NOTES FOR MATH 535B: DIFFERENTIAL GEOMETRY

KO HONDA

1. LiE GROUPS

1.1. Basic definitions and examples. In this course, manifolds are assumed to be smooth,
unless indicated otherwise.

Definition 1.1. A Lie group is a manifold equipped with smooth maps u : G x G — G
(multiplication) and i : G — G (inverse) which give it the structure of a group.

Examples: Let M, (K) be the space of n x n matrices with entries in the base field K =R
or C.

n,K) ={A € M,(K)|det A # 0}.

V') = {linear isomorphisms V' — V'}, where V is a vector space.

n,K)={A¢e M,(K)|det A=1}.

O(n) = {A € M,(R)|AAT =id}. B

U(n) = {A € M,(C)|AA* =id}. Here the adjoint A* is (A)T (the conjugate transpose
of A).

SO(n) = O(n) N Sl(n,R).

7. SU(n) =U(n) N Sl(n, C).

GI(
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e

Example: U(n). If we write A = (a;;) and write out AA* = id, then Zj ;;0r; = Oik, and
hence the row vectors form a unitary basis for C".

Example: SU(2). Let us write out AA* = id. Here A = ( a b ) . Then

c d

. (aa+bb ac+bd\ (1 0
(1) A4 _(ca+d5 c6+d8)_<0 1>
In addition, we have ad — bc = 1. Exercise: SU(2) is diffeomorphic to S3.
Definition 1.2. A Lie subgroup of G is a subgroup H which is at the same time a subman-

ifold such that H is a Lie group with respect to this structure.

Remark: When dealing with Lie groups, the definition of submanifold is the image of an

injective immersion. (No properness required.)
1
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Definition 1.3. A Lie group homomorphism is a group homomorphism ¢ : G — H which
15 also a smooth map of the underlying manifolds.

1.2. Representations.

Definition 1.4. Let V' be a vector space over K = R or C, and let G be a Lie group. Then
a Lie group representation p : G — GIU(V) is a Lie group homomorphism, i.e., p(gh) =
p(g)p(h).

Remark: We will assume that p is a finite-dimensional representation, i.e., V is a finite-
dimensional vector space.

Definition 1.5. p is faithful if p is 1-1. p us almost faithful if p has 0-dimensional kernel.

Natural operations: Let p; : G — GI(V) and p, : G — GI(W) be two Lie group
representations.
Lp®p:G—=>GUV @ W), g [(v,w) = (pi(g)v, p2(g)w)]-
2.m®p: GGV RW), g~ [v@w— (p1(9)v) ® (p2(g)w)].
3. pi : G — GU(V™), g = pj, where ((pig)¢,v) = (¢, pi(97")v), v €V, ¢ € V*, and (,)
is the dual pairing between V and V*. Note the inverse is necessary to make it into a
homomorphism. (This is the same as Gl(n, K) = Gl(n,K), A— (A™)T))

Zen: We can pretend that every Lie group is a matrix group.

Theorem 1.6 (Ado-Iwasawa). Every connected Lie group has an almost faithful represen-
tation p : G — GUV) for some finite-dimensional vector space V.

Proof. Omitted. We remark that the almost faithful condition is necessary due to m; con-
siderations. O
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2. LIE GROUPS, DAY 2
2.1. Left-invariant vector fields and 1-forms. A Lie group G has a left action and a
right action onto itself: Let g € G. Then

L,:G—G,¢ — ygg.

Ry,:G—G,d— 4y

There is also conjugation:

R,Ly:G—G,¢d —gg'g .

Definition 2.1. A wvector field X (defined globally) on G is left-invariant if (L,).X = X for
allg € G. A 1-form w on G is left-invariant if Ljw = w for all g € G.

We denote the vector space of left-invariant vector fields by X and the vector space of
left-invariant 1-forms by Q..

Proposition 2.2. Xg ~ T.G as vector spaces. Hence dim X5 = dimG.

Proof. Let e € G be the identity. We propagate v € T.G using Ly, g € G. Recall that a
tangent vector v € T,G corresponds to an equivalence class of smooth arcs (1), t € (—¢,¢),
7(0) = e. Then (Lgy).v corresponds to gy(t). We therefore define the vector field:

Xo(g) = g7(1).
Then clearly ((Ly).X,)(9') = g(g 'g"v()) = ¢'7(t). Hence,
dimXg; =dim7,G = dimG.
O

Example: O(n). Then T;0(n) is the set of skew-symmetric matrices. We write y(t) €
T;O(n) as: y(t) = I + At, where we do all the computations modulo #?. Then:
I = =T+ A+ AT)
= I+ (A+ ANt

Hence A = —A”. Since dimO(n) = ™™= and dim of the set of skew-symmetric ma-

2
trices = "("2_1), T7O(n) is indeed the set of skew-symmetric matrices. Xom) = {Xa|A €

skew-symmetric matrices}, where X4(B) = BA, B € O(n).

Example: Si(n,R). Then T;Sl(n,R) = {traceless matrices}.
Similarly, we have:
Proposition 2.3. Qf ~ TrG.

Proof. Similar to the vector field case. Given w, € TG, propagate by setting w(g) = L7 we.
[l
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Example: G = R, the additive group of real numbers. Let x be the standard coordinate
for R, and a € R. If L, is (left-)translation by a, then w = dx is translation-invariant.

QL = R{dz}.

Example: G = R* = R — {0} viewed as a multiplicative group. We compute the left-
invariant 1-forms. If w = f(z)dz, then

L'w = f(az)d(az) = f(azx)adz = f(x)dz
implies f(az) = f(x)/a. For example, setting z = 1, we have f(a) = ¢/a. Therefore,
O = R{dz/x}.

Exercise: Compute the left-invariant 1-forms of GI(n, R) in terms of dx;;, where
air a2
Xij = a;;.
Y ( Qo1 Q22 ) Y

Definition 2.4. A Lie algebra g over K = R or C is a K-vector space together with a Lie
bracket [,]: g x g — g satisfying the following:

2.2. Lie algebras.

1. [,] is bilinear,
2. (skew-symmetric) [X, Y]+ [V, X] =0,
3. (Jacobi identity) [[X,Y], Z] + [[Y, Z], X]+ [[Z, X], Y] = 0.

Example: Let M be a manifold and X(M) be the C* vector fields on M. The Lie bracket
[X, Y] makes X(M) into an infinite-dimensional Lie algebra.
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3. LIE ALGEBRAS

3.1. Lie algebra g of a Lie group GG. We now define the Lie algebra g associated to a Lie
group G. As a vector space, g ~ T.G ~ Xg.

The Lie bracket on X is inherited from that of X(G) (Lie bracket of vector fields). We
need to verify the following:

Lemma 3.1. [|]: Xg X Xg — Xg, i.e., if X,Y € Xg, then [X,Y] € Xg.

Proof. We use the fact that ¢,[X,Y] = [¢. X, #.Y], where ¢ : M — M is a diffeomorphism
and X,Y € X(M). (Check this!)
Then, (Ly)«[X,Y] = [(Ly):X, (Ly).Y] = [X,Y]. O

Remark: We will often write g = Lie(G).

For matrix groups, i.e., G C GI(V), we have X¢ = {X4|A € T.G}, where X4(g) = gA.
Therefore,

(X4 Xp|([) = lim LT SATHB) = ([ +1B){I +54)

5,6—0 st

= AB — BA.

Examples: In the following, the Lie bracket is always [A, B] = AB — BA.

Lie group | Lie algebra
Gl(V) gl(V) = End(V)
O(n) | o(n)= skew-symmetric matrices
U(n) u(n)= skew-hermitian matrices

Sl(n,R) | sl(n,R)= traceless matrices

Definition 3.2. A Lie subalgebra § of a Lie algebra g is a vector subspace which is closed
under [,]. A Lie algebra homomorphism ¢ : g — b is a bracket-preserving linear map,
i.e., o([X,Y]) = [0(X), #(Y)]. A Lie algebra representation is a Lie algebra homomorphism

¢:g—gl(V).
Exercise: Given a Lie group homomorphism ¢ : G — H, there exists a corresponding Lie
algebra homomorphism ¢, : Lie(G) — Lie(H).

Proposition 3.3. Let G be a Lie group and g be its Lie algebra. Then there exists a 1-1
correspondence between connected Lie subgroups of G and Lie subalgebras of g.

Proof. Next time. O

3.2. Adjoint representation. We define a Lie group representation Ad : G — Gl(g),
where g = Lie(G), as follows: Think of g ~ T,G. Then, for a € G, Ad(a) = (Rq-1 0 L,). :
T7.G — T,G.
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We must show that Ad(a) is indeed in Gi(g). This is immediate, since Ad(a™?!) is the
inverse of Ad(a).

Remark: Here we are viewing g simply as a vector space.

Example: G = Gi(n,R). Ad(A) : T1G — TG is given by
I+tX —» AT +tX)A ' =T +tAX AT
by viewing X € T,G as an arc in G through I, or X — AXA™L.
We can differentiate any Lie group homomorphism at the identity to get a Lie algebra

homomorphism. Therefore, there is also an infinitesimal version of Ad: G — Gl(g). On the
Lie algebra level, we have:

ad : g — gl(g).
This is given by Ad.(e) : T.G — T.G.
Example: Let G be a matrix group. Then
Ad: G — Gl(g),
A [As AXATY.
If we write A = I +tY, then:
IT+tY = (I+tVXT +tY) P =[ +tY)X(I - tY) = X +[Y, X].
Taking derivatives, we get Y +— [Y, X]. Therefore,
ad : g — gl(g),
Y — [X = [Y, X].
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4. DAY 4: LIE SUBALGEBRAS AND LIE SUBGROUPS
Recall the Frobenius integrability theorem:

Theorem 4.1. Let M be an n-dimensional manifold and D C T'M be a rank k distribution,
i.e., a rank k subbundle of the tangent bundle. Then D is integrable (locally there exist
coordinates T+, ..., x, such that D = Span{a%l, el %}) if and only if for all X, Y € T'(D)
we have [X,Y] € ['(D). Here I'(D) is the set of smooth sections of D.

Remark: If D is trivial, i.e., is spanned by k£ nowhere vanishing sections X1, ..., Xy, then
it is sufficient to show that [X;, X;] € I'(D) for all 1 <4,j < k.

We’ll prove the following proposition from last time:

Proposition 4.2. Let G be a Lie group and g be its Lie algebra. Then there exists a 1-1
correspondence between connected Lie subgroups of G and Lie subalgebras of g.

Proof. Let h be a subalgebra of the Lie algebra g. We find the corresponding connected Lie
subgroup H in steps.

Step 1: View h as a subspace of g = T,G. Consider the distribution D on G given by
D, = (L,).h, where g € G. We claim that D is integrable. In fact, if we now view b as
a subspace of left-invariant vector fields on G, then § being a Lie subalgebra of g implies
that [X,Y] € b for all X,V € h. Since left-invariant vector fields of h span D and are
closed under bracketing, D is integrable. If dim h = k, then let H be the maximal connected
integral submanifold of D (naturally of dimension k) which passes through e.

Step 2: We now need to show H is closed under group operations. If a € H, then consider
a 1H. Since D is left-invariant by definition, a 1 H is also a connected integral submanifold
of D. Now, a~' H contains e, since a € H; by the maximality of H, we have a~'H C H. This
proves that H is closed under multiplication and inversion, hence is a subgroup of G. We
will omit the verification that the multiplication H x H — H is smooth. (See, for example,
Warner.)

Step 3: (Uniqueness) We will now show that there is a unique connected Lie subgroup
H C G which has Lie algebra h C g. Let H' be another connected Lie subgroup with Lie
algebra b, i.e., T,H' = b. Therefore, if i’ € H', then (Ly).h = Ty H'. It follows that H' is
also a connected integral submanifold of D through e of the same dimension. By maximality
of H, clearly H' C H. Now, it is clear H and H' overlap on a neighborhood of e, i.e., there
exists an open set U C HN H'.

Lemma 4.3. Let G° be a connected Lie group and U any open neighborhood of e € U. Then
any a € G° can be written as a product of elements of U.

Proof of Lemma. A connected manifold is path-connected. There exists a path v : [0,1] —
G° with 7(0) = e and y(1) = a. The open sets L,y (U), t € [0,1], cover v(t), and by
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compactness 3 a finite set tg = 0 <t; <--- <t, =1 for which ([t, ti11]) C Ly (U). Since
v¥(tiv1) = y(t;)ai, a; € U, this allows us to realize a as a product of elements in U. O

This proves that any element h € H can be written as a product of elements of H' D U,
hence H C H'. Thus H = H'. O
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5. DAY 5

5.1. Example. The 2-torus 72 = R?/Z” is a Lie group under addition (z1,y1) + (z2,%2) =
(x1 + 22, y1 + Yo2) mod Z?. T? is an abelian Lie group. Its Lie algebra * = R?. Since the
left-invariant vector fields on T2 are constant vectors (a,b), the Lie bracket is trivial, i.e.,
[X,Y] =0 for all X,Y € g. (Such a Lie algebra is called abelian.)

Now the subalgebras of g (besides 0) are the 1-dimensional Lie subalgebras h = R{(a, ) }.
They integrate to give H = R{(a,b)}/Z.

More generally, the n-dimensional torus 7" = R"/Z" is an abelian Lie group with abelian
Lie algebra t* = R" (with the trivial bracket). The Lie subalgebras are all vector subspaces
of " =R".

5.2. Exponential mapping. Let G be a Lie group and g its Lie algebra. Define the
exponential map

exp:g— G,
where v € g maps to the time 1 flow of the left-invariant vector field X, (corresponding to
v) starting at e.

Let us reinterpret it in light of the correspondence between Lie subalgebras and Lie sub-
groups. Take v € g nonzero. Then h = R{v} is a 1-dimensional Lie subalgebra of g, since
the bracket is trivially zero and the integrability condition is trivially met. To h we can asso-
ciate its Lie subgroup H, which is obtained by taking the connected 1-dimensional integral
submanifold of X, through e. Then:

exp:h=R — H C G.

This is a Lie group homomorphism. (There is no guarantee this map is injective: for example,
see the example above.)

For matriz groups, we investigate the time 1 flow v : [0,1] — G, 7(0) = e, where the
left-invariant vector field is generated by A € gl(n,R). The left-invariant vector field is
Xa(g) = gA. Therefore, we solve:

7'(t) = (1A,
and the solution is y(t) = eA* = I + At + A% | ﬂ +.... Hence ¥(1) = e#, and the term
Y 2 3! v
“exponential map” is apt for matrix groups!

Remark: Here left-invariant vector fields were used in the definition of the exponential map,
but the expression exp(A) = e# does not appear to depend on left vs. right .

5.3. From Lie algebras to Lie groups.

Theorem 5.1 (Ado). Every finite-dimensional Lie algebra g is isomorphic to a subalgebra
of gl(n,R).

Proof is beyond the scope of the course. However, this theorem implies the following:



10 KO HONDA

Theorem 5.2. For each finite-dimensional Lie algebra g there exists a Lie group G whose
Lie algebra s isomorphic to g.

Proof. We view g C gl(n,R). gl(n,R) is the Lie algebra of GIl(n,R), so g corresponds to
some connected Lie subgroup of Gi(n, R). O
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6. DAY 6: MAURER-CARTAN, ETC.

6.1. The Maurer-Cartan form. We first look at the following motivating example:

Motivating example: Let G = Gl(n,R). We write down all the left-invariant 1-forms
on G. Let z;; : Gl(n,R) — R which gives the ij-th entry of the matrix in GIl(n,R). Also
let = (z;;) be the function Gl(n,R) — M,(R). Taking hint from R* = GI(1,R) with
Q4 = R{%}, we guess w = z~'dz.

Check: Liz = az, Li(z™') = 27 'a™", and L:(dz) = d(ax) = adz, so L'w = z7'a 'adx =
zldz.

Let’s evaluate w(a)(v), where a € G and v € T,G. Then v = aA, where A € TG, i.e., A€ g.
Hence,

w(a)() = 27 (a)dz(a)(v) = a”'dz(ad) = a 'ad = A.
w is a 1-form with values in g, i.e., at every point p € G, it gives a map T,G — g. (Usual

forms give maps 7,G — R.)

Given a Lie group G, there is a canonical left-invariant 1-form w on G with values in g, called
the Maurer-Cartan form, which satisfies:

w(a)(v) = (Le-1)«v.
Here a € G and v € T,@.

Remark: We can think of the Maurer-Cartan form as all the left-invariant 1-forms put into
one package!

Proposition 6.1. The Maurer-Cartan form w satisfies dw + [w,w] = 0.
By |w,w] we mean [w,w](X,Y) = [w(X),w(Y)].
Proof. Let X,, X,, € X5. Then:

dw(Xy, Xo) = Xyw(Xy) — Xyw(Xy) — w([ Xy, Xu))
= —w([Xy, Xu))
= ~w(Xpw)
= —[v,v]
= —[w(X,),w(Xy)]

HW: Check that dw + [w,w] = 0 for Gl(n,R).



