on the leaves, every leave is a local Lie group
isomorphic to CO(2,2). This proves that the manifold P is locally a principal fiber
bundle CO(2,2) — P — S.

To prove that S has a natural Weyl structure [g, A], one repeats the argument
from the previous proof. Although in (7.13), when compared to (7.11)-(7.12)), the
new terms k., and F appear, the argument from the previous proof is not altered.
This is because (1) the new terms do not appear in the ‘conformal metricity /torsion’
part of the equations (i.e. d§’ equations) and (2) they appear in dA only in harmless
terms which are annihilated by any vertical direction.

The curvature of this Weyl structure can be calculated, by observing that on
any section o(S) of P the Weyl connection is given by I''; = g™ o™ (T'jj,;) + 1 Agk;),
where I';; is expressed in terms of the forms (2, appearing in @ via formula

(7.9), and g;;, g’* are as in (7.8). The rest of the proof consists in calculating
Rij = dFij + T A ij using (7.13) and lowering one index. O

This proposition is crucial for the remaining sections. In particular it can be
used to prove the theorem, which gives the converse of Newman’s construction:
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Theorem 7.4. Every 11-dimensional manifold P which is equipped with a coframe
(0",9,,A),i=1,2,3,4, up=1,2,3,4,5,6, satisfying the differential system -
, s locally a principal fiber bundle CO(2,2) — P — S, originating from a
flat para-CR manifold (X, [\, p1, 1o, v1,v2,v3]) of type (1,2,3), via the procedure
described by Theorem (7.1

Proof. That P with a system (7.11))-(7.12) is locally a principal fiber bundle CO(2, 2)
— P — S is an immediate consequence of Proposition [7.3| with x, = 0 and F = 0.
Here we show that apart from the foliation CO(2,2) — P, the system —
defines another foliation of the manifold P, whose leaf space can be identified with
a 6-dimensional flat para-CR structure X.

To see this consider the forms (91, 62,63, 0%, Q5,Q3), and observe that the system
(7.11) and the second and the third equations from system guarantee that
these six forms constitute a closed differential ideal. Therefore their annihilator
is a 5-dimensional integrable distribution on P, whose integral manifolds define
a 6-parameter foliation of P. Putting 9y = 0 = Q3 in equations we see
that the coframe (1,4, 5,6, A) on these integral manifolds satsifies a closed
differential system with all the coefficients being constants. Thus all these integral
manifolds can be identified with a unique Lie group K, which turns out to be a
direct product K = Aff(1) x Aff(1) x R* of two independent groups of affine
transformations of the real line, Aff(1), and the multiplicative group of the real
numbers R*. This shows that the manifold P, with the system of 1-forms (7.11))-
(7.12)), can be also locally viewed as a principal fibre bundle K — P — Y. Here
3} is the 6-dimensional leaf space of the foliation whose leaves are identified with
K. Any manifold ¥ transversal to the fibres of these fibration is equipped with a
coframe (07, Qs,Q3) = (67, s, Qg)‘g, 1=1,2,3,4, which satisfies the system

do' = (Q1 — A N0 — Q3 AG® — Q5 N O

d0? = (—=Q1 — A N> — QNP — QN0
(7.14) d0® = Qu A O' + Q5 A0 + (U — $A) A 6P

do* = Qa A0+ Q3 A O + (—Q6 — L A) N O,

dQy = Qo A (Q1 + Q)

dQs = (Q1 — Q) A Qs,

1
2

with forms Qq, Qu, Q5, Qs and A on . That these forms are the restrictions of Q1
Q4, Qs5, Q6 and A to X is not important in the following. What is important, is that
the system on ¥ is satisfied by a coframe (6%, Q2,Q3), and that it implies that
the quartet of forms (1,602,603, 0*), as well as the triplet of forms (6%, Qy,Q3), both
form closed differential ideals of 1-forms on Y. Thus the 2-dimensional anihilator
H* of (0*,0%,6%,6%), as well as the 3-dimensional anihilator H~ of (64, Qy,Q3),
define foliations of ¥ by, respectively, a 4-parameter family of 2-dimensional leaves,
and a 3-parameter family of 3-dimensional leaves. The integrable distributions H+
and H~ obviously have Ht*NH~ = {0}, equipping each 3 with a para-CR structure
(S, H*, H™). It is matter of checking that the (1,2,3)-type para-CR structures on
each ¥ are localy equivalent to each other, and that they descend to the unique
(1,2, 3)-type para-CR structure (X, HT, H~) on the quotient ¥ = P/K. Obviously
this para-CR structure is the flat one of Theorem [7.1]

O
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7.4. Non flat case. Now we generalize the flat example of Sections to
systems of PDEs on the plane of the form
(7.15) Zew = R(X,Y, 2, 22, 2y, Zay) & Zyy = T(X, Y, 2, 22, 2y, Zay)-

We assume that they are finite type, or, what is the same, we assume that their
general solution can be written as

z = w(x7y7a07a17a27a3)‘
This is always the case [7], when the functions R = R(z,y,2,p,q,s) and T =
T(z,y,2,p,q,s) satisfy
(7.16) DT = DR,

where the differential operators D, and D, are implicitly given by

(7.17)

Dy = 0, +p0. + ROy + 504+ Dy RO, & Dy, =0y+q0,+50,+10,+ D, T0,.
To make this implicit definition of D, and D, explicit one has to solve for D,T

and DyR in D,T =T, +pT. + RT,+sT;+ (DyR)Ts and DyR = R,+qR.+sR,+
TR, + (D,T)Rs. This is only possible if

(7.18) TR, # 1,

which when assumed, defines D,T" and Dy R uniquely, and in turn after insertion
in , makes the operators D, and D, explicit. Thus we assume from
now on.

To define a type (1,2,3) para-CR structure associated with the system ,
(716), we do as follows. First, using the general solution z = ¥ (z, y, ag, a1, as, az),
we define the forms

A = ¢Yodag + YP1da; + Padag + P3das

w =dx
po = dy
(7.19) vy =day
vy = das
v = dasg,

Then we extend these forms to the class [\, p1, pio, v1, va, v3] via (7.4)). This equips
the 6-dimensional hypersurface

X= {(x7y7zaa05alaa27a37a4) € R7 | z = w(x’y7a/07a/17a/25a3)}

in R x R* with the (1,2, 3)-para-CR structure [\, u1, p2, v1, V2, v3]. Alternatively,
a para-CR equivalent structure may be defined on the second jets J?2 of the system

(7.15)-(7.16). Parametrizing this space by (z,v, 2z, p, q, s) we use the contact forms
A =dz — pdz — ¢dy

w =dx
po = dy
(7.20) vy =dp — Rdx — sdy

vo =dq — sdx — Tdy
v3 =ds — DyRdx — D, Tdy,
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and define the type (1,2, 3) para-CR structure by extending these forms to a class
of para-CR. forms [\, u1, pa, v1, v2, v3] on J? via:

A N a 0 0 0 0 0 A
121 2 by fuu fiz fis O 0 vy
Vo V) by for fo2 faz O 0 %)

7.21 = ,
(721) vs | vy bs fa1 fa2 faz O 0 v3
I wh cac 0 0 0 hi1t hio 5
12 wh cgc 0 0 0 ha ho fho

where a,ba, o, f75, h% are arbitrary parameters such that adet(f4) det(h) # 0.
Let us now define, as before, the lifted coframe

o4 a 0 0 0 0 0 A
6! b fu1 fiz fis O 0 vy
62 by for fa2 fo3 O 0 %)

7.22 =
(7:22) 63 b3 fa1 fa2 fzz 0 0 V3
Q3 cc 0 0 0 hin hie 72
Qo cc 0 0 0  hoy ha) \pu2

We ask which conditions the functions R and T must satsify so that the forms
(6%,02,03,0% Q,03) are forced to satisfy the system with some auxiliary
forms (91, Q4, 25, Q, A), on a certain 11-dimensional manifold P, where (6°,,,, A)
would serve as a coframe. As a first result in this respect we have the following
theorem.

