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Chapter 1
Topological spaces

Topological spaces generalize metric spaces. One uses metric spaces in analysis
to work with continuous functions on what appears to be the “right” level of
generality. But even in this context one notices, that many important concepts
such as the continuity of functions between metric spaces itself can be expressed
in the language of open sets alone. This observation has caused mathematicians,
first Felix Hausdorff next Paul Alexandroff and Heinz Hopf to use the
idea of open sets as the basis for a general theory of continuity in an axiomatic
approach. In fact Hausdorff’s definition was based on the concept of systems of
neighborhoods for each point.

We shall begin by defining topological spaces and continuous functions in both
ways and by showing that they are equivalent.

The objects of our study are the “spaces”; the transformations between them are
the “continuous functions”. One should always treat them in a parallel approach.
This is what has become known as “category theoretical” procedure, but we shall
not be very formal in this regard.

1. Topological spaces and continuous functions

If X is a set we let P(X) denote the set {A : A ⊆ X} of all subsets of X. This
set is called the power set of X. The name derives from a natural bijection

(1) A 7→ χA : P(X) → {0, 1}X , χA(x) =
{

1 if x ∈ A,
0 if x ∈ X \A.

The function χA is called the characteristic function of the subset A of X. The
two element set {0, 1} is often abbreviated by 2 and thus 2X = {0, 1}X . The
power set of a set is never empty, because ∅ ∈ P(X) and X ∈ P(X) for any set
X.

The set theoretical operations of arbitrary unions and intersections are well
defined on P(X). If A = {Aj : j ∈ J}, Aj ⊆ X is a family of subsets of X, then

⋃
A =

⋃
j∈J

Aj
def= {x ∈ X : (∃j ∈ J) x ∈ Aj}, (2)

⋂
A =

⋂
j∈J

Aj
def= {x ∈ X : (∀j ∈ J) x ∈ Aj}. (3)
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Exercise E1.1. (i) Verify that the function A 7→ χA defined in (1) above is a
bijection by exhibiting its inverse function 2X → P(X).

(ii) Let A denote the empty set of subsets of a set X. Compute
⋃
A and

⋂
A,

using (2) and (3).
[Hint. Regarding (i), in very explicit terms, we have for instance

⋂
A = {x ∈ X :

(∀A) (A ∈ A) ⇒ (x ∈ A)}. So what?]
(iii) Verify the following distributive law for a subset A and a family {Aj : j ∈

J} of subsets Aj of a set X:

(4) A ∩
⋃
j∈J

Aj =
⋃
j∈J

(A ∩Aj). ut

In order to understand all concepts accurately, we should recall what the dif-
ference is between a subset S of a set M and a family (sj : j ∈ J) of elements
of M . A subset S ⊆ M is a set (we assume familiarity with that concept) such
that s ∈ S implies s ∈ M . A family (sj : j ∈ J) of elements of M is a function
j 7→ sj : J → M . If I have a family (sj : j ∈ J) then I have a set, namely
{sj : j ∈ J}, the image of the function. In fact for many purposes of set theory
a family is even denoted by {sj : j ∈ J} which, strictly speaking, is not exact.
Conversely, if I have a subset S of M then I can form a family (s : s ∈ S) of
elements of M , namely the inclusion function s 7→ s : S → M . Notice that we can
have an empty family (sj : j ∈ ∅), namely the empty function ∅: ∅ → M , whose
graph is the empty set, a subset of ∅×M = ∅. (What we cannot have is a function
X → ∅ for for X 6= ∅! Check the definition of a function!)

Topological spaces

Definition of topology and topological space

Definition 1.1. A topology O on a set X is a subset of P(X) which is closed
under the formation of arbitrary unions and finite intersections.

A topological space is a pair (X, O) consisting of a set X and a topology O on
it. If no confusion is likely to arise one also calls X a topological space. ut

Let’s be a bit more explicit:
A subset O ⊆ P(X) is a topology iff

(i) For any family of sets Uj ∈ O, j ∈ J , we have
⋃

j∈J Uj ∈ O.
(ii) For any finite family of sets Uj ∈ O, j ∈ J , (J finite), we have

⋂
j∈J Uj ∈

O.
(iii) ∅ ∈ O and X ∈ O. ut

By Exercise E1.1(ii) these statements are not independent: Proposition (iii) is
a consequence of Propositions (i) and (ii).

The following set of axioms is equivalent to (i), (ii), (iii):
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A subset O of P(X) is a topology iff
(I) For each subset U of O one has

⋃
U ∈ O.

(II) For each U1, U2 ∈ O we have U1 ∩ U2 ∈ O,
(III) X ∈ O.

Notation 1.2. If (X, O) is a topological space, then the sets U ∈ O are called
open. A subset A of X is called closed, if X \A is open. ut

The subsets ∅ and X are both open and closed.

Example 1.3. (i) For any set X, the power set P(X) is a topology, called the
discrete topology. A space equipped with its discrete topology is called a discrete
space.

(ii) For any set X, the set {∅, X} is a topology called the indiscrete topology.
A space equipped with its discrete topology is called an indiscrete space.

(iii) For any set X, the set {∅} ∪ {Y ⊆ X : card(X \ Y ) < ∞} is a topology,
called cofinite topology.

(iv) A binary relation ≤ is called a quasiorder if it is transitive and reflexive,
and it is a partial order if in addition it is antisymmetric. A partially ordered set
or in short poset is a set (X,≤) endowed with a partial order.

For a subset Y in a quasiordered set (X,≤) we write ↑Y def= {x ∈ X : (∃y ∈
Y ) y ≤ x; a set satisfying ↑Y = Y is called an upper set. We also write ↑x instead
of ↑{x}.

For each quasiordered set (X,≤) the set

{Y ⊆ X : ↑ Y = Y }

is a topology, called the Alexandroff discrete topology of the quasiordered set.
(v) A quasiordered set D is directed if it is not empty and for each x, y ∈ D

there is a z ∈ D such that x ≤ z and y ≤ z. A poset (X,≤) is called a directed
complete poset or dcpo if every directed subset has a least upper bound. In a dcpo
the set σ(X) =

{U ⊆ X : ↑U = U and (∀D ⊆ X) (D is directed and sup D ∈ U) ⇒ D ∩ U 6= ∅}

is a topology, called the Scott topology of the poset. ut

Example 1.4. On the set R of real numbers, the set

O(R) = {U ⊆ R : (∀u ∈ U)(∃a, b ∈ R) a < u < b and ]a, b[ ⊆ U}

is a topology on R, called the natural topology of R. ut

We recall from basic analysis the concept of a metric and a metric space.

Definition 1.5. A metric of on a set X is a function d:X × X → R satisfying
the following conditions:
(i) (∀x, y ∈ X) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y.
(ii) (∀x, y ∈ X) d(x, y) = d(y, x).
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(iii) (∀x, y, z ∈ X) d(x, z) ≤ d(x, y) + d(y, z).
Property (i) is called positive definiteness, Property (ii) symmetry, and property

(iii) the triangle inequality.
If a set X is equipped with a metric d, then (X, d) is a metric space.
If r > 0 and x ∈ X, then Ur(x) def= {u ∈ X : d(x, u) < r} is called the open ball

of radius r with center x. ut

Proposition 1.6. For a metric space (X, d), the set

O(X) = {U ⊆ X : (∀u ∈ U)(∃ε > 0) Uε(u) ⊆ U}

is a topology. Every open ball Ur(x) belongs to O(X). ut

Definition 1.7. The topology O(X) of 1.6 on a metric space is called the metric
topology for d or the topology induced by d. ut

Thus any metric space is automatically a topological space. The natural topol-
ogy of R is the metric topology for the metric on R given by d(x, y) = |y−x|. Given
an arbitrary set, the function d:X × X → R such that d(x, y) = 1 if x 6= y and
d(x, x) = 0 is a metric whose metric topology is the discrete topology. Therefore
it is called the discrete metric.

Proposition 1.8. Assume that (X, O) is a topological space, and that Y ⊆ X.
Then

O|Y def= {Y ∩ U : U ∈ O}

is a topology of Y . ut

Definition 1.9. The topology O|Y is called the induced topology. The topological
space (Y,O|Y ) is called the subspace of X on Y .

With the concepts introduced so far we have an immense supply of interesting
topological spaces. The absolute value of complex numbers makes the complex
plane C into a metric space via d(u, v) = |v − u| and thus into a toplogical space.
The space S1 def= {z ∈ C : |z| = 1} is called the unit circle, or the one-sphere. More
generally, if one considers on Rn the norm ‖(x1, . . . , xn)‖ def=

√
x2

1 + . . . + x2
n, then

the metric space determined by the metric d(x, y) = ‖y − x‖ is called euclidean
space. The space Bn def= {x ∈ Rn : ‖x‖ ≤ 1} is called the closed n-cell or unit ball
in n dimensions. The subspace Sn = {x ∈ Bn+1 : ‖x‖ = 1} is called the n-sphere.
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Continuous functions

Definition of continuous function

Definition 1.10. A function f :X → Y between topological spaces is called
continuous, if f−1(U) is open in X for every open U ∈ Y .

The set of all continuous functions f :X → Y is often denoted by C(X, Y ). ut

Proposition 1.11. If f :X → Y is a continuous function between topological
spaces and A ⊆ X is a subspace, then f |A:A → Y is continuous. ut

Exercise E1.2. (i) Every function from a discrete space into a topological space
is continuous.

(ii) Every function from a topological space into an indiscrete space is contin-
uous.

(iii) Let f : (X,≤) → (Y,≤) be a function between two dcpos. Then the following
statements are equivalent:

(a) f is Scott continuous, i.e. is continuous with respect to the Scott topologies
on X and Y .

(b) f preserves directed sups, i.e. sup f(D) = f(supD) for all directed subsets
D of X. ut

We shall characterize continuity between metric spaces shortly.

Neighborhoods

Definition 1.12. If (X, O) is a topological space and x ∈ X, then a set U ∈ P(X)
is called a neighborhood of x iff

(5) (∃V ) V ∈ O and x ∈ V ⊆ U.

We write

(6) U(x) = {U ∈ P(X) : U is a neighborhood of x}. ut

Observation. The set U(x) satisfies the following conditions
(i)

(
∀U ∈ U(x)

)
U 6= ∅

(ii)
(
∀U, V ∈ U(x)

)
U ∩ V ∈ U(x).

(iii)
(
∀U, V

) (
U ∈ U(x) and U ⊆ V

)
⇒ V ∈ U(x). ut

This observation calls for the introduction of a new concept.

Definition 1.13. Assume that X is a set. A set F ⊆ P(X) of subsets of X is
called a filter, if it is nonempty and satisfies the following conditions
(i)

(
∀A ∈ F

)
A 6= ∅
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(ii)
(
∀A, B ∈ F

)
A ∩B ∈ F.

(iii) (∀A, B) (A ∈ F and A ⊆ B) ⇒ B ∈ F.
A set B ⊆ P(X) of subsets of X is called a filter basis, if it is nonempty and
satisfies the following conditions
(i)

(
∀A ∈ B

)
A 6= ∅,

(ii) (∀A, B ∈ B)(∃C ∈ B)C ⊆ A ∩B. ut

Proposition 1.14. A subset B of P(X) is a filter basis iff the set

F
def= {A ∈ P(X) : (∃B ∈ B) B ⊆ A}

is a filter. ut

The set of all neighborhoods of a point is a filter, the set of open neighborhoods
is a filter basis.

Hausdorff characterisation of a topological space

Theorem 1.15. Assume (X, O) to be a topological space. Then

x 7→ U(x) : X → P
(
P(X)

)
is a function satisfying the following conditions:
(i) Each U(x) is a filter.
(ii) (∀x ∈ X, U ∈ U(x))x ∈ U .
(iii)

(
∀x ∈ X, U ∈ U(x)

)(
∃V ∈ U(x)

)
(∀v ∈ V )U ∈ U(v).

Conversely, if (U(x) : x ∈ X) is a family of subsets of subsets of a set X
satisfying (i), (ii), (iii), then the collection O of all subsets U ⊆ X such that (∀u ∈
U) U ∈ U(u) is a unique topology on X such that U(x) is exactly the neighborhood
filter of x in the topological space (X, O). ut

Theorem 1.15 remains intact if (ii) and (iii) are replaced by
(II)

(
(∀x ∈ X, U ∈ U(x)

)
(∃V )x ∈ V ⊆ Uand(∀v ∈ V ) V ∈ U(v).

Theorem 1.16. (Characterization of continuity of functions) A function f :X →
Y between topological spaces is continuous if and only if for each x ∈ X and each
V ∈ U

(
f(x)

)
there is a U ∈ U(x) such that f(U) ⊆ V . ut

Corollary 1.17. A function f :X → Y between two metric spaces is continuous
iff for each x ∈ X and each ε > 0 there is a δ > 0 such that f(Uδ(x)) ⊆ Uε

(
f(x)

)
.ut

Expressed more explicitly, f is continuous if for each x and each positive num-
ber ε there is a positive number δ such that the relation dX(x, y) < δ implies
dY

(
f(x), f(y)

)
< ε.

This is the famous ε-δ definition of continuity between metric spaces. The
topological descriptions of continuity are less technical.

On the other hand, the neighborhood concept allows us to define continuity at
a point of a topological spaces:
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Definition. Let X and Y be topological spaces and x ∈ X. Then a function
f :X → Y is said to be continuous at x, if for every neighborhood V ∈ U

(
f(x)

)
there is a neighborhood U ∈ U(x) such that f(U) ⊆ V . ut

Clearly f is continuous if and only if it is continuous at each point x ∈ X.

Example 1.18. The two element space 2 is a topological space with respect to the
discrete topology, but also with respect to the Scott topology σ(2) = {∅, {1},2}.
Let us denote with 2σ the two element space with respect to this topology. This
space is sometimes called the Sierpinski space.

If (X, O) is a topological space and A a subset of X, then the characteristic
function χA:X → 2 (with the discrete topology on 2) is continuous iff A is open
and closed, i.e. A,X \A ∈ O.

The characteristic function χA:X → 2σ is continuous iff A is open, i.e. A ∈ O.
The function

A 7→ χA : O → C(X,2σ)

is a bijection. ut

Exercise E1.3. Verify the assertions made in the discussion of Example 1.18.

The interior and the closure of a set

Definition 1.19. Consider a topological space (X, O) and Y ⊆ X. Define Y ◦ or
intY to be the union of all open subsets U ⊆ Y , that is, Y ◦ =

⋃
{U ∈ O : U ⊆ Y }.

