INVARIANT DIFFERENTIAL OPERATORS AND POLYNOMIALS OF LIE TRANSFORMATION GROUPS

ARNE HOLE

Introduction.

Among all differential operators on \mathbb{R}^n , those that have constant coefficients play an important role for analysis. They are characterized by their invariance under the transitive group of translations.

More generally, if G is a group acting on a differentiable manifold M, then ti is of great interest for analysis to determine the algebra $\mathcal{D}(M)$ of differential operators on M which are invariant under the action of G (see [8]). In case G is a transitive Lie transformation group of M then M can be identified with the quotient manifold G/H where H is a closed subgroup of G. Nomizu studied the differential geometry of those spaces M = G/H which are reductive, that is admit a G-invariant affine connection (cf. [10], [11]). For these spaces the problem of determining $\mathcal{D}(G/H)$ was investigated by S. Helgason [5].

If G is a semisimple Lie group and G = KAN an Iwasawa decomposition let M denote the centralizer of A in K. The space of horocycles in the symmetric space G/K can be identified with G/MN and can, in analogy with the space of hyperplanes in \mathbb{R}^n , be viewed as a dual space to G/K. Although the space G/MN is not reductive the algebra $\mathscr{D}(G/MN)$ can be explicitly determined, (see [7]).

In this paper we study $\mathscr{D}(G/H)$ when G is a nilpotent Lie group and G/H not necessarily reductive. Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of G and H respectively, and let \mathfrak{m} be a linear subspace of \mathfrak{g} such that $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ (direct sum). Using the technique of [5] and [6] transferring the problem to one about polynomials on \mathfrak{m} , we give a general condition for an element of $\mathscr{D}(G) \cong \mathscr{U}(\mathfrak{g})$ to define an element of $\mathscr{D}(G/H)$. In [2] and [3] central elements of $\mathscr{U}(\mathfrak{g})$ are studied, and it turns out to be simpler to work in the quotient field of $\mathscr{U}(\mathfrak{g})$. In this paper we proceed in the same way considering a subalgebra $\mathscr{R}(\mathfrak{g})$ of $\mathscr{U}(\mathfrak{g})$ instead of $\mathscr{D}(G/H)$, where $\mathscr{D}(G/H)$ is the canonical image of $\mathscr{R}(\mathfrak{g})$. In section 5 we determine the quotient field of the invariant polynomials on \mathfrak{m} .

Received May 28, 1973.

I am grateful to Professor S. Helgason for introducing me to this subject.

The reader is referred to [1], [6] and [9] for background material on Lie groups and Lie algebras.

1. Preliminaries.

Let M be a differentiable manifold of dimension m. $C^{\infty}(M)$ denotes the space of complex C^{∞} functions on M. If (φ, U) is a local chart on M and $f \in C^{\infty}(M)$ we shall sometimes write f^* for the composite function $f \circ \varphi^{-1}$ defined on $\varphi(U)$. Let x_1, x_2, \ldots, x_m be the coordinate functions of φ and let $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)$ be a m-tuple of non-negative integers. We put $\partial_i = \partial/\partial x_i$ $(1 \le i \le m)$ and $D^{\alpha} = \partial_1^{\alpha_1} \ldots \partial_m^{\alpha_m}$.

 $C_c^{\infty}(M)$ is the subspace of $C^{\infty}(M)$ consisting of the functions with compact support.

A linear map $D: C_c^{\infty}(M) \to C_c^{\infty}(M)$ is called a differential operator on M if the following condition is satisfied: For each $p \in M$ and each local chart (φ, U) around p there exists a finite set of functions $a_{\alpha} \in C^{\infty}(U)$ such that for each $f \in C_c^{\infty}(M)$ with support contained in U,

(1)
$$(Df)(x) = \sum_{\alpha} a_{\alpha}(x) [D^{\alpha} f^{*}](\varphi(x)) \quad \text{if } x \in U,$$

$$(Df)(x) = 0 \quad \text{if } x \notin U.$$

If D is a differential operator on M then it can be extended in the obvious way to a linear map

$$D\colon C^\infty(M)\to C^\infty(M)\ .$$

A Lie group G is said to be a Lie transformation group of M if to each $g \in G$ is associated a diffeomorphism $\tau(g)$ of M such that

- (i) $\tau(g_1g_2) = \tau(g_1)\tau(g_2)$ for all $g_1, g_2 \in G$ and
- (ii) the mapping $(g,p) \to \tau(g)p$ is a differentiable mapping of $G \times M$ onto M.

If the action is transitive, M is called a homogeneous space. In this case it follows that M is diffeomorphic to the quotient manifold G/H of left cosets gH, where H is the isotropy group of some element in M. The action on G/H is given by left multiplication,

$$\tau(g)(xH) = gxH$$
 for all $g, x \in G$.

Now, suppose that G is a transitive Lie transformation group of M.

A differential operator D on M is G-invariant if

(2)
$$D[\tau(g)f] = \tau(g)(Df)$$
 for all $f \in C^{\infty}(M)$

and all $g \in G$, where $[\tau(g)f](p) = f(\tau(g)p)$ for all $p \in M$.

We let $\mathcal{D}(M)$ denote the algebra of G-invariant differential operators on M.

For every $D \in \mathcal{D}(M)$, fix $p \in M$ and choose a local chart (φ, U) around p. D has a local expression near p given by (1). Define a polynomial in m variables X_1, X_2, \ldots, X_m by

$$P(X_1,\ldots,X_m) = \sum_{\alpha} a_{\alpha}(p) X_1^{\alpha_1} \ldots X_m^{\alpha_m}.$$

Then

(3)
$$(Df)(p) = [P(\partial_1, \ldots, \partial_m)f^*](\varphi(p))$$

for every $f \in C^{\infty}(M)$.

Using (2) we find

$$(4) (Df)(\tau(g)p) = [P(\partial_1,\ldots,\partial_m)(\tau(g)f)^*](\varphi(p))$$

for every $f \in C^{\infty}(M)$ and every $g \in G$. Since the action of G on M is transitive it follows that D is uniquely determined by the polynomial P.

Suppose that V is a linear space of finite dimension over a field K of characteristic 0, let T(V) denote the tensor algebra over V and let J be the ideal in T(V) generated by the set of elements of the form $X \otimes Y - Y \otimes X$, $X, Y \in V$. The factor algebra $\mathcal{S}(V) = T(V)/J$ is called the symmetric algebra over V. If X_1, X_2, \ldots, X_n is a basis of V, $\mathcal{S}(V)$ can be identified with the abelian algebra of polynomials in the base elements over K.

