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ABSTRACT

We use Elie Cartan's method of equivalence to give a complete classification, in terms of differential
invariants, of second-order ordinary differential equations admitting Lie groups of fibre-preserving
point symmetries. We then apply our results to the determination of all second-order equations which
are equivalent, under fibre-preserving transformations, to the free particle equation. In addition we
present those equations of Painleve' type which admit a transitive symmetry group. Finally we
determine the symmetry group of some equations of physical interest, such as the Duffing and
Holmes-Rand equations, which arise as models of non-linear oscillators.

1. Introduction

In the present paper, we give a complete classification (based on Elie Cartan's
method of equivalence) of second-order ordinary differential equations,

admitting Lie groups of symmetries of the form

x ° ^ = <j)(x), y o ® = y ( x , y ) . (1.2)

The role played by the symmetry group of a differential equation in its
integration is crucial, as illustrated in the following classical result of Lie [22,23].

Consider a system of n first-order ordinary differential equations

^ = FV,0, (1-3)

and suppose that G is an s -dimensional solvable Lie group of symmetries of (1.3)
acting regularly on s-dimensional orbits. Then the solutions of (1.3) can be found
by quadratures from the solutions of a system of n — s first-order ordinary
differential equations. In particular, if G is n-dimensional, then the general
solution can be found by quadratures alone. (See [23] for some illustrations of
this result.)

In Lecons sur les invariants integraux [6], Cartan points out that Lie groups
were in fact discovered by considering the problem of integrating certain systems
of ordinary differential equations. Indeed, let us associate to (1.3) the Pfaffian
system 2 on Un+1 generated by the n one-forms if : = dxa - Fa{xb, t)dt. Any
function / which is constant on solution curves of 2 (that is, such that df e 2) is
called a first integral, and any differential form constructed from first integrals and
their exterior derivatives is called an invariant form.

Suppose that there exist n non-degenerate infinitesimal symmetries, that is, n
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independent vector fields Xa such that

(1.5)

The one-forms 6a defined by

are invariant generators for 2 [6]. As the exterior derivative of an invariant
differential form is also invariant, one has

dda = \Ca
bc6

b A0C, (1.6)

where the Ca
bc are first integrals.

One now selects a maximal functionally independent set {/\ . . . , / r} from the
functions Ca

bc. As the fA are first integrals, the exterior derivatives dfA may be
expressed in terms of the 6a as

dfA=fAea,

where thefA are further first integrals. By iterating this procedure, one obtains a
functionally independent set {fa\ a = l,..., s} of first integrals such that no
new functionally independent first integral can be obtained by differentiation.
One may now choose as generators for 2 the s one-forms dfa and n-s
complementary one-forms among the da:

X = {df",ei\ <x = l,...,s,i = l,...,n-s}. (1.7)

On the subset M :={/" = Ca\ Ca constant} which we assume to be an
(n — s)-dimensional submanifold, (1.6) reads

dei' = \cjke>A ek, (1.8)

where the C)k are constants.
The set of diffeomorphisms 4> of M which satisfy

3>*0' = 0', (1.9)

forms a group under composition. Furthermore the above equation defines a
completely integrable Pfaffian system and thus it follows from the Frobenius
Theorem that the coordinate functions of O depend on n — s arbitrary constants.
Note that equations (1.8) are nothing but the Maurer-Cartan equations for the
(n — s)-dimensional Lie group whose action preserves the invariant generators &'.

It is important to note that in contrast to Lie's method [22,23] which requires
integrating a system of determining equations in order to obtain the differential
invariants, Cartan's approach produces these differential invariants by means of
differentiations only.

Our paper is organized as follows. In § 2 we state what is meant by a Cartan
equivalence problem and its solution and recall necessary and sufficient conditions
for the collection of maps which solve an equivalence problem to give the local
action of a Lie group on the underlying manifold. In § 3, we recall the main steps
of the solution of the equivalence problem for (1.1) under the pseudo-group of
fibre-preserving point transformations of the form (1.2) as it appears in references
[17] and [18] with some further clarifications which are needed for the symmetry
classification. Section 4 contains the statement of our classification theorems for
second-order ordinary differential equations admitting fibre-preserving point
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symmetries. The possible dimensions for a maximal group of fibre-preserving
point symmetries, namely six, three, two and one, are considered in turn. Given
an equation, our construction gives an adapted co-frame which encodes it as a
differential system and contains the Maurer-Cartan forms for a group isomorphic
to its symmetry group (the reciprocal group [11]). The equivalence class is then
characterized by the numerical values of the constant invariants and the
functional relations between basic, fundamental, and derived invariants. We then
illustrate our results on several examples. We determine and characterize all
second-order ordinary differential equations of Painlev6 type [16] which admit a
transitive (that is, a three- or higher-dimensional) Lie group of fibre-preserving
point symmetries. The problem of characterizing the Painleve transcendents,
which have no non-trivial symmetries for generic values of the parameters on
which they depend, is treated in [19]. We then give a complete solution to the
linearizability problem under fibre-preserving point transformations, improving
the results of Sarlet et al. [26]. We also determine the symmetry group of some
second-order equations of physical importance, such as the Duffing equation [13]
and the Holmes-Rand non-linear oscillator [14], for which we identify sym-
metries that were not known before (more examples will be studied in a
forthcoming work [15].) In Section 5 we prove the classification theorems. As the
calculations are very extensive (they were performed using the University of
Waterloo Maple symbolic system and took about ten hours of CPU time on a
VAX 785) we only give the details of the proof in two cases and indicate the
method used for the other ones without giving intermediary results.

Acknowledgements. This research was supported by a postgraduate scholarship
(L.H.) and an operating grant (N.K.) from the Natural Sciences and Engineering
Research Council of Canada. It is a pleasure to thank Professor W. F. Shadwick
for helpful discussions and Professor G. Tenti for giving us access to his research
computer account.

2. Equivalence problems and Lie group actions

In this section we show that Elie Cartan's method of equivalence provides
necessary and sufficient conditions for a system of differential equations to admit
a Lie group of symmetries. This result will be used in § 4 to classify all
second-order ordinary differential equations admitting Lie groups of fibre-
preserving point symmetries.

For our purposes, the Cartan equivalence problem may be stated as follows
[5,8]. Given two co-frames <Ou and a>v on open subsets U and V of a smooth
n-manifold M and a Lie subgroup G of GL(n, U), determine all diffeomorphisms
0: £/-» Vsuch that

<f>*(bv=g(ou, (2.1)

where g is a G -valued function on U.
In the case of the equivalence problem for differential equations, the co-frames

cou and <bv are formed from the exterior differential systems 2 and 2 associated
with the original and target equations together with their respective independence
conditions, while G is determined from the admissible transformations of the
problem (see § 3).

The solution of the Cartan equivalence problem leads either to the structure
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equations of an {e}-structure or to the structure equations of an infinite Lie
pseudo-group [8,20,21]. In the former case we obtain a co-frame (a>°) and
structure equations

dcoa = \Ca
bcw

b A <oc (2.2)

on UxGx G(1) x ... x G(A°, where (G( 1 ) , . . . , G(Ac)) is the sequence of Abelian
groups arising in the prolongation procedure and a ranges from 1 to N: =
n + dim G + £f=1 dim G(0. The latter case will not be of interest to us as the
equivalence problem for second-order ordinary differential equations under
fibre-preserving point transformations leads to an {e}-structure.

Since the extension O of any equivalence <j> satisfies O*a) = co, it follows that
the structure functions Cbc appearing in (2.2) are invariants, that is,

a^=a, (2.3)
where the Cbc are the corresponding structure functions for cba.

