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Abstract
We study Lie symmetries and invariant solutions of the geometric heat flows.
The basic similarity reductions for the GHE are performed. Reduced equations
and exact solutions associated with the symmetries are obtained. Group-
invariant solutions and reductions for the affine case are also discussed in a
special case.

PACS numbers: 02.20.−a, 02.30.Jr, 44.05.+e, 44.10.+i

1. Introduction

In the past twenty years, there has been much research devoted to the study of evolutions of
plane curves

Ct = kN , (1)

where N and k are, respectively, a choice of unit (inward) normal for C and the curvature
with respect to N . This evolution appears in a number of different pure and applied areas
such as differential geometry, crystal growth, image processing, computer vision and physics,
etc, see [1–14] and references therein for a more extensive discussion of the many properties
associated with this flow.

The flow is referred to as Euclidean curve shortening flow, in the sense that the Euclidean
perimeter shrinks when the curve evolves according to equation (1) [4, 15–17]. The behavior
of an embedded curve evolving according to this flow has been well studied. Gage and
Hamilton have proved that a convex embedded curve converges to a round point under this
evolution [3, 15]. Grayson [17] has shown that a nonconvex embedded curve converges to a
convex one, and from there to a round point according to the Gage and Hamilton result. This
equation was also called the geometric heat equation (GHE). This flow has a number of nice
properties which make it very useful in morphological image processing, and in particular the
basis of a nonlinear scale-space invariant to rotations and translations for shape representation
[9, 18]. A related flow, based upon the affine geometry of the curve, is given by

Ct = k
1
3 N , (2)
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which is called the affine geometric heat equation. This flow shares many of the same
properties with the curve shortening flow but gives rise to a more general affine invariant
multiscale space [18–20]. More discussions on (2) can be found in [21–23] and references
therein. Locally (2) may be written as

ut = u
1
3
xx,

whose Lie symmetries and group-invariant solutions were discussed in detail in [23].
In the level set method [24, 25], the parameterized curve C(p, t) is embedded into a

surface, which is called the level set function u(x, y, t) : R
2 × [0, T ] → R. The curve C is

the zero-level set of this function u(x, y, t):

C = {(x, y) : u(x, y, t) = 0}.
The evolution equation for u is derived from the constraint that at any time t we should have

u(C, t) = u(X (t),Y(t), t) = 0, (3)

and differentiating (3) with respect to t we obtain

ut + ∇u · Ct = 0. (4)

Substituting the general form of the curve evolution equation (1), which depends on local
geometry of the curve, into (4) above yields

ut + ∇u · kN = 0.

Note that for the zero level, the following relation N = −∇u/‖∇u‖ holds, then an evolution
equation for u is given by

ut = k‖∇u‖, (5)

where

k = ∇ ·
( ∇u

‖∇u‖
)

= u2
yuxx − 2uxuyuxy + u2

xuyy(
u2

x + u2
y

)3/2 ,

which is in fact the curvature of the curve C regarded as the level set of the corresponding
evolution [18, 24, 26]. This allows us to rewrite equation (5) completely in terms of u and its
derivatives as

ut = u2
yuxx − 2uxuyuxy + u2

xuyy

u2
x + u2

y

. (6)

This flow is also referred to as the geometric heat equation since it is a result of applying the
previous geometric heat equation (1) to the zero-level curve of the level set function u.

Similarly, the affine invariant heat flow (2) in terms of the level set function u can be
written as

ut = (
u2

yuxx − 2uxuyuxy + u2
xuyy

) 1
3 . (7)

It is well known that exact solutions play a crucial role in the study of asymptotic behavior,
blow up or extinction and geometric properties of invariant geometric flows. For instance,
it was shown that when a locally convex closed immersed curve collapses into a point, its
asymptotic shape must be one of the contracting self-similar solutions of (1) classified in
[22, 27, 28]. A ‘grim reaper’, a travelling wave solution first observed in [3] has been used to
describe the asymptotic profile of ‘type-II singularity’ of curves [22, 23]. A contracting spiral
wave solution was also used in the analysis of singularities of curves [2, 22]. The purpose of
this paper is to discuss symmetries and solutions of GHE (6) and affine GHE (7).
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The outline of this paper is as follows. In section 2, we derive the Lie symmetry group
of GHE (6). It is reduced to two-dimensional PDEs when the arbitrary functions of its
infinitesimal transformations are confined to arbitrary constants in section 3. We provide
symmetry group analysis for (10) and (11) in sections 4 and 5, respectively. And in section 6,
reduced ODEs and group-invariant solutions of GHE are presented. Exact solutions of affine
GHE are obtained for a special case in section 7. Section 8 contains a concluding remark on
this work.

2. Lie symmetry of the geometric heat flow

The classical method for finding symmetry reductions of PDE is the Lie group method of
infinitesimal transformations. To apply the classical method to (6), we consider the one-
parameter Lie group of infinitesimal transformations in (x, y, t, u) given by

x∗ = x + εξ1(x, y, t, u) + O(ε2),

y∗ = y + εξ2(x, y, t, u) + O(ε2),

t∗ = t + εξ3(x, y, t, u) + O(ε2),

u∗ = u + εξ4(x, y, t, u) + O(ε2),

where ε is the group parameter. One requires that this transformation leaves the set

S� = {u(x, y, t)|� = 0}
invariant, where �[u] ≡ ut − (

u2
yuxx − 2uxuyuxy + u2

xuyy

)/(
u2

x + u2
y

)
. This yields an

overdetermined, linear system of equations for the infinitesimals ξ1(x, y, t, u), ξ2(x, y, t, u),
ξ3(x, y, t, u) and ξ4(x, y, t, u). The associated Lie algebra is realized by vector fields of the
form

X = ξ1(x, y, t, u)
∂

∂x
+ ξ2(x, y, t, u)

∂

∂y
+ ξ3(x, y, t, u)

∂

∂t
+ ξ4(x, y, t, u)

∂

∂u
. (8)

The set S� is invariant under the transformation (8) provided that pr(2)X(�)|�≡0 = 0 where
pr(2)X is the second prolongation of the vector field (8), which is given explicitly in terms of
ξ1, ξ2, ξ3 and ξ4 [29–31]. This procedure yields an overdetermined system. Solving it gives
Lie symmetries of (6)

ξ1 = F2(u)x − F4(u)y + F5(u),

ξ2 = F4(u)x + F2(u)y + F1(u),

ξ3 = 2F2(u)t + F3(u),

ξ4 = F6(u),

where Fi(u)(i = 1, . . . , 6) are the arbitrary functions of u. Therefore, the symmetry group of
equation (6) is spanned by the vector fields

F5(u)
∂

∂x
, F1(u)

∂

∂y
, F3(u)

∂

∂t
, F6(u)

∂

∂u
, (gauge translation),

F2(u)x
∂

∂x
+ F2(u)y

∂

∂y
+ 2F2(u)t

∂

∂t
, (gauge scaling),

−F4(u)y
∂

∂x
+ F4(u)x

∂

∂y
, (gauge rotation).