Given a Lie group G with Lie algebra \mathfrak{g} , let $\mathscr{S}(\mathfrak{g})$ be the symmetric algebra of \mathfrak{g} . G acts on itself by left multiplication. As noted above, every $D \in \mathscr{D}(G)$ determines a unique polynomial $P \in \mathscr{S}(g)$ such that

$$(5) (Df)(g) = [P(\partial_1, \ldots, \partial_n)f(g \exp(x_1 X_1 + \ldots + x_n X_n))](0)$$

for all $g \in G$ and all $f \in C^{\infty}(G)$. $(X_1, \ldots, X_n \text{ is a basis of } \mathfrak{g}.)$

For $P \in \mathcal{S}(\mathfrak{g})$ arbitrary, (5) defines a left invariant differential operator $\lambda(P)$ on G. The map

$$\lambda \colon \mathscr{S}(\mathfrak{g}) \to \mathscr{D}(G)$$

is a linear isomorphism. If $Y_1, \ldots, Y_p \in \mathfrak{g}$ then

(6)
$$\lambda(Y_1Y_2...Y_p) = (p!)^{-1} \sum_{\sigma} Y_{\sigma(1)} Y_{\sigma(2)}...Y_{\sigma(p)}$$

where the right hand side is calculated in $\mathcal{D}(G)$. The sum is taken over all permutations σ of $\{1,\ldots,p\}$.

2. A criterium for a differential operator to be invariant.

Let G be a Lie group with Lie algebra \mathfrak{g} and let H be a closed subgroup of G. If \mathfrak{h} denotes the Lie algebra of H let \mathfrak{m} be any linear subspace of \mathfrak{g} such that

$$g = h + m$$
 (direct sum).

Choose a basis $X_1, \ldots, X_m, \ldots, X_n$ of \mathfrak{g} such that X_1, \ldots, X_m is a basis of \mathfrak{m} and X_{m+1}, \ldots, X_n is a basis of \mathfrak{h} . If $\pi \colon G \to G/H$ is the canonical projection map, then

(7)
$$\pi(g \exp(x_1 X_1 + \ldots + x_m X_m)) \to (x_1, \ldots, x_m)$$

defines a local chart of gH.

For $D \in \mathcal{D}(G/H)$ let $P \in \mathcal{S}(\mathfrak{m})$ be the unique polynomial determined by (3) with respect to this chart when g = e = identity element of G. Then by (4)

(8)
$$(Df)(gH) = [P(\partial_1, \dots, \partial_m)f(g \exp(x_1X_1 + \dots + x_mX_m)H)](0)$$
 for all $g \in G$ and all $f \in C^{\infty}(G/H)$.

LEMMA 2.1. Let $\mathcal{D}(G)\mathfrak{h}$ denote the set of all real linear combinations of elements of the form DT where $D \in \mathcal{D}(G)$ and $T \in \mathfrak{h}$. Then

$$\mathscr{D}(G) = \mathscr{D}(G)\mathfrak{h} + \lambda(\mathscr{S}(\mathfrak{m})) \quad (direct sum).$$

For a proof see [5, p. 394].

Let $C_0^{\infty}(G)$ denote the set of C^{∞} functions on G which are constant on each coset gH. Then the mapping $f \to \tilde{f}$ where $\tilde{f} = f \circ \pi$, is an isomorphism of the algebra $C^{\infty}(G/H)$ onto $C_0^{\infty}(G)$.

Now, suppose that $D \in \mathcal{D}(G/H)$ and let $P \in \mathcal{S}(\mathfrak{m})$ denote the corresponding polynomial defined by (8). Since $\mathcal{S}(\mathfrak{m}) \subset \mathcal{S}(\mathfrak{g})$, $E = \lambda(P)$ is a left invariant differential operation on G. From (5) it is clear that

(9)
$$E\tilde{f} = (Df)^{\sim} \text{ for all } f \in C^{\infty}(G/H) .$$

Because $\tau(h)H = H$ for all $h \in H$, D must satisfy

$$(Df)(ghH) = (Df)(gH)$$

for all $g \in G$ and all $f \in C^{\infty}(G/H)$. Using (5) and (9) this means that

(11)
$$[P(\partial_1, \dots, \partial_m) \tilde{f}(g \exp(x_1 X_1 + \dots + x_m X_m))](0)$$

$$= [P(\partial_1, \dots, \partial_m) \tilde{f}(gh \exp(x_1 X_1 + \dots + x_m X_m))](0)$$

$$= [P(\partial_1, \dots, \partial_m) \tilde{f}(g \exp(x_1 \operatorname{Ad}(h) X_1 + \dots + x_m \operatorname{Ad}(h) X_m))](0)$$

$$= [Q(\partial_1, \dots, \partial_n) \tilde{f}(g \exp(x_1 X_1 + \dots + x_n X_n))](0)$$

for all $f \in C^{\infty}(G/H)$ and all $h \in H$. The polynomial $Q \in \mathcal{S}(\mathfrak{g})$ is given by

(12)
$$Q(X_1,\ldots,X_n) = P(\operatorname{Ad}(h)X_1,\ldots,\operatorname{Ad}(h)X_m).$$

- (11) can be expressed in the following way:
- (13) $\lambda(Q-P)$ restricted to $C_0^{\infty}(G)$ defines the zero operator.

Because of Lemma 2.1 we can find $D \in \mathcal{D}(G)$ and $R \in \mathcal{S}(\mathfrak{m})$ such that $\lambda(Q-P) = D + \lambda(R)$. Now Df = 0 for all $f \in C_0^{\infty}(G)$, and it follows that $\lambda(R)f = 0$ for all $f \in C_0^{\infty}(G)$.

Given $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$, we see by (7) that there exists a function $f \in C^{\infty}(G/H)$ such that

(14)
$$f(\pi(\exp(x_1X_1+\ldots+x_mX_m))) = e^{\alpha_1x_1+\ldots+\alpha_mx_m}$$

in a neighborhood of $\{H\}$ in G/H.

