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INVARTANT DIFFERENTIAL OPERATORS AND
POLYNOMIALS OF LIE TRANSFORMATION GROUPS

ARNE HOLE

Introduction.

Among all differential operators on R®, those that have constant co-
efficients play an important role for analysis. They are characterized by
their invariance under the transitive group of translations.

More generally, if ¢ is a group acting on a differentiable manifold M,
then ti is of great interest for analysis to determine the algebra 2(M)
of differential operators on M which are invariant under the action of
G (see [8]). In case G is a transitive Lie transformation group of M
then M can be identified with the quotient manifold G/H where H is
a closed subgroup of G. Nomizu studied the differential geometry of
those spaces M =G/H which are reductive, that is admit a G-invariant
affine connection (cf. [10], [11]). For these spaces the problem of de-
termining 2(G/H) was investigated by S. Helgason [5].

If @ is a semisimple Lie group and G=KAN an Iwasawa decomposi-
tion let M denote the centralizer of 4 in K. The space of horocycles in
the symmetric space G/K can be identified with G/MN and can, in ana-
logy with the space of hyperplanes in R”, be viewed as a dual space to
G/K. Although the space G/MN is not reductive the algebra 2(G/MN)
can be explicitly determined, (see [7]).

In this paper we study 2(G/H) when @ is a nilpotent Lie group and
G/H not necessarily reductive. Let g and §) be the Lie algebras of @ and
H respectively, and let m be a linear subspace of g such that g=%H+m
(direct sum). Using the technique of [5] and [6] transferring the problem
to one about polynomials on m, we give a general condition for an ele-
ment of 2(G)~%(g) to define an element of Z(G/H). In [2] and [3] cen-
tral elements of %(g) are studied, and it turns out to be simpler to work
in the quotient field of #(g). In this paper we proceed in the same way
considering a subalgebra %(g) of %(g) instead of 2(G/H), where Z(G[H)
is the canonical image of %(g). In section 5 we determine the quotient
field of the invariant polynomials on .
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I am grateful to Professor S. Helgason for introducing me to this
subject.

The reader is referred to [1], [6] and [9] for background material on
Lie groups and Lie algebras.

1. Preliminaries.

Let M be a differentiable manifold of dimension m. 0°(M) denotes
the space of complex C* functions on M. If (¢, U) is a local chart on M
and fe C®°(M) we shall sometimes write f* for the composite function
fop~! defined on ¢(U). Let 2,,x,,. . .,x,, be the coordinate functions of ¢
and let & =(x,;,xy,. . .,%,) be a m-tuple of non-negative integers. We put
0,=0[0ox; (1=1<m) and D*=0,"...9,°™

C, (M) is the subspace of C*(M) consisting of the functions with com-
pact support.

A linear map D: O (M) - C (M) is called a differential operator on
M if the following condition is satisfied: For each p € M and each local
chart (¢, U) around p there exists a finite set of functions a, e C*(U)
such that for each fe C,°(M) with support contained in U,

(1) DN(=) = 3, a @)D f*)(p(x)) if zeU,
(Df)(x) = 0 if z¢U.

If D is a differential operator on M then it can be extended in the
obvious way to a linear map

D: O®(M) » C*(M) .

A Lie group G is said to be a Lie transformation group of M if to each
g € G is associated a diffeomorphism t(g) of M such that

(i) 7(9192) = 7(g1)7(g2) for all g;,9, € G and
(ii) the mapping (g,p) — t(g9)p is a differentiable mapping of G x M

onto M.

If the action is transitive, M is called a homogeneous space. In this
case it follows that M is diffeomorphic to the quotient manifold G/H of
left cosets gH, where H is the isotropy group of some element in M. The
action on G/H is given by left multiplication,

t(g)(xH) = gxH forall g,z G .

Now, suppose that G is a transitive Lie transformation group of M.
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A differential operator D on M is G-invariant if
(2) Diz(9)f] = =(9)(Df) for all fe C(M)

and all g € G, where [7(9)f1(p) =f(z(9)p) for all p e M.

We let 2(M) denote the algebra of G-invariant differential operators
on M.