It is interesting to note that if u is a solution of (6), so is f (u) for any arbitrary differentiable
functions f .
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In the following, we confine Fi(u)(i = 1, . . . , 5) to constants ki(i = 1, . . . , 5) and set
k6 = 1, then

ξ ∗
1 = k2x − k4y + k5,

ξ ∗
2 = k4x + k2y + k1,

ξ ∗
3 = 2k2t + k3,

ξ ∗
4 = 1.

Having determined the infinitesimals, the symmetry variables are found by solving the
characteristic equation

dx

ξ ∗
1

= dy

ξ ∗
2

= dt

ξ ∗
3

= du

ξ ∗
4

(9)

or the corresponding invariant-surface condition

� ≡ ξ ∗
1 ux + ξ ∗

2 uy + ξ ∗
3 ut − ξ ∗

4 = 0.

3. Reduction of the geometric heat flow to two-dimensional PDEs

There are four independent reductions that are given as follows:

Case 1. k4 �= 0, k2 �= 0. Integration of (9) gives the reduced variables

ξ = e−k2u((x − x0)
2 + (y − y0)

2), η = e−k2u(t − t0)

in which

x0 = −k2k5 + k1k4

k2
4 + k2

2

, y0 = k4k5 − k1k2

k2
4 + k2

2

, t0 = − k3

2k2

and the following reduction for the fields

k4u − arctan
y − y0

x − x0
= v(ξ, η).

Substitution of the two reduction ansatz into (6) gives(
4ξ 2v2

ξ + 1
)
vη = 2

(
2ξvξξ + 4ξ 2v3

ξ + 3vξ

)
. (10)

Case 2. k4 �= 0, k2 = 0. Integration of (9) yields the reduced variables

ξ = (x − x0)
2 + (y − y0)

2, η = t − k3u

where x0 = −k1/k4, y0 = k5/k4, and the reduction for the fields is exactly the same as in
case 1. By the substitution of the reduction ansatz in (6), we obtain equation (10).

Case 3. k4 = 0, k2 �= 0. Integration of (9) provides the following reduction:

ξ = e−k2u(x − x0), η = e−k2u(y − y0)

and

e−k2u(t − t0) = v(ξ, η)

where x0 = −k5/k2, y0 = −k1/k2 and t0 = −k3/(2k2). Substitution of the two reduction
ansatz above into (6) gives

−1 = v2
ηvξξ − 2vξvηvξη + v2

ξ vηη

v2
ξ + v2

η

. (11)
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Case 4. k4 = 0, k2 = 0, k2
1 + k2

3 + k2
5 �= 0. Integration of (9) yields the following reduction:

ξ = x − k5u, η = y − k1u

and the reduction for the field

t − k3u = v(ξ, η),

where v satisfies (11).
As explained before, we need the group-invariant solutions of (10) and (11) in order to

construct the solutions of GHE. In the following two sections, we shall further reduce (10)
and (11) by using their symmetries.

4. Symmetry group analysis for (10)

As is well known, the Lie group theoretic method plays an important role in finding exact
solutions and performing symmetry reductions of differential equations. Since any linear
combination of infinitesimal generators is also an infinitesimal generator, there are always
infinitely many different symmetry subgroups for the differential equation. So, a mean of
determining which subgroups would give essentially different types of solutions is necessary
and significant for a complete understanding of the invariant solutions. As any transformation
in the full symmetry group maps a solution to another solution, it is sufficient to find invariant
solutions which are not related by transformations in the full symmetry group, this has led
to the concept of an optimal system [29–31]. The problem of finding an optimal system
of subgroups is equivalent to that of finding an optimal system of subalgebras. For one-
dimensional subalgebras, this classification problem is essentially the same as the problem
of classifying the orbits of the adjoint representation. This problem is attacked by the naive
approach of taking a general element in the Lie algebra and subjecting it to various adjoint
transformations so as to simplify it as much as possible. The idea of using the adjoint
representation to classify group-invariant solutions was due to Ovsiannikov [31].

The Lie algebra of infinitesimal symmetries of (10) is spanned by the following five vector
fields:

X1 = 2
√

ξ cos v
∂

∂ξ
− sin v√

ξ

∂

∂v
,

X2 = 2
√

ξ sin v
∂

∂ξ
+

cos v√
ξ

∂

∂v
,

X3 = ∂

∂v
,

X4 = ξ
∂

∂ξ
+ η

∂

∂η
,

X5 = ∂

∂η
.

(12)

The commutation relations of this Lie algebra are presented in table 1, where the (i, j)th entry
represents the commutator [Xi,Xj ].

The adjoint action is given by the Lie series

Ad(exp(εXi)Xj ) = Xj − ε[Xi,Xj ] +
ε2

2
[Xi, [Xi,Xj ]] − · · · ,

where [Xi,Xj ] is the commutator for the Lie algebra and ε is a parameter. We can write the
adjoint action for the Lie algebra (12). It is listed in table 2, where the (i, j)th entry gives
Ad(exp(εXi)Xj ).
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Table 1. Composition table for (12).

X1 X2 X3 X4 X5

X1 0 0 X2
1
2 X1 0

X2 0 0 −X1
1
2 X2 0

X3 −X2 X1 0 0 0
X4 − 1

2 X1 − 1
2 X2 0 0 −X5

X5 0 0 0 X5 0

Table 2. The adjoint representation of (12).