If $R \in \mathcal{S}(\mathfrak{m})$ and $R \neq 0$ we can find $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$ such that $R(\alpha_1, \ldots, \alpha_m) \neq 0$. With such a choice in (14) it follows that

$$\lambda(R)\tilde{f} = R(\alpha_1, \ldots, \alpha_m)\tilde{f}$$

in a neighbourhood of e, and in particular that $\lambda(R)\tilde{f} \neq 0$. This proves the following

Lemma 2.2. If $D \in \mathcal{D}(G/H)$ let $P \in \mathcal{S}(\mathfrak{m})$ be the unique polynomial defined by (8). Putting

$$[\mathrm{Ad}(h)\cdot P](X_1,\ldots,X_n) = P(\mathrm{Ad}(h)X_1,\ldots,\mathrm{Ad}(h)X_m),$$

we have

(15)
$$\lambda(\operatorname{Ad}(h)\cdot P) = D(h) + \lambda(P)$$

for all $h \in H$, where $D(h) \in \mathcal{D}(G)\mathfrak{h}$.

For each $X \in \mathfrak{g}$ let d(X) be the uniquely determined derivation of $\mathcal{D}(G)$ (respectively $\mathcal{S}(\mathfrak{g})$), which extends the endomorphism $\mathrm{ad}(X)$ of \mathfrak{g} . This defines a \mathfrak{g} -module structure on $\mathcal{D}(G)$ and $\mathcal{S}(\mathfrak{g})$ and the linear map λ becomes a \mathfrak{g} module isomorphism.

For each $g \in G$, the automorphism $\mathrm{Ad}(g)$ of g extends uniquely to an automorphism of $\mathscr{D}(G)$. Let the extension also be denoted by $\mathrm{Ad}(g)$. Then $\lambda(\mathrm{Ad}(g)\cdot P)=\mathrm{Ad}(g)\lambda(P)$. Since the order of d(X)D is less than or equal to the order of D for all $X\in\mathfrak{g}$, all differential operators $d(X)^nD$ lie in a finite dimensional subspace of $\mathscr{D}(G)$. This implies the convergence of the following series

(16)
$$e^{d(X)}D = \sum_{n=0}^{\infty} \frac{1}{n!} d(X)^n D.$$

From the uniqueness mentioned above it follows that

(17)
$$\operatorname{Ad}(\exp X)D = e^{d(X)}D$$

for all $X \in \mathfrak{g}$ and all $D \in \mathcal{D}(G)$. By differentiation

(18)
$$\frac{d}{dt} [e^{td(X)}D]_{t=0} = d(X)D.$$

THEOREM 2.1. If H is a closed connected subgroup of G, then $P \in \mathcal{S}(\mathfrak{m})$ defines an element of $\mathcal{D}(G/H)$ by (8) if and only if $d(T)\lambda(P) \in \mathcal{D}(G)\mathfrak{h}$ for all $T \in \mathfrak{h}$.

PROOF. First suppose that $D \in \mathcal{D}(G/H)$. If $P \in \mathcal{S}(\mathfrak{m})$ is the corresponding polynomial then Lemma 2.2 and (18) imply

$$d(T)\lambda(P) \in \mathcal{D}(G)\mathfrak{h}$$
 for all $T \in \mathfrak{h}$.

 $\mathcal{D}(G)$ h is closed with respect to the limit process in (18).

Next suppose that $P \in \mathcal{S}(\mathfrak{m})$ satisfies $d(T)\lambda(P) \in \mathcal{D}(G)\mathfrak{h}$ for all $T \in \mathfrak{h}$. The subalgebra $\mathcal{D}(G)\mathfrak{h}$ is invariant under all derivations d(T), $T \in \mathfrak{h}$. This means that the series

(19)
$$e^{d(T)}\lambda(P) - \lambda(P) = \sum_{n=1}^{\infty} \frac{1}{n!} d(T)^n \lambda(P)$$

converges in $\mathcal{D}(G)\mathfrak{h}$ for all $T\in\mathfrak{h}$. (17), (19) and the fact that H is connected imply that

(20)
$$\lambda(\operatorname{Ad}(h)\cdot P) = D(h) + \lambda(P)$$

for all $h \in H$, where $D(h) \in \mathcal{D}(G)$ h. Put $E = \lambda(P)$ and define a linear transformation D of $C^{\infty}(G/H)$ by

$$(21) (Df)^{\sim} = E\tilde{f}.$$

D is well defined because of (20). It is clear from the local expression of E that D is a differential operator. The left invariance of E finally shows that $D \in \mathcal{D}(G/H)$.

COROLLARY. Suppose that g = h + m (direct sum). Let σ be the projection of g onto m. Denote by $\delta(X)$, $X \in g$, the derivation of $\mathcal{S}(m)$ extending the endomorphism $\sigma \circ \mathrm{ad}(X)$ of m. If $D \in \mathcal{D}(G/H)$ and $P \in \mathcal{S}(m)$ is the polynomial defined by (8) let P_D denote the component of highest degree. Then

(22)
$$\delta(T)P_D = 0 \quad \text{for all } T \in \mathfrak{h} .$$

PROOF. Write $P = P_D + Q$ where Q is of lower degree than P_D . By Theorem 2.1

(23)
$$\lambda \big(d(T)P_D\big) + \lambda \big(d(T)Q\big) \in \mathscr{D}(G)\mathfrak{h}$$

for all $T \in \mathfrak{h}$. But this is only possible if each term in $d(T)P_D$ contains at least one $T \in \mathfrak{h}$. Applying σ to (23) we find

$$\delta(T)P_D = \sigma \cdot [d(T)P_D] = 0$$

for all $T \in \mathfrak{h}$.

THEOREM 2.2. Let $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ (direct sum) as previously. Denote by $I(\mathfrak{m})$ the subspace of $\mathscr{S}(\mathfrak{m})$ consisting of those P which satisfy $\delta(T)P = 0$ for all $T \in \mathfrak{h}$. Let

$$\mathfrak{n} \,=\, \{X\in\mathfrak{m} \mid \, [X,T]\in\mathfrak{h} \,\, \textit{for all} \,\, T\in\mathfrak{h}\}\;.$$

If $I(\mathfrak{m}) = \mathscr{S}(\mathfrak{n})$ then the mapping $E \to D_E$ of $\mathscr{D}(N) \to \mathscr{D}(G/H)$ defined by (24) $(D_E f)(gH) = E_n(n \to f(gnH))_{n-e}$

for all $f \in C^{\infty}(G/H)$, where $n \in N$ and N is the normalizer of H in G, is onto and is an algebraic homomorphism.

