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Symbolic Differential Elimination

for Symmetry Analysis

ERIK HILLGARTER1,2, RALF HEMMECKE2, GÜNTER LANDSMANN2

AND FRANZ WINKLER2

ABSTRACT

Differential problems are ubiquitous in mathematical modeling of physical and scientific problems.

Algebraic analysis of differential systems can help in determining qualitative and quantitative properties of

solutions of such systems. In this tutorial paper we describe several algebraic methods for investigating

differential systems.

Keywords: Lie symmetries, differential elimination, Gröbner bases.

1. INTRODUCTION

The idea of an algebraic approach to differential equations (DEs) has a long history. In

the 19th century, Lie initiated the investigation of transformations, which leave a

given differential equation invariant. Such transformations are commonly known as

Lie symmetries. They form a group, a so-called Lie group. The basic idea here is to

find a group of symmetries of a differential equations and then use this group to

reduce the order or the number of variables appearing in the equation. Lie discovered

that the knowledge of a one-parameter group of symmetries of an ordinary differential

equation of order n allows us to reduce the problem of solving this equation to that of

solving a new differential equation of order n� 1 and integrating.

From the Riquier-Janet theory of PDEs at the beginning of the 20th century an

algorithm emerged, the Janet bases algorithm, which is strikingly similar to the

method of Gröbner bases for generating canonical systems for algebraic ideals as

developed by Buchberger. By computing the Janet basis for the coefficients of the Lie
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symmetries of a differential equation, the determining system of these coefficients can

be triangularized and ultimately solved. In fact, for linear systems of DEs we can

directly apply Gröbner bases.

In symbolic treatment of DEs the ultimate goal should be a symbolic solution.

However, this is rarely achieved. But it is also of great importance to decide whether

a system of DEs is solvable. If there are solutions, then we can derive differential

systems in triangular form such that the solutions of the original system are the (non-

singular) solutions of the output system. Deriving symmetries helps in verifying

numerical schemes for solution approximation. In case the given system consists of

differential algebraic equations (DAEs) we may get a complete overview of the

algebraic relations which the solutions must satisfy.

The importance of computer algebra tools in this field is enormous. It can be

demonstrated by comparing the impact made by symmetry analysis and differential

Galois theory. The latter one is a little known theory studied by a few pure

mathematicians. The former remained in the same state for many decades following

Lie’s original work. The main reason for this historical factum is definitely the tedious

determination of the symmetry algebra.

As soon as computer algebra systems emerged, the first packages to set up at least

the determining equations were written. An effective symbolic treatment of differential

problems depends crucially on algorithms in differential elimination theory. While the

algebraic theory of elimination is well developed, for differential ideals, there are still

many open problems. For instance, the membership problem or the ideal inclusion

problems for finitely generated differential ideals are still not solved (compare [1]).

The aim of this tutorial paper is the symbolic, i.e., non-approximative, treatment of

some aspects of differential elimination theory: differential Gröbner bases, involutive

bases, characteristic sets, symmetry analysis.

2. MODEL DIFFERENTIAL EQUATIONS

The formulation of natural laws and of technological problems in the form of rigorous

mathematical models is often given in terms of differential equations. Such equations

relate the behavior of certain unknown functions (called dependent variables) at a

given point (time, position, etc., called independent variables) to their behavior at

neighboring points. In general, these equations hence contain derivatives of the

dependent variables up to some finite order.

If the dependent variables are functions of a single variable, the equations are

termed ordinary differential equations (ODEs for short). Examples of ODEs are

presented in Section 2.1. If the unknown functions depend on several independent

variables, then one deals with partial differential equations (PDEs for short).

Examples of PDEs are given in Section 2.2.
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2.1. Some ODE Models

Tables 1–3 present ordinary differential equations arising as simple models of some

natural as well as ‘‘everyday life’’-physics and ecological phenomena. The first

column in each table contains short descriptions of the phenomena via keywords.

The second column contains ODE models for the phenomena described in the first

column. Finally, the third column contains lists of the parameters arising in the ODE

model equations from the second column, each with a short description of its ‘‘real

world’’ interpretation.

Table 1. ODEs arising as simple models of natural phenomena. Here g denotes the gravitational constant

g � 9:81 m=s2.

Description of phenomenon Model equation Parameter interpretation

Free fall of a body near earth h00ðtÞ ¼ �g h . . .Height above ground

Free fall of a meteorid r00ðtÞ ¼ �gR2=r2 r . . .Distance between earth and

meteorid center

Developing drops kðr3ðtÞvðtÞÞ0 ¼ �gr3 r . . .Radius of drop

v . . .Velocity of drop

k . . .Empirical constant

Falling rain mv0ðtÞ ¼ �mgþ f ðvÞ f ðvÞ . . .Air resistance

vðt0Þ ¼ v0 v . . .Velocity of drop

m . . .Mass of drop

Motion of planets x00ðtÞ ¼ �GMx=r3 x . . .Position vector of planet

r ¼ kxj, M . . .Mass of the sun

G . . .Constant of gravitation

Cooling � 0ðtÞ ¼ kðT � �Þ � . . .Temp. of immersed body

T . . .Temp. of cooling medium

k . . .Material depend. constant

Table 2. ODEs arising as models of ecological phenomena.

Description of phenomenon Model equation Parameter interpretation

Population growth P0ðtÞ ¼ �P� �P2 P . . .Population size,

�; � > 0 . . .Model constants.

Predator and prey u0ðtÞ ¼ ða� bvðtÞÞuðtÞ; u . . .Prey species,

v0ðtÞ ¼ ðkuðtÞ � lÞvðtÞ: v . . .Predator species,

a; b; k; l > 0 . . .Model constants.