This set is the largest open subset contained in Y and is called the interior of Y .

The intersection of all closed supersets A ⊇ Y is the smallest closed set con-
taining Y . It is called the closure of Y , written Y or cl Y .

Proposition 1.20. In a topological space (X, O) we have the following conclu-
sions:

(i) Y ◦◦ = Y ◦ and Y ⊆ Z ⊆ X implies Y ◦ ⊆ Z◦.
(ii) Y = Y and Y ⊆ Z ⊆ X implies Y ⊆ Z.
(iii) Y ◦ = X \X \ Y and Y = X \ (X \ Y )◦. ut

Proposition 1.21. Let (X, O) denote a topological space and Y a subset. Let
x ∈ X. Then the following assertions are equivalent:

(i) x ∈ Y ◦.
(ii) (∃U ∈ O) x ∈ U ⊆ Y .
(iii) (∃N ∈ U(x))N ⊆ Y .
(iv) Y ∈ U(x).

Also, the following statements are equivalent:
(i) x ∈ Y .
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(ii) (∀U ∈ O) x ∈ U⇒U ∩ Y 6= ∅.
(iii) Every neighborhood of x meets Y .
(iv) X \ Y is not a neighborhood of x.

Basis and subbasis of a topology
Often we shall define a topology by starting from a certain set of open sets which
generate all open sets in a suitable sense.

Definition 1.22. A set B ⊆ P(X) is called a basis of a topology if X =
⋃

B and

(7) (∀A,B ∈ B)(∀x ∈ A ∩B)(∃C ∈ B) x ∈ C ⊆ A ∩B. ut

Proposition 1.23. For a subset B ⊆ P(X), the following conditions are equiva-
lent:

(i) B is a basis of a topology.
(ii) O

def= {U : (∀u ∈ U)(∃B ∈ B)u ∈ B ⊆ U} is a topology.
(iii) The set of all unions of sets of members of B is a topology. ut

In the circumstances of 1.23 we say that B is a basis of O. The discrete
topology P(X) of a set has a unique smallest basis, namely,

{
{x} : x ∈ X

}
.

Example 1.24. (i) Let (X, d) be a metric space. The set B of all open balls
U1/n(x), n ∈ N, x ∈ X is a basis for the metric topology O(X).

(ii) The natural topology of R has a countable basis

(8)
{]

q − 1
n

, q +
1
n

[
: q ∈ Q, n ∈ N

}
.

Definition 1.25. One says that a topological space (X, O) satisfies the First
Axiom of Countability, if every neighborhoodfilter U(x) has a countable basis. It
satisfies the Second Axiom of Countability if O has a countable basis.

Exercise E1.4. Every space satisfying the Second Axiom of Countability satisfies
the first axiom of countability. The discrete topology of a set satisfies the first
axiom of countability; but if it fails to be countable, it does not satisfy the Second
Axiom of Countability.

Every set of cardinals has a smallest element. Given this piece of information we can attach

to a topological space (X, O) a cardinal, called its weight :

(9) w(X) = min{card B : B is a basis of O}.

The weight of a topological space is countable iff it satisfies the Second Axiom of Countability.

Definition 1.26. A set B of subsets of a topological space is said to be a basis
for the closed sets if every closed subset is an intersection of subsets taken from
B. ut
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The set of complements of the sets of a basis of a topology is a basis for the
closed sets of this topology and vice versa.

Proposition 1.27. Let T ⊆ P
(
P(X)

)
be a set of topologies. Then

⋂
T ⊆ P(X)

is a topology. ut

By Proposition 1.27, every set M of subsets of a set X is contained in a unique
smallest topology O, called the topology generated by M. Under these circum-
stances, M is called a subbasis of O.

Proposition 1.28. The topology generated by a set M of a set X consists of all
unions of finite intersections of sets taken from M. ut

Definition 1.29. Let (X,≤) be a totally ordered set, i.e. a poset for which every
two elements are comparable w.r.t. ≤. Then the set of all subsets X, ↑a, a ∈ X,
and ↓a, a ∈ X is a subbasis for the closed sets of a topology, called the order
topology of (X,≤). ut

[It should be understood that by ↓a in a poset we mean the set of all x ∈ X
with x ≤ a.]

Example 1.30. In R the set of all ]q,∞[, q ∈ Q and ] − ∞, q[, q ∈ Q form a
subbasis of the natural topology. ut

Exercise E1.5. Show that the order topology on R is the natural topology of R.

The Lower Separation Axioms

Lemma 1.31. The relation � in a topological space defined by

(10) x � y if and ony if (∀U ∈ O) x ∈ U⇒y ∈ U.

is reflexive and transitive. ut

We have x � y if every neighborhood of x is a neighborhood of y. If (X,≤) is a
quasiordered set and O is the Alexandroff discrete topology, then x � y iff x ≤ y.

Definition 1.32. The quasiorder � on a topological space is called the specialisat-
ion quasiorder. ut

While this is not relevant here, let us mention that the name arises from alge-
braic geometry.

Exercise E1.6. Show that on
(
R, σ(R)

)
with the Scott topology, one has x � y

iff x ≤ y. ut
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Notice that σ(R) is bigger than the Alexandroff discrete topology on R. So two
different topologies can produce the same specialisation quasiorder.

The specialisation quasiorder with respect to the indiscrete topology is the
trivial quasiorder that holds always between two elements. The specialisation
order with respect to the discrete topology is equality.

Proposition 1.33. In a topological space, the point closure {a} is the lower set
↓a w.r.t. the specialisation order. ut

Definition 1.34. A topological space (X, O) is said to satisfy the Axiom (T0),
or is said to be a T0-space if and only if the specialisation quasiorder is a partial
order. Under these conditions, the topology O is called a T0-topology. ut

Sometimes (following Alexandroff and Hopf), the Axiom (T0) is called Kolmogo-
roff’s Axiom.

The Axiom (T0) is equivalent to each of the following statements:
• For two different elements x and y in X, there is an open set such that either

x ∈ U and y /∈ U or y ∈ U and x /∈ U .

In other words, for two different points there is an open set containing precisely
one of the two points.
• The function x 7→ U(x):X → P

(
P(X)

)
which assigns to an element its neigh-

borhood filter is injective.

In other words: “Different points have different neighborhood filters.”

Definition 1.35. The space X is said to satisfy the separation axiom (T1) (or
to be a T1-space), and its topology O is called a T1-topology, if the specialisation
quasiorder is discrete, i.e., is equality.

A topological space is a T1 space if and only if
• every singleton subset is closed.

That is {a} = {a} for all a ∈ X.
Another equivalent formulation of the Axiom (T1) is

• If x and y are two different points then there is an open set U containing x but
not y.

Example 1.36. The cofinite topology is always a T1-topology. ut

The Alexandroff-discrete topology of a nontrivial poset is a T0-topology but
not a T1-topology. For instance, the Sierpinski space 2σ is a T0-space which is not
a T1-space.

The terminology for the hierarchy (Tn) of separation axioms appears to have
entered the literature 1935 through the influential book by Alexandroff and Hopf
in a section of the book called ,,Trennungsaxiome“ (pp. 58 ff.). Alexandroff and
Hopf call the Axiom (T1) ,,das erste Frechetsche Trennungsaxiom“, p. 58, 59), and
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they attach with the higher separation axioms the names of Hausdorff, Vietoris,
and Tietze. In due time we shall face these axioms.

In Bourbaki T0-spaces are called �espaces de Kolmogoroff� (s. §1, Ex. 2, p. 89).
Alexandroff and Hopf appear to have had access to an unpublished manuscript by
Kolmogoroff which appears to have dealt with quotient spaces (see Alexandroff
and Hopf p. 61 and p. 619) and which is likely to have been the origin of calling
(T0) Kolomogoroff’s Axiom; Alexandroff continues to refer to it under this name
in later papers. Fréchet calls T1-spaces �espaces accessibles�.

Definition 1.37. The space X is said to satisfy the Hausdorff separation axiom
(T2) (or to be a T2-space), and its topology O is called a Hausdorff topology,
respectively, T2-topology, if the following condition is satisfied:

(T2) (∀x, y ∈ X) x 6= y ⇒
(
∃U ∈ U(x), V ∈ U(y)

)
U ∩ V = ∅.

In other words, two different points have disjoint neighborhoods.

Exercise E1.7. Let O1 and O2 be two topologies on a set such that O1 ⊆ O2.
If O1 is a Tn-topology for n = 0, 1, 2, then O2 is a Tn-topology.

Definition 1.38. The space X is said to be regular, and its topology O is called
a regular topology if the following condition is satisfied:

(∀x ∈ X)
(
∀U ∈ U(x)

)(
∃A ∈ U(x)

)
A = A and A ⊆ U.

It is said to satisfy the axiom (T3) (or to be a T3-space), if it is a regular
T0-space. In other words:
(T3) X is a T0-space and every neighborhood filter has a basis of closed sets. ut

For a T0-space X, the axiom (T3) is also equivalent to the following statement:

(∗) For any x ∈ X and any neighborhood U ∈ U(x), there are open sets V and W
such that x ∈ V , V ∩W = ∅, and U ∪W = X.

Exercise E1.8. (a) Show that (T3) is equivalent to (T0) and (∗).
(b) Prove the following propostitions:

(i) Every metric space is regular. In particular, the natural topology of R is regular.
(ii) Every metric space is a Hausdorff space.
(iii) On R let Oc be the collection of all sets U \ C where U is open in the natural

topology O of R and C is a countable set. Then Oc is a topology which is
properly finer than the natural topology of R, that is, the identity function
idR: (R,Oc) → (R,O) is continuous, but its inverse function is not continuous.
The topology Oc is not regular.
A function f : R → R is continuous as a function (R,Oc) → (R,O) if and only

if it is continuous as a function (R,O) → (R,O).
(iv) (T3)⇒(T2)⇒(T1)⇒(T0) and (T0) 6⇒(T1) 6⇒(T2) 6⇒(T3).
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Quotient Spaces

An equivalence relation R on a set X is a reflexive, symmetric, and transitive
relation. Recall that a binary relation is a subset of X ×X; in place of (x, y) ∈ R
one frequently writes xR y.

Every equivalence relation R on a set X gives rise to a new set X/R, the set of
all equivalence classes R(x) = {x′ ∈ X : (x, x′) ∈ R}. Note x ∈ R(x). If A and B
are R-equivalence classes, then either A ∩ B = ∅ or A = B. Thus X is a disjoint
union of all R equivalence classes. One calls a set P ⊆ P(X) of subsets a partition
of X if two different members of P are disjoint and

⋃
P = X. We have seen that

every equivalence relation on a set X provides us with a partition of X. Conversely,
if P is a partition of X, then R

def= {(x, x′) ∈ X ×X : (∃A ∈ P)x, x′ ∈ A} is an
equivalence relation whose partition is the given one. There is a bijection between
equivalence relations and partitions.

The new set X/R is called the quotient set modulo R. The function pR:X →
X/R, pR(x) = R(x) is called the quotient map.

One of the primary occurrences of equivalence relations is the kernel relation
of a function, as follows. Let f :X → Y be a function. Define Rf = {(x, x′) :
f(x) = f(x′)}. Then there is a bijective function f ′:X/Rf → f(X) which is
unabiguously defined by f ′

(
Rf (x)

)
= f(x). If inc: f(X) → Y is the inclusion

map y 7→ y: f(X) → Y then we have the so-called canonical decomposition f =
inc ◦ f ′ ◦ pRf

of the given function:

X
f−−−−−−−−−→ Y

pRf

y xinc

X/Rf −−−−−−−−−→
f ′

f(X).

In this decomposition of f the quotient map pRf
is surjective, the induced function

f ′ is bijective, the inclusion map is injective.
The objective of this subsection is to endow the quotient space X/R of a topo-

logical space X with a topology in a natural way so that the quotient map is
continuous and that, if R is the kernel relation of a continuous function, the in-
duced bijective function f ′:X/Rf → f(X) is continuous.

Lemma 1.39. Let R be an equivalence relation on a topological space (X, R).
Then there is a bijection β from the set OR = {U ∈ O : U =

⋃
u∈U R(u)} and the

set O(X/R) =
{
{R(u) : u ∈ U} : U ∈ OR}, where β(U) = {R(u) : u ∈ U}.

Both OR and OX/R is closed under the formation of arbitrary unions and finite
intersections, and X, ∅ ∈ OR and X/R, ∅ ∈ OX/R. ut

The members of OR are also called the R-saturated open sets.

Definition 1.40. The topological space (X/R,OX/R) is called the quotient space
of X modulo R.
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Proposition 1.40. The quotient map pRf
:X → X/R is continuous.

The quotient space X/R is a T1 space if and only if all R-equivalence classes
are closed.

The quotient space X/R is a Hausdorff space if and only if for two disjoint
R-classes A and B there are disjoint saturated open set U and V containing A
and B, respectively. ut

Definition 1.41. A function f :X → Y between topological spaces is called open
if f(U) is open for each open set U , that is, if open sets have open images.

Exercise E1.9. Show that the function x 7→ x2 : R → R fails to be open. ut

Proposition 1.42. For an equivalence relation R on a topological space X, the
following statements are equivalent:

(i) The quotient map pR:X → X/R is open.
(ii) For each open subset U of X the saturation

⋃
u∈U R(u) is open. ut

Group Actions
There is a prominent situation for which quotient maps are open.

Definition 1.43. A continuous function f :X → Y between topological spaces
is called a homeomorphism, if it is bijective and its inverse function f−1:Y → X
is continuous. Two spaces X and Y are called homeomorphic if there exists a
homeomorphism between them. ut

A function f : (X, OX) → (Y,OY ) between topological spaces is a homeomor-
phism if and only if the function f implements a bijection U 7→ f(U) : OX → OY .

Exercise E1.10. (i) For any topological space X, the set H of homeomorphisms
f :X → X is a group.

(ii) Let G be a subgroup of H. Let us write g·x = g(x) for g ∈ G and x ∈ X.
Then the set X/G

def= {G·x|x ∈ X} is a partition of X. The corresponding
equivalence relation is given by x ∼ y iff (∃g ∈ G) y = g·x.

(iii) We let p:X → X/G denote the quotient map defined by p(x) = G·x and
endow X/G with the quotient topology. Then p is an open map. ut

The set G·x is called the orbit of x under the action of G, or simply the G-orbit
of x. The quotient space X/G is called the orbit space.