For every D € (M), fix p € M and choose a local chart (p, U) around
p. D has a local expression near p given by (1). Define a polynomial in m
variables X, X,,...,X,, by

PX,,....X,) =3,a,p)X,"...X,™.
Then

3) (Df)(p) = [P(dy,. . -,0m)f*)(e(P))

for every fe C®(M).
Using (2) we find

(4) (D) *(@)p) = [P - - -, 0u)(=(9)f)*Ne(P))

for every f € C®°(M) and every g € G. Since the action of G on M is transi-
tive it follows that D is uniquely determined by the polynomial P.

Suppose that V is a linear space of finite dimension over a field K
of characteristic 0, let 7'(V) denote the tensor algebra over V and let J
be the ideal in 7T'(V) generated by the set of elements of the form
XQY-YQ®X, X,Y eV. The factor algebra & (V)=T(V)/J is called the
symmetric algebra over V. If X,,X,,...,X, is a basis of ¥V, #(V) can be
identified with the abelian algebra of polynomials in the base elements
over K.

Given a Lie group G with Lie algebra g, let &(g) be the symmetric
algebra of g. G acts on itself by left multiplication. As noted above, every
D e 9(G) determines a unique polynomial P € #(g) such that

(6) (Df)g) = [P(3y,. . .,8,)f(g exp (@, Xy + . .. +2,X,))1(0)

for all g € @ and all fe C*(Q). (X4,...,X, is a basis of g.)
For P e &(g) arbitrary, (5) defines a left invariant differential oper-
ator A(P) on @. The map

A: &F(g) > 2(F)
is a linear isomorphism. If Y,,...,Y, €g then
(6) MY, Y,...7,) = ()3, Yay Yo - - - Yo

where the right hand side is calculated in 2(G). The sum is taken over
all permutations o of {1,...,p}.
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2. A criterium for a differential operator to be invariant.

Let @ be a Lie group with Lie algebra g and let H be a closed subgroup
of @. If Y) denotes the Lie algebra of H let m be any linear subspace of g

such that
g =9H+m (direct sum).

Choose a basis X,,...,X,,,...,X, of g such that X;,...,X,, is a basis of
mand X, ,,,...,X, is a basis of §). If #: G — G[H is the canonical pro-
jection map, then

(7) (g exp (@, X 1+ ... + 2, X,0)) > (g, . -, %)

defines a local chart of gH.

For D e 2(G[H) let P e &#(m) be the unique polynomial determined
by (3) with respect to this chart when g=e=identity element of G.
Then by (4)

(8)  (Df)gH) = [P(2y,...,0,)f(g exp (2, X + . . . +,X,,)H)](0)
for all g € G and all f e C*(G/H).

LremMma 2.1. Let 2(G)Y) denote the set of all real linear combinations of
elements of the form DT where D € D(G) and T €Y). Then

2(6) = QA+ MF(m)) (direct sum) .
For a proof see [5, p. 394].

Let Cy(G) denote the set of C* functions on G which are constant on
each coset gH. Then the mapping f - f where f =fos, is an isomorphism
of the algebra C*(G/H) onto Cy®(®).

Now, suppose that D e 2(G/H) and let P € #(m) denote the corre-
sponding polynomial defined by (8). Since F(m)<L(g), E=A(P) is a
left invariant differential operation on G. From (5) it is clear that

9) Ef = (Df)” for all fe C~(G/H) .
Because 7(h)H =H for all h € H, D must satisfy
(10) (Df)(ghH) = (Df)(gH)

for all g € G and all fe C°(G/H). Using (5) and (9) this means that

(1) [P(dy,...,0,)f (9 exp (@ X1+ ... +2,X,.))1(0)
= [P(0,,. . .,3m)_f‘(gh exp(z; X, + ... +2,,X,))](0)
= [P(3y,. . -,0,) f (9 exp(x; Ad(R)X, + ... + 7, Ad(R)X,,))](0)
= [Q@,. . -, %) (9 exp @ X1+ . .. +2,X,)))(0)



INVARIANT DIFFERENTIAL OPERATORS . . . 113

for all fe C*(Q/H) and all & € H. The polynomial @ € &(g) is given by
(12) QX,,...,X,) = P(Ad(h)X,,..., Ad(h)X,,) .

(11) can be expressed in the following way:

(13) AQ—P) restricted to Cy®(Q) defines the zero operator.