Competing species u0ðtÞ ¼ f ðuðtÞ; vðtÞÞuðtÞ; u . . .Competing species,

v0ðtÞ ¼ gðuðtÞ; vðtÞÞvðtÞ. v . . .Competing species,

a; b; k; l > 0 . . .Model constants.
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2.2. Some PDE Models

A body is isotropic if the thermal conductivity at each point in the body is independent

of the direction of heat flow through the point. The temperature u ¼ uðx; y; z; tÞ in an

isotropic body can be found by solving the partial differential equation

@xðkuxÞ þ @yðkuyÞ þ @zðkuzÞ ¼ c�ut;

where k; c; � are functions of ðx; y; zÞ. They represent thermal conductivity, specific

heat, and density of the body at ðx; y; zÞ, respectively. When k; c; � are constants, this

equation is known as the simple three-dimensional heat equation uxx þ uyy þ uzz ¼
c�
k
ut. If the boundary of the body is relatively simple, the solution to this equation can

be found using Fourier series. An approach to the two-dimensional heat equation

using symmetries can be found in the next section. The Poisson equation

uxxðx; yÞ þ uyyðx; yÞ ¼ f ðx; yÞ

arises in the study of various time-independent physical problems such as the steady

state distribution of heat in a plane region, the potential energy of a point in a plane

Table 3. ODEs arising as models of ‘‘everyday life’’-physics phenomena.

Description of phenomenon Model equation Parameter interpretation

Cooling, pasteurization � 0ðtÞ ¼ kðT � �Þ. � . . .Temp. of immersed body,

T . . .Temp. of cooling medium,

k . . .Material depend. constant.

Outflow from a funnel h3=2h0ðtÞ þ � ¼ 0: h . . .Height inside funnel,

� . . .Constant depending on

physical parameters.

Heating and air conditioning � 0ðtÞ ¼ kðTðtÞ � �Þ þ HðtÞ þ AðtÞ: T . . .Outside temperature,

� . . . Inside temperature,

H . . .Temp. change from heating,

A . . .Temp. change from air cond.

Electrical instruments CV 0ðtÞ ¼ �I;V � L dI
dt
¼ RI. I . . .Current of discharge,

V . . .Voltage, R . . .Resistance,

C . . .Condenser’s capacity,

L . . . Inductance of coil.

Mechanical vibrations my00ðtÞ þ ly0ðtÞ þ kyðtÞ ¼ f ðtÞ: m . . .Mass of particle,

y . . .Displacement of particle,

f . . .Total external force,

k; l > 0 . . .Constants.

Collapse of driving shafts �uð4ÞðxÞ ¼ f : u . . . Shaft displacement,

f . . .Centrifugal force density,

� . . .Constant dep. on material.
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acted on by gravitational forces in the plane, and two-dimensional steady-state

problems involving incompressible fluids. If f ¼ 0 and the temperature within the

region R is determined by the temperature distribution on the boundary @R, the

constraints are called Dirichlet boundary conditions, given by uðx; yÞ ¼ gðx; yÞ for all

ðx; yÞ on @R, see Figure 1.

Fig. 1. Region R with uðx; yÞ ¼ gðx; yÞ on @R.

Fig. 2. Elastic string stretched between two supports.

Table 4. Linear PDEs arising as models of physical phenomena.

Description of phenomenon Model equation Remarks

Small transversal

vibrations of strings

utt ¼ kuxx D’Alembert equation

Propagation of light

disturbances

utt ¼ k2ðuxx þ uyy þ uzzÞ Three-dimensional wave equation

Small transversal vibrations

of uniform slender rods

utt þ �uxxxx ¼ f � > 0, f . . . Total force acting on rod

Thermal diffusion ut ¼ k2uxx One-dimensional heat conduction

equation

Stock option pricing ut þ 1
2
Ax2uxx þ Bxux ¼ Cu Black-Scholes equation

A;B;C . . . parameters
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The one-dimensional wave equation

�2uxxðx; tÞ ¼ uttðx; tÞ

models the vertical displacement uðx; tÞ at point x at time t of an elastic string of

length l stretched between two supports at the same horizontal level, provided that

damping effects are neglected and the amplitude is not too large, see Figure 2.

The dependant variable u ¼ uðx; y; z; tÞ stands for physical quantities like wave

displacement or temperature, whereas the independent variables x; y; z; t denote the

space and time coordinates, respectively. Table 4 shows several linear PDEs arising as

simple models of physical phenomena, and Table 5 presents some classical PDEs

(including non-linear ones) together with their names.

3. GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS

In this section, we present the method of group analysis of DEs by demonstrating its

use in simplifying and integrating ODEs and PDEs.

We first introduce basic notions for symmetries of ODEs. These concepts extend to

the case of partial differential equations, too.

3.1. Symmetries of ODEs

We introduce transformation groups and their differential invariants, which determine

the invariant equations corresponding to the group. The differential invariants are

solutions of a system of PDEs, called system of differential invariants.

Transformation Groups of Differential Equations Introducing new variables into a

given DE is a widely used method in order to facilitate the solution process. Usually

this is done in an ad hoc manner without guaranteed success. In particular, there is no

criterion to decide whether a certain class of transformations will lead to an integrable

Table 5. Several classical PDEs (including non-linear ones) along with their names.

Equation name Equation

Nonlinear heat conduction equation ut ¼ KðuÞuxx þ K 0ðuÞu2
x ;K 2 C1ðRÞ

Wave equation for an inhomogeneous medium utt ¼ cðxÞ2
uxx; c 2 C1ðRÞ

Biharmonic equation �utttt ¼ 2uxxtt þ uxxxx
Burgers equation ux ¼ uut þ utt
Korteweg-de Vries equation ux ¼ uut þ uttt
sine-Gordon equation uxt ¼ sinðuÞ

128 E. HILLGARTER ET AL.
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equation or not. A critical examination of these methods was the starting point for

Lie’s symmetry analysis. We will now have a look on the behavior of DEs under

special kind of transformations.

