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Preface

Every closed surface admits a geometry of constant curvature, and may be
classified topologically either by its fundamental group or by its Euler characteristic
and orientation character. It is generally expected that all closed 3-manifolds have
decompositions into geometric pieces, and are determined up to homeomorphism by
invariants associated with the fundamental group (whereas the Euler characteristic
is always 0). In dimension 4 the Euler characteristic and fundamental group are
largely independent, and the class of closed 4-manifolds which admit a geometric
decomposition is rather restricted. For instance, there are only 11 such manifolds
with finite fundamental group. On the other hand, many complex surfaces admit
geometric structures, as do all the manifolds arising from surgery on twist spun
simple knots.

The goal of this book is to characterize algebraically the closed 4-manifolds
that fibre nontrivially or admit geometries, or which are obtained by surgery on
2-knots, and to provide a reference for the topology of such manifolds and knots. In
many cases the Euler characteristic, fundamental group and Stiefel-Whitney classes
together form a complete system of invariants for the homotopy type of such man-
ifolds, and the possible values of the invariants can be described explicitly. If the
fundamental group is elementary amenable we may use topological surgery to obtain
classifications up to homeomorphism. Surgery techniques also work well “stably”
in dimension 4 (i.e., modulo connected sums with copies of S2 × S2). However, in
our situation the fundamental group may have nonabelian free subgroups and the
Euler characteristic is usually the minimal possible for the group, and so in general
we do not know whether s-cobordisms between 4-manifolds are always topologi-
cally products. Our strongest results are characterizations of manifolds which fibre
homotopically over S1 or an aspherical surface (up to homotopy equivalence) and in-
frasolvmanifolds (up to homeomorphism). As a consequence 2-knots whose groups
are poly-Z are determined up to Gluck reconstruction and change of orientations
by their groups alone.

We shall now outline the chapters in somewhat greater detail. The first chapter
is purely algebraic; here we summarize the relevant group theory and present the
notions of amenable group, Hirsch length of an elementary amenable group, finite-
ness conditions, criteria for the vanishing of cohomology of a group with coefficients
in a free module, Poincaré duality groups, and Hilbert modules over the von Neu-
mann algebra of a group. The rest of the book may be divided into three parts:
general results on homotopy and surgery (Chapters 2-6), geometries and geometric
decompositions (Chapters 7-13), and 2-knots (Chapters 14-18).

Some of the later arguments are applied in microcosm to 2-complexes and PD3-
complexes in Chapter 2, which presents equivariant cohomology, L2-Betti numbers
and Poincaré duality. Chapter 3 gives general criteria for two closed 4-manifolds

vii
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to be homotopy equivalent, and we show that a closed 4-manifold M is aspherical
if and only if π1(M) is a PD4-group of type FF and χ(M) = χ(π). We show
that if the universal cover of a closed 4-manifold is finitely dominated then it is
contractible or homotopy equivalent to S2 or S3 or the fundamental group is finite.
We also consider at length the relationship between fundamental group and Euler
characteristic for closed 4-manifolds. In Chapter 4 we show that a closed 4-manifold
M fibres homotopically over S1 with fibre a PD3-complex if and only if χ(M) = 0
and π1(M) is an extension of Z by a finitely presentable normal subgroup. (There
remains the problem of recognizing which PD3-complexes are homotopy equivalent
to 3-manifolds). The dual problem of characterizing the total spaces of S1-bundles
over 3-dimensional bases seems more difficult. We give a criterion that applies
under some restrictions on the fundamental group. In Chapter 5 we characterize
the homotopy types of total spaces of surface bundles. (Our results are incomplete
if the base is RP 2). In particular, a closed 4-manifold M is simple homotopy
equivalent to the total space of an F -bundle over B (where B and F are closed
surfaces and B is aspherical) if and only if χ(M) = χ(B)χ(F ) and π1(M) is an
extension of π1(B) by a normal subgroup isomorphic to π1(F ). (The extension
should split if F = RP 2). Any such extension is the fundamental group of such a
bundle space; the bundle is determined by the extension of groups in the aspherical
cases and by the group and Stiefel-Whitney classes if the fibre is S2 or RP 2. This
characterization is improved in Chapter 6, which considers Whitehead groups and
obstructions to constructing s-cobordisms via surgery.

The next seven chapters consider geometries and geometric decompositions.
Chapter 7 introduces the 4-dimensional geometries and demonstrates the limita-
tions of geometric methods in this dimension. It also gives a brief outline of the
connections between geometries, Seifert fibrations and complex surfaces. In Chap-
ter 8 we show that a closed 4-manifold M is homeomorphic to an infrasolvmanifold
if and only if χ(M) = 0 and π1(M) has a locally nilpotent normal subgroup of
Hirsch length at least 3, and two such manifolds are homeomorphic if and only if
their fundamental groups are isomorphic. Moreover π1(M) is then a torsion free
virtually poly-Z group of Hirsch length 4 and every such group is the fundamental
group of an infrasolvmanifold. We also consider in detail the question of when such
a manifold is the mapping torus of a self homeomorphism of a 3-manifold, and give
a direct and elementary derivation of the fundamental groups of flat 4-manifolds.

Chapters 9-12 consider the remaining 4-dimensional geometries, grouped ac-
cording to whether the model is homeomorphic to R4, S2 × R2, S3 × R or is
compact. Aspherical geometric 4-manifolds are determined up to s-cobordism by
their homotopy type. However there are only partial characterizations of the groups

arising as fundamental groups of H2×E2-, S̃L×E1-, H3×E1- or H2×H2-manifolds,
while very little is known about H4- or H2(C)-manifolds. We show that the homo-
topy types of manifolds covered by S2 ×R2 are determined up to finite ambiguity
by their fundamental groups. If the fundamental group is torsion free such a man-
ifold is s-cobordant to the total space of an S2-bundle over an aspherical surface.
The homotopy types of manifolds covered by S3 × R are determined by the fun-
damental group and k-invariant; much is known about the possible fundamental
groups, but less is known about which k-invariants are realized. Moreover, although
the fundamental groups are all “good”, so that in principle surgery may be used
to give a classification up to homeomorphism, the problem of computing surgery
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obstructions seems very difficult. We conclude the geometric section of the book in
Chapter 13 by considering geometric decompositions of 4-manifolds which are also
mapping tori or total spaces of surface bundles, and we characterize the complex
surfaces which fibre over S1 or over a closed orientable 2-manifold.

The final five chapters are on 2-knots. Chapter 14 is an overview of knot
theory; in particular it is shown how the classification of higher-dimensional knots
may be largely reduced to the classification of knot manifolds. The knot exterior
is determined by the knot manifold and the conjugacy class of a normal generator
for the knot group, and at most two knots share a given exterior. An essential
step is to characterize 2-knot groups. Kervaire gave homological conditions which
characterize high dimensional knot groups and which 2-knot groups must satisfy,
and showed that any high dimensional knot group with a presentation of deficiency
1 is a 2-knot group. Bridging the gap between the homological and combinatorial
conditions appears to be a delicate task. In Chapter 15 we investigate 2-knot
groups with infinite normal subgroups which have no noncyclic free subgroups.
We show that under mild coherence hypotheses such 2-knot groups usually have
nontrivial abelian normal subgroups, and we determine all 2-knot groups with finite
commutator subgroup. In Chapter 16 we show that if there is an abelian normal

subgroup of rank > 1 then the knot manifold is either s-cobordant to a S̃L × E1-
manifold or is homeomorphic to an infrasolvmanifold. In Chapter 17 we characterize
the closed 4-manifolds obtained by surgery on certain 2-knots, and show that just
eight of the 4-dimensional geometries are realised by knot manifolds. We also
consider when the knot manifold admits a complex structure. The final chapter
considers when a fibred 2-knot with geometric fibre is determined by its exterior.
We settle this question when the monodromy has finite order or when the fibre is
R3/Z3 or is a coset space of the Lie group Nil3.

This book arose out of two earlier books of mine, on “2-Knots and their
Groups” and “The Algebraic Characterization of Geometric 4-Manifolds”, pub-
lished by Cambridge University Press for the Australian Mathematical Society and
for the London Mathematical Society, respectively. About a quarter of the present
text has been taken from these books. 1 However the arguments have been im-
proved in many cases, notably in using Bowditch’s homological criterion for virtual
surface groups to streamline the results on surface bundles, using L2-methods in-
stead of localization, completing the characterization of mapping tori, relaxing the
hypotheses on torsion or on abelian normal subgroups in the fundamental group
and in deriving the results on 2-knot groups from the work on 4-manifolds. The
main tools used here beyond what can be found in Algebraic Topology [Sp] are co-
homology of groups and equivariant Poincaré duality. Our references for these are
the books Homological Dimension of Discrete Groups [Bi] and Surgery on Com-
pact Manifolds [Wl]. We give a brief ad hoc account of L2-(co)homology, and refer
to the original papers for full details. We also use properties of 3-manifolds (for
the construction of examples) and calculations of Whitehead groups and surgery
obstructions.

This work has been supported in part by ARC small grants, enabling visits
by Steve Plotnick, Mike Dyer, Charles Thomas and Fang Fuquan. I would like to
thank them all for their advice, and in particular Steve Plotnick for the collaboration

1A summary of the textual borrowings follows immediately after the preface, in this web
version.
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reported in Chapter 18. I would also like to thank Robin Cobb, Peter Linnell and
Steve Wilson for their collaboration, and Warren Dicks, William Dunbar, Ross
Geoghegan, F.T.Farrell, Ian Hambleton, Derek Holt, K.F.Lai, Eamonn O’Brien,
Peter Scott and Shmuel Weinberger for their correspondance and advice on aspects
of this work.

Jonathan Hillman
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Manifolds and PD-complexes





CHAPTER 1

Group theoretic preliminaries

The key algebraic idea used in this book is to study the homology of covering
spaces as modules over the group ring of the group of covering transformations.
In this chapter we shall summarize the relevant notions from group theory, in
particular, the Hirsch-Plotkin radical, amenable groups, Hirsch length, finiteness
conditions, the connection between ends and the vanishing of cohomology with
coefficients in a free module, Poincaré duality groups and Hilbert modules.

Our principal references for group theory are [Bi], [DD] and [Ro].

1.1. Group theoretic notation and terminology

We shall reserve the notation Z for the free (abelian) group of rank 1 (with a
prefered generator) and Z for the ring of integers. Let F (r) be the free group of
rank r.

Let G be a group. Then G′ and ζG denote the commutator subgroup and
centre of G, respectively. The outer automorphism group of G is Out(G) =
Aut(G)/Inn(G), where Inn(G) ∼= G/ζG is the subgroup of Aut(G) consisting
of conjugations by elements of G. If H is a subgroup of G let NG(H) and CG(H)
denote the normalizer and centralizer of H in G, respectively. The subgroup H is
a characteristic subgroup of G if it is preserved under all automorphisms of G. In
particular, I(G) = {g ∈ G | ∃n > 0, gn ∈ G′} is a characteristic subgroup of G,
and the quotient G/I(G) is a torsion free abelian group of rank β1(G). A group G
is indicable if there is an epimorphism p : G→ Z, or if G = 1. The normal closure
of a subset S ⊆ G is 〈〈S〉〉G, the intersection of the normal subgroups of G which
contain S.

If P and Q are classes of groups let PQ denote the class of (“P by Q”) groups
G which have a normal subgroup H in P such that the quotient G/H is in Q, and
let ℓP denote the class of (“locally-P”) groups such that each finitely generated
subgroup is in the class P . In particular, if F is the class of finite groups ℓF is the
class of locally-finite groups. In any group the union of all the locally-finite normal
subgroups is the unique maximal locally-finite normal subgroup (see Chapter 12.1
of [Ro]). Clearly there are no nontrivial homomorphisms from such a group to a
torsion free group. Let poly-P be the class of groups with a finite composition series
such that each subquotient is in P . Thus if Ab is the class of abelian groups poly-Ab
is the class of solvable groups.

Let P be a class of groups which is closed under taking subgroups. A group is
virtually P if it has a subgroup of finite index in P . Let vP be the class of groups
which are virtually P . Thus a virtually poly-Z group is one which has a subgroup
of finite index with a composition series whose factors are all infinite cyclic. The
number of infinite cyclic factors is independent of the choice of finite index subgroup
or composition series, and is called the Hirsch length of the group. We shall also

3



4 1. GROUP THEORETIC PRELIMINARIES

say that a space virtually has some property if it has a finite regular covering space
with that property.

If p : G → Q is an epimorphism with kernel N we shall say that G is an
extension of Q = G/N by the normal subgroup N . The action of G on N by
conjugation determines a homomorphism from G to Aut(N) with kernel CG(N)
and hence a homomorphism from G/N to Out(N) = Aut(N)/Inn(N). If G/N ∼= Z
the extension splits: a choice of element t in G which projects to a generator of
G/N determines a right inverse to p. Let θ be the automorphism of N determined
by conjugation by t in G. Then G is isomorphic to the semidirect product N ×θ Z.
Every automorphism of N arises in this way, and automorphisms whose images
in Out(N) are conjugate determine isomorphic semidirect products. In particular,
G ∼= N × Z if θ is an inner automorphism.

Lemma 1.1. Let θ and φ automorphisms of a group G such that H1(θ; Q)−1 and
H1(φ; Q) − 1 are automorphisms of H1(G; Q) = (G/G′) ⊗ Q. Then the semidirect
products πθ = G×θ Z and πφ = G×φZ are isomorphic if and only if θ is conjugate
to φ or φ−1 in Out(G).

Proof. Let t and u be fixed elements of πθ and πφ, respectively, which map
to 1 in Z. Since H1(πθ; Q) ∼= H1(πφ; Q) ∼= Q the image of G in each group
is characteristic. Hence an isomorphism h : πθ → πφ induces an isomorphism
e : Z → Z of the quotients, for some e = ±1, and so h(t) = ueg for some g in G.
Therefore h(θ(h−1(j)))) = h(th−1(j)t−1) = uegjg−1u−e = φe(gjg−1) for all j in
G. Thus θ is conjugate to φe in Out(G).

Conversely, if θ and φ are conjugate in Out(G) there is an f in Aut(G) and a
g in G such that θ(j) = f−1φef(gjg−1) for all j in G. Hence F (j) = f(j) for all j
in G and F (t) = uef(g) defines an isomorphism F : πθ → πφ. �

1.2. Matrix groups

In this section we shall recall some useful facts about matrices over Z.

Lemma 1.2. Let p be an odd prime. Then the kernel of the reduction modulo
(p) homomorphism from SL(n,Z) to SL(n,Fp) is torsion free.

Proof. This follows easily from the observation that if A is an integral matrix
and k = pvq with q not divisible by p then (I+prA)k ≡ I+kprAmodulo (p2r+v). �

The corresponding result for p = 2 is that the kernel of reduction modulo (4)
is torsion free.

Since SL(n,Fp) has order (Πj=n−1
j=0 (pn − pj))/(p− 1), it follows that the order

of any finite subgroup of SL(n,Z) must divide the highest common factor of these
numbers, as p varies over all odd primes. In particular, finite subgroups of SL(2,Z)
have order dividing 24, and so are solvable.

Let A =
(

0 −1
1 0

)
, B =

(
0 1
−1 1

)
and R = ( 0 1

1 0 ). Then A2 = B3 = −I and

A4 = B6 = I. The matrices A and R generate a dihedral group of order 8, while
B and R generate a dihedral group of order 12.

Theorem 1.3. Let G be a nontrivial finite subgroup of GL(2,Z). Then G is
conjugate to one of the cyclic groups generated by A, A2, B, B2, R or RA, or to a
dihedral subgroup generated by one of the pairs {A,R}, {A2, R}, {A2, RA}, {B,R},
{B2, R} or {B2, RB}.
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Proof. If M ∈ GL(2,Z) has finite order then its characteristic polynomial
has cyclotomic factors. If the characteristic polynomial is (X ± 1)2 then M = ∓I.
(This uses the finite order of M). If the characteristic polynomial is X2−1 then M
is conjugate to R or RA. If the characteristic polynomial is X2 + 1, X2 −X + 1 or
X2 +X+1 then M is irreducible, and the corresponding ring of algebraic numbers
is a PID. Since any Z-torsion free module over such a ring is free it follows easily
that M is conjugate to A, B or B2.

The normalizers in SL(2,Z) of the subgroups generated by A, B or B2 are
easily seen to be finite cyclic. Since G ∩ SL(2,Z) is solvable it must be cyclic also.
As it has index at most 2 in G the theorem follows easily. �

Although the 12 groups listed in the theorem represent distinct conjugacy
classes in GL(2,Z), some of these conjugacy classes coalesce in GL(2,R). (For
instance, R and RA are conjugate in GL(2,Z[ 12 ])).

Corollary 1.3.1. Let G be a locally finite subgroup of GL(2,R). Then G is
finite, and is conjugate to one of the above subgroups of GL(2,Z).

Proof. Let L be a lattice in R2. If G is finite then ∪g∈GgL is a G-invariant
lattice, and so G is conjugate to a subgroup of GL(2,Z). In general, as the finite
subgroups of G have bounded order G must be finite. �

The main results of this section follow also from the fact that PSL(2,Z) =
SL(2,Z)/〈±I〉 is a free product (Z/2Z) ∗ (Z/3Z), generated by the images of A
and B. (In fact 〈A,B | A2 = B3, A4 = 1〉 is a presentation for SL(2,Z)). Moreover
SL(2,Z)′ ∼= PSL(2,Z)′ is freely generated by the images of B−1AB−2A = ( 1 1

1 1 )
and B−2AB−1A = ( 1 1

1 2 ), while the abelianizations are generated by the images of
B4A = ( 1 0

1 1 ). (See §6.2 of [Ro]).
Let Λ = Z[t, t−1] be the ring of integral Laurent polynomials. The next theorem

is a special case of a classical result of Latimer and MacDuffee.

Theorem 1.4. There is a 1-1 correspondance between conjugacy classes of ma-
trices in GL(n,Z) with irreducible characteristic polynomial ∆(t) and isomorphism
classes of ideals in Λ/(∆(t)). The set of such ideal classes is finite.

Proof. Let A ∈ GL(n,Z) have characteristic polynomial ∆(t) and let R =
Λ/(∆(t)). As ∆(A) = 0, by the Cayley-Hamilton Theorem, we may define a R-
module MA with underlying abelian group Zn by t.z = A(z) for all z ∈ Zn.
As R is a domain and has rank n as an abelian group MA is torsion free and
of rank 1 as an R-module, and so is isomorphic to an ideal of R. Conversely
every R-ideal arises in this way. The isomorphism of abelian groups underlying
an R-isomorphism between two such modules MA and MB determines a matrix
C ∈ GL(n,Z) such that CA = BC. The final assertion follows from the Jordan-
Zassenhaus Theorem. �

1.3. The Hirsch-Plotkin radical

The Hirsch-Plotkin radical
√
G of a group G is its maximal locally-nilpotent

normal subgroup; in a virtually poly-Z group every subgroup is finitely generated,
and so

√
G is then the maximal nilpotent normal subgroup. If H is normal in G

then
√
H is normal in G also, since it is a characteristic subgroup of H , and in

particular it is a subgroup of
√
G.
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For each natural number q ≥ 1 let Γq be the group with presentation

〈x, y, z | xz = zx, yz = zy, xy = zqyx〉.
Every such group Γq is torsion free and nilpotent of Hirsch length 3.

Theorem 1.5. Let G be a finitely generated torsion free nilpotent group of
Hirsch length h(G) ≤ 4. Then either

(1) G is free abelian; or
(2) h(G) = 3 and G ∼= Γq for some q ≥ 1; or
(3) h(G) = 4, ζG ∼= Z2 and G ∼= Γq × Z for some q ≥ 1; or
(4) h(G) = 4, ζG ∼= Z and G/ζG ∼= Γq for some q ≥ 1.

In the latter case G has characteristic subgroups which are free abelian of rank 1, 2
and 3. In all cases G is an extension of Z by a free abelian normal subgroup.

Proof. The centre ζG is nontrivial and the quotient G/ζG is again torsion
free, by Proposition 5.2.19 of [Ro]. We may assume that G is not abelian, and
hence that G/ζG is not cyclic. Hence h(G/ζG) ≥ 2, so h(G) ≥ 3 and 1 ≤ h(ζG) ≤
h(G) − 2. In all cases ζG is free abelian.

If h(G) = 3 then ζG ∼= Z and G/ζG ∼= Z2. On choosing elements x and
y representing a basis of G/ζG and z generating ζG we quickly find that G is
isomorphic to one of the groups Γq, and thus is an extension of Z by Z2.

If h(G) = 4 and ζG ∼= Z2 then G/ζG ∼= Z2, so G′ ⊆ ζG. Since G may be
generated by elements x, y, t and u where x and y represent a basis of G/ζG and
t and u are central it follows easily that G′ is infinite cyclic. Therefore ζG is not
contained in G′ and G has an infinite cyclic direct factor. Hence G ∼= Z × Γq, for
some q ≥ 1, and thus is an extension of Z by Z3.

The remaining possibility is that h(G) = 4 and ζG ∼= Z. In this case G/ζG is
torsion free nilpotent of Hirsch length 3. If G/ζG were abelian G′ would also be
infinite cyclic, and the pairing from G/ζG×G/ζG into G′ defined by the commu-
tator would be nondegenerate and skewsymmetric. But there are no such pairings
on free abelian groups of odd rank. Therefore G/ζG ∼= Γq, for some q ≥ 1.

Let ζ2G be the preimage in G of ζ(G/ζG). Then ζ2G ∼= Z2 and is a char-
acteristic subgroup of G, so CG(ζ2G) is also characteristic in G. The quotient
G/ζ2G acts by conjugation on ζ2G. Since Aut(Z2) = GL(2,Z) is virtually free and
G/ζ2G ∼= Γq/ζΓq ∼= Z2 and since ζ2G 6= ζG it follows that h(CG(ζ2G)) = 3. Since
CG(ζ2G) is nilpotent and has centre of rank ≥ 2 it is abelian, and so CG(ζ2G) ∼= Z3.
The preimage in G of the torsion subgroup of G/CG(ζ2G) is torsion free, nilpo-
tent of Hirsch length 3 and virtually abelian and hence is abelian. Therefore
G/CG(ζ2G) ∼= Z. �

Theorem 1.6. Let π be a torsion free virtually poly-Z group of Hirsch length
4. Then h(

√
π) ≥ 3.

Proof. Let S be a solvable normal subgroup of finite index in π. Then the
lowest nontrivial term of the derived series of S is an abelian subgroup which is
characteristic in S and so normal in π. Hence

√
π 6= 1. If h(

√
π) ≤ 2 then

√
π ∼= Z

or Z2. Suppose π has an infinite cyclic normal subgroup A. On replacing π by a
normal subgroup σ of finite index we may assume that A is central and that σ/A
is poly-Z. Let B be the preimage in σ of a nontrivial abelian normal subgroup of
σ/A. Then B is nilpotent (since A is central and B/A is abelian) and h(B) > 1
(since B/A 6= 1 and σ/A is torsion free). Hence h(

√
π) ≥ h(

√
σ) > 1.
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If π has a normal subgroup N ∼= Z2 then Aut(N) ∼= GL(2,Z) is virtually
free, and so the kernel of the natural map from π to Aut(N) is nontrivial. Hence
h(Cπ(N)) ≥ 3. Since h(π/N) = 2 the quotient π/N is virtually abelian, and so
Cπ(N) is virtually nilpotent.

In all cases we must have h(
√
π) ≥ 3. �

1.4. Amenable groups

The class of amenable groups arose first in connection with the Banach-Tarski
paradox. A group is amenable if it admits an invariant mean for bounded C-valued
functions [Pi]. There is a more geometric characterization of finitely presentable
amenable groups that is more convenient for our purposes. Let X be a finite

cell-complex with universal cover X̃. Then X̃ is an increasing union of finite sub-

complexes Xj ⊆ Xj+1 ⊆ X̃ = ∪n≥1Xn such that Xj is the union of Nj < ∞
translates of some fundamental domain D for G = π1(X). Let N ′

j be the number

of translates of D which meet the frontier of Xj in X̃ . The sequence {Xj} is a

Følner exhaustion for X̃ if lim(N ′
j/Nj) = 0, and π1(X) is amenable if and only if X̃

has a Følner exhaustion. This class contains all finite groups and Z, and is closed
under the operations of extension, increasing union, and under the formation of
sub- and quotient groups. (However nonabelian free groups are not amenable).

The subclass EA generated from finite groups and Z by the operations of
extension and increasing union is the class of elementary amenable groups. We
may construct this class as follows. Let U0 = 1 and U1 be the class of finitely
generated virtually abelian groups. If Uα has been defined for some ordinal α let
Uα+1 = (ℓUα)U1 and if Uα has been defined for all ordinals less than some limit
ordinal β let Uβ = ∪α<βUα. Then EA = ∪Uα, where the union is taken over all
ordinals α.

The class EA is well adapted to arguments by transfinite induction on the
ordinal α(G) = min{α|G ∈ Uα}. It is closed under extension (in fact UαUβ ⊆
Uα+β) and increasing union, and under the formation of sub- and quotient groups.
Moreover, if κ is the first uncountable ordinal then every countable elementary
amenable group is in Uκ. Hence EA = Uκ+1 = ℓUκ. Torsion groups in EA are
locally finite and elementary amenable free groups are cyclic. Every locally-finite by
virtually solvable group is elementary amenable, i.e., (ℓF )vpoly-Ab ⊂ EA. However
this inclusion is proper.

For example, let Z∞ be the free abelian group with basis {xi | i ∈ Z} and let
G be the subgroup of Aut(Z∞) generated by {ei | i ∈ Z}, where ei(xi) = xi + xi+1

and ei(xj) = xj if j 6= i. Then G is the increasing union of subgroups isomorphic to
groups of upper triangular matrices, and so is locally nilpotent. However it has no
nontrivial abelian normal subgroups. If we let φ be the automorphism of G defined
by φ(ei) = ei+1 for all i then G×φ Z is a finitely generated torsion free elementary
amenable group which is not virtually solvable.

It can be shown (using the Følner condition) that finitely generated groups of
subexponential growth are amenable. The class SA generated from such groups
by extensions and increasing unions contains EA (since finite groups and finitely
generated abelian groups have polynomial growth), and is the largest class of groups
over which topological surgery techniques are known to work in dimension 4 [FT95].
Is every amenable group in SA? There is a finitely presentable group in SA which
is not elementary amenable [Gr98].
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A group is restrained if it has no noncyclic free subgroup. Amenable groups are
restrained, but it is not known whether every restrained group is amenable. The
group with presentation 〈x, y | [xy−1, x−1yx] = [xy−1, x−2yx2] = 1〉 is restrained
but not elementary amenable (see [CFP96]). Is it amenable? There are also infinite
finitely generated torsion groups. (See §14.2 of [Ro]). These are restrained, but are
not elementary amenable. No known example is also finitely presentable.

1.5. Hirsch length

The notion of Hirsch length (as a measure of the size of a solvable group)
may be extended to elementary amenable groups. The Hirsch length h(G) of such
a group G is a nonnegative integer or ∞, defined as follows. If G is in U1 let
h(G) be the rank of an abelian subgroup of finite index in G. If h(G) has been
defined for all G in Uα and H is in ℓUα let h(H) = l.u.b.{h(F )|F ≤ H, F ∈ Uα}.
Finally, if G is in Uα+1, so has a normal subgroup H in ℓUα with G/H in U1,
let h(G) = h(H) + h(G/H). Transfinite induction on α(G) may be used to prove
(simultaneously) that h is well defined, that if H is a subgroup of G then h(H) ≤
h(G), that if H is a normal subgroup then h(G) = h(H)+h(G/H) and that h(G) =
l.u.b.{h(F )|F is a finitely generated subgroup of G} [Hi91].

Lemma 1.7. Let G be a finitely generated infinite elementary amenable group.
Then G has normal subgroups K < H such that G/H is finite, H/K is free abelian
of positive rank and the action of G/H on H/K by conjugation is effective.

Proof. We may show that G has a normal subgroup K such that G/K is an
infinite virtually abelian group, by transfinite induction on α(G). We may assume
that G/K has no nontrivial finite normal subgroup. If H is a subgroup of G which
contains K and is such that H/K is a maximal abelian normal subgroup of G/K
then H and K satisfy the above conditions. �

In particular, finitely generated infinite elementary amenable groups are virtu-
ally indicable.

Lemma 1.8. Let G = ∪n≥0Gn be a group which is the union of an increasing
sequence of subgroups Gn such that each subgroup Gn has a maximal solvable normal
subgroup Hn, of derived length at most d and index at most M . Then G has a
maximal solvable normal subgroup, of derived length at most d+ 2M and index at
most M !.

Proof. Define an increasing sequence of subgroups H̄n such that Hi ≤ H̄i ≤
Gi for all i ≥ 0 by H̄0 = H0 and H̄j+1 = H̄jHj+1. It is easily seen by induction
on j that for each j ≥ 0 the subgroup H̄j is a solvable subgroup of derived length
at most d + M and index at most M in Gj . As an increasing union of solvable
subgroups of derived length at most d + M is solvable and of derived length at
most d+M the union H = ∪j≥0Hj is a solvable subgroup of G which is of derived
length at most d +M . Any finite set of coset representatives for H in G must lie
in some common subgroup Gj and be in distinct cosets of Hj there. Therefore the
index of H in G is at most M , and so the intersection of the conjugates of H in
G is a solvable normal subgroup of index at most M !. Therefore G has a maximal
normal solvable subgroup, S say, of index at most M !. Since S is an extension of
S/H ∩ S by H ∩ S it has derived length at most M + d+M = d+ 2M . �
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Theorem 1.9. Let G be a countable torsion free elementary amenable group.
If h(G) <∞ then G is virtually solvable.

Proof. We shall show by induction on h that there are functions d and M
from the set of nonnegative integers to itself such that every countable torsion
free elementary amenable group of Hirsch length h < ∞ has a maximal solvable
normal subgroup of derived length at most d(h) and index at most M(h). Since
the only such group of Hirsch length 0 is the trivial group we may set d(0) = 0
and M(0) = 1. Suppose that the result is true for all such groups with Hirsch
length at most h. If G has Hirsch length h + 1 and is finitely generated then by
Lemma 7 it has normal subgroups K < H such that G/H is finite, H/K is free
abelian of rank r ≥ 1 and the action of G/H on H/K by conjugation is effective. In
particular, G/H is isomorphic to a finite subgroup of GL(r,Z). Since the kernel of
the reduction of coefficients homomorphism from GL(r,Z) to GL(r,Fp) is torsion

free for all odd primes p it follows that G/H has order at most 3r
2

. As K is
torsion free and elementary amenable and k = h(K) = h1− r ≤ h it has a maximal
solvable normal subgroup, L say, of derived length at most d(k) and index at most
M(k), by the hypothesis of induction. Since L is characteristic in K it is normal in
G. The quotient group G/L has a free abelian normal subgroup of index at most

[G : H ] + [K : L]!. Let M ′ = max{3r2 + M(k)! | 0 ≤ k ≤ h, r = h + 1 − k} and
d′ = d(h) +M ′! + 1. Then the maximal solvable normal subgroup of G has derived
length at most d′ and index at most M ′. As any countable group is the union of
an increasing sequence of finitely generated subgroups the general case follows from
Lemma 8 on setting d(h+ 1) = d′ + 2M ′ and M(h+ 1) = M ′!. �

The assumptions that G be countable and torsion free can be relaxed. If G
is any elementary amenable group then h(G) < ∞ if and only if G has normal
subgroups K ≤ H ≤ G such that K is locally-finite, H/K is solvable and of finite
Hirsch length and G/H is finite [HL92]. A virtually solvable group of finite Hirsch
length and with no nontrivial locally-finite normal subgroup must be countable, by
Lemma 7.9 of [Bi]. Moreover its Hirsch-Plotkin radical is nilpotent and the quotient
is virtually abelian, by Proposition 5.5 of [BH72].

Lemma 1.10. Let G be an elementary amenable group. If h(G) = ∞ then for
every k > 0 there is a subgroup H of G with k < h(H) <∞.

Proof. We shall argue by induction on α(G). The result is vacuously true
if α(G) = 1. Suppose that it is true for all groups in Uα and G is in ℓUα. Since
h(G) = l.u.b.{h(F )|F ≤ G, F ∈ Uα} either there is a subgroup F of G in Uα with
h(F ) = ∞, in which case the result is true by the inductive hypothesis, or h(G) is
the least upper bound of a set of natural numbers and the result is true. If G is in
Uα+1 then it has a normal subgroup N which is in ℓUα with quotient G/N in U1.
But then h(N) = h(G) = ∞ and so N has such a subgroup. �

Theorem 1.11. Let G be a countable elementary amenable group of finite co-
homological dimension. Then h(G) ≤ c.d.G and G is virtually solvable.

Proof. Since c.d.G < ∞ the group G is torsion free. Let H be a subgroup
of finite Hirsch length. Then H is virtually solvable and c.d.H ≤ c.d.G so h(H) ≤
c.d.G. The theorem now follows from Theorem 9 and Lemma 10. �
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1.6. Modules and finiteness conditions

Let G be a group and w : G → Z/2Z a homomorphism, and let R be a
commutative ring. Then ḡ = (−1)w(g)g−1 defines an anti-involution on R[G]. If L
is a left R[G]-module L shall denote the conjugate right R[G]-module with the same
underlying R-module and R[G]-action given by l.g = ḡ.l, for all l ∈ L and g ∈ G.
(We shall also use the overline to denote the conjugate of a right R[G]-module).
The conjugate of a free left (right) module is a free right (left) module of the same
rank.

We shall also let Zw denote the G-module with underlying abelian group Z
and G-action given by g.n = (−1)w(g)n for all g in G and n in Z.

Lemma 1.12 (Wl65). Let G and H be groups such that G is finitely presentable
and there are homomorphisms j : H → G and ρ : G→ H with ρj = idH . Then H
is also finitely presentable.

Proof. Since G is finitely presentable there is an epimorphism p : F → G
from a free group F (X) with a finite basis X onto G, with kernel the normal
closure of a finite set of relators R. We may choose elements wx in F (X) such
that jρp(x) = p(wx), for all x in X . Then ρ factors through the group K with
presentation 〈X | R, x−1wx, ∀x ∈ X〉, say ρ = vu. Now uj is clearly onto, while
vuj = ρj = idH , and so v and uj are mutually inverse isomomorphisms. Therefore
H ∼= K is finitely presentable. �

A group G is FPn if the augmentation Z[G]-module Z has a projective resolu-
tion which is finitely generated in degrees ≤ n. It is FP if it has finite cohomological
dimension and is FPn for n = c.d.G; it is FF if moreover Z has a finite resolution
consisting of finitely generated free Z[G]-modules. “Finitely generated” is equiva-
lent to FP1, while “finitely presentable” implies FP2. Groups which are FP2 are
also said to be almost finitely presentable. (There are FP groups which are not
finitely presentable [BB97]). An elementary amenable group G is FP∞ if and only
if it is virtually FP , and is then virtually constructible and solvable of finite Hirsch
length [Kr93].

If the augmentation Q[π]-module Q has a finite resolution F∗ by finitely gener-
ated projective modules then χ(π) = Σ(−1)idimQ(Q ⊗π Fi) is independent of the
resolution. (If π is the fundamental group of an aspherical finite complex K then
χ(π) = χ(K)). This definition may be extended to groups σ which have a subgroup
π of finite index with such a resolution by setting χ(σ) = χ(π)/[σ : π]. (It is not
hard to see that this is well defined).

Let P be a finitely generated projective Z[π]-module. Then P is a direct sum-
mand of Z[π]r , for some r ≥ 0, and so is the image of some idempotent r×r-matrix
M with entries in Z[π]. The Kaplansky rank κ(P ) is the coefficient of 1 ∈ π in the
trace of M . It depends only on P and is strictly positive if P 6= 0. The group π sat-
isfies the Weak Bass Conjecture if κ(P ) = dimQQ⊗π P . This conjecture has been
confirmed for linear groups, solvable groups and groups of cohomological dimension
≤ 2 over Q. (See [Dy87, Ec86, Ec96] for further details).

The following result from [BS78] shall be useful.

Theorem 1.13 (Bieri-Strebel). Let G be an FP2 group such that G/G′ is
infinite. Then G is an HNN extension with finitely generated base and associated
subgroups.



1.6. MODULES AND FINITENESS CONDITIONS 11

Proof. (Sketch - We shall assume that G is finitely presentable). Let h :
F (m) → G be an epimorphism, and let gi = h(xi) for 1 ≤ i ≤ m. We may
assume that gm has infinite order modulo the normal closure of {gi | 1 ≤ i < m}.
Since G is finitely presentable the kernel of h is the normal closure of finitely many
relators, of weight 0 in the letter xm. Each such relator is a product of powers of
conjugates of the generators {xi | 1 ≤ i < m} by powers of xm. Thus we may
assume the relators are contained in the subgroup generated by {xjmxix−jm | 1 ≤
i ≤ m, −p ≤ j ≤ p}, for some sufficiently large p. Let U be the subgroup of G
generated by {gjmgig−jm | 1 ≤ i ≤ m, −p ≤ j < p}, and let V = gmUg

−1
m . Let B be

the subgroup of G generated by U ∪V and let G̃ be the HNN extension with base B
and associated subgroups U and V presented by G̃ = 〈B, s | sus−1 = τ(u)∀u ∈ U〉,
where τ : U → V is the isomorphism determined by conjugation by gm in G. There
are obvious epimorphisms ξ : F (m+ 1) → G̃ and ψ : G̃→ G with composite h. It

is easy to see that Ker(h) ≤ Ker(ξ) and so G̃ ∼= G. �

In particular, if G is restrained then it is an ascending HNN extension.
A ring R is weakly finite if every onto endomorphism of Rn is an isomorphism,

for all n ≥ 0. (In [H3] the term “SIBN ring” was used instead). Finitely generated
stably free modules over weakly finite rings have well defined ranks, and the rank
is strictly positive if the module is nonzero. Skew fields are weakly finite, as are
subrings of weakly finite rings. If G is a group its complex group algebra C[G] is
weakly finite.

A ring R is (regular) coherent if every finitely presentable left R-module has
a (finite) resolution by finitely generated projective R-modules, and is (regular)
noetherian if moreover every finitely generated R-module is finitely presentable. A
group G is regular coherent or regular noetherian if the group ring R[G] is regular
coherent or regular noetherian (respectively) for any regular noetherian ring R. It
is coherent as a group if all its finitely generated subgroups are finitely presentable.

Lemma 1.14. If G is a group such that Z[G] is coherent then every finitely
generated subgroup of G is FP∞.

Proof. Let H be a subgroup of G. Since Z[H ] ≤ Z[G] is a faithfully flat
ring extension a left Z[H ]-module is finitely generated over Z[H ] if and only if the
induced module Z[G]⊗HM is finitely generated over Z[G]. It follows by induction
on n that M is FPn over Z[H ] if and only if Z[G] ⊗H M is FPn over Z[G].

If H is finitely generated then the augmentation Z[H ]-module Z is finitely
presentable over Z[H ]. Hence Z[G] ⊗H Z is finitely presentable over Z[G], and so
is FP∞ over Z[G], since that ring is coherent. Hence Z is FP∞ over Z[H ], i.e., H
is FP∞. �

Thus if either G is coherent (as a group) or Z[G] is coherent (as a ring) every
finitely generated subgroup of G is FP2. As the latter condition shall usually
suffice for our purposes below, we shall say that such a group is almost coherent.
The connection between these notions has not been much studied.

The class of groups whose integral group ring is regular coherent contains the
trivial group and is closed under generalised free products and HNN extensions
with amalgamation over subgroups whose group rings are regular noetherian, by
Theorem 19.1 of [Wd78]. If [G : H ] is finite and G is torsion free then Z[G] is regular
coherent if and only if Z[H ] is. In particular, free groups and surface groups are
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coherent and their integral group rings are regular coherent, while (torsion free)
virtually poly-Z groups are coherent and their integral group rings are (regular)
noetherian.

1.7. Ends and cohomology with free coefficients

A finitely generated group G has 0, 1, 2 or infinitely many ends. It has 0 ends
if and only if it is finite, in which case H0(G; Z[G]) ∼= Z and Hq(G; Z[G]) = 0 for
q > 0. Otherwise H0(G; Z[G]) = 0 and H1(G; Z[G]) is a free abelian group of rank
e(G) − 1, where e(G) is the number of ends of G [Sp49]. The group G has more
than one end if and only if it is either a nontrivial generalised free product with
amalgamation G ∼= A ∗C B or an HNN extension A ∗C φ where C is a finite group.
In particular, it has two ends if and only if it is virtually Z if and only if it has a
(maximal) finite normal subgroup F such that the quotient G/F is either infinite
cyclic (Z) or infinite dihedral (D = (Z/2Z) ∗ (Z/2Z)). (See [DD]).

Lemma 1.15. Let N be a finitely generated restrained group. Then N is either
finite or virtually Z or has one end.

Proof. Groups with infinitely many ends have noncyclic free subgroups. �

It follows that a countable restrained group is either elementary amenable of
Hirsch length at most 1 or it is an increasing union of finitely generated, one-ended
subgroups.

If G is a group with a normal subgroup N , and A is a left Z[G]-module there
is a Lyndon-Hochschild-Serre spectral sequence (LHSSS) for G as an extension of
G/N by N and with coefficients A:

E2 = Hp(G/N ;Hq(N ;A)) ⇒ Hp+q(G;A),
the rth differential having bidegree (r, 1 − r). (See Section 10.1 of [Mc]).

Theorem 1.16 (Ro75). If G has a normal subgroup N which is the union of
an increasing sequence of subgroups Nn such that Hs(Nn; Z[G]) = 0 for s ≤ r then
Hs(G; Z[G]) = 0 for s ≤ r.

Proof. Let s ≤ r. Let f be an s-cocycle for N with coefficients Z[G], and let
fn denote the restriction of f to a cocycle on Nn. Then there is an (s− 1)-cochain
gn on Nn such that δgn = fn. Since δ(gn+1|Nn

− gn) = 0 and Hs−1(Nn; Z[G]) = 0
there is an (s−2)-cochain hn on Nn with δhn = gn+1|Nn

−gn. Choose an extension
h′n of hn to Nn+1 and let ĝn+1 = gn+1−δh′n. Then ĝn+1|Nn

= gn and δĝn+1 = fn+1.
In this way we may extend g0 to an (s−1)-cochain g on N such that f = δg and so
Hs(N ; Z[G]) = 0. The LHSSS for G as an extension of G/N by N , with coefficients
Z[G], now gives Hs(G; Z[G]) = 0 for s ≤ r. �

Corollary 1.16.1. The hypotheses are satisfied if N is the union of an in-
creasing sequence of FPr subgroups Nn such that Hs(Nn; Z[Nn]) = 0 for s ≤ r.
In particular, if N is the union of an increasing sequence of finitely generated,
one-ended subgroups then G has one end.

Proof. Since Nn is FPr we haveHs(Nn; Z[G]) = Hs(Nn; Z[Nn])⊗Z[G/Nn] =
0, for all s ≤ r and all n. �

In particular, G has one end if N is a countable elementary amenable group
and h(N) > 1, by Lemma 15.
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The following results are Theorems 8.8 of [Bi] and Theorem 0.1 of [BG85],
respectively.

Theorem (Bieri). Let G be a nonabelian group with c.d.G = n. Then c.d.ζG ≤
n− 1, and if ζG has rank n− 1 then G′ is free. �

Theorem (Brown-Geoghegan). Let G be an HNN extension B∗φ in which
the base H and associated subgroups I and φ(I) are FPn. If the restriction ho-
momorphism from Hq(B;Z[G]) to Hq(I;Z[G]) is injective for some q ≤ n then
the corresponding homomorphism in the Mayer-Vietoris sequence is injective, so
Hq(G;Z[G]) is a quotient of Hq−1(I;Z[G]). �

The second cohomology of a group with free coefficients (H2(G;R[G]), R = Z
or a field) shall play an important role in our investigations.

Theorem (Farrell). Let G be a finitely presentable group. If G has an element
of infinite order and R = Z or is a field then H2(G;R[G]) is either 0 or R or is
not finitely generated. �

Farrell also showed in [Fa74] that if H2(G; F2[G]) ∼= Z/2Z then every finitely
generated subgroup of G with one end has finite index in G. Hence if G is also
torsion free then subgroups of infinite index in G are locally free. Bowditch has
since shown that such groups are virtually the fundamental groups of aspherical
closed surfaces ([Bo99] - see §8 below).

We would also like to know when H2(G; Z[G]) is 0 (for G finitely presentable).
In particular, we expect this to the case if G is an ascending HNN extension over
a finitely generated, one-ended base, or if G has an elementary amenable, normal
subgroup E such that either h(E) = 1 and G/E has one end or h(E) = 2 and
[G : E] = ∞ or h(E) ≥ 3. However our criteria here at present require finiteness
hypotheses, either in order to apply an LHSSS argument or in the form of coherence.

Theorem 1.17. Let G be a finitely presentable group with an almost coherent,
locally virtually indicable, restrained normal subgroup E. Suppose that either E
is abelian of rank 1 and G/E has one end or that E has a finitely generated,
one-ended subgroup and G is not elementary amenable of Hirsch length 2. Then
Hs(G; Z[G]) = 0 for s ≤ 2.

Proof. If E is abelian of positive rank and G/E has one end then G is 1-
connected at ∞ and so Hs(G; Z[G]) = 0 for s ≤ 2, by Theorem 1 of [Mi87], and so
Hs(G; Z[G]) = 0 for s ≤ 2, by [GM86].

We may assume henceforth that E is an increasing union of finitely generated
one-ended subgroups En ⊆ En+1 · · · ⊆ E = ∪En. Since E is locally virtually
indicable there are subgroups Fn ≤ En such that [En : Fn] < ∞ and which map
onto Z. Since E is almost coherent these subgroups are FP2. Hence they are HNN
extensions over FP2 bases Hn, by Theorem 13, and the extensions are ascending,
since E is restrained. Since En has one end Hn has one or two ends.

If Hn has two ends then En is elementary amenable and h(En) = 2. Therefore
if Hn has two ends for all n then [En+1 : En] < ∞, E is elementary amenable and
h(E) = 2. If [G : E] < ∞ then G is elementary amenable and h(G) = 2, and so
we may assume that [G : E] = ∞. If E is finitely generated then it is FP2 and so
Hs(G; Z[G]) = 0 for s ≤ 2, by an LHSSS argument. This is also the case if E is not
finitely generated, for then Hs(E; Z[G]) = 0 for s ≤ 2, by the argument of Theorem
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3.3 of [GS81], and we may again apply an LHSSS argument. (The hypothesis of
[GS81] that “each Gn is FP and c.d.Gn = h” can be relaxed to “each Gn is FPh”).

Otherwise we may assume that Hn has one end, for all n ≥ 1. In this case
Hs(Fn; Z[Fn]) = 0 for s ≤ 2, by the Theorem of Brown and Geoghegan. Therefore
Hs(G; Z[G]) = 0 for s ≤ 2, by Theorem 16. �

The theorem applies if E is almost coherent and elementary amenable, and
either h(E) = 2 and [G : E] = ∞ or h(E) ≥ 3, since elementary amenable groups

are restrained and locally virtually indicable. It also applies if E =
√
G is large

enough, since finitely generated nilpotent groups are virtually poly-Z. A similar
argument shows that if h(

√
G) ≥ r then Hs(G; Z[G]) = 0 for s < r. If moreover

[G :
√
G] = ∞ then Hr(G; Z[G]) = 0 also.

Are the hypotheses that E be almost coherent and locally virtually indicable
necessary? Is it sufficient that E be restrained and be an increasing union of finitely
generated, one-ended subgroups?

Theorem 1.18. Let G = B∗φ be an HNN extension with FP2 base B and
associated subgroups I and φ(I) = J , and which has a restrained normal subgroup
N ≤ 〈〈B〉〉. Then Hs(G; Z[G]) = 0 for s ≤ 2 if either

(1) the HNN extension is ascending and B = I ∼= J has one end;
(2) N is locally virtually Z and G/N has one end; or
(3) N has a finitely generated subgroup with one end.

Proof. The first assertion follows immediately from the Brown-Geogeghan
Theorem.

Let t be the stable letter, so that tit−1 = φ(i), for all i ∈ I. Suppose that
N ∩J 6= N ∩B, and let b ∈ N ∩B− J . Then bt = t−1bt is in N , since N is normal
in G. Let a be any element of N ∩B. Since N has no noncyclic free subgroup there
is a word w ∈ F (2) such that w(a, bt) = 1 in G. It follows from Britton’s Lemma
that a must be in I and so N ∩B = N ∩ I. In particular, N is the increasing union
of copies of N ∩B.

Hence G/N is an HNN extension with base B/N ∩B and associated subgroups
I/N∩I and J/N∩J . Therefore ifG/N has one end the latter groups are infinite, and
so B, I and J each have one end. If N is virtually Z then Hs(G; Z[G]) = 0 for s ≤ 2,
by an LHSSS argument. If N is locally virtually Z but is not finitely generated then
it is the increasing union of a sequence of two-ended subgroups andHs(N ; Z[G]) = 0
for s ≤ 1,by Theorem 3.3 of [GS81]. Since H2(B; Z[G]) ∼= H0(B;H2(N ∩B; Z[G]))
and H2(I; Z[G]) ∼= H0(I;H2(N ∩ I; Z[G])), the restriction map from H2(B; Z[G])
to H2(I; Z[G]) is injective. If N has a finitely generated, one-ended subgroup N1,
we may assume that N1 ≤ N ∩B, and so B, I and J also have one end. Moreover
Hs(N ∩ B; Z[G]) = 0 for s ≤ 1, by Theorem 16. We again see that the restriction
map from H2(B; Z[G]) to H2(I; Z[G]) is injective. The result now follows in these
cases from the Theorem of Brown and Geoghegan. �

1.8. Poincaré duality groups

A group G is a PDn-group if it is FP , Hp(G; Z[G]) = 0 for p 6= n and
Hn(G; Z[G]) ∼= Z. The “dualizing module” Hn(G; Z[G]) = Extn

Z[G](Z,Z[G]) is

a right Z[G]-module; the group is orientable (or is a PD+
n -group) if it acts trivially
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on the dualizing module, i.e., if Hn(G; Z[G]) is isomorphic to the augmentation
module Z. (See [Bi]).

The only PD1-group is Z. Eckmann, Linnell and Müller showed that every
PD2-group is the fundamental group of a closed aspherical surface. (See Chapter
VI of [DD]). Bowditch has since found a much stronger result, which must be close
to the optimal characterization of such groups [Bo99].

Theorem (Bowditch). Let G be an almost finitely presentable group and F
a field. Then G is virtually a PD2-group if and only if H2(G;F [G]) has a 1-
dimensional G-invariant subspace. �

In particular, this theorem applies if H2(G; Z[G]) ∼= Z.
The following result from [St77] corresponds to the fact that an infinite covering

space of a PL n-manifold is homotopy equivalent to a complex of dimension < n.

Theorem (Strebel). Let H be a subgroup of infinite index in a PDn-group G.
Then c.d.H < n. �

If R is a subring of S, A is a left R-module and C is a left S-module then
the abelian groups HomR(C|R, A) and HomS(C,HomR(S|R, A)) are naturally iso-
morphic, where C|R and S|R are the left R-modules underlying C and S respec-
tively. (The maps I and J defined by I(f)(c)(s) = f(sc) and J(θ)(c) = θ(c)(1) for
f : C → A and θ : C → HomR(S,A) are mutually inverse isomorphisms). When
K is a subgroup of π and R = Z[K] and S = Z[π] these isomorphisms give rise to
Shapiro’s lemma. In our applications π/K shall usually be infinite cyclic and S is
then a twisted Laurent extension of R.

Theorem 1.19. Let π be a PDn-group with an FPr normal subgroup K such
that G = π/K is a PDn−r group and 2r ≥ n− 1. Then K is a PDr-group.

Proof. It shall suffice to show that Hs(K;F ) = 0 for any free Z[K]-module
F and all s > r, for then c.d.K = r and the result follows from Theorem 9.11
of [Bi]. Let W = HomZ[K](Z[π], F ) be the Z[π]-module coinduced from F . Then

Hs(K;F ) ∼= Hs(π;W ) ∼= Hn−s(π;W ), by Shapiro’s lemma and Poincaré dual-
ity. As a Z[K]-module W ∼= FG (the direct product of |G| copies of F ), and so
Hq(K;W ) = 0 for 0 < q ≤ r (since K is FPr), while H0(K;W ) ∼= AG, where
A = H0(K;F ). Moreover AG ∼= HomZ(Z[G], A) as a Z[G]-module, and so is coin-
duced from a module over the trivial group. Therefere if n − s ≤ r the LHSSS
gives Hs(K;F ) ∼= Hn−s(G;AG). Poincaré duality for G and another application
of Shapiro’s lemma now give Hs(K;F ) ∼= Hs−r(G;AG) ∼= Hs−r(1;A) = 0, if
s > r. �

If the quotient is poly-Z we can do somewhat better.

Theorem 1.20. Let π be a PDn-group which is an extension of Z by a normal
subgroup K which is FP[n/2]. Then K is a PDn−1-group.

Proof. It is sufficient to show that lim−→Hq(K;Mi) = 0 for any direct sys-

tem {Mi}i∈I with limit 0 and for all q ≤ n − 1, for then K is FPn−1 [Br75],
and the result again follows from Theorem 9.11 of [Bi]). Since K is FP[n/2]

we may assume q > n/2. We have Hq(K;Mi) ∼= Hq(π;Wi) ∼= Hn−q(π;Wi),
where Wi = HomZ[K](Z[π],Mi), by Shapiro’s lemma and Poincaré duality. The
LHSSS for π as an extension of Z by K reduces to short exact sequences 0 →
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H0(π/K;Hs(K;Wi)) → Hs(π;Wi) → H1(π/K;Hs−1(K;Wi)) → 0. As a Z[K]-
module Wi

∼= (Mi)
π/K (the direct product of countably many copies of Mi).

Since K is FP[n/2] homology commutes with direct products in this range, and

so Hs(K;Wi) = Hs(K;Mi)
π/K if s ≤ n/2. As π/K acts on this module by shifting

the entries we see that Hs(π;Wi) ∼= Hs−1(K;Mi) if s ≤ n/2, and the result now
follows easily. �

A similar argument shows that if π is a PDn-group and φ : π → Z is any
epimorphism then c.d.Ker(φ) < n. (This weak version of Strebel’s Theorem suffices
for some of the applications below).

Corollary 1.20.1. If a PDn-group π is an extension of a virtually poly-Z
group Q by an FP[n/2] normal subgroup K then K is a PDn−h(Q)-group. �

1.9. Hilbert modules

Let π be a countable group and let ℓ2(π) be the Hilbert space completion
of C[π] with respect to the inner product given by (Σagg,Σbhh) = Σagbg. Left
and right multiplication by elements of π determine left and right actions of C[π] as
bounded operators on ℓ2(π). The (left) von Neumann algebra N (π) is the algebra of
bounded operators on ℓ2(π) which are C[π]-linear with respect to the left action. By
the Tomita-Takesaki theorem this is also the bicommutant in B(ℓ2(π)) of the right
action of C[π], i.e., the set of operators which commute with every operator which
is right C[π]-linear. (See pages 45-52 of [Su]). We may clearly use the canonical
involution of C[π] to interchange the roles of left and right in these definitions.

If e ∈ π is the unit element we may define the von Neumann trace on N (π)
by the inner product tr(f) = (f(e), e). This extends to square matrices over N (π)
by taking the sum of the traces of the diagonal entries. A Hilbert N (π)-module
is a Hilbert space M with a unitary left π-action which embeds isometrically and
π-equivariantly into the completed tensor product H⊗̂ℓ2(π) for some Hilbert space
H . It is finitely generated if we may take H ∼= Cn for some integer n. (In this case
we do not need to complete the ordinary tensor product over C). A bounded π-
linear operator on ℓ2(π)n = Cn⊗ ℓ2(π) is represented by a matrix whose entries are
in N (π). The von Neumann dimension of a finitely generated Hilbert N (π)-module
M is the real number dimN (π)(M) = tr(P ) ∈ [0,∞), where P is any projection

operator onH⊗ℓ2(π) with image π-isometric to M . In particular, dimN (π)(M) = 0
if and only if M = 0. The notions of finitely generated Hilbert N (π)-module and
finitely generated projective N (π)-module are essentially equivalent, and arbitrary
N (π)-modules have well-defined dimensions in [0,∞] [Lü97].

A sequence of bounded maps between Hilbert N (π)-modules

M
j−−−−→ N

p−−−−→ P

is weakly exact at N if Ker(p) is the closure of Im(j). If 0 → M → N → P → 0 is
weakly exact then j is injective, Ker(p) is the closure of Im(j) and Im(p) is dense
in P , and dimN (π)(N) = dimN (π)(M) + dimN (π)(P ). A finitely generated Hilbert
N (π)-complex C∗ is a chain complex of finitely generated Hilbert N (π)-modules
with bounded C[π]-linear operators as differentials. The reduced L2-homology is

defined to be H̄
(2)
p (C∗) = Ker(dp)/Im(dp+1). The pth L2-Betti number of C∗ is

then dimN (π)H̄
(2)
p (C∗). (As the images of the differentials need not be closed the
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unreduced L2-homology modules H
(2)
p (C∗) = Ker(dp)/Im(dp+1) are not in general

Hilbert modules).
See the survey article [Lü97] for more on modules over von Neumann algebras

and L2 invariants of complexes and manifolds.
[In this book L2-Betti number arguments shall replace the localization argu-

ments used in [H3]. However we shall recall the definition of safe extension used
there. An extension of rings Z[G] < Φ is a safe extension if it is faithfully flat, Φ is
weakly finite and Φ⊗Z[G] Z = 0. It was shown there that if a group has a nontrivial
elementary amenable normal subgroup whose finite subgroups have bounded order
and which has no nontrivial finite normal subgroup then Z[G] has a safe extension.]





CHAPTER 2

2-Complexes and PD3-complexes

This chapter begins with a review of the notation we use for (co)homology
with local coefficients and of the universal coefficient spectral sequence. We then
define the L2-Betti numbers and present some useful vanishing theorems of Lück
and Gromov. These invariants are used in §3, where they are used to estimate the
Euler characteristics of finite [π,m]-complexes and to give a converse to the Cheeger-
Gromov-Gottlieb Theorem on aspherical finite complexes. Some of the arguments
and results here may be regarded as representing in microcosm the bulk of this
book; the analogies and connections between 2-complexes and 4-manifolds are well
known. We then review Poincaré duality and PDn-complexes. In §5-§9 we shall
summarize briefly what is known about the homotopy types of PD3-complexes.

2.1. Notation

Let X be a connected cell complex and let X̃ be its universal covering space. If
H is a normal subgroup ofG = π1(X) we may lift the cellular decomposition ofX to
an equivariant cellular decomposition of the corresponding covering space XH . The
cellular chain complex C∗ of XH with coefficients in a commutative ring R is then
a complex of left R[G/H ]-modules, with respect to the action of the covering group
G/H . Moreover C∗ is a complex of free modules, with bases obtained by choosing
a lift of each cell of X . If X is a finite complex G is finitely presentable and these
modules are finitely generated. If X is finitely dominated, i.e., is a retract of a finite
complex Y , then G is a retract of π1(Y ) and so is finitely presentable, by Lemma
1.12. Moreover the chain complex C∗ of the universal cover is chain homotopy
equivalent over R[G] to a complex of finitely generated projective modules [Wl65].

The ith equivariant homology module of X with coefficients R[G/H ] is the left
module Hi(X ;R[G/H ]) = Hi(C∗), which is clearly isomorphic to Hi(XH ;R) as an
R-module, with the action of the covering group determining its R[G/H ]-module
structure. The ith equivariant cohomology module of X with coefficients R[G/H ] is
the right module Hi(X ;R[G/H ]) = Hi(C∗), where C∗ = HomR[G/H](C∗, R[G/H ])
is the associated cochain complex of right R[G/H ]-modules. More generally, if A
and B are right and left Z[G/H ]-modules (respectively) we may define Hj(X ;A) =
Hj(A ⊗Z[G/H] C∗) and Hn−j(X ;B) = Hn−j(HomZ[G/H](C∗, B)). There is a Uni-
versal Coefficient Spectral Sequence (UCSS) relating equivariant homology and co-
homology:

Epq2 = ExtqR[G/H](Hp(X ;R[G/H ]), R[G/H ]) ⇒ Hp+q(X ;R[G/H ]),

with rth differential dr of bidegree (1 − r, r).
If J is a normal subgroup of G which contains H there is also a Cartan-Leray

spectral sequence relating the homology of XH and XJ :

E2
pq = Tor

R[G/H]
p (Hq(X ;R[G/H ]), R[G/J ]) ⇒ Hp+q(X ;R[G/J ]),

19
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with rth differential dr of bidegree (−r, r − 1). (See [Mc] for more details on these
spectral sequences).

If M is a cell complex P2(M) shall denote the second stage of the Postnikov
tower forM , and cM = cP2(M)fM the factorization of the classifying map cM : M →
K(π1(M), 1) through fM : M → P2(M) and cP2(M) : P2(M) → K(π1(M), 1).
A map f : X → K(π1(M), 1) lifts to a map from X to P2(M) if and only if
f∗k1(M) = 0, where k1(M) is the first k-invariant of M in H3(π1(M);π2(M)).
In particular, if k1(M) = 0 then cP2(M) has a cross-section. The algebraic 2-
type of M is the triple [π, π2(M), k1(M)]. Two such triples [π,Π, κ] and [π′,Π′, κ′]
(corresponding to M and M ′, respectively) are equivalent if there are isomorphisms
α : π → π′ and β : Π → Π′ such that β(gm) = α(g)β(m) for all g ∈ π and m ∈ Π
and β∗κ = α∗κ′ inH3(π, α∗Π′). Such an equivalence may be realized by a homotopy
equivalence of P2(M) and P2(M

′). (The reference [Ba] gives a detailed treatment
of Postnikov factorizations of nonsimple maps and spaces).

Throughout this book closed manifold shall mean compact, connected TOP
manifold without boundary. Every closed manifold has the homotopy type of a
finite Poincaré duality complex [KS].

2.2. L2-Betti numbers

Let X be a finite complex with fundamental group π. The L2-Betti numbers of

X are defined by β
(2)
i (X) = dimN (π)(H̄

(2)
2 (X̃)) where the L2-homology H̄

(2)
i (X̃) =

H̄i(C
(2)
∗ ) is the reduced homology of the Hilbert N (π)-complex C

(2)
∗ = ℓ2 ⊗C∗(X̃)

of square summable chains on X̃ [At76]. They are multiplicative in finite covers,

and for i = 0 or 1 depend only on π. (In particular, β
(2)
0 (π) = 0 if π is infinite). The

alternating sum of the L2-Betti numbers is the Euler characteristic χ(X) [At76].
The usual Betti numbers of a space or group with coefficients in a field F shall be
denoted by βi(X ;F ) = dimFHi(X ;F ) (or just βi(X), if F = Q).

It may be shown that β
(2)
i (X) = dimN (π)Hi(N (π) ⊗Z[π] C∗(X̃)), and this for-

mulation of the definition applies to arbitrary complexes (see [CG86], [Lü97]).

(However we may have β
(2)
i (X) = ∞). These numbers are finite if X is finitely

dominated, and the Euler characteristic formula holds if also π satisfies the Strong

Bass Conjecture [Ec96]. In particular, β
(2)
i (π) = dimN (π)Hi(π;N (π)) is defined for

any group.

Lemma 2.1. Let π = H∗φ be a finitely presentable group which is an ascending

HNN extension with finitely generated base H. Then β
(2)
1 (π) = 0.

Proof. Let t be the stable letter and let Hn be the subgroup generated by
H and tn, and suppose that H is generated by g elements. Then [π : Hn] = n,

so β
(2)
1 (Hn) = nβ

(2)
1 (π). But each Hn is also finitely presentable and generated by

g + 1 elements. Hence β
(2)
1 (Hn) ≤ g + 1, and so β

(2)
1 (π) = 0. �

In particular, this lemma holds if π is an extension of Z by a finitely generated
normal subgroup. We shall only sketch the next theorem (from [Lü97]) as we do
not use it in an essential way. (See however Theorem 5.8).

Theorem 2.2 (Lück). Let π be a group with a finitely generated infinite normal

subgroup ∆ such that π/∆ has an element of infinite order. Then β
(2)
1 (π) = 0.
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Proof. (Sketch). Let ρ ≤ π be a subgroup containing ∆ such that ρ/∆ ∼= Z.
The terms in the line p+ q = 1 of the homology LHSSS for ρ as an extension of Z
by ∆ with coefficients N (ρ) have dimension 0, by Lemma 1. Since dimN (ρ)M =
dimN (π)(N (π) ⊗N (ρ) M) for any N (ρ)-module M the corresponding terms for the
LHSS for π as an extension of π/∆ by ∆ with coefficients N (π) also have dimension
0 and the theorem follows. �

Gaboriau has shown that the hypothesis that π/∆ has an element of infinite
order is unnecessary [Ga00]. A similar argument gives the following result.

Theorem 2.3. Let π be a group with an infinite subnormal subgroup N such

that β
(2)
i (N) = 0 for all i ≤ s. Then β

(2)
i (π) = 0 for all i ≤ s.

Proof. Suppose first that N is normal in π. If [π : N ] <∞ the result follows
by multiplicativity of the L2-Betti numbers, while if [π : N ] = ∞ it follows from
the LHSSS with coefficients N (π). We may then induct up a subnormal chain to
obtain the theorem. �

In particular, we obtain the following result from page 226 of [Gr]. (Note
also that if A is an amenable subnormal subgroup of π then its normal closure is
amenable).

Corollary 2.3.1 (Gromov). Let π be a group with an infinite amenable normal

subgroup A. Then β
(2)
i (π) = 0 for all i.

Proof. If A is an infinite amenable group β
(2)
i (A) = 0 for all i [CG86]. �

2.3. 2-Complexes and finitely presentable groups

If a group π has a finite presentation P with g generators and r relators then
the deficiency of P is def(P ) = g − r, and def(π) is the maximal deficiency of
all finite presentations of π. Such a presentation determines a finite 2-complex
C(P ) with one 0-cell, g 1-cells and r 2-cells and with π1(C(P )) ∼= π. Clearly
def(P ) = 1 − χ(P ) = β1(C(P )) − β2(C(P )) and so def(π) ≤ β1(π) − β2(π).
Conversely every finite 2-complex with one 0-cell arises in this way. In general, any
connected finite 2-complex X is homotopy equivalent to one with a single 0-cell,
obtained by collapsing a maximal tree T in the 1-skeleton X [1].

We shall say that π has geometric dimension at most 2, written g.d.π ≤ 2, if it
is the fundamental group of a finite aspherical 2-complex.

Theorem 2.4. Let X be a connected finite 2-complex with fundamental group

π. Then χ(X) ≥ β
(2)
2 (π) − β

(2)
1 (π). If χ(X) = −β(2)

1 (π) then X is aspherical and
π 6= 1.

Proof. The first assertion is obvious, since χ(X) = β
(2)
0 (π)−β(2)

1 (π)+β
(2)
2 (X)

and β
(2)
2 (π) ≤ β

(2)
2 (X) [Lü94]. Since X is 2-dimensional π2(X) = H2(X̃ ; Z) is a

subgroup of H̄
(2)
2 (X̃). If χ(X) = −β(2)

1 (π) then β
(2)
0 (X) = 0, so π is infinite, and

β
(2)
2 (X) = 0, so H̄

(2)
2 (X̃) = 0. Therefore π2(X) = 0 and so X is aspherical. �

Corollary. Let π be a finitely presentable group. Then def(π) ≤ 1 + β
(2)
1 (π) −

β
(2)
2 (π). If def(π) = 1 + β

(2)
1 (π) then g.d.π ≤ 2. �
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Let G = F (2) × F (2). Then g.d.G = 2 and def(G) ≤ β1(G) − β2(G) = 0.
Hence 〈u, v, x, y | ux = xu, uy = yu, vx = xv, vy = yv〉 is an optimal presentation,
and def(G) = 0. The subgroup N generated by u, vx−1 and y is normal in G and

G/N ∼= Z, so β
(2)
1 (G) = 0, by Lemma 1. Thus asphericity need not imply equality

in Theorem 4, in general.

Theorem 2.5. Let π be a finitely presentable group such that β
(2)
1 (π) = 0.

Then def(π) ≤ 1, with equality if and only if g.d.π ≤ 2 and β2(π) = β1(π) − 1.

Proof. The upper bound and the necessity of the conditions follow from The-
orem 4. Conversely, if they hold and X is a finite aspherical 2-complex with
π1(X) ∼= π then χ(X) = 1 − β1(π) + β2(π) = 0. After collapsing a maximal
tree in X we may assume it has a single 0-cell, and then the presentation read off
the 1- and 2-cells has deficiency 1. �

This theorem applies if π is a finitely presentable group which is an ascending
HNN extension with finitely generated base H , or has an infinite amenable normal
subgroup. In the latter case, the condition β2(π) = β1(π) − 1 is redundant. For
suppose that X is a finite aspherical 2-complex with π1(X) ∼= π. If π has an

infinite amenable normal subgroup then β
(2)
i (π) = 0 for all i, by Theorem 3, and

so χ(X) = 0.
[Similarly, if Z[π] has a safe extension Ψ and C∗ is the equivariant cellular

chain complex of the universal cover X̃ then Ψ ⊗Z[π] C∗ is a complex of free left
Ψ-modules with bases corresponding to the cells of X . Since Ψ is a safe extension
Hi(X ; Ψ) = Ψ ⊗Z[π] Hi(X ; Z[π]) = 0 for all i, and so again χ(X) = 0.]

Corollary 2.5.1. Let π be a finitely presentable group which is an extension
of Z by an FP2 normal subgroup N and such that def(π) = 1. Then N is free.

Proof. This follows from Corollary 8.6 of [Bi]. �

The subgroup N of F (2) × F (2) defined after the Corollary to Theorem 4 is
finitely generated, but is not free, as u and y generate a rank two abelian subgroup.
(Thus N is not FP2 and F (2) × F (2) is not almost coherent).

The next result is a version of the “Tits alternative” for coherent groups of
cohomological dimension 2. For eachm ∈ Z let Z∗m be the group with presentation
〈a, t | tat−1 = am〉. (Thus Z∗0

∼= Z and Z∗−1
∼= Z ×−1 Z).

Theorem 2.6. Let π be a finitely generated group such that c.d.π = 2. Then
π ∼= Z∗m for some m 6= 0 if and only if it is almost coherent and restrained and
π/π′ is infinite.

Proof. The conditions are easily seen to be necessary. Conversely, if π is
almost coherent and π/π′ is infinite π is an HNN extension with almost finitely
presentable base H , by Theorem 1.13. The HNN extension must be ascending as π
has no noncyclic free subgroup. Hence H2(π; Z[π]) is a quotient of H1(H ; Z[π]) ∼=
H1(H ; Z[H ])⊗Z[π/H ], by the Brown-Geoghegan Theorem. Now H2(π; Z[π]) 6= 0,
since c.d.π = 2, and so H1(H ; Z[H ]) 6= 0. Since H is restrained it must have two
ends, so H ∼= Z and π ∼= Z∗m for some m 6= 0. �

Does this remain true without any such coherence hypothesis?

Corollary 2.6.1. Let π be an FP2 group. Then the following are equivalent:
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(1) π ∼= Z∗m for some m ∈ Z;
(2) π is torsion free, elementary amenable and h(π) ≤ 2;
(3) π is elementary amenable and c.d.π ≤ 2;
(4) π is elementary amenable and def(π) = 1; and
(5) π is almost coherent and restrained and def(π) = 1.

Proof. Condition (1) clearly implies the others. Suppose (2) holds. We may
assume that h(π) = 2 and h(

√
π) = 1 (for otherwise π ∼= Z, Z2 = Z∗1 or Z∗−1).

Hence h(π/
√
π) = 1, and so π/

√
π is an extension of Z or D by a finite normal

subgroup. If π/
√
π maps onto D then π ∼= A∗C B, where [A : C] = [B : C] = 2 and

h(A) = h(B) = h(C) = 1, and so π ∼= Z×−1Z. But then h(
√
π) = 2. Hence we may

assume that π maps onto Z, and so π is an ascending HNN extension with finitely
generated base H , by Theorem 1.13. Since H is torsion free, elementary amenable
and h(H) = 1 it must be infinite cyclic and so (2) implies (1). If def(π) = 1 then

π is an ascending HNN extension with finitely generated base, so β
(2)
1 (π) = 0, by

Lemma 1. Hence (4) and (5) each imply (3) by Theorem 5, together with Theorem
6. Finally (3) implies (2). �

In fact all finitely generated solvable groups of cohomological dimension 2 are
as in this corollary [Gi79]. Are these conditions also equivalent to “π is almost
coherent and restrained and c.d.π ≤ 2”? Note also that if def(π) > 1 then π has
noncyclic free subgroups [Ro77].

Let X be the class of groups of finite graphs of groups, all of whose edge and
vertex groups are infinite cyclic. Kropholler has shown that a finitely generated,
noncyclic group G is in X if and only if c.d.G = 2 and G has an infinite cyclic sub-
group H which meets all its conjugates nontrivially. Moreover G is then coherent,
one ended and g.d.G = 2 [Kr90’].

Theorem 2.7. Let π be a finitely generated group such that c.d.π = 2. If π
has a nontrivial normal subgroup E which either is almost coherent, locally virtually
indicable and restrained or is elementary amenable then π is in X and either E ∼= Z
or π/π′ is infinite and π′ is abelian.

Proof. Let F be a finitely generated subgroup of E. Then F is metabelian,
by Theorem 6 and its Corollary, and so all words in E of the form [[g, h], [g′, h′]]
are trivial. Hence E is metabelian also. Therefore A =

√
E is nontrivial, and

as A is characteristic in E it is normal in π. Since A is the union of its finitely
generated subgroups, which are torsion free nilpotent groups of Hirsch length ≤ 2,
it is abelian. If A ∼= Z then [π : Cπ(A)] ≤ 2. Moreover Cπ(A)′ is free, by Bieri’s
Theorem. If Cπ(A)′ is cyclic then π ∼= Z2 or Z×−1Z; if Cπ(A)′ is nonabelian
then E = A ∼= Z. Otherwise c.d.A = c.d.Cπ(A) = 2 and so Cπ(A) = A, by
Bieri’s Theorem. If A has rank 1 then Aut(A) is abelian, so π′ ≤ Cπ(A) and π is
metabelian. If A ∼= Z2 then π/A is isomorphic to a subgroup of GL(2,Z), and so
is virtually free. As A together with an element t ∈ π of infinite order modulo A
would generate a subgroup of cohomological dimension 3, which is impossible, the
quotient π/A must be finite. Hence π ∼= Z2 or Z×−1Z. In all cases π is in X , by
Theorem C of [Kr90’]. �

If c.d.π = 2, ζπ 6= 1 and π is nonabelian then ζπ ∼= Z and π′ is free, by Bieri’s
Theorem. On the evidence of his work on 1-relator groups Murasugi conjectured
that if G is a finitely presentable group other than Z2 and def(G) ≥ 1 then ζG ∼= Z
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or 1, and is trivial if def(G) > 1, and he verified this for classical link groups
[Mu65]. Theorems 3, 4 and 7 together imply that if ζG is infinite then def(G) = 1
and ζG ∼= Z.

It remains an open question whether every finitely presentable group of coho-
mological dimension 2 has geometric dimension 2. The following partial answer to
this question was first obtained by W.Beckmann under the additional assumption
that the group was FF (cf. [Dy87’]).

Theorem 2.8. Let π be a finitely presentable group. Then g.d.π ≤ 2 if and
only if c.d.π ≤ 2 and def(π) = β1(π) − β2(π).

Proof. The necessity of the conditions is clear. Suppose that they hold and
that C(P ) is the 2-complex corresponding to a presentation for π of maximal defi-

ciency. The cellular chain complex of C̃(P ) gives an exact sequence

0 → K = π2(C(P )) → Z[π]r → Z[π]g → Z[π] → 0.

As c.d.π ≤ 2 the image of Z[π]r in Z[π]g is projective, by Schanuel’s Lemma.
Therefore the inclusion of K into Z[π]r splits, and K is projective. Moreover
dimQ(Q ⊗Z[π] K) = 0, and so K = 0, since the Weak Bass Conjecture holds for π

[Ec86]. Hence C̃(P ) is contractible, and so C(P ) is aspherical. �

The arguments of this section may easily be extended to other highly connected
finite complexes. A [π,m]f -complex is a finite m-dimensional complex X with

π1(X) ∼= π and with (m− 1)-connected universal cover X̃. Such a [π,m]f -complex
X is aspherical if and only if πm(X) = 0. In that case we shall say that π has
geometric dimension at most m, written g.d.π ≤ m.

Theorem (4′). Let X be a [π,m]f -complex and suppose that β
(2)
i (π) = 0 for

i < m. Then (−1)mχ(X) ≥ 0. If χ(X) = 0 then X is aspherical. �

In general the implication in the statement of this Theorem cannot be reversed.

For S1∨S1 is an aspherical [F (2), 1]f -complex and β
(2)
0 (F (2)) = 0, but χ(S1∨S1) =

−1 6= 0.
One of the applications of L2-cohomology in [CG86] was to show that if X

is a finite aspherical complex such that π1(X) has an infinite amenable normal
subgroup A then χ(X) = 0. (This generalised a theorem of Gottlieb, who assumed
that A was a central subgroup [Go65]). We may similarly extend Theorem 5 to
give a converse to the Cheeger-Gromov extension of Gottlieb’s Theorem.

Theorem (5′). Let X be a [π,m]f -complex and suppose that π has an infinite
amenable normal subgroup. Then X is aspherical if and only if χ(X) = 0. �

2.4. Poincaré duality

The main reason for studying PD-complexes is that they represent the homo-
topy theory of manifolds. However they also arise in situations where the geometry
does not immediately provide a corresponding manifold. For instance, under suit-
able finiteness assumptions an infinite cyclic covering space of a closed 4-manifold
with Euler characteristic 0 will be a PD3-complex, but need not be homotopy
equivalent to a closed 3-manifold (see Chapter 11).

A PDn-complex is a finitely dominated cell complex which satisfies Poincaré
duality of formal dimension n with local coefficients. It is finite if it is homotopy



2.5. PD3-COMPLEXES 25

equivalent to a finite cell complex. (It is most convenient for our purposes below to
require that PDn-complexes be finitely dominated. If a CW-complex X satisfies
local duality then π1(X) is FP2, and X is finitely dominated if and only if π1(X)
is finitely presentable [Br72, Br75]. Ranicki uses the broader definition in his book
[Rn]). All the PDn-complexes that we consider shall be assumed to be connected.

Let P be a PDn-complex and C∗ be the cellular chain complex of P̃ . Then
the Poincaré duality isomorphism may also be described in terms of a chain ho-
motopy equivalence from C∗ to Cn−∗, which induces isomorphisms from Hj(C∗)
to Hn−j(C∗), given by cap product with a generator [P ] of Hn(P ;Zw1(P )) =
Hn(Z̄ ⊗Z[π1(P )] C∗). (Here the first Stiefel-Whitney class w1(P ) is considered as
a homomorphism from π1(P ) to Z/2Z). From this point of view it is easy to
see that Poincaré duality gives rise to (Z-linear) isomorphisms from Hj(P ;B) to
Hn−j(P ; B̄), where B is any left Z[π1(P )]-module of coefficients. (See [Wl67] or
Chapter II of [Wl] for further details). If P is a Poincaré duality complex then the
L2-Betti numbers also satisfy Poincaré duality. (This does not require that P be
finite or orientable!)

A finitely presentable group is a PDn-group if and only if K(G, 1) is a PDn-
complex. For every n ≥ 4 there are PDn-groups which are not finitely presentable
[Da98].

Dwyer, Stolz and Taylor have extended Strebel’s Theorem to show that if H
is a subgroup of infinite index in π1(P ) then the corresponding covering space PH
has homological dimension < n; hence if moreover n 6= 3 then PH is homotopy
equivalent to a complex of dimension < n [DST96].

2.5. PD3-complexes

In this section we shall summarize briefly what is known about PDn-complexes
of dimension at most 3. It is easy to see that a connected PD1-complex must be
homotopy equivalent to S1. The 2-dimensional case is already quite difficult, but
has been settled by Eckmann, Linnell and Müller, who showed that every PD2-
complex is homotopy equivalent to a closed surface. (See Chapter VI of [DD].
This result has been further improved by Bowditch’s Theorem). There are PD3-
complexes with finite fundamental group which are not homotopy equivalent to any
closed 3-manifold [Th77]. On the other hand, Turaev’s Theorem below implies that
every PD3-complex with torsion free fundamental group is homotopy equivalent to
a closed 3-manifold if every PD3-group is a 3-manifold group. The latter is so if
the Hirsch-Plotkin radical of the group is nontrivial (see §7 below), but remains
open in general.

The fundamental triple of a PD3-complex P is (π1(P ), w1(P ), cP∗[P ]). This is
a complete homotopy invariant for such complexes.

Theorem (Hendriks). Two PD3-complexes are homotopy equivalent if and
only if their fundamental triples are isomorphic. �

Turaev has characterized the possible triples corresponding to a given finitely
presentable group and orientation character, and has used this result to deduce a
basic splitting theorem [Tu90].

Theorem (Turaev). A PD3-complex is irreducible with respect to connected
sum if and only if its fundamental group is indecomposable with respect to free
product. �
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Wall has asked whether every PD3-complex whose fundamental group has in-
finitely many ends is a proper connected sum [Wl67]. Since the fundamental group
of a PD3-complex is finitely presentable it is the fundamental group of a finite
graph of (finitely generated) groups in which each vertex group has at most one
end and each edge group is finite, by Theorem VI.6.3 of [DD]. Starting from this
observation, Crisp has given a substantial partial answer to Wall’s question [Cr00].

Theorem (Crisp). Let X be an indecomposable PD+
3 -complex. If π1(X) is not

virtually free then it has one end, and so X is aspherical. �

With Turaev’s theorem this implies that the fundamental group of any PD3-
complex is virtually torsion free, and that if X is irreducible and π has more than
one end then it is virtually free. There remains the possibility that, for instance, the
free product of two copies of the symmetric group on 3 letters with amalgamation
over a subgroup of order 2 may be the fundamental group of an orientable PD3-
complex. (It appears difficult in practice to apply Turaev’s work to the question of
whether a given group can be the fundamental group of a PD3-complex).

2.6. The spherical cases

The possible PD3-complexes with finite fundamental group are well understood
(although it is not yet completely known which are homotopy equivalent to 3-
manifolds).

Theorem 2.9 (Wl67). Let X be a PD3-complex with finite fundamental group
F . Then

(1) X̃ ≃ S3, F has cohomological period dividing 4 and X is orientable;
(2) the first nontrivial k-invariant k(X) generates H4(F ; Z) ∼= Z/|F |Z.
(3) the homotopy type of X is determined by F and the orbit of k(M) under

Out(F ) × {±1}.

Proof. Since the universal cover X̃ is also a finite PD3-complex it is homo-
topy equivalent to S3. A standard Gysin sequence argument shows that F has
cohomological period dividing 4. Suppose that X is nonorientable, and let C be
a cyclic subgroup of F generated by an orientation reversing element. Let Z̃ be
the nontrivial infinite cyclic Z[C]-module. Then H2(XC ; Z̃) ∼= H1(XC ; Z) ∼= C, by

Poincaré duality. But H2(XC ; Z̃) ∼= H2(C; Z̃) = 0, since the classifying map from

XC = X̃/C to K(C, 1) is 3-connected. Therefore X must be orientable and F must

act trivially on π3(X) ∼= H3(X̃; Z).
The image µ of the orientation class of X generates H3(F ; Z) ∼= Z/|F |Z, and

corresponds to the first nonzero k-invariant under the isomorphism H3(F ; Z) ∼=
H4(F ; Z) [Wl67]. Inner automorphisms of F act trivially on H4(F ; Z), while chang-
ing the orientation of X corresponds to multiplication by −1. Thus the orbit of
k(M) under Out(F ) × {±1} is the significant invariant.

We may construct the third stage of the Postnikov tower for X by adjoining
cells of dimension greater than 4 to X . The natural inclusion j : X → P3(X)
is then 4-connected. If X1 is another such PD3-complex and θ : π1(X1) → F is
an isomorphism which identifies the k-invariants then there is a 4-connected map
j1 : X1 → P3(X) inducing θ, which is homotopic to a map with image in the 4-
skeleton of P3(X), and so there is a map h : X1 → X such that j1 is homotopic to
jh. The map h induces isomorphisms on πi for i ≤ 3, since j and j1 are 4-connected,
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and so the lift h̃ : X̃1 ≃ S3 → X̃ ≃ S3 is a homotopy equivalence, by the theorems
of Hurewicz and Whitehead. Thus h is itself a homotopy equivalence. �

The list of finite groups with cohomological period dividing 4 is well known.
Each such group F and generator k ∈ H4(F ; Z) is realized by some PD+

3 -complex
[Sw60, Wl67]. (See also Chapter 11 below). In particular, there is an unique
homotopy type of PD3-complexes with fundamental group the symmetric group
S3, but there is no 3-manifold with this fundamental group.

The fundamental group of a PD3-complex P has two ends if and only if P̃ ≃ S2,
and then P is homotopy equivalent to one of the four S2 × E1-manifolds S2 × S1,
S2×̃S1, RP 2×S1 or RP 3♯RP 3. The following simple lemma leads to an alternative
characterization.

Lemma 2.10. Let P be a finite dimensional complex with fundamental group

π and such that Hq(P̃ ; Z) = 0 for all q > 2. If C is a cyclic subgroup of π then
Hs+3(C; Z) ∼= Hs(C;π2(P )) for all s ≥ dim(P ).

Proof. Since H2(P̃ ; Z) ∼= π2(P ) and dim(P̃ /C) ≤ dim(P ) this follows either

from the Cartan-Leray spectral sequence for the universal cover of P̃ /C or by

devissage applied to the homology of C∗(P̃ ), considered as a chain complex over
Z[C]. �

Theorem 2.11. Let P be a PD3-complex whose fundamental group π has a
nontrivial finite normal subgroup N . Then either P is homotopy equivalent to
RP 2 × S1 or π is finite.

Proof. We may clearly assume that π is infinite. ThenHq(P̃ ; Z) = 0 for q > 2,
by Poincaré duality. Let Π = π2(P ). The augmentation sequence 0 → A(π) →
Z[π] → Z → 0 gives rise to a short exact sequence 0 → HomZ[π](Z[π],Z[π]) →
HomZ[π](A(π),Z[π]) → H1(π; Z[π]) → 0. Let f : A(π) → Z[π] be a homomorphism
and ζ be a central element of π. Then f.ζ(i) = f(i)ζ = ζf(i) = f(ζi) = f(iζ) and
so (f.ζ − f)(i) = f(i(ζ − 1)) = if(ζ − 1) for all i ∈ A(π). Hence f.ζ − f is the
restriction of a homomorphism from Z[π] to Z[π]. Thus central elements of π act
trivially on H1(π; Z[π]).

If n ∈ N the centraliser γ = Cπ(〈n〉) has finite index in π, and so the covering

space Pγ is again a PD3-complex with universal covering space P̃ . Therefore Π ∼=
H1(γ; Z[γ]) as a (left) Z[γ]-module. In particular, Π is a free abelian group. Since
n is central in γ it acts trivially on H1(γ; Z[γ]) and hence via w(n) on Π. Suppose
first that w(n) = 1. Then Lemma 10 gives an exact sequence 0 → Z/|n|Z → Π →
Π → 0, where the right hand homomorphism is multiplication by |n|, since n has
finite order and acts trivially on Π. As Π is torsion free we must have n = 1.

Therefore if n ∈ N is nontrivial it has order 2 and w(n) = −1. In this case
Lemma 10 gives an exact sequence 0 → Π → Π → Z/2Z → 0, where the left
hand homomorphism is multiplication by 2. Since Π is a free abelian group it must

be infinite cyclic, and so P̃ ≃ S2. The theorem now follows from Theorem 4.4 of
[Wl67]. �

If π1(P ) has a finitely generated infinite normal subgroup of infinite index then
it has one end, and so P is aspherical. We shall discuss this case next.
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2.7. PD3-groups

If Wall’s question has an affirmative answer, the study of PD3-complexes re-
duces largely to the study of PD3-groups. It is not yet known whether all such
groups are 3-manifold groups. The fundamental groups of 3-manifolds which are
finitely covered by surface bundles or which admit one of the geometries of as-
pherical Seifert type may be characterized among all PD3-groups in simple group-
theoretic terms.

Theorem 2.12. Let G be a PD3-group with a nontrivial almost finitely pre-
sentable normal subgroup N of infinite index. Then either

(1) N ∼= Z and G/N is virtually a PD2-group; or
(2) N is a PD2-group and G/N has two ends.

Proof. Let e be the number of ends of N . If N is free then H3(G; Q[G]) ∼=
H2(G/N ;H1(N ; Q[G])). Since N is finitely generated and G/N is FP2 this is in
turn isomorphic to H2(G/N ; Q[G/N ])(e−1). Since G is a PD3-group we must have
e− 1 = 1 and so N ∼= Z. We then have H2(G/N ; Z[G/N ]) ∼= H3(G; Z[G]) ∼= Z, so
G/N is virtually a PD2-group, by Bowditch’s Theorem.

Otherwise c.d.N = 2 and so e = 1 or ∞. The LHSSS gives H2(G; Q[G]) =
H1(G/N ; Q[G/N ])⊗H1(N ; Q[N ]) = H1(G/N ; Q[G/N ])e−1. Hence either e = 1 or
H1(G/N ; Q[G/N ]) = 0. But in the latter case H3(G; Q[G]) ∼= H2(G/N ; Q[G/N ])⊗
H1(N ; Q[N ]) would be either 0 or infinite dimensional. Therefore e = 1, and so
H3(G; Q[G]) ∼= H1(G/N ; Q[G/N ]) ⊗H2(N ; Q[N ]). Hence G/N has two ends, and
so N is a PD2-group, by Theorem 1.20. �

We shall strengthen this result in Theorem 16 below.

Corollary 2.12.1. A PD3-complex P is homotopy equivalent to the map-
ping torus of a self homeomorphism of a closed surface if and only if there is an
epimorphism φ : π1(P ) → Z with finitely generated kernel.

Proof. This follows from Theorems 1.20 and Theorems 11 and 12 above. �

If π1(P ) is infinite and is a nontrivial direct product then P is homotopy equiv-
alent to the product of S1 with a closed surface.

Theorem 2.13. Let G be a PD3-group. Then every almost coherent, locally
virtually indicable subgroup of G is either virtually solvable or contains a noncyclic
free subgroup.

Proof. Let S be a restrained, locally virtually indicable subgroup of G. Sup-
pose first that S has finite index in G, and so is again a PD3-group. Since S is
virtually indicable we may assume without loss of generality that β1(S) > 0. Then
S is an ascending HNN extension H∗φ with finitely generated base. Since G is al-
most coherent H is finitely presentable, and since H3(S; Z[S]) ∼= Z it follows from
Lemma 3.4 of [BG85] that H is normal in S and S/H ∼= Z. Hence H is a PD2-
group, by Theorem 1.20. Since H has no noncyclic free subgroup it is virtually Z2

and so S and G are virtually poly-Z.
If [G : S] = ∞ then c.d.S ≤ 2, by Strebel’s Theorem. As the finitely generated

subgroups of S are virtually indicable they are metabelian, by Theorem 6 and its
Corollary. Hence S is metabelian also. �
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As the fundamental groups of virtually Haken 3-manifolds are coherent and lo-
cally virtually indicable, this implies the “Tits alternative” for such groups [EJ73].
In fact solvable subgroups of infinite index in 3-manifold groups are virtually
abelian. This remains true if K(G, 1) is a finite PD3-complex, by Corollary 1.4
of [KK99]. Does this hold for all PD3-groups?

A slight modification of the argument gives the following corollary.

Corollary 2.13.1. A PD3-group G is virtually poly-Z if and only if it is
coherent, restrained and has a subgroup of finite index with infinite abelianization.

�

If β1(G) ≥ 2 the hypothesis of coherence is redundant, for there is then an
epimorphism p : G → Z with finitely generated kernel, by [BNS87], and Theorem
1.20 requires only that H be finitely generated.

The argument of Theorem 13 and its corollary extend to show by induction on
m that a PDm-group is virtually poly-Z if and only if it is restrained and every
finitely generated subgroup is FPm−1 and virtually indicable.

Theorem 2.14. Let G be a PD3-group. Then G is the fundamental group of
an aspherical Seifert fibred 3-manifold or a Sol3-manifold if and only if

√
G 6= 1.

Moreover

(1) h(
√
G) = 1 if and only if G is the group of an H2 × E1- or S̃L-manifold;

(2) h(
√
G) = 2 if and only if G is the group of a Sol3-manifold;

(3) h(
√
G) = 3 if and only if G is the group of an E3- or Nil3-manifold.

Proof. The necessity of the conditions is clear. (See [Sc83’], or §2 and §3 of

Chapter 7 below). Certainly h(
√
G) ≤ c.d.

√
G ≤ 3. Moreover c.d.

√
G = 3 if and

only if [G :
√
G] is finite, by Strebel’s Theorem. Hence G is virtually nilpotent

if and only if h(
√
G) = 3. If h(

√
G) = 2 then

√
G is locally abelian, and hence

abelian. Moreover
√
G must be finitely generated, for otherwise c.d

√
G = 3. Thus√

G ∼= Z2 and case (2) follows from Theorem 12.

Suppose now that h(
√
G) = 1 and let C = CG(

√
G). Then

√
G is torsion free

abelian of rank 1, so Aut(
√
G) is isomorphic to a subgroup of Q× ∼= Z∞ ⊕ (Z/2Z).

Therefore G/C is abelian. If G/C is infinite then c.d.C ≤ 2 by Strebel’s Theorem

and
√
G is not finitely generated, so C is abelian, by Bieri’s Theorem, and hence G

is solvable. But then h(
√
G) > 1, which is contrary to our hypothesis. Therefore

G/C is isomorphic to a finite subgroup of Q× and so has order at most 2. In

particular, if A is an infinite cyclic subgroup of
√
G then A is normal in G, and so

G/A is virtually a PD2-group, by Theorem 12. If G/A is a PD2-group then G is
the fundamental group of an S1-bundle over a closed surface. In general, a finite
torsion free extension of the fundamental group of a closed Seifert fibred 3-manifold
is again the fundamental group of a closed Seifert fibred 3-manifold, by [Sc83] and
Section 63 of [Zi]. �

The heart of this result is the deep theorem of Bowditch. The weaker char-
acterization of fundamental groups of Sol3-manifolds and aspherical Seifert fibred
3-manifolds as PD3-groups G such that

√
G 6= 1 and G has a subgroup of finite

index with infinite abelianization is much easier to prove [H3]. There is as yet
no comparable characterization of the groups of H3-manifolds, although it may
be conjectured that these are exactly the PD3-groups with no noncyclic abelian
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subgroups. (Note also that it remains an open question whether every closed H3-
manifold is finitely covered by a mapping torus).

Nil3- and S̃L-manifolds are orientable, and so their groups are PD+
3 -groups.

This can also be seen algebraically, as every such group has a characteristic subgroup
H which is a nonsplit central extension of a PD+

2 -group β by Z. An automorphism
of such a group H must be orientation preserving.

Theorem 14 implies that if a PD3-group G is not virtually poly-Z then its
maximal elementary amenable normal subgroup is Z or 1. For this subgroup is
virtually solvable, by Theorem 1.11, and if it is nontrivial then so is

√
G.

Lemma 2.15. Let G be a PD3-group with subgroups H and J such that H is
almost finitely presentable, has one end and is normal in J . Then either [J : H ] or
[G : J ] is finite.

Proof. Suppose that [J : H ] and [G : H ] are both infinite. Since H has one
end it is not free and so c.d.H = c.d.J = 2, by Strebel’s Theorem. Hence there is a
free Z[J ]-module W such that H2(J ;W ) 6= 0, by Proposition 5.1 of [Bi]. Since H
is FP2 and has one end Hq(H ;W ) = 0 for q = 0 or 1 and H2(H ;W ) is an induced
Z[J/H ]-module. Since [J : H ] is infinite H0(J/H ;H2(H ;W )) = 0, by Lemma 8.1
of [Bi]. The LHSSS for J as an extension of J/H by H now gives Hr(J ;W ) = 0
for r ≤ 2, which is a contradiction. �

Theorem 2.16. Let G be a PD3-group with a nontrivial almost finitely pre-
sentable subgroup H which is subnormal and of infinite index in G. Then either H
is infinite cyclic and is normal in G or G is virtually poly-Z or H is a PD2-group,
[G : NG(H)] <∞ and NG(H)/H has two ends.

Proof. Since H is subnormal in G there is a finite increasing sequence {Ji |
0 ≤ i ≤ n} of subgroups of G with J0 = H , Ji normal in Ji+1 for each i < n and
Jn = G. Since [G : H ] = ∞ either c.d.H = 2 or H is free, by strebel’s Theorem.
Suppose first that c.d.H = 2. Let k = min{i | [Ji : H ] = ∞}. Then H has finite
index in Jk−1, which therefore is also FP2. Suppose that c.d.Jk = 2. If K is a
finitely generated subgroup of Jk which contains Jk−1 then [K : Jk−1] is finite, by
Corollary 8.6 of [Bi], and so Jk is the union of a strictly increasing sequence of
finite extensions of Jk−1. But it follows from the Kurosh subgroup theorem that
the number of indecomposable factors in such intermediate groups must be strictly
decreasing unless one is indecomposable (in which case all are). (See Lemma 1.4
of [Sc76]). Thus Jk−1 is indecomposable, and so has one end (since it is torsion
free but not infinite cyclic). Therefore [G : Jk] < ∞ and Jk is a PD3-group, by
Lemma 14. Since Jk−1 is finitely generated, normal in Jk and [Jk−1 : H ] < ∞ it
follows easily that [Jk : NJk

(H)] < ∞. Therefore [G : NG(H)] < ∞ and so H is a
PD2-group and NG(H)/H has two ends, by Theorem 12.

Next suppose that H ∼= Z. Since
√
Ji is characteristic in Ji it is normal in

Ji+1, for each i < n. A finite induction now shows that H ≤
√
G. Therefore either√

G ∼= Z, so H ∼= Z and is normal in G, or G is virtually poly-Z, by Theorem 14.
Suppose finally that G has a finitely generated noncyclic free subnormal sub-

group. We may assume that {Ji | 0 ≤ i ≤ n} is a chain of minimal length n
among subnormal chains with H = J0 a finitely generated noncyclic free group.
In particular, [J1 : H ] = ∞, for otherwise J1 would also be a finitely generated
noncyclic free group. We may also assume that H is maximal in the partially or-
dered set of finitely generated free normal subgroups of J1. (Note that ascending
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chains of such subgroups are always finite, for if F (r) is a nontrivial normal sub-
group of a free group G then G is also finitely generated, of rank s say, and and
[G : F ](1 − s) = 1 − r).

Since J1 has a finitely generated noncyclic free normal subgroup of infinite index
it is not free, and nor is it a PD3-group. Therefore c.d.J1 = 2. The kernel of the
homomorphism from J1/H to Out(H) determined by the conjugation action of J1

on H is HCJ1(H)/H , which is isomorphic to CJ1(H) since ζH = 1. As Out(H) is
virtually of finite cohomological dimension and c.d.CJ1(H) is finite v.c.d.J1/H <∞.
Therefore c.d.J1 = c.d.H + v.c.d.J1/H , by Theorem 5.6 of [Bi], so v.c.d.J1/H = 1
and J1/H is virtually free.

If g normalizes J1 then HHg/H = Hg/H ∩Hg is a finitely generated normal
subgroup of J1/H and so either has finite index or is finite. (Here Hg = gHg−1). In
the former case J1/H would be finitely presentable (since it is then an extension of a
finitely generated virtually free group by a finitely generated free normal subgroup)
and as it is subnormal in G it must be a PD2-group, by our earlier work. But PD2-
groups do not have finitely generated noncyclic free normal subgroups. Therefore
HHg/H is finite and so HHg = H , by the maximality of H . Since this holds
for any g ∈ J2 the subgroup H is normal in J2 and so is the initial term of a
subnormal chain of length n− 1 terminating with G, contradicting the minimality
of n. Therefore G has no finitely generated noncyclic free subnormal subgroups. �

The theorem as stated can be proven without appeal to Bowditch’s Theorem
(used here for the cases when H ∼= Z) [BH91].

If H is a PD2-group NG(H) is the fundamental group of a 3-manifold which
is double covered by the mapping torus of a surface homeomorphism. There are
however Nil3-manifolds with no normal PD2-subgroup (although they always have
subnormal copies of Z2).

Theorem 2.17. Let G be a PD3-group with an almost finitely presentable
subgroup H which has one end and is of infinite index in G. Let H0 = H and

Hi+1 = NG(Hi) for i ≥ 0. Then Ĥ = ∪Hi is almost finitely presentable and has

one end, and either c.d.Ĥ = 2 and NG(Ĥ) = Ĥ or [G : Ĥ ] <∞ and G is virtually
the group of a surface bundle.

Proof. If c.d.Hi = 2 for all i ≥ 0 then [Hi+1 : Hi] < ∞ for all i ≥ 0, by

Lemma 15. Hence h.d.Ĥ = 2, by Theorem 4.7 of [Bi]. Therefore [G : Ĥ ] = ∞,

so c.d.Ĥ = 2 also. Hence Ĥ is finitely generated, and so Ĥ = Hi for i large, by

Theorem 3.3 of [GS81]. In particular, NG(Ĥ) = Ĥ .
Otherwise let k = max{i | c.d.Hi = 2}. Then Hk is FP2 and has one end and

[G : Hk+1] < ∞, so G is virtually the group of a surface bundle, by Theorem 11
and the observation preceding this theorem. �

Corollary 2.17.1. If G has a subgroup H which is a PD2-group with χ(H) =
0 (respectively, < 0) then either it has such a subgroup which is its own normalizer
in G or it is virtually the group of a surface bundle.

Proof. If c.d.Ĥ = 2 then [Ĥ : H ] < ∞, so Ĥ is a PD2-group, and χ(H) =

[Ĥ : H ]χ(Ĥ). �
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2.8. Subgroups of PD3-groups and 3-manifold groups

The central role played by incompressible surfaces in the geometric study of
Haken 3-manifolds suggests strongly the importance of studying subgroups of infi-
nite index in PD3-groups. Such subgroups have cohomological dimension ≤ 2, by
Strebel’s Theorem.

There are substantial constraints on 3-manifold groups and their subgroups.
Every finitely generated subgroup of a 3-manifold group is the fundamental group
of a compact 3-manifold (possibly with boundary) [Sc73], and thus is finitely pre-
sentable and is either a 3-manifold group or has finite geometric dimension 2 or is a
free group. All 3-manifold groups have Max-c (every strictly increasing sequence of
centralizers is finite), and solvable subgroups of infinite index are virtually abelian
[Kr90a]. If the Thurston Geometrization Conjecture is true every aspherical closed
3-manifold is Haken, hyperbolic or Seifert fibred. The groups of such 3-manifolds
are residually finite [He87], and the centralizer of any element in the group is finitely
generated [JS79]. Thus solvable subgroups are virtually poly-Z.

In contrast, any group of finite geometric dimension 2 is the fundamental group
of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and
2-handles to D4. On applying the orbifold hyperbolization technique of Gromov,
Davis and Januszkiewicz [DJ91] to the boundary we see that each such group
embeds in a PD4-group. Thus the question of which such groups are subgroups
of PD3-groups is critical. (In particular, which X -groups are subgroups of PD3-
groups?)

The Baumslag-Solitar groups 〈x, t | txpt−1 = xq〉 are not hopfian, and hence not
residually finite, and do not have Max-c. As they embed in PD4-groups there are
such groups which are not residually finite and do not have Max-c. The product of
two nonabelian PD+

2 -groups contains a copy of F (2)×F (2), and so is a PD+
4 -group

which is not almost coherent.
Kropholler and Roller have shown that F (2) × F (2) is not a subgroup of any

PD3-group [KR89]. They have also proved some strong splitting theorems for
PDn-groups. Let G be a PD3-group with a subgroup H ∼= Z2. If G is residually
finite then it is virtually split over a subgroup commensurate with H [KR88]. If√
G = 1 then G splits over an X -group [Kr93]; if moreover G has Max-c then it

splits over a subgroup commensurate with H [Kr90].
The geometric conclusions of Theorem 14 and the coherence of 3-manifold

groups suggest that Theorems 12 and 16 should hold under the weaker hypothesis
that N be finitely generated. (Compare Theorem 1.20).

Is there a characterization of virtual PD3-groups parallel to Bowditch’s Theo-
rem? (It may be relevant that homology n-manifolds are manifolds for n ≤ 2. High
dimensional analogues are known to be false. For every k ≥ 6 there are FPk groups
G with Hk(G; Z[G]) ∼= Z but which are not virtually torsion free [FS93]).

2.9. π2(P ) as a Z[π]-module

The cohomology group H2(P ;π2(P )) arises in studying homotopy classes of
self homotopy equivalences of P . Hendriks and Laudenbach showed that if N is
a P 2-irreducible 3-manifold and π1(N) is virtually free then H2(N ;π2(N)) ∼= Z,
and otherwise H2(N ;π2(N)) = 0 [HL74]. Swarup showed that if N is a 3-manifold
which is the connected sum of a 3-manifold whose fundamental group is free of
rank r with s ≥ 1 aspherical 3-manifolds then π2(N) is a finitely generated free
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Z[ν]-module of rank 2r+ s− 1 [Sw73]. We shall give direct homological arguments
using Schanuel’s Lemma to extend these results to PD3-complexes with torsion free
fundamental group.

Theorem 2.18. Let N be a PD3-complex with torsion free fundamental group
ν. Then

(1) c.d.ν ≤ 3;
(2) the Z[ν]-module π2(N) is finitely presentable and has projective dimension

at most 1;
(3) if ν is a nontrivial free group then H2(N ;π2(N)) ∼= Z;
(4) if ν is not a free group then π2(N) is projective and H2(N ;π2(N)) = 0;
(5) if ν is not a free group then any two of the conditions “ν is FF”,

“N is homotopy equivalent to a finite complex” and “π2(N) is stably free”
imply the third.

Proof. We may clearly assume that ν 6= 1. The PD3-complex N is homotopy
equivalent to a connected sum of aspherical PD3-complexes and a 3-manifold with
free fundamental group, by Turaev’s Theorem. Therefore ν is a corresponding free
product, and so it has cohomological dimension at most 3 and is FP . Since N is
finitely dominated the equivariant chain complex of the universal covering space

Ñ is chain homotopy equivalent to a complex 0 → C3 → C2 → C1 → C0 → 0
of finitely generated projective left Z[ν]-modules. Then the sequences 0 → Z2 →
C2 → C1 → C0 → Z → 0 and 0 → C3 → Z2 → π2(N) → 0 are exact, where Z2

is the module of 2-cycles in C2. Since ν is FP and c.d.ν ≤ 3 Schanuel’s Lemma
implies that Z2 is projective and finitely generated. Hence π2(N) has projective
dimension at most 1, and is finitely presentable.

It follows easily from the UCSS and Poincaré duality that π2(N) is isomorphic

to H1(ν; Z[ν]) and that there is an exact sequence

(2.1) H3(ν; Z[ν]) → H3(N ; Z[ν]) → Ext1
Z[ν](π2(N),Z[ν]) → 0

The w1(N)-twisted augmentation homomorphism from Z[ν] to Z̄ which sends g ∈ ν
to w1(N)(g) induces an isomorphism from H3(N ; Z[ν]) to H3(N ; Z̄) ∼= Z. If ν is
free the first term in this sequence is 0, and so Ext1

Z[ν](π2(N),Z[ν]) ∼= Z. (In

particular, π2(N) has projective dimension 1). There is also a short exact sequence
of left modules 0 → Z[ν]r → Z[ν] → Z → 0, where r is the rank of ν. On dualizing
we obtain the sequence of right modules 0 → Z[ν] → Z[ν]r → H1(ν; Z[ν]) → 0. The
long exact sequence of homology with these coefficients includes an exact sequence

(2.2) 0 → H1(N ;H1(ν; Z[ν])) → H0(N ; Z[ν]) → H0(N ; Z[ν]r)

in which the right hand map is 0, and so H1(N ;H1(ν; Z[ν])) ∼= H0(N ; Z[ν]) =
Z. Hence H2(N ;π2(N) ∼= H1(N ; π̄2(N)) = H1(N ;H1(ν; Z[ν])) ∼= Z, by Poincaré
duality.