12 KO HONDA

6.2. Structure equations. Let X;,..., X, be a basis for g and 0, ..., 6" be the dual basis
for g*, i.e., 6°(X;) = d;;. With respect to this basis, we can write w(X) = (8*(X), ..., 0"(X)).

If [X;, X;] =32, ¢ X (cf; constants), then:
d0*(X;, Xi) = —0"([X;, X)) = —0"(c}. X)) = —cy.
Therefore:
Proposition 6.2. df' = -3, ;.67 AO".
These are called the structure equations of the Lie algebra.

Remark: Define the left-invariant k-forms by Q’é Then the previous proposition implies
that if w € Qf, then dw € Q%.
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7. Day 7

7.1. Lie algebra cohomology. Let G be a Lie group and g = Lie(G). Also let QF be the
left-invariant k-forms on G.

Lemma 7.1. Q = AFg*.

Proof. Let w € QF. Consider w(e), the left-invariant k-form evaluated at e € G. Let w' be
the left-invariant k-form obtained by taking w'(a) = (L,-1)*w(e). We know that w — w' is
zero at e and is left-invariant; hence w’ = w. However, by construction, w' € A*g*. O

Consider the algebra Qf = @Ok of left-invariant forms on G. Then we have a chain
complex:

050230, 502508 5.0

or
0—-R—g —Ng = Ng"— - —0.

Verify the following:
1. d maps from Afg* to APt1g*.
2. d? = 0 is equivalent to the Jacobi identity.

H*(g) is called the Lie algebra cohomology.

Examples:
1. H%(g) =R.
2. H'(g) = (g/lg,9])*- Here [g,g] = {[X,Y]|X,Y € g}.

Question: What do the higher cohomology groups mean?
Example: so0(3), with basis e}, e9, e3. The Lie brackets are:
[e1, ea] = e3, [e2, e3] = €1, [e3, e1] = ea.
We compute its Lie algebra cohomology.
0-R—-R*->R*->R—0.

Since df* = —%cé-kej A 0% we have
dot = —6* A 63,
do* = —0> A 6,
de® = —0" A 6%

It is not difficult to see that:
H(g) =R,
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H'(g) =0,
H*(g) =0
H(g) =R.

7.2. Representation theory basics. For simplicity, in this course we only consider repre-
sentations of complex Lie algebras on complex vector spaces. That is to say, p: g — gl(V) is
a complex linear map (g and V' are complex vector spaces). For example, instead of sl(n, R),
we take the complexification sl(n, C) = sl(n,R) @R C.

Definition 7.2. Let V' be a representation of g. A subrepresentation W C V' is a (complex)
vector subspace W of V' which is invariant under g. A representation p : g — gl(V) is
irreducible if V' has no nontrivial subrepresentations.

W C V being a subrepresentation of g means the following: we can take a basis {v1, ..., v,
Uks1,---,Un} for V, where {v1,...,vx} is a basis for W. Then with respect to this basis,
p(X), X € g, acts via multiplication by

*x %
0 =

on the left. Here the upper left  is a £ x k matrix and the lower right * is an (n—k) x (n — k)
matrix.

Complete reducibility: Let V' be a representation of a semisimple Lie algebra g and
W C V a subrepresentation. Then there exists a subrepresentation W' of g such that
V=WeW.

Complete reducibility means being able to write p(X) as:

(6 2)

Therefore, for semisimple Lie algebras it suffices to study irreducible representations. We
will not define “semisimple” because it’s not relevant in what we do. Instead, we will treat
a particular example in detail: s((2, C).



NOTES FOR MATH 535B: DIFFERENTIAL GEOMETRY 15

8. EXTENDED EXAMPLE: REPRESENTATIONS OF sl(2, C)

Today’s goal is to work out the irreducible representations of g = s[(2, C). Take a basis:

a3 5) 2= (o) - (1 0)

Then we have the equations:

(2) [H,E| = 2E,[H,F| = —2F,[E,F] = H.

8.1. The adjoint representation. We first study the adjoint representation ad : g —
gl(g). ad : X — ad(X), where ad(X) : Y — [X,Y].

HW: Verify that ad is a Lie algebra representation, i.e., ad([X,Y]) = [ad(X), ad(Y")]. Hint:
this follows from the Jacobi identity.

In the expression gl(g), it’s best to view V =gas V o @ V@ Vs, where V.o = CF, V; = CH,
and V, = CE. The structure equations imply that all the V; are eigenspaces of ad(H), since
ad(H)(E) =[H,E]=2FE, ad(H)(H) = [H,H] =0, and ad(H)(F) = [H, F] = —2F.

Also note that ad(F) isomorphically maps V_y = Vi, Vy — Va. Similarly, ad(F) isomorphi-
cally maps Vo =V, Vo = Voo,

Lemma 8.1. The adjoint representation is irreducible.

Proof. Let v € V. Then we can write v = aF'+bH +cE. If a # 0, then ad(E)(v) = aH —2bE
and (ad(E))*(v) = —2aFE. These three vectors clearly span all of V. If @ = 0, then we need
to use ad(F)’s as well, but the proof is similar. O

8.2. General case. Let p:sl((2,C) — gl(V) be a (finite-dimensional) irreducible represen-
tation. We will extensively use Equation 2. If v € V and X € g, then we will write Xv to
mean p(X)(v).

Let v € V be an eigenvector of H with eigenvalue A. (Every endomorphism of V' has at
least one eigenvector.)

Lemma 8.2. If Hv = A\v, then H(Ev) = (A + 2)(Ev) and H(Fv) = (A — 2)(Fv), i.e., Ev
and Fv are also eigenvectors of H with eigenvalues A + 2 and A — 2, respectively.

Proof. By Equation 2,
H(Ev) = EHv+2Ev = E(\) + 2Ev = (A + 2)(Ev).

The expression for H(Fv) is similar. O
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Let v be the eigenvector of H with the largest eigenvalue. Such an eigenvector v is
called the highest weight vector. Then Ev = 0, since Ew, if nonzero, would have a larger
eigenvalue. Starting with Vj, = Cuv, we take Vy_o; = CF'. (Fiv has eigenvalue A — 2i.)
Note that V3 gr = 0 for some k. Let W = @F_ [V o;.

Lemma 8.3. W s a subrepresentation of V.

Proof. 1t suffices to show that £ : W — W since F' and H clearly map W to itself. We
have the following:
Ev =0,
E(Fv) = FEv+ Hv = v,
E(F*v) = FE(Fv)+ H(Fv) = F(Ov) + (A —2)Fv = [(\) + (A — 2)] Fw.

In general,

(3) E(Fv)={AN)+A=2)+-+A=20—-1))} Flv=\—i+1)iF .
O

Since V isirreducible, it follows that V = W = EBf;OIV)\_Zi. Finally, it remains to determine
the possible A:

Lemma 8.4. IfdimV =k, then A=k — 1.
Proof. Using Equation 3, we have, for i = k:
0=E(FFv) = (A —k+ 1)kF" .
Since we know F*~1v # 0 but F*¥v = 0, we have A\ = k — 1. O

Thus, we have the following theorem:

Theorem 8.5. The irreducible representations of sl(2,R) are parametrized by a positive
integer k € Z. For each k, the representation V. ~ CF¥ decomposes into 1-dimensional
ergenspaces Vy of H, andV =Vi_, & V3 1, B --- B Vi3 Vi_1.

Exercise: Decompose the standard representation p : s[(2,C) — gl(2,C) in terms of irre-
ducible representations. Do the same for p ® p.
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9. FIBER BUNDLES

9.1. Locally trivial fiber bundles.

Definition 9.1. A locally trivial fiber bundle is a quadruple (E, B, F, 7 : E — B), where:

1. the total space E, the base B, and the fiber E are manifolds,
2. there is an open cover {U,} of B and diffeomorphisms ¢o : m 1(Uy) = U, x F such
that ¢, sends n=(p) ~ {p} x F for p € U,.

The last condition is the same as the commutativity of the following diagram:

7N Uy) —22 Uy x F

WJV 7T1J(
Us 4y U,
where 7 : U, X F' — U, is the first projection.

Examples:

1. (Product or trivial bundle) Consider E = B x F' = B, where 7 (b, f) = b.

Definition 9.2. A locally trivial fiber bundle E = B is trivial if there is a commutative
diagram
E —» BxF

B, B

2. (Mébius band) Take E = ([0,1] x [0, 1])/ ~, where s, ¢ are coordinates of [0, 1] x [0, 1] and
(0,t) ~ (1,1 —t). We take the projection 7 : E — [0,1]/(0 ~ 1), which maps (s,t) — s.

3. (Vector bundle) When F, 7~!(z), V& € B = M, are vector spaces and each identification
b : ™ (x) ~ {z} X F is a vector space isomorphism. Examples of vector bundles are:

TM — M, T*M — M, N*T*M — M.
Their fibers are F' ~ T, M, T:M, N*T M, respectively.

4. (Frame bundle) Let B = M, and Fr,(M), z € M, be the set of ordered bases (v, ..., vg)
of T,M. (Here dim M = k.) Define the frame bundle Fr(M) to be Ugep Fry(M), and let
7 : Fr(M) — M be the natural projection.

We topologize F'r(M) as follows: Locally on U C M, we take smooth sections vy, ..., v
over U which form a basis pointwise. If (w;(x), ..., wg(x)) is another ordered basis for T, M,
then we can write (wq(z), ..., wg(z)) = (v1(2),...,vx(x))A, where A € Gl(k,R). This allows
us to identify:

7Y U) S U x GI(k,R),
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by sending
(z,wi(z),...,we(z)) — (x, A).

5. (Orthonormal frame bundle) Fix a Riemannian metric g on M. This is a positive definite,
symmetric bilinear form g : T,M x T, M — R which varies smoothly with respect to . We
can define OFr (M) to be the set of orthonormal bases (vq,...,vx) of T,M with respect to
this g. (Orthonormal bases exist by the Gram-Schmidt.)
Locally, we can identify:
7 HU) ~ U x O(n).
This is because (wq,...,wy) = (v1,...,vk)A, where A € O(n). (Check this!)

6. (Pullbacks)

Definition 9.3. Let E = B be a locally trivial fiber bundle and B’ 1y B be a smooth
map. Then the pullback bundle is given by: f~'(E) = {(x,¢e)|f(z) = m(e)} C B' x E. By
definition, we have a commutative diagram

f7U(E) — E
B 5B
It is easy to verify that f~'(E) is a locally trivial fiber bundle. (HW)

9.2. Action of a Lie group on a manifold. A Lie group G acts on M from the right
if there exists a smooth map M x G — M (written (x,g) — zg), such that ze = z and
z(gh) = (zg)h. We also write Ry : M — M, x — xg.

Remark: R, is a diffeomorphism, since there exists an inverse IZg-1.
Remark: You can also similarly define the action of a Lie group acting on M from the left.

Example: Let G = O(n), M = R". Then R"xO(n) — R"isgiven by (z = (z1,...,2,), A) —
TA.
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10. Day 10

10.1. More on Lie group actions. Recall Lie group G acts on M from the right if there
exists a smooth map M xG — M (written (z, g) — zg), such that xze = x and z(gh) = (zg)h.

A Lie group action is free if zg = x for some z implies that ¢ = e. (This also says that
Tg) # Tgo unless g = gs.)

Given a Lie group action M x G — M, we can take its quotient M/G = M/ ~, where
x ~ xg for all x € M and g € G. M/G is naturally a topological space with the quotient
topology.

Remark: M/G is usually not a manifold.

Example: G = Gi(n,R), M = R". M x G — M given by (z,A) — zA. Then M/G
has two elements a, b corresponding to the two orbits or Gl(n,R): R" — {0} and {0}. The
topology of M/G is {0, {a},{a,b}} and is not Hausdorff.

HW: Describe G/M if G = O(n) and M = R" as above.

Definition 10.1. Let M and N be two manifolds with a G-action. Then the map ¢ : M —
M is G-equivariant if ¢(zg) = ¢(x)g for all x € M.

10.2. Principal G-bundles.

Definition 10.2. Let G be a Lie group. A (right) principal G-bundle is a locally trivial fiber
bundle m : P — M, where:

1. G acts on P freely on the right (p: P x G — P).
2. M =P/G and m: P — P/G is the natural projection.

Note: The fiber is diffeomorphic to G.

Remark: In this business, it pays to pay attention to right vs. left.

1. The Maurer-Cartan form was left-invariant.
2. Principal G-bundles are acted from the right.

Examples: 1. (Hopf map) Consider S"*! = {|z[? + --- + |z,|> = 1} € C""' with
coordinates zg, . .., 2,. Then S acts on C"*:

C"*l x St = CM,

0

((20,-- > 2n), €7) = (20", ..., 2,").

Now restrict to S?"*!, i.e., consider

SQn-I—l % Sl — 52n+1.



20 KO HONDA

Then the action is free. It is easy to see that S***1/S! ~ CP". Therefore, we have the
principal S'-bundle
Sl - SQn—I—l

I
CP”"

Definition 10.3. A product principal G-bundle M x G = M is given by the first projection
and the following action of G on M: (x,9)g — (x,9¢"). A G-bundle P = M is a trivial
principal G-bundle if there erists an equivariant diffeomorphism ¢ : P = M x G (i.e.,

¢(pg) = ¢(p)g) such that
P, MxaG

ﬁl ml
M, N

commutes.

Examples: 2. The frame bundle F'r(M) — M is a principal Gl(n, R)-bundle, if n = dim M.
The action Fr(M) x Gl(n,R) — Fr(M) is given by:

((z, (v1y--y0n)), A) = (z, (v1, ..., v,)A).
Here x € M and vy, ..., v, is a basis for T, M. (Verify that the action is free.)

3. Similarly, the orthonormal frame bundle OFr (M) — M is a principal O(n)-bundle. (The
action is free since it’s already free for Gi(n,R).)
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11. Day 11

11.1. More on principal bundles.

Definition 11.1. A bundle map between two principal G-bundles P = M and P’ M
consists of a G-equivariant map F : P — P’ and a map f : M — M' such that the following
diagram commutes:

R

ML
Definition 11.2. Two principal G-bundles P = M and P’ ™ M are isomorphic if there is
a G-equivariant diffeomorphism F : P — P’ satisfying:

j——

M s M

Lemma 11.3. A principal G-bundle P = M is trivial if and only if there exists a global
cross section.

Recall: A section s is a map M — P which satisfies m o s = id.

Proof. If P 5 M is trivial, then there exists an equivariant diffeomorphism ¢ : P = M x G
and amap M xG 5 M such that 7,0¢ = . One possible global section is s : = — ¢ (z, e).

On the other hand, if there exists a global cross section s : M — P, then we map
PS5 M xG, s(z)g (z,9). O

Remark: This is in sharp contrast with vector bundles. Vector bundles always have at least
one section — the zero section.

11.2. Cocycle description.

Lemma 11.4. Let P 5 M be a principal G-bundle. Then there exists an open cover {U,}
of M and G-equivariant trivializations ¢o : 7 1(U,) = U, X G such that ¢, maps © *(z),
x € M, diffeomorphically onto {z} X G.

Remark: The important thing is that we now need to keep track of the group action as
well as the local trivializations.

Proof. We have an identification 771 (U,) ~ U, X G since P is a locally trivial fiber bundle.
Choose any section of 7~ (U,) over U,, i.e., amap s : U, — 7 *(U,) such that mos = id. We
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then construct a G-equivariant map ¢, : 7~ 1(U,) — U, x G by setting ¢, (s(x)g) = (z,9).
U

Suppose now we want to reconstruct the G-bundle P from the local trivializations ¢, by
patching. This means that on the overlaps U, N Ug we have G-equivariant maps

b0 (05) ' : (UaNUg) x G — (Uy NUg) X G.
The G-equivariance implies that we can represent this function by
9ap : Ua NUz = G,
i.e., ¢o 0 (dp) " (z,9) = (7, gup(2)g). The gup satisfy the cocycle conditions
Yoo = 1,

Gop © 9py = Gary-
The bundle can be reassembled by taking {g,s} and patching using these transition functions.
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12. CLASSIFICATION OF PRINCIPAL (G-BUNDLES 1

For more information, see Fibre Bundles by Husemoller or the appendix to Spin Geometry
by Lawson and Michelsohn.

12.1. Preliminaries.

Proposition 12.1. Let M be a manifold and P be a principal G-bundle over M x [0, 1].
Then P is isomorphic to a principal G-bundle which is a product in the I = [0, 1]-direction,
namely to: P' x I N x I, where P' 5 M is a principal G-bundle.

Proof. Note that if a G-bundle is trivial on U, then it is trivial on any subset U’ C U. By
applying the local triviality of the G-bundle, as well as the compactness of the interval [0, 1]
we get the following: For any x € M, there exists a small enough open set U, C M containing
zand tg =0 < t; <ty <--- <t =1such that P is trivial on each U, X (t; — &,t;11 + €),
where € > 0 is small. (Strictly speaking, it’s (t; —¢, t;+1+¢)N[0, 1] instead of (¢;—¢,t;11+¢).)