Let an ODE of order n be given as

!ðx; y; y0; . . . ; yðnÞÞ ¼ 0: ð1Þ

The general solution of such an equation is a set of curves in the x-y-plane depending

on n parameters C1; . . . ;Cn, given by

�ðx; y;C1; . . . ;CnÞ ¼ 0: ð2Þ

Invertible analytic transformations between two planes with coordinates ðx; yÞ and

ðu; vÞ, respectively, that are of the form

u ¼ �ðx; yÞ; v ¼ �ðx; yÞ; ð3Þ

are called point transformations. We will encounter them in the form of one-

parameter groups of point transformations

u ¼ �ðx; y; "Þ; v ¼ �ðx; y; "Þ: ð4Þ

Here the real parameter " ranges over an open interval I including 0, such that for any

fixed value of ", Equation (4) represents a point transformation. In addition, there

exists a real group composition � such that

�xx ¼ �ðx; y; "Þ; �yy ¼ �ðx; y; "Þ; x ¼ �ð�xx;�yy; �""Þ; y ¼ �ð�xx;�yy; �""Þ
¼) x ¼ �ðx; y;�ð"; �""ÞÞ; y ¼ �ðx; y;�ð"; �""ÞÞ;

where �"" 2 I is such that �ð"; �""Þ 2 I. Group transformations of this kind may be

reparametrized such that we have �ð"; �""Þ ¼ "þ �"", and such that " ¼ 0 represents the

identity element.

An Equation (1) is said to be invariant under the change of variables (3) where

v � vðuÞ, if it retains its form under this transformation, i.e., if the functional

dependence of the transformed equation on u and v is the same as in the original

Equation (1). Such a transformation is called a symmetry of the DE. The same

transformation acts on the curves (2). If it is a symmetry, the functional dependence of

the transformed curves of u and v must be the same as in Equation (2). This is not

necessarily true for the parameters C1; . . . ;Cn because they do not occur in the DE

itself. This means that the entirety of curves described by the two equations is the

same, to any fixed values for the constants however may correspond a different curve

in either set. In other words the solution curves are permuted among themselves by a

symmetry transformation. It is fairly obvious that all symmetry transformations of a

given DE form a group, the symmetry group of that equation.
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Infinitesimal Generators and Prolongations Let a curve in the (x-y)-plane described

by y ¼ f ðxÞ be transformed under a point transformation of the form (3) into v ¼ gðuÞ.
Now the question arises of how the derivative y0 ¼ df=dx corresponds to v0 ¼ dg=du
under this transformation. A simple calculation leads to the first prolongation

v0 ¼ dv

du
¼ �x þ �yy

0

�x þ �yy0
� �ðx; y; y0Þ:

Note that the knowledge of ðx; y; y0Þ and the equations of the point transformation (3)

already determine v0 uniquely, the knowledge of the equation of the curve is not

required. This may be expressed by saying that the line element ðx; y; y0Þ is

transformed into the line element ðu; v; v0Þ under the action of a point transformation.

Similarly, the transformation law for derivatives of second order is obtained as

v00 ¼ dv0

du
¼

�x þ �yy
0 þ �y

0 y00

�x þ �yy0
:

For later applications it would be useful to express the second derivative v00 explicitly

in terms of � and �. We do not give this more lengthy formula here, but instead

provide the prolongation formulas for one-parameter groups of point transformations

of the form

u ¼ �ðx; y; "Þ; v ¼ �ðx; y; "Þ: ð5Þ

Here the transformation properties of the derivatives may be expressed in terms of the

prolongation of the corresponding infinitesimal generator

X ¼ 	ðx; yÞ@x þ 
ðx; yÞ@y; ð6Þ

where

	ðx; yÞ ¼ d

d"
�ðx; y; "Þ

����
"¼0

; 
ðx; yÞ ¼ d

d"
�ðx; y; "Þ

����
"¼0

:

The n-th prolongation of (6) is now defined in terms of the operator of total

differentiation w.r.t. x, denoted by D ¼ @x þ
P1

k¼1 y
ðkÞ@yðk�1Þ as

XðnÞ ¼ X þ
Xn
k¼1

�ðkÞ@yðkÞ ; where

�ð1Þ ¼ Dð
Þ � y0Dð	Þ;
�ðkÞ ¼ Dð�ðk�1ÞÞ � yðkÞDð	Þ for k ¼ 2; 3; . . .
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We give the two lowest �’s explicitly:

�ð1Þ ¼ 
x þ ð
y � 	xÞy0 � 	yy
02;

�ð2Þ ¼ 
xx þ ð2
xy � 	xxÞy0 þ ð
yy � 2	xyÞy02 � 	yyy
03 þ ð
y � 2	xÞy00 � 3	yy

0y00:

These two innocent looking expressions should not distract from the fact that the

number of terms in �ðkÞ grows roughly as 2k. But �ðkÞ is at least linear and

homogeneous in 	ðx; yÞ and 
ðx; yÞ and its derivatives up to order k. For k > 1, yðkÞ

occurs linearly and y0 occurs with power k þ 1 in �ðkÞ.

Differential Invariants of Point Transformations Any r-parameter Lie transforma-

tion group may be represented by r infinitesimal generators

Xi ¼ 	i@x þ 
i@y; i ¼ 1; . . . ; r: ð7Þ

Any ordinary DE of order m with this r-parameter Lie group as symmetry group has to

vanish under all m-th prolongations of the generators (7) and vice versa, i.e., this DE

� � �ðx; y; y0; y00; . . .Þ is a solution of the following system of linear homogeneous

first order partial differential equations:

X
ðmÞ
i � ¼ 0; i ¼ 1; . . . ; r; ð8Þ

The system (8) is called system of differential invariants; its fundamental solutions are

called the differential invariants of the respective Lie group. Lie has discussed these

systems in detail: for a recent presentation see [2].

The group property guarantees that Equation (8) is a complete system for � with

mþ 2 � r solutions. It may be brought into Jacobian normal form, an analogue of the

triangular form for matrices, before attempting to solve it. The dependencies of the

fundamental solutions may then be chosen such that

�1 � �1ðx; y; y0; . . . ; yðr�1ÞÞ;
�2 � �2ðx; y; y0; . . . ; yðrÞÞ;

..