If ν is not free then the map H3(ν; Z[ν]) → H3(N ; Z[ν]) in sequence (1) above
is onto, as can be seen by comparison with the corresponding sequence with coef-
ficients Z̄. Therefore Ext1

Z[ν](π2(N),Z[ν]) = 0. Since π2(N) has a short resolution

by finitely generated projective modules, it follows that it is in fact projective. As
H2(N ; Z[ν]) = H1(N ; Z[ν]) = 0 it follows that H2(N ;P ) = 0 for any projective
Z[ν]-module P . Hence H2(N ;π2(N)) = 0.

The final assertion follows easily from the fact that if π2(N) is projective then
Z2

∼= π2(N) ⊕ C3. �
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If ν is not torsion free then the projective dimension of π2(N) is infinite. Does
the result of [HL74] extend to all PD3-complexes?



CHAPTER 3

Homotopy invariants of PD4-complexes

The homotopy type of a 4-manifold M is largely determined (through Poincaré
duality) by its algebraic 2-type and orientation character. In many cases the for-
mally weaker invariants π1(M), w1(M) and χ(M) already suffice. In §1 we give
criteria in such terms for a degree-1 map between PD4-complexes to be a homotopy
equivalence, and for a PD4-complex to be aspherical. We then show in §2 that if
the universal covering space of a PD4-complex is homotopy equivalent to a finite
complex then it is either compact, contractible, or homotopy equivalent to S2 or S3.
In §3 we obtain estimates for the minimal Euler characteristic of PD4-complexes
with fundamental group of cohomological dimension at most 2 and determine the
second homotopy groups of PD4-complexes realizing the minimal value. The class
of such groups includes all surface groups and classical link groups, and the groups
of many other (bounded) 3-manifolds. The minima are realized by s-parallelizable
PL 4-manifolds. In the final section we shall show that if χ(M) = 0 then π1(M)
satisfies some stringent constraints.

3.1. Homotopy equivalence and asphericity

Many of the results of this section depend on the following lemma, in conjunc-
tion with use of the Euler characteristic to compute the rank of the surgery kernel.
(This lemma and the following theorem derive from Lemmas 2.2 and 2.3 of [Wa]).

Lemma 3.1. Let R be a ring and C∗ be a finite chain complex of projective
R-modules. If Hi(C∗) = 0 for i < q and Hq+1(HomR(C∗, B)) = 0 for any left
R-module B then Hq(C∗) is projective. If moreover Hi(C∗) = 0 for i > q then
Hq(C∗) ⊕

⊕
i≡q+1 (2) Ci

∼=
⊕

i≡q (2) Ci.

Proof. We may assume without loss of generality that q = 0 and Ci = 0
for i < 0. We may factor ∂1 : C1 → C0 through B = Im∂1 as ∂1 = jβ, where
β is an epimorphism and j is the natural inclusion of the submodule B. Since
jβ∂2 = ∂1∂2 = 0 and j is injective β∂2 = 0. Hence β is a 1-cocycle of the complex
HomR(C∗, B). Since H1(HomR(C∗, B)) = 0 there is a homomorphism σ : C0 → B
such that β = σ∂1 = σjβ. Since β is an epimorphism σj = idB and so B is a direct
summand of C0. This proves the first assertion.

The second assertion follows by an induction on the length of the complex. �

Theorem 3.2. Let N and M be finite PD4-complexes. A map f : M → N is a
homotopy equivalence if and only if π1(f) is an isomorphism, f∗w1(N) = w1(M),
f∗[M ] = ±[N ] and χ(M) = χ(N).

Proof. The conditions are clearly necessary. Suppose that they hold. Up to
homotopy type we may assume that f is a cellular inclusion of finite cell complexes,
and so M is a subcomplex of N . We may also identify π1(M) with π = π1(N).

35
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Let C∗(M), C∗(N) and D∗ be the cellular chain complexes of M̃ , Ñ and (Ñ , M̃),
respectively. Then the sequence 0 → C∗(M) → C∗(N) → D∗ → 0 is a short exact
sequence of finitely generated free Z[π]-chain complexes.

By the projection formula f∗(f∗a∩ [M ]) = a∩ f∗[M ] = ±a∩ [N ] for any coho-
mology class a ∈ H∗(N ; Z[π]). Since M and N satisfy Poincaré duality it follows
that f induces split surjections on homology and split injections on cohomology.
Hence Hq(D∗) is the “surgery kernel” in degree q−1, and the duality isomorphisms

induce isomorphisms from Hr(HomZ[π](D∗, B)) to H6−r(D∗ ⊗B), where B is any
left Z[π]-module. Since f induces isomorphisms on homology and cohomology in
degrees ≤ 1, with any coefficients, the hypotheses of Lemma 1 are satisfied for
the Z[π]-chain complex D∗, with q = 3, and so H3(D∗) = Ker(π2(f)) is projec-
tive. Moreover H3(D∗) ⊕

⊕
i oddDi

∼=
⊕

i evenDi. Thus H3(D∗) is a stably free
Z[π]-module of rank χ(E,M) = χ(M) − χ(E) = 0 and so it is trivial, as Z[π] is
weakly finite, by a theorem of Kaplansky (see [Ro84]). Therefore f is a homotopy
equivalence. �

If M and N are merely finitely dominated, rather than finite, then H3(D∗) is
a finitely generated projective Z[π]-module such that H3(D∗) ⊗Z[π] Z = 0. If the

Wall finiteness obstructions satisfy f∗σ(M) = σ(N) in K̃0(Z[π]) then H3(D∗) is
stably free, and the theorem remains true. This additional condition is redundant
if π satisfies the Weak Bass Conjecture. (Similar comments apply elsewhere in this
section).

Corollary 3.2.1. Let N be orientable. Then a map f : N → N which induces
automorphisms of π1(N) and H4(N ; Z) is a homotopy equivalence. �

In the aspherical cases we shall see that we can relax the hypothesis that the
classifying map have degree ±1.

Lemma 3.3. Let M be a PD4-complex with fundamental group π. Then there
is an exact sequence

0 → H2(π; Z[π]) → π2(M) → HomZ[π](π2(M),Z[π]) → H3(π; Z[π]) → 0.

Proof. Since H2(M ; Z[π]) ∼= π2(M) and H3(M ; Z[π]) ∼= H1(M̃ ; Z) = 0, this
follows from the UCSS and Poincaré duality. �

Exactness of much of this sequence can be derived without the UCSS. The
middle arrow is the composite of a Poincaré duality isomorphism and the evalua-
tion homomorphism. Note also that HomZ[π](π2(M),Z[π]) may be identified with

H0(π;H2(M̃ ; Z) ⊗ Z[π]), the π-invariant subgroup of the cohomology of the uni-
versal covering space. When π is finite the sequence reduces to an isomorphism

π2(M) ∼= HomZ[π](π2(M),Z[π]).

Let ev(2) : H2
(2)(M̃) → HomZ[π](π2(M), ℓ2(π)) be the evaluation homomor-

phism defined on the unreduced L2-cohomology by ev(2)(f)(z) = Σf(g−1z)g for all
2-cycles z and square summable 2-cocycles f . Much of the next theorem is implicit
in [Ec94].

Theorem 3.4. Let M be a finite PD4-complex with fundamental group π. Then

(1) if β
(2)
1 (π) = 0 then χ(M) ≥ 0;
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(2) Ker(ev(2)) is closed;

(3) if χ(M) = β
(2)
1 (π) = 0 then c∗M : H2(π; Z[π]) → H2(M ; Z[π]) ∼= π2(M)

is an isomorphism.

Proof. Since M is a PD4-complex χ(M) = 2β
(2)
0 (π) − 2β

(2)
1 (π) + β

(2)
2 (M).

Hence χ(M) ≥ β
(2)
2 (M) ≥ 0 if β

(2)
1 (π) = 0.

Let z ∈ C2(M̃) be a 2-cycle and f ∈ C
(2)
2 (M̃) a square-summable 2-cocycle.

As ||ev(2)(f)(z)||2 ≤ ||f ||2||z||2, the map f 7→ ev(2)(f)(z) is continuous, for fixed z.
Hence if f = limfn and ev(2)(fn) = 0 for all n then ev(2)(f) = 0.

The inclusion Z[π] < ℓ2(π) induces a homomorphism from the exact sequence
of Lemma 3 to the corresponding sequence with coefficients ℓ2(π). The module
H2(M ; ℓ2(π)) may be identified with the unreduced L2-cohomology, and ev(2) may

be viewed as mappingH
(2)
2 (M̃) toH2(M̃ ; Z)⊗ℓ2(π) [Ec94]. As M̃ is 1-connected the

induced homomorphism from H2(M̃ ; Z)⊗Z[π] to H2(M̃ ; Z)⊗ ℓ2(π) is injective. As
ev(2)(δg)(z) = ev(2)(g)(∂z) = 0 for any square summable 1-chain g and Ker(ev(2))

is closed ev(2) factors through the reduced L2-cohomology H̄2
(2)(M̃). In particular,

it is 0 if β
(2)
1 (π) = χ(M) = 0. Hence the middle arrow of the sequence in Lemma 3

is also 0 and c∗M is an isomorphism. �

A related argument gives a complete and natural criterion for asphericity for
closed 4-manifolds.

Theorem 3.5. Let M be a finite PD4-complex with fundamental group π. Then

M is aspherical if and only if Hs(π; Z[π]) = 0 for s ≤ 2 and β
(2)
2 (M) = β

(2)
2 (π).

Proof. The conditions are clearly necessary. Suppose that they hold. Then

as β
(2)
i (M) = β

(2)
i (π) for i ≤ 2 the classifying map cM : M → K(π, 1) induces weak

isomorphisms on reduced L2-cohomology H̄i
(2)(π) → H̄i

(2)(M̃) for i ≤ 2.

The natural homomorphism h : H2(M ; ℓ2(π)) → H2(M̃ ; Z) ⊗ ℓ2(π) factors

through H̄2
(2)(M̃). The induced homomorphism is a homomorphism of Hilbert

modules and so has closed kernel. But the image of H̄2
(2)(π) is dense in H̄

(2)
2 (M̃)

and is in this kernel. Hence h = 0. Since H2(π; Z[π]) = 0 the homomorphism from

H2(M ; Z[π]) to H2(M̃ ; Z) ⊗ Z[π] obtained by forgetting Z[π]-linearity is injective.

Hence the composite homomorphism from H2(M ; Z[π]) to H2(M̃ ; Z) ⊗ ℓ2(π) is
also injective. But this composite may also be factored as the natural map from
H2(M ; Z[π]) to H2(M ; ℓ2(π)) followed by h. Hence H2(M ; Z[π]) = 0 and so M is
aspherical, by Poincaré duality. �

Corollary 3.5.1. M is aspherical if and only if π is an FF PD4-group and
χ(M) = χ(π). �

This also follows immediately from Theorem 2, if also β2(π) 6= 0. For we may
assume that M and π are orientable, after passing to the subgroup Ker(w1(M))∩
Ker(w1(π)), if necessary. As H2(cM ; Z) is an epimorphism it is an isomorphism,
and so cM must have degree ±1, by Poincaré duality.

Corollary 3.5.2. If χ(M) = β
(2)
1 (π) = 0 and Hs(π; Z[π]) = 0 for s ≤ 2 then

M is aspherical and π is a PD4-group. �
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Corollary 3.5.3. If π ∼= Zr then χ(M) ≥ 0, with equality only if r = 1, 2 or
4.

Proof. If r > 2 then Hs(π; Z[π]) = 0 for s ≤ 2. �

Is it possible to replace the hypothesis “β
(2)
2 (M) = β

(2)
2 (π)” in Theorem 5 by

“β2(M
+) = β2(Kerw1(M))”, where p+ : M+ → M is the orientation cover? It

is easy to find examples to show that the homological conditions on π cannot be
relaxed further.

Theorem 5 implies that if π is a PD4-group and χ(M) = χ(π) then cM∗[M ] 6= 0.
If we drop the condition χ(M) = χ(π) this need not be true. Given any finitely
presentable group G there is a closed orientable 4-manifold M with π1(M) ∼= G
and such that cM∗[M ] = 0 in H4(G; Z). We may take M to be the boundary of a
regular neighbourhood N of some embedding in R5 of a finite 2-complex K with
π1(K) ∼= G. As the inclusion of M into N is 2-connected and K is a deformation
retract of N the classifying map cM factors through cK and so induces the trivial
homomorphism on homology in degrees > 2. However if M and π are orientable
and β2(M) < 2β2(π) then cM must have nonzero degree, for the image of H2(π; Q)
in H2(M ; Q) then cannot be self-orthogonal under cup-product.

Theorem 3.6. Let π be a PD4-group with a finite K(π, 1)-complex and such
that χ(π) = 0. Then def(π) ≤ 0.

Proof. Suppose that π has a presentation of deficiency > 0, and let X be the

corresponding 2-complex. Then β
(2)
2 (π)−β

(2)
1 (π) ≤ β

(2)
2 (X)−β

(2)
1 (π) = χ(X) ≤ 0.

We also have β
(2)
2 (π) − 2β

(2)
1 (π) = χ(π) = 0. Hence β

(2)
1 (π) = β

(2)
2 (π) = χ(X) = 0.

Therefore X is aspherical, by Theorem 2.4, and so c.d.π ≤ 2. But this contradicts
the hypothesis that π is a PD4-group. �

Is def(π) ≤ 0 for any PD4-group π? This bound is best possible for groups
with χ = 0, since there is a poly-Z group Z3 ×A Z, where A ∈ SL(3,Z), with
presentation 〈s, x, | sxs−1x = xsxs−1, s3x = xs3〉.

The hypothesis on orientation characters in Theorem 2 is often redundant.

Theorem 3.7. Let f : M → N be a 2-connected map between finite PD4-
complexes with χ(M) = χ(N). If H2(N ; F2) 6= 0 then f∗w1(N) = w1(M), and if
moreover N is orientable and H2(N ; Q) 6= 0 then f is a homotopy equivalence.

Proof. Since f is 2-connected H2(f ; F2) is injective, and since χ(M) = χ(N)
it is an isomorphism. Since H2(N ; F2) 6= 0, the nondegeneracy of Poincaré duality
implies that H4(f ; F2) 6= 0, and so f is a F2-(co)homology equivalence. Since
w1(M) is characterized by the Wu formula x∪w1(M) = Sq1x for all x inH3(M ; F2),
it follows that f∗w1(N) = w1(M).

If H2(N ; Q) 6= 0 then H2(N ; Z) has positive rank and H2(N ; F2) 6= 0, so N
orientable implies M orientable. We may then repeat the above argument with
integral coefficients, to conclude that f has degree ±1. The result then follows
from Theorem 2. �

The argument breaks down if, for instance, M = S1×̃S3 is the nonorientable
S3-bundle over S1, N = S1 × S3 and f is the composite of the projection of M
onto S1 followed by the inclusion of a factor.
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We would like to replace the hypotheses above that there be a map f : M → N
realizing certain isomorphisms by weaker, more algebraic conditions. If M and N
are closed 4-manifolds with isomorphic algebraic 2-types then there is a 3-connected
map f : M → P2(N). The restriction of such a map to Mo = M\D4 is homotopic
to a map fo : Mo → N which induces isomorphisms on πi for i ≤ 2. In particular,
χ(M) = χ(N). Thus if fo extends to a map from M to N we may be able to
apply Theorem 2. However we usually need more information on how the top cell
is attached. The characteristic classes and the equivariant intersection pairing on
π2(M) are the obvious candidates.

The following criterion arises in studying the homotopy types of circle bundles
over 3-manifolds. (See Chapter 4).

Theorem 3.8. Let E be a finite PD4-complex with fundamental group π and
suppose that H4(fE ;Zw1(E)) is a monomorphism. A finite PD4-complex M is
homotopy equivalent to E if and only if there is an isomorphism θ from π1(M) to
π such that w1(M) = w1(E)θ, there is a lift ĉ : M → P2(E) of θcM such that
ĉ∗[M ] = ±fE∗[E] and χ(M) = χ(E).

Proof. The conditions are clearly necessary. Conversely, suppose that they
hold. We shall adapt to our situation the arguments of Hendriks in analyzing the
obstructions to the existence of a degree 1 map between PD3-complexes realizing
a given homomorphism of fundamental groups. For simplicity of notation we shall
write Z̃ for Zw1(E) and also for Zw1(M)(= θ∗Z̃), and use θ to identify π1(M) with π
and K(π1(M), 1) with K(π, 1). We may suppose the sign of the fundamental class
[M ] is so chosen that ĉ∗[M ] = fE∗[E].

Let Eo = E\D4. Then P2(Eo) = P2(E) and may be constructed as the

union of Eo with cells of dimension ≥ 4. Let h : Z̃ ⊗Z[π] π4(P2(Eo), Eo) →
H4(P2(Eo), Eo; Z̃) be the w1(E)-twisted relative Hurewicz homomorphism, and
let ∂ be the connecting homomorphism from π4(P2(Eo), Eo) to π3(Eo) in the ex-
act sequence of homotopy for the pair (P2(Eo), Eo). Then h and ∂ are isomor-

phisms since fEo
is 3-connected. The composite of the inclusion H4(P2(E); Z̃) =

H4(P2(Eo); Z̃) → H4(P2(Eo), Eo; Z̃) with h−1 and 1 ⊗µ ∂ gives a monomorphism

τE from H4(P2(E); Z̃) to Z̃ ⊗Z[π] π3(Eo). Similarly Mo = M\D4 may be viewed

as a subspace of P2(Mo) and there is a monomorphism τM from H4(P2(M); Z̃) to

Z̃ ⊗Z[π] π3(Mo). These monomorphisms are natural with respect to maps defined
on the 3-skeleta (i.e., Eo and Mo).

The classes τE(fE∗[E]) and τM (fM∗[M ]) are the images of the primary obstruc-
tions to retracting E onto Eo and M onto Mo, under the Poincaré duality isomor-
phisms from H4(E,Eo;π3(Eo)) to H0(E\Eo; Z̃ ⊗Z[π] π3(Eo)) = Z̃ ⊗Z[π] π3(Eo) and

H4(M,Mo;π3(Mo)) to Z̃ ⊗Z[π] π3(Mo), respectively. Since Mo is homotopy equiv-
alent to a cell complex of dimension ≤ 3 the restriction of ĉ to Mo is homotopic to
a map from Mo to Eo. In particular, (1⊗Z[π] ĉ♯)τM (fM∗[M ]) = τE(fE∗[E]), where
ĉ♯ is the homomorphism from π3(Mo) to π3(Eo) induced by ĉ|Mo. It follows as in
[Hn77] that the obstruction to extending ĉ|Mo : Mo → Eo to a map d from M to
E is trivial.

Since fE∗d∗[M ] = ĉ∗[M ] = fE∗[E] and fE∗ is a monomorphism in degree 4 the
map d has degree 1, and so is a homotopy equivalence, by Theorem 2. �

If there is such a lift ĉ then c∗Mθ
∗k1(E) = 0 and θ∗cM∗[M ] = cE∗[E].
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3.2. Finitely dominated covering spaces

In this section we shall show that if a PD4-complex has an infinite regular
covering space which is finitely dominated then either the complex is aspherical or
its universal covering space is homotopy equivalent to S2 or S3. In Chapters 4 and
5 we shall see that such manifolds are close to being total spaces of fibre bundles.

Theorem 3.9. Let M be a PD4-complex with fundamental group π. Suppose

that p : M̂ → M is a regular covering map, with covering group G = Aut(p), and

such that M̂ is finitely dominated. Then

(1) G has finitely many ends;

(2) if M̂ is acyclic then it is contractible and M is aspherical;

(3) if G has one end and π1(M̂) is infinite and FP3 then M is aspherical and

either G is virtually a PD2-group and M̂ is homotopy equivalent to an

aspherical closed surface or H2(G; Z[G]) = 0 and M̂ ≃ S1;

(4) if G has one end and π1(M̂) is finite but M̂ is not acyclic then M̂ ≃ S2

or RP 2;

(5) G has two ends if and only if M̂ is a PD3-complex.

Proof. We may clearly assume that G is infinite and that M is orientable.
As Z[G] has no nonzero left ideal (i.e., submodule) which is finitely generated as

an abelian group HomZ[G](Hp(M̂ ; Z),Z[G]) = 0 for all p ≥ 0, and so the bottom
row of the UCSS for the covering p is 0. From Poincaré duality and the UCSS we

find that H1(G; Z[G]) ∼= H3(M̂ ; Z). As this group is finitely generated, and as G is
infinite, G has one or two ends.

If M̂ is acyclic then G is a PD4-group and so M̂ is a PD0-complex, hence
contractible, by [Go79]. Hence M is aspherical.

Suppose that G has one end. Then H3(M̂ ; Z) = H4(M̂ ; Z) = 0. Since M̂ is

finitely dominated the chain complex C∗(M̃) is chain homotopy equivalent over

Z[π1(M̂)] to a complex D∗ of finitely generated projective Z[π1(M̂)]-modules. If

π1(M̂) is FP3 then the aumentation Z[π1(M̂)]-module Z has a free resolution P∗
which is finitely generated in degrees ≤ 3. On applying Schanuel’s Lemma to the
exact sequences 0 → Z2 → D2 → D1 → D0 → Z → 0 and 0 → ∂P3 → P2 →
P1 → P0 → Z → 0 derived from these two chain complexes we find that Z2 is

finitely generated as a Z[π1(M̂)]-module. Hence Π = π2(M) = π2(M̂) is also

finitely generated as a Z[π1(M̂)]-module and so Homπ(Π,Z[π]) = 0. If moreover

π1(M̂) is infinite then Hs(π; Z[π]) = 0 for s ≤ 2, so Π = 0, by Lemma 3, and M is

aspherical. In particular, π1(M̂) is FP and hence torsion free. If H2(G; Z[G]) 6= 0

then π1(M̂) has one end and H2(π1(M̂); Z[π1(M̂)]) ∼= Z, by an LHSSS corner

argument. Since π1(M̂) is FP it is a PD2-group, by Theorem 3 of [Fa75], and so

M̂ is homotopy equivalent to an aspherical closed surface. The spectral sequence
also gives H2(G; Z[G]) ∼= Z, and so G is virtually a PD2-group by Bowditch’s

Theorem. If H2(G; Z[G]) = 0 then H1(π1(M̂); Z[π1(M̂)]) ∼= Z, by another LHSSS

corner argument. Hence M̂ ≃ S1, since it is aspherical and π1(M̂) is torsion free.

If π1(M̂) is finite but M̂ is not acyclic then the universal covering space M̃

is also finitely dominated but not contractible, and Π = H2(M̃ ; Z) is a nontrivial

finitely generated abelian group, while H3(M̃ ; Z) = H4(M̃ ; Z) = 0. If C is a
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finite cyclic subgroup of π there are isomorphisms Hn+3(C; Z) ∼= Hn(C; Π), for all
n ≥ 4, by Lemma 2.10. Suppose that C acts trivially on Π. Then if n is odd this
isomorphism reduces to 0 = Π/|C|Π. Since Π is finitely generated, this implies
that multiplication by |C| is an isomorphism. On the other hand, if n is even we
have Z/|C|Z ∼= {a ∈ Π | |C|a = 0}. Hence we must have C = 1. Now since Π is
finitely generated any torsion subgroup of Aut(Π) is finite. (Let T be the torsion
subgroup of Π and suppose that Π/T ∼= Zr. Then the natural homomorphism from
Aut(Π) to Aut(Π/T ) has finite kernel, and its image is isomorphic to a subgroup
of GL(r,Z), which is virtually torsion free). Hence as π is infinite it must have
elements of infinite order. Since H2(π; Z[π]) ∼= Π̄, by Lemma 3, it is a finitely
generated abelian group. Therefore it must be infinite cyclic, by Corollary 5.2 of

[Fa74]. Hence M̃ ≃ S2 and π1(M̂) has order at most 2, so M̂ ≃ S2 or RP 2.

Suppose now that M̂ is a PD3-complex. After passing to a finite covering of M ,

if necessary, we may assume that M̂ is orientable. Then H1(G; Z[G]) ∼= H3(M̂ ; Z),
and so G has two ends. Conversely, if G has two ends we may assume that G ∼= Z,

after passing to a finite covering of M , if necessary. Hence M̂ is a PD3-complex,
by [Go79] again. (See Theorem 4 of Chapter 4 below for an alternative argument,
with weaker, algebraic hypotheses). �

Is the hypothesis in (3) that π1(M̂) be FP3 redundant?

Corollary 3.9.1. The covering space M̂ is homotopy equivalent to a closed

surface if and only if it is finitely dominated, H2(G; Z[G]) ∼= Z and π1(M̂) is
FP3. �

In this case M has a finite covering space which is homotopy equivalent to the
total space of a surface bundle over an aspherical closed surface. (See Chapter 5).

Corollary 3.9.2. The covering space M̂ is homotopy equivalent to S1 if and

only if it is finitely dominated, G has one end, H2(G; Z[G]) = 0 and π1(M̂) is a
nontrivial finitely generated free group.

Proof. If M̂ ≃ S1 then it is finitely dominated and M is aspherical, and the
conditions on G follow from the LHSSS. The converse follows from part (3) of the
theorem, since a nontrivial finitely generated free group is infinite and FP . �

In fact any finitely generated free normal subgroup F of a PDn-group π
must be infinite cyclic. For π/Cπ(F ) embeds in Out(F ), so v.c.d.π/Cπ(F ) ≤
v.c.d.Out(F (r)) <∞. If F is nonabelian then Cπ(F )∩F = 1 and so c.d.π/F <∞.
Since F is finitely generated π/F is FP∞. Hence we may apply Theorem 9.11 of
[Bi], and an LHSSS corner argument gives a contradiction.

In the simply connected case “finitely dominated”, “homotopy equivalent to a
finite complex” and “having finitely generated homology” are all equivalent.

Corollary 3.9.3. If H∗(M̃ ; Z) is finitely generated then either M is aspherical

or M̃ is homotopy equivalent to S2 or S3 or π1(M) is finite. �

We shall examine the spherical cases more closely in Chapters 10 and 11. (The
arguments in these chapters may apply also to PDn-complexes with universal cov-
ering space homotopy equivalent to Sn−1 or Sn−2. The analogues in higher codi-
mensions appear to be less accessible).
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What happens if we drop the hypothesis that the covering be regular? It can
be shown that a closed 3-manifold has a finitely dominated infinite covering space
if and only if its fundamental group has one or two ends. We might conjecture that

if a closed 4-manifold M has a finitely dominated infinite covering space M̂ then

either M is aspherical or the universal covering space M̃ is homotopy equivalent
to S2 or S3 or M has a finite covering space which is homotopy equivalent to the
mapping torus of a self homotopy equivalence of a PD3-complex. (In particular,
π1(M) has one or two ends). In [Hi98’] we extend the arguments of Theorem 9

to show that if π1(M̂) is FP3 and subnormal in π the only other possibility is

that π1(M̂) has two ends, h(
√
π) = 1 and H2(π; Z[π]) is not finitely generated.

This paper also considers in more detail FP subnormal subgroups of PD4-groups,
corresponding to the aspherical case.

3.3. Minimizing the Euler characteristic

It is well known that every finitely presentable group is the fundamental group
of some closed orientable 4-manifold. Such manifolds are far from unique, for the
Euler characteristic may be made arbitrarily large by taking connected sums with
simply connected manifolds. Following Hausmann and Weinberger [HW85] we may
define an invariant q(π) for any finitely presentable group π by

q(π) = min{χ(M)|M is a PD4 complex with π1(M) ∼= π}.
We may also define related invariants qX where the minimum is taken over the
class of PD4-complexes whose normal fibration has an X-reduction. There are the
following basic estimates for qSG, which is defined in terms of PD+

4 -complexes.

Lemma 3.10. Let π be a finitely presentable group and F a field. Then
2− 2β1(π;F )+β2(π;F ) ≤ qSG(π) ≤ 2(1− def(π)). If Hq(π;F ) = 0 for q > 3 then
qSG(π) ≥ 2(1 − β1(π;F ) + β2(π;F )).

Proof. Let M be a PD+
4 -complex with π1(M) ∼= π. Then β2(M ;F ) ≥

β2(π;F ) and so the lower bound for qSG(π) follows from Poincaré duality. If C
is the finite 2-complex determined by a presentation of minimal deficiency for π
then the boundary of a regular neighbourhood of a PL embedding of C in R5 is
then a closed orientable 4-manifold realizing the upper bound.

If Hq(π;F ) = 0 for q > 3 then the image of H2(π;F ) in H2(M ;F ) has
dimension β2(π), and is self-annihilating under cup-product. Hence β2(M) ≥
2dimFH

2(π;F ) and so qSG(π) ≥ 2(1 − β1(π;F ) + β2(π;F )). �

If π is a finitely presentable, orientable PD4-group we see immediately that
qSG(π) ≥ χ(π). Since Euler characteristics are multiplicative with respect to pas-
sage to finite covers it follows easily that q(π) = χ(π) if K(π, 1) is a finite PD4-
complex. Similarly, if H is a subgroup of finite index in π then 2 − 2β1(H ;F )) +
β2(H ;F ) ≤ [π : H ]qSG(π). (This observation was used in [HW85] to give examples
of finitely presentable superperfect groups which are not fundamental groups of
homology 4-spheres).

For groups of cohomological dimension at most two we can say more.

Theorem 3.11. Let M be a finite PD4-complex with fundamental group π.
Suppose that c.d.Qπ ≤ 2 and χ(M) = 2χ(π) = 2(1 − β1(π; Q) + β2(π; Q)). Then
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π2(M) ∼= H2(π; Z[π]). If moreover c.d.π ≤ 2 the chain complex of the universal

covering space M̃ is determined up to chain homotopy equivalence over Z[π] by π.

Proof. Let AQ(π) be the augmentation ideal of Q[π]. Then there are exact
sequences

(3.1) 0 → AQ(π) → Q[π] → Q→ 0

and

(3.2) 0 → P → Q[π]g → AQ(π) → 0.

where P is a finitely generated projective module. We may assume that that π 6= 1,
i.e., that π is infinite, and that M is a finite 4-dimensional cell complex. Let C∗
be the cellular chain complex of M̃ , with coefficients Q, and let Hi = Hi(C∗) =

Hi(M̃ ; Q) and Ht = Ht(HomQ[π](C∗,Q[π])). Since M̃ is simply connected and π
is infinite, H0

∼= Q and H1 = H4 = 0. Poincaré duality gives further isomorphisms
H1 ∼= H3, H

2 ∼= H2, H
3 = 0 and H4 ∼= Q.

The chain complex C∗ breaks up into exact sequences:

(3.3) 0 → C4 → Z3 → H3 → 0,

(3.4) 0 → Z3 → C3 → Z2 → H2 → 0,

(3.5) 0 → Z2 → C2 → C1 → C0 → Q→ 0.

We shall let eiN = Exti
Q[π](N,Q[π]), to simplify the notation in what follows. The

UCSS gives isomorphisms H1 ∼= e1Q and e1H2 = e2H3 = 0 and another exact
sequence (the rational analogue of Lemma 3):

(3.6) 0 → e2Q→ H2 → e0H2 → 0.

Applying Schanuel’s Lemma to the sequences (1), (2) and (5) we obtain Z2 ⊕
C1 ⊕ Q[π] ⊕ P ∼= C2 ⊕ C0 ⊕ Q[π]g, so Z2 is a finitely generated projective module.
Similarly, Z3 is projective, since Q[π] has global dimension at most 2. Since π
is finitely presentable it is accessible, and hence e1Q is finitely generated as a
Q[π]-module, by Theorems IV.7.5 and VI.6.3 of [DD]. Therefore Z3 is also finitely

generated, since it is an extension of H3
∼= e1Q by C4. Dualizing the sequence (4)

and using the fact that e1H2 = 0 we obtain an exact sequence of right modules

(3.7) 0 → e0H2 → e0Z2 → e0C3 → e0Z3 → e2H2 → 0.

Since duals of finitely generated projective modules are projective it follows that
e0H2 is projective. Hence the sequence (6) gives H2 ∼= e0H2 ⊕ e2Q.

Dualizing the sequences (1) and (2), we obtain exact sequences of right modules

(3.8) 0 → Q[π] → e0AQ(π) → e1Q→ 0

and

(3.9) 0 → e0AQ(π) → Q[π]g → e0P → e2Q→ 0.

Applying Schanuel’s Lemma twice more, to the pairs of sequences (3) and the

conjugate of (8) (using H3
∼= e1Q) and to (4) and the conjugate of (9) (using

H2
∼= e0H2⊕e2Q) and putting all together, we obtain an isomorphism Z3⊕(Q[π]2g⊕

C0 ⊕C2 ⊕C4) ∼= Z3 ⊕ (Q[π]2 ⊕P ⊕ e0P ⊕C1 ⊕C3 ⊕ e0H2). On tensoring with the

augmentation module we find that dimQ(Q⊗π e0H2)+dimQ(Q⊗πP )+dimQ(Q⊗π
e0P ) = χ(M) + 2g − 2. Now dimQ(Q ⊗π P ) = dimQ(Q ⊗π e0P ) = g + β2(π; Q) −
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β1(π; Q), so dimQ(Q ⊗π e0H2) = χ(M) − 2χ(π) = 0. Hence e0H2 = 0, since π

satisfies the Weak Bass Conjecture [Ec86]. As HomZ[π](H2(M̃ ; Z),Z[π]) ≤ e0H2 it

follows from Lemma 3 that π2(M) ∼= H2(M̃ ; Z) ∼= H2(π; Z[π]).
If c.d.π ≤ 2 then e1Z has a short finite projective resolution, and hence so does

Z3 (via (2)). The argument can then be modified to work over Z[π]. As Z1 is

then projective, the integral chain complex of M̃ is the direct sum of a projective
resolution of Z with a projective resolution of π2(M) with degree shifted by 2. �

There are many natural examples of such manifolds for which c.d.Qπ ≤ 2 and
χ(M) = 2χ(π) but π is not torsion free. (See Chapters 10 and 11). However all
the known examples satisfy v.c.d.π ≤ 2.

Similar arguments may be used to prove the following variations.

Addendum. If S is a subring of Q and c.d.Sπ ≤ 2 then q(π) ≥ 2(1−β1(π;S)+
β2(π;S)). If moreover the augmentation S[π]-module S has a finitely generated free

resolution then S ⊗ π2(M) is stably isomorphic to H2(π;S[π]). �

Corollary 3.11.1. If H2(π; Q) 6= 0 the Hurewicz homomorphism from π2(M)
to H2(M ; Q) is nonzero.

Proof. By the addendum to the theorem, H2(M ; Q) has dimension at least
2β2(π), and so cannot be isomorphic to H2(π; Q) unless both are 0. �

Corollary 3.11.2. If π = π1(P ) where P is an aspherical finite 2-complex
then q(π) = 2χ(P ). The minimum is realized by an s-parallelizable PL 4-manifold.

Proof. If we choose a PL embedding j : P → R5, the boundary of a regular
neighbourhood N of j(P ) is an s-parallelizable PL 4-manifold with fundamental
group π and with Euler characteristic 2χ(P ). �

By Theorem 2.8 a finitely presentable group is the fundamental group of an
aspherical finite 2-complex if and only if it has cohomological dimension ≤ 2 and is
efficient, i.e. has a presentation of deficiency β1(π; Q) − β2(π; Q). It is not known
whether every finitely presentable group of cohomological dimension 2 is efficient.

In Chapter 5 we shall see that if P is an aspherical closed surface and M is a
closed 4-manifold with π1(M) ∼= π then χ(M) = q(π) if and only if M is homotopy
equivalent to the total space of an S2-bundle over P . The homotopy types of such
minimal 4-manifolds for π may be distinguished by their Stiefel-Whitney classes.
Note that if π is orientable then S2×P is a minimal 4-manifold for π which is both
s-parallelizable and also a projective algebraic complex surface. Note also that
the conjugation of the module structure in the theorem involves the orientation
character of M which may differ from that of the PD2-group π.

Corollary 3.11.3. If π is the group of an unsplittable µ-component 1-link
then q(π) = 0. �

If π is the group of a µ-component n-link with n ≥ 2 then H2(π; Q) = 0 and so
q(π) ≥ 2(1−µ), with equality if and only if π is the group of a 2-link. (See Chapter
14).

Corollary 3.11.4. If π is an extension of Z by a finitely generated free normal
subgroup then q(π) = 0. �
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In Chapter 4 we shall see that if M is a closed 4-manifold with π1(M) such an
extension then χ(M) = q(π) if and only if M is homotopy equivalent to a manifold
which fibres over S1 with fibre a closed 3-manifold with free fundamental group,
and then π and w1(M) determine the homotopy type.

Finite generation of the normal subgroup is essential; F (2) is an extension of
Z by F (∞), and q(F (2)) = 2χ(F (2)) = −2.

Let π be the fundamental group of a closed orientable 3-manifold. Then π ∼=
F ∗ ν where F is free of rank r and ν has no infinite cyclic free factors. Moreover
ν = π1(N) for some closed orientable 3-manifold N . If M0 is the closed 4-manifold
obtained by surgery on {n} × S1 in N × S1 then M = M0♯(♯

r(S1 × S3) is a
smooth s-parallelisable 4-manifold with π1(M) ∼= π and χ(M) = 2(1 − r). Hence
qSG(π) = 2(1 − r), by Lemma 10.

The arguments of Theorem 11 give stronger results in this case also.

Theorem 3.12. Let M be a finite PD4-complex whose fundamental group π
is a PD3-group such that w1(π) = w1(M). Then χ(M) > 0 and π2(M) is stably
isomorphic to the augmentation ideal A(π) of Z[π].

Proof. The cellular chain complex for the universal covering space of M gives
exact sequences

(3.10) 0 → C4 → C3 → Z2 → H2 → 0

and

(3.11) 0 → Z2 → C2 → C1 → C0 → Z → 0.

Since π is a PD3-group the augmentation module Z has a finite projective resolu-
tion of length 3. On comparing sequence (2) with such a resolution and applying
Schanuel’s lemma we find that Z2 is a finitely generated projective Z[π]-module.
Since π has one end, the UCSS reduces to an exact sequence

(3.12) 0 → H2 → e0H2 → e3Z → H3 → e1H2 → 0

and isomorphisms H4 ∼= e2H2 and e3H2 = e4H2 = 0. Poincaré duality implies that
H3 = 0 and H4 ∼= Z. Hence (3) reduces to

(3.13) 0 → H2 → e0H2 → e3Z → 0

and e1H2 = 0. Hence on dualizing the sequence (1) we get an exact sequence of
right modules

(3.14) 0 → e0H2 → e0Z2 → e0C3 → e0C4 → e2H2 → 0.

Schanuel’s lemma again implies that e0H2 is a finitely generated projective module.
Therefore we may splice together (1) and the conjugate of (4) to get

(3.15) 0 → C4 → C3 → Z2 → e0H2 → Z → 0.

(Note that we have used the hypothesis on w1(M) here). Applying Schanuel’s
lemma once more to the pair of sequences (2) and (6) we obtain C0⊕C2⊕C4⊕Z2

∼=
e0H2 ⊕ C1 ⊕ C3 ⊕ Z2. Hence e0H2 is stably free, of rank χ(M). Since e0H2 maps
onto Z, by (6), χ(M) > 0. Since π is a PD3-group, e3Z ∼= Z and so the final
assertion follows from (4) and Schanuel’s Lemma. �

Corollary 3.12.1. 1 ≤ q(π) ≤ 2.
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Proof. If M is a finite PD4-complex with π1(M) ∼= π then the covering space
associated to the kernel of w1(M) − w1(π) satisfies the condition on w1. Since the
condition χ(M) > 0 is invariant under passage to finite covers, q(π) ≥ 1.

Let N be a PD3-complex with fundamental group π. We may suppose that
N = No ∪D3, where No ∩D3 = S2. Let M = No × S1 ∪ S2 ×D2. Then M is a
finite PD4-complex, χ(M) = 2 and π1(M) ∼= π. Hence q(π) ≤ 2. �

Can Theorem 12 be extended to all torsion free 3-manifold groups, or more
generally to all free products of PD3-groups?

A simple application of Schanuel’s Lemma to C∗(M̃) shows that if M is a finite
PD4-complex with fundamental group π such that c.d.π ≤ 4 and e(π) = 1 then
π2(M) has projective dimension at most 2. If moreover π is an FF PD4-group and
cM has degree 1 then π2(M) is stably free of rank χ(M) − χ(π), by the argument
of Lemma 1 and Theorem 2.

There has been some related work estimating the difference χ(M) − |σ(M)|
where M is a closed orientable 4-manifold M with π1(M) ∼= π and where σ(M)
is the signature of M . The papers [JK93] and [Lü94] consider the groups π for

which this difference is always ≥ 0; in particular, this is so if β
(2)
1 (π) = 0 [Lü94].

The minimum value of this difference (p(π) = min{χ(M) − |σ(M)|}) is another
numerical invariant of π, which is studied in [Ko94].

3.4. Euler Characteristic 0

In this section we shall consider the interaction of the fundamental group and
Euler characteristic from another point of view. We shall assume that χ(M) = 0 and
show that if π is an ascending HNN extension then it satisfies some very stringent
conditions. The groups Z∗m shall play an important role. We shall approach our
main result via several lemmas.

We begin with a simple observation relating Euler characteristic and funda-
mental group which shall be invoked in several of the later chapters. Recall that if
G is a group then I(G) is the minimal normal subgroup such that G/I(G) is free
abelian.

Lemma 3.13. Let M be a PD4-complex with χ(M) ≤ 0. If M is orientable
then H1(M ; Z) 6= 0 and so π = π1(M) maps onto Z. If H1(M ; Z) = 0 then π maps
onto D.

Proof. The covering space MW corresponding to W = Ker(w1(M)) is ori-
entable and χ(MW ) = 2 − 2β1(MW ) + β2(MW ) = [π : W ]χ(M) ≤ 0. Therefore
β1(W ) = β1(MW ) > 0 and so W/I(W ) ∼= Zr for some r > 0. Since I(W ) is
characteristic in W it is normal in π. As [π : W ] ≤ 2 it follows easily that π/I(W )
maps onto Z or D. �

Note that if M = RP 4♯RP 4, then χ(M) = 0 and π1(M) ∼= D, but π1(M) does
not map onto Z.

Lemma 3.14. Let M be a PD+
4 -complex such that χ(M) = 0 and π = π1(M)

is an extension of Z∗m by a finite normal subgroup F , for some m 6= 0. Then the
abelian subgroups of F are cyclic. If F 6= 1 then π has a subgroup of finite index
which is a central extension of Z∗n by a nontrivial finite cyclic group, where n is a
power of m.
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Proof. Let M̂ be the infinite cyclic covering space corresponding to the sub-

group I(π). Since M is compact and Λ = Z[Z] is noetherian the groupsHi(M̂ ; Z) =
Hi(M ; Λ) are finitely generated as Λ-modules. Since M is orientable, χ(M) = 0
and H1(M ; Z) has rank 1 they are Λ-torsion modules, by the Wang sequence for the

projection of M̂ onto M . Now H2(M̂ ; Z) ∼= Ext1Λ(I(π)/I(π)′,Λ), by Poincaré dual-
ity. There is an exact sequence 0 → T → I(π)/I(π)′ → I(Z∗m) ∼= Λ/(t−m) → 0,
where T is a finite Λ-module. Therefore Ext1Λ(I(π)/I(π)′,Λ) ∼= Λ/(t−m) and so
H2(I(π); Z) is a quotient of Λ/(mt− 1), which is isomorphic to Z[ 1

m ] as an abelian

group. Now I(π)/Ker(f) ∼= Z[ 1
m ] also, and H2(Z[ 1

m ]; Z) ∼= Z[ 1
m ] ∧ Z[ 1

m ] = 0 (see
page 334 of [Ro]). Hence H2(I(π); Z) is finite, by an LHSSS argument, and so is
cyclic, of order relatively prime to m.

Let t in π generate π/I(π) ∼= Z. Let A be a maximal abelian subgroup of F
and let C = Cπ(A). Then q = [π : C] is finite, since F is finite and normal in π. In
particular, tq is in C and C maps onto Z, with kernel J , say. Since J is an extension
of Z[ 1

m ] by a finite normal subgroup its centre ζJ has finite index in J . Therefore
the subgroup G generated by ζJ and tq has finite index in π, and there is an
epimorphism f from G onto Z∗mq , with kernel A. Moreover I(G) = f−1(I(Z∗mq))
is abelian, and is an extension of Z[ 1

m ] by the finite abelian group A. Hence it is

isomorphic to A⊕ Z[ 1
m ] (see page 106 of [Ro]). Now H2(I(G); Z) is cyclic of order

prime to m. On the other hand H2(I(G); Z) ∼= (A ∧ A) ⊕ (A ⊗ Z[ 1
m ]) and so A

must be cyclic.
If F 6= 1 then A is cyclic, nontrivial, central in G and G/A ∼= Z∗mq . �

Lemma 3.15. Let M be a finite PD4-complex with fundamental group π. Sup-
pose that π has a nontrivial finite cyclic central subgroup F with quotient G = π/F
such that g.d.G = 2, e(G) = 1 and def(G) = 1. Then χ(M) ≥ 0. If χ(M) = 0 and
Fp[G] is a weakly finite ring for some prime p dividing |F | then π is virtually Z2.

Proof. Let M̂ be the covering space of M with group F , and let Ξ = Fp[G].
Let C∗ = C∗(M ; Ξ) = Fp ⊗ C∗(M) be the equivariant cellular chain complex of

M̂ with coefficients Fp, and let cq be the number of q-cells of M , for q ≥ 0. Let

Hp = Hp(M ; Ξ) = Hp(M̂ ; Fp). For any left Ξ-module H let eqH = ExtqΞ(H,Ξ).

Suppose first that M is orientable. Since M̂ is a connected open 4-manifold
H0 = Fp and H4 = 0, while H1

∼= Fp also. Since G has one end Poincaré duality
and the UCSS give H3 = 0 and e2H2

∼= Fp, and an exact sequence

0 → e2Fp → H2 → e0H2 → e2H1 → H1 → e1H2 → 0.

In particular, e1H2
∼= Fp or is 0. Since g.d.G = 2 and def(G) = 1 the augmentation

module has a resolution 0 → Ξr → Ξr+1 → Ξ → Fp → 0. The chain complex C∗
gives four exact sequences 0 → Z1 → C1 → C0 → Fp → 0, 0 → Z2 → C2 →
Z1 → Fp → 0, 0 → B2 → Z2 → H2 → 0 and 0 → C4 → C3 → B2 → 0. Using
Schanuel’s Lemma several times we find that the cycle submodules Z1 and Z2 are
stably free, of stable ranks c1 − c0 and c2 − c1 + c0, respectively. Dualizing the last
two sequences gives two new sequences 0 → e0B2 → e0C3 → e0C4 → e1B2 → 0 and
0 → e0H2 → e0Z2 → e0B2 → e1H2 → 0, and an isomorphism e1B2

∼= e2H2
∼= Fp.

Further applications of Schanuel’s Lemma show that e0B2 is stably free of rank
c3 − c4, and hence that e0H2 is stably free of rank c2 − c1 + c0 − (c3 − c4) = χ(M).
(Note that we do not need to know whether e1H2

∼= Fp or is 0, at this point). Since
Ξ maps onto the field Fp the rank must be non-negative, and so χ(M) ≥ 0.



48 3. HOMOTOPY INVARIANTS OF PD4-COMPLEXES

If χ(M) = 0 and Ξ = Fp[G] is a weakly finite ring then e0H2 = 0 and so

e2Fp = e2H1 is a submodule of Fp ∼= H1. Moreover it cannot be 0, for otherwise
the UCSS would give H2 = 0 and then H1 = 0, which is impossible. Therefore
e2Fp ∼= Fp.

If M is nonorientable and p > 2 the above argument applies to the orientation
cover, since p divides |Ker(w1(M)|F )|, and Euler characteristic is multiplicative in
finite covers. If p = 2 a similar argument applies directly without assuming that
M is orientable.

Since G is torsion free and indicable it must be a PD2-group, by Theorem
V.12.2 of [DD]. Since def(G) = 1 it follows that G is virtually Z2, and hence that
π is also virtually Z2. �

We may now give the main result of this section.

Theorem 3.16. Let M be a finite PD4-complex whose fundamental group π is
an ascending HNN extension with finitely generated base B. Then χ(M) ≥ 0, and
hence q(π) ≥ 0. If χ(M) = 0 and B is FP2 and finitely ended then either π has
two ends or has a subgroup of finite index which is isomorphic to Z2 or π ∼= Z∗m
or Z ∗m ×̃(Z/2Z) for some m 6= 0 or ±1 or M is aspherical.

Proof. The L2 Euler characteristic formula gives χ(M) = β
(2)
2 (M) ≥ 0, since

β
(2)
i (M) = β

(2)
i (π) = 0 for i = 0 or 1, by Lemma 2.1.

Let φ : B → B be the monomorphism determining π ∼= B∗φ. If B is finite
then φ is an automorphism and so π has two ends. If B is FP2 and has one end
then Hs(π; Z[π]) = 0 for s ≤ 2, by the Brown-Geoghegan Theorem. If moreover
χ(M) = 0 then M is aspherical, by Corollary 5.1.

If B has two ends then it is an extension of Z or D by a finite normal subgroup
F . As φ must map F isomorphically to itself, F is normal in π, and is the maximal
finite normal subgroup of π. Moreover π/F ∼= Z∗m, for some m 6= 0, if B/F ∼= Z,
and is a semidirect product Z ∗m ×̃(Z/2Z), with a presentation 〈a, t, u | tat−1 =
am, tut−1 = uar, u2 = 1, uau = a−1〉, for some m 6= 0 and some r ∈ Z, if B/F ∼= D.
(We may in fact assume that r = 0 or 1).

Suppose first that M is orientable, and that F 6= 1. Then π has a subgroup
σ of finite index which is a central extension of Z∗mq by a finite cyclic group, for
some q ≥ 1, by Lemma 14. Let p be a prime dividing q. Since Z∗mq is a torsion
free solvable group the ring Ξ = Fp[Z∗mq ] has a skew field of fractions L, which as
a right Ξ-module is the direct limit of the system {Ξθ | 0 6= θ ∈ Ξ}, where each
Ξθ = Ξ, the index set is ordered by right divisibility (θ ≤ φθ) and the map from Ξθ
to Ξφθ sends ξ to φξ [KLM88]. In particular, Ξ is a weakly finite ring and so σ is
torsion free, by Lemma 15. Therefore F = 1.

If M is nonorientable then w1(M)|F must be injective, and so another appli-
cation of Lemma 15 (with p = 2) shows again that F = 1. �

Is M still aspherical if B is assumed only finitely generated and one ended?

Corollary 3.16.1. Let M be a finite PD4-complex such that χ(M) = 0 and
π = π1(M) is almost coherent and restrained. Then either π has two ends or is
virtually Z2 or π ∼= Z∗m or Z∗m×̃(Z/2Z) for some m 6= 0 or ±1 or M is aspherical.

Proof. Let π+ = Ker(w1(M)). Then π+ maps onto Z, by Lemma 13, and so
is an ascending HNN extension π+ ∼= B∗φ with finitely generated base B. Since π
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is almost coherent B is FP2, and since π has no nonabelian free subgroup B has
at most two ends. Hence Lemma 15 and Theorem 16 apply, so either π has two
ends or M is aspherical or π+ ∼= Z∗m or Z ∗m ×̃(Z/2Z) for some m 6= 0 or ±1.
In the latter case

√
π is isomorphic to a subgroup of the additive rationals Q, and√

π = Cπ(
√
π). Hence the image of π in Aut(

√
π) ≤ Q× is infinite. Therefore π

maps onto Z and so is an ascending HNN extension B∗φ, and we may again use
Theorem 16. �

Does this corollary remain true without the hypothesis that π be almost coher-
ent?

There are nine groups which are virtually Z2 and are fundamental groups of
PD4-complexes with Euler characteristic 0. (See Chapter 11). Are any of the
semidirect products Z ∗m ×̃(Z/2Z) realized by PD4-complexes with χ = 0? If M
is aspherical must π be virtually poly-Z? (Aspherical 4-manifolds with virtually
poly-Z fundamental groups are characterized in Chapter 8).

Let G is a group with a presentation of deficiency d and w : G → {±1} be a
homomorphism, and let 〈xi, 1 ≤ i ≤ m | rj , 1 ≤ j ≤ n〉 be a presentation for G with
m− n = d. We may assume that w(xi) = +1 for i ≤ m− 1. Let X = ♮m(S1 ×D3)
if w = 1 and X = (♮m−1(S1 × D3))♮(S1×̃D3) otherwise. The relators rj may be
represented by disjoint orientation preserving embeddings of S1 in ∂X , and so we
may attach 2-handles along product neighbourhoods, to get a bounded 4-manifold
Y with π1(Y ) = G, w1(Y ) = w and χ(Y ) = 1 − d. Doubling Y gives a closed
4-manifold M with χ(M) = 2(1 − d) and (π1(M), w1(M)) isomorphic to (G,w).

Since the groups Z∗m have deficiency 1 it follows that any homomorphism
w : Z∗m → {±1} may be realized as the orientation character of a closed 4-manifold
with fundamental group Gm and Euler characteristic 0. What other invariants are
needed to determine the homotopy type of such a manifold?





CHAPTER 4

Mapping tori and circle bundles

Stallings showed that ifM is a 3-manifold and f : M → S1 a map which induces
an epimorphism f∗ : π1(M) → Z with infinite kernel K then f is homotopic to a
bundle projection if and only if M is irreducible and K is finitely generated. Farrell
gave an analogous characterization in dimensions ≥ 6, with the hypotheses that the
homotopy fibre of f is finitely dominated and a torsion invariant τ(f) ∈Wh(π1(M))
is 0 . The corresponding results in dimensions 4 and 5 are constrained by the present
limitations of geometric topology in these dimensions. (In fact there are counter-
examples to the most natural 4-dimensional analogue of Farrell’s theorem [We87]).

Quinn showed that the total space of a fibration with finitely dominated base
and fibre is a Poincaré duality complex if and only if both the base and fibre are
Poincaré duality complexes. (See [Go79] for a very elegant proof of this result).
The main result of this chapter is a 4-dimensional homotopy fibration theorem
with hypotheses similar to those of Stallings and a conclusion similar to that of
Quinn and Gottlieb.

The mapping torus of a self homotopy equivalence f : X → X is the space
M(f) = X × [0, 1]/ ∼, where (x, 0) ∼ (f(x), 1) for all x ∈ X . If X is finitely domi-
nated then π1(M(f)) is an extension of Z by a finitely presentable normal subgroup
and χ(M(f)) = χ(X)χ(S1) = 0. We shall show that a finite PD4-complex M is
homotopy equivalent to such a mapping torus, with X a PD3-complex, if and only
if π1(M) is such an extension and χ(M) = 0.

In the final section we consider instead bundles with fibre S1. We give condi-
tions for a 4-manifold to be homotopy equivalent to the total space of an S1-bundle
over a PD3-complex, and show that these conditions are sufficient if the fundamen-
tal group of the PD3-complex is torsion free but not free.

4.1. Some necessary conditions

Let E be a connected cell complex and let f : E → S1 be a map which induces
an epimorphism f∗ : π1(E) → Z, with kernel ν. The associated covering space with
group ν is Eν = E ×S1 R = {(x, y) ∈ E ×R | f(x) = e2πiy}, and E ≃M(φ), where
φ : Eν → Eν is the generator of the covering group given by φ(x, y) = (x, y+ 1) for
all (x, y) in Eν . If E is a PD4-complex and Eν is finitely dominated then Eν is a
PD3-complex, by Quinn’s result. In particular, ν is FP2 and χ(E) = 0. The latter
conditions characterize aspherical mapping tori, by the following theorem.

Theorem 4.1. Let M be a finite PD4-complex whose fundamental group π is
an extension of Z by a finitely generated normal subgroup ν, and let Mν be the
infinite cyclic covering space corresponding to the subgroup ν. Then

(1) χ(M) ≥ 0, with equality if and only if H2(Mν ; Q) is finitely generated;
(2) if χ(M) = 0 then M is aspherical if and only if ν is infinite and

51
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H2(π; Z[π]) = 0;
(3) Mν is an aspherical PD3-complex if and only if χ(M) = 0 and ν is

almost finitely presentable and has one end.

Proof. Since M is a finite complex and QΛ = Q[t, t−1] is noetherian the ho-
mology groups Hq(Mν ; Q) are finitely generated as QΛ-modules. Since ν is finitely
generated they are finite dimensional as Q-vector spaces if q < 2, and hence also
if q > 2, by Poincaré duality. Now H2(Mν ; Q) ∼= Qr ⊕ (QΛ)s for some r, s ≥ 0,
by the Structure Theorem for modules over a PID. It follows easily from the Wang
sequence for the covering projection from Mν to M , that χ(M) = s ≥ 0.

Since ν is finitely generated β
(2)
1 (π) = 0, by Lemma 2.1. If M is aspherical

then clearly ν is infinite and H2(π; Z[π]) = 0. Conversely, if these conditions hold
then Hs(π; Z[π]) = 0 for s ≤ 2. Hence if moreover χ(M) = 0 then M is aspherical,
by Corollary 3.5.2

If ν is FP2 and has one end then H2(π; Z[π]) ∼= H1(ν; Z[ν]) = 0, by the LHSSS.
As M is aspherical ν is a PD3-group, by Theorem 1.20, and therefore is finitely
presentable, by Theorem 1.1 of [KK99]. Hence Mν ≃ K(ν, 1) is finitely dominated
and so is a PD3-complex [Br72]. �

In particular, if χ(M) = 0 then q(π) = 0. This observation and the bound
χ(M) ≥ 0 were given in Theorem 3.16. (They also follow on counting bases for the
cellular chain complex of Mν and extending coefficients to Q(t)).

Let F be the orientable surface of genus 2. Then M = F × F is an aspher-
ical closed 4-manifold, and π ∼= G × G where G = π1(F ) has a presentation
〈a1, a2, b1, b2 | [a1, b1] = [a2, b2]〉. The subgroup ν ≤ π generated by the images
of (a1, a1) and the six elements (x, 1) and (1, x), for x = a2, b1 or b2, is normal
in π and π/ν ∼= Z. However ν cannot be FP2 since χ(π) = 4 6= 0. Is there an
aspherical 4-manifold M such that π1(M) is an extension of Z by a finitely gener-
ated subgroup ν which is not FP2 and with χ(M) = 0? (Note that H2(ν; Q) must
be finitely generated, so showing that ν is not finitely related may require some
finesse).

If H2(π; Z[π]) = 0 then H1(ν; Z[ν]) = 0, by an LHSSS argument, and so ν
must have one end, if it is infinite. Can the hypotheses of (2) above be replaced
by “χ(M) = 0 and ν has one end”? It can be shown that the finitely generated
subgroup N of F (2) × F (2) defined after Theorem 2.4 has one end. However
H2(F (2)×F (2); Z[F (2)×F (2)]) 6= 0. (Note that q(F (2)×F (2)) = 2, by Corollary
3.11.2).

4.2. Change of rings and cup products

In the next two sections we shall adapt and extend work of Barge in setting up
duality maps in the equivariant (co)homology of covering spaces.

Let π be an extension of Z by a normal subgroup ν and fix an element t of π
whose image generates π/ν. Let α : ν → ν be the automorphism determined by
α(h) = tht−1 for all h in ν. This automorphism extends to a ring automorphism
(also denoted by α) of the group ring Z[ν], and the ring Z[π] may then be viewed
as a twisted Laurent extension, Z[π] = Z[ν]α[t, t−1]. The quotient of Z[π] by the
two-sided ideal generated by {h−1|h ∈ ν} is isomorphic to Λ, while as a left module
over itself Z[ν] is isomorphic to Z[π]/Z[π](t − 1) and so may be viewed as a left
Z[π]-module. (Note that α is not a module automorphism unless t is central).
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If M is a left Z[π]-module let M |ν denote the underlying Z[ν]-module, and let

M̂ = HomZ[ν](M |ν ,Z[ν]). Then M̂ is a right Z[ν]-module via (fξ)(m) = f(m)ξ

for all ξ in Z[ν], f in M̂ and m in M . If M = Z[π] then Ẑ[π] is also a left Z[π]-

module via (φtrf)(ξts) = ξα−s(φ)f(ts−r) for all f in Ẑ[π], φ, ξ in ν and r, s in

Z. As the left and right actions commute Ẑ[π] is a (Z[π],Z[ν])-bimodule. We may
describe this bimodule more explicitly. Let Z[ν][[t, t−1]] be the set of doubly infinite
power series Σn∈Ztnφn with φn in Z[ν] for all n in Z, with the obvious right Z[ν]-
module structure, and with the left Z[π]-module structure given by φtr(Σtnφn) =
Σtn+rα−n−r(φ)φn for all φ, φn in Z[ν] and r in Z. (Note that even if ν = 1 this

module is not a ring in any natural way). Then the homomorphism j : Ẑ[π] →
Z[ν][[t, t−1]] given by j(f) = Σtnf(tn) for all f in Ẑ[π] is a (Z[π],Z[ν])-bimodule
isomorphism. (Indeed, it is clearly an isomorphism of right Z[ν]-modules, and we

have defined the left Z[π]-module structure on Ẑ[π] by pulling back the one on
Z[ν][[t, t−1]]).

For each f in M̂ we may define a function TMf : M → Ẑ[π] by the rule
(TMf)(m)(tn) = f(t−nm) for all m in M and n in Z. It is easily seen that

TMf is Z[π]-linear, and that TM : M̂ → HomZ[π](M, Ẑ[π]) is an isomorphism

of abelian groups. (It is clearly a monomorphism, and if g : M → Ẑ[π] is Z[π]-
linear then g = TMf where f(m) = g(m)(1) for all m in M . In fact if we give

HomZ[π](M, Ẑ[π]) the natural right Z[ν]-module structure by (µφ)(m) = µ(m)φ

for all φ ∈ Z[ν], Z[π]-homomorphisms µ : M → Ẑ[π] and m ∈ M then TM
is an isomorphism of right Z[ν]-modules). Thus we have a natural equivalence

T : HomZ[ν](−|ν ,Z[ν]) ⇒ HomZ[π](−, Ẑ[π]) of functors from ModZ[π] to ModZ[ν].
If C∗ is a chain complex of left Z[π]-modules T induces natural isomorphisms from

H∗(C∗|ν ; Z[ν]) = H∗(HomZ[ν](C∗|ν ,Z[ν]) to H∗(C∗; v) = H∗(HomZ[π](C∗, Ẑ[π])).
In particular, since the forgetful functor −|ν is exact and takes projectives to pro-

jectives there are isomorphisms from Ext∗
Z[ν](M |ν ,Z[ν]) to Ext∗

Z[π](M, Ẑ[π]) which

are functorial in M .
If M and N are left Z[π]-modules let M ⊗ N denote the tensor product over

Z with the diagonal left π-action, defined by g(m⊗ n) = gm⊗ gn for all m ∈ M ,
n ∈ N and g ∈ π. The function pM : Λ ⊗M →M defined by pM (λ⊗m) = λ(1)m
is then a Z[π]-linear epimorphism.

We shall define products in cohomology by means of the Z[π]-linear homo-

morphism e : Λ ⊗ Ẑ[π] → Z[π] given by e(tn ⊗ f) = tnf(tn) for all f in Ẑ[π]
and n in Z. Let A∗ be a Λ-chain complex and B∗ a Z[π]-chain complex and give
the tensor product the total grading A∗ ⊗ B∗ and differential and the diagonal
π-action. Let e♯ be the change of coefficients homomorphism induced by e, and let

u ∈ Hp(A∗; Λ) and v ∈ Hq(B∗; Ẑ[π]). Then u ⊗ v 7→ e♯(u × v) defines a pairing

from Hp(A∗; Λ) ⊗Hq(B∗; Ẑ[π]) to Hp+q(A∗ ⊗B∗; Z[π]).
Now let A∗ be the Λ-chain complex concentrated in degrees 0 and 1 with

A0 and A1 free of rank 1, with bases {a0} and {a1}, respectively, and with ∂1 :
A1 → A0 given by ∂1(a1) = (t − 1)a0. Let ηA : A1 → Λ be the isomorphism
determined by ηA(a1) = 1, and let αA : A0 → Z be the augmentation determined
by αA(a0) = 1. Then [ηA] generates H1(A∗; Λ). Let B∗ be a projective Z[π]-chain
complex and let pB∗ : A∗ ⊗ B∗ → B∗ be the chain homotopy equivalence defined
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by pBj((λa0) ⊗ bj) = λ(1)bj and pBj((λa1) ⊗ bj−1) = 0, for all λ ∈ Λ, bj−1 ∈ Bj−1

and bj ∈ Bj . Let jB∗ : B∗ → A∗ ⊗ B∗ be a chain homotopy inverse to pB∗. Let

hZ[π]([φ]) = j∗Be♯([ηA]× [φ]) for φ : Bq → Ẑ[π] such that φ∂q+1 = 0. If f : B∗ → B′
∗

is a chain homomorphism of projective Z[π]-chain complexes then hZ[π]([φfq]) =

f∗hZ[π]([φ]). Thus the homomorphisms hZ[π] : Hq(B∗; Ẑ[π]) → Hq+1(B∗; Z[π]) are
functorial in B∗. In particular, if B∗ is a projective resolution of the Z[π]-module

M we obtain homomorphisms hZ[π] : Extq
Z[π](M, Ẑ[π]) → Extq+1

Z[π](M,Z[π]) which

are functorial in M .

Lemma 4.2. Let M be a Z[π]-module such that M |ν is finitely generated as a

Z[ν]-module. Then hZ[π] : HomZ[π](M, Ẑ[π]) → Ext1
Z[π](M,Z[π]) is injective.

Proof. Let B∗ be a projective resolution of the Z[π]-module M and let q :
B0 → M be the defining epimorphism (so that q∂1 = 0). We may use compo-

sition with q to identify HomZ[π](M, Ẑ[π]) with the submodule of 0-cocycles in

Hom(B∗, Ẑ[π]), and we set hZ[π](φ) = hZ[π]([φq]) for all φ : M → Ẑ[π].

Suppose that hZ[π](φ) = 0 and let g = φq : B0 → Ẑ[π]. Then e♯([ηA]× [g]) = δf
for some Z[π]-linear homomorphism f : A0 ⊗ B0 → Z[π]. We may write g(b) =
Σtngn(b) = Σtng0(t

−nb), where g0 : B0 → Z[ν] is Z[ν]-linear (and g0∂1 = 0).
We then have g0(b) = f((t − 1)a0 ⊗ b) for all b ∈ B0, while f(1 ⊗ ∂1) = 0. Let
k(b) = f(a0 ⊗ b) for b ∈ B0. Then k : B0 → Z[π] is Z[ν]-linear, and k∂1 = 0, so k
factors through M . In particular, k(B0) is finitely generated as a Z[ν]-submodule
of Z[π]. But as S =

⊕
tnR and g0(b) = tk(t−1b) − k(b) for all b ∈ B0, this is only

possible if k = g0 = 0. Therefore φ = 0 and so hZ[π] is injective. �

Let B∗ be a projective Z[π]-chain complex such that Bj = 0 for j < 0 and
H0(B∗) ∼= Z. Then there is a Z[π]-chain homomorphism ǫB∗ : B∗ → A∗ which
induces an isomorphism H0(B∗) ∼= H0(A∗), and αB = αAǫB0 : B0 → Z is a
generator of H0(B∗; Z). Let ηB = ηAǫB1 : B1 → Λ. If moreover H1(B∗) = 0 then
H1(B∗; Λ) ∼= Z and is generated by [ηB] = ǫ∗B([ηA])

4.3. The case ν = 1

When ν = 1 (so Z[π] = Λ) we shall show that hΛ is an equivalence, and relate
it to other more explicit homomorphisms. Let S be the multiplicative system in
Λ consisting of monic polynomials with constant term ±1. Let Lexp(f, a) be the
Laurent expansion of the rational function f about a. Then ℓ(f) = Lexp(f,∞) −
Lexp(f, 0) defines a homomorphism from the localization ΛS to Λ̂ = Z[[t, t−1]],
with kernel Λ. (Barge used a similar homomorphism to embed Q(t)/Λ in Q[[t, t−1]]

[Ba 80]). Let χ : Λ̂ → Z be the additive homomorphism defined by χ(Σtnfn) = f0.
(This is a version of the “trace” function used by Trotter to relate Seifert forms
and Blanchfield pairings on a knot module M [Tr78]).

Let M be a Λ-module which is finitely generated as an abelian group, and let N
be its maximal finite submodule. Then M/N is Z-torsion free and AnnΛ(M/N) =
(λM ), where λM is the minimal polynomial of t, considered as an automorphism of
(M/N)|Z [H1]. Since M |Z is finitely generated λM ∈ S. The inclusion of ΛS/Λ in
Q(t)/Λ induces an isomorphism D(M) = HomΛ(M,ΛS/Λ) ∼= HomΛ(M,Q(t)/Λ).

We shall show that D(M) is naturally isomorphic to each of D̂(M) = HomΛ(M, Λ̂),
E(M) = Ext1Λ(M,Λ) and F (M) = HomZ(M |Z,Z).
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Let ℓM : D(M) → D̂(M) and χM : D̂(M) → F (M) be the homomorphisms
defined by composition with ℓ and χ, respectively. It is easily verified that χM and
TM are mutually inverse.

Let B∗ be a projective resolution of M . If φ ∈ D(M) let φ0 : B0 → Q(t) be a
lift of φ. Then φ0∂1 has image in Λ, and so defines a homomorphism φ1 : B1 → Λ
such that φ1∂2 = 0. Consideration of the short exact sequence of complexes

0 → HomΛ(B∗,Λ) → HomΛ(B∗,Q(t)) → HomΛ(B∗,Q(t)/Λ) → 0

shows that δM (φ) = [φ1], where δM : D(M) → E(M) is the Bockstein homomor-
phism associated to the coefficient sequence. (The extension corresponding to δMφ
is the pullback over φ of the sequence 0 → Λ → Q(t) → Q(t)/Λ → 0).

Lemma 4.3. The natural transformation hΛ is an equivalence, and hΛℓM = δM .

Proof. The homomorphism jM sending the image of g in Λ/(λM ) to the class
of g(λM )−1 in ΛS/Λ induces an isomorphism HomΛ(M,Λ/(λM )) ∼= D(M). Hence
we may assume that M = Λ/(λ) and it shall suffice to check that hΛℓM (jM ) =
δ(jM ). Moreover we may extend coefficients to C, and so we may reduce to the
case λ = (t− α)n.

We may assume that B1 and B0 are freely generated by b1 and b0, respectively,
and that ∂(b1) = λb0. The chain homotopy equivalence jB∗ may be defined by
j0(b0) = a0 ⊗ b0 and j1(b1) = a0 ⊗ b1 + Σβpq(t

pa1) ⊗ (tqb0), where Σβpqx
pyq =

(λ(xy) − λ(y))/(x − 1) = yΣ0≤r<n(xy − α)r(y − α)n−r−1. (This formula arises
naturally if we identify Λ ⊗Z Λ with Z[x, y, x−1, y−1], with t ∈ Λ acting via xy).
Note that δ(jM )(b1) = β0n = 1 and βpq = 0 unless 0 ≤ m < q ≤ n.

Now hΛℓM (jM )(b1) = e♯(ηA × ℓM (jM ))(j∗(b1)) = Σβpqt
pψp−q, where ψ−r is

the coefficient of t−r in Lexp(λ−1,∞). Clearly ψr = 0 if −n < r < 0 and ψ−n = 1,
since λ−1 = t−n(1 − αt−1)−n. Hence hΛℓM (jM )(b1) = β0n = δ(jM )(b1), and so
hΛℓM = δM , by linearity and functoriality.

Since δ is a natural equivalence and hΛ is injective, by Lemma 2, hΛ is also a
natural equivalence. �

It can be shown that the ring ΛS defined above is a PID.

4.4. Duality in infinite cyclic covers

Let E, f and ν be as in §1, and suppose also that E is a PD4-complex with

χ(E) = 0 and that ν is finitely generated and infinite. Let C∗ = C∗(Ẽ). Then

H0(C∗) = Z, H2(C∗) ∼= π2(E) and Hq(C∗) = 0 if q 6= 0 or 2, since Ẽ is simply
connected and π has one end. Since H1(Λ̄ ⊗Z[π] C∗) = H1(Eν ; Z) ∼= ν/ν′ is finitely

generated as an abelian group, HomZ[π](H1(Λ̄ ⊗Z[π] C∗),Λ) = 0. An elementary

computation then shows that H1(C∗; Λ) is infinite cyclic, and generated by the
class η = ηC defined in §2. Fix a generator [E] of H4(Z̄ ⊗Z[π] C∗) ∼= Z, and let

[Eν ] = η ∩ [E] in H3(Eν ; Z) = H3(Λ̄ ⊗Z[π] C∗) ∼= Z.

Since Ẽ is also the universal covering space of Eν , the cellular chain complex

for Ẽν is C∗|ν . In order to verify that Eν is a PD3-complex (with orientation class
[Eν ]) it shall suffice to show that (for each p ≥ 0) the homomorphism ηp from

Hp(C∗; Z[ν]) = Hp(C∗; Ẑ[π]) to Hp+1(C∗; Z[π]) given by cup product with η is an
isomorphism, by standard properties of cap and cup products. We may identify
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these cup products with the degree raising homomorphisms hZ[π], by the following
lemma.

Lemma 4.4. Let X be a connected space with π1(X) ∼= π and let B∗ = C∗(X̃).
Then hZ[π]([φ]) = [ηB ] ∪ [φ].

Proof. The Alexander Whitney diagonal approximation d∗ : B∗ → B∗⊗B∗ is
π-equivariant, if the tensor product is given the diagonal left π-action, and we may
take jB∗ = (ǫB ⊗ 1)d∗ as a chain homotopy inverse to pB∗. Therefore hZ[π]([φ]) =
d∗e♯([ηB] × [φ]) = [ηB ] ∪ [φ]. �

The cohomology modules Hp(C∗; Z[ν]) and Hp(C∗; Z[π]) may be “computed”
via the UCSS. Since cross product with a 1-cycle induces a degree 1 cochain homo-
morphism, the functorial homomorphisms hZ[π] determine homomorphisms between
these spectral sequences which are compatible with cup product with η on the limit
terms. In each case the Ep∗2 columns are nonzero only for p = 0 or 2. The E0∗

2

terms of these spectral sequences involve only the cohomology of the groups and
the homomorphisms between them may be identified with the maps arising in the
LHSSS for π as an extension of Z by ν, under appropriate finiteness hypotheses on
ν.

4.5. Homotopy mapping tori

In this section we shall apply the above ideas to the non-aspherical case. We
use coinduced modules to transfer arguments about subgroups and covering spaces
to contexts where Poincaré duality applies, and L2-cohomology to identify π2(M),
together with the above strategy of describing Poincaré duality for an infinite cyclic
covering space in terms of cup product with a generator η of H1(M ; Λ).

Note that most of the homology and cohomology groups defined below do
not have natural module structures, and so the Poincaré duality isomorphisms are
isomorphisms of abelian groups only.

Theorem 4.5. A finite PD4-complex M with fundamental group π is homotopy
equivalent to the mapping torus of a self homotopy equivalence of a PD3-complex
if and only if χ(M) = 0 and π is an extension of Z by a finitely presentable normal
subgroup ν.

Proof. The conditions are clearly necessary, as observed in §1 above. Sup-
pose conversely that they hold. Let Mν be the infinite cyclic covering space of
M with fundamental group ν, and let τ : Mν → Mν be a covering transforma-
tion corresponding to a generator of π/ν ∼= Z. Then M is homotopy equivalent
to the mapping torus M(τ). Moreover H1(M ; Λ) ∼= H1(π; Λ) is infinite cyclic,
since ν is finitely generated. Let Erp,q(Mν) and Erp,q(M) be the UCSS for the co-
homology of Mν with coefficients Z[ν] and for that of M with coefficients Z[π],
respectively. A choice of generator η for H1(M ; Λ) determines homomorphisms
hZ[π] : Erp,q(Mν) → Erp,q+1(M), giving a homomorphism of bidegree (0, 1) between
these spectral sequences corresponding to cup product with η on the abutments,
by Lemma 4.

Suppose first that ν is finite. The UCSS and Poincaré duality then imply

that Hi(M̃ ; Z) ∼= Z for i = 0 or 3 and is 0 otherwise. Hence M̃ ≃ S3 and so

Mν = M̃/ν is a Swan complex for ν. (See Chapter 11 for more details). Thus we
may assume henceforth that ν is infinite. We must show that the cup product maps
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ηp : Hp(Mν ; Z[ν]) → Hp+1(M ; Z[π]) are isomorphisms, for 0 ≤ p ≤ 4. If p = 0 or 4
then all the groups are 0, and so η0 and η4 are isomorphisms.

Applying the isomorphisms defined in §8 of Chapter 1 to the cellular chain

complex C∗ of M̃ , we see thatHq(Mν ;A) ∼= Hq(M ;HomZ[ν](Z[π], A)) is isomorphic

to H4−q(M ;HomZ[ν](Z[π], A)) for any local coefficient system (left Z[ν]-module) A
on Mν . Let t ∈ π represent a generator of π/ν. Since multiplication by t − 1
is surjective on HomZ[ν](Z[π], A), the homology Wang sequence for the covering

projection of Mν onto M gives H0(M ;HomZ[ν](Z[π], A)) = 0. Hence H4(Mν ;A) =
0 for any local coefficient system A, and so Mν is homotopy equivalent to a 3-
dimensional complex (see [Wl65]). (See also [DST96]).

Since π is an extension of Z by a finitely generated normal subgroup β
(2)
1 (π) =

0, and so π2(M) ∼= H2(M ; Z[π]) ∼= H2(π; Z[π]), by Theorem 3.4. Hence η1 may be
identified with the isomorphism H1(ν; Z[ν]) ∼= H2(π; Z[π]) coming from the LHSSS

for the extension. Moreover π2(M)|ν ∼= H1(ν; Z[ν]) is finitely generated over Z[ν],
and so HomZ[π](π2(M),Z[π]) = 0. Therefore H3(π; Z[π]) = 0, by Lemma 3.3, and

so the Wang sequence map t−1 : H2(ν; Z[π]) → H2(ν; Z[π]) is onto. Since ν is FP2

this cohomology group is isomorphic to H2(ν; Z[ν]) ⊗Z Z[π/ν], where Z[π/ν] ∼= Λ
acts diagonally. It is easily seen that if H2(ν; Z[ν]) has a nonzero element h then
h ⊗ 1 is not divisible by t − 1. Hence H2(ν; Z[ν]) = 0. The differential d3

2,1(M)

is a monomorphism, since H3(M ; Z[π]) = 0, and hZ[π] : E2
2,0(Mν) → E2

2,1(M) is a

monomorphism by Lemma 2. Therefore d3
2,0(Mν) is also a monomorphism and so

H2(Mν ; Z[ν]) = 0. Hence η2 is an isomorphism.
It remains only to check that H3(Mν ; Z[ν]) ∼= Z and that η3 is onto. Now

H3(Mν ; Z[ν]) ∼= H1(M ;HomZ[ν](Z[π],Z[ν])) = H1(π; Z[ν]π/ν). (The exponent
denotes direct product indexed by π/ν rather than fixed points!) The natural
homomorphism from H1(π; Z[ν]π/ν) to H1(π/ν;H0(ν; Z[ν]π/ν)) is onto, with ker-
nel H0(π/ν;H1(ν; Z[ν]π/ν )), by the LHSSS for π. Since ν is finitely generated
homology commutes with direct products in this range, and so H1(π; Z[ν]π/ν)
∼= H1(π/ν; Zπ/ν). Since π/ν ∼= Z and acts by translation on the index set this
homology group is Z. The homomorphisms from H3(Mν ; Z[ν]) to H3(Mν ; Z) and
from H4(M ; Z[π]) to H4(M ; Z) induced by the augmentation homomomorphisms
are epimorphisms and hence isomorphisms, since Mν and M are homotopy equiv-
alent to 3- and 4-dimensional complexes, respectively. These isomorphisms form
the vertical sides of a commutative square whose upper horizontal side is η3 and
whose lower horizontal side is − ∪ η : H3(Mν ; Z) → H4(M ; Z). Since H∗(Mν ; Z)
is finitely generated the latter map is an isomorphism [Ba80’]. Therefore η3 is also
an isomorphism.

Thus Mν satisfies Poincaré duality of formal dimension 3 with local coefficients.
Since π1(Mν) = ν is finitely presentable Mν is finitely dominated, and so is a PD3-
complex [Br72]. �

Note that Mν need not be homotopy equivalent to a finite complex. If M is a
simple PD4-complex and a generator of Aut(Mν/M) ∼= π/ν has finite order in the
group of self homotopy equivalences of Mν then M is finitely covered by a simple
PD4-complex homotopy equivalent to Mν×S1. In this case Mν must be homotopy
finite by [Rn86]. The hypothesis that M be finite is used in the proof of Theorem
3.4, but is probably not necessary here.
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The hypothesis that ν be almost finitely presentable (FP2) suffices to show that
Mν satisfies Poincaré duality with local coefficients. Finite presentability is used
only to show that Mν is finitely dominated. (Does the coarse Alexander duality
argument of [KK99] used in Theorem 1.(3) above extend to the non-aspherical
case?). In view of the fact that 3-manifold groups are coherent, we might hope that
the condition on ν could be weakened still further to require only that it be finitely
generated.

Some argument is needed above to show that η2 is injective. If Mν is homotopy
equivalent to a 3-manifold with more than one aspherical summand thenH1(ν; Z[ν])
is a nonzero free Z[ν]-module and so HomZ[ν](Π|ν ,Z[ν]) 6= 0.

A rather different proof of this theorem could be given using Ranicki’s criterion
for an infinite cyclic cover to be finitely dominated [Rn95] and the Quinn-Gottlieb
theorem, if finitely generated stably free modules of rank 0 over the Novikov rings
A± = Z[ν]α((t±1)) are trivial. (For Hq(A± ⊗π C∗) = A± ⊗π H∗(C∗) = 0 if q 6= 2,
since t− 1 is invertible in A±. Hence H2(A±⊗π C∗) is a stably free module of rank
0, by Lemma 3.1).

An alternative strategy would be to show that LimIH
q(Mν ;Ai) = 0 for any

direct system with limit 0. We could then conclude that the cellular chain complex

of M̃ = M̃ν is chain homotopy equivalent to a finite complex of finitely generated
projective Z[ν]-modules, and hence that Mν is finitely dominated. Since ν is FP2

this strategy applies easily when q = 0, 1, 3 or 4, but something else is needed when
q = 2.

Corollary 4.5.1. Let M be a closed 4-manifold with χ(M) = 0 and whose
fundamental group π is an extension of Z by a normal subgroup ν ∼= F (r). Then
M is homotopy equivalent to a closed PL 4-manifold which fibres over the circle,
with fibre ♯rS1 × S2 if w1(M)|ν is trivial, and ♯rS1×̃S2 otherwise. The bundle is
determined by the homotopy type of M .

Proof. By the theorem Mν is a PD3-complex with free fundamental group,
and so is homotopy equivalent toN = ♯rS1×S2 if w1(M)|ν is trivial and to ♯rS1×̃S2

otherwise. Every self homotopy equivalence of a connected sum of S2-bundles over
S1 is homotopic to a self-homeomorphism, and homotopy implies isotopy for such
manifolds [La]. Thus M is homotopy equivalent to such a fibred 4-manifold, and
the bundle is determined by the homotopy type of M . �

It is easy to see that the natural map from Homeo(N) to Out(F (r) is onto. If
a self homeomorphism f of N = ♯rS1 × S2 induces the trivial outer automorphism
of F (r) then f is homotopic to a product of twists about nonseparating 2-spheres
[He]. How is this manifest in the topology of the mapping torus?

Since c.d.ν = 1 and c.d.π = 2 the first k-invariants of M and N both lie in
trivial groups, and so this Corollary also follows from Theorem 6 below.

Corollary 4.5.2. Let M be a closed 4-manifold with χ(M) = 0 and whose
fundamental group π is an extension of Z by a normal subgroup ν. If π has an
infinite cyclic normal subgroup C which is not contained in ν then the covering
space Mν with fundamental group ν is a PD3-complex.

Proof. We may assume without loss of generality that M is orientable and
that C is central in π. Since C ∩ ν = 1 the subgroup Cν ∼= C × ν has finite index
in π. Thus by passing to a finite cover we may assume that π = C × ν. Hence ν is
finitely presentable and so the Theorem applies. �
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See [Hi89] for different proofs of Corollaries 4.1 and 4.2.
Since ν has one or two ends if it has an infinite cyclic normal subgroup, Corol-

lary B remains true if C ≤ ν and ν is finitely presentable. In this case ν is the
fundamental group of a Seifert fibred 3-manifold, by Theorem 2.14.

Corollary 4.5.3. Let M be a closed 4-manifold with χ(M) = 0 and whose
fundamental group π is an extension of Z by an FP2 normal subgroup ν. If ν
is finite then it has cohomological period dividing 4. If ν has one end then M is
aspherical and so π is a PD4-group. If ν has two ends then ν ∼= Z, Z ⊕ (Z/2Z) or
D = (Z/2Z) ∗ (Z/2Z). If moreover ν is finitely presentable the covering space Mν

with fundamental group ν is a PD3-complex.

Proof. The final hypothesis is only needed if ν is one-ended, as finite groups

and groups with two ends are finitely presentable. If ν is finite then M̃ ≃ S3 and so
the first assertion holds. (See Chapter 11 for more details). If ν has one end then
we may apply Theorem 1. If ν has two ends and its maximal finite normal subgroup
is nontrivial then ν ∼= Z ⊕ (Z/2Z), by Theorem 10 (applied to the PD3-complex
Mν). Otherwise ν ∼= Z or D. �

In Chapter 6 we shall strengthen this Corollary to obtain a fibration theorem
for 4-manifolds with torsion free elementary amenable fundamental group.

Our next result gives criteria (involving also the orientation character and first
k-invariant) for an infinite cyclic cover of a closed 4-manifold M to be homotopy
equivalent to a particular PD3-complex N .

Theorem 4.6. Let M be a closed 4-manifold whose fundamental group π is
an extension of Z by a torsion free normal subgroup ν which is isomorphic to the
fundamental group of a PD3-complex N . Then π2(M) ∼= π2(N) as Z[ν]-modules if
and only if HomZ[π](π2(M),Z[π]) = 0. The infinite cyclic covering space Mν with
fundamental group ν is homotopy equivalent to N if and only if w1(M)|ν = w1(N),
HomZ[π](π2(M),Z[π]) = 0 and the images of k1(M) and k1(N) in H3(ν;π2(M)) ∼=
H3(ν;π2(N)) generate the same subgroup under the action of AutZ[ν](π2(N)).

Proof. If Π = π2(M) is isomorphic to π2(N) then it is finitely generated as
a Z[ν]-module, by Theorem 2.18. As 0 is the only Z[π]-submodule of Z[π] which is
finitely generated as a Z[ν]-module it follows that Π∗ = HomZ[π](π2(M),Z[π]) is
trivial. It is then clear that the conditions must hold if Mν is homotopy equivalent
to N .

Suppose conversely that these conditions hold. If ν = 1 then Mν is simply
connected and π ∼= Z has two ends. It follows immediately from Poincaré duality
and the UCSS that H2(Mν ; Z) = Π ∼= Π∗ = 0 and that H3(Mν ; Z) ∼= Z. Therefore
Mν is homotopy equivalent to S3. If ν 6= 1 then π has one end, since it has a
finitely generated infinite normal subgroup. The hypothesis that Π∗ = 0 implies

that Π ∼= H2(π; Z[π]), by Lemma 3.3. Hence Π ∼= H1(ν; Z[ν]) as a Z[ν]-module,
by the LHSSS. (The overbar notation is unambiguous since w1(M)|ν = w1(N)).
But this is isomorphic to π2(N), by Poincaré duality for N . Since N is homotopy
equivalent to a 3-dimensional complex the condition on the k-invariants implies that
there is a map f : N → Mν which induces isomorphisms on fundamental group
and second homotopy group. Since the homology of the universal covering spaces
of these spaces vanishes above degree 2 the map f is a homotopy equivalence. �
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We do not know whether the hypothesis on the k-invariants is implied by the
other hypotheses.

Corollary 4.6.1. Let M be a closed 4-manifold whose fundamental group
π is an extension of Z by a torsion free normal subgroup ν which is isomorphic
to the fundamental group of a 3-manifold N whose irreducible factors are Haken,
hyperbolic or Seifert fibred. Then M is homotopy equivalent to a closed PL 4-
manifold which fibres over the circle with fibre N .

Proof. There is a homotopy equivalence f : N →Mν , whereN is a 3-manifold
whose irreducible factors are as above, by Turaev’s Theorem. (See §5 of Chapter
2). Let t : Mν →Mν be the generator of the covering transformations. Then there
is a self homotopy equivalence u : N → N such that fu ∼ tf . As each irreducible
factor of N has the property that self homotopy equivalences are homotopic to
PL homeomorphisms (by [Hm], Mostow rigidity or [Sc83]), u is homotopic to a
homeomorphism [HL74], and so M is homotopy equivalent to the mapping torus
of this homeomorphism. �

All known PD3-complexes with torsion free fundamental group are homotopy
equivalent to connected sums of such 3-manifolds.

If the irreducible connected summands of the closed 3-manifold N = ♯iNi
are P 2-irreducible and sufficiently large or have fundamental group Z then every
self homotopy equivalence of N is realized by an unique isotopy class of homeo-
morphisms [HL74]. However if N is not aspherical then it admits nontrivial self-
homeomorphisms (“rotations about 2-spheres”) which induce the identity on ν, and
so such bundles are not determined by the group alone.

Corollary 4.6.2. Let M be a closed 4-manifold whose fundamental group
π is an extension of Z by a virtually torsion free normal subgroup ν. Then the
infinite cyclic covering space Mν with fundamental group ν is homotopy equivalent
to a PD3-complex if and only if ν is the fundamental group of a PD3-complex N ,
HomZ[π](π2(M),Z[π]) = 0 and the images of k1(M) and k1(N) in H3(νo;π2(M)) ∼=
H3(νo;π2(N)) generate the same subgroup under the action of AutZ[νo](π2(N)),
where νo is a torsion free subgroup of finite index in ν.

Proof. The conditions are clearly necessary. Suppose that they hold. Let
ν1 ⊆ νo ∩ ν+ ∩ π+ be a torsion free subgroup of finite index in ν, where π+ =
Kerw1(M) and ν+ = Kerw1(N), and let t ∈ π generate π modulo ν. Then each of
the conjugates tkν1t

−k in π has the same index in ν. Since ν is finitely generated the
intersection µ = ∩tkν1t−k of all such conjugates has finite index in ν, and is clearly
torsion free and normal in the subgroup ρ generated by µ and t. If {ri} is a transver-
sal for ρ in π and f : π2(M) → Z[ρ] is a nontrivial Z[ρ]-linear homomorphism then
g(m) = Σrif(r−1

i m) defines a nontrivial element of Homπ(π2(M),Z[π])). Hence
Homρ(π2(M),Z[ρ]) = 0 and so the covering spaces Mµ and Nµ are homotopy
equivalent, by the theorem. It follows easily that Mν is also a PD3-complex. �

All PD3-complexes have virtually torsion free fundamental group [Cr96].

4.6. Products

If M = N × S1, where N is a closed 3-manifold, then χ(M) = 0, Z is a
direct factor of π1(M), w1(M) is trivial on this factor and the Pin−-condition
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w2 = w2
1 holds. These conditions almost characterize such products up to homotopy

equivalence. We need also a constraint on the other direct factor of the fundamental
group.

Theorem 4.7. Let M be a closed 4-manifold whose fundamental group π has
no 2-torsion. Then M is homotopy equivalent to a product N × S1, where N is
a closed 3-manifold, if and only if χ(M) = 0, w2(M) = w1(M)2 and there is an
isomorphism θ : π → ν × Z such that w1(M)θ−1|Z = 0, where ν is a (2-torsion
free) 3-manifold group.

Proof. The conditions are clearly necessary, since the Pin−-condition holds
for 3-manifolds.

If these conditions hold then the covering space Mν with fundamental group
ν is a PD3-complex, by Theorem 5 above. Since ν is a 3-manifold group and has
no 2-torsion it is a free product of cyclic groups and groups of aspherical closed
3-manifolds. Hence there is a homotopy equivalence h : Mν → N , where N is
a connected sum of lens spaces and aspherical closed 3-manifolds, by Turaev’s
Theorem on the decomposition of PD3-complexes ([Tu90] - see §5 of Chapter 2
above). Let φ generate the covering group Aut(M/Mν) ∼= Z. Then there is a
self homotopy equivalence ψ : N → N such that ψh ∼ hφ, and M is homotopy
equivalent to the mapping torus M(ψ). We may assume that ψ fixes a basepoint
and induces the identity on π1(N), since π1(M) ∼= ν × Z. Moreover ψ preserves
the local orientation, since w1(M)θ−1|Z = 0. Since ν has no element of order 2
N has no two-sided projective planes and so ψ is homotopic to a rotation about a
2-sphere [Hn]. Since w2(M) = w1(M)2 the rotation is homotopic to the identity
and so M is homotopy equivalent to N × S1. �

Let ρ is an essential map from S1 to SO(3), and let M = M(τ), where τ :
S1 × S2 → S1 × S2 is the twist map, given by τ(x, y) = (x, ρ(x)(y)) for all (x, y)
in S1 × S2. Then π1(M) ∼= Z × Z, χ(M) = 0, and w1(M) = 0, but w2(M) 6=
w1(M)2 = 0, so M is not homotopy equivalent to a product. (Clearly however
M(τ2) = S1 × S2 × S1).

To what extent are the constraints on ν necessary? There are orientable 4-
manifolds which are homotopy equivalent to products N × S1 where ν = π1(N) is
finite and is not a 3-manifold group. (See Chapter 11). Theorem 1 implies that M
is homotopy equivalent to a product of an aspherical PD3-complex with S1 if and
only if χ(M) = 0 and π1(M) ∼= ν × Z where ν has one end.

There are 4-manifolds which are simple homotopy equivalent to S1×RP 3 (and
thus satisfy the hypotheses of our theorem) but which are not homeomorphic to
mapping tori [We87].

4.7. Subnormal subgroups

In this brief section we shall give another characterization of aspherical 4-
manifolds with finite covering spaces which are homotopy equivalent to mapping
tori.

Theorem 4.8. Let M be a PD4-complex. Then M is aspherical and has a finite
cover which is homotopy equivalent to a mapping torus if and only if χ(M) = 0
and π = π1(M) has a subnormal subgroup G which is a PD3-group. In that case
[π : Nπ(G)] <∞ and e(Nπ(G)/G) = 2.
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Proof. The conditions are clearly necessary. Suppose that they hold. Then
[π : G] = ∞, by Theorem 3.12. Let G = G0 < G1 < . . .Gn = π be a subnormal
chain of minimal length, and let j = min{i | [Gi+1 : G] = ∞}. Then [Gj : G] < ∞
and so Gj is a PD3-group. Now β

(2)
1 (Gj+1) = 0 [Ga00]. A finite induction up

the subnormal chain, using LHSSS arguments (with coefficients Z[π] and N (Gj),

respectively) shows that Hs(π; Z[π]) = 0 for s ≤ 2 and that β
(2)
1 (π) = 0. (See §2 of

Chapter 2). Hence M is aspherical, by Theorem 3.4.
On the other hand Hs(Gj+1;W ) = 0 for s ≤ 3 and any free Z[Gj+1]-module

W , so c.d.Gj+1 = 4. Hence [π : Gj+1] < ∞, by Strebel’s Theorem. An LHSSS
corner argument implies that Gj+1/Gj has two ends. The theorem now follows
easily, since Gj has only finitely many subgroups of index [Gj : G]. �

We shall establish an analogous result for closed 4-manifolds M such that
χ(M) = 0 and π1(M) has a subnormal subgroup of infinite index which is a PD2-
group in Chapter 5.

4.8. Circle bundles

In this section we shall consider the “dual” situation, of 4-manifolds which are
homotopy equivalent to the total space of a S1-bundle over a 3-dimensional base
N . Lemma 9 presents a number of conditions satisfied by such manifolds. (These
conditions are not all independent). Bundles c∗Nξ induced from S1-bundles over
K(π1(N), 1) are given equivalent characterizations in Lemma 10. In Theorem 11
we shall show that the conditions of Lemmas 9 and 10 characterize the homotopy
types of such bundle spaces E(c∗Nξ), provided π1(N) is torsion free but not free.

Since BS1 ≃ K(Z, 2) any S1-bundle over a connected base B is induced from
some bundle over P2(B). For each epimorphism γ : µ → ν with cyclic kernel and
such that the action of µ by conjugation on Ker(γ) factors through multiplication by
±1 there is an S1-bundle p(γ) : X(γ) → Y (γ) whose fundamental group sequence
realizes γ and which is universal for such bundles; the total space E(p(γ)) is a
K(µ, 1) space (cf. Proposition 11.4 of [Wl]).

Lemma 4.9. Let p : E → B be the projection of an S1-bundle ξ over a connected
finite complex B. Then

(1) χ(E) = 0;
(2) the natural map p∗ : π = π1(E) → ν = π1(B) is an epimorphism with

cyclic kernel, and the action of ν on Ker(p∗) induced by conjugation in π
is given by w = w1(ξ) : π1(B) → Z/2Z ∼= {±1} ≤ Aut(Ker(p∗));

(3) if B is a PD-complex w1(E) = p∗(w1(B) + w);
(4) if B is a PD3-complex there are maps ĉ : E → P2(B) and

y : P2(B) → Y (p∗) such that cP2(B) = cY (p∗)y, yĉ = p(p∗)cE and
(ĉ, cE)∗[E] = ±G(fB∗[B]) where G is the Gysin homomorphism from
H3(P2(B);Zw1(B)) to H4(P2(E);Zw1(E));

(5) If B is a PD3-complex cE∗[E] = ±G(cB∗[B]), where G is the Gysin ho-
momorphism from H3(ν;Z

wB ) to H4(π;ZwE );
(6) Ker(p∗) acts trivially on π2(E).

Proof. Condition(1) follows from the multiplicativity of the Euler character-
istic in a fibration. If α is any loop in B the total space of the induced bundle α∗ξ is
the torus if w(α) = 0 and the Klein bottle if w(α) = 1 in Z/2Z; hence gzg−1 = zǫ(g)
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where ǫ(g) = (−1)w(p∗(g)) for g in π1(E) and z in Ker(p∗). Conditions (2) and (6)
then follow from the exact homotopy sequence. If the base B is a PD-complex
then so is E, and we may use naturality and the Whitney sum formula (applied
to the Spivak normal bundles) to show that w1(E) = p∗(w1(B) + w1(ξ)). (As
p∗ : H1(B; F2) → H1(E; F2) is a monomorphism this equation determines w1(ξ)).

Condition (4) implies (5), and follows from the observations in the paragraph
preceding the lemma. (Note that the Gysin homomorphisms G in (4) and (5) are
well defined, since H1(Ker(γ);ZwE) is isomorphic to ZwB , by (3)). �

Bundles with Ker(p∗) ∼= Z have the following equivalent characterizations.

Lemma 4.10. Let p : E → B be the projection of an S1-bundle ξ over a con-
nected finite complex B. Then the following conditions are equivalent:

(1) ξ is induced from an S1-bundle over K(π1(B), 1) via cB;
(2) for each map β : S2 → B the induced bundle β∗ξ is trivial;
(3) the induced epimorphism p∗ : π1(E) → π1(B) has infinite cyclic kernel.

If these conditions hold then c(ξ) = c∗BΞ, where c(ξ) is the characteristic class
of ξ in H2(B;Zw) and Ξ is the class of the extension of fundamental groups in
H2(π1(B);Zw) = H2(K(π1(B), 1);Zw), where w = w1(ξ).

Proof. Condition (1) implies condition (2) as for any such map β the compos-
ite cBβ is nullhomotopic. Conversely, as we may constructK(π1(B), 1) by adjoining
cells of dimension ≥ 3 to B condition (2) implies that we may extend ξ over the
3-cells, and as S1-bundles over Sn are trivial for all n > 2 we may then extend ξ
over the whole of K(π1(B), 1), so that (2) implies (1). The equivalence of (2) and
(3) follows on observing that (3) holds if and only if ∂β = 0 for all such β, where
∂ is the connecting map from π2(B) to π1(S

1) in the exact sequence of homotopy
for ξ, and on comparing this with the corresponding sequence for β∗ξ.

As the natural map from the set of S1-bundles overK(π, 1) with w1 = w (which
are classified by H2(K(π, 1);Zw)) to the set of extensions of π by Z with π acting
via w (which are classified by H2(π;Zw)) which sends a bundle to the extension of
fundamental groups is an isomorphism we have c(ξ) = c∗B(Ξ). �

If N is a closed 3-manifold which has no summands of type S1 × S2 or S1×̃S2

(i.e., if π1(N) has no infinite cyclic free factor) then every S1-bundle over N with
w = 0 restricts to a trivial bundle over any map from S2 to N . For if ξ is such
a bundle, with characteristic class c(χ) in H2(N ; Z), and β : S2 → N is any map
then β∗(c(β∗ξ) ∩ [S2]) = β∗(β∗c(ξ) ∩ [S2]) = c(ξ) ∩ β∗[S2] = 0, as the Hurewicz
homomorphism is trivial for such N . Since β∗ is an isomorphism in degree 0 it
follows that c(β∗ξ) = 0 and so β∗ξ is trivial. (A similar argument applies for bundles
with w 6= 0, provided the induced 2-fold covering space Nw has no summands of
type S1 × S2 or S1×̃S2).

On the other hand, if η is the Hopf fibration the bundle with total space S1×S3,
base S1×S2 and projection idS1 ×η has nontrivial pullback over any essential map
from S2 to S1 × S2, and is not induced from any bundle over K(Z, 1). Moreover,
S1 × S2 is a 2-fold covering space of RP 3♯RP 3, and so the above hypothesis on
summands of N is not stable under passage to 2-fold coverings (corresponding to a
homomorphism w from π1(N) to Z/2Z).
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Theorem 4.11. Let M be a finite PD4-complex and N a finite PD3-complex
whose fundamental group is torsion free but not free. Then M is homotopy equiv-
alent to the total space of an S1-bundle over N which satisfies the conditions of
Lemma 9 if and only if

(1) χ(M) = 0;
(2) there is an epimorphism γ : π = π1(M) → ν = π1(N) with Ker(γ) ∼= Z;
(3) w1(M) = (w1(N) + w)γ, where w : ν → Z/2Z ∼= Aut(Ker(γ)) is

determined by the action of ν on Ker(γ) induced by conjugation in π;
(4) k1(M) = γ∗k1(N) (and so P2(M) ≃ P2(N) ×K(ν,1) K(π, 1));

(5) fM∗[M ] = ±G(fN∗[N ]) in H4(P2(M);Zw1(M)), where G is the Gysin
homomorphism in degree 3.

If these conditions hold then M has minimal Euler characteristic for its fundamental
group, i.e. q(π) = 0.

(Remark. The first three conditions and Poincaré duality imply that π2(M) ∼=
γ∗π2(N), the Z[π]-module with the same underlying group as π2(N) and with
Z[π]-action determined by the homomorphism γ).

Proof. Since these conditions are homotopy invariant and hold if M is the
total space of such a bundle, they are necessary. Suppose conversely that they hold.
As ν is torsion free N is the connected sum of a 3-manifold with free fundamental
group and some aspherical PD3-complexes [Tu90]. As ν is not free there is at least
one aspherical summand. Hence c.d.ν = 3 and H3(cN ;Zw1(N)) is a monomorphism.

Let p(γ) : K(π, 1) → K(ν, 1) be the S1-bundle corresponding to γ and let
E = N ×K(ν,1) K(π, 1) be the total space of the S1-bundle over N induced by the
classifying map cN : N → K(ν, 1). The bundle map covering cN is the classifying
map cE . Then π1(E) ∼= π = π1(M), w1(E) = (w1(N) + w)γ = w1(M), as maps
from π to Z/2Z, and χ(E) = 0 = χ(M), by conditions (1) and (3). The maps cN
and cE induce a homomorphism between the Gysin sequences of the S1-bundles.
Since N and ν have cohomological dimension 3 the Gysin homomorphisms in degree
3 are isomorphisms. Hence H4(cE ;Zw1(E)) is a monomorphism, and so a fortiori
H4(fE ;Zw1(E)) is also a monomorphism.

As χ(M) = 0 and β
(2)
1 (π) = 0, by Theorem 2.2, we have π2(M) ∼= H2(π; Z[π]),

by part (3) of Theorem 3.4. It follows from conditions (2) and (3) and the LHSSS
that π2(M) ∼= π2(E) ∼= γ∗π2(N) as Z[π]-modules. Conditions (4) and (5) then give
us a map (ĉ, cM ) fromM to P2(E) = P2(N)×K(ν,1)K(π, 1) such that (ĉ, cM )∗[M ] =
±fE∗[E]. Hence M is homotopy equivalent to E, by Theorem 3.8.

The final assertion now follows from part (1) of Theorem 3.4. �

As π2(N) is a projective Z[ν]-module, by Theorem 2.18, it is homologically triv-
ial and so Hq(π; γ∗π2(N)⊗Zw1(M)) = 0 if q ≥ 2. Hence it follows from the spectral

sequence for cP2(M) that H4(P2(M);Zw1(M)) maps onto H4(π;Zw1(M)), with kernel

isomorphic to H0(π; Γ(π2(M)))⊗Zw1(M)), where Γ(π2(M)) = H4(K(π2(M), 2); Z)
is Whitehead’s universal quadratic construction on π2(M) (see Chapter I of [Ba’]).
This suggests that there may be another formulation of the theorem in terms of con-
ditions (1-3), together with some information on k1(M) and the intersection pairing
on π2(M). If N is aspherical conditions (4) and (5) are vacuous or redundant.

Condition (4) is vacuous if ν is a free group, for then c.d.π ≤ 2. In this case the
Hurewicz homomorphism from π3(N) toH3(N ;Zw1(N)) is 0, and soH3(fN ;Zw1(N))
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is a monomorphism. The argument of the theorem would then extend if the Gysin
map in degree 3 for the bundle P2(E) → P2(N) were a monomorphism. If ν = 1
then M is orientable, π ∼= Z and χ(M) = 0, so M ≃ S3 × S1. In general, if the
restriction on ν is removed it is not clear that there should be a degree 1 map from
M to such a bundle space E.

It would be of interest to have a theorem with hypotheses involving only M ,
without reference to a model N . There is such a result in the aspherical case.

Theorem 4.12. A finite PD4-complex M is homotopy equivalent to the total
space of an S1-bundle over an aspherical PD3-complex if and only if χ(M) = 0
and π = π1(M) has an infinite cyclic normal subgroup A such that π/A has one
end and finite cohomological dimension.

Proof. The conditions are clearly necessary. Conversely, suppose that they
hold. Since π/A has one end Hs(π/A; Z[π/A]) = 0 for s ≤ 1 and so an LHSSS

calculation gives Ht(π; Z[π]) = 0 for t ≤ 2. Moreover β
(2)
1 (π) = 0, by Theorem

2.2. Hence M is aspherical and π is a PD4-group, by Corollary 3.5.2. Since A is
FP∞ and c.d.π/A <∞ the quotient π/A is a PD3-group, by Theorem 9.11 of [Bi].
Therefore M is homotopy equivalent to the total space of an S1-bundle over the
PD3-complex K(π/A, 1). �

Note that a finitely generated torsion free group has one end if and only if it is
indecomposable as a free product and is neither infinite cyclic nor trivial.

In general, if M is homotopy equivalent to the total space of an S1-bundle
over some 3-manifold then χ(M) = 0 and π1(M) has an infinite cyclic normal
subgroup A such that π1(M)/A is virtually of finite cohomological dimension. Do
these conditions characterize such homotopy types?