Necessary and sufficient conditions for equivalence are obtained by construct-
ing a maximal set of functionally independent invariants. This can be achieved by
the following procedure. One first chooses a maximal functionally independent
set {Ilf . . . , /v} among the basic invariants Ca

bc. The covariant derivatives Ip[a

defined by
dlp = lpu,coa (2.4)

are also invariants. If all these derived invariants /p|a are functions of the
invariants Ip, there are no new invariants and, by the chain rule, {Ilt . . . ,/v}
forms a maximal functionally independent set of fundamental invariants. Other-
wise, one selects vx > v independent invariants Ix, ..., 7V) among the invariants Ip

and lp\a with the property that all the invariants Ip and /p,fl generated so far are
functions of I1,...,IVl. New invariants are then formed by taking further
covariant derivatives Iqla, where q = \,..., vx. After a finite number / of iterations
one obtains a set {Ilt..., Ir}, where r = v + E'=i v,, of functionally independent
fundamental invariants with the property that no new invariants can be obtained
by taking covariant derivatives Isla, for s = 1,..., r. By the chain rule, the set
{Ix, ..., Ir} is thus maximal and so

Is\a = Fsa(It)> w h e r e 5, t = l, ..., r, a = 1, ...,N. (2.5)

Performing the same operations on <bv, we obtain the following results.

PROPOSITION 2.1. There exists a diffeomorphism <f>: U-*V such that

<p*cbv=g(ou (2.6)

if and only if corresponding constant invariants for (av and (bv have the same
numerical values and Fsa and Fsa are the same functions of their arguments.

Proposition 2.1 thus gives a characterization in terms of differential invariants
of the equivalence classes under the equivalence relation defined by (2.6).

PROPOSITION 2.2. / / the necessary and sufficient conditions of Proposition 2.1 are
satisfied and if N — r=p>0, then the set of diffeomorphisms

O: UxGx G(1) x ... x Gw^> VxGx G(1) x ... x
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which satisfy
®*<b = (o, (2.7)

defines a p-dimensional Lie group of {local) transformations. Conversely, if the set
of diffeomorphisms satisfying (2.7) defines a p-dimensional Lie group of {local)
transformations then N — r=p>0, corresponding constant invariants for coy and
(bv have the same numerical values, and Fsa and Fsa are the same functions of their
arguments.

Propositions 2.1 and 2.2 are proved by using the technique of the graph and the
Frobenius theorem [8,28]. The main lines of the proof can be found in [8].

In the following sections, we apply Elie Cartan's method of equivalence to
obtain generators for the Pfaffian system 2 = {dy -pdx, dp -F{x, y, p)dx)
associated with the second-order ordinary differential equation d2y/dx2 =
F{x, y, dy/dx) which will be invariant under its Lie group of symmetries.

3. The equivalence problem

In this section we recall the main steps of the solution given in [17] to the local
equivalence problem for the equation

&-F(X y &

dxL \ dx

under the first prolongation

p1®: J\U, U)^J\U, U),

<f)x

of fibre-preserving point transformations of the form

4>: J°{U, U)^J°{U, U),

The solutions of (1.1) are curves c in ^{U, U) which satisfy

c*{dy-pdx) = O, (3.1)

c*{dp-F{x,y,p)dx) = O,

where {x, y, p) are the standard jet coordinates on ^{U, U).
Introducing the differential system

Z:={dy-pdx,dp-F{x,y,p)dx} (3.2a)

associated with (1.1), and the differential system

l:={dy-pdx,dp-F{x,y,p)dx} (3.2b)

associated with the target equation

dy -I dy\
—-= Fix v —I
j - 2 \ > y> J- I >dx \ dx)
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we call the two differential equations equivalent if there exists a diffeomorphism
Oof/°(R,R) such that

(/?1<D)*2 = Z. (3.3)

It immediately follows from (1.2) and (3.1) that O will be an equivalence if and
only if

(p1Q>)*cov = ga)Ut (3.4a)

where (ov and (ov are co-frames on open neighbourhoods, U and V respectively,
of/^R, R) given by

dx
dy —pdx

_dp-F(x,y,p)dx_
(ov: =

dx
dy —pdx

_dp-F(x,y,p)dx_
(3.4b)

and g is a function taking values in the subgroup G of GL(3, R) of matrices of the
form

A 0 0
0 B 0

_0 BC B/A_
(3.4c)

This is exactly the form of the Cartan equivalence problem treated by Gardner in
[12] and we now proceed by applying the algorithm he describes.

Let (o be the collection of one-forms on /X(R, R) x G obtained from the left
action of G on the co-frame o)v:

(O

O)

or

A
0
0

0
B

BC

0
0

BIA

0)\j

(O3it

(3.5)

After absorption of torsion, the structure equations are given by

dco1 = a A (o1,

dco2 = p A (o2 + (o1 A a>3, (3.6)

d(o3 = y A (o2 + (j8 — ar) A CD3,

where a, f$ and y are congruent mod co' to right-invariant one-forms on G.
Since all the torsion in (3.6) is constant, the question arises of whether (3.6)

gives the structure equations of an infinite Lie pseudo-group. The answer is given
by applying Cartan's involutivity test [4]. The Cartan characters are sx = 3 and
s2 = 0. On the other hand, writing (3.6) as

dco1 = a)pn
p A W' + \C)k(o' A mk, (3.7)

where (jtp) = '(a, ft, y) mod co1, we see that the space of solutions of the system

a)pv
p

ko)' A wk = 0 (3.8)

has dimension 2 < 3 . Hence the system (3.6) is not involutive and we have to
prolong.
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(3.9)

The structure equations for the prolonged system read

dco1 = a A co1,

dco2 = P A co2 + a)1 A co3,

dco3 = y A co2 + (P - a) A CO3,

da = —2y A CO1 + aco1
 A CO2 + bco1

 A CO3,

df$ = p A co2- y A co1,

dy = 6 A co2 + p A co3 - aco1
 A CO3 - a A y,

where p and S are congruent mod (to1, np) to right-invariant one-forms of the
Abelian Lie subgroup G(1) of GL(6,1R) associated to the prolonged problem. It is
parametrized by the solutions of (3.8) and acts as follows:

rsi n3 oiran
LJTJ U

where

v: =

The G(1)-action on a and b is given in infinitesimal form by computing the fibre
variation of a and b. We have

0
0
0

0
r

s

0~
0
r

mod <w', np, (3.10)

from which it follows that the G(1)-action can always be used to translate a and b
to zero. Having done so, we see that the structure equations become

dco1 = a A co1,

dC02 = ft A ft)2 + ft)1 A CO3,

dco3 = y A ft)2 + (j8 - or) A ft)3,

doc= — 2y A ft)1,

dp = co1 A y + l-ico1 A co2 — Ixco3 A CO2,

dy = y A A CO2 + A CO3.

We have now attained an {e}-structure on J(U, U)xG.
Parametrically, the basic invariants Ix, I2 and 73 are given by

- A
1 1 D 2 PPP>

LD

2AB\dxFpp Fpy)'h

7 3 = -CI2

1 / d
I — F +F F—F F —

2A2B \dx py pp y py p

(3.11a)

(3.11b)
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while the invariant one-forms a, (3 and y take the form

Fp

i

with the total derivative operator d/dx defined by

A.-.JL 1. JL
dx dx dy dp

The invariants Ilf I2 and /3 are functions on Jl(U, R) x G which can be used to
produce necessary and sufficient conditions for the equivalence of two equations
of the form (1.1) under fibre-preserving point transformations (1.2). However, it
has been shown in [18] that unless all three invariants vanish, the natural
G-action can be used to cast Ilf I2, /3 and further torsion coefficients arising in the
reduction process into normal forms, thereby reducing the {e}-structure on
J\U, U)xG given by (3.11) to an {e}-structure on J\U, U). This procedure
allows us to identify the equivalence classes of equations admitting symmetry
groups as well as the structure of these groups.

The G-action on Ilt I2 and 73 is obtained by computing the integrability
conditions of the structure equations (3.11):

[dl2 + h{a + P)](ol A a)2 + [dlx + 7j(2j8 - a)]a>2 A <W3 = 0,

[dh + /3(2ar + 0) + YhW A W2 + [dl2 + 72(ar + p)](ox A a>3 = 0.

