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Complete group classification of a class of variable coefficient (1+1)-dimensional wave equa-
tions is performed. The possible additional equivalence transformations between equations
from the class under consideration and the conditional equivalence groups are also inves-
tigated. These allow simplifying results of classification and further applications of them.
The derived Lie symmetries are used to construct exact solutions of special forms of these
equations via classical Lie method. Nonclassical symmetries of the wave equations are dis-
cussed.
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1 Introduction

Investigation of the flow of one-dimensional gas, longitudinal wave propagation on a moving
threadline and dynamics of a finite nonlinear string [1, 2] leads to interesting mathematical
models which can be often formulated in terms of partial differential equations. In general
case coefficients of model equations explicitly include both dependent and independent model
variables that makes difficulties in studying such models.

In this letter a class of (1+1)-dimensional nonlinear wave equations of the general form

utt = (H(u)ux)x + k(x)u (1)

where Hu 6= 0, is investigated within the symmetry framework. Here H and k are arbitrary
functions of their argument, t is the time coordinate and x is the one-space coordinate.

The condition Hu = 0 corresponds to the linear case of (1) which was completely investigated
with the Lie symmetry point of view long time ago [14, 18]. Moreover, the sets of the linear
and nonlinear equations of form (1) can be separately investigated under restriction with point
symmetries. That is why the linear case is excluded from consideration in the present letter.

The problem of group classification for the degenerate case k = 0 (i.e. the class of nonlinear
one-dimensional wave equations) was first solved by Ames et.al [2] in 1981. From that well-
known paper, the search for symmetries of various kinds of one-dimensional non-linear wave
equations has been considered in many papers in the last two decades [3–8, 10, 11, 17, 20–22] .
Note also that Lie symmetries of the class of quasilinear Hyperbolic type second-order nonlinear
partial differential equations in two independent variables, which has a wide equivalence group
and covers all the mentioned classes, were classified in [13]. Recently, by using a compatibility
method and additional equivalence transformations, we present a complete group classification of
variable coefficient nonlinear telegraph equations [9]. In the present letter, we further extended
this method to the wave equation (1).

Study in our letter is concentrated on rigorous and exhaustive group classification of the
whole class (1) and construction of exact solutions for some nonlinear wave equations from this
class. Additional equivalence transformations and conditional equivalence groups are also found.
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These allow to simplify results of classification and further applications of them. To find exact
solutions, we apply both classical Lie reduction and nonclassical symmetry approaches.

2 Group classification

Group classification of class (1) is performed in the framework of the classical approach [9, 18].
All necessary objects (the equivalence group, principal group, the kernel and all inequivalent
extensions of maximal Lie invariance algebras) are found. Moreover, we extend the classical
approach with additional equivalence transformations and conditional equivalence group for
simplification of the classification results.

Theorem 1. The Lie algebra of the kernel of principal groups of (1) is an one-dimensional
algebra Aker = 〈∂t〉.

Theorem 2. The Lie algebra of the equivalence group G∼ for class (1) is

A∼ = 〈∂t, ∂x, u∂u, x∂x + 2H∂H , t∂t − 2H∂H − 2k∂k〉.

The equivalence group G∼ of class (1) is formed by the transformations

t̃ = tε1 + ε2, x̃ = xε3 + ε4, ũ = ε5u, H̃ = Hε−2
1 ε23, k̃ = kε−2

1 ,

where ε1, . . . , ε5 are arbitrary constants, ε1ε3ε5 6= 0. The connected component of the unity in
G∼ is formed by continuous transformations having ε1 > 0, ε3 > 0 and ε5 > 0. The complement
discrete component of G∼ is generated by three involutive transformations of alternating sign
in the sets {t, H, k}, {x} and {u}.

Theorem 3. The complete set of G∼-inequivalent extensions of Amax 6= Aker for equation (1)
is exhausted by ones given in table 1.

Table 1. Results of group classification

N H(u) h(x) Basis of Amax

1 ∀ ∀ ∂t,

2 ∀ 1 ∂t, ∂x,

3 ∀ x−2 ∂t, t∂t + x∂x

4 uµ εxq ∂t, µqt∂t − 2µx∂x − 2(q + 2)u∂u

5 uµ εex ∂t, µt∂t − 2µ∂x − 2u∂u

6 u−
4
3 k1(x) ∂t, −2qt∂t + 4(x2 + p)∂x − 3(4x + q)u∂u

7 ∀ 0 ∂t, ∂x, t∂t + x∂x

8 (u + 1)−1 1 ∂t, ∂x, et∂t + 2et(u + 1)∂u,

9 eu 0 ∂t, ∂x, t∂t + x∂x, x∂x + 2∂u

10 uµ, µ 6= −4,− 4
3

ε ∂t, ∂x, µx∂x + 2u∂u

11 (u + α)µ, µ 6= −4,− 4
3

0 ∂t, ∂x, t∂t + x∂x, µx∂x + 2(u + α)∂u,

12 u−
4
3 ε ∂t, ∂x, 2x∂x − 3u∂u, x2∂x − 3xu∂u

13 (u + α)−
4
3 0 ∂t, ∂x, t∂t + x∂x, 2x∂x − 3(u + α)∂u, x2∂x − 3x(u + α)∂u

14 (u + α)−4 0 ∂t, ∂x, 2t∂t + (u + α)∂u, 2x∂x − (u + α)∂u, t2∂t + t(u + α)∂u

15 (u + α)−4 1 ∂t, ∂x, e2t(∂t + (u + α)∂u), 2x∂x + (u + α)∂u, e−2t(∂t − (u + α)∂u)