Theorem 7.5. A neccessary condition for the equations zyo = R(2,Y, 2, 2z, Zy, Zay)
Zyy = T(,Y, 2, 2, 2y 22y) Satisfying D2T = Df/R, 1— RTs > 0 to admit forms
(729 with

7.23

(7.23) do* A O* = (Qa A O + Q3 A O2) A O*
(7.24) dO* AT AP AN A Q3 =0

(7.25) dO? AL AP NG AQy =0

(7.26) dO* NGNGB N0 AQ3 =0

(

7.27) AP ANPPANPPAOTAQy =0
is that the functions R = R(x,y, 2, 2z, 2y, Zay) 0nd T =T(2,y, 2, 2z, 2y, Zay) Satisfy
J =0, & Jo =0,
where
J1 = (RTs —4)DyRs + Rs(2Dy Ry — R D, T;) +
8R, — 6R R, Ty + 4R, R, + 2R2T, — 2R, R2T, + 2R>T,

Jo = (RsTs — 4)D,Ts + T5(2D, T, — TsDyR,) +

8T, — 6RsT,Ts + AT, Ts + 2R, T? — 2R T, T? + 2R, T?2.
Proof. We force the forms (01,602,603, 0% Q5,Q3) to satisfy (7.23)-(7.27) in the fol-
lowing steps:

First we fix coefficients fa3, fa3, ki1, h12, ho1 and hgo by forcing df* to satsify
(7.23). For this to be satisfied we must take:

(7.28) Jiz3 = f23 =0,
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and
b= e gy,
(7 29) .]012.1021_.][11.](227 f12f21_f11f22’
. _ af22 le21
h21 = h22

_f12f21_f11f22’ :f12f21_f11f12.

After these normalizations we have

2f11f12 + Rs fhy
afss

2
A0V AOL A B2 MO A Qs = T Si200 A p 0t A 62 AP NG

and
2f21fo2 + Rsf221
afss

Thus to satisfy (7.24) and (7.25) we must equate to zero the right hand sides of
these equations. It is the moment, when we need the assumption

T, f2
A02 AN A G2 A O A Qy = TS0 00, A 01 A2 A6 A O,

1—-R,Ts > 0.
When this is assumed we achieve ([7.24]) and (7.25) by normalizing:

ltw 1Fw
(7.30) for = i fo2, fi1 = I fi2, w=+1— RTs.

With these normalizations we now have
Aot AOLAGP A O A Qs =

(1 + 3w? £ 3w + w3)J1 — R3J,
4af22R§w2

1 Qo AQs AOEAO2 NG A O
(7.31)
dOP AP AP N0 AQy =
9 (1 +3uw?F3wF w3)J1 — R‘;’Jg
2 4af12R§w2

Qo A Q3 AOLAOEAO3 A O

The right hand sides of these equations vanish identically if and only if

(1+3w* 3w+ w®)J; — R =0
(1 + 3w? F 3w :|:w3)J1 — R§J2 =0.

Since
1+3w? £3w+w® —R¥\ 3 9
this is only possible if and only if J; = J3 = 0, which finishes the proof. (]

The meaning of vanishing of both J; and J,, known as Newman’s metricity
conditions [0l [7], is given in the following theorem.

Theorem 7.6. If conditions

le() & JQEO
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are satisfied then one can normalize the forms (0,62,02,0% Qy, Q3) in such a way
that they, together with the auziliary forms (Q1,Qs,Qs5,Qg, A), satisfy

do' = (1 — 2A) N0 — Q3 AOP — Q5 N O* + 13507 N 6P
(7.32) d0® = (-1 — SA)ANO* — Qo N> — Qu N O* +1130" A O?

do® = Qu A 0" + Q5 N O% + (6 — 2A) A 6P

do* = Qe AO' + Q3 N 0% + (—Q6 — $A) A,

where
1 _ a 2 2
(733) t23 = _W (RSS(]- + U)) + TSSRS)7
2 2 2
t13 = —W(RSS(].ZFU)) +TSSR5)'

With this normalization the bilinear form G = 2(6'62 + 620*) descends to a con-
formal (+,4, —, —) signature metric [g] on the 4-dimensional leaf space S of the
foliation defined by the integrable distribution anihilating (6%,60%, 63, 0%).

Modulo a discrete point transformation, interchanging ' with 62, the vanishing
or not of at least one of

Kl = Rss(l -V 1- RSTS)2 + TssR§7 KZ = Rss(l + V 1- RSTS)2 + TssR§7

is a point invariant property of the corresponding system zy, = R(x,Y, 2, 2z, 2y, Zay)
& zyy =T(x,Y, 2, 2z, 2y, Zay). In particular, the simultaneous vanishing of Res and
Tss, Rss = Tss =0, is a point invariant property of the system.

Proof. If we prove that the forms (6%,6%, 6%, 6%) can be forced to satisfy the sys-
tem on some 11-dimensional manifold P, where the forms (6,9, A) are
linearly independent, then similarly as in the proof of Proposition [7.3] we will have
a foliation of P by the integral leaves of a 7-dimensional integrable distribution
annihilated by (61,602,603, 60%). Moreover because differs from by only
the appearence of 6° A 6% terms, the Lie derivtives of G' with respect to the vectors
tangent to the foliation, will be given by the same expressions as in the proof of
Theorem Thus, if we prove , we will get the conclusion that the leaf space
S is equipped with the conformal split signature metrics [g] to which G descends.

The procedure of bringing the forms (%) to the form in which they satisfy
is based on Cartan’s equivalence method. The Cartan process of normalizing the
group coeflicients a, b;, ¢;, fij, hij has two loops, the first of which ends after nor-
malization of the coeficient b;.

The first loop: We first impose the conditions (7.23)-(7.27), as in the previous
proof, and as before reduce the possible freedom in the choice of (91, 62,03, 0%, Q, Q3)
to

94 a 0 0 0 0 0 A
o1 by %gwfu fiz 0 0 0 v
92 by 7}{:':1” fo2 fo2 O 0 0 Vo
(7.34) 03|~ |bs I31 fa2 f33 0 0 s
Qs ¢ 0 0 0 Hpfle gpallwl
2 e 0 0 0 Fafte polttw) ]\
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In the next step we impose the condition do* A@T A% AG* = —Q3 AOT AGZ A O3 NG
This gives the normalization

2w? f1a foo
aR,

and implies also that d8? A 0T A G2 A0 = —Qy AOL A O? A O3 A G
Then we require that df? A 6% A 62 A 0* = 0. This determines by as:

(7.35) fa3 =

by — ia(fsz-f'fisstfSQU/) J22 o
2 2fr2w R2w(3 + w?)
(7.36) ((1 +w)(1 — w)2R, + (1 F w)2Ry(Dy R, + T,R2 + R,T,)+

(14 w)Ry(Rs D, Ty + Ry(1 — w2))).

Similarly the condition df' A 6 A 63 A 0* = 0 determines b; as:

b ::Fa(f32+f31Rsif32w) J12 o
' 2 fa2w Riw(3 +w?)
(7.37) ((1 Fw)(1 —w)2R, + (1 £ w)2Ry(Dy Ry + TyR2 + R,T,)+

(1F w)Ry(Ry D, T, + Ry(1 — w2))).

After these normalizations have been imposed, we have to associate the remaining
undetermined parameters a, f12, fao, f31, f32, b3, c1 and co with the auxiliary forms
917 Q4, Q5, QG and A.

This is done by first observing that the equation

(7.38) do* = Qa A O' 4+ Q3 A 0% — (Q6 + 2 A) A O
is equivalent to

da b b c c
(7.39) Qg —tA=— — 20— 203+ 20 + 262 + w0,
a a a a a
with b; and by as above, and an unspecified new parameter uq11.
From now on we only sketch the proof, which is based on massive computer
calculations using Mathematica.

After relating da to Qg + %A we pass to the condition
(7.40) A3 AOL NG A6 = 0.
It follows that this can only be satisfied if the differential dbs is
(741) db3 = bgoggg —+ bgogQg, + bgoﬁ(QG + %A) —+

boad foo + b12d fiz + bazid far + bssad fsz + b310" + b326” + b330 + bsa6”.

