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4.2 Bäcklund transformations for KdV-type bilinear equations 161
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Foreword

The second half of the twentieth century saw a resurgence in the study of clas-
sical physics. Scientists began paying particular attention to the effects caused
by the nonlinearity in dynamical equations. This nonlinearity was found to
have two interesting manifestations of opposite nature: chaos, that is the ap-
parent randomness in the behaviour of perfectly deterministic systems, and
solitons, that is localized, stable moving objects that scattered elastically. Both
of these topics have now been developed into paradigms, with solid mathemat-
ical background and with a wide range of physical observations and concrete
applications.

This book is concerned with a particular method used in the study of soli-
tons. There are many ways of studying the integrable nonlinear evolution equa-
tions that have soliton solutions, each method having its own assumptions and
areas of applicability. For example, the inverse scattering transform (IST) can
be used to solve initial value problems, but it uses powerful analytical meth-
ods and therefore makes strong assumptions about the nonlinear equations. On
the other hand, one can find a travelling wave solution to almost all equations
by a simple substitution which reduces the equation to an ordinary differential
equation. Between these two extremes lies Hirota’s direct method. Although
the transformation was, at its heart, inspired by the IST, Hirota’s method does
not need the same mathematical assumption and, as a consequence, the method
is applicable to a wider class of equations than the IST. At the same time,
because it does not use such sophisticated techniques, it usually produces a
smaller class of solutions, the multi-soliton solutions. In many problems the
key to further developments is a detailed understanding of soliton scattering,
and in such cases Hirota’s bilinear method is the optimal tool.

Over the years, many textbooks have been written on various aspects of soli-
tons. Although some of them have briefly mentioned Hirota’s bilinear method,
there has not been any introductory English language book devoted to it. When
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viii Foreword

some of the western practitioners of Hirota’s method found out about prof.
Hirota’s book, they felt that it should be translated into English for use as
an introduction to the method. Early in 1997, Prof. J. Satsuma recruited his
students A. Nagai for this translation project. With help from his colleagues,
S. Tsujimoto and R. Willox, a first version was made; this was further im-
proved in a collaboration between A. Nagai, J. J. C. Nimmo and C. R. Gilson,
leading to the final version that is presented here.

In this book, Prof. Hirota explains his ‘direct’ or ‘bilinear’ method. There is
an interesting introduction, from which we can see the motivation and chain of
thought that led Prof. Hirota to invent his method. The rest of the book is de-
voted to a detailed discussion of various applications of the method. Little has
been changed in the translation from the original book; one or two arguments
have been expanded, some errors have been corrected and some notation was
changed to improve consistency. All such changes have been made with the
approval of Prof. Hirota.

Jarmo Hietarinta
Turku, Finland

Jon Nimmo
Glasgow, Scotland



Preface

A soliton is a particular type of solitary wave, which is not destroyed when it
collides with another wave of the same kind. Such behaviour is suggested by
numerical simulation, but is it really possible that the soliton completely re-
covers its original shape after a collision? In detailed analysis of the results of
such numerical simulations, some ripples can be observed after a collision, and
it therefore seems that the original shape is not completely recovered. There-
fore, in order to clarify whether or not solitons are destroyed through their
collisions, it is necessary to find exact solutions of soliton equations.

Generally, it is a very hard task to find exact solutions of nonlinear partial
differential equations, including soliton equations. Moreover, even if one man-
ages to find a method for solving one nonlinear equation, in general such a
method will not be applicable to other equations. Does there exist any success-
ful and universal tool enabling one to solve many types of nonlinear equations
which does not require a deep understanding of mathematics? For this purpose,
a direct method has been investigated.

In Chapter 1, we discuss in an intuitive way the conditions under which
a solitary wave is formed and we show that a nonlinear solitary wave can-
not be made by the superposition of linear waves. From this observation, we
obtain a method for finding solutions of a nonlinear wave equation by reduc-
tive perturbations and derive the fundamental idea for the direct method. We
first introduce new dependent variables F and G to express the solution of the
equation as the ratio G/F and then solve the (now bilinear) equations for F
and G. As part of this, a new binary operator, called the D-operator, is derived.
General formulae, through which nonlinear partial differential equations are
transformed into bilinear (or, in general, homogeneous) forms, are presented.
By virtue of special properties of the D-operator, solving these bilinear forms
by ordinary reductive perturbation methods leads to perturbation expansions
that may sometimes be truncated as finite sums. Such a truncation yields an
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x Preface

exact solution for the equation. As an example, we find an exact solution for
one of the most famous soliton equations, the KdV equation, and prove that its
solitons are preserved after interaction.

In Chapter 2, we introduce the mathematical tools – in particular the theory
of determinants and pfaffians – to be used in Chapter 3. These techniques will
be explained thoroughly by means of several examples so that readers with
only elementary knowledge can understand them. Consequently, this chapter
covers one-quarter of the book.

In Chapter 3, we discuss the structure of soliton equations from the view-
point of the direct method presented in this book. Many kinds of soliton equa-
tions have been discovered up to now and it would require several pages to
write them all down. Now the question arises: what is the fundamental struc-
ture common to all soliton equations? The answer is provided in this chapter;
soliton equations (or bilinear forms) are nothing but ‘pfaffian identities’. From
this viewpoint, we show how fundamental soliton equations, such as the KP,
BKP, coupled KP, Toda lattice and Toda molecule equations, resolve them-
selves into pfaffian identities.

Pfaffians, which may be an unfamiliar word, are closely related to determi-
nants. They are usually defined by the property that the square of a pfaffian
is the determinant of an antisymmetric matrix. This property often gives rise
to the misunderstanding that a pfaffian is merely a special case of a determi-
nant. In fact, it is more natural to regard a pfaffian as a generalization of a
determinant. For example, Plücker relations and Jacobi identities, which are
identities for determinants, also hold for pfaffians. As a matter of fact, they can
be extended and unified as pfaffian identities.

By means of the Maya diagrams designed by Professor Mikio Sato, a pfaf-
fian identity can be illustrated by the formula

×

= ×

− ×

+ × .

It is quite a surprise that soliton equations reduce to such simple diagrams!
In Chapter 4, we discuss Bäcklund transformations, which have made

important contributions in the development of soliton theory. Bäcklund trans-
formations in bilinear form generate (i) Lax pairs used in the inverse
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scattering method, (ii) new soliton equations, and (iii) Miura transformations.
A Bäcklund transformation in bilinear forms corresponds to an ‘exchange for-
mula’ for the D-operator. First, we find a Bäcklund transformation for the KdV
equation by using such an exchange formula. Next, we illustrate some applica-
tions of this Bäcklund transformation for the KdV equation. Finally, we clarify
the structure of Bäcklund transformations for other soliton equations such as
the KP, BKP and Toda equations, and we also show that all these Bäcklund
transformations reduce to pfaffian identities.

Since most of this book is devoted to an explanation of the fundamental
facts concerning the direct method, space does not permit us to mention its
applications in many other fields. It is particularly disappointing that we could
not touch upon the group-theoretical aspects of bilinear forms developed by
the Sato school (Professors Mikio Sato, Yasuko Sato, Masaki Kashiwara, Tet-
suji Miwa, Michio Jimbo and Etsuro Date). With regard to inverse scattering
methods, we have completely omitted them because many books have already
been written on this subject. The aim of this book is to inform the readers as
briefly as possible about the beauty and conciseness of the mathematical rules
underlying soliton equations.

The author is greatly indebted to members of Professor Mikio Sato’s school
in Kyoto University and those of Professor Junkichi Satsuma’s laboratory in
the University of Tokyo, for their own developments of direct methods. He also
thanks Dr Hideyuki Kidachi, whose notes on the author’s lectures (Department
of Physics, Faculty of Science, Kyoto University, 1–3 February 1979) were
very useful in writing Chapter 1. Last but not least, the author is grateful to
Mr Satoshi Tsujimoto and Mr Tatsuya Imai for their help drawing figures and
proofreading.





1

Bilinearization of soliton equations

One-soliton solution.

1.1 Solitary waves and solitons

The word ‘wave’ normally makes us think of a wave train as shown in
Figure 1.1. However, when surfing off a gently sloping beach, we often make
use of a solitary wave (see Figure 1.2). A soliton is a type of solitary wave
which maintains its identity after it collides with another wave of the same
kind. Let us first study wave equations which describe solitary waves.

A wave equation having soliton solutions has both nonlinearity and disper-
sion. Before studying how to solve such a wave equation, we will investigate

1



2 Bilinearization of soliton equations

A

x

Figure 1.1. A wave train. Amplitude A, position x .

A

x

Figure 1.2. A solitary wave.

the influence that nonlinearity and dispersion have on the behaviour of a wave.
We will also try to understand, using intuitive arguments, under what condi-
tions a solitary wave can exist.

1.2 Nonlinearity and dispersion

1.2.1 Linear nondispersive waves

Typical examples of the simplest kind of waves are sound waves and electro-
magnetic waves. They are governed by(

∂2

∂t2
− v2

0
∂2

∂x2

)
f (x, t) = 0, (1.1)

where v0 is a constant representing the wave speed. Since this equation can be
formally decomposed as(

∂

∂t
− v0

∂

∂x

)(
∂

∂t
+ v0

∂

∂x

)
f (x, t) = 0,

let us consider the simpler form,(
∂

∂t
+ v0

∂

∂x

)
f (x, t) = 0. (1.2)



1.2 Nonlinearity and dispersion 3

A solution of this equation also satisfies (1.1). While (1.1) gives travelling wave
solutions moving to the left and to the right, (1.2) gives only the right-moving
ones,

f (x, t) = f (x − v0t).

Assuming that this wave is periodic, the most fundamental solution is the
plane wave,

f (x, t) = exp[i(ωt − kx)].
The relationship between the angular frequency ω and the wave number k is
given by ω = v0k, where the constant v0 is the phase velocity of the wave. This
is called the dispersion relation and, in this case, it is linear.

A wave governed by a linear dispersion relation is called a nondispersive
wave. A feature of such a wave is that an initial profile taking the form of a
pulse, which is made up of a superposition of plane waves with different wave
numbers k, does not change its shape. This is because each of the superposed
plane waves travels with the same speed. Waves with unchanging shape play
a very important role in applications as a means of communication. A soliton,
even though it is not a nondispersive wave, possesses the above property of
unchanging shape and, because of this, it should have practical applications.

Next, we will investigate a particular linear dispersive wave equation.

1.2.2 Linear dispersive waves

We consider, as the simplest example, the wave equation(
∂

∂t
+ v0

∂

∂x
+ δ

∂3

∂x3

)
f (x, t) = 0. (1.3)

If we suppose that it has a plane wave solution

f (x, t) ∝ exp[i(ωt − kx)],
then the dispersion relation is given by

ω = v0k − δk3,

which is nonlinear with respect to k. Hence, the phase velocity is different from
that in Section 1.2.1 and is given by

ω

k
= v0 − δk2,



4 Bilinearization of soliton equations

which depends on a wave number k. On the other hand, its group velocity is
given by

∂ω

∂k
= v0 − 3δk2.

We remark that, if δ > 0, both velocities are less than v0. Since the velocity
of each of the plane waves which make up an initial wave vary with k, the
wave spreads out as it travels. This shows that linear dispersive waves do not
preserve their original shape.

The two examples we have discussed so far are both linear differential equa-
tions. Next we consider the influence of nonlinearity.

1.2.3 Nonlinear nondispersive waves

We consider, as the simplest example, the nondispersive wave equation,(
∂

∂t
+ v( f )

∂

∂x

)
f (x, t) = 0, (1.4)

where v( f ) = v0 + α f m . This equation is a nonlinear wave equation in which
the speed v( f ) depends on the amplitude f .

Equation (1.4) has the formal solution

f (x, t) = f (x − v( f )t),

and if v = v( f ) is an increasing function in f , this formula tells us that a
wave travels faster as its amplitude increases. Therefore, as one can see from
Figure 1.3, the wave steepens and then breaks. Physically speaking, however,
before the wave breaks, its gradient |∂ f/∂x | � 1. When this happens, (1.4)
becomes meaningless and must be replaced by the differential equation (1.5)
presented in Section 1.2.4.

t = 0 t = 1 t = 2
A

x

Figure 1.3. Steepening of a solitary wave. A wave which is symmetrical at t = 0
steepens and breaks because of the dependence of the wave speed on its amplitude.
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1.2.4 Nonlinear dispersive waves

The equation (
∂

∂t
+ v0

∂

∂x
+ α f m ∂

∂x
+ δ

∂3

∂x3

)
f (x, t) = 0 (1.5)

possesses a pulse-like wave solution which travels with unchanging shape; a
solitary wave solution. Before finding this solution by mathematical means,
let us look into the physical reasons for the existence of such a solution. We
have seen in Sections 1.2.2 and 1.2.3 that neither a linear dispersive solitary
wave nor a nonlinear nondispersive solitary wave can exist. Why then can a
solitary wave solution exist for a wave equation which has both nonlinearity
and dispersion?

Assuming that the solitary wave shown in Figure 1.4 exists, let us inves-
tigate whether this pulse-like wave can travel with unchanging shape. To this
end it is necessary, at least, that the velocities at the top and base of the wave
have the same value v. In order to investigate further, we introduce a new space
coordinate η = px − �t , where v = �/p and p is a free parameter. The pa-
rameter p is such that, as it increases, the pulse becomes sharper. It is conve-
nient to introduce η to describe a wave which travels at a constant speed v. For
t = 0, η is proportional to x (η = px), and, for t �= 0, η = p(x − vt), being
proportional to x − vt , travels at a speed v.

If the maximum of the wave amplitude f is A, occurring at η = 0, then in
a neighbourhood of this point we have

f ∼ A(1 − constant × η2),

because here the height f can be approximated by a quadratic expression in η.
From this equation, we have ∂3 f/∂x3 ∼ 0 and therefore, in the neighbourhood

f

η

base base

top

Figure 1.4. Splitting a solitary wave into its top and base.
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of the top of the wave, f satisfies the differential equation(
∂

∂t
+ [v0 + α f (x, t)m] ∂

∂x

)
f (x, t) ∼ 0.

This equation is the same as (1.4) and so, as described in Section 1.2.3, the
speed at the top of the wave, at which the amplitude is A, is given by

v( f ) = v0 + αAm . (1.6)

From this it is clear that v( f ) is larger than v0 if α > 0.
On the other hand, at the base of the wave, we can neglect the nonlinear

term because f is very small, and so f satisfies the linear differential equation(
∂

∂t
+ v0

∂

∂x
+ δ

∂3

∂x3

)
f (x, t) ∼ 0. (1.7)

As seen in Section 1.2.2, the group and phase velocities at the base, vgr and
vpf, respectively, are given by

vgr = ∂ω

∂k
= v0 − 3δk2,

vpf = ω

k
= v0 − δk2.

(1.8)

From this we see that both the group and phase velocities are smaller than v0

if δ > 0, and so the speed at the top of a solitary wave is larger than that at the
base. This indicates that the original shape of the wave is not preserved, and a
solitary wave cannot exist. This disagrees with the experimental observation.
What is wrong with the above argument?

In fact, our calculation of the velocity at the base of the wave is incorrect.
Since the amplitude at the base is small, the differential equation is certainly
linear. The error arose because we approximated the solution as a plane wave
and considered the wave velocity to be the linear (phase or group) velocity,
according to the common understanding of linear waves. The base of the wave
is not made up of a superposition of linear plane waves

f ∼ exp[±i(kx − ωt)]
or

f ∼ sin(kx − ωt),

but, in fact, is expressed in terms of exponentially decaying waves

f ∼ exp[±(px − �t)]. (1.9)

Since these expressions for f tend to infinity as x → ∞ or x → −∞, and
so do not satisfy a physical boundary condition, solutions of this form are
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f

η

base base

f ∼ eη f ∼ e−η

top

η = 0

f ∼ A(1 − constant × η2)

A

Figure 1.5. Approximation of a solitary wave at its top and base.

normally discarded as physically meaningless in the theory of linear waves. In
the theory of nonlinear waves, however, we can construct a global solution by
connecting local solutions, as illustrated in Figure 1.5.

The base of the wave is now expressed in terms of exponentially decaying
solutions f ∼ exp(±η) and, from (1.7), we obtain the relationship, called the
nonlinear dispersion relation,

� = v0 p + δp3.

The wave velocity v is then given by

v = �

p
= v0 + δp2, (1.10)

which coincides with the velocity at the top (1.6) if and only if

δp2 = αAm .

If p and A satisfy this equation, then the solitary wave can travel without
changing its shape. Recall that p is the parameter associated with the width
of the pulse; as p increases, the pulse becomes steeper and narrower. This
formula (if δ, α, m > 0) therefore indicates that as the amplitude of the pulse
increases, it becomes sharper.

The above discussion suggests an important idea for solving nonlinear
wave equations. When trying to obtain a solution by a perturbation method,
we cannot employ, as a first approximation, the normal plane wave solutions
f ∼ sin(kx − ωt) but should instead use the exponentially decaying solutions
f ∼ exp[±(px − �t)], which are rejected in linear wave theory. More pre-
cisely, we expand f into a power series in ε exp(η) as

f (x, t) ∼ εa1 exp(η) + ε2a2 exp(2η) + · · · , (1.11)

where η = px − �t and ε is a small parameter.
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However, if η is sufficiently large, we have seen (see Figure 1.5) that

f (x, t) ∼ exp(−η). (1.12)

Expanding f into a power series of exp(η) and finding a solution asymptotic
to exp(−η) as η → +∞ corresponds to finding a Padé approximation for f ,

f = G/F. (1.13)

If this correspondence is correct, the fundamental idea of the direct method,
referred to in the title of this book, is to find solutions of nonlinear differential
equations through dependent variable transformations like f = G/F .

Remark
For a function f with formal power series

f (x) = a0 + a1x + a2x2 + · · · , (1.14)

the method of Padé approximation [1] expresses f (x) as a ratio of polynomials
G and F . This gives an approximate analytic continuation for f (x) that can be
used to obtain information for large x .

For example, the power series

f (x) = x − x3 + x5 − x7 + · · · (1.15)

converges to a finite value in a region |x | < 1 and therefore gives properties of
f (x) in this region. In the region |x | ≥ 1, however, this is a divergent series
and so it does not make sense to use it, for example, to find the value at x = 2.
If we express f (x) as the rational function

f (x) = x

1 + x2
,

then f (x) ∼ x−1 for |x | � 1. In particular, the substitution of x = exp(η)

yields

f (x) = exp(η) − exp(3η) + exp(5η) − · · ·
= exp(η)

1 + exp(2η)

∼ exp(−η) (η � 1) (1.16)

and gives the correct behaviour of f (x), even though η is large. �

Here we have used an intuitive argument to find general properties of the
solitary wave solution without any knowledge of the precise form of the non-
linear term. In Section 1.3 we will investigate to what extent this solution
coincides with the exact solution.
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1.3 Solutions of nonlinear differential equations

In Section 1.2 we discussed solutions of the nonlinear differential equation(
∂

∂t ′
+ v0

∂

∂x ′ + α f m ∂

∂x ′ + δ
∂3

∂x ′3

)
f (x ′, t ′) = 0, (1.17)

using an intuitive argument (we use variables x ′, t ′ for later convenience). Let
us here investigate the properties of such solutions by mathematical means.

First, we consider the independent variable transformation

x = x ′ − v0t ′,
t = t ′,

(1.18)

describing a frame moving at velocity v0. Under this transformation, partial
derivatives become

∂

∂t ′
= ∂

∂t
− v0

∂

∂x
,

∂

∂x ′ = ∂

∂x
.

(1.19)

In the moving frame, the second term in (1.17) is eliminated and so we obtain(
∂

∂t
+ α f m ∂

∂x
+ δ

∂3

∂x3

)
f (x, t) = 0. (1.20)

Next we make use of a similarity transformation. Under the scaling trans-
formation t = ε3τ, x = εξ , where ε is a constant, (1.20) is equivalent to(

∂

∂τ
+ ε2α f m ∂

∂ξ
+ δ

∂3

∂ξ3

)
f (εξ, ε3τ) = 0, (1.21)

and then the dependent variable transformation f (εξ, ε3τ) = ε−2/m f ′(ξ, τ )

yields (
∂

∂τ
+ α( f ′)m ∂

∂ξ
+ δ

∂3

∂ξ3

)
f ′(ξ, τ ) = 0. (1.22)

This shows that if we replace f in (1.20) by

f ′(ξ, τ ) = ε2/m f (εξ, ε3τ), (1.23)

then f ′ again satisfies the same differential equation. This is called a similarity
transformation.

If we have a travelling wave solution f = f (x − vt) then ε2/m f (x − ε2vt)
will also be a solution. From this we see that if the amplitude of a solitary
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wave increases by a factor ε2/m then its velocity v increases by a factor of
ε2. This shows that, even in the case that an exact solution cannot be found,
we can still determine some properties of these solutions by their similarity
transformations. In fact, exact analytic solutions for few nonlinear differential
equations are known.

The relation between the speed and amplitude of solitary waves can also be
found directly from the partial differential equation without employing a sim-
ilarity transformation. Let us again consider the nonlinear partial differential
equation (

∂

∂t
+ v0

∂

∂x
+ α f m ∂

∂x
+ δ

∂3

∂x3

)
f (x, t) = 0. (1.24)

We consider a solitary wave solution f = f (x − vt) travelling at constant
speed v. Then we have

∂ f

∂t
= −v

∂ f

∂x
, (1.25)

and (1.24) reduces to(
(−v + v0)

∂

∂x
+ α f m ∂

∂x
+ δ

∂3

∂x3

)
f (x − vt) = 0. (1.26)

Integrating the above equation with respect to x and using the boundary con-
dition for solitary waves,

∂n

∂xn
f (x − vt) → 0 (x → ±∞) n = 0, 1, 2, . . . , (1.27)

we have

(−v + v0) f + α

m + 1
f m+1 + δ

∂2

∂x2
f = 0. (1.28)

Multiplying by fx on both sides and integrating with respect to x again, we
obtain

(−v + v0) f 2 + 2α

(m + 1)(m + 2)
f m+2 + δ f 2

x = 0. (1.29)

At the top of the solitary wave we suppose that f = fmax, and we have

fx = 0, (1.30)
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which gives

(−v + v0) f 2
max + 2α

(m + 1)(m + 2)
f m+2
max = 0. (1.31)

Hence, we may deduce that the relationship between the velocity v and height
fmax is

v = v0 + 2α

(m + 1)(m + 2)
f m
max. (1.32)

On the other hand, an exact solitary wave solution for (1.24) is given by

f = A(cosh η)−s, η = px − �t + constant, (1.33)

where � = v0 p + δs2 p3, v = �/p = v0 + δs2 p2 and s = 2/m. As a con-
sequence of (1.32), we have Am = (δ/α)(1 + s)(2 + s)p2. This relationship
between the wave height A and the parameter p should be compared with the
relation

Am = (δ/α)p2, (1.34)

obtained by an intuitive argument in the previous section.

Remarks
(1) When one can find an exact solution, we might think that an intuitive dis-

cussion of the solution is unnecessary. However, exact solutions are known
for only a very limited class of equations. For example, an analytic solitary
wave solution for the nonlinear differential equation(

∂

∂t
+ α f

∂

∂x
+ δ

∂5

∂x5

)
f (x, t) = 0 (1.35)

has not yet been found. In cases where an exact solution is not known, we
can still obtain a rough impression of the solution by making use of an
intuitive argument.

(2) The word soliton was first used in the paper published by Zabusky and
Kruskal in 1965 [2]. They carried out a numerical experiment on the
Korteweg–de Vries (KdV) equation,(

∂

∂t
+ αv

∂

∂x
+ δ

∂3

∂x3

)
v(x, t) = 0, (1.36)

which describes shallow water waves. In doing this they discovered that
solitary waves are not destroyed when they collide. They called the solitary
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wave solution a soliton, the suffix -on denoting a particle to indicate
particle-like interaction properties.

In order to prove rigorously that solitary wave solutions for the KdV
equation are not destroyed after their interaction, it is necessary to find
exact solutions describing this interaction. Gardner, Greene, Kruskal and
Miura discovered the inverse scattering method [3] to find soliton solutions
for the KdV equation in 1967.

(3) The direct method, which is the topic of this book, is a method for find-
ing soliton solutions directly, without employing the inverse scattering
method. �

The important point that this section demonstrates is that, even though both
nonlinearity and dispersion on their own destroy pulse-like waves, acting to-
gether they balance each other out and permit such waves to exist.

1.4 Linearization of nonlinear differential equations

Since the superposition principle holds in the case of linear differential equa-
tions, it is relatively easy to construct general solutions from particular solu-
tions. On the other hand, it is very difficult to find exact solutions of nonlinear
differential equations.

In the case of nonlinear differential equations, the superposition principle
does not hold and there may exist solutions which could not be obtained by
guesswork.

One way to solve a nonlinear differential equation is to find a transforma-
tion to a linear equation. We are, however, unable to categorize the nonlinear
differential equations that can be linearized; all we can do is to give some
examples.

1.4.1 The Riccati equation

The Riccati equation,

d

dt
u(t) = a(t) + 2b(t)u(t) + u(t)2, (1.37)

is one of the simplest nonlinear first-order ordinary differential equations. It
may be linearized by making the change of dependent variable

u = g/ f. (1.38)

Differentiation with respect to t gives

ut = gt f − g ft

f 2
, (1.39)
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where subscripts denote derivatives. Substitution into (1.37) yields

gt f − g ft = a(t) f 2 + 2b(t) f g + g2, (1.40)

which may be rearranged to give

[gt − a(t) f − b(t)g] f − [ ft + b(t) f + g]g = 0. (1.41)

Introducing an arbitrary function λ(t), we can separate (1.41) into two coupled
linear differential equations,

ft + b(t) f + g = λ(t) f,

gt − a(t) f − b(t)g = λ(t)g.
(1.42)

This is a linearization of the Riccati equation.
The same situation, in which a nonlinear differential equation is rewritten

as (coupled) linear differential equations by means of a dependent variable
transformation to a rational function g/ f , is also found for nonlinear partial
differential equations such as the Burgers equation.

1.4.2 The Burgers equation

The Burgers equation,

ut = uxx + 2uux , (1.43)

can be integrated with respect to x by introducing a potential function w, where
u = wx . It then becomes

wt = wxx + w2
x + c, (1.44)

where c is an arbitrary constant of integration. Through a dependent variable
transformation w = log f , this equation gives

ft

f
= fxx f − f 2

x

f 2
+ f 2

x

f 2
+ c.

Since the second and the third terms on the right-hand side cancel each other,
multiplication through by f gives a linear equation,

ft = fxx + c f. (1.45)

The dependent variable transformation used here,

u = (log f )x = fx/ f, (1.46)
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is called the Cole–Hopf transformation [4]. In summary, the Burgers equation
ut = uxx + 2uux is transformed into the linear partial differential equation
ft = fxx + c f through the Cole–Hopf transformation u = (log f )x = fx/ f .

Considering the inverse of this procedure, we can derive a nonlinear differ-
ential equation starting from a linear differential equation. For example, linear
partial differential equations,

∂ f

∂t
= ∂n f

∂xn
(n = 2, 3, 4, . . . ), (1.47)

are transformed into nonlinear partial differential equations through the inverse
of the Cole–Hopf transformation,

f = exp

(∫
u dx

)
. (1.48)

We obtain the Burgers equation if n = 2, and if n = 3 we have the nonlinear
partial differential equation

ut = uxxx + 3uuxx + 3u2
x + 3u2ux . (1.49)

An equation similar to the above,

ut = uxxx + αuux + βu2ux , (1.50)

is a soliton equation, called the modified Korteweg–de Vries (mKdV) equa-
tion. However, these two equations have solutions with completely different
structures.

Next we consider the differential-difference equation

∂

∂t
un = (1 + un)(un+1 − un), (1.51)

in which a discrete variable n is employed instead of a continuous independent
variable x . The above equation may also be written as

∂

∂t
log(1 + un) = (un+1 − un). (1.52)

Since the left-hand side is written as the t-derivative of a logarithm, we may
assume that un on the right-hand side may be written in the same way. Through
the dependent variable transformation

un = (log fn)t , (1.53)
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we have, from (1.52),

∂

∂t
log[1 + (log fn)t ] = ∂

∂t
log

fn+1

fn
. (1.54)

Integrating with respect to t and taking an exponential on both sides, the above
equation gives the linear equation

∂

∂t
fn = c fn+1 − fn, (1.55)

where c is a constant of integration.

Remark
The differential-difference equation,

un,t = (1 + un)(un+1 − un−1), (1.56)

is very similar to the differential-difference Burgers equation,

un,t = (1 + un)(un+1 − un). (1.57)

The former is a soliton equation and has a solution structure different from that
of the differential-difference Burgers equation. �

1.4.3 The Liouville equation

It is well known that the Liouville equation,

φxy = exp φ, (1.58)

can also be linearized [5]. First we make the dependent variable transformation

exp φ = −2(log f )xy . (1.59)

Since substituting this into the right-hand side of (1.58) gives

φxy = −2(log f )xy, (1.60)

we obtain, by integrating the above equation with respect to x and y,

φ = −2 log f + log g1(x) + log g2(y), (1.61)

where g1(x) and g2(y) are functions of x and y, respectively, corresponding to
constants of integration. We write these using logarithms for later simplicity.
Equation (1.61) is equivalent to

exp φ = g1(x)g2(y)/ f 2, (1.62)
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and, from (1.59),

exp φ = −2( fxy f − fx fy)/ f 2. (1.63)

Comparing these two equations, we can choose f such that

fxy = 0, fx = g1(x)/2, fy = g2(y). (1.64)

The solution for these is

f = u(x) + v(y), (1.65)

where u(x) and v(y) are arbitrary functions in x and y, respectively. Since
g1 and g2 are arbitrary functions, relations fx = ux = g1(x)/2 and fy = vy =
g2(y) always hold. Hence, an exact solution for the Liouville equation (1.58)
is given by

exp φ = 2ux (x)vy(y)

(u(x) + v(y))2
. (1.66)

Remarks
(1) We have seen that the function f , in terms of which the exact solution is

expressed, is written as

f = u(x) + v(y). (1.67)

If we replace f by

f = 1 + u(x) + v(y) + αu(x)v(y), (1.68)

where α is an arbitrary constant, then exp φ = −2(log f )xy still satisfies
the Liouville equation. This is because (1.68) may be rewritten as

f = (1 + αu(x)) ×
(

1 + u(x)

1 + αu(x)
+ v(y)

)
,

and the first factor makes no contribution to (log f )xy .
(2) The Liouville equation (1.58) may be transformed into the wave equation,

φxx − φt t = exp φ, (1.69)

by an independent variable transformation.
(3) The following form of the Liouville equation,

φxy = −2 exp 2φ, (1.70)
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is equivalent to

∂2

∂x∂y
log q1 = −2q2

1 , (1.71)

through the dependent variable transformation

φ = log q1. (1.72)

Introducing another dependent variable,

q2 = ∂

∂x
log q1, (1.73)

(1.71) is equivalent to

∂

∂y
q2 = −2q2

1 . (1.74)

Then the Liouville equation (1.70) may be written as the system of nonlin-
ear partial differential equations

∂

∂x
q1 = q1q2,

∂

∂y
q2 = −2q2

1 .

(1.75)

The two-wave interaction equations discussed in Section 1.4.4, which are
similar to the above system, can also be linearized. �

1.4.4 Two-wave interaction equations

The system of differential equations(
∂φ1

∂t
+ c1

∂φ1

∂x

)
= −φ1φ2,(

∂φ2

∂t
+ c2

∂φ2

∂x

)
= φ1φ2,

(1.76)

describes two-wave interactions. This is a model which describes the interac-
tion between prey, with population size φ1 travelling at speed c1, and predators,
with population size φ2 travelling at speed c2 [6, 7].

Through the independent variable transformations

ξ = (x − c2t)/(c1 − c2),

η = −(x − c1t)/(c1 − c2),
(1.77)
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(1.76) is transformed into the system

∂φ1

∂ξ
= −φ1φ2,

∂φ2

∂η
= φ1φ2,

(1.78)

and, by the dependent variable transformation

φ1 = − ∂

∂η
log f,

φ2 = ∂

∂ξ
log f,

(1.79)

(1.78) becomes the linear differential equation

∂2

∂ξ∂η
f = 0. (1.80)

The general solution of this equation is given by

f = u(ξ) + v(η), (1.81)

in the same way as for the Liouville equation.

Remark
The Liouville equation and the two-wave interaction equation have a similar
structure. In fact, a special case of the two-dimensional Toda molecule equa-
tion is equivalent to the Liouville equation, and, as shown in Chapter 4, the
two-wave interaction equation is a special case of the equations generated from
the Bäcklund transformation of the Toda molecule equation. Hence, the two-
wave interaction equation is a soliton equation. �

Figure 1.6 illustrates how predators travelling at speed c2 (> c1) catch up
with prey travelling at speed c1, and consequently how their population size
increases. Since the size of the solitary waves changes after their interaction,
the situation is different from the soliton interactions described earlier. In fact,
this figure shows the type of interaction typical of the soliton solutions of the
Toda molecule equation.

Remark
In Figure 1.6, we have shown the solution obtained by taking

f = A − b1 tanh(p1η) + b2 tanh(p2ξ).

�
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Figure 1.6. Predators travelling at speed c2 (> c1) catch up with prey travelling
at speed c1 and their population size increases. Thin and thick lines are used for the
size of predators and prey populations, respectively. At t = 0, the leading predator
comes into contact with the first of the prey. At t = 4, 5, 6, the predators eat the
prey and increase in number. At t = 12, the two groups separate. Afterwards, the
size of each group is unchanged.

1.5 Essentials of the direct method

In Section 1.4, we showed that certain nonlinear differential equations can be
transformed into linear differential equations through a change of dependent
variable. Once a nonlinear differential equation has been linearized, it is rel-
atively easy to find an exact solution. However, only a very special class of
nonlinear differential equations can be linearized. We are eager to relax this
constraint and to find exact solutions for a slightly wider class of nonlinear
differential equations. In this section, we explain how to transform a nonlinear
differential equation into a type of a bilinear differential equation, often called
the Hirota form, and discuss how to find an exact solution by a perturbation
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method. This method, through which we find solutions directly, without em-
ploying the inverse scattering method, will be referred to as the direct method.
Outside of Japan it is called Hirota’s method.

Remark
A bilinear expression is an extension of a linear expression in x j , such
as

∑N
j=1 ai j x j , to a second-degree expression in xi and y j , such as∑N

i, j=1 ai j xi y j . This may also be considered as a linear expression in xi with
y j fixed and as a linear expression in y j with xi fixed. The differential equa-
tions treated below that we call bilinear do not always satisfy this property, and
so it might be better to call them quadratic forms rather than bilinear forms.
Nonetheless, we will always use the term bilinear. �

In order to get a feeling for what the direct method is, let us explain the
fundamental ideas in relation to the KdV equation,

ut + 6uux + uxxx = 0. (1.82)

The reader is invited to skim through the following calculations without check-
ing the details at this point.

First of all, we look for a solution of (1.82) using the normal perturbation
method. We expand u as

u = εu1 + ε2u2 + ε3u3 + · · · ,

where ε is a small parameter, and substitute into (1.82). Collecting terms in the
resulting equation at each order of ε, we have(

∂

∂t
+ ∂3

∂x3

)
u1 = 0, (1.83a)(

∂

∂t
+ ∂3

∂x3

)
u2 = −6u1u1x , (1.83b)(

∂

∂t
+ ∂3

∂x3

)
u3 = −6(u2u1x + u1u2x ), (1.83c)

...

As we remarked in Section 1.2, it is necessary to choose a solution u1 of (1.83a)
that is not a plane wave solution, but rather an exponential solution. Hence, let
us choose

u1 = a1 exp η, η = Px − �t, � = P3, (1.84)
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where a1 and P are arbitrary parameters. Substituting u1 into the equation at
next order (1.83b), we obtain the linear equation(

∂

∂t
+ ∂3

∂x3

)
u2 = −6a2

1 P exp 2η (1.85)

for u2, for which we may take a solution

u2 = a2 exp 2η, a2 = −a2
1/P2. (1.86)

Substitution of u2 into the next-order equation (1.83c) gives a linear equation
for u3. By this procedure, we can find ui for i = 1, 2, 3, . . . in succession.
Hence, the solution u may be written as

u = εa1 exp η + ε2a2 exp 2η + ε3a3 exp 3η + · · · , (1.87)

the right-hand side of which diverges as η → ∞. One idea we might use to
avoid this divergence would be to express u as a ratio of polynomials G/F by
employing the Padé approximation. However, there is no clear guiding princi-
ple indicating which F and G are appropriate, and it requires a great deal of
effort to find them.

Instead, it seems easier to transform the dependent variable using u = G/F ,
to derive differential equations for F and G and then to find F and G as solu-
tions to these differential equations. In fact, we see from the result in Section
1.3 that u is given by

u = P2

2
sech2 η

2
= 2P2 exp η

(1 + exp η)2
. (1.88)

With (1.88) in mind, we will substitute u = G/F into (1.82) and find F and G
by a perturbation method. Substitutions of

u = G

F
,

ut = Gt F − G Ft

F2
,

ux = Gx F − G Fx

F2
,

uxxx = Gxxx

F
− 3Gxx Fx + 3Gx Fxx + G Fxxx

F2

+ 6
Gx F2

x + G Fxx Fx

F3
− G F3

x

F4
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into the KdV equation yield the surprisingly complicated equation

Gt F − G Ft

F2
+ 6

G

F

Gx F − G Fx

F2

+ Gxxx F − 3Gxx Fx − 3Gx Fxx − G Fxxx

F2

+ 6
FGx F2

x + FG Fxx Fx − G F3
x

F4
= 0. (1.89)

Snake’s legs1

Such calculations can be easily carried out by computer, using computer alge-
bra software. It is, however, important to understand how to manipulate formu-
lae and calculate efficiently by hand. Otherwise, one might miss some insight
into the structure of the equation. �

We will next try to separate (or decouple) the above complicated equation
involving F and G into a simple set of equations. One possible method would
be to set the term with denominator F2 (or F4) equal to zero. The term with
denominator F2 is given by

Gt F − G Ft + Gxxx F − 3Gxx Fx − 3Gx Fxx − G Fxxx = 0. (1.90)

However, the functions F , G given by

F = (1 + exp η)2,

G = 2P2 exp η,
(1.91)

which correspond to the numerator and denominator of the solitary wave solu-
tion,

u = 2P2 exp η

(1 + exp η)2
,

η = Px − �t,

(1.92)

do not satisfy (1.90). Conversely, let us look for the equation which F and G
given in (1.91) do satisfy. Strangely enough, F and G satisfy (1.90) with the
fifth term, −3Gx Fxx , replaced by +3Gx Fxx . Therefore, we change the sign
of this term and transfer the remainder to the term with denominator F4. Then

1 Translators’ note. The phrase ‘Snake’s legs’ is a literal translation of the Japanese word

n. redundancy; utter superfluousness; uselessness; coming from an ancient Chinese
proverb. Since there is no equivalent usage in mathematical texts in English, the translators
decided to keep the literal translation.
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we can reorganize the terms in (1.89) to obtain

Gt F − G Ft + Gxxx F − 3Gxx Fx + 3Gx Fxx − G Fxxx

F2

+ 6(Gx F − G Fx )
G F − (F Fxx − F2

x )

F4
= 0,

and we choose to adopt, as decoupled equations,

Gt F − G Ft + Gxxx F − 3Gxx Fx + 3Gx Fxx − G Fxxx = 0, (1.93a)

F Fxx − F2
x − G F = 0. (1.93b)

This is a system of bilinear (or, perhaps, quadratic) differential equations
with respect to F and G and is distinctive in the pattern of derivatives. For this
reason, we introduce a new binary differential operator, called the D-operator
[8, 9], acting on a pair of functions a(x), b(x), defined by

Dn
x (a, b) ≡

(
∂

∂x
− ∂

∂y

)n

a(x)b(y)

∣∣∣∣
y=x

= ∂n

∂yn a(x + y)b(x − y)

∣∣∣
y=0

,

(1.94)

Dm
t Dn

x (a, b) ≡ ∂m

∂sm

∂n

∂yn
a(t + s, x + y)b(t − s, x − y)

∣∣∣∣
s=0,y=0

,

(1.95)

where m, n = 0, 1, 2, 3, . . . . Since it is rather cumbersome to write this binary
operator as Dn

x (a, b), instead we use the abbreviated notation

Dn
x (a, b) ≡ Dn

x a · b. (1.96)

D-operators are also called Hirota derivatives.
Using this notation, we have

Dt G · F = Gt F − G Ft ,

Dx G · F = Gx F − G Fx ,

D3
x G · F = Gxxx F − 3Gxx Fx + 3Gx Fxx − G Fxxx ,

D2
x F · F = 2(Fxx F − F2

x ),

from which (1.93a) and (1.93b) may be concisely rewritten as

(Dt + D3
x )G · F = 0, (1.97a)

D2
x F · F − 2G F = 0. (1.97b)

Alternatively, the KdV equation,

ut + 6uux + uxxx = 0, (1.82 bis)
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can be transformed, through the dependent variable transformation,

u = 2(log f )xx , (1.98)

into

∂

∂x
[( fxt f − fx ft + fxxxx f − 4 fxxx fx + 3 f 2

xx )/ f 2] = 0, (1.99)

from which we obtain the bilinear equation

fxt f − fx ft + fxxxx f − 4 fxxx fx + 3 f 2
xx = c f 2, (1.100)

where c is a constant of integration [10]. Equation (1.100), with c = 0, may
also written concisely in terms of D-operators as

(Dx Dt + D4
x ) f · f = 0. (1.101)

Remarks
(1) The constant c can be chosen to be zero when seeking a solitary wave (or

soliton) solution.
(2) The operators on the left-hand side of (1.101) may be factorized so that it

may also be written as

Dx (Dt + D3
x ) f · f = 0. (1.101′)

(3) Equations (1.97a), (1.97b) and (1.101) are called Hirota bilinear forms.
(4) We have employed two dependent variable transformations for u,

u = G/F, u = 2(log f )xx .

