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Preface

This lecture notes volume has its origins in a course by Husemöller on fibre bundles
and twisted K-theory organized by Brano Jurčo for physics students at the LMU in
München, summer term 2003. The fact that K-theory invariants, and in particular
twisted K-theory invariants, were being used in the geometric aspects of mathemat-
ical physics created the need for an accessible treatment of the subject. The course
surveyed the book Fibre Bundles, 3rd. Ed. 1994, Springer-Verlag by Husemöller,
and covered topics used in mathematical physics related to K-theory invariants. This
book is referred to just by its title throughout the text.

The idea of lecture notes came up by J. Wess in 2003 in order to serve several
purposes. Firstly, they were to be a supplement to the book Fibre Bundles providing
companion reading and alternative approaches to certain topics; secondly, they were
to survey some of the basic results of background to K-theory, for example operator
algebra K-theory, not covered in the Fibre Bundles; and finally the notes would
contain information on the relation to physics. This we have done in the survey
following this introduction “Physical background to the K-theory classification of
D-branes: Introduction and references” tracing the papers how and where K-theory
invariants started to play a role in string theory. The basic references to physics are
given at the end of this survey, while the mathematics references are at the end of
the volume.

Other lectures of Husemöller had contributed to the text of the notes. During
2001/2002 in Münster resp. during Summer 2002 in München, Husemöller gave
Graduate College courses on the topics in the notes, organized by Joachim Cuntz
resp. Martin Schottenloher, and in the Summer 2001, he had a regular course on
C*-algebras and K-theory in München. The general question of algebra bundles
was studied with the support of Professor Cuntz in Münster during short periods
from 2003 to 2005. Finally, Husemöller lectured on these topics during a workshop
at IPM, Tehran, Iran, September 2005. It is with a great feeling of gratitude that
these lecture opportunities are remembered here.

The notes are organized into five parts. The first part on basic bundle theory
emphasizes the concept of bundle as one treats the concepts of set, space, homotopy,
group, or ring in basic mathematics. A bundle is just a map called the projection
from the total space to its base space. As with commutative groups, topological
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groups, transformation groups, and Lie groups, the concept of bundle is enhanced
or enriched with additional axioms and structures leading to étale bundles, principal
bundles, fibre bundles, vector bundles, and algebra bundles. A topic discussed in
the first part, which is not taken up in the Fibre Bundles, is the Serre–Swan theorem
which relates vector bundles on a compact space X with finitely generated projective
modules over the ring C(X) of continuous complex valued functions on the space X .
This is one of the points where topological, algebraic, and operator K-theory come
together.

The second part of the notes takes up the homotopy classification of principal
bundles and fibre bundles. Applications to the case of vector bundles are considered
and the role of homotopy theory in K-theory is developed. This is related to the fact
that K-theory is a representable functor on the homotopy category. The theory of
characteristic classes in describing orientation and spin structures on vector bundles
is carried out in detail, also leading to the notion of a string structure on a bundle
and on a manifold.

There are various versions of topological K-theory, and their relation to Bott peri-
odicity is considered in the third part of the notes. An advanced version of operator
K-theory, called KK-theory which integrates K-cohomology and K-homology, is
introduced, and various features are sketched.

The fourth part of the notes begins with algebra bundles with fibres that are either
matrix algebras or algebras of bounded operators on a separable Hilbert space. The
infinite dimensional algebra bundles are classified by only one characteristic class
in the integral third cohomology group of the base space along the lines of the
classification of complex line bundles with its first Chern class in the integral second
cohomology group of the base space. The twisting of twisted K-theory is given by
an infinite dimensional algebra bundle, and the twisted K-theory is defined in terms
of cross sections of Fredholm bundles related to the algebra bundle describing the
twist under consideration.

A fundamental theme in bundle theory centers around the gluing of local bundle
data related to bundles into a global object. In the fifth part we return to this theme
and study gluing on open sets in a topological space of not just simple bundle data
but also data in a more general category where the gluing data may satisfy transitiv-
ity conditions only up to an isomorphism. The resulting objects are gerbes or stacks.

August 2007 Dale Husemöller
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Physical Background to the K-Theory
Classification of D-Branes: Introduction
and References

by S. Fredenhagen

Topological D-Brane Charges

In quantum field theories, we are often confronted with the situation that there are
extended field configurations that are topologically different, for example, instan-
tons and monopoles. They can carry charges that are topological invariants and so
are conserved under small fluctuations. Similarly in string theory, D-branes carry
topological charges. In the semiclassical geometric description, these charges can
be understood as sources of Ramond–Ramond (RR) fields, higher form fields that
couple electrically and magnetically to the D-branes. These charges have to be quan-
tized, similar to the Dirac quantization of electric and magnetic charges in electro-
dynamics.