The functions b3z, b303, b306, b322, b312, b33z1 and bszo are uniquely determined by
(7.40), and are expressible in terms of R, T, their derivatives up to order two, and
the free parameters a, f12, fo2, f31, f32, b3. The parameters b3y, bs2, b3z and b3y are
arbitrary. Using Mathematica we found explicit expressions for this differential up
to the undetermined 6’ terms. Due to the enormous size of this formula we do not

quote it here. We note, however, that the free parameters ¢; and ¢y are not present
in dbg
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Now, using all the normalizations obtained so far, and dbs as above, we impose
the condition

(7.42) do' AP A0t = (Q1 — SA) A0 N OP NG
This gives
(743) QO — %A = dlog f12 + f122922 + f123Q3 + f12192 + ...

The dots here denote the undetermined (6,63, 6%) terms. The functions fia2, fi23
and f101 are uniquely and explicitly determined by (7.42)). Similarly, imposition of

(7.44) do® A 0> A0t = (= — LA) N 0> AOP N
gives
(7.45) — Q1 — LA =dlog for + fa220 + f22303 + fo210" + ...

with uniquely determined functions faoo, fao3 and foo1, and dots denoting the
undetermined (62,63, 0%) terms.
Now the condition

(7.46) do> NO' N O* = (Q6 — LA ANO' N OG> A OP

is used to reduce the freedom in the choice of the undetermined 64 terms in (7.39),
(7.43), (7.45) and the undetermined 6 term in (7.41). This one scalar condition

gives a linear relation between the coefficient w11, the coefficient b33 at the 3 term
in , and the two coefficients at 6% in and ([7.45)). Denoting the last two
coefficients by fi24 and foou respectively, we use (7.46) to obtain b33 as a linear
combination (with coefficients depending on R, T, their derivatives, and the free
parameters such as a, etc.) of w111, fi24 and fooq.

At this stage we have associated the forms (g, €1, and A to nonsingular linear
combinations of the differentials da, dfss and dfis. The still unknown forms €,
and €25 can now be related to df3; and df3s by imposing the condition

(7.47) do? = Qu N 0" + Q5 A 0% + (Q6 — 2A) N O°.

The imposition of this condition results in

(7.48) Q= 2f1 —dfs1 F 2f df32 + -+ b + p6?

R 1+w
(7.49) Q5 = i2f22wdf31 CY
where the doted terms are totally and uniquely determined by R, T, their deriva-
tives, and the previous choices. Here «, 3, are new free parameters.

We stress that we calculated explicitly the right hand sides of equations ,
(7.43), (7.45)), (7.48) and . We do not quote them here in full generality due
to the lack of space. But now, having these right hand sides calculated, we can
calculate df' and d#?. Tt follows from these calculations that

dOPANOLANOP NP A Qs = HQ3 A Q5 A O AO% AG3 A G2,

—dfye 4+ SO + 62,

and
dP AL AP AP AQL=HQy AQAOYAO% A AL
The function H appearing in these equations has the form

H = Abs + B,



DIFFERENTIAL EQUATIONS AND PARA-CR STRUCTURES 37

where A # 0 and B are functions of R, T, their derivatives up to order three, and
only five free parameters a, f12, fo2, f31 and f3o. To satisfy the first two of the
equations we need H = 0. This gives the normalization of the parameter b3
as
B

bs = I
This, when compared with dbs given by , and everything after this equation,
might bring compatibility conditions. Thus we are at the end of the first loop: we
have to return to the formula with b3 = —B/A and repeat all the steps after
this formula, inserting this bs everywhere.

Note that as the result of the first loop we have forms (6%, 62,63, 0%) satisfying
the last two equations ([7.32).

The second loop: Now we start with the forms , in which we use f33,
by, be and b3 determined in the first loop. Then, as before, guarantees that
(7-38) is valid, and (7.40) is satisfied automatically. This means that we do not need
equation (|7.41)) anymore. Equations (]mb and as before determine €y — %A
and —{2 — 5 A, so that @[) and M[) are satisfied, with new but still explicitly
determined f122, f123, f121, f222, f223, f221. Since now we do not have (’ we use
to determine w11 After this, we calculate df>. This satisfies provided
that Q4 and 5 are as in and , with everything determined except the
parameters «, 3,7v. Choosing these 4 and €25 we have also have

dO* NOP AP AP AQs =dO* ANOP NG NG AQy =0
It turns out that out of the nine undetermined parameters: «, 3,7 and the ones
in the dotted terms in and (7.43), eight are totally determined by the
requirement that d6' = (Qp — FA) A 61 — Q3 A3 — Q5 A O* + 13,60 A 6° &
do? = (=0 — A) A 0% — Qo A3 — Q4 A OF + 1350" A 63, If this condition is
imposed the remaining free parameters are a, f1s, fo2, f31, f32,¢1, co, 5. It also fol-

lows that this condition forces the coefficients t3; and t2; to be given by (7.33).
This finishes the proof. U

Remark 7.7. Further conditions
A AL AP A AQ, =0
dQs A2 AP A0 A Qs =0,

imposed on the system (61, 62,62, 6% Q5, Q3) uniquely determine parameters ¢; and
co. To fix the parameter 3 we use the requirement that the differential dQ2s does
not involve a Qo A 6% term. After imposing this, the remaining free parameters
in the definitions of (6,9, A) are only: a, fi2, f22, f31, f32. This shows that the
system for a (1,2,3) type para-CR structure with J; = Jy = 0 naturally closes
on P, and that P can be locally parametrized by (x,y, z,p,q,s) (the base) and

(a, f12, fa2, f31, f32) (fibers).

Remark 7.8. Theorem assures that the solution space of a pair of PDEs z,, =
R(2,Y, 2, 20, 2y Zay) & 2yy = T(2,Y, 2, 20, 2y, 2ayy) satistying DT = DR and
J1 = Jo = 0 is naturally equipped with a (+,4, —, —) signature conformal struc-
ture, and that this conformal structure is a point invariant of the correspond-
ing pair of PDEs. However the appearence of the torsion terms ti; and t2; in
, as well as the nonhorizontal terms, such as e.g. Qs A 0! in dQs, show,
that there might be many point nonequivalent PDEs 2., = R(x,y, 2, 2z, 2y, Zay) &
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zyy = T(2,9, 2, 22, 2y, Zay) With DZT = DR and J; = J = 0, which correspond to
the same conformal class of metrics. Although the forms (Qq, Qa, Q3, Q4, 05, Q6, A)
together with (6,62,6%, 6%), as constructed in the proof of Theorem [7.6|and in the
Remark solve the equivalence problem for the (1,2,3) type para-CR structures
in question, they in general do not define a Weyl connection on S. For this to be
possible the torsion coefficients ¢35, t25, as well as the nonhorizontal terms in dQ
and d23 must vanish. In the rest of this section we will find those point nonequiv-
alent classes of equations z,, = R(x,V, 2, 2z, 2y, Zay) & 2yy = T(X,Y, 2, 2z, 2y, Zay)
for which this is the case.

Lemma 7.9. The forms (7.20)-(7.21)-(7.23) satisfy the differential system
if and only if they can be brought to the form in which they satisfy:

do' = (Q1 — AN 0" — Q3 A 0P — Q5 N O
d6? = (—Q1 — AV N> — QN> — QN0
d6® = Qu N 0" + Q5 A 0% + (6 — $A) N OP
do* = Qo A OF + Q3 A 0% + (—Q6 — SA) A0,
dQy = Qa A Q5 — Q3 A Qy — 20 A 62
dQy = Qo A (Qy + Qg) + 207 A O*

(7.50) dQs = (Q1 — Q6) A Q3 + 20" A0
dQy = Qu A () — Q) + 26% A 63
dQs = (1 + Q) A Qs + 20" A 63
dQg = Qo A Qs + Q3 A Qg — 203 A 04
dA =0,
ds = »A.