PROOF. Let $D \in \mathcal{D}(G/H)$ and let $P \in \mathcal{S}(\mathfrak{m})$ be the corresponding polynomial. Then $P_D \in I(\mathfrak{m})$. By assymption P_D defines a left invariant differential operator E on N. It is easily shown that D_E given by (24) is well defined and that it is an element of $\mathcal{D}(G/H)$. The corresponding polynomial of D_E is of course P_D . Hence

$$D-D_E\in\mathcal{D}(G/H)$$
,

and this operator is determined by $P-P_D\in \mathscr{S}(\mathfrak{m})$ which is of lower degree than P. It follows by induction on the degree of P that every $D\in \mathscr{D}(G/H)$ comes from some $E\in \mathscr{D}(N)$.

The multiplicative property $D_{E_1E_2} = D_{E_1}D_{E_2}$ where $E_1, E_2 \in \mathcal{D}(N)$ is obviously satisfied.

Example 1. As was shown by S. Helgason in [7] the hypothesis of Theorem 2.2 are satisfied for the space of horocycles in a symmetric space. Let G be a connected semisimple Lie group and let

$$G = KAN$$

be an Iwasawa decomposition of G. Put M = centralizer of A in K. Denote by \mathfrak{g} , \mathfrak{k} , \mathfrak{a} , \mathfrak{n} and \mathfrak{m} the Lie algebras of G, K, A, N and M, respectively. The set of horocycles in G/K is G/MN. The normalizer of MN

(respectively N) in G is MAN. In both cases $\mathcal{D}(G/MN)$ (respectively $\mathcal{D}(G/N)$) is determined by $\mathcal{D}(A)$ (respectively $\mathcal{D}(MA)$).

If H is a normal subgroup then of course $n(\mathfrak{h}) = \mathfrak{g}$ and $I(\mathfrak{m}) = \mathscr{S}(\mathfrak{m})$ where $n(\mathfrak{h})$ is the normalizer of \mathfrak{h} in \mathfrak{g} .

Example 2. Let g be the 3-dimensional real Lie algebra generated by x, y and z where

$$[x,y] = z, \quad [x,z] = [y,z] = 0.$$

g is nilpotent. Putting $\mathfrak{h} = Rx$ then $\mathfrak{n}(\mathfrak{h}) = Rx + Rz + g$. The polynomial

$$P(y,z) = Q_n(z)y^n + \ldots + Q_1(z)y + Q_0(z)$$

is invariant if and only if the polynomials $Q_1(z) = \ldots = Q_n(z) = 0$, hence $I(\mathfrak{m}) = \text{all polynomials in } z$.

EXAMPLE 3. As the following example shows Example (2) does not give the general situation for nilpotent Lie algebras. Let $\mathfrak g$ be the 4-dimensional Lie algebra generated by x, y, z, w where

$$[x,y] = z, \quad [x,w] = y,$$

 $[x,z] = [y,z] = [w,z] = 0.$

Putting $\mathfrak{h} = \mathbb{R}x$ then $\mathfrak{n}(\mathfrak{h}) = \mathbb{R}x + \mathbb{R}z$. Simple computation shows that a polynomial $P(z,y,w) \in I(\mathfrak{m})$ if and only if it is generated by z and $y^2 - 2zw$. The polynomial $y^2 - 2zw$ is G-invariant and the associated left invariant differential operator D defined by (5) belongs to the center of $\mathcal{D}(G)$ where G is a Lie group with Lie algebra \mathfrak{g} .

3. Some algebraic tools.

Let \mathfrak{g} be a Lie algebra over a field of characteristic 0. Let $\mathscr{U}(\mathfrak{g})$ denote the universal enveloping algebra of \mathfrak{g} . If G is a Lie group with Lie algebra \mathfrak{g} , we will identify $\mathscr{U}(\mathfrak{g})$ and $\mathscr{D}(G)$.

In [4] I. M. Gelfand and A. A. Kirillov proved

LEMMA 3.1. $\mathcal{U}(g)$ is a Noetherian ring without null divisors.

From this it easily follows that

LEMMA 3.2. $\mathcal{U}(g)$ is an Ore ring without null divisors. (Ore ring means a ring with the following property: For all $a, b \in \mathcal{U}(g)$, $a \neq 0$, $b \neq 0$ there exist $x, y \in \mathcal{U}(g)$, $x \neq 0$, $y \neq 0$ such that xa = yb.)

If \mathcal{R} is an Ore ring without null divisors, define the quotient field in the following way.

Consider all expressions of the forms $a^{-1}b$ and ba^{-1} where $a, b \in \mathcal{R}$ and $a \neq 0$. Identify $a^{-1}b$ and cd^{-1} if ac = bd. Since \mathcal{R} is an Ore ring it follows that every "right expression" cd^{-1} can be put into a left expression $a^{-1}b$. Also every couple of fractions $a^{-1}b$, $c^{-1}d$ can be reduced to one with common denominator. For expressions with common denominator define the operations addition, subtraction and division:

$$a^{-1}b_1 \pm a^{-1}b_2 = a^{-1}(b_1 \pm b_2) ,$$

$$(a^{-1}b_1)^{-1}(a^{-1}b_2) = b_1^{-1}b_2 .$$

Finally, multiplication by $a^{-1}b$ can be considered as division by the inverse element $b^{-1}a$.

Denote by $C(\mathfrak{g})$ the quotient field of $\mathscr{U}(\mathfrak{g})$. For any subset $\mathscr{A} \subset \mathscr{U}(\mathfrak{g})$ let $\mathscr{K}(\mathscr{A})$ be the subalgebra of $C(\mathfrak{g})$ generated by \mathscr{A} .

4. Comparison of $\mathcal{D}(G_0/H)$ and $\mathcal{D}(G/H)$ when $H \subseteq G_0 \subseteq G$.

Let H, G, \mathfrak{h} and \mathfrak{g} be as in section 2. If $D \in \mathcal{D}(G/H)$ put $E(D) = \lambda(P)$ where $P \in \mathcal{S}(\mathfrak{m})$ is the polynomial defined by (8) corresponding to D. Moreover let

$$J(\mathfrak{m}) = \{P \in \mathscr{S}(\mathfrak{m}) \mid P \text{ corresponds to some } D \in \mathscr{D}(G/H)\}$$
.

