NOTES FOR MATH 535A: DIFFERENTIAL GEOMETRY

KO HONDA

1. DAy 1
1.1. Review of topology.
Definition 1.1. A topological space (X,7T) consists of a set X, together with a collection
T = {U,} of subsets of X, satisfying the following:

1.0eT,XeT,

2. if Ua,Ug € T, then Uy N Ug € T,

3. if Uy € T for all o € I, then Uye Uy € T. (Here I is an indexing set, and is not
necessarily finite.)

T 1is called a topology for X, and U, € T is called an open set of X.

Example 1: R"=R xR x--- xR (n times) = {(x1,...,2,)|z; € R,i=1,...,n}, called
real n-dimensional space.

How to define 7T, the set of open sets of R"?

By(r) = {z € R"||z — y| <r}, where [z —y| = /(21 —y1)? + - + (20 — yu)*.
Is To = {B,(r)|ly € R",r € (0,00)} a valid topology for R"?

No, so you must add more open sets to Ty to get a valid topology for R". T = {U|Vp €
U,3B,(r) C U}.

Example 2: S' = {(z,y) € R*|z? + y?> = 1}. A reasonable topology on S’ is called the
induced topology.

Definition 1.2. Let (X,T) be a topological space and Y C X. Then define the induced
topology Tx ={UNY|U € T}.

Example 3: Alternative definition of S* as [0,1]/0 ~ 1, where [0,1] is the closed interval
and we are identifying 0 with 1. A reasonable topology on S! is called the quotient topology.

Definition 1.3. Let (X,7) be a topological space and X/ ~ a set obtained by identifying

elements of X wia an equivalence relation ~. Then the quotient topology T. of X/ ~ is the

set of V.C X/ ~ for which f~1(V) is open. (Alternatively, given a topological space (X, T)
1
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and a surjective map f : X — Y, the quotient topology on Y 1is the coarsest topology which
makes f continuous.)

Exercise: Show that the topologies introduced in Example 2 and Example 3 are the same.
(Think about what it means for them to be the same.)

Definition 1.4. A map f : X — Y between topological spaces is continuous if f~'(V) =
{z € X|f(z) € V} is open whenever V CY is open.

Exercise: Show that the inclusion S* ¢ R? is a continuous map. Show that the quotient
map [0,1] — S* =[0,1]/ ~ is a continuous map.

Definition 1.5. A map f : X — Y is a homeomorphism is there exists an inverse f=! :
Y — X for which f and f~' are both continuous.

Zen of mathematics: Any “category” (world) in mathematics consists of spaces and maps
between spaces.

Examples:

1. (Topological category) Topological spaces and continuous maps.
2. (Groups) Groups and homomorphisms.
3. (Linear category) Vector spaces and linear transformations.

1.2. Topological manifolds.

Definition 1.6. A topological manifold X of dimension n is a topological space X together
with A ={U,} of open sets (called an atlas of X ) such that:

1. UU, = X,

2. d¢q : Uy — R", which is a homeomorphism onto its image.

3. (Technical condition 1) X is Hausdorff.

4. (Technical condition 2) X is second countable.

Definition 1.7. A topological space X s Hausdorft if for any x # y € X there exist open
sets U, and U, containing x,y respectively and U, N U, = 0.

Definition 1.8. A topological space (X,T) is second countable if there erists a countable
subcollection To of T and any open set U € T is a union (not necessarily finite) of open sets

in To.
Exercise: Show that S! defined above is a topological manifold.

Exercise: Give an example of a topological space X which is not a topological manifold.
(You may have trouble proving that it is not a topological manifold, though.)
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Observe that in the land of topological manifolds, a square and a circle are the same, i.e.,
they are homeomorphic! That is not the world we will explore — in other words, we seek
a category (world) where squares are not the same as circles. In other words, we need
derivatives!
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2. DAY 2

2.1. Review of linear algebra.

Definition 2.1. A vector space V over a field k = R or C is a set V equipped with two
operations V. x V. — V (called addition) and k x V' — V (called scalar multiplication) s.t.

1. V is an abelian group under addition.

)

) (Inverse) Given v € V' there exists an element w € V s.t. v+w =w+v = 0.
) (Associativity) (vy + ve) + v3 = vy + (v + v3).

) (Commutativity) v +w = w + v.

) 1lv =wv.

) (ab)v = a(bv).

) a(v+w) = av + aw.

) (a+b)v = av + bv.

Note: Keep in mind the Zen of mathematics — we have defined objects (vector spaces),
and now we need to define maps between objects.

Definition 2.2. A linear map ¢ : V — W between vector spaces over k satisfies ¢p(vi+vq) =
B(v1) + d(v2) (vi,v2 € V) and ¢p(cv) =c- ¢(v) (c€ k andv € W ).

Now, what is the equivalent of homeomorphism in the linear category?

Definition 2.3. A linear map ¢ : V — W is an isomorphism if there exists a linear map
W =V such that ¢ o) =id and Y o ¢ = id. (We often also say ¢ is invertible.)

If V and W are finite-dimensional, then we may take bases {v1,...,v,} and {ws,...,w,}

and represent ¢ as an m X n matrix A. ¢ is then invertible if and only if m = n and
det(A) # 0.

Examples of vector spaces: Let ¢ : V — W be a linear map of vector spaces.

1. The kernel ker(¢) = {v € V|¢(v) = 0} is a vector subspace of V.

2. The image im(p) = {¢(v)|v € V'} is a vector subspace of W.

3. Let V. C W be a subspace. Then the quotient W/V = {w + V|w € W} is a vector

space. Here w +V = {w +vjv € V}.

4. The cokernel coker(¢) = W/im(o).
2.2. Review of differentiation.
Definition 2.4. A map f : R" — R™ is differentiable at a point © € R" if there exists a
linear map L : R" — R™ satisfying

_|f(@+h) - f(z) - L(h)|

M h]

= 0.
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If L exists, it is usually written as df (x).
Proposition 2.5. df (z) is a linear map R" — R™ satisfying
t —
df (2)(v) = lim LE I = F(@).

t—0 t

df (x)(v) is usually called the directional derivative of f in the direction of v.
Let e; be the usual basis element (0,...,1,...,0) (1 in the jth position). Then df(z)(e;)

is usually called the partial derivative 8%(:5). More explicitly, write f = (f1,..., fm), where
fi : R" = R. Then df (z)(e;) = (g—g(x), e %(m))T, and
L) ... ()
df (z) = : : :
Wn(z) ... Y=(a)

Note: This is often called the Jacobian matrix.

Shorthand: 8;f = £L. Also write 0°f = 97 95* ... 92" f.

Definition 2.6. f:R" — R™ is smooth (or C*) at x € R" if all partial derivatives of all
orders exist at x.

2.3. Differentiable manifolds.

Definition 2.7. A smooth manifold is a topological manifold (X,{U.}) satisfying the fol-
lowing: For every U, N U # 0, g0 ¢," : ¢o(Us NUs) = ¢5(Us N Up) is a smooth map.

“Smooth” means you can take as many derivatives as you want.

Note: When we refer to a “manifold”, we mean a “smooth manifold”, unless stated other-
wise.
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3. Day 3

3.1. Examples of smooth manifolds.

1. R". Atlas is U = R" itself and map is identity.

Any open subset U of a smooth manifold (M, {U,}). Atlas: {U, N U}.

3. Let M, be the space of n x n matrices, and let Gi(n,R) = {A € M, |det(A) # 1}.
Gl(n,R) is an open subset of M,, ~ R™ and is called the general linear group of n X n
real matrices.

4. If M and N are smooth manifolds, then their product M x N can naturally be given
the structure of a smooth manifold. Simply use U, x V3 where {U,} is an atlas for M
and {Vj3} is an atlas for V.

5. S = {#? +y* = 1} is a smooth 1-dimensional manifold. One possible atlas: U; = {y >
0}, Uy = {y < 0}, Us = {z > 0}, U, = {x < 0}. Another atlas is: U; = {y # 1} and
Us = {y # —1}. Take the stereographic projection from U; to y = —1 and Us to y = 1,
and compare the overlaps.

6. S"={z2+---+22 =1} CR".

7. In dimension 2, S2, T2, genus g surface.

3.1.1. A more difficult ezample. RP" = (R™*' — {(0,...,0})/ ~, where (2¢,21,...,2,) ~

(tzg,tzy,. .., tx,), t € R —{0}. Chart Uy = {zo # 0}. Then ¢ : Uy — R" is given by
T Tn I Tn
cm) = (1,2 Iy (I,
(.’L’0,$1, am) ( T 330) (370 xO)

What is ¢; : Uy — R™? What about transition maps ¢;0¢;'? (Explain this in detail.) RP"
is called real projective space of dimension n.

N

3.1.2. Group action. T?> = R*/Z?. The discrete group Z* acts on R? by translation:
Z? x R* - R?
((m,n), (z,y)) = (m+z,n +y).
Note that for each fixed (m,n), we have a diffecomorphism R?> — R?, (z,y) — (m+z,n+y).

(
R?/Z? is the set of orbits of R? under the action of Z2. (One orbit is (z,%) + Z*.) Discuss
the fundamental domain [0, 1] x [0, 1] and identifications of the sides.

Next time: Try to answer the question of what it means for two atlases of the same M to
be “the same”.

Some more zen: You can study an object (such as a manifold) either by looking at the
object itself — in this case M — or by looking at the space of functions on the object. In
the topological category, the space of functions would be C°(M), the space of continuous
functions. What is it in the case of smooth manifolds?
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4. DAy 4

4.1. Choice of atlas. Let (M, 7) be the underlying topological space of a manifold, and
A; = {(Us, b0)}, A2 = {(Vs,15)} be two atlases.

Question: When do they represent the same smooth manifold?

Condition 1: For any U, N Vs # 0, ¢o(Us N V) vacdy 13(Us N Vp) is a smooth map.

If Condition 1 is met, can take the union A = A; U A5. A maximal atlas A,,., is an object
which is uniquely assigned to each smooth structure.

4.2. Function space perspective. Recall: C°(M) = {f : M — R continuous}. Given a
smooth manifold (M, A), the appropriate space of functions would be C¥(M) ={f : M —
R smooth}. f € C°(M) is a smooth function if f o ¢, ' : ¢4 (U,) — R is smooth for each
coordinate chart U, of A. This function space perspective has been especially fruitful in
algebraic geometry.

An atlas A uniquely determines the space of smooth functions on /M. When the atlas on M
is understood, we write C*°(M) for the space of smooth functions on M.

Condition 2: Two atlases .A; and A; give the same smooth manifold if C3 (M) = C% (M).

Pullback: ¢ : X — Y a continuous map between topological spaces. Then there is a
naturally defined pullback map

¢*: CO(Y) = C°(X)
given by f +— f o ¢. Note that pullback is contravariant, i.e., the direction is from Y to X,
which is the opposite from the original map ¢.

~

When ¢ : (M, A) — (M, A) is a homeomorphism, then ¢* : C°(M) — C*(M). CR(M) =
$*(CZ(M))), but in general CZ(M) # ¢*(CF(M))).

Definition 4.1. Two C*-structures CX (M) and C% (M) are equivalent if there exists a
homeomorphism of M which takes CE, (M) ~ C% (M).

Amazing fact: (Due to Milnor) S7 has several inequivalent smooth structures! (Not amaz-
ingly, S has only one smooth structure.)
Open question: How many smooth structures does S* have?

4.3. Smooth maps. In the category of smooth manifolds, we need to define the appropriate
maps, called smooth maps.

Definition 4.2. A map f: M — N between smooth manifolds is smooth if f*(C*°(N)) =
C>®(M).
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Problem: Give an interpretation in terms of local coordinates. Answer: Given p € M, 3
U>pandV > f(p) coordinate charts s.t. composition

o(U) S ULV L)
is smooth.

Upshot: Smooth maps between smooth manifolds can be “reduced” to smooth maps from
R" to R™.

4.4. Inverse function theorem.

Definition 4.3. A differentiable (smooth) map f : U — V between two open sets of Eu-
clidean space is a diffeomorphism if there is a differentiable (smooth) inverse f~':V — U.

Problem: Give the definition of a diffeomorphism f : M — N between two smooth mani-
folds.

The inverse function theorem is the most important basic theorem in differential geometry.

Theorem 4.4 (Inverse function theorem). Let f : R" — R" be a smooth map. If df (z) is
nonsingular (i.e., the determinant of df (x) is nonzero), then df is a local diffeomorphism
near x, that is there ezist open sets U containing x and V' containing f(z) and fly is a
diffeomorphism.

Note: f did not need to be defined on all of R", only on a small open set around the origin.

The inverse function theorem says that isomorphism in the linear category implies diffeo-
morphism in the differentiable category. Allows us to move from “infinitesimal” to “local”.



NOTES FOR MATH 535A: DIFFERENTIAL GEOMETRY 9

5. DAY 5: APPLICATIONS OF THE INVERSE FUNCTION THEOREM

Theorem 5.1 (Inverse Function Theorem). Let f : R" — R" be a smooth map. If df (z) :
R" — R" is an isomorphism, then f is a local diffeomorphism near x.

We'll treat just the local version R" — R".

Question: Adapt the inverse function theorem for a smooth map f : M — N between
smooth manifolds.

5.1. Illustrative example. Let f : R*> — R, (z,%) — 22 + 4> — 1. We examine f~1(0).
Consider the portion z > 0. Then form F : R*> — R?, (z,y) — (f(z,%),y)-

[ 2z 2y
o (%)
Use the inverse function theorem — since det(df) = 2z # 0, there is a local diffeomorphism
between f(z,y) = 0 and the real line (draw picture). Hence f~*(0) is a smooth manifold.

Interpret slightly differently: The above example basically says that f can be used as a
coordinate function in conjunction with y, provided xz > 0.

5.2. Submersions.

Rank: The rank of a linear map L : V — W is the dimension of im(L). (Recall that the
dimension of a vector space V' is the cardinality of a basis for V. If V' is finite-dimensional,
then V ~ R" for some n.) The rank of a smooth map f : R" — R™ at z € R" is the
dimension of df (z). f has constant rank if the rank of df (x) is constant.

Definition 5.2. A smooth map f: R" — R™ is a submersion if df (z) is surjective for all
x. (Note that this means that n > m.)

Prototype: f:R"™ xR" = R™, (21, -, Zman) — (1, ., Tm)-

Theorem 5.3 (Implicit function theorem, submersion version). Let f : U C R® — V C

R™ be a submersion. Then there exists a local diffeomorphism ¢ : U' — R", U D U’, s.t.
fod ' :R" = R™is (x1,...,25) = (T1,...,Tm).

Proof. Assume wlog that f : 0 — 0. Form ¢ : U — V x R"™™ given by (z1,...,%,) —
(fiy--s fms Tmaty -+, Tpn). (We choose the appropriate z,,11,...,2, so that df(0) is invert-
ible.) Then fo ¢~ (fi,..., fmsTmsts--+,%n) = (fi,---, fm), and F is the desired function.
Ol

Carving manifolds out of other manifolds: This shows in particular that if f is a
submersion, then f~!(y), y € V, is a manifold C R". The easy way to prove that the circle
{z? + y?> = 1} c R? is a manifold: Consider the map f : R*> = R, f(z,y) = 2> + 3. The
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Jacobian df (z,y) = (2, 2y). Since z, y are never simultaneously zero, the rank of df is 1 at
all points of S'. Using the implicit function theorem, we are done.