Proof. As we noticed in Theorem [7.6]the forms (7.20)-(7.21)-(7.22) may satsify the
first two of equations if and only if K1 = K5 = 0, or what is the same, if and
only if Ry, = Tss = 0. Moreover, because the forms (01, Qs, Q3,62 63,6%) are in
the class of forms (A, 1, p2, V1, V2, v3) defining the (1,2, 3) para-CR structure, the
forms (0%,€s,€Q3) form a closed differential ideal corresponding to the integrable
distribution H~. Thus, since dQ2s A Q2 A Q3 A0* =0 and dQ3 A Qo A Q3 A6 =0,
the only possibility of satisfaction of the sixth and seventh equations in is
that:

(7.51) dQy = Qo A () + Q) + Ty A0
dQs = (21 — Q) A Q3 + Ty A O,

with two 1-forms I'y,T'; on P, which can be chosen such that I'y = ;10 4+ 712602 +
71303 and I'y = v9,6" +72202 + 23603, Here 7i; are some functions on P. Now, one
successively imposes the condition that the differentials of the right hand sides of
the first four of equations (7.50), the differentials of the right hand sides of equations
(7.51)), and the differentials of the right hand sides of the last five of equations
are zero (they must be, as they are differentials of the coframe forms (6*,€2,)). This
straightforwardly leads to the conclusion that it is possible if and only if is
satisfied. This finishes the proof. O
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Theorem 7.10. All finite type systems of PDEs on the plane
Rrx = R(xa Y, 2, Zxs 2y, Zmy) & Ryy = T(fﬂ, Y, 25 Zxy 2y Zﬂcy)a

which in a natural way define a split signature Weyl geometry [g, A] on their 4-
dimensional solution space, are locally point equivalent to the system:

2
(7.52) Zpy = I &
2+ X2y — Y2y
2K Zay 20 (2 — yzy)Zay

Y 2+ Tz —yzy Y 24Tz — Y2y

Ryy =

with k being a real number. All such systems with k # 0 are locally point equivalent
to the system with k = 1. They are point nonequivalent with the system with k = 0.

For each k system has
_ k(apar + azas)y + Kkay — y — agy® — aszy
ay — a1x

as its general solution. The Weyl geometry [g,., Ax] on the 4-dimensional solution
space, with points parametrized by (ag, a1, az, as), is represented by
2(daoda1 + dagda3)
9k = PR A, =0.
(1 + k(agay + agag))

The type (1,2,3) para-CR structures corresponding to the two different values 1 or
0 are locally nonequivalent. If k = 0, then the corresponding (1,2,3) type para-CR
structure has an 11-dimensional group of symmetries CO(2,2), and is equivalent to
the (1,2,3) para-CR structure corresponding to the system zy, = 2y, = 0. If K # 0,
the corresponding type (1,2,3) para-CR structures have a 10-dimensional group
of symmetries isomorphic to SO(2,3). This group acts naturally as the group of
motions on the solution space, which is equipped with a metric of constant curvature

Gr-

Proof. We first show that the (1,2,3) type para-CR structure associated with the

system (7.52)) defines forms (6%, A) satisfying (7.50)). Since we have the general
solution of the system ((7.52)), it is convenient to use the representation ((7.19)), rather
than (7.20), for the defining forms (A, p1, pio, v1, va, v3). Thus, inserting

k(aoar + asaz)y + kay — y — agy? — azzy

'L/} =
a2y — a1x
in (7.19), we have
- —2)y(1
y o laim y)ydao (@26 — )y +a39:2+ W0Y) 4o, —
a1x — agy (oo — agy)
(a16 —y)y(1+ a3962+ aoy) day — (agk — w)yd%
(all‘ - aay) a1x — azy

vy = dal, Vo = dag, V3 = da3

We now take the forms ((7.22) with these (A, 1, po, V1, v2,v3) and apply the proce-
dure of fixing the gauge as in the proof of Theorems [7.5] [7.6] and Remark [7.7] This
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procedure leads to the following choices for the free parameters by, b2, b3, c1, c2, fis,
f22, f23, f31, f33, ha1, ha2, hat, hao:

by = leU
Jo1faa(ark — y)y(1 + asz + aoy)
N
f32
be — U
° 7 far(ark — y)y(1 + asz + agy)
(Zli(l + asx + aoy)
Cc1 = —
f21(1 + k(apar + azaz))(ark — y)
oy = — ala k —y)
f32(1 + k(agay + azasz))(arx — asy)
Fis = (a1 — asy)u
13 alark — y)y(l + azx + apy)?
fo2a =0
_ (a17 — asy) for
faz = oo
+ azx + aoy
_ (azk — ) f32
fa1 = ———
altk —Y
fzz3 =10
e — _ay(l + asz + apy)
H fa1(a17 — azy)?
how alask — x)y(1 + asx + apy)
2 f21(01f<6 - y)(alx - a2y)2
o a(aik — y)y(ar + y(aoas + azaz))
21 = 3
fa2(ar1z — asy)
hgy = _a(am —y)y(az + z(apar + azas))

fa2(a1r — azy)?

Here
u = af for fao2? — a1y<2a2f21f3233 +afuk(l+asz + aoy)) +
y(a§f21f32y + a(1 + azz + agy) (f12(z — azk) + f11y)>~

It follows from the construction that these normalizations force the forms (0!, 62, 63,
0*,Q5,Q3) to satisfy the system and the three conditions from remark (7.7
Because of the choice of z = z(z,y, ag, a1, az,as) as the general solution to (7.52
it turns out that in these normalizations the forms satisfy, in addition (|7.50)
with

2k(1 4 azx + agy)
fa1f32(1 + K(apar + azas))?(arz — azy)

If kK = 0, we get » = 0, and the system becomes (7.11)-(7.12). This proves
that if x = 0, then the system is point equivalent to z,, = z,, = 0, or
what is the same, that the corresponding (1,2, 3) type para-CR structure is locally
equivalent to the flat one described by Theorem [7.2}

=
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If kK # 0 we normalize 3¢ to » = 1 by choosing

3 2k(1 + aszx + apy)
f21(1 + k(apar + azaz))?(arx — azy)”
This choice reduces P to a 10-dimensional manifold Py, with coordinates (x, y, z, p, ¢,

s,a, f11, f12, f21, fo2), on which A = 0 and the ten linearly independent 1-forms
(6%,9,,) satisfy the system

Aot =, A0 — Q3N 0% — Q5 AO*
do? = — QN2 —Qa ANB3— QA 0*
de® = QN0 + Q5 AO* + Q6 A OP
do* = Qu A 0T + Q3 A 0% — Q6 A O,
(7.53) A = Qo A Qs — Q3 AQy — 0 N 6?
dQs = Qo A (4 + Q) + 02 A 0*
dQs = () — Q) AQ3 + 01 A 6*
dQy = Q4 A () — Q) + 62 A 63
dQs = (01 + Q) A Qs + 0" A 6P
dQ = Qo A Qs + Q3 A Qq — 02 A 6%

Since in these relations only constant coefficients appear on the right hand sides, Py
is locally a Lie group, with the forms (6%,€,,) as its left invariant forms. This group
is isomorphic to SO(2, 3) and, it follows from the Cartan equivalence method, that
it is the full symmetry group of the type (1,2, 3) para-CR structure corresponding
to with k # 0. Accordingly it is also the full group of local point symmetries
of the system with k # 0. The appearence of the group SO(2,3) is not
accidental, since one can check that the so normalized forms (61,02, 03, 0%) satisfy

4r(dagda; + dasdas)
(1 + k(agar + azaz))?’

This means that the 4-dimensional solution space S of the system with k #£ 0
is naturally equipped with a split-signature constant curvature metric G. The
symmetry group of the pseudoriemannian structure (S, G) is obvioulsy SO(2, 3).

Since the parameter £ does not appear in the equations (7.53), we conclude that
k # 0 can always be brought to k = 1 by a point transformation of , or what
is the same, by a para-CR diffeomorphism of the corresponding para-CR structure.
This proves that among type (1,2,,3) para-CR structures associated with
there are only two para-CR nonequivalent ones: the one with k = 0, and those with
% # 0, which are all locally equivalent to the one with k = 1.