Ad (ε·) X1 X2 X3 X4 X5

X1 X1 X2 X3 − εX2 X4 − ε
2 X1 X5

X2 X1 X2 X3 + εX1 X4 − ε
2 X2 X5

X3 X1 cos ε + X2 sin ε X2 cos ε − X1 sin ε X3 X4 X5

X4 e
ε
2 X1 e

ε
2 X2 X3 X4 eεX5

X5 X1 X2 X3 X4 − εX5 X5

Theorem 1. A one-dimensional optimal system of (12) is given by

W1 = X4, W2 = X4 + αX3 (α �= 0), W3 = X3, W4 = X3 + X5,

W5 = X3 − X5, W6 = X1, W7 = X5, W8 = X5 + X1.
(13)

Proof. Let X = ∑5
i=1 aiXi . First of all, using Ad exp(εX3), we may rotate X1 and X2. As

a result, we shall always assume that a2 = 0 in the following discussion. Now we claim that
the space spanned by a nonzero X must be equivalent to some Wi . We consider three cases
separately.

Case 1. If a4 �= 0, scaling X if necessary, we can assume that a4 = 1. So X is equivalent to

X = X4 + a1X1 + a3X3 + a5X5.

Acting on this vector by Ad exp(a5X5), we can make the coefficient of X5 vanish. And X is
reduced to

X = X4 + a1X1 + a3X3.

Applying Ad exp(ε1X1) and Ad exp(ε2X2) to this X, we obtain a new vector

X = X4 + ã1X1 + ã2X2 + a3X3,

where ã1 = a1 + a3ε2 − ε1/2 and ã2 = −a3ε1 − ε2/2, and they vanish after choosing

ε1 = 2a1

1 + 4a2
3

, ε2 = − 4a1a3

1 + 4a2
3

.

Thus X is equivalent to one of the following vector fields X4 and X4 + αX3(α �= 0).

Case 2. If a4 = 0 and a3 �= 0, we scale to make a3 = 1. Use Ad exp(−a1X1) to eliminate a1.
After acted by Ad exp(εX5) for suitable ε, we obtain three inequivalent generators X3, X3 +X5

and X3 − X5.

Case 3. If a4 = 0 and a3 = 0, in this case, X is simplified to X = a1X1 + a5X5.
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If a5 �= 0, we take a5 = 1. After using the adjoint action of the group generated by
X4, we conclude that X is equivalent to X5, X5 + X1 and X5 − X1. Acting on X5 − X1 by
Ad exp(πX3), we obtain X5 + X1. Thus any one-dimensional subalgebra spanned by X is
equivalent to one spanned by either X5 or X5 + X1.

If a5 = 0, then the only remaining vectors are the multiples of X1, on which the adjoint
representation acts trivially. Thus X is reduced to X1. �

Thus, we have shown that any one-dimensional subspace of (12) is equivalent to that of
the subspaces spanned by W1, . . . ,W8. It remains to prove that any two one-dimensional
subalgebras obtained above are mutually inequivalent [23, 32]. We shall accomplish this by
introducing some adjoint invariants. Recall that a real function φ on a Lie algebra g is called
an invariant if φ(Ad(g)X) = φ(X) for all X ∈ g and g in the corresponding Lie group G.
For two vectors X and Y, generate conjugate one-dimensional subalgebra, it is necessary that
φ(X) = φ(Y ) for any invariant φ. Let X = ∑5

i=1 aiXi be a general vector for (12), then φ

can be regarded as a function of a1, . . . , a5.

Lemma 2. A = a3, B = a4 are invariants.

Proof. This can be easily seen from table 2. �

Lemma 3. The following function is an invariant:

C = sign a5.

Proof. Since the actions of Ad exp(εXi), i �= 4, do not change the values of a5, it is sufficient
to check the invariance of C under the action of Ad exp(εX4). We denote the new coefficient
by ã5. Under Ad exp(εX4), ã5 = eεa5, thus C is an invariant. �

Lemma 4. D is an invariant, where

D =
{

1 a3 = a4 = 0, a2
1 + a2

2 �= 0,

0 otherwise.

Proof. Since a3 and a4 are invariants, it suffices to check the invariance of D under a3 = a4 = 0.
However, observe that Ad exp(εXi), i = 1, 2, 5, do not change X1 and X2. We only need to
check the action of Ad exp(ε1X3) and Ad exp(ε2X4). We denote the new coefficients by ã1

and ã2.
In fact, after acted by Ad exp(ε1X3), ã1 and ã2 satisfy ã2

1 + ã2
2 = a2

1 + a2
2 , and then D is

unchanged. On the other hand, under Ad exp(ε2X4), ã1 and ã2 satisfy ã2
1 + ã2

2 = eε2
(
a2

1 + a2
2

)
.

Hence D is also unchanged.
We conclude that D is actually an invariant. �

Now, we claim that different Wi’s are mutually inequivalent. We evaluate all invariants
for each and put the results in table 3. It is clear from table 3 that for different i, or the same
i but with different parameters, they are inequivalent. We have established the optimality of
the system. So theorem 1 holds.

We have obtained eight inequivalent one-dimensional subalgebras. Each subalgebra will
provide a reduction to an ODE. We shall consider one of the subalgebras, i.e., W6 = X1 in
some details, as an example. The results for the other one-dimensional subalgebras can be
obtained in a similar manner.
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Table 3. Invariants for (13).

W1 W2 W3 W4 W5 W6 W7 W8

A 0 α 1 1 1 0 0 0
B 1 1 0 0 0 0 0 0
C 0 0 0 1 −1 0 1 1
D 0 0 0 0 0 1 0 1

For W6, the characteristic equation is

dξ

2
√

ξ cos v
= dη

0
= dv

− sin v√
ξ

.

Global invariants of this group are

z = η, λ = ξ sin2 v,

so that a group-invariant solution λ = g(z) takes the form

ξ sin2 v = g(z).