Exercise E1.11. (i) Let X be the space R of real numbers with its natural
topology. Every r ∈ R defines a function Tr:X → X, via Tr(x) = r + x, the
translation by r. Every such translation is a homeomorphism of R.
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(ii) Let G be the group of all homeomorphisms Tr with r ∈ Z, where Z is the
set of integers.

Describe the orbits G·x of the action of G on X.
Describe the orbit space X/G. Show that it is homeomorphic to the one-sphere

S1.
(iii) Now let X be as before, but take G = {Tr : r ∈ Q} where Q is the set of

rational numbers. Discuss orbits and orbit space.
(iv) Test these orbit spaces for the validity of separation axioms. ut

A Universal Construction
Let us consider another useful application of quotient spaces.

On any topological space X with topology OX , the binary relation defined by
x ≡ y iff x ≤ y and y ≤ x (with respect to the specialisation quasiorder ≤) is an
equivalence relation. The quotient space X/≡ endowed with its quotient topology
OX/≡ will be denoted by T0(X).

Proposition 1.44. For any topological space X, the space T0(X) is a T0-space,
and if qX :X → T0(X) = X/≡ denotes the quotient map which assigns to each
point its equivalence class, then the function U 7→ q−1

X (U):OT0(X) → OX is a
bijection. Moreover, if f :X → Y is any continuous function into a T0-space, then
there is a unique continuous function f ′:X/≡ → Y such that f = f ′ ◦ qX . ut

As a consequence of these remarks, for most purposes it is no restriction of
generality to assume that a topological space under consideration satisfies at least
the separation axiom (T0).

The Canonical Decomposition
It is satisfying to know that the quotient topology provides the quotient space
modulo a kernel relation with that topology which allows the canonical decompo-
sition of a continuous function between topological spaces to work correctly.

Theorem 1.45. (The Canonical Decomposition of Continuous Functions) Let
f :X → Y be a continuous function between topological spaces and let

X
f−−−−−−−−−→ Y

pRf

y xinc

X/Rf −−−−−−−−−→
f ′

f(X).

be its canonical decomposition, where Rf denotes the kernel relation of f . Then
f ′:X/Rf → f(X) is a continuous bijection, the quotiend map pRf

is a continuous
surjection, the inclusion map is an embedding, i.e., a homeomorphism onto its
image. ut

If the space Y is a Hausdorff space, then so is the subspace f(X); then the
continuous bijection f ′ in the canonical decomposition theorem tells us at once that
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the quotients space X/Rf is a Hausdorff space—whether X itself is a Hausdorf
space or not.

Corollary 1.46. If f :X → Y is a continuous function into a Hausdorff space,
then the quotient space X/Rf is a Hausdorff space. ut

Naturally one wishes to understand when f ′ is a homeomorphism.

Proposition 1.47. Let f :X → Y be a continuous function between topological
spaces. Then the following conditions are equivalent:
(i) The corestriction x 7→ f(x):X → f(X) is open.
(ii) The quotient morphism pf :X → X/Rf is open and f ′:X/Rf → f(X) is a

homeomorphism. ut

Products

Definition 1.48. Let (Xj : j ∈ J) be a family of sets. The cartensian pro-
duct or simply product of this family, written

∏
j∈J Xj , is the set of all functions

f : J →
⋃

j∈J Xj such that (∀j ∈ J) f(j) ∈ Xj . These functions are also written
(xj)j∈J with xj = f(j) and are called J-tuples. The function prk:

∏
j∈J Xj → Xk,

prk

(
(xj)j∈J

)
= xk is called the projection of the product onto the factor Xk. ut

The following statement looks innocent, but it is an axiom:
Axiom 1.49. (Axiom of Choice) For each set J and each family of sets (Xj :
j ∈ J) the product

∏
j∈J Xj is not empty. ut

Proposition 1.50. If the product P
def=

∏
j∈J Xj is not empty, then for each k ∈

J , the projection prk:P → Xk is surjective, and there is an injection sk:Xk → P
such that prk ◦sk = idXk

. ut

Now we wish to consider families of topological spaces and to endow their
products with suitable topologies. For this purpose let us consider a family (Xj :
j ∈ J) of topological spaces. Let us call a family (Uj : j ∈ J) of open subsets Uj

of Xj a basic open subfamily, if there is a finite subset F of J such that Uj = Xj

for all j ∈ J \ F . Thus for a basic family of open subsets only a finite number of
them consists of proper subsets.

Lemma 1.51. The set B of all products

U
def=

∏
j∈J

Uj
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where (Uj : j ∈ J) ranges through the set of all basic open subfamilies of (Uj : j ∈
J) is a basis for a topology on

P
def=

∏
j∈J

Xj

which is closed under finite intersections. The set of all unions of members of B
is a topology O on P . ut

Definition 1.52. The topology O on P is called the product topology or the
Tychonoff topology. The topological space (P,O) is called the product space of the
family (Xj : j ∈ J) of topological spaces. ut

Proposition 1.53. Let (Xj : j ∈ J) be a family of topological spaces and let

P
def=

∏
j∈J Xj the product.

(i) Each projection prk:P → Xk is continuous and open.
(ii) A function f :X → P from a topological space into the product P is continuous

if and only if for all k ∈ J the functions prk ◦f :X → Xk are continuous. ut

Proposition 1.54. The product
∏

j∈J Xj is a Hausdorff space if and only if all
factors Xj are Hausdorff. ut
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Chapter 2
Compactness

We proceed to special properties of topological spaces. From basic analysis we
know that compactness is one of these.

Definition 2.1. Let (X, O) be a topological space. An open cover is a subset
C ⊆ O such that X =

⋃
C or a family (Uj : j ∈ J) of open sets Uj ∈ O such that

X =
⋃

j∈J Uj . The cover is said to be finite if C, respectively, J is finite. A subset
C′ ⊆ C which is itself a cover is called a subcover. A subcover of an open cover
(Uj : j ∈ J) is a subfamily (Uj : j ∈ K), K ⊆ J which is itself a cover.

Definition 2.2. A topological space (X, O) is said to be compact if every open
cover has a finite subcover. ut

Proposition 2.3. For a topological space (X, O) the following statements are
equivalent:
(i) X is compact.
(ii) Every filterbasis of closed subsets has a nonempty intersection. ut

Exercise E2.1. Prove the following assertions:
(i) A closed subspace of a compact space is compact.
(ii) If X is a compact subspace of a Hausdorff space Y , then X is closed in Y .
(iii) Every finite space is compact.
(iv) In the Sierpinski space 2s the subset {1} is compact but not closed.
(v) Every set is compact in the cofinite topology.
(vi) Every compact and discrete space is finite. ut

Definition 2.4. An element x of a topological space is said to be an accumulation
point or a cluster point of a sequence (xn)n∈N of X if for each U ∈ U(x) the set
{n ∈ N : xn ∈ U} is infinite. ut

A point x in a topological space is an accumulation point of the sequence
(xn)n∈N iff for each natural number n and each U ∈ U(x) there is an m ≥ n such
that xm ∈ U .

Lemma 2.5. Assume that (xn)n∈N is a sequence in a topological space X. Let F
be the set of all sets

Fn
def= {xm : n ≤ m} = {xn, xn+1, xn+2, . . .}.

Then the following conclusions hold:
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(i) A point x ∈ X is an accumulation point of the sequence iff

x ∈ {xn, xn+1, xn+2, . . .} for all n ∈ N.

(ii) F is a filter basis, and
⋂
F is the set of all accumulation points of (xn)n∈N.ut

Proposition 2.6. Let X be a compact topological space. Then every sequence
(xn)n∈N in X has at least one accumulation point.

Proof . For a given sequence (xn)n∈N let F be the filterbasis of compact sets whose
member are Fn

def= {xm : n ≤ m}. By (i) and Proposition 2.3 we know
⋂
F 6= ∅.

In view of Lemma 2.5(ii), this proves the claim. ut

The reverse implication is not true in general, however we shall see that it is
true for metric spaces. These matters are more involved. We first establish two
lemmas which are of independent interest. A topological space in which every
sequence has an accumulation point is called sequentially compact

Lemma 2.7. (Lebesgue’s Lemma) Let (X, d) be a sequentially compact metric
space and let U be an arbitrary open cover of X. Then there is a number r > 0
such that for each x ∈ X there is a U ∈ U such that the open ball Ur(x) of radius
r around x is contained in U .

Proof . Suppose that the Lemma is false; then there is an open cover U such
that for each m ∈ N there is an xm ∈ X such that U1/m(xm) is contained in no
U ∈ U . Since X is sequentially compact, the sequence (xm)m∈N has at least one
accumulation point x. Since X =

⋃
U there is a U ∈ U with x ∈ U . Since U is

open, there is an s > 0 such that Us(x) ⊆ U . Now let n ∈ N be such that 2/n < s.
Then U1/n(x) contains at least one xm with m ≥ n. Then U1/m(xm) ⊆ U2/n(x) ⊆
U , and that is a contradiction to the choice of xm. ut

A number r > 0 as in the conclusion of Lemma 2.7 is called a Lebesgue number
of the cover U .

Lemma 2.8. Let (X, d) be a sequentially compact metric space and let r > 0.
Then there is a finite subset F ⊆ X such that for each x ∈ X there is an element
y ∈ F with d(x, y) < r. That is, {Ur(y) : y ∈ Y } is a cover of X.

Proof . Suppose that the Lemma is false. Then there is a number r > 0 such that
for each finite subset F ⊆ X one finds an x ∈ X such that d(x, y) ≥ r for all y ∈ F .
Pick an arbitrary x1 ∈ X and assume that we have found elements x1, . . . , xm in
such a fashion that d(xj , xk) ≥ r for all j 6= k in {1, . . . ,m}. By hypothesis we find
an xm+1 ∈ X such that d(xj , xm+1) ≥ r for all j = 1, . . . ,m. Recursively we thus
find a sequence x1, x2, . . . , in X. Since X is sequentially compact, this sequence
has an accumulation point x ∈ X. By the definition of accumulation point the set
{n ∈ N : xn ∈ Ur/2(x)} is infinite. Thus we find two different indices h 6= k in N
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such that xj , xk ∈ Ur/2(x), whence d(xj , xk) ≤ d(xj , x)+d(x, xk) < r/2+r/2 = r.
This is a contradiction to the construction of (xn)n∈N. ut

Definition 2.9. A metric space (X, d) is said to be precompact or totally bounded if
for each number r > 0 there is a finite subset F ⊆ X such that X ⊆

⋃
x∈F Ur(x).ut

We have observed in Lemma 2.8 that every compact metric space is precompact.
The space Q ∩ [0, 1] is precompact with its natural metric but not compact.

Lemma 2.10. Assume that X is a precompact metric space, and (xn)n∈N a
sequence in X. Then there is an increasing sequence (mn)n∈N of natural numbers
such that the equations yn

def= xmn
define a Cauchy sequence (yn)n∈N in X.

Proof . Assume that we had found a descending sequence V1 ⊇ V2 ⊇ · · · of
subsets of X such that the diameters δn of Vn exist and converge to 0, and that
moreover {m ∈ N : xm ∈ Vn} is infinite for all n ∈ N. Then we let m1 ∈ N be
such that xm1 ∈ V1 and assume that m1 < m2 < · · · < mn have been selected
so that xmk

∈ Vk for k = 1, . . . , n. Since {m ∈ N : xm ∈ Vn+1} is infinite we
find an mn+1 > mn such that xmn+1 ∈ Vn+1. We set yn = xmn , notice that
yn ∈ Vn and show that (yn)n∈N is a Cauchy sequence. Since Vn+k ⊆ Vn we have
d(yn, yn+k) ≤ δn. Thus for any ε > 0 we find an N ∈ N such that n > N implies
δn < ε and thus d(yn, yn+k) < ε for all k ∈ N. So (yn)n∈N is a Cauchy sequence.

It therefore remains to construct the sets Vn. For each natural number k there
is a finite number Fk ⊆ X such that

(∗) X =
⋃

x∈Fk

U1/k(x).

(∗∗) If (pn)n∈N is a sequence in a M such that for finitely many subsets Mk, the
set {m ∈ N : pm ∈ M1 ∪ · · · ∪Mn} is infinite, then there is at least one index
k such that {m ∈ N : pm ∈ Mk} is infinite.

From (∗) with k = 1 and (∗∗) we find z1 ∈ F1 such that {m ∈ N : xm ∈ U1(z1)}
is infinite. Set V1 = U1(z1). Assume that Vk, k = 1, . . . , n have been found such
that {m ∈ N : xm ∈ Vn} is infinite. Now Vn ⊆ X =

⋃
z∈Fn+1

U1/n+1(z) by (∗).
Apply (∗∗) to Vn =

⋃
z∈Fn+1

(
Vn ∩ U1/n+1(z)

)
and find a zn+1 ∈ Fn+1 such that

{m ∈ N : xm ∈ Vn∩U1/n+1(zn+1)} is infinite. Set Vn+1 = Vn∩U1/n+1(zn+1). This
completes the recursive construction of Vn with δn ≤ 2/n and thereby completes
the proof of the lemma ut

Recall that a metric space is said to be complete, if every Cauchy-sequence
converges.

Theorem 2.11. For a metric space (X, d) with the metric topology O, the fol-
lowing statements are equivalent:

(i) (X, O) is compact.



20 2. Compactness

(ii) (X, O) is sequentially compact.
(iii) (X, d) is precompact and complete.

Proof . (i)⇒(ii): This was shown in Proposition 2.6.
(ii)⇒(iii): A sequentially compact metric space is precompact by Lemma 2.8.

We verify completeness: Let (xn)n∈N be a Cauchy sequence. Since X is se-
quentially compact by (ii), this sequence has a cluster point x. We claim that
x = limn→∞ xn. Indeed let ε > 0. Since (xn)n∈N is a Cauchy sequence, there is an
N ∈ N such that m,n > N implies d(xm, xn) < ε/2. Since x is an accumulation
point, there is an m > N such that d(x, xm) < ε/2. Thus for all n > N we have
d(x, xn) < d(x, xm) + d(xm, xn) < ε/2 + ε/2 = ε. This proves the assertion.

(iii)⇒(ii): Let (xn)n∈N be a sequence in X. By Lemma 2.10 there are natural
numbers m1 < m2 < · · · such that (xmn)n∈N is a Cauchy sequence. Since (X, d) is
complete, this sequence has a limit x. If ε > 0 then there is an N such that n > N
implies xmn

∈ Uε(x). Since mn < mn+1 we conclude that {m ∈ N : xm ∈ Uε(x)}
is infinite. Hence x is an accumulation point of (xn)n∈N.