Because of Lemma 2.1 we can find D € 2(@)f) and R € &(m) such that
M@—P)=D+AR). Now Df=0 for all fe Cy°(GF), and it follows that
AMR)f=0 for all fe C;>(G).

Given oy,...,x, €R, we see by (7) that there exists a function
f € C®(G[H) such that

(14) f(n(exp(x1X1+ .. +x,,,Xm))) = eMAt... +omtn

in a neighborhood of {H} in G/H.
If ReS(m) and R+0 we can find «,,...,x,€R such that
R(xy,- - - 0,,)+0. With such a choice in (14) it follows that

A(R)f = R(‘xla' .. ’o‘m)j

in a neighbourhood of e, and in particular that A(R) f # 0. This proves
the following

Lemma 2.2. If De D(G/H) let Pe P (m) be the unique polynomial
defined by (8). Putting

[Ad(R)- P](X,,. .., X,) = P(Ad(h)X,,..., Ad(h)X,,),
we have

(15) MAd(k)-P) = D(h)+A(P)
for all h € H, where D(h) € 2(G)Y.

For each X eg let d(X) be the uniquely determined derivation of
2(@) (respectively #(g)), which extends the endomorphism ad(X) of g.
This defines a g-module structure on 2(G@) and &(g) and the linear
map A becomes a g module isomorphism.

For each g € @, the automorphism Ad(g) of g extends uniquely to an
automorphism of 2(G). Let the extension also be denoted by Ad(g).
Then A(Ad(g): P)=Ad(g9)A(P). Since the order of d(X)D is less than or
equal to the order of D for all X € g, all differential operators d(X)»D
lie in a finite dimensional subspace of 2(@&). This implies the convergence
of the following series

1
(16) 0D = 3% o d(X)»D .

Math. Scand. 34 — 8
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From the uniqueness mentioned above it follows that
(17) Ad(expX)D = 4D
for all X € g and all D € 9(G). By differentiation

(18) g-t[e‘d‘X)D],,o = dX)D.

TareoreM 2.1. If H is a closed connected subgroup of G, then P € & (m)
defines an element of D(G[H) by (8) if and only if d(T)A(P) € 2(F)Y for
all T €Y.

Proor. First suppose that De P(G/H). If P e S (m) is the corre-
sponding polynomial then Lemma 2.2 and (18) imply

dTAP)e2(@)y forall Tel.

D(@)Y is closed with respect to the limit process in (18).

Next suppose that P € & (m) satisfies d(T)A(P) e 2(}) for all T Y.
The subalgebra 2(G)f is invariant under all derivations d(7'), T €.
This means that the series

1
(19) eXD)(P)—A(P) = 3%, - d(T)"A(P)

converges in Z(@) for all 7' €Y. (17), (19) and the fact that H is con-
nected imply that
(20) A(Ad(R)-P) = D(h)+A(P)

for all he H, where D(h) € 2(R)f). Put E=A(P) and define a linear
transformation D of C*(G/H) by

(21) (Df)” = Ef.

D is well defined because of (20). It is clear from the local expression of
E that D is a differential operator. The left invariance of E finally shows
that D € 2(G/H).

CoroLrARY. Suppose that g="Y+m (direct sum). Let o be the projection
of g onto m. Denote by §(X), X € g, the dertvation of S (m) extending the
endomorphism coad(X) of m. If D e D(G[H) and P € &F(m) is the poly-
nomial defined by (8) let Py, denote the component of highest degree. Then

(22) 6T)Pp =0 forall TeY.
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. ProoF. Write P=P;,+Q where @ is of lower degree than P,. B
Theorem 2.1 .

(23) Md(T)Pp)+Ad(T)Q) € 2(G)H

for all T €Y. But this is only possible if each term in d(7')P, contains
at least one 7' €Y). Applying o to (23) we find

8(T)P, = o-[d(T)Pp] = 0
for all T €Y.

THEOREM 2.2. Let g=Y+m (direct sum) as previously. Denote by I(m)
the subspace of % (m) consisting of those P which satisfy §(T)P =0 for all
TeY. Let

n={Xem| [X,T]ey forall Teh}.
If I(m)= & (n) then the mapping E —~ Dy of D(N) - D(G/H) defined by
(24) (DEf)(gH) = En(n _)f(gnH))n=e

for all fe C*(G/H), where ne N and N is the normalizer of H in Q, ts
onto and 18 an algebraic homomorphism.

