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Abstract

Geometric constructions applied to a rational action of an algebraic group lead to a new
algorithm for computing rational invariants. A finite generating set of invariants appears as
the coefficients of a reduced Gröbner basis. The algorithm comes in two variants. In the first
construction the ideal of the graph of the action is considered. In the second one the ideal of a
cross-section is added to the ideal of the graph. Zero-dimensionality of the resulting ideal brings
a computational advantage. In both cases, reduction with respect to the computed Gröbner
basis allows to express any rational invariant in terms of the generators.
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1. Introduction

We present an algebraic construction for a finite set of rational invariants of a rational
group action on an affine space. The exhibited finite set is shown to be a set of generators
of the field of rational invariants. It is furthermore endowed with a simple algorithm to
express any rational invariant in terms of the generators.

The construction is algorithmic and can easily be implemented in general purpose
computer algebra systems or software specialized in Gröbner basis computations. This
is illustrated by a maple worksheet 1 where the examples of the paper are treated. As

URLs: www.inria.fr/cafe/Evelyne.Hubert (Evelyne Hubert), www.math.ncsu.edu/~iakogan (Irina

A. Kogan).
1 available at www.inria.fr/cafe/Evelyne.Hubert/Publi/RationalInvariants
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we shall explain, there is no obstruction in generalizing the results to an action on an
irreducible variety instead of an affine space.

The algorithm comes in two variants. For the first construction we consider the graph of
the action as did Rosenlicht (1956), Vinberg and Popov (1994) 2 , and Müller-Quade and
Beth (1999) 3 . We point out the connections with these previous works in the text. Our
proofs are independent and provide an original approach. We show that the coefficients
of a reduced Gröbner basis of the ideal of the graph of the action are invariant. We prove
that these coefficients generate the field of rational invariants by exhibiting an algorithm
for rewriting any rational invariant in terms of them. In the second construction we
consider a section of the graph. That is, from the algebraic point of view, we consider the
sum of the ideal of the graph with the ideal of a cross-section to the orbits. The graph-
section ideal thus obtained is of dimension zero and that brings an advantage when it
comes to Gröbner basis computation.

As showed in (Hubert and Kogan, 2006), the second construction provides algebraic
foundations to the moving frame construction of Fels and Olver (1999). We introduce re-
placement invariants, the algebraic counterpart of Cartan’s normalized invariants. Those
are tuples of algebraic functions of rational invariants. Any invariant can be rewritten in
terms of them by just substituting the coordinate functions by the corresponding compo-
nent from the tuple. The components of a replacement invariants thus form a generating
set for algebraic invariants, which we define as algebraic functions of rational invariants.
The relations among the components are simple: they are given by the equations of the
cross-section. The latter can be chosen with a large amount of freedom and this is fruitful
in applications. For these reasons we believe that algebraic and replacement invariants
deserve more attention.

Diverse fields of application of algebraic invariant theory are presented by Derksen
and Kemper (2002, Chapter 5). Some of the applications can be addressed with rational
invariants. One of the advantage is that, contrary to the ring of polynomial invariants, the
field of rational invariants is always finitely generated. The present construction together
with the simple rewriting algorithm can bring computational benefits. Our interest in
applications to differential problems motivates our choice to consider rational actions.
Even if we start with an affine or even linear action on the zeroth order jet space, the
prolongation of the action to the higher order jet spaces is usually rational.

The paper is structured as follows. In Section 2 we introduce the action of an algebraic
group on the affine space and the graph of the action. This leads to the first construction
of a set of generating rational invariants. The second construction is given after the
introduction of the cross-section to the orbits in Section 3. Section 4 provides additional
examples.
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2. Graph of a group action and rational invariants

We give a definition of a rational action of an algebraic group on an affine space. Two
additional hypotheses are necessary for our constructions. We recall the definition for
the graph of the action. It plays a central role in our constructions. The first variant
of the algorithm for computing a generating set of rational invariants, together with an
algorithm for expressing any rational invariant in terms of them, is presented in this
section.

For exposition convenience we assume that the field K is algebraically closed. As the
construction proposed in this section relies solely on Gröbner basis computations, it can
be performed in the field of definition of the data (usually Q or Fp).

2.1. Rational action of an algebraic group

We consider an algebraic group that is defined as an algebraic variety G in the affine
space Kl. The group operation and the inverse are given by polynomial maps. The neutral
element is denoted by e. We shall consider an action of G on an affine space Z = Kn.

Throughout the paper λ = (λ1, . . . , λl) and z = (z1, . . . , zn) denote indeterminates
while λ̄ = (λ̄1, . . . , λ̄l) and z̄ = (z̄1, . . . , z̄n) denote points in G ⊂ Kl and Z = Kn respec-
tively. The coordinate ring of Z and G are respectively K[z1, . . . , zn] and K[λ1, . . . , λl]/G,
where G is a radical unmixed dimensional ideal. By λ̄ · µ̄ we denote the image of (λ̄, µ̄)
under the group operation while λ̄−1 denotes the image of λ̄ under the inversion map.

Definition 2.1 A rational action of an algebraic group G on the affine space Z is a
rational map g : G × Z → Z that satisfies the following two properties

(1) g(e, z̄) = z̄, ∀z̄ ∈ Z
(2) g(µ̄, g(λ̄, z)) = g(µ̄ · λ̄, z), whenever both (λ̄, z̄) and (µ̄ · λ̄, z̄) are in the domain of

definition of g.

A rational action is uniquely determined by a n-tuple of rational functions of K(λ, z)
whose domain of definition is a dense open set of G × Z. We can bring these rational
functions to their least common denominator h ∈ K[λ, z] without affecting the domain
of definition. In the rest of the paper the action is thus given by

g(λ̄, z̄) =
(
g1(λ̄, z̄), . . . , gn(λ̄, z̄)

)
for g1, . . . , gn ∈ h−1K[λ1, . . . , λl, z1, . . . , zn] (1)

Asumption 2.2 We make the additional assumptions
(1) for all z̄ ∈ Z, h(λ, z̄) ∈ K[λ] is not a zero-divisor modulo G. This says that the

domain of definition of gz̄ : λ̄ 7→ g(λ̄, z̄) contains a non-empty open set of each
component of G.

