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Abstract. We prove existence of global and conservative solutions of the
Cauchy problem for the nonlinear partial differential equation ut − uxxt +
f(u)x − f(u)xxx + (g(u) + 1

2
f ′′(u)(ux)2)x = 0 where f is strictly convex or

concave and g is locally uniformly Lipschitz. This includes the Camassa–Holm
equation (f(u) = u2/2 and g(u) = κu+u2) as well as the hyperelastic-rod wave
equation (f(u) = γu2/2 and g(u) = (3− γ)u2/2) as special cases. It is shown

that the problem is well-posed for initial data in H1(R) if one includes a Radon
measure that corresponds to the energy of the system with the initial data. The
solution is energy preserving. Stability is proved both with respect to initial
data and the functions f and g. The proof uses an equivalent reformulation of
the equation in terms of Lagrangian coordinates.

1. Introduction

We solve the Cauchy problem on the line for the equation

ut − uxxt + f(u)x − f(u)xxx + (g(u) +
1

2
f ′′(u)(ux)2)x = 0 (1.1)

for strictly convex or concave functions f and locally uniformly Lipschitz functions
g with initial data in H1(R). This equation includes the Camassa–Holm equation
[4], the hyperelastic-rod wave equation [11] and its generalization [6, 7] as special
cases.

For f(u) = u2

2 and g(u) = κu + u2, we obtain the Camassa–Holm equation:

ut − uxxt + κux + 3uux − 2uxuxx − uuxxx = 0, u|t=0 = ū, (1.2)

which has been extensively studied the last decade [4, 5]. It was first introduced as
a model describing propagation of unidirectional gravitational waves in a shallow
water approximation, with u representing the fluid velocity, see [18]. The Camassa–
Holm equation has a bi-Hamiltonian structure, it is completely integrable, and it
has infinitely many conserved quantities.

For f(u) = γu2

2 and g(u) = 3−γ
2 u2, we obtain the hyperelastic-rod wave equation:

ut − utxx + 3uux − γ(2uxuxx + uuxxx) = 0,

which was introduced by Dai [11, 10, 12] in 1998. It describes far-field, finite length,
finite amplitude radial deformation waves in cylindrical compressible hyperelastic
rods, and u represents the radial stretch relative to a pre-stressed state.

Furthermore, for f(u) = γu2

2 we find the generalized hyperelastic-rod equation

ut − uxxt +
1

2
g(u)x − γ(2uxuxx + uuxxx) = 0, (1.3)
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which was recently studied by Coclite, Holden, and Karlsen [6, 7], extending earlier
results for the Camassa–Holm equation by Xin and Zhang, see [20]. They analyzed
the initial value problem for this equation, using an approach based on a certain
viscous regularization. By carefully studying the behavior of the limit of vanishing
viscosity they derived the existence of a solution of (1.3). This solution could be
called a diffusive solution, and will be distinct from the solutions studied here. We
will discuss this in more detail below.

We will not try to cover the extensive body of results regarding various aspects
of the Camassa–Holm equation. Suffice it here to note that in the case with κ = 0
the solution may experience wave breaking in finite time in the sense that the
function remains bounded while the spatial derivative becomes unbounded with
finite H1-norm. Various mechanisms and conditions are known as to when and
if wave breaking occurs. Specifically we mention that Constantin, Escher, and
Molinet [8, 9] showed the following result: If the initial data u|t=0 = ū ∈ H1(R)
and m̄ := ū − ū′′ is a positive Radon measure, then equation (1.2) with κ = 0 has
a unique global weak solution u ∈ C([0, T ], H1(R)), for any T positive, with initial
data ū. However, any solution with odd initial data ū in H3(R) such that ūx(0) < 0
blows up in a finite time.

The problem of continuation of the solution beyond wave breaking is intricate. It
can be illustrated in the context of a peakon–antipeakon solution. The one peakon
is given by u(t, x) = c exp(− |x − ct|). If c is positive, the solution is called a
peakon, and with c negative it is called an antipeakon. One can construct solutions
that consist of finitely many peakons and antipeakons. Peakons move to the right,
antipeakons to the left. If initial data are given appropriately, one can have a
peakon colliding with an antipeakon. In a particular symmetric case they exactly
annihilate each other at collision time t∗, thus u(t∗, x) = 0. This immediately raises
the question about well-posedness of the equation and allows for several distinct
ways to continue the solution beyond collision time. For an extensive discussion
of this case, we refer to [17] and references therein. We here consider solutions,
called conservative, that preserve the energy. In the example just mentioned this
corresponds to the peakon and antipeakon passing through each other, and the
energy accumulating as a Dirac delta-function at the origin at the time of collision.
Thus the problem cannot be well-posed by considering the solution u only. Our
approach for the general equation (1.1) is based on the inclusion of the energy,
in the form of a (non-negative Radon) measure, together with the function u as
initial data. We have seen that singularities occur in these variables. Therefore
we transform to a different set of variables, which corresponds to a Lagrangian
formulation of the flow, where the singularities do not occur.

Let us comment on the approach in [6, 7]. The equation (1.3) is rewritten as

ut + γuux + Px = 0, P − Pxx =
1

2
(g(u) − γu2) + γ(ux)2. (1.4)

By adding the term εuxx to the first equation, it is first shown that the modified
system has a unique solution.1 Subsequently, it is proved that the vanishing vis-
cosity limit ε → 0 exists. The limit is shown to be weak solution of (1.3). In
particular, that means that ‖u(t, · )‖H1 ≤ ‖u(0, · )‖H1 and that the solution satis-
fies an entropy condition ux(t, x) ≤ K + 2/(γt) for some constant K. The solution
described above with a peakon and an antipeakon “passing through” each other
will not satisfy this entropy condition. Thus the solution concept is different in the
two approaches.

1In fact, it it is proved that a more general parabolic-elliptic system, allowing, e.g., for explicit
spatial and temporal dependence in the various functions, has a solution.
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Here we take a rather different approach. Based on recent techniques developed
for the Camassa–Holm equation, see [1, 2, 15, 16], we prove that (1.1) possesses a
global weak and conservative solution. Furthermore, we show that the problem is
well-posed. In particular we show stability with respect to both perturbations in
the initial data and the functions f and g in a suitable topology.

The present approach is based on the fact that the equation can be reformulated
as a system of ordinary differential equations taking values in a Banach space. It
turns out to be advantageous first to rewrite the equation as

ut + f(u)x + Px = 0, (1.5a)

P − Pxx = g(u) +
1

2
f ′′(u)u2

x (1.5b)

where we assume2
{

f ∈ W 3,∞
loc (R), f ′′(u) 6= 0, u ∈ R,

g ∈ W 1,∞
loc (R), g(0) = 0.

(1.6)

We will use this assumption throughout the paper.
Specifically, the characteristics are given by

yt(t, ξ) = f ′(u(t, y(t, ξ)).

Define subsequently

U(t, ξ) = u(t, y(t, ξ)),

H(t, ξ) =

∫ y(t,ξ)

−∞

(

u2 + u2
x

)

dx,

where U and H correspond to the Lagrangian velocity and the Lagrangian cumula-
tive energy distribution, respectively. It turns out that one can derive the following
system of ordinary differential equations taking values in an appropriately chosen
Banach space, viz.











yt = U,

Ut = −Q,

Ht = G(U) − 2PU,

where the quantities G, Q, and P can be expressed in terms of the unknowns
(y, U, H). Short-term existence is derived by a contraction argument. Global exis-
tence as well as stability with respect to both initial data and functions f and g,
is obtained for a class of initial data that includes initial data u|t=0 = ū in H1(R),
see Theorem 2.8. The transition of this result back to Eulerian variables is compli-
cated by several factors, one being the reduction of three Lagrangian variables to
two Eulerian variables. There is a certain redundancy in the Lagragian formula-
tion which is identified, and we rather study equivalence classes that correspond to
relabeling of the same Eulerian flow. The main existence result is Theorem 2.9. It
is shown that the flow is well-posed on this space of equivalence classes in the La-
grangian variables, see Theorem 3.6. A bijection is constructed between Lagrangian
and Eulerian variables, see Theorems 3.8–3.11. On the set D of Eulerian variables
we introduce a metric that turns D into a complete metric space, see Theorem 3.12.

The main result, Theorem 3.13, states the following: There exists a continuous
semigroup on D which to any initial data (ū, µ̄) ∈ D associates the pair (u(t), µ(t)) ∈
D such that u(t) is a weak solution of (1.5) and the measure µ = µ(t) with µ(0) = µ̄,
evolves according to the linear transport equation µt+(uµ)x = (G(u)−2Pu)x where
the functions G and P are explicitly given. Continuity with respect to all variables,

2Without loss of generality we may and will assume that g(0) = 0. Otherwise, (1.5b) should

be replaced by P − Pxx = g(u)− g(0) + 1

2
f ′′(u)u2

x
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including f and g, is proved. The total energy as measured by µ is preserved, i.e.,
µ(t)(R) = µ̄(R) for all t.

The abstract construction is illustrated on the one and two peakon solutions for
the Camassa–Holm equation.

The paper is organized as follows. In Section 2 the equation is reformulated in
terms of Lagrangian variables, and existence is first proved in Lagrangian variables
before the results are transformed back to the original Eulerian variables. Stability
of the semigroup is provided in Section 3, and the construction is illustrated on
concrete examples in Section 4.

2. Existence of solutions

2.1. Transport equation for the energy density and reformulation in terms

of Lagrangian variables. In (1.5b), P can be written in explicit form:

P (t, x) =
1

2

∫

R

e−|x−z|(g ◦ u +
1

2
f ′′ ◦ uu2

x

)

(t, z) dz. (2.1)

We will derive a transport equation for the energy density u2 + u2
x. Assuming that

u is smooth, we get, after differentiating (1.5a) with respect to x and using (1.5b),
that

uxt +
1

2
f ′′(u)u2

x + f ′(u)uxx + P − g(u) = 0. (2.2)

Multiply (1.5a) by u, (2.2) by ux, add the two to find the following equation

(u2 + u2
x)t + (f ′(u)(u2 + u2

x))x = −2(Pu)x + (2g(u) + f ′′(u)u2)ux. (2.3)

Define G(v) as

G(v) =

∫ v

0

(2g(z) + f ′′(z)z2) dz, (2.4)

then (2.3) can be rewritten as

(u2 + u2
x)t + (f ′(u)(u2 + u2

x))x = (G(u) − 2Pu)x, (2.5)

which is transport equation for the energy density u2 + u2
x.