Solving for the derivatives of v with respect to ξ, η in terms of those of λ with respect to z and
substituting these expressions into (10), we find the reduced ODE

g′ = 0,

where and hereafter the primes denote differentiation with respect to z. It is solved by

g(z) = C,

where C is a nonzero arbitrary constant.
Then we obtain an exact solution of (10) with

v(ξ, η) = arcsin
C1√

ξ
,

where C1 is a nonzero arbitrary constant.
Not all groups will generate group-invariant solutions. The criterion for the existence

of such solutions can be found in [31]. However, it is not necessary to examine for any
case. One simply discovers during the derivation of the similarity variables that the desired
reduction in the number of independent variables does not occur. Algebra W3 fails this test
and provides no group-invariant solutions. And all other algebras generate reductions of (10)
to ODEs. We run through the individual subalgebras and obtain the reduction formula and the
corresponding invariant equations written in terms of the invariants. The results for the other
one-dimensional subalgebras are listed in table A1. In the reduced equations, we always take
the second invariant as a function of the first invariant. Note that it remains necessary to solve
these ODEs to obtain the group-invariant solutions explicitly, and in most cases this is still
very difficult. Once the reduced equation in column 5 is solved, the corresponding relation in
column 4 explicitly defines a surface in (ξ, η, v)-space.

Note that all second-order ODEs in table A1 can be reduced to first-order ODEs easily.
The reduced ODEs for W1 and W7 are solved here for particular solutions which then provide
complete analytic solutions of (10).

Consider the reduced ODE for W1:

4zg′′ + 4z2(z + 2)g′3 + (z + 6)g′ = 0.
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Table 4. Composition table for (14).

Y1 Y2 Y3 Y4 Y5

Y1 0 0 0 Y2 Y1

Y2 0 0 0 −Y1 Y2

Y3 0 0 0 0 2Y3

Y4 −Y2 Y1 0 0 0
Y5 −Y1 −Y2 −2Y3 0 0

Introduce a new function h(z) which satisfies h(z) = g′(z), then the equation above can be
reduced to

4zh′ + 4z2(z + 2)h3 + (z + 6)h = 0,

and yields

h(z) = ± 1

z
√

C1z e
z
2 − 4

.

Thus,

v(ξ, η) = ±
∫ ξ

η 1

s
√

C1s e
s
2 − 4

ds + C2

is a group-invariant solution of (10) corresponding to W1.
Similar to the above analysis, we obtain an exact solution associated with W7 given by

v(ξ, η) = ±arctan
√

−1 + C1ξ + C2.

Many more solutions are certainly possible and can be obtained through the solutions of
the reduced ODEs.

5. Symmetry group analysis for (11)

Similar to the previous section, symmetry group analysis for (11) is accomplished in this
section. First, we shall determine the symmetry group of (11), classify one-parameter
subgroups up to the adjoint representation and finally obtain the reduced ODEs or some
group-invariant solutions for the one-dimensional optimal systems.

Theorem 5. The Lie algebra of infinitesimal symmetries of (11) is spanned by the following
five vector fields:

Y1 = ∂

∂ξ
, Y2 = ∂

∂η
, Y3 = ∂

∂v
,

Y4 = −η
∂

∂ξ
+ ξ

∂

∂η
, Y5 = ξ

∂

∂ξ
+ η

∂

∂η
+ 2v

∂

∂v
.

(14)

The commutation relation and the action of the adjoint representation for the Lie
algebra (14) can be found in tables 4 and 5, respectively.

Let us use the notation

V1 = Y4, V2 = Y4 + Y3, V3 = Y4 − Y3, V4 = Y4 + αY5 (α �= 0),

V5 = Y5, V6 = Y1, V7 = Y3, V8 = Y1 + Y3.
(15)
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Table 5. The adjoint representation of (14).

Ad(ε·) Y1 Y2 Y3 Y4 Y5

Y1 Y1 Y2 Y3 Y4 − εY2 Y5 − εY1

Y2 Y1 Y2 Y3 Y4 + εY1 Y5 − εY2

Y3 Y1 Y2 Y3 Y4 Y5 − 2εY3

Y4 Y1 cos ε + Y2 sin ε Y2 cos ε − Y1 sin ε Y3 Y4 Y5

Y5 eεY1 eεY2 e2εY3 Y4 Y5

Table 6. Invariants for (15).

V1 V2 V3 V4 V5 V6 V7 V8

E 1 1 1 1 0 0 0 0
F 0 0 0 α 1 0 0 0
H 0 1 −1 0 0 0 1 1
P 0 0 0 0 0 1 0 1

Theorem 6. The vectors V1, . . . , V8 form an optimal system of one-dimensional subalgebra
for (14).

Let Y = ∑5
i=1 biYi be a general vector for (14). Similarly to the proof of theorem 1,

it is easy to show that each one-dimensional subalgebra of (14) is equivalent to one member
in Vi, (i = 1, . . . , 8). Now we claim that they are inequivalent and hence form an optimal
system. To prove this, we define some adjoint invariants.

Lemma 7. E = b4, F = b5 are invariants.

Lemma 8. Define

H =
{

sign b3, b5 = 0,

0, otherwise.

Then H is an invariant.

Proof. Since b5 is an invariant, it suffices to check the invariance of H under b5 = 0. Note
that Ad exp(εYi), i �= 5, do not change the value of b3. We only need to check the action of
Ad exp(εY5). In fact, after acted by Ad exp(εY5), the new coefficients of Y3, say b̃3, satisfy
b̃3 = e2εb3, and then H is unchanged. �

Lemma 9. The following function is an invariant:

P =
{

1, b4 = b5 = 0, b2
1 + b2

2 �= 0,

0, otherwise.

The proof is similar to that of lemma 4.
Now evaluate all invariants at each Vi(i = 1, . . . , 8) and put the results in table 6. It is

clear from table 6 that for different i, or the same i but with different parameters, they are
inequivalent. Then theorem 6 holds.

We run through the individual subalgebras (15) and obtain the reduction formula and
the corresponding invariant equations written in terms of the invariants. Note that V6 and V7

cannot yield group-invariant solutions. All other group reductions are presented in table A2.
As explained before, in the reduced equations we always take the second invariant as a function
of the first invariant.
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Table 7. The adjoint representation of (18).