CHAPTER 5

Surface bundles

In this chapter we shall show that a closed 4-manifoldM is homotopy equivalent
to the total space of a fibre bundle with base and fibre closed surfaces if and only
if the obviously necessary conditions on the Euler characteristic and fundamental
group hold. When the base is S2 we need also conditions on the characteristic
classes of M , and when the base is RP 2 our results are incomplete. We shall defer
consideration of bundles over RP 2 with fibre T or Kb and ∂ 6= 0 to Chapter 11,
and those with fibre S2 or RP 2 to Chapter 12.

5.1. Some general results

If B, E and F are connected finite complexes and p : E → B is a Hurewicz
fibration with fibre homotopy equivalent to F then χ(E) = χ(B)χ(F ) and the long
exact sequence of homotopy gives an exact sequence

π2(B) → π1(F ) → π1(E) → π1(B) → 1

in which the image of π2(B) under the connecting homomorphism ∂ is in the centre
of π1(F ). (See page 51 of [Go68]). These conditions are clearly homotopy invariant.

Hurewicz fibrations with base B and fibre X are classified by homotopy classes
of maps from B to the Milgram classifying space BE(X), where E(X) is the monoid
of all self homotopy equivalences of X , with the compact-open topology [Mi67]. If
X has been given a base point the evaluation map from E(X) to X is a Hurewicz
fibration with fibre the subspace (and submonoid) E0(X) of base point preserving
self homotopy equivalences [Go68].

Let T and Kb denote the torus and Klein bottle, respectively.

Lemma 5.1. Let F be an aspherical closed surface and B a closed smooth mani-
fold. There are natural bijections from the set of smooth F -bundles over B to the set
of Hurewicz fibrations with fibre F over B and to the set

∐
[ξ]H

2(B; ζπ1(F )ξ), where

the union is over conjugacy classes of homomorphisms ξ : π1(B) → Out(π1(F )) and
ζπ1(F )ξ is the Z[π1(F )]-module determined by ξ.

Proof. If ζπ1(F ) = 1 the identity components of Diff(F ) and E(F ) are
contractible [EE69]. Now every automorphism of π1(F ) is realizable by a diffeo-
morphism and homotopy implies isotopy for self diffeomorphisms of surfaces. (See
Chapter V of [ZVC]). Therefore π0(Diff(F )) ∼= π0(E(F )) ∼= Out(π1(F )), and the
inclusion of Diff(F ) into E(F ) is a homotopy equivalence. Hence BDiff(F ) ≃
BE(F ) ≃ K(Out(π1(F ), 1), so smooth F -bundles over B and Hurewicz fibrations
with fibre F over B are classified by the (unbased) homotopy set

[B,K(Out(π1(F ), 1))] = Hom(π1(B), Out(π1(F )))/ ∽,

67
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where ξ ∽ ξ′ if there is an α ∈ Out(π1(F )) such that ξ′(b) = αξ(b)α−1 for all
b ∈ π1(B).

If ζπ1(F ) 6= 1 then F = T or Kb. Left multiplication by T on itself in-
duces homotopy equivalences from T to the identity components of Diff(T ) and
E(T ). (Similarly, the standard action of S1 on Kb induces homotopy equivalences
from S1 to the identity components of Diff(Kb) and E(Kb). See Theorem III.2
of [Go65]). Let α : GL(2,Z) → Aut(T ) ≤ Diff(T ) be the standard linear action.
Then the natural maps from the semidirect product T ×αGL(2,Z) to Diff(T ) and
to E(T ) are homotopy equivalences. Therefore BDiff(T ) is a K(Z2, 2)-fibration
over K(GL(2,Z), 1). It follows that T -bundles over B are classified by two invari-
ants: a conjugacy class of homomorphisms ξ : π1(B) → GL(2,Z) together with a
cohomology class in H2(B; (Z2)ξ). A similar argument applies if F = Kb. �

Theorem 5.2. Let M be a PD4-complex and B and F aspherical closed sur-
faces. Then M is homotopy equivalent to the total space of an F -bundle over B
if and only if χ(M) = χ(B)χ(F ) and π1(M) is an extension of π1(B) by π1(F ).
Moreover every extension of π1(B) by π1(F ) is realized by some surface bundle,
which is determined up to isomorphism by the extension.

Proof. The conditions are clearly necessary. Suppose that they hold. If
ζπ1(F ) = 1 each homomorphism ξ : π1(B) → Out(π1(F )) corresponds to an unique
equivalence class of extensions of π1(B) by π1(F ), by Proposition 11.4.21 of [Ro].
Hence there is an F -bundle p : E → B with π1(E) ∼= π1(M) realizing the extension,
and p is unique up to bundle isomorphism. If F = T then every homomorphism
ξ : π1(B) → GL(2,Z) is realizable by an extension (for instance, the semidirect
product Z2×ξ π1(B)) and the extensions realizing ξ are classified up to equivalence
by H2(π1(B); (Z2)ξ). As B is aspherical the natural map from bundles to group
extensions is a bijection. Similar arguments apply if F = Kb. In all cases the
bundle space E is aspherical, and so π1(M) is an FF PD4-group. Hence M ≃ E,
by Theorem 3.5. �

Such extensions (with χ(F ) < 0) were shown to be realizable by bundles in
[Jo79].

5.2. Bundles with base and fibre aspherical surfaces

In many cases the group π1(M) determines the bundle up to diffeomorphism
of its base. Lemma 3 and Theorems 4 and 5 are based on [Jo94].

Lemma 5.3. Let G1 and G2 be groups with no nontrivial abelian normal sub-
group. If H is a normal subgroup of G = G1 × G2 which contains no nontrivial
direct product then either H ≤ G1 × {1} or H ≤ {1} ×G2.

Proof. Let Pi be the projection of H onto Gi, for i = 1, 2. If (h, h′) ∈ H ,
g1 ∈ G1 and g2 ∈ G2 then ([h, g1], 1) = [(h, h′), (g1, 1)] and (1, [h′, g2]) are in H .
Hence [P1, P1]× [P2, P2] ≤ H . Therefore either P1 or P2 is abelian, and so is trivial,
since Pi is normal in Gi, for i = 1, 2. �

Theorem 5.4. Let π be a group with a normal subgroup K such that K and
π/K are PD2-groups with trivial centres.

(1) If Cπ(K) = 1 and K1 is a finitely generated normal subgroup of π then
Cπ(K1) = 1 also.
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(2) The index [π : KCπ(K)] is finite if and only if π is virtually a direct
product of PD2-groups.

Proof. (1) Let z ∈ Cπ(K1). If K1 ≤ K then [K : K1] < ∞ and ζK1 = 1.
Let M = [K : K1]!. Then f(k) = k−1zMkz−M is in K1 for all k in K. Now
f(kk1) = k−1

1 f(k)k1 and also f(kk1) = f(kk1k
−1k) = f(k) (since K1 is a normal

subgroup centralized by z), for all k in K and k1 in K1. Hence f(k) is central in K1,
and so f(k) = 1 for all k in K. Thus zM centralizes K. Since π is torsion free we
must have z = 1. Otherwise the image of K1 under the projection p : π → π/K is a
nontrivial finitely generated normal subgroup of π/K, and so has trivial centralizer.
Hence p(z) = 1. Now [K,K1] ≤ K ∩ K1 and so K ∩ K1 6= 1, for otherwise
K1 ≤ Cπ(K). Since z centralizes the nontrivial normal subgroup K ∩K1 in K we
must again have z = 1.

(2) Since K has trivial centre KCπ(K) ∼= K × Cπ(K) and so the condition is
necessary. Suppose that f : G1 × G2 → π is an isomorphism onto a subgroup of
finite index, where G1 and G2 are PD2-groups. Let L = K ∩ f(G1 × G2). Then
[K : L] <∞ and so L is also a PD2-group, and is normal in f(G1 ×G2). We may
assume that L ≤ f(G1), by Lemma 3. Then f(G1)/L is finite and is isomorphic to
a subgroup of f(G1 ×G2)/K ≤ π/K, so L = f(G1). Now f(G2) normalizes K and
centralizes L, and [K : L] <∞. Hence f(G2) has a subgroup of finite index which
centralizes K, as in part (1). Hence [π : KCπ(K)] <∞. �

It follows immediately that if π and K are as in the theorem whether (i)
Cπ(K) 6= 1 and [π : KCπ(K)] = ∞, (ii) [π : KCπ(K)] < ∞ or (iii) Cπ(K) = 1
depends only on π and not on the subgroup K. In [Jo94] these cases are labeled
as types I, II and III, respectively. (In terms of the action: if Im(θ) is infinite and
Ker(θ) 6= 1 then π is of type I, if Im(θ) is finite then π is of type II, and if θ is
injective then π is of type III).

Theorem 5.5. Let π be a group with normal subgroups K and K1 such that
K, K1, π/K and π/K1 are PD2-groups with trivial centres. If Cπ(K) 6= 1 but
[π : KCπ(K)] = ∞ then K1 = K is unique. If [π : KCπ(K)] < ∞ then either
K1 = K or K1 ∩ K = 1; in the latter case K and K1 are the only such normal
subgroups which are PD2-groups with torsion free quotients.

Proof. Let p : π → π/K be the quotient epimorphism. Then p(Cπ(K)) is a
nontrivial normal subgroup of π/K, since K ∩ Cπ(K) = ζK = 1. Suppose that
K1∩K 6= 1. Now Σ = K1∩(KCπ(K)) containsK1∩K, and K1∩K∩Cπ(K) = K1∩
ζK = 1. Hence Σ 6≤ Cπ(K). Since Σ is normal in KCπ(K) ∼= K ×Cπ(K) we must
have Σ ≤ K1, by Lemma 3. Hence Σ ≤ K1 ∩K. Hence p(K1)∩ p(Cπ(K)) = 1, and
so p(K1) centralizes the nontrivial normal subgroup p(Cπ(K)) in π/K. Therefore
K1 ≤ K and so [K : K1] <∞. Since π/K1 is torsion free we must have K1 = K.

If K1 ∩K = 1 then [K,K1] = 1 so K1 ≤ Cπ(K) and [π : KCπ(K)] ≤ [π/K :
p(K1)] < ∞. Suppose K2 is a normal subgroup of π which is a PD2-group with
ζK2 = 1 and such that π/K2 is torsion free and K2∩K = 1. Then H = K2∩(KK1)
is normal in KK1

∼= K ×K1 and [K2 : H ] <∞, so H is a PD2-group with ζH = 1
and H∩K = 1. The projection of H to K1 is nontrivial since H∩K = 1. Therefore
H ≤ K1, by Lemma 3, and so K1 ≤ K2. Hence K1 = K2. �

Corollary. [Jo93] If α and β are automorphisms of π and α(K) ∩ K = 1 then

β(K) = K or α(K). In particular, Aut(K ×K) ∼= Aut(K)2×̃(Z/2Z). �
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We shall obtain a somewhat weaker result for groups of type III as a corollary
of the next theorem.

Theorem 5.6. Let π be a group with normal subgroups K and K1 such that
K, K1 and π/K are PD2-groups, π/K1 is torsion free and χ(π/K) < 0. Then
either K1 = K or K1 ∩K = 1 and π ∼= K ×K1 or χ(K1) < χ(π/K).

Proof. Let p : π → π/K be the quotient epimorphism. If K1 ≤ K then
K1 = K, as in Theorem 5. Otherwise p(K1) has finite index in π/K and so p(K1)
is also a PD2-group. As the minimum number of generators of a PD2-group G is
β1(G; F2), we have χ(K1) ≤ χ(p(K1)) ≤ χ(π/K). We may assume that χ(K1) ≥
χ(π/K). Hence χ(K1) = χ(π/K) and so p|K1 is an epimorphism. Therefore K1

and π/K have the same orientation type, by the nondegeneracy of Poincaré duality
with coefficients F2 and the Wu relation w1 ∪ x = x2 for all x ∈ H1(G; F2) and
PD2-groups G. Hence K1

∼= π/K. Since PD2-groups are hopfian p|K1 is an
isomorphism. Hence [K,K1] ≤ K ∩K1 = 1 and so π = K.K1

∼= K × π/K. �

Corollary 5.6.1 (Jo98). The group π has only finitely many such subgroups
K.

Proof. We may assume given χ(K) < 0 and that π is of type III. If ρ : π →
Z/χ(π)Z is an epimorphism such that ρ(K) = 0 then χ(Ker(ρ)/K) ≤ χ(K). Since
π is not a product K is the only such subgroup of Ker(ρ). Since χ(K) divides χ(π)
and Hom(π, Z/χ(π)Z) is finite the corollary follows. �

The next two corollaries follow by elementary arithmetic.

Corollary 5.6.2. If χ(K) = 0 or χ(K) = −1 and π/K1 is a PD2-group then
either K1 = K or π ∼= K ×K1. �

Corollary 5.6.3. If K and π/K are PD2-groups, χ(π/K) < 0, and χ(K)2 ≤
χ(π) then either K is the unique such subgroup or π ∼= K ×K. �

Corollary 5.6.4. Let M and M ′ be the total spaces of bundles ξ and ξ′ with
the same base B and fibre F , where B and F are aspherical closed surfaces such that
χ(B) < χ(F ). Then M ′ is diffeomorphic toM via a fibre-preserving diffeomorphism
if and only if π1(M

′) ∼= π1(M). �

Compare the statement of Melvin’s Theorem on total spaces of S2-bundles
(Theorem 13 below).

We can often recognise total spaces of aspherical surface bundles under weaker
hypotheses on the fundamental group.

Theorem 5.7. Let M be a closed 4-manifold with fundamental group π. Then
the following conditions are equivalent:

(1) M is homotopy equivalent to the total space of a bundle with base and fibre
aspherical closed surfaces:

(2) π has an FP2 normal subgroup K such that π/K is a PD2-group and
π2(M) = 0;

(3) π has a normal subgroup N which is a PD2-group, π/N is torsion free
and π2(M) = 0.

Proof. Clearly (1) implies (2) and (3). Conversely they each imply that π has
one end and so M is aspherical. If K is an FP2 normal subgroup in π and π/K is
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a PD2-group then K is a PD2-group, by Theorem I.19. If N is a normal subgroup
which is a PD2-group then an LHSSS argument gives H2(π/N ; Z[π/N ]) ∼= Z.
Hence π/N is virtually a PD2-group, by Bowditch’s Theorem. Since it is torsion
free it is a PD2-group and so the theorem follows from Theorem 2. �

If ζK = 1 we may avoid the difficult theorem of Bowditch here, for then π/K
is an extension of Cπ(K) by a subgroup of Out(K), so v.c.d.π/K < ∞ and thus
π/K is virtually a PD2-group, by Theorem 9.11 of [Bi].

Kapovich has given an example of an aspherical closed 4-manifold M such that
π1(M) is an extension of a PD2-group by a finitely generated normal subgroup
which is not FP2 [Ka98].

Theorem 5.8. Let M be a closed 4-manifold with fundamental group π. If
χ(M) = 0 and π has a subnormal subgroup G which is a PD2-group with ζG = 1
and [π : G] = ∞ then M is aspherical and either [π : Nπ(G)] < ∞ or there is a
subnormal chain G < J < K ≤ π such that [π : K] <∞ and K/J ∼= J/G ∼= Z.

Proof. Let G = G0 < G1 < . . .Gn = π be a subnormal chain of minimal
length. Let j = min{i | [Gi+1 : G] = ∞}. Then [Gj : G] < ∞, so Gj is FP . It is
easily seen that the theorem holds for G if it holds for Gj . Thus we may assume
that [G1 : G] = ∞. A finite induction up the subnormal chain using the LHSSS

gives Hs(π; Z[π]) = 0 for s ≤ 2. Now β
(2)
1 (G1) = 0, since G is finitely generated

and [G1 : G] = ∞ [Ga00]. (This also can be deduced from Theorem 2.2 and the
fact that Out(G) is virtually torsion free). Inducting up the subnormal chain gives

β
(2)
1 (π) = 0 and so M is aspherical, by Theorem 3.4.

If G < G̃ are two normal subgroups of G1 with cohomological dimension 2
then G̃/G is locally finite, by Theorem 8.2 of [Bi]. Hence G̃/G is finite, since

χ(G) = [H : G]χ(H) for any finitely generated subgroup H such that G ≤ H ≤ G̃.

Moreover if G̃ is normal in J then [J : NJ(G)] <∞, since G̃ has only finitely many

subgroups of index [G̃ : G]).
Therefore we may assume that G is maximal among such subgroups of G1.

Let n be an element of G2 such that nGn−1 6= G, and let H = G.nGn−1. Then
G is normal in H and H is normal in G1, so [H : G] = ∞ and c.d.H = 3.
Moreover H is FP and Hs(H ; Z[H ]) = 0 for s ≤ 2, so either G1/H is locally
finite or c.d.G1 > c.d.H , by Theorem 8.2 of [Bi]. If G1/H is locally finite but not
finite then we again have c.d.G1 > c.d.H , by Theorem 3.3 of [GS81]. If c.d.G1 =
4 then [π : Nπ(G)] ≤ [π : G1] < ∞. Otherwise G1/H is finite, so G1 is FP
and Hs(G1; Z[G1]) = 0 for s ≤ 2. Let k = min{i | [Gi+1 : G1] = ∞}. Then
Hs(Gk;W ) = 0 for s ≤ 3 and any free Z[Gk]-module W . Hence c.d.Gk = 4 and so
[π : Gk] < ∞, by Strebel’s Theorem. An LHSSS corner argument then shows that
Gk/Gk−1 has 2 ends and H3(Gk−1); Z[Gk−1]) ∼= Z. Thus Gk−1 is a PD3-group,
and therefore so is G1. By a similar argument, G1/G has two ends also. The
theorem follows easily. �

Corollary 5.8.1. If ζG = 1 and G is normal in π then M has a finite covering
space which is homotopy equivalent to the total space of a surface bundle over T .

Proof. Since M is aspherical and G is normal in π M has a finite covering
which is homotopy equivalent to a K(G, 1)-bundle over an aspherical orientable
surface, as in Theorem 7. Since χ(M) = 0 the base must be T . �
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If π/G is virtually Z2 then it has a subgroup of index at most 6 which maps
onto Z2 or Z×−1Z.

Let G be a PD2-group such that ζG = 1. Let θ be an automorphism of G
whose class in Out(G) has infinite order and let λ : G→ Z be an epimorphism. Let
π = (G× Z) ×φ Z where φ(g, n) = (θ(g), λ(g) + n) for all g ∈ G and n ∈ Z. Then
G is subnormal in π but this group is not virtually the group of a surface bundle
over a surface.

Compare also Theorems 4.5, 4.7 and Theorem 15 below.

5.3. Bundles with aspherical base and fibre S2 or RP 2

Let E+(S2) denote the connected component of idS2 in E(S2), i.e., the sub-
monoid of degree 1 maps. The connected component of idS2 in E0(S

2) may be
identified with the double loop space Ω2S2.

Lemma 5.9. Let X be a finite 2-complex. Then there are natural bijections
[X ;BO(3)] ∼= [X ;BE(S2)] ∼= H1(X ; F2) ×H2(X ; F2).

Proof. As a self homotopy equivalence of a sphere is homotopic to the identity
if and only if it has degree +1 the inclusion of O(3) into E(S2) is bijective on
components. Evaluation of a self map of S2 at the basepoint determines fibrations
of SO(3) and E+(S2) over S2, with fibre SO(2) and Ω2S2, respectively, and the
map of fibres induces an isomorphism on π1. On comparing the exact sequences
of homotopy for these fibrations we see that the inclusion of SO(3) in E+(S2)
also induces an isomorphism on π1. Since the Stiefel-Whitney classes are defined
for any spherical fibration and w1 and w2 are nontrivial on suitable S2-bundles
over S1 and S2, respectively, the inclusion of BO(3) into BE(S2) and the map
(w1, w2) : BE(S2) → K(Z/2Z, 1) × K(Z/2Z, 2) induces isomorphisms on πi for
i ≤ 2. The lemma follows easily. �

Thus there is a natural 1-1 correspondance between S2-bundles and spherical
fibrations over such complexes, and any such bundle ξ is determined up to isomor-
phism over X by its total Stiefel-Whitney class w(ξ) = 1 + w1(ξ) + w2(ξ). (From
another point of view: if w1(ξ) = w1(ξ

′) there is an isomorphism of the restrictions
of ξ and ξ′ over the 1-skeleton X [1]. The difference w2(ξ)−w2(ξ

′) is the obstruction
to extending any such isomorphism over the 2-skeleton).

Theorem 5.10. Let M be a closed 4-manifold and B an aspherical closed
surface. Then the following conditions are equivalent:

(1) π1(M) ∼= π1(B) and χ(M) = 2χ(B);

(2) π1(M) ∼= π1(B) and M̃ ≃ S2;
(3) M is homotopy equivalent to the total space of an S2-bundle over B.

Proof. If (1) holds then H3(M̃ ; Z) = H4(M̃ ; Z) = 0, as π1(M) has one end,

and π2(M) ∼= H2(π; Z[π]) ∼= Z, by Theorem 3.11. Hence M̃ is homotopy equivalent
to S2. If (2) holds we may assume that there is a Hurewicz fibration h : M → B
which induces an isomorphism of fundamental groups. As the homotopy fibre of h

is M̃ , Lemma 9 implies that h is fibre homotopy equivalent to the projection of an
S2-bundle over B. Clearly (3) implies the other conditions. �

We shall summarize some of the key properties of the Stiefel-Whitney classes
of such bundles in the following lemma.
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Lemma 5.11. Let ξ be an S2-bundle over a closed surface B, with total space
M and projection p : M → B. Then

(1) ξ is trivial if and only if w(M) = p∗w(B);
(2) the intersection form on H2(M ; F2) is even if and only if w2(ξ) = 0;
(3) if q : B′ → B is a 2-fold covering map with B′ connected then w2(q

∗ξ) = 0.

Proof. (1) Applying the Whitney sum formula and naturality to the tangent
bundle of the B3-bundle associated to ξ gives w(M) = p∗w(B)∪ p∗w(ξ). Since p is
a 2-connected map the induced homomorphism p∗ is injective in degrees ≤ 2 and
so w(M) = p∗w(B) if and only if w(ξ) = 1. By Lemma 9 this is so if and only if ξ
is trivial, since B is 2-dimensional.
(2) By Poincaré duality, the intersection form is even if and only if the Wu class
v2(M) = w2(M) + w1(M)2 is 0. Now v2(M) = p∗(w1(B) + w1(ξ))

2 + p∗(w2(B) +
w1(B)∪w1(ξ)+w2(ξ)) = p∗(w2(B)+w1(B)∪w1(ξ)+w2(ξ)+w1(B)2 +w1(ξ)

2) =
p∗(w2(ξ)), since w1(B) ∪ η = η2 and w1(B)2 = w2(B), by the Wu relations for B.
Hence v2(M) = 0 if and only if w2(ξ) = 0, as p∗ is injective in degree 2.
(3) We have q∗(w2(q

∗ξ) ∩ [B′]) = q∗((q∗w2(ξ)) ∩ [B′]) = w2(ξ) ∩ q∗[B′], by the
projection formula. Since q has degree 2 this is 0, and since q∗ is an isomorphism
in degree 0 we find w2(q

∗ξ) ∩ [B′] = 0. Therefore w2(q
∗ξ) = 0, by Poincaré duality

for B′. �

Melvin has determined criteria for the total spaces of S2-bundles over a compact
surface to be diffeomorphic, in terms of their Stiefel-Whitney classes. We shall give
an alternative argument for the cases with aspherical base.

Lemma 5.12. Let B be a closed surface and w be the Poincaré dual of w1(B). If
u1 and u2 are elements of H1(B; F2)−{0, w} such that u1.u1 = u2.u2 then there is
a homeomorphism f : B → B which is a composite of Dehn twists about two-sided
essential simple closed curves and such that f∗(u1) = u2.

Proof. For simplicity of notation, we shall use the same symbol for a simple
closed curve u on B and its homology class in H1(B; F2). The curve u is two-
sided if and only if u.u = 0. In that case we shall let cu denote the automorphism
of H1(B; F2) induced by a Dehn twist about u. Note also that u.u = u.w and
cv(u) = u+ (u.v)v for all u and two-sided v in H1(B; F2).

If B is orientable it is well known that the group of isometries of the intersection
form acts transitively on H1(B; F2), and is generated by the automorphisms cu.
Thus the claim is true in this case.

If w1(B)2 6= 0 then B ∼= RP 2♯Tg, where Tg is orientable. If u1.u1 = u2.u2 = 0
then u1 and u2 are represented by simple closed curves in Tg, and so are related by a
homeomorphism which is the identity on the RP 2 summand. If u1.u1 = u2.u2 = 1
let vi = ui + w. Then vi.vi = 0 and this case follows from the earlier one.

Suppose finally that w1(B) 6= 0 but w1(B)2 = 0; equivalently, that B ∼= Kb♯Tg,
where Tg is orientable. Let {w, z} be a basis for the homology of the Kb summand.
In this case w is represented by a 2-sided curve. If u1.u1 = u2.u2 = 0 and u1.z =
u2.z = 0 then u1 and u2 are represented by simple closed curves in Tg, and so
are related by a homeomorphism which is the identity on the Kb summand. The
claim then follows if u.z = 1 for u = u1 or u2, since we then have cw(u).cw(u) =
cw(u).z = 0. If u.u 6= 0 and u.z = 0 then (u + z).(u + z) = 0 and cu+z(u) = z. If
u.u 6= 0, u.z 6= 0 and u 6= z then cu+z+wcw(u) = z. Thus if u1.u1 = u2.u2 = 1 both
u1 and u2 are related to z. Thus in all cases the claim is true. �
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Theorem 5.13 (Melvin). Let ξ and ξ′ be two S2-bundles over an aspherical
closed surface B. Then the following conditions are equivalent:

(1) there is a diffeomorphism f : B → B such that ξ = f∗ξ′;
(2) the total spaces E(ξ) and E(ξ′) are diffeomorphic; and
(3) w1(ξ) = w1(ξ

′) if w1(ξ) = 0 or w1(B), w1(ξ) ∪ w1(B) = w1(ξ
′) ∪ w1(B)

and w2(ξ) = w2(ξ
′).

Proof. Clearly (1) implies (2). A diffeomorphism h : E → E′ induces an
isomorphism on fundamental groups; hence there is a diffeomorphism f : B → B
such that fp is homotopic to p′h. Now h∗w(E′) = w(E) and f∗w(B) = w(B).
Hence p∗f∗w(ξ′) = p∗w(ξ) and so w(f∗ξ′) = f∗w(ξ′) = w(ξ). Thus f∗ξ′ = ξ, by
Theorem 10, and so (2) implies (1).

If (1) holds then f∗w(ξ′) = w(ξ). Since w1(B) = v1(B) is the characteristic
element for the cup product pairing from H1(B; F2) to H2(B; F2) and H2(f ; F2) is
the identity f∗w1(B) = w1(B), w1(ξ)∪w1(B) = w1(ξ

′)∪w1(B) and w2(ξ) = w2(ξ
′).

Hence(1) implies (3).
If w1(ξ)∪w1(B) = w1(ξ

′)∪w1(B) and w1(ξ) and w1(ξ
′) are neither 0 nor w1(B)

then there is a diffeomorphism f : B → B such that f∗w1(ξ
′) = w1(ξ), by Lemma

11 (applied to the Poincaré dual homology classes). Hence (3) implies (1). �

Corollary 5.13.1. There are 4 diffeomorphism classes of S2-bundle spaces
if B is orientable and χ(B) ≤ 0, 6 if B = Kb and 8 if B is nonorientable and
χ(B) < 0. �

See [Me84] for a more geometric argument, which applies also to S2-bundles
over surfaces with nonempty boundary. The theorem holds also when B = S2 or
RP 2; there are 2 such bundles over S2 and 4 over RP 2. (See Chapter 12).

Theorem 5.14. Let M be a closed 4-manifold with fundamental group π. The
following are equivalent:

(1) M has a covering space of degree ≤ 2 which is homotopy equivalent to the
total space of an S2-bundle over an aspherical closed surface;

(2) the universal covering space M̃ is homotopy equivalent to S2;
(3) π 6= 1 and π2(M) ∼= Z.

Proof. Clearly (1) implies (2) and (2) implies (3). Suppose that (3) holds.

If π is finite and π2(M) ∼= Z then M̃ ≃ CP 2, and so admits no nontrivial free
group actions, by the Lefshetz fixed point theorem. Hence π must be infinite.

Then H0(M̃ ; Z) = Z, H1(M̃ ; Z) = 0 and H2(M̃ ; Z) = π2(M), while H3(M̃ ; Z) ∼=
H1(π; Z[π]) and H4(M̃ ; Z) = 0. Now HomZ[π](π2(M),Z[π]) = 0, since π is infinite

and π2(M) ∼= Z. Therefore H2(π; Z[π]) is infinite cyclic, by Lemma 3.3, and so π

is virtually a PD2-group, by Bowditch’s Theorem. Hence H3(M̃ ; Z) = 0 and so

M̃ ≃ S2. Let K be the kernel of the natural action of π on π2(M). If C is a finite

cyclic subgroup of K then Hn+3(C; Z) ∼= Hn(C;H2(M̃ ; Z)) for all n ≥ 2, by Lemma
2.10. Therefore C must be trivial, so K is torsion free. Hence K is a PD2-group
and (1) now follows from Theorem 10. �

A straightfoward Mayer-Vietoris argument may be used to show directly that
if H2(π; Z[π]) ∼= Z then π has one end.



5.3. BUNDLES WITH ASPHERICAL BASE AND FIBRE S2 OR RP 2 75

Lemma 5.15. Let X be a finite 2-complex. Then there are natural bijections
[X ;BSO(3)] ∼= [X ;BE(RP 2)] ∼= H2(X ; F2).

Proof. Let (1, 0, 0) and [1 : 0 : 0] be the base points for S2 and RP 2 respec-
tively. A based self homotopy equivalence f of RP 2 lifts to a based self homotopy
equivalence F+ of S2. If f is based homotopic to the identity then deg(f+) = 1.
Conversely, any based self homotopy equivalence is based homotopic to a map
which is the identity on RP 1; if moreover deg(f+) = 1 then this map is the iden-
tity on the normal bundle and it quickly follows that f is based homotopic to
the identity. Thus E0(RP

2) has two components. The homeomorphism g defined
by g([x : y : z]) = [x : y : −z] is isotopic to the identity (rotate in the (x, y)-
coordinates). However deg(g+) = −1. It follows that E(RP 2) is connected. As
every self homotopy equivalence of RP 2 is covered by a degree 1 self map of S2,
there is a natural map from E(RP 2) to E+(S2).

We may use obstruction theory to show that π1(E0(RP
2)) has order 2. Hence

π1(E(RP 2)) has order at most 4. Suppose that there were a homotopy ft through
self maps of RP 2 with f0 = f1 = idRP 2 and such that the loop ft(∗) is essential,
where ∗ is a basepoint. Let F be the map from RP 2 × S1 to RP 2 determined by
F (p, t) = ft(p), and let α and β be the generators of H1(RP 2; F2) and H1(S1; F2),
respectively. Then F ∗α = α⊗ 1 + 1⊗ β and so (F ∗α)3 = α2 ⊗ β which is nonzero,
contradicting α3 = 0. Thus there can be no such homotopy, and so the homo-
morphism from π1(E(RP 2)) to π1(RP

2) induced by the evaluation map must be
trivial. It then follows from the exact sequence of homotopy for this evaluation
map that the order of π1(E(RP 2)) is at most 2. The group SO(3) ∼= O(3)/(±I)
acts isometrically on RP 2. As the composite of the maps on π1 induced by the
inclusions SO(3) ⊂ E(RP 2) ⊂ E+(S2) is an isomorphism of groups of order 2 the
first map also induces an isomorphism. It follows as in Lemma 9 that there are
natural bijections [X ;BSO(3)] ∼= [X ;BE(RP 2)] ∼= H2(X ; F2). �

Thus there is a natural 1-1 correspondance betweenRP 2-bundles and orientable
spherical fibrations over such complexes. The RP 2-bundle corresponding to an ori-
entable S2-bundle is the quotient by the fibrewise antipodal involution. In partic-
ular, there are two RP 2-bundles over each closed aspherical surface.

Theorem 5.16. Let M be a closed 4-manifold and B an aspherical closed
surface. Then M is homotopy equivalent to the total space of an RP 2-bundle over
B if and only if π1(M) ∼= π1(B) × (Z/2Z) and χ(M) = χ(B).

Proof. If E is the total space of an RP 2-bundle over B, with projection p,
then χ(E) = χ(B) and the long exact sequence of homotopy gives a short exact
sequence 1 → Z/2Z → π1(E) → π1(B) → 1. Since the fibre has a product
neighbourhood, j∗w1(E) = w1(RP

2), where j : RP 2 → E is the inclusion of the
fibre over the basepoint of B, and so w1(E) considered as a homomorphism from
π1(E) to Z/2Z splits the injection j∗. Therefore π1(E) ∼= π1(B) × (Z/2Z) and so
the conditions are necessary, as they are clearly invariant under homotopy.

Suppose that they hold, and let w : π1(M) → Z/2Z be the projection onto
the Z/2Z factor. Then the covering space associated with the kernel of w satisfies

the hypotheses of Theorem 10 and so M̃ ≃ S2. Therefore the homotopy fibre of
the map h from M to B inducing the projection of π1(M) onto π1(B) is homotopy
equivalent to RP 2. The map h is fibre homotopy equivalent to the projection of an
RP 2-bundle over B, by Lemma 15. �



76 5. SURFACE BUNDLES

Theorem 5.17. Let M be a closed 4-manifold and p : M̂ → M a regular cov-

ering map, with covering group G = Aut(p). If the covering space M̂ is finitely
dominated and H2(G; Z[G]) ∼= Z then M has a finite covering space which is ho-
motopy equivalent to a closed 4-manifold which fibres over an aspherical closed
surface.

Proof. By Bowditch’s Theorem G is virtually a PD2-group. Therefore as M̂
is finitely dominated it is homotopy equivalent to a closed surface, by [Go79]. The
result then follows as in Theorems 2, 10 and 16. �

Note that by Theorem 3.11 and the remarks in the paragraph preceding it the
total spaces of such bundles with base an aspherical surface have minimal Euler
characteristic for their fundamental groups (i.e. χ(M) = q(π)).

Theorem 5.18. A closed 4-manifold M is homotopy equivalent to the total
space of a surface bundle over T or Kb if and only if π = π1(M) is an extension
of Z2 or Z×−1Z (respectively) by an FP2 normal subgroup K and χ(M) = 0.

Proof. The conditions are clearly necessary. If they hold then the covering
space associated to the subgroup K is homotopy equivalent to a closed surface,
by Corollary 4.2.3 together with Corollary 2.11.1, and so the theorem follows from
Theorems 2, 10 and 16. �

In particular, if π is the nontrivial extension of Z2 by Z/2Z then q(π) > 0.

5.4. Bundles over S2

Since S2 is the union of two discs along a circle, an F -bundle over S2 is de-
termined by the homotopy class of the clutching function, which is an element of
π1(Diff(F )).

Theorem 5.19. Let M be a closed 4-manifold with fundamental group π and F
a closed surface. Then M is homotopy equivalent to the total space of an F -bundle
over S2 if and only if χ(M) = 2χ(F ) and

(1) (when χ(F ) < 0 and w1(F ) = 0) π ∼= π1(F ) and w1(M) = w2(M) = 0;
or

(2) (when χ(F ) < 0 and w1(F ) 6= 0) π ∼= π1(F ), w1(M) 6= 0 and w2(M) =
w1(M)2 = (c∗Mw1(F ))2; or

(3) (when F = T ) π ∼= Z2 and w1(M) = w2(M) = 0, or π ∼= Z ⊕ (Z/nZ) for
some n > 0 and, if n = 1 or 2, w1(M) = 0; or

(4) (when F = Kb) π ∼= Z×−1Z, w1(M) 6= 0 and w2(M) = w1(M)2 = 0, or
π has a presentation 〈x, y | yxy−1 = x−1, y2n = 1〉 for some n > 0, where
w1(M)(x) = 0 and w1(M)(y) = 1, and there is a map p : M → S2 which
induces an epimorphism on π3; or

(5) (when F = S2) π = 1 and the index σ(M) = 0; or
(6) (when F = RP 2) π = Z/2Z, w1(M) 6= 0 and there is a class u of infinite

order in H2(M ; Z) and such that u2 = 0.

Proof. Let pE : E → S2 be such a bundle. Then χ(E) = 2χ(F ) and π1(E) ∼=
π1(F )/∂π2(S

2), where Im(∂) ≤ ζπ1(F ) [Go68]. The characteristic classes of E
restrict to the characteristic classes of the fibre, as it has a product neighbourhood.
As the base is 1-connected E is orientable if and only if the fibre is orientable. Thus
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the conditions on χ, π and w1 are all necessary. We shall treat the other assertions
case by case.

(1) and (2) If χ(F ) < 0 any F -bundle over S2 is trivial, by Lemma 1. Thus
the conditions are necessary. Conversely, if they hold then cM is fibre homotopy
equivalent to the projection of an S2-bundle ξ with base F , by Theorem 10. The
conditions on the Stiefel-Whitney classes then imply that w(ξ) = 1 and hence that
the bundle is trivial, by Lemma 11. (In the nonorientable cases we may need to
use Lemma 12 and Theorem 13). Therefore M is homotopy equivalent to S2 × F .

(3) If ∂ = 0 there is a map q : E → T which induces an isomorphism of
fundamental groups, and the map (pE , q) : E → S2 × T is clearly a homotopy
equivalence, so w(E) = 1. Conversely, if χ(M) = 0, π ∼= Z2 and w(M) = 1 then
M is homotopy equivalent to S2 × T , by Theorem 10 and Lemma 11.

If χ(M) = 0 and π ∼= Z ⊕ (Z/nZ) for some n > 0 then the covering space
MZ/nZ corresponding to the torsion subgroup Z/nZ is homotopy equivalent to a
lens space L, by Corollary 4.2.3. As observed in Chapter 4 the manifold M is
homotopy equivalent to the mapping torus of a generator of the group of covering
transformations Aut(MZ/nZ/M) ∼= Z. Since the generator induces the identity on
π1(L) ∼= Z/nZ it is homotopic to idL, if n > 2. This is also true if n = 1 or 2 and
M is orientable. (See Section 29 of [Co]). Therefore M is homotopy equivalent to
L × S1, which fibres over S2 via the composition of the projection to L with the
Hopf fibration of L over S2. (Hence w(M) = 1 in these cases also).

(4) As in part (3), if π1(E) ∼= Z×−1Z = π1(Kb) then E is homotopy equivalent
to S2 × Kb and so w1(E) 6= 0 while w2(E) = 0. Conversely, if χ(M) = 0, π ∼=
π1(Kb), M is nonorientable and w1(M)2 = w2(M) = 0 then M is homotopy
equivalent to S2 × Kb. Suppose now that ∂ 6= 0. The homomorphism π3(pE)
induced by the bundle projection is an epimorphism. Conversely, ifM satisfies these
conditions and q : M+ → M is the orientation double cover then M+ satisfies the

hypotheses of part (3), and so M̃ ≃ S3. Therefore as π3(p) is onto the composition

of the projection of M̃ onto M with p is essentially the Hopf map, and so induces
isomorphisms on all higher homotopy groups. Hence the homotopy fibre of p is
aspherical. As π2(M) = 0 the fundamental group of the homotopy fibre of p is a
torsion free extension of π by Z, and so the homotopy fibre must be Kb. As in
Theorem 2 above the map p is fibre homotopy equivalent to a bundle projection.

(5) There are just two S2-bundles over S2, with total spaces S2 × S2 and
S2×̃S2 = CP 2♯− CP 2, respectively. Thus the conditions are necessary. If M sat-
isfies these conditions then H2(M ; Z) ∼= Z2 and there is an element u in H2(M ; Z)
which generates an infinite cyclic direct summand and has square u ∪ u = 0. Thus
u = f∗i2 for some map f : M → S2, where i2 generates H2(S2; Z), by Theorem
8.4.11 of [Sp]. Since u generates a direct summand there is a homology class z in
H2(M ; Z) such that u ∩ z = 1, and therefore (by the Hurewicz theorem) there is
a map z : S2 → M such that fz is homotopic to idS2 . The homotopy fibre of f
is 1-connected and has π2

∼= Z, by the long exact sequence of homotopy. It then
follows easily from the spectral sequence for f that the homotopy fibre has the
homology of S2. Therefore f is fibre homotopy equivalent to the projection of an
S2-bundle over S2.

(6) Since π1(Diff(RP 2)) = Z/2Z (see page 21 of [EE69]) there are two RP 2-
bundles over S2. Again the conditions are clearly necessary. If they hold then
u = g∗i2 for some map g : M → S2. Let q : M+ → M be the orientation double
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cover and g+ = gq. Since H2(Z/2Z; Z) = 0 the second homology of M is spherical.
As we may assume u generates an infinite cyclic direct summand of H2(M ; Z) there
is a map z = qz+ : S2 → M such that gz = g+z+ is homotopic to idS2 . Hence
the homotopy fibre of g+ is S2, by case (5). Since the homotopy fibre of g has
fundamental group Z/2Z and is double covered by the homotopy fibre of g+ it is
homotopy equivalent to RP 2. It follows as in Theorem 16 that g is fibre homotopy
equivalent to the projection of an RP 2-bundle over S2. �

Theorems 2, 10 and 16 may each be rephrased as giving criteria for maps
from M to B to be fibre homotopy equivalent to fibre bundle projections. With
the hypotheses of Theorem 19 (and assuming also that ∂ = 0 if χ(M) = 0) we
may conclude that a map f : M → S2 is fibre homotopy equivalent to a fibre
bundle projection if and only if f∗i2 generates an infinite cyclic direct summand of
H2(M ; Z).

Is there a criterion for part (4) which does not refer to π3? The other hypotheses
are not sufficient alone. (See Chapter 11).

It follows from Theorem 10 that the conditions on the Stiefel-Whitney classes
are independent of the other conditions when π ∼= π1(F ). Note also that the
nonorientable S3- and RP 3-bundles over S1 are not T -bundles over S2, while if
M = CP 2♯CP 2 then π = 1 and χ(M) = 4 but σ(M) 6= 0. See Chapter 12 for
further information on parts (5) and (6).

5.5. Bundles over RP 2

Since RP 2 = Mb ∪ D2 is the union of a Möbius band Mb and a disc D2,
a bundle p : E → RP 2 with fibre F is determined by a bundle over Mb which
restricts to a trivial bundle over ∂Mb, i.e. by a conjugacy class of elements of
order dividing 2 in π0(Homeo(F )), together with the class of a gluing map over
∂Mb = ∂D2 modulo those which extend across D2 or Mb, i.e. an element of a
quotient of π1(Homeo(F )). If F is aspherical π0(Homeo(F )) ∼= Out(π1(F )), while
π1(Homeo(F )) ∼= ζπ1(F ) [Go65].

We may summarize the key properties of the algebraic invariants of such bun-
dles with F an aspherical closed surface in the following lemma. Let Z̃ be the
nontrivial infinite cyclic Z/2Z-module. The groups H1(Z/2Z; Z̃), H1(Z/2Z; F2)

and H1(RP 2; Z̃) are canonically isomorphic to Z/2Z.

Lemma 5.20. Let p : E → RP 2 be the projection of an F -bundle, where F is
an aspherical closed surface, and let x be the generator of H1(RP 2; Z̃). Then

(1) χ(E) = χ(F );
(2) ∂(π2(RP

2)) ≤ ζπ1(F ) and there is an exact sequence of groups

0 → π2(E) → Z
∂−−−−→ π1(F ) → π1(E) → Z/2Z → 1;

(3) if ∂ = 0 then π1(E) has one end and acts nontrivially on π2(E) ∼= Z, and
the covering space EF with fundamental group π1(F ) is homeomorphic to
S2 × F , so w1(E)|π1(F ) = w1(EF ) = w1(F ) (as homomorphisms from

π1(F ) to Z/2Z) and w2(EF ) = w1(EF )2;
(4) if ∂ 6= 0 then χ(F ) = 0, π1(E) has two ends, π2(E) = 0 and Z/2Z acts

by inversion on ∂(Z);

(5) p∗x3 = 0 ∈ H3(E; p∗Z̃).
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Proof. Condition (1) holds since the Euler characteristic is multiplicative in
fibrations, while (2) is part of the long exact sequence of homotopy for p. The
image of ∂ is central by [Go68], and is therefore trivial unless χ(F ) = 0. Conditions
(3) and (4) then follow as the homomorphisms in this sequence are compatible with
the actions of the fundamental groups, and EF is the total space of an F -bundle
over S2, which is a trivial bundle if ∂ = 0, by Theorem 19. Condition (5) holds

since H3(RP 2; Z̃) = 0. �

Let π be a group which is an extension of Z/2Z by a normal subgroup G, and
let t ∈ π be an element which maps nontrivially to π/G = Z/2Z. Then u = t2 is
in G and conjugation by t determines an automorphism α of G such that α(u) = u
and α2 is the inner automorphism given by conjugation by u.

Conversely, let α be an automorphism of G whose square is inner, say α2(g) =
ugu−1 for all g ∈ G. Let v = α(u). Then α3(g) = α2(α(g)) = uα(g)c−1 =
α(α2(g)) = vα(g)v−1 for all g ∈ G. Therefore vu−1 is central. In particular, if the
centre of G is trivial α fixes u, and we may define an extension

ξα : 1 → G→ Πα → Z/2Z → 1

in which Πα has the presentation 〈G, tα | tαgt−1
α = α(g), t2α = u〉. If β is another

automorphism in the same outer automorphism class then ξα and ξβ are equivalent
extensions. (Note that if β = α.ch, where ch is conjugation by h, then β(α(h)uh) =
α(h)uh and β2(g) = α(h)uh.g.(α(h)uh)−1 for all g ∈ G).

Lemma 5.21. If χ(F ) < 0 or χ(F ) = 0 and ∂ = 0 then an F -bundle over RP 2

is determined up to isomorphism by the corresponding extension of fundamental
groups.

Proof. If χ(F ) < 0 such bundles and extensions are each determined by an
element ξ of order 2 in Out(π1(F )). If χ(F ) = 0 bundles with ∂ = 0 are the restric-
tions of bundles over RP∞ = K(Z/2Z, 1) (compare Lemma 4.10). Such bundles
are determined by an element ξ of order 2 in Out(π1(F )) and a cohomology class
in H2(Z/2Z; ζπ1(F )ξ), by Lemma 1, and so correspond bijectively to extensions
also. �

Lemma 5.22. Let M be a PD4-complex with fundamental group π. A map
f : M → RP 2 is fibre homotopy equivalent to the projection of a bundle over RP 2

with fibre an aspherical closed surface if π1(f) is an epimorphism and either

(1) χ(M) ≤ 0 and π2(f) is an isomorphism; or
(2) χ(M) = 0, π has two ends and π3(f) is an isomorphism.

Proof. In each case π is infinite, by Lemma 3.13. In case (1) H2(π; Z[π]) ∼= Z

(by Lemma 3.3) and so π has one end, by Bowditch’s Theorem. Hence M̃ ≃ S2.
Moreover the homotopy fibre of f is aspherical, and its fundamental group is a

surface group. (See Chapter X for details). In case (2) M̃ ≃ S3, by Corollary

4.2.3. Hence the lift f̃ : M̃ → S2 is homotopic to the Hopf map, and so induces
isomorphisms on all higher homotopy groups. Therefore the homotopy fibre of f
is aspherical. As π2(M) = 0 the fundamental group of the homotopy fibre is a
(torsion free) infinite cyclic extension of π and so must be either Z2 or Z×−1Z.
Thus the homotopy fibre of f is homotopy equivalent to T or Kb. In both cases the
argument of Theorem 2 now shows that f is fibre homotopy equivalent to a surface
bundle projection. �



80 5. SURFACE BUNDLES

5.6. Bundles over RP 2 with ∂ = 0

If we assume that the connecting homomorphism ∂ : π2(E) → π1(F ) is trivial
then conditions (2), (3) and (5) of Lemma 20 simplify to conditions on E and
the action of π1(E) on π2(E). These conditions almost suffice to characterize the
homotopy types of such bundle spaces; there is one more necesssary condition, and
for nonorientable manifolds there is a further possible obstruction, of order at most
2.

Theorem 5.23. Let M be a PD4-complex and let m : Mu →M be the covering
associated to κ = Ker(u), where u : π = π1(M) → Aut(π2(M)) is the natural

action. Let x be the generator of H1(Z/2Z; Z̃). If M is homotopy equivalent to the
total space of a fibre bundle over RP 2 with fibre an aspherical closed surface and with
∂ = 0 then π2(M) ∼= Z, u is surjective, w2(Mu) = w1(Mu)

2 and u∗x3 has image
0 in H3(M ; F2). Moreover the homomorphism from H2(M ;Zu) to H2(S2;Zu)
induced by a generator of π2(M) is onto. Conversely, if M is orientable these
conditions imply that M is homotopy equivalent to such a bundle space. If M is
nonorientable there is a further obstruction of order at most 2.

Proof. The necessity of most of these conditions follows from Lemma 20. The
additional condition holds since the covering projection from S2 to RP 2 induces an
isomorphism H2(RP 2;Zu) ∼= H2(S2;Zu) = H2(S2; Z).

Suppose that they hold. Let g : S2 → P2(RP
2) and j : S2 → M represent

generators for π2(P2(RP
2)) and π2(M), respectively. After replacing M by a ho-

motopy equivalent space if necessary, we may assume that j is the inclusion of a
subcomplex. We may identify u with a map from M to K(Z/2Z, 1), via the isomor-
phism [M,K(Z/2Z, 1)] ∼= Hom(π, Z/2Z). The only obstruction to the construction
of a map from M to P2(RP

2) which extends g and lifts u lies in H3(M,S2;Zu),
since u∗π2(RP

2)) ∼= Zu. This group maps injectively to H3(M ;Zu), since re-
striction maps H2(M ;Zu) onto H2(S2;Zu), and so this obstruction is 0, since
its image in H3(M ;Zu) is u∗k1(RP

2) = u∗x3 = 0. Therefore there is a map
h : M → P2(RP

2) such that π1(h) = u and π2(h) is an isomorphism. The set of
such maps is parametrized by H2(M,S2;Zu).

As Z/2Z acts trivially on π3(RP
2) ∼= Z the second k-invariant of RP 2 lies in

H4(P2(RP
2);Z). This group is infinite cyclic, and is generated by t = k2(RP

2).
(See §3.12 of [Si67]). The obstruction to lifting h to a map from M to P3(RP

2)

is h∗t. Let n : P̃2(RP
2) → P2(RP

2) be the universal covering, and let z be a

generator of H2(P̃2(RP
2); Z) ∼= Z. Then h lifts to a map hu : Mu → P̃2(RP

2), so

that nhu = hm. (Note that hu is determined by h∗uz, since P̃2(RP
2) ≃ K(Z, 2)).

The covering space Mu is homotopy equivalent to the total space of an S2-
bundle q : E → F , where F is an aspherical closed surface, by Theorem 14. Since κ
acts trivially on π2(Mu) the bundle is orientable (i.e., w1(q) = 0) and so q∗w2(q) =
w2(E) + w1(E)2, by the Whitney sum formula. Therefore q∗w2(q) = 0, since
w2(Mu) = w1(Mu)

2, and so w2(q) = 0, since q is 2-connected. Hence the bundle
is trivial, by Lemma 11, and so Mu is homotopy equivalent to S2 × F . Let jF and
jS be the inclusions of the factors. Then hujS generates π2(P2). We may choose
h so that hujF is null homotopic. Then h∗uz is Poincaré dual to jF∗[F ], and so
h∗uz

2 = 0, since jF∗[F ] has self intersection 0. As n∗t is a multiple of z2, it follows
that m∗h∗t = 0.
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If M is orientable m∗ = H4(m; Z) is a monomorphism and so h∗t = 0. Hence
h lifts to a map f : M → P3(RP

2). As P3(RP
2) may be constructed from RP 2 by

adjoining cells of dimension at least 5 we may assume that f maps M into RP 2,
after a homotopy if necessary. Since π1(f) = u is an epimorphism and π2(f) is an
isomorphism f is fibre homotopy equivalent to the projection of an F -bundle over
RP 2, by Lemma 22.

In general, we may assume that h maps the 3-skeleton M [3] to RP 2. Let w be
a generator of H2(P2(RP

2); Z̃) ∼= H2(RP 2; Z̃) ∼= Z and let µ(g) = g ∪ g + g ∪ h∗w
for all g ∈ H2(M ;Zu). If M is nonorientable H4(M ; Z) = Z/2Z and µ is a
homomorphism. The sole obstruction to extending h|M [3] to a map f : M → RP 2

is the image of h∗t in Coker(S), which is independent of the choice of lift h. (See
§3.24 of [Si67]). �

Are these hypotheses independent? A closed 4-manifold M with π = π1(M)
a PD2-group and π2(M) ∼= Z is homotopy equivalent to the total space of an S2-
bundle p : E → B, where B is an aspherical closed surface. Therefore if u is nontriv-
ial Mu ≃ E+, where q : E+ → B+ is the bundle induced over a double cover of B.
As w1(q) = 0 and q∗w2(q) = 0, by Lemma 11.(3), we have w1(E

+) = q∗w1(B
+) and

w2(E
+) = q∗w2(B

+), by the Whitney sum formula. Hence w2(Mu) = w1(Mu)
2.

(In particular, w2(Mu) = 0 if M is orientable). Moreover since c.d.π = 2 the con-
dition u∗x3 = 0 is automatic. (It shall follow directly from the results of Chapter
10 that any such S2-bundle space with u nontrivial fibres over RP 2, even if it is
not orientable).

On the other hand, if Z/2Z is a (semi)direct factor of π the cohomology of

Z/2Z is a direct summand of that of π and so the image of x3 in H3(π; Z̃) is
nonzero.

Is the obstruction always 0 in the nonorientable cases?





CHAPTER 6

Simple homotopy type and surgery

The problem of determining the high-dimensional manifolds within a given ho-
motopy type has been successfully reduced to the determination of normal invari-
ants and surgery obstructions. This strategy applies also in dimension 4, provided
that the fundamental group is in the class SA generated from groups with subex-
ponential growth by extensions and increasing unions [FT95]. (Essentially all the
groups in this class that we shall discuss in this book are in fact virtually solvable).
We may often avoid this hypothesis by using 5-dimensional surgery to construct
s-cobordisms.

We begin by showing that the Whitehead group of the fundamental group
is trivial for surface bundles over surfaces, most circle bundles over geometric 3-
manifolds and for many mapping tori. In §2 we define the modified surgery structure
set, parametrizing s-cobordism classes of simply homotopy equivalences of closed 4-
manifolds. This notion allows partial extensions of surgery arguments to situations
where the fundamental group is not elementary amenable. Although many papers
on surgery do not explicitly consider the 4-dimensional cases, their results may
often be adapted to these cases. In §3 we comment briefly on approaches to the
s-cobordism theorem and classification using stabilization by connected sum with
copies of S2 × S2 or by cartesian product with R.

In §4 we show that 4-manifolds M such that π = π1(M) is torsion free virtually
poly-Z and χ(M) = 0 are determined up to homeomorphism by their fundamental
group (and Stiefel-Whitney classes, if h(π) < 4). We give also a fibration theorem
for closed 4-manifolds with torsion free, elementary amenable fundamental group
and show that the structure sets for total spaces of RP 2-bundles over T or Kb are
finite. In §5 we extend this finiteness to RP 2-bundle spaces over closed hyperbolic
surfaces and we show that total spaces of bundles with fibre S2 or an aspherical
closed surface over aspherical bases are determined up to s-cobordism by their
homotopy type. (We shall consider bundles with base or fibre geometric 3-manifolds
in Chapter 13).

6.1. The Whitehead group

In this section we shall rely heavily upon the work of Waldhausen in [Wd78].
The class of groups Cl is the smallest class of groups containing the trivial group and
which is closed under generalised free products and HNN extensions with amalga-
mation over regular coherent subgroups and under filtering direct limit. This class
is also closed under taking subgroups, by Proposition 19.3 of [Wd78]. If G is in
Cl then Wh(G) = 0, by Theorem 19.4 of [Wd78]. The argument for this theo-
rem actually shows that if G ∼= A ∗C B and C is regular coherent then there are

83
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“Mayer-Vietoris” sequences:

Wh(A) ⊕Wh(B) →Wh(G) → K̃(Z[C]) → K̃(Z[A]) ⊕ K̃(Z[B]) → K̃(Z[G]) → 0,

and similarly if G ∼= A∗C . (See Sections 17.1.3 and 17.2.3 of [Wd78]).
The class Cl contains all free groups and poly-Z groups and the class X of

Chapter 2. (In particular, all the groups Z∗m are in Cl). Since every PD2-group
is either poly-Z or is the generalised free product of two free groups with amal-
gamation over infinite cyclic subgroups it is regular coherent, and is in Cl. Hence
homotopy equivalences between S2-bundles over aspherical surfaces are simple. The
following extension implies the corresponding result for quotients of such bundle
spaces by free involutions.

Theorem 6.1. Let π be a semidirect product ρ×̃(Z/2Z) where ρ is a surface
group. Then Wh(π) = 0.

Proof. Assume first that π ∼= ρ× (Z/2Z). Let Γ = Z[ρ]. There is a cartesian
square expressing Γ[Z/2Z] = Z[ρ × (Z/2Z)] as the pullback of the reduction of
coefficients map from Γ to Γ2 = Γ/2Γ = Z/2Z[ρ] over itself. (The two maps from
Γ[Z/2Z] to Γ send the generator of Z/2Z to +1 and −1, respectively). The Mayer-
Vietoris sequence for algebraic K-theory traps K1(Γ[Z/2Z]) between K2(Γ2) and
K1(Γ)2 (see Theorem 6.4 of [Mi]). Now since c.d.ρ = 2 the higher K-theory of
R[ρ] can be computed in terms of the homology of ρ with coefficients in the K-
theory of R (cf. the Corollary to Theorem 5 of the introduction of [Wd78]). In
particular, the map from K2(Γ) to K2(Γ2) is onto, while K1(Γ) = K1(Z) ⊕ (ρ/ρ′)
and K1(Γ2) = ρ/ρ′. It now follows easily that K1(Γ[Z/2Z]) is generated by the
images of K1(Z) = {±1} and ρ× (Z/2Z), and so Wh(ρ× (Z/2Z)) = 0.

If π = ρ×̃(Z/2Z) is not such a direct product it is isomorphic to a discrete
subgroup of Isom(X) which acts properly discontinuously on X , where X = E2 or
H2. (See [EM82], [Zi]). The singularities of the corresponding 2-orbifold X/π are
either marked points of order 2 or reflector curves; there are no corner points and
no marked points of higher order. Let |X/π| be the surface obtained by forgetting
the orbifold structure of X/π, and let m be the number of marked points. Then
χ(|X/π|) − (m/2) = χorb(X/π) ≤ 0, by the Riemann-Hurwitz formula [Sc83’], so
either χ(|X/π|) ≤ 0 or χ(|X/π|) = 1 and m ≥ 2 or |X/π| ∼= S2 and m ≥ 4.

We may separate X/π along embedded circles (avoiding the singularities) into
pieces which are either (i) discs with at least two marked points; (ii) annuli with
one marked point; (iii) annuli with one boundary a reflector curve; or (iv) surfaces
other than D2 with nonempty boundary. In each case the inclusions of the sep-
arating circles induce monomorphisms on orbifold fundamental groups, and so π
is a generalized free product with amalgamation over copies of Z of groups of the
form (i) ∗m(Z/2Z) (with m ≥ 2); (ii) Z ∗ (Z/2Z); (iii) Z⊕ (Z/2Z); or (iv) ∗mZ, by
the Van Kampen theorem for orbifolds [Sc83]. The Mayer-Vietoris sequences for
algebraic K-theory now give Wh(π) = 0. �

The argument for the direct product case is based on one for showing that
Wh(Z ⊕ (Z/2Z)) = 0 from [Kw86].

Not all such orbifold groups arise in this way. For instance, the orbifold fun-
damental group of a torus with one marked point of order 2 is 〈x, y | [x, y]2 = 1〉,
which has torsion free abelianization, and so cannot be a semidirect product as
above.
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The orbifold fundamental groups of flat 2-orbifolds are the 2-dimensional crys-
tallographic groups. Their finite subgroups are cyclic or dihedral, of order properly
dividing 24, and have trivial Whitehead group. In fact Wh(π) = 0 for π any such
2-dimensional crystallographic group [Pe98]. (If π is the fundamental group of
an orientable hyperbolic 2-orbifold with k cone points of orders {n1, . . . nk} then
Wh(π) ∼= ⊕ki=1Wh(Z/niZ) [LS00]).

The argument for the next result is essentially due to F.T.Farrell.

Theorem 6.2. If π is an extension of π1(B) by π1(F ) where B and F are
aspherical closed surfaces then Wh(π) = 0.

Proof. If χ(B) < 0 then B admits a complete riemannian metric of constant
negative curvature −1. Moreover the only virtually poly-Z subgroups of π1(B) are
1 and Z. If G is the preimage in π of such a subgroup then G is either π1(F ) or
is the group of a Haken 3-manifold. It follows easily that for any n ≥ 0 the group
G × Zn is in Cl and so Wh(G × Zn) = 0. Therefore any such G is K-flat and so
the bundle is admissible, in the terminology of [FJ86]. Hence Wh(π) = 0 by the
main result of that paper.

If χ(B) = 0 then this argument does not work, although if moreover χ(F ) = 0
then π is poly-Z so Wh(π) = 0 by Theorem 2.13 of [FJ]. We shall sketch an ar-
gument of Farrell for the general case. Lemma 1.4.2 and Theorem 2.1 of [FJ93]
together yield a spectral sequence (with coefficients in a simplicial cosheaf) whose
E2 term is Hi(X/π1(B);Wh′j(p

−1(π1(B)x))) and which converges to Wh′i+j(π).

Here p : π → π1(B) is the epimorphism of the extension and X is a certain univer-
sal π1(B)-complex which is contractible and such that all the nontrivial isotropy
subgroups π1(B)x are infinite cyclic and the fixed point set of each infinite cyclic
subgroup is a contractible (nonempty) subcomplex. The Whitehead groups with
negative indices are the lower K-theory of Z[G] (i.e., Wh′n(G) = Kn(Z[G]) for all

n ≤ −1), while Wh′0(G) = K̃0(Z[G]) and Wh′1(G) = Wh(G). Note that Wh′−n(G)
is a direct summand of Wh(G × Zn+1). If i+ j > 1 then Wh′i+j(π) agrees ratio-
nally with the higher Whitehead group Whi+j(π). Since the isotropy subgroups
π1(B)x are infinite cyclic or trivial Wh(p−1(π1(B)x)×Zn) = 0 for all n ≥ 0, by the
argument of the above paragraph, and so Wh′j(p

−1(π1(B)x)) = 0 if j ≤ 1. Hence
the spectral sequence gives Wh(π) = 0. �

A closed 3-manifold is a Haken manifold if it is irreducible and contains an
incompressible 2-sided surface. Every Haken 3-manifold either has solvable funda-
mental group or may be decomposed along a finite family of disjoint incompressible
tori and Klein bottles so that the complementary components are Seifert fibred or
hyperbolic. It is an open question whether every closed irreducible orientable 3-
manifold with infinite fundamental group is virtually Haken (i.e., finitely covered by
a Haken manifold). (Non-orientable 3-manifolds are Haken). Every virtually Haken
3-manifold is either Haken, hyperbolic or Seifert-fibred, by [CS83] and [GMT96]. A
closed irreducible 3-manifold is a graph manifold if either it has solvable fundamen-
tal group or it may be decomposed along a finite family of disjoint incompressible
tori and Klein bottles so that the complementary components are Seifert fibred.
(There are several competing definitions of graph manifold in the literature).

Theorem 6.3. Let π = ν ×θ Z where ν is torsion free and is the fundamental
group of a closed 3-manifold N which is a connected sum of graph manifolds. Then
ν is regular coherent and Wh(π) = 0.
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Proof. The group ν is a generalized free product with amalgamation along
poly-Z subgroups (1, Z2 or Z×−1Z) of polycyclic groups and fundamental groups
of Seifert fibred 3-manifolds (possibly with boundary). The group rings of torsion
free polycyclic groups are regular noetherian, and hence regular coherent. If G is
the fundamental group of a Seifert fibred 3-manifold then it has a subgroup Go
of finite index which is a central extension of the fundamental group of a surface
B (possibly with boundary) by Z. We may assume that G is not solvable and
hence that χ(B) < 0. If ∂B is nonempty then Go ∼= Z×F and so is an iterated
generalized free product of copies of Z2, with amalgamation along infinite cyclic
subgroups. Otherwise we may split B along an essential curve and represent Go as
the generalised free product of two such groups, with amalgamation along a copy of
Z2. In both cases Go is regular coherent, and therefore so is G, since [G : Go] <∞
and c.d.G <∞.

Since ν is the generalised free product with amalgamation of regular coherent
groups, with amalgamation along poly-Z subgroups, it is also regular coherent. Let
Ni be an irreducible summand of N and let νi = π1(Ni). If Ni is Haken then νi
is in Cl. Otherwise Ni is a Seifert fibred 3-manifold which is not sufficiently large,
and the argument of [Pl80] extends easily to show that Wh(νi × Zs) = 0, for any

s ≥ 0. Since K̃(Z[νi]) is a direct summand of Wh(νi×Z), it follows that in all cases

K̃(Z[νi]) = Wh(νi) = 0. The Mayer-Vietoris sequences for algebraic K-theory now

give firstly that Wh(ν) = K̃(Z[ν]) = 0 and then that Wh(π) = 0 also. �

All 3-manifold groups are coherent as groups [Hm]. If we knew that their group
rings were regular coherent then we could use [Wd78] instead of [FJ86] to give a
purely algebraic proof of Theorem 2, for as surface groups are free products of free
groups with amalgamation over an infinite cyclic subgroup, an extension of one
surface group by another is a free product of groups with Wh = 0, amalgamated
over the group of a surface bundle over S1. Similarly, we could deduce from [Wd78]
that Wh(ν ×θ Z) = 0 for any torsion free group ν = π1(N) where N is a closed
3-manifold whose irreducible factors are Haken, hyperbolic or Seifert fibred.

Theorem 6.4. Let µ be a group with an infinite cyclic normal subgroup A such
that ν = µ/A is torsion free and is a free product ν = ∗1≤i≤nνi where each factor
is the fundamental group of an irreducible 3-manifold which is Haken, hyperbolic
or Seifert fibred. Then Wh(µ) = Wh(ν) = 0.

Proof. (Note that our hypotheses allow the possibility that some of the factors
νi are infinite cyclic). Let µi be the preimage of νi in µ, for 1 ≤ i ≤ n. Then µ is
the generalized free product of the µi’s, amalgamated over infinite cyclic subgroups.
For all 1 ≤ i ≤ n we have Wh(µi) = 0, by Lemma 1.1 of [St84] if K(νi, 1) is Haken,
by the main result of [FJ86] if it is hyperbolic, by an easy extension of the argument
of [Pl80] if it is Seifert fibred but not Haken and by Theorem 19.5 of [Wd78] if νi
is infinite cyclic. The Mayer-Vietoris sequences for algebraic K-theory now give
Wh(µ) = Wh(ν) = 0 also. �

Theorem 4 may be used to strengthen Theorem 4.8 to give criteria for a closed
4-manifold M to be simple homotopy equivalent to the total space of an S1-bundle,
if the irreducible summands of the base N are all virtually Haken and π1(M) is
torsion free.
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6.2. The s-cobordism structure set

Let M be a closed 4-manifold with fundamental group π and orientation char-
acter w : π → {±1}, and let G/TOP have the H-space multiplication determined
by its loop space structure. Then the surgery obstruction maps σ4+i = σM4+i :

[M × Di, ∂(M × Di);G/TOP, {∗}] → Ls4+i(π,w) are homomorphisms. If π is in
the class SA then Ls5(π,w) acts on STOP (M), and the surgery sequence

[SM ;G/TOP ]
σ5−→ Ls5(π,w)

ω−→ STOP (M)
η−→ [M ;G/TOP ]

σ4−→ Ls4(π,w)

is an exact sequence of groups and pointed sets, i.e., the orbits of the action ω
correspond to the normal invariants η(f) of simple homotopy equivalences [FQ,
FT95]. As it is not yet known whether 5-dimensional s-cobordisms over other
fundamental groups are products, we shall redefine the structure set by setting

SsTOP (M) = {f : N →M | N a TOP 4−manifold, f a simple h.e.}/≈,
where f1 ≈ f2 if there is a map F : W → M with domain W an s-cobordism with
∂W = N1 ∪N2 and F |Ni

= fi for i = 1, 2. If the s-cobordism theorem holds over
π this is the usual TOP structure set for M . We shall usually write Ln(π,w) for
Lsn(π,w) if Wh(π) = 0 and Ln(π) if moreover w is trivial. When the orientation
character is nontrivial and otherwise clear from the context we shall write Ln(π,−).

The homotopy set [M ;G/TOP ] may be identified with the set of normal maps
(f, b), where f : N →M is a degree 1 map and b is a stable framing of TN⊕f∗ξ, for
some TOP Rn-bundle ξ over M . (If f : N → M is a homotopy equivalence, with

homotopy inverse h, we shall let f̂ = (f, b), where ξ = h∗νN and b is the framing
determined by a homotopy from hf to idN ). The Postnikov 4-stage of G/TOP is
homotopy equivalent to K(Z/2Z, 2)×K(Z, 4). Let k2 generate H2(G/TOP ; F2) ∼=
Z/2Z and l4 generate H4(G/TOP ; Z) ∼= Z. The function from [M ;G/TOP ] to

H2(M ; F2) ⊕H4(M ; Z) which sends f̂ to (f̂∗(k2), f̂
∗(l4)) is an isomorphism.

The Kervaire-Arf invariant of a normal map ĝ : N2q → G/TOP is the image
of the surgery obstruction in L2q(Z/2Z,−) = Z/2Z under the homomorphism
induced by the orientation character, c(ĝ) = L2q(w1(N))(σ2q(ĝ)). The argument
of Theorem 13.B.5 of [Wl] may be adapted to show that there are universal classes
K4i+2 in H4i+2(G/TOP ; F2) (for i ≥ 0) such that c(ĝ) = (w(M) ∪ ĝ∗((1 + Sq2 +
Sq2Sq2)ΣK4i+2)) ∩ [M ]. Moreover K2 = k2, since c induces the isomorphism
π2(G/TOP ) = Z/2Z. In the 4-dimensional case this expression simplifies to c(ĝ) =
(w2(M) ∪ ĝ∗(k2) + ĝ∗(Sq2k2))[M ] = (w1(M)2 ∪ ĝ∗(k2))[M ]. The codimension-2

Kervaire invariant of a 4-dimensional normal map ĝ is kerv(ĝ) = ĝ∗(k2). Its value
on a 2-dimensional homology class represented by an immersion y : Y → M is the
Kervaire-Arf invariant of the normal map induced over the surface Y .

The structure set may overestimate the number of homeomorphism types within
the homotopy type of M , if M has self homotopy equivalences which are not ho-
motopic to homeomorphisms. Such “exotic” self homotopy equivalences may often
be constructed as follows. Given α : S2 → M , let β : S4 → M be the composition
αηSη, where η is the Hopf map, and let s : M →M∨S4 be the pinch map obtained
by shrinking the boundary of a 4-disc in M . Then the composite fα = (idE ∨ β)s
is a self homotopy equivalence of M .

Lemma 6.5 (No64). Let M be a closed 4-manifold and let α : S2 → M be a

map such that α∗[S2] 6= 0 in H2(M ; F2) and α∗w2(M) = 0. Then kerv(f̂α) 6= 0
and so fα is not normally cobordant to a homeomorphism.
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Proof. There is a class u ∈ H2(M ; F2) such that α∗[S2].u = 1, since α∗[S2] 6=
0. As low-dimensional homology classes may be realized by singular manifolds
there is a closed surface Y and a map y : Y → M transverse to fα and such that

f∗[Y ] = u. Then y∗kerv(f̂α)[Y ] is the Kervaire-Arf invariant of the normal map
induced over Y and is nontrivial. (See Theorem 5.1 of [CH90] for details). �

The family of surgery obstruction maps may be identified with a natural trans-
formation from L0-homology to L-theory. (In the nonorientable case we must use
w-twisted L0-homology). In dimension 4 the cobordism invariance of surgery ob-
structions (as in §13B of [Wl]) leads to the following formula.

Theorem 6.6 (Da95). There are homomorphisms I0 : H0(π;Zw) → L4(π,w)

and κ2 : H2(π; F2) → L4(π,w) such that for any f̂ : M → G/TOP the surgery

obstruction is σ4(f̂) = I0cM∗(f̂∗(l4) ∩ [M ]) + κ2cM∗(kerv(f̂ ) ∩ [M ]) �

If w = 1 the signature homomorphism from L4(π) to Z is a left inverse for
I0 : Z → L4(π), but in general I0 is not injective. This formula can be made some-
what more explicit as follows. Let KS(M) ∈ H4(M ; F2) be the Kirby-Siebenmann
obstruction to lifting the TOP normal fibration of M to a vector bundle. If M is

orientable and (f, b) : N → M is a degree 1 normal map with classifying map f̂

then (KS(M) − (f∗)−1KS(N) − kerv(f̂ )2)[M ] ≡ (σ(M) − σ(N))/8 mod (2) (see
Lemma 15.5 of [Si71] - page 329 of [KS]).

Theorem (6′ - Da95). If f̂ = (f, b) where f : N → M is a degree 1 map then
the surgery obstructions are given by

σ4(f̂) = I0((σ(N) − σ(M))/8) + κ2cM∗(kerv(f̂ ) ∩ [M ]) if w = 1, and

σ4(f̂) = I0(KS(N) −KS(M) + kerv(f̂)2) + κ2cM∗(kerv(f̂ ) ∩ [M ]) if w 6= 1.

(In the latter case we identify H4(M ; Z), H4(N ; Z) and H4(M ; F2) with
H0(π;Zw) = Z/2Z). �

The homomorphism σ4 is trivial on the image of η, but in general we do not
know whether a 4-dimensional normal map with trivial surgery obstruction must be
normally cobordant to a simple homotopy equivalence. In our applications we shall
always have a simple homotopy equivalence in hand, and so if σ4 is injective we can
conclude that the homotopy equivalence is normally cobordant to the identity.

A more serious problem is that it is not clear how to define the action ω in
general. We shall be able to circumvent this problem by ad hoc arguments in some
cases. (There is always an action on the homological structure set, defined in terms
of Z[π]-homology equivalences [FQ]).

If we fix an isomorphism iZ : Z → L5(Z) we may define a function Iπ : π →
Ls5(π) for any group π by Iπ(g) = g∗(iZ(1)), where g∗ : Z = L5(Z) → Ls5(π) is
induced by the homomorphism sending 1 in Z to g in π. Then IZ = iZ and Iπ is
natural in the sense that if f : π → H is a homomorphism then L5(f)Iπ = IHf .
As abelianization and projection to the summands of Z2 induce an isomorphism
from L5(Z ∗ Z) to L5(Z)2 [Ca73], it follows easily from naturality that Iπ is a
homomorphism (and so factors through π/π′) [We83]. We shall extend this to the
nonorientable case by defining I+

π :Ker(w) → Ls5(π;w) as the composite of IKer(w)

with the homomorphism induced by inclusion.
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Theorem 6.7. Let M be a closed 4-manifold with fundamental group π and let
w = w1(M). Given any γ ∈ Ker(w) there is a normal cobordism from idM to itself
with surgery obstruction I+

π (γ) ∈ Ls5(π,w).

Proof. We may assume that γ is represented by a simple closed curve with a
product neighbourhood U ∼= S1 ×D3. Let P be the E8 manifold [FQ] and delete
the interior of a submanifold homeomorphic to D3 × [0, 1] to obtain Po. There is
a normal map p : Po → D3 × [0, 1] (rel boundary). The surgery obstruction for
p× idS1 in L5(Z) ∼= L4(1) is given by a codimension-1 signature (see §12B of [Wl]),
and generates L5(Z). Let Y = (M\intU) × [0, 1] ∪ Po × S1, where we identify
(∂U)× [0, 1] = S1×S2 × [0, 1] with S2 × [0, 1]×S1 in ∂Po×S1. Matching together
id|(M\intU)×[0,1] and p× idS1 gives a normal cobordism Q from idM to itself. The
theorem now follows by the additivity of surgery obstructions and naturality of the
homomorphisms I+

π . �

Corollary 6.7.1. Let λ∗ : Ls5(π) → L5(Z)d = Zd be the homomorphism
induced by a basis {λ1, ..., λd} for Hom(π, Z). If M is orientable, f : M1 → M is
a simple homotopy equivalence and θ ∈ L5(Z)d there is a normal cobordism from f
to itself whose surgery obstruction in L5(π) has image θ under λ∗.

Proof. If {γ1, ..., γd} ∈ π represents a “dual basis” for H1(π; Z) modulo tor-
sion (so that λi(γj) = δij for 1 ≤ i, j ≤ d), then {λ∗(Iπ(γ1)), ..., λ∗(Iπ(γd))} is a
basis for L5(Z)d. �

If π is free or is a PD+
2 -group then the homomorphism λ∗ is an isomorphism

[Ca73]. In most of the other cases of interest to us the following corollary applies.

Corollary 6.7.2. If M is orientable and Ker(λ∗) is finite then SsTOP (M) is
finite. In particular, this is so if Coker(σ5) is finite.

Proof. The signature difference maps [M ;G/TOP ] = H4(M ; Z)⊕H2(M ; F2)
onto L4(1) = Z and so there are only finitely many normal cobordism classes of
simple homotopy equivalences f : M1 → M . Moreover, Ker(λ∗) is finite if σ5 has
finite cokernel, since [SM ;G/TOP ] ∼= Zd⊕ (Z/2Z)d. Suppose that F : N →M×I
is a normal cobordism between two simple homotopy equivalences F− = F |∂−N and
F+ = F |∂+N . By Theorem 7 there is another normal cobordism F ′ : N ′ →M × I
from F+ to itself with λ∗(σ5(F

′)) = λ∗(−σ5(F )). The union of these two normal
cobordisms along ∂+N = ∂−N ′ is a normal cobordism from F− to F+ with surgery
obstruction in Ker(λ∗). If this obstruction is 0 we may obtain an s-cobordism W
by 5-dimensional surgery (rel ∂). �

The surgery obstruction groups for a semidirect product π ∼= G×θZ, may be re-
lated to those of the (finitely presentable) normal subgroupG by means of Theorem
12.6 of [Wl]. If Wh(π) = Wh(G) = 0 this theorem asserts that there is an exact

sequence . . . Lm(G,w|G)
1−w(t)θ∗−→ Lm(G,w|G) → Lm(π,w) → Lm−1(G,w|G) . . . ,

where t generates π modulo G and θ∗ = Lm(θ, w|G). The following lemma is
adapted from Theorem 15.B.1 of [Wl].

Lemma 6.8. Let M be the mapping torus of a self homeomorphism of an as-
pherical closed (n − 1)-manifold N . Suppose that Wh(π1(M)) = 0. If the homo-
morphisms σNi are isomorphisms for all large i then so are the σMi .
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Proof. This is an application of the 5-lemma and periodicity, as in pages
229-230 of [Wl]. �

The hypotheses of this lemma are satisfied if n = 4 and π1(N) is square root
closed accessible [Ca73], orN is orientable and β1(N) > 0 [Ro00], or is hyperbolic or
virtually solvable [FJ], or admits an effective S1-action with orientable orbit space
[St84, NS85]. It remains an open question whether aspherical closed manifolds with
isomorphic fundamental groups must be homeomorphic. This has been verified in
higher dimensions in many cases, in particular under geometric assumptions [FJ],
and under assumptions on the combinatorial structure of the group [Ca73, St84,
NS85]. We shall see that many aspherical 4-manifolds are determined up to s-
cobordism by their groups.

There are more general “Mayer-Vietoris” sequences which lead to calculations
of the surgery obstruction groups for certain generalized free products and HNN
extensions in terms of those of their building blocks [Ca73, St87].

Lemma 6.9. Let π be either the group of a finite graph of groups, all of whose
vertex groups are infinite cyclic, or a square root closed accessible group of coho-
mological dimension 2. Then I+

π is an isomorphism. If M is a closed 4-manifold
with fundamental group π the surgery obstruction maps σ4(M) and σ5(M) are epi-
morphisms.

Proof. Since π is in Cl we have Wh(π) = 0 and a comparison of Mayer-
Vietoris sequences shows that the assembly map from H∗(π; Lw0 ) to L∗(π,w) is an
isomorphism [Ca73, St87]. Since c.d.π ≤ 2 andH1(Ker(w); Z) maps ontoH1(π;Zw)
the component of this map in degree 1 may be identified with I+

π . In general, the
surgery obstruction maps factor through the assembly map. Since c.d.π ≤ 2 the
homomorphism cM∗ : H∗(M ;D) → H∗(π;D) is onto for any local coefficient module
D, and so the lemma follows. �

The class of groups considered in this lemma includes free groups, PD2-groups
and the groups Z∗m. Note however that if π is a PD2-group w need not be the
canonical orientation character.

6.3. Stabilization and h-cobordism

It has long been known that many results of high dimensional differential topol-
ogy hold for smooth 4-manifolds after stabilizing by connected sum with copies of
S2 × S2 [CS71, FQ80, La79, Qu83]. In particular, if M and N are h-cobordant
closed smooth 4-manifolds then M♯(♯kS2 × S2) is diffeomorphic to N♯(♯kS2 × S2)
for some k ≥ 0. In the spin case w2(M) = 0 this is an elementary consequence of
the existence of a well-indexed handle decomposition of the h-cobordism [Wa64].
In Chapter VII of [FQ] it is shown that 5-dimensional TOP cobordisms have han-
dle decompositions relative to a component of their boundaries, and so a similar
result holds for h-cobordant closed TOP 4-manifolds. Moreover, if M is a TOP
4-manifold then KS(M) = 0 if and only if M♯(♯kS2 × S2) is smoothable for some
k ≥ 0 [LS71].

These results suggest the following definition. Two 4-manifolds M1 and M2 are
stably homeomorphic if M1♯(♯

kS2 ×S2) and M2♯(♯
lS2 ×S2) are homeomorphic, for

some k, l ≥ 0. (Thus h-cobordant closed 4-manifolds are stably homeomorphic).
Clearly π1(M), w1(M), the orbit of cM∗[M ] in H4(π1(M), Zw1(M)) under the action
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of Out(π1(M)), and the parity of χ(M) are invariant under stabilization. If M is
orientable σ(M) is also invariant.

Kreck has shown that (in any dimension) classification up to stable homeomor-
phism (or diffeomorphism) can be reduced to bordism theory. There are three cases:

If w2(M̃) 6= 0 and w2(Ñ) 6= 0 then M and N are stably homeomorphic if and only
if for some choices of orientations and identification of the fundamental groups the
invariants listed above agree (in an obvious manner). If w2(M) = w2(N) = 0 then
M and N are stably homeomorphic if and only if for some choices of orientations,
Spin structures and identification of the fundamental group they represent the same

element in ΩSpinTOP4 (K(π, 1)). The most complicated case is when M and N are
not Spin, but the universal covers are Spin. (See [Kr99], [Te] for expositions of
Kreck’s ideas).

We shall not pursue this notion of stabilization further (with one minor excep-
tion, in Chapter 14), for it is somewhat at odds with the tenor of this book. The
manifolds studied here usually have minimal Euler characteristic, and often are as-
pherical. Each of these properties disappears after stabilization. We may however
also stabilize by cartesian product with R, and there is then the following simple
but satisfying result.

Lemma 6.10. Closed 4-manifolds M and N are h-cobordant if and only if M×R
and N ×R are homeomorphic.

Proof. If W is an h-cobordism from M to N (with fundamental group π =
π1(W )) then W × S1 is an h-cobordism from M × S1 to N × S1. The torsion
is 0 in Wh(π × Z), by Theorem 23.2 of [Co], and so there is a homeomorphism
from M × S1 to N × S1 which carries π1(M) to π1(N). Hence M × R ∼= N × R.
Conversely, if M × R ∼= N × R then M × R contains a copy of N disjoint from
M × {0}, and the region W between M × {0} and N is an h-cobordism. �

6.4. Manifolds with π1 elementary amenable and χ = 0

In this section we shall show that closed manifolds satisfying the hypotheses
of Theorem 3.16 and with torsion free fundamental group are determined up to
homeomorphism by their homotopy type. As a consequence, closed 4-manifolds
with torsion free elementary amenable fundamental group and Euler characteristic
0 are homeomorphic to mapping tori. We also estimate the structure sets for RP 2-
bundles over T or Kb. In the remaining cases involving torsion computation of
the surgery obstructions is much more difficult. We shall comment briefly on these
cases in Chapters 10 and 11.

Theorem 6.11. Let M be a closed 4-manifold with χ(M) = 0 and whose fun-
damental group π is torsion free, coherent, locally virtually indicable and restrained.
Then M is determined up to homeomorphism by its homotopy type. If moreover
h(π) = 4 then every automorphism of π is realized by a self homeomorphism of M .

Proof. By Theorem 3.16 either π ∼= Z or Z∗m for some m 6= 0, or M is
aspherical, π is virtually poly-Z and h(π) = 4. Hence Wh(π) = 0, in all cases. If
π ∼= Z or Z∗m then the surgery obstruction homomorphisms are epimorphisms, by
Lemma 9. We may calculate L4(π,w) by means of Theorem 12.6 of [Wl], or more
generally §3 of [St87], and we find that if π ∼= Z or Z∗2n then σ4(M) is in fact
an isomorphism. If π ∼= Z∗2n+1 then there are two normal cobordism classes of
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homotopy equivalences h : X →M . Let ξ generate the image of H2(π; F2) ∼= Z/2Z
in H2(M ; F2) ∼= (Z/2Z)2, and let j : S2 → M represent the unique nontrivial
spherical class in H2(M ; F2). Then ξ2 = 0, since c.d.π = 2, and ξ ∩ j∗[S2] = 0,
since cM j is nullhomotopic. It follows that j∗[S2] is Poincaré dual to ξ, and so
v2(M) ∩ j∗[S2] = ξ2 ∩ [M ] = 0. Hence j∗w2(M) = j∗v2(M) + (j∗w1(M))2 = 0 and
so fj has nontrivial normal invariant, by Lemma 5. Therefore each of these two
normal cobordism classes contains a self homotopy equivalence of M .

If M is aspherical, π is virtually poly-Z and h(π) = 4 then STOP (M) has just
one element, by Theorem 2.16 of [FJ]. The theorem now follows. �

Corollary 6.11.1. Let M be a closed 4-manifold with χ(M) = 0 and funda-
mental group π ∼= Z, Z2 or Z×−1Z. Then M is determined up to homeomorphism
by π and w(M).

Proof. If π ∼= Z then M is homotopy equivalent to the total space of an
S3-bundle over S1, by Theorem 4.2, while if π ∼= Z2 or Z×−1Z it is homotopy
equivalent to the total space of an S2-bundle over T or Kb, by Theorem 5.10. �

Is the homotopy type of M also determined by π and w(M) if π ∼= Z∗m for
some |m| > 1?

We may now give an analogue of the Farrell and Stallings fibration theorems
for 4-manifolds with torsion free elementary amenable fundamental group.

Theorem 6.12. Let M be a closed 4-manifold whose fundamental group π is
torsion free and elementary amenable. A map f : M → S1 is homotopic to a fibre
bundle projection if and only if χ(M) = 0 and f induces an epimorphism from π
to Z with almost finitely presentable kernel.

Proof. The conditions are clearly necessary. Suppose that they hold. Let
ν = Ker(π1(f)), let Mν be the infinite cyclic covering space of M with fundamental
group ν and let t : Mν → Mν be a generator of the group of covering transforma-
tions. By Corollary 4.2.3 either ν = 1 (so Mν ≃ S3) or ν ∼= Z (so Mν ≃ S2 × S1 or
S2×̃S1) or M is aspherical. In the latter case π is a torsion free virtually poly-Z
group, by Theorem I.11 and Theorem 9.23 of [Bi]. Thus in all cases there is a
homotopy equivalence fν from Mν to a closed 3-manifold N . Moreover the self
homotopy equivalence fνtf

−1
ν of N is homotopic to a homeomorphism, g say, and

so f is fibre homotopy equivalent to the canonical projection of the mapping torus
M(g) onto S1. It now follows from Theorem 11 that any homotopy equivalence
from M to M(g) is homotopic to a homeomorphism. �

The structure sets of the RP 2-bundles over T or Kb are also finite.

Theorem 6.13. Let M be the total space of an RP 2-bundle over T or Kb.
Then STOP (M) has order at most 32.

Proof. As M is nonorientable H4(M ; Z) = Z/2Z and as β1(M ; F2) = 3 and
χ(M) = 0 we have H2(M ; F2) ∼= (Z/2Z)4. Hence [M ;G/TOP ] has order 32.
Let w = w1(M). It follows from the Shaneson-Wall splitting theorem (Theorem
12.6 of [Wl]) that L4(π,w) ∼= L4(Z/2Z,−) ⊕ L2(Z/2Z,−) ∼= (Z/2Z)2 and that
the projections to the factors are the Kervaire-Arf invariant and the codimension-
2 Kervaire invariant. Similarly L5(π,w) ∼= L4(Z/2Z,−)2 and the projections to
the factors are Kervaire-Arf invariants of normal maps induced over codimension-1



6.5. BUNDLES OVER ASPHERICAL SURFACES 93

submanifolds. (In applying the splitting theorem, note that Wh(Z ⊕ (Z/2Z)) =
Wh(π) = 0, by Theorem 1 above). Hence STOP (M) has order at most 128.

The Kervaire-Arf homomorphism c is onto, since c(ĝ) = (w2 ∪ ĝ∗(k2)) ∩ [M ],
w2 6= 0 and every element of H2(M ; F2) is equal to ĝ∗(k2) for some normal map
ĝ : M → G/TOP . Similarly there is a normal map f2 : X2 → RP 2 with σ2(f2) 6= 0
in L2(Z/2Z,−). IfM = RP 2×B, where B = T orKb is the base of the bundle, then
f2×idB : X2×B → RP 2×B is a normal map with surgery obstruction (0, σ2(f2)) ∈
L4(Z/2Z,−) ⊕ L2(Z/2Z,−). We may assume that f2 is a homeomorphism over a
disc ∆ ⊂ RP 2. As the two nontrivial bundles may be obtained from the product
bundles by cutting M along RP 2×∂∆ and regluing via the twist map of RP 2×S1,
the normal maps for the product bundles may be compatibly modified to give
normal maps with nonzero obstructions for the nontrivial bundles. Thus in all
cases σ4 is onto and so STOP (M) has order at most 32. �

In each case H2(M ; F2) ∼= H2(π; F2), so the argument of Lemma 5 does not
apply. However we can improve our estimate in the abelian case.

Theorem 6.14. Let M be the total space of an RP 2-bundle over T . Then
L5(π,w) acts trivially on the class of idM in STOP (M).

Proof. Let λ1, λ2 : π → Z be epimorphisms generating Hom(π, Z) and let
t1, t2 ∈ π represent a dual basis for π/(torsion) (i.e., λi(tj) = δij for i = 1, 2). Let
u be the element of order 2 in π and define monomorphisms ki : Z ⊕ (Z/2Z) → π
by ki(a, b) = ati + bu, for i = 1, 2. Define splitting homomorphisms p1, p2 by
pi(g) = k−1

i (g − λi(g)ti) for all g ∈ π. Then piki = idZ⊕(Z/2Z) and pik3−i factors
through Z/2Z, for i = 1, 2. The orientation character w = w1(M) maps the
torsion subgroup of π onto Z/2Z, by Theorem 5.13, and t1 and t2 are in Ker(w).
Therefore pi and ki are compatible with w, for i = 1, 2. As L5(Z/2Z,−) = 0
it follows that L5(k1) and L5(k2) are inclusions of complementary summands of
L5(π,w) ∼= (Z/2Z)2, split by the projections L5(p1) and L5(p2).

Let γi be a simple closed curve in T which represents ti ∈ π. Then γi has a
product neighbourhoodNi ∼= S1×[−1, 1] whose preimage Ui ⊂M is homeomorphic
to RP 2 × S1 × [−1, 1]. There is a normal map f4 : X4 → RP 2 × [−1, 1]2 (rel
boundary) with σ4(f4) 6= 0 in L4(Z/2Z,−). Let Yi = (M\intUi)× [−1, 1]∪X4×S1,
where we identify (∂Ui)×[−1, 1] = RP 2×S1×S0×[−1, 1] with RP 2×[−1, 1]×S0×
S1 in ∂X4 × S1. If we match together id(M\intUi)×[−1,1] and f4 × idS1 we obtain a
normal cobordism Qi from idM to itself. The image of σ5(Qi) in L4(Ker(λi), w) ∼=
L4(Z/2Z,−) under the splitting homomorphism is σ4(f4). On the other hand its
image in L4(Ker(λ3−i), w) is 0, and so it generates the image of L5(k3−i). Thus
L5(π,w) is generated by σ5(Q1) and σ5(Q2), and so acts trivially on idM . �

Does L5(π,w) act trivially on each class in STOP (M) when M is an RP 2-
bundle over T or Kb? If so, then STOP (M) has order 8 in each case. Are these
manifolds determined up to homeomorphism by their homotopy type?

6.5. Bundles over aspherical surfaces

The fundamental groups of total spaces of bundles over hyperbolic surfaces all
contain nonabelian free subgroups. Nevertheless, such bundle spaces are determined
up to s-cobordism by their homotopy type, except when the fibre is RP 2, in which
case we can only show that the structure sets are finite.
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Theorem 6.15. Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an F -bundle over B where B and F are aspherical closed

surfaces. Then M is s-cobordant to E and M̃ is homeomorphic to R4.

Proof. Since π1(B) is either an HNN extension of Z or a generalised free
product F ∗Z F ′, where F and F ′ are free groups, π × Z is a square root closed
generalised free product with amalgamation of groups in Cl. Comparison of the
Mayer-Vietoris sequences for L0-homology and L-theory (as in Proposition 2.6 of
[St84]) shows that STOP (E × S1) has just one element. (Note that even when
χ(B) = 0 the groups arising in intermediate stages of the argument all have trivial
Whitehead groups). Hence M × S1 ∼= E × S1, and so M is s-cobordant to E by
Lemma 10 and Theorem 2. The final assertion holds since M is aspherical and π
is 1-connected at ∞ [Ho77]. �

Davis has constructed aspherical 4-manifolds whose universal covering space is
not 1-connected at ∞ [Da83].

Theorem 6.16. Let M be a closed 4-manifold which is homotopy equivalent to
the total space E of an S2-bundle over an aspherical closed surface B. Then M is

s-cobordant to E, and M̃ is homeomorphic to S2 ×R2.

Proof. Let π = π1(E) ∼= π1(B). Then Wh(π) = 0, and H∗(π; Lw0 ) ∼=
L∗(π,w), as in Lemma 9. Hence L4(π,w) ∼= Z ⊕ (Z/2Z) if w = 0 and (Z/2Z)2

otherwise. The surgery obstruction map σ4(E) is onto, by Lemma 9. Hence there
are two normal cobordism classes of maps h : X → E with σ4(h) = 0. The kernel
of the natural homomorphism from H2(E; F2) ∼= (Z/2Z)2 to H2(π; F2) ∼= Z/2Z is
generated by j∗[S2], where j : S2 → E is the inclusion of a fibre. As j∗[S2] 6= −0,
while w2(E)(j∗[S2]) = j∗w2(E) = 0 the normal invariant of fj is nontrivial, by
Lemma 5. Hence each of these two normal cobordism classes contains a self homo-
topy equivalence of E.

Let f : M → E be a homotopy equivalence (necessarily simple). Then there is
a normal cobordism F : V → E × [0, 1] from f to some self homotopy equivalence
of E. As I+

π is an isomorphism, by Lemma 9, there is an s-cobordism W from M
to E, as in Corollary 7.2.

The universal covering space W̃ is a proper s-cobordism from M̃ to Ẽ ∼= S2×R2.

Since the end of Ẽ is tame and has fundamental group Z we may apply Corollary

7.3B of [FQ] to conclude that W̃ is homeomorphic to a product. Hence M̃ is
homeomorphic to S2 ×R2. �

Let ρ be a PD2-group. As π = ρ× (Z/2Z) is square-root closed accessible from
Z/2Z, the Mayer-Vietoris sequences of [Ca73] imply that L4(π,w) ∼= L4(Z/2Z,−)⊕
L2(Z/2Z,−) and that L5(π,w) ∼= L4(Z/2Z,−)β, where w = pr2 : π → Z/2Z and
β = β1(ρ; F2). Since these L-groups are finite the structure sets of total spaces of
RP 2-bundles over aspherical surfaces are also finite. (Moreover the arguments of
Theorems 13 and 14 can be extended to show that σ4 is an epimorphism and that
most of L5(π,w) acts trivially on idE , where E is such a bundle space).
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CHAPTER 7

Geometries and decompositions

Every closed connected surface is geometric, i.e., is a quotient of one of the three
model 2-dimensional geometries E2, H2 or S2 by a free and properly discontinuous
action of a discrete group of isometries. Much current research on 3-manifolds is
guided by Thurston’s Geometrization Conjecture, that every closed irreducible 3-
manifold admits a finite decomposition into geometric pieces. In §1 we shall recall
Thurston’s definition of geometry, and shall describe briefly the 19 4-dimensional
geometries. Our concern in the middle third of this book is not to show how
this list arises (as this is properly a question of differential geometry; see [Fi],
[Pa96] and [Wl85,86]), but rather to describe the geometries sufficiently well that
we may subsequently characterize geometric manifolds up to homotopy equivalence
or homeomorphism. In §2 we relate the notions of “geometry of solvable Lie type”
and “infrasolvmanifold”. The limitations of geometry in higher dimensions are
illustrated in §3, where it is shown that a closed 4-manifold which admits a finite
decomposition into geometric pieces is (essentially) either geometric or aspherical.
The geometric viewpoint is nevertheless of considerable interest in connection with
complex surfaces [Ue90,91, Wl85,86]. With the exception of the geometries S2×H2,

H2×H2, H2×E2 and S̃L×E1 no closed geometric manifold has a proper geometric
decomposition.

A number of the geometries support natural Seifert fibrations or compatible
complex structures. In §4 we characterize the groups of aspherical 4-manifolds
which are orbifold bundles over flat or hyperbolic 2-orbifolds. We outline what we
need about Seifert fibrations and complex surfaces in §5 and §6.

Subsequent chapters shall consider in turn geometries whose models are con-
tractible (Chapters 8 and 9), geometries with models diffeomorphic to S2 × R2

(Chapter 10), the geometry S3×E1 (Chapter 11) and the geometries with compact
models (Chapter 12). In Chapter 13 we shall consider geometric structures and
decompositions of bundle spaces. In the final chapter of the book we shall consider
knot manifolds which admit geometries.

7.1. Geometries

An n-dimensional geometry X in the sense of Thurston is represented by a pair
(X,GX) where X is a complete 1-connected n-dimensional Riemannian manifold
and GX is a Lie group which acts effectively, transitively and isometrically on X
and which has discrete subgroups Γ which act freely on X so that Γ\X has finite
volume. (Such subgroups are called lattices). Since the stabilizer of a point in X is
isomorphic to a closed subgroup of O(n) it is compact, and so Γ\X is compact if
and only if Γ\GX is compact. Two such pairs (X,G) and (X ′, G′) define the same
geometry if there is a diffeomorphism f : X → X ′ which conjugates the action
of G onto that of G′. (Thus the metric is only an adjunct to the definition). We
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shall assume that G is maximal among Lie groups acting thus on X , and write
Isom(X) = G, and Isomo(X) for the component of the identity. A closed manifold
M is an X-manifold, or admits a geometry of type X, if it is homeomorphic to a
quotient Γ\X for some lattice in GX . Under an equivalent formulation, M is an
X-manifold if it is homeomorphic to a quotient Γ\X for some discrete group Γ of
isometries acting freely on a 1-connected homogeneous space X = G/K, where G is
a connected Lie group and K is a compact subgroup of G such that the intersection
of the conjugates of K is trivial, and X has a G-invariant metric. If G is solvable we
shall say that the geometry is of solvable Lie type. If X = (X,GX) and Y = (Y,GY )
are two geometries then X ×Y supports a geometry in a natural way; however the
maximal group of isometries GX×Y may be strictly larger than GX ×GY .

The geometries of dimension 1 or 2 are the familiar geometries of constant
curvature: E1, E2, H2 and S2. Thurston showed that there are eight maximal 3-

dimensional geometries (E3, Nil3, Sol3, S̃L, H2×E1, H3, S2×E1 and S3). Manifolds
with one of the first five of these geometries are aspherical Seifert fibred 3-manifolds
or Sol3-manifolds. These are determined among irreducible 3-manifolds by their
fundamental groups, which are the PD3-groups with nontrivial Hirsch-Plotkin rad-
ical. There are just four S2 × E1-manifolds. It is not yet known whether every as-
pherical 3-manifold whose fundamental group contains no rank 2 abelian subgroup
must be hyperbolic, and the determination of the closed H3-manifolds remains in-
complete. Nor is it known whether every 3-manifold with finite fundamental group
must be spherical. For a detailed and lucid account of the 3-dimensional geometries
see [Sc83’].

There are 19 maximal 4-dimensional geometries; one of these (Sol4m,n) is in fact

a family of closely related geometries, and one (F4) is not realizable by any closed
manifold [Fi]. We shall see that the geometry is determined by the fundamental
group (cf. [Wl86, Ko92]). In addition to the geometries of constant curvature
and products of lower dimensional geometries there are seven “new” 4-dimensional
geometries. Two of these are modeled on the irreducible Riemannian symmetric
spaces CP 2 = U(3)/U(2) and H2(C) = SU(2, 1)/S(U(2) × U(1)). The model
for the geometry F4 is the tangent bundle of the hyperbolic plane, which we may
identify with C × H2. The component of the identity in its isometry group is
the semidirect product R2 ×α SL(2,R), where α is the natural action of SL(2,R)
on R2. The action of this group may be described as follows: if (u, v) ∈ R2 and
A = ( a cb d ) ∈ SL(2,R) then (u, v)(w, z) = (u−vz+w, z) and A(w, z) = ( w

cz+d ,
az+b
cz+d ).

The other four new geometries are of solvable Lie type, and shall be described in
§2.

In most cases the model X is homeomorphic to R4, and the corresponding geo-
metric manifolds are aspherical. Six of these geometries (E4, Nil4, Nil3×E1, Sol4m,n,
Sol40 and Sol41) are of solvable Lie type; in Chapter 8 we shall show manifolds admit-
ting such geometries have Euler characteristic 0 and fundamental group a torsion
free virtually poly-Z group of Hirsch length 4. Such manifolds are determined up to
homeomorphism by their fundamental groups, and every such group arises in this
way. In Chapter 9 we shall consider closed 4-manifolds admitting one of the other

geometries of aspherical type (H3 ×E1, S̃L×E1, H2 ×E2, H2 ×H2, H4, H2(C) and
F4). These may be characterised up to s-cobordism by their fundamental group
and Euler characteristic. However it is unknown to what extent surgery arguments
apply in these cases, and we do not yet have good characterizations of the possible
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fundamental groups. Although no closed 4-manifold admits the geometry F4, there
are such manifolds with proper geometric decompositions involving this geometry;
we shall give examples in Chapter 13.

Three of the remaining geometries (S2 ×E2, S2 ×H2 and S3 ×E1) have models
homeomorphic to S2 × R2 or S3 × R. (Note that we shall use En or Hn to refer
to the geometry and Rn to refer to the underlying topological space). The final
three (S4, CP2 and S2 × S2) have compact models, and there are only eleven such
manifolds. We shall discuss these nonaspherical geometries in Chapters 10, 11 and
12.

7.2. Infrasolvmanifolds

The notions of “geometry of solvable Lie type” and “infrasolvmanifold” are
closely related. We shall describe briefly the latter class of manifolds, from a rather
utilitarian point of view. As we are only interested in closed manifolds, we shall
frame our definitions accordingly.

A flat n-manifold is a quotient of Rn by a discrete torsion free subgroup of
E(n) = Isom(En) = Rn ×α O(n) (where α is the natural action of O(n) on Rn).
A group π is a flat n-manifold group if it is torsion free and has a normal sub-
group of finite index which is isomorphic to Zn. (These are necessary and sufficient
conditions for π to be the fundamental group of a closed flat n-manifold). The
action of π by conjugation on its translation subgroup T (π) (the maximal abelian
normal subgroup of π) induces a faithful action of π/T (π) on T (π). On choosing
an isomorphism T (π) ∼= Zn we may identify π/T (π) with a subgroup of GL(n,Z);
this subgroup is called the holonomy group of π, and is well defined up to conjugacy
in GL(n,Z). We say that π is orientable if the holonomy group lies in SL(n,Z).
(The group is orientable if and only if the corresponding flat n-manifold is ori-
entable). If two discrete torsion free cocompact subgroups of E(n) are isomorphic
then they are conjugate in the larger group Aff(Rn) = Rn ×α GL(n,R), and the
corresponding flat n-manifolds are “affinely” diffeomorphic. There are only finitely
many isomorphism classes of such flat n-manifold groups for each n.

A nilmanifold is a coset space of a 1-connected nilpotent Lie group by a dis-
crete subgroup. More generally, an infranilmanifold is a quotient π\N where N
is a 1-connected nilpotent Lie group and π is a discrete torsion free subgroup of
the semidirect product Aff(N) = N ×α Aut(N) such that π ∩ N is a lattice in
N and π/π ∩ N is finite. Thus infranilmanifolds are finitely covered by nilmani-
folds. The Lie group N is determined by

√
π, by Mal’cev’s rigidity theorem, and

two infranilmanifolds are diffeomorphic if and only if their fundamental groups are
isomorphic. The isomorphism may then be induced by an affine diffeomorphism.
The infranilmanifolds derived from the abelian Lie groups Rn are just the flat man-
ifolds. It is not hard to see that there are just three 4-dimensional (real) nilpotent
Lie algebras. (Compare the analogous argument of Theorem 1.4). Hence there are
three 1-connected 4-dimensional nilpotent Lie groups, R4, Nil3 ×R and Nil4.

The group Nil3 is the subgroup of SL(3,R) consisting of upper triangular ma-

trices [r, s, t] =




1 r t
0 1 s
0 0 1


 . It has abelianization R2 and centre ζNil3 = Nil3

′ ∼=

R. The elements [1, 0, 0], [0, 1, 0] and [0, 0, 1/q] generate a discrete cocompact
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subgroup of Nil3 isomorphic to Γq, and these are essentially the only such sub-

groups. (Since they act orientably on R3 they are PD+
3 -groups). The coset space

Nq = Nil3/Γq is the total space of the S1-bundle over S1 × S1 with Euler number
q, and the action of ζNil3 on Nil3 induces a free action of S1 = ζNil/ζΓq on Nq.
The group Nil4 is the semidirect product R3 ×θ R, where θ(t) = [t, t, t2/2]. It has

abelianization R2 and central series ζNil4 ∼= R < ζ2Nil4 = Nil4
′ ∼= R2.

These Lie groups have natural left invariant metrics. (See [Sc83’]). The infranil-
manifolds corresponding to R4, Nil4 and Nil3×R are the E4-, Nil4- and Nil3×E1-
manifolds. (The isometry group of E4 is the semidirect product R4 ×α O(4); the
group Nil4 is the identity component for its isometry group, while Nil3×E1 admits
an additional isometric action of S1).

The situation for (infra)solvmanifolds is more complicated. An infrasolvmani-
fold is a quotient M = Γ\S where S is a 1-connected solvable Lie group and Γ is a
closed torsion free subgroup of the semidirect product Aff(S) = S×αAut(S) such
that Γo (the component of the identity of Γ) is contained in the nilradical of S (the
maximal connected nilpotent normal subgroup of S) and Γ/Γ∩S is finite. The pair
(S,Γ) is called a presentation for M , and is discrete if Γ is a discrete subgroup of
Aff(S), in which case π1(M) = Γ. In general, we cannot assume that Γ is discrete,
and it is no longer true that S is determined by π.