Equations (3.12) lead to an exhaustive set of cases in the reduction procedure.
These cases are defined by conditions which are invariant under fibre-preserving
point transformations and are expressed in terms of the function F{x, y, p)
appearing in (1.1) and its derivatives.

In the following, we summarize the reduction process, listing only the final
(e)-structure on JX(R, U) and the relevant parametric expressions. Details of
these reductions have been given in [18]. We should mention that the results
listed below are obtained directly from the structure equations rather than from
the integrability conditions as was done in the previous reference.

There are five main cases, labelled by A, B, C, D and E.

Case A: hh^O, that is,

FPPP{£Fpp-Fpy)^0. (3.13)

It follows from equations (3.12) that one can use the G-action to scale /, and 72 to
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one and translate 73 to zero. Parametrically, this amounts to setting

Id \V3

A = -(2Fppp)-
y3[-Fpp-FpyJ , (3.14a)

B = - l-Zf- (— Fpp - Fpy)} , (3.14b)
L 4 \dx I \

C = -
'd \-5"(d \
— p —p —17 +pp_pp_2F I (2 1Ac\

, jj , rpp rpy 1 \dx py pp y py P Aryy )• \?-i.l*C)

The final (e)-structure on J\U, U) is given by

dco1 = Ico2 A (o1 + ma3 A CD1, (3.15a)

dw2 = rw1 A(02 + (k-2r- m)co3 A <W2 + w1 A O>3, (3.15b)

da)3 = uwx A(o2 + (r- k)^1 AO)3 + 2lo)3 A to2. (3.15c)

The djzp equations take the form

dk A a)1 + dl A a>2 + dm A « 3 + [l(k — r) — mu + 2v]a>2 A CD1

+ [m(2k -r) + 2s + l]a)3 A CO1 (3.15d)

+ l(k -2r + m)(o3
 A CO2 = 0,

dr A wl + ds A ft)2 + d{k - 2r - m) A at3

+ [u(2r -k + m) + (l-s)r + v + l](o2 A ft)1

+ [m(2r -k) + (2r - 3k)r + k2 + l]co3 A CO1 ' 1 5 e )

+ [(s + 2l)(k -2r-m) + l]<w3 A CO2 = 0,

du A co1 + dv A co2 + d(l + s) A to3 + [M(/ - *) - u(A; + r)]ct)2 A ft)1

+ [2mw - r(/ + s) - v + l]co3 A CO1 (3.15f)

+ [v(k - 2r) + /(/ + s)]ft)3 A to2 = 0.

The parametric expressions of the invariants (k, I, m, r, s, u and v) appearing in
equations (3.15) are given by:

k = - \ — \nA-2AC-FpJ, (3.16a)

1 ' ' - ' \ (3.16b)

= zf> (3.16c)

Y^TB~C' ( 3 1 6 d>ABdx

-^(By-ACBP
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(3.16f)

v = T ^ [(AC), - AC(AC)P + \Fpy - \ACFPP\ (3.16g)

- (AC)2],

Case B: Ix = 0 and I2 # 0, that is,

F(x, y, p) =p2M(x, y) +pN(x, y) + Q(x, y), (3.17a)

G(x,y): = 2Mx-NyJ= 0. (3.17b)

It follows from equations (3.12) that one can use the G-action to translate 73 to
zero and scale I2 to one. Parametrically, this amounts to setting

2AB = G, (3.18a)

AC = PGy±E> ( 318b)

where

H(x, y):= -2Qyy + Nyx - NyN + 2(QM)y. (3.18c)

There are two cases to consider, Case B(i) and Case B(ii).

Case B(i): — (In G) - 3AC - Fp ¥=0. Further normalizations of invariants give

d_
dx

A = — (In G) - 3AC - Fp. (3.19)

The final {e}-structure on /X(IR, U) is given by

da)1 = Iw2 A col - 2fco3 A co1, (3.20a)

rfco2 = (1 - k)(ox A o>2 + 2/w3 A ft)2 + (ol A ft)3, (3.20b)

da? = ceo1
 A ft)2 + (1 - 2A:)ft)1

 A ft)3 - 2/co2
 A CD3. (3 .20C)

The dnp equations now read

df A ft)2 + 2/2co3 A ft)2 + [/(I - A:) - (3e + / + 1 ) H A ft)2 = 0, (3,20d)

dc A ft)1 + de A ft)2 + rf/ A ft)3 + [e + c ( / - 201ft)1 A w 2

-/7co2 A CD3 + [/(I + 4c - k) + e - l]col A to3 = 0, (3.20e)

dk A ft)1 + d/ A ft)2 - 2rf/ A co3 + [(2fc - 1)/ + 2/c + 2e]ft)2 A ft)1

- 2/7ft>3 A co2 + [2/(2 - 3A;) - 1]QJ3 A ft)1 = 0. (3.20f)

The parametric expressions of the invariants (c, e, / , /c and /) appearing in
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equations (3.20) are given by

c=x2 [£ {AC)
~

A C F p

• { A C ) 2 \ >

e = — [(AC)y-AC(AC)p + \Fpy-\ACFpp\,

/ = ^ [On G)y + M],

l = -L(Ay-ACAp).

Case B(ii): — (In G) - 3AC - Fp = 0, which implies that

(lnG)y + M = 0,

AB = -3[(AC)y - AC(AC)P + \Fpy - \ACFPP\,

with

— (AC) + Fy- ACFP - (AC)2 ± 0.

Further normalizations of invariants give

eA2 = j - (AC) + Fy- ACFP - (AC)2.

The final {e}-structure on JX(U, U) is given by

do)1 = —few3 A co1,

den2 = — rco1 A CO2 + feco3 A <O2 + ca1 A a)3,

do)3 = — 2r(ol A co3 + ecu1 A CD2.

The dnp equations become

dr A co1 + 2era)1 A OJ3 = 0.

The parametric expression of the invariant r appearing in equations
given by

-iG1 Id
r = -[ — \nA-2AC-

\dx

(3.21a)

(3.21b)

(3.21c)

(3.21d)

(3.21e)

(3.22a)

(3.22b)

(3.22c)

(3.22d)

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.23) is

(3.24)

Case C: /2 = 0 and IJ3 =£ 0, that is,

dx

Id \
I — F + F F — F F —IF l=£0\dx PP y pylp ^ryyj-t-v.

(3.25a)

(3.25b)
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It follows from equations (3.12) that one can use the G-action to scale lx and /3 to
one. Parametrically this amounts to setting

Id
A = -(2Fppp)-"

5(- Fpy + FppFy - FpyFp
X 2 7 5

- 2Fyyj , (3.26a)

d X 1 / 5

-Fpy + FppFy-FpyFp-2Fyy) . (3.26b)

Further normalizations of invariants give

-^A = (2AC + FP)A. (3.26c)

The final {e}-structure on J\U, U) is given by

da)x = so)2 A (ox - Ico3 A wl, (3.27a)

dco2 = 2/co3 A co2 + a)1 A co2, (3.27b)

d(o3 = coj1 A OJ2 + (k -s -f)(o2 A co3, (3.27c)

where 5/ = 2s + k, while the dnp equations take the form
ds A (o2 - dl A co3 - (2e + lc)wx A <O2 + (s - 2f)wx A CO3

+ l(f-s-k)(o2 AO)3 = 0, (3.27d)
dk A co2 + 2dl A co3 + (2/c - e)(ox A co2 + (k -/)a>1 A W3

a)2 A(o3 = 0, (3.27e)

rfc A a)1 + rfe A w2 + df A a)3 + [(2s -f)c + l]<w2 A CO1 - (2/c + e)co3 A CO1

+ [el+f(f-k)]co3A(o2 = 0. (3.27f)

The parametric expressions of the invariants (c, e, k, I and s) appearing in
equations (3.27) are given by

c=h lie(y4C)+Fy"ACFp"(AC)2]' (328a)

e = - ^ [(>IC), -i4C(i4C)p + ^Fp, - ii4CFw], (3.28b)