(2) for all λ̄ ∈ Z, h(λ̄, z) ∈ K[z] is different from zero. In other words, for every element
λ̄ ∈ G there exists z̄ ∈ Z, such that (λ̄, z̄) is in the domain of definition g.

The following three examples serve as illustration throughout the text.

Example 2.3 Scaling. Consider the multiplicative group given by G = (1 − λ1λ2) ⊂
K[λ1, λ2]. The neutral element is (1, 1) and (µ̄1, µ̄2) · (λ̄1, λ̄2)−1 = (µ̄1λ̄2, µ̄2λ̄1). We
consider the scaling action of this group on K2. It is given by the following polynomials
of K[λ1, λ2, z1, z2]: g1 = λ1z1, g2 = λ1z2.
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Example 2.4 translation+reflection. Consider the group that is the direct prod-
uct of the additive group and the group of two elements {1,−1}, its defining ideal in
K[λ1, λ2] being G = (λ2

2 − 1). The neutral element is (0, 1) while (µ̄1, µ̄2) · (λ̄1, λ̄2)−1 =
(µ̄1 − λ̄1, µ̄2λ̄2). We consider its action on K2 as translation parallel to the first coor-
dinate axis and reflection w.r.t. this axis. It is defined by the following polynomials of
K[λ1, λ2, z1, z2]: g1 = z1 + λ1, g2 = λ2z2.

Example 2.5 rotation. Consider the special orthogonal group given by G = (λ2
1 +

λ2
2−1) ⊂ K[λ1, λ2] with e = (1, 0) and (µ̄1, µ̄2) · (λ̄1, λ̄2)−1 = (µ̄1λ̄1 + µ̄2λ̄2, µ̄2λ̄1− µ̄1λ̄2).

Its linear action on K2 is given by the following polynomials of K[λ1, λ2, z1, z2]:

g1 = λ1z1 − λ2z2, g2 = λ2z1 + λ1z2.

An element of the group acts as a rotation around the origin.

2.2. Graph of the action and orbits

The graph of the action is the image O ⊂ Z ×Z of the map (λ̄, z̄) 7→ (z̄, g(λ̄, z̄)) that
is defined on a dense open set of G×Z. We have O = {(z̄, z̄′) | ∃λ̄ ∈ G s.t. z̄′ = g(λ̄, z̄)} ⊂
Z × Z.

We introduce a new set of variables Z = (Z1, . . . , Zn) and the ideal

J = G + (Z − g(λ, z)) ⊂ h−1K[λ, z, Z]

where (Z − g(λ, z)) stands for (Z1 − g1(λ, z), . . . , Zn − gn(λ, z)). The set O is dense in
its closure O, and O is the algebraic variety of the ideal:

O = J ∩K[z, Z] = (G + (Z − g(λ, z) ) ) ∩K[z, Z].

Since G is radical and unmixed dimensional so is J because of the linearity in Z.
If G =

⋂κ
i=0 G(i) is the prime decomposition of G then we have the following prime

decomposition of J :

(G + ( Z − g(λ, z) ) ) =
κ⋂

i=0

(
G(i) + (Z − g(λ, z) )

)
.

The prime ideal O(i) =
(
G(i) + (Z − g(λ, z) )

)
∩K[z, Z] is therefore a component of O.

The ideals O(i), however, need not be all distinct.
The set O is symmetric: if (z̄, z̄′) ∈ O then (z̄′, z̄) ∈ O. By the NullStellensatz the

ideal O is also symmetric: p(Z, z) ∈ O if p(z, Z) ∈ O. Since J ∩K[z] = (0), O∩K[z] = (0)
and therefore O ∩K[Z] = (0) also.

Given the action (1), a set of generators for O ⊂ K[z, Z] is obtained by elimination.
More explicitly we can compute a Gröbner basis (Becker and Weispfenning, 1993) of O.

Proposition 2.6 Let g′ be the n-tuple of numerators of g: g′ = hg = (hg1, . . . , hgn) ∈
(K[λ, z])n

. Consider a term order s.t. z ∪ Z � λ ∪ {y} where y is a new indeterminate.
If Q is a Gröbner basis for G + (h Z − g′) + (yh − 1) according to this term order then
Q ∩K[z, Z] is a Gröbner basis of O according the induced term order on z ∪ Z.
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proof: Take J ′ = (G + (Z − g)) ∩K[λ, z, Z] and note that J ′ = (G + (h Z − g′)) :h∞

where g′ is the numerator of g. Given a basis Λ of G and g explicitly, a Gröbner basis of J
is obtained thanks to (Becker and Weispfenning, 1993, Proposition 6.37, Algorithm 6.6).
We recognize that O is an elimination ideal of J ′, namely O = J ′∩K[z, Z]. A Gröner basis
for O is thus obtained by (Becker and Weispfenning, 1993, Proposition 6.15, Algorithm
6.1). 2

We mainly use the extension Oe of O in K(z)[Z]. If Q is a Gröbner basis of O w.r.t.
a term order z � Z then Q is also a Gröbner basis for Oe w.r.t. the term order induced
on Z (Becker and Weispfenning, 1993, Lemma 8.93). It is nonetheless often preferable to
compute a Gröbner basis of Oe over K(z) directly.

The orbit of z̄ ∈ Z is the image Oz̄ of the rational map gz̄ : G 7→ Z defined by
gz̄(λ̄) = g(λ̄, z̄). We then have the following specialization property (see for instance Cox
et al., 1992, Exercise 7).

Proposition 2.7 Let Q be a Gröbner basis for Oe for a given term order on Z. There is
a closed proper subset W of Z s.t. for z̄ ∈ Z \W the image of Q under the specialization
z 7→ z̄ is a Gröbner basis for the ideal whose variety is the closure of the orbit of z̄.

Therefore, for z̄ ∈ Z \W, the dimension of the orbit of z̄ is equal to the dimension of
Oe ⊂ K(z)[Z] (Cox et al., 1992, Section 9.3, Theorem 8). In the rest of the paper this
dimension is denoted by s.

Example 2.8 Scaling. Consider the group action of Example 2.3. The set of orbits
consists of 1-dimensional punctured straight lines through the origin and a single zero-
dimensional orbit, the origin. By elimination on the ideal J = (1− λ1λ2, Z1− λ1z1, Z2−
λ1z2) we obtain O = (z1Z2−z2Z1). Take W to consist solely of the origin. For z̄ ∈ Z \W
the closure of the orbit of z̄ is the algebraic variety of (z̄1Z2 − z̄2Z1)

Example 2.9 translation+reflection. Consider the group action of Example 2.4.
By elimination on the ideal J = (λ2

2−1, Z1−z1−λ1, Z2−λ2z2) we obtain O = (Z2
2−z2

2).
The orbit of a point z̄ = (z̄1, z̄2) with z̄2 6= 0 consists of two lines parallel to the first
coordinate axis, while the latter is the orbit of all points with z̄2 = 0

Example 2.10 rotation. Consider the group action of Example 2.5. The orbits consist
of the origin and the circles with the origin as center. By elimination on the ideal J =
(λ2

1 + λ2
2 − 1, Z1 − λ1z1 + λ2z2, Z2 − λ2z1 − λ1z2) we obtain O = (Z2

1 + Z2
2 − z2

1 − z2
2).

2.3. Rational invariants

We construct a finite set of generators for the field of rational invariants. Our construc-
tion brings out a simple algorithm to rewrite any rational invariant in terms of them.
The required operations are restricted to computing a Gröbner basis and normal forms.
Those are implemented in most computer algebra systems. We provide a comparison
with related results by Rosenlicht (1956); Vinberg and Popov (1994); Müller-Quade and
Beth (1999).
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Definition 2.11 A rational function r ∈ K(z) is a rational invariant if r(g(λ, z)) = r(z)
mod G.

The set of rational invariants forms a field 4 K(z)G. We show in the following lemma
that rational invariants are the quotients of semi-invariants. Although this result is to
be expected, we have not found it in the literature for the case of rational actions.

Lemma 2.12 If p/q is a rational invariant, with p, q ∈ K[z] relatively prime, then there
exists α ∈ h−1K[λ, z] s.t.

p(g(λ, z)) ≡ α(λ, z) p(z) modG and q(g(λ, z)) ≡ α(λ, z) q(z) modG

proof: By hypothesis p(z) q(g(λ, z)) ≡ q(z) p(g(λ, z)) mod G. Since p and q are
relatively prime p(z) divides p(g(λ, z)) modulo G, that is there exists α ∈ h−1K[z, λ] s.t.
p(g(λ, z)) ≡ α(λ, z) p(z) mod G. Similarly there exits β ∈ h−1K[z, λ] s.t. q(g(λ, z)) ≡
β(λ, z) q(z) mod G. We thus have p(z) q(z)(α(λ, z)−β(λ, z)) ≡ 0 mod G so that α ≡ β
mod G. 2

We show that the coefficients of the Gröbner basis for Oe are invariant and generate
K(z)G.

Lemma 2.13 If q(z, Z) belongs to O then q(g(λ̄, z), Z) belongs to Oe for all λ̄ ∈ G.

proof: A point (z̄, z̄′) ∈ Z × Z belongs to O if there exists µ̄ ∈ G s.t. z̄′ = g(µ̄, z̄).
Then for a generic λ̄ ∈ G, z̄′ = g(µ̄ · λ̄−1, g(λ̄, z̄)). Therefore (g(λ̄, z̄), z̄′) ∈ O. Thus if
q(z, Z) ∈ O then q(g(λ̄, z̄), z̄′) = 0 for all (z̄, z̄′) in O. By Hilbert Nullstellensatz the
numerator of q(g(λ̄, z), Z) belongs to O and therefore q(g(λ̄, z), Z) ∈ Oe. 2

Following Becker and Weispfenning (1993, Definition 5.29), a set of polynomials is
reduced, for a given term order, if the leading coefficients of the elements are equal to
1 and each element is in normal form with respect to the others. Given a term order
on Z a polynomial ideal in K(z)[Z] has a unique reduced Gröbner basis (Becker and
Weispfenning, 1993, Theorem 5.3).

Theorem 2.14 The reduced Gröbner basis of Oe with respect to any term order on Z
consists of polynomials in K(z)G[Z].

proof: Let Q = {q1, . . . , qκ} be the reduced Gröbner basis of Oe for a given term
order on Z. By Lemma 2.13 qi(g(λ̄, z), Z) belongs to Oe. It has the same support 5 as qi.
As qi(g(λ̄, z), Z) and qi(z, Z) have the same leading monomial, qi(g(λ̄, z), Z) − qi(z, Z)
is in normal form with respect to Q. As this difference belongs to Oe, it must be 0. The
coefficients of qi are therefore invariant. 2

Rosenlicht (1956, paragraph before Theorem 2) points out that the coefficients of the
Chow form of Oe over K(z) form a set of separating rational invariants. As proved by
Rosenlicht (1956, Theorem 2); Vinberg and Popov (1994, Lemma 2.1), such a set is
generating for K(z)G.

4 Though we do not use this fact but rather retrieve it otherwise, it is worth noting that, as a subfield
of K(z), the field of rational invariants is always finitely generated (van der Waerden, 1971).
5 The support here is the set of terms in Z with non zero coefficients.
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Vinberg and Popov (1994, Lemma 2.4) showed the existence of a subset of K(z)G[Z]
that generates Oe. Theorem 2.14 offers a constructive version of this result, which could
actually have been deduced directly from it since a Gröbner basis of an ideal has its
coefficients in the field of definition of any set of generators of this ideal. They showed
furthermore that the set of the coefficients of such a family of generators separates generic
orbits (Vinberg and Popov, 1994, Theorem 2.3) and therefore generates K(z)G (Rosen-
licht, 1956, Theorem 2),(Vinberg and Popov, 1994, Lemma 2.1). From those results we
deduce that the set of coefficients of a reduced Gröbner basis of Oe generates K(z)G.
The next theorem provides an alternative proof of this result, providing additionally a
rewriting algorithm. To prove generation we indeed exhibit an algorithm that allows to
rewrite any rational invariant in terms of the coefficients of a reduced Gröbner basis.