To prove that these two structures, modulo para-CR equivalence, are the only
ones that satisfy Lemma 7.9, we proceed as follows:

Suppose that we have a finite type system of PDEs z,, = R(x,y, 2, 22, 2y, Zay)
& zyy = T(x,y,2, 22, 2y, Zzy), Which via the procedure described in Theorems
and Remark leads to the differential system (7.50), as in Lemma If we
have s = 0, then our PDEs are point equivalent to zy; = 2y, = 0. If 5 # 0 then
the last equation @) says that A = df. Then putting € = signsc we rescale the
forms (01, 62,603,0%) to

fa2 =

G =2(0"0>+6°0") =

(00,6%,0°,8%) = (e) (07,62, 6°, 0%,



42 C. DENSON HILL AND PAWEE NUROWSKI

Obviously this rescaling is a para-CR transformation. The advantage of this rescal-
ing is that, after it, the form A disappears from the first ten equations (7.50].
Explicitly, after the rescaling, the system (7.50) becomes:

Aot = A O — Q3 A G2 — Q5 A 6*

d0? = — U AG? —Qu NO> — QN O*

Ao = QA0 + Q5 AO% + Qg A OP

do* = Qa A O + Q5 A 0% — Qg A G,

dQ = Qo A Q5 — Q3 A Qy — €0 A 6?
(7.54) dQy = Qo A (Qy + Q) + > A O*

dQs = (1 — Q) A Q3 + €0 A6

dQy = Q4 A (Ql — QG) + €0* A 63

dQ5 = (Ql + Q(;) /\Q5 + 69_1 /\é3

dQs :Qg/\Q5+Q3/\Q4—€§3/\é4

A=

P

This shows that if » # 0 we can always reduce the system to 10 dimensions, and
that there are at most two different para-CR structures with such s, corresponding
to the different signs of . However, a discrete para-CR transformation on this
system, transforming

(§17 é3, Q?a Q5> i (_él’ _53’ _925 _Q5>7

and being the identity on the rest of the coframe forms, brings the system into
the form , in which € = +1. This shows that the para-CR structures with dif-
ferent values of € are equivalent, and that there are only two, locally nonequivalent
type (1,2,3) para-CR structures satisfying system (7.50). We found the represen-
tatives of both of them, as the para-CR structures corresponding to xk =0 or k = 1
in . This finishes the proof. a

8. PARA-CR STRUCTURES OF TYPE (3,2,1)

8.1. Type (3,2,1) versus (1,2,3). As noted in Section [4] the flip (1,1,n —1) —
(n —1,1,1), changes a para-CR structure corresponding to an nth order ODE
considered modulo point transformations, to a para-CR structure corresponding to
an nth order ODE considered modulo contact transformations. In this section we
further investigate the meaning of the flip

(k7 r? 8) - (57 T‘) k)’

on an example of type (k = 1,7 = 2,5 = 3) para-CR structures corresponding to
PDEs (7.15). We expect that the passage (1,2,3) — (3,2,1) will again change
the geometric setting in such a way that the type (1,2,3) para-CR structure cor-
responding to PDEs considered modulo point transformations will become a
para-CR structure corresponding to the same pair of PDEs but considered modulo
contact transformations.

That this is really the case can be seen from the following:

Given a pair of equations

Zaw = R(2,Y, 2, 23, 2y, Zzy) & 2yy = T(2,Y, 2, 2z, Zy, Zay)
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we use the contact forms A = dz — pdx — qdy, v1 = dp — Rdx — sdy, vy = dq —
sdex —Tdy, v3 = ds — DyRdx — D,;T'dy, 1 = dx, uz = dy on the 6-dimensional jet
space J parametrized by (z,vy, z,p,q, s) . It is easy to see that when the equations
undergo a point transformation of variables, then the forms change according to:

A N a 0 0 0 0 0 A
vy 1z by fuu fiz 0 O 0 vy
120 Z/é bg f21 f22 0 0 0 Uy

8.1 = 7
(8-1) vs | 7 vy bs fa1 fa2 faz O 0 v3
1 wh cc 0 0 0 hin hie 1
12 wh cgc 0 0 0 ha he fho

and when the equations undergo a contact transformation of variables the forms
change as:

A N a 0 0 0 0 0 A
vy Z bv fuu fiz O 0 0 21
Vo iz by for fao O 0 0 vy

8.2 =
(8.2) vs | vy bs fs1 fa2 fsz 0 0 V3
M1 1 cr uir w2z 0 hir ko M1
2 L ca Uzr Uz 0 hor ha 2

Introducing vector fields (Z, X, X2, Y1, Ya,Y3), which are respective duals to the
coframe (\, p1, o, v1,v2,v3), we easily see that under the point transformations
they transform according to:

Z A x ok ok kK ok Z
Yi Y/ 0 = = %« 0 0 Y,
Y, . Yo |0 %= %« % 0 0 Y,
Ys Yy 10 0 0 = 0 0 Y3 |’
X, X] 0 0 0 0 x = X4
X5 X} 0 00 0 % = X5
and under the contact transformations they transform according to:
Z A x k% ok k% Z
Y1 Y/ 0 * * * x % Y1
Y, Yo [0 % % % x % Y,
s | 7|yl oo o« o0 o0f|wv]|
X, X] 0 00 0 % = X
Xo X} 0 00 0 * = Xo

where by * we denoted the matrix entries that are nonzero. This shows that
the point transformations preserve the two vector spaces: 2-dimensional HT =
Span(Xi, X2) and 3-dimensional H ;. = Span(Y1, Y2, Y3), while the contact trans-
formations preserve HT and only a 1-dimensional H_, .. = Span(Y3). We have
the following proposition:

Proposition 8.1. Assume that a pair of equations
Rrx = R(UC,%Z,Zzazwzmy) & Zyy = T($>y727zm72y72xy)

satisfies the compatibility conditions DT = DER, where Dy = 0, + p0. + RO, +
50q + DyROs, Dy = 0y + q0, + T0q + 50, + D;T0s and p = 24,0 = 2y, 8 = Zgy.
Let H" = Span(D,, D)), H . . = Span(Y1,Y>,Y3), and H_, ... = Span(Y3), with

point contac
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Y1 = 0,,Ys = 04, Y3 = 0, be three distributions, with respective dimensions 2, 3,
1, on the 6-dimensional jet space J parametrized by (x,y, z,p,q,s). Then:

If this pair of equations is considered modulo point transformation of variables,
it defines a type (1,2,3) para-CR structure (7, H™, H;oint) on J.

If this pair of equations is considered modulo contact transformations, it defines
a type (3,2,1) para-CR structure (J, H", Hey iact) 00 T

Proof. In view of the discussion preceeding the Proposition, the only thing to be
proven is that the distributions H* and H_ ;¢ are integrable on 7. Using the local
coordinates (z,y, z,p,q,s) we see that the duals to a coframe (X, u1, a2, v1,v2,v3)
are (Z = 0,,X1 = Dy, Xo = D, Y1 = 0,,Ys = 9;, Y5 = 05). Hence, obviously,
H_ ;. is integrable. Calculating the commutator [D,, D] we get [Dy, D] =
(DT — D;R)(“)S, which vanishes due to our assumptions. Thus also HT is in-

tegrable. O

8.2. Towards invariants for type (3,2,1). The contact transformations (8.2)
are more restrictive than the most general para-CR transformations

ll lll a aip a2 0 0 0 ll 94

Iy A b1 fin fiz O 0 0 ls o1

I3 Is | _|b2 far foo O 0 0 Is | |62
(8:3) n | T | T b far fa2 fzzs OO n| |6

my m} cr unn w2 0 hir hio my Q3

ma mh ca U1 Uz 0 hor hao ma Qy

of a (3,2, 1)-para-CR structure [l1,l2,l3, m1, m2,n] defined on J by l; = A =dz —
pdz — qdy, I = v1 = dp — Rdx — sdy, I3 = vo = dg — sdez — Tdy, n = v3 =
ds — DyRdx — D,Tdy, mi = p1 = dz, mo = pus = dy. However, when looking
for the local invariants for such structures, we can easily normalize the unwanted
a1 and apo parameters in these transformations to a;; = 0 and as; = 0 by the
requirement that the invariant forms (6%) satisfy a consequence of , ie.:

(8.4) dO* AP AP NG = 0.