Try to make sense of submersions for f : M — N smooth maps between smooth manifolds.

Check that rank is constant after changing coordinates? Compare the rank of d(¢,0 f o, ")
and d(ygo fo qﬁgl), where ¢, : U, C M — R™ and ¢, : V, C N — R". The invariance of
rank is due to the following:

d(gofodz') = d((Wsow')o(baofody')o(dy! 0 ds))
= d(poty')od(vao fogy')od(d; o ¢p).

Note that here we used the Chain Rule.
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6. DAY 6
6.1. The Chain Rule.

Theorem 6.1 (Chain Rule). Let U ¢ R, V. C R™, W C R". Alsolet f : U — V and

g: U — W be smooth maps. Then go f is smooth and d(g o f)(z) = dg(f(z)) o df (x).
Draw a picture of the maps and derivatives.

One consequence of the Chain Rule is:

Proposition 6.2. If f : U — V is a diffeomorphism, then df (x) is an isomorphism for all
zel.

Proof. Let g : V — U be the smooth inverse function. Then g o f = id. Taking derivatives,
dg o df = id as linear maps; hence df (z) is an isomorphism for all z. O

6.2. Regular values & Sard’s Theorem.

Definition 6.3. Given f : R" — R™, y € R™ is said to be a regular value of f if for
all z € f~1(y), df (z) is surjective. The implicit function theorem implies that f~(y) is a
manifold if y is a reqular value. x € R™ is a critical point of f if df (x) is not surjective.

Exercise: Prove that S™ C R" is a manifold.

More involved example: Si(n,R) = {A € M,|det(A) = 1}. Consider the determinant
map f : R = R, A — det(A). Also write f : R" x ...R" = R, (a1,...,a,) —
det(as, ..., a,), where a; are column vectors and A = (a1, ..., a,) = (a;)-

First we need some properties of the determinant:

1. f(e1,--.,en) =1,
2. flar,..,ca;+cal, ... an) =¢i- f(@1y ey Qiyeneyy) + 50 flar, .oy al, ..., an).

Property 2 is called multilinearity. In fact, Properties 1, 2 and 3 (alternating property)
uniquely determine the determinant function.

Now compute df (A)(B):
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f(A+1B) — f(4)

df(A)(B) = lim

t—0 t
— lim det(ay + tby, ..., a, + tb,) — det(ay, ..., a,)
t—0 t
— lim det(ay,...,a,) + tldet(by, az, ..., a,) + det(ay, bo, ..., ay,)
t—0 t
+ -+ det(ay, ..., an-1,b,)] +t*(...) — det(as, ..., an)
t

= det(by,a1,...,a,) + -+ det(a,...,by)

It’s easy to show that 1 is a regular value of df. For example, take by = cay, b; =0, 7 # 1.

Example: Zero sets of homogeneous polynomials in RP™. For example, in RP? take
fzo,z1,20) = 2} + 23 + 23, f(tz) = t3f(x), t € R — {0}, z € R®. The zero set of f is
well-defined (denote by Z(f)). Is Z(f) a submanifold?

Theorem 6.4 (Sard’s Theorem). Let f : R™ — R" be a smooth map. Then almost every
point y € R" is a reqular value.

We’ll make this more precise at a later date. But in the meantime:
Reality Check: What happens when m < n?

6.3. Some more point-set topology. We want to impose additional conditions to im-
mersions to make them better-behaved. But before we do this, let’s do some more point-set
topology. Let X be a topological space.

1. A subset V' C X is closed if the complement X —V = {z € X,z ¢ V'} is open.

2. The closure V of a subset V C X is the smallest closed set containing V.

3. A subset V of a topological space X is dense if for every open set U, UNV # (). In

other words, V = X.

4. A compact set V satisfies the following finite covering property: For any cover {U,} of
V' there exists a finite subcover.

. A metric space is compact iff every sequence has a convergent subsequence.

. A subset of Euclidean space is compact if and only if it is closed and bounded (sits
inside some ball of finite radius).

. Amap f: X — Y is properif f~'(V) of every compact V C Y is compact.

D Ot

-J
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7. DAY 7
7.1. Immersions.
Definition 7.1. f : R™ — R" is an immersion if df (z) is injective for all x. (Note this
means n > m.)
Prototype: f: R™ - R", n>m, (z1,...,2,) — (Z1,...,Zm,0,...,0).

Theorem 7.2 (Implicit function theorem, immersion version). Let f : U C R™ -V C R"
be an immersion. Then there is a local diffeomorphism 1 : V — R" so that Yo f : U — R"
i (X1, -, Tm) = (1, ..., Tm, 0,...,0).

Proof. It’s really the same as before. F : U x R"™™ — R", (Z1,...,Zm, Ymils---sYn) —>
(fis--s fms frne1 + Yoty - -5 Jn+Yn)- Can check to see dF is nonsingular and that F~'o f :
U — R" is given by (z1,...,Zy) — (Z1,...,Zm,0,...,0). O

Zen: The implicit function theorem tells us that under a constant rank condition we may
assume that locally we can straighten our manifolds and maps and pretend we are doing
linear algebra.

Examples of immersions:

1. Circle mapped to figure 8. (Not 1-1.)
2. Line mapped to figure 8.
3. Map f : R — R?/Z? t + (at,bt), where b/a is irrational, is an immersion. The image
of f is dense in R*/Z>.
7.2. Embeddings and submanifolds. We improve immersions f : M — N by requiring
that f be:

1. 1-1.
2. Proper.

Such an f is called an embedding. The image of an embedding is a submanifold.
Explain why the pathological examples above were immersions but not embeddings.
Need to check the following:

Proposition 7.3. The induced topology on f(M) from N is the same as the topology on M,
i.e., if U is an open set of M, then f(U) C f(M) is open.

Proof. Suppose not. Then Jy € f(U) and a sequence y; — y s.t. y; € f(U). The set
{yi,y} is compact, so {z;, z} is compact by properness, where z; = f~!(y;) and z = f~}(y)
(remember f is 1-1). There is a subsequence x; — x. Contradiction. 0
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8. DAY 8: TANGENT SPACES.

8.1. Concrete example. Consider S? = {z2+y?+2?> =1} C R3. We compute the tangent
plane T(qp,)S?. Draw picture.

We use the fact that S? is the preimage of the regular value 0 of f : R®* = R, f(z,y,2) =
a? +y? + 22 — L.
df (a,b,c) = (2a,2b, 2¢).

The tangent directions are directions where df (a, b, c)(z,y,2)7 = 0. Therefore, it’s, the
plane through (a, b, c) parallel to ax + by + cz = 0, i.e., ax + by + cz = a®> + b> + 2 = 1.

We also define the tangent bundle TS* = U,cs2T,S*. Here LI denotes disjoint union.
Question: How do you define a reasonable topology on T'S??

Note that the tangent plane is easy to define when we think of M as a submanifold of R".

8.2. First definition. Let M be a smooth manifold of dimension n.

Definition 8.1. The tangent space T, M to M at x is Tp(M) = {smooth curves v : (—&,&) —
M,~v(0) = z}/ ~, where v, ~ Yo if for all functions f : M — R, foy(t) = foy(t)+O(t?).

Actually, if zq,...,z, are coordinate functions near x = 0, it suffices to check that
z;i(71(t)) = zi(72(t)) + O(t?), thanks to the following theorem.

Theorem 8.2 (Taylor’s Theorem). Given f € C®(p), f(z) = a+ ), aizi+ ), ; aij(z)Tiz;,
where a, a; are constants and a;j(x) are smooth functions.

Proof. Let g(t) = f(tx). Then, g(1) — ¢(0) = fol ¢'(t)dt. Substituting back, we have:
1@ =10 = [ &
Jo dt

= £ (-l - [ - et

= —afO)(-1) -2 [ (= 1) (e
0
= f(0)-z+h(z)- 2>
Here we used integration by parts with v = f(tz), v =t — 1. O

In R", it’s clear that 7; and » are in the same equivalence class if v;(0) = ~5(0).
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8.3. Second definition.

Sheaf-theoretic ideas: Let M be a smooth manifold and let U C M be an open set. Then
C*(U) is the set of smooth functions on U. Note C*°(U) is an R-algebra, i.e., it is endowed
with the structure of a vector space over R, together with a multiplication. Therefore we
have operations c- f, f-g, f +g¢.

Let V C M be any set. Then C*(V) = {(f,U)|U D V,f : U — R smooth}/ ~. Here
(f1,U1) ~ (f2,Us) if U C Uy NUy for which fi|y = fo|y. This is what we really mean by
smooth functions on V| since we need open sets to define derivatives.

Given open sets U; C U,, there exists a natural restriction map py? : C*(Us) — C=(Uy),
f = flu,- Then C*°(V) is the direct limit of C*(U) for all U containing V.

In particular, we have C*(z), the stalk at the point x or the germs of functions at p.

Now, a derivation is an R-linear map X : C*°(x) — R which satisfies the Leibniz rule:

X(fg)=X(f)-g(x)+ f(z) - X(9).
Then let T, M be the set of derivations at .
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9. DAY 9

9.1. Second definition. Recall that our second definition of T}, M is the set of derivations
C*(p) — R. A derivation is an R-linear map which satisfies the Leibniz rule. Note that it
did not matter whether M was a manifold — it could have been Euclidean space instead,
since C*°(p) only depends on a small neighborhood of z.

Exercise: X(c) =0, c € R.

Examples.
1. X; = ;2. Take coordinates (z1,...,%,) near p = 0. Then let X(f) = g—wfi(()). Check:

L
this is indeed a derivation and a%i(xj) = 0;.
2. Given v : (—¢,¢) — M with v(0) = p, define X(f) = (fo~)'(0). This is the directional
derivative in the direction . It is easy to check that two v ~ +' give rise to the same
directional derivative.

Proposition 9.1. If M is an n-dimensional manifold, then dim T, M = n.

Proof. Take local coordinates x1, . .., x, so that p = 0. Then let X; = 6%1' Then X;(z;) = d;j,
and clearly the X; are independent. Thus dim7,M > n. Now, given some derivation X,
suppose X (z;) = b;. Taylor’s Theorem implies that dim7,M = n, since all the quadratic

terms and higher vanish for derivations. g

Proposition 9.2. The first two definitions of T,M are equivalent.

Proof. Given ~y : (—¢,e) — M with v(0) = p, one simply differentiates in that direction.
X(f) = (f ov)'(0). (Check this is well-defined!) Since we already calculated dimT,M = n
for the first and second definitions, we see this map is surjective and hence an isomorphism.
O

9.2. Third definition. Define F, C C*(p) to be germs of functions which are 0 at p. F is
an ideal of C*°(p). Let fpz C F, be the ideal generated by products of elements of F,, i.e.,
consisting of elements Y f;¢;¢x, where ¢;, ¢y € F,. Then let T,M = (F,/F})*.

Equivalence of the second and third definitions: Show that X : 7, — R factors through
FJ. (Pretty easy, since it’s a derivation.) Now, note that dim(F,/F;) = n due to Taylor’s
Theorem.

Fp/Fy is called the cotangent space at p, and is denoted Ty M. If f € C*(p), then f— f(p) €
F,, and is denoted df (p).

9.3. The tangent bundle. Let TM = UT,M. This is called the tangent bundle. We
explain how to endow a smooth structure on the tangent bundle.
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Consider the projection w : TM — M, g € T,M ~ p. Let U C M be an open set with
coordinates T1,...,T,. We identify 773(U) = U x R". An element of T, M is written as
Yoy aza . The pomt g € TM is given by coordinates (x1,...,ZTn, a1,...,0,).

Check the transition functions. Let x = (z1,...,2,) be coordinates on U and y =
(y1,---,Yn) be coordinates on V. Let (z,a) be coordinates on 7=!(U) and (y,b) be coordi-
nates on 7 (V). Think of y as a function of z on U N'V. Write ay = (g%) In terms of y

coordinates,
0 Oy; 0
Z “ O, 0z, Z "Ox; Oy;

This is easily verified by thinking of evaluation on functions. Thus, b; =), aza

?/J

Then g € TM corresponds to (z,a) or (y, g—ga).
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10. Day 10

10.1. More on the tangent bundle. Recall: (1) the projection 7 : TM — M, (2) an
atlas {U,} for M gives an atlas {7~'U,}.

Computation of the Jacobian of the transition function.

oy % 0
( % ) 6 Yi % :
da k Ox; Bwk ox

The two terms on the bottom are obtained by differentiating b; = ", Oy ay,

Oz,

SSSS

Thus we obtain a smooth manifold TM and a C*®-function TM = M.

10.2. The cotangent bundle. We now “topologize” the cotangent bundle T*M = U, T M.
Again we have a projection 7 : T*M — M. We identify 7 1(U) ~ U x R". An element of
;M is f f(p), usually denote df. In terms of the basis dzy,...,dz,, any df is written as

df Z da:Z Therefore, an element of TyM is ) a;dz;.

Transition functions. Take U,V C M as before, and coordinatize 7' (U) and 7~ (V) by

(z,a), (y,b).

Lemma 10.1.
-3 e
(9:1:J
Proof. 1t suffices to assume that the transition map ¢pyy : UNV C U - UNV C V sends
0+ 0. Then
9y o Oy

dyi = yi(z) — v:(0) = yi(z) = 87]-% = j oz,

d.Tj.

g

We denote this more simply as dy = %dx. Then dr = (%)_ldy. Hence, Y a;dz; =
) =1

> ail(59) Nidy;, ie., (2,0) = (y,a (52) )

Exercise: Compute the Jacobian of the transition function.

10.3. Functoriality. Let f : M — N be a smooth map between manifolds. Then we can
define two natural maps.

Contravariant functor. First observe that there is a map C*°(f(p)) £ o (p) and also a
restriction Fjp) TN Fp. This allows us to define:
£ iy N = TiM,



NOTES FOR MATH 535A: DIFFERENTIAL GEOMETRY 19
dg — dgo f.
f*is a contravariant functor.

Covariant functor. Next, we have:
f* : TpM — Tf(p)M,
given by X — X o f*. (Think of tangent spaces as derivations.) This makes sense:
[e o] f* [e o] X
C=(f(p) = C*(p) = R.
f« is usually called the derivative map.

Exercise: Define the derivative map in terms of Definition 1 of the tangent space, and show
the equivalence with the definition just given.
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11.1. Properties of 1-forms.

Definition 11.1. Given the cotangent bundle T*M = M, a 1-form over U C M is a smooth
map s : U — T*M such that mo s = id.

Note that a 1-form simply assigns, in a smooth manner, an element of T>M to a given
p € M. The space of 1-forms on U is denoted Q'(U). Note that the space of 1-forms is an
R-vector space.

1. We often write Q°(M) = C*®(M). Then there exists a map d : Q°(M) — QY (M), f — df.

2. Given ¢ : M — N, there is no natural map 7*M — T*N unless ¢ is a diffeomorphism.
However, there exists a contravariant map ¢* : T*N — T*M. We pull back forms 0 — ¢*0.

