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Abstract

This essay shows that large parts of fuzzy set theory are actually subfields of sheaf theory, respectively, of the theory of complete
�-valued sets. Hence fuzzy set theory is closer to the mainstream in mathematics than many people would expect. Part I of this
essay divided into a series of two papers presents such basic concepts as �-valued equalities, espaces étalés, singleton monad, the
change of base and the subobject classifier axiom. The application of these tools to the sheaf-theoretic foundations of fuzzy sets will
appear in Part II.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Category theory; �-valued sets; Espace étalé; Singleton monad; Complete �-valued sets; Membership functions; Geometric morphisms

0. Introduction

It is a remarkable fact that the historic development of fuzzy set theory (cf. [11,12,10]) proceeds completely isolated
from sheaf theory. 1 Also the long lasting debate on categorical foundations of fuzzy set theory (cf. [55]) does not
open the horizon for sheaf-theoretic arguments in the formulation of such fundamental notions as membership function,
similarity, fuzzy ordering, etc. (cf. [17,56–58]).

The aim of this essay divided into a series of two papers is to explain that large parts of fuzzy set theory are
actually subfields of sheaf theory. We show that fuzzy sets are subsheaves of constant sheaves—so-called sheaves of
level cuts, fuzzy groups (cf. [9,50]) are subsheaves of groups of constant sheaves of groups, and stratified �-valued
topological spaces (cf. [6,31,40]) are topological space objects in the category of sheaves on �. Further, intersections,
unions, images and inverse images of fuzzy sets, the max–min-composition of fuzzy relations 2 are special categorical
constructions in the category of sheaves. So the impression arises that in many fields of fuzzy set theory the wheel
has been invented once more. Moreover, fuzzy set theorists are not able to give a proper solution of the quotient
problem w.r.t. similarity relations and a proper construction of fuzzy factor groups w.r.t. normal fuzzy subgroups (cf.
[7,8,14,35–37,44,46,47,49]).
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1 A historic account on the history of sheaf theory can be found in [20].
2 An extensive interpretation of fuzzy relations in Heyting algebra valued, hierarchic models for intuitionistic set theory has recently been given

by Shimoda (cf. [52,53]).
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In order to overcome these shortcomings a certain amount of fundamental knowledge from sheaf theory is inevitable.
We put this material together in Part I: Basic Concepts which is devoted to the fundamental fact that sheaves on frames
� (cf. [33]) can be described in three different but equivalent ways: As functors �op SET� provided with
a certain «pasting» property, as complete �-valued sets, and in the case of spatial frames as espaces étalés with base
space pt(�). Depending on the context we will prefer one or the other of these descriptions.

With regard to a coherent interpretation of sheaf-theoretic constructions we begin with a discussion of frames as sets
of truth values (cf. Section 1). Here we emphasize that every element of a frame is not the degree, but the domain of
truth. In particular, the bottom element represents always the empty domain of truth.

In Section 2 we develop the close relationship between �-valued equalities and espaces étalés. Since the real unit
interval is a spatial frame, this situation is of special interest for fuzzy set theorists. In particular, the crisp equality on
a set X gives always rise to an espace étalé being equivalent to the constant sheaf generated by X.

In Section 3 we explain the monadic background of complete �-valued sets. Therefore this section is the place where
we review some important, categorical constructions of incomplete or complete �-valued sets with the exception of
the subobject classifier axiom (cf. [39,43]) which we defer to Section 6.

In Section 4 we study sheaves from the point of view of functors. Here we first recall the concept of presheaves,
and subsequently turn to the sheafification construction and to the special relationship between separated presheaves,
separated �-valued equalities and sheaves on � (viewed as functors). If � is a completely distributive lattice, then we

can show that every functor (pt (�), �) SET� satisfying a certain «continuity» condition can be derived from

a sheaf on �. In the case of � = [0, 1] this result explains the important difference between level cuts and strict level
cuts of membership functions (cf. Theorem 4.6, Remark 4.7).

In the remaining sections of this paper we study the effect of change of base and the relationship between subobjects
of complete �-valued sets and strict and extensional membership maps. We show that every frame homomorphism

� �′� gives rise to a geometric morphism between the categories of complete �-valued and complete �′-
valued sets. In the special case of points of [0, 1] (cf. Section 1) these constructions can be viewed as a clean treatment
of the defuzzification problem (cf. Section 1.1.4 in Fuzzy Sets and Sheaves—Part II (cf. [30])). As a by-product of this
situation we obtain that finite limits and set-indexed colimits of espaces étalés are computed fibrewise (cf. Remark 5.5).
Further, in Section 6 we describe the external and internal identification of strict and extensional membership maps
with subobjects of complete �-valued sets. The external construction is based on the idea to describe membership maps
in terms of �-valued equalities and prototypes (cf. [10, p. 100]), while the internal one makes use of the subobject
classifier diagram. Even though the external identification would be sufficient to understand fuzzy sets as subobjects of
singleton spaces w.r.t. the crisp equality, we view the internal identification as a special confirmation of this important
fact.

Even though this essay makes the attempt to be self-contained, we are not in the position to recall all needed
categorical concepts. For this purpose we refer the reader to standard textbooks in category theory—e.g. [22,42,45,51].

1. Frames as sets of truth values

A complete Heyting algebra � is a complete lattice such that finite meets are distributive over arbitrary joins—i.e.

� ∧
( ∨

B
)
=

∨
�∈B

(� ∧ �).

Typical examples of complete Heyting algebras are complete Boolean algebras and lattices of open subsets of ordinary
topological spaces. The category FRM consists of the following data (cf. [33]): Objects are complete Heyting algebras
and morphisms are frame homomorphisms—i.e. finite meets and arbitrary joins preserving maps. In order to emphasize
the use of frame homomorphisms between complete Heyting algebras, objects of FRM are also called frames.

In this essay frames will play the role of sets of truth values. Since in the relevant literature (cf. [41, pp. 48–49;
21, p. 319, p. 419, p. 419, p. 4]) the meaning of multiple truth values is ambivalent and has not been explained to
satisfaction (cf. [2, p. 197]), we make a further attempt to give a clear, epistemological understanding of elements of
frames. Referring to the tradition created by Boole (cf. [3, p. 48]) we interpret the universal upper bound � of frames
as the class of “all beings”, i.e. universe, and the universal lower bound ⊥ as the class of “no beings”, i.e. nothing.
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Hence in a more geometric language � represents the total domain of TRUTH, while ⊥ reflects the absence or empty
domain of truth. In this sense, throughout this essay we understand each element of a given frame as domain of truth
and maintain the traditional ontological point of view that truth is an atomic or indivisible property.

An important justification of this general geometric understanding of truth values can be given in the special context
of spatial frames. For this purpose we first recall the concept of points of frames. As a motivation for the subse-
quent definition we note that in the case of ordinary topological spaces (X, O) every element x ∈ X induces a map

O {0, 1}��x
by

�x(G) =
{

1 : x ∈ G

0 : x /∈ G

}
, G ∈ O

which preserves obviously arbitrary joins and finite meets. Hence we introduce a point p of a frame � not as an element

of �, but as a frame homomorphism � {0, 1}�p
(cf. [33, p. 41]), and observe that there exists a bijective map

between the set of all points p of � and the set of all prime elements � �= � of � determined by the following relation:

p(�) =
{

1 : ���
0 : ���

}
, � ∈ �. (1.1)

It is not self-evident that every frame has points. For example, complete and atomless Boolean algebras (cf. [54, p. 28];
[15, p. 11]) do not have any point, because co-atoms do not exist in atomless Boolean algebras (cf. [15, Remark 3.12,
pp. 70–71; 33, p. 4233, p. 42]).

A frame � is called spatial iff points separate elements of �; this means that for every pair (�, �) ∈ � × � with
� �= � there exists a point p of � with p(�) �= p(�). Lattices of open subsets of topological spaces are spatial frames.
Moreover, continuous frames form an important class of spatial frames (cf. [15, 3.14 Theorem33, p. 31133, p. 311]).
Without touching the adjunction between FRMop and TOP we briefly recall that every spatial frame � can be identified
with a (sober) topological space (pt (�), T�). Referring to [33] the set pt(�) consists of all points of �, and every
element � ∈ � induces a subset A� of pt(�) by

A� = {p ∈ pt(�) | p(�) = 1}. (1.2)

Since points preserve arbitrary joins and finite meets, it is easily seen that

T� = {A� | � ∈ �} (1.3)

forms a topology—the so-called canonical topology on pt(�). Because of the spatiality of � the complete Heyting
algebras � and T� are order isomorphic. In particular, every element � ∈ � can be identified with the set A�, and every
element of A� can be understood as a binary decider interpreting «� as true». In this sense � is the domain in which �
acts as truth value 1 where we make use of the standard terminology going back to G. Frege.

Since the real unit interval plays a prominent role in the fuzzy community, we recall the previous results in this
special setting. Referring to (1.1) elements t of [0, 1[ and points p of the complete Heyting algebra [0, 1] are equivalent
objects—i.e.

p(�) =
{

1 : t < �
0 : �� t

}
, � ∈ [0, 1]. (1.4)

Further, A� can be identified with the half-open interval [0, �[. Hence pt([0, 1]) is homeomorphic to [0, 1[ provided
with the lower topology �([0, 1[):

�([0, 1[) = {[0, �[|� ∈ [0, 1]} (cf. [15, p. 142]).

This means that the real unit interval viewed as a frame can be identified with the topological space ([0, 1[ , �([0, 1[)).
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2. �-valued sets

Let � be a fixed complete Heyting algebra. A pair (A, E) is called a Heyting algebra valued set or more precisely
an �-valued set (cf. [13,18]) iff A is a set and A× A ��E is map satisfying the following axioms:

(E1) E(a, b) = E(b, a) (symmetry).
(E2) E(a, b) ∧ E(b, c)�E(a, c) (transitivity).

In this context E is called an �-valued equality and the value E(a, b) is interpreted as the largest domain in which a
and b coincide. In particular, E(a, a) describes the domain or the extent of existence of a.

It is easily seen that the symmetry and transitivity axiom imply:

(E0) E(a, b)�E(a, a) ∧ E(b, b) (strictness).

Hence Heyting algebra valued equalities fulfill the fundamental principle that equality implies existence (cf. [18, p.
274]).

An �-valued equality E is said to be separated iff E satisfies the additional axiom:

(E3) E(a, b) = E(a, a) = E(b, b) 	⇒ a = b (separation).

An �-valued set (A, E) is separated, if E is a separated �-valued equality.
We begin with some typical examples of �-valued sets.

Example 2.1. (a) Let A be a set. Then the crisp equality Ec on A determined by

Ec(a, b) =
{ � : a = b

⊥ : a �= b

}

is a separated �-valued equality on A.
(b) Let ∧ be the binary meet operation on the underlying Heyting algebra �. Then (�,∧) is a separated �-valued

set.
(c) Let←→ be the bi-implication in �—i.e. �←→ � = (�→ �) ∧ (�→ �) where

�→ � =
∨
{� ∈ � | � ∧ ���}, �, � ∈ �.

Then (�,←→) is a separated �-valued set.

Example 2.2 (Ultrametric spaces). Let � be the real unit interval [0, 1], and � be an ultrametric on A—this is a metric
satisfying the following stronger version of the triangle inequality:

�(x, y)� max(�(x, z), �(z, y)), x, y, z ∈ X.

Then every nonincreasing map

R [0, 1]�f
with f (0) = 1

generates a [0, 1]-valued equality on A by E = f ◦ �.

Before we move to such important concepts as singleton monad, sheaves and espaces étalés, we first try to give
a deeper understanding of the meaning of �-valued sets. For this purpose we fix a spatial frame � and choose an
�-valued set (A, E). Every point of � (i.e. p ∈ pt(�)) determines a partial equivalence relation ∼p on A as follows:

a ∼p b ⇐⇒ p(E(a, b)) = 1.

Even though ∼p is not necessarily reflexive, we can construct the set

Ap = {[a]p | a ∈ A, p(E(a, a)) = 1},
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where [a]p denotes the equivalence class induced by a ∈ A w.r.t. ∼p. The aim of the following consideration is to
understand the role of elements of Ap. First we form the disjoint union

A =
�⋃

p∈pt(�)

Ap

of all Ap and observe that there exists a map A pt(�)�	 defined by

	(z) = p ⇐⇒ z ∈ Ap, z ∈ A.

Obviously 	 is an object of the comma category SET ↓ pt(�) or a bundle over the base space pt(�) (cf. [18, pp.
89–90]). In particular, Ap is the fibre over p w.r.t. 	, and every element of Ap is called a germ at p.

In the special case of the crisp equality the set of all germs at p coincides with the underlying set A and the bundle

with the projection A× pt(�) pt (�)�	 onto the second component.

After this brief digression we return to our train of thoughts and maintain the notation from Section 1. We now make

the fundamental observation that every element a of the support set A of (A, E) induces a map 3 AE(a,a) A�
a

in the following way:


a(p) = [a]p, p ∈ AE(a,a). (2.1)

By definition the diagram

A pt(�)

AE(a,a)

�	

��
��

a ����� (2.2)

is commutative where � � denotes the inclusion map. Hence 
a is a cross-section of 	 over AE(a,a). In particular,
the largest subset of pt(�) in which 
a and 
b coincide has the form:

AE(a,b) = {p ∈ pt(�) | 
a(p) = 
b(p)}. (2.3)

Thus the correspondence a �−→ 
a is injective iff the underlying �-valued equality is separated. Moreover, (2.3) is
an interesting confirmation of our previous interpretation that E(a, b) represents the largest domain in which «a and b
coincide».

To sum up we have shown that in the case of separated �-valued equalities elements of A are cross-sections of 	
over certain subsets U of pt(�). We pose the question:

Does every cross-section 
 of 	 over some U arise in this way—this means: does there exist an element a ∈ A s.t. 
 = 
a?

We postpone the answer and return to this question when we have provided a topological wrapping for the previous
situation. For this purpose we need some additional terminology:

Let (A, E) be a �-valued set. A map A ��f
is called E-strict and E-extensional iff f satisfies the following

conditions:

(S0) f (a)�E(a, a), a ∈ A (strictness).
(S1) f (a1) ∧ E(a1, a2)�f (a2), a1, a2 ∈ A (extensionality).

It is interesting to see that due to the transitivity and strictness of E every element a ∈ A induces an E-strict and
E-extensional map A ��ã

by

ã(b) = E(a, b), b ∈ A. (2.4)

3 Similar maps occur in the representation of M-valued equalities (cf. [29, pp. 305, p. 318]).
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Further, on the set P(A, E) of all E-strict and E-extensional, �-valued maps we can introduce a partial ordering which
is defined pointwisely as follows:

f �g ⇐⇒ ∀a ∈ A : f (a)�g(a).

It is not difficult to show that (P (A, E), �) is a complete Heyting algebra. In particular, the extent of existence—i.e.
the map A ��E determined by E(a) = E(a, a), a ∈ A—is the top element in P(A, E).

Since � is spatial, P(A, E) is again spatial. In fact, if f, g ∈ P(A, E) with f �= g, then there exists a ∈ A with
f (a) �= f (b). Because of the spatiality of � there exists a point p of � with p(f (a)) �= p(g(a)). Hence points of
P(A, E) separate elements of P(A, E).

Lemma 2.3. There exists a bijective map between A and pt(P (A, E)).

Proof. Since A is the disjoint union of all Ap, we identify elements of A with pairs (p, [a]p) where p is a point of �
and [a]p is an element of Ap. Then it is not difficult to see that (p, [a]p) induces a point q of P(A, E) as follows:

q(f ) = p(f (a′)), a′ ∈ [a]p, f ∈ P(A, E). (2.5)

In particular, the extensionality of f ∈ P(A, E) guarantees the independence of the previous definition from repre-
sentatives of [a]p.

(a) We show that the correspondence defined in (2.5) is injective. Therefore let (p̂, [â]p̂) be a further pair satisfying
(2.5). Because of [a]p ∈ Ap and [â]p̂ ∈ Ap̂ we obtain

p(E(a′, a′)) = 1, p̂(E(a′′, a′′)) = 1, a′ ∈ [a]p, â′′ ∈ [â]p̂.

Then we infer from (2.5):

p(�) = p(� ∧ E(a′, a′)) = q(� ∧ E) = p̂(� ∧ E(â′′, â′′)) = p̂(�), � ∈ �.

Hence p = p̂. Further, in the case of f = ã′ with a′ ∈ [a]p and â′′ ∈ âp we apply again (2.5) and obtain

1 = p(E(a′, a′)) = q(ã′) = p(E(a′, â′′));
i.e. [a]p = [â]p.

(b) On the other hand, let q be a point of P(A, E). We show that there exists a point p and an equivalence class
[a]p ∈ Ap s.t. (2.5) holds. First we observe that q induces a point p of � by p(�) = q(�∧ E)(� ∈ �). Because of
E = ∨

a∈A ã there exists an element a ∈ A with q(̃a) = 1. Now we apply the E-extensionality of f ∈ P(A, E)

and obtain

f ∧ ã = (f (a) ∧ E) ∧ ã.

Hence the relation q(f ) = q(f ∧ ã) = q(f (a) ∧ E) = p(f (a)) follows. This means that the correspondence
defined by (2.5) is surjective. �

In the following considerations we will identify A with the set pt(P (A, E)) of all points of P(A, E). Due to this

identification the bundle pt(P (A, E)) pt (�)�	 attains the following form (cf. (2.5)):

[	(q)](�) = q(� ∧ E), � ∈ �, q ∈ pt(P (A, E)). (2.6)

Moreover, this situation is an invitation to topologize pt(P (A, E)) and pt(�) by the respective canonical topologies
TP(A,E) and T� (cf. Section 1). Because of 	−1(A�) = A�∧E the map 	 is obviously continuous. But we can show
something more.
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Lemma 2.4. 	 is a local homeomorphism—this means that for every q ∈ pt(P (A, E)) there exists an open neigh-
bourhood U of q and an open neighbourhood V of 	(q) s.t. the restriction

U V�	|U

of 	 is a homeomorphism w.r.t. the respective relative topologies.

Proof. We choose q ∈ pt(P (A, E)). Because of E =∨
a∈A ã there exists an element a ∈ A with q(̃a) = 1. We show

that

Aã AE(a,a)�	|Aã

is a homeomorphism. Form the strictness condition (E0) we conclude

(E(a, a) ∧ E) ∧ ã = ã.

Hence the range of 	|Aã
is contained in AE(a,a). Now we choose two points q1, q2 ∈ Aã with 	(q1) = 	(q2). Because

of f ∧ ã = (f (a) ∧ E) ∧ ã we obtain

q1(f ) = q1((f (a) ∧ E) ∧ ã) = [	(q1)](f (a)) = [	(q2)](f (a)) = q2(f ).

Hence 	|Aã
is injective. Further every point p ∈ AE(a,a) induces a point q ∈ Aã by

q(f ) = p(f (a)), f ∈ P(A, E).

Then we obtain: [	(q)](�) = q(� ∧ E) = p(� ∧ E(a, a)) = p(�). Hence 	|Aã
is surjective. Finally we observe

Af ∩Aã = Af (a)∧E ∩Aã . Then the bijectivity of 	|Aã
implies

	|Aã
(Af ∩Aã) = Af (a).

Thus 	|Aã
is not only continuous, but also open. �

The previous lemma can also be expressed by the following important statement: pt(P (A, E)) pt (�)�	 is

an espace étalé (cf. [43, p. 88]). In order to emphazise the dependence on (A, E) we sometimes call 	 the espace étalé
associated with (A, E).

Further, it is not difficult to see that the relation


−1
a (Af ) = Af (a), a ∈ A

follows immediately from (2.1) and (2.5). Hence for every a ∈ A the cross-section 
a of 	 over AE(a,a) is continuous
w.r.t. the relative topology induced by T� on AE(a,a)— this means that 
a is local section of 	 (cf. [18, p. 98]). Because
of this observation we return to the above mentioned problem and pose the following topological question:

Does there exist local sections of 	 which are not determined by elements of the underlying support set A?
In general, the answer is affirmative as the next example demonstrates.

Example 2.5 (Crisp equality). We assume � �= {⊥,�} and consider the crisp equality Ec on A. Then P(A, Ec) and
�A coincide. Further, we identify pt(�A) with A× pt(�) in the sense of Lemma 2.3. Since

{A�∧ã | � ∈ �, a ∈ A}
is a base of the canonical topology T�A , the standard topology TE on A × pt(�) corresponding to T�A is the
product topology of T� on pt(�) and the discrete topology on A. Hence every local section 
 of the espace étalé

A× pt(�) pt (�)�	 with domain A� has the shape 
(p) = (g(p), p) where A� A�g
is a locally

constant map.
Since in the case of 
a (a ∈ A) the corresponding map g coincides with the globally defined, constant map determined

by a, it is easily seen that there exist various local sections which are not induced by points of the underlying support
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set A of (A, Ec). Hence the correspondence a �−→ 
a is an injective, but not surjective map from A to the set of all

local sections of A× pt(�) pt (�).�	

Even though in general we have more local sections than elements, there exist �-valued sets (A, E) such that elements
of A and local sections of the espace étalé associated with (A, E) are equivalent concepts.

Example 2.6. Let (�,∧) be the �-valued set introduced in Example 2.1(b). Since every ∧-strict and ∧-extensional
map f ∈ P(�,∧) has the form

f (�) = � ∧ f (�), � ∈ �,

there exists an order isomorphism between P(�,∧) and �. In particular,

pt(�) pt (�)�idpt(�)

is the espace étalé corresponding to (�,∧). Moreover, every local section

A� pt(�)�


coincides with the inclusion map—this means: 
 = 
�. Thus the correspondence � �−→ 
� is a bijective map from �

to the set of all local sections of pt(�) pt (�).�idpt(�)

In the following considerations we give a lattice-theoretic characterization of local sections. For this purpose we
need some more terminology:

Let (A, E) be an �-valued set. An E-extensional map A ��s
is called a singleton of (A, E) iff s satisfies

the additional property (cf. [13])

(S2) s(a) ∧ s(b)�E(a, b) a, b ∈ A (singleton condition).

The height of a singleton s is defined by E(s) = ∨
a∈A s(a). Obviously (S2) implies (S0)—this means that every

singleton is strict. Further, the symmetry and transitivity axiom of �-valued equalities imply that every map ã (a ∈ A)

is a singleton, and the height of ã coincides with E(a, a). Finally, the set of all singletons of (A, E) is denoted by
S(A, E).

Proposition 2.7. Let � be a spatial frame, (A, E) be an �-valued set, and let pt(P (A, E)) pt (�)�	
be the

espace étalé associated with (A, E).

(a) Every local section A� pt(P (A, E))�

of 	 induces a singleton s of (A, E) by

As(a) = 
−1(Aã), a ∈ A. (2.7)

(b) For every singleton s of (A, E) there exists a unique local section AE(s) pt (P (A, E))�
s
of 	 s.t.

[
s(q)](f ) = q(f (a)), f ∈ P(A, E), q ∈ As(a), a ∈ A. (2.8)

(c) The correspondence s �−→ 
s (cf. (b)) is a bijective map from S(A, E) to the set of all local sections of 	.

Proof. The relation (2.7) follows immediately from:

Aã ∩AE(a,b)∧E ⊆ Ab̃, Aã ∩Ab̃ ⊆ AE(a,b)∧E.

In order to show that the definition in (2.8) is independent from a ∈ A we choose a further element â ∈ A with
q ∈ As(â). Then the singleton condition (S2) implies

1 = q(s(a) ∧ s(â))�q(E(a, â)).
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Now we make use of the E-extensionality of f ∈ P(A, E) and obtain

q(f (a)) = q(f (a) ∧ E(a, â)) = q(f (â) ∧ E(a, â)) = q(f (â)).

Hence the uniqueness of 
s in Assertion (b) follows. We now show that 
s is a local section of 	. Because of


−1
s (Af ) =

⋃
a∈A

Af (a)∧s(a) (2.9)

the continuity of 
s is obvious. Further, we choose q ∈ A E(s). Then there exists an element a ∈ A with q(s(a)) = 1.
We conclude from the strictness of s:

[	(
s(q))](�) = [
s(q)](� ∧ E) = q(� ∧ E(a, a)) = q(�), � ∈ �.

Hence 	 · 
s coincides with the inclusion map of AE(s).
Finally, we make use of the E-extensionality of s and obtain from (2.9):


−1
s (Aã) = As(a), a ∈ A.

Thus the correspondence s �−→ 
s is injective. In order to verify the surjectivity of s �−→ 
s we consider a singleton s

induced by a local section 
 of 	 according to (2.7) (cf. (a)). Then we obtain for q ∈ As(a) (a ∈ A):

[
(q)](f ) = [
(q)](f ∧ ã) = [
(q)]((f (a) ∧ E) ∧ ã) = [	 ◦ 
(q)](f (a)) = q(f (a)).

Hence 
 satisfies (2.8)—i.e. 
s = 
. �

It follows from the proof of the previous proposition that the domain of local sections coincide with open subsets
determined by the height of the corresponding singletons. This observation is a confirmation to interpret the height of
singletons as their domain or extent of existence.

Moreover, we conclude from (2.1), (2.5) and (2.8) that for all a ∈ A the local sections 
a and 
ã coincide. Then the
problem that not every local section is determined by an element of the underlying support set can be understood as
the fact (cf. Proposition 2.7(c)) that in general not every singleton of (A, E) has the form ã for an appropriate a ∈ A.
Thus this situation is a motivation for the following definition (cf. [13]).

Definition 2.8 (Completeness). An �-valued set (A, E) is said to be complete iff E is separated, and for every singleton
s of (A, E) there exists an element a ∈ A s.t. s = ã.

The �-valued set (�,∧) is complete. In fact, every singleton s of (�,∧) has the form: s(�) = s(�) ∧ �, � ∈ �.
Moreover, in the case of spatial frames the previous results show that elements of support sets of complete �-valued
sets and local sections of the associated espaces étalés are equivalent things as illustrated for instance by Example 2.6.

We finish this section with a discussion of finding an appropriate morphism notion between �-valued sets. For this
purpose we restrict our interest again to spatial frames and look at bundle morphisms between espaces étalés associated
with �-valued sets as possible candidates. Since � and P(A, E) are spatial frames, we conclude from the duality
between TOP and FRM (cf. [33, Theorem 1.4] or [13, pp. 334–338]) that the espace étalé 	 associated with (A, E)

can be identified with the frame homomorphism � P(A, E))�h	 determined by

h	(�) = � ∧ E where E(a) = E(a, a), a ∈ A.

Further, let (A1, E1) and (A2, E2) be two �-valued sets and 	1 and 	2 be their corresponding espaces étalés. Because of

the duality between TOP and FRM every continuous map pt(P (A1E1)) pt (P (A2, E2))��
can be identified

with a frame homomorphism P(A2, E2) P (A1, E1)�h�
s.t. the following relation holds:

�−1(Ag) = Ah�(g), g ∈ P(A2, E2). (2.10)
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Hence every bundle morphism 4 	1 	2��
—i.e. every continuous map � making the diagram

commutative—corresponds to the following commutative diagram in FRM:

P(A2, E2) P (A1, E1)

�

�h�

��
��
h	2 ��

��
h	1

(2.11)

Further, the universal upper bound in P(A2, E2) is denoted by E2 where E2(a) = E2(a, a). Since {̃a2 | a2 ∈
A2} ∪ {�∧ E2 | � ∈ �} is a subbase of P(A2, E2), we conclude from (2.11) that h� is uniquely determined by a map

A1 × A2 ��R�
in the following way:

[h�(̃a2)](a1) = R�(a1, a2), a1 ∈ A1, a2 ∈ A2. (2.12)

Because of (2.11), (2.12) we infer from the relations

ã2�E2(a2, a2) ∧ E2, ã2 ∧ E2(a2, b2)� b̃2,

ã2 ∧ b̃2�E2(a2, b2) ∧ E2,
∨

a2∈A2

ã2 = E2

that the map R� satisfies the following conditions:

(F1) E1(b1, a1) ∧ R�(a1, a2) ∧ E2(a2, b2)�R�(b1, b2).
(F2) R�(a1, a2) ∧ R�(a1, b2)�E2(a2, b2).
(F3) E1(a1, a1) =∨

a2∈A2
R�(a1, a2).

In particular, (F2) and (F3) imply the subsequent strictness condition

(F0) R�(a1, a2)�E1(a1, a1) ∧ E2(a2, a2), a1 ∈ A1, a2 ∈ A2.

On the other hand, every map A1 × A2 ��R provided with (F1)–(F3) induces a frame homomorphism

P(A2, E2) P (A1, E1)�hR by

hR(g) =
∨

a2∈A2

R(a1, a2) ∧ g(a2), g ∈ P(A2, E2)

which makes the diagram in (2.11) commutative. Because of (2.10) the map R corresponds to a bundle morphism

	1 	2��R

. In particular, �R is determined fibrewise as follows:

�R
p ([a1]p) = [a2]p where p(R(a1, a2)) = 1, p ∈ pt(�). (2.13)

In this sense mappings satisfying (F1)–(F3) can be viewed as a lattice-theoretic description of bundle morphism between
the respective espaces étalés associated with �-valued sets.

Finally, if (A2, E2) is complete we make the important observation that for every map A1 × A2 ��R provided

with (F1)–(F3) there exists a unique map A1 A2��
s.t. the following relation holds:

R(a1, a2) = E2(�(a1), a2), a1 ∈ A1, a2 ∈ A2. (2.14)

4 It is worthwhile to note that bundle morphisms between espaces étalés are always local homeomorphisms (cf. [43, Exercise 10(b), p. 105]).
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In fact, because of (F1) and (F2) for all a1 ∈ A1 the map R(a1, ) is a singleton of (A2, E2). Hence depending on
a1 ∈ A1 the completeness of (A2, E2) (cf. Definition 2.8) implies the unique existence of an element b2 of A2 denoted
by �(a1) such that the following relation holds:

E2(�(a1), a2) = E2(b2, a2) = R(a1, a2), a2 ∈ A2.

Because of (F3) we obtain immediately:

(m1) E1(a1, a1) = E2(�(a1), �(a1)) (invariance of existence).

Referring again to (F1) we conclude from (2.14), (m1) and the axioms of �-valued equalities:

E1(a1, b1)=
∨

a2∈A2

E1(a1, b1) ∧ R(b1, a2)�
∨

a2∈A2

R(a1, a2) ∧ R(b1, a2)

=
∨

a2∈A2

E2(�(a1), a2) ∧ E2(�(b1), a2)�E2(�(a1), �(b1));

this means that also � fulfills the following axiom:

(m2) E1(a1, b1)�E2(�(a1), �(b1)) (preservation of equality).

On the other hand, if a map� fulfills (m1) and (m2), then by means of (2.14) the map� induces a map A1 × A2 ��R�

provided with the properties (F1)–(F3). Thus, if (A2, E2) is complete, then bundle morphisms 	1 	2��
and

maps A1 A2��
satisfying (m1) and (m2) are equivalent things.

Returning now to our question what are the appropriate morphisms between �-valued sets we can give two answers:

1. If we prefer to work with incomplete �-valued sets, then «fuzzy morphisms» R satisfying (F1)–(F3) form the right
concept, and indeed (F1)–(F3) are precisely the morphism axioms in Higgs’ topos (cf. [23,18]).

2. If we prefer to work with crisp maps, then we have to restrict our interest to complete �-valued sets, and the right
morphism axioms are given by (m1) and (m2).

In the next section we show that complete �-valued sets are algebras of the singleton monad.

3. Singleton monad

In this section � is an arbitrary frame. First we prove that singletons are irreducible in the following sense.

Lemma 3.1. Let s1 and s2 be singletons of an �-valued set (A, E) provided with the property

E(s1) = E(s2), s1(a)�s2(a), a ∈ A.

Then s1 and s2 coincide—i.e. s1 = s2.

Proof. Since finite meets are distributive over arbitrary joins, we obtain from (S1) and (S2):

s2(a) = s2(a) ∧ E(s1) =
∨
b∈A

s2(a) ∧ s1(b) ∧ s1(b)�s1(a). �

The next theorem gives a canonical construction of an �-valued equality on the set of all singletons of a given
�-valued set.

Theorem 3.2. Let (A, E) be an �-valued set and S(A, E) be the set of all singletons of (A, E). Then there exists a
unique �-valued equality Ẽ on S(A, E) satisfying the following conditions:

(i) E(s) = Ẽ(s, s), s ∈ S(A, E).

(ii) Ẽ(s, x̃) = s(x), x ∈ A.
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Proof. It is easily seen that the �-valued equality Ẽ defined by

Ẽ(s1, s2) =
∨
a∈A

s1(a) ∧ s2(a)

fulfills the required properties. In order to verify the uniqueness of Ẽ let us consider a further �-valued equality Ê on
S(X, E) with (i) and (ii). Then the uniqueness follows from

Ẽ(s1, s2) � Ê(s1, s2) = Ê(s1, s2) ∧ E(s2)

=
∨
a∈A

Ê(s1, s2) ∧ Ê(s2, ã) ∧ s2(a)�Ẽ(s1, s2). �

The �-valued set (A, E) := (S(A, E), Ẽ) is said to be the singleton space of (A, E). An immediate application
of Lemma 3.1 shows that the �-valued equality of singleton spaces is always separated. Moreover, Property (ii) in
Theorem 3.2 implies

E(a, b) = Ẽ(̃a, b̃), a, b ∈ A. (3.1)

Hence the singleton space (A, E) can be viewed as an extension of (A, E) provided the underlying equality E is
separated.

In order to make the meaning of this extension more precise we need some categorical tools. For this purpose we
first recall the concept of monads (cf. [42]) or algebraic theories according to the terminology proposed by Manes (cf.
[45]).

Let C be a category with the composition denoted by · and T be a triple (T , �, ◦) such that |C| |C|�T is an

object function, � is an assignment attaching an «insertion-of-the-variables» map A T (A)��A to each object

A ∈ |C| and ◦ assigns a «clone-composition» function

hom(X, T (Y ))× hom(Y, T (Z)) hom(X, T (Z))�◦

to each triple (X, Y, Z) of objects of C. A triple T is called a monad or algebraic theory (in clone form) in C iff ◦ is
associative and the following properties are valid:

�Y ◦ � = �, � ∈ hom(X, T (Y )),

� ◦ (�Y · f ) = � · f, � ∈ hom(Y, T (Z)), f ∈ hom(X, Y ).

The application of this categorical concept to Heyting algebra valued sets requires an appropriate categorical structure
on Heyting algebra valued sets. Here we deviate from the way how Fourman and Scott proceed (cf. [18], see also [23])

and do not use «fuzzy» but crisp maps as morphisms. More precisely (A, E) (B, F )��
is a morphism from

(A, E) to (B, F ) iff A B��
is a map satisfying the axioms (m1) and (m2) (cf. Section 2). Obviously, �-valued

sets and morphisms in the previous sense form a category �-SET. The axiom (m1) means that there exists a functor

�-SET SET ↓ ��F

which leaves morphisms invariant and acts on objects as follows:

F(A, E) = E where E(a) = E(a, a), a ∈ A. (3.2)

We conclude from Section 3 in [25] that (�-SET, F) is a topological category over SET ↓ �. Hence Theorem 21.16
in [1] implies:

Proposition 3.3. �-SET is a complete and cocomplete category.
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For those readers being not all too much familiar with category theory we give an explicit construct of the terminal
object, products and equalizers in �-SET. The terminal object 1 in �-SET has the form (�,∧) (cf. Example 2.1(b)).
In particular, the strictness property (E0) implies that the unique arrow

(A, E) 1�!

coincides with the extent E = F(A, E). Further, the (categorical) product ((A, E) × (B, F ), 	A, 	B) is determined
by: (A, E)× (B, F ) = (A�B, E�F) where

A�B = {(a, b) | E(a, a) = F(b, b)},
E�F((x1, y1), (x2, y2)) = E(x1, x2) ∧ F(y1, y2),

	A(a, b) = a, 	B(a, b) = b.

Finally, D = {a ∈ A | �(a) = �(a)} is the support set of the equalizer

(D, G) (A, E)� �d ��
�

�
(B, F ) ,

where G denotes the restriction of E to D ×D and D A� �d
is the inclusion map.

Moreover, �-SET carries a symmetric, monoidal structure (cf. [34,42]), and the corresponding tensor product ⊗
and unit object I are determined as follows:

(A, E)⊗ (B, F ) = (A× B, E ⊗ F), I = ({·},�),

where

E ⊗ B((a1, b1), (a2, b2)) = E(a1, a2) ∧ F(b1, b2), a1, a2 ∈ A, b1, b2 ∈ B.

and {·} is a set consisting of a single element with global extent of existence. We recall that (�-SET,⊗, I ) is even a
monoidal closed category—this means that the functor ⊗ (A, E) : �-SET → �-SET has a right adjoint functor
[(A, E), ] : �-SET → �-SET (cf. [25, Theorem 3.6] in the case ∧ = ∗). For this purpose we first construct the
evaluation ev and the internal hom-objects. Let homloc((A, E), (B, F )) be the set of all pairs (�, f ) where � ∈ � and

A B�f
is a map satisfying the following localized version of the �-SET-morphism axioms (m1) and (m2):

(m1)∗ � ∧ E(a, a) = F(f (a), f (a)).

(m2)∗ � ∧ E(a1, a2)�F(f (a1), f (a2)).

Then we put (see also [25, pp. 137, 138]):

• [(A, E), (B, F )] = (homloc((A, E), (B, F )), � , �) where
�(�, f ), (�, g)� = (� ∧ �) ∧ ∧

a∈A
(E(a, a)→ F(f (a), g(a))).

• [(A, E), (B, F )] × (A, E) (B, F ) :�ev(B,F )
ev(B,F )((�, f ), a) = f (a).

Then ev = (ev(B,F ))(B,F )∈|�-SET| is the counit of this adjoint situation, and for every �-SET-morphism

(C, G)⊗ (A, E) (B, F )��

there exists a unique �-SET-morphism (C, G) [(A, E), (B, F )]����
s.t. the following diagram is commutative:

The morphism ��� is called the monoidal adjoint of �.
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After these preparations we return to the concept of singletons of Heyting algebra valued sets and observe that

• (A, E)�(A, E) is an object function in �-SET.

• A (A, E)��(A,E)
by �(A,E)(x) = x̃ is an �-SET-morphism from (A, E) to (A, E) (cf. (3.1)).

• the «clone-composition» function ◦ is determined by

(A, E) (B, F ),��
(B, F ) (C, G),��

[� ◦ �(a)](c) = ∨
b∈B
[�(b)](c) ∧ [�(a)](b), a ∈ A.

Referring to Section 3 in [24] we obtain the following theorem in the special case of ∗ = ∧.

Theorem 3.4. T = (, �, ◦) is a monad (in clone form) in �-SET.

T is called the singleton monad in �-SET. In particular, the multiplication � is given by

[�(A,E)(
)](a) = [id(A,E) ◦ id((A,E))(
)](a) =
∨

s∈S(A,E)

s(a) ∧ 
(s), a ∈ A.

With regard to Lemma 3.1 it is not difficult to show that T is a degenerated monad—i.e. � :  · →  is a natural
isomorphism. In particular, the structure morphism � of any T-algebra ((A, E), �) has the form � = �−1

(A,E). Therefore
we make the important observation that ((A, E), �) is a T-algebra iff (A, E) is a complete �-valued set (cf. Definition
2.8). Hence the Eilenberg–Moore category �-SETT of T-algebras is isomorphic to the full subcategory C�-SET
of �-SET consisting of complete �-valued sets (cf. [18]). Since (A, E), �(A,E)) is the free T-algebra generated
by (A, E), singleton spaces are always complete �-valued sets. In particular, due to the universal property of free

T-algebras every �-SET-morphism (Y, F ) (A, E)��
has a unique extension (Y, F ) (A, E)���

where �� is given by

[��(s)](a) =
∨
y∈Y

s(y) ∧ [�(y)](a), s ∈ S(Y, F ), a ∈ A. (3.3)

Finally, referring again to the universal property of free algebras it is not difficult to establish the fact that the functor
 : �-SET→ �-SETT is left adjoint to the forgetful functor U : �-SETT → �-SET (cf. [1, Proposition 20.7]);
hence C� -SET is a reflective subcategory of �-SET and the corresponding reflector coincides with the formation of
taking singleton spaces.

It is easily seen that the Kleisli category �-SETT is nothing but Higgs’ topos (cf. [18,23]). Since the singleton
monad is degenerated, Proposition 21.3.3 in [51] implies that the Eilenberg–Moore category �-SETT and the Kleisli
category �-SETT are equivalent. This equivalence is known as Higgs’ theorem (see [13, Theorem 5.9]) and is
obviously an immediate corollary of the degeneracy of the singleton monad. Thus from a categorical point of view
there does not exist an essential difference between �-SETT and �-SETT . In particular, with regard to the answers
given at the end of Section 2 the equivalence between Higgs’ topos and C�-SET indicates that from a categorical
point of view «fuzzy morphisms» with (F1)–(F3) between not necessarily complete �-valued sets and crisp maps with
(m1) and (m2) between complete �-valued sets are equivalent concepts. Since �-SETT contains less isomorphic
objects than �-SETT (every �-valued set is isomorphic to its singleton space in �-SETT ), we prefer to work with
the Eilenberg–Moore category �-SETT , respectively, C�-SET.

We finish this section with the explanation of various categorical properties of �-SETT . First we notice that the
completeness and cocompleteness is inherited by �-SETT from �-SET (see also [51, Remarks 21.3.4]). In the case
of spatial frames a simple description of these properties can be found in Remark 5.5. Further, we have the following
lemma.

Lemma 3.5. There exists a natural isomorphism � :  ◦ ⊗ → × ◦ (× ).
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Proof. Let (A, E) and (B, F ) be �-valued sets. Obviously, every pair (s1, s2) ∈ S(A, E)�S(B, F ) induces a singleton

 of (A, E)⊗ (B, F ) by


(a, b) = s1(a) ∧ s2(b), a ∈ A, b ∈ B.

On the other hand, every singleton 
 of (A, E)⊗ (B, F ) determines a pair of singletons (s

1 , s


2 ) ∈ S(A, E)�S(B, F )

as follows:

s

1 (a) =

∨
b∈B


(a, b), s

2 (b) =

∨
a∈A


(a, b).

It is not difficult to show that the correspondence 
 �−→ s

1 ∧ s


2 is an �-SET-isomorphism from ((A, E)⊗ (B, F ))

to (A, E)× (B, F ). The verification of the naturalness of this isomorphism is left to the reader. �

Since  is left adjoint to the forgetful functor U , we conclude Lemma 3.5 that the existence of the monoidal closed
structure on �-Set entails the existence of the exponentiation in �-SETT , resp. C�-SET. In Section 2.1 of Fuzzy
Sets and Sheaves Part II (cf. [30]), we will return to this situation.

4. Sheaves

In this section we view complete Heyting algebras � as (complete) categories, and denote the corresponding opposite
categories by �op. In particular, objects of �op are elements of � and hom-sets of �op are given as follows:

hom(�, �) =
{ {·} : ���
∅ : ���

}
,

where {·} denotes an ordinary singleton.
Let SET be the category of ordinary sets. A presheaf of sets on � is a functor F : �op → SET. In the case of ���

the morphism F(�) F(�)�F(·)
is called the restriction map from F(�) to F(�) and is denoted by ��

�. Since F
preserves the identity and the composition, the restriction maps satisfy always the following conditions:

��
� = idF(�), ��

� ◦ ��
� = ��

� provided �����. (4.1)

On the other hand, any �-indexed family of sets together with a family of maps satisfying (4.1) can be regarded as a
presheaf of sets on �.

Morphisms between presheaves on � are natural transformations � : F → G; this means that � is an �-indexed

family (��)�∈� of maps F(�) G(�)��� such that the following diagram commutes:

F(�) G(�)

F(�) G(�)

�

���

�
���

� � �

where the left and right arrow denote the respective restriction maps. Obviously, presheaves on � and (presheaf-)
morphisms form a category denoted by psh(�).
A presheaf F is called separated iff F satisfies the axiom:

(F1) For every � ∈ �, for every pair (a1, a2) ∈ F(�)×F(�) and for every subset {�i | i ∈ I } of � with � =∨
i∈I �i

the following implication holds:

∀i ∈ I : ��
�i

(a1) = ��
�i

(a2) 	⇒ a1 = a2.

Let F be a presheaf. A family {ai | i ∈ I } of elements ai ∈ F(�i ) is called compatible iff the property

�
�i

�i∧�j
(ai) = �

�j

�i∧�j
(aj ) holds for all i, j ∈ I . A sheaf on � is a separated presheaf F on � provided with the

following important property:
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(F2) For every subset {�i | i ∈ I } of � and for every compatible family {ai | i ∈ I } of elements ai ∈ F(�i ) there
exists an element a0 ∈ F(�) s.t. � =∨

i∈I �i and for all i ∈ I : ��
�i

(a0) = ai .

Example 4.1. Every set X can be viewed as a presheaf FX on � as follows:

FX(�) = X, ��
� = idX, �, � ∈ �, ���.

FX is also called the constant presheaf generated by X.

The next example is related to «level cuts» which is a widespread method in fuzzy set theory (cf. [10, pp. 44–45]).

Example 4.2 (Unit interval). Let (A�)�∈[0,1] be a [0, 1]-indexed family of sets equipped with the following property:

A0 = {·}, A� ⊆ A� provided 0 < ���.

If in the case of 0 < ��� we consider the respective inclusion maps as restriction maps, then the previous situation
gives rise to a separated presheaf F on [0, 1]. Sometimes F is also called a presheaf of level cuts.

Obviously, F is a sheaf on [0, 1] iff (A�)�∈[0,1] fulfills the so-called «upper continuity» condition:

⋂
0<�<�

A� = A�.

Remark 4.3 (Sheaf of local sections). Let (X, T ) be a topological space and TOP be the category of topological
spaces. An object 	 of the comma category TOP ↓ (X, T ) is called a fibrewise topological space with base space
(X, T ) (cf. [32]).

A local section over U of a fibrewise topological space (E, TE) (X, T )�	 is a continuous map U E�


s.t. the following diagram commutes:

where U is an open subset of X and � � denotes the inclusion map.
We define a set-valued map G	 on T as follows: For every U ∈ T let G	(U) be the set of all local sections over U .

In particular, G	(∅) contains exactly a unique element, namely the empty map. As restriction operation we consider
the usual restriction of maps. Then this situation gives rise to a sheaf on T which again is denoted by G	. In particular
G	 is called the sheaf of local sections of the fibrewise topological space 	.

In the following considerations we explain the relationship between presheaves on � and �-valued sets. First we
notice that with every separated presheaf F on � we can associate a unique separated �-valued equality being compatible
with the underlying presheaf structure in the following sense: Let AF be the support set of F defined by the disjoint

union of all F(�)—i.e. AF =
�⋃
�∈� F(�). Then there exists a unique separated �-valued equality EF on AF provided

with the following properties (cf. [28]):

• � ∧ EF (a, b) = EF (��
�∧�(a), b), a ∈ F(�) b ∈ AF .

• EF (a, a) = �, a ∈ F(�).

In particular, EF is given by (cf. [13]):

EF (a, b) =
∨
{� ∈ � | ��� ∧ �, ��

�(a) = ��
� (b)}, a ∈ F(�), b ∈ F(�). (4.2)
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Proposition 4.4. Let F be a separated presheaf on �, and let (AF , EF ) be the associated separated �-valued set.
Then the following assertions are equivalent:

(i) (AF , EF ) is complete.
(ii) F is a sheaf.

Proof. (a) ((i)	⇒ (ii)) Every compatible family {ai | i ∈ I } of elements ai ∈ F(�i ) induces a singleton s of (AF , EF )

as follows:

s(b) =
∨
i∈I

EF (ai, b), b ∈ AF .

The extensionality of s is evident. In order to verify the singleton condition it is sufficient to show:

EF (ai, b1) ∧ EF (aj , b2)�EF (b1, b2).

In fact, the compatibility of EF with the presheaf structure implies:

EF (ai, b1) ∧ EF (aj , b2) = �i ∧ �j ∧ EF (ai, b1) ∧ EF (aj , b2)

= EF (�
�i

�i∧�j
(ai), b1) ∧ EF (�

�j

�i∧�j
(aj ), b2)�EF (b1, b2).

Since (AF , EF ) is complete, there exists a0 ∈ AF with s = ã0. Because of E(s) = � := ∨
i∈I �i the element a0 is

contained in F(�), and for all i ∈ I the relation EF (a0, ai) = �i holds. Then the axiom (F1) and the definition of EF
imply ��

�i
(a0) = ai . Hence the assertion (ii) is verified.

(b) ((ii)	⇒ (i)) Let s be a singleton of (AF , EF ). We put � = E(s) and �a = EF (a, a)(a ∈ AF ). Then the singleton
condition implies that

{��a

s(a)(a) | a ∈ AF }

is a compatible family. Since F is a sheaf, there exists an element a0 ∈ F(�) s.t. ��
s(a)(a0) = �

�a

s(a)(a). Now we invoke
again the definition of EF and obtain: s(a)�EF (a0, a). Finally, we make use of E(s) = � = EF (a0, a0) and infer
form Lemma 3.1: ã0 = s. Hence the assertion (i) is verified. �

It is not difficult to show that every complete �-valued set (A, E) determines a sheaf F as follows:

F(�) = {a ∈ A | E(a, a) = �}, F(�) F(�)���
�

by

E(��
�(a), b) = � ∧ E(a, b), a ∈ F(�), b ∈ A, ���.

Hence Proposition 4.4 and the previous observation lead to the following statement: Complete �-valued sets and
sheaves on � are equivalent concepts (cf. [13, Theorem 4.13]).

We continue our considerations with the investigation of the relationship between sheaves and espaces étalés. First
we recall that every presheaf on a spatial frame � generates an espace étalé. For this purpose we identify � with the
topological space (pt (�), T�) (cf. Section 1). Then we fix a point p of � and define a subset Vp of � by

Vp = {� ∈ � | p(�) = 1}.
Obviously Vp is order-isomorphic to the set of all open neighbourhoods of p. Since p preserves finite meets, the set
Vp is directed downward. Because of (4.1) it is easily seen that (F(�), ��

�)�∈Vp
is an inductive system of sets. Hence

the inductive limit of (F(�), ��
�)�∈Vp

exists—i.e.

F̃(p) = ind. lim
�∈Vp

F(�), (4.3)

and the canonical map from F(�) to F̃(p) is denoted by ��
p (cf. [5, pp. 202–211]). In particular, elements of F̃(p) are

called germs of F at p.
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Further, let F̃ be the disjoint union of F̃(p) where p is varying in pt(�); and let F̃(p) F̃� ��p
be the respective

inclusion map. Then every a ∈ F(�) induces a map A� F̃�
a
by


a(p) = �p(��
p(a)), p ∈ A�. (4.4)

On F̃ we consider the finest ordinary topology TF̃ such that all maps 
a are continuous where a is varying in F(�)

and � in �. Further, we introduce a map F̃ pt(�)�	
by

	(e) = p ⇐⇒ e ∈ �p(F̃(p)). (4.5)

It can be shown that 	 is a local homeomorphism (cf. [16, p. 111]). Hence 	 is an espace étalé.
We observe that for every element a ∈ F(�) the map 
a is a local section over A�. In particular, the construction of

inductive limits imply the following relation:


a |A�
(p) = �p(��

p(a)) = �p(��
p(��

�(a))) = 
��
�(a)(p),

where p ∈ A� and ���. Thus this situation gives rise to a presheaf-morphism � = (��)�∈� from F to the sheaf G	 of
local sections of 	 determined by ��(a) = 
a . Even though this construction can be completed to an adjoint situation
(where � plays the part of the unit), we restrict ourselves to quote only the following facts (cf. [16, II.1.2]):

• All components �� of � are injective iff F is a separated presheaf.
• All components �� of � are bijective iff F is a sheaf.

Hence every sheaf on a spatial frame can be understood as a sheaf of local sections of an appropriate espace étalé. Or
more precisely: Sheaves on spatial frames � and espaces étalés with base space (pt (�), T�) are equivalent concepts.

In the following considerations we disclose the role of the specialization order on pt(�) in the light of the previous
constructions. First we recall its definition:

p�q ⇐⇒ ∀� ∈ � : p(�)�q(�).

Then the universal arrow F̃(p) F̃(q)��
p
q

of the inductive limit F̃(p) is determined by the commutativity of the

following diagram:

F̃(p)

F(�) F(�)

F̃(q)

�

�
p
q

��
��

��
p

����
��

q

�
��

�

���
���

���� ��
p

���������� ��
q

where p�q, ���. (4.6)

If we view (pt (�), �) as a category, then we conclude from (4.6) that the assignment p �−→ F̃(p) constitutes a functor
form (pt (�), �) to SET. The next lemma points out a « continuity» property of this functor.

Lemma 4.5. Let P = {pi | i ∈ I } be a directed subset of points w.r.t. the specialization order. Then p0 defined by

p0(�) =
∨
i∈I

pi(�), � ∈ �

is a point of �, and the universal arrow ind. limi∈I F̃(pi) F̃(p0)�g
determined by (�

pi
p0)i∈I is a bijective map.
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Proof. It is easily seen that p0 is a point. Further, the map g is determined by the commutativity of the subsequent
diagram:

ind. lim
i∈I F̃(pi)

F̃(pi) F̃(pj )

F̃(p0)

�

g

��
���

�pi

�����
�
pi
p0

�
�
pi
pj

���
���

���
�
pj

����������� �
pj
p0

where pi � pj . (4.7)

In order to show the surjectivity of g we choose a germ [a] at p0—i.e. [a] ∈ F̃(p0). Then there exists � ∈ � and
an element a ∈ F(�) s.t. p0(�) = 1 and ��

p0
(a) = [a]. In particular, the definition of p0 implies that there exists a

point pi ∈ P with pi(�) = 1. Now we invoke the definition of �
pi
p0 and obtain: [a] = �

pi
p0(�

�
pi

(a)). Hence the relation
g(�pi (��

pi
(a))) = [a] follows.

Further, we choose �a�, �b� ∈ ind limi∈I F̃(pi) with g(�a�) = g(�b�). Then there exist points pi, pj ∈ P and
[a] ∈ F̃(pi), [b] ∈ F̃(pj ) s.t. �pi ([a]) = �a� and �pj ([b]) = �b�. In order to verify the injectivity of g we have
to show that there exists a point pl ∈ P with pi�pl, pj �pl, �

pi
pl

([a]) = �
pj
pl

([b]). For this purpose we choose

�, � ∈ �, a ∈ F(�), b ∈ F(�) with ��
pi

(a) = [a] and ��
pj

(b) = [b]. Because of

��
p0

(a) = �
pi
p0([a]) = g(�a�) = g(�b�) = �

pj
p0 ([b]) = ��

p0(b)

there exists � ∈ � with p0(�) = 1, ��� ∧ � and c := ��
�(a) = ��

� (b). Referring again to the definition of p0 we can
choose a point pk ∈ P with pk(�) = 1. Since P is directed there exists a point pl ∈ P s.t. pi�pl, pj �pl and pk�pl .
Then we conclude from the previous constructions:

�
pi
pl

([a]) = ��
pl

(a) = ��
pl

(c) = ��
pl

(b) = �
pj
pl

([b]). �

Motivated by the previous lemma we ask the following question: Can every functor (pt (�), �) SET�G

provided with the «continuity» property from Lemma 4.5 be derived from a sheaf F on � in such a way that for all
p ∈ pt(�) the set G(p) coincides with the set F̃(p) of all germs at p?

In the case of completely distributive lattices we have a positive answer as the next theorem demonstrates.

Theorem 4.6. Let (pt (�), �) SET�G
be a functor provided with the «continuity» condition from Lemma 4.5.

If � is a completely distributive lattice, then there exists a sheaf F on � and a natural isomorphism F̃ G.��

Proof. (a) Let�op be the dual way below relation (cf. [15])—i.e. ��op � iff for all D ⊆ � being directed downward
the relation

∧
D�� implies the existence of a � ∈ D with ���. Then for every � ∈ � we define a subset F(�) of � by

F(�) = {� ∈ � | � is prime, ��op �}.
Since � is completely distributive, we conclude from 3.15 Theorem in [15] that for all � the relation

∧
F(�) = � holds.

Moreover, if � ∈ � is prime, then F(�) is even directed downward. Indeed, let us consider two elements �1, �2 ∈ F(�).
If we assume∧

{� ∈ F(�)|���1}��,

then the prime property of � implies:∧
{� ∈ F(�)|���1} = �.
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Since �1 is chosen from F(�), we conclude from the prime property of �1 that there exists a � ∈ F(�) with ���1 and
���1 which is absurd. Hence the prime property of � implies:∧

{� ∈ F(�)|���1} = �.

Since �2 is also an element of F(�), there exists an element � ∈ F(�) with ���1 and ���2.

(b) Let (pt (�), �) SET�G
be a functor. Then we put

Gp = G(p), �
p
q = G(·) where p�q, p, q ∈ pt(�).

Further, we identify every � ∈ � with the open subset A� of pt(�) (cf. Section 1) and consider the following projective
(resp. inverse) limit (cf. [5]):

F(�) = proj. lim
p∈A�

Gp =
⎧⎨
⎩ (ap)p∈A� ∈

∏
p∈A�

Gp

∣∣∣∣∣∣ �p
q (ap) = aq whenever p�q

⎫⎬
⎭ .

Obviously, the canonical map F(�) Gp���
p

coincides with the restriction of the projection∏
p′∈A�

Gp′ Gp�	p

to F(�). Moreover, the restriction map ��
� is determined by the following diagram:

F(�)

Gp Gq

F(�)

�

��
�

����
��
p

��������
��
q

�
�
p
q

����
�
�
p

���
����	

�
�
q

where p � q, � � �.

Because of ��
�((ap)p∈A�) = (ap)p∈A� (���) it is not difficult to show that F is a sheaf on �. Further, let F̃ (p) =

ind. lim�∈Vp
F(�) be the set of all germs at p w.r.t. F , and ��

p be the corresponding canonical map. Then gp makes the
following diagram commutative:

F̃(p)

F(�) F(�)

Gp

�

gp

��
��

��
p

�����
�
�
p

�
��

�

���
���

���� ��
p

���������� ��
p

where ���.

It is not difficult to show that � = (gp)p∈pt(�) is a natural transformation from F̃ to G.
(c) In order to verify the bijectivity of gp we identify prime elements � ∈ � \ {�} with points of � and vice versa

(cf. (1.1) in Section 1)—i.e.

p(�) = p�(�) =
{

1 : ���
0 : ���

}
, � ∈ �.

Then we conclude from the previous part (a) that {p� | � ∈ F(�)} is directed and
∨{p� | � ∈ F(�)} = p�. Further,

we choose [a], [b] ∈ F̃(p�) with gp�([a]) = gp�([b]). Hence there exists an element � ∈ � and elements a, b ∈ F(�)

with ��
p�

(a) = [a], ��
p�

(b) = [b], ��
p�

(a) = ��
p�

(b). Since Gp� is the inductive limit of {Gp� | � ∈ F(�)} and {p� |
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� ∈ F(�)} is directed, there exists an element � ∈ F(�) s.t. c := ��
p�

(a) = ��
p�

(b) and �
p�
p� (c) = gp�([a]) = gp�([b]).

Now we define the following element � of �:

� =
∧
{�′ ∈ �|�′��}.

Because of � ∈ F(�) we obtain: � � �. Hence p�(�) = 1—i.e. � ∈ Vp� , and for all p ∈ A� the relation p��p

follows. In particular, for all p ∈ A� the relation �
p�
p (c) = ��

p(a) = ��
p(b) holds—i.e. ��

�(a) = ��
�(b). Hence [a] = [b]

follows, and the injectivity of gp� is verified.
In order to prove the surjectivity of gp� we choose an element d ∈ Gp� and invoke again the fact that Gp� is the

inductive limit of {Gp� | � ∈ F(�)}. Hence there exists an element � ∈ F(�) and an element c ∈ Gp� with d = �
p�
p� (c).

Now we enter into the previous construction and obtain an element a ∈ F(�) determined by

a = (�
p�
p (c))p∈A� .

Hence the relation d = �
p�
p� (c) = �

�
p�(a) = gp�(�

�
p�(a)) holds. �

Since the real unit interval is a complete chain and therefore completely distributive, we would like to explain the
previous situations in the context given by Example 4.2.

Remark 4.7 (Sheaf of level cuts). Let F be a sheaf of level cuts. Then there exists a [0, 1]-indexed family {A� | � ∈
[0, 1]} of sets A� s.t.

A0 = {·},
⋂

0<�<�

A� = A�, � ∈]0, 1] (cf. Example 4.2).

Further, let ([0, 1[, �([0, 1[)) be the topological space representing the frame � = [0, 1] (cf. Section 1). Since the
restriction maps of F are set-inclusion maps, the set F̃(t) of all germs at t ∈ [0, 1[ has the following form:

F̃(t) =
⋃

�∈]t,1]
A�. (4.8)

Hence the espace étalé F̃ [0, 1[�	
is given by

F̃ =
⋃

t∈[0,1[
F̃(t)× {t} = {(a, t) | t < �, a ∈ A�}, 	(a, t) = t,

and

{{a} × [0, �[|� < �, a ∈ A�}
is a base of the topology on F̃ . In particular, for every local section 
 of 	 with domain [0, �[(0 < �) there exists a
unique element a ∈ A� s.t.


 = 
a, 
a(t) = (a, t), t ∈ [0, �[.
In this context the «continuity» property from Lemma 4.5 attains the form

F̃(t) =
⋃
t<t ′

F̃(t ′), t ∈ [0, 1[. (4.9)

Moreover Theorem 4.6 can be put in concrete terms as follows: Since the specialization order on [0, 1[ is dual to the
usual ordering � on [0, 1[, every [0, 1[-indexed family {Ft | t ∈ [0, 1[ } of sets Ft satisfying (4.9) defines a functor

([0, 1[, �op) SET�G
by

G(t) = Ft , Ft Fs,� ��t
s

s� t,
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where �t
s denotes the set-inclusion map. Because of (4.9) G fulfills the «continuity» condition from Lemma 4.5. Then

the projective limit construction in Part (b) of the proof of Theorem 4.6 leads to a sheaf F of level cuts:

A0 = {·}, F(�) = A� =
⋂
t<�

Ft , � ∈]0, 1].

It follows immediately from (4.9) that the set F̃ (t) of all germs at t coincides with Ft (t ∈ [0, 1[).

Finally, in the case of arbitrary spatial frames we notice that the espace étalé induced by the constant presheaf FA

(cf. Example 4.1) coincides with the espace étalé associated with the crisp equality on A (cf. Example 2.5).

5. Change of base

Let � and �′ be frames. Further, let � �′�h
be a frame homomorphism (i.e. a finite meets and arbitrary

joins preserving map (cf. [33])), and F be a sheaf on �′. Then the composition F ◦ h is a sheaf on � (cf. [13, 6.4]).
Since sheaves and complete Heyting algebra valued sets are equivalent concepts, we would like to see the effect of this
construction on complete Heyting algebra sets.

Let (A, E) be a complete �′-valued set, and let E be the extent of existence of (A, E)—i.e. E(a) = E(a, a), a ∈ A.
According to Section 4 the sheaf F corresponding to (A, E) is given by

F(�) = {a ∈ A | E(a, a) = �}, F(�) F(�)���
�

by

E(��
�(a), b) = � ∧ E(a, b), a ∈ F(�), b ∈ A, ���.

Then the support set A∗ of F ◦ h has the following form:

A∗ =
⋃
�∈�

F(h(�))× {�} = {(a, �) ∈ A× � | E(a) = h(�)}.

Hence A∗ is determined by the subsequent pullback square in SET:

A∗ �

A �′

�E∗

�
k

�
h

�
E

(5.1)

Further, the �-valued equality E∗ on A∗ corresponding to the sheaf F ◦ h is given by (cf. (4.2)):

E∗((a, �), (b, �)) =
∨
{� ∈ �|��� ∧ �, �h(�)

h(�) (a) = �h(�)

h(�) (b)}.

Now let �′ ��h∗ be the right adjoint map associated with h—i.e.

h∗(�′) =
∨
{� ∈ �

∣∣∣ h(�)��′}, �′ ∈ �′.

Then E∗ can be reformulate as follows:

E∗((a, �), (b, �)) = E∗(a, �) ∧ E∗(b, �) ∧ h∗(E(k(a, �), k(b, �))). (5.2)

Since F ◦ h is a sheaf, (A∗, E∗) is obviously a complete �-valued set. In particular, we conclude from (5.1) and
E∗(a, �)�h∗(h(E∗(a, �))) that the extent of existence of (A∗, E∗) coincides with E∗.

A short glance at the previous construction shows that the derivation of the formulas (5.1) and (5.2) does not require
the completeness (resp. the full account of sheaf-theoretic properties); this means that the previous construction works
already for arbitrary Heyting algebra valued sets.
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The aim of the following considerations is to complete this construction to a functor �h∗ : �′-SET → �-SET.
Obviously on objects �h∗ is determined by: �h∗(A, E) = (A∗, E∗). In order to define the action of �h∗ on mor-

phisms we consider an �′-SET-morphism (A1, E1) (A2, E2)��
and conclude from the universal property of

the diagram in (5.1) that there exists an �-SET-morphism (A∗1, E∗1 ) (A∗2, E∗2 )��∗
making the following diagram

commutative:

(5.3)

By virtue of the universal property of pullbacks the correspondence � �−→ �∗ defined by (5.3) is functorial. Thus we
put: �h∗(�) = �∗.

As an immediate corollary from the introductory remarks we obtain the simple fact that the range of the restriction
of �h∗ to C�′-SET is contained in C�-SET. We show now that �h∗ has a left adjoint functor. For this purpose we
introduce a functor �h : �-SET→ �′-SET by

�h(A, E) = (A, h ◦ E), �(�) = �, (5.4)

and consider a natural transformation � : id�-SET → �h∗ ◦�h whose components are determined as follows:

(A, E) (A∗, (h ◦ E)∗),��(A,E)
�(A,E) = (a, E(a)), a ∈ A. (5.5)

Because (5.2) and id��h∗ ◦ h the map �(A,E) is indeed an �-SET-morphism. Moreover, the commutativity of the
diagram in (5.3) entails the commutativity of

(A1, E1) (A∗1, (h ◦ E1)
∗)

(A2, E2) (A∗, (h ◦ E2)
∗)

�

�

��(A1,E1)

�

�∗

��(A2,E2)

Hence we can view � as a candidate for the unit of a possible adjoint situation �h��h∗ provided we can verify the
following universal property:

For every �-SET-morphism (A1, E1) (A∗2, E∗2 )��
there exists a unique �′-SET-morphism

(A1, h ◦ E1) (A2, E2)����
making the diagram

(A1, E1) (A∗1, (h ◦ E1)
∗)

(A∗2, E∗2 )

�

�

��(A1,E1)








�
�h∗ (���)

(5.6)

commutative.
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If we assume the commutativity of (5.6) and make use of k1 ◦ �(A1,E1)
= idA1 and of the notations from (5.1), then we

obtain

k2 ◦ � = k2 ◦�h∗(���) ◦ �(A1,E1)
= ��� ◦ k1 ◦ �(A1,E1)

= ���.
Hence ��� is uniquely determined by (5.6).

If we now consider an �-SET-morphism (A1, E1) (A∗2, E∗2 ),��
then we put ��� := k2 ◦ �. The commuta-

tivity of (5.1) implies

h ◦ E1(a) = h ◦ E∗2(�(a)) = E2(k2 ◦ �(a)).

Hence ��� fulfills the morphism axiom (m1). In order to verify the morphism axiom (m2) we refer to (5.2) and make
use of the property h ◦ h∗� id�′ :

h(E(a, b)) � h(E∗2 (�(a), �(b)))�h(h∗(E2(���(a), ���(b))))

� E2(���(a), ���(b)).

Thus ��� is an �′-SET-morphism. Finally we observe:

E∗2(�(a)) = E1(a) = E∗2([�h∗(���)](a, E1(a))), a ∈ A1,

k2 ◦ �(a) = ���(a) = k2 ◦ ([�h∗(���)](a, E1(a))).

Since 〈k2, E∗2〉 is injective, we obtain � = �h∗(���) ◦ �(A1,E1)
. Therewith the universal property of the diagram in

(5.6) is verified. To sum up we have proved the following theorem.

Theorem 5.1. The functor �h is left adjoint to �h∗ .

Since C�′-SET is a reflexive subcategory of �′-SET (cf. Section 3), we obtain immediately the following corollary.

Corollary 5.2. Let  be the reflector for C�′-SET. Then the functor  ◦�h is left adjoint to the restriction of �h∗ to
C�′-SET.

Proposition 5.3. The restriction of the functor  ◦�h to C�-SET preserves finite limits.

Proof. Since frame homomorphisms preserve universal upper bounds, it is easily seen that  ◦�h|C�-SET preserves
the terminal object. If (A, E) and (B, F ) are complete �-valued sets, then it is not difficult to prove the existence of
an isomorphism between the singleton spaces (�h(A, E) ⊗ �h(B, F )) and (�h(A, E) × �h(B, F )). Since �h

preserves nonempty finite products, we conclude from Lemma 3.5 that  ◦�h|C�-SET also preserves nonempty finite
products. Further, we verify the preservation of equalizers. First, we notice that the support set of equalizers in C�-SET
can be computed at the level of SET. Then an equalizer diagram in C�-SET

(D, G) � ��
(A, E) ��

�
�

(B, F )

can be read as follows: D is a subset of A, � denotes the inclusion map from D to A, G is the restriction of E to D×D,
and the set D itself is given as follows (cf. (4.2)):

D = {�E(a)

F (�(a),�(a))
(a)| a ∈ A}.

The aim of the following considerations is to show that

(D, h ◦G) �(�)
(A, h ◦ E) �(�)

�
(�)

(B, h ◦ F) (5.7)

is an equalizer diagram in C�′-SET. From the definition of the monad T (cf. Section 3) we conclude that (�) has
the form:

[(�)](s)(b) =
∨
a∈A

s(a) ∧ h ◦ F(�(a), b), b ∈ B, s ∈ S(A, h ◦ E).
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The same situation applies to (�). Now we choose a singleton s of (A, h ◦E) with [(�)](s) = [(�)](s). Then the
morphism axiom (m2) implies:

s(a)�h ◦ F(�(a), �(a)), a ∈ A. (5.8)

Since E is compatible with the sheaf-structure, we obtain from (5.8) and the strictness of s:

s(a)�h(E(a, a) ∧ F(�(a), �(a))) = h ◦ E(a, �E(a)

F (�(a),�(a))
(a)).

If s|D is the restriction of s to D, then the previous formula implies:∨
d∈D

s|D(d) ∧ h ◦ E(d, a) = s(a), a ∈ A;

this means [(�)](s|D) = s. Hence ((D, h ◦G), (�)) is the equalizer of (�) and (�) in (5.7). �

We can summarize the assertions from Corollary 5.2 and Proposition 5.3 in the following statement (cf. [13, 6.10
Theorem, 9.3 and 9.4 Examples; 18, pp. 464]):

The adjoint pair  ◦�h|C�-SET��h∗ |C�′-SET is a geometric morphism from C�-SET to C�′-SET.
On the other hand every geometric morphism from C�-SET to C�′-SET is uniquely induced by a frame homomor-

phism � �′�h
up to an isomorphism (cf. [33, p. 175]).

We finish this section with three important examples.

Example 5.4 (Booleanization). Let � be a frame and S(�) be the Stone space of all prime filters of �. Then the Boolean
algebra of all Borel subsets of S(�) modulo subsets of first category is a complete Boolean algebra B(�) (cf. [54, p. 75]).
In particular, B(�) is called the Booleanization of �. Since in any frame finite meets are distributive over arbitrary joins,

there exists a frame monomorphism � B(�)� �m
sending every element � ∈ � to the equivalence class determined

by the open set of all prime filters P with � ∈ P . Then the geometric morphism  ◦�m|C�-SET��m∗ |CB(�)-SET from
C�-SET to CB(�)-SET can be understood as a «measure» of the distance between intuitionistic and classical logic.

A second class of examples of geometric morphisms is furnished by points of frames.

Remark 5.5 (Fibres of espaces étalés). Let � be a spatial frame and E(pt (�)) be the category of espaces étalé viewed
as full subcategory of the comma category TOP ↓ pt(�). Further, let p be a point of �—i.e. a frame homomorphism
from � to 2 = {0, 1}. Since we neglect the unique element with zero extent of existence, we identify C2-SET with the
category SET of ordinary sets. Hence the restriction of  ◦�p to C�-SET is a functor from C�-SET to SET.

The aim of the following considerations is to explain the role of the functors  ◦�p|C�-SET and �p∗ |SET in some
standard constructions in sheaf theory. First, for every ordinary set A the sheaf F on � corresponding to the complete
�-valued set �p∗(A) is the so-called «skyscraper» sheaf Skyp(A) (cf. [43, p. 93]). On the other hand, let (A, E) be a

complete �-valued set and pt(P (A, E)) pt (�)�	 be the espace étalé corresponding to (A, E) (cf. Section 2).

Since the reflector  : 2-SET→ C2-SET = SET means the formation of quotients w.r.t. partial equivalence relations,
we conclude from the definition of  ◦�p and the construction of 	 in Section 2 that the image (A, p ◦E) of (A, E)

under  ◦�p coincides with the fibre Ap over p w.r.t. 	. Moreover, the adjoint pair

 ◦�p|C�-SET��p∗ |SET

is a geometric morphism from C�-SET to SET. Hence for all points p of � the restriction of the functor  ◦�p to
C�-SET preserves finite limits and set-indexed colimits. Taking into account the equivalence between C�-SET and
E(pt (�)) (see also [43, Corollary 3, p. 90]) we obtain immediately from the previous observations that finite limits
and set-indexed colimits in E(pt (�)) are constructed fibrewise (resp. vertically) as in SET. In particular, morphisms
between espaces étalés are monic (resp. epic) iff they are fibrewise injective (resp. surjective) which also implies that
the (epi, mono)-factorization in E(pt (�)) is constructed fibrewise. By retranslation of these results to C�-SET we
obtain the following situation:
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A morphism (A, E) (B, E)��
in C�-SET is fibrewise injective iff for all points p of � and for all a1, a2 ∈ A

the relation

p ◦ E(a1, a2) = p ◦ F(�(a1), �(a1))

holds. Since � is spatial, we obtain E(a1, a2) = F(�(a1), �(a2)). Thus because of Axiom (m2) a morphism � is
monic in C�-SET iff � satisfies the following property

F(�(a1), �(a2))�E(a1, a2), a1, a2 ∈ A. (5.9)

A similar strategy leads to a characterization of epimorphisms in C�-SET. First, we notice that � is fibrewise surjective
iff for all points p of � the following condition is satisfied

p ◦ F(b, b) =
∨
a∈A

p ◦ F(�(a), b), b ∈ B. (5.10)

Since p preserves arbitrary joins and � is spatial, the previous relation is equivalent to

F(b, b) =
∨
a∈A

F(�(a), b), b ∈ B. (5.11)

Hence � is epic in C�-SET iff � satisfies (5.11). Finally, we conclude from (5.11) (resp. (5.10)) that the (epi, mono)-
factorization of � is given as follows:

(A, E) (B, F )

(C, G)

�����
�

��

����� (5.12)

where C = {b ∈ B | F(b, b) = ∨
a∈A F(�(a), b)}, G = F |C×C and � � is the inclusion map. In particular, the

subobject (C, G) (B, F )� � is called the image of �.

Finally, we remark that the description of the (epi, mono)-factorization as well as the characterizations of mono-
and epimorphisms in C�-SET given for the moment in the case of spatial frames remain valid for arbitrary frames.

As the third example we consider the unique embedding 2 = {0, 1} �.� ��
In this context the geometric

morphism

 ◦��|SET���∗ |C�-SET

has a very simple meaning: For every set X the restriction of  ◦ �� to SET assigns the singleton space (X, Ec)

to X w.r.t. the crisp equality. In the special case of spatial frames this means the sheaf generated by the constant
presheaf FX (cf. Examples 2.5 and 4.1). On the other hand, the restriction of the functor ��∗ to C�-SET assigns
the set of global sections to each complete �-valued set (resp. sheaf on �). Finally, it follows from the properties
of geometric morphisms that the functor  ◦ ��

∣∣
SET : SET → C�-SET preserves finite limits and set-indexed

colimits.
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6. Strict and extensional maps and subobjects of C�-SET

Let (A, E) be a not necessarily complete �-valued set. Obviously every ordinary subset U of A induces an E-strict
and E-extensional map A ��fU

by

fU(a) =
∨
u∈U

E(a, u). (6.1)

If (A, E) is separated and (U, E
∣∣
U×U

) is complete, then we obtain

U = {a ∈ A | fU(a) = E(a, a)}. (6.2)

In fact, if fU(a) = E(a, a), then the completeness of (U, E
∣∣
U×U

) implies the existence of b ∈ U s.t. E(a, a) = E(b, b)

and E(a, u) = E(b, u), u ∈ U . Now we invoke the transitivity axiom of �-valued equalities and obtain

E(a, a) = E(b, b) =
∨
u∈U

E(a, u) ∧ E(b, u) = E(a, b).