From this, we might assume that the relations

F = f 2, G = 2( fxx f − f 2
x ) (1.102)

hold. It is not clear, however, that F and G defined in this way solve (1.97a)
and (1.97b). �

In the next section we will present, in detail, formulae involving the new
differential operator D. For now, we list only those formulae necessary to solve
the bilinear equation

Dx (Dt + D3
x ) f · f = 0 (1.103)
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by a perturbation method. We have

Dx Dt a · 1 = axt = Dx Dt 1 · a, (1.104a)

D4
x a · 1 = axxxx = D4

x 1 · a, (1.104b)

Dm
x Dn

t exp η1 · exp η2 = (P1 − P2)
m(�1 − �2)

n exp(η1 + η2), (1.104c)

where ηi = Pi x + �i t + η0
i .

As in the standard perturbation method, we expand f as a power series in a
small parameter ε:

f = 1 + ε f1 + ε2 f2 + ε3 f3 + · · · . (1.105)

Substituting this expansion into (1.103) and collecting terms of each order of
ε, we obtain

ε : Dx (Dt + D3
x )( f1 · 1 + 1 · f1) = 0,

ε2 : Dx (Dt + D3
x )( f2 · 1 + f1 · f1 + 1 · f2) = 0,

ε3 : Dx (Dt + D3
x )( f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3) = 0,

. . .

Using (1.104a)–(1.104b), the coefficient of ε is equivalent to

∂

∂x

(
∂

∂t
+ ∂3

∂x3

)
f1 = 0, (1.106)

a linear differential equation for f1. The solution corresponding to a solitary
wave (one-soliton) is given by

f1 = exp η1, (1.107)

where η1 = P1x + �1t + η0
1, and �1 + P3

1 = 0.
The coefficient of ε2 may be rearranged to give

2
∂

∂x

(
∂

∂t
+ ∂3

∂x3

)
f2 = −Dx (Dt + D3

x ) f1 · f1. (1.108)

By using the property (1.104c) of D-operators, substitution of f1 = exp η1

gives zero on the right-hand side of (1.108). Therefore, we are able to choose
f2 = 0.

This shows that the expansion of f may be truncated as the finite sum

f = 1 + ε f1. (1.109)
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Since the perturbation parameter ε can be absorbed into the phase constant η0
1

in the exponent η1, we can conclude that

f = 1 + exp η1 (1.110)

gives an exact solution of the bilinear equation. Further, this is seen to give the
one-soliton solution, since

u = 2[log(1 + exp η1)]xx = 2P2
1 exp η1

(1 + exp η1)2
= P2

1

2
sech2 η1

2
. (1.111)

Remarks
(1) The one-soliton solution for the KdV equation has two arbitrary parame-

ters, η0
1 and P1. The parameter η0

1 determines the position of the soliton,
and P1 its amplitude.

(2) Since the new differential operators Dm
x Dn

t have the property

Dm
x Dn

t exp η1 · exp η1 = 0, (1.112)

perturbation expansions may be truncated as finite sums and so exact so-
lutions are obtained. This is an important difference between bilinear and
normal differential equations. If the Hirota derivative were replaced by a
normal derivative, the right-hand side of (1.112) would not be zero. Then
it would not be possible to choose the second term of perturbation expan-
sion f2 equal to zero; rather, it would be determined as a solution to a
higher-order linear differential equation. Substitution of f2 into the third
approximation equation determines nonzero f3, and so on. From this, we
see that f would be given by an infinite power series.

(3) In order to find a two-soliton solution (a solution having four arbitrary
parameters), we use the linear superposition principle for the solution f1.
That is, we take the solution

f1 = exp η1 + exp η2, (1.113)

where ηi = Pi x + �i t + η0
i , �i + P3

i = 0 for i = 1, 2. Carrying out the
perturbation procedure, the second term f2 is not zero in this case, but the
third term f3 is. The exact solution is given by

f = 1 + ε(exp η1 + exp η2) + ε2a12 exp(η1 + η2). (1.114)

The solution u = 2(log f )xx obtained from this f describes the interaction
of two solitons. �
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Snake’s legs
The basic ideas of the direct method, as applied to the KdV, equation have
been presented for the benefit of those who wish to grasp the essentials imme-
diately. This is done because the author has often been unable to gather such
information from mathematics books without reading them thoroughly. �

1.6 The D-operator, a new differential operator

In this section, we explain in detail the features of the D-operator introduced
in Section 1.5. The D-operator is defined by

Dm
t Dn

x a(t, x) · b(t, x)

= ∂m

∂sm

∂n

∂yn
a(t + s, x + y)b(t − s, x − y)|s=0,y=0 ,

m, n = 0, 1, 2, 3, . . . . (1.115)

For the sake of comparison, the Leibniz rule for differentiation of a product of
functions may be written in a similar way as

∂m

∂tm

∂n

∂xn
a(t, x)b(t, x)

= ∂m

∂sm

∂n

∂yn
a(t + s, x + y)b(t + s, x + y)|s=0,y=0 ,

m, n = 0, 1, 2, 3, . . . . (1.116)

Remarks
(1) An operator O which acts on a pair of functions f and g is called a binary

operator, and it is written as

O( f, g).

Since the D-operator is binary, it is to be written formally as

Dn
x (a(t, x), b(t, x)).

However, we use it so frequently that it is cumbersome to write the paren-
theses ( , ), and we have come to write it in the following abbreviated form:

Dn
x a(t, x) · b(t, x).

(2) In the above definition of the D-operator, we have assumed that m and
n are positive integers 0, 1, 2, . . . . However, it remains an open prob-
lem to extend the definition to the case where m and n are not positive
integers. �
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Since it is not easy to understand the nature of the D-operator from its
definition alone, let us illustrate it with some simple examples:

Dx a · b = ax b − abx ,

D2
x a · b = axx b − 2ax bx + abxx ,

D3
x a · b = axxx b − 3axx bx + 3ax bxx − abxxx .

(1.117)

For comparison, the corresponding normal derivatives of a product of functions
are

∂x a · b = ax b + abx ,

∂2
x a · b = axx b + 2ax bx + abxx ,

∂3
x a · b = axxx b + 3axx bx + 3ax bxx + abxxx ,

(1.118)

where we have used an abbreviated notation ∂n
x ≡ ∂n/∂xn .

Remark
It is useful to remember that the formulae for D-operators in terms of deriva-
tives are almost the same as those for normal derivatives of products. The only
difference is that the signs of terms having an odd number of derivatives on the
second function are negative. �

From the definition, we have

Dm
t Dn

x a · b = Dn
x Dm

t a · b = Dn−1
x Dt Dx a · b,

Dm
t Dn

x a · 1 = ∂m
t ∂n

x a.
(1.119)

Employing the binomial expansion

(Dt +εDx )
n = Dn

t +nεDn−1
t Dx +n(n − 1)

2
ε2 Dn−2

t D2
x +· · ·+εn Dn

x ,

we obtain, because of the linearity of differential operators,

(Dt + εDx )
na · b = Dn

t a · b + nεDn−1
t Dx a · b + · · · + εn Dn

x a · b.

(1.120)

From this, we can calculate a product of D-operators, for example 3Dt D2
x a · b,

as the coefficient of ε2 in (Dt + εDx )
3a · b.

We define the D-operator Dz and the differential operator ∂z by

Dz = Dt + εDx ,

∂z = ∂t + ε∂x .
(1.121)
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Interchanging the functions a(t, x) and b(t, x), we have

Dn
z b · a = (−1)n Dn

z a · b, (1.122)

from which we see that, if n is odd,

Dn
z a · a = 0. (1.123)

The obvious difference between D-operators and normal derivatives is that
the action of D-operators frequently gives zero as the result. If we regard z as
a new independent variable, it is only when the product of the functions a(z),
b(z) is constant that normal differentiation ∂z of the product gives zero. This
fact implies that there are more types of solutions of Hirota equations than of
normal differential equations. Note that

Dza · b = 0 ⇐⇒ a = constant × b. (1.124)

The identity

Dz(Dza · b) · c + Dz(Dzb · c) · a + Dz(Dzc · a) · b = 0 (1.125)

holds for any functions a, b and c. Writing Dza · b as [a, b], we see that (1.125)
can be written as the Jacobi identity

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0, (1.126)

which indicates one connection between the D-operator and Lie algebras.

Remark
A deep connection between bilinear equations written in terms of D-operators
and Kač–Moody Lie algebras was discovered by the Kyoto group (Sato, Sato,
Date, Kashiwara, Jimbo and Miwa) [11–15]. �

We may also define D-operators by the exponential identity

exp(δDz)a(z) · b(z) = exp(δ∂y)a(z + y)b(z − y)
∣∣
y=0

= a(z + δ)b(z − δ), (1.127)

where δ is a parameter. If the functions a(z) and b(z) are continuously differen-
tiable to all orders in z, then Taylor series expansions of a(z + δ) and b(z − δ)

in δ give

(1 + δDx + 1
2δ2 D2

x + 1
6δ3 D3

x + · · · )a(x) · b(x)

= [a + δax + 1
2δ2axx + · · · ][b − δbx + 1

2δ2bxx − · · · ]. (1.128)
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From each coefficient of δn in (1.128), we obtain expansion formulae for
Dn

x a · b such as those shown in (1.117).
Let us next investigate the formula

Dn
z a · b = Dn−1

z Dza · b

= Dn−1
z (az · b − a · bz), (1.129)

in which Dn
z is expressed in terms of Dn−1

z . The recursive definition given
by (1.129) is appropriate for use in computer algebra software to define the
operator Dn

z for every n. For example, in the case of the computer algebra
language REDUCE [16],

Operator D;
forall a,b,n,z such that fixp(n) and n>=0 let
D(a,b,z,n) = if n>0 then

D(DF(a,z),b,z,n-1)-D(a,DF(b,z),z,n-1)
else a*b;

defines the operator Dn
z . Putting a = b in the case of n even, we have

Dn
z a · a = Dn−1

z Dza · a

= Dn−1
z (az · a − a · az)

= 2Dn−1
z az · a. (1.130)

For an exponential function, the relation

Dn
z exp(p1z) · exp(p2z) = (p1 − p2)

n exp[(p1 + p2)z] (1.131)

holds. In the case of a normal derivative, we have

∂n
z exp(p1z) · exp(p2z) = (p1 + p2)

n exp[(p1 + p2)z], (1.132)

from which we obtain

Dn
z exp(p1z) · exp(p2z) = (p1 − p2)

n

(p1 + p2)n
∂n

z exp(p1z) · exp(p2z).

(1.133)

Generally speaking, if F is a polynomial in Dt , Dx , . . . , then

F(Dt , Dx , . . . ) exp η1 · exp η2 = F(ω1 − ω2, P1 − P2, . . . )

F(ω1 + ω2, P1 + P2, . . . )

× F(∂t , ∂x , . . . ) exp(η1 + η2),

(1.134)

where ηi = Pi x + ωi t + · · · and i = 1, 2, . . . . This formula is employed in



1.6 The D-operator 31

the expression for the two-soliton solution of the bilinear equation,

F(Dt , Dx , . . . ) f · f = 0. (1.135)

For two products ab and cd, we have

exp(δDz)ab · cd = [exp(δDz)a · c][exp(δDz)b · d] (1.136)

= [exp(δDz)a · d][exp(δDz)b · c]. (1.137)

These are similar to the exchange formula discussed later. Although the proof
only involves using the definition and the commutativity of multiplication, es-
tablishing the formulae illustrates the full power available when manipulating
bilinear equations. Equation (1.136) is easily proved by the following steps:

exp(δDz)a(z)b(z) · c(z)d(z)

= a(z + δ)b(z + δ)c(z − δ)d(z − δ) (definition)

= a(z + δ)c(z − δ)b(z + δ)d(z − δ) (commutativity)

= [exp(δDz)a · c][exp(δDz)b · d] (definition).

From this identity it follows that:

Dzab · c = azbc + aDzb · c, (1.138)

Dzab · b = azb2, (1.139)

D2
z ab · c = azzbc + 2az Dzb · c + aD2

z b · c, (1.140)

D2
z ab · b = azzb2 + aD2

z b · b, (1.141)

D2
z ab · cd = (D2

z a · c)bd + 2(Dza · c)(Dzb · d) + ac(D2
z b · d), (1.142)

D3
z ac · bc = (D3

z a · b)c2 + 3(Dza · b)(D2
z c · c), (1.143)

Dm
z exp(pz)a(z) · exp(pz)b(z) = exp(2pz)Dm

z a(z) · b(z). (1.144)

These formulae are obtained by equating terms of the same order in δ on both
sides of the above exchange formula, for appropriate choices of a, b, c and d.

Remarks
(1) The Schrödinger equation,

i
t + 
xx − V 
 = 0, (1.145)

is the most fundamental equation in quantum mechanics. Using the depen-
dent variables transformation

f ′ = 
 f,

V = −D2
x f · f/ f 2 = −2(log f )xx ,
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it is transformed using (1.139) and (1.141) into the bilinear equation

(iDt + D2
x ) f ′ · f = 0. (1.146)

(2) Equation (1.144) implies that a solution f of the bilinear equation

F(Dt , Dx , . . . ) f · f = 0 (1.147)

is invariant under the transformation

f (x) → exp(ax) f (x), (1.148)

since

F(Dt , Dx , . . . ) exp(ax) f · exp(ax) f

= exp(2ax)F(Dt , Dx , . . . ) f · f = 0. (1.149)

The above fact, together with the fact that the solution for the bilinear
equation is invariant under the other transformations

f (x) → exp(c) f (x), f (x) → exp(b∂x ) f (x) = f (x + b) (1.150)

indicates the existence of a Lie group acting on the bilinear equation, with
corresponding Lie algebra spanned by ax , b∂x and c. �

Snake’s legs
The indefiniteness of the solution that comes as a consequence of this invari-
ance had been considered as a defect of a bilinear equation until its connection
with a Lie algebra was discovered. �

Next we consider exchange formulae, which are most useful when deriving
Bäcklund transformations.2 The simplest case is

exp(αDz)[exp(βDz)a · b] · [exp(γ Dz)c · d]

= exp

[
β − γ

2
Dz

] [
exp

[(
α + β + γ

2

)
Dz

]
a · d

]
·
[

exp

[(
−α + β + γ

2

)
Dz

]
c · b

]
. (1.151)

2 A Bäcklund transformation is a transformation between solutions of a pair of differential
equations. As will be seen in Chapter 4, a Bäcklund transformation corresponds simply to an
‘exchange’ in the sense used here. Viewed in this way, Bäcklund transformations seem too
simple to have any significance.
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We note that, while a and c do not change position, the positions of b and d
are exchanged.

The exchange formula (1.151) is proved using the definition and commuta-
tivity of multiplication. We have

exp(αDz)[exp(βDz)a · b] · [exp(γ Dz)c · d]
= exp(αDz)a(z + β)b(z − β) · c(z + γ )d(z − γ )

= a(z + α + β)b(z + α − β)c(z − α + γ )d(z − α − γ )

(definition)

= a(z + α + β)d(z − α − γ )c(z − α + γ )b(z + α − β)

(commutativity),

and, on the other hand,

exp(c1 Dz)[exp(c2 Dz)a · d] · [exp(c3 Dz)c · b]
= a(z + c1 + c2)d(z + c1 − c2)c(z − c1 + c3)

× b(z − c1 − c3) (definition). (1.152)

Necessary conditions for the exchange formula to hold are

c1 + c2 = α + β,

c1 − c2 = −α − γ,

−c1 + c3 = −α + γ,

−c1 − c3 = α − β,

and so c1, c2 and c3 are given by

c1 = (β − γ )/2,

c2 = α + (β + γ )/2,

c3 = −α + (β + γ )/2,

from which the exchange formula follows.
The exchange formula (1.151) may be extended, by using the linearity of

differential operators, to give

exp(D1)[exp(D2)a · b] · [exp(D3)c · d]

= exp

(
D2 − D3

2

)[
exp

(
D1 + D2 + D3

2

)
a · d

]
·
[

exp

(
−D1 + D2 + D3

2

)
c · b

]
,
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where the Di (i = 1, 2, 3) are linear combinations of Dt , Dx , Dy ,

Di = αi Dt + βi Dx + γi Dy . (1.153)

The following identities for the D-operator also hold:

(i) For arbitrary functions a, b, c and d,

[sinh(δDz)a · b][exp(δDz)c · d]
+ [sinh(δDz)b · c][exp(δDz)a · d]
+ [sinh(δDz)c · a][exp(δDz)b · d] = 0.

The coefficient of δ in the expansion of this formula with respect to δ gives
the identity

(Dza · b)c + (Dzb · c)a + (Dzc · a)b = 0. (1.154)

(ii) For arbitrary functions a, b, c and d,

sinh(δDz)[sinh(δDz)a · b] · [cosh(δDz)c · d]
+ sinh(δDz)[sinh(δDz)b · c] · [cosh(δDz)a · d]
+ sinh(δDz)[sinh(δDz)c · a] · [cosh(δDz)b · d] = 0.

The coefficient of δ2 in the expansion of this formula with respect to δ

gives the Jacobi identity mentioned earlier:

Dz(Dza · b) · c + Dz(Dzb · c) · a + Dz(Dzc · a) · b = 0. (1.155)

Next we consider an extension [17] of the D-operator. The D-operator is
based on the derivative of the transformation u = a/b,

∂

∂x

(a

b

)
= Dx a · b

b2
. (1.156)

We can use this formula to prove the property Dx a · b = 0 if a = b. Gener-
alizing the transformation u = a/b allows one to extend the D-operator in a
natural way. We consider the transformation

u = am

bn
, (1.157)

where m, n are not necessarily integers.

Remark
When using the direct method to find an exact solution, the basic assumption
is that the solution u can be transformed as u = g/ f (or u = log( f/g), etc.)
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and that f and g can be written as finite series. If u is written in the above
form, then g(= am) and f (= bn) are not necessarily finite series, even if a, b
are themselves finite series. �

The derivative of u with respect to x can be written as

∂

∂x

(
am

bn

)
= am

bn

max b − nabx

ab
. (1.158)

We introduce a new operator Dm,n,x given by

D j
m,n,x a(x) · b(x) =

(
m

∂

∂x
− n

∂

∂x ′

) j

a(x)b(x ′)
∣∣∣∣∣
x ′=x

= ∂ j

∂s j
a(x + ms)b(x − ns)

∣∣∣∣
s=0

. (1.159)

Employing this notation, we have

∂

∂x

(
am

bn

)
= am

bn

Dm,n,x a · b

ab
. (1.160)

The following soliton equations are known examples which are transformed
into bilinear forms by means of this operator.

The Ginzburg–Landau equation

i
t + p
xx + q|
|2
 = iγ
 (1.161)

is transformed by writing


(x, t) = exp[i(kx − �t)]G(x, t)/Fn(x, t), (1.162)

where k, � and F are real and n is a complex parameter satisfying n + n∗ = 2.
Substituting this gives the bilinear form:

(� − pk2 − λ + iDn,t + 2ikpDn,x + pD2
n,x )G · F = HG,[

(1/2)p(n + n2)D2
x + iγ − λ

]
F · F − q|G|2 = HF.

(1.163)

In the above, λ is an arbitrary constant and H is an arbitrary func-
tion introduced in order to decouple the equation. The D-operators
D1,n,t , D1,n,x , D1,1,x , using the above notation, are written as Dn,t , Dn,x , Dx .
Nozaki and Bekki [18] used the bilinear form of the Ginzburg–Landau equa-
tion to derive a solitary wave solution, a hole solution, a shock wave solution
and an exact solution describing a collision of two shock waves.
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The modified Kaup–Kuperschmidt equation

vt − 5(vxv3x + v2
xx + v3

x + 4vvxvxx + v2v3x − v4vx ) + v5x = 0 (1.164)

is transformed, by writing

v = −3[log( f/h2)]x , (1.165)

into the bilinear form

(D2,t + 1
6 D5

2,x ) f · h = 0,

D2
2,x f · h = 0,

(1.166)

where we have used an abbreviated notation D2,x in place of D1,2,x . Elimi-
nation of f from the above bilinear equations gives the Sawada–Kotera equa-
tion [19],

Dx (Dt + D5
x )h · h = 0, (1.167)

and elimination of h gives the Kaup–Kuperschmidt equation,

Dx (Dt + 1
6 D5

x ) f · f + 15
16 D2

x f · g = 0,

D4
x f · f = f g.

(1.168)

Hence, the modified Kaup–Kuperschmidt equation is a Bäcklund transfor-
mation which connects the solutions of the Sawada–Kotera equation and the
Kaup–Kuperschmidt equation. There exist N -soliton solutions for each of the
above equations.

The nonlinear partial differential equation

Et = P,

Px = −E(P − N ), (1.169)

Nx = 2E P,

is transformed, using

φ = log( f/h2), ρ = log( f h4),

E = φx , P = φt x , N = −ρt x + 3,
(1.170)

into bilinear form [20–22],

D2,x (D2,x D2,t − 6) f · f = 0,

D2
2,x f · h = 0,

(1.171)

which also possess an N -soliton solution.
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Remark
Although it does not have a direct connection with soliton equations, if we
introduce a new operator Dn

xy similar to the D-operator, we can obtain a unified
expression for the Poisson bracket in analytical mechanics and the Hessian in
differential geometry. Similar to the definition of Dn

x , we define Dn
xy by

Dn
xy f · g ≡

(
∂2

∂x∂y′ − ∂2

∂x ′∂y

)n

f (x, y)g(x ′, y′)
∣∣∣∣∣
x ′=x,y′=y

. (1.172)

This operator gives the Poisson bracket for n = 1:

[ f, g]p,q ≡ ∂ f

∂q

∂g

∂p
− ∂ f

∂p

∂g

∂q

= Dqp f · g. (1.173)

For n = 2,

D2
xy f · g = fxx gyy − 2 fxy gxy + fyy gxx ,

which can be used to express the Hessian:

Hessian ≡
∣∣∣∣ fxx fxy

fyx fyy

∣∣∣∣ = 1

2
D2

xy f · f. (1.174)

�

1.7 Bilinearization of nonlinear differential equations

In this section we describe procedures for transforming nonlinear partial dif-
ferential equations,

L(u, ut , ux , utt , uxx , . . . ) = 0, (1.175)

into bilinear forms (or, in general, homogeneous expressions) [20–22]. There
are many types of dependent variable transformations, but the most typical
examples are rational, logarithmic and bi-logarithmic transformations.

1.7.1 Rational transformation

The transformation of the solution u of a nonlinear partial differential equation
as

u = a/b

is called a rational transformation. It is the most fundamental transformation.
If we employ this transformation for a differential equation whose nonlinear
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terms are expressed as polynomials in u, ux , . . . , we obtain a homogeneous
expression with respect to a, b which is, in general, of more than fourth de-
gree. If an appropriate way of decoupling this expression is found, it reduces to
a set of quadratic forms. However, in many cases where the expression cannot
be decoupled into quadratic forms, we can resort to brute force (or computer
algebra) and find an exact solution, using the perturbation method, to the ho-
mogeneous expression as it stands. Often we can then deduce a quadratic form
from this result.

A fundamental formula that can be used to obtain this homogeneous ex-
pression through a rational transformation is

exp

(
δ

∂

∂z

)
a

b
= exp(δDz)a · b

cosh(δDz)b · b
. (1.176)

This formula is almost obvious and can be proved directly from the definition.
We have

LHS = a(z + δ)/b(z + δ),

numerator of RHS = a(z + δ)b(z − δ),

denominator of RHS = 1
2 [b(z + δ)b(z − δ) + b(z − δ)b(z + δ)]

= b(z + δ)b(z − δ),

from which it follows that LHS = RHS. Expanding both sides of (1.176) with
respect to the parameter δ, we have(

1 + δ
∂

∂z
+ δ2

2

∂2

∂z2
+ δ3

6

∂3

∂z3
+ · · ·

)
a

b

= [1 + δDz + 1
2δ2 D2

z + 1
6δ3 D3

z + · · · ]a · b

[1 + 1
2δ2 D2

z + 1
24δ4 D4

z + · · · ]b · b

=
[

a

b
+ δ

Dza · b

b2
+ δ2

2

Dza · b

b2
+ · · ·

]

×
[

1 + δ2

2

D2
z b · b

b2
+ δ4

24

D4
z b · b

b2
+ · · ·

]−1

.

Expanding the denominator using (1 + X)−1 = 1 − X + X2 − · · · , and col-
lecting terms in powers of δ, we obtain formulae which express derivatives of
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u = a/b in terms of the D-operator:

∂

∂z

a

b
= Dza · b

b2
,

∂2

∂z2

a

b
= D2

z a · b

b2
− a

b

D2
z b · b

b2
,

∂3

∂z3

a

b
= D3

z a · b

b2
− 3

Dza · b

b2

D2
z b · b

b2
,

. . .

(1.177)

Many equations are transformed into bilinear form through rational trans-
formations. Typical examples are given below.

The KdV equation Earlier, we were able to bilinearize the KdV equation,

ut + 6uux + uxxx = 0, (1.82 bis)

by using trial and error. However, if we employ a rational transformation, its
bilinear form is obtained almost automatically. By putting u = G/F and mak-
ing use of (1.177), the KdV equation may be rewritten as

Dt G · F

F2
+ 6

G

F

Dx G · F

F2
+ D3

x G · F

F2
− 3

Dx G · F

F2

D2
x F · F

F2
= 0.

Multiplying by F4 on both sides and reorganizing terms, we have

[(Dt + D3
x )G · F]F2 + 3[Dx G · F][2G F − D2

x F · F] = 0.

Therefore, if we introduce an arbitrary function λ, the above equation may be
decoupled into the bilinear form

(Dt + D3
x )G · F = 3λDx G · F,

D2
x F · F − 2G F = λF2.

(1.178)

The operator Dt + D3
x corresponds to the linear terms in the KdV equation,

(∂t + ∂3
x )u.

We note an indefiniteness in the bilinear equations associated with the trans-
formation u = G/F . If we introduce an arbitrary function h and transform F
and G to F = hF ′ and G = hG ′, u remains invariant. On the other hand, by



40 Bilinearization of soliton equations

virtue of properties of the D-operator, we have

Dt hG ′ · hF ′ = h2 Dt G
′ · F ′,

D2
x hF ′ · hF ′ = h2 D2

x F ′ · F ′ + (D2
x h · h)F ′2,

D3
x hG ′ · hF ′ = h2 D3

x F ′ · F ′ + 3(D2
x h · h)(Dx G ′ · F ′).

Therefore, under the transformation F = hF ′, G = hG ′, the bilinear form is
invariant,

(Dt + D3
x )G

′ · F ′ = 3λ′Dx G ′ · F ′,

D2
x F ′ · F ′ − 2G ′F ′ = λ′F ′2,

(1.179)

where the arbitrary function λ, which is introduced for the purpose of decou-
pling, is transformed to

λ′ = λ + (D2
x h · h)/h2. (1.180)

Dividing the second of the bilinear equations by F2, we have

λ = (D2
x F · F)/F2 − 2u

= 2[(log F)xx − u]. (1.181)

The function λ depends on F and u. In the case of solitary wave solutions, we
can choose λ = 0. However, λ plays an important role when we discuss peri-
odic solutions, that is, those having the property u(x, t) = u(x − L , t), where
L is the period.

The modified KdV equation The equation we obtain by replacing the non-
linear term uux in the KdV equation with u2ux ,

wt + 6w2wx + wxxx = 0, (1.182)

is a special case of the modified KdV equation (1.50) (α = 0, β = 6). Using
the transformation w = G/F , we have

[(Dt + D3
x )G · F]F2 + 3[Dx G · F][2G2 − D2

x F · F] = 0.

Introducing an arbitrary function λ, we obtain the bilinear form

(Dt + D3
x )G · F = 3λDx G · F,

D2
x F · F − 2G2 = λF2.

(1.183)

In this case as well, the operator Dt + D3
x corresponds to the linear part of the

modified KdV equation, ∂t + ∂3
x .



1.7 Bilinearization of nonlinear differential equations 41

The nonlinear Schrödinger equation This is the equation

i
t + 
xx + 2c|
|2
 = 0, c = ±1. (1.184)

Through the dependent variable transformation


 = G/F,

where F is a real function, we obtain

[(iDt + D2
x )G · F]F2 − G F[D2

x F · F − 2c|G|2] = 0.

Therefore, its bilinear form is given by

(iDt + D2
x )G · F = λG F,

D2
x F · F − 2c|G|2 = λF2.

(1.185)

From the second of these equations,

|
|2 = [(D2
x F · F)/F2 − λ]/(2c), (1.186)

and so the choice of λ is determined by the value of |
|2 at |x | = ∞, the
function F and the sign of c. These are envelope soliton solutions; in the case
λ = 0 (and c > 0), 
 is called a bright soliton, and in the case λ = 1 (c < 0)
it is called a dark soliton.

1.7.2 Logarithmic transformation

The transformation of a dependent variable u by using the logarithm of a func-
tion f ,

u = 2(log f )xx , (1.187)

is called the logarithmic transformation. A fundamental formula related to this
transformation is

2 cosh

(
δ

∂

∂z

)
log f (z) = log[cosh(δDz) f (z) · f (z)]. (1.188)

Its proof, using just the definition, is similar to earlier ones:

LHS = log f (z + δ) + log f (z − δ)

= log[ f (z + δ) f (z − δ)],
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which is equal to the right-hand side. Expanding the above formula with re-
spect to δ and collecting terms in powers of δ, we have

2
∂2

∂x2
log f = D2

x f · f

f 2
, (1.189a)

2
∂2

∂x∂t
log f = Dx Dt f · f

f 2
, (1.189b)

2
∂4

∂x4
log f = D4

x f · f

f 2
− 3

(
D2

x f · f

f 2

)2

, (1.189c)

2
∂6

∂x6
log f = D6

x f · f

f 2
− 15

D4
x f · f

f 2

D2
x f · f

f 2
+ 30

(
D2

x f · f

f 2

)3

,

(1.189d)

. . .

A typical example of the equations that may be bilinearized through this trans-
formation is the ubiquitous KdV equation,

ut + 6uux + uxxx = 0. (1.82 bis)

By introducing a potential w defined by

u = wx , (1.190)

the KdV equation may be integrated to give

wt + 3w2
x + wxxx = c, (1.191)

where c is a constant of integration. Next, we make the dependent variable
transformation

w = 2(log f )x , (1.192a)

which is equivalent to the logarithmic transformation of u,

u = 2(log f )xx . (1.192b)

From above, the KdV equation gives

Dx Dt f · f

f 2
+ 3

(
D2

x f · f

f 2

)2

+ D4
x f · f

f 2
− 3

(
D2

x f · f

f 2

)2

= c.

(1.193)
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The term coming from w2
x has a denominator that is quartic in f . This cancels

with the final term, and the bilinear form [10],

Dx (Dt + D3
x ) f · f = c f 2, (1.194)

is obtained automatically. In the above expression, the operator Dt + D3
x cor-

responds to the linear part of the KdV equation, ∂t + ∂3
x .

1.7.3 Bi-logarithmic transformation

The dependent variable transformation expressed in terms of the logarithm of
a/b,

φ = log(a/b), (1.195)

is called the bi-logarithmic transformation. This transformation frequently
appears in conjunction with another dependent variable ρ, which is written
as

ρ = log(ab). (1.196)

Fundamental formulae used with this transformation are

2 sinh

(
δ

∂

∂x

)
log(a/b) = log[exp(δDx )a · b] − log[exp(−δDx )a · b],

(1.197a)

2 cosh

(
δ

∂

∂x

)
log(a/b) = log[cosh(δDx )a · a] − log[cosh(δDx )b · b],

(1.197b)

2 cosh

(
δ

∂

∂x

)
log(ab) = log[exp(δDx )a · b] + log[exp(−δDx )a · b].

(1.197c)

They are proved as follows. For the first formula,

LHS = log[a(x + δ)/b(x + δ)] − log[a(x − δ)/b(x − δ)]
= log[a(x + δ)b(x − δ)] − log[a(x − δ)b(x + δ)]
= RHS;
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for the second,

LHS = log[a(x + δ)/b(x + δ)] + log[a(x − δ)/b(x − δ)]
= log[a(x + δ)a(x − δ)] − log[b(x + δ)b(x − δ)]
= RHS;

and for the third,

LHS = log[a(x + δ)b(x + δ)] + log[a(x − δ)b(x − δ)]
= log[a(x + δ)b(x − δ)] + log[a(x − δ)b(x + δ)]
= RHS.

Expanding these formulae with respect to δ, we obtain

∂

∂x
log(a/b) = Dx a · b

ab
, (1.198a)

∂2

∂x2
log(a/b) = D2

x a · a

2a2
− D2

x b · b

2b2
, (1.198b)

∂2

∂x2
log(ab) = D2

x a · b

ab
−
(

Dx a · b

ab

)2

, (1.198c)

∂3

∂x3
log(a/b) = D3

x a · b

ab
− 3

D2
x a · b

ab

Dx a · b

ab
+ 2

(
Dx a · b

ab

)3

, (1.198d)

. . .

Typical examples of nonlinear partial differential equations bilinearized
through bi-logarithmic transformations are the modified KdV equation [23]
and the sine–Gordon equation [24].

The modified KdV equation This is

vt + 6v2vx + vxxx = 0, (1.182 bis)

and one sets v = iφx to give

φt − 2φ3
x + φxxx = 0. (1.199)

Under the bi-logarithmic transformation,

φ = log(a/b), (1.200)
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we have, using (1.198a)–(1.198d),

Dt a · b

ab
− 2

(
Dx a · b

ab

)3

+ D3
x a · b

ab
− 3

(
D2

x a · b

ab

)(
Dx a · b

ab

)

+ 2

(
Dx a · b

ab

)3

= 0. (1.201)

In the above case, the nonlinear term φ3
x is again cancelled automatically, and

the bilinear form is written as

(Dt + D3
x )a · b = 3λDx a · b,

D2
x a · b = λab.

(1.202)

The decoupling parameter λ can be chosen to be zero when seeking solitary
wave solutions.

The sine–Gordon equation We employ the bi-logarithmic transformation

φ = 2i log( f/ f ∗), (1.203)

for the sine–Gordon equation,

φxx − φt t = sin φ, (1.204)

where f ∗ is the complex conjugate of f . Since, from (1.203), we have
exp(iφ) = ( f ∗/ f )2, the right-hand side of (1.204) may be rewritten as

sin φ = 1

2i

(
f ∗2

f 2
− f 2

f ∗2

)
. (1.205)

Substituting the expressions for derivatives,

φxx = i

(
D2

x f · f

f 2
− D2

x f ∗ · f ∗

f ∗2

)
,

φt t = i

(
D2

t f · f

f 2
− D2

t f ∗ · f ∗

f ∗2

)
,

(1.206)

into (1.204) gives

[i(D2
x − D2

t ) f · f − ( f ∗2 − f 2)/(2i)] f ∗2 − [i(D2
x − D2

t ) f ∗ · f ∗

− ( f 2 − f ∗2)/(2i)] f 2 = 0.
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Hence, the bilinear form is

(D2
x − D2

t ) f · f − ( f 2 − f ∗2)/2 = λ f 2, (1.207)

together with its complex conjugate.
Under coordinate transformations,

∂

∂x
− ∂

∂t
→ ∂

∂x
,

∂

∂x
+ ∂

∂t
→ ∂

∂y
,

(1.208)

the sine–Gordon equation,

φxx − φt t = sin φ,

is transformed into

φxy = sin φ. (1.209)

The above equation is rewritten, through the bi-logarithmic transformation,

φ = 2i log( f/ f ∗), (1.210)

as

Dx Dy f · f − ( f 2 − f ∗2)/2 = λ f 2, (1.211)

where λ is real and is chosen to be zero when seeking solitary wave solu-
tions.

1.8 Solutions of bilinear equations

We have shown that the KdV equation,

ut + 6uux + uxxx = 0, (1.82 bis)

is transformed by

u = 2(log f )xx (1.187 bis)

into the bilinear equation,

Dx (Dt + D3
x ) f · f = c f 2. (1.194 bis)

In this section, we describe the perturbation method used to find its exact solu-
tion. Since we will find solitary wave solutions, we set c = 0.
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The perturbation method consists of expanding f with respect to a small
parameter ε to obtain

f = 1 + ε f1 + ε2 f2 + ε3 f3 + · · · , (1.212)

and then finding each coefficient fn successively for n = 1, 2, . . . . Gener-
ally, when using this method, the expansion continues to infinite order in ε,
and we truncate the expansion at an appropriate finite order. Therefore, the
solution we obtain is no more than an approximation. However, when per-
forming the perturbation method for bilinear equations, an appropriate choice
of f1 ( f1 satisfies a linear differential equation) makes the infinite expansion
truncate with a finite number of terms, and as a result the solution is an exact
one.

Substituting the expansion formula of f into the bilinear equation and ar-
ranging it at each order of ε, we have

ε : Dx (Dt + D3
x )( f1 · 1 + 1 · f1) = 0,

ε2 : Dx (Dt + D3
x )( f2 · 1 + f1 · f1 + 1 · f2) = 0,

ε3 : Dx (Dt + D3
x )( f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3) = 0,

ε4 : Dx (Dt + D3
x )( f4 · 1 + f3 · f1 + f2 · f2 + f1 · f3 + 1 · f4) = 0,

. . .

The order-ε equation may be rewritten as a linear differential equation for f1:

∂

∂x

(
∂

∂t
+ ∂3

∂x3

)
f1 = 0. (1.213)

We showed at the beginning of Section 1.5 that the solution describing a soli-
tary wave (one-soliton) is given by

f1 = exp η1, (1.107 bis)

where η1 = P1x + �1t + η0
1 and �1 + P3

1 = 0. We begin here by finding a
two-soliton solution, that is a solution describing the interaction of two soli-
tons.