We have shown that (i) and (iii) are equivalent.
(ii)⇒(i): Let U be an open cover. Let r > 0 be a Lebesgue number for this

cover according to Lemma 2.7. Since X is precompact by what we know we find
a finite set F ⊆ X such that X =

⋃
x∈X Ur(x). For each x ∈ F we find an Ux ∈ U

such that Ur(x) ⊆ Ux by Lemma 2.7. Then X =
⋃

x∈F Ur(x) ⊆
⋃

x∈F Ux ⊆ X
and thus {Ux : x ∈ X} is a finite subcover of U . ut

Theorem 2.11 is remarkable in so far as the three statements (i), (ii), and (iii)
have very little to do with each other on the surface.

Theorem 2.11 links our general concept of compactness with elementary anal-
ysis where compactness is defined as sequential compactness.

Exercise E2.2. (i) Show that a compact subspace X of a metric space is always
bounded, i.e. that there is a number R such that d(x, y) ≤ R for all x, y ∈ X

(ii) Give an example of an unbounded metric on R which is compatible with
the natural topology.

(iii) Show that a closed subset X of R which is bounded in the sense that it is
contained in an interval [a, b] is compact.

(iv) Prove the following result from First Year Analysis. (Theorem of Bolzano-
Weierstrass).

A subset of Rn is compact if an only if it is closed and bounded with respect to
the norm given by ‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|}.

(v) Show that the Theorem of Bolzano-Weierstrass holds for any norm on Rn.ut

Exercise E2.3. Use Theorem 2.11 for proving that a subset of Rn is compact if
and only if it is closed and norm bounded. ut

In this spirit, Theorem 2.11 is the “right” generalisation of the Bolzano-Weier-
strass Theorem.
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There are some central results concerning compact spaces which involve the
Axiom of Choice. Therefore we must have an Interlude on the Axiom of Choice.
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Chapter AC
An Interlude on the Axiom of Choice.

We need some concepts from order theory.

Definition AC.1. A poset (X,≤) as well as the partial order ≤ are said to be
inductive, if each totally ordered subset (that is, a chain or a tower T ⊆ X has an
upper bound b in X (i.e. t ≤ b for all b ∈ T ).

Example AC.2. Let V be a vector space over any field K and let X ⊆ P(X)
be the set of all linearly independent subsets. On X we consider the partial order
⊆. If T is a totally ordered set of linearly independent subsets of V then b

def=
⋃

T
is a linearly independent set due to the fact, that linear independence of a set F
of vectors is a property involving only finite subsets of F . Also, b contains all
members of T . Hence (X,⊆) is inductive. ut

Definition AC.3. A binary relation ≤ is called a well-order, and (X,≤) is called
a well-ordered set if ≤ is a total order (i.e. a partial order for which every pair of
elements is comparable) such that every nonempty subset has a smallest element.ut

Example AC.4. Every finite totally ordered set is well-ordered. The set N of
natural numbrs with its natural order is well-ordered. The set N∪{n− 1

m : n, m ∈
N} is well ordered with the natural order. ut

We begin by formulating a couple of statement concerning sets, posets, topo-
logical spaces.

AC: The Axiom of Choice. For every family of nonempty sets (Xj : j ∈ J)
the product

∏
j∈J Xj is not empty. ut

ZL: Zorn’s Lemma. Every inductive set has maximal elements. ut

WOP: The Well-Ordering Principle. Every set can be well-ordered. ut

TPT: The Tychonov Product Theorem. Each product of compact spaces is
compact. ut

The point of this interlude is to prove that these four statements are equivalent.
Let us begin with a couple of simple implications
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TPT⇒AC: Let (Xj : j ∈ J). Then Yj = Xj ∪ {Xj} is a set and Xj /∈ Xj .
The product

∏
j∈J Yj is not empty because it contains the element (Xj)j∈J . Let

Fin(J) denote the set of finite subsets of J . For each finite subset F ∈ Fin(J) we
set SF =

∏
j∈J Zj where

Zj =
{

Xj if j ∈ F ,
Yj if j ∈ J \ F .

Since Xj 6= ∅ for all j ∈ J we have
∏

j∈F Xj 6= ∅ since we accept the “finite”
Axiom of Choice. Now we topologize Yj by declaring Oj = {∅, {Xi}, Xj} to
be its topology. Then Xj is a closed subset of Yj , and Yj is compact. Now
S = {SF : F ∈ Fin(J)} is a filter basis of closed subsets of P =

∏
j∈J Yj and P is

compact by TPT. Thus
∏

j∈J Xj =
⋂

F∈Fin(J) SF 6= ∅ by 2.3. ut

ZL⇒WOP: Let X be a set, pick x0 ∈ X and consider the set (X ,�) be the set
of all well ordered subsets (A,≤A) with x0 as minimal element, where
(A,≤A) � (B,≤B) if

(1) A ⊆ B,
(2) ≤B |(A×A) =≤A, and
(3) A is an initial segment of B.

We claim that the poset (X ,�) is inductive: Let T be a totally ordered subset.
Then We form the subset T =

⋃
T and define a binary relation ≤ on T as follows:

Let x, y ∈ T . Then there is an S ∈ X containing x and y. Since S is totally
ordered we have x ≤S y or y ≤S x, and we set x ≤T y in the first case and y ≤T y
in the second. It is readily seen that this definition is independent of the choice of
S. It is seen that S ∈ T implies that S is an initial segment of T . If ∅ 6= A ⊆ T ,
then there is an a ∈ A and then a ∈

⋃
T ; thus a ∈ S for some S ∈ T . Since S is

well-ordered, m = min(A∩S) exists. Since S is an initial segment of T we conclude
m = minA. Thus (X ,�) is inductive. By Zorn’s Lemma ZL we find a maximal
element (M,≤M ). We claim M = X. Suppose not. Then there is an x ∈ X \M .
We extend ≤M to M ′ = M∪{x} by making x bigger than all elements of M . Then
(M ′,≤M ′) is a well-ordered set with M as an initial segment. This contradicts the
maximality of (M,≤M ). Thus X = M and (X,≤X) is well-ordered. ut

WOP⇒AC: Let (Xj : j ∈ J) be a family of nonempty sets; set X
def=

⋃
j∈J Xj .

Let ≤ be a well-order of X. Then (minXj)j∈J ∈
∏

j∈J Xj . ut

We still have to show AC⇒ZL and ZL⇒TPT. First we shall show that AC
implies ZL; then we shall conclude the interlude and prove ZL⇒TPT in the course
of our discussion of compact spaces.

For a proof of AC⇒ZL we prove a Lemma of independent interest in oder
theory.

Theorem AC.5. (Tarski’s Fixed Point Theorem) Let (X,≤) be a poset such that
every totally ordered subset has a least upper bound. Assume that the function
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f :X → X satisfies (∀x ∈ X) x ≤ f(x). Then f has a fixed point, that is, there is
an x0 ∈ X such that f(x0) = x0.

Let us note the parallel to Banach’s Fixed Point Theorem: Let (X, ). be a
metric space such that every Cauchy sequence converges. Assume that the function
f :X → X satisfies (∃λ ∈ [0, 1[)(∀x, y ∈ X)d

(
f(x), f(y)

)
≤ λd(x, y). Then f has

a fixed point.
That is, X satisfies some completeness hypothesis and f satisfies some contrac-

tion hypothesis. But the proofs proceed quite differently.
Yet before we prove Tarski’s Fixed Point Theorem we shall show how with

its aid one can use AC to prove ZL. Thus let (X,≤) be a inductive poset. Let
X denote the set of all totally ordered subsets of X; then (X ,⊆) is a poset; in
which every totally ordered subset T has a least upper bound, namely, T

def=
⋃
T .

We claim that X has maximal elements. If not, then for any Y ∈ X the set
MY = {Z ∈ X : Y ⊂ Z, Y 6= Z} is not empty. By the Axiom of Choice there
is an element f ∈

∏
Y ∈X MY , that is f is a selfmap of X such that Y ⊂ f(Y ),

Y 6= f(Y ), and this contradicts the Tarski Fixed Point Theorem AC.5. Thus we
find a maximal chain M . Since X is inductive, M has an upper bound b. But
now b is a maximal element of X because otherwise there would have to be an
element c ∈ X such that b < c, yielding a chain M ∪{c} properly containing M in
contradiction with the maximality of M . Therefore X has maximal elements and
this is what Zorn’s Lemma asserts.

Let us also notice that with the aid of ZL a proof of the Tarski Fixed Point
Theorem is trivial: If X is an inductive set, then by ZL it contains a maximal
element c. If now f is a self map of X with x ≤ f(x), then c ≤ f(c) implies
c = f(c) by the maximality of c, and thus c is a fixed point of f .

The entire point now is to prove the Tarski Fixed Point Theorem without AC
or ZL.

For a proof of Tarski’s Fixed Point Theorem let (X,≤) be a poset such that
supC exists for each chain C ⊆ X. Let us call a subset A ⊆ X closed if for each
chain C ⊆ A we have sup C ∈ A and f(A) ⊆ A. The empty set is a chain and
thus the set X has a smallest element minX = sup ∅. Moreover, if A is closed,
then ∅ is a chain contained in A, and thus minX = sup ∅ ∈ A.

Let X ′ =
⋂
{A ⊆ X : A is a closed subset of X}. Then X ′ is the smallests

closed subset of X. It suffices to prove the Fixed Point Theorem for X ′ and f |X ′.
We shall therefore assume from now on that X has no proper closed subsets.
(Notice that ∅ is not closed.)

Let us call an element x ∈ X a roof if y < x always implies f(y) ≤ x. We claim
that any roof decomposes X in the sense that either y ≤ x or f(x) ≤ y for any
y ∈ X. Indeed let Z = {y ∈ X : y ≤ x or f(x) ≤ y}. We claim that Z is a closed
set and leave the proof as an exercise. Since X has no proper closed subsets, this
implies Z = X.

Next we claim that every element in X is a roof. For a proof set D = {y ∈
X : y is a roof}. We claim that D is a closed subset and leave the proof as an
exercise. Since X has no proper closed subsets, this proves X = D.



AC. An Interlude on the Axiom of Choice. 25

At this point it follows that X is a chain. Let x0 = maxX. Then f(x0) ≤ x0.
By hypothesis on f we have x0 ≤ f(x0). Thus f(x0) = x0 and thus x0 is the
desired fixed point of f . ut

Exercise EAC.1. Show that the set Z in the proof of Tarski’s Fixed Point
Theorem is closed.
[Hint. Let C be a chain in Z and set z = sup C. Show z ∈ Z: Either f(x) ≤ y for
a y ∈ C or . . .). Secondly let y ∈ Z. Show f(y) ∈ Z: There are three cases y ≤ x
. . .]

Exercise EAC.2. Show that the set D in the proof of Tarski’s Fixed Point
Theorem is closed.
[Hint. Use the fact that every roof decomposes X to show that D is f -invariant.
If T is a totally ordered subset of D let t = supT ; we must show that t is a roof;
assume y < t. Show that there is an s ∈ T such that y < s: Proof by contradition
using that roofs decompose. Since s is a roof, f(y) ≤ s ≤ t.]

Lemma AC.6. Let X be a set. The set Filt(X) of all filters on X, as a subset
of P

(
P(X)

)
is an inductive poset. ut

Definition AC.7. Any maximal element in Filt(X) is called an ultrafilter.

Proposition AC.8. (AC) Every filter on a set is contained in an ultrafilter.
Every filter basis is contained in an ultrafilter.

Proof . Let F be a filter. The set of all filters containing F is inductive an thus
by Zorn’s Lemma contains maximal elements. If B is a filter basis, then the set F
of all supersets of members of B is a filter which is contained in an ultrafilter by
the preceding. ut

The preceding proposition is also called the Ultrafilter Theorem.

Exercise EAC.3. Prove the following proposition:
Let f :X → Y be a surjective function and U an ultrafilter in X. Then f(U)}

is an ultrafilter. ut

Definition AC.9. A filter basis is called an ultrafilter basis if the filter of all of
of its supersets is an ultrafilter.

Proposition AC.10. The following statements are equivalent for a filter F on a
set X:
(i) F is an ultrafilter.
(ii) Whenever X = A ∪B and A ∩B = ∅, then A ∈ F or B ∈ F .
The following statements are equivalent for a filter basis B on a set X:
(I) B is an ultrafilter basis.
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(II) Whenever X = A∪B and A∩B = ∅, then there is a C ∈ B such that C ⊆ A
or C ⊆ B.

Proof . (i)⇒(ii): Assume (i) and X = A∪B and A∩B = ∅. If the assertion fails,
then FA = {S ⊆ X : (∃F ∈ F) A∩F ⊆ S} and FB = {S ⊆ X : (∃F ∈ F) B∩F ⊆
S} are two filters such that F ⊆ FA∩FB . Since F is an ultrafilter, FA = F = FB ;,
but then A ∈ F and B ∈ F whence ∅ = A ∩B ∈ F , a contradiction.

(ii)⇒(i). Assume (ii) and consider F ⊆ G for some filter G on X. Suppose that
G is properly larger than F ; then there is a set A ∈ G \ F . Set B = X \ A. From
(ii) we conclude B ∈ F . But then B ∈ G and thus ∅ = A∩B ∈ G, a contradiction.

(I)⇔(II). Apply the preceding to F = 〈B〉, the filter generated by B. ut

Some filter arithmetic

Definition AC.11. Let f :X → Y be a funtion and F and G be filter bases on
X and Y , respectively. Set

f(F) = {f(F ) : F ∈ F} and f−1(G) = {f−1(G) : G ∈ G}. ut

Proposition AC.12. (i) f(F) is a filterbasis, and if F is a filter and f is
surjective, then f(F) is a filter as well.

(ii) f−1(G) is a filter basis, and if G is a filter and f is injective, then f−1(G)
is a filter.

Proof . (i) Let F1, F2 ∈ F ; then F contains an F such that F ⊆ F1 ∩ F2 since F
is a filter basis. Then f(F ) ⊆ f(F1 ∩ F2) ⊆ f(F1) ∩ f(F2). Thus f(F) is a filter
basis.

Now assume that f is surjective and that F is a filter. Let F ∈ F and f(F ) ⊆ B.
Then F ⊆ f−1(B), and since F is a filter, f−1(B) ∈ F . Since f is surjective,
B = f

(
f−1(B)

)
∈ f(F).

(ii) Let G1, G2 ∈ G. Then there is a G ∈ G with G ⊆ G1 ∩ G2. Then
f−1(G) ⊆ f−1(G1 ∩G2) = f−1(G1) ∩ f−1(G2). Thus f−1(G) is a filter basis.

Now assume that f is injective and that G is a filter. Let G ∈ G and f−1(G) ⊆
A. Then G ⊆ f(A) ∪

(
Y \ f(X)

)
since f is injective and f(A) ∪

(
Y \ f(X)

)
∈ G

since G is a filter. Now A = f−1
[
f(A) ∪

(
Y \ f(X)

)]
is in f−1(G). ut

Proposition AC.13. Let U be an ultrafilter basis in X and f :X → Y any
function. Then f(U) is an ultrafilter basis.

In particular, if f is surjective and U is an ultrafilter, then f(U) is an ultrafilter
as well.
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Proof . We prove this by using the equivalence of (I) and (II) in Proposition AC.8.
So let Y = A∪B, A∩B = ∅. Then X = f−1(A)∪f−1(B) and f−1(A)∩f−1(B) = ∅.
Now, since U is an ultrafilter basis, by (I)⇒(II) in Proposition AC.8, there is a
U ∈ U such that either U ⊆ f−1(A) or U ⊆ f−1(B). In the first case, f(U) ⊆ A,
in the second case, f(U) ⊆ B. Thus by (II)⇒(I) in Proposition AC.8 we see that
f(U) is an ultrafilter basis.

Finally, AC.10(i) proves the remainder. ut
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Chapter 2
Compactness Continued

Now we shall show that Zorn’s Lemma implies Tychonov’s Product Theorem. We
need the concept of convergence for filters.

Definition 2.12. We say that a filter F on X converges to x ∈ X if U(x) ⊆ F .
A filter basis B converges to x if the filter generated by B converges to x. ut

It is immediate that a filter basis B converges to x if for each neighborhood of
x there is a member B ∈ B such that B ⊆ U .

A sequence (xn)n∈N is said to converge to x if for every neighborhood U of x
there is an N ∈ N such that xn ∈ U for all n > N .

Exercise E2.4. Show that a sequence (xn)n∈N converges to x iff the filter basis
B =

{
{xn, xn+1, . . .} : n ∈ N

}
converges to x.

Proposition 2.13. (AC) For a topological space (X, O) the following statements
are equivalent:
(i) X is compact.
(ii) Every ultrafilter converges.

Proof . (i)⇒(ii): Let U be an ultrafilter. By (i) there is an x such that x ∈ V for
all V ∈ U (see 2.3). This means that U ∩ V 6= ∅ for all U ∈ U(x) and all V ∈ U .
Then F def= {F : U ∩ V ⊆ F, U ∈ U(x), V ∈ U} is a filter containing U . Since
U is maximal among all filters, we have F = U and thus U = F ⊆ U(x), i.e., U
converges to x.

(ii)⇒(i). (AC) Let B be a filter basis of closed sets; we must show that
⋂
B 6= ∅.

By the Ultrafilter Theorem, the filter basis B is contained in an ultrafilter U which
by (ii) converges to some element x. Let U be a neighborhood of x. Then there
is a V ∈ U such that V ⊆ U . If B ∈ B then B ⊆ U implies B ∈ U and thus
B ∩ V ∈ U ; in particular, ∅ 6= B ∩ V ⊆ B ∩ U . Therefore x ∈ B for all B ∈ B. ut

The next theorem will prove that AC⇒TPT.

Theorem 2.14. (AC) The product of any family of compact spaces is compact.

Proof . Let (Xj : j ∈ J) be a family of compact spaces. Let P
def=

∏
j∈J Xj . If

one Xj is empty, then P = ∅ and thus P is compact. Assume now that Xj 6= ∅.
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We prove compactness of P by considering an ultrafilter U and showing that it
converges.

For each j ∈ J the projection prj(U) is an ultrafilter. Let Lj ⊆ Xj be the set
of points to which it converges. Since Xj is compact, Lj 6= ∅. By the Axiom of

Choice L
def=

∏
j∈J Lj 6= ∅. Let (xj)j∈J ∈ L.

Now let U be a neighborhood of x
def= (xj)j∈J . We may assume that U is a

basic neighborhood of the form U =
∏

j∈J Uj , where Uj = Xj for all j ∈ J \F for
some finite subset of J . Then we find a member M ∈ U such that prj(M) ⊆ Uj

for j ∈ F and then for all j ∈ J . Accordingly M ⊆
⋂

j∈F pr−1
j (Uj) =

∏
j∈J Uj . ut

Notice that we have used the Axiom of Choice by applying the Ultrafilter
Theorem and by selecting (xj)j∈J .

Exercise E2.5. Prove:

In a Hausdorff space, a filter F converges to at most one point..

Thus in a Hausdorff space a converging filter converges to exactly one point x,
called the limit point and written x = limF .

Corollary 2.15. The product of a family of compact Hausdorff spaces is a compact
Hausdorff space. ut

The Ultrafilter Theorem suffices for a proof of this theorem.

Example. (Cubes) Let I denote the unit interval [0, 1] and D the complex unit
disc. For each set J the products IJ and DJ are compact spaces. ut

We have made good use of the concept of a filter and its convergence. In
passing we mention the concept of a Cauchy-filter on a metric space. Let us first
recall that in a metric space (X, d) a subset B ⊆ X is bounded if there is a number
C such that d(b, c) ≤ C for all b, c ∈ B. For a bounded subset B, the number
sup{d(b, c) : b, c ∈ B} exists and is called the diameter of B. When we speak of
the diameter of a subset, we imply that we assume that the subset is bounded.

Definition 2.16. A filter F on a metric space (X, d) is called a Cauchy-filter if for
each ε > 0 it contains a set of diameter less than ε. A filter basis is a Cauchy-filter
basis if it contains a set of diameter less than ε. ut

Clearly, a filter basis is a Cauchy-filter basis if and only if the filter of all super
sets of its members is a Cauchy-filter.

Exercise E2.6. Show that a sequence (xn)n∈N is a a Cauchy-sequence iff the
filter basis of all {xn, xn+1, . . .}, n ∈ N is a Cauchy filter basis.
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Lemma 2.17. (i) Let F be a Cauchy-filter in metric space. Then there is a
countable Cauchy-filter basis C, C1 ⊇ C2 ⊇ · · · such that the diameter of Cn is less
than 1

n and C ⊆ F .

(ii) If F ⊆ G are two filters in a metric space such that F is a Cauchy-filter
and G converges to x then F converges to x. ut

If C converges, and thus the filter 〈C〉 of all supersets of the Cn converges, that
is, contains some neighborhood filter U(x), then the given filter F converges. If now
we select in each set Cn an element cn, then (cn)n∈N is a Cauchy-sequence. Then{
{cn, cn+1, . . .} : n ∈ N} is a Cauchy-filter basis B which converges iff (cn)n∈N

converges. Moreover, 〈C〉 ⊆ 〈B〉.

Proposition 2.18. A metric space (X, d) is complete if and only if every Cauchy-
filter converges. ut

For a given ε, a precompact metric space is covered by finite number of open
ε-balls. Thus any ultrafilter contains one of them. Hence every ultrafilter on
a precompact spaces is a Cauchy-filter. Thus on a complete precompact metric
space every ulterfilter converges. This is an alternative proof that a metric space
is compact iff it is complete and precompact. This approach has the potential of
being generalized beyond the metric situation.

Exercise E2.7. Fill in the details of this argument.

Compact spaces and continuous functions

Proposition 2.19. Let f :X → Y be a continuous surjective function of topolog-
ical spaces and assume that X is compact. Then Y is compact. Let

X
f−−−−−−−−−→ Y

qf

y xidY

X/Rf −−−−−−−−−→
f ′

Y

be the canonial decomposition of f . If Y is a Hausdorff space, then f ′ is a home-
omorphism. ut

In short: Continuous images of compact spaces are compact, and as easy con-
sequence we know that a bijective continuous map between Hausdorff spaces is a
homeomorphism.

Corollary 2.20. If O ⊆ O′ are Hausdorff topologies on a set and O′ is compact,
then O = O′. ut

Among Hausdorff topologies, compact ones are minimal.
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A totally ordered set is defined to be order complete iff every subset has a least
upper bound.

If A ⊆ X and (X,≤) is order complete, let L be the set of lower bounds of A.
Then supL = inf A.

If A ⊆ X is closed w.r.t. the order topology, then supA = maxA and inf A =
minA.

Exercise E2.8. Prove these claims.

Lemma 2.21. A totally ordered space (X,≤) is compact w.r.t. the order topology
if and only if X is order complete.

Proof . If X = ∅, then X is complete by default. Assume that X is compact and
A ⊆ X. Show that maxA = sup A

Now assume that X is order complete. B be a filter basis of closed subsets. Let
M = {minB : B ∈ B}. Show that supM ∈

⋂
B. ut

Exercise E2.9. Fill in the details of the proof of Lemma 2.21.

Proposition 2.22. (Theorem of the Maximum) Let f :X → Y be a continuous
function from a compact space into a totally ordered space. Then f attains its
maximum and it s minimum, i.e. there are elements x, y ∈ X such that f(x) =
max f(X) and f(y) = min f(X). ut

Uniform Continuity, Uniform Convergence, Equicontinuity

Compactness has substantial applications in Analysis; we sample some of them

Definition 2.23. A function f :X → Y between metric spaces is called uniformly
continuous, if

(1) (∀ε > 0)(∃δ > 0)(∀x ∈ X) f(Uδ(x)) ⊆ Uε

(
f(x)

)
. ut

Recall that f if continuous if

(2) (∀ε > 0)(∀x ∈ X)(∃δ > 0) f(Uδ(x)) ⊆ Uε

(
f(x)

)
.

Proposition 2.24. A continuous function f :X → Y from a compact metric space
into a metric space is uniformly continuous. ut

[For each ε > 0 and each x ∈ X and pick d > 0 so that f
(
Ud(x)

)
⊆ Uε/2

(
f(x)

)
.

Find a finite subcover C of {Ud(x) : x ∈ X} and let δ be a Lebesgue number of C.]
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Definition 2.25. Let X be a set and Y a metric space. Define B(X,Y) to be the
set of all bounded functions, i.e. functions f :X → Y such that {d

(
f(x), f(x′)

)
:

x, x′ ∈ X} is a bounded subset of R.
If X and Y are topological spaces, then C(X,Y) denotes the set of all continuous

functions from X to Y . ut

Proposition 2.25. (i) Let X be a set and Y a metric space. Then B(X, Y ) is a
metric space with respect to the metric d(f, g) = sup{d

(
f(x), g(x)

)
: x ∈ X}

(ii) If X is a compact topological space and Y is a metric space, then C(X, Y ) ⊆
B(X, Y ), and C(X, Y ) is a closed subset. ut

We say that B(X, Y ) carries the (metric) topology Ou of uniform convergence.
The topology induced on B(X, Y ) by the product topology of Y X is called the
topology of pointwise convergence, denoted Op. Clearly Op ⊆ Ou.

Let F ⊆ C(X, Y ) be a set of functions. Can we give conditions such that
F|Op = F|Ou?

Definition 2.26. A set F of functions X → Y between topological spaces is said
to be equicontinuous if

(3) (∀x ∈ X)
(
∀V ∈ U

(
f(x)

))(
∃Ux,V ∈ U(x)

)
(∀f ∈ F) f(Ux,V ) ⊆ V. ut

The statement that all functions in F are continuous reads as follows:

(4) (∀f ∈ F)(∀x ∈ X)
(
∀V ∈ U

(
f(x)

))(
∃Uf,x,V ∈ U(x)

)
f(Uf,x,V ) ⊆ V.

Proposition 2.27. Let X be a compact space, Y a metric space and F an equicon-
tinuous set of functions X → Y . Then F|Op = F|Ou, that is the topologies of
pointwise and of uniform convergence agree on F.

Proof . Let f ∈ F, and ε > 0. We must find a δ > 0 and E ⊆ X finite such that

(5) (∀g ∈ F)
[
(∀e ∈ E) d

(
f(e), g(e)

)
< δ

]
⇒ (∀x ∈ X) d

(
f(x), g(x)

)
< ε.

For each x ∈ X we find an open neighborhood Vx of x in X such that (∀f ∈
F) f(Vx) ⊆ Uε/3

(
f(x)

)
Since X is compact, there is a finite set E ⊆ X such that

X =
⋃

e∈E Ve. Set δ = ε/3 and assume that g ∈ F satisfies d
(
f(e), g(e)

)
< δ for e ∈

E. Now let x ∈ X arbitrary. Then there is an e ∈ E such that x ∈ Ve. Accordingly,
d
(
f(x), g(x)

)
≤ d

(
f(x), f(e)

)
+ d

(
f(e), g(e)

)
+ d

(
g(e), g(x)

)
< ε

3 + ε
3 + ε

3 = ε ut

Now let us say that a set F of functions X → Y from a set to a metric space
is pointwise relatively compact if the set F(x) def= {f(x) : f ∈ F} has a compact
closure in Y for each x ∈ X. As a corollary of the previous proposition we get
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Corollary 2.28. Let X be a compact space, Y a metric space and F an equicon-
tinuous pointwise relatively compact set of functions X → Y . Then F|Ou, that is,
F with the (metric) topology of uniform convergence is precompact.

Proof . For x ∈ X the set Kx = {f(x) : f ∈ F} is compact. Then the space P
def=∏

x∈X Kx is compact by the Tychonoff Product Theorem. Now F|Ou = F|Op is
a subspace of the compact space P and is therefore a precompact metric space.ut

Lemma 2.29. If F is an equicontinuous subset of B(X, Y ) for some topological
space X and a metric space Y , then the closure F of F in Y X is equicontinuous.
As a consequence. the closures of F in the topologies of uniform convergence and
that of pointwise convergensce agree.

Proof . Let ε > 0 and x ∈ X. Find a U ∈ U(c) such that f(U) ∈ Uε/3

(
f(x)

)
for all

f . Now let g be in the closure of F with respect to the pointwise topology and let
u ∈ U . Then there is an f ∈ F such that d

(
f(u), g(u)

)
< ε/3 and d

(
f(x), g(x)

)
<

ε/3. Now d
(
g(u), g(x)

)
≤ d

(
g(u), f(u)

)
+ d

(
f(u), f(x)

)
+ d

(
f(x), g(x)

)
< 3· ε3 = ε.

This proves the first claim. Now let G be the closure of F with respect to the
uniform topology in C(X, Y ). Then G ⊆ F . By Proposition 2.27, F|Ou = F|Op.
Therefore, G = F . ut

Lemma 2.30. If F is a compact subset of
(
C(X, Y ),Ou|C(X, Y )

)
, then F is

equicontinuous.

Proof . Exercise. ut

Exercise E2.10. Prove Lemma 2.30. [Hint. Use the fact that (f, x) 7→ f(x) :
C(X, Y )×X → Y is continuous. Let ε > 0 and x ∈ X be given. For each g ∈ F
find a neighborhood Wg of g in F and a neighborhood Ug of x in X such that
Wg(Ug) ⊆ Uε/2

(
g(x)

)
. Use compactness of F to find a finite set E ⊆ F such that

F =
⋃

g∈EW}. Set U =
⋂

g∈E . Then U is a neighborhood of x in X. Show tht for
eavery f ∈ F and every u ∈ U we get d

(
f(u), f(x)

)
< ε.]

These pieces of information, taken together lead to the following theorem which
plays an important role in analysis.

Theorem 2.31. (Ascoli Theorem) Let X be a compact space and Y a metric
space. Let F be a set of bounded functions X → Y . We endow F with the metric
topology of uniform convergence. Then the following statements are equivalent:

(i) F is compact.
(ii) F is equicontinuous, pointwise relatively compact, and closed. ut

Under the circumstances of an equicontinuous set closedness of F means closed-
ness in either B(X, Y ) with respect to uniform convergence or in Y X with respect
to the product topology.
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The Ascoli Theorem has variants which generalize what is said in 2.30, but
they are not different in principle. The Ascoli Theorem is the only way to verify
that a space of continuous functions is compact.

Example. Let (E, ‖·‖) be a Banach space. Let I be a compact real interval,
K ≥ 0 a nonnegative number, and let FK ⊆ C(I, E) be the set of of all differen-
tiable functions such that ‖f ′(t)‖ ≤ K for all f ∈ F . Then FK is equicontinuous.

Let a = min I, b = min I, and let x0 ∈ E. Define FK,x0 to be the set of all
f ∈ FK satisfying f(a) = x0. Then f(I) ⊆ BK(b−a)

(
f(t)

)
⊆ B2K(b−a)(x0).

If dim E < ∞ then B2K(b−a)(x0) is compact, and thus by the Ascoli Theorem,
FK,x0 is compact.

This permits very quickly a proof of a basic theorem in the theory of ordinary
differential equations stating the eqistence of local solutions of the initial value
problem u̇(t) = f

(
t, u(t)

)
, f(t0) = x0.
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Chapter 3
Connectivity

We proceed to further special properties of topological spaces. From basic
analysis we know that, next to compactness, connectivity is another important
property of topological spaces.

A subset S of a topological space X is called open-closed or clopen if it is at the
same time open and closed. The empty set and the whole space are clopen. We
shall say that S is a proper clopen subset if is is a clopen subset which is neither ∅
nor X.

[The adjective “clopen” is artificial. It is convenient, but stylistically it is far
from being a brilliant creation.]

Definition 3.1. A topological space (X, O) is said to be disconnected, if it has a
proper clopen subset. Otherwise it is called connected. ut

Exercise E3.1. Let (X,≤) be a totally ordered set and consider the order topol-
ogy on it. Prove:

If X has a nonempty subset Y which has an upper bound but does not have a least
upper bound, then X is disconnected.

If X contains two elements a < b such that X = ↓a ∪ ↑b, then X is disconnected.

If S is a proper clopen subset of X then ↓S is clopen.
A subset {a, b} ⊆ X such that a < b and X = ↓a ∪ ↑b is called a gap.

Proposition 3.2. A totally ordered set is connected in the order topology, if and
only if every nonempty subset with an upper bound has a least upper bound and no
gaps exist. ut

Corollary 3.3. A set of real numbers is connected in the induced topology if and
only if it is an interval. ut

There is a small subtlety here. The subset X
def= [0, 1]∪ ]3, 4] is disconnected in

the induced topology but is connected in its own order topology.
Recall our convention I = [0, 1].

Definition 3.4. A topological space is called arcwise connected or path-connected
if for all (x, y) ∈ X×X there is a γ ∈ C(I, X) such that γ(0) = x and γ(1) = y. ut

Proposition 3.5. An arcwise connected space is connected. ut
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Exercise E3.2. Set R+ = {r ∈ R : 0 ≤ r}. In R × C consider the following
subspace

S
def= {(x, z) :

(
(∃r ∈ R+) x = e−r, z = e2πir

)
or x = 0, |z| = 1}.

Draw a sketch of this set. Prove that it is connected but not arcwise connected.
Prove that R×C has a continuous commutative and associative multiplication

given by
(r, c)(r′, c′) = (rr′, cc′), (r, c), (r′, c′) ∈ R× C.

A topological space with a continuous associative multiplication is called a topologi-
cal semigroup. If it has an identity, one also calls it a topological monoid.

Show that S is a compact subset satisfying SS ⊆ S. Thus S is a compact
topological monoid.

Does it contain a subset which is a topological monoid and a group?

Theorem 3.6. Let f :X → Y be a continuous surjective function between topo-
logical spaces. If X is connected, then Y is connected. If X is arcwise connected,
then Y is arcwise connected. ut

One may express this result in the form: A continuous image of a connected
space is connected; a continuus image of an arcwise connected space is arcwise
connected.

Corollary 3.7. A continuous image of a compact connected space is compact and
connected. ut

Corollary 3.8. A continuous image of a real interval is arcwise connected. A
continuous image of a compact interval is compact and connected.

Corollary 3.9. (The Intermediate Value Theorem of Real Calculus) Let f : [a, b] →
R be a continuous function and f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a). Then there
is an x ∈ [a, b] such that y = f(x). ut

The Intermediate Value Theorem gives us a solution x of the equation y = f(x)
for given y.

Corollary 3.10. A continuous self-map of [0, 1] has a fixed point. ut

Lemma 3.11. If Y is a connected subspace of a topological space X, then the
closure Y is connected as well. ut

Proposition 3.12. Let X be a topological space. The relation R given by

R = {(x, y) ∈ X ×X : (∃Y ) Y is a connected subspace of X and x, y ∈ Y }

is an equivalence relation with closed cosets. ut
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Definition 3.13. The equivalence relation R of Lemma 3.12 is called the connect-
ivity relation, and its equivalence classes are called the connected components or
components of the space X.

Exercise E3.3. Prove the following analog of Proposition 3.13:
Let X be a topological space. Recall that a curve from p to q in a topological space
X is a continuous function f : I → X, I = [0, 1] such that f(0) = p and f(1) = q.
The relation R on X given by

R = {(x, y) ∈ X ×X : there is a curve from x to y}

is an equivalence relation.

Give an example of a space such that the equivalence classes of this relation
fail to be closed.

Each connected component of a space is the intersection of its open neighbor-
hoods: Indeed, if y /∈ R(x) then R(y)∩R(x) = ∅, and thus R(x) is the intersection
of the open sets X \R(y), y ∈ X \R(x).

Definition 3.14. A topological space in which all components are singletons is
called totally disconnected.

Exercise E3.4. (i) Show that every discrete space is totally disconnected.
(ii) Show that the space of rational numbers, the space of irrational numbers,

the Cantor set are all totally disconnected but nondiscrete spaces.

Theorem 3.15. (i) If A is a connected subspace of a space X and {Bj : j ∈ J}
is a family of connected subspaces of a topological space X such that A ∩ Bj 6= ∅
for all j ∈ J , then A ∪

⋃
j∈J Bj is connected.

(ii) Let {Xj : j ∈ J} be a family of topological spaces and let X
def=

∏
j∈J Xj

be its product. If all Xj are connected, respectively, arcwise connected, then X is
connected, respectively, arcwise connected.

(iii) For any family of topological spaces {Xj : j ∈ J}, if R is the connectivity

relation of X
def=

∏
j∈J Xj and Rj the connectivity relation of Xj for j ∈ J , then

R = {
(
(xj)j∈J , (yj)j∈J

)
: (∀j ∈ J) (xj , yj) ∈ Rj}.

Equivalently, R
(
(xj)j∈J

)
=

∏
j∈J R(xj) for all j ∈ J .

(iv) If all Xj are totally disconnected, then X is totally disconnected. ut

The proof of (ii) is easy for arc connectivity, but is less obvious for connectivity.
(See Exercise Sheet Nr. 10.)

Lemma 3.16. If X is a space such that for each pair x, y ∈ X of different points
there is a clopen subset U with x ∈ U and y /∈ U , then X is totally disconnected.ut



38 3. Connectivity

Proposition 3.17. Let R be the connectivity relation on X. Then X/R is totally
disconnected T1-space.

Proof . If U and V are open and U ∪ V = X and U ∩ V = ∅, then any R-
class is entirely contained in either U or V . Hence U and V are R-saturated,
i.e. are unions of R-equivalence classes. Thus by the definition of the quotient
topology, the sets U/R and V/R are open; morover, X/R = (U/R) ∪ (V/R)
and (U/R) ∩ (V/R) = ∅. Suppose that C is a component of X/R. Then we
consider X ′ =

⋃
C (i.e., X ′ = q−1

R (C) where qR:X → X/R is the quotient map.

Then R′ def= R ∩ (X ′ × X ′) is the connectivity relation of X ′ and C = X ′/R′.
By replacing X by X ′ and renaming, if necessary, let us assume that X/R is
connected. We claim that X/R is singleton, i.e. that X is connected. So let
X = U ∪V , U ∩V = ∅ for open subsets U and V of X. By what we have seen this
implies X/R = (U/R) ∪ (V/R) and (U/R) ∩ (V/R) = ∅. Since X/R is connected,
one of U/R or V/R is empty. Hence one of U and V is empty, showing that X is
connected.

This shows that X/R is totally disconnected. Since all connected components
R(x) are closed by 3.12, the singletons in X/R are closed by the definition of the
quotient topology. Hence X/R satisfies the Frechet separation axiom T1. ut

Let X = {0} ∪ { 1
n : n ∈ N} with the topology induced from that of of R and

let Y = {0, 1} with the discrete topology. Let ρ the equivalence relation on X ×Y

whose cosets are 1
n × Y , n ∈ N and {(0, 0)} and {(0, 1)}. Then T

def= (X × Y )/ρ is
a totally disconnected compact T1-space which is not Hausdorff. Each equivalence
class of ρ is closed, but ρ ⊆ T × T is not closed.

Proposition 3.18. Any continuous function f :X → Y into a totally disconnected
space factors through qR:X → X/R where R is the connectivity relation on X.
That is, there is a continuous function ϕ:X/R → Y such that f = ϕ ◦ qR.

Proof . If x ∈ X then the image f
(
R(x)

)
of the component R(x) of x is connected

by 3.6. On the other hand, as a subspace of the totally disconnected space Y
it is totally disconnected. Hence it is singleton. Set ϕ

(
R(x)

)
= f(x). If V is

open in Y , then q−1
R

(
ϕ−1(V )

)
= f−1(U) is an open R-saturated set. But then

ϕ−1(U) = qR

(
f−1(U)

)
is open by the definition of the quotient topology. Thus ϕ

is continuous. ut

Corollary 3.19. For a topological space X the following conditions are equivalent:
(i) X is a connected.
(ii) All continuous functions f :X → Y into a totally disconnected space are

constant.

Proof . Let R be the connectivity relation on X and qR:X → X/R the quotient
map.
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(i)⇒(ii): Every continuous function f :X → Y into a totally disconnected space
Y factors through qR:X → X/R by 3.18. But since X is connected by (i), X/R
is singleton, and thus f is constant.

(ii)⇒(i): q:X → X/R is a continuous surjective function into a totally discon-
nected space by 3.17; since such a function is constant by (ii), X/R is singleton.
i.e. X is connected. ut

We saw that a connected component C of a space X does have clopen neigh-
borhoods. It is not true in general that C is the intersection of all of its clopen
neighborhoods.

Proposition 3.20. For an arbitrary topological space X with connectivity relation
R, the following conditions are equivalent:

(i) Every component is the intersection of its clopen neighborhoods.
(ii) X/R is a totally disconnected Hausdorff space in which every singleton is

the intersection of its clopen neighborhoods. ut

The best situation prevails for compact spaces. We discuss this now; but we
need a bit of preparation.

Lemma 3.21. (A. D. Wallace’s Lemma) Let A be a compact subspace of X and
B a compact subspace of Y , and assume that there is an open subset U of X × Y
containing A × B. Then there are open neighborhoods V of A in X and W of B
in Y such that V ×W ⊆ U . ut

[See Exercise Sheet no 9, Exercise 1 with hints.]

Lemma 3.22. (Normality Lemma) Let A and B be two disjoint compact subsets
of a Hausdorff space X. Then there are two disjoint open neighborhoods of A and
B, respectively.

[See Exercise Sheet no 9, Exercise 2 with hints.]
In fact the Normality Lemma shows that A and B have disjoint closed neigh-

borhoods: Let U and V be open neighborhoods of A and B, respectively. Then
U ∩ V = ∅ since X \ V is a closed set containing U . Now apply the Normality
Lemma to U and B and find disjoint open sets P and Q such that U ⊆ P and
B ⊆ Q. Now Q∩U = ∅. Hence U and Q are two disjoint closed neighborhoods of
A and B, respectively.

Lemma 3.23. (Filter Basis Lemma). Let B be a filter basis of closed subsets
in a space and assume that B has a a compact member B. If U is an open set
containing

⋂
B, then there is a C ∈ B such that C ⊆ U .

In particular, a filter basis of closed sets in a compact Hausdorff space converges
to x iff

⋂
B = {x}.
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[Hint. Suppose not, then {C \ U : C ∈ B} is a filter basis of closed sets, whose
members are eventually contained in the compact space B, hence there is an
element b ∈

⋂
C∈B C \ U . Then b ∈ (

⋂
B) \ U = ∅, a contradiction.]

The Filter Basis Lemma allows us to formulate 3.20 for compact Hausdorff
spaces in a sharper form

Proposition 3.20′. For a compact Hausdorff space X with connectivity relation
R the following conditions are equivalent:

(i) Every component has a basis of clopen neighborhoods.
(ii) X/R is a totally disconnected Hausdorff space in which every singleton is

the intersection of its clopen neighborhoods. ut

If U is a clopen subset of a space X, then U and X \ U are the classes of an
equivalence relation with open cosets. The intersection of any family of equivalence
classes is an equivalence class; a finite collection of open closed sets thus gives rise to
a finite decomposition of the space into finitely many clospen sets. An equivalence
relation with clopen classes on a compact space has finitely many classes.