Farrell and Jones showed that in all dimensions except perhaps 4 infrasolvman-
ifolds with isomorphic fundamental groups are diffeomorphic. However an affine
diffeomorphism is not always possible [FJ97]. They showed also that 4-dimensional
infrasolvmanifolds are determined up to homeomorphism by their fundamental
groups (see Theorem 8.2 below). In his thesis R.Cobb has shown that if M is
a 4-dimensional infrasolvmanifold and π1(M) is not virtually nilpotent then M is
smoothly fibred over S1 or the reflector interval. Hence M is a mapping torus
or the union of two twisted I-bundles, and so such infrasolvmanifolds are deter-
mined up to diffeomorphism by their groups [Co99]. However there may still be a
4-dimensional infrasolvmanifold with virtually nilpotent fundamental group which
has no discrete presentation.

An important special case includes most infrasolvmanifolds of dimension ≤ 4
(and all infranilmanifolds). Let T+

n (R) be the subgroup of GL(n,R) consisting of
upper triangular matrices with positive diagonal entries. A Lie group S is triangular
if is isomorphic to a closed subgroup of T+

n (R) for some n. The eigenvalues of
the image of each element of S under the adjoint representation are then all real,
and so S is of type R in the terminology of [Go71]. (It can be shown that a Lie
group is triangular if and only if it is 1-connected and solvable of type R). Two
infrasolvmanifolds with discrete presentations (Si,Γi) where each Si is triangular
(for i = 1, 2) are affinely diffeomorphic if and only if their fundamental groups
are isomorphic, by Theorem 3.1 of [Le95]. The translation subgroup S ∩ Γ of a
discrete pair with S triangular can be characterised intrinsically as the subgroup of Γ
consisting of the elements g ∈ Γ such that all the eigenvalues of the automorphisms
of the abelian sections of the lower central series for

√
Γ induced by conjugation

by g are positive [De97]. Does every infrasolvmanifold with a presentation (S,Γ)
where S is triangular have a discrete presentation?

Since S and Γo are each contractible, X = Γo\S is contractible also. It can
be shown that π = Γ/Γo acts freely on X , and so is the fundamental group of
M = π\X . (See Chapter III.3 of [Au73] for the solvmanifold case). Since M is
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aspherical π is a PDm group, where m is the dimension of M ; since π is also
virtually solvable it is thus virtually poly-Z of Hirsch length m, by Theorem 9.23
of [Bi], and χ(M) = χ(π) = 0. Conversely, any torsion free virtually poly-Z group
is the fundamental group of a closed smooth manifold which is finitely covered by
the coset space of a lattice in a 1-connected solvable Lie group [AJ76].

Let S be a connected solvable Lie group of dimension m, and let N be its
nilradical. If π is a lattice in S then it is torsion free and virtually poly-Z of
Hirsch length m and π ∩N =

√
π is a lattice in N . If S is 1-connected then S/N is

isomorphic to some vector group Rn, and π/
√
π ∼= Zn. A complete characterization

of such lattices is not known, but a torsion free virtually poly-Z group π is a lattice
in a connected solvable Lie group S if and only if π/

√
π is abelian. (See Sections

4.29-31 of [Rg]).
A closed manifold with a geometry of solvable Lie type (E4, Nil3 × E1, Nil4,

Sol4m,n, Sol40 or Sol41) is an infrasolvmanifold, and conversely every 4-dimensional
infrasolvmanifold admits one of these geometries. (See Chapter 8. This assertion
depends on topological surgery, and thus is about homeomorphism rather than
diffeomorphism!). The following descriptions of Sol4m,n, Sol40 and Sol41 are taken from
[Wl86]. These are based on solvable Lie groups with left invariant metrics. The Lie
group is the identity component of the isometry group for the geometries Sol4m,n
and Sol41; the identity component of Isom(Sol40) is isomorphic to the semidirect
product (C ⊕R)×γ C×, where γ(z)(u, x) = (zu, |z|−2x) for all (u, x) in C ⊕R and
z in C×, and thus Sol40 admits an additional isometric action of S1, by rotations
about an axis in C ⊕R ∼= R3, the radical of Sol40. The stabilizers of the identity in
the full isometry groups are (Z/2Z)3 for Sol4m,n if m 6= n, D8×(Z/2Z) for Sol3×R,

O(2) ×O(1) for Sol40 and D8 for Sol41.

Sol4m,n = R3×θm,n
R, where m and n are integers such that the polynomial fm,n =

X3 − mX2 + nX − 1 has distinct roots ea, eb and ec (with a < b < c real)
and θm,n(t) is the diagonal matrix diag[eat, ebt, ect]. Since θm,n(t) = θn,m(−t)
we may assume that m ≤ n; the condition on the roots then holds if and only if
2
√
n ≤ m ≤ n. The metric given by ds2 = e−2atdx2 + e−2btdy2 + e−2ctdz2 + dt2 (in

the obvious global coordinates) is left invariant, and the automorphism of Sol4m,n
which sends (t, x, y, z) to (t, px, qy, rz) is an isometry if and only if p2 = q2 =
r2 = 1. Let G be the subgroup of GL(4,R) of bordered matrices

(
D ξ
0 1

)
, where

D = diag[±eat,±ebt,±ect] and ξ ∈ R3. Then Sol4m,n is the subgroup of G with

positive diagonal entries, and G = Isom(Sol4m,n) if m 6= n. If m = n then b = 0

and Sol4m,m = Sol3×E1, which admits the additional isometry sending (t, x, y, z) to

(t−1, z, y, x), and G has index 2 in Isom(Sol3 × E1). In general Sol4m,n = Sol4m′,n′

if and only if (a, b, c) = λ(a′, b′, c′) for some λ 6= 0. Must λ be rational? (This is a
case of the “problem of the four exponentials” of transcendental number theory). If
m 6= n then Fm,n = Q[X ]/(fm,n) is a totally real cubic number field, generated over
Q by the image of X . The images of X under embeddings of Fm,n in R are the roots
ea, eb and ec, and so it represents a unit of norm 1. The group of such units is free
abelian of rank 2. Therefore if λ = r/s ∈ Q× this unit is an rth power in Fm,n (and
its rth root satisfies another such cubic). It can be shown that |r| ≤ log2(m), and
so (modulo the problem of the four exponentials) there is a canonical “minimal”
pair (m,n) representing each such geometry.
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Sol40 = R3×ξR, where ξ(t) is the diagonal matrix diag[et, et, e−2t]. Note that if ξ(t)
preserves a lattice in R3 then its characteristic polynomial has integral coefficients
and constant term −1. Since it has et as a repeated root we must have ξ(t) = I.
Therefore Sol40 does not admit any lattices. The metric given by the expression
ds2 = e−2t(dx2 + dy2) + e4tdz2 + dt2 is left invariant, and O(2) × O(1) acts via
rotations and reflections in the (x, y)-coordinates and reflection in the z-coordinate,
to give the stabilizer of the identity. The identity component of Isom(Sol40) is not
triangular.

Sol41 is the group of real matrices {




1 b c
0 α a
0 0 1


 : α > 0, a, b, c ∈ R}. The

metric given by ds2 = t−2((1 + x2)(dt2 + dy2) + t2(dx2 + dz2) − 2tx(dtdx+ dydz))
is left invariant, and the stabilizer of the identity is generated by the isometries
which send (t, x, y, z) to (t,−x, y,−z) and to t−1(1,−y,−x, xy − tz). (These are
automorphisms. The latter one is the restriction of the involution ofGL(3,R) which
sends A to J(Atr)−1J , where J reverses the order of the standard basis of R3).

7.3. Geometric decompositions

We shall say that an n-manifold M admits a geometric decomposition if it may
be split along a finite collection of disjoint 2-sided hypersurfaces S such that each
component of M − ∪S is geometric. We shall call the hypersurfaces S cusps and
the components of M − ∪S pieces of M . The decomposition is proper if the set of
cusps is nonempty.

Theorem 7.1. If a closed 4-manifold M admits a geometric decomposition
then either

(1) M is geometric; or
(2) M has a codimension-2 foliation with leaves S2 or RP 2; or
(3) the components of M − ∪S all have geometry H2 × H2; or

(4) the components of M−∪S have geometry H4, H3×E1, H2×E2 or S̃L×E1;
or

(5) the components of M − ∪S have geometry H2(C) or F4.

In cases (3), (4) or (5) χ(M) ≥ 0 and in cases (4) or (5) M is aspherical.

Proof. The proof consists in considering the possible ends (cusps) of complete
geometric 4-manifolds of finite volume. The hypersurfaces bounding a component
of M − ∪S correspond to the ends of its interior. If the geometry is of solvable or
compact type then there are no ends, since every lattice is then cocompact [Rg].
Thus we may concentrate on the eight geometries S2 × H2, H2 × E2, H2 × H2,

S̃L×E1, H3 ×E1, H4, H2(C) and F4. The ends of a geometry of constant negative
curvature Hn are flat [Eb80]; since any lattice in a Lie group must meet the radical
in a lattice it follows easily that the ends are also flat in the mixed euclidean cases

H3×E1, H2×E2 and S̃L×E1. Similarly, the ends of S2×H2-manifolds are S2×E1-
manifolds. Since the elements of PSL(2,C) corresponding to the cusps of finite area
hyperbolic surfaces are parabolic, the ends of F4-manifolds are Nil3-manifolds. The
ends of H2(C)-manifolds are also Nil3-manifolds [Ep87], while the ends of H2×H2-
manifolds are Sol3-manifolds in the irreducible cases [Sh63], and graph manifolds
whose fundamental groups contain nonabelian free subgroups otherwise. Clearly if
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two pieces are contiguous their common cusps must be homeomorphic. If the piece
is not a reducible H2 ×H2-manifold then the inclusion of a cusp into the closure of
the piece induces a monomorphism on fundamental group.

If M is a closed 4-manifold with a geometric decomposition of type (2) the
inclusions of the cusps into the closures of the pieces induce isomorphisms on π2,

and a Mayer-Vietoris argument in the universal covering space M̃ shows that M̃ is
homotopy equivalent to S2. The natural foliation of S2×H2 by 2-spheres induces a
codimension-2 foliation on each piece, with leaves S2 or RP 2. The cusps bounding
the closure of a piece are S2 × E1-manifolds, and hence also have codimension-1
foliations, with leaves S2 or RP 2. Together these foliations give a foliation of the
closure of the piece, so that each cusp is a union of leaves. The homeomorphisms
identifying cusps of contigous pieces are isotopic to isometries of the corresponding
S2 × E1-manifolds. As the foliations of the cusps are preserved by isometries M
admits a foliation with leaves S2 or RP 2. (In other words, it is the total space of
an orbifold bundle over a hyperbolic 2-orbifold, with general fibre S2).

If at least one piece has an aspherical geometry other than H2 × H2 then all
do and M is aspherical. Since all the pieces of type H4, H2(C) or H2 × H2 have

strictly positive Euler characteristic while those of type H3 ×E1, H2 ×E2, S̃L×E1

or F4 have Euler characteristic 0 we must have χ(M) ≥ 0. �

If in case (2) M admits a foliation with all leaves homeomorphic then the
projection to the leaf space is a submersion and so M is the total space of an S2-
bundle or RP 2-bundle over a hyperbolic surface. In particular, the covering space
Mκ corresponding to the kernel κ of the action of π1(M) on π2(M) ∼= Z is the total
space of an S2-bundle over a hyperbolic surface. In Chapter IX we shall show that
S2-bundles and RP 2-bundles over aspherical surfaces are geometric. This is almost
certainly also true for orbifold bundles over euclidean or hyperbolic 2-orbifolds, with
general fibre S2.

If an aspherical closed 4-manifold has a nontrivial geometric decomposition with
no pieces of type H2×H2 then its fundamental group contains nilpotent subgroups
of Hirsch length 3 (corresponding to the cusps).

Is there an essentially unique minimal decomposition? Since hyperbolic surfaces
are connected sums of tori, and a punctured torus admits a complete hyperbolic
geometry of finite area, we cannot expect that there is an unique decomposition,
even in dimension 2. Any PDn-group satisfying Max-c (the maximal condition
on centralizers) has an essentially unique minimal finite splitting along virtually
poly-Z subgroups of Hirsch length n− 1, by Theorem A2 of [Kr90]. Do all funda-
mental groups of aspherical manifolds with geometric decompositions have Max-c?
A compact non-positively curved n-manifold (n ≥ 3) with convex boundary is
either flat or has a canonical decomposition along totally geodesic closed flat hy-
persurfaces into pieces which are Seifert fibred or codimension-1 atoroidal [LS00].
Which 4-manifolds with geometric decompositions admit such metrics? (Closed

S̃L × E1-manifolds do not [KL96]).
Closed H4- or H2(C)-manifolds admit no proper geometric decompositions,

since their fundamental groups have no noncyclic abelian subgroups [Pr43]. A sim-
ilar argument shows that closed H3×E1-manifolds admit no proper decompositions,
since they are finitely covered by cartesian products of H3-manifolds with S1. Thus
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closed 4-manifolds with a proper geometric decomposition involving pieces of types

other than S2 × H2, H2 × E2, H2 × H2 or S̃L × E1 are never geometric.

Many S2×H2-, H2×H2-, H2×E2- and S̃L×E1-manifolds admit proper geometric
decompositions. On the other hand, a manifold with a geometric decomposition
into pieces of type H2×E2 need not be geometric. For instance, let G = 〈u, v, x, y |
[u, v] = [x, y]〉 be the fundamental group of T ♯T , the closed orientable surface of
genus 2, and let θ : G→ SL(2,Z) be the epimorphism determined by θ(u) =

(
0 −1
1 0

)
,

θ(x) =
(

0 1
−1 1

)
, Then the semidirect product π = Z2×θG is the fundamental group

of a torus bundle over T ♯T which has a geometric decomposition into two pieces
of type H2 × E2, but is not geometric, since π does not have a subgroup of finite
index with centre Z2.

It is easily seen that each S2 × E1-manifold may be realized as the end of a
complete S2 × H2-manifold with finite volume and a single end. However, if the
manifold is orientable the ends must be orientable, and if it is complex analytic then
they must be S2×S1. Every flat 3-manifold is a cusp of some complete H4-manifold
with finite volume [Ni98]. However if such a manifold has only one cusp the cusp
cannot have holonomy Z/3Z or Z/6Z [LR00]. The fundamental group of a cusp of

an S̃L×E1-manifold must have a chain of abelian normal subgroups Z < Z2 < Z3;
not all orientable flat 3-manifold groups have such subgroups. The ends of complete,
complex analytic H2×H2-manifolds with finite volume and irreducible fundamental
group are orientable Sol3-manifolds which are mapping tori, and all such may be
realized in this way [Sh63].

Let M be the double of To × To, where To = T − intD2 is the once-punctured
torus. Since To admits a complete hyperbolic geometry of finite area M admits a
geometric decomposition into two pieces of type H2 × H2. However as c.d.F (2) ×
F (2) = 2 the homomorphism of fundamental groups induced by the inclusion of
the cusp into To × To has nontrivial kernel, and M is not aspherical.

7.4. Realization of virtual bundle groups

Every extension of one PD2-group by another may be realized by some surface
bundle, by Theorem 5.2. The study of Seifert fibred 4-manifolds and singular
fibrations of complex surfaces lead naturally to consideration of the larger class of
torsion free groups which are virtually such extensions. Johnson has asked whether
such “ virtual bundle groups” may be realized by aspherical 4-manifolds.

An n-dimensional orbifold B has an open covering by subspaces of the form
Dn/G, where G is a finite subgroup of O(n). Let F be a closed manifold. An
orbifold bundle with general fibre F over B is a map f : M → B which is locally
equivalent to a projection (F × Dn)/G → Dn/G, where G acts freely on F and
effectively and orthogonally on Dn.

Theorem 7.2. Let π be a torsion free group with normal subgroups K < G < π
such that K and G/K are PD2-groups and [π : G] <∞. Then π is the fundamental
group of an aspherical closed smooth 4-manifold which is the total space of an
orbifold bundle with general fibre an aspherical closed surface over a 2-dimensional
orbifold.

Proof. Let p : π → π/K be the quotient homomorphism. Since π is torsion
free the preimage in π of any finite subgroup of π/K is a PD2-group. As the finite
subgroups of π/K have order at most [π : G], we may assume that π/K has no
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nontrivial finite normal subgroup, and so is the orbifold fundamental group of some
2-dimensional orbifold B, by the solution to the Nielsen realization problem for
surfaces [Ke83]. Let F be the aspherical closed surface with π1(F ) ∼= K. If π/K
is torsion free then B is a closed aspherical surface, and the result follows from
Theorem 5.2. In general, B is the union of a punctured surface Bo with finitely
many cone discs and regular neighborhoods of reflector curves (possibly containing
corner points). The latter may be further decomposed as the union of squares with
a reflector curve along one side and with at most one corner point, with two such
squares meeting along sides adjacent to the reflector curve. These suborbifolds Ui
(i.e., cone discs and squares) are quotients of D2 by finite subgroups of O(2). Since
B is finitely covered (as an orbifold) by the aspherical surface with fundamental
group G/K these finite groups embed in πorb

1 (B) ∼= π/K, by the Van Kampen
Theorem for orbifolds.

The action of π/K on K determines an action of π1(Bo) on K and hence an
F -bundle over Bo. Let Hi be the preimage in π of πorb1 (Ui). Then Hi is torsion
free and [Hi : K] <∞, so Hi acts freely and cocompactly on X2, where X2 = R2 if
χ(K) = 0 and X2 = H2 otherwise, and F is a finite covering space of X2/Hi. The
obvious action of Hi on X2 ×D2 determines a bundle with general fibre F over the
orbifold Ui. Since self homeomorphisms of F are determined up to isotopy by the
induced element of Out(K), bundles over adjacent suborbifolds have isomorphic
restrictions along common edges. Hence these pieces may be assembled to give a
bundle with general fibre F over the orbifold B, whose total space is an aspherical
closed smooth 4-manifold with fundamental group π. �

We shall verify in Theorem 9.6 that torsion free groups commensurate with
products of two centreless PD2-groups are also realizable.

We can improve upon Theorem 5.7 as follows.

Corollary 7.2.1. Let M be a closed 4-manifold M with fundamental group
π. Then the following are equivalent.

(1) M is homotopy equivalent to the total space of an orbifold bundle with
general fibre an aspherical surface over an E2- or H2-orbifold;

(2) π has an FP2 normal subgroup K such that π/K is virtually a PD2-group
and π2(M) = 0;

(3) π has a normal subgroup N which is a PD2-group and π2(M) = 0.

Proof. Condition (1) clearly implies (2) and (3). Conversely, if they hold
the argument of Theorem 5.7 shows that K is a PD2-group and N is virtually a
PD2-group. In each case (1) now follows from Theorem 2. �

It follows easily from the argument of part (1) of Theorem 5.4 that if π is
a group with a normal subgroup K such that K and π/K are PD2-groups with
ζK = ζ(π/K) = 1, ρ is a subgroup of finite index in π and L = K∩ρ then Cρ(L) = 1
if and only if Cπ(K) = 1. Since ρ is virtually a product of PD2-groups with trivial
centres if and only if π is, Johnson’s trichotomy extends to groups commensurate
with extensions of one centreless PD2-group by another.

Theorem 2 settles the realization question for groups of type I. (For suppose
π has a subgroup σ of finite index with a normal subgroup ν such that ν and σ/ν
are PD2-groups with ζν = ζ(σ/ν) = 1. Let G = ∩hσh−1 and K = ν ∩ G. Then
[π : G] <∞, G is normal in π, and K and G/K are PD2-groups. If G is of type I
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then K is characteristic in G, by Theorem V.5, and so is normal in π). Groups of
type II need not have such normal PD2-subgroups - although this is almost true.
It is not known whether every type III extension of centreless PD2-groups has a
characteristic PD2-subgroup (although this is so in many cases, by the corollaries
to Theorem 5.6).

If π is an extension of Z2 by a normal PD2-subgroup K with ζK = 1 then
Cπ(K) =

√
π, and [π : KCπ(K)] < ∞ if and only if π is virtually K × Z2, so

Johnson’s trichotomy extends to such groups. The three types may be characterized
by (I)

√
π ∼= Z, (II)

√
π ∼= Z2, and (III)

√
π = 1. As these properties are shared

by commensurate torsion free groups the trichotomy extends further to torsion free
groups which are virtually such extensions. There is at present no uniqueness result
corresponding to Theorem 5.5 for such subgroupsK < π, and (excepting for groups
of type II) it is not known whether every such group is realized by some aspherical
closed 4-manifold. (In fact, it also appears to be unknown in how many ways a
3-dimensional mapping torus may fibre over S1).

The Johnson trichotomy is inappropriate if ζK 6= 1, as there are then nontrivial
extensions with trivial action (θ = 1). Moreover Out(K) is virtually free and so the
action θ is never injective. However all such groups π may be realized by aspherical
4-manifolds, for either

√
π ∼= Z2 and Theorem 2 applies, or π is virtually poly-Z

and is the fundamental group of an infrasolvmanifold. (See Chapter 8).

7.5. Seifert fibrations

A closed 4-manifold M is Seifert fibred if it is the total space of an orbifold
bundle with general fibre a torus or Klein bottle over a 2-orbifold. (In [Zn85],
[Ue90,91] it is required that the general fibre be a torus. This is always so if the
manifold is orientable). The fundamental group π of such a 4-manifold then has
a rank two free abelian normal subgroup A such that π/A is virtually a surface
group. If the base orbifold is good then the manifold is finitely covered by a torus
bundle over a closed surface. This is in fact so in general, by the following theorem.
In particular, χ(M) = 0.

Theorem (Ue). Let S be a closed orientable 4-manifold which is Seifert fibred
over the 2-orbifold B. Then

(1) If B is spherical or bad S has geometry S3 × E1 or S2 × E2;
(2) If B is euclidean then S has geometry E4, Nil4, Nil3 × E1 or Sol3 × E1;
(3) If B is orientable and hyperbolic then S is geometric if and only if it has a

complex structure, in which case the geometry is either H2×E2 or S̃L×E1.

Conversely, excepting only two flat 4-manifolds, any orientable 4-manifold admit-
ting one of these geometries is Seifert fibred. �

If the base is euclidean or hyperbolic then S is determined up to diffeomorphism
by π1(S); if moreover the base is hyperbolic or S is geometric of type Nil4 or
Sol3 ×E1 there is a fibre-preserving diffeomorphism. If the base is bad or spherical
then S may admit many inequivalent Seifert fibrations.

Less is known about the nonorientable cases. Seifert fibred 4-manifolds with
general fibre a torus and base a hyperbolic orbifold with no reflector curves are de-
termined up to fibre preserving diffeomorphism by their fundamental groups [Zi69].
Closed 4-manifolds which fibre over S1 with fibre a small Seifert fibred 3-manifold
are determined up to diffeomorphism by their fundamental groups [Oh90]. This
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class includes many nonorientable Seifert fibred 4-manifolds over bad, spherical
or euclidean bases, but not all. It may be true in general that a Seifert fibred 4-
manifold is geometric if and only if its orientable double covering space is geometric,
and that aspherical Seifert fibred 4-manifolds are determined up to diffeomorphism
by their fundamental groups.

The homotopy type of a S2 ×E2-manifold is determined up to finite ambiguity
by the fundamental group (which must be virtually Z2), Euler characteristic (which
must be 0) and Stiefel-Whitney classes. There are just nine possible fundamental
groups. Six of these have infinite abelianization, and the above invariants determine
the homotopy type in these cases. (See Chapter 10). The homotopy type of a
S3 × E1-manifold is determined by the fundamental group (which has two ends),
Euler characteristic (which is 0), orientation character w1 and first k-invariant in
H4(π;π3). (See Chapter 11).

Every Seifert fibred 4-manifold with base an euclidean orbifold has Euler char-
acteristic 0 and fundamental group solvable of Hirsch length 4, and so is home-
omorphic to an infrasolvmanifold, by Theorem 6.11 and [AJ76]. As no group of
type Sol40, Sol41 or Sol4m,n (with m 6= n) has a rank two free abelian normal sub-

group, the manifold must have one of the geometries E4, Nil4, Nil×E1 or Sol×E1.
Conversely, excepting only three flat 4-manifolds, such manifolds are Seifert fibred.
The fundamental group of a closed Nil3 × E1- or Nil4-manifold has a rank two
free abelian normal subgroup, by Theorem 1.5. If π is the fundamental group of
a Sol3 × E1-manifold then the commutator subgroup of the intersection of all in-
dex 4 subgroups is such a subgroup. (In the Nil4 and Sol3 × E1 cases there is an
unique maximal such subgroup). Case-by-case inspection of the 74 flat 4-manifold
groups shows that all but three have such subgroups. The only exceptions are the
semidirect products G6 ×θ Z where θ = j, cej and abcej. (See Chapter 8. There
is a minor oversight in [Ue90]; in fact there are two orientable flat four-manifolds
which are not Seifert fibred).

As H2 × E2- and S̃L × E1-manifolds are aspherical, they are determined up to
homotopy equivalence by their fundamental groups. See Chapter 9 for more details.

Theorem 2 specializes to give the following characterization of the fundamental
groups of Seifert fibred 4-manifolds.

Theorem 7.3. A group π is the fundamental group of a closed 4-manifold
which is Seifert fibred over a hyperbolic base 2-orbifold with general fibre a torus
if and only if it is torsion free,

√
π ∼= Z2, π/

√
π has no nontrivial finite normal

subgroup and π/
√
π is virtually a PD2-group. �

If
√
π is central (ζπ ∼= Z2) the corresponding Seifert fibred manifold M(π)

admits an effective torus action with finite isotropy subgroups.

7.6. Complex surfaces and related structures

In this section we shall summarize what we need from [BPV], [Ue90,91], [Wl86]
and [GS], and we refer to these sources for more details.

A complex surface shall mean a compact connected nonsingular complex ana-
lytic manifold S of complex dimension 2. It is Kähler (and thus diffeomorphic to a
projective algebraic surface) if and only if β1(S) is even. Since the Kähler condition
is local, all finite covering spaces of such a surface must also have β1 even. If S has
a complex submanifold L ∼= CP 1 with self-intersection −1 then L may be blown
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down: there is a complex surface S1 and a holomorphic map p : S → S1 such
that p(L) is a point and p restricts to a biholomorphic isomorphism from S −L to

S1 − p(L). In particular, S is diffeomorphic to S1♯CP 2. If there is no such em-
bedded projective line L the surface is minimal. Excepting only the ruled surfaces,
every surface has an unique minimal representative.

For many of the 4-dimensional geometries (X,G) the identity component Go
of the isometry group preserves a natural complex structure on X , and so if π is
a discrete subgroup of Go which acts freely on X the quotient π\X is a complex
surface. This is clear for the geometries CP2, S2 × S2, S2 × E2, S2 × H2, H2 × E2,
H2×H2 and H2(C). (The corresponding model spaces may be identified with CP 2,
CP 1 × CP 1, CP 1 × C, CP 1 × H2, H2 × C, H2 × H2 and the unit ball in C2,
respectively, where H2 is identified with the upper half plane). It is also true for

Nil3 × E1, Sol40, Sol41 , S̃L × E1 and F4. In addition, the subgroups R4×̃U(2) of
E(4) and U(2) × R of Isom(S3 × E1) act biholomorphically on C2 and C2 − {0},
respectively, and so some E4- and S3 × E1-manifolds have complex structures. No
other geometry admits a compatible complex structure. Since none of the model
spaces contain an embedded S2 with self-intersection −1 any complex surface which
admits a compatible geometry must be minimal.

Complex surfaces may be coarsely classified by their Kodaira dimension κ,
which may be −∞, 0, 1 or 2. Within this classification, minimal surfaces may be
further classified into ten families. We have indicated in parentheses where the
geometric complex surfaces appear in this classification.

κ = −∞: Hopf surfaces (S3 × E1); Inoue surfaces (Sol40, Sol41); rational and
ruled surfaces (CP2, S2 × S2, S2 × E2, S2 × H2).

κ = 0: complex tori (E4); Enriques surfaces; hyperelliptic surfaces (E4);
Kodaira surfaces (Nil3 × E1); K3 surfaces.

κ = 1: minimal properly elliptic surfaces (S̃L × E1, H2 × E2).
κ = 2: minimal (algebraic) surfaces of general type (H2 × H2, H2(C)).

A Hopf surface is a complex surface whose universal covering space is homeo-
morphic to S3×R ∼= C2−{0}. Some Hopf surfaces admit no compatible geometry,
and there are S3 × E1-manifolds that admit no complex structure. The Inoue sur-
faces are exactly the complex surfaces admitting one of the geometries Sol40 or Sol41.

A rational surface is a complex surface birationally equivalent to CP 2. Minimal
rational surfaces are diffeomorphic to CP 2 or to CP 1 × CP 1. A ruled surface is
a complex surface which is holomorphically fibred over a smooth complex curve
(closed orientable 2-manifold) of genus g > 0 with fibre CP 1. Rational and ruled
surfaces may be characterized as the complex surfaces S with κ(S) = −∞ and
β1(S) even. Not all ruled surfaces admit geometries compatible with their complex
structures.

A complex torus is a quotient of C2 by a lattice, and a hyperelliptic surface
is one properly covered by a complex torus. If S is a complex surface which is
homeomorphic to a flat 4-manifold then S is a complex torus or is hyperelliptic,
since it is finitely covered by a complex torus. Since S is orientable and β1(S) is
even π = π1(S) must be one of the eight flat 4-manifold groups of orientable type
and with π ∼= Z4 or I(π) ∼= Z2. In each case the holonomy group is cyclic, and so
is conjugate (in GL+(4,R)) to a subgroup of GL(2,C). (See Chapter 8). Thus all
of these groups may be realized by complex surfaces. A Kodaira surface is finitely
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covered by a surface which fibres holomorphically over an elliptic curve with fibres
of genus 1.

An elliptic surface S is a complex surface which admits a holomorphic map p
to a complex curve such that the generic fibres of p are diffeomorphic to the torus
T . If the elliptic surface S has no singular fibres it is Seifert fibred, and it then
has a geometric structure if and only if the base is a good orbifold. An orientable
Seifert fibred 4-manifold over a hyperbolic base has a geometric structure if and
only if it is an elliptic surface without singular fibres [Ue90]. The elliptic surfaces
S with κ(S) = −∞ and β1(S) odd are the geometric Hopf surfaces. The elliptic
surfaces S with κ(S) = −∞ and β1(S) even are the cartesian products of elliptic
curves with CP 1.

All rational, ruled and hyperelliptic surfaces are projective algebraic surfaces,
as are all surfaces with κ = 2. Complex tori and surfaces with geometry H2×E2 are
diffeomorphic to projective algebraic surfaces. Hopf, Inoue and Kodaira surfaces

and surfaces with geometry S̃L × E1 all have β1 odd.
An almost complex structure on a smooth 2n-manifold M is a reduction of

the structure group of its tangent bundle to GL(n,C) < GL+(2n,R). Such a
structure determines an orientation on M . If M is a closed oriented 4-manifold and
c ∈ H2(M ; Z) then there is an almost complex structure on M with first Chern
class c and inducing the given orientation if and only if c ≡ w2(M) mod (2) and
c2 ∩ [M ] = 3σ(M) + 2χ(M), by a theorem of Wu. (See the Appendix to Chapter I
of [GS] for a recent account).

A symplectic structure on a closed smooth manifoldM is a closed nondegenerate
2-form ω. Nondegenerate means that for all x ∈ M and all u ∈ TxM there is a
v ∈ TxM such that ω(u, v) 6= 0. Manifolds admitting symplectic structures are
even-dimensional and orientable. A condition equivalent to nondegeneracy is that
the n-fold wedge ω∧n is nowhere 0, where 2n is the dimension of M . The nth

cup power of the corresponding cohomology class [ω] is then a nonzero element of
H2n(M ; R). Any two of a riemannian metric, a symplectic structure and an almost
complex structure together determine a third, if the given two are compatible. In
dimension 4, this is essentially equivalent to the fact that SO(4)∩Sp(4) = SO(4)∩
GL(2,C) = Sp(4) ∩ GL(2,C) = U(2), as subgroups of GL(4,R). (See [GS] for a
discussion of relations between these structures). In particular, Kähler surfaces have
natural symplectic structures, and symplectic 4-manifolds admit compatible almost
complex tangential structures. However orientable Sol3 ×E1-manifolds which fibre
over T are symplectic [Ge92] but have no complex structure (by the classification
of surfaces) and Hopf surfaces are complex manifolds with no symplectic structure
(since β2 = 0).





CHAPTER 8

Solvable Lie geometries

The main result of this chapter is the characterization of geometric 4-manifolds
of solvable Lie type up to homeomorphism, given in §1. All such manifolds are
either mapping tori of self homeomorphisms of 3-dimensional infrasolvmanifolds or
are unions of two twisted I-bundles over such 3-manifolds. In the rest of the chapter
we consider each of the possible geometries.

In §2 we determine the automorphism groups of the flat 3-manifold groups,
while in §3 and §4 we determine ab initio the 74 flat 4-manifold groups. There have
been several independent computations of these groups; the consensus reported
on page 126 of [Wo] is that there are 27 orientable groups and 48 nonorientable
groups. However the tables of 4-dimensional crystallographic groups in [B-Z] list
only 74 torsion free groups. As these computer-generated tables give little insight
into how these groups arise, and as the earlier computations were never published
in detail, we shall give a direct and elementary computation, motivated by Lemma
3.13. Our conclusions as to the numbers of groups with abelianization of given
rank, isomorphism type of holonomy group and orientation type agree with those
of [B-Z]. (We have not attempted to make the lists correspond).

There are infinitely many examples for each of the other geometries. In §5 we
show how these geometries may be distinguished, in terms of the group theoretic
properties of their lattices. In §6, §7 and §8 we consider mapping tori of self
homeomorphisms of E3-, Nil3- and Sol3-manifolds, respectively. Classifying the
(non-flat) 4-dimensional infrasolvmanifold groups is considered briefly in §9.

8.1. The characterization

In this section we show that geometric 4-manifolds of solvable Lie type may be
characterized up to homeomorphism in terms of the fundamental group and Euler
characteristic.

Theorem 8.1. Let M be a closed 4-manifold with fundamental group π and
such that χ(M) = 0. The following conditions are equivalent:

(1) π is torsion free and virtually poly-Z and h(π) = 4;
(2) h(

√
π) ≥ 3;

(3) π has an elementary amenable normal subgroup ρ with h(ρ) ≥ 3, and
H2(π;Z[π]) = 0; and
(iv) π is restrained, every finitely generated subgroup of π is FP3 and π
maps onto a virtually poly-Z group Q with h(Q) ≥ 3.

Moreover if these conditions hold M is aspherical, and is determined up to homeo-
morphism by π, and every automorphism of π may be realized by a self homeomor-
phism of M .

111
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Proof. If (1) holds then h(
√
π) ≥ 3, by Theorem 1.6, and so (2) holds. This

in turn implies (3), by Theorem 1.17. If (3) holds then π has one end, by Theorem
1.15, and so M is aspherical, by Corollary 3.5.2. Hence π is a PD4-group and
3 ≤ h(ρ) ≤ c.d.ρ ≤ 4. In particular, ρ is virtually solvable, by Theorem 1.11. If
c.d.ρ = 4 then [π : ρ] is finite, by Strebel’s Theorem, and so π is virtually solvable
also. If c.d.ρ = 3 then c.d.ρ = h(ρ) and so ρ is a duality group and is FP [Kr86].
Therefore Hq(ρ; Q[π]) ∼= Hq(ρ; Q[ρ])⊗Q[π/ρ] and is 0 unless q = 3. It then follows
from the LHSSS for π as an extension of π/ρ by ρ (with coefficients Q[π]) that
H4(π; Q[π]) ∼= H1(π/ρ; Q[π/ρ]) ⊗H3(ρ; Q[ρ]). Therefore H1(π/ρ; Q[π/ρ]) ∼= Q, so
π/ρ has two ends and we again find that π is virtually solvable. In all cases π is
torsion free and virtually poly-Z, by Theorem 9.23 of [Bi], and h(π) = 4.

If (4) holds then π is an ascending HNN extension π ∼= B∗φ with base FP3 and
so M is aspherical, by Theorem 3.16. As in Theorem 2.13 we may deduce from
[BG85] that B must be a PD3-group and φ an isomorphism, and hence B and π
are virtually poly-Z. Conversely (1) clearly implies (4).

The final assertions follow from Theorem 2.16 of [FJ], as in Theorem 6.11
above. �

Does the hypothesis h(ρ) ≥ 3 in (3) imply H2(π; Z[π]) = 0? The examples
F ×S1×S1 where F = S2 or is a closed hyperbolic surface show that the condition
that h(ρ) > 2 is necessary. (See also §1 of Chapter 9).

Corollary 8.1.1. The 4-manifold M is homeomorphic to an infrasolvmanifold
if and only if the equivalent conditions of Theorem 1 hold.

Proof. If M is homeomorphic to an infrasolvmanifold then χ(M) = 0, π is
torsion free and virtually poly-Z and h(π) = 4 (see Chapter 7). Conversely, if
these conditions hold then π is the fundamental group of an infrasolvmanifold, by
[AJ76]. �

It is easy to see that all such groups are realizable by closed smooth 4-manifolds
with Euler characteristic 0.

Theorem 8.2. If π is torsion free and virtually poly-Z of Hirsch length 4 then it
is the fundamental group of a closed smooth 4-manifold M which is either a mapping
torus of a self homeomorphism of a closed 3-dimensional infrasolvmanifold or is the
union of two twisted I-bundles over such a 3-manifold. Moreover, the 4-manifold
M is determined up to homeomorphism by the group.

Proof. The Eilenberg-Mac Lane space K(π, 1) is a PD4-complex with Euler
characteristic 0. By Lemma 3.13, either there is an epimorphism φ : π → Z, in
which case π is a semidirect product G ×θ Z where G = Ker(φ), or π ∼= G1 ∗G G2

where [G1 : G] = [G2 : G] = 2. The subgroups G, G1 and G2 are torsion free
and virtually poly-Z. Since in each case π/G has Hirsch length 1 these subgroups
have Hirsch length 3 and so are fundamental groups of closed 3-dimensional in-
frasolvmanifolds. The existence of such a manifold now follows by standard 3-
manifold topology, while its uniqueness up to homeomorphism was proven in The-
orem 6.11. �

The first part of this theorem may be stated and proven in purely algebraic
terms, since torsion free virtually poly-Z groups are Poincaré duality groups. (See
Chapter III of [Bi]). If π is such a group then either it is virtually nilpotent or
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√
π ∼= Z3 or Γq for some q, by Theorems 1.5 and 1.6. In the following sections

we shall consider how such groups may be realized geometrically. The geometry is
largely determined by

√
π. We shall consider first the virtually abelian cases.

8.2. Flat 3-manifold groups and their automorphisms

The flat n-manifold groups for n ≤ 2 are Z, Z2 and K = Z×−1Z, the Klein bot-
tle group. There are six orientable and four nonorientable flat 3-manifold groups.
The first of the orientable flat 3-manifold groups G1 - G6 is G1 = Z3. The next
four have I(Gi) ∼= Z2 and are semidirect products Z2×T Z where T = −I,

(
0 −1
1 −1

)
,(

0 −1
1 0

)
or

(
0 −1
1 1

)
, respectively, is an element of finite order in SL(2,Z). These

groups all have cyclic holonomy groups, of orders 2, 3, 4 and 6, respectively. The
group G6 is the group of the Hantzsche-Wendt flat 3-manifold, and has a presen-
tation 〈x, y | xy2x−1 = y−2, yx2y−1 = y−2〉. Its maximal abelian normal subgroup
is generated by x2, y2 and (xy)2 and its holonomy group is the diagonal subgroup
of SL(3,Z), which is isomorphic to (Z/2Z)2. (This group is the generalized free
product of two copies of K, amalgamated over their maximal abelian subgroups,
and so maps onto D).

The nonorientable flat 3-manifold groups B1 - B4 are semidirect products K×θ
Z, corresponding to the classes in Out(K) ∼= (Z/2Z)2. In terms of the presentation
〈x, y | xyx−1 = y−1〉 for K these classes are represented by the automorphisms θ
which fix y and send x to x, xy, x−1 and x−1y, respectively. The groups B1 and B2

are also semidirect products Z2 ×T Z, where T =
(

1 0
0 −1

)
or ( 0 1

1 0 ) has determinant

−1 and T 2 = I. They have holonomy groups of order 2, while the holonomy groups
of B3 and B4 are isomorphic to (Z/2Z)2.

All the flat 3-manifold groups either map onto Z or map onto D. The methods
of this chapter may be easily adapted to find all such groups. Assuming these are
all known we may use Sylow theory and a little topology to show that there are
no others. We sketch here such an argument. Suppose that π is a flat 3-manifold
group with finite abelianization. Then 0 = χ(π) = 1 + β2(π) − β3(π), so β3(π) 6= 0
and π must be orientable. Hence the holonomy group F = π/T (π) is a subgroup
of SL(3,Z). Let f be a nontrivial element of F . Then f has order 2, 3, 4 or 6, and
has a +1-eigenspace of rank 1, since it is orientation preserving. This eigenspace
is invariant under the action of the normalizer NF (〈f〉), and the induced action of
NF (〈f〉) on the quotient space is faithful. ThusNF (〈f〉) is isomorphic to a subgroup
of GL(2,Z) and so is cyclic or dihedral of order dividing 24. This estimate applies
to the Sylow subgroups of F , since p-groups have nontrivial centres, and so the
order of F divides 24. If F has a nontrivial cyclic normal subgroup then π has
a normal subgroup isomorphic to Z2 and hence maps onto Z or D. Otherwise
F has a nontrivial Sylow 3-subgroup C which is not normal in F . The number
of Sylow 3-subgroups is congruent to 1 mod (3) and divides the order of F . The
action of F by conjugation on the set of such subgroups is transitive. It must also
be faithful. (For otherwise ∩g∈F gNF (C)g−1 6= 1. As NF (C) is cyclic or dihedral
it would follow that F must have a nontrivial cyclic normal subgroup, contrary to
hypothesis). Hence F must be A4 or S4, and so contains V ∼= (Z/2Z)2 as a normal
subgroup. But any orientable flat 3-manifold group with holonomy V must have
finite abelianization. As Z/3Z cannot act freely on a Q-homology 3-sphere (by the
Lefshetz fixed point theorem) it follows that A4 cannot be the holonomy group of
a flat 3-manifold. Hence we may exclude S4 also.
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We shall now determine the (outer) automorphism groups of each of the flat
3-manifold groups. Clearly Out(G1) = Aut(G1) = GL(3,Z). If 2 ≤ i ≤ 5
let t ∈ Gi represent a generator of the quotient Gi/I(Gi) ∼= Z. The automor-
phisms of Gi must preserve the characteristic subgroup I(Gi) and so may be iden-
tified with triples (v,A, ǫ) ∈ Z2 × GL(2,Z) × {±1} such that ATA−1 = T ǫ and
which act via A on I(Gi) = Z2 and send t to tǫv. Such an automorphism is
orientation preserving if and only if ǫ = det(A). The multiplication is given by
(v,A, ǫ)(w,B, η) = (Ξv + Aw,AB, ǫη), where Ξ = I if η = 1 and Ξ = −T ǫ if
η = −1. The inner automorphisms are generated by (0, T, 1) and ((T − I)Z2, I, 1).

In particular, Aut(G2) ∼= (Z2 ×α GL(2,Z)) × {±1}, where α is the natural
action of GL(2,Z) on Z2, for Ξ is always I if T = −I. The involution (0, I,−1) is
central in Aut(G2), and is orientation reversing. Hence Out(G2) is isomorphic to
((Z/2Z)2 ×Pα PGL(2,Z))× (Z/2Z), where Pα is the induced action of PGL(2,Z)
on (Z/2Z)2.

If n = 3, 4 or 5 the normal subgroup I(Gi) may be viewed as a module over
the ring R = Z[t]/(φ(t)), where φ(t) = t2 + t+ 1, t2 + 1 or t2 − t+ 1, respectively.
As these rings are principal ideal domains and I(Gi) is torsion free of rank 2 as an
abelian group, in each case it is free of rank 1 as an R-module. Thus matrices A
such that AT = TA correspond to units of R. Hence automorphisms of Gi which
induce the identity on Gi/I(Gi) have the form (v,±Tm, 1), for some m ∈ Z and
v ∈ Z2. There is also an involution (0, ( 0 1

1 0 ) ,−1) which sends t to t−1. In all
cases ǫ = det(A). It follows that Out(G3) ∼= S3 × (Z/2Z), Out(G4) ∼= (Z/2Z)2 and
Out(G5) = Z/2Z. All these automorphisms are orientation preserving.

The subgroup A of G6 generated by {x2, y2, (xy)2} is the maximal abelian
normal subgroup of G6, and G6/A ∼= (Z/2Z)2. Let a, b, c, d, e, f , i and j be
the automorphisms of G6 which send x to x−1, x, x, x, y2x, (xy)2x, y, xy and y to
y, y−1, (xy)2y, x2y, y, (xy)2y, x, x, respectively. The natural homomorphism from
Aut(G6) to Aut(G6/A) ∼= GL(2,F2) is onto, as the images of i and j generate
GL(2,F2), and its kernel E is generated by {a, b, c, d, e, f}. (For an automor-
phism which induces the identity on G6/A must send x to x2py2q(xy)2rx, and
y to x2sy2t(xy)2uy. The images of x2, y2 and (xy)2 are then x4p+2, y4t+2 and
(xy)4(r−u)+2, which generate A if and only if p = 0 or −1, t = 0 or −1 and
r = u − 1 or u. Composing such an automorphism appropriately with a, b and c
we may acheive p = t = 0 and r = u. Then by composing with powers of d, e
and f we may obtain the identity automorphism). The inner automorphisms are
generated by bcd (conjugation by x) and acef (conjugation by y). Then Out(G6)
has a presentation

〈a, b, c, e, i, j | a2 = b2 = c2 = e2 = i2 = j6 = 1, a, b, c, e commute, iai = b,

ici = ae, jaj−1 = c, jbj−1 = abc, jcj−1 = be, j3 = abce, (ji)2 = bc〉.
The generators a, b, c, and j represent orientation reversing automorphisms. (Note
that jej−1 = bc follows from the other relations. See [Zn90] for an alternative
description).

The group B1 = Z×K has a presentation

〈t, x, y | tx = xt, ty = yt, xyx−1 = y−1〉.
An automorphism of B1 must preserve the centre ζB1 (which has basis t, x2)
and I(B1) (which is generated by y). Thus the automorphisms of B1 may be
identified with triples (A,m, ǫ) ∈ Υ2 × Z× {±1}, where Υ2 is the subgroup of
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GL(2,Z) consisting of matrices congruent mod (2) to upper triangular matrices.
Such an automorphism sends t to taxb, x to tcxdym and y to yǫ, and induces mul-
tiplication by A on B1/I(B1) ∼= Z2. Composition of automorphisms is given by
(A,m, ǫ)(B, n, η) = (AB,m + ǫn, ǫη). The inner automorphisms are generated by
(I, 1,−1) and (I, 2, 1), and so Out(B1) ∼= Υ2 × (Z/2Z).

The group B2 has a presentation

〈t, x, y | txt−1 = xy, ty = yt, xyx−1 = y−1〉.
Automorphisms of B2 may be identified with triples (A, (m,n), ǫ), where A ∈ Γ2,
m,n ∈ Z, ǫ = ±1 and m = (A11 − ǫ)/2. Such an automorphism sends t to taxbym,
x to tcxdyn and y to yǫ, and induces multiplication by A on B2/I(B2) ∼= Z2.
The automorphisms which induce the identity on B2/I(B2) are all inner, and so
Out(B2) ∼= Υ2.

The group B3 has a presentation

〈t, x, y | txt−1 = x−1, ty = yt, xyx−1 = y−1〉.
An automorphism of B3 must preserve I(B3) ∼= K (which is generated by x, y) and
I(I(B3)) (which is generated by y). It follows easily that Out(B3) ∼= (Z/2Z)3, and
is generated by the classes of the automorphisms which fix y and send t to t−1, t, tx2

and x to x, xy, x, respectively.
A similar argument using the presentation

〈t, x, y | txt−1 = x−1y, ty = yt, xyx−1 = y−1〉
for B4 shows that Out(B4) ∼= (Z/2Z)3, and is generated by the classes of the auto-
morphisms which fix y and send t to t−1y−1, t, tx2 and x to x, x−1, x, respectively.

8.3. Flat 4-manifold groups with infinite abelianization

We shall organize our determination of the flat 4-manifold groups π in terms
of I(π). Let π be a flat 4-manifold group, β = β1(π) and h = h(I(π)). Then
π/I(π) ∼= Zβ and h+ β = 4. If I(π) is abelian then Cπ(I(π)) is a nilpotent normal
subgroup of π and so is a subgroup of the Hirsch-Plotkin radical

√
π, which is

here the maximal abelian normal subgroup T (π). Hence Cπ(I(π)) = T (π) and the
holonomy group is isomorphic to π/Cπ(I(π)).

h = 0. In this case I(π) = 1, so π ∼= Z4 and is orientable.

h = 1. In this case I(π) ∼= Z and π is nonabelian, so π/Cπ(I(π)) = Z/2Z. Hence
π has a presentation of the form

〈t, x, y, z | txt−1 = xza, tyt−1 = yzb, tzt−1 = z−1, x, y, z commute〉,
for some integers a, b. On replacing x by xy or interchanging x and y if necessary we
may assume that a is even. On then replacing x by xza/2 and y by yz[b/2] we may
assume that a = 0 and b = 0 or 1. Thus π is a semidirect product Z3 ×T Z, where
the normal subgroup Z3 is generated by the images of x, y and z, and the action of t

is determined by a matrix T =
(

I2 0
(0,b) −1

)
in GL(3,Z). Hence π ∼= Z×B1 = Z2×K

or Z ×B2. Both of these groups are nonorientable.

h = 2. If I(π) ∼= Z2 and π/Cπ(I(π)) is cyclic then we may again assume that π is a
semidirect product Z3 ×T Z, where T =

(
1 0
µ U

)
, with µ = ( ab ) and U ∈ GL(2,Z) is

of order 2, 3, 4 or 6 and does not have 1 as an eigenvalue. Thus U = −I2,
(

0 −1
1 −1

)
,(

0 −1
1 0

)
or

(
0 −1
1 1

)
. Conjugating T by

(
1 0
ν I2

)
replaces µ by µ + (I2 − U)ν. In each

case the choice a = b = 0 leads to a group of the form π ∼= Z × G, where G is an
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orientable flat 3-manifold group with β1(G) = 1. For each of the first three of these
matrices there is one other possible group. However if U =

(
0 −1
1 1

)
then I2 − U

is invertible and so Z × G5 is the only possibility. All seven of these groups are
orientable.

If I(π) ∼= Z2 and π/Cπ(I(π)) is not cyclic then π/Cπ(I(π)) ∼= (Z/2Z)2. There
are two conjugacy classes of embeddings of (Z/2Z)2 in GL(2,Z). One has image
the subgroup of diagonal matrices. The corresponding groups π have presentations
of the form

〈t, u, x, y | tx = xt, tyt−1 = y−1, uxu−1 = x−1, uyu−1 = y−1, xy = yx,

tut−1u−1 = xmyn〉,
for some integersm, n. On replacing t by tx−[m/2]y[n/2] if necessary we may assume
that 0 ≤ m,n ≤ 1. On then replacing t by tu and interchanging x and y if necessary
we may assume that m ≤ n. The only infinite cyclic subgroups of I(π) which are
normal in π are the subgroups 〈x〉 and 〈y〉. On comparing the quotients of these
groups π by such subgroups we see that the three possibilities are distinct. The
other embedding of (Z/2Z)2 in GL(2,Z) has image generated by −I and ( 0 1

1 0 ).
The corresponding groups π have presentations of the form

〈t, u, x, y | txt−1 = y, tyt−1 = x, uxu−1 = x−1, uyu−1 = y−1, xy = yx,

tut−1u−1 = xmyn〉,
for some integers m, n. On replacing t by tx[(m−n)/2] and u by ux−m if necessary
we may assume that m = 0 and n = 0 or 1. Thus there two such groups. All five
of these groups are nonorientable.

Otherwise, I(π) ∼= K, I(I(π)) ∼= Z and G = π/I(I(π)) is a flat 3-manifold
group with β1(G) = 2, but with I(G) = I(π)/I(I(π)) not contained in G′ (since it
acts nontrivially on I(I(π))). Therefore G ∼= B1 = Z×K, and so has a presentation
〈t, x, y | tx = xt, ty = yt, xyx−1 = y−1〉. If w : G → Aut(Z) is a homomorphism
which restricts nontrivially to I(G) then we may assume (up to isomorphism of G)
that w(x) = 1 and w(y) = −1. Groups π which are extensions of Z × K by Z
corresponding to the action with w(t) = w (= ±1) have presentations of the form

〈t, x, y, z | txt−1 = xza, tyt−1 = yzb, tzt−1 = zw, xyx−1 = y−1zc, xz = zx,

yzy−1 = z−1〉
Any group with such a presentation is easily seen to be an extension of Z ×K by
a cyclic normal subgroup. However conjugating the fourth relation leads to the
equation

txt−1tyt−1(txt−1)−1 = txyx−1t−1 = ty−1zct−1 = tyt−1(tzt−1)c

which simplifies to xzayzbz−ax−1 = (yzb)−1zwc and hence to zc−2a = zwc. Hence
this cyclic normal subgroup is finite unless 2a = (1 − w)c.

Suppose first that w = 1. Then z2a = 1 and so we must have a = 0. On
replacing t by tz[b/2] and x by xz[c/2], if necessary, we may assume that 0 ≤ b, c ≤ 1.
If b = 0 then π ∼= Z × B3 or Z × B4. Otherwise, after further replacing x by txz
if necessary we may assume that c = 0. The three remaining possibilities may be
distinguished by their abelianizations, and so there are three such groups. In each
case the subgroup generated by {t, x2, y2, z} is maximal abelian, and the holonomy
group is isomorphic to (Z/2Z)2.

If instead w = −1 then z2(c−a) = 1 and so we must have a = c. On replacing
y by yz[b/2] and x by xz[c/2] if necessary we may assume that 0 ≤ b, c ≤ 1. If
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b = 1 then after replacing x by txy, if necessary, we may assume that a = 0. If
a = b = 0 then π/π′ ∼= Z2 ⊕ (Z/2Z)2. The remaining two possibilities both have
abelianization Z2⊕(Z/2Z), but one has centre of rank 2 and the other has centre of
rank 1. Thus there are three such groups. The subgroup generated by {ty, x2, y2, z}
is maximal abelian, and the holonomy group is isomorphic to (Z/2Z)2. All of these
groups π with I(π) ∼= K are nonorientable.

h = 3. In this case π is uniquely a semidirect product π ∼= I(π) ×θ Z, where I(π)
is a flat 3-manifold group and θ is an automorphism of I(π) such that the induced
automorphism of I(π)/I(I(π)) has no eigenvalue 1, and whose image in Out(I(π))
has finite order. (The conjugacy class of the image of θ in Out(I(π)) is determined
up to inversion by π).

Since T (I(π)) is the maximal abelian normal subgroup of I(π) it is normal in
π. It follows easily that T (π)∩ I(π) = T (I(π)). Hence the holonomy group of I(π)
is isomorphic to a normal subgroup of the holonomy subgroup of π, with quotient
cyclic of order dividing the order of θ in Out(I(π)). (The order of the quotient can
be strictly smaller).

If I(π) ∼= Z3 then Out(I(π)) ∼= GL(3,Z). If T ∈ GL(3,Z) has finite order n
and β1(Z

3 ×T Z) = 1 then either T = −I or n = 4 or 6 and the characteristic
polynomial of T is (t+1)φ(t) with φ(t) = t2 +1, t2 + t+1 or t2− t+1. In the latter
cases T is conjugate to a matrix of the form

(−1 µ
0 A

)
, where A =

(
0 −1
1 0

)
,
(

0 −1
1 −1

)
or(

0 −1
1 1

)
, respectively. The row vector µ = (m1,m2) is well defined mod Z2(A + I).

Thus there are seven such conjugacy classes. All but one pair (corresponding to(
0 −1
1 1

)
and µ /∈ Z2(A+ I)) are self-inverse, and so there are six such groups. The

holonomy group is cyclic, of order equal to the order of T . As such matrices all
have determinant −1 all of these groups are nonorientable.

If I(π) ∼= Gi for 2 ≤ i ≤ 5 the automorphism θ = (v,A, ǫ) must have ǫ = −1,
for otherwise β1(π) = 2. We have Out(G2) ∼= ((Z/2Z)2×̃PGL(2,Z)) × (Z/2Z).
The five conjugacy classes of finite order in PGL(2,Z) are represented by the ma-
trices I,

(
0 −1
1 0

)
, ( 0 1

1 0 ),
(

1 0
0 −1

)
and

(
0 1
−1 1

)
. The numbers of conjugacy classes in

Out(G2) with ǫ = −1 corresponding to these matrices are two, two, two, three and
one, respectively. All of these conjugacy classes are self-inverse. Of these, only
the two conjugacy classes corresponding to ( 0 1

1 0 ) and the three conjugacy classes
corresponding to

(
1 0
0 −1

)
give rise to orientable groups. The holonomy groups are

all isomorphic to (Z/2Z)2, except when A =
(

0 −1
1 0

)
or

(
0 1
−1 1

)
, when they are iso-

morphic to Z/4Z or Z/6Z ⊕ Z/2Z, respectively. There are five orientable groups
and five nonorientable groups.

As Out(G3) ∼= S3 × (Z/2Z), Out(G4) ∼= (Z/2Z)2 and Out(G5) = Z/2Z, there
are three, two and one conjugacy classes corresponding to automorphisms with
ǫ = −1, respectively, and all these conjugacy classes are closed under inversion.
The holonomy groups are dihedral of order 6, 8 and 12, respectively. The six such
groups are all orientable.

The centre of Out(G6) is generated by the image of ab, and the image of ce
in the quotient Out(G6)/〈ab〉 generates a central Z/2Z direct factor. The quotient
Out(G6)/〈ab, ce〉 is isomorphic to the semidirect product of a normal subgroup
(Z/2Z)2 (generated by the images of a and c) with S3 (generated by the images
of ia and j), and has five conjugacy classes, represented by 1, a, i, j and ci. Hence
Out(G6)/〈ab〉 has ten conjugacy classes, represented by 1, ce, a, ace, i, cei, j, cej, ci
and cice = ei. Thus Out(G6) itself has between 10 and 20 conjugacy classes. In fact
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Out(G6) has 14 conjugacy classes, of which those represented by 1, ab, ace, bce, i, cej,
abcej and ei are orientation preserving, and those represented by a, ce, cei, j, abj and
ci are orientation reversing. All of these classes are self inverse, except for j and abj,
which are mutually inverse (j−1 = ai(abj)ia). The holonomy groups corresponding
to the classes 1, ab, ace and bce are isomorphic to (Z/2Z)2, those corresponding
to a and ce are isomorphic to (Z/2Z)3, those corresponding to i, ei, cei and ci are
dihedral of order 8, those corresponding to cej and abcej are isomorphic to A4 and
the one corresponding to j has order 24. There are eight orientable groups and five
nonorientable groups.

All the remaining cases give rise to nonorientable groups.
I(π) ∼= Z × K. If a matrix A in Υ2 has finite order then as its trace is even the
order must be 1, 2 or 4. If moreover A does not have 1 as an eigenvalue then either
A = −I or A has order 4 and is conjugate (in Υ2) to

(−1 1
−2 1

)
. Each of the four

corresponding conjugacy classes in Υ2 × {±1} is self inverse, and so there are four
such groups. The holonomy groups are isomorphic to Z/nZ ⊕ Z/2Z, where n = 2
or 4 is the order of A.
I(π) ∼= B2. As Out(B2) ∼= Υ2 there are two relevant conjugacy classes and hence
two such groups. The holonomy groups are again isomorphic to Z/nZ ⊕ Z/2Z,
where n = 2 or 4 is the order of A.
I(π) ∼= B3 or B4. In each case Out(H) ∼= (Z/2Z)3, and there are four outer
automorphism classes determining semidirect products with β = 1. (Note that
here conjugacy classes are singletons and are self-inverse). The holonomy groups
are all isomorphic to (Z/2Z)3.

8.4. Flat 4-manifold groups with finite abelianization

There remains the case when π/π′ is finite (equivalently, h = 4). By Lemma
3.13 if π is such a flat 4-manifold group it is nonorientable and is isomorphic to a
generalized free product J ∗φ J̃ , where φ is an isomorphism from G < J to G̃ < J̃

and [J : G] = [J̃ : G̃] = 2. The groups G, J and J̃ are then flat 3-manifold groups.

If λ and λ̃ are automorphisms of G and G̃ which extend to J and J̃ , respectively,
then J ∗φ J̃ and J ∗λ̃φλ J̃ are isomorphic, and so we shall say that φ and λ̃φλ are

equivalent isomorphisms. The major difficulty in handling these cases is that some
such flat 4-manifold groups split as a generalised free product in several essentially
distinct ways.

It follows from the Mayer-Vietoris sequence for π ∼= J ∗φ J̃ that H1(G; Q)

maps onto H1(J ; Q) ⊕ H1(J̃ ; Q), and hence that β1(J) + β1(J̃) ≤ β1(G). Since
G3, G4, B3 and B4 are only subgroups of other flat 3-manifold groups via maps
inducing isomorphisms on H1(−; Q) and G5 and G6 are not index 2 subgroups of

any flat 3-manifold group we may assume that G ∼= Z3, G2, B1 or B2. If j and j̃
are the automorphisms of T (J) and T (J̃) determined by conjugation in J and J̃ ,
respectively, then π is a flat 4-manifold group if and only if Φ = jT (φ)−1j̃T (φ) has
finite order. In particular, the trace of Φ must have absolute value at most 3. At
this point detailed computation seems unavoidable. (We note in passing that any

generalised free product J ∗G J̃ with G ∼= G3, G4, B3 or B4, J and J̃ torsion free
and [J : G] = [J̃ : G] = 2 is a flat 4-manifold group, since Out(G) is then finite.
However all such groups have infinite abelianization).

Suppose first that G ∼= Z3, with basis {x, y, z}. Then J and J̃ must have

holonomy of order ≤ 2, and β1(J)+β1(J̃) ≤ 3. Hence we may assume that J ∼= G2
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and J̃ ∼= G2, B1 or B2. In each case we have G = T (J) and G̃ = T (J̃). We may

assume that J and J̃ are generated by G and elements s and t, respectively, such
that s2 = x and t2 ∈ G̃. We may also assume that the action of s on G has matrix
j =

(
1 0
0 −I

)
with respect to the basis {x, y, z}. Fix an isomorphism φ : G → G̃

and let T = T (φ)−1j̃T (φ) =
(
a δ
γ D

)
be the matrix corresponding to the action of

t on G̃. (Here γ is a 2 × 1 column vector, δ is a 1 × 2 row vector and D is a
2 × 2 matrix, possibly singular). Then T 2 = I and so the trace of T is odd. Since
j ≡ I mod (2) the trace of Φ = jT is also odd, and so Φ cannot have order 3 or 6.
Therefore Φ4 = I. If Φ = I then π/π′ is infinite. If Φ has order 2 then jT = T j
and so γ = 0, δ = 0 and D2 = I2. Moreover we must have a = −1 for otherwise
π/π′ is infinite. After conjugating T by a matrix commuting with j if necessary

we may assume that D = I2 or
(

1 0
0 −1

)
. (Since J̃ must be torsion free we cannot

have D = ( 0 1
1 0 )). These two matrices correspond to the generalized free products

G2 ∗φ B1 and G2 ∗φ G2, with presentations

〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = s−2, tz = zt〉
and 〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = s−2, tzt−1 = z−1〉,
respectively. These groups each have holonomy group isomorphic to (Z/2Z)2. If
Φ has order 4 then we must have (jT )2 = (jT )−2 = (T j)2 and so (jT )2 commutes
with j. It can then be shown that after conjugating T by a matrix commuting with
j if necessary we may assume that T is the elementary matrix which interchanges
the first and third rows. The corresponding group G2 ∗φ B2 has a presentation

〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = z, tzt−1 = s2〉.
Its holonomy group is isomorphic to the dihedral group of order 8.

If G ∼= B1 or B2 then J and J̃ are nonorientable and β1(J) + β1(J̃) ≤ 2.

Hence J and J̃ are B3 or B4. Since neither of these groups contains B2 as an
index 2 subgroup we must have G ∼= B1. In each case there are two essentially
different embeddings of B1 as an index 2 subgroup of B3 or B4. (The image of
one contains I(Bi) while the other does not). In all cases we find that j and j̃
are diagonal matrices with determinant −1, and that T (φ) =

(
M 0
0 ±1

)
for some

M ∈ Γ2. Calculation now shows that if Φ has finite order then M is diagonal
and hence β1(J ∗φ J̃) > 0. Thus there are no flat 4-manifold groups (with finite
abelianization) which are generalized free products with amalgamation over copies
of B1 or B2.

If G ∼= G2 then β1(J) + β1(J̃) ≤ 1, so we may assume that J ∼= G6. The other

factor J̃ must then be one of G2, G4, G6, B3 or B4, and then every amalgamation
has finite abelianization. In each case the images of any two embeddings of G2

in one of these groups are equivalent up to composition with an automorphism
of the larger group. In all cases the matrices for j and j̃ have the form

(±1 0
0 N

)

where N4 = I ∈ GL(2,Z), and T (φ) = ( ǫ 0
0 M ) for some M ∈ GL(2,Z). Calculation

shows that Φ has finite order if and only if M is in the dihedral subgroup D8 of
GL(2,Z) generated by the diagonal matrices and ( 0 1

1 0 ). (In other words, either M
is diagonal or both diagonal elements of M are 0). Now the subgroup of Aut(G2)
consisting of automorphisms which extend to G6 is (Z2 ×αD8)×{±1}. Hence any

two such isomorphisms φ from G to G̃ are equivalent, and so there is an unique
such flat 4-manifold group G6 ∗φ J̃ for each of these choices of J̃ . The corresponding
presentations are

〈u, x, y | xux−1 = u−1, y2 = u2, yx2y−1 = x−2, u(xy)2 = (xy)2u〉,
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〈u, x, y | yx2y−1 = x−2, uy2u−1 = (xy)2, u(xy)2u−1 = y−2, x = u2〉,
〈u, x, y | xy2x−1 = y−2, yx2y−1 = ux2u−1 = x−2, y2 = u2, yxy = uxu〉,

〈t, x, y | xy2x−1 = y−2, yx2y−1 = x−2, x2 = t2, y2 = (t−1x)2, t(xy)2 = (xy)2t〉
and 〈t, x, y | xy2x−1 = y−2, yx2y−1 = x−2, x2 = t2(xy)2, y2 = (t−1x)2,

t(xy)2 = (xy)2t〉,
respectively. The corresponding holonomy groups are isomorphic to (Z/2Z)3, D8,
(Z/2Z)2, (Z/2Z)3 and (Z/2Z)3, respectively.

Thus we have found eight generalized free products J ∗G J̃ which are flat 4-
manifold groups with β = 0. The groups G2 ∗φ B1, G2 ∗φ G2 and G6 ∗φ G6 are all
easily seen to be semidirect products of G6 with an infinite cyclic normal subgroup,
on which G6 acts nontrivially. It follows easily that these three groups are in fact
isomorphic, and so there is just one flat 4-manifold group with finite abelianization
and holonomy isomorphic to (Z/2Z)2.

The above presentations of G2 ∗φ B2 and G6 ∗φ G4 are in fact equivalent; the
function sending s to y, t to yu−1 and z to uy2u−1 determines an isomorphism
between these groups. Thus there is just one flat 4-manifold group with finite
abelianization and holonomy isomorphic to D8.

The above presentations of G6 ∗φ G2 and G6 ∗φ B4 are also equivalent; the
function sending x to xt−1, y to yt and u to xy−1t determines an isomorphism
between these groups (with inverse sending x to uy−1x−2, y to ux−1 and t to
xuy−1). (This isomorphism and the one in the paragraph above were found by
Derek Holt, using the program described in [HR92]). The translation subgroups of
G6 ∗φ B3 and G6 ∗φ B4 are generated by the images of U = (ty)2, X = x2, Y = y2

and Z = (xy)2 (with respect to the above presentations). In each case the images of
t, x and y act diagonally, via the matrices diag[−1, 1,−1, 1], diag[1, 1,−1,−1] and
diag[−1,−1, 1,−1], respectively. However the maximal orientable subgroups have
abelianization Z ⊕ (Z/2)3 and Z⊕ (Z/4Z)⊕ (Z/2Z), respectively, and so G6 ∗φB3

is not isomorphic to G6 ∗φB4. Thus there are two flat 4-manifold groups with finite
abelianization and holonomy isomorphic to (Z/2Z)3.

In summary, there are 27 orientable flat 4-manifold groups (all with β > 0),
43 nonorientable flat 4-manifold groups with β > 0 and 4 (nonorientable) flat 4-
manifold groups with β = 0. (We suspect that the discrepancy with the results
reported in [Wo] may be explained by an unnoticed isomorphism between two
examples with finite abelianization).

8.5. Distinguishing between the geometries

Let M be a closed 4-manifold with fundamental group π and with a geometry
of solvable Lie type. We shall show that the geometry is largely determined by the
structure of

√
π. (See also Proposition 10.4 of [Wl86]). As a geometric structure

on a manifold lifts to each covering space of the manifold it shall suffice to show
that the geometries on suitable finite covering spaces (corresponding to subgroups
of finite index in π) can be recognized.

If M is an infranilmanifold then [π :
√
π] < ∞. If it is flat then

√
π ∼= Z4,

while if it has the geometry Nil3 × E1 or Nil4 then
√
π is nilpotent of class 2 or 3

respectively. (These cases may also be distinguished by the rank of ζ
√
π). All such

groups have been classified, and may be realized geometrically. (See [De] for explicit
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representations of the Nil3 ×E1- and Nil4-groups as lattices in Aff(Nil3 ×R) and
Aff(Nil4), respectively).

If M is a Sol40- or Sol4m,n-manifold then
√
π ∼= Z3. Hence h(π/

√
π) = 1 and

so π has a normal subgroup σ of finite index which is a semidirect product
√
π ×θ

Z, where the action of a generator t of Z by conjugation on
√
π is given by a

matrix θ in GL(3,Z). We may further assume that θ is in SL(3,Z) and has no
negative eigenvalues, and that σ is maximal among such normal subgroups. The
characteristic polynomial of θ is X3−mX2 +nX− 1, where m = trace(θ) and n =
trace(θ−1). The matrix θ has infinite order, for otherwise the subgroup generated by√
π and a suitable power of t would be abelian of rank 4. Moreover the eigenvalues

must be distinct. For otherwise they would be all 1, so (θ − I)3 = 0 and π would
be virtually nilpotent.

If M is a Sol40-manifold two of the eigenvalues are complex conjugates. They
cannot be roots of unity, since θ has infinite order, and so the real eigenvalue is
not 1. If M is a Sol4m,n-manifold the eigenvalues of θ are distinct and real. The

geometry is Sol3 × E1(= Sol4m,m for any m ≥ 4) if and only if θ has 1 as a simple
eigenvalue.

The groups of E4-, Nil3 × E1- and Nil4-manifolds also have finite index sub-
groups σ ∼= Z3×θZ. We may assume that all the eigenvalues of θ are 1, so N = θ−I
is nilpotent. If the geometry is E4 then N = 0; if it is Nil3 × E1 then N 6= 0 but
N2 = 0, while if it is Nil4 then N2 6= 0 but N3 = 0. (Conversely, it is easy to see
that such semidirect products may be realized by lattices in the corresponding Lie
groups).

Finally, if M is a Sol41-manifold then
√
π ∼= Γq for some q ≥ 1 (and so is

nonabelian, of Hirsch length 3).
If h(

√
π) = 3 then π is an extension of Z or D by a normal subgroup ν which

contains
√
π as a subgroup of finite index. Hence either M is the mapping torus

of a self homeomorphism of a flat 3-manifold or a Nil3-manifold, or it is the union
of two twisted I-bundles over such 3-manifolds and is doubly covered by such a
mapping torus. (Compare Theorem 2).

We shall consider the converse question of realizing geometrically such torsion
free virtually poly-Z groups π (with h(π) = 4 and h(

√
π) = 3) in §9.

8.6. Mapping tori of self homeomorphisms of E3-manifolds

It follows from the above that a 4-dimensional infrasolvmanifold M admits one
of the product geometries of type E4, Nil3 × E1 or Sol3 × E1 if and only if π1(M)
has a subgroup of finite index of the form ν × Z, where ν is abelian, nilpotent
of class 2 or solvable but not virtually nilpotent, respectively. In the next two
sections we shall examine when M is the mapping torus of a self homeomorphism
of a 3-dimensional infrasolvmanifold. (Note that if M is orientable then it must be
a mapping torus, by Lemma 3.13 and Theorem 6.11).

Theorem 8.3. Let ν be the fundamental group of a flat 3-manifold, and let θ
be an automorphism of ν. Then

(1)
√
ν is the maximal abelian subgroup of ν and ν/

√
ν embeds in Aut(

√
ν);

(2) Out(ν) is finite if and only if [ν :
√
ν] > 2;

(3) the kernel of the restriction homomorphism from Out(ν) to Aut(
√
ν) is

finite;
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(4) if [ν :
√
ν] = 2 then (θ|√ν)2 has 1 as an eigenvalue;

(5) if [ν :
√
ν] = 2 and θ|√ν has infinite order but all of its eigenvalues are

roots of unity then ((θ|√ν)2 − I)2 = 0.

Proof. It follows immediately from Theorem 1.5 that
√
ν ∼= Z3 and is thus

the maximal abelian subgroup of ν. The kernel of the homomorphism from ν to
Aut(

√
ν) determined by conjugation is the centralizer C = Cν(

√
ν). As

√
ν is

central in C and [C :
√
ν] is finite, C has finite commutator subgroup, by Schur’s

Theorem (Proposition 10.1.4 of [Ro]). Since C is torsion free it must be abelian
and so C =

√
ν. Hence H = ν/

√
ν embeds in Aut(

√
ν) ∼= GL(3,Z). (This is just

the holonomy representation).
If H has order 2 then θ induces the identity on H ; if H has order greater

than 2 then some power of θ induces the identity on H , since
√
ν is a character-

istic subgroup of finite index. The matrix θ|√ν then commutes with each element
of the image of H in GL(3,Z), and the remaining assertions follow from simple
calculations, on considering the possibilities for π and H listed in §3 above. �

Corollary 8.3.1. The mapping torus M(φ) = N ×φ S1 of a self homeomor-
phism φ of a flat 3-manifold N is flat if and only if the outer automorphism [φ∗]
induced by φ has finite order. �

If N is flat and [φ∗] has infinite order then M(φ) may admit one of the other
product geometries Sol3 × E1 or Nil3 × E1; otherwise it must be a Sol4m,n-, Sol40-
or Nil4-manifold. (The latter can only happen if N = R3/Z3, by part (v) of the
theorem).

Theorem 8.4. Let M be an infrasolvmanifold with fundamental group π such
that

√
π ∼= Z3 and π/

√
π is an extension of D by a finite normal subgroup. Then

M is a Sol3 × E1-manifold.

Proof. Let p : π → D be an epimorphism with kernel K containing
√
π as a

subgroup of finite index, and let t and u be elements of π whose images under p
generate D and such that p(t) generates an infinite cyclic subgroup of index 2 in
D. Then there is an N > 0 such that the image of s = tN in π/

√
π generates a

normal subgroup. In particular, the subgroup generated by s and
√
π is normal in

π and usu−1 and s−1 have the same image in π/
√
π. Let θ be the matrix of the

action of s on
√
π, with respect to some basis

√
π ∼= Z3. Then θ is conjugate to its

inverse, since usu−1 and s−1 agree modulo
√
π. Hence one of the eigenvalues of θ

is ±1. Since π is not virtually nilpotent the eigenvalues of θ must be distinct, and
so the geometry must be of type Sol3 × E1. �

Corollary 8.4.1. If M admits one of the geometries Sol40 or Sol4m,n with

m 6= n then it is the mapping torus of a self homeomorphism of R3/Z3, and so
π ∼= Z3 ×θ Z for some θ in GL(3,Z) and is a metabelian poly-Z group.

Proof. This follows immediately from Theorems 3 and 4. �

We may use the idea of Theorem 2 to give examples of E4-, Nil4-, Nil3 × E1-
and Sol3×E1-manifolds which are not mapping tori. For instance, the groups with
presentations

〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, uxu−1 = x−1, u2 = y, uzu−1 = z−1,

v2 = z, vxv−1 = x−1, vyv−1 = y−1〉,
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〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, uyu−1 = y−1, uzu−1 = z−1,

v2 = x, vyv−1 = v−4y−1, vzv−1 = z−1〉
and 〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, v2 = y, uyu−1 = x4y−1,

vxv−1 = x−1y2, uzu−1 = vzv−1 = z−1〉
are each generalised free products of two copies of Z2 ×−I Z amalgamated over
their maximal abelian subgroups. The Hirsch-Plotkin radicals of these groups are
isomorphic to Z4 (generated by {(uv)2, x, y, z}), Γ2×Z (generated by {uv, x, y, z})
and Z3 (generated by {x, y, z}), respectively. The group with presentation

〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, uz = zu, uyu−1 = x2y−1,

v2 = y, vxv−1 = x−1, vzv−1 = v4z−1〉
is a generalised free product of copies of (Z×−1Z)×Z (generated by {u, y, z})
and Z2×−I Z (generated by {v, x, z, }) amalgamated over their maximal abelian
subgroups. Its Hirsch-Plotkin radical is the subgroup of index 4 generated by
{(uv)2, x, y, z}, and is nilpotent of class 3. The manifolds corresponding to these
groups admit the geometries E4, Nil3×E1, Sol3×E1 and Nil4, respectively. However
they cannot be mapping tori, as these groups each have finite abelianization.

8.7. Mapping tori of self homeomorphisms of Nil3-manifolds

Let φ be an automorphism of Γq, sending x to xaybzm and y to xcydzn for some

a . . . n in Z. Then A = ( a cb d ) is in GL(2,Z) and φ(z) = zdet(A). (In particular,
the PD3-group Γq is orientable, as already observed in §2 of Chapter 7, and φ is
orientation preserving, by the criterion of page 177 of [Bi], or by the argument of
§3 of Chapter 18 below). Every pair (A, µ) in the set GL(2,Z) × Z2 determines
an automorphism (with µ = (m,n)). However Aut(Γq) is not the direct product
of GL(2,Z) and Z2, as (A, µ)(B, ν) = (AB,µB + det(A)ν + qω(A,B)), where
ω(A,B) is biquadratic in the entries of A and B. The natural map p : Aut(Γq) →
Aut(Γq/ζΓq) = GL(2,Z) sends (A, µ) to A and is an epimorphism, with Ker(p) ∼=
Z2. The inner automorphisms are represented by qKer(p), and Out(Γq) is the
semidirect product of GL(2,Z) with the normal subgroup (Z/qZ)2. (Let [A, µ]
be the image of (A, µ) in Out(Γq). Then [A, µ][B, ν] = [AB,µB + det(A)ν]). In
particular, Out(Γ1) = GL(2,Z).

Theorem 8.5. Let ν be the fundamental group of a Nil3-manifold N . Then

(1) ν/
√
ν embeds in Aut(

√
ν/ζ

√
ν) ∼= GL(2,Z);

(2) ν̄ = ν/ζ
√
ν is a 2-dimensional crystallographic group;

(3) the images of elements of ν̄ of finite order under the holonomy represen-
tation in Aut(

√
ν̄) ∼= GL(2,Z) have determinant 1;

(4) Out(ν̄) is infinite if and only if ν̄ ∼= Z2 or Z2 ×−I (Z/2Z);
(5) the kernel of the natural homomorphism from Out(ν) to Out(ν̄) is finite.
(6) ν is orientable and every automorphism of ν is orientation preserving.

Proof. Let h : ν → Aut(
√
ν/ζ

√
ν) be the homomorphism determined by

conjugation, and let C = Ker(h). Then
√
ν/ζ

√
ν is central in C/ζ

√
ν and [C/ζ

√
ν :√

ν/ζ
√
ν] is finite, so C/ζ

√
ν has finite commutator subgroup, by Schur’s Theorem

(Proposition 10.1.4 of [Ro]). Since C is torsion free it follows easily that C is
nilpotent and hence that C =

√
ν. This proves (1) and (2). In particular, h factors

through the holonomy representation for ν̄, and gzg−1 = zd(g) for all g ∈ ν and
z ∈ ζ

√
ν, where d(g) = det(h(g)). If g ∈ ν is such that g 6= 1 and gk ∈ ζ

√
ν
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for some k > 0 then gk 6= 1 and so g must commute with elements of ζ
√
ν, i.e.,

the determinant of the image of g is 1. Condition (4) follows as in Theorem 3, on
considering the possible finite subgroups of GL(2,Z). (See Theorem 1.3).

If ζν 6= 1 then ζν = ζ
√
ν ∼= Z and so the kernel of the natural homomorphism

from Aut(ν) to Aut(ν̄) is isomorphic to Hom(ν/ν′, Z). If ν/ν′ is finite this kernel
is trivial. If ν̄ ∼= Z2 then ν =

√
ν ∼= Γq, for some q ≥ 1, and the kernel is isomorphic

to (Z/qZ)2. Otherwise ν̄ ∼= Z×−1Z, Z×D or D×τ Z (where τ is the automorphism
of D = (Z/2Z) ∗ (Z/2Z) which interchanges the factors). But then H2(ν̄; Z) is
finite and so any central extension of such a group by Z is virtually abelian, and
thus not a Nil3-manifold group.

If ζν = 1 then ν/
√
ν < GL(2,Z) has an element of order 2 with determinant

−1. No such element can be conjugate to ( 0 1
1 0 ) , for otherwise ν would not be torsion

free. Hence the image of ν/
√
ν in GL(2,Z) is conjugate to a subgroup of the group

of diagonal matrices
(
ǫ 0
0 ǫ′

)
, with |ǫ| = |ǫ′| = 1. If ν/

√
ν is generated by

(
1 0
0 −1

)

then ν/ζ
√
ν ∼= Z×−1Z and ν ∼= Z2 ×θ Z, where θ =

(−1 r
0 −1

)
for some nonzero

integer r, and N is a circle bundle over the Klein bottle. If ν/
√
ν ∼= (Z/2Z)2 then ν

has a presentation 〈t, u, z | u2 = z, tzt−1 = z−1, ut2u−1 = t−2zs〉, and N is a Seifert
bundle over the orbifold P (22). It may be verified in each case that the kernel of
the natural homomorphism from Out(ν) to Out(ν̄) is finite. Therefore (5) holds.

Since
√
ν ∼= Γq is a PD+

3 -group, [ν :
√
ν] < ∞ and every automorphism of Γq

is orientation preserving ν must also be orientable. Since
√
ν is characteristic in ν

and the image of H3(
√
ν; Z) in H3(ν; Z) has index [ν :

√
ν] it follows easily that

any automorphism of ν must be orientation preserving. �

In fact every Nil3-manifold is a Seifert bundle over a 2-dimensional euclidean
orbifold [Sc83’]. The base orbifold must be one of the seven such with no reflector
curves, by (3).

Theorem 8.6. The mapping torus M(φ) = N ×φ S1 of a self homeomorphism
φ of a Nil3-manifold N is orientable, and is a Nil3 ×E1-manifold if and only if the
outer automorphism [φ∗] induced by φ has finite order.

Proof. Since N is orientable and φ is orientation preserving (by (vi) of The-
orem 5) M(φ) must be orientable.

The subgroup ζ
√
ν is characteristic in ν and hence normal in π, and ν/ζ

√
ν is

virtually Z2. If M(φ) is a Nil3 ×E1-manifold then π/ζ
√
ν is also virtually abelian.

It follows easily that that the image of φ∗ in Aut(ν/ζ
√
ν) has finite order. Hence

[φ∗] has finite order also, by Theorem 5. Conversely, if [φ∗] has finite order in
Out(ν) then π has a subgroup of finite index which is isomorphic to ν × Z, and so
M(φ) has the product geometry, by the discussion above. �

Theorem 4.2 of [KLR83] (which extends Bieberbach’s theorem to the virtually
nilpotent case) may be used to show directly that every outer automorphism class
of finite order of the fundamental group of an E3- or Nil3-manifold is realizable by
an isometry of an affinely equivalent manifold.

The image of an automorphism θ of Γq in Out(Γq) has finite order if and
only if the induced automorphism θ̄ of Γ̄q = Γq/ζΓq ∼= Z2 has finite order in
Aut(Γ̄q) ∼= GL(2,Z). If θ̄ has infinite order but has trace ±2 (i.e., if θ̄2 − I is a
nonzero nilpotent matrix) then π = Γq ×θ Z is virtually nilpotent of class 3. If the
trace of θ̄ has absolute value greater than 2 then h(

√
π) = 3.
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Theorem 8.7. Let M be a closed 4-manifold which admits one of the geometries
Nil4 or Sol41. Then M is the mapping torus of a self homeomorphism of a Nil3-
manifold if and only if it is orientable.

Proof. If M is such a mapping torus then it is orientable, by Theorem 6.
Conversely, ifM is orientable then π = π1(M) has infinite abelianization, by Lemma
3.13. Let p : π → Z be an epimorphism with kernel K, and let t be an element of
π such that p(t) generates Z. If K is virtually nilpotent of class 2 we are done, by
Theorem 6.12. (Note that this must be the case if M is a Sol41-manifold). If K is
virtually abelian then K ∼= Z3, by part (5) of Theorem 3. The matrix corresponding
to the action of t on K by conjugation must be orientation preserving, since M is
orientable. It follows easily that π is nilpotent. Hence there is another epimorphism
with kernel nilpotent of class 2, and so the theorem is proven. �

Corollary 8.7.1. Let M be a closed Sol41-manifold with fundamental group π.
Then β1(M) ≤ 1 and M is orientable if and only if β1(M) = 1.

Proof. The first assertion is clear if π is a semidirect product Γq ×θ Z, and
then follows in general. Hence if there is an epimorphism p : π → Z with kernel
K then K must be virtually nilpotent of class 2 and the result follows from the
theorem. �

If M is a Nil3 × E1- or Nil4-manifold then β1(π) ≤ 3 or 2, respectively, with
equality if and only if π is nilpotent. In the latter case M is orientable, and
is a mapping torus, both of a self homeomorphism of R3/Z3 and also of a self
homeomorphism of a Nil3-manifold. We have already seen that Nil3 × E1- and
Nil4-manifolds need not be mapping tori at all. We shall round out this discussion
with examples illustrating the remaining combinations of mapping torus structure
and orientation compatible with Lemma 3.13 and Theorem 7 above. As the groups
have abelianization of rank 1 the corresponding manifolds are mapping tori in an
essentially unique way. The groups with presentations

〈t, x, y, z | xz = zx, yz = zy, txt−1 = x−1, tyt−1 = y−1, tzt−1 = yz−1〉,
〈t, x, y, z | xyx−1y−1 = z, xz = zx, yz = zy, txt−1 = x−1, tyt−1 = y−1〉

and 〈t, x, y, z | xy = yx, zxz−1 = x−1, zyz−1 = y−1, txt−1 = x−1, ty = yt,

tzt−1 = z−1〉
are each virtually nilpotent of class 2. The corresponding Nil3 × E1-manifolds are
mapping tori of self homeomorphisms of R3/Z3, a Nil3-manifold and a flat manifold,
respectively. The latter two of these manifolds are orientable. The groups with
presentations

〈t, x, y, z | xz = zx, yz = zy, txt−1 = x−1, tyt−1 = xy−1, tzt−1 = yz−1〉
and 〈t, x, y, z | xyx−1y−1 = z, xz = zx, yz = zy, txt−1 = x−1, tyt−1 = xy−1〉
are each virtually nilpotent of class 3. The corresponding Nil4-manifolds are map-
ping tori of self homeomorphisms of R3/Z3 and of a Nil3-manifold, respectively.

The group with presentation

〈t, u, x, y, z | xyx−1y−1 = z2, xz = zx, yz = zy, txt−1 = x2y, tyt−1 = xy,

tz = zt, u4 = z, uxu−1 = y−1, uyu−1 = x, utu−1 = t−1〉
has Hirsch-Plotkin radical isomorphic to Γ2 (generated by {x, y, z}), and has fi-
nite abelianization. The corresponding Sol41-manifold is nonorientable and is not a
mapping torus.
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8.8. Mapping tori of self homeomorphisms of Sol3-manifolds

The arguments in this section are again analogous to those of §6.

Theorem 8.8. Let σ be the fundamental group of a Sol3-manifold. Then

(1)
√
σ ∼= Z2 and σ/

√
σ ∼= Z or D;

(2) Out(σ) is finite.

Proof. The argument of Theorem 1.6 implies that h(
√
σ) > 1. Since σ is not

virtually nilpotent h(
√
σ) < 3. Hence

√
σ ∼= Z2, by Theorem 1.5. Let F̃ be the

preimage in σ of the maximal finite normal subgroup of σ/
√
ν, let t be an element

of σ whose image generates the maximal abelian subgroup of σ/F̃ and let τ be the

automorphism of F̃ determined by conjugation by t. Let σ1 be the subgroup of
σ generated by F̃ and t. Then σ1

∼= F̃ ×τ Z, [σ : σ1] ≤ 2, F̃ is torsion free and

h(F̃ ) = 2. If F̃ 6= √
σ then F̃ ∼= Z×−1Z. But extensions of Z by Z×−1Z are

virtually abelian, since Out(Z×−1Z) is finite. Hence F̃ =
√
σ and so σ/

√
σ ∼= Z

or D.
Every automorphism of σ induces automorphisms of

√
σ and of σ/

√
σ. Let

Out+(σ) be the subgroup of Out(σ) represented by automorphisms which induce
the identity on σ/

√
σ. The restriction of any such automorphism to

√
σ commutes

with τ . We may view
√
σ as a module over the ring R = Z[X ]/(λ(X)), where

λ(X) = X2− tr(τ)X+det(τ) is the characteristic polynomial of τ . The polynomial
λ is irreducible and has real roots which are not roots of unity, for otherwise

√
σ×τZ

would be virtually nilpotent. Therefore R is a domain and its field of fractions
Q[X ]/(λ(X)) is a real quadratic number field. The R-module

√
σ is clearly finitely

generated, R-torsion free and of rank 1. Hence the endomorphism ring EndR(
√
σ)

is a subring of R̃, the integral closure of R. Since R̃ is the ring of integers in
Q[X ]/(λ(X)) the group of units R̃× is isomorphic to {±1}×Z. Since τ determines

a unit of infinite order in R× the index [R̃× : τZ ] is finite.
Suppose now that σ/

√
σ ∼= Z. If f is an automorphism which induces the

identity on
√
σ and on σ/

√
σ then f(t) = tw for some w in

√
σ. If w is in the

image of τ − 1 then f is an inner automorphism. Now
√
σ/(τ − 1)

√
σ is finite, of

order det(τ −1). Since τ is the image of an inner automorphism of σ it follows that

Out+(σ) is an extension of a subgroup of R̃×/τZ by
√
σ/(τ − 1)

√
σ. Hence Out(σ)

has order dividing 2[R̃× : τZ ]det(τ − 1).
If σ/

√
σ ∼= D then σ has a characteristic subgroup σ1 such that [σ : σ1] = 2,√

σ < σ1 and σ1/
√
σ ∼= Z =

√
D. Every automorphism of σ restricts to an

automorphism of σ1. It is easily verified that the restriction from Aut(σ) to Aut(σ1)
is a monomorphism. Since Out(σ1) is finite it follows that Out(σ) is also finite. �

Corollary 8.8.1. The mapping torus of a self homeomorphism of a Sol3-
manifold is a Sol3 × E1-manifold. �

The group with presentation 〈x, y, t | xy = yx, txt−1 = x3y2, tyt−1 = x2y〉
is the fundamental group of a nonorientable Sol3-manifold Σ. The nonorientable
Sol3 × E1-manifold Σ × S1 is the mapping torus of idΣ and is also the mapping
torus of a self homeomorphism of R3/Z3.

The groups with presentations

〈t, x, y, z | xy = yx, zxz−1 = x−1, zyz−1 = y−1, txt−1 = xy, tyt−1 = x,

tzt−1 = z−1〉,
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〈t, x, y, z | xy = yx, zxz−1 = x2y, zyz−1 = xy, tx = xt, tyt−1 = x−1y−1,

tzt−1 = z−1〉,
〈t, x, y, z | xy = yx, xz = zx, yz = zy, txt−1 = x2y, tyt−1 = xy, tzt−1 = z−1〉

and 〈t, u, x, y | xy = yx, txt−1 = x2y, tyt−1 = xy, uxu−1 = y−1, uyu−1 = x,

utu−1 = t−1〉
have Hirsch-Plotkin radical Z3 and abelianization of rank 1. The corresponding
Sol3 × E1-manifolds are mapping tori in an essentially unique way. The first two
are orientable, and are mapping tori of self homeomorphisms of the orientable flat 3-
manifold with holonomy of order 2 and of an orientable Sol3-manifold, respectively.
The latter two are nonorientable, and are mapping tori of orientation reversing self
homeomorphisms of R3/Z3 and of the same orientable Sol3-manifold, respectively.

8.9. Realization and classification

Let π be a torsion free virtually poly-Z group of Hirsch length 4. If π is
virtually abelian then it is the fundamental group of a flat 4-manifold, by the work
of Bieberbach, and such groups are listed in §2-§4 above.

If π is virtually nilpotent but not virtually abelian then
√
π is nilpotent of class

2 or 3. In the first case it has a characteristic chain
√
π
′ ∼= Z < C = ζ

√
π ∼= Z2.

Let θ : π → Aut(C) ∼= GL(2,Z) be the homomorphism induced by conjugation
in π. Then Im(θ) is finite and triangular, and so is 1, Z/2Z or (Z/2Z)2. Let
K = Cπ(C) = Ker(θ). Then K is torsion free and ζK = C, so K/C is a flat

2-orbifold group. Moreover as K/
√
K acts trivially on

√
π
′
it must act orientably

on
√
K/C, and so K/

√
K is cyclic of order 1, 2, 3, 4 or 6. As

√
π is the preimage

of
√
K in π we see that [π :

√
π] ≤ 24. (In fact π/

√
π ∼= F or F ⊕ (Z/2Z), where F

is a finite subgroup of GL(2,Z), excepting only direct sums of the dihedral groups

of order 6, 8 or 12 with (Z/2Z) [De]). Otherwise (if
√
π
′ � ζ

√
π) it has a subgroup

of index ≤ 2 which is a semidirect product Z3 ×θ Z, by part (5) of Theorem 3.
Since (θ2 − I) is nilpotent it follows that π/

√
π = 1, Z/2Z or (Z/2Z)2. All these

possibilities occur.
Such virtually nilpotent groups are fundamental groups of Nil3×E1- and Nil4-

manifolds (respectively), and are classified in [De]. Dekimpe observes that π has
a characteristic subgroup Z such that Q = π/Z is a Nil3- or E3-orbifold group
and classifies the torsion free extensions of such Q by Z. There are 61 families
of Nil3 × E1-groups and 7 families of Nil4-groups. He also gives a faithful affine
representation for each such group.

We shall sketch an alternative approach for the geometry Nil4, which applies
also to Sol4m,n, Sol40 and Sol41. Each such group π has a characteristic subgroup

ν of Hirsch length 3, and such that π/ν ∼= Z or D. The preimage in π of
√
π/ν

is characteristic, and is a semidirect product ν ×θ Z. Hence it is determined up
to isomorphism by the union of the conjugacy classes of θ and θ−1 in Out(ν), by
Lemma 1.1. All such semidirect products may be realized as lattices and have
faithful affine representations.

If the geometry is Nil4 then ν = C√
π(ζ2

√
π) ∼= Z3, by Theorem 1.5 and

part (5) of Theorem 3 above. Moreover ν has a basis x, y, z such that 〈z〉 =
ζ
√
π and 〈y, z〉 = ζ2

√
π. As these subgroups are characteristic the matrix of θ

with respect to such a basis is ±(I + N), where N is strictly lower triangular
and n21n32 6= 0. (See §5 above). The conjugacy class of θ is determined by



128 8. SOLVABLE LIE GEOMETRIES

(det(θ), |n21|, |n32|, [n31 mod (n32)]). (Thus θ is conjugate to θ−1 if and only if
n32 divides 2n31). The classification is more complicated if π/ν ∼= D.

If the geometry is Sol4m,n for some m 6= n then π ∼= Z3 ×θ Z, where the
eigenvalues of θ are distinct and real, and not ±1, by the Corollary to Theorem
4. The translation subgroup π ∩ Sol4m,n is Z3 ×A Z, where A = θ or θ2 is the
least nontrivial power of θ with all eigenvalues positive, and has index ≤ 2 in π.
Conversely, it is clear from the description of the isometries of Sol4m,n in §2 of

Chapter 7 that every such group is a lattice in Isom(Sol4m,n). The conjugacy class
of θ is determined by its characteristic polynomial ∆θ(t) and the ideal class of
ν ∼= Z3, considered as a rank 1 module over the order Λ/(∆θ(t)), by Theorem 1.4.
(No such θ is conjugate to its inverse, as neither 1 nor -1 is an eigenvalue).

A similar argument applies for Sol40. Although Sol40 has no lattice subgroups,
any semidirect product Z3×θZ where θ has a pair of complex conjugate roots which
are not roots of unity is a lattice in Isom(Sol40). Such groups are again classified
by the characteristic polynomial and an ideal class.

If the geometry is Sol41 then
√
π ∼= Γq for some q ≥ 1, and either ν =

√
π or

ν/
√
π = Z/2Z and ν/ζ

√
π ∼= Z2 ×−I (Z/2Z). (In the latter case ν is uniquely

determined by q). Moreover π is orientable if and only if β1(π) = 1. In particular,
Ker(w1(π)) ∼= ν ×θ Z for some θ ∈ Aut(ν). Let A = θ|√π and let A be its image

in Aut(
√
π/ζ

√
π) ∼= GL(2,Z). If ν =

√
π the translation subgroup π ∩ Sol41 is

T = Γq ×B Z, where B = A or A2 is the least nontrivial power of A such that

both eigenvalues of A are positive. If ν 6= √
π the conjugacy class of A is only

well-defined up to sign. If moreover π/ν ∼= D then A is conjugate to its inverse,
and so det(A) = 1, since A has infinite order. We can then choose θ and hence
A so that T =

√
π ×A Z. In all cases we find that [π : T ] divides 4. (Note that

Isom(Sol41) has 8 components).
Conversely, it is fairly easy to verify that a torsion free semidirect product

ν ×θ Z (with [ν : Γq] ≤ 2 and ν as above) which is not virtually nilpotent is a
lattice in the group of upper triangular matrices generated by Sol41 and the diagonal
matrix diag[±1, 1,±1], which is contained in Isom(Sol41). The conjugacy class of
θ is determined up to a finite ambiguity by the characteristic polynomial of A.
Realization and classification of the nonorientable groups seems more difficult.

In the remaining case Sol3×E1 the subgroup ν is one of the four flat 3-manifold
groups Z3, Z2 ×−I Z, B1 or B2, and θ|√ν has distinct real eigenvalues, one being
±1. The index of the translation subgroup π∩(Sol3×R) in π divides 8. (Note that
Isom(Sol3×E1) has 16 components). Conversely any such semidirect product ν×θZ
can be realized as a lattice in the index 2 subgroup G < Isom(Sol3×E1) defined in
§2 of Chapter 7. Realization and classification of the groups with π/ν ∼= D seems
more difficult. (The number of subcases to be considered makes any classification
an uninviting task. See however [Cb]).



CHAPTER 9

The other aspherical geometries

The aspherical geometries of nonsolvable type which are realizable by closed

4-manifolds are the “mixed” geometries H2×E2, S̃L×E1, H3×E1 and the “semisim-
ple” geometries H2×H2, H4 and H2(C). (We shall consider the geometry F4 briefly

in Chapter 13). Closed H2×E2- or S̃L×E1-manifolds are Seifert fibred, have Euler
characteristic 0 and their fundamental groups have Hirsch-Plotkin radical Z2. In
§1 and §2 we examine to what extent these properties characterize such manifolds
and their fundamental groups. Closed H3×E1-manifolds also have Euler character-
istic 0, but we have only a conjectural characterization of their fundamental groups
(§3). In §4 we determine the mapping tori of self homeomorphisms of geometric
3-manifolds which admit one of these mixed geometries. (We return to this topic
in Chapter 13). In §5 we consider the three semisimple geometries. All closed
4-manifolds with product geometries other than H2 × H2 are finitely covered by
cartesian products. We characterize the fundamental groups of H2 ×H2-manifolds
with this property; there are also “irreducible” H2 × H2-manifolds which are not
virtually products. Little is known about manifolds admitting one of the two hy-
perbolic geometries.

Although it is not yet known whether the disk embedding theorem holds over
lattices for such geometries, we can show that the fundamental group and Euler
characteristic determine the manifold up to s-cobordism (§6). Moreover an aspher-
ical orientable closed 4-manifold which is finitely covered by a geometric manifold
is homotopy equivalent to a geometric manifold (excepting perhaps if the geometry

is H2 × E2 or S̃L × E1).

9.1. Aspherical Seifert fibred 4-manifolds

In Chapter 8 we saw that if M is a closed 4-manifold with fundamental group
π such that χ(M) = 0 and h(

√
π) ≥ 3 then M is homeomorphic to an infrasolv-

manifold. Here we shall show that if χ(M) = 0, h(
√
π) = 2 and [π :

√
π] = ∞

then M is homotopy equivalent to a 4-manifold which is Seifert fibred over a hy-
perbolic 2-orbifold. (We shall consider the case when χ(M) = 0, h(

√
π) = 2 and

[π :
√
π] <∞ in Chapter 10).

Theorem 9.1. Let M be a closed 4-manifold with fundamental group π. If
χ(M) = 0 and π has an elementary amenable normal subgroup ρ with h(ρ) = 2
and such that either H2(π; Z[π]) = 0 or ρ is torsion free and [π : ρ] = ∞ then M
is aspherical and ρ is virtually abelian.

Proof. Since π has one end, by Corollary 1.16.1, and β
(2)
1 (π) = 0, by Theorem

3.3, M is aspherical if also H2(π; Z[π]) = 0, by Corollary 3.5.2. In this case ρ is
torsion free and of infinite index in π, and so we may assume this henceforth. Since

129
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ρ is torsion free elementary amenable and h(ρ) = 2 it is virtually solvable, by
Theorem 1.11. Therefore A =

√
ρ is nontrivial, and as it is characteristic in ρ it is

normal in π. Since A is torsion free and h(A) ≤ 2 it is abelian, by Theorem 1.5.
Suppose first that h(A) = 1. Then A is isomorphic to a subgroup of Q and the

homomorphism from B = ρ/A to Aut(A) induced by conjugation in ρ is injective.
Since Aut(A) is isomorphic to a subgroup of Q× and h(B) = 1 either B ∼= Z or
B ∼= Z ⊕ (Z/2Z). We must in fact have B ∼= Z, since ρ is torsion free. Moreover A
is not finitely generated and the centre of ρ is trivial. The quotient group π/A has
one end as the image of ρ is an infinite cyclic normal subgroup of infinite index.
Therefore π is 1-connected at ∞, by Theorem 1 of [Mi87], and so Hs(π; Z[π]) = 0
for s ≤ 2 [GM86]. Hence M is aspherical and π is a PD4-group.

As A is a characteristic subgroup every automorphism of ρ restricts to an
automorphism of A. This restriction from Aut(ρ) to Aut(A) is an epimorphism,
with kernel isomorphic to A, and so Aut(ρ) is solvable. Let C = Cπ(ρ) be the
centralizer of ρ in π. Then C is nontrivial, for otherwise π would be isomorphic to
a subgroup of Aut(ρ) and hence would be virtually poly-Z. But then A would be
finitely generated, ρ would be virtually abelian and h(A) = 2. Moreover C ∩ ρ =
ζρ = 1, so Cρ ∼= C × ρ and c.d.C + c.d.ρ = c.d.Cρ ≤ c.d.π = 4. The quotient group
π/Cρ is isomorphic to a subgroup of Out(ρ).

If c.d.Cρ ≤ 3 then as C is nontrivial and h(ρ) = 2 we must have c.d.C = 1 and
c.d.ρ = h(ρ) = 2. Therefore C is free and ρ is of type FP [Kr86]. By Theorem 1.13
ρ is an ascending HNN group with base a finitely generated subgroup of A and so
has a presentation 〈a, t | tat−1 = an〉 for some nonzero integer n. We may assume
|n| > 1, as ρ is not virtually abelian. The subgroup ofAut(ρ) represented by (n−1)A
consists of inner automorphisms. Since n > 1 the quotient A/(n−1)A ∼= Z/(n−1)Z
is finite, and as Aut(A) ∼= Z[1/n]× it follows that Out(ρ) is virtually abelian.
Therefore π has a subgroup σ of finite index which contains Cρ and such that
σ/Cρ is a finitely generated free abelian group, and in particular c.d.σ/Cρ is finite.
As σ is a PD4-group it follows from Theorem 9.11 of [Bi] that Cρ is a PD3-group
and hence that ρ is a PD2-group. We reach the same conclusion if c.d.Cρ = 4,
for then [π : Cρ] is finite, by Strebel’s Theorem, and so Cρ is a PD4-group. As a
solvable PD2-group is virtually Z2 our original assumption must have been wrong.

Therefore h(A) = 2. As π/A is finitely generated and infinite π is not elemen-
tary amenable of Hirsch length 2. Hence Hs(π; Z[π]) = 0 for s ≤ 2, by Theorem
1.17, and so M is aspherical. Moreover as every finitely generated subgroup of ρ is
either isomorphic to Z ×−1 Z or is abelian [ρ : A] ≤ 2. �

The group Z∗n (with presentation 〈a, t | tat−1 = an〉) is torsion free and
solvable of Hirsch length 2, and is the fundamental group of a closed orientable
4-manifold M with χ(M) = 0. (See Chapter 3). Thus the hypothesis that the
subgroup ρ have infinite index in π is necessary for the above theorem. Do the
other hypotheses imply that ρ must be torsion free?

Theorem 9.2. Let M be a closed 4-manifold with fundamental group π. If
h(
√
π) = 2, [π :

√
π] = ∞ and χ(M) = 0 then M is aspherical and

√
π ∼= Z2.

Proof. As Hs(π; Z[π]) = 0 for s ≤ 2, by Theorem 1.17, M is aspherical, by
Theorem 1. We may assume henceforth that

√
π is a torsion free abelian group of

rank 2 which is not finitely generated.
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Suppose first that [π : C] = ∞, where C = Cπ(
√
π). Then c.d.C ≤ 3, by

Strebel’s Theorem. Since
√
π is not finitely generated c.d.

√
π = h(

√
π) + 1 = 3, by

Theorem 7.14 of [Bi]. Hence C =
√
π, by Theorem 8.8 of [Bi], so the homomorphism

from π/
√
π to Aut(

√
π) determined by conjugation in π is a monomorphism. Since√

π is torsion free abelian of rank 2Aut(
√
π) is isomorphic to a subgroup ofGL(2,Q)

and therefore any torsion subgroup of Aut(
√
π) is finite, by Corollary 1.3.1 Thus

if π′√π/√π is a torsion group π′√π is elementary amenable and so π is itself
elementary amenable, contradicting our assumption. Hence we may suppose that
there is an element g in π′ which has infinite order modulo

√
π. The subgroup

〈√π, g〉 generated by
√
π and g is an extension of Z by

√
π and has infinite index in

π, for otherwise π would be virtually solvable. Hence c.d.〈√π, g〉 = 3 = h(〈√π, g〉),
by Strebel’s Theorem. By Theorem 7.15 of [Bi], L = H2(

√
π; Z) is the underlying

abelian group of a subring Z[m−1] of Q, and the action of g on L is multiplication
by a rational number a/b, where a and b are relatively prime and ab and m have
the same prime divisors. But g acts on

√
π as an element of GL(2,Q)′ ≤ SL(2,Q).