To this end, we choose the solution to the linear differential equation (1.213)
to be

f1 = exp η1 + exp η2, (1.214)

where ηi = Pi x + �i t + constant and �i + P3
i = 0 for i = 1, 2. The relation-

ship �i + P3
i = 0 is called the nonlinear dispersion relation. The order-ε2
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equation is

2
∂

∂x

(
∂

∂t
+ ∂

∂x3

)
f2 = −Dx (Dt + D3

x ) f1 · f1. (1.215)

Substituting f1 = exp η1 + exp η2 into the right-hand side, we have, from the
property of the D-operator (1.104c),

Dx (Dt + D3
x ) f1 · f1

= Dx (Dt + D3
x )(exp η1 + exp η2) · (exp η1 + exp η2)

= 2Dx (Dt + D3
x ) exp η1 · exp η2

= 2(P1 − P2)[�1 − �2 + (P1 − P2)
3] exp(η1 + η2).

We may choose the solution of this to be

f2 = a12 exp(η1 + η2), (1.216)

where, using (1.104c), the coefficient a12 is given by

a12 = −2(P1 − P2)[�1 − �2 + (P1 − P2)
3]

2(P1 + P2)[�1 + �2 + (P1 + P2)3]

= (P1 − P2)
2

(P1 + P2)2
. (1.217)

Substituting the expressions for f1 and f2 given above into the linear dif-
ferential equation for f3,

Dx (Dt + D3
x )( f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3) = 0, (1.218)

we obtain

Dx (Dt + D3
x )( f2 · f1 + f1 · f2)

= 2Dx (Dt + D3
x ) exp(η1 + η2) · (exp η1 + exp η2)

= 2P2(�2 + P3
2 ) exp(2η1 + η2) + 2P1(�1 + P3

1 ) exp(η1 + 2η2),

in which the inhomogeneous term is zero by virtue of the nonlinear disper-
sion relation �i + P3

i = 0 for i = 1, 2. Hence, we may choose f3 = 0. Con-
sequently, at order ε4 we have the linear equation

Dx (Dt + D3
x )( f4 · 1 + f2 · f2 + 1 · f4) = 0. (1.219)
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In this case as well, the inhomogeneous term vanishes because

Dx (Dt + D3
x ) f2 · f2 = 0 (1.220)

and we may also choose f4 = 0. Substituting the above results into the pertur-
bation expansion of f , we have

f = 1 + ε(exp η1 + exp η2) + ε2a12 exp(η1 + η2). (1.221a)

In the above equation, ε is the small parameter giving the perturbation expan-
sion. Since each ηi is given by

ηi = Pi x + �i t + constant, (1.221b)

ε can be absorbed into the constant. Hence,

f = 1 + exp η1 + exp η2 + a12 exp(η1 + η2) (1.222)

gives the two-soliton solution for the KdV equation in its bilinear form. There-
fore, the two-soliton solution u for the KdV equation is expressed, in terms of
f , as

u = 2(log f )xx . (1.223)

This result indicates that two solitons are not destroyed after their interaction.
Figure 1.7 shows a plot of their interaction; it was calculated numerically using
an appropriate difference scheme.

Remark
In the expression for f , a12 is an important quantity which determines the
phase shift, that is the change of position, caused by the interaction of two
solitons. Mathematically, the structure of a12 is one of the ingredients that
determines the type of group acting on the bilinear equation. We have

a12 = − (P1 − P2)[�1 − �2 + (P1 − P2)
3]

(P1 + P2)[�1 + �2 + (P1 + P2)3] , (1.224)

whose structure clearly reflects the structure of the KdV equation in its bilinear
form,

Dx (Dt + D3
x ) f · f = 0. (1.225)

�

We next consider a bilinear equation of the form

F(Dt , Dx , Dy, . . . ) f · f = 0, (1.226)
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Figure 1.7. The numerical simulation of the interaction of two solitons using
the fully discrete soliton equation, ut+1

n − ut
n = δ(ut+1

n−1ut
n − ut+1

n ut
n+1), where

n = . . . ,−1, 0, 1, . . . and δ is the lattice spacing. At t = 0, a large soliton is about
to interact with a small soliton. At t = 28 they are overlapping, and at t = 49
they recover their original shapes. Their shapes are not smooth because their time
evolutions take place at discrete time and space steps.

where F is a general polynomial in Dt , Dx , Dy, . . . . Let us call this equation
a KdV-type bilinear equation. The distinguishing feature of a KdV-type bilin-
ear equation is that it has just one dependent variable f . Introducing vector
notation,

D = (Dt , Dx , Dy, . . . ), (1.227)
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we can rewrite (1.226) as

F(D) f · f = 0. (1.228)

Further, we impose the following conditions on F :

(i) F(−D) = F(D), (1.229a)

(ii) F(0) = 0. (1.229b)

Condition (i) is not essential. If a polynomial in D, Fodd, is an odd function,
then Fodd(D) f · f = 0 automatically. Condition (ii) is required in order to
find a solitary wave (soliton) solution. We have expanded f = 1 + ε f1 + · · ·
in performing a perturbation method. However, without this condition, the
ε0-term is given by

F(0)1 · 1 �= 0,

and therefore f is not a solution.

Remark
If condition (ii) does not hold, the solutions found are quasi-periodic. Akira
Nakamura [25] has shown that the KdV-type bilinear equations possess genus-
two quasi-periodic solutions in this case. �

Almost the same perturbation method, applied to the bilinear form of
the KdV equation, may be used to construct the two-soliton solution to
any KdV-type bilinear equation [20–22]. We have already stated that the
relation

F(Dt , Dx , . . . ) exp η1 · exp η2 = F(ω1 − ω2, P1 − P2, . . . )

F(ω1 + ω2, P1 + P2, . . . )

× F(∂t , ∂x , . . . ) exp(η1 + η2)

(1.230)

holds for any polynomial F . We can also rewrite this relation in the succinct
form

F(D) exp η1 · exp η2 = F(P1 − P2)

F(P1 + P2)
F(∂) exp(η1 + η2),

(1.230′)
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where

P1 ± P2 = (ω1 ± ω2, P1 ± P2, . . . ),

∂ = (∂t , ∂x , . . . ).

By the perturbation method, the two-soliton solution for the KdV-type bi-
linear equations,

F(D) f · f = 0, (1.231)

is

f = 1 + exp η1 + exp η2 + a12 exp(η1 + η2), (1.232)

where

ηi = Pi x + �i t + Qi y + constant (i = 1, 2). (1.233)

This last equation may be written as

ηi = P i · xi + constant (1.234)

using vector notation:

P i = (�i , Pi , Qi , . . . ),

xi = (t, x, y, . . . ).

The nonlinear dispersion relation is given by

F(P i ) = 0 (i = 1, 2), (1.235)

and the phase shift a12 is given by

a12 = − F(P1 − P2)

F(P1 + P2)
. (1.236)

Remarks
(1) An extension of the KdV-type bilinear equations,

F(D)[ f · f + (L1 f ) · (L2 f )] = 0, (1.237)

also possesses a two-soliton solution. In the above equation, Li are linear
differential operators,

Li = Li (∂),

Li (0) = 0,
(1.238)
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for i = 1, 2, and F(D) satisfies the same conditions as before:

(i) F(−D) = F(D), (1.229a bis)

(ii) F(0) = 0. (1.229b bis)

The two-soliton solution is of almost the same form as that of a KdV-type
bilinear equation,

f = 1 + exp η1 + exp η2 + a12 exp(η1 + η2), (1.239)

where ηi = Pi x + �i t + Qi y + · · · + constant and F(P i ) = 0, for i =
1, 2. The only difference lies in the phase shift term, which is given by

a12 = − F(P1 − P2)

F(P1 + P2)
(1 + γ ),

γ = 1

2
[L1(P1)L2(P2) + L1(P2)L2(P1)].

(1.240)

(2) We investigate briefly equations of trilinear form which possess a three-
soliton solution. The two-soliton solution for the KdV-type bilinear equa-
tion

F(D) f · f = 0 (1.241)

is given by

f = 1 + exp η1 + exp η2 + a12 exp(η1 + η2). (1.242)

By employing the above F(D), let us consider the trilinear form:

F(D)[F(∂) f ] · [F(D) f · f ] = 0. (1.243)

This type of equation, in addition, possesses a three-soliton solution,

f = 1 + exp η1 + exp η2 + exp η3 + a12 exp(η1 + η2)

+ a13 exp(η1 + η3) + a23 exp(η2 + η3)

+ a12a13a23 exp(η1 + η2 + η3), (1.244)

which implies an essential difference between a bilinear form and a trilin-
ear form. �

We now return to the bilinear form of the KdV equation,

Dx (Dt + D3
x ) f · f = 0, (1.226 bis)
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and find a three-soliton solution. Choosing

f1 = exp η1 + exp η2 + exp η3 (1.245)

as a solution to the linear differential equation (1.213), the perturbation method
gives

f = 1 + exp η1 + exp η2 + exp η3

+ a12 exp(η1 + η2) + a13 exp(η1 + η3) + a23 exp(η2 + η3)

+ a123 exp(η1 + η2 + η3), (1.246)

where

ηi = Pi x + �i t + constant, �i + P3
i = 0 (i = 1, 2, 3),

ai j = (Pi − Pj )
2

(Pi + Pj )2
(i, j = 1, 2, 3),

and a123 = a12a13a23. Although it is a complicated calculation to obtain this,
it is simple when using computer algebra software.

By writing

ai j = exp Ai j ,

we may express f as

f =
∑

exp

⎡⎣ 3∑
i=1

µiηi +
(3)∑
i< j

Ai jµiµ j

⎤⎦ .

In this expression, the first
∑

means the summation over all possible
combinations of µ1 = 0, 1, µ2 = 0, 1, µ3 = 0, 1. For example, the choice
µ1 = 1, µ2 = 0, µ3 = 0 gives exp η1, the choice µ1 = 1, µ2 = 1, µ3 =
0 gives a12 exp(η1 + η2), and the choice µ1 = 1, µ2 = 1, µ3 = 1 gives
a123 exp(η1 + η2 + η3). The notation

∑(3)
i< j means the summation over all pos-

sible pairs (i, j) chosen from the set {1, 2, 3}, with the condition that i < j .
Hence, f is written as

f = 1 + exp η1 + exp η2 + exp η3

+ exp(A12 + η1 + η2) + exp(A13 + η1 + η3)

+ exp(A23 + η2 + η3) + exp(A12 + A13 + A23 + η1 + η2 + η3).
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By employing the above notation, the N -soliton solution is expressed as

f =
∑

exp

⎡⎣ N∑
i=1

µiηi +
(N )∑
i< j

Ai jµiµ j

⎤⎦ , (1.247)

where the first
∑

means a summation over all possible combinations of
µ1 = 0, 1, µ2 = 0, 1, . . . , µN = 0, 1, and

∑(N )
i< j means a summation over all

possible pairs (i, j) chosen from the set {1, 2, . . . , N }, with the condition that
i < j .

For all KdV-type bilinear equations,

F(D) f · f = 0, (1.241 bis)

having N -soliton solutions, f has the form (1.247). Putting

P i = (�i , Pi , Qi , . . . ),

xi = (t, x, y, . . . ),

we have, for i, j = 1, 2, 3, . . . , N ,

ηi = P i · xi + constant,

F(P i ) = 0,
(1.248)

and the phase shift ai j is given by

ai j = − F(P i − P j )

F(P i + P j )
. (1.249)

The function F(D) is not arbitrary, however; it must satisfy the condition

∑
F

(
N∑

i=1

σi P i

)
(N )∏
i< j

F(σi P i − σ j P j )σiσ j = 0, (1.250)

where
∑

means the summation over all possible combinations of
σ1 = 0, 1, σ2 = 0, 1, . . . , σN = 0, 1. This is called the Hirota condition
[20–22, 26–29].

Remark
Though this condition is obtained by substituting the N -soliton solution f into
the KdV-type bilinear equation, it is not easy to derive or to prove. As is shown
in Chapter 2, once the structure of a bilinear equation has been clarified, we can
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use a completely different technique to obtain a simple proof of (1.247) for
every N . Therefore we need not prove the above condition for arbitrary N .
However, the search for a function F satisfying the condition was formerly the
only way to discover a soliton equation by the direct method. Except for the
case F(D) = D1 D2 D3 D4 (J. Hietarinta, private communication), there appear
to be no bilinear equations that possess a three-soliton solution but no four-
soliton solution. Hietarinta checked the condition for a three-soliton solution
using computer algebra software and discovered many new (potential) soliton
equations [26–29]. �

Bilinear equations are transformed into normal nonlinear partial differential
equations by employing the formulae described in the following section. The
rest of this section is devoted to listing KdV-type bilinear equations satisfying
the above condition for arbitrary N . We also give the associated dependent
variable transformations and nonlinear partial differential equations. We have
omitted partial difference equations from this list.

• KdV equation

ut + 6uux + uxxx = 0, (1.251a)

u = 2(log f )xx , (1.251b)

Dx (Dt + D3
x ) f · f = 0. (1.251c)

• Lax fifth-order KdV equation

ut + 10
(
u3 + 1

2 u2
x + uuxx

)
x + uxxxxx = 0, (1.252a)

u = 2(log f )xx , (1.252b)[
Dx (Dt + D5

x ) − 5
3 Ds(Ds + D3

x )
]

f · f = 0, (1.252c)

where f also satisfies the bilinear equation

Dx (Ds + D3
x ) f · f = 0, (1.253)

involving an auxiliary variable s.
• Sawada–Kotera equation

ut + 15(u3 + uuxx ) + uxxxxx = 0, (1.254a)

u = 2(log f )xx , (1.254b)

Dx (Dt + D5
x ) f · f = 0. (1.254c)
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• Boussinesq equation

utt − uxx − 3(u2)xx − uxxxx = 0, (1.255a)

u = 2(log f )xx , (1.255b)

(D2
t − D2

x − D4
x ) f · f = 0. (1.255c)

• Kadomtsev–Petviashvili equation (KP equation)

(ut + 6uux + uxxx )x ± uyy = 0, (1.256a)

u = 2(log f )xx , (1.256b)[
Dx (Dt + D3

x ) ± D2
y

]
f · f = 0. (1.256c)

• Model equations for shallow water waves

(i) ut − uxx − 4uut + 2ux

∫ ∞

x
ut dx ′ + ux = 0, (1.257a)

u = 2(log f )xx , (1.257b)[
Dx (Dt − Dt D2

x + Dx ) + 1
3 Dt (Ds + D3

x )
]

f · f = 0, (1.257c)

where f also satisfies the bilinear equation

Dx (Ds + D3
x ) f · f = 0, (1.258)

involving an auxiliary variable s.

(ii) ut − uxxt − 3uut + 3ux

∫ ∞

x
ut dx ′ + ux = 0, (1.259a)

u = 2(log f )xx , (1.259b)

Dx (Dt − Dt D2
x + Dx ) f · f = 0. (1.259c)

• Toda lattice equation

∂2

∂t2
log[1 + Vn(t)] = Vn+1(t) − 2Vn(t) + Vn−1(t), (1.260a)

Vn(t) = ∂2

∂t2
log fn(t) = fn+1(t) fn−1(t)

fn(t)2
− 1, (1.260b)[

D2
t − 4 sinh2 ( 1

2 Dn
)]

fn · fn = 0. (1.260c)
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1.9 Transformation from bilinear to nonlinear form

If it has been shown that a certain bilinear form satisfies the Hirota condition
and so has an N -soliton solution, or if an unusual bilinear form is discovered,
we would like to transform it into a normal partial differential equation. There
is no unique nonlinear partial differential equation obtained in this process; for
different choices of dependent variable transformations, the bilinear form can
be transformed into completely different types of differential equation.

The following formulae facilitate transformation from bilinear forms to
nonlinear partial differential equations.

1.9.1 Rational transformation

The fundamental formula is

exp(δDx )a · b = {exp[2 cosh(δ∂x ) log b]}[exp(δ∂x )(a/b)]. (1.261)

This is easily proved:

RHS = exp
[
log

(
b(x + δ)b(x − δ)

)]
a(x + δ)/b(x + δ)

= a(x + δ)b(x − δ)

= LHS.

Introducing dependent variables 
 and u defined by


 = a/b, u = 2(log b)xx ,

and expanding (1.261) with respect to δ, we obtain

(Dx a · b)/b2 = 
x , (1.262a)

(D2
x a · b)/b2 = 
xx + u
, (1.262b)

(D3
x a · b)/b2 = 
xxx + 3u
x , (1.262c)

(D4
x a · b)/b2 = 
xxxx + 6u
xx + (uxx + 3u2)
, (1.262d)

(D5
x a · b)/b2 = 
xxxxx + 10u
xxx + 5(uxx + 3u2)
x . (1.262e)

1.9.2 Logarithmic transformation

The fundamental formula is

cosh(δDx ) f · f = exp[2 cosh(δ∂x ) log f ]. (1.263)
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Let us define a dependent variable u by

u = 2(log f )xx . (1.264)

The Taylor expansion of (1.263) with respect to δ gives

(D2
x f · f )/ f 2 = u, (1.265a)

(D4
x f · f )/ f 2 = uxx + 3u2, (1.265b)

(D6
x f · f )/ f 2 = uxxxx + 15uuxx + 15u3, (1.265c)

. . .

1.9.3 Bi-logarithmic transformation

The fundamental formula is

exp(δDx )a · b = exp[sinh(δ∂x ) log(a/b) + cosh(δ∂x ) log(ab)]. (1.266)

Defining dependent variables φ and ρ by

φ = log(a/b), ρ = log(ab), (1.267)

we have, from the Taylor expansion of (1.266),

(Dx a · b)/ab = φx , (1.268a)

(D2
x a · b)/ab = ρxx + φ2

x , (1.268b)

(D3
x a · b)/ab = φxxx + 3φxρxx + φ3

x , (1.268c)

(D4
x a · b)/ab = ρxxxx + 4φxρxxx + 3ρ2

xx + 6φ2
xρxx + φ4

x , (1.268d)

. . .



2

Determinants and pfaffians

Overtaking interaction.

2.1 Introduction

In Chapter 1, we discussed transformations between soliton equations and bi-
linear equations and the solution of such equations. But what is a bilinear
equation, or, more concretely, what mathematical structures are characteristic
of bilinear equations? One answer to this question is the existence of groups
(related to affine Lie algebras) which act on bilinear equations. In fact, a col-
lective understanding of soliton equations has developed from this viewpoint,
and many new soliton equations have been found using this group-theoretical
method. This approach, however, calls for a deep knowledge of algebra, and,
even when this has been attained, it is difficult to apply. Soon after the birth of
quantum mechanics, group theory became a great craze (called Gruppenpest),
where many people only studied group theory and never managed to apply it.

60
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Since this book is aimed at students of science and technology, we omit most
of the group theory.

A new viewpoint, discovered by Mikio Sato [12, 13], is to regard bilinear
equations as equivalent to Plücker relations in a Grassmann manifold. This in-
terpretation of soliton equations, based on a deep knowledge of mathematics,
is admirable and beautiful, and has had a strong influence on the author. How-
ever, its later development has been so abstract that the author has not been
able to understand it completely.

Abstract theory does not seem to be of value to pragmatic researchers, such
as the author, who wish to find exact solutions to nonlinear differential equa-
tions and to discover new soliton equations. Such theory has, up to now, not
been very efficient in generating nonlinear partial difference equations, which
play an important role as difference schemes for nonlinear partial differential
equations. Since the author believes that soliton equations can be discretized
and that the era of difference equations has yet to come, Sato theory will not
be thoroughly investigated in this book. In this chapter we consider bilinear
equations arising from soliton equations from a unified viewpoint, as nothing
more than pfaffian identities.

A particular pfaffian identity can be expressed symbolically as

×

= ×

− ×

+ × .

The purpose of this chapter is to understand the meaning of the above diagram-
matic expression. To this end, it is necessary to learn some facts about pfaffians
and determinants.

2.2 Pfaffians

Although the properties of determinants are well known, most people know
little about pfaffians [30]. This section discusses the properties of pfaffians,
which are more varied than those of a determinant. Determinantal identities,
such as Plücker relations and Jacobi identities, are extended and unified as
pfaffian identities, which are, in fact, simpler. There are many other interesting
features of pfaffians which have been discovered (or rediscovered) through
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research into soliton equations. The author is certain that, as pfaffians be-
come more widely known, their applications in other fields will be developed
further.

A pfaffian may be obtained from a determinant in the following way. Let A
be the determinant of an m × m antisymmetric matrix,

A = det(a j,k) (1 ≤ j, k ≤ m), (2.1)

where a j,k = −ak, j . If m is odd, then A = 0, and if m is even, then A is the
square of a pfaffian. This pfaffian has order n, where m = 2n, thought of as a
polynomial in matrix entries, and is denoted

(1, 2, . . . , 2n).

For example, if n = 1, ∣∣∣∣ 0 a1,2

−a1,2 0

∣∣∣∣ = a2
1,2 ≡ (1, 2)2, (2.2)

and, if n = 2,∣∣∣∣∣∣∣∣
0 a1,2 a1,3 a1,4

−a1,2 0 a2,3 a2,4

−a1,3 −a2,3 0 a3,4

−a1,4 −a2,4 −a3,4 0

∣∣∣∣∣∣∣∣ = (a1,2a3,4 − a1,3a2,4 + a1,4a2,3)
2

≡ (1, 2, 3, 4)2. (2.3)

Therefore, a second-order pfaffian given by (1, 2, 3, 4) is expanded as

(1, 2, 3, 4) = (1, 2)(3, 4) − (1, 3)(2, 4) + (1, 4)(2, 3), (2.4)

where ( j, k) = a j,k for j < k. It should be noted that, from the antisymmetric
property ak, j = −a j,k , we have

(k, j) = −( j, k). (2.5)

In general, a pfaffian (1, 2, . . . , 2n) can be expanded as

(1, 2, . . . , 2n) = (1, 2)(3, 4, . . . , 2n) − (1, 3)(2, 4, 5, . . . , 2n)

+ (1, 4)(2, 3, 5, . . . , 2n) − · · ·
+ (1, 2n)(2, 3, . . . , 2n − 1)

=
2n∑
j=2

(−1) j (1, j)(2, 3, . . . , ĵ, . . . , 2n), (2.6)
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where ĵ means that index j is omitted. An alternative expansion is given by

(1, 2, . . . , 2n) = (2, 3, . . . , 2n − 1)(1, 2n)

− (1, 3, 4, . . . , 2n − 1)(2, 2n)

+ (1, 2, 4, . . . , 2n − 1)(3, 2n)

− · · · + (1, 2, . . . , 2n − 2)(2n − 1, 2n)

=
2n−1∑
j=1

(−1) j−1(1, 2, . . . , ĵ, . . . , 2n − 1)( j, 2n). (2.7)

Repeating the above expansion, we arrive at the summation of products of
first-order pfaffians [30]:

(1, 2, . . . , 2n) =
∑′

P

(−1)P (i1, i2)(i3, i4)(i5, i6) · · · (i2n−1, i2n). (2.8)

These first-order pfaffians (i, j) are called the entries in the pfaffian. In the
above equation,

∑′ means the sum over all possible combinations of pairs
selected from {1, 2, . . . , 2n} that satisfy

i1 < i2, i3 < i4, i5 < i6, . . . , i2n−1 < i2n,

i1 < i3 < i5 < · · · < i2n−1. (2.9)

The factor (−1)P takes the value +1 (−1) if the sequence i1, i2, . . . , i2n is an
even (odd) permutation of 1, 2, . . . , 2n.

Remarks
(1) Since the expansion formula (2.8) is hardly ever used in soliton theory, it is

not necessary to memorize it exactly. However, it should be remarked that
this gives another definition of a pfaffian.

(2) The expansion formula (2.8) has a similar structure to that of an nth-order
determinant,

det(a j,k)1≤ j,k≤n =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

...

an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣
=

∑′

P

(−1)P ai1,1ai2,2ai3,3 · · · ain ,n, (2.10)
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where here the sum is over all permutations i1, i2, i3, . . . , in of 1, 2,

3, . . . , n and (−1)P is as in (2.8).
(3) An nth-order pfaffian is expressed using 2n indices (1, 2, . . . , 2n). The

number of independent entries (i, j) is equal to 2nC2, that is, the number
of ways to choose two objects from 2n.

(4) If two indices among the 2n coincide, then the value of the pfaffian is equal
to zero.

(5) We may also use other notation for the pfaffian (1, 2, . . . , 2n).
(i) In order to specify all the entries, we adopt the following notation,

where we use a triangular array, containing the upper triangular entries
of a matrix:

(1, 2, 3, 4, . . . , 2n) =

|a1,2 a1,3 a1,4 · · · a1,2n

a2,3 a2,4 · · · a2,2n

a3,4 · · · a3,2n
. . .

...

a2n−1,2n

∣∣∣∣∣∣∣∣∣∣∣
. (2.11)

(ii) In analogy with the notation for an nth-order determinant, we some-
times employ the notation

(1, 2, 3, 4, . . . , 2n) = Pf (ai, j )1≤i< j≤2n .

(6) Johann Friedrich Pfaff (1765–1825) is famous for the Pfaff form of an
ordinary differential equation. He was known to be a judge of the doctoral
dissertation of the great mathematician Karl Friedrich Gauss. �

2.3 Exterior algebra

Using exterior algebra, which arises in connection with the vector (exterior)
product satisfying A × B = −B × A, one can give a clearer definition of a
determinant and of a pfaffian. First of all, let us introduce a one-form given by

ωi =
n∑

j=1

ai, j x j (i = 1, 2, . . . , 2n). (2.12)

The fundamental property is that the x j ’s satisfy the antisymmetric commuta-
tion relations

xi ∧ x j = −x j ∧ xi , xi ∧ xi = 0. (2.13)

Apart from the above relations, such an object obeys the normal rules of
algebra.
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Remark
We use the product symbol ∧ instead of ×. �

The coefficients ai, j are arbitrary complex functions, and the determinant
det(ai, j )1≤i, j≤n is defined by means of the exterior product of n one-forms:

ω1 ∧ω2 ∧ω3 ∧· · ·∧ωn ≡ det(ai, j )1≤i, j≤n x1 ∧ x2 ∧· · ·∧ xn . (2.14)

For example, if n = 2,

ω1 ∧ ω2 = (a1,1x1 + a1,2x2) ∧ (a2,1x1 + a2,2x2)

= (a1,1a2,2 − a1,2a2,1)x1 ∧ x2

=
∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣ x1 ∧ x2. (2.15)

Next, let � be a two-form given by

� =
∑

1≤i< j≤2n

bi, j x i ∧ x j , bi, j = −b j,i . (2.16)

A pfaffian with (i,j) entry bi, j is defined in terms of the n-tuple exterior product
of �:

� ∧ � ∧ · · · ∧ �︸ ︷︷ ︸
n copies

≡ n! (1, 2, 3, . . . , 2n) x1 ∧ x2 ∧ · · · ∧ x2n . (2.17)

From the above definition, one obtains the expansion formula for the pfaffian.
For example, in the case n = 2, we have

� = (1, 2)x1 ∧ x2 + (1, 3)x1 ∧ x3 + (1, 4)x1 ∧ x4 + (2, 3)x2 ∧ x3

+ (2, 4)x2 ∧ x4 + (3, 4)x3 ∧ x4, (2.18)

and so

� ∧ � =
[
(1, 2)x1 ∧ x2 + (1, 3)x1 ∧ x3 + (1, 4)x1 ∧ x4

+ (2, 3)x2 ∧ x3 + (2, 4)x2 ∧ x4 + (3, 4)x3 ∧ x4
]

∧
[
(1, 2)x1 ∧ x2 + (1, 3)x1 ∧ x3 + (1, 4)x1 ∧ x4

+ (2, 3)x2 ∧ x3 + (2, 4)x2 ∧ x4 + (3, 4)x3 ∧ x4
]
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= (1, 2)(3, 4) x1 ∧ x2 ∧ x3 ∧ x4 + (1, 3)(2, 4) x1 ∧ x3 ∧ x2 ∧ x4

+ (1, 4)(2, 3) x1 ∧ x4 ∧ x2 ∧ x3 + (2, 3)(1, 4) x2 ∧ x3 ∧ x1 ∧ x4

+ (2, 4)(1, 3) x2 ∧ x4 ∧ x1 ∧ x3 + (3, 4)(1, 2) x3 ∧ x4 ∧ x1 ∧ x2

= 2 [(1, 2)(3, 4) − (1, 3)(2, 4) + (1, 4)(2, 3)] x1 ∧ x2 ∧ x3 ∧ x4.

(2.19)

On the other hand, definition (2.17) gives

� ∧ � ≡ 2 (1, 2, 3, 4) x1 ∧ x2 ∧ x3 ∧ x4, (2.20)

and so, comparing (2.19) and (2.20), we obtain the expansion expression

(1, 2, 3, 4) = (1, 2)(3, 4) − (1, 3)(2, 4) + (1, 4)(2, 3). (2.21)

2.4 Expressions for general determinants and wronskians

We have given a definition of the pfaffian through the determinant of a 2n × 2n
antisymmetric matrix. Conversely, an nth-order determinant,

B ≡ det(b j,k)1≤ j,k≤n, (2.22)

is expressed as an nth-order pfaffian,

B = (1, 2, . . . , n, n∗, . . . , 2∗, 1∗), (2.23)

where the pfaffian entries ( j, k), ( j∗, k∗), ( j, k∗) are defined by

( j, k) = 0, ( j∗, k∗) = 0, ( j, k∗) = b j,k . (2.24)

Remark
The superscript ∗ was originally used in connection with creation–annihilation
operators [30] in quantum field theory. In this book, however, it is simply used
to distinguish j and j∗. �

For example, if n = 2, we have∣∣∣∣b1,1 b1,2

b2,1 b2,2

∣∣∣∣ = (1, 2, 2∗, 1∗). (2.25)

This is because

RHS = −(1, 2∗)(2, 1∗) + (1, 1∗)(2, 2∗) = b1,1b2,2 − b1,2b2,1 = LHS.
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Next we consider a wronskian determinant, which often appears in the
theory of linear ordinary differential equations. An nth-order wronskian
Wr( f1, f2, . . . , fn) is defined by

Wr( f1, f2, . . . , fn) ≡ det

(
∂ j−1

∂x j−1
fi

)
1≤i, j≤n

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (0)
1 f (1)

1 f (2)
1 · · · f (n−1)

1

f (0)
2 f (1)

2 f (2)
2 · · · f (n−1)

2

f (0)
3 f (1)

3 f (2)
3 · · · f (n−1)

3
...

...
...

...

f (0)
n f (1)

n f (2)
n · · · f (n−1)

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.26)

where f ( j)
i stands for the j th derivative of fi = fi (x) with respect to x ,

f ( j)
i ≡ ∂ j

∂x j
fi ( j = 0, 1, 2, . . . , n − 1). (2.27)

Let us introduce pfaffian entries

(d j , i) ≡ f ( j)
i , (d j , dk) ≡ 0, (2.28)

for i = 1, 2, . . . , n and j, k = 0, 1, 2, . . . , n − 1. Using these, an nth-order
wronskian can be expressed as an nth-order pfaffian [31]:

Wr( f1, f2, . . . , fn) = (d0, d1, d2, . . . , dn−1, n, . . . , 3, 2, 1). (2.29)

For example, in the case of n = 2, we have∣∣∣∣∣ f (0)
1 f (1)

1

f (0)
2 f (1)

2

∣∣∣∣∣ = (d0, d1, 2, 1)

= −(d0, 2)(d1, 1) + (d0, 1)(d1, 2)

= f (0)
1 f (1)

2 − f (0)
2 f (1)

1 . (2.30)

We have already seen that any nth-order determinant can be expressed as an
nth-order pfaffian. It can also be shown that a 2nth-order determinant can also
be expressed as an nth-order pfaffian. Using the exterior algebra described in
Section 2.3, take 2n one-forms

ωi =
2n∑
j=1

ai, j x j (i = 1, 2, . . . , 2n). (2.31)
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The determinant det(ai, j )1≤i, j≤2n can be defined by

ω1 ∧ ω2 ∧ · · · ∧ ω2n ≡ det(ai, j )1≤i, j≤2n x1 ∧ x2 ∧ · · · ∧ x2n . (2.32)

Next, recall that if � is the two-form

� =
∑

1≤i< j≤2n

(i, j) xi ∧ x j ,

then the pfaffian (1, 2, 3, . . . , 2n) is defined by the n-fold exterior product of
�,

� ∧ � ∧ · · · ∧ �︸ ︷︷ ︸
n copies

≡ n! (1, 2, 3, . . . , 2n) x1 ∧ x2 ∧ · · · ∧ x2n . (2.33)

Now consider the particular two-form

� ≡ ω1 ∧ ω2 + ω3 ∧ ω4 + · · · + ω2n−1 ∧ ω2n . (2.34)

For this �,

� ∧ � ∧ · · · ∧ �︸ ︷︷ ︸
n copies

= n! ω1 ∧ ω2 ∧ ω3 ∧ · · · ∧ ω2n . (2.35)

Let us consider ωi ’s defined by

ωi =
2n∑
j=1

ai, j x j , (i = 1, 2, . . . , 2n). (2.36)

From the definition, we have

ω1 ∧ ω2 ∧ ω3 ∧ · · · ∧ ω2n = det(ai, j )1≤i, j≤2n x1 ∧ x2 ∧ · · · ∧ x2n .

(2.37)

Substituting the above into (2.35), we obtain

� ∧ � ∧ · · · ∧ �︸ ︷︷ ︸
n copies

= n! det(ai, j )1≤i, j≤2n x1 ∧ x2 ∧ x3 ∧ · · · ∧ x2n . (2.38)

On the other hand, substituting (2.36) into (2.34) gives

� =
∑

1≤i< j≤2n

bi, j x i ∧ x j , (2.39)
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where bi, j ’s are given by

bi, j ≡
n∑

m=1

(a2m−1,i a2m, j − a2m−1, j a2m,i ).

It follows from (2.39) that

� ∧ � ∧ · · · ∧ �︸ ︷︷ ︸
n copies

= n! (1, 2, . . . , 2n) x1 ∧ x2 ∧ · · · ∧ x2n, (2.40)

where (i, j) ≡ bi, j for i, j = 1, 2, . . . , 2n. Comparing (2.38) and (2.40), we
deduce that

det(ai, j )1≤i, j≤2n = (1, 2, . . . , 2n), (2.41)

which expresses any 2nth-order determinant as an nth-order pfaffian. For ex-
ample, if n = 1, we have∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ≡ (1, 2) = a1,1a2,2 − a1,2a2,1. (2.42)

An odd-order determinant has the pfaffian representation

det(ai, j )1≤i, j≤2n+1 = (d0, 1, 2, . . . , 2n + 1), (2.43)

with its entries given by

(i, j) =
n∑

m=1

(a2m−1,i a2m, j − a2m−1, j a2m,i ), (d0, i) = a2n+1,i ,

(2.44)

that is, a (2n + 1)th-order determinant may be expressed as an (n + 1)th-order
pfaffian.

For example, if n = 1, we have∣∣∣∣∣∣
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣ = a3,1(a1,2a2,3 −a1,3a2,2)−a3,2(a1,1a2,3 −a1,3a2,1)

+ a3,3(a1,1a2,2 − a1,2a2,1)

= (d0, 1)(2, 3) − (d0, 2)(1, 3) + (d0, 3)(1, 2)

= (d0, 1, 2, 3). (2.45)

From this we observe that the pfaffian expression for an odd-order determinant
is obtained by expanding the determinant by the last row, considering it as a
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sum of even-order determinants and then making use of a pfaffian expression
for these even-order determinants.

2.5 Laplace expansions of determinants and
Plücker relations

2.5.1 Laplace expansions of determinants

An nth-order determinant An = det(ai, j )1≤i, j≤n can be expressed as a sum of
products of r th- and (n − r)th-order determinants.

We first choose r indices i1 < i2 < · · · < ir from 1, 2, 3, . . . , n, and let the
remaining ones be ir+1 < ir+2 < · · · < in . Then we have

An =
∑

(−1)P�

(
i1 i2 · · · ir
j1 j2 · · · jr

)
�

(
ir+1 ir+2 · · · in

jr+1 jr+2 · · · jn

)
,

(2.46)

where P = i1 + i2 + · · · + ir + j1 + j2 + · · · + jr . In the above,

�

(
i1 i2 · · · ir
j1 j2 · · · jr

)
denotes the (r th-order) determinant of the matrix

(
ai p, jq

)
1≤p,q≤r

, and

�

(
ir+1 ir+2 · · · in

jr+1 jr+2 · · · jn

)
denotes the ((n − r)th-order) determinant of the matrix

(
ai p, jq

)
r+1≤p,q≤n

. The
indices j1 < j2 < · · · < jr are chosen from 1, 2, . . . , n, and the remaining
ones are jr+1 < jr+2 < · · · < jn , and

∑
denotes the sum over all possible

such choices, nCr = n!/[r !(n − r)!] in number, of j1, j2, . . . , jr . This expan-
sion formula is called the Laplace expansion of An .

Remark
The Japanese mathematician Yoshita Kurushima (d.1757) discovered the
Laplace expansion of a determinant before Pierre-Simon Laplace (1749–
1827). �

We illustrate the Laplace expansion (2.46) by means of an example.
A fourth-order determinant can be expanded as products of second-order
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determinants as∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

∣∣∣∣∣∣∣∣ =
∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ∣∣∣∣a3,3 a3,4

a4,3 a4,4

∣∣∣∣
−
∣∣∣∣a1,1 a1,3

a2,1 a2,3

∣∣∣∣ ∣∣∣∣a3,2 a3,4

a4,2 a4,4

∣∣∣∣+ ∣∣∣∣a1,1 a1,4

a2,1 a2,4

∣∣∣∣ ∣∣∣∣a3,2 a3,3

a4,2 a4,3

∣∣∣∣
+
∣∣∣∣a1,2 a1,3

a2,2 a2,3

∣∣∣∣ ∣∣∣∣a3,1 a3,4

a4,1 a4,4

∣∣∣∣− ∣∣∣∣a1,2 a1,4

a2,2 a2,4

∣∣∣∣ ∣∣∣∣a3,1 a3,3

a4,1 a4,3

∣∣∣∣
+
∣∣∣∣a1,3 a1,4

a2,3 a2,4

∣∣∣∣ ∣∣∣∣a3,1 a3,2

a4,1 a4,2

∣∣∣∣ . (2.47)

This is an example of a Laplace expansion.
Let us establish the expansion formula (2.47) using exterior algebra. Let ωi

for i = 1, 2, 3, 4 be one-forms,

ωi =
4∑

j=1

ai, j x j (i = 1, 2, 3, 4). (2.48)

Then, by definition, we have

ω1 ∧ ω2 ∧ ω3 ∧ ω4 =

∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

∣∣∣∣∣∣∣∣ x1 ∧ x2 ∧ x3 ∧ x4. (2.49)

On the other hand,

ω1 ∧ ω2 = (a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4)

∧ (a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4)

=
∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣ x1 ∧ x2 +
∣∣∣∣a1,1 a1,3

a2,1 a2,3

∣∣∣∣ x1 ∧ x3

+
∣∣∣∣a1,1 a1,4

a2,1 a2,4

∣∣∣∣ x1 ∧ x4 +
∣∣∣∣a1,2 a1,3

a2,2 a2,3

∣∣∣∣ x2 ∧ x3

+
∣∣∣∣a1,2 a1,4

a2,2 a2,4

∣∣∣∣ x2 ∧ x4 +
∣∣∣∣a1,3 a1,4

a2,3 a2,4

∣∣∣∣ x3 ∧ x4
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and

ω3 ∧ ω4 = (a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4)

∧ (a4,1x1 + a4,2x2 + a4,3x3 + a4,4x4)

=
∣∣∣∣a3,1 a3,2

a4,1 a4,2

∣∣∣∣ x1 ∧ x2 +
∣∣∣∣a3,1 a3,3

a4,1 a4,3

∣∣∣∣ x1 ∧ x3

+
∣∣∣∣a3,1 a3,4

a4,1 a4,4

∣∣∣∣ x1 ∧ x4 +
∣∣∣∣a3,2 a3,3

a4,2 a4,3

∣∣∣∣ x2 ∧ x3

+
∣∣∣∣a3,2 a3,4

a4,2 a4,4

∣∣∣∣ x2 ∧ x4 +
∣∣∣∣a3,3 a3,4

a4,3 a4,4

∣∣∣∣ x3 ∧ x4.