Proor. Let D € 2(G[H) and let P € &(m) be the corresponding poly-
nomial. Then P, € I(m). By assymption P, defines a left invariant differ-
ential operator £ on N. It is easily shown that Dy given by (24) is well
defined and that it is an element of 9(G/H). The corresponding poly-
nomial of Dy, is of course P;. Hence

D—Dge 9(G/H),

and this operator is determined by P —Pj, e %(m) which is of lower
degree than P. It follows by induction on the degree of P that every
D € 9(G[H) comes from some E € D(N).

The multiplicative property Dy p,=Dg Dy, where K\, E;e D(N) is
obviously satisfied.

ExamrrLE 1. As was shown by S. Helgason in [7] the hypothesis of
Theorem 2.2 are satisfied for the space of horocycles in a symmetric
space. Let @ be a connected semisimple Lie group and let

G = KAN

be an Iwasawa decomposition of G. Put M =centralizer of 4 in K.
Denote by g, t, a, n and m the Lie algebras of @, K, 4, N and M, respec-
tively. The set of horocycles in G/K is G/MN. The normalizer of MN
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(respectively N) in G is MAN. In both cases 2(G/MN) (respectively
2(G|N)) is determined by 2(4) (respectively 2(M A4)).

If H is a normal subgroup then of course n(h))=g and I(m)=F(m)
where n(f)) is the normalizer of f) in g.

ExampLE 2. Let g be the 3-dimensional real Lie algebra generated by
z, y and z where

[x’y] =2, [x,z] = [?/,2] = 0 .
g is nilpotent. Putting §) =Rz then n(f)) =Rz + Rz=+g. The polynomial

P(y,2) = @u(@)y"+ . . . +Q1(2)y + Qo(2)

is invariant if and only if the polynomials @;(z)=...=@,(z)=0, hence
I(m)=all polynomials in z.

ExampLE 3. As the following example shows Example (2) does not give
the general situation for nilpotent Lie algebras. Let g be the 4-dimen-
sional Lie algebra generated by z, y, z, w where

[yl =2 [zw]=y,
[#,2] = [9,2] = [w,2] = 0.
Putting § =Rz then n(§)=Rx+Rz. Simple computation shows that a
polynomial P(z,y,w) € I(m) if and only if it is generated by z and y2 — 2zw.
The polynomial y%— 22w is G-invariant and the associated left invariant
differential operator D defined by (5) belongs to the center of 2(G)
where @ is a Lie group with Lie algebra g.

3. Some algebraic tools.

Let g be a Lie algebra over a field of characteristic 0. Let %(g) denote
the universal enveloping algebra of g. If @ is a Lie group with Lie alge-
bra g, we will identify %(g) and 2(G).

In [4] 1. M. Gelfand and A. A. Kirillov proved

Lremma 3.1. %(g) is a Noetherian ring without null divisors.
From this it easily follows that
LemMA 3.2. %(g) 18 an Ore ring without null divisors. (Ore ring means

a ring with the following property: For all a,be %(g), a0, b0 there
exist z,y € U(g), x+0, y+0 such that xa=yb.)
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If # is an Ore ring without null divisors, define the quotient field in
the following way.

Consider all expressions of the forms a¢—'b and ba-! where a,be %
and a=+0. Identify a-'b and cd-! if ac=>bd. Since # is an Ore ring it
follows that every ‘‘right expression” ¢d-! can be put into a left expres-
sion a~1b. Also every couple of fractions a-1b, c-'d can be reduced to
one with common denominator. For expressions with common denomin-
ator define the operations addition, subtraction and division:

a-lb,+a1b, = a~1(b; £ b,),
(@71b;)Xa1b,) = b,71b,.

Finally, multiplication by a-'b can be considered as division by the in-
verse element b-1a.

Denote by C(g) the quotient field of #(g). For any subset o <%(g)
let (&) be the subalgebra of C(g) generated by /.