Finally put

(25)
$$\mathscr{R}(\mathfrak{g}) = \mathscr{U}(\mathfrak{g})\mathfrak{h} + \lambda(J(\mathfrak{m})).$$

For $E \in \mathcal{R}(\mathfrak{g})$ define

$$[\varrho(E)f](gH) = E_x[x \to f(gxH)]_{x=e}$$

for all $f \in C^{\infty}(G/H)$, $g \in G$.

Lemma 4.1. $\mathcal{R}(g)$ is a subalgebra of $\mathcal{U}(g)$ and ϱ is an algebraic homomorphism of $\mathcal{R}(g)$ onto $\mathcal{D}(G/H)$ with kernel $\mathcal{U}(g)\mathfrak{h}$.

PROOF. If $E_1, E_2 \in \mathcal{R}(\mathfrak{g})$ then E_1E_2 leaves $C_0^{\infty}(G)$ invariant and this means that $E_1E_2 = D + \lambda(P)$ for some $D \in \mathcal{U}(\mathfrak{g})\mathfrak{h}$ and some $P \in J(\mathfrak{m})$ (Lemma 2.1). Therefore $\mathcal{R}(\mathfrak{g})$ is closed under multiplication and the algebra property follows. The last part of the statement is immediate by the construction.

Now suppose that G_0 is a closed, connected and normal subgroup of G with Lie algebra g_0 such that $\mathfrak{h} \subseteq g_0 \subseteq \mathfrak{g}$. Let \mathfrak{m}_0 be a complementary subspace of \mathfrak{h} in \mathfrak{g}_0 .

THEOREM 4.1. If g_0 is an ideal of codimension 1 in g and x an element of g not in g_0 , then for $m = m_0 + Rx$ either

- (i) $J(m) = J(m_0)$ or
- (ii) there exist elements $a_1 \in \lambda(J(\mathfrak{m}_0))$, $a_1 \neq 0$ and $a_2 \in \mathcal{U}(\mathfrak{g}_0)$ such that such that $a = xa_1 + a_2 \in \lambda(J(\mathfrak{m}))$.

Moreover $\mathcal{K}(\mathcal{R}(\mathfrak{g})) \subseteq \mathcal{K}(a, a_1^{-1}, \mathcal{R}(\mathfrak{g}_0))$ and a is transcendental over $C(\mathfrak{g}_0)$.

Proof. Suppose that $J(m) \neq J(m_0)$. Choose the element

$$x^nb_n+x^{n-1}b_{n-1}+\ldots+b_0\in\lambda(J(\mathfrak{m}))$$

where $b_0, b_1, \ldots, b_n \in \mathcal{U}(\mathfrak{g}_0)$, n > 0 and $b_n \neq 0$. We apply d(T), $T \in \mathfrak{h}$ to this element noting that

(26)
$$d(T)(x^{m}) = x^{m-1}[d(T)x] + x^{m-2}[d(T)x]x + \dots + [d(T)x]x^{m-1}$$
$$= mx^{m-1}[d(T)x] + x^{m-2}c_{m-m-2} + \dots + xc_{m-1} + c_{m-0}$$

where $c_{m,m-2},c_{m,m-3},\ldots,c_{m,0}\in \mathscr{U}(\mathfrak{g}_0)$. Using Theorem 2.1 and (26) we find

$$\begin{aligned} &d(T)(x^nb_n+x^{n-1}b_{n-1}+\ldots+b_0)\\ &=x^n[d(T)b_n]+nx^{n-1}[d(T)x]b_n+x^{n-2}c_{n,\,n-2}b_n+\ldots+c_{n,\,0}b_n+\\ &+x^{n-1}[d(T)b_{n-1}]+(n-1)x^{n-2}[d(T)x]b_{n-1}+\\ &+x^{n-3}c_{n-1,\,n-3}b_{n-1}+\ldots+\\ &+c_{n-1,\,0}b_{n-1}+\ldots+d(T)b_0\in\mathscr{U}(\mathfrak{q})\mathfrak{h} \end{aligned}$$

for all $T \in \mathfrak{h}$. Collecting different powers of x we find

$$(28) \qquad d(T)b_n\in \mathscr{U}(\mathfrak{g})\mathfrak{h} \quad \text{ and } \quad n[d(T)x]b_n+d(T)b_{n-1}\in \mathscr{U}(\mathfrak{g})\mathfrak{h}$$
 for all $T\in \mathfrak{h}$.

Since $\mathcal{U}(\mathfrak{g})\mathfrak{h}$ is an ideal in $\mathcal{R}(\mathfrak{g})$ we conclude by (28) that

(29)
$$d(T)(nxb_n + b_{n-1}) \in \mathcal{U}(\mathfrak{g})\mathfrak{h} \quad \text{for all } T \in \mathfrak{h} .$$

Now put $a_1 = nb_n$ and $a_2 = b_{n-1}$. This proves the first part of (ii). Suppose that

$$d = x^{p} d_{p} + x^{p-1} d_{p-1} + \ldots + d_{0} \in \lambda(J(m))$$

where $d_p, d_{p-1}, \ldots, d_0 \in \mathcal{U}(\mathfrak{g}_0)$ and $d_p \neq 0$. We want to prove that d is contained in the subalgebra $\mathcal{K}(a, a_1, ^{-1}, \mathcal{R}(\mathfrak{g}_0))$ of $C(\mathfrak{g})$. This is obviously satisfied if p = 0. Suppose that it is proved for all integers < p. Using the first part of the proof we know that $d_p \in \lambda(J(\mathfrak{m}_0))$. Therefore

$$da_1^p - d_n a^p \in \mathcal{R}(\mathfrak{g})$$
.

But

$$da_1^p - d_p a^p = (x^p d_p + \dots + d_0)a_1^p - d_p(xa_1 + a_2)^p$$

= $\sum_{k < p} x^k d_k'$

where $d_k' \in \mathcal{U}(\mathfrak{g}_0)$ for all $1 \leq k \leq p-1$. By the induction hypothesis

$$da_1^p - d_p a^p \in \mathcal{K}(a, a_1^{-1}, \mathcal{R}(\mathfrak{g}_0))$$
.