In the case of linear actions Müller-Quade and Beth (1999) showed that Oe is equal
to the ideal obtained by extending the coefficients of the ideal JK(z)/K(z)G = ((Z −
z) ∩ K(z)G[Z]) to K(z). The three page proof relies on the result of Rosenlicht about
the separation property of rational invariants for generic orbits Rosenlicht (1956). Using
results about the characterization of subfields of K(z) obtained by Müller-Quade and
Steinwandt (1999), they deduce that the coefficients of the Gröbner basis of Oe generate
the field of rational invariants. We claim the result for rational actions and our approach
is more direct. The generating properties of the coefficients of the reduced Gröbner basis
of Oe follow directly from the rewriting algorithm that we prove below. The rewriting
algorithm presented in this paper can be compared to Algorithm 1.10 of Müller-Quade
and Steinwandt (1999). Some core operations are the same but the specifications are
different: Algorithm 1.10 of Müller-Quade and Steinwandt (1999) is a membership test
to a subfield of K(z) given by a set of generators. A reinterpretation is needed to turn it
into a rewriting algorithm.

Lemma 2.15 Let p
q be a rational invariant, p, q ∈ K[z]. Then p(Z) q(z)− q(Z) p(z) ∈ O.

proof: Since p
q is an invariant p(z̄)

q(z̄) = p(g(λ̄,z̄))

q(g(λ̄,z̄))
for all (λ̄, z̄) where this expression is

defined. Thus a(z̄′, z̄) = p(z̄′) q(z̄)−q(z̄′) p(z̄) = 0 for all (z̄, z̄′) inO =
{
(z̄, z̄′) | ∃λ̄ ∈ G s.t.

z̄′ = g(λ̄, z̄)
}
⊂ Z ×Z. In other words the polynomial a(Z, z) = p(Z) q(z)− q(Z) p(z) ∈

K[Z, z] is zero at each point of O. Since the algebraic variety of O is the closure Ō of O
and that O is dense in Ō we can conclude that a(Z, z) ∈ O by Hilbert Nullstellensatz. 2

Assume a polynomial ring over a field is endowed with a given term order. A poly-
nomial p is in normal form w.r.t. a set Q of polynomials if p involves no term that is
a multiple of a leading term of an element in Q. A reduction w.r.t. Q is an algorithm
that, given p, returns a polynomial p′ in normal form w.r.t. Q s.t. p = p′ +

∑
q∈Q aq q

and no leading term of any aq q is larger than the leading term of p. Such an algorithm
is detailed by Becker and Weispfenning (1993, Algorithm 5.1). It consists in rewriting
the terms that are multiple of the leading terms of the elements of Q by polynomials
involving only terms that are lower. Note that if the leading coefficients of Q are 1 then
no division occurs. When Q is a Gröbner basis w.r.t. the given term order, the reduction
of a polynomial p is unique in the sense that p′ is then the only polynomial in normal
form w.r.t. Q in the equivalence class p + (Q).
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Theorem 2.16 Consider {r1, . . . , rκ} ∈ K(z)G the coefficients of a reduced Gröbner
basis Q of Oe. Then K(z)G = K(r1, . . . , rκ) and we can rewrite any rational invariant p

q ,

with p, q ∈ K[z], in terms of those as follows.
Take a new set of indeterminates y1, . . . , yκ and consider the set Qy ⊂ K[y, Z] ob-

tained from Q by substituting ri by yi. Let a(y, Z) =
∑

α∈Nn aα(y)Zα and b(y, Z) =∑
α∈Nn aα(y)Zα in K[y, Z] be the reductions 6 of p(Z) and q(Z) w.r.t. Qy. There exists

α ∈ Nn s.t. bα(r) 6= 0 and for any such α we have p(z)
q(z) = aα(r)

bα(r) .

proof: It is sufficient to prove the second part of the statement. The Gröbner basis Q
is reduced and therefore monic. The sets of leading monomials of Q and of Qy are equal.
If a(y, Z) is the reduction of p(Z) w.r.t. Qy then a(r, Z), obtained by substituting back
yi by ri, is the normal form of p(Z) w.r.t. Q. Similarly for b(y, Z) and q(Z).

As Oe ∩ K[Z] = (0), neither p(Z) nor q(Z) belong to Oe and therefore both a(r, Z)
and b(r, Z) are different from 0. By Lemma 2.15 q(z)p(Z) ≡ p(z)q(Z) mod Oe and thus
the normal forms of the two polynomials modulo Oe are equal: q(z) a(r, Z) = p(z) b(r, Z).
Thus a(r, Z) and b(r, Z) have the same support and this latter is non empty since a, b 6=
0. For each α in this common support, we have q(z)aα(r) = p(z)bα(r) and therefore
p(z)
q(z) = aα(r)

bα(r) . 2

Example 2.17 Scaling. We consider the group action given in Example 2.3. A reduced
Gröbner basis of Oe is Q = {Z2 − z2

z1
Z1}. By Theorem 2.14, K(z1, z2)G = K( z2

z1
).

Let p = z2
1 +4z1z2 +z2

2 and q = z2
1−3z2

2 . We can check that p/q is a rational invariant
and we set up to write p/q as a rational function of r = z2/z1. To this purpose consider
P = Z2

1 + 4Z1Z2 + Z2
2 and Q = Z2

1 − 3Z2
2 and compute their normal forms a and b w.r.t.

{Z2− y Z1} according to a term order where Z1 < Z2. We have a = (1 + 4y + y2)Z2
1 and

b = (1− 3y2)Z2
1 . Thus

z2
1 + 4z1z2 + z2

2

z2
1 − 3z2

2

=
1 + 4r + r2

1− 3r2
where r =

z2

z1

Example 2.18 translation+reflection. We consider the group action given in
Example 2.4. A reduced Gröbner basis of Oe is Q = {Z2

2 − z2
2}. By Theorem 2.14,

K(z1, z2)G = K(z2
2).

Example 2.19 Rotation. We consider the group action given in Example 2.5. A re-
duced Gröbner basis of Oe is Q = {Z2

1 +Z2
2 − (z2

1 + z2
2)}. By Theorem 2.14, K(z1, z2)G =

K(z2
1 + z2

2).