4. Comparison of 2(G,/H) and 9(G[H) when H= G, < G.

Let H, G, §) and g be as in section 2. If D € 9(G[H) put E(D)=A(P)
where P € #(m) is the polynomial defined by (8) corresponding to D.
Moreover let

J(m) = {Pe ¥ (m)| P corresponds to some D € D(G[H)} .
Finally put
(25) 2(g) = %(@)h+A(J (m)) .
For E € #(g) define
[o(E)f)(gH) = E [z —~ f(gzH)],..
for all fe C*(G/H), g @ .

Lemma 4.1. Z%(g) s a subalgebra of %(g) and o is an algebraic homo-
morphism of #(g) onto D(G|H) with kernel %(g)9.

Proor. If E,,E, € #(g) then E,E, leaves C,*(@) invariant and this
means that E,E,=D+A(P) for some D e %(g)) and some P eJ(m)
(Lemma 2.1). Therefore %(g) is closed under multiplication and the
algebra property follows. The last part of the statement is immediate
by the construction.
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- Now suppose that G, is a closed, connected and normal subgroup of ¢
with Lie algebra g, such that h<g,<g. Let m, be a complementary
subspace of §) in g,.

THEOREM 4.1. If g, is an ideal of codimension 1 in g and x an element
of g not tn gy, then for m=my+ Rz either

(i) J(m) = J(my) or
(ii) there exist elements a, € A(J(my)), a;+0 and a,e U(g,) such that
such that a=za, + a, € A(J(m)).

Moreover A (R(g)) <A (a,a,7,2%(g,)) and a is transcendental over C(g,).

Proor. Suppose that J(n)=J(m,). Choose the element
@b, + a1, 1+ ... +bg € AJ(m))
where bg,b,,. . .,b, € %(g,), n>0 and b,+0. We apply d(T), T €Y to
this element noting that
(26) d(T)(@@™) = am-d(T)x]+xm2[d(T)x]x+ . . . + [d(T)x]em™1
= ma™ U d(T)x] + 2™ 2y, g+ - - - +XCp,1+Cpn 0
where ¢, m_2,Cp m-35- - -sCm,0 € #%(go). Using Theorem 2.1 and (26) we
find
(27) a(T) (b, + 2" 1b,_;+ ... +by)
= a™[d(T)b,]+ na"{d(T)ab, + 2" 2¢, n_abp+ ... +C4 o0y +
+a"Hd(T)by 1]+ (n— V)2 ~*[d(T)x]b, 1 +
+xn_acn—1,n—'-3bn—~1+ ceet
+Cn1,00n1+ . .. +d(T)by € %(g)h
for all T €Y. Collecting different powers of  we find
(28) d(T)b, € %(g)y and n[d(T)z]b,+d(T)b,-, € %(g)h

for all T e¥).

Since %(g)y) is an ideal in %#(g) we conclude by (28) that
(29) - d(T)(nxb, +b,_,)e%(@)h forall Te)h.

Now put a,=nb,, and a,=b,_,. This proves the first part of (ii).
Suppose that '

d = 2Pd,+aP-td, ,+ ... +dye AJ(m))
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where d,,d,_,,...,dy€ %(g,) and d,+0. We want to prove that d is
contained in the subalgebra '(a,a,,~,%(g,)) of C(g). This is obviously
satisfied if p=0. Suppose that it is proved for all integers <p. Using
the first part of the proof we know that d, € A(J(m,)). Therefore

da,? —d,a? € Z(g) .
But
da,? —d,aP = (2Pd,+ ... +dg)a,? —d,(xa, + a,)?

= zk<p akdy
where d,’ € %(g,) for all 1<k <p—1. By the induction hypothesis
da,? —d,a? € A (a,a,7,Z(gy)) -

We know that d, € %(g,) and this proves that d € o (a,a,71,2(g,)). It
remains to consider the %(g) part of %(g). That is, we must prove

U@)y < A '(a,a,7,%(go)) -

First note that a=xa,+a,=a,x+a; for some a; € %(g,). Consider the
subset x%(g,)h of C(g).