Let us introduce the characteristics y(t, ξ) defined as the solutions of

yt(t, ξ) = f ′(u(t, y(t, ξ)) (2.6)

with y(0, ξ) given. Equation (2.5) gives us information about the evolution of the
amount of energy contained between two characteristics. Indeed, given ξ1, ξ2 in R,
let

H(t) =

∫ y(t,ξ2)

y(t,ξ1)

(

u2 + u2
x

)

dx

be the energy contained between the two characteristic curves y(t, ξ1) and y(t, ξ2).
Then, we have

dH

dt
=
[

yt(t, ξ)(u
2 + u2

x) ◦ y(t, ξ)
]ξ2

ξ1
+

∫ y(t,ξ2)

y(t,ξ1)

(u2 + u2
x)t dx. (2.7)

We use (2.5) and integrate by parts. The first term on the right-hand side of (2.7)
cancels because of (2.6) and we end up with

dH

dt
= [(G(u) − 2Pu) ◦ y]

ξ2

ξ1
. (2.8)

We now derive a system equivalent to (1.5). The calculations here are formal and
will be justified later. Let y still denote the characteristics. We introduce two other
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variables, the Lagrangian velocity U and cumulative energy distribution H defined
by

U(t, ξ) = u(t, y(t, ξ)), (2.9)

H(t, ξ) =

∫ y(t,ξ)

−∞

(

u2 + u2
x

)

dx, (2.10)

respectively. From the definition of the characteristics, it follows from (1.5a) that

Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y)

= (ut + f ′(u)ux) ◦ y(t, ξ)

= −Px◦y (t, ξ). (2.11)

This last term can be expressed uniquely in term of U , y, and H . Namely, we have

Px◦y (t, ξ) = −1

2

∫

R

sgn(y(t, ξ) − z)e−|y(t,ξ)−z|(g ◦ u +
1

2
f ′′ ◦ u u2

x)(t, z) dz

and, after the change of variables z = y(t, η),

Px ◦ y(t, ξ) = −1

2

∫

R

[

sgn(y(t, ξ) − y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

g ◦ u +
1

2
f ′′ ◦ uu2

x

)

(t, y(t, η))yξ(t, η)
]

dη.

Finally, since Hξ = (u2 + u2
x)◦y yξ,

Px◦y (ξ) = −1

2

∫

R

sgn(y(ξ) − y(η))e−|y(ξ)−y(η)|

×
(

(

g(U) − 1

2
f ′′(U)U2

)

yξ +
1

2
f ′′(U)Hξ

)

(η) dη (2.12)

where the t variable has been dropped to simplify the notation. Later we will prove
that y is an increasing function for any fixed time t. If, for the moment, we take
this for granted, then Px◦y is equivalent to Q where

Q(t, ξ) = −1

2

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)

×
(

(

g(U) − 1

2
f ′′(U)U2

)

yξ +
1

2
f ′′(U)Hξ

)

(η) dη, (2.13)

and, slightly abusing the notation, we write

P (t, ξ) =
1

2

∫

R

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)

×
(

(

g(U) − 1

2
f ′′(U)U2

)

yξ +
1

2
f ′′(U)Hξ

)

(η) dη. (2.14)

Thus Px ◦y and P ◦y can be replaced by equivalent expressions given by (2.13)
and (2.14) which only depend on our new variables U , H , and y. We introduce yet
another variable, ζ(t, ξ), simply defined as

ζ(t, ξ) = y(t, ξ) − ξ.

It will turn out that ζ ∈ L∞(R). We have now derived a new system of equations,
formally equivalent (1.5). Equations (2.11), (2.8) and (2.6) give us











ζt = U,

Ut = −Q,

Ht = G(U) − 2PU.

(2.15)
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Detailed analysis will reveal that the system (2.15) of ordinary differential equations
for (ζ, U, H) : [0, T ] → E is well-posed, where E is a Banach space to be defined in
the next section. We have

Qξ = −1

2
f ′′(U)Hξ +

(

P +
1

2
f ′′(U)U2 − g(U)

)

yξ,

and Pξ = Qyξ. Hence, differentiating (2.15) yields














ζξt = f ′′(U)Uξ (or yξt = f ′′(U)Uξ),

Uξt =
1

2
f ′′(U)Hξ −

(

P +
1

2
f ′′(U)U2 − g(U)

)

yξ,

Hξt = −2Q Uyξ + (2g(U) − f ′′(U)U2 − 2P )Uξ.

(2.16)

The system (2.16) is semilinear with respect to the variables yξ, Uξ and Hξ.

2.2. Existence and uniqueness of solutions in Lagrangian variables. In this
section, we focus our attention on the system of equations (2.15) and prove, by a
contraction argument, that it admits a unique solution. Let V be the Banach space
defined by

V = {f ∈ Cb(R) | fξ ∈ L2(R)}
where Cb(R) = C(R) ∩ L∞(R) and the norm of V is given by ‖f‖V = ‖f‖L∞(R) +

‖fξ‖L2(R). Of course H1(R) ⊂ V but the converse is not true as V contains functions

that do not vanish at infinity. We will employ the Banach space E defined by

E = V × H1(R) × V

to carry out the contraction map argument. For any X = (ζ, U, H) ∈ E, the norm
on E is given by

‖X‖E = ‖ζ‖V + ‖U‖H1(R) + ‖H‖V .

The following lemma gives the Lipschitz bounds we need on Q and P .

Lemma 2.1. For any X = (ζ, U, H) in E, we define the maps Q and P as Q(X) =
Q and P(X) = P where Q and P are given by (2.13) and (2.14), respectively. Then,

P and Q are Lipschitz maps on bounded sets from E to H1(R). Moreover, we have

Qξ = −1

2
f ′′(U)Hξ +

(

P +
1

2
f ′′(U)U2 − g(U)

)

(1 + ζξ), (2.17)

Pξ = Q(1 + ζξ). (2.18)

Proof. We rewrite Q as

Q(X)(ξ) = −e−ζ(ξ)

2

∫

R

χ{η<ξ}(η)e−(ξ−η)eζ(η)

×
(

(

g(U) − 1

2
f ′′(U)U2

)

(1 + ζξ) +
1

2
f ′′(U)Hξ

)

(η) dη

+
eζ(ξ)

2

∫

R

χ{η>ξ}(η)e(ξ−η)e−ζ(η)

×
(

(

g(U) − 1

2
f ′′(U)U2

)

(1 + ζξ) +
1

2
f ′′(U)Hξ

)

(η) dη, (2.19)

where χB denotes the indicator function of a given set B. We decompose Q into
the sum Q1 + Q2 where Q1 and Q2 are the operators corresponding to the two
terms on the right-hand side of (2.19). Let h(ξ) = χ{ξ>0}(ξ)e

−ξ and A be the map
defined by A : v 7→ h ? v. Then, Q1 can be rewritten as

Q1(X)(ξ) = −e−ζ(ξ)

2
A ◦ R(ζ, U, H)(ξ) (2.20)
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where R is the operator from E to L2(R) given by

R(ζ, U, H)(ξ) = eζ(ξ)
(

(g(U) − 1

2
f ′(U)U2)(1 + ζξ) +

1

2
f ′′(U)Hξ

)

(ξ). (2.21)

We claim that A is continuous from L2(R) into H1(R). The Fourier transform of
h can easily be computed, and we obtain

ĥ(η) =

∫

R

h(ξ)e−2iπηξ dξ =
1

1 + 2iπη
. (2.22)

The H1(R) norm can be expressed in term of the Fourier transform as follows, see,
e.g., [14],

‖h ? v‖H1(R) =
∥

∥

∥
(1 + η2)

1
2 ĥ ? v

∥

∥

∥

L2(R)
.

Since ĥ ? v = ĥv̂, we have

‖h ? v‖H1(R) =
∥

∥

∥
(1 + η2)

1
2 ĥv̂

∥

∥

∥

L2(R)

≤ C ‖v̂‖L2(R) by (2.22)

= C ‖v‖L2(R) by Plancherel equality

for some constant C. Hence, A : L2(R) → H1(R) is continuous. We prove that
R(ζ, U, H) belongs to L2(R) by using the assumption that g(0) = 0. Then, A ◦
R(ζ, U, H) belongs to H1. Let us prove that R : E → L2(R) is locally Lipschitz.
For that purpose we will use the following short lemma.

Lemma 2.2. Let BM = {X ∈ E | ‖X‖E ≤ M} be a bounded set of E.

(i) If g1 is Lipschitz from BM to L∞(R) and g2 Lipschitz from BM to L2(R), then

the product g1g2 is Lipschitz from BM to L2(R).
(ii) If g1, g2 are two Lipschitz maps from BM to L∞(R), then the product g1g2 is

Lipschitz from BM to L∞(R).

Proof of Lemma 2.2. Let X and X̄ be in BM , and assume that g1 and g2 satisfy
the assumptions of (i). We denote by L1 and L2, the Lipschitz constants of g1 and
g2, respectively. We have
∥

∥g1(X)g2(X) − g1(X̄)g2(X̄)
∥

∥

L2(R)

≤
∥

∥g1(X) − g1(X̄)
∥

∥

L∞(R)
‖g2(X)‖L2(R) +

∥

∥g1(X̄)
∥

∥

L∞(R)

∥

∥g2(X) − g2(X̄)
∥

∥

L2(R)

≤
[

2L1L2M + L1 ‖g2(0)‖L2(R) + L2 ‖g1(0)‖L∞(R)

]
∥

∥X − X̄
∥

∥

E

and (i) is proved. One proves (ii) the same way. �

Let us consider a bounded set BM = {X ∈ E | ‖X‖E ≤ M} of E. For X =

(ζ, U, H) and X̄ = (ζ̄, Ū , H̄) in BM , we have ‖U‖L∞(R) ≤ 1√
2
‖U‖H1(R) ≤ 1√

2
M ,

because 1√
2

is the constant of the Sobolev embedding from H1(R) into L∞(R), and,

similarly,
∥

∥Ū
∥

∥

L∞(R)
≤ 1√

2
M . Let IM = [− 1√

2
M, 1√

2
M ] and

LM = ‖f‖W 3,∞(IM ) + ‖g‖W 1,∞(IM ) < ∞. (2.23)

Then
∥

∥g(Ū) − g(U)
∥

∥

L2(R)
≤ ‖g‖W 1,∞(IM )

∥

∥Ū − U
∥

∥

L2(R)
≤ LM

∥

∥Ū − U
∥

∥

L2(R)
.

Hence, g1 : X → g(U) is Lipschitz from BM to L2(R). For X, X̄ in BM , we
have ‖ζ‖L∞(R) ≤ M and

∥

∥ζ̄
∥

∥

L∞(R)
≤ M . The function x 7→ ex is Lipschitz on

{x ∈ R | |x| ≤ M}. Hence, g2 : X 7→ eζ is Lipschitz from BM to L∞(R). Thus, the
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first term in (2.21), g1(X)g2(X) = eζg(U), is, by Lemma 2.2, Lipschitz from BM

to L2(R). We look at the second term, that is, eζg(U)ζξ . For X, X̄ in BM , we have

∥

∥g(U) − g(Ū)
∥

∥

L∞(R)
≤ ‖g‖W 1,∞(IM )

∥

∥U − Ū
∥

∥

L∞(R)
≤ 1√

2
LM

∥

∥U − Ū
∥

∥

H1(R)
.

Hence, X 7→ g(U) is Lipschitz from BM to L∞(R) and, by Lemma 2.2, as X 7→ eζ

is also Lipschitz from BM to L∞(R), we have that the product X 7→ eζg(U) is
Lipschitz from BM to L∞(R). After using again Lemma 2.2, since X 7→ ζξ, being
linear, is obviously Lipschitz from BM to L2(R), we obtain, as claimed, that the
second term in (2.21), eζg(U)ζξ, is Lipschitz from BM to L2(R). We can handle
the other terms in (2.21) similarly and prove that R is Lipschitz from BM to L2(R).
Since A : L2(R) → H1(R) is linear and continuous, A ◦ R is Lipschitz from BM to
H1(R). Then, we use the following lemma whose proof is basically the same as the
proof of Lemma 2.2.