We will show that P|y,«jo,1] (the restriction of P to U, x [0, 1]) is trivial. For this we will
do the simple example when Py = P|y,—y,[o,1/2) and Py = Ply,—p, x[1/2,1] are trivial. Then
there are sections s; : Uy — P; and s : Uy — P,. Along U; NUs = U, x {1/2}, the sections
differ by a function gy,u, : U — G, i.e., si1(a,1/2) = gy,u, (@) - s2(a,1/2), a € U,. In view of
this, we can simply modify s, to sh(a,z) = gy,u, (a)se(a,z). This gets us the global section
for P|y,x[0,1- This proves the triviality of P|y,x[o1]-

Let {U,} be a open cover of M so that each P|y, ;s is trivial. We will now find a G-
equivariant isomorphism F : f~'P = P compatible with f : M x I — M x I which sends
(x,t) = (z,0). This is done in stages. We explain the first step. Let V, C U, be a slightly
smaller open set. Then there exists a smooth function ¢, : M — R which is 1 outside of U,, 0
on V,, and is always nonnegative. Define f, : M xI — M x I by sending (z,t) — (z, ¢o(2)t).
We show how to obtain a compatible G-equivariant isomorphism F, : f;'P = P. If
Gu : Plu,xr = (Us X I) X G is a G-equivariant (trivializing) isomorphism, then F, is
the inverse of G o (fo X id) 0o G, on U, x I and is the identity elsewhere.

Since f, P is still trivial on all the U, x I, we can inductively apply f, for all the U,,
and obtain the desired map F'. Il

Corollary 12.2. Let P 5 M be a principal G-bundle, N be a manifold, and ¢y, ¢1 : N — M
be homotopic maps, i.e., there exists a smooth map ® : N x [0,1] = M such that ®(z,i) =
¢i(x), i =0,1. Then ¢5*(P) is isomorphic to ¢7"'(P).

Hence homotopic maps induce isomorphic bundles after pullback.

HW: Prove that a principal G-bundle on R" (or on some contractible space) is trivial.

12.2. Cech cohomology group H'(M;@). Let M be a manifold. We say that an open
cover {U,} of an n-dimensional manifold M is a good cover if the following hold:
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1. U, ~ R".

2. Uy, N---NU,y, ~R" or 0.

3. If k >n+1, then Uy, N---NU,, =0 (if the open sets are distinct).
We will assume the following somewhat reasonable proposition.

Proposition 12.3. A good cover exists on any manifold M.

In this section we will assume our open covers are good covers.

Last time we showed that a 1-cocycle {gqp : Uy N Ug — G} satisfying
Yoo = 1,

GopB © 9By = Gaxy
gave rise to a principal G-bundle P.

Lemma 12.4. Two G-bundles constructed from {gap} and {g,z} are equivalent if and only
iof there exist maps g, : Uy — G such that

(4) 9os = Yo'~ Gap - 9p-

Proof. We will prove one direction. Let P and P’ be principal G-bundles constructed from
{905} and {g,5}, respectively, and suppose they are isomorphic. Then on U, the isomorphism
restricts to a G-equivariant map U, X G — U, X G. This is encoded by the map g, : U, — G.
Equation 4 is a result of looking at the following diagram:

id,g!,
UanUs) x G 200 1, AUy x G

o aan)|

(Ua NUs) x G 229 (AU, % G
0

Define the Cech cohomology H'(M;G) to be the collection of {gas : UsNUz — G} satisfying
the cocycle condition, modulo the equivalence relation given by Equation 4. More or less by
definition, the set of isomorphisms classes of principal G-bundles is in 1-1 correspondence
with H'(M;G). (Note that in the usual definition of Cech cohomology, we need to take
refinements of the open cover {U,} and use a direct limit construction. However, if we
choose a good cover, taking direct limits is not necessary.)
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13. CLASSIFICATION OF PRINCIPAL (G-BUNDLES II

The references to today’s lecture are again Fibre Bundles by Husemoller or the appendix
to Spin Geometry by Lawson and Michelsohn.

Much of this discussion will be informal, i.e., our standard of rigor is relaxed even more than
usual. Most of what we discuss more properly belongs to the realm of algebraic topology
and is done in the category of topological spaces.

13.1. Homotopy. Our category is the category of topological spaces and continuous maps.

Definition 13.1. Two maps fy, f1 : X — Y are homotopic if there exists a continuous map
F : X x[0,1] = Y such that fi(z) = F(xz,i), i = 0,1. We denote by [X,Y] the set of
equivalence classes of (continuous) maps from X to'Y , where fo ~ f1 iff they are homotopic.
Sometimes our topological spaces X have base points x € X, and are called pointed spaces
(X,x). Maps, homotopies, etc. between pointed spaces (X, x), (Y,y) are assumed to send x
to y. Then the i-th homotopy group (i > 0) m;(X,z) is defined to be [(S*, pt), (X, z)]. The
0-th homotopy group is the set of connected components of X.

Definition 13.2. A topological space X is contractible if X is homotopy equivalent to a

point. (In this case this means that there exists a homotopy F : X x I — X, where f;(z) el

F(z,t), fo=1d, and fi maps X to a point in X.)

Remark: For the spaces we are interested in, the contractibility of X is equivalent to the
vanishing of all the homotopy groups m;(X, z) for all 7 > 0.

13.2. Classifying spaces.

Universal principal G-bundle: There exists a “universal” principal G-bundle EG = BG,
with the following properties:

1. Every principal G-bundle is pulled back from the universal principal G-bundle, i.e.,

given a principal G-bundle P — M, there exists a map M EN BG such that P is
isomorphic to f1EQG.

2. EG is contractible,

3. If we let Isom(M,G) be the set of isomorphism classes of principal G-bundles, and
[M, BG| be the set of homotopy classes of maps from M to BG, then

Isom(M,QG) ~ [M, BG].

We say that the isomorphism classes of principal G-bundles are classified by homotopy classes
of maps from M to BG and that BG is a classifying space for G.

Remark: FG and BG are infinite-dimensional topological spaces (and are certainly not
(finite-dimensional) manifolds).

The classification of principal G-bundles follows from the following two theorems:
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Theorem 13.3. Let E — B be a principal G-bundle with E contractible. Then B is a
classifying space for G.

Proof. We use the following fact, which we will come back to when we do Morse theory:

Fact: Let e; be an i-cell (i.e., an i-dimensional disk). Then a manifold M is obtained by
starting with a disjoint union of O-cells and inductively attaching 1-cells, then attaching
2-cells, and so on.

Let P be a principal G-bundle over M. Suppose we have constructed compatible maps
f : M' — BG and G-equivariant F : P|yy — f~'EG, where M’ C M. We will show
how to extend F' to P|ppue;, where e; is attached onto M' by sending de; — M'. We
know P|e, is trivial, so there is a section s : e; — P|.,. Compose s : de; — P|,, with
P s, L f'EG — EG. Now, 8¢; = St so by mi_1(EG) = 0, we have an extension
of the map de; — EG to e; — EG. This gives us an extension f : M' Ue; - BG and
F : Plarge, — fTLEG is immediate. O
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14. DAy 14
14.1. More on classifying spaces.

Theorem 14.1. For any connected Lie group G, there exists a principal G-bundle E — B
with contactible total space E.

Proof. (Due to Milnor) We will construct a contractible topological space E, together with
a free G-action on E. First define the join X % Y of two topological spaces X and Y as
(X xY x[0,1])/ ~, where (z,y,0) ~ (z,9',0) and (z,y,1) ~ (2',y,1) for all z,2" € X and
v,y € Y. In other words, we squash X x Y x {0} to X x {pt} x {0} and X x Y x {1} to
{pt} xY x {1}.

Fact: If mo(X) =---=m(X) =0and mp(Y) =0, then my(X YY) =+ - =m1 (X *Y) =0.

We do a sequence of joins: G, G *G, G *G %G, and obtain an infinite join construction £ =
GxG+GxGx. ... Here we are thinking of ;G as being homeomorphic to (x;G) x G x {0}/ ~
inside *;11G = (%;G) * G. Using the Fact, we see that E is contractible. It is not hard to see
that G acts freely on E. O

Example: When G = S!, BG = CP®, EG = S' % S' « S' % ... is the unit sphere S* in
C*. We can see that S' x S' = §% and in general S 1 x S1 = §?"*1 To see this, we write
S2nt1 as the unit sphere (2% + -- - + 23,) + (23,1 + 23,,,) = 1. We split S>"*! into three
pieces:

Lat+--- 423 =a,23,,+2}, ,=1—0a,a<ec.

2. a:f—i—-l—x%n:a, x%n+1+x%n+2:1_a’a a>l-e.

3oaf+ 43, =a,25,,,+25, ,=1—ag,e<a<l—c
Here ¢ is a small positive number. (1) corresponds to (S?**! x S' x [1 —¢,1])/ ~, (2)
corresponds to (S?"*! x St x [0,€])/ ~, and (3) corresponds to S?**1 x St x (g,1 —¢).

The Hopf fibration gives the action of S* on S?"+!  and the quotient is CP". (Remark:
S™ satisfies m;(S™) = 0 for i < n.)

14.2. Reduction of structure group. Write P(M,G) for the principal G-bundle over M
with total space P. Then a bundle map P'(M',G') — P(M,QG) consists of the following
data: A group homomorphism ¢ : G' — G, a (G',G)-equivariant map F' : P’ — P (a
(G', G)-equivariant map P' — P satisfies F'(p'g’) = F(p')¢(¢')), and a map f : M' — M
which satisfy commutative diagram:

p £, p
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Definition 14.2. Let P', P be principal bundles over M with structure groups G', G, re-
spectively. If G' is a subgroup of G and there exists a bundle map P'(M,G') — P(M,QG),
then F : P' — P is said to be a reduction of the structure group from G to G'.

Let us interpret the notion of reduction from the Cech perspective. Let P(M,G) be
a principal G-bundle. Then there exists an open cover {U,} over M and bundle maps
ba : Plu, = Uy X G. On the overlap U, N Ug, there exist maps

P|UaﬂUﬁ ¢—a? (Ua N Ug) X G,

¢
Ply.v, = (Ua NUs) x G.
Then ¢g0 ¢, (x,e) = (2, gpa()), where ggo : Uy NUs — G. This {gas} satisfies the cocycle
condition as above.

Proposition 14.3. Let H C G be a Lie subgroup. Then there exists a reduction of the
structure group of P(M,G) to H if and only if P(M,G) admits a 1-cocycle {gop} where
each gop 1 Uy NUg — G factors through H, i.e., gop5 : Uy NUg — H C G.
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15. DAY 15
15.1. Examples of reduction of structure group:

1. Consider Fr(M) — M with structure group G = Gl(n,R), where n = dim M. By
choosing a Riemannian metric on M, we can reduce the structure group from G = Gi(n,R)
to G' = O(n). The reduction yields the orthonormal frame bundle OFr(M) — M. Recall
that every manifold M admits a Riemannian metric, so the reduction from GI(n,R) to O(n)
is always automatic. Conversely, a reduction

P’ —— Fr(M)

l J

M M
of the structure group to O(n) specifies a Riemannian metric. (HW!)

2. Reduction of Fr(M) — M with structure group Gl(n,R) to GI*(n,R). Reducibility is
equivalent to the orientability of M, and a reduction corresponds to a choice of orientation.
If M is orientable, we can reduce from Gi(n,R) to SO(n).

3. Reduction from Gi(n,R) to other Lie groups:

1. GI(2n,R) D Gl(n,C) <> almost complex structure.
2. GI(2n,R) D U(n) +» Hermitian structure (choice of Hermitian metric).
3. GI(2n,R) D Sp(n,R) <> almost symplectic structure.

Here,
Gl(n,C) = {A € GI(2n,R)|AJ = J A},

and

0 I
where J = (—I 0).

15.2. Associated vector bundles. Consider a principal G-bundle P(M,G) and a repre-
sentation p : G — GI(V). Then we can construct a vector bundle P x,V associated to P,
as follows:

Sp(2n,R) = {A € GI(2n,R)|AJAT = J},

Px,,VdéfoV/N,

where (pg,v) ~ (p, p(g)v). (In other words, g jumps from the left-hand side to the right-hand
side.)
Locally,
Uy x GXV/~) S U, xV
is given by
(z,9,v) ~ (z,€,p(g)v) = (z, p(g)v).
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If we take transition maps
(UaNUg) x Gx V]~ — (U NUg) X GXV/ o,

(.’E, €, U) = (.T, ga,@(x)’ U) ~ (.I, ¢, p(gag(x))v),
then the corresponding map

(Ua NUB) X V = (Ua N U) X V
(z,v) = (@, p(gap(2))V)-

This implies that P x, V is constructed from {U, x V'} via the transition functions g,z :
U, N U/j — G.

Remark: This construction is identical to the construction of vector bundles “twisted by
p” from last semester.

Examples:

1. Fr(M) x,, R* = TM, py : Gl(n,R) 4 GI(n,R).

2. Fr(M) x,, R" =T*M, p, : Gl(n,R) = GI(n,R), A~ (A)T.
3. Fr(M) x,, R" = AFT M, py : Gl(n,R) — GI(AFR™).
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16. DAY 16: CONNECTIONS ON PRINCIPAL BUNDLES
16.1. Definition.

Definition 16.1. Let P be a principal G-bundle with projection map w: P — M. Then a
connection I' is an assignment of a subspace H, C T, P at every p € P such that

1. Tx - Hp :) Tw(p)M.
2. (G-invariance) (Ry).H, = H,y, where Ry : P — P maps p — pyg.
3. Hy depends differentiably on p € P.

The tangent spaces to the fibers are called the vertical subspaces and the H,, are called the
horizontal subspaces.

16.2. First interpretation. Let n = dim M. Then a connection I' on P is a rank n
distribution on P which is invariant under right action by G and is transverse to the fibers.

Let i, : G — P, p € P, be the fiber map g — pg. This is the map which sends G
isomorphically onto a fiber of P. Also let g = Lie(G).
Lemma 16.2. There exists a short exact sequence

0—g 28 TP ™ T,M -0,

and a connection I' gives a splitting s : TuM — T,P so that mwo s =id. Here z € M is m(p)
and we are viewing g = T.G.

Proof. The exactness of the sequence is clear from the definition of the maps (z'p)* and m,.
The splitting is given by the inverse of the isomorphism 7, : H, = T, M. 0

16.3. Second interpretation.

Proposition 16.3. A connection I is given by w € Q' (P; g) such that

L w(p)((ip)«E) = € for all £ € g.
2. Riw = Ad(g™"w.

Conversely, any w € Q' (P; g) which satisfies conditions (1) and (2) gives rise to a connection.

Remark: Recall the definition of forms with value in a vector bundle. Then Q'(P;g) =
[(T*P®g), i.e, at p € P, w € Q' (P; g) gives a map w(p) : T,P — g.

Remark: Such a 1-form w is said to be a connection 1-form.
Proof. Consider the injection (7). : g — T, P. Define w(p) : T,P — g so that the composition
g 2N T,P wr) g

is the identity map and ker w(p) = H, This completely determines w(p) since (i,).(g) ® H, =
T,P. Condition (1) is satisfied by the definition.
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Next, we show condition (2). We compute that if Y € H,, then
(Rgw)(p)(Y) = w(pg)((Ry).Y) = 0,
since (Ry).H, = Hyy. If p€ P, £ € g, and pe® € (ip).g, then

(Ryw)(p)(pe’®) = w(pg)(pe'*g) = w(pg)(pg(g~'e"g)) = g~'eg = Ad(g7)¢.
This proves (2).
Now suppose w € Q'(P;g) satisfies (1) and (2). Then we set H, = kerw(p). Condition

(1) tells us that dim H, = dim M and 7, : H, = T,;M is an isomorphism. The G-invariance
follows from (2). O

Remark: Condition (1) says that (i,)*w is the Maurer-Cartan form on G. Indeed, if g € G
and an arc through g is given by ge%, £ € g, then

(ip)"w(g) (9€) = w(pg) (Pge”) = w(Pg)((ipg)+&) = E.
Note that (ip)*w is the Maurer-Cartan form precisely because G acts on P from the right —
you can check that it does not work if G acts on P from the left.
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17. DAY 17: MORE ON CONNECTIONS

17.1. Existence. Consider the trivial G-bundle P = M x G. If g = Lie(G), then we define
the trivial or flat connection on M X G by setting w = miwpc, Where my : M X G — G
is the second projection and wy¢ is the Maurer-Cartan form on G. Note that H(, 4 =
T,M x {0} C T,M x T,G.

Proposition 17.1. Let P(M,G) be a principal bundle. Then there erists a connection on
P.

Proof. The proof is identical to the proof of the existence of connections on a vector bundle
and very similar to the existence of a Riemannian metric. Let {U,} be an open cover of
M such that P|y, is trivial. On each P|y, construct the flat connection w,. If {f,} is a
partition of unity subordinate to {U,}, then we set w =" fowa-

We verify that w satisfies the properties of a connection 1-form. For condition (1) of
Proposition 16.3,

w(p)(pe®) = falz)wa(p)(pe’) = > fal)€ =,

where p € P, 7(p) =z € M, £ € g, and pe®® € (i,).g. Condition (2) is similar and is left for
HW. ]

17.2. The space of connections. In the proof of existence, the crucial fact that was used
was that if w, w’ are connection 1-forms on P, then tw+ (1 —t)w' is also a connection 1-form.
This shows that:

Lemma 17.2. The space A(P) of all (smooth) connections on P(M, Q) is an affine subspace
of ¥(P;9).

Remark: An affine space has the defining property that the line through any two elements
w and w' is contained in the space.

We will give a more precise characterization of the space of connection 1-forms. But first
we define the following: Let P(M,G) be a principal bundle and Ad : G — Gli(g) be the
adjoint representation. Then the vector bundle associated to Ad is Ad(P) = P X 44 9. Recall
that (pg, %) ~ (p, Ad(g)e®) = (p, geg~!) by the definition of the associated vector bundle.
Here,pe P, g€ G, £ € g.

Proposition 17.3. If we fiz a connection wy on P, then there is an identification A(P) =
QY (M; Ad(P)).

Proof. Given a connection 1-form w on P, we take the difference w — wy. Then

(w = wo)(p)(pe") =€ =€ =0,
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by condition (1) of Proposition 16.3. Here £ € g. Moreover,
Ry(w —wo) = Ad(g ) (w — wo),
by condition (2). We will interpret this in terms of Ad(P).

Given z € M, we lift X € T,M to X € H, C T,P, where p € 7 '(z) and H, is the
horizontal subspace for wy. (This means that 7, X = X.) Then we have the assignment:

X = (p, (w—wo)(0) (X (1) = (p,w(p)(X(p))),

since X is horizontal for wy. Now,

(pg, w(pg)(X(p9))) = (pg, Riw(p)(X(p))) = (pg, Ad(g™")w(p)(X (p))) ~ (p,w(p)(X(p)))-

Note that here we used the fact that (Rg)*)? (p) = X(pg).
Conversely, it is easy to verify that if A € Q'(M; Ad(P)), then wy + A is a connection
1-form. (HW!) O

Remark: A connection 1-form is a form on the total space P. However, the difference of

two connections can be viewed as a 1-form on the base M (with values in the vector bundle
Ad(P)).

Example: Suppose G = S*. Identify its Lie algebra g with R by thinking of ¢ € S* and
if € iR.. Consider the adjoint representation Ad : S* — Gl(g) = GI(iR), where

eiﬂ — (eitv — eiﬂeitve—iﬂ — eitv).
Hence Ad maps to the identity in GI(iR), and Ad(P) = M x iR. Therefore, connections on
the principal S'-bundle P are in a 1-1 correspondence with Q(M; Ad(P)) = QY (M;iR) =
QY (M R).



NOTES FOR MATH 535B: DIFFERENTIAL GEOMETRY 35

18. HoLoNOMY

18.1. Parallel translation. Let P be a principal G-bundle over M with projection 7 :
P — M and connection I' = {H,| p € P}. We have the following obvious fact:

Lemma 18.1. Let X be a vector field on M. Then there exists a unique horizontal lift X
of X to P. By this we mean a vector field X on P such that X (p) € H, and 7.(X(p)) =
X(m(p))-

Let v :[0,1] = M be a smooth arc on M with v(0) = z, v(1) = y, and let p be any point
in 77! (z). Then we can pull back the bundle P to v~'(P) and pull back the connection to

v~1(T).! If ¢ is the coordinate on [0, 1], then we set X = 2. Then there exists a lift X of X
ony~'(P). By integrating along X and mapping back to P, we obtain a lift Y 1 [0,1] = P of
7, starting at p € 7 (x). Moreover, we obtain the following parallel translation or holonomy
map along ~y
h(y) 177 () = 77 (y),
p = (1)
Note that h(y) is G-equivariant.

Let P(M,z,y) be the set of smooth paths v on M from z to y. Then parallel translation
gives a map
P(M,z,y) — Diff(n ™ (z), 7~ (y)),

where Diff%(7~1(z),7~!(y)) stands for the G-equivariant diffcomorphisms from 7~1(z) to
T (y)-

When z =y, P(M, z,y) is written as Q(M,z) and is called the loop space with base point
x. Parallel translation gives a homomorphism

he : UM, x) — Aut(r™(x)),
where Aut(m~!(z)) is the set of G-equivariant automorphisms of 77!(z). h is called the

holonomy representation of the monoid Q(M, ). It is not hard to see that Aut(n~'(z)) ~ G,
i.e., where one point p € 7 !(z) goes determines the rest.

18.2. Flat connections.

Definition 18.2. A connection " on P isflat if for each x € M the holonomy representation
hy : Q(M, z) — G is locally constant.

By locally constant we mean the following: Let ,(¢) : [0,1] — M, v5(0) = v5(1) = z, be
a l-parameter family of loops based at . Then h;(vy) = hy(7.) for small e. A moment’s
reflection tells us that this implies that h,(yy) = h.(7s) for all s, i.e., that the value of h, is
constant on each homotopy class of loops based at x. This implies the following proposition:

!The easiest way to do this is to pull back the connection 1-form. It is left for HW to verify that the
pulled back 1-form is indeed a connection 1-form.
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Proposition 18.3. A flat connection I' gives rise to a holonomy representation
hy :m (M, x) — G.

Remark: If M is connected, then it suffices to check that A, is locally constant at one
point x € M. A connection on P is flat if and only if, for all + € M, the holonomy map
he : Q(M,x) = Aut(m'(x)) maps v — id for sufficiently small homotopically trivial loops
v. (HW)
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19. CURVATURE

Let P(M, Q) be a principal bundle and w € Q'(P;g) be a connection 1-form. Then the

curvature of w is given by:
F, = dw + |[w, w].
Therefore, F, € Q2(P;g). Recall that the Maurer-Cartan form wyc on G satisfies the
equation
dwpye + [wue, wue) = 0.

Roughly speaking, the quadratic term in w is designed to factor out the contributions in the
fiber direction.
Proposition 19.1. The curvature form Fw satisfies the following:

1. RiF, = Ad(g ")F,.

2. F,(p)(Y1,Ys) = 0 if Y7 is vertical. (Note we need only one of the two tangent vectors

to be vertical.)

Proof. (1) We compute:
RF, = Rj(dw+ [w,w])
= d(Ryw) + [Ryw, Ryw]
= d(Ad(g™")w) + [Ad(g™")w, Ad(g™")w]
= Ad(g ") (dw + [w,w])
= Ad(g ")F,
As for (2), if ¥ and Y5 are both vertical, then F,(p)(Y1,Y3) = 0 follows immediately from

the fact that F;, coincides with the Maurer-Cartan form on each fiber.

Next suppose Y] is vertical and Y5 is horizontal. Thinking of tangent vectors as equivalence
classes of arcs, if Y; = pe’® with £ € g, then extend Y, to a vertical vector field near p so
that Yi(q) = ge®. Also extend Y; to an R,-invariant vector field near p. Then

Fu(p)(Y1,Y2) = dw(Yy,Ys) + [w(Y1),w(Y2)]
= Yiw(Y2) = Yow(Y1) — w([Y1, Ya])
= —w([Y1, Yo)).

Here we note that w(Y2) = 0 and w(Y;) has the constant value £ near p. We leave the
verification that [Y7,Y3] = 0 for HW. O

Corollary 19.2. The curvature form E, € O?(P; g) pushes down to a form F,, € Q*(M; Ad(P)).

Proof. We define F,,(z)(X1,Xz), with z € M and X; € T, M, to be ﬁw(p)()?l,)?g), where
p € Y(z) and X; € H, is a lift of X; € T, M. The definition is independent of the lift, and
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is dependent on the choice of p only up to Ad. Therefore, F,, is a 2-form on M with values
in Ad(P). d

Remark: The form F,, on M is the one that is usually called the curvature 2-form of the
connection P.

Interpretation of the curvature: Suppose X, X, € T,M. Lift X, X, to horizontal
vector fields Y7, Y, in a neighborhood of p € P. Then we compute:

(5) Foy(2) (X1, Xa) = Fo(p) (Y1, Y2) = w(p) ([Y1, Y2))-

Therefore, F' measures the failure of H), to be integrable.
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20. DAy 20
20.1. Curvature and flatness.

Theorem 20.1. Let P 5 M be a principal G-bundle and w a connection 1-form. Then the
following are equivalent:

1. w is flat, i.e., the holonomy is locally constant).

2. F,=0.

3. ker w s integrable, i.e., are tangent spaces to leaves of a foliation of P.

4. There ezxists an open cover {Uy} of M such that w on P|y, is the trivial connection.

Proof. (1) = (2). (2) is just the infinitesimal version of (1), in view of Equation 5.
(2) = (3). Identify g ~ R" by taking a basis (eq,...,e,) for g. Then [e;, e;] = >, cfex.
We rewrite the equation

F,=dw+w,w]=0
with respect to this basis. Letting w =), w;e;, we have dw =), dw; - ¢; and

1 1
[w,w] = [Zwiei,ijej =5 Zwi Awj - e, e] = 5 Zcfjwi A wj - e.
i j ij ij

Therefore, we have

dw1 w1
=0
dw, W,
for some matrix 2 of 1-forms. This is an involutive system, and hence ker w is integrable.
(3) = (4). Since ker w is integrable, for sufficiently small U, C M, there exists a section
s : Uy — Ply, such that s(U,) is horizontal everywhere. Using the G-equivariance, we can
write Py, = U, x G, foliated by integral submanifolds U, x {0} of w.
(4) = (1). If w is the trivial (flat) connection, then the holonomy around any sufficiently
small loop is the identity. (This is equivalent to the holonomy being locally constant, by the
discussion from Day 18.) O

20.2. Local coordinates. We will give local expressions for connection 1-forms and cur-
vature 2-forms. Start with a trivial principal G-bundle P = U x G 5 U. The given
trivialization gives rise to a connection 1-form wy = mywyc, where U X G 2% G is the second
projection and wps¢ is the Maurer-Cartan form on G.

If w is a connection 1-form on P, then we already explained that the difference w — wqy can
be realized as an element A € Q'(U; Ad(P)). Now, since Ad(P) =U x G x99~ U x g, we
can view A € Q!'(U; g). Equivalently, we have the following:

Lemma 20.2. Leti:U — U x G be the inclusion © — (x,e). Then A =i*(w — wy), when
A is viewed as an element of Q' (U; g).
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Lemma 20.3. F, = dA + [A, A], when both are viewed as elements of Q*(U; g).

Both lemmas are left for HW!

We will now compute the change in A brought about by a change in the trivialization.
Any bundle automorphism ¢ : U x G = U X G can be written as a map (z,g9) — (z, ¢(z)g),
for some map ¢ : U — G. (Recall that bundle automorphisms satisfy 7 = wo1).) Conversely,
any ¢ : U — G gives rise to a bundle automorphism.

Lemma 20.4. Under the bundle automorphism, A(z) — ¢(z) ' A(x)d(z) + d(x) ' dd(x).
Proof. We compare A, which is obtained by pushing down w — wy, to A’, which is obtained
by pushing down ¢*w — wy. Given (z,e) € P and (X, §) € T(; 4P, we have:
(Y'w —wo)(z,e)(X,€) = Y w(z,e)(X,0)
= w(z, ¢(2))(X, do(z)(X))
= w(z,6(2))(X, ¢(z)(6(z) " dg(z) (X))
= Rypw(z,e)(X,0) + (ﬂf)1
= Ad(¢(z)"w(w,€)(X,0)
= ¢(z) " A()(X)o(z) + cb(fv) tdg(z)(X)
Note that
(W —wo)(z,€)(X, &) = w(x,e)(X,0) = A(z)(X).
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21. DAY 21: COVARIANT DIFFERENTIATION

21.1. Covariant differentiation on associated bundles. Let P = M be a principal
G-bundle, p : G — GI(V) be a representation of G, and let E = P x, V be the associated
vector bundle. We explain how a connection w on P induces covariant differentiation V on
the associated £ = P x, V.

Recall the following definition:

Definition 21.1. A covariant derivative V on a vector bundle E over M assigns to every
vector field X € X(M) a differential operator Vx : T'(E) — ['(E) where

1. Vxs is R-linear in s,

2. C*(M)-linear in X, and

3. Vx(fs) = (Xf)s+ fVxs.

Let z € M, X € T,M, and z(t) € M be an arc with z(0) = z and £(0) = X. Pick
p € m '(z). Then there is a unique horizontal lift Z(¢) of z(¢) to P, where £(0) = p. We
declare that, given any v € V, the section s(t) = (Z(t),v) of E over the arc z(t) is covariant
constant, i.e., Vxs = 0. N

In general, the horizontal space H, C T,P induces a horizontal space Hy,,) C TipE
as follows: Given v € V, consider the map 7, : P — FE which sends p — (p,v). Then

Hpoy = (1)« Hp.

HW: Prove that (1,)«Hp = (1)p(g-1)v)«Hpg. In other words, the definition of I;V(p,v) does not
depend on the representative (p,v) for an element in P x, V.

Therefore, we have the decomposition T, FE = H (pw) @V, where V' is identified with the

tangent space to the fiber of E at (p,v). Let Ty, E Y V be the projection onto the V
summand. If s € ['(E), then we define

Vxs(z) = (p,my o ds(z)(X)),
where ds(z) : T,M — Ty)E.
21.2. Local coordinates. We will write the covariant derivative in local coordinates. We

take P = UxG 5 U and A € Q'(U; g) the difference w—wjy between the fixed flat connection
wo and a connection w. Recall that A = i*w, where i : U - U X G, z +— (z,€).

Claim. H,, = {(X,—A(z)(X))|X € T,U}.

The claim is immediate by evaluating w(z,e)(X,—A(z)(X)) =0. Now, E=UxG x,V =
U x V, where (z,g,v) — (z,p(g)v). Then we have:

Claim. Hi,y) = {(X, —p.(A()(X))s(z))|X € T,U}.

This follows from writing elements T{; s(,))E instead as (X, —A(x)(X), s(x)). Consider the
section s € ['(E;U), viewed as a function U — V. By the definition of Vxs(z), we take
ds(x)(X) and project to the V' summand. But then, this is equivalent to writing:
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Proposition 21.2. Vxs(z) = ds(z)(X) + p.(A(x)(X))s(z).

This is often written V = d + A for short. Check that Vx is indeed a covariant derivative
(HW)!
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22. DAY 22

22.1. Covariant differentiation of forms of higher degree. There is a natural extension
of V:QUM;E) = Q' (M;E) to V: Q(M; E) —» Q" (M; E), defined as follows:

1. Vn is R-linear in 7.

2. If s € Q°(M; E) and n € Q*(M;R), then

Vs@n=(Vs)An+s®dn.
We now have a sequence:
0— QOM; E) X5 Q' (M; E) 2 QX(M;E) — . ...
Last semester, we defined the curvature of the covariant derivative to be
VaoVa:QM;E) — Q*(M;E).
We then have the following:

Proposition 22.1. In local coordinates, p.(Fa) = Va0 Va, where p: G — GI(V) is the
Lie group representation and p, is the corresponding Lie algebra representation.

Proof.
(VaoVa)s = (d+p.A)o(d+pA)s
= d(ds+ (p«A)s) + p AN (ds + (psA)s)
= d((psA)s) + (pxA)ds + (p AN piA)s
= p(dA+ AN A)s.

Here, (p.A A poA)(X1, X5)  (p,A)(X1) - (pA)(X0) = (p,A)(X) - (p.A)(X1), where - Tep-

resents matrix multiplication (or composition of endomorphisms). It is immediate that
pAN p A= [peA, peAl. O

Remark: It looks as though A — F4 = dA + [A, A] is given by the map
QON(M; Ad(P)) 8 Q*(M; Ad(P)),
i.e., Fy = V4A. Unfortunately, if we write A =) . e; ® A;, then
VA = D V(e ®A)
= Z[ej, €Z']Aj AN Az + Zei &® dAZ

ij

= dA+2[4, A
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We are off by a factor of 2.
Proposition 22.2 (Bianchi identity). VF, = 0.

Proof. HW. Note that F,, = dA + [A, A] locally. You should be careful of the definition
[A, A](z) (X1, X2) = [A(z)(X1), A(x)(X2)]. Probably the surest proof is if you wrote out
A=)".6,®A;, where {ey,...,e,} is a basis of sections for E|;y = U xV and 4; € Q'(U; R).
]

22.2. Gauge group. We denote by G(P) the space of C*°-bundle automorphisms ¢ : P =
P such that 7 = w o). G(P) is called the gauge group of P.

Lemma 22.3. G(P) is equivalently the set of maps ¢ : P — G for which ¢(pg) = g~ 'é(p)g.
This is easy and is left for HW. Taking the infinitesimal version, we have:

Proposition 22.4. The tangent space to G(P) at ¢ € G(P) is Q°(M; Ad(P)), i.e., T;G(P) =
Q%(M; Ad(P)).

Proof. By “tangent space” we mean the space of suitable sections %qbt\t:o, where ¢g = ¢ and
¢y is a 1-parameter family of maps P — G satisfying ¢;(pg) = g~ '¢:(p)g. Evaluating at p €
P, we have 4 ¢,(p)|;—o, and this gives a map a : P — g which satisfies a(pg) = Ad(g~)(p).
The section z € M — (p,a(p)), p € 7! (x), is an element of Q°(M; Ad(P)). O

We already showed that, locally, if we view ¢ as a function U — G, then
A ¢ Ap + ¢ dg.

Warning: Note that by ¢~! we mean the function U — G, x — (¢(z))~'. We will use this
somewhat confusing notation to avoid more cumbersome notation.

We also have:
Proposition 22.5. Fy — Ad(¢™")Fa.
Proof. We will first give a proof, assuming that G is a matrix group.
dA' +[AL A = d(¢7 Ag+ ¢ dp) + (9T Ap + ¢ dd, 6T Ad + ¢ dg)]
= (dpHYANAp+¢ -dA-¢p— 7' - ANdP+do™" Ado
+¢7 - [A, A+ [0 A, ¢ Ndg] + ¢ dg, 67 A + [¢ ' do, ¢ dg]
= Ad(¢)(dA+ [4, 4))
H(=¢7 - dp- ¢TI NAG— ¢TI - ANdS+ [T Ag, ¢ o] + 97 do, 6T Ad))

+(=¢7 - do- 7 Ndg +[¢71do, 67 d])
= Ad(¢™")Fa
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Here we use d(¢p 1) = —¢ 1 - dp - ¢~ which arises from differentiating ¢ 1¢ = e. Also note

de
that [n1,72] (X1, Xo) =l (171 (X1), ma(X2)].
The proof in the general case follows along exactly the same lines. We just need to suitably
interpret the expression d(Ad(¢™1)) as in:

d(Ad(¢~1)A) = d(Ad(¢™))) A A+ Ad(¢~)dA.

Note that Ad(¢™') is the composition U = oa M Gl(g). Therefore, d(Ad(¢™")) is the
composition of the two derivatives. Now, T,U — Ty-1(,yG clearly maps X — d¢~'(z)(X).
On the other hand, T,G — gl(g) maps ge®* — (¢ — g¢[¢,(]g ™). Hence we can write:

d(Ad(¢7')A = Ad(¢7")([¢-dp™", Al +[A ¢ dg™"])
= [~¢7'do, Ad(¢™)A] + [Ad(¢71)A, —¢~ dd].

Note that the appearance of two term on the right-hand side is due to the fact that [,] is
not skew-symmetric by definition. O
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23. CHERN-WEIL THEORY

Goal: Assign invariants of principal G-bundles P — M or associated vector bundles F
using the space of connections A(P).

Given a connection A € Q!'(M; Ad(P)), we have the curvature Fy € Q*(M; Ad(P)). For
today, assume that g is a matrix Lie algebra.

One way of constructing real-valued forms is by taking traces:
tr(F%) =tr(FaANFaA---ANFy) € Q*(M;R).

Here, if w; € Q'(M;g), then we set

(Wi A Awp)( Xy, ..., Xp) = > (=1)°w1(Xoq) - - - Wi (Xowy),

permutations o
where the product on the right-hand side is matrix multiplication.

Theorem 23.1. Let A, A' € Q'(M; Ad(P)) be two connection 1-forms. Then

1. tr(F%) is closed.

2. tr(F%) — tr(F%) = dn.
In other words, [tr(F*)] € H*(M;R) is well-defined and independent of the choice of A €
A(P).

Proof. (1) First note that tr((¢~1Fa¢)*) = tr(F¥%) since the trace is invariant under con-
jugation. This means that a change of gauge does not alter ¢r(F%). Hence we may work
locally!

The key identity in our computations is the Bianchi identity, written as follows when g is
a matrix Lie algebra:

VFy=dFs+ANFs—FsNA=0.

We now compute:

d(tr(F%)) = tr(dFEsANFoAN--ANFa)+tr(FANdFANF N -~ NFy) + ...
= k't’l”(dFA/\FA/\"-/\FA)
= k'tr((—A/\FA-i-FA/\A)/\FA/\"'/\FA)
0.

(2) It suffices to prove that

d :
atr(Fﬁt)\tzo =d(k-tr(ANFoAN---AFy)),
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where A; is a family of connection 1-forms, Ay = A, and %Athzo = A. On the one hand we
have:

%tr(Fﬁt) = tr((%FAt)/\FA/\---AFA)+tr<FA/\(%FAt>/\FA/\---/\FA>+...
= k-tr(dA+ANA+ANA)ANF A---NFy)
On the other hand:
ditr(ANFAN---NFy)) = tr(dAANFsN---ANFy) —tr(ANdF4sAFAN--- A Fy)
—tr(ANFyNdF4N---NFy) — ...
Now,
tr(ANAFANFAN---ANF) =tr(AN(—ANFoA+ FANAYANFAN--- AN Fy),
tr(ANFANAEAN -~ ANFy) =tr(ANFAAN(—ANF 4+ FANA)YA---AFy),
and, after cancellations, we have:
Atr(ANFAN---ANFy) = tr(dAANFAN---ANFy) +tr(ANANFAN---AFy)
—tr(ANF4A---ANFy A A)

By using the invariance of trace under cyclic permutation of the matrices, we obtain the
desired equality. O

The cohomology classes are usually packaged as follows: Let ch(P) = [tr(e)] € H*(M;R)
the the Chern character. The ring generated by the components of the Chern character

ch(P) is called the Pontryagin ring. These are characteristic classes of the principal bundle
P.

Example: Suppose G = S'. Then g = 7R. Now, locally Fy = dA+ AA A = dA, since
g is abelian. In this case F) is already a 1-form with values in R, so we do not need to
take traces. Clearly, Fy is locally exact, i.e., is closed. We take [%FA] € H?(M;R). This is
called the first Chern class ¢, (P).
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24. HODGE THEORY PRELIMINARIES

Much of the material over the next several lectures is taken from Warner, Foundations of
differentiable manifolds and Lie groups.

24.1. Linear algebra. Let V be a vector space over R of dimension n. Then a bilinear
form ¢ : V x V — R,is nondegenerate if for any v € V nonzero, there exists w € V so that
¢(v,w) # 0. This is equivalent to the induced map V — V*, v — (w — ¢(v,w)), being an
isomorphism.

From now on, V is equipped with a positive definite inner product (-,-) and a choice of
orientation e; A - - A e,.

Definition 24.1. The star operator * : A¥V — A" %V is given as follows: Let ey, ..., e, be
an oriented orthonormal basis for V. Then

Ko Ao Ae) = (C1)7es Ao ey,

where 0 = (i1, .., 0k, J1s- - -» Jn-k) and (—1)7 is the sign of o (i.e., the number of transposi-
tions required from (1,...,n) to o). Since * is defined on a basis of AFV, it extends linearly
to all of NFV/.

In particular,
xl=e A---Ney,
x(eg A Ney) =1,
*(61/\"'/\6k) =eg+1 N Nep.

Proposition 24.2. x is independent of the choice of oriented orthonormal basis. In other
words, if €\, ..., el is another oriented orthonormal basis, then

*(egl Ao A e;k) = (—1)"@91 A=A e;-n_

e
Remark: This proposition is remarkably hard to prove if one tries to prove it by brute
force.

Proof. First define a linear map
ANV x AV = R,
(Vi A ANvg,wy A -+ ANwg) — det((vs, w;)),
where ((v;, w;)) is a k x k matrix with entries (v;, w;). (HW: Show that this is well-defined!)
This linear map is the extension of the inner product (,) on V to A¥V. This gives rise
to a map L : AFV — (A*V)* which sends v; A -+ A v, to L(vy A -+ A vg) which maps
Wy N\ - N wg = det((vi, w]>)

More concretely, e; A --- A ey — L(e; A --- A eg), which sends e;; A --- Ae;, +— 0 if
{il,...,ik} 7é {1,...,]€}, and €, /\---/\eik — (—1)061/\"'/\€k, lf{’l,l,,lk} = {].,,k‘}
Here 0 = (iy, ..., ).

Now, there is a natural isomorphism ¢ : A" ¥V 5 (A*V)* which comes from:

AV x ARV 5 A"V ~ R,
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(w,m) = wAmn,

and the identification with R comes from the choice of an orientation. Here ¢ maps n — (w —
n Aw). The fact that the pairing w A n is nondegenerate ensures that ¢ is an isomorphism.
Observe that ¢(eg11 A --- Aey,) is the same map as L(ey A--- Aeg).

Finally, it is easy to see that x = ¢~! o L. O

Remark: The previous proposition can be restated as saying that * commutes with all

A € SO(n).
The proof of the following lemma is left for HW.
Lemma 24.3. *x = (—1)"" kg,

24.2. The d*-operator. Let (M, g) be an oriented Riemannian manifold of dimension n.
Then there exists a volume form dvol(z) = e; A --- A e,, where ey,...,e, is an oriented
orthonormal basis for 7, and the Riemannian metric identifies T,M ~ T:M, v — (w —

(v, w)).

We define the operator d* : Q*(M) — QF"1(M) to be (—1)"*+D+1 « dx. Notice that while
d: QF(M) — QFFL(M) raises the degree, the operator d* lowers the degree.

We quickly verify that d* o d* = 0: d* o d* = £(*dx)(xdx) = £ * d?+ = 0, using d> = 0 and
% = +1. This means that we have a chain complex which goes in the opposite direction!

oqon Lo ) E k().

What we want to investigate is the relationship between the two chain complexes d and d*.
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25. HODGE THEORY, DAY II

25.1. The inner product on QF(M). Given o, 3 € Q¥(M), we define an inner product

(,): (M) x QF(M) — R,

(o, B) = /Ma/\*ﬂz /M(a, Byduol.

Here (o, 3) is the pointwise inner product (,) : AFV x A¥V — R given in the proof of
Proposition 24.2.

Proposition 25.1. (,) is positive definite and symmetric.
Proof. It is easy to see that (,) is positive definite: (w,w) = [}, (w,w)dvol > 0 and = 0 if

and only if w > 0 (since w is continuous, for example).
Next to show (,) is symmetric, we first verify on the vector space level that

(w,m) = (xw, *n).

(This is easy to see by taking an oriented orthonormal basis e, ..., e, and computing (e; A
- Aei, e, A+ Aej).) Then:

(w,m) = /M(w,mdvol:/]\/[(*w,*n)dvol

= / *w/\**n:(—l)’“("_k)/ *xw AN
M M
— (_1)k(nk)(_1)k(nk)/ n A W = (77’ CJ)

M

Remark: (,) gives rise to a norm |jw|| = v/ (w,w).

Remark: The inner product on Q*(M) gives it the structure of a pre-Hilbert space. If we
complete the pre-Hilbert space, we obtain L2(I'(AFT*M)), the L?-sections of A¥T*M.

Proposition 25.2. d* is the formal adjoint of d in the L?-sense, i.e., (da, B) = (a,d*f).
Here « is a k-form and 8 is a (k + 1)-form.
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Proof.
(@a,8) = [ (da) A5

= /Md(a/\*ﬂ)—(—l)ka/\d*ﬁ
= (—1)k+1/Ma/\d*ﬂ
— (_1)’““(—1)("—’“)’“/ o A x(xd * 3)

— (_l)nk+1(_1)nk+1A4aA*(d*ﬂ)
= (o, d’f)

25.2. The Laplacian.
Definition 25.3. The Laplacian or Laplace-Beltrami operator A : QF(M) — QF(M) is
giwen by A = dd* + d*d. A form w is harmonic if Aw = 0.

The Laplacian A on functions on R" is the operator % 44 %. Functions which satisfy
1 n

Af = 0 are said to be harmonic. Harmonic functions appear everywhere in mathematics.
For example, if we view C = R?, then the real and imaginary parts of a holomorphic function
are harmonic.

Remark: If M = R" and g is the flat metric, then we can compute that A(fdziA- - -Adxy) =
—(Af)d.Tl VANEERIVAN d.Tk. (HW')

Proposition 25.4. The Laplacian A satisfies the following:

1. Ax = %A,
2. Ad = dA,
3. Ad* =d*A,

4. A is self-adjoint, i.e., (Aw,n) = (w, An).
Proof. These are all easy exercises. We'll do (1): Given a k-form w,
Axw = (dd*+d*d)xw=(=1)"" DG % dsxw + (=1 D s d s d * w,
= (=D"dxdw+ (-1 xdxdxw
Aw = *(dd* +d*d)w = (=1)"*TH s dxdxw + (=1)" 5 xd x dw
(=)™ d s dx w + (—1)*d x dw
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We also have the following key proposition:
Proposition 25.5. Aw = 0 if and only if dw = 0 and d*w = 0.

Proof. One direction is easy. We will do the other direction. Suppose Aw = 0. Then
(Aw,w) = (dw, dw) + (d*w, d*w). Both terms on the right-hand side are nonnegative and are
zero iff dw = 0 and d*w = 0. O

25.3. Motivation for the Hodge Theorem. Consider the set of closed forms Z*(M) C
QF(M). Then is there a “canonical” representative of a cohomology class which minimizes
the norm, i.e., how do we minimize ||w + dn||, where w is closed and we are ranging over all

dn?
For a minimum w,
%Hw +tdn|? = 0.
Differentiating, (w,dn) = 0, for all n € Q¥ Y(M), or, equivalently, (n,d*w) = 0. This

would indicate that d*w = 0. Thus, we would be obtaining a “canonical” representative for
H*(M;R) by taking dw = 0, d*w = 0, or, equivalently, Aw = 0.
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26. HODGE THEORY, DAy III

26.1. The Hodge Decomposition Theorem. Denote by H* the space of harmonic k-
forms on M. Recall Aw = 0 is equivalent to dw = d*w = 0. Then we have the following:

Theorem 26.1 (Hodge Decomposition). There ezxists an orthogonal decomposition
Q" (M) = AQ*(M)eH"

= dd*QF(M) @ d*dQF (M) @ HF

— ko—l(M) @ d*Qk-H (M) ey Hk-
Here the orthogonality is with respect to the L?-inner product (,) on QF(M).
Remark: Even though QF is only a pre-Hilbert space, orthogonal decompositions make
sense. Let V be a pre-Hilbert space with inner product (,). Then V = W; @ W, means the
following: any v € V can be written as w; + wq, where w; € W; and (wy, ws) = 0. Then

automatically w; and wy are unique. In fact, if w; +wy = 0, then (w; +ws, w;) = ||wy]|*> = 0,
and w; = 0 by the positive definiteness. Similarly wy = 0.

Hence, the content of the Hodge Decomposition Theorem is that every w € QF(M) can be
written as w = A€ + 1, where n € H*.

It then follows that w = d(d*&) +d*(d€) +n. We can check that dQ*~1 1 d*QFF1: if o € QF1
and B € QFL then (do,d*B) = (dda,8) = 0. Similarly, dQ* 1 1 H* and d*QFt 1L HE.
Therefore, the first line of Theorem 26.1 implies the third line.

Let us assume the Hodge Decomposition Theorem for the time being. We then present some
consequences. Let IT : QF (M) — H* be the orthogonal projection onto H*.

Theorem 26.2. H* ~ H*(M;R).

Proof. Consider [w] € H¥(M;R). [w] is the set of k-forms w + da, o € Q*~!. Tt is easy to see
that the set of closed forms is L2-orthogonal to d*Q**1: if o is a closed k-form and 8 € QF+1,
then (o, d*8) = (da, 8) = 0. Hence, w € dQ*~! & H*. Therefore II(w + da) is independent
of the choice of da. Hence, we have a well-defined map H*(M;R) — H*, [w] — II(w). Of
course there is an inverse map H* — H*(M;R), w ~ [w]. This proves the theorem. O

Theorem 26.3 (Poincaré Duality). H"*(M;R) ~ (H*(M;R))*.

Proof. By identifying H*(M;R) ~ H*, we have the following commutative diagram:

H*(M;R) x H"*(M;R) —*— R

J l

HE x H Tk R
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where

B((w], [n]) = / wAT

M
(show it does not depend on the choice of representatives), and

¢(w,n)=/Mw/\n-

For ¢, w, n are harmonic representatives. Now, if w is harmonic, then so is *#w (check!). This
means that ¢(w, xw) = ||w]||?, and hence ¢ is nondegenerate. This implies that H" % ~ (HF)*.
O

26.2. Examples.

Example: Let M = S! = R/Z with coordinate z and g = dz®dz. Then Af = —aa—:gf, since
g is the standard flat metric when lifted to R. Although solutions of Af = 0 are f = cx+d,
if we require the solution to be smooth on S!, then we must have f = d. Therefore, we have
H° = R and H' = R{dz}. Moreover, the eigenfunctions of A are f,(z) = cos2mnz and
gn(z) = sin 2rnx. One of the fundamental facts about Fourier series is that every continuous
function can be written as ¢y + Yo, (¢, cos 2rnz + d,, sin 27nz).

Example: Let M = T" = R"/Z" with coordinates zi,...,z, and the flat metric ¢ =
> dx; ® dz;. If f is a function, then Af = d*df, so if Af =0, then (Af, f) = (df,df) =0,
which implies df = 0, and hence f is constant. Since A on forms is simply A on each
coefficient of dx;, A --- A dz;,,

HF ~ AFR™.
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27. SOBOLEV SPACES

Over the next several lectures we will prepare the background for the proof of the Hodge
Decomposition Theorem. For a while our ambient manifold will be 7" = R"/Z".

27.1. Fourier series. Let L?(T™) be the C-valued L-functions on 7", namely functions f
which satisfy [, |f|*dz < co. Here dz = dz; ...dx,. L*(T") is a Hilbert space with inner
product

(fag)Lz = fgd.f

Tn
Also define 1> = L?(Z") to be the set of functions u : Z" — C satisfying 3_, .z [u(§)[* < oo.
I2 is a Hilbert space with inner product

(w,0)e = Y u(©)v(E).

¢el”
Check that L?*(T™) and [? are complete!
Theorem 27.1 (Parseval’s Theorem). The map
LT = 1P
f@) = f&) = | f@)e™ " da
Tn
is a unitary isomorphism of Hilbert spaces, i.e., || f|lz2 = || f|.

Note that f(§) are the Fourier coefficients of f.

Proof. First observe that {627”'””"3}6 c7m 1s an orthonormal set — it is easy to verify that
(e2mit, e?miv Y, = / 2T ) dy = 6 g1,

where (5575/ =0 lff 7é fl and (5575 =1.
We claim that any f € C°(T™) can be written uniquely as:

fl)=")Y_ f(&)em=s,
ecZ”

with f € [2. By the Stone-Weierstraf theorem, there exists a sequence Py (x) of trigonometric
polynomials (finite linear combination of €?™®¢) which converges to f(x) in the C° norm.

Hence it follows that ||f — Pyl[z2 < ¢ for large N. Let f, = >, f(&)e*m =€, (Here
€] = V&-¢€.) Then,
I1f = fallZe = (f = foo f = fa)r2 = 172 = I fallZes
by noting that (f, fn)r2 = || fall3.. Also,
(6) If = Pullze = 1f 172 + (= fas Pn)z = (Prs o)z + || Pz
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by noting that (f,, Px)rz = (f, Pn)r2, provided n is sufficiently large. Now, since 0 <
| fn — Pn||z2, it follows that ||f — fullze < ||f — Pwl|z2 < &. Therefore, f, — f in L?, and

1fallZs = e o LF(@)? = 1172 This proves [[f]1z2 = | flle for C*-functions.

Now, since the C°-functions are dense in L*(T™), it suffices to approximate f € L*(T™)
by h € C°. Take ||f — h||2 < €, and let f,, and h,, be the Fourier series up to [£| < n. Then,
for large n, ||h — hy||z2 < €. Also,

1 fo = Pallze = (fa = has £ = R) 12 < | fa = Ball2ll f = Rl 2,
by the Cauchy-Schwarz inequality, which implies || f,, — hn||z2 < ||f — h||z2- Hence,
1f = fallee <\ = Bllze + 1A = hallrz + [[hn — fallr2 < 36,
and f, — f in L2 Il

Therefore, the Fourier series allows us to switch between L?*(T™) and 2.

27.2. Sobolev spaces. Let Map(Z", C) be the set of functions from Z" to C. Then we
define the Sobolev space Hy(T™) (or simply Hj) to be the subset of Map(Z",C) consisting

of u : Z" — C for which
DA+ [EP)u@f < oo
¢el”

The inner product on H; is given by

(v), = 3 (1L+[€2)u(©)v(®),

¢el”

and the corresponding Sobolev s-norm is written ||u||s. Just as [? is a Hilbert space, Hy is
also a Hilbert space (with different weights). (Check completeness!)

Remark: H, = 2.
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28. PROPERTIES OF SOBOLEV SPACES

Much of the discussion can be found in Folland, Introduction to Partial Differential Equa-
tions (although they use Fourier transforms instead of Fourier series), or Griffiths-Harris,
Principles of Algebraic Geometry.

28.1. Alternate definition. First let us introduce the following terminology:

1. a=(ag,...,q,), where a; > 0.
2. o=+ -+ .
_ 8
3. aj_a_zj'
4.9% =9 .. g,
b. €2 =gl gan,

Claim. Let f € C®(T™). Then f satisfies deezr(1+ €12)] £ (€)|? < oo for all 5.
Proof. Since f € C®(T"), 0*f € C*°(T") for all . This implies, by the compactness of 7",
that 0°f € L?(T"). Using the isomorphism L?(T") =~ [?, we compute ||0%f||z> by taking

10 f |-
Integrating by parts, we obtain:

8, f = [ (8;f)e*™ ™ edy = — / f(9;e¥m ) = — / omig; fe e dy = —2mig; f.
Tn

In other words, under the Fourier transform, 0; gets taken to (up to a constant factor) multi-

plication by &;. Similarly, 0 f = (—2mi)'*/¢>f. Then [|02 f||,e = (2m)le =, €22 f(€)|? < oo.

Taking a suitable combination, we obtain }-. 7= (1 + 1£[2)5| £(€)[2 < oo for all positive inte-

gers s. Il

Notation: To avoid repeatedly writing constants, we define D; = ;Tag and D® = D" ... D&»,

Definition 28.1. The Sobolev space Hy(T™) is the completion of C®(T™) with respect to
the norm || f||s = ||A*f||i2, where

— def

A F() = (L+IEPrIf (O
This definition makes sense, because f € C®(T™) = ||f|ls < oo by the Claim.
We now explain the weights (1 + |€]?)°.
Lemma 28.2. For a positive integer s, the Sobolev norm || f||s is equivalent to Z\algs ID*f|| 2-

Proof. Equivalence of norms means the existence of ¢, C' > 0 such that

el flls < D IDfllz < CIS s

lal<s
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Indeed,
1711 = D (A +I[EPyIfEr

£
CY D e PIf©P

£ |al<s

= C) D3

la<s

C(Y_ IID° fllo)?

la|<s

IN

IA

On the other hand,

ID*flI7 = D 1€ PN
3

< CY L+ EPPIFE©P
3

= Clf I

Therefore, if s is a positive integer, then f € H, is equivalent to D*f € L?*(T™) for all
derivatives up to order s. O
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29. PROPERTIES OF SOBOLEV SPACES

29.1. Properties of Sobolev spaces.

1. If t < s, then the inclusion H; C H, is continuous, i.e., || f||: < || f]ls-

A~

2. Consider the map A* : H; — H, ; given (in terms of Fourier series) by f(§) — (1 +
€)% f(€). Then ||f||s = ||A*f]|s_¢ (i-e., A* is a unitary isomorphism).

3. H_; is naturally isomorphic to the dual of H, via the pairing

(f,9)= (N f,A7°g),
where f € H, and g € H ;. This easily follows from the Cauchy-Schwarz inequality.

4. D*: Hy — H,_|, is bounded, i.e., | D®f||s—ja) < || fl|ls- This is because
(L+ €PN PIF O < 1+ €2 F €)1

5. If f € C*¥(T™), then f € Hy(T™). That ||f|lx < C||f|lcx follows immediately from the
proof of the Claim from last time.

29.2. Sobolev Embedding Theorem. The converse of (5) is the following theorem:
Theorem 29.1 (Sobolev Embedding). If s > k + %, then H, C C*.

Proof. We will first show that H;, C C%ifs > 2 5. Given f € H,, we show that the partial sums
N =D <N f(€)e>™&% converges to f in the C°-norm. For this we look at the remainder:

> f©emer < A9

>N l€1>N
= Y 1A+ IEBREI 1+ e
l§I>N
- (1 -+ 1€°1£(9)
e

1

Therefore, it remains to bound Zg W Using the integral test, the sum converges if and
only if [gn m converges. Now,

1+ xZ_San/ 1+ r3)~r"Ldr,
/Rn( 2?) )
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where 7 is the radial coordinate and w, is the volume of the unit S®!' Cc R". If s >
5, then the integral on the right-hand side converges since the integrand will have degree
—2s+(n—1)<—-linr.

In general, the proof works in the same way — by bounding

Z é-a 27rz§ T

[€1>N

with |a| < k, the corresponding series converges when s > k + 7. d

This implies that if f € H; for all s, then f € C*.

Hence, the systems of seminorms

< s LM fllsr £ -0
and

< fllew < Ifllewen < ...
give rise to equivalent topologies on C*°.

29.3. Rellich lemma.

Lemma 29.2 (Rellich Lemma). Ift < s, then the inclusion map Hs — Hy is compact, i.e.,
if a sequence f; which is bounded with respect to || - ||s admits a convergent subsequence with
respect to || - ||¢-

Proof. Let f; be a bounded sequence in Hy; without loss of generality, || f;||s < 1. Then we
write:

Ifi = fille = D@+ EPHAEE - f©P

3

- 2(1 + P 1Ai€) = F©)1P (L + 1)
- Z > A+ EP?If€) = HOPQ+ )

>N [E<N
For the || > N terms, provided N is large, we can bound the sum by || f; — f;|[2(N? + 1),
which can be made arbitrarily small. Next, the [£| < N terms are finite in number, and we
bound each term in the sum by taking a subsequence of f; for which | fz( ) — fi(&)] = 0.
This is possible because (1 + [£]?)!| f,( ) — ( £)|? is bounded above by 1 for each ¢ and hence

17:(6) — E(£)| is bounded. This proves the existence of a Cauchy subsequence of f; with
respect to the || - ||;-norm. O
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30. ErvripTiC DIFFERENTIAL OPERATORS

Today our ambient manifold M is not necessarily a torus.

30.1. Definitions. A linear differential operator L : C*°(R") — C*°(R") is of the form

N ol
L= Z a (.T)%,

laj<m

with a*(z) € C*°(R"). We say L has order m if a® # 0 for some |a| = m.

Define the symbol of the differential operator L:

o(L,&) =D a*(z)E"

|a|=m

Then L is elliptic at x € R" if 0(L, €) is nonzero at x for all real £ # 0.

Examples:
1. L=2 on R. o(L,&) = &, so L is elliptic.
2. L=A=2+.-+ 2 onR"is elliptic, since o(L,&) = & +...& = 0iff £ = 0.

3. L= aa—; — 66—;2 on R?. There are nonzero real solutions to o(L,§) = &2 — 55 =0,s0 Lis
not elliptic. L is a hyperbolic differential operator.
4. L = 8‘9—;% + -+ #2_1 on R" is not elliptic.
30.2. Generalization. Let M be an n-dimensional manifold and E and F' be vector bundles
over M of rank e and f, respectively. Then a linear differential operator L : T'(E) — T'(F)

of order m is given locally by

o]
L=)Y" A"‘(x)gxa : C®°(R",R¢) —» C*(R",R/),

la|<m

where A%*(z) is a e X f-matrix-valued function (or alternatively A*(x) € Hom(E,, F;)). The
symbol is
o(L,&) = Y A*(z)E"
|a|=m
We say L is elliptic at x if o(L, &) is invertible at x for all £ # 0 with real coefficients. In
particular, this implies that rk(E) = rk(F).

A more intrinsic interpretation of the symbol: The symbol ¢(L) is a function which
for each & € Ty M defines a linear map o(L,§) : E, — F.

Claim. Let x € M, £ € T;M, and v € E,. Choose f in a neighborhood of x such that
f(x) = 0 and df(z) = &, and choose a section of E near x such that s(x) = v. Then
o(L,€)(v) = L(L;s)|, € E,.
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HW: Check that L(%s) is independent of the choices of f and s.

Examples: Using the claim, it is easy to see the following:
1. If d: Q¥(M) — QFF1 (M), then
o(d, &) : NPT M — AT M,
Wy — 5 N wp-
In fact, if w(x) = wp, then
o(d,&)(wo) = d(fw)(x) = (df ANw+ fdw)(x) = & A wp.

Let e(§) denote the operation of wedging by &.
2. o(d*, &) = £ x e(&)x*.
3. If A is the Laplace-Beltrami operator, then

o(A, &) = £2((=1)"e() * e(§) * + * e(§) * e(¢)).

HW: Show that this indeed simplifies to o(A, £) = £2|£|%. Therefore, A is elliptic.

4. Consider L = % : C — C, given by:

o _1(9 _ .9
5z 2\0z  'oy)’

where we have identified C ~ R? via 2z = (v = Re(z),y = Im(2)). o(L,&) is an
isomorphism for all £ # 0, so L is elliptic.

30.3. Elliptic complexes. We can further generalize the notion of ellipticity. We say a
complex

E0oT(E)BTE)S ...
with D? = 0 is elliptic if for each & € T M, the associated symbol sequence

0 — By, 28 B, 29

is an exact sequence of vector spaces.

HW: Verify that the de Rham complex

0 QM) -5 Q' (M) L ...

is an elliptic complex.

If we write 0 = DD* + D*D, then Hodge theory works for £, i.e.,
H*(E) = #HM(E),

where the right-hand side is the set of solutions to O : ['(Ey) — T'(Ej).
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31. THE BAsIC ESTIMATE
We return to the torus 7™. The goal today is to prove the following theorem:
Theorem 31.1 (Basic Estimate). Let L = -, a®(2) =% be a linear elliptic operator of

ox™

order | on T™ with a®(xz) € C*(T"), and let s be an integer. Then, given f € Hg,;, we have

[/ lls0 < CUILSs + 11115,
where C does not depend on f.

We may intuitively think of the purpose of the Basic Estimate as follows:

1. Apart from the term ||f||s on the right-hand side, the estimate says that L™' is a
bounded operator.

2. If Lf =0, then ||f||st: < C||f||s. Roughly speaking, this says that if f € Hy, then
f € Hqy;. Hence the Basic Estimate allows us to ‘improve’ on the smoothness.

These ideas will be made more precise in later lectures.

31.1. Preliminaries. We gather some lemmas which is needed in the proof of the Basic
Estimate.

Lemma 31.2. Suppose a € C®°(T™). Then for all integers s, given f € C*(T"), we have:

laflls < Clalcoll flls + C'll flls-1,
where C does not depend on a but C' does. Here C and C' do not depend on f.

Proof. Suppose s is a positive integer. Then
laflls < C Y IID*(af)llo,
e/ <s
using the equivalence of the norms | - [|s and >_ ., [|D® - [lo. Now, since
D*(af) = a(D®f) + expression involving lower order derivatives of f,

we have
laflls < Clalco Y ID*fllo+C" > 1D*fllo,
laj=s la|<s

which proves the lemma for s positive.
Now, if s is negative integer, by using the operator A®* we try to get back to the case
already considered.

lafll} = (aA A% f,A%af),

— (A—QS(GAQSf)’AQSaf)O - Z a® D AQS]L" A2saf ,

|a|<—2s 0
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by switching the order of integration. Next,
(A_2S(G,A25f),A2saf)0 — (aAQSf, AQSa/f)—s

< laA® fll-slA%af -

< (Claleollflls + I flls=0) e f [ls-
On the other hand, for |a| < —2s,

(a*D*(A* ), A*af)o la*D*(A* FIIs 1A% af|-s

C,||A25f||s+\oe|||af||5
C'||A2Sf||,s,1||af||s
C'lI flls=llafls-

Dividing both sides by ||af||s gives the desired inequality. O

VAN VAN VANRPVAN

Corollary 31.3. Let a € C®°(T™). Then the multiplication f — af is a bounded map
H, — H,.

Lemma 31.4 (Peter-Paul Inequality). If r < s < t, then ||f|ls < el|fllt + C||fl|- for all
f € H;. Here ¢ is arbitrarily small.

Proof. Follows from the inequality:
(L4 1) <e+[g) T +C,

provided we are allowed to take C very large. 0

31.2. Proof of the Basic Estimate. We will do this in steps.
3121 L=A= 25+ + 2. Then
(L+EP IO = (1+ €)1+ 20l + [¢1)IF (€)1
= C(A+[EP’IFEOP + 1+ EP)IEl )

Summing over £, we obtain
£ 1542 < CULLIG + AR < CULAl + 1L£115)*.

This implies that:
[lls+2 < CUILAAls + 11 £1]s)-
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31.2.2. L 1s elliptic with constant coefficients and without lower order terms. In other words,
L=3% = a®5Z: with a® constant. Then the symbol o(L, &) = > jaj=1 @*€* is a homogeneous
polynomial in &,...,&, and is never zero, provided £ # 0. Hence, on the (n — 1)-sphere
€] = 1, o(L,€) is bounded below by some C' > 0 by compactness. The homogeneity of
o(L, &) implies that:
lo(L,&)| > Clef
for all £ # 0 in R". Therefore we have:
A+ < A+ EP A+l +elelt +- -+ €
< COA+EP) (1 +1E7) <CO+EP)?(1+ lo(L,)]?).

2

Finally, multiplying by |f(€)? and summing over ¢ gives us the desired inequality.

31.2.3. General L; f with small support. We will prove the Basic Estimate for f with small
support near zo € T™. Then we ‘freeze’ L at z to obtain Ly = Y- a®(9)52. Hence L — Lo
has highest order coefficients which are bounded by a small e. Now, we have:

(7) [flls+e < CULoSls + [1.£]]s)
(8) < CUILAls + [IKE = Lo) flls + [1f1]s)-
Using Lemma 31.2,

(L = Lo) flls < ellflls+1 + ClIf lls+e-1,

where ¢ can be made arbitrarily small. Using the Peter-Paul inequality to ‘tame’ || f||s41—1 <
el fllsw: + Cl| fl|s and moving 2C¢||f||ss: to the left-hand side of Equation 7, we obtain the
desired inequality.

31.2.4. General L and f. Cover T™ with small balls U; centered about z1,...,z;. Choose a
partition of unity {¢;} subordinate to U;. Then:

flls+: = | Z¢if||s+l < Z ldi f s+
< OZ(llL(¢if)||s+||¢if||s)
< CZ(II@-L(f)IIs +[I[L, #a] fls + [|Diflls)-

Now, using Lemma 31.2, the fact that [L, ¢;] is a differential operator of order [ — 1, and the
Peter-Paul inequality, we obtain

[fllse < CULS s + 11 £1]s)-
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32. REGULARITY

We are still working on the torus 7". Let L be an elliptic differential operator C*°(7T") —
C®(T™) of order . Recall the Basic Estimate: given f € H,.;, we have:

[ lls+ < CULSs + [1£115)-
Today we prove one consequence, namely the following:
Theorem 32.1 (Elliptic Regularity). If g € H; and f € Hy satisfies Lf = g, then f € Hyyy.
Usually we start with f € H; with s < ¢+ and bootstrap up to f € Hy,;. In particular,
Corollary 32.2. If f € H, satisfies Lf =0, then f € C'.

Proof. Since 0 € C®, it is in all H;. Therefore, f € H,y; for all s, and is in C* by the
Sobolev Embedding Theorem. O

32.1. Difference quotients. In order to ‘improve’ the differentiability of a function, we
use the method of difference quotients. Given f € H,, define the difference quotient

flz+h) = f(=z)

Id ’
where h € T is nonzero. The difference quotient is intended to be a substitute for actually
taking derivatives.

Apf =

We compute

fla+n)©) = | fla+h)e >z = TR f(g).
Tn
This show that the difference quotient A, f is also in H,. Now,
627ri§-h -1

Anf(€) = —r 1@

Lemma 32.3. ||Axf|ls < C||f||s+1, where C does not depend on h.

Proof. Follows from:

2miEh _ 1 ‘2 _ (cos(2m€ - h) — 1)% +sin®(27€ - h)
) B |h|?
2 —2cos(2mE - h)  4sin®(w€ - h)
P T AP
= 4|n¢]* < Cl¢)?
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Lemma 32.4. Suppose f € Hy. If for all h # 0, ||Anflls < C (C independent of h), then
f € Hs—|—1-

Proof. Let h = (0,...,h;,...,0), where h; is in the ith position. Then, as h; — 0, we have

e — 1% |2mg;hy|? _
- ﬁ

212
Therefore, since
e2mith _ 2
>+ T fE)F <C,
lEl<N
we obtain X
>+ EPrlErifer < e,
lEI<N
and finally
A+ EPFIAEP <O+ I
EI<N
This implies that the partial sums converge to f in H U

32.2. Proof of regularity. We now prove the regularity theorem. It will be shown that if
fe€H;and g=Lf € H, 1, then f € Hy,;.

9 NAwflls < CULARls—i + |Anflls—2)

(10) < o (et [FEED=E e m]  panfla)
s—l

by noting that

_ L(z+h)f(xr+h) — L(z)f(x + h) +L(ALS)

I '

Now, W is uniformly bounded, so
(1) =S pae )| <l =l
Also, by Lemma 32.3,
(12) [ARL) s—t < CILS|s=141,

(13) 1A flls=t < Clflls—t42 < CIIE -
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Combining Equations 11, 12, and 13 with Equation 9, we obtain an upper bound for ||Ap, f||s
which is independent of h. Finally, by Lemma 32.4, f € H,,;.



NOTES FOR MATH 535B: DIFFERENTIAL GEOMETRY 69

33. GLOBALIZATION

At this point we remark that everything we did so far for H(7™) applies to vector-valued
functions on the torus, i.e., to Hy(T™,C"). (Try to go back and check some of the lemmas
or theorems!)

Today we deal with an arbitrary elliptic differential operator L : ['(M; E) — I'(M; F'), where
M is a compact manifold without boundary, and E, F' are vector bundles over M of (the
same) rank r. For explicit details, you may go see the Appendix on linear elliptic PDE’s in
the book Complex Manifolds and Deformation of Complex Structures by Kodaira.

33.1. Definition of H,(M; E). We define the Sobolev spaces of sections of a vector bundle.
The definition will depend on several noncanonical choices. First pick a fiberwise inner
product (,) on E. Then F — M admits a local trivialization U x C" — U (first projection)
where (, ) becomes the standard Hermitian inner product on C". Cover M with finitely many
sufficiently small balls U; which admit the local trivializations, and let {¢;} be a partition
of unity subordinate to {U;}. Take a diffeomorphism V¥, : U; — T™ onto its image, i.e., graft
U; into T™. (For convenience we assume that ¥; extends to a diffecomorphism of the closure
closure U; onto its image in T™.) ¢;n has support inside U;, and we denote by (¢;n) o v !
the map 7™ — C" which equals (¢;n) o ¥ on ¥(U;) and is zero on T" — ¥ (U;). We define
a global section 17 of E — M to be in H (M; E) if (¢;n) o ¥, € Hy(T™, C") for all 4.
Moreover, since n = ). ¢;n, we define:

Inlls = Z l(im) © T -

Remark: The Sobolev s-norm depends on the choices made above: (1) the fiberwise inner
product, (2) the open cover and partition of unity, and (3) the grafting diffeomorphism
¥;. However, as we will see, two Sobolev s-norms ||n||s and ||n]|}, obtained from different
choices of (1), (2), and (3), are equivalent, i.e., there exist nonzero constants ¢, C' such that

clinlls < linlls < Clinlls-

(1) Choice of inner product. Two inner products on U; x C" differ by a positive definite
Hermitian matrix-valued function A on U; (i.e., the fiberwise inner products are (-,-) vs.
(-, A)). Now, ||(¢in) o ¥;||" and ||(¢in) o ¥;!||s (which differ only by A and have the same
(2) and (3)) are equivalent for the same reason that multiplication by a smooth function a
is a bounded map H, — H,.

(2) Choice of open cover and partition of unity. Consider partitions of unity {¢;} on {U;}
and {1;} on {V;}. We show the equivalence of _, [[¢in||s and >, [[4;nl|s. Here we write ¢;n
to stand for (¢;n) o =L, etc. We have:

lganlls = 11D dibimlls <D lldiwbmlls < Cllanlls,
J (]
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where the last inequality follows from the boundedness of multiplication by a smooth func-
tion. This shows that the norms given by {¢;}, {U;} and {¢;¢,;},{U; NV} are equivalent.
The norms for 1; and ¢;1; are also equivalent, so ), [|¢:in||s and >_; [|4h;n]|s are equivalent.

(3) Choice of diffeomorphism ¥,;. Two diffeomorphisms ¥;, ¥’ : U; — T™ differ by a diffeo-
morphism @ : T — T™ such that ® o U; = ¥;. Then
[ ome @y pae= [ 6mev,tor P,
T'ﬂ n

and comparing with
/ (i) 0 Ut o & Pldd"|di = / (i) o U7 P,
n T’ﬂ

we see that the two norms ||(¢;n) o U, and ||(¢n) o (¥))7!||s are equivalent.

33.2. Properties of H,(M; E). All the standard properties of Sobolev spaces (for example
the Sobolev embedding theorem, the Rellich lemma, and difference quotients) carry over to
the situation of sections of vector bundles. Here we will derive the global version of the Basic
Estimate. Let L be an elliptic differential operator of order I. Then

17lls+1 < CULAlls + [Inlls)-
Writing ¢;n to stand for (¢;n) o U=, we compute:

llsse =D lidimlls

< CY (@)l + lldanlls)
< O (leLa)lls + 1L, dilnlls + lldimls)
< C(ILalls + lInlls+i-r + lInlls),

where the commutator [L, ¢;] is a differential operator of order [ — 1. (Check this!) Now,
using the Peter-Paul inequality, ||n||s+i—1 < €[|9]|s+1 + C'||nl|s, and choosing e sufficiently
small, we can bring Ce||n||s+: to the left-hand side to obtain the desired Basic Estimate.
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34. ELLIPTIC OPERATORS ARE FREDHOLM

A bounded linear operator L : V' — W between Banach spaces is Fredholm if ker(L) is
finite-dimensional and I'm(L) is a closed subspace of finite codimension. Today’s lecture is
devoted to the proof of the following theorem:

Theorem 34.1. Let s be a nonnegative integer and let L be an elliptic differential operator
I'(M;E) — T'(M; F) of order . Then L : Hyyy — Hy is a Fredholm operator.

HW: Verify that Theorem 34.1 implies the Hodge Decomposition Thereom.

Note that L is bounded from the standard properties of Sobolev spaces. Recall the Basic
Estimate:

[7lls+0 < CULnlls + [1nll5)-
Also recall the following:

Theorem 34.2 (Regularity). If n € H; for some s and Ln =0, then L € C™.
We now prove the first part of the Fredholm theory.
Theorem 34.3. ker(L) C Hyy; is finite-dimensional.

Proof. Take the unit ball of ker(L) viewed as C H,. Then if ker(L) is oo-dimensional, there
exists a sequence 7,72, ... in ker(L), where (7;,7;)s = d;;. By the Basic Estimate, ||7;||s+
is bounded for all 2. Now, by the Rellich Lemma, H,,; — H; is compact, so 7;,... has a
convergent, subsequence in H,, which is a contradiction. 0

Combined with the elliptic regularity, this shows that the kernel of L : I'(M; E) — I'(M; F)
is finite-dimensional.

Theorem 34.4. Im(L) C H, is closed and Im(L) = (ker(L*))* N H,.

Here L refers to L2-orthgonality — this means we have fixed a fiberwise inner product.
Also, L* is the formal adjoint of L, i.e., it is a linear differential operator which satisfies
(Lo, )0 = (¢, L*9)o for all ¢, € C®. It is left to the reader to verify that if L is of order
[, then L* is of order [, and if L is elliptic, then L* is elliptic. (Moreover, o(L*,§) is the
adjoint of o(L, £) as fiberwise linear maps.) Also note that the Laplace-Beltrami operator is
self-adjoint, i.e., A* = A.

Proof. If 1p € Im(L) (¢ = L¢) and w € ker(L*), then

(w,w)o = (L¢1w)0 = (¢7 L*w)O =

so ¥ € (ker(L*))t. Note that elements of ker(L*) are smooth and ker(L*) is finite-
dimensional since L* is elliptic.
To prove the converse, we start with the following lemma:
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Lemma 34.5. If ¢ € (ker(L*))* N Hyyy, then ||¢||ss0 < C||L*¢||s for some constant C
which does not depend of 1.

Proof of lemma. We argue by contradiction. Suppose there exists a sequence v; € Hy ;N
(ker(L*))* such that L*; — 0 in Hj, yet ||¢;]|s4; = 1. By the Rellich Lemma, there exists
a Cauchy subsequence which we still call ¥; in H,. Now, according to the Basic Estimate,

1% = Wjllstr < CUIL i — L79hjlls + [lvbi — 5l5),

where the right-hand side approaches zero. Hence t¢; — 1 in H,,;. Since (ker(L*))* is
closed, 1 € (ker(L*)):. However, we also have L*; — L*1) in H,, i.e., L*¢) = 0. Hence
® = 0. This is a contradiction since we cannot have 1; — 1 = 0, all the while ||¢};||s+; = 1.
Ul

Proof of Theorem 34.1 to be continued next time....
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35. DAy 35

35.1. Completion of proof of Thereom 34.1. Recall that L : H,,; — H; is an elliptic
operator of order [. We want show that Im(L) D (ker(L*))* N H,. Let v € (ker(L*))*NH,.

Strategy: First show that there exists a solution L(L,) = ¢ where L, is in some H; for
t << 0. Then, using elliptic regularity, show that £, € H, ;.

We proved that:
Lemma 35.1. If n € (ker(L*))* N Hyyy, then ||n|| < C||L*n]|:-

The solution £, we are looking for is a bounded linear functional on some H;. Since H; and
H_; are duals, this implies that £, € H_;. We define

‘C’Tﬁ : L*77 = (1/]7 77)07
where 7 € C is a test function. L, is well-defined: suppose 7,1’ both satisfy L*n = L*n
Then L*(n—n') =0, n—n' € ker(L*), and (¢, — n')o = 0 since ¥ € (ker(L*))*.
Using Lemma 35.1, we obtain

[Ly (L )| = (¥, m)o| < [[¥ll-ilInll: < ClILnlfo-

Therefore, Ly is a bounded linear functional on HyNIm(L*). Now, using the Hahn-Banach
theorem, we can extend L, to a bounded linear functional on all of Hy; by duality, £, € H,.
For test functions n € C'°,

!/

(L(Ly),m)o = (Ly, L*n)o = (¥, n)o-
This shows that L(L,) = 1 as elements in H_;. Since ¢ € H,, by elliptic regularity,
Ly € Hyyy. Hence ¢ € Im(L) C H,. O

We have proved:

Theorem 35.2. L: H,,; — H; is Fredholm.

Let us specialize to the case where L = A, the Laplace-Beltrami operator. Noting that
A* = A, we have A(H,(Q¥(M))) = (ker(A))* N H,(QF(M)). Passing to the C™ limit, we
have the Hodge Decomposition Theorem:

QF (M) = A(QF(M)) & H*.

35.2. Green’s operator. Let Il : QF(M) — H* be the orthogonal projection onto H*.
We define the Green’s operator G : H (Q0¥(M)) — H,zyo(2%(M)) as the map which sends
a +— w, where Aw = o — () and w is the unique element in (#¥)+. The Hodge Decompo-
sition Theorem implies that there exists an w, and the uniqueness is due to the fact we are
restricting to (H*)+. G| is a bounded inverse to AL, since

[wlls+2 < CllAw];,

for w € (H*)+ N H,2(Q%(M)), by Lemma 35.1.
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36. YANG-MILLS EQUATIONS

36.1. Electromagnetism. Let us write down Maxwell’s equations in a vacuum on R*:
1.VXE+2B=0,
2.VxB-2E=0,

3. V.-B =0,
4. V-E =0.
Here B = (B,, By, B,) and E = (E,, E,, E,).
If we write
F = Bgdy ANdz+ Bydz N dzx + B,dzx N\ dy
+Eydx ANdt + Eydy A dt + E,dz A dt,
then

*F' = Bgdzx Ndt + Bydy A\ dt + B,dz N\ dt
—Eydy Ndz — Eydz A dx — E,dx A dy,

The sign discrepancy arises from using the Hodge star with respect to the Minkowski metric
g = dt? — dz? — dy* — dz*. (Here, on an n-manifold, xe; A ---Aex =11 ... qkepi1 A=+~ Aey
if (e1,...,e,) is an oriented orthonormal basis and g(e;,e;) = n; = £1.) Then Maxwell’s
equations become

dFF =0,d"F = 0.

Therefore, electromagnetism on a manifold is the same as Hodge theory on M.

Also note that there exists a potential function A such that F' = dA, which combines the
electromagnetic potential for £ and the vector potential for B.

36.2. Yang-Mills Functional. In view of the above and the fact that in Hodge theory we
are looking for critical points of the functional

/ w A *w,
M

we can generalize to the setting that we now describe. Let P — M be a principal G-bundle
and A(P) be the space of connections on P. Here we will conveniently take G to be a matrix
Lie group. Then we define

YM: A(P) —» R,

A|—>/ tT(FA/\*FA).
M

We now compute the derivative map. Although A(P) is an infinite-dimensional space,
undaunted, we compute:

d d
%FA—I—mhzO = %(d(A +tn)+ (A+tn) A(A+tn)l=o=dn+nANA+AAND=V4n.

Here we used the definition V40 = dn + [A, 7).
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Now, we compute the critical points of the Yang-Mills functional:

SYM(A)(n) = /Mtr(VAn A *F4) +tr(Fa A *Van)

= 2/ tr(Van A xFy),
M

and since
dir(n AN *Fy) =tr(Van A*Fy) —tr(n AV * Fy),
we integrate by parts to get that V4 x Fl4 = 0. We also have V 4F4 = 0 (this is the Bianchi
identity). Therefore, Hodge theory in this context is
VaiF, =0,
Vi Fa=0.

36.3. Yang-Mills moduli spaces. We define the Yang-Mills moduli space as follows:
M(P) = {A € .A(P)|VAFA = O,VZFA = 0}/Q(P),

where G(P) is the gauge group (the group of bundle automorphisms). This turns out to be a
finite-dimensional space, but not necessarily a manifold, since you have quotient singularities.

Example: Let G = S' and identify g = ‘R. Then we view A(P) ~ Q'(M;7iR) (non-
canonical identification — depends on a choice of fixed connection). We have F4 = dA, since
ANA = 0. Also, we may identify G(P) = Map(M, S'). [Recall that G(P) is the set of maps
¢ : P — G for which ¢(pg) = g '¢(p)g. If G = S*, then ¢ is constant on each fiber, and can
be pushed down to M.]

We have:

M(P) ={A € Q" (M;iR)|dFs = 0,d* Fo = 0}/Map(M, S").

This implies that F is harmonic. However, Fy = dA, and since dQ! 1 H?, we have Fy = 0.
Thus,

M(P) = 2 (M;iR)/Map(M, S"),
where Z'(M;iR) is the space of closed 1-forms (with values in iR).

Next we analyze Map(M, S'). First, suppose g € Map(M, S') can be lifted to ¢ : M — R,
namely, g = €. Since the action of G(P) is given by:

A g7t Ag+ g ldg = A+ g™ dy,
and g~'dg = idp, M(P) is a quotient of Z'(M;iR)/dQ°(M;iR) = H'(M;iR).
Now, from algebraic topology we have:

Claim. If [M, S'] is the space of homotopy classes of maps from M to S', then [M,S'] ~
HY(M;Z).
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It is also easy to see that the maps which are liftable to ¢ : M — R are precisely the ones
in the class 0 € H'(M;Z). Therefore,

M(P)~ H'(M;R)/H"(M;Z).

In other words, the moduli space is a torus of dimension dim H*(M;R).
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37. Day 37

37.1. Anti-self-dual moduli spaces. Let M be a 4-manifold, G be a matrix Lie group
(such as SU(2)), P — M be a principal G-bundle, and A(P) be the space of connections.
Recall the Yang-Mills equations:

VaFy =0,V F4 =0.

In dimension 4, the star operator * : /\2 T*M — /\2 T*M has the property that 2 = 1.

Hence we can decompose A\’ T*M into +1 eigenspaces, i.e., A" = AT @ A~, where A has
rank three. We say w is self-dual (SD) if *w = w and anti-self-dual (ASD) if *w = —w.

HW: Write down a basis for A, at the point € M. Do the same for A .
We define the ASD moduli space:
Musp(P) = {A € A(P) irreducible and ASD}/G(P).

Here ASD means that xFy = —F)4, and a connection is irreducible if the holonomy group
is all of G. Observe that since V4F4 = 0 is the Bianchi identity, *xF4 = —F4 implies that
Vax F4q = 0. It is also not hard to see that the elements of the ASD moduli space minimize
the Yang-Mills functional.

M 4sp(P) is usually not compact. Therefore we must compactify to get Magsp(P). Co-
homology classes in H*(M 45p(P)) are the so-called Donaldson invariants. They distinguish
some 4-manifolds which are homeomorphic but not diffeomorphic!

37.2. Morse theory introduction. For Morse theory, please refer to Milnor’s Morse The-
ory for a wonderful account. We make a few preliminary definitions. Let M be a manifold
and f : M — R be a smooth map. Then p € M is a critical point of f if df(p) = 0.
A critical point p is nondegenerate if the Hessian ( 6226’; -
chosen coordinates x1,...,z, about p. The index of a nondegenerate critical point is the
number of negative eigenvalues when the Hessian is diagonalized. It is not hard to see that
the Hessian remains nondegenerate under a change of coordinates, and the index does not
depend on the choice of coordinates.
We look at the following motivating example:

(p)) is nonsingular. Here we have

Motivating Example: Consider the situation as in Figure 1. Here the function f : M — R
is a height function (say height in the z-direction). Then the critical points of f are p,q,r, s.
We study M! = f~1((—oo,t]) for regular values a, b, c given in Figure 1. Figure 2 gives the
sequence of modifications as we go from M? to M® to M¢ to the whole M.

Let ¢* be a k-cell, i.e., a closed ball of dimension k. Then, homotopically, to get from M?®
to M® we attach a 1-cell e! onto M® along de', and similarly for M, to M, we attach e’
along de'. Also, from M€ to M, we attach e? along de?>. (We can also think of the process
of getting from () to M? as attaching e°.)
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f(s)

(r)

f(a)

f(p)

FIGURE 2

Now observe that near p, f(z,y) can be written as f(p) + 22 + %> (with p = (0,0)).
Similarly, near ¢ and r, f(z,y) = f(p) + 2? — v?, and, near s, f(z,y) = f(p) — 2? — y*
Therefore to get past each critical point we are attaching a k-cell, where & is the index of
the Hessian at the critical point.

Next time, we make some of these ideas more precise.
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38. MORSE FUNCTIONS

Many assertions today will not be proven carefully. You are referred to Milnor’s Morse
Theory.

Lemma 38.1. Let p be a nondegenerate critical point of f. Then there exist local coordinates
Y1, ..., Yn near p = 0 such that

F=F0) =y = — i+ Yo+
Proof. Proof omitted. 0

Definition 38.2. A function f: M — R is a Morse function if

1. f is proper, i.e., f1(K) is compact if K is compact, and
2. the critical points of f are nondegenerate.

We will also assume for convenience that Morse functions also have the following property:
(3) for each critical value there is a unique critical point. (Note that this is usually not
included in the definition of a Morse function.) Recall that ¢ € R is a critical value if f~1(t)
contains a critical point.

Theorem 38.3. Every compact manifold without boundary admits a Morse function. (In
fact, Morse functions are “dense” in the space of smooth functions.)

Proof. The proof relies on transversality theory and Sard’s Theorem. For an elementary
proof, see Guillemin-Pollack, Differential Topology. Il

Let M' = f~'((—o0,1]). Then we have:

Proposition 38.4. Suppose a < b. If there are no critical points of f on f~'([a,b]), then
M?¢ is diffeomorphic to MP.

Proof. We will show that M, is a deformation retract of M, and a slight modification of
the vector field involved will give the desired diffeomorphism. Consider the vector field V f
defined by

(V1Y) =df(Y),
pointwise, where (,) is the Riemannian metric. (Basically, Vf is the dual of df given by
TM = T*M induced from the Riemannian metric.) Vf is called the gradient of f.
Notice that Vf # 0 on all of f~'([a,b]) since df(Vf) = (Vf,Vf) = ||Vf||?, which is

nonzero unless df = 0. Then set X = —qﬁ(x)%, where ¢(z) = 1 on f~*([a,b]) and has

support on f~!([a—¢,b]). Then df(X) = —1 on f~([a,b]). X is complete vector field whose
time (b — a)-flow maps f~1(b) diffeomorphically onto f~!(a) and M® diffeomorphically onto
M. U
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Therefore it remains to see what happens as you go from M ¢ to M°*¢, if ¢ is a critical
value of f.

Proposition 38.5. Let f : M — R be a Morse function and let ¢ € R be a critical value of
[ with corresponding critical point p € f~1(c) of index k. Then, for sufficiently small ¢ > 0,
M€t has the homotopy type of M¢ ¢ with a k-cell attached.

Sketch of proof. By the Morse Lemma, we can write f = f(p) —yi—---—y} —I—y,%“ +ety2
near the critical p. Now look at Figure 3, which is a diagram of M near p. It is not difficult
to see that M¢*¢ is obtained by attaching a D*¥ x D" * onto M¢ ¢ along (0D*) x D" ¥
as can be seen by Figure 3. Homotopically, this is the same as attaching D* along 0D*.
The shaded region on the right-hand side diagram is the D* x D"7*. To get that M°** is
diffeomorphic to M¢~¢ U (D*¥ x D"=¥) (after rounding corners), we use the flow X which has
been slightly modified near p as in the figure. O

Yied - Yk

N>

—

24

f=c+e

f=c-¢

¥1...¥k

_,,
1
o

FIGURE 3
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39. THE MORSE INEQUALITIES

Let M be a compact manifold without boundary (usually such a manifold is called
“closed”) and f : M — R be a Morse function. Define M* = f~1((—o0,t]). Suppose
o < ¢ < -+ < ¢, €R are the critical values with corresponding critical points p; € M.
Last time we showed the following:

e If there are no critical values on [t,#'], then M* is diffeomorphic to M v
e If p; is a critical point of index k;, then M¢*¢ has the homotopy type of M¢~¢ with a
k;-cell attached.

Now, in order to reconstruct the homology of M, we use the following two results from
algebraic topology (we will use R coefficients):

1. (Relative homology sequence)

cov o H(MS¢) = Hj(M%) — Hy(Me, M%) S H, (M%) — ..

2. (Excision)
Hj(Mci+e’Mci—s) — Hj(Mci—s U eki’ Mci—s)
= H;(e", 0e*)
_ { R ifj =k,
=10 ifj#k
Hence, H;(M%~¢) = H;(M%*¢) unless j = k; or j = k; — 1, and
0 — Hy, (M%) = Hy (M%) = Hy, (M5, M%~%) = R —
B Hy, (M%) = Hy, (M%) = 0.

Now, there are two cases:
o If 0 # 0, then
dim Hy, (M%) = dim Hy, (M),
dim Hy, (M%) — 1 = dim Hy,_,(M%*%).
o If 0 =0, then
dim Hkl (Mciis) +1=dim Hki (MCH—E),
dim Hy, 1(M% ®) = dim Hy, (M%*®).
Let b; = dim H;(M;R) and ¢; = # critical points of index j. We then have the following:
Theorem 39.1 (Morse Inequalities, Weak Form). b; < ¢;.
The above algebraic topology computation actually yields a better result. Set b(t) =
>, bjt/ (this is called the Poincaré polynomial) and c(t) = 3 ¢;t. Then
Theorem 39.2 (Morse Inequalities, Strong Form). ¢(t) — b(t) = P(t)(1 +t), where P(t) is
a polynomial with nonnegative integer coefficients.

Corollary 39.3. The Euler characteristic ) ;(—1)7b; equals Y (—1)’¢;.
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40. MORSE THEORY FROM A MODERN VIEWPOINT

Today we will reinterpret Morse theory from a more modern perspective. References
for this material are Milnor, Lectures on the h-cobordism Theorem, and Schwarz, Morse
Homology.

Let M be a closed manifold and f : M — R be a Morse function. Let C(f) be the set of
critical points of f, and V f be the gradient of f (with respect to some Riemannian metric).

The goal is to define a chain complex (called the Morse complezx) (C., 0) out of the critical
point data whose homology is H,(M;R). We define C; to be the R-vector space spanned
by the index i critical points. In order to define the boundary map 0, we consider flow lines
of a generic —V f which begin and end at critical points. More precisely, we are looking for
maps u : R — M which satisfy:

% =—VI(u®),
lim; , U(t) =D
limt—)oo U(t) =q,

where p,q € C(f). Given p € C(f) of index i, we define
Op = Z (# flow lines from p to q) ¢,
q of index 7 — 1

where the number of flow lines from p to ¢ is counted with sign. We will not say more about
how the sign is computed (see Schwarz’s book), but simply note that if we wanted to do
homology with Z/2Z coefficients, then we don’t have to worry about signs.

We will give examples of computations of H,(M;R).

1. Consider the left-hand side diagram of Figure 4. There are 4 critical points, p, q,r,s. We
“compute” 0s. s has index 2 and there are 2 flow lines to r and 2 flow lines to g. Since
the flow lines emanate from s in opposite directions, the flow lines from s to r are assigned
opposite signs; similarly for g. Therefore, ds = 0. Similarly, 0r = 0¢ = 0. Hence,

0—>Cy —>C; —Cy—0,
is given by:
0R=R{s} BR2=R{r,¢} 3R=R{p} -0,
where 0y = 0; = 0. Therefore, the homology of the Morse complex is:
Hy(M) =R, H (M) = R* Hy(M) = R.

2. Consider the right-hand side diagram of Figure 4. There are now 6 critical points,
p,q,7,8,t,u. The Morse complex is:

0— R?=R{u,s} 3 R* =R{t,r,q} 3 R=R{p} -0,
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FIGURE 4

where 0ys = t, O;u = t, and the other boundary maps are zero. Therefore,
Hy(M) =ker0, = R{s —u} =R,
H, (M) =ker 0;/Im 9, = R{t,r,q}/R{t} = R?
Hy(M) =R.

83
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41. WITTEN’S APPROACH TO MORSE THEORY

Today we give a rather informal account of Witten’s paper Supersymmetry and Morse
theory, J. Differential Geom. 17 (1982), 661-692.

41.1. “Twisted” de Rham complex. Let M be a closed, oriented n-dimensional manifold
and f : M — R a Morse function. We define the twisted de Rham operator d; = e "/ odoe!/,
where ¢ € R. Note that dy is the usual exterior derivative d. Our goal is to try to understand
the behavior of d; as t — +o0.

It is easy to verify that (2*(M), d,)

0— QM) B Q' (M) % 02(M) & ..,

is a chain complex:
d? = (e de) (e de) = e @t = 0.

Lemma 41.1. H*(Q (M), d;) ~ H*(M;R).

Proof. The isomorphism Qf(M) — Qf(M) given by w — e w maps the d-closed forms
isomorphically onto the d;-closed forms and the d-exact forms onto the d;-exact forms. [

Now let g be a Riemannian metric on M and * be the corresponding star operator.
Lemma 41.2. The adjoint d of d* is e/ o d* o e/,
Note: d} is NOT e/ od* oel/.

Proof.
(di, B)2 = (e 7tfd( g @), )
= (d(’a),e p)
= (Ma,d*(e7p))
= (a,e’d*(e7p)),
so we have df = et/ od*oe V. O

We define Ay = d; o d} + d;d;, and denote by H! the kernel of A, : Q'(M) — Q' (M).

Lemma 41.3. diw = dw + tdt Aw and djw = d*w + tiyyw. Here, V f is the gradient of f,
i.€., the dual to df under the metric g, and ix s the interior product with X.

Proof. We compute
dw = e Yd(ew) = e (e tdf Aw + e dw) = dw + tdf A w.
For d}, it suffices to note that wedging with df is the adjoint of contracting with V f. O
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Lemma 41.3 indicates that the symbols for d and d; are the same, and hence d; is an
elliptic complez.

Proposition 41.4. H: ~ H*(Q'(M),d;) ~ H*(M;R).

Proof. This follows from the discussion on the elliptic complex, namely that for the complex
(2(M), dy), the corresponding cohomology H®(2*(M), d;) is equal to H!, the kernel of (I =
did; + d;d;. The second isomorphism comes from Lemma 41.1. O

The following can be computed (computation omitted):

Proposition 41.5. For the flat metric,

af\* 8% f
14 Ay=A++¢ — t :e).
(14 =ave Y (3l) - > Gyl
Here, A = — Z, amQ , {e1, ..., en} is an orthonormal basis for TxM, and, in the commutator

[-,-], e; is wedging with e; and e} is interior product with the dual of e;.

The term 2 ), ((9 )2 in Equatlon 14 represents the potential energy V(x), and, for ¢ >> 0,

V(z) >> 0 except When = 0 for all 7, i.e., near a critical point of f. Near a critical point
pof f, we write f = f(p ) + 2> aa?, and then A; has the form:

(15) Z—-i—tQZa?ac?-i-tZai[ef,ei].

The first two terms of Equation 15 constitutes the harmonic oscillator, which we now
briefly review.

41.2. Harmonic oscillators. Consider the harmonic oscillator on R given by H = —% +
k?z%, where k € R. Using the creation and annihilation operators

d
= + kx (annihilation),

a* = —— + kx (creation),

dz
we compute the eigenfunctions ¢ and corresponding eigenvalues .

Theorem 41.6. L?(R) = DN —oVr(1+2n)- Here, the eigenspace Vi(112n) corresponding to the
eigenvalue k(1 + 2N) is 1-dimensional and is spanned by

(a*)Ne””z/Q.
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For a discussion of the harmonic oscillator, refer to any quantum mechanics textbook, for
example Liboft, Introductory Quantum Mechanics or Sakurai, Modern Quantum Mechan-
ics. For the L2?-completeness of the eigenfunctions, see Reed & Simon, Methods of Modern
Mathematical Physics.

Since the n harmonic oscillators in Equation 15 are uncoupled, the eigenvalues of A; are
(close to):

tZ [ai|(1+ 2N;) + (£1)a] .

Here £1 are the eigenvalues of [e],e;]. We are now looking to find eigenvalues which are
close to 0. To realize this, we choose the ground state near each critical point, i.e., N; =0
for all 4, and choose the sign of the eigenvalue of [e}, e;| so that the eigenvalue of A; is (close
to) zero. Hence we have:

Proposition 41.7. If we let ﬁ; = {Aw = dw,§ << 1}, then
where the sum s over critical points p of f of indez 1.

Now, since 7-7; may contain “fake” eigenfunctions whose eigenvalues are close to zero but
not exactly zero, we have: _
dimH; > dim H;.
This implies the weak Morse inequalities
# critical points of index 7 > dim H*(M;R).

Witten goes on to compute that d; is precisely the boundary operator from the last lecture
(modulo some normalizing factor) — at this point I do not understand why. Fortunately,
we are out of time!