= l#(By- ACBP + *BFPP)> (3 2 8 c)

~Y> (328d)

(4(i4,i4C4p). (3.28e)
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Case D: Ix # 0 and I2 = h = 0, that is,

Fppp±0, (3.29a)

±Fpp-Fpy = 0, (3.29b)

- Fpy + FppFy - FpyFp - 2Fyy = 0. (3.29c)

From equations (3.12), it follows that the G-action can be used to scale 73 to one.
Parametrically, this amounts to having

(3.30a)

Further normalizations of invariants give

EF2

w i t h / r p m ,*0 , (3.30b)

% + FppPpPp)- (3.30c)
**r PPP

The final {e}-structure on ̂ (U, U) is given by

dco1 = ba>2 A a)1 + ceo3 A CO1, (3.31a)

dco2 = i(c + 2e)(o3
 A ^ + O)1 ACD3, (3.31b)

d(o3 = -ew3A co2, (3.31c)

while the dnp equations now become

db A co2 + dc A a)3 + 2kco2 A a)1 + [\bc + (b - c)e]<o3 A W2

+ 2{b + £)tol A co3 = 0, (3.31d)

2dk Aco2-db AO)3 + [(3c + 2e)k + (3e + b)b + 2]co3 A CO2

+ 2kco1
 ACO3 = 0. (3.31e)

The parametric expressions of the invariants (b, c and k) appearing in equations
(3.31) are given by

^ (3.32a)

(3.32b)
B '

* =JB [(AQy ~ ACi>AC)» + 2ppy ~ *ACFPP\' (332c)

Case E: Ix = I2 = 0 and 73 =̂ 0, that is,

F{x, y, p) = \p2My +pMx + N (3.33)

for some functions M(x, y) and N(x,y). From equations (3.12) we see that the
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G-action can be used to scale 73 to one. Parametrically, this amounts to having

2A2B = G, (3.34a)

where

G(x, y):={Mxx + NMy -2Ny - \M%. (3.34b)

These are two cases to consider, Case E(i) and Case E(ii).

Case E(i): (2\nG + M)y = 0. Further normalizations of invariants give

eA2 = \ — H - JsH2 -%H-^M + \p2Myy + pMxy + Ny, (3.35a)
5 ax dx

5AC = £(lnG-2M), (3.35b)

where

H(xfy,p):=^-(\nG-2M). (3.35c)

The final {e}-structure on Jl(U, U) is given by
1 i1Aco2, (3.36a)

(o1 + (o1 A <w3, (3.36b)

do)3 = eco1 A <w2 + 3sco3 A CD1 + \eco2 A a>3, (3.36c)

while the dnp equations now read

ds A o)1 - \eso)2 A (o1 + ^£tt>3 A w1 = 0. (3.36d)

The parametric expression of the invariant appearing in equations (3.36) is given
by

s = -3--^-(51n,4-21nG-M). (3.37)
jA Ox

Case E(ii): (2 In G + M)y ^ 0. Further normalizations of invariants give

2£ = £(21nG + M)>>, (3.38a)

SAC = £ (In G - 2M). (3.38b)

The final {e}-structure on J\U, U) is given by

dco1 = so)2 A (o\ (3.39a)

d(o2 = 2r(o2A(o1 + <ol
 ACO3, (3.39b)

dco3 = wcu1
 A a2 - 3rcol

 A co3 + ( | e - 3s)co2
 A CO3, (3.39C)
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while the dnp equations now read

dr A ft)1 + ds A co2 + (3s - U)ro)2 A ft)1 + (s - ie)o)x A ft)3 = 0, (3.39d)

du A co1 - \edr A ft)2 + (2us - \er2 - \eu + l)co2 A (ol '

- ierco1 A ft)3 + (^ - \es)(o2 A ft)3 = 0. (3.39e)

The parametric expressions of the invariants (r, s and u) appearing in equations
(3.39) are given by

r = ^~Y (5 In A - 2 In G - M), (3.40a)
jA (XX

s=^(\nA)y> (3.40b)
D

u=^^H-i-5H
2-lH£M + &2Myy+pMxy + Nyy (3.40c)

In the above, it is important to note that the dnp equations are integrability
conditions for the {e}-structure on Jl(U, U) obtained by reducing the {e}-
structure (3.11) on the bundle of G-frames over Jl(U, U) to the base. In what
follows, this {e}-structure, together with the associated integrability conditions
(the d;rp-equations), will be referred to as the reduced {e}-structure.

We conclude the present section by recalling a theorem of Cartan [7] which
states that necessary and sufficient conditions for the existence of a collection of
one-forms (ft)', JIP) satisfying structure equations of the form

d(ol = a)pK
p A ft)y + \C)k(o' A to*, (3.41)

are that the a)p form an involutive tableau and that the system of differential
equations obtained by substituting

dJZH = zYtiv" A JZ + Oia(O A Jl + z^kh^ A ^ > (3.42)

in the integrability conditions, d2a>' = 0, admit a solution.
This result generalizes Lie's Third Fundamental Theorem and is proved using

the Cartan-Kahler existence theorem for involutive exterior differential systems
[3,4]. We shall use it in § 5 to investigate the existence of second-order ordinary
differential equations admitting a Lie group of fibre-preserving point symmetries.

4. Existence of symmetries

The symmetry group of a differential equation is the maximal pseudo-group of
transformations mapping solutions to solutions. A vector field X will thus
generate a one-dimensional group of symmetries if and only if

^ c 2 , (4.1)

where 2 is an exterior differential system associated with the differential
equation.

A differential equation is said to admit an n -dimensional Lie group of
symmetries if there exist n linearly independent vector fields which satisfy (4.1)
and span a Lie algebra. From Proposition 2.2 and the solution to the equivalence
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problem given in § 3, it follows that the existence of a p-dimensional Lie group of
symmetries is equivalent to the existence of a co-frame satisfying (2.7) with
N — r=p. In this section we use these results and Proposition 2.1 to classify
invariantly in terms of differential invariants all second-order ordinary differential
equations admitting a non-trivial group of fibre-preserving point symmetries.

We begin by recalling [17] that a second-order ordinary differential equation
can have at most a six-dimensional group of fibre-preserving symmetries
(isomorphic to the affine group in the plane Aff(IR2), which is the semi-direct
product of GL(2, U) with IR2). All second-order equations with this property are
characterized in the following proposition.

PROPOSITION 4.1. A second-order ordinary differential equation admits a six-
dimensional Lie group of fibre-preserving point symmetries if and only if it is of
the form

(4.2a)

with

M^y + (NMy)y ~ MXyM; ~ INyy = 0 (4.2b)

for some functions M and N depending on x and y. Furthermore, every equation
with this property is equivalent to the free particle equation

y" = 0. (4.2c)

In particular, every linear equation is equivalent to (4.2c).

REMARKS. 1. The above result answers completely the question of linearizabi-
lity of an arbitrary second-order ordinary differential equation under fibre-
preserving point transformations. In this regard we should mention the work of
Sarlet et al. [26] who considered a related question: linearizability of second-order
equations under point transformations (see also Arnold [1]). There they were
able to show that every equation of the form

y" = F(y'), (4.3)

where F is at most cubic in y', is linearizable via point transformations. By a
trivial application of the above proposition, we see that (4.3) is linearizable via
fibre-preserving transformations if and only if it is at most quadratic in y'.

2. As a further application, we consider the problem of determining which of
the fifty Painleve equations [16] (discovered in the classification of second-order
ordinary differential equations whose solutions have no essential singularities or
branch points which are movable in the sense of depending on initial conditions)
admit a six-dimensional Lie group of symmetries and so are locally equivalent
under a fibre-preserving point transformation to the free particle equation y" = 0.
Proposition 4.1 completely solves the problem; the result follows.