Substituting the above into

ω1 ∧ ω2 ∧ ω3 ∧ ω4 = (ω1 ∧ ω2) ∧ (ω3 ∧ ω4)

gives

ω1 ∧ ω2 ∧ ω3 ∧ ω4

=
{∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ∣∣∣∣a3,3 a3,4

a4,3 a4,4

∣∣∣∣− ∣∣∣∣a1,1 a1,3

a2,1 a2,3

∣∣∣∣ ∣∣∣∣a3,2 a3,4

a4,2 a4,4

∣∣∣∣
+
∣∣∣∣a1,1 a1,4

a2,1 a2,4

∣∣∣∣ ∣∣∣∣a3,2 a3,3

a4,2 a4,3

∣∣∣∣+ ∣∣∣∣a1,2 a1,3

a2,2 a2,3

∣∣∣∣ ∣∣∣∣a3,1 a3,4

a4,1 a4,4

∣∣∣∣
−
∣∣∣∣a1,2 a1,4

a2,2 a2,4

∣∣∣∣ ∣∣∣∣a3,1 a3,3

a4,1 a4,3

∣∣∣∣+ ∣∣∣∣a1,3 a1,4

a2,3 a2,4

∣∣∣∣ ∣∣∣∣a3,1 a3,2

a4,1 a4,2

∣∣∣∣}
× x1 ∧ x2 ∧ x3 ∧ x4.

From (2.49), the terms inside the braces { · · · } are equal to the fourth-order de-
terminant, which completes the proof of the Laplace expansion formula (2.47).

Finally, let us prove the general result. Taking the product of n one-forms,

ωi =
n∑

j=1

ai, j x j (i = 1, 2, . . . , n), (2.50)

we generate an nth-order determinant,

ω1 ∧ ω2 ∧ ω3 ∧ · · · ∧ ωn = det(ai, j )1≤i, j≤n x1 ∧ x2 ∧ · · · ∧ xn .

(2.51)

The left-hand side may be written as the product

(ω1 ∧ ω2 ∧ · · · ∧ ωr ) ∧ (ωr+1 ∧ ωr+2 ∧ · · · ∧ ωn),
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which may be written as a sum of products of r th- and (n − r)th-order deter-
minants. This establishes the formula (2.46) for the Laplace expansion.

2.5.2 Plücker relations

The following sum of products of second-order determinants,∣∣∣∣a0 a1

b0 b1

∣∣∣∣ ∣∣∣∣a2 a3

b2 b3

∣∣∣∣− ∣∣∣∣a0 a2

b0 b2

∣∣∣∣ ∣∣∣∣a1 a3

b1 b3

∣∣∣∣+ ∣∣∣∣a0 a3

b0 b3

∣∣∣∣ ∣∣∣∣a1 a2

b1 b2

∣∣∣∣ = 0, (2.52)

is satisfied identically. This may be proved directly by expanding each deter-
minant. There is, however, another method of proof. Consider the fourth-order
determinant, ∣∣∣∣∣∣∣∣

a0 a1 a2 a3

b0 b1 b2 b3

0 a1 a2 a3

0 b1 b2 b3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
a0 0 0 0
b0 0 0 0
0 a1 a2 a3

0 b1 b2 b3

∣∣∣∣∣∣∣∣ . (2.53)

By means of the Laplace expansion theorem, the determinants on each side of
this equation may be expanded to give∣∣∣∣a0 a1

b0 b1

∣∣∣∣ ∣∣∣∣a2 a3

b2 b3

∣∣∣∣− ∣∣∣∣a0 a2

b0 b2

∣∣∣∣ ∣∣∣∣a1 a3

b1 b3

∣∣∣∣+ ∣∣∣∣a0 a3

b0 b3

∣∣∣∣ ∣∣∣∣a1 a2

b1 b2

∣∣∣∣ = 0, (2.54)

as required. Note that (2.54) can be expressed entirely in terms of the column
vectors ci = (ai , bi )

t as

|c0 c1| |c2 c3| − |c0 c2| |c1 c3| + |c0 c3| |c1 c2| = 0. (2.55)

This is the simplest case of a Plücker relation.
In fact, only the indices are important in (2.55), and so we may also express

it as

(0 1)(2 3) − (0 2)(1 3) + (0 3)(1 2) = 0. (2.56)

The above expression may also be written in diagrammatic form using Sato’s
Maya diagrams

0 1 2 3

×
0 1 2 3

− ×

+ × = 0.
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In the same way, the identity∣∣∣∣∣∣
f a0 a1

g b0 b1

h c0 c1

∣∣∣∣∣∣
∣∣∣∣∣∣

f a2 a3

g b2 b3

h c2 c3

∣∣∣∣∣∣−
∣∣∣∣∣∣

f a0 a2

g b0 b2

h c0 c2

∣∣∣∣∣∣
∣∣∣∣∣∣

f a1 a3

g b1 b3

h c1 c3

∣∣∣∣∣∣
+
∣∣∣∣∣∣

f a0 a3

g b0 b3

h c0 c3

∣∣∣∣∣∣
∣∣∣∣∣∣

f a1 a2

g b1 b2

h c1 c2

∣∣∣∣∣∣ = 0, (2.57)

for a sum of products of third-order determinants follows from the Laplace
expansion of the sixth-order determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

f a0 a1 0 a2 a3

g b0 b1 0 b2 b3

h c0 c1 0 c2 c3

0 0 a1 f a2 a3

0 0 b1 g b2 b3

0 0 c1 h c2 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.58)

which is zero. Equation (2.57) may be expressed simply as

( f 0 1)( f 2 3) − ( f 0 2)( f 1 3) + ( f 0 3)( f 1 2) = 0, (2.59)

and can be extended to

( f1 f2 · · · fN 0 1)( f1 f2 · · · fN 2 3) − ( f1 f2 · · · fN 0 2)

× ( f1 f2 · · · fN 1 3)+ ( f1 f2 · · · fN 0 3)( f1 f2 · · · fN 1 2) = 0,

(2.60)

which can be expressed in terms of Maya diagrams as

f1 f2 fN 0 1 2 3

×
f1 f2 fN 0 1 2 3

− ×
+ × = 0.

Remark
If one expresses solutions to the KP equation or the two-dimensional Toda
lattice equation in wronskian form, their bilinear forms give this identity. The
number N corresponds to the number of solitons in the solution. One of the
merits in the wronskian expression of the solution is that the verification of
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the N -soliton solution can be performed in the same way as the two-soliton
solution. �

Here let us discuss the relationship between Sato’s Maya diagrams and
Young diagrams. A Maya diagram describes a state in which fermions are dis-
tributed in a one-dimensional array of cells. Only one fermion can occupy each
cell. We suppose that cells sufficiently far to the left are occupied with parti-
cles and that cells sufficiently far to the right are empty. This corresponds to a
state in which fermions have been excited from a vacuum state. We distinguish
occupied and empty cells using the symbols and , respectively. Even
though we have already denoted an empty cell by leaving it blank, we will use
the notation in order to clarify the correspondence with a Young diagram.
An arbitrary Maya diagram,

corresponds to the Young diagram [32],

That is, and correspond to and in the Young diagram, respec-
tively. Therefore, if one replaces each element in the Plücker relation,

f1 f2 fN 0 1 2 3

×
f1 f2 fN 0 1 2 3

− ×
+ × = 0 ,
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with

→ = τφ,

→ = τ ,

→ = τ ,

→ = τ ,

→ = τ ,

→ = τ ,

we have

τφτ − τ τ + τ τ = 0,

where φ stands for the vacuum state. It was Sato [12, 13] who discovered first
that the KP equation in bilinear form,

(D4
1 − 4D1 D3 + 3D2

2)τ · τ = 0, (2.61)

was nothing but a Plücker relation.
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2.6 Jacobi identities for determinants

2.6.1 Cofactors

Consider a matrix A = (ai, j )1≤i, j≤n whose determinant is D. The cofactor
�i, j with respect to ai, j is the determinant of the matrix obtained by elimi-
nating the i th row and j th column from A, multiplied by (−1)i+ j . Then the
following expansion formulae hold:

D =
n∑

i=1

ai, j�i, j ( j = 1, 2, . . . , n)

=
n∑

j=1

ai, j�i, j (i = 1, 2, . . . , n). (2.62)

These are special cases of the orthogonality relations

n∑
i=1

ai, j�i,k = δ j,k D, (2.63a)

n∑
j=1

ai, j�k, j = δi,k D, (2.63b)

where δi, j is the Kronecker δ symbol, equal to 1 if i = j and 0 otherwise.
Similarly, let us introduce the cofactor �(i, j) with respect to (i, j) in the

nth-order pfaffian (1, 2, 3, . . . , 2n) defined by

�(i, j) = (−1)i+ j (1, 2, . . . , î, . . . , ĵ, . . . , 2n) (i < j),

�( j, i) = −�(i, j), �(i, i) = 0. (2.64)

In the case n = 1, the cofactor of (1, 2), �(1, 2), is defined to be unity.
The formula for expanding a pfaffian by its cofactors is

(1, 2, 3, . . . , 2n) =
2n∑
j=1

(i, j) �(i, j) (i = 1, 2, . . . , 2n). (2.65)

As for a determinant, the cofactors of a pfaffian satisfy orthogonality relations,

2n∑
i=1

(i, j) �(i, k) = δ j,k P, (2.66a)

2n∑
j=1

(i, j) �(k, j) = δi,k P, (2.66b)
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where P ≡ (1, 2, 3, . . . , 2n). For example, in the case i = 1, k = 2, the
pfaffian orthogonality relation (2.66b) is

2n∑
j=3

(1, j) �(2, j) = 0.

This is simply an expansion formula of the vanishing pfaffian (1, 1, 3, 4, . . . ,
2n).

Now let us consider the case where n, the order of a determinant D, is even
and each matrix element ai, j equals the pfaffian entry (i, j). The orthogonality
relations (2.63) may be rewritten as

n∑
i=1

ai, j�i,k = δ j,k P2,

n∑
j=1

ai, j�k, j = δi,k P2. (2.67)

Comparing the above formulae with the pfaffian orthogonality relations (2.66),
we obtain

�i,k = �(i, k)P. (2.68)

Since the pfaffian cofactors �(i, j) are, by definition, antisymmetric, we
can consider the mth-order pfaffian with entries �(i, j),

�(1, 2, 3, 4, . . . , 2m) =
| �(1, 2) �(1, 3) �(1, 4) · · · �(1, 2m)

�(2, 3) �(2, 4) · · · �(2, 2m)

�(3, 4) · · · �(3, 2m)

. . .
...

�(2m − 1, 2m)

∣∣∣∣∣∣∣∣∣∣∣
. (2.69)

Remark
The expansion formula of the above pfaffian is given by

�(1, 2, 3, . . . , 2m) =
2m∑
j=1

(−1) j�(1, j)�(2, 3, . . . , ĵ, . . . , 2m).

(2.70)
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In fact, we can also obtain pfaffian identities by reinterpreting this expansion
formula. �

2.6.2 Jacobi identities for determinants [33]

The (N − 1)th-order determinant obtained by eliminating the j th row and the
kth column from an N th-order determinant D = det(ai, j )1≤i, j≤N is called the

( j, k)th minor of D, which is denoted by D

[
j
k

]
. As defined above, the cofactor

� jk equals D

[
j
k

]
multiplied by a signature (−1) j+k . That is,

� j,k ≡ (−1) j+k D

[
j
k

]
, (2.71)

where

D

[
j
k

]
≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 · · · a1,k−1 k a1,k+1 · · · a1,N

a2,1 a2,2 a2,3 · · · a2,k−1 a2,k+1 · · · a2,N
...

...
...

...
...

...

a j−1,1 a j−1,2 a j−1,3 · · · a j−1,k−1 a j−1,k+1 · · · a j−1,N

j

a j+1,1 a j+1,2 a j+1,3 · · · a j+1,k−1 a j+1,k+1 · · · a j+1,N
...

...
...

...
...

...

aN ,1 aN ,2 aN ,3 · · · aN ,k−1 aN ,k+1 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(2.72)

where the shading indicates the row and column that have been removed. In
the same way, we denote the (N − 2)nd-order determinant obtained by elimi-
nating the j th and kth rows and the lth and mth columns from the determinant

D as D

[
j k
l m

]
. The formula

D

[
i
i

]
D

[
j
j

]
− D

[
i
j

]
D

[
j
i

]
= D

[
i j
i j

]
D, (2.73)

which is called the Jacobi identity [33], will be proved below.
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First, let us write out (2.73) explicitly in the case N = 3:

D

[
2
2

]
D

[
3
3

]
− D

[
2
3

]
D

[
3
2

]
= D

[
2 3
2 3

]
D. (2.74)

The determinant D is given by

D =
∣∣∣∣∣∣
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣ , (2.75)

and the minor D

[
2
2

]
, obtained by eliminating the second row and the second

column from D, is

D

[
2
2

]
=
∣∣∣∣a1,1 a1,3

a3,1 a3,3

∣∣∣∣ . (2.76)

Similarly, we have

D

[
3
3

]
=
∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣ , D

[
2
3

]
=
∣∣∣∣a1,1 a1,2

a3,1 a3,2

∣∣∣∣ ,
D

[
3
2

]
=
∣∣∣∣a1,1 a1,3

a2,1 a2,3

∣∣∣∣ , D

[
2 3
2 3

]
= a1,1. (2.77)

Hence, the Jacobi identity is rewritten as∣∣∣∣a1,1 a1,3

a3,1 a3,3

∣∣∣∣ ∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣− ∣∣∣∣a1,1 a1,2

a3,1 a3,2

∣∣∣∣ ∣∣∣∣a1,1 a1,3

a2,1 a2,3

∣∣∣∣
= a1,1

∣∣∣∣∣∣
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣ . (2.78)

The above formula can be verified by direct calculation. Even though we can
also make the same verification in the cases N = 3, 4, 5 by using computer
algebra, it is still necessary to prove the formula for all N . The following proof
is known [33].

We consider the product of D and an N th-order determinant of cofactors,
which we denote by �22:

D�22 =
∣∣∣∣A11 A12

A21 A22

∣∣∣∣ ∣∣∣∣E �12

0 �22

∣∣∣∣
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≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1,r a1,r+1 · · · a1,n

a2,1 · · · a2,r a2,r+1 · · · a2,n
...

...
...

...

ar,1 · · · ar,r ar,r+1 · · · ar,n

ar+1,1 · · · ar+1,r ar+1,r+1 · · · ar+1,n

ar+2,1 · · · ar+2,r ar+2,r+1 · · · ar+2,n
...

...
...

...

an,1 · · · anr an,r+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 �r+1,1 · · · �n,1

0 1
. . .

... �r+1,2 · · · �n,2
...

. . .
. . . 0

...
...

0 · · · 0 1 �r+1,r · · · �n,r

0 0 · · · 0 �r+1,r+1 · · · �n,r+1

0 0 · · · 0 �r+1,r+2 · · · �n,r+2
...

...
...

... · · · ...

0 0 · · · 0 �r+1,n · · · �n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (2.79)

where E is the r × r identity matrix, 0 is the (n − r) × r zero matrix, and

A11 ≡

⎛⎜⎜⎜⎜⎝
a1,1 · · · a1,r

a2,1 · · · a2,r
...

...

ar,1 · · · ar,r

⎞⎟⎟⎟⎟⎠ , A12 ≡

⎛⎜⎜⎜⎜⎝
a1,r+1 · · · a1,n

a2,r+1 · · · a2,n
...

...

ar,r+1 · · · ar,n

⎞⎟⎟⎟⎟⎠ ,

A21 ≡

⎛⎜⎜⎜⎜⎝
ar+1,1 · · · ar+1,r

ar+2,1 · · · ar+2,r
...

...

an,1 · · · an,r

⎞⎟⎟⎟⎟⎠ , A22 ≡

⎛⎜⎜⎜⎜⎝
ar+1,r+1 · · · ar+1,n

ar+2,r+1 · · · ar+2,n
...

...

an,r+1 · · · an,n

⎞⎟⎟⎟⎟⎠ ,

�12 ≡

⎛⎜⎜⎜⎜⎝
�r+1,1 · · · �n,1

�r+1,2 · · · �n,2
...

...

�r+1,r · · · �n,r

⎞⎟⎟⎟⎟⎠ , �22 ≡

⎛⎜⎜⎜⎜⎝
�r+1,r+1 · · · �n,r+1

�r+1,r+2 · · · �n,r+2
...

...

�r+1,n · · · �n,n

⎞⎟⎟⎟⎟⎠ .
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Because of the orthogonality of the matrix entries ai, j and the cofactors
�i, j , we have ∣∣∣∣A11 A12

A21 A22

∣∣∣∣ ∣∣∣∣E �12

0 �22

∣∣∣∣ =
∣∣∣∣A11 0
A21 DE

∣∣∣∣ , (2.80)

where now 0 is the r × (n − r) zero matrix, E is the (n − r) × (n − r) identity
matrix. The right-hand side of (2.80) written explicitly is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1,r 0 · · · 0

a2,1 · · · a2,r 0 · · · 0
...

...
...

...

ar,1 · · · ar,r 0 · · · 0

ar+1,1 · · · ar+1,r D · · · 0
...

...
...

. . .
...

an,1 · · · an,r 0 · · · D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.80′)

Hence, (2.80) is equivalent to

D

∣∣∣∣∣∣∣∣∣∣
�r+1,r+1 · · · �n,r+1

�r+1,r+2 · · · �n,r+2
...

...

�r+1,n · · · �nn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
a1,1 · · · a1,r

a2,1 · · · a2,r
...

...

ar,1 · · · ar,r

∣∣∣∣∣∣∣∣∣∣
Dn−r ,

or, equivalently,∣∣∣∣∣∣∣∣∣∣
�r+1,r+1 · · · �n,r+1

�r+1,r+2 · · · �n,r+2
...

...

�r+1,n · · · �n,n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
a1,1 · · · a1,r

a2,1 · · · a2,r
...

...

ar,1 · · · ar,r

∣∣∣∣∣∣∣∣∣∣
Dn−r−1. (2.81)

Putting r = n − 2, this gives

�n−1,n−1�n,n − �n−1,n�n,n−1 =

∣∣∣∣∣∣∣∣∣∣
a1,1 · · · a1,n−2

a2,1 · · · a2,n−2
...

...

an−2,1 · · · an−2,n−2

∣∣∣∣∣∣∣∣∣∣
D, (2.82)
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which is nothing but the Jacobi identity,

D

[
n − 1
n − 1

]
D

[
n
n

]
− D

[
n − 1

n

]
D

[
n

n − 1

]
= D

[
n − 1 n
n − 1 n

]
D. (2.83)

Snake’s legs
Looking at the proof of the general case, it is difficult to understand the Jacobi
identity immediately. The author came to understand the result by checking the
formulae using computer algebra, looking for an alternative proof and applying
it to actual problems. �

Remarks
(1) By employing the pfaffian expression for determinants given in Section

2.4, the terms in the above Jacobi identity are expressed as

D

[
n − 1
n − 1

]
= (1, 2, · · · , n − 2, n, n∗, n − 2∗, . . . , 2∗, 1∗),

D

[
n
n

]
= (1, 2, . . . , n − 2, n − 1, n − 1∗, n − 2∗, . . . , 2∗, 1∗),

D

[
n − 1

n

]
= (1, 2, . . . , n − 2, n, n − 1∗, n − 2∗, . . . , 2∗, 1∗),

D

[
n

n − 1

]
= (1, 2, . . . , n − 2, n − 1, n∗, n − 2∗, . . . , 2∗, 1∗),

D

[
n − 1 n

n − 1 n

]
= (1, 2, . . . , n − 2, n − 2∗, . . . , 2∗, 1∗),

D = (1, 2, . . . , n − 2, n − 1, n, n∗, n − 1∗, n − 2∗, . . . , 2∗, 1∗),

where

( j, k) = ( j∗, k∗) = 0, ( j, k∗) = a j,k .

By means of the Maya diagrams, the Jacobi identity is rewritten as



84 Determinants and pfaffians

n−1 n n∗ n−1∗

×
n−1 n n∗ n−1∗

− ×

= × .

(2) As will be shown later, if one expresses the solutions to the KP equa-
tion and the Toda lattice equation as grammian determinants, their bilin-
ear equations become Jacobi identities. As a matter of fact, the author did
not know of the Jacobi identity when he started his research into solitons.
He expected that the solution to the bilinear KdV equation could be ex-
pressed as a determinant but could not prove it in that form. As a result
of trial and error, he expanded the determinant, changed the way of writ-
ing the solution, and finally managed the proof by establishing a particular
polynomial identity (the Hirota condition). Luckily, this expression and the
proof are effective for all types (A-type, B-type, . . . [15]) of soliton equa-
tions. The proof by means of the Jacobi identity is useless for the verifica-
tion of the solutions to B-type soliton equations, as these are expressed as
pfaffians not determinants. Therefore, if the author had known the Jacobi
identity, the discovery of B-type soliton equations might have taken much
longer. �

2.7 Special determinants

2.7.1 Perfect square formula (i)

Employing the Jacobi identity, we may prove the theorem which is used in
the definition of a pfaffian. Namely, that the determinant of the n × n antisym-
metric matrix An = det[a j,k]1≤ j,k≤n is equal to zero if n is odd and equal to a
perfect square of a polynomial in a j,k , called the pfaffian, if n is even.

By using elementary row operations, we may show that An = (−1)n An . If
n is odd, then An = −An , and hence An = 0. For example,∣∣∣∣∣∣

0 a1,2 a1,3

−a1,2 0 a2,3

−a1,3 −a2,3 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0 −a1,2 −a1,3

a1,2 0 −a2,3

a1,3 a2,3 0

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
0 a1,2 a1,3

−a1,2 0 a2,3

−a1,3 −a2,3 0

∣∣∣∣∣∣ , (2.84)

and hence A3 = 0.
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Let D be the determinant of a 2m × 2m antisymmetric matrix. Then we
have

D

[
2m
2m

]
= D

[
2m − 1
2m − 1

]
= 0, D

[
2m − 1

2m

]
= −D

[
2m

2m − 1

]
.

(2.85)

Hence, the Jacobi identity gives

D

[
2m − 1 2m
2m − 1 2m

]
D =

(
D

[
2m − 1

2m

])2

(m = 1, 2, 3, . . . ).

(2.86)

In the case m = 1, we have D = a2
1,2. Using this recurrence relation, we de-

duce that D is a perfect square for arbitrary m.

2.7.2 Perfect square formula (ii)

Consider the n × n identity matrix E and antisymmetric n × n matrices A and
B. We will show that the determinant det(E + AB) is a perfect square,

det(E + AB) = (1, 2, . . . , n, 1∗, 2∗, . . . , n∗)2, (2.87)

where A = (ai, j )1≤i, j≤n , B = (bi, j )1≤i, j≤n and the pfaffian entries are given
by

(i, j) = ai, j = −a j,i ,

(i∗, j∗) = bi, j = −b j,i ,

(i, j∗) = ( j, i∗) = δi, j .

For example, in the case of n = 3, this gives∣∣∣∣∣∣∣∣
1+a1,2b2,1 +a1,3b3,1 a1,3b3,2 a1,2b2,3

a2,3b3,1 1+a2,1b1,2 +a2,3b3,2 a2,1b1,3

a3,2b2,1 a3,1b1,2 1+a3,1b1,3 +a3,2b2,3

∣∣∣∣∣∣∣∣
= (1, 2, 3, 1∗, 2∗, 3∗)2

= [(1, 2)(3, 1∗, 2∗, 3∗) − (1, 3)(2, 1∗, 2∗, 3∗)

+ (1, 1∗)(2, 3, 2∗, 3∗)]2
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= [(1, 2)(3, 3∗)(1∗, 2∗) + (1, 3)(2, 2∗)(1∗, 3∗)

+ (1, 1∗)(2, 3)(2∗, 3∗) − (1, 1∗)(2, 2∗)(3, 3∗)]2

= [a1,2b1,2 + a1,3b1,3 + a2,3b2,3 − 1]2. (2.88)

The identity (2.87) is proved as follows. First of all, we express the square
of the pfaffian on the right-hand side as the determinant of an antisymmetric
matrix:

(1, 2, · · · , n, 1∗, 2∗, · · · , n∗)2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1, 1) (1, 2) (1, 3) · · · (1, n) (1, 1∗) (1, 2∗) · · · (1, n∗)

(2, 1) (2, 2) (2, 3) · · · (2, n) (2, 1∗) (2, 2∗) · · · (2, n∗)
...

...
...

...
...

...
...

(n, 1) (n, 2) (n, 3) · · · (n, n) (n, 1∗) (n, 2∗) · · · (n, n∗)

(1∗, 1) (1∗, 2) (1∗, 3) · · · (1∗, n) (1∗, 1∗) (1∗, 2∗) · · · (1∗, n∗)

(2∗, 1) (2∗, 2) (2∗, 3) · · · (2∗, n) (2∗, 1∗) (2∗, 2∗) · · · (2∗, n∗)
...

...
...

...
...

...
...

(n∗, 1) (n∗, 2) (n∗, 3) · · · (n∗, n) (n∗, 1∗) (n∗, 2∗) · · · (n∗, n∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a1,2 a1,3 · · · a1,n 1 0 0 · · · 0

a2,1 0 a2,3 · · · a2,n 0 1 0 · · · 0

a3,1 a3,2 0 · · · a3,n 0 0 1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

an,1 an,2 an,3 · · · 0 0 0 0 · · · 1

−1 0 0 · · · 0 0 b1,2 b1,3 · · · b1,n

0 −1 0 · · · 0 b2,1 0 b2,3 · · · b2,n

0 0 −1 · · · 0 b3,1 b3,2 0 · · · b3,n

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · −1 bn,1 bn,2 bn,3 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Interchanging columns of this determinant so that an identity matrix is on its
diagonal and multiplying each of the final n rows by −1, the right-hand side
equals∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 a1,2 a1,3 · · · a1,n

0 1 0 · · · 0 a2,1 0 a2,3 · · · a2,n

0 0 1 · · · 0 a3,1 a3,2 0 · · · a3,n

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · 1 an,1 an,2 an,3 · · · 0

0 −b1,2 −b1,3 · · · −b1,n 1 0 0 · · · 0

−b2,1 0 −b2,3 · · · −b2,n 0 1 0 · · · 0

−b3,1 −b3,2 0 · · · −b3,n 0 0 1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

−bn,1 −bn,2 −bn,3 · · · 0 0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣ E A

−B E

∣∣∣∣∣ = |E + AB|.

2.7.3 Bordered determinants

Bordered determinants play an important role in proving that the bilinear KP
and two-dimensional Toda lattice equations can be expressed as Jacobi identi-
ties.

Let A be an n × n matrix, let |A| be its determinant and let �i, j be its
cofactor with respect to some matrix entry ai, j . Then it is quite easy to prove
that [34]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 · · · a1,n x1

a2,1 a2,2 a2,3 · · · a2,n x2

a3,1 a3,2 a3,3 · · · a3,n x3

...
...

...
...

...

an,1 an,2 an,3 · · · an,n xn

y1 y2 y3 · · · yn z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |A|z −

n∑
i, j=1

�i, j xi y j . (2.89)
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Expanding the determinant on the left-hand side with respect to the (n + 1)th
column, we have

|A|z +
n∑

i=1

(−1)n+i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

...
...

...
...

ai−1,1 ai−1,2 ai−1,3 · · · ai−1,n

i

ai+1,1 ai+1,2 ai+1,3 · · · ai+1,n

...
...

...
...

an1 an2 an3 · · · ann

y1 y2 y3 · · · yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi .

Expanding each of the above determinants with respect to its nth row, we
obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 · · · a1,n

...
...

...
...

ai−1,1 ai−1,2 ai−1,3 · · · ai−1,n

i

ai+1,1 ai+1,2 ai+1,3 · · · ai+1,n

...
...

...
...

an,1 an,2 an,3 · · · an,n

y1 y2 y3 · · · yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

j=1

(−1)n+ j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1, j−1 j a1, j+1 · · · a1,n

...
...

...
...

ai−1,1 · · · ai−1, j−1 ai−1, j+1 · · · ai−1,n

i

ai+1,1 · · · ai+1, j−1 ai+1, j+1 · · · ai+1,n

...
...

...
...

an,1 · · · an, j−1 an, j+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y j,

from which we can observe the coefficient of xi y j to be −�i, j .
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By moving the (n + 1)th row and column to the first row and column, re-
spectively, this bordered determinant can also be written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z y1 y2 y3 · · · yn

x1 a1,1 a1,2 a1,3 · · · a1,n

x2 a2,1 a2,2 a2,3 · · · a2,n

x3 a3,1 a3,2 a3,3 · · · a3,n
...

...
...

...
...

xn an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |A|z −

n∑
i, j=1

�i, j xi y j . (2.90)

Remarks
(1) If z = 1, the left-hand side of (2.90) is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y1 y2 y3 · · · yn

x1 a1,1 a1,2 a1,3 · · · a1,n

x2 a2,1 a2,2 a2,3 · · · a2,n

x3 a3,1 a3,2 a3,3 · · · a3,n
...

...
...

...
...

xn an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y1 y2 · · · yn

0 a1,1 − x1 y1 a1,2 − x1 y2 · · · a1,n − x1 yn

0 a2,1 − x2 y1 a2,2 − x2 y2 · · · a2,n − x2 yn

0 a3,1 − x3 y1 a3,2 − x3 y2 · · · a3,n − x3 yn
...

...
...

...

0 an,1 − xn y1 an,2 − xn y2 · · · an,n − xn yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

after using Gaussian elimination. Hence, for z = 1, (2.90) gives∣∣∣∣∣∣∣∣∣∣∣

a1,1 − x1 y1 a1,2 − x1 y2 · · · a1,n − x1 yn

a2,1 − x2 y1 a2,2 − x2 y2 · · · a2,n − x2 yn

a3,1 − x3 y1 a3,2 − x3 y2 · · · a3,n − x3 yn
...

...
...

an,1 − xn y1 an,2 − xn y2 · · · an,n − xn yn

∣∣∣∣∣∣∣∣∣∣∣
= |A|−

n∑
i, j=1

�i, j xi yj .

(2.91)

If we impose the additional constraints that (i) the matrix entries are anti-
symmetric, ai, j = −a j,i , and (ii) xi = yi , then � j,i = −�i, j , and so the
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second term on the right-hand side of (2.91) is

n∑
i, j=1

�i, j yi y j = −
n∑

i, j=1

� j,i y j yi = −
n∑

i, j=1

�i, j yi y j = 0.

Therefore, if n is even, we obtain the identity∣∣∣∣∣∣∣∣∣∣∣

a1,1 − y1 y1 a1,2 − y1 y2 · · · a1,n − y1 yn

a2,1 − y2 y1 a2,2 − y2 y2 · · · a2,n − y2 yn

a3,1 − y3 y1 a3,2 − y3 y2 · · · a3,n − y3 yn
...

...
...

an,1 − yn y1 an,2 − yn y2 · · · an,n − yn yn

∣∣∣∣∣∣∣∣∣∣∣
= |A| = (1, 2, · · · , n)2, (2.92)

where the pfaffian entries are (i, j) = ai, j .
(2) Equation (2.92) implies that adding yi y j to each entry ai, j of an antisym-

metric matrix does not change the value of the pfaffian of (ai, j ). This fact
will be used in Chapter 3 to derive the relationship between the solutions
of the KP equation given by τKP and those of the BKP equation given by
τBKP,

τKP = τ 2
BKP.

�

The following identity holds for bordered determinants:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y1 y2 y3 · · · yn

z1 a1,1 a1,2 a1,3 · · · a1,n

z2 a2,1 a2,2 a2,3 · · · a2,n

z3 a3,1 a3,2 a3,3 · · · a3,n
...

...
...

...
...

zn an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 y1 y2 y3 · · · yn

0 0 c1 c2 c3 · · · cn

x1 b1 a1,1 a1,2 a1,3 · · · a1,n

x2 b2 a2,1 a2,2 a2,3 · · · a2,n

x3 b3 a3,1 a3,2 a3,3 · · · a3,n
...

...
...

...
...

...

xn bn an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y1 y2 y3 · · · yn

z1 b1c1 b1c2 b1c3 · · · b1cn

x2 a2,1 a2,2 a2,3 · · · a2,n

x3 a3,1 a3,2 a3,3 · · · a3,n
...

...
...

...
...

xn an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+
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+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y1 y2 y3 · · · yn

x1 a1,1 a1,2 a1,3 · · · a1,n

z2 b2c1 b2c2 b2c3 · · · b2cn

x3 a3,1 a3,2 a3,3 · · · a3,n

...
...

...
...

...

xn an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y1 y2 y3 · · · yn

x1 a1,1 a1,2 a1,3 · · · a1,n

x2 a2,1 a2,2 a2,3 · · · a2,n

z3 b3c1 b3c2 b3c3 · · · b3cn

...
...

...
...

...

xn an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y1 y2 y3 · · · yn

x1 a1,1 a1,2 a1,3 · · · a1,n

x2 a2,1 a2,2 a2,3 · · · a2,n

x3 a3,1 a3,2 a3,3 · · · a3,n

...
...

...
...

...

zn bnc1 bnc2 bnc3 · · · bncn .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.93)

The above identity is linear in c1, c2, . . . , cn and can be proved by comparing
the coefficients of c j on each side for j = 1, 2, . . . , n. First, we set c1 = c2 =
· · · = cn = 0. Then (2.93) holds because expansion of its left-hand side by the
first column gives its right-hand side. Next, considering the coefficient in c1 of
this identity we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 y2 · · · yn

x1 b1 a1,2 · · · a1,n

x2 b2 a2,2 · · · a2,n

x3 b3 a3,2 · · · a3,n

...
...

...
...

xn bn an,2 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= b1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y2 · · · yn

x2 a2,2 · · · a2,n

x3 a3,2 · · · a3,n

...
...

...

xn an,2 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−
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− b2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y2 · · · yn

x1 a1,2 · · · a1,n

x3 a3,2 · · · a3,n

...
...

...

xn an,2 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ b3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y2 · · · yn

x1 a1,2 · · · a1,n

x2 a2,2 · · · a2,n

x4 a4,2 · · · a4,n

...
...

...

xn an,2 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− · · ·

+ (−1)n+1bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y2 · · · yn

x1 a1,2 · · · a1,n

x2 a2,2 · · · a2,n

...
...

...

xn−1 an−1,2 · · · an−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This holds because the right-hand side is simply the expansion of the left-hand
side by the second column. Similarly, the identity holds for the coefficient of
any c j . This completes the proof of (2.93).

2.8 Pfaffian identities

There are various kinds of pfaffian identities which will be proved in this sec-
tion. We start with the expansion formula for the mth-order pfaffian

(a1, a2, a3, . . . , a2m) =
2m∑
j=2

(−1) j (a1, a j )(a2, a3, . . . , â j , . . . , a2m).

(2.94)

Appending 2n indices 1, 2, . . . , 2n homogeneously to each pfaffian in the
above formula, we obtain an extended expansion formula,

(a1, a2, . . . , a2m, 1, 2, . . . , 2n)(1, 2, . . . , 2n)

=
2m∑
j=2

(−1) j (a1, a j , 1, 2, . . . , 2n)

× (a2, a3, . . . , â j , . . . , a2m, 1, 2, . . . , 2n). (2.95)
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Next, expanding the vanishing pfaffian (a1, a2, a3, . . . , am, 2n, 1, 1) (m is
odd), with respect to the final index 1, we obtain

0 =
m∑

j=1

(−1) j−1(a1, a2, a3, . . . , â j , . . . , am, 2n, 1)(a j , 1)

− (a1, a2, a3, . . . , am, 1)(2n, 1).

Therefore, we have

(a1, a2, a3, . . . , am, 1)(1, 2n) =
m∑

j=1

(−1) j−1(a j , 1)

× (a1, a2, a3, . . . , â j , . . . , am, 1, 2n).

Appending 2n − 2 indices 2, 3, . . . , 2n − 1 homogeneously to each pfaffian
again, we obtain the identity

(a1, a2, . . . , am, 1, 2, . . . , 2n − 1)(1, 2, . . . , 2n)

=
m∑

j=1

(−1) j−1(a j , 1, 2, . . . , 2n − 1)

× (a1, a2, a3, . . . , â j , . . . , am, 1, 2, . . . , 2n). (2.96)

These formulae will be proved below.
For example, in the case m = 2, (2.95) is written as

(a1, a2, a3, a4, 1, 2, . . . , 2n)(1, 2, . . . , 2n)

= (a1, a2, 1, 2, . . . , 2n)(a3, a4, 1, 2, . . . , 2n)

− (a1, a3, 1, 2, . . . , 2n)(a2, a4, 1, 2, . . . , 2n)

+ (a1, a4, 1, 2, . . . , 2n)(a2, a3, 1, 2, . . . , 2n). (2.95′)

In the case m = 3, (2.96) is written as

(a1, a2, a3, 1, 2, . . . , 2n − 1)(1, 2, . . . , 2n)

= (a1, 1, 2, . . . , 2n − 1)(a2, a3, 1, 2, . . . , 2n)

− (a2, 1, 2, . . . , 2n − 1)(a1, a3, 1, 2, . . . , 2n)

+ (a3, 1, 2, . . . , 2n − 1)(a1, a2, 1, 2, . . . , 2n). (2.96′)
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Remarks
(1) Equations (2.95′) and (2.96′) are expressed in terms of Maya diagrams as

a1 a2 a3 a4

×
a1 a2 a3 a4

= ×

− ×

+ ×

and

a1 a2 a3 2n

×
a1 a2 a3 2n

= ×

− ×

+ × .

(2) One of main themes in the direct method is that a variety of soliton equa-
tions give rise to the above pfaffian identities. �

The rest of this section is devoted to proving these identities. We begin by
proving the identity [35]

M∑
j=0

(−1) j (b0, b1, b2, . . . , b̂ j , . . . , bM )(b j , c0, c1, . . . , cN )

=
N∑

k=0

(−1)k(b0, b1, b2, . . . , bM , ck)(c0, c1, c2, . . . , ĉk, . . . , cN ).

(2.97)

This identity is expressed using Maya diagrams as
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b0 b1 b2 bM c0 c1 c2 cN

×

−
×

+
×

+ . . .

+
×

=
b0 b1 b2 bM c0 c1 c2 cN

×

−
×

+
×
+ . . .

+
× .

The proof of (2.97) is quite simple. Expanding pfaffians (b j , c0, c1,

c2, . . . , cN ) on the left-hand side with respect to the first index b j and
(b0, b1, b2, . . . , bM , ck) on the right-hand side with respect to the final index
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ck , gives

M∑
j=0

(−1) j
N∑

k=0

(−1)k(b0, b1, b2, . . . , b̂ j , . . . , bM )(b j , ck)

× (c0, c1, c2, . . . , ĉk, . . . , cN )

=
N∑

k=0

(−1)k
M∑

j=0

(−1) j (b0, b1, b2, . . . , b̂ j , . . . , bM )(b j , ck)

× (c0, c1, c2, . . . , ĉk, . . . , cN ),

which completes the proof.
As a special case of the identity (2.97), we select M = 2n, N = 2m + 2n −

2 and choose indices b j , ck to be

b0 = a1, b1 = 1, b2 = 2, . . . , bM = b2n = 2n,

c0 = a2, c1 = a3, c2 = a4, . . . , c2m−2 = a2m,

c2m−1 = 1, c2m = 2, . . . , cN = c2m+2n−2 = 2n.