We know that $d_p \in \mathcal{R}(\mathfrak{g}_0)$ and this proves that $d \in \mathcal{K}(a, a_1^{-1}, \mathcal{R}(\mathfrak{g}_0))$. It remains to consider the $\mathcal{U}(\mathfrak{g})$ part of $\mathcal{R}(\mathfrak{g})$. That is, we must prove

$$\mathscr{U}(\mathfrak{g})\mathfrak{h} \subset \mathscr{K}(a, a_1^{-1}, \mathscr{R}(\mathfrak{g}_0))$$
.

First note that $a = xa_1 + a_2 = a_1x + a_3$ for some $a_3 \in \mathcal{U}(\mathfrak{g}_0)$. Consider the subset $x\mathcal{U}(\mathfrak{g}_0)\mathfrak{h}$ of $C(\mathfrak{g})$.

$$\mathscr{x}\mathscr{U}(\mathfrak{g}_0)\mathfrak{h} \,=\, (a_1{}^{-1}a - a_1{}^{-1}a_3)\mathscr{U}(\mathfrak{g}_0)\mathfrak{h} \,\subseteq\, \mathscr{K}\big(a,a_1{}^{-1},\mathscr{R}(\mathfrak{g}_0)\big)$$

because $a_3 \mathcal{U}(\mathfrak{g}_0)\mathfrak{h} \subseteq \mathcal{R}(\mathfrak{g}_0)$.

Suppose that $x^k \mathscr{U}(\mathfrak{g}_0)\mathfrak{h} \subset \mathscr{K}(a, a_1^{-1}, \mathscr{R}(\mathfrak{g}_0))$ for all $1 \leq k < n$. For k = n

$$\begin{array}{ll} x^n \, \mathscr{U}(\mathfrak{g}_0) \mathfrak{h} \; = \; (a_1^{-1} a - a_1^{-1} a_3) x^{n-1} \, \mathscr{U}(\mathfrak{g}_0) \mathfrak{h} \\ & = \; a_1^{-1} a x^{n-1} \, \mathscr{U}(\mathfrak{g}_0) \mathfrak{h} - a_1^{-1} a_3 x^{n-1} \, \mathscr{U}(\mathfrak{g}_0) \mathfrak{h} \; . \end{array}$$

By the induction hypothesis

$$a_1^{-1}ax^{n-1}\mathscr{U}(\mathfrak{g}_0)\mathfrak{h} \subset \mathscr{K}(a,a_1^{-1},\mathscr{R}(\mathfrak{g}_0))$$
.

Consider the last term. Since

$$a_3 x^{n-1} = x^{n-1} a_3 + x^{n-2} a'_{n-2} + \ldots + a'_0$$

where $a'_{n-2}, a'_{n-3}, \ldots, a'_{0} \in \mathcal{U}(\mathfrak{g}_{0}),$

$$\begin{array}{ll} a_3 x^{n-1} \, \mathscr{U}(\mathfrak{g}_0) \mathfrak{h} \, \subset \, x^{n-1} \, \mathscr{U}(\mathfrak{g}_0) \mathfrak{h} + x^{n-2} \, \mathscr{U}(\mathfrak{g}_0) \mathfrak{h} + \ldots + \mathscr{U}(\mathfrak{g}_0) \mathfrak{h} \\ & \subset \, \mathscr{K}(a, a_1^{-1}, \mathscr{R}(\mathfrak{g}_0)) \; . \end{array}$$

This means that $x^n \mathscr{U}(\mathfrak{g}_0)\mathfrak{h} \subseteq \mathscr{K}(a, a_1^{-1}, \mathscr{R}(\mathfrak{g}_0))$ for all n and hence that

$$\mathscr{U}(\mathfrak{g})\mathfrak{h} \subset \mathscr{K}(a, a_1^{-1}, \mathscr{R}(\mathfrak{g}_0))$$
.

Finally suppose that there exists a relation

$$a^q e_q + a^{q-1} e_{q-1} + \ldots + e_0 = 0$$

where $e_q, e_{q-1}, \ldots, e_0 \in \mathcal{U}(\mathfrak{g}_0)$ and $e_q \neq 0$. Exchanging a and $xa_1 + a_2$ we find

$$x^{q}a_{1}^{q}e_{q}+x^{q-1}e'_{q-1}+\ldots+e'_{0}=0$$

where $e'_{q-1}, \ldots, e'_0 \in \mathcal{U}(\mathfrak{g}_0)$. But this is only possible if $a_1^q e_q = 0$ which is a contradiction, and the proof is complete.

Now suppose that \mathfrak{h} is a subalgebra of a nilpotent Lie algebra \mathfrak{g} . $\mathfrak{n}(\mathfrak{h})$ denotes the normalizer of \mathfrak{h} in \mathfrak{g} . Put

$$\mathfrak{n}_r(\mathfrak{h}) = \mathfrak{n}(\mathfrak{n}_{r-1}(\mathfrak{h})) \quad \text{for } r \ge 1$$

where $\mathfrak{n}_0(\mathfrak{h}) = \mathfrak{h}$. Let r_0 be the greatest possible integer such that $\mathfrak{n}_{r_0}(\mathfrak{h}) \neq \mathfrak{g}$. This is of course only possible if $\mathfrak{h} \neq \mathfrak{g}$. We exclude the case $\mathfrak{g} = \mathfrak{h}$. $\mathfrak{n}_r(\mathfrak{h})$ is an ideal in $\mathfrak{n}_{r+1}(\mathfrak{h})$. In particular $\mathfrak{n}_{r_0}(\mathfrak{h})$ is an ideal in \mathfrak{g} .

If g is nilpotent and \mathfrak{k} is an ideal in g, form the quotient algebra $\tilde{g} = g/\mathfrak{k}$. Then \tilde{g} is nilpotent and we can find a series of ideals in \tilde{g}

$$(30) (0) = \tilde{\mathfrak{g}}_0 \subset \tilde{\mathfrak{g}}_1 \subset \ldots \subset \tilde{\mathfrak{g}}_n = \tilde{\mathfrak{g}}$$

such that $\dim(\tilde{\mathfrak{g}}_{i+1}/\tilde{\mathfrak{g}}_i)=1$ for $i=0,1,\ldots,n-1$. If $\pi:\mathfrak{g}\to\tilde{\mathfrak{g}}$ denotes the canonical projection map put $\mathfrak{g}_i=\pi^{-1}(\tilde{\mathfrak{g}}_i)$. Then

is a series of ideals increasing in dimension by 1 by passing from g_k to g_{k+1} $(0 \le k \le n-1)$.