Definition 3.24. An equivalence relation R on a topological space is open if R is
open as a subset of X ×X.

Remark 3.25. The connectivity relation is contained in all open equivalence
relations. ut

Proposition 3.26. Let R be an equivalence relation on a space X. Then the
following conditions are equivalent:

(i) All equivalence classes are open.
(ii) R is open in X ×X.
(iii) The quotient space X/R is discrete.
(iv) All components are clopen.

Proof . (i)⇔(ii): For every equivalence relation R we have R =
⋃

x∈X R(x)×R(x).
If each R(x) is open in X, then each R(x)×R(x) is open in X×X and vice versa.

(i)⇒(iii): If R(x) is open in X, then by the definition of the quotient topology,
the singleton set {R(x)} is open in X/R.

(iii)⇒(iv): In a discrete space every subset is clopen, so {R(x)} is clopen in
X/R and thus R(x) is clopen by the continuity of the quotient map.

(iv)⇒(i) is trivial. ut

Notice that for a compact space X, the component space X/R is a compact
totally disconnected Hausdorff space regardless of any separation property of X.

Lemma 3.27. On a topological space X, the following conditions are equivalent:
(i) The connectivity relation is the intersection of all open equivalence relation.
(ii) Every component is the intersection of its clopen neighborhoods.
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Proof . Exercise. ut

[Hint for (ii)⇒(i): If U is a clopen subset of X, then U and X \ U are the
two classes of an open equivalence relation U . If (x, y) /∈ R, let U be clopen
neighborhood of R(a) not containing b (by (ii)). Then (a, b) /∈ RU .]

If A,B ⊆ X ×X are binary relations on X, then

A ◦B
def= {(x, z) : (∃y ∈ X) (x, y) ∈ A and (y, z) ∈ B}.

Note that A ◦A ⊆ A means that A is transitive.

Exercise E3.5. Show that
on a compact Hausdorff space the relation product A ◦ B of two closed binary
relations is closed.

A space X is a Hausdorff space iff the diagonal is closed. Then by the Normality
Lemma, ∆ has a basis of closed neighborhoods.

Exercise E3.6. Show that
on a compact Hausdorff space every neighborhood U of the diagonal ∆ of X ×X
contains a neighborhood W of ∆ such that W ◦W ⊆ U .
[Hint. Suppose that U is an open member of U(∆), the set of neighborhoods
of the diagonal ∆ in X × X such that W ◦ W 6⊆ U for all W ∈ U(∆). Then
{(W ◦ W ) \ U : W = W ∈ U(∆)} is a filter basis of closed sets on the compact
space (X ×X) \ U . Let (x, y) be in the intersection of this filterbasis. Then, on
the one hand, (x, y) ∈ ∆, i.e. x = y and one the other (x, y) /∈ U .]

Theorem 3.28. Let X by a compact Hausdorff space. Then every component has
a neighborhood basis of clopen subsets.

Proof . Let X by a compact Hausdorff space. Then every component has a
neighborhood basis of clopen subsets.

Proof . Let U be a neighborhood of the diagonal ∆ in X × X. By replacing U
by {(u, v) : (u, v), (v, u) ∈ U} if necessary, we may assume that U is symmetric.
We define RU to be the set of all pairs (x, y) such that there is a finite sequence
x0 = x, x1, . . . , xn = y such that (xj−1, xj) ∈ U ; we shall call such a sequence a U -
chain. Then RU is reflexive, symmetric, and transitive. Hence RU is an equivalence
relation. Write U(x) = {u ∈ X : (x, u) ∈ U}. Then U(x) is a neighborhood of x.
Since U(x′) ⊆ RU (x) for each x′ ∈ RU (x), the relation RU is open and therefore
closed as the complement of all other equivalence classes. Let S be the intersection
of the clopen equivalence relations RU as U ranges through the filterbasis Us(∆) of
symmetric neighborhoods of ∆. Then S is an equivalence relation and S is closed
in X ×X. Then every pair of elements in C is RU -equivalent for all U ∈ Us(∆).
Let R denote the connectivity relation on X. Set C = S(x). The component R(x)
of x is contained in C. We aim to show that C is connected. Then C = R(x) for
all x and thus R = S. So R(x) =

⋂
U∈Us(∆) RU (x), and then, by the Filter Basis
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Lemma, the sets RU (x) form a basis of the neighborhoods of C = R(x). This will
complete the proof.

Now suppose that C is not connected. Then C = C1∪̇C2 with the disjoint
nonempty closed subsets of C. We claim that there is an open symmetric neigh-
borhood U ∈ U(∆) of the diagonal ∆ in X ×X such that the set U(C1) ∩ C2 is
empty. [It suffices to show that every open neighborhood W of a compact subset
K of X contains one of the form U(K). Proof by contradiction: If not, then for all
open neighborhoods U of the diagonal in X×X, U(K)∩(X \W ) is not empty and
the collection of sets U(K)∩ (X \W ) is a filterbasis on the compact space X \W .
Let z be in the intersection of the closures of the sets in this filterbasis. Since X
is Hausdorff, the diagonal is closed in X ×X and by the Normality Lemma is the
intersection of its closed neighborhoods. Thus z in the intersection of all U(K) for
all closed U and this is K. Thus z ∈ K \W = ∅, a contradiction!]

Recall that for two subsets A,B ⊆ X×X we set A◦B = {x, z) ∈ X×X : (∃y ∈
X) (x, y) ∈ A and (y, z) ∈ B}. Now assume that W is an open neighborhood of
the diagonal such that W ◦W ◦W ⊆ U . and set D = X \

(
W (C1)∪W (C2)

)
. Now

let V ∈ U(∆), V ⊆ W . By replacing V by {(u, v) : (u, v), (v, u) ∈ V } if necessary,
we may assume that V is symmetric.

If x ∈ C1 and c2 ∈ C2, then (x, c2) ∈ RV since C ∈ RV (x). Now any V -chain
x = x0, x1, . . . , xn = c2 has at least one element in D. Thus RV (x) ∩ D 6= ∅.
Thus the RV (x) ∩ D form a filterbasis on the compact space D. Let y be in its
intersection. Then y ∈

⋂
V ∈Us(∆) RV (x) = C and y ∈ D, whence y ∈ C ∩D = ∅:

a contradiction. This shows that C is connected as asserted and completes the
proof. ut

The preceding theorem shows that
the connectivity relation R is the intersection of open equivalence relations.

In Theorem 2.28, compactness is sufficient, but it is not necessary.

Exercise E3.7. Show that in the space Q in its order topology every point has a
basis of clopen neighborhoods. ut
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Chapter 4
Topological groups

Definition 4.1. A topological space X is called homogeneous if for (x, y) ∈ X×X
there is a homeomorphism f :X → X such that f(x) = y.

Recall that a group G is said to act on a set X if there is a function (g, x) 7→
g·x:G × X such that 1·x = x for all x and g·(h·x) = (gh)·x for all g, h ∈ G and
x ∈ X. A group always acts upon itself by each of the following operations:
(i) g·x = gx (left multiplication),
(ii) g·x = xg−1, (right multiplication),
(iii) g·x = gxg−1, (conjugation).

We say that G acts transitively, if the action has only one orbit, i.e. X = G·x
for one and then any x ∈ X. The action of a group on itself by multiplication is
transitive.

Now we can say that X is homogeneous if the group of all homeomorphisms of
X operates transitively on X.

Proposition 4.2. Let G be a group acting on a topological space X such that the
function x 7→ g·x:X → X is continuous for each g ∈ G. If G acts transitively,
then X is homogeneous.

Lemma 4.3. Assume that every point x of a space X has a closed neighborhood
U which contains an open neighborhood V of x such that for each v ∈ V there
is a homeomorphism f of U such that f(x) = v and f leaves the boundary of U
pointwise fixed.

Then each orbit of the homeomorphism group G of X is open. In particular, if
X is connected, then X is homogeneous.

Proof . Assume x ∈ G·y. Let U and V be as in the statement of the Lemma, and
consider v ∈ V . The function ϕ:X → X defined by

ϕ(z) =
{

f(z) if z ∈ U ,
z if z ∈ X \ U .

Then ϕ is a homeomorphism such that ϕ(x) = v. Hence if γ ∈ G is such that
γ(y) = x, then (ϕ ◦ γ)(y) = ϕ

(
γ(y)

)
= ϕ(x) = v. Hence V ∈ G·y. Thus G·y is

open. ut

Lemma 4.4. For 0 ≤ t < 1 let τ(t) = (1 − t2)−1/2. Let U denote the open unit
ball {x : ‖x‖ < 1}, for the euclidean norm given by ‖x‖2 =

∑n
m=1 x2

m on Rn. For
a vector v ∈ U , define ϕ(u) = τ(‖u‖)·u and f :U → U by f(u) = ϕ−1(ϕ(u)+ϕ(v)).
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Then f is a homeomorphism of U such that f(0) = v and that f is the restriction
of a homeomorphism F : Rn → Rn, which fixes all vectors w with ‖w‖ ≥ 1. ut

Definition 4.5. A topological manifold is a topological space each point of which
has an open neighborhood which is homeomorphic to Rn for some n. ut

Exercise E4.2. Show that
(i) every open subset of Rn is a topological manifold.
(ii) Every sphere Sn = {(x1, . . . , xn+1) ∈ Rn+1 : x2

1 + · · ·+ x2
n+1 = 1} is a compact

topological manifold.
(iii) Every finite product of topological manifolds is a topological manifold. ut

In particular, a torus S1×S1 is a topological manifold. Note that every discrete
space is a topological manifold.

Proposition 4.6. A connected topological manifold is homogeneous. ut

Definition 4.7. A topological group G is a group endowed with a topology such
that multiplication (x, y) 7→ xy:G×G → G and inversion are continuous. ut

Since inversion x 7→ x−1 is an involution (i.e. satisfies (x−1)−1 = x), it is clearly
a homeomorphism of G onto itself.

Exercise E4.3. Show that a group G with a topology is a topological group if and
only if the following function is continuous. (x, y) 7→ xy−1:G×G → G. ut

Proposition 4.8. The space underlying a topological group is homogeneous. ut

Exercise E4.4. Show that the compact unit interval I = [0, 1] cannot be the
underlying space of a topological group.

Examples 4.9. (i) Every group is a topological group when equipped with the
discrete topology.

(ii) Every group is a topological group when equipped with the indiscrete topol-
ogy.

(iii) R is a topological group with respect to addition. Also, R \ {0} is a
topological group with respect to multiplication.

(iv) More generally, the additive group of Rn is a commutative topological
group.

(v) Also more generally: Let K denote one of the fields R, C or the division
ring H of quaternions with the absolute value | · | in each case. Let Sn, n = 0, 1, 3
denote the set {x ∈ K : |x| = 1} and R< = {x ∈ R : 0 < x}. Then R< and K \ {0}
are topological groups under multiplication. The function

x 7→
(
|x|, x

|x|

)
: K \ {0} → R< × Sn
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is an isomorphism of groups and a homeomorphism of topological spaces.
(vi) The groups GL(n, K), K ∈ {R, C} of invertible real or complex matrices

are topological groups. ut

Proposition 4.10. (i) If H is a subgroup of a topological group G, then H is a
topological group in the induced topology.

(ii) If {Gj : j ∈ J} is a family of topological groups, then G
def=

∏
j∈J Gj is a

topological group.
(iii) If N is a normal subgroup of a topological group G, then the quotient group

G/N is a topological group with respect to the quotient topology. ut

Proposition 4.11. The closure of a subgroup is a subgroup, the closure of a
normal subgroup is a normal subgroup. ut

Morphisms of topological groups

Definition 4.12. A morphism of topological groups f :G → H is a continuous
homomorphism between topological groups.

Proposition 4.13. (a) A homomorphism of groups f :G → H between topological
groups is a morphism if and only if it is continuous at 1.

(b) The following conditions are equivalent:
(i) f is open.
(ii) For each U ∈ U(1) the image f(U) has a nonempty interior.
(iii) There is a basis of identity neighborhood U such that f(U) has a nonempty

interior.
(iv) there is a basis of identity neighborhoods U of G such that f(U) is an

identity neighborhood of H.
(v) For all U ∈ UG(1) we have f(U) ∈ UH(1).

(c) For any normal subgroup N of G the quotient morphism q:G → G/N is
continuous and open. ut

[Hint for (ii)⇒(iii): Let U ∈ UG(1). We may assume that U is open. Find
V ∈ UG(1) open such that V V −1 ⊆ U . Let V ′ ∈ UG(1) be such that int f(V ′) 6= ∅.
Then W

def= int f(V ) 6= ∅. Let v ∈ V be such that f(v) ∈ W . Then 1 = ww−1 ∈
Ww−1 that is, Ww−1 is an open neighborhood of 1 in H. Now V ′′ def= V ∩f−1(W )
is an open neighborhood of v such that f(V ′′) = W and hence U ′ def= V ′′v−1 is an
open neighborhood of 1 in G contained in V V −1 ⊆ U such that f(U ′) = Ww−1 ∈
UH(1).]
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Proposition 4.14. (Canonical decomposition) A morphism of topological groups
f :G → H with kernel N = ker f decomposes canonically in the form

G
f−−−−−−−−−→ H

q

y xj

G/N −−−−−−−−−→
f ′

f(G),

where q:G → N is the quotient morphism given by q(g) = gN , j: f(G) → H is the
inclusion morphism, and f ′:G/N → f(G) is the bijective morphism of toplogical
groups given by f ′(gN) = f(g).

The morphism is open if and only if f(G) is open in H and f ′ is an isomorphism
of topological groups, i.e. is continuous and open. ut

As we shall see shortly, the filter U = U(1) of all identity neighborhoods is a
very useful tool in topological group theory. We shall begin to use it now.

Lemma 4.15. (The Closure Lemma) Let A be a subset of a topological group.
Then A =

⋂
U∈U AU .

Proof. If U ∈ U and x ∈ A, then xU−1 is a neighborhood of x, and thus there
is an a ∈ A ∩ xU−1. Write a = xu−1 for some u ∈ U . Accordingly, x = au ∈ AU .

Conversely, assume that x ∈
⋂

U∈U AU , and let V by a neighborhood of x. We

claim that A ∩ V 6= ∅, thus showing x ∈ A. Now U
def= V −1x ∈ U is an identity

neighborhood, and thus x ∈ AU , say x = au with a ∈ A and u ∈ U . Then
a = xu−1 ∈ xU−1 = xx−1V = V and so a ∈ A ∩ V as asserted. ut

Corollary 4.16. {1} =
⋂

U, and this is a closed normal subgroup contained in
every open set meeting {1}.