Since L =
√
π ∧ √

π, by Proposition 11.4.16 of [Ro], g acts on L via det(g) = 1.
Therefore m = 1 and so L must be finitely generated. But then

√
π must also be

finitely generated, again contradicting our assumption.
Thus we may assume that C has finite index in π. Let A <

√
π be a subgroup

of
√
π which is free abelian of rank 2. Then A1 is central in C and C/A is finitely

presentable. Since [π : C] is finite A has only finitely many distinct conjugates in
π, and they are all subgroups of ζC. Let N be their product. Then N is a finitely
generated torsion free abelian normal subgroup of π and 2 ≤ h(N) ≤ h(

√
C) ≤

h(
√
π) = 2. An LHSSS argument gives H2(π/N ; Z[π/N ]) ∼= Z, and so π/N is

virtually a PD2-group, by Bowditch’s Theorem. Since
√
π/N is a torsion group it

must be finite, and so
√
π ∼= Z2. �

Corollary 9.2.1. The manifold M is homotopy equivalent to one which is
Seifert fibred with general fibre T or Kb over a hyperbolic 2-orbifold if and only if
h(
√
π) = 2, [π :

√
π] = ∞ and χ(M) = 0.

Proof. This follows from the theorem together with Theorem 7.2. �

9.2. The Seifert geometries: H2 × E2 and S̃L × E1

A manifold with geometry H2 ×E2 or S̃L×E1 is Seifert fibred with base a hy-
perbolic orbifold. However not all such Seifert fibred 4-manifolds are geometric. An
orientable Seifert fibred 4-manifold over an orientable hyperbolic base is geometric
if and only if it is an elliptic surface; the relevant geometries are then H2 ×E2 and

S̃L × E1 [Ue90,91].

Theorem 9.3. Let M be a closed H3 × E1-, S̃L × E1- or H2 × E2-manifold.
Then M has a finite covering space which is diffeomorphic to a product N × S1.

Proof. If M is an H3 ×E1-manifold then π = π1(M) is a discrete cocompact
subgroup of G = Isom(H3 × E1). The radical of this group is Rad(G) ∼= R,
and Go/Rad(G) ∼= PSL(2,C), where Go is the component of the identity in G.
Therefore A = π ∩ Rad(G) is a lattice subgroup, by Proposition 8.27 of [Rg].
Since R/A is compact the image of π/A in Isom(H3) is again a discrete cocompact
subgroup. Hence

√
π = A ∼= Z. Moreover π preserves the foliation of the model



132 9. THE OTHER ASPHERICAL GEOMETRIES

space by euclidean lines, so M is an orbifold bundle with general fibre S1 over an
H3-orbifold with orbifold fundamental group π/

√
π.

On passing to a 2-fold covering space, if necessary, we may assume that π ≤
Isom(H3) × R and (hence) ζπ =

√
π. Projection to the second factor maps

√
π

monomorphically to R. Hence on passing to a further finite covering space, if
necessary, we may assume that π ∼= ν × Z, where ν = π/

√
π ∼= π1(N) for some

closed orientable H3-manifold N . (Note that we do not claim that π = ν × Z as
a subgroup of PSL(2,R) × R). The foliation of H3 × R by lines induces an S1-
bundle structure on M , with base N . As such bundles (with aspherical base) are
determined by their fundamental groups, M is diffeomorphic to N × S1.

Similar arguments apply in the other two cases. If G = Isom(X) where X =

H2×E2 or S̃L×E1, then Rad(G) ∼= R2, and Go/R
2 ∼= PSL(2,R). The intersection

A = π∩Rad(G) is again a lattice subgroup, and the image of π/A in PSL(2,R) is a
discrete cocompact subgroup. Hence

√
π = A ∼= Z2 and π/

√
π is virtually a PD2-

group. If X = S̃L × E1 then (after passing to a 2-fold covering space, if necessary)

we may assume that π ≤ Isom(S̃L)×R. If X = H2 ×E2 then PSL(2,R)×R2 is a
cocompact subgroup of Isom(X). Hence π ∩ PSL(2,R)×R2 has finite index in π.
In each case projection to the second factor maps

√
π monomorphically. Moreover

π preserves the foliation of the model space by copies of the euclidean factor. As
before, M is virtually a product. �

In general, there may not be such a covering which is geometrically a cartesian

product. Let ν be a discrete cocompact subgroup of Isom(X) where X = H3 or S̃L
which admits an epimorphism α : ν → Z. Define a homomorphism θ : ν × Z →
Isom(X×E1) by θ(g, n)(x, r) = (g(x), r+ n+α(g)

√
2) for all g ∈ ν, n ∈ Z, x ∈ X

and r ∈ R. Then θ is a monomorphism onto a discrete subgroup which acts freely
and cocompactly on X ×R, but the image of θ(ν × Z) in E(1) has rank 2.

Orientable H2×E2- and S̃L×E1-manifolds are determined up to diffeomorphism
(among such geometric manifolds) by their fundamental groups [Ue91]. However
we do not yet have a complete characterization of the possible groups.

Corollary 9.3.1. Let M be a closed 4-manifold with fundamental group π.
Then M has a covering space of degree dividing 4 which is homotopy equivalent

to a S̃L × E1- or H2 × E2-manifold if and only if
√
π ∼= Z2, [π :

√
π] = ∞,

[π : Cπ(
√
π)] <∞ and χ(M) = 0.

Proof. The necessity of most of these conditions is clear from the proof of the
Theorem. If X = H2×E2 then π has a subgroup of finite index which is isomorphic

to τ×Z2, where ζτ = 1. If X = S̃L×E1 then π has a normal subgroup of finite index
which is isomorphic to a product Z × σ, and

√
π has a characteristic infinite cyclic

subgroup. Hence π/Cπ(
√
π) is isomorphic to a finite upper triangular subgroup of

GL(2,Z). Since M is aspherical and
√
π is infinite χ(M) = 0.

If these conditions hold β
(2)
1 (π) = 0 and Hs(π; Z[π]) = 0 for s ≤ 2, and so M

is aspherical, by Corollary 3.5.2. Hence M is homotopy equivalent to a manifold
M(π) which is Seifert fibred over a hyperbolic base orbifold, by Theorem 7.2. On
passing to a covering space of degree dividing 4, if necessary, we may assume that
M and the base orbifold are each orientable. Since π must then act on

√
π through

a finite subgroup of SL(2,Z) (which is upper triangular if
√
π is not a direct factor
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of a subgroup of finite index in π) the result follows from Theorem B of §5 of
[Ue91]. �

Corollary 9.3.2. A group π is the fundamental group of a closed orientable

S̃L × E1- or H2 × E2-manifold with orientable base orbifold if and only if it is a
PD+

4 -group,
√
π ∼= Z2, [π :

√
π] = ∞ and π acts on

√
π through a finite cyclic

subgroup of SL(2,Z). �

The geometry is H2×E2 if and only if
√
π is virtually a direct factor in π. This

case may also be distinguished as follows.

Theorem 9.4. Let M be a closed 4-manifold with fundamental group π. Then
M has a covering space of degree dividing 4 which is homotopy equivalent to a
H2 × E2-manifold if and only if π has a finitely generated infinite subgroup ρ such
that [π : Nπ(ρ)] <∞,

√
ρ = 1, ζCπ(ρ) ∼= Z2 and χ(M) = 0.

Proof. The necessity of the conditions follows from Theorem 3. Suppose that
they hold. Then M is aspherical and so π is a PD4-group. Let C = Cπ(ρ). Then
C is also normal in ν = Nπ(ρ), and C ∩ ρ = 1, since

√
ρ = 1. Hence ρ × C ∼=

ρ.C ≤ π. Now ρ is nontrivial. If ρ were free then an argument using the LHSSS
for H∗(π; Q[π]) would imply that ρ has two ends, and hence that

√
ρ = ρ ∼= Z.

Hence c.d.ρ ≥ 2. Since moreover Z2 ≤ C we must have c.d.ρ = c.d.C = 2 and
[π : ρ.C] < ∞. It follows easily that

√
π ∼= Z2 and that [π : Cπ(

√
π)] < ∞. Hence

we may apply Corollary 3.1. Since π is virtually a product it must be of type
H2 × E2. �

Is it possible to give a more self-contained argument for this case? It is not hard
to see that π/

√
π acts discretely, cocompactly and isometrically on H2. However

it is more difficult to find a suitable homomorphism from π to E(2).
Theorems 1 and 2 suggest that there should be a characterization of closed

H2 × E2- and S̃L × E1-manifolds parallel to Theorem 8.1, i.e., in terms of the
conditions “χ(M) = 0” and “π has an elementary amenable normal subgroup of
Hirsch length 2 and infinite index”.

9.3. H3 × E1-manifolds

We have only conjectural characterizations of manifolds homotopy equivalent
to H3×E1-manifolds and of their fundamental groups. An argument similar to that
of Corollary 3.1 shows that a 4-manifold M with fundamental group π is virtually
simple homotopy equivalent to an H3 × E1-manifold if and only if χ(M) = 0,√
π = Z and π has a normal subgroup of finite index which is isomorphic to ρ× Z

where ρ is a discrete cocompact subgroup of PSL(2,C). If every PD3-group is
the fundamental group of an aspherical closed 3-manifold and if every atoroidal
aspherical closed 3-manifold is hyperbolic we could replace the last assertion by the
more intrinsic conditions that ρ have one end (which would suffice with the other
conditions to imply that M is aspherical and hence that ρ is a PD3-group), no
noncyclic abelian subgroups and

√
ρ = 1 (which would imply that any irreducible

3-manifold with fundamental group ρ is atoroidal). Similarly, a group G should be
the fundamental group of an H3 × E1-manifold if and only if it is torsion free and
has a normal subgroup of finite index isomorphic to ρ×Z where ρ is a PD3-group
with

√
ρ = 1 and no noncyclic abelian subgroups.
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Lemma 9.5. Let π be a finitely generated group with
√
π ∼= Z, and which has a

subgroup G of finite index such that
√
π ∩G′ = 1. Then there is a homomorphism

λ : π → D which is injective on
√
π.

Proof. We may assume that G is normal in π and that G < Cπ(
√
π). Let

H = π/I(G) and let A be the image of
√
π in H . Then H is an extension of the

finite group π/G by the finitely generated free abelian group G/I(G), and A ∼= Z.
Conjugation in H determines a homomorphism w from π/G to Aut(A) = {±1}.
Since the rational group ring Q[π/G] is semisimple Q ⊗ A is a direct summand of
Q ⊗ (G/I(G)), and so there is a Z[π/G]-linear homomorphism p : G/I(G) → Zw

which is injective on A. The kernel is a normal subgroup of H , and H/Ker(p) has
two ends. The lemma now follows easily. �

The foliation of H3×R by copies of H3 induces a codimension 1 foliation of any
closed H3 × E1-manifold. If all the leaves are compact, then it is either a mapping
torus or the union of two twisted I-bundles.

Theorem 9.6. Let M be a closed H3 × E1-manifold. If ζπ ∼= Z then M
is homotopy equivalent to a mapping torus of a self homeomorphism of an H3-
manifold; otherwise M is homotopy equivalent to the union of two twisted I-bundles
over H3-manifold bases.

Proof. Let λ : π → D be a homomorphism as in Lemma 5 and let K =
Ker(λ). Then K ∩ √

π = 1, so K is isomorphic to a subgroup of finite index in
π/

√
π. Therefore K ∼= π1(N) for some closed H3-manifold, since it is torsion free.

If ζπ = Z then Im(λ) ∼= Z (since ζD = 1); if ζπ = 1 then w 6= 1 and so Im(λ) ∼= D.
The theorem now follows easily. �

Is M itself such a mapping torus or union of I-bundles?

9.4. Mapping tori

In this section we shall use 3-manifold theory to characterize mapping tori with

one of the geometries H3 × E1, S̃L × E1 or H2 × E2.

Theorem 9.7. Let φ be a self homeomorphism of a closed 3-manifold N which

admits the geometry H2 × E1 or S̃L. Then the mapping torus M(φ) = N ×φ S1

admits the corresponding product geometry if and only if the outer automorphism
[φ∗] induced by φ has finite order. The mapping torus of a self homeomorphism φ
of a hyperbolic 3-manifold N admits the geometry H3 × E1.

Proof. Let ν = π1(N) and let t be an element of π = π1(M(φ)) which projects

to a generator of π1(S
1). If M(φ) has geometry S̃L × E1 then after passing to the

2-fold covering space M(φ2), if necessary, we may assume that π is a discrete

cocompact subgroup of Isom(S̃L)×R. As in Theorem 3 the intersection of π with
the centre of this group is a lattice subgroup L ∼= Z2. Since the centre of ν is
Z the image of L in π/ν is nontrivial, and so π has a subgroup σ of finite index
which is isomorphic to ν × Z. In particular, conjugation by t[π:σ] induces an inner
automorphism of ν.

If M(φ) has geometry H2×E2 a similar argument implies that π has a subgroup
σ of finite index which is isomorphic to ρ × Z2, where ρ is a discrete cocompact
subgroup of PSL(2,R), and is a subgroup of ν. It again follows that t[π:σ] induces
an inner automorphism of ν.
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Conversely, suppose that N has a geometry of type H2 × E1 or S̃L and that
[φ∗] has finite order in Out(ν). Then φ is homotopic to a self homeomorphism of
(perhaps larger) finite order [Zn80] and is therefore isotopic to such a self homeo-
morphism [Sc85,BO91], which may be assumed to preserve the geometric structure
[MS86]. Thus we may assume that φ is an isometry. The self homeomorphism of
N ×R sending (n, r) to (φ(n), r + 1) is then an isometry for the product geometry
and the mapping torus has the product geometry.

If N is hyperbolic then φ is homotopic to an isometry of finite order, by Mostow
rigidity [Ms68], and is therefore isotopic to such an isometry [GMT96], so the
mapping torus again has the product geometry. �

A closed 4-manifold M which admits an effective T -action with hyperbolic base
orbifold is homotopy equivalent to such a mapping torus. For then ζπ =

√
π and

the LHSSS for homology gives an exact sequence H2(π/ζπ; Q) → H1(ζπ; Q) →
H1(π; Q). As π/ζπ is virtually a PD2-group H2(π/ζπ; Q) ∼= Q or 0, so the rank
of ζπ/ζπ ∩ π′ is at least 1. Hence π ∼= ν ×θ Z where ζν ∼= Z, ν/ζν is virtually
a PD2-group and [θ] has finite order in Out(ν). If moreover M is orientable then
it is geometric ([Ue90,91] - see also §5 of Chapter 7). Note also that if M is a

S̃L × E1-manifold then ζπ =
√
π if and only if π ≤ Isomo(S̃L × E1).

Let F be a closed hyperbolic surface and α : F → F a pseudo-Anasov home-
omorphism. Let Θ(f, z) = (α(f), z̄) for all (f, z) in N = F × S1. Then N is an
H2×E1-manifold. The mapping torus of Θ is homeomorphic to an H3×E1-manifold
which is not a mapping torus of any self-homeomorphism of an H3-manifold. In

this case [Θ∗] has infinite order. However if N is a S̃L-manifold and [φ∗] has infinite
order then M(φ) admits no geometric structure, for then

√
π ∼= Z but is not a direct

factor of any subgroup of finite index.
If ζν ∼= Z and ζ(ν/ζν) = 1 then Hom(ν/ν′, ζν) embeds in Out(ν), and thus ν

has outer automorphisms of infinite order, in most cases [CR77].

Let N be an aspherical closed X3-manifold where X3 = H3, S̃L or H2×E1, and
suppose that β1(N) > 0 but N is not a mapping torus. Choose an epimorphism

λ : π1(N) → Z and let N̂ be the 2-fold covering space associated to the subgroup

λ−1(2Z). If ν : N̂ → N̂ is the covering involution then µ(n, z) = (ν(n), z̄) defines
a free involution on N × S1, and the orbit space M is an X3 × E1-manifold with
β1(M) > 0 which is not a mapping torus.

9.5. The semisimple geometries: H2 × H2, H4 and H2(C)

In this section we shall consider the remaining three geometries realizable by
closed 4-manifolds. (Not much is known about H4 or H2(C)).

Let P = PSL(2,R) be the group of orientation preserving isometries of H2.
Then Isom(H2 × H2) contains P × P as a normal subgroup of index 8. If M is a
closed H2 × H2-manifold then σ(M) = 0 and χ(M) > 0. It is reducible if it has a
finite cover isometric to a product of closed surfaces. The model space for H2 ×H2

may be taken as the unit polydisc {(w, z) ∈ C2 : |w| < 1, |z| < 1}. Thus M is a
complex surface if (and only if) π1(M) is a subgroup of P × P .

We have the following characterizations of the fundamental groups of reducible
H2 × H2-manifolds.
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Theorem 9.8. A group π is the fundamental group of a reducible H2 × H2-
manifold if and only if it is torsion free,

√
π = 1 and π has a subgroup of finite

index which is isomorphic to a product of PD2-groups.

Proof. The conditions are clearly necessary. Suppose that they hold. Then
π is a PD4-group and has a subgroup of finite index which is a direct product
α.β ∼= α × β, where α and β are PD2-groups. Let N be the intersection of the
conjugates of α.β in π. Then N is normal in π, so

√
N = 1 also, and [π : N ] <∞.

Let K = α∩N and L = β ∩N . Then K and L are PD2-groups with trivial centre,
and K.L ∼= K × L is normal in N and has finite index in π. Moreover N/K and
N/L are isomorphic to subgroups of finite index in β and α, respectively, and so are
also PD2-groups. Since any automorphism of N must either fix these subgroups or
interchange them, by Theorem 5.6, K.L is normal in π and [π : Nπ(K)] ≤ 2.

Let ν = Nπ(K). Then L ≤ Cπ(K) ≤ ν and ν = Nπ(L) also. After enlarging
K and L, if necessary, we may assume that L = Cπ(K) and K = Cπ(L). Hence
ν/K and ν/L have no nontrivial finite normal subgroup. (For if K1 is normal in
ν and contains K as a subgroup of finite index then K1 ∩ L is finite, hence trivial,
and so K1 ≤ Cπ(L)). The action of ν/L by conjugation on K has finite image in
Out(K), and so ν/L embeds as a discrete cocompact subgroup of Isom(H2), by the
Nielsen conjecture [Ke83]. Together with a similar embedding for ν/K we obtain
a homomorphism from ν to a discrete cocompact subgroup of Isom(H2 × H2).

If [π : ν] = 2 let t be an element of π − ν, and let j : ν/K → Isom(H2)
be an embedding onto a discrete cocompact subgroup S. Then tKt−1 = L and
conjugation by t induces an isomorphism f : ν/K → ν/L. The homomorphisms
j and j ◦ f−1 determine an embedding J : ν → Isom(H2 × H2) onto a discrete
cocompact subgroup of finite index in S × S. Now t2 ∈ ν and J(t2) = (s, s), where
s = j(t2K). We may extend J to an embedding of π in Isom(H2 ×H2) by defining
J(t) to be the isometry sending (x, y) to (y, s.x). Thus (in either case) π acts
isometrically and properly discontinuously on H2 ×H2. Since π is torsion free the
action is free, and so π = π1(M), where M = π\(H2 ×H2). �

Corollary 9.8.1. Let M be a H2 ×H2-manifold. Then M is reducible if and
only if it has a 2-fold covering space which is homotopy equivalent to the total space
of an orbifold bundle over a hyperbolic 2-orbifold.

Proof. That reducible manifolds have such coverings was proven in the theo-
rem. Conversely, an irreducible lattice in P ×P cannot have any nontrivial normal
subgroups of infinite index, by Theorem IX.6.14 of [Ma]. Hence an H2×H2-manifold
which is finitely covered by the total space of a surface bundle is virtually a cartesian
product. �

Is the 2-fold covering space itself such a bundle space over a 2-orbifold?
In general, we cannot assume that M is itself fibred over a 2-orbifold. Let

G be a PD2-group with ζG = 1 and let x be a nontrivial element of G. A
cocompact free action of G on H2 determines a cocompact free action of π =
〈G×G, t | t(g1, g2)t−1 = (xg2x

−1, g1) ∀(g1, g2) ∈ G×G, t2 = (x, x)〉 on H2×H2, by
(g1, g2).(h1, h2) = (g1.h1, g2.h2) and t.(h1, h2) = (x.h2, h1), for all (g1, g2) ∈ G×G
and (h1, h2) ∈ H2 × H2. The group π has no normal subgroup which is a PD2-
group. (Note also that if G is orientable π\(H2×H2) is a compact complex surface).

We may use Theorem 8 to give several characterizations of the homotopy types
of such manifolds.
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Theorem 9.9. Let M be a closed 4-manifold with fundamental group π. Then
the following are equivalent:

(1) M is homotopy equivalent to a reducible H2 × H2-manifold;
(2) π has a subnormal subgroup G which is FP2, has one end and such that

Cπ(G) is not a free group, π2(M) = 0 and χ(M) 6= 0;
(3) π has a subgroup ρ of finite index which is isomorphic to a product of two

PD2-groups and χ(M)[π : ρ] = χ(ρ) 6= 0.
(4) π is virtually a PD4-group,

√
π = 1 and π has a torsion free subgroup

of finite index which is isomorphic to a nontrivial product σ × τ where
χ(M)[π : σ × τ ] = (2 − β1(σ))(2 − β1(τ)).

Proof. If (1) holds then M is aspherical and so (2) holds, by Theorem 8 and
its Corollary.

Suppose now that (2) holds. Then π has one end, by an iterated LHSSS argu-
ment, since G does. Hence M is aspherical and π is a PD4-group, since π2(M) = 0.

Since χ(M) 6= 0 we must have
√
π = 1. (For otherwise β

(2)
i (π) = 0 for all i, by Theo-

rem 2.3, and so χ(M) = 0). In particular, every subnormal subgroup of π has trivial
centre. Therefore G ∩ Cπ(G) = ζG = 1 and so G × Cπ(G) ∼= ρ = G.Cπ(G) ≤ π.
Hence c.d.Cπ(G) ≤ 2. Since Cπ(G) is not free c.d.G×Cπ(G) = 4 and so ρ has finite
index in π. (In particular, [Cπ(Cπ(G)) : G] is finite). Hence ρ is a PD4-group and
G and Cπ(G) are PD2-groups, so π is virtually a product. Thus (2) implies (1), by
Theorem 8.

It is clear that (1) implies (3). If (3) holds then on applying Theorems 2.2 and
3.5 to the finite covering space associated to ρ we see that M is aspherical, so π is
a PD4-group and (4) holds. Similarly, M is asperical if (4) holds. In particular,
π is a PD4-group and so is torsion free. Since

√
π = 1 neither σ nor τ can be

infinite cyclic, and so they are each PD2-groups. Therefore π is the fundamental
group of a reducible H2 × H2-manifold, by Theorem 8, and M ≃ π\H2 × H2, by
asphericity. �

The asphericity ofM could be ensured by assuming that π be PD4 and χ(M) =
χ(π), instead of assuming that π2(M) = 0.

For H2 × H2-manifolds we can give more precise criteria for reducibility.

Theorem 9.10. Let M be a closed H2 × H2-manifold with fundamental group
π. Then the following are equivalent:

(1) π has a subgroup of finite index which is a nontrivial direct product;
(2) Z2 < π;
(3) π has a nontrivial element with nonabelian centralizer;
(4) π ∩ ({1} × P ) 6= 1;
(5) π ∩ (P × {1}) 6= 1;
(6) M is reducible.

Proof. Since π is torsion free each of the above conditions is invariant under
passage to subgroups of finite index, and so we may assume without loss of gener-
ality that π ≤ P × P . Suppose that σ is a subgroup of finite index in π which is a
nontrivial direct product. Since χ(σ) 6= 0 neither factor can be infinite cyclic, and
so the factors must be PD2-groups. In particular, Z2 < σ and the centraliser of
any element of either direct factor is nonabelian. Thus (1) implies (2) and (3).
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Suppose that (a, b) and (a′, b′) generate a subgroup of π isomorphic to Z2. Since
centralizers of nontrivial elements of infinite order in P are cyclic the subgroup of
P generated by {a, a′} is infinite cyclic or is finite. Hence we may assume without
loss of generality that a′ = 1, and so (2) implies (4). Similarly, (2) implies (5).

Let g = (g1, g2) ∈ P ×P be nontrivial. Since CP×P (〈g〉) = CP (〈g1〉)×CP (〈g2〉)
and centralizers of nontrivial elements of infinite order in P are infinite cyclic it
follows that if Cπ(〈g〉) is nonabelian then either g1 or g2 has finite order. Thus (3)
implies (4) and (5).

Let K1 = π ∩ ({1} × P ) and K2 = π ∩ (P × {1}). Then Ki is normal in π,
and there are exact sequences 1 → Ki → π → Li → 1, where Li = pri(π) is the
image of π under projection to the ith factor of P × P , for i = 1 and 2. Moreover
Ki is normalised by L3−i, for i = 1 and 2. Suppose that K1 6= 1. Then K1 is
non abelian, since it is normal in π and χ(π) 6= 0. If L2 were not discrete then
elements of L2 sufficiently close to the identity would centralize K1. As centralizers
of nonidentity elements of P are abelian, this would imply thatK1 is abelian. Hence
L2 is discrete. Now L2\H2 is a quotient of π\H ×H and so is compact. Therefore
L2 is virtually a PD2-group. Now c.d.K2 + v.c.d.L2 ≥ c.d.π = 4, so c.d.K2 ≥ 2. In
particular, K2 6= 1 and so a similar argument now shows that c.d.K1 ≥ 2. Hence
c.d.K1 × K2 ≥ 4. Since K1 × K2

∼= K1.K2 ≤ π it follows that π is virtually a
product, and M is finitely covered by (K1\H2) × (K2\H2). Thus (4) and (5) are
equivalent, and imply (6). Clearly (6) implies (1). �

The idea used in showing that (4) implies (5) and (6) derives from one used in
the proof of Theorem 6.3 of [Wl85].

If Γ is a discrete cocompact subgroup of P × P such that M = Γ\H2 ×H2 is
irreducible then Γ∩P ×{1} = Γ∩{1}×P = 1, by the theorem. Hence the natural
foliations of H2 ×H2 descend to give a pair of transverse foliations of M by copies
of H2. (Conversely, if M is a closed Riemannian 4-manifold with a codimension 2
metric foliation by totally geodesic surfaces then M has a finite cover which either
admits the geometry H2 ×E2 or H2 ×H2 or is the total space of an S2 or T -bundle
over a closed surface or is the mapping torus of a self homeomorphism of R3/Z3,
S2 × S1 or a lens space [Ca90]).

An irreducible H2 × H2-lattice is an arithmetic subgroup of Isom(H2 × H2),
and has no nontrivial normal subgroups of infinite index, by Theorems IX.6.5 and
14 of [Ma]. Such irreducible lattices are rigid, and so the argument of Theorem 8.1
of [Wa72] implies that there are only finitely many irreducible H2 × H2-manifolds
with given Euler characteristic. What values of χ are realized by such manifolds?

Examples of irreducible H2 ×H2-manifolds may be constructed as follows. Let
F be a totally real number field, with ring of integers OF . Let H be a skew field
which is a quaternion algebra over F such that H ⊗σ R ∼= M2(R) for exactly two
embeddings σ of F in R. If A is an order in H (a subring which is also a finitely
generated OF -submodule and such that F.A = H) then the quotient of the group
of units A× by ±1 embeds as a discrete cocompact subgroup of P × P , and the
corresponding H2 × H2-manifold is irreducible. (See Chapter IV of [Vi]). It can
be shown that every irreducible, cocompact H2×H2-lattice is commensurable with
such a subgroup.

Much less is known about H4- or H2(C)-manifolds. If M is a closed orientable
H4-manifold then σ(M) = 0 and χ(M) > 0 [Ko92]. If M is a closed H2(C)-manifold
it is orientable and χ(M) = 3σ(M) > 0 [Wl86]. The isometry group of H2(C)
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has two components; the identity component is SU(2, 1) and acts via holomorphic
isomorphisms on the unit ball {(w, z) ∈ C2 : |w|2 + |z|2 < 1}. (No closed H4-
manifold admits a complex structure). There are only finitely many closed H4-
or H2(C)-manifolds with a given Euler characteristic (see Theorem 8.1 of [Wa72]).
The 120-cell space of Davis is a closed orientable H4-manifold with χ = 26 and
β1 = 24 > 0 [Da85, TS01], so all positive multiples of 26 are realized. Examples
of H2(C)-manifolds due to Mumford and Hirzebruch have the homology of CP 2

(so χ = 3), and χ = 15 and β1 > 0, respectively [HP96]. It is not known whether
all positive multiples of 3 are realized. Since H4 and H2(C) are rank 1 symmetric
spaces the fundamental groups can contain no noncyclic abelian subgroups [Pr43].
In each case there are cocompact lattices which are not arithmetic. At present
there are not even conjectural intrinsic characterizations of such groups. (See also
[Rt] for the geometries Hn and [Go] for the geometries Hn(C)).

Each of the geometries H2 × H2, H4 and H2(C) admits cocompact lattices
which are not almost coherent (see §1 of Chapter 4 above, [BM94] and [Ka98],
respectively). Is this true of every such lattice for one of these geometries? (Lattices
for the other geometries are coherent).

9.6. Miscellany

A homotopy equivalence between two closed Hn- or Hn(C)-manifolds of dimen-
sion ≥ 3 is homotopic to an isometry, by Mostow rigidity [Ms68]. Farrell and Jones
have established “topological” analogues of Mostow rigidity, which apply when the
model manifold has a geometry of nonpositive curvature and dimension ≥ 5. By
taking cartesian products with S1, we can use their work in dimension 4 also.

Theorem 9.11. Let M be a closed 4-manifold M with fundamental group π.
Then M is s-cobordant to an X4-manifold where X4 = H2×H2, H4, H2(C), H3×E1

or H2 × E2 if and only if π is isomorphic to a cocompact lattice in Isom(X4) and
χ(M) = χ(π).

Proof. The conditions are clearly necessary. If they hold M is aspherical and
so cM : M → π\X is a homotopy equivalence, by Theorem 3.5. In all cases the
geometry has nonpositive sectional curvatures, so Wh(π) = Wh(π × Z) = 0 and
M×S1 is homeomorphic to (π\X)×S1 [FJ93’]. HenceM and π\X are s-cobordant,
by Lemma 6.10. �

A similar result holds for S̃L × E1-manifolds such that π ≤ Isomo(S̃L × E1);

equivalently, such that ζπ =
√
π. Although closed S̃L×E1-manifolds do not admit

metrics of nonpositive curvature [KL96], they do admit effective T -actions if ζπ =√
π, and we then may appeal to [NS85] instead of [FJ93’]. (See also Theorem 13.2

below). The hypothesis that the Seifert structure derive from a toral group action
may well be unnecessary.

For the semisimple geometries we may avoid the appeal to L2-methods to es-
tablish asphericity as follows. Since χ(M) > 0 and π is infinite and residually finite
there is a subgroup σ of finite index such that the associated covering spaces Mσ

and σ\X are orientable and χ(Mσ) = χ(σ) > 2. In particular, H2(Mσ; Z) has ele-
ments of infinite order. Since the classifying map cMσ

: Mσ → σ\X is 2-connected
it induces an isomorphism on H2 and hence is a degree-1 map, by Poincaré duality.
Therefore it is a homotopy equivalence, by Theorem 3.2.
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Theorem 9.12. If M is an aspherical closed 4-manifold which is finitely covered

by a manifold with a geometry other than H2 ×E2 or S̃L×E1 then M is homotopy
equivalent to a geometric 4-manifold.

Proof. The result is clear for infrasolvmanifolds, and follows from Theorem
8 if M is finitely covered by a reducible H2 × H2-manifold. It holds for the other
closed H2×H2-manifolds and for the geometries H4 and H2(C) by Mostow rigidity.

If the geometry is H3 × E1 then
√
π ∼= Z and π/

√
π is virtually the group of

a H3-manifold. Hence π/
√
π acts isometrically and properly discontinuously on

H3, by Mostow rigidity. Moreover as the hypotheses of Lemma 5 are satisfied, by
Theorem 3, there is a homomorphism λ : π → D < Isom(E1) which maps

√
π

injectively. Together these actions determine a discrete and cocompact action of π
by isometries on H3 × R. Since π is torsion free this action is free, and so M is
homotopy equivalent to an H3 × E1-manifold. �

The result is not yet clear for H2 × E2, S̃L × E1, S2 × E2 or S2 × H2. The
theorem holds also for S4 and CP2, but fails for S3 × E1 or S2 × S2. In particular,
there is a closed nonorientable 4-manifold which is doubly covered by S2 × S2 but
is not homotopy equivalent to an S2 × S2-manifold. (See Chapters 11 and 12).

If π is the fundamental group of an aspherical closed geometric 4-manifold then

β
(2)
1 (π) = 0 and so β

(2)
2 (π) = χ(π) [Lü94]. Therefore def(π) ≤ min{0, 1 − χ(π)},

by Theorems 2.4 and 2.5. If π is orientable this gives def(π) ≤ 2β1(π)− β2(π)− 1.
When β1(π) = 0 this is an improvement on the estimate def(π) ≤ β1(π) − β2(π)
derived from the ordinary homology of a 2-complex with fundamental group π.



CHAPTER 10

Manifolds covered by S2 × R2

If the universal covering space of a closed 4-manifold with infinite fundamental
group is homotopy equivalent to a finite complex then it is either contractible or
homotopy equivalent to S2 or S3, by Theorem 3.9. The cases when M is aspherical
have been considered in Chapters 8 and 9. In this chapter and the next we shall

consider the spherical cases. We show first that if M̃ ≃ S2 then M has a finite
covering space which is s-cobordant to a product S2 ×B, where B is an aspherical
surface, and π is the group of a S2 × E2- or S2 × H2-manifold. In §2 we show that
there are only finitely many homotopy types of such manifolds for each such group
π. In §3 we show that all S2- and RP 2-bundles over aspherical closed surfaces
are geometric. We shall then determine the nine possible elementary amenable
groups (corresponding to the geometry S2 × E2). Six of these groups have infinite
abelianization, and in §5 we show that for these groups the homotopy types may
be distinguished by their Stiefel-Whitney classes. We conclude with some remarks
on the homeomorphism classification.

For brevity, we shall let X2 denote both E2 and H2.

10.1. Fundamental groups

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S2 rests on Bowditch’s Theorem, via Theorem 5.14.

Theorem 10.1. Let M be a closed 4-manifold with fundamental group π. The
following are equivalent:

(1) π is virtually a PD2-group and χ(M) = 2χ(π);
(2) π 6= 1 and π2(M) ∼= Z;
(3) M has a covering space of degree dividing 4 which is s-cobordant to S2×B,

where B is an aspherical closed surface;
(4) M is virtually s-cobordant to an S2 × X2-manifold.

If these conditions hold then M̃ is homeomorphic to S2 ×R2.

Proof. If (1) holds then π2(M) ∼= Z, by Theorem 5.10, and so (2) holds. If
(2) holds then the covering space associated to the kernel of the natural action of
π on π2(M) is homotopy equivalent to the total space of an S2-bundle ξ over an
aspherical closed surface, by Theorem 5.14. On passing to a 2-fold covering space,
if necessary, we may assume that w2(ξ) = w1(ξ) = 0. Hence ξ is trivial and so
the corresponding covering space of M is s-cobordant to a product S2 × B and

M̃ ∼= S2 × R2, by Theorem 6.16. It is clear that (3) implies (4) and (4) implies
(1). �

This follows also from [Fa74] instead of [Bo99] if we know also that χ(M) ≤ 0.
If π is infinite and π2(M) ∼= Z then π may be realized geometrically.

141
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Theorem 10.2. Let M be a closed 4-manifold with fundamental group π and
such that π2(M) ∼= Z. Then π is the fundamental group of a closed manifold
admitting the geometry S2 × E2, if π is virtually Z2, or S2 × H2 otherwise.

Proof. If π is torsion free then it is itself a surface group. If π has a non-
trivial finite normal subgroup then it is a direct product Ker(u) × (Z/2Z), where
u : π → {±1} = Aut(π2(M)) is the natural homomorphism. In either case π is the
fundamental group of a corresponding product of surfaces. Otherwise π is a semidi-
rect product Ker(u)×̃(Z/2Z) and is a plane motion group, by a theorem of Nielsen
([Zi]; see also Theorem A of [EM82]). This means that there is a monomorphism
f : π → Isom(X2) with image a discrete subgroup which acts cocompactly on X ,
where X is the Euclidean or hyperbolic plane, according as π is virtually abelian or
not. The homomorphism (u, f) : π → {±I} × Isom(X2) ≤ Isom(S2 × X2) is then
a monomorphism onto a discrete subgroup which acts freely and cocompactly on
S2 ×R2. In all cases such a group may be realised geometrically. �

The orbit space of the geometric action of π described above is a cartesian
product with S2 if u is trivial and fibres over RP 2 otherwise.

10.2. Homotopy type

In this section we shall extend an argument of Hambleton and Kreck to show
that there are only finitely many homotopy types of manifolds with universal cover
S2 ×R2 and given fundamental group.

We shall first show that the orientation character and the action of π on π2

determine each other.

Lemma 10.3. Let M be a closed 4-manifold with fundamental group π 6= 1
and such that π2(M) ∼= Z. Then H2(π; Z[π]) ∼= Z and u = w1(M) + v, where
u : π → Aut(π2(M)) = Z/2Z and v : π → Aut(H2(π; Z[π])) = Z/2Z are the
natural actions.

Proof. Since π is infinite HomZ[π](π2(M),Z[π]) = 0 and so H2(π; Z[π]) ∼=
π2(M), by Lemma 3.3. Now H2(π; Z[π]) ∼= H2(π; Z[π]) ⊗ Zw1(M), (where the
tensor product is over Z and has the diagonal π-action). Hence Zu = Zv ⊗Zw1(M)

and so u = w1(M) + v. �

Note that u and w1(M) are constrained by the further conditions that K =
Ker(u) is torsion free and Ker(w1(M)) has infinite abelianization if χ(M) ≤ 0. If
π < Isom(X2) is a plane motion group then v(g) detects whether g ∈ π preserves
the orientation of X2.

Let βu be the Bockstein operator associated with the exact sequence of coef-
ficients 0 → Zu → Zu → F2 → 0, and let βu be the composition with reduction
modulo (2). In general βu is NOT the Bockstein operator for the untwisted se-
quence 0 → Z → Z → F2 → 0, and βu is not Sq1, as can be seen already for
cohomology of the group Z/2Z acting nontrivially on Z.

Lemma 10.4. Let M be a closed 4-manifold with fundamental group π and such
that π2(M) ∼= Z. If π has nontrivial torsion Hs(M ; F2) ∼= Hs(π; F2) for s ≤ 2.
The Bockstein operator βu : H2(π; F2) → H3(π;Zu) is onto, and reduction modulo
2 from H3(π;Zu) to H3(π; F2) is a monomorphism. The restriction of k1(M) to
each subgroup of order 2 is nontrivial. Its image in H3(M ;Zu) is 0.
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Proof. Most of these assertions hold vacuously if π is torsion free, so we
may assume that π has an element of order 2. Then M has a covering space M̂
homotopy equivalent to RP 2, and so the mod-2 Hurewicz homomorphism from
π2(M) to H2(M ; F2) is trivial, since it factors through H2(M̂ ; F2). Since we may
construct K(π, 1) from M by adjoining cells to kill the higher homotopy of M the
first assertion follows easily.

The group H3(π;Zu) has exponent dividing 2, since the composition of restric-
tion to H3(K; Z) = 0 with the corestriction back to H3(π;Zu) is multiplication
by the index [π : K]. Consideration of the long exact sequence associated to
the coefficient sequence shows that βu is onto. If f : Z/2Z → π is a monomor-

phism then f∗k1(M) is the first k-invariant of M̃/f(Z/2Z) ≃ RP 2, which generates
H3(Z/2Z;π2(M)) = Z/2Z. The final assertion is clear. �

Theorem 10.5. Let M be a closed 4-manifold such that π2(M) ∼= Z. Then
there are only finitely many homotopy types of such manifolds with fundamental
group π and orientation character w1(M). If w1(M) 6= 0 there are at most two
such homotopy types with given first k-invariant.

Proof. By the lemma, the action of π on π2(M) is determined by w1(M).
As c.d.ρ = 2, an LHSSS calculation shows that H3(π;π2(M)) is finite, so there
are only finitely many possible k-invariants. The action and the first k-invariant
k1(M) determine P = P2(M), the second stage of the Postnikov tower for M . Let

P̃ ≃ K(Z, 2) denote the universal covering space of P .
As fM : M → P is 3-connected we may define a class w in H1(P ; Z/2Z) by

f∗
Mw = w1(M). Let SPD4 (P ) be the set of “polarized” PD4-complexes (X, f) where
f : X → P is 3-connected and w1(X) = f∗w, modulo homotopy equivalence over
P . (Note that as π is one-ended the universal cover of X is homotopy equivalent to
S2). Let [X ] be the fundamental class of X in H4(X ;Zw). It follows as in Lemma
1.3 of [HK88] that given two such polarized complexes (X, f) and (Y, g) there is a
map h : X → Y with gh = f if and only if f∗[X ] = g∗[Y ] in H4(P ;Zw). Since

X̃ ≃ Ỹ ≃ S2 and f and g are 3-connected such a map h must be a homotopy
equivalence.

From the Cartan-Leray homology spectral sequence for the classifying map
cP : P → K = K(π, 1) we see that there is an exact sequence

0 → H2(π;H2(P̃ ) ⊗ Zw)/im(d2
5,0) → H4(P ;Zw)/J → H4(π;Zw),

where J = H0(π;H4(P̃ ; Z) ⊗ Zw)/im(d2
3,2 + d4

5,0) is the image of H4(P̃ ; Z) ⊗ Zw

in H4(P ;Zw). On comparing this spectral sequence with that for cX we see that
f induces an isomorphism from H4(X ;Zw) to H4(P ;Zw)/J . We also see that
H3(f ;Zw) is an isomorphism. Hence the cokernel of H4(f ;Zw) is H4(P,X ;Zw) ∼=
H0(π;H4(P̃ , X̃; Z) ⊗ Zw), by the exact sequence of homology with coefficients Zw

for the pair (P,X). Since H4(P̃ , X̃; Z) ∼= Z as a π-module this cokernel is Z if
w = 0 and Z/2Z otherwise. Hence J ∼= Coker(H4(f ;Zw)). Thus if w 6= 0 there are
at most two possible values for f∗[X ], up to sign. If w = 0 we shall show that there
are only finitely many orbits of fundamental classes of such polarized complexes
under the action of the group G of (based) self homotopy equivalences of P which
induce the identity on π and π2(P ).
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The cohomology spectral sequence for cP gives rise to an exact sequence

0 → H2(π;Zu) → H2(P ;Zu) → H0(π;H2(P̃ ; Z) ⊗ Zu) ∼= Z → H3(π;Zu).

Note that H2(π;Zu) ∼= Z modulo 2-torsion (since w = 0), H2(P̃ ; Z) ∼= Zu and
Zu ⊗ Zu ∼= Z as π-modules. Moreover the right hand map is the transgression,
with image generated by k1(M). There is a parallel exact sequence with rational
coefficients

0 → H2(π;Qu) ∼= Q→ H2(P ;Qu) → H0(π;H2(P̃ ; Z) ⊗Qu) ∼= Q→ 0.

ThusH2(P ;Qu) has a Q-basis t, z in the image ofH2(P ;Zu) such that t is the image

of a generator of H2(π;Zu)/(torsion) and z has nonzero restriction to H2(P̃ ; Z).
The spectral sequence also gives an exact sequence

0 → H2(π;H2(P̃ ; Q)) → H4(P ; Q) → H0(π;H4(P̃ ; Q)) ∼= Q→ 0.

(Note that H2(P̃ ; Q) ∼= Qu as a Q[π]-module). Since cdQπ = 2 we have t2 = 0 in

H4(P ;Qu ⊗ Qu) = H4(P ; Q); since P̃ ≃ K(Z, 2) we have z2 6= 0. Thus tz, z2 is a
Q-basis for H4(P ; Q). A self homotopy h in G induces the identity on π, and its lift

to a self map of P̃ is homotopic to the identity. Hence h∗t = t and h∗z ≡ z modulo
Qt. Nevertheless we shall see that the action of G on H2(P ;Qu) is nontrivial.

Suppose first that u = 0, so π is an orientable surface group and k1(M) = 0.
Then P ≃ K(π, 1) × K(Z, 2) and G ∼= [K(π, 1),K(Z, 2)]. Let f : K(π, 1) →
K(Z, 2) be a map which induces an isomorphism on H2 and fix a generator ζ
for H2(K(Z, 2); Z). Then t = pr∗1f

∗ζ and z = pr∗2ζ freely generate H2(P ; Z),
and so tz, z2 freely generate H4(P ; Z). Each g ∈ [K(π, 1),K(Z, 2)] determines a
self homotopy equivalence g̃ : P → P by g̃(k, n) = (k, g(k).n), where K(Z, 2) =
ΩK(Z, 3) has the natural loop multiplication. Clearly g̃ is in G, and all elements
of G are of this form [Ts80]. Let d : G → Z be the isomorphism determined by
the equation g∗ζ = d(g)f∗ζ. Then g̃∗t = (fpr1g̃)

∗ζ = t and g̃∗z = (pr2g̃)
∗ζ =

(gpr1)
∗ζ + pr∗2ζ = pr∗1(g∗ζ) + z = z + d(g)t. On taking cup products we have

h∗(tz) = tz and h∗(z2) = z2 + 2d(g)tz. On passing to homology we see that there
are two G-orbits of elements in H4(P ; Z) whose images generate H4(P ; Z)/J .

In general let PK denote the covering space corresponding to the subgroup
K, and let GK be the image of G in the group of self homotopy equivalences
of PK . Then lifting self homotopy equivalences defines a homomorphism from G
to GK , which by [Ts80] may be identified with the restriction from H2(π;Zu)
to H2(K; Z) ∼= Z, which has image of index ≤ 2. Moreover the projection in-
duces an isomorphism from H4(P ; Q) to H4(PK ; Q). Hence the action of G on
H4(P ; Z)/(torsion) ∼= Z2 is nontrivial, and so there are only finitely many G-orbits
of elements whose images generate H4(P ; Z)/J . This proves the theorem. �

As a consequence of Lemma 4 we may assume that the cohomology class z in

the above Theorem restricts to 2 times a generator of H2(P̃ ; Z), if k1(M) 6= 0. A
closer study of the action of G on H2(P ;Zu) suggests that in general there are at
most 4 homotopy types with given π, w1 and k-invariant. However we have not
succeeded in proving this.

Significant features of the duality pairing such as w2(M) are not reflected in
the Postnikov 2-stage. If π is torsion free k1(M) = 0 and w2 is the only other
invariant needed. For then π is a surface group and each such manifold is homotopy
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equivalent to the total space of an S2-bundle. There are two such bundle spaces
for each group and orientation character, distinguished by the value of w2(M).

For RP 2-bundles u = w1 and π ∼= K × (Z/2Z). The element of order 2 in π is
unique, and the splitting is unique up to composition with an automorphism of π.
There are two such bundle spaces for each surface group K, again distinguished by
w2(M). Can it be seen a priori that the k-invariant must be standard?

If w1(M) = 0, w2(M) restricts to 0 in H2(K; F2), u 6= 0 and H3(u;Zu) is 0
then M is homotopy equivalent to the total space of a surface bundle over RP 2, by
Theorem 5.22.

In general, we may view the classifying map cM : M → K(π, 1) as a fibration

with fibre S2. Fix a homotopy equivalence M̃ ≃ S2. Then the action of π on M̃

determines a homomorphism j : π → Homeo(M̃) → E(S2), and the fibration cM
is induced from the universal S2-fibration over BE(S2) by the map Bj : K(π, 1) →
BE(S2). The orientation character of this fibration is w1(cM ) = u, and is induced
by the composite cBE(S2)Bj : K(π, 1) → K(π0(E(S2)), 1). The (twisted) Euler
class is the first obstruction to a cross-section of cM , and so equals k1(M). Hence
the reduction modulo (2) of k1(M) is w3(cM ) ∈ H3(π; F2). Calculation show that
βu : H2(BE(S2); F2) → H3(BE(S2);Zu) is an isomorphism, and so w3(cM ) also
determines k1(M). In particular, if j factors through {±I} < O(3) then k1(M) =
βu(U2), where U ∈ H1(π; F2) is the cohomology class determined by u. (This is so
when M is a S2 × X2-manifold and π is generated by elements of order 2).

As M is finitely covered by a cartesian product S2 × B, where B is a closed

orientable surface, w2(M) restricts to 0 in H2(M̃ ; F2) and so is induced from π.
The Wu formulae for M then imply that the total Stiefel-Whitney class w(M) is
induced from π. It can be shown that c∗M (w(cM )) is determined by w(M) and π;
unfortunately as c∗M (w3(cM )) = 0 (by exactness of the Gysin sequence for cM ) we
do not know whether k1(M) is also determined by these invariants.

Is the homotopy type of M determined by π1(M), w(M) and k1(M)? What is
the role of the exotic class in H3(BE(S2); F2)? Are there any PD4-complexes M

with M̃ ≃ S2 and such that the image of this class under (Bj)∗ is nonzero?

10.3. Bundle spaces are geometric

We shall determine which S2×X2-manifolds fibre over closed aspherical surfaces
with fibre S2 or RP 2 and then show that all such bundle spaces are geometric.

Lemma 10.6. Let J = (A,B) ∈ O(3) × Isom(X2) be an isometry of order 2
which is fixed point free. Then A = −I. If moreover J is orientation reversing then
B = I or B has a single fixed point.

Proof. Since any involution of R2 (such as B) must fix a point, a line or be
the identity, A ∈ O(3) must be a fixed point free involution, and so A = −I. If J
is orientation reversing then B is orientation preserving, and so must fix a point or
be the identity. �

Let Ω be a discrete subgroup of Isom(S2 × X2) = O(3) × Isom(X2) which
acts freely and cocompactly on S2 × R2. Let p1 and p2 be the projections of
Isom(S2 × X2) onto O(3) and Isom(X2), respectively. Then p2(Ω) is a discrete
subgroup of Isom(X2) which acts cocompactly on R2, and so has no nontrivial
finite normal subgroup. Hence Ω ∩ (O(3) × {1}) is the maximal finite normal
subgroup of Ω.
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Theorem 10.7. Let M be a closed S2 × X2-manifold with fundamental group
π. Then

(1) M is the total space of an S2-bundle over a closed aspherical surface if
and only if π is torsion free.

(2) M is the total space of an RP 2-bundle over a closed aspherical surface if
and only if π ∼= (Z/2Z) ×K, where K is torsion free.

Proof. (1) The condition is clearly necessary. (See Theorem 5.10). Let G ≤ π
fix e ∈ R2. Then for all s ∈ S2 the orbit of (s, e) ∈ S2×R2 underG is homeomorphic
to the the G-orbit of s ∈ S2; moreover the stabilizer of the orbit is trivial as π acts
freely on S2 ×R2. Now as S2 is compact these orbits must be finite, so G is finite.
In particular, the kernel of the projection of π onto its image in Isom(X2) is a finite
group which acts freely on S2.

Therefore if π is torsion free it is isomorphic to its image in Isom(X2), which
acts freely on R2. The projection ρ : S2 ×R2 → R2 induces a map r : M → R2/π,
and we have a commutative diagram:

S2 ×R2 ρ−−−−→ R2

yf
yf̄

M = (S2 ×R2)/π
r−−−−→ R2/π

where f and f̄ are covering projections. The induced map from S2×{x} to f(S2×
π(x)) is a bijection, for any x ∈ R2, and so r is an S2-bundle projection.

(2) The condition is necessary, by Theorem 5.15. Suppose that it holds. Then
K acts freely and properly discontinuously on R2, with compact quotient. Let
g generate the torsion subgroup of π. Then p1(g) = −I, by Lemma 6. Since
p2(g)

2 = idR2 the fixed point set F = {x ∈ R2 | p2(g)(x) = x} is nonempty, and
is either a point, a line, or the whole of R2. Since p2(g) commutes with the action
of K on R2 we have KF = F , and so K acts freely and properly discontinuously
on F . But K is neither trivial nor infinite cyclic, and so we must have F = R2.
Hence p2(g) = idR2 . The result now follows, as S2 ×R2/K is the total space of an
S2-bundle over R2/K, by part (1), and g acts as the antipodal involution on the
fibres. �

If the S2 × X2-manifold M is the total space of an S2-bundle ξ then w1(ξ) is
detected by the determinant: det(p1(g)) = (−1)w1(ξ)(g) for all g ∈ π.

The total space of an RP 2-bundle over B is the quotient of its orientation
double cover (which is an S2-bundle over B) by the fibrewise antipodal involution
and so there is a bijective correspondance between orientable S2-bundles over B
and RP 2-bundles over B.

Let (A, β,C) ∈ O(3)×E(2) = O(3)×(R2×̃O(2)) be the S2×E2-isometry which
sends (v, x) ∈ S2 ×R2 to (Av,Cx + β).

Theorem 10.8. Let M be the total space of an S2- or RP 2-bundle over T or
Kb. Then M admits the geometry S2 × E2.

Proof. Let Ri ∈ O(3) be the reflection of R3 which changes the sign of the
ith coordinate, for i = 1, 2, 3. If A and B are products of such reflections then the
subgroups of Isom(S2 × E2) generated by α = (A, ( 1

0 ) , I) and β = (B, ( 0
1 ) , I) are

discrete, isomorphic to Z2 and act freely and cocompactly on S2 × R2. Taking
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(i) A = B = I, (ii) A = R1R2, B = R1R3, (iii) A = R1, B = I and (iv) A =
R1, B = R1R2 gives four S2-bundles ξi over the torus. If instead we use the

isometries α = (A,
(

1
2
0

)
,
(

1 0
0 −1

)
) and β = (B, ( 0

1 ) , I) we obtain discrete subgroups

isomorphic to Z×−1Z which act freely and cocompactly. Taking (v) A = R1, B = I,
(vi) A = R1, B = R2R3, (vii) A = I, B = R1, (viii) A = R1R2, B = R1, (ix)
A = B = I and (x) A = I, B = R1R2 gives six S2-bundles ξi over the Klein bottle.

To see that these are genuinely distinct, we check first the fundamental groups,
then the orientation character of the total space; consecutive pairs of generators
determine bundles with the same orientation character, and we distinguish these
by means of the second Stiefel-Whitney classes, by computing the self-intersections
of cross-sections. (See Lemma 5.11.(2). We shall use the stereographic projection

of S2 ⊂ R3 = C × R onto Ĉ = C ∪ {∞}, to identify the reflections Ri : S2 → S2

with the antiholomorphic involutions: z
R17−→z, z

R27−→− z, z
R37−→z−1.

Let T = {(s, t) ∈ R2|0 ≤ s, t ≤ 1} be the fundamental domain for the standard
action of Z2 on R2. A section σ : T → S2 ×R2 of the projection to R2 over T such
that σ(1, t) = ασ(0, t) and σ(s, 1) = βσ(s, 0) induces a section of the bundle ξi.

As the orientable cases (i, ii, v and vi) have been treated in [Ue90] we may con-
centrate on the nonorientable cases. In case (iii) each fixed point P of A determines
a section σP with σP (s, t) = (P, s, t). Since A fixes a circle on S2 it follows that
sections determined by distinct fixed points are isotopic and disjoint. Therefore
σ · σ = 0, so v2(M) = 0 and hence w2(ξ3) = 0.

In case (iv) we may define a 1-parameter family of sections by σλ(s, t) = ((1 −
λ)(2t− 1) + λ(4t2 − 2))eπiλ(s− 1

2 ). Now σ0 and σ1 intersect transversely in a single

point, corresponding to s = 1/2 and t = (1+
√

5)/4. Hence σ ·σ = 1, so v2(M) 6= 0
and w2(ξ4) 6= 0.

The remaining cases (vii-x) correspond to S2-bundles over Kb with nonori-
entable total space. We now take K = {(s, t) ∈ R2|0 ≤ s ≤ 1, |t| ≤ 1

2} as

the fundamental domain for the action of Z×−1Z on R2. Here we must have
σ(1, t) = ασ(0,−t) and σ(s, 1

2 ) = βσ(s,− 1
2 ).

Cases (vii) and (ix) are similar to case (iii): there are obvious one-parameter
families of disjoint sections, and so w2(ξ7) = w2(ξ9) = 0. However w1(ξ7) 6= w1(ξ9).
(In fact ξ9 is the product bundle).

The functions σλ(s, t) = λ(2s− 1 + it) define a 1-parameter family of sections
for ξ8 such that σ0 and σ1 intersect transversely in one point, so that σ · σ = 1.
Hence v2(M) 6= 0 and so w2(ξ8) 6= 0.

For ξ10 the functions σλ(s, t) = λ(2s−1)t+i(1−λ)(4t2−1) define a 1-parameter
family of sections such that σ0 and σ1(s, t) intersect transversely in one point, so
that σ · σ = 1. Hence v2(M) 6= 0 and so w2(ξ10) 6= 0.

Thus these bundles are all distinct, and so all S2-bundles over T or Kb are
geometric of type S2 × E2.

Adjoining the fixed point free involution (−I, 0, I) to any one of the above ten
sets of generators for the S2-bundle groups amounts to dividing out the S2 fibres
by the antipodal map and so we obtain the corresponding RP 2-bundles. (Note that
there are just four such RP 2-bundles - but each has several distinct double covers
which are S2-bundles). �

Theorem 10.9. Let M be the total space of an S2- or RP 2-bundle over a closed
hyperbolic surface. Then M admits the geometry S2 × H2.
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Proof. Let Tg be the closed orientable surface of genus g, and let Tg ⊂ H2

be a 2g-gon representing the fundamental domain of Tg. The map Ω : Tg → T

that collapses 2g − 4 sides of Tg to a single vertex in the rectangle T induces a
degree 1 map from Tg to T that collapses g − 1 handles on T g to a single point on
T . (We may assume the induced epimorphism from π1(Tg) = 〈a1, b1, . . . , ag, bg |
Πg
i=1[ai, bi] = 1〉 to Z2 kills the generators aj , bj for j > 1). Hence given an S2-

bundle ξ over T with total space Mξ = (S2 × E2)/Γξ, where Γξ = {(ξ(h), h) |
h ∈ π1(T )} ≤ Isom(S2 × E2) and ξ : Z2 → O(3) is as in Theorem 8 above , the

pullback Ω̂∗(ξ) is an S2-bundle over Tg, with total space MξΩ = (S2 × H2)/ΓαΩ,

where ΓξΩ = {(ξΩ(h), h) | h ∈ Π1(T
g)} ≤ Isom(S2 × H2). As Ω̂ is of degree

1 it induces monomorphisms in cohomology, so w(ξ) is nontrivial if and only if

w(Ω̂∗(ξ)) = Ω̂∗w(ξ) is nontrivial. Hence all S2-bundles over T g for g ≥ 2 are
geometric of type S2 × H2.

Suppose now that B is the closed surface #3RP 2 = T#RP 2 = Kb#RP 2.

Then there is a map Ω̂ : T#RP 2 → RP 2; that collapses the torus summand

to a single point. This map Ω̂ again has degree 1 and so induces monomor-

phisms in cohomology. In particular Ω̂∗ preserves the orientation character, that

is w1(Ω̂
∗(ξ)) = Ω̂∗w1(RP

2) = w1(B), and is an isomorphism on H2. We may pull

back the four S2-bundles ξ over RP 2 along Ω̂ to obtain the four bundles over B

with first Stiefel-Whitney class w1(Ω̂
∗ξ) either 0 or w1(B).

Similarly there is a map Υ̂ : Kb#RP 2 → RP 2 that collapses the Klein bottle

summand to a single point. This map Υ̂ has degree 1 mod 2 so that Υ̂∗w1(RP
2) has

nonzero square since w1(RP
2)2 6= 0. Note that in this case Υ̂∗w1(RP

2) 6= w1(B).
Hence we may pull back the two S2-bundles ξ over RP 2 with w1(ξ) = w1(RP

2) to

obtain a further two bundles over B with w1(Υ̂
∗(ξ))2 = Υ̂∗w1(ξ)

2 6= 0, as Υ̂ is a
ring monomorphism.

There is again a map Θ̂ : Kb#RP 2 → Kb that collapses the Klein bottle

summand to a single point. Once again Θ̂ is of degree 1 mod 2 so that we may pull

back the two S2-bundles ξ over Kb with w1(ξ) = w1(Kb) along Θ̂ to obtain the

remaining two S2-bundles over B. These two bundles Θ̂∗(ξ) have w1(Θ̂
∗(ξ)) 6= 0

but w1(Θ̂
∗(ξ))2 = 0; as w1(Kb) 6= 0 but w1(Kb)

2 = 0 and Θ̂∗ is a monomorphism.
Similar arguments apply to bundles over #nRP 2 where n > 3.
Thus all S2-bundles over all closed aspherical surfaces are geometric. Further-

more since the antipodal involution of a geometric S2-bundle is induced by an
isometry (−I, idH2) ∈ O(3) × Isom(H2) we have that all RP 2-bundles over closed
aspherical surfaces are geometric. �

An alternative route to Theorems 8 and 9 would be to first show that orientable
4-manifolds which are total spaces of S2-bundles are geometric, then deduce that
RP 2-bundles are geometric (as above); and finally observe that every S2-bundle
space double covers an RP 2-bundle space.

The other S2 × X2-manifolds are orbifold bundles over euclidean or hyperbolic
orbifolds, with general fibre S2. In other words, they have codimension-2 foliation
whose leaves are homeomorphic to S2 or RP 2. Is every such closed 4-manifold
geometric?

If χ(F ) < 0 or χ(F ) = 0 and ∂ = 0 then every F -bundle over RP 2 is geometric,
by Lemma 5.20 and the remark following Theorem 2 above.
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10.4. Fundamental groups of S2 × E2-manifolds

We shall show first that if M is a closed 4-manifold any two of the conditions
“χ(M) = 0”, “π1(M) is virtually Z2” and “π2(M) ∼= Z” imply the third, and then
determine the possible fundamental groups.

Theorem 10.10. Let M be a closed 4-manifold with fundamental group π.
Then the following conditions are equivalent:

(1) π is virtually Z2 and χ(M) = 0;
(2) π has an infinite restrained normal subgroup and π2(M) ∼= Z;
(3) χ(M) = 0 and π2(M) ∼= Z; and
(4) M is virtually homeomorphic to an S2 × E2-manifold.

If these conditions hold M has a covering space of degree dividing 4 which is home-
omorphic to S2 × T .

Proof. Note that these conditions are invariant under passage to finite covers
and subgroups of finite index in π. If (1) holds then the covering space of M with
fundamental group Z2 is homeomorphic to the total space of an S2-bundle over
the torus and so π2(M) ∼= Z, by Theorems 5.10 and 6.11. After passing to a
finite covering, if necessary, we may assume this bundle is trivial and M ∼= S2 × T .
(See §3 of Chapter 5). Thus (1) implies each of (2), (3) and (4). If π2(M) ∼=
Z and π is infinite then π is virtually a PD2-group, by Theorem 1. Hence (2)
and (3) each imply (1). An orientable manifold is an S2 × E2-manifold if and
only if it is homeomorphic to the mapping torus of an orientation preserving self
homeomorphism of S2×S1 or RP 3♯RP 3, by Theorem 12 of [Ue91]. Since any such
mapping torus has S2×T as a 4-fold covering space it is clear that (4) implies each
of the other conditions.

The final assertion follows as in Theorem 1. �

Corollary 10.10.1. Any two of the conditions χ(M) = 0, π is virtually Z2

and π2(M) ∼= Z imply the third. �

We shall assume henceforth that the conditions of Theorem 10 hold, and shall
show next that there are nine possible groups. Seven of them are 2-dimensional
crystallographic groups, and we shall give also the name of the corresponding E2-
orbifold, following Appendix A of [Mo]. (The restriction on finite subgroups elimi-
nates the remaining ten E2-orbifold groups from consideration).

Theorem 10.11. Let M be a closed 4-manifold such that π = π1(M) is virtually
Z2 and χ(M) = 0. Let A and F be the maximal abelian and maximal finite normal
subgroups (respectively) of π. If π is torsion free then either

(1) π = A ∼= Z2 (the torus); or
(2) π ∼= Z×−1Z (the Klein bottle).

If F = 1 but π has nontrivial torsion and [π : A] = 2 then either
(3) π ∼= D × Z ∼= (Z ⊕ (Z/2Z)) ∗Z (Z ⊕ (Z/2Z)), with the presentation

〈s, x, y | x2 = y2 = 1, sx = xs, sy = ys〉 (the silvered annulus); or
(4) π ∼= D×̃Z ∼= Z ∗Z (Z ⊕ (Z/2Z)), with the presentation

〈t, x | x2 = 1, t2x = xt2〉 (the silvered Möbius band); or
(5) π ∼= (Z2) ×−I (Z/2Z) ∼= D ∗Z D, with the presentations

〈s, t, x | x2 = 1, xsx = s−1, xtx = t−1, st = ts〉 and (setting y = xt)
〈s, x, y | x2 = y2 = 1, xsx = ysy = s−1〉 (the pillowcase S(2222)).
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If F = 1 and [π : A] = 4 then either
(6) π ∼= D ∗Z (Z ⊕ (Z/2Z)), with the presentations

〈s, t, x | x2 = 1, xsx = s−1, xtx = t−1, tst−1 = s−1〉 and
(setting y = xt) 〈s, x, y | x2 = y2 = 1, xsx = s−1, ys = sy〉 (D(22));

or
(7) π ∼= Z ∗Z D, with the presentations

〈r, s, x | x2 = 1, xrx = r−1, xsx = rs−1, srs−1 = r−1〉 and
(setting t = xs) 〈t, x | x2 = 1, xt2x = t−2〉 (P (22)).

If F is nontrivial then either
(8) π ∼= Z2 ⊕ (Z/2Z); or
(9) π ∼= (Z×−1Z) × (Z/2Z).

Proof. Let u : π → {±1} = Aut(π2(M)) be the natural homomorphism.
Since Ker(u) is torsion free it is either Z2 or Z×−1Z; since it has index at most
2 it follows that [π : A] divides 4 and that F has order at most 2. If F = 1 then
A ∼= Z2 and π/A acts effectively on A, so π is a 2-dimensional crystallographic
group. If F 6= 1 then it is central in π and u maps F isomorphically to Z/2Z, so
π ∼= (Z/2Z)×Ker(u). �

Each of these groups may be realised geometrically, by Theorem 2. It is easy to
see that any S2 ×E2-manifold whose fundamental group has infinite abelianization
is a mapping torus, and hence is determined up to diffeomorphism by its homotopy
type. (See Theorems 8 above and 12 below). We shall show next that there are
four affine diffeomorphism classes of S2 × E2-manifolds whose fundamental groups
have finite abelianization.

Let Ω be a discrete subgroup of Isom(S2 × E2) = O(3) × E(2) which acts
freely and cocompactly on S2 × R2. If Ω ∼= D ∗Z D or D ∗Z (Z ⊕ (Z/2Z)) it
is generated by elements of order 2, and so p1(Ω) = {±I}, by Lemma 6. Since
p2(Ω) < E(2) is a 2-dimensional crystallographic group it is determined up to
conjugacy in Aff(2) = R2×̃GL(2,R) by its isomorphism type, Ω is determined
up to conjugacy in O(3) × Aff(2) and the corresponding geometric 4-manifold is
determined up to affine diffeomorphism.

Although Z ∗Z D is not generated by involutions, a similar argument applies.

The isometries T = (τ,
(

0
1
2

) (−1 0
0 1

)
and X = (−I,

(
1
2

1 1
2

)
,−I) generate a discrete

subgroup of Isom(S2 × E2) isomorphic to Z ∗Z D and which acts freely and co-
compactly on S2 × R2, provided τ2 = I. Since x2 = (xt2)2 = 1 this condition
is necessary, by Lemma 6. We shall see below that we may assume that T is
orientation preserving, i.e., that det(τ) = −1. (The isometries T 2 and XT gener-
ate Ker(u)). Thus there are two affine diffeomorphism classes of such manifolds,
corresponding to the choices τ = −I or R3.

None of these manifolds fibre over S1, since in each case π/π′ is finite. However
if Ω is a S2 × E2-lattice such that p1(Ω) ≤ {±I} then S2 × R2/Ω fibres over RP 2,
since the map sending (v, x) ∈ S2 × R2 to [±v] ∈ RP 2 is compatible with the
action of Ω. If p1(Ω) = {±I} the fibre is R2/Ω∩ ({1}×E(2)); otherwise it has two
components. Thus three of these four manifolds fibre over RP 2 (excepting perhaps
only the case Ω ∼= Z ∗Z D and R3 ∈ p1(Ω)).
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10.5. Homotopy types of S2 × E2-manifolds

Our next result shows that if M satisfies the conditions of Theorem 10 and its
fundamental group has infinite abelianization then it is determined up to homotopy
by π1(M) and its Stiefel-Whitney classes.

Theorem 10.12. Let M be a closed 4-manifold with χ(M) = 0 and such that
π = π1(M) is virtually Z2. If π/π′ is infinite then M is homotopy equivalent to an
S2 × E2-manifold which fibres over S1.

Proof. The infinite cyclic covering space of M determined by an epimorphism
λ : π → Z is a PD3-complex, by Theorem 4.4, and therefore is homotopy equivalent
to S2×S1 (if Ker(λ) ∼= Z is torsion free and w1(M)|Ker(λ) = 0), S2×̃S1 (if Ker(λ) ∼=
Z and w1(M)|Ker(λ) 6= 0), RP 2 × S1 (if Ker(λ) ∼= Z ⊕ (Z/2Z)) or RP 3♯RP 3 (if
Ker(λ) ∼= D). Therefore M is homotopy equivalent to the mapping torus M(φ) of
a self homotopy equivalence of one of these spaces.

The group of free homotopy classes of self homotopy equivalences E(S2 × S1)
is generated by the reflections in each factor and the twist map, and has order 8.
The group E(S2×̃S1) has order 4 [KR90]. Two of the corresponding mapping tori
also arise from self homeomorphisms of S2 × S1. The other two have nonintegral
w1. The group E(RP 2 × S1) is generated by the reflection in the second factor
and by a twist map, and has order 4. As all these mapping tori are also S2- or
RP 2-bundles over the torus or Klein bottle, they are geometric by Theorem 8.

The group E(RP 3♯RP 3) is generated by the reflection interchanging the sum-
mands and the fixed point free involution (cf. page 251 of [Ba’]), and has order 4.
Let α = (−I, 0,

(−1 0
0 1

)
), β = (I, ( 1

0 ) , I) γ = (I, ( 0
1 ) , I) and δ = (−I, ( 0

1 ) , I) Then
the subgroups generated by {α, β, γ}, {α, β, δ}, {α, βγ} and {α, βδ}, respectively,
give the four RP 3♯RP 3-bundles. (Note that these may be distinguished by their
groups and orientation characters). �

A T -bundle over RP 2 which does not also fibre over S1 has fundamental group
D ∗Z D, while the group of a Kb-bundle over RP 2 which does not also fibre over
S1 is D ∗Z (Z ⊕ (Z/2Z)) or Z ∗Z D (assuming throughout that π is virtually Z2).

When π is torsion free every homomorphism from π to Z/2Z arises as the
orientation character for some M with fundamental group π. However if π ∼=
D×Z or D×̃Z the orientation character must be trivial on all elements of order 2,
while if F 6= 1 the orientation character is determined up to composition with an
automorphism of π.

Theorem 10.13. Let M be a closed 4-manifold with χ(M) = 0 and such that
π = π1(M) is an extension of Z by an almost finitely presentable infinite normal
subgroup N with a nontrivial finite normal subgroup F . Then M is homotopy
equivalent to the mapping torus of a self homeomorphism of RP 2 × S1.

Proof. Let M̃ be the universal covering space of M . Since N is infinite

and finitely generated π has one end, and so Hi(M̃ ; Z) = 0 for i 6= 0 or 2. Let

Π = π2(M) = H2(M̃ ; Z). We wish to show that Π ∼= Z, and that w = w1(M)

maps F isomorphically onto {±1}. Since β
(2)
1 (π) = 0 by Lemma 2.1, there is an

isomorphism of left Z[π]-modules Π ∼= H2(π; Z[π]), by Theorem 3.4. An LHSSS

argument then gives Π ∼= H1(N ; Z[N ]), which is a free abelian group.
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The normal closure of F in π is the product of the conjugates of F , which are
finite normal subgroups of N , and so is locally finite. If it is infinite then N has one
end and so Hs(π; Z[π]) = 0 for s ≤ 2, by an LHSSS argument. Since locally finite

groups are amenable β
(2)
1 (π) = 0, by Theorem 2.3, and so M must be aspherical, by

Corollary 3.5.2, contradicting the hypothesis that π has nontrivial torsion. Hence
we may assume that F is normal in π.

Let f be a nontrivial element of F . Since F is normal in π the centralizer Cπ(f)
of f has finite index in π, and we may assume without loss of generality that F is
generated by f and is central in π. It follows from the spectral sequence for the

projection of M̃ onto M̃/F that there are isomorphisms Hs+3(F ; Z) ∼= Hs(F ; Π)

for all s ≥ 4, since M̃/F is a 4-dimensional complex. Here F acts trivially on Z,
but we must determine its action on Π.

Now central elements n ofN act trivially onH1(N ; Z[N ]) and hence via w(n) on
Π. (See Theorem 2.11). Thus if w(f) = 1 the sequence 0 → Z/|f |Z → Π → Π → 0
is exact, where the right hand homomorphism is multiplication by |f |. As Π is
torsion free this contradicts f 6= 1. Therefore if f is nontrivial it has order 2 and
w(f) = −1. Hence w : F → {±1} is an isomorphism and there is an exact sequence
0 → Π → Π → Z/2Z → 0, where the left hand homomorphism is multiplication by

2. Since Π is a free abelian group it must be infinite cyclic, and so M̃ ≃ S2. The
theorem now follows from Theorems 10 and 12. �

The possible orientation characters for the groups with finite abelianization are
restricted by Lemma 3.13, which implies that Ker(w1) must have infinite abelian-
ization. For D ∗Z D we must have w1(x) = w1(y) = 1 and w1(s) = 0. For
D ∗Z (Z ⊕ (Z/2Z)) we must have w1(s) = 0 and w1(x) = 1; since the subgroup
generated by the commutator subgroup and y is isomorphic to D×Z we must also
have w1(y) = 0. Thus the orientation characters are uniquely determined for these
groups. For Z ∗Z D we must have w1(x) = 1, but w1(t) may be either 0 or 1. As
there is an automorphism φ of Z ∗Z D determined by φ(t) = xt and φ(x) = x we
may assume that w1(t) = 0 in this case.

In all cases, to each choice of orientation character there corresponds a unique
action of π on π2(M), by Lemma 3. However the homomorphism from π to Z/2Z
determining the action may differ from w1(M). (Note also that elements of order
2 must act nontrivially, by Theorem 1).

We shall need the following lemma about plane bundles over RP 2 in order to
calculate self intersections here and in Chapter 12.

Lemma 10.14. The total space of the R2-bundle p over RP 2 with w1(p) = 0
and w2(p) 6= 0 is S2 ×R2/〈g〉, where g(s, v) = (−s,−v) for all (s, v) ∈ S2 ×R2.

Proof. Let [s] and [s, v] be the images of s in RP 2 and of (s, v) in N =
S2 × R2/〈g〉, respectively, and let p([s, v]) = [s], for s ∈ S2 and v ∈ R2. Then
p : N → RP 2 is an R2-bundle projection, and w1(N) = p∗w1(RP

2), so w1(p) = 0.
Let σt([s]) = [s, t(x, y)], where s = (x, y, z) ∈ S2 and t ∈ R. The embedding σt :
RP 2 → N is isotopic to the 0-section σ0, and σt(RP

2) meets σ0(RP
2) transversally

in one point, if t > 0. Hence w2(p) 6= 0. �

As w1(p) = 0 the Euler class e(p) ∈ H2(RP 2; Z) = Z/2Z and its mod-2
reduction w2(p) ∈ H2(RP 2; F2) determine each other.
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Lemma 10.15. Let M be the S2 ×E2-manifold with π1(M) ∼= Z ∗Z D generated

by the isometries (−I,
(

0
1
2

)
,
(−1 0

0 1

)
) and (−I,

(
1
2
1
2

)
,−I). Then v2(M) = U2 and

U4 = 0 in H4(M ; F2).

Proof. This manifold is fibred over RP 2 with fibre Kb. As
(

1
4
1
4

)
is a fixed

point of the involution (
(

1
2
1
2

)
,−I) of R2 there is a cross-section given by σ([s]) =

[s,
(

1
4
1
4

)
] Hence H2(M ; F2) has a basis represented by embedded copies of Kb and

RP 2, with self-intersection numbers 0 and 1, respectively. (See Lemma 14). Thus
the characteristic element for the intersection pairing is [Kb], and v2(M) is the
Poincaré dual to [Kb]. The cohomology class U ∈ H1(M ; F2) is induced from the
generator of H1(RP 2; F2). Applying the projection formula we see that p∗(U2 ∩
σ∗[RP 2]) = 1 and p∗(U2 ∩ [Kb]) = 0. Hence we have also v2(M) = U2 and so
U4 = 0. �

This lemma is used below to compute some products in H∗(Z∗ZD; F2). Ideally,
we would have a purely algebraic argument.

Theorem 10.16. Let M be a closed 4-manifold such that π2(M) ∼= Z and
β1(M) = χ(M) = 0, and let π = π1(M). Let U be the cohomology class in
H1(π; F2) corresponding to the action u : π → Aut(π2(M)). Then v2(M) = U2

and k1(M) = βu(U2) ∈ H3(π;Zu), in all cases.

Proof. We shall consider the three possible fundamental groups in turn.
D ∗Z D : Since x, y and xs have order 2 in D ∗Z D they act nontrivially, and so
K = 〈s, t〉 ∼= Z2. Let S, T, U be the basis for H1(π; F2) determined by the equations
S(t) = S(x) = T (s) = T (x) = U(s) = U(t) = 0. It follows easily from the LHSSS
for π as an extension of Z/2Z by K that H2(π; F2) has dimension ≤ 4. We may
check that the classes {U2, US, UT, ST } are linearly independent, by restriction to
K and to the cyclic subgroups generated by x, xs and xt. Therefore they form a
basis of H2(π; F2), which isomorphic to H2(M ; F2) by Lemma 4. An element of
π has order 2 if and only if it is of the form xsmtn for some (m,n) ∈ Z2. It is
easy to check that the only linear combination aU2 + bUS+ cUT + dST which has
nonzero restriction to all subgroups of order 2 is U2. Hence k1(M) = βu(U2). The
squares S2 and T 2 must be linear combinations of the above basis elements. On
restricting such linear combinations to subgroups as above we find that S2 = US
and T 2 = UT . Hence (US)2 = USU2, (UT )2 = UTU2 and (ST )2 = STU2, so
v2(M) = U2.
D ∗Z (Z⊕ (Z/2Z)) : Since x, y and xs have order 2 in D ∗Z (Z ⊕ (Z/2Z)) they act
nontrivially, and so K = 〈s, t〉 ∼= Z×−1Z. Let S, T, U be the basis for H1(π; F2)
determined by the equations S(t) = S(x) = T (s) = T (x) = U(s) = U(t) = 0. We
again see that H2(π; F2) has dimension ≤ 4, and that {U2, US, UT, ST } forms a
basis for H2(π; F2) ∼= H2(M ; F2). An element of π has order 2 if and only if it
is of the form xsmtn for some (m,n) ∈ Z2, with either m = 0 or n even. Hence
U2 and U2 + ST are the only elements of H2(π; F2) with nonzero restriction to all
subgroups of order 2. Now H1(π;Zu) ∼= Z ⊕ (Z/2Z) and H1(π; F2) ∼= (Z/2Z)3.
Since π/K = Z/2Z acts nontrivially on H1(K; Z) it follows from the LHSSS with

coefficients Zu that H2(π;Zu) ≤ E0,2
2 = Z/2Z. As the functions f(xasmtn) =

(−1)an and g(xasmtn) = (1 − (−1)a)/2 define crossed homomorphisms from G to
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Zu (i.e., f(wz) = u(w)f(z) + f(w) for all w, z in G) which reduce modulo (2)
to T and U , respectively, H2(π;Zu) is generated by βu(S) and has order 2. We
may check that βu(S) = ST , by restriction to the subgroups generated by {x, xs},
{x, xt} and K. Hence k1(M) = βu(U2) = βu(U2 + ST ). We again find that
S2 = US and T 2 = UT , by restriction to the subgroups generated by {x, xs},
{x, xt} and K. Hence v2(M) = U2.
Z ∗Z D : If π ∼= Z ∗Z D then π/π′ ∼= (Z/4Z) ⊕ (Z/2Z) and we may assume
that K ∼= Z×−1Z is generated by r and s. Let S,U be the basis for H1(π; F2)
determined by the equations S(x) = U(s) = 0. In the LHSSS all differentials ending
on the bottom row must be 0, since π is a semidirect product of Z/2Z with the
normal subgroup K. Since Hp(Z/2Z;H1(K; F2)) = 0 for all p > 0, it follows that
Hn(π; F2) has dimension 2, for all n ≥ 1. In particular, H2(M ; F2) ∼= H2(π; F2)
has a basis {U2, V }, where V |K generates H2(K; F2). Moreover H4(M ; F2) is a
quotient of H4(π; F2).

It follows from Lemma 15 that if V ∈ H2(π; F2) restricts to a generator of
H2(K; F2) then {U4, U2V } is a basis for H4(π; F2) and V 2 = U2V + mU4 in
H4(π; F2), for some m = 0 or 1. Let σ : Z/2Z → π be the inclusion of the subgroup
〈x〉, which splits the projection onto π/K. Then σ∗(V ) = σ∗(U2) or 0, while
σ∗U4 6= 0 in H4(π; F2) Hence mσ∗(U4) = σ∗(V 2 + U2V ) = 0 and so V 2 = U2V
in H4(π; F2). Therefore if M is any closed 4-manifold with π1(M) ∼= Z ∗Z D and
χ(M) = 0 the image of U4 in H4(M ; F2) must be 0, and hence v2(M) = U2, by
Poincaré duality.

Let f : π → F2 be the function defined by f(k) = f(rsk) = f(xrk) = f(xrsk) =
0 and f(rk) = f(sk) = f(xk) = f(xsk) = 1 for all k ∈ K ′. Then U(g)S(h) = f(g)+
f(h)+f(gh) for all g, h ∈ π, and so US = 0 in H2(π; F2). Since U3U = U3S = 0 in
H4(M ; F2) the image of U3 in H3(M ; F2) must also be 0, by Poincaré duality. Now
k1(M) has image 0 in H3(M ; F2) and nonzero restriction to subgroups of order 2.
Therefore k1(M) = βu(U2), as reduction modulo (2) is injective, by Lemma 4. �

The example M = RP 2 × T has v2(M) = 0 and k1(M) 6= 0, and so in general
k1(M) need not equal βu(v2(M)). Is it always βu(U2)?

Corollary 10.16.1. The covering space associated to K = Ker(u) is homeo-
morphic to S2 × T if π ∼= D ∗Z D and to S2 × Kb if π ∼= D ∗Z (Z ⊕ (Z/2Z)) or
Z ∗Z D.

Proof. Since ρ is Z2 or Z×−1Z these assertions follow from Theorem 6.11,
on computing the Stiefel-Whitney classes of the double cover. Since D ∗Z D acts
orientably on the euclidean plane R2 we have w1(M) = U , by Lemma 3, and
so w2(M) = v2(M) + w1(M)2 = 0. Hence the double cover is S2 × T . If π ∼=
D ∗Z (Z ⊕ (Z/2Z)) or Z ∗Z D then w1(M)|K = w1(K), while w2(M)|K = 0, so the
double cover is S2 ×Kb, in both cases. �

The S2 ×E2-manifolds with groups D ∗Z D and D ∗Z (Z ⊕ (Z/2Z)) are unique
up to affine diffeomorphism. In each case there is at most one other homotopy type
of closed 4-manifold with this fundamental group and Euler characteristic 0, by
the theorem. Are the two affine diffeomorphism classes of S2 × E2-manifolds with
π ∼= Z ∗Z D homotopy equivalent? There are again at most 2 homotopy types.
In summary, there are 22 affine diffeomorphism classes of closed S2 ×E2-manifolds
and between 21 and 24 homotopy types of closed 4-manifolds with universal cover
S2 ×R2 and Euler characteristic 0.
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10.6. Some remarks on the homeomorphism types

In Chapter 6 we showed that if π is Z2 or Z×−1Z thenM must be homeomorphic
to the total space of an S2-bundle over the torus or Klein bottle, and we were able
to estimate the size of the structure sets when π has Z/2Z as a direct factor. The
other groups of Theorem 11 are not “square-root closed accessible” and we have
not been able to compute the surgery obstruction groups completely. However
the Mayer-Vietoris sequences of [Ca73] are exact modulo 2-torsion, and we may
compare the ranks of [SM ;G/TOP ] and L5(π,w1). This is sufficient in some cases
to show that the structure set is infinite. For instance, the rank of L5(D × Z) is
3 and that of L5(D×̃Z) is 2, while the rank of L5(D ∗Z (Z ⊕ (Z/2Z)), w1) is 2.
(The groups L∗(π) ⊗ Z[ 12 ] have been computed for all cocompact planar groups
π [LS00]). If M is orientable and π ∼= D × Z or D ×τ Z then [SM ;G/TOP ] ∼=
H3(M ; Z)⊕H1(M ; F2) ∼= H1(M ; Z)⊕H1(M ; F2) has rank 1. Therefore STOP (M)
is infinite. If π ∼= D∗Z (Z⊕(Z/2Z)) then H1(M ; Q) = 0, H2(M ; Q) = H2(π; Q) = 0
and H4(M ; Q) = 0, since M is nonorientable. Hence H3(M ; Q) ∼= Q, since χ(M) =
0. Therefore [SM ;G/TOP ] again has rank 1 and STOP (M) is infinite. These
estimates do not suffice to decide whether there are infinitely many homeomorphism
classes in the homotopy type of M . To decide this we need to study the action
of the group E(M) on STOP (M). A scheme for analyzing E(M) as a tower of
extensions involving actions of cohomology groups with coefficients determined by
Whitehead’s Γ-functors is outlined on page 52 of [Ba’].





CHAPTER 11

Manifolds covered by S3 × R

In this chapter we shall show that a closed 4-manifold M is covered by S3 ×R
if and only if π = π1(M) has two ends and χ(M) = 0. Its homotopy type is
then determined by π and the first k-invariant k1(M). The maximal finite normal
subgroup of π is either the group of a S3-manifold or one of the groups Q(8a, b, c)×
Z/dZ with a, b, c and d odd. (There are examples of the latter type, and no such
M is homotopy equivalent to a S3 × E1-manifold). The possibilities for π are not
yet known even when F is a S3-manifold group and π/F ∼= Z. Solving this problem
may involve first determining which k-invariants are realizable when F is cyclic;
this is also not yet known.

Manifolds which fibre over RP 2 with fibre T or Kb and ∂ 6= 0 have universal
cover S3×R. In §6 we determine the possible fundamental groups, and show that an
orientable 4-manifold M with such a group and with χ(M) = 0 must be homotopy
equivalent to a S3 × E1-manifold which fibres over RP 2.

As groups with two ends are virtually solvable, surgery techniques may be used
to study manifolds covered by S3 × R. However computing Wh(π) and L∗(π;w1)
is a major task. Simple estimates suggest that there are usually infinitely many
nonhomeomorphic manifolds within a given homotopy type.

11.1. Invariants for the homotopy type

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S3 is based on the structure of groups with two ends.

Theorem 11.1. Let M be a closed 4-manifold with fundamental group π. Then

M̃ ≃ S3 if and only if π has two ends and χ(M) = 0. If so

(1) M is finitely covered by S3 × S1 and so M̃ ∼= S3 ×R ∼= R4\{0};
(2) the maximal finite normal subgroup F of π has cohomological period divid-

ing 4, acts trivially on π3(M) ∼= Z and the corresponding covering space
MF has the homotopy type of an orientable finite PD3-complex;

(3) the homotopy type of M is determined by π and the orbit of the first
nontrivial k-invariant k(M) ∈ H4(π;Zw) under Out(π) × {±1}; and

(4) the restriction of k(M) to H4(F ;Z) is a generator.

Proof. If M̃ ≃ S3 then H1(π; Z[π]) ∼= Z and so π has two ends. Hence π is
virtually Z. The covering space MA corresponding to an infinite cyclic subgroup
A is homotopy equivalent to the mapping torus of a self homotopy equivalence of

S3 ≃ M̃ , and so χ(MA) = 0. As [π : A] <∞ it follows that χ(M) = 0 also.

Suppose conversely that χ(M) = 0 and π is virtually Z. Then H3(M̃ ; Z) ∼= Z

and H4(M̃ ; Z) = 0. Let MZ be an orientable finite covering space with fundamental
group Z. Then χ(MZ) = 0 and so H2(MZ ; Z) = 0. The homology groups of
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M̃ = M̃Z may be regarded as modules over Z[t, t−1] ∼= Z[Z]. Multiplication by

t − 1 maps H2(M̃ ; Z) onto itself, by the Wang sequence for the projection of M̃

onto MZ . Therefore HomZ[Z](H2(M̃ ; Z),Z[Z]) = 0 and so π2(M) = π2(MZ) = 0,

by Lemma 3.3. Therefore the map from S3 to M̃ representing a generator of
π3(M) is a homotopy equivalence. Since MZ is orientable the generator of the

group of covering translations Aut(M̃/MZ) ∼= Z is homotopic to the identity, and

so MZ ≃ M̃ × S1 ≃ S3 × S1. Therefore MZ
∼= S3 × S1, by surgery over Z. Hence

M̃ ∼= S3 ×R.
Let F be the maximal finite normal subgroup of π. Since F acts freely on

M̃ ≃ S3 it has cohomological period dividing 4 and MF = M̃/F is a PD3-complex.
In particular, MF is orientable and F acts trivially on π3(M). The image of
the finiteness obstruction for MF under the “geometrically significant injection”
of K0(Z[F ]) into Wh(F ×Z) of [Rn86] is the obstruction to MF × S1 being a sim-
ple PD-complex. If f : MF → MF is a self homotopy equivalence which induces the
identity on π1(MF ) ∼= F and on π3(MF ) ∼= Z then f is homotopic to the identity,
by obstruction theory. (See [Pl82]). Therefore π0(E(MF )) is finite and so M has a
finite cover which is homotopy equivalent to MF × S1. Since manifolds are simple
PDn-complexes MF must be finite.

The first nonzero k-invariant lies in H4(π;Zw), since π2(M) = 0 and π acts on
π3(M) ∼= Z via the orientation character. As it restricts to the k-invariant for MF

in H4(F ;Zw) it generates this group, and (4) follows as in Theorem 2.9. �

The list of finite groups with cohomological period dividing 4 is well known (see
[DM85]). There are the generalized quaternionic groups Q(2na, b, c) (with n ≥ 3
and a, b, c odd), the extended binary tetrahedral groups T ∗

k , the extended binary
octahedral groups O∗

k, the binary icosahedral group I∗, the dihedral groups A(m, e)
(with m odd > 1), and the direct products of any one of these with a cyclic group
Z/dZ of relatively prime order. (In particular, a p-group with periodic cohomology
is cyclic if p is odd and cyclic or quaternionic if p = 2). We shall give presentations
for these groups in §2.

Each such group F is the fundamental group of some PD3-complex [Sw60].
Such Swan complexes for F are orientable, and are determined up to homotopy
equivalence by their k-invariants, which are generators of H3(F ; Z) ∼= Z/|F |Z, by
Theorem 2.9. Thus they are parametrized up to homotopy by the quotient of
(Z/|F |Z)× under the action of Out(F ) × {±1}. The set of finiteness obstructions

for all such complexes forms a coset of the “Swan subgroup” of K̃0(Z[F ]) and there
is a finite complex of this type if and only if the coset contains 0. (This condition
fails if F has a subgroup isomorphic to Q(16, 3, 1) and hence if F ∼= O∗

k × (Z/dZ)
for some k > 1, by Corollary 3.16 of [DM85]). If X is a Swan complex for F then
X × S1 is a finite PD+

4 -complex with π1(X × S1) ∼= F × Z and χ(X × S1) = 0.
If π/F ∼= Z then k(M) is a generator of H4(π;π3(M)) ∼= H4(F ; Z) ∼= Z/|F |Z.

If π/F ∼= D then π ∼= G ∗F H , where [G : F ] = [H : F ] = 2, and H4(π; Z) ∼=
{(ζ, ξ) ∈ (Z/|G|Z)⊕ (Z/|H |Z) | ζ ≡ ξ mod (|F |)} ∼= (Z/2|F |Z)⊕ (Z/2Z), and the
k-invariant restricts to a generator of each of the groups H4(G; Z) and H4(H ; Z).
In particular, if π ∼= D the k-invariant is unique, and so any closed 4-manifold M
with π1(M) ∼= D and χ(M) = 0 is homotopy equivalent to RP 4♯RP 4.
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Theorem 11.2. Let M be a closed 4-manifold such that π = π1(M) has two
ends and with χ(M) = 0. Then the group of unbased homotopy classes of self
homotopy equivalences of M is finite.

Proof. We may assume that M has a finite cell structure with a single 4-cell.
Suppose that f : M → M is a self homotopy equivalence which fixes a base point
and induces the identity on π and on π3(M) ∼= Z. Then there are no obstructions
to constructing a homotopy from f to id

M̃
on the 3-skeleton M0 = M\intD4, and

since π4(M) = π4(S
3) = Z/2Z there are just two possibilities for f . It is easily

seen that Out(π) is finite. Since every self map is homotopic to one which fixes a
basepoint the group of unbased homotopy classes of self homotopy equivalences of
M is finite. �

If π is a semidirect product F ×θ Z then Aut(π) is finite and the group of based
homotopy classes of based self homotopy equivalences is also finite.

11.2. The action of π/F on F

Let F be a finite group with cohomological period dividing 4. Automorphisms
of F act on H∗(F ; Z) and H∗(F ; Z) through Out(F ), since inner automorphisms
induce the identity on (co)homology. Let J+(F ) be the kernel of the action on
H3(F ; Z), and let J(F ) be the subgroup of Out(F ) which acts by ±1.

An outer automorphism class induces a well defined action on H4(S; Z) for
each Sylow subgroup S of F , since all p-Sylow subgroups are conjugate in F and
the inclusion of such a subgroup induces an isomorphism from the p-torsion of
H4(F ; Z) ∼= Z/|F |Z to H4(S; Z) ∼= Z/|S|Z, by Shapiro’s Lemma. Therefore an
outer automorphism class of F induces multiplication by r on H4(F ; Z) if and only
if it does so for each Sylow subgroup of F , by the Chinese Remainder Theorem.

The map sending a self homotopy equivalence h of a Swan complex XF for F to
the induced outer automorphism class determines a homomorphism from the group
of (unbased) homotopy classes of self homotopy equivalences E(XF ) to Out(F ).
The image of this homomorphism is J(F ), and it is a monomorphism if |F | > 2, by
Corollary 1.3 of [Pl82]. (Note that [Pl82] works with based homotopies). If F = 1
or Z/2Z the orientation reversing involution of XF (≃ S3 or RP 3, respectively)
induces the identity on F .

Lemma 11.3. Let M be a closed 4-manifold with universal cover S3 × R, and
let F be the maximal finite normal subgroup of π = π1(M). The quotient π/F acts
on π3(M) and H4(F ; Z) through multiplication by ±1. It acts trivially if the order
of F is divisible by 4 or by any prime congruent to 3 modulo (4).

Proof. The group π/F must act through ±1 on the infinite cyclic groups
π3(M) andH3(MF ; Z). By the universal coefficient theoremH4(F ; Z) is isomorphic
to H3(F ; Z), which is the cokernel of the Hurewicz homomorphism from π3(M) to
H3(MF ; Z). This implies the first assertion.

To prove the second assertion we may pass to the Sylow subgroups of F , by
Shapiro’s Lemma. Since the p-Sylow subgroups of F also have cohomological period
4 they are cyclic if p is an odd prime and are cyclic or quaternionic (Q(2n)) if
p = 2. In all cases an automorphism induces multiplication by a square on the
third homology [Sw60]. But −1 is not a square modulo 4 nor modulo any prime
p = 4n+ 3. �



160 11. MANIFOLDS COVERED BY S3 × R

Thus the groups π ∼= F ⋊ Z realized by such 4-manifolds correspond to outer
automorphisms in J(F ) or J+(F ). We shall next determine these subgroups of
Out(F ) for F a group of cohomological period dividing 4. If m is an integer let
l(m) be the number of odd prime divisors of m.

Z/dZ = 〈x | xd = 1〉.
Out(Z/dZ) = Aut(Z/dZ) = (Z/dZ)×.

Hence J(Z/dZ) = {s ∈ (Z/dZ)× | s2 = ±1}. J+(Z/dZ) = (Z/2Z)l(d) if d 6≡ 0 (4),
(Z/2Z)l(d)+1 if d ≡ 4 (8), and (Z/2Z)l(d)+2 if d ≡ 0 (8).

Q(8) = 〈x, y | x2 = y2 = (xy)2〉.
An automorphism of Q = Q(8) induces the identity on Q/Q′ if and only if it

is inner, and every automorphism of Q/Q′ lifts to one of Q. In fact Aut(Q) is the
semidirect product of Out(Q) ∼= Aut(Q/Q′) ∼= SL(2,F2) with the normal subgroup
Inn(Q) = Q/Q′ ∼= (Z/2Z)2. Moreover J(Q) = Out(Q), generated by the images
of the automorphisms σ and τ , where σ sends x and y to y and xy, respectively,
and τ interchanges x and y.

Q(8k) = 〈x, y | x4k = 1, x2k = y2, yxy−1 = x−1〉, where k > 1.

All automorphisms of Q(8k) are of the form [i, s], where (s, 2k) = 1, [i, s](x) =
xs and [i, s](y) = xiy, and Aut(Q(8k)) is the semidirect product of (Z/4kZ)× with
the normal subgroup 〈[1, 1]〉 ∼= Z/4kZ. Out(Q(8k)) = (Z/2Z)⊕ ((Z/4kZ)×/(±1)),
generated by the images of the [0, s] and [1,1]. The automorphism [i, s] induces
multiplication by s2 on H4(Q(2n); Z) [Sw60]. Hence J(Q(8k)) = (Z/2Z)l(k)+1 if k
is odd and (Z/2Z)l(k)+2 if k is even.

T ∗
k = 〈Q(8), z | z3k

= 1, zxz−1 = y, zyz−1 = xy〉, where k ≥ 1.

Let ρ be the automorphism which sends x, y and z to y−1, x−1 and z2 respec-
tively. Let ξ, η and ζ be the inner automorphisms determined by conjugation by
x, y and z, respectively (i.e., ξ(g) = xgx−1, and so on). Then Aut(T ∗

k ) has the
presentation

〈ρ, ξ, η, ζ | ρ2.3k−1

= η2 = ζ3 = (ηζ)3 = 1, ρζρ−1 = ζ2, ρηρ−1 = ζ−1ηζ = ξ〉.
An induction on k gives 43k

= 1+m3k+1 for some m ≡ 1 mod (3). Hence the image
of ρ generates Aut(T ∗

k /T
∗
k
′) ∼= (Z/3kZ)×, and so Out(T ∗

k ) ∼= (Z/3kZ)×. The 3-
Sylow subgroup generated by z is preserved by ρ, and it follows that J(T ∗

k ) = Z/2Z

(generated by the image of ρ3k−1

).

O∗
k = 〈T ∗

k , w | w2 = x2, wxw−1 = yx, wzw−1 = z−1〉, where k ≥ 1.

(Note that the relations imply wyw−1 = y−1). As we may extend ρ to an
automorphism of O∗

k via ρ(w) = w−1z2 the restriction from Aut(O∗
k) to Aut(T ∗

k )
is onto. An automorphism in the kernel sends w to wv for some v ∈ T ∗

k , and the
relations for O∗

k imply that v must be central in T ∗
k . Hence the kernel is generated

by the involution α which sends w, x, y, z to w−1 = wx2, x, y, z, respectively. Now

ρ3k−1

= σα, where σ is conjugation by wz in O∗
k, and so the image of ρ generates

Out(O∗
k). The subgroup 〈u, x〉 generated by u = xw and x is isomorphic to Q(16),

and is a 2-Sylow subgroup. As α(u) = u5 and α(x) = x it is preserved by α,
and H4(α|〈u,x〉; Z) is multiplication by 25. As H4(ρ|〈z〉; Z) is multiplication by 4 it
follows that J(O∗

k) = 1.

I∗ = 〈x, y | x2 = y3 = (xy)5〉.
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The map sending the generators x, y to ( 2 0
1 3 ) and y = ( 2 2

1 4 ), respectively,
induces an isomorphism from I∗ to SL(2,F5). Conjugation in GL(2,F5) induces
a monomorphism from PGL(2,F5) to Aut(I∗). The natural map from Aut(I∗)
to Aut(I∗/ζI∗) is injective, since I∗ is perfect. Now I∗/ζI∗ ∼= PSL(2,F5) ∼= A5.
The alternating group A5 is generated by 3-cycles, and has ten 3-Sylow subgroups,
each of order 3. It has five subgroups isomorphic to A4 generated by pairs of
such 3-Sylow subgroups. The intersection of any two of them has order 3, and
is invariant under any automorphism of A5 which leaves invariant each of these
subgroups. It is not hard to see that such an automorphism must fix the 3-cycles.
Thus Aut(A5) embeds in the group S5 of permutations of these subgroups. Since
|PGL(2,F5)| = |S5| = 120 it follows that Aut(I∗) ∼= S5 and Out(I∗) = Z/2Z. The
outer automorphism class is represented by the matrix ω = ( 2 0

0 1 ) in GL(2,F5).

Lemma 11.4 (Pl83). J(I∗) = 1.

Proof. The element γ = x3y = ( 1 1
0 1 ) generates a 5-Sylow subgroup of I∗.

It is easily seen that ωγω−1 = γ2, and so ω induces multiplication by 2 on
H2(Z/5Z; Z) ∼= H1(Z/5Z; Z) = Z/5Z. Since H4(Z/5Z; Z) ∼= Z/5Z is generated by
the square of a generator for H2(Z/5Z; Z) we see that H4(ω; Z) is multiplication
by 4 = −1 on 5-torsion. Hence J(I∗) = 1. �

In fact H4(ω; Z) is multiplication by 49 [Pl83].

A(m, e) = 〈x, y | xm = y2e

= 1, yxy−1 = x−1〉, where e ≥ 1 and m > 1 is odd.

All automorphisms of A(m, e) are of the form [s, t, u], where (s,m) = (t, 2) = 1,
[s, t, u](x) = xs and [s, t, u](y) = xuyt. Out(A(m, e)) is generated by the images of
[s, 1, 0] and [1, t, 0] and is isomorphic to (Z/2e)×⊕ ((Z/mZ)×/(±1)). J(A(m, 1)) =
{s ∈ (Z/mZ)× | s2 = ±1}/(±1),
J(A(m, 2)) = (Z/2Z)l(m), J(A(m, e)) = (Z/2Z)l(m)+1 if e > 2.

Q(2na, b, c) = 〈Q(2n), u | uabc = 1, xuab = uabx, xucx−1 = u−c, yuac = uacy,
yuby−1 = u−b〉, where a, b and c are odd and relatively prime, and either n = 3
and at most one of a, b and c is 1 or n > 3 and bc > 1.

An automorphism of G = Q(2na, b, c) must induce the identity on G/G′.
If it induces the identity on the characteristic subgroup 〈u〉 ∼= Z/abcZ and on
G/〈u〉 ∼= Q(2n) it is inner, and so Out(Q(2na, b, c)) is a subquotient of Out(Q(2n))×
(Z/abcZ)×. In particular, Out(Q(8a, b, c)) ∼= (Z/abcZ)×, and J(Q(8a, b, c)) ∼=
(Z/2Z)l(abc). (We need only consider n = 3, by §5 below).

As Aut(G×H) = Aut(G)×Aut(H) and Out(G×H) = Out(G)×Out(H) if G and
H are finite groups of relatively prime order, we have J+(G × Z/dZ) = J+(G) ×
J+(Z/dZ). In particular, if G is not cyclic or dihedral J(G × Z/dZ) = J+(G ×
Z/dZ) = J(G) × J+(Z/dZ). In all cases except when F is cyclic or Q(8) × Z/dZ
the group J(F ) has exponent 2 and hence π has a subgroup of index at most 4
which is isomorphic to F × Z.

11.3. Extensions of D

We shall now assume that π/F ∼= D. Let u, v ∈ D be a pair of involutions
which generate D and let s = uv. Then s−nusn = us2n, and any involution in D is
conjugate to u or to v = us. Hence any pair of involutions {u′, v′} which generates
D is conjugate to the pair {u, v}, up to change of order.
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Theorem 11.5. Let M be a closed 4-manifold with χ(M) = 0, and such that
there is an epimorphism p : π = π1(M) → D with finite kernel F . Let û and v̂ be
a pair of elements of π whose images u = p(û) and v = p(v̂) in D are involutions
which together generate D. Then

(1) M is nonorientable and û, v̂ each represent orientation reversing loops;
(2) the subgroups G and H generated by F and û and by F and v̂, respectively,

each have cohomological period dividing 4, and the unordered pair {G,H}
of groups is determined up to isomorphisms by π alone;

(3) conversely, π is determined up to isomorphism by the unordered pair
{G,H} of groups with index 2 subgroups isomorphic to F as the free prod-
uct with amalgamation π = G ∗F H;

(4) π acts trivially on π3(M).

Proof. Let ŝ = ûv̂. Suppose that û is orientation preserving. Then the
subgroup σ generated by û and ŝ2 is orientation preserving so the corresponding
covering space Mσ is orientable. As σ has finite index in π and σ/σ′ is finite this
contradicts Lemma 3.13. Similarly, v̂ must be orientation reversing.

By assumption, û2 and v̂2 are in F , and [G : F ] = [H : F ] = 2. If F is
not isomorphic to Q × Z/dZ then J(F ) is abelian and so the (normal) subgroup
generated by F and ŝ2 is isomorphic to F ×Z. In any case the subgroup generated
by F and ŝk is normal, and is isomorphic to F × Z if k is a nonzero multiple
of 12. The uniqueness up to isomorphisms of the pair {G,H} follows from the
uniqueness up to conjugation and order of the pair of generating involutions for D.

Since G and H act freely on M̃ they also have cohomological period dividing 4.
On examining the list above we see that F must be cyclic or the product of Q(8k),
T (v) or A(m, e) with a cyclic group of relatively prime order, as it is the kernel of a
map from G to Z/2Z. It is easily verified that in all such cases every automorphism
of F is the restriction of automorphisms of G and H . Hence π is determined up
to isomorphism as the amalgamated free product G ∗F H by the unordered pair
{G,H} of groups with index 2 subgroups isomorphic to F (i.e., it is unnecessary to
specify the identifications of F with these subgroups).

The final assertion follows because each of the spaces MG = M̃/G and MH =

M̃/H are PD3-complexes with finite fundamental group and therefore are ori-
entable, and π is generated by G and H . �

Must the spaces MG and MH be homotopy equivalent to finite complexes?

11.4. S3 × E1-manifolds

With the exception of O∗
k (with k > 1), A(m, 1) and Q(2na, b, c) (with either

n = 3 and at most one of a, b and c is 1 or n > 3 and bc > 1) and their products with
cyclic groups, all of the groups listed in §2 have fixed point free representations in
SO(4) and so act linearly on S3. (Cyclic groups, the binary dihedral groups D∗

4m =
A(m, 2), with m odd, and D∗

8k = Q(8k, 1, 1), with k ≥ 1 and the three binary
polyhedral groups T ∗

1 , O∗
1 and I∗ are subgroups of S3). We shall call such groups

S3-groups. If F is cyclic then every Swan complex for F is homotopy equivalent to
a lens space. If F = Q(2k) or T ∗

k for some k > 1 then S3/F is the unique finite
Swan complex for F [Th80]. For the other noncyclic S3-groups the corresponding
S3-manifold is unique, but in general there may be other finite Swan complexes.
(In particular, there are exotic finite Swan complexes for T1).
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Let N be a S3-manifold with π1(N) = F . Then the projection of Isom(N) onto
its group of path components splits, and the inclusion of Isom(N) into Diff(N)
induces an isomorphism on path components. Moreover if |F | > 2 then an isometry
which induces the identity outer automorphism is isotopic to the identity, and so
π0(Isom(M)) maps injectively to Out(F ). (See [Mc00]).