.

�m�rþ2 � �m�rþ2ðx; y; y0; . . . ; yðmÞÞ:

The invariants are linear in the highest derivative.

Example We consider the following transformation group that acts on the ðx; yÞ-
plane which is represented by

g ¼ f@x; 2x@x þ y@y; x
2@x þ xy@yg:
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Prolongation of its three generators up to the third order yields the following system of

differential invariants (8):

�x ¼ 0;

2x�x þ y�y � y0�y0 � 3y00�y00 � 5y000�y000 ¼ 0;

x2�x þ xy�y � ðy0x� yÞ�y0 � 3y00x�y00 � ð5y000xþ 3y00Þ�y00 ¼ 0:

Using some strategy for solving systems of linear PDEs, for example, iterated

narrowing transformations or elimination, we may arrive at the following two

fundamental solutions:

�1 � y00y3; �2 � y000y5 þ 3y00y0y4:

The DEs of order not higher than three that have the respective Lie group g

as symmetry group have the general form !ð�1;�2Þ for some differentiable func-

tion !.

3.2. Symmetries of PDEs

Finding differential invariants is accomplished in analogy to the ordinary case: the

group generators have to be prolongated to the desired order; the prolongations are

then interpreted as a system of linear PDEs whose fundamental solutions provide a

basis of differential invariants.

We introduce the prolongation formulas that apply to the case of partial

differential equations with one dependent variable u and n independent variables

x ¼ x1; . . . ; xn (compare [3]). Partial derivatives @xi1 � � � @xik u are represented by

formal variables ui1...ik , called differential indeterminates. They are symmetric in their

indices. The differential variables of order k are denoted by uðkÞ. We also use the

convention to sum over the range of multiply occurring indices in products, e.g.,

ðDi	jÞuj ¼
Pn

j¼1ðDi	jÞuj.
The one-parameter Lie group of transformations in the parameter "

x�i ¼ Xiðx; u; "Þ ¼ xi þ "	iðx; uÞ þ Oð"2Þ; ð9Þ

u� ¼ Uðx; u; "Þ ¼ uþ "
ðx; uÞ þ Oð"2Þ; ð10Þ

i ¼ 1; 2; . . . ; n, acting on ðx; uÞ-space has as its infinitesimal generator

X ¼ 	iðx; uÞ@xi þ 
ðx; uÞ@u:
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The k-th extension of Equation (9), (10), given by

x�i ¼ Xiðx; u; "Þ ¼ xi þ "	iðx; uÞ þ Oð"2Þ;
u� ¼ Uðx; u; "Þ ¼ uþ "
ðx; uÞ þ Oð"2Þ;

..

.

u�i1i2...ik ¼ Ui1i2...ikðx; u; uð1Þ; . . . ; uðkÞ; "Þ

¼ ui1i2...ik þ "

ðkÞ
i1i2...ik

ðx; u; uð1Þ; . . . ; uðkÞÞ þ Oð"2Þ;

where i ¼ 1; 2; . . . ; n and il ¼ 1; 2; . . . ; n for l ¼ 1; 2; . . . ; k with k ¼ 1; 2; . . . , has as

its k-th extended infinitesimal generator

XðkÞ ¼ 	iðx; uÞ@xi þ 
ðx; uÞ@u þ 

ð1Þ
i ðx; u; uð1ÞÞ@ui þ � � � þ 


ðkÞ
i1i2...ik

@ui1 i2 ...ik ;

k ¼ 1; 2; . . . ; explicit formulas for the extended infinitesimals f
ðkÞg are given

recursively by



ð1Þ
i ¼ Di
 � ðDi	jÞuj; i ¼ 1; 2; . . . ; n; ð11Þ



ðkÞ
i1i2...ik

¼ Dik

ðk�1Þ
i1i2...ik

� ðDik	jÞui1i2...ik�1j; ð12Þ

il ¼ 1; 2; . . . ; n for l ¼ 1; 2; . . . ; k with k � 2.

4. EXAMPLES

The two following examples demonstrate the use of symmetries on ODEs; key

ingredients are canonical coordinates and Lie’s integration algorithm, see also [4].

4.1. A First Order ODE

We demonstrate how to reduce the order of a first-order ODE with the help of a

symmetry. This results in integration. We use the method of canonical coordinates.

Example (Canonical Coordinates) We consider the Riccati equation

y0 þ y2 � 2

x2
¼ 0: ð13Þ

It is invariant under the group of transformations

x ¼ xe"; y ¼ ye�" ð; y0 ¼ y0e�2"Þ: ð14Þ
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Its infinitesimals ð d
d� x;

d
d� yÞ�¼0 ¼ ðx;�yÞ determine the infinitesimal symmetry

X ¼ x@x � y@y:

Canonical coordinates t; u for Equation (13) are obtained by solving XðtÞ ¼ 1;
XðuÞ ¼ 0 and have the form

t ¼ ln jxj; u ¼ xy:

In these coordinates, the inhomogeneous stretchings (14) are replaced by the

translation group

t ¼ t þ "; u ¼ u; u0 ¼ u0

and Equation (13) takes the integrable form

u0 þ u2 � u� 2 ¼ 0: ð15Þ

Geometrically, the frame of Equation (15) is now a ‘‘straightened out’’ parabolic

cylinder. In general, the frame of a first order ODE y0 ¼ f ðx; yÞ is the surface in the

space of three independent variables, x; y; and p, given by p ¼ f ðx; yÞ.

Analytically, we note that Equation (15) does not depend on t explicitly.