It is easy to see that (8.4) necessarily implies a;; = 0 and ase = 0. Since condition
(7.23) is needed to have a conformal metric on the solution space, from now on we
will assume (8.4), and as a consequence

a11 = Q12 = 0.

In such a case the para-CR transformations become the contact transfor-
mationsﬂ for the associated system of PDEs z,, = R(x,y, 2, 2z, 2y, Zay), Zyy =
T(x,Y, 2, Zz, 2y, Zzy). As in the previous sections we assume in addition that DT =
D;R, but release the 1— R,Ts > 0 condition to 1 — R;Ts # 0. We have the following
theorem.

INote that the situation here is similar to the situation in the point invariant case. There the
para-CR transformations of a (1,2,3)-type para-CR structure associated with the system
of PDEs differed from the point transformations , by the appearence of the nonzero
parameters fi13 and fa23 in But one of the consequences of equations 1j was that
fi3 = fa3 =0, (s), which proved that the para-CR transformations (7.22) and the point

transformations (8.1)) were equivalent.
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Theorem 8.2. Given a pair of PDEs on the plane z,, = R(%,Y, 2, 2z, 2y, Zay) &
zyy = T(2,Y, 2, 22, 2y 22y) Satisfying D2T = DiR and 1 — R,Ts # 0, the condition

J1 =0, & Jo =0,
where
Ji = (RsTs — 4)D,Rs + Rs(2Dy Ry — RyD,Ts) +
8R, — 6R R, Ty + 4R, R, + 2R2T, — 2R, R2T, + 2R>T,

JQ = (RST‘? - 4)DyT9 + T9(2DTT9 - TeDyRs) +
8T, — 6R T, Ts + AT, T + 2R, T2 — 2R, T, T? + 2R, T?,
is preserved under the contact transformations of the variables. If this condition is

satisfied the 4-dimensional solution space of the PDFEs is naturally equipped with a
conformal class [g] of metrics. If

1-RT,>0
these conformal metrics have split signature. If
1-R,T, <0

the metrics have Lorentzian signature. The conformal class [g] is invariant under
the contact transformations of the variables of the PDEs.

We also have a useful Proposition, which gives local representatives of the con-
formal class [g] from the above Theorem:

Proposition 8.3. If R,Ts # 4 a representative g of the conformal class [g] can be
chosen so that it is given by

(8.5) g=2 \w + 2(R,T, — 4)(T.,v} — 2v1v5 + Rev2),
where
w= (4D, Ty — 2T;D, R + 4R, Ts — 2R2T, Ty — 2R T, Ts + 4R, T?)v1 +
(4Dy Ry — 2R D, Ts + ART, — 2R R T? — 2R, R, Ts + 4R2T), v +
2(4 — RsTs)(RsTs — 1)vg + vA,
A =dz — pdx — qdy,
vi =dp — Rdx — sdy, v =dq—sdx—-Tdy, v3=ds— DyRdx— D,Tdy,
and
20 =8D,T, — 4D. R + 4(D,Ts) Dy Ry + 4R, D, T, — AR, D, T, — ARZD, T, +
8RyT, — 14R,T,Dy R, + 4R, R.T, + 3R2T,D,T, — 6RT, — AT,D, R, +

AR,T,D,T, — 6R>T,T, + 8T,D,R, — 2(D,R.)*T, + 4R, T, Dy R, — 2R, T, D, T, +

R,T,D;R, + 4R, T,DyR, — R:T,D,T, + R:T,D,T, + R3T,D,T, + 8R.T, +
2R, RTpTs + 2R, R2T,Ts + 8R T, Ts — 3R T, TsDy R + AR, R T, T —

2RT,T,T, — 2RZT. T, + AR, T2Dy R, — 2R, T DyR, — R:TDy R, — 2R, R.T? +

2R,R2T,T? + 2R, R, T,T? + 8R,T, — 2R*T,T..
If R,Ts # 0 another representative g of [g] may be chosen so that:
(8.6) g=2 ' + T} —2vi1n+ R,
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where
o = —D,Ts + 2T, — R, T, T, + T, T & —D,Rs+2R; — RyRTs + RyR, i
T R,
,U/
1— RT3 — ———A\,
(1= BT )vs 2R3T,

with X\, v1, vo and v3 as before, and
v' = 2R2(D,Rs)D,Ts — AR R2D,T; — R,R3D,Ts — AR2T, D, R, +
8RyR2T, + 2R, R.T, + 2(D, R,)*T, — 8RTs D, Ry + 8R.T, —
2R,RTs Dy Ry + AR, R RsTs — R2TsD, D, R + 2R>TsDy, R, + R¥T;D, T, +
R3TsD,R, — R,R3T,Ts — 3R*T,TsD,Rs + 6 R, RT,Ts + R,R3T, T +
2RGRT2D, Ry — ARZR,T? + RIR.T? + RIT,T..

Proof. (of the Proposition and the Theorem). We start by forcing the contact
invariant, forms (6%, 6%, 63,04, Q,,Q3) given in to satisfy the first four equations
. We do it in several steps. The first step consists in the requirement that
(0Y,60%,0%, 0% Qy,Q3) satisfy consequences of equations , namely equations
(7.23)-(7.27). The first of these conditions implies d§* A 8* A 62 A 0% = 0, and this,
as noted before, implies a1 = a12 = 0.

Let us now, unless otherwise stated, assume that 1 — R;T, > 0. Then the
conditions (7.23)-(7.27) can be easily fulfilled by taking w1y = uiz = ugy = uge =
0 in , since this enables us to identify forms (8.3) with . After this
identification the imposition of the rest of conditions (7.23)-(7.27) may be obtained
by making the same normalizations of parameters hi1, ho1, hi2, ho1, fo1 and fi; as
in the proof of Theorem It follows however, that one can achieve (7.23)-(7.27)
without the restriction w11 = u12 = us; = use = 0 on the parameters w1, w12, Uy
and ugs. We checked that the most general normalizations to achieve — is
to take hy1, ho1, hi2, ho1, fo1 and fi1 asin — and to restrict uq1, w12, U2,
and w99 by only one constraint

(8-7) U22f11 - U21f12 + U12f21 - U11f22 =0.

If this is not zero, equation has an unwanted term proportional to 81 A6% A 64
on the right hand side. Even without the restriction , but assuming —
7.30), we get that d9' AOT A3 A A Q3 and dO2 AH2 AO3 AO* AQ, are still given by
% . This proves that the conditions J; = Jo = 0 are neccessary for a conformal
metric g to be defined on the solution space. It also proves that these conditions
are contact invariant. This surely holds when our assumption 1 — R;T's > 0 is
satisfied. (That this assumption is only a technical one will be clear soon). So from
now on we assume the normalizations (7.29)-(7.30), and that the invariants
Jy and J» are both zero, J; = Jo =0.

Now it follows that the conditions d0* AL A 92 A 0* = —Q3 AOL A2 A 03 A O3,
dO?NOYNO2NO* = —Qu NOT NO2NOP NG, A2 NO2NOPNO* = 0 and O AOLAGPNO* =0
are equivalent to precisely the same normalizations , and of fs3,
by and by as in the proof of Theorem [7.6] Further repetition, step by step, of the
absorbtion /normalization procedure described in the proof of Theorem leads to
the last relevant normalization, which determines the coefficient b3. Here, again this
coeffcient turns out to be precisely as in the proof of Theorem[7.6] That the present
expressions for the determined parameters hi1, ho1, hi2, ho1, fo1, f11, f33, b1, b2
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and b3 do not depend on the parameters ui1,u12, u21 and ugs is remarkable. They
are invisible because they turn out to parametrize only that part of the contact
transformations, which is related to the orthogonal group preserving the metric g
we are going to construct.