Theorem 11.6. Let M be a closed 4-manifold with χ(M) = 0 and π = π1(M) ∼=
F ×θ Z, where F is finite. Then M is homeomorphic to a S3 ×E1-manifold if and
only if M is the mapping torus of a self homeomorphism of a S3-manifold with
fundamental group F , and such manifolds are determined up to homeomorphism by
their homotopy type.

Proof. Let p1 and p2 be the projections of Isom(S3×E1) = O(4)×E(1) onto
O(4) and E(1) respectively. If π is a discrete subgroup of Isom(S3×E1) which acts
freely on S3 × R then p1 maps F monomorphically and p1(F ) acts freely on S3,
since every isometry of R of finite order has nonempty fixed point set. Moreover
p2(π) is a discrete subgroup of E(1) which acts cocompactly on R, and so has no
nontrivial finite normal subgroup. Hence F = π ∩ (O(4) × {1}). If π/F ∼= Z and
t ∈ π represents a generator of π/F then conjugation by t induces an isometry θ
of S3/F , and M ∼= M(θ). Conversely any self homeomorphism of a S3-manifold is
isotopic to an isometry of finite order, and so the mapping torus is homeomorphic
to a S3 × E1-manifold. The final assertion follows from Theorem 3 of [Oh90]. �

If s is an integer such that s2 ≡ ±1 modulo (d) then there is an isometry
of the lens space L(d, s) inducing multiplication by s, and the mapping torus has
fundamental group (Z/dZ)×sZ. (This group may also be realized by mapping tori
of self homotopy equivalences of other lens spaces). If d > 2 a closed 4-manifold
with this group and with Euler characteristic 0 is orientable if and only if s2 ≡ 1 (d).

If F is a noncyclic S3-group there is a unique linear k-invariant, and so for each
θ ∈ Aut(F ) there is at most one homeomorphism class of S3 × E1-manifolds with
fundamental group π = F ×θ Z. Every class in J(F ) is realizable by an orientation
preserving isometry of S3/F , if F = Q(8), T ∗

k , O∗
1 , I∗, A(pi, e), Q(8) × Z/qjZ or

A(pi, 2)×Z/qjZ, where p and q are odd primes and e > 1. For the other S3-groups
the subgroup of J(F ) realizable by homeomorphisms of S3/F is usually quite small.
(See [Mc00]).

Suppose now that G and H are S3-groups with index 2 subgroups isomorphic
to F . If F , G and H are each noncyclic then the corresponding S3-manifolds are
uniquely determined, and we may construct a nonorientable S3 ×E1-manifold with
fundamental group π = G ∗F H as follows. Let u and v : S3/F → S3/F be the
covering involutions with quotient spaces S3/G and S3/H , respectively, and let
φ = uv. (Note that u and v are isometries of S3/F ). Then U([x, t]) = [u(x), 1 − t]
defines a fixed point free involution on the mapping torus M(φ) and the quotient
space has fundamental group π. A similar construction works if F is cyclic and
G ∼= H or if G is cyclic.

11.5. Realization of the groups

Let F be a finite group with cohomological period dividing 4, and let XF denote
a finite Swan complex for F . If θ is an automorphism of F which induces ±1 on
H3(F ; Z) there is a self homotopy equivalence h of XF which induces [θ] ∈ J(F ).
The mapping torus M(h) is a finite PD4-complex with π1(M) ∼= F ×θ Z and
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χ(M(h)) = 0. Conversely, every PD4-complex M with χ(M) = 0 and such that
π1(M) is an extension of Z by a finite normal subgroup F is homotopy equivalent
to such a mapping torus. Moreover, if π ∼= F ×Z and |F | > 2 then h is homotopic
to the identity and so M(h) is homotopy equivalent to XF × S1.

Since every PDn-complex may be obtained by attaching an n-cell to a complex
which is homologically of dimension < n, the exotic characteristic class of the
Spivak normal fibration of a PD3-complex X in H3(X ; F2) is trivial. Hence every
3-dimensional Swan complex XF has a TOP reduction, i.e., there are normal maps
(f, b) : N3 → XF . Such a map has a “proper surgery” obstruction λp(f, b) in
Lp3(F ), which is 0 if and only if (f, b) × idS1 is normally cobordant to a simple
homotopy equivalence. In particular, a surgery semicharacteristic must be 0. Hence
all subgroups of F of order 2p (with p prime) are cyclic, and Q(2na, b, c) (with n > 3
and b or c > 1) cannot occur [HM86]. As the 2p condition excludes groups with
subgroups isomorphic to A(m, 1) (withm > 1) the cases remaining to be decided are
when F ∼= Q(8a, b, c)×Z/dZ, where a, b and c are odd and at most one of them is 1.
The main result of [HM86] is that in such a case F×Z acts freely and properly “with
almost linear k-invariant” if and only if some arithmetical conditions depending on
subgroups of F of the form Q(8a, b, 1) hold. (Here “almost linear” means that
all covering spaces corresponding to subgroups isomorphic to A(m, e) × Z/dZ or
Q(8k)×Z/dZ must be homotopy equivalent to S3-manifolds. The constructive part
of the argument may be extended to the 4-dimensional case by reference to [FQ]).

The following more direct argument for the existence of a free proper action of
F×Z on S3×R was outlined in [KS88], for the cases when F acts freely on an homol-

ogy 3-sphere Σ. Let Σ and its universal covering space Σ̃ have equivariant cellular
decompositions lifted from a cellular decomposition of Σ/F , and let Π = π1(Σ/F ).

Then C∗(Σ) = Z[F ] ⊗Π C∗(Σ̃) is a finitely generated free Z[F ]-complex, and may
be realized by a finite Swan complex X . The chain map (over the epimorphism

: Π → F ) from C∗(Σ̃) to C∗(X̃) may be realized by a map h : Σ/F → X , since
these spaces are 3-dimensional. As h× idS1 is a simple Z[F × Z]-homology equiv-
alence it has surgery obstruction 0 in Ls4(F × Z), and so is normally cobordant to
a simple homotopy equivalence. For example, the group Q(24, 313, 1) acts freely
on an homology 3-sphere (see §6 of [DM85]). Is there an explicit action on some
Brieskorn homology 3-sphere? Is Q(24, 313, 1) a 3-manifold group? (This seems
unlikely).

AlthoughQ(24, 13, 1) cannot act freely on any homology 3-sphere [DM85], there
is a closed orientable 4-manifold with fundamental group Q(24, 13, 1)× Z, by the
argument of [HM86]. No such 4-manifold can fibre over S1, since Q(24, 13, 1) is not
a 3-manifold group. Thus such a manifold is a counter example to a 4-dimensional
analogue of the Farrell fibration theorem (of a different kind from that of [We87]),
and is not geometric.

If F = T ∗
k , Q(8k) or A(m, 2) then F × Z can only act freely and properly

on R4\{0} with the k-invariant corresponding to the free linear action of F on
S3. (For the group A(m, 2), this follows from Corollary C of [HM86’], which also
implies that the restriction of the k-invariant to the odd-Sylow subgroup of Q(2nk)
is linear. The nonlinear k-invariants for Q(2n) have nonzero finiteness obstruction.
As the k-invariants of free linear representations of Q(2nk) are given by elements
in H4(Q(2nk); Z) whose restrictions to Z/kZ are squares and whose restrictions to
Q(2n) are squares times the basic generator [Wl78], only the linear k-invariant is
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realizable in this case also). However in general it is not known which k-invariants
are realizable. Every group of the form Q(8a, b, c) × Z/dZ × Z admits an “almost
linear” k-invariant, but there may be other actions. (See [HM86, 86’] for more on
this issue).

In considering the realization of more general extensions of Z or D by finite
normal subgroups the following question seems central. If M is a closed 4-manifold
with π = π1(M) ∼= (Z/dZ) ×s Z where s2 ≡ 1 but s 6≡ ±1 (d) and χ(M) = 0 is M
homotopy equivalent to the S3 × E1-manifold with this fundamental group? Since
M is homotopy equivalent to the mapping torus of a self homotopy equivalence
[s] : L(d, r) → L(d, r) (for some r determined by k(M)), it would suffice to show
that if r 6= ±s or ±s−1 the Whitehead torsion of the duality homomorphism of
M([s]) is nonzero. Proposition 4.1 of [Rn86] gives a formula for the Whitehead
torsion of such mapping tori. Unfortunately the associated Reidemeister-Franz
torsion appears to be 0 in all cases. For other groups F can one use the fact that
a closed 4-manifold is a simple PD4-complex to bound the realizable subgroup of
J(F )?

A positive answer to this question would enhance the interest of the following
subsidiary question. If F is a noncyclic S3-group must an automorphism of F whose
restrictions to (characteristic) cyclic subgroups C < F are realized by isometries
of the corresponding covering spaces of S3/F be realized by an isometry of S3/F?
(In particular, is this so for F = Q(2t) or A(m, 2) with m composite?).

If F is cyclic but neither G nor H is cyclic there may be no geometric manifold
with fundamental group π = G ∗F H . If the double covers of G\S3 and H\S3 are
homotopy equivalent then π is realised by the union of two twisted I-bundles via
a homotopy equivalence, which is a finite (but possibly nonsimple?) PD4-complex
with χ = 0. For instance, the spherical space forms corresponding to G = Q(40)
and H = Q(8) × (Z/5Z) are doubly covered by forms doubly covered by L(20, 1)
and L(20, 9), respectively, which are homotopy equivalent but not homeomorphic.
The spherical space forms corresponding to G = Q(24) and H = Q(8) × (Z/3Z)
are doubly covered by L(12, 1) and L(12, 5), respectively, which are not homotopy
equivalent.

11.6. T - and Kb-bundles over RP 2 with ∂ 6= 0

Let p : E → RP 2 be a bundle with fibre T or Kb. Then π = π1(E) is an
extension of Z/2Z by G/∂Z, where G is the fundamental group of the fibre and
∂ is the connecting homomorphism. If ∂ 6= 0 then π has two ends, F is cyclic
and central in G/∂Z and π acts on it by inversion, since π acts nontrivially on
Z = π2(RP

2).
If the fibre is T then π has a presentation of the form 〈t, u, v | uv = vu, un =

1, tut−1 = u−1, tvt−1 = uavǫ, t2 = ubvc〉, where n > 0 and ǫ = ±1. Either
(i) F is cyclic, π ∼= (Z/nZ) ×−1 Z and π/F ∼= Z; or
(ii) F = 〈s, u | s2 = um, sus−1 = u−1〉. (Note that F cannot be dihedral). If
m is odd F ∼= A(m, 2) while if m = 2rk with r ≥ 1 and k odd F ∼= Q(2r+2k).
On replacing v by u[a/2]v, if necessary, we may arrange that a = 0 (in which case
π ∼= F × Z) or a = 1 (in which case π = 〈t, u, v | t2 = um, tut−1 = u−1, vtv−1 =
tu, uv = vu〉, so π/F ∼= Z); or (if ǫ = −1)
(iii) F is cyclic, π = 〈s, t, u | s2 = t2 = ub, sus−1 = tut−1 = u−1〉 and π/F ∼= D.
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If the fibre is Kb then π has a presentation of the form 〈t, u, w | uwu−1 =
w−1, un = 1, tut−1 = u−1, twt−1 = uawǫ, t2 = ubwc〉, where n > 0 is even (since
Im(∂) ≤ ζπ1(Kb)) and ǫ = ±1. On replacing t by ut, if necessary, we may assume
that ǫ = 1. Moreover, tw2t−1 = w±2 since w2 generates the commutator subgroup
of G/∂Z, so a is even and 2a ≡ 0 mod (n), t2u = ut2 implies that c = 0, and
t.t2.t−1 = t2 implies that 2b ≡ 0 mod (n). As F is generated by t and u2, and
cannot be dihedral, we must have n = 2b. Moreover b must be even, as w has
infinite order and t2w = wt2. Therefore
(iv) F ∼= Q(8k), π = 〈t, u, w | uwu−1 = w−1, tut−1 = u−1, tw = uawt, t2 = u2k〉
and π/F ∼= D.
In all cases π has a subgroup of index at most 2 which is isomorphic to F × Z.

Each of these groups is the fundamental group of such a bundle space. (This
may be seen by using the description of such bundle spaces given in §5 of Chapter 5).
Orientable 4-manifolds which fibre over RP 2 with fibre T and ∂ 6= 0 are mapping
tori of involutions of S3-manifolds, and if F is not cyclic two such bundle spaces
with the same group are diffeomorphic [Ue91].

Theorem 11.7. Let M be a closed orientable 4-manifold with fundamental
group π. Then M is homotopy equivalent to an S3 ×E1-manifold which fibres over
RP 2 if and only χ(M) = 0 and π is of type (i) or (ii) above.

Proof. If M is an orientable S3 ×E1-manifold then χ(M) = 0 and π/F ∼= Z,
by Theorem 1 and Lemma 3.13. Moreover π must be of type (i) or (ii) if M fibres
over RP 2, and so the conditions are necessary.

Suppose that they hold. Then M̃ ∼= R4\{0} and the homotopy type of M

is determined by π and k(M), by Theorem 1. If F ∼= Z/nZ then MF = M̃/F
is homotopy equivalent to some lens space L(n, s). As the involution of Z/nZ
which inverts a generator can be realized by an isometry of L(n, s), M is homotopy
equivalent to an S3 × E1-manifold which fibres over S1.

If F ∼= Q(2r+2k) or A(m, 2) then F × Z can only act freely and properly
on R4\{0} with the “linear” k-invariant [HM86]. Therefore MF is homotopy
equivalent to a spherical space form S3/F . The class in Out(Q(2r+2k)) repre-
sented by the automorphism which sends the generator t to tu and fixes u is in-
duced by conjugation in Q(2r+3k) and so can be realized by a (fixed point free)
isometry θ of S3/Q(2r+2k). Hence M is homotopy equivalent to a bundle space
(S3/Q(2r+2k)) × S1 or (S3/Q(2r+2k)) ×θ S1 if F ∼= Q(2r+2k). A similar conclu-
sion holds when F ∼= A(m, 2) as the corresponding automorphism is induced by
conjugation in Q(23d).

With the results of [Ue91] it follows in all cases that M is homotopy equivalent
to the total space of a torus bundle over RP 2. �

Theorem 7 makes no assumption that there be a homomorphism u : π → Z/2Z
such that u∗(x)3 = 0 (as in §5 of Chapter 5). If F is cyclic or A(m, 2) this condition
is a purely algebraic consequence of the other hypotheses. For let C be a cyclic
normal subgroup of maximal order in F . (There is an unique such subgroup,
except when F = Q(8)). The centralizer Cπ(C) has index 2 in π and so there is a
homomorphism u : π → Z/2Z with kernel Cπ(C).

When F is cyclic u factors through Z and so the induced map on cohomology
factors through H3(Z; Z̃) = 0.
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When F ∼= A(m, 2) the 2-Sylow subgroup is cyclic of order 4, and the inclusion
of Z/4Z into τ induces isomorphisms on cohomology with 2-local coefficients. In

particular, Hq(F ; Z̃(2)) = 0 or Z/2Z according as q is even or odd. It follows easily

that the restriction from H3(π; Z̃(2)) to H3(Z/4Z; Z̃(2)) is an isomorphism. Let y

be the image of u∗(x) in H1(Z/4Z; Z̃(2)) = Z/2Z. Then y2 is an element of order

2 in H2(Z/4Z; Z̃(2) ⊗ Z̃(2)) = H2(Z/4Z;Z(2)) ∼= Z/4Z, and so y2 = 2z for some

z ∈ H2(Z/4Z;Z(2)). But then y3 = 2yz = 0 in H3(Z/4Z; Z̃(2)) = Z/2Z, and so

u∗(x)3 has image 0 in H3(π; Z̃(2)) = Z/2Z. Since x is a 2-torsion class this implies

that u∗(x)3 = 0.
Is there a similar argument when F is a generalized quaternionic group?
If M is nonorientable, χ(M) = 0 and has fundamental group π of type (i) or (ii)

then M is homotopy equivalent to the mapping torus of the orientation reversing
self homeomorphism of S3 or of RP 3, and does not fibre over RP 2. If π is of
type (iii) or (iv) then the 2-fold covering space with fundamental group F × Z is
homotopy equivalent to a product L(n, s) × S1. However we do not know which
k-invariants give total spaces of bundles over RP 2.

11.7. Some remarks on the homeomorphism types

In this brief section we shall assume that M is orientable and that π ∼= F ×θ Z.
In contrast to the situation for the other geometries, the Whitehead groups of
fundamental groups of S3 × E1-manifolds are usually nontrivial. Computation of
Wh(π) is difficult as the Nil groups occuring in the Waldhausen exact sequence
relating Wh(π) to the algebraic K-theory of F seem intractable.

We can however compute the relevant surgery obstruction groups modulo 2-
torsion and show that the structure sets are usually infinite. There is a Mayer-
Vietoris sequence Ls5(F ) → Ls5(π) → Lu4 (F ) → Ls4(F ), where the superscript u
signifies that the torsion must lie in a certain subgroup of Wh(F ) [Ca73]. The
right hand map is (essentially) θ∗ − 1. Now Ls5(F ) is a finite 2-group and Lu4 (F ) ∼
Ls4(F ) ∼ ZR modulo 2-torsion, where R is the set of irreducible real representations
of F (see Chapter 13A of [Wl]). The latter correspond to the conjugacy classes of
F , up to inversion. (See §12.4 of [Se]). In particular, if π ∼= F ×Z then Ls5(π) ∼ ZR

modulo 2-torsion, and so has rank at least 2 if F 6= 1. As [ΣM,G/TOP ] ∼= Z
modulo 2-torsion and the group of self homotopy equivalences of such a manifold
is finite, by Theorem 3, there are infinitely many distinct topological 4-manifolds
simple homotopy equivalent to M . For instance, as Wh(Z ⊕ (Z/2Z)) = 0 [Kw86]
and L5(Z ⊕ (Z/2Z),+) ∼= Z2, by Theorem 13A.8 of [Wl], the set STOP (RP 3 ×S1)
is infinite. Although all of the manifolds in this homotopy type are doubly covered
by S3 × S1 only RP 3 × S1 is itself geometric. Similar estimates hold for the other
manifolds covered by S3 ×R (if π 6= Z).





CHAPTER 12

Geometries with compact models

There are three geometries with compact models, namely S4, CP2 and S2 ×S2.
The first two of these are easily dealt with, as there is only one other geometric
manifold, namely RP 4, and for each of the two projective spaces there is one other
(nonsmoothable) manifold of the same homotopy type. With the geometry S2 ×S2

we shall consider also the bundle space S2×̃S2. There are eight S2 × S2-manifolds,
seven of which are total spaces of bundles with base and fibre each S2 or RP 2, and
there are two other such bundle spaces covered by S2×̃S2.

The universal covering space M̃ of a closed 4-manifold M is homeomorphic to

S2 ×S2 if and only if π = π1(M) is finite, χ(M)|π| = 4 and w2(M̃) = 0. (The con-

dition w2(M̃) = 0 may be restated entirely in terms of M , but at somewhat greater
length). If these conditions hold and π is cyclic then M is homotopy equivalent
to an S2 × S2-manifold, except when π = Z/2Z and M is nonorientable, in which
case there is one other homotopy type. The F2-cohomology ring, Stiefel-Whitney
classes and k-invariants must agree with those of bundle spaces when π ∼= (Z/2Z)2.
However there remains an ambiguity of order at most 4 in determining the ho-

motopy type. If χ(M)|π| = 4 and w2(M̃) 6= 0 then either π = 1, in which case
M ≃ S2×̃S2 or CP 2♯CP 2, or M is nonorientable and π = Z/2Z; in the latter case

M ≃ RP 4♯CP 2, the nontrivial RP 2-bundle over S2, and M̃ ≃ S2×̃S2.
The number of homeomorphism classes within each homotopy type is at most

two if π = Z/2Z and M is orientable, two if π = Z/2Z, M is nonorientable and

w2(M̃) = 0, four if π = Z/2Z and w2(M̃) 6= 0, at most four if π ∼= Z/4Z, and at
most eight if π ∼= (Z/2Z)2. We do not know whether there are enough exotic self
homotopy equivalences to account for all the normal invariants with trivial surgery
obstruction. However a PL 4-manifold with the same homotopy type as a geometric
manifold or S2×̃S2 is homeomorphic to it, in (at least) nine of the 13 cases. (In
seven of these cases the homotopy type is determined by the Euler characteristic,
fundamental group and Stiefel-Whitney classes).

For the full details of some of the arguments in the cases π ∼= Z/2Z we refer to
the papers [KKR92], [HKT94] and [Te95].

12.1. The geometries S4 and CP2

The unique element of Isom(S4) = O(5) of order 2 which acts freely on S4

is −I. Therefore S4 and RP 4 are the only S4-manifolds. The manifold S4 is
determined up to homeomorphism by the conditions χ(S4) = 2 and π1(S

4) = 1
[FQ].

Lemma 12.1. A closed 4-manifold M is homotopy equivalent to RP 4 if and
only if χ(M) = 1 and π1(M) = Z/2Z.

169
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Proof. The conditions are clearly necessary. Suppose that they hold. Then

M̃ ≃ S4 and w1(M) = w1(RP
4) = w, say, since any orientation preserving self

homeomorphism of M̃ has Lefshetz number 2. Since RP∞ = K(Z/2Z, 1) may
be obtained from RP 4 by adjoining cells of dimension at least 5 we may assume
cM = cRP 4f , where f : M → RP 4. Since cRP 4 and cM are each 4-connected f
induces isomorphisms on homology with coefficients Z/2Z. Considering the exact
sequence of homology corresponding to the short exact sequence of coefficients
0 → Zw → Zw → Z/2Z → 0, we see that f has odd degree. By modifying f on
a 4-cell D4 ⊂M we may arrange that f has degree 1, and the lemma then follows
from Theorem 3.2. �

This lemma may also be proven by comparison of the k-invariants of M and
RP 4, as in Theorem 4.3 of [Wl67].

By Theorems 13.A.1 and 13.B.5 of [Wl] the surgery obstruction homomorphism
is determined by an Arf invariant and maps [RP 4;G/TOP ] onto Z/2Z, and hence
the structure set STOP (RP 4) has two elements. (See the discussion of nonorientable
manifolds with fundamental group Z/2Z in Section 6 below for more details). As
every self homotopy equivalence of RP 4 is homotopic to the identity [Ol53] there
is one fake RP 4. The fake RP 4 is denoted ∗RP 4 and is not smoothable [Ru84].

There is a similar characterization of the homotopy type of the complex pro-
jective plane.

Lemma 12.2. A closed 4-manifold M is homotopy equivalent to CP 2 if and
only if χ(M) = 3 and π1(M) = 1.

Proof. The conditions are clearly necessary. Suppose that they hold. Then
H2(M ; Z) is infinite cyclic and so there is a map fM : M → CP∞ = K(Z, 2)
which induces an isomorphism on H2. Since CP∞ may be obtained from CP 2 by
adjoining cells of dimension at least 6 we may assume fM = fCP 2g, where g : M →
CP 2 and fCP 2 : CP 2 → CP∞ is the natural inclusion. As H4(M ; Z) is generated
by H2(M ; Z), by Poincaré duality, g induces an isomorphism on cohomology and
hence is a homotopy equivalence. �

In this case the surgery obstruction homomorphism is determined by the differ-
ence of signatures and maps [CP 2;G/TOP ] onto Z. The structure set STOP (CP 2)
again has two elements. Since [CP 2, CP 2] ∼= [CP 2, CP∞] ∼= H2(CP 2; Z), by ob-
struction theory, there are two homotopy classes of self homotopy equivalences,
represented by the identity and by complex conjugation. Thus every self homotopy
equivalence of CP 2 is homotopic to a homeomorphism, and so there is one fake
CP 2. The fake CP 2 is also known as the Chern manifold Ch or ∗CP 2, and is not
smoothable [FQ]. Neither of these manifolds admits a nontrivial fixed point free
action, as any self map of CP 2 or ∗CP 2 has nonzero Lefshetz number, and so CP 2

is the only CP2-manifold.

12.2. The geometry S2 × S2

The manifold S2 × S2 is determined up to homotopy equivalence by the con-
ditions χ(S2 × S2) = 4, π1(S

2 × S2) = 1 and w2(S
2 × S2) = 0, by Theorem 5.19.

These conditions in fact determine S2 × S2 up to homeomorphism [FQ]. Hence
if M is an S2 × S2-manifold its fundamental group π is finite, χ(M)|π| = 4 and

w2(M̃) = 0.
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The isometry group of S2 × S2 is a semidirect product (O(3)×O(3))×̃(Z/2Z).
The Z/2Z subgroup is generated by the involution τ which switches the factors
(τ(x, y) = (y, x)), and acts on O(3) ×O(3) by τ(A,B)τ = (B,A) for A,B ∈ O(3).
In particular, (τ(A,B))2 = id if and only if AB = I, and so such an involution
fixes (x,Ax), for any x ∈ S2. Thus there are no free Z/2Z-actions in which the
factors are switched. The element (A,B) generates a free Z/2Z-action if and only
if A2 = B2 = I and at least one of A,B acts freely, i.e. if A or B = −I. After
conjugation with τ if necessary we may assume that B = −I, and so there are four
conjugacy classes in Isom(S2 × S2) of free Z/2Z-actions. (The conjugacy classes
may be distinguished by the multiplicity (0, 1, 2 or 3) of 1 as an eigenvalue of
A). In each case the projection onto the second factor gives rise to a fibre bundle
projection from the orbit space to RP 2, with fibre S2.

If the involutions (A,B) and (C,D) generate a free (Z/2Z)2-action (AC,BD) is
also a free involution. By the above paragraph, one element of each of these ordered
pairs must be −I. It follows easily that (after conjugation with τ if necessary) the
(Z/2Z)2-actions are generated by pairs (A,−I) and (−I, I), where A2 = I. Since
A and −A give rise to the same subgroup, there are two free (Z/2Z)2-actions. The
orbit spaces are the total spaces of RP 2-bundles over RP 2.

If (τ(A,B))4 = id then (BA,AB) is a fixed point free involution and so BA =
AB = −I. Since (A, I)τ(A,−A−1)(A, I)−1 = τ(I,−I) every free Z/4Z-action is
conjugate to the one generated by τ(I,−I). The orbit space does not fibre over a
surface. (See below).

In the next section we shall see that these eight geometric manifolds may be
distinguished by their fundamental group and Stiefel-Whitney classes. Note that if
F is a finite group then q(F ) ≥ 2/|F | > 0, while qSG(F ) ≥ 2. Thus S4, RP 4 and
the geometric manifolds with |π| = 4 have minimal Euler characteristic for their
fundamental groups (i.e., χ(M) = q(π)), while S2×S2/(−I,−I) has minimal Euler
characteristic among PD+

4 -complexes realizing Z/2Z.

12.3. Bundle spaces

There are two S2-bundles over S2, since π1(SO(3)) = Z/2Z. The total space
S2×̃S2 of the nontrivial S2-bundle over S2 is determined up to homotopy equiv-
alence by the conditions χ(S2×̃S2) = 4, π1(S

2×̃S2) = 1, w2(S
2×̃S2) 6= 0 and

σ(S2×̃S2) = 0, by Theorem 5.19. However there is one fake S2×̃S2. The bundle
space is homeomorphic to the connected sum CP 2♯ − CP 2, while the fake ver-
sion is homeomorphic to CP 2♯−∗CP 2 and is not smoothable [FQ]. The manifolds
CP 2♯CP 2 and CP 2♯ ∗ CP 2 also have π1 = 0 and χ = 4. However it is easily
seen that any self homotopy equivalence of either of these manifolds has nonzero
Lefshetz number, and so they do not properly cover any other 4-manifold.

Since the Kirby-Siebenmann obstruction of a closed 4-manifold is natural with
respect to covering maps and dies on passage to 2-fold coverings, the nonsmoothable
manifold CP 2♯− ∗CP 2 admits no nontrivial free involution. The following lemma
implies that S2×̃S2 admits no orientation preserving free involution, and hence no
free action of Z/4Z or (Z/2Z)2.

Lemma 12.3. Let M be a closed 4-manifold with fundamental group π = Z/2Z

and universal covering space M̃ . Then

(1) w2(M̃) = 0 if and only if w2(M) = u2 for some u ∈ H1(M ; F2); and
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(2) if M is orientable and χ(M) = 2 then w2(M̃) = 0 and so M̃ ∼= S2 × S2.

Proof. The Cartan-Leray cohomology spectral sequence (with coefficients F2)

for the projection p : M̃ →M gives an exact sequence

0 → H2(π; F2) → H2(M ; F2) → H2(M̃ ; F2),

in which the right hand map is induced by p and has image in the subgroup fixed

under the action of π. Hence w2(M̃) = p∗w2(M) is 0 if and only if w2(M) is in the
image of H2(π; F2). Since π = Z/2Z this is so if and only if w2(M) = u2 for some
u ∈ H1(M ; F2).

Suppose that M is orientable and χ(M) = 2. Then H2(π; Z) = H2(M ; Z) =
Z/2Z. Let x generate H2(M ; Z) and let x̄ be its image under reduction modulo
(2) in H2(M ; F2). Then x̄ ∪ x̄ = 0 in H4(M ; F2) since x ∪ x = 0 in H4(M ; Z).
Moreover as M is orientable w2(M) = v2(M) and so w2(M) ∪ x̄ = x̄ ∪ x̄ = 0.
Since the cup product pairing on H2(M ; F2) ∼= (Z/2Z)2 is nondegenerate it follows

that w2(M) = x̄ or 0. Hence w2(M̃) is the reduction of p∗x or is 0. The integral
analogue of the above exact sequence implies that the natural map from H2(π; Z)

to H2(M ; Z) is an isomorphism and so p∗(H2(M ; Z)) = 0. Hence w2(M̃) = 0 and

so M̃ ∼= S2 × S2. �

Since π1(BO(3)) = Z/2Z there are two S2-bundles over the Möbius band
Mb and each restricts to a trivial bundle over ∂Mb. Moreover a map from ∂Mb
to O(3) extends across Mb if and only if it homotopic to a constant map, since
π1(O(3)) = Z/2Z, and so there are four S2-bundles over RP 2 = Mb ∪ D2. (See
also Theorem 5.10).

The orbit spaceM = (S2×S2)/(A,−I) is orientable if and only if det(A) = −1.
If A has a fixed point P ∈ S2 then the image of {P} × S2 in M is an embedded
projective plane which represents a nonzero class in H2(M ; F2). If A = I or is a
reflection across a plane the fixed point set has dimension > 0 and so this projective
plane has self intersection 0. As the fibre S2 intersects this projective plane in one
point and has self intersection 0 it follows that v2(M) = 0 and so w2(M) = w1(M)2

in these two cases. If A is a rotation about an axis then the projective plane has
self intersection 1, by Lemma 10.14. Finally, if A = −I then the image of the
diagonal {(x, x)|x ∈ S2} is a projective plane in M with self intersection 1. Thus
in these two cases v2(M) 6= 0. Therefore, by part (1) of the lemma, w2(M) is the
square of the nonzero element of H1(M ; F2) if A = −I and is 0 if A is a rotation.
Thus these bundle spaces may be distinguished by their Stiefel-Whitney classes,
and every S2-bundle over RP 2 is geometric.

The group E(RP 2) of self homotopy equivalences of RP 2 is connected and the
natural map from SO(3) to E(RP 2) induces an isomorphism on π1, by Lemma
5.15. Hence there are two RP 2-bundles over S2, up to fibre homotopy equivalence.
The total space of the nontrivial RP 2-bundle over S2 is the quotient of S2×̃S2

by the bundle involution which is the antipodal map on each fibre. If we observe
that S2×̃S2 ∼= CP 2♯ − CP 2 is the union of two copies of the D2-bundle which is
the mapping cone of the Hopf fibration and that this involution interchanges the
hemispheres we see that this space is homeomorphic to RP 4♯CP 2.

There are two RP 2-bundles over RP 2. (The total spaces of each of the lat-
ter bundles have fundamental group (Z/2Z)2, since w1 : π → π1(RP

2) = Z/2Z
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restricts nontrivially to the fibre, and so is a splitting homomorphism for the ho-
momorphism induced by the inclusion of the fibre). They may be distinguished by
their orientation double covers, and each is geometric.

12.4. Cohomology and Stiefel-Whitney classes

We shall show that if M is a closed connected 4-manifold with finite fundamen-
tal group π such that χ(M)|π| = 4 then H∗(M ; F2) is isomorphic to the cohomology
ring of one of the above bundle spaces, as a module over the Steenrod algebra A2.
(In other words, there is an isomorphism which preserves Stiefel-Whitney classes).
This is an elementary exercise in Poincaré duality and the Wu formulae.

The classifying map induces an isomorphism H1(π; F2) ∼= H1(M ; F2) and a
monomorphism H2(π; F2) → H2(M ; F2). If π = 1 then M is homotopy equivalent
to S2 × S2, S2×̃S2 or CP 2♯CP 2, and the result is clear.

π = Z/2Z. In this case β2(M ; F2) = 2. Let x generate H1(M ; F2). Then x2 6= 0,
so H2(M ; F2) has a basis {x2, u}. If x4 = 0 then x2u 6= 0, by Poincaré duality,
and so H3(M ; F2) is generated by xu. Hence x3 = 0, for otherwise x3 = xu and
x4 = x2u 6= 0. Therefore v2(M) = 0 or x2, and clearly v1(M) = 0 or x. Since x

restricts to 0 in M̃ we must have w2(M̃) = v2(M̃) = 0. (The four possibilities are
realized by the four S2-bundles over RP 2).

If x4 6= 0 then we may assume that x2u = 0 and that H3(M ; F2) is generated
by x3. In this case xu = 0. Since Sq1(x3) = x4 we have v1(M) = x, and v2(M) =

u + x2. In this case w2(M̃) 6= 0, since w2(M) is not a square. (This possibility is
realized by the nontrivial RP 2-bundle over S2).

π ∼= (Z/2Z)2. In this case β2(M ; F2) = 3 and w1(M) 6= 0. Fix a basis {x, y}
for H1(M ; F2). Then {x2, xy, y2} is a basis for H2(M ; F2), since H2(π; F2) and
H2(M ; F2) both have dimension 3.

If x3 = y3 then x4 = Sq1(x3) = Sq1(y3) = y4. Hence x4 = y4 = 0 and x2y2 6=
0, by the nondegeneracy of cup product on H2(M ; F2). Hence x3 = y3 = 0 and so
H3(M ; F2) is generated by {x2y, xy2}. Now Sq1(x2y) = x2y2 and Sq1(xy2) = x2y2,
so v1(M) = x + y. Also Sq2(x2) = 0 = x2xy, Sq2(y2) = 0 = y2xy and Sq2(xy) =
x2y2, so v2(M) = xy. Since the restrictions of x and y to the orientation cover M+

agree we have w2(M
+) = x2 6= 0. (This possibility is realized by RP 2 ×RP 2).

If x3, y3 and (x + y)3 are all distinct then we may assume that (say) y3 and
(x+y)3 generateH3(M ; F2). If x3 6= 0 then x3 = y3+(x+y)3 = x3 +x2y+xy2 and
so x2y = xy2. But then we must have x4 = y4 = 0, by the nondegeneracy of cup
product on H2(M ; F2). Hence Sq1(y3) = y4 = 0 and Sq1((x + y)3) = (x + y)4 =
x4 + y4 = 0, and so v1(M) = 0, which is impossible, as M is nonorientable.
Therefore x3 = 0 and so x2y2 6= 0. After replacing y by x+ y, if necessary, we may
assume xy3 = 0 (and hence y4 6= 0). Poincaré duality and the Wu relations then
give v1(M) = x+ y, v2(M) = xy + x2 and hence w2(M

+) = 0. (This possibility is
realized by the nontrivial RP 2-bundle over RP 2).

Note that if π ∼= (Z/2Z)2 then H∗(M ; F2) is generated by H1(M ; F2) and so
the image of [M ] in H4(π; F2) is uniquely determined.

In all cases, a class x ∈ H1(M ; F2) such that x3 = 0 may be realized by a map
from M to K(Z/2Z, 1) = RP∞ which factors through P2(RP

2). However there
are such 4-manifolds which do not fibre over RP 2.
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12.5. The action of π on π2(M)

Let M be a closed 4-manifold with finite fundamental group π and orientation

character w = w1(M). The intersection form S(M̃) on Π = π2(M) = H2(M̃ ; Z) is
unimodular and symmetric, and π acts w-isometrically (i.e., S(ga, gb) = w(g)S(a, b)
for all g ∈ π and a, b ∈ Π).

The two inclusions of S2 as factors of S2 ×S2 determine the standard basis for
π2(S

2×S2). Let J = ( 0 1
1 0 ) be the matrix of the intersection form • on π2(S

2×S2),
with respect to this basis. The group Aut(±•) of automorphisms of π2(S

2 × S2)
which preserve this intersection form up to sign is the dihedral group of order eight,
and is generated by the diagonal matrices and J or K =

(
0 1
−1 0

)
. The subgroup

of strict isometries has order four, and is generated by −I and J . (Note that the
isometry J is induced by the involution τ).

Let f be a self homeomorphism of S2 ×S2 and let f∗ be the induced automor-
phism of π2(S

2 × S2). The Lefshetz number of f is 2 + trace(f∗) if f is orientation
preserving and trace(f∗) if f is orientation reversing. As any self homotopy equiv-
alence which induces the identity on π2 has nonzero Lefshetz number the natural
representation of a group π of fixed point free self homeomorphisms of S2×S2 into
Aut(±•) is faithful.

Suppose first that f is a free involution, so f2
∗ = I. If f is orientation preserving

then trace(f∗) = −2 so f∗ = −I. If f is orientation reversing then trace(f∗) = 0, so
f∗ = ±JK = ±

(
1 0
0 −1

)
. Note that if f ′ = τfτ then f ′

∗ = −f∗, so after conjugation
by τ , if necessary, we may assume that f∗ = JK.

If f generates a free Z/4Z-action the induced automorphism must be ±K.
Note that if f ′ = τfτ then f ′

∗ = −f∗, so after conjugation by τ , if necessary, we
may assume that f∗ = K.

Since the orbit space of a fixed point free action of (Z/2Z)2 on S2 × S2 has
Euler characteristic 1 it is nonorientable, and so the action is generated by two
commuting involutions, one of which is orientation preserving and one of which is
not. Since the orientation preserving involution must act via −I and the orientation
reversing involutions must act via ±JK the action of (Z/2Z)2 is essentially unique.

The standard inclusions of S2 = CP 1 into the summands of CP 2♯ − CP 2 ∼=
S2×̃S2 determine a basis for π2(S

2×̃S2) ∼= Z2. Let J̃ =
(

1 0
0 −1

)
be the matrix of the

intersection form •̃ on π2(S
2×̃S2) with respect to this basis. The group Aut(±•̃)

of automorphisms of π2(S
2×̃S2) which preserve this intersection form up to sign is

the dihedral group of order eight, and is also generated by the diagonal matrices
and J = ( 0 1

1 0 ). The subgroup of strict isometries has order four, and consists of
the diagonal matrices. A nontrivial group of fixed point free self homeomorphisms
of S2×̃S2 must have order 2, since S2×̃S2 admits no fixed point free orientation
preserving involution. If f is an orientation reversing free involution of S2×̃S2 then
f∗ = ±J . Since the involution of CP 2 given by complex conjugation is orientation
preserving it is isotopic to a selfhomeomorphism c which fixes a 4-disc. Let g =
c♯idCP 2 . Then g∗ =

(−1 0
0 1

)
and so g∗Jg−1

∗ = −J . Thus after conjugating f by g,
if necessary, we may assume that f∗ = J .

All self homeomorphisms of CP 2♯CP 2 preserve the sign of the intersection
form, and thus are orientation preserving. With Lemma 3.(2), this implies that no
manifold in this homotopy type admits a free involution.
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12.6. Homotopy type

The quadratic 2-type of M is the quadruple [π, π2(M), k1(M), S(M̃)]. Two such
quadruples [π,Π, κ, S] and [π′,Π′, κ′, S′] with π a finite group, Π a finitely gener-
ated, Z-torsion free Z[π]-module, κ ∈ H3(π; Π) and S : Π × Π → Z a unimodular
symmetric bilinear pairing on which π acts ±-isometrically are equivalent if there
is an isomorphism α : π → π′ and an (anti)isometry β : (Π, S) → (Π′, (±)S′) which
is α-equivariant (i.e., such that β(gm) = α(g)β(m) for all g ∈ π and m ∈ Π) and
β∗κ = α∗κ′ in H3(π, α∗Π′). Such a quadratic 2-type determines homomorphisms
w : π → Z× = Z/2Z and v : Π → Z/2Z by the equations S(ga, gb) = w(g)S(a, b)
and v(a) ≡ S(a, a) mod (2), for all g ∈ π and a, b ∈ Π. (These correspond to the

orientation character w1(M) and the Wu class v2(M̃) = w2(M̃), of course).
Let γ : A → Γ(A) be the universal quadratic functor of Whitehead. Then the

pairing S may be identified with an indivisible element of Γ(HomZ(Π,Z)). Via

duality, this corresponds to an element Ŝ of Γ(Π), and the subgroup generated

by the image of Ŝ is a Z[π]-submodule. Hence π3 = Γ(Π)/〈Ŝ〉 is again a finitely
generated, Z-torsion free Z[π]-module. Let B be the Postnikov 2-stage correspond-
ing to the algebraic 2-type [π,Π, κ]. A PD4-polarization of the quadratic 2-type
q = [π,Π, κ, S] is a 3-connected map f : X → B, where X is a PD4-complex,

w1(X) = wπ1(f) and f̃∗(ŜX̃) = Ŝ in Γ(Π). Let SPD4 (q) be the set of equivalence
classes of PD4-polarizations of q, where f : X → B ∼ g : Y → B if there is a map
h : X → Y such that f ≃ gh.

Theorem 12.4 (Te). There is an effective, transitive action of the torsion
subgroup of Γ(Π) ⊗Z[π] Z

w on SPD4 (q).

Proof. (We shall only sketch the proof). Let f : X → B be a fixed PD4-
polarization of q. We may assume that X = K ∪g e4, where K = X [3] is the
3-skeleton and g ∈ π3(K) is the attaching map. Given an element α in Γ(Π) whose
image in Γ(Π) ⊗Z[π] Z

w lies in the torsion subgroup, let Xα = K ∪g+α e4. Since
π3(B) = 0 the map f |K extends to a map fα : Xα → B, which is again a PD4-
polarization of q. The equivalence class of fα depends only on the image of α in
Γ(Π) ⊗Z[π] Z

w. Conversely, if g : Y → B is another PD4-polarization of q then
f∗[X ] − g∗[Y ] lies in the image of Tors(Γ(Π) ⊗Z[π] Z

w) in H4(B;Zw). See [Te] for
the full details. �

Corollary 12.4.1. If X and Y are PD4-complexes with the same quadratic
2-type then each may be obtained by adding a single 4-cell to X [3] = Y [3]. �

If w = 0 and the Sylow 2-subgroup of π has cohomological period dividing 4
then Tors(Γ(Π)⊗Z[π]Z

w) = 0 [Ba88]. In particular, ifM is orientable and π is finite
cyclic then the equivalence class of the quadratic 2-type determines the homotopy
type [HK88]. Thus in all cases considered here the quadratic 2-type determines the
homotopy type of the orientation cover.

The group Aut(B) = Aut([π,Π, κ]) acts on SPD4 (q) and the orbits of this
action correspond to the homotopy types of PD4-complexes X admitting such
polarizations f . When q is the quadratic 2-type of RP 2 × RP 2 this action is
nontrivial. (See below in this paragraph. Compare also Theorem 10.5).

The next lemma shall enable us to determine the possible k-invariants.
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Lemma 12.5. Let M be a closed 4-manifold with fundamental group π = Z/2Z
and universal covering space S2×S2. Then the first k-invariant of M is a nonzero
element of H3(π;π2(M)).

Proof. The first k-invariant is the primary obstruction to the existence of a
cross-section to the classifying map cM : M → K(Z/2Z, 1) = RP∞ and is the only
obstruction to the existence of such a cross-section for cP2(M). The only nonzero
differentials in the Cartan-Leray cohomology spectral sequence (with coefficients

Z/2Z) for the projection p : M̃ →M are at the E∗∗
3 level. By the results of Section

4, π acts trivially on H2(M̃ ; F2), since M̃ = S2 × S2. Therefore E22
3 = E22

2
∼=

(Z/2Z)2 and E50
3 = E50

2 = Z/2Z. Hence E22
∞ 6= 0, so E22

∞ maps onto H4(M ; F2) =

Z/2Z and d12
3 : H1(π;H2(M̃ ; F2)) → H4(π; F2) must be onto. But in this region the

spectral sequence is identical with the corresponding spectral sequence for P2(M).
It follows that the image of H4(π; F2) = Z/2Z in H4(P2(M); F2) is 0, and so cP2(M)

does not admit a cross-section. Thus k1(M) 6= 0. �

If π = Z/2Z and M is orientable then π acts via −I on Z2 and the k-invariant
is a nonzero element of H3(Z/2Z;π2(M)) = (Z/2Z)2. The isometry which trans-
poses the standard generators of Z2 is π-linear, and so there are just two equivalence
classes of quadratic 2-types to consider. The k-invariant which is invariant under
transposition is realised by (S2 × S2)/(−I,−I), while the other k-invariant is re-
alized by the orientable bundle space with w2 = 0. Thus M must be homotopy
equivalent to one of these spaces.

If π = Z/2Z, M is nonorientable and w2(M̃) = 0 then H3(π;π2(M)) = Z/2Z
and there is only one quadratic 2-type to consider. There are four equivalence
classes of PD4-polarizations, as Tors(Γ(Π)⊗Z[π] Z

w) ∼= (Z/2Z)2. The correspond-

ing PD4-complexes are all of the formK∪f e4, whereK = (S2×RP 2)−intD4 is the
3-skeleton of S2 ×RP 2 and f ∈ π3(K). (In all cases H1(M ; F2) is generated by an
element x such that x3 = 0). Two choices for f give total spaces of S2-bundles over
RP 2, while a third choice gives RP 4♯S1RP 4, which is the union of two disc bundles
over RP 2, but is not a bundle space and is not geometric. There is a fourth homo-
topy type which has nontrivial Browder-Livesay invariant, and so is not realizable
by a closed manifold [HM78]. The product space S2 ×RP 2 is characterized by the
additional conditions that w2(M) = w1(M)2 6= 0 (i.e., v2(M) = 0) and that there
is an element u ∈ H2(M ; Z) which generates an infinite cyclic direct summand and
is such that u∪u = 0. (See Theorem 5.19). The nontrivial nonorientable S2-bundle
over RP 2 has w2(M) = 0. The manifold RP 4♯S1RP 4 also has w2(M) = 0, but it
may be distinguished from the bundle space by the Z/4Z-valued quadratic function
on π2(M) ⊗ (Z/2Z) introduced in [KKR92].

If π = Z/2Z and w2(M̃) 6= 0 then H3(π1;π2(M)) = 0, and the quadratic 2-type
is unique. (Note that the argument of Lemma 5 breaks down here because E22

∞ = 0).
There are two equivalence classes of PD4-polarizations, as Tors(Γ(Π) ⊗Z[π] Z

w) =

Z/2Z. They are each of the form K∪f e4, where K = (RP 4♯CP 2)− intD4 is the 3-
skeleton of RP 4♯CP 2 and f ∈ π3(K). The bundle space RP 4♯CP 2 is characterized
by the additional condition that there is an element u ∈ H2(M ; Z) which generates
an infinite cyclic direct summand and such that u ∪ u = 0. (See Theorem V.19).
In [HKT94] it is shown that any closed 4-manifold M with π = Z/2Z, χ(M) = 2

and w2(M̃) 6= 0 is homotopy equivalent to RP 4♯CP 2.
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If π ∼= Z/4Z then H3(π;π2(M)) ∼= Ker(Σk=4
k=1f

k
∗ ))/(I − f∗) = Z2/(I −K)Z2 =

Z/2Z. The k-invariant is nonzero, since it restricts to the k-invariant of the orien-
tation double cover. In this case Tors(Γ(Π) ⊗Z[π] Z

w) = 0 and so M is homotopy

equivalent to (S2 × S2)/τ(I,−I).
Finally, let π ∼= (Z/2Z)2 be the diagonal subgroup of Aut(±•) < GL(2,Z), and

let α be the automorphism induced by conjugation by J . The standard generators
of π2(M) = Z2 generate complementary π-submodules, so that π2(M) is the direct

sum Z̃ ⊕α∗Z̃ of two infinite cyclic modules. The isometry β = J which transposes
the factors is α-equivariant, and π and V = {±I} act nontrivially on each summand.

If ρ is the kernel of the action of π on Z̃ then α(ρ) is the kernel of the action on

α∗Z̃, and ρ ∩ α(ρ) = 1. Let jV : V → π be the inclusion. As the projection of

π = ρ⊕ V onto V is compatible with the action, H∗(jV ; Z̃) is a split epimorphism

and so H∗(V ; Z̃) is a direct summand of H∗(π; Z̃). This implies in particular that

the differentials in the LHSSS Hp(V ;Hq(ρ; Z̃)) ⇒ Hp+q(π; Z̃) which end on the

row q = 0 are all 0. Hence H3(π; Z̃) ∼= H1(V ; F2)⊕H3(V ; Z̃) ∼= (Z/2Z)2. Similarly

H3(π;α∗Z̃) ∼= (Z/2Z)2, and so H3(π;π2(M)) ∼= (Z/2Z)4. The k-invariant must
restrict to the k-invariant of each double cover, which must be nonzero, by Lemma
5. Let KV , Kρ and Kα(ρ) be the kernels of the restriction homomorphisms from

H3(π;π2(M)) to H3(V ;π2(M)), H3(ρ;π2(M)) and H3(α(ρ);π2(M)), respectively.

Now H3(ρ; Z̃) = H3(α(ρ);α∗Z̃) = 0, H3(ρ;α∗Z̃) = H3(α(ρ); Z̃) = Z/2Z and

H3(V ; Z̃) = H3(V ;α∗Z̃) = Z/2Z. Since the restrictions are epimorphisms |KV | =
4 and |Kρ| = |Kα(ρ)| = 8. It is easily seen that |Kρ ∩ Kα(ρ)| = 4. Moreover

Ker(H3(jV ; Z̃)) ∼= H1(V ;H2(ρ; Z̃)) ∼= H1(V ;H2(ρ; F2)) restricts nontrivially to

H3(α(ρ); Z̃) ∼= H3(α(ρ); F2), as can be seen by reduction modulo (2), and similarly

Ker(H3(jV ;α∗Z̃)) restricts nontrivially to H3(ρ;α∗Z̃). Hence |KV ∩Kρ| = |KV ∩
Kρ| = 2 andKV ∩Kρ∩Kα(ρ) = 0. Thus |KV ∪Kρ∪Kα(ρ)| = 8+8+4−4−2−2+1 =
13 and so there are at most three possible k-invariants. Moreover the automorphism
α and the isometry β = J act on the k-invariants by transposing the factors. The
k-invariant of RP 2 × RP 2 is invariant under this transposition, while that of the
nontrivial RP 2 bundle over RP 2 is not, for the k-invariant of its orientation cover
is not invariant. Thus there are two equivalence classes of quadratic 2-types to be
considered. Since Tors(Γ(Π)⊗Z[π]Z

w) ∼= (Z/2Z)2 there are four equivalence classes
of PD4-polarizations of each of these quadratic 2-types. In each case the quadratic
2-type determines the cohomology ring, since it determines the orientation cover
(see §4). The canonical involution of the direct product interchanges two of these
polarizations in the RP 2 × RP 2 case, and so there are seven homotopy types of
PD4-complexes X with π ∼= (Z/2Z)2 and χ(X) = 1. Can the Browder-Livesay
arguments of [HM78] be adapted to show that the two bundle spaces are the only
such 4-manifolds?

12.7. Surgery

We may assume that M is a proper quotient of S2 × S2 or of S2×̃S2, so
|π|χ(M) = 4 and π 6= 1. In the present context every homotopy equivalence is
simple since Wh(π) = 0 for all groups π of order ≤ 4 [Hg40].

Suppose first that π = Z/2Z. Then H1(M ; F2) = Z/2Z and χ(M) = 2, so
H2(M ; F2) ∼= (Z/2Z)2. The F2-Hurewicz homomorphism from π2(M) toH2(M ; F2)
has cokernel H2(π; F2) = Z/2Z. Hence there is a map β : S2 → M such that
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β∗[S2] 6= 0 in H2(M ; F2). If moreover w2(M̃) = 0 then β∗w2(M) = 0, since β fac-

tors through M̃ . Then there is a self homotopy equivalence fβ of M with nontrivial
normal invariant in [M ;G/TOP ], by Lemma 6.5. Note also that M is homotopy
equivalent to a PL 4-manifold (see §6 above).

If M is orientable [M ;G/TOP ] ∼= Z⊕(Z/2Z)2. The surgery obstruction groups
are L5(Z/2Z,+) = 0 and L4(Z/2Z,+) ∼= Z2, where the surgery obstructions are
determined by the signature and the signature of the double cover, by Theorem
13.A.1 of [Wl]. Hence it follows from the surgery exact sequence that STOP (M) ∼=
(Z/2Z)2. Since w2(M̃) = 0 (by Lemma 3) there is a self homotopy equivalence fβ of
M with nontrivial normal invariant and so there are at most two homeomorphism
classes within the homotopy type of M . Any α ∈ H2(M ; F2) is the codimension-
2 Kervaire invariant of some homotopy equivalence f : N → M . We then have
KS(N) = f∗(KS(M) + α2), by Lemma 15.5 of [Si71]. We may assume that M is
PL. If w2(M) = 0 then KS(N) = f∗(KS(M)) = 0, and so N is homeomorphic
to M [Te97]. On the other hand if w2(M) 6= 0 there is an α ∈ H2(M ; F2) such
that α2 6= 0 and then KS(N) 6= 0. Thus there are three homeomorphism classes
of orientable closed 4-manifolds with π = Z/2Z and χ = 2. One of these is a fake
(S2 × S2)/(−I,−I) and is not smoothable.

If M is nonorientable then [M ;G/TOP ] ∼= (Z/2Z)3, the surgery obstruc-
tion groups are L5(Z/2Z,−) = 0 and L4(Z/2Z,−) = Z/2Z, and σ4(ĝ) = c(ĝ)
for any ĝ : M → G/TOP , by Theorem 13.A.1 of [Wl]. Therefore σ4(ĝ) =
(w1(M)2 ∪ ĝ∗(k2))[M ], by Theorem 13.B.5 of [Wl]. (See also §2 of Chapter 6
above). As w1(M) is not the reduction of a class in H1(M ; Z/4Z) its square is
nonzero and so there is an element ĝ∗(k2) in H2(M ; F2) such that this cup product
is nonzero. Hence STOP (M) ∼= (Z/2Z)2. There are two homeomorphism types

within each homotopy type if w2(M̃) = 0; if w2(M̃) 6= 0 (i.e., if M ≃ RP 4♯CP 2)
then there are four corresponding homeomorphism types [HKT94]. Thus there are
eight homeomorphism classes of nonorientable closed 4-manifolds with π = Z/2Z
and χ = 2.

The image of [M ;G/PL] in [M ;G/TOP ] is a subgroup of index 2 (see Section
15 of [Si71]). It follows that if M is the total space of an S2-bundle over RP 2

any homotopy equivalence f : N → M where N is also PL is homotopic to a
homeomorphism. (For then STOP (M) has order 4, and the nontrivial element of
the image of SPL(M) is represented by an exotic self homotopy equivalence of M .
The case M = S2 ×RP 2 was treated in [Ma79]. See also [Te97] for the cases with
π = Z/2Z and w1(M) = 0). This is also true if M = S4, RP 4, CP 2, S2 × S2 or
S2×̃S2. The exotic homeomorphism types within the homotopy type of RP 4♯CP 2

(the nontrivial RP 2-bundle over S2) are RP 4♯ ∗ CP 2, ∗RP 4♯CP 2, which have
nontrivial Kirby-Siebenmann invariant, and (∗RP 4)♯ ∗ CP 2, which is smoothable
[RS97]. Moreover (∗RP 4♯ ∗ CP 2)♯(S2 × S2) ∼= (RP 4♯CP 2)♯(S2 × S2) [HKT94].

When π ∼= Z/4Z or (Z/2Z)2 the manifold M is nonorientable, since χ(M) = 1.
As the F2-Hurewicz homomorphism is 0 in these cases Lemma 6.8 does not apply
to give any exotic self homotopy equivalences.

If π ∼= Z/4Z then [M ;G/TOP ] ∼= (Z/2Z)2 and the surgery obstruction groups
L4(Z/4Z,−) and L5(Z/4Z,−) are both 0, by Theorem 3.4.5 of [Wl76]. Hence
STOP (M) ∼= (Z/2Z)2. Since w2(M) 6= 0 there is a homotopy equivalence f :
N → M where KS(N) 6= KS(M). An argument of Fang using [Da95] shows that
there is such a manifold N with KS(N) = 0 which is not homeomorphic to the
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geometric example. Thus there are either three or four homeomorphism classes of
closed 4-manifolds with π ∼= Z/4Z and χ = 1. In all cases the orientable double
covering space has trivial Kirby-Siebenmann invariant and so is homeomorphic to
(S2 × S2)/(−I,−I).

If π ∼= (Z/2Z)2 then [M ;G/TOP ] ∼= (Z/2Z)4 and the surgery obstruction
groups are L5((Z/2Z)2,−) = 0 and L4((Z/2Z)2,−) = Z/2Z, by Theorem 3.5.1 of
[Wl76]. Since w1(M) is a split epimorphism L4(w1(M)) is an isomorphism, so the
surgery obstruction is detected by the Kervaire-Arf invariant. As w1(M)2 6= 0 we
find that STOP (M) ∼= (Z/2Z)3. Thus there are at most 56 homeomorphism classes
of closed 4-manifolds with π ∼= (Z/2Z)2 and χ = 1.





CHAPTER 13

Geometric decompositions of bundle spaces

We begin by considering which closed 4-manifolds with geometries of euclidean
factor type are mapping tori of homeomorphisms of 3-manifolds. We also show
that (as an easy consequence of the Kodaira classification of surfaces) a complex
surface is diffeomorphic to a mapping torus if and only if its Euler characteristic is
0 and its fundamental group maps onto Z with finitely generated kernel, and we
determine the relevant 3-manifolds and diffeomorphisms. In §2 we consider when
an aspherical 4-manifold which is the total space of a surface bundle is geometric
or admits a geometric decomposition. If the base and fibre are hyperbolic the
only known examples are virtually products. In §3 we shall give some examples of
torus bundles over closed surfaces which are not geometric, some of which admit
geometric decompositions of type F4 and some of which do not. In §4 we apply
some of our earlier results to the characterization of certain complex surfaces. In
particular, we show that a complex surfaces fibres smoothly over an aspherical
orientable 2-manifold if and only if it is homotopy equivalent to the total space
of a surface bundle. In the final two sections we consider first S1-bundles over
geometric 3-manifolds and then the existence of symplectic structures on geometric
4-manifolds.

13.1. Mapping tori

In §3-5 of Chapter 8 and §3 of Chapter 9 we used 3-manifold theory to charac-
terize mapping tori of homeomorphisms of geometric 3-manifolds which have prod-
uct geometries. Here we shall consider instead which 4-manifolds with product
geometries or complex structures are mapping tori.

Theorem 13.1. Let M be a closed geometric 4-manifold with χ(M) = 0 and
such that π = π1(M) is an extension of Z by a finitely generated normal subgroup
K. Then K is the fundamental group of a geometric 3-manifold.

Proof. Since χ(M) = 0 the geometry must be either an infrasolvmanifold
geometry or a product geometry X3 × E1, where X3 is one of the 3-dimensional

geometries S3, S2 × E1, H3, H2 × E1 or S̃L. If M is an infrasolvmanifold then π
is torsion free and virtually poly-Z of Hirsch length 4, so K is torsion free and
virtually poly-Z of Hirsch length 3, and the result is clear.

If X3 = S3 then π is a discrete cocompact subgroup of O(4) × E(1). Since π
maps onto Z it must in fact be a subgroup of O(4)×R, and K is a finite subgroup
of O(4). Since π acts freely on S3 × R the subgroup K acts freely on S3, and so
K is the fundamental group of an S3-manifold. If X3 = S2 × E1 it follows from
Corollary 4.4.1 that K ∼= Z, Z ⊕ (Z/2Z) or D, and so K is the fundamental group
of an S2 × E1-manifold.

181
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In the remaining cases X3 is of aspherical type. The key point here is that a
discrete cocompact subgroup of the Lie group Isom(X3×E1) must meet the radical
of this group in a lattice subgroup. Suppose first that X3 = H3. After passing to a
subgroup of finite index if necessary, we may assume that π ∼= H×Z < PSL(2,C)×
R, where H is a discrete cocompact subgroup of PSL(2,C). If K ∩ ({1} ×R) = 1
then K is commensurate with H , and hence is the fundamental group of an X-
manifold. Otherwise the subgroup generated by K ∩ H = K ∩ PSL(2,C) and
K ∩ ({1} × R) has finite index in K and is isomorphic to (K ∩H) × Z. Since K
is finitely generated so is K ∩H , and hence it is finitely presentable, since H is a
3-manifold group. Therefore K ∩H is a PD2-group and so K is the fundamental
group of a H2 × E1-manifold.

If X3 = H2×E1 then we may assume that π ∼= H×Z2 < PSL(2,R)×R2, where
H is a discrete cocompact subgroup of PSL(2,R). Since such groups do not admit
nontrivial maps to Z with finitely generated kernel K ∩H must be commensurate
with H , and we again see that K is the fundamental group of an H2×E1-manifold.

A similar argument applies if X3 = S̃L. We may assume that π ∼= H×Z where

H is a discrete cocompact subgroup of Isom(S̃L). Since such groupsH do not admit
nontrivial maps to Z with finitely generated kernel K must be commensurate with

H and so is the fundamental group of a S̃L-manifold. �

Corollary 13.1.1. Suppose that M has a product geometry X ×E1. If X3 =

E3, S3, S2 × E1, S̃L or H2 × E1 then M is the mapping torus of an isometry of an
X3-manifold with fundamental group K. (In the latter case we must assume that
M is orientable). If X3 = Nil3 or Sol3 then K is the fundamental group of an
X3-manifold or of a E3-manifold. If X3 = H3 then K is the fundamental group of
a H3- or H2 × E1-manifold.

Proof. In all cases π is a semidirect productK×θZ and may be realised by the
mapping torus of a self homeomorphism of a closed 3-manifold with fundamental
group K. If this manifold is an X3-manifold then the outer automorphism class
of θ is finite (see Chapter 8) and θ may then be realized by an isometry of an
X3-manifold. Infrasolvmanifolds are determined up to diffeomorphism by their
fundamental groups. This is also true of S2 × E2- and S3 × E1-manifolds [Oh90],

provided K is not finite cyclic, and S̃L × E1- and orientable H2 × E2-manifolds

[Ue90, 91]. (Note that S̃L-manifolds are orientable and self homeomorphisms of
such manifolds are orientation preserving [NR78]). When K is finite cyclic it is still
true that every such S3×E1-manifold is a mapping torus of an isometry of a suitable
lens space [Oh90]. Thus if M is an X3 × E1-manifold and K is the fundamental
group of an X3-manifold M is the mapping torus of an isometry of an X3-manifold
with fundamental group K. �

Does the Corollary remain true for nonorientable H2 × E2-manifolds?
There are (orientable) Nil3 × E1- and Sol3 × E1-manifolds which are mapping

tori of self homeomorphisms of flat 3-manifolds, but which are not mapping tori
of self homeomorphisms of Nil3- or Sol3-manifolds. (See Chapter 8). There are
analogous examples when X3 = H3. (See §3 of Chapter 9).

We may now improve upon the characterization of mapping tori up to homotopy
equivalence from Chapter 4.
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Theorem 13.2. Let M be a closed 4-manifold with fundamental group π. Then
M is homotopy equivalent to the mapping torus M(Θ) of a self homeomorphism of

a closed 3-manifold with one of the geometries E3, Nil3, Sol3, H2 × E1, S̃L or
S2 × E1 if and only if

(1) χ(M) = 0;
(2) π is an extension of Z by an FP2 normal subgroup K; and
(3) K has a nontrivial torsion free abelian normal subgroup A.

If π is torsion free M is s-cobordant to M(Θ), while if moreover π is solvable M is
homeomorphic to M(Θ).

Proof. The conditions are clearly necessary. Since K has an infinite abelian
normal subgroup it has one or two ends. If K has one end then M is aspherical
and so K is a PD3-group by Theorem 4.1. Condition (3) then implies that M ′

is homotopy equivalent to a closed 3-manifold with one of the first five of the
geometries listed above, by Theorem 2.14. If K has two ends then M ′ is homotopy
equivalent to S2 ×S1, S2×̃S1, RP 2 ×S1 or RP 3♯RP 3, by Corollary C of Theorem
4.2.

In all cases K is isomorphic to the fundamental group of a closed 3-manifold
N which is either Seifert fibred or a Sol3-manifold, and the outer automorphism
class [θ] determined by the extension may be realised by a self homeomorphism Θ
of N . The manifold M is homotopy equivalent to the mapping torus M(Θ). Since
Wh(π) = 0, by Theorems 6.1 and 6.3, any such homotopy equivalence is simple.

If K is torsion free and solvable then π is virtually poly-Z, and so M is home-

omorphic to M(Θ), by Theorem 6.11. Otherwise N is a closed H2 × E1- or S̃L-
manifold. As H2 × E1 has a metric of nonpositive sectional curvature, the surgery
obstruction homomorphisms σNi are isomorphisms for i large in this case, by [FJ93’].
This holds also for any irreducible, orientable 3-manifold N such that β1(N) > 0

[Ro00], and therefore also for all S̃L-manifolds, by the Dress induction argument of
[NS85]. Comparison of the Mayer-Vietoris sequences for L0-homology and L-theory

(as in Proposition 2.6 of [St84]) shows that σMi and σM×S1

i are also isomorphisms for
i large, and so STOP (M(Θ)×S1) has just one element. Therefore M is s-cobordant
to M(Θ). �

Mapping tori of self homeomorphisms of H3- and S3-manifolds satisfy conditions
(1) and (2). In the hyperbolic case there is the additional condition
(3-H) K has one end and no noncyclic abelian subgroup.
If every PD3-group is a 3-manifold group and the geometrization conjecture for
atoroidal 3-manifolds is true then the fundamental groups of closed hyperbolic
3-manifolds may be characterized as PD3-groups having no noncyclic abelian sub-
group. Assuming this, and assuming also that group rings of such hyperbolic groups
are regular coherent, Theorem 2 could be extended to show that a closed 4-manifold
M with fundamental group π is s-cobordant to the mapping torus of a self home-
omorphism of a hyperbolic 3-manifold if and only these three conditions hold.

In the spherical case the appropriate additional conditions are
(3-S) K is a fixed point free finite subgroup of SO(4) and (if K is not cyclic)

the characteristic automorphism of K determining π is realized by an
isometry of S3/K; and

(4-S) the first nontrivial k-invariant of M is “linear”.
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The list of fixed point free finite subgroups of SO(4) is well known. (See Chapter
11). If K is cyclic or Q× Z/pjZ for some odd prime p or T ∗

k then the second part
of (3-S) and (4-S) are redundant, but the general picture is not yet clear [HM86].

The classification of complex surfaces leads easily to a complete characterization
of the 3-manifolds and diffeomorphisms such that the corresponding mapping tori
admit complex structures. (Since χ(M) = 0 for any mapping torus M we do not
need to enter the imperfectly charted realm of surfaces of general type).

Theorem 13.3. Let N be a closed orientable 3-manifold with π1(N) = ν and
let θ : N → N be an orientation preserving self diffeomorphism. Then the mapping
torus M(θ) admits a complex structure if and only if one of the following holds:

(1) N = S3/G where G is a fixed point free finite subgroup of U(2) and the
monodromy is as described in [Kt75];

(2) N = S2 × S1 (with no restriction on θ);
(3) N = S1 × S1 × S1 and the image of θ in SL(3,Z) either has finite order

or satisfies the equation (θ2 − I)2 = 0;
(4) N is the flat 3-manifold with holonomy of order 2, θ induces the identity

on ν/ν′ and the absolute value of the trace of the induced automorphism
of ν′ ∼= Z2 is at most 2;

(5) N is one of the flat 3-manifolds with holonomy cyclic of order 3, 4 or 6
and θ induces the identity on H1(N ; Q);

(6) N is a Nil3-manifold and either the image of θ in Out(ν) has finite order
or M(θ) is a Sol41-manifold;

(7) N is a H2 × E1- or S̃L-manifold and the image of θ in Out(ν) has finite
order.

Proof. The mapping tori of these diffeomorphisms admit 4-dimensional ge-
ometries, and it is easy to read off which admit complex structures from [Wl86].
In cases (3), (4) and (5) note that a complex surface is Kähler if and only if its
first Betti number is even, and so the parity of this Betti number is invariant under
passage to finite covers. (See Proposition 4.4 of [Wl86]).

The necessity of these conditions follows from examining the list of complex
surfaces X with χ(X) = 0 on page 188 of [BPV], in conjunction with Bogomolov’s
theorem on surfaces of class V II0. (See [Tl94] for a clear account of the latter
result). �

In particular, N must be Seifert fibred and most orientable Seifert fibred 3-
manifolds (excepting only RP 3♯RP 3 and the Hantzsche-Wendt flat 3-manifold)
occur. Moreover, in most cases (with exceptions as in (3), (4) and (6)) the image
of θ in Out(ν) must have finite order. Some of the resulting 4-manifolds arise
as mapping tori in several distinct ways. The corresponding result for complex
surfaces of the form N ×S1 for which the obvious smooth S1-action is holomorphic
was given in [GG95]. In [EO94] it is shown that if N is a rational homology 3-sphere
then N × S1 admits a complex structure if and only if N is Seifert fibred, and the
possible complex structures on such products are determined.

Conversely, we have the following very satisfactory statement from the 4-
dimensional point of view.

Theorem 13.4. Let X be a complex surface. Then X is diffeomorphic to
the mapping torus of a self diffeomorphism of a closed 3-manifold if and only if
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χ(X) = 0 and π = π1(X) is an extension of Z by a finitely generated normal
subgroup.

Proof. The conditions are clearly necessary. Sufficiency of these conditions
again follows from the classification of complex surfaces, as in Theorem 3. �

13.2. Surface bundles and geometries

Let p : E → B be a bundle with base B and fibre F aspherical closed surfaces.
Then p is determined up to bundle isomorphism by the group π = π1(E). If
χ(B) = χ(F ) = 0 then E has geometry E4, Nil3 × E1, Nil4 or Sol3 × E1, by Ue’s
Theorem. When the fibre is Kb the geometry must be E4 or Nil3 × E1, for then π
has a normal chain ζπ1(Kb) ∼= Z <

√
π1(Kb) ∼= Z2, so ζ

√
π has rank at least 2.

Hence a Sol3 × E1- or Nil4-manifold M is the total space of a T -bundle over T if
and only if β1(π) = 2. If χ(F ) = 0 but χ(B) < 0 then E need not be geometric.
(See Chapter 7 and §3 below).

We shall assume henceforth that F is hyperbolic, i.e. that χ(F ) < 0. Then
ζπ1(F ) = 1 and so the characteristic homomorphism θ : π1(B) → Out(π1(F ))
determines π up to isomorphism, by Theorem 5.2.

Theorem 13.5. Let B and F be closed surfaces with χ(B) = 0 and χ(F ) < 0.
Let E be the total space of the F -bundle over B corresponding to a homomorphism
θ : π1(B) → Out(π1(F )). Then E virtually has a geometric decomposition if and
only if Ker(θ) 6= 1. Moreover

(1) E admits the geometry H2 × E2 if and only if θ has finite image;
(2) E admits the geometry H3 × E1 if and only if Ker(θ) ∼= Z and Im(θ)

contains the class of a pseudo-Anasov homeomorphism of F ;
(3) otherwise E is not geometric.

Proof. Let π = π1(E). Since E is aspherical, χ(E) = 0 and π is not solvable

the only possible geometries are H2 × E2, H3 × E1 and S̃L × E1. If E has a
proper geometric decomposition the pieces must all have χ = 0, and the only other
geometry that may arise is F4. In all cases the fundamental group of each piece has
a nontrivial abelian normal subgroup.

If Ker(θ) 6= 1 then E is virtually a cartesian product N × S1, where N is the
mapping torus of a self diffeomorphism ψ of F whose isotopy class in π0(Diff(F )) ∼=
Out(π1(F )) generates a subgroup of finite index in Im(θ). Since N is a Haken 3-
manifold it has a geometric decomposition and hence so does E. The mapping torus
N is an H3-manifold if and only if ψ is pseudo-Anasov. In that case the action of
π1(N) ∼= π1(F ) ×ψ Z on H3 extends to an embedding p : π/

√
π → Isom(H3), by

Mostow rigidity. Since
√
π 6= 1 we may also find a homomorphism λ : π → D <

Isom(E1) such that λ(
√
π) ∼= Z. Then Ker(λ) is an extension of Z by F and is

commensurate with π1(N), so is the fundamental group of a Haken H3-manifold,

N̂ say. Together these homomorphisms determine a free cocompact action of π
on H3 × E1. If λ(π) ∼= Z then M = π\(H3 × E1) is the mapping torus of a self

homeomorphism of N̂ ; otherwise it is the union of two twisted I-bundles over N̂ .
In either case it follows from standard 3-manifold theory that since E has a similar
structure E and M are diffeomorphic.

If θ has finite image then we may construct an H2 ×E2-manifold with group π
and which fibres over B as in Theorems 7.2 and 9.1. Since such bundles are deter-
mined up to diffeomorphism by their fundamental groups E admits this geometry.
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Conversely, if a finite cover of E has a geometric decomposition then we may
assume that the cover is itself the total space of a surface bundle over the torus, and
so we may assume that E has a geometric decomposition and that B ∼= S1 × S1.
Let φ = π1(F ). Suppose first that E has a proper geometric decomposition. Then
π = π1(E) ∼= A∗CB or A∗C , where C is solvable and of Hirsch length 3, and where

A is the fundamental group of one of the pieces of E. Note that
√
A 6= 1. Let

Ā = A/A ∩ φ, B̄ = B/B ∩ φ and C̄ = C/C ∩ φ. Then π̄ = π/φ ∼= Z2 has a similar
decomposition as Ā ∗C̄ B̄ or Ā∗C̄ . Now C ∩ φ = 1 or Z, since χ(F ) < 0. Hence

C̄ ∼= Z2 and so Ā = C̄ = B̄. In particular, Im(θ) = θ(A). But as
√
A∩φ ≤ √

φ = 1

and
√
A and A∩φ are normal subgroups of A it follows that

√
A and A∩φ commute.

Hence θ(A) is a quotient of A/
√
A.(A∩ φ), which is abelian of rank at most 1, and

so Ker(θ) 6= 1.
If E admits the geometry H2 × E2 then

√
π = π ∩ Rad(Isom(H2 × E2)) =

π ∩ ({1} ×R2) ∼= Z2, by Proposition 8.27 of [Rg]. Hence θ has finite image.
If E admits the geometry H3×E1 then

√
π = π∩({1}×R) ∼= Z, by Proposition

8.27 of [Rg]. Hence Ker(θ) ∼= Z and E is finitely covered a cartesian product
N × S1, where N is a hyperbolic 3-manifold which is also an F -bundle over S1.
The geometric monodromy of the latter bundle is a pseudo-Anasov diffeomorphism
of F whose isotopy class is in Im(θ).

If ρ is the group of a S̃L × E1-manifold then
√
ρ ∼= Z2 and

√
ρ ∩K ′ 6= 1 for all

subgroups K of finite index, and so E cannot admit this geometry. �

In particular, if χ(B) = 0 and θ is injective E admits no geometric decomposi-
tion.

We shall assume henceforth that B is also hyperbolic. Then χ(E) > 0 and
π1(E) has no solvable subgroups of Hirsch length 3. Hence the only possible ge-
ometries on E are H2 × H2, H4 and H2(C). (These are the least well understood
geometries, and little is known about the possible fundamental groups of the cor-
responding 4-manifolds).

Theorem 13.6. Let B and F be closed hyperbolic surfaces, and let E be the
total space of the F -bundle over B corresponding to a homomorphism θ : π1(B) →
Out(π1(F )). Then the following are equivalent:

(1) E admits the geometry H2 × H2;
(2) E is finitely covered by a cartesian product of surfaces;
(3) θ has finite image.

If Ker(θ) 6= 1 then E does not admit either of the geometries H4 or H2(C).

Proof. Let π = π1(E) and φ = π1(F ). If E admits the geometry H2 × H2 it
is virtually a cartesian product, by Theorem 9.6, and so (1) implies (2).

If π is virtually a direct product of PD2-groups then [π : Cπ(φ)] < ∞, by
Theorem 5.4. Therefore the image of θ is finite and so (2) implies (3).

If θ has finite image then Ker(θ) 6= 1 and π/Cπ(φ) is a finite extension of φ.
Hence there is a homomorphism p : π → Isom(H2) with kernel Cπ(φ) and with
image a discrete cocompact subgroup. Let q : π → π1(B) < Isom(H2). Then (p, q)
embeds π as a discrete cocompact subgroup of Isom(H2 × H2), and the closed 4-
manifold M = π\(H2 × H2) clearly fibres over B. Such bundles are determined
up to diffeomorphism by the corresponding extensions of fundamental groups, by
Theorem 5.2. Therefore E admits the geometry H2 × H2 and so (3) implies (1).
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If θ is not injective Z2 < π and so E cannot admit either of the geometries H4

or H2(C), by Theorem 9 of [Pr43]. �

The mapping class group of a closed orientable surface has only finitely many
conjugacy classes of finite groups [Ha71]. With the finiteness result for H4- and
H2(C)-manifolds of [Wa72], this implies that only finitely many orientable bundle
spaces with given Euler characteristic are geometric. In Corollary 8.2 we shall show
that no such bundle space is homotopy equivalent to a H2(C)-manifold. Is there
one which admits the geometry H4? If Im(θ) contains the outer automorphism
class determined by a Dehn twist on F then E admits no metric of nonpositive
sectional curvature [KL96].

If E has a proper geometric decomposition the pieces are reducible H2 × H2-
manifolds and the inclusions of the cusps induce monomorphisms on π1. Must E
be a H2 × H2-manifold?

Every closed orientable H2×H2-manifold has a 2-fold cover which is a complex
surface, and has signature 0. Conversely, if E is a complex surface and p is a holo-
morphic submersion then σ(E) = 0 implies that the fibres are isomorphic, and so
E is an H2 ×H2-manifold [Ko99]. This is also so if p is a holomorphic fibre bundle
(see §V.6 of [BPV]). Any holomorphic submersion with base of genus at most 1
or fibre of genus at most 2 is a holomorphic fibre bundle [Ks68]. There are such
holomorphic submersions in which σ(E) 6= 0 and so which are not virtually prod-
ucts. (See §V.14 of [BPV]). The image of θ must contain the outer automorphism
class determined by a pseudo-Anasov homeomorphism and not be virtually abelian
[Sh97].

Orientable H4-manifolds also have signature 0, but no closed H4-manifold ad-
mits a complex structure.

If B and E are orientable σ(E) = −θ∗τ ∩ [B], where τ ∈ H2(Out(π1(F )); Z)
is induced from a universal class in H2(Sp2g(Z); Z) via the natural representation
of Out(π1(F )) as symplectic isometries of the intersection form on H1(F ; Z) ∼= Z2g

[Me73]. In particular, if g = 2 then σ(E) = 0. Does the genus 2 mapping class
group contain any subgroups which are hyperbolic PD2-groups?

13.3. Geometric decompositions of torus bundles

In this section we shall give some examples of torus bundles over closed surfaces
which are not geometric, some of which admit geometric decompositions of type
F4 and some of which do not. If M is a compact manifold with boundary whose
interior is an F4-manifold of finite volume then π1(M) is a semidirect product
Z2 ×θ F where θ : F → GL(2,Z) is a monomorphism with image of finite index.
The double DM = M ∪∂ M is fibred over a hyperbolic base but is not geometric,
since

√
π ∼= Z2 but [π : Cπ(

√
π)] is infinite. The orientable surface of genus 2

can be represented as a double in two distinct ways; we shall give corresponding
examples of nongeometric torus bundles which admit geometric decompositions of
type F4. (Note that F4-manifolds are Seifert fibred with base a punctured hyperbolic
orbifold).

1. Let F (2) be the free group of rank two and let γ : F (2) → SL(2,Z)
have image the commutator subgroup SL(2,Z)′, which is freely generated by ( 2 1

1 1 )
and ( 1 1

1 2 ). The natural surjection from SL(2,Z) to PSL(2,Z) induces an iso-
morphism of commutator subgroups. (See §2 of Chapter 1). The parabolic sub-
group PSL(2,Z)′ ∩Stab(0) is generated by the image of

(−1 0
−6 −1

)
. Hence [Stab(0) :
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PSL(2,Z)′ ∩ Stab(0)] = 6 = [PSL(2,Z) : PSL(2,Z)′], and so PSL(2,Z)′ has a
single cusp at 0. The quotient space PSL(2,Z)′\H2 is the once-punctured torus.
Let N ⊂ PSL(2,Z)′\H2 be the complement of an open horocyclic neighbourhood
of the cusp. The double DN is the closed orientable surface of genus 2. The
semidirect product Γ = Z2 ×γ F (2) is a lattice in Isom(F4), and the double of the
bounded manifold with interior Γ\F 4 is a torus bundle over DN .

2. Let δ : F (2) → SL(2,Z) have image the subgroup which is freely gen-
erated by U = ( 1 0

2 1 ) and V = ( 1 2
0 1 ). Let δ̄ : F (2) → PSL(2,Z) be the com-

posed map. Then δ̄ is injective and [PSL(2,Z) : δ̄(F (2))] = 6. (Note that
δ(F (2)) and −I together generate the level 2 congruence subgroup). Moreover
[Stab(0) : δ̄(F (2)) ∩ Stab(0)] = 2. Hence δ̄(F (2)) has three cusps, at 0, ∞ and 1,
and δ̄(F (2))\H2 is the thrice-punctured sphere. The corresponding parabolic sub-
groups are generated by U , V and V U−1, respectively. Doubling the complement
N of disjoint horocyclic neighbourhoods of the cusps in δ̄(F (2))\H2 again gives a
closed orientable surface of genus 2. (The presentation for π1(DN) derived from
this construction is 〈U, V, U1, V1, s, t | s−1Us = U1, t

−1V t = V1, V U
−1 = V1U

−1
1 〉,

which is equivalent to the usual presentation 〈U, V, s, t | s−1V −1sV = t−1U−1tU〉).
The semidirect product ∆ = Z2 ×δ F (2) is a lattice in Isom(F4), and the double
of the bounded manifold with interior ∆\F 4 is again a torus bundle over DN .

3. If G is an orientable PD2-group which is not virtually Z2 and λ : G →
SL(2,Z) is a homomorphism whose image is infinite cyclic then π = Z2 ×λ G is
the fundamental group of a closed orientable 4-manifold which is fibred over an
orientable hyperbolic surface but which has no geometric decomposition at all.

(The only possible geometries are F4, H2×E2 and S̃L×E1. We may exclude pieces
of type F4 as Im(λ) has infinite index in SL(2,Z), and we may exclude pieces of

type H2 × E2 or S̃L × E1 as Im(λ) ∼= Z is not generated by finite subgroups).

13.4. Complex surfaces and fibrations

It is an easy consequence of the classification of surfaces that a minimal compact
complex surface S is ruled over a curve C of genus ≥ 2 if and only if π1(S) ∼=
π1(C) and χ(S) = 2χ(C). (See Chapter VI of [BPV]). We shall give a similar
characterization of the complex surfaces which admit holomorphic submersions to
complex curves of genus ≥ 2, and more generally of quotients of such surfaces by
free actions of finite groups. However we shall use the classification only to handle
the cases of non-Kähler surfaces.

Theorem 13.7. Let S be a complex surface. Then S has a finite covering space
which admits a holomorphic submersion onto a complex curve, with base and fibre
of genus ≥ 2, if and only if π = π1(S) has normal subgroups K < π̂ such that K
and π̂/K are PD+

2 -groups, [π : π̂] <∞ and [π : π̂]χ(S) = χ(K)χ(π̂/K) > 0.

Proof. The conditions are clearly necessary. Suppose that they hold. Then S
is aspherical, by Theorem 5.2. In particular, π is torsion free and π2(S) = 0, so S is
minimal. After enlargingK if necessary we may assume that π/K has no nontrivial

finite normal subgroup. Let Ŝ be the finite covering space corresponding to π̂. Then

β1(Ŝ) ≥ 4. If β1(Ŝ) were odd then Ŝ would be minimal properly elliptic, by the

classification of surfaces. But then either χ(S) = 0 or Ŝ would have a singular

fibre and the projection of Ŝ to the base curve would induce an isomorphism on

fundamental groups [CZ79]. Hence β1(Ŝ) is even and so Ŝ and S are Kähler (see



13.4. COMPLEX SURFACES AND FIBRATIONS 189

Theorem 4.3 of [Wl86]). Since π/K is not virtually Z2 it is isomorphic to a discrete

group of isometries of the upper half plane H2 and β
(2)
1 (π/K) 6= 0. Hence there is

a properly discontinuous holomorphic action of π/K on H2 and a π/K-equivariant
holomorphic map from the covering space SK to H2, with connected fibres, by

Theorems 4.1 and 4.2 of [ABR92]. Let B and B̂ be the complex curves H2/(π/K)

and H2/(π̂/K), respectively, and let h : S → B and ĥ : Ŝ → B̂ be the induced

maps. The quotient map from H2 to B̂ is a covering projection, since π̂/K is torsion

free, and so π1(ĥ) is an epimorphism with kernel K.
The map h is a submersion away from the preimage of a finite subset D ⊂ B.

Let F be the general fibre and Fd the fibre over d ∈ D. Fix small disjoint discs
∆d ⊂ B about each point of D, and let B∗ = B − ∪d∈D∆d, S

∗ = h−1(B∗) and
Sd = h−1(∆d). Since h|S∗ is a submersion π1(S

∗) is an extension of π1(B
∗) by

π1(F ). The inclusion of ∂Sd into Sd − Fd is a homotopy equivalence. Since Fd has
real codimension 2 in Sd the inclusion of Sd − Fd into Sd is 2-connected. Hence
π1(∂Sd) maps onto π1(Sd).

Let md = [π1(Fd)] : Im(π1(F ))]. After blowing up S at singular points of Fd
we may assume that it has only normal crossings. We may then pull h|Sd

back over

a suitable branched covering of ∆d to obtain a singular fibre F̃d with no multiple

components and only normal crossing singularities. In that case F̃d is obtained from

F by shrinking vanishing cycles, and so π1(F ) maps onto π1(F̃d). Since blowing
up a point on a curve does not change the fundamental group it follows from §9 of
Chapter III of [BPV] that in general md is finite.

We may regard B as an orbifold with cone singularities of order md at d ∈ D.
By the Van Kampen theorem (applied to the space S and the orbifold B) the image
of π1(F ) in π is a normal subgroup and h induces an isomorphism from π/π1(F )
to πorb1 (B). Therefore the kernel of the canonical map from πorb1 (B) to π1(B) is
isomorphic to K/Im(π1(F )). But this is a finitely generated normal subgroup of
infinite index in πorb1 (B), and so must be trivial. Hence π1(F ) maps onto K, and
so χ(F ) ≤ χ(K).

Let D̂ be the preimage of D in B̂. The general fibre of ĥ is again F . Let F̂d
denote the fibre over d ∈ D̂. Then χ(Ŝ) = χ(F )χ(B) + Σd∈D̂(χ(F̂d) − χ(F )) and

χ(F̂d) ≥ χ(F ), by Proposition III.11.4 of [BPV]. Moreover χ(F̂d) > χ(F ) unless

χ(F̂d) = χ(F ) = 0, by Remark III.11.5 of [BPV]. Since χ(B̂) = χ(π̂/K) < 0,

χ(Ŝ) = χ(K)χ(π̂/K) and χ(F ) ≤ χ(K) it follows that χ(F ) = χ(K) < 0 and

χ(F̂d) = χ(F ) for all d ∈ D̂. Therefore F̂d ∼= F for all d ∈ D̂ and so ĥ is a
holomorphic submersion. �

Similar results have been found independently by Kapovich and Kotschick
[Ka98, Ko99]. Kapovich assumes instead that K is FP2 and S is aspherical. As
these hypotheses imply that K is a PD2-group, by Theorem 1.19, the above theo-
rem applies.

We may construct examples of such surfaces as follows. Let n > 1 and C1 and
C2 be two curves such that Z/nZ acts freely on C1 and with isolated fixed points on
C2. Then the quotient S of C1 ×C2 under the induced action is a complex surface
and the projection from C1 ×C2 to C2 induces a surjective holomorphic mappping
from S to C2/(Z/nZ) with critical values corresponding to the fixed points.
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Corollary 13.7.1. The surface S admits such a holomorphic submersion onto
a complex curve if and only if π/K is a PD+

2 -group. �

Corollary 13.7.2. No bundle space E is homotopy equivalent to a closed
H2(C)-manifold.

Proof. Since H2(C)-manifolds have 2-fold coverings which are complex sur-
faces, we may assume that E is homotopy equivalent to a complex surface S. By
the theorem, S admits a holomorphic submersion onto a complex curve. But then
χ(S) > 3σ(S) [Li96], and so S cannot be a H2(C)-manifold. �

The relevance of Liu’s work was observed by Kapovich, who has also found
a cocompact H2(C)-lattice which is an extension of a PD+

2 -group by a finitely
generated normal subgroup, but which is not almost coherent [Ka98].

Similar arguments may be used to show that a Kähler surface S is a minimal
properly elliptic surface with no singular fibres if and only if χ(S) = 0 and π = π1(S)
has a normal subgroup A ∼= Z2 such that π/A is virtually torsion free and indicable,
but is not virtually abelian. (This holds also in the non-Kähler case as a consequence
of the classification of surfaces). Moreover, if S is not a ruled surface then it is a
complex torus, a hyperelliptic surface, an Inoue surface, a Kodaira surface or a
minimal elliptic surface if and only if χ(S) = 0 and π1(S) has a normal subgroup A
which is poly-Z and not cyclic, and such that π/A is infinite and virtually torsion
free indicable.

We may combine Theorem 7 with some observations deriving from the classi-
fication of surfaces for our second result.

Theorem 13.8. Let S be a complex surface such that π = π1(S) 6= 1. If S
is homotopy equivalent to the total space E of a bundle over a closed orientable
2-manifold then S is diffeomorphic to E.

Proof. Let B and F be the base and fibre of the bundle, respectively. Suppose
first that χ(F ) = 2. Then χ(B) ≤ 0, for otherwise S would be simply-connected.
Hence π2(S) is generated by an embedded S2 with self-intersection 0, and so S is
minimal. Therefore S is ruled over a curve diffeomorphic to B, by the classification
of surfaces.

Suppose next that χ(B) = 2. If χ(F ) = 0 and π 6∼= Z2 then π ∼= Z⊕(Z/nZ) for
some n > 0. Then S is a Hopf surface and so is determined up to diffeomorphism
by its homotopy type, by Theorem 12 of [Kt75]. If χ(F ) = 0 and π ∼= Z2 or if
χ(F ) < 0 then S is homotopy equivalent to S2×F , so χ(S) < 0, w1(S) = w2(S) = 0
and S is ruled over a curve diffeomorphic to F . Hence E and S are diffeomorphic
to S2 × F .

In the remaining cases E and F are both aspherical. If χ(F ) = 0 and χ(B) ≤ 0
then χ(S) = 0 and π has one end. Therefore S is a complex torus, a hyperelliptic
surface, an Inoue surface, a Kodaira surface or a minimal properly elliptic surface.
(This uses Bogomolov’s theorem on class V II0 surfaces [Te94]). The Inoue surfaces
are mapping tori of self-diffeomorphisms of S1 × S1 × S1, and their fundamental
groups are not extensions of Z2 by Z2, so S cannot be an Inoue surface. As the
other surfaces are Seifert fibred 4-manifolds E and S are diffeomorphic, by [Ue91].

If χ(F ) < 0 and χ(B) = 0 then S is a minimal properly elliptic surface.
Let A be the normal subgroup of the general fibre in an elliptic fibration. Then
A ∩ π1(F ) = 1 (since π1(F ) has no nontrivial abelian normal subgroup) and so
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[π : A.π1(F )] < ∞. Therefore E is finitely covered by a cartesian product T × F ,
and so is Seifert fibred. Hence E and S are diffeomorphic, by [Ue].

The remaining case (χ(B) < 0 and χ(F ) < 0) is an immediate consequence of
Theorem 7, since such bundles are determined by the corresponding extensions of
fundamental groups (see Theorem 5.2). �

A simply-connected smooth 4-manifold which fibres over a 2-manifold must be
homeomorphic to CP 1 × CP 1 or CP 2♯CP 2. (See Chapter 12). Is there such a
surface of general type? (No surface of general type is diffeomorphic to CP 1×CP 1

or CP 2♯CP 2 [Qi93]).

Corollary 13.8.1. If moreover the base has genus 0 or 1 or the fibre has genus
2 then S is finitely covered by a cartesian product.

Proof. A holomorphic submersion with fibre of genus 2 is the projection of a
holomorphic fibre bundle and hence S is virtually a product, by [Ks68]. �

Up to deformation there are only finitely many algebraic surfaces with given
Euler characteristic > 0 which admit holomorphic submersions onto curves [Pa68].
By the argument of the first part of Theorem 1 this remains true without the hy-
pothesis of algebraicity, for any such complex surface must be Kähler, and Kähler
surfaces are deformations of algebraic surfaces (see Theorem 4.3 of [Wl86]). Thus
the class of bundles realized by complex surfaces is very restricted. Which exten-
sions of PD+

2 -groups by PD+
2 -groups are realized by complex surfaces (i.e., not

necessarily aspherical)?
The equivalence of the conditions “ S is ruled over a complex curve of genus

≥ 2”, “π = π1(S) is a PD+
2 -group and χ(S) = 2χ(π) < 0” and “π2(S) ∼= Z, π acts

trivially on π2(S) and χ(S) < 0” also follows by an argument similar to that used
in Theorems 7 and 8.

If π2(S) ∼= Z and χ(S) = 0 then π is virtually Z2. The finite covering space
with fundamental group Z2 is Kähler, and therefore so is S. Since β1(S) > 0 and
is even, we must have π ∼= Z2, and so S is either ruled over an elliptic curve or is a
minimal properly elliptic surface, by the classification of complex surfaces. In the
latter case the base of the elliptic fibration is CP 1, there are no singular fibres and
there are at most 3 multiple fibres. (See [Ue91]). Thus S may be obtained from a
cartesian product CP 1 ×E by logarithmic transformations. (See §V.13 of [BPV]).
Must S in fact be ruled?

If π2(S) ∼= Z and χ(S) > 0 then π = 1, by Theorem 10.1. Hence S ≃ CP 2

and so S is analytically isomorphic to CP 2, by a result of Yau (see Theorem I.1 of
[BPV]).

13.5. S1-Actions and foliations by circles

The real line R embeds as a characteristic subgroup of the radical of Isom(X4)

for each of the geometries X4 = S3 × E1, H3 × E1, S̃L × E1, Nil3 × E1, Sol3 × E1,
Nil4 and Sol41. (However the translation subgroup of the euclidean factor is not

characteristic if X4 = S̃L × E1 or Nil3 × E1). The corresponding closed geometric
4-manifolds are foliated by circles, and the leaf space is a geometric 3-orbifold, with
geometry S3, H3, H2×E1, E3, Sol3, Nil3 and Sol3, respectively. In each case it may
be verified that if π is a lattice in Isom(X4) then π ∩R ∼= Z. As this characteristic
subgroup is central in the identity component of the isometry group such manifolds
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have double coverings which admit S1-actions without fixed points. These actions
lift to principal S1-actions (without exceptional orbits) on suitable finite covering
spaces. (This does not hold for all S1-actions. For instance, S3 admits non-principal
S1-actions without fixed points).

Closed E4-, S2 ×E2- or H2 ×E2-manifolds all have finite covering spaces which
are cartesian products with S1, and thus admit principal S1-actions. However
these actions are not canonical. (There are also non-canonical S1-actions on many

S̃L×E1- and Nil3×E1-manifolds). No other closed geometric 4-manifold is finitely
covered by the total space of an S1-bundle. For if a closed manifold M is foliated by
circles then χ(M) = 0. This excludes all other geometries except Sol4m,n and Sol40.
If moreover M is the total space of an S1-bundle and is aspherical then π1(M) has
an infinite cyclic normal subgroup. As lattices in Isom(Sol4m,n) or Isom(Sol40) do
not have such subgroups these geometries are excluded also. Does every geometric
4-manifold M with χ(M) = 0 nevertheless admit a foliation by circles?

In particular, a complex surface has a foliation by circles if and only if it
admits one of the above geometries. Thus it must be Hopf, hyperelliptic, Inoue
of type S±

N..., Kodaira, minimal properly elliptic, ruled over an elliptic curve or a
torus. With the exception of some algebraic minimal properly elliptic surfaces and
the ruled surfaces over the torus with w2 6= 0 all such surfaces admit S1-actions
without fixed points.

Conversely, the total space E of an S1-bundle ξ over a closed geometric 3-

manifold is geometric, except when the base B has geometry H3 or S̃L and the
characteristic class c(ξ) has infinite order. More generally, E has a (proper) geo-
metric decomposition if and only if B has a (proper) geometric decomposition and
the restrictions of c(ξ) to the hyperbolic pieces of B each have finite order.

Total spaces of circle bundles over aspherical Seifert fibred 3-manifolds and
Sol3-manifolds have a characterization parallel to that of Theorem 2.

Theorem 13.9. Let M be a closed 4-manifold with fundamental group π. Then

(1) M is simple homotopy equivalent to the total space E of an S1-bundle
over an aspherical closed Seifert fibred 3-manifold or a Sol3-manifold if
and only if χ(M) = 0 and π has normal subgroups A < B such that
A ∼= Z, π/A is torsion free and B/A is abelian.

If B/A ∼= Z and is central in π/A then M is s-cobordant to E. If
B/A has rank at least 2 then M is homeomorphic to E.

(2) M is s-cobordant to the total space E of an S1-bundle over the mapping
torus of a self homeomorphism of an aspherical surface if and only if
χ(M) = 0 and π has normal subgroups A < B such that A ∼= Z, π/A is
torsion free, B is FP2 and π/B ∼= Z.

Proof. (1) The conditions are clearly necessary. If they hold then h(
√
π) ≥

h(B/A) + 1 ≥ 2, and so M is aspherical. If h(
√
π) = 2 then

√
π ∼= Z2, by Theorem

9.4. Hence B/A ∼= Z and H2(π/B; Z[π/B]) ∼= Z, so π/B is virtually a PD2-group,
by Bowditch’s Theorem. Since π/A is torsion free it is a PD3-group, and so is the
fundamental group of a closed Seifert fibred 3-manifold, N say, by Theorem 2.14.
As Wh(π) = 0, by Lemma 6.4, M is simple homotopy equivalent to the total space
E of an S1-bundle over N . If moreover B/A is central in π/A then N admits an
effective S1-action, and E × S1 is an S1 × S1-bundle over N . Hence M × S1 is
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homeomorphic to E × S1 (see Remark 3.4 of [NS85]), and so M is s-cobordant to
E.

If B/A has rank at least 2 then h(
√
π) > 2 and so π is virtually poly-Z.

Hence π/A is the fundamental group of a E3-, Nil3- or Sol3-manifold and M is
homeomorphic to such a bundle space E, by Theorem 6.11.

(2) The conditions are again necessary. If they hold then B/A is infinite, so
B has one end and hence is a PD3-group, by Theorem 4.2. Since B/A is torsion
free it is a PD2-group, by Bowditch’s Theorem, and so π/A is the fundamental
group of a mapping torus, N say. As Wh(π) = 0, by Lemma 6.4, M is simple
homotopy equivalent to the total space E of an S1-bundle over N . Since π × Z is
square root closed accessible M ×S1 is homeomorphic to E×S1 [Ca73], and so M
is s-cobordant to E. �

If B/A ∼= Z and π/B acts nontrivially on B/A is M s-cobordant to E?
Simple homotopy equivalence implies s-cobordism for such bundles over other

Haken bases (with square root closed accessible fundamental group or with β1 > 0
and orientable) using [Ca73] or [Ro00]. However we do not yet have good intrinsic
characterizations of the fundamental groups of such 3-manifolds.

If M fibres over a hyperbolic 3-manifold N then χ(M) = 0,
√
π ∼= Z and π/

√
π

has one end, finite cohomological dimension and no noncyclic abelian subgroups.
Conversely if π satisfies these conditions then ρ = π/

√
π is a PD3-group, by Theo-

rem 4.11, and
√
ρ = 1. It may be conjectured that every such PD3-group (with no

nocyclic abelian subgroups and trivial Hirsch-Plotkin radical) is the fundamental
group of a closed hyperbolic 3-manifold. If so, Theorem 9 may be extended to
a characterization of such 4-manifolds up to s-cobordism, using Theorem 10.7 of
[FJ89] instead of [NS85].

13.6. Symplectic structures

If M is a closed orientable 4-manifold which fibres over an orientable surface
and the image of the fibre in H2(M ; R) is nonzero then M has a symplectic struc-
ture [Th76]. The homological condition is automatic unless the fibre is a torus;
some such condition is needed, as S3 × S1 is the total space of a T -bundle over
S2 but H2(S3 × S1; R) = 0, so it has no symplectic structure. If the base is also
a torus then M admits a symplectic structure [Ge92]. Closed Kähler manifolds
have natural symplectic structures. Using these facts, it is easy to show for most
geometries that either every closed geometric manifold is finitely covered by one
admitting a symplectic structure or no closed geometric manifold admits any sym-
plectic structure.

If M is orientable and admits one of the geometries CP2, S2 × S2, S2 × E2,
S2 ×H2, H2×E2, H2×H2 or H2(C) then it has a 2-fold cover which is Kähler, and
therefore symplectic. If it admits E4, Nil4, Nil3×E1 or Sol3×E1 then it has a finite
cover which fibres over the torus, and therefore is symplectic. If all H3-manifolds are
virtually mapping tori then H3 × E1-manifolds would also be virtually symplectic.
However, the question is not settled for this geometry.

As any closed orientable manifold with one of the geometries S4, S3×E1, Sol4m,n
(with m 6= n), Sol40 or Sol41 has β2 = 0 no such manifold can be symplectic. Nor are

closed S̃L × E1-manifolds [Et01]. The question appears open for the geometry H4,
as is the related question about bundles. (Note that symplectic 4-manifolds with
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index 0 have Euler characteristic divisible by 4, by Corollary 10.1.10 of [GS]. Hence
covering spaces of odd degree of the Davis 120-cell space provide many examples
of nonsymplectic H4-manifolds).

If N is a 3-manifold which is a mapping torus then S1 ×N fibres over T , and
so admits a symplectic structure. Taubes has asked whether the converse is true; if
S1 × N admits a symplectic structure must N fibre over S1? More generally, one
might ask which 4-dimensional mapping tori and S1-bundles are symplectic?

Which manifolds with geometric decompositions are symplectic?



Part 3

2-Knots





CHAPTER 14

Knots and links

In this chapter we introduce the basic notions and constructions of knot theory.
Many of these apply equally well in all dimensions, and for the most part we have
framed our definitions in such generality, although our main concern is with 2-knots
(embeddings of S2 in S4). In particular, we show how the classification of higher
dimensional knots may be reduced (essentially) to the classification of certain closed
manifolds, and we give Kervaire’s characterization of high dimensional knot groups.

In the final sections we comment briefly on links and link groups.

14.1. Knots

The standard orientation of Rn induces an orientation on the unit n-disc Dn =
{(x1, . . . xn) ∈ Rn | Σx2

i ≤ 1} and hence on its boundary Sn−1 = ∂Dn, by the
convention “outward normal first”. We shall assume that standard discs and spheres
have such orientations. Qualifications shall usually be omitted when there is no risk
of amiguity. In particular, we shall often abbreviate X(K), M(K) and πK (defined
below) as X , M and π, respectively.

An n-knot is a locally flat embedding K : Sn → Sn+2. (We shall also use the
terms “classical knot” when n = 1, “higher dimensional knot” when n ≥ 2 and
“high dimensional knot” when n ≥ 3). It is determined up to (ambient) isotopy by
its imageK(Sn), considered as an oriented codimension 2 submanifold of Sn+2, and
so we may let K also denote this submanifold. Let rn be an orientation reversing
self homeomorphism of Sn. Then K is invertible, +amphicheiral or -amphicheiral if
it is isotopic to rK = rn+2K, Kρ = Krn or −K = rKρ, respectively. An n-knot is
trivial if it is isotopic to the composite of equatorial inclusions Sn ⊂ Sn+1 ⊂ Sn+2.

Every knot has a product neighbourhood: there is an embedding j : Sn ×D2

onto a closed neighbourhood N of K, such that j(Sn × {0}) = K and ∂N is
bicollared in Sn+2 [KS75,FQ]. We may assume that j is orientation preserving, and
it is then unique up to isotopy rel Sn × {0}. The exterior of K is the compact
(n + 2)-manifold X(K) = Sn+2 − intN with boundary ∂X(K) ∼= Sn × S1, and
is well defined up to homeomorphism. It inherits an orientation from Sn+2. An
n-knot K is trivial if and only if X(K) ≃ S1; this follows from Dehn’s Lemma if
n = 1, is due to Freedman if n = 2 ([FQ] - see Chapter 17 below) and is an easy
consequence of the s-cobordism theorem if n ≥ 3.

The knot group is πK = π1(X(K)). An oriented simple closed curve isotopic
to the oriented boundary of a transverse disc {j} × S1 is called a meridian for K,
and we shall also use this term to denote the corresponding elements of π. If µ is
a meridian for K, represented by a simple closed curve on ∂X then X ∪µ D2 is a
deformation retract of Sn+2 − {∗} and so is contractible. Hence π is generated by
the conjugacy class of its meridians.

197
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Assume for the remainder of this section that n ≥ 2. The group of pseudoiso-
topy classes of self homeomorphisms of Sn×S1 is (Z/2Z)3, generated by reflections
in either factor and by the map τ given by τ(x, y) = (ρ(y)(x), y) for all x in Sn

and y in S1, where ρ : S1 → SO(n+ 1) is an essential map [Gl62, Br67, Kt69]. As
any self homeomorphism of Sn × S1 extends across Dn+1 × S1 the knot manifold
M(K) = X(K)∪ (Dn+1×S1) obtained from Sn+2 by surgery on K is well defined,
and it inherits an orientation from Sn+2 via X . Moreover π1(M(K)) ∼= πK and
χ(M(K)) = 0. Conversely, suppose that M is a closed orientable 4-manifold with
χ(M) = 0 and π1(M) is generated by the conjugacy class of a single element. (Note
that each conjugacy class in π corresponds to an unique isotopy class of oriented
simple closed curves in M). Surgery on a loop in M representing such an element
gives a 1-connected 4-manifold Σ with χ(Σ) = 2 which is thus homeomorphic to S4

and which contains an embedded 2-sphere as the cocore of the surgery. We shall in
fact study 2-knots through such 4-manifolds.