Integrating Equation (15) gives

ln

���� uþ 1

u� 2

����� 3t ¼ const:;

provided that uþ 1 6¼ 0 and u� 2 6¼ 0. Substituting the expressions for t and u in

terms of x and y, one arrives at the solution

y ¼ 2x3 þ C

xðx3 � CÞ ; C ¼ const:;

provided that xy� 2 6¼ 0 and xyþ 1 6¼ 0. In case these expressions are zero, one

arrives at y1 ¼ 2=x and y2 ¼ �1=x, respectively.
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4.2. A Second Order ODE

If a second order ODE y00 ¼ f ðx; y; y0Þ admits one symmetry, its order may be reduced

by one. In case it admits two symmetries, integration can be achieved. Reduction of

order and successive integration are applicable to higher order equations as well. The

restriction to second order is essential, however, for the method of integration using

canonical forms of two-dimensional Lie algebras, see [4]. These canonical forms and

their invariant second-order equations are presented in Table 6. For Xi ¼ 	i@x þ 
i@y,
we denote the wedge-product of X1;X2 by X1 _ X2 :¼ 	1
2 � 	2
1.

Based on this classification, we sketch Lie’s integration algorithm for integrating

second-order ODEs that admit a two-dimensional Lie algebra in Table 7.

Example (Lie’s integration algorithm) We consider the second order ODE

y00 ¼ y0

y2
� 1

xy
: ð16Þ

Step 1. The calculation of its admissible Lie algebra is demonstrated in Subsection 5,

yielding two linearly independent operators.

X1 ¼ x2@x þ xy@y; X2 ¼ x@x þ
y

2
@y: ð17Þ

Table 6. Canonical forms of two-dimensional Lie algebras and their invariant second-order equations.

Type L2 structure Basis of L2 Invariant equation

½X1;X2� X1 _ X2 X1 X2

I 0 6¼0 @x @y y00 ¼ f ðy0Þ
II 0 0 @y x@y y00 ¼ f ðxÞ
III X1 6¼0 @y x@x þ y@y y00 ¼ 1

x
f ðy0Þ

IV X1 0 @y y@y y00 ¼ f ðxÞy0

Table 7. Lie’s integration algorithm.

Step Action Result

1. Compute admitted Lie Algebra Lr: basis X1; . . . ;Xr:

2. If r ¼ 2 go to step 3. If r > 2 distinguish any 2-dimensional

subalgebra L2 of Lr:

basis X1, X2 for L2:

3. Determine type of L2 according to table; eventually choose

a new basis X0
1, X0

2.

canonical form.

4. Go over to canonical variables x; y. Rewrite equation in these

variables and integrate it.

change of variables.

5. Rewrite solution in terms of original variables. solution.
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According to the algorithm, we advance directly to the third step.

Step 3. To determine the type of the Lie algebra, we consider

½X1;X2� ¼ �X1; X1 _ X2 ¼ � x2y

2
6¼ 0:

After merely changing the sign of X2, the basis has exactly the structure of type III in

the canonical form table.

Step 4. To determine an integrating change of variables, we first introduce canonical

variables for X1 as the solutions of X1ðtÞ ¼ 1 and X1ðuÞ ¼ 0. They are given by

t ¼ y

x
; u ¼ � 1

x
;

transforming the operators to

X1 ¼ @u; X2 ¼ t

2
@t þ u@u:

This is basically still type III; the factor 1
2

in X2 does not hinder integration. Excluding

the solution y ¼ Kx, the equation written in the new variables is

u00 þ 1

t2
u02 ¼ 0:

Integrating once, we get u0 ¼ t=ðC1t � 1Þ. Hence

u ¼ � t2

2
þ C for C1 ¼ 0; or

u ¼ t

C1

þ 1

C2
1

ln jC1t � 1j þ C2 for C1 6¼ 0:

Step 5. The solutions in the original variables are then

y ¼ Kx; y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ Cx2

p
;

0 ¼ C1yþ C2xþ x ln

����C1

y

x
� 1

����þ C2
1 :

4.3. Two Second Order PDEs

In this subsection we present the calculation of symmetries and their use in finding

invariant solutions of second order PDEs. This time, we solve the determing system

(of the second example) ‘by hand’ – compare also [3].
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The Heat Equation The heat equation

zxx � zy ¼ 0 ð18Þ

is an example of a second order PDE by which we demonstrate the computation of

symmetry generators and their use in finding invariant solutions. In analogy to

Subsection 3.1, a necessary and sufficient condition for an infinitesimal generator

X ¼ 	1ðx; y; zÞ@x þ 	2ðx; y; zÞ@y þ 
ðx; y; zÞ@z ð19Þ

to be admitted by Equation (18) is

Xð2Þðzxx � zyÞ ¼ 0 mod zxx ¼ zy; ð20Þ

where we replace any occurrence of zxx by zy after application of the operator Xð2Þ. The

operator Xð2Þ is the second order prolongation of X and given by

Xð2Þ ¼ 	1@x þ 	2@y þ 
@z þ 

ð1Þ
1 @zx þ 


ð1Þ
2 @zy þ 


ð2Þ
11 @zxx þ 


ð2Þ
12 @zxy þ 


ð2Þ
22 @zyy ;

where 

ð1Þ
1 ; 


ð1Þ
2 ; 


ð2Þ
11 ; 


ð2Þ
12 ; 


ð2Þ
22 are defined as in Subsection 3.1. The determining

equation for Equation (18) is



ð2Þ
11 � 


ð1Þ
2 ¼ 0 mod zxx ¼ zy: ð21Þ

We treat Equation (21) as 

ð2Þ
11 � 


ð1Þ
2 ¼ 0, where every occurrence of zxx is replaced by

zy. This equation is polynomial in zx; zy; zxx; zxy; zyy, and since 	1; 	2; 
 only depend on

x, y, z, we may equate the coefficients of zx; zy; zxx; zxy; zyy (and their powers) in (20) to

zero. The result is an overdetermined system of linear homogeneous equations in

	1; 	2; 
 and their partial derivatives up to order two, called determining system.

