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Computational anatomy (CA) has introduced the idea of anatomical

structures being transformed by geodesic deformations on groups of

diffeomorphisms. Among these geometric structures, landmarks and

image outlines in CA are shown to be singular solutions of a partial

differential equation that is called the geodesic EPDiff equation. A

recently discovered momentum map for singular solutions of EPDiff

yields their canonical Hamiltonian formulation, which in turn

provides a complete parameterization of the landmarks by their

canonical positions and momenta. The momentum map provides an

isomorphism between landmarks (and outlines) for images and

singular soliton solutions of the EPDiff equation. This isomorphism

suggests a new dynamical paradigm for CA, as well as new data

representation.
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1. Introduction

Computational anatomy (CA) must measure and analyze a

range of variations in shape or appearance of highly deformable

structures. Following the pioneering work by Bajcsy et al. (1983),

Bookstein (1991), and Grenander (1993), the past several years

have seen an explosion in the use of template-matching methods

in computer vision and medical imaging (Ashburner et al., 2003;

Dupuis et al., 1998; Grenander and Miller, 1994b; Hallinan,

1994; Jain et al., 1998; Miller and Younes, 2001; Miller et al.,

2002; Montagnat et al., 2001; Mumford, 1991, 1994, 1996;
1053-8119/$ - see front matter D 2004 Elsevier Inc. All rights reserved.
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Thompson et al., 2000; Toga, 1999; Toga and Thompson, 2003;

Trouvé, 1995, 1998). These methods enable the systematic

measurement and comparison of anatomical shapes and structures

in biomedical imagery leading to better understanding of neuro-

developmental, neuropsychiatric, and neurological disorders in

recent years (Ballmaier et al., 2004a,b; Cannon et al., 2003;

Csernansky et al., 2004; Gee et al., 2003; Gogtay et al., 2004;

Narr et al., 2003a,b, 2004a,b; Posener et al., 2003; Sowell et al.,

2003a,b; Tepest et al., 2003; Thompson et al., 2003; Wang et al.,

2003; Zeineh et al., 2003). The mathematical theory of

Grenander’s deformable template models, when applied to these

problems, involves smooth invertible maps (diffeomorphisms), as

presented in this context in Dupuis et al. (1998), Miller and

Younes (2001), Miller et al. (2002), Mumford (1998), and Trouvé

(1995, 1998). In particular, the template-matching approach

involves Riemannian metrics on the diffeomorphism group and

employs their projections onto specific landmark shapes or image

spaces.

On the other hand, the diffeomorphism group has also been

the focus of special attention in fluid mechanics. For example,

Arnold (1966) proved that ideal incompressible fluid flows

correspond to geodesics on the diffeomorphism group, with

respect to the metric provided by the fluid’s kinetic energy. In this

paper, we shall draw parallels between these two endeavors, by

showing how the Euler-Poincaré (EP) theory of ideal fluids can be

used to develop new perspectives in CA. In particular, we

discover that CA may be informed by the concept of canonical

momentum for geodesic flows describing the interaction dynamics

for singular solitons in shallow water called peakons (Camassa

and Holm, 1993).

1.1. Outline of the paper

Section 2 describes the template-matching variational

problems of computational anatomy and introduces the

fundamental EPDiff evolution equation, which describes the
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evolution of the momentum of an anatomy (a collection of

landmarks, for example). The singular solutions for the EPDiff

Eq. (3) with diffeomorphism group G are explained in section 3.

They are, in particular, related to the landmark-matching problem

in computer vision. The consequences of EPDiff for computational

anatomy are described in section 4. Conclusions are summarized in

section 5.
2. Variational formulation of template-matching problem

2.1. Geometrical large deformation setting

Grenander (1993) pioneered the introduction of group actions

in image analysis, through the notion of deformable templates.