Indeed, assuming J; = Jo = 0 and the above discussed normalizations for hqq,
h21, h12, h21, fgl, f11, f33, bl, bg, b3, we calculate G = 2(9192 + 0394). A direct
calculation shows then, that the resulting expression for G has no w1, w12, ug1, U2
dependence! Moreover, the so obtained G is also independent of still undetermined
parameters a, bz, f31, f32, 1 and co. Its dependence on the parameters fio and foo
is only conformal. By this we mean that the parameters f12 and fo5 only appear as
a common factor fisfoo in front of the entire expression for G. This means thatall
the remaining free parameters a, bs, f31, f32, c1, C2, U11, U2, U271 and ugs are group
parameters of the dilation group CO(G) preserving conformally the bilinear form
G.

If one wants the explicit expressions for GG, with the above normalizations for
h11, h21, h12, h21, f21, flla f33, b], b2 and b3, in terms of the functions R and T
defining the system z;, = R & 2, = T, one has to decide how to mod the resulting
formula by the constraints J; = J; = 0.

It follows that if we write J; = Jo = 0 in the form D,R, = ... and D,/ T =

.., and eliminate these derivatives from G, then we obtain G, which up to a
factor, coincides with g from formula (8.5). Similarly, if we write these condtions
as D, Ty = ... and DyR; = ..., we get the result that G differs from formula
only by a factor. This proves that the bilinear forms g as in and are
conformally invariant on 7, and that they change conformally when the system
Zze = R & zyy = T undergoes contact transformation of the variables.

The last thing is to prove that [g] is actually defined on the solution space of the
PDEs, and that it is nondegenerate there with signature depending on the sign of
1- RsTs-

Let us start to comment on these last issues with a remark about the technicality
of our assumption 1 — R;Ts > 0. We needed the assumption 1 — R;Ts > 0 starting
with the normalization (7.30). It was needed there to maintain the invariant forms
0% to be real. But this was only made for simplicity, since we did not want to
deal with the complex numbers in the proof. Moreover, from the point of view of
the conformal metric we wanted to construct, this was a good simplification since
in the resulting formulae , for g the square root /1 — RsTs does not
appear at alll Concluding this issue, we say that if we were in the situation when
1—-R,T, < 0, our normalizing procedure for the forms #* would make them complex,
but the resulting G would nevertheless be real and given by or (8.6). Thus all
the conformal properties of g established so far are also valid in the 1 — R;Ts < 0
case.

There is one more technical issue here. The reason for having two different
expressions for g, as in and (8.6), is to have local expressions valid everywhere
off the set 1 — R,;T, = 0. Since solving for D,Rs; and D,T, in J; = J» = 0 we
devide by (4— RTy), the metric is only defined if R T # 4; similarly, because
of the division by RsTs, the metric is defined only if R;Ts # 0. Off the set
R,T, = 0=4— R,T, the conformal metrics and coincide, since they are
local manifestations of the same formula G = 2(6'6? + 630*) on J.

Finally we comment on how G descends to the solution space of the PDEs.
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We start with an observation that the bilinear form satisfies g(D,-) =
g(Dy,-) = 0, ie. it is degenerate along the vector fields D, and D, on J. The
first product 2A\w in has obviously signature (+,—). Thus to determine the
signature of we need to determine the signature of the product

2(R,Ts — 4)(Tov? — 2v1v + Ro13).
Since the quadratic form Tyv? — 2v1vy + Revs has A = 4(1 — R,Ty) as its dis-
criminant, then the signature of the product 2(RTs — 4)(Tsvi — 2vqvs + Rev3)
is: £(+,—) iff 1 — RsTs > 0 and £(+,+) iff 1 — R,Ty; < 0. Thus, assuming that
R,T, # 4, we conclude that, modulo the degenerate directions D, and D, along
which ¢ is vanishing, the bilinear form has either split (iff 1 — R, > 0), or
Lorentzian signature (iff 1 — R,/Ts < 0) on J.

A straightforward, but lengthy (!), calculation shows that the Lie derivatives of
g, from formula (8.5)), with respect to the degenerate directions D, and D, are:

Lp,g=a(Dy)g, & Lp,g=a(Dy)g,

where

a(D;) = (4 — RTy) 7 x

(8DyR. + 16, — SR,D,T, + SR2T, + 8R,T, — 24R, T, ~ 4R, T, Dy R, ~

16R,RsTs + 3R2TD,Ts — ARYT, T — 4R2T, T + 10R,R T2 + 4R,,R§T§)
and

a(D,) = (4 — RT,) ™2 x

<8DwTS + 16T, — 8T: Dy R + 8R,T? + 8R, T, — 24R,T, — 4R, Ty D, T, —

16RT,Ts + 3R T?Dy Ry — AR,RT? — AR, R, T? + 10R2T, T + 4R§TqT§)

Recalling the fact that the distribution H* = Span(D,, D,)) is integrable on .7, we
see that the bilinear form ¢ descends to a conformal metric g on the /-dimensional
leaf space J /H™, and that the descended metric has split signature iff 1 — R, Ty > 0
and Lorentzian signature iff 1 — R,Ts < 0 and R,Ts # 4. Obviously the leaf space
J/H™ may be identified with the 4-dimensional solution space of the PDEs.
Analogous considerations can be performed for the metric if R,Ts # 0.
This is also degenerate along D, and D, in J. It also, apart from the degenerate
directions D, and D,, has signature Lorentzian /split. For this metric we have

D.R, - 2R, D,T, — 2T,
R, 9, T, g,
SO again descends to a conformal metric of split (iff 1 —R;Ts > 0 and R,Ts # 0)
or Lorentzian signature (if 1 — RyTs < 0) on J/H™. If R,Ts # 0 and R,Ts # 4,
these two conformal classes coincide on J/H™ as we explained before.
This finishes the proofs of the Theorem and the Proposition. a

Lp,g= & Lp,g=

Remark 8.4. In the proof we did not show that, contrary to the (1,2,3) para-CR
forms which satisfy (7.32), we can force the (3,2,1) para-CR forms (8.3) to
satisfy their torsionless counterpart, i.e. the first four of equations (7.13). But this
is very easy: one first makes the normalizations uy; = w12 = us; = ugss = 0 and
all the other ones from Theorems and and after achieving uses a
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transformation, which is an identity on the obtained (6%, 6%, 6%, 6*) and changes the
obtained {29 and (23 according to:

(88) Qg — Qé = Qg - t12392, QQ — QIQ = QQ - t21391,
where ty; and t%, are torsions given by (7.33). Since the obtained 6! and 6>
are linear combinations of Iy, Iy and I3 only (because fi3 = fo3 = 0 is the

chosen normalization (7.29)!), then transformation is an allowed (3,2,1)-
para-CR transformatio the type (3,2, 1) para-CR forms (6%, 02,03, 0%, Q,Q3).
But this transformation absorbs the torsion terms in and makes the forms
(6%,6%,0%,0%,Qf, Q4) to satisfy the torsionless part of equations . This means
that the type (3,2,1) para-CR structures originating from the system z,, = R &
zyy = T with DT = DZR, J; = Jo = 0, R,T, # 1, contrary to the corresponding
(1,2, 3) para-CR structures, define quite a general conformal geometry on the solu-
tion space, and that their invariants can be described in terms of the curvature of
the Cartan normal conformal connection associated with this conformal geometry.
This observation, and an equivalent statement of Theorem [8.2)and Proposition [8.3]
in a slightly different language, was first made by E.T. Newman and his collabora-
tors [6]. According to Newman [6], using all the type (3,2,1) para-CR structures
coming from the system z,, = R & z,, = T satisfying J; = J» = 0, one can obtain
all the conformal classes of the Lorentzian 4-metrics. This statement is not clear to
us, and requires further justification. For example, similarly to the attempts in [I§],
we were unable to calculate the Weyl tensor of the metrics and . This
was mainly because of the huge length of the intermediate expressions encountered
during the calculations of the the Cartan normal conformal connection. Thus we
were unable to see if it is general enough to cover all the conformal Lorentzian /split
signature 4-metrics. Finding the conformally Einstein or Bach conditions for these
metrics in terms of the defining functions R and T would be very interesting, and
would complete the Newman programme.