Lemma 2.3. Let R1 : BM → V , R2 : BM → H1(R), and R3 : BM → V be three

Lipschitz maps. Then, the products X 7→ R1(X)R2(X) and X 7→ R1(X)R3(X) are

also Lipschitz maps from BM to H1(R) and BM to V , respectively.

Since the map X 7→ e−ζ is Lipschitz from BM to V , Q1 is the product of two
Lipschitz maps, one from BM to H1(R) and the other from BM to V , and therefore
it is Lipschitz map from BM to H1(R). Similarly, one proves that Q2 and therefore
Q are Lipschitz on BM . Furthermore, P is Lipschitz on BM . The formulas (2.17)
and (2.18) are obtained by direct computation using the product rule, see [13, p.
129]. �

In the next theorem, by using a contraction argument, we prove the short-time
existence of solutions to (2.15).

Theorem 2.4. Given X̄ = (ζ̄ , Ū , H̄) in E, there exists a time T depending only on
∥

∥X̄
∥

∥

E
such that the system (2.15) admits a unique solution in C1([0, T ], E) with

initial data X̄.

Proof. Solutions of (2.15) can be rewritten as

X(t) = X̄ +

∫ t

0

F (X(τ)) dτ (2.24)

where F : E → E is given by F (X) = (f ′(U),−Q(X), G(U)−2P(X)U) where X =
(ζ, U, H). The integrals are defined as Riemann integrals of continuous functions
on the Banach space E. Let BM and LM be defined as in the proof of Lemma 2.1,
see (2.23). We claim that X = (ζ, U, H) 7→ f ′(U) and X = (ζ, U, H) 7→ G(U)
are Lipschitz from BM to V . Then, using Lemma 2.1, we can check that each
component of F (X) is a product of functions that satisfy one of the assumptions of
Lemma 2.3 and using this same lemma, we obtain that F (X) is Lipchitz on BM .
Thus, F is Lipschitz on any bounded set of E. Since E is a Banach space, we use
the standard contraction argument to show the existence of short-time solutions
and the theorem is proved. For any X = (ζ, U, H) and X̄ = (ζ̄, Ū , H̄) in BM , we
have ‖U‖L∞(R) ≤ 1√

2
M and

∥

∥Ū
∥

∥

L∞(R)
≤ 1√

2
M . Then,

∥

∥f ′(U) − f ′(Ū)
∥

∥

L∞(R)
≤ ‖f ′‖W 1,∞(IM )

∥

∥U − Ū
∥

∥

L∞(R)
≤ 1√

2
LM

∥

∥X − X̄
∥

∥

E

and X 7→ f ′(U) is Lipschitz from BM into L∞(R). Since f ′ is C1 and U ∈ H1(R),
using [19, Appendix A.1], we obtain that f ′(U)ξ ∈ L2(R) and

f ′(U)ξ = f ′′(U)Uξ .
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As before, it is not hard to prove that X 7→ f ′′(U) is Lipschitz from BM into
L∞(R). It is clear that X 7→ Uξ is Lipschitz from BM into L2(R). Hence, it follows
from Lemma 2.2 that X 7→ f ′′(U)Uξ is Lipschitz from BM into L2(R). Therefore,
X 7→ f ′(U) is Lipschitz from BM into V . Similarly, one proves that X 7→ G(U) is
Lipschitz from BM into V and our previous claim is proved. �

We now turn to the proof of existence of global solutions of (2.15). We are
interested in a particular class of initial data that we are going to make precise
later, see Definition 2.5. In particular, we will only consider initial data that belong

to E ∩
[

W 1,∞(R)
]3

where

W 1,∞(R) = {f ∈ Cb(R) | fξ ∈ L∞(R)}.
Given (ζ̄ , Ū , H̄) ∈ E ∩ [W 1,∞(R)]3, we consider the short-time solution (ζ, U, H) ∈
C([0, T ], E) of (2.15) given by Theorem 2.4. Using the fact that Q and P are
Lipschitz on bounded sets (Lemma 2.1) and, since X ∈ C([0, T ], E), we can prove
that P and Q belongs to C([0, T ], H1(R)). We now consider U , P and Q as given
function in C([0, T ], H1(R)). Then, for any fixed ξ ∈ R, we can solve the system of
ordinary differential equations


























d

dt
α(t, ξ) = f ′′(U)β(t, ξ),

d

dt
β(t, ξ) =

1

2
f ′′(U)γ(t, ξ) +

(

− 1

2
f ′′(U)U2 + g(U) − P

)

(1 + α)(t, ξ),

d

dt
γ(t, ξ) = −2(Q U)(1 + α)(t, ξ) + (2g(U) + f ′′(U)U2 − 2P )β(t, ξ),

(2.25)

which is obtained by substituting ζξ, Uξ and Hξ in (2.16) by the unknowns α, β,
and γ, respectively. Concerning the initial data, we set (α(0, ξ), β(0, ξ), γ(0, ξ)) =
(ζ̄ξ , Ūξ, H̄ξ) if

∣

∣ζ̄ξ(ξ)
∣

∣+
∣

∣Ūξ(ξ)
∣

∣+
∣

∣H̄ξ(ξ)
∣

∣ < ∞ and (α(0, ξ), β(0, ξ), γ(0, ξ)) = (0, 0, 0)
otherwise. In the same way as in [16, Lemma 2.4], see also Lemma 2.6 below, we
can prove that solutions of (2.25) exist in [0, T ] and that, for all time t ∈ [0, T ],

(α(t, ξ), β(t, ξ), γ(t, ξ)) = (ζξ(t, ξ), Uξ(t, ξ), Hξ(t, ξ))

for almost every ξ ∈ R. Thus, we can select a special representative for (ζξ , Uξ, Hξ)
given by (α, β, γ), which is defined for all ξ ∈ R and which, for any given ξ, satisfies
the ordinary differential equation (2.25) in R3. From now on we will of course
identify the two and set (ζξ , Uξ, Hξ) equal to (α, β, γ).

Our goal is to find solutions of (1.5) with initial data ū in H1 because H1 is
the natural space for the equation. However, Theorem 2.4 gives us the existence of
solutions to (2.15) for initial data in E. Therefore we have to find initial conditions
that match the initial data ū and belong to E. A natural choice would be to use
ȳ(ξ) = y(0, ξ) = ξ and Ū(ξ) = u(ξ). Then y(t, ξ) gives the position of the particle
which is at ξ at time t = 0. But, if we make this choice, then H̄ξ = ū2 + ū2

x and H̄ξ

does not belong to L2(R) in general. We consider instead ȳ implicitly given by

ξ =

∫ ȳ(ξ)

−∞
(ū2 + ū2

x) dx + ȳ(ξ) (2.26a)

and

Ū = ū◦ȳ , (2.26b)

H̄ =

∫ ȳ

−∞

(

ū2 + ū2
x

)

dx. (2.26c)

In the next lemma we prove that (ȳ, Ū , H̄) belongs to the set G where G is defined
as follows.
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Definition 2.5. The set G is consists of all (ζ, U, H) ∈ E such that

(ζ, U, H) ∈
[

W 1,∞(R)
]3

, (2.27a)

yξ ≥ 0, Hξ ≥ 0, yξ + Hξ > 0 almost everywhere, and lim
ξ→−∞

H(ξ) = 0, (2.27b)

yξHξ = y2
ξU2 + U2

ξ almost everywhere, (2.27c)

where we denote y(ξ) = ζ(ξ) + ξ.

Lemma 2.6. Given ū ∈ H1(R), then (ȳ, Ū , H̄) as defined in (2.26) belongs to G.

Proof. The function k : z 7→
∫ z

0 (ū2+ ū2
x)(x) dx+z is a strictly increasing continuous

function with limz→±∞ k(z) = ±∞. Hence, k is invertible and ȳ(ξ) = k−1(ξ) is
well-defined. We have to check that (ζ̄ , Ū , H̄) belongs to E. It follows directly from
the definition that ȳ is a strictly increasing function. We have

ζ̄(ξ) = −
∫ ȳ(ξ)

−∞

(

ū2 + ū2
x

)

dx, (2.28)

and therefore, since ū ∈ H1, ζ̄ is bounded. For any (ξ, ξ′) ∈ R2, we have

|ξ − ξ′| =

∣

∣

∣

∣

∣

∫ ȳ(ξ)

ȳ(ξ′)

(ū2 + ū2
x) dx + ȳ(ξ) − ȳ(ξ′)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ȳ(ξ)

ȳ(ξ′)

(ū2 + ū2
x) dx

∣

∣

∣

∣

∣

+ |ȳ(ξ) − ȳ(ξ′)| (2.29)

because the two quantities inside the absolute values have the same sign. It follows
from (2.29) that ȳ is Lipschitz (with Lipschitz constant at most 1) and therefore
almost everywhere differentiable. From (2.28), we get that, for almost every ξ ∈ R,

ζ̄ξ = −(ū2 + ū2
x)◦ȳ ȳξ

Since ȳξ = 1 + ζ̄ξ , it implies

ζ̄ξ(ξ) = − ū2 + ū2
x

1 + ū2 + ū2
x

◦ȳ(ξ) . (2.30)

Therefore ζ̄ξ is bounded almost everywhere and ζ̄ belongs to W 1,∞(R). We also
have

ȳξ =
1

1 + ū2 + ū2
x

◦ȳ (2.31)

which implies that ȳξ > 0 almost everywhere. From (2.28), we see that H̄ = −ζ̄
and therefore H̄ belongs to W 1,∞(R). Since H1(R) ⊂ L∞(R), Ū = ū◦ȳ is bounded.
We have, for almost every ξ ∈ R,

H̄ξ = (ū2 + ū2
x)◦ȳ ȳξ (2.32)

which, since Ūξ = ūx◦ȳ yξ almost everywhere, gives us

ȳξH̄ξ = ȳ2
ξ Ū2 + Ū2

ξ . (2.33)

Hence, Ū2
ξ ≤ ȳξH̄ξ and Ūξ is bounded and Ū belongs to W 1,∞(R). We have

(ζ̄ , Ū , H̄) ∈ [W 1,∞(R)]3. It remains to prove that Ū , ζ̄ξ, Ūξ and H̄ξ belong to
L2(R). By making the change of variable x = ȳ(ξ) and using (2.31), we obtain

∥

∥Ū
∥

∥

2

L2(R)
=

∫

R

ū2(x)(1 + ū2 + ū2
x)(x) dx

≤ ‖ū‖2
L2(R) + ‖ū‖2

L∞(R) ‖ū‖
2
H1(R) .
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Hence, Ū ∈ L2(R). Since 0 ≤ H̄ξ ≤ 1, H̄ is monotone and
∥

∥H̄ξ

∥

∥

2

L2(R)
≤
∥

∥H̄ξ

∥

∥

L∞(R)

∥

∥H̄ξ

∥

∥

L1(R)
≤ lim

ξ→∞
H̄(ξ) = ‖ū‖2

H1(R) .

Hence, H̄ξ, and therefore ζ̄ξ , belong to L2(R). From (2.33) we get
∥

∥Ūξ

∥

∥

2

L2(R)
≤
∥

∥ȳξH̄ξ

∥

∥

L1(R)
≤ (1 +

∥

∥ζ̄ξ

∥

∥

L∞(R)
)
∥

∥H̄
∥

∥

L∞(R)

and Ūξ ∈ L2(R). �

For initial data in G, the solution of (2.15) exists globally. To prove that we will
use the following lemma.