The Painleve equations which are equivalent to y" = 0 are as follows:

. y"=-/2>



CLASSIFICATION OF ORDINARY DIFFERENTIAL EQUATIONS 403

my

y-

It was shown by Kamran and Shadwick [18] that no second-order ordinary
differential equation admits a maximal four- or five-dimensional Lie group of
fibre-preserving point symmetries. We now consider the case of three-
dimensional symmetry groups.

PROPOSITION 4.2. A second-order ordinary differential equation admits a maxi-
mal three-dimensional Lie group of fibre-preserving point symmetries if and only if
all the basic invariants of its reduced {e}-structure are constants. All possible
classes of equations satisfying these conditions are invariantly characterized in
Table I.

TABLE 1. Equations admitting a maximal three-dimensional symmetry group

Case

Case A:
3-dA,v

3-dAVI

3-dAvm

Case B:
3-dB(iiVIII)

Case D:
VIII

CaseE:
3-dE(iiv,,,)

Invariant characterization

k, I, m, r and u constant
k=l=u=v=0
rs = 1, m = — r, nv" = 2

l = u = v = 0, k*0
rs = 1, k — m = r
m(m2-k2) = 2
1 = 0, k = 2r,2v = mu.
sm = 1, 3m2r + 2 = 0
3m2u + 2(m - r) = 0

r constant
r = 0

b and c constant
h — — P r — —-p k — 0
u — c, c — 3 c , K — u

r, s and u constant
r = 0, s = §£, u = -§£

Representative
equation

y" = ey

y" = y'3/2 **

J

y" = (3y'-y2)y>

y" = y~3

Description

The symmetry group in this case
is isolated. Thus every equation in
this branch is equivalent to the
representative equation.

These cases provide one-parameter
families of equivalence classes
admitting three-dimensional symmetry
groups.

These cases provide isolated equivalence
classes admitting three-dimensional

> symmetry groups. Thus every equation
in these branches is equivalent to
their respective representative equation.

REMARKS. 1. The roman numerals that appear in the classification refer to the
Bianchi types [2] of three-dimensional real Lie algebras. It should be noted that
not all Bianchi types occur in Table 1. In particular, Bianchi type I cannot occur
and thus no second-order equation admits an Abelian three-dimensional sym-
metry group.
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2. The representative equation of 3-dB(iiVm) is especially interesting in the
sense that it highlights the difference between point and fibre-preserving
symmetries. Mahomed and Leach [26] have shown that the equation

y" = (3y'-y2)y (4.4)

admits an eight-dimensional Lie group of point symmetries (isomorphic to
SL(3, R)) and is equivalent (under point transformations) to the free particle
equation. By the above proposition we see that (4.4) admits only a three-
dimensional fibre-preserving symmetry group and thus cannot be equivalent
(under fibre-preserving transformations) to y" = 0.

3. As a further application we again consider the Painleve equations. Using
Proposition 4.2, it is not hard to show that the only Painleve equation which
admits a maximal three-dimensional Lie group of fibre-preserving symmetries is

This equation is a member of 3-dE(iiVm) and so, since the symmetry group of this
class is unique, is equivalent to the representative equation y" = y~3.

It is important to note that the above does not exclude the possibility of other
Painleve equations degenerating into one which admits the required symmetries.
An interesting example is

Generically this equation admits no symmetries, but if oc = 0 we obtain

It can easily be shown that this degenerate Painleve equation again admits a
three-dimensional symmetry group 3-dE(iiVm).

The above propositions exhaust all second-order equations admitting a
transitive symmetry group. We now consider the non-transitive cases.

Let us start by considering the case of two-dimensional symmetry groups.

PROPOSITION 4.3. A second-order differential equation admits a maximal two-
dimensional Lie group of fibre-preserving point symmetries if and only if the basic
invariants of its reduced {e}-structure produce only one fundamental invariant. All
possible classes of equations satisfying this symmetry condition are invariantly
characterized in Table 2.

REMARKS. 1. In the above, the derived invariants of an invariant / is denoted
by la. These correspond exactly to the covariant derivatives of / with respect to
the adapted co-frame af (see § 2).

2. All the representative equations given in Table 2 arise in a physical context.
Here we will briefly mention the context in which some of these equations occur.
For these equations new symmetries, in addition to the classically known ones,
are exhibited.
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TABLE 2. Equations admitting a maximal two-dimensional symmetry group

Case Invariant characterization
Representative

equation Description

Case A:
2-dA,

2-dA2

2-dA3

2-dA4

CaseB:
2-dB(i,)

2-dB(i2)

2-dB(i3)

1 = 0, k and m constant

it and / constant, dm^O
dm A d(r, s, u, m3) = 0

k constant, dl=£O
dl A d{m, r, s, u, v, l2) = 0
dk A d(l, m, r, s, u, &,) = 0

c, e and/constant
dk A dkx = 0

e and/constant
dc A rfc, = 0

, df A d{e, k) = 0

Some of these cases may be vacuous
(see p. 407).

/ = (l-x)/3

Existence of an isolated two-
dimensional symmetry group follows
from Cartan's theorem (p. 401)

y" = (ay' — y2)y This case provides a one-parameter
a =£ 9 family of equivalence classes admitting

two-dimensional symmetry groups.
y"= — (4a~l + ay2)y'

Case C:
2-dC, s constant

dl*0, dkAdl = <

2-dC,
ds A d(c, e, I, s2) = 0

CaseD:

2-dD, b - —2e,k constant
dc A dc3 = 0

2-dD2 k constant
db A dc = 0

CaseE:

2-dE(i) ds A dsx - 0

2-dE(ii)
y" _

y--oy-

Some of these cases may be vacuous
(see p. 407).

v̂ Existence of an isolated and a one-
I parameter family of equivalence
I classes admitting two-dimensional
I symmetry group for 2-dD, and 2-dD2
I follows from Cartan's theorem (p.

J 401).

ĵ These cases, 2-dE(i) and 2-dE(ii)
I respectively, provide an isolated and a

i 2«2 3 f one-parameter family of equivalence
oy-ydy-y I c i a s s e s admitting two-dimensional

J symmetry groups.

The representative equation of 2-dB(i3)

y" = - (4OT1 + ay2)y' - 3a~2y - v3, a: constant,

occurs as a simple model in certain flow-induced structural vibration problems in
which the structural non-linearities act to maintain overall stability [14], while the
representative equation of 2-dE(ii) (which is a special case of Duffing's equation)

y" = - dy' - ld2y - y3, d constant,

describes the dynamics of a buckled beam or plate when only one mode of
vibration is considered [13]. In addition to the obvious translational symmetry of
these equations, Proposition 4.3 allows us to establish the existence of a second
independent symmetry.
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TABLE 3. Equations admitting a maximal one-dimensional symmetry group

Case

Case A:
1-dA,

l-dA2

l-dA3

l-dA4

l-dA5

l-dA6

l-dA7

l-dA8

CaseB:
l-dB(i,)

l-dB(i2)

l-dB(i3)

l-dB(i4)

l-dB(ii)