Although, we were unable to calculate the full Weyl tensor of the metric (8.6), we
succeded in calculating two of its components. These components must vanish if we
want the metric to be conformally flat. Thus vanishing of these components is
a conformal property, and in turn, is a contact invariant property of the equations
Zew = R & 2y, = T satisfying D2T = D;R & J, = Jo = 0. Tt is also a para-CR
invariant property of the corresponding type (3,2,1) para-CR structure. Defining
the forms (wy, wa, w3, wy) by (w1, ws,ws,wy) = (v1, v, A, w'), so that the metric
can be written as:

g = 2wowy + Tow? — 2wiwy + Rw3,
we calculated the components Cy5, and C?;, of the Weyl tensor of this metric to
be:
2Rsss(1 - RSTS) + 3RSS(RSTS)S

2 2T388(1 - RSTS) + 3Tss(RsTs)s

1
Clos = Ca = 4(1 — R T)*

4(1 — R:T)* ’
This proves the following theorem.
Theorem 8.5. For the system of PDEs zy, = R(x,Y, 2,2, 2y, Zay) & 2yy =
T(x,Y, 2, 2z, 2y, Zzy) SGtisfying DT = DzR and the metricity conditions

Ji =0, & Jo =0,

2Note however that this is not a type (1,2, 3) para-CR transformation, and that if only such
transformations are considered one can not absorb the torsion terms in 1)
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each of the conditions
Kl = 2RSSS(1_RSTS)+3RSS(RSTS)S = 07 KQ = 2TSSS(1_RSTS)+3TSS(RSTS)S = Oa
is invariant with respect to contact transformations of the variables.

The new invariants K; and K5 from the above Theorem justify the title of
this section: although we were unable to define the invariants of the type (3,2,1)
para-CR structures in full generality, we discussed a class of such structures whose
invariants are just the conformal invariants of certain 4-metrics. In the next section
we provide an example of the system z,, = R & z,, = T satisfying J; = J» = 0,
whose corresponding conformal 4-metrics are quite interesting.

8.3. An example of (3,2,1) para-CR structures with nontrivial confor-
mally Einstein metrics. Given a pair of PDEs z,, = R & z,, = T it is not easy
to find the most general solution of the integrability conditions D*T = DiR and
the metricity conditions J, = Jy = 0. But particular examples of functions R and
T satisfying both sets of conditions can be given. The simplest of them, but as we
will see, still nontrivial, is given in the following proposition.

Proposition 8.6. Let the functions R = R(x,y, z,p,q,8) and T =T (x,y,2,p,q, S)
be functions of variable s alone,

R=r(s) & T =t(s),
and assume that their derivatives v’ and t' satisfy
1—7"t #0.
Then such R and T satisfy simultaneously equations D*T = DfIR and J; = J, = 0.

Proof. Applying the operators D, and D, from definitions (7.17) on functions R =
r(s) and T = ¢(s), we obtain
D.,R=rDyR, DyR=r'D,T, D, T=tD,R & D,T=1tD,T.
These are linear equations for functions D, R, DyR, D,T and D,T. hence, by an
elementary argument they have a unique solution
D,R=0, D,R=0, D, 7=0, D=0,

when 1 — r't" # 0. Thus, with our assumptions, the operators D, and D,, when
acting on differentiable functions f = f(s) of only variable s, are identically vanish-
ing. This, in particular, means that D>T = 0 = D2R. Looking at the definitions

of J; and Jo, in which each term involves at least one derivative of R or T with
respect to p, ¢ and D, or D,, we see that J; and J, are identically zero as well. [J

Now, having a solution R = r(s), T' = t(s) to the integrability and the metricity
conditions, we apply the theory from Section[8.2] and calculate the conformal metric
on the solution space of the system

Zaw = T(Zay) & Zyy = t(Zay)-
Modulo a conformal factor the explicit formula for the metric g as in reads:
go= 2 (1—1'"t') (dz — pdz — qdy)ds + t' (dp — rdz — sdy)® —
2 (dp — rdx — sdy)(dg — sdz — tdy) + v’ (dg — sdx — tdy)?,

where x,y, z,p,q,s are coordinates on J, r = r(s), and t = t(s), v’ = dr/ds,
t' = dt/ds. We know from the previous section that although this bilinear form is

(8.9)
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manifestly defined on 7, it transforms conformally when Lie dragged along D, =
02 +p0,+10,+50, and Dy = 0y+q0,+50,+10,, and descends to a conformal metric
on the 4-dimensional solution space J/H™. It has split signature iff 1 —r't’ > 0
and Lorentzian signature iff 1 — r’t’ < 0.

The conformal invariants of this metric are para-CR invariants of the (3,2,1)
para-CR structure [ly, l2, I3, m1, Mo, n] with l; = dz—pdz—q¢dy, ls = dp—rda—sdy,
l3 = dg — sdx — tdy, n = ds, my = dx, ms = dy. These conformal invariants are
given in terms of the Cartan normal conformal connection for the class [go]. It is
described by the following theorem

Theorem 8.7. Consider a metric g = e*"go, where h = h(s) is an arbitrary smooth
function and g is as in . Let (w1, wa, ws,ws, ws,ws) be a coframe on J defined
by w1 = dq — sdx — tdy, we = ds, ws = dz — pdax — qdy, wy = dp — rdz — sdy,
ws = dz, wg = dy, so that the metric is

(8.10) g= e2h( 2(1 — 7't wowsz + 1'w? — 2wiwy + t'w? )

Then the curvature of the Cartan normal conformal connection for g, when written
on J, reads:

(8.11)
0 0 0 0 0 0
0 0 Zo 0 0 0
R 0 0 0 0 0 0 A st
= —Zor' =7t 2704+ Z1t'>—Zor't! w2 A\ Wy
0 2(17;r’t’)t 0 0 +2(1;'15') 0
0 0 L Zor' —Zit') 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 %(Zy“ —Zit')y 0 0 0
0 0 0 0 0 0 A
Zir't' =22, —Zor'? Zor'+Z1t' w1 N\ w2,
0 mrtpmImt 00 A o
0 0 —Z1 0 0 0
0 0 0 0 0 0
where

2(r't" — 1)r®) — 3¢ (t'r")’ 2(r't" — 1)tB) — 3" (t'r")’
4(1 —r't")? 4(1 —r't")?

In particular the metric g is conformally flat iff Z, = Z5 = 0, i.e. iff the functions
r and t satisfy the system of third order ODEs:
(3) _ 737,//(7,/25/)/ & t(g) _ 73t//(r/tl)/.

2(1 —r't’) 2(1 —r't)
In general the metric g is of (c_onformal) Petrov type N @ N’ in the split signature
case, and of Petrov type N ® N in the Lorentzian case.

le ) Z2:

The proof of this theorem consists in a straightforward, but lengthy calculation,
which we made using Mathematica. We omit it here. With the use of Mathematica
we also were able to check that the following theorem is true:

Theorem 8.8. For every choice of sufficiently smooth functions r = r(s) and
t = t(s) there exists a function h = h(s) such that the metric is Ricci flat.
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The function h in which the metric g = e*"gy is Ricci flat is a solution to the 2nd
order ODE:

2 (7‘(3>t/+t(3)7"l) (1—r’t')+2r”t”+4r’t'r’/t”+3t/2r”2+37*/2t”2

h,/ = h/2 - (tlr/)/ h, + 8(177‘/t/)2

1—r't’

Thus, among the type (3,2,1) para-CR structures originating from PDEs z,, =
R & zy, = T we found conformally Ricci flat but conformally non-flat metrics. It
further follows that these metrics, in addition to being conformally Ricci flat and
of type N & N’, have reduced holonomy. This is because they have a covariantly
constant null direction, which is alligned with the vector field 0,. In the Lorentzian
case, i.e. when 1—7't' < 0, they are known in General Relativity theory as pp-waves
(see e.g. [13] for a definition and [12] for a discussion of their conformal properties).

It would be very interesting to find type (3,2,1) para-CR structures defined by
Zza = R & 2y, = T, which define conformally Einstein metrics (8.5)-(8.6) other
than pp-waves or their split signature counterparts discussed here.
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