Proof . The first part follows from the Closure Lemma and the fact that closures
of normal subgroups are normal subgroups. Let U be open and U ∩{1} 6= ∅. Then
1 ∈ U . Thus {1} ⊆ U by the first part. ut

Separation Axioms in topological groups

Theorem 4.17. In a topological group G, every neighborhood filter of a point
has a basis of closed neighborhoods, and the following conditions are equivalent
equivalent:

(i) G is a T0–space.
(ii) {1} is closed.
(iii) G is a T1–space.
(iv) G is a regular Hausdorff space, i.e. a T3–space.
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Proof . If U ∈ U, then by the continuity of multiplication there is a V ∈ U such that
V V ⊆ U . By the Closure Lemma, V ⊆ V V ⊆ U . Thus U(1) has a basis of closed
sets, and since G is homogeneous, every neighborhoodfilter has a basis of closed
neighborhoods. However a T0–space in which every point has a neighborhood
basis of closed neighborhoods is a T3–space (see 1.38). This (i) implies (iv), and
(T3)⇒(T2)⇒(T1). ut

There aslo pedestrian proofs of the individual implications: (i)⇒(ii): Let x 6= 1.
By (i) there is an open set U containing exactly one of 1 or x. if 1 ∈ U then x /∈ U .
Now 1 ∈ U−1 and thus x ∈ U−1x; thus U−1x is an open neighborhood of x which
does not contain 1, for if it did, then 1 = u−1x for some u ∈ U , and then x = u ∈ U .
Thus every element x 6= 1 has an open neighborhood missing 1, and thus (ii) is
proved.

(ii)⇒(iii): This follows from the homogeneity of G.
(iii)⇒(iv): Assume x 6= y in G. Then 1 6= xy−1. By (iii), G \ {xy−1} ∈ U, and

by continuity of (g, h) 7→ g−1h there is a V ∈ U such that V −1V ⊆ G \ {xy−1}. If
g = V x ∩ V y, then g = vx = wy with v, w ∈ V , whence xy−1 = v−1w ∈ V −1V ⊆
G \ {xy−1}, a contradiction. Thus V x and V y are two disjoint neighborhoods of
x and y, respectively.

(iv)⇒(i): Trivial.

Corollary 4.18. A quotient group of a topological group G modulo a normal
subgroup N is a Hausdorff group if and only if N is closed. ut

Corollary 4.19. For every topological group G, the factor group G/{1} is a Haus-
dorff group and for each continuous homomorphism f :G → H into a Hausdorff
group there is a unique morphism f ′:G/{1} → H such that f = f ′q with the
quotient morphism q:G → G/{1}. ut

Proposition 4.20. Let G be a topological group, and U an open subset. Set
N = {1}. Then UN = U . Every open set is the union of its N cosets.

Proof . By 4.16, N is contained in every open set U meeting N . Let x ∈ UN . Then
x = un with u ∈ U and n ∈ N . Then n = u−1x ⊆ U−1x. Thus 1 ∈ N ⊆ U−1x
and therefore 1 ∈ U−1x, i.e., x ∈ U . ut

Corollary 4.21. Let
(
G, O(G)

)
be any topological group and let q:G → {1} be the

quotient morphism of G onto the Hausdorff topological group
(
G/{1},O(G/{1})

)
.

Then U 7→ q−1(U):O(G/{1}) → O(G) is a
⋂
−

⋃
-preserving bijection. ut

The Identity Component
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Definition 4.22. For a topological group G let G0 denote the connected compo-
nent of the identity, short the identity component. Similarly let Ga denote the arc
component of the identity, the identity arc component. ut

Definition 4.23. A subgroup H of a topological group G is called characteristic if
it is invariant under all automorphisms of G, i.e., all continuous and continuously
inverible group homomorphisms. It is called fully characteristic if it is invariant
under all (continuous!) endomorphisms. ut

Every fully characteristic subgroup is characteristic. The inner automorphisms
x 7→ gxg−1:G → G are continuous and continuously invertible. Hence every
characteristic subgroup is invariant under all inner automorphisms, i.e. is normal.

Proposition 4.24. The identity component G0 and the identity arc component
Ga of any topological group G are fully characteristic subgroups of G. The identity
component G0 is closed. The factor group G/G0 is a totally disconnected Hausdorff
topological group. ut

Exercise E4.5. Prove
(i) If H is an open subgroup of a topological group G, then H is closed and G0 ⊆ H.
The quotient space G/H = {gH : g ∈ G} is discrete.
(ii) If G is a locally connected topological group, then G0 is open and G/G0 is
discrete.
(iii) If G is a locally connected topological group and f :G → H is an open morphism
of topological groups, then the identity component G0 of G is mapped onto the
identity component of H.

Lemma 4.25. If G is a compact topological group acting (continuously) on a
topological space X and if G·x = {x}, then for any open set U containing x the
set V

def=
⋂

g∈G g·U is open. ut

Lemma 4.26. Assume that G is a topological group acting (continuously) on a
topological space X. Let K be a compact subset of G and A a closed subset of X.
Then K·A is closed in X.

Proof . Let y ∈ K·A. Then for every U ∈ U(y) we have U ∩K·A 6= ∅, and thus
KU = {g ∈ K : (∃a ∈ A) g·a ∈ U} 6= ∅. The collection {KU : U ∈ U(y)} is a
filterbasis on the compact space K and thus we find a h ∈

⋂
U∈U(y) K ∩KU . Thus

for any j
def= (U, V ) ∈ U(y)×U(h) the set Fj

def= KU ∩V is not empty and contained
in V . For g ∈ Fj there is a b ∈ A such that g·b ∈ U . Thus b ∈ g−1·U . Hence the
set of all A ∩ F−1

j ·U ⊆ A ∩ V −1·U , as j = (U, V ) ranges through U(y) × U(h) is

a filter basis converging to a
def= h−1·y by the continuity of the action. Since A is

closed we have a ∈ A. Thus y = h·a ∈ K·A. ut



4. Topological groups 49

Proposition 4.27. If K is a compact subset and A is a closed subset of a topo-
logical group, then KA and AK are closed subsets. ut

Example 4.28. Let G be a nonsingleton group and equip it with the indiscrete
topology. Then K = {1} is a compact subset which is not closed. The only
nonempty closed subset A of G is G. Then KA = G is closed. ut

Lemma 4.29. Assume that G is a topological group acting (continuously) on a
topological space X such that G·x = {x}. Then for any open set U containing x

and every compact subset K of G, the set V
def=

⋂
g∈K g·U is open. Thus if G itself

is a compact group, then x has arbitrarily small invariant neighborhoods.

Proof . Let A
def= X \ U . Then A is closed and K·A =

⋃
g∈K g·A =

⋃
g∈K g·(X \

U) = bigcupg∈K(X \ g·U) = X \
⋂

g∈K g·U = X \ V . Since K·A is closed by 4.29,
its complement V is open. ut

If U is a clopen neighborhood of the identity in a topological group G, and
if A = G \ U , then

⋂
V ∈U(1) AV = A by the Closure Lemma. If U is compact,

then U ∩ AV = ∅ for all sufficiently small V ∈ U(1). For if not, then the filter
basis of all U ∩AV , V ∈ U(1) has an element u ∈ U in its intersection and every
neighborhood of u meets AV for all V . For each V ∈ U(1) we find a W ∈ U(1)
with WW ⊆ V and then have uW ∩AW−1 6= ∅, i.e. there is an aV ∈ A and there
are elements w1, w2 ∈ W such that uw1 = aV w−1

2 , i.e. that aV = uw1w2 ∈ uV .
Then A∩uV is a filter basis converging to u. Since A is closed, u ∈ A contrary to
U ∩A = ∅.

Proposition 4.30. Assume that U is a compact open identity neighborhood in a
topological group. Then there is a compact open subgroup H contained in U , in
fact UH = U .

Proof . Again set A = G \ U . Find a symmetric identity neighborhood V = V −1

such that U ∩AV = ∅. Then UV ∩A = ∅, i.e. UV ⊆ U . By induction, UV n ⊆ U
where V n = V · · ·V︸ ︷︷ ︸

n times

. Set H =
⋃∞

n=1 V n. Then H is an open subgroup and

UH = U . ut

Theorem 4.31. Let G be a compact totally disconnected group. Then for any
identity neighborhood U there is a compact open normal subgroup N with N ⊆ U .

Proof . Since G is totally disconnected, the component of 1 is {1}. By Theorem
3.28, the filter U(1) of identity neighborhoods has a basis of clopen neighborhoods
U . By 4.33, every such U contains an open subgroup H such that UH = U . By
4.32, N

def=
⋂

g∈G gHg−1 is open. Also, N is invariant under all inner automor-
phisms. ut
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One also expresses this fact by saying that a compact totally disconnected group
G has arbitrarily small compact open normal subgroups N . For each of these, the
factor group is finite and discrete. Thus we might say that G is approximated by
the finite subgroups G/N . Therefore compact totally disconnected groups are also
called profinite groups. They occur in the Galois theory of infinite field extensions.

Exercise E4.6. Let {Gj : j ∈ J} be a family of finite groups and form the totally
disconnected compact group G =

∏
j∈J Gj . Identify a neighborhood basis of 1

consisting of open normal subgroups. ut

Example 4.32. Let p be a natural number, p ≥ 2, for instance a prime number.
In the compact totally disconnected group P

def=
∏

n∈N Z/pnZ consider the closed
subgroup Zp of all N -tuples (zn + pnZ)n∈N such that zn+1 − zn ∈ pnZ.

Then Zp is a compact totally disconnected abelian group with a basis of identity
neighborhoods {pnZp : n ∈ N}. The subgroup of all (z + pn)n∈N, z ∈ Z is
algebraically isomorphic to Z and is dense in Zp. Thus Zp is a “compactification”
of Z. Elements are close to zero if they are divisible by large powers of p.

The group Zp is called the group of p-adic integers.
The additive group P is a ring under componentwise multiplication. The sub-

group Zp is closed under multiplication. Thus Zp is in fact a compact ring with a
continuous multiplication, containing Z as a dense subring.

The underlying topological space of Zp is homeomorphic to the Cantor set.

There is an interesting application of connnectivity.

Theorem 4.33. Let G be a connected topological group and N a totally discon-
nected normal subgroup. Then N is central, that is,

(∀g ∈ G, n ∈ N) gn = ng.

Proof . Let n ∈ N . The continuous function g 7→ gng−1n−1:G → N maps
a connected space into a totally disconnected space, and the image contains 1.
Then this function is constant and takes the value 1. ut

Exercise E4.7. Prove the following result:
Let X be an arbitrary set and T ∼= (R/Z)X a torus which is contained as a normal
subgroup in a connected topological group G. Then T is central, that is, all of its
elements commute with all elements of G.
[Hint. Consider in T the subgroup S of all elements of finite order. Every auto-
morphism of T maps S into itself, and thus S is normal in G. But S is contained
in (QZ)X and this is a totally disconnected subgroup. Hence S is totally dis-
connected. By 4.36, S is central. Also, S is dense in T . Conclude that T is
central.] ut
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x = limF , 29
Y ◦, 7

Accumulation point, 17
Alexandroff discrete topology, 3
arcwise connected, 35

B(X,Y), 32
basic open subfamily, 15
basis for the closed sets, 8
basis of a topology, 8
basis of O, 8
bounded, 29

C(X,Y), 32
canonical decomposition, 12
cartensian product, 15
Cauchy-filter, 29
Cauchy-filter basis, 29
center, 4
chain, 22
characteristic, 48
characteristic function, 1
clopen, 35
closed, 3
closed subset, 3
closure, 7
cluster point, 17
cofinite, 3
cofinite topology, 3
compact, 17
complete, 19
components, 37
connected, 35
connected components, 37
connectivity relation, 37
continuous, 5
continuous at x, 7
continuous function, 4
convergence of a filter, 28
curve, 37

Diameter, 29
directed, 3
directed complete poset, 3
directed set, 3
disconnected, 35
discrete, 3
discrete metric, 4
discrete space, 3
discrete topology, 3

Equicontinuous, 32
euclidean space, 4

Filter, 5
filter basis, 6
First Axiom of Countability, 8
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fully characteristic, 48
function, continuous, 4

Gap, 35
group of p-adic integers, 50

Hausdorff separation axiom, 11
Hausdorff topology, 11
homeomorphic, 13
homeomorphism, 13
homogeneous, 43

Identity arc component, 48
indiscrete, 3
indiscrete space, 3
indiscrete topology, 3
induced topology, 4
inductive, 22
interior, 7

Kolmogoroff’s Axiom, 10

Lebesgue number, 18
limit point, 29

Metric, 3
metric space, 4
metric topology, 4
morphism of topological groups, 45

N-cell, 4
n-sphere, 4
natural topology of R, 3
neighborhood, 5
norm, 4

One-sphere, 4
open, 3, 13
open ball of radius r, 4
open-closed, 35
open cover, 17
open equivalence relation, 40
open map, 13
open subset, 3
orbit, 13
orbit space, 13
order complete, 31
order topology, 9

Partially ordered set, 3

partition, 12
path-connected, 35
pointwise convergence, 32
pointwise relatively compact, 32
poset, 3
positive definiteness, 4
power set, 1
precompact, 19
product, 15
product space, 16
product topology, 16
projection, 15
proper clopen subset, 35

Quotient map, 12
quotient set modulo R, 12

Regular, 11
regular topology, 11

Saturation, 13
Scott topology, 3
Second Axiom of Countability, 8
sequentially compact, 18
Sierpinski space, 7
space, topological, 2
specialisation quasiorder, 9
sphere of n dimensions, 4
subbasis of O, 9
subcover, 17
subset, closed, 3
subset, open, 3
subspace, 4
symmetry, 4

The identity component, 48
topological group, 44
topological manifold, 44
topological monoid, 36
topological semigroup, 36
topological space, 2
topology, 2
topology, Alexandroff discrete, 3
topology, cofinite, 3
topology, discrete, 3
topology generated by M, 9
topology, indiscrete, 3
topology induced by d, 4
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totally bounded, 19
totally disconnected, 37
tower, 22
triangle inequality, 4
Tychonoff topology, 16

Ultrafilter, 25
ultrafilter basis, 25
Ultrafilter Theorem, 25
uniform convergence, 32

uniformly continuous, 31
uniformly continuous function, 31
unit ball, 4
unit circle, 4
upper set, 3

Weight of a space, 8
well-order, 22
well-ordered set, 22