Roughly speaking, a deformable template is an bobject, or

exemplarQ I0 on which a group G acts and thereby generates,

through the orbit I ¼ GI0, a family of new objects. This btemplate-

matchingQ approach has proven to be versatile and useful in

different settings (image matching, landmark matching, surface

matching, and more recently in several extensions of metamor-

phoses; Trouvé and Younes, 2004). The approach focuses its

modeling effort on properties of the families of shapes generated

by the action of the group G on the deformable templates. Right or

left invariant geodesic distances on the group G are the natural

extension to large deformation of the quadratic cost, or effort

function, defined for small linearized perturbations of the identity

element.

2.2. Case of nonrigid template matching

The optimal solution to a nonrigid template-matching problem

is the shortest or least expensive path of continuous deformation of

one geometric object (template ) into another one (target). For this

purpose, we have introduced a time-indexed deformation process,

starting at time t = 0 with the template (denoted I0), and reaching

the target at time t = 1. At a given time t during this process, the

current object It is assumed to be the image of the template, I0,

through the (left) action of a diffeomorphism /t: It = ut d I0. The

attribution of a cost to this process is then based on functionals

defined on the group of diffeomorphisms, following Grenander’s

principles.

A simple and natural way to assign a cost to a diffeomorphic

process indexed by time is based on the following: to measure

ut + dt � ut, express this difference as a small vector of

displacement, dtut, composed with ut,

utþdt � ut ¼ dtutBut

The cost of this small variation is then expressed as a function

of ut only, yielding the final expression,

Cost ti utð Þ ¼
Z
0

1

S utð Þdt

with

d/t

dt
¼ ut But ð1Þ

In the following, the function ut i S (ut) is defined as a squared
functional norm on the infinite dimensional space of velocity

vectors. This process is a standard construction in the Riemannian
geometry of Lie groups, in which the considered group is equipped

with a right invariant Riemannian metric. Here, the vector space of

right invariant instantaneous velocities, ut = (d/t/dt) B ut
�1, forms

the tangent space at the identity of the considered group and may

be regarded as its Lie algebra. This vector space will be denoted g

in the following (as a formal analogy Lie algebra notation). In this

context, the cost of a time-dependent deformation process, thus

defined by

Cost tiutð Þ ¼
Z
0

1

jut j2gdt; ð2Þ

is the geodesic action of the process for this Riemannian metric,

and most problems in CA can be formulated as finding the

deformation path with minimal action, under the constraint that it

carries the template to the target. We will illustrate this below with

an important example of a such problem, in which the geometric

objects are collections of points in space (landmarks). Before doing

this, we summarize in more rigorous terms the process described

above, providing at the same time the notation to be used in the rest

of the paper. However, most of the remaining of the paper can be

understood by referring to the summary paragraph at the end of

section 2.3.

2.3. Rigorous construction

Fix an open, bounded subset V o R
d. Following Trouvé

(1995), the construction is based on the design of the bLie
algebraQ g, which is in turn used to generate the group elements.
(This is the converse of the usual consideration of finite

dimensional Lie groups.) The following construction of g will

be assumed. Denote by H the set of square integrable vector

fields on V with the usual L2 metric (d ,d ): H � H Y R.

Consider a symmetric and coercive operator L: u i Lu a H* =

H whose domain D(L) contains all smooth (Cl) vector fields
with compact support in V. This operator induces an inner

product on D(L) by hu;wig = (Lu,w). This pre-Hilbert space can

be completed to form a Hilbert space (Zeidler, 1995), thereby

defining g which is continuously embedded in H (Freidrich’s

extension). Suppose, in addition, that g can be embedded into

Cp(V), the set of p times continuously differentiable vector fields

on V, with p z 1. (We call this the p-admissibility condition.)