There is however an ambiguity when we attempt to recoverK fromM = M(K).
The cocore γ = {0} × S1 ⊂ Dn+1 × S1 ⊂M of the original surgery is well defined
up to isotopy by the conjugacy class of a meridian in πK = π1(M). (In fact the
orientation of γ is irrelevant for what follows). Its normal bundle is trivial, so γ has
a product neighbourhood, P say, and we may assume that M − intP = X(K). But
there are two essentially distinct ways of identifying ∂X with Sn×S1 = ∂(Sn×D2),
modulo self homeomorphisms of Sn×S1 that extend across Sn×D2. If we reverse
the original construction of M we recover (Sn+2,K) = (X ∪j Sn ×D2, Sn × {0}).
If however we identify Sn × S1 with ∂X by means of jτ we obtain a new pair
(Σ,K∗) = (X ∪jτ Sn ×D2, Sn × {0}). It is easily seen that Σ ≃ Sn+2, and hence
Σ ∼= Sn+2. We may assume that the homeomorphism is orientation preserving.
Thus we obtain a new n-knot K∗, which we shall call the Gluck reconstruction of
K. The knot K is reflexive if it is determined as an unoriented submanifold by its
exterior, i.e., if K∗ is isotopic to K, rK, Kρ or −K.

If there is an orientation preserving homeomorphism from X(K1) to X(K)
then K1 is isotopic to K, K∗, Kρ or K∗ρ. If the homeomorphism also preserves
the homology class of the meridians then K1 is isotopic to K or to K∗. Thus K
is determined up to an ambiguity of order at most 2 by M(K) together with the
conjugacy class of a meridian.

A Seifert hypersurface for K is a locally flat, oriented codimension 1 subman-
ifold V of Sn+2 with (oriented) boundary K. By a standard argument these
always exist. (Using obstruction theory it may be shown that the projection
pr2j

−1 : ∂X → Sn×S1 → S1 extends to a map p : X → S1 [Ke65]. By topological
transversality we may assume that p−1(1) is a bicollared, proper codimension 1
submanifold of X . The union p−1(1) ∪ j(Sn × [0, 1]) is then a Seifert hypersurface
for K). We shall say that V is minimal if the natural homomorphism from π1(V )
to πK is a monomorphism.

In general there is no canonical choice of Seifert surface. However there is one
important special case. An n-knot K is fibred if there is such a map p : X → S1

which is the projection of a fibre bundle. (Clearly K∗ is then fibred also). The
exterior is then the mapping torus of a self homeomorphism θ of the fibre F of p. The
isotopy class of θ is called the (geometric) monodromy of the bundle. Such a map

p extends to a fibre bundle projection q : M(K) → S1, with fibre F̂ = F ∪Dn+1,
called the closed fibre of K. Conversely, if M(K) fibres over S1 then the cocore γ is
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homotopic (and thus isotopic) to a cross-section of the bundle projection, and so K
is fibred. If the monodromy has finite order (and is nontrivial) then it has precisely
two fixed points on ∂F , and we may assume that the closed monodromy also has
finite order. However the converse is false; the closed monodromy may have finite
order but not be isotopic to a map of finite order with nonempty fixed point set.

14.2. Covering spaces

Let K be an n-knot. Then H1(X(K); Z) ∼= Z and Hi(X(K); Z) = 0 if i > 1,
by Alexander duality. The meridians are all homologous and generate π/π′ =
H1(X ; Z), and so determine a canonical isomorphism with Z. MoreoverH2(π; Z) =
0, since it is a quotient of H2(X ; Z) = 0.

We shall let X ′(K) and M ′(K) denote the covering spaces corresponding to
the commutator subgroup. (The cover X ′/X is also known as the infinite cyclic
cover of the knot). Since π/π′ = Z the (co)homology groups of X ′ are modules
over the group ring Z[Z], which may be identified with the ring of integral Laurent
polynomials Λ = Z[t, t−1]. If A is a Λ-module, let zA be the Z-torsion submodule,
and let eiA = ExtiΛ(A,Λ).

Since Λ is noetherian the (co)homology of a finitely generated free Λ-chain
complex is finitely generated. The Wang sequence for the projection of X ′ onto X
may be identified with the long exact sequence of homology corresponding to the
exact sequence of coefficients 0 → Λ → Λ → Z → 0. Since X has the homology
of a circle it follows easily that multiplication by t − 1 induces automorphisms of
the modules Hi(X ; Λ) for i > 0. Hence these homology modules are all finitely
generated torsion Λ-modules, so HomΛ(Hi(X ; Λ),Λ) = 0 for all i, and the UCSS
collapses to a collection of short exact sequences 0 → e2Hi−2 → Hi(X ; Λ) →
e1Hi−1 → 0.

The infinite cyclic covering spaces X ′ and M ′ behave homologically much like
(n+ 1)-manifolds, at least if we use field coefficients [Mi68, Ba80]. If Hi(X ; Λ) = 0
for 1 ≤ i ≤ (n + 1)/2 then X ′ is acyclic; thus if also π = Z then X ≃ S1 and so
K is trivial. All the classifications of high dimensional knots to date assume that
π = Z and that X ′ is highly connected.

When n = 1 or 2 knots with π = Z are trivial, and it is more profitable to

work with the universal cover X̃ (or M̃). In the classical case X̃ is contractible
[Pa57]. In higher dimensions X is aspherical only when the knot is trivial [DV73].
Nevertheless the closed 4-manifolds M(K) obtained by surgery on 2-knots are often
aspherical. This is the main reason that we prefer to work with M(K) rather than
X(K).

14.3. Sums, factorization and satellites

The sum of two knots K1 and K2 may be defined (up to isotopy) as the n-knot
K1♯K2 obtained as follows. Let Dn(±) denote the upper and lower hemispheres of
Sn. We may isotope K1 and K2 so that each Ki(D

n(±)) contained in Dn+2(±),
K1(D

n(+)) is a trivial n-disc in Dn+2(+), K2(D
n(−)) is a trivial n-disc in Dn+2(−)

and K1|Sn−1 = K2|Sn−1 (as the oriented boundaries of the images of Dn(−)). Then
we let K1♯K2 = K1|Dn(−) ∪ K2|Dn(+). By van Kampen’s theorem π(K1♯K2) =
πK1 ∗Z πK2 where the amalgamating subgroup is generated by a meridian in each
knot group. It is not hard to see that X ′(K1♯K2) ≃ X ′(K1) ∨ X ′(K2) and so in
particular π′(K1♯K2) ∼= π′(K1) ∗ π′(K2).
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The knot K is irreducible if it is not the sum of two nontrivial knots. Every
knot has a finite factorization into irreducible knots [DF87]. (For 1- and 2-knots
whose groups have finitely generated commutator subgroups this follows easily from
the Grushko-Neumann theorem on factorizations of groups as free products). In
the classical case the factorization is essentially unique, but for each n ≥ 3 there
are n-knots with several distinct such factorizations [BHK81]. Essentially nothing
is known about uniqueness (or otherwise) of factorization when n = 2.

If K1 and K2 are fibred then so is their sum, and the closed fibre of K1♯K2 is
the connected sum of the closed fibres of K1 and K2. However in the absence of an
adequate criterion for a 2-knot to fibre, we do not know whether every summand of
a fibred 2-knot is fibred. In view of the unique factorization theorem for oriented
3-manifolds we might hope that there would be a similar theorem for fibred 2-
knots. However the closed fibre of an irreducible 2-knot need not be an irreducible
3-manifold. (For instance, the Artin spin of a trefoil knot is an irreducible fibred
2-knot, but its closed fibre is (S2 × S1)♯(S2 × S1)).

A more general method of combining two knots is the process of forming satel-
lites. Although this process arose in the classical case, where it is intimately con-
nected with the notion of torus decomposition, we shall describe only the higher-
dimensional version of [Kn83]. Let K1 and K2 be n-knots (with n ≥ 2) and let γ
be a simple closed curve in X(K1), with a product neighbourhood U . Then there
is a homeomomorphism h which carries Sn+2 − intU ∼= Sn × D2 onto a product
neighbourhood of K2. The knot Σ(K2;K1, γ) is called the satellite of K1 about K2

relative to γ. We also call K2 a companion of hK1. If either γ = 1 or K2 is trivial
then Σ(K2;K1, γ) = K1. If γ is a meridian for K1 then Σ(K2;K1, γ) = K1♯K2.
If γ has finite order in πK1 let q be that order; otherwise let q = 0. Let w be a
meridian in πK2. Then π = πK ∼= (πK2/〈〈wq〉〉) ∗Z/qZ πK1, where w is identified
with γ in πK1, by Van Kampen’s theorem.

14.4. Spinning and twist spinning

The first nontrivial examples of higher dimensional knots were given by Artin
[Ar25]. We may paraphrase his original idea as follows. As the half space R3

+ =
{(w, x, y, z) ∈ R4 | w = 0, z ≥ 0} is spun about the axis A = {(0, x, y, 0)} it sweeps
out the whole of R4, and any arc in R3

+ with endpoints on A sweeps out a 2-sphere.
Fox incorporated a twist into Artin’s construction [Fo66]. Let r be an integer

and choose a small (n + 2)-disc Bn+2 which meets K in an n-disc Bn such that
(Bn+2, Bn) is homeomorphic to the standard pair. Then Sn+2 − intBn+2 = Dn ×
D2, and we may choose the homeomorphism so that ∂(K−intBn) lies in ∂Dn×{0}.
Let ρθ be the self homeomorphism of Dn ×D2 that rotates the D2 factor through
θ radians. Then ∪0≤θ<2π(ρrθ(K − intBn) × {θ}) is a submanifold of (Sn+2 −
intBn+2)× S1 homeomorphic to Dn × S1 and which is standard on the boundary.
The r-twist spin of K is the (n+1)-knot τrK with image ∪0≤θ<2π(ρrθ(K−intBn)×
{θ})) ∪ (Sn−1 ×D2) in Sn+3 = ((Sn+2 − intBn+2) × S1) ∪ (Sn+1 ×D2).

The 0-twist spin is the Artin spin σK = τ0K, and πσK ∼= πK. The group of
τrK is obtained from πK by adjoining the relation making the rth power of (any)
meridian central. Zeeman discovered the remarkable fact that if r 6= 0 then τrK is
fibred, with geometric monodromy of order dividing r, and the closed fibre is the
r-fold cyclic branched cover of Sn+2, branched over K [Ze65]. Hence τ1K is always
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trivial. Twist spins of -amphicheiral knots are -amphicheiral, while twist spinning
interchanges invertibility and +amphicheirality [Li85].

If K is a classical knot the factors of the closed fibre of τrK are the cyclic
branched covers of the prime factors of K, and are Haken, hyperbolic or Seifert
fibred. With some exceptions for small values of r, the factors are aspherical, and
S2×S1 is never a factor [Pl84]. If r > 1 and K is nontrivial then τrK is nontrivial,
by the Smith Conjecture.

For other formulations and extensions of twist spinning see [GK78], [Li79],
[Mo83,84] and [Pl84’].

14.5. Ribbon and slice knots

An n-knot K is a slice knot if it is concordant to the unknot; equivalently, if it
bounds a properly embedded (n+ 1)-disc ∆ in Dn+3. Such a disc is called a slice
disc for K. Doubling the pair (Dn+3,∆) gives an (n + 1)-knot which meets the
equatorial Sn+2 of Sn+3 transversally in K; if the (n+1)-knot can be chosen to be
trivial then K is doubly slice. All even-dimensional knots are slice [Ke65], but not
all slice knots are doubly slice, and no adequate criterion is yet known. The sum
K♯−K is a slice of τ1K and so is doubly slice [Su71].

An n-knot K is a ribbon knot if it is the boundary of an immersed (n + 1)-
disc ∆ in Sn+2 whose only singularities are transverse double points, the double
point sets being a disjoint union of discs. Given such a “ribbon” (n+ 1)-disc ∆ in
Sn+2 the cartesian product ∆ ×Dp ⊂ Sn+2 ×Dp ⊂ Sn+2+p determines a ribbon
(n+1+ p)-disc in Sn+2+p. All higher dimensional ribbon knots derive from ribbon
1-knots by this process [Yn77]. As the p-disc has an orientation reversing involution
this easily imples that all ribbon n-knots with n ≥ 2 are -amphicheiral. The Artin
spin of a 1-knot is a ribbon 2-knot. Each ribbon 2-knot has a Seifert hypersurface
which is a once-punctured connected sum of copies of S1 × S2 [Yn69]. Hence such
knots are reflexive. (See [Su76] for more on geometric properties of such knots).

An n-knot K is a homotopy ribbon knot if it has a slice disc whose exterior
W has a handlebody decomposition consisting of 0-, 1- and 2-handles. The dual
decomposition of W relative to ∂W = M(K) has only (n+1)- and (n+2)-handles,
and so the inclusion of M into W is n-connected. (The definition of “homotopically
ribbon” for 1-knots given in Problem 4.22 of [GK] requires only that this latter
condition be satisfied). Every ribbon knot is homotopy ribbon and hence slice
[Hi79]. It is an open question whether every classical slice knot is ribbon. However
in higher dimensions “slice” does not even imply “homotopy ribbon”. (The simplest
example is τ231 - see below).

More generally, we shall say that K is π1-slice if the inclusion of M(K) into
the exterior of some slice disc induces an isomorphism on fundamental groups.
(Nontrivial classical knots are never π1-slice, since H2(π1(M(K)); Z) ∼= Z 6= 0 =
H2(π1(D

4 − ∆); Z)).
Two 2-knots K0 and K1 are s-concordant if there is a concordance K : S2 ×

[0, 1] → S4 × [0, 1] whose exterior is an s-cobordism (rel ∂) from X(K0) to X(K1).
(In higher dimensions the analogous notion is equivalent to ambient isotopy, by the
s-cobordism theorem).
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14.6. The Kervaire conditions

A group G has weight 1 if it has an element whose conjugates generate G. Such
an element is called a weight element for G, and its conjugacy class is called a weight
class for G. If G is solvable then it has weight 1 if and only if G/G′ is cyclic, for a
solvable group with trivial abelianization must be trivial.

If π is the group of an n-knot K then
(i) π is finitely presentable;
(ii) π is of weight 1;
(iii) H1(π; Z) = π/π′ ∼= Z; and
(iv) H2(π; Z) = 0.
Kervaire showed that any group satisfying these conditions is an n-knot group, for
every n ≥ 3 [Ke65]. These conditions are also necessary when n = 1 or 2, but are
then no longer sufficient, and there are as yet no corresponding characterizations
for 1- and 2-knot groups. (Note however that if π is a high dimensional knot group
then q(π) ≥ 0, and q(π) = 0 if and only if π is a 2-knot group). Gonzalez-Acuña has
given a characterization of 2-knot groups as groups admitting certain presentations
[GA94].

If K is a nontrivial classical knot then πK has one end [Pa57], so X(K) is
aspherical, and X(K) collapses to a finite 2-complex, so g.d.π ≤ 2. Moreover
π has a Wirtinger presentation of deficiency 1, i.e., a presentation of the form
〈xi, 0 ≤ i ≤ n | xj = wjx0w

−1
j , 1 ≤ j ≤ n〉. A group has such a presentation

if and only if it has weight 1 and has a deficiency 1 presentation P such that
the presentation of the trivial group obtained by adjoining the relation killing a
weight element is AC-equivalent to the empty presentation [Yo82’]. (See [Si80] for
connections between Wirtinger presentations and the condition that H2(π; Z) = 0).
If G is an n-knot group then g.d.G = 2 if and only if c.d.G = 2 and def(G) = 1,
by Theorem 2.8.

Since the group of a homotopy ribbon n-knot (with n ≥ 2) is the fundamental
group of a (n + 3)-manifold W with χ(W ) = 0 and which can be built with 0-,
1- and 2-handles only, such groups also have deficiency 1. Conversely, if a finitely
presentable group G has weight 1 and and deficiency 1 then we use such a pre-
sentation to construct a 5-dimensional handlebody W = D5 ∪ {h1

i } ∪ {h2
j} with

π1(∂W ) = π1(W ) ∼= G and χ(W ) = 0. Adjoining another 2-handle h along a loop
representing a weight class for π1(∂W ) gives a homotopy 5-ball B with 1-connected
boundary. Thus ∂B ∼= S4, and the boundary of the cocore of the 2-handle h is
clearly a homotopy ribbon 2-knot with group G. (In fact any group of weight 1
with a Wirtinger presentation of deficiency 1 is the group of a ribbon n-knot, for
each n ≥ 2 [Yj69, H1]).

However not all 2-knot groups have deficiency 1. The deficiency may be esti-
mated in terms of the minimum number of generators of the Λ-module e2(π′/π′′).
Using this observation, it may be shown that if K is the sum of m + 1 copies of
τ231 then def(πK) = −m [Le78]. Moreover there are irreducible 2-knots whose
groups have deficiency −m, for each m ≥ 0 [Kn83]. (See also §9 of this chapter and
Chapter 16 below).

A knot group π has two ends if and only if π′ is finite. We shall determine all
such 2-knots in §2 of Chapter 15. Nontrivial torsion free knot groups have one end
[Kl93]. There are also many 2-knot groups with infinitely many ends. The simplest
is perhaps the group with presentation 〈a, b, t | a3 = b7 = 1, ab = b2a, ta = a2t〉.
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It is evidently an HNN extension of the metacyclic group generated by {a, b}, but
is also the free product of such a metacyclic group with πτ231, amalgamated over
a subgroup of order 3 [GM78].

14.7. Weight elements, classes and orbits

Two 2-knots K and K1 have homeomorphic exteriors if and only if there is
a homeomorphism from M(K1) to M(K) which carries the conjugacy class of a
meridian of K1 to that of K (up to inversion). In fact if M is any closed orientable
4-manifold with χ(M) = 0 and with π = π1(M) of weight 1 then surgery on a
weight class gives a 2-knot with group π. Moreover, if t and u are two weight
elements and f is a self homeomorphism of M such that u is conjugate to f∗(t±1)
then surgeries on t and u lead to knots whose exteriors are homeomorphic (via the
restriction of a self homeomorphism of M isotopic to f). Thus the natural invariant
to distinguish between knots with isomorphic groups is not the weight class, but
rather the orbit of the weight class under the action of self homeomorphisms of M .
In particular, the orbit of a weight element under Aut(π) is a well defined invariant,
which we shall call the weight orbit. If every automorphism of π is realized by a self
homeomorphism of M then the homeomorphism class of M and the weight orbit
together form a complete invariant for the (unoriented) knot. (This is the case if
M is an infrasolvmanifold).

For oriented knots we need a refinement of this notion. If w is a weight el-
ement for π then we shall call the set {α(w) | α ∈ Aut(π), α(w) ≡ w mod π′}
a strict weight orbit for π. A strict weight orbit determines a transverse orienta-
tion for the corresponding knot (and its Gluck reconstruction). An orientation for
the ambient sphere is determined by an orientation for M(K). If K is invertible
or +amphicheiral then there is a self homeomorphism of M which is orientation
preserving or reversing (respectively) and which reverses the transverse orientation
of the knot, i.e., carries the strict weight orbit to its inverse. Similarly, if K is
-amphicheiral there is an orientation reversing self homeomorphism of M which
preserves the strict weight orbit.

Theorem 14.1. Let G be a group of weight 1 and with G/G′ ∼= Z. Let t be an
element of G whose image generates G/G′ and let ct be the automorphism of G′

induced by conjugation by t. Then

(1) t is a weight element if and only if ct is meridianal;
(2) two weight elements t, u are in the same weight class if and only if there

is an inner automorphism cg of G′ such that cu = cgctc
−1
g ;

(3) two weight elements t, u are in the same strict weight orbit if and only if
there is an automorphism d of G′ such that cu = dctd

−1 and dctd
−1c−1

t is
an inner automorphism;

(4) if t and u are weight elements then u is conjugate to (g′′t)±1 for some g′′

in G′′.

Proof. The verification of (1-3) is routine. If t and u are weight elements
then, up to inversion, u must equal g′t for some g′ in G′. Since multiplication by
t− 1 is invertible on G′/G′′ we have g′ = khth−1t−1 for some h in G′ and k in G′′.
Let g′′ = h−1kh. Then u = g′t = hg′′th−1. �

An immediate consequence of this theorem is that if t and u are in the same
strict weight orbit then ct and cu have the same order. Moreover if C is the
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centralizer of ct in Aut(G′) then the strict weight orbit of t contains at most
[Aut(G′) : C.Inn(G′)] ≤ |Out(G′)| weight classes. In general there may be in-
finitely many weight orbits [Pl83’]. However if π is metabelian the weight class
(and hence the weight orbit) is unique up to inversion, by part (iv) of the theorem.

14.8. The commutator subgroup

It shall be useful to reformulate the Kervaire conditions in terms of the auto-
morphism of the commutator subgroup induced by conjugation by a meridian. An
automorphism φ of a group G is meridianal if 〈〈g−1φ(g) | g ∈ G〉〉G = G. If H is
a characteristic subgroup of G and φ is meridianal the induced automorphism of
G/H is then also meridianal. In particular, H1(φ)−1 maps H1(G; Z) = G/G′ onto
itself. If G is solvable an automorphism satisfying the latter condition is meridianal,
for a solvable perfect group is trivial.

It is easy to see that no group G with G/G′ ∼= Z can have G′ ∼= Z or D. It
follows that the commutator subgroup of a knot group never has two ends.

Theorem 14.2 (HK78, Le78). A finitely presentable group π is a high dimen-
sional knot group if and only if π ∼= π′ ×θ Z for some meridianal automorphism θ
of π′ such that H2(θ) − 1 is an automorphism of H2(π

′; Z). �

If π is a knot group then π′/π′′ is a finitely generated Λ-module. Levine and We-
ber have made explicit the conditions under which a finitely generated Λ-module
may be the commutator subgroup of a metabelian high dimensional knot group
[LW78]. Leaving aside the Λ-module structure, Hausmann and Kervaire have char-
acterized the finitely generated abelian groups A that may be commutator sub-
groups of high dimensional knot groups [HK78]. “Most” can occur; there are mild
restrictions on 2- and 3-torsion, and if A is infinite it must have rank at least 3.
We shall show that the abelian groups which are commutator subgroups of 2-knot
groups are Z3, Z[ 12 ] (the additive group of dyadic rationals) and the cyclic groups of
odd order. The commutator subgroup of a nontrivial classical knot group is never
abelian.

Hausmann and Kervaire also showed that any finitely generated abelian group
could be the centre of a high dimensional knot group [HK78’]. We shall show that
the centre of a 2-knot group is either Z2, torsion free of rank 1, finitely generated
of rank 1 or is a torsion group. (The only known examples are Z2, Z ⊕ (Z/2Z), Z,
Z/2Z and 1). The centre of a classical knot group is nontrivial if and only if the
knot is a torus knot [BZ]; the centre is then Z.

Silver has given examples of high dimensional knot groups π with π′ finitely
generated but not finitely presentable [Si91]. He has also shown that there are
embeddings j : T → S4 such that π1(S

4−j(T ))′ is finitely generated but not finitely
presentable [Si97]. However no such 2-knot groups are known. If the commutator
subgroup is finitely generated then it is the unique HNN base [Si96]. Thus knots
with such groups have no minimal Seifert hypersurfaces.

The first examples of high dimensional knot groups which are not 2-knot groups
made use of Poincaré duality with coefficients Λ. Farber [Fa77] and Levine [Le77]
independently found the following theorem.

Theorem 14.3 (Farber, Levine). Let K be a 2-knot and let A = H1(M(K); Λ).

Then H2(M(K); Λ) ∼= e1A, and there is a nondegenerate Z-bilinear pairing [ , ] :
zA× zA→ Q/Z such that [tα, tβ] = [α, β] for all α and β in zA. �
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Most of this theorem follows easily from Poincaré duality with coefficients Λ,
but some care is needed in order to establish the symmetry of the pairing. When

K is a fibred 2-knot, with closed fibre F̂ , the Farber-Levine pairing is just the

standard linking pairing on the torsion subgroup of H1(F̂ ; Z), together with the
automorphism induced by the monodromy.

In particular, the group π with presentation 〈a, t | tat−1 = a2, a5 = 1〉 is a
high dimensional knot group but if ℓ is any nondegenerate Z-bilinear pairing on
π′ ∼= Z/5Z with values in Q/Z then ℓ(tα, tβ) = −ℓ(α, β) for all α, β in π′, and so
π is not a 2-knot group. (This example is due to Farber).

Corollary 14.3.1 (Le78). H2(π
′; Z) is a quotient of HomΛ(π′/π′′,Q(t)/Λ).

�

In many cases every orientation preserving meridianal automorphism of a tor-
sion free 3-manifold group is realizable by a fibred 2-knot.

Theorem 14.4. Let N be a closed orientable 3-manifold whose prime factors
are virtually Haken or S1 × S2. If K is a 2-knot such that (πK)′ ∼= ν = π1(N)
then M(K) is homotopy equivalent to the mapping torus of a self homeomorphism
of N . If θ is a meridianal automorphism of ν then π = ν ×θ Z is a 2-knot group if
and only if θ fixes the image of the fundamental class of N in H3(ν; Z).

Proof. The first assertion follows from Corollary 4.5.1. The classifying maps
for the fundamental groups induce a commuting diagram involving the Wang se-
quences ofM(K) and π from which the necessity of the orientation condition follows
easily. (It is vacuous if ν is free group).

If θ∗(cN∗[N ]) = cN∗[N ] then θ may be realized by an orientation preserving self
homotopy equivalence g of N [Sw74]. Let N = P♯R where P is a connected sum of
copies of S1 ×S2 and R has no such factors. By the Splitting Theorem of [La74], g
is homotopic to a connected sum of homotopy equivalences between the irreducible
factors of R with a self homotopy equivalence of P . Every virtually Haken 3-
manifold is either Haken, hyperbolic or Seifert-fibred, by [CS83] and [GMT96], and
self homotopy equivalences of such manifolds are homotopic to homeomorphisms,
by [Hm], Mostow rigidity and [Sc83], respectively. A similar result holds for P =
♯r(S1 × S2), by [La74]. Thus we may assume that g is a self homeomorphism of
N . Surgery on a weight class in the mapping torus of g gives a fibred 2-knot with
closed fibre N and group π. �

If Thurston’s Geometrization Conjecture is true then it would suffice to assume
thatN is a closed orientable 3-manifold with π1(N) torsion free. The mapping torus
is determined up to homeomorphism among fibred 4-manifolds with fibre N by its
homotopy type if N is hyperbolic, Seifert fibred or if its prime factors are Haken
or S1 ×S2, since homotopy implies isotopy in each case, by Mostow rigidity, [Sc85,
BO91] and [HL74], respectively.

Yoshikawa has shown that a finitely generated abelian group is the base of some
HNN extension which is a high dimensional knot group if and only if it satisfies the
restrictions on torsion of [HK78], while if a knot group has a non-finitely generated
abelian base then it is metabelian. Moreover a 2-knot group π which is an HNN
extension with abelian base is either metabelian or has base Z ⊕ (Z/βZ) for some
odd β ≥ 1 [Yo86, Yo92]. In Chapter 16 we shall show that in the latter case β must
be 1, and so π has a deficiency 1 presentation 〈t, x | txnt−1 = xn+1〉. No nontrivial
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classical knot group is an HNN extension with abelian base. (This is implicit in
Yoshikawa’s work, and can also be deduced from the facts that classical knot groups
have cohomological dimension ≤ 2 and symmetric Alexander polynomial).

14.9. Deficiency and geometric dimension

J.H.C.Whitehead raised the question “is every subcomplex of an aspherical 2-
complex also aspherical?” This is so if the fundamental group of the subcomplex is
a 1-relator group [Go81] or is locally indicable [Ho82] or has no nontrivial super-
perfect normal subgroup [Dy87]. Whitehead’s question has interesting connections
with knot theory. (For instance, the exterior of a ribbon n-knot or of a ribbon
concordance between classical knots is homotopy equivalent to such a 2-complex.
The asphericity of such ribbon exteriors has been raised in [Co83] and [Go81]).

If the answer to Whitehead’s question is YES, then a high dimensional knot
group has geometric dimension at most 2 if and only if it has deficiency 1 (in which
case it is a 2-knot group). For let G be a group of weight 1 and with G/G′ ∼= Z.
If C(P ) is the 2-complex corresponding to a presentation of deficiency 1 then the
2-complex obtained by adjoining a 2-cell to C(P ) along a loop representing a weight
element for G is 1-connected and has Euler characteristic 1, and so is contractible.
The converse follows from Theorem 2.8. On the other hand a positive answer in
general implies that there is a group G such that c.d.G = 2 and g.d.G = 3 [BB97].

If the answer is NO then either there is a finite nonaspherical 2-complex X such
that X ∪f D2 is contractible for some f : S1 → X or there is an infinite ascending
chain of nonaspherical 2-complexes whose union is contractible [Ho83]. In the finite
case χ(X) = 0 and so π = π1(X) has deficiency 1; moreover, π has weight 1 since
it is normally generated by the conjugacy class represented by f . Such groups are

2-knot groups. Since X is not aspherical β
(2)
1 (π) 6= 0, by Theorem 2.4, and so π′

cannot be finitely generated, by Lemma 2.1.
A group is called knot-like if it has abelianization Z and deficiency 1. If the

commutator subgroup of a classical knot group is finitely generated then it is free;
Rapaport asked whether this is true of all knot-like groups G, and established this
in the 2-generator, 1-relator case [Rp60]. This is true also if G′ is FP2, by the
Corollary to Theorem 2.5. If every knot-like group has a finitely presentable HNN
base then this Corollary would settle Rapaport’s question completely, for if G′ is
finitely generated then it is the unique HNN base for G [Si96].

In particular, if the group of a fibred 2-knot has a presentation of deficiency
1 then its commutator subgroup must be free. Any 2-knot with such a group is
s-concordant to a fibred homotopy ribbon knot (see Chapter 17). Must it in fact
be a ribbon knot?

It follows also that if τrK is a nontrivial twist spin then def(πτrK) ≤ 0 and
τrK is not a homotopy ribbon 2-knot. For S2 × S1 is never a factor of the closed
fibre of τrK [Pl84], and so (πτrK)′ is never a nontrivial free group.

The next result is a consequence of Theorem 2.6, but the argument below is
self contained.

Lemma 14.5. If G is a group with def(G) = 1 and e(G) = 2 then G ∼= Z.

Proof. The group G has an infinite cyclic subgroup A of finite index, since
e(G) = 2. Let C be the finite 2-complex corresponding to a presentation of de-
ficiency 1 for G, and let D be the covering space corresponding to A. Then D
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is a finite 2-complex with π1(D) = A ∼= Z and χ(D) = [π : A]χ(C) = 0. Since

H2(D; Z[A]) = H2(D̃; Z) is a submodule of a free Z[A]-module and is of rank

χ(D) = 0 it is 0. Hence D̃ is contractible, and so G must be torsion free and hence
abelian. �

It follows immediately that def(πτ231) = 0, since πτ231
∼= (Z/3Z) ×−1 Z.

Moreover, if K is a nontrivial classical knot then π′ is infinite. Hence if π′ is finitely
generated then H1(π; Z[π]) = 0, and so X(K) is aspherical, by Poincaré duality.

Theorem 14.6. Let K be a 2-knot with group π. Then π ∼= Z if and only if
def(π) = 1 and π2(M(K)) = 0.

Proof. The conditions are necessary, by Theorem 11.1. If they hold then

β
(2)
j (M) = β

(2)
j (π) for j ≤ 2, by Lemma 1.2 of [Lü94], and so 0 = χ(M) =

β
(2)
2 (π) − 2β

(2)
1 (π). Now β

(2)
1 (π) − β

(2)
2 (π) ≥ 0, by the Corollary to Theorem 2.4.

Therefore β
(2)
1 (π) = β

(2)
2 (π) = 0 and so g.d.π ≤ 2, by the same Corollary. Since π

is not a PD4-group M is not aspherical, and so H1(π; Z[π]) ∼= H3(M ; Z[π]) 6= 0.
Since π is torsion free it is indecomposable as a free product [Kl93]. Therefore
e(π) = 2 and so π ∼= Z, by Lemma 5. �

In fact K must be trivial ([FQ] - see the Corollary to Theorem 17.1 below). A
simpler argument is used in [H2] to show that if def(π) = 1 then π2(M) maps onto
H2(M ; Λ), which is nonzero if π′ 6= π′′.

14.10. Asphericity

The outstanding property of the exterior of a classical knot is that it is aspher-
ical. Swarup extended the classical Dehn’s lemma criterion for unknotting to show
that if K is an n-knot such that the natural inclusion of Sn (as a factor of ∂X(K))
into X(K) is null homotopic then X(K) ≃ S1, provided πK is accessible [Sw75].
Since it is now known that finitely presentable groups are accessible [DD], it follows
that the exterior of a higher dimensional knot is aspherical if and only if the knot
is trivial. Nevertheless, we shall see that the closed 4-manifolds M(K) obtained by
surgery on 2-knots are often aspherical.

Theorem 14.7. Let K be a 2-knot. Then M(K) is aspherical if and only if
πK is a PD4-group.

Proof. The condition is clearly necessary. Suppose that it holds. Let M+ be
the covering space associated to π+ = Ker(w1(π)). Then [π : π+] ≤ 2, so π′ < π+.
Since π/π′ ∼= Z and t − 1 acts invertibly on H1(π

′; Z) it follows that β1(π
+) = 1.

Hence β2(M
+) = 0, since M+ is orientable and χ(M+) = 0. Hence β2(π

+) is also
0, so χ(π+) = 0, by Poincaré duality for π+. Therefore χ(π) = 0 and so M must
be aspherical, by Corollary 3.5.1. �

We may use this theorem to give more examples of high dimensional knot
groups which are not 2-knot groups. Let A ∈ GL(3,Z) be such that det(A) = −1,
det(A− I) = ±1 and det(A+ I) = ±1. The characteristic polynomial of A must be
either f1(X) = X3 −X2 − 2X + 1, f2(X) = X3 −X2 + 1, f3(X) = X3f1(X

−1) or
f4(X) = X3f2(X

−1). It may be shown that the rings Z[X ]/(fi(X)) are principal
ideal domains. Hence there are only two conjugacy classes of such matrices, up to
inversion. The Kervaire conditions hold for Z3 ×A Z, and so it is a 3-knot group.
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However it cannot be a 2-knot group, since it is a PD4-group of nonorientable type.
(Such matrices have been used to construct fake RP 4s [CS76’]).

Is every (torsion free) 2-knot group with Hs(π; Z[π]) = 0 for s ≤ 2 a PD4-
group? Is every 3-knot group which is also a PD4-group a 2-knot group? (Note
that by Theorem 3.6 such a group cannot have deficiency 1).

We show next that knots with such groups cannot be a nontrivial satellite.

Theorem 14.8. Let K = Σ(K2;K1, γ) be a satellite 2-knot. If πK is a PD4-
group then K = K1 or K2.

Proof. Let q be the order of γ in πK1. Then π = πK ∼= πK1 ∗C B, where
B = πK2/〈〈wq〉〉, and C is cyclic. Since π is torsion free q = 0 or 1. Suppose that
K 6= K1. Then q = 0, so C ∼= Z, while B 6= C. If πK1 6= C then πK1 and B have
infinite index in π, and so c.d.πK1 ≤ 3 and c.d.B ≤ 3, by Strebel’s Theorem. A
Mayer-Vietoris argument then gives 4 = c.d.π ≤ 3, which is impossible. Therefore
K1 is trivial and so K = K2. �

In particular if πK is a PD4-group then K is irreducible.

14.11. Links

A µ-component n-link is a locally flat embedding L : µSn → Sn+2. The
exterior of L is X(L) = Sn+2\intN(L), where N(L) ∼= µSn × D2 is a regular
neighbourhood of the image of L, and the group of L is πL = π1(X(L)). Let
M(L) = X(L) ∪ µDn+1 × S1 be the closed manifold obtained by surgery on L in
Sn+2.

An n-link L is trivial if it bounds a collection of µ disjoint locally flat 2-discs in
Sn. It is split if it is isotopic to one which is the union of nonempty sublinks L1 and
L2 whose images lie in disjoint discs in Sn+2, in which case we write L = L1 ∐ L2,
and it is a boundary link if it bounds a collection of µ disjoint hypersurfaces in Sn+2.
Clearly a trivial link is split, and a split link is a boundary link; neither implication
can be reversed if µ > 1. Each knot is a boundary link, and many arguments about
knots that depend on Seifert hypersurfaces extend readily to boundary links. The
notions of slice and ribbon links and s-concordance are natural extensions of the
corresponding notions for knots.

A 1-link is trivial if and only if its group is free, and is split if and only if
its group is a nontrivial free product, by the Loop Theorem and Sphere Theorem,
respectively. (See Chapter I of [H1]). Gutiérrez has shown that if n ≥ 4 an n-link
L is trivial if and only if πL is freely generated by meridians and the homotopy
groups πj(X(L)) are all 0, for 2 ≤ j ≤ (n+ 1)/2 [Gu72]. His argument applies also
when n = 3. While the fundamental group condition is necessary when n = 2, we
cannot yet use surgery to show that it is a complete criterion for triviality of 2-links
with more than one component. We shall settle for a weaker result.

Theorem 14.9. Let M be a closed 4-manifold with π1(M) free of rank r and
χ(M) = 2(1 − r). If M is orientable it is s-cobordant to ♯r(S1 × S3), while if it is
nonorientable it is s-cobordant to (S1×̃S3)♯(♯r−1(S1 × S3)).

Proof. We may assume without loss of generality that π1(M) has a free basis
{x1, ...xr} such that xi is an orientation preserving loop for all i > 1, and we shall
use cM∗ to identify π1(M) with F (r). Let N = ♯r(S1 × S3) if M is orientable
and let N = (S1×̃S3)♯(♯r−1(S1 × S3)) otherwise. (Note that w1(N) = w1(M) as
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homomorphisms from F (r) to {±1}). Since c.d.π1(M) ≤ 2 and χ(M) = 2χ(π1(M))

we have π2(M) ∼= H2(F (r); Z[F (r)]), by Theorem III.10. Hence π2(M) = 0 and

so π3(M) ∼= H3(M̃ ; Z) ∼= D = H1(F (r); Z[F (r)]), by the Hurewicz theorem and
Poincaré duality. Similarly, we have π2(N) = 0 and π3(N) ∼= D.

Let cM = gMhM be the factorization of cM through P3(M), the third stage
of the Postnikov tower for M . Thus πi(hM ) is an isomorphism if i ≤ 3 and
πj(P3(M)) = 0 if j > 3. As K(F (r), 1) = ∨rS1 each of the fibrations gM and
gN clearly have cross-sections and so there is a homotopy equivalence k : P3(M) →
P3(N) such that gM = gNk. (See Section 5.2 of [Ba]). We may assume that k is cel-
lular. Since P3(M) = M ∪{cells of dimension ≥ 5} it follows that khM = hNf for
some map f : M → N . Clearly πi(f) is an isomorphism for i ≤ 3. Since the univer-

sal covers M̃ and Ñ are 2-connected open 4-manifolds the induced map f̃ : M̃ → Ñ
is an homology isomorphism, and so is a homotopy equivalence. Hence f is itself a
homotopy equivalence. As Wh(F (r)) = 0 any such homotopy equivalence is simple.

If M is orientable [M,G/TOP ] ∼= Z, since H2(M ; Z/2Z) = 0. As the surgery
obstruction in L4(F (r)) ∼= Z is given by a signature difference, it is a bijection, and
so the normal invariant of f is trivial. Hence there is a normal cobordism F : P →
N × I with F |∂−P = f and F |∂+P = idN . There is another normal cobordism
F ′ : P ′ → N×I from idN to itself with surgery obstruction σ5(P

′, F ′) = −σ5(P, F )
in L5(F (r)), by Theorem VI.7 and Lemma VI.9. The union of these two normal
cobordisms along ∂+P = ∂−P ′ is a normal cobordism from f to idN with surgery
obstruction 0, and so we may obtain an s-cobordism W by 5-dimensional surgery
(rel ∂).

A similar argument applies in the nonorientable case. The surgery obstruction
is then a bijection from [N ;G/TOP ] to L4(F (r),−) = Z/2Z, so f is normally
cobordant to idN , while L5(Z,−) = 0, so L5(F (r),−) ∼= L5(F (r − 1)) and the
argument of [FQ] still applies. �

Corollary 14.9.1. Let L be a µ-component 2-link such that πL is freely gen-
erated by µ meridians. Then L is s-concordant to the trivial µ-component link.

Proof. Since M(L) is orientable, χ(M(L)) = 2(1−µ) and π1(M(L)) ∼= πL =
F (µ), there is an s-cobordism W with ∂W = M(L)∪M(µ), by Theorem 9. More-
over it is clear from the proof of that theorem that we may assume that the elements
of the meridianal basis for πL are freely homotopic to loops representing the stan-
dard basis for π1(M(µ)). We may realise such homotopies by µ disjoint embeddings
of annuli running from meridians for L to such standard loops in M(µ). Surgery
on these annuli (i.e., replacing D3 × S1 × [0, 1] by S2 ×D2 × [0, 1]) then gives an
s-concordance from L to the trivial µ-component link. �

A similar strategy may be used to give an alternative proof of the higher di-
mensional unlinking theorem of [Gu72] which applies uniformly for n ≥ 3. The
hypothesis that πL be freely generated by meridians cannot be dropped entirely
[Po71]. On the other hand, if L is a 2-link whose longitudes are all null homotopic
then the pair (X(L), ∂X(L)) is homotopy equivalent to (♯µS1 ×D3, ∂(♯µS1 ×D3))
[Sw77], and hence the Corollary applies.

There is as yet no satisfactory splitting criterion for higher-dimensional links.
However we can give a stable version for 2-links.
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Theorem 14.10. Let M be a closed 4-manifold such that π = π1(M) is iso-
morphic to a nontrivial free product G ∗H. Then M is stably homeomorphic to a
connected sum MG♯MH with π1(MG) ∼= G and π1(MH) ∼= H.

Proof. Let K = KG ∪ [−1, 1] ∪ KH/(∗G ∼ −1,+1 ∼ ∗H), where KG and
KH are K(G, 1)- and K(H, 1)-spaces with basepoints ∗G and ∗H (respectively).
Then K is a K(π, 1)-space and so there is a map f : M → K which induces
an isomorphism of fundamental groups. We may assume that f is transverse to
0 ∈ [−1, 1], so V = f−1(0) is a submanifold of M with a product neighbourhood
V × [−ǫ, ǫ]. We may also assume that V is connected, by the arc-chasing argument
of Stallings’ proof of Kneser’s conjecture. (See page 67 of [Hm]). Let j : V → M
be the inclusion. Since fj is a constant map and π1(f) is an isomorphism π1(j)
is the trivial homomorphism, and so j∗w1(M) = 0. Hence V is orientable and so
there is a framed link L ⊂ V such that surgery on L in V gives S3 [Li62]. The
framings of the components of L in V extend to framings in M . Let W = M ×
[0, 1]∪L×D2×[−ǫ,ǫ]×{1} (µD2×D2× [−ǫ, ǫ]), where µ is the number of components of
L. Note that if w2(M) = 0 then we may choose the framed link L so that w2(W ) = 0

also [Kp79]. Then ∂W = M ∪ M̂ , where M̂ is the result of surgery on L in M .
The map f extends to a map F : W → K such that π1(F |M̂ ) is an isomorphism

and (F |
M̂

)−1(0) ∼= S3. Hence M̂ is a connected sum as in the statement. Since the
components of L are null-homotopic in M they may be isotoped into disjoint discs,

and so M̂ ∼= M♯(♯µS2 × S2). This proves the theorem. �

Note that if V is a homotopy 3-sphere then M is a connected sum, for V × R
is then homeomorphic to S3 ×R, by 1-connected surgery.

Theorem 14.11. Let L be a µ-component 2-link with sublinks L1 and L2 =
L\L1 such that there is an isomorphism from πL to πL1 ∗ πL2 which is compatible
with the homomorphisms determined by the inclusions of X(L) into X(L1) and
X(L2). Then X(L) is stably homeomorphic to X(L1 ∐ L2).

Proof. By Theorem 11, M(L)♯(♯aS2 × S2) ∼= N♯P , where π1(N) ∼= πL1

and π1(P ) ∼= πL2. On undoing the surgeries on the components of L1 and L2,
respectively, we see that M(L2)♯(♯

aS2 × S2) ∼= N♯P̄ , and M(L1)♯(♯
aS2 × S2) ∼=

N̄♯P , where N̄ and P̄ are simply connected. Since undoing the surgeries on all the
components of L gives ♯aS2 × S2 ∼= N̄♯P̄ , N̄ and P̄ are each connected sums of
copies of S2 × S2, so N and P are stably homeomorphic to M(L1) and M(L2),
respectively. The result now follows easily. �

Similar arguments may be used to show that, firstly, if L is a 2-link such that
c.d.πL ≤ 2 and there is an isomorphism θ : πL→ πL1∗πL2 which is compatible with
the natural maps to the factors then there is a map fo : M(L)o = M(L)\intD4 →
M(L1)♯M(L2) such that π1(fo) = θ and π2(fo) is an isomorphism; and secondly,
if moreover fo extends to a homotopy equivalence f : M(L) → M(L1)♯M(L2) and
the factors of πL are either classical link groups or are square root closed accessible
then L is s-concordant to the split link L1 ∐ L2. (The surgery arguments rely on
[AFR97] and [Ca73], respectively). However we do not know how to bridge the gap
between the algebraic hypothesis and obtaining a homotopy equivalence.

14.12. Link groups

If π is the group of a µ-component n-link L then
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(i) π finitely presentable;
(ii) π is of weight µ;
(iii) H1(π; Z) = π/π′ ∼= Zµ; and
(iv) (if n > 1) H2(π; Z) = 0.
Conversely, any group satisfying these conditions is the group of an n-link, for every
n ≥ 3 [Ke 65’]. (Note that q(π) ≥ 2(1−µ), with equality if and only if π is the group
of a 2-link). If (iv) is replaced by the stronger condition that def(π) = µ (and π has
a deficiency µ Wirtinger presentation) then π is the group of a (ribbon) 2-link which
is a sublink of a (ribbon) link whose group is a free group. (See Chapter II of [H1]).
The group of a classical link satisfies (iv) if and only if the link splits completely
as a union of knots in disjoint balls. If subcomplexes of aspherical 2-complexes are
aspherical then a higher-dimensional link group group has geometric dimension at
most 2 if and only if it has deficiency µ (in which case it is a 2-link group).

A link L is a boundary link if and only if there is an epimorphism from π(L)
to the free group F (µ) which carries a set of meridians to a free basis. If the latter
condition is dropped L is said to be an homology boundary link. Although sublinks
of boundary links are clearly boundary links, the corresponding result is not true for
homology boundary links. It is an attractive conjecture that every even-dimensional
link is a slice link. This has been verified under additional hypotheses on the link
group. For a 2-link L it suffices that there be a homomorphism φ : πL→ G where
G is a high-dimensional link group such that H3(G; F2) = H4(G; Z) = 0 and where
the normal closure of the image of φ is G [Co84]. In particular, sublinks of homology
boundary 2-links are slice links.

A choice of (based) meridians for the components of a link L determines a
homomorphism f : F (µ) → πL which induces an isomorphism on abelianization.
If L is a higher dimensional link H2(πL; Z) = H2(F (µ); Z) = 0 and hence f in-
duces isomorphisms on all the nilpotent quotients F (µ)/F (µ)[n]

∼= πL/(πL)[n],
and a monomorphism F (µ) → πL/(πL)[ω] = πL/ ∩n≥1 (πL)[n] [St65]. (In par-
ticular, if µ ≥ 2 then πL contains a nonabelian free subgroup). The latter map
is an isomorphism if and only if L is a homology boundary link. In that case
the homology groups of the covering space X(L)ω corresponding to πL/(πL)[ω]

are modules over Z[πL/(πL)[ω]] ∼= Z[F (µ)], which is a coherent ring of global
dimension 2. Poincaré duality and the UCSS then give rise to an isomorphism
e2e2(πL/(πL)[ω]) ∼= e2(πL/(πL)[ω]), where ei(M) = Exti

Z[F (µ)](M,Z[F (µ)]), which

is the analogue of the Farber-Levine pairing for 2-knots.
We may adapt the argument of [HK78’] to show that any finitely generated

abelian group can be the centre of the group of a boundary 3-link with µ compo-
nents, for any µ ≥ 1. However the centre of the group of a 2-link with more than
one component must be finite. (In all known examples the centre is trivial).

Theorem 14.12. Let L be a µ-component 2-link with group π. If µ > 1 then

(1) π has no infinite amenable normal subgroup;
(2) π is not an ascending HNN extension over a finitely generated base.

Proof. If (1) or (2) is false then β
(2)
1 (π) = 0 (see Chapter 2), and clearly µ > 0.

Since β
(2)
2 (M(L)) = χ(M(L)) + 2β

(2)
1 (π) = 2(1 − µ), we must have µ = 1. �

In particular, the exterior of a 2-link with more than one component never
fibres over S1. (This is true of all higher dimensional links: see Theorem VIII.4 of
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[H1]). Moreover a 2-link group has finite centre and is never amenable. In contrast,
we shall see that there are many 2-knot groups which have infinite centre or are
solvable.

The exterior of a classical link is aspherical if and only the link is unsplittable,
while the exterior of a higher dimensional link with more than one component is
never aspherical [Ec76]. Is M(L) ever aspherical?

Kervaire also showed that a group π is the fundamental group of an homology
n-sphere (for each n > 2) if and only if π is finitely presentable and superperfect, i.e.,
π = π′ and H2(π; Z) = 0. If moreover def(π) = 0 then π is the fundamental group
of an homology 4-sphere [Ke69]. There are however finite superperfect groups which
are not realized by homology 4-spheres [HW85], and homology 4-sphere groups with
negative deficiency [Hi01]. Kervaire’s criteria may be extended further to the groups
of links in homology spheres. Unfortunately, the condition χ(M) = 0 is central to
most of our arguments, and is satisfied only by the manifolds arising from knots in
homology 4-spheres.



CHAPTER 15

Restrained normal subgroups

It is plausible that if K is a 2-knot whose group π = πK has an infinite
restrained normal subgroup N then either π′ is finite or π ∼= Φ (the group of Fox’s
Example 10) or M(K) is aspherical and

√
π 6= 1 or N is virtually Z and π/N has

infinitely many ends. In this chapter we shall give some evidence in this direction.
In order to clarify the statements and arguments in later sections, we begin with
several characterizations of Φ, which plays a somewhat exceptional role. In §2 we
assume that N is almost coherent and locally virtually indicable, but not locally
finite. In §3 we assume that N is abelian of positive rank and almost establish the
tetrachotomy in this case. In §4 we determine all such π with π′ finite, and in §5
we give a version of the Tits alternative for 2-knot groups. In §6 we shall complete
Yoshikawa’s determination of the 2-knot groups which are HNN extensions over
abelian bases. We conclude with some observations on 2-knot groups with infinite
locally finite normal subgroups.

15.1. The group Φ

Let Φ ∼= Z∗2 be the group with presentation 〈a, t | tat−1 = a2〉. This group
is an ascending HNN extension with base Z, is metabelian, and has commutator
subgroup isomorphic to Z[ 12 ]. The 2-complex corresponding to this presentation is
aspherical and so g.d.Φ = 2.

The group Φ is the group of Example 10 of Fox, which is the boundary of the
ribbon D3 in S4 obtained by “thickening” a suitable immersed ribbon D2 in S3 for
the stevedore’s knot 62 [Fo62]. Such a ribbon disc may be constructed by applying
the method of Chapter II of [H1] to the equivalent presentation 〈t, u, v | vuv−1 =
t, tut−1 = v〉 for Φ (where u = ta and v = t2at−1).

Theorem 15.1. Let π be a 2-knot group such that c.d.π = 2 and π has a non-
trivial normal subgroup E which is either elementary amenable or almost coherent,
locally virtually indicable and restrained. Then either π ∼= Φ or π is an iterated free
product of (one or more) torus knot groups, amalgamated over central subgroups.
In either case def(π) = 1.

Proof. If π is solvable then π ∼= Z∗m, for some m 6= 0, by the corollary to
Theorem 2.6. Since π/π′ ∼= Z we must have m = 2 and so π ∼= Φ.

Otherwise E ∼= Z, by Theorem 2.7. Then [π : Cπ(E)] ≤ 2 and Cπ(E)′ is free,
by Theorem 1.13. This free subgroup must be nonabelian for otherwise π would
be solvable. Hence E ∩ Cπ(E)′ = 1 and so E maps injectively to H = π/Cπ(E)′.
As H has an abelian normal subgroup of index at most 2 and H/H ′ ∼= Z we must
in fact have H ∼= Z. It follows easily that Cπ(E) = π, and so π′ is free. The
further structure of π is then due to Strebel [St76]. The final observation follows
readily. �

213
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The following alternative characterizations of Φ shall be useful.

Theorem 15.2. Let π be a 2-knot group with maximal locally finite normal
subgroup T . Then π/T ∼= Φ if and only if π is elementary amenable and h(π) = 2.
Moreover the following are equivalent:

(1) π has an abelian normal subgroup A of rank 1 such that π/A has two ends;
(2) π is elementary amenable, h(π) = 2 and π has an abelian normal subgroup

A of rank 1;
(3) π is almost coherent, elementary amenable and h(π) = 2;
(4) π ∼= Φ.

Proof. Since π is finitely presentable and has infinite cyclic abelianization it
is an HNN extension π ∼= H∗φ with base H a finitely generated subgroup of π′,
by Theorem 1.12. Since π is elementary amenable the extension must be ascend-
ing. Since h(π′/T ) = 1 and π′/T has no nontrivial locally-finite normal subgroup

[π′/T :
√
π′/T ] ≤ 2. The meridianal automorphism of π′ induces a meridianal au-

tomorphism on (π′/T )/
√
π′/T and so π′/T =

√
π′/T . Hence π′/T is a torsion free

rank 1 abelian group. Let J = H/H ∩ T . Then h(J) = 1 and J ≤ π′/T so J ∼= Z.
Now φ induces a monomorphism ψ : J → J and π/T ∼= J∗ψ. Since π/π′ ∼= Z we
must have J∗ψ ∼= Φ.

If (1) holds then π is elementary amenable and h(π) = 2. Suppose (2) holds. We
may assume without loss of generality that A is the normal closure of an element of
infinite order, and so π/A is finitely presentable. Since π/A is elementary amenable
and h(π/A) = 1 it is virtually Z. Therefore π is virtually an HNN extension with
base a finitely generated subgroup of A, and so is coherent. If (3) holds then π ∼= Φ,
by the Corollary to Theorem 3.16. Since Φ clearly satisfies conditions (1-3) this
proves the theorem. �

Corollary 15.2.1. If T is finite and π/T ∼= Φ then T = 1 and π ∼= Φ. �

15.2. Almost coherent, restrained and locally virtually indicable

We shall show that the basic tetrachotomy of the introduction is essentially
correct, under mild coherence hypotheses on πK or N . Recall that a restrained
group has no noncyclic free subgroups. Thus if N is a countable restrained group
either it is elementary amenable and h(N) ≤ 1 or it is an increasing union of finitely
generated one-ended groups.

Theorem 15.3. Let K be a 2-knot whose group π = πK is an ascending HNN
extension over an FP2 base H with finitely many ends. Then either π′ is finite or
π ∼= Φ or M(K) is aspherical.

Proof. This follows from Theorem 3.16, since a group with abelianization Z
cannot be virtually Z2. �

Is M(K) still aspherical if we assume only that H is finitely generated and
one-ended?

Corollary 15.3.1. If H is FP3 and has one end then π′ = H and is a PD+
3 -

group.

Proof. This follows from Lemma 3.4 of [BG85], as in Theorem 2.13. �

Does this remain true if we assume only that H is FP2 and has one end?
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Corollary 15.3.2. If π is an ascending HNN extension over an FP2 base H
and has an infinite restrained normal subgroup A then either π′ is finite or π ∼= Φ
or M(K) is aspherical or π′ ∩A = 1 and π/A has infinitely many ends.

Proof. If H is finite or A ∩H is infinite then H has finitely many ends (cf.
Corollary 1.16.1) and Theorem 3 applies. Therefore we may assume that H has
infinitely many ends and A∩H is finite. But then A 6≤ π′, so π is virtually π′ ×Z.
Hence π′ = H and M(K)′ is a PD3-complex. In particular π′ ∩ A = 1 and π/A
has infinitely many ends. �

In §4 we shall determine all 2-knot groups with π′ finite. If K is the r-twist spin
of an irreducible 1-knot then the rth power of a meridian is central in π and either
π′ is finite or M(K) is aspherical. (See §3 of Chapter 16). The final possibility is
realized by Artin spins of nontrivial torus knots.

Theorem 15.4. Let K be a 2-knot whose group π = πK is an HNN extension
with FP2 base B and associated subgroups I and φ(I) = J . If π has a restrained

normal subgroup N which is not locally finite and β
(2)
1 (π) = 0 then either π′ is finite

or π ∼= Φ or M(K) is aspherical or N is locally virtually Z and π/N has infinitely
many ends.

Proof. If π′ ∩ N is locally finite then it follows from Britton’s lemma (on
normal forms in HNN extensions) that either B ∩N = I ∩N or B ∩N = J ∩ N .
MoreoverN 6≤ π′ (sinceN is not locally finite), and so π′/π′∩N is finitely generated.
Hence B/B ∩ N ∼= I/I ∩ N ∼= J/J ∩ N . Thus either B = I or B = J and so the
HNN extension is ascending. If B has finitely many ends we may apply Theorem
3. Otherwise B ∩N is finite, so π′ ∩N = B ∩N and N is virtually Z. Hence π/N
is commensurable with B/B ∩N , and e(π/N) = ∞.

If π′ ∩N is locally virtually Z and π/π′ ∩N has two ends then π is elementary
amenable and h(π) = 2, so π ∼= Φ. Otherwise we may assume that either π/π′ ∩N
has one end or π′ ∩ N has a finitely generated, one-ended subgroup. In either
case Hs(π; Z[π]) = 0 for s ≤ 2, by Theorem 1.18, and so M(K) is aspherical, by
Theorem 3.5. �

Note that β
(2)
1 (π) = 0 if N is amenable. Every knot group is an HNN extension

with finitely generated base and associated subgroups, by Theorem 1.12, and in all
known cases these subgroups are FP2.

Theorem 15.5. Let K be a 2-knot such that π = πK has an almost coherent,
locally virtually indicable, restrained normal subgroup E which is not locally finite.
Then either π′ is finite or π ∼= Φ or M(K) is aspherical or E is abelian of rank
1 and π/E has infinitely many ends or E is elementary amenable, h(E) = 1 and
π/E has one or infinitely many ends.

Proof. Let F be a finitely generated subgroup of E. Since F is FP2 and
virtually indicable it has a subgroup of finite index which is an HNN extension
over a finitely generated base, by Theorem 1.13. Since F is restrained the HNN

extension is ascending, and so β
(2)
1 (F ) = 0, by Lemma 2.1. Hence β

(2)
1 (E) = 0 and

so β
(2)
1 (π) = 0, by Theorem 3.3 of [Lü98].
If every finitely generated infinite subgroup of E has two ends, then E is el-

ementary amenable and h(E) = 1. If π/E is finite then π′ is finite. If π/E has
two ends then π is almost coherent, elementary amenable and h(π) = 2, and so
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π ∼= Φ, by Theorem 2. If E is abelian and π/E has one end, or if E has a finitely
generated, one-ended subgroup and π is not elementary amenable of Hirsch length
2 then Hs(π; Z[π]) = 0 for s ≤ 2, by Theorem 1.17. Hence M(K) is aspherical, by
Theorem 3.5.

The remaining possibilities are that either π/E has infinitely many ends or that
E is locally virtually Z but nonabelian and π/E has one end. �

Does this theorem hold without any coherence hypothesis? Note that the other
hypotheses hold if E is elementary amenable and h(E) ≥ 2. If E is elementary
amenable, h(E) = 1 and π/E has one end is H2(π; Z[π]) = 0?

Corollary 15.5.1. Let K be a 2-knot with group π = πK. Then either π′ is
finite or π ∼= Φ or M(K) is aspherical and

√
π ∼= Z2 or M(K) is homeomorphic to

an infrasolvmanifold or h(
√
π) = 1 and π/

√
π has one or infinitely many ends or√

π is locally finite.

Proof. Finitely generated nilpotent groups are polycyclic. If π/
√
π has two

ends we may apply Theorem 3. If h(
√
π) = 2 then

√
π ∼= Z2, by Theorem 9.2, while

if h > 2 then π is virtually poly-Z, by Theorem 8.1. �

Under somewhat stronger hypotheses we may assume that π has a nontrivial
torsion free abelian normal subgroup.

Theorem 15.6. Let N be a group which is either elementary amenable or is
locally FP3, virtually indicable and restrained. If c.d.N ≤ 3 then N is virtually
solvable.

Proof. Suppose first that N is locally FP3 and virtually indicable, and let E
be a finitely generated subgroup of N which maps onto Z. Then E is an ascending
HNN extension H∗φ with FP3 base H and associated subgroups. If c.d.H = 3 then
H3(H ; Z[E]) ∼= H3(H ; Z[H ])⊗H Z[E] 6= 0 and the homomorphism H3(H ; Z[E]) →
H3(H ; Z[E]) in the Mayer-Vietoris sequence for the HNN extension is not onto, by
Lemma 3.4 and the subsequent Remark 3.5 of [BG85]. But then H4(E; Z[E]) 6= 0,
contrary to c.d.N ≤ 3. Therefore c.d.H ≤ 2, and so H is elementary amenable,
by Theorem II.7. Hence N is elementary amenable, and so is virtually solvable by
Theorem I.10. �

In particular, ζ
√
N is a nontrivial, torsion free abelian characteristic subgroup

of N . A similar argument shows that if N is locally FPn, virtually indicable,
restrained and c.d.N ≤ n then N is virtually solvable.

15.3. Abelian normal subgroups

In this section we shall consider 2-knot groups with infinite abelian normal
subgroups. The class with rank 1 abelian normal subgroups includes the groups
of torus knots and twist spins, the group Φ, and all 2-knot groups with finite
commutator subgroup. If there is such a subgroup of rank > 1 the knot manifold
is aspherical; this case is considered further in Chapter 16.

Theorem 15.7. Let K be a 2-knot whose group π = πK has an infinite abelian
normal subgroup A, of rank r. Then r ≤ 4 and

(1) if A is a torsion group then π′ is not FP2;
(2) if r = 1 either π′ is finite or π ∼= Φ or M(K) is aspherical or e(π/A) = ∞;
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(3) if r = 1, e(π/A) = ∞ and π′ ≤ Cπ(A) then A and
√
π are virtually Z;

(4) if r = 1 and A 6≤ π′ then M(K) is a PD+
3 -complex, and is aspherical if

and only if π′ is a PD+
3 -group if and only if e(π′) = 1;

(5) if r = 2 then A ∼= Z2 and M(K) is aspherical;
(6) if r = 3 then A ∼= Z3, A ≤ π′ and M(K) is homeomorphic to an infra-

solvmanifold;
(7) if r = 4 then A ∼= Z4 and M(K) is homeomorphic to a flat 4-manifold.

Proof. If π′ is FP2 then M(K)′ is a PD3-complex, by Corollary 4.2.2, and
so locally finite normal subgroups of π are finite.

The four possibilities in case (2) correspond to whether π/A is finite or has
one, two or infinitely many ends, by Theorem 5. These possibilities are mutually
exclusive; if e(π/A) = ∞ then a Mayer-Vietoris argument as in Lemma 14.8 implies
that π cannot be a PD4-group.

Suppose that r = 1, and A ≤ ζπ′. Then A is a module over Z[π/π′] ∼= Λ.
On replacing A by a subgroup, if necessary, we may assume that A is cyclic as
a Λ-module and is Z-torsion free. If moreover e(π/A) = ∞ then

√
π/A must be

finite and K = π′/A is not finitely generated. We may write K as an increasing
union of finitely generated subgroups K = ∪n≥1Kn. Let S be an infinite cyclic
subgroup of A and let G = π′/S. Then G is an extension of K by A/S, and so
is an increasing union G = ∪Gn, where Gn is an extension of Kn by A/S. If A is
not finitely generated then A/S is an infinite abelian normal subgroup. Therefore
if some Gn is finitely generated then it has one end, and so H1(Gn;F ) = 0 for any
free Z[Gn]-module F . Otherwise we may write Gn as an increasing union of finitely
generated subgroups Gn = ∪m≥1Gnm, where Gnm is an extension of Kn by a finite
cyclic group Z/dmZ, dm divides dm+1 for all m ≥ 1, and A/S = ∪Z/dmZ. Let u
be a generator of the subgroup Z/d1Z, and let Ḡn = Gn/〈u〉 and Ḡnm = Gnm/〈u〉
for all m ≥ 1. Then Ḡn1

∼= Kn, and so Ḡn ∼= Kn × (A/d−1
1 S). Since Kn is finitely

generated and A/d−1
1 S is infinite we again find that H1(Ḡn;F ) = 0 for any free

Z[Ḡ]-module F . It now follows from Theorem I.16 that H1(Ḡ;F ) = 0 for any free
Z[Ḡ]-module F . An application of the LHSSS for π′ as an extension of Ḡ by the
normal subgroup d−1

1 S ∼= Z then gives Hs(π′; Z[π]) = 0 for s ≤ 2. Another LHSSS
argument then gives Hs(π; Z[π]) = 0 for s ≤ 2 and so M(K) is aspherical. As
observed above, this contradicts the hypothesis e(π/A) = ∞.

Suppose next that r = 1 and A is not contained in π′. Let x1, . . . xn be a
set of generators for π and let s be an element of A which is not in π′. As each
commutator [s, xi] is in π′ ∩ A it has finite order, ei say. Let e = Πei. Then
[se, x] = se(xs−1x−1)e = (sxs−1x−1)e, so se commutes with all the generators.
The subgroup generated by {se} ∪ π′ has finite index in π and is isomorphic to
Z × π′, so π′ is finitely presentable. Hence M(K)′ is an orientable PD3-complex,
by Corollary 4.2.2, andM(K) is aspherical if and only if π′ has one end, by Theorem
4.1. (In particular, A is finitely generated).

If r = 2 then A ∼= Z2 and M(K) is aspherical by Theorem 9.2. If r > 2 then
r ≤ 4, A ∼= Zr and M(K) is homeomorphic to an infrasolvmanifold by Theorem
8.1. In particular, π is virtually poly-Z and h(π) = 4. If r = 3 then A ≤ π′, for
otherwise h(π/π′ ∩ A) = 2, which is impossible for a group with abelianization Z.
If r = 4 then [π : A] <∞ and so M(K) is homeomorphic to a flat 4-manifold. �
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It remains an open question whether abelian normal subgroups of PDn groups
must be finitely generated. If this is so, Φ is the only 2-knot group with an abelian
normal subgroup of positive rank which is not finitely generated.

The argument goes through with A a nilpotent normal subgroup. Can it be
extended to the Hirsch-Plotkin radical? The difficulties are when h(

√
π) = 1 and

e(π/
√
π) = 1 or ∞.

Corollary 15.7.1. If A has rank 1 its torsion subgroup T is finite, and if
moreover π′ is infinite and π′/A is finitely generated T = 1. �

The evidence suggests that if π′ is finitely generated and infinite then A is free
abelian. Little is known about the rank 0 case. All the other possibilities allowed by
this theorem occur. (We shall consider the cases with rank ≥ 2 further in Chapter
16). In particular, if π is torsion free and π′ ∩ A = 1 then π′ is a free product of
PD+

3 -groups and free groups, and the various possibilities (π′ finite, e(π′) = 1 or
e(π′) = ∞) are realized by twists spins of classical knots. Is every 2-knot K such
that ζπ 6≤ π′ and π is torsion free s-concordant to a fibred knot?

Corollary 15.7.2. If π′ finitely generated then either π′ is finite or π′∩A = 1
or M(K) is aspherical. If moreover π′ ∩A has rank 1 then ζπ′ 6= 1.

Proof. As π′∩A is torsion free Aut(π′∩A) is abelian. Hence π′∩A ≤ ζπ′. �

If π′ is FP2 and π′ ∩ A is infinite then π′ is the fundamental group of an
aspherical Seifert fibred 3-manifold. There are no known examples of 2-knot groups
π with π′ finitely generated but not finitely presentable.

We may construct examples of 2-knots with such groups as follows. Let N
be a closed 3-manifold such that ν = π1(N) has weight 1 and ν/ν′ ∼= Z, and let
w = w1(N). Then H2(N ;Zw) ∼= Z. Let Me be the total space of the S1-bundle
over N with Euler class e ∈ H2(N ;Zw). Then Me is orientable, and π1(Me) has
weight 1 if e = ±1 or if w 6= 0 and e is odd. In such cases surgery on a weight class
in Me gives S4, so Me

∼= M(K) for some 2-knot K.
In particular, we may take N to be the result of 0-framed surgery on a classical

knot. If the classical knot is 31 or 41 (i.e., is fibred of genus 1) then the resulting
2-knot group has commutator subgroup Γ1. For examples with w 6= 0 we may
take one of the nonorientable surface bundles with group 〈t, ai, bi (1 ≤ i ≤ n) |
Π[ai, bi] = 1, tait

−1 = bi, tbit
−1 = aibi (1 ≤ i ≤ n)〉, where n is odd. (When n = 1

we get the third of the three 2-knot groups with commutator subgroup Γ1. See
Theorem 16.11).

Theorem 15.8. Let K be a 2-knot with a minimal Seifert hypersurface, and
such that π = πK has an abelian normal subgroup A. Then A ∩ π′ is finite cyclic
or is torsion free, and ζπ is finitely generated.

Proof. By assumption, π = HNN(H ;φ : I ∼= J) for some finitely presentable
group H and isomorphism of φ of subgroups I and J , where I ∼= J ∼= π1(V ) for
some Seifert hypersurface V . Let t ∈ π be the stable letter. Either H ∩A = I ∩A
or H ∩ A = J ∩ A (by Britton’s Lemma). Hence π′ ∩ A = ∪n∈Ztn(I ∩ A)t−n is a
monotone union. Since I ∩A is an abelian normal subgroup of a 3-manifold group
it is finitely generated [Ga92], and since V is orientable I ∩ A is torsion free or
finite. If A∩ I is finite cyclic or is central in π then A∩ I = tn(A∩ I)t−n, for all n,
and so A ∩ π′ = A ∩ I. (In particular, ζπ is finitely generated). Otherwise A ∩ π′

is torsion free. �
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This argument derives from [Yo92,97], where it was shown that if A is a finitely
generated abelian normal subgroup then π′ ∩A ≤ I ∩ J .

Corollary 15.8.1. Let K be a 2-knot with a minimal Seifert hypersurface. If
π = πK has a nontrivial abelian normal subgroup A then π′ ∩A is finite cyclic or
is torsion free. Moreover ζπ ∼= 1, Z/2Z, Z, Z ⊕ (Z/2Z) or Z2. �

The knots τ041, the trivial knot, τ331 and τ631 are fibred and their groups have
centres 1, Z, Z ⊕ (Z/2Z) and Z2, respectively. A 2-knot with a minimal Seifert
hypersurface and such that ζπ = Z/2Z is constructed in [Yo82]. This paper also
gives an example with ζπ ∼= Z, ζπ < π′ and such that π/ζπ has infinitely many
ends. In all known cases the centre of a 2-knot group is cyclic, Z ⊕ (Z/2Z) or Z2.

15.4. Finite commutator subgroup

It is a well known consequence of the asphericity of the exteriors of classical
knots that classical knot groups are torsion free. The first examples of higher
dimensional knots whose groups have nontrivial torsion were given by Mazur [Mz62]
and Fox [Fo62]. These examples are 2-knots whose groups have finite commutator
subgroup. We shall show that if π is such a group π′ must be a CK group, and that
the images of meridianal automorphisms in Out(π′) are conjugate, up to inversion.
In each case there is just one 2-knot group with given finite commutator subgroup.
Many of these groups can be realized by twist spinning classical knots. Zeeman
introduced twist spinning in order to study Mazur’s example; Fox used hyperplane
cross sections, but his examples (with π′ ∼= Z/3Z) were later shown to be twist
spins [Kn83’].

Lemma 15.9. An automorphism of Q(8) is meridianal if and only if it is con-
jugate to σ.

Proof. Since Q(8) is solvable an automorphism is meridianal if and only if
the induced automorphism of Q(8)/Q(8)′ is meridianal. It is easily verified that all
such elements of Aut(Q(8)) ∼= (Z/2Z)2 ⋊ SL(2,F2) are conjugate to σ. �

Lemma 15.10. All nontrivial automorphisms of I∗ are meridianal. Moreover
each automorphism is conjugate to its inverse. The nontrivial outer automorphism
class of I∗ cannot be realised by a 2-knot group.

Proof. Since the only nontrivial proper normal subgroup of I∗ is its centre
(ζI∗ = Z/2Z) the first assertion is immediate. Since Aut(I∗) ∼= S5 and the conju-
gacy class of a permutation is determined by its cycle structure each automorphism
is conjugate to its inverse. Consideration of the Wang sequence for the projection
of M(K)′ onto M(K) shows that the meridianal automorphism induces the iden-
tity on H3(π

′; Z), and so the nontrivial outer automorphism class cannot occur, by
Lemma 11.5. �

The elements of order 2 in A5
∼= Inn(I∗) are all conjugate, as are the elements

of order 3. There are two conjugacy classes of elements of order 5.

Lemma 15.11. An automorphism of T ∗
k is meridianal if and only if it is conju-

gate to ρ3k−1

or ρ3k−1

η. All such automorphisms have the same image in Out(T ∗
k ).
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Proof. Since T ∗
k is solvable an automorphism is meridianal if and only if

the induced automorphism of T ∗
k /(T

∗
k )′ is meridianal. Any such automorphism is

conjugate to either ρ2j+1 or to ρ2j+1η for some 0 ≤ j < 3k−1. (Note that 3 divides
22j − 1 but does not divide 22j+1 − 1). However among them only those with
2j + 1 = 3k−1 satisfy the isometry condition of Theorem 14.3. �

Theorem 15.12. Let K be a 2-knot with group π = πK. If π′ is finite then
π′ ∼= P × (Z/nZ) where P = 1, Q(8), I∗ or T ∗

k , and (n, 2|P |) = 1, and the
meridianal automorphism sends x and y in Q(8) to y and xy, is conjugation by a
noncentral element on I∗, sends x, y and z in T ∗

k to y−1, x−1 and z−1, and is −1
on the cyclic factor.

Proof. Since χ(M(K)) = 0 and π has two ends π′ has cohomological period
dividing 4, by Theorem 11.1, and so is among the groups listed in §2 of Chapter
11. As the meridianal automorphism of π′ induces a meridianal automorphism on
the quotient by any characteristic subgroup, we may eliminate immediately the
groups O∗(k) and A(m, e) and direct products with Z/2nZ since these all have
abelianization cyclic of even order. If k > 1 the subgroup generated by x in Q(8k)
is a characteristic subgroup of index 2. Since Q(2na) is a quotient of Q(2na, b, c)
by a characteristic subgroup (of order bc) this eliminates this class also. Thus there
remain only the above groups.

It is clear that automorphisms of a group G = H × J such that (|H |, |J |) = 1
correspond to pairs of automorphisms φH and φJ of H and J , respectively, and φ is
meridianal if and only if φH and φJ are. Multiplication by s induces a meridianal
automorphism of Z/mZ if and only if (s− 1,m) = (s,m) = 1. If Z/mZ is a direct
factor of π′ then it is a direct summand of π′/π′′ = H1(M(K); Λ) and so s2 ≡ 1
modulo (m), by Theorem 14.3. Hence we must have s ≡ −1 modulo (m). The
theorem now follows from Lemmas 9-11. �

Finite cyclic groups are realized by the 2-twist spins of 2-bridge knots, while
the commutator subgroups of τ331, τ431 and τ531 are Q(8), T ∗

1 and I∗, respectively.
As the groups of 2-bridge knots have 2 generator 1 relator presentations the groups
of these twist spins have 2 generator presentations of deficiency 0. The groups
with π′ ∼= Q(8) × (Z/nZ) also have such presentations, namely 〈t, u | tu2t−1 =
u−2, t2unt−2 = untunt−1〉. They are realized by fibred 2-knots [Yo82], but if n > 1
no such group can be realized by a twist spin (see §3 of Chapter 16). An extension
of the twist spin construction may be used to realize such groups by smooth fibred
knots in the standard S4, if n = 3, 5, 11, 13, 19, 21 or 27 [Kn88,Tr90]. Is this so in
general? The direct products of T ∗

k and I∗ with cyclic groups are realized by the
2-twist spins of certain pretzel knots [Yo82]. The corresponding knot groups have
presentations 〈t, x, y, z | zα = 1, x = ztzt−1, y = z2tzt−1z−1, zyz−1 = xy, tx = xt〉
and 〈t, w | twnt−1 = wnt2wnt−2, t5wn = wnt5, tw10t−1 = w−10〉, respectively. We
may easily eliminate the generators x and y from the former presentations to obtain
2 generator presentations of deficiency -1. It is not known whether any of these
groups (other than those with π′ ∼= T ∗

1 or I∗) have deficiency 0. Note that when
P = I∗ there is an isomorphism π ∼= I∗ × (π/I∗).

If P = 1 or Q(8) the weight class is unique up to inversion, while T ∗
k and I∗

have 2 and 4 weight orbits, respectively, by Theorem 14.1. If π′ = T ∗
1 or I∗ each

weight orbit is realized by a branched twist spun torus knot [PS87].
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The group πτ531
∼= Z × I∗ = Z × SL(2,F5) is the common member of two

families of high dimensional knot groups which are not otherwise 2-knot groups.
If p is a prime greater than 3 then SL(2,Fp) is a finite superperfect group. Let
ep = ( 1 1

0 1 ). Then (1, ep) is a weight element for Z × SL(2,Fp). Similarly, (I∗)m

is superperfect and (1, e5, . . . , e5) is a weight element for G = Z × (I∗)m, for any
m ≥ 0. However SL(2,Fp) has cohomological period p − 1 (see Corollary 1.27 of
[DM85]), while ζ(I∗)m ∼= (Z/2Z)m and so (I∗)m does not have periodic cohomology
if m > 1.

Kanenobu has shown that for every n > 0 there is a 2-knot group with an
element of order exactly n [Kn80].

15.5. The Tits alternative

An HNN extension (such as a knot group) is restrained if and only if it is
ascending and the base is restrained. The class of groups considered in the next
result probably includes all restrained 2-knot groups.

Theorem 15.13. Let π be a 2-knot group. Then the following are equivalent:

(1) π is restrained, locally FP3 and locally virtually indicable;
(2) π is an ascending HNN extension H∗φ where H is FP3, restrained and

virtually indicable;
(3) π is elementary amenable and has an abelian normal subgroup of rank

> 0;
(4) π is elementary amenable and is an ascending HNN extension H∗φ where

H is FP2;
(5) π′ is finite or π ∼= Φ or π is torsion free virtually poly-Z and h(π) = 4.

Proof. Condition (1) implies (2) by the Corollary to Theorem 3.16. If (2)
holds and H has one end then π′ = H and is a PD3-group, by Corollary 3.1. Since
H is virtually indicable and admits a meridianal automorphism, it must have a
subgroup of finite index which maps onto Z2. Hence H is virtually poly-Z, by
the Corollary to Theorem 2.13 (together with the remark following it). Hence (2)
implies (5). Conditions (3) and (4) imply (5) by Theorems 2 and 3, respectively.
On the other hand (5) implies (1-4). �

In particular, if K is a 2-knot with a minimal Seifert hypersurface, πK is
restrained and the Alexander polynomial of K is nontrivial then either π ∼= Φ or π
is torsion free virtually poly-Z and h(π) = 4.

15.6. Abelian HNN bases

We shall complete Yoshikawa’s study of 2-knot groups which are HNN exten-
sions with abelian base. The first four paragraphs of the following proof outline the
arguments of [Yo86,92]. (Our contribution is the argument in the final paragraph,
eliminating possible torsion when the base has rank 1).

Theorem 15.14. Let π be a 2-knot group which is an HNN extension with
abelian base. Then either π is metabelian or it has a deficiency 1 presentation
〈t, x | txnt−1 = xn+1〉 for some n > 1.

Proof. Suppose that π = HNN(A;φ : B → C) where A is abelian. Let j

and jC be the inclusions of B and C into A, and let φ̃ = jCφ. Then φ̃− j : B → A
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is an isomorphism, by the Mayer-Vietoris sequence for homology with coefficients
Z for the HNN extension. Hence rank(A) = rank(B) = r, say, and the torsion
subgroups TA, TB and TC of A, B and C coincide.

Suppose first that A is not finitely generated. Since π is finitely presentable and
π/π′ ∼= Z it is also an HNN extension with finitely generated base and associated
subgroups, by the Bieri-Strebel Theorem (1.13). Moreover we may assume the base
is a subgroup of A. Considerations of normal forms with respect to the latter HNN
structure imply that it must be ascending, and so π is metabelian [Yo92].

Assume now that A is finitely generated. Then the image of TA in π is a
finite normal subgroup N , and π/N is a torsion free HNN extension with base
A/TA ∼= Zr. Let jF and φF be the induced inclusions of B/TB into A/TA, and
let Mj = |det(jF )| and Mφ = |det(φF )|. Applying the Mayer-Vietoris sequence for

homology with coefficients Λ, we find that tφ̃− j is injective and π′/π′′ ∼= H1(π; Λ)
has rank r as an abelian group. Now H2(A; Z) ∼= A ∧A (see page 334 of [Ro]) and

so H2(π; Λ) ∼= Cok(t ∧2 φ̃ − ∧2j) has rank
(
r
2

)
. Let δi(t) = ∆0(Hi(π; Λ)), for i = 1

and 2. Then δ1(t) = det(tφF − jF ) and δ2(t) = det(tφF ∧ φF − jF ∧ jF ). Moreover
δ2(t

−1) divides δ1(t), by Theorem 14.3. In particular,
(
r
2

)
≤ r, and so r ≤ 3.

If r = 0 then clearly B = A and so π is metabelian. If r = 2 then
(
r
2

)
= 1 and

δ2(t) = ±(tMφ −Mj). Comparing coefficients of the terms of highest and lowest
degree in δ1(t) and δ2(t

−1), we see that Mj = Mφ, so δ2(1) ≡ 0 mod (2), which is
impossible since |δ1(1)| = 1. If r = 3 a similar comparison of coefficients in δ1(t)
and δ2(t

−1) shows that M3
j divides Mφ and M3

φ divides Mj, so Mj = Mφ = 1.
Hence φ is an isomorphism, and so π is metabelian.

There remains the case r = 1. Yoshikawa used similar arguments involving
coefficients FpΛ instead to show that in this case N ∼= Z/βZ for some odd β ≥ 1.
The group π/N then has a presentation 〈t, x | txnt−1 = xn+1〉 (with n ≥ 1). Let
p be a prime. There is an isomorphism of the subfields Fp(Xn) and Fp(Xn+1)
of the rational function field Fp(X) which carries Xn to Xn+1. Therefore Fp(X)
embeds in a skew field L containing an element t such that tXnt−1 = Xn+1, by
Theorem 5.5.1 of [Cn]. It is clear from the argument of this theorem that the group
ring Fp[π/N ] embeds as a subring of L, and so this group ring is weakly finite.
Therefore so is the subring Fp[Cπ(N)/N ]. It now follows from Lemma 3.15 that N
must be trivial. Since π is metabelian if n = 1 this completes the proof. �

15.7. Locally finite normal subgroups

Let K be a 2-knot such that π = πK has an infinite locally finite normal

subgroup T , which we may assume maximal. As π has one end and β
(2)
1 (π) = 0,

by Gromov’s Theorem (2.3), H2(π; Z[π]) 6= 0. For otherwise M(K) would be
aspherical and so π would be torsion free, by Theorem 3.5. Moreover T < π′ and
π/T is not virtually Z, so e(π/T ) = 1 or ∞. (No examples of such 2-knot groups
are known, and we expect that there are none with e(π/T ) = 1).

If H1(T ;R) = 0 for some subring R of Q and Z[π/T ] embeds in a weakly finite
ring S with an involution extending that of the group ring, which is flat as a right
Z[π/T ]-module and such that S ⊗Z[π/T ] Z = 0 then either π/T is a PD+

4 -group

over R or H2(π/T ;R[π/T ]) 6= 0, or e(π/T ) = ∞, by the Addendum to Theorem
2.7 of [H3]. This applies in particular if π/T has a nontrivial locally nilpotent
normal subgroup U/T , for then U/T is torsion free. (See Proposition 5.2.7 of [Ro]).
Moreover e(π/T ) = 1. An iterated LHSSS argument shows that if h(U/T ) > 1
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or if U/T ∼= Z and e(π/U) = 1 then H2(π/T ; Q[π/T ]) = 0. (This is also the
case if h(U/T ) = 1, e(π/U) = 1 and π/T is finitely presentable, by Theorem 1 of
[Mi87] with [GM86]). Thus if H2(π/T ; Q[π/T ]) 6= 0 then U/T is abelian of rank
1 and either e(π/U) = 2 (in which case π/T ∼= Φ, by Theorem 2), e(π/U) = 1
(and U/T not finitely generated and π/U not finitely presentable) or e(π/U) = ∞.
As Aut(U/T ) is then abelian U/T is central in π′/T . Moreover π/U can have no
nontrivial locally finite normal subgroups, for otherwise T would not be maximal
in π, by an easy extension of Schur’s Theorem (Proposition 10.1.4 of [Ro]).

Hence if π has an ascending series whose factors are either locally finite or
locally nilpotent then either π/T ∼= Φ or h(

√
π/T ) ≥ 2 and so π/T is a PD+

4 -group
over Q. Since J = π/T is elementary amenable and has no nontrivial locally finite
normal subgroup it is virtually solvable and h(J) = 4, by Theorem 1.11. It can be

shown that J is virtually poly-Z and J ′ ∩
√
J ∼= Z3 or Γq for some q ≥ 1. (See

Theorem VI.2 of [H2]). The possibilities for J ′ are examined in Theorems VI.3-5
and VI.9 of [H2]. We shall not repeat this discussion here as we expect that if G
is finitely presentable and T is an infinite locally finite normal subgroup such that
e(G/T ) = 1 then H2(G; Z[G]) = 0.

The following lemma suggests that there may be a homological route to showing
that solvable 2-knot groups are virtually torsion free.

Lemma 15.15. Let G be an FP2 group with a torsion normal subgroup T such
that either G/T ∼= Z∗m for some m 6= 0 or G/T is virtually poly-Z. Then T/T ′

has finite exponent as an abelian group. In particular, if π is solvable then T = 1
if and only if H1(T ; Fp) = 0 for all primes p.

Proof. Let C∗ be a free Z[G]-resolution of the augmentation module Z which
is finitely generated in degrees ≤ 2. Since Z[G/T ] is coherent [BS79], T/T ′ =
H1(Z[G/T ]⊗GC∗) is finitely presentable as a Z[G/T ]-module. If T/T ′ is generated
by elements ti of order ei then Πei is a finite exponent for T/T ′.

If π is solvable then so is T , and T = 1 if and only if T/T ′ = 1. Since T/T ′ has
finite exponent T/T ′ = 1 if and only if H1(T ; Fp) = 0 for all primes p. �

Note also that Fp[Z∗m] is a coherent Ore domain of global dimension 2, while
if J is a torsion free virtually poly-Z group then Fp[J ] is a noetherian Ore domain
of global dimension h(J). (See §4.4 and §13.3 of [Pa]).





CHAPTER 16

Abelian normal subgroups of rank ≥ 2

If K is a 2-knot such that h(
√
πK) = 2 then

√
πK ∼= Z2, by the Corollary

to Theorem 15.5. The main examples are the branched twist spins of torus knots,
whose groups usually have centre of rank 2. (There are however examples in which√
π is not central). Although we have not been able to show that all 2-knot groups

with centre of rank 2 are realized by such knots, we have a number of partial
results that suggest strongly that this may be so. Moreover we can characterize
the groups which arise in this way (obvious exceptions aside) as being the 3-knot
groups which are PD+

4 -groups and have centre of rank 2, with some power of a
weight element being central. The strategy applies to other twist spins of prime
1-knots; however in general we do not have satisfactory algebraic characterizations
of the 3-manifold groups involved. If h(

√
πK) > 2 then M(K) is homeomorphic to

an infrasolvmanifold. We shall determine the groups of such knots and give optimal
presentations for them in §5 of this chapter. Two of these groups are virtually Z4;
in all other cases h(

√
πK) = 3.

16.1. The Brieskorn manifolds M(p, q, r)

Let M(p, q, r) = {(u, v, w) ∈ C3 | up + vq + wr = 0} ∩ S5. Thus M(p, q, r)
is a Brieskorn 3-manifold (the link of an isolated singularity of the intersection of
n algebraic hypersurfaces in Cn+2, for some n ≥ 1). It is clear that M(p, q, r) is
unchanged by a permutation of {p, q, r}. Let s = hcf{pq, pr, qr}. Then M(p, q, r)
admits an S1-action given by z(u, v, w) = (zqr/su, zpr/sv, zpq/sw) for z ∈ S1 and
(u, v, w) ∈M(p, q, r), and so is Seifert fibred.

More precisely, let ℓ = lcm{p, q, r}, p′ = lcm{q, r}, q′ = lcm{p, r} and r′ =
lcm{p, q}, s1 = qr/p′, s2 = pr/q′ and s3 = pq/r′ and t1 = ℓ/p′, t2 = ℓ/q′ and
t3 = ℓ/r′. Then M(p, q, r) = M(g; s1(t1, β1), s2(t2, β2), s3(t3, β3)), in the notation
of [NR78], where g = (2 + (pqr/ℓ) − s1 − s2 − s3)/2 and the coefficients βi are
determined modulo ti by the equation e = −(qrβ1 + prβ2 + pqβ3)/ℓ) = −pqr/ℓ2
for the generalized Euler number. (See [NR78]). If p−1 + q−1 + r−1 ≤ 1 the Seifert
fibration is essentially unique. (See Theorem 3.8 of [Sc83’]). In most cases the triple
{p, q, r} is determined by the Seifert structure of M(p, q, r). (Note however that,
for example, M(2, 9, 18) ∼= M(3, 5, 15) [Mi75]).

The map f : M(p, q, r) → CP1 given by f(u, v, w) = [up : vq] is constant on
the orbits of the S1-action, and the exceptional fibres are those above 0, −1 and
∞ in CP1. In particular, if p, q and r are pairwise relatively prime f is the orbit
map and M(p, q, r) is Seifert fibred over the orbifold S2(p, q, r). The involution c
of M(p, q, r) induced by complex conjugation in C3 is orientation preserving and is

compatible with f and complex conjugation in CP1.

225
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The 3-manifold M(p, q, r) is a S3-manifold if and only if p−1 + q−1 + r−1 > 1.
The triples (2, 2, r) give lens spaces. The other triples with p−1 + q−1 + r−1 > 1
are permutations of (2, 3, 3), (2, 3, 4) or (2, 3, 5), and give the three CK 3-manifolds
with fundamental groups Q(8), T ∗

1 and I∗. The manifolds M(2, 3, 6), M(3, 3, 3)

and M(2, 4, 4) are Nil3-manifolds; in all other cases M(p, q, r) is a S̃L-manifold (in

fact, a coset space of S̃L [Mi75]), and
√
π1(M(p, q, r)) ∼= Z.

16.2. Rank 2 subgroups

In this section we shall show that an abelian normal subgroup of rank 2 in a
2-knot group is free abelian and not contained in the commutator subgroup.

Lemma 16.1. Let ν be the fundamental group of a closed H2 × E1-, Sol3- or
S2 × E1-manifold. Then ν admits no meridianal automorphism.

Proof. The fundamental group of a closed Sol3- or S2 × E1-manifold has
a characteristic subgroup with quotient having two ends. If ν is a lattice in
Isom+(H2 × E1) then

√
ν ∼= Z and either

√
ν = ζν and is not contained in ν′

or Cν(
√
ν) is a characteristic subgroup of index 2 in ν. In none of these cases can

ν admit a meridianal automorphism. �

Theorem 16.2. Let K be a 2-knot whose group π = πK has an abelian normal
subgroup A of rank 2. Then π is a PD+

4 -group, A ∼= Z2, π′ ∩ A ∼= Z, π′ ∩ A ≤
ζπ′ ∩ I(π′), [π : Cπ(A)] ≤ 2 and π′ = π1(N), where N is a Nil3- or S̃L-manifold.
If π is virtually solvable then M(K) is homeomorphic to a Nil3×E1-manifold. If π
is not virtually solvable then M(K) is s-cobordant to the mapping torus M(Θ) of a

self homeomorphism Θ of a S̃L-manifold; M(Θ) is a S̃L×E1-manifold if ζπ ∼= Z2.

Proof. The first two assertions follow from Theorem 9.2, where it is also shown
that π/A is virtually a PD2-group. If A < π′ then π/A has infinite abelianization
and so maps onto some planar discontinuous group, with finite kernel [EM82].
As the planar discontinuous group is virtually a surface group it has a compact
fundamental region. But no such group has abelianization Z. (This follows for
instance from consideration of the presentations given in Theorem 4.5.6 of [ZVC]).
Therefore π′ ∩A ∼= Z. If τ is the meridianal automorphism of π′/I(π′) then τ − 1
is invertible, and so cannot have ±1 as an eigenvalue. Hence π′ ∩ A ≤ I(π′). In
particular, π′ is not abelian.

The image of π/Cπ(A) in Aut(A) ∼= GL(2,Z) is triangular, since π′ ∩ A ∼= Z
is normal in π. Therefore as π/Cπ(A) has finite cyclic abelianization it must have
order at most 2. Thus [π : Cπ(A)] ≤ 2, so π′ < Cπ(A) and π′ ∩ A < ζπ′. The
subgroup H generated by π′ ∪A has finite index in π and so is also a PD+

4 -group.
Since A is central in H and maps onto H/π′ we have H ∼= π′ × Z. Hence π′ is a
PD+

3 -group with nontrivial centre. As the nonabelian flat 3-manifold groups either
admit no meridianal automorphism or have trivial centre, π′ = π1(N) for some

Nil3- or S̃L-manifold N , by Theorem 2.14 and Lemma 1.
The manifoldM(K) is s-cobordant to the mapping torusM(Θ) of a self homeo-

morphism of N , by Theorem 13.2. If N is a Nil3-manifold M(K) is homeomorphic
to M(Θ), by Theorem 8.1, and M(K) must be a Nil3 × E1-manifold, since the
groups of Sol41-manifolds do not have rank 2 abelian normal subgroups, while the
groups of Nil4-manifolds cannot have abelianization Z, as they have characteristic
rank 2 subgroups contained in their commutator subgroups.
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We may assume also thatM(Θ) is Seifert fibred over a 2-orbifoldB. If moreover
ζπ ∼= Z2 then B must be orientable, and the monodromy representation of πorb1 (B)

in Aut(ζπ) ∼= GL(2,Z) is trivial. Therefore if N is an S̃L-manifold and ζπ ∼= Z2

then M(Θ) is a S̃L × E1-manifold, by Theorem B of [Ue91] and Lemma 16.1. �

If p, q and r are pairwise relatively prime M(p, q, r) is a Z-homology 3-sphere
and π1(M(p, q, r)) has a presentation

〈a1, a2, a3, h | ap1 = aq2 = ar3 = a1a2a3 = h〉
(see [Mi75]). The automorphism c∗ of ν = π1(M(p, q, r)) induced by the involution
c is determined by c∗(a1) = a−1

1 , c∗(a2) = a−1
2 and c∗(h) = h−1, and hence c∗(a3) =

a2a
−1
3 a−1

2 . If one of p, q and r is even c∗ is meridianal. Surgery on the mapping
torus of c gives rise to a 2-knot whose group ν×c∗Z has an abelian normal subgroup
A = 〈t2, h〉. If moreover p−1 + q−1 + r−1 < 1 then A ∼= Z2, but is not central.

The only virtually poly-Z groups with noncentral rank 2 abelian normal sub-
groups are the groups π(b, ǫ) discussed in §5 below.

Theorem 16.3. Let π be a 2-knot group such that ζπ has rank greater than 1.
Then ζπ ∼= Z2, ζπ′ = π′ ∩ ζπ ∼= Z, and ζπ′ ≤ π′′.

Proof. If ζπ had rank greater than 2 then π′ ∩ ζπ would contain an abelian
normal subgroup of rank 2, contrary to Theorem 2. Therefore ζπ ∼= Z2 and π′∩ζπ ∼=
Z. Moreover π′ ∩ ζπ ≤ π′′, since π/π′ ∼= Z. In particular π′ is nonabelian and π′′

has nontrivial centre. Hence π′ is the fundamental group of a Nil3- or S̃L-manifold,
by Theorem 2, and so ζπ′ ∼= Z. It follows easily that π′ ∩ ζπ = ζπ′. �

The proof of this result in [H2] relied on the theorems of Bieri and Strebel,
rather than Bowditch’s Theorem.

16.3. Twist spins of torus knots

The commutator subgroup of the group of the r-twist spin of a classical knot
K is the fundamental group of the r-fold cyclic branched cover of S3, branched
over K [Ze65]. The r-fold cyclic branched cover of a sum of knots is the connected
sum of the r-fold cyclic branched covers of the factors, and is irreducible if and
only if the knot is prime. Moreover the cyclic branched covers of a prime knot
are either aspherical or finitely covered by S3; in particular no summand has free
fundamental group [Pl84]. The cyclic branched covers of prime knots with nontrivial
companions are Haken 3-manifolds [GL84]. The r-fold cyclic branched cover of a
simple nontorus knot is a hyperbolic 3-manifold if r ≥ 3, excepting only the 3-
fold cyclic branched cover of the figure-eight knot, which is the Hanztsche-Wendt
flat 3-manifold [Du83]. The r-fold cyclic branched cover of the (p, q)-torus knot
kp,q is the Brieskorn manifold M(p, q, r) [Mi75]. (In particular, there are only four
r-fold cyclic branched covers of nontrivial knots for any r > 2 which have finite
fundamental group).

Theorem 16.4. Let M be the r-fold cyclic branched cover of S3, branched over
a knot K, and suppose that r > 2 and that

√
π1(M) 6= 1. Then K is uniquely

determined by M and r, and either K is a torus knot or K ∼= 41 and r = 3.

Proof. As the connected summands of M are the cyclic branched covers of
the factors of K, any homotopy sphere summand must be standard, by the proof of
the Smith conjecture. Therefore M is aspherical, and is either Seifert fibred or is a
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Sol3-manifold, by Theorem 2.14. It must in fact be a E3-, Nil3- or S̃L-manifold, by
Lemma 1. If there is a Seifert fibration which is preserved by the automorphisms
of the branched cover the fixed circle (the branch set of M) must be a fibre of the
fibration (since r > 2) which therefore passes to a Seifert fibration of X(K). Thus
K must be a (p, q)-torus knot, for some relatively prime integers p and q [BZ]. These
integers may be determined arithmetically from r and the formulae for the Seifert
invariants of M(p, q, r) given in §1. Otherwise M is flat [MS86] and so K ∼= 41 and
r = 3, by [Du83]. �

All the knots whose 2-fold branched covers are Seifert fibred are torus knots or
Montesinos knots. (This class includes the 2-bridge knots and pretzel knots, and
was first described in [Mo73]). The number of distinct knots whose 2-fold branched
cover is a given Seifert fibred 3-manifold can be arbitrarily large [Be84]. Moreover
for each r ≥ 2 there are distinct simple 1-knots whose r-fold cyclic branched covers
are homeomorphic [Sa81, Ko86].

If K is a fibred 2-knot with monodromy of finite order r and if (r, s) = 1 then
the s-fold cyclic branched cover of S4, branched over K is again a 4-sphere and so
the branch set gives a new 2-knot, which we shall call the s-fold cyclic branched
cover of K. This new knot is again fibred, with the same fibre and monodromy
the sth power of that of K [Pa78, Pl86]. If K is a classical knot we shall let τr,sK
denote the s-fold cyclic branched cover of the r-twist spin of K. We shall call such
knots branched twist spins, for brevity.

Using properties of S1-actions on smooth homotopy 4-spheres, Plotnick obtains
the following result [Pl86].

Theorem (Plotnick). A 2-knot is fibred with periodic monodromy if and only
if it is a branched twist spin of a knot in a homotopy 3-sphere. �

Here “periodic monodromy” means that the fibration of the exterior of the knot
has a characteristic map of finite order. It is not in general sufficient that the closed
monodromy be represented by a map of finite order. (For instance, if K is a fibred
2-knot with π′ ∼= Q(8)× (Z/nZ) for some n > 1 then the meridianal automorphism
of π′ has order 6, and so it follows from the observations above that K is not a
twist spin).

In our application in the next theorem we are able to show directly that the
homotopy 3-sphere arising there may be assumed to be standard.

Theorem 16.5. A group G which is not virtually solvable is the group of a
branched twist spin of a torus knot if and only if it is a 3-knot group and a PD+

4 -
group with centre of rank 2, some nonzero power of a weight element being central.

Proof. If K is a cyclic branched cover of the r-twist spin of the (p, q)-torus
knot then M(K) fibres over S1 with fibre M(p, q, r) and monodromy of order r, and
so the rth power of a meridian is central. Moreover the monodromy commutes with
the natural S1-action on M(p, q, r) (see Lemma 1.1 of [Mi75]) and hence preserves
a Seifert fibration. Hence the meridian commutes with ζπ1(M(p, q, r)), which is
therefore also central in G. Since (with the above exceptions) π1(M(p, q, r)) is a
PD+

3 -group with infinite centre and which is virtually representable onto Z, the
necessity of the conditions is evident.

Conversely, if G is such a group then G′ is the fundamental group of a Seifert
fibred 3-manifold, N say, by Theorem 2.14. MoreoverN is “sufficiently complicated”
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in the sense of [Zi79], since G′ is not virtually solvable. Let t be an element of G
whose normal closure is the whole group, and such that tn is central for some
n > 0. Let θ be the automorphism of G′ determined by t, and let m be the order
of the outer automorphism class [θ] ∈ Out(G′). By Corollary 3.3 of [Zi79] there is
a fibre preserving self homeomorphism τ of N inducing [θ] such that the group of

homeomorphisms of Ñ ∼= R3 generated by the covering group G′ together with the
lifts of τ is an extension of Z/mZ by G′, and which is a quotient of the semidirect

product Ĝ = G/〈〈tn〉〉 ∼= G′ ×θ (Z/nZ). Since the self homeomorphism of Ñ
corresponding to the image of t has finite order it has a connected 1-dimensional
fixed point set, by Smith theory. The image P of a fixed point in N determines
a cross-section γ = {P} × S1 of the mapping torus M(τ). Surgery on γ in M(τ)
gives a 2-knot with group G which is fibred with monodromy (of the fibration of
the exterior X) of finite order. We may then apply Plotnick’s Theorem to conclude
that the 2-knot is a branched twist spin of a knot in a homotopy 3-sphere. Since
the monodromy respects the Seifert fibration and leaves the centre of G′ invariant,
the branch set must be a fibre, and the orbit manifold a Seifert fibred homotopy 3-
sphere. Therefore the orbit knot is a torus knot in S3, and the 2-knot is a branched
twist spin of a torus knot. �

Can we avoid the appeal to Plotnick’s Theorem in the above argument?
If p, q and r are pairwise relatively prime then M(p, q, r) is an homology sphere

and the group π of the r-twist spin of the (p, q)-torus knot has a central element
which maps to a generator of π/π′. Hence π ∼= π′×Z and π′ has weight 1. Moreover
if t is a generator for the Z summand then an element h of π′ is a weight element
for π′ if and only if ht is a weight element for π. This correspondance also gives
a bijection between conjugacy classes of such weight elements. If we exclude the
case (2, 3, 5) then π′ has infinitely many distinct weight orbits, and moreover there
are weight elements such that no power is central [Pl83]. Therefore we may obtain
many 2-knots whose groups are as in Theorem 6 but which are not themselves
branched twist spins by surgery on weight elements in M(p, q, r) × S1.

If K is a 2-knot with group as in Theorem 5 then M(K) is aspherical, and so
is homotopy equivalent to M(K1) for some K1 which is a branched twist spin of a
torus knot. If we assume that K is fibred, with irreducible fibre, we get a stronger
result. The next theorem is a version of Proposition 6.1 of [Pl86], starting from
more algebraic hypotheses.

Theorem 16.6. Let K be a fibred 2-knot whose group π has centre of rank 2,
some power of a weight element being central. Suppose that the fibre is irreducible.
Then M(K) is homeomorphic to M(K1), where K1 is some branched twist spin of
a torus knot.

Proof. Let F be the closed fibre and φ : F → F the characteristic map. Then
F is a Seifert fibred manifold, as above. Now the automorphism of F constructed
as in Theorem 5 induces the same outer automorphism of π1(F ) as φ, and so these
maps must be homotopic. Therefore they are in fact isotopic [Sc85, BO91]. The
theorem now follows. �

We may apply Plotnick’s theorem in attempting to understand twist spins of
other knots. As the arguments are similar to those of Theorems 5 and 6, except
in that the existence of homeomorphisms of finite order and “homotopy implies
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isotopy” require different justifications, while the conclusions are less satisfactory,
we shall not give prooofs for the following assertions.

Let G be a 3-knot group such that G′ is the fundamental group of a hyperbolic
3-manifold and in which some nonzero power of a weight element is central. If the
3-dimensional Poincaré conjecture is true then we may use Mostow rigidity to show
that G is the group of some branched twist spin K of a simple non-torus knot.
Moreover if K1 is any other fibred 2-knot with group G and hyperbolic fibre then
M(K1) is homeomorphic to M(K). In particular the simple knot and the order of
the twist are uniquely determined by G.

Similarly if G′ is the fundamental group of a Haken 3-manifold which is not
Seifert fibred and the 3-dimensional Poincaré conjecture is true then we may use
[Zi82] to show that G is the group of some branched twist spin of a prime non-torus
knot. If moreover all finite group actions on the fibre are geometric the prime knot
and the order of the twist are uniquely determined by G′ [Zi86].

16.4. Solvable PD4-groups

If π is a 2-knot group such that h(
√
π) > 2 then π is virtually poly-Z and

h(π) = 4, by Theorem 8.1. In this section we shall determine all such 2-knot
groups.

Lemma 16.7. Let G be torsion free and virtually solvable with h(G) = 4 and

G/G′ ∼= Z. Then G′ ∼= Z3 or G6 or
√
G′ ∼= Γq (for some q > 0) and G′/

√
G′ ∼=

Z/3Z or 1.

Proof. Let H = G/
√
G′. Then H/H ′ ∼= Z and h(H ′) ≤ 1, since

√
G′ =

G′ ∩
√
G and h(G′ ∩

√
G) ≥ h(G) − 1 ≥ 2. Hence H ′ = G′/

√
G′ is finite.

If
√
G′ ∼= Z3 then G′ ∼= Z3 or G6, since these are the only flat 3-manifold

groups which admit meridianal automorphisms.
If

√
G′ ∼= Γq for some q > 0 then ζ

√
G′ ∼= Z is normal in G and so is central

in G′. Using the known structure of automorphisms of Γq, it follows that the finite

group G′/
√
G′ must act on

√
G′/ζ

√
G′ ∼= Z2 via SL(2,Z) and so must be cyclic.

Moreover it must be of odd order, and hence 1 or Z/3Z, since G/
√
G′ has infinite

cyclic abelianization. �

Such a group G is the group of a fibred 2-knot if and only if it is orientable, by
Theorems 14.4 and 14.7.

Theorem 16.8. Let π be a 2-knot group with π′ ∼= Z3, and let C be the image of
the meridianal automorphism in SL(3,Z). Then ∆C(t) = det(tI−C) is irreducible,
|∆C(1)| = 1 and π′ is isomorphic to an ideal in the domain R = Λ/(∆C(t)). Two
such groups are isomorphic if and only if the polynomials are equal (after inverting
t, if necessary) and the ideal classes then agree. There are finitely many ideal classes
for each such polynomial and each class (equivalently, each such matrix) is realized
by some 2-knot group. Moreover

√
π = π′ and ζπ = 1. Each such group π has two

strict weight orbits.

Proof. Let t be a weight element for π and let C be the matrix of the action
of t by conjugation on π′, with respect to some basis. Then det(C − I) = ±1,
since t − 1 acts invertibly. Moreover if K is a 2-knot with group π then M(K) is
orientable and aspherical, so det(C) = +1. Conversely, surgery on the mapping
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torus of the self homeomorphism of S1 × S1 × S1 determined by such a matrix C
gives a 2-knot with group Z3 ×C Z.