The results generalize to the case where Z is an irreducible variety instead of an
affine space. We only need to consider the ring of polynomial functions K[Z] or the field
of rational functions K(Z) instead of the polynomial ring K[z] or the field of rational
function K(z). Instead of working in K(z)[Z] we then work in K(Z)⊗K[Z].

6 For the reductions in K[y, Z] the term order on Z is extended to a block order y � Z so that the set

of leading term of Qy is equal to the set of leading terms of Q.
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3. Cross-section and rational invariants

Given a cross-section we construct a generating set of rational invariants endowed
with a rewriting algorithm. The method is the same as the one presented in the previous
section but applies to only a section of the graph. In previous section we considered an
ideal of the dimension of the generic orbits. Here we consider a zero-dimensional ideal.
This improves the efficiency of the algorithms that rely on Gröbner bases computation.

We use Noether normalization to prove the existence of a cross-section. The con-
struction thus relies on selecting an element in an open subset of a certain affine space.
This is always possible over an infinite field. Though the presentation is done with an
algebraically closed field K, which is therefore infinite, the construction is meant to be
realized in characteristic zero (i.e. over Q), or over a sufficiently large field.

This second construction does not entail a deterministic algorithm for the computa-
tion of rational invariants. Yet the freedom of choice is extremely fruitful for practical
computations and applications.

3.1. Cross-section

Geometrically speaking a cross-section of degree d is a variety that intersects generic
orbits in d simple points. We give a definition in terms of ideals for it is closer to the
actual computations. We give its geometric content in a proposition afterward. At the
same time we define algebraically the cross-section, we define the graph-section ideal Ie.

Definition 3.1 Let P be a prime ideal of K[Z] of complementary dimension to the
generic orbits, i.e. if Oe is of dimension s then P is of codimension s. The ideal P defines
a cross-section to the orbits of the rational action g : G ×Z → Z if the ideal Ie = Oe +P
of K(z)[Z] is radical and zero dimensional. We say that P defines a cross-section of degree
d if d is the dimension of K(z)[Z]/Ie as a K(z)-vector space.

Indeed the algebra K(z)[Z]/Ie is a finite-dimesional K(z)-vector space since Ie is zero
dimensional (Becker and Weispfenning, 1993, Theorem 6.54). A basis for it is provided
by the terms in Z that are not multiple of the leading terms of a Gröbner basis of Ie

(Becker and Weispfenning, 1993, Proposition 6.52). Let us note here that an ideal of
K(z)[Z] is zero dimensional iff any Gröbner basis of it has an element whose leading
term is Zdi

i , for all 1 ≤ i ≤ n (Becker and Weispfenning, 1993, Theorem 6.54). We can
also check algorithmically that Oe + P is zero dimensional by using for instance (Becker
and Weispfenning, 1993, Theorem 8.20).

The cross-section is thus the variety P of P. The geometric properties of this variety
are explained by the following proposition. Geometric necessary conditions for a variety
to be a cross-section is that it is of complementary dimension and transversal to the orbits
at its generic points. This can be restated as conditions on the tangent spaces. As we can
compute the tangent space to the orbits from the knowledge of the action, transversality
can be easily checked by linear algebra operations, possibly after specializing z to a
generic z̄ of P.

Proposition 3.2 Let P define a cross-section P of degree d. There is a closed set S ⊂ Z
s.t. the closure of the orbit of any z̄ ∈ Z \ S intersects P in d simple points.
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proof: Let Q be a reduced Gröbner basis for Ie = Oe+P. Similarly to Proposition 2.7,
the image Qz̄ of Q under the specialization z 7→ z̄ is a Gröbner basis for Oz̄ + P in K[Z]
for all z̄ in Z outside of a closed set W. Thus Iz̄ = Oz̄ + P is zero dimensional and the
dimension of K[Z]/Iz̄ as a vector space over K is d.

By the Jacobian criterion for regularity and the prime avoidance theorem (Eisenbud,
1994, Corollary 16.20 and Lemma 3.3) there is a n × n minor f of the Jacobian matrix
of Q that is not included in any prime divisor of Ie. Therefore f is not a zero divisor
in K(z)[Z]/Ie which is a product of fields. There exists thus f ′ ∈ K(z)[Z] s.t. f f ′ ≡ 1
mod Ie.

Provided that z̄ is furthermore chosen so that the denominators of f and f ′ do not
vanish, f specializes into a n × n minor fz̄ of the Jacobian matrix of Qz̄ and we have
fz̄ f ′z̄ ≡ 1 mod Iz̄ for the specialization f ′z̄ of f ′. So fz̄ belongs to no prime divisors of
Iz̄ and thus Iz̄ is radical (Eisenbud, 1994, Corollary 16.20). We take S to be the union
of W with the algebraic set associated to the product of the denominators of f and f ′.
That the number of points of intersection is d is shown by (Eisenbud, 1994, Proposition
2.15). 2

This property shows that the cross-sections of degree d = 1 and d > 1 are respectively
the sections and the quasi-sections defined by Vinberg and Popov (1994, Paragraph 2.5).
The existence of quasi-section is insured by (Vinberg and Popov, 1994, Proposition 2.7),
while a criterion for the existence of a section is described by Vinberg and Popov (1994,
Paragraph 2.5 and 2.6). Our terminology elaborates on the one used by Rosenlicht (1956)
and Fels and Olver (1999).

By a non-constructive argument Vinberg and Popov (1994, Section 2.5) show that
K(P) is isomorphic to K(z)G when P is a cross-section of degree 1. If P is a cross-section
of degree d > 1 then K(P) is an algebraic extension of K(z)G of degree d. We retrieve
this result from a constructive angle in Hubert and Kogan (2006).

Our approach is inspired by the geometric construction of Fels and Olver (1999):
almost any algebraic variety of complementary dimension provides a cross-section of
some degree. The existence of a cross-section is proved by Noether normalization theorem,
which provides an alternative definition of the dimension of an ideal (Shafarevich, 1994,
Section 6.2).

Theorem 3.3 To each point (aij)1≤i≤n,0≤j≤n of an open set of Kn(n+1) we can associate
a linear cross-section to the orbits defined by

P =

ai0 −
n∑

j=1

aijZj | 1 ≤ i ≤ s

 .

proof: Assume that a Gröbner basis Q of Oe w.r.t. a term order Z1, . . . , Zs �
Zs+1, . . . , Zn is s.t. there is an element of Q with leading term Zdi

i , for some di ∈ N\{0},
for all s + 1 ≤ i ≤ n and there is no element of Q independent of {Zs+1, . . . , Zn}.
Then Q is a Gröbner basis for the extension of Oe to K(z)(Z1, . . . , Zs)[Zs+1, . . . , Zn]
(Becker and Weispfenning, 1993, Lemma 8.93). For (a10, . . . , as0) in an open set of Ks

the specialization Qa ⊂ K[Zs+1, . . . , Zn] of Q under Zi 7→ ai0 is a Gröbner basis (Cox
et al., 1992, Exercise 7). Therefore Qa ∪ {Z1 − a10, . . . , Zs − as0} is a Gröbner basis
by Buchberger’s criteria (Becker and Weispfenning, 1993, Theorem 5.48 and 5.66). It is
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a Gröbner basis of a zero dimensional ideal (Becker and Weispfenning, 1993, Theorem
6.54). We can thus take P to be generated by {Z1 − a10, . . . , Zs − as0}.

We can always retrieve the situation assumed above by a change of variables thanks
to Noether normalization theorem (Greuel and Pfister, 2002, Theorem 3.4.1). Inspecting
the proof we see that we can choose a change of variables given by a matrix (aij)1≤i,j≤n

with the vector of entries aij in Kn2
outside of some algebraically closed set. The set

{ai0 −
∑

1≤j≤n aijZj | 1 ≤ i ≤ s} thus defines a cross-section. 2

The choice of a cross section introduces a non deterministic aspect to the algebraic
construction proposed in next section. An analysis of the probability of success in char-
acteristic 0 would be based on the measure of a correct test sequence as studied by Giusti
and Heintz (1993, Theorem 3.5 and 3.7.2); Giusti et al. (1993, Section 3.2); Krick et al.
(2001, Section 4.1).

Proposition 3.4 Assume that P ⊂ K[Z] defines a cross-section and that O =
⋂τ

i=0 O(i)

is the prime decomposition of O. Then

O + P =
τ⋂

i=0

(O(i) + P) and (O(i) + P) ∩K[Z] = P.

proof: We can easily check that
⋂τ

i=0(O
(i) + P) ⊂ O + P because O + P is radical.

The converse inclusion is trivial.
For the second equality, note first that P ⊂ (O(i) +P)∩K[z, Z]. The projection of the

variety of O(i) ⊂ Z×Z is thus contained in P. We show that the projection is exactly P.
We can assume that the numbering is such that O(i) =

(
G(i) + ( z − g(λ, Z) )

)
∩K[z, Z]

where G(i) is a minimal prime of G (see Section 2). By Asumption 2.2, for any z̄ in Z,
and therefore in P, there exists λ̄ in the variety of G(i) s.t. g(λ̄, z̄) is defined. Above each
point of P there is a point in the variety of O(i). 2

3.2. Rational invariants revisited

The following theorems provide a construction of a generating set of rational invariants
together with an algorithm to rewrite any rational invariant in terms of generators. The
method is the same as in Section 2.3 but applied to the ideal graph-section ideal Ie rather
than to the graph ideal Oe. The computational advantage comes from the fact that Ie

is zero dimensional.
If G is a prime ideal we can actually choose a coordinate cross-section. In other words,

P can be taken as the ideal generated by a set of the following form: {Zj1−a1, . . . , Zjs
−as}

for (a1, . . . , as) in Ks. In this case we can remove s variables for the computation.

Theorem 3.5 The reduced Gröbner basis of Ie with respect to any term ordering on Z
consists of polynomials in K(z)G[Z].

proof: The union of a reduced Gröbner basis of Oe and P forms a generating set
for Ie = Oe + P. The coefficients of a basis for P are in K, while the coefficients of a
reduced basis for Oe belong to K(z)G due to Theorem 2.14. Since the coefficients of a
generating set for Ie belong to K(z)G, so do the coefficients of the reduced Gröbner basis
with respect to any term ordering. 2

11



Lemma 3.6 If p/q is a non zero rational invariant, with p, q ∈ K[z] relatively prime, then

neither p(Z) nor q(Z) belong to P.

proof: We prove the result for p, the result being then true for q too. By Lemma 2.12
p(g(λ, z)) ≡ α(λ, z) p(z) mod G. Thus if p ∈ P, or equivalently if p vanishes on P, it
vanishes on an open subset of Z (Proposition 3.2). So p must be zero. This is not the
case and thus p /∈ P. 2

Theorem 3.7 Consider {r1, . . . , rκ} ∈ K(z)G the coefficients of a reduced Gröbner basis

Q of Ie. Then K(z)G = K(r1, . . . , rκ) and we can rewrite any rational invariant p
q , with

p, q ∈ K[z] relatively prime, in terms of those as follows.

Take a new set of indeterminates y1, . . . , yκ and consider the set Qy ⊂ K[y, Z] ob-

tained from Q by substituting ri by yi. Let a(y, Z) =
∑

α∈Nn aα(y)Zα and b(y, Z) =∑
α∈Nn aα(y)Zα in K[y, Z] be the reductions of p(Z) and q(Z) w.r.t. Qy. There exists

α ∈ Nm s.t. bα(r) 6= 0 and for any such α we have p(z)
q(z) = aα(r)

bα(r) .

proof: We can proceed just as in the proof of Theorem 2.16; we only need to argue
additionally that p(Z), q(Z) /∈ Ie. As Ie ∩K[Z] = P and p(Z), q(Z) /∈ P, by Lemma 3.6,
it follows that p(Z) /∈ Ie. 2

When P defines a cross-section of degree 1, the rewriting trivializes into a replacement.
Indeed, if the dimension of K(z)[Z]/Ie as a K(z) vector space is 1 then, independently of
the chosen term order, the reduced Gröbner basis Q for Ie is given by {Zi − ri(z) | 1 ≤
i ≤ n} where the ri ∈ K(z)G. In view of Theorem 3.7, K(z)G = K(r1, . . . , rn) and any
rational invariant r(z) ∈ K(z)G can be rewritten in terms of ri by replacing zi by ri:

r(z1, . . . , zn) = r( r1(z), . . . , rn(z) ), ∀r ∈ K(z)G.