x%(g0)h = (a,'a—a;,72a)%(go)h < H'(a,a,7, (@)

because a,%(g,)H) < Z(g,)-
Suppose that x*%(g,)h <A (a,a,t,%(g,)) for all 1<k <n. For k=n

e U(go)) = (a1 a—a, 7 ag)e 1 U(go)h
= a; " ax 1 U(go)h — ay aza™ Tt U(g,)Y -
By the induction hypothesis
a, a2 U(go)f < A (a,a,7L, R(g,)) -
Consider the last term. Since
azanl = gr-lagg+a"%a’, ,+...+0a',

where a’,_,,0',_3,...,a"g € %(@o),

Gy UG < 21 U(Go))+a U (@)Y + . . . + U(go)h
< of (2,0, R(gw) -

This means that z»%(g,)§ < (@, a,1,2(g,)) for all n and hence that
%(0)h = H(a,a,7%, R(go)) -
Finally suppose that there exists a relation

ale,+atle,  + ... +e =0
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where e,,e,_,,. . .,e € %(g,) and e, + 0. Exchanging a and za, +a, we find

xa,%,+ 2% le,_ + ... +€y =0

where €';_,,. . .,e'q € %(g,)- But this is only possible if a,%¢,=0 which is
a contradiction, and the proof is complete.

Now suppose that §) is a subalgebra of a nilpotent Lie algebra g.
n(f)) denotes the normalizer of f) in g. Put

n(9) = n(n,_4(9)) for r 21

where 11y(h) =Y. Let r, be the greatest possible integer such that n, () =+g.
This is of course only possible if §+g. We exclude the case g=¥. n,(f)
is an ideal in n,,4(h). In particular n, (p) is an ideal in g.

If g is nilpotent and t is an ideal in g, form the quotient algebra g=g/t.
Then § is nilpotent and we can find a series of ideals in g

(30) 0) =001 ---@G=49

such that dim(g,,,/§;)=1 for ¢=0,1,...,n—1. If z: g > § denotes the
canonical projection map put g;,=n"1(g;). Then

(31) f=gc@qmc...<g, =g

is a series of ideals increasing in dimension by 1 by passing from g, to
Gk (0SksSn—1).

Returning to the situation f) =g, ) +¢g where g is nilpotent we can, by
repeated use of the technique described in (30) and (31), find an increas-
ing series of subalgebras of g

(32) hben®) =g <@ < ... <gn=2g

where dimg;,; =dimg;+1 for j=0,1,...,m—1. Let x; be an element of
g; not in g, for j=1,...,m. m; denotes a complementary linear sub-
space of ) in g;. These can be chosen in such a way that m,,, =m;+ Rz;,,
for 0sj<m-—1.

Since every subalgebra of codimension 1 in a nilpotent Lie algebra is
an ideal, Theorem 4.1 applies to every pair (g;,9;4) forj=0,1,...,m—1.

THEOREM 4.2. Suppose that ) 18 a subalgebra of a nilpotent Lie algebra g.
Assume Y)+g. Then either

(i) n(h)=g or
(ii) m=1 n (32).
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In case (ii) let jy<jy< ... <j, be the indices such that J(m,)+J(m,_y),
so that by Theorem 4.1, for each j € {j1,js, . . - ,j,} we can find a;y € A(J(my_,)),
a;,+0 and a;, € U(g;-,) such that a;=x;a;+ a5 € A(J(m))). Then

H(R(g)) = A (ay,,- - oy, a1, - .,aJ;},yl,. . o,y [mod %(g)h]

where y,,...,y, i3 a basis of m,.

The theorem is easily proved by induction on the dimension of g
using Theorem 4.1.

5. Invariant polynomials.
In view of the corollary of Theorem 2.1 it is important to determine
the invariant polynomials J(m) where g=1+m (direct sum). But as we

will see it turns out to be easier if we instead of 7(m) consider its quotient
field.

THEOREM 5.1. Suppose that Y) is a subalgebra of a Lie algebra g such
that ) = g, =g where g, 13 an ideal of codimension 1 in g. Choose an element
z in g not in g, and put m=m,+ Rz where m, is any complementary linear
subspace of ) in g,.