Since the above choice makes all except the j = 0 term on the left-hand side
of (2.97) equal to zero, the left-hand side is

(1, 2, . . . , 2n)(a1, a2, a3, . . . , a2m, 1, 2, . . . , 2n).

Also, the right-hand side is equal to

2m−2∑
k=0

(−1)k(a1, 1, 2, . . . , 2n, ak+2)

× (a2, a3, . . . , âk+2, . . . , a2m, 1, 2, . . . , 2n),

and so, for these choices, (2.97) gives (2.95).
The identity (2.96) is obtained from (2.95) by choosing M = 2n − 2, N =

m + 2n − 1, where m is odd, and indices b j , ck to be

b0 = 1, b1 = 2, b2 = 3, . . . , bM = b2n−2 = 2n − 1,

c0 = a1, c1 = a2, c2 = a3, . . . , cm−1 = am,

cm = 1, cm+1 = 2, . . . , cN = cm+2n−1 = 2n.

Remarks
(1) In the next chapter, we will show that bilinear soliton equations give rise

to the fundamental pfaffian identities (2.95) and (2.96). It is mysterious
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that the identities (2.95) and (2.96) are generated from the very simple
identity (2.97).

(2) The Plücker relation has significance in projective geometry. However, the
geometric meaning of the identity (2.97), which is obtained from a gener-
alization of the Plücker relation, is still unknown. �

2.9 Expansion formulae for the pfaffian
(a1, a2, 1, 2, . . . , 2n)

If (a1, a2) = 0, the pfaffian (a1, a2, 1, 2, . . . , 2n) can be expanded in two dif-
ferent ways [31]:

(a1, a2, 1, 2, . . . , 2n) =
∑

1≤ j<k≤2n

(−1) j+k−1(a1, a2, j, k)

× (1, 2, . . . , ĵ, . . . , k̂, . . . , 2n) (2.98)

or

(a1, a2, 1, 2, . . . , 2n) =
2n∑
j=2

(−1) j [(a1, a2, 1, j)(2, 3, . . . , ĵ, . . . , 2n)

+ (1, j)(a1, a2, 2, 3, . . . , ĵ, . . . , 2n)
]
.

(2.99)

Expansion formula (2.98) is proved simply by expanding the pfaffian
(a1, a2, 1, 2, . . . , 2n) first with respect to a1 and then a2. We have

(a1, a2, 1, 2, . . . , 2n)

=
2n∑
j=1

2n∑
k=1

(−1) j+k(a1, j)(a2, k)(1, 2, . . . , ĵ, . . . , k̂, . . . , 2n)

=
∑

1≤ j<k≤2n

(−1) j+k [(a1, j)(a2, k) − (a1, k)(a2, j)]

× (1, 2, . . . , ĵ, . . . , k̂, . . . , 2n)

=
∑

1≤ j<k≤2n

(−1) j+k−1(a1, a2, j, k)(1, 2, . . . , ĵ, . . . , k̂, . . . , 2n),

since (a1, a2) = 0.
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In order to prove the expansion formula (2.99), one has only to expand the
pfaffian (a1, a2, 1, 2, . . . , 2n) with respect to the index 1:

(a1, a2, 1, 2, . . . , 2n)

= (1, a1)(a2, 2, . . . , 2n) − (1, a2)(a1, 2, . . . , 2n)

+
2n∑
j=2

(−1) j (1, j)(a1, a2, 2, 3, . . . , ĵ, . . . , 2n).

Next, the pfaffians (a2, 2, . . . , 2n) and (a1, 2, . . . , 2n) are expanded to give

(a1, a2, 1, 2, . . . , 2n) = (1, a1)

2n∑
j=2

(−1) j (a2, j)(2, 3, . . . , ĵ, . . . , 2n)

− (1, a2)

2n∑
j=2

(−1) j (a1, j)(2, 3,. . ., ĵ,. . ., 2n)

+
2n∑
j=2

(−1) j (1, j)(a1, a2, 2, 3,. . ., ĵ,. . ., 2n).

Making use of the condition (a1, a2) = 0, the right-hand side of the above is

2n∑
j=2

(−1) j [(a1, a2, 1, j)(2, 3, . . . , ĵ, . . . , 2n)

+ (1, j)(a1, a2, 2, 3, . . . , ĵ, . . . , 2n)
]
,

as required.
Expansion formula (2.98) can be generalized by considering the pfaffian

(b1, b2, 1, 2, . . . , 2n) instead of (1, 2, . . . , 2n). We have

(a1, a2, b1, b2, 1, 2, . . . , 2n) =
2n∑
j=1

2n∑
k= j+1

(−1) j+k−1(a1, a2, j, k)

× (b1, b2, 1, 2, 3, . . . , ĵ, . . . , k̂, . . . , 2n), (2.100)

where (a j , bk) = 0 for j, k = 1, 2.

Remark
We will make use of these expansion formulae later in connection with the
derivatives of pfaffians. �
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2.10 Addition formulae for pfaffians

We consider an nth-order pfaffian (1, 2, . . . , 2n)c with special entries (i, j)c

given by sums of pfaffians,

(i, j)c = (i, j) + λ(a, b, i, j). (2.101)

In the above equation, λ is a parameter and we also suppose that

(a, b) = 0.

Then the following addition formula holds for an arbitrary n:

(1, 2, . . . , 2n)c = (1, 2, . . . , 2n) + λ(a, b, 1, 2, . . . , 2n). (2.102)

For example, in the case n = 2, we have

(1, 2, 3, 4)c = (1, 2)c(3, 4)c − (1, 3)c(2, 4)c + (1, 4)c(2, 3)c

= [(1, 2) + λ(a, b, 1, 2)] [(3, 4) + λ(a, b, 3, 4)]

− [(1, 3) + λ(a, b, 1, 3)] [(2, 4) + λ(a, b, 2, 4)]

+ [(1, 4) + λ(a, b, 1, 4)] [(2, 3) + λ(a, b, 2, 3)]

= (1, 2, 3, 4) + λ(a, b, 1, 2, 3, 4). (2.103)

Let us prove the addition formula (2.102) by induction. Obviously, the for-
mula holds if n = 1. We suppose that the addition formula holds for an arbi-
trary (n − 1)th-order pfaffian,

(2, 3, . . . , ĵ, . . . , 2n)c = (2, 3, . . . , ĵ, . . . , 2n)

+ λ(a, b, 2, 3, . . . , ĵ, . . . , 2n). (2.104)

Expansion of the left-hand side of (2.102) gives

(1, 2, . . . , 2n)c =
2n∑
j=2

(−1) j (1, j)c(2, 3, . . . , ĵ, . . . , 2n)c.

Employing (2.101) and (2.104), the right-hand side equals

2n∑
j=2

(−1) j [(1, j) + λ(a, b, 1, j)]

× [
(2, 3, . . . , ĵ, . . . , 2n) + λ(a, b, 2, 3, . . . , ĵ, . . . , 2n)

]
.

Here, the coefficient of λ0 is obviously (1, 2, . . . , 2n) and the coefficient of λ1

is (a, b, 1, 2, . . . , 2n) because of the expansion formula (2.99) in the previous
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section. We next investigate the coefficient of λ2. In the expansion formula
(2.99),

(a, b, 1, 2, . . . , 2n, 2n + 1, 2n + 2)

=
2n+2∑
j=2

(−1) j [(a, b, 1, j)(2, 3, . . . , ĵ, . . . , 2n, 2n + 1, 2n + 2)

+ (1, j)(a, b, 2, 3, . . . , ĵ, . . . , 2n, 2n + 1, 2n + 2)
]
,

we set indices 2n + 1 = a and 2n + 2 = b, so that we obtain

0 =
2n∑
j=2

(−1) j (a, b, 1, j)(2, 3, . . . , ĵ, . . . , 2n, a, b).

This shows that the coefficient of λ2 is zero, and so we have

(1, 2, . . . , 2n)c = (1, 2, . . . , 2n) + λ(a, b, 1, 2, . . . , 2n),

and the proof of the addition formula (2.102) is complete.
By employing this pfaffian addition theorem, the determinantal iden-

tity (2.91),

det |ai, j − xi y j |1≤i< j≤2n =

∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

an,1 an,2 · · · an,n

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 y1 y2 · · · yn

x1 a1,1 a1,2 · · · a1,n

x2 a2,1 a2,2 · · · a2,n
...

...
...

...

xn an,1 an,2 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.91′)

may be rewritten as

(1, 2, . . . , n, n∗, . . . , 2∗, 1∗)c = (1, 2, . . . , n, n∗, . . . , 2∗, 1∗)

+ (d∗
0 , d0, 1, 2, . . . , n, n∗, . . . , 2∗, 1∗),

(2.105)
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where the (nonzero) pfaffian entries are given by

(i, j∗)c = (i, j∗) + (d∗
0 , d0, i, j∗) = ai, j − xi y j ,

(i, j∗) = ai, j , (d∗
0 , i) = xi , (d0, j∗) = y j .

Remark
This addition theorem is useful for finding difference analogues of soliton
equations and in finding difference formulae for pfaffians. �

2.11 Derivative formulae for pfaffians

The x-derivative of an arbitrary determinant A ≡ det(ai, j )1≤i, j≤n is given by

∂ A

∂x
=

∑
1≤i, j≤n

∂ai, j

∂x

∂ A

∂ai, j
=

∑
1≤i, j≤n

∂ai, j

∂x
�i, j . (2.106)

We will derive here an analogous formula for the derivative of a pfaffian.
Consider the antisymmetric matrix whose entries (i, j) are the entries in the

pfaffian (1, 2, . . . , 2n). Its determinant,

D = det
(
(i, j)

)
1≤i, j≤2n, (2.107)

is given by D = (1, 2, . . . , 2n)2. From (2.106), the derivative of D with respect
to x is

∂ D

∂x
=

∑
1≤i, j≤2n

∂(i, j)

∂x
�i, j . (2.108)

Substituting D = (1, 2, . . . , 2n)2 and using (2.68), that is

�i, j = �(i, j) (1, 2, . . . , 2n),

we have

∂

∂x
(1, 2, . . . , 2n) = 1

2

∑
1≤i, j≤2n

∂(i, j)

∂x
�(i, j)

=
∑

1≤i< j≤2n

∂(i, j)

∂x
�(i, j). (2.109)

This is the formula for the derivative of a pfaffian.
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If the x-derivative of a pfaffian entry (i, j) is expressed in terms of another
pfaffian, for example

∂(i, j)

∂x
= (a0, b0, i, j), (a0, b0) = 0, (2.110)

we obtain

∂

∂x
(1, 2, . . . , 2n) = (a0, b0, 1, 2, . . . , 2n) (2.111)

by using the expansion formula (2.98) [31].
The above derivative formula may also be obtained without using the for-

mula for the derivative of an antisymmetric determinant. We first differentiate
directly the pfaffian expansion formula,

(1, 2, . . . , 2n) =
2n∑
j=1

(−1) j−1(1, j)(2, 3, . . . , ĵ, . . . , 2n), (2.112)

to obtain

∂

∂x
(1, 2, . . . , 2n) =

2n∑
j=1

(−1) j−1
[

∂

∂x
(1, j)(2, 3, . . . , ĵ, . . . , 2n)

+ (1, j)
∂

∂x
(2, 3, . . . , ĵ, . . . , 2n)

]
;

then we use induction. If n = 1, then (2.111) is simply (2.110). Under the
assumption that the expansion formula holds for pfaffians of order n − 1, the
right-hand side equals

2n∑
j=1

(−1) j−1 [(a0, b0, 1, j)(2, 3, . . . , ĵ, . . . , 2n)

+ (1, j)(a0, b0, 2, 3, . . . , ĵ, . . . , 2n)
] = (a0, b0, 1, 2, . . . , 2n)

using expansion formula (2.99). This concludes the proof of (2.111).
Next, let us calculate the derivative with respect to another variable y, say,

of the pfaffian (a0, b0, 1, 2, . . . , 2n). There are many possible forms for the
y-derivative of a pfaffian entry. For simplicity, we consider

∂

∂y
(i, j) ≡ (a1, b1, i, j),

∂

∂y
(a0, b0, i, j) ≡ (a2, b0, i, j) + (a0, b2, i, j),

(2.113)
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where (ai , a j ) = (ai , b j ) = (bi , b j ) = 0 for i, j = 0, 1, 2. We will show that

∂

∂y
(a0, b0, 1, 2, . . . , 2n)

= (a2, b0, 1, 2, . . . , 2n) + (a0, b2, 1, 2, . . . , 2n)

+ (a0, b0, a1, b1, 1, 2, . . . , 2n). (2.114)

In order to prove this, let us consider a y-derivative of the expansion formula
(2.98), that is

(a0, b0, 1, 2, . . . , 2n) =
∑

1≤i< j≤2n

(−1)i+ j−1(a0, b0, i, j)

× (1, 2, . . . , î, . . . , ĵ, . . . , 2n),

with derivative

∂

∂y
(a0, b0, 1, 2, . . . , 2n)

=
∑

1≤i< j≤2n

(−1)i+ j−1{ [(a2, b0, i, j)

+ (a0, b2, i, j)] (1, 2, . . . , î, . . . , ĵ, . . . , 2n)

+ (a0, b0, i, j)(a1, b1, 1, 2, . . . , î, . . . , ĵ, . . . , 2n)
}
.

Using expansion formulae (2.99) and (2.100), the right-hand side equals

(a2, b0, 1, 2, . . . , 2n) + (a0, b2, 1, 2, . . . , 2n)

+ (a0, b0, a1, b1, 1, 2, . . . , 2n),

which completes the proof.
As an application of the above formulae, let us calculate the derivative of

the N th-order determinant [36]

τN = det(ai, j )1≤i, j≤N , (2.115)

where

ai, j ≡ ci, j +
∫ x

fi g j dx, ci, j = constant,

and functions fi , g j (i, j = 1, 2, . . . , N ) satisfy the linear differential equa-
tions

∂

∂xn
fi = ∂n

∂xn
fi ,

∂

∂xn
g j = (−1)n−1 ∂n

∂xn
g j . (2.116)
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Remark
The determinant τN is one expression for the N -soliton solution of the KP
equation. �

Since the calculation of derivatives of the determinant τN plays an important
role in soliton theory, we will describe the methods for calculating the deriva-
tives using both determinantal and pfaffian formulae. From the determinantal
formula

∂τN

∂x
=

∑
1≤i, j≤N

∂ai, j

∂x
�i, j , (2.117)

we have

∂τN

∂x
=

∑
1≤i, j≤N

fi g j �i, j . (2.118)

We observe that the right-hand side of (2.118) may be written as a bordered
determinant by putting z = 0 in (2.90), that is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z y1 y2 y3 · · · yn

x1 a1,1 a1,2 a1,3 · · · a1,n

x2 a2,1 a2,2 a2,3 · · · a2,n

x3 a3,1 a3,2 a3,3 · · · a3,n
...

...
...

...
...

xn an,1 an,2 an,3 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |A|z −

n∑
i, j=1

�i j xi y j ,

to obtain

∂τN

∂x
= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 g3 · · · gN

f1 a1,1 a1,2 a1,3 · · · a1,N

f2 a2,1 a2,2 a2,3 · · · a2,N

f3 a3,1 a3,2 a3,3 · · · a3,N
...

...
...

...
...

fN aN ,1 aN ,2 aN ,3 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.119)

As remarked in Section 2.4, an nth-order determinant can be expressed as
an nth-order pfaffian. Making use of this fact, let us rewrite τN in terms of the
pfaffian with entries given by

(i, j∗) = ai, j ≡ ci, j +
∫ x

fi g j dx, (i, j) = (i∗, j∗) = 0. (2.120)
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Then the determinant τN may be written as

τN = (1, 2, . . . , N , N∗, . . . , 2∗, 1∗). (2.121)

The x-derivative of pfaffian entry (i, j∗) is given by

∂(i, j∗)
∂x

= fi g j = (d0, d∗
0 , i, j∗), (2.122)

where

(dn, j∗) = ∂n

∂xn
g j , (dm, d∗

n ) = 0, (d∗
n , i) = ∂n

∂xn
fi ,

(dn, i) = (d∗
m, j∗) = 0, m, n = 0, 1, 2, . . . . (2.123)

This pfaffian has very similar properties to a wronskian.
From the pfaffian derivative formula (2.111), we have

∂

∂x
τN = (d0, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗). (2.124)

Re-expressing this in terms of determinants we have

∂

∂x
τN =

∣∣∣∣∣∣∣∣∣
(d0, d∗

0 ) (d0, 1∗) · · · (d0, N∗)
(1, d∗

0 ) (1, 1∗) · · · (1, N∗)
...

...
...

(N , d∗
0 ) (N , 1∗) · · · (N , N∗)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gN

− f1 a1,1 a1,2 · · · a1,N

− f2 a2,1 a2,2 · · · a2,N
...

...
...

...

− fN aN ,1 aN ,2 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣
, (2.125)

in agreement with (2.119).
Next we calculate the second-order derivative τN ,xx . Recalling that

∂ai, j/∂x = fi g j , and using elementary properties of determinants, we
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have the following:

τN ,xx

= − ∂

∂x

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gN

f1 a1,1 a1,2 · · · a1,N

f2 a2,1 a2,2 · · · a2,N

...
...

...
...

fN aN ,1 aN ,2 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1,x g2,x · · · gN ,x

f1 a1,1 a1,2 · · · a1,N

f2 a2,1 a2,2 · · · a2,N

...
...

...
...

fN aN ,1 aN ,2 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gN

f1,x 0 0 · · · 0
f2 a2,1 a2,2 · · · a2,N

...
...

...
...

fN aN ,1 aN ,2 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣∣

− · · · −

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gN

f1 a1,1 a1,2 · · · a1,N

f2 a2,1 a2,2 · · · a2,N

...
...

...
...

fN ,x 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By employing the expansion formula (2.93) for a bordered determinant, the
last N terms on the right-hand side may be combined into a single determinant.
Finally, we obtain the derivative formula

τN ,xx = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1,x g2,x · · · gN ,x

f1 a1,1 a1,2 · · · a1,N

f2 a2,1 a2,2 · · · a2,N

...
...

...
...

fN aN ,1 aN ,2 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gN

f1,x a1,1 a1,2 · · · a1,N

f2,x a2,1 a2,2 · · · a2,N

...
...

...
...

fN ,x aN ,1 aN ,2 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.126)
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On the other hand, in the case of the pfaffian expression, the derivatives of
the entries of τN ,x are

∂

∂x
(d0, d∗

0 , i, j∗) = ∂

∂x
fi g j = fi x g j + fi g j x

= (d1, d∗
0 , i, j∗) + (d0, d∗

1 , i, j∗).

Using the expansion formula (2.99), we obtain

τN ,xx = ∂

∂x
(d0, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

= (d1, d∗
0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗).

Expressing the above result in terms of determinants gives

τN ,xx =

∣∣∣∣∣∣∣∣∣∣∣

0 g1,x g2,x · · · gN ,x

− f1 a1,1 a1,2 · · · a1,N

− f2 a2,1 a2,2 · · · a2,N
...

...
...

...

− fN aN ,1 aN ,2 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gN

− f1,x a1,1 a1,2 · · · a1,N

− f2,x a2,1 a2,2 · · · a2,N
...

...
...

...

− fN ,x aN ,1 aN ,2 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣
, (2.126′)

which coincides with the result obtained in the case of a determinant, (2.126).
Through a similar calculation, we obtain

∂3τN

∂x3
= −

∣∣∣∣∣∣∣∣∣
0 g1,xx · · · gN ,xx

f1 a1,1 · · · a1,N
...

...
...

fN aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣− 2

∣∣∣∣∣∣∣∣∣
0 g1,x · · · gN ,x

f1,x a1,1 · · · a1,N
...

...
...

fN ,x aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣
0 g1 · · · gN

f1,xx a1,1 · · · a1,N
...

...
...

fN ,xx aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣ ,
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but to calculate τN ,xxxx needs another result. Using the identity (2.93) for bor-
dered determinants, we have

∣∣∣∣∣∣∣∣∣
0 g1,x · · · gN ,x

f1,xx f1g1 · · · f1gN
...

...
...

fN ,x aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

0 g1,x · · · gN ,x

f1,x a1,1 · · · a1,N
...

...
...

fN ,x aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣
0 g1,x · · · gN ,x

f1,x a1,1 · · · a1,N
...

...
...

fN ,xx fN g1 · · · fN gN

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
0 g1,x · · · gN x

f1,xx a1,1 · · · a1,N
...

...
...

fN ,xx aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣∣∣

0 0 g1,x · · · gN ,x

0 0 g1 · · · gN

f1,x f1 a1,1 · · · a1,N
...

...
...

...

fN ,x fN aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣
.

This allows us to calculate that

∂4τN

∂x4

= −

∣∣∣∣∣∣∣∣∣
0 g1,xxx · · · gN ,xxx

f1 a1,1 · · · a1,N
...

...
...

fN aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣− 3

∣∣∣∣∣∣∣∣∣
0 g1,xx · · · gN ,xx

f1,x a1,1 · · · a1,N
...

...
...

fN ,x aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣

+ 2

∣∣∣∣∣∣∣∣∣∣∣

0 0 g1,x · · · gN ,x

0 0 g1 · · · gN

f1,x f1 a1,1 · · · a1,N
...

...
...

...

fN ,x fN aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣∣∣
− 3

∣∣∣∣∣∣∣∣∣
0 g1,x · · · gN ,x

f1,xx a1,1 · · · a1,N
...

...
...

fN ,xx aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣
0 g1 · · · gN

f1,xxx a1,1 · · · a1,N
...

...
...

fN ,xxx aN ,1 · · · aN ,N

∣∣∣∣∣∣∣∣∣ . (2.127)
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On the other hand, in the case of the pfaffian expression for τN , we have

∂4τN

∂x4
= ∂

∂x
[(d2, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ 2(d1, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
2 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)]

= (d3, d∗
0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ 3(d2, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ 2(d0, d∗
0 , d1, d∗

1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
+ 3(d1, d∗

2 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
+ (d0, d∗

3 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗), (2.127′)

which again coincides with the result obtained in the case of a determinant.

Remark
As we have shown, the calculation of derivatives using pfaffians is much sim-
pler than using determinants. We have presented the calculations using deter-
minants for the benefit of those who are not familiar with pfaffians. �



3

Structure of soliton equations

Head-on interaction.

3.1 Introduction

Mikio Sato [12, 13] was the first to discover that the KP (Kadomtsev–
Petviashvili) equation is the most fundamental among the many soliton equa-
tions. Sato discovered that polynomial solutions of the bilinear KP equation
are equivalent to the characteristic polynomials of the general linear group.
Later, he found a Lax pair for a hierarchy of KP-like equations by means of a
pseudo-differential operator, and came to the conclusion that the KP equation
is equivalent to the motion of a point in a Grassmanian manifold and its bilin-
ear equation is nothing but a Plücker relation. Also, Junkichi Satsuma [37] had
discovered before Sato that the soliton solutions of the KdV equation could
be expressed in terms of wronskian determinants. Later, in 1983, Freeman
and Nimmo [38, 39] found that the KP bilinear equation could be rewritten
as a determinantal identity if one expresses its soliton solutions in terms of
wronskians. In this chapter, we develop the above results and show that some
bilinear soliton equations having solutions expressed as pfaffians (or as deter-
minants) are nothing but pfaffian identities.

110
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Remark
The KdV equation is a 1 + 1-dimensional equation describing shallow water
waves. The KP equation was introduced in order to discuss the stability of
these waves to perpendicular horizontal perturbations [40]. Some physicists
may object to the idea that the KP equation is the most fundamental of the
soliton equations. First of all, the KdV equation is derived through a certain
approximation, and then the KP equation is obtained from the KdV equation
under the assumption that horizontal perturbations are small. This means that
the KP equation is far from a basic equation in the physical sense. However,
the central issue here is not so much the physical viewpoint as the mathemati-
cal one. The KP equation is fundamental because of the simple mathematical
structure of its solutions and its relation to the other soliton equations arising
from this simplicity. �

3.2 The KP equation

3.2.1 Wronskian solutions

The KP equation is the 2+1-dimensional (two-dimensional space, (x, y) plus
one-dimensional time, t) nonlinear partial differential equation

(ut + uxxx + 6uux )x + uyy = 0. (3.1)

Since we obtain the KdV equation by neglecting the y-derivative term, this is
also called the two-dimensional KdV equation.

We first present a wronskian expression for its solutions and observe how
the KP equation reduces to a Plücker relation. The KP equation is equivalent
to

(−4ut + uxxx + 6uux )x + 3uyy = 0 (3.2)

under an appropriate scale transformation. Later, we will see the reason for this
scaling of independent variables t , x and y. The dependent variable transfor-
mation

u = 2(log τ)xx (3.3)

gives the bilinear equation

(D4
1 − 4D1 D3 + 3D2

2)τ · τ = 0, (3.4)

where we have rewritten the independent variables as

x = x1, y = x2, t = x3,
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and their derivatives as

Dx = D1, Dy = D2, Dt = D3.

We have also chosen the constant of integration to be zero.
Following the procedure described in Chapter 1, the perturbation method

gives the two-soliton solution

τ2 = 1 + exp(η1) + exp(η2) + a12 exp(η1 + η2), (3.5)

where ηi = Pi x1 + Qi x2 + �i x3 + η0
i . The dispersion relation is given by

P4
i − 4Pi�i + 3Q2

i = 0 (i = 1, 2), (3.6)

and the phase shift term is given by

a12 = − (P1 − P2)
4 − 4(P1 − P2)(�1 − �2) + 3(Q1 − Q2)

2

(P1 + P2)4 − 4(P1 + P2)(�1 + �2) + 3(Q1 + Q2)2
. (3.7)

By putting ai j = exp(Ai j ), the N -soliton solution is expressed as

τN =
∑

exp

⎡⎣ N∑
i=1

µiηi +
(N )∑
i< j

Ai jµiµ j

⎤⎦ , (3.8)

where
∑

is a summation over all possible combinations of µ1 = 0, 1, µ2 =
0, 1, . . . , µN = 0, 1, and

∑(N )
i< j is the sum over all pairs i, j , where i < j ,

chosen from {1, 2, . . . , N }.

Remark
The proof of the N -soliton solution τN of the KP equation, found by Satsuma
[41], is very complicated compared with the case of the KdV equation. It is
strange that, if we consider things from the perspective that bilinear equations
are nothing but determinantal identities (Plücker relations) or, equivalently, if
τN is expressed as a wronskian, the proof of the N -soliton solution is much
easier for the KP equation than for the KdV equation. Later, we will describe
wronskian and grammian expressions for the N -soliton solution. �

Let us introduce new parameters pi , qi for i = 1, 2, . . . [42], where

Pi = pi − qi ,

Qi = p2
i − q2

i ,

�i = p3
i − q3

i .

(3.9)



3.2 The KP equation 113

Using this parametrization, the dispersion relation is satisfied automatically
since

P4
i − 4Pi�i + 3Q2

i = (pi − qi )
4 − 4(pi − qi )(p3

i − q3
i )

+ 3(p2
i − q2

i )2 = 0. (3.10)

The phase shift term is rewritten more simply as

a12 = − (P1 − P2)
4 − 4(P1 − P2)(�1 − �2) + 3(Q1 − Q2)

2

(P1 + P2)4 − 4(P1 + P2)(�1 + �2) + 3(Q1 + Q2)2

= (p1 − p2)(q1 − q2)

(p1 − q2)(q1 − p2)
. (3.11)

The scaling of t , x and y was chosen so as to obtain (3.10) and (3.11). We next
rewrite ηi as

ηi = Pi x1 + Qi x2 + �i x3 + constant

= ξi − ξ̂i , (3.12)

where

ξi = pi x1 + p2
i x2 + p3

i x3 + constant,

ξ̂i = qi x1 + q2
i x2 + q3

i x3 + constant.

Employing this notation, we have

τ2 = 1 + exp(ξ1 − ξ̂1) + exp(ξ2 − ξ̂2) + (p1 − p2)(q1 − q2)

(p1 − q2)(q1 − p2)

× exp(ξ1 + ξ2 − ξ̂1 − ξ̂2). (3.13)

We now define functions f1 and f2 by

f1 = exp(ξ1) + exp(̂ξ1),

f2 = exp(ξ2) + exp(̂ξ2),
(3.14)

and consider their wronskian,

Wr( f1, f2) ≡
∣∣∣∣ f1 f1,x

f2 f2,x

∣∣∣∣
= [

exp(ξ1) + exp(̂ξ1)
] [

p2 exp(ξ2) + q2 exp(̂ξ2)
]

− [
p1 exp(ξ1) + q1 exp(̂ξ1)

] [
exp(ξ2) + exp(̂ξ2)

] =
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= (p2 − p1) exp(ξ1 + ξ2) + (q2 − p1) exp(ξ1 + ξ̂2)

+ (p2 − q1) exp(̂ξ1 + ξ2) + (q2 − q1) exp(̂ξ1 + ξ̂2), (3.15)

where we have rewritten x1 = x for simplicity.
Dividing (3.15) by (q2 − q1) exp(̂ξ1 + ξ̂2), we have

Wr( f1, f2) = (q2 − q1) exp(̂ξ1 + ξ̂2)

[
1 + (q2 − p1)

(q2 − q1)
exp(ξ1 − ξ̂1)

+ (p2 − q1)

(q2 − q1)
exp(ξ2 − ξ̂2)+ (p2 − p1)

(q2 − q1)
exp(ξ1 + ξ2 − ξ̂1 − ξ̂2)

]
.

Then, using the fact that the solution u given by (3.3) is invariant under the
transformation

τ → c0 exp(c1x1 + c2x2 + c3x3 + · · · )τ, (3.16)

where c0, c1, c2, . . . are constants, we see that the wronskian solution is equiv-
alent to

1 + (q2 − p1)

(q2 − q1)
exp(ξ1 − ξ̂1) + (p2 − q1)

(q2 − q1)
exp(ξ2 − ξ̂2)

+ (p2 − p1)

(q2 − q1)
exp(ξ1 + ξ2 − ξ̂1 − ξ̂2).

Next, we introduce phase constants δi , δ̂i defined by the relations

(q2 − p1)

(q2 − q1)
exp(ξ1 − ξ̂1) = exp(ξ1 + δ1 − ξ̂1 − δ̂1),

(p2 − q1)

(q2 − q1)
exp(ξ2 − ξ̂2) = exp(ξ2 + δ2 − ξ̂2 − δ̂2),

(3.17)

and further replace variables ξi , ξ̂i as follows:

ξi + δi → ξi , ξ̂i + δ̂i → ξ̂i . (3.18)

As a result, we see that Wr( f1, f2) can be rewritten as

Wr( f1, f2) ∝ 1 + exp(ξ1 − ξ̂1) + exp(ξ2 − ξ̂2) + (p1 − p2)(q1 − q2)

(p1 − q2)(q1 − p2)

× exp(ξ1 + ξ2 − ξ̂1 − ξ̂2), (3.19)

which is nothing but the two-soliton solution τ2 found by the perturbation
method.
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Generalizing the above result, we might expect to be able to express the
N -soliton solution as the N × N wronskian [12, 13, 38, 39]

τN =

∣∣∣∣∣∣∣∣∣∣
f (0)
1 f (1)

1 · · · f (N−1)
1

f (0)
2 f (1)

2 · · · f (N−1)
2

...
...

...

f (0)
N f (1)

N · · · f (N−1)
N

∣∣∣∣∣∣∣∣∣∣
, (3.20)

where f (m)
i is defined by

f (m)
i = ∂m fi

∂xm
(3.21)

and each fi (i = 1, 2, . . . ) satisfies the differential equations

∂ fi

∂xm
= ∂m fi

∂xm
. (3.22)

In order to confirm this, we only have to show that τN satisfies the bilinear
equation [38, 39]

(D4
1 − 4D1 D3 + 3D2

2)τ · τ

= 2[τxxxxτ − 4τxxxτx + 3τ 2
xx − 4(τx3xτ − τx3τx )

+ 3(τx2x2τ − τ 2
x2

)]
= 2[(τxxxx − 4τx3x + 3τx2x2)τ − 4(τxxx − τx3)τx

+ 3(τxx − τx2)(τxx + τx2)]
= 0. (3.23)

The derivative with respect to x of the wronskian

τN =

∣∣∣∣∣∣∣∣∣∣
f (0)
1 f (1)

1 · · · f (N−1)
1

f (0)
2 f (1)

2 · · · f (N−1)
2

...
...

...

f (0)
N f (1)

N · · · f (N−1)
N

∣∣∣∣∣∣∣∣∣∣
is equal to the sum of determinants, for i = 1, 2, . . . , N , in which the i th col-
umn of τN is replaced by its derivative. However, the derivative of the first
column is equal to the second, the derivative of the second one equals the
third, and so on. As a consequence, only the determinant with the last column
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differentiated remains. That is, the derivative τN ,x is given by

τN ,x =

∣∣∣∣∣∣∣∣∣∣
f (0)
1 f (1)

1 · · · f (N−2)
1 f (N )

1

f (0)
2 f (1)

2 · · · f (N−2)
2 f (N )

2
...

...
...

f (0)
N f (1)

N · · · f (N−2)
N f (N )

N

∣∣∣∣∣∣∣∣∣∣
. (3.24)

This is one merit of the wronskian expression for τN ; if we differentiate τN ,
only the number of derivatives in each column can change, the rows are unaf-
fected. Therefore, we may adopt the simple notation

τN = [0, 1, . . . , N − 1] = τ,

τN ,x = [0, 1, . . . , N − 2, N ]. (3.25)

These are expressed more simply by using the following Maya diagrams:

τN =
0 1 N−4 N−3 N−2 N−1 N N+1 N+2 N+3

,

τN ,x = .

As discussed in Chapter 2, Maya diagrams were first introduced by Mikio
Sato. In the language of physics, the diagram for τN represents the vacuum
state in which fermions occupy cells 0, 1, 2, . . . , N − 2, N − 1. In the same
way, the diagram for τN ,x represents a state in which a fermion occupying the
(N − 1)th cell is excited into the N th cell. From now on, for simplicity of
notation, we write just τ for τN . Using the relation fi,x2 = fi,xx , the derivative
of τN with respect to x2 is

τx2 = [0, 1, . . . , N −3, N −2, N +1]+[0, 1, . . . , N −3, N , N −1]
= [0, 1, . . . , N −3, N −2, N +1]−[0, 1, . . . , N −3, N −1, N ].

(3.26)

The corresponding Maya diagram expression is

τx2 =
0 1 N−4 N−3 N−2 N−1 N N+1 N+2 N+3

− .
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Remark
Each cell is occupied by at most one fermion. This corresponds to the fact that
the determinant of a matrix in which two columns are equal is zero. �

Higher-order derivatives of τN are expressed, as excited fermion states, by
means of Maya diagrams as follows [43]:

τxx =
0 1 N−4 N−3 N−2 N−1 N N+1 N+2 N+3

+ ,

τxxx =
0 1 N−4 N−3 N−2 N−1 N N+1 N+2 N+3

+2

+ ,

τxxxx =
0 1 N−4 N−3 N−2 N−1 N N+1 N+2 N+3

+3

+2

+3

+ ,

τx2x2 =
0 1 N−4 N−3 N−2 N−1 N N+1 N+2 N+3

−

+2

−

+ ,
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τx3 =
0 1 N−4 N−3 N−2 N−1 N N+1 N+2 N+3

−

+ ,

τx3x =
0 1 N−4 N−3 N−2 N−1 N N+1 N+2 N+3

−

+ .

Summarizing the above results, we have

τ =
N−2 N−1 N N+1

,

τx = ,

τxx − τx2 = 2 ,

τxx + τx2 = 2 ,

τxxx − τx3 = 3 ,

τxxxx − 4τx3x + 3τx2x2 = 12 ,

where we have omitted the cells common to all the Maya diagrams.
Substituting the above results into the bilinear form of the KP equation, we

obtain the expression

N−2 N−1 N N+1

×
N−2 N−1 N N+1

− ×

+ × = 0.
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This is nothing but the Plücker relation for determinants [12,13] (Section 2.5).
Therefore, we have shown that τ = τN satisfies the bilinear KP equation.

Remarks
(1) We have used a wronskian expression for τ . As we have shown in (2.29),

a wronskian is expressed as a pfaffian,

τ = (d0, d1, d2, . . . , dN−1, 1, 2, . . . , N ), (3.27)

where

(dn, j) = ∂n

∂xn
f j , (dm, dn) = 0 ( j = 1, 2, . . . , N , m, n = 0, 1, . . .).

By employing this pfaffian expression, the pfaffian identity for the bi-
linear KP equation is expressed in terms of Maya diagrams as follows:

dN−2 dN−1 dN dN+1

×
dN−2 dN−1 dN dN+1

= ×

− ×

+ × .

However, on the left-hand side of the above identity, the term

dN−2 dN−1 dN dN+1

= (d0, d1, d2, . . . , dN−1, dN , dN+1, 1, 2, . . . , N )

is zero since the number of the symbols dm is larger than number of sym-
bols j , and

(dm, dn) = 0. (3.28)

Hence, the pfaffian identity reduces to the Plücker relation.
(2) We have shown that τ solves the bilinear KP equation only by using the

fact that the functions fi , for i = 1, 2, . . . , satisfy the linear differential
equations

∂ fi

∂xm
= ∂m fi

∂xm
(m = 1, 2, 3, . . . ). (3.29)
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Therefore, fi can be chosen to be arbitrary solutions of (3.29). We note
that such a function is obtained by taking any number of derivatives, with
respect to p, of the exponential function

f = exp(ξ), ξ = px1 + p2x2 + p3x3 + p4x4 + · · · .

(Characteristic polynomials, which are famous in group theory, are also
contained in the above class of solutions [12, 13].)

(3) The function τ found here satisfies not only the KP equation, but also the
following series of higher-order KP equations (the KP hierarchy) [15]:

(D4
1 − 4D1 D3 + 3D2

2)τ · τ = 0,

[(D3
1 + 2D3)D2 − 3D1 D4]τ · τ = 0,

(D6
1 − 20D3

1 D3 − 80D2
3 + 144D1 D5 − 45D2

1 D2
2)τ · τ = 0, (3.30)

(D6
1 + 4D3

1 D3 − 32D2
3 − 9D2

1 D2
2 + 36D2 D4)τ · τ = 0,

· · ·

(4) By using the correspondence between Maya diagrams and Young dia-
grams, the above Plücker relation is expressed using Young diagrams as

τφτ − τ τ + τ τ = 0.

�

Let us summarize the results obtained in this section. The KP equation,

(−4ut + uxxx + 6uux )x + 3uyy = 0, (3.31)

is bilinearized to give

(D4
1 − 4D1 D3 + 3D2

2)τ · τ = 0, (3.32)

through the dependent variable transformation

u = 2(log τ)xx . (3.33)

If we express the solution τ as a wronskian, the bilinear equation reduces to a
Plücker relation and is represented as above in terms of Young diagrams. This
fact was first discovered by Sato [12, 13].
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3.2.2 Grammian solutions

We showed in Section 3.2.1 that the bilinear KP equation,

(D4
1 − 4D1 D3 + 3D2

2)τ · τ = 0, (3.34)

is nothing but a Plücker relation if we express its solution τ as a wronskian.
In this section, we show that this bilinear equation reduces to another type of
determinantal identity, a Jacobi identity, by considering a different expression
for τ .