The Alexander polynomial of K is the characteristic polynomial ∆K(t) =
det(tI − C) which has the form t3 − at2 + bt − 1, for some a and b = a ± 1.
It is irreducible, since it does not vanish at ±1. Since π′ is annihilated by ∆K(t) it
is an R-module; moreover as it is torsion free it embeds in Q⊗π′, which is a vector
space over the field of fractions Q ⊗R. Since π′ is finitely generated and π′ and R
each have rank 3 as abelian groups it follows that π′ is isomorphic to an ideal in R.
Moreover the characteristic polynomial of C cannot be cyclotomic and so no power
of t can commute with any nontrivial element of π′. Hence

√
π = π′ and ζπ = 1.

By Lemma 1.1 two such semidirect products are isomorphic if and only if
the matrices are conjugate up to inversion. The conjugacy classes of matrices in
SL(3,Z) with given irreducible characteristic polynomial ∆(t) correspond to the
ideal classes of Λ/(∆(t)), by Theorem 1.4. Therefore π is determined by the ideal
class of π′, and there are finitely many such 2-knot groups with given Alexander
polynomial.

Since π′′ = 1 the final observation follows from Theorem 14.1. �

We shall call 2-knots with such groups “Cappell-Shaneson” 2-knots.

Lemma 16.9. Let ∆a(t) = t3 − at2 + (a− 1)t− 1 for some a ∈ Z, and let M be
an ideal in the domain R = Λ/(∆a(t)). Then M can be generated by two elements
as a Λ-module.

Proof. In this lemma “cyclic” shall mean “cyclic as a Λ-module”. We shall
show that we can choose a nonzero element x ∈ M such that M/(Rx + pM) is
cyclic, for all primes p. The result will then follow via Nakayama’s Lemma and the
Chinese Remainder Theorem.

Let D be the discriminant of ∆a(t). If p does not divide D then ∆a(t) has no
repeated roots modulo p. If p divides D choose integers αp, βp such that ∆a(t) ≡
(t−αp)

2(t− βp) modulo (p), and let Kp = {m ∈M | (t− βp)m ∈ pM}. If βp 6≡ αp
modulo (p) then Kp = (p, t− αp)M and has index p2 in M .

If βp ≡ αp modulo (p) then α3
p ≡ 1 and (1 − αp)

3 ≡ −1 modulo (p). Together
these congruences imply that 3αp ≡ −1 modulo (p), and hence that p = 7 and
αp ≡ 2 modulo (7). If M/7M ∼= (Λ/(7, t−2))3 then the automorphism τ ofM/49M
induced by t is congruent to multiplication by 2 modulo (7). But M/49M ∼=
(Z/49Z)3 as an abelian group, and so det(τ) = 8 in Z/49Z, contrary to t being an
automorphism of M . Therefore M/7M ∼= (Λ/(7, t− 2))⊕ (Λ/(7, (t− 2)2)) and K7

has index 7 in M , in this case.
The prime divisors of D are ≥ 7, since D = a(a − 2)(a − 3)(a − 5) − 23, and

so 1
7 + Σp|D,p6=7

1
p2 <

1
7 +

∫ ∞
7

1
t2 dt < 1. Therefore M − ∪p|DKp is nonempty. Let x

be an element of M − ∪p|DKp which is not Z-divisible in M . Then N = M/Rx is

finite, and is generated by at most two elements as an abelian group, since M ∼= Z3

as an abelian group. For each prime p the Λ/pΛ-module M/pM is an extension
of N/pN by the submodule Xp generated by the image of x and its order ideal is
generated by the image of ∆a(t) in the P.I.D. Λ/pΛ ∼= Fp[t, t−1].

If p does not divide D the image of ∆a(t) in Λ/pΛ is square free. If p|D and
βp 6= αp the order ideal of Xp is divisible by t− αp. If β7 = α7 = 2 the order ideal
of X7 is (t− 2)2. In all cases the order ideal of N/pN is square free and so N/pN
is cyclic. By the Chinese Remainder Theorem there is an element y ∈ M whose
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image is a generator of N/pN , for each prime p dividing the order of N . The image
of y in N generates N , by Nakayama’s Lemma. �

In [AR84] matrix calculations are used to show that any matrix C as in Theorem
8 is conjugate to one with first row (0, 0, 1). (The prime 7 also needs special
consideration in their argument). This is equivalent to showing that M has an
element x such that the image of tx in M/Zx is indivisible, from which it follows
that M is generated as an abelian group by x, tx and some third element y. Given
this, it is easy to see that the corresponding Cappell-Shaneson 2-knot group has a
presentation

〈t, x, y, z | xy = yx, xz = zx, txt−1 = z, tyt−1 = xmynzp, tzt−1 = xqyrzs〉.
Since p and s must be relatively prime these relations imply yz = zy. We may
reduce the number of generators and relations on setting z = txt−1.

Lemma 16.10. Let π be a finitely presentable group such that π/π′ ∼= Z, and
let R = Λ or Λ/pΛ for some prime p ≥ 2. Then

(1) if π can be generated by two elements H1(π;R) is cyclic as an R-module;
(2) if def(π) = 0 then H2(π;R) is cyclic as an R-module.

Proof. If π is generated by two elements t and x, say, we may assume that the
image of t generates π/π′ and that x ∈ π′. Then π′ is generated by the conjugates
of x under powers of t, and so H1(π;R) = R⊗Λ (π′/π′′) is generated by the image
of x.

If X is the finite 2-complex determined by a deficiency 0 presentation for π
then H0(X ;R) = R/(t− 1) and H1(X ;R) are R-torsion modules, and H2(X ;R) is
a submodule of a finitely generated free R-module. Hence H2(X ;R) ∼= R, as it has
rank 1 and R is an UFD. Therefore H2(π;R) is cyclic as an R-module, since it is a
quotient of H2(X ;R), by Hopf’s Theorem. �

Theorem 16.11. Let π = Z3 ×C Z be the group of a Cappell-Shaneson 2-knot,
and let ∆(t) = det(tI − C). Then π has a 3 generator presentation of deficiency
-2. Moreover the following are equivalent.

(1) π has a 2 generator presentation of deficiency 0;
(2) π is generated by 2 elements;
(3) def(π) = 0;
(4) π′ is cyclic as a Λ-module.

Proof. The first assertion follows immediately from Lemma 9. Condition
(1) implies (2) and (3), since def(π) ≤ 0, by Theorem 2.5, while (2) implies (4),
by Lemma 10. If def(π) = 0 then H2(π; Λ) is cyclic as a Λ-module, by Lemma

10. Since π′ = H1(π; Λ) ∼= H3(π; Λ) ∼= Ext1Λ(H2(π; Λ),Λ), by Poincaré duality
and the UCSS, it is also cyclic and so (3) also implies (4). If π′ is generated
as a Λ-module by x then it is easy to see that π has a presentation of the form
〈t, x | xtxt−1 = txt−1x, t3xt−3 = t2xat−2txbt−1x〉, and so (1) holds. �

In fact Theorem A.3 of [AR84] implies that any such group has a 3 generator
presentation of deficiency -1, as remarked before Lemma 10.

The isomorphism class of the Λ-module π′ is that of its Steinitz-Fox-Smythe
row invariant, which is the ideal (r, t − n) in the domain Λ/(∆(t)) (see Theorem
III.12 of [H1]). Thus π′ is cyclic if and only if this ideal is principal. In particular,
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this is not so for the concluding example of [AR84], which gives rise to the group
with presentation

〈t, x, y, z | xz = zx, yz = zy, txt−1 = y−5z−8, tyt−1 = y2z3, tzt−1 = xz−7〉.
Let G(+) and G(−) be the extensions of Z by G6 with presentations

〈t, x, y | xy2x−1y2 = 1, txt−1 = (xy)∓1, tyt−1 = x±1〉.
(These presentations have optimal deficiency, by Theorem II.5). The group G(+)
is the group of the 3-twist spin of the figure eight knot (G(+) ∼= πτ341).

Theorem 16.12. Let π be a 2-knot group with π′ ∼= G6. Then π ∼= G(+) or
G(−). In each case π is virtually Z4, π′ ∩ ζπ = 1 and ζπ ∼= Z.

Proof. Since Out(G6) is finite π is virtually G6 × Z and hence is virtually
Z4. The groups G(+) and G(−) are the only orientable flat 4-manifold groups
with π/π′ ∼= Z. The next assertion (π′ ∩ ζπ = 1) follows as ζG6 = 1. It is easily
seen that ζG(+) and ζG(−) are generated by the images of t3 and t6x−2y2(xy)−2,
respectively, and so in each case ζπ ∼= Z. �

Although G(−) is the group of a fibred 2-knot, by Theorem 14.4, it can be
shown that no power of any weight element is central and so it is not the group of
any twist spin. (This also follows from Theorem 4 above).

Theorem 16.13. Let π be a 2-knot group with π′ ∼= Γq for some q > 0, and let
θ be the image of the meridianal automorphism in Out(Γq). Then either q = 1 and
θ is conjugate to [

(
1 −1
1 0

)
, 0] or [( 1 1

1 2 ) , 0], or q is odd and θ is conjugate to [( 1 1
1 0 ) , 0]

or its inverse. Each such group π has two strict weight orbits.

Proof. If (A, µ) is a meridianal automorphism of Γq then the induced auto-
morphisms of Γq/ζΓq ∼= Z2 and tors(Γq/Γ

′
q)

∼= Z/qZ are also meridianal. There-
fore det(A − I) = ±1 and det(A) − 1 is a unit modulo (q), so q must be odd and
det(A) = −1 if q > 1. The characteristic polynomial ∆A(X) of such a 2× 2 matrix
must be X2 −X + 1, X2 − 3X + 1, X2 −X − 1 or X2 +X − 1. The correspond-
ing rings Z[X ]/(∆A(X)) are principal ideal domains (namely Z[(1 +

√
−3)/2] and

Z[(1 +
√

5)/2]) and so A is conjugate to one of
(

1 −1
1 0

)
, ( 1 1

1 2 ), ( 1 1
1 0 ), or ( 1 1

1 0 )
−1

=(
0 1
1 −1

)
, by Theorem 1.4. Now [A, µ][A, 0][A, µ]−1 = [A, µ(I − det(A)A)−1]. (See §7

of Chapter 8 above). As in each case I − det(A)A is invertible, it follows that θ is
conjugate to [A, 0] or to [A−1, 0] = [A, 0]−1. Since π′′ ≤ ζπ′ the final observation
follows from Theorem 14.1. �

The groups Γq are discrete cocompact subgroups of the Lie group Nil3 and the
coset spaces are S1-bundles over the torus. Every automorphism of Γq is orientation
preserving and each of the groups allowed by Theorem 13 is the group of some
fibred 2-knot, by Theorem 14.4. The group of the 6-twist spin of the trefoil has
commutator subgroup Γ1 and monodromy [

(
1 −1
1 0

)
, 0]. In all the other cases the

meridianal automorphism has infinite order and the group is not the group of any
twist spin.

The groups with commutator subgroup Γ1 have presentations

〈t, x, y | xyxy−1 = yxy−1x, txt−1 = xy, tyt−1 = w〉,
where w = x−1, xy2 or x (respectively), while those with commutator subgroup Γq
with q > 1 have presentations

〈t, u, v, z | uvu−1v−1 = zq, tut−1 = v, tvt−1 = zuv, tzt−1 = z−1〉.
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(Note that as [v, u] = t[u, v]t−1 = [v, zuv] = [v, z]z[v, u]z−1 = [v, z][v, u], we have
vz = zv and hence uz = zu also). These are easily seen to have 2 generator
presentations of deficiency 0 also.

The other Nil3-manifolds which arise as the closed fibres of fibred 2-knots are
Seifert fibred over S2 with 3 exceptional fibres of type (3, βi), with βi = ±1.
Hence they are 2-fold branched covers of S3, branched over a Montesinos link
K(0|e; (3, β1), (3, β2), (3, β3)) [Mo73]. If e is even this link is a knot, and is invert-
ible, but not amphicheiral (see §12E of [BZ]). (This class includes the knots 935,
937, 946, 948, 1074 and 1075).

Let π(e, η) be the group of the 2-twist spin of K(0|e; (3, 1), (3, 1), (3, η)).

Theorem 16.14. Let π be a 2-knot group such that
√
π′ ∼= Γq (for some q ≥ 1)

and π′/
√
π′ ∼= Z/3Z. Then q is odd and π ∼= π(e, η), for some e ∈ 2Z and η = 1

or −1.

Proof. It follows easily from Lemma 7 that ζ
√
π′ = ζπ′ and G = π′/ζπ′ is

isomorphic to Z2 ×−B (Z/3Z), where B =
(

0 1
−1 1

)
. Thus G may be identified with

the orbifold fundamental group of the flat 2-orbifold S(3, 3, 3), and so is a discrete
subgroup of Isom(E2). As remarked above, π′ is the fundamental group of the 2-
fold branched cover of K(0|e; (3, 1), (3, 1), (3, η)), for some e and η = ±1. Hence it
has a presentation of the form 〈h, x, y, z, | x3η = y3 = z3 = h, xyz = he〉. (This can
also be seen algebraically as π′ is a torsion free central extension of G by Z). The
image of h in π′ generates ζπ′, and the images of x−1y and yx−1 in G = π′/〈h〉 form
a basis for the translation subgroup T (G) ∼= Z2 of G. Since π′/(π′)2 ∼= Z/(2, e− 1)
and π′ admits a meridianal automorphism e must be even.

The isometry group E(2) = Isom(E2) = R2×̃O(2) embeds in the affine group
Aff(2) = R2×̃GL(2,R). The normalizer of G in Aff(2) is the semidirect product
of the dihedral subgroup of GL(2,Z) generated by B and R = ( 0 1

1 0 ) with the
normal subgroup (I + B)−1Z2, and its centralizer there is trivial. It follows from
the Bieberbach theorems (and is easily verified directly) that Aut(G) ∼= NAff(2)(G).

Let b, r, k represent the classes of (0, B), (0, R) and ((− 1
3 ,

1
3 ), I) in Out(G). Then

Out(G) ∼= S3 × (Z/2Z), and has a presentation
〈b, r, k | b2 = r2 = k3 = 1, br = rb, bkb = rkr = k−1〉.

Since π′/π′′ is finite Hom(π′, ζπ′) = 1 and so the natural homomorphism from
Out(π′) to Out(G) is injective. As each of the automorphisms b, r and k lifts to
an automorphism of π′ this homomorphism is an isomorphism. On considering the
effect of an automorphism of π′ on its characteristic quotients π′/

√
π′ = G/T (G) ∼=

Z/3Z and G/G′ = (Z/3Z)2, we see that the only outer automorphism classes which
contain meridianal automorphisms are rb, rbk and rbk2. Since these are conjugate
in Out(G) and π′ ∼= π(e, η)′ the theorem now follows from Lemma 1.1. �

The subgroup A = 〈t2, x3〉 < π(e, η) is abelian of rank 2 and normal but is
not central. As H1(π; Λ/3Λ) ∼= H2(π; Λ/3Λ) ∼= (Λ/(3, t + 1))2 in all cases the
presentations

〈t, x, y | x3 = y3 = (x1−3ey)−3η, txt−1 = x−1, tyt−1 = xy−1x−1〉
are optimal, by Lemma 10.

We may refine the conclusions of Theorem 15.7 as follows. If K is a 2-knot
whose group π has an abelian normal subgroup of rank ≥ 3 then either K is a
Cappell-Shaneson 2-knot or πK ∼= G(+) or G(−).



CHAPTER 17

Knot manifolds and geometries

In this chapter we shall attempt to characterize certain 2-knots in terms of
algebraic invariants. As every 2-knot K may be recovered (up to orientations
and Gluck reconstruction) from M(K) together with the orbit of a weight class in
π = πK under the action of self homeomorphisms of M , we need to characterize
M(K) up to homeomorphism. After some general remarks on the algebraic 2-type
in §1, and on surgery in §2, we shall concentrate on three special cases: when M(K)
is aspherical, when π′ is finite and when g.d.π = 2.

When π is torsion free and virtually poly-Z the surgery obstructions vanish,
and when it is poly-Z the weight class is unique. When π has torsion the surgery
obstruction groups are notoriously difficult to compute. However we can show that
there are infinitely many distinct 2-knots K such that M(K) is simple homotopy
equivalent to M(τ231); if the 3-dimensional Poincaré conjecture is true then among
these knots only τ231 has a minimal Seifert hypersurface. In the case of Φ the
homotopy type of M(K) determines the exterior of the knot. The difficulty here is
in finding a homotopy equivalence from M(K) to a standard model.

In the final sections we shall consider which knot manifolds are homeomorphic
to geometric 4-manifolds or complex surfaces. If M(K) is geometric then either K
is a Cappell-Shaneson knot or the geometry must be one of E4, Nil3 × E1, Sol41,
S̃L × E1, H3 × E1 or S3 × E1. If M(K) is homeomorphic to a complex surface
then either K is a branched twist spin of a torus knot or M(K) admits one of the

geometries Nil3 × E1, Sol40 or S̃L × E1.

17.1. Homotopy classification of M(K)

Let K and K1 be 2-knots and suppose that α : π = πK → πK1 and β :
π2(M) → π2(M1) determine an isomorphism of the algebraic 2-types ofM = M(K)
and M1 = M(K1). Since the infinite cyclic covers M ′ and M ′

1 are homotopy
equivalent to 3-complexes there is a map h : M ′ → M ′

1 such that π1(h) = α|π and
π2(h) = β. If π = πK has one end then π3(M) ∼= Γ(π2(M)) and so h is a homotopy
equivalence. Let t and t1 = α(t) be corresponding generators of Aut(M ′/M) and
Aut(M ′

1/M1), respectively. Then h−1t−1
1 ht is a self homotopy equivalence of M ′

which fixes the algebraic 2-type. If this is homotopic to idM ′ then M and M1

are homotopy equivalent, since up to homotopy they are the mapping tori of t
and t1, respectively. Thus the homotopy classification of such knot manifolds may
be largely reduced to determining the obstructions to homotoping a self-map of a
3-complex to the identity.

We may use a similar idea to approach this problem in another way. Under
the same hypotheses on K and K1 there is a map fo : M − intD4 → M1 inducing
isomorphisms of the algebraic 2-types. If π has one end π3(fo) is an epimorphism,

235
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and so fo is 3-connected. If there is an extension f : M →M1 then it is a homotopy
equivalence, as it induces isomorphisms on the homology of the universal covering
spaces.

If g.d.π ≤ 2 the algebraic 2-type is determined by π, for then π2(M) =
H2(π; Z[π]), by Theorem 3.10, and the k-invariant is 0. In particular, if π′ is
free then π determines the homotopy type of M(K) up to a finite ambiguity, by
Corollary 4.3.1. On the other hand, the group Φ has resisted attack thus far.

The related problem of determining the homotopy type of the exterior of a
2-knot has been considered in [Lo81], [Pl83] and [PS85]. In each of the examples
considered in [Pl83] either π′ is finite or M(K) is aspherical, so they do not test the
adequacy of the algebraic 2-type for the present problem. The examples of [PS85]
probably show that in general M(K) is not determined by π and π2(M(K)) alone.

17.2. Surgery

Recall from Chapter 6 that we may define natural transformations IG : G →
Ls5(G) for any groupG, which clearly factor through G/G′. If α : G→ Z induces an

isomorphism on abelianization the homomorphism ÎG = IGα
−1I−1

Z is a canonical
splitting for L5(α).

Theorem 17.1. Let K be a 2-knot with group π. If Ls5(π) ∼= Z and N is simple
homotopy equivalent to M(K) then N is s-cobordant to M(K).

Proof. SinceM = M(K) is orientable and [M,G/TOP ] ∼= H4(M ; Z) ∼= Z the
surgery obstruction map σ4 : [M(K), G/TOP ] → Ls4(π) is injective, by Theorem

6.6. The image of L5(Z) under Îπ acts trivially on STOP (M(K)), by Theorem 6.7.
Hence there is a normal cobordism with obstruction 0 from any simple homotopy
equivalence f : N →M to idM . �

This theorem applies if π is square root closed accessible [Ca73], or if π is a
classical knot group [AFR97].

Corollary 17.1.1 (Freedman). A 2-knot K is trivial if and only if πK ∼= Z.

Proof. The condition is clearly necessary. Conversely, if πK ∼= Z then M(K)
is homeomorphic to S3 × S1, by Theorem 6.11. Since the meridian is unique up to
inversion and the unknot is clearly reflexive the result follows. �

Surgery on an s-concordance K from K0 to K1 gives an s-cobordism from
M(K0) to M(K1) in which the meridians are conjugate. Conversely, if M(K) and
M(K1) are s-cobordant via such an s-cobordism then K1 is s-concordant to K or
K∗. In particular, if K is reflexive then K and K1 are s-concordant.

Lemma 17.2. Let K be a 2-knot. Then K has a Seifert hypersurface which
contains no fake 3-cells.

Proof. Every 2-knot has a Seifert hypersurface, by the standard obstruction
theoretical argument and TOP transversality. Thus K bounds a locally flat 3-
submanifold V which has trivial normal bundle in S4. If ∆ is a homotopy 3-cell in
V then ∆ × R ∼= D3 × R, by simply connected surgery, and the submanifold ∂∆
of ∂(∆ × R) = ∂(D3 × R) is isotopic there to the boundary of a standard 3-cell in
D3 ×R which we may use instead of ∆. �
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The modification in this lemma clearly preserves minimality. (Every 2-knot
has a closed Seifert hypersurface which is a hyperbolic 3-manifold [Ru90], and so
contains no fake 3-cells, but these are rarely minimal).

17.3. The aspherical cases

Whenever the group of a 2-knot K contains a sufficiently large abelian normal
subgroup then M(K) is aspherical. This is notably the case for most twist spins of
prime knots.

Theorem 17.3. Let K be a 2-knot with group π and suppose that either
√
π

is torsion free abelian of rank 1 and π/
√
π has one end or h(

√
π) ≥ 2. Then the

universal cover M̃(K) is homeomorphic to R4.

Proof. If
√
π is torsion free abelian of rank 1 and π/

√
π has one end M is

aspherical, by Theorem 15.5, and π is 1-connected at ∞, by Theorem 1 of [Mi87].
If h(

√
π) = 2 then

√
π ∼= Z2 and M is s-cobordant to the mapping torus of a

self homeomorphism of a S̃L-manifold, by Theorem 16.2. If h(
√
π) ≥ 3 then M

is homeomorphic to an infrasolvmanifold, by Theorem 8.1. In all cases, M̃ is
contractible and 1-connected at ∞, and so is homeomorphic to R4 by [Fr82]. �

Is there a 2-knot K with M̃(K) contractible but not 1-connected at ∞?

Theorem 17.4. Let K be a 2-knot such that π = πK is torsion free and
virtually poly-Z. Then K is determined up to Gluck reconstruction by π together
with a generator of H4(π; Z) and the strict weight orbit of a meridian.

Proof. If π ∼= Z then K must be trivial, and so we may assume that π is
torsion free and virtually poly-Z of Hirsch length 4. Hence M(K) is aspherical
and is determined up to homeomorphism by π, and every automorphism of π may
be realized by a self homeomorphism of M(K), by Theorem 6.11. Since M(K) is
aspherical orientations of M(K) correspond to generators of H4(π; Z). �

This theorem applies in particular to the Cappell-Shaneson 2-knots, which
have an unique strict weight orbit, up to inversion. (A similar argument applies to
Cappell-Shaneson n-knots with n > 2, provided we assume also that πi(X(K)) = 0
for 2 ≤ i ≤ (n+ 1)/2).

Theorem 17.5. Let K be a 2-knot with group π. Then K is s-concordant to a

fibred knot with closed fibre a S̃L-manifold if and only if π is not virtually solvable,
π′ is FP2 and ζπ′ ∼= Z. The fibred knot is determined up to Gluck reconstruction
by π together with a generator of H4(π; Z) and the strict weight orbit of a meridian.

Proof. The conditions are clearly necessary. Suppose that they hold. The
manifold M(K) is aspherical, by Theorem 15.8, so every automorphism of π is
induced by a self homotopy equivalence of M(K). Moreover as π is not virtu-

ally solvable π′ is the fundamental group of a S̃L-manifold. Therefore M(K) is
determined up to s-cobordism by π, by Theorem 13.2. The rest is standard. �

Branched twist spins of torus knots are perhaps the most important examples
of such knots, but there are others. (See §2 and §6 of Chapter 16).

Is every 2-knot K such that π = πK is a PD+
4 -group determined up to s-

concordance and Gluck reconstruction by π together with a generator of H4(π; Z)
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and a strict weight orbit? Is K s-concordant to a fibred knot with aspherical closed
fibre if and only if π′ is FP2 and has one end? (This is surely true if π′ ∼= π1(N)
for some virtually Haken 3-manifold N).

17.4. Quasifibres and minimal Seifert hypersurfaces

Let M be a closed 4-manifold with fundamental group π. If f : M → S1

is a map which is transverse to p ∈ S1 then V̂ = f−1(p) is a codimension 1

submanifold with a product neighbourhood N ∼= V̂ × [−1, 1]. If moreover the
induced homomorphism f∗ : π → Z is an epimorphism and each of the inclusions

j± : V̂ ∼= V̂ ×{±1} ⊂W = M\V ×(−1, 1) induces monomorphisms on fundamental

groups then we shall say that V̂ is a quasifibre for f . The group π is then an HNN

extension with base π1(W ) and associated subgroups j±∗(π1(V̂ ), by Van Kampen’s
Theorem. Every fibre of a bundle projection is a quasifibre. We may use the notion
of quasifibre to interpolate between the homotopy fibration theorem of Chapter 4
and a TOP fibration theorem. (See also Theorem 6.12 and 7 below).

Theorem 17.6. Let M be a closed 4-manifold with χ(M) = 0 and such that
π = π1(M) is an extension of Z by a finitely generated normal subgroup ν. If
there is a map f : M → S1 inducing an epimorphism with kernel ν and which

has a quasifibre V̂ then the infinite cyclic covering space Mν associated with ν is

homotopy equivalent to V̂ .

Proof. As ν is finitely generated the monomorphisms j±∗ must be isomor-
phisms. Therefore ν is finitely presentable, and so Mν is a PD3-complex, by Theo-

rem 4.4. Now Mν
∼= W ×Z/ ∼, where (j+(v), n) ∼ (j−(v), n+ 1) for all v ∈ V̂ and

n ∈ Z. Let j̃(v) be the image of (j+(v), 0) in Mν . Then π1(j̃) is an isomorphism.

A Mayer-Vietoris argument shows that j̃ has degree 1, and so j̃ is a homotopy
equivalence. �

One could use duality instead to show that Hs = Hs(W,∂±W ; Z[π]) = 0 for
s 6= 2, while H2 is a stably free Z[π]-module, of rank χ(W,∂±W ) = 0. Since Z[π]
is weakly finite this module is 0, and so W is an h-cobordism.

Corollary 17.6.1. let K be a 2-knot such that π′ is finitely generated, and
which has a minimal Seifert hypersurface V . If every self homotopy equivalence of

V̂ is homotopic to a homeomorphism then M(K) is homotopy equivalent to M(K1),
where M(K1) is a fibred 2-knot with fibre V .

Proof. Let j−1
+ be a map from M(K)′ to V̂ which is a homotopy inverse to

the homotopy equivalence j+, and let θ be a self homeomorphism of V̂ homotopic
to j−1

+ j−. Then j+θj
−1
+ is homotopic to a generator of Aut(M(K)′/M(K)), and so

the mapping torus of θ is homotopy equivalent to M(K). Surgery on this mapping
torus gives such a knot K1. �

If a Seifert hypersurface V for a 2-knot has fundamental group Z then the
Mayer-Vietoris sequence for H∗(M(K); Λ) gives H1(X

′) ∼= Λ/(ta+ − a−), where
a± : H1(V ) → H1(S

4 − V ). Since H1(X) = Z we must have a+ − a− = ±1. If
a+a− 6= 0 then V is minimal. However one of a+ or a− could be 0, in which case V
may not be minimal. The group Φ is realized by ribbon knots with such minimal
Seifert hypersurfaces (homeomorphic to S2 ×S1 − intD3) [Fo62]. Thus minimality
does not imply that π′ is finitely generated.
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It remains an open question whether every 2-knot has a minimal Seifert hyper-
surface, or indeed whether every 2-knot group is an HNN extension with finitely pre-
sentable base and associated subgroups. (There are high dimensional knot groups
which are not of this type [Si91, 96]). Yoshikawa has shown that there are ribbon
2-knots whose groups are HNN extensions with base a torus knot group and asso-
ciated subgroups Z but which cannot be expressed as HNN extensions with base a
free group [Yo88].

17.5. The spherical cases

Let π be a 2-knot group with commutator subgroup π′ ∼= P × (Z/(2r + 1)Z),
where P = 1, Q(8), T ∗

k or I∗. The meridianal automorphism induces the identity
on the set of irreducible real representations of π′, except when P = Q(8). (It
permutes the three nontrivial 1-dimensional representations when π′ ∼= Q(8), and
similarly when π′ ∼= Q(8) × (Z/nZ)). It then follows as in Chapter 11 that Ls5(π)
has rank r + 1, 3(r + 1), 3k−1(5 + 7r) or 9(r + 1), respectively. Hence if π′ 6= 1
then there are infinitely many distinct 2-knots with group π, since the group of self
homotopy equivalences of M(K) is finite.

The simplest nontrivial such group is π = (Z/3Z)×−1Z. IfK is any 2-knot with
this group then M(K) is homotopy equivalent to M(τ231). Since Wh(Z/3Z) = 0
[Hi40] and L5(Z/3Z) = 0 [Ba75] we have Ls5(π) ∼= L4(π

′) ∼= Z2, but we do not
know whether Wh(π) = 0.

Theorem 17.7. Let K be a 2-knot with group π = πK such that π′ ∼= Z/3Z,
and which has a minimal Seifert hypersurface. Then K is fibred.

Proof. Let V be a minimal Seifert hypersurface for K. Then we may assume

V is irreducible. Let V̂ = V ∪ D3 and W = M(K)\V × (−1, 1). Then W is

an h-cobordism from V̂ to itself (see the remark following Theorem 6). Therefore

W ∼= V̂ × I, by surgery over Z/3Z. (Note that Wh(Z/3Z) = L5(Z/3Z) = 0).
Hence M fibres over S1 and so K is fibred also. �

Free actions of Z/3Z on S3 are conjugate to the standard orthogonal action,
by a result of Rubinstein (see [Th]). If the 3-dimensional Poincaré conjecture is
true then the closed fibre must be the lens space L(3, 1), and so K must be τ231.
None of the other 2-knots with this group could have a minimal Seifert surface, and
so we would have (infinitely many) further counter-examples to the most natural
4-dimensional analogue of Farrell’s fibration theorem. We do not know whether
any of these knots (other than τ231) is PL in some PL structure on S4.

It may be possible to construct other exotic 2-knots with π′ finite by wrapping
together the ends of nontrivial s-cobordisms (see [CS85]).

17.6. Finite geometric dimension 2

Knot groups with finite 2-dimensional Eilenberg-Mac Lane complexes have de-
ficiency 1, by Theorem 2.8, and so are 2-knot groups. This class includes all classical
knot groups, all knot groups with free commutator subgroup and all knot groups
in the class X . (The latter class includes all those as in Theorem 15.1).

Theorem 17.8. Let K be a 2-knot with group π. If π is a 1-knot group or a
X -group then M(K) is determined up to s-cobordism by its homotopy type.
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Proof. This is an immediate consequence of Lemma 6.9, if π is a X -group. If
π is a nontrivial classical knot group it follows from Theorem 1, since Wh(π) = 0
[Wd78] and Ls5(π) ∼= Z [AFR97]. �

Does the conclusion of this theorem hold for every knot whose group has geo-
metric dimension 2?

Corollary 17.8.1. A ribbon 2-knot K with group Φ is determined by the
oriented homotopy type of M(K).

Proof. Since Φ is metabelian s-cobordism implies homeomorphism and there
is an unique weight class up to inversion, so the knot exterior is determined by the
homotopy type of M(K), and since K is a ribbon knot it is -amphicheiral and is
determined by its exterior. �

Examples 10 and 11 of [Fo62] are ribbon knots with group Φ, and are mirror
images of each other. Although they are -amphicheiral they are not invertible, since
their Alexander polynomials are asymmetric. Thus they are not isotopic. Are there
any other 2-knots with this group? In particular, is there one which is not a ribbon
knot?

Theorem 17.9. A 2-knot K with group π is s-concordant to a fibred knot with
closed fibre ♯r(S1 × S2) if and only if def(π) = 1 and π′ is FP2. Moreover any
such fibred 2-knot is reflexive and homotopy ribbon.

Proof. The conditions are clearly necessary. If they hold then π′ ∼= F (r), for
some r ≥ 0, by the Corollary to Theorem 2.5. Then M(K) is homotopy equivalent
to a PL 4-manifold N which fibres over S1 with fibre ♯r(S1 × S2), by Corollary A
of Theorem 4.4. Moreover Wh(π) = 0, by Lemma 6.3, and π is square root closed
accessible, so Iπ is an isomorphism, by Lemma 6.9, so there is an s-cobordism W
from M to N , by Theorem 1. We may embed an annulus A = S1 × [0, 1] in W so
that M ∩A = S1×{0} is a meridian for K and N ∩A = S1×{1}. Surgery on A in
W then gives an s-concordance from K to such a fibred knot K1, which is reflexive
[Gl62] and homotopy ribbon [Co83]. �

The group of isotopy classes of self homeomorphisms of ♯r(S1×S2) which induce
the identity in Out(F (r)) is generated by twists about nonseparating 2-spheres, and
is isomorphic to (Z/2Z)r. Thus given a 2-knot group π ∼= F (r) ×α Z there are 2r

corresponding homotopy types of knot manifolds M(K). Is every automorphism of
π induced by a self-homeomorphism of each such fibred manifold? If so, the knot is
determined (among such fibred knots) up to finite ambiguity by its group together
with the weight orbit of a meridian. (However, the group π31 has infinitely many
weight orbits [Su85]).

The theorem implies there is a slice disc ∆ for K such that the inclusion of
M(K) into D5−∆ is 2-connected. Is K itself homotopy ribbon? (This would follow
from “homotopy connectivity implies geometric connectivity”, but our situation is
just beyond the range of known results). Is every such group the group of a ribbon
knot? Which are the groups of classical fibred knots? If K = σk is the Artin spin
of a fibred 1-knot then M(K) fibres over S1 with fibre ♯r(S2 × S1). However not
all such fibred 2-knots arise in this way. (For instance, the Alexander polynomial
need not be symmetric [AY81]). There are just three groups G with G/G′ ∼= Z
and G′ free of rank 2, namely π31 (the trefoil knot group), π41 (the figure eight
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knot group) and the group with presentation 〈x, y, t | txt−1 = y, tyt−1 = xy〉. (Two
of the four presentations given in [Rp60] present isomorphic groups). The group
with presentation 〈x, y | x2y2x2 = y〉 is the group of a fibred knot in the homology
3-sphere M(2, 3, 11), but is not a classical knot group [Rt83].

Part of Theorem 9 also follows from an argument of Trace [Tr86]. The embed-
ding of a Seifert hypersurface V for an n-knot K in X extends to an embeding of

V̂ = V ∪Dn+1 in M , which lifts to an embedding in M ′. Since the image of [V̂ ] in
Hn+1(M ; Z) is Poincaré dual to a generator of H1(M ; Z) = Hom(π,Z) = [M,S1]
its image in Hn+1(M

′; Z) ∼= Z is a generator. Thus if K is fibred, so M ′ is homo-

topy equivalent to the closed fibre F̂ , there is a degree 1 map from V̂ to F̂ , and

hence to any factor of F̂ . In particular, if F̂ has a summand which is aspherical
or whose fundamental group is a nontrivial finite group then π1(V ) cannot be free.
(In particular, K cannot be a ribbon knot). Similarly, as the Gromov norm of a

3-manifold does not increase under degree 1 maps, if F̂ is a H3-manifold then V̂
cannot be a graph manifold [Ru90]. Rubermann observes also that the “Seifert

volume” of [BG84] may be used instead to show that if F̂ is a S̃L-manifold then

V̂ must have nonzero Seifert volume. (Connected sums of E3-, S3-, Nil3-, Sol3-,
S2 × E1- or H2 × E1-manifolds all have Seifert volume 0 [BG84]).

We conclude this section by showing that π1-slice fibred 2-knots have groups
with free commutator subgroup.

Theorem 17.10. Let K be a 2-knot with group π = πK. If K is π1-slice
then the homomorphism from H3(M

′; Z) = H3(M(K); Λ) to H3(π
′; Z) = H3(π; Λ)

induced by cM is trivial. If moreover M ′ is a PD3-complex and π is torsion free
then π′ is a free group.

Proof. Let ∆ and R be chosen as above. Since cM factors through D5 − R
the first assertion follows from the exact sequence of homology (with coefficients Λ)
for the pair (D5 − R,M). If M ′ is a PD+

3 -complex with torsion free fundamental
group then it is a connected sum of aspherical PD3-complexes with handles S2×S1

(see Turaev’s theorem in §5 of Chapter 2). It is easily seen that if H3(cM ; Λ) = 0
there is no aspherical summand, and so π′ is free. �

Is every π1-slice 2-knot a homotopy ribbon knot?

17.7. Geometric 2-knot manifolds

The 2-knots K for which M(K) is homeomorphic to an infrasolvmanifold are
essentially known. There are three other geometries which may be realized by
such knot manifolds. All known examples are fibred, and most are derived from
twist spins of classical knots. However there are examples (for instance, those with
π′ ∼= Q(8)× (Z/nZ) for some n > 1) which cannot be constructed from twist spins.
The remaining geometries may be eliminated very easily; only H2×E2 and S2 ×E2

require a little argument.

Theorem 17.11. Let K be a 2-knot with group π = πK. If M(K) admits a
geometry then the geometry is one of E4, Nil3 ×E1, Sol40, Sol41, Sol4m,n (for certain

m 6= n only), S3 × E1, H3 × E1 or S̃L × E1. All these geometries occur.

Proof. The knot manifold M(K) is homeomorphic to an infrasolvmanifold if
and only if h(

√
π) ≥ 3, by Theorem 8.1. It is then determined up to homeomorphism
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by π. We may then use the observations of §9 of Chapter 8 to show that M(K)
admits a geometry of solvable Lie type. By Lemma 16.6 and Theorems 16.11 and
16.12 π must be either G(+) or G(−), π(b, ǫ) for some even b and ǫ = ±1 or π′ ∼= Z3

or Γq for some odd q.
If π ∼= G(+) or G(−) then M(K) admits the geometry E4. If π ∼= π(b, ǫ) then

M(K) is the mapping torus of an involution of a Nil3-manifold, and so admits the
geometry Nil3 × E1. If π′ ∼= Z3 then M(K) is homeomorphic to a Sol4m,n- or Sol40-
manifold. More precisely, we may assume (up to change of orientations) that the
Alexander polynomial ofK isX3−(m−1)X2+mX−1 for some integerm. Ifm ≥ 6
all the roots of this cubic are positive and the geometry is Sol4m−1,m. If 0 ≤ m ≤ 5

two of the roots are complex conjugates and the geometry is Sol40. If m < 0 two
of the roots are negative and π has a subgroup of index 2 which is a discrete
cocompact subgroup of Sol4m′,n′ , where m′ = m2 − 2m+ 2 and n′ = m2 − 4m+ 1,

so the geometry is Sol4m′,n′ .

If π′ ∼= Γq and the image of the meridianal automorphism in Out(Γq) has finite
order then q = 1 and K = τ631 or (τ631)

∗ = τ6,531. In this case M(K) admits
the geometry Nil3 × E1. Otherwise (if π′ ∼= Γq and the order of the image of the
meridianal automorphism in Out(Γq) is infinite) M(K) admits the geometry Sol41.

If K is a branched r-twist spin of the (p, q)-torus knot then M(K) is a S3×E1-

manifold if p−1 + q−1 + r−1 > 1, and is a S̃L×E1-manifold if p−1 + q−1 + r−1 < 1.
(The case p−1+q−1+r−1 = 1 gives the Nil3×E1-manifoldM(τ631)). The manifolds
obtained from 2-twist spins of 2-bridge knots and certain other “small” simple knots
also have geometry S3×E1. Branched r-twist spins of simple (nontorus) knots with
r > 2 give H3 × E1-manifolds, excepting M(τ341) ∼= M(τ3,241), which is the E4-
manifold with group G(+).

Every orientable H2×E2-manifold is double covered by a Kähler surface [Wl86].
Since the unique double cover of a 2-knot manifold M(K) has first Betti number 1
no such manifold can be an H2 ×E2-manifold. (If K is fibred we could use Lemma
15.7 instead to exclude this geometry). Since π is infinite and χ(M(K)) = 0 we

may exclude the geometries S4, CP2 and S2 × S2, and H4, H2(C), H2 × H2 and
S2×H2, respectively. The geometry S2 ×E2 may be excluded by Theorem 10.10 or
Lemma 15.7 (no group with two ends admits a meridianal automorphism), while
F4 is not realized by any closed 4-manifold. �

In particular, no knot manifold is a Nil4-manifold or a Sol3 ×E1-manifold, and
many of the other Sol4m,n-geometries do not arise in this way. The knot manifolds

which are infrasolvmanifolds or have geometry S3 × E1 are essentially known, by
Theorems 8.1, 11.2, 15.15 and §4 of Chapter 16. The knot is uniquely determined
up to Gluck reconstruction and change of orientations if π′ ∼= Z3 (see Theorem 4
and the subsequent remarks above), Γq (see §3 of Chapter 18) or Q(8) × (Z/nZ)
(since the weight class is then unique up to inversion). If it is fibred with closed
fibre a lens space it is a 2-twist spin of a 2-bridge knot [Te89]. The other knot
groups corresponding to infrasolvmanifolds have infinitely many weight orbits.

Corollary 17.11.1. If M(K) admits a geometry then it fibres over S1.

Proof. This is clear if M(K) is an infrasolvmanifold or if the geometry is
S3 × E1. If the geometry is H3 × E1 then

√
π = π ∩ ({1} × R), by Proposition

8.27 of [Rg]. Let σ = π ∩ (Isom(H3) × R). Then [π : σ] ≤ 2. Since π/π′ ∼= Z
it follows that β1(σ) = 1 and hence that

√
π maps injectively to σ/I(σ) ≤ π/π′.



17.8. COMPLEX SURFACES AND 2-KNOT MANIFOLDS 243

Hence π has a subgroup of finite index which is isomorphic to π′ × Z, and so π′ is

the fundamental group of a closed H3-manifold. If the geometry is S̃L×E1 then π′

is the fundamental group of a closed S̃L-manifold, by Theorem 16.2. In each case
M(K) fibres over S1, by the Corollary to Theorem 13.1. �

If the geometry is H3 ×E1 is M(K) ∼= M(K1) for some branched twist spin of
a simple non-torus knot? (See §4 of Chapter 16).

If M(K) is Seifert fibred must it be geometric? If so it is a S̃L×E1-, Nil3×E1-
or S3 × E1-manifold. (See §4 of Chapter 7).

17.8. Complex surfaces and 2-knot manifolds

If a complex surface S is homeomorphic to a 2-knot manifold M(K) then S is
minimal, since β2(S) = 0, and has Kodaira dimension κ(S) = 1, 0 or −∞, since
β1(S) = 1 is odd. If κ(S) = 1 or 0 then S is elliptic and admits a compatible

geometric structure, of type S̃L × E1 or Nil3 × E1, respectively [Ue90,91, Wl86].
The only complex surfaces with κ(S) = −∞, β1(S) = 1 and β2(S) = 0 are Inoue
surfaces, which are not elliptic, but admit compatible geometries of type Sol40 or
Sol41, and Hopf surfaces [Tl94]. An elliptic surface with Euler characteristic 0 has
no exceptional fibres other than multiple tori.

If M(K) has a complex structure compatible with a geometry then the geom-

etry is one of Sol40, Sol41, Nil3 ×E1, S3 ×E1 or S̃L×E1, by Theorem 4.5 of [Wl86].
Conversely, if M(K) admits one of the first three of these geometries then it is

homeomorphic to an Inoue surface of type SM , an Inoue surface of type S
(+)
N,p,q,r;t

or S
(−)
N,p,q,r or an elliptic surface of Kodaira dimension 0, respectively. (See [In74],

[EO94] and Chapter V of [BPV]).

Lemma 17.12. Let K be a branched r-twist spin of the (p, q)-torus knot. Then
M(K) is homeomorphic to an elliptic surface.

Proof. We shall adapt the argument of Lemma 1.1 of [Mi75]. (See also
[Ne83]). Let V0 = {(z1, z2, z3) ∈ C3\{0}|zp1 + zq2 + zr3 = 0}, and define an ac-
tion of C× on V0 by u.v = (uqrz1, u

prz2, u
pqz3) for all u in C× and v = (z1, z2, z3)

in V0. Define functions m : V0 → R+ and n : V0 → m−1(1) by m(v) = (|z1|p +
|z2|q + |z3|r)1/pqr and n(v) = m(v)−1.v for all v in V0. Then the map (m,n) :
V0 → m−1(1)×R+ is an R+-equivariant homeomorphism, and so m−1(1) is home-
omorphic to V0/R

+. Therefore there is a homeomorphism from m−1(1) to the
Brieskorn manifold M(p, q, r), under which the action of the group of rth roots of
unity on m−1(1) = V0/R

+ corresponds to the group of covering homeomorphisms
of M(p, q, r) as the branched cyclic cover of S3, branched over the (p, q)-torus knot
[Mi75]. The manifold M(K) is the mapping torus of some generator of this group
of self homeomorphisms of M(p, q, r). Let ω be the corresponding primitive rth

root of unity. If t > 1 then tω generates a subgroup Ω of C× which acts freely and
holomorphically on V0, and the quotient V0/Ω is an elliptic surface over the curve
V0/Ω. Moreover V0/Ω is homeomorphic to the mapping torus of the self homeo-
morphism of m−1(1) which maps v to m(tω.v)−1.tω.v = ωm(t.v)−1t.v Since this
map is isotopic to the map sending v to ω.v this mapping torus is homeomorphic
to M(K). This proves the Lemma. �
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The Kodaira dimension of the elliptic surface in the above lemma is 1, 0 or −∞
according as p−1 + q−1 + r−1 is < 1, 1 or > 1. In the next theorem we shall settle
the case of elliptic surfaces with κ = −∞.

Theorem 17.13. Let K be a 2-knot. Then M(K) is homeomorphic to a Hopf
surface if and only if K or its Gluck reconstruction is a branched r-twist spin of
the (p, q)-torus knot for some p, q and r such that p−1 + q−1 + r−1 > 1.

Proof. If p−1 +q−1 +r−1 > 1 then M(τr,skp,q) is homeomorphic to an elliptic
Hopf surface, by Lemma 13 and the above remark.

If M(K) is homeomorphic to a Hopf surface then π has two ends, and there
is a monomorphism h : π = πK → GL(2,C) onto a subgroup which contains a
contraction c (Kodaira - see [Kt75]). Hence π′ is finite and h(π′) = h(π)∩SL(2,C),
since det(c) 6= 1 and π/π′ ∼= Z. Finite subgroups of SL(2,C) are conjugate to
subgroups of SU(2) = S3, and so are cyclic, binary dihedral or isomorphic to T ∗

1 ,
O∗

1 or I∗. Therefore π ∼= πτ2k2,n, πτ331, πτ431 or πτ531, by Theorem 15.12 and the
subsequent remarks. Hopf surfaces with π ∼= Z or π nonabelian are determined up
to diffeomorphism by their fundamental groups, by Theorem 12 of [Kt75]. Therefore
M(K) is homeomorphic to the manifold of the corresponding torus knot. If π′ is
cyclic there is an unique weight orbit. The weight orbits of τ431 are realized by
τ2k3,4 and τ431, while the weight orbits of T ∗

1 are realized by τ2k3,5, τ3k2,5, τ531

and τ5,231 [PS87]. Therefore K agrees up to Gluck reconstruction with a branched
twist spin of a torus knot. �

The Gluck reconstruction of a branched twist spin of a classical knot is another
branched twist spin of that knot, by §6 of [Pl84’].

Elliptic surfaces with β1 = 1 and κ = 0 are Nil3 ×E1-manifolds, and so a knot
manifold M(K) is homeomorphic to such an elliptic surface if and only if πK is
virtually poly-Z and ζπK ∼= Z2. For minimal properly elliptic surfaces (those with
κ = 1) we must settle for a characterization up to s-cobordism.

Theorem 17.14. Let K be a 2-knot with group π = πK. Then M(K) is s-
cobordant to a minimal properly elliptic surface if and only if ζπ ∼= Z2 and π′ is
not virtually poly-Z.

Proof. IfM(K) is a minimal properly elliptic surface then it admits a compat-

ible geometry of type S̃L×E1 and π is isomorphic to a discrete cocompact subgroup

of Isomo(S̃L) × R, the maximal connected subgroup of Isomo(S̃L × E1), for the
other components consist of orientation reversing or antiholomorphic isometries (see

Theorem 3.3 of [Wl86]). Since π meets ζ(Isomo(S̃L) × R)) ∼= R2 in a lattice sub-

group ζπ ∼= Z2 and projects nontrivially onto the second factor π′ = π∩Isomo(S̃L)

and is the fundamental group of a S̃L-manifold. Thus the conditions are necessary.

Suppose that they hold. Then M(K) is s-cobordant to a S̃L × E1-manifold

which is the mapping torus M(Θ) of a self homeomorphism of a S̃L-manifold,
by Theorem 16.2. As Θ must be orientation preserving and induce the identity on

ζπ′ ∼= Z the group π is contained in Isomo(S̃L)×R. Hence M(Θ) has a compatible
structure as an elliptic surface, by Theorem 3.3 of [Wl86]. �

An elliptic surface with Euler characteristic 0 is a Seifert fibred 4-manifold,
and so is determined up to diffeomorphism by its fundamental group if the base
orbifold is euclidean or hyperbolic [Ue90,91]. Using this result (instead of [Kt75])
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together with Theorem 16.7 and Lemma 9 above it may be shown that if M(K) is
homeomorphic to a minimal properly elliptic surface and some power of a weight
element is central in πK then M(K) is homeomorphic to M(K1), where K1 is some
branched twist spin of a torus knot. However in general there may be infinitely
many algebraically distinct weight classes in πK and we cannot conclude that K is
itself such a branched twist spin.





CHAPTER 18

Reflexivity

The most familiar invariants of knots are derived from the knot complements,
and so it is natural to ask whether every knot is determined by its complement.
This has been confirmed for classical knots [GL89]. Given a higher dimensional knot
there is at most one other knot (up to change of orientations) with homeomorphic
exterior. The first examples of non-reflexive 2-knots were given by Cappell and
Shaneson [CS76]; these are fibred with closed fibre R3/Z3. Gordon gave a different
family of examples [Go76], and Plotnick extended his work to show that no fibred
2-knot with monodromy of odd order is reflexive. It is plausible that this may be
so whenever the order is greater than 2, but this is at present unknown.

We shall consider 2-knots which are fibred with closed fibre a geometric 3-
manifold. A nontrivial cyclic branched cover of S3, branched over a knot, admits
a geometry if and only if the knot is a prime simple knot. The geometry is then

S̃L, S3, H3, E3 or Nil3. We shall show that no branched r-twist spin of such a
knot is ever reflexive, if r > 2. (Our argument also explains why fibred knots with
monodromy of order 2 are reflexive). If the 3-dimensional Poincaré conjecture is
true then all fibred 2-knots with monodromy of finite order are branched twist spins,
by Plotnick’s theorem (see Chapter 16). The remaining three geometries may be
excluded without reference to this conjecture, by Lemma 15.7.

This chapter is based on joint work with Plotnick and Wilson (in [HP88] and
[HW89], respectively).

18.1. Reflexivity for fibred 2-knots

Let N be a closed oriented 3-manifold and θ an orientation preserving self
diffeomorphism of N which fixes a basepoint P and induces a meridianal automor-
phism of ν = π1(N). Let M = M(θ) = N ×θ S1 = N × [0, 1]/((n, 0) ∼ (θ(n), 1)),
and let t be the weight element of π = π1(M) = ν ×θ∗ Z represented by the loop
sending [u] = e2πiu to [∗, u] in the mapping torus, for all 0 ≤ u ≤ 1. The image
C = {P}× S1 of this loop is the canonical cross-section of the mapping torus. Let

Ñ be the universal covering space of N , and let θ̃ be the lift of θ which fixes some

chosen basepoint. Let M̂ = Ñ×θ̃S1 be the (irregular) covering space corresponding
to the subgroup of π generated by t. This covering space shall serve as a natural
model for a regular neighbourhood of C in our geometric arguments below.

Choose an embedding J : D3 × S1 → M onto a regular neighbourhood R of
C. Let Mo = M − intR and let j = J |∂D3×S1 . Then Σ = Mo ∪j S2 × D2 and
Στ = Mo∪jτ S2×D2 are homotopy 4-spheres and the images of S2×{0} represent
2-knots K and K∗ with group π.

If K is reflexive there is a homeomorphism f of X = X(K) which (up to
changes of orientations) restricts to the nontrivial twist τ on ∂X ∼= S2 × S1. (See

247
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§1 of Chapter 14). This extends to a homeomorphism of (M,C) via the “radial”
extension of τ to D3 × S1. If f preserves the homology class of the meridians
(i.e., if it induces the identity on π/π′) then we may assume this extension fixes
C pointwise. Now ∂X ∼= S2 ×A S1, where A is the restriction of the monodromy
to ∂(N − intD3) ∼= S2. Roughly speaking, the local situation - the behaviour of
f and A on D3 × S1 - determines the global situation. Assume that f is a fibre
preserving self homeomorphism of D3 ×A S1 which induces a linear map B on each
fibre D3. If A has infinite order, the question as to when f “changes the framing”,
i.e., induces τ on ∂D3 ×A S1 is delicate. (See §2 and §3 below). But if A has finite
order we have the following easy result.

Lemma 18.1. Let A in SO(3) be a rotation of order r ≥ 2 and let B in O(3)
be such that BAB−1 = A±1, so that B induces a diffeomorphism fB of D3 ×A S1.
If fB changes the framing then r = 2.

Proof. We may choose coordinates for R3 so that A = ρs/r, where ρu is the

matrix of rotation through 2πu radians about the z-axis in R3, and 0 < s < r. Let
ρ : D3 ×A S1 → D3 ×S1 be the diffeomorphism given by ρ([x, u]) = (ρ−su/r , θ), for

all x ∈ D3 and 0 ≤ u ≤ 1.
If BA = AB then fB([x, u]) = [Bx, u] and ρfBρ

−1(x, u) = (ρ−su/rBρsu/rx, u).
If r ≥ 3 then B = ρv for some v, and so ρfBρ

−1(x, u) = (Bx, u) does not change
the framing. But if r = 2 then A = diag[−1,−1, 1] and there is more choice for
B. In particular, B = diag[1,−1, 1] acts dihedrally: ρ−uBρu = ρ−2uB, and so
ρ−ufBρu(x, u) = (ρ−ux, u), i.e. ρ−ufBρu is the twist τ .

If BAB−1 = B−1 then fB([x, u]) = [Bx, 1 − u]. In this case ρfBρ
−1(x, u) =

(ρ−s(1−u)/rBρsu/rx, 1− u). If r ≥ 3 then B must act as a reflection in the first two

coordinates, so ρfBρ
−1(x, u) = (ρ−s/rBx, 1− u) does not change the framing. But

if r = 2 we may take B = I, and then ρfBρ
−1(x, u) = (ρ(u−1)/2ρu/2x, 1 − u) =

(ρ(u− 1
2 )x, 1 − u), which after reversing the S1 factor is just τ . �

Note this explains why r = 2 is special. If α2 = id the diffeomorphism of
N×αS1 sending [x, θ] to [x, 1−θ] which “turns the bundle upside down” also changes
the framing. This explains why 2-twist spins (in any dimension) are reflexive.

Lemma 18.2. Let τ be the nontrivial twist map of S3 × S1. Then τ is not
homotopic to the identity.

Proof. Let p be the projection of S3 × S1 onto S3. The suspension of pτ ,
restricted to the top cell of Σ(S3 × S1) = S2 ∨ S4 ∨ S5 is the nontrivial element of
π5(S

4), whereas the corresponding restriction of the suspension of p is trivial. (See
[CS76], [Go76]). �

The hypotheses in the next lemma seem very stringent, but are satisfied by
most aspherical geometric 3-manifolds.

Lemma 18.3. Suppose that Ñ ∼= R3 and that every automorphism of ν which
commutes with θ∗ is induced by a diffeomorphism of N which commutes with θ.
Suppose also that for any homeomorphism ω of N which commutes with θ there is
an isotopy γ from idÑ to θ̃ which commutes with the lift ω̃. Then no orientation
preserving self homeomorphism of M which fixes C pointwise changes the framing.
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Proof. Let h be an orientation preserving self homeomorphism of M which
fixes C pointwise. Suppose that h changes the framing. We may assume that h|R is
a bundle automorphism and hence that it agrees with the radial extension of τ from
∂R = S2 × S1 to R. Since h∗(t) = t we have h∗θ∗ = θ∗h∗. Let ω be a basepoint
preserving self diffeomorphism of N which induces h∗ and commutes with θ. Then
we may define a self diffeomorphism hω of M by hω([n, s]) = [ω(n), s] for all [n, s]
in M = N ×θ S1.

Since hω∗ = h∗ and M is aspherical, h and hω are homotopic. Therefore the

lifts ĥ and ĥω to basepoint preserving maps of M̂ are properly homotopic. Let ω̃

be the lift of ω to a basepoint preserving map of Ñ . Note that ω̃ is orientation
preserving, and so is isotopic to idÑ .

Given an isotopy γ from γ(0) = idÑ to γ(1) = θ̃ we may define a diffeomor-

phism ργ : Ñ × S1 → M̃ by ργ(x, e
2πit) = [γ(t)(x), t]. Now ρ−1

γ ĥωργ(l, [u]) =

(γ(u)−1ω̃γ(u)(l), [u]). Thus if γ(t)ω̃ = ω̃γ(t) for all t then ρ−1
γ ĥωργ = ω̃× idS1 , and

so ĥ is properly homotopic to id
M̂

.

Since the radial extension of τ and ρ−1
γ ĥργ agree on D3 ×S1 they are properly

homotopic on R3×S1 and so τ is properly homotopic to the identity. Now τ extends
uniquely to a self diffeomorphism τ of S3 × S1, and any such proper homotopy
extends to a homotopy from τ to the identity. But this is impossible, by Lemma 2.
Therefore h cannot change the framing. �

Note that in general there is no isotopy from idN to θ.
We may use a similar argument to give a sufficient condition for knots con-

structed from mapping tori to be -amphicheiral. As we shall not use this result
below we shall only sketch a proof.

Lemma 18.4. Let N be a closed orientable 3-manifold with universal cover

Ñ ∼= R3. Suppose now that there is an orientation reversing self diffeomorphism
ψ : N → N which commutes with θ and which fixes P . If there is a path γ from
I to Θ = Dθ(P ) which commutes with Ψ = Dψ(P ) then each of K and K∗ is
-amphicheiral.

Proof. The map ψ induces an orientation reversing self diffeomorphism of M
which fixes C pointwise. We may use such a path γ to define a diffeomorphism

ργ : Ñ × S1 → M̃ . We may then verify that ρ−1
γ ĥργ is isotopic to Ψ× idS1 , and so

ρ−1
γ ĥργ |∂D3×S1 extends across S2 ×D2. �

18.2. Cappell-Shaneson knots

Let A ∈ SL(3,Z) be such that det(A − I) = ±1. Then A determines an ori-
entation preserving self homeomorphism of R3/Z3, and the mapping torus M =
(R3/Z3)×A S1 is a 2-knot manifold. All such knots are -amphicheiral, since inver-
sion in each fibre gives an involution of M(K) fixing a circle, which readily passes to
orientation reversing fixed point free involutions of (Σ,K) and (Σ∗,K∗). However
such knots are not invertible, for the Alexander polynomial is det(XI −A), which
has odd degree and does not vanish at ±1, and so cannot be symmetric.

Cappell and Shaneson showed that if none of the eigenvalues of the monodromy
of such a knot are negative then it is not reflexive. In a footnote they observed that
the two knots obtained from a matrix A in SL(3,Z) such that det(A − I) = ±1
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and with negative eigenvalues are equivalent if and only if there is a matrix B in
GL(3,Z) such that AB = BA and the restriction of B to the negative eigenspace
of A has negative determinant. We shall translate this matrix criterion into one
involving algebraic numbers and settle the issue by showing that up to change of
orientations there is just one reflexive Cappell-Shaneson 2-knot.

We note first that on replacing A by A−1 if necessary (which corresponds to
changing the orientation of the knot) we may assume that det(A− I) = +1.

Theorem 18.5. Let A ∈ SL(3,Z) satisfy det(A − I) = 1. If A has trace -1
then the corresponding Cappell-Shaneson knot is reflexive, and is determined up to
change of orientations among all 2-knots with metabelian group by its Alexander
polynomial X3 +X2 − 2X − 1. If the trace of A is not -1 then the corresponding
Cappell-Shaneson knots are not reflexive.

Proof. Let a be the trace of A. Then the characteristic polynomial of A is
fa(X) = X3−aX2 +(a−1)X−1 = X(X−1)(X−a+1)−1. It is easy to see that
fa is irreducible; indeed, it is irreducible modulo (2). Since the leading coefficient
of fa is positive and fa(1) < 0 there is at least one positive eigenvalue. If a > 5
all three eigenvalues are positive (since fa(0) = −1, fa(

1
2 ) = (2a − 11)/8 > 0 and

fa(1) = −1). If 0 ≤ a ≤ 5 there is a pair of complex eigenvalues.
Thus if a ≥ 0 there are no negative eigenvalues, and so γ(t) = tA + (1 − t)I

(for 0 ≤ t ≤ 1) defines an isotopy from I to A in GL(3,R). Let h be a self
homeomorphism of (M,C) such that h(∗) = ∗. We may assume that h is orientation
preserving and that h∗(t) = t. Since M is aspherical h is homotopic to a map hB,
where B ∈ SL(3,Z) commutes with A. Hence K is not reflexive, by Lemma 3.

We may assume henceforth that a < 0. There are then three real roots λi, for
1 ≤ i ≤ 3, such that a−1 < λ3 < a < λ2 < 0 < 1 < λ1 < 2. Note that the products
λi(λi − 1) are all positive, for 1 ≤ i ≤ 3.

Since the eigenvalues of A are real and distinct there is a matrix P in GL(3,R)

such that Ã = PAP−1 is the diagonal matrix diag[λ1, λ2, λ3]. If B in GL(3,Z)

commutes with A then B̃ = PBP−1 commutes with Ã and hence is also diagonal
(as the λi are distinct). Suppose that B̃ = diag[β1, β2, β3]. We may isotope PAP−1

linearly to diag[1,−1,−1]. If β2β3 > 0 for all such B then PBP−1 is isotopic to I
through block diagonal matrices and we may again conclude that the knot is not
reflexive. On the other hand if there is such a B with β2β3 < 0 then the knot is
reflexive. On replacing B by −B if necessary we may assume that det(B) = +1
and the criterion for reflexivity then becomes β1 < 0.

If a = −1 the ring Z[X ]/(f−1(X)) is integrally closed. (For the discriminant

D of the integral closure R̃ of R = Z[X ]/(f−1(X)) divides 49, the discriminant of

f−1(X), and 49/D = [R̃ : R]2. As the discriminant must be greater than 1, by a
classical result of Minkowski, this index must be 1). As this ring has class number 1
(see the tables of [AR84]) it is a PID. Hence any two matrices in SL(3,Z) with this
characteristic polynomial are conjugate, by Theorem 1.4. Therefore the knot group
is unique and determines K up to Gluck reconstruction and change of orientations,
by Theorem 17.5. Since B = −A− I has determinant 1 and β1 = −λ1 − 1 < 0, the
corresponding knot is reflexive.

Suppose now that a < −1. Let F be the field Q[X ]/(fa(X)) and let λ be the
image of X in F . We may view Q3 as a Q[X ]-module and hence as a 1-dimensional
F -vector space via the action of A. If B commutes with A then it induces an
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automorphism of this vector space which preserves a lattice and so determines a
unit u(B) in OF , the ring of integers in F . Moreover det(B) = NF/Qu(B). If σ is
the embedding of F in R which sends λ to λ1 and P and B are as above we must
have σ(u(B)) = β1.

Let U = O×
F be the group of all units in OF , and let Uν , Uσ, U+ and U2 be the

subgroups of units of norm 1, units whose image under σ is positive, totally positive
units and squares, respectively. Then U ∼= Z2×{±1}, since F is a totally real cubic
number field, and so [U : U2] = 8. The unit −1 has norm −1, and λ is a unit of norm
1 in Uσ which is not totally positive. Hence [U : Uν ] = [Uν ∩ Uσ : U+] = 2. It is
now easy to see that there is a unit of norm 1 that is not in Uσ (i.e., Uν 6= Uν ∩Uσ)
if and only if every totally positive unit is a square (i.e., U+ = U2).

The image of X(X − 1) in F is λ(λ− 1), which is totally positive and is a unit
(since X(X − 1)(X − a+ 1) = 1 + fa(X)). Suppose that it is a square in F . Then
φ = λ−(a−1) is a square (since λ(λ−1)(λ−(a−1)) = 1). The minimal polynomial
of φ is g(Y ) = Y 3 + (2a − 3)Y 2 + (a2 − 3a + 2)Y − 1. If φ = ψ2 for some ψ in
F then ψ is a root of h(Z) = g(Z2) and so the minimal polynomial of ψ divides
h. This polynomial has degree 3 also, since Q(ψ) = F , and so h(Z) = p(Z)q(Z)
for some polynomials p(Z) = Z3 + rZ2 + sZ + 1 and q(Z) = Z3 + r′Z2 + s′Z − 1
with integer coefficients. Since the coefficients of Z and Z5 in h are 0 we must
have r′ = −r and s′ = −s. Comparing the coefficients of Z2 and Z4 then gives
the equations 2s − r2 = 2a − 3 and s2 − 2r = a2 − 3a + 2. Eliminating s we find
that r(r3 + (4a − 6)r − 8) = −1 and so 1/r is an integer. Hence r = ±1 and so
a = −1 or 3, contrary to hypothesis. Thus there is no such matrix B and so the
Cappell-Shaneson knots corresponding to A are not reflexive. �

The other fibred 2-knots with closed fibre a flat 3-manifold have group G(+) or
G(−). We shall show below that one of these (τ341) is not reflexive. The question
remains open for the other knots with these groups.

18.3. Nil3-fibred knots

The group Nil = Nil3 is a subgroup of SL(3,R) and is diffeomorphic to R3,
with multiplication given by [r, s, t][r′, s′, t′] = [r+ r′, s+s′, rs′ + t+ t′]. (See Chap-
ter 7). The natural homomorphism from AutLie(Nil) to AutLie(R

2) = GL(2,R)
induced by abelianization has kernel isomorphic to HomLie(Nil, ζNil) ∼= R2. The
set underlying the group AutLie(Nil) is the cartesian product GL(2,R)×R2, with
(A, µ) = (( a cb d ) , (m1,m2)) acting via (A, µ)([r, s, t]) =

[ar + cs, br + ds,m1r +m2s+ (ad− bc)t+ bcrs+ ab
(
r
2

)
+ cd

(
s
2

)
].

The Jacobian of such an automorphism is (ad−bc)2, and so it is orientation preserv-
ing. Let (B, ν) = (

(
g j
h k

)
, (n1, n2)) be another automorphism. Then (A, µ)◦(B, ν) =

(AB,µB + det(A)ν + 1
2η(A,B)), where η(A,B) is the vector (abg(1− g) + cdh(1−

h) − 2bcgh, abj(1 − j) + cdk(1 − k) − 2bcjk). In particular, AutLie(Nil) is not a
semidirect product of GL(2,R) with R2. For each q > 0 in Z the stabilizer of Γq
in AutLie(Nil) is the subgroup GL(2,Z) × (q−1Z2), and this is easily verified to
be Aut(Γq). (See §7 of Chapter 8). Thus every automorphism of Γq extends to an
automorphism of Nil. (This is a special case of a theorem of Malcev on embeddings
of torsion free nilpotent groups in 1-connected nilpotent Lie groups - see [Rg]).

Let the identity element [0, 0, 0] and its images in Nq = Nil/Γq be the base-
points for Nil and for these coset spaces. The extension of each automorphism of
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Γq to Nil induces a basepoint and orientation preserving self homeomorphism of
Nq.

If K is a 2-knot with group π = πK and π′ ∼= Γq then M = M(K) is homeo-
morphic to the mapping torus of such a self homeomorphism of Nq. (In fact, such
mapping tori are determined up to diffeomorphism by their fundamental groups).
Up to conjugacy and involution there are just three classes of meridianal automor-
phisms of Γ1 and one of Γq, for each odd q > 1. (See Theorem 16.13). Since
π′′ ≤ ζπ′ it is easily seen that π has just two strict weight orbits. Hence K is
determined up to Gluck reconstruction and changes of orientation by π alone, by
Theorem 17.5. (Instead of appealing to 4-dimensional surgery to realize automor-
phisms of π by basepoint and orientation preserving self homeomorphisms of M
we may use the S1-action on Nq to construct such a self homeomorphism which in
addition preserves the fibration over S1).

We shall show that the knots with π′ ∼= Γ1 and whose characteristic polynomials
are X2 −X + 1 and X2 − 3X + 1 are not reflexive, while for all other groups the
corresponding knots are reflexive.

The polynomial X2 −X + 1 is realized by τ631 and its Gluck reconstruction.
Since the trefoil knot 31 is strongly invertible τ631 is strongly +amphicheiral [Li85].
The involution of X(τ631) extends to an involution of M(τ631) which fixes the
canonical section C pointwise and does not change the framing of the normal bun-
dle, and hence (τ631)

∗ is also +amphicheiral. (We shall see below that these knots
are distinct).

Lemma 18.6. Let K be a fibred 2-knot with closed fibre N1 and Alexander
polynomial X2 − 3X + 1. Then K is +amphicheiral.

Proof. Let Θ = (A, (0, 0)) be the automorphism of Γ1 with A = ( 1 1
1 2 ). Then

Θ induces a basepoint and orientation preserving self diffeomorphism θ of N1. Let
M = N1 ×θ S1 and let C be the canonical section. A basepoint and orientation
preserving self diffeomorphism ψ of N1 such that ψθψ−1 = θ−1 induces a self
diffeomorphism of M which reverses the orientations of M and C. If moreover it
does not twist the normal bundle of C then each of the 2-knots K and K∗ obtained
by surgery on C is +amphicheiral. We may check the normal bundle condition by

using an isotopy from Θ to idNil to identify M̂ with Nil× S1.
Thus we seek an automorphism Ψ = (B,µ) of Γ1 such that ΨΘtΨ

−1 = Θ−1
t ,

or equivalently ΘtΨΘt = Ψ, for some isotopy Θt from Θ0 = idNil to Θ1 = Θ.
Let P =

(
0 −1
1 0

)
. Then PAP−1 = A−1, or APA = P . It may be checked

that the equation Θ(P, µ)Θ = (P, µ) reduces to a linear equation for µ with unique
solution µ = −(2, 3). Let Ψ = (P,−(2, 3)) and let h be the induced diffeomorphism
of M .

As the eigenvalues of A are both positive it lies on a 1-parameter subgroup,
determined by L = ln(A) = m

(
1 −2
−2 −1

)
, where m = (ln((3 +

√
5)/2))/

√
5. Now

PLP−1 = −L and so P exp(tL)P−1 = exp(−tL) = (exp(tL)−1, for all t. We seek
an isotopy Θt = (exp(tL), vt) from idNil to Θ such that ΘtΨΘt = Ψ for all t. It is
easily seen that this imposes a linear condition on vt which has an unique solution,
and moreover v0 = v1 = (0, 0).

Now ρ−1hρ(x, u) = (Θ1−uΨΘu(x), 1 − u) = (ΨΘ1−uΘu, 1− u). Since exp((1 −
u)L) exp(uL) = exp(L) the loop u 7→ Θ1−uΘu is freely contractible in AutLie(Nil).
It follows easily that h does not change the framing of C. �
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Instead of using the one-parameter subgroup determined by L = ln(A) we may

use the polynomial isotopy given by At =
(

1 t
t 1+t2

)
, for 0 ≤ t ≤ 1. A similar

argument could be used for the polynomial X2 −X + 1.
On the other hand, the polynomial X2 + X − 1 is not symmetric and so the

corresponding knots are not +amphicheiral. Since every automorphism of Γq is
orientation preserving no such knot is -amphicheiral or invertible.

Theorem 18.7. .

(1) Fibred 2-knots with fibre N1 and monodromy having characteristic poly-
nomial X2 −X + 1 or X2 − 3X + 1 are not reflexive;

(2) Fibred 2-knots with fibre Nq (q odd) and monodromy having characteristic
polynomial X2 ±X − 1 are reflexive.

Proof. As τ631 is shown to be not reflexive in §4 below, we shall concentrate
on the knots with polynomial X2−3X+1, and then comment on how our argument
may be modified to handle the other cases.

Let Θ, θ and M = N1 ×θ S1 be as in Lemma 6, and let M̂ = Nil ×Θ S1 be

as in §1. We shall take [0, 0, 0, 0] as the basepoint of M̂ and its image in M as the
basepoint there.

Suppose that Ω = (B, ν) is an automorphism of Γ1 which commutes with Θ.
Since the eigenvalues of A are both positive the matrix A(u) = uA + (1 − u)I is
invertible and A(u)B = BA(u), for all 0 ≤ u ≤ 1. We seek a path of the form
γ(u) = (A(u), µ(u)) with commutes with Ω. On equating the second elements
of the ordered pairs γ(u)Ω and Ωγ(u) we find that µ(u)(B − det(B)I) is uniquely
determined. If det(B) is an eigenvalue ofB then there is a corresponding eigenvector
ξ in Z2. Then BAξ = ABξ = det(B)Aξ, so Aξ is also an eigenvector of B. Since
the eigenvalues of A are irrational we must have B = det(B)I and so B = I. But
then ΩΘ = (A, νA) and ΘΩ = (A, ν), so ν(A − I) = 0 and hence ν = 0. Therefore
Ω = idNil and there is no difficulty in finding such a path. Thus we may assume that
B − det(B)I is invertible, and then µ(u) is uniquely determined. Moreover, by the
uniqueness, when A(u) = A or I we must have µ(u) = (0, 0). Thus γ is an isotopy
from γ(0) = idNil to γ(1) = Θ (through diffeomorphisms of Nil) and so determines

a diffeomorphism ργ from R3 × S1 to M̂ via ργ(r, s, t, [u]) = [γ(u)([r, s, t]), u].
A homeomorphism f from Σ to Στ carrying K to Kτ (as unoriented subman-

ifolds) extends to a self homeomorphism h of M which leaves C invariant, but
changes the framing. We may assume that h preserves the orientations of M and
C, by Lemma 6. But then h must preserve the framing, by Lemma 3. Hence there
is no such homeomorphism and such knots are not reflexive.

If π ∼= πτ631 then we may assume that the meridianal automorphism is Θ =
(
(

1 −1
1 0

)
, (0, 0)). As an automorphism of Nil, Θ fixes the centre pointwise, and it

has order 6. Moreover (( 0 1
1 0 ) , (0, 0) is an involution of Nil which conjugates Θ to

its inverse, and so M admits an orientation reversing involution. It can easily be
seen that any automorphism of Γ1 which commutes with Θ is a power of Θ, and
the rest of the argument is similar.

If the monodromy has characteristic polynomial X2 ±X − 1 we may assume
that the meridianal automorphism is Θ = (D, (0, 0)), where D = ( 1 1

1 0 ) or its
inverse. As Ω = (−I, (−1, 1)) commutes with Θ (in either case) it determines a self
homeomorphism hω of M = Nq ×θ S1 which leaves the meridianal circle {0} × S1

pointwise fixed. The action of hω on the normal bundle may be detected by the
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induced action on M̂ . In each case there is an isotopy from Θ to Υ =
(

1 0
0 −1

)
which

commutes with Ω, and so we may replace M̂ by the mapping torus Nil ×Υ S1.
(Note also that Υ and Ω act linearly under the standard identification of Nil with
R3).

Let R(u) ∈ SO(2) be rotation through πu radians, and let v(u) = (0, u), for

0 ≤ u ≤ 1. Then γ(u) =
(

1 v(u)
0 R(u)

)
defines a path γ in SL(3,R) from γ(0) = idNil to

γ(1) = Υ which we may use to identify the mapping torus of Υ with R3×S1. In the
“new coordinates” hω acts by sending (r, s, t, e2πiu) to (γ(u)−1Ωγ(u)(r, s, t), e2πiu).
The loop sending e2πiu in S1 to γ(u)−1Ωγ(u) in SL(3,R) is freely homotopic to

the loop γ1(u)
−1Ω1γ1(u), where γ1(u) =

(
1 0
0 R(u)

)
and Ω1 = diag[−1,−1, 1]. These

loops are essential in SL(3,R), since on multiplying the latter matrix product on

the left by diag[−1, 1,−1] we obtain
(

1 0
0 R(2u)

)
. Thus hω induces the twist τ on

the normal bundle of the meridian, and so the knot is equivalent to its Gluck
reconstruction. �

The other fibred 2-knots with closed fibre a Nil3-manifold have group π(b, ǫ),
for some even b and ǫ = ±1. The 2-twist spins of Montesinos knots are reflexive
(by Lemma 1). The question remains open for the other knots with these groups.

It has been shown that for many of the Cappell-Shaneson knots at least one
of the (possibly two) corresponding smooth homotopy 4-spheres is the standard S4

[AR84]. Can a similar study be made in the Nil cases?

18.4. Other geometrically fibred knots

We shall assume henceforth throughout this section that k is a prime simple
1-knot, i.e., that k is either a torus knot or a hyperbolic knot.

Let p = ap′, q = bq′ and r = p′q′c, where (a, qc) = (b, pc) = 1. Then S1 acts
effectively on M(p, q, r) via t(u, v, w) = (tqcu, tpcv, tabw). Let A denote both the
canonical generator of the Z/rZ action on M(p, q, r) (as an r-fold cyclic branched
cover of S3, branched over kp,q) and its effect on π1(M(p, q, r)). The quotient of

M(p, q, r) by the subgroup generated by Ap
′q′ may be identified with M(p, q, p′q′),

and we may factor these actions as follows:

M(p, q, r)
/S1

−−−−→ P (p, q, r)
y

y

M(p, q, p′q′)
/S1

−−−−→ P (p, q, p′q′)
y

y

(S3, (p, q))
/S1

−−−−→ S2

The orbit space P (p, q, r) is a closed orientable surface of genus (1 − p′)(1 − q′)/2
and with branch points corresponding to the images of the exceptional fibres in
M(p, q, r). (Note that P (p, q, r) ∼= P (p, q, p′q′)). The image of the canonical Seifert
fibrations of these Brieskorn manifolds in S3 is the Seifert fibration with one fibre of
multiplicity p and one of multiplicity q. Sitting above the fibre in S3 of multiplicity
p in both M ’s we find q′ fibres of multiplicity a, and above the fibre of multiplicity q
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we find p′ fibres of multiplicity b. But above the branch set, a principal fibre in S3,
we have one fibre of multiplicity c in M(p, q, r), but a principal fibre in M(p, q, p′q′).

Lemma 18.8. Let A and B be automorphisms of a group π such that AB = BA,
A(h) = h for all h in ζπ and the images of Ai and B in Aut(π/ζπ) are equal. Let
[A] denote the induced automorphism of π/π′. If I − [A] is invertible in End(π/π′)
then B = Ai in Aut(π).

Proof. There is a homomorphism ǫ : π → ζπ such that BA−i(x) = xǫ(x) for
all x in π. Moreover ǫA = ǫ, since BA = AB. Equivalently, [ǫ](I − [A]) = 0, where
[ǫ] : π/π′ → ζπ is induced by ǫ. If I − [A] is invertible in End(π/π′) then [ǫ] = 0
and so B = Ai. �

We have the following characterization of the centralizer of A in Aut(π).

Theorem 18.9. Assume that p−1 + q−1 + r−1 ≤ 1, and let A be the automor-
phism of π = π1(M(p, q, r)) of order r induced by the canonical generator of the
branched covering transformations. If B in Aut(π) commutes with A then B = Ai

for some 0 ≤ i < r.

Proof. The 3-manifold M = M(p, q, r) is aspherical, with universal cover
R3, and π is a central extension of Q(p, q, r) by an infinite cyclic normal sub-
group. Here Q = Q(p, q, r) is a discrete planar group with signature ((1 − p′)(1 −
q′)/2; a . . . a, b . . . b, c) (where there are q′ entries a and p′ entries b). Note that Q
is Fuchsian except for Q(2, 3, 6) ∼= Z2. (In general, Q(p, q, pq) is a PD+

2 -group of
genus (1 − p)(1 − q)/2).

There is a natural homomorphism from Aut(π) to Aut(Q) = Aut(π/ζπ). The
strategy shall be to show first that B = Ai in Aut(Q) and then lift to Aut(π). The
proof in Aut(Q) falls naturally into three cases.

Case 1. r = c. In this case M is a homology 3-sphere, fibred over S2 with three
exceptional fibres of multiplicity p, q and r. Thus Q ∼= ∆(p, q, r) = 〈q1, q2, q3 |
qp1 = qq2 = qr3 = q1q2q3 = 1〉, the group of orientation preserving symmetries of a
tesselation of H2 by triangles with angles π/p, π/q and π/r. Since Zr is contained
in S1, A is inner. (In fact it is not hard to see that the image of A in Aut(Q) is
conjugation by q−1

3 . See §3 of [Pl83]).
It is well known that the automorphisms of a triangle group correspond to

symmetries of the tessellation (see Chapters V and VI of [ZVC]). Since p, q and r
are pairwise relatively prime there are no self symmetries of the (p, q, r) triangle. So,
fixing a triangle T , all symmetries take T to another triangle. Those that preserve
orientation correspond to elements of Q acting by inner automorphisms, and there
is one nontrivial outerautomorphism, R say, given by reflection in one of the sides
of T . We can assume R(q3) = q−1

3 .
Let B in Aut(Q) commute with A. If B is conjugation by b in Q then BA = AB

is equivalent to bq3 = q3b, since Q is centreless. If B is R followed by conjugation
by b then bq3 = q−1

3 b. But since 〈q3〉 = Zr in Q is generated by an elliptic element
the normalizer of 〈q3〉 in PSL(2,R) consists of elliptic elements with the same fixed
point as q3. Hence the normalizer of 〈q3〉 in Q is just 〈q3〉. Since r > 2 q3 6= q−1

3

and so we must have bq3 = q3b, b = qi3 and B = Ai. (Note that if r = 2 then R
commutes with A in Aut(Q)).

Case 2. r = p′q′ so that Zr ∩ S1 = 1. The map from P (p, q, p′q′) to S2 is
branched over three points in S2. Over the point corresponding to the fibre of
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multiplicity p in S3 the map is p′-fold branched; it is q′-fold branched over the
point corresponding to the fibre of multiplicity q in S3, and it is p′q′-fold branched
over the point ∗ corresponding to the branching locus of M over S3.

Represent S2 as a hyperbolic orbifold H2/∆(p, q, p′q′). (If (p, q, r) = (2, 3, 6)
we use instead the flat orbifold E2/∆(2, 3, 6)). Lift this to an orbifold structure
on P (p, q, p′q′), thereby representing Q = Q(p, q, p′q′) into PSL(2,R). Lifting the
Zp′q′ -action to H2 gives an action of the semidirect product Q×̃Zp′q′ on H2, with
Zp′q′ acting as rotations about a point ∗̃ of H2 lying above ∗. Since the map from
H2 to P (p, q, p′q′) is unbranched at ∗̃ (equivalently, Zr ∩ S1 = 1), Q ∩ Zp′q′ = 1.
Thus Q×̃Zp′q′ acts effectively on H2, with quotient S2 and three branch points, of
orders p, q and p′q′.

In other words, Q×̃Zp′q′ is isomorphic to ∆(p, q, p′q′). The automorphism A
extends naturally to an automorphism of ∆, namely conjugation by an element of
order p′q′, and B also extends to Aut(∆), since BA = AB.

We claim B = Ai in Aut(∆). We cannot directly apply the argument in Case
1, since p′q′ is not prime to pq. We argue as follows. In the notation of Case
1, A is conjugation by q−1

3 . Since BA = AB, B(q3) = q−1
3 B(q3)q3, which forces

B(q3) = qj3. Now q−1
3 B(q2)q3 = AB(q2) = B(q−1

3 )B(q2)B(q3) = q−j3 B(q2)q
j
3, or

B(q2) = q1−j3 B(q3)q
j−1
3 . But B(q2) is not a power of q3, so q1−j3 = 1, or j ≡ 1

modulo (r). Thus B(q3) = q3. This means that the symmetry of the tessellation
that realizes B shares the same fixed point as A, so B is in the dihedral group fixing
that point, and now the proof is as before.

Case 3. r = p′q′c (the general case). We have Zp′q′c contained in Aut(π), but
Zp′q′c ∩ S1 = Zc, so that Zc is the kernel of the composition Zr → Out(π) →
Out(Q). Let Q̄ be the extension corresponding to the abstract kernel Zp′q′ →
Out(Q). (The extension is unique since ζQ = 1). Then Q̄ is a quotient of the
semidirect product Q(p, q, r)×̃(Z/rZ) by a cyclic normal subgroup of order c.

Geometrically, this corresponds to the following. The map from P (p, q, r) to S2

is branched as in Case 2, over three points with branching indices p, q and p′q′. This
time, represent S2 as H2/∆(p, q, p′q′). Lift to an orbifold structure on P (p, q, r)
with one cone point of order c. Lifting an elliptic element of order r in ∆(p, q, r)
to the universal orbifold cover of P (p, q, r) gives Zr contained in Aut(Q(p, q, r))
defining the semidirect product. ButQ(p, q, r)∩Zr = Zc, so the action is ineffective.
Projecting to Zp′q′ and taking the extension Q̄ kills the ineffective part of the action.
Note that Q(p, q, r) and Zr inject into Q̄.

As in Case 2, Q̄ ∼= ∆(p, q, r), A extends to conjugation by an element of order
r in Q̄, and B extends to an automorphism of Q(p, q, r)×̃Zr, since BA = AB.
Now (q3, p

′q′) in Q(p, q, r)×̃Zr normally generates the kernel of Q(p, q, r)×̃Zr → Q̄,
where q3 is a rotation of order c with the same fixed point as the generator of Zr.
In other words, A in Aut(Q(p, q, r)) is such that Ap

′q′ is conjugation by q3. Since

BAp
′q′ = Ap

′q′B the argument in Case 2 shows that B(q3) = q3. So B also gives
an automorphism of Q̄, and now the argument of Case 2 finishes the proof.

We have shown that B = Ai in Aut(Q). Since A in Aut(π) is the monodromy
of a fibred knot in S4 (or, more directly, since A is induced by a branched cover of
a knot in a homology sphere), I − [A] is invertible. Thus the Theorem now follows
from Lemma 8. �

Theorem 18.10. Let k be a prime simple knot in S3. Let 0 < s < r, (r, s) = 1
and r > 2. Then τr,sk is not reflexive.



18.4. OTHER GEOMETRICALLY FIBRED KNOTS 257

Proof. We shall consider separately the three cases (a) k a torus knot and
the branched cover aspherical; (b) k a torus knot and the branched cover spherical;
and (c) k a hyperbolic knot.

Aspherical branched covers of torus knots. Let K = τr,s(kp,q) where r > 2 and
M(p, q, r) is aspherical. Then X(K) = (M(p, q, r)− intD3)×As S1, M = M(K) =
M(p, q, r) ×As S1 and π = πK ∼= π1(M(p, q, r)) ×As Z.

If K is reflexive there is a homeomorphism f of X which changes the framing
on ∂X . Now kp,q is strongly invertible - there is an involution of (S3, kp,q) fixing
two points of the knot and reversing the meridian. This lifts to an involution of
M(p, q, r) fixing two points of the branch set and conjugating As to A−s, thus
inducing a diffeomorphism of X(K) which reverses the meridian. By Lemma 1
this preserves the framing, so we can assume that f preserves the meridian of K.

Since M(p, q, r) is an aspherical Seifert fibred 3-manifold ˜M(p, q, r) ∼= R3 and all
automorphisms of π1(M(p, q, r)) are induced by self-diffeomorphisms [Hm]. Hence f

must be orientation preserving also, as all self homeomorphisms of S̃L-manifolds are
orientation preserving [NR78]. The remaining hypothesis of Lemma 3 is satisfied,
by Theorem 9. Therefore there is no such self homeomorphism f , and K is not
reflexive.

Spherical branched covers of torus knots. We now adapt the previous argument
to the spherical cases. The analogue of Theorem 9 is valid, except for (2, 5, 3). We
sketch the proofs.

(2, 3, 3): M(2, 3, 3 = S3/Q(8). The image in Aut(Q(8)/ζQ(8)) ∼= S3 of the
automorphism A induced by the 3-fold cover of the trefoil knot has order 3 and so
generates its own centralizer.

(2, 3, 4): M(2, 3, 4) = S3/T ∗
1 . In this case the image of A in Aut(T ∗

1 ) ∼= S4

must be a 4-cycle, and generates its own centralizer.
(2, 3, 5): M(2, 3, 5) = S3/I∗. In this case the image of A in Aut(I∗) ∼= S5 must

be a 5-cycle, and generates its own centralizer.
(2, 5, 3): We again have I∗, but in this case A3 = I, say A = (123)(4)(5).

Suppose BA = AB. If B fixes 4 and 5 then it is a power of A. But B may
transpose 4 and 5, and then B = AiC, where C = (1)(2)(3)(45) represents the
nontrivial outer automorphism class of I∗.

Now let K = τr,s(kp,q) as usual, with (p, q, r) one of the above four triples, and
let M = M(p, q, r) ×As S1. As earlier, if K is reflexive we have a homeomorphism
f which preserves the meridian t and changes the framing on D3 ×As S1.

Let M̂ be the cover of M corresponding to the meridian subgroup, so M̂ =
S3×Âs S1, where Â is a rotation about an axis. Let f be a basepoint preserving self
homotopy equivalence of M such that f∗(t) = t in π. Let B in Aut(π1(M(p, q, r))
be induced by f∗, so BAs = AsB. The discussion above shows that B = Asi except
possibly for (2, 5, 3). But if B represented the outer automorphism of I∗ then after
lifting to infinite cyclic covers we would have a homotopy equivalence of S3/I∗

inducing C, contradicting Lemma 11.5. So we have an obvious fibre preserving
diffeomorphism fB of M .

The proof that f̂B is homotopic to id
M̂

is exactly as in the aspherical case.

To see that f̂B is homotopic to f̂ (the lift of f to a basepoint preserving proper

self homotopy equivalence of M̂) we investigate whether fB is homotopic to f .
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Since π2(M) = 0 we can homotope fB to f on the 2-skeleton of M . On the 3-
skeleton we meet an obstruction in H3(M ;π3) ∼= H3(M ; Z) = Z, since M has
the homology of S3 × S1. But this obstruction is detected on the top cell of
M(p, q, r) and just measures the difference of the degrees of f and fB on the infinite
cyclic covers [Ol53]. Since both f and fB are orientation preserving homotopy
equivalences this obstruction vanishes. On the 4-skeleton we have an obstruction
in H4(M ;π4) = Z/2Z, which may not vanish. But this obstruction is killed when

we lift to M̂ , since the map from M̂ to M has even degree, proving that f̂B ≃ f̂ .
We now use radial homotopies on S3×S1 to complete the argument, as before.

Branched covers of hyperbolic knots. Let k be hyperbolic. Excluding N3(41)
(the 3-fold cyclic branched cover of the figure eight knot), N = Nr(k) is a closed
hyperbolic 3-manifold, with 〈α〉 ∼= Z/rZ acting by isometries. As usual, we assume
there is a homeomorphism f of M = M(τr,s(k)) which changes the framing on
D3 ×As S1. As in the aspherical torus knot case, it shall suffice to show that the

lift f̂ on M̂ is properly homotopic to a map of (R3 × S1, D3 × S1) that does not
change the framing on D3 × S1.

Letting B = f∗ on ν = π1(N), we have BAsB−1 = A±s, depending on whether
f∗(t) = t±1 in π = ν ×As Z. There is an unique isometry β of N realizing the class
of B in Out(ν), by Mostow rigidity, and βαsβ−1 = α±s. Hence there is an induced
self diffeomorphism fβ of M = N ×αs S1. Note that f∗ = (fβ)∗ in Out(π), so f is
homotopic to fβ. We cannot claim that β fixes the basepoint of N , but β preserves
the closed geodesic fixed by αs.

Now M̂ = H3×α̂s S1 where α̂s is an elliptic rotation about an axis L, and f̂β is

fibrewise an isometry β̂ preserving L. We can write H3 = R2 ×L (non-metrically!)

by considering the family of hyperplanes perpendicular to L, and then β̂ is just an
element of O(2)×E(1) and α̂s is an element of SO(2)× {1}. The proof of Lemma
1, with trivial modifications, shows that, after picking coordinates and ignoring

orientations, f̂β is the identity. This completes the proof of the theorem. �

The manifoldsM(p, q, r) with p−1+q−1+r−1 < 1 are coset spaces of S̃L [Mi75].
Conversely, let K be a 2-knot obtained by surgery on the canonical cross-section
of N ×θ S1, where N is such a coset space. If θ is induced by an automorphism

of S̃L which normalizes ν = π1(N) then it has finite order, since N
S̃L

(ν)/ν ∼=
NPSL(2,R)(ν/ζν)/(ν/ζν). Thus if θ has infinite order we cannot expect to use such
geometric arguments to analyze the question of reflexivity.
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[B-Z] Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. and Zassenhaus, H.
Crystallographic Groups of Four-Dimensional Space,

John Wiley and Sons Inc., New York - London - Sydney - Toronto (1978).
[BZ] Burde, G. and Zieschang, H. Knots,

de Gruyter Studies in Mathematics 5,
W. de Gruyter, Berlin - New York (1985).

[Cb] Cobb, R. Infrasolvmanifolds of Dimension Four,
PhD thesis, University of Sydney (1999).

[Co] Cohen, M.M. A Course in Simple Homotopy Theory,
Graduate Texts in Mathematics 10,
Springer-Verlag, Berlin - Heidelberg - New York (1973).

[Cn] Cohn, P.M. Skew Fields. Theory of General Division Rings,
Cambridge University Press (1995).

[De] Dekimpe. K. Almost-Bieberbach Groups: Affine and PolynomialStructures,
Lecture Notes in Mathematics 1639,
Springer-Verlag, Berlin - Heidelberg - New York (1996).

[DD] Dicks, W. and Dunwoody, M.J. Groups acting on Graphs,
Cambridge studies in advanced mathematics 17,
Cambridge University Press, Cambridge - New York - Melbourne (1989).

[FJ] Farrell, F.T. and Jones, L.E. Classical Aspherical Manifolds,
CBMS Regional Conference Series 75,
American Mathematical Society, Providence (1990).

[Fi] Filipkiewicz, R.O. Four-Dimensional Geometries,
Ph.D thesis, University of Warwick (1984).

[FQ] Freedman, M.H. and Quinn, F. Topology of 4-Manifolds,
Princeton University Press, Princeton (1990).

[Go] Goldman, W.M. Complex Hyperbolic Geometry,
Oxford Mathematical Monographs,
Oxford University Press, Oxford - New York (1999).

[GS] Gompf, R. and Stipsicz, A. 4-Manifolds and Kirby Calculus, Graduate Studies in Mathe-

matics 20,
American Mathematical Society, Providence (1999).

[GK] Gordon, C. McA. and Kirby, R.C. (editors) Four-Manifold Theory,
CONM 35, American Mathematical Society, Providence (1984).

259



260 BIBLIOGRAPHY

[Gr] Gromov, M. Asymptotic Invariants of Infinite Groups,
London Mathematical Society Lecture Note Series 182,
Cambridge University Press, Cambridge - New York - Melbourne (1993).

[Hm] Hempel, J. 3-Manifolds,
Annals of Mathematics Study 86,
Princeton University Press, Princeton (1976).

[Hn] Hendriks, H. Applications de la théorie d’obstruction en dimension 3,
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[GA94] González-Acuña, F. A characterization of 2-knot groups,
Revista Mat. Iberoamericana 10 (1994), 221-228.
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Expressions beginning with Greek charac-

ters and non-alphabetic symbols are listed

at the end of this index.

(A, β, C) (isometry of S2 × E2), 146
A(m, e) (metacyclic group

of order 2em), 161

A(π) (augmentation ideal of Z[π]), 27
AQ(π) (augmentation ideal of Q[π]), 43

algebraic 2-type ([π, π2(M), k1(M)]), 20

almost coherent, 11

almost complex structure, 109
almost finitely presentable (FP2), 10

amenable group, 7

amphicheiral knot, 197
Artin spin of a knot (σK), 200

automorphisms of Γq, 123

B1 − B4 (nonorientable flat

3-manifold groups), 113

Bieri’s Theorem (Theorem 8.8 of [Bi]), 13
Bieri-Strebel Theorem [BS78], 10

boundary link, 208

Bowditch’s Theorem, 15
branched twist spin, 228

Brieskorn manifold (M(p, q, r)), 225

Brown-Geoghegan Theorem [BG85], 13

c(ĝ) (Kervaire-Arf invariant

of ĝ : M → G/TOP ), 87
cX : X → K(π1(X), 1)

(classifying map), 20

CP2 (geometry
of complex projective plane), 170

Ch = ∗CP 2

(the fake complex projective plane), 170

CG(H) (centralizer of a subgroup), 3
centre of a group G (ζG), 3

Cl (Waldhausen’s class of groups), 83

canonical cross-section, 247
Cappell-Shaneson knot, 231

Cartan-Leray spectral sequence, 19

characteristic subgroup, 3

classifying map

(cX : X → K(π1(X), 1)), 20
closed fibre, 198

closed manifold, 20

codimension-2 Kervaire invariant, 87
coherent group, 11

coherent ring, 11

commutator subgroup
of a group G (G′), 3

companion, 200

complex surface, 107
complex torus, 108

conjugate of a module M (M̄ ), 10

connecting homomorphism
∂ : π2(B) → π1(F ), 67

Crisp’s Theorem [Cr00], 26
cusp, 102

D (infinite dihedral group

(Z/2Z) ∗ (Z/2Z)), 12
deficiency (def(P ), def(π)), 21

dimN (π)(M)

(von Neumann dimension of M), 16
doubly slice knot, 201

e(G) (number of ends of the group G,

= 0, 1, 2 or ∞), 12

En (flat geometry), 99

E(n) (isometry group of En), 99

E(X), E0(X) (space
of self homotopy equivalences), 67

EA (class of elementary amenable

groups), 7

ev(2) (evaluation into ℓ2(π)), 36

elliptic surface, 109, 190, 243
ends (and H1(G; Z[G])), 12

equivariant (co)homology, 19

extension of groups, 4
exterior of a knot (X(K), X), 197

fα (self homotopy equivalence

of a closed 4-manifold), 87
fM : M → P2(M) (second map

of Postnikov tower), 20

FF , FP , FPn (finiteness conditions), 10

275
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F (r) (free group), 3
F4 (geometry of T

H2), 98, 187
Farrell’s Theorem [Fa74], 13

fibration theorem, 92
fibred knot, 198
finite PDn-complex, 24
flat manifold, 99
flat n-manifold group, 99
Følner exhaustion, 7

g.d. (geometric dimension), 21
G1 − G6 (orientable flat

3-manifold groups), 113
G(±) (flat 2-knot groups), 233
geometric decomposition, 102

geometric dimension of a group (g.d.), 21
geometry, 97
Gluck reconstruction of a knot K

(K∗), 198
graph manifold, 85
Gromov’s Theorem (§8.A of [Gr]), 21

H2 ×H2 (semisimple product
geometry), 135

H4, H2(C) (rank 1 geometries), 135
H2 × E2 (product geometry), 131
H3 × E1 (product geometry), 133

Hi(X; R[G/H]), Hi(X; R[G/H])
(equivariant (co)homology), 19

h(G) (Hirsch length of a group G), 8
hZ[π], 54
Haken 3-manifold, 85
Hantzsche-Wendt flat 3-manifold

group (G6), 113
Hendrik’s Theorem [Hn], 25
Hilbert N (π)-module, 16
Hirsch length of a group (h(G)), 3, 8
Hirsch-Plotkin radical of a group G

(
√

G), 5
holonomy group, 99
homotopy ribbon knot, 201
Hopf surface, 108, 244
hyperelliptic surface, 108

I(G) ({g ∈ G | ∃n > 0, gn ∈ G′}), 3
I∗ (binary icosahedral group), 160
Iπ (homomorphism

from H1(π;Z) to Ls
1(π)), 88

I+
π (homomorphism
from Ker(w) to Ls

1(π, w)), 88
indicable group, 3
infinite cyclic covering space

(Eν , X′(K), M ′(K)), 51, 199
infinite dihedral group

(D = (Z/2Z) ∗ (Z/2Z)), 12
infranilmanifold, 99
infrasolvmanifold, 100
Inoue surface, 108, 243

invertible knot, 197

irreducible knot, 200

J(F ), J+(F ) (automorphisms of F
inducing ±1 on H3(F ;Z)), 159

Johnson’s trichotomy
(surface bundle groups), 69

k1(M) (first k-invariant), 20
Kaplansky rank (κ(P )), 10
Kb (Klein bottle), 67
kp,q ((p, q)-torus knot), 227
kerv(ĝ) (codimension-2 Kervaire invariant

of ĝ : M → G/TOP ), 87

Kervaire-Arf invariant, 87
knot, 197
knot group (πK), 197
knot-like group, 206
Kodaira surface, 108

ℓP (locally P ), 3
ℓ2(π) (L2-completion of C[π]), 16
L2-Betti number, 20

lattice, 97
Lexp(f, a) (Laurent expansion), 54
link, 208
link group, 211
LHSSS (Lyndon-Hochschild-Serre

spectral sequence), 12
locally P (ℓP ), 3
Lück’s Theorem [Lü94], 20

Mb (Möbius band), 78
M(K) (closed manifold

arising from a knot K), 198
M(φ) (mapping torus

of a self homotopy equivalence φ), 51
M(p, q, r) (Brieskorn manifold), 225
Max-c (increasing chains of centralizers

are finite), 31
maximal finite normal subgroup

(of a group with two ends), 12

Mayer-Vietoris sequence of Waldhausen, 84
Melvin’s Theorem, 74
meridian, 197
meridianal automorphism, 204
minimal complex surface, 108
minimal Seifert hypersurface, 198
monodromy, 198
Mostow rigidity, 139

Nil4, Nil3 ×E1 (nilpotent Lie geometries),
100, 124

N (π) (von Neumann algebra of π), 21
n-knot, 197
NG(H) (normalizer of a subgroup), 3
normal closure of S in G (〈〈S〉〉G), 3

Out(G) (group
of outer automorphism classes), 3

O∗
1 (binary octahedral group), 160
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O∗
k

(extended binary octahedral
group), 160

orbifold bundle, 104

orientable PDn-group (PD+
n -group), 14

P (= PSL(2,R)), 135
P2(X) (second stage

of Postnikov tower), 20

PD3-complex (3-dimensional
Poincaré duality complex), 25

PDn-complex
(Poincaré duality complex), 24

PD
(+)
n -group, 14

PD3-group , 28
PD4-polarization, 143

piece (of a geometric decomposition), 102
Plotnick’s Theorem [Pl86], 228
Poincaré duality, 25
poly-, 3
proper geometric decomposition, 102

q(π), qSG(π)
(minimal Euler characteristic), 42

Q(2na, b, c) (generalized quaternionic
group of order 2nabc), 161

Q(8) (quaternion group), 160
Q(2nk) (quaternionic group

of order 2nk), 160
quadratic 2-type

([π, π2(M), k1(M), S(M̃)]), 175
quasifibre, 238

quaternion group (Q(8)), 160

rational surface, 108
reducible (H2 × H2-manifold), 135
reflexive knot, 198

regular coherent ring, 11
regular noetherian ring, 11
restrained (group), 8
ribbon knot, 201
ruled surface, 108

SA (class of groups
of subexponential growth), 7

S1-actions, 191
S3-group, 162
SPD

4 (P ) (polarized PD4-complexes), 143

Ss
TOP (M) (s-cobordism structure set), 87

S4 (spherical geometry), 169
S2 × S2 (compact product geometry), 170

Sol4m,n, Sol3 × E1,

(solvable Lie geometries), 101, 125
Sol40, Sol41,

(solvable Lie geometries), 102, 125
S3 × E1 (two-ended spherical-euclidean

product geometry), 157
S2 × E2 (one-ended spherical-euclidean

product geometry), 141, 149

S2 ×H2 (spherical-hyperbolic

product geometry), 141

S̃L× E1, 131

safe extension, 17
satellite, 200

s-concordant, 201
Seifert fibred (4-manifold), 106
Seifert hypersurface, 198

semidirect product (G×θZ), 4
slice knot, 201

solvable Lie type, 98
spin (Artin) of a knot (σK), 200
split link, 208

stably homeomorphic, 90
strict weight orbit, 202

Strebel’s Theorem [St77], 15
sum of knots (K1♯K2), 199

surface bundles, 67, 185
surgery exact sequence, 87
Swan complex, 158

symplectic structure, 109

T (torus), 67

T ∗
1 (binary tetrahedral group), 160

T ∗
k

(extended binary tetrahedral

group), 160
T (π) (translation subgroup of π), 99
Tits alternative, 22, 29, 221

translation subgroup (T (π)), 99, 100
triangular (solvable Lie group), 100

trivial knot, 197
trivial link, 208
Turaev’s Theorem [Tu90], 25

twist spin of a knot (τrK), 200
type I, II, III (Johnson’s trichotomy

for surface bundle groups), 69
type R (solvable Lie group), 100

UCSS (universal coefficient
spectral sequence), 19

vP (virtually P ), 3
virtually (qualifying a property

of a group or space), 3

von Neumann dimension
of a Hilbert module (dimN (π)M), 16

Waldhausen’s Mayer-Vietoris sequence
for K-theory, 84

Weak Bass Conjecture
(κ(P ) = dimQQ ⊗π P ), 10

weakly finite (ring), 11
weight (class, element), 202
weight orbit, 203

Whitehead quadratic functor (Γ(−)), 175
Whitehead’s question, 206

X -group, 23
X(K) (knot exterior), 197

XH (covering space
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with fundamental group H), 19

Zw (w-twisted integers), 10
Z∗m (group with presentation

〈a, t | tat−1 = am〉), 22
Z×−1Z (fundamental group

of Klein bottle, ∼= Z∗−1), 22

Greek characters

β
(2)
i (L2-Betti number), 20

βu (u-twisted Bockstein), 142
η (cohomology class,

generating Ext1Λ(Z, Λ)), 54
Φ (2-knot group with presentation

〈a, t | tat−1 = a2〉, ∼= Z∗2), 213
Γ(−) (Whitehead quadratic functor), 175
Γq (nilpotent group), 6
κ(P ) (Kaplansky rank), 10
Λ = Z[Z] ∼= Z[t, t−1]

(Laurent polynomial ring), 5
πK (knot group), 197
π1-slice, 201
π(e, η) (group of 2-twist spin

of Montesinos knot), 234
[π,m]f -complex, 24
σK (Artin spin of K), 200
τ (the twist of S2 × S1), 61
τrK (r-twist spin of a knot K), 200
τr,sK (branched twist spin

of a knot K), 228
χ(π) (Euler characteristic

of vFP group π), 10
ζG (centre of a group), 3
ζ2G (ζ2G/ζG = ζ(G/ζG)), 6

Non-alphabetic symbols

boundary ∂ : π2(B) → π1(F )
(connecting homomorphism), 67

double angle brackets 〈〈 〉〉: 〈〈S〉〉G
(the normal closure of S in G), 3

overbar :̄ anti-involution ḡ = w(g)g−1,

conjugate module M , 10
prime ′: commutator subgroup G′,

maximal abelian cover X′, 3, 199
semidirect product: G×θZ, 4
sharp ♯: sum of knots K1♯K2, 199
surd √ :

√
G

(Hirsch-Plotkin radical of G), 5

tilde :̃ X̃ (universal cover of X), 19