3. There exists a commutative diagram:

QON) L (M)

dl o ld |

Ql(N) L oY(M)
i.e.,, do ¢* = ¢* od. Check this for HW by unwinding the definitions.
4. d(fg) = fdg + gdf. Check this for HW.
Example: 0 = 22dy + ydz on R?. Consider i : R — R? ¢+~ (¢,0). Then i*6 = 0.
11.2. Discussion (and possible extension) of HW. The orthogonal group is O(n) =
{A € M,|AAT =T}.

1. AAT = [ implies det(AAT) = det] = det A = +1. Here we are using det(AB) =
det A - det B and det(A”) = det A.

2. Recall Gi(n,R) = {4 € M,|det A # 0} and Sl(n,R) = {A € M,|det A = 1}. Thus,
O(n) C Gl(n,R) but O(n) ¢ Sl(n,R) (not quite). O(n) has two connected components
det A = 1 and det A = —1. Examples of detA = —1 is (—1,0;0,1). The connected
component with det A =1 is called SO(n). Note SO(n) = O(n) N Si(n,R).

3. Show O(n) is a submanifold of GI(n,R). Consider the map ¢ : GI(n,R) — Sym, given
by A — AAT compute its derivative d¢(A)(B) = ABT +BA”, and show d¢(A) is surjective.

4. dim O(n) = dim Gl(n,R) — dim Sym,, =n*> —n(n+1)/2 =n(n —1)/2.

5. Show compactness.
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6. Exercise: SO(2). Elements are of the form (cos#,sinf; —siné,cosf). Show SO(2) is
diffeomorphic to S*.
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12.1. Some examples.

Example: S? C R?, S% = {22 + 12 + 22 = 1}. Think of TS? C R’ x R? with coordinates
(T1, T2, T3, Y1, Y2, ¥3). At (T1,20,73) € S, T(w1,:v2,w3)52 is the set of points (yi,Yy2,ys) such
that (y1,y2,vs) - (1, T2, x3) = 0. Therefore:

TS = {(z,y) € R x R¥[a| = 1,2y = 0}.

Think of T'S? as follows: At each point € S?, there is a plane (2-dimensional vector space)
T,S? sitting over it.

More abstract example: S? defined by gluing coordinate charts. Let U = R? and
V = R? with coordinates (x1,v1), (z2,%2), respectively. Alternatively, think of R? = C.
Take UNV = C — {0}. The transition functions are:

U - {0} 2% v — {0},

1
zZH =,
z

in terms of complex coordinates z = x + 7y.

In terms of real coordinates, (z,y) — (57 —77)-

S? has the structure of a complex manifold.

Definition 12.1. A function ¢ : C — C is holomorphic (or complex analytic) if % =

limy,_, w exists for all z € C. Note here that h € C. A function ¢ : C" — C™
d’(zla 7Zl+h'7 ,Zn) ¢(zla 7ZTL)

is holomorphic if o 99— im0 exists for all z = (21,...,2,) and

i =1,...n. A complea: mamfold s a topologzcal manifold with an atlas {Ua,(ba} where
Oq : U — C" and ¢go ¢," : C" — C" is a holomorphic map.

A holomorphic map f : C — C, when viewed as a map f : R> — R?, is a smooth map.
Therefore, a complex manifold is automatically a smooth manifold.

Compute the Jacobians. Rewriting as a map ¢py : R* — {0} — R* — {0}, we compute:

9 o]
. Az (zzf—y2> By (mzj—gﬂ) . 1 ( y2 — x? —2xy )

Jopv = =
puv g( = ) g( —y2> (@ +y2)2 \ 22y y’ -2’

oz \ 2+y2 Oy \ z2+y

Remark: It is not a coincidence that a1 = a9e and as = —aqo.
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Explain that 7'S? is obtained by gluing two copies of (R? — {0}) x R? together via a map
which sends (ay,a2)” over (z1,42) to J(a1,as)” over (za,%s).

12.2. Lie groups.

Definition 12.2. A Lie group G is a smooth manifold together with smooth maps i : G X
G — G (multiplication), i : G — G (inverse) which endow G the structure of a group.

Definition 12.3. A Lie subgroup H C G is a subgroup of G which is also a submanifold of
G. A Lie group homomorphism ¢ : H — G is a homomorphism which is also a smooth map
of the underlying manifolds.

Examples:
1. Gi(n,R) = {A € M, |det(A) # 0}. We already showed that this is a manifold. The
product AB is defined by a formula which is polynomial in the matrix entries of A and
B, so pu is smooth. Similarly prove that 7 is smooth.
2. Sl(n,R) ={A € M,|det(A) = 1} is a Lie subgroup of Gi(n,R).
3. O(n) = {A € M,|AAT = id}.
4. SO(n,R) = Sl(n,R) N O(n).

More invariantly, given a vector space V, define GI(V') to be the set of isomorphisms V' — V.

Definition 12.4. A Lie group representation is a Lie group homomorphism ¢ : G — GI(V),
for some vector space V.
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13. DAY 13
13.1. Vector bundles. T*M = M is an example of a vector bundle.

Definition 13.1. A (real) vector bundle over a manifold M is a pair (E,m: E — M) such
that:
1. 7= (p) has a structure of a vector space (over R) of dimension n.
2. There exists a cover {U,} of M such that 7=*(U,) — U, x R™ which restricts to a
vector space isomorphism m1(p) = R"

n is said to be the rank of the vector bundle. A rank 1 wvector bundle is often called a line
bundle.

The second condition: 7 admits a local trivalization.

Definition 13.2. A section of a vector bundle m : E — M over U C M is a smooth map
s: U — FE such that mos =1id. A section over M is called a global section. The space of
sections of E over U is often written I'(E,U). Also write ['(E) if U = M. T'(E,U) clearly

has an R-vector space structure.

Sections of T'M are called vector fields. We often write X(M) = I'(T'M). Sections of T*M
are 1-forms. QY(M) =T(T*M).

13.2. Transition functions, reinterpreted. Consider 7 : "M — M and local trivializa-
tions w1 (U) = UxR"™, 7 1(V) = VxR". We have transition functions ¢y : (UNV)xR" —
(UNV) x R" (the first a subset of U x R™ and the second a subset of V' x R"), sending

aia%i — %ai%. Note that a = (a1, ...,a,)T is multiplied by %. Alternatively, think of
% :R" - R" as:

Py :UNV — Gl(n,R)

1. For double intersections U NV, we have ®yy o Oy = id.

2. For triple intersections U, N Ug N U, with coordinates z,y, z, we have g—; = g—; . % (chain

rule), i.e.,
‘I)UVUQ = <I)U7UB © (I’UBUQ-
This is usually called the cocycle condition.
What’s this cocycle condition? This cocycle condition (triple intersection property) is

clearly necessary if we want to construct a vector bundle by patching together U, x R". It
guarantee that the gluings that we prescribe, i.e., ®y,y, from U, to Ug, etc. are compatible.

On the other hand, if we can find a collection {®y,p,} (for all U,, Us), which satisfies the
cocycle condition, we have a legitimate vector bundle.
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1T
Consider 7 : T*M — M. Then ®yy : UNV — Gl(n,R) is given by [(%) 1] . This makes
it clear that the inverse and transpose are both necessary for the cocycle condition to be
met.
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14. Day 14

14.1. Orientability. Let GI*(n,R) C Gi(n,R) be the space of n x n matrices with positive
determinant. (Gl(n,R), like O(n), is not connected, and has two connected components.)
M is orientable if there exists an atlas {U,} such that &y, p, : Uy N U — Gl(n, R) factors
through Gi*(n, R).

Example: Recall S? given by gluing together U = C and V = C. The transition function
was:

Sy :UNV — GZ(Q,R),
1 v —a1? 2y
(z,y) — m ( 2y  y:—a? )
The determinant is positive, so S? is oriented.

Example: RP? = R® — {0}/ ~, where z ~ tz, t € R —{0}. This is the set of lines through
the origin of R®. Take the unit sphere S?, the RP? is S? with z identified with —z, i.e.,
RP’? = S%/(Z/2Z).

Classification of compact 2-manifolds (surfaces). The oriented ones are: S? T2
surface of genus ¢g. The nonorientable ones are: RP?, Klein bottle, and one for each orientable
surface of genus g.

14.2. Complex manifolds. Let Gi(n,C) be the space of n x n matrices with complex

coefficients with nonzero determinant. How do you view Gl(n,C) as a Lie subgroup of
Gl(2n,R)? We'll do GI(1,C) C GI(2,R), and leave the general case as HW. Consider
z € GI(1,C). We can write z =x + 1y. z: ¢ € C — zc. If we write ¢ = a + ib, then

(3)-(5 )0

Previous example: As can be seen from the transition function, for S?, there exists a
factorization:

By - UNV = GI(1,C) — GI(2,R).
HW: Show that Gi(n,C) C GI*(2n,R). Therefore, complex manifolds are always ori-

entable.

14.3. Constructing new vector bundles out of 7M. Let M be a manifold and {U,}
an atlas for M. View T'M as being constructed out of U, x R" by gluing using transition
functions @y, : UNV — Gl(n,R). Recall U, x R" and Ug x R" are glued using ®y,v,
along the fibers, and @y, y, satisfies the cocycle condition.

Consider a representation p : Gl(n,R) — GIl(m,R).

Examples:
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1. p: Gl(n,R) = GI(1,R) = R*, A det(A).
2. p:Gl(n,R) = GIl(n,R), A— BAB™L.
3. p:Gl(n,R) = Gl(n,R), A (A HT.
Use p and glue U, x R™ together using:
po®y,u, : UNV = Gl(n,R) — Gl(m, R).

Observe that the cocycle condition is satisfied since p is a representation. Therefore we
obtain a new vector bundle TM x, R™, called TM twisted by p.

Note that Example 3 above is just the cotangent bundle 7% M.

Example 1 gives rise to a line bundle (i.e., vector bundle of rank 1), usually denoted A" T'M.
The orientability of M is equivalent to the existence of a global section s € I'(A" T'M, M)
which is never zero.
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15. DAy 15
15.1. Integrating 1-forms.

Property of 1-forms: Let f : M — N and g : L. — M be smooth maps between smooth
manifolds, and let w be a 1-form on N. Then (fog)*w = g*o(f*w). [Exercise. Note however
that the order of pulling back is reasonable.|

Let C be an embedded arc in M, i.e., it is the image of some embedding 7 : [¢,d] — M. Let
w be a 1-form on M. Then we define the integral of w over C to be:

w = 7 w.
C c
If ¢ is the coordinate on [c, d], then y*w will have the form f(t)dt.

Lemma 15.1. The definition does not depend on the particular parametrization v : [c, d| —
M.

Proof. Taking a different v : [a,b] — M. Then there exists a diffeomorphism g : [a,b] —
[¢, d] such that v; = vy 0 g. Now, viw = (70 ¢g)*w = g*(7*w), and

/Cdv*w=/cdf(t)dt=/abf(g(s))dg(s):/abﬁw,

g

Now we know how to integrate 1-forms. Over the next few weeks we will define objects that
we can integrate on higher-dimensional submanifolds (not just curves), called k-forms. For
this we need to do quite a bit of preparation.

15.2. Linear algebra. We define some notions in linear algebra. The vector spaces we are
concerned with do not need to be finite-dimensional, but you may suppose they are if you
want. Let V, W be vector spaces over R.

1. (Direct sum) V@ W. As a set, V x W. Addition (vy,w;) + (ve, ws) = (v1 + v, wy + wy).
dim(Ve W) =dim(V) + dim(W).

2. Hom(V,W) = {linear maps ¢ : V. — W}. In particular, we have V* = Hom(V,R).
dim(Hom(V,W)) = dim(V) - dim(W).

3. (Tensor product) V @ W.

Informal definition. Suppose V and W are finite-dimensional, and let {v1, ..., v}, {w1, ..., w,}
be bases for V and W, respectively. Then V ® W is a vector space which has {v; ® w,|i =
1,...,m;j=1,...,n} as basis. Elements of V' ® W are linear combinations > ij QijVi @ ;.
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Definition 15.2. Let Vi,...,V,, U be vector spaces. A map ¢ : Vi x -« x Vi, = U is
multilinear if ¢ is linear in each V; separately, i.e., ¢ : {vi} X -+ x Vi x -+ x{v} = U is
linear for each v; € V;, j # 4. If k =2, we say ¢ is bilinear.

Formal definition. V ® W is a vector space Z together with a bilinear map ¢ : V x W — Z,
which satisfies the following universal mapping property. Given any bilinear map ¢ : V' X
W — U, there exists a linear map ¢ : Z — U such that ¢ = ¢ os.

Actual construction. Start with the free vector space F(V, W) generated by V x W. By this
we mean F'(V, W) consists of finite linear combinations ) _; a;(v;, w;), where (v;, w;) € V xW,
a; € R, and we have relations a4 (v1, w1) + a2(ve, ws) = az(vs, ws) if and only if v; = v, and
w; = wy. Next let R(V, W) be the vector space generated by the “bilinear relations”
(v1 + vg, w) — (vy, w) — (vg, W),
(v, w1 + ws) — (v, w1) — (v, ws),
(CU: w) - C(U, w)a
(v, cw) — ¢(v, w).
Then the quotient space F(V,W)/R(V,W)is V@ W.

For V@ W, we want finite linear combinations of things that look like v @ w. For bilinearity,
we also require:

(M +v2)Quw =1 QW+ v, W,

v ® (W) + ws) = v @ wy + v Q wa,

clv@w) = () @w =vQ (cw).

Verification of universal mapping property. With V @ W defined as above, let ¢ : V x W —
VW be (v,w) — v ® w. The bilinearity of i follows from the construction of V @ W.
(For example, i(v; + vy, w) = (v +12) @ w = v @ W+ vo @ w = i(vy, w) +i(vy, w).) ¢ maps
> v @w; — Y a;¢(v;, w;). This map is well-defined because all the elements of R(V, W)
get mapped to 0.
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16. DAy 16

16.1. More on tensor products. Recall the definition of the tensor product as V@ W =
F(V,W)/R(V,W) and the universal property. The universal property is useful for the fol-
lowing reason: If we want to construct a linear map V ® W — U, it is equivalent to check
the existence of a bilinear map V x V — U.

Dimension of V. ® W. Suppose V, W are finite-dimensional. Then we claim dim(V @ W) =
dim V-dim W. To see this, consider the map V*QW — Hom(V, W) which sends fQw — fw,
where fw : v — f(v)w. The universal mapping property guarantees the well-definition of
this map. dim Hom(V, W) can be easily calculated to be dimV - dim W. Now, it suffice to
check surjectivity and injectivity. Surjectivity: let f; be dual to a basis {vq,...,v,} for V,
i.e., fi(v;) = d;;; also let {wy, ..., w,} be a basis for W. Then any linear map in Hom(V, W)
is of the form ) a;; fiw;, i.e., comes from ) a;; fi ® w;. Details are left for HW.

Properties of tensor products.

LVOW~WaV.
2. (VeW)eU~Ve (WaU).

1. Worked out. It’s difficult to directly get a well-defined map V@ W — W ® V, so start
with a bilinear map V. x W — W xV — W ® V, where (v,w) — w ® v. It then lifts to
amap VW — W ® V which sends v ® w — w ® v. It is easy to verify injectivity and
surjectivity.

The second property ensures us that we do not need to write parentheses when we take a
tensor product of several vector spaces.

Let A: V —V and B : W — W be linear maps. Then we have
AeB:VeW VoW

and
ARB: VW -V RW.

We denote V®F for the k-fold tensor product of V. Then we have a representation p :
Gl(V) = GI(V®*), A~ A® ---® A. This gives us an associated vector bundle twisted by

p.
The tensor algebra. T(V) = RV & V® @ V® 4 ... The multiplication is given by
(11 ® - ®Vs) (V1 ® -~ Q) =01 @+~ B vy

16.2. The exterior algebra. We define AV to be T(V)/Z, where T is a (2-sided) ideal
generated by elements of the form v ® v, i.e., elements of Z are finite sums of terms that look
like 7y ® v ® v @12, where 11,12 € T(V). Elements of A V are denoted ) a;, . i, viy A---Av;, -
Then in T(V') we have v A v = 0. Also note that (vy +v2) A (vy +v2) = vy Avy + v A vy +
V9 A U1 + v2 A vo. The first and last terms are zero, so v; A vy = —vy A vy. Therefore, we may
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assume that 4; < --- < i; in the expression above. AV is clearly an algebra, i.e., there is a
multiplication w A 7 given elements w, n in A V.

We define A"V to be the degree k terms of A V.

Alternating multilinear forms. A multilinear form ¢ : V x --- x V. — U is alternating if
G(V1y oy U Vig1y ooy Uk) = —1-@(v1,. .., Vg1, Vs, ... V). Recall that transpositions generate
the full symmetric group Sy. If (1,...,k) — (i1,...,4), and o is the number of transpositions

needed, then ¢(vy, ..., vx) = (—=1)7¢(viy, - - -, Vi)

Universal property. /\kV and i : Vx---xV — /\kV satisfy the following. Given an
alternating multilinear map ¢ : V- x --- x V. — U, there is a linear map ¢ : /\k V' — U such
that ¢ = ¢ o 1.

Proposition 16.1. Given a basis {e1,...,e,} for V, a basis for /\k V' consists of degree k
monomials e;; \---Ne;, with 1y < --- < 4. Therefore, if k > n, dim /\k V=0, andifk <n,
n

dim A*V = < k)

If V = R? with basis {e;,es,e3}, then A°V = R, A'V = R{eq, es,e3}, A°V = Ries A
ex,e1 A es, ea Aes}, /\3 V =R{e1 Aey A€}, and /\’c V=0,k>3.
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17. DAy 17
17.1. Basis for /\k V. We'll give the proof of Proposition 16.1 in several steps.

1. If £ > n, /\kV = 0. This is clear since e; A ---Ae Av, v = 22:1 a;e;, is written as
Zézlaiel/\---/\ek/\eizo.

2. It k =n, /\kV = R, and the basis given by e; A --- Ae,. Any other e;, A---Ae;,
with duplicate e;’s are clearly zero, and if e;’s are not duplicated (i1, ..., 1,) is a permutation
of (1,...,n) and e;_1 A --+ Ae;, = (—1)7C1=inde; A... Ae,, where o is the sign function.
It remains to show that e; A --- A e, is nonzero! This is done by defining an alternating
multilinear form V x -+ x V — R (n copies of V). Then by the universal property A"V
cannot be zero and hence must be R. Details are HW.

3. For any vy,...,up € V, vy A---Avp #0 in /\k V iff vy, ..., v, are linearly independent.
‘Only if’ is clear — it’s identical to part 1. For the ‘if’ part, take Zi1<___<ik @iy, ifVig N A
v;, = 0. For each summand, there is a unique term v;; A ---Aw; , which kills all the other
summands and gives £a;, _ ; v1 A--- A v,. Hence this implies that the a’s are zero.

17.2. Tensor calculus on manifolds. We have now constructed V& and A*V, given a
finite-dimensional vector space V. Also note that there exist natural representations pg :
GI(V) — GU(V®) and p; : GI(V) — GUA" V).

Example: dimV = 2. Basis {v;,v2}. AV has basis {1,v1,v9,v1 Avp}. If A:V — Vis
linear and sends v; — a1;u1 + agvy, i = 1,2, then A(v; Avy) = Avy A Avy = det(A)vy A vs.

Thus we can form TM x,, V& = @,TM and TM x, N*V = A*TM. Also can form
@xT*M and N* T+ M.

We'll focus on A* T* M in what follows. Sections of A* T* M are called k-forms and locally
look like:

W = Z fil,...,ikdxil AN---A d.@zk

i1 <o <t
Denote by QF(M) the sections of A\*T*M.

Pullback: Let ¢ : M — N be a smooth map between manifolds, and w a k-form. Then we
can define the pullback ¢*w in a manner similar to 1-forms:

P'w = Z (firyosin © @) - dpiy A=+ A dpy..

RESIR )

Check: The global well-definition, i.e., independent of choice of coordinates.
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17.3. The exterior derivative. d : 2 — QFf! extends d : Q° — Q! as follows (in local
coordinates x1,...,x,:

1. Recall for f € Q°, df =Y, 2 Be: 9L ;.

2. Ifw=>, frdzy, then dw = ZI dfrdxy.
Here I = (i1, ...,%) is an indexing set, and dz; = dz;, A -+ Adz;,.

Example on R®. Consider R? with coordinates (z, ¥, z). Consider
050 40248
The first d is the gradient

d: f—df = a—fd +g—fd +a—£d

The second d is the curl

h
d: fdz+ gdy + hdz > [ 28— 99 dydz +
dy 0z

The last d is the divergence

d: fidy Ndz + fodz AN dx + fzdx A dy — (%—i—%—{j—i—%) dr A dy A dz.

Note: We will often omit the A.
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18. DAY 18
18.1. De Rham cohomology. This material is nicely presented in Bott & Tu.
Proposition 18.1. d satisfies the product formula:
(1) d(a A B) = (da) A B+ (=1)*a A (dB),
where o € QF and B € Q.
Proposition 18.2. Consider the composite Q% % Q1 % Q2 Then ¢ = 0.

Proof. The proof is by induction on degree, by taking the exterior derivative of: d(a A 3) =
(da) A B+ (—=1)!a A (dB) to get

d(aAB) = (=) dandB + (-1)daAdB = 0.
For d? : Q° — Q2, compute:

of 02 f
= dz = dz; di: .
do df d(i o, z;) : s zj Ndz; =0
O
Consider:
d—1 ~1 d 9 d n d
(2) 05" 3 -5 0Q" 30,

where n = dim M.
Example: M = R?®. dy = grad, di = curl, dy = div. Then div(curl) = 0, curl(grad) = 0.
This means that Im(dg—;) C ker(dy).
We define the kth de Rham cohomology of M to be:
H: (M) < kerdy,/ Tm dj_s.

Facts: The de Rham cohomology groups are diffeomorphism invariants of the manifold M,
and are finite-dimensional if M is compact or admits a finite atlas.

Definition 18.3. A sequence of vector spaces ...C" iy ot B o2 s said to be
exact if Im d;_1 = kerd; for all i.
The de Rham cohomology measure the failure of Equation 2 to be ezact.

Examples.

1. M = {pt}. Then Q°(M) = R and (M) = 0, i # 0. We have H°(pt) = R and
Hi(pt) =0, i > 0.
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2. M = R. Then QM) = C*(R). Also Q'(M) ~ C*(R) because every 1-form is of
the form f -dx. Now, d : f — %da:, ie, d: C*°R) —» C*(R) is the map f — f'.
ker d = {constant functions}. Therefore, HJ,(R) = R. Next, Im d is all of C*(R), since
given any f we can take its antiderivative [ f(t)dt. Therefore, Hjp(R) = 0. Similarly,
H'(R) =0 fori>1.

3. Similarly, for M a disjoint union of n copies of R, H),(M) = R" and H},(M) =0, > 1.

4. M = S*. View S as R/Z. Q°(S') = {Periodic functions on R}. (Here the period is 1.)
Q1(S1) is also the set of periodic functions on R by identifying f(z)dz — f(z). As before,
HY.(S') = R. Now, for Hj,(S'), Im(d) is the space of all C*®-functions f(x) with integral
fol f(z)dz = 0. Thus, H)(S') = R. We also have an ezact sequence:

IR 4%40 LR 0.

Proposition 18.4. dim H%(M) is the number of connected components of M.

Proof. df = 0 if and only if f is a constant on each connected component. Il
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19. Day 19

19.1. Pullback. Let ¢ : M — N be a smooth map between manifolds. Then do ¢ = ¢ o d.
(Verify this!) This follows easily by computing in local coordinates.

Lemma 19.1. There is an induced map ¢* : H*(N) — H¥(M) on the level of cohomology.
Let w € QF(M). w is said to be closed if dw = 0; it is ezact if w = dn.

Proof. Let w be a closed k-form on N, i.e., w € QF(N) satisfies dw = 0. Then, ¢*w satisfies
do*w = ¢*(dw) = 0. Now, if w is exact, i.e., w = dn, then ¢*w = ¢*dn = d(¢*n) is exact as
well. O

19.2. Mayer-Vietoris sequences. This is a method for effectively decomposing a manifold
and computing its cohomology from its components.

Suppose M = U NV. Then we have

(3) Unveuuv S
iy and 7y are two inclusions, one into U and the other into V.
Example: M =S'. U=V =R.UNnV=RUR.

Theorem 19.2. We have the following long exact sequence:

0— HOM) S HWU) @ H(V) " HUNV) -
S H(M) S B0y e H(V) "SF HWUNV) -
— ...
Its proof will be given over the next couple of lectures, but for the time being we will apply
it.
Example: Compute H*(S') using Mayer-Vietoris.

Observe the following: 0 -+ A — B exact means A — B is injective. A — B — 0 exact
means A — B is surjective. Hence 0 - A — B — 0 implies isomophism.

19.3. Poincaré lemma.
Lemma 19.3 (Poincaré lemma). w € QF(R"), k > 1, is closed if and only if w is exact.

In other words, H%,(R") = 0 for k£ > 1. We will give the proof later, together with some
other homotopy-theoretic properties.
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19.4. Partitions of unity.

Definition 19.4. Let {U,} be an open cover of M. Then a collection of functions {f, > 0}
is a partition of unity subordinate to {U,} if:
1. fo has support inside U,. Here the support of f, is the closure of {x € M|f,(x) # 0}.
2. fa2>0.
3. At every point x € M, there is a finite subset {f1,..., fx} of {fa} which are nonzero,

and YL, fi(x) = 1.

Proposition 19.5. Given {U,} an open cover of M. There exists a partition of unity
subordinate to {U,}.

Proof. The proof is done in stages.

Step 1. Consider the function f: R — R:
e/ forx >0

f(x):{O for z <0
It is easy to show that f > 0 and f is smooth.

Step 2. Take g : R — R to be gu(z) = f(x —a) - f(b— ). (Suppose a < b.) Then g(z) is
a bump function.

®*g2>0,

e supp(g) = [a, b],

e g>0on (a,b).

Step 3. Construct a bump function on [ai,b1] X -+ X [an,b,] C R" with coordinates
(x1,...,2,) by letting ¢(z) = Gayp, (1) - - - Gab, (Tn). Then ¢ is supported on [a, by] X - -- X
[@n, b,] and is positive on the interior.

Step 4. We will only treat the case where M is compact. For each p € M, choose an open
neighborhood U, of p of the form (a;,b;) X --- X (an,b,) whose closure is contained inside
some U,. For each U, construct ¢, as in Step 3. Now, since M is compact, there exists a
finite collection of {py, ..., px} where {U,,} cover M. Note that 3% | ¢, > 0 everywhere on
M. If we let ¢, = Z‘i’—f;p, then ) 1, = 1. Finally, we associate to each 1, an open set U, for
which U, C U,. Then 1, is the sum of all the v, associated to U,. O
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20. DAY 20: SOME HOMOLOGICAL ALGEBRA
20.1. Short exact sequence.
Proposition 20.1. FEquation 3 gives the following short exact sequence.
(4) 0— QM) S Qi) e (V) T Qi(unv) —o.

Proof. The only thing we need to do is prove that i}, — i}, is surjective. (The rest of the
exact sequence is easy.) Use partition of unity subordinate to {U,V'}, py, py which adds up
to py + py = 1. Given w € Q*(U NV), consider pyw on U and —pyw on V. This works. [

20.2. Short exact sequences to long exact sequences. Getting from the short exact
sequence to the long exact sequence is a purely algebraic operation.

Define a complez (C,d): --- — C" iy ot B it o be a sequence of vector spaces
and maps with d;, od; = 0. (C,d) gives rise to H(C) = ker d;/Im d;_,, the ith cohomology
of the complex.

A cochain map ¢ : A — B is:

di_1 \ Ak dp , Ak+1 dr41

¢k—1J{ ¢kJ{ ¢k+1l

dk—1> Bk dg , Bk+1 di4+1

dk—2} Bk-1
which satisfies dy o ¢, = dpi1 0 dy.

A cochain map ¢ : A — B induces a map on cohomology:
¢ : H*(A) — H*(B).

The verification is identical to that of the special case of de Rham.

Given an exact sequence 0 — A KA BN 0, (i.e., we have collections of 0 — A* — B* —
C" — 0 and all the maps are cochain maps),

A A A

dgt1 dg+1 d 41

0 Ak+1 P41 Bk+1 Vh+1 Ck+1 0
i dy ds
0 — A+ %, gk P, ook g

dr_1 d—1 dr-1
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we always get a long exact sequence:
C—— HMA) 2 HRB) 2 HRC) 2

s HEL(A) 2 ey g) P, geeey et

Verification of Ker1, D Im ¢;. Suppose [b] € Im ¢;. Then b = ¢ra + db’, where a € AF
and b’ € B¥~1. Now, b = 9y (dra) + ¥r(db') = d(1r_1b'). Therefore, [1xb] = 0 € H*(C).

Verification of Kert, C Img,. Suppose [b] € Kerty. Then b = dd, ¢ € CF L
Next, use the fact that B¥~! — C*~! — 0 to find b € B*~! such that ¢ = ;_10'. Then
b = d(_10") = ¥ (db'). Hence, by the exactness, b — db' = ¢, (a) for some a € A*. Thus,
¢xla] = [0].

Definition of & : H*(C) — H*"'(A). Let [c] € H*(C). Then dc = 0. Also we have b € B*
with ;b = ¢ by the surjectivity of B¥ — C*. Consider db. Since 9y 1(db) = d(xb) = dc = 0,
there exists an a € Al such that ¢y,,a = dec. Let [a] = &[c]. Here, da = 0, since

bri2(da) = d(pr,a) = d(db) = 0, and A¥™? — B*? is injective. We need to show that this
definition is independent of the choice of ¢, choice of b, and choice of a. This is left for HW.

HW: Verify the rest of the exactness.
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21. INTEGRATION
Let M be an n-dimensional manifold and w € Q"(M). We will try to make sense of [, w.

21.1. Orientation. Recall: M is orientable if there exists an open cover {U,} and ¢, :
U, — R"™ where the Jacobians J,s of ¢g o ¢! have positive determinant.

Proposition 21.1. M is orientable if and only if there exists a nowhere zero n-form w on

M.
Proof. Suppose M is orientable. Take a partition of unity {f,} subordinate to U,. Let
z1,-...,%, be the coordinates on U,. Construct w, = fox1 A -+ A dx,. w, is a smooth

n-form on M with support contained in U,. Let w = )  wo. This is nowhere zero, since any
(¢a 0 @5 ) ws = fs0(¢aody')det(Jsa)dzy A Adiy. The key point here is that det(Jg,)
are positive, so fz o (dq 0 qﬁgl) det(Jgo) > 0. At any point p € M, at least one f, is positive,
and the w, are additive, so w is nowhere zero on M.

On the other hand, suppose there exists a nowhere zero n-form w on M. Given U,, we
choose coordinates x4, ..., z, so that dr; A--- Adz, is a positive function times w. Once we
do this, clearly J,s has positive determinant. O

Since the n-form w is nowhere zero, what this says is that A" T*M is isomorphic to M x R
as a vector bundle, i.e., is a trivial vector bundle.

On a connected manifold M, any two nowhere zero n-forms w and w’ differ by a function,
i.e., 3 a positive (or negative) function f s.t. w = fw’. We have two equivalence classes, if we
set w ~ w’ whenever f is a positive function. Each equivalence class is called an orientation
of M.

The standard orientation on R" is dxy A - - - A dx,,.

Equivalent definition of orientation. The set Fr(V) of ordered bases (or frames) of
a finite-dimensional vector space V' of dimension n is diffeomorphic to GI(V) (albeit not
naturally): Fix an ordered basis (v1,...,v,). Then any other basis (w,...,w,) can be
written as (Avy, ..., Av,), A € GI(V). Therefore, there is a bijection Fr(V) ~ GI(V'), and we
induce a smooth structure on F'r(V) from GI(V). (Note however that there is a distinguished
point id € GI(V) but no distinguished basis in Fr(V).) Since GI(V) has two connected
components, Fr(V) has two components, and each component is called an orientation for
V. An orientation for M is a choice of orientation for each T, M which is smooth in p € M.
[We can construct the frame bundle Fr(M) = U,Fr(T,M) by topologizing as follows. Locally
near p, identify its neighborhood with R" and U .g»Fr(T,R") = Fr(R") x R". The frame
bundle is a fiber bundle over M whose fibers are diffeomorphic to GI(V).]

21.2. Change of variables formula. Let U, V C R" be open sets with coordinates
(X1, -, Zn), (Y1,---,Yn), and ¢ : U — V a diffeomorphism. Then:
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d.’L'1 ce d.In

/Vf(y)dyl...dyn:/Uf(fb(x))‘g_i

In light of the change of variables formula, [, w makes sense only when M is orientable,
since the change of variables for an n-form does not have the absolute value. At any rate,
n-forms have the wonderful property of having the correct transformation property (modulo
sign) under diffeomorphisms.

21.3. Definition of the integral. We define:

where {f,} is a partition of unity subordinate to {U,}.

HW: Check that the definition of [ 1w does not depend on the choice of U, as well as the
choice of {f,}.
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22. STOKES’ THEOREM

22.1. Manifolds with boundary. We enlarge the class of manifolds by allowing ones “with
boundary”. These are locally modeled on the half-plane H" = {z; < 0} C R".

Definition 22.1. A Hausdorff, second countable topological space is a manifold with bound-
ary if there exists an atlas {(Uy, ¢o)}, where ¢o : Uy — H" is a homeomorphism onto its
image and the transition functions ¢, o¢§1 are smooth. The boundary of M, denoted OM , is
the set of points of M which lie on the boundary of some half-plane H" under some map ¢,,.
Equivalently, it is the non-interior points of M. OM is an (n — 1)-dimensional manifold.

Example: The n-dimensional unit ball B" = {(z1,...,2,) € R"|z? +--- + 22 < 1}
oB™ = S"1,

Proposition 22.2. If M is an orientable manifold with boundary, then OM 1is an orientable
manifold.

Proof. Let {U,} be an oriented atlas for M. Then we take an atlas {V,,} for OM as follows.
Let V, = U,N{z; =0} C H" = {x; < 0}. (Note that if any p € M is mapped to 0H" under
a coordinate chart, then p cannot be mapped to the interior of H” under any other coordinate

chart.) If (6%1, 6%2, cee %) is an oriented basis for M on U,, then let (%, ey %) be an
oriented basis for M. This works because an outward normal vector % will go to another
outward normal vector under a change of coordinates. O

22.2. Stokes’ Theorem.

Theorem 22.3 (Stokes’ Theorem). Let w be an (n — 1)-form on a manifold with boundary
M of dimension n. Then fM dw = faMw.

Remark: 0 happily switches places (jumps up or jumps down).

Zen: The significance of Stokes” Theorem is that a topological operation 0 is related to an
analytic operation d.

Proof. Take an open cover {U,} where U, is diffeomorphic to (i) (0,1) x --- x (0,1) (U,
does not intersect M) or (ii) (0,1] x (0,1) x --- x (0,1) (U, N OM = {z; = 1}). Let
{fa} be a partition of unity subordinate to {U,}. By linearity, it clearly suffices to compute
Jo., d(faw) = [op00, Jaw, i-e., assume w is supported on one U,.

We will treat the n = 2 case. The generalization is straightforward. Let w be an (n — 1)-
form of type (ii). Then on [0,1] x [0, 1] we can write w = fidz; + fadz,.

1
/ w= [ iz + fodvs = / fo(1, 22)ds.
oM oM 0
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On the other hand,
Y0k | 0f
/M dw = /0 /0 (—a—x2 + 8—$1> dﬂ?ldl'z
1 1 1 1
0 0 axl 0 0 a.',EQ

1

- / (oL, 22) — £o(0, 25))da + / (f1(21,0) = fu(s, 1))dz,

0

0
1
= fg(l,.’l?Q)diEQ
0

Try to see that n > 2 also work in the same way. U

Example: (Green’s Theorem) Let Q C R? be a compact domain with smooth boundary,
i.e., Q is a 2-dimensional manifold with boundary 02 = 7. Then

/fdx—!—gdy:/ (@_8_}”) dxdy.
y o \0zr 0Oy

Example: Consider w defined on R? — {0}:

ot = (z7352) oo+ (g )

Let C = {z? + y*> = R?}. Then z = Rcosf, y = Rsinf, and we compute

/w:27r.
c

Claim: w is not exact! In fact, if w = dn, then

O:/ n:/dn:27r,
ac c

It is easy to show that dw = 0.

a contradiction.
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23. APPLICATIONS OF STOKES’ THEOREM
23.1. The Divergence Theorem.

Theorem 23.1. Let Q C R? be a compact domain with smooth boundary. Let F = (I, Fy, F)
be a vector field on ). Then

/divF d:cdydz:/ (n, F)dA,
Q )

where n = (ny,ng,n3) s the unit outward normal to 0N,
dA = nidy A dz + nodz A dx + nzdx A dy,
and (-) is the standard inner product.

Let w = Fidydz + Fydzdz + Fydxdy. Then dw = (div F)dzdydz. It remains to see why
Joqw = [5q(n, F)dA.

Evaluating forms. We explain what it means to take w(vq,...,v;), where w is a k-form
and v; are tangent vectors. Let V' be a finite-dimensional vector space. There exists a map:

ANV (Vx---xV)=R
(fl ARRENAN fka (Ula .- '7Uk)) = Z(_l)afl(vil) .- 'fk(vik)’

where the sum ranges over all permutations of (1,. .., k) and o is the number of transpositions
required for the transposition (1,...,k) + (i1,...,7). Note that this alternating sum is
necessary for the well-definition of the map.

Example. Let w = Fidydz + Fydzdr + Fsdxdy. Then w (%, %) = —F5.

Interior product. We can define the interior product as follows: 4, : A" V* — A" V™,
iyw = w(v,, -, ...,-). (Insert v into the first slot to get a (k — 1)-form.)

Example. On R?, let n = dzdydz. Also let n be the unit normal vector to 2. Then, along
0f) we can define 7,,n = nydydz + nyodzdxr 4+ nydxdy.

Why is this dA? At any point of p € OS2, take tangent vectors v, vo of 0§2 so that n, vy, vy
is an oriented orthonormal basis. Then the area form dA should evaluate to 1 on vy, vs.
Since n(n, vy, vy) =1 (since 7 is just the determinant), we see that dA = i,7.

Explanation of (n, F)dA = Fidydz+ Fydzdz + Fzdzdy. Also note that ipn = Fidydz+. . ..
But now, ipn(vi,ve) = n(F,vi,v2) = n({n, F)n, v, vs) = (n, F)dA (by Gram-Schmidt).

23.2. Evaluating cohomology classes. Let M be a compact, oriented manifold (without
boundary) of dimension n.

Proposition 23.2. There exists a well-defined, nonzero map [ : H*(M) — R.
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Proof. Given w € Q"(M), we map w + [, w. Note that every n-form w is closed. To show
the map is defined on the level of cohomology, let w be an exact form, i.e., w = dn. Then

/w:/dnz/ n=20.
M M oM

Next we prove the nontriviality of [: if w is an orientation form (w is nowhere zero), then
fM w > 0 or < 0, since on each coordinate chart w is some positive funtion times dz; ... dx,.
O

The proposition shows that dim H"(M) > 1. In fact, we have the following:
Theorem 23.3. H"(M) ~ R.

We omit the proof.
Example. M = S™. Then H*(S") = R for i = 0 or n and = 0 for all other i.
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24. DAy 24

24.1. Evaluating cohomology classes. Let ¢ : M™ — N™ be a smooth map between
compact oriented manifolds of dimensions m and n, respectively, and ¢* : H¥(N) — H*(M)
the induced map on cohomology. Let w € Q™(N) be a closed m-form. Suppose [,, ¢*w # 0.
Then ¢*w represents a nonzero element in H™(M). This implies that |w] is a nonzero
cohomology class in H™(N).

Example. On R? — {0}, consider the closed 1-form

—y I
w(z,y) = (332 +y2) dx + (m) dy.

We computed [, ¢*w = 27, where ¢ : S' — R? — {0} mapped 0 — (Rcosf, Rsinf). Since
[¢*w] is a nonzero cohomology class in H'(S), so is [w] € H'(R?* — {0}).

Two maps ¢g, ¢1 : M — N are (smoothly) homotopic if there exists a map ® : M x[0,1] - N
where ®(z,t) = ¢y(x).

Proposition 24.1. If ¢o, ¢y : M — N are homotopic and w € QF(N), k = dim M, is
closed, then fM Pow = fM Piw.

Proof.
[ow [ o=  au=[ d@w= [ e =0
M M a(Mx[0,1]) M M

since w is closed. O

Example, cont’d. On N = R? — {0}. Since w is a closed 1-form on N, [ ,w = [, wif C
and C' are homotopic. That’s why the integral did not depend on the radius R of the circle.

24.2. Definition of degree. This material can be found in Guillemin & Pollack.

Let ¢ : M — N be a smooth map between oriented compact n-manifolds M and N. Let
y € N be a regular value of ¢. (Recall y € N is a regular value if, for all x € ¢~ (y), df ()
is surjective. y € N which is not a regular value is a critical value.)

Claim: ¢ !(y) consists of a finite number of preimages 1, ..., T.

Proof. Suppose there is an infinite number of preimages. By the compactness of M, there
must be an accumulation point x = lim;_, x;, which itself must also be in ¢~!(y). However,
for every z € ¢ !(y) there exists an open set U, which maps diffeomorphically onto an open
set around y. Therefore, z could not have been the limit of z; € ¢~ (y). O

The claim implies that for a small enough open set V}, containing y, ¢~*(V}) is a finite disjoint
union of open sets Uy, , ..., Uy, each of which is diffeomorphic to V.
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Definition 24.2. The degree of a mapping ¢ : M — N is the sum of orientation numbers
+1 for each x; in the preimage of a regular value y. Here the sign is +1 if the map from a
neighborhood of x; to a neighborhood of y is orientation-preserving and —1 otherwise.

Regular values of ¢ do exist:

Theorem 24.3 (Sard). Let ¢ : M — N be a smooth map. Then the set of critical values of
¢ has measure zero.

A set S C N has measure zero if {U;}3°, is a countable atlas and, for each U; C R" and
e >0, U; NS can be covered by a countable union of rectangles [a1,b1] X - -+ X [an, b,] with
total volume €. This actually implies that S itself can be covered by a countable union of

rectangles with total volume e: For U;, take rectangles so that the total volume = ¢ (%)Z
Adding up over all the U;, we get ¢ (% + i -+.. ) =c.

Consequently, the set of regular values of ¢ is dense in N.

The proof of Sard’s Theorem will be given next time. We conclude with the following
theorem, which will be explained in a couple of lectures.

Theorem 24.4 (Degree Theorem). The degree of a mapping ¢ : M — N is well-defined.
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25. PROOF OF SARD’S THEOREM

The proof closely follows that of Milnor, Topology from the Differentiable Viewpoint.
Recall the statement of Sard’s Theorem.

Theorem 25.1 (Sard). Let f : M — N be a smooth map. Then the set of critical values of
f has measure zero.

By our discussion from last time, suffices to prove Sard’s Theorem in the following local
situation.

Theorem 25.2. Let f : R™ — R" be a smooth map. If we set C = {z|rankdf(z) < n},
then f(C) has measure zero in R".

Remark 1. The “measure” in the term measure zero refers to the Lebesgue measure .
Remark 2. Open subsets of R" have nonzero Lebesgue measure.

Proof. We will prove the theorem for n =1, i.e., f : R™ — R. The general case is similar.
Define the following subsets of R™:

of .
oz, —O,Vz},

Cr = {z € R™| all partials of f up to and including order k vanish at z}.

C, = {SCERm

Then clearly C =C; D Cy D Cs....

Strategy.

1. Show f(Cy — C5) has measure zero.
2. Show f(Cy — C11) has measure zero.
3. For k large enough (kK > n), f(Cx) has measure zero.

Step 1. Let x € Cy—C5. We want to show that there exists a neighborhood V' of x for which
(Cy —C3)NV has measure zero. (This suffices because if we can cover C; —Cy with countably
many such V’s, the total measure of C'y —C is zero, as seen from the argument used last time,

right after the statement of Theorem 24.3.) Here, 2L = ... = 2L — () but some Ot # 0.

’ 91 OTm Ox;0x;

Without loss of generality assume i # 0. Then consider the map h : V 35 z — R™,

010z
(1, s T) (%,xg, ..y ZTm). Near z, h : V — V' is a local diffeomorphism, as can be
seen easily by computing the Jacobian. Clearly, the critical values of f : V — R are the
same as the critical values of foh™ : V' — R, but if (%1, ..., T,,) are coordinates of V', then
the critical values of f o h~! are the same as the critical values of foh™': {7, = 0} — R.

We can then induct on the dimension m.
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Note. Under a diffeomorphism, the Lebesgue measure p changes by a positive smooth
function f.

Step 2. Similar to Step 1.

Step 3. Let 0 € Ck, k > n. Suppose f : [—6,0] X ...[—0,d] = R. Then Taylor’s theorem
(with remainder) gives us:

f(z+h) = f(z) + R(z; h),
where |R(z;h) < C|h|*L, for all z € C, N [—6,]™ and = + h € [—4,6]™.

We subdivide [0, 1]™ into cubes of length 6. Then there are roughly 5~ cubes. Consider
one such cube @ which nontrivially intersects Cy. Then its volume is ™, whereas its image
has length on the order of magnitude of §**! from Taylor’s theorem. Adding up the total
volume of the image, we have 7-0%*!, which can be made arbitrarily small by choosing &
small. 0
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26. DEGREE

Recall the definition of degree: Let ¢ : M — N be a smooth map between compact,
oriented manifolds (without boundary) of dimension n. By Sard’s Theorem, there exist (a
full measure’s worth of) regular values of ¢. Let y € N be a regular value, and xq,. ..,z
be the preimages of y. Then deg(9) is Zle +1, where the contribution is +1 when ¢ is
orientation-preserving near z; and —1 is otherwise.

We will explain why the degree is well-defined.
26.1. Cohomological interpretation.

Theorem 26.1. If M is an oriented, compact n-manifold (without boundary), then f :
H™"(M) — R is an isomorphism.

The proof will be given in the following section, but for the time being let us use this to
reinterpret the degree. ¢ : M — N induces the map ¢* : H"(N) — H"(M). Then we have
the commutative diagram:

HY(N) -2 H"(M)

/| 7|

R —— R
where the map R — R is multiplication by some real number c.

Proposition 26.2. deg ¢ satisfies

(5) /Mgb*wzdegqﬁ/]vw.

Therefore deg ¢ is the constant of multiplication c.

Proof. Once we can prove Equation 5 for a suitable w of our choice, the proposition follows.
Take w to be supported on Vj with positive integral. Then fM ¢*w will be the sum of fo_ P*w.

Noting that ¢ is a diffeomorphism from U, to V,,, we have fUm- o*w =+ ny w, depending on
whether the orientations agree or not. This proves Equation 5. (Il

26.2. Proof of Theorem 26.1. We have already shown that [ : H(M) — R is well-
defined. It suffices to show that ker f consists of exact n-forms. Let w be an n-form with
zero integral. Let {U;} be a cover of M which is finite and has the property that every U; is
diffeomorphic to R". Take a partition of unity {f,} subordinate to a good cover. Then we
can split w into the sum ), w;, where w; is supported inside U;. Note that qu; w; may not
be zero.

Lemma 26.3. If w is an n-form with compact support and zero integral inside R", then
w = dn, where n has compact support.
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Proof. We will prove this for n = 2. Then w = f(z,y)dzdy. Define g(z) = [* f(z,y)dy.
By Fubini’s theorem and the hypothesis that f w = 0, we have f z)dz = 0. Define
G(z,y) = e(y)g(x), where e(x) is a bump function with total area 1. Then write:

(/ [f (2, 1) (m,t)]dt) dz + (/_w G(t, y)dt) dy.

Clearly, dn = [f(z,y) — G(z,y)|dzdy + G(z,y)dzdy and n has compact support. O

What this means is that we can replace w; by a cohomologically equivalent n-form which
is supported on a small neighborhood of a point x; € M, i.e., we may assume that w; is a
bump n-form. The total volume of the w; is still zero. Now, engulf all the z; in an open set
U C M which is diffeomorphic to R" so that w is compactly supported in U and has total
area zero. We use the lemma again to complete the proof of Theorem 26.1.
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27. LIE DERIVATIVES

27.1. Lie derivatives. First we define the interior product on the linear algebra level. i, :
AV — A1V v eV, is given by:

fl/\/\kaZ(—l)l—'—lfl/\fl(’U)/\fk
l

Check this is well-defined!
Let X be a vector field on M. Then the interior product ix : QF(M) — QF (M) satisfies
the following properties:

1. For 1-forms w, ix(w) = w(X).
2. In general, we obtain the relation:
ix(aAB) = (ixa) A B+ (—1)*@a Adxp.
Note: we define ix : Q°(M) — Q~!(M) as the zero map.

Now define Lx = doix +ixod: QF(M) — QF(M). Lx is called the Lie derivative with
respect to X.
Proposition 27.1.
L If f e QYM), then Lxf = d(ixf) +ix(df) = df (X) = X(f). Hence, L : Q°(M) —
QO(M) satisfies the Leibniz rule.
2. Lx(dW) = d(EXw)
3. Lx : QF(M) — QF(M) satisfies Lx(a A B) = Lx(a) A B+ a A Lx(B), i.c., the Leibniz
rule.

The proof is a simple computation, and is left for HW.

Hence, L : QF(M) — QF(M) naturally extends the derivation X : Q°(M) — Q°(M). (We
will usually call anything that satisfies the Leibniz rule a “derivation”.)

The following is also a source of derivations QF — QF: Let ¢, : M — M be a I-parameter

family of diffeomorphisms, i.e., there exists ® : M x [0,1] — M smooth such that ¢(-) def

®(-,t), t € [0,1], is a diffeomorphism. Assume in addition that ¢y = id. Then

d
%Qﬁw\t:o

is a derivation (verification is easy). If f € Q°(M), then
d d
TP fle=0 = 2 f(0) =0 = df (Xo) = Xo(f),

where X is the vector field which corresponds to ¢, (think in terms of the first definition of
the tangent space: at every x € M, we have an arc ¢.(x), t € [—¢, ¢]).

We have the following proposition:
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Proposition 27.2 (Cartan formula). Every %q&ﬂtzo : QF = QF s given by doix +ix od.

Proof. 1t suffices to check the following:
o 44} and Lx both satisfy the Leibniz rule. (Already verified!)
e 447 and Lx agree on Q°(M). (Yes, they are both vector fields.)
e d commutes with %gb;f and with Lx.
The above three properties allow us to do an induction on degree. ]
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28. HOMOTOPY PROPERTIES
28.1. Homotopy properties of de Rham cohomology.

Proposition 28.1. Let ¢, : M — M, t € [0,1], be a 1-parameter family of diffeomorphisms.
Then ¢; induce the same map H*(M) — H*(M) for all t € [0,1].

Note. If ¢y = id, and we write X, as the vector field on M given by ¢(x) : [—¢,6] = M at
the point z, then £ ¢jwl—o = (d 0 ix, +ix, o d)w. We can generalize this as follows: Let Xy,
be the vector field on M where the arc ¢:(x) : [to — €,t0 + €] — M is assigned at the point
¢1,(x) (note NOT at x). Then

d ., . . .
%qstw‘t:to = ¢t0 (d o ZXtO + ZXtO o d)w

Proof. Consider a closed k-form w on M. Then 4¢iwly, = ¢; (d o ix, +ix, odw =

d(#},ix,,w). Therefore it is exact. Now, ¢jw —w = fot 4 ¢*wli—sdt, and the difference is exact
as well. (This is evident by thinking of the integral as a limit of Riemann sums.) 0

Next, we say two maps ¢g, ¢ : M — N are (smoothly) homotopic if there exists a smooth
map ®: M x [0,1] — N with ¢(-) = ®(-,t), t =0, 1. ¢ is said to be the homotopy from ¢,
to ¢1.

Proposition 28.2 (Homotopy invariance). Suppose ¢, : M — N is a homotopy, t € [0, 1].
Then ¢} : H*(N) — H*(M) is independent of t.

Proof. Consider ® : M xR — N. (Itis easy to extend ® : M x[0,1] - Nto®: MxR — N.)
Then for w € QF(M) closed, consider 2 = ®*w. We have inclusions 7, : M — M x R,
z +— (x,t), and clearly ¢jw = ;). Now take a diffeomorphism ¥, : M x R — M x R,
(z,s) = (z,s+t). Since iy = W, 014y, if = i o U;. By the previous proposition, ¥ is
independent of t. Hence so are 7; and ultimately ¢;. 0

28.2. Homotopy equivalence. We say ¢ : M — N is a homotopy equivalence if there
exists ¥ : N — M such that potp : N — N and o ¢ : M — M are homotopic to
td: N — N and id : M — M. Using Proposition 28.2, it is easy to show:

Proposition 28.3 (Homotopy equivalence). A homotopy equivalence ¢ : M — N induces
an isomophism ¢* : H*(N) — H*(M).

Proof. This is because ¢* o ¢* = id (by homotopy invariance) and 1* o ¢* = id. This proves
that ¢* and ¢* are left and right inverses (as linear maps) and are isomorphisms. O

Corollary 28.4 (Poincaré lemma). H%,(R") =0 if k > 0.
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Proof. We will show that R" is homotopy equivalent to R’ = {pt}. Consider maps ¢ : R" —
R’ (z1,...,7,) = 0,and ¢ : R® = R", 0+ (0,...,0). Clearly, po¢ : R® = R’ 0+ 0,
is the identity map. Next, po ¢ : R" — R", (z1,...,2,) — 0 is homotopic to the identity
map. In fact, consider F': R" x [0,1] = R", ((z1,...,2,),t) = (tx1,...,tx,). O

Example. Consider a band S' x (—1,1). It is homotopy equivalent to S*. We have maps
¢S x (—1,1) - S', (,t) = O and ¢ : S' — S' x (=1,1), 8 — (0,0). porp: St — S!
isid. Yog¢: S x (=1,1) » S x (=1,1) is (#,t) — (6,0) is homotopic to id. In fact, take
F:S'"x (-1,1) x [0,1] = S' x (—=1,1), (0,t,5) — (0,ts). Therefore, we have:

H*(S' x (=1,1)) ~ H*(SY)

Example. Similarly, H*(M x R") ~ H*(M). More generally, if E is a vector bundle over
M, then H*(E) ~ H*(M).

28.3. Extended example: surface of genus g. Consider a surface ¥ of genus g. If you
remove a disk from X, you are left with a bouquet of 2g bands. You can now use Mayer-
Vietoris with U a disk and V' a bouquet of 2¢g bands.

28.4. Euler characteristic. Let M be an n-dimensional manifold. Then we define the

Euler characteristic of M to be:
n

X(M) = 3 (=1)' dim Hig(M).
i=0
Examples.
1. x(R") =1.
2. x(8)=1+0+1=2.
3. x(T?)=1-2+1=0.
4. x(genus g surface) = 2 — 2g.

Note. For compact surfaces, the Euler characteristic is given by the classical formula V' —
E + F, where V is the number of vertices, E is the number of edges, and F' is the number
of faces of a polyhedron representing the surface.

Proposition 28.5. If M =U UV, then x(M) = x(U) + x(V) —x(UNV).

Proof. Use the Mayer-Vietoris sequence and add up the dimensions. O
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29. VECTOR FIELDS

Recall a vector field on U C M is a section of T'M defined over U.

29.1. Lie brackets. Given two vector fields X and Y on M viewed as derivations, we can
define its Lie bracket [X,Y] = XY -Y X, ie., for f € C®(M), [X,Y](f) = X (Y f)-Y(Xf).

Proposition 29.1. [X,Y] is also a derivation, hence is a vector field.

Proof. This is a local computation. Take X =", aia%i and Y =3, bjﬁ. Then:
0 of of
X, Y)(f) = i Of
) = Fag (;%xj) >, (Z axz)

ob; of da; af
Z "Ox; Ox; %: b 0z, Ox;

In other words,

K ob; . da;\ 0

Properties of Lie brackets.
1. (Anticommutativity) [X,Y] = —[Y, X].
2. (Jacobi identity) [X,[Y, Z]| + [Y,[Z, X]] + [Z, [ X, Y]] = 0.
3. [fX,gY] = fg[X, Y]+ fX(9)Y — gY (f)X.

These properties are easy to verify, and are left as exercises.

29.2. Fundamental Theorem of Ordinary Differential Equations.

Theorem 29.2. Given a vector field X on a manifold M and p € M, there exist an open
setU > p, e >0, and a smooth map ® : U x (—e,e) — M such that if we set ¢1(z) = ®(z,t),
x € U, then ¢i(x) = x and ¢i(x) is an arc through x whose tangent vector at t is X (¢(x)).

Locally: take coordinates z1,...,2, and z =0. If X =>""  a; (x)a%i and we write z(t) =

61(0), then
dzx
E(t) = (a1(z(2)), ..., an(x(t))).

We omit the proof of this theorem.
Definition 29.3. A curve vy : (a,b) — M 1is an integral curve of X if 7 4 — X (y(t)).

Remarks.
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1. ¢¢(x) are integral curves of X. If v : (—=4§,0) — M is another integral curve of X
with v(0) = ¢o(x), then v(t) = ¢(z) on (—¢,) N (—0,9). Therefore, the flow ® :
U x (—e,e) — M is unique on the domain of definition.

2. If M is compact (without boundary) and X is a vector field on M, then there exists a
global flow & : M x R — M with ¢y = id. (This is because if M is compact, we may
choose € to work for all the open sets U containing p, since we may assume there is a
finite number of such open sets.)

3. However, if M is not compact, then there are vector fields X which do not admit global
flows.

4. ¢s0 ¢y = ¢eyy, and ¢; ' = ¢_,. In particular, on M compact, ¢y, t € [0,1], forms a
1-parameter group of diffeomorphisms.

Example. On R — {0} consider X = a%' X, when integrated on R, clearly gives @ :
R xR — R, (z,t) = x +t. However, when {0} is removed, no matter how small an ¢ you
take, there isno ® : R x (—¢,¢) = R.

Corollary 29.4. Suppose X (p) # 0. Then there ezists a coordinate system near p such that
X = o)

=2
Proof. Choose a smooth surface ¥ which is transverse to X. Now take ¢ : ¥ x (—¢,e) = M

given by & restricted to X. Since X is transverse to X, 1 is a diffeomorphism near p by the
inverse function theorem. In the coordinate system 3 x (—¢,¢), X is clearly %. O
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30. VECTOR FIELDS AND LIE DERIVATIVES
30.1. Pullback.
Proposition 30.1. Let f: M — N be a smooth map and w € QF(N). Then we have:
frw(@) (X, ..., Xi) =w(f (@) ([ X1, .., [ Xk).
Proof. 1t suffices to show this for 1-forms dg. Then:
(f*dg)(X) =d(go f)(X) = X(g0 f) = £.X(9),

by definition of the pushforward of X. If we write this in coordinates, then

dg
dg:za—y_dyi
and 50 8
g 0Y;
*dg = — T dx;
SO 90 8
g 0Y;
dg(
Fdg (G, 8x] Zayi Ox;’
whereas

0 g oy, 0 dg O0y;
dg(fo=—) = —dy; )
9(f 83:]-) - 0Y; dy (; Oz, ayl Z 0y; 0z

O

30.2. Lie derivatives. Let X be a vector field on M. Then there exist a local or global flow
O : M x (—¢e,e) > M, ¢1(z) = ®(x,t), such that ¢g(z) = . We defined the Lie derivative

Lx on forms w as:

d
Lxw = —¢tw|t 0-

Lie derivatives can be defined on vector ﬁelds Y as well:
d

LxY = 5 (60 lizo.

Here, vector fields cannot usually be pulled back, but for a diffeomorphism ¢, there is a
suitable substitute, namely (¢71)..

Ultimately, it is easy to see that Lx can be defined on any tensor of the type /\]C "M ®
N TM.

Properties of L.
1. Lxf=X/.
2. Lxw=(doix +ixodw



NOTES FOR MATH 535A: DIFFERENTIAL GEOMETRY 59
3. EX((,U(Xl, ce ,Xk)) = (ﬁXUJ)(Xl, ey Xk) + Ziw(Xl’ ey EXXZ ce ,Xk)
4. LxY = [X,Y].

(1), (2) are already proven. (3) is left for homework. Use Proposition 30.1 above. We will
do (4), assuming (1), (2), (3). We compute:

X(Y(f) = £Lx(Y))
= Lx(df(Y))
= (Lxdf)(Y)+df(LxY)
= (doLx[f)Y +df(LxY)
= dX ()Y + (LxY)(f)
Y(X(f) + (LxY)(f).
Therefore, (LxY)f = X(Y(f)) = Y(X(f)) = [X,Y](f).
30.3. Interpretation of LxY = [X,Y]. As before, X, Y may not have global flows, but

for simplicity let us assume they do. Let ¢, : M — M, s € R, be the 1-parameter group

of diffeomorphisms generated by X and ¢y : M — M, t € R, be the 1-parameter group of

diffeomorphisms generated by Y. Noting that Y (z) = lim;_,¢ W, we have

((¢_5)*Y)(x) B Y(QZ‘)
(d)—s otyo d)s(x) - .73) - (djt(x) - x)

LxY(z) = lim

s—0

= lim
5,t—0 st
— hm (]5,5 o wt o (}55(.%') - ¢t($)
5,6—0 st
— lim ¢ Y op tohog(x) —
T osis0 ! st
— hm 1ﬁ;10¢;10¢t0¢5($)—1‘
5,6—0 st

Hence, the Lie bracket [X, Y] measures the infinitesimal discrepancy when you flow s units
along X, ¢t units along Y, —s units along X and finally —¢ units along Y.
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31. DAy 31

31.1. Relationship between d and |, ].

Proposition 31.1. Consider § € Q' (M) and X,Y € X(M). Then dO(X,Y) = X0(Y) —
YO(X) - 0([X,Y]).

Proof.
dO(X,Y) = iyixdd =iy(Lx —doix)
= v (Lx0 —d(0(X)))
= (Lx0)Y —YO(X)
= X0(Y)-Y0(X)—-6(X,Y]),
by using

Lx(0(Y)) = (Lx0)Y +0([X,Y]).

More generally we have, for QF(M), X1,..., X1 € X(M):

dw(Xy,. . X)) = Y (D)MX(w(Xr, -, X X))

+ 3 ()X, X, X, X X Xi)-

1<j

Here 5(\1 means omit the term with X;. The proof is for HW.

31.2. Distributions. Recall that if X is a vector field with X (p) # 0, then locally near p

el

there exists an open set with coordinates (zi,...,z,) where X = ->-. Can we generalize

oz

this? If X, Y are two vector fields which span a 2-dimensional subspace of TM at p, then
near p span(X,Y’) assigns a 2-plane field at every x in a neighborhood of p.

Definition 31.2. Let M be an n-dimensional manifold.

1. A k-dimensional distribution D is a smooth choice of a k-dimensional subspace of T, M

at every point p € M. By a smooth choice we mean there exist k linearly independent
vector fields X1, ..., Xy which span D, locally near p.

. An integral submanifold N of M is a submanifold where T,N C D, at every p € N.

dim N is not necessarily dim D, but dim N < dimD.

. D is an integrable distribution if there is a coordinate system {x1,...,x,} near every

p € M such that D = Span{aim,... 6k}. Equivalently, D s integrable if there lo-

? dxy
cally exist functions fi, ..., fn_k such that {fi = const, ..., f,_r = const} are integral
submanifolds of D and the f; are independent (i.e., dfy A --- ANdfy, x # 0.
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Dually we can define a k-dimensional distribution on M (of dimension n) locally by pre-
scribing n — k linearly independent 1-forms wy, ..., w,_k.

Example: On R?, let w = dz. Then D = kerw = Span{%, a%}. The integral surfaces (sur-
faces everywhere tangent to D) are z = const. D is an integrable 2-plane field distribution.

Example: On R?, consider w = dz+ (zdy—ydz). Then D = Kerw = Span{xa% +ya%, ya%—
3:8% + %}. D is called a contact distribution, and is not integrable.

For 2-plane fields in R? integrability amounts to: Can you find a function f such that
f = const are everywhere tangent to D?

First calculate w A dw = 2dxdydz # 0. Then D is not integrable for the following reason: If
D = R{;L, 32}, then w is of the form fdzs. Now, dw = dfdzs and w A dw = fdzs A df A
drs = 0. This gives a contradiction. Therefore, the contact 2-plane field distribution is not

integrable.
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32. FROBENIUS’ THEOREM

Let M be an n-dimensional manifold. A distribution D of rank k is a rank k£ subbundle
of TM. Locally, D is defined as the span of independent vector fields X1,..., Xy or as the
kernel of independent 1-forms wy, ..., w,_g-

Theorem 32.1 (Frobenius’ Theorem). A distribution D C TM of rank k is integrable if
and only if for all X, Y € I'(D), [X,Y] € ['(D).

32.1. Proof of Frobenius’ Theorem. Suppose D C T'M is integrable. Then there exist
coordinates x1,...,%, so that D = Span{a%l,...,ax }. Hence X = Zle “i(x)a%i and

Y ZJ 1 ( )31: aa‘nd

ko k
0b; 0 Oda; O
X, Y] = e — b eI'(D
X, Y] ZZ(a dz; Oz Jax]ax,) (D).
i=1 j=1
Suppose for all X, Y € I'(D), [X,Y] € I'(D). We will find coordinates z,...,z, so that
D= Span{aiml, ceey 6‘9 }. Note that all our computations are local, so we restrict to M =R".
We will first do a shghtly easier situation.

Proposition 32.2. Let Xy, ..., X} be independent vector fields with D = Span{ X1, ..., X},
if [Xi, X;] =0 for all 1,7, then D is integrable.

Proof. We will deal with the case where dimD = 2 and M = R?. Suppose [X, Y] = 0
Using the fundamental theorem of ODE’s, we can write X = ;2. Then Y = Z

ox1 Z 81‘ ’

and [X, Y] = 0 implies that gz';"l =0, i.e., b; = b;(x2, z3) (there is no dependence on 951) Now

take Y =Y — i X = bQ(l'Q,.’L'g)a(Z + b3(x2,x3)8i3. If we project to R? with coordinates
T9, T3, then Y’ can be integrated to l"z , after a possible change of coordinates. Therefore,
D—Span{a—m,a—w,z}. O

Still assuming dimD = 2 and M = R? suppose [X,Y] = AX + BY. Without loss of
generality, X = 8% and Y = bQ% + 636%. Then,

Oby O Obs O 9 9 9
XY= — A Bb Bb
XY = 50 92, 00y~ A, T By, T By,
This implies: A =0, 322 Bb,, ab3 = Bbs. Hence,

by = f($2 3?3) ft:o B(t,z2,z3)dt b . g(x2 .173) ftt =rip tz‘g,l‘g)dt

Therefore, Y = e/ B(f (x4, 23) 22 30; T9(22, T3) 72 33 )» and by rescaling Y we get Y’ = f (o, x;;)aiw—i-

9(z2,73) 5. As before, now Y can be integrated to give 52

HW: Write out a general proof.
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32.2. Restatement in terms of forms. If D has rank k¥ on M of dimension n, then dually
there exist 1-forms wy, ..., w,_x such that D = {w; = -+ = w,_, = 0}.
Proposition 32.3. D is integrable if and only if dw; = Z?;f 0;; Aw;, where 0;; are 1-forms.
Proof. We use the identity
(6) dw(X,Y) = Xw(Y) = Yw(X) — w([X,Y]).
First suppose dw; = Z;:f 0i; A wj. Then for sections X,Y of D,
dwi(X,Y) = Xwi(V) = Ywi(X) —wi([X,Y]) = —wi([ X, Y]).

On the other hand, dw;(X,Y) = 0. Hence w;([X,Y]) = 0 for all ¢, which implies that [X, Y]
is a section of D.

Next, suppose D is integrable. Complete wy,...,w,_; into a basis by adding 7y, ..., 7.
Then

k n—k
dwz- = Zaijwi A Wy =+ Zsz]nz A Wwj + ZCijTh' A ;-
1<J i=1 j=1 1<J

Using Equation 6, for X,Y sections of D, dw;(X,Y) = 0. Taking Xi,...,X) dual to
M, ..., Mk, we find that dw;(X;, X;) = ¢rs (or —cs,). This proves that all the ¢;; are zero. O
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33. CONNECTIONS

33.1. Definition. Let E be a rank k£ vector bundle over M and let s be a section of E. s
may be local (i.e., in I'(E,U)) or global (i.e., in ['(E, M)). Also let X be a vector field. We
want to differentiate s at p € M in the direction of X (p) € T,M.

Definition 33.1. A connection or covariant derivative V assigns to every vector field X €
X(M) a differential operator Vx : I'(E) — ['(E) which satisfies:

1. Vxs is R-linear in s, i.e., Vx(c181 + c259) = 1Vxs1 + c2Vxsy if c1,¢0 € R.
2. Vxs is C®°(M)-linear in X, i.e., Vixigvs = fVxs+gVys.
3. (Leibniz rule) Vx(fs) = (X f)s+ fVxs.

Note: The definition of connection is tensorial in X (condition (2)), so (Vxs)(p) depends
on s near p but only on X at p.

33.2. Flat connections. We will now present the first example of a connection.

A vector bundle E of rank k is said to be trivial or parallelizable if there exist sections
S1,...,8; € ['(E, M) which span E, at every p € M. Although not every vector bundle
is parallelizable, locally every vector bundle is trivial since E|y ~ U X R*. We will now
construct connections on trivial bundles.

Write any section s as s = ) . fis;, where f; € C°°(M). Then define

Vxs=Y (Xfi)si=(Xfi)s1 4+ (Xfi)si € [(E).
This connection is usually called a flat connection.

HW: Check that this satisfies the axioms of a connection.

Note that Vxs; = 0 for all X € X(M). Sections s satisfying such a property are said to be
covariant constant.

Important remark: We can define a connection V for each trivialization E|y; = U x RF,
and there is nothing canonical about the connection V above. (It depends on the choice of
trivialization.) The space of connections is a large space (to be made more precise later).

Proposition 33.2. Any two covariant constant frames s1,..., s and 51, ..., S differ by an
element of Gl(k,R).

Proof. Let 51, ...,5; be another covariant constant frame, i.e., Vx3; = 0. Since we can write

5= fiisis
J
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with f;; € C*(M), we have:
0=Vxs = ZVX(fiij)
J

= Y [(Xfij)sj + f;;Vxs)]
J
= Y (Xfi)s;.
J
This proves that X f;; = 0 for all X and hence f;; = const. O
Therefore, a flat connection determines a covariant constant frame {si,...,sx} up to an

element of GI(k,R).
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34. MORE ON CONNECTIONS

34.1. Preliminaries on vector bundles. Let E be a vector bundle over M and ¢ : N — M
be a smooth map. Then we can define the pullback bundle ¢~ E over N as follows:

1. The fiber (¢ 'E), over n € N is the fiber Ey, over ¢(n) € M.
2. There exist sufficiently small open sets V' C N, so that ¢(V) C U and ¢y : E|ly =
U x R¥. The trivialization ¢—'E|y ~ V x R¥ is induced from this.

Next, if £ and F' are vector bundles over M, then we can define E & F' as follows:

1. The fiber (E & F),, over m € M is E,, ® F,.
2. Take U C M small enough so that E|y = U x R¥ and F|y & U x R Then we get
(E®@ F)ly ~U x (R"®R").
E ® F is defined similarly.
34.2. Existence. Let M be an n-dimensional manifold and E be a rank k vector bundle

over M. Recall a connection V is a way of differentiating sections of F in the direction of a
vector field X.

Vx:T'(E) - T(E),
Vx(fs)=(Xf)s+ fVxs.

Definition 34.1. A connection V on E is flat if there exists an open cover {U,} of M such
that E|y, admits a covariant constant frame sq,. .., S.

Proposition 34.2. Connections exist on any vector bundle E over M.

Note that if E is parallelizable we have already defined connections globally on E. The key
point is to pass from local to global when E is not globally trivial.

Let V' and V" be two connections on F|y. Let us see whether V' 4+ V" is a connection.
(Vi +VX)(fs) = Vix(fs)+Vx(fs)
= (Xf)s+ fVis+ (Xf)s+ fVis
= 2(Xf)s+ f(Vx +V%)s.

This is not quite a connection, since 2(X f) should be X f instead. However, a simple
modification presents itself:

Lemma 34.3. Suppose A\, s € C®(U) satisfies \y + Ao = 1. Then \V' + V" is a
connection on E|y.

Proof. HW. O
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Proof of Proposition 34.2. Let {U,} be an open cover such that E|y, is trivial. Let V* be
a flat connection on E|y, associated to some trivialization. Next let {f,} be a partition of
unity subordinate to {U,}. Then form ) f,V®. By the previous lemma, the Leibniz rule
is satisfied. O

Remark: Although each of the pieces V¢ is flat before patching, the patching destroys
flatness. There is no guarantee that (even locally) there exist sections si,..., s, which are
covariant constant. In fact, for a generic connection, there is not even a single covariant
constant section. One way of measuring the failure of the existence of covariant constant
sections is the curvature.

34.3. The space of connections. Given two connections V and V', we compute their
difference:
(Vx = Vi)(fs) = f(Vx — Vi)s.

Therefore, the difference of two connections is tensorial in s.

Locally, take sections si,..., s; (not necessarily covariant constant). Then (Vx — V)s; =
> 4ijsj, where (a;;) is a kX k matrix of functions. In other words, V—V' can be represented
by a matrix A = (A;;) of 1-forms A;;. Here a;; = A;;(X). Hence, locally it makes sense to
write:

V =d+ A
Here s = _ f;s; corresponds to (fi, ..., fx)T and more precisely

V(fiy-oos f)m = d(fryo )T+ A(frs - )"

Globally, V — V' is a section of T*M ® End(FE). Here End(E) = Hom(E, E). The space of
such sections is often written as Q'(End(F)) and a section is called a “l1-form with values
in End(E)”. This proves:

Proposition 34.4. The space of connections on E is an affine space Q' (End(E)).

Remark: We view Q! (End(F)) not as a vector space (which has a preferred zero element)
but rather as an affine space, which is the same thing except for the lack of a preferred zero
element.
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35. CURVATURE
Let E — M be a rank r vector bundle and V be a connection on F.

Definition 35.1. The curvature Ry (or simply R) of a connection V is given by:
R(X, Y) = [VX, VY] - V[X,Y] =VxVy - VyVyx — V[X,Y]a
or
R(X,Y)s = [Vx, Vy|s = Vix,y}s.
Proposition 35.2.
1. R(X,Y)s is tensorial (C*°(M)-bilinear) in X, Y, and s.
2. R(X,Y)=—-R(Y,X).

Proof. (2) is easy. For (1), we will prove that R(X,Y) is tensorial in s and leave the verifi-
cation for X and Y as HW.