Then the following can be shown (Dupuis et al., 1998; Trouvé,

1995): If ut is a time-dependent family of elements of g such thatR 1

0
jjutjjg

2 dt b l, that is, ut a L2([0, 1], g), then the flow (Bu)/

(Bt) = ut B ut with initial conditions u0(x) = x, x a V, can be

integrated over [0, 1], and u1 is a diffeomorphism of V, which is

denoted u1
u. The image of L2([0, 1], g) by u i u1

u forms our

group of diffeomorphisms, G, which is therefore specified by the

operator L. In this setting, Eq. (1) has solutions over any finite

interval, and the infinum should be taken with respect to u = uu B
u0 for u a L2([0, 1], g) such that u1 = u1

u B u0. (Because of right

invariance, it can furthermore be assumed that u0 = id) Moreover,

as proved in Dupuis et al. (1998) and Trouvé (1995), the existence

of a minimizer (a geodesic path) is guaranteed.

For the inner product hu;wig = (Lu,w), the operator L is a

duality map. In a deformation process t i ut such that

d/t

dt
¼ ut But
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ut is called the (Eulerian) velocity, belonging to g, and Lut is called

the momentum, also denoted mt. Note that, because L will

typically be a differential operator, the momentum Lu can (and

will) be singular, for example, a measure, or a generalized function.

A simple example of such a phenomenon occurs in the landmark-

matching problem described in section 2.4.

This framework for CA is reminiscent of the least action

principle for continuum motion of fluids with Lagrangian

S uð Þ ¼ 1
2
jjujj2g. Note that in the template matching framework,

S has the specific interpretation of an effort functional for small

deformations that should be designed according to a given

application and not follow any existing physical model.

However, this similarity with ideal fluid dynamics sets the stage

for btechnology transferQ between computational image science

and fluid dynamics, for example, Hamiltonian description,

momentum evolution, classification of equilibria, nonlinear

stability, PDE analysis, etc. In particular, the least action

interpretation of (2) is central in the Arnold theory of hydro-

dynamics (Arnold, 1966), and the derivation of the geodesic

evolution equations falls into the Euler-Poincaré (EP) theory,

which produces the EP motion equation (Holm et al., 1998;

Mumford, 1998),

B

Bt
þ udj

�
mþjtud mþm div uð Þ ¼ 0;

�
ð3Þ

and u = G * m, where G* denotes convolution with the Green’s

kernel G for the operator L. This is the EPDiff equation, for

bEuler-Poincaré equation on the diffeomorphisms.Q

2.3.1. Summary

The important consequences of the previous construction is

that, by measuring the amount of fluid deformation which is

required to morph an object to another, this measure being given by

(2) where ut is the velocity of the fluid deformation at time t and

jut jg
2 = (Lut, ut), L being a linear operator, the associated

momentum, mt = Lut satisfies the Euler-Poincaré Eq. (3). This

equation is important, because it allows to reconstruct the complete

evolution of the momentum (and hence of the fluid motion) from

the initial conditions. This property is exploited for the analysis of

landmark data in Vaillant et al. (2004).

2.4. Landmark matching and measure-based momentum

The landmark-matching problem is an interesting illustration of

the singularity of the momentum which naturally emerges in the

computation of geodesics. Given two collections of points X1,. . .,
XK and Y1,. . ., YK in V, the problem consists in finding a time-

dependent diffeomorphic process (t i ut) of minimal action [or

cost, as given by (2)] such that u0 = id and u1(Xi) = Yi for i =

1,. . ., K. This problem was first addressed in Joshi and Miller

(2000), then studied in different forms in Beg (2003), Camion and

Younes (2001), and Glaunes et al. (2004a,b). Its computational

solution relies on the key observation that the problem can be

expressed uniquely in terms of optimizing the landmark trajecto-

ries, Qi(t) = ut(Xi), for an action, or cost, given by

S ¼
Z
0

1

S Q;QVð Þdt ¼ 1

2

Z
0

1
tQV tð ÞA Q tð Þð Þ�1

QV tð Þdt; ð4Þ
with notation QV(t) = dQ/dt. This action, or cost, S =
R
S (u) dt is

the time-integrated Lagrangian in the least action principle, yS = 0.