As was shown in Section 3.2.1, the two-soliton solution τ2 of the KP equa-
tion is written as

τ2 = 1 + exp(ξ1 − ξ̂1) + exp(ξ2 − ξ̂2)

+ (p1 − p2)(q1 − q2)

(p1 − q2)(q1 − p2)
exp(ξ1 + ξ2 − ξ̂1 − ξ̂2), (3.35)

where ξi = pi x1 + p2
i x2 + p3

i x3 + constant, and ξ̂i = qi x1 + q2
i x2 + q3

i x3 +
constant. By introducing phase factors δi and δ̂ j defined by

exp(ξi − ξ̂ j ) = 1

pi − q j
exp(ξi + δi − ξ̂ j − δ̂ j ), (3.36)

and making the replacements

ξi + δi → ξi , ξ̂ j + δ̂ j → ξ̂ j , (3.37)

τ2 may be rewritten as

τ2 = 1 + 1

p1 − q1
exp(ξ1 − ξ̂1) + 1

p2 − q2
exp(ξ2 − ξ̂2)

+ α12 exp(ξ1 − ξ̂1 + ξ2 − ξ̂2), (3.38)

where

α12 = (p1 − p2)(q1 − q2)

(p1 − q2)(q1 − p2)(p1 − q1)(p2 − q2)
.

This expression for τ2 may be written as the determinant of a 2 × 2 matrix,

τ2 =

∣∣∣∣∣∣∣∣∣
1 + 1

p1 − q1
exp(ξ1 − ξ̂1)

1

p1 − q2
exp(ξ1 − ξ̂2)

1

p2 − q1
exp(ξ2 − ξ̂1) 1 + 1

p2 − q2
exp(ξ2 − ξ̂2)

∣∣∣∣∣∣∣∣∣ ; (3.39)
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that is, as

τ2 = det(ai j )1≤i, j≤2, ai j = δi j +
∫ x

exp(ξi − ξ̂ j ) dx, (3.40)

where x = x1.

Remark
We choose the lower limit in the above integral to be x = ±∞ (the value of x
such that the function exp(ξi − ξ̂ j ) is equal to zero), but this is not an essential
restriction. As can be seen later, the τ -function with the Kronecker delta δi j re-
placed by any constant matrix ci j also solves the bilinear KP equation. Hence,
we may choose the lower limit of the integral arbitrarily. �

Noting that the functions exp(ξi ) and exp(−ξ̂ j ) satisfy the linear differential
equations

∂

∂xn
exp ξi = ∂n

∂xn
exp ξi ,

∂

∂xn
exp(−ξ̂ j ) = (−1)n−1 ∂n

∂xn
exp(−ξ̂ j ),

(3.41)

respectively, one might expect that the N × N determinant expression

τN = det(ai j )1≤i, j≤N , (3.42a)

ai j = ci j +
∫ x

fi g j dx, ci j = constant, (3.42b)

with fi and g j satisfying

∂

∂xn
fi = ∂n

∂xn
fi (i = 1, 2, . . . , N ), (3.42c)

∂

∂xn
g j = (−1)n−1 ∂n

∂xn
g j ( j = 1, 2, . . . , N ), (3.42d)

is the N -soliton solution τN for the KP bilinear equation [44].

Remark
A grammian G ≡ det(gi j )1≤i, j≤N is the determinant of a matrix with entries

gi j ≡
∫ b

a
fi f j dx . (3.43)
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Because of the similarity between the above and the expression for τN , here-
after we also refer to the expression for τN as a grammian. �

In order to prove that this τN satisfies the bilinear equation

(D4
1 − 4D1 D3 + 3D2

2)τ · τ

= 2[τxxxxτ − 4τxxxτx + 3τ 2
xx − 4(τx3xτ − τx3τx )

+ 3(τx2x2τ − τ 2
x2

)]
= 2[(τxxxx − 4τx3x + 3τx2x2)τ − 4(τxxx − τx3)τx

+ 3(τxx − τx2)(τxx + τx2)]
= 0, (3.44)

let us determine the derivatives of the determinant τN . It is expressed by means
of a pfaffian as

τN = (1, 2, . . . , N , N∗, . . . , 2∗, 1∗), (3.45)

where (i, j∗) = ci j + ∫ x fi g j dx , ci j = constant and (i, j) = (i∗, j∗) = 0.
Next let us introduce pfaffian entries

(dn, j∗) = ∂n

∂xn
g j , (dm, d∗

n ) = 0,

(d∗
n , i) = ∂n

∂xn
fi , (dn, i) = (d∗

m, i∗) = 0,

(3.46)

for m, n = 0, 1, 2, 3, . . . . In terms of these, derivatives of the elements ai j =
(i, j∗) are given by

∂

∂x
ai j = fi g j = (d0, d∗

0 , i, j∗),

∂

∂x2
ai j =

∫ x

( fi xx g j − fi g j xx ) dx

= fi x g j − fi g j x

= −(d1, d∗
0 , i, j∗) + (d0, d∗

1 , i, j∗),
∂

∂x3
ai j =

∫ x

( fi xxx g j + fi g j xxx ) dx

= fi xx g j − fi x g j x + fi g j xx

= (d2, d∗
0 , i, j∗) − (d1, d∗

1 , i, j∗) + (d0, d∗
2 , i, j∗).

(3.47)
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Therefore, from the results in Section 2.11, we have

∂τN

∂x
= (d0, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗),

∂2τN

∂x2
= ∂

∂x
(d0, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

= (d1, d∗
0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗),

∂τN

∂x2
= ∂

∂x2
(1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

= − (d1, d∗
0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗),

∂τN

∂x3
= ∂

∂x3
(1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

= (d2, d∗
0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

− (d1, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
2 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗),

∂3τN

∂x3
= ∂

∂x

[
(d1, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

]
= (d2, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
+ 2(d1, d∗

1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
+ (d0, d∗

2 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗),
∂4τN

∂x4
= ∂

∂x

[
(d2, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ 2(d1, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
2 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

]
= (d3, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
+ 3(d2, d∗

1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
+ 2(d0, d∗

0 , d1, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ 3(d1, d∗
2 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
3 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗),

∂2τN

∂x∂x3
= ∂

∂x

[
(d2, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

− (d1, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
2 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

]
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= (d3, d∗
0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

− (d0, d∗
0 , d1, d∗

1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
+ (d0, d∗

3 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗),
∂2τN

∂x2
2

= ∂

∂x2

[−(d1, d∗
0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

+ (d0, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

]
= (d3, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
− (d2, d∗

1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
− 2(d0, d∗

0 , d1, d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

− (d1, d∗
2 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
+ (d0, d∗

3 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗).

From the above calculations we obtain, for τ = τN ,

τ = (•),

τx = (d0, d∗
0 , •),

τxx − τx2 = −2(d∗
0 , d1, •),

τxx + τx2 = 2(d0, d∗
1 , •),

τxxx − τx3 = 3(d1, d∗
1 , •),

τxxxx − 4τx3x + 3τx2x2 = 12(d0, d∗
0 , d1, d∗

1 , •),

(3.48)

where we have used the abbreviated notation • for the list of indices
1, 2, . . . , N , N∗, . . . , 2∗, 1∗ common to each pfaffian.

Let us rewrite the above results in terms of Maya diagrams:

τ =
d0 d∗

0 d1 d∗
1

,

τx = ,

τxx − τx2 = −2 ,

τxx + τx2 = 2 ,

τxxx − τx3 = 3 ,

τxxxx − 4τx3x + 3τx2x2 = 12 .
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Therefore, the bilinear KP equation,

(D4
1 − 4D1 D3 + 3D2

2)τ · τ

= 2[(τxxxx − 4τx3,x + 3τx2,x2)τ − 4(τxxx − τx3)τx

+ 3 (τxx − τx2)(τxx + τx2)]
= 0, (3.49)

is expressed by means of Maya diagrams as

d0 d∗
0 d1 d∗

1

×
d0 d∗

0 d1 d∗
1

= ×

+ × .

This is nothing but the Jacobi identity for determinants and also a special case
of the pfaffian identity

d0 d∗
0 d1 d∗

1

×
d0 d∗

0 d1 d∗
1

= ×

− ×

+ × .

Hence, τ = τN is a solution to the KP equation.

Remark
The second term on the right-hand side of the above equation is

d0 d∗
0 d1 d∗

1

×
d0 d∗

0 d1 d∗
1

= (d0, d1, 1, 2, . . . , N , N∗, . . . , 2∗, 1∗)
× (d∗

0 , d∗
1 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗).
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However, the number of indices with and without superscript ∗ in each pfaffian
are not equal. Therefore, by virtue of the relations

(i, j) = (i∗, j∗) = 0, (dn, i) = (d∗
m, j∗) = 0, (3.50)

each of these pfaffians is zero. �

3.3 The BKP equation: pfaffian solutions

Among equations shown to possess N -soliton solutions in Section 1.8, the
following pairs of equations have the same nonlinearity and dispersion. The
only differences are in the coefficients of their nonlinear terms.

• Lax’s fifth-order KdV equation (1.252)

ut + 10
(
u3 + 1

2 u2
x + uux

)
x + uxxxxx = 0, (3.51a)

u = 2(log f )xx , (3.51b)[
Dx (Dt + D5

x ) − 5
3 Ds(Ds + D3

x )
]

f · f = 0, (3.51c)

where f satisfies simultaneously the bilinear equation involving auxiliary
variable s

Dx (Ds + D3
x ) f · f = 0. (3.52)

• Sawada–Kotera equation (1.254)

ut + 15(u3 + uuxx )x + uxxxxx = 0, (3.53a)

u = 2(log f )xx , (3.53b)

Dx (Dt + D5
x ) f · f = 0. (3.53c)

• Model equations for shallow water waves

(i) ut − uxxt − 4uut + 2ux

∫ ∞

x
ut dx ′ + ux = 0, (3.54a)

u = 2(log f )xx , (3.54b)[
Dx (Dt − Dt D2

x + Dx ) + 1
3 Dt (Ds + D3

x )
]

f · f = 0, (3.54c)

where f also satisfies

Dx (Ds + D3
x ) f · f = 0; (3.55)
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(ii) ut − uxxt − 3uut + 3ux

∫ ∞

x
ut dx ′ + ux = 0, (3.56a)

u = 2(log f )xx , (3.56b)

Dx (Dt − Dt D2
x + Dx ) f · f = 0. (3.56c)

Soliton solutions for (3.51) and (3.54) were discovered by an inverse scat-
tering method [45]. To the best of the author’s knowledge, however, those for
(3.53) and (3.56) were not found by such a method. Rather, they were found
by the direct method. In fact, (3.53) and (3.56) belong to the class of BKP-
type equations, and the most suitable expressions for their soliton solutions are
pfaffians [31].

Remarks
(1) The KP equation is associated with an A-type group and the BKP equation

with a B-type group. The BKP equation was given this name because it is
a B-type KP equation.

(2) In order to find soliton solutions for BKP-type equations by the inverse
method, it is necessary to change the structure of the Gel’fand–Levitan
integral equation because the solutions are expressed not as determinants
but as pfaffians [46]. �

In this section, we will express the soliton solutions of the BKP equation in
terms of a pfaffian, and we will show that the bilinear BKP equation is equiv-
alent to a pfaffian identity. The class of BKP-type equations (BKP hierarchy)
includes [

(D3 − D3
1)D−1 + 3D2

1

]
τ · τ = 0, (3.57a)

(D6
1 − 5D3

1 D3 − 5D2
3 + 9D1 D5)τ · τ = 0, (3.57b)

· · ·
Remark

The first of this class, (3.57a), is transformed through the dependent variable
transformation,

w = 2(log τ)x , (3.58)

into the nonlinear partial differential equation

wyt − wxxxy − 3(wxwy)x + 3wxx = 0, (3.59)

where we have put x1 = x, x−1 = y, x3 = t . �
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In order to investigate the solution of (3.57a), let us consider its two-soliton
expression

τ2 = 1 + exp(η1) + exp(η2) + b12 exp(η1 + η2). (3.60)

In a similar way to the KP equation, if we introduce parameters pi and qi we
may rewrite exp(ηi ) as

exp(ηi ) = exp(ξi + ξ̂i ),

ξi = p−1
i x−1 + pi x1 + p3

i x3 + p5
i x5 + ξ0

i , (3.61)

ξ̂i = q−1
i x−1 + qi x1 + q3

i x3 + q5
i x5 + ξ̂0

i ,

and the dispersion relation is automatically satisfied. Also, the phase shift term
b12 is given by

b12 = (p1 − p2)(p1 − q2)(q1 − p2)(q1 − q2)

(p1 + p2)(p1 + q2)(q1 + p2)(q1 + q2)
. (3.62)

If we put bi j = exp(Bi j ), the N -soliton solution is expressed as

τN =
∑

exp

⎡⎣ N∑
i=1

µiηi +
(N )∑
i< j

Bi jµiµ j

⎤⎦ , (3.63)

where
∑

denotes the summation over all possible combinations of µ1 =
0, 1, µ2 = 0, 1, . . . , µN = 0, 1, and

∑(N )
i< j is the sum over all pairs i, j

(i < j) chosen from {1, 2, . . . , N }.
The N -soliton solution τN can also be expressed as the N th-order pfaffian,

τN = (1, 2, 3, . . . , 2N ), (3.64)

where (i, j) = ci j + ∫ x Dx fi (x) · f j (x) dx (x = x1) and fi (x) for i =
1, 2, 3, . . . satisfy the linear differential equations

∂

∂xn
fi (x) = ∂n

∂xn
fi (x) (n = −1, 1, 3, 5, . . . ). (3.65)

For n = −1 this means that

∂

∂x−1
fi (x) =

∫ x

fi (x) dx . (3.66)

We also note that ci j = −c ji .

Remarks
(1) An N -soliton solution is a solution with 3N parameters pi , qi , ξ

0
i for i =

1, 2, . . . , N . Since τN is expressed as a pfaffian containing functions fi (x)
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with arbitrary parameters, it represents other solutions as well as soliton
solutions.

(2) We choose a lower limit of the above integral to be x = ±∞ (the value
x such that the value of an integrand is equal to zero), but this is not an
essential restriction. The result is the same for any choice of the lower
limit.

(3) Using integration by parts, each pfaffian entry (i, j) is

(i, j) = ci j +
∫ x

Dx fi · f j dx

= ci j + 2
∫ x ∂ fi

∂x
f j dx − fi f j . (3.67)

Therefore, from the relation (2.92) between a pfaffian and a determinant,
the square of the N -soliton solution τN can be written as the determinant

τ 2
N =

∣∣∣∣ ci j + 2
∫ x ∂ fi

∂x
f j dx

∣∣∣∣
1≤i, j≤2N

. (3.68)

This determinant is nothing but the grammian solution of the KP equation,
τKP. Hence, we have

τKP = τ 2
BKP. (3.69)

(4) By choosing c12 = c34 = 1, c13 = c14 = c23 = c24 = 0, f1 = exp ξ1,

f2 = exp ξ̂1, f3 = exp ξ2 and f4 = exp ξ̂2, the two-soliton solution is

τ2 = (1, 2)(3, 4) − (1, 3)(2, 4) + (1, 4)(2, 3)

=
[

1 + p1 − q1

p1 + q1
exp(ξ1 + ξ̂1)

] [
1 + p2 − q2

p2 + q2
exp(ξ2 + ξ̂2)

]
− p1 − p2

p1 + p2
exp(ξ1 + ξ2) × q1 − q2

q1 + q2
exp(̂ξ1 + ξ̂2)

+ p1 − q2

p1 + q2
exp(ξ1 + ξ̂2) × q1 − p2

q1 + p2
exp(̂ξ1 + ξ2). (3.70)

Putting

η̂i = ξi + ξ̂i + δi , where exp δi = pi − qi

pi + qi
, (3.71)

we may rewrite τ2 as

τ2 = 1 + exp(̂η1) + exp(̂η2) + b12 exp(̂η1 + η̂2), (3.72)
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which coincides with the two-soliton solution found by the perturbation
method. �

Let us confirm that the pfaffian expression for τ satisfies the BKP-type
equation (3.57a), [

(D3 − D3
1)D−1 + 3D2

1

]
τ · τ = 0. (3.73)

This is expressed in terms of normal derivatives as[
∂

∂x−1

(
∂

∂x3
− ∂3

∂x3

)
τ + 3

∂2

∂x2
τ

]
τ + 3

[(
∂3

∂x−1∂x2
− ∂

∂x

)
τ

]
∂τ

∂x

− 3

[
∂2

∂x−1∂x
τ

]
∂2τ

∂x2
−
[(

∂

∂x3
− ∂3

∂x3

)
τ

]
∂τ

∂x−1
= 0. (3.74)

From the formula

(i, j) = ci j +
∫ x

Dx fi (x) · f j (x) dx, (3.75)

we obtain

∂

∂x
(i, j) =

[
∂

∂x
fi

]
f j − fi

[
∂

∂x
f j

]
= (d0, d1, i, j),

∂

∂x−1
(i, j)=

∫ x
[

∂2 fi

∂x−1∂x
f j + ∂ fi

∂x

∂ f j

∂x−1
− ∂ fi

∂x−1

∂ f j

∂x
− fi

∂2 f j

∂x−1∂x

]
dx

= fi

[
∂

∂x−1
f j

]
−
[

∂

∂x−1
fi

]
f j

= (d−1, d0, i, j),

∂

∂x3
(i, j) =

∫ x
[

∂2 fi

∂x3∂x
f j + ∂ fi

∂x

∂ f j

∂x3
− ∂ fi

∂x3

∂ f j

∂x
− fi

∂2 f j

∂x3∂x

]
dx

= ∂3 fi

∂x3
f j − fi

∂3 f j

∂x3
− 2

[
∂2 fi

∂x2

∂ f j

∂x
− ∂ fi

∂x

∂2 f j

∂x2

]
= (d0, d3, i, j) − 2(d1, d2, i, j),
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where we define

(dn, i) = ∂n

∂xn
fi (x) (n = −1, 0, 1, 2, . . . ). (3.76)

Consequently, the derivatives of τN ,

τN = (1, 2, 3, . . . , 2N ) = (•), (3.77)

are given by

∂

∂x
τN = (d0, d1, •), (3.78a)

∂2

∂x2
τN = (d0, d2, •), (3.78b)

∂3

∂x3
τN = (d1, d2, •) + (d0, d3, •), (3.78c)

∂3

∂x−1∂x2
τN = (d−1, d2, •) + (d0, d1, •), (3.78d)

∂

∂x−1
τN = (d−1, d0, •), (3.78e)

∂2

∂x−1∂x
τN = (d−1, d1, •), (3.78f)

∂

∂x3
τN = (d0, d3, •) − 2(d1, d2, •), (3.78g)

∂

∂x−1

(
∂

∂x3
− ∂3

∂x3

)
τN = −3

[
(d0, d2, •) + (d−1, d0, d1, d2, •)

]
. (3.78h)

Substituting the above results into (3.73), we obtain

d−1 d0 d1 d2

×
d−1 d0 d1 d2

− ×

+ ×

− × = 0,

which is nothing but a pfaffian identity. Therefore, τN solves the BKP-type
equation (3.57a).
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Through similiar calculations that are a little more complicated, we can
confirm that τN also satisfies (3.57b).

3.4 The coupled KP equation

3.4.1 Wronski-type pfaffian solutions

In Section 3.2 we showed two things about the bilinear KP equation

(D4
1 − 4D1 D3 + 3D2

2)τ · τ = 0. (3.79)

First, if τ is expressed as a wronskian determinant, it is equivalent to the
Plücker relation,

N−2 N−1 N N+1

×
N−2 N−1 N N+1

− ×

+ × = 0,

and, secondly, if τ is expressed as a grammian determinant, it is equivalent to
the Jacobi identity

d0 d0∗ d1 d1∗

×
d0 d0∗ d1 d1∗

= ×

+ × .

Both the Plücker relation and the Jacobi identity are special cases of the pfaf-
fian identity

×

= ×

− ×

+ × .
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Since a determinant is a special case of a pfaffian, it may be possible to ob-
tain new soliton equations, including the KP equation as a special case, by
extending the expression of the τ -function as a determinant to a more general
pfaffian. Let us pursue this possibility.

First, consider a pfaffian with entries (l, m) satisfying the differential rules
with respect to the variables x1, x2, . . . :

∂

∂xn
(l, m) = (l + n, m) + (l, m + n). (3.80)

We call this a Wronski-type pfaffian.
Various examples of Wronski-type pfaffians may be considered. Among

them, we consider one with the entries

(l, m) ≡
M∑

k=1

[
�

(l)
k 


(m)
k − �

(m)
k 


(l)
k

]
, (3.81)

where M is an arbitrary natural number and �
(l)
k and 


(l)
k stand for the lth

derivatives with respect to x (= x1) of functions �k and 
k satisfying

∂

∂xn
�k = �

(n)
k ,

∂

∂xn

k = 


(n)
k . (3.82)

Under the above assumption, we see that

∂

∂xn
(l, m) =

M∑
k=1

[�(l+n)
k 


(m)
k − �

(m+n)
k 


(l)
k

+ �
(l)
k 


(m+n)
k − �

(m)
k 


(l+n)
k ]

= (l + n, m) + (l, m + n). (3.83)

As we have done previously, we will investigate the differential rules for this
pfaffian using the pfaffian expansion formula. In the simplest case, we have

∂

∂xn
(i0, i1, i2, i3)= ∂

∂xn
[(i0, i1)(i2, i3)−(i0, i2)(i1, i3)+(i0, i3)(i1, i2)]

= (i0 + n, i1)(i2, i3) − (i0 + n, i2)(i1, i3)

+ (i0 + n, i3)(i1, i2) + (i0, i1 + n)(i2, i3)

− (i0, i2 + n)(i1, i3) + (i0, i3 + n)(i1, i2)
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+ (i0, i1)(i2 + n, i3) − (i0, i2)(i1 + n, i3)

+ (i0, i3)(i1 + n, i2) + (i0, i1)(i2, i3 + n)

− (i0, i2)(i1, i3 + n) + (i0, i3)(i1, i2 + n)

= (i0 + n, i1, i2, i3) + (i0, i1 + n, i2, i3)

+ (i0, i1, i2 + n, i3) + (i0, i1, i2, i3 + n).

From this, we see that the differential rule for the Wronski-type pfaffian τW =
(i0, i1, . . . , i2N−1), where the superscript W stands for wronskian, is

∂

∂xn
(i0, i1, . . . , i2N−1) =

2N−1∑
k=0

(i0, i1, . . . , ik + n, . . . , i2N−1).

(3.84)

On the other hand, if we introduce a wronskian defined by

|r(0), r(1), r(2), . . . , r(2N − 1)|

≡

∣∣∣∣∣∣∣∣∣∣

r1(0) r1(1) . . . r1(2N − 1)

r2(0) r2(1) . . . r2(2N − 1)

...
...

...

r2N (0) r2N (1) . . . r2N (2N − 1)

∣∣∣∣∣∣∣∣∣∣
, (3.85)

where r j (n) is given by

r j (n) ≡ ∂n

∂xn
r j (0),

∂n

∂xn
r j (m) = r j (m + n), (3.86)

then the differential rule is, as is well known, given by

∂

∂xn
|r(i0), r(i1), . . . , r(i2N−1)|

=
2N−1∑
k=0

|r(i0), r(i1), . . . , r(ik + n), . . . , r(i2N−1)|. (3.87)

This has exactly the same form as the differential rule for the pfaffian τW. This
is the reason that τW is called a Wronski-type pfaffian.
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Substituting the pfaffian τW = (0, 1, . . . , 2N − 1) into the left-hand side of
the KP equation, we have

(D4
1 −4D1 D3 +3D2

2)τW ·τW=24

⎡⎣ 2N−22N−1 2N 2N+1

×
2N−22N−1 2N 2N+1

− ×

+ ×
⎤⎦ ,

through the same calculation performed in the case of the wronskian solution
of the KP equation. By employing a pfaffian identity, the right-hand side of the
above equation is written as

24

2N−2 2N−1 2N 2N+1

×
2N−2 2N−1 2N 2N+1

≡ 24σ̂WσW.

We remark that we have σW = σ̂W = 0 if τ is a wronskian.
The pfaffians σW, σ̂W introduced here,

σW = (0, 1, 2, . . . , 2N − 3),

σ̂W = (0, 1, 2, . . . , 2N , 2N + 1),
(3.88)

have order which are two less and two more, respectively, than that of τ . Taking
this fact into account and searching for a pfaffian identity involving σW and τ ,
we obtain the Maya diagram expression

2N−3 2N−2 2N−1 2N

×
2N−3 2N−2 2N−1 2N

− ×

+ ×

− × = 0.

This identity is equivalent to the bilinear equation

(D3
1 + 2D3 + 3D1 D2)σ

W · τW = 0. (3.89)
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Following the same procedure, we obtain a bilinear equation involving σ̂W and
τW:

(D3
1 + 2D3 − 3D1 D2)̂σ

W · τW = 0. (3.90)

Remark
These two bilinear equations have the same form as the second modified KP
equation introduced by Jimbo and Miwa. However, σW and τW in the sec-
ond modified KP equation are expressed in determinantal form, not in pfaffian
form. �

Let us summarize the above results. If we define pfaffians τW, σW, σ̂W by

τW ≡ (0, 1, . . . , 2N − 1),

σW ≡ (0, 1, 2, . . . , 2N − 3),

σ̂W ≡ (0, 1, 2, . . . , 2N , 2N + 1),

(3.91)

where

∂

∂xn
(l, m) = (l + n, m) + (l, m + n),

we have the coupled bilinear equations,

(D4
1 − 4D1 D3 + 3D2

2)τW · τW = 24σ̂WσW,

(D3
1 + 2D3 + 3D1 D2)σ

W · τW = 0,

(D3
1 + 2D3 − 3D1 D2)̂σ

W · τW = 0.

(3.92)

Through the dependent variable transformations

u = 2(log τW)xx , v = σW/τW, v̂ = σ̂W/τW, (3.93)

the bilinear equations are equivalent to the coupled nonlinear partial differen-
tial equations

(4ut − 6uux − uxxx )x − 3uyy + 24(vv̂)xx = 0,

2vt + 3uvx + vxxx + 3

(
vxy + v

∫ x

uy dx

)
= 0,

2̂vt + 3uv̂x + v̂xxx − 3

(
v̂xy + v̂

∫ x

uy dx

)
= 0,

(3.94)

where x = x1, y = x2, t = x3, which we call the coupled KP equation.



138 Structure of soliton equations

Remarks
(1) Putting t = 2T, v = v̂ = (−b/12)1/2φ and omitting the y-dependence in

the above system, we have

uT − 1

2
(uxxx + 6uux ) = 2bφφx ,

φT + φxxx + 3uφx = 0.

(3.95)

This system is called the coupled KdV equation [47] and is a specialized
version of a 4-reduction of the KP hierarchy. In fact it is associated with
the Kač–Moody algebra C (4)

2 [15]. Therefore, the system (3.94) may also
be thought of as a two-dimensional version of the coupled KdV equation.
This is why we called (3.94) the coupled KP equation.

(2) The group acting on the coupled KP equation is completely unknown1

(the author believes that it should also be associated with a Kač–Moody
algebra). From the standpoint of group theory, the A-type group acting
on the KP equation is the most general, and we consider that the group
acting on the BKP equation is a specialization. However, this idea is not
consistent with the author’s viewpoint that pfaffians are more general than
determinants. Hence, we have avoided a discussion of soliton equations
from a group theoretical viewpoint.

(3) For arbitrary natural numbers M, N , let us consider the pfaffians

τW ≡ (b1, b2, . . . , bM , 0, 1, . . . , N − 1),

σW ≡ (b1, b2, . . . , bM , 0, 1, . . . , N − 3),

σ̂W ≡ (b1, b2, . . . , bM , 0, 1, . . . , N + 1),

(3.96)

where

∂

∂xn
(l, m) = (l + n, m) + (l, m + n),

(bi , b j ) = 0, (bi , l) = ∂ l

∂xl
φi ,

∂

∂xn
φi = ∂n

∂xn
φi ,

for l, m = 0, 1, . . . , N + 1, i, j = 1, 2, . . . , M and n = 1, 2, 3, . . . . In the
case M = N , τW gives an nth-order wronskian and therefore a solution of
the KP equation. Otherwise, if M > N , we have τW = 0, and if M < N ,

1 Translators’ note: It has since been realized that the coupled KP equation is associated with the
affine Lie algebra D∞. See ref. [9], p. 976.
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τW is a hybrid solution in which solutions of the KP equation and of the
BKP equation coexist. �

3.4.2 Gramm-type pfaffian solutions

We have seen that the KP equation has solutions expressed in wronskian and
in grammian form. In a simliar way, the coupled KP equation,

(D4
1 − 4D1 D3 + 3D2

2)τ · τ = 24σ̂ σ, (3.97a)

(D3
1 + 2D3 + 3D1 D2)σ · τ = 0, (3.97b)

(D3
1 + 2D3 − 3D1 D2)̂σ · τ = 0, (3.97c)

has solutions that can be expressed as Wronski-type pfaffians τW, σW, σ̂W and
as Gramm-type pfaffians τG, σG, σ̂G [48]. The latter are

τG ≡ (1, 2, . . . , 2N ),

σG ≡ (c1, c0, 1, 2, . . . , 2N ), (3.98)

σ̂G ≡ (d0, d1, 1, 2, . . . , 2N ),

where the different types of pfaffian entries are defined by

(i, j) ≡ ci j +
∫ x

( fi g j − f j gi ) dx, ci j = −c ji ,

(dn, i) ≡ ∂n

∂xn
fi , (3.99)

(cn, i) ≡ ∂n

∂xn
gi ,

(dm, dn) = (cm, cn) = (cm, dn) = 0.

In the above definition of (i, j), the lower limit of integration is chosen so that
the functions fi , g j and their derivatives are zero. As in other similar cases,
this is not an essential restriction; constants coming from the lower limit can
be transferred into the term ci j . We also see that fi , gi (i = 1, 2, . . . , 2N )

satisfy the differential equations

∂

∂xn
fi = ∂n

∂xn
fi , (3.100)

∂

∂xn
gi = (−1)n−1 ∂n

∂xn
gi (n = 1, 2, 3, . . . ).
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Using the formulae

∂

∂x
(i, j) = fi g j − f j gi

= (c0, d0, i, j),

∂

∂x2
(i, j) = ∂ fi

∂x
g j − fi

∂g j

∂x
− ∂ f j

∂x
gi + f j

∂gi

∂x

= (c0, d1, i, j) − (c1, d0, i, j),

∂

∂x3
(i, j) = ∂2 fi

∂x2
g j − ∂2 f j

∂x2
gi − ∂ fi

∂x

∂g j

∂x
+ ∂ f j

∂x

∂gi

∂x

+ fi
∂2g j

∂x2
− f j

∂2gi

∂x2

= (c0, d2, i, j) − (c1, d1, i, j) + (c2, d0, i, j),

and the same procedures as for the KP equation, we obtain expressions for the
derivatives of τG and σG:

τG =
c0 d0 c1 d1

,

τG
x = ,

τG
xx − τG

x2
= −2 ,

τG
xx + τG

x2
= 2 ,

τG
xxx − τG

x3
= 3 ,

τG
xxxx − 4τG

x3x + 3τG
x2x2

= 12 ,

σG = −
c0 c1 c2 d0

,

σG
x = − ,

σG
xx + σG

x2
= −2 ,

σG
xxx + 2σG

x3
+ 3σG

x2x = −6 ,

τG
xxx + 2τG

x3
+ 3τG

x2x = 6 .
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We have omitted the indices {1, 2, . . . , 2N } which are common to every pfaf-
fian. Therefore, the coupled KP equation (3.97a,b),

(τG
xxxx − 4τG

x3x + 3τG
x2x2

)τG − 4(τG
xxx − τG

x3
)τG

x

+ 3(τG
xx − τG

x2
)(τG

xx + τG
x2

) = 12σGσ̂ G,

(σG
xxx + 2σG

x3
+ 3σG

x2x )τ
G − 3(σG

xx + σG
x2

)τG
x

+ 3σG
x (τG

xx − τG
x2

) − σG(τG
xxx + 2τG

x3
+ 3τG

x2x ) = 0,

may be expressed in terms of Maya diagrams as

c0 d0 c1 d1

×
c0 d0 c1 d1

− ×

− ×

= − × ,

−
c0 c1 c2 d0

×
c0 c1 c2 d0

+ ×

− ×

+ × = 0.

These are simply pfaffian identities. Equation (3.97c) is obtained by inter-
changing c and d in the above equation. Hence, a soliton solution of the cou-
pled KP equation is given by τG, σG and σ̂G.

Remarks
(1) The Gramm-type pfaffian τG may be transformed into a solution of the

BKP hierarchy:

[(D3 − D3
1)D−1 + 3D2

1]τ · τ = 0,

[D6
1 − 5D3

1 D3 − 5D2
3 + 9D1 D5]τ · τ = 0, (3.101)

. . .
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In this case, choosing functions fi , gi to be

fi = ∂

∂x
φi , gi = φi , (3.102)

we have

(i, j) = ci j +
∫ x

Dxφi · φ j dx, (3.103)

which coincides with the (i, j) entry of the pfaffian solution of the BKP
hierarchy.

(2) In order to obtain a solution of the KP hierarchy, we choose functions fi

satisfying (3.100) and

gi = 0 (1 ≤ i ≤ M), ci j = 0 (1 ≤ i < j ≤ M) (3.104)

for an arbitrary natural number M . Then we have

(i, j) =
⎧⎨⎩0 (1 ≤ i < j ≤ M)

ci j +
∫ x

fi g j dx (1 ≤ i ≤ M, M + 1 ≤ j ≤ 2N ).
(3.105)

If (i) M = N , τG = (1, 2, . . . , N , N + 1, . . . , 2N ) gives an N × N gram-
mian,

τG = det(mi j )1≤i< j≤N , (3.106)

mi j = ci,2N+1− j +
∫ x

f j g2N+1− j dx,

which gives the grammian solution of the KP equation. If (ii) M > N , we
have τG = 0, and otherwise (iii) M < N , we have a hybrid mode solu-
tion in which the solution of the KP equation and that of the coupled KP
equation coexist. �

3.5 The two-dimensional Toda lattice equation

3.5.1 Wronskian solutions

The two-dimensional Toda lattice equation is the system

∂2 Qn

∂s∂x
= Vn+1 − 2Vn + Vn−1, (3.107)

Qn = log(1 + Vn), (3.108)
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where n = . . . ,−1, 0, 1, . . . . Through the dependent variable transformation

Vn = ∂2

∂s∂x
log(τn), (3.109)

(3.107) may be integrated with respect to x and s to obtain

1 + ∂2

∂s∂x
log(τn) = τn+1τn−1

τ 2
n

, (3.110)

where we have set constants of integration equal to zero. Expanding the deriva-
tive of log(τn) and clearing fractions, we obtain the bilinear equation

∂2τn

∂s∂x
τn − ∂τn

∂s

∂τn

∂x
= τn+1τn−1 − τ 2

n , (3.111)

which is written in terms of D-operators as

Dx Dsτn · τn = 2(τn+1τn−1 − τ 2
n ). (3.112)

Remark
The one-dimensional Toda lattice equation is given by

∂2 Qn

∂t2
= Vn+1 − 2Vn + Vn−1, (3.113)

Qn = log(1 + Vn). (3.114)

The system that is nowadays referred to as the two-dimensional Toda lattice
is obtained by considering a two-dimensional version of the term ∂2 Qn/∂t2

on the left-hand side of (3.113). In physical terms, a two-dimensional Toda
equation should be obtained by considering a two-dimensional version of the
force term on the right-hand side. However, up to now we have found an N -
soliton only for the system (3.107), (3.108). This is why we call this system
the two-dimensional Toda lattice. �

The N -soliton solution for (3.112) is expressed as a wronskian [49]

τn =

∣∣∣∣∣∣∣∣∣
φ1(n) φ1(n + 1) · · · φ1(n + N − 1)

φ2(n) φ2(n + 1) · · · φ2(n + N − 1)
...

...
...

φN (n) φN (n + 1) · · · φN (n + N − 1)

∣∣∣∣∣∣∣∣∣ , (3.115)

where each φi (n) satisfies the differential equations

∂φi (n)

∂x
= φi (n + 1),

∂φi (n)

∂s
= −φi (n − 1). (3.116)
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Remark
The above determinant is simply the N × N Casorati determinant appearing
in the theory of linear difference equations. �

Let us now prove that τn given by (3.116) satisfies (3.112). As in the KP
equation case, we express τn in terms of a Maya diagram,

τn =
−1 0 1 N−3 N−2 N−1 N

.

Its derivatives may also be expressed in terms of Maya diagrams as

τn,s = −
−1 0 1 N−3 N−2 N−1 N

,

τn,x = ,

τn+1 = ,

τn−1 = ,

τn,xs = −

− .

Substituting the above results into the bilinear equation

∂2τn

∂s∂x
τn − ∂τn

∂s

∂τn

∂x
= τn+1τn−1 − τ 2

n (3.117)

gives the Maya diagram expression

−
−1 0 1 N−3 N−2 N−1 N

×
−1 0 1 N−3 N−2 N−1 N

+ ×
= × .

Omitting boxes 1, 2, . . . , N − 2, which contain particles in all of the above
terms, gives
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−
−1 0 N−1 N

×
−1 0 N−1 N

+ ×

= × .

This is simply the Plücker relation for determinants, and therefore is automat-
ically satisfied.

3.5.2 Grammian solutions

The two-dimensional Toda lattice equation in bilinear form,

∂2τn

∂s∂x
τn − ∂τn

∂s

∂τn

∂x
= τn+1τn−1 − τ 2

n , (3.118)

has a solution τn expressed as a grammian [50]:

τn =
∣∣∣∣ci j + (−)n

∫ x

f (n)
i g(−n)

j dx

∣∣∣∣
1≤i, j≤N

. (3.119)

In the above equation, each f (n)
i , g(−n)

j satisfy the linear differential equations

∂ f (n)
i

∂xk
= f (n+k)

i ,
∂g(−n)

i

∂xk
= (−)k−1g(−n+k)

i ,

∂ f (n)
i

∂sk
= − f (n−k)

i ,
∂g(n)

i

∂sk
= (−)k g(−n−k)

i , (3.120)

x1 = x, s1 = s, k = 1, 2, . . . ,

where ci j is constant and we write (−1)n as (−)n for short.

Remarks
(1) The superscript (n) in f (n)

i denotes the nth derivative (or −nth antideriva-
tive if n < 0) with respect to x .

(2) In (3.119), τn is exactly the same as the grammian expression for the so-
lution of the KP equation apart from the factor (−)n . This factor is not
important for solutions of the two-dimensional Toda lattice equation, but
is necessary to discuss the connection with the BKP solution. �
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Let us express τn by means of a pfaffian:

τn = (1, 2, . . . , N , N∗, . . . , 2∗, 1∗)n,

(i, j∗)n = ci j + (−)n
∫ x

f (n)
i g(−n)

j dx,

(i, j)n = (i∗, j∗)n = 0.

The derivatives with respect to x and s and shifts in n of the pfaffian entry
(i, j∗)n are as follows:

∂

∂x
(i, j∗)n = (−)n f (n)

i g(−n)
j

= (d−n, d∗
n , i, j∗)n,

∂

∂s
(i, j∗)n = (−)n−1 f (n−1)

i g(−n−1)
j

= (d−n−1, d∗
n−1, i, j∗)n,

∂2

∂x∂s
(i, j∗)n = (−)n−1[ f (n)

i g(−n−1)
j + f (n−1)

i g(−n)
j ]

= (d−n−1, d∗
n , i, j∗)n − (d−n, d∗

n−1, i, j∗)n,

(i, j∗)n+1 = ci j + (−)n+1
∫ x

f (n+1)
i g(−n−1)

j dx

= ci j + (−)n
∫ x

f (n)
i g(−n)

j dx + (−)n−1 f (n)
i g(−n−1)

j

= (i, j∗)n + (d−n−1, d∗
n , i, j∗)n,

(i, j∗)n−1 = ci j + (−)n−1
∫ x

f (n−1)
i g(−n+1)

j dx

= ci j + (−)n
∫ x

f (n)
i g(−n)

j dx + (−)n−1 f (n−1)
i g(−n)

j

= (i, j∗)n − (d−n, d∗
n−1, i, j∗)n,

where

(d∗
n , i)n = f (n)

i ,

(d−n, j∗) = (−)ng(−n)
j ,

(d−n, d∗
n ) = (d−n, dn) = (d∗−n, d∗

n ) = 0.