Lemma 2.7. Given initial data X̄ = (ζ̄, Ū , H̄) in G, let X(t) = (ζ(t), U(t), H(t))
be the short-time solution of (2.15) in C([0, T ], E) for some T > 0 with initial data

X̄ = (ζ̄ , Ū , H̄). Then,

(i) X(t) belongs to G for all t ∈ [0, T ], that is, G is preserved by the flow.

(ii) for almost every t ∈ [0, T ], yξ(t, ξ) > 0 for almost every ξ ∈ R,

(iii) For all t ∈ [0, T ], limξ→±∞ H(t, ξ) exists and is independent of time.

We denote by A the set of all ξ ∈ R for which
∣

∣ζ̄ξ(ξ)
∣

∣ +
∣

∣Ūξ(ξ)
∣

∣ +
∣

∣H̄ξ(ξ)
∣

∣ < ∞
and the relations in (2.27b) and (2.27c) are fulfilled for ȳξ, Ūξ and H̄ξ. Since
by assumption X̄ ∈ G, we have meas(Ac) = 0, and we set (Ūξ , H̄ξ, ζ̄ξ) equal to
zero on Ac. Then, as we explained earlier, we choose a special representative for
(ζ(t, ξ), U(t, ξ), H(t, ξ)) which satisfies (2.16) as an ordinary differential equation in
R3 for every ξ ∈ R.

Proof. (i) The fact that W 1,∞(R) is preserved by the equation can be proved in the
same way as in [16, Lemma 2.4] and we now give only a sketch of this proof. We
look at (2.15) as a system of ordinay differential equations in E∩W 1,∞(R). We have
already established the short-time existence of solutions in E, and, since (2.16) is
semilinear with respect to yξ, Uξ and Hξ (and affine with respect to ζξ , Uξ and Hξ),
it is not hard to establish, by a contraction argument, the short-time existence of
solutions in E ∩W 1,∞(R). Let C1 = supt∈[0,T ]

(

‖U(t, · )‖L∞(R) + ‖P (t, · )‖L∞(R) +

‖Q(t, · )‖L∞(R)

)

and Z(t) = ‖ζξ(t, · )‖L∞(R) + ‖Uξ(t, · )‖L∞(R) + ‖Hξ(t, · )‖L∞(R).

We have C1 ≤ supt∈[0,T ] ‖X(t, · )‖E < ∞. Using again the semi-linearity of (2.16),
we get that

Z(t) ≤ Z(0) + CT + C

∫ t

0

Z(τ) dτ

for a constant C that only depends on C1. Hence, it follows from Gronwall’s lemma
that supt∈[0,T ) Z(t) < ∞, which proves that the space W 1,∞(R) is preserved by the

flow of (2.15). Let us prove that (2.27c) and the inequalities in (2.27b) hold for any
ξ ∈ A and therefore almost everywhere. We consider a fixed ξ in A and drop it in
the notations when there is no ambiguity. From (2.16), we have, on the one hand,

(yξHξ)t = yξtHξ + Hξtyξ

= f ′′(U)UξHξ +
(

G′(U)Uξ − 2QUyξ − 2PUξ

)

yξ

= f ′′(U)UξHξ +
(

2g(U) + f ′′(U)U2
)

Uξyξ − 2Qy2
ξU − 2PUξyξ

and, on the other hand,

(y2
ξU2 + U2

ξ )t = 2yξtyξU
2 + 2y2

ξUtU + 2UξtUξ

= 2f ′′(U)UξyξU
2 − 2y2

ξQU

+ 2Uξ

(1

2
f ′′(U)Hξ −

1

2
f ′′(U)U2yξ + g(U)yξ − Pyξ

)

.
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Thus, (yξHξ − y2
ξU2 − U2

ξ )t = 0, and since yξHξ(0) = (y2
ξU2 + U2

ξ )(0), we have

yξHξ(t) = (y2
ξU2 + U2

ξ )(t) for all t ∈ [0, T ]. We have proved (2.27c). Let us
introduce t∗ given by

t∗ = sup{t ∈ [0, T ] | yξ(t
′) ≥ 0 for all t′ ∈ [0, t]}.

Recall that we consider a fixed ξ ∈ A, and drop it in the notation. Assume that
t∗ < T . Since yξ(t) is continuous with respect to time, we have

yξ(t
∗) = 0. (2.34)

Hence, from (2.27c) that we just proved, Uξ(t
∗) = 0 and, by (2.16),

yξt(t
∗) = f ′′(U)Uξ(t

∗) = 0. (2.35)

From (2.16), since yξ(t
∗) = Uξ(t

∗) = 0, we get

yξtt(t
∗) = f ′′(U)Uξt(t

∗) =
1

2
f ′′(U)2Hξ(t

∗). (2.36)

If Hξ(t
∗) = 0, then (yξ , Uξ, Hξ)(t

∗) = (0, 0, 0) and, by the uniqueness of the solu-
tion of (2.16), seen as a system of ordinary differential equations, we must have
(yξ, Uξ, Hξ)(t) = 0 for all t ∈ [0, T ]. This contradicts the fact that yξ(0) and Hξ(0)
cannot vanish at the same time (ȳξ + H̄ξ > 0 for all ξ ∈ A). If Hξ(t

∗) < 0, then
yξtt(t

∗) < 0 because f does not vanish and, because of (2.34) and (2.35), there ex-
ists a neighborhood U of t∗ such that y(t) < 0 for all t ∈ U \ {t∗}. This contradicts
the definition of t∗. Hence,

Hξ(t
∗) > 0, (2.37)

and, since we now have yξ(t
∗) = yξt(t

∗) = 0 and yξtt(t
∗) > 0, there exists a

neighborhood of t∗ that we again denote by U such that yξ(t) > 0 for all t ∈ U\{t∗}.
This contradicts the fact that t∗ < T , and we have proved the first inequality in
(2.27b), namely that yξ(t) ≥ 0 for all t ∈ [0, T ]. Let us prove that Hξ(t) ≥ 0
for all t ∈ [0, T ]. This follows from (2.27c) when yξ(t) > 0. Now, if yξ(t) = 0,
then Uξ(t) = 0 from (2.27c), and we have seen that Hξ(t) < 0 would imply that
yξ(t

′) < 0 for some t′ in a punctured neighborhood of t, which is impossible. Hence,
Hξ(t) ≥ 0, and we have proved the second inequality in (2.27b). Assume that the
third inequality in (2.27c) does not hold. Then, by continuity, there exists a time
t ∈ [0, T ] such that (yξ + Hξ)(t) = 0. Since yξ and Hξ are positive, we must have
yξ(t) = Hξ(t) = 0 and, by (2.27c), Uξ(t) = 0. Since zero is a solution of (2.16), this
implies that yξ(0) = Uξ(0) = Hξ(0), which contradicts (yξ + Hξ)(0) > 0. The fact
that limξ→−∞ H(t, ξ) = 0 will be proved below in (iii).

(ii) We define the set

N = {(t, ξ) ∈ [0, T ]× R | yξ(t, ξ) = 0}.
Fubini’s theorem gives us

meas(N ) =

∫

R

meas(Nξ) dξ =

∫

[0,T ]

meas(Nt) dt (2.38)

where Nξ and Nt are the ξ-section and t-section of N , respectively, that is,

Nξ = {t ∈ [0, T ] | yξ(t, ξ) = 0}
and

Nt = {ξ ∈ R | yξ(t, ξ) = 0}.
Let us prove that, for all ξ ∈ A, meas(Nξ) = 0. If we consider the sets N n

ξ defined
as

Nn
ξ = {t ∈ [0, T ] | yξ(t, ξ) = 0 and yξ(t

′, ξ) > 0 for all t′ ∈ [t − 1/n, t + 1/n] \ {t}},
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then

Nξ =
⋃

n∈N

Nn
ξ . (2.39)

Indeed, for all t ∈ Nξ, we have yξ(t, ξ) = 0, yξt(t, ξ) = 0 from (2.27c) and (2.16) and
yξtt(t, ξ) = 1

2f ′′(U)2Hξ(t, ξ) > 0 from (2.16) and (2.27b) (yξ and Hξ cannot vanish
at the same time for ξ ∈ A). Since f ′′ does not vanish, this implies that, on a small
punctured neighborhood of t, yξ is strictly positive. Hence, t belongs to some N n

ξ

for n large enough. This proves (2.39). The set N n
ξ consists of isolated points that

are countable since, by definition, they are separated by a distance larger than 1/n
from one another. This means that meas(N n

ξ ) = 0 and, by the subadditivity of the

measure, meas(Nξ) = 0. It follows from (2.38) and since meas(Ac) = 0 that

meas(Nt) = 0 for almost every t ∈ [0, T ]. (2.40)

We denote by K the set of times such that meas(Nt) > 0, i.e.,

K = {t ∈ R+ | meas(Nt) > 0} . (2.41)

By (2.40), meas(K) = 0. For all t ∈ Kc, yξ > 0 almost everywhere and, therefore,
y(t, ξ) is strictly increasing and invertible (with respect to ξ).

(iii) For any given t ∈ [0, T ], since Hξ(t, ξ) ≥ 0, H(t, ξ) is an increasing function
with respect to ξ and therefore, as H(t, · ) ∈ L∞(R), H(t, ξ) has a limit when
ξ → ±∞. We denote those limits H(t,±∞). Since U(t, · ) ∈ H1(R), we have
limξ→±∞ U(t, ξ) = 0 for all t ∈ [0, T ]. We have

H(t, ξ) = H(0, ξ) +

∫ t

0

[G(U) − 2PU ] (τ, ξ) dτ (2.42)

and limξ→±∞ G(U(t, ξ)) = 0 because limξ→±∞ U(t, ξ) = 0, G(0) = 0 and G is
continuous. As U , G(U) and P are bounded in L∞([0, T ] × R), we can let ξ
tend to ±∞ and apply the Lebesgue dominated convergence theorem. We get
H(t,±∞) = H(0,±∞) for all t ∈ [0, T ]. Since X̄ ∈ G, H(0,−∞) = 0 and therefore
H(t,−∞) = 0 for all t ∈ [0, T ]. �

In the next theorem, we prove global existence of solutions to (2.15). We also
state that the solutions are continuous with respect to the functions (f, g) ∈ E
(cf. (1.6)) that appear in (1.5). Therefore we need to specify the topology we use
on E . The space L∞

loc(R) is a locally convex linear topological space. Let Kj be a
given increasing sequence of compact sets such that R = ∪j∈NKj , then the topology
of L∞

loc(R) is defined by the sequence of semi-norms h 7→ ‖h‖L∞(Kn). The space

L∞
loc(R) is metrizable, see [14, Proposition 5.16]. A subset B of L∞

loc(R) is bounded
if, for all n ≥ 1, there exists Cn > 0 such that ‖f‖L∞(Kn) ≤ Cn for all f ∈ B, see

[21, I.7] for the general definition of bounded sets in a linear topological space. The

topologies of W k,∞
loc (R) follows naturally from the topology of L∞

loc(R) applied to

the k first derivatives. We equip E with the topology induced W 2,∞
loc (R) ×L∞

loc(R).