Its end point conditions are Qi(0) = Xi and Qi(1) = Yi, where A(Q)

is an Kd � Kd matrix (d is the dimension of the underlying space)

which may be constructed as follows. Let G be the Green’s kernel

associated to the operator L, formally defined by

v xð Þ ¼
Z

X
G x; yð Þ Lvð Þ yð Þdy:

Let Id be the d-dimensional identity matrix. Then A(Q) is a

block matrix (Aij (Q), i, j = 1,. . ., K) with Aij(Q) = G(Qi,Qj)Id.

Denote P(t) = A(Q(t))�1QV(t) = BS /BQV. Then, the optimal

diffeomorphism t i ut is given by Eq. (1) with

ut xð Þ ¼
XK
i¼1

G x;Qi tð Þð ÞPi tð Þ:

The corresponding momentum mt is given by the point measure

mt yð Þ ¼
XK
i¼1

Pi tð Þd y�Qi tð Þð Þ:

A straightforward extension of this model occurs when the

landmarks are organized along continuous curves in which the

indices i, j are replaced by curve parameters (say defined over [0,

1]), and

mt yð Þ ¼
Z
0

1

P t; sð Þd y�Q t; sð Þð Þds:

One could also distribute the landmarks along several

continuous curves (the outlines of an image, say). This repre-

sentation of momentum would involve both integrations and

sums.

As we will see, this measure-based momentum is also found in

other contexts very different from medical imaging. We also

mention an important variant of this matching problem. This

variant is a particular case of a general framework, in which the

diffeomorphic group action is extended to incorporate possible

variation in the template itself. The application of this theory of

bmetamorphosesQ (Trouvé and Younes, 2004) to the particular case

of landmark matching simply comes with the addition of a new

parameter r2 N 0 and the replacement in the above formulas of

A(Q) by Ar(Q) = A(Q) + r2INd (INd is the Nd dimensional identity

matrix). This corresponds to geodesic interpolating splines

introduced in Camion and Younes (2001). Note that in this case,

EPDiff is not satisfied anymore but comes with a nonvanishing

right-hand term.
3. EPDiff and its singular solutions

3.1. The EPDiff equation

The EPDiff equation is important in fluid dynamics, because

it encodes the fundamental dynamical properties of energy,

circulation, and potential vorticity. A first example comes with

choosing the differential operator L as Lu = u, so that m = u,
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and taking incompressible vector fields, so that div u = 0. In

this setting, Eq. (3) provides the Euler equations for the

incompressible flow of an ideal fluid (Arnold, 1966; Arnold and

Khesin, 1992).

Another physically relevant form of the EPDiff equation is

the evolutionary integral-partial differential Eq. (3) with Holm

and Marsden (2004), Holm and Staley (2003), and Holm et al.

(1998).

mu Lu ¼ u� a2Du; ð5Þ

so that

juj2g ¼ jjujj2H1
a
¼

Z
X

juj2 þ a2jjuj2
� �

dx:

In this particular case of EPDiff, denoted as EPDiff(H1), one

obtains the velocity u from the momentum m by an inversion of

the elliptic Helmholtz operator (1 �a2D), with length scale a and

Laplacian operator D. The EPDiff(H1) equation with momentum

definition (5) therefore describes geodesic motion on the diffeo-

morphism group with respect to tutH
2

a
1 , the Ha

1 norm of the fluid

velocity. This velocity norm is recognized as being (twice) the

bkinetic energy,Q when Eq. (3) with momentum definition (5) is

interpreted as a model fluid equation, as in shallow water wave

theory (Holm and Staley, 2003, 2004; Holm et al., 1998). Although

this operator does not appear in the class of operators used in CA

(because it does not satisfy the p-admissibility condition), this

model exhibits a number of features which are highly relevant also

in this case. In particular, singular momentum solutions emerge in

the initial value problem for this model which behave as isolated

waves, called solitons. In many ways, landmark matching in CA
Fig. 1. A single collision is shown to produce reconnection as the faster wave front

obliquely overtakes the slower one, which was initially moving rightward (East). T

the two-dimensional EPDiff flow. See Holm and Staley (2004) for a complete tre
can be seen as generating a soliton dynamics between two sets of

landmarks.