Then either

(1) I(m)=I(m,) or
(ii) there exist elements a, € I(my), a,+0 and a, € F(m,) suck that a=
xa, +ay € I(m). I(m) as a subalgebra of the quotient field C(m) 18 con-
tained in the subalgebra A '(a,a,~',I(m,)) generated by a,a,! and
I(my).
In case (ii) we also have:

(iii) C(m) is generated by a and I(m,). C(m) 8 a transcendental extension
of C(my).
Proor. If I(m)+I(m,) choose P=a",+ ... +by € I(m) where b,,. ..,
b, € #(m,), n>0 and b, + 0. Applying 6(T), T €} to P we find

0 = o [d(T) (@b, + . . . +by)]
= o+ (a"[d(T)b, ]+ namd(T)x]b, +&*A(T)oy 11+ . . . +d(T)b,) .

But this is only possible if

(T, =0 and &T)(nxb,+b,_) =0
for all T €Y.
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Define a,=nb,, and a,=b,_;. Then a=xa,+a, € I(m). Following the
lines of the proof of Theorem 4.1, (ii) follows. To prove (iii) we first note
that &(m) is abelian without null divisors and the quotient fields can
be formed. See [1, p. 24]. a, € I(m,) and therefore a, e C(m,). From (ii)
it is clear that C(m) is generated by a and I(m,). The last part of (iii) is
proved in the same manner as in Theorem 4.1.

THEOREM 5.2. Suppose that h<n(h)=g,<...<g,<g as in Theorem
4.2, where g 1s a nilpotent algebra. If m21 let j, <j,< ... <j, be the in-
dices such that I(wy)+I(m;_;). For each je {ji,...,j,} we can find a; €
I(my_;), a0 and a; € L(my_,) such that a;=x,0;+a;, € I(my). Then

(i) A (L(m)) = H(ay,. . 105,050, Tt Y1 - - Yy)
where Yy, . . .,Y, 18 a basis of m, and

(ii) the quotiént field of I(m) is the field generated by the algebraic inde-
pendent elements a; ,. . By Yoo+ Yo

(iii) By (ii) we. have a;;=0,(b,)7,.. .,ajq1=bq(bq’)’1 where b,,b, €
x(a'jls- .. ’ajq_lyyls' .. :yr)'

Putting b=>byb,,. ..,b, we have

I(m) = H(az,;. . ,05,Y1,- - Ypd7Y) .

Proor. (i) and (ii) are consequences of Theorem 5.1. To prove (iii)
we use induction on the dimension of g. Note that

aj_)..ll = bllb—lbzbs ces bq € f(a’jl" . ,a,-q_l,yl,. . .,yr,b_l) .

Similar results for a;],...,a;; hold. (iii) now follows from (ii).

THEOREM 8.3. Let ) be a subalgebra of a nilpotent Lie algebra g. Denote
by n the dimenston of g, h the dimension of Y) and by n, the transcendence
degree of C(m) over the scalar field ¥ of g. If n=mn,+h thenY) is an ideal of g.

ProOF. n;=r+¢ where r=dimm, and ¢ is as in Theorem 5.2. We
prove the theorem by induction on the degree of g. If n=1 then either
=g or h=(0). In both cases the statement is satisfied. Suppose that it
has been proved for all nilpotent Lie algebras of dimension <=, and
let g be a nilpotent Lie algebra of dimension n. Y) is a subalgebra. If
n=mn,+h then either ¢=0 or ¢ > 0. We only have to consider the possib-
ility ¢>0. With the notation of Theorem 5.2 this means that j,=m.
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Choose a,,, € I(m,,_,), @,,+0 and a,, € ¥(m,_,) such that z,a,, +
G0 € I(m). Then for T €Y

(33) 0= 6(T)[xma’ml + “mz]
=0 ([d(T)xm]aml + xm[d(T)a'mI] + d(T)a’mz]

where o- P(yy,. . .,Yp %y, . . .,2,)=P(o(y),. . .,0(xy,)) for all P € & (m). By
induction hypothesis §(7T')a,,,=0. We also know that §(7)a,,; =0 for all
T €. (33) therefore reduces to [6(7')x,,]a,,; =0, but this is only possible
if [T,,] €Y for all T €}). The theorem follows.

CorOLLARY. Let @ be a nilpotent Lie group with Lie algebra g and let
H be the connected Lie subgroup of G corresponding to a Lie subalgebra Y
of g. Suppose that n(Y)) is of codimension 1 in g. Then I(m)=F(m,) and
D(G|H) is determined by (24).

Proor. Using the previous notation we must have n;=r and the
first part follows. To complete the proof apply Theorem 2.2.
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