Here k1(x) = ε exp[
R

q
x2+p

]; p ∈ {−1, 0, 1}, ε = ±1, α ∈ {0, 1} mod G∼; µ, q 6= 0.

Additional equivalence transformations:

1. 6|p=−1 → 4|µ̃=−4/3,q̃=q/2: t̃ = t, x̃ = x−1
x+1

, ũ = 2−3/2(x + 1)3u;

2. 6|p=0 → 5|µ̃=−4/3: t̃ = t, x̃ = x−1, ũ = x3u;

3. 11|α 6=0 → 11|α=0 (µ = − 4
3
), 13|α 6=0 → 13|α=0, 14|α 6=0 → 14|α=0, 15|α 6=0 → 15|α=0 : t̃ = t, x̃ = x, ũ = u+α;
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Remark 1. The parameter function k1(x) equals to the following functions depending on values
of p:

p = −1 : k1(x) = ε

∣∣∣∣x − 1
x + 1

∣∣∣∣ q
2

; p = 0 : k1(x) = εe−
q
x ; p = 1 : k1(x) = εeq arctan x.

Additionally we can assume q = −1 mod G∼ if p = 0.

Some cases from Table 1 are equivalent with respect to point transformations which obviously
do not belong to G∼. These transformations are called additional equivalence transformations
and lead to simplification of further application of group classification results. The simplest
way to find such additional equivalences between previously classified equations is based on the
fact that equivalent equations have equivalent maximal Lie invariance algebras. Explicit formu-
las for pairs of point-equivalent extension cases and the corresponding additional equivalence
transformations are adduced after the tables. One can check that there exist no other point
transformations between the equations from tables 1. Using this we can formulate the following
theorem.

Theorem 4. Up to point transformations, a complete list of extensions of the maximal Lie
invariance algebra of equations from class (1) is exhausted by the cases 1–5, 6|p=1, 7–10, 11|α=0,
12, 13|α=0, 14|α=0 and 15|α=0.

The singularity of the wave coefficient such as H = u−4/3 with a number of different values
of k(x) admitting extensions of Lie invariance algebra can be explained in the framework of
conditional equivalence groups. The equivalence group is extended under the condition H =
u−4/3. More precisely, the equivalence group G∼

1 of the subclass of equations (1) with H = u−
4
3

is formed by the transformations

t̃ = tε1 + ε2, x̃ =
xε3 + ε4
xε5 + ε6

, ũ = ±ε21(ε5x + ε6)3u, k̃ = kε−2
1 .

where εi, i = 1, ..., 6, are arbitrary constants, ε1 > 0 and ε3ε6 − ε4ε5 = 1. G∼
1 is a non-trivial

conditional equivalence group of class (1). Two first additional equivalence transformations
belong to G∼

1 .
Another example of a conditional equivalence group in class (1) arises under the condition

k = 0. The equivalence group G∼ of the whole class is then extended with translations with
respect to u, i.e. the complete equivalence group G∼

2 of nonlinear wave equations (k = 0) is
formed by the transformations

t̃ = tε1 + ε2, x̃ = xε3 + ε4, ũ = uε5 + ε6, k̃ = kε−2
1 ε23.

where εi, i = 1, ..., 6, are arbitrary constants, ε1ε3ε5 6= 0. The third additional equivalence
transformation belongs to G∼

2 .
The subclass of equations (1) with k being a constant admits an extension of generalized

equivalence group. The prefix generalized means that transformations of the variables t, x and
u can depend on arbitrary elements [15]. The associated generalized equivalence group G∼

4 is
generated by transformations from G∼, where ε is replaced by k.

Knowledge on conditional equivalence groups allows us to describe the set of admissible
(from-preserving) transformations in class (1) completely. See e.g. [12] and references therein.

3 Similarity Solutions

The Lie symmetry operators found as a result of solving the group classification problem can
be applied to construction of exact solutions of the corresponding equations. The method
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of reductions with respect to subalgebras of Lie invariance algebras is well-known and quite
algorithmic to use in most cases; we refer to the standard textbooks on the subject [16, 18]. In
what follows, we select case 10 as an example to implement the relevant Lie reduction algorithm.
The Lie reductions and similarity solutions of some truly nonlinear ‘variable coefficient’ wave
equations (cases 4-6 of table 1) will be a subject in a subsequent publication.

As shown in the previous section, the equation (Case 10 of Table 1)

utt = (uµux)x + εu, ε = ±1 (2)

admits the three-dimensional Lie invariance algebra g generated by the operators

Q1 = ∂x, Q2 = x∂x +
2u

µ
∂u, Q3 = ∂t.

These operator satisfy the commutation relations

[Q1, Q2] = Q1, [Q1, Q3] = 0, [Q2, Q3] = 0.

It means that the algebras g are isomorphic to the algebra g2 ⊕ g1 being the direct sum of
the two-dimensional non-Abelian Lie algebra g2 and the one-dimensional Lie algebra g1. An
optimal set of subalgebras of g2 ⊕ g1 can be easily constructed with application of a standard
technique [16, 18]. Another way is to take the set from [19]. (In this paper optimal sets of
subalgebras are listed for all three- and four-dimensional algebras.) The used optimal set consists
of

one-dimensional subalgebras : 〈Q2 − αQ3〉, 〈Q3〉, 〈Q1 ± Q3〉, 〈Q1〉;
two-dimensional subalgebras : 〈Q1, Q3 − βQ2〉, 〈Q1, Q2〉,

where α and β are arbitrary constants.
Lie reduction to algebraic equations can be made only with the first two-dimensional sub-

algebra; the second one does not satisfy the transversality condition [16]. The corresponding
ansatzes and reduced algebraic equations have the form:

u = Ceσt, where σ = −2β
µ ; C(σ2 − ε) = 0, if ε = 1;

u = C cos(σt), where σ = −2β
µ ; C(σ2 + ε) = 0, if ε = −1;

Here C is an unknown constant to be found. The reduced equations are compatible and have
non-trivial (non-zero) solutions only for some values of σ and, moreover, become identities for
these values of σ. As a result, the following x-free solutions are constructed:

u = Ceσt, where σ2 − ε = 0, if ε = 1;
u = C cos(σt), where σ2 + ε = 0, if ε = −1;

Here C is an arbitrary constant. These solutions can be also obtained with step-by-step reduc-
tions with respect to one-dimensional subalgebras.

The ansatzes and reduced equations corresponding to the one-dimensional subalgebras from
the optimal system are collected in table 2.

Table 2. Reduced ODEs for equation (2).

N Subalgebra Ansatz u = ω Reduced ODE

1 〈Q1〉 ϕ(ω) t ϕωω − εϕ = 0

2 〈Q3〉 ϕ(ω) x (ϕµϕω)ω + εϕ = 0

3 〈Q1 ±Q3〉 ϕ(ω) x± t ϕωω − (ϕµϕω)ω − εϕ = 0

4 〈Q2 − αQ3〉 exp(− 2
αµ

t)ϕ(ω) exp( 1
α

t)x µ2ω2ϕωω − (µ2 − 4µ)ωϕω + (4− α2µ2ε)ϕ

−α2µ2(ϕµϕω)ω = 0
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Some reduced equations are integrated completely. Thus we have the following solutions of
equation (2):

ϕ = C1e
t + C2e

−t, if ε = 1; u = C1 cos t + C2 sin t, if ε = −1;

±
(µ + 2)hypergeom([µ+1

µ+2 , 1
2 ], [1 + µ+1

µ+2 ], 2uµ+2

C1
ε)uµ+1

(µ + 1)
√

(µ + 2)C1

= x + C2;∫ u

± (µ + 2)(zn − 1)√
(µ + 2)(−2εzµ+2 + ε(µ + 2)z2 + C1(µ + 2)

dz = x ± t + C2.

4 On conditional symmetries

We also study conditional (nonclassical) symmetries of equations from class (1). As well-known,
the operators with the vanishing coefficient of ∂t gives so-called ‘no-go’ case in study of condi-
tional symmetries of an arbitrary (1 + 1)-dimensional evolution equation since the problem on
their finding is reduced to a single equation which is equivalent to the initial one (see e.g. [23]).
Since the determining equation has more independent variables and, therefore, more freedom
degrees, it is more convenient often to guess a simple solution or a simple ansatz for the deter-
mining equation, which can give a parametric set of complicated solutions of the initial equation.
For example, the wave equation

utt = (uux)x + εu, ε = ±1 (3)

is conditionally invariant with respect to the operator ∂x + ( u
2x − ε

4x)∂u. The associated ansatz
u = − ε

6x2 + ϕ(ω)x
1
2 , ω = t, reduces equation (3) to the equation ϕωω = 3

8ϕ, i.e. u = − ε
6x2 +

(c1e
√

6
4

t + c2e
−
√

6
4

t)x
1
2 is its non-Lie exact solution which can be additionally extended with

symmetry transformations.
It is known that there also exist conditional symmetry operators of equations (1), which have

non-vanishing coefficients of ∂t, are inequivalent to Lie-invariance operators and even lead to
truly non-Lie exact solutions. We omit these discussions because of the limited space. Exhaustive
description of nonclassical symmetry operators of equations (1) will be a subject of a forthcoming
paper.
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