3.5 The two-dimensional Toda lattice equation 147

As a result, rewriting τn = (. . . )n , we obtain

∂

∂x
(. . . )n = (d−n, d∗

n , . . . )n,

∂

∂s
(. . . )n = (d−n−1, d∗

n−1, . . . )n,

∂2

∂x∂s
(. . . )n = (d−n−1, d∗

n , . . . )n − (d−n, d∗
n−1, . . . )n

+ (d−n−1, d∗
n−1, d−n, d∗

n , . . . )n,

τn+1 = (. . . )n + (d−n−1, d∗
n , . . . )n,

τn−1 = (. . . )n − (d−n, d∗
n−1, . . . )n .

By employing the above equations, the two-dimensional Toda lattice equation
in bilinear form,

∂2τn

∂s∂x
τn − ∂τn

∂s

∂τn

∂x
= τn+1τn−1 − τ 2

n , (3.121)

is expressed by means of Maya diagrams as

−
−n−1 n−1∗ −n n∗

×
−n−1 n−1∗ −n n∗

= ×

+ × ,

which shows that τn satisfies the bilinear equation (3.121).
Next, we discuss the BKP version of the grammian τn . We note that

τn = det((mi j )n), (3.122)

(mi j )n = ci j +
∫ x

f (n)
i g(−n)

j dx

solves the KP equation if n = 0. We here assume that fi , g j satisfy

gi = −2
∂

∂x
fi , (3.123)

where x = x1.
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Then, if ci j = −c ji , each entry in τn ,

(mi j )n ≡ ci j − (−)n2
∫ x

f (n)
i f (1−n)

j dx, (3.124)

satisfies the relation

(mi j )1−n = −(mi j )n . (3.125)

Hence, we have

τ1−n = (−)N τn, (3.126)

where N is the size of the determinant. In the terminology of Jimbo and
Miwa [15], this is the BKP version of τn . This is because (mi j )0 can be written
as

(mi j )0 = ci j +
∫ x

Dx fi · f j dx − fi f j (3.127)

after integration by parts. Employing the relation (2.92), that is∣∣∣∣∣∣∣∣∣∣∣

a11 − y1 y1 a12 − y1 y2 · · · a1n − y1 yn

a21 − y2 y1 a22 − y2 y2 · · · a2n − y2 yn

a31 − y3 y1 a32 − y3 y2 · · · a3n − y3 yn
...

...
...

an1 − yn y1 a12 − yn y2 · · · ann − yn yn

∣∣∣∣∣∣∣∣∣∣∣
= (1, 2, · · · , n)2,

where (i, j) ≡ ai j and n is even, we have

τ0 = τ 2
BKP. (3.128)

Remark
The linear differential equations (3.120), satisfied by f j and g j , are compatible
with the relation

g j = −2
∂

∂x
f j (x = x1) (3.129)

only when k is odd. Therefore, we must freeze the dependence on xk and sk

when k is even. There is no problem in doing this because the BKP equation is
written only in terms of odd index variables. �
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3.6 The two-dimensional Toda molecule equation

3.6.1 Bi-directional wronskian solutions

The two-dimensional Toda molecule equation is written as

∂2 Qn

∂x∂y
= Vn+1 − 2Vn + Vn−1, (3.130)

Qn ≡ log(Vn). (3.131)

We note that it has the same form as the Toda lattice equation except that for
the Toda lattice equation

Qn ≡ log(1 + Vn). (3.132)

Therefore, if Vn = 0 the lattice equation has Qn = 0, whereas the molecule
equation has Qn = −∞. In the Toda molecule equation (3.130), (3.131), the
independent variable n takes values n = 1, 2, . . . , N and its boundary condi-
tion is given by

V0 = VN+1 = 0. (3.133)

This difference in the boundary conditions affects the structure of its solutions.
Through the same dependent variable transformation,

Vn = ∂2

∂x∂y
log(τn), (3.134)

(3.130) can be integrated with respect to x and y to give

∂2

∂x∂y
log(τn) = τn+1τn−1

τ 2
n

, (3.135)

where the constant of integration has been set equal to zero. Expanding the
derivatives and clearing fractions, we obtain the bilinear form,

∂2τn

∂x∂y
τn − ∂τn

∂x

∂τn

∂y
= τn+1τn−1, (3.136)

or, equivalently,

Dx Dyτn · τn = 2τn+1τn−1. (3.137)
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Employing (3.135), we have

Vn = ∂2

∂x∂y
log(τn)

= τn+1τn−1

τ 2
n

. (3.138)

By virtue of (3.134), the boundary conditions V0 = VN+1 = 0 are satisfied
by choosing

τ0 = 1, τN+1 = �(x)χ(y), (3.139)

where �(x) and χ(y) are arbitrary functions in x and y, respectively. We use
the convention

τ−1 = 0, τN+2 = 0 (3.140)

so that (3.138) is satisfied for n = 0 and n = N + 1.
The solution τn of the bilinear equation is expressed by means of an n × n

wronskian [51],

τ0 = 1,

τn =
∣∣∣∣∣
(

∂

∂x

)i−1 (
∂

∂y

) j−1


(x, y)

∣∣∣∣∣
1≤i, j≤n

, (3.141)

where 
(x, y) is, for now, an arbitrary function of x, y and the natural number
n is not only the position in the Toda molecule, but also the degree of the
wronskian. The above determinant is a wronskian in both the rows and the
columns and is called a bi-directional wronskian. Explicit forms of the first
few of the τn are given by

τ1 = 
00,

τ2 =
∣∣∣∣
00 
01


10 
11

∣∣∣∣ , (3.142)

τ3 =
∣∣∣∣∣∣

00 
01 
02


10 
11 
12


20 
21 
22

∣∣∣∣∣∣ ,
where we have adopted the notation


i j =
(

∂

∂x

)i (
∂

∂y

) j


(x, y). (3.143)
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Let us confirm that the bilinear equation (3.136) holds in the cases n = 1
and n = 2. If n = 1, the bilinear equation

τ1,xyτ1 − τ1,xτ1,y = τ2τ0 (3.144)

is


11
00 − 
10
01 =
∣∣∣∣
00 
01


10 
11

∣∣∣∣ . (3.145)

If n = 2, the bilinear equation

τ2,xyτ2 − τ2,xτ2,y = τ3τ1 (3.146)

is ∣∣∣∣
00 
02


20 
22

∣∣∣∣ ∣∣∣∣
00 
01


10 
11

∣∣∣∣− ∣∣∣∣
00 
01


20 
21

∣∣∣∣ ∣∣∣∣
00 
02


10 
12

∣∣∣∣
=
∣∣∣∣∣∣

00 
01 
02


10 
11 
12


20 
21 
22

∣∣∣∣∣∣
00. (3.147)

In order to prove that τn given by (3.141) solves the bilinear equation
(3.136), we introduce (n + 1) × (n + 1), n × n and (n − 1) × (n − 1) deter-

minants D, D

[
i
j

]
and D

[
i j
k l

]
:

D ≡
∣∣∣∣∣
(

∂

∂x

)i−1 (
∂

∂y

) j−1


(x, y)

∣∣∣∣∣
1≤i, j≤n+1

= τn+1, (3.148a)

D

[
i
j

]
= determinant obtained by eliminating the i th row and

j th column of D, (3.148b)

D

[
i j
k l

]
= determinant obtained by eliminating the i th and

j th rows and the kth and lth columns of D. (3.148c)

Using the above notation, we have

τn = D

[
n + 1
n + 1

]
, (3.149a)

τn−1 = D

[
n n + 1
n n + 1

]
, (3.149b)
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∂τn

∂x
= D

[
n

n + 1

]
, (3.149c)

∂τn

∂y
= D

[
n + 1

n

]
, (3.149d)

∂2τn

∂x∂y
= D

[
n
n

]
, (3.149e)

from which we see that the bilinear equation (3.136) is equivalent to

D

[
n
n

]
D

[
n + 1
n + 1

]
− D

[
n

n + 1

]
D

[
n + 1

n

]
= D

[
n n + 1
n n + 1

]
D. (3.150)

This is simply the Jacobi identity for determinants. Hence, we have verified
that τn is a solution of (3.136).

The arbitrary function 
(x, y) needs to satisfy the boundary condition
τN+1 = �(x)χ(y). To this end, we introduce arbitrary functions u j (x) and
v j (y) ( j = 1, 2, . . . , N + 1), of x and y, respectively, and put


(x, y) =
N+1∑
j=1

u j (x)v j (y). (3.151)

Choosing 
(x, y) as above, we have

τn =
∣∣∣∣∣
(

∂

∂x

)i−1 (
∂

∂y

) j−1


(x, y)

∣∣∣∣∣
1≤i, j≤n

=
∣∣∣∣∣∣
N+1∑
j=1

(
∂

∂x

)i−1

u j (x)

(
∂

∂y

)k−1

v j (y)

∣∣∣∣∣∣
1≤i,k≤n

. (3.152)

This is equal to the determinant of the product of the n × (N + 1) matrix An

and the (N + 1) × n matrix Bn ,

τn = |An × Bn|, (3.153)

where

(An)i j = ∂ i−1

∂xi−1
u j (x) (Bn) jk = ∂k−1

∂yk−1
v j (y). (3.154)
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In the case n = N + 1, An and Bn are square matrices and therefore

τN+1 = |AN+1| × |BN+1|. (3.155)

Since |AN+1| and |BN+1| depend only on x and y, respectively, τN+1 may be
rewritten as

τN+1 = �(x)χ(y), (3.156)

which is a boundary condition for τn . This verifies that τn is a solution for the
Toda molecule equation satisfying the boundary condition.

Remarks
(1) Solutions of the Toda molecule equation were first found by Leznov and

Savaliev [52], using a group theoretical approach. This is, however, far
beyond a beginner’s understanding and so we have employed a method
using wronskians.

(2) We note that the two-dimensional Toda molecule equation,

∂2 Qn

∂x∂y
= Vn+1 − 2Vn + Vn−1, (3.157)

Qn ≡ log(Vn), (3.158)

includes the Liouville equation discussed in Chapter 1 as a special case.
By choosing the boundary condition V0 = V2 = 0, the above equation is
equivalent to

∂2 Q1

∂x∂y
= −2V1

= exp(Q1), (3.159)

which is simply the Liouville equation.
(3) In Chapter 1 we discussed the two-wave interaction equation,

∂φ1

∂ξ
= −φ1φ2,

∂φ2

∂η
= φ1φ2, (3.160)

which has a form similar to the Liouville equation. In fact, this equation is
generated from the Bäcklund transformation of the Toda molecule equa-
tion [53]. �
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3.6.2 Double wronskian solutions

In this section, we consider another expression for the solution of the bilinear
two-dimensional Toda molecule equation,

Dx Dyτn · τn = 2τn+1τn−1, (3.161)

where we set the boundary conditions τ0 = χ(y), τN+1 = �(x). To this end,
we introduce arbitrary functions fi (x) and gi (y) (i = 1, 2, . . . , M), which de-
pend only on x and y, respectively, and consider the M × M double wron-
skian [54]

τn =

∣∣∣∣∣∣∣∣∣∣
f (0)
1 f (1)

1 · · · f (n−1)
1 g(0)

1 g(1)
1 · · · g(M−n−1)

1

f (0)
2 f (1)

2 · · · f (n−1)
2 g(0)

2 g(1)
2 · · · g(M−n−1)

2
...

...
...

...
...

...

f (0)
M f (1)

M · · · f (n−1)
M g(0)

M g(1)
M · · · g(M−n−1)

M

∣∣∣∣∣∣∣∣∣∣
, (3.162)

where

f (n)
i = ∂n

∂xn
fi , g(n)

i = ∂n

∂yn
gi ,

∂

∂xn
fi = ∂n

∂xn
fi ,

∂

∂yn
gi = ∂n

∂yn
gi ,

(3.163)

for i = 1, 2, . . . , M, n = 1, 2, . . . . From this, we have

τ0 =

∣∣∣∣∣∣∣∣∣∣
g(0)

1 g(1)
1 · · · g(M−1)

1

g(0)
2 g(1)

2 · · · g(M−1)
2

...
...

...

g(0)
M g(1)

M · · · g(M−1)
M

∣∣∣∣∣∣∣∣∣∣
= χ(y) (3.164)

and

τM =

∣∣∣∣∣∣∣∣∣∣
f (0)
1 f (1)

1 · · · f (M−1)
1

f (0)
2 f (1)

2 · · · f (M−1)
2

...
...

...

f (0)
M f (1)

M · · · f (M−1)
M

∣∣∣∣∣∣∣∣∣∣
= �(y), (3.165)

from which we see that the boundary conditions are automatically satisfied.

Remarks
(1) τn is also a solution for the KP hierarchy with independent variables

x1, x2, x3, . . . or y1, y2, y3, . . . .
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(2) The two-dimensional Toda molecule equation with M = ∞ appears in a
book by G. Darboux [55]. The τ -function expressed in double wronskian
form can also be observed in this book. This was first noticed by Yoshinori
Kametaka [56]. In this paper, he discussed hypergeometric solutions of the
Toda molecule equation.

(3) Generalization of a double wronskian to a triple wronskian, which is
made from arbitrary functions in independent variables x1, y1, z1 given
by f (x1), g(y1), h(z1), yields the six-wave interaction equation (a gener-
alization of the three-wave interaction equation). �

If we express τn by means of a Maya diagram,

τn =
0 1 n−2 n−1 n n+1 0 1 M−n−2 M−n−1

,

the derivatives of τn and τn±1 are expressed as

τn,x =
0 1 n−2 n−1 n n+1 0 1 M−n−2 M−n−1

,

τn,y = ,

τn,xy = ,

τn+1 = ,

τn−1 = .

By re-ordering the boxes in the above Maya diagrams, we obtain

τn =
n−2 n−1 n n+1

M−n−2 M−n−1 M−n M−n+1

,

τn,x = × (−1),

τn,y = ,

τn,xy = ,

τn+1 = × (−)M−n−1,

τn−1 = × (−)M−n−1.
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By using these Maya diagrams, the bilinear two-dimensional Toda molecule
equation,

τnτn,xy − τn+1τn−1 − τn,yτn,x = 0, (3.166)

is rewritten as

n−1 n

M−n−1 M−n

×
n−1 n

M−n−1 M−n

− ×

+ × = 0.

This shows that τn satisfies the two-dimensional Toda molecule equation.

Remark
The function


(x, y) =
M∑

j=1

u j (x)v j (y), (3.167)

which appears in the bi-directional wronskian in Section 3.6.1, is given by the
ratio of τ1 and τ0 [54]:


(x, y) = τ1

τ0
. (3.168)

�



4

Bäcklund transformations

Dromion.

4.1 What is a Bäcklund transformation?

A Bäcklund transformation is a transformation between a solution u of a given
linear or nonlinear differential equation,

L1(u, ut , ux , uxx , uxxx , uy, . . . ) = 0,

and another solution v of another differential equation,

L2(v, vt , vx , vxx , vxxx , vy, . . . ) = 0,

which may be the same as, or different from, L1.
As a simple example, we consider the dispersionless KdV and mKdV equa-

tions,

ut + uux = 0, (4.1)

vt + (av2 + bv)vx = 0, (4.2)

157
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where a, b are constants. These equations coincide if b = 1 and a = 0. A
Bäcklund transformation between solutions of (4.1) and (4.2) is given by

u = av2 + bv. (4.3)

This is confirmed by taking the t-derivative of (4.3) and using (4.2) to obtain

ut = (av2 + bv)t = −(2av + b)(av2 + bv)vx = −uux .

Since (4.2) may be written as

vt +
(

1

3
av3 + 1

2
bv2

)
x

= 0, (4.4)

v is a conserved density, or, in other words,
∫

v dx is a conserved quantity.

Remarks
(1) In (4.3), u is expressed explicitly in terms of v and is called the Miura

transformation.
(2) If the time derivative of T can be expressed as the space derivative of some

quantity X ,

Tt + Xx = 0,

then T is called a conserved density. Taking the t-derivative of the integral
of T over an interval [a, b], we have{∫ b

a
T dx

}
t
= −

∫ b

a
Xx dx = X (a) − X (b).

If we impose the boundary condition X (a) = X (b), the integral of T over
[a, b] is independent of t , and is called a conserved quantity. �

Next, from (4.3), v may be rewritten in terms of u as

v = 1

2a
(−b ± (b2 + 4au)1/2).

Taking b = 1 and the upper sign, the above equation may be expanded for
sufficiently small a as

v ∼ u − au2 + 2a2u3 − · · · .
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Since v is a conserved density, that is it satisfies (4.4), each coefficient in
the expansion of v with respect to a is again a conserved quantity. This means
that every power of u is a conserved quantity. We can of course check this fact
directly using (4.2). However, it is interesting to note that an infinite number of
conserved quantities are generated from a Bäcklund transformation containing
an arbitrary parameter [57].

We showed in Chapter 1 that the Liouville equation,

uxy = eu, (4.5)

may be reduced to the linear equation,

vxy = 0. (4.6)

Differentiating the equations

ux + vx = 21/2e(u−v)/2, (4.7a)

uy − vy = 21/2e(u+v)/2 (4.7b)

with respect to y and x , respectively, we obtain

uxy + vxy = 2−1/2(uy − vy)e
(u−v)/2 = eu,

uyx − vyx = 2−1/2(ux + vx )e
(u+v)/2 = eu .

Adding and subtracting these equations gives the Liouville equation (4.5) and
the linear equation (4.6), respectively. This shows that (4.7) is a Bäcklund
transformation connecting the solutions of these two equations [58].

The first Bäcklund transformation to be found in connection with soliton
theory is related to the sine–Gordon equation,

uxy = sin u. (4.8)

This Bäcklund transformation is given by [58]

1

2
(u + v)x = p sin

[
1

2
(u − v)

]
, (4.9a)

1

2
(u − v)y = p−1 sin

[
1

2
(u + v)

]
. (4.9b)
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Differentiating the above equations with respect to y and x , respectively, we
have

1

2
(u + v)xy = 1

2
p(u − y)y cos

[
1

2
(u − v)

]
= sin

[
1

2
(u + v)

]
cos

[
1

2
(u − v)

]
,

1

2
(u − v)yx = 1

2
p−1(u + y)x cos

[
1

2
(u + v)

]
= sin

[
1

2
(u − v)

]
cos

[
1

2
(u + v)

]
.

Addition and subtraction of these both give a copy of the sine–Gordon equa-
tion,

uxy = sin u,

vxy = sin v.

Therefore, (4.9) is a Bäcklund transformation between two solutions of the
sine–Gordon equation. The Bäcklund transformation may be used to obtain
the N -soliton solution and an infinite number of conserved quantities [57] of
soliton equations. A relation between this Bäcklund transformation and the
inverse scattering method is also known [59, 60].

As was shown in Chapter 1, the sine–Gordon equation,

uxy = sin u,

reduces to the bilinear form

Dx Dy f · f − 1

2
( f 2 − f ∗2) = 0,

through the bi-logarithmic transformation

u = 2i log( f/ f ∗).

It is interesting to determine the bilinear forms of (4.9a) and (4.9b). Here we
simply present the result. The required bilinear forms are

Dx f · g = −1

2
p f ∗g∗, (4.10a)

Dy f · g∗ = −1

2
p−1 f ∗g, (4.10b)
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where g is another solution for the sine–Gordon equation, satisfying

Dx Dy g · g − 1

2
(g2 − g∗2) = 0. (4.11)

The rest of this chapter is concerned with Bäcklund transformations in bilinear
form [58, 59].

4.2 Bäcklund transformations for KdV-type
bilinear equations

First of all, we consider the Bäcklund transformation between a solution f for
the general KdV-type bilinear equation

F(Dt , Dx , Dy) f · f = 0, (4.12)

and another solution f ′ for the same bilinear equation

F(Dt , Dx , Dy) f ′ · f ′ = 0. (4.13)

We will consider

P ≡ [F(Dt , Dx , Dy) f ′ · f ′] f 2 − f ′2[F(Dt , Dx , Dy) f · f ]. (4.14)

If P = 0, then f solves the bilinear equation (4.12) if and only if f ′ solves
the bilinear equation (4.13). If we can obtain from P = 0 a pair of bilinear
equations

F1(Dt , Dx , Dy) f ′ · f = 0,

F2(Dt , Dx , Dy) f ′ · f = 0,
(4.15)

in which f, f ′ have interchanged their positions compared with (4.12) and
(4.13), then they provide the Bäcklund transformations we are seeking.

We can use the exchange formula

exp(D1)
[
exp(D2)a · b

] · [exp(D3)c · d
]

= exp

(
D2 − D3

2

)[
exp

(
D1 + D2 + D3

2

)
a · d

]
·
[

exp

(
−D1 + D2 + D3

2

)
c · b

]
, (4.16a)

where

Di = αi Dt + βi Dx + γi Dy (i = 1, 2, 3), (4.16b)
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to carry out this interchange. As a typical example, let us find the Bäcklund
transformation for the bilinear KdV equation [22, 59]

Dx (Dt + c0 Dx + D3
x ) f · f = 0, (4.17)

where c0 is a constant.
We start with

P ≡
[

Dx (Dt + c0 Dx + D3
x ) f ′ · f ′] f 2

− f ′2 [Dx (Dt + c0 Dx + D3
x ) f · f

]
. (4.18)

Substituting

D1 = αDx , D2 = D3 = βDx , a = d, b = c (4.19)

in the exchange formula (4.16), we obtain

[
exp(αDx + βDx )a · a

] [
exp(−αDx + βDx )b · b

]
= exp(αDx )

[
exp(βDx )a · b

] · [exp(βDx )b · a
]
. (4.20)

Expanding the above equation in α, the coefficient of α1 gives

[
exp(βDx )Dx a · a

] [
exp(βDx )b · b

]− [
exp(βDx )a · a

]
× [

exp(βDx )Dx b · b
] = Dx

[
exp(βDx )a · b

] · [exp(βDx )b · a
]
.

(4.21)

Taking a similar expansion in β, we obtain

[
D2

x a · a
]

b2 − a2
[

D2
x b · b

]
= Dx [(Dx a · b) · ba + ab · (Dx b · a)]

= 2Dx (Dx a · b) · ba (4.22)

from the coefficient of β1. Through the independent variable transformation
Dx → Dx + εDt , we have

[Dx Dt a · a] b2 − a2 [Dx Dt b · b] = 2Dx (Dt a · b) · ba (4.23)
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from the coefficient of ε1. Finally, the coefficient of β3 in (4.21) gives[
D4

x a · a
]

b2 − a2
[

D4
x b · b

]
= 2Dx

[
(D3

x a · b) · ba + 3(D2
x a · b) · (Dx b · a)

]
. (4.24)

Substituting these equations into P , we have

P = 2Dx (Dt f ′ · f ) · f f ′ + 2c0 Dx (Dx f ′ · f ) · f f ′

+ 2Dx

[
(D3

x f ′ · f ) · f f ′ + 3(D2
x f ′ · f ) · (Dx f · f ′)

]
= 2Dx

[
(Dt + c0 Dx + D3

x ) f ′ · f
]

· f f ′

+ 6Dx (D2
x f ′ · f ) · (Dx f · f ′). (4.25)

We may introduce two new arbitrary parameters λ and µ into the above equa-
tion to obtain

P = 2Dx

{[
Dt + (c0 + 3λ)Dx + D3

x

]
f ′ · f

}
· f f ′

+ 6Dx

[
(D2

x − µDx − λ) f ′ · f
]

· (Dx f · f ′).
(4.26)

This is possible because the coefficients of λ and µ

λ : Dx (Dx f ′ · f ) · f ′ f + Dx f ′ f · (Dx f ′ · f ),

µ : −Dx (Dx f ′ · f ) · (Dx f · f ′),

are both equal to zero because of the property Dx a · b = −Dx b · a. Therefore,
candidates for the Bäcklund transformation between f and f ′, which satisfy
P = 0, are [

Dt + (c0 + λ)Dx + D3
x

]
f ′ · f = 0, (4.27a)

(D2
x − µDx − λ) f ′ · f = 0. (4.27b)

In order to show that the above equations do define a Bäcklund transfor-
mation, we need to investigate their compatibility condition. That is, we must
show that there is no inconsistency between these equations. This compatibil-
ity is related to the inverse scattering method in a way that will be described
later.

As will soon be demonstrated, the Bäcklund transformation given by (4.27)
is related to (i) the inverse scattering formulation, (ii) the mKdV equation and
(iii) the Miura transformation.
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4.2.1 Inverse scattering formulation

The fundamental idea of the inverse scattering transformation is that the KdV
equation,

ut + 6uux + uxxx = 0, (4.28)

arises as the compatibility condition (4.30) of two linear differential operators
(a Lax pair). We have

A
 = 0,

L
 = λ
,
(4.29)

where A = ∂t + (3λ + 3u)∂x + ∂xxx and L = ∂xx + u, and the compatibility
condition is

[A, L] ≡ AL − L A = 0. (4.30)

By setting L1 = A and L2 = L − λ, this compatibility condition is equivalent
to the commutation relation

[L1, L2] = 0. (4.31)

We will prove that (4.31) is equivalent to the compatibility condition of the
Bäcklund transformations (4.27). Since (4.27a) and (4.27b) may be thought of
as linear differential equations for f or f ′, let us eliminate f or f ′ from these
two equations. For this purpose, we introduce the rational dependent variable
transformation


 = f ′/ f,

u = 2(log f )xx .
(4.32)

By employing formulae associated with the rational transformation,

(Dx f ′ · f )/ f 2 = 
x ,

(D2
x f ′ · f )/ f 2 = 
xx + u
, (4.33)

(D3
x f ′ · f )/ f 2 = 
xxx + 3u
x ,

equations (4.27) are equivalent to


t + (c0 + 3λ)
x + 
xxx + 3u
x = 0,


xx + u
 − µ
x − λ
 = 0.
(4.34)
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By introducing linear differential operators L1, L2 defined by

L1 = ∂t + (c0 + 3λ + 3u)∂x + ∂3
x ,

L2 = ∂2
x − µ∂x + u − λ,

(4.35)

(4.34) may be rewritten as

L1
 = 0,

L2
 = 0.
(4.36)

The operators L1 and L2 satisfy a compatibility condition if their order may
be interchanged. This means that

L1L2
 = L2L1
, (4.37)

or, equivalently,

[L1, L2] = 0. (4.38)

In the case µ = c0 = 0, the linear differential operators L1 and L2 form the
Lax pair (L1, L2) of the KdV equation [45]. As we have seen, the inverse scat-
tering method and the direct method have a strong relation from the viewpoint
of the Bäcklund transformation. However, the bilinear Bäcklund transforma-
tion not only gives rise to the original equation as its compatibility condition,
as will be shown in Section 4.2.2 the bilinear Bäcklund transformation (4.27)
also generates a new soliton equation.

4.2.2 The modified KdV (mKdV) equation

We start with the bilinear Bäcklund transformation formula,[
Dt + (c0 + λ)Dx + D3

x

]
f ′ · f = 0,

(D2
x − µDx − λ) f ′ · f = 0.

(4.39)

Through logarithmic dependent variable transformations,

φ = log( f ′/ f ),

ρ = log( f ′ f ),
(4.40)

and using the formulae (1.268) in Section 1.9, we obtain

φt + (c0 + 3λ)φx + φxxx + 3φxρxx + φ3
x = 0, (4.41a)

ρxx + φ2
x − µφx − λ = 0. (4.41b)
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Substituting ρxx from (4.41b) into (4.41a), we obtain

φt + (c0 + 3λ)φx + φxxx + 3φx (µφx + λ − φ2
x ) + φ3

x = 0. (4.42)

Differentiating (4.42) with respect to x and putting φx = v̂, we obtain the mod-
ified KdV equation (Gardner equation):

v̂t + (c0 + 6λ)̂vx + v̂xxx + 6̂vx (−v̂2 + µv̂) = 0. (4.43)

In order to find solutions for the Gardner equation, we have only to solve
the bilinear Bäcklund transformation formulae,[

Dt + (c0 + λ)Dx + D3
x

]
f ′ · f = 0,

(D2
x − µDx − λ) f ′ · f = 0.

(4.44)

4.2.3 The Miura transformation

In finding conserved quantities for the KdV equation,

ut + 6uux + uxxx = 0, (4.45)

and the mKdV equation,

vt + 24v2vx + vxxx = 0, (4.46)

Miura [61] found that the solution u of the KdV equation is related to the
solution v of the mKdV equation by the formula

u = (2v)2 − 2ivx . (4.47)

Remarks
(1) Miura had very great difficulty in calculating higher-order conserved quan-

tities of the KdV equation, and discovered the relation (4.47) by compar-
ing the conserved quantities of the KdV equation with those of the mKdV
equation. This was the beginning of discovery of the inverse scattering
method for the KdV equation.

(2) The relation between v̂ and v is given by v̂ = 2iv when c0 = µ = λ = 0.
�

Putting λ = µ = 0 in the second formula in the bilinear Bäcklund transfor-
mation (4.39), we have

D2
x f ′ · f = 0. (4.48)
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By using the formulae (1.268) of Section 1.9, the left-hand side of (4.48) may
be rewritten as

(D2
x f ′ · f )/( f ′ f ) = [

log( f ′ f )
]

xx + [
log( f ′/ f )

]2
x

= 2(log f )xx + [
log( f ′/ f )

]
xx + [

log( f ′/ f )
]2

x .

Because of the dependent variable transformation,

u = 2(log f )xx ,

v = (1/2i)
[
log( f ′/ f )

]
x ,

(4.49)

the bilinear form D2
x f ′ · f = 0 is simply the Miura transformation [61],

u = (2v)2 − 2ivx . (4.50)

The procedure in which we exchanged the positions of f ′, f in

P ≡ [F(Dt , Dx , Dy) f ′ · f ′] f 2 − f ′2[F(Dt , Dx , Dy) f · f ] (4.14 bis)

to obtain the Bäcklund transformation

F1(Dt , Dx , Dy) f ′ · f = 0,

F2(Dt , Dx , Dy) f ′ · f = 0,
(4.15 bis)

can be applied to various soliton equations other than the KdV equation. Here,
we list the Bäcklund transformations of the bilinear soliton equations listed in
Section 1.8.

• The fifth-order KdV equation[
Dx (Dt + D5

x ) − 5

6
Ds(Ds + D3

x )

]
f · f = 0, (4.51)

sub-condition : Dx (Ds + D3
x ) f · f = 0. (4.52)

The Bäcklund transformation is

(Ds + 3λDx + D3
x ) f ′ · f = 0, (4.53a)

D2
x f ′ · f = λ f ′ f, (4.53b)

(Dt + 15λ2 Dx + D5
x ) f ′ · f = 0. (4.53c)

Remark
The first and second equations of the above Bäcklund transformation are the
same as those for the KdV equation. �
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• Sawada–Kotera equation (1.254)

Dx (Dt + D5
x ) f · f = 0. (4.54)

The Bäcklund transformation is

D3
x f ′ · f = λ f ′ f, (4.55a)(

Dt − 15

2
λD2

x − 3

2
D5

x

)
f ′ · f = 0. (4.55b)

• Boussinesq equation (1.255)

(D2
t − D2

x − D4
x ) f · f = 0. (4.56)

The Bäcklund transformation is

(Dt + aD2
x ) f ′ · f = 0, (4.57a)

(aDt Dx + Dx + D3
x ) f ′ · f = 0, (4.57b)

where a2 = −3.
• Kadomtsev–Petviashvili (KP) equation (1.256)

(−4Dx Dt + 3D2
y + D4

x ) f · f = 0. (4.58)

The Bäcklund transformation is

(Dy − D2
x ) f ′ · f = 0, (4.59a)

(3Dy Dx − 4Dt + D3
x ) f ′ · f = 0. (4.59b)

• Model equation for shallow water waves (i)[
Dx (Dt − Dt D2

x + Dx ) + 1

3
Dt (Ds + D3

x )

]
f · f = 0, (4.60)

sub-condition : Dx (Ds + D3
x ) f · f = 0. (4.61)

The Bäcklund transformation is

(Ds + 3λDx + D3
x ) f ′ · f = 0, (4.62a)

D2
x f ′ · f = λ f ′ f + µDx f ′ · f, (4.62b)[

(1 − 3λ)Dt − Dt D2
x + Dx

]
f ′ · f = 0. (4.62c)

Remark
The first and second equations in the above Bäcklund transformation are the
same as those of the KdV equation. �
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• Model equation for shallow water waves (ii)

Dx (Dt − Dt D2
x + Dx ) f · f = 0. (4.63)

The Bäcklund transformation is

(D3
x − Dx ) f ′ · f = λ f ′ f, (4.64a)

(3Dx Dt − 1) f ′ · f = µDx f ′ · f. (4.64b)

• Toda lattice equation (1.260)[
D2

t − 4 sinh2
(

1

2
Dn

)]
f · f = 0. (4.65)

The Bäcklund transformations are[
Dt exp

(
− Dn

2

)
− 2λ sinh

(
Dn

2

)]
f ′ · f = 0, (4.66a)[

Dt + λ−1(exp(−Dn) − 1)
]

f ′ · f = 0, (4.66b)

and

Dt f ′ · f + 2α sinh

(
Dn

2

)
g′ · g = 0, (4.67a)

Dt g
′ · g + 2α−1 sinh

(
Dn

2

)
f ′ · f = 0, (4.67b)[

β1 sinh

(
Dn

2

)
+ cosh

(
Dn

2

)]
g′ · g = f ′ f, (4.67c)[

β2 sinh

(
Dn

2

)
+ cosh

(
Dn

2

)]
f ′ · f = g′g, (4.67d)

condition : α−1(β2
1 − 1) = α(β2

2 − 1). (4.68)

4.3 The Bäcklund transformation for the KP equation

Let us investigate the bilinear Bäcklund transformation formulae for the KP
equation. This equation is

(−4Dx Dt + 3D2
y + D4

x ) f · f = 0, (4.58 bis)
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and its Bäcklund transformation is

(Dy − D2
x ) f ′ · f = 0, (4.59a bis)

(3Dy Dx − 4Dt + D3
x ) f ′ · f = 0. (4.59b bis)

Remark
The above Bäcklund transformation formulae coincide with the first modified
KP equation [15] if we set D1 = Dx , D2 = Dy, D3 = Dz . �

We have already explained that the solution for the KP equation τ may be
expressed in terms of wronskian and grammian determinants. Let us investi-
gate how τ ′ is expressed. To start with the conclusions, there are two kinds
of solution τ ′: (i) a solution with the same number of solitons but with dif-
ferent phase, and (ii) a solution with the number of solitons increased by one.
In these two cases, (4.59) is simply a Plücker relation and a pfaffian identity,
respectively.

In this section, we give various expressions for τ and τ ′ and confirm that
they satisfy the first equation in the Bäcklund transformations given by (D2

1 +
D2)τ · τ ′ = 0.

4.3.1 Wronskian expression

We first define τ
(n)
N by

τ
(n)
N ≡

∣∣∣∣∣∣∣∣∣∣
f (n)
1 f (n+1)

1 · · · f (n+N−1)
1

f (n)
2 f (n+1)

2 · · · f (n+N−1)
2

...
...

...

f (n)
N f (n+1)

N · · · f (n+N−1)
N

∣∣∣∣∣∣∣∣∣∣
= (dn, dn+1, . . . , dn+N−1, N , . . . , 2, 1), (4.69)

where the elements in the above pfaffian are defined by

(dm, j) = ∂

∂xm
f j = ∂m

∂xm
f j ( j = 1, 2, . . . , N ),

(dm, dn) = 0 (m, n = 0, 1, 2, . . . ).

(4.70)

Remarks
(1) The suffix N (= 0, 1, 2, . . . ) in τ

(n)
N represents the size of determinant, that

is, the number of solitons, and n (= . . . ,−1, 0, 1, 2, . . . ) is a parameter
introduced to refer to different choices of τN .
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(2) The wronskian τ
(n)
N is expressed by means of a Maya diagram as

τ
(n)
N =

n n+1 n+N−1 n+N

.

�

There are two choices for τ, τ ′ expressed in terms of τ
(n)
N [62]

(i) τ = τ
(0)
N , τ ′ = τ

(1)
N ,

(ii) τ = τ
(0)
N , τ ′ = τ

(0)
N+1.

In case (i), N , the number of functions f j contained in τ, τ ′ (or equivalently,
the number of solitons) is the same, but the phase constants δi , which show the
position of the solitons, change.

Remark
In the case of a two-soliton solution, τ, τ ′ are written as

τ ∝ 1 + exp(η1) + exp(η2) + c12 exp(η1 + η2),

τ ′ ∝ 1 + exp(η1 + δ1) + exp(η2 + δ2)

+ c12 exp(η1 + η2 + δ1 + δ2),

where

ηi = ξi − ξ̂i , ξi =
∑

n

pn
i xn, ξ̂i =

∑
n

qn
i xn

and

exp(δi ) = pi

qi
, c12 = (p1 − p2)(q1 − q2)

(p1 − q2)(q1 − p2)
.

�

In order to confirm that τ, τ ′ satisfy the Bäcklund transformation
formula (4.59a), we determine the derivatives of τ ′ = τ

(1)
N , and write the re-

sults in terms of Maya diagrams:

τ
(1)
N =

N−1 N N+1 N+2 N+3

,

τ
(1)
N ,x = ,
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τ
(1)
N ,xx =

N−1 N N+1 N+2 N+3

+
N−1 N N+1 N+2 N+3

,

τ
(1)
N ,x2

= − .

The derivatives of τ = τ
(0)
N are obtained by reducing the number on each cell

in the Maya diagrams by one. Substituting these results into the left-hand side
of (4.59a), that is

(τxx + τx2)τ
′ − 2τxτ

′
x + τ(τ ′

xx − τ ′
x2

),

we obtain the Maya diagram expression

0 N−2 N−1 N N+1

×
1 N−2 N−1 N N+1

− ×

+ × .

Neglecting cells common to every expression and exchanging positions of τ

and τ ′, we finally obtain

N−1 N N+1 0

×
N−1 N N+1 0

− ×

+ × .

Since this is nothing but a Plücker relation, it is identically zero. Hence, we
have shown that τ, τ ′ satisfy the first of the Bäcklund transformation equa-
tions (4.59a).

In case (ii), τ ′ contains one more function, fN+1, than τ . Since the formulae
for the derivatives of τ ′,

τ ′ = τ
(0)
N+1 = (d0, d1, . . . , dN−1, dN , N + 1, N , . . . , 2, 1),

are obtained by replacing N with N + 1 in those for τ = τ
(0)
N , substitution of

the above results into the left-hand side of (4.59a), that is

(τxx + τx2)τ
′ − 2τxτ

′
x + τ(τ ′

xx − τ ′
x2

),

yields the Maya diagram expression
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dN−1 dN dN+1 N+1

×
dN−1 dN dN+1 N+1

− ×

+ × .

Using (2.96′), this may be rewritten as

× .

However, the above equation is identically equal to zero because the number of
the labels corresponding to taking derivatives dm and the number representing
solitons j are not the same. Therefore, we have proved that τ, τ ′ satisfy the
Bäcklund transformation formula (4.59a) [38].

4.3.2 Grammian expression

We first define τ
[n]
N by

τ
[n]
N ≡ det((mi j )n)1≤i, j≤N ,

(mi j )n ≡ ci j + (−)n
∫ x

f (n)
i g(−n)

j dx,
(4.71)

where f j and g j satisfy

∂

∂xm
f j = ∂m

∂xm
f j ≡ f (m)

j ,

∂

∂xm
g j = (−)m−1 ∂m

∂xm
g j ≡ (−)m−1g(m)

j ,

(4.72)

for j = 1, 2, . . . , N and m = 1, 2, . . . . Using the above expressions, τ, τ ′ are
written in two different ways.