The classification of D-branes and their charges was a topic of great importance
since their discovery. Minasian and Moore (1997) suggested that D-brane charges
are classified by K-theory and not just by homology as was proposed first. See Chap.
4 and 9 for K-theory and cohomology as well as their connection in Part 3.

Drawbacks of the Homological Classification

To discuss the homological classification and its drawbacks, we consider D-branes
in type II string theory on a spacetime with the topology R×M. Here, R represents
the time direction and M is a compact 9-manifold. Dp-branes are extended along
the time direction and also wrapped around a p-dimensional submanifold of M.

The strategy to study D-brane charges is always the same, firstly, identify the
set of all possible, static D-branes, and then quotient this set out by all dynamical
transformations between different D-brane configurations. Viewing the D-brane as
an object with tension, a static D-brane cannot have a boundary, and the wrapped
p-dimensional submanifold is a p-cycle (of minimal volume). Smooth deformations

D. Husemöller et al.: Physical Background to the K-Theory Classification of D-Branes, Lect. Notes Phys. 726, 1–6
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of the submanifold should not change the charge, so one could think that the
submanifolds wrapped by D-branes are classified by homotopy classes of p-cycles
in M. This is not completely true, because there is one more dynamical input, namely
branes that are boundaries of (p + 1)-dimensional submanifolds are unstable, and
they can be removed (not smoothly, but with splitting and joining) from M along
the (p + 1)-dimensional submanifold. So we conclude that D-brane charges are
classified by the homology group Hp(M,Z) (see Chap. 9; if M is noncompact, the
compactly supported homology has to be used, see Chap. 11). This has an interest-
ing consequence as the group Hp(M,Z) can contain torsion elements, so it opens
the possibility of a process in which a stack of n coincident Dp-branes are annihi-
lated. Such configurations can never preserve any supersymmetry. A superposition
of supersymmetric D-branes that satisfy a Bogomolnyi–Prasad–Sommerfield (BPS)
bound can never decay. The homological classification thus captures stable D-branes
that are missed by supersymmetry-based classifications.

The homological classification—despite its successes—is not the correct one. It
contains charges that are not conserved, and it contains charges that even cannot be
realized by any physical brane. An example of the latter point is the Freed–Witten
anomaly (Freed and Witten) (1999) that forbids branes to wrap some nontrivial
homology cycles. To obtain the group of conserved charges, one has to subtract
the unphysical ones and quotient out the unstable ones—this leads naturally to the
K-theory classification of D-brane charges (see Sect. 5 in (Diaconescu et al. 2003)).
In the case of a non-trivial H-field, it leads to twisted K-theory, where the three-form
field H defines a class [H] in H3(M,Z) (see Chap. 20).

K-Theory Invariants (Minasian and Moore)

As it was already mentioned, the first proposal for the K-theory classification of
D-brane charges in type II string theory was due to Minasian and Moore (1997).
Besides sourcing RR fields, D-branes also support ordinary gauge fields, the so-
called Chan–Paton bundles. This is related to the fact that D-branes are submani-
folds where open strings end and these endpoints of open strings carry charges, the
so-called Chan–Paton factors. Minasian and Moore have found a formula for the
D-brane charge Q with respect to all RR fields

Q = ch( f!E)∪
√

Â(M) ∈ Heven(M,Q).

Here, E is a gauge bundle on the D-brane worldvolume N, f : N→M describes the
embedding of the D-brane into M, f! is the corresponding push-forward, ch is the
Chern character, and Â(M) is the Atiyah–Hirzebruch class of M (see Chap. 10 for
characteristic classes).

To explain the construction f!E , we follow Grothendieck and Atiyah–Hirzebruch
by introducing the group K(M) whose elements are formal differences E ′ −E ′′ of
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bundles E ′,E ′′ on M up to isomorphism. The following relations are to be satisfied
in K(M):

E ′ −E ′′ = E ′ ⊕E − E ′′ ⊕E

and
E = E ′+ E ′′ in K(M) for E = E ′ ⊕E ′′ on M.

The operation f! on a bundle is not in general a bundle but an element of the K-group
K(M) for f : N→M.

Minasian and Moore noticed that the charge Q can be interpreted as a modified
Chern isomorphism between K-theory and cohomology, Q : K(M)→ Heven(M,Q)
(see 10(5.4), which is Sect. 5.4 in Chap. 10). This can be made into an isometry
if one equips the groups K(M) and Heven(M,Q) with suitable pairings, namely the
K-theory pairing which is defined as an index of a properly chosen Dirac operator
of the tensored K-classes and the cohomology pairing which is obtained as Poincaré
duality applied to the cohomology classes modified by the square root of the Atiyah–
Hirzebruch class. Their suggestion was that the K-theