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Preface

The development of the differential calculus was one of the major achievements
of seventeenth century European mathematics, originating in the work of New-
ton, Leibniz and others. Integral calculus can be traced back to the work of
Archimedes in the third century B.C. Since its inception, calculus has devel-
oped in two main directions. One is the growth of applications and associated
techniques, in diverse fields such as physics, engineering, economics, probability
and biology. The other direction is that of analytical foundations, where the
intuitive and largely geometrical approach is replaced by an emphasis on logic
and the development of an axiomatic basis for the real number system whose
properties underpin many of the results of calculus. This approach occupied
many mathematicians through the eighteenth and nineteenth centuries, cul-
minating in the work of Dedekind and Cantor, leading into twentieth century
developments in Analysis and Topology. We can learn much about calculus by
studying its history, and a good starting point is the St Andrews’ History of
Mathematics website www-history.mcs.st-and.ac.uk/history/

This book is designed for beginning university students, both those studying
mathematics as a major subject, and those whose main specialism requires the
use and understanding of calculus. In the latter case we would expect that
lecturers would customise the treatment with applications from the relevant
subject area.

The pre-university school mathematics curricula of most European countries
all include some calculus, and this book is intended to provide, among other
things, a transition between school and university calculus. In some countries
such as the U.K., the school curriculum is characterised by an emphasis on tech-
niques and applications, whereas in countries such as France greater attention
is given to analytical aspects. In both cases developing understanding of and
facility with basic techniques is important, particularly in applied mathematics
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vi Calculus of One Variable

and statistics. Much of university mathematics is characterised by an emphasis
on generality, abstraction and proof. We have included theorems and proofs
where they help with understanding the procedures of calculus. We have given
definitions of major concepts of calculus, but in relatively informal language.
This serves as a link with the more symbolic and logical definitions used in
Analysis. Such a development mirrors the transition from calculus to analysis
accomplished in the nineteenth century. In this regard we have taken care to
give a clear statement of the conditions under which results such as Taylor’s
Theorem are true, even though we have not included analytical proofs. We
have also included a few examples of deductions from definitions, such as the
calculation of some of the basic derivatives from first principles. The approach
therefore complements texts which do address the analytical foundations, such
as Real Analysis, by John M Howie, in this series, referred to as Howie in
several places in this book.

The development of the various topics throughout the book is based on
the premise that students learn to use and apply techniques through studying
well-chosen examples which illustrate general principles, rather than encoun-
tering these principles in abstract generality ab initio. Such examples therefore
constitute the major component of each chapter, together with the provision of
numerous exercises for students to work with. Answers to most of the exercises
are included in the book. Full solutions, password protected, are available via
the Springer online catalogue. To apply for your password, visit the book page
on the Springer online catalogue at www.springeronline.com/1-85233-940-3 or
email textbooks@springer-sbm.com.

The mathematical prerequisites for this book are basic algebra and co-
ordinate geometry and the beginnings of differentiation as covered in school.
We assume that readers have a reasonable level of facility with algebraic manip-
ulation of straightforward polynomials and rational expressions, the solution of
linear and quadratic equations and fractional powers. An appreciation of the
basic features of graphs, including the elementary trigonometric, exponential
and logarithmic functions is also expected. We also assume a knowledge of
co-ordinate geometry associated with straight lines and circles. Most school
curricula include basic differentiation with applications to problems involving
gradients and maxima and minima. We have based the interface between this
book and school mathematics on these topics, revisiting in particular selected
parts of algebra, including polynomial division and partial fractions, general
properties of functions and their inverses, and some of the elementary results
within calculus itself. From this starting point the book develops the differ-
ential and integral calculus for functions of one real variable, together with
applications from within mathematics, in a systematic and structured form. It
covers the subject as commonly featured in first year university courses, and



Preface vii

provides a foundation for further work in areas such as differential equations
and calculus of more than one variable.

The influence of technology on the teaching and learning of mathematics
is the subject of current debate and research. In many countries graphical
calculators are prevalent in school mathematics, and many university courses
are now integrating the use of computer algebra systems into their courses.
We have illustrated the latter in a number of places in the book, by giving
MAPLE commands which students with access to this popular, easy to use
package can utilise as a basis for exploration. Where an alternative package
such as Mathematica or Derive is available it can of course be used instead
of MAPLE. In many universities a computer laboratory class is offered as an
adjunct to lectures, whereby students can be taught the basic features of such
a package. The book is however not designed as a systematic treatise on the
use of MAPLE. Readers without access to a computer algebra system will not
be disadvantaged, as the text itself is not written so as to be dependent on that
facility. Where it is available however it helps to illustrate some concepts, and
enables students to explore a much wider range of examples than could be done
“by hand”. Sample MAPLE worksheets are included on the website referred to
above. Instructors are free to use or adapt them for laboratory classes.

I would like to acknowledge the contribution of numerous students at the
University of Southampton over many years. Our students are at the core of the
drive to communicate mathematics, and I have gained much valuable insight
into learning and teaching from them. I would particularly like to thank Jo
Bishopp and Linda Walker, who read and commented on the first draft of the
book in its entirety, and to Claire Vatcher, who read a later draft and checked
the solutions to the exercises. The editorial and technical staff of Springer
have been unfailingly helpful. Most of the figures in this book were initially
produced using MAPLE, and I would particularly like to thank Aaron Wilson,
who improved them significantly. I would also like to thank the publisher’s
reviewers who supplied many detailed and carefully considered comments which
I feel sure have improved the book. In particular they suggested the inclusion
of a small amount of material not usually part of an introductory calculus
course, which I have included in some chapters by way of added interest and
enrichment. Naturally any remaining errors and deficiencies are mine.

Finally I would like to acknowledge my undying gratitude to my dear wife
Ann, without whose encouragement and support none of this would be possible.

Keith E Hirst
University of Southampton

June 2005
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1
Functions and Graphs

In this chapter we review some of the basic ideas about functions, and discuss
properties of the common families of functions which we encounter in the study
of calculus. We have included some of the algebra of functions needed elsewhere
in calculus.

The chapter reinforces and extends topics on algebra and functions from
pre-university mathematics, and so in some cases we shall simply present a
brief revision by way of cementing the links between the contents of this book
and readers’ previous mathematical studies.

1.1 Functions and Graphs

We consider two familiar graphs, corresponding to the equations y = x2 and
x2 + y2 = 1 respectively, and discuss an important difference between them.

For the first graph, the parabola y = x2, given any value of x we find that
there is a unique value of y for which the point with coordinates (x, y) lies on
the graph. The second graph is that of the circle x2 + y2 = 1, with centre the
origin and radius 1. In this case, corresponding to any value of x satisfying
−1 < x < 1, there is more than one value of y for which (x, y) lies on the
graph. In the first case, where we have uniqueness, we say that y is a function
of x. In the second case the relationship between x and y is not a functional
relationship.

Graphically the uniqueness of the value of y corresponds to the fact that

1



2 Calculus of One Variable

the line through the value x parallel to the y-axis does not intersect the graph
more than once. This is shown in Figure 1.1 using the parabola and the circle
discussed above. It is sometimes referred to as the “vertical line test”.

x

y

0−1 −0.5 0.5 1

−1

−0.5

0.5

1

Figure 1.1 The vertical line test

Another way of appreciating this distinction is to consider the function but-
tons on a calculator. Like the equation for the parabola above, each function
button has the property that for each number entered into the calculator (cor-
responding to x) pressing the button outputs a unique number (corresponding
to y). So if for example we enter the number 3.2 and press the x2 button, we
will get the same number every time, namely 10.24.

Readers should be familiar from their previous mathematical studies with
the basic properties and graphs of the exponential and logarithmic functions,
the trigonometric functions sin, cos and tan, linear functions, and basic powers
such as x2 and x3, together with reciprocal powers such as x−1.

1.2 Domain and Range

To describe a function f completely we have to specify the set of values of
x to be used, as well as the rule or formula which determines the value of y

corresponding to each permitted value of x. The set of values of x is called the
domain of f and the set of all possible values of y which arise is called the
range of f. This is a very general description, and in practice, throughout this
book, a function will be specified by means of a formula, and the domain will
be some set of real numbers.

There are occasions where restrictions on the domain arise for other than
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algebraic reasons. For example a particular formula may describe the speed
of a particle at a time t after motion begins. In this case the domain for the
formula cannot contain negative values of t for physical reasons. Also there
are restrictions on the size and type of number which can be entered into a
calculator, and so the domain for each function button will be restricted for
electronic reasons. These considerations do not enter into our discussion in this
chapter.

What we are normally concerned with is the set of all possible values of x

which can legitimately be substituted into the formula for f(x). This is some-
times referred to as the maximal domain corresponding to the formula f(x).

In relation to the elementary functions we consider in calculus, the maximal
domain is often the set of all real numbers, except when logarithms, square roots
etc. are involved, or where algebraic fractions have denominators which are zero
at certain values of x. Such restrictions are programmed into calculators. For
example if we enter x = −2 and then press the square root button, or if we try
to divide by zero, the calculator will return an error message.

Example 1.1

Here we have tabulated the domain and range for some basic functions.

Formula Maximal Domain Range
sin x All real x −1 ≤ y ≤ 1
tanx x �= (2n+1)π

2 , n = 0,±1,±2 . . . All real y

ex All real x y > 0
lnx x > 0 All real y√

x x ≥ 0 y ≥ 0

Notice the range for the square root function. We adopt the convention that
for any number x > 0,

√
x always denotes the positive number whose square

is x. This is the choice programmed into calculators. There are of course two
solutions for the equation y2 = x. One is

√
x and the other one is −√

x. (Note
that 0 has only one square root, namely 0 itself.)

Example 1.2

Determine the maximal domain and corresponding range for the function given

by the formula f(x) =
2 − x

x − 1
.

The only value of x which cannot legitimately be substituted into the for-
mula is x = 1, for which the denominator is zero. The maximal domain is
therefore the set of all real numbers except for x = 1. The range can be deter-
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x

y

0 321−1−2−3

3

2

1

−1

−2

−3

Figure 1.2 Graph of f(x) = 2−x
x−1

mined from the graph, shown in Figure 1.2, or by rearranging the formula, as
follows.

If y =
2 − x

x − 1
then this equation is equivalent to x =

y + 2
y + 1

, and the only

value of y which will not occur is y = −1, for which the denominator is zero.
Hence the range is the set of all real numbers except y = −1.

The horizontal and vertical lines shown in Figure 1.2, which the graph ap-
proaches when x and y are increasingly large (positive or negative) are asymp-
totes. They are shown on several graphs in this chapter, and are discussed
further in Definition 2.9 in Section 2.3

Example 1.3

Determine the maximal domain and corresponding range for the function given
by the formula f(x) = ln(cosx).

We know that ln t is defined only for t > 0, and so ln(cosx) is defined only
when cos x > 0. The maximal domain of f therefore consists of all numbers x for
which cos x > 0. We can be more explicit about these values of x by using our
knowledge of the cosine function. In particular the graph of the cosine function
enables us easily to determine those intervals for which cosine is positive. This
occurs when

−5π

2
< x < −3π

2
; −π

2
< x <

π

2
;

3π

2
< x <

5π

2
; etc.

There are infinitely many such intervals, and we can write them together in
the general form

2nπ − π

2
< x < 2nπ +

π

2
; n = 0,±1,±2, . . .
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We consider the graph of ln(cosx) in Example 1.10.

1.3 Plotting Graphs using MAPLE

A knowledge of the graphs of the elementary functions discussed in this chapter
is important, as is some facility with graph sketching “by hand”, so that one
can deduce some of the important features of a graph related to an algebraic
expression. It is essential therefore not to become over-reliant on graph plotting
technology. However the use of a graphical calculator or the plotting facilities
of a computer algebra system can greatly enrich the understanding of functions
and their graphs, and provide a huge range of examples very efficiently. In this
section we shall discuss some of the elementary plotting commands in MAPLE.
Readers familiar with another package, or a graphical calculator, can replace
MAPLE routines where they occur in this book. Readers without access to
such technology can simply omit those sections without significant disruption
to their progress through calculus.

We shall take as an example the graph in Fig 1.2. This can be plotted (not
including the asymptotes) using the following MAPLE command.

plot((2-x)/(x-1),x=-3..3,y=-3..3);

The syntax of this command is as follows. It begins obviously with the
instruction plot. We then enter the formula, in which we can use x or some
other letter for the variable. After a comma we enter the domain we wish to
use for the plot, in this case the interval −3 ≤ x ≤ 3, the two numbers being
separated by two dots as shown. If we omit this we see an error message. It is
optional to specify an interval on the y-axis. In this case if we omit it MAPLE
will choose something like the interval between −400 and 1000, which will not
give a very informative picture of the graph. When we see this result, we can
simply edit the original command by entering the interval for y that we want,
and we can easily experiment to decide which gives a helpful picture. Finally
we see that all MAPLE commands should end with a semi-colon (;) which tells
MAPLE that this is the end of the command and that it should be executed.

Readers who are not familiar with this basic MAPLE command can try
some familiar functions, such as

plot(cos(x),x=-2*Pi..2*Pi);

This command has several important features. Firstly it tells us that
MAPLE has the cosine function already programmed, and that we must type
cos(x) with parentheses. Secondly, the symbol * must be used for multiplica-
tion. We will see an error message if we omit it; it is one of the errors most people
make from time to time. Finally we see that the number π is pre-programmed,
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denoted in MAPLE by Pi, beginning with a capital letter.
The simple plot command is used for producing graphs of functions. It

cannot therefore be used to draw a circle from an equation such as x2 +y2 = 4.

This equation does not express y as a function of x or vice-versa. Its graph
does not satisfy the vertical line test discussed in Section 1.1. It is an example
of an implicit equation, for which MAPLE has a separate command. In fact
there is a huge variety of MAPLE commands, so that loading them all into the
computer’s memory at once would be likely to clog up the machine. They are
therefore contained in a number of libraries of related routines, which we load
only when we need them. So to produce the graph corresponding to an implicit
equation we begin the MAPLE session with the command with(plots); which
accesses plotting commands not included in the basic set. The circle can then
be plotted with the command

implicitplot(xˆ2+yˆ2=4,x=-2..2,y=-2..2,scaling=constrained);

In this case we must specify the interval on both axes. The command
scaling=constrained ensures that we see equal scales on the screen. If we
omit this then in some cases a circle will appear on the screen shaped like an
ellipse.

Sometimes we have to use implicit plotting to obtain a complete picture,
for example where roots are involved. So the command

plot(root(x,3),x=-2..2);

will only give the part of the graph of y = 3
√

x for which y ≥ 0. To obtain
a complete picture we need to use

implicitplot(yˆ3=x,x=-2..2,y=-2..2);

MAPLE can plot more than one graph on the same picture, both in the
basic plot context, and also in commands such as implicitplot. For example
Figure 1.1 was plotted using

implicitplot([xˆ2+yˆ2=1, y=xˆ2,x=0.4], x=-1.1..1.1,

y=-1.3..1.3,scaling=constrained,color=black);

Finally we note that MAPLE has extensive help facilities, and so if we type
?plot; we will see a description of the syntax associated with this command,
and a selection of illustrative examples, which one can copy into the MAPLE
working area to try. (These examples are often more helpful than the syntax
description.)

Many of the graphs in this book were plotted using MAPLE, and we shall
give examples of MAPLE commands at various places throughout the book.
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1.4 Odd and Even Functions

When we are sketching graphs we often use ideas of symmetry, and there are
two types of symmetry which are easy to relate to algebraic formulae.

A function is said to be even if its graph has reflective symmetry in the y-
axis, so that the graph is unchanged by the action of such a reflection. Standard
examples are x2 and cos x. Algebraically this is achieved by replacing x by −x,
and for an even function the formula resulting from this substitution should be
equivalent to the original one. For the examples here we know that (−x)2 = x2

and cos(−x) = cos x. This gives rise to the following definition:

Definition 1.4

A function f(x) is an even function if f(−x) = f(x) for all x in the domain.

A function is said to be odd if its graph is unaltered after reflection in the
y-axis followed by reflection in the x-axis. Standard examples are x3 and sinx.

So this time if we replace x by −x then y changes to −y. For these examples
(−x)3 = −x3 and sin(−x) = − sin x. This gives rise to the following definition:

Definition 1.5

A function f(x) is an odd function if f(−x) = −f(x) for all x in the domain.

As well as verifying that particular formulae correspond to even or odd
functions (or neither), by replacing x by −x and investigating the result, we
can prove general results by deduction from the definitions, as in the following
examples.

Example 1.6

Show that if a function is both even and odd then it must be zero at every
point of its domain.

If f is even then for all x in the domain we have f(−x) = f(x), from the
definition. If f is odd then for all x in the domain we have f(−x) = −f(x),
again from the definition. From these two equations we deduce that for all x

in the domain f(x) = −f(x), and therefore f(x) = 0.

Example 1.7

Show that any function can be expressed uniquely as a sum of an even function
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and an odd function.

We want to find a relationship of the form f(x) = E(x) + O(x), where E is
an even function and O is an odd function. If we have such a relationship then
replacing x by −x gives

f(−x) = E(−x) + O(−x) = E(x) − O(x),

using the definitions of even and odd. Adding the two equations and dividing
by 2 then gives

f(x) + f(−x)
2

= E(x).

Subtracting gives
f(x) − f(−x)

2
= O(x).

Conversely if we define functions E and O in terms of f by means of these
expressions it is easy to verify that E is in fact even and O is odd, as follows.

E(−x) =
f(−x) + f(x)

2
=

f(x) + f(−x)
2

= E(x).

O(−x) =
f(−x) − f(x)

2
= −f(x) − f(−x)

2
= −O(x).

Example 1.8

We will illustrate the above decomposition using f(x) = x2 − 2x − 5, which is
neither even nor odd.

Using the formulae above to work out the even and odd parts gives

E(x) =
(x2 − 2x − 5) + ((−x)2 − 2(−x) − 5)

2
= x2 − 5;

O(x) =
(x2 − 2x − 5) − ((−x)2 − 2(−x) − 5)

2
= −2x.

We can see that E(x) is indeed an even function, O(x) is an odd function, and
f(x) = E(x) + O(x).

There are many examples of even and odd functions in this chapter. Graphs
of even functions can be seen in Figures 1.4, 1.5, 1.11, 1.13. Graphs of odd
functions can be seen in Figures 1.10, 1.12, 1.14, 1.15, 1.17, 1.21, 1.22. In
Figures 1.2, 1.6, 1.7 we see examples which are neither even nor odd.
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1.5 Composite Functions

The function defined by f(x) = ln(cos x) which we discussed in Example 1.3
is built up in stages from functions whose properties we are familiar with,
and in that example we were able to determine the domain by considering
the properties of ln and cos separately. This method of combining functions is
called composition, and occurs a good deal in calculus and algebra. There is
a special notation, given in the following definition

Definition 1.9

Given two functions f and g, the composition of f with g is defined as follows,

f ◦ g(x) = f (g(x)) .

As with Example 1.3 we have to be careful about the domain. Not only
must x belong to the domain of g, but g(x) must belong to the domain of f.

We read the notation as “f circle g”, or “f of g”.
On some calculators composition is implemented by using successive func-

tion buttons, as follows

input x
press cos−→ cos x

press ln−→ output ln(cosx)

Clearly we are not limited to two stages in the construction of composite
functions. For example we might(!) want to consider the function defined by

f(x) =
√

ln (tan (ex)),

which is a four-stage composition involving the exponential, tangent, logarith-
mic and square root functions in succession.

One of the useful applications of composition is in sketching graphs.

Example 1.10

Sketch the graph of y = ln(cosx).

We decompose the function by using the intermediate variable t, writing
y = ln t and t = cos x.

The graphs of these two functions are familiar, and we can use them to
construct the composite graph, as follows.

In Example 1.3 we determined the domain for ln(cosx) and Figure 1.3
confirms that we must have t positive, so the composite graph cannot involve
any values of x for which cosine is negative or zero.
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Figure 1.3 Graph of y = ln t
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Figure 1.4 Graph of t = cos x

Figure 1.3 shows ln as an increasing function, so that wherever cosx is
increasing, so is ln(cos x), and wherever cos x is decreasing, so is ln(cos x).
Figure 1.4 reminds us that for all values of x we have t ≤ 1, and so ln t ≤ 0.

Finally we see that as t gets smaller, ln t becomes very large and negative.
Figure 1.4 also reminds us that the maximum value of t is 1, and using the
increasing property of ln tells us that ln(cosx) has a maximum value of ln 1 = 0
at corresponding values of x. We now have all the information we need to
construct the composite graph, which is therefore as shown in Figure 1.5.

We can use MAPLE to define and plot functions another way. In connection
with Example 1.10, we use the commands

g:=x->cos(x);

f:=t->ln(t);
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Figure 1.5 Graph of y = ln(cosx)

to define the cosine and logarithmic functions. We can then define the compo-
sition by

h:=f(g(x));

The following plotting command will then produce a graph similar to Figure 1.5
(without the vertical lines).

plot(h,x=-8..8,y=-1..0.2);

This exhibits the fact that we have the composition of two functions, in a more
explicit way than the single command

plot(ln(cos(x)),x=-8..8,y=-1..0.2);

1.6 Some Elementary Functions

In this section we provide a brief survey of the elementary functions encoun-
tered in calculus. We shall discuss polynomials, rational functions, the modulus
function, trigonometric, exponential, logarithmic and hyperbolic functions.

1.6.1 Polynomials

A real polynomial function is a function whose domain is the set of all real
numbers, defined by

f(x) = anxn + an−1x
n−1 + · · · + a2x

2 + a1x + a0

(
=

n∑
k=0

akxk

)
,
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where an, . . . , a0 are real constants (the coefficients) and an �= 0. The integer n

is called the degree of the polynomial, denoted by deg(f). Polynomials of small
degree have particular names which will be familiar to the reader.

degree(n) 0 1 2 3 4 5
constant linear quadratic cubic quartic quintic

A constant polynomial for which a0 = 0 is called the zero polynomial. Its
graph coincides with the x-axis.

Polynomials can be added, subtracted and multiplied using the procedures
of elementary algebra. In the case of division, if we are given two polynomials
it is not always the case that one will divide exactly into the other. Just as
with numbers, if we divide a polynomial by a smaller one we would expect to
get a quotient and a remainder. This is expressed in the following result.

Theorem 1.11 (The Division Theorem)

Let f(x), g(x) be two polynomials with deg(f) ≤ deg(g). Then there are unique
polynomials q(x), r(x) such that

g(x) = q(x)f(x) + r(x),

where deg(r) < deg(f).

Proof

The proof of this result is straightforward but somewhat tedious. The method
of proof follows the same procedure as with any particular example, so it simply
describes in general terms the division algorithm, illustrated in Example 1.12.

We shall however prove uniqueness. The method of proof is a common one
for uniqueness results. We assume that there are two different possibilities and
then deduce that they must be the same after all. In this case suppose that

g(x) = q1(x)f(x) + r1(x), where deg(r1) < deg(f), and that
g(x) = q2(x)f(x) + r2(x), where deg(r2) < deg(f).
Subtracting and rearranging these two equations gives

(q1(x) − q2(x)) f(x) = r2(x) − r1(x).

Now the degree of r2(x) − r1(x), the right-hand side, is strictly less than
the degree of f(x), because both r1 and r2 have degree less than that of f.

The left-hand side is a polynomial (q1(x) − q2(x)) multiplied by f(x) and so
the degree of the left-hand side cannot be strictly less than that of f unless
q1(x) − q2(x) is the zero polynomial. Therefore we must have q1 = q2, and
consequently r1 = r2, proving uniqueness.
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The calculations involved in polynomial division may not be familiar to all
readers, so we include an example.

Example 1.12

Divide g(x) = 2x4 − 3x3 + 7x2 − 4x + 1 by f(x) = x2 − 4x + 7.

The way the algorithm begins is to consider terms of highest degree from g

and f respectively, and divide them. So we first divide 2x4 by x2, giving 2x2.

We then write g(x) = 2x2f(x) + a(x), i.e.,

2x4 − 3x3 + 7x2 − 4x + 1 = 2x2(x2 − 4x + 7) + a(x).

We can determine a(x) from this equation, giving

a(x) = 5x3 − 7x2 − 4x + 1.

We repeat the process, this time dividing a(x) by f(x), so again considering
the terms of highest degree, we divide 5x3 by x2, giving 5x. We then need to
find b(x) to satisfy

a(x) = 5x(x2 − 4x + 7) + b(x), i.e.,

5x3 − 7x2 − 4x + 1 = 5x(x2 − 4x + 7) + b(x).

From this equation we find that b(x) = 13x2 − 39x + 1.

Repeating the process again, we divide 13x2 by x2, giving 13, and we then
want to find c(x) satisfying

b(x) = 13(x2 − 4x + 7) + c(x), i.e.

13x2 − 39x + 1 = 13(x2 − 4x + 7) + c(x),

and this gives c(x) = 13x − 90.

The degree of c(x) is less than that of the divisor f(x) and so the process
has finished. We can now assemble all the steps together to give

2x4 − 3x3 + 7x2 − 4x + 1 = (2x2 + 5x + 13)(x2 − 4x + 7) + 13x − 90.

Finally we can divide both sides by x2 − 4x + 7 to obtain

2x4 − 3x3 + 7x2 − 4x + 1
x2 − 4x + 7

= 2x2 + 5x + 13 +
13x − 90

x2 − 4x + 7
.

The procedure can be set out in the conventional long division format, namely
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2x2 +5x +13
x2 − 4x + 7 ) 2x4 −3x3 +7x2 −4x +1

2x4 −8x3 +14x2

5x3 −7x2 −4x +1
5x3 −20x2 +35x

13x2 −39x +1
13x2 −52x +91

13x −90

The case when the divisor f is a linear polynomial is particularly important
in factorisation, as in the next two theorems.

Theorem 1.13 (The Remainder Theorem)

The remainder on dividing g(x) by (x − k) is g(k), for any real number k.

Proof

From the division theorem we have g(x) = q(x)(x−k)+r(x), where the degree
of r is less than 1 (the degree of (x − k)). So r(x) is a constant polynomial C,
and we therefore have g(x) = q(x)(x − k) + C. This is true for all x and so if
we substitute x = k we obtain C = g(k), proving the theorem.

Theorem 1.14 (The Factor Theorem)

If g(k) = 0 then (x − k) is a factor of the polynomial g(x)(and vice-versa).

Proof

The result follows from the remainder theorem, because g(k) = 0 if and only if
C = 0, i.e., g(x) = q(x)(x − k).

When g(k) = 0 we say that k is a root of the polynomial. This can help us to
find linear factors, especially where a polynomial has a root which is a small
integer.

Example 1.15

Let g(x) = xn − 1. Then g(1) = 0, so (x − 1) is a factor. Polynomial division
gives

xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x2 + x + 1).
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This is a generalisation of the well-known factorisation x2 − 1 = (x− 1)(x+1),
and is sufficiently useful to be committed to memory.

Example 1.16

Factorise the cubic polynomial g(x) = x3 − x2 − 5x − 3.

Factorising quadratics is a familiar topic in school mathematics, and if we
have a quadratic such as x2 − 2x − 8 we first look for roots which are integer
factors of the constant term −8. The same procedure acts as a starting point
for factorising polynomials of higher degree. In this case therefore the natural
integers to try as possible roots are the factors of the constant term −3, namely
1,−1, 3,−3. It is easy to see by substitution that 3 is a root, and so (x − 3) is
a factor. Polynomial division then gives

x3 − x2 − 5x − 3 = (x − 3)(x2 + 2x + 1) = (x − 3)(x + 1)2.

In this kind of factorisation we say that x = −1 is a multiple root (in this
case a double root because (x+1) appears twice in the factorisation), and that
(x + 1) is a repeated factor. The general definition is as follows.

Definition 1.17

If the polynomial g(x) can be expressed as (x−k)mf(x), where f(k) �= 0, then
we say that k is a root of g of multiplicity m, and that (x − k) is a repeated
factor of multiplicity m.

The idea of multiplicity is illustrated by the following two factorisations.

x9 + 3x8 − 18x7 − 46x6 + 129x5 + 243x4 − 416x3 − 504x2 + 432x + 432

= (x + 1)2(x + 3)3(x − 2)4.

x8 + 5x7 + 8x6 + 34x5 + 69x4 − 99x3 − 54x2 − 324x − 1944

= (x − 2)(x + 3)3(x2 − x + 6)2.

In the second case the real factorisation can be followed by further factori-
sation if complex numbers are allowed, giving

x8 + 5x7 + 8x6 + 34x5 + 69x4 − 99x3 − 54x2 − 324x − 1944

= (x − 2)(x + 3)3
(

x − 1
2

−
√

23
2

i

)2 (
x − 1

2
+

√
23
2

i

)2

.
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The following theorem gives a method of determining the multiplicity of a
root.

Theorem 1.18 (Multiple Roots)

The polynomial g(x) has a root k of multiplicity m if and only if

g(k) = g′(k) = g′′(k) = · · · = g(m−1)(k) = 0 and g(m)(k) �= 0,

where g′, g′′, . . . , g(m) denote the successive derivatives of g.

Instead of giving a general proof of this result we shall consider an example.

Example 1.19

Let g(x) = (x − 2)3(x + 1) = x4 − 5x3 + 6x2 + 4x − 8. Differentiating gives

g′(x) = 4x3 − 15x2 + 12x + 4; g′′(x) = 12x2 − 30x + 12; g′′′(x) = 24x − 30.

Now g(−1) = 0; g′(−1) = −27 �= 0. This verifies that −1 is a root of multi-
plicity 1, so it is not repeated. But

g(2) = 0; g′(2) = 0; g′′(2) = 0; g′′′(2) = 18 �= 0,

which verifies that 2 is a root of multiplicity 3.

The theory behind factorisation relates to the Fundamental Theorem of
Algebra, proved by K.F. Gauss in 1800. This result implies that any polynomial
with real coefficients will factorise into a product of real linear and quadratic
factors, some of which may be repeated factors.

The problem with factorisation is that there is no general algorithm, so that
the theorem simply says that the factors exist, without telling us how to find
them.

Finding factors is equivalent to finding the roots of an equation. As far
as quadratics are concerned, the Arabic mathematician Al-Khwarizmi (around
800 A.D.) gave what is in effect the familiar formula for solving quadratics.

Methods for solving cubic equations and quartic equations were developed
during the sixteenth century in Italy. The chief mathematicians involved were
probably Scipione dal Ferro, Girolamo Cardano and Nicolo of Brescia (also
known as Tartaglia). Naturally there were attempts subsequently to develop
formulae for solving equations of higher degree, and so it was something of a
surprise when in 1799 Paolo Ruffini claimed to offer a proof that there could
be no formula for solving equations of degree five. The mathematician usually
credited with the first complete proof of this result is the Norwegian Niels
Henrik Abel, in 1824.
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There is more information about this part of the history of mathematics on
the St. Andrews’ website www-history.mcs.st-and.ac.uk/history/

1.6.2 Rational Functions

A rational function is a quotient of two polynomials. The following expressions
represent rational functions.

2x2 − 5x + 6
x − 2

;
x + 4
2x − 5

;
3x − 3

x4 − 3x2 + x − 17
;

x3 + 1
x3 − 1

.

The following quotients do not define rational functions.

x2 + 3
cos2(x + 2) − 7x

;
x3 − 3x2 − 5√

2x + 3
;

lnx − tanx

e2x−4 + sec x
.

One important aspect of rational functions is their decomposition into sim-
pler rational functions known as partial fractions. This is especially important
in integration, and is discussed in detail in Chapter 10 where we consider inte-
gration of rational functions.

The form of the graph of a rational function y = f(x) depends on a number
of properties, as follows.

1. If the degree of the numerator is greater than that of the denominator then
when x becomes large (positive or negative) so does y.

2. If the degree of the numerator is equal to that of the denominator then
there will be asymptotes parallel to the x-axis as x becomes large (positive
or negative).

3. If the degree of the numerator is less than that of the denominator then
the x-axis itself is an asymptote as x becomes large (positive or negative).

4. If the denominator has no real roots then the graph will be a continuous
curve.

5. If the denominator does have real roots there will be asymptotes parallel
to the y-axis corresponding to each of the real roots.

We shall discuss some of these in more detail in Chapter 2 when we consider
limits of functions. For the moment we shall simply show some examples. Cases
2. and 5. together are illustrated in Figure 1.2. Cases 1. and 4. together are
shown in Figure 1.6. Cases 3. and 5. together are shown in Figure 1.7.
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1.6.3 The Modulus Function

The modulus or absolute value function is important in many parts of math-
ematics, and so familiarity with graphs and algebraic manipulations involving
modulus is useful. The modulus function is defined as follows.

Definition 1.20

f(x) =
{

x if x ≥ 0,

−x if x < 0.

In Figure 1.8 we have plotted y = |x|, y = |x − 2|, y = |x| − 1. The modulus
function itself is the graph passing through the origin, and the last of the three
is shown using MAPLE’s point style. Notice how the modulus function has
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been shifted in each case. Note than MAPLE uses abs(x) for the modulus
function.

On the number line the modulus of a number represents its distance from
zero, without regard to direction, so it is always a non-negative number. The
expression |x − a| measures the distance of x from a, again without regard to
direction. We can use this interpretation in solving equations and inequalities
involving the modulus function.
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Figure 1.8 Graphs of modulus functions

Example 1.21

Solve the equation |x + 4| = 3.

Algebraically, |x + 4| = 3 means that x + 4 = ±3, so the equation has two
solutions, x = −1, x = −7. Geometrically we are looking for numbers x whose
distance from −4 is 3, giving x = −1, x = −7 as before. MAPLE can deal with
this by using solve(abs(x+4)=3,x);

Example 1.22

Solve the inequality |x2 − 2x − 5| ≤ 3.

Geometrically this means that the distance of x2 − 2x − 5 from zero is less
than or equal to 3, i.e., −3 ≤ x2 − 2x − 5 ≤ 3. A good way to solve this is
to use a combination of algebra and geometry. Figure 1.9 shows the graphs of
y = x2 − 2x − 5 (as the parabola), y = 3, y = −3 and y = |x2 − 2x − 5|. Where
the parabola is positive its graph is the same as that of its modulus. Where the
parabola is negative we reflect that portion in the x-axis to obtain the graph
of its modulus. So we are looking for those values of x for which the quadratic
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lies between the horizontal lines y = 3 and y = −3, or equivalently for which
the modulus graph lies below the line y = 3.
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Figure 1.9 Graph for solving |x2 − 2x − 5| ≤ 3

We can now see that we want the set of values of x in the two intervals
determined by the solutions of the quadratic equations x2 − 2x − 5 = 3 and
x2 − 2x − 5 = −3, namely x = −2, 4, 1 − √

3, 1 +
√

3. So the solution of
the inequality is the set of all numbers x satisfying −2 ≤ x ≤ 1 − √

3 or
1 +

√
3 ≤ x ≤ 4. MAPLE can solve inequalities as well as equations, in this

case using solve(abs(xˆ2-2x-5)<=3,x);

1.6.4 Trigonometric Functions

Readers should be familiar with some of the properties of the three basic
trigonometric functions, sine, cosine and tangent, and their graphs. Each of
these functions is periodic, so for example cos(x + 2π) = cos x for all x. Per-
haps less familiar are the reciprocals of these three functions.

secant - the reciprocal of cosine: sec = 1
cos ;

cosecant - the reciprocal of sine: cosec = 1
sin ;

cotangent - the reciprocal of tangent: cot = 1
tan .

Note that cos, sin, sec and cosec all have period 2π, whereas tan and cot
have period π.

The graphs of the three reciprocal functions can be constructed from the
basic functions using the fact that 1

x is a decreasing function. So if cosx is
decreasing over some interval then sec x will be increasing, and vice-versa. Also
when cos x tends to zero through positive values then its reciprocal will tend
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to infinity, so the graph will have a vertical asymptote (for example when
x = π/2). Figures 1.10, 1.11, 1.12 show the three basic trigonometric functions,
and their reciprocals, including asymptotes. In each case we have plotted the
graphs over two complete periods.
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Figure 1.10 Graphs of sine and cosecant
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Figure 1.11 Graphs of cosine and secant

We can derive trigonometric identities for these three reciprocal functions
from those of the three basic functions, as in the following example. They do
not need separate proofs.

Example 1.23

(a) Starting with cos2 x + sin2 x = 1, we can divide both sides by sin2 x to give
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Figure 1.12 Graphs of tangent and cotangent

cot2 x + 1 = cosec2x, and by cos2 x to obtain 1 + tan2 x = sec2 x.

(b) Using the addition formulae for sine and cosine we deduce that

cot(x + y) =
cos(x + y)
sin(x + y)

=
cos x cos y − sin x sin y

sin x cos y + cos x sin y
=

cot x cot y − 1
cot x + cot y

.

(The last step involves dividing numerator and denominator by sinx sin y.)
What this example demonstrates is the principle that we need only remem-

ber a very small number of identities to be able to derive all the others, as in
the following example. We shall utilise this principle when we consider other
sets of functions.

Example 1.24

We shall make some deductions from the four addition formulae:

cos(x + y) = cos x cos y − sin x sin y; (1.1)

sin(x + y) = sinx cos y + cos x sin y; (1.2)

cos(x − y) = cos x cos y + sin x sin y; (1.3)

sin(x − y) = sinx cos y − cos x sin y. (1.4)

In fact if we use the fact that cosine is an even function and that sine is an
odd function, as their graphs indicate, then we can deduce (1.3) from (1.1) and
(1.4) from (1.2), thereby reducing the number of formulae needed to two.

Now putting y = x in (1.1) and (1.2) gives the two double angle formulae

cos 2x = cos2 x − sin2 x;

sin 2x = 2 sinx cos x.
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Dividing these two enables us to deduce double angle formulae for tangent
and cotangent.

Formulae such as that for cos 3x are derived by using cos 3x = cos(x + 2x)
and then utilising the addition and double angle formulae.

Adding (1.1) and (1.3) gives

cos(x + y) + cos(x − y) = 2 cos x cos y,

which converts a product of trigonometric functions into a sum. This is useful
in integration. Similarly we can find formulae for sinx sin y and sinx cos y.

A comprehensive list of trigonometric identities is included for reference in
Section 1.6.7.

1.6.5 Exponential and Logarithmic Functions

An acquaintance with the exponential and logarithmic functions forms part
of most pre-university mathematics courses, so in this section, as with the
trigonometric functions, we shall briefly revise basic properties and give a few
examples of interest.

Later in this chapter we shall be discussing inverse functions, and in that
connection we note here the important fact that the exponential and logarith-
mic functions are inverses of one another. This is embodied in the important
relationship:

y = exp(x) if and only if x = ln y. (1.5)

We can deduce two useful relationships from this. Firstly by eliminating y

we obtain x = ln (exp(x)) , and secondly eliminating x gives y = exp (ln y) .

Because of equation (1.5) one can adopt two equivalent theoretical ap-
proaches to defining the exponential and logarithmic functions.

One can define the exponential function from scratch (as the sum of a
certain infinite series, or as a function which is its own derivative, for example),
establish its properties, and define the logarithmic function as the inverse of
the exponential function. We can then deduce the properties of the logarithmic
function from those of the exponential, illustrated in Example 1.26.

On the other hand one could define the logarithmic function ln(x) from
scratch (as the integral

∫ x

1 (1/t) dt for example), establish its properties, define
the exponential function as the inverse of the logarithmic function, and finally
deduce the properties of the exponential function from those of the logarithm,
as in Example 1.25. This approach is exemplified in Howie Chapter 6. In that
chapter he proves the basic law of logarithms given as equation 1.9 below. We
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can then obtain the fundamental property of the exponential function as in the
following example.

Example 1.25

Deduce from equation 1.9 below that

exp(x) exp(y) = exp(x + y).

Beginning from the left-hand side and using equation 1.9 gives

ln (exp(x) exp(y)) = ln (exp(x)) + ln (exp(y)) = x + y,

since ln and exp are inverses. Using this fact then gives

exp(x) exp(y) = exp(x + y),

as required.

We then denote the number exp(1) by e. In fact e ≈ 2.71828 correct to
five decimal places. If you want to see the first 100 places MAPLE will tell
you, using evalf[100](exp(1)); The property of exponentials established in
Example 1.25 tells us that

exp(2) = exp(1 + 1) = exp(1) exp(1) = e2,

and we can continue this procedure to show that for all positive integers n,
exp(n) = en.

We also have exp
( 1

2

)
exp

( 1
2

)
= exp(1) = e, so exp

( 1
2

)
=

√
e = e

1
2 .

We can extend this to show that for any rational number m
n , exp

(
m
n

)
= e

m
n .

Finally we define ex as exp(x) for any real number x, and the property of the
exponential function in Example 1.25 becomes the law of indices in equation 1.6
below. Both notations, ex and exp(x), are in common use for the exponential
function.

The basic properties of these functions are listed as the laws of indices and
the laws of logarithms

ex+y = exey (1.6)

e−x = 1/ex (1.7)

(ex)y = exy (1.8)

ln(xy) = lnx + ln y (1.9)

ln(1/x) = − lnx (1.10)

ln(xy) = y lnx (1.11)
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Example 1.26

Deduce equation (1.11) above from the properties of the exponential function.

In the following chain of reasoning each line is equivalent to the previous
one.

z = ln(xy)

ez = xy (inverse function property (1.5))

(ez)(1/y) = (xy)1/y (both sides raised to power 1/y)

e(z/y) = x(y/y) (law of indices (1.8))

e(z/y) = x (x1 = x)
z

y
= lnx (inverse function property (1.5))

z = y lnx

Most calculators have an xy button, or something equivalent, and one could

use it to obtain a numerical value for
√

3
√

2
. But what does an expression

like this mean, and how can it be evaluated? After all we can’t imagine
√

3
multiplied by itself

√
2 times! What we would like to do is to give a definition

for ax which is consistent with the laws of indices (and therefore logarithms).
If we make this assumption then we have

y = ax if and only if ln y = ln(ax) = x ln a, equivalent to y = ex ln a.

Definition 1.27

ax = ex ln a (a > 0).

Using this definition we now have

√
3

√
2

= e
√

2 ln
√

3 = e
√

2 ln(31/2) = e
√

2(ln 3)/2.

Working this out on a calculator using just the exponential and ln buttons
gives the same result as using the xy button, verifying the relationship (whilst
noting that the calculator returns only an approximation to these numbers,
accurate to a certain number of decimal places).

As well as the ln button calculators have a log button, which refers to the
inverse of 10x, and in fact some calculators use the label 10x. In fact now
that we have a definition of ax for a > 0, we can define a general logarithm
loga x as the inverse of ax. We read it as “the logarithm of x to base a”. Such
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logarithms are largely of theoretical interest, although log2 is sometimes used
in computing. General logarithms obey laws analogous to those for ln, with
appropriate restrictions on domains, namely

loga xy = loga x + loga y;

loga(x/y) = loga x − loga y;

loga xy = y loga x.

Example 1.28

The laws of logarithms can be used to simplify expressions, for example
log2 32 = log2 25 = 5 log2 2 = 5 (loga a = 1);
log4 32 = log4 45/2 = 5

2 ;
log4 48 = log4(16 × 3) = log4 16 + log4 3 = log4 42 + log4 3 = 2 + log4 3.

Before the advent of electronic calculators log10 was very important. There
were tables used in school of log10 and its inverse (often called “antilogarithms”)
and generations of schoolchildren had to learn to use these tables to perform
arithmetic calculations. These tables were “four figure tables”, given to four
decimal places of accuracy. Historically logarithm tables and trigonometric ta-
bles were developed for calculations in astronomy, and books of seven figure
tables were published.

1.6.6 Hyperbolic Functions

We showed in Example 1.7 that any function can be expressed as a sum of an
even function and an odd function. We obtained the formulae

f(x) + f(−x)
2

;
f(x) − f(−x)

2

for the even and odd components.
In the case where f(x) is the exponential function we obtain a pair of

functions called hyperbolic functions, defined by

cosh x =
ex + e−x

2
; sinhx =

ex − e−x

2
,

with graphs as shown in Figures 1.13 and 1.14. Note that cosh is an even
function, whereas sinh is odd.

Just as with trigonometric functions we can define corresponding hyperbolic
functions

tanhx =
sinhx

cosh x
; coth x =

cosh x

sinhx
; sechx =

1
cosh x

; cosechx =
1

sinhx
.
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The graph of tanhx is shown in Figure 1.15.

There are many identities involving hyperbolic functions, which have both
similarities and differences compared with those for trigonometric functions.
These can be proved using the definitions of the hyperbolic functions and the
laws of indices for exponentials.

Example 1.29

We prove the basic identity cosh2 x − sinh2 x = 1.

cosh2 x − sinh2 x =
(

ex + e−x

2

)2

−
(

ex − e−x

2

)2

=
e2x + 2 + e−2x − (e2x − 2 + e−2x)

4
= 1.

Example 1.30

We shall prove an addition formula for sinh

sinhx cosh y + cosh x sinh y

=
ex − e−x

2
.
ey + e−y

2
+

ex + e−x

2
.
ey − e−y

2

=
(ex − e−x) (ey + e−y) + (ex + e−x) (ey − e−y)

4

=
2exey − 2e−xe−y

4

=
ex+y − e−(x+y)

2
= sinh(x + y).

Other identities can be derived in a similar way to the two above, and are
listed for reference in Section 1.6.7.

One reason for the name “hyperbolic” is that these functions can be used to
parameterise hyperbolae, in the same way that trigonometric functions (some-
times called the circular functions) can be used to parameterise circles (and
ellipses). If we consider the cartesian equation of a hyperbola,

x2

a2 − y2

b2 = 1,

then putting x = a cosh t, y = b sinh t and using the identity in Example 1.29
gives

(a cosh t)2

a2 − (b sinh t)2

b2 = cosh2 t − sinh2 t = 1.
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1.6.7 Trigonometric and Hyperbolic Identities

This section contains a list of identities, for reference. Readers should try to
derive those which have not been dealt with earlier, as we did for instance in
Example 1.23.

Trigonometric Identities
sin(x + y) = sinx cos y + cos x sin y cos2 x + sin2 x = 1
sin(x − y) = sinx cos y − cos x sin y 1 + tan2 x = sec2 x

cos(x + y) = cos x cos y − sin x sin y cot2 x + 1 = cosec2x

cos(x − y) = cos x cos y + sin x sin y

tan(x + y) =
tanx + tan y

1 − tanx tan y
tan(x − y) =

tanx − tan y

1 + tanx tan y
2 sin x cos y = sin(x + y) + sin(x − y) sin(−x) = − sin x

2 cos x sin y = sin(x + y) − sin(x − y) cos(−x) = cos x

2 cos x cos y = cos(x + y) + cos(x − y) sin 2x = 2 sinx cos x

2 sin x sin y = cos(x − y) − cos(x + y) tan 2x =
2 tanx

1 − tan2 x
cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 + 2 sin2 x

sin2
(x

2

)
=

1 − cos x

2
cos2

(x

2

)
=

1 + cos x

2

Hyperbolic Identities
sinh(x + y) = sinhx cosh y + cosh x sinh y cosh2 x − sinh2 x = 1
sinh(x − y) = sinhx cosh y − cosh x sinh y 1 − tanh2 x = cosh2x

cosh(x + y) = cosh x cosh y + sinhx sinh y coth2 x − 1 = cosech2x

cosh(x − y) = cosh x cosh y − sinhx sinh y

tanh(x + y) =
tanhx + tanh y

1 + tanhx tanh y
sinh 2x = 2 sinhx cosh x

tanh(x − y) =
tanhx − tanh y

1 − tanhx tanh y
tanh 2x =

2 tanhx

1 + tanh2 x
cosh 2x = cosh2 x + sinh2 x = 2 cosh2 x − 1 = 1 − 2 sinh2 x

sinh(−x) = − sinhx cosh(−x) = cosh x

sinh2
(x

2

)
=

1 − cosh x

2
cosh2

(x

2

)
=

1 + cosh x

2

1.7 Inverse Functions

The equation y = f(x) gives y in terms of x. To solve it for x we need to
rearrange it to get x in terms of y. This occurs in many problems where we
need to change the subject of a formula. For example consider the formula
for the volume of a cylinder V = πr2h. If we are given the values of r and h
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then of course we can calculate V . However if we are given V and r we need
to rearrange the formula to find h, and this can be done, to give h = V/πr2.

Here the solution for h is unique, but with an equation such as y = x2 the
solution for x is not unique, and so the equation does not determine x as a
function of y. On the other hand, starting with y = x3 does give the unique
solution x = 3

√
y, expressing x as a function of y. It is this distinction and its

consequences that we shall be exploring in this section. When each value of
y in the range of a function given by y = f(x) is associated with a unique
value of x in the domain, as with the cube function, we say that the function
is one-to-one (1-1). Graphically this means that a function is 1-1 if and only
if each line parallel to the x-axis meets the graph in at most one point. This
property is sometimes referred to as the “horizontal line test”. It is illustrated
in Fig 1.16, using the square function and cube function discussed above, where
we have shown the horizontal line in three possible positions.
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Figure 1.16 The horizontal line test

We can give a symbolic definition as follows.

Definition 1.31

The function f(x) is said to be one-to-one (1-1) if f(a) = f(b) implies that
a = b for all a, b in the domain of f .

Example 1.32

Prove algebraically that the function defined by y = x3 is 1-1.

If a3 = b3 then a3 − b3 = 0, and so (a − b)(a2 + ab + b2) = 0. Completing
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the square gives a2 + ab + b2 =
(
a + 1

2b
)2 + 3

4b2. This is a sum of squares and
so cannot be zero unless both terms are zero, which occurs only if a = b = 0.

Therefore we must have a − b = 0, i.e., a = b.

Definition 1.33

If a function f is 1-1 then it has an inverse function, denoted by f−1, where
for each x belonging to the range of f, f−1(x) is defined to be the unique value
of y in the domain of f satisfying x = f(y).

This definition contains the important relationship that y = f−1(x) and
x = f(y) are equivalent. Notice also that the range of f is the same as the
domain of f−1 and vice-versa.

We met an example of this relationship at the beginning of the discussion
of exponential and logarithmic functions in Section 1.6.5.

Notice that when f(x) = x3 we have f−1 (f(x)) = 3
√

x3 = x and
f

(
f−1(x)

)
= ( 3

√
x)3 = x. This exemplifies a general property - the inverse

simply takes you back to where you started from. It can be verified on a calcu-
lator if it has a cube and cube root button, and also with the exponential and
ln button.

Since y = f−1(x) and x = f(y) are equivalent their graphs are the same.
For example the graphs of y = lnx and x = ey are identical. To obtain the
graph of x = f(y) from that of y = f(x) we clearly have to interchange x and
y. Geometrically this means that every point (x, y) on one graph is transformed
to the point (y, x) on the other. This is achieved by means of reflection in the
line y = x. This is shown in Figure 1.17 which contains the graphs of y = x3

(equivalent to x = 3
√

y) and its inverse y = 3
√

x (equivalent to x = y3). The line
y = x is also shown, making clear the reflection property. Figure 1.18 shows
the same relationship between the exponential and logarithmic functions.

Quadratic functions are generally not 1-1 unless their domain is restricted.
For example using the square and square root operations gives√

(−3)2 =
√

9 = 3,

(recalling the convention about positive square roots) so that the composite
operation (squaring and then square rooting) does not take us back to where
we started (the number −3). In the next example we show how to restrict the
domain and thereby produce a proper inverse function.

Example 1.34

Let y = x2 + 2x = (x + 1)2 − 1. This does not define a 1-1 function if we take
the domain to be the set of all real numbers, for example if y = 3 then x could
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Figure 1.17 y = x3 and its inverse
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Figure 1.18 Exponential and logarithm as inverses

be either 1 or −3. However if we restrict the domain then we can obtain 1-1
functions. The two functions defined below are both 1-1.

f(x) = x2 + 2x, (x ≤ −1);

g(x) = x2 + 2x, (x ≥ −1).

It is important to understand that f and g are different functions. Although
the formula used is the same, the domains are different, and their graphs are
distinct. In Figure 1.19 the graph of f(x) is shown dotted, and g(x) solid.

Now if y = (x+1)2 −1 then x = −1±√
y + 1. To see which choice of square

root corresponds to f and which to g we note that for f we must have x ≤ −1,
and so y = f(x) is equivalent to x = −1 − √

y + 1. For g we have x ≥ −1 and
so y = g(x) is equivalent to x = −1 +

√
y + 1. The respective formulae for the
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Figure 1.19 Graph for Example 1.34

inverse functions are therefore f−1(x) = −1−√
x − 1, g−1(x) = −1+

√
x + 1.

One can also draw these conclusions by considering graphs, and readers should
do this.

1.7.1 Increasing and Decreasing Functions

Definition 1.35

A function f with domain D is said to be an increasing function if for all a

and b in the domain D, a ≤ b implies that f(a) ≤ f(b).
A function f with domain D is said to be a strictly increasing function if
for all a and b in the domain D, a < b implies that f(a) < f(b). Notice that
we have strict inequality signs here.
A function f with domain D is said to be a decreasing function if for all a

and b in the domain D, a ≤ b implies that f(a) ≥ f(b).
A function f with domain D is said to be a strictly decreasing function if
for all a and b in the domain D, a < b implies that f(a) > f(b).
A function f with domain D is said to be monotonic if it is either an increasing
function or a decreasing function.

Increasing and decreasing functions have very similar properties, in the sense
that if the graph of an increasing function is reflected in the x-axis it becomes a
decreasing function, and vice-versa. This is why it is often convenient to group
them together as monotonic functions. Examples of increasing functions are
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the cube and cube root functions (Figure 1.17), tanh (Figure 1.15), and the
exponential and logarithmic functions (Figure 1.18).

As well as discussing these properties graphically we can also verify them
algebraically.

Example 1.36

Show that the function e−x is strictly decreasing.

e−a > e−b if and only if e−a/e−b > 1, i.e., eb−a > 1, using laws of indices.
Because e > 1, eb−a > 1 occurs if and only if b − a > 0, i.e., a < b. So e−x is
strictly decreasing.

The examples given above of strictly increasing functions all have inverses,
and this true in general.

Example 1.37

Show that every strictly increasing f function has an inverse.

We need to show that f is 1-1. If a �= b then either a < b or b < a.

Therefore, because f is strictly increasing, either f(a) < f(b) or f(b) < f(a),
so that f(a) �= f(b). Therefore if f(a) = f(b) we must have a = b.

The same result is true for a strictly decreasing function, by a very similar
argument. In other words any strictly monotonic function has an inverse.

If we write down a formula for a function which has an inverse it will
often be monotonic. This is because in most cases such a function will have
a continuously drawn graph. Proving that function with a continuous graph
which has an inverse must be monotonic is outside the scope of this book,
and would be encountered in a study of Real Analysis. In fact without the
stipulation of a continuous graph the result is not true, as Example 1.38 shows.

Example 1.38

Plot the graph of the following function, with domain given by 0 ≤ x ≤ 2, and
explain why it has an inverse.

f(x) =
{

x2 if 0 ≤ x < 1,

4 − x if 1 ≤ x ≤ 2.

We can see clearly from the Figure 1.20 that the function satisfies the hor-
izontal line test and is therefore 1-1. So the function has an inverse.
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x

y

0 21

3

2

1

Figure 1.20 A 1-1 non-monotonic function

A somewhat more bizarre 1-1 non-monotonic function with domain given
by 0 < x < 1, can be defined as follows.

f(x) =
{

x if x is a rational number,
1 − x if x is an irrational number.

Such functions are really outside the scope of this book. They are often used
to provide examples in Real Analysis.

1.7.2 Inverse Trigonometric Functions

Looking at the graphs of any of the trigonometric functions tells us that none
of them is 1-1. In each case corresponding to a given value of y in the range
there are infinitely many values of x in the domain, because of periodicity. This
is exemplified in the table of standard results below.

y = sinx

y x

0 nπ : n = 0,±1,±2, · · ·
1 π

2 + 2nπ : n = 0,±1,±2, · · ·
−1 −π

2 + 2nπ : n = 0,±1,±2, · · ·
1
2

π
6 + 2nπ : n = 0,±1,±2, · · ·

− 1
2 −π

6 + 2nπ : n = 0,±1,±2, · · ·√
3

2
π
3 + 2nπ : n = 0,±1,±2, · · ·

−
√

3
2 −π

3 + 2nπ : n = 0,±1,±2, · · ·

However, calculators have buttons which calculate values for inverse trigono-
metric functions. So what is happening? We can try some calculations. From
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school mathematics you should be familiar with the trigonometrical function
values for standard angles (often expressed in degrees, although it is important
to become familiar with radians). With the calculator in degree mode we shall
use these familiar angles to enter a number x, press the sin button and then
press inverse sin. The following table of results shows the outcome.

x y = sinx sin−1 y

30◦ 0.5 30◦

390◦ 0.5 −30◦

360◦ 0 0◦

180◦ 0 0◦

90◦ 1 90◦

−90◦ −1 −90◦

210◦ −0.5 −30◦

This is just a sample of results of course. Trying some more soon pro-
vides convincing evidence that this process always gives a final result between
−90◦ (

i.e., − π
2

)
and 90◦ (

i.e., π
2

)
.

Now if we restrict the sine function to the domain π
2 ≤ x ≤ π

2 it is strictly
increasing, and therefore 1-1, as Figure 1.21 shows.

x

y

21−1−2

1

−1

Figure 1.21 y = sinx for π
2 ≤ x ≤ π

2

Readers should carry out similar exercises with cosine and tangent. It will
be found that with inverse cosine the calculator will always return a value
between 0 and π, and for the inverse tangent between −π

2 and π
2 . Drawing

graphs will show that in these intervals cosine and tangent respectively are 1-1
functions.

In each case the domain has been chosen so that the function when restricted
to that domain is increasing (in the case of sine and tangent) or decreasing (in
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the case of cosine), thereby ensuring that the function is 1-1. We shall there-
fore adopt the convention that the inverse function is always associated with
these intervals unless we specify a domain. We have seen that this convention
is programmed into calculators, and it is also the convention which MAPLE
adopts.

x

y

1−1

1

−1

Figure 1.22 sin and its inverse

x

y

4321−1

4

3

2

1

−1

Figure 1.23 Another part of sin and its inverse

To summarise, the function for which we use the notation sin−1 x is the
inverse of the function specified by f(x) = sinx, −π

2 ≤ x ≤ π
2 . An alternative

notation for the inverse is arcsinx, and this is what MAPLE uses. Graphs of
f(x) and its inverse are shown in Figure 1.22.

Now consider the function specified by g(x) = sinx; π
2 ≤ x ≤ 3π

2 . This is
a different function from f(x). It is a decreasing function, and so it too has an
inverse, shown in Figure 1.23. In terms of arcsinx the formula for the inverse
in this case is π + arcsin(−x). Can you explain why?
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Example 1.39

Find a formula for tan
(
sin−1 x

)
.

This is an example of a number of similar relationships involving trigono-
metric functions and their inverses. It can be derived algebraically using
trigonometric identities as follows.

tan
(
sin−1 x

)
=

sin
(
sin−1 x

)
cos

(
sin−1 x

) =
sin

(
sin−1 x

)
√

1 − sin2 (
sin−1 x

) =
x√

1 − x2
.

A more transparent method is to use a right-angled triangle. We therefore draw
a right-angled triangle with an angle whose sin is x, as shown in Figure 1.24,
where sin θ = BC/CA = x.

A B

C

1 x

√
1 − x2

θ

Figure 1.24 Diagram for Example 1.39

We then calculate the third side of the triangle (AB in the figure) using
Pythagoras’ Theorem. We can then read off any of the trigonometric ratios we

need. So we have tan
(
sin−1 x

)
=

BC

AB
=

x√
1 − x2

.

In both the algebraic and geometrical approach we have assumed that we
should use the positive square root, and so this needs discussion. If 0 < x < 1
then 0 < sin−1 x < π

2 , and so tan
(
sin−1 x

)
> 0. If −1 < x < 0 then we have

−π
2 < sin−1 x < 0, and so tan

(
sin−1 x

)
< 0. In both cases therefore the positive

square root gives the correct sign for
x√

1 − x2
. If x = 0 then the problem does

not arise because tan
(
sin−1 0

)
=

0√
1 − 02

= 0. Finally x = 1 and x = −1 do

not belong to the domain of
x√

1 − x2
or tan

(
sin−1 x

)
.
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1.7.3 Inverse Hyperbolic Functions

The situation here is much less complicated than for inverse trigonometric
functions. In fact sinh and tanh are 1-1, as seen in Figures 1.14 and 1.15, and
so have inverses with no restriction on their domains. However, cosh is not 1-1,
but has at most two values of x in the domain corresponding to a given value
of y in the range. Figure 1.13 shows this graphically.

Because the hyperbolic functions are defined in terms of exponentials, we
might expect their inverses to be expressible in terms of the inverse of the
exponential function, namely the logarithmic function, and that is indeed the
case. We shall explore the slightly more difficult case of the inverse of cosh,
leaving sinh and tanh to the reader.

Example 1.40

Show that cosh−1 x = ln
(
x +

√
x2 − 1

)
.

The convention in this case is that cosh−1 is used to denote the inverse
of cosh with domain restricted to the non-negative numbers, which gives the
increasing portion of the graph of coshx, to the right of the y-axis. This con-
vention is programmed into calculators and MAPLE.

So let y = cosh x =
ex + e−x

2
. Multiplying both sides by 2ex and collecting

terms gives (ex)2 − 2yex + 1 = 0. This is a quadratic equation for ex with
solutions ex = y ±

√
y2 − 1. Therefore x = ln

(
y ±

√
y2 − 1

)
.

The problem we have to sort out now is which of the two solutions corre-
sponds to the inverse we require. Since y = cosh x we must have y ≥ 1. We then
have y −

√
y2 − 1 ≤ 1 and y +

√
y2 − 1 ≥ 1, so that ln

(
y −

√
y2 − 1

)
≤ 0 and

ln
(
y +

√
y2 − 1

)
≥ 0. It is the latter we require because we have restricted x

to the non-negative numbers so as to specify a 1-1 function. We have therefore
shown the following.

The inverse of f(x) = cosh x, x ≥ 0 is given by f−1(x) = ln
(
x +

√
x2 − 1

)
.

The inverse of g(x) = cosh x, x ≤ 0 is given by g−1(x) = ln
(
x − √

x2 − 1
)
.

The corresponding formulae for the other inverse hyperbolic functions, left
as an exercise for the reader, are

sinh−1 x = ln
(
x +

√
x2 + 1

)
; tanh−1 x =

1
2

ln
(

1 + x

1 − x

)
.
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1.8 Piecewise Functions

In Section 1.6.3 we gave the definition of the modulus function. That definition
contained the single formula |x| and also specified the function “in pieces”,
according to whether x is positive or negative. Figure 1.20 illustrates another
function defined in pieces. This (optional) section discusses this further, in the
form of an investigation for the reader.

In the eighteenth century mathematicians were firmly wedded to the idea
that a function must be given by a single formula, and thought that if it was de-
fined for x in some interval then its values outside that interval were completely
determined. During the nineteenth century the idea of function was consider-
ably broadened, as the following quotation from the German mathematician
Dirichlet (1805–1859) makes clear.

It is not necessary that y be subject to the same rule as regards x

throughout the interval; indeed one need not even be able to express
the relationship through mathematical operations . . . different parts (of
the function) may be given by different laws, or . . . entirely lawlessly.
If a function is specified only for part of an interval, the manner of its
continuation for the rest of the interval is entirely arbitrary.

Draw the graphs of y = |x| and y = x on the same axes. Can you explain
from the graphs why |x| + x = 0 if x is negative? What is the result of adding
|x| and x if x is positive? As a result of this you should be able to see that

f(x) = |x| + x =
{

2x if x ≥ 0,

0 if x < 0.

Like |x| itself, we have here another example of a function defined in two pieces,
which can also be represented as a single formula.

What happens if you subtract |x| from x? (Let g(x) = x − |x|.)
See if you can construct a single formula involving |x| to represent the

following function.

h(x) =
{

2x if x ≥ 0,

3x if x < 0.

A function such as this can be plotted using MAPLE, so you can check your
own formula. We use the following command.

plot(piecewise(x>=0,2x,3x),x=-2..2);

The logical syntax of this command can be paraphrased as follows.
“Plot a function in pieces. If x ≥ 0 plot 2x, otherwise plot 3x.”

There are various adaptations of this command, which can be seen on the
?piecewise; help page in MAPLE.
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What graph will you get if you multiply f(x) above by x? And what will
you get if you multiply g(x) above by −x? Now try to find a single formula to
represent the following function.

k(x) =
{

x2 if x ≥ 0,

x3 if x < 0.

As before you can check your answer by plotting your formula in MAPLE and
verifying that the same graph is obtained using

plot(piecewise(x>=0,xˆ2,xˆ3),x=-2..2);

This is the beginning of an investigation you can pursue for yourself, perhaps
by exploring question such as

1. What other pairs of functions can be joined together with a single formula?

2. Can we join pairs of functions together at some other point (e.g., at x = 1
instead of at x = 0)?

3. Can we build up single formulae for functions consisting of three (or more)
pieces?

It is a worthwhile exercise to write up the results of your investigation in a
form suitable for a student mathematics magazine.

EXERCISES

1.1. Find the maximal domain for the function defined by each of the
following expressions.

(a) tan 2x; (b) x5 − 3x2 + 2x − 7; (c) ln(1 − x);

(d) ln
(
1 − x2

)
; (e)

1
x2 − 5x + 6

; (f) | lnx|;

(g)
√

x2 − 3x − 4; (h)
x

1 − √
1 − x

; (i)
1

ln (x2 − 4)
;

(j)
1

sin 2x
; (k)

1
x cos x

; (l)
1

ex − 1
.

1.2. Write down the domains and ranges and sketch the graphs for

y =
√

x; y =
√−x; y = −√

x; y = −√−x.

1.3. Find the maximal domain and range of f(x) =
2x + 3
x − 5

.
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1.4. Plot the graphs of the functions defined in Exercise 1.1 using a graph-
ical calculator, or MAPLE, or some other package. Use the graphs
to write down what you think the range of the function is in each
case.

1.5. Classify the functions defined by each of the following expressions as
even, odd or neither.

(a) 5x4 − 3x2; (b) 2x4 − x3 + 1; (c) sin(x3);

(d) sin2 x3; (e) e|x|; (f) ln |x|;
(g) tan(sinx); (h) esin x; (i) sin(lnx).

1.6. Prove that if f and g are odd functions then the product fg is an
even function. Prove also that the product of two even functions is
even, and that the product of an even function and an odd function
is an odd function.

1.7. Let f(x) =
3
x

; g(x) =
2 − x

2 + x
. Construct and simplify the composite

functions f ◦ f, f ◦ g, g ◦ f, g ◦ g. Write down the domain for each.

1.8. Sketch the graph of y = esin x, using the method of Example 1.10,
giving a clear explanation of your reasoning.

1.9. Given that f(x) = ex and f ◦ g(x) = 3x − 4, find a formula for g(x).

1.10. Find the function f(x) satisfying f ◦ g(x) =
1
x2 and g(x) = 2x + 1.

1.11. Carry out the following polynomial divisions.

(a)
x4 + 2x2 + 1
x4 − 2x2 − 1

; (b)
x3 + 1
x + 2

;

(c)
x4 − x3 + 2x2 − 7

2x + 5
; (d)

x5 − 4x3 + x − 1
x2 + x − 3

;

(e)
x6 − 1

x2 − x − 2
; (f)

x5 − x4 + 2x3 + x

x3 + 2x2 − 3
.

1.12. Factorise the following polynomials

(a) x3 + x2 − 4x − 4; (b) y3 + y2 − y − 1;

(c) z3 + 2z2 − 23z − 60; (d) c5 + c4 − 2c3 − 2c2 + c + 1;

(e) t6 − 1; (f) u4 + u3 − 25u2 − 37u + 60.
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1.13. Show that x = −2 is a root of g(x) = x5+9x4+32x3+56x2+48x+16.
Without factorising g(x) find the multiplicity of this root.

1.14. Solve the following equations and inequalities.

(a) |2x − 5| = 4; (b) |x2 − 2x − 5| = 1; (c) |x3 − 1| = 7;

(d) |2x + 4| < 3; (e) |2x2 − 5x − 4| ≤ 3; (f) |x2 + 5x| ≥ 2.

1.15. Sketch the graphs of the functions defined by the following expres-
sions.

(a) |x2 − 5x + 6|; (b) | sin 2x|; (c)
∣∣∣∣x − 2
x + 1

∣∣∣∣ .

[Hint: Sketch the graphs without the modulus first.]

1.16. Find an identity for cos 5x in terms of cos x.

1.17. Find an addition formula for cosec(x + y) in terms of sec and cosec.

1.18. Use the laws of indices for the exponential function to deduce that

ln
(

p

q

)
= ln p − ln q.

1.19. Simplify the following expressions as far as possible.

(a)
( 1

3

)x 9x/2; (b) log9
( 1

27

)
;

(c) ln(1 + cos x) + ln(1 − cos x) − 2 ln(sinx).

1.20. Find an identity for sinh 3x in terms of sinhx.

1.21. Starting from the graphs of sinh, cosh and tanh, sketch their recip-
rocals: cosech, sech and coth.

1.22. Simplify the following expressions as far as possible.

(a) cosh(lnx); (b) coth(lnx);

(c)
cosh(ln x) − sinh(lnx)
cosh(ln x) + sinh(lnx)

.
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1.23. For each of the following functions f(x), write down the domain,
prove that it is 1-1, find a formula for the inverse f−1(x), and write
down the domain of the inverse. For each function sketch its graph
and the graph of its inverse on the same axes.

(a) f(x) =
2x

3x − 1
; (b) f(x) =

2x√
x2 + 3

.

1.24. For each of the following functions, whose domain is specified, write
down whether you think it is 1-1, by considering the formula. Plot the
graph of each function to confirm your conclusions (or otherwise).

(a) tanx, 0 ≤ x ≤ π
4 ; (b) e|x|, −1 ≤ x ≤ 1;

(c) cosh 2x, x ≥ 1; (d) x2 + 6x + 9, x ≥ 0;

(e) x2 − 6x + 9, x ≥ 0; (f) 1/(x − 1), x �= 1;

(g) 1/(x − 1)2, x > 1; (h) exp(x) ln(x), x > 0.

1.25. Prove that if f(x) and g(x) are increasing functions with domain
D, then f(x) + g(x) is an increasing function. Give examples to
show that f(x) − g(x), f(x)g(x) and f(x)/g(x) are not necessarily
increasing functions.

1.26. Find a formula for the inverse of the following function.

f(x) = 5 − 12x − 2x2, x ≥ −3.

Sketch the graph of f(x) and the graph of its inverse on the same
axes.

1.27. Simplify the following expressions as far as possible.

(a) cos
(
sin−1 x

)
; (b) sin

(
tan−1 x

)
; (c) tan

(
sec−1 x

)
.

1.28. Find numerical examples to show that in general tan−1 x �= sin−1 x

cos−1 x
.

1.29. Starting from the graphs of sinh, cosh and tanh, sketch the graphs
of their inverses by reflection in the line y = x.

1.30. Prove the formulae given at the end of Section 1.7.3 for sinh−1 x and
tanh−1 x.
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1.31. In electrical circuit theory there is a function called the Heaviside
function, named after the physicist Oliver Heaviside (1850–1925),
defined as follows.

H(t) =
{

1 if t ≥ 0,

0 if t < 0.

It represents the input to a circuit being switched on at time t = 0.
So here again we have a function defined in two pieces for which a
single symbol is used.

What does H(−t) represent? What does H(t − 1) represent? What
is the graph of H(t) − H(t − 1)?

You can use this as a starting point for another investigation into
piecewise functions having single formulae. These functions are in
fact used in connection with Laplace Transforms for solving differ-
ential equations connected with electrical circuits.



2
Limits of Functions

2.1 What are Limits?

The ideas of limits are used in both theory and applications of calculus. You
may have used limiting ideas graphically in discussing such things as asymp-
totes for the graph of a function. Developing a precise definition of limit took
mathematicians around 200 years, mainly during the 18th and 19th centuries,
in parallel with research on continuous functions. Much of this work arose from
investigations on problems involving vibrations and related physical phenom-
ena. It was found that the formulae developed for representing such phenom-
ena gave rise to graphs with sudden jumps or discontinuities. To analyse these
mathematically and to prove useful results it was necessary to develop a precise
definition of continuous and discontinuous functions. This led to the develop-
ment of the subject we now study as Real Analysis, discussed in the book with
that title by John Howie in this series.

This chapter is not an exhaustive treatment of the theory of limits. We
begin, in the first three sections, by considering a number of examples which
illustrate graphically the ideas of limits, including discussion of asymptotes.
Then we list, without proof, rules which help to calculate limits algebraically.
Subsequent sections adopt a more systematic approach to such calculations,
based on various kinds of algebraic methods. We aim to cover a sufficient range
of situations and examples to facilitate an understanding of limits from the
graphical and algebraic points of view needed in studying calculus.

From an informal point of view we can think of a continuous function as one

47
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whose curve can be drawn without taking one’s pencil off the paper. That is an
adequate description from a visual point of view, but less helpful in discussing
functions given by algebraic formulae. Related to this however is the idea that
if we have a function f(x) then it is continuous if a small change in x results in
a correspondingly small change in the value of f(x). A mathematical analysis
of the intuitive idea of small changes leads to the present-day definitions used
in Real Analysis. If we put these ideas together we can think of what happens
to the value of f(x) as x gets closer and closer to some fixed number a, and
we look for some definite number l which the values of f(x) approach. When
x is very close to a this corresponds to the small changes in values discussed
above; using the word “approach” suggests motion along a graph, where f(x)
changes gradually without any sudden breaks as x also changes gradually.

So what sort of formulae correspond to continuous functions? You will have
had sufficient experience of graphs to realise that most straightforward formulae
do lead to continuous graphs unless there are values of x for which some term in
a denominator is zero. So polynomials, exponential functions, sine and cosine,
square root are examples of functions with continuous curves. Combinations
of continuous functions, using operations such as addition, multiplication and
composition, are also continuous; this is one of the results proved in Howie,
Chapter 3.

Functions like the tangent function in trigonometry, and reciprocal func-
tions, are examples which have discontinuities. Using the definition of the tan-

gent function as tanx =
sin x

cos x
, we would suspect that there is a discontinuity

for all values of x for which cos x = 0. Indeed such points do not belong to the
domain. The graphs of tan and cot in Figure 1.12 show such discontinuities
clearly.

Example 2.1

A further example of discontinuity is illustrated in Figure 2.1. The denominator

of
1

x2 − 1
is zero when x = ±1, and this indicates a discontinuity at each of

these points, as Figure 2.1 shows. The numbers x = ±1 are not in the domain
of the function. More examples of graphs exhibiting this kind of behaviour can
be seen in Figures 1.2 and 1.7.

When we have a continuous function, as x approaches a the value of f(x)
approaches the value of the function at x = a, namely f(a). If f(x) had a
limiting value different from f(a) as x approached a, that would indicate a
discontinuous jump in the graph.
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x

y

0 42−2−4

4

2

−2

−4

Figure 2.1 Graph of 1
x2−1

Example 2.2

In many situations where we discuss limits, we are looking at the behaviour
of a function near to a number which does not belong to the domain of the
function, i.e., for which the function is undefined. For example the function

f(x) =
sin x

x
is not defined at x = 0. However if we plot its graph it appears to

suggest that the value of f(x) approaches 1 as x becomes ever closer to zero.
This is discussed further in Example 2.12. In fact MAPLE plots the graph in
such a way as to make it appear continuous even at x = 0, as Figure 2.2 shows.

x

y

0 105−5−10

1

0.5

Figure 2.2 Graph of sin x
x

In cases such as this where a function f(x) tends to a limit, l say, as x tends
to a number a which is not in the domain of f, we can extend the definition of
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the function to include this point. With the example above, we would write

f(x) =
{ sin x

x for x �= 0,

1 for x = 0.

We say that the definition of f(x) has been extended by continuity.

Example 2.3

This example looks at the behaviour of the function defined by f(x) = sin
(

1
x

)
,

where the point x = 0 does not belong to the domain. If we plot the graph,
as in Figure 2.3, we see that the behaviour near to x = 0 appears erratic.
This is an example where the limitations of any plotting device are apparent.
The program calculates the value of the function at a finite number of points
and joins them up. With most functions the result appears to be a smooth
curve, but not in this case. In fact the graph oscillates between ±1 infinitely
many times as x approaches zero. The peaks of all the oscillations should be
on the line y = 1 rather than the somewhat variable positions indicated on the
MAPLE plot. We need to undertake some calculations to establish this.

x

y

0 0.04−0.04

1

−1

Figure 2.3 MAPLE plot of sin
( 1

x

)

Firstly, because −1 ≤ sin t ≤ 1, we can be certain that −1 ≤ sin
(

1
x

)
≤ 1.

Next we shall see where the graph crosses the x-axis. Now sin t = 0 when

t = nπ, for all integers n. Therefore sin
(

1
x

)
= 0 when

1
x

= nπ, i.e., x =
1

nπ
(provided n �= 0). This is a sequence of numbers which tends towards zero as
n increases.
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Now sin t = 1 when t =
(4n + 1)π

2
, for all integers n. Therefore sin

(
1
x

)
= 1

when
1
x

=
(4n + 1)π

2
, i.e. x =

2
(4n + 1)π

. This is also a sequence of numbers

which tends towards zero as n increases.

Finally sin t = −1 when t =
(4n − 1)π

2
, for all integers n. Hence we have

sin
(

1
x

)
= −1 when

1
x

=
(4n − 1)π

2
, i.e. x =

2
(4n − 1)π

. Again this is a

sequence of numbers which tends towards zero as n increases.
This proves that the graph does indeed oscillate between 1 and −1 infinitely

many times as x approaches zero from either direction, since n can be positive
or negative. So however small an interval containing zero we consider there are
values of x inside that interval where f(x) = 0, where f(x) = 1 and where
f(x) = −1. So f(x) does not tend to a limiting value as x tends to zero.

Figure 2.3 is rather erratic, because as we have shown there are infinitely
many oscillations in any interval including the origin. We can get a clearer
picture of the oscillations if we use a domain which does not include x = 0, as
in Figure 2.4.

x

y

0
0.050.040.03

1

0.5

−0.5

−1

Figure 2.4 MAPLE plot of sin
( 1

x

)

Definition 2.4

We summarise the discussion and examples above in this informal definition of
a limit, and introduce the two notations most commonly used for limits.
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The function f(x) is said to have the limit l as x approaches (or tends to) a

if the values of f(x) can be made as close as we like to l by taking x sufficiently
close to a. We use the two notations

lim
x→a

f(x) = l, read as “the limit as x tends to a of f(x) is equal to l”,

f(x) → l as x → a, read as “f(x) tends to l as x tends to a”.

It is assumed here that the domain of f(x) includes an interval containing
a, but not necessarily a itself.

The function f(x) is said to be continuous at x = a if lim
x→a

f(x) = f(a),

or, in the other notation, if f(x) → f(a) as x → a.

The much more precise definitions employed in Real Analysis, for example
in Howie, Chapter 3, analyse in terms of sets of real numbers the phrases “as
close as we like to” and “taking x sufficiently close to” used in the informal
definition above.

2.2 One-sided Limits

Sometimes we encounter a situation where the behaviour of a function near
to a differs, depending on whether x approaches a from below or above. The
language and notation to express these ideas in general is as follows.
The limit of f(x) as x tends to a from below (or from the left) is equal to l :
lim

x→a−
f(x) = l.

The limit of f(x) as x tends to a from above (or from the right) is equal to m :
lim

x→a+
f(x) = m.

Example 2.5

A simple example is the so-called “floor” function, whose value at x is the
greatest integer less than or equal to x. Part of its graph is shown in Figure 2.5.
If we look for example at what happens near to x = 2, MAPLE indicates, with
a small mark on the left-hand end of the horizontal line segment, that the value
of the function at 2 itself is 2. Just to the right the greatest integer less than or
equal to 2.01 for example is 2. Just to the left, the greatest integer less than or
equal to 1.99 is 1. We have used solid and open dots to indicate this, another
common convention.

So using the notation introduced above we can write

lim
x→2−

floor(x) = 1, lim
x→2+

floor(x) = 2.
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x

y

0 21−1−2

2

1

−1

−2

−3

Figure 2.5 Graph of the floor function

At each integer value of x the floor function has a discontinuity, called
a “jump discontinuity” because the function jumps between two values as x

moves across the point of discontinuity. This contrasts with the discontinuity

of f(x) = sin
(

1
x

)
, discussed in Example 2.3 above. In that case neither the

left-hand limit nor the right-hand limit exists.

2.3 Infinite Limits and Limits at Infinity

In considering graphs we often want to decide what happens to the graph
when x or y increases or decreases without bounds. When we want to discuss
the behaviour of a function f(x) as x increases without an upper bound we
use the phrase “x tends to infinity”, symbolised by x → ∞. When x decreases
without bound, becoming very large and negative, we use the phrase “x tends
to minus infinity”, denoted by x → −∞. It is important to emphasise that the
symbol ∞ does not represent a real number.

The following examples illustrate the use of this language and notation.

Example 2.6

In Figure 2.6 we observe that the graph of the function x2 − 1 appears to
increase without bound as x tends to infinity (and to minus infinity). Using the
notation introduced above for limits, we write

x2 − 1 → ∞ as x → ∞, x2 − 1 → ∞ as x → −∞.
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x

y

0 21−1−2

3

2

1

−1

Figure 2.6 Graph of x2 − 1

If we consider the graph of y = x3 + 1 shown in Figure 2.7 we describe the
limiting behaviour using the notation

x3 + 1 → ∞ as x → ∞, x3 + 1 → −∞ as x → −∞.

x

y

0 21−1−2

8

6

4

2

−2

−4

−6

Figure 2.7 Graph of x3 + 1

Example 2.7

In the example in Figure 2.8 the function has finite limits as x tends to infinity
and as x tends to minus infinity. The two notations in this case are

1 + 3ex

1 + ex
→ 3 as x → ∞,

1 + 3ex

1 + ex
→ 1 as x → −∞.
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lim
x→∞

1 + 3ex

1 + ex
= 3, lim

x→−∞
1 + 3ex

1 + ex
= 1.

x

y

0 42−2−4

3

2

1

Figure 2.8 Graph of 1+3ex

1+ex

Finally we consider examples where the function is unbounded in the neigh-
bourhood of some point on the x-axis.

Example 2.8

Consider the graph shown in Figure 2.9.

x

y

0 1−1

5

4

3

2

1

Figure 2.9 Graph of 1
(x5−1)2
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We use the notation

1
(x5 − 1)2

→ ∞ as x → 1.

In this case the limiting behaviour is the same to the left and to the right of
x = 1.

If we look at the example shown in Figure 2.1 we see that the behaviour is
not the same on each side of x = 1, or of x = −1. We have different one-sided
limiting behaviour, symbolised by

1
x2 − 1

→ ∞ as x → 1+,
1

x2 − 1
→ −∞ as x → 1−,

1
x2 − 1

→ ∞ as x → −1−,
1

x2 − 1
→ −∞ as x → −1+.

We used the idea of an asymptote graphically in a number of examples in
Chapter 1. We can now give a description in terms of limits. In Figure 2.8
the graph approaches the horizontal line y = 3 as x tends to infinity, and
it approaches y = 1 as x tends to minus infinity. In Figure 2.1 the graph
approaches the vertical line x = 1 as x tends to 1 from above and below, with
similar behaviour near x = −1. This gives rise to the following definition.

Definition 2.9

If f(x) → m as x → ∞ (or as x → −∞) then we say that the line y = m is
a horizontal asymptote. (This includes the possibility m = 0, in which case
the x-axis is a horizontal asymptote.)

If f(x) → ±∞ as x → a+ or as x → a− then we say that the line x = a is
a vertical asymptote. (This includes the possibility a = 0, in which case the
y-axis is a vertical asymptote.)

We can see further examples of horizontal asymptotes in Figures 1.2, 1.7,
1.15, 2.1, 2.9. In Figure 2.2, the x-axis is a horizontal asymptote. This is clearer
if the graph is plotted for a larger domain, and if the graphs of y = ± 1

x are
added. The MAPLE command to plot this is

plot([sin(x)/x,1/x,-1/x],x=-50..50,y=-0.25..1,color=black);

Vertical asymptotes are shown in Figures 1.2, 1.3, 1.5, 1.7, 1.10, 1.11, 1.12, 2.1.
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2.4 Algebraic Rules for Limits

Example 2.10

Find lim
x→1

(
x2 +

x3 + 1
x2 + 1

+ 2x sin
(
π
√

3x2 + 1
))

.

Since the denominator x2 + 1 is never zero, our knowledge of expressions
like this and their graphs should tell us that whatever its precise shape, the
graph will be continuous, so the limit can just be found by substituting x = 1
giving

12 +
13 + 1
12 + 1

+ 2 sin
(
π
√

3 + 1
)

= 1 + 1 + 2 sin 2π = 2.

We have implicitly used the following rules for limits

If f(x) → l as x → a and g(x) → m as x → a then

f(x) + g(x) → l + m as x → a (addition rule);

f(x) − g(x) → l − m as x → a (subtraction rule);

f(x)g(x) → lm as x → a (multiplication rule);
f(x)
g(x)

→ l

m
as x → a (provided m �= 0) (division rule).

If f(t) → l as t → a and g(x) → a as x → b

then f(g(x)) → l as x → b (composition rule).

Each of the above rules has an analogue for one-sided limits, for example

If f(x) → l as x → a+ and g(x) → m as x → a+

then f(x) + g(x) → l + m as x → a+.

There is a similar set of rules for limits at infinity (and at minus infinity).

If f(x) → l as x → ∞ and g(x) → m as x → ∞ then

f(x) + g(x) → l + m as x → ∞ (addition rule);

f(x) − g(x) → l − m as x → ∞ (subtraction rule);

f(x)g(x) → lm as x → ∞ (multiplication rule);
f(x)
g(x)

→ l

m
as x → ∞ (provided m �= 0) (division rule).

If f(t) → l as t → a and g(x) → a as x → ∞
then f(g(x)) → l as x → ∞ (composition rule).
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There are similar rules involving infinite limits for addition and multiplication,
namely

If f(x) → ∞ as x → a and g(x) → ∞ as x → a then

f(x) + g(x) → ∞ as x → a (addition rule);

f(x)g(x) → ∞ as x → a (multiplication rule).

However there are no analogous rules for infinite limits involving subtrac-
tion or division. A variety of outcomes is possible, depending on the functions
involved, and this is where considerable care has to be taken. Examples 2.11,
2.21 and 2.22 demonstrate this.

Example 2.11

Let f(x) =
1
x2 and g(x) =

1
x4 . We can see, by plotting graphs for example,

that f(x) → ∞ as x → 0 and g(x) → ∞ as x → 0. Then
f(x)
g(x)

= x2 → 0 as

x → 0. However,
g(x)
f(x)

=
1
x2 → ∞ as x → 0.

In both cases the numerator and denominator tend to infinity, but in one
case the quotient tends to zero and in the other case the quotient tends to
infinity.

2.5 Techniques for Finding Limits

Example 2.11 involves expressions for which we cannot find limits by a simple
application of algebraic rules. Examples of such types of expression are:

f(x)
g(x)

where f(x) → 0 and g(x) → 0 “ 0
0”;

f(x)
g(x)

where f(x) → ∞ and g(x) → ∞ “∞
∞”;

f(x) × g(x) where f(x) → 0 and g(x) → ∞ “0 × ∞”;

f(x) − g(x) where f(x) → ∞ and g(x) → ∞ “∞ − ∞”;

f(x)g(x) where f(x) → 1 and g(x) → ∞ “1∞”.

We can find examples of functions f and g for which such limits are zero,
infinity, negative infinity, finite and non-zero, or even non-existent. Readers are
asked to explore this in an exercise at the end of this chapter.
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We shall see in Chapter 3 that the definition of the derivative f ′(x) is

lim
h→0

f(x + h) − f(x)
h

. Both numerator and denominator of the quotient tend

to zero, so this limit is a “0
0” type. It is clear therefore that such types of limit

are central to the development of calculus.
We now investigate some of these types, illustrating them through examples

rather than general theory.
We shall look at four techniques: squeezing, algebraic manipulation, change

of variable, and l’Hôpital’s Rule.

2.5.1 Squeezing

Example 2.12

We shall give a geometrical proof of the standard result lim
x→0

x

sin x
= 1. The

domain of the expression does not include x = 0. The limit is a “0
0” type. Now

x

sin x
is an even function, so its behaviour as x tends to zero from above will

be the same as that from below. Since we are considering the limit as x → 0
we can assume that 0 < x <

π

2
, as in Figure 2.10.

O

A

B

C

D

x

OD = OA = r

Figure 2.10 Diagram for lim
x→0

x

sin x

In Figure 2.10 AD is a circular arc, and comparing areas we have

∆OAB < sector OAD < ∆OCD;
1
2 (OB)(OA sin x) < 1

2OA2x < 1
2 (OD)(OC sin x);

1
2r r cos x sin x < 1

2r2x < 1
2r

r

cos x
sin x.

Dividing by 1
2r2 and by sinx, which we are assuming to be positive, gives

cos x <
x

sin x
<

1
cos x

.
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Now cos x → 1 as x → 0, so 1 ≤ lim
x→0

x

sin x
≤ 1, i.e., lim

x→0

x

sin x
= 1.

This is an example of the “squeezing” technique. Figure 2.11 shows that

the graph of
x

sin x
is “squeezed” between the graphs of cos x and

1
cos x

for
−1 ≤ x ≤ 1.

Thus all three functions have the same limit as x → 0.

x

y

0 1−1

2

1

Figure 2.11 Squeezing graph for lim
x→0

x

sin x

Example 2.13

Find lim
x→0

x2 sin
(

1
x

)
. This is an example where part of the expression,

sin
(

1
x

)
, has no limit at all, as we showed in Example 2.3. Nevertheless we

can still use the squeezing technique. Remember that sin always lies between

1 and −1. We therefore have −x2 ≤ x2 sin
(

1
x

)
≤ x2 for all x �= 0. The outer

expressions in this chain of inequalities both tend to zero as x tends to zero,

and so the squeezing technique tells us that lim
x→0

x2 sin
(

1
x

)
= 0. We can see

in Figure 2.12 that the graph is “squeezed” between the graphs of y = ±x2 as
x → 0.

This is yet another example where the limiting point (x = 0 in this case)

does not belong to the domain, for we cannot substitute x = 0 in sin
(

1
x

)
.

However the fact that the limit is zero means that we can extend the definition
of the function by continuity, as we discussed in Example 2.2.
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x

y
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0.004

0.002

−0.002

−0.004

Figure 2.12 Graph of x2 sin
( 1

x

)

2.5.2 Algebraic Manipulation

Example 2.14

Find lim
x→1

x3 − 1
x − 1

.

We first factorise the numerator. We then observe that we can cancel the
factor (x − 1), which simplifies the expression. Finally we use algebraic rules
of limits (as we shall throughout the following sections), calculating separately
the limit of each term in the resulting expression. We therefore have

lim
x→1

x3 − 1
x − 1

= lim
x→1

(x − 1)(x2 + x + 1)
x − 1

= lim
x→1

(x2 + x + 1) = 1 + 1 + 1 = 3.

The cancellation step needs further discussion. When we cancel we need to be
sure that we are not dividing numerator and denominator by zero. In this case
the factor (x − 1) is zero only if x = 1. We are trying to find the limit as x

tends to 1 and so x = 1 is not among the set of values under consideration. We
are looking at values of x satisfying 1 − q < x < 1 or 1 < x < 1 + q for some
number q > 0, i.e., values of x in the neighbourhood of 1 but not including 1.
In fact x = 1 does not belong to the domain of the function. Even if it did,
the limit need not necessarily be the value of the function at that point, as
Example 2.5 illustrates. This is an important aspect of limits, which occurs in
many of the examples we shall consider.

The next few examples exemplify some of the results about rational func-
tions which we considered in Section 1.6.2.
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Example 2.15

Describe the behaviour of
x3 − 2x + 3

x2 + 4
as x → ∞ and as x → −∞.

The graph of this rational function was shown in Figure 1.6. The limit is an
“∞

∞” type. The components of the expression which determine the behaviour
when x is large are the greatest powers of x in the numerator and denominator.
They “dominate” the rest of the terms. If we were to remove these other terms
the resulting expression would simplify to x, and so we should expect the
behaviour of the graph to be like that of y = x as x → ±∞. We demonstrate
this algebraically by dividing numerator and denominator by x2, the largest
power of x in the denominator. This gives

x3 − 2x + 3
x2 + 4

=
x − 2

x + 3
x2

1 + 4
x2

.

The second and third terms in the numerator and the second term in the
denominator tend to zero as x → ±∞. The denominator therefore tends to 1.
The numerator tends to ∞ as x → ∞, and to −∞ as x → −∞. We therefore
conclude that

x3 − 2x + 3
x2 + 4

→ ∞ as x → ∞ and
x3 − 2x + 3

x2 + 4
→ −∞ as x → −∞.

Example 2.16

Describe the behaviour of f(x) =
x2 − 2

x3 − 2x2 − x + 2
as x → ∞ and as x → −∞.

The graph of this rational function was shown in Figure 1.7. The limit is
again an “∞

∞” type. As in example 2.15 we divide numerator and denominator
by the greatest power of x in the denominator, in this case x3, giving

x2 − 2
x3 − 2x2 − x + 2

=
1
x − 2

x3

1 − 2
x − 1

x2 + 2
x3

.

The denominator tends to 1 as x → ±∞, since all the terms except the first
tend to zero. Both terms in the numerator tend to zero as x → ±∞. So we have
the numerator tending to zero and the denominator tending to 1. The quotient
therefore tends to zero. So we have shown algebraically that

lim
x→±∞

x2 − 2
x3 − 2x2 − x + 2

= 0.

Therefore, as described in Definition 2.9, the x-axis is a horizontal asymptote,
which Figure 1.7 illustrates.
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Example 2.17

Determine the limiting behaviour of f(x) =
(x +

√
2)(x − √

2)
(x + 1)(x − 1)(x − 2)

at the values

of x where the denominator is zero.

This is the function considered in the previous example, shown in Figure 1.7,
with the numerator and denominator in their factorised form. We therefore
have to consider the behaviour relative to x = −1, 1, 2. For these values the
numerator tends to −1,−1, 2 respectively. The denominator tends to zero. It is
a common mistake to conclude that if the denominator tends to zero and the
numerator tends to a non-zero limit, then the fraction itself tends to infinity.
This error is sometimes written as “ 1

0 = ∞”. This is WRONG. It is clear from
Figure 1.7 that at each of x = −1, 1, 2 we have different one-sided limiting
behaviour. To correct the mistake we have to take careful account of the signs
of the various parts of the expression. We can do this either by plotting the
graphs of numerator and denominator, or by means of a tabular approach, as
follows.

−√
2 −1 1

√
2 2

x +
√

2 − + + + + +
x − √

2 − − − − + +
x + 1 − − + + + +
x − 1 − − − + + +
x − 2 − − − − − +
f(x) − + − + − +

At the top of the table we have indicated the numbers where either the
numerator or denominator is zero. At each of these points one of the factors
changes sign, and so the table indicates the sign of each factor in the intervals
between these numbers. At the bottom of the table we have shown the sign of
f(x) itself, obtained from the set of signs above according to whether there is
a even or an odd number of negative signs. The numbers ±√

2 are zeros of the
numerator, so the graph crosses the x-axis at those points, and f(x) changes
sign as indicated, and as the graph confirms.

Now let us consider what happens near to x = −1. We can see from the
table that if x < −1 then f(x) > 0, whereas if x > −1 then f(x) < 0. In
both cases the numerator tends to −1 and the denominator tends to zero. We
therefore conclude that

f(x) → ∞ as x → −1−, and f(x) → −∞ as x → −1+.

Using similar reasoning near to x = 1 and x = 2 we conclude that

f(x) → −∞ as x → 1−, and f(x) → ∞ as x → 1+.
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f(x) → −∞ as x → 2−, and f(x) → ∞ as x → 2+.

The lines x = −1, 1, 2 are vertical asymptotes.

Example 2.18

Find lim
x→∞

3x2 + 4x + 4
4x2 + 3x + 2

.

x

y

0 15105−5−10−15

2

1.5

1

0.5

Figure 2.13 Graph of 3x2+4x+4
4x2+3x+2

This is an “∞
∞” type. In this example highest power of x present is the

same in numerator and denominator, namely x2. We divide numerator and
denominator by x2, giving

3x2 + 4x + 4
4x2 + 3x + 2

=
3 + 4

x + 4
x2

4 + 3
x + 2

x2

→ 3 + 0 + 0
4 + 0 + 0

=
3
4

as x → ∞.

So the line x = 3
4 is a horizontal asymptote, shown in Figure 2.13. Solving the

relevant quadratic equation shows that the denominator has no real zeros, and
so there are no vertical asymptotes.

Example 2.19

Discuss the limiting behaviour of
1

(x5 − 1)2
.

The graph of this function can be seen in Figure 2.9. Firstly we observe that
the denominator tends to infinity as x → ±∞, and so the function itself tends
to zero, i.e., the x-axis is a horizontal asymptote. Secondly, the denominator
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has its only real zero at x = 1. Because the denominator is a square, it is
positive for all x �= 1, and so the expression tends to infinity as x tends to 1
from both the left and the right. So we can write

1
(x5 − 1)2

→ ∞ as x → 1.

Example 2.20

Show that

lim
x→−∞

1 + 3ex

1 + ex
= 1, lim

x→∞
1 + 3ex

1 + ex
= 3.

The graph of this function can be seen in Figure 2.8. We first note that
ex → 0 as x → −∞. Therefore using the rules for limits tells us that

lim
x→−∞

1 + 3ex

1 + ex
→ 1 + 0

1 + 0
= 1.

To deal with the other limit, we use a similar division procedure as in the ratio-
nal function examples above. This time we divide numerator and denominator
by ex. We use the fact that e−x → 0 as x → ∞ and the rules of limits to give

lim
x→∞

1 + 3ex

1 + ex
= lim

x→∞
e−x + 3
e−x + 1

=
0 + 3
0 + 1

= 3.

In this example we have used our knowledge of the exponential function. In
previous examples we needed to know the behaviour of powers of x as x → ∞.

Most of the examples in this section illustrate the principle of finding limits
using knowledge of the limiting behaviour of a small number of basic functions,
in this case powers and the exponential function.

Example 2.21

Find lim
x→0

x√
1 − x − √

1 + x
.

This is a “ 0
0” type, where the domain of the expression does not include

zero. When dealing with algebraic expressions of this kind a common technique
is that of rationalising the denominator, in this case giving

x√
1 − x − √

1 + x
=

x
(√

1 − x +
√

1 + x
)(√

1 − x − √
1 + x

) (√
1 − x +

√
1 + x

)
=

x
(√

1 − x +
√

1 + x
)

(1 − x) − (1 + x)
=

x
(√

1 − x +
√

1 + x
)

−2x

= −
√

1 − x +
√

1 + x

2
→ −1 as x → 0.
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Example 2.22

Find the limit as x → ∞ of each of the following expressions.

(a)
(√

x + 1 − √
x
)
, (b)

√
x

(√
x + 1 − √

x
)
, (c) x

(√
x + 1 − √

x
)
.

(a) This is an example of an “∞ − ∞” type. In this case we rationalise the
numerator, multiplying by the sum of square roots, and introducing this sum
as a denominator, giving

(√
x + 1 − √

x
)

=

(√
x + 1 − √

x
) (√

x + 1 +
√

x
)(√

x + 1 +
√

x
)

=
(x + 1 − x)(√
x + 1 +

√
x
) =

1(√
x + 1 +

√
x
)

→ 0 as x → ∞,

because the denominator tends to infinity.
(b) The same rationalisation as in (a) gives

√
x

(√
x + 1 − √

x
)

=
√

x(√
x + 1 +

√
x
) .

This expression is now an “∞
∞” type, and we divide the numerator and

denominator by
√

x to obtain

√
x

(√
x + 1 − √

x
)

=
1(√

1 + 1
x + 1

) → 1
2

as x → ∞,

since the denominator tends to 2 as x → ∞.

(c) Again we perform the same rationalisation, giving

x
(√

x + 1 − √
x
)

=
x(√

x + 1 +
√

x
) .

Once more we have an “∞
∞” type, and dividing the numerator and denom-

inator by
√

x gives

x
(√

x + 1 − √
x
)

=
√

x(√
1 + 1

x + 1
) → ∞ as x → ∞,

since the numerator tends to ∞ and the denominator tends to 2.
This example illustrates the comment preceding Example 2.11, near the end

of Section 2.4.
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2.5.3 Change of Variable

We meet the technique of change of variable in many circumstances, for example
in integration and differential equations. Here we can use it in limit problems.
The general procedure is that we aim to use a substitution which will simplify
the expression whose limit we are trying to find, ideally by reducing it to one
whose limit we already know.

Example 2.23

Find lim
x→ π

2

cos x

sin(cos x)
.

This is a “ 0
0” type, whose form should remind us of

x

sin x
. This suggests

that we substitute t = cos x. Then t → 0 as x → π
2 .

Therefore lim
x→ π

2

cos x

sin(cos x)
= lim

t→0

t

sin t
= 1, using the result of Example 2.12.

Notice that when we change the variable we have to pay attention to the
limiting point, as in this case, where x = π

2 corresponds to t = 0. This relates
directly to the composition rule for limits at infinity given in Section 2.4, which
states that

if f(t) → l as t → a and g(x) → a as x → ∞ then f(g(x)) → l as x → ∞.

In this case we have applied the composition rule with

f(t) =
t

sin t
, l = 1, a = 0, g(x) = cos x, b =

π

2
.

Example 2.24

Find lim
x→0

tan−1 x

x
.

This is again a “ 0
0” type, and the composition rule can be used. A possible

approach to simplifying the expression is to let t = tan−1 x. So x = tan t and
t → 0 as x → 0. Therefore

lim
x→0

tan−1 x

x
= lim

t→0

t

tan t
= lim

t→0

t

sin t
. cos t = lim

t→0

t

sin t
. lim
t→0

cos t = 1,

using the result of Example 2.12 and the product rule for limits.
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2.5.4 L’Hôpital’s Rule

This rule is designed specifically to deal with “ 0
0” types and “∞

∞” types.
The rule involves differentiation, which is discussed in detail in Chapter 3.

Readers who are unfamiliar with basic differentiation from school mathematics
can omit this section until Chapter 3 has been studied. We shall give a proof
in Section 6.2. At this stage we give the statement of the rule, including the
conditions under which the rule is applicable, which must be understood. We
shall look at some examples.

Statement of the Rule

Suppose that the functions f and g are both differentiable in an interval
containing x = a. Suppose also that f(x) → 0 as x → a and that g(x) → 0
as x → a. (These are the conditions for the rule to be applicable and
must always be checked.)

If
f ′(x)
g′(x)

→ l as x → a then
f(x)
g(x)

→ l as x → a (where l can be finite or

infinite).
The rule applies with appropriate modifications for one-sided limits, for

limits at infinity, and also when f(x) → ∞ and g(x) → ∞ as x → a.

Example 2.25

Find lim
x→1

lnx

x − 1
.

We let f(x) = lnx, g(x) = x−1. We must first check that the conditions for
the application of l’Hôpital’s Rule are satisfied. Both f and g are differentiable

near x = 1, and both tend to zero as x tends to 1. Now f ′(x) =
1
x

, g′(x) = 1,

so
f ′(x)
g′(x)

=
1
x

→ 1 as x → 1. Therefore by l’Hôpital’s Rule
f(x)
g(x)

→ 1 as x → 1.

We can make an interesting and important deduction from this example
using a change of variable. If we let x = 1 +

a

t
then x → 1 as t → ∞. So

1 = lim
x→1

lnx

x − 1
= lim

t→∞
ln

(
1 + a

t

)
a
t

= lim
t→∞

t ln
(
1 + a

t

)
a

= lim
t→∞

ln
(
1 + a

t

)t

a
.

Multiplying by a gives lim
t→∞ ln

(
1 +

a

t

)t

= a, so lim
t→∞

(
1 +

a

t

)t

= ea.
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There are many ways of defining the exponential function, and this limit is
one of them. It is often encountered where t is restricted to integer values n, so
that we can express ea = lim

n→∞

(
1 +

a

n

)n

as the limit of a sequence of numbers.

Example 2.26

Find lim
x→0+

x lnx.

This is a “0×∞” type, and so it is not immediately clear that we can apply
l’Hôpital’s Rule. However if we re-write the expression as

x lnx =
lnx

1/x

then we can see it as an “∞
∞” type, to which the rule can be applied.

So we let f(x) = lnx, g(x) = 1
x . We then have f(x) → −∞ and g(x) → ∞

as x → 0+. Calculating the derivatives gives

f ′(x) =
1
x

, g′(x) = − 1
x2 , so

f ′(x)
g′(x)

=
1/x

−1/x2 = −x → 0 as x → 0+.

Therefore by l’Hôpital’s Rule, lim
x→0+

x lnx = 0.

Example 2.27

Find lim
x→0

(cos x)
1
x .

This does not look like a “0
0” type. In fact as x → 0+ it is a 1∞ type, and as

x → 0− it is a 1−∞ type. Algebraic intuition does not help much here. On the
one hand we might think that when x = 0, cos x = 1, and 1 raised to any power
is always 1, so that the limit should be 1. On the other hand we might argue
that for x near to zero but not equal to zero we have 0 < cos x < 1, and any
number between 0 and 1 when raised to a very large power is very small, so the
limit should be zero. The problem with both these commonly used arguments
is that each of them considers the two occurrences of x in the formula as if they
were different variables, whereas they are of course changing at the same time.

In many algebraic problems involving indices, we find that taking logarithms
transforms such an expression into one involving products and/or quotients. So

let y = (cos x)
1
x . Then ln y =

ln(cos x)
x

, so we let f(x) = ln(cosx) and g(x) = x.

You should check that the conditions for l’Hôpital’s Rule are satisfied. We then

have
f ′(x)
g′(x)

=
1

cos x .(− sin x)
1

→ 0 as x → 0. Therefore by l’Hôpital’s Rule

ln y → 0 as x → 0. Now the exponential function has a continuous graph, and
so we deduce that exp(ln y) → exp(0) as x → 0, i.e., y → 1 as x → 0.
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Example 2.28

Find lim
x→0

tanx − x

x − sin x
.

Let f(x) = tanx−x, g(x) = x−sin x. You should check that the conditions
for l’Hôpital’s Rule are satisfied. Now f ′(x) = sec2 x − 1, g′(x) = 1 − cos x.

We see that in this case both derivatives tend to zero as x → 0. So not only

is
f(x)
g(x)

a “ 0
0” type, but

f ′(x)
g′(x)

is also a “ 0
0” type. So we can try to apply

l’Hôpital’s Rule to
f ′(x)
g′(x)

. Calculating the derivatives of the numerator and the

denominator gives f ′′(x) = 2 sec x. sec x. tanx, g′′(x) = sinx. So we have

f ′′(x)
g′′(x)

=
2 sec x. sec x. tanx

sin x
=

2
cos3 x

→ 2 as x → 0.

Therefore by l’Hôpital’s Rule applied twice lim
x→0

tanx − x

x − sin x
= 2.

There are examples where l’Hôpital’s Rule needs to be applied more than
twice, but we must always check at each stage that the relevant quotient is a
“ 0

0” type.

Example 2.29

Find lim
x→∞

x2

ex
.

We let f(x) = x2 and g(x) = ex. Then f(x) → ∞ and g(x) → ∞ as
x → ∞. So this satisfies the conditions for an “∞

∞” type. Differentiating then

gives f ′(x) = 2x and g′(x) = ex, so not only is
f(x)
g(x)

an “∞
∞” type, but

f ′(x)
g′(x)

is also an “∞
∞” type. Differentiating again gives f ′′(x) = 2 and g′′(x) = ex. So

we have
f ′′(x)
g′′(x)

=
2
ex

→ 0 as x → ∞.

Therefore, applying l’Hôpital’s Rule twice tells us that lim
x→∞

x2

ex
= 0.

This is an important result. It tells us that the exponential function grows
more rapidly than x2 as x tends to infinity. If we were to replace x2 by xn for
any positive integer n we would obtain the same limit, zero, using l’Hôpital’s
Rule n times. So the exponential function grows faster than any power of x as
x tends to infinity.



2. Limits of Functions 71

2.6 An Interesting Example

In this (optional) section we shall consider an example where trying to apply
ordinary arithmetic rules leads to a contradiction. It indicates the need for care,
and these kinds of problems are often studied in Real Analysis textbooks. In
the 18th and 19th centuries it was assumed that properties of functions, such as
continuity, were not changed under limiting operations, including those involved
in infinite series. When this was finally shown not to be the case it caused
significant mathematical problems, and several of the greatest mathematicians
of the 19th century worked hard to resolve them, determining conditions under
which such properties were preserved, and providing some understanding when
they were not. The subject is discussed in Howie, Chapter 7.

We let

f(x) =
∞∑

n=1

x2

(1 + x2)n =
x2

(1 + x2)
+

x2

(1 + x2)2
+

x2

(1 + x2)3
+ · · ·

=
x2

(1 + x2)

[
1 +

1
(1 + x2)

+
1

(1 + x2)2
+

1
(1 + x2)3

+ · · ·
]

.

The series in brackets is an infinite geometric series whose common ratio

is r =
1

(1 + x2)
, and which therefore converges when x is non-zero. Using the

well-known formula a/(1 − r) for the sum of an infinite geometric series with
first term a and common ratio r gives, for x �= 0,

f(x) =
x2

1 + x2 .
1

1 − 1
1+x2

= 1.

Now if we substitute x = 0 we get f(0) = 0. So the graph of f(x) consists
of the horizontal line y = 1 with a missing point at zero. There is a single
isolated point at (0, 0). The function is discontinuous at 0. Furthermore we
can see that lim

x→0
f(x) = 1 �= f(0). We can also see that for all values of n,

lim
x→0

x2

(1 + x2)n = 0. Therefore we can say that

lim
x→0

∞∑
n=1

x2

(1 + x2)n = 1 BUT
∞∑

n=1

lim
x→0

x2

(1 + x2)n = 0.
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2.7 Limits using MAPLE

MAPLE has the capability to evaluate limits, and the syntax is straightforward.
To find the limit of f(x) as x tends to a we use the command

limit(f(x),x=a);

For example we can verify the result of Example 2.13 using the command
limit(xˆ2*sin(1/x),x=0);

and MAPLE will return the answer 0. What it will not do of course is to tell us
how we could prove the result, or provide us with an understanding of why the
result is true. When using MAPLE to find limits it is usually helpful therefore
to plot the relevant function as well, to give a graphical insight.

MAPLE will also calculate limits as x tends to infinity. The result of Ex-
ample 2.18 can be verified with the command

limit((3*xˆ2+4*x+4)/(4*xˆ2+3*x+2),x=infinity);

MAPLE returns the answer 3
4 as an exact fraction, and not as a decimal.

Finally MAPLE will evaluate one-sided limits. We can investigate the floor
function considered in Example 2.5, and verify that the left-sided limit as x

tends to 2 is 1, whereas the right-sided limit is 2. The appropriate commands
are

limit(floor(x),x=-1,left);

limit(floor(x),x=-1,right);

In this case the left- and right-sided limits are different, so if we use the com-
mand

limit(floor(x),x=-1);

MAPLE tells us that this limit is undefined.

2.8 Limits with Two Variables

In this (optional) section we begin to extend the ideas of limits to functions
involving two real variables. This topic would be dealt with systematically in a
course on Multivariate Calculus, and here we simply illustrate some possibilities
by means of an example.

In considering limits such as lim
x→0

f(x) we encountered the notion that x

could approach zero from below or from above, and that sometimes the limiting
behaviour was different in these two cases. For the purposes of graphs we take
the variable x as being confined to the x-axis, a one-dimensional line. When we
generalise these considerations to functions of two variables f(x, y), then (x, y)
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belongs to a two dimensional plane. We can consider limits such as

lim
(x,y)→(0,0)

f(x, y).

in terms of (x, y) being “close to” (0, 0), and then investigating whether f(x, y)
is correspondingly “close to” f(0, 0). By analogy with one-sided limits we can
then consider whether f(x, y) has a limiting value if (x, y) in restricted in some
way as it approaches (0, 0). This may be along some particular curve in the
(x, y)-plane. The following example illustrates this idea.

Let f(x, y) =
x2 − y2

x2 + y2 , (x, y) �= (0, 0). We consider what happens along

several curves which approach (0, 0).
(a) Along the x-axis we have y = 0, and so

f(x, 0) =
x2 − 02

x2 + 02 = 1.

So f(x, 0) → 1 as x → 0.

(b) Along the y-axis we have x = 0, and so

f(0, y) =
02 − y2

02 + y2 = −1.

So f(0, y) → −1 as y → 0.

(c) Along the line y = x we have

f(x, x) =
x2 − x2

x2 + x2 = 0.

So f(x, x) → 0 as x → 0.

(d) Along the line y = 2x we have

f(x, 2x) =
x2 − (2x)2

x2 + (2x)2
= −3

5
.

So f(x, 2x) → − 3
5 as x → 0.

This suggests that f(x, y) has different limiting values as (x, y) → (0, 0)
along various curves. Readers are invited to investigate what happens when
(x, y) → (0, 0) along a general line passing through (0, 0), along a parabola
(such as y = x2) passing through (0, 0), or along other curves passing through
(0, 0).

Readers who are interested to see what a graphical representation looks
like for the function we have considered can do so using the following MAPLE
command.

plot3d((xˆ2-yˆ2)/(xˆ2+yˆ2),x=-1..1,y=-1..1);
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EXERCISES

2.1. Plot the graph of the function given by the following formula, using
a graphical calculator or MAPLE.

2x2 + 5x + 7
x2 − 5x + 6

.

Describe the kinds of limiting behaviour you observe near the vertical
asymptotes, and as x → ±∞. You may need to use more than one
plot to observe the various features of the graph, by varying the
domain. In MAPLE the following commands should enable you to
do this.

plot((2*xˆ2+5*x+7)/(xˆ2-5*x+6),x=0..5,y=-500..500);

plot((2*xˆ2+5*x+7)/(xˆ2-5*x+6),x=-1000..1000,y=1..3);

2.2. Plot the graphs of the functions given by the following formulae,
using a graphical calculator or MAPLE. Describe the kinds of lim-
iting behaviour you observe near any vertical asymptotes, and as
x → ±∞. Use the appropriate symbolic notation in each case. In
some cases you will need more than one plot, as in the previous ex-
ercise. In cases involving roots you may need to use implicit plotting,
as described in Section 1.3.

(a) x4 + 2x2 − 3x + 1; (b) 3 + 2x2 − x5;

(c) 3
√

x3 − 3x2 − 6x + 8; (d)
1

3
√

x3 − 3x2 − 6x + 8
;

(e)
√

x2 + 4; (f)
1√

x2 + 4
;

(g)
x2 − x − 2

3x2 + 4x + 5
; (h)

3x2 + 4x + 5
x2 − x − 2

;

(i)
x2 − 2x + 3

2x − 5
; (j)

2x − 3
x2 + 2x + 5

;

(k)
2x + 5

x2 − 2x − 8
; (l)

1
(sin x + cos x)2

;

(m)
exp(2x)

x2 ; (n)
1

exp(3x) − exp(2x)
;

(o) ln
(
(x2 − 4)2

)
; (p)

ln
(
(x2 − 4)2

)
x

;

(q) ln
(

2 + sin
(

1
x

))
; (r) ln

(
1
x2

)
;

(s) tan−1 x (t) tanh−1 x.
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2.3. Describe the limiting behaviour of the functions, given by the fol-
lowing formulae, on each side of the value of x indicated.

(a) exp
(

1
x

)
, x = 0; (b)

√
floor(

√
x), x = 9;

(c)
|x|
x

, x = 0; (d)
| sin x|
sin x

, x = π;

(e)
√

x2 − 2x + 1
x − 1

, x = 1; (f)
tanx

|x| , x = 0.

2.4. Find the following limits, using the appropriate algebraic rules.

(a) lim
x→0

x2 − 3x + 4
cos 2x

; (b) lim
x→π

2x − 3
1 + sin x

;

(c) lim
x→1

√
x2 − 2x + 3; (d) lim

x→−2
(x − 1)(x − 2)(x + 3);

(e) lim
x→1

x3 − 2
x − 2

; (f) lim
x→−3

x2 + 2x − 4
x − 3

;

(g) lim
x→1

|2 − x − 3x2| cos(πx); (h) lim
x→0

exp((x + 2) sinx);

(i) lim
x→−1

cosh(1 − x) sin(πx); (j) lim
x→π

√
(ex + 3x − lnx) sinx.

2.5. Prove by squeezing that the value of each of the following limits is
zero.

(a) lim
x→0

|x| sin
(

1
x

)
; (b) lim

x→∞ e−x cos x;

(c) lim
x→−∞ ex sin(x2 + 1); (d) lim

x→∞(1 − tanhx) cos x;

(e) lim
x→1

|x − 1| cos
(

1
x − 1

)
; (f) lim

x→∞ exp(sinx − x).

2.6. The function f(x) is bounded, i.e., there are constants A and B such
that A ≤ f(x) ≤ B for all x in the domain of f.

Show by squeezing that lim
x→0

f(x) sinx = 0.

2.7. Use the method of Example 2.17 to determine the limiting behaviour
at the vertical asymptotes of the function

f(x) =
(x + 1)(x − 2)2

x(x − 1)(x + 2)2
.
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2.8. Evaluate the following limits, using algebraic manipulation.

(a) lim
x→2

x2 − 4x + 4
x2 − 4

; (b) lim
x→1

x2 + 6x − 7
x2 − 1

;

(c) lim
x→−1

x3 + 1
x + 1

; (d) lim
x→0

e2x − 1
ex − 1

;

(e) lim
x→2

(
4

x2 − 4
− 1

x − 2

)
; (f) lim

x→1

x2 − 1√
x − 1

;

(g) lim
x→−1

x2 − 1√
5 + x − 2

; (h) lim
x→0

√
1 − 2x2 − √

1 + 2x2

x2 ;

(i) lim
x→∞

x4 + 2x2 + 1
2x4 − 3x3 + x

; (j) lim
x→∞

x2 + 2x + 1
x3 − x2 − x − 1

;

(k) lim
x→−∞

x3 + x2 − x − 1
2x + 3

; (l) lim
x→−∞

x2 + 2
√

x + 3
√

x√
x − 1 − x2 ;

(m) lim
x→−∞

√
2x2 + 3x + 5

x − 4
; (n) lim

x→−∞
|2x − 5|
3x + 1

;

(o) lim
x→∞

x2 + x + cos2 x

2x2 − sin2 2x
; (p) lim

x→∞
ex − sin x + 1
2ex + cos x − 3

.

2.9. Use the method of change of variable to evaluate the following limits.

(a) lim
x→0

e2x − 1
ex − 1

; (b) lim
x→1

sin(lnx)
lnx

;

(c) lim
x→0

√
2x

sin (2
√

x)
; (d) lim

x→e

(lnx)2 − 1
lnx − 1

;

(e) lim
x→0

x

sin−1 x
; (f) lim

x→−∞
sin−1 (ex)

ex
.

2.10. Use l’Hôpital’s rule to find the values of the following limits.

(a) lim
x→1

lnx

x2 − 1
; (b) lim

x→π

sin x

x − π
;

(c) lim
x→0

(cosecx − cot x); (d) lim
x→0

(
1

sin x
− 1

x

)
.

(e) lim
x→0

cos ax − 1
cos bx − 1

(b �= 0); (f) lim
x→0

(
1
x2 − cos(ax)

x2

)
;

(g) lim
x→0

sin3 x

x − tanx
. (h) lim

x→0

sin x − x + x3

6

x5 ;

(i) lim
x→0+

xsin(x); (j) lim
x→0+

(
3
√

x
)x ;

(k) lim
x→∞

(
1 +

2
x

)x

; (l) lim
x→0

(1 + sin x)
1
x .
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2.11. Find examples of pairs of functions f(x), g(x) satisfying the following
as x → ∞.

(a) f(x) → ∞, g(x) → ∞ and f(x) − g(x) → 0;

(b) f(x) → ∞, g(x) → ∞ and f(x) − g(x) → ∞;

(c) f(x) → ∞, g(x) → ∞ and f(x) − g(x) → −∞;

(d) f(x) → ∞, g(x) → ∞ and f(x) − g(x) → 3.

2.12. The function f(x) is defined by
|x + k|
x2 − k2 (k �= 0).

What is the domain of f(x)? Sketch the graph of f(x) showing the
discontinuities. (You can use MAPLE to get an idea of what the
graph looks like.) Use the graph to find the values of the left- and
right-sided limits at each of the discontinuities, and show how to
derive these limits from the formula for f(x).

2.13. Investigate the behaviour of the function of two variables defined by

f(x, y) =
x2 − y3

x3 − y2

as (x, y) → (0, 0) along various curves passing through (0, 0), along
the lines of Section 2.8.



3
Differentiation

The differential calculus has two major areas of use and origin. One is geometry,
and the problem of finding tangents to curves. The other is motion (speed,
velocity, acceleration) and other rates of change. Both of these lead to the
definition of the derivative in terms of a limit.

3.1 The Limit Definition

We shall explore the definition of derivative by considering the problem of
finding the gradient of a curve, and therefore its tangent.

A

B

C

a x
h

Figure 3.1 Chord slope diagram

79
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Figure 3.1 represents the graph of a function y = f(x). The tangent line
at the point A can be considered as the limiting position of the chord AB as
B tends towards A. This is achieved by letting x tend to a, or equivalently by
letting h tend to 0, since x = a + h. It is important to note that this is not
just a one-sided limit, and so a diagram where B is to the left of A, where h

is negative, is equally valid. The gradient of the tangent will therefore be the
limit as x tends to a of the gradient of the chord. The coordinates of the points
labelled in Figure 3.1 are as follows.

A(a, f(a)), B(x, f(x)), C(x, f(a)).

Therefore the gradient (slope) of the chord is given by

BC

AC
=

f(x) − f(a)
x − a

=
f(a + h) − f(a)

h
.

Taking limits therefore gives the gradient of the tangent, giving rise to the
following definition.

Definition 3.1

The function f(x) whose domain includes some interval containing the point a

is said to be differentiable at a if the following limit exists.

lim
x→a

f(x) − f(a)
x − a

.

The value of this limit is called the derivative (or differential coefficient)
of f at a, denoted by f ′(a). We therefore have

f ′(a) = lim
x→a

f(x) − f(a)
x − a

= lim
h→0

f(a + h) − f(a)
h

.

In many cases a function will be differentiable for all (or most) of the values
of x in the domain. In that case we think of a as a variable and use the term
derivative for the function whose value at x = a is f ′(a).

In fact a variety of terminology is encountered in this topic. Terms such
as differential coefficient, derived function, differential and derivative are all
used, sometimes to convey different shades of meaning and interpretation. In
an introductory account such distinctions are not so important, whereas they
are in more advanced areas of calculus. We shall use the term derivative to refer
to the function resulting from the process of differentiation (sometimes called
the derived function), and also to the value of this derived function at some
point of its domain.



3. Differentiation 81

There are two types of notation in common use, the dash notation f ′(x),

f ′′(x), etc., and the Leibniz notation
dy

dx
,
d2y

dx2 , etc. Readers will have encoun-
tered these in school calculus. Sometimes the Leibniz notation is more helpful
than the dash notation, and vice-versa, and we shall use them according to this
criterion.

3.2 Using the Limit Definition

In this section we consider some examples where we can find the derivative di-
rectly from the limit, together with an example where the derivative does not
exist. We also prove a basic property of derivatives useful in graph sketching.
In practice we do not rely heavily on the limit definition. Instead we use al-
gebraic rules for differentiation and apply them to functions whose derivatives
we already know. This mirrors the procedure we used in Chapter 2 to find
limits, and the processes of integration we shall develop in later chapters. The
first two examples show that the basic derivatives can be found using the limit
definition. This is sometimes referred to as “finding the derivative from first
principles”, the first principles in question being the limit definition.

Example 3.2

Use the limit definition to find the derivative of f(x) = x2.

Applying the limit definition gives

f ′(a) = lim
x→a

f(x) − f(a)
x − a

= lim
x→a

x2 − a2

x − a
= lim

x→a
(x + a) = 2a.

Example 3.3

Use the limit definition to find the derivative of f(x) = sinx.

f ′(a) = lim
h→0

f(a + h) − f(a)
h

= lim
h→0

sin(a + h) − sin a

h

= lim
h→0

2 cos
(
a + h

2

)
sin

(
h
2

)
h

= lim
h→0

cos
(

a +
h

2

)
sin

(
h
2

)
h
2

= cos(a).1 = cos a.

Here we have used the limit obtained in Example 2.2, with x = h
2 .
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Example 3.4

Show that f(x) = |x| is not differentiable at 0.

We recall the graph of y = |x| shown in Figure 1.8, and notice that it has
a sharp corner at x = 0. The gradient to the right is 1 and the gradient to the
left is −1, indicating that the gradient at 0 cannot be well-defined. The limit
definition confirms this, as follows.

f(0 + h) − f(0)
h

=
{

h
h = 1 for h > 0,

−h
h = −1 for h < 0.

So the left- and right-sided limits are different. Therefore the (two-sided)
limit does not exist, and so the modulus function is not differentiable at 0.

Example 3.5

In Section 1.8 we considered functions defined in pieces. In that section we
introduced the function

k(x) =
{

x2 if x ≥ 0,

x3 if x < 0.

If x > 0 then k(x) = x2 and so k′(x) = 2x. If x < 0, k(x) = x3 and so
k′(x) = 3x2. But to investigate differentiability at x = 0 we need to use the
limit definition, as follows.

k(0 + h) − k(0)
h

=

{
h2−0

h = h if x > 0,
h3−0

h = h2 if x < 0.

We conclude from this that

lim
h→0+

k(0 + h) − k(0)
h

= lim
h→0+

h = 0;

lim
h→0−

k(0 + h) − k(0)
h

= lim
h→0−

h2 = 0.

The left- and right-hand limits are equal, so

lim
h→0

k(0 + h) − k(0)
h

= 0.

Therefore k(x) is differentiable at x = 0 and k′(x) = 0.
Figure 3.2 shows the graph of k′(x). We can see that there appears to be

a sharp corner at x = 0, as there is for |x|. This suggests that k′(x) is not
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x

y

0 10.5−0.5−1

2

1.5

1

0.5

Figure 3.2 A piecewise derivative

differentiable at x = 0, and we can prove this using the limit definition. We
have

k′(0 + h) − k′(0)
h

=

{
2h−0

h = 2 if x > 0,
3h2−0

h = 3h if x < 0.

So we deduce that

lim
h→0+

k′(0 + h) − k′(0)
h

= lim
h→0+

2 = 2;

lim
h→0−

k′(0 + h) − k′(0)
h

= lim
h→0−

3h = 0.

The left-and right-hand limits are not the same, and so

lim
h→0

k′(0 + h) − k′(0)
h

does not exist.

This shows that k′(x) is not differentiable at x = 0.

Example 3.6

Prove that if a differentiable function is increasing (see Definition 1.35) then
its derivative is non-negative.

Suppose that for all a, b in the domain of f satisfying a ≤ b, we have
f(a) ≤ f(b). Let x denote an arbitrary number in the domain of f . Then if

h > 0 we have
f(x + h) − f(x)

h
≥ 0, because both numerator and denominator

are positive (or zero). If h < 0 we also have
f(x + h) − f(x)

h
≥ 0, because in
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this case both numerator and denominator are negative (or zero). Therefore we
must have

f ′(x) = lim
h→0

f(x + h) − f(x)
h

≥ 0.

We can prove in a very similar fashion that if a differentiable function is de-
creasing then its derivative is non-positive. Note that if a function is strictly
decreasing this does not imply that its derivative is strictly positive everywhere.
For example f(x) = x3 is strictly increasing, but f ′(0) = 0.

We shall prove a converse of this result under appropriate conditions in
Section 6.2.

3.3 Basic Rules of Differentiation

The basic algebraic rules of differentiation enable us to differentiate sums, prod-
ucts and quotients of functions whose derivatives we already know. We assume
that the derivatives in the table below are known from school mathematics.

f(x) f ′(x)
xn nxn−1

sin x cos x

cos x − sin x

tanx sec2 x

ex ex

lnx 1
x

The basic rules of differentiation are summarised as follows.

Suppose that f and g are differentiable functions. Then for any constants A, B,

d

dx
(Af(x) + Bg(x)) = Af ′(x) + Bg′(x) (the sum rule);

d

dx
(f(x)g(x)) = f(x)g′(x) + g(x)f ′(x) (the product rule);

d

dx

(
f(x)
g(x)

)
=

g(x)f ′(x) − f(x)g′(x)
(g(x))2

(g(x) �= 0) (the quotient rule).

This is a case where it is convenient to use both notations for derivatives
together.

Example 3.7

We prove the product rule from the limit definition of the derivative.
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In the second line of the proof below, we have introduced an additional
term in the numerator, together with its negative, hence preserving equality.
Its purpose is to enable us to analyse separately the changes in f and the
changes in g as h tends to zero. This is apparent in the third line, where we can
see the chord-slope quotients for f and for g, whose limits are the respective
derivatives as h tends to zero.

f(x + h)g(x + h) − f(x)g(x)
h

=
f(x + h)g(x + h) − f(x + h)g(x) + f(x + h)g(x) − f(x)g(x)

h

= f(x + h)
g(x + h) − g(x)

h
+ g(x)

f(x + h) − f(x)
h

→ f(x)g′(x) + g(x)f ′(x) as h → 0.

3.4 The Chain Rule

The Chain Rule (or function of a function rule) tells us how to differentiate
composite functions, and while it is usually part of school calculus, it is suffi-
ciently important to merit some revision. The rule is stated as follows.

Suppose that the function g is differentiable at x, and that the function f

is differentiable at g(x). Then the derivative of f ◦ g(x) = f(g(x)) is given by
(f ◦ g)′(x) = f ′(g(x))g′(x).

The rule can be stated using the Leibniz notation as follows.

If y = f(u) and u = g(x) then
dy

dx
=

dy

du

du

dx
.

To derive the chain rule from the limit definition we proceed as follows.

f(g(x + h)) − f(g(x))
h

=
f(g(x + h)) − f(g(x))

g(x + h) − g(x)
g(x + h) − g(x)

h
.

Here we have introduced the term g(x + h) − g(x) in the numerator and in the
denominator. This helps to separate the behaviour of f and that of g. We then
let g(x) = u and g(x + h) = u + k. Then k → 0 as h → 0. We therefore have

f(g(x + h)) − f(g(x))
h

=
f(u + k) − f(u)

k

g(x + h) − g(x)
h

→ f ′(u)g′(x) = f ′(g(x))g′(x) as h → 0.

This argument appears to be sound, but in fact there is a problem at the
beginning, for we cannot be sure that g(x + h) − g(x) will not be zero for some
values of h arbitrarily close to 0, and we cannot divide by zero. The argument
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does however provide an intuitive justification relating the chain rule to the
limit definition. A properly rigorous proof is given in Howie Chapter 4.

The use of an “intermediate variable” such as u in applying the chain rule
is often helpful and we shall employ it in the following examples.

Example 3.8

Differentiate ln(cos x).

Using the Chain Rule, let y = lnu, u = cos x. The derivative is given by

dy

dx
=

dy

du

du

dx
=

1
u

(− sin x) =
− sin x

cos x
= − tanx.

Example 3.9

Differentiate ax with respect to x.

A common mistake is to assume that we use the simple formula for powers
and write the derivative as xax−1. This is WRONG. What has been calculated
here is the derivative with respect to a, not the derivative with respect to x.
To do the calculation correctly, we recall from Definition 1.27 that ax = ex ln a.

We therefore use the chain rule, letting y = eu and u = x ln a. This gives

dy

dx
=

dy

du

du

dx
= eu ln a = ex ln a ln a = ax ln a.

Example 3.10

Differentiate sin(ln(x3 − 4x)).

In this example we have repeated composition, and we extend the chain
rule using two intermediate variables.

We let y = sinu, u = ln t, t = x3 − 4x. The derivative is then given by

dy

dx
=

dy

du

du

dt

dt

dx
= (cos u).

1
t
.(3x2 − 4)

=
cos

(
ln(x3 − 4x)

)
(3x2 − 4)

x3 − 4x
.

Example 3.11

Differentiate ln
(
tan

(
2 + x4)

1
2

))
.

There is no limit to the number of stages of composition.
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In this case we introduce the requisite number of intermediate variables,
letting y = ln p, p = tan q, q = r

1
2 , r = 2 + x4.

Applying the chain rule therefore gives

dy

dx
=

dy

dp

dp

dq

dq

dr

dr

dx
=

1
p
. sec2 q.

1
2
r− 1

2 .4x3

=
sec2

((
2 + x4

) 1
2
)

.2x3

tan
(
(2 + x4)

1
2

)
(2 + x4)

1
2

.

Example 3.12

Differentiate f(x) = x2 cos
(

1
x

)
.

In examples such as this one we have to use more than one of the rules.
Firstly we need the product rule since the function is x2 multiplied by a cosine
term. Secondly the cosine terms itself is composite, and so we need the chain
rule. So applying both rules gives

f ′(x) = 2x cos
(

1
x

)
+ x2

(
− sin

(
1
x

)) (
− 1

x2

)
= 2x cos

(
1
x

)
+ sin

(
1
x

)
.

Figure 3.3 shows a MAPLE plot of this formula for f ′(x). (We pointed out the
limitations of MAPLE plots of such functions in Example 2.3)

x

y

0 10.5−0.5−1

1.5

1

−1

−1.5

Figure 3.3 A discontinuous derivative
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Now this calculation is not valid when x = 0, and indeed f(x) is not defined
there. However, the squeezing argument used in Example 2.13 shows that f(x)
has the limit zero as x tends to zero, and that if we extend the definition
by letting f(0) = 0 the resulting function is continuous at 0. So what about
differentiability? We can’t substitute x = 0 in the formula we have just found,
so we have to go back to the limit definition, and investigate whether the
appropriate limit exists.

f(0 + h) − f(0)
h

=
h2 cos

( 1
h

)
h

= h cos
(

1
h

)
→ 0 as h → 0,

by the squeezing argument. Therefore f is differentiable at 0 and f ′(0) = 0.

This is a very interesting example, because although f is differentiable at 0,
we can see that the formula for f ′(x) does not have a limit as x → 0, because
the sin term oscillates infinitely often in any interval containing x = 0, as we
established in Example 2.3. So f is differentiable everywhere but the derivative
is discontinuous at x = 0.

3.5 Higher Derivatives

If we have a function y = f(x) specified by a given formula and we differentiate
it we obtain the formula for f ′(x), which we can usually differentiate again, and
in many cases we can repeat the process several times. This gives a sequence
of derivatives, denoted by

f ′(x), f ′′(x), f ′′′(x), f (4)(x), . . . , f (n)(x), . . . ,

or, using the Leibniz notation for derivatives,

dy

dx
,
d2y

dx2 ,
d3y

dx3 , . . . ,
dny

dxn
, . . . .

Higher derivatives have applications, for example in mechanics where the sec-
ond derivative of position relates to acceleration, and in coordinate geometry
as we shall see in Chapter 5.

Example 3.13

Find the n-th derivative of f(x) = ln(2x + 3).

Calculating the first few derivatives, using the chain rule, is relatively
straightforward, giving

f(x) = ln(2x + 3);



3. Differentiation 89

f ′(x) =
2

2x + 3
;

f ′′(x) =
−4

(2x + 3)2
;

f ′′′(x) = 2.
8

(2x + 3)3
;

f (4)(x) = 3.2.
−16

(2x + 3)4
;

f (5)(x) = 4.3.2.
32

(2x + 3)5
.

There is a clear pattern appearing here, which enables us to conjecture a for-
mula for the n-th derivative, namely

f (n)(x) = (n − 1)!
(−1)(n+1)2n

(2x + 3)n
.

To prove this we need to use the method of mathematical induction. Read-
ers who are not familiar with this method can normally rely on conjecturing
such results by generalising, without proof, the pattern observed in the first
few cases. The details of the method are discussed in Howie Chapter 1. The
inductive proof is as follows, for readers who are familiar this style of proof.

The case n = 1 has already been established. If the result were true for
n = k then

f (k)(x) = (k − 1)!
(−1)(k+1)2k

(2x + 3)k
= (k − 1)!(−1)(k+1)2k(2x + 3)−k.

Differentiating this formula once more would give

f (k+1)(x) = (k − 1)!(−1)(k+1)2k(−k)(2x + 2)−k−1.2 = k!
(−1)(k+2)2k+1

(2x + 3)k+1 ,

giving the result for n = k + 1, so proving the general result by induction.

Example 3.14

Find successive derivatives for f(x) = sin
(
x2

)
.

Using the chain rule and the product rule gives

f(x) = sin
(
x2) ;

f ′(x) = 2x cos
(
x2) ;

f ′′(x) = −4x2 sin
(
x2) + 2 cos

(
x2) .
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It can be seen even at this stage that the expressions are increasing in com-
plexity, so that for example the sixth derivative is given by

f (6)(x) = −64x6 sin
(
x2) + 480x4 cos

(
x2) + 720x2 sin

(
x2) − 120 cos

(
x2) .

While it is clear that there is a pattern here, it is not easy to formulate an
expression for the n-th derivative.

3.6 Differentiation using MAPLE

The MAPLE command for differentiation is straightforward. For example ex-
ecuting the command diff(sin(xˆ2),x); will give the derivative of sin

(
x2

)
.

The role of the x at the end of the command it important. An error message
will result if it is omitted. It tells MAPLE what the variable of differentiation
is. This can be illustrated with the two commands

diff(xˆ2*yˆ3,x); and diff(xˆ2*yˆ3,y);

which will return the outputs 2xy3 and 3x2y2 respectively.
It should be noted that the output from MAPLE will not necessarily look

identical to a formula we would obtain “by hand”. For example the command
diff(tan(x),x); produces 1 + tan2 x instead of sec2 x, but the two are of
course identical. The command simplify(%); will sometimes transform an
answer into a more recognisable form. The percentage (%) symbol denotes “the
previous expression” or “the output of the previous calculation”, and using it
can save having to repeat typing in a complicated expression.

Calculating successive derivatives is also straightforward using MAPLE.
One can enter a formula such as sin(xˆ2); Executing this command sim-
ply prints the formula sin

(
x2

)
on the screen. The command diff(%,x); then

calculates the derivative with respect to x. Following this with the same com-
mand diff(%,x); will therefore repeat the process, giving the second deriva-
tive. This procedure could be used to calculate the sixth derivative quoted in
Example 3.14. Alternatively we could calculate the sixth derivative directly
using the command

diff(sin(xˆ2),x$6);

where the $6 sign tells MAPLE that we want the sixth derivative.
Finally we note that one need not have a particular formula, so that for ex-

ample MAPLE will help us if we forget the product rule. Entering the command
diff(f(x)*g(x),x); produces the output(

d

dx
f(x)

)
g(x) + f(x)

(
d

dx
g(x)

)
.
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EXERCISES

3.1. Use the limit definition to find the derivative of each of the following
functions

(a) x3; (b) x−1; (c) cos x; (d) tanx; (e) ex.

3.2. Use the sum, product and quotient rules to find the derivative of
each of the functions defined by the following expressions.

(a) 8x3/4; (b) sinhx; (c) ev sin v;

(d) x2 tanx; (e) t sin t + cos t; (f) tanhx;

(g)
3x − 2
2x − 3

; (h)
t2 + 2t

t2 − 1
; (i)

1 − 4x

x2/3 ;

(j)
cos x

1 + 2 sin x
; (k)

ew

1 − tanw
; (l)

ex lnx

x2 + 2x3 .

3.3. Use the chain rule to find the derivative of each of the functions
defined by the following expressions.

(a) cos (
√

x) ; (b) cosh(cos t); (c) 2−x;

(d) ln(ln(lnx)); (e)
(
1 + s2/3

)3/2
; (f)

(
3 − 2t2

)−3/4 ;

(g) tan
( 1

x

)
; (h)

√
sin (v2); (i) sin(2 cos 3x);

(j) 33x

; (k) cos(lnx); (l) 3
√

ln t.

3.4. Find the derivative, with respect to x, of each of the functions defined
by the following expressions, using the appropriate combinations of
rules.

(a) ln(x sin x); (b) sin
( x

cos x

)
;

(c)
√

x + ex; (d)
√

x 3
√

1 + x2;

(e) cosh(x lnx); (f)
sin

(
x2

)
sec (x2)

;

(g) tan(3x3) cot(3x3); (h) tan
(
a2

(
1 + x2

))
;

(i) 2x sin x; (j) a sin(bx) + b sin(ax);

(k) (x2 lnx)(b
2); (l) tan2

(
1

cx2 + d

)
.
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3.5. Find successive derivatives of f(x) = sin(2x−5). On the basis of the
first few derivatives write down a general formula for f (2n)(x) and
for f (2n+1)(x). Prove these results by the method of mathematical
induction.

Challenge: find a single formula which covers both the separate for-
mulae above.

3.6. Use MAPLE to find successive derivatives of f(x) = eax sin ax.

Write down general formulae for f (4n)(x), f (4n+1)(x), f (4n+2)(x) and
f (4n+3)(x). Prove these results by the method of mathematical in-
duction.

3.7. The derivative of an even function is an odd function.

The derivative of an odd function is an even function.

(a) Write a clear explanation of these results based on diagrams.

(b) Prove the results by differentiating the equations which define
an even function and an odd function, given in Definitions 1.4 and
1.5.

(c) Prove the results from the limit definition of the derivative, given
in Definition 3.1.

Do you think the converses are true, namely that every odd (even)
function is the derivative of an even (odd) function? If you think so,
give a proof. If you do not think so, give a counter-example. If you
think the converses are true only for some kinds of function, describe
such a set of functions and prove the converses for this set.



4
Techniques of Differentiation

In this chapter we shall explore some techniques of differentiation which deal
with functions specified in various forms. We shall consider functions defined
implicitly, functions defined parametrically, functions involving powers, and
inverse functions. We shall also discuss Leibniz Theorem, a result which enables
higher derivatives of products to be calculated.

4.1 Implicit Differentiation

Sometimes we are not given y as a function of x explicitly, but instead have
an equation connecting them which we may be unable to solve explicitly for

either x or y. We may still want to find
dy

dx
, but we shall find that the resulting

expression still involves both variables.
The following example illustrates what is meant.

Example 4.1

Find the gradient
dy

dx
at the point (1, 2) on the curve whose equation is

x3 − 5xy2 + y3 + 11 = 0.

Figure 4.1 shows that the curve is not the graph of y as a function of x.
Indeed when x = 1 there are three possible values of y on the part of the graph

93
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x

y

42−2−4

6

4

2

−2

Figure 4.1 Graph of x3 − 5xy2 + y3 + 11 = 0

shown. This is indicated by the inclusion of the line x = 1 in Figure 4.1. One
of the three intersections of this line with the graph is of course the given point
(1, 2). If we consider a small part of the curve in the neighbourhood of that
point then it is the graph of a function y = y(x) which is one of the solutions of
the equation of the curve and which specifies part of the graph near to (1, 2).
We cannot find y(x) explicitly in terms of x, otherwise we would be able to use
the normal procedures of differentiation.

The function y(x) satisfies the equation of the curve, namely

x3 − 5x(y(x))2 + (y(x))3 + 11 = 0.

We therefore have to use the chain rule to differentiate the y2 and y3 terms,
and the product rule for the second term, involving x and y. Using the chain
rule for the terms involving powers of y(x) gives

d

dx

(
y(x)3

)
= 3 (y(x))2

dy

dx
;

d

dx

(
y(x)2

)
= 2y(x)

dy

dx
.

Differentiating the equation of the curve with respect to x therefore gives

3x2 − 5
(

x.2y(x)
dy

dx
+ (y(x))2

)
+ 3 (y(x))2

dy

dx
= 0.

Rearranging this gives

(
3(y(x))2 − 10xy(x)

) dy

dx
= 5(y(x))2 − 3x2,

and therefore
dy

dx
=

5(y(x))2 − 3x2

3(y(x))2 − 10xy(x)
=

5y2 − 3x2

3y2 − 10xy
.
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The gradient at the point (1, 2) is then found by substituting these values
for x and y in this expression, giving −17/8. This value is consistent with
Figure 4.1, where the tangent line at (1, 2) does indeed appear to have a fairly
steep negative gradient.

When we get used to this procedure we do not normally write y(x) in full,
but just use y throughout, as in the next example.

Example 4.2

Given cos(xy) = exp(x + y), find
dy

dx
in terms of x and y.

This is a purely algebraic problem. We first apply the chain rule to both
sides, giving

− sin(xy)
d

dx
(xy) = exp(x + y)

d

dx
(x + y).

The left hand side needs the product rule, and applying this gives

− sin(xy)
(

y + x
dy

dx

)
= exp(x + y)

(
1 +

dy

dx

)
.

We now collect all the terms involving the derivative and then divide to
isolate the derivative, as we did in Example 4.1. We then obtain

dy

dx
= − exp(x + y) + y sin(xy)

x sin(xy) + exp(x + y)
,

provided that the denominator is not zero.
Note that substituting arbitrary values of x and y in this equation is mean-

ingless. The point (x, y) would have to satisfy the original equation in order

that
dy

dx
could be interpreted as the gradient of the curve.

Example 4.3

Given xy + ey = 0, find
dy

dx
and

d2y

dx2 in terms of x and y.

Differentiating the equation with respect to x gives

y + x
dy

dx
+ ey dy

dx
= 0.

We could solve this to find the derivative, and then differentiate the resulting
equation. Instead we differentiate once more without rearranging first, giving

dy

dx
+

dy

dx
+ x

d2y

dx2 + ey dy

dx
.
dy

dx
+ ey d2y

dx2 = 0.
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We now rearrange the two equations to give

dy

dx
= − y

x + ey
;

d2y

dx2 = −
2 dy

dx + ey
(

dy
dx

)2

x + ey

= −
− 2y

x+ey + ey
(

−y
x+ey

)2

x + ey

= −−2y(x + ey) + y2ey

(x + ey)3
.

One can imagine that if the initial equation were more complicated then
finding the second derivative would be very involved, and so it is useful
to see how MAPLE could tackle the calculations. We might think that we
could undertake the first step in the calculations above using the command
diff(x*y+exp(y),x); Unfortunately this just returns the output y, because
MAPLE does not know that y is meant to be a function of x. We must use
y(x) in place of y, as we did in the first example in this section. The following
sequence of commands can be used to solve the problem.

diff(x*y(x)+exp(y(x)),x);

diff(%,x);

We now rearrange this equation to find the second derivative, using
solve(%,diff(y(x),x$2));

We then have to substitute for dy/dx using
subs(diff(y(x),x)=-y(x)/(x+exp(y(x))),%);

and finally
simplify(%);

In the penultimate command we have typed in the expression for dy/dx, to
mirror that substitution step in the algebraic process. In fact it is possible to
use MAPLE to avoid having to do this, but we shall not discuss that here.

4.2 Logarithmic Differentiation

This topic is an application of implicit differentiation. It is a technique which is
useful when we have expressions involving the variable in an exponent. It can
also be applied to complicated products.
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Example 4.4

Differentiate y = xsin x.

We take logarithms of both sides of the equation, to give

ln y = ln
(
xsin x

)
= sinx. lnx.

We deal with the left hand side using implicit differentiation, and the right
hand side using the product rule. This gives

1
y

dy

dx
= cos x. lnx + sin x.

1
x

.

We therefore deduce that

dy

dx
= y

(
cos x. lnx + sin x.

1
x

)
= xsin x

(
cos x. lnx + sin x.

1
x

)
.

Example 4.5

Differentiate y = ax.

In fact we have already encountered this function, in Example 3.9, where
we used the definition of ax in terms of the exponential function. It is worth
noting again that we cannot use the rule for differentiating powers which applies

when the power is a constant. Using that rule would give
dy

dx
= xax−1 and

this is WRONG, as is confirmed if we try to apply the rule to the exponential
function. This would give the erroneous calculation

d

dx
ex = xex−1,

which we know to be incorrect.
On this occasion we obtain the result by logarithmic differentiation, which

gives

y = ax; ln y = x ln a;
1
y

dy

dx
= ln a;

dy

dx
= y ln a = ax ln a.

Example 4.6

Differentiate y = x2 sin x cosh x ex.

We could use the product rule, but taking logarithms converts the expres-
sion into a sum, in which we can differentiate each term separately. Taking
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logarithms gives

ln y = ln(x2) + ln(sinx) + ln(coshx) + ln (ex)

= 2 lnx + ln(sinx) + ln(coshx) + x.

Differentiating gives
1
y

dy

dx
=

2
x

+ cot x + tanhx + 1.

Therefore
dy

dx
= y

(
2
x

+ cot x + tanhx + 1
)

=
(
x2 sin x cosh x ex

) (
2
x

+ cot x + tanhx + 1
)

.

= 2x sin x cosh x ex + x2 cos x cosh x ex

+x2 sin x sinhx ex + x2 sin x cosh x ex.

Example 4.7

Differentiate y =
(
x3ex

)sin x
.

This example combines a product with an exponent. Taking logarithms
gives

ln y = sinx ln
(
x3ex

)
= sinx

(
lnx3 + ln ex

)
= sinx (3 lnx + x) .

Differentiating with respect to x now gives

1
y

dy

dx
= cos x (3 lnx + x) + sin x

(
3
x

+ 1
)

,

and therefore

dy

dx
=

(
x3ex

)sin x
(

cos x (3 lnx + x) + sin x

(
3
x

+ 1
))

.

4.3 Parametric Differentiation

Equations of curves are often given parametrically, for example the ellipse spec-
ified by

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

We want to find the gradient
dy

dx
, but the parametric equations can only be

differentiated with respect to t.

We can approach this in two ways. Firstly we can use the chain rule to give

dy

dt
=

dy

dx

dx

dt
, so

dy

dx
=

dy

dt

/
dx

dt
, provided

dx

dt
�= 0.
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Secondly we can go back to the limit definition of the derivative. If we want

to work out the gradient
dy

dx
at a point specified by t = k, we need to calculate

the chord slope limit as t → k. We reason as follows.

dy

dx
= lim

t→k

y(t) − y(k)
x(t) − x(k)

= lim
t→k

y(t) − y(k)
x(t) − x(k)

t − k

t − k

= lim
t→k

y(t) − y(k)
t − k

t − k

x(t) − x(k)

= lim
t→k

y(t) − y(k)
t − k

/
lim
t→k

x(t) − x(k)
t − k

=
dy

dt

/
dx

dt
,

provided
dx

dt
�= 0.

Example 4.8

We shall use the formula developed above to find the gradient at an arbitrary
point t on the ellipse specified by

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

The gradient is given by

dy

dx
=

dy

dt

/
dx

dt
=

b cos t

−a sin t
= − b

a
cot t.

The calculation is valid provided sin t �= 0, which excludes the points given by
t = 0,±π,±2π, . . . , where the tangent to the ellipse is parallel to the y-axis.

Example 4.9

Find
dy

dx
given that x = t2, y = t3.

These are the parametric equations of a curve known as a semicubical
parabola. Its graph is shown in Figure 11.2, where we calculate the length
of part of this curve.

The derivative is given by

dy

dx
=

dy

dt

/
dx

dt
=

3t2

2t
=

3t

2
(t �= 0).

In this case we can eliminate the parameter t to give y2 = x3, and so we could
also find the derivative using implicit differentiation, as follows.

2y
dy

dx
= 3x2, so

dy

dx
=

3x2

2y
(y �= 0).
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We can see that the graph in Figure 11.2 is not the graph of a function, and so
we would need values of both x and y to specify a point of the curve, and hence
find the gradient. With the parametric form, a given value of t determines both
x and y, and hence a unique point on the curve. That value of t will determine
the gradient at that point.

Example 4.10

Given x = a cos t, y = b sin t, 0 ≤ t ≤ 2π, find
d2y

dx2 .

It is possible to find a general formula for the second derivative, but it is
clearer to argue as follows.

We recall that
d2y

dx2 =
dY

dx
, where Y =

dy

dx
.

Applying the parametric differentiation formula to Y gives

dY

dx
=

dY

dt

/
dx

dt
.

We worked out Y in Example 4.8, and so we apply this formula, giving

d2y

dx2 =
dY

dx
=

dY

dt

/
dx

dt
= − b

a

(
cosec2t

)
/(−a sin t ) = − b

a2 sin3 t
,

provided sin t �= 0.

NOTE: A common mistake is to try to find
d2y

dx2 by differentiating the formula

obtained for
dy

dx
with respect to t. This is WRONG.

4.4 Differentiating Inverse Functions

Inverse functions were discussed in some detail in Section 1.7, and we now
consider their differentiation. It is possible to find a general formula, as we shall
demonstrate, but in most cases it is more helpful to use an implicit function
approach, and this is done in the examples in this section.

Suppose that we have a differentiable function f with its inverse g. So
y = f(x) and x = g(y) are equivalent. We shall establish differentiability of g

using the limit definition.

dg

dy
= lim

k→0

g(y + k) − g(y)
k

.
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Now y + k = f(x + h) for some h, and since f is continuous it follows that
k → 0 as h → 0. Also, since f has an inverse, it is 1-1, so for h �= 0 we have
f(x + h) �= f(x), so that k �= 0. Therefore

g(y + k) − g(y)
k

=
g(y + k) − g(y)

y + k − y
=

x + h − x

f(x + h) − f(x)
=

h

f(x + h) − f(x)
.

From this we deduce that

dg

dy
= lim

k→0

g(y + k) − g(y)
k

= lim
h→0

h

f(x + h) − f(x)
= 1

/
df

dx
.

If we were to assume that the inverse g is differentiable then we could
obtain the same formula from the inverse function relationship g(f(x)) = x.

Differentiating this equation using the chain rule gives g′(f(x))f ′(x) = 1, and
therefore, since y = f(x),

g′(y) =
1

f ′(x)
.

Example 4.11

We can verify the above rule using the logarithmic function.

Suppose y = f(x) = lnx, so that x = g(y) = ey is the inverse. then

g′(y) = ey = eln x = x =
1
1
x

=
1

f ′(x)
.

Example 4.12

Find the derivative of sinh−1 x.

Suppose y = sinh−1 x, so that x = sinh y. Differentiating the latter equation
implicitly with respect to x gives

1 = cosh y
dy

dx
so that

dy

dx
=

1
cosh y

,

as the general formula above implies. However we want the answer in terms of
x, and so we have to find cosh y in terms of x = sinh y. Using the hyperbolic
identity cosh2 y − sinh2 y = 1 gives cosh y =

√
1 + sinh2 y, where we use the

positive square root because cosh y is always positive. Therefore

dy

dx
=

1
cosh y

=
1√

1 + sinh2 y
=

1√
1 + x2

.
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Example 4.13

Let f(x) = x3 + 2x − 2, which is a 1-1 function. Find the derivative of f−1(x)
at the point where f and its inverse intersect.

The graphs of the function and its inverse are shown in Figure 4.2.

x

y

0 42−2−4

4

2

−2

−4

Figure 4.2 Graph of x3 + 2x − 2 and its inverse

The two graphs intersect at the point (1, 1), as can be seen from the fact that
f(1) = 1. Calculating the derivative gives f ′(x) = 3x2 + 2, and so f ′(1) = 5.

Therefore at the point of intersection the derivative of the inverse function has
value 1/5.

Example 4.14

In this example we consider the problem of differentiating the inverse sine
function. In Section 1.7.2 we considered the problems involved in restricting
the domain of sine so as to obtain a 1-1 function, which would therefore have
an inverse. We have to consider the same approach here.

Suppose that y = sin−1 x, which is equivalent to x = sin y. Differentiating
the latter equation implicitly with respect to x gives

1 = cos y
dy

dx
so that

dy

dx
=

1
cos y

.

We want the result in terms of x, and so we use the identity cos2 y +sin2 y = 1,

giving cos y = ±
√

1 − sin2 y = ±√
1 − x2. Unlike the previous example, where

sinh is 1-1 over its whole domain, and where the choice of square root was
straightforward, in this case we have to consider how the domain is restricted
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in the same way as in Section 1.7.2. Recall that in that section we used the
notation sin−1 x to denote the inverse of the function specified by

f(x) = sinx; −π

2
≤ x ≤ π

2
.

The graph was shown in Figure 1.22, and we can see that the gradient of the
inverse is positive, which means we have to choose the positive square root. We
note also that the derivative of sin is cos, which itself is positive in the interval(
−π

2
,
π

2

)
, again confirming the choice of the positive square root. So with f

specified with the given domain we have

d

dx

(
f−1(x)

)
=

1√
1 − x2

.

If on the other hand we consider the function g specified by

g(x) = sinx;
π

2
≤ x ≤ 3π

2
,

then the gradient of the inverse is negative, as shown in Figure 1.23, and also

confirmed by the fact that cosine is negative in the interval
(

π

2
,
3π

2

)
. So in

this case we have
d

dx

(
g−1(x)

)
= − 1√

1 − x2
.

4.5 Leibniz Theorem

We saw in Example 3.14 that finding the n-th derivative of a product can be
complicated. In this section we derive a general formula for this procedure. If
we begin by applying the product rule three times to the general expression of
the form h(x) = f(x)g(x) and collect like terms together at each stage we soon
perceive a pattern emerging. We find that

h′(x) = f ′(x)g(x) + f(x)g′(x);

h′′(x) = [f ′′(x)g(x) + f ′(x)g′(x)] + [f ′(x)g′(x) + f(x)g′′(x)]

= f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x);

h′′′(x) = [f ′′′(x)g(x) + f ′′(x)g′(x)] + 2[f ′′(x)g′(x) + f ′(x)g′′(x)]

+[f ′(x)g′′(x) + f(x)g′′′(x)]

= f ′′′(x)g(x) + 3f ′′(x)g′(x) + 3f ′(x)g′′(x) + f(x)g′′′(x),

where at each stage the square brackets indicate a pair of terms arising from
the application of the product rule to a single term at the previous stage.
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The pattern of numerical coefficients when the terms are collected together
is that of the binomial coefficients from Pascal’s triangle, and this enables us
to formulate the general result.

Theorem 4.15 (Leibniz)

If the functions f(x), g(x) are both differentiable n times then their product is
differentiable n times and

dn

dxn
(fg) =

dnf

dxn
g +

(
n

1

)
dn−1f

dxn−1

dg

dx
+

(
n

2

)
dn−2f

dxn−2

d2g

dx2 + . . .

+
(

n

k − 1

)
dn−(k−1)f

dxn−(k−1)

dk−1g

dxk−1 +
(

n

k

)
dn−kf

dxn−k

dkg

dxk
+ . . . + f

dng

dxn

=
n∑

k=0

(
n

k

)
dn−kf

dxn−k

dkg

dxk
.

Proof

The pattern we established above provides evidence for the truth of the result.
We include a proof here for readers who are familiar with proof by induction
(see Howie, Chapter 1) and the basic properties of binomial coefficients

In the course of the proof we use relationships involving binomial coeffi-
cients, which we prove first. It may be helpful to remind readers of the defini-
tion and notation for binomial coefficients. They occur in binomial expansions
such as (1 + x)n, where n is a positive integer. The k-th binomial coefficient is
the coefficient of xk in this expansion. It is given by the following formula(

n

k

)
=

n!
(n − k)!k!

,

for k = 0, 1, . . . , n, where 0! is defined to be 1. In fact for k = 0 and k = n

respectively we have(
n

0

)
=

n!
(n − 0)!0!

= 1,

(
n

n

)
=

n!
(n − n)!n!

= 1.

These expressions occur in Pascal’s Triangle, and the following addition
rule expresses in general terms the way in which we obtain the coefficients in
a particular row by adding the two appropriate entries from the row above.(

n

k − 1

)
+

(
n

k

)
=

n!
(n − k + 1)!(k − 1)!

+
n!

(n − k)!k!
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=
n!

(n − k + 1)!k!
(k + (n − k + 1))

=
(n + 1)!

(n + 1 − k)!k!
=

(
n + 1

k

)
.

We note the particular case k = 1, which we use below. This states that(
n

0

)
+

(
n

1

)
=

(
n + 1

1

)
, i.e., 1 +

(
n

1

)
=

(
n + 1

1

)
.

The proof of Leibniz Theorem uses the method of mathematical induction. The
result is true for n = 1 because it is just the ordinary product rule. If the result
is true for n as in the statement of the theorem then we differentiate both sides
once more with respect to x. Each term on the right hand side gives rise to two
terms, from the product rule. We therefore have

dn+1

dxn+1 (fg) =
dn+1f

dxn+1 g +
dnf

dxn

dg

dx

+
(

n

1

)
dnf

dxn

dg

dx
+

(
n

1

)
dn−1f

dxn−1

d2g

dx2

+
(

n

2

)
dn−1f

dxn−1

d2g

dx2 +
(

n

2

)
dn−2f

dxn−2

d3f

dx3 + · · ·

+
(

n

k − 1

)
dn−k+2f

dxn−k+2

dk−1g

dxk−1 +
(

n

k − 1

)
dn−k+1f

dxn−k+1

dkg

dxk

+
(

n

k

)
dn−k+1f

dxn−k+1

dkg

dxk
+

(
n

k

)
dn−kf

dxn−k

dk+1g

dxk+1 + · · ·

+
df

dx

dng

dxn
+ f

dn+1g

dxn+1 .

We now rearrange the terms in pairs so that they contain the same derivative.
So the second term in line 1 of the above chain of expressions combines with
the first term in line 2, the second term in line 2 with the first term in line 3,
and so on. This now gives

dn+1

dxn+1 (fg) =
dn+1f

dxn+1 g

+
dnf

dxn

dg

dx
+

(
n

1

)
dnf

dxn

dg

dx

+
(

n

1

)
dn−1f

dxn−1

d2g

dx2 +
(

n

2

)
dn−1f

dxn−1

d2g

dx2

+
(

n

2

)
dn−2f

dxn−2

d3f

dx3 + · · ·
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+
(

n

k − 1

)
dn−k+2f

dxn−k+2

dk−1g

dxk−1

+
(

n

k − 1

)
dn−k+1f

dxn−k+1

dkg

dxk
+

(
n

k

)
dn−k+1f

dxn−k+1

dkg

dxk

+
(

n

k

)
dn−kf

dxn−k

dk+1g

dxk+1 + · · ·

+
df

dx

dng

dxn
+ f

dn+1g

dxn+1 .

Finally we utilise the addition rule for binomial coefficients to give

dn+1

dxn+1 (fg) =
dn+1f

dxn+1 g +
(

n + 1
1

)
dn+1−1f

dxn+1−1

dg

dx

+
(

n + 1
2

)
dn+1−2f

dxn+1−2

d2g

dx2 + · · ·

+
(

n + 1
k

)
dn+1−kf

dxn+1−k

dkg

dxk
+ · · · + f

dn+1g

dxn+1 ,

which is the result for n + 1, thereby completing the proof by induction.

Example 4.16

Find a formula for the n-th derivative of x2 ln(2x + 3).

Let f(x) = ln(2x+3); g(x) = x2. Notice that for g the third and subsequent
derivatives are all zero, so that only the first three terms in Leibniz formula are
non-zero. We use the formula for the n-th derivative of f(x) which we obtained
in Example 3.13, namely

f (n)(x) = (n − 1)!
(−1)(n+1)2n

(2x + 3)n
.

Leibniz Theorem therefore gives

(fg)(n)(x) = f (n)(x).x2 +
(

n

1

)
f (n−1)(x).2x +

(
n

2

)
f (n−2).2

= (n − 1)!
(−1)n+12n

(2x + 3)n
.x2

+ n.(n − 2)!
(−1)n2n−1

(2x + 3)n−1 .2x

+
n(n − 1)

2!
.(n − 3)!

(−1)n−12n−2

(2x + 3)n−2 .2.
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If we take out the factor of
(n − 3)!(−1)(n+1)2n−2

(2x + 3)n
from each of the three

terms above we are left with

(n − 1)(n − 2).22.x2 − n(n − 2).2.2x(2x + 3) + n(n − 1)(2x + 3)2,

which simplifies to 8x2 + 12nx + 9n2 − 9n. We have therefore shown that

dn

dxn
(ln(2x + 3)) =

(n − 3)!(−1)(n+1)2n−2

(2x + 3)n

(
8x2 + 12nx + 9n2 − 9n

)
.

EXERCISES

4.1. For each of the following, find
dy

dx
in terms of x and y.

(a) 2xy + x − 3y = 2; (b) (x + 1)2 + 2(y − 1)3 = 0;

(c) x3y3 = xy − 1; (d) y lnx = x ln y;

(e) x2 − 3xy2 + y3x − y2 = 2; (f) xy
√

x + y = 1;

(g)
x

y
− y

x
= 1; (h)

x + y

x − y
=

x

y
+

1
y2 ;

(i) sin(xy2) = x + cos(yx2); (j) xy exp
(

x

y

)
= 1.

4.2. For each of the following, find
dy

dx
and

d2y

dx2 in terms of x and y.

(a) xy = 2x − 3y; (b) x sin y = sinx.

4.3. Given that x2 + 2y2 = 4, find
d2y

dx2 in terms of y only.

4.4. Find the gradient at the point (2,−2) of the curve whose equation
is x3 − xy − 3y2 = 0. Hence determine the equation of the tangent
to the curve at that point.

4.5. Find the gradient at the point (1, 0) of the curve whose equation is
x sin(xy) = x2 − 1. Hence determine the equation of the tangent to
the curve at that point. Explain from the formula why the curve is
symmetric about the y-axis, and hence write down the equation of
the tangent at the point (−1, 0).

Verify the symmetry by plotting the graph using MAPLE.
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4.6. For each of the following, use logarithmic differentiation to find
dy

dx
,

expressing the results in terms of x.

(a) y = xx; (b) y = x−x;

(c) y = (−x)−x; (d) y = (sinx)sin x;

(e) y = (ex)ln x; (f) y = (lnx)x;

(g) y = (tanx)2x; (h) y = 2x+x2
;

(i) y =
√

ex sin x; (j) y =
√

(x − 1)2e−x cos x.

4.7. For each of the following, find
dy

dx
and

d2y

dx2 in terms of t. Plot each
of the curves using MAPLE.

(a) x = 1 + ln t, y = t2 − t; (b) x = t + t2, y = t − t2;

(c) x = t ln t, y = 2t + 3; (d) x = t2, y = et + 1;

(e) x = t3, y =
√

t2 + 1; (f) x = sin(t2), y = cos t;

(g) x = tan t, y = et; (h) x = ln(cos t), y = sin t;

(i) x = cos t, y = tet; (j) x = sin(t), y = t2 + 1.

4.8. Find an expression for the gradient
dy

dx
, in terms of t, at a point on

the hyperbola given by

x = a cosh t, y = b sinh t.

Write down any values of t for which the gradient is undefined, ex-
plaining the geometrical significance.

Find expressions for
d2y

dx2 and
d3y

dx3 , in terms of t.

4.9. Find an expression, in terms of t, for the gradient at a point on the
curve specified by

x = t cos t, y = t sin t, t ≥ 0.

Plot the curve using MAPLE and explain why there are infinitely
many values of t for which the gradient is undefined.
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4.10. For each of the following functions, none of which is 1-1, investi-
gate differentiation of inverse functions obtained by restricting the
domain in various ways, as in Example 4.14.

(a) f(x) = cosh x; (b) f(x) = tanx; (c) f(x) = ex2
.

4.11. Find an expression for the derivative of tanh−1 x.

4.12. Use Leibniz Theorem to find the n-th derivative of each of the fol-
lowing.

(a) x lnx; (b) (x2 − 2x + 3)e2x; (c) x3e−x.



5
Applications of Differentiation

5.1 Gradients and Tangents

We saw in Section 3.1 that f ′(a), the value of the derivative f ′(x) at x = a,

corresponds to the gradient of the tangent to the graph of y = f(x) at the
point (a, f(a)) . This enables us to write down the equation for the tangent line
at (a, f(a)) in the form

y − f(a) = f ′(a)(x − a).

This is used in many problems in co-ordinate geometry, as in the following
examples.

Example 5.1

Let A = (−a, 0) be a point on the negative y-axis (so a > 0). Find the equations
of the tangents to the parabola y = x2 which pass through the point A. Find
the distance between the points where these tangents cross the x-axis.

The equation of the tangent at a point (p, p2) on the parabola is

y − p2 = 2p(x − p).

This can be rearranged as
y = 2px − p2.

This meets the y-axis where x = 0, namely y = −p2. This should be the point
A, so we require p2 = a, i.e., p =

√
a.
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The tangent crosses the x-axis where y = 0, i.e., where x =
p

2
.

Figure 5.1 (which corresponds to the case a = 4) shows the symmetry, and
so we conclude that the distance between the points where the two tangents
cross the x-axis is p =

√
a.

x

y

0 4321−1−2−3−4

15

10

5

Figure 5.1 Parabola and tangents

Example 5.2

Let A be a point on the ellipse given by x = a cos t, y = b sin t. B is the
reflection of A in the y-axis. The tangents at A and B cross at right-angles.
Find the values of t.

The points A and B have coordinates (±a cos t, b sin t), which can be written
in the form

(a cos t, b sin t), (a cos(π − t), b sin(π − t)).

To find the gradients we need to use parametric differentiation, and we see from
Example 4.8 that the gradients are

− b

a
cot t and − b

a
cot(π − t)

respectively. For the tangents to cross at right-angles the product of the gradi-
ents must be −1. Therefore(

b

a
cot t

) (
b

a
cot(π − t)

)
= −1.
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Using the fact that cot(π − t) = − cot t we have

b2

a2 cot2 t = 1, i.e., tan t = ± b

a
,

and the values of t required are the solutions of this equation. By way of
example, if the ellipse is in fact a circle, so that a = b, then tan t = ±1, so
t = ±π

4
, as would be clear from a diagram.

5.2 Maxima and Minima

Finding how large or small a given quantity can be is important in many
problems in science, engineering, economics, etc., and when this quantity is
given by an algebraic formula we can use differentiation to determine these
maximum or minimum values. We need to distinguish various kinds of maxima
and minima: the following definition does this.

Definition 5.3

Suppose that f is a function with domain D, and that a is a number in D.

(i) f is said to have a global maximum at a if
f(x) ≤ f(a) for all x in D.

(ii) f is said to have a global minimum at a if
f(x) ≥ f(a) for all x in D.

(iii) f is said to have a local maximum at a if
there is an interval (a − δ, a + δ) such that f(x) ≤ f(a)
for all x in D belonging to this interval.

(iv) f is said to have a local minimum at a if
there is an interval (a − δ, a + δ) such that f(x) ≥ f(a)
for all x in D belonging to this interval.

We can see from these definitions that a global maximum/minimum is a
local maximum/minimum, but not necessarily the converse.

In some texts “absolute” is used in place of “global” and “relative” is used
in place of “local”.

Example 5.4

Locate the maxima and minima of the function defined by f(x) = x3−3x2−9x,

for −4 ≤ x ≤ 6, by plotting its graph.
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In this example we have set the domain D to be the interval specified by
−4 ≤ x ≤ 6. We can see from the graph that f has a global minimum at
x = −4. It is the place where the value of f(x) is smallest compared with all
other values. Likewise there is a global maximum at x = 6, because f(6) is
larger than all other values of f(x), where x belongs to D.

When x = −1 we have a local maximum. We can see from the graph that
f(x) ≤ f(−1) for all x satisfying −2 ≤ x ≤ 0. This is not a global maximum
because, for example, f(6) > f(−1).

When x = 3 we have a local minimum. We can see from the graph that
f(x) ≥ f(3) for all x satisfying 0 ≤ x ≤ 4. This is not a global minimum
because for example f(−4) < f(3).

x

y

0 642−2−4

40

20

−20

−40

−60

Figure 5.2 Maximum and minimum

To complete the description of the maxima and minima we have to calculate
the value of the function at each of the corresponding values of x.

So to summarise:
There is a local maximum at the point (−1, f(−1)) = (−1, 5).
There is a local minimum at the point (3, f(3)) = (3,−27).
There is a global maximum at the point (6, f(6)) = (6, 54).
There is a global minimum at the point (−4, f(−4)) = (−4,−76).

We shall now see how to find such points using differentiation.

Theorem 5.5

Suppose that f(x) is differentiable at x = a and that x = a is a local maximum
or a local minimum. Then f ′(a) = 0.
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Proof

We use the limit definition of the derivative (Definition 3.1), namely

f ′(a) = lim
x→a

f(x) − f(a)
x − a

.

This is a two-sided limit, and so both one-sided limits will be the same. So

f ′(a) = lim
x→a+

f(x) − f(a)
x − a

= lim
x→a−

f(x) − f(a)
x − a

.

Suppose there is a local maximum at x = a. Then f(x) ≤ f(a) for all x in some
interval I containing a. So for all x in this interval we have f(x) − f(a) ≤ 0.

For the right-sided limit we have x − a > 0 and so for x in I we deduce that
f(x) − f(a)

x − a
≤ 0. We are considering the limit as x → a, and so x can be

restricted to the interval I. Therefore

f ′(a) = lim
x→a+

f(x) − f(a)
x − a

≤ 0.

For the left-sided limit we have x − a < 0 and so for x in I we deduce that
f(x) − f(a)

x − a
≥ 0. Therefore

f ′(a) = lim
x→a−

f(x) − f(a)
x − a

≥ 0.

We therefore conclude that f ′(a) = 0.
The case of a local minimum is proved in exactly the same way.

The converse of this theorem is not true, and there are situations where
the derivative is zero but we do not have a maximum or a minimum. One of
the simplest examples is f(x) = x3. Differentiating gives f ′(x) = 3x2, which is
zero when x = 0. This point is not a maximum or a minimum, because x3 is
negative for all x < 0 and positive for all x > 0. Nevertheless, points such as
this are also important, in interpreting graphs for example, and we group them
all together in the following definition.

Definition 5.6

Given a differentiable function f(x), any point a for which f ′(a) = 0 is called
a stationary point. Other terms sometimes used are turning point and
critical point.

Once we have found all the stationary points by solving f ′(x) = 0 we need to
be able to decide what type they are. We will discuss three possible approaches
to this.
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Firstly we can simply plot the graph, perhaps using MAPLE. We still need
to solve f ′(x) = 0 because the graph will not tell us the exact solutions, which
may involve irrational numbers such as

√
3 or π. Once we know where the

stationary points are then the graph should be able to tell us whether they are
maxima, minima or neither. Naturally we need to choose carefully the values
of x and y to be included in the plot, so that we obtain as clear a picture as
we can of the behaviour near to the stationary point under investigation.

The second method involves consideration of the derivative near to the
stationary point. Near a local maximum, the graph is increasing to the left
of the stationary point, and decreasing to the right, so we should expect the
derivative to be positive on the left and negative on the right. The reverse
occurs with a local minimum.

In the example f(x) = x3 we have f ′(x) = 3x2, which is positive both on the
left and the right of x = 0, and the stationary point is neither a maximum nor
a minimum. Such stationary points are sometimes called points of inflection.

The third method involves using the second derivative.

Theorem 5.7 (The second derivative test)

Suppose that f(x) has a stationary point at x = a and that f is twice differ-
entiable at x = a.

(i) If f ′′(a) > 0 then x = a is a local minimum.
(ii) If f ′′(a) < 0 then x = a is a local maximum.
(iii) If f ′′(a) = 0 this gives no information about the type of stationary

point.

Proof

We use the limit definition

f ′′(a) = lim
x→a

f ′(x) − f ′(a)
x − a

.

In this case we have f ′(a) = 0 and so

f ′′(a) = lim
x→a

f ′(x)
x − a

.

(i) If f ′′(a) > 0 this tells us that for x near to a we must have f ′(x) < 0 if
x < a and f ′(x) > 0 if x > a. The second method described above tells us that
we must have a minimum at x = a.

(ii) If f ′′(a) < 0 then similar reasoning to (i) tells us that we have a maxi-
mum at x = a.
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(iii) Here we give examples. We have already seen that if f(x) = x3 we
have f ′′(0) = 0 but zero is neither a maximum nor a minimum. If f(x) = x4

then clearly we have a minimum at x = 0, but f ′′(x) = 12x2, which is zero at
x = 0. Likewise if f(x) = −x4 then clearly we have a maximum at x = 0, but
f ′′(x) = −12x2, which again is zero at x = 0. This example demonstrates that
the condition f ′′(a) = 0 is inconclusive.

We note that it is normally possible to investigate case (iii) using Taylor
series, discussed in Chapter 6.

Example 5.8

Locate and classify maxima and minima for the function defined by

f(x) = x5 − 4x3, (−2.2 ≤ x ≤ 2.2).

We need to find where f ′(x) = 0, so we have

f ′(x) = 5x4 − 12x2 = x2 (
5x2 − 12

)
= 0 when x = 0,±

√
12/5.

We shall try to classify these stationary points using the second derivative test.
We have f ′′(x) = 20x3 − 24x = x(20x2 − 24). Evaluating this at the stationary
points gives
f ′′

(√
12/5

)
= 24

√
12/5 > 0 so we have a local minimum at x =

√
12/5.

f ′′
(
−√

12/5
)

= −24
√

12/5 < 0 and therefore we have a local maximum at

x = −√
12/5.

f ′′(0) = 0 so the second derivative test gives no information here. To investigate
this further we can plot the graph.

We can see from Figure 5.3 that the local maximum and local minimum
we found are confirmed, and that the stationary point at x = 0 is neither a
maximum nor a minimum. In fact since f ′(x) = x2

(
5x2 − 12

)
we can see that

the derivative is negative near to x = 0 on both sides, so that the graph is
decreasing in an interval around x = 0.

The other thing we can see from the graph is that there is a global minimum
at the left hand endpoint of the domain, and a global maximum at the right
hand endpoint of the domain.

To verify this numerically we need to find the values of the function at the
stationary points and at the endpoints. We find that

f(2.2) = (2.2)5 − 4(2.2)3 ≈ 8.94,

f
(√

12
5

)
=

(√
12
5

)5
− 4

(√
12
5

)3
= − 96

25

(√
12
5

)
≈ −5.95.
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Figure 5.3 Graph of f(x) = x5 − 4x3

Since f is an odd function we can write down the corresponding values
f(−2.2) ≈ −8.94,

f
(
−

√
12
5

)
= 96

25

(√
12
5

)
≈ 5.95.

This confirms that the global maximum and the global minimum are at the
right- and left-hand endpoints of the domain respectively.

In fact whenever we have a continuous function defined on a closed interval,
it will always have a global maximum and a global minimum. This result is
discussed in Howie, Chapter 3. Global maximum and minimum values may
occur at the endpoints, as in this case, or at a stationary point if the value of
the function there is greater.

5.3 Optimisation Problems

In this section we are concerned with optimisation problems. This means we are
trying to find a solution to a problem which optimises (finds the best value for)
some quantity such as volume, or cost. We shall consider problems where the
optimum solution corresponds to a maximum or a minimum. Problems such
as this are often stated verbally, and we can use a common strategy for their
solution, with the following steps.

1. Choose variables to represent the quantities described in the problem.

2. If possible draw a diagram and indicate these quantities on the diagram.

3. Use the diagram and the information given in the problem to find formulae
relating the quantities mentioned.
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4. Use these formulae to determine a formula for the quantity to be optimised
as a function of one variable.

5. Determine any restrictions on the variables arising from the conditions of
the problem (for example an area should be positive).

6. Use the techniques of calculus to determine the stationary points, paying
attention to any restrictions on the variables.

7. Determine maxima and minima and choose the one which provides the
solution to the problem.

In this section we restrict attention to problems involving one variable,
although in practice optimisation problems often involve many variables, and
their investigation forms part of Operational Research.

Example 5.9

Find the point on the curve y = x3 which is nearest to (4, 0).

The variables here will be the coordinates of an arbitrary point (x, y) on
the curve, and the distance D of that point from (4, 0). The variables x and y

are of course related through the equation of the curve, y = x3.

We know that the distance will involve a square root, from Pythagoras’
Theorem. It is therefore likely to be easier algebraically to consider the square
of the distance, so we have D2 = (x − 4)2 + y2. Using the relationship y = x3

then gives
D2 = (x − 4)2 + x6.

We have now obtained a formula for the quantity to be optimised as a func-
tion of one variable. To find its minimum value we look for stationary points.
Differentiating gives

d(D2)
dx

= 2(x − 4) + 6x5 = 2(x − 1)(3x4 + 3x3 + 3x2 + 3x + 4).

The polynomial of degree four is clearly positive for all positive values of x, and
it is clear from drawing a diagram that the nearest point to (4, 0) on the curve
will be in the first quadrant. So x = 1 gives the stationary point we need, and
geometrically it is clear that this will be a minimum. The smallest distance is
therefore given by D2 = (1 − 4)2 + 16 = 10, so D =

√
10 is the solution to the

problem.
The reasoning used here is typical of this kind of problem, being a mixture

of calculation and geometrical reasoning derived from the conditions of the
problem.
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Example 5.10

A rectangular piece of plastic sheeting 10m long and 2m wide is folded in half
lengthways to form a tunnel in the shape of a triangular prism to protect plants
in the garden from cold weather. What should be the height of the prism to
maximise the volume of the prism?

The variables in this problem are the volume V , the height h and half the
base b, as shown in Figure 5.4, from which we obtain the following relationships.
From Pythagoras’ Theorem, h2 + b2 = 1, and the volume is V = 10hb. It is
clear from these equations that it will be easier to consider the square of the
volume, and we eliminate b to obtain

V 2 = 100h2b2 = 100h2(1 − h2) = 100(h2 − h4).

Differentiating with respect to h then gives

d(V 2)
dh

= 100(2h − 4h3) = 200h(1 − 2h2) = 200h(1 − h
√

2)(1 + h
√

2).

h

b b

1m 1m

10m

Figure 5.4 Diagram for Example 5.10

We want the derivative to be zero, and from the conditions of the problem we
must have h positive, and the only positive value of h giving a zero derivative

is h =
1√
2
. Now because of the factor 1 − 2h2 the derivative changes from

positive to negative as h increases through the stationary point. We therefore
have a maximum. The maximum volume is given by

V =

√
100

(
1
2

− 1
4

)
= 5m3.
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Example 5.11

A pharmaceutical company manufactures a vaccine which it sells to hospitals
for £20 per dose. The cost of production for x doses is £(1000+5x+0.002x2).
The factory can produce at most 5000 doses in a week. How many doses should
the company manufacture and sell in a week to maximise the profit?

The variables in this problem are the profit P, the cost of production C

and the sales receipts S. These are related by the simple equation P = S − C.

Using the information in the problem therefore gives the profit made by selling
x doses as

P = 20x − (1000 + 5x + 0.002x2) = −0.002x2 + 15x − 1000.

We must note that of course x is an integer variable. In order to apply the
methods of calculus we would need to treat it as a real variable. We would have
to be careful if the stationary point turned out not to occur at an integer value.
Now in fact, because P is given by a quadratic function, we do not need to use
differentiation, we can simply complete the square, giving

P = −0.002x2 + 15x − 1000 = −0.002(x − 3750)2 + 27125.

We can see from this that the stationary point occurs where x = 3750, i.e.,
where (x − 3750)2 = 0, and the maximum profit is £27,125. So the company
should manufacture and sell 3750 doses per week to maximise profit. Naturally
differentiation would give the same result.

5.4 The Newton-Raphson Method

In this section we consider a numerical method, using the derivative, for solving
equations for which we cannot find exact solutions algebraically.

Geometrically the method can be understood through Figure 5.5. We are
trying to find the value of x for which the curve y = f(x) crosses the x-axis. In
other words we are trying to solve the equation f(x) = 0. The method proceeds
by having an initial guess x0, possibly obtained from a graph, which we hope
is close to the actual solution. We then join the point (x0, 0), on the x-axis,
by means of a line parallel to the y-axis, to the point (x0, f(x0)) lying on the
curve. We then draw the tangent to the curve at this point, and we denote by
x1 the value of x for which the tangent meets the x-axis. We can see on the
diagram that this new value appears to be closer to the actual solution than
the first guess x0. We then continue this procedure, generating a sequence of
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x

y

x3 x2 x1 x0

(x0, f(x0))

y = f(x)

Figure 5.5 The Newton-Raphson method

numbers x0, x1, x2, · · · , xn, · · · which we hope will converge to the solution we
are looking for.

To derive a formula which gives a number in the sequence in terms of its
predecessor, we note that the gradient of the first tangent we drew is f ′(x0),
and so its equation is

y − f(x0) = f ′(x0)(x − x0).

This crosses the x-axis where y = 0, so that −f(x0) = f ′(x0)(x−x0) which we
can rearrange in the form

x = x0 − f(x0)
f ′(x0)

.

This only makes sense provided f ′(x0) �= 0, and we can see that if the derivative
were zero then the tangent would be parallel to the x-axis and would not
intersect it at all. In fact if the derivative is non-zero but very small then the
method can break down, firstly because the tangent may intersect the x-axis
a very long way away from the solution we are seeking, and secondly because
dividing by a very small number on a computer or a calculator can give rise to
significant numerical inaccuracy.

Apart from considerations such as these we have now determined the value
of x1. We generalise this to give the iterative formula

xn+1 = xn − f(xn)
f ′(xn)

.
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For a given function f(x) we can find its derivative and obtain a specific
Newton-Raphson formula, which lends itself to the use of a spreadsheet for
finding successive terms of the sequence x0, x1, x2, · · · , xn, · · · , thereby getting
an idea of whether the sequence converges, and obtaining an approximate solu-
tion to f(x) = 0 to as many decimal places as the spreadsheet can work with.
It is possible to investigate this further to find bounds for the error at each
stage of the approximation, but this is beyond the scope of this book.

Example 5.12

Use the Newton-Raphson method to find the least positive solution of the
equation x = 2 sinx.

We need the equation in the form f(x) = 0, so we can write

f(x) = x − 2 sin x.

We then have f ′(x) = 1 − 2 cos x, and so the Newton-Raphson formula gives

xn+1 = xn − xn − sin(xn)
1 − cos(xn)

.

Plotting a graph of f(x) gives an approximate answer of 1.9, which we shall
use for x0.

The first few rows of the output from a spreadsheet are shown in the fol-
lowing table, formatted to present 10 decimal places.

n xn xn+1

0 1.9000000000 1.8944080080
1 1.8944080080 1.8957571980
2 1.8957571980 1.8954306858
3 1.8954306858 1.8955096457
4 1.8955096457 1.8954905476
5 1.8954905476 1.8954951666
6 1.8954951666 1.8954940495

This suggests that the solution is 1.89549 correct to 5 decimal places.

5.5 Motion in a Straight Line

Speed records are measured by a vehicle travelling a specified distance and
the time taken being recorded. Calculating distance divided by time then gives
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the average speed over that distance, and this is what the records comprise.
However if you drive a car you see a continuous readout on the speedometer,
suggesting some idea of speed at an instant of time.

Suppose that we have a car travelling in a straight line, and that x(t) denotes
its distance from some fixed point at time t. Suppose also that we can record
the distance travelled at two times very close to one another, say t and t+h, and
calculate the average speed over that short time interval. The average speed
will be measured by distance travelled divided by time taken, i.e.,

x(t + h) − x(t)
h

.

This is the quotient whose limit as h tends to 0 is the derivative (the rate of
change of distance with respect to time), and so this will correspond to the idea
of speed at an instant of time. Now if the vehicle is travelling in the negative
direction relative to the measurement of distance, then the derivative would
be negative, but the speedometer would still record some positive value like
80km/h. We therefore need to take the direction of motion into account if we
wish to use the derivative to describe how fast something is moving. From the
discussion above it seems that a speedometer measures the magnitude of the
derivative, and we use the word speed in this sense. When we want to include
the direction of motion we use the word velocity.

When we begin a car journey our speed increases. We say that we are
accelerating. When we slow down we say that we are decelerating. We describe
acceleration mathematically as the rate at which the velocity changes. In this
sense, when the car is decelerating its acceleration is negative.

Definition 5.13

If an object is moving along the x-axis so that its distance from the origin at

time t is x(t), we define its velocity at time t to be
dx

dt
. We define its speed

at time t to be
∣∣∣∣dx

dt

∣∣∣∣ . We define the acceleration of the object to be
d2x

dt2
.

Example 5.14

An object is oscillating up and down while suspended from a spring. Its dis-
tance, measured downwards in centimetres below the suspension point P of the
spring, is given by x(t) = 2 + cos 2t. Describe the subsequent motion.

We know that cosine varies between ±1 and so the distance of the object be-
low P varies between 1cm and 3cm. The formulae for velocity and acceleration
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respectively are given by

dx

dt
= −2 sin 2t;

d2x

dt2
= −4 cos 2t.

All this information can be seen by plotting and interpreting graphs. Figure 5.6
plots the distance of the object below the point of suspension as a function of
time. Figure 5.7 shows the velocity as a function of time. The verbal descrip-
tion of the motion given below corresponds to the important features of these
graphs.
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0

Figure 5.6 Distance-time graph
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Figure 5.7 Velocity-time graph

Clearly the trigonometric functions correspond to periodic oscillations.
When t = 0 the object is at its maximum distance below P . The velocity
is then zero and the acceleration is negative, with magnitude 4, the maximum
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possible. This means that at that instant the object has stopped moving. Its
speed has been decreasing, and it is about to change direction and pick up
speed again, so a deceleration has been taking place, and the negative sign
for the second derivative at t = 0 confirms that. When t =

π

4
the object is

at the mid-point of its path, at distance 2cm below P . At that point we have
sin 2t = 1 and so the speed has its maximum value. The velocity is negative,
meaning that the object is moving upwards as fast as it can at that point. The
acceleration is zero there. The object has been speeding up and it is just about
to start slowing down.

Example 5.15

A ship leaves port and sails away in a straight line. A radar station is located
3km away from the port in a direction perpendicular to the direction of the
ship. When the ship is 5km from the radar station its distance from the radar
station is increasing at a rate of 2km/h. What is its velocity at that point?

Let x(t) denote the distance of the ship from port at time t and let y(t)
denote its distance from the radar station. Pythagoras’ Theorem tells us that
x(t)2+32 = y(t)2. This is an implicit equation, so we use implicit differentiation
to find a relationship between the rates of change. We have

2x
dx

dt
= 2y

dy

dt
and so

dx

dt
=

y

x

dy

dt
(x �= 0).

At the point in question we are given that y = 5 and
dy

dt
= 2. We therefore

have x = 4, and so
dx

dt
=

y

x

dy

dt
=

5
4

× 2 =
5
2
km/h.

Example 5.16

Derive formulae for the motion of an object in a straight line when it is expe-
riencing constant acceleration (such as that due to gravity).

Since the acceleration is constant we have
d2x

dt2
= a, where a is constant.

Basic integration then tells us that
dx

dt
= at + b for some constant b. To de-

termine a value for b we need to know the velocity at some particular point
in time. Suppose that the velocity is v0 when t = 0. Therefore b = v0 and

so
dx

dt
= at + v0. Integrating again gives x(t) = 1

2at2 + v0t + c for some con-
stant c. Now suppose that x = x0 when t = 0. This tells us that c = x0.
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Therefore x = 1
2at2 + v0t + x0. The following three formulae are therefore the

standard equations used to analyse problems about motion in a straight line
under constant acceleration.

d2x

dt2
= a;

dx

dt
= at + v0; x =

1
2
at2 + v0t + x0.

5.6 Growth and Decay

We sometimes see images of colonies of bacteria in medical programmes on
television. The size of the colony seems to grow slowly at first, but the rate of
growth gets more and more rapid. The experts tell us that the bacteria divide
to produce new bacteria. So for example if there are 106 bacteria then after one
division there will be twice as many, namely 2.106. After another division there
will again be twice as many, i.e., 4.106. Following this pattern, after n divisions
there will be 2n.106 bacteria (assuming that none die). We can see that the rate
of growth depends on how many bacteria there are at any given stage of the
process. The number of bacteria in a colony is large, and division happens very
quickly. So we model the process by taking the number of bacteria to be X(t),
a quantity changing continuously with time, t. With this assumption X(t) is
not restricted to integer values, but it means that we can use calculus to model
the growth of the colony. It is found that such models correspond closely with
such growth processes in nature. The rate of growth of X(t) will be modelled
by the derivative, and the assumption that this is proportional to the quantity
present at time t leads to the equation

dX

dt
= kX,

where k is the constant of proportionality. This is known as the exponential
growth model. Solving such equations is the province of the study of differential
equations, which is outside the scope of this book. However in this case we are
looking for a function X(t) whose derivative is itself, multiplied by a constant
k, and our experience with differentiation tells us that

X(t) = Aekt

is the function we are looking for. Now X(0) = A, so the constant A represents
the size of the colony of bacteria when we start observing at time t = 0.

In a growth process such as this we have k > 0, and Aekt → ∞ as t → ∞.

It is clear therefore that the model only applies for a restricted interval of time,
for otherwise the colony would eventually weigh more than the earth! What
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happens of course is that factors come into play which we did not build into
the model. Bacteria die, and growth slows as food runs out.

What we need to know for a particular growth process is the value of the
constants A and k. These can be determined from measurements, as in the
following examples.

Example 5.17

A colony of bacteria weighs 1µg. After 10 seconds it weighs 1.5µg. Determine
the rate of growth, assuming an exponential model, and hence deduce the
weight of the colony after 20 seconds.

Let X(t) denote the weight of the colony at time t, so X(t) = Aekt. When
t = 0, X(0) = A = 1. When t = 10 we know that X(10) = e10k = 1.5. Therefore
k = ln(1.5)/10. After 20 seconds we have

X(t) = e20. ln 1.5
10 = eln(1.52) = 1.52 = 2.25µg.

Example 5.18

A large circular water lily leaf floating on the surface of a pond grows, and
spreads out in such a way that the larger it becomes, the faster it grows. The
gardener measures the area of the leaf, and on returning 20 days later finds
that it has quadrupled in size. Assuming exponential growth, how long did it
take from the gardener’s initial measurement to double in size?

Let X(t) denote the area of the leaf at time t, so X(t) = Aekt. We have
X(0) = A, and X(20) = 4A = Ae20k, so e20k = 4, giving k = ln(4)/20. We
want to find the value of t for which X(t) = 2A, i.e., 2A = Aekt. Therefore

t =
ln 2
k

=
20 ln 2
ln 4

=
20 ln 2
2 ln 2

= 10 days.

In fact common sense suggests that if it doubled in 10 days it would be quite
likely to double again in another 10 days. This tells us that the exponential
growth model agrees with our intuitive ideas about such growth processes.

The opposite of growth is decay, and one of the best-known decay pro-
cesses is the decomposition of radioactive material. We model this situation
by assuming that the more atoms there are in a lump of material the more
decay decompositions there will be, suggesting that the rate of decay should
be proportional to the number of atoms there are in a lump of such material.

Again we can write
dX

dt
= kX, and because this is decay rather than growth

X(t) should decrease as t increases, giving a negative derivative, and therefore
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a negative value for k. For this reason we often make the negative sign explicit,
and write the equation in the form

dX

dt
= −kX, giving X(t) = Ae−kt.

We speak of exponential decay. The rate of decay of a radioactive material is
usually specified by giving its half-life, which is the length of time taken for
half the amount of material to decompose. Of course a lump of such material
will not actually halve in size, because the radioactive element decays into
something else, like lead for example. Some of the transuranic elements are
rather evanescent, having a very short half-life. Others have a very long half-
life, and unfortunately some of the radioactive waste products from nuclear
fission fall into this category.

Example 5.19

A radioactive element has a half-life of H years. Every year a nuclear reactor
produces a quantity of this element as waste. How long will it be before this
batch of waste contains only 10% of the original amount of the radioactive
material?

Let X(t) denote the amount of material remaining after time t. Assum-
ing exponential decay, we have X(t) = Ae−kt, where the original amount of
material is A. When t = H, the half-life, X(H) = 1

2A. Therefore

A

2
= Ae−kH , giving k =

ln 2
H

.

When X(t) = X(0)/10 we have

A

10
= Ae−kt, so t = H

ln 10
ln 2

≈ 3.32H.

One of the waste products from nuclear reactors is Plutonium 239. This has a
half-life of 24,400 years, so the time taken for 90% of a batch of such material
to decay will be approximately 81,000 years.

Example 5.20

Newton’s law of cooling states that a body cools at a rate which is proportional
to the difference between its temperature and the temperature of its surround-
ings. On a warm day, when room temperature is 24◦C, a cup of coffee is poured
out at 80◦C. After 5 minutes it has cooled to 60◦C. How long must I wait if I
like my coffee to be at 45◦C before I drink it?
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Let T (t) denote the temperature of the coffee at time t. Then Newton’s law

of cooling tells us that
dT

dt
= −k(T − 24). We first note that

dT

dt
=

d

dt
(T − 24),

so we can write the equation as

d

dt
(T − 24) = −k(T − 24), so T − 24 = Ae−kt.

When t = 0, T = 80, so 80 = 24 + A, giving A = 56. After 5 minutes, when
T = 60, the equation tells us that

60 − 24 = 36 = 56e−5k, from which k =
1
5

ln
(

56
36

)
=

ln 56 − ln 36
5

.

We want to find the value of t for which T = 45, and so we require

45 − 24 = 21 = 56e−kt, giving t = 5
ln 56 − ln 21
ln 56 − ln 36

≈ 11 minutes.

EXERCISES

5.1. The tangent to the graph of y = x3 at a point P meets the curve
again at another point Q. Find the coordinates of Q in terms of the
coordinates of P .

5.2. Two circles of radius a are tangent to one another. The two tangents
from the centre of one circle touch the other circle at the two points
A and B. Find the distance between A and B.

5.3. Locate and classify the stationary points for the functions defined
by the following expressions.

(a) x2 − 6x − 4; (b) (x2 − 1)2;

(c) x4 + 4x3 − 2x2 − 12x − 5; (d)
x + 1
x2 + 2

;

(e)
2x2 − 3
x2 + 1

; (f) x2 exp(−x2);

(g) ln(1 + x + x2); (h) x4/3 − 2x2/3;

(i) |x2 − 4|; (j)
x3

√
1 + x6

.
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5.4. Find the local and global maxima and minima for the functions
defined by the following expressions, with the domains indicated.

(a) x2 + 2x − 3, −2 ≤ x ≤ 2;

(b) x(x + 1)2, −2 ≤ x ≤ 2;

(c)
2x + 1
x2 + 2

, −3 ≤ x ≤ 3;

(d) x
√

3 − x2, −√
3 ≤ x ≤ √

3;

(e) x − 2 sin x, −π ≤ x ≤ π;

(f) cos 2x + 2 sinx, −π ≤ x ≤ π;

(g)
cos x

2 + sin x
, −π

2 ≤ x ≤ π
2 ;

(h) x3−x, 0 ≤ x ≤ 1;

(i)
lnx

x2 , 1 ≤ x ≤ 5;

(j)
1

cosh(x − 1)
, −3 ≤ x ≤ 3.

5.5. Locate all the stationary points for the function f(x) = cos (ex) .

How many of these are in the interval 0 ≤ x ≤ 10?

5.6. A hyperbola has equation x2 − 2y2 = 1. Find the points on this
hyperbola which are closest to the point (0, a) on the y-axis.

5.7. Many optimisation problems are formulated in terms of manufactur-
ing boxes, as in this exercise.

A box without a lid is to be made from a 2m×1m rectangular sheet
of card by cutting out four equal squares, one from each corner. The
resulting rectangles formed at the edges of the card are then folded
to make a rectangular box. Find the maximum volume which can be
obtained.

5.8. A right circular cone has a total surface area of 4m2. Find the di-
mensions of the cone which give the greatest volume.

5.9. Stainless steel grain silos are to be manufactured, each with a vol-
ume of 2000m3. They will rest on a concrete base and consist of
a cylindrical wall and a hemispherical top. A stainless steel hemi-
sphere costs three times as much per unit area to manufacture as
a cylinder. Find the radius of the cylinder which will minimise the
cost of manufacture.
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5.10. A high-speed train is making a long journey, of which 1000km is at
a constant speed vkm/h. The cost of fuel per hour at this speed is
given by

C = 2048 + v
3
2 .

Find the speed at which the train should travel to minimise the cost
of this part of its journey.

5.11. Use the Newton-Raphson method to find approximations for the
solutions of the equation

x5 − 4x3 = 2.

Plot a graph to help to choose suitable initial approximations cor-
responding to each of the roots, and use a spreadsheet to obtain 10
decimal places of accuracy.

5.12. A rocket is launched vertically upwards with an initial speed of
1000m/s. It decelerates due to gravity. A tracking station is 10km
away from the launch pad. What is the rate of change of the dis-
tance of the rocket from the tracking station when it has reached
a height of 10km? Give your answer in m/s correct to one decimal
place. [Take g, the acceleration due to gravity, as 9.8m/s2.]

5.13. Radium 226 has a half-life of 1622 years. It decays and changes
into Lead 210 (through intermediate elements of relatively short half
lives). The radiation from radium is toxic, so it has to be shielded
from those nearby. If we have one gram of radium in the laboratory,
how long would it take before there was only 1mg (one thousandth
of a gram) of radium left in the sample?

5.14. A Chemistry student takes some molten metal from a furnace, but
forgets to measure its temperature. Twenty minutes later he remem-
bers, and finds that the temperature of the sample is 250◦C. After
another 10 minutes its temperature is 150◦C. The ambient temper-
ature in the laboratory is 20◦C. Assuming Newton’s law of cooling,
what was the temperature of the metal when it was taken from the
furnace?



6
Maclaurin and Taylor Expansions

How does your calculator work out values of the trigonometric functions, or any
of the other functions on the various buttons? The circuitry can do addition,
and therefore multiplication, which is in essence repeated addition. It can also
do subtraction, and division, which can be thought of as repeated subtraction.
It can therefore work out values of polynomials like

3 − x + 2x2 + 4x3 − 2.7x4

for numerical values of x. We therefore need to be able to find polynomials which
approximate to the standard functions, and these could then be programmed
into the circuits in a calculator. Clearly such an exercise should include an
analysis of the greatest possible errors arising with such approximations if the
digits in the display are to be accurate. We start with a simple case.

6.1 Linear Approximation

In this section we concentrate on finding linear approximations to a given func-
tion over a specified interval.

The curve shown in Figure 6.1 has equation y = 10 − x3, and we have
drawn in three of many possible lines which might be considered as providing
linear approximations for this function in the interval 0 ≤ x ≤ 2. This interval
specifies the two points P (1, 9) and Q(2, 2) indicated on the diagram.

133
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x

y

0 21−1a

5

10

P

Q

Figure 6.1 Linear approximations

Firstly we have drawn the tangent line at P . This approximates to the curve
very well when x is near to 1, but as x increases towards 2 the line diverges
from the curve by a considerable amount.

Secondly we have drawn the line passing through P and Q. This provides
quite a good approximation across the interval, but near to P it is not so
accurate as the tangent line.

Finally we have drawn a line parallel to the line PQ, for which the greatest
difference between the y-value on the line and that on the curve, as x varies
between 0 and 2, is smaller than it is for PQ. It is better in some places, but
worse in others, especially near to x = 1 and x = 2.

Each of these lines is a possible candidate for a linear approximation. They
have been chosen using different criteria, and this serves to emphasise that
there is no “best” linear approximation.

Such considerations apply when we extend the discussion to approximat-
ing polynomials of higher degree than linear, and several different families of
approximating polynomials have been investigated over the years.

In this chapter we shall base the choice of approximation on the notion of
tangency, as with the first of the lines discussed above.

If we now generalise the situation so that the curve has equation y = f(x),
and the point P is (a, f(a)) , then we can work out the equation of the tangent
line, and it can be rearranged in the form

y = f(a) + f ′(a)(x − a).

The tangent line and the curve have the same gradient at P , and so y changes
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as x changes at approximately the same rate along the line and the curve in a
small interval containing x = a. This suggests that the tangent line will give a
reasonable approximation to the curve near to x = a.

Even simpler than a linear approximation is to use a constant, so that we
could say that near to x = a, f(x) is approximately equal to f(a). In the next
section we shall consider the error which this constant approximation involves.

6.2 The Mean Value Theorem

A proof of this theorem is beyond the scope of this book. It can be found in
Real Analysis books such as Howie, Chapter 4. It is important however to have
a clear statement of the theorem with all the requisite conditions, and to give
a geometrical interpretation.

Theorem 6.1 (The Mean Value Theorem)

Suppose that f(x) is a function which is continuous for all values of x satisfying
a ≤ x ≤ b, and differentiable for all values of x satisfying a < x < b. Then
there exists a number c satisfying a < c < b for which

f(b) − f(a)
b − a

= f ′(c).

x

y

ba

Figure 6.2 The Mean Value Theorem

Geometrically the left-hand side of the equation represents the slope of
the chord joining the points (a, f(a)) and (b, f(b)) . The right-hand side is the
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gradient of the tangent at the point (c, f(c)) . So the conclusion of the theorem
says that under the appropriate conditions of continuity and differentiability,
given a chord joining two points on a graph, there is always a tangent at some
intermediate point which is parallel to the chord. Figure 6.2 illustrates this,
where we have shown a case when there is more than one possible value of c.

Example 6.2

Use the Mean Value Theorem to show that if f ′(x) > 0 for all x satisfying
a < x < b, then f is strictly increasing. What can we conclude if the condition
f ′(x) > 0 is replaced by f ′(x) ≥ 0?

Let x1 and x2 be any numbers satisfying a ≤ x1 < x2 ≤ b. Using the Mean
Value Theorem gives

f(x2) − f(x1)
x2 − x1

= f ′(c) > 0.

Since the denominator x2 − x1 > 0 we deduce that f(x2) − f(x1) > 0. So f is
an increasing function.

If the condition f ′(x) > 0 is replaced by f ′(x) ≥ 0 the same reasoning tells
us that f(x2) − f(x1) ≥ 0. So f is still an increasing function, although not
necessarily strictly increasing.

We can re-write the equation for the Mean Value Theorem in the form

f(b) = f(a) + f ′(c)(b − a).

To interpret this as providing an approximation it is convenient to regard a

as a fixed number, and b as a variable, which in accordance with usual notation
we shall replace by x. We can then write

f(x) = f(a) + f ′(c)(x − a),

where c lies somewhere between x and a.
This equation tells us that if the function f(x) is approximated using the

constant f(a), then the error has the form f ′(c)(x − a). Geometrically this
makes sense, because we should expect the error to depend on how far x is
from a and on how large the rate of change of f is. Now in most cases we
cannot find the value of c exactly. Indeed if we could, this would tell us the
exact value of f(x) and there would be no need to consider approximations at
all.

Sometimes we can find estimates for f ′, usually in a form which tells us
that for some real number M , and for all x satisfying a ≤ x ≤ b,

|f ′(x)| ≤ M.



6. Maclaurin and Taylor Expansions 137

We can then deduce that the approximation error satisfies

|f ′(c)(x − a)| ≤ M |x − a|.
The right hand side is called an error bound for the constant approxima-

tion.
In order to study the error involved in using a linear approximation we need

a version of the Mean Value Theorem applied to two functions simultaneously.
We first note that if we apply to Mean Value Theorem to two functions f and
g we obtain

f(b) − f(a)
b − a

= f ′(c1);
g(b) − g(a)

b − a
= g′(c2).

If we divide these two equations the denominator b − a cancels and we obtain

f(b) − f(a)
g(b) − g(a)

=
f ′(c1)
g′(c2)

.

There is no reason why c1 and c2 should be the same. However the next theorem
shows that we can find a common value of c for the latter equation.

Theorem 6.3 (Generalised Mean Value Theorem)

If the two functions f(x) and g(x) are both continuous for a ≤ x ≤ b and
differentiable for a < x < b, and if g′(x) is non-zero for all x satisfying a < x < b

then there is a number c between a and b such that

f(b) − f(a)
g(b) − g(a)

=
f ′(c)
g′(c)

.

Proof

We first comment that the denominator g(b)−g(a) cannot be zero, for otherwise
the Mean Value Theorem would tell us that g′(c) = 0 for some c between a

and b, contrary to the conditions of the theorem.
We now define the function k(x) by means of the equation

k(x) = (f(b) − f(a)) (g(x) − g(a)) − (g(b) − g(a)) (f(x) − f(a)) .

It is easy to see that k(b) = k(a) = 0, and that the conditions of the
theorem ensure that k(x) satisfies the conditions needed to apply the Mean
Value Theorem. Therefore

0 =
k(b) − k(a)

b − a
= k′(c),
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for some c between a and b. Differentiating k(x) gives

k′(x) = (f(b) − f(a)) g′(x) − (g(b) − g(a)) f ′(x),

and so we conclude that for some number c between a and b,

(f(b) − f(a)) g′(c) − (g(b) − g(a)) f ′(c) = 0,

which can be rearranged in the form given in the statement of the theorem.

Now recall that the linear approximation we obtained in Section 6.1 had
the equation y = f(a) + f ′(a)(x − a). So the error will be given by

E(x) = f(x) − (f(a) + f ′(a)(x − a)) .

We now apply the Generalised Mean Value Theorem with f(x) replaced by
E(x) and with g(x) replaced by (x − a)2. Noting that E(a) = 0 and g(a) = 0
we deduce that for some number c between a and b

E(b)
(b − a)2

=
E′(c)

2(c − a)
=

f ′(c) − f ′(a)
2(c − a)

=
f ′′(d)

2
,

where d is some number between a and c, obtained by applying the Mean Value
Theorem to f ′(x) over the interval a ≤ x ≤ c.

We can summarise these results by saying that for some number d between
a and x we have

f(x) = f(a) + f ′(a)(x − a) +
f ′′(d)

2
(x − a)2.

So the error term
f ′′(d)

2
(x − a)2 depends on the second derivative, which tells

us how fast the gradient of the graph of f(x) is changing. If this is very large
then the graph will quickly diverge from that of its linear approximation.

Sometimes we can find estimates for f ′′ which tell us that for some real
number L, and for all x satisfying a ≤ x ≤ b,

|f ′′(x)| ≤ L.

We can then deduce that the approximation error satisfies∣∣∣∣f ′′(d)
2

(x − a)
∣∣∣∣ ≤ L

2
|x − a|2.

Now the error bound for the constant approximation involved |x − a|,
whereas that for the linear involves |x−a|2. So if for example |x−a| ≤ 10−3 then
|x − a|2 ≤ 10−6, and so it is possible that the linear approximation could have
an accuracy of twice as many decimal places as the constant approximation
(depending on the relative sizes of f ′ and f ′′).
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Example 6.4

Find the equation of the tangent line to the curve whose equation is y = 3
√

x

at the point (8, 2), and use it to find an approximate value for 3
√

8.2. Find an
error bound and hence discuss the accuracy of the approximation.

To find the tangent and the error term we need the first two derivatives of
f(x) = 3

√
x. So we have

f(x) = 3
√

x = x
1
3 ;

f ′(x) =
1
3
x− 2

3 =
1

3 ( 3
√

x)2

f ′′(x) =
1
3

(
−2

3

)
x− 5

3 = − 2

9 ( 3
√

x)5
.

In this example we have a = 8, so the equation of the tangent line at (8, 2) is

y = 2 +
1
12

(x − 8).

An approximation for 3
√

8.2 is therefore

2 +
1
12

(0.2) = 2 +
1
60

= 2.01666 . . .

The error term is
f ′′(d)

2
(0.2)2, where 8 < d < 8.2.

Now f ′′ is a decreasing function of x for x > 0, so we have

|f ′′(d)| ≤ |f ′′(8)| =
2

9
(

3
√

8
)5 =

2
9 × 32

.

So an error bound will be

2
9 × 32

× 1
2

× (0.2)2 =
1

9 × 32 × 25
=

1
7200

= 0.00013888 . . .

Now f ′′ is negative for x > 0, so the error is negative. Therefore

2.01666 . . . − 0.00013888 . . . ≤ 3
√

8.2 ≤ 2.01666 . . . ,

which tells us that 2.01652 < 3
√

8.2 < 2.01667. Therefore we can say that
3
√

8.2 ≈ 2.017 with an error of less than 1 in the third decimal place.

Example 6.5

Use the Generalised Mean Value Theorem to give a proof of l’Hôpital’s Rule.
(See Section 2.5.4.)
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Suppose that f(x) and g(x) satisfy the conditions of l’Hôpital’s rule, and

that
f ′(x)
g′(x)

→ l as x → a. We apply the Generalised Mean Value Theorem,

noting that f(a) = g(a) = 0. Therefore

f(x)
g(x)

=
f(x) − f(a)
g(x) − g(a)

=
f ′(c)
g′(c)

→ l as x → a,

because a < c < x and so c → a as x → a. This completes the proof of
l’Hôpital’s Rule.

6.3 Quadratic Approximation

We saw in section 6.1 that a linear approximation using the tangent line is
quite good in a small neighbourhood of the point of contact, but less good the
further away we are from this point. To improve the approximation we replace
the straight line by a curve whose gradient changes in such a way as to try to
follow the graph of f(x), the function being approximated.

After a linear approximation the next simplest would be a quadratic. In
the case of the tangent line, it passed through the point of contact and had
the same gradient as the curve at that point. We shall choose the quadratic
passing through the point of contact (a, f(a)) and having the same first and
second derivatives as f(x) at x = a.

Suppose that the quadratic has equation y = px2 + qx + r. Using the above
conditions will give three equations, which will be sufficient to determine the
coefficients of the quadratic. We therefore require

f ′′(a) = 2p, giving p =
f ′′(a)

2
;

f ′(a) = 2pa + q, giving q = f ′(a) − af ′′(a);

f(a) = pa2 + qa + r.

If we now substitute for p and q from the first two equations into the third,
and then rearrange the result we can obtain

r = f(a) − af ′(a) +
a2

2
f ′′(a).

We have therefore found the coefficients for the approximating quadratic,
whose equation can now be rearranged in the form

y = f(a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2.
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We see that the first two terms are those which comprise the linear approxi-
mation, and this suggests that we have now obtained the first two in a sequence
of such approximating polynomials of increasing degree. We shall pursue this
in the next section.

A similar error analysis is possible to that for constant and linear approx-
imations. We shall however consider this in the more generalised context of
polynomial approximations of degree n in the next section.

6.4 Taylor Polynomials

This family of polynomial approximations was investigated by the English
mathematician Brook Taylor (1685–1731) and by the Scottish mathematicians
Colin Maclaurin (1698–1756) and James Gregory (1638–1675).

We shall begin by investigating an expansion for a function in the form of
an infinite series of powers which we shall then use to generate approximations
near to x = a. Generalising the form of linear and quadratic approximations
we assume a series of the form

f(x) = a0 + a1(x − a) + a2(x − a)2 + a3(x − a)3 + · · ·
If we substitute x = a then all the terms are zero except the first, giving
f(a) = a0, which tells us what the constant term must be in terms of f . This
is the aim for all the coefficients in the series, to find them in terms of f. We
shall assume that it is valid to differentiate this infinite series term-by-term, to
obtain

f ′(x) = a1 + 2a2(x − a) + 3a3(x − a)2 + 4a4(x − a)3 + · · ·
Substituting x = a then gives f ′(a) = a1. Differentiating again gives

f ′′(x) = 2a2 + 3.2a3(x − a) + 4.3a4(x − a)2 + · · · ,
and now substituting x = a gives f ′′(a) = 2a2.

If we repeat this process we find that f ′′′(a) = 3.2a3, f (4)(a) = 4.3.2a4, and
so on. This generalises to suggest that f (n)(a) = n!an. So we have formulae for
the coefficients in terms of f and its derivatives.

Definition 6.6

We define the Taylor series expansion of f(x) about x = a to be the series

f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · +

f (n)(a)
n!

(x − a)n + · · ·
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When we truncate this series we obtain the Taylor polynomial of f(x) about
x = a of degree n, denoted by

Pn,a(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · +

f (n)(a)
n!

(x − a)n.

The special case a = 0 is called the Maclaurin expansion, which is therefore
a series involving just powers of x,

f(0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · +

f (n)(0)
n!

xn + · · ·

In finding Taylor series we shall assume some results from Real Analysis:

1. The Taylor series usually converges to the function f(x) that we start with,
but there are exceptions.

2. We can perform algebraic operations on series to get new series, such as
addition, multiplication, substitution, differentiation and integration.

3. If a function is equal to some series expansion in powers of x (or x − a)
then that must be the Maclaurin (Taylor) series, i.e., the series is unique.

4. There are precise conditions for the validity of these results, discussed in
Howie, Chapters 2, 4 and 7. The examples we shall consider have been
chosen to satisfy those conditions.

5. Certain basic expansions for elementary functions form part of school math-
ematics and should be memorised.

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · +

xn

n!
+ · · ·

sin x = x − x3

3!
+

x5

5!
+ · · · + (−1)n x2n+1

(2n + 1)!
+ · · ·

cos x = 1 − x2

2!
+

x4

4!
+ · · · + (−1)n x2n

(2n)!
+ · · ·

Example 6.7

Find the Maclaurin expansion of
1

1 − x
.

We can recognise
1

1 − x
as the sum of an infinite Geometric Series, or we

can expand (1 − x)−1 by the Binomial Theorem. In either case we obtain

1
1 − x

= 1 + x + x2 + x3 + · · · + xn + · · · ,

valid for |x| < 1. Property 3 in the list above tells us that this must be the
Maclaurin series.
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Example 6.8

Find the Maclaurin expansion of
1

1 + x
.

We can use the result of Example 6.7 together with property 2 above, re-
placing x with −x to obtain

1
1 + x

= 1 − x + x2 − x3 + · · · + (−1)nxn + · · · ,

valid for |x| < 1, and Property 3 tells us that this is the Maclaurin series. This
is also a useful expansion to memorise.

Example 6.9

Find the Maclaurin series for ln(1 + x).

We use the result of Example 6.8 and integrate both sides. We use the fact
that ln 1 = 0 to show that the constant of integration is zero. Therefore

ln(1 + x) = x − x2

2
+

x3

3
+ · · · + (−1)n+1 xn

n
+ · · · .

Example 6.10

Find the Maclaurin expansion for tan−1 x.

We begin with

1
1 + x

= 1 − x + x2 − x3 + · · · + (−1)nxn + · · · ,

and then substitute x = t2 to obtain

1
1 + t2

= 1 − t2 + t4 − t6 + · · · + (−1)nt2n + · · · .

We now integrate both sides to obtain∫ x

0

1
1 + t2

dt =
[
t − t3

3
+

t5

5
+ · · · + (−1)n t2n+1

2n + 1
+ · · ·

]x

0
.

Therefore

tan−1 x = x − x3

3
+

x5

5
+ · · · + (−1)n x2n+1

2n + 1
+ · · · .
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Example 6.11

Find the Maclaurin expansion for coshx.

Using the definition of cosh and the known expansion for the exponential
function gives

cosh x =
ex + e−x

2

=
1
2

(
1 + x +

x2

2!
+

x3

3!
+ · · · +

xn

n!
+ · · ·

)

+
1
2

(
1 − x +

x2

2!
− x3

3!
+ · · · + (−1)n xn

n!
+ · · ·

)

= 1 +
x2

2!
+

x4

4!
+ · · · +

x2n

(2n)!
+ · · · .

We have seen that in none of the examples above have we used the formula
for the coefficients in terms of the derivatives of the function. This is often
much more complicated than using a known expansion and applying various
operations. In the next example we compare the two methods.

Example 6.12

Find the Maclaurin expansion for f(x) = exp
(−x2

)
.

If we try to find successive derivatives, with the aim of finding a formula
for the n-th derivative, we find that

f(x) = exp
(−x2)

f ′(x) = −2x exp
(−x2)

f ′′(x) = −2 exp
(−x2) + 4x2 exp

(−x2)
f ′′′(x) = 12x exp

(−x2) − 8x3 exp
(−x2)

We can see that this will become complicated, and as with previous examples it
is more straightforward to use the known expansion for the exponential function
and then use substitution, as follows.

exp t = 1 + t +
t2

2!
+

t3

3!
+

t4

4!
+ · · ·

exp(−t) = 1 − t +
t2

2!
− t3

3!
+

t4

4!
− · · ·

exp
(−x2) = 1 − x2 +

x4

2!
− x6

3!
+

x8

4!
− · · ·
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Example 6.13

Find the Taylor expansion for cosx about x =
π

2
.

We shall show two methods. In the first we calculate the successive deriva-
tives, and in the second we use a known expansion.

Method 1

The following table shows the successive derivatives, and in the right-hand
column their values when x =

π

2
.

f(x) cos x 0
f ′(x) − sin x −1
f ′′(x) − cos x 0
f ′′′(x) sin x 1
f (4)(x) cos x 0
f (5)(x) − sin x −1
f (6)(x) − cos x 0

So we can write down the Taylor series as follows.

f
(π

2

)
+ f ′

(π

2

)(
x − π

2

)
+

f ′′ (π
2

)
2!

(
x − π

2

)2
+

f ′′′ (π
2

)
3!

(
x − π

2

)3

+
f (4)

(
π
2

)
4!

(
x − π

2

)4
+

f (5)
(

π
2

)
5!

(
x − π

2

)5
+ · · ·

= −
(
x − π

2

)
+

1
3!

(
x − π

2

)3
− 1

5!

(
x − π

2

)5
+ · · · .

Method 2

The known expansions we have are Maclaurin expansions, about x = 0, so
we need to perform a translation by putting y = x− π

2
. In this way when x =

π

2
we shall have y = 0.

Using this transformation cosx becomes cos
(
y +

π

2

)
= − sin y, using a

trigonometric identity. The expansion of − sin y about y = 0 is

−y +
y3

3!
− y5

5!
+ · · · .

Therefore the expansion for cosx about x =
π

2
is

−
(
x − π

2

)
+

1
3!

(
x − π

2

)3
− 1

5!

(
x − π

2

)5
+ · · · .
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Example 6.14

We can use the Maclaurin series for the exponential function to prove the result
that the exponential function tends to infinity faster than any power. This was
discussed in Example 2.29, but is sufficiently important to be considered here
also.

Using the Maclaurin expansion for positive values of x we have

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · +

xn

n!
+

xn+1

(n + 1)!
+ · · · >

xn+1

(n + 1)!
.

We therefore have, for any n,

0 <
xn

ex
< xn (n + 1)!

xn+1 =
(n + 1)!

x
→ 0 as x → ∞.

Therefore by squeezing (Section 2.5.1) we have shown that

lim
x→∞

xn

ex
= 0.

6.5 Taylor’s Theorem

Theorem 6.15 (Taylor’s Theorem)

If the (n + 1)-th derivative of f exists throughout an interval containing a and
x, and if Pn,a(x) denotes the Taylor polynomial of f(x) of degree n about the
point a, then we have

f(x) = Pn,a(x) + En(x),

where the error (or remainder) term En(x) is given by

En(x) =
f (n+1)(c)
(n + 1)!

(x − a)n+1,

where c is some number between a and x. This is known as Lagrange’s form of
the remainder, named after the French mathematician Joseph-Louis Lagrange
(1736–1813).

We shall not give a proof of Taylor’s Theorem in this book. Proofs can be
found in Real Analysis textbooks, for example in Howie Chapter 4.

As we remarked in Section 6.4, we can use the Taylor expansion to obtain
polynomial approximations for a function by truncating the series after a finite
number of terms. As with the constant and linear approximations, we need to
be able to find error bounds, and the error term in Taylor’s Theorem enables
us to do this.
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Example 6.16

Use Taylor’s Theorem to calculate an approximate value for ln 1.05, accurate
to six places of decimals.

We consider the expansion of ln(1 + x) about x = 0, which we found in
Example 6.9. However to investigate the error we need to find an expression
for the (n + 1)-th derivative. In the table below we have calculated the first
few derivatives, to the extent that we can see a pattern and write down an
expression for the (n + 1)-th derivative. Strictly speaking we should give a
proof of our formula, by mathematical induction, but we shall omit that here.
Beginning with f(x) and repeatedly differentiating gives

f(x) = ln(1 + x)

f ′(x) = (1 + x)−1

f ′′(x) = −(1 + x)−2

f ′′′(x) = 2(1 + x)−3

f (4)(x) = −3 × 2(1 + x)−4

f (5)(x) = 4 × 3 × 2(1 + x)−5

...

f (n)(x) = (−1)n−1(n − 1)!(1 + x)−n

f (n+1)(x) = (−1)nn!(1 + x)−(n+1).

The error term is then given by

En(x) =
(−1)nn!
(n + 1)!

xn+1(1 + c)−(n+1) =
(−1)n

(n + 1)
xn+1(1 + c)−(n+1).

To find the approximation for ln(1.05) we put x = 0.05. Therefore 0 < c < 0.05

and so we know that (1 + c) > 1, telling us that
1

1 + c
< 1, and hence

|En(0.05)| ≤ (0.05)n+1

n + 1
.

To achieve six decimal places of accuracy we need this error bound to be suf-
ficiently small, and using a calculator gives error bounds for n = 1, 2, 3, 4 as
follows.

n Error bound
1 1.25 × 10−3

2 4.167 × 10−5

3 1.5625 × 10−6

4 6.25 × 10−8
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So n = 3 will not give sufficient accuracy, but n = 4 will. This means that
we should use the polynomial approximation

ln(1 + x) ≈ x − x2

2
+

x3

3
− x4

4
,

ln(1.05) ≈ 0.05 − 0.052

2
+

0.053

3
− 0.054

4
.

Working this out on a calculator gives a readout of 0.048790104 and the
calculator manual suggests that no more than the last digit would be suspect.

Now with n = 4 the error term is positive, and so we can say that

0.04879010 < ln(1.05) < 0.04879011 + 6.25 × 10−8 < 0.04879018.

So we can be certain that ln(1.05) ≈ 0.048790 to six decimal places of accuracy.
We can see in this example that not only do we have to take the error bound

into account, but also any possible errors arising from the use of a calculator
or a computer.

6.6 Using MAPLE for Taylor Series

We can use MAPLE both algebraically and geometrically to investigate Taylor
series. Firstly there is a built-in command which works out Taylor series, in
which we have to specify the function, the point about which the expansion is
to take place, and how many terms we want.

Example 6.17

Find the first five terms of the Taylor series used in Example 6.16 using
MAPLE.

We use the command taylor(ln(1+x),0,5);

This produces as its output

x − x2

2
+

x3

3
− x4

4
+ O(x5).

The last part of the expression represents the fact that the order of magni-
tude, symbolised by the capital O, of the error term is x5, in accordance with
Taylor’s Theorem in which En(x) contains (x − a)n+1.

Notice that although we asked for five terms there appear only to be four.
This is because the constant term in this expansion is zero.
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To investigate the successive approximations we can plot them on the same
graph, using the command

plot([ln(1+x),x,x-xˆ/2,x-xˆ2/2+xˆ3/3,x-xˆ2/2+xˆ3/3-xˆ4/4],

x=0..2,color=black);

A command such as this would become very long if we wanted to plot 10
approximations for example. Where we have a regular pattern which tells us one
term in terms of the previous ones MAPLE contains a built-in programming
language which would enable us to do this.

x

y

21

2

1

0

−1

Figure 6.3 Taylor approximations for ln(1 + x)

Figure 6.3 contains the graph of ln(1 + x) and the linear, quadratic, cubic
and quartic approximations. MAPLE does not label its graphs on a plot such
as this, so we have to inspect each individual graph to decide which of them
corresponds to each approximation, which is a good exercise in itself. In fact
MAPLE uses different colours for each graph in a set such as this (we have
included the command color=black solely for printing purposes). This makes
it easier to identify each graph. In fact the color command can be adapted to
specify the colours we wish for each of the approximations.

In this example the series is a Maclaurin series, but MAPLE can expand
about any point.

Example 6.18

Use MAPLE to find the Taylor expansion for cosx about x =
π

2
.

This is the series we found in Example 6.13. To produce the same number
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of terms as we displayed in that example we need the command

taylor(cos(x),x=Pi/2,6);

This produces the output

−
(
x − π

2

)
+

1
6

(
x − π

2

)3
− 1

120

(
x − π

2

)5
+ O

((
x − π

2

)6
)

,

where the only difference from the result in Example 6.13 is that MAPLE works
out the arithmetic values of the factorials.

EXERCISES

6.1. Find the equation of the tangent line to the curve whose equation is
y =

√
x at the point (9, 3), and use it to find an approximate value

for
√

9.01. Find an error bound and hence discuss the accuracy of
the approximation.

6.2. Find the equation of the tangent line to the curve whose equation
is y = tanx at the point

(π

4
, 1

)
, and use it to find an approximate

value for tan 47◦. Find an error bound and hence discuss the accuracy
of the approximation.

6.3. Use the Mean Value Theorem to show that if a function has a nega-
tive derivative throughout an interval, then the function is decreasing
throughout that interval.

6.4. Find the quadratic approximation for ex at x = 2. Use a calculator
or a spreadsheet to compare ex with the quadratic approximation
for values of x at intervals of 0.1 between 0 and 4. Plot ex and the
quadratic approximation on the same graph, for 0 ≤ x ≤ 4 using
MAPLE or a graphical calculator.
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6.5. Find the Maclaurin expansions for the following functions.

(a) sin
(
3x2

)
; (b) ln

(
2 − x2

)
;

(c) exp
(
1 + x3

)
; (d)

√
x + 2;

(e)
1

(1 + x2)2
; (f)

1 + x2

1 − x
;

(g) cos 2x; (h) sin2 x;

(i)
sin x

x
; (j) cos

(
x − π

4

)
;

(k) sinh(x3); (l) cosh x − cos x.

6.6. Find the Taylor series for the following functions about the points
indicated.

(a) ex about x = 1; (b) sinx about x = −π;

(c) 3
√

x about x = 2; (d) lnx about x = 3;

(e)
1
x

+
1
x2 about x = −1; (f)

x

1 − x
about x = −1;

(g) cosh x about x = −2; (h) x sin x about x = π;

(i) ln(2 + x) about x = 2; (j) ex+3 about x = 2.

6.7. Find the Maclaurin expansion for ln(2 + 3x) and find an expression
for the error term En(x).

6.8. Find the Maclaurin expansion for
√

4 + x as far as the term involving
x4. Find an expression for the error term E4(x), and find an error
bound when x = 0.1.

6.9. Use Taylor’s Theorem to find an approximation for cos(5◦), correct
to six decimal places. (Use En(x) for even values of n.)
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Integration

Ideas about integration have been around much longer than those of differenti-
ation. The Greek mathematician Archimedes (3rd Century B.C.) knew how to
calculate the area of a segment of a parabola by “quadrature”, which involved
approximation by regions of known area such as quadrilaterals or triangles.
Integration as the reverse of differentiation was a much later idea, after the in-
vention of the differential calculus in the time of Newton (17th Century A.D.).
Bringing the two views of integration together was the work of mathemati-
cians in the 19th Century in particular, culminating in the work of Bernhard
Riemann (1826–1866), whose name is associated with the theory of integra-
tion which is often studied in Real Analysis courses (see Howie Chapter 5 for
example).

In this chapter we shall review some of the basic ideas about integration,
briefly revise some standard results from school calculus, and develop some
aspects of integration using limits.

7.1 Integration as Summation

The basic idea is that of “area under a graph”, where this phrase is commonly
used to signify the area of a plane region bounded by the graph of a non-negative
function y = f(x), the x-axis, and the lines x = a and x = b. We approximate
this area using rectangles, from below and from above. These ideas are illus-
trated in Figure 7.1. For functions that we commonly use, with continuous

153
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graphs for example, it turns out that the approximations from below and from
above can be made as close as we wish. As these approximations get better and
better they “home in” on a definite numerical value which corresponds to the
area of the region. This is a limiting process, but a more complicated one than
we discussed in Chapter 2.

We generate the approximations by subdividing the interval a ≤ x ≤ b by
means of an increasing sequence of points

a = x1 < x2 < · · · < xn−1 < xn = b.

x

y

a x1 x2 · · · xn−1 b

m1 mn

x

y

a x1 x2 · · · xn−1 b

M1 Mn

Figure 7.1 The integral as a sum

The sum of the areas of the rectangles lying below the graph (as in the
top diagram) is called the lower sum corresponding to the subdivision, and
the sum of the areas of the rectangles enclosing the area underneath the graph
(as in the bottom diagram) is called the upper sum corresponding to the
subdivision. We introduce the notation for these as follows.

s =
n∑

i=1

mi (xi − xi−1) ; S =
n∑

i=1

Mi (xi − xi−1) .
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In these sums each term represents the area of a rectangle, where (xi−xi−1)
represents the width and mi or Mi represents the height, in the first and second
sum respectively.

The fundamental idea is that as the lengths of the intervals of the subdivi-
sion all tend to zero, both the upper and lower sum tend to a common limit,
the area under the curve.

The theoretical underpinning of this idea is quite extensive, and beyond the
scope of this book. It can be shown that for “respectable” functions (given by
standard formulae for example) we can use any convenient approximating sum
in this way, where we replace Mi or mi with any number between, usually of
the form f(ci), where xi−1 ≤ ci ≤ xi. This gives the sum

n∑
i=1

f(ci) (xi − xi−1) .

This sum also represents a sum of areas of rectangles. The theory shows that all
such sums have a common limit as the number of intervals in the subdivision
increases, and their lengths all tend to zero. This common limit is called the
integral, denoted by ∫ b

a

f(x) dx,

and a function for which this common limit exists is said to be integrable over
the interval a ≤ x ≤ b. The function f(x) which we are integrating is referred
to as the integrand. We shall utilise the idea of the integral as the limit of a
sum in Chapter 11, applied to geometrical quantities such as area and volume.

The connection between this process and differentiation was established
by means of the Fundamental Theorem of Calculus, which says that under
appropriate conditions ∫ b

a

f ′(x) dx = f(b) − f(a).

The first clear statement of this theorem is attributed to Isaac Newton in some
unpublished work written in 1666.

7.2 Some Basic Integrals

In the remainder of this chapter, and in Chapters 8, 9 and 10, we shall consider
integration as the reverse of differentiation. Given a function f(x), the problem
is to find another function F (x) whose derivative is f(x). Such a function F (x)
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is called an indefinite integral, denoted by
∫

f(x) dx. In contrast, the integral∫ b

a

f(x) dx discussed above is called a definite integral.

We first note that if
d

dx
F (x) = f(x) then

d

dx
(F (x) + C) = f(x) for any

real number C.

C is known as the constant of integration, and strictly speaking should be
included whenever we evaluate an indefinite integral.

Basic integration is normally first encountered in school mathematics, and it
is assumed that readers are familiar with a small number of indefinite integrals,
as in the following table, where we have omitted the constant of integration,
as we shall do throughout this book.

f(x)
∫

f(x) dx

xα (α �= −1)
xα+1

α + 1

x−1 ln |x|
cos x sin x

sin x − cos x

sec2 x tanx

ekx ekx

k

Various rules and identities can be used to reduce many integrals to the
basic ones above. There are some standard methods for doing this which are
applicable to various classes of functions, and we shall consider these in later
chapters. The examples in this section illustrate this idea with some elementary
integrals. The algebraic rules of integration used in this chapter are as follows.∫

(Cf1(x) + Df2(x)) dx = C

∫
f1(x) dx + D

∫
f2(x) dx,

where C and D are constants (the addition rule), and∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.

Example 7.1

Evaluate
∫

cos 2x dx.
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The table above suggests that the answer will involve sin 2x, and we can
check by differentiation.

Now
d

dx
sin 2x = 2 cos 2x, and so we can see that we have to compensate

for the factor of 2. We can therefore write
d

dx

sin 2x

2
= cos 2x, and so∫

cos 2x dx =
sin 2x

2
.

A Common Mistake

In Example 7.1 we are integrating a function of the form cos (f(x)) , where
in this case f(x) = 2x. It looks as if we have written sin (f(x)) and then divided
by the derivative of f(x). This is NOT a general rule. It only works in this case
because f(x) is a linear function. We can see that the general rule is WRONG
by the following example.

It is NOT TRUE that
∫

cos
(
x2) dx =

sin
(
x2

)
2x

. We can check this by

differentiation. We need to use the quotient rule, and we then find that

d

dx

(
sin

(
x2

)
2x

)
=

2x × 2x cos
(
x2

) − 2 sin
(
x2

)
(2x)2

,

which is clearly NOT equal to cos
(
x2

)
. The moral of this example is therefore

Always check your answer by differentiation.

Example 7.2

Evaluate
∫

sin2 x dx.

Many trigonometric integrals involve the use of identities. In this case the
double angle formula cos 2x = 1−2 sin2 x is the one which is relevant. Therefore∫

sin2 x dx =
∫

1
2
(1 − cos 2x) dx =

1
2

(
x − sin 2x

2

)
.

Example 7.3

Evaluate
∫

cos 5x cos 3x dx.

The last identity in Example 1.24 enables us to convert the product of
cosines into a sum. We have cos 5x cos 3x = 1

2 (cos 8x + cos 2x), so that∫
cos 5x cos 3x dx =

1
2

∫
(cos 8x + cos 2x) dx =

sin 8x

16
+

sin 2x

4
.
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Example 7.4

Evaluate
∫

ax dx (a > 0).

We recall Definition 1.27, telling us that ax = ex ln a. Using this, and realising
that ln a is simply a constant, we can write∫

ax dx =
∫

ex ln a dx =
ex ln a

ln a
=

ax

ln a
.

A Common Mistake

A common error in Example 7.4 is to treat the variable x as if it were a

constant, writing
∫

ax dx =
ax+1

x + 1
, which is WRONG. The mistake is demon-

strated if we take the special case where a = e, in which case the expected

answer is simply ex and not
ex+1

x + 1
. What has been done in making this error

is effectively to integrate with respect to a instead of with respect to x.

In the following example we shall interpret the integral of a negative function
as the area between the graph and the x-axis, but with a negative sign. We
therefore need to explain this briefly.

Suppose f(x) ≤ 0 for all x in the interval a ≤ x ≤ b. Then if we let

g(x) = −f(x), we have g(x) ≥ 0 for all x in the interval. So
∫ b

a

g(x) dx is

equal to the area A between the graph of the non-negative function g(x) and
the x-axis, bounded by the lines x = a and x = b. Using the addition rule for
integrals with C = −1 and D = 0 gives

A =
∫ b

a

g(x) dx =
∫ b

a

−f(x) dx = −
∫ b

a

f(x) dx so
∫ b

a

f(x) dx = −A.

In terms of the upper and lower sums introduced in Section 7.1, since f(x) ≤ 0
it follows that mi ≤ 0 and Mi ≤ 0, so that each sum corresponds to the negative
of the total area of the approximating rectangles. Again this will tell us that∫ b

a

f(x) dx = −A.

Example 7.5

Evaluate
∫ 3

−3
ln

(
1 + x2) sin x dx.

The function looks complicated to integrate as an indefinite integral, so we
have to look at it another way, in this case geometrically. We notice that the
function is an odd function, and the interval of integration is symmetric about
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the origin. The answer is therefore zero. This is clear from Figure 7.2, with
the interpretation explained above, that areas below the x-axis correspond to a
negative answer for the integral. We have implicitly used the rule of integration
telling us that∫ 3

−3
ln

(
1 + x2) sin x dx =

∫ 0

−3
ln

(
1 + x2) sin x dx +

∫ 3

0
ln

(
1 + x2) sin x dx.

The value of the first integral on the right-hand side is then minus that of the
second integral, so they cancel to zero.

x

y

2−2

1

−1

Figure 7.2 Integral of an odd function

Example 7.6

Evaluate
∫ 2

0

√
2x − x2 dx.

As in the previous example, we can interpret this integral as an area and
evaluate it without calculation. The graph of the integrand is shown in Fig-
ure 7.3, and it appears to be a semicircle. We can verify this algebraically. The
equation of the graph can be rearranged as follows.

y =
√

2x − x2 =
√

1 − x2 + 2x − 1 =
√

1 − (x − 1)2,

and therefore
(x − 1)2 + y2 = 1,

which is the equation of a circle centered at (1, 0) with radius 1. The original
equation involves the square root, and corresponds to the upper half of this
circle.

The value of the integral is therefore equal to the area of the semicircular
region, namely π/2.
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x

y

21

1

0.5

0

Figure 7.3 Graph for Example 7.6

7.3 The Logarithmic Integral

One of the items in the table of integrals at the beginning of Section 7.2 states

that
∫

1
x

dx = ln |x|. Some textbooks say that
∫

1
x

dx = lnx + C. Neither

of these is strictly correct, and in this section we shall discuss this integral
further. The problem is caused by the fact that neither 1/x nor ln |x| is defined
for x = 0. We approach the problem through graphs.

x

y

0 321−1−2−3

3

2

1

−1

−2

−3

Figure 7.4 The logarithmic integral

In Figure 7.4 the thicker graph is that of y =
1
x

, and the other graphs are of

lnx+C for x > 0, and ln(−x)+D for x < 0. All these logarithmic graphs have
derivative 1/x. For x > 0 this is a standard result. Now 1/x is an odd function,
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and so its gradient at −x will be the negative of the gradient at x. This means
that for x < 0, 1/x is the gradient for the logarithmic function with x replaced
by −x, i.e., ln(−x). For x < 0 we can also verify this result using the chain
rule.

d

dx
(ln(−x) + D) =

1
−x

d

dx
(−x) =

1
−x

.(−1) =
1
x

.

Finally we have to consider the constant of integration. We can see that we
could choose an arbitrary function of the form lnx + C for x > 0, and an
arbitrary function of the form ln(−x) +D for x < 0. There is no reason why C

should be the same as D, since the two “halves” do not join together, because of
discontinuity at x = 0. So the most complete description of the set of functions
whose derivative is 1/x is

F (x) =
{

ln(x) + C (x > 0),
ln(−x) + D (x < 0).

To write ln |x| + C is a convenient abbreviation, but it conceals the fact that
Cand D can be different.

7.4 Integrals with Variable Limits

So far when we have evaluated a definite integral of the form
∫ b

a

f(x) dx, the

limits of integration a and b have been constants. There is no reason however
why they should not involve a variable.

Example 7.7

Evaluate the integral
∫ sin t

t−2
(x2 − 2x + 3) dx.

∫ sin t

t−2
(x2 − 2x + 3) dx =

[
x3

3
− x2 + 3x

]sin t

t−2

=
sin3 t

3
− sin2 t + 3 sin t − (t − 2)3

3
+ (t − 2)2 − 3(t − 2)

=
sin3 t

3
− sin2 t + 3 sin t − t3

3
+ 3t2 − 11t +

38
3

.

This example shows that when such an integral is evaluated the answer
involves the variable which is present in the limits of integration. Now if we
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want to find the derivative of this expression we can evaluate the integral, as
we have done in the above example, and then differentiate the answer. However
we can find the derivative without integrating first, as follows.

Suppose that we know the indefinite integral of f(x), i.e., that we know a
function F (x) satisfying F ′(x) = f(x). We then have

G(t) =
∫ b(t)

a(t)
f(x) dx =

∫ b(t)

a(t)
F ′(x) dx = F (b(t)) − F (a(t)).

We can therefore differentiate using the chain rule to obtain

G′(t) = F ′(b(t))b′(t) − F ′(a(t))a′(t) = f(b(t))b′(t) − f(a(t))a′(t).

Example 7.8

Find the derivative with respect to t of the function defined by

F (t) =
∫ t3+4t2

t2−3t

cos(x) dx.

In this example we have f(x) = cos x, a(t) = t2 − 3t, and b(t) = t3 + 4t2.

The formula we obtained tells us that the derivative is

F ′(t) = (3t2 + 8t) cos(t3 + 4t2) − (2t − 3) cos(t2 − 3t).

In this case we could have integrated cos x first, to give

∫ t3+4t2

t2−3t

cos(x) dx = [sinx]t
3+4t2

t2−3t = sin(t3 + 4t2) − sin(t2 − 3t).

Applying the chain rule for differentiation will give the same answer as we
obtained above using the differentiation formula.

Example 7.9

Find the derivative with respect to t of the function defined by

G(t) =
∫ t3+4t2

t2−3t

cos
(
x2) dx.

In this example we cannot find the indefinite integral, but we can still use
the formula for the derivative. This tells us that the derivative is

G′(t) = (3t2 + 8t) cos
(
(t3 + 4t2)2

) − (2t − 3) cos
(
(t2 − 3t)2

)
.
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7.5 Infinite Integrals

So far we have considered definite integrals of the form
∫ b

a

f(x) dx, where a and

b are real numbers, and for a non-negative function the integral corresponds
to the area between the graph and the x-axis. In effect we are considering a
function whose domain is limited to lie between a and b. But many functions
have as their domain the set of all real numbers, or the set of all positive real
numbers, or some other unbounded set. In this section we shall consider how
to interpret the idea of the area of the region between such a graph and the x-
axis. This leads to the idea of an infinite integral. Suppose we have a function
f(x) whose domain is the set of all real x satisfying x ≥ a. We want to give a

meaning to
∫ ∞

a

f(x) dx.

Imagine that we are going to paint such a region and that we want to know
whether we can do it with a finite amount of paint. What we can do is to start
at x = a and paint the region up as far as x = t. We can then measure the
amount of paint used. This will depend on t, and so can be expressed as a
function F (t). Using the ideas of limits from Chapter 2 we can then investigate
lim

t→∞ F (t). If this is finite it would appear that we can paint the complete region
using a finite amount of paint. This somewhat far-fetched analogy motivates
the definition.

Definition 7.10

If f(x) is a function continuous for x ≥ a we define the infinite integral of f by

∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx.

If this limit exists and is finite we say that the infinite integral converges.
Otherwise the infinite integral diverges.

We can similarly define∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t

f(x) dx.

Example 7.11

Investigate the convergence or otherwise of the infinite integral
∫ ∞

1
xα dx.

We will begin with two numerical cases by way of illustration.
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Firstly let α = −2. We then have∫ t

1

1
x2 dx =

[
− 1

x

]t

1
= 1 − 1

t
→ 1 as t → ∞.

The integral therefore converges and we can write∫ ∞

1

1
x2 dx = 1.

Now consider the case α = −1. We now have∫ t

1

1
x

dx = [lnx]t1 = ln t → ∞ as t → ∞.

Therefore the integral in this case diverges.
In general suppose that α �= −1. Then∫ t

1
xα =

[
xα+1

α + 1

]t

1
=

tα+1

α + 1
− 1

α + 1
.

Now if α + 1 > 0 the right-hand expression tends to infinity, and so the corre-
sponding infinite integral diverges. If α + 1 < 0 then

lim
t→∞

tα+1

α + 1
− 1

α + 1
= − 1

α + 1
.

Therefore the integral converges, and we can write∫ ∞

1
xα = − 1

α + 1
.

This is verified with the case α = −2 we considered above.

Example 7.12

Show that the infinite integral
∫ ∞

0
e−x dx converges, and find its value.

Evaluating the integral over the finite interval 0 ≤ x ≤ t gives∫ t

0
e−x dx =

[−e−x
]t

0 = 1 − e−t → 1 as t → ∞.

Therefore the integral converges and its value is 1.
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Example 7.13

Show that the integral
∫ ∞

1
e−x2

dx converges.

In this case, unlike Example 7.12, we cannot evaluate the indefinite integral
explicitly and so we cannot investigate the required limit directly. What we do
is to compare this integral with one which we already know to converge. To
return to the area interpretation, if we can show that the region between the
graph of e−x2

and the x-axis is smaller than one for which we already know
that the area is finite then it too must enclose a finite area. The argument
proceeds as follows in this case.

For all x ≥ 1 we know that 0 ≤ e−x2 ≤ e−x.

We therefore have, using the result of Example 7.12,∫ t

0
e−x2

dx ≤
∫ t

0
e−x dx ≤ 1.

The value of the left-hand integral increases as t increases, because the inte-
grand is positive for all x, and so it tends to a finite limit as t → ∞. Therefore
the integral converges.

Because we cannot evaluate the indefinite integral we do not know the value
of the infinite integral. What we have showed is that∫ ∞

0
e−x2

dx ≤ 1.

The procedure used in this example generalises, as in the following theorem.

Theorem 7.14 (Comparison Test for Infinite Integrals)

Suppose that f(x) and g(x) are continuous, and that 0 ≤ g(x) ≤ f(x), for all

x ≥ a. Then if the infinite integral
∫ ∞

a

f(x) dx converges, so does the infinite

integral
∫ ∞

a

g(x) dx, and

∫ ∞

a

g(x) dx ≤
∫ ∞

a

f(x) dx.

Proof

An analytical proof is outside the scope of this book. We shall give an intuitive
geometrical explanation, which generalises the argument in Example 7.13.
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x

y

a t

y = f(x)

y = g(x)

Figure 7.5 Integral comparison test

We can see from Figure 7.5 that the area between the graph of f(x) and
the x-axis is greater than the area between the graph of g(x) and the x-axis.
Therefore ∫ t

a

g(x) dx ≤
∫ t

a

f(x) dx.

From the figure we can also see that these areas increase as t increases, and
because the functions are both non-negative it follows that the corresponding
integrals also increase as t increases. If we denote the value of the convergent

integral
∫ ∞

a

f(x) dx by K we deduce that

∫ t

a

g(x) dx ≤ K

for all t ≥ a. So
∫ t

a

g(x) dx is an increasing function of t which is bounded

above. It therefore has a limit H ≤ K. (This last result would be proved in a
course on Real Analysis, for example in Howie Chapter 3).

So far we have restricted attention to non-negative functions. Definition 7.10
does not require this, and in the next example we consider a function taking
both signs.

Example 7.15

Show that the integral
∫ ∞

2π

sin x

x2 dx converges.

From Example 7.11 (with α = −2) we know that the area between the
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graph of 1/x2 and the x-axis is finite. We also know that

− 1
x2 ≤ sin x

x2 ≤ 1
x2 .

We can therefore see, in Figure 7.6, that the areas contained by those parts

of the graph of
sin x

x2 above the x-axis will be finite in total. The same will be

true below the x-axis, so that the total area between the graph of
sin x

x2 and
the x-axis will be finite. Now the integral is found by subtracting the total area
below the axis from the total area above the axis, and this will therefore be

finite. In other words the integral
∫ ∞

2π

sin x

x2 dx will converge.

x

y

3025201510

0.02

0

−0.02

Figure 7.6 Graph for Example 7.15

This is an example of a generalisation of Theorem 7.14 which we state here
without proof.

Theorem 7.16

Suppose that f(x) and g(x) are continuous, and that |g(x)| ≤ f(x), for all

x ≥ a. Then if the infinite integral
∫ ∞

a

f(x) dx converges, so does the infinite

integral
∫ ∞

a

g(x) dx, and

∣∣∣∣
∫ ∞

a

g(x) dx

∣∣∣∣ ≤
∫ ∞

a

|g(x)| dx ≤
∫ ∞

a

f(x) dx.
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7.6 Improper Integrals

In this section we consider integrals of the form
∫ b

a

f(x) dx, where the function

f is undefined, or has a discontinuity, or is unbounded, at some point of the
interval a ≤ x ≤ b. If this occurs inside the interval at some point c we can
split the integral into two by using the rule of integration∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.

This means that we can restrict attention to situations where the point of
discontinuity etc. occurs at an end-point of the interval. We shall in fact discuss
only cases where this happens at the lower end-point, the case of the upper end-
point being exactly similar. So by way of example we can consider the integral∫ 1

0

1
x2 dx, where the integrand is undefined at the end-point x = 0. Such an

integral is called an improper integral, and we need to investigate questions
of convergence. As with infinite integrals we are asking whether we can sensibly
define the area of the region between the graph and the x-axis when the region
is unbounded.

Definition 7.17

Let f(x) be a function continuous for a < x ≤ b. Then the improper integral∫ b

a

f(x) dx is said to converge if the integral
∫ b

c

f(x) dx has a limit as c → a+.

We then define ∫ b

a

f(x) dx = lim
c→a+

∫ b

c

f(x) dx.

Example 7.18

Investigate convergence of the improper integral
∫ 1

0

1
x2 dx.

Using Definition 7.17, we have∫ 1

c

1
x2 dx =

[
− 1

x

]1

c

=
1
c

− 1 → ∞ as c → 0+.

Therefore the integral
∫ 1

0

1
x2 dx does not converge.
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Example 7.19

Investigate convergence of the improper integral
∫ 1

0

1√
x

dx.

Using Definition 7.17 gives∫ 1

c

1√
x

dx =
[
2
√

x
]1
c

= 2 − 2
√

c → 2 as c → 0+.

Therefore the integral converges, and
∫ 1

0

1√
x

dx = 2.

There are comparison tests for convergence of improper integrals like The-
orems 7.14 and 7.16. Their discussion is left as an exercise for the reader. The
following example is an application of the analogue of Theorem 7.16 for im-
proper integrals.

Example 7.20

Show that the improper integral
∫ 1

0

sin(3x2 + 2x − 4)√
x + 3

√
x

dx converges.

To apply a comparison test we need to compare the integrand with a func-
tion we know how to integrate. The numerator takes both positive and negative
values in the interval 0 ≤ x ≤ 1, but for all x, | sin(2x2 + 2x − 4)| ≤ 1. For the
denominator, we note that in this interval 3

√
x ≥ √

x, and so
√

x + 3
√

x ≥ 2
√

x.

We therefore have, for all x in the interval,∣∣∣∣ sin(3x2 + 2x − 4)√
x + 3

√
x

∣∣∣∣ ≤ 1
2
√

x
.

From Example 7.19 we know that the integral of the right-hand expression
converges, and so by comparison the integral∫ 1

0

sin(3x2 + 2x − 4)√
x + 3

√
x

dx

converges. Using the result of Example 7.19 then tells us that∣∣∣∣
∫ 1

0

sin(3x2 + 2x − 4)√
x + 3

√
x

dx

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣ sin(3x2 + 2x − 4)√
x + 3

√
x

∣∣∣∣ dx ≤
∫ 1

0

1
2
√

x
dx ≤ 1.
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EXERCISES

7.1. Find the values of the following definite integrals by interpreting
them as areas.

(a)
∫ 2

−3
(3x − 2) dx; (b)

∫ 2

−2

√
4 − x2 dx;

(c)
∫ 3

−1
|x − 2| dx; (d)

∫ 3

−4
||x − 2| − |x + 2|| dx;

(e)
∫ 2

−2
sinhx dx; (f)

∫ π

0
sin 2x dx.

7.2. Evaluate the following indefinite integrals.

(a)
∫

(3x2 + 4x − 2) dx; (b)
∫ √

3x − 1 dx;

(c)
∫ (

x3 − 2
)2

dx; (d)
∫ (√

x + x2)3
dx;

(e)
∫ (

1
x2 +

4
x3

)
dx; (f)

∫
1
3
√

x
dx;

(g)
∫

1√
2x + 3

dx; (h)
∫

e2x+3 dx;

(i)
∫

2−x dx; (j)
∫

cosh 3x dx;

(k)
∫

sin x cos x dx; (l)
∫

sec2 x dx;

(m)
∫

cos2 x dx; (n)
∫

sin 2x sin 5x dx.

7.3. Find the derivative with respect to t of the function defined by

F (t) =
∫ t3

t2
ex dx,

(a) by integrating first and then differentiating,

(b) by using the formula for the derivative.

7.4. Find the derivative with respect to t of the function defined by

G(t) =
∫ cos t

sin t

e(x2) dx.

7.5. For each of the following infinite integrals, determine whether or not
it converges. Find the values of those that do converge.
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(a)
∫ ∞

1

1
(2x + 1)2

dx; (b)
∫ ∞

1

1√
x

dx;

(c)
∫ ∞

1

1
(3x + 2)

2
3

dx; (d)
∫ ∞

0
e2−3x dx.

7.6. Use a comparison test to show that the following infinite integrals
converge.

(a)
∫ ∞

1

e−x

√
x

dx; (b)
∫ ∞

0

esin x

1 + x2 dx;

(c)
∫ ∞

3

√
x2 − 2x − 2
x3 + x + 4

dx; (d)
∫ ∞

0
e−(x3+x−3) dx.

7.7. Deduce the following result from Theorem7.14.

Suppose that f(x) and g(x) are continuous, and that for all x ≥ a,

0 ≤ g(x) ≤ f(x). Then if the infinite integral
∫ ∞

a

g(x) dx does not

converge, neither does the infinite integral
∫ ∞

a

f(x) dx.

7.8. For each of the following improper integrals, determine whether or
not it converges. Find the values of those that do converge.

(a)
∫ 3

2

1
3
√

x − 2
dx; (b)

∫ 3

−1

1
x + 1

dx;

(c)
∫ 1

0

x + 1√
x

dx; (d)
∫ π

4

0
cosec2x dx.

7.9. Determine the values of p for which the improper integral
∫ 1

0
x−p dx

converges.

7.10. Formulate Theorems for improper integrals analogous to the com-
parison tests (Theorem 7.14 and Theorem 7.16) for infinite integrals.
Give proofs in the same style as the proofs for infinite integrals in
this chapter.

7.11. Use a comparison test to show that the following improper integrals
converge.

(a)
∫ 1

0

sin x√
x

dx; (b)
∫ 2

−2

e−x

√
x + 2

dx.



8
Integration by Parts

8.1 The Basic Technique

We are considering integration as the reverse of differentiation, and we should
therefore expect that rules of differentiation should relate to techniques of in-
tegration. The technique of integration by parts discussed in this chapter is a
consequence of the product rule for differentiation. That rule tells us that

d

dx
(U(x)V (x)) = U(x)

dV

dx
+ V (x)

dU

dx
.

If we integrate both sides with respect to x we obtain

U(x)V (x) =
∫

U(x)
dV

dx
dx +

∫
V (x)

dU

dx
dx,

which can be rearranged in the form∫
U(x)

dV

dx
dx = U(x)V (x) −

∫
V (x)

dU

dx
dx.

This equation therefore gives us a procedure for evaluating an integral of the

form
∫

f(x)g(x) dx. We have to decide which of f and g to identify with U.

If we choose f = U this is usually because
dU

dx
is a simpler expression than U.

We then have to identify g with
dV

dx
, and we have to be able to find V, i.e., we

have to be able to integrate g(x).

173
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Example 8.1

Evaluate
∫

x cos x dx.

The integrand is a product, and so we have an expression for which inte-
gration by parts is a possible technique. So we have to decide which of the two
components (x or cos x) to identify with U. It is clear that if we choose U = x

then
dU

dx
= 1, which is simpler, whereas if we choose

dV

dx
= x then V =

x2

2
,

which will give a more complicated integral. So we choose
dV

dx
= cos x, which

gives V = sinx. The formula for integration by parts therefore gives∫
x cos x dx = x sin x −

∫
sin x.1 dx = x sin x + cos x,

which can be checked by differentiation.

Example 8.2

Evaluate
∫

lnx dx.

This is a slightly less obvious application of integration by parts, since the
integrand does not appear explicitly as a product. We can use the device of

writing lnx as 1. lnx, and then identifying U = lnx and
dV

dx
= 1. Integration

by parts then gives∫
1. lnx dx = x lnx −

∫
x.

1
x

dx = x lnx −
∫

1 dx = x lnx − x,

which can be checked by differentiation.

Example 8.3

Evaluate
∫

x2 sinh 2x dx.

In this case we shall choose U = x2, because this simplifies when we differ-
entiate. Integration by parts then gives∫

x2 sinh 2x dx = x2 cosh 2x

2
−

∫
2x

cosh 2x

2
dx = x2 cosh 2x

2
−

∫
x cosh 2x dx.

The integral on the right-hand side again needs to be evaluated by parts, giving∫
x cosh 2x dx = x

sinh 2x
2

−
∫

sinh 2x
2

dx = x
sinh 2x

2
− cosh 2x

4
.
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Combining the two steps then gives∫
x2 sinhx dx = x2 cosh 2x

2
− x

sinh 2x
2

+
cosh 2x

4
.

Example 8.4

Evaluate I =
∫

ex sin 2x dx.

In this example it is not immediately clear which of the two components
of the product to choose for U. In each case the derivative is no simpler, and
we can integrate either expression. In fact we could choose either U = ex or
U = sin 2x in this example. We shall choose the former, and leave the other
choice as an exercise for the reader to carry out. As in Example 8.3 we find
that integrating by parts once does not leave us with a straightforward final
integral, so we repeat the calculation. We shall find that we end up with the
integral we started with, but in fact this then gives us an equation which we
can solve to find I.

I =
∫

ex sin 2x dx = ex

(
−cos 2x

2

)
+

∫
ex cos 2x

2
dx

= −ex

(
cos 2x

2

)
+ ex sin 2x

4
−

∫
ex sin 2x

4
dx

=
[
ex

(
sin 2x

4
− cos 2x

2

)]
− 1

4
I.

We therefore have

I =
[
ex

(
sin 2x

4
− cos 2x

2

)]
− 1

4
I,

giving
5
4
I =

[
ex

(
sin 2x

4
− cos 2x

2

)]
,

and so finally

I =
ex(sin 2x − 2 cos 2x)

5
.

8.2 Reduction Formulae

In Example 8.3 we evaluated
∫

x2 sinhx dx, integrating by parts twice. If we

were faced with
∫

x6 sinhx dx we would have to integrate by parts six times.
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Not only would this be tedious, but we would find that the structure of suc-
cessive steps would be similar. In this section we develop an approach which
involves formulating a generic step, for which the result can easily be applied
the requisite number of times, sometimes using a spreadsheet or a simple com-
puter program. Such a generic step is called a reduction formula, because the
procedure involves an integer parameter which is reduced in value at each stage
of the process, until we reach a stage where the resulting integral is easily eval-
uated. We can find reduction formulae for both indefinite and definite integrals,
as in the next example.

Example 8.5

Find reduction formulae for In =
∫

xnex dx and Jn =
∫ 1

0
xnex dx.

The notation In indicates that the integral involves the integer parameter
n. The answer depends upon the value of n, as for example with∫ 1

0
xn dx =

[
xn+1

n + 1

]1

0
=

1
n + 1

(n �= −1),

where we can see explicitly that the answer involves n.

In this example we have, in the case of the indefinite integral,

In =
∫

xnex dx = xnex −
∫

nxn−1ex dx.

We can see that the final integral is obtained from In by replacing n by n − 1
and multiplying by n. This is expressed in the reduction formula

In = xnex − nIn−1.

In the case of the definite integral the calculations are the same, and so we
obtain

Jn =
∫ 1

0
xnex dx = [xnex]10 −

∫ 1

0
nxn−1ex dx,

which gives the reduction formula

Jn = e − nJn−1.

We can use this formula to work out, for example, the value of J7 =
∫ 1

0
x7ex dx.

We first apply the reduction formula with n = 7, giving J7 = e − J6. We
now apply the same reduction formula, but with n = 6, and so

J7 = e − 7J6 = e − 7(e − 6J5) = −6e + 7.6J5 = −6e + 42J5.
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This process continues until we reach J0, which we can evaluate explicitly,
because

J0 =
∫ 1

0
x0ex dx = e − 1.

The complete process using the reduction formula for values of n from 7 down
to 1 is as follows.

J7 = e − 7J6

= e − 7(e − 6J5) = −6e + 42J5

= −6e + 42(e − 5J4) = 36e − 210J4

= 36e − 210(e − 4J3) = −174e + 840J3

= −174e + 840(e − 3J2) = 666e − 2520J2

= 666e − 2520(e − 2J1) = −1854e + 5040J1

= −1854e + 5040(e − 1.J0) = −1854e + 5040(e − (e − 1))

= −1854e + 5040.

Example 8.6

Find a reduction formula for In =
∫ π

0
xn sin x dx.

We shall see that we need to integrate by parts twice in this case, in order
to return to an integral containing sinx.

In =
∫ π

0
xn sin x dx = [xn(− cos x)]π0 +

∫ π

0
nxn−1 cos x dx

= πn +
∫ π

0
nxn−1 cos x dx

= πn +
[
nxn−1 sin x

]π

0 −
∫ π

0
n(n − 1)xn−2 sin x dx

= πn − n(n − 1)In−2.

So the reduction formula is

In = πn − n(n − 1)In−2.

In Example 8.5 the integer parameter n was reduced by 1 at each stage. In
this example n is reduced by 2 each time. So if we begin with an odd value of
n we shall finish by needing to calculate I1, and if we start with an even value
of n we shall need the value of I0. In both cases these are integrals which are
easy to evaluate explicitly.
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8.3 Integration using MAPLE

If we simply want to know the value of an indefinite or a definite integral
MAPLE will provide the answer. So in Example 8.1 if we use the command

int(x*cos(x),x);

we will immediately obtain the output cosx + x sin x, which agrees with our
calculations. Similarly for Example 8.3 the command

int(xˆ2*sinh(2*x),x);

gives an output which agrees with our calculations.
MAPLE can also evaluate definite integrals, and the command

int(xˆ3*sin(x),x=0..Pi);

yields −6π + π3. To evaluate this by hand would require integration by parts
three times.

MAPLE can do much more than simply provide the answers. It has a li-
brary package which will demonstrate the various steps in a process such as
integration by parts. To load the package in question we use the command
with(student); and we then see a list of the additional commands this pack-
age contains. To see the process of integration by parts at work we tell MAPLE
which function to use as U.

Example 8.7

Work through Example 8.3 using MAPLE as explained above.

We use commands as follows.
with(student);

A:=Int(xˆ2*sinh(2*x),x);

The output is A :=
∫

x2 sinh(2x) dx. We see that the command gives the

integral a name, so it means we do not have to re-type it every time we want
to use it.

intparts(A,xˆ2);

This command tells MAPLE to take U = x2. The output agrees precisely
with the first step of our calculations. We need to integrate by parts again, and
so the command

intparts(%,x);

takes the previous result (denoted in MAPLE by the percentage symbol) and
evaluates the integral with U = x, the output agreeing with the second stage
of our calculations. Finally we would simply evaluate the final straightforward
integral.

Now in some cases, as in Example 8.4, it is not clear what to take for U. With
MAPLE we can try both functions and see what the result is. In Example 8.1,
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if we take U = cos x instead of U = x, the commands
B:=Int(x*cos(x),x);

intparts(B,cos(x));

give the output
1
2

cos(x)x2 −
∫

−1
2

sin(x) dx.

This is clearly a more complicated integral than the one we started with, so
that U = cos(x) is an inappropriate choice.

Example 8.8

Use MAPLE to find a reduction formula for the integral J(n) in Example 8.5.

The first command we need is restart; with(student); which clears the
memory and then loads the relevant library routines. Next we label the integral,
and the command includes the fact that it is a function of the integer variable
n, as explained in Example 8.5.

J:=n->Int(xˆn*exp(x),x=0..1);

We then instruct MAPLE to integrate by parts, taking U = xn, and tell it
to simplify the result.

intparts(J(n),xˆn);

simplify(%);

The output is e − n

∫ 1

0
x(n−1)ex dx, i.e., e − nJ(n − 1).

To work out J(7) using the reduction formula MAPLE needs to know the
value of J(0), as the procedure in Example 8.5 explains. So we first need the
command value(J(0)); which tells us that J(0) = e − 1, and then finally
value(J(7)); gives the answer −1854e + 5040.

8.4 The Gamma Function

In this section we consider some elementary properties of the Gamma func-
tion. This is a function encountered in applied mathematics and in statistics.
It brings together integration by parts and infinite and improper integrals dis-
cussed in Sections 7.5 and 7.6.
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Definition 8.9

The Gamma function is a function of the variable x defined by the integral

Γ (x) =
∫ ∞

0
tx−1e−t dt.

This is an infinite integral, and so we need to discuss convergence, as in Sec-
tion 7.5.

If x − 1 < 0 then the integrand contains a negative power of t, which is
undefined at t = 0. In this case we therefore have an improper integral, and
convergence at t = 0 must be investigated, as in Section 7.6.

We shall investigate these two cases of convergence separately by splitting
the integral at t = 1, letting

I1 =
∫ 1

0
tx−1e−t dt, I2 =

∫ ∞

1
tx−1e−t dt.

In both cases we use comparison to discuss convergence.
Consider I1. Since 0 ≤ t ≤ 1 we have e−1 ≤ e−t ≤ 1, so

tx−1e−1 ≤ tx−1e−t ≤ tx−1.

If x > 0 then for 0 < h < 1 we have∫ 1

h

tx−1 dt =
[
tx

x

]1

h

=
1
x

(1 − hx) → 1
x

as h → 0.

Hence
∫ 1

0
tx−1 dt converges, and so

∫ 1

0
tx−1e−t dt converges by comparison.

Now if x < 0 then for 0 < h < 1 we have∫ 1

h

e−1tx−1 dt = e−1
[
tx

x

]1

h

=
e−1

x
(1 − hx) → ∞ as h → 0.

Hence
∫ 1

0
e−1tx−1 dt diverges, and so

∫ 1

0
tx−1e−t dt diverges by comparison.

Now we consider I2. Let n denote the first integer greater than x. We
therefore have, using the method of Example 6.14

tx−1e−t < tn−1e−t < tn−1 (n + 1)!
tn+1 =

(n + 1)!
t2

.

In Example 7.11 we saw that
∫ ∞

1

1
t2

dt converges. Therefore by comparison

(noting that (n + 1)! is a constant),
∫ ∞

1
tx−1e−t dt converges.
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We would like to integrate by parts, but we have an infinite (and possibly
improper) integral, so this needs careful consideration. Suppose that x > 1,

so that the integral is not improper at x = 0. We then integrate by parts as
follows. ∫ k

0
txe−t dt =

[−txe−t
]k

0 +
∫ k

0
xtx−1e−t dt.

Letting k → ∞ then gives∫ ∞

0
txe−t dt = x

∫ ∞

0
tx−1e−t dt, i.e., Γ (x + 1) = xΓ (x).

This argument will generalise to show that we can integrate convergent infinite
integrals by parts. We can deal with the case 0 < x ≤ 1, when the integral is
improper, in a similar fashion, using the limit definition of an improper integral
as we did for an infinite integral above. So we can say that Γ (x + 1) = xΓ (x)
for x > 0.

This looks like a reduction formula (see Section 8.2), and if we let x = n, a
positive integer, we can see that

Γ (n + 1) = nΓ (n) = n(n − 1)Γ (n − 1)

= n(n − 1)(n − 2)Γ (n − 2)

= n(n − 1)(n − 2) . . . 2.1.Γ (1).

Now Γ (1) =
∫ ∞

1
t0e−t dt =

[−e−t
]∞
0 = 1, so Γ (n + 1) = n! The Gamma

function can therefore be seen as a generalisation of the factorial function for
non-integer values.

One interesting result for a non-integer value is Γ
( 1

2

)
=

√
π. MAPLE knows

this fact about the Gamma function, as the command GAMMA(1/2); will show.
This and further information about the Gamma function can be found on
various mathematical websites, for example the following two.

http://mathworld.wolfram.com
http://numbers.computation.free.fr

8.5 A Strange Example

We integrate tan x by parts, using U =
1

cos x
,
dV

dx
= sinx.

∫
tanx dx =

∫
sin x

cos x
dx
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=
− cos x

cos x
+

∫
− cos x.

− sin x

cos2 x
dx

= −1 +
∫

tanx dx.

Cancelling
∫

tanx dx therefore gives 0 = −1.

So how do we explain this apparent paradox? Is it because of the constant
of integration? Well if we were to include that we would get∫

tanx dx + C = −1 +
∫

tanx dx + C,

suggesting that C = −1+C, which again is wrong. If the constant of integration
is arbitrary perhaps we should not have the same constant C on both sides.
We would then obtain∫

tanx dx + C = −1 +
∫

tanx dx + D.

This would imply that C = −1 + D, but if C and D are arbitrary constants
why should they be related? What we need to do is to interpret C and D as
representing the set of all possible constants, so that if C and D represent all
possible real numbers then the set of all numbers of the form −1+D is also the
set of all real numbers, the same as C. From another perspective it means that
we have to think carefully about what an indefinite integral is. This example
suggests that an indefinite integral is not a function, but a set of functions, and
so the two sets of functions on either side of the equation∫

tanx dx + C = −1 +
∫

tanx dx + C

are identical, and there is no question of cancelling
∫

tan x dx.

When we introduced indefinite integrals in Section 7.2 we used the indefinite
article, and described a function F (x) whose derivative is f(x) as an indefinite
integral (and not the indefinite integral). This is normal usage, and it would
be very complicated to develop the procedures of integration in terms of the
language of sets of functions. We shall not therefore change our approach, but
simply be aware that occasionally we may need to think more precisely about
the definition of an indefinite integral if we encounter an apparent paradox.
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EXERCISES

8.1. Evaluate the following indefinite integrals

(a)
∫

x sinhx dx; (b)
∫

x2ex dx;

(c)
∫

x2 cosh 3x dx; (d)
∫

x(lnx)2 dx;

(e)
∫

x2 cos x dx; (f)
∫

x tan−1 x dx;

(g)
∫

x cos2 x dx; (h)
∫ √

x ln
(√

x
)

dx;

(i)
∫

(x + 1)ex lnx dx; (j)
∫

cos−1 x dx.

8.2. Use integration by parts to evaluate
∫

eax cos bx dx.

8.3. Evaluate the indefinite integral
∫

sec3 x dx, by writing

sec3 x = sec x sec2 x and using integration by parts.

8.4. Find a reduction formula for
∫ e

1
x(lnx)n dx.

Hence evaluate
∫ e

1
x(lnx)4 dx.

8.5. Let In =
∫ π

2

0
cosn x dx.

Write cosn x = cos x cosn−1 x and show that In =
n − 1

n
In−2.

Hence evaluate
∫ π

2

0
cos8 x dx.

8.6. Use MAPLE to set up a reduction formula for
∫ 1

0
xne2x dx, and use

it to find the value of the integral when n = 7.

8.7. Assuming that Γ
( 1

2

)
=

√
π, find the values of Γ

( 3
2

)
and Γ

( 7
2

)
.
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Integration by Substitution

The theoretical basis for integration by substitution is the chain rule for differ-
entiation, which says that

d

dx
f (g(x)) = f ′ (g(x)) g′(x).

Regarding integration as the reverse of differentiation leads us to integrate both
sides of this equation to write∫

f ′ (g(x)) g′(x) dx = f (g(x)) .

Given an integral of this form we can transform it by means of the substitution

u = g(x). We then have
du

dx
= g′(x) and so∫

f ′ (g(x)) g′(x) dx =
∫

f ′(u)
du

dx
dx =

∫
d

dx
(f(u)) dx = f(u) = f (g(x)) ,

where we have used the chain rule with the intermediate variable u, to recognise

that f ′(u)
du

dx
=

d

dx
(f(u)) .

In fact we implement this process symbolically by rewriting
du

dx
= g′(x) in

the form du = g′(x) dx. The integration procedure then appears in the form∫
f ′ (g(x)) g′(x) dx =

∫
f ′(u) du = f(u) = f (g(x)) .

The underlying idea is that the substitution gives rise to a simpler integral
involving the variable u. After having evaluated this integral we then replace

185
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u in the answer by g(x), so as to present the answer in terms of the original
variable x.

This can all be made analytically rigorous. The details are beyond the scope
of this book. In the remainder of this chapter we shall concentrate therefore on
applying this technique of integration in a variety of circumstances.

9.1 Some Simple Substitutions

Example 9.1

Evaluate the indefinite integral
∫

cos x

(1 + sin x)3
dx.

The theory above looks straightforward, but if we are presented with an

integral like
∫

cos x

(1 + sin x)3
dx, how are we to find an appropriate substitution

which will transform the integral into a simpler one that we can recognise? We
need to be able to discern what should play the role of f and what should play

the role of g. We note that the general integral expression
∫

f ′ (g(x)) g′(x) dx

involves both g and its derivative, so what we need to look for is one part of
the integrand which is the derivative of another part of the integrand. In this
example we can see that the integrand involves sin x and also cos x, which is
the derivative of sinx. This suggests using the substitution u = sinx. We then
have du = cos x dx, and so the integral transforms as∫

cos x

(1 + sin x)3
dx =

∫
1

(1 + u)3
du.

The latter is an integral we should know how to do, but if not we can simplify
it still further with a linear transformation w = 1 + u, giving dw = du, and
therefore ∫

cos x

(1 + sin x)3
dx =

∫
1

(1 + u)3
du =

∫
1

w3 dw = − 1
2w2 .

The answer has to be given in terms of the original variable x, so we have∫
cos x

(1 + sin x)3
dx = − 1

2w2 = − 1
2(1 + u)2

= − 1
2(1 + sin x)2

.

The answer should be checked by differentiation (using the chain rule).

Example 9.2

Evaluate the indefinite integral
∫

ex

1 + e2x
dx.
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We first note that e2x = (ex)2 , so that the numerator is the derivative of part
of the denominator. This suggests the substitution u = ex, giving du = ex dx.

We therefore have∫
ex

1 + e2x
dx =

∫
1

1 + u2 du = tan−1 u = tan−1 (ex) .

Example 9.3

Evaluate the definite integral
∫ √

e

1

sin(π lnx)
x

dx.

In this case when we look for one part of the integrand which is the derivative
of another part, we see that the integrand contains lnx and its derivative 1/x.

We therefore use the substitution u = lnx, giving du = 1
x dx.

In the case of a definite integral we do not need to evaluate the corresponding
indefinite integral in terms of the original variable, because the substitution
transforms the interval of integration for x into an interval of integration for u.

In order for this to work properly the substitution must have an inverse over
the interval of integration, in other words the function used in the substitution
has to be 1-1 over that interval. (Example 9.4 discusses this point.) This is the
case here, ln x being 1-1 over its entire domain. Applying the substitution, we
find that when x = 1, u = ln 1 = 0, and when x =

√
e, u = ln(

√
e) = 1

2 . We can
now transform the integral, giving

∫ x=
√

e

x=1

sin(π lnx)
x

dx =
∫ u= 1

2

u=0
sin(πu) du =

[
−cos(πu)

π

]u= 1
2

u=0
=

1
π

.

In this example we have used an expanded notation for the limits of integra-
tion, to emphasise the point about transforming them at the same time as
transforming the integrand. Normally we would just write the numbers with-
out indicating the variables explicitly. However the notation is useful when
integration of functions of more than one variable is studied in multivariable
calculus.

Example 9.4

In this example we illustrate the comment in Example 9.3 about the substitu-
tion needing to have an inverse.

We shall try to evaluate
∫ π

0
cos2 x dx using the substitution u = sin x,

which is not 1-1 over the interval 0 ≤ x ≤ π. We then have du = cos x dx,

and using the identity cos2 x + sin2 x = 1 gives cos x =
√

1 − u2. Applying the
substitution to the interval of integration, we find that when x = 0, u = 0,
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and when x = π, u = 0 also. So we end up with the integral
∫ 0

0

√
1 − u2 du,

which is zero, whereas the original integral is clearly positive. The substitution
seems to give an erroneous result. If we were to use this substitution we would
have to split the interval of integration into separate intervals on which the
substitution would be 1-1. These could be the intervals 0 ≤ x ≤ π/2 and
π/2 ≤ x ≤ π respectively.

Another aspect of this example is that the equation cos x =
√

1 − u2 is valid
only for 0 ≤ x ≤ π/2. For π/2 ≤ x ≤ π we should have cos x = −√

1 − u2. As
in other situations we have to be very careful about the correct choice of square
root. Taking this into account also implies that we should split the interval of
integration.

9.2 Inverse Substitutions

In the previous section the substitutions used replaced part of the integrand
by a single variable, as in Example 9.1 where we replaced sin x by u. In this
section we consider substitutions which work in the reverse direction, so that
x itself is replaced by an expression in another variable, for example we may
substitute x = sinu. We can regard this as equivalent to u = sin−1 x, hence
the term inverse substitution.

Example 9.5

Evaluate the indefinite integral I =
∫

x2
√

x + 2
dx

It is the square root term which makes this integral slightly awkward, so
we choose an inverse substitution to remove it, the obvious one being x = u2.

We then have dx = 2u du, and so

I =
∫

u4

u + 2
.2u du =

∫
2u5

u + 2
du

=
∫ (

2u4 − 4u3 + 8u2 − 16u + 32 − 64
u + 2

)
du

(using polynomial division)

=
2u5

5
− u4 +

8u3

3
− 8u2 + 32u − 64 ln |u + 2|

=
2x

5
2

5
− x2 +

8x
3
2

3
− 8x + 32

√
x − 64 ln |√x + 2|.

Because x = u2 is a simple inverse transformation it has a straightforward
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direct equivalent, namely u =
√

x. Applying this direct substitution however

is slightly more awkward, because we obtain du =
dx√

x
, which still involves the

square root, and for which the algebraic manipulation needed is slightly more
involved.

Example 9.6

Evaluate the indefinite integral I =
∫

1√
x( 3

√
x + 2)

dx.

Here we need to look for a substitution which will eliminate both the square
and the cube roots, and x = u6 will achieve this. So we have dx = 6u5 du and
therefore

I =
∫

1√
x ( 3

√
x + 2)

dx =
∫

6u5

u3(u2 + 2)
du

= 6
∫

u2

u2 + 2
du = 6

∫ (
1 − 2

u2 + 2

)
du

= 6
(

u −
√

2 tan−1
(

u√
2

))
= 6

(
6
√

x −
√

2 tan−1
(

6
√

x√
2

))
.

In the remainder of this chapter we shall concentrate on some inverse sub-
stitutions which work for classes of integrals. They will be illustrated through
particular examples, but discussed in a way which emphasises their general
applicability.

9.3 Square Roots of Quadratics

These can generally be simplified by means of trigonometric or hyperbolic sub-
stitutions. A knowledge of trigonometric identities, and of the algebraic tech-
nique of completing the square, is a necessity therefore. The examples are cho-
sen to involve only a single square root term, but the techniques are equally
applicable to integrals of algebraic fractions where the numerator or the de-
nominator is the square root of a quadratic.

Example 9.7

Evaluate the indefinite integral I =
∫ √

4x2 − 16x + 52 dx.
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We shall break this example down into a number of steps, each of which is
important in evaluating integrals of this type.
STEP 1 We make the coefficient of x2 equal to 1, so

I = 2
∫ √

x2 − 4x + 13 dx.

(Note that if the coefficient of x2 is negative then we make its coefficient equal
to −1 and then proceed with the following steps.)
STEP 2 Complete the square, giving

I = 2
∫ √

(x − 2)2 + 9 dx.

STEP 3 Write the constant as a square number.

I = 2
∫ √

(x − 2)2 + 32 dx.

STEP 4 Use a linear substitution to replace the variable square term with a
single square, using u = x − 2 in this case.

I = 2
∫ √

u2 + 32 du.

This succession of steps will always transform the square root of a quadratic
into a sum of squares, as in this example, or a difference of squares. The fol-
lowing steps are therefore applicable to integrals involving a term of the form√

u2 + a2.

STEP 5 Make an appropriate trigonometric substitution. We need to find a
substitution which makes use of a trigonometric identity reducing a sum of two
squares to a single square term, which will then enable us to remove the square
root. In this case the appropriate identity is tan2 t + 1 = sec2 t. However we
have

√
u2 + 32, and so we need to take the 32 into account, using u = 3 tan t.

We then have du = 3 sec2 t dt, and so the substitution gives

I = 2
∫ √

32 tan2 t + 32.3 sec2 t dt = 2.3.3
∫

sec3 t dt.

STEP 6 We now have to evaluate the trigonometric integral. This involves
integration by parts, and one of the exercises in Chapter 8 describes how to do
this. We find that

I = 18
( 1

2 sec t tan t + 1
2 ln | sec t + tan t|) .

STEP 7 We now have to express the result in terms of x, firstly by finding the
trigonometric functions in terms of u. The substitution gives us one of them,
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because tan t =
u

3
. To find sec t (or any other trigonometric function which

might arise is integrals of this type) a helpful technique is to draw a right-
angled triangle in which tan t =

u

3
. Using Pythagoras’ Theorem gives the third

side of the triangle, and we can then read off any trigonometric ratio that we
need.

t
3

u √
u2 + 32

Figure 9.1 Trigonometric substitutions

We can now see from the diagram that sec t =
√

u2 + 32

3
. So we can express

the integral in terms of u as

I = 9
√

u2 + 32

3
u

3
+ 9 ln

∣∣∣∣∣
√

u2 + 32

3
+

u

3

∣∣∣∣∣ .

STEP 8 We replace u, using u = x − 2 from STEP 4, and undertake some
algebraic simplification, to give the answer

I =
√

(x − 2)2 + 32(x − 2) + 9 ln
∣∣∣√(x − 2)2 + 32 + (x − 2)

∣∣∣ − 9 ln 3.

The −9 ln 3 term can be absorbed into the constant of integration, giving finally

I = (x − 2)
√

x2 − 4x + 13 + 9 ln
∣∣∣√x2 − 4x + 13 + (x − 2)

∣∣∣ .

Example 9.8

Evaluate the indefinite integral I =
∫

1√
x2 − 2x + 6

dx.

We shall follow the steps as in Example 9.7. STEP 1 is not needed here,
but STEP 2 and STEP 3 have to be implemented. So completing the square
gives

I =
∫

1√
(x − 1)2 + 5

dx =
∫

1√
(x − 1)2 +

√
5
2

dx.



192 Calculus of One Variable

Notice that we need to express the constant as a square even when it is not a
square number like 9. This always serves as a reminder of the numerical factor
needed in the substitution. We now perform STEP 5 using u = x − 1, to give

I =
∫

1√
u2 +

√
5
2

du.

The trigonometric method used in the previous example would work here, but
we shall show how to use the alternative of a hyperbolic substitution. The rele-
vant hyperbolic identity is sinh2 t + 1 = cosh2 t, and so we use the substitution
u =

√
5 sinh t, from which du =

√
5 cosh t dt. The integral then becomes

I =
∫

1√
u2 +

√
5
2

du =
∫

1√
5 sinh2 t + 5

√
5 cosh t dt.

This simplifies to give

I =
∫ √

5 cosh t√
5 cosh t

dt =
∫

1 dt = t = sinh−1
(

u√
5

)
= sinh−1

(
x − 1√

5

)
.

In example 9.7 the answer involved a logarithmic function, and we might expect
that here, since we are also integrating a function involving the square root of
a quadratic. The apparent difference lies in the fact that inverse hyperbolic
functions have equivalent logarithmic forms, as we saw in Example 1.40.

Example 9.9

Evaluate the indefinite integral
∫ (

x2 − a2) 3
2 dx

(
x2 ≥ a2) .

Although there is not a square root symbol, the integrand is of course the
cube of a square root. This time we need an identity which changes a difference
of two square terms into a single square term.

We can use either the trigonometric identity sec2 t − 1 = tan2 t, or the
hyperbolic identity cosh2 t − 1 = sinh2 t. We shall use the latter, leaving the
former as an exercise for the reader. Naturally they should give the same answer,
or answers which are algebraically equivalent.

So we let x = a cosh t, giving dx = a sinh t dt. The integral then becomes

I =
∫ (

(a cosh t)2 − a2) 3
2 a sinh t dt = a4

∫
sinh4 t dt.

This integral can be evaluated either using hyperbolic double angle formulae,

sinh 2t = 2 sinh t cosh t; cosh 2t = cosh2 t−sinh2 t = 2 cosh2 t−1 = 2 sinh2 t+1,
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or using the exponential definition of hyperbolic functions. This is one advan-
tage of using a hyperbolic substitution, for with trigonometric functions we
do not have an exponential alternative. We shall demonstrate both methods,
firstly using the hyperbolic identities. The calculation is quite long, and we
have shown each step. The first steps of the calculation express powers of the
hyperbolic functions in terms of individual hyperbolic functions which can be
integrated. The latter steps of the calculation are concerned with expressing
the answer back in terms of cosh t and sinh t in order to be able to obtain the
result in terms of the original variable x. Readers will need to study each step
of the calculation to see how the various identities have been used.

I = a4
∫

sinh4 t dt = a4
∫

(sinh2 t)2 dt

= a4
∫ (

cosh 2t − 1
2

)2

dt

= a4
∫ (

cosh2 2t

4
− cosh 2t

2
+

1
4

)
dt

= a4
∫ (

cosh 4t + 1
8

− cosh 2t

2
+

1
4

)
dt

= a4
∫ (

cosh 4t

8
− cosh 2t

2
+

3
8

)
dt

= a4
(

sinh 4t
32

− sinh 2t
4

+
3t

8

)

= a4
(

sinh 2t cosh 2t

16
− sinh t cosh t

2
+

3t

8

)

= a4
(

sinh t cosh t(2 sinh2 t + 1)
8

− sinh t cosh t

2
+

3t

8

)

= a4
(

sinh3 t cosh t

4
− 3 sinh t cosh t

8
+

3t

8

)

= a4

(
1
4

(
x2

a2 − 1
) 3

2 x

a
− 3

8

(
x2

a2 − 1
) 1

2 x

a
+

3
8

cosh−1
(x

a

))

=
x(x2 − a2)

3
2

4
− 3a2x(x2 − a2)

1
2

8
+

3a4

8
cosh−1

(x

a

)
.

We shall now show what happens using the exponential definition of sinh t.

On the second line of the calculation we have used the binomial expansion.

I = a4
∫

sinh4 t dt = a4
∫ (

et − e−t

2

)4

dt =
a4

16

∫
(et − e−t)4 dt
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=
a4

16

∫ (
e4t − 4e2t + 6 − 4e−2t + e−4t

)
dt

=
a4

16

(
e4t

4
− 2e2t + 6t + 2e−2t − e−4t

4

)

=
a4

16

(
sinh 4t

2
− 4 sinh 2t + 6t

)

= a4
(

sinh3 t cosh t

4
− 3 sinh t cosh t

8
+

3t

8

)
.

This is the same expression as on the ninth line of the previous calculation, so
the final steps will be identical.

It is occasionally worthwhile to undertake detailed calculations such as this
by hand, but with a complicated integral there is a lot of potential for algebraic
or arithmetic mistakes, and so MAPLE can be used to provide a reliable answer,
or as a check on manual calculation. In this case the command

int((xˆ2-aˆ2)ˆ(3/2),x);

gives exactly the answer we finished with. The command
int((sinh(t))ˆ4,t);

gives the answer (without the a4) on the line above containing sinh3 t (the third
line from the end of the first calculation).

Example 9.10

Evaluate the indefinite integral I =
∫

x2
√

a2 − x2 dx (a2 ≥ x2).

This integral seems to be similar to the previous example. However that
involved

√
x2 − a2, and so required x2 ≥ a2, whereas this example involves√

a2 − x2, and so requires a2 ≥ x2. The identity needed to get rid of the square
root is the basic trigonometric one cos2 t + sin2 t = 1, corresponding to either
of the substitutions x = a cos t or x = a sin t. The corresponding hyperbolic
identity would be 1−sech2x = tanh2 x. We shall use x = a sin t; dx = a cos t dt,

showing the main steps and leaving the reader to verify the use of identities at
each stage.

I =
∫

x2
√

a2 − x2 dx =
∫

a2 sin2 t

√
a2(1 − sin2 t) a cos t dt

= a4
∫

sin2 t cos2 t dt =
a4

4

∫
sin2 2t dt =

a4

8

∫
(1 − cos 4t) dt

=
a4

8

(
t − sin 4t

4

)
=

a4

8
(
t − sin t cos t(1 − 2 sin2 t)

)
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=
a4

8

(
sin−1

(x

a

)
− x

a

√
1 − x2

a2

(
1 − 2

x2

a2

))

=
a4

8
sin−1

(x

a

)
− 1

8
x
√

a2 − x2(a2 − 2x2).

The penultimate line is obtained by the method used in STEP 7 of Example
9.7, involving a right-angled triangle.

9.4 Rational Functions of cos and sin

A rational function, as defined in Section 1.6.2, is a quotient of polynomi-
als, where the numerator and denominator involve only terms containing non-
negative integer powers of the variable x. By a rational function of cos and sin
we mean a quotient where the numerator and denominator involve only terms
containing non-negative integer powers of cos and sin, for example

cos3 t sin t + sin2 t + 3 − 2 cos2 t

3 sin t − 4 + 5 sin2 t cos5 t − 2 cos t
.

To integrate such a function we use the so-called half-angle substitution

x = tan
(

t

2

)
. This will always lead to a rational function of x. In Chapter 10

we shall consider methods of integrating rational functions in general, so the
example in this section will be a straightforward one.

Because such expressions often involve both cos t and sin t we need to use
identities which express these in terms of x. We can do this using a right-angled
triangle together with basic trigonometric identities.

t
2

1

x √
1 + x2

Figure 9.2 Half-angle substitution
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In the right-angled triangle we have x = tan
(

t

2

)
. So dx =

1
2

sec2
(

t

2

)
dt,

which we can rearrange in the form

dt = 2 cos2
(

t

2

)
dx =

2
1 + x2 dx,

where we obtain the value of cos2
(

t

2

)
from the triangle. We can also use the

triangle to see that

sin
(

t

2

)
=

x√
1 + x2

.

We therefore have

cos t = 2 cos2
(

t

2

)
− 1 =

2
1 + x2 − 1 =

1 − x2

1 + x2 ,

sin t = 2 sin
(

t

2

)
cos

(
t

2

)
= 2

x√
1 + x2

1√
1 + x2

=
2x

1 + x2 .

We can therefore see that each term in the integral of a rational function of
cos t and sin t (including dt) will be transformed into a rational fraction of x,
and so we shall be left with a rational function of x to integrate.

Example 9.11

Evaluate the indefinite integral I =
∫

1
2 + sin t

dt.

Using the substitution x = tan
(

t

2

)
with the identities derived above gives

I =
∫

1
2 + sin t

dt =
∫

1
2 + 2x

1+x2

2
1 + x2 dx

=
∫

1
x2 + x + 1

dx (after simplification)

=
∫

1(
x + 1

2

)2 + 3
4

(completing the square)

=
1√

3
4

tan−1

⎛
⎝x + 1

2√
3
4

⎞
⎠ =

2√
3

tan−1
(

2x + 1√
3

)

=
2√
3

tan−1

(
2 tan

(
t
2

)
+ 1√

3

)
.
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9.5 Substitution using MAPLE

We saw in Chapter 8 that MAPLE allows us to go through the procedure
of integration by parts step-by-step, instead of simply providing the answer.
Integration by substitution can be approached in a similar way.

Example 9.12

Use MAPLE to demonstrate the steps in Example 9.7.

We first need with(student); to load the appropriate package into mem-
ory. We now need to give the integral a name, using the command

M:=Int(sqrt(4*xˆ2-16*x+52),x);

(Note that we cannot use the symbol I for the integral in this case, as MAPLE
reserves that for the complex number whose square is −1.)

We now complete the square, and MAPLE takes care of the fact that the
coefficient of x2 is not 1. So the command

completesquare(%,x);

gives the output ∫
2
√

(x − 2)2 + 9 dx.

We now replace (x − 2) by t, as in Example 9.7. MAPLE refers to sub-
stitution using the synonymous term “changing the variable”. The command
is

changevar(u=x-2,%,u);

where the final u tells MAPLE the variable of integration, since such a change
of variable may contain other letters, for example u = x − a.

We have now reached the point where the integrand is the square root of
a sum of two squares, and STEP 5 of Example 9.7 tells us that we need to
substitute t = 3 tanu, which is accomplished with the command

changevar(u=3*tan(t),%,t);

giving the output ∫
(2

√
9 + 9 tan(t)2(3 + 3 tan(t)2)) dt.

We now need to simplify the integrand. Simplification of expressions in
MAPLE has a variety of syntaxes depending on the context, and here we need

simplify(%,symbolic);

which produces

18
∫

((1 + tan(t)2)
3
2 dt.
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We see that MAPLE does not use the required trigonometric identity, and
a straightforward method of doing this is for us to realise ourselves that we
have to make such a replacement, using

subs(1+tan(t)ˆ2=sec(t)ˆ2,%);

followed by another
simplify(%,symbolic);

to give

18
∫

1
cos(t)3

dt.

We have now reached STEP 6 in Example 9.7, and the command
value(%)

gives

9
sin(t)
cos(t)2

+ 9 ln(sec(t) + tan(t)),

where again MAPLE has not done trigonometric simplification.
Finally we need to express the answer in terms of the original variable, so

to substitute for t in terms of u we have to tell MAPLE to solve the equation
u = 3 tan t and then replace t. We use the command

subs(t=solve(u=3*tan(t),t),%);

and obtain a complicated expression involving arctan(t). We need to apply a
further

simplify(%,symbolic);

and then
subs(u=x-2,%);,

which gives the result√
(x − 2)2 + 9 (x − 2) − 9 ln 3 + 9 ln

(√
(x − 2)2 + 9 + x − 2

)
.

EXERCISES

9.1. Evaluate the following indefinite integrals, using an appropriate sub-
stitution.

(a)
∫

3x2 (
x3 + 4

)20
dx; (b)

∫
x

(
x2 − 6

) 4
3 dx;

(c)
∫

(x2 + 1) 3
√

x3 + 3x − 2 dx; (d)
∫

x2

2x3 + 5
dx;

(e)
∫

x2

4 + x6 dx; (f)
∫

cos x sin7 x dx;

(g)
∫

tan5 x sec2 x dx; (h)
∫

x2 cos(2x3) dx;
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(i)
∫

sin
√

x√
x

dx; (j)
∫

xex2−2 dx;

(k)
∫

cos(ln x)
x

dx; (l)
∫

2 sin x cos x ecos 2x dx;

(m)
∫

ex

√
ex + 3

dx; (n)
∫

1
ex + 2e−x

dx.

9.2. Evaluate the following definite integrals, using an appropriate sub-
stitution.

(a)
∫ 1

0
x2ex3

dx; (b)
∫ 1

0
x4(x5 − 1)6 dx;

(c)
∫ π

2

0
cos x

√
sin x dx; (d)

∫ ln 26

ln 7
ex 3

√
1 + ex dx.

9.3. Evaluate the following indefinite integrals, using an appropriate sub-
stitution.

(a)
∫

1√−x2 − 4x
dx; (b)

∫
1

(3 − x2)
3
2

dx;

(c)
∫

x2
√

1 − x2
dx; (d)

∫
1

x2
√

1 − 9x2
dx;

(e)
∫

1√
4 + x2

dx; (f)
∫

x√
2x − x2

dx;

(g)
∫

x2

(a2 − x2)
3
2

dx; (h)
∫ √

4x2 − 8x + 24 dx.

9.4. Evaluate the following indefinite integrals, using the half-angle sub-
stitution.

(a)
∫

1
5 + 3 cos t

dt; (b)
∫

1
cos t + sin t + 1

dt;

(c)
∫ π

2

0

1
2 + cos t

dt; (d)
∫ π

2

0

1
3 + 3 cos t − sin t

dt.

9.5. Evaluate the following indefinite integrals.

(a)
∫

cos x√
1 + 4 sin x + sin2 x

dx; (b)
∫

ex

√
2 − e2x

dx.
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Integration of Rational Functions

10.1 Introduction

A rational function is one of the form R(x) =
P (x)
Q(x)

, where are both P (x) and

Q(x) are polynomials in the variable x, for example

2x3 + 3x2 − 4x + 1
x2 − 3x + 2

.

In this chapter we shall explain the steps involved in a procedure which
will enable us to integrate any rational function, provided the algebra is not
too horrible! One of the algebraic tools needed is the decomposition of rational
functions into partial fractions, and we discuss this in the next section. In
Section 10.3 we describe the process of integrating a rational function, split
into a sequence of steps. We explain what happens at each step, using different
examples at each stage to illustrate some degree of generality. In Section 10.4 we
work through several examples showing the whole process applied to individual
rational functions.

Apart from partial fractions, the main algebraic prerequisite is polynomial
division, discussed in detail in Section 1.6.1.

201
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10.2 Partial Fractions

The partial fraction decomposition expresses a rational function
P (x)
Q(x)

as a sum

of simpler algebraic fractions. The denominators of these fractions are deter-
mined by the factorisation of the denominator Q(x). When a real polynomial
is completely factorised into real factors, the factors will either be linear or
quadratic, and some factors may occur more than once. Factorisation of poly-
nomials was discussed in Section 1.6.1.

Dealing with partial fractions where the denominator factorises into linear
factors only, none of which are repeated, is a familiar area of school mathemat-
ics. A common method used is that of equating coefficients, as in the following
example.

Example 10.1

Find the partial fraction decomposition of

x3 + 2x2 − x + 4
(x − 1)(x + 2)(x − 3)(x + 1)

.

The decomposition is of the form

x3 + 2x2 − x + 4
(x − 1)(x + 2)(x − 3)(x + 1)

=
A

x − 1
+

B

x + 2
+

C

x − 3
+

D

x + 1
.

If we now put the right hand side over the common denominator

(x − 1)(x + 2)(x − 3)(x + 1),

the numerator will be

A(x + 2)(x − 3)(x + 1) + B(x − 1)(x − 3)(x + 1)

+C(x − 1)(x + 2)(x + 1) + D(x − 1)(x + 2)(x − 3).

So equating the numerators gives

x3 + 2x2 − x + 4 ≡ A(x + 2)(x − 3)(x + 1) + B(x − 1)(x − 3)(x + 1)

+C(x − 1)(x + 2)(x + 1) + D(x − 1)(x + 2)(x − 3),

where the use of the identity symbol ≡ emphasises that this is true for all values
of x. One method of finding A, B, C, D is to multiply out the right-hand side,
giving

x3 + 2x2 − x + 4 ≡ (A + B + C + D)x3 + (−3B + 2C − 2D)x2

+(−7A − B − C − 5D)x + (−6A + 3B − 2C + 6D).
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Because this is an identity the coefficient of each power of x on both sides
must be the same. This gives the following system of four equations to solve
for A, B, C, D.

A + B + C + D = 1,

−3B + 2C − 2D = 2,

−7A − B − C − 5D = −1,

−6A + 3B − 2C + 6D = 4.

An alternative method is to substitute specific values of x in the identity, chosen
so as to make one of the linear factors zero. This has the effect of making all
but one of the terms zero on the right hand side of the first identity above. This
enables us to determine the unknown coefficients one at a time. The results are
given in the following table.

x = 1 6 = −12A A = −1/2
x = −2 6 = −15B B = −2/5
x = 3 46 = 40C C = 23/20
x = −1 6 = 8D D = 3/4

We therefore have

x3 + 2x2 − x + 4
(x − 1)(x + 2)(x − 3)(x + 1)

= − 1
2(x − 1)

− 2
5(x + 2)

+
23

20(x − 3)
+

3
4(x + 1)

.

Example 10.2

In this example we show how MAPLE can be used to help with partial fraction
decomposition. We have chosen an example where the degree of the numerator
exceeds that of the denominator, and we can see that MAPLE performs poly-
nomial division as well as partial fraction decomposition. The following are the
relevant commands together with the outputs. Notice that the first command
defines the function f. We can subsequently refer to f rather than having to
retype it every time we wish to use it, as the second command shows.

f:=(xˆ4+xˆ3-2*xˆ2+3*x+3)/(xˆ2+x-2);

f :=
x4 + x3 − 2x2 + 3x + 3

x2 + x − 2

convert(f,parfrac,x);

x2 +
1

x + 2
+

2
x − 1

.
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In the command for converting to partial fractions we need the final x in case
there is another variable in the expression, for example if the coefficients were
letters instead of numbers.

When we have a rational function where the degree of the numerator is less
than the degree of the denominator, and decompose it into partial fractions,
the degree of the numerator will be less than the degree of the denominator in
each of the component fractions also. So if we have a partial denominator like
(x − 2)4 the degree of the corresponding numerator in the decomposition will
be less than 4, so it will be cubic, quadratic, linear, or a constant. If we have a
partial denominator like (x2 +x+1)3, where the quadratic has no real factors,
in this case its degree is 6, so the associated numerator has degree at most 5.

In the case of fractions with repeated factors in the denominator, we can
decompose them further. In the case of a linear factor like (ax + b) the decom-
position is

p(x)
(ax + b)n

=
c1

(ax + b)
+

c2

(ax + b)2
+

c3

(ax + b)3
+ · · · +

cn

(ax + b)n
,

where p(x) is the numerator (of degree less than n) and the ci are all constants.
This is illustrated in Example 10.3.

In the case of a repeated quadratic factor the decomposition is

s(x)
(ax2 + bx + c)n

=
c1x + d1

(ax2 + bx + c)
+

c2x + d2

(ax2 + bx + c)2
+ · · · +

cnx + dn

(ax2 + bx + c)n
,

where s(x) is the numerator (of degree less than 2n) and the ci and di are
all constants. This is illustrated in Example 10.6. These results are sometimes
proved in algebra textbooks. We outline a method for proving the result for
linear denominators in the exercises at the end of this chapter using Taylor’s
Theorem, encountered in Chapter 6.

Example 10.3

Find the partial fraction decomposition of

x2 + x

(x − 1)3
.

The decomposition will be of the form

x2 + x

(x − 1)3
=

A

x − 1
+

B

(x − 1)2
+

C

(x − 1)3
.

In this example we use a method of compensation whereby we replace x

throughout by the factor in the denominator, (x − 1) in this case, and then
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compensate the constants. This is an alternative to the method of comparing
coefficients described in Example 10.1. It is a device used in various algebraic
calculations.

x2 + x

(x − 1)3
=

[(x − 1) + 1]2 + [(x − 1) + 1]
(x − 1)3

,

(x − 1)2 + 3(x − 1) + 2
(x − 1)3

=
1

(x − 1)
+

3
(x − 1)2

+
2

(x − 1)3
.

Example 10.4

Find the partial fraction decomposition of

x3

(x2 + x + 1)2
.

In this example we have a repeated quadratic factor in the denominator.
In such cases the numerators are always linear (or constant if the coefficient
of x turns out to be zero). We use a method of compensation similar to the
previous example. We regard the numerator x3 as x.x2, and we replace the
second factor x2 by the quadratic x2 + x + 1 which occurs in the denominator,
and then compensate.

x3

(x2 + x + 1)2
=

x(x2 + x + 1) − (x2 + x + 1) + 1
(x2 + x + 1)2

=
x − 1

(x2 + x + 1)
+

1
(x2 + x + 1)2

.

Example 10.5

Decompose
x2 − 2x + 3

(x + 1)3
into partial fractions.

The decomposition will be of the form

x2 − 2x + 3
(x + 1)3

=
A

x + 1
+

B

(x + 1)2
+

C

(x + 1)3
.

We have to find A, B, C and as usual we arrange the right-hand side as a
single fraction over the common denominator, (x + 1)3. This gives rise to the
numerator A(x + 1)2 + B(x + 1) + C, which must be equal to x2 − 2x + 3.

We could find A, B, C, by comparing coefficients, as in Example 10.1, or by
compensation, as in Example 10.3. Here we shall demonstrate another method,
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involving differentiation, reminiscent of the discussion in Section 6.4 on Taylor
Polynomials.

So in the equation A(x + 1)2 + B(x + 1) + C = x2 − 2x + 3, we substitute
x = −1 to give C = 6. We then differentiate both sides of the equation to give
2A(x + 1) + B = 2x − 2. Putting x = −1 now gives B = −4. Differentiating
once more gives 2A = 2, and so A = 1. Therefore the decomposition is

x2 − 2x + 3
(x + 1)3

=
1

x + 1
− 4

(x + 1)2
+

6
(x + 1)3

.

Example 10.6

Decompose
2x2 − x + 4

(x2 + x + 1)2
into partial fractions.

The decomposition will be of the form
Ax + B

(x2 + x + 1)
+

Cx + D

(x2 + x + 1)2
.

Arranging this as a single fraction over a common denominator gives the
numerator (Ax+B)(x2 +x+1)+Cx+D, which must be equal to 2x2 −x+4.

We can’t use the differentiation method in the same way as in Example 10.5,
because there is a quadratic involved, and indeed there is no real value of x

for which it is zero. We can adapt the differentiation method however, using
x = 0 in each case to simplify the calculations. So we have to solve the identity
(Ax+B)(x2+x+1)+Cx+D ≡ 2x2−x+4 for A, B, C. We can see immediately
that A = 0 because there is no x3 term on the right hand side. So the identity
simplifies to B(x2 + x + 1) + Cx + D ≡ 2x2 − x + 4. Putting x = 0 gives
B + D = 4.

Differentiating gives 2Bx + B + C ≡ 4x − 1, and putting x = 0 gives
B + C = −1.

Differentiating again gives 2B = 4 and so B = 2. We can now deduce that
C = −3 and D = 2. So the decomposition is

2x2 − x + 4
(x2 + x + 1)2

=
2

(x2 + x + 1)
+

−3x + 2
(x2 + x + 1)2

.

Notice that although we expect each numerator to be linear, it is possible
that some of the coefficients may be zero, as has happened with the first fraction
in this case.

In the examples above we have used a variety of methods, chosen to keep
the algebraic manipulation as straightforward as we can.
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10.3 The Integration Process

Integrating a rational function
P (x)
Q(x)

is a process which can be broken down into

a well-defined sequence of steps. In this section we shall describe the procedure,
providing illustrative examples. In the subsequent section we work through
some examples in detail.

STEP 1 Polynomial Division

Is the degree of P (x) greater than or equal to the degree of Q(x)? If the

answer is YES then divide Q(x) into P (x) to obtain
P (x)
Q(x)

= A(x) +
B(x)
Q(x)

,

where A(x) and B(x) are polynomials and deg B(x) < deg Q(x). Polynomial
division was discussed in detail in Section 1.6.1.

STEP 2 Factorisation

Following polynomial division we need to factorise the denominator Q(x).
The problem with this step is that there is no general algorithm which will
factorise all polynomials, as explained in Section 1.6.1. So in practice this step
can only be carried out if the polynomial Q(x) is relatively straightforward.

STEP 3 Partial Fractions

Decompose
B(x)
Q(x)

using partial fractions. This was discussed in detail in

Section 10.2.

STEP 4 Integration

We can now integrate each term in the partial fraction decomposition sepa-
rately. Each is a rational function, but only a few different types of expression
occur, as we have seen in Section 10.2, and we discuss each of them. The first
two types involve a linear factor in the denominator, which may be repeated,
and a constant numerator. From the basic integrals described in Section 7.2 we
have the following two results.∫

A

x + k
dx = A ln |x + k|,

∫
A

(x + k)n
dx = A

(x + k)−n+1

−n + 1
(n �= 1).

We now need to consider quadratic denominators. Where the quadratic is

not a repeated factor the integral will be of the form
∫

linear
quadratic

.

We can re-write the integrand in the form
linear
q(x)

= c
q′(x)
q(x)

+
d

q(x)
, where c

and d are constants, and integrate each term separately.
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Example 10.7

Evaluate the integral
∫

x + 3
x2 − x + 4

dx.

We rewrite the integrand as explained above to give∫
x + 3

x2 − x + 4
dx =

∫ 1
2 (2x − 1)
x2 − x + 4

dx +
∫ 7

2

x2 − x + 4
dx.

Using the general result ∫
q′(x)
q(x)

dx = ln |q(x)|,

we can deal with the first integral as follows.∫ 1
2 (2x − 1)
x2 − x + 4

dx =
1
2

ln |x2 − x + 4|.

We deal with the second integral by completing the square of the denomi-
nator, which doesn’t have real roots.∫ 7

2

x2 − x + 4
dx =

7
2

∫
dx(

x − 1
2

)2 + 15
4

=
7
2

√
4
15

tan−1

(√
4
15

(
x − 1

2

))
.

Finally we must deal with integrals of the form
∫

linear
(quadratic)n

(n > 1).

We can write the integrand as
linear

(q(x))n
= c

q′(x)
(q(x))n

+
d

(q(x))n
, where c and d

are constants.
The following example illustrates the general process for evaluating such

integrals.

Example 10.8

Show how to evaluate the integral∫
2x − 1

(x2 − 2x + 5)n dx (n > 1).

We first split the integral into two parts, as explained above. This gives∫
2x − 1

(x2 − 2x + 5)n dx =
∫

2x − 2
(x2 − 2x + 5)n dx +

∫
1

(x2 − 2x + 5)n dx.

We can deal with the first integral as follows
∫

2x − 2
(x2 − 2x + 5)n dx =

(
x2 − 2x + 5

)−n+1

−n + 1
.
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We deal with the second integral by completing the square of the denominator,
which doesn’t have real roots, and then let u = x − 1.∫

1
(x2 − 2x + 5)n dx =

∫
1

((x − 1)2 + 4)n dx =
∫

1
(u2 + 4)n du.

We now use either the trigonometric substitution

u = 2 tan θ; du = 2 sec2 θ dθ,

or the hyperbolic substitution

u = 2 sinh t; du = 2 cosh t dt.

Using the trigonometric substitution gives∫
1

(u2 + 4)n du =
∫

2 sec2 θ

(4 sec2 θ)n dθ =
2
4n

∫
(cos θ)2n−2 dθ,

for which a reduction formula is needed (see Section 8.2).
Using the hyperbolic substitution gives∫

1
(u2 + 4)n du =

∫
2 cosh t(

4 cosh2 t
)n dt =

2
4n

∫
(cosh t)1−2n dt,

and again a reduction formula is needed.
This procedure is illustrated in the next example, taking n = 2. In this case

we do not need a reduction formula since n is sufficiently small to work out the
relevant integrals directly.

Example 10.9

Evaluate the integral ∫
2x − 1

(x2 − 2x + 5)2
dx.

Splitting the integral as explained above gives∫
2x − 1

(x2 − 2x + 5)2
dx =

∫
2x − 2

(x2 − 2x + 5)2
dx +

∫
1

(x2 − 2x + 5)2
dx.

Evaluating the first integral gives∫
2x − 2

(x2 − 2x + 5)2
dx = − 1

x2 − 2x + 5
.
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The second integral can be evaluated as follows, using the trigonometric sub-
stitution u = 2 tan t, du = 2 sec2 t dt.∫

1
(x2 − 2x + 5)2

dx =
∫

1
((x − 1)2 + 4)2

dx =
∫

1
(u2 + 4)2

du

=
∫

2 sec2 t

(4 tan2 t + 4)2
dt =

∫
2 sec2 t

(4 sec2 t)2
dt

=
1
8

∫
cos2 t dt =

1
16

∫
(1 + cos 2t) dt

=
1
16

(
t +

sin 2t
2

)
=

1
16

(t + sin t cos t)

=
1
16

(
tan−1

(u

2

)
+

u√
u2 + 4

2√
u2 + 4

)

=
1
16

(
tan−1

(
x − 1

2

)
+

2(x − 1)
x2 − 2x + 5

)
,

where in the penultimate line we have used the right-angled triangle method
explained in Example 9.7.

Adding the two results together then gives∫
2x − 1

(x2 − 2x + 5)2
dx =

1
16

(
tan−1

(
x − 1

2

)
+

2(x − 9)
x2 − 2x + 5

)
.

10.4 Examples

In this section we shall work through some examples, to help consolidate the
general explanation in Section 10.3.

Example 10.10

Evaluate the indefinite integral∫
10x2 + 2x − 9
2x3 + x2 − 9

dx.

The degree of the numerator is less than that of the denominator, so we
proceed directly to STEP 2, factorising the denominator. Trying the integer
factors of the constant term, (1,−1, 3,−3, 9,−9) does not work. However we
note that the coefficient of the highest power of x is 2, and so we should try
each of the integer factors divided by 2. Substituting these in turn tells us that
x = 3

2 is a root of the cubic, and so (2x − 3) will be a factor. We can therefore
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find the remaining factor by dividing the cubic by 2x − 3, using polynomial
division, or alternatively by writing

2x3 + x2 − 9 = (2x − 3)(Px2 + Qx + R).

Comparing coefficients tells us that on the right-hand side P must be 1 and R

must be 3. We therefore have

2x3 + x2 − 9 = (2x − 3)(x2 + Qx + 3).

The coefficient of x2 on the right-hand side is 2Q − 3, which must be equal to
1, giving Q = 2. We therefore deduce that

10x2 + 2x − 9
2x3 + x2 − 9

=
10x2 + 2x − 9

(2x − 3)(x2 + 2x + 3)
.

The quadratic factor in the denominator has no real roots, so we proceed to
STEP 3, finding the partial fraction decomposition, which will be of the form

10x2 + 2x − 9
2x3 + x2 − 9

=
A

2x − 3
+

Bx + C

x2 + 2x + 3
.

Recombining the right-hand side over the common denominator and then
equating the numerators gives

10x2 + 2x − 9 = A(x2 + 2x + 3) + (Bx + C)(2x − 3).

Of the various methods available we will compare coefficients. This gives the
three simultaneous equations

A + 2B = 10,

2A + 2C − 3B = 2,

3A − 3C = −9.

Solving these three equations gives A = 2, B = 4, C = 5. Therefore

10x2 + 2x − 9
2x3 + x2 − 9

=
2

2x − 3
+

4x + 5
x2 + 2x + 3

.

We can now implement STEP 4 and integrate. Firstly we must rearrange the
second term in a suitable form, as in Example 10.7. We then have∫

10x2 + 2x − 9
2x3 + x2 − 9

dx =
∫

2
2x − 3

+
4x + 5

x2 + 2x + 3
dx

=
∫

2
2x − 3

dx + 2
∫

2x + 2
x2 + 2x + 3

dx +
∫

1
x2 + 2x + 3

dx

=
∫

2
2x − 3

dx + 2
∫

2x + 2
x2 + 2x + 3

dx +
∫

1
(x + 1)2 + 2

dx

= ln |2x − 3| + 2 ln |x2 + 2x + 3| +
1√
2

tan−1
(

x + 1√
2

)
.
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Example 10.11

Evaluate the indefinite integral∫
8x4 + 12x3 + 7x2 + 2x − 2

8x3 + 12x2 + 6x + 1
dx.

The degree of the numerator exceeds that of the denominator, so STEP 1
must be implemented. Following Example 1.12, for the first stage we write

8x4 + 12x3 + 7x2 + 2x − 2 = x(8x3 + 12x2 + 6x + 1) + a(x).

This simplifies to give

7x2 + 2x − 2 = 6x2 + x + a(x),

and so a(x) = x2 + x − 2. Therefore

8x4 + 12x3 + 7x2 + 2x − 2
8x3 + 12x2 + 6x + 1

= x +
x2 + x − 2

8x3 + 12x2 + 6x + 1
.

For STEP 2 we have to factorise the denominator, and acquaintance with
binomial expansions should enable us to recognise that

8x3 + 12x2 + 6x + 1 = (2x + 1)3.

The partial fraction decomposition needed for STEP 3 has the form

x2 + x − 2
(2x + 1)3

=
A

(2x + 1)
+

B

(2x + 1)2
+

C

(2x + 1)3
.

Putting the right-hand side over the common denominator and equating nu-
merators gives

x2 + x − 2 = A(2x + 1)2 + B(2x + 1) + C.

We shall use the method involving differentiation introduced in Example 10.5.
Firstly putting x = − 1

2 will give C = − 9
4 .

Differentiating gives 2x + 1 = 2B + 4A(2x + 1), and substituting x = − 1
2

shows that B = 0. Finally, differentiating again gives A = 1
4 . Therefore

x2 + x − 2
(2x + 1)3

=
1

4(2x + 1)
− 9

4(2x + 1)3
.

We are now in a position to integrate (STEP 4) without any further algebra.∫
8x4 + 12x3 + 7x2 + 2x − 2

8x3 + 12x2 + 6x + 1
dx

=
∫

x dx +
∫

1
4(2x + 1)

dx −
∫

9
4(2x + 1)3

dx

=
x2

2
+

ln |2x + 1|
8

+
9

16(2x + 1)2
.



10. Integration of Rational Functions 213

Example 10.12

Evaluate the indefinite integral

I =
4x3 + 34x2 + 120x + 127

(2x2 + 12x + 26)2
dx.

Here the degree of the numerator is less than that of the denominator.
Furthermore the quadratic in the denominator has no real roots. The first
calculation involved is therefore STEP 3, the partial fraction decomposition.
Since we have a repeated quadratic denominator, this decomposition has the
form

4x3 + 34x2 + 120x + 127
(2x2 + 12x + 26)2

=
Ax + B

2x2 + 12x + 26
+

Cx + D

(2x2 + 12x + 26)2
.

Putting the right-hand side over the common denominator and equating nu-
merators gives, after multiplying out,

2Ax3 + (12A + 2B)x2 + (26A + 12B + C)x + (26B + D)

≡ 4x3 + 34x2 + 120x + 127.

Comparing coefficients works well in this case, and we see that
from the coefficient of x3: A = 2,
from the coefficient of x2: 24 + 2B = 34, giving B = 5,
from the coefficient of x: 52 + 60 + C = 120, giving C = 8,
from the constant term: 130 + D = 127, giving D = −3.

Therefore the partial fraction decomposition is

4x3 + 34x2 + 120x + 127
(2x2 + 12x + 26)2

=
2x + 5

2x2 + 12x + 26
+

8x − 3
(2x2 + 12x + 26)2

.

We shall integrate each term separately (STEP 4). Firstly∫
2x + 5

2x2 + 12x + 26
dx =

1
2

∫
2x + 6

x2 + 6x + 13
dx − 1

2

∫
1

x2 + 6x + 13
dx.

Completing the square in the second integral gives∫
2x + 5

2x2 + 12x + 26
dx =

1
2

∫
2x + 6

x2 + 6x + 13
dx − 1

2

∫
1

(x + 3)2 + 4
dx.

Each integral is now in a standard form which enables us to write down the
answer, as in Example 10.7.∫

2x + 5
2x2 + 12x + 26

dx =
1
2

ln |x2 + 6x + 13| − 1
4

tan−1
(

x + 3
2

)
.
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We now have to evaluate ∫
8x − 3

(2x2 + 12x + 26)2
dx.

We rearrange the integrand following the procedure of Example 10.9.

8x − 3
(2x2 + 12x + 26)2

=
2x + 6

(x2 + 6x + 13)2
− 27

4((x + 3)2 + 4)2
.

We integrate each term separately, the first being straightforward, as in Exam-
ple 10.9. ∫

2x + 6
(x2 + 6x + 13)2

dx = − 1
x2 + 6x + 13

.

For the second term we need to use the substitution x+3 = 2 tan t, which gives∫
27

4((x + 3)2 + 4)2
dx =

27
4

∫
2 sec2 t

16(sec2 t)2
dt =

27
32

∫
cos2 t dt

=
27
64

(t + sin t cos t) =
27
64

(
tan−1

(
x + 3

2

)
+

2(x + 3)
x2 + 6x + 13

)
,

where we have used the right-angled triangle method introduced in Example 9.7
to express cos t and sin t in terms of x. Finally we assemble all the results to
give

I =
∫

4x3 + 34x2 + 120x + 127
(2x2 + 12x + 26)2

dx

=
1
2

ln |x2 + 6x + 13| − 1
4

tan−1
(

x + 3
2

)
− 1

x2 + 6x + 13

−27
64

(
2(x + 3)

x2 + 6x + 13
− tan−1

(
x + 3

2

))

=
1
2

ln |x2 + 6x + 13| − 43
64

tan−1
(

x + 3
2

)
− 27x + 113

32(x2 + 6x + 13)
,

which can be checked using MAPLE.

Example 10.13

Find the indefinite integral of

f(x) =
6x6 + 37x5 + 145x4 + 338x3 + 374x2 + 70x + 38

3x5 + 17x4 + 60x3 + 122x2 + 72x − 40
.

This is algebraically more complicated than the previous example, using
polynomial division and a more involved partial fraction decomposition. The
algebraic manipulation can be done using MAPLE, and so has not been given
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in detail. You would not expect to do as complicated an example as this by
hand.

Make sure you understand all the algebraic procedures in STEPS 1–3, and
that you understand each separate integral in STEP 4.

STEP 1
Divide the denominator into the numerator to give

f(x) = 1 + 2x +
2(4x4 + 17x3 + 54x2 + 39x + 39)

3x5 + 17x4 + 60x3 + 122x2 + 72x − 40
.

STEP 2
Factorise the denominator

f(x) = 1 + 2x +
2(4x4 + 17x3 + 54x2 + 39x + 39)
(3x − 1)(x + 2)2(x2 + 2x + 10)

.

STEP 3
Decompose into partial fractions

f(x) = 1 + 2x +
2

3x − 1
+

x − 1
(x + 2)2

+
x + 3

x2 + 2x + 10
.

As we saw in Example 10.2, MAPLE will perform the first three steps
together. If we let F (x) denote the integrand, then this can be accomplished
using the command

convert(F(x),parfrac,x);

STEP 4
To integrate each term we need to rearrange the fractions in a suitable form

for integration using the guidance in the examples above.

f(x) = 1 + 2x +
2
3

3
3x − 1

+
(x + 2) − 3
(x + 2)2

+
1
2 (2x + 2) + 2
x2 + 2x + 10

= 1 + 2x +
2
3

3
3x − 1

+
1

x + 2
− 3

(x + 2)2
+

1
2

(2x + 2)
x2 + 2x + 10

+
2

(x + 1)2 + 9
.

We can now integrate each term to obtain∫
f(x) dx = x + x2 +

2
3

ln |3x − 1| + ln |x + 2| +
3

x + 2

+
1
2

ln
∣∣x2 + 2x + 10

∣∣ +
2
3

tan−1 x + 1
3

.
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EXERCISES

10.1. Evaluate the indefinite integrals of the rational functions defined by
the following expressions.

(a)
7

x2 − 5x − 6
; (b)

3x − 11
x2 − 5x + 6

;

(c)
3

x2 + 4x + 13
; (d)

2x + 3
x2 + 6x + 10

;

(e)
x2 + 2x − 3
x2 − 4x + 5

; (f)
x3 + 2x2 − x − 1

x2 + 6x + 13
;

(g)
3x − 1

x2 + 4x + 4
; (h)

5x2 + 4
x3 − 3x2 + 3x − 1

;

(i)
2x2 − 11

x2 + 6x + 9
; (j)

x2 + 1
x3 + x2 + 3x − 5

;

(k)
x3 − x2 + 4

x3 + x2 + 3x − 5
; (l)

25x

x4 − x2 − 2x + 2
;

(m)
2x2 − 3x + 4
x4 − 2x2 + 1

; (n)
x2 + 3x − 2

(x2 − 4x + 5)2
.

10.2. Evaluate the indefinite integral of the rational function defined by
the following expression.

2x4 − 14x3 + 51x2 − 89x + 82
(x − 1)(x2 − 4x + 7)2

.

Use MAPLE to perform the partial fraction decomposition, and then
integrate each term separately, as in Example 10.13.

10.3. This exercise provides a proof of the partial fraction decomposition
for a repeated linear denominator. So we write

P (x)
(ax + b)n

=
c1

(ax + b)
+

c2

(ax + b)2
+

c3

(ax + b)3
+ · · · +

cn

(ax + b)n
,

where P (x) denotes a polynomial of degree less than n.

Apply Taylor’s Theorem to P (x) about x = −b/a, and explain why
the error term Ek(x) is zero for k ≥ n − 1. Hence show that P (x)

can be expressed as Q

(
x +

b

a

)
, where Q is a polynomial of degree

at most n − 1.

Deduce that P (x) can be expressed as R(ax + b), where R is a
polynomial of degree at most n − 1.

Divide both sides of the equation P (x) = R(ax + b) by (ax + b)n to
obtain the partial fraction decomposition.



11
Geometrical Applications of Integration

In Section 7.1 we discussed integration as summation, and we use that inter-
pretation of the integral in this chapter to construct integral formulae for some
geometrical quantities. We shall consider length, area and volume, and the no-
tions of centroid and centre of mass. The most important thing in this chapter
is not to remember particular formulae, but to understand the principles un-
derpinning their construction, so that analogous formulae can be constructed
in other areas of application.

11.1 Arc Length

In this section we derive formulae for the length of a curve. Not all curves can
be given as the graph of a function, for example a circle, and so we shall deal
with the more general situation where a curve is described parametrically by
means of the equations

x = x(t), y = y(t), a ≤ t ≤ b.

We shall assume that we have a smooth curve, for which the functions x(t) and
y(t) have continuous derivatives for a ≤ t ≤ b. On the graph represented by
these parametric equations, we divide the curve into small pieces by means of
a sequence of points P0, P1, P2, . . . , Pn, specified by the sequence of values of
the parameter, given by

a = t0 < t1 < t2 < . . . < tn = b.

217
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This is shown in the left-hand diagram in Figure 11.1. In the right-hand diagram
we have isolated one small piece of the graph lying between two successive
points. The length of that small piece of arc is denoted conventionally by ds.

P0 = A

P1

Pi−1

Pi

Pn = B

x

y

yi

yi−1

xixi−1

Pi−1

Pi

ds

x

y

Figure 11.1 Arc length

In the right-hand diagram, if the piece of arc is very small then the gradient
will not change much along the arc because the parametric functions are as-
sumed to have continuous derivatives. So the length ds will be approximately
equal to that of the line segment Pi−1Pi. Using Pythagoras’ Theorem gives

(Pi−1Pi)
2 = (xi − xi−1)

2 + (yi − yi−1)
2

= (x(ti) − x(ti−1))
2 + (y(ti) − y(ti−1))

2

= (x′(ci)(ti − ti−1))
2 + (y′(di)(ti − ti−1))

2
,

using the Mean Value Theorem (Theorem 6.1).
We now deduce that

ds2 ≈ (Pi−1Pi)
2 =

(
x′(ci)2 + y′(di)2

)
(ti − ti−1)

2
.

Taking square roots gives

ds ≈
√

(x′(ci)2 + y′(di)2) (ti − ti−1) .

The total arc length is therefore given by

L ≈
n∑

i=1

√
(x′(ci)2 + y′(di)2) (ti − ti−1) .

This is an approximating sum to an integral, as outlined in Section 7.1, and so
we finally we have the formula

L =
∫ b

a

√
(x′(t)2 + y′(t)2) dt.



11. Geometrical Applications of Integration 219

As a special case, suppose that the curve is the graph of the function specified
by y = f(x), p ≤ x ≤ q. This can be expressed in the parametric form
x = t, y = f(t), p ≤ t ≤ q. We then have

x′(t) = 1, y′(t) = f ′(t) = f ′(x) =
dy

dx
.

So the formula becomes

L =
∫ q

p

√
(1 + f ′(x)2) dx =

∫ q

p

√
1 +

(
dy

dx

)2

dx.

Example 11.1

Find the length of the curve given by x = t2, y = 2t3, −1 ≤ t ≤ 1, shown in
Figure 11.2.

x

y

10.5

1

0.5

0

−0.5

−1

Figure 11.2 Graph of x = t2, y = 2t3, −1 ≤ t ≤ 1

Using the formula derived above gives

L =
∫ 1

−1

√
4t2 + 36t4 dt =

∫ 1

−1
2t

√
1 + 9t2 dt =

[
2
3

1
9

(
1 + 9t2

) 3
2

]1

−1
= 0.

This is clearly wrong. The curve does not have zero length! The problem is that
we were not sufficiently careful with the square root when we factored out t2

from under the square root in the first integral. It is not true in general that√
t2 = t, especially in this case where the integrand must be positive for all

values of t because it represents a length.
A correct version of the calculations is as follows.

L =
∫ 1

−1

√
4t2 + 36t4 dt =

∫ 1

−1
2|t|

√
1 + 9t2 dt
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= 2
∫ 1

0
2t

√
1 + 9t2 dt = 2

[
2
3

1
9

(
1 + 9t2

) 3
2

]1

0

=
4
27

(
10

3
2 − 1

)
.

Example 11.2

Find the length of the curve given by y = x2 − lnx

8
(1 ≤ x ≤ 2).

In this example we need to use the cartesian formula for arc length.

L =
∫ 2

1

√
1 +

(
dy

dx

)2

dx =
∫ 2

1

√
1 +

(
2x − 1

8x

)2

dx

=
∫ 2

1

√
1 + 4x2 +

1
64x2 − 1

2
dx =

∫ 2

1

√
4x2 +

1
64x2 +

1
2

dx

=
∫ 2

1

√(
2x +

1
8x

)2

dx =
∫ 2

1

(
2x +

1
8x

)
dx

=
[
x2 +

lnx

8

]2

1
= 3 +

ln 2
8

.

In passing from line 2 to line 3 we had to be able to spot that 4x2 +
1

64x2 +
1
2

is a perfect square.

11.2 Surface Area of Revolution

If we take a curve and rotate it about a line we will obtain a curved surface
of revolution. For example if we rotate the semicircle in Figure 11.3 about its
base through a complete rotation of 2π we will generate a sphere. In general of
course we consider not just a semicircle but an arbitrary smooth curve, which
we represent in parametric form as x = x(t), y = y(t), a ≤ t ≤ b. To obtain
a formula for such a surface area we divide the curve into small pieces as we
did in Section 7.1. In Figure 11.3 we have shown the effect of rotating one such
piece of arc. To find the area generated we imagine cutting and unwrapping the
section of surface shown. This will give us a piece of “ribbon” approximately
rectangular in shape. Its length will be the circumference, 2πr, of the circle
generated by rotating a point on the small piece of arc. Its width will be the
length ds of the piece of arc, for which we found an approximate formula in
Section 11.1. So, using the same notation as in Section 11.1, the small piece of
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r

ds

Figure 11.3 Surface of revolution

surface area will be approximately

2πr.ds ≈ 2π|y(t)|
√

(x′(ti)2 + y′(ti)2) (ti − ti−1) .

Note that we have used |y(t)| as the value of r to allow for the fact that y(t)
might be negative for some values of t. So the total surface area will be given
by

S ≈
n∑

i=1

2π|y(t)|
√

(x′(ti)2 + y′(ti)2) (ti − ti−1) .

This is an approximating sum for an integral, and so the formula for the surface
area of rotation is

S = 2π

∫ b

a

|y(t)|
√

(x′(t)2 + y′(t)2) dt.

If the curve is the graph of a function, y = f(x), p ≤ x ≤ q, then it
can be expressed in the parametric form x = t, y = f(t), p ≤ t ≤ q, as in
Section 11.1. The argument in that section shows that in this case

S = 2π

∫ q

p

|f(x)|
√

(1 + f ′(x)2) dx = 2π

∫ q

p

|f(x)|
√

1 +
(

dy

dx

)2

dx.
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Example 11.3

Find the area of the surface obtained by rotating the curve y = x3, 0 ≤ x ≤ 1
about the x-axis.

We use the cartesian formula to obtain

S = 2π

∫ 1

0
x3

√
1 + (3x2)2 dx = 2π

∫ 1

0
x3

√
1 + 9x4 dx

= 2π

[
1
54

(
1 + 9x4) 3

2

]1

0
=

π

27

(
10

3
2 − 1

)
.

Note that because x3 ≥ 0 in the interval we do not need the modulus signs.

Example 11.4

Verify the formula for the surface of a sphere of radius a.

In this example we shall use the parametric formula. The sphere can be
obtained by rotating the semicircle given by x2 + y2 = a2, y ≥ 0, about the
x-axis. We parameterise the semicircle by x = a cos t, y = a sin t, 0 ≤ t ≤ π.

Since y(t) ≥ 0 for all t in the interval we do not need the modulus signs in the
formula, and so we have

S = 2π

∫ π

0
a sin t

√
a2 sin2 t + a2 cos2 t dt

= 2πa2
∫ π

0
sin t dt = 2πa2 [− cos t]π0 = 4πa2.

11.3 Volumes by Slicing

Consider a prism, whose uniform cross section can be any shape, for example
triangular, rectangular, or circular (a circular prism is of course a cylinder).
Its volume is equal to the cross-sectional area multiplied by its length. We can
extend this idea to solids where the cross section is not uniform.

So suppose we have a solid, contained between planes x = a and x = b,
and that we can calculate the area A(c) of the cross section made by the plane
x = c. A good way to imagine this is to think of a sliced loaf of bread, where
the cross section will vary from one end to the other. We now slice up the solid
by means of a sequence of planes

x = x0(= a), x = x1, x = x2, . . . , x = xn(= b).
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Assuming that the slices are sufficiently thin, and that A(x) is a continuous
function of x, the volume of the slice contained between x = xi−1 and x = xi

will be approximately A(xi)(xi − xi−1). The total volume will therefore be
approximately the sum of these slice volumes, so

V ≈
n∑

i=1

A(xi)(xi − xi−1).

This is an approximating sum for an integral, as in Section 7.1, and so we have

V =
∫ b

a

A(x) dx.

Naturally for this to be useful we have to be able to find A(x) for the solid we
are concerned with, and we do this is the next example.

Example 11.5

A tetrahedron is formed by cutting a corner from a cube by means of a plane.
Find its volume.

We place the corner of the cube O at the origin, with the sides of the cube
meeting at that corner along the coordinate axes. Let the cutting plane meet
the coordinate axes at x = a, y = b, z = c respectively. Figure 11.4 shows the
tetrahedron with a triangular cross section PQR made by a plane x = p. We
therefore need to calculate the area of this triangle.

O x

z

y

c

a

b

P

R Q

Figure 11.4 Tetrahedron for Example 11.5

Some elementary calculation with similar triangles tells us that

PR =
c(a − p)

a
, PQ =

b(a − p)
a

,
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so the area of triangle PQR is given by

A(p) =
PR.PQ

2
=

bc(a − p)2

2a2 .

Therefore the volume of the tetrahedron is given by

V =
∫ a

0
A(x) dx =

∫ a

0

bc(a − x)2

2a2 dx =
bc

2a2

[
− (a − x)3

3

]a

0
=

abc

6
.

11.4 Volumes of Revolution

If we imagine rotating a plane region about a line in that plane then a solid will
be generated with circular cross sections. For example if we rotate a rectangular
region about one of its edges we obtain a cylinder. A right-angled triangle
rotated about one of its shorter edges will generate a cone. A semicircular
region rotated about its diameter will generate a sphere. In this section we
shall investigate two methods of calculating the volume of a solid of revolution.

11.4.1 The Disc Method

If we rotate a rectangular region about a line parallel to one of its edges which
does not intersect the rectangle then we will generate a solid cylinder with a
cylindrical hole through its centre. This is a simple example of a general type
of solid obtained by rotating the region specified by

f(x) ≤ y ≤ g(x), a ≤ x ≤ b

about the line y = c, shown in Figure 11.5.
As before we calculate the cross sectional area of the solid and use the

integral formula derived above. We subdivide the interval a ≤ x ≤ b as in
Section 7.1, and use this to divide the region into strips parallel to the y-axis.
We have shown one of these in Figure 11.5, together with the solid obtained by
rotating this strip about the line y = c. It looks like a “washer”, i.e., a disc with
a smaller disc removed from its centre. The cross-sectional area is therefore

πR2 − πr2 = π
(
(g(x) − c)2 − (f(x) − c)2

)
.

The integral formula tells us that the total volume is given by

V = π

∫ b

a

(
(g(x) − c)2 − (f(x) − c)2

)
dx.
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a b

c

y = f(x)

y = g(x)

R

r

Figure 11.5 Volume of revolution; the disc method

Example 11.6

Find the volume of the solid obtained by rotating the region

0 ≤ y ≤ sin x, 0 ≤ x ≤ π

about (a) the x-axis (b) the line y = −1.

(a) In this case we have c = 0, f(x) = 0, g(x) = sin x, and so the volume is
given by

V = π

∫ π

0
sin2 x dx =

π

2

[
x − sin 2x

2

]π

0
=

π2

2
,

using the result of Example 7.2 to evaluate the integral.
(b) Here we have c = −1 and so the volume is given by

V = π

∫ π

0

(
(sin x + 1)2 − (−1)2

)
dx

= π

∫ π

0
sin2 x dx + π

∫ π

0
2 sin x dx =

π2

2
+ 4π.

We can plot both these solids of revolution using the MAPLE cylinderplot

command. In the first case we use
with(plots): cylinderplot(sin(z),theta=0..2*Pi,z=0..Pi);

In the second case we need to recognise that this is equivalent to rotating
the region

1 ≤ y ≤ 1 + sin x, 0 ≤ x ≤ π

about the x-axis. The command
with(plots): cylinderplot([1+sin(z),1],theta=0..2*Pi,z=0..Pi);
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will then plot the solid, including the hole through the centre. A MAPLE plot
of the second solid is shown in Figure 11.6.

Figure 11.6 MAPLE plot for Example 11.6

11.4.2 The Cylindrical Shell Method

This method applies to the same region

f(x) ≤ y ≤ g(x), a ≤ x ≤ b.

for which we developed the disc method, but this time we rotate the region
about the line x = d, parallel to the y-axis, as shown in Figure 11.7. In this case
the strips produced by subdividing the interval a ≤ x ≤ b generate cylindrical
shells rather than a cross section of the solid. One has to imagine each of these
shells fitting inside the previous one to form the solid, like some childrens’ toys
where plastic beakers fit inside each other, or like the separate parts of Russian
dolls.

In Figure 11.7, suppose that the strip is specified by one of the intervals of
the subdivision, i.e.,

f(x) ≤ y ≤ g(x), xi−1 ≤ x ≤ xi.

The distance of this strip from the axis of rotation is shown as R, where we
have R = x − d. (In the diagram d is negative, and so R = x − d > x, as
the figure suggests.) On the left of the figure is shown the cylindrical shell
generated by rotating the strip, and we need to find its volume. If the cylinder
is made of some flexible material, we can cut it parallel to the axis of rotation.
We can then open it out and we will obtain an approximately rectangular slab.
Its height will be the height of the strip, namely g(x) − f(x), its width will be
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R

a b

y = f(x)

y = g(x)

R

Figure 11.7 Volume of revolution; the shell method

the circumference of the cylinder, namely 2πR, and its thickness will be the
width of the strip, namely xi − xi−1. The volume is therefore approximately

2πR(g(x) − f(x))(xi − xi−1) = 2π(x − d)(g(x) − f(x))(xi − xi−1).

The total volume is therefore approximately
n∑

i=1

2π(x − d)(g(x) − f(x))(xi − xi−1),

which is an approximating sum for an integral, and hence

V = 2π

∫ b

a

(x − d)(g(x) − f(x)) dx.

Example 11.7

Rotate the region in Example 11.6 about the line x = −π, and find the volume
of the solid obtained.

The region is 0 ≤ y ≤ sin x, 0 ≤ x ≤ π, and so using the formula obtained
above we have

f(x) = 0, g(x) = sinx, a = 0, b = π, d = −π.

We therefore have

V = 2π

∫ π

0
(x + π) sinx dx = 2π2

∫ π

0
sin x dx + 2π

∫ π

0
x sin x dx = 6π2.

Both integrals are straightforward. The second is done by parts, and the first is
a basic integral. This integral is encountered frequently, so it is worth learning
that its value, which corresponds to the area of the region in this example, is
equal to 2. A MAPLE plot of the solid is shown in Figure 11.8.
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Figure 11.8 MAPLE plot for Example 11.7

Example 11.8

Let R denote the region contained between the two graphs

y = x2, y =
√

x, 0 ≤ x ≤ 1.

Find the volume obtained by rotating this region about (a) the x-axis, (b) the
y-axis.

x

y

1

1

Figure 11.9 Diagram for Example 11.8

The region is shown in Figure 11.9, and we have drawn a strip parallel to
the y-axis. If we rotate the strip round the x-axis this will generate a washer,
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and so we can use the disc method. If we rotate it round the y-axis we will
generate a cylinder, so we can use the shell method.

(a) The volume obtained by rotating round the x-axis is given by

V = π

∫ 1

0

(√
x

2 − (x2)2
)

dx = π

∫ 1

0

(
x − x4) dx =

3π

10
.

(b) The volume obtained by rotating round the y-axis is given by

V = 2π

∫ 1

0
x

(√
x − x2) dx = 2π

∫ 1

0

(
x

3
2 − x3

)
dx =

3π

10
.

Because of the symmetry of the region we can see that the two solids will
in fact be identical in shape and size. A MAPLE plot, shown in Figure 11.10,
can be produced with the command

with(plots): cylinderplot([zˆ2,sqrt(z)],theta=0..2*Pi,z=0..1);

Figure 11.10 MAPLE plot for Example 11.8

This plot is much clearer on the MAPLE screen, because it is shaded in
colour, and can also be rotated to give varying views of the solid object.

11.5 Density and Mass

Suppose that one of the solids whose volume we have calculated is made of a
homogeneous material. Then provided we know the mass of a particular object
made of that material, for example a unit cube, then by simple proportion we
can calculate the mass of the whole solid. The mass of a unit volume such as a
1cm cube is called the density. So far we have not explicitly mentioned units
of measurement, but suppose we are measuring length in centimetres and mass
in grams. Suppose the solid in Example 11.8 is made of a metal for which the
mass of one cubic centimetre is 10 grams, i.e., its density is 10 grams/cm3.

Then by proportionality the total mass of the solid will be

3π

10
.10 = 3π grams.
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A problem of more interest arises if a solid is made of a non-homogeneous
material. In this case we have to introduce the notion of local density at a
point P of the solid. To do this we imagine P to lie at the centre of a small
cube of side k cm, for which the total mass is M(k) grams. So the average

density of the cube is
M(k)

k3 grams/cm3. We now envisage k getting smaller
and smaller. If this average density has a limit as k tends to zero we call that
limit the local density at the point P . We often use the Greek letter ρ for
density, and so

ρ(P ) = lim
k→∞

M(k)
k3 grams/cm3.

In practice we are often given this local density as a function of some coordi-
nates, perhaps ρ(x, y, z).

To calculate the total volume of a solid of variable local density, we imag-
ine it subdivided into small pieces whose volumes Vi we know, for example
cubes, over which the local density is approximately constant. In each of these
small pieces we choose a point (xi, yi, zi). The mass of a small piece is then
approximately ρ(xi, yi, zi)Vi, and so the total mass of the solid is given by

M =
∑

i

ρ(xi, yi, zi)Vi.

This looks like an approximating sum for an integral, as we shall find in the
examples below. In many problems we have a certain amount of symmetry, in
which case the density might depend on only one variable, and we shall be able
to obtain an integral in one variable, which we can evaluate.

We have discussed three-dimensional solids above, but we could equally
well consider these ideas in one or two dimensions. In one dimension we imag-
ine a length of wire, for which the density is given as mass per unit length
(grams/cm). In two dimensions we consider a surface, for which the density is
given as mass per unit area (grams/cm2).

Example 11.9

Suppose we have a length of wire lying along the curve y = x3, 1 ≤ x ≤ 2,

whose local linear density at the point (x, y) is equal to x3 gm/cm. Find the
total mass of the length of wire.

We imagine the wire subdivided into small lengths. Using the notation of
Section 11.1 the length of a small piece of arc is given approximately by

ds =

√
1 +

(
dy

dx

)2

dx =
√

1 + 9x4 dx.
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So the mass of this small length is approximately

x3
√

1 + 9x4 dx.

The total mass is the sum of these, which is an approximating sum for an
integral. The total mass is therefore given by

M =
∫ 2

1
x3

√
1 + 9x4 dx =

[
2
3

1
9

1
4

(
1 + 9x4) 3

2

]2

1
=

1
54

(
145

3
2 − 10

3
2

)
gm.

Example 11.10

Suppose we have a disc in the x-y plane of radius 2, centred at the origin, and
that its local surface density at the point (x, y) is (5 + x)gm/cm2. Find the
total mass of the disc.

Following the notation of Section 7.1 we subdivide the interval −2 ≤ x ≤ 2
on the x-axis by the sequence of points

−2 = x0, x1, x2, · · · , xn−1, xn = 2.

We then consider the thin strip, parallel to the y-axis, forming part of the disc,
consisting of all the points (x, y) of the disc for which xi−1 ≤ x ≤ xi. From
the equation of the circumference of the disc, x2 + y2 = 4, we see that the
height of this strip is approximately 2

√
4 − x2

i . The area of the strip is then
approximately 2

√
4 − x2

i (xi − xi−1) and its mass is therefore approximately

2(5 + xi)
√

4 − x2
i (xi − xi−1).

The total mass is therefore approximately

n∑
i=1

2(5 + xi)
√

4 − x2
i (xi − xi−1).

This is an approximating sum for an integral, and so the mass is given by

M =
∫ 2

−2
2(5 + x)

√
4 − x2 dx = 10

∫ 2

−2

√
4 − x2 dx + 2

∫ 2

−2
x
√

4 − x2 dx.

The first integral represents the area of a semicircle of radius 2, and the second
integral is zero because we are integrating an odd function over an interval
symmetric about the origin. Therefore

M = 10.
4π

2
= 20π gm.
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Example 11.11

A flat plate is in the shape of a plane region bounded by the parabola y = x2

and the line y = 4. Its local surface density at the point (x, y) is proportional
to the distance of the point from the line y = −1, i.e., ρ(x, y) = 1+ y. Find the
total mass.

In this example we subdivide the appropriate interval on the y-axis by
means of the sequence of points

0 = y0, y1, y2, · · · , yn−1, yn = 4.

These serve to subdivide the region into strips parallel to the x-axis. From the
equation of the parabola the length of the strip determined by yi−1 ≤ y ≤ yi is
approximately 2

√
yi. As in the last example we construct approximate formulae

for the area and mass of this strip and then sum to determine an approximation
for the total mass. We then recognise this as an approximating sum for an
integral, and the total mass will therefore be given by

M =
∫ 4

0
2
√

y (1 + y) dy =
544
15

.

Readers should draw a diagram and fill in the details of the argument along the
lines of Example 11.10. It is important to develop the ability to draw diagrams
and to use them to construct appropriate integral formulae for specific problems
such as this, rather than trying to manipulate some standard formula, the latter
approach often leading to errors.

Example 11.12

Suppose we have a sphere of radius a whose local density at a point P is
proportional to the square of distance of P from the centre. Find the total
mass of the sphere.

In this example the density is constant at each point of a spherical surface
of radius r ≤ a, and so we shall subdivide the sphere into thin spherical shells.
We accomplish this by means of a sequence of radii,

0 = r0, r1, r2, · · · , rn−1, rn = a.

The spherical surface determined by ri has area 4πr2
i , and so the volume of a

corresponding thin spherical shell is approximately 4πr2
i (ri − ri−1). Its mass is

approximately
kr2

i 4πr2
i (ri − ri−1) = 4πkr4

i (ri − ri−1),
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where k is the constant of proportionality. Summing over the sphere gives an
approximating sum for an integral, and so the total mass is given by

M = 4πk

∫ a

0
r4 dr =

4πka5

5
.

11.6 Centre of Mass and Centroid

Imagine that you have a billiard or pool cue and you are trying to find a point
along its length where you can balance it on your finger. It will be nearer to
the thicker end of the cue, where more of the mass is concentrated. In this
section we shall find such balance points for some examples in one, two and
three dimensions. The point of balance is called the centre of mass. In the
case of an object of uniform density then the point of balance depends only on
the shape of the object, and it is sometimes called the centroid, which we can
think of as a geometrical centre of the object.

We can approximate to the mass distribution of the billiard cue by thinking
of it as a sequence of small masses concentrated at points along its length. If
we are trying to balance it about a point P, the masses on one side of P will
tend to pivot the cue in one direction, and those of the other side of P will
pivot the cue in the other direction. The effect of each mass will depend upon
both how heavy it is and also on how far it is from the point P. The moment
(or turning moment) of such a point mass about P is defined as md, where m

is its mass (in grams or some other unit) and d is the distance of the mass from
P . We choose a direction of measurement (usually corresponding to coordinate
axes) so that sometimes d will be negative and sometimes d will be positive.

The total moment of the billiard cue, approximated by masses

m1, m2, · · · , mn,

about the point P will be given by

n∑
i=1

midi,

where di are the corresponding distances from P . We can see that this looks
like an approximating sum for an integral.

The point of balance, or centre of mass, will be the point P for which the
total moment is zero, so that the tendency to turn in either direction balances.
We can sometimes think of all the mass as being concentrated at that point as
far as balance is concerned.
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Example 11.13

A billiard cue of length 2m is placed along the positive x-axis, with one end
at the origin. We can consider it to be a one-dimensional object, whose local
linear density is given by

2 + (x − 2)2 kg/m.

Find the position of the centre of mass.

Let P denote a point along the cue at distance p from the origin. As always
we subdivide the relevant interval on the x-axis by means of a sequence of
points

0 = x0, x1, x2, · · · , xn−1, xn = 2.

The mass of that part of the cue between xi−1 and xi is approximately

(2 + (xi − 2)2)(xi − xi−1).

Its moment about P is

(2 + (xi − 2)2)(xi − xi−1)(xi − p).

Summing these gives the total moment about P , and gives an approximating
sum for the integral∫ 2

0
(2 + (x − 2)2)(x − p) dx =

16 − 20p

3
.

The centre of mass occurs where this is zero, i.e., p =
16
20

=
4
5
.

Example 11.14

A semicircular flat plate has uniform density. Find its centre of mass.

We choose coordinates as shown in Figure 11.11, where a denotes the radius.
For a two-dimensional example we need to find both coordinates of the

centre of mass. In this case by symmetry the centre of mass will clearly lie
on the y-axis. To find the y-coordinate of the centre of mass we subdivide the
plate into strips as shown in Figure 11.11. The strip shown has length given by
l = 2

√
a2 − y2. Suppose the density of the plate is ρ. Then the moment of the

strip about the x-axis will be

y.l.ρ.δy = 2ρy
√

a2 − y2δy,
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x

y

a

a

Figure 11.11 Diagram for Example 11.14

where δy is the thickness of the strip. Summing and taking the limit gives the
total moment as

K =
∫ a

0
2ρy

√
a2 − y2 dy = 2ρ

[
− (a2 − y2)

3
2

3

]a

0

=
2ρa3

3
.

Now the total mass of the plate is given by

M =
πa2ρ

2
.

The centre of mass is the place where all the mass may be considered to be
concentrated as far as moments are concerned. So if the total mass M were at
a distance c from the origin on the y-axis, its moment about the x-axis would
be Mc. This must be equal to the total moment of the plate as calculated, and
so we have Mc = K, i.e.,

πa2ρ

2
.c =

2ρa3

3
, giving c =

4a

3π
.

So the centre of mass has coordinates
(

0,
4a

3π

)
.

Example 11.15

Find the centre of mass of an isosceles right-angled triangle whose local surface
density at the point P is proportional to the square of the distance of P from
one of the shorter edges of the triangle.

Let a denote the length of the shorter edge of the triangle. We choose
a subdivision of the triangle into strips parallel to the x-axis, as shown in
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x

y

a

a

y

Figure 11.12 Diagram for Example 11.15

Figure 11.12, because the density is uniform along the strip, equal to ky2,

where k is the constant of proportionality.
To find the centre of mass we have to consider both its coordinates, unlike

the previous example where we were able to use symmetry to determine one
of them. In this case therefore we need to consider moments about both axes.
We calculate the various quantities needed as follows, using δy to denote the
thickness of the strip.

The length of the strip is a − y.
The mass of the strip is (a − y)ky2δy.

The moment of the strip about the x-axis is y(a − y)ky2δy.

Because the density of the strip is uniform along its length, its centre of
mass is half-way along, and so the moment of the strip about the y-axis is
a − y

2
(a − y)ky2δy.

We now sum these quantities over the whole triangle and take the limit to
give integral expressions as follows.

The total mass is given by

M =
∫ a

0
k(a − y)y2 dy = k

[
ay3

3
− y4

4

]a

0
= k

a4

12
.

The total moment about the x-axis is given by∫ a

0
k(a − y)y3 dy = k

[
ay4

4
− y5

5

]a

0
= k

a5

20
.
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The total moment about the y-axis is given by∫ a

0

k

2
(a − y)2y2 dy =

k

2

[
a2y3

3
− 2

ay4

4
+

y5

5

]a

0
= k

a5

60
.

Now suppose that the centre of mass has coordinates (X, Y ). Then

MX = k
a5

20
, i.e., k

a4

12
X = k

a5

20
, so X =

3a

5
.

MY = k
a5

60
, i.e., k

a4

12
Y = k

a5

60
, so Y =

a

5
.

Therefore the centre of mass is located at the point
(

3a

5
,
a

5

)
.

Example 11.16

A solid paraboloid of revolution is obtained by rotating the part of the parabola
z = x2 for which 0 ≤ z ≤ 4 about the z-axis. Its density is ρ(x, y, z) = k

√
z.

Find the centre of mass of the solid.

This is a three-dimensional example, but we can use the symmetry of the
problem to say that the centre of mass will be on the axis of rotation of the
solid, namely the z-axis. We therefore have only to find its z coordinate, which
we denote by Z.

Part of the skill of solving problems such as this consists of drawing an
appropriate diagram, and in this case, as in some previous examples, we shall
leave the reader to construct a diagram from the descriptions given below,
rather than providing one.

We subdivide the solid into discs obtained by slicing the solid perpendicular
to the z-axis, i.e., parallel to the x-y plane. From the equation of the parabola,
z = x2, we can see that the radius of such a disc at distance z from the origin
will be

√
z. Its area will be πz, and so if δz denotes its thickness its mass will

be πz.k
√

z δz. The centre of mass of this disc is at the geometrical centre, on
the z-axis, by symmetry, and so the moment of the disc about the x-axis is
z.πz.k

√
z δz.

The total mass is given by∫ 4

0
kπz

3
2 dz = kπ

[
2
5
z

5
2

]4

0
=

2kπ

5
.32.

The total moment is given by∫ 4

0
kπz

5
2 dz = kπ

[
2
7
z

7
2

]4

0
=

2kπ

7
.128.
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The coordinate Z therefore satisfies

2kπ

5
.32.Z =

2kπ

7
.128.

Therefore the centre of mass is located at the point
(

0, 0,
20
7

)
.

EXERCISES

11.1. Find the length of the curve given by x = t4, y = t6, 1 ≤ t ≤ 3.

11.2. Find the length of the curve given by y =
x3

2
+

1
6x

, 2 ≤ x ≤ 3.

11.3. Find the length of the curve given by y = x2 − lnx

8
, 1 ≤ x ≤ 2.

11.4. Find the length of the curve given by y = cosh x, 0 ≤ x ≤ α.

Determine the value of α for which the length of the curve is 10.
Find an approximation correct to four decimal places using your
calculator.

11.5. Calculate the area of the surface obtained by rotating the curve

x =
t3

3
, y =

t2

2
, 0 ≤ t ≤ 1

about the x-axis.

11.6. The ellipse whose parametric equations are x = 2 cos t, y = sin t,

is rotated around the x-axis. Find the surface area of the resulting
solid.

11.7. Adapt the argument at the beginning of Section 11.2 to show that
the surface area obtained by rotating the curve specified by

x = x(t), y = y(t), a ≤ t ≤ b

about the y-axis is given by the integral formula

S = 2π

∫ b

a

|x(t)|
√

(x′(t)2 + y′(t)2) dt.

The surface of a parabolic mirror is generated by rotating the curve
y = 0.1x2, 0 ≤ x ≤ 1 about the y-axis. Find its surface area, and
compare it with the area of a circular plane mirror of radius 1.



11. Geometrical Applications of Integration 239

11.8. Find the volume of the conical solid formed by joining all the points

of the ellipse with equation
x2

4
+

y2

9
= 1 in the x-y plane to the

point (0, 0, 4) on the z-axis.

[You can use the fact that the area of the ellipse with equation
x2

a2 +
y2

b2 = 1 is πab.]

11.9. Find the volume of revolution of the solids obtained by rotating the
region specified by

1 ≤ y ≤ 1 + cos x, −π

2
≤ x ≤ π

2
about the lines (i) y = −1, (ii) x = −π/2.

11.10. Find the volume of the solids obtained by rotating a circular disc of
radius a about (i) a tangent line, (ii) a line distance b > a from the
centre of the disc.

11.11. A solid is formed by rotating the region bounded by the curves

y = cosh x, y = sinhx, x = 0, x = 1

about the y-axis. Calculate its volume.

11.12. A length of wire lies along the x-axis (0 ≤ x ≤ 1). Its linear density
is given by ρ(x) = ex. Find the mass and centre of mass of the wire.

11.13. Find the centroid of a flat plate in the shape of a quarter of a circle.

11.14. A flat plate is in the shape of a quadrant of a unit circle. Its surface
density is proportional to the distance from one of its straight edges.
Find the mass and centre of mass.

11.15. A plane region consists of an equilateral triangle, joined to a semi-
circle having one of the sides of the triangle as its diameter. Find
the centroid of this region.

11.16. A surface is in the shape of a right circular cone, including its circular
base. The base has radius 1 and the height is 2. The surface density
is proportional to the distance from the vertex of the cone. Find the
mass and centre of mass of the curved surface, excluding the base,
and also of the complete surface, including the base.

11.17. Consider a solid cone with the same dimensions as that in Exercise
11.16, and with density equal to (2+x), where x is the distance from
the circular base. Find the mass and centre of mass.

11.18. Find the centroid of a solid hemisphere.



Answers to Exercises

Chapter 1

1.1 (a) x �= odd multiples of π/4; (b) All real x;
(c) x < 1; (d) −1 < x < 1;
(e) x �= 2, x �= 3; (f) x > 0;
(g) x ≤ −1 or x ≥ 4; (h) x ≤ 1, x �= 0;
(i) x < −2 or x > 2 and x �= √

5; (j) x �= multiples of π/2;
(k) x �= 0, x �= odd multiples of π/2; (l) x �= 0.

1.2 Expression Domain Range√
x x ≥ 0 y ≥ 0√−x x ≤ 0 y ≥ 0

−√
x x ≥ 0 y ≤ 0

−√−x x ≤ 0 y ≤ 0

1.3 Maximal domain: x �= 5. Range: y �= 2.

1.4 Ranges are as follows.

(a) All real y; (b) All real y; (c) All real y;
(d) y ≤ 0; (e) y > 0; (f) y ≥ 0;
(g) y ≥ 0; (h) y ≥ 1; (i) y �= 0;
(j) y ≤ −1, y ≥ 1; (k) y �= 0; (l) y > 0, y < −1.

1.5 (a) even; (b) neither; (c) odd; (d) even; (e) even;
(f) even; (g) odd; (h) neither; (i) neither.

1.6 f(−x)g(−x) = (−f(x))(−g(x)) = f(x)g(x).

E1(−x)E2(−x) = E1(x)E2(x).

E(−x)O(−x) = E(x)(−O(x)) = −E(x)O(x).

241
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1.7 f ◦ f(x) = f(f(x)) =
3

3/x
= x, (x �= 0).

f ◦ g(x) = f(g(x)) = 3
2 + x

2 − x
, x �= 2, x �= −2.

g ◦ f(x) − g(f(x)) =
2 − f(x)
2 + f(x)

=
2 − (3/x)
2 + (3/x)

=
2x − 3
2x + 3

,

(
x �= −3

2

)
.

g ◦ g(x) = g(g(x)) =
2 − 2−x

2+x

2 + 2−x
2+x

=
2 + 3x

6 + x
, x �= −2, x �= −6.

1.8 The graphs needed are ex and sinx. The composite graph can be checked
using MAPLE or a graphical calculator.

1.9 eg(x) = 3x − 4, so g(x) = ln(3x − 4).

1.10 f(x) =
4

(x − 1)2
.

1.11 (a) 1 +
4x2 + 2

x4 − 2x2 − 1
; (b) x2 − 2x + 4 − 7

x + 2
;

(c)
x3

2
− 7x2

4
+

43x

8
− 215

16
+

963
16(2x + 5)

;

(d) x3 − x2 − 3 +
4x − 10

x2 + x − 3
;

(e) x4 + x3 + 3x2 + 5x + 11 +
21x + 21

x2 − x − 2
;

(f) x2 − 3x + 8 − 8x + 13x2 − 24
x3 + 2x2 − 3

.

1.12 (a) (x + 1)(x − 2)(x + 2); (b) (y − 1)(y + 1)2;
(c) (z + 3)(z + 4)(z − 5); (d) (c − 1)2(c + 1)3;
(e) (t − 1)(t + 1)(t2 + t + 1)(t2 − t + 1);
(f) (u − 1)(u + 3)(u + 4)(u − 5).

1.13 g(−2) = 0, g′(−2) = g′′(−2) = g′′′(−2) = 0, g(4)(−2) = −24.

So −2 is a root of multiplicity 4.

1.14 (a) x =
1
2
, x =

9
2
; (b) x = 1 +

√
7, 1 −

√
7, 1 +

√
5, 1 −

√
5;

(c) x = 2, x = 3
√−6; (d) −7

2
< x < −1

2
;

(e) −1 ≤ x ≤ 5 − √
33

4
or

5 +
√

33
4

≤ x ≤ 7
2
;

(f) x ≤ 5 − √
33

2
or x ≥ 5 +

√
33

2
or

5 − √
17

2
≤ x ≤ 5 +

√
17

2
.
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1.15 The graphs without the modulus can be plotted, and those parts below
the x-axis reflected in the x-axis. They can also be plotted using MAPLE.

1.16 cos 5x = 16 cos5 x − 20 cos3 x + 5 cos x.

1.17 cosec(x + y) =
cosec x sec x cosec y sec y

sec x cosec y + cosec x sec y
.

1.18 Let A = ln p, B = ln q; p = eA, q = eB ; p
q = eA−B ;

A − B = ln
(

p
q

)
; ln p − ln q = ln

(
p
q

)
1.19 (a) 1; (b) − 3

2 ; (c) 0.

1.20 sinh 3x = 4 sinh3 x + 3 sinhx.

1.21 These graphs can be sketched using similar reasoning to that given for
the graphs of the reciprocals of the trigonometric functions. They can be
checked using MAPLE.

1.22 (a)
1
2

(
x +

1
x

)
; (b)

x2 + 1
x2 − 1

, (c)
1
x2 .

1.23 (a) The domain is x �= 1
3
. f−1(x) =

x

3x − 2
, x �= 2

3
.

(b) The domain is the set of all real x. f−1(x) =
√

3x√
4 − x2

, (−2 < x < 2).

1.24 (a) yes; (b) no; (c) yes; (d) yes; (e) no; (f) yes; (g) yes; (h) yes.

1.25 If a ≤ b, then f(a) ≤ f(b) and g(a) ≤ g(b). Using the rules for in-
equalities then gives f(a) + g(a) ≤ f(b) + g(b), so f + g is an increasing
functions.

Examples: f(x) = x3 and g(x) = x both increasing, x3 − x is not.

f(x) = x and g(x) = x − 1 both increasing, x(x − 1) is not.

f(x) = x and g(x) = x2 + 1 both increasing,
x

x2 + 1
is not.

1.26 y = 5−12x−2x2 = −2(x+3)2 +23. x = −3±
√

23 − y

2
. Now x ≥ −3,

so f−1(x) = −3 +

√
23 − x

2
.

1.27 (a) cos(sin−1 x) =
√

1 − x2; (b) sin(tan−1 x) =
x√

1 + x2
;

(c) tan(sec−1 x) =
√

x2 − 1.

1.28 Let x =
1
2
.

sin−1 1
2

cos−1 1
2

=
π/3
π/6

=
1
2
. tan−1 1

2
≈ 0.4636.
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1.29 MAPLE uses arcsinh, arccosh and arctanh for the inverse func-
tions.

1.30 Let y = sinhx =
ex − e−x

2
. So (ex)2 − 2yex − 1 = 0, with solutions

ex = y ±
√

y2 + 1. ex > 0, and so sinh−1 x = ln
(
x ± √

x2 + 1
)
.

Let y = tanhx =
ex − e−x

ex + e−x
=

e2x − 1
e2x + 1

. Rearranging this equation gives

e2x =
1 + y

1 − y
, and so x =

1
2

ln
(

1 + y

1 − y

)
. Hence tanh−1 x =

1
2

ln
(

1 + x

1 − x

)
.

Chapter 2

2.1 f(x) → 0 as x → ±∞, ∞ as x → 2−, −∞ as x → 2+, −∞ as
x → 3−, ∞ as x → 3+.

2.2 f(x) → as x → f(x) → as x →
(a) ∞ ∞ (k) −∞ −2+

∞ −∞ −∞ 4+

(b) ∞ −∞ ∞ 4−

−∞ ∞ (l) ∞ −π
4 + nπ

(c) −∞ −∞ (m) 0 −∞
∞ ∞ ∞ ∞

(d) 0 ±∞ ∞ 0
−∞ −2− (n) −∞ −∞
∞ −2+ 0 ∞
∞ 1− (o) ∞ −∞

−∞ 1+ ∞ ∞
−∞ 4− −∞ −2
∞ 4+ −∞ 2

(e) ∞ ±∞ (p) 0 −∞
(f) 0 ±∞ 0 ∞
(g) 1

3 ±∞ ∞ −2
(h) 3 ±∞ −∞ 0−

∞ −1− ∞ 0+

−∞ −1+ −∞ 2
−∞ 2− (q) ln 2 ±∞
∞ 2+ no limit 0
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f(x) → as x → f(x) → as x →
(i) ∞ ∞ (r) −∞ ±∞

−∞ −∞ ∞ 0
−∞ 5

2
− (s) π

2 ∞
∞ 5

2
+ −π

2 −∞
(j) 0 ±∞ (t) ∞ 1−

(k) 0 ±∞ −∞ −1+

∞ −2−

2.3 (a) exp
(

1
x

)
→

{ ∞ as x → 0+,

0 as x → 0−;

(b)
√

floor
√

x →
{ √

3 as x → 9+,√
2 as x → 9−;

(c)
|x|
x

→
{

1 as x → 0+,

−1 as x → 0−;
(d)

| sin x|
sin x

→
{ −1 as x → π+,

1 as x → π−;

(e)
√

x2 − 2x + 1
x − 1

→
{

1 as x → 1+,

−1 as x → 1−;

(f)
tanx

|x| →
{

1 as x → 0+,

−1 as x → 0−.

2.4 (a) 4; (b) 2π − 3; (c)
√

2; (d) 12; (e) 1; (f)
1
6
; (g) −2; (h) 1; (i) 0; (j) 0.

2.5 (a) −|x| ≤ |x| sin
(

1
x

)
≤ |x|. |x| → 0 as x → 0;

(b) −e−x ≤ e−x cos x ≤ e−x. e−x → 0 as x → ∞;

(c) −ex ≤ ex sin(x2 + 1) ≤ ex. ex → 0 as x → −∞;

(d) tanhx − 1 ≤ (1 − tanhx) cos x ≤ 1 − tanhx. tanhx → 1 as x → ∞;

(e) −|x − 1| ≤ |x − 1| cos
(

1
x − 1

)
≤ |x − 1|. |x − 1| → 0 as x → 1;

(f) exp(sinx − x) = esin xe−x.

e−1e−x ≤ esin xe−x ≤ e1e−x. e−x → 0 as x → ∞.

2.6 A sin x ≤ f(x) sinx ≤ B sin x. So by squeezing lim
x→0

f(x) sinx = 0.
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2.7 −2 −1 0 1 2
x + 1 − − + + + +

(x + 2)2 + + + + + +
x − − − + + +

x − 1 − − − − + +
(x − 2)2 + + + + + +

f(x) − − + − + +

There are vertical asymptotes at x = −2, x = 0, x = 1.

f(x) → −∞ as x → −2, f(x) → ∞ as x → 0−, f(x) → −∞ as x → 0+,

f(x) → −∞ as x → 1−, f(x) → ∞ as x → 1+.

2.8 (a) 0; (b) 4; (c) 3; (d) 2; (e) −1
4
; (f) 4; (g) −8; (h) −2;

(i)
1
2
; (j) 0; (k) ∞; (l) −1; (m) −√

2; (n) −2
3
; (o)

1
2
; (p)

1
2
.

2.9 (a) Let t = ex. Then t → 1 as x → 0.

e2x − 1
ex − 1

=
t2 − 1
t − 1

= t + 1 → 2 as t → 1.

(b) Let t = lnx. Then t → 0 as x → 1.

sin(lnx)
lnx

=
sin t

t
→ 1 as t → 0.

(c) Let t = 2
√

x. Then t → 0 as x → 0.
√

2x

sin((2
√

x)
=

2
√

x√
2 sin (2

√
x)

=
t√

2 sin t
→ 1√

2
as t → 0.

(d) Let t = lnx. Then t → 1 as x → e.

(lnx)2 − 1
lnx − 1

=
t2 − 1
t − 1

= t + 1 → 2 as t → 1.

(e) Let t = sin−1 x. Then x = sin t and t → 0 as x → 0.

x

sin−1 x
=

sin t

t
→ 1 as t → 0.

(f) Let t = ex. Then t → 0 as x → −∞.

sin−1(ex)
ex

=
sin−1 t

t
→ 1 as t → 0, using part (e).

2.10 (a)
1
2
; (b) −1; (c) 0; (d) 0; (e)

a2

b2 ; (f)
a2

2
; (g) −3; (h)

1
120

;

(i) 1; (j) 1; (k) e2; (l) e.
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2.11 The following are very simple examples.

(a) f(x) = x, g(x) = x; (b) f(x) = 2x, g(x) = x;

(c) f(x) = x, g(x) = 2x; (d) f(x) = x + 3, g(x) = x.

2.12 If k > 0
|x + k|
x2 − k2 → ∞ as x → k+, and

|x + k|
x2 − k2 → −∞ as x → k−.

If k < 0
|x + k|
x2 − k2 → −∞ as x → k+, and

|x + k|
x2 − k2 → ∞ as x → k−.

For x > −k, |x + k| = x + k, so
|x + k|
x2 − k2 =

1
x − k

→ − 1
2k

as x → −k+.

For x < −k, |x + k| = −(x + k), so
|x + k|
x2 − k2 =

−1
x − k

→ 1
2k

as x → −k−.

Chapter 3

3.1 (a)
(x + h)3 − x3

h
= 3x2 + 3xh + h2 → 3x2 as h → 0;

(b)
1
h

(
1

x + h
− 1

x

)
=

−1
(x + h)x

→ − 1
x2 as h → 0;

(c)
cos(x + h) − cos x

h
= − sin

(
x +

h

2

)
sin

(
h
2

)
h
2

→ − sin x as h → 0;

(d)
tan(x + h) − tanx

h
=

sin h

h

1
cos(x + h) cos x

→ sec2 x as h → 0;

(e)
ex+h − ex

h
= ex

(
eh − 1

h

)
→ ex as h → 0.

3.2 (a) 6x−1/4; (b) cosh x; (c) ev cos v + ev sin v; (d) x2 sec2 x + 2x tanx;

(e) t cos t; (f) sech2x; (g)
−5

(2x − 3)2
; (h)

−2t2 − 2t − 2
(t2 − 1)2

;

(i)
−4x − 2
3x5/3 ; (j)

−2 − sin x

(1 + 2 sin x)2
; (k)

ew(1 − tanw + sec2 w)
(1 − tanw)2

;

(l)
ex

(
(2x3 − 5x2 − 2x) lnx + x + 2x2

)
(x2 + 2x3)2

.

3.3 (a) − sin (
√

x)
2
√

x
; (b) − sinh(cos t) sin t, (c) −2−x ln 2;

(d)
1

x lnx ln(lnx)
; (e)

√
1 + s2/3

3
√

s
; (f) 3t(3 − 2t2)−7/4;
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(g) − sec2
( 1

x

)
x2 ; (h)

v cos(v2)√
sin(v2)

; (i) −6 sin 3x cos(2 cos 3x);

(j) 3(3x)3x(ln 3)2; (k) − sin(lnx)
x

; (l)
1

3t(ln t)2/3 .

3.4 (a)
sin x + x cos x

x sin x
; (b) cos

( x

cos x

) cos x + x sin x

cos2 x
;

(c)
1 + ex

2
√

x + ex
; (d)

2x3/2

3(1 + x2)2/3 +
3
√

1 + x2

2
√

x
;

(e) sinh(x lnx)(1 + lnx); (f) 2x cos(2x2), (g) f ′(x) ≡ 0;

(h) 2a2x sec2
(
a2(1 + x2)

)
; (i) (x cos x + sin x)2x sin x ln 2;

(j) ab(cos ax + cos bx); (k) b2(x2 lnx)b2−1(x + 2x lnx);

(l) −4
cx

(cx2 + d)2
tan

(
1

cx2 + d

)
sec2

(
1

cx2 + d

)
.

3.5 A general formula is as follows. It can be proved by induction.

f (2n)(x) = (−1)n22n sin(2x + 5),

f (2n+1)(x) = (−1)n22n+1 cos(2x + 5).

Chapter 4

4.1 Note that because of the relationship between x and y one can obtain
apparently different, but nevertheless equivalent, expressions.

(a)
dy

dx
=

2y + 1
3 − 2x

; (b)
dy

dx
= − x + 1

3(y − 1)2
; (c)

dy

dx
− y

x
;

(d)
dy

dx
=

xy ln y − y2

xy lnx − x2 ; (e)
dy

dx
=

3y2 − 2x − y3

3y2x − 6xy − 2y
;

(f)
dy

dx
= −3xy + 2y2

3xy + 2x2 ; (g)
dy

dx
=

y

x
; (h)

dy

dx
=

2xy + 1 − 2y2

4xy + 3y2 − x2 + 1
;

(i)
dy

dx
=

1 − 2xy sin(yx2) − y2 cos(xy2)
2xy cos(xy2) + x2 sin(xy2)

; (j)
dy

dx
=

xyex + yex − yey

xey − xex + xyey
.

4.2 (a)
dy

dx
=

2 − y

3 + x
,

d2y

dx2 =
2(y − 2)
(3 + x)2

;

(b)
dy

dx
=

cos x − sin y

x cos y
,

d2y

dx2 =
sin y(cos x − sin y)2

x2 cos3 y
− 2(cos x − sin y)

x2 cos y
− sin x

x cos y
.
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4.3
dy

dx
= − x

2y
,

d2y

dx2 = − 1
y3 .

4.4 3
dy

dx
=

3x2 − y

x + 6y
. The gradient at (2, −2) is −7

5
.

The equation of the tangent is y + 2 = −7
5
(x − 2), i.e., 5y + 7x = 4.

4.5 x sin(xy) = x2 − 1. sin(xy) + x cos(xy)
(

y + x
dy

dx

)
= 2x. Substituting

(x, y) = (1, 0) gives
dy

dx
= 2. The equation of the tangent is therefore

y = 2x − 2. The tangent at (−1, 0) has equation y = −2x − 2.

4.6 (a)
dy

dx
= xx(1 + lnx); (b)

dy

dx
= −x−x(1 + lnx);

(c)
dy

dx
= −(−x)−x(1 + ln(−x)); (d)

dy

dx
= (sinx)sin x cos x(1 + ln(sinx));

(e)
dy

dx
= (ex)ln x (1 + lnx); (f)

dy

dx
= (lnx)x

(
ln(lnx) +

1
lnx

)
;

(g)
dy

dx
= 2(tanx)2x

(
ln(tanx) +

x

sin 2x

)
; (h)

dy

dx
= 2x+x2

(1 + 2x) ln 2;

(i)
dy

dx
=

1
2

√
ex sin x(1 + cot x);

(j)
dy

dx
=

√
(x − 1)2e−x cos x

(
1

x − 1
− 1

2
− tanx

2

)
.

4.7 (a)
dy

dx
= 2t2 − t,

d2y

dx2 = (4t − 1)t;

(b)
dy

dx
=

1 − 2t

1 + 2t
,

d2y

dx2 = − 4
(1 + 2t)3

;

(c)
dy

dx
=

2
1 + ln t

,
d2y

dx2 = − 2
t(1 + ln t)3

;

(d)
dy

dx
=

et

2t
,

d2y

dx2 =
et(t − 1)

4t3
;

(e)
dy

dx
=

1
3t

√
t2 + 1

,
d2y

dx2 = − 2t2 + 1
9t4(t2 + 1)3/2 ;

(f)
dy

dx
= − sin t

2t cos(t2)
,

d2y

dx2

=
sin t cos(t2) − 2t2 sin t sin(t2) − t cos t cos(t2)

4t3 cos3(t2)
;



250 Calculus of One Variable

(g)
dy

dx
= et cos2 t,

d2y

dx2 = (et cos2 t − et.2 cos t sin t) cos2 t;

(h)
dy

dx
= −cos2 t

sin t
,

d2y

dx2 =
cos2 t(cos2 t − 2)

sin3 t
;

(i)
dy

dx
= −et + tet

sin t
,

d2y

dx2 =
et((2 + t) sin t) − (1 + t) cos t

sin3 t
;

(j)
dy

dx
=

2t

cos t
,

d2y

dx2 =
2(cos t + t sin t)

cos3 t
.

4.8
dy

dx
=

b cosh t

a sinh t
, undefined where t = 0,

d2y

dx2 = − b

a2 sinh3 t
,

d3y

dx3 =
3b cosh t

a3 sinh5 t
.

4.9
dy

dx
=

sin t + t cos t

cos t − t sin t
. The curve is a spiral, so there are infinitely many

places where the tangent is parallel to the y-axis.

4.10 (a) Let f(x) = cosh x (x ≥ 0).
d

dx

(
f−1(x)

)
=

1√
x2 − 1

.

If g(x) = cosh x (x ≤ 0), then
d

dx

(
g−1(x)

)
= − 1√

x2 − 1
.

(b) Let y = tan−1 x.
dy

dx
=

1
1 + x2 .

(c) Let f(x) = ex2
, x ≥ 0.

dy

dx
=

1
2x

√
lnx

.

Let g(x) = ex2
, x ≤ 0.

dy

dx
= − 1

2x
√

lnx
.

4.11 Let y = tanh−1 x.
dy

dx
=

1
1 − x2 .

4.12 (a) Let f(x) = lnx, g(x) = x.
dn

dxn
(f(x)g(x)) =

(−1)n(n − 2)!
xn−1 .

(b) Let f(x) = e2x, g(x) = x2 − 2x + 3. The n-th derivative of f(x)g(x) is

2n−2e2x(4x2 + (4n − 8)x + (n2 − 5n + 12)).

(c) Let f(x) = e−x, g(x) = x3. The n-th derivative of f(x)g(x) is

= (−1)ne−x
(
x3 − 3nx2 + 3n(n − 1)x − n(n − 1)(n − 2)

)
.
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Chapter 5

5.1 Let P = (a, a3). The equation of the tangent at P is y = 3a2x − 2a3.

Q = (−2a,−8a3).

5.2 The distance we require is
√

3a.

5.3 (a) A local minimum at x = 3;

(b) a local maximum at x = 0, a local minimum at x = 1, a local minimum
at x = −1;

(c) a local minimum at x = −3, a local maximum at x = −1, a local
minimum at x = 1;

(d) a local minimum at x = −1 − √
3, a local maximum at x = −1 +

√
3;

(e) a local minimum at x = 0;

(f) a local minimum at x = 0, a local maximum at x = 1, a local maximum
at x = −1;

(g) a local minimum at x = −1/2;

(h) a local minimum at x = −1, a local minimum at x = 1. From the
graph there is a local maximum at x = 0, but f(x) is not differentiable
there;

(i) a local maximum at x = 0, local minima at x = −2, 2 but f(x) is not
differentiable there;

(j) f ′(x) =
3x2

(1 + x6)
2
3

> 0 if x �= 0. f(x) is strictly increasing, with a point

of inflection at x = 0.

5.4 (a) There is a local minimum at x = −1, which is also the global
minimum. The global maximum is at x = 2.

(b) There is a local minimum at x = −1/3, a local maximum at x = −1,

a global minimum at x = −2, and a global maximum at x = 2.

(c) There is a local minimum at x = −2, which is also the global minimum.
There is a local maximum at x = 1, which is also the global maximum.

(d) There is a local minimum at x = −√
6/2, which is also the global

minimum. There is a local maximum at x =
√

6/2, which is also the
global maximum.

(e) There is a local maximum at x = −π/3, a local maximum at x = π/3,

a global minimum at x = −π, and a global maximum at x = π.
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(f) There are local maxima at x = π/6 and x = 5π/6, which are also
global maxima. There is a local minimum at x = π/2. There is a local
minimum at x = −π/2, which is also a global minimum.

(g) There is a local maximum at x = −π/6, which is also a global maxi-
mum. There are global minima at x = ±π/2.

(h) There is a local maximum at x = 1/ ln 3, which is also a global maxi-
mum, and a global minimum at x = 0.

(i) There is a local maximum at x =
√

e, which is also a global maximum,
and a global minimum at x = 1.

(j) There is a local maximum at x = 1, which is also a global maximum,
and a global minimum at x = −3.

5.5 f ′(x) = −ex sin(ex) = 0 where sin(ex) = 0, i.e., x = ln(nπ). There are
7011 solutions in the specified interval.

5.6 The two points nearest to (0, a) are

(
±

√
9 + 2a2

3
,
a

3

)
.

5.7 The maximum occurs at x =
3 − √

3
6

, giving V =
√

3
9

.

5.8 The maximum volume is attained where r2 =
1
π

, giving Vmax =
8
3π

.

5.9 The minimum is where r = 3

√
3000

π
.

5.10 The cost of fuel per hour is 2048 + v
3
2 .

The minimum cost is where v =
(
212) 2

3 = 28 = 256 km/h.

5.11 The equation for the Newton-Raphson iteration is

xn+1 =
4x5

n − 8x3
n + 2

5x4
n − 12x2

n

.

We obtain the following approximations for the roots.

−1.9290950452, −0.8478856554, 2.0566715782.

5.12 The speed relative to the tracking station is given by

104(−9.8T0 + 103)√
104 + 104

≈ 634.0 m/s,

where T0 =
103 − √

106 − 4.(4.9).104

9.8
.
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5.13 Approximately 16,165 years.

5.14 The initial temperature is approximately 740◦C.

Chapter 6

6.1 The equation of the tangent at (9, 3) is y − 3 =
1
6
(x − 9).

When x = 9.01, y = 3 +
0.01
6

= 3.001666 . . . .

6.2 The equation of the tangent is y − 1 = 2
(
x − π

4

)
.

When x =
π

4
+

π

90
(= 47◦), y = 1 +

2π

90
= 1.069813 . . . .

6.3 Suppose that f(x) < 0 for all x satisfying a < x < b.

Suppose a ≤ x1 < x2 ≤ b. Then using the Mean Value Theorem gives

f(x2) − f(x1)
x2 − x1

= f(c) < 0.

The denominator x2 −x1 > 0. Therefore f(x2)− f(x1) < 0 so the function
is strictly decreasing.

6.4 The approximation is y = e2 + e2(x − 2) +
e2

2
(x − 2)2.

6.5 (a) sin(3x2) = 3x2 − 33

3!
x6 +

35

5!
x10 − · · · ;

(b) ln
(
2 − x2) = ln 2 − x2

2
− x4

2.22 − x6

3.23 − · · · ;

(c) exp(1 + x3) = e
(

1 + x3 +
x6

2!
+

x9

3!
+ · · ·

)
;

(d)
√

x + 2 =
√

2
(

1 +
x

22 − x2

2!24 +
3x3

3!26 − 3.5x4

4!28 + · · ·
)

;

(e) (1 + x2)−2 = 1 − 2x2 + 3x4 − 4x6 + · · · ;

(f)
1 + x2

1 − x
= 1 + x + 2x2 + 2x3 + 2x4 + · · · ;

(g) cos 2x = 1 − 22x2

2!
+

24x4

4!
− · · · ;

(h) sin2 x =
1
2

(
22x2

2!
− 24x4

4!
+ · · ·

)
;
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(i)
sin x

x
= 1 − x2

3!
+

x4

5!
− · · · ;

(j) cos
(
x − π

4

)
=

1√
2

(
1 + x − x2

2!
− x3

3!
+

x4

4!
+

x5

5!
− · · ·

)
;

(k) sinh(x3) = x3 +
x9

3!
+

x15

5!
+ · · · ;

(l) cosh x − cos x = 2
(

x2

2!
+

x6

6!
+

x10

10!
+ · · ·

)
.

6.6 (a) ex = e
(

1 + (x − 1) +
(x − 1)2

2!
+

(x − 1)3

3!
+ · · ·

)
;

(b) sinx = −(x − π) +
(x − π)3

3!
− (x − π)5

5!
+ · · · ;

(c) 3
√

x = 3
√

2
(

1 +
1

3.2
(x − 2) − 1.2

32.22.2!
(x − 2)2

+
1.2.5

33.23.3!
(x − 2)3 − 1.2.5.8

34.24.4!
(x − 2)4 + · · ·

)
;

(d) lnx = ln 3 +
(x − 3)

3
− (x − 3)2

2.32 +
(x − 3)3

3.33 − (x − 3)4

4.34 + · · · ;

(e)
1
x

+
1
x2 = (x + 1) + 2(x + 1)2 + 3(x + 1)3 + · · · ;

(f)
x

1 − x
=

1
2

(
−1 +

x + 1
2

+
(

x + 1
2

)2

+
(

x + 1
2

)3

+ · · ·
)

;

(g) cosh x = cosh 2 + sinh 2.(x − 2) + cosh 2
(x + 2)2

2!

+ sinh 2
(x + 2)3

3!
+ cosh 2

(x + 2)4

4!
+ · · · ;

(h) x sin x = −π(x − π) − (x − π)2 + π
(x − π)3

3!
+

(x − π)4

3!

−π
(x − π)5

5!
− (x − π)6

5!
− · · · ;

(i) ln(2 + x) = ln 4 +
x − 2

4
− 1

2

(
x − 2

4

)2

+
1
3

(
x − 2

4

)3

− · · · ;

(j) ex+3 = e5
(

1 + (x − 2) +
(x − 2)2

2!
+

(x − 2)3

3!
+ · · ·

)
.
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6.7 f (n)(x) =
(−1)n−13n(n − 1)!

(2 + 3x)n
. The Maclaurin expansion is

ln 2 +
3
2
x −

(
3
2

)2
x2

2
+

(
3
2

)3
x3

3
−

(
3
2

)4
x4

4
+ · · · .

The error term is given by

En(x) =
(−1)n3n+1n!

(n + 1)!(2 + 3c)n+1 xn+1 =
(−1)n3n+1

(n + 1)(2 + 3c)n+1 xn+1.

6.8 The Maclaurin expansion as far as the term involving x4 is

√
4 + x = 2 +

x

4
− x2

64
+

x3

512
− 5x4

16384
.

The error term is given by

E4(x) =
f (5)(c)

5!
x5 =

3.5.7
32.5!(4 + x)9/2 x5.

An error bound is therefore given by

0 ≤ E4(x) ≤ 3.5.7
32.5!.29 (0.1)5 =

7
217105 < 0.534.10−9.

6.9 f (2n)(x) = (−1)n cos x. Now 5◦ =
π

36
. An error bound is given by

∣∣∣E2n

( π

36

)∣∣∣ ≤ 1
(2n + 1)!

( π

36

)2n+1
.

We need to take n = 2 to be certain of six decimal places of accuracy.

cos(5◦) ≈ 1 − π2

2.362 +
π4

24.364 ≈ 0.99619470

Chapter 7

7.1 (a) −35
2

; (b) 2π; (c) 5; (d) 20; (e) 0; (f) 0.

7.2 (a) x3 + 2x2 − 2x; (b)
2(3x − 1)3/2

9
; (c)

x7

7
− x4 + 4x;

(d) =
2
5
x5/2 +

3
4
x4 +

6
11

x11/2 +
1
7
x7; (e) − 1

x
− 2

x2 ; (f)
3x2/3

2
;

(g)
√

2x + 3; (h)
e2x+3

2
; (i) −2−x

ln 2
; (j) =

sinh 3x
3

;

(k) −cos 2x

4
; (l) tanx; (m)

sin 2x

4
+

x

2
; (n)

sin 3x
6

− sin 7x
14

.
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7.3 F ′(t) = 3t2et3 − 2tet2 .

7.4 G′(t) = −ecos2 t sin t − esin2 t cos t.

7.5 (a)
∫ t

1

1
(2x + 1)2

dx =
[
− 1

2(2x + 1)

]t

1
=

1
6

− 1
2(2t + 1)

→ 1
6

as t → ∞;

(b)
∫ t

1

1√
x

dx =
[
2
√

x
]t

1 = 2
√

t − 2 → ∞ as t → ∞;

(c)
∫ t

1

1
(3x + 2)

2
3

dx =
[
(3x + 2)

1
3

]t

1
= (3t + 2)

1
3 − 5

1
3 → ∞ as t → ∞;

(d)
∫ t

1
e2−3x dx =

[
−e2−3x

3

]t

1
=

e−1

3
− e2−3t

3
→ e−1

3
as t → ∞.

7.6 (a) For all x ≥ 1,
e−x

√
x

≤ e−x.

∫ t

1
e−x dx =

[−e−x
]t

1 = e−1 − e−t → e−1 as t → ∞.

(b) For all x, 0 ≤ esin x ≤ e.∫ t

0

e
1 + x2 dx =

[
e tan−1 x

]t

0 = e tan−1 t → eπ
2

as t → ∞.

(c) For all x ≥ 3, 0 ≤
√

x2 − 2x − 2
x3 + x + 4

≤
√

x2

x3 =
1
x2 .

∫ t

3

1
x2 dx =

[
− 1

x

]t

3
=

1
3

− 1
t

→ 1
3

as t → ∞.

(d) For all x ≥ 0, e−(x3+x−3) ≤ e3−x.∫ t

0
e3−x dx =

[−e3−x
]t

0 = e3(1 − e−t) → e3 as t → ∞.

7.7 This is the contrapositive of Theorem 7.14. If
∫

f(x) dx did converge,
then by Theorem 7.14

∫
g(x) dx would also converge, contradicting the

assumption.

7.8 (a)
∫ 3

t

1
3
√

x − 2
dx =

[
3
2
(x − 2)

2
3

]3

t

=
3
2

(
1 − (t − 2)

2
3

)

→ 3
2

as t → 2+;

(b)
∫ 3

t

1
x + 1

dx = [ln(x + 1)]3t = ln 4 − ln(t + 1) → ∞ as t → −1+;
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(c)
∫ 1

t

x + 1√
x

dx =
[
2
3
x

3
2 + 2

√
x

]1

t

=
8
3

− 2
3
t

3
2 − 2

√
t → 8

3
as t → 0+;

(d)
∫ π

4

t

cosec2x dx = [cot x]
π
4
t = 1 − cot t → ∞ as t → 0+.

7.9 If p = 1,

∫ 1

t

x−p dx = [lnx]1t = − ln t → ∞ as t → 0+. If p �= 1,

∫ 1

t

x−p dx =
[

x1−p

1 − p

]1

t

=
1 − t1−p

1 − p
→

{
∞ if p > 1

1
1−p if p < 1

as t → 0+.

So the improper integral diverges if p ≥ 1 and converges if p < 1.

7.10 Theorem: Comparison Test for Improper Integrals

Suppose that f(x) and g(x) are continuous, and that 0 ≤ g(x) ≤ f(x), for

all a < x ≤ b. Then if the improper integral
∫ b

a

f(x) dx converges, so does

the improper integral
∫ b

a

g(x) dx, and
∫ b

a

g(x) dx ≤
∫ b

a

f(x) dx.

7.11 (a) For 0 < x ≤ 1, 0 ≤ sin x√
x

≤ 1√
x

.

∫ 1

t

1√
x

dx =
[
2
√

x
]1
t

= 2 − 2
√

t → 2 as t → 0+.

(b) For −2 < x ≤ 2, 0 ≤ e−x

√
x + 2

≤ e2
√

x + 2
.

∫ 2

t

e2
√

x + 2
dx = e2 [

2
√

x + 2
]2
t

= e2 (
4 − 2

√
t + 2

) → 4e2 as t → −2+.

Chapter 8

8.1 (a) x cosh x − sinhx; (b) x2ex − 2xex + 2ex;

(c)
x2 sinh 3x

3
− 2x cosh 3x

9
+

2 sinh 3x
27

; (d)
x2(lnx)2

2
− x2 lnx

2
+

x2

4
;

(e) x2 sin x + 2x cos x − 2 sin x; (f)
x2 tan−1 x

2
− x

2
+

tan−1 x

2
;

(g)
x sin 2x

4
+

cos 2x

8
+

x2

4
; (h) ln

(√
x
)
.
2x3/2

3
− 2x3/2

9
;

(i) xex lnx − ex; (j) x cos−1 x −
√

1 − x2.
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8.2 I =
eax(b sin bx + a cos bx)

a2 + b2 .

8.3 I =
sec x tanx + ln | sec x + tanx|

2
.

8.4 In =
e2

2
− n

2
In−1.

I4 =
e2

4
− 3

4
.

8.5 In =
n − 1

n
In−2.

I8 =
7
8
I6 =

7
8

5
6
I4 =

7
8

5
6

3
4
I2 =

7
8

5
6

3
4

1
2
I0 =

7
8

5
6

3
4

1
2

π

2
=

35π

256
.

8.6 The MAPLE commands are as follows.

with(student); P:n->Int(xˆn*exp(2*x),x=0...1);

intparts(P(n),xˆn); simplify(%); value(P(0)); value(P(7));

8.7 Γ

(
7
2

)
=

5
2
Γ

(
5
2

)
=

5
2

3
2
Γ

(
3
2

)
=

15π

8
.

Chapter 9

9.1 (a)
(x3 + 4)21

21
; (b)

3(x2 − 6)
7
3

14
; (c)

(x3 + 3x − 2)
4
3

4
;

(d)
ln(2x3 + 5)

6
; (e)

1
6

tan−1
(

x3

2

)
; (f)

cos8 x

8
; (g)

tan6 x

6
;

(h)
sin(2x3)

6
; (i) −2 cos

(√
x
)
; (j)

ex2−2

2
; (k) sin(lnx);

(l) = −ecos 2x

2
; (m) 2

√
ex + 3; (n)

1√
2

tan−1
(

ex

√
2

)
.

9.2 (a) =
e − 1

3
; (b)

1
35

; (c)
2
3
; (d)

195
4

.

9.3 (a) sin−1
(

x + 2
2

)
; (b)

x

3
√

3 − x2
; (c)

sin−1 x

2
− x

√
1 − x2

2
;

(d) −
√

1 − 9x2

x
; (e) sinh−1

(x

2

)
; (f) sin−1(x − 1) −

√
2x − x2;

(g)
x√

a2 − x2
− sin−1

(x

a

)
; (h)

(x − 1)
5

√
x2 − 2x + 6+sinh−1

(
x − 1√

5

)
.
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9.4 (a)
1
2

tan−1
(

1
2

tan
(

t

2

))
; (b) ln

∣∣∣∣1 + tan
(

t

2

)∣∣∣∣ ;

(c)
π

3
√

3
; (d) ln 3 − ln 2.

9.5 (a) cosh−1
(

2 + sin x√
3

)
; (b) sin−1

(
ex

√
2

)
.

Chapter 10

10.1 (a) ln |x−6|−ln |x+1|; (b) 5 ln |x−2|−2 ln |x−3|; (c) tan−1
(

x + 2
3

)
;

(d) ln |x2 + 6x + 10| − 3 tan−1(x + 3);

(e) x + 3 ln |x2 − 4x + 5| + 4 tan−1(x − 2);

(f)
x2

2
− 4x + 5 ln |x2 + 6x + 13| +

21
2

tan−1
(

x + 3
2

)
;

(g) 3 ln |x + 2| +
7

x + 2
; (h) 5 ln |x − 1| − 10

x − 1
− 9

2(x − 1)2
;

(i) 2x − 12 ln |x + 3| − 7
x + 3

;

(j)
1
4

ln |x − 1| +
3
8

ln |x2 + 2x + 5| − 1
4

tan−1
(

x + 1
2

)
;

(k) x − 5
4

ln |x2 + 2x + 5| − 2 tan−1
(

x + 1
2

)
+

1
2

ln |x − 1|;

(l) ln |x − 1| − 5
x − 1

− 1
2

ln |x2 + 2x + 2| − 7 tan−1(x + 1);

(m)
1
2

ln |x + 1| − 9
4(x + 1)

− 1
2

ln |x − 1| − 3
4(x − 1)

;

(n)
9
2

tan−1(x − 2) +
7x − 21

2(x2 − 4x + 5)
.

10.2 −3 ln |x − 1| + 9 ln |x2 − 4x + 5| − 6 tan−1(x − 2) − 2x + 1
x2 − 4x + 5

.

10.3 Using Taylor’s Theorem gives

P (x) = a0 + a1

(
x +

b

a

)
+ a2

(
x +

b

a

)2

+ · · · + ak

(
x +

b

a

)k

+ Ek(x).
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Where Ek(x) is given by

Ek(x) =
P (k+1)(c)
(k + 1)!

(
x +

b

a

)n+1

.

Because P (x) is a polynomial of degree less than n, all its derivatives of
order n and above are zero, and so the error term Ek(x) is zero for k ≥ n−1.

Therefore

P (x) = a0 + a1

(
x +

b

a

)
+ a2

(
x +

b

a

)2

+ · · · + an−1

(
x +

b

a

)n−1

,

so that P (x) can be written as Q

(
x +

b

a

)
, where Q is a polynomial of

degree at most n − 1. We can now write

P (x) = a0 +
a1

a
(ax + b) +

a2

a2 (ax + b)2 · · · +
an−1

an−1 (ax + b)n−1

= cn + cn−1(ax + b) + cn−2(ax + b)2 · · · + c1(ax + b)n−1.

Finally, dividing this equation by (ax + b)n gives

P (x)
(ax + b)n

=
c1

(ax + b)
+

c2

(ax + b)2
+

c3

(ax + b)3
+ · · · +

cn

(ax + b)n
.

Chapter 11

11.1 L =
∫ 3

1

√
(4t3)2 + (6t5)2 dt =

733
3
2 − 13

3
2

27
.

11.2 L =
∫ 3

2

√
1 +

(
3x2

2
− 1

6x2

)2

dx =
343
36

.

11.3 L =
∫ 2

1

√
1 +

(
2x − 1

8x

)2

dx = 3 +
ln 2
8

.

11.4 L =
∫ α

0

√
1 + sinh2 x dx = sinhα = 10, if α = 2.9982 (to 4 d.pl.)

11.5 S = 2π

∫ 1

0

t2

2

√
t4 + t2 dt =

π(2
√

2 + 2)
15

.

11.6 S = 2π

∫ π

0
sin t

√
4 sin2 t + cos2 t dt = 2π +

8π

3
√

3
.

11.7 S = 2π

∫ 1

0
x
√

1 + 0.04x2 dx =
50π

3

(
1.04

3
2 − 1

)
.
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11.8 V =
∫ 4

0

(4 − t)2

6
π dt =

π

6

[
− (4 − t)3

3

]4

0
=

32π

9
.

11.9 Around the line y = −1: V = π

∫ π
2

− π
2

(
(2 + cos x)2 − 22) dx = 8π +

π2

2
.

Around the line x = −π

2
: V = 2π

∫ π
2

0

(
x +

π

2

)
cos x dx = 2π(π − 1).

11.10 We choose axes so that the centre of the circle is at (0, a) and the
tangent is the x-axis. Using the disc method gives

V = π

∫ a

−a

((
a +

√
a2 − x2

)2
−

(
a −

√
a2 − x2

)2
)

dx = 2a3π2.

We now let the equation of the circle be x2+(y−b)2 = a2 and rotate about
the x-axis. Using the disc method gives

V = π

∫ a

−a

((
b +

√
a2 − x2

)2
−

(
b −

√
a2 − x2

)2
)

dx = 2a2bπ2.

11.11 V = 2π

∫ 1

0
x(cosh x − sinhx) dx = 2π

∫ 1

0
xe−x dx = 2π

(−2e−1 + 1
)
.

11.12 The total mass is M =
∫ 1

0
ex dx = e − 1. The total moment about

the origin is
∫ 1

0
xex dx = 1. So if the centre of mass is at distance X from

the origin, X =
1

e − 1
.

11.13 We place the figure in the first quadrant with the centre of the circle
at the origin. We assume that the radius is 1, and that the density is 1.
The total mass is M = π/4. The total moment about the y-axis is∫ 1

0
x
√

1 − x2 dx =
[
−1

2
2
3
(1 − x2)

3
2

]1

0
=

1
3
.

So if the x coordinate of the centroid is X, we have

MX =
1
3

so X =
4
3π

≈ 0.424.

By symmetry the y-coordinate will be the same.

11.14 We place the figure in the first quadrant with the centre of the circle
at the origin. Let the density be ρ(x, y) = kx. The total mass is given by

M =
∫ 1

0
kx

√
1 − x2 dx = k

[
−1

2
2
3
(1 − x2)

3
2

]1

0
=

k

3
.
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The total moment about the y-axis is given by

A =
∫ 1

0
kx2

√
1 − x2 dx =

kπ

16
.

The total moment about the x-axis is given by

B =
∫ 1

0
kx

√
1 − x2.

√
1 − x2

2
dx =

k

8
.

So if the centre of mass is at (X, Y ), X =
3π

16
≈ 0.589, Y =

3
8

= 0.375.

11.15 Let the semicircle have radius a. We place it below the x-axis with its
diameter between 0 and 2a. We place the equilateral triangle, side length
2a, above the x-axis. We assume that the density is 1. The total mass is

M =
√

3a2 +
πa2

2
.

The centre of mass will be on the axis of symmetry, so we only need its
y-coordinate. The moment of the triangle about the x-axis is given by

T =
∫ √

3a

0
y.2a

√
3a − y√

3a
dy = a3.

The moment of the semicircle about the x-axis is given by

S = 2
∫ a

0
y
√

a2 − y2 dy =
2a3

3
. The total moment about the x-axis is

T −S = a3/3. So if the y coordinate of the centroid is Y then MY = a3/3,

giving Y =
2a

3(2
√

3 + π)
≈ 0.1009a.

11.16 By symmetry the centre of mass is on the axis of the cone. The total

mass of the curved surface is M =
5π

2

∫ 2

0
z2 dz =

20π

3
, where we assume

that the coefficient of proportionality is 1. Its moment is
5π

2

∫ 2

0
z3 dz =

10π. If the distance of the centre of mass from the vertex is Z, Z =
10π.3
20π

=

3
2
. The mass of the base is K = 2π

∫ 1

0
r
√

4 + r2 dr =
2π

3

(
5

3
2 − 8

)
. The

centre of mass is at the centre of the disc, so the total moment about the
line through the vertex parallel to the base is 2K. The moment of the whole

cone about the line through the vertex is T = 10π +
4π

3

(
5

3
2 − 8

)
. The
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total mass including the base is W =
20π

3
+

2π

3

(
5

3
2 − 8

)
. If the distance

of the centre of mass from the vertex is D, then

D =
10π + 4π

3

(
5

3
2 − 8

)
20π
3 + 2π

3

(
5

3
2 − 8

) =
30 + 4

(
5

3
2 − 8

)
20 + 2

(
5

3
2 − 8

) ≈ 1.6206.

11.17 The mass of the cone is given by M =
π

2

∫ 2

0
(2− z)2(2+ z) dz =

10π

3
.

The moment about a line through the centre of the base is

T =
π

2

∫ 2

0
z(2 − z)2(2 + z) dz =

56π

30
.

So if the distance of the centre of mass of the cone from the centre of the
base is Z, we have

Z =
56π

30
3

10π
=

56
100

= 0.56.

11.18 We slice the hemisphere by means of planes parallel to the base. The
centroid is on the axis of symmetry of the hemisphere. We assume unit
density, and unit radius. The moment about a line in the base, through the
centre, is

T = π

∫ 1

0
z(1 − z2) dz =

π

4
.

The volume of the hemisphere, and therefore its total mass, is 2π/3. So if

the distance of the centroid from the base is Z, Z =
π

4
3
2π

=
3
8
.
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hyperbolic functions 26
– identities 29
– inverse 39

integration 153
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– as summation 153
– basic integrals 155
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– root 14
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Remainder Theorem 14
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tangent 80, 111
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Taylor series 141
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– cosecant 20
– cotangent 20



Index 267
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