We will also consider bounded subsets of E in W 2,∞
loc (R) × W 1,∞

loc (R). A subset E ′

of E is bounded in W 2,∞
loc (R) × W 1,∞

loc (R) if for all n ≥ 1, there exists Cn such that
‖f‖W 2,∞(Kn) + ‖g‖W 1,∞(Kn) ≤ Cn for all (f, g) ∈ E ′. In the remaining, by bounded

sets of E we will always implicitly mean bounded sets of E in W 2,∞
loc (R)×W 1,∞

loc (R).

Theorem 2.8. Assume (1.6). For any X̄ = (ȳ, Ū , H̄) ∈ G, the system (2.15)
admits a unique global solution X(t) = (y(t), U(t), H(t)) in C1(R+, E) with initial

data X̄ = (ȳ, Ū , H̄). We have X(t) ∈ G for all times. If we equip G with the

topology induced by the E-norm, then the map S : G × E × R+ → G defined as

St(X̄, f, g) = X(t)
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is a semigroup which is continuous with respect to all variables, on any bounded set

of E.

Proof. The solution has a finite time of existence T only if ‖X(t, · )‖E blows up
when t tends to T because, otherwise, by Theorem 2.4, the solution can be extended
by a small time interval beyond T . Thus, We want to prove that

sup
t∈[0,T )

‖X(t, · )‖E < ∞.

Since X(t) ∈ G, Hξ ≥ 0, from (2.27b), and H(t, ξ) is an increasing function in ξ
for all t and, from Lemma 2.7, we have limξ→∞ H(t, ξ) = limξ→∞ H(0, ξ). Hence,
supt∈[0,T ) ‖H(t, · )‖L∞(R) =

∥

∥H̄
∥

∥

L∞(R)
and therefore supt∈[0,T ) ‖H(t, · )‖L∞(R) is

finite. To simplify the notation we suppress the dependence in t for the moment
and denote h =

∥

∥H̄
∥

∥

L∞(R)
. We have

U2(ξ) = 2

∫ ξ

−∞
U(η)Uξ(η) dη = 2

∫

{η≤ξ|yξ(η)>0}
U(η)Uξ(η) dη (2.43)

since, from (2.27c), Uξ(η) = 0 when yξ(η) = 0. For almost every ξ such that
yξ(ξ) > 0, we have

|U(ξ)Uξ(ξ)| =

∣

∣

∣

∣

∣

√
yξU(ξ)

Uξ(ξ)
√

yξ(ξ)

∣

∣

∣

∣

∣

≤ 1

2

(

U(ξ)2yξ(ξ) +
U2

ξ (ξ)

yξ(ξ)

)

=
1

2
Hξ(ξ),

from (2.27c). Inserting this inequality in (2.43), we obtain U2(ξ) ≤ H(ξ) and we
have

U(t, ξ) ∈ I := [−
√

h,
√

h] (2.44)

for all t ∈ [0, T ) and ξ ∈ R. Hence, supt∈[0,T ) ‖U(t, · )‖L∞(R) < ∞. The property

(2.44) is important as it says that the L∞(R)-norm of U is bounded by a constant
which does not depend on time. We set

κ = ‖f‖W 2,∞(I) + ‖g‖W 1,∞(I) .

By using (2.44), we obtain

‖f ′(U)‖L∞(R) ≤ ‖f ′‖L∞(I) ≤ κ. (2.45)

Hence, from the governing equation (2.15), it follows that

|ζ(t, ξ)| ≤ |ζ(0, ξ)| + κT,

and supt∈[0,T ) ‖ζ(t, · )‖L∞(R) is bounded. Next we prove that supt∈[0,T ) ‖Q(t, · )‖L∞(R)

is finite. We decompose Q into a sum of two integrals that we denote Qa and Qb,
respectively,

Q(t, ξ) = −1

2

∫

R

sgn(ξ − η)e−|y(ξ)−y(η)|yξ(η)
(

g(U) − 1

2
f ′′(U)U2

)

dη

− 1

4

∫

R

sgn(ξ − η)e−|y(ξ)−y(η)|f ′′(U)Hξ dη

:= Qa + Qb.

Since yξ ≥ 0, we have

|Qa(t, ξ)| ≤ C1

∫

R

e−|y(ξ)−y(η)|yξ(η) dη = C1

∫

R

e−|y(ξ)−x| dx = 2C1
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where the constant C1 depends only on κ and h. Since Hξ ≥ 0, we have

|Qb(t, ξ)| ≤
κ

4

∫

R

e−|y(ξ)−y(η)|Hξ(η) dη

=
κ

4

∫

R

sgn(ξ − η)e−|y(ξ)−y(η)|H(η)yξ(η) dη (after integrating by parts)

≤ κh

4

∫

R

e−|y(ξ)−y(η)|yξ(η) dη (as yξ ≥ 0)

=
κh

2
(after changing variables).

Hence, Qb and therefore Q are bounded by a constant that depends only on κ and
h. Similarly, one proves that supt∈[0,T ) ‖P (t, · )‖L∞(R) is bounded by such constant.

We denote

C2 = sup
t∈[0,T )

{‖U(t, · )‖L∞(R) + ‖H(t, · )‖L∞(R)

+ ‖ζ(t, · )‖L∞(R) + ‖P (t, · )‖L∞(R) + ‖Q(t, · )‖L∞(R)}. (2.46)

We have just proved that C2 is finite and only depends on
∥

∥X̄
∥

∥

E
, T and κ. Let

t ∈ [0, T ). We have, as g(0) = 0,

‖g(U(t, · ))‖L2(R) ≤ ‖g‖W 1,∞(I) ‖U‖L2(R) ≤ κ ‖U‖L2(R) . (2.47)

We use (2.47) and, from (2.21), we obtain that

‖R(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R))

for some constant C depending only on C2, h and κ. From now on, we denote
generically by C such constants that are increasing functions of

∥

∥X̄
∥

∥

E
, T and κ.

Since A is a continuous linear map from L2(R) to H1(R), it is a fortiori continuous
from L2(R) to L2(R), and we get

‖A ◦ R(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)).

From (2.20), as
∥

∥e−ζ(t, · )∥
∥

L∞(R)
≤ C, we obtain that

‖Q1(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)).

The same bound holds for Q2 and therefore

‖Q(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)). (2.48)

Similarly, one proves

‖P (t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)). (2.49)

Let Z(t) = ‖U(t, · )‖L2(R) +‖ζξ(t, · )‖L2(R) +‖Uξ(t, · )‖L2(R) +‖Hξ(t, · )‖L2(R), then

the theorem will be proved once we have established that supt∈[0,T ) Z(t) < ∞.

From the integrated version of (2.15) and (2.16), after taking the L2(R)-norms on
both sides and adding the relevant terms, we use (2.49), (2.47) and obtain

Z(t) ≤ Z(0) + C

∫ t

0

Z(τ) dτ.

Hence, Gronwall’s lemma gives us that supt∈[0,T ) Z(t) < ∞. Thus the solution
exists globally in time. Moreover we have that

sup
t∈[0,T ]

‖X(t, · )‖E ≤ C(
∥

∥X̄
∥

∥

E
, T, κ) (2.50)

where C is an increasing function and κ = ‖f‖W 3,∞(I) + ‖g‖W 1,∞(I) with I =

[−
∥

∥H̄
∥

∥

1
2

L∞(R)
,
∥

∥H̄
∥

∥

1
2

L∞(R)
]. Note that in order to obtain (2.47), we needed a bound
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on g in W 1,∞
loc (R), which explains why we are working on a bounded subset of E in

W 2,∞
loc (R) × W 1,∞

loc (R).
We now turn to the proof of the continuity of the semigroup. Let E ′ be a

bounded set of E in W 2,∞
loc (R) × W 1,∞

loc (R). Since G and E are metrizable, it is
enough to prove sequential continuity. Let X̄n = (ȳn, Ūn, H̄n) ∈ G and (fn, gn) ∈ E ′

be sequences that converge to X̄ = (ȳ, Ū , H̄) ∈ G and (f, g) ∈ E ′. We denote
Xn(t) = St(X̄n, fn, gn) and X(t) = St(X̄, f, g). Let M = supn≥1

∥

∥X̄n

∥

∥

E
, we have

∥

∥H̄n

∥

∥

L∞(R)
≤ M for all n ≥ 1. Hence, from (2.44), it follows that

Un(t, ξ) ∈ I := [−
√

M,
√

M ] (2.51)

for all n ≥ 1 and (t, ξ) ∈ R+ × R. Since E ′ is a bounded set of E in W 2,∞
loc (R) ×

W 1,∞
loc (R) and (fn, gn) ∈ E ′, there exists a constant κ > 0 such that

‖fn‖W 2,∞(I) + ‖gn‖W 1,∞(I) ≤ κ

for all n ≥ 1. Hence, as In := [−
∥

∥H̄n

∥

∥

1
2

L∞(R)
,
∥

∥H̄n

∥

∥

1
2

L∞(R)
] ⊂ I ,

κn = ‖fn‖W 2,∞(In) + ‖gn‖W 1,∞(In) ≤ κ (2.52)

for all n ≥ 1. Given T > 0, it follows from (2.50) and (2.52) that, for all n ≥ 1,

sup
t∈[0,T ]

‖Xn(t, · )‖E ≤ C(
∥

∥X̄n

∥

∥

E
, T, κn) ≤ C(M, T, κ) = C ′ (2.53)

and supt∈[0,T ] ‖Xn(t, · )‖E is bounded uniformly with respect to n. We have

‖Xn(t) − X(t)‖E ≤
∥

∥X̄n − X̄
∥

∥

E
+

∫ t

0

‖F (Xn, fn, gn) − F (X, f, g)‖E (s) ds (2.54)

where F denotes the right-hand side of (2.15). We consider a fixed time t ∈ [0, T ]
and drop the time dependence in the notation for the moment. We have

‖F (Xn, fn, gn) − F (X, f, g)‖E ≤ ‖F (Xn, fn, gn) − F (Xn, f, g)‖E

+ ‖F (Xn, f, g) − F (X, f, g)‖E . (2.55)

The map X 7→ F (X, f, g) is Lipschitz on any bounded set of E, see the proof of
Theorem 2.4. Hence, after denoting L the Lipschitz function of this map on the
ball {X ∈ E | ‖X‖E ≤ C ′}, we get from (2.53) that

‖F (Xn, f, g) − F (X, f, g)‖E ≤ L ‖Xn − X‖E . (2.56)

Denote by Qn and Q̃n the expressions given by the definition (2.13) of Q where we
replace X , f , g by Xn, fn, gn and Xn, f , g, respectively. We use the same notations
and define Pn and P̃n from (2.14), and Gn and G̃n from (2.4). For example, we
have

Gn =

∫ Un

0

(2gn(z) + f ′′
n (z)z2) dz and G̃n =

∫ Un

0

(2g(z) + f ′′(z)z2) dz.