In the next section we generalize this replacement property to the case of a cross-section of
any degree by introducing replacement invariants that are n-tuples of algebraic functions
of the rational invariants.

Example 3.8 scaling. We carry on with the action considered in Example 2.3 and

2.17.

Choose P = (Z1− 1). A reduced Gröbner basis of Ie is given by {Z1− 1, Z2− z2
z1
}. We

can see that Theorem 3.5 is verified and that P defines a cross-section of degree 1. By

Theorem 3.7 we know that r = z2/z1 generates the field of rational invariants K(z)G. In

this situation, the cross section is of degree 1 and the rewriting algorithm of Theorem 3.7

is a simple replacement. For all p ∈ K(z)G we have p(z1, z2) = p(1, r).

Example 3.9 translation+reflection. We carry on with the action considered in

Example 2.4 and 2.18.

Choose P = (Z1 − Z2) to define the cross-section. A reduced Gröbner basis of Ie is

given by {Z1 − Z2, Z
2
2 − z2

2}. The cross-section is thus of degree 2.
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Example 3.10 rotation. We carry on with the action considered in Example 2.5 and
2.19.

Choose P = (Z2). The reduced Gröbner basis of Ie w.r.t. any term order is {Z2, Z
2
1 −

(z2
1 + z2

2)}. We can see that Theorem 2.14 is verified and that P defines a cross-section
of degree 2. By Theorem 3.7 we know that r = z2

1 + z2
2 generates the field of rational

invariants K(z)G. In this situation, the rewriting algorithm of Theorem 3.7 consists in
substituting z2 by 0 and z2

1 by r.

3.3. Replacement invariants

We introduce algebraic invariants, that is algebraic elements over K(z)G. Such in-
variants are seldom used in algebraic invariant theory. Yet algebraic functions occur
everywhere in differential invariant theory (see Example 4.2). We show in (Hubert and
Kogan, 2006) that the replacement invariants that we introduce here take the role of
Cartan’s normalized invariants.

Let P be a cross-section of degree d defined by a prime ideal P of K[Z]. The field of
rational functions on P is denoted by K(P). It is the fraction field of the integral domain
K[Z]/P = K[P]. We introduce d replacement invariants associated to P.

Definition 3.11 An algebraic invariant is an element of the algebraic closure K(z)
G

of
K(z)G.

A reduced Gröbner basis Q of Ie = Oe + P is contained in K(z)G[Z] (Theorem 3.5)
and therefore is a reduced Gröbner basis of IG = Ie ∩ K(z)G[Z]. The dimension of
K(z)G[Z]/IG as a K(z)G-vector space is therefore equal to the dimension d of K(z)[Z]/Ie

as a K(z)-vector space. Consequently the ideal IG has d zeros ξ = (ξ1, . . . , ξn) with

ξi ∈ K(z)
G

(Eisenbud, 1994, Proposition 2.15). We call such a tuple (ξ1, . . . , ξn) a K(z)
G

-

zero of IG. A K(z)
G

-zero of IG is a K(z)
G

-zero of Ie and conversely.

Definition 3.12 A replacement invariant is a K(z)
G

-zero of IG = Ie ∩K(z)G[Z], i.e. a
n-tuple ξ = (ξ1, . . . , ξn) of algebraic invariants that forms a zero of Ie.

Thus d replacement invariants ξ(1), . . . , ξ(d) are associated to a cross-section of degree
d. The name owes to next theorem which can be compared with Thomas replacement
theorem discussed by Fels and Olver (1999, page 38).

Theorem 3.13 Let ξ = (ξ1, . . . , ξn) be a replacement invariant. If r ∈ K(z)G then

r(z1, . . . , zn) = r(ξ1, . . . , ξn) in K(z)
G

.

proof: Write r = p
q with p, q relatively prime. By Lemma 2.15, p(z) q(Z)−q(z) p(Z) ∈

Oe ⊂ Ie and therefore p(Z)− p(z)
q(z) q(Z) = p(Z)− r(z) q(Z) ∈ Ie. Since ξ is a zero of Ie,

we have p(ξ)−r(z) q(ξ) = 0. By Lemma 3.6 p(Z), q(Z) can not belong to P and therefore
cannot be zero divisors modulo Ie because of Proposition 3.4. Thus q(ξ) 6= 0 and the
conclusion follows. 2

For any replacement invariant ξ we have K(ξ) ∼= K(P). The concept of replacement
invariant is thus useful for computing implicitly with algebraic invariants. All the rational
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invariants can be trivially written in terms of the components of ξ and the ideal of the
cross-section, which is chosen quite freely, provides the relations among the components
of ξ.

Example 3.14 scaling. Consider the multiplicative group from Example 2.3, 2.8, 2.17,
3.8. We considered the cross-section of degree 1 defined by P = (Z1 − 1). There is single
replacement invariant ξ = (1, z2

z1
), which can be read off the reduced Gröbner basis of

Ie = (Z1−1, Z2− z2
z1

). One can check that r(z1, z2) = r(1, z2
z1

) for any r ∈ K(z)G = K
(

z2
z1

)
.

Example 3.15 translation+reflection. Consider the group action from Exam-
ple 2.4, 2.9, 2.18, 3.9. We chose the cross-section defined by P = (Z1−Z2) and found that
K(z2

2) was the field of rational invariants. Generic orbits have two components and the
cross-section is of degree 2. Since Ie = (Z1−Z2, Z

2
2 −z2

2), the two replacement invariants
are ξ(1) = (z2, z2) and ξ(2) = (−z2,−z2). Though rational functions, their components
are not rational invariants but only algebraic invariants.

Example 3.16 rotation. Consider the group action from Example 2.5, 2.10, 2.19, 3.10.
We chose the cross-section defined by P = (Z2). Here the cross-section is again of degree
2 but the generic orbits have a single component. Since Ie = (Z2, Z

2
1 − z2

1 − z2
2) the

two replacement invariants associated to P are ξ(±) = (0,±ρ) where ρ is the algebraic
function defined by ρ2 = z2

1 + z2
2 .