CaseC:
1-dC,

Invariant characterization

k, I, m and r constant, t: = ux

du Adt* 0, du Adt A dtx = 0
k, I, m constant, t: = rx

dr Adt* 0, dr Adt A dtx = 0
k and / constant, dm Ads*0
dm A dr = 0, dm A ds A du = 0
k and / constant, dm A dr * 0
dm A dr A d(s, m3, r,) = 0
k constant
dl A du *0, dl A d{m, r,s) = 0
dl A du A d(v, l2, ux) = 0
k constant
dl Ads*0, dl A d{m, r) = 0
dl Ads A d(u, l2) = 0
k constant
dl A dr * 0, dl A dm = 0
dl A dr A d(u, v, l2, r,) = 0
k constant, dl A dm * 0
dl A dm A d(r, s, u, v, l2, /3, m3 = 0)

c, e and/constant, t: = kx
dk Adt* 0, dk Adt A dtx = 0
e and / constant, /: = c,
dc Adt* 0, dc Adk = 0, dc A dtx = 0
e and / constant, dc A dk * 0
dc A dk A d{cx, kx) = 0
/ constant, dc A de * 0
dc A de A d(k, c,) = 0
dr Adt*0, t: = rx

dr Adt A dtx = 0

s constant, dc A dl * 0

Case

l-dA9

l-dA,0

1-dA,,

l-dA,2

l-dA,3

l-dA14

l-dA,5

l-dB(i5)

l-dB(i6)

l-dB(i7)

l-dC3

Invariant characterization

dkAdt*0, t: = kx

dk A d{l, m, r, s, u,v) = 0
dk Adt A dtx = 0
dk A dv * 0,
dk A d{l, m, r, s, u) = 0
dk A dv A dkx = 0
dk Adu* 0,
dk A d(l, m, r, s) = 0
dk Adu A d(v, kx, ux) = 0
dkAds*0,dkA d(l, rn, r) = 0
dk Ads A d(u, v, kx) = 0
dk A dr *0, dk A d{l, m) = 0
dk A dr A d{s, u, v, kx, r,) = 0
dkAdm*0,dkAdl = 0
dk A dm A d{r, s, u, v, kx, k2, m3) = 0
dk A dl * 0
dk Adi A d(rn, r, s, u, v, ka, l2, /3) = 0

df Adk* 0, df A d(c, e)
df AdkA dkx = 0
df Ade*0, df Adc = 0
df A de A d(k, f2) = 0
df A dc * 0
df A dc A d{e, k, I, c,) = 0

ds A de * 0, ds A dc = 0

1-dQ,

Case D:
1-dD,

1-dD,

CaseE:
l-dE(i)

dc Adi A d{k, cx) = 0
ds Adl±0, ds Ad(c, e) = 0
ds Adi A d{k, /3, s2, s3) = 0

b = — 2e, k constant, t: — cx
dc Adt± 0, dc Adt A dt3 = 0
b = — e, k constant, /: = c3
dc A rff =£ 0, dc Adt A dt-s = 0

ds Ade A d(l, k, e2, s2) = 0
l-dC4 ds A dc *.O

ds A dc A d(e, /, c,, .s2) = 0

l-dD3 k constant

l-dD4

, db A dc A dc3 = 0db

dbAdkA d{c, b3) = 0

ds Adt¥^0, f. = sx
ds A dt A dtx = 0
r and s constant, t: = ux
du Adt* 0, du Adt A dtx = 0
s constant

, dr A du A dux = 0

dr A ds A drx = 0
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Finally, to conclude this section, we consider equations admitting a one-
dimensional symmetry group.

PROPOSITION A A. A second-order ordinary differential equation admits a maxi-
mal one-dimensional Lie group of fibre-preserving point symmetries if and only if
the basic and derived invariants of its reduced {e}-structure produce two
independent fundamental invariants. All possible classes of equations satisfying this
symmetry condition are invariantly characterized in Table 3.

Since we have very few examples to present, we will format Table 3 differently.

REMARKS. 1. Here we present the few representative equations we have been
able to obtain for the above classification. Some of these equations again arise in
physically interesting situations.

l-dA15: y" = (a- py'2)y' - yy. This equation arises in the study of non-linear
effects in acoustic phenomena. It was first studied by Lord Rayleigh [25].

l-dB(i3): y" = -(12 + y')y + y3. This is a special case of p10, the tenth Painleve"
equation.

l-dB(i7): y"=-(d + ay2)y'+ py-y3. This is the Holmes-Rand non-linear
oscillator. It was shown earlier that when the coefficients a, ft and y are related
by f$ = -3a~2, 6 = 4ar-1 the equation admits a second independent symmetry.

l-dB(ii): y" = (1 — 3y)y' +y2 — y3. This is a special case of p6, the sixth
Painleve equation.

l-dE(i): y" = y' +y2. This equation occurs in the study of shear-free plane-
symmetric relativistic cosmological models [9].

l-dE(ii)2: y"= -dy' + fiy -y3. This is Duffing's equation described before. As
was shown earlier, when the coefficients /3 and 6 are related by j8 = — 2<52/9 the
equation admits a second independent symmetry.

l-dE(ii3): y" = y'2/y +y3 + y2 +1 +y-1. This is a special case of p33, the
thirty-third Painleve equation.

2. In addition to the above cases where an explicit representative equation
exists, there are other cases where we have been able to establish existence of
second-order equations satisfying the respective symmetry conditions (see follow-
ing remarks). These cases are listed below:

l-dAl5 l-dA2, l-dA15, l-
l-dB(ii), l-dD1? l-dD2, l-dE(i), l-

In connection with these propositions one should note the following important
point. Although all second-order ordinary differential equations admitting a Lie
group of fibre-preserving point symmetries belong to one of the mutually
exclusive cases listed in Propositions 4.1-4, we cannot a priori claim that all these
cases are non-vacuous. For the transitive cases, since the integrability conditions
reduce to algebraic constraints (see §5), the existence of second-order ordinary
differential equations with the prescribed symmetries is guaranteed by the
theorem of Cartan stated at the end of § 3. However, for the non-transitive cases
the integrability conditions involve differential relations between basic, fun-
damental and derived invariants. These integrability conditions manifest them-
selves as over-determined systems of ordinary and partial differential equations



408 L. HSU AND N. KAMRAN

(see § 5) for cases admitting two and one-dimensional symmetry groups respec-
tively, i.e. Propositions 4.3 and 4.4. To establish existence for these cases we
need to show that the associated over-determined systems of equations admit
solutions. In principle these can be handled using geometric theory of over-
determined systems [4,24,27]. We have been able to establish existence for the
cases listed in Remark 2, but this question has not been investigated fully.
However, in any application, we are first provided with a differential equation.
Thus if the equation admits symmetries, it must belong to one of the cases listed
in the preceding propositions. A computer programme based on these symmetry
conditions is being developed, on the University of Waterloo Maple symbolic
system, to test for existence of fibre-preserving symmetries of an arbitrary
second-order ordinary differential equation [10].

5. Proof of Propositions 4.1-4.4

In the following we give complete proofs for the transitive cases, namely
Propositions 4.1 and 4.2. The proofs of Propositions 4.3 and 4.4 are similar.
However, in view of the large number of possible subcases in the latter cases, a
complete proof will not be given. Instead a detailed analysis of Case E and an
outline for Case B will be presented for Proposition 4.3 while for Proposition 4.4
only Case E will be analysed.

Let us start with the transitive case:

Proof of Proposition 4.1. An equation admits a six-dimensional symmetry
group if and only if the basic invariants /, of its {e}-structure (3.11a) are constant
(since the structure equations then become the Maurer-Cartan equations for a
Lie group). The integrability conditions of these Maurer-Cartan equations then
imply that It = 0. From the parametric expressions of these invariants (3.11b) we
obtain

F(x,y,y') = hy'2My+y'Mx + N (5.1a)

and

M^y + (NMy)y - MxyMx - 2Nyy = 0 (5. lb)

for some functions M and N depending on x and y. Since F = 0 satisfies (5.1), and
(3.11a) with I,; = 0 are the structure equations of a transitive pseudo-group, every
equation in this branch is equivalent to y" = 0.

Proof of Proposition 4.2. It follows from Proposition 2.2 that in order to have
a three-dimensional group of symmetries, the basic invariants appearing in the
reduced {e}-structure must be constants. We now proceed to show that the cases
listed in Table 1 are exhaustive. Let us consider Case E. There are two subcases:

Case E(i). From equation (3.36d) we have

ds A a)1 = \esw2 AW 1 — ^eo)3 A to1. (52)

Clearly s cannot be constant and thus no equation in this class admits a
three-dimensional symmetry group.

Case E(ii). From the constancy of the basic invariants and (3.39) we obtain the
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following algebraic system:

(l5s-4e)r = 0,

5s-2e = 0,

lOsu - 2er2 - eu + 5 = 0,
. _ ~ (5-3)

whose solution set is given by

r = 0, s = 2
5e, u = -le. (5.4)

Thus we have obtained an isolated equivalence class admitting a three-
dimensional symmetry group: 3-dE(iiVm).