Ad(ε·) Z1 Z2 Z3 Z4 Z5 Z6 Z7

Z1 Z1 Z2 Z3 Z4 − εZ2 Z5 Z6 − εZ1 Z7 − 3εZ1

Z2 Z1 Z2 Z3 Z4 Z5 − εZ1 Z6 + εZ2 Z7

Z3 Z1 Z2 Z3 Z4 Z5 Z6 Z7 − 2εZ3

Z4 Z1 + εZ2 Z2 Z3 Z4 Z5 + εZ6 − ε2Z4 Z6 + 2εZ4 Z7 + 3εZ4

Z5 Z1 Z2 + εZ1 Z3 Z4 + εZ6 − ε2Z5 Z5 Z6 − 2εZ5 Z7 − 3εZ5

Z6 eεZ1 e−εZ2 Z3 e−2εZ4 e2εZ5 Z6 Z7

Z7 e3εZ1 Z2 e2εZ3 e−3εZ4 e3εZ5 Z6 Z7

Except for the reduced ODE for V5, all other ODEs can be reduced to first-order ODEs.
Once they are solved, exact solutions for (11) can be obtained. Here, we only write the
group-invariant solution corresponding to V1:

v(ξ, η) = − 1
2 (ξ 2 + η2) + C1,

and the exact solution corresponding to V8:

v(ξ, η) = − 1
2 ln(1 + tan2(η + C1)) + C2,

where and hereafter C1 and C2 denote arbitrary constants.

6. Group-invariant solutions for the geometric heat flow

Since we have reduced the geometric heat flow for surface to (10) and (11) in section 3, the
further symmetry analysis for the two PDEs is accomplished in sections 4 and 5. Combining
the results and conclusions in sections 3–5 together, we can obtain the reduced equations, or
group-invariant solutions, for the geometric heat equation.

Case 1. k4 �= 0, k2 �= 0. The group-invariant solutions for the GHE are given by

k4u − arctan
y − y0

x − x0
= v(e−k2u((x − x0)

2 + (y − y0)
2), e−k2u(t − t0)),

where

x0 = −k2k5 + k1k4

k2
4 + k2

2

, y0 = k4k5 − k1k2k
2
4 + k2

2, t0 = − k3

2k2
.

Case 2. k4 �= 0, k2 = 0. In this case, the group-invariant solutions for the GHE should satisfy

k4u − arctan
y − k5

k4

x + k1
k4

= v

((
x +

k1

k4

)2

+

(
y − k5

k4

)2

, t − k3u

)
.

Case 3. k4 = 0, k2 �= 0. The group-invariant solutions of the GHE are given implicitly by

e−k2u

(
t +

k3

2k2

)
= v

(
e−k2u

(
x +

k5

k2

)
, e−k2u

(
y +

k1

k2

))
.

Case 4. k4 = 0, k2 = 0, k2
1 + k2

3 + k2
5 �= 0. In this case, the group-invariant solutions for the

GHE can be expressed as

t − k3u = v(x − k5u, y − k1u).
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In the above four cases, the function v, or the equations it satisfies, can be found in
table A1 for cases 1 and 2, and in table A2 for cases 3 and 4.

Here, we only present subsequently three group-invariant solutions of the GHE for
illustration,

u =
± arctan

√
−1 + C1

((
x + k1

k4

)2
+

(
y − k5

k4

)2)
+ arctan

y− k5
k4

x+ k1
k4

k4
+ C2,

u =
arcsin C1√((

x+ k1
k4

)2
+
(
y− k5

k4

)2) + arctan
y− k5

k4

x+ k1
k4

k4
,

u = ln
((

x + k5
k2

)2
+

(
y + k1

k2

)2
+ 2

(
t + k3

2k2

))
2k2

.

(16)

7. Exact solutions of the affine geometric heat flow

In this section, we carry out the group analysis for the affine case (7) and give exact solutions
for a special case.

Now we consider the Lie symmetry of (7). Using the Lie’s point symmetry method, we
obtain the infinitesimal generator for the symmetry group of (7):

X = η1(x, y, t, u)
∂

∂x
+ η2(x, y, t, u)

∂

∂y
+ η3(x, y, t, u)

∂

∂t
+ η4(x, y, t, u)

∂

∂u
,

where

η1 = (3F5(u) + F2(u))x + F4(u)y + F1(u),

η2 = F7(u)x − F2(u)y + F3(u),

η3 = 2F5(u)t + F6(u),

η4 = F8(u),

and Fi(u) (i = 1, . . . , 8) are eight arbitrary functions.
Here we only consider a special case with Fi(u) = ki(i = 1, . . . , 8) where k2 �= 0, k4 =

k5 = 0, k8 = 1 and other ki’s are arbitrary constants. Then η1, η2, η3 and η4 become

η∗
1 = k2x + k1, η∗

2 = k7x − k2y + k3,

η∗
3 = k6, η∗

4 = 1.

Integration of the characteristic equation

dx

k2x + k1
= dy

k7x − k2y + k3
= dt

k6
= du

1

gives the symmetry invariants

ξ = k2x + k1

ek2uk2
,

η = ek2u
(
2k2

2y − k2k7x − 2k2k3 + k7k1
)

2k2
2

,

τ = t − k6u.

We now look for a similarity reduction to (7) of the form

τ = v(ξ, η).
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Inserting it into (7) gives

−1 = v2
ηvξξ − 2vξvηvξη + v2

ξ vηη. (17)

Now we use Lie group theory to analyze (17). Its Lie algebra of infinitesimal symmetries
is spanned by the following seven vector fields:

Z1 = ∂

∂ξ
, Z2 = ∂

∂η
, Z3 = ∂

∂v
, Z4 = ξ

∂

∂η
,

Z5 = η
∂

∂ξ
, Z6 = ξ

∂

∂ξ
− η

∂

∂η
, Z7 = 3ξ

∂

∂ξ
+ 2v

∂

∂v
.