3.2. Singular momentum solutions of EPDiff

In the 2D plane, EPDiff, (3), has weak singular momentum

solutions that are expressed as (Holm and Marsden, 2004; Holm

and Staley, 2003)

m x; tð Þ ¼
XN
a¼1

Z
s

Pa t; sð Þd x�Qa t; sð Þð Þds; ð6Þ

where s is a Lagrangian coordinate defined along a set of N

curves in the plane moving with the flow by the equations x =

Qa(t, s) and supported on the delta functions in the EPDiff

solution (6). Thus, the singular momentum solutions of EPDiff

are vector valued curves supported on the delta functions in (6)

representing evolving bwavefrontsQ defined by the Lagrange-to-

Euler map (6) for their momentum. These solutions have the

exact same form as the landmark solutions obtained in the

previous section (with the straightforward extension of matching

2N curves instead of 2).

Substituting the defining relation u u G * m into the singular

momentum solution (6) yields the velocity representation for the

wavefronts, as another superposition of integrals,

u x; tð Þ ¼
XN
a¼1

Z
s

Pa t; sð ÞG x;Qa t; sð Þð Þds: ð7Þ

In the example of EPDiff(H1), the Green’s function G for

the second order Helmholtz operator in (5) relates the velocity
segment initially moving Southwest along the diagonal expands, curves, and

his reconnection illustrates one of the collision rules for singular solutions of

atment.



Fig. 2. Deformation resulting from a head-on collision of two Gaussian landmarks. First row: y coordinates of the evolving landmarks plotted against time for r=

0 (left) and r N 0 (right): contact requires an infinite time when r = 0, and a crossover is observed in the second case. In the second row, the grid deformation is

plotted for the associated 2D deformation, in the exact matching case (r = 0). The grid gets squeezed while the distance between the landmarks reduces. In this

case, the deformation is exactly carried by the landmarks. The third row is with r N 0 (metamorphosis): in this case, the landmarks travel slightly ahead of the

deformation, and can cross without creating a singularity. Before the crossover, the grid contracts, then the landmarks diverge and the grid expands.
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to the momentum. In this case, the velocity in the singular

solution (7) has a discontinuity in its first derivative (its slope)

across each curve parameterized by s moving with the flow.

Being discontinuities in the gradient of velocity that move along

with the flow, these singular solutions for the velocity are

classified as contact discontinuities in fluid mechanics. These

contact discontinuities do not occur if the Green’s kernel is

sufficiently smooth (e.g., a Gaussian kernel), as is typically used

in CA.

3.3. Lagrangian representation of the singular solutions of EPDiff

Substituting the singular momentum solution formula (6) for

s a R
1 and its corresponding velocity (7) into EPDiff (3), then
 

 

 

 

Fig. 3. Motion of two expanding circles through EPDiff with a smooth kernel.

infinitely close, without crossing.
integrating against a smooth test function implies the following

Lagrangian wavefront equations

B

Bt
Qa s; tð Þ ¼

XN
b¼1

Z
Pb sV; tð ÞG Qa s; tð Þ;Qb sV; tð Þð ÞdsV;

B

Bt
Pa s; tð Þ ¼ �

XN
b¼1

Z
tPa s; tð ÞPb sV; tð Þ

� B

BQa s; tð Þ G Qa s; tð Þ;Qb sV; tð Þð ÞdsV: ð8Þ

Thus, the momentum solution formula (6) yields a closed set of

integral partial differential equations given by (8) for the vector
This corresponds to the case r = 0 (exact matching). The circles become



Fig. 4. Motion of two expanding circles through metamorphoses with small r2 N 0. The circles intersect in final time, like the landmarks in the head-on

collision of Fig. 2.
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parameters Qa(s, t) and Pa(s, t) with a = 1, 2. . .N. The dynamics

(8) for these parameters is canonically Hamiltonian and geodesic in

phase space.