4. Additional examples

We first consider a linear action of SL2 on K7 considered by Derksen (1999). The
latter presents an algorithm to compute a set of generators of the algebra of polynomial
invariants for the linear action of a reductive group. The ideal of the graph O = (G +
(Z − g(λ, z))) ∩ K[z, Z], where now g is a polynomial map that is linear in z, is also
central in Derksen’s construction. A set of generators of K[z]G is indeed obtained by
applying the Reynolds operator, which is a projection from K[z] to K[z]G, to generators
of O + (Z1, . . . , Zn), the ideal of the null cone.

The fraction field of K[z]G is included in K(z)G but does not need to be equal. Con-
versely there is no known algorithm to compute K[z]G = K(z)G∩K[z] from the knowledge
of a set of generators of K(z)G.

Example 4.1 We consider the linear action of SL2 on K7 given by the following poly-
nomials of K[λ1, . . . , λ4, z1, . . . , z7]:

g1 = λ1z1 + λ2z2, g2 = λ3z1 + λ4z2

g3 = λ1z3 + λ2z4, g4 = λ3z3 + λ4z4

g5 = λ2
1z5 + 2λ1λ2z6 + λ2

2z7,

g6 = λ3λ1z5 + λ1λ4 + λ2λ3z6 + λ2λ4z7,

g7 = λ2
3z5 + 2λ3λ4z6 + λ2

4
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the group being defined by G = (λ1λ4 − λ2λ3 − 1) ⊂ K[λ1, λ2, λ3, λ4].
The cross-section defined by P = (Z1+1, Z2, Z3) is of degree one: the reduced Gröbner

basis (for any term order) of the ideal Ie ⊂ K(z)[Z] is given by {Z1 + 1, Z2, Z3, Z4 −
r2, Z5 − r3, Z6 − r4, Z7 − r1} where

r1 = z7 z1
2 − 2 z2 z6 z1 + z2

2z5, r2 = z3 z2 − z1 z4,

r3 =
z3

2z7 − 2 z6 z4 z3 + z5 z4
2

(z1 z4 − z3 z2)
2 , r4 =

z1 z6 z4 − z1 z3 z7 + z3 z2 z6 − z2 z5 z4

z1 z4 − z3 z2

By Theorem 3.7, K(z)G = K(r1, r2, r3, r4). In this case the rewriting of any rational in-
variant in terms of r1, r2, r3, r4 consists simply of the substitution of (z1, z2, z3, z4, z5, z6, z7)
by (−1, 0, 0, r2, r3, r4, r1). The latter tuple is the unique replacement invariant associated
to the cross-section. We illustrate the replacement property by rewriting the five gener-
ating polynomial invariants computed by Derksen (1999) in terms of r1, r2, r3, r4:

z2
2z5 − 2 z2 z6 z1 + z7 z1

2 = r1, z3 z2 − z1 z4 = r2,

z3
2z7 − 2 z6 z4 z3 + z5 z4

2 = r3r2
2, z1 z3 z7 − z3 z2 z6 + z2 z5 z4 − z1 z6 z4 = r4 r2,

z6
2 − z7 z5 = r4

2 − r1 r3,

The reduced Gröbner basis of Oe, relative to the total degree order with ties broken
by reverse lexicographical order, has 9 elements:

Z6
2 − Z7 Z5 + r1 r3 − r4

2, Z6 Z4 + r3 r2 Z2 − r4 Z4 − Z3 Z7,

Z5 Z4 − Z3 Z6 + r3 r2 Z1 − r4 Z3, Z3 Z2 − Z1 Z4 − r2,

Z2 Z6 − Z1 Z7 + r4 Z2 − r1
r2

Z4, Z2 Z5 + Z1 r4 − Z6 Z1 − r1
r2

Z3,

Z2
2 + r1

r3 r22 Z4
2 − Z7

r3
− 2 r4

r3 r2
Z4 Z2, Z1

2 − Z5
r3
− 2 r4

r3 r2
Z3 Z1 + r1

r3 r22 Z3
2

Z2 Z1 − r4
r3
− Z6

r3
+ r1

r3 r22 Z4 Z3 − 2 r4
r3 r2

Z4 Z1,

Though this Gröbner basis is obtained without much difficulty, the example illustrates
the advantage obtained by considering the construction with a cross-section: Ie has a
much simpler reduced Gröbner basis than Oe.

We finally take a classical example in differential geometry: the Euclidean action on
the second order jets of plane curves. The variables x, y0, y1, y2 stand for the independent
variable, the dependent variable, first and the second derivatives respectively. We shall
recognize the square of the curvature as the generating rational invariant. The curva-
ture, like many other classical differential invariants, is an algebraic function of rational
invariants. It appears in the replacement invariants.

Example 4.2 We consider the group defined by G = (α2+β2−1, ε2−1) ⊂ K[α, β, a, b, ε].
The neutral element is (1, 0, 0, 0, 1), the group operation (α′, β′, a′, b′, ε′) · (α, β, a, b, ε) =
(αα′−ββ′, βα′+αβ′, a+αa′−βb′, b+αa′+αb′, ε ε′) and the inverse map (α, β, a, b)−1 =
(α,−β,−α a − bβ, β a − αb, ε). The rational action on K4 we consider is given by the
rational functions:

g1 = αx− βy0 + a, g2 = εβx + εαy0 + b,

g3 =
β + αy1

α− βy0
, g4 =

y2

(α− βy0)3
.
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We have

O =
((

1 + y2
1

)3
Y 2

2 −
(
1 + Y 2

1

)3
y2
2

)
and if we consider the the cross section defined by P = (X, Y0, Y1) the reduced Gröbner
basis of Ie = Oe + P is {

X, Y0, Y1, Y
2
2 −

y2
2

(1 + y2
1)3

}
.

According to Theorem 2.16 or Theorem 3.7

K(z)G = K
(

y2
2

(1 + y2
1)3

)
.

The Euclidean curvature appears as an element of the two replacement invariants
ξ(±) = (0, 0, 0,±σ), where σ is the algebraic function defined by

σ2 =
y2
2

(1 + y2
1)3

.

For any rational invariant r we have the following equalities, by Theorem 3.13.

r(x, y0, y1, y2) = r(0, 0, 0, σ) = r(0, 0, 0,−σ).
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