(18)

The adjoint representation for the Lie algebra (18) can be found in table 7.
We now introduce the vectors

U1 = Z6, U2 = Z6 + Z3, U3 = Z6 − Z3, U4 = Z4 − Z5 + αZ3,

U5 = Z4 + Z3 + αZ1, U6 = Z4 − Z3 + αZ1, U7 = Z4 + Z1,

U8 = Z4 − Z1, U9 = Z4, U10 = Z1, U11 = Z1 + Z3,

U12 = Z1 − Z3, U13 = Z2, U14 = Z3, U15 = Z2 + Z3,

U16 = Z2 − Z3, U17 = Z7 + αZ6, U18 = Z7 + Z4 + αZ5
(
α < − 9

4

)
,

U19 = Z7 − Z4 + αZ5
(
α > 9

4

)
, U20 = Z7 − 3

2Z6 + Z5,

U21 = Z7 − 3
2Z6 − Z5, U22 = Z7 + Z2, U23 = Z7 − Z2,

U24 = Z7 − 3Z6 + Z2 + Z1, U25 = Z7 − 3Z6 + Z2 − Z1,

U26 = Z7 − 3Z6 + Z2, U27 = Z7 − 3Z6 − Z2 + Z1,

U28 = Z7 − 3Z6 − Z2 − Z1, U29 = Z7 − 3Z6 − Z2,

U30 = Z7 − 3Z6 + Z1, U31 = Z7 − 3Z6 − Z1.

Theorem 10. An optimal system of one-dimensional subalgebras of (18) consists of the family
{Ui, i = 1, . . . , 31}.

Let Z = ∑7
i=1 ciZi be a general vector for (18).

Lemma 11. Q = c2
6 + 3c6c7 + c4c5 is an invariant.

Proof. A well-known fact is that the Killing form is invariant under the adjoint action. A
straightforward calculation shows that

K(Z,Z) = 10
(
c2

6 + 3c6c7 + c4c5
)

+ 31c2
7

is the Killing form of the Lie algebra (18). Hence K(Z,Z) is invariant under the adjoint
action. From lemma 12, we see that Q is an invariant. �

Lemma 12. The following two functions are invariants:

L = c7, S = sign c3.
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After using the optimal system, we obtain 31 nonequivalent one-dimensional subalgebras.
With those Lie algebras, one may reduce (17) to ODEs, which are not equivalent essentially
[30].

(1) U1 = ξ∂ξ − η∂η. For U1, its invariants are z = ξη and v, the group-invariant solution for
(17) is v = g(z), where g(z) satisfies

zg′3 − 1
2 = 0.

Solving it gives a solution of (17):

v = 3

2
4
3

(ξη)
2
3 + C1.

(2) U2, U3 = ξ∂ξ − η∂η ± ∂v . For U2 and U3, the invariants are z = ξη and v ∓ ln |ξ |, and
the group-invariant solutions for (17) are v = g(z) ± ln |ξ |, where g(z) satisfies the ODE

g′′ − 2zg′3 ∓ 3g′2 + 1 = 0.

(3) U4 = −η∂ξ + ξ∂η + α∂v .
(3.1) α = 0. For U4, its invariants are z = ξ 2 +η2 and v, the corresponding group-invariant
solution for (17) is v = g(z), then g(z) satisfies the ODE

zg′3 + 1
8 = 0.

Solving it, we deduce an exact solution to (17) given by

v = − 3
4 (ξ 2 + η2)

2
3 + C1.

(3.2) α �= 0. In this case, the invariants for U4 are z = ξ 2 + η2 and v − α arctan η/ξ , then
the group-invariant solution for (17) is v = g(z) + α arctan η/ξ , where g(z) satisfies the
ODE

4α2g′′ + 8zg′3 +
6α2

z
g′ + 1 = 0.

(4) U5, U6 = α∂ξ + ξ∂η ± ∂v .
(4.1) α = 0. In this case, the invariants are z = ξ and v ∓ η/ξ , and the group-invariant
solutions for (17) are given by v = g(z) ± η/ξ , where g(z) satisfies the ODE

1

z2
g′′ +

2

z3
g′ + 1 = 0.

Then, the corresponding solutions to (17) are

v = ±η

ξ
− 1

20
ξ 4 + C1

1

ξ
+ C2.

(4.2) α �= 0. For U5 and U6, the invariants are z = ξ 2 − 2αη and v ∓ ξ/α, then the group-
invariant solutions for (17) can be represented as v = g(z)± ξ/α, then g(z) satisfies the
ODE

4g′′ + 8α2g′3 + 1 = 0.
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(5) U7, U8 = ±∂ξ + ξ∂η. The invariants are z = ξ 2 ∓ 2η and v, and the corresponding
group-invariant solutions for (17) are v = g(z), where g(z) satisfies the ODE

g′3 + 1
8 = 0.

It gives a solution of (17)

v = − 1
2 (ξ 2 ∓ 2η) + C1.

(6) U11, U12 = ∂ξ ± ∂v . For U11 and U12, the invariants are z = η and v ∓ ξ , and the
group-invariant solutions for (17) are v = g(z) ± ξ , where g(z) satisfies the ODE

g′′ + 1 = 0.

The corresponding solutions to (17) are given by

v = ±ξ − 1
2η2 + C1η + C2.

(7) U15, U16 = ∂η±∂v . For U15 and U16, the invariants are z = ξ and v∓η, the group-invariant
solutions for (17) are v = g(z)± η, where g(z) satisfies

g′′ + 1 = 0.

It gives a solution of (17):

v = ±η − 1
2ξ 2 + C1ξ + C2.

(8) U17 = (3 + α)ξ∂ξ − αη∂η + 2v∂v .
(8.1) α = 0. In this case, its invariants are z = η and vξ−2/3, the group-invariant solution
for (17) is given by v = ξ 2/3g(z), where g(z) satisfies the ODE

4g2g′′ − 10gg′2 + 9 = 0.

(8.2) α �= 0. For U17, its invariants are z = η1+3/αξ and vη2/α , and the corresponding
group-invariant solution for (17) is given by v = η−2/αg(z), where g(z) satisfies the ODE

4g2g′′ − (2α2 + 9α + 9)zg′3 + 2(3α + 4)gg′2 + α2 = 0.