The proofs of the remaining cases proceed in exactly the same fashion. It can
easily be shown that for Cases B(i) and C, the algebraic systems obtained from
the integrability conditions admit no solution. For Cases A, B(ii) and D the
solution sets are listed in Table 1.

In what follows, we give a proof of Proposition 4.3. Since the method of proof
is similar for all cases we will give details only for Case E and an outline for
Case B.

Proof of Proposition 4.3. It follows from Proposition 2.2 that in order to have
a two-dimensional group of symmetries the basic invariants appearing in the
reduced {e}-structure must produce only one fundamental invariant. Thus to
complete the proof, we need to show that the list given in Table 2 is complete.
Let us start with a detailed analysis of Case E. There are two subcases:

Case E(i). From equation (3.36d) we have

ds =51«1 + \esa)2 — 2£ft>3, (5.5)
where sx denotes the derived invariant of s. Without loss of generality, 5 can be
chosen as the fundamental invariant. Furthermore, to obtain a two-dimensional
group of symmetries, the differentiation of s must fail to produce new fundamen-
tal invariants. Thus we must have sx = <f>(s). From the integrability condition,
d2s = 0, we obtain

d<f> A a)1 + {2e<p - 3es2 - ^co1 A CO2 + 3esa)x A <w3 = 0.

and so we are led to an over-determined system of two first-order ordinary
differential equations for sx = cf>(s) given by

4>'+6s = 0, (5.6a)

3s<t>' -4<f> + 6s2+e = 0. (5.6b)

The unique solution of this system is

(t>(s) = \e-3s2. (5.7)

Thus we have obtained an isolated equivalence class admitting a two-dimensional
symmetry group: 2-dE(i).

Case E(ii). From (3.39d) we have

ds =sl<o1 + s2co2. (5.8)
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There are two cases to consider: that when .s is constant and that where s can be
chosen as the fundamental invariant.

(a) s constant. Equation (3.39d) gives

dr = rx<ol + (U - 3s)ra)2 + (s - f e)ar\ (5.9)

There are two further cases to consider: that when r is constant or that where r
can be chosen as the fundamental invariant,

(aj) r and s constant. Equations (5.9) and (3.39e) imply that

r = 0 and s = je, (5.10)

du = ulcol - (1 + \EU)W2. (5.11)

In order to obtain a two-dimensional group of symmetries, we necessarily have
u as a fundamental invariant. Furthermore, the differentiation of u must fail to
produce new fundamental invariants. Thus we must have ux = <p(u). From the
integrability condition, d2u = 0, we obtain

w = fe. (5.12)

Hence any equation in this branch with a two-dimensional group of symmetries
actually has a three-dimensional symmetry group.

(aiS) s constant and r as the fundamental invariant. Recall that from (5.9) we
have

dr = rxo>x + (ie - 3s)ra>2 + (s - h)(o3.

In order to obtain a two-dimensional group of symmetries, we necessarily have
u = u(r). From (3.39e) we obtain the system

(5s-2e)u' + 4er = 0, (5.13a)

(4e - 15s)ru' + 2erx + \0su - 2er2 - eu + 5 = 0. (5.13b)

Solving for u and rx we obtain

(55 -2e)w = a-ler2, a constant, (5.14a)

2(5* - 2e)rx + 10(3^ - e)r2 + 10eas - a + 25es - 10 = 0. (5.14b)

Notice that in this branch u = u(r) implies rx = 0(r). Furthermore, from the
integrability condition, d2r = 0, we have the constraint

(20* + 50)es2 - (30 + 5a)s + 4e = 0. (5.14c)

Thus we obtain a one-parameter family of equivalence classes admitting
two-dimensional symmetry groups: 2-dE(ii).

(b) s as the fundamental invariant. Recall that from (5.8) we have

ds =sx(o
l + s2co2.

To obtain a two-dimensional group of symmetries, we necessarily have r = r(s)
and u = u(s). Then (3.39d) implies that

s = le. (5.15)

Hence any equation in this branch with a two-dimensional group of symmetries
actually has a three-dimensional symmetry group.

Let us now outline the proof of Case B.
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Case B. There are again two subcases: Case B(i) and Case B(ii).

Case B(i). From equation (3.20d) we have

df = [f(k - 1) + 3e + / + I]©1 +f2w
2 - 2f(o3, (5.16)

and so there are two cases to consider: /constant or that where/can be chosen as
the fundamental invariant,

(a) /constant. Equations (5.16) and (3.20e) imply that

= 0 and / = - ( l + 3e), (5.17)
1 2 (5.18)

and so there are two further cases to consider: e constant, or e chosen as the
fundamental invariant.

(a;) / = 0 and e constant. Equations (5.17) and (3.20e) imply that

/ is constant,

dc = CrO)1 + (e- 2cl)co2 + (e- l)cu3,

and so there are two more cases to consider: c constant or c chosen as the
fundamental invariant.

(ai,) / = 0> / = — (1 + 3e), c and e constant. From equations (5.19), (5.17) and
(3.20f) we have

c = - i e = l and / = - 4 , (5.20)

dk = A:^1 + (8A: - 6)o>2 - 4o>3. (5.21)

Thus, with no loss of generality, k can be chosen as the fundamental invariant.
The symmetry condition (i.e. existence of exactly one fundamental invariant)
then implies that we must have kx = <f>(k). It can readily be shown that there
exists an isolated equivalence class admitting a two-dimensional symmetry group

(ai2) / = 0' / = — (1 + 3e), e constant and c as the fundamental invariant. Recall
that from (5.19) we have

dc = cx(o
l + (e- 2cl)a)2 + (e- l)(o3.

To obtain a two-dimensional group of symmetries, we necessarily have
Cl = 0(c) which implies k = k{c). It can readily be shown that there exists a
one-parameter family of equivalence classes admitting two-dimensional symmetry
groups: 2-dB(i2).

(an) / = 0, / = —(l + 3e) and e as the fundamental invariant. From equation
(5.18) we obtain

de = ela>1 + e2co2.

A detailed analysis shows that this case admits no maximal two-dimensional
symmetry group,

(b) f as the fundamental invariant. From equation (5.16) we obtain

df = [f(k -l) + 3e + l + l]col +f2co2 - 2/2a>3.

To obtain a two-dimensional group of symmetries, we necessarily have c = c(/)
and / = /(/) which implies that e = e(f), k = k(f), and f2 = 0 ( / ) where f2 is the
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derived invariant of/. It is not hard to show that there exist equations in this class
possessing maximal two-dimensional symmetry groups: 2-dB(i3).

Case B(ii). A detailed analysis shows that this branch admits no maximal
two-dimensional symmetry group.

Finally we conclude this section by proving Proposition 4.4. Again since the
proof is similar for all cases, we will only give a detailed analysis for Case E.

Proof of Proposition 4.4. It follows from Proposition 2.2 that in order to have
a one-dimensional group of symmetries, the invariants appearing in the reduced
{e}-structure must produce two fundamental invariants. Thus to complete the
proof, we need to show that Table 3 is exhaustive. Let us again consider a
detailed analysis of Case E. As before, there are two subcases:

Case E(i). Recall that from (5.5) we have

ds = SiCO1 + \ES(O2 - %£(O3.