The procedure outlined above holds in general. We demonstrate how to solve such

a system in the next example. The solution gives the Lie algebra spanned by the

following six generators, each of which corresponds to a one-parameter group:

X1 ¼ @x; X2 ¼ @y; X3 ¼ x@x þ 2y@y;

X4 ¼ 4xy@x þ 4y2@y � ðx2 þ 2yÞz@z; X5 ¼ 2y@x � xz@z; X6 ¼ z@z:

Let us consider the infinitesimal generator X4, which corresponds to the parameter

c1: The one-parameter Lie group of transformations

�xxðx; y; z; �Þ; �yyðx; y; z; �Þ; �zzðx; y; z; �Þ ð22Þ

corresponding to X4 ¼ 4xy@x þ 4y2@y � ðx2 þ 2yÞz@z is obtained by solving the initial

value problem

ð�xx;�yy;�zzÞ½� ¼ 0� ¼ ðx; y; zÞ ð23Þ
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for the following first order system of ODEs:

d�xx

d"
¼ 4�xx�yy; ð24Þ

d�yy

d"
¼ 4�yy2; ð25Þ

d�zz

d"
¼ �ð�xx2 þ 2�yyÞ�zz: ð26Þ

The solution of Equation (25) is �yy ¼ 1
C�4�, and by Equation (23) we obtain

�yyðx; y; z; �Þ ¼ y

1 � 4�y
: ð27Þ

By this and Equation (24) we get �xx ¼ C
1�4�y, and by Equation (23) we obtain

�xxðx; y; z; �Þ ¼ x

1 � 4�y
: ð28Þ

Similarly, by Equations (28), (27), (26) and (23) we obtain

�zzðx; y; z; �Þ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4�y

p
exp

�
� �x2

1 � 4�y

�
: ð29Þ

Every invariant solution z ¼ �ðx; yÞ of Equation (18) corresponding to X4 satisfies

X4ðz� �ðx; yÞÞ ¼ 0 when z� �ðx; yÞ;

i.e.,

4xy
@�

@x
þ 4y2 @�

@y
¼ �ðx2 þ 2yÞ�: ð30Þ

We solve Equation (30) by solving the corresponding characteristic equation

dx

4xy
¼ dy

4y2
¼ dz

�ðx2 þ 2yÞz

which has the two invariants

x

y
and z

ffiffiffi
y

p
ex

2=4y:

The solution of Equation (18) is now defined by the invariant form

z
ffiffiffi
y

p
ex

2=4y ¼ 

�
x

y

�
;
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or, in explicit form,

z ¼ �ðx; yÞ ¼ 1ffiffiffi
y

p e�x2=4yð�Þ; ð31Þ

where � ¼ x
y

is the similarity variable and  denotes an arbitrary twice differen-

tiable function. Substitution of Equation (31) into Equation (18) leads to 00ð�Þ ¼ 0.

Hence, invariant solutions of Equation (18) resulting from X4 are of the form

z ¼ �ðx; yÞ ¼ 1ffiffiffi
y

p e�x2=4y

�
C1 þ C2

x

y

�
:

For any solution z ¼ �ðx; yÞ of Equation (18), that is not invariant under X4, we find a

one-parameter family of solutions z ¼ ðx; y; �Þ generated by X4: Let

x� ¼ �xxðx; y; z; �Þ ¼ x

1 � 4�y
;

y� ¼ �yyðx; y; z; �Þ ¼ y

1 � 4�y
;

z� ¼ �ð�xx;�yyÞ:
By �zzð�; �; �;��Þ we denote the third component of the inverse transformation

corresponding to X4. Then z ¼ ðx; y; �Þ ¼ �zzðx�; y�; z�;��Þ ¼

�

�
x

1 � 4�y
;

y

1 � 4�y

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4�y
p exp

�
�x2

1 � 4�y

�
:

Wave Equation for an Inhomogeneous Medium We consider the wave equation for a

variable wave speed cðxÞ:
zyy ¼ cðxÞ2

zxx: ð32Þ
It is a linear PDE and hence (see [5, Sec. 6]) can only admit infinitesimal generators of

the form

X ¼ 	1ðx; yÞ@x þ 	2ðx; yÞ@y þ f ðx; yÞz@z:
In analogy to the previous example we obtain the invariance condition



ð2Þ
22 ¼ cðxÞ2


ð2Þ
11 þ 2cðxÞc0ðxÞ	1zxx when ð32Þ:

The resulting determining system is

ð	1Þy � cðxÞ2ð	2Þx ¼ 0; ð33Þ
cðxÞ½ð	2Þy � ð	1Þx� þ c0ðxÞ	1 ¼ 0; ð34Þ

ð	2Þyy � cðxÞ2ð	2Þxx � 2fy ¼ 0; ð35Þ
ð	1Þyy þ cðxÞ2½2fx � ð	1Þxx� ¼ 0; ð36Þ

fyy � cðxÞ2
fxx ¼ 0: ð37Þ
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Solving Equation (33) for ð	2Þx and (34) for ð	2Þy and setting ð	2Þxy ¼ ð	2Þyx we find

ð	1Þxx � ð	1Þyy=cðxÞ
2 � ð	1HðxÞÞx ¼ 0; ð38Þ

where HðxÞ ¼ c0ðxÞ=cðxÞ: Solving Equations (38) and (36) leads to

f ðx; yÞ ¼ 1

2
HðxÞ	1ðx; yÞ þ SðyÞ; ð39Þ

where SðyÞ is an arbitrary function of y. Substituting Equation (39) into Equation (35)

and then solving (33) for ð	1Þy and (34) for ð	1Þx and setting ð	1Þxy ¼ ð	1Þyx, we find

that SðyÞ ¼ const ¼ s, so that f ¼ 1
2
H	1 þ s. Substituting f in Equation (37) and using

Equation (36) we get H00	1 þ 2H0ð	1Þx þ HðH	1Þx ¼ 0 or, equivalently,

½ð2H0 þ H2Þð	1Þ2�x ¼ 0:

We now only consider the case 2H0 þ H2 ¼ 0: Then

cðxÞ ¼ ðAxþ BÞ2;

where A;B are arbitrary constants. Then HðxÞ ¼ 2A
AxþB

. For any solution 	1ðx; yÞ of

Equation (38), one finds that 	2ðx; yÞ, f ðx; yÞ solving Equations (33)–(37) are given by:

	2ðx; yÞ ¼
Z

½ð	1Þx � H	1�dy;

f ðx; yÞ ¼ A	1ðx; yÞ
Axþ B

:

So f	1; 	2; fg determine a non-trivial infinite-parameter Lie group for

zyy ¼ ðAxþ BÞ4
zxx: ð40Þ

If A 6¼ 0 this equation can be transformed to the wave equation

�zz�xx�yy ¼ 0

by the point transformation

�xx ¼ ðAxþ BÞ�1 þ Ay;

�yy ¼ ðAxþ BÞ�1 � Ay;

�zz ¼ ðAxþ BÞ�1
z:

The general solution of PDE (40) is then

z ¼ ðAxþ BÞ½Fð�xxÞ þ Gð�yyÞ�;

where F;G are twice differentiable functions.
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4.4. Literature and Implementations

The most complete work on group analysis of ordinary differential equations is still

[7]. A very broad introduction and comprehensive reference for group analysis of

differential equations in general is [8]. In handbook style, this series presents newly

developed theoretical and computational methods, meeting the needs of the applied

reader as well as those of the researcher. In Chapter 13 and 14 in Volume 3, the reader

finds an account on symbolic software for calculating symmetries by Hereman.

Table 8 is taken from [9].

The last four columns in this table indicate the scope of the programs: point

symmetries, generalized symmetries, non-classical symmetries and whether the

determining system can be solved automatically. Recent Maple programs for

generating classical symmetries are DESOLV by Carminati and Vu [10], RIF by Reid

and Wittkopf and SYMMETRIE by Hickman.

Finally, some text books for the more applied reader are [6, 11]. Hillgarter

contributed to the symmetry classification problem for a special class of PDEs [12].

This work was inspired by Fritz Schwarz, whose expertise in the algorithmic aspects

of the field is reflected in [2].

Table 8. Scope of Lie symmetry programs.

Name System Developer(s) Point Gen. Non-

class.

Solves

Det. Eqs.

CRACK REDUCE Wolf & Brand – – – Yes

DELiA Pascal Bocharov et al. Yes Yes No Yes

DIFFGROB2 Maple Mansfield – – – Reduction

DIMSYM REDUCE Sherring Yes Yes No Yes

LIE REDUCE Eliseev et al. Yes Yes No No

LIE muMATH Head Yes Yes Yes Yes

Lie Mathematica Baumann Yes No Yes Yes

LieBaecklund Mathematica Baumann No Yes No Interactive

LIEDF/INFSYM REDUCE Gragert & Yes Yes No Interactive

LIEPDE REDUCE Wolf & Brand Yes Yes No Yes

Liesymm Maple Carminati et al. Yes No No Interactive

MathSym Mathematica Herod Yes No Yes Reduction

NUSY REDUCE Nucci Yes Yes Yes Interactive

PDELIE MACSYMA Vafeades Yes Yes No Yes

SPDE REDUCE Schwarz Yes No No Yes

SYMCAL Maple/MACSYMA Reid & Wittkopf – – – Reduction

SYM_DE MACSYMA Steinberg Yes No No Partially

symgroup.c Mathematica Bérubé & de Montigny Yes No No No

SYMMGRP.MAX MACSYMA Champagne et al. Yes No Yes Interactive

SYMSIZE REDUCE Schwarz – – – Reduction
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5. DIFFERENTIAL ELIMINATION

Several methods in polynomial elimination theory can be reformulated to also apply

to ideals of differential polynomials, or they have first been defined for differential

polynomials but have found successful application to algebraic polynomials.

Differential Gröbner bases appeared first in [13] with further developments in [14]

and [15]. Unfortunately, differential Gröbner bases are generally infinite, so they do

not provide a general solution of the differential ideal membership problem. It is even

known that the general membership problem is undecidable [16]. If, however, a finite

differential Gröbner basis is known, ideal membership can be tested effectively.

Carrá-Ferro could show that differential ideals that are generated by finitely many

linear differential polynomials have a finite differential Gröbner basis with respect to

an orderly ranking.

For linear PDEs with polynomial coefficients it is also possible to use an extension

of the ordinary polynomial Gröbner bases theory (see [17, 18] for an introduction to

the polynomial case) to Weyl algebras in order to simplify overdetermined systems.

Here the system is saturated by all integrability conditions. The Maple computer

algebra system comes with the package Groebner which is able to compute

Gröbner bases in Weyl algebras.

Take, for example, the Equation (16). In order to determine the Lie symmetry

algebra, one starts with undetermined functions 	ðx; yÞ and 
ðx; yÞ for the infinitesimal

generator

X :¼ 	@x þ 
@y

and first sets up the determining system, as described, for example, in [19]. Basically 	
and 
 have to satisfy an equation [identically for all x and y satisfying (16)] that is

obtained by applying the second prolongation Xð2Þ of X to the original Equation (16).

Equating coefficients of higher order derivatives leads to the following equations for 	
and 
.

@2	

@y2
¼ 0 ð41Þ

y2 @
2


@y2
� 2y2 @2	

@x@y
� 2

@	

@y
¼ 0 ð42Þ

2xy3 @2


@x@y
� xy3 @

2	

@x2
� xy

@	

@x
þ 3y2 @	

@y
þ 2x
 ¼ 0 ð43Þ

x2y2 @
2


@x2
þ 2xy

@	

@x
� x2 @


@x
� xy

@


@y
� y	 � x
 ¼ 0 ð44Þ
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This is a system of linear PDEs. A computation of a Gröbner basis (with respect to an

appropriate elimination ranking) in the algebra of linear differential operators leads to

the triangular system

@	

@y
¼ 0 ð45Þ

x2 @
2	

@x2
� 2x

@	

@x
þ 2	 ¼ 0 ð46Þ

2
 � y
@	

@x
¼ 0 ð47Þ

which is much easier to solve than the original system of determining equations. As a

general solution we get

	 ¼ C1x
2 þ 2C2x; 
 ¼ ðC1xþ C2Þy

from which the independent operators in Equation (17) are derived.