Returning to the situation $\mathfrak{h} \subseteq \mathfrak{g}$, $\mathfrak{h} \neq \mathfrak{g}$ where \mathfrak{g} is nilpotent we can, by repeated use of the technique described in (30) and (31), find an increasing series of subalgebras of \mathfrak{g}

$$\mathfrak{h} \subset \mathfrak{n}(\mathfrak{h}) = \mathfrak{g}_0 \subset \mathfrak{g}_1 \subset \ldots \subset \mathfrak{g}_m = \mathfrak{g}$$

where $\dim \mathfrak{g}_{j+1} = \dim \mathfrak{g}_j + 1$ for $j = 0, 1, \ldots, m-1$. Let x_j be an element of \mathfrak{g}_j not in \mathfrak{g}_{j-1} for $j = 1, \ldots, m$. \mathfrak{m}_j denotes a complementary linear subspace of \mathfrak{h} in \mathfrak{g}_j . These can be chosen in such a way that $\mathfrak{m}_{j+1} = \mathfrak{m}_j + Rx_{j+1}$ for $0 \le j \le m-1$.

Since every subalgebra of codimension 1 in a nilpotent Lie algebra is an ideal, Theorem 4.1 applies to every pair (g_j, g_{j+1}) for $j = 0, 1, \ldots, m-1$.

THEOREM 4.2. Suppose that \mathfrak{h} is a subalgebra of a nilpotent Lie algebra \mathfrak{g} . Assume $\mathfrak{h} \neq \mathfrak{g}$. Then either

- (i) $n(\mathfrak{h}) = \mathfrak{g} \ or$
- (ii) $m \ge 1$ in (32).

In case (ii) let $j_1 < j_2 < \ldots < j_q$ be the indices such that $J(\mathfrak{m}_j) \neq J(\mathfrak{m}_{j-1})$, so that by Theorem 4.1, for each $j \in \{j_1, j_2, \ldots, j_q\}$ we can find $a_{j1} \in \lambda(J(\mathfrak{m}_{j-1}))$, $a_{j1} \neq 0$ and $a_{j2} \in \mathcal{U}(\mathfrak{g}_{j-1})$ such that $a_j = x_j a_{j1} + a_{j2} \in \lambda(J(\mathfrak{m}_j))$. Then

$$\mathscr{K}\big(\mathscr{R}(\mathfrak{g})\big) \subseteq \mathscr{K}(a_{j_1},\ldots,a_{j_q},a_{j_11}^{-1},\ldots,a_{j_{q^1}}^{-1},y_1,\ldots,y_r)[\operatorname{mod}\mathscr{U}(\mathfrak{g})\mathfrak{h}]$$

where y_1, \ldots, y_r is a basis of \mathfrak{m}_0 .

The theorem is easily proved by induction on the dimension of g using Theorem 4.1.

5. Invariant polynomials.

In view of the corollary of Theorem 2.1 it is important to determine the invariant polynomials $I(\mathfrak{m})$ where $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ (direct sum). But as we will see it turns out to be easier if we instead of $I(\mathfrak{m})$ consider its quotient field.

THEOREM 5.1. Suppose that \mathfrak{h} is a subalgebra of a Lie algebra \mathfrak{g} such that $\mathfrak{h} \subseteq \mathfrak{g}_0 \subseteq \mathfrak{g}$ where \mathfrak{g}_0 is an ideal of codimension 1 in \mathfrak{g} . Choose an element x in \mathfrak{g} not in \mathfrak{g}_0 and put $\mathfrak{m} = \mathfrak{m}_0 + Rx$ where \mathfrak{m}_0 is any complementary linear subspace of \mathfrak{h} in \mathfrak{g}_0 .

Then either

- (i) $I(\mathfrak{m}) = I(\mathfrak{m}_0)$ or
- (ii) there exist elements $a_1 \in I(\mathfrak{m}_0)$, $a_1 \neq 0$ and $a_2 \in \mathscr{S}(\mathfrak{m}_0)$ such that $a = xa_1 + a_2 \in I(\mathfrak{m})$. $I(\mathfrak{m})$ as a subalgebra of the quotient field $C(\mathfrak{m})$ is contained in the subalgebra $\mathscr{K}(a,a_1^{-1},I(\mathfrak{m}_0))$ generated by a,a_1^{-1} and $I(\mathfrak{m}_0)$.

In case (ii) we also have:

(iii) $C(\mathfrak{m})$ is generated by a and $I(\mathfrak{m}_0)$. $C(\mathfrak{m})$ is a transcendental extension of $C(\mathfrak{m}_0)$.

PROOF. If $I(\mathfrak{m}) \neq I(\mathfrak{m}_0)$ choose $P = x^n b_n + \ldots + b_0 \in I(\mathfrak{m})$ where $b_0, \ldots, b_n \in \mathscr{S}(\mathfrak{m}_0)$, n > 0 and $b_n \neq 0$. Applying $\delta(T)$, $T \in \mathfrak{h}$ to P we find

$$\begin{array}{ll} 0 &=& \sigma \cdot [d(T)(x^nb_n + \ldots + b_0)] \\ &=& \sigma \cdot \big(x^n[d(T)b_n] + nx^{n-1}[d(T)x]b_n + x^{n-1}[d(T)b_{n-1}] + \ldots + d(T)b_0\big) \;. \end{array}$$

But this is only possible if

$$\delta(T)b_n = 0$$
 and $\delta(T)(nxb_n + b_{n-1}) = 0$

for all $T \in \mathfrak{h}$.

Define $a_1 = nb_n$ and $a_2 = b_{n-1}$. Then $a = xa_1 + a_2 \in I(\mathfrak{m})$. Following the lines of the proof of Theorem 4.1, (ii) follows. To prove (iii) we first note that $\mathscr{S}(\mathfrak{m})$ is abelian without null divisors and the quotient fields can be formed. See [1, p. 24]. $a_1 \in I(\mathfrak{m}_0)$ and therefore $a_1 \in C(\mathfrak{m}_0)$. From (ii) it is clear that $C(\mathfrak{m})$ is generated by a and $I(\mathfrak{m}_0)$. The last part of (iii) is proved in the same manner as in Theorem 4.1.