Still using the same notations, we have, from (2.21),

(Rn − R̃n)(ξ) = eζn
(

gn(Un) − g(Un) − 1

2
(f ′

n(Un) − f ′(Un))U2
n)
)

(1 + ζn,ξ)

+
1

2
eζn(f ′′

n (Un) − f ′′(Un))Hn,ξ. (2.57)
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Let δn = ‖fn − f‖W 2,∞(I) + ‖gn − g‖L∞(I). Since (fn, gn) → (f, g) in E , δn → 0 as

n → ∞. Hence, from (2.57) and (2.51), we get
∥

∥

∥
Rn − R̃n

∥

∥

∥

L2(R)
≤ eC′( ‖gn(Un) − g(Un)‖L2(R) + C ′ ‖gn(Un) − g(Un)‖L∞(R)

+
1

2
C ′ ‖f ′

n(Un) − f ′(Un)‖L∞(R) (M +
√

M)

+
1

2
C ′ ‖f ′′

n (Un) − f ′′(Un)‖L∞(R)

)

. (2.58)

Let δ′n = ‖gn(U) − g(U)‖L2(R), we then have

‖g(Un) − gn(Un)‖L2(R) ≤ ‖gn(Un) − gn(U)‖L2(R) + δ′n + ‖g(Un) − g(U)‖L2(R)

≤ 2κ ‖Un − U‖L2(R) + δ′n. (2.59)

Since gn → g in L∞(I), gn(U) → gn(U) in L∞(R). As |gn(U) − g(U)| ≤ 2κ |U |
(because g(0) = 0 and ‖g‖W 1,∞(I) ≤ κ), we can apply the Lebesgue dominated

convergence theorem and obtain that limn→∞ δ′n = 0. From (2.58) and (2.59), we
obtain that

∥

∥

∥
Rn − R̃n

∥

∥

∥

L2(R)
≤ C

(

δn + δ′n + ‖Un − U‖L2(R)

)

for some constant C which depends on M , T and κ. Again, we denote generically
by C such constants that are increasing functions of M , T and κ, and are inde-
pendent on n. Since A in (2.20) is continuous from L2(R) to H1(R), it follows

that
∥

∥

∥
Qn − Q̃n

∥

∥

∥

H1(R)
≤ C

(

δn + δ′n + ‖Un − U‖L2(R)

)

. Similarly, one proves that
∥

∥

∥
Pn − P̃n

∥

∥

∥

H1(R)
≤ C

(

δn + δ′n + ‖Un − U‖L2(R)

)

. We have

∥

∥

∥
Gn − G̃n

∥

∥

∥

V
=
∥

∥

∥
Gn − G̃n

∥

∥

∥

L∞(R)

+
∥

∥

(

2(gn(Un) − g(Un)) + (f ′′
n (Un) − f ′′(Un))U2

n

)

Un,ξ

∥

∥

L2(R)

≤
√

M
(

2 ‖gn(Un) − g(Un)‖L∞(R) + M ‖f ′′
n (Un) − f ′′(Un)‖L∞(R)

)

+ 2C ′ ‖gn(Un) − g(Un)‖L∞(R) + C ′M ‖f ′′
n (Un) − f ′′(Un)‖L∞(R)

≤ Cδn

by (2.59). Finally, we have

‖F (Xn, fn, gn) − F (Xn, f, g)‖E ≤ C
(

δn + δ′n + ‖Un − U‖L2(R)

)

. (2.60)

Gathering (2.54), (2.55), (2.56) and (2.60), we end up with

‖Xn(t) − X(t)‖E ≤
∥

∥X̄n − X̄
∥

∥

E
+ CT (δn + δ′n) + (L + C)

∫ t

0

‖Xn − X‖E (s) ds

and Gronwall’s lemma yields

‖Xn(t) − X(t)‖E ≤
(
∥

∥X̄n − X̄
∥

∥

E
+ CT (δn + δ′n)

)

e(L+C)T .

Hence, Xn → X in E uniformly in [0, T ]. �

The solutions are well-defined in our new sets of coordinates. Now we want to
go back to the original variable u. We define u(t, x) as

u(x, t) = U(ξ) for any ξ such that x = y(ξ). (2.61)

Let us prove that this definition is well-posed. Given x ∈ R, since y is increasing,
continuous and limξ→±∞ y = ±∞, y is surjective and there exists ξ such that
x = y(ξ). Suppose we have ξ1 < ξ2 with x = y(ξ1) = y(ξ2). Then, since y is
monotone, y(ξ) = y(ξ1) = y(ξ2) for all ξ ∈ (ξ1, ξ2) and yξ = 0 in this interval. From
(2.27c), it follows that Uξ = 0 on (ξ1, ξ2) and therefore U(ξ1) = U(ξ2).
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Theorem 2.9 (Existence of weak solutions). For initial data ū ∈ H1(R), let

(ȳ, Ū , H̄) be as given by (2.26) and (y, U, H) be the solution of (2.15) with initial

data (ȳ, Ū , H̄). Then u as defined in (2.61) belongs to C(R+, L∞(R))∩L∞(R+, H1(R))
and is a weak solution of (1.1).

Proof. Let us prove that u ∈ L∞(R, H1(R)). We consider a fix time t and drop it
in the notation when there is no ambiguity. For any smooth function φ, after using
the change of variable x = y(ξ), we obtain

∫

R

uφ dx =

∫

R

U(φ ◦ y)yξ dξ =

∫

R

U
√

yξ(φ ◦ y)
√

yξ dξ.

Hence, by Cauchy–Schwarz,
∣

∣

∣

∣

∫

R

uφ dx

∣

∣

∣

∣

≤ ‖φ‖L2(R)

√

∫

R

U2yξ dξ ≤
√

H(∞) ‖φ‖L2(R)

as U2yξ ≤ Hξ from (2.27c). Therefore, u ∈ L2(R) and ‖u(t, ·)‖L2(R) ≤
√

H(t,∞) =
√

H(0,∞) = ‖ū‖H1(R). For any smooth function φ, we have, after using the change

of variable x = y(ξ),
∫

R

u(x)φx(x) dx =

∫

R

U(ξ)φx(y(ξ))yξ(ξ) dξ = −
∫

R

Uξ(ξ)(φ ◦ y)(ξ) dξ. (2.62)

Let B = {ξ ∈ R | yξ(ξ) > 0}. Because of (2.27c), and since yξ ≥ 0 almost
everywhere, we have Uξ = 0 almost everywhere on Bc. Hence, we can restrict the
integration domain in (2.62) to B. We divide and multiply by

√
yξ the integrand

in (2.62) and obtain, after using the Cauchy–Schwarz inequality,

∣

∣

∣

∣

∫

R

uφx dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B

Uξ√
yξ

(φ ◦ y)
√

yξ dξ

∣

∣

∣

∣

≤
√

∫

B

U2
ξ

yξ
dξ

√

∫

B

(φ ◦ y)2yξ dξ.

By (2.27c), we have
U2

ξ

yξ
≤ Hξ . Hence, after another change of variables, we get
∣

∣

∣

∣

∫

R

uφx dx

∣

∣

∣

∣

≤
√

H(∞) ‖φ‖L2(R) ,

which implies that ux ∈ L2(R) and ‖ux(t, ·)‖L2(R) ≤ ‖ū‖H1(R). Hence, u ∈
L∞(R, H1(R)) and

‖u‖L∞(R,H1(R)) ≤ 2 ‖ū‖H1(R) . (2.63)

Let us prove sequential convergence in C(R+, L∞(R)). Given t ∈ R+ and a se-
quence tn ∈ R+ with tn → t, we set (yn(ξ), Un(ξ), Hn(ξ)) = (y(tn, ξ), U(tn, ξ), H(tn, ξ))
and, slightly abusing notation, (y(ξ), U(ξ), H(ξ)) = (y(t, ξ), U(t, ξ), H(t, ξ)). For
any x ∈ R, there exist ξn and ξ, which may not be unique, such that x = yn(ξn)
and x = y(ξ). We set xn = yn(ξ). We have

u(tn, x) − u(t, x) = u(tn, x) − u(tn, xn) + Un(ξ) − U(ξ) (2.64)

and

|u(tn, x) − u(tn, xn)| =

∣

∣

∣

∣

∫ x

xn

ux(tn, x′) dx′
∣

∣

∣

∣

≤
√

|xn − x|
(
∫ x

xn

ux(tn, x′)2 dx′
)1/2

(Cauchy–Schwarz)

≤
√

|yn(ξ) − y(ξ)| ‖u‖L∞(R,H1(R))

≤ 2 ‖ū‖H1(R) ‖y − yn‖1/2
L∞(R) , (2.65)
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by (2.63). Since yn → y and Un → U in L∞(R), it follows from (2.64) and (2.65)
that un → u in L∞(R).

Since u ∈ L∞(R+, H1(R)), g(u) + 1
2f ′′(u)u2

x ∈ L∞(R+, L1(R)) and, since v 7→
(1 − ∂xx)−1v is continuous from H−1(R) to H1(R), P ∈ L∞(R+, H1(R)). We say
that u is a weak solution of (1.5) if

∫

R+×R

(−uφt + f ′(u)uxφ + Pxφ) (t, x) dtdx = 0 (2.66)

for all φ ∈ C∞(R+ × R) with compact support. For t ∈ Kc, that is for almost
every t (see (2.41) in Lemma 2.7), yξ(t, ξ) > 0 for almost every ξ ∈ R and y(t, ·) is
invertible, we have Uξ = ux◦yyξ and, after using the change of variables x = y(t, ξ),
we get
∫

R+×R

[−u(t, x)φt(t, x) + f ′(u(t, x))ux(t, x)φ(t, x)] dxdt

=

∫

R+×R

[−U(t, ξ)yξ(t, ξ)φt(t, y(t, ξ)) + f ′(U(t, ξ))Uξ(t, ξ)φ(t, y(t, ξ))] dξdt.

(2.67)

Using the fact that yt = f ′(U) and yξt = f ′′(U)Uξ, one easily check that

(Uyξφ ◦ y)t − (f ′(U)Uφ ◦ y)ξ = Uyξφt ◦ y − f ′(U)Uξφ ◦ y + Utyξφ ◦ y. (2.68)

After integrating (2.68) over R+ × R, the left-hand side of (2.68) vanishes and we
obtain
∫

R+×R

[

− Uyξ φt◦y + f ′(U)Uξ φ◦y
]

dξdt

=
1

2

∫

R+×R2

[

sgn(ξ − η)e−|y(ξ)−y(η)|

×
(

(g(U) − 1

2
f ′′(U)U2))yξ +

1

2
f ′′(U)Hξ

)

(η)yξ(ξ)φ◦y(ξ)
]

dηdξdt (2.69)

by (2.15). Again, to simplify the notation, we deliberately omitted the t variable.
On the other hand, by using the change of variables x = y(t, ξ) and z = y(t, η)
when t ∈ Kc, we have

−
∫

R+×R

Px(t, x)φ(t, x) dxdt =
1

2

∫

R+×R2

[

sgn(y(ξ) − y(η))e−|y(ξ)−y(η)|

×
(

g ◦ u +
1

2
f ′′ ◦ uu2

x

)

(t, y(η))φ(t, y(ξ))yξ(η)yξ(ξ)
]

dηdξdt.

For t ∈ Kc, that is, for almost every t, yξ(t, ξ) is strictly positive for almost every ξ,
and we can replace ux(t, y(t, η)) by Uξ(t, η)/yξ(t, η) in the equation above. Using
(2.27c), we obtain

−
∫

R+×R

Px(t, x)φ(t, x) dxdt (2.70)

=
1

2

∫

R+×R2

[

sgn(ξ − η)e−|y(ξ)−y(η)|

×
(

(g(U) − 1

2
f ′′(U)U2))yξ +

1

2
f ′′(U)Hξ

)

(η)yξ(ξ)φ◦y(ξ)
]

dηdξdt

(2.71)

Thus, comparing (2.69) and (2.71), we get
∫

R+×R

[−Uyξ φt(t, y) + f ′(U)Uξ φ] dξdt = −
∫

R+×R

Px(t, x)φ(t, x) dxdt
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and (2.66) follows from (2.67). �

3. Continuous semi-group of solutions

We denote by G the subgroup of the group of homeomorphisms from R to R

such that

f − Id and f−1 − Id both belong to W 1,∞(R) (3.1)

where Id denotes the identity function. The set G can be interpreted as the set of
relabeling functions. For any α > 1, we introduce the subsets Gα of G defined by

Gα = {f ∈ G | ‖f − Id‖W 1,∞(R) +
∥

∥f−1 − Id
∥

∥

W 1,∞(R)
≤ α}.