Since E is separated, we have a = b—i.e. a ∈ U .
The relations (6.1) and (6.2) motivate the following question:

Does for every E-strict and E-extensional map f exist a subset U of A s.t. (U, E

∣∣∣
U×U

) is complete and f = fU ?

In the case of complete �-valued sets the answer is affirmative as the next theorem shows. But we can prove something
more!

Theorem 6.1. Let (A, E) be a complete �-valued set, and f be an E-strict and E-extensional map. Then there exists
a unique ordinary subset U of A provided with the following properties:

(i) (U, E|U×U) is complete.
(ii) f (a) = fU(a) =∨

u∈U E(a, u).

Proof. The uniqueness follows immediately from (6.2) and Assertion (ii). In order to verify the existence we introduce
a subset U of A by: U = {a ∈ A | f (a) = E(a, a)}, and consider a singleton s of (U, E|U×U). Then s can be extended
to a singleton ŝ of (A, E) as follows:

ŝ(a) =
∨
u∈U

s(u) ∧ E(u, a), a ∈ A.

Since (A, E) is complete, there exists a unique element a0 ∈ A s.t. ã0 = ŝ. In particular, s(u) = E(a0, u), u ∈ U .
Now we use the E-extensionality of f and obtain

E(a0, a0)�f (a0)�
∨
u∈U

f (u) ∧ E(u, a0) =
∨
u∈U

E(u, a0) = E(a0, a0).

Hence a0 ∈ U , and the completeness of (U, E
∣∣
U×U

) is verified. Further, the inequality fU � f follows immediately
from the E-extensionality of f . On the other hand, we fix a ∈ A and infer from the completeness of (A, E) that there
exists a unique element b ∈ A s.t.

E(b, b) = f (a), E(b, c) = f (a) ∧ E(a, c), c ∈ A.

Obviously f (a) = E(b, a) and the E-strictness and E-extensionality of f implies: f (b) = f (a) = E(b, b)—i.e.
b ∈ U . In particular, f (a) � fU(a). Hence the relation f = fU is verified. �

Let (A, E) be a complete �-valued set. Since every subobject of (A, E) in the sense of C�-SET has a representative
of the form

(U, E
∣∣
U×U

) (A, E)� �
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where U is a subset of A and (U, E
∣∣
U×U

) is complete, we can summarize the previous considerations in the following
statement:

There exists a bijective map between P(A, E) and the set of all subobjects of (A, E). Referring to Assertion (ii) in Theorem 6.1 it is evident

that this bijection is even an order-isomorphism.

The aim of the following considerations is to internalize the previous constructions in C�-SET. First we study the
problem of internalizing strict and extensional maps as �-SET-morphisms. For this purpose we fix a not necessarily
complete, �-valued set (A, E) and an E-strict and E-extensional map A �.�f

If we choose the separated �-
valued set (�,←→) (cf. Example 2.1(c)) as codomain for f , then we see immediately that the E-extensionality of f is
equivalent to the morphism axiom (m2). Unfortunately, f does not satisfy the morphism axiom (m1) with regard to
(�,←→).

On the other hand, we can try to internalize f as a «fuzzy morphism» between the �-valued sets (A, E) and (�,←→).
We put:

Rf (a, �) = E(a, a) ∧ (f (a)←→ �), a ∈ A, � ∈ �. (6.3)

Because of the E-extensionality of f the map Rf satisfies the conditions (F1)–(F3). Hence, in the case of spatial frames
f can be viewed as a bundle morphism between the respective espaces étalés associated with (A, E) and (�,←→) 5 (cf.
Section 2). Moreover, the E-strictness of f implies R(a,�) = f (a)—this means that the correspondence f �−→ Rf

is injective. Thus we view Rf as an internalization of f .
In what follows we identify Rf with a map—i.e. with a morphism in �-SET. If we replace �-valued sets by

their singleton spaces, then we first note that every «fuzzy morphism» A× B ��R with (F1)–(F3) can be

identified with an �-SET-morphism (A, E) (B, F )��R where [�R(a)](b) = R(a, b), a ∈ A, b ∈ B. Thus

the internalized version Rf of f can be viewed as an �-SET-morphism with the codomain (�,←→). In this context
we ask the following question:

Does every �-SET-morphism (A, E) (�,←→)��
comes from an E-strict and E-extensional map?

In order to give a comprehensive answer to this question we begin with a characterization of the singleton space of
(�,←→). Because of Lemma 3.1 it is not difficult to see that every singleton s of (�,←→) has the following form:

s(�) = E(s) ∧ (s(�)←→ �), � ∈ �. (6.4)

Further, we construct an �-valued set (R�, E�) by

R� = {(�, �) | ���}, E�((�, �), (�, �)) = � ∧ � ∧ (�←→ �).

Proposition 6.2. The correspondence s �−→ (E(s), s(�)) is an �-SET-isomorphism from (�,←→) to (R�, E�).

Proof. The assertion follows immediately from the definition of E� and the �-valued equality on the singleton
space. �

Now we are in the position to conclude from (6.4) and Proposition 6.2 that every E-strict and E-extensional map f

can be internalized as an �-SET-morphism (A, E) (R�, E�)��f

where �f is given by

�f (a) = (E(a, a), f (a)), a ∈ A. (6.5)

On the other hand, let (A, E) (R�, E�)��
be an arbitrary �-SET-morphism. Then the composition of � with

the projection onto the first component coincides with the extent E of existence, while the composition of � with the
projection onto the second component leads to an E-strict and E-extensional map f s.t. � = �f . Hence the answer of
the previous question is affirmative and can be summarized in the statement that there exists a bijective map between
the hom-set hom�-SET((A, E), (R�, E�)) and the frame P(A, E) (cf. Section 2).

5 The fibre over p of the espace étalé associated with (�,←→) consists of all germs of open subsets of pt(�) at p (cf. [4, pp. 65–68]).
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Since the terminal object 1 = (�,∧) is isomorphic to the singleton space ({·},�) where {·} is a set consisting of

a single element with total extent of existence, we can introduce the arrow true 1 (R�, E�)�t
as the unique

extension of the correspondence · �−→ �—i.e.

t (�) = (�, �), � ∈ �. (6.6)

Further, let (A, E) be a complete �-valued set and f be a E-strict and E-extensional map. Using the fact that pullbacks
in C�-SET are computed at the level of SET we obtain immediately that

(U, E
∣∣
U×U

) (A, E)� � with U = {a ∈ A | f (a) = E(a, a)}
is the pullback of t along �f . On the other hand the following theorem holds.

Theorem 6.3. Let (U, F ) (A, E)� ��
be a C�-SET-monomorphism. Then there exists a unique C�-SET-

morphism (A, E) (R�, E�)��
such that the diagram

(U, F ) 1

(A, E) (R�, E�)

�!
�
�

�
�
�
t

��

(6.7)

is a pullback square.

Proof. (a) (Existence) Let f be an E-strict and E-extensional map defined by

f (a) =
∨
u∈U

E(a, �(u)), a ∈ A. (6.8)

Obviously �f makes the diagram (6.7) commutative. In order to verify the universal property of pullbacks we consider a

further complete �-valued set (Z, W) and a pair of arrows (Z, W) (A, E)��
, (Z, W) 1�!

with �f ◦� =
t◦!. In particular, for all z ∈ Z we have f (�(z)) = W(z, z) = E(�(z), �(z)). Since � is a C�-SET-monomorphism
(cf. (5.9) in Remark 5.5), we obtain that for every z ∈ Z there exists a unique element �(z) of U s.t.

E(�(�(z)), �(u)) = F(�(z), u) = E(�(z), �(u)), z ∈ Z, u ∈ U.

In particular, � makes the following diagram commutative:

Since � is monic, the uniqueness of � is evident.

(b) (Uniqueness) Let (A, E) (R�, E�)��f̂

be a C�-SET-morphism s.t.

(U, F ) 1

(A, E) (R�, E�)

�!

�
�

�
t

��f̂

(6.9)
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is a pullback square. The commutativity of the previous diagram implies f � f̂ . On the other hand, we choose an
element a ∈ A and consider the singleton space ({·}, f̂ (a)) where {·} is a set consisting of a single element with extent
of existence f̂ (a). Since (A, E) is complete, we conclude from the universal property of free algebras (cf. Section 3)

that there exists a unique arrow ({·}, f̂ (a)) (A, E)��
determined by the following property:

E(�(·), b) = f̂ (a) ∧ E(a, b), b ∈ A

where we have identified ·̃ with ·. Hence the relation

E(�(·), �(·)) = f̂ (a) = E(�(·), a) = f̂ (�(·)) (6.10)

follows (cf. Proof of Theorem 6.1); this means that the following diagram is commutative:

({·}, f̂ (a)) 1

(A, E) (R�, E�)

�!

��
�
� t

��f̂

Now we invoke the universal property of (6.9) and obtain an element u0 ∈ U with �(u0) = �(·) Then (6.10) implies:
f̂ (a) = E

(
a, �(u0)

)
� f (a). Hence f̂ and f coincide. �

The representation of monomorphisms specified in the previous theorem is also known as the subobject classifier
axiom in C�-SET (cf. [18; p. 81; 43, pp. 31–34]). In this context elements of the hom-set hom�-SET((A, E), (R�, E�))

are called characteristic morphisms. Since characteristic morphisms are the internalized version of strict and extensional
maps, elements of the frame P(A, E) are sometimes called membership maps—a terminology which will be justified
by Section 1.1.1. in Fuzzy Sets and Sheaves Part II (cf. [30]).

Finally, we return to the case of incomplete �-valued sets. Then there exists a order isomorphism between P(A, E)

and P((A, E)). In particular, for every E-strict and E-extensional map A ��f
there exists a unique Ẽ-strict

and Ẽ-extensional map S(A, E) ��f̃
satisfying the condition

f̃ (̃a) = f (a), a ∈ A. (6.11)

Obviously f̃ has the following form:

f̃ (s) =
∨
a∈A

s(a) ∧ f (a), s ∈ S(A, E). (6.12)

Subsequently, we apply the previous techniques to f̃ and obtain that the support set of the subobject corresponding to
f̃ is given by

U = {s ∈ S(A, E) | s�f }. (6.13)

In particular, U coincides with the set of all singletons «contained in» f.

7. Concluding remark

In this paper we have explained such important concepts as �-valued sets, espaces étalés, singleton monad and
sheaves. In particular, the specification of their mutual relations can be regarded as an attempt to teach a larger audience
a deeper understanding of sheaf theory. The application of these basic tools to the sheaf-theoretic foundation of fuzzy
set theory including its applications to algebra and topology will appear in a forthcoming paper under the title: Fuzzy
Sets and Sheaves—Part II (cf. [30]).
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