The above Gröbner basis computation is not directly performed on the differential

expressions. Before starting the computation, the system is transformed to a system of

polynomials in a module over a Weyl algebra by formally replacing @
@x by a symbol

X and @
@y by a symbol Y . Furthermore 	 and 
 are replaced by the first and sec-

ond unitvector e1 and e2, respectively. For example, Equation (42) is translated to

y2Ye2 � 2y2XYe1 � 2Ye1:

Doing the translation for the whole differential system leads, however, not to a system

in a polynomial module but rather to the module W2 	W2 over the Weyl algebra W2.

A Weyl algebra of dimension n over a field K is the free associative K-algebra

Wn ¼ Khx1; . . . ; xn;X1; . . . ;Xni:

modulo the commutation rules

xixj ¼ xjxi; XiXj ¼ XjXi; Xixk ¼ xkXi; Xixi ¼ xiXi þ 1

for all i; j; k 2 f1; . . . ; ng with i 6¼ k.

In our case the skew-commutation rules Xx ¼ xX þ 1 and Yy ¼ yY þ 1 originate

from the Leibniz rule. The non-commutative domain W2 	W2, however, still has

certain elimination properties and admits the computation of Gröbner bases [19].

By computing the determining equations by the package DESOLV_R5 by Vu and

Carminati (cf. [10]) the above computation can be done in Maple V 5.1.
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read("Desolv_r5"):

deq :¼D[1,1](y)(x) - D[1](y)(x)/y(x)^2 + 1/(x�y(x));
deteqs :¼gendef([deq],[y],[x]):

dq :¼ subs(diff¼F,xi[x](x,y)¼e1,eta[y](x,y)¼e2,deteqs[1]);

F :¼proc(a,b) cat(‘D’,b)�a end:

with(Ore_algebra): with(Groebner):

W :¼diff_algebra([Dx,x],[Dy,y],comm¼{e1,e2},polynom¼{e1,e2}):

T :¼termorder(W,lexdeg([e1,e2],[Dx,Dy]),[e1,e2]):

gbasis(p,T);

The final output is

[2�e2-y�Dx�e1, Dy�e1, e1�Dx^2�x^2-2�Dx�e1�x+2�e1]

and is easily translated back to the triangular system (45)–(47).

Basically, a Gröbner basis computation is a systematic way of adding all

integrability conditions and reducing them with existing relations. For more details

we refer to the standard textbooks [17, 18]. The non-commutative case of algebras of

solvable type is treated, for example, in [19, 20].

Usually, the system of determining equations contains a huge number of equations.

Take, for example, the Boussinesq equation

@2u

@t2
þ u

�
@2u

@x2

�2

þ @4u

@x4
¼ 0:

For this fourth order equation we set up the equations in order to determine the

coefficients 	1, 	2, and 
 of the general symmetry generator

X :¼ 	1ðx; t; uÞ@x þ 	2ðx; t; uÞ@t þ 
ðx; t; uÞ@u:

In analogy to the previous example we have to compute the fourth prolongation of X.

It leads to a system of 47 equations which can be generated automatically, for

example, by the Maple package DESOLV_R5 in the following way.

read("Desolv_r5"):

bq :¼D[1,1,1,1](u)(x,t)þD[1](u)(x,t)^2 +

u(x,t)�D[1,1](u)(x,t)þD[2,2](u)(x,t);

deteqs :¼gendef([bq],[u],[x,t]):

The package immediately applies some simplifications to reduce the number of

equations to 12 of order 4. The question arises of whether or not this system is consis-

tent, i.e., whether there are solutions at all. In the linear case, Gröbner bases are one

tool to decide this problem. The computation of a Gröbner basis of the determining

equations of the Boussinesq equation with respect to an appropriate ranking leads

to an easily solvable system of 10 equations of order 2. We find that the symmetry
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algebra is spanned by the three elements

v1 ¼ @x v2 ¼ @t v3 ¼ x@x þ 2t@t � 2u@u:

Gröbner bases are not the only tool for decisions and computations in differential

elimination theory. The theory of involutive bases has its foundation in the theory of

PDEs given by Riquier [21] and Janet [22, 23] at the beginning of the 20th century.

From the observation that a closed form solution of any system of partial differential

equations may only be obtained for exceptional cases they focused their study to

restricted questions of whether a solution exists at all or how one could find its degree

of arbitrariness. Their constructive approach to algebraic analysis of PDEs was later

followed by Thomas [24] and more recently by Pommaret [25]. The main idea of the

approach is rewriting the initial differential system into another, so-called involutive

form so that all its integrability conditions are satisfied. In contrast to differential

Gröbner bases, involutive bases are finite. Since an involutive basis has all

integrability conditions included it is possible to compute a Taylor series expansion

of an analytic solution in a straightforward way. From an involutive basis one can

immediately read off the degree of arbitrariness of the solution, cf. [26].

Characteristic sets are due to Ritt [27] and have further been adapted to algebraic

polynomials by Wu [28]. The main idea is to transform the equations into triangular

form in such a way that the solutions stay the same. However, the ideal is not

preserved in general; multiplicities of solutions can change.

6. CONCLUSION

As we have seen above, current computer algebra techniques provide a computational

algebraic approach to the analysis of systems of differential equations and sometimes

also to their solution. But despite all the success of symbolic methods in differential

equations (Lie symmetries, differential Galois theory, Janet bases, differential

Gröbner bases, etc.), these theories are not and probably never will be able to solve the

majority of differential problems in engineering. However, with further research into

this area we might be able to tackle simplified problems. Toy models that can be

solved analytically are important for obtaining a deeper understanding of the

underlying structures. A deeper understanding of such simplified problems may well

lead to more efficient numerical algorithms for large problems.
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22. Janet, M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. 8(3) (1920), pp. 65–151.
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