3.4. Relation between contact solutions of EPDiff(H1) and solitons

As we have discussed, the weak solutions of EPDiff(H1)

represent the third of the three known types of fluid singularities:

shocks, vortices, and contacts. The key feature of these contacts is

that they carry momentum; so the wavefront interactions they

represent are collisions, in which momentum is exchanged. This is

very reminiscent of the soliton paradigm in 1D. And, indeed, in 1D,

the singular solutions (7) of EPDiff are true solitons that undergo

elastic collisions and are solvable by the inverse scattering

transform for an isospectral eigenvalue problem (Camassa and

Holm, 1993). Besides describing wavefronts, this interaction of

contacts applies in a variety of fluid situations ranging from solitons

(Camassa and Holm, 1993) to turbulence (Chen et al., 1998; Foias

et al., 2001). The nonlocal elliptic solve u = G * m relating the

momentum density m to the velocity u in the EPDiff(H1) equation

also appears in the theory of fully nonlinear shallow water waves

(Camassa and Holm, 1993; Green and Naghdi, 1976; Holm and

Staley, 2003, 2004; Su and Gardner, 1969).

The physical concept of momentum exchange is well under-

stood for nonlinear collisions of shallow water waves, especially in

1D. Momentum exchange for EPDiff in 1D is exhaustively studied

in Fringer and Holm (2001). The corresponding momentum

exchange processes (wavefront collisions) for EPDiff(H1) in 2D

and 3D are studied in Holm and Staley (2003, 2004). These

wavefront collisions show an interesting phenomenon. Namely,

wavefront solutions of EPDiff(H1) in 2D and 3D for which a faster

wavefront obliquely overtakes a slower one result in the faster

wavefront accelerating the slower one and reconnecting with it.

Such wavefront reconnections are observed in nature. For example,

observations from the Space Shuttle show internal wavefront
Fig. 5. Same as in Fig. 4, w
reconnections occurring in the South China Sea (Liu et al., 1998).

This wavefront reconnection phenomenon is illustrated in Fig. 1.

The key mathematical feature responsible for wavefront reconnec-

tion is the nonlocal nonlinearity appearing in EPDiff.

3.5. Ha
1 norm versus smooth kernels

As noted before, the Green’s kernels for the operators L used in

CA are typically smoother than the inverse of the elliptic

Helmholtz operator (1 � a2D) which corresponds to the Ha
1

model. A consequence of this is that the (variational) matching

problems are always well posed in CA, and their solutions are

computationally feasible.

To illustrate the differences introduced by using smooth Green’s

kernels, consider the case of a symmetric head-on collision of two

particles (or landmarks) in 1D. Under the Ha
1 model, they will meet

in finite time, then bounce back after exchanging their momenta.

This is impossible with a smooth kernel, since the landmarks are

carried by a diffeomorphic motion and therefore cannot meet if

they started from different positions.

3.6. Metamorphoses

Interestingly enough, the crossover behavior can be recovered

by using metamorphoses, replacing A by Ar in (4), because, for

this model, particles are slightly disconnected from the diffeomor-

phic motion, and in this precise situation slightly ahead of it,

allowing them to cross without creating a singularity. After

crossing, the landmarks carry the diffeomorphism the other way,

letting the motion appear like a compression, then a bouncing back

after the crossover. To illustrate this, a symmetric frontal shock

between two blandmarksQ has been simulated in the cases r = 0

versus r N 0; the result is in Fig. 2.

In 2D, the same behavior can be observed. With a smooth kernel,

two expanding circles which have no intersection at time t = 0 will
ith a larger r2 N 0.