The subsets Gα do not possess the group structure of G. We have the following
characterization of Gα:

Lemma 3.1. [16, Lemma 3.2] Let α ≥ 0. If f belongs to Gα, then 1/(1+α) ≤ fξ ≤
1+α almost everywhere. Conversely, if f is absolutely continuous, f − Id ∈ L∞(R)
and there exists c ≥ 1 such that 1/c ≤ fξ ≤ c almost everywhere, then f ∈ Gα for

some α depending only on c and ‖f − Id‖L∞(R).

We define the subsets Fα and F of G as follows

Fα = {X = (y, U, H) ∈ G | y + H ∈ Gα},
and

F = {X = (y, U, H) ∈ G | y + H ∈ G}.
For α = 0, we have G0 = {Id}. As we will see, the space F0 will play a special
role. These sets are relevant only because they are in some sense preserved by the
governing equation (2.15) as the next lemma shows.

Lemma 3.2. The space F is preserved by the governing equation (2.15). More

precisely, given α, T ≥ 0, a bounded set BM = {X ∈ E | ‖X‖E ≤ M} of E and a

bounded set E ′ of E, we have, for any t ∈ [0, T ], X̄ ∈ Fα ∩ BM and (f, g) ∈ E ′,

St(X̄, f, g) ∈ Fα′

where α′ only depends on T , α, M and E ′.

Proof. Let X̄ = (ȳ, Ū , H̄) ∈ Fα, we denote X(t) = (y(t), U(t), H(t)) the solution
of (2.15) with initial data X̄. By definition, we have ȳ + H̄ ∈ Gα and, from
Lemma 3.1, 1/c ≤ ȳξ + H̄ξ ≤ c almost everywhere, for some constant c > 1
depending only α. Let h = H̄(∞) = H(t,∞). We have h ≤ M and, from (2.44),

‖U‖L∞(R+×R) ≤
√

h ≤
√

M . Let I = [−
√

M,
√

M ]. Since E ′ is bounded, there

exists κ > 0 such that ‖f‖W 2,∞(I) + ‖g‖W 1,∞(I) ≤ κ for all (f, g) ∈ E ′. We consider

a fixed ξ and drop it in the notation. Applying Gronwall’s inequality to (2.16) to
the function X(t − τ), we obtain

|yξ(0)| + |Hξ(0)| + |Uξ(0)| ≤ eCT (|yξ(t)| + |Hξ(t)| + |Uξ(t)|) (3.2)

for some constant C which depends on ‖f ′′(U)‖L∞(R), ‖P‖L∞(R), ‖g(U)‖L∞(R),

‖Q‖L∞(R), ‖U‖L∞(R) and ‖G′(U)‖L∞(R). In (2.46), we proved that ‖P‖L∞(R) and

‖Q‖L∞(R) only depend on M , κ, T . Hence, the constant C in (3.2) also only

depends on M , T and κ. From (2.27c), we have

|Uξ(t)| ≤
√

yξ(t)Hξ(t) ≤
1

2
(yξ(t) + Hξ(t)).

Hence, since yξ and Hξ are positive, (3.2) gives us

1

c
≤ ȳξ + H̄ξ ≤ 3

2
eCT (yξ(t) + Hξ(t)),
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and yξ(t) + Hξ(t) ≥ 2
3ce−CT . Similarly, by applying Gronwall’s lemma, we obtain

yξ(t) + Hξ(t) ≤ 3
2ceCT . We have ‖(y + H)(t) − ξ‖L∞(R) ≤ ‖X(t)‖C([0,T ],E) ≤

C(M, T, κ), see (2.50). Hence, applying Lemma 3.1, we obtain that y(t, · ) +
H(t, · ) ∈ Gα′ and therefore X(t) ∈ Fα′ for some α′ depending only on α, T ,
M and E ′. �

For the sake of simplicity, for any X = (y, U, H) ∈ F and any function r ∈ G,
we denote (y ◦ r, U ◦ r, H ◦ r) by X ◦ r.

Proposition 3.3. [16, Proposition 3.4] The map from G×F to F given by (r, X) 7→
X ◦ r defines an action of the group G on F .

Since G is acting on F , we can consider the quotient space F/G of F with
respect to the action of the group G. The equivalence relation on F is defined as
follows: For any X, X ′ ∈ F , X and X ′ are equivalent if there exists r ∈ G such that
X ′ = X ◦ r. Heuristically it means that X ′ and X are equivalent up to a relabeling
function. We denote by Π(X) = [X ] the projection of F into the quotient space
F/G. We introduce the map Γ: F → F0 given by

Γ(X) = X◦( y + H)−1

for any X = (y, U, H) ∈ F . We have Γ(X) = X when X ∈ F0. It is not hard
to prove that Γ is invariant under the G action, that is, Γ(X ◦ r) = Γ(X) for any

X ∈ F and r ∈ G. Hence, there corresponds to Γ a map Γ̃ from the quotient space
F/G to F0 given by Γ̃([X ]) = Γ(X) where [X ] ∈ F/G denotes the equivalence

class of X ∈ F . For any X ∈ F0, we have Γ̃ ◦ Π(X) = Γ(X) = X . Hence,

Γ̃ ◦ Π|F0
= Id |F0

. Any topology defined on F0 is naturally transported into F/G
by this isomorphism. We equip F0 with the metric induced by the E-norm, i.e.,
dF0

(X, X ′) = ‖X − X ′‖E for all X, X ′ ∈ F0. Since F0 is closed in E, this metric
is complete. We define the metric on F/G as

dF/G([X ], [X ′]) = ‖Γ(X) − Γ(X ′)‖E ,

for any [X ], [X ′] ∈ F/G. Then, F/G is isometrically isomorphic with F0 and the
metric dF/G is complete.

Lemma 3.4. [16, Lemma 3.5] Given α ≥ 0. The restriction of Γ to Fα is a

continuous map from Fα to F0.

Remark 3.5. The map Γ is not continuous from F to F0. The spaces Fα were
precisely introduced in order to make the map Γ continuous.

We denote by S : F × E × R+ → F the continuous semigroup which to any ini-
tial data X̄ ∈ F associates the solution X(t) of the system of differential equation
(2.15) at time t as defined in Theorem 2.9. As we indicated earlier, the general-
ized hyperelastic-rod wave equation is invariant with respect to relabeling, more
precisely, using our terminology, we have the following result.

Theorem 3.6. For any t > 0, the map St : F → F is G-equivariant (for f and g
given), that is,

St(X◦r ) = St(X)◦r (3.3)

for any X ∈ F and r ∈ G. Hence, the map S̃ : F/G × E × R+ → F/G given by

S̃t([X ], f, g) = [St(X, f, g)]

is well-defined. It generates a continuous semigroup with respect to all variables,

on any bounded set of E.
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Proof. For any X0 = (y0, U0, H0) ∈ F and r ∈ G, we denote X̄0 = (ȳ0, Ū0, H̄0) =
X0◦r, X(t) = St(X0) and X̄(t) = St(X̄0). We claim that X(t)◦r satisfies (2.15) and
therefore, since X(t) ◦ r and X̄(t) satisfy the same system of differential equation

with the same initial data, they are equal. We denote X̂(t) = (ŷ(t), Û(t), Ĥ(t)) =
X(t) ◦ r. We have

Ût =
1

2

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(ŷ(ξ) − y(η))
)

×
(

(g(U) − 1

2
f ′′(U)U2)yξ +

1

2
f ′′(U)Hξ

)

(η) dη. (3.4)

We have ŷξ(ξ) = yξ(r(ξ))rξ(ξ) and Ĥξ(ξ) = Hξ(r(ξ))rξ(ξ) for almost every ξ ∈ R.
Hence, after the change of variables η = r(η′), we get from (3.4) that

Ût =
1

4

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(ŷ(ξ) − ŷ(η))
)

×
(

(g(Û) − 1

2
f ′′(Û)Û2)ŷξ +

1

2
f ′′(Û)Ĥξ

)

(η) dη.

We treat the other terms in (2.15) similarly, and it follows that (ŷ, Û , Ĥ) is a

solution of (2.15). Since (ŷ, Û , Ĥ) and (ȳ, Ū , H̄) satisfy the same system of ordinary
differential equations with the same initial data, they are equal, i.e.,

X̄(t) = X(t)◦r ,

and (3.3) is proved. Let E ′ be a bounded set of E and T > 0. For t ∈ [0, T ], we
have the following diagram

F0
Π

// F/G

Fα

Γ

OO

F0 × E ′

St

OO

Π
// F/G × E ′

S̃t

OO

(3.5)

on a bounded domain of F0 whose diameter together with T and E ′ determines
the constant α, see Lemma 3.2. By the definition of the metric on F/G, the

map Γ̃ is an isometry from F/G to F0. Hence, from the diagram (3.5), we see that

S̃t : F/G×E ′ → F/G is continuous if and only if Γ◦St : F0×E ′ → F0 is continuous.
Let us prove that Γ ◦ St : F0 × E ′ → F0 is sequentially continuous. We consider a
sequence Xn ∈ F0 that converges to X ∈ F0 in F0, that is, limn→∞ ‖Xn − X‖E = 0
and a sequence (fn, gn) ∈ E ′ that converges to (f, g) ∈ E ′ in E . From Theorem 2.8,
we get that limn→∞ ‖St(Xn, fn, gn) − St(X, f, g)‖E = 0. Since Xn → X in E,
there exists a constant C ≥ 0 such that ‖Xn‖ ≤ C for all n. Lemma 3.2 gives us
that for t ∈ [0, T ], St(Xn, fn, gn) ∈ Fα for some α which depends on C, T and
E ′ but is independent of n. Hence, St(Xn, fn, gn) → St(X, f, g) in Fα. Then, by
Lemma 3.4, we obtain that Γ◦St(Xn, fn, gn) → Γ◦St(X, f, g) in F0 and uniformly
in [0, T ]. �

3.1. From Eulerian to Lagrangian coordinates and vice versa. As noted in
[1] in the case of the Camassa-Holm equation, even if H1(R) is a natural space for
the equation, there is no hope to obtain a semigroup of solutions by only considering
H1(R). Thus, we introduce the following space D, which characterizes the solutions
in Eulerian coordinates :
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Definition 3.7. The set D is composed of all pairs (u, µ) such that u belongs to
H1(R) and µ is a positive finite Radon measure whose absolute continuous part,
µac, satisfies

µac = (u2 + u2
x) dx. (3.6)

There exists a bijection between Eulerian coordinates (functions in D) and La-
grangian coordinates (functions in F/G). Earlier we considered initial data in D
with a special structure: The energy density µ was given by (u2 +u2

x) dx and there-
fore µ did not have any singular part. The set D however allows the energy density
to have a singular part and a positive amount of energy can concentrate on a set
of Lebesgue measure zero. We constructed corresponding initial data in F0 by the
means of (2.26a), (2.26b), and (2.26c). This construction can be generalized in the
following way. Let us denote by L : D → F/G the map transforming Eulerian coor-
dinates into Lagrangian coordinates whose definition is contained in the following
theorem.