R(X,Y)(fs) = (VxVy = VyVx)(fs) = Vixy(fs)
Vx((Yf)s+ fVys) = Vy((Xf)s+ fVxs) — (([X,Y]f)s + fVx,y5)
= fR(X,Y)s

O

Proposition 35.3. The flat connection Vxs = > (X fr)sx has R = 0. (Here s1,...,5,
trivializes E|ly and s =), frSk-)

Proof. We use X = 6%1" Y = %. Since R(X,Y) is tensorial, it suffices to compute it for

our ChOiceS.
8xi ’ 8x . Z oz, Oz ; Ox Oz

B 0 fr Of
() (2]

T P fi 0 fi
— S = 0.
(9.%,‘655']' &L'](%,

O

35.1. Interpretations of curvature. Think of V as d+ A in local coordinates if necessary.
We have a sequence:
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The first map is covariant differentiation (interpreted slightly differently). It turns out that
this sequence is not a chain complex, i.e., V o V # 0 usually. In fact the obstruction to this
being a chain complex is the curvature. Let us locally write:

VoVs=(d+A)(d+As=(d>+Ad+dA+ANA)s=(dA+ AN A)s.
Proposition 35.4. R=dA+ ANA, ie, R(X,Y)s=(dA+ANA)(X,Y)s.

Proof. 1t suffices to prove the proposition for X = 6%1’ Y = %, and s = si, where sq1,...,s,
is a local frame for E[y. A is an 7 x r matrix of 1-forms (Aj};dz,). (We will use the Einstein
summation convention — if the same index appears twice we assume it is summed over this

index.) Then we compute:

(7) VoV

a
ox; sz ow; nm* “mk

. Al o
sk =V o (smAl,) = sm% + s, AL Al

The computation of the rest is left for HW. O
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36. RIEMANNIAN METRICS, LEVI-CIVITA

36.1. Leftovers from last time. Last time we defined the curvature Ry of a connection
V. Locally, if V is given by d + A, then R = dA + A A A.

Theorem 36.1. V is a flat connection if and only if Ry = 0.

We have already shown the easy direction: If V is flat, then Ry = 0. The other direction
will be omitted for now (probably will be given next semester), since a “good proof” will
take us a bit far afield. Our only comment is that R =dA+ AANA=0or dA = AN A looks
a lot like the Frobenius integrability condition given in terms of forms....

Corollary 36.2. Let E be a rank r vector bundle over R and V be a connection on E. Then
V is flat.

Proof. This is because all 2-forms on R are zero. O

Remark: There are lots of connections which are not flat, since it is easy to find A so that
dA+ AN A#0. (The easiest case is when the rank of E is 1.)

36.2. Riemannian metrics.

Definition 36.3. A Riemannian metric {,) or g on M is a positive definite symmetric
bilinear form (or inner product) g(z) : T, M x T, M — R which is smooth in x € M.

Recall: A bilinear form (,) : V x V — R is positive definite if (v,v) > 0 and (v,v) = 0 iff
v=0. (,) is symmetric if (v, w) = (w,v).

Example: On R" take the standard Euclidean metric g (8%1-’ %) = 0;5. This is usually
written as g = ). dz; ® dr;. Any other Riemannian metric on R™ can be written as
g(x) = Zij gij(z)dz; @ dz;, where g;;(x) = gji(x).

Proposition 36.4. Every manifold M admits a Riemannian metric.

Proof. Let {U,} be an open cover so that U, ~ R". On each U,, we take the standard
Euclidean metric g,. Now let {f,} be a partition of unity subordinate to {U,}. Then
> o faga is the desired metric. O

The pair (M, g) of a manifold M together with a Riemannian metric g on M is called a
Riemannian manifold.

Let i : N — (M, g) be an embedding or immersion. Then the induced Riemannian metric
1*g on N is defined as follows:

"g(z) (v, w) = g(i(z)) (i, ixw),
where v, w € T, N. The injectivity of i, is required for the positive definiteness.
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36.3. Levi-Civita connections. Connections on T'M — M have extra structure because
X and Y are the same type of object in the expression VxY. In fact, we can define the
torsion:

To(X,Y) = VxV — Vy X — [X,Y].
Proposition 36.5. Ty (X,Y) is tensorial in X and Y.

This is an easy exercise and is left for HW. (Note that the notion of torsion does not depend
at all on the Riemannian metric.) We say V is torsion-free if Ty = 0.

Definition 36.6. V is compatible with g if X{Y, Z) = (VxY, Z)+(Y,VxZ). Here X,Y,Z €
X(M).

Theorem 36.7. Let (M, g) be a Riemannian manifold. Then there exists a unique torsion-
free connection which is compatible with g.

Proof. For any vector fields X,Y, Z, we have:

(8) X{Y,2) =(VxY,2) + (Y, VxZ),
(9) Y(X,Z)=(VvX,Z) +(X,VvZ),
(10) Z(X,Y) = (V;X,Y) + (X, V,Y).
Taking (8) + (9) — (10), we get:

(11)

2VxY, 2) + (Y, X], 2) + (X, 2], V) + ([\, 2], X) = X{V, 2) + Y(X, Z) - Z(X,Y),
and solving for (VxY, Z), we get:
(12)

(VxY,Z) = %(([X, Y], Z2) + (12, X],Y) +([2,Y], X) + X{V, 2) + Y(X, Z) — Z(X,Y)).

It is clear that the values of Equation 12 determine V. It remains to show that Equation 12
indeed defines a connection which satisfies the torsion-free and compatibility conditions. It
is clear that (VxY,Z) = (Vy X, Z) (torsion-free) and Equation 8 can be recovered from
Equation 12. The details are left for HW. O

The unique torsion-free, compatible connection is called the Levi-Civita connection for (M, g).
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37. SHAPE OPERATOR

Let ¥ be a surface embedded in the standard Euclidean (R3, g), and let g be the induced
metric on ¥. We will denote the Levi-Civita connection on (R?, g) by V and the Levi-Civita
connection on (X, g) by V.

Claim: V satisfies Vi% = 0.
Baci w]

The verification is easy. The claim implies that VxY" is simply £V (v(t))|;=0, where y(t) is
the arc representing X at a given point.

What we will do today is valid for hypersurfaces ((n—1)-dimensional submanifolds) M inside
(N, g) of dimension n, but we will restrict our attention to N = R? for simplicity.

Definition 37.1. Let X,Y be vector fields of R® which are tangent to ¥, and let N be the
unit normal vector field to ¥ inside R®. The shape operator is S(X,Y) = (VxY,N). In
other words, S(X,Y) is the projection in the N-direction of VxY .

Proposition 37.2. S(X,Y) is tensorial in X,Y and is symmetric.

Proof. S(X,Y) = S(Y, X) follows from the torsion-free condition and the fact that [X, Y] is
a tangent to 2. Now,

S(fX,Y) = (VyxY,N) = (fVxY,N) = fS(X,Y).

Tensoriality in Y is immediate from the symmetric condition. O

Remark: The shape operator is usually called the second fundamental form in classical
differential geometry and measures how curved a surface is. (In case you are curious what
the first fundamental form is, it’s simply the induced Riemannian metric.)

Also observe that S(X,Y) = (VxY,N) = (VxN,Y), by using the fact that (Y;N) = 0
(since N is a normal vector and Y is tangent to X).
37.1. Induced connection vs. Levi-Civita. If X, Y € X(M), we can write:
VxY =VhYy + S(X,Y)N,
where V%Y denotes the projection of VxY onto TX.
Proposition 37.3. V* =V, i.e., V" is the Levi-Civita connection of (%, g).

Proof. We have defined V4Y = VxY — S(X,Y)N. It is easy to verify that V" satisfies the
properties of a connection on X.
V" is torsion-free:

VY —VEX = (VxY =S(X,Y)N)— (VyX — S(Y, X)N)
VxY — VyX
= [X,Y]
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V" is compatible with g:
X(Y,Z) = (VxY,Z)+(Y,VxZ)
= (VXY 2) + (Y, V5 2),
since (N, X) = 0 for any vector field N on X. O

It seems miraculous that somehow the induced connection is a Levi-Civita connection. Clas-
sically, the induced covariant derivative came first, and Levi-Civita came as an abstraction
of the covariant derivative.
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38. GAUSS’ THEOREMA EGREGIUM

Let (¥, 7) be a 2-dimensional Riemannian submanifold of the standard Euclidean (R?, g).
The shape operator is a symmetric bilinear form:
ST, xT,%— R,
S(X,Y)=(VxY,N)
where N is a unit normal to X, X, Y are vectors in 7,3 which are extended to an arbitrary
vector field tangent to X, and V is the Levi-Civita connection for (R?, g). We can represent
S(z), x € X, as a matrix by taking an orthonormal basis {e;,es} at T2 and taking the
entries S(e;, e;). The trace of this matrix is called the mean curvature and the determinant
is called the scalar curvature or the Gaufiian curvature.

Denote by V the Levi-Civita connection for g and V the Levi-Civita connection for .
Also write R = Ry and R for Ry.

Theorem 38.1 (Gaufi’ Theorema Egregium). If X, Y are vector fields on ¥, then

What this says is that the right-hand side, an extrinsic quantity (depends on the embed-
ding into 3-space) is equal to te left-hand side, an intrinsic quantity (only depends on the
Riemannian metric g and not on the particular embedding into R?). Therefore, the scalar
curvature is expressed purely in terms of the curvature of the induced metric.

Proof. Let N be the unit normal vector to Y.
(VxVyY, X) = X(VyY,X)—(VyY,VxX)
= X(VyY -SY,Y)N,X)—(VyY - S(Y,Y)N,VxX — S(X, X)N)
= X(VyY, X)—(VyY,VxX)+ (S(X,X)N,VyY)
= (VxVyY, X))+ S(X,X)S(Y,Y).

Similarly, o
(VyVxY, X) = (VyVxY, X) - S(X,Y)?

(Vix, Y, X) = (Vix Y, X).
Finally,

(R(X,Y)Y,X) = (R(X,Y)Y,X)+S(X,X)S(Y,Y) — S(X,Y)?
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39. EULER CLASS

39.1. Compatible connections. Let E be a rank k vector bundle over a manifold M. A
fiber metric is a family of positive definite inner products (, ), : E; X E, — R which varies
smoothly with respect to x € M. A connection V is compatible with (,) if X (s1,s2) =
(Vxs1,82) + (s1, Vxsa), for all vector fields X and sy, sy € T'(F).

Remark: We can view the Riemannian metric ¢ on M as a fiber metric of TM — M.
When we think of 7'M as a vector bundle over M, we forget the fact that 7'M was derived
from M.

Let U C M be an open set over which F is trivializable, and let {s1, ss,...,Sx} be an
orthonormal frame of E over U. An orthonormal frame can be obtained by starting from
some frame of E over U and applying the Gram-Schmidt orthogonalization process.

With respect to {s1,..., sk} we can write V = d+ A, where A is a k x k matrix with entries
which are 1-forms on U.

Lemma 39.1. A is a skew-symmetric matriz, i.e., AT = —A.

Proof. If we write A = (A%.dxy,), then we have V

J

0
8—xk<8i’sj> = (V%si,sj) + (s4, V%Sj),

k
o §; = 8; A%,
By, J 1479

so we have
kE _ k
O

Lemma 39.2. Let {s!,...,s,.} be another orthonormal frame for E over U. If g : U —
SO(k) is the transformation sending coordinates with respect to s; to coordinates with respect
to s (by left multiplication), then the connection matriz transforms as: A — g~ 'dg+g~*Ag.

Proof.
g (d+Ayg = g ldg+ggd+g " Ag
= d+(¢7'dg+ g~ Ag).

You may want to check that if A is skew-symmetric and g is orthogonal, then ¢g~'dg+ g~ Ag
is also skew-symmetric. O

39.2. Rank 2 case. Suppose from now on that E has rank 2 over M of arbitrary dimension.
Then Ay (the connection matrix over U with respect to some trivialization) is given by

. 0 A21
Av = < Ay 0 )
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Then the curvature matrix Ry is

Ry = dAy + Ay A Ay = ( _gU “6”)

where wy is the 2-form dAs;.

Theorem 39.3. There is a global closed 2-form w which coincides with wy on each open set
U. Hence a connection V on E gives rise to an element [w] € H2p(M). This cohomology
class is independent of the choice of connection V compatible with {,), and hence is an
invariant of the vector bundle E. It is called the Euler class of E and is denoted e(E).

Proof. We need to show that on overlaps UNV, wy = wy. If g : UNV — SO(2) is the
orthogonal transformation taking from U to V, then we compute R with respect to the
connection 1-form ¢ 'dg + g *Apg. It is not hard to see that we still get

- 0 Wy
r=( 0, %)

Now, two different connections V and V' have difference in Q'(End(E)). (Moreover, they
have values in 2 x 2 skew-symmetric matrices.) It is not hard to see that if we pick out the
upper right hand corner of the matrix on each local coordinate chart U, then they coincide
and yield a global 1-form «, and the difference between Ry and Ry will be the exact form
da. O

Example: For the Levi-Civita connection V on a surface (2,g) < (R?, g), we have, locally,

_ 0 I{Hl/\ez
RU_(—K)Ql/\eQ 0 )’

where k is the scalar curvature, {e;, es} is an orthonormal frame, and {6y, 65} is dual to the
frame (called the dual coframe). (The fact that k is the scalar curvature is the content of
the Theorema Egregium!)

39.3. The Gauf3-Bonnet Theorem. Let (M, g) be an oriented Riemannian manifold of

dimension n. Then there exists a naturally defined volume form w which has the follow-

ing property: At x € M, let e;,...,e, be an oriented orthonormal basis for T, M. Then

w(z)(e1,...,e,) = 1. If we change the choice of orthonormal basis by multiplying by

A € SO(n), then we have a change of det(A), which is still 1. Therefore, w is well-defined.
For surfaces (X, g), we have an area form dA.

Theorem 39.4 (GauB-Bonnet). Let X be a compact submanifold of Euclidean space (R, g).
Then, for one of the orientations of %,

/E kdA = 27y(3).
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Here & is the scalar curvature, dA is the area form for § induced from (R?,g), and x(X) is
the Euler characteristic of 3.

The FEuler characteristic of a compact manifold M of dimension n is:

X(M) = (~1)" dim Hip(M).
i=0
Note that a compact surface ¥ (without boundary) of genus g has x(3) = 2 — 2g¢.

Proof. Notice that kdA is simply xf; A 6 above in the Example, and hence the Euler class
is e(TM) = [kdA]. In order to evaluate [ kdA, we therefore need to compute [ w for the
connection of our choice on T'Y. compatible with g, by using Theorem 39.3.

In what follows we will frequently identify SO(2) with the unit circle S* = {¢¥|6 € [0, 27}

in C via
cosf) —sinf i0
. e .
sinf cosf

We will do a sample computation in the case of the sphere S2. Let S? be the union of two
regions U = {|z] < 1} and V = {|w| < 1} identified via z = 1/w along their boundaries.
Here z,w are complex coordinates. (Note that U and V are not open sets, but it doesn’t
really matter....) If we trivialize T3 on U and V using the natural trivalization from T'C,
then the gluing map g : UNV — SO(2) is given by 0 +— ¢*?. If we set Ay to be identically

0 2d0
—2d0 0
via g). No matter how we extend Ay to the interior of U, we have the following by Stokes’

Theorem:
/ wy = / 2df = 41 = 27X (S?).
U au

Now let 3 be a compact surface of genus g (without boundary). Then we can remove g
annuli S' x [0, 1] from ¥ so that 3 becomes a disk X' with 2g — 1 holes. We make A flat on
the annuli, and see what this induces on ¥'. A computation similar to the one above gives
the desired formula. (Check this!!) O

zero, then Ay = ¢ 'dg + ¢ 'Ayg = ¢ 'dg = along OU (after transforming