(9) U18 = (3ξ + αη)∂ξ + ξ∂η + 2v∂v

(
α < − 9

4

)
. For U18, its invariants are z =

(ξ 2 − 3ξη − αη2)/(4ξ 2 − 12ξη + 9η2) and v/(2ξ − 3η)4/3, the group-invariant solution
for (17) is given by v = (2ξ − 3η)4/3g(z), where g(z) satisfies the ODE

(1 − 4z)g2g′′ − 1

4
(1 − 4z)gg′2 − 2g2g′ +

9

16(9 + 4α)
= 0.

(10) U19 = (3ξ + αη)∂ξ − ξ∂η + 2v∂v

(
α > 9

4

)
. For U19, similar as U18, its invariants are

z = (ξ 2 + 3ξη + αη2)/(4ξ 2 + 12ξη + 9η2) and v/(2ξ + 3η)4/3, the group-invariant solution
for (17) takes the form v = (2ξ + 3η)4/3g(z), where g(z) satisfies the ODE

(1 − 4z)g2g′′ − 1

4
(1 − 4z)gg′2 − 2g2g′ +

9

16(9 − 4α)
= 0.

(11) U20, U21 = (
3
2ξ ± η

)
∂ξ + 3

2η∂η + 2v∂v . For U20 and U21, the invariants are z =
(2/3) ln |η| ∓ ξ/η and v/η4/3, the group-invariant solutions for (17) are v = η4/3g(z).
Then g(z) satisfies

16g2g′′ + 6g′3 − 4gg′2 + 9 = 0.

(12) U22, U23 = 3ξ∂ξ ± ∂η + 2v∂v . For U22 and U23, the invariants are z = ln |ξ | ∓ 3η and
vξ−2/3, the group-invariant solution for (17) is v = ξ 2/3g(z), where g fulfils the ODE

4g2g′′ − 9g′3 − 10gg′2 + 1 = 0. (19)
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(13) U24, U25 = ±∂ξ + (3η + 1)∂η + 2v∂v . For U24 and U25, the invariants are z =
(1/3) ln|3η + 1| ∓ ξ and v(3η + 1)−2/3, the group-invariant solution for (17) is given
by v = (3η + 1)2/3g(z), where g(z) satisfies the ODE

4g2g′′ − 3g′3 − 10gg′2 + 1 = 0. (20)

(14) U26 = (3η + 1)∂η + 2v∂v . For U26, the invariants are z = ξ and v(3η + 1)−2/3, the
group-invariant solution for (17) is given by v = (3η + 1)2/3g(z), where g(z) satisfies

4g2g′′ − 10gg′2 + 1 = 0. (21)

(15) U27, U28 = ±∂ξ +(3η−1)∂η +2v∂v . For U27 and U28, the invariants are z = (1/3) ln|3η−
1| ∓ ξ and v(3η − 1)−2/3, the group-invariant solution for (17) is v = (3η − 1)2/3g(z)

with g(z) satisfying (20).
(16) U29 = (3η − 1)∂η + 2v∂v . The invariants for U29 are z = ξ and v(3η − 1)−2/3, the

group-invariant solution for (17) is given by v = (3η − 1)2/3g(z), where g(z) satisfies
equation (21).

(17) U30, U31 = ±∂ξ + 3η∂η + 2v∂v . For U30 and U31, the invariants are z = ln |η| ∓ 3ξ and
vη−2/3, the group-invariant solution for (17) is v = η2/3g(z), with g(z) satisfying (19).

Now the symmetry group analysis for (17) is accomplished, since we have reduced the
affine geometric heat flow (7) to (17) for the special case defined before. Then combining the
results and conclusions obtained above, the group-invariant solutions of the affine geometric
heat flow in the case Fi(u) = ki(i = 1, . . . , 8), where k2 �= 0, k4 = k5 = 0, k8 = 1 and other
ki’s are arbitrary constants, can be expressed as

t − k6u = v

(
k2x + k1

ek2uk2
,

ek2u
(
2k2

2y − k2k7x − 2k2k3 + k7k1
)

2k2
2

)
,

where v satisfies (17).

8. Concluding remarks

We have systematically derived the Lie point symmetries of the geometric heat flow (6). The
basic similarity reductions are performed when the arbitrary functions in the infinitesimal
transformations are confined to constants. Reduced equations and exact solutions associated
with the symmetries are obtained.

Lie symmetries for the affine geometric heat flow (7) are also determined and its
corresponding group-invariant solutions are also derived for a special case.

It remains open to reduce equations (6) and (7) when the functions Fi(u) are not constants.
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Appendix

We put tables A1 and A2 cited in sections 4 and 5, respectively, in the appendix.
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Table A1. Reduced equation for (10).

No Generators Invariants Ansatz Reduced equation

1 X4 (
ξ
η
, v) v = g(z) 4zg′′ + 4z2(z + 2)g′3 + (z + 6)g′ = 0

2 X4 + αX3 (
ξ
η
, v − α ln |η|) v = g(z) + α ln |η| 4zg′′ + 4z2(z + 2)g′3 − 4αz2g′2 + (z + 6)g′ − α = 0

4 X3 + X5 (ξ, v − η) v = g(z) + η 4zg′′ + 8z2g′3 − 4z2g′2 + 6g′ − 1 = 0
5 X3 − X5 (ξ, v + η) v = g(z) − η 4zg′′ + 8z2g′3 + 4z2g′2 + 6g′ + 1 = 0
6 X1 (η, ξ sin2 v) ξ sin2 v = g(z) g′ = 0
7 X5 (ξ, v) v = g(z) 4zg′′ + 8z2g′3 + 6g′ = 0
8 X5 + X1 (ξ sin2 v,

√
ξ cos v − η)

√
ξ cos v − η = g(z) 4zg′′ − 4zg′2 + 2g′ − 1 = 0

Table A2. Reduced equation for (11).

No Generators Invariants Ansatz Reduced equation

1 Y4 (ξ2 + η2, v) v = g(z) g′ + 1
2 = 0

2 Y4 + Y3 (ξ2 + η2, v − arctan η
ξ
) v = g(z) + arctan η

ξ
4zg′′ + 8z2g′3 + 4z2g′2 + 6g′ + 1 = 0

3 Y4 − Y3 (ξ2 + η2, v + arctan η
ξ
) v = g(z) − arctan η

ξ
4zg′′ + 8z2g′3 + 4z2g′2 + 6g′ + 1 = 0

4 Y4 + αY5 (ln(ξ2 + η2) − 2α arctan η
ξ
, v

ξ2+η2 ) v = (ξ2 + η2)g(z) 4α2g2g′′ + 2(α2 + 1)g′3

+ (α2 + 1 + 6g − 2α2g)g′2 + 2(3g + 1)gg′

+ g2(2g + 1) = 0
5 Y5 (

η
ξ
, v

η2 ) v = η2g(z) 4z4g2g′′ + z2(z2 + 1 − 2z2g)g′2

+ 4z(2z2g + 1)gg′ + 4g2 = 0
8 Y1 + Y3 (η, v − ξ) v = g(z) + ξ g′′ + g′2 + 1 = 0

References

[1] Angenent S 1990 Parabolic equations for curves on surfaces: Part I. Curves with p-integrable curvature Ann.
Math. 132 451–83

[2] Angenent S 1991 On the formation of singularities in the curve shortening flow J. Diff. Geom. 33 601–34
[3] Gage M and Hamilton R S 1986 The heat equation shrinking convex plane curves J. Diff. Geom. 23 69–96
[4] Grayson M 1989 Shortening embedded curves Ann. Math. 129 71–111
[5] Chow B, Lu P and Ni L 2006 Hamilton’s Ricci Flow (Graduate Studies in Mathematics vol 77) (Providence,

RI/New York: American Mathematical Society/Science Press)
[6] Kimia B B, Tannenbaum A and Zucker S W 1992 On the evolution of curves via a function of curvature: I. The

classical case J. Math. Anal. Appl. 163 438–58
[7] Sapiro G 2001 Geometric Partial Differential Equations and Image Analysis (New York: Cambridge University

Press)
[8] Cao F 2003 Geometric Curve Evolution and Image Processing (Berlin: Springer)
[9] Kimia B B, Tannenbaum A and Zucker S W 1995 Shapes, shocks, and deformations: I. The components of

two-dimensional shape and the reaction–diffusion space Int. J. Comput. Vis. 15 189–224
[10] Kimia B B and Siddiqi 1996 Geometric heat equation and nonlinear diffusion of shapes and images Comput.

Vis. Image Understand. 64 305–22
[11] Dolcetta I C, Vita S F and March R 2002 Area-preserving curve-shortening flows: from phase separation to

image processing Interfaces Free Bound. 4 325–43
[12] Angenent S, Pichon E and Tannenbaum A 2006 Mathematical methods in medical image processing Bull. AMS

43 365–96
[13] Deckelnick K, Dziuk G and Elliott C M 2005 Computation of geometric partial differential equations and mean

curvature flow Acta Numer. 14 139–232
[14] Bakas I and Sourdis C 2007 Dirichlet sigma models and mean curvature Preprint hep-th/0704.3985v1
[15] Gage M 1983 An isoperimetric inequality with applications to curve shortening Duke Math. J. 50 1225–9
[16] Gage M 1984 Curve shortening makes convex curves circular Invent. Math. 76 357–64

http://dx.doi.org/10.1016/0022-247X(92)90260-K
http://dx.doi.org/10.1007/BF01451741
http://dx.doi.org/10.1006/cviu.1996.0062
http://dx.doi.org/10.1017/S0962492904000224
http://www.arxiv.org/abs/hep-th/0704.3985v1
http://dx.doi.org/10.1215/S0012-7094-83-05052-4
http://dx.doi.org/10.1007/BF01388602


9360 Q Huang and C Qu

[17] Grayson M 1987 The heat equation shrinks embedded plane curves to round points J. Diff. Geom. 26 285–314
[18] Alvarez L, Guichard F, Lions P L and Morel J M 1993 Axioms and fundamental equations of image processing

Arch. Ration. Mech. Anal. 123 199–257
[19] Sapiro G and Tannenbaum A 1993 Affine invariant scale space Int. J. Comput. Vis. 11 25–44
[20] Sapiro G and Tannenbaum A 1993 On invariant curve evolution and image analysis Indiana Univ. Math.

J. 42 985–1011
[21] Angenent S, Sapiro G and Tannenbaum A 1998 On the affine heat equation for non-convex curves J. Am. Math.

Soc. 11 601–34
[22] Chou K S and Zhu X P 2001 The Curve Shortening Problem (London/Boca Raton, FL: Chapman and Hall/CRC

Press)
[23] Chou K S and Li G X 2002 Optimal systems and invariant solutions for the curve shortening problem Commun.

Anal. Geom. 10 241–74
[24] Osher S J and Sethian J A 1988 Fronts propagating with curvature dependent speed: algorithms based on the

Hamilton–Jacobi formulation J. Comput. Phys. 79 12–49
[25] Sethian J A 1996 Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and

Materials Sciences (Cambridge: Cambridge University Press)
[26] Alvarez L, Lions P L and Morel J M 1992 Image selective smoothing and edge detection by nonlinear diffusion

SIAM J. Numer. Anal. 29 845–66
[27] Abresch U and Langer J 1986 The normalized curve shortening flow and homothetic solutions J. Diff. Geom.

23 175–96
[28] Nien C H and Tsai D H 2006 Convex curves moving translationally in the plane J. Diff. Eqns 225 605–23
[29] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Dordrecht: Reidel)
[30] Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Springer)
[31] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[32] Chou K S and Qu C Z 2004 Optimal systems and group classification of (1+2)-dimensional heat equation Acta

Appl. Math. 83 257–87

http://dx.doi.org/10.1007/BF00375127
http://dx.doi.org/10.1007/BF01420591
http://dx.doi.org/10.1512/iumj.1993.42.42046
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1137/0729052
http://dx.doi.org/10.1016/j.jde.2006.03.005
http://dx.doi.org/10.1023/B:ACAP.0000039017.97566.77

	1. Introduction
	2. Lie symmetry of the geometric heat flow
	3. Reduction of the geometric heat flow to two-dimensional PDEs
	4. Symmetry group analysis for (10)
	5. Symmetry group analysis for (11)
	6. Group-invariant solutions for the geometric heat flow
	7. Exact solutions of the affine geometric heat flow
	8. Concluding remarks
	Acknowledgments
	Appendix
	References