Theorem 3.8. [16, Theorem 3.8] For any (u, µ) in D, let

y(ξ) = sup {y | µ((−∞, y)) + y < ξ} , (3.7a)

H(ξ) = ξ − y(ξ), (3.7b)

U(ξ) = u◦y(ξ) . (3.7c)

Then (y, U, H) ∈ F0. We define L(u, µ) ∈ F/G to be the equivalence class of

(y, U, H).

Remark 3.9. If µ is absolutely continuous, then µ = (u2 +u2
x)dx and the function

y 7→ µ((−∞, y)) is continuous. From the definition (3.7a), we know that there exist
an increasing sequence xi and a decreasing sequence x′

i which both converge to y(ξ)
and such that

µ((−∞, xi)) + xi < ξ and µ((−∞, x′
i)) + x′

i ≥ ξ.

Since y 7→ µ((−∞, y)) is continuous, it implies, after letting i go to infinity, that
µ((−∞, y(ξ))) + y(ξ) = ξ. Hence,

∫ y(ξ)

−∞
(u2 + u2

x) dx + y(ξ) = ξ

for all ξ ∈ R and we recover definition (2.26a).

At the very beginning, H(t, ξ) was introduced as the energy contained in a strip
between −∞ and y(t, ξ), see (2.10). This interpretation still holds. We obtain µ, the
energy density in Eulerian coordinates, by pushing forward by y the energy density
in Lagrangian coordinates, Hξ dξ. Recall that the push-forward of a measure ν by
a measurable function f is the measure f#ν defined as

f#ν(B) = ν(f−1(B))

for all Borel sets B. We are led to the map M which transforms Lagrangian coor-
dinates into Eulerian coordinates and whose definition is contained in the following
theorem.

Theorem 3.10. [16, Theorem 3.11] Given any element [X ] in F/G. Then, (u, µ)
defined as follows

u(x) = U(ξ) for any ξ such that x = y(ξ), (3.8a)

µ = y#(Hξ dξ) (3.8b)

belongs to D and is independent of the representative X = (y, U, H) ∈ F we choose

for [X ]. We denote by M : F/G → D the map which to any [X ] in F/G associates

(u, µ) as given by (3.8).
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Of course, the definition of u coincides with the one given previously in (2.61).
The transformation from Eulerian to Lagrangian coordinates is a bijection, as stated
in the next theorem.

Theorem 3.11. [16, Theorem 3.12] The map M and L are invertible. We have

L ◦ M = IdF/G and M ◦ L = IdD .

3.2. Continuous semigroup of solutions on D. On D we define the distance
dD which makes the bijection L between D and F/G into an isometry:

dD((u, µ), (ū, µ̄)) = dF/G(L(u, µ), L(ū, µ̄)).

Since F/G equipped with dF/G is a complete metric space, we have the following
theorem.

Theorem 3.12. D equipped with the metric dD is a complete metric space.

For each t ∈ R, we define the map Tt from D × E to D as

Tt( · , f, g) = MS̃t( · , f, g)L,

for any (f, g) ∈ E . For a given pair (f, g) ∈ E , we have the following commutative
diagram:

D F/G
M

oo

D

Tt

OO

L
// F/G

S̃t

OO

(3.9)

Our main theorem reads as follows.

Theorem 3.13. Assume (1.6). T : D × E × R+ → D (where D is defined by

Definition 3.7) defines a continuous semigroup of solutions of (1.5), that is, given

(ū, µ̄) ∈ D, if we denote t 7→ (u(t), µ(t)) = Tt(ū, µ̄) the corresponding trajectory,

then u is a weak solution of (1.5). Moreover µ is a weak solution of the following

transport equation for the energy density

µt + (uµ)x = (G(u) − 2Pu)x. (3.10)

The map T is continuous with respect to all the variables, on any bounded set of E.

Furthermore, we have that

µ(t)(R) = µ(0)(R) for all t (3.11)

and

µ(t)(R) = µac(t)(R) = ‖u(t)‖2
H1 = µ(0)(R) for almost all t. (3.12)

Remark 3.14. We denote the unique solution described in the theorem as a con-

servative weak solution of (1.5).

Proof. From (3.12), it follows that u ∈ L∞(R+, H1(R)). The function u is a weak
solution of (1.5) if it satisfies (2.66) and µ is a weak solution of (3.10) if
∫

R+×R

(φt + uφx) (t, x) µ(t, dx)dt =

∫

R+×R

((G(u) − 2Pu)φx) (t, x) dtdx (3.13)

for all φ ∈ C∞(R+ ×R) with compact support. We already proved in Theorem 2.9
that u(t) satisfies (2.66). We proceed the same way to prove that µ satisfies (3.13).
We recall the proof of (3.11) and (3.12), which is the same as in [16]. From (3.8a),
we obtain

µ(t)(R) =

∫

R

Hξ dξ = H(t,∞)
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which is constant in time, see Lemma 2.7 (iii). Hence, (3.11) is proved. We know
from Lemma 2.7 (ii) that, for t ∈ Kc, yξ(t, ξ) > 0 for almost every ξ ∈ R (see (2.41)
for the definition of K, in particular, we have meas(K) = 0). Given t ∈ Kc (the
time variable is suppressed in the notation when there is no ambiguity), we have,
for any Borel set B,

µ(t)(B) =

∫

y−1(B)

Hξ dξ =

∫

y−1(B)

(

U2 +
U2

ξ

y2
ξ

)

yξ dξ (3.14)

from (2.27c). Since y is one-to-one when t ∈ Kc and ux ◦ yyξ = Uξ almost every-
where, we obtain from (3.14) that

µ(t)(B) =

∫

B

(u2 + u2
x)(t, x) dx,

which, as meas(K) = 0, proves (3.12). �

3.3. The topology on D. The metric dD gives to D the structure of a complete
metric space while it makes continuous the semigroup Tt of conservative solutions
for the Camassa–Holm equation as defined in Theorem 3.13. In that respect, it is
a suitable metric for the equation. However, as the definition of dD is not straight-
forward, this metric is not so easy to manipulate. That is why we recall the results
obtained in [16] where we compare the topology induced by dD with more standard
topologies. We have that convergence in H1(R) implies convergence in (D, dD),
which itself implies convergence in L∞(R). More precisely, we have the following
result.

Proposition 3.15. [16, Proposition 5.1] The map

u 7→ (u, (u2 + u2
x)dx)

is continuous from H1(R) into D. In other words, given a sequence un ∈ H1(R)
converging to u in H1(R), then (un, (u2

n + u2
nx)dx) converges to (u, (u2 + u2

x)dx) in

D.

Proposition 3.16. [16, Proposition 5.2] Let (un, µn) be a sequence in D that con-

verges to (u, µ) in D. Then

un → u in L∞(R) and µn
∗
⇀ µ.

4. Examples

We include two examples for the Camassa–Holm equation where f(u) = 1
2u2

and g(u) = u2.
(i) For initial data ū(x) = ce−|x|, we have

u(t, x) = ce−|x−ct|, (4.1)

which is the familiar one peakon solution of the Camassa–Holm equation. The
characteristics are the solutions of

yt(t, ξ) = u(t, y(t, ξ)), (4.2)

which can be integrated and, for initial data ȳ(ξ) = ξ, yields

y(t, ξ) = sgn(ξ) ln
(

e(sgn(ξ)ct) + e|ξ| − 1
)

.

Some characteristics are plotted in Figure 1. We have U(t, ξ) = u(t, y(t, ξ)) =
ce−|y(t,ξ)−ct|. It is easily checked that yξ > 0 almost everywhere. In this case y is
invertible, there is no concentration of energy on a singular set, and we have

H(t, ξ) =

∫

y−1((−∞,y(t,ξ)))

Hξ(η) dη =

∫ y(t,ξ)

−∞
(u2 + u2

x) dx,
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Figure 1. Characteristics in the single peakon case.

from (3.14).
(ii) The case with a peakon–antipeakon collision for the Camassa–Holm equa-

tion is considerably more complicated. In [17], we prove that the structure of the
multipeakons is preserved, even through collisions. In particular, for an n-peakon
u, it means that for almost all time the solution u(t, x) can be written as

u(t, x) =

n
∑

i=1

pi(t)e
−|x−qi(t)| (4.3)

for some functions pi and qi that satisfy a system of ordinary differential equation
that however experiences singularities at collisions. In [17] we also present a system
of ordinary differential equation satisfied by y(t, ξi), U(t, ξi) and H(t, ξi) with i =
1, . . . , n where y(t, ξi) and U(t, ξi) correspond to the position and the height of the
ith peak, respectively, while H(t, ξi) represents the energy contained between −∞
and the ith peak. In the antisymmetric case, this system can be solved explicitly,
see [17], and we obtain

y(t, ξ2) = −y(t, ξ1) = ln(cosh(
Et

2
)),

U(t, ξ2) = −U(t, ξ1) =
E

2
tanh(

Et

2
),

H(t, ξ2) − H(t, ξ1) = −E2

2
tanh2(

Et

2
) + E2.

(4.4)

The initial conditions were chosen so that the two peaks collide at time t = 0. From
(4.3) and (4.4), we obtain

u(t, x) =











−E
2 sinh(Et

2 )ex, for x < − ln
(

cosh(Et
2 )
)

,
E sinh(x)

sinh( Et
2

)
, for |x| < ln

(

cosh(Et
2 )
)

,

E
2 sinh(Et

2 )e−x, for x > ln
(

cosh(Et
2 )
)

.

(4.5)

See Figure 2. The formula holds for all x ∈ R and t nonzero. For t = 0 we find
formally u(0, x) = 0. Here E denotes the total energy of the system, i.e.,

H(t,∞) =

∫

R

(u2 + u2
x) dx = E2, t 6= 0. (4.6)

For all t 6= 0 we find

µ((−∞, y)) = µac((−∞, y)) =

∫ y

−∞
(u2 + u2

x) dx. (4.7)
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Figure 2. The colliding peakons case. Plot of the solution at
different times.
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Figure 3. Characteristics in the colliding peakons case.

For t = 0, H(0, ξ2) − H(0, ξ1) = E2, all the energy accumulates at the origin, and
we find

µ(x) = E2δ(x) dx, µac(x) = 0. (4.8)

The function u(t, x) is no longer Lipschitz in x, and (4.2) does not necessarily admit
a unique solution. Indeed, given T > 0 and x0 such that |x0| < ln

(

cosh(−TE
2 )

)

,
the characteristic arising from (x0,−T ) can be continued past the origin by any
characteristic that goes through (x, T ) where x satisfies |x| < ln

(

cosh(TE
2 )
)

, and
still be a solution of (4.2). However by taking into account the energy, the system
(2.15) selects one characteristic, and in that sense the characteristics are uniquely
defined. We can compute them analytically and obtain

y(t) = 2 tanh−1
(

C tanh2(
Et

4
)
)

with |C| < 1, for the characteristics that collide, and

y(t) = ε ln
(

C + cosh(
Et

2
)
)

with ε = ±1, C ≥ 1, for the others. See Figure 3.
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