(i) First as

τ = τ
[0]
N , τ ′ = τ

[1]
N . (4.73)

In this case, τ, τ ′ have the same number of functions but different phases.
Each element of τ ′ = τ

[1]
N , given by (mi j )1, may be rewritten, using inte-

gration by parts, as

(mi j )1 = ci j +
∫ x

f (0)
i g(0)

j dx − f (0)
i g(−1)

j

= (mi j )0 − (d−1, d∗
0 , i, j∗), (4.74)



174 Bäcklund transformations

where we have

(dm, j∗) = g(m)
j , (d∗

m, j) = f (m)
j ,

(dm, d∗
n ) = (dm, j) = (d∗

m, j∗) = 0.
(4.75)

Therefore,

τ
[1]
N = τ

[0]
N − (d−1, d∗

0 , 1, 2, . . . , N , N∗, . . . , 2∗, 1∗), (4.76)

using the addition formula for pfaffians (2.102).
The derivatives of τ = τ

[0]
n are given by

τ = (1, 2, . . . , N , N∗, . . . , 2∗, 1∗) ≡ (•), (4.77a)

τx = (d0, d∗
0 , •), (4.77b)

τxx = (d1, d∗
0 , •) + (d0, d∗

1 , •), (4.77c)

τx2 = −(d1, d∗
0 , •) + (d0, d∗

1 , •), (4.77d)

τ ′ = τ − (d−1, d∗
0 , •), (4.77e)

τ ′
x = (d−1, d∗

1 , •), (4.77f)

τ ′
xx = −(d0, d∗

1 , •) − (d−1, d∗
2 , •) − (d−1, d∗

1 , d0, d∗
0 , •), (4.77g)

τ ′
x2

= (d0, d∗
1 , •) − (d−1, d∗

2 , •) + (d−1, d∗
1 , d0, d∗

0 , •). (4.77h)

Substituting the above results into the left-hand side of the first equation of the
Bäcklund transformation,

(τxx + τx2)τ
′ − 2τxτ

′
x + τ(τ ′

xx − τ ′
x2

),

gives the Maya diagram expression

2

{
−

d−1 d0 d∗
0 d∗

1

×
d−1 d0 d∗

0 d∗
1

+ ×

− ×
}

,

which vanishes because of the pfaffian identity. Hence, we have proved that
τ, τ ′ satisfy the first equation of the Bäcklund transformation.
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(ii) Secondly, as

τ = (1, 2, . . . , N , N∗, . . . , 2∗, 1∗) ≡ (•), (4.78a)

τ ′ = (1, 2, . . . , N , N + 1, d∗
0 , N∗, . . . , 2∗, 1∗) ≡ −(d∗

0 , N + 1, •).

(4.78b)

In this case, τ ′ contains one more function (d0, N + 1) compared with τ . Its
derivatives are

τ ′
x = −(d∗

1 , N + 1, •), (4.79a)

τ ′
xx = −(d∗

2 , N + 1, •) − (d0, d∗
0 , d∗

1 , N + 1, •), (4.79b)

τ ′
x2

= −(d∗
2 , N + 1, •) + (d0, d∗

0 , d∗
1 , N + 1, •). (4.79c)

Substitution of the above results into the left-hand side of the first equation of
the Bäcklund transformation,

(τxx + τx2)τ
′ − 2τxτ

′
x + τ(τ ′

xx − τ ′
x2

),

gives the Maya diagram expression

2

{ d0 d∗
0 d∗

1 N+1

×
d0 d∗

0 d∗
1 N+1

− ×

− ×
}

,

which vanishes because of the pfaffian identity. Hence, we have proved
that τ, τ ′ solve the first equation of the Bäcklund transformation given by
(4.59a).

Following the same procedure, we can prove that τ, τ ′ solve the other equa-
tion (4.59b).

4.4 The Bäcklund transformation for the BKP equation

In this section, we find a Bäcklund transformation for the BKP equation [46],[
(D3 − D3

1)D−1 + 3D2
1

]
τ · τ = 0. (4.80)
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We define τ ′ to be another solution of (4.80) and consider

P ≡ {[(D3 − D3
1)D−1 + 3D2

1]τ · τ }τ ′τ ′

− ττ {[(D3 − D3
1)D−1 + 3D2

1]τ ′ · τ ′}. (4.81)

Using the exchange formulae,[
D3 D−1τ · τ

]
τ ′τ ′ − ττ

[
D3 D−1τ

′ · τ ′] = 2D−1
[
D3τ · τ ′] · τ ′τ, (4.82a)[

D2
1τ · τ

]
τ ′τ ′ − ττ

[
D2

1τ ′ · τ ′] = 2D1
[
D1τ · τ ′] · τ ′τ, (4.82b)[

D3
1 D−1τ · τ

]
τ ′τ ′ − ττ

[
D3

1 D−1τ
′ · τ ′]

= 2D−1

[
D3

1τ · τ ′] · τ ′τ + 6D1(D1 D−1τ · τ ′) · (D1τ
′ · τ), (4.82c)

we obtain

P = 2D−1[(D3 − D3
1)τ · τ ′] · τ ′τ

− 6D1[(D1 D−1 − 1)τ · τ ′] · (D1τ
′ · τ). (4.83)

From the above,

(D1 D−1 − 1)τ · τ ′ = λD1τ
′ · τ, (4.84a)

(D3
1 − D3)τ · τ ′ = µττ ′, (4.84b)

where λ, µ, which are constants, are candidates for a Bäcklund transformation.
We call the above equations the modified BKP equation. We may derive the
following results.

4.4.1 Inverse scattering form

Let us make the rational dependent variable transformation


 = τ/τ ′, w = 2(log τ ′)x , (4.85)

and introduce linear differential operators L1, L2 given by

L1 = ∂x∂y + wy − 1 + λ∂x , (4.86)

L2 = ∂3
x − ∂t + 3wx∂x − µ. (4.87)

Then (4.84a) and (4.84b) may be rewritten as

L1
 = 0, L2
 = 0. (4.88)
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From the compatibility condition L1L2
 = L2L1
, we obtain the BKP equa-
tion,

wyt − wxxxy − 3(wxwy)x + 3wxx = 0, (4.89)

where we have put x1 = x, x−1 = y, x3 = t .

4.4.2 The modified BKP equation

Through the logarithmic dependent variable transformation

φ = log(τ/τ ′), ρ = log(ττ ′), (4.90)

(4.84a) and (4.84b) may be rewritten as

ρxy + φxφy + λφx − 1 = 0,

φt − φxxx − 3φxρxx − φ3
x + µ = 0.

(4.91)

4.5 The solution of the modified BKP equation

We learned in Chapter 3 that the BKP equation has solutions expressed in terms
of pfaffians. In this section, we describe solutions τ, τ ′ of the modified BKP
equation, (4.84a), (4.84b), with parameters λ = µ = 0,

(D1 D−1 − 1)τ · τ ′ = 0, (4.92a)

(D3
1 − D3)τ · τ ′ = 0. (4.92b)

We have seen that τ may be expressed as the pfaffian

τ = (1, 2, . . . , 2N ),

(i, j) = ci j +
∫ x

Dx fi (x) · f j (x) dx (x = x1),
(4.93)

where fi (x) for i = 1, 2, . . . , 2N satisfy the linear differential equations

∂

∂xn
fi (x) = ∂n

∂xn
fi (x) (n = −1, 1, 3, . . . ). (4.94)

In the case n = −1, (4.94) is

∂

∂x−1
fi (x) =

∫ x

fi (x) dx . (4.95)
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Then τ ′ is given by the pfaffian

τ ′ = (d0, 1, 2, . . . , 2N , 2N + 1)

= (d0, 2N + 1, 1, 2, . . . , 2N ), (4.96)

where

(dn, i) = ∂n

∂xn
fi , (dm, dn) = 0 (m, n = −1, 0, 1, 2, . . . ). (4.97)

In order to confirm that τ, τ ′ satisfy (4.92a), (4.92b), we calculate the
derivatives of τ ′:

τ ′ = (d0, 2N + 1, 1, 2, . . . , 2N ) ≡ (d0, 2N + 1, •), (4.98a)

∂

∂x−1
τ ′ = (d−1, 2N + 1, •), (4.98b)

∂2

∂x∂x−1
τ ′ = (d0, 2N + 1, •) + (d−1, d0, d1, 2N + 1, •), (4.98c)

∂

∂x
τ ′ = (d1, 2N + 1, •), (4.98d)

∂3

∂x3
τ ′ = (d3, 2N + 1, •) + (d0, d1, d2, 2N + 1, •), (4.98e)

∂

∂x3
τ ′ = (d3, 2N + 1, •) − (d0, d1, d2, 2N + 1, •). (4.98f)

Substitution of these expressions and (3.78) into (4.92a), (4.92b) gives the
Maya diagram expressions

d−1 d0 d1 2N+1

×
d−1 d0 d1 2N+1

− ×

+ ×

− × = 0,
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d0 d1 d2 2N+1

×
d0 d1 d2 2N+1

− ×

+ ×

− × = 0,

which are simply pfaffian identities. Therefore, we have confirmed that τ, τ ′
satisfy (4.92a), (4.92b).

4.6 The Bäcklund transformation for the two-dimensional
Toda equation

We consider the two-dimensional Toda equation

∂2

∂s∂x
log(ε + Vn) = Vn+1 − 2Vn + Vn−1, ε = 0, 1, (4.99)

where ε = 1 and ε = 0 correspond to (i) the Toda lattice equation and (ii) the
Toda molecule equation, respectively.

Through the dependent variable transformation

Vn ≡ (log τn)xs,

(4.99) are integrated to give the following bilinear forms: (i) the two-
dimensional Toda lattice equation (n = . . . ,−1, 0, 1, . . . ),

Dx Dsτn · τn = 2(τn+1τn−1 − τ 2
n ), (4.100a)

and (ii) the two-dimensional Toda molecule equation (n = 1, 2, . . . , N ),

Dx Dsτn · τn = 2τn+1τn−1, (4.100b)

with boundary conditions V0 = VN+1 = 0.
Let us find a Bäcklund transformation which connects the solution τn of the

Toda equation with another solution τ ′
n [53] by considering

P =
[

Dx Dsτn · τn − 2τn+1τn−1 + 2ετ 2
n

]
τ ′

n
2

− τ 2
n

[
Dx Dsτ

′
n · τ ′

n − 2τ ′
n+1τ

′
n−1 + 2ετ ′

n
2
]
. (4.101)
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If P = 0, then τn �= 0 satisfies the Toda equation if and only if τ ′
n �= 0 also

satisfies the same equation.
By employing the exchange formula

[Dx Dsτn · τn] τ ′
n

2 − τ 2
n

[
Dx Dsτ

′
n · τ ′

n

] = 2Dx (Dsτn · τ ′
n) · τ ′

nτn (4.102)

and the identity

Dxτn+1τ
′
n−1 · τ ′

nτn = (Dxτn+1 · τ ′
n)τ ′

n−1τn + τn+1τ
′
n(Dxτ

′
n−1 · τn),

(4.103)

P may be rewritten as

1
2 P = Dx

[
Dsτn · τ ′

n − λτn+1τ
′
n−1

] · τ ′
nτn

+ λ
[

Dxτn+1 · τ ′
n + λ−1τnτ ′

n+1

]
τ ′

n−1τn

− λ
[

Dxτn · τ ′
n−1 + λ−1τn−1τ

′
n

]
τ ′

nτn+1, (4.101′)

where λ is a free parameter. Therefore, P = 0 if the bilinear equations

Dsτn · τ ′
n = λτn+1τ

′
n−1 − µτnτ ′

n, (4.104a)

Dxτn+1 · τ ′
n = −λ−1τnτ ′

n+1 + ντn+1τ
′
n, (4.104b)

(µ, ν are also free parameters) are satisfied for all n. These bilinear equations
give the Bäcklund transformation connecting the solutions τn, τ ′

n of the Toda
equation. The Bäcklund transformation equations (4.104a), (4.104b) may be
rewritten in several ways [53].

4.6.1 Lax pair

We introduce new dependent variables 
n, Vn, In by means of

τ ′
n ≡ 
nτn, (4.105)

In ≡ ∂

∂x
log(τn/τn+1) = Dxτn · τn+1

τnτn+1
, (4.106)

Vn ≡ (log τn)xs = τn+1τn−1

τ 2
n

− ε. (4.107)
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Then (4.104a) and (4.104b) are transformed into

∂
n

∂s
= −λ(Vn + ε)
n−1 + µ
n, (4.108a)

∂
n

∂x
= λ−1
n+1 − ν
n − In
n . (4.108b)

Introducing linear differential-difference operators L1, L2 defined by

L1 ≡ ∂

∂s
+ λ(Vn + ε) exp

(
− ∂

∂n

)
− µ, (4.109a)

L2 ≡ ∂

∂x
− λ−1 exp

(
∂

∂n

)
+ In + ν, (4.109b)

we have, from the compatibility condition

L1L2
 = L2L1
, (4.110)

a set of partial differential equations for In , Vn ,

∂

∂x
log(ε + Vn) = In−1 − In,

∂ In

∂s
= Vn − Vn+1.

(4.111)

Elimination of In from (4.111) gives the Toda equation, and therefore
(4.109a), (4.109b) are its Lax pair.

4.6.2 The modified Toda equation

We define new dependent variables un by

un ≡ ∂

∂s
log

(
τn

τ ′
n

)
= Dsτn · τ ′

n

τnτ ′
n

, (4.112)

and vn by

vn ≡ − ∂

∂x
log

(
τn

τ ′
n−1

)
= − Dxτn · τ ′

n−1

τnτ ′
n−1

. (4.113)

Using (4.104) we may rewrite these as

un = λτn+1τ
′
n−1

τnτ ′
n

− µ (4.112′)
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and

vn = λ−1τn−1τ
′
n

τnτ ′
n−1

− ν. (4.113′)

Differentiating log(µ + un) and log(ν + vn) with respect to x and s, re-
spectively, we obtain

∂

∂x
log(µ + un) = ∂

∂x

[
− log

(
τn

τ ′
n−1

)
+ log

(
τn+1

τ ′
n

)]
= vn − vn+1, (4.114a)

∂

∂s
log(ν + vn) = ∂

∂s

[
log

(
τn−1

τ ′
n−1

)
− log

(
τn

τ ′
n

)]
= un−1 − un, (4.114b)

which are equivalent to

∂

∂x
un = (µ + un)(vn − vn+1), (4.115a)

∂

∂s
vn = (ν + vn)(un−1 − un). (4.115b)

We call the above system the modified Toda equations.

Remark
Let the independent variable n take the finite number of values n =
1, 2, . . . , N . Imposing the boundary conditions u0 = vN+1 = 0 and putting
parameters µ = ν = 0, (4.115a), (4.115b) give

∂

∂x
un = un(vn − vn+1), (4.116a)

∂

∂s
vn = vn(un−1 − un). (4.116b)

This coupled system of differential equations describes the interaction of 2N
waves un, vn for n = 1, 2, . . . , 2N [53]. If N = 1, (4.116a), (4.116b) reduce
to the two-wave interaction equation (1.78),

∂

∂x
u1 = u1v1,

∂

∂s
v1 = −v1u1.

(4.117)

�
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4.6.3 Miura transformation

The solutions Vn of the Toda equation and un, vn of the modified Toda equa-
tions are expressed as follows:

ε + Vn = τn+1τn−1

τ 2
n

, (4.118a)

µ + un = λ
τn+1τ

′
n−1

τnτ ′
n

, (4.118b)

ν + vn = λ−1 τn−1τ
′
n

τnτ ′
n−1

. (4.118c)

Comparing these, we see that Vn may be expressed in terms of un, vn as fol-
lows:

ε + Vn = (µ + un)(ν + vn). (4.119)

Substituting the above expression into the left-hand side of the Toda equation,

∂2

∂x∂s
log(ε + Vn) = Vn+1 − 2Vn + Vn−1, (4.120)

and considering the fact that un, vn satisfy the modified Toda equa-
tions (4.115), we obtain

∂

∂s

[
∂

∂x
log(µ + un)

]
+ ∂

∂x

[
∂

∂s
log(ν + vn)

]
= ∂

∂s
[vn − vn+1] + ∂

∂x
[un−1 − un]

= (ν + vn)(un−1 − un) − (ν + vn+1)(un − un−1)

+ (µ + un−1)(vn−1 − vn) − (µ + un)(vn − vn−1)

= (µ + un+1)(ν + vn+1) − 2(µ + un)(ν + vn)

+ (µ + un−1)(ν + vn−1)

= Vn+1 − 2Vn + Vn−1, (4.121)

which is simply the right-hand side of the Toda equation. Therefore, if un, vn

satisfy the modified Toda equation, then Vn satisfies the Toda equation. This
shows that (4.119) is a Miura transformation connecting the solutions of non-
linear differential equations.
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4.7 Solutions of the two-dimensional modified
Toda equation

As we have explained in Chapter 3, solutions τn to the Toda equation,

Dx Dsτn · τn = 2(τn+1τn−1 − ετ 2
n ), (4.122)

have different forms for (a) the Toda lattice equation (ε = 1, n = . . . ,

−1, 0, 1, . . . ) and (b) the Toda molecule equation (ε = 0, n = 1, 2, . . . , N ).
Therefore, the expressions for solutions τ ′

n of the modified Toda equation,

Dsτn · τ ′
n = λτn+1τ

′
n−1 − µτnτ ′

n,

Dxτn+1 · τ ′
n = −λ−1τnτ ′

n+1 + ντn+1τ
′
n,

(4.123)

where λ, µ and ν are free parameters, are also different for these two cases.

4.7.1 Structure of the Bäcklund transformation for the Toda
lattice equation

We have shown that the N -soliton solution τn of the Toda lattice equation can
be expressed as an N th-order wronskian

τn =

∣∣∣∣∣∣∣∣∣∣

φ1(n) φ1(n + 1) · · · φ1(n + N − 1)

φ2(n) φ2(n + 1) · · · φ2(n + N − 1)

...
...

...

φN (n) φN (n + 1) · · · φN (n + N − 1)

∣∣∣∣∣∣∣∣∣∣
≡ [φ(n), φ(n + 1), . . . , φ(n + N − 1)]

= (d0, d1, . . . , dN−1, N , . . . , 2, 1), (4.124)

where each φi (n) satisfies

∂φi (n)

∂x
= φi (n + 1),

∂φi (n)

∂s
= −φi (n − 1).

(4.125)

As for the KP equation, there are two different kinds of solutions τ ′
n obtained

from τn through the Bäcklund transformation.
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Solution with the same number of solitons but a different phase
Here we choose µ = λ = −b/a and ν = λ−1. The Bäcklund transformation
formulae are given by

Dsτn · τ ′
n = −b

a
(τn+1τ

′
n−1 − τnτ ′

n), (4.126a)

Dxτn+1 · τ ′
n = a

b
(τnτ ′

n+1 − τn+1τ
′
n). (4.126b)

Then τ ′
n may be shown to be the N th-order wronskian

τ ′
n = [φ̂(n), φ̂(n + 1), . . . , φ̂(n + N − 1)], (4.127)

where

φ̂ j (n) = aφ j (n) + bφ j (n + 1). (4.128)

This solution τ ′
n represents a solution with the same number of functions φ j

(the number of solitons) but with different phases.

Remarks
(1) The conditions µ = λ, ν = λ−1, are necessary in order to allow the vac-

uum (zero-soliton) solutions τn = 1, τ ′
n = constant in (4.123).

(2) In the case of a = 0, b = 1, the solution τ ′
n is the same as that obtained

from the Bäcklund transformation for the KP equation. �

The verification of the solution (4.127) is made more difficult by the fact
that a �= 0. We first note that τn and τn+1 have a number of expressions:

τn = [φ(n), φ(n + 1), . . . , φ(n + N − 1)]
= a−N+1[φ̂(n), φ̂(n + 1), . . . , φ̂(n + N − 2), φ(n + N − 1)]

(4.129a)

= b−N+1[φ(n), φ̂(n), . . . , φ̂(n + N − 3), φ̂(n + N − 2)]
(4.129b)

= a−N (τ ′
n − b[φ̂(n), φ̂(n + 1), . . . , φ̂(n + N − 2), φ(n + N )]),

(4.129c)
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τn+1 = [φ(n + 1), φ(n + 2), . . . , φ(n + N )]
= a−N+1[φ̂(n + 1), φ̂(n + 2), . . . , φ̂(n + N − 1), φ(n + N )]

(4.130a)

= b−N+1[φ(n +1), φ̂(n +1), . . . , φ̂(n + N − 2), φ̂(n + N − 1)]
(4.130b)

= b−N (τ ′
n −a[φ(n), φ̂(n +1),. . ., φ̂(n + N −2), φ̂(n + N −1)]).

(4.130c)

Remark
This rewriting of the solution is easily carried out using elementary properties
of determinants. For example, (4.129a) is derived in the following way:

τn = [φ(n), φ(n + 1), . . . , φ(n + N − 1)]
= a−N+1[aφ(n), aφ(n + 1), . . . , aφ(n + N − 2), φ(n + N − 1)]
= a−N+1[aφ(n) + bφ(n + 1), . . . , aφ(n + N − 2)

+ bφ(n + N − 1), φ(n + N − 1)]
= a−N+1[φ̂(n), . . . , φ̂(n + N − 2), φ(n + N − 1)].

�

Now, in order to prove (4.126a), we substitute the expression (4.129c) on
the left-hand side and the expressions (4.129a), (4.130a) into the right-hand
side. After computing derivatives, we obtain the Maya diagram expression
for (4.126a):

n−1 n n+N−1 (n+N )

×
n−1 n n+N−1 (n+N )

− ×

+ × = 0,

which is simply a Plücker relation. In the above Maya diagram expression, the
labels m and (m) denote the presence of φ̂(m) and φ(m), respectively.

Following a similar procedure, we can prove (4.126b) by substitut-
ing (4.130c) into the left-hand side and (4.129b), (4.130b) into the right-hand
side. Consequently, we obtain a Maya diagram expression equivalent to a
Plücker relation.
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Solution with one more soliton
For simplicity, we choose the free parameters to be λ = 1, µ = ν = 0. Then
the Bäcklund transformation formulae are

Dsτn · τ ′
n = τn+1τ

′
n−1, (4.131a)

Dxτn+1 · τ ′
n = −τnτ ′

n+1. (4.131b)

If τn is expressed in the wronskian form (4.124), then τ ′
n is expressed as the

(N + 1)th-order wronskian

τ ′
n = (d0, d1, . . . , dN−1, dN , N + 1, N , . . . , 2, 1). (4.132)

This τ ′
n represents a solution having one more of the functions φ j (that is, one

more soliton) than τn .

Remarks
(1) We chose the parameters to be λ = 1, µ = ν = 0, for the following reason.

Substitution of a vacuum solution τn = 1 and the one-soliton solution τ ′
n =

φ(n) into the Bäcklund transformation formula gives the linear equations

∂φi (n)

∂s
= −λφi (n − 1) + µφi (n),

∂φi (n)

∂x
= λ−1φi (n + 1) − νφi (n).

(4.133)

When µ = ν = 0, φ(n) gives a solution to the KP equation. Using scale
transformations of the independent variables x, s, λ may be chosen to be
unity.

(2) Since n represents the order of the x-derivative, τn+1 and τ ′
n−1 may be

denoted by

τn+1 = (d1, d2, . . . , dN−1, dN , N , N − 1, . . . , 2, 1), (4.134a)

τ ′
n−1 = (d−1, d0, . . . , dN−1, N + 1, N , . . . , 2, 1). (4.134b)

�

It is easy to prove (4.131a). Substituting (4.124), (4.132) into the left-hand
side and (4.134a), (4.134b) into the right-hand side give the Maya diagram
expression
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d−1 d0 dN N+1

×
d−1 d0 dN N+1

− ×

+ × = 0.

Equation (4.131b) can be proved in the same way.

4.7.2 Structure of the Bäcklund transformation for the
Toda molecule equation

We noted in the previous section that the modified Toda equation is equivalent
to the 2N -wave interaction equations (4.116) if we adopt boundary conditions
u0 = vN+1 = 0, and take parameters µ = ν = 0. In the Bäcklund transforma-
tion formula,

Dsτn · τ ′
n = λτn+1τ

′
n−1 − µτnτ ′

n, (4.135a)

Dxτn+1 · τ ′
n = −λ−1τnτ ′

n+1 + ντn+1τ
′
n, (4.135b)

the choice of parameters λ = −b, µ = 0, ν = −a/b, gives

Dsτn · τ ′
n = −bτn+1τ

′
n−1, (4.136a)

Dxτn+1 · τ ′
n = b−1(τnτ ′

n+1 − aτn+1τ
′
n). (4.136b)

The solutions τn in the above equations may be shown to be expressed in
terms of bi-directional wronskians as

τ0 = 1, τ−1 = 0, τn = det(
i, j )0≤i, j≤n−1, (4.137)

where


i, j =
(

∂

∂s

)i (
∂

∂x

) j


(s, x), 
(s, x) =
N+1∑
k=1

uk(s)vk(x), (4.138)

and uk(s), vk(x) are arbitrary functions of s and x , respectively.
We may suppress reference to the s-derivatives in τn by writing

τn ≡ [
0, 
1, . . . , 
n−1] (4.139)
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for short, where 
 j denotes the column vector (
1, j , 
2, j , . . . , 
n, j )
t . Then

τ ′
n may be written as

τ ′
0 = 1, τ ′−1 = 0,

τ ′
n = det(
̂i, j )0≤i, j≤n−1, (4.140)


̂i, j = a
i, j + b
i, j+1, (4.141)

and we can write

τ ′
n ≡ [
̂0, 
̂1, . . . , 
̂n−1], (4.142)

where


̂ j = a
 j + b
 j+1. (4.143)

Remark
The necessity of the condition µ = 0 is seen if one substitutes the vacuum so-
lution τ0 = τ ′

0 = 1 into (4.135a). Also, we have chosen λ and ν so that (4.135b)
coincides with (4.141) when n = 0. �

Since the subscript n indicates the size of the determinant, we rewrite τn

and τn+1 as

τn ≡ [
0, 
1, . . . , 
n−1]
= a−n+1[
̂0, 
̂1, . . . , 
̂n−2, 
n−1] (4.144a)

≡ a−n(τ ′
n − b[
̂0, 
̂1, . . . , 
̂n−2, 
n]), (4.144b)

τn+1 ≡ [
0, 
1, . . . , 
n−1, 
n]
= a−n[
̂0, 
̂1, . . . , 
̂n−2, 
̂n−1, 
n]. (4.145)

In order to prove (4.136a), we introduce (n + 1)th-, nth- and (n − 1)th-order

determinants D, D

[
i
j

]
and D

[
i j
k l

]
:

D ≡

∣∣∣∣∣∣∣∣∣∣

̂0,0 
̂0,1 · · · 
̂0,n−1 
0,n


̂1,0 
̂1,1 · · · 
̂1,n−1 
1,n
...

...
...

...


̂n,0 
̂n,1 · · · 
̂n,n−1 
n,n

∣∣∣∣∣∣∣∣∣∣
≡ [


̂0, 
̂1, . . . , 
̂n−2, 
̂n−1, 
n
] = anτn+1, (4.146a)
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D

[
i
j

]
= determinant obtained by eliminating the i th row and the

j th column of D, (4.146b)

D

[
i j
k l

]
= determinant obtained by eliminating the i th and

j th rows and the kth and lth columns of D. (4.146c)

By using the above notation, τ ′
n and its derivatives may be written as

τ ′
n = D

[
n + 1
n + 1

]
, (4.147a)

τ ′
n−1 = D

[
n n + 1
n n + 1

]
, (4.147b)

∂τ ′
n

∂s
= D

[
n

n + 1

]
, (4.147c)

Dsτn · τ ′
n = Dsa−n (τ ′

n − b
[

̂0, 
̂1, . . . , 
̂n−2, 
n

]) · τ ′
n

= −a−nb

{
D

[
n
n

]
D

[
n + 1
n + 1

]
− D

[
n + 1

n

]
D

[
n

n + 1

]}
.

(4.147d)

Therefore, (4.136a) is simply the Jacobi identity

D

[
n
n

]
D

[
n + 1
n + 1

]
− D

[
n + 1

n

]
D

[
n

n + 1

]
= D

[
n n + 1
n n + 1

]
D.

(4.148)

The rest of this section is devoted to a proof of (4.136b). We first rewrite
this as [

aτn+1 + b

(
∂τn+1

∂x

)]
τ ′

n − bτn+1

(
∂τ ′

n

∂x

)
− τ ′

n+1τn = 0, (4.149)

and use the expressions

aτn+1 + b

(
∂τn+1

∂x

)
= [
0, 
1, . . . , 
n−1, 
̂n]
= a−n+1[
̂0, 
̂1, . . . , 
̂n−2, 
n−1, 
̂n], (4.150a)

bτn+1 = a−n+1[
̂0, 
̂1, . . . , 
̂n−2, 
n−1, 
̂n−1]. (4.150b)
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Substitution of these expressions and (4.144a) into (4.149) yields

[
̂0, 
̂1, . . . , 
̂n−2, 
n−1, 
̂n][
̂0, 
̂1, . . . , 
̂n−2, 
̂n−1]
− [
̂0, 
̂1, . . . , 
̂n−2, 
n−1, 
̂n−1][
̂0, 
̂1, . . . , 
̂n−2, 
̂n]
− [
̂0, 
̂1, . . . , 
̂n−2, 
̂n−1, 
̂n][
̂0, 
̂1, . . . , 
̂n−2, 
n−1] = 0.

(4.151)

The above determinants can be regarded as wronskians with respect to x-
derivatives. Hence, by introducing the pfaffian entry (bn, m) = (∂n/∂xn)
̂m ,
(4.151) results in the Maya diagram expression

bn (n−1) n−1 n

×
bn (n−1) n−1 n

− ×

+ × = 0,

which is simply a pfaffian identity.

Snake’s legs
Viewing the above proof, some readers might suppose that the techniques used
are so complicated that they could not possibly discover this result. However,
it is easier than they might imagine. The author first checked by hand the ex-
pressions he had guessed in the case n = 0, 1 and then investigated the cases
n = 2, 3, . . . using computer algebra. After confirming that the guess is likely
to be correct, he finally considered the proof of the general case. Confirmation
at each step of the proof using computer algebra also reduces the possibility of
errors. �

We have discussed Bäcklund transformations and the structure of the so-
lutions of the bilinear KP, BKP and Toda equations, which are considered as
the most fundamental soliton equations, and we have shown that the Bäcklund
transformation formulae are, in each case, simply pfaffian identities.
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No sooner had the author started to describe an application of the direct method
that he realized that he had used up the allotted space on the fundamen-
tals. Even though he thought of shortening some of the detailed explanations,
he remembered that he had suffered reading difficult mathematics books be-
cause of their terse style, and so decided to retain the seemingly superfluous
remarks.

Let us briefly mention some topics not discussed in the book.

(1) Fundamental soliton equations such as the KP, BKP and Toda equations
and their Bäcklund transformation formulae may be regarded as ‘atoms’
for constructing various kinds of soliton equations. Combination of these
equations generate many other soliton equations and their solutions. Mod-
ern science has been able to understand the properties of materials by de-
composing them into their constituents, or atoms, and has managed to cre-
ate new materials by combining different atoms. It is a pity that lack of
space prevented the author explaining how to construct new soliton equa-
tions from the above atoms. For example, the KP equation and its Bäcklund
transformation formula may also be considered as the bilinear form of the
nonlinear Schrödinger equation. In this way, we can construct the dromion
solution (two-dimensionally localized soliton) for the Davey–Stewartson
equation. It should also be noted that apparently different nonlinear par-
tial differential equations are frequently transformed into the same bilinear
form.

(2) Since Bäcklund transformation formulae are also considered as soliton
equations (the first modified equations), their Bäcklund transformation
formulae (second modified equations) also exist. Furthermore, Bäcklund
transformation formulae for the second modified equation, that is, third

192
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modified equations, can also be constructed and they make an infinite hi-
erarchy. We may expect that there may be interesting soliton equations
among this hierarchy.

(3) What kind of soliton equations are generated from Bäcklund transforma-
tion formulae of the coupled KP equation?

(4) The word ‘pfaffian’ first appeared in connection with solitons in ref. [63].
(5) The author believes that all soliton equations can be discretized. Therefore,

they generate an infinite number of nonlinear partial difference equations
equipped with an infinite number of conserved quantities and exact so-
lutions. This belief is supported by the remarkable fact that τ -functions
of the KP equation and the difference KP equation coincide with each
other.

The interaction of solitons illustrated in Figure 1.7 was calculated using
the nonlinear partial difference equation (difference scheme)

ut+1
n − ut

n = δ
{

ut+1
n−1ut

n − ut+1
n ut

n+1

}
,

where n, t and δ stand for the lattice position, the time and the length
of the time interval, respectively. This equation has an infinite number of
conserved quantities under periodic boundary conditions. However, it was
recently discovered that the time evolution of this integrable difference
equation exhibits chaotic behaviour under the periodic boundary condition
ut

n−1 = α, ut
n = xt , ut

n+1 = yt , ut
n+2 = β.

(6) Shin’ichi Oishi [64] studied how to solve initial value problems for par-
tial differential equations by using their bilinear forms. According to this
author, if a solution may be expressed as a determinant, the initial value
problem can be solved using the bilinear form.

(7) It should also be noted that the late Nobuo Yajima applied bilinear methods
to a perturbed system [65].

(8) There is a strong relationship between soliton equations and the special
functions used in physics. In a sense, soliton theory can be considered
as a theory of special functions. Akira Nakamura has been investigating
special functions from this point of view. Ref. [66] reviews Nakamura’s
results obtained up to 1988, and later results appear in the following pa-
pers: [67] (Airy function, Hermite polynomials); [68] (associated Legen-
dre functions); [69] (associated Legendre functions, generalized Laguerre
functions); [70] (Jacobi polynomials); [71] (Gauss hyper-geometric func-
tions); [72] (Legendre polynomials). The full implications of these results
are still unknown.
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(9) Finally, two other explanations of the bilinear method are mentioned
[73,74]. The main feature of the book by Matsuno [73] is a detailed expla-
nation of a bilinearization of the Benjamin–Ono equation. Also, the sur-
vey article by Nimmo [74] explains how vertex operators generate soli-
ton solutions and describes the group theoretical significance of bilinear
equations.
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addition formula, see under pfaffian
antisymmetric matrix, 62
atom, 192
auxiliary variable, 56, 57, 127

Bäcklund transformation, 32, 157
BKP equation, 175
KdV-type equation, 161
KP equation, 169
Toda molecule equation, 188
two-dimensional Toda lattice equation, 179

bi-directional wronskian, see under wronskian
bilinear equation, 23
bilinear expression, 20
bilinear form, 24

indefiniteness of solution, 32
bilinear method, see direct method
bilinear operator, see D-operator
bilinearization, 37–46, 120, 194
BKP equation, 128, 175

Bäcklund transformation, 175
τKP = τ2

BKP, 90, 130
BKP hierarchy, 128
BKP-type equations, 128

pfaffian solutions, 127–132
bordered determinant, see under determinant
Boussinesq equation, 57

Bäcklund transformation, 168
bright soliton, see under soliton solution
Burgers equation, 13

Casorati determinant, 144
chaotic behaviour, 193

characteristic polynomial, 120
cofactor

determinant, 77
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Cole–Hopf transformation, 14
commutation relation, 64, 164
compatibility condition, 163, 164
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REDUCE, 30
conserved density, 158
coupled KdV equation, 138
coupled KP equation, 133, 137

solutions, 134, 139
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D-operator, 23
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Dm,n,x , 35
properties, 27–37

dark soliton, see under soliton solution
Davey–Stewartson equation, 192
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derivative formulae, see under pfaffian
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Plücker relation, 61, 73, 76, 97, 110, 119,
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wronskian, see wronskian
difference equation, 61, 193
differential-difference equation, 14, 15
direct method, 8, 12, 19–26
dispersion, 4
dispersion relation

linear, 3
nonlinear, 112, 113, 129

double wronskian, see under wronskian
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envelope soliton, see under soliton solution
exchange formula, 31, 32, 161, 176, 180
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fifth-order KdV equation, 127

Bäcklund transformation, 167

Gel’fand–Levitan integral equation, 128
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solution, 130, 142
Grassmanian manifold, 110
group velocity, 4

Hessian, 37
Hirota bilinear form, see bilinear form
Hirota condition, 55, 84
Hirota derivative, see D-operator
Hirota’s method, see direct method
hole solution, 35
hybrid mode solution, 142

inverse scattering method, 12, 20, 128, 160,
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Kač–Moody algebra, 29, 138
Kadomtsev–Petviashvili equation, see KP
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Bäcklund transformation, 162
KdV-type equation, 50, 55

Bäcklund transformation, 161
extension, 52
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first modified, 170
grammian solution, 122
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wronskian solution, 115

KP hierarchy, 120, 138
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Lax fifth-order KdV equation, see fifth-order

KdV equation
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Leibniz rule, 27
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Lie group, 32
linearization, 12–15
Liouville equation, 15, 18, 153, 159

Maya diagram, 73, 116
Miura transformation, xi, 158, 163, 166, 183
mKdV equation, 14, 166

dispersionless, 157
model equations for shallow water waves, 127

Bäcklund transformation, 168
modified BKP equation, 177
modified Kaup–Kuperschmidt equation, 36
modified KdV equation, see mKdV equation
modified KP equation, see under KP equation
modified Toda equation, 181

nondispersive wave
linear, 2
nonlinear, 4

nonlinear Schrödinger equation, 41, 192
nonlinearity, 4–12
numerical simulation, 50, 193

one-form, 64

Padé approximation, 8, 21
parameters pi , qi , 112, 129
perturbation method, 7, 20, 21, 25, 38, 47,

112
perturbed system, 193
Pfaff (J. F. Pfaff), 64
pfaffian, 61–66

addition formula, 99, 174
cofactor, 77
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pfaffian (cont.)
derivative formulae, 101–109
entry, 63
expansion formulae, 62–64
Gramm-type, 139
identities, 92–97
orthogonality relation, 77
Wronski-type, 133

phase constant, 114
phase shift, 49, 52, 55, 112, 113, 129
phase velocity, 3
Plücker relation, see under

determinant
plane wave solution, 6
Poisson bracket, 37
predator–prey model, 17–18

quadratic form, 20
quasi-periodic solution, 51

recurrence relation, 85
Riccati equation, 12

Sato theory, 61
Sawada–Kotera equation

Bäcklund transformation, 168
scaling transformation, 9
Schrödinger equation, 31
shock wave solution, 35
similarity transformation, 9
sine–Gordon equation, 45, 159
Snake’s legs, 22
solitary wave, 1, 4, 7

amplitude, 9, 11
exact solution, 11
velocity, 10, 11

solitary wave solution, 4, 8, 22, 35
soliton, 1, 3, 12

soliton solution
bright soliton, 41
dark soliton, 41
envelope soliton, 41
four-soliton, 56
head-on interaction, 110
N -soliton, 55, 129
one-soliton, 1, 25, 47
overtaking interaction, 60
three-soliton, 53, 56
two-soliton, 26, 47, 49, 52

special functions, 193
superposition principle, 12, 26

Taylor expansion, 59
Toda lattice equation, 57, 143

Bäcklund transformation, 169
trilinear form, 53
triple wronskian, see under wronskian
truncation, 25, 26
two-dimensional KdV equation, 111
two-dimensional modified Toda equation, 184
two-dimensional Toda lattice equation, 74,

142–148
two-dimensional Toda molecule equation,

149–156
two-form, 65
two-wave interaction, 17

equation, 153, 182

vertex operator, 194

wronskian, 67, 74, 111
bi-directional, 150, 188
double, 154
triple, 155

Young diagram, 75, 120
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