Fig. 6. Three deformations of a disc by EPDiff under random initial conditions. These figures visualize the evolution of a disc under the evolution of EPDiff, for

initial uncorrelated noise momentum on its boundary. This shows how random deformations in momenta superpose linearly to produce a diffeomorphic change

in shape.
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have no intersection at all times. This is shown in Fig. 3. When the

parameter r2 is introduced, the circles intersect in finite time, the

value of r2 influencing their shapes before and after the collision

(Figs. 4 and 5).
Fig. 7. Landmark matching for hippocampi. Two sets of landmarks have

been manually defined on the hippocampi in the first row, the first one being

considered as the template. The second row shows the initial momentum

superimposed with the template (left) and alone (right). Most of the momenta

is concentrated at the head and tail of the hippocampus. Data taken from the

Biomedical Informatics Research Network (www.nbirn.net).
4. Applications of EPDiff in CA

So far, CA has been related to the issue of comparing two

geometric objects and thus more concerned with the variational

bboundary valueQ problem (2). However, as studied in Miller et al.

(2003a), the initial value problem, associated to the integration of

EPDiff, turns out to have very important consequences for

applications.

The main consequence of the Euler-Poincaré analysis is that,

when matching two geometric structures, the momentum at time

t = 0 contains all the required information for reconstructing the

target from the template. This momentum therefore provides a

template-centered coordinate system, which essentially encodes

all possible deformations which can be applied to it.

There is another important feature which has been observed in

the landmark-matching problem. Although the momentum is a

priori of functional nature, as a result of the application of the

operator L to the velocity field ut, in the landmark case, we found

that it was characterized by a collection of K vectors in space, for a

matching problem with K landmarks. Thus, the momentum has

exactly the same dimension as the matched structures, and there is

no redundancy of the representation. This is generic in the sense

that the final dimension of the momentum exactly adapts to the

nature of the matching problem. For example, as stated in Miller et

al. (2003a,b), when matching two smooth scalar images, the

momentum has to be normal to the level sets of the image and

therefore is uniquely characterized by its intensity. The momentum

can therefore be seen as an algebraic image, which has the same

dimension as the original image. This is because template matching

brings an additional reduction to the original analysis of finding

optimal paths between diffeomorphisms (which leads to the EPDiff

equation). This reduction is because the solution must be modded

out by the diffeomorphisms that leave the template invariant,

which constrains the optimal solution. As a result, the momentum

is a (locally) one-to-one representation of the targets, in this

template-based coordinate system. It is therefore a nonredundant

tool for representing deformations of the template.

Besides being one-to-one, the other advantage of the momentum

representation is that it is linear in nature, being dual to the velocity

vectors. Thus, linear combinations of either velocity fields or

momenta are meaningful mathematically and physically, provided

theyare applied to the same template.Thus, theaverageof acollection
of momenta, of their principal components, or time derivatives of

momenta at a fixed template are all well-defined quantities.

Finally, because they provide an efficient tool for representing

deformable data, momenta are perfectly suitable for modeling

deformations. Any statistical model on momenta provides, after the

integration of EPDiff, a statistical model on deformations, the

advantage being that it is much easier to build, sample, and

estimate statistical models on a linear space. An illustration of this

is provided in Fig. 6, in which the momentum was generated as

positive uncorrelated noise on the boundary of a disc, and EPDiff

was integrated with this initial conditions. The Green’s function we

used for this is a Gaussian kernel, G(x, y) = exp (�|x�y|2). Fig. 7

shows the initial momentum of the geodesic path between two 3D

sets of landmarks placed on two hippocampi. We also refer to the

statistical experiments on PCA in momentum space presented in

Vaillant et al. (2004).
5. Conclusions

We have identified momentum as a key concept in the

representation of image data for CA and discovered important

analogies with soliton dynamics. Future works will explore further

applications of EPDiff. In particular, it will be interesting to see

whether the exchange of momentum in the interactions of multiple

outlines will become as useful a concept in computational image

analysis as it is in soliton interaction dynamics.
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