Thus, without loss of generality, s can be chosen as a fundamental invariant. To
obtain a one-dimensional group of symmetries, the differentiation of s must
produce a new fundamental invariant. Thus slt relabelled by t, must be
independent of s. From the integrability, d2s = 0, we have

dt = ti(ol + (let - 3es2 - \)co2 + 3eso)3. (5.22)

Since s and t are two independent invariants, the differentiation of t must fail to
produce new fundamental invariants. Thus we must have tx = (j>(s, t). From the
integrability condition, d2t = 0, we obtain

d(f> AO)1 + (le0 - lOest + 6es3 -I- 4s)a>1 A CO2 + (Set - Ues2 - \)wl A w3 = 0,

and so we are led to an over-determined system of two first-order partial
differential equations for tx = <p(s, t) given by

+ {let - 3es2 - \)<\>t - §etf> + West - 6es3 - 4s = 0, (5.23a)

3es(j)t - 5et + Ues2 + \ = 0. (5.23b)

It can readily be shown that the general solution of (5.23) is given by

0(r, s) = ar(4er + lies2 - 1)5/4 - 12s3 + es - lOrs, a constant. (5.23c)

Hence we obtain a one-parameter family of equivalence classes admitting
one-dimensional symmetry groups: l-dE(i).

Case E(ii). Recall that from (5.8) we have

ds =sl<o1 +s2co2.

There are two cases to consider: 5 constant or s chosen as a fundamental
invariant,

(a) s constant. From (5.9) we obtain

dr = r^a)1 + (f e - 3s)rco2 + (s - \e)co3.

There are two further cases to consider: r constant or r chosen as a fundamental
invariant.
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(a() r and s constant. Recall that from (5.10) and (5.11) we have

r = 0 and s = fe,

du = ux<ox - (1 + \eu)(o2.

In order to obtain a one-dimensional group of symmetries, we necessarily have
u as a fundamental invariant. Furthermore, the differentiation of u must produce
a new fundamental invariant. Thus ux, relabelled by t, must be independent of u.
From the integrability condition, d2u = 0, we have

dt = tlcol-etco2-(l + leu)w3. (5.24)

Since u and t form two independent fundamental invariants, we necessarily have
tx = 0(M, t). The integrability condition, d2t = 0, then implies that

d<p A (ol + Qe<t> + u + \eu2)w2 A W 1 - § etai1 A W3 = 0,

and so we are led to an over-determined system of two first-order partial
differential equations for tx = 4>(u, i) given by

(5 + 2>eu)4>, = 8et, (5.25a)

5et<t>, + (5 + 3eu)<l)u = leQ + (5 + 3eu)u. (5.25b)

It can readily be shown that the general solution of (5.25) is given by

where a{u) is defined by

a(u) = £[5(5 + 3ew)2 - 4(5 + 3e«)3 + ar(5 + 3£«)1O/3], a constant. (5.26b)

Hence we obtain a one-parameter family of equivalence classes admitting
one-dimensional symmetry groups: l-dE(ii!).

(ai;) s constant and r as a fundamental invariant. Recall that from (5.9) we have

dr = rxojl + (|£ - 3s)ra)2 + (s - |e)a)3,

and so there are two further cases to consider: u = u(r) or u chosen as the final
fundamental invariant.

(a^) s constant, u = u(r) and r as a fundamental invariant. In order to obtain a
one-dimensional group of symmetries the differentiation of r must produce a new
fundamental invariant. However, as noticed before, in this branch u = u(r)
implies rx = 0(r) and so there exist no additional independent fundamental
invariants. Hence any equation in this branch with a one-dimensional group of
symmetries actually has a two-dimensional symmetry group.

(aiJ2) s constant, r and u as the fundamental invariants. From equation (3.39e)
we obtain

du = uxo)1- \{2erx + lOsu - 2er2 - eu + 5)o>2 - f era)3. (5.27)

In order to obtain a one-dimensional group of symmetries the differentiation of
r and u must fail to produce new fundamental invariants. Thus we must have
ux = ip(r, u) which in turn implies r, = <f>(r, u). From the integrability conditions,
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d2r = d2u = 0, we obtain

8c/-2 - 30r2s - 5su + 2eu)co2 A CJ1

+ 2(e - 3s)rcol A ft)3 = 0,

df A(Ol- ledQ A ft)2 + §(15$^ - e\p- Ser<p - 20rsu + 4er3 + 6erw - 10r)co2 A ft)1

- (̂6etf> + lOsu - Her2 - eu + S )^ 1 A <O3 +f (1 - 3es)r(o3 A <O2 = 0,

and so we are led to an over-determined system of four first-order partial
differential equations for rx = <f>(r, u) and ux = ip(r, u) given by

(r2 -eu + 5)0U + 4(55 - e)<p + Ser2 - 30r2s - 5su + leu = 0, (5.28a)

{5s - 2e)<t>r - 4er0M + 10(35 - e)r = 0, (5.28b)

(4e - 15s)rxpr - (2etf> + lOsu - 2er2 -eu + 5)0U + (155 - e)t// + 2e00 r

+ 2ey<pu-Ser<t>- 20rsu + 4er3 + 6erw - lOr = 0, (5.28c)

(55 - 2e)qr - 4enpu + 6e<£ + 105W - 14er2 - eu + 5 = 0. (5.28d)

It can readily be shown that equations (5.28) admit non-trivial solutions and thus
there exist equations in this class admitting maximal one-dimensional symmetry
groups: l-dE(ii2).

(b) 5 as a fundamental invariant. Recall that from (5.8) we have

ds =slco1 + s2co2,

and so we are led to consider two final cases: r = r(s) or r chosen as the final
fundamental invariant.

(bj) r = r(s) and s as a fundamental invariant. From equation (3.39d) we obtain

dr A o)1 = [sx + (fe - 35)r]to2 A col + (s - \e)(o3 A GO1.

The relation r = r{s) coupled with (5.8) imply that 5 = §£. Thus no equation in
this branch admits a maximal one-dimensional symmetry group.

(bjj) r and s as fundamental invariants. From equation (3.39d) we obtain

dr = rtw1 + [Si + ( |e - 35)r]cw2 + (s - |e)o>3. (5.29)

To obtain a one-dimensional group of symmetries we necessarily have
u = u(r, s). Furthermore, the differentiation of r and s must fail to produce new
invariants. Thus we must have rx = <f>(r, s), sx = ip(r, s), and s2

= <p(r, s). From
the integrability conditions, d2r = d2s = 0, and (3.39e), we obtain

d(f> A (o1 + dip A a)2 + 5(2050 - 4e<p + 25rip + Ser2 - 30sr2 - 5su + 2eu)co2 A (ol

+ (2\p + 2er - 6rs)(ol A CD3 - nw3 A OJ2 = 0,

d\\f A (o1 + dn A (o2 + JZQ)1 A eu3 = 0,

du A ft)1 - \{2e<t> + 105M - 2er2 - eu -I- S)(ox A ft)2 - ferft)1 A CD3 = 0,

and so we are led to an over-determined system of seven first-order partial
differential equations for u = u(r, s), rx = <f>(r, s), sx = tyir, s), and s2 = n(r, s)
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given by

- 15rs)(pr + 5^02 - 50VV - 5 ^ , + 5(45 - £)(j) (5.30a)

+ 25n/; + 8er2 - 30r2s - 5su + leu = 0,

(5s - 2e)<t>r - Hty + 10(35 - e)r = 0, (5.30b)

(55-2e)t//r-5;i; = 0, (5.30c)

(5V> + 4er - I5rs)^r + 5n\pr - 5tf>jrr - 5ipns + 5sip + lOrjt = 0, (5.30d)

(5s-2e)jtr = 0, (5.30e)

(5 V + 4er - 15r5)«r + 5mis + 2e<f> + 2er2 - eu + 5 = 0, (5.30f)

(55 - 2e)ur + Aer = 0. (5.30g)

Notice that the above, coupled with the relation rx = <p(r, s), implies that
u = u(r, s), sx = xp(r, s), and s2 = n(r, s). It can readily be shown that equations
(5.30) admit non-trivial solutions and thus there exist equations in this class
admitting maximal one-dimensional symmetry groups: l-dE(ii3).

The proofs of the remaining cases of Propositions 4.3 and 4.4 proceed in
exactly the same fashion. As in the above, the integrability conditions in these
cases produce over-determined systems of differential equations. Existence of
solutions to these systems is necessary and sufficient for existence of second-order
equations with the prescribed symmetries.
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