THEOREM 5.2. Suppose that $\mathfrak{h} \subseteq \mathfrak{n}(\mathfrak{h}) = \mathfrak{g}_0 \subseteq \ldots \subseteq \mathfrak{g}_m \subseteq \mathfrak{g}$ as in Theorem 4.2, where \mathfrak{g} is a nilpotent algebra. If $m \ge 1$ let $j_1 < j_2 < \ldots < j_q$ be the indices such that $I(\mathfrak{m}_j) \ne I(\mathfrak{m}_{j-1})$. For each $j \in \{j_1, \ldots, j_q\}$ we can find $a_{j1} \in I(\mathfrak{m}_{j-1})$, $a_{j1} \ne 0$ and $a_{j2} \in \mathcal{S}(\mathfrak{m}_{j-1})$ such that $a_j = x_j a_{j1} + a_{j2} \in I(\mathfrak{m}_j)$. Then

(i)
$$\mathscr{K}(I(\mathfrak{m})) \subseteq \mathscr{K}(a_{j_1}, \ldots, a_{j_q}, a_{j_1 1}^{-1}, \ldots, a_{j_q 1}^{-1}, y_1, \ldots, y_r)$$

where y_1, \ldots, y_r is a basis of \mathfrak{m}_0 and

- (ii) the quotient field of I(m) is the field generated by the algebraic independent elements $a_{j_1}, \ldots, a_{j_q}, y_1, \ldots, y_r$.
- (iii) By (ii) we have $a_{j_11} = b_1(b_1')^{-1}, \ldots, a_{j_q1} = b_q(b_q')^{-1}$ where $b_q, b_q' \in \mathcal{K}(a_{j_1}, \ldots, a_{j_{q-1}}, y_1, \ldots, y_r)$.

Putting $b = b_1 b_2, \ldots, b_q$ we have

$$I(\mathfrak{m}) \subset \mathscr{K}(a_{j_1},\ldots,a_{j_r},y_1,\ldots,y_r,b^{-1})$$
.

PROOF. (i) and (ii) are consequences of Theorem 5.1. To prove (iii) we use induction on the dimension of g. Note that

$$a_{j_11}^{-1} = b_1{}'b^{-1}b_2b_3\dots b_q \in \mathcal{K}(a_{j_1},\dots,a_{j_{q-1}},y_1,\dots,y_r,b^{-1}) \ .$$

Similar results for $a_{j_21}^{-1}, \ldots, a_{j_{n}1}^{-1}$ hold. (iii) now follows from (ii).

Theorem 5.3. Let \mathfrak{h} be a subalgebra of a nilpotent Lie algebra \mathfrak{g} . Denote by n the dimension of \mathfrak{g} , h the dimension of \mathfrak{h} and by n_1 the transcendence degree of $C(\mathfrak{m})$ over the scalar field \mathfrak{k} of \mathfrak{g} . If $n=n_1+h$ then \mathfrak{h} is an ideal of \mathfrak{g} .

PROOF. $n_1 = r + q$ where $r = \dim \mathfrak{m}_0$ and q is as in Theorem 5.2. We prove the theorem by induction on the degree of \mathfrak{g} . If n = 1 then either $\mathfrak{h} = \mathfrak{g}$ or $\mathfrak{h} = (0)$. In both cases the statement is satisfied. Suppose that it has been proved for all nilpotent Lie algebras of dimension < n, and let \mathfrak{g} be a nilpotent Lie algebra of dimension n. \mathfrak{h} is a subalgebra. If $n = n_1 + h$ then either q = 0 or q > 0. We only have to consider the possibility q > 0. With the notation of Theorem 5.2 this means that $j_q = m$.

Choose $a_{m1} \in I(\mathfrak{m}_{m-1})$, $a_{m1} \neq 0$ and $a_{m2} \in \mathscr{S}(\mathfrak{m}_{m-1})$ such that $x_m a_{m1} + a_{m2} \in I(\mathfrak{m})$. Then for $T \in \mathfrak{h}$

(33)
$$0 = \delta(T)[x_m a_{m1} + a_{m2}]$$
$$= \sigma \cdot ([d(T)x_m]a_{m1} + x_m[d(T)a_{m1}] + d(T)a_{m2}]$$

where $\sigma \cdot P(y_1, \ldots, y_r, x_1, \ldots, x_m) = P(\sigma(y_1), \ldots, \sigma(x_m))$ for all $P \in \mathscr{S}(\mathfrak{m})$. By induction hypothesis $\delta(T)a_{m2} = 0$. We also know that $\delta(T)a_{m1} = 0$ for all $T \in \mathfrak{h}$. (33) therefore reduces to $[\delta(T)x_m]a_{m1} = 0$, but this is only possible if $[T, x_m] \in \mathfrak{h}$ for all $T \in \mathfrak{h}$. The theorem follows.

COROLLARY. Let G be a nilpotent Lie group with Lie algebra g and let H be the connected Lie subgroup of G corresponding to a Lie subalgebra \mathfrak{h} of g. Suppose that $\mathfrak{n}(\mathfrak{h})$ is of codimension 1 in g. Then $I(\mathfrak{m}) = \mathcal{S}(\mathfrak{m}_0)$ and $\mathcal{D}(G/H)$ is determined by (24).

PROOF. Using the previous notation we must have $n_1 = r$ and the first part follows. To complete the proof apply Theorem 2.2.

REFERENCES

- 1. C. Chevalley, Théorie des groupes de Lie, Hermann, Paris 1968.
- 2. J. Diximer, Sur les representations unitaires des groupes de Lie nilpotents. II, Bull. ** Soc. Math. France 85(1957), 325-388.
- 3. J. Dixmier, Sur l'algèbre enveloppante d'une algèbre de Lie nilpotente, Arch. Math. (Basel) 10 (1959), 321-326.
- I. M. Gelfand et A. A. Kirillov, Sur les corps Liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 5-19.
- S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299.
- S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- 7. S. Helgason, Duality and Radon transform for symmetric spaces, Amer. J. Math. 85 (1963), 667-691.
- 8. S. Helgason, Analysis on Lie groups and homogeneous spaces (Regional Conference series in Mathematics 14), Amer. Math. Soc. Providence, Rhode Island, 1972.
- N. Jacobson, Lie algebras (Interscience Tracts in Pure and Applied Mathematics 10), Interscience Publishers, New York, London, 1962.
- K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- K. Nomizu, Reduction theorem for connections and its applications to the problem of isotropy and holonomy groups of a Riemannian manifold, Nagoya J. Math. 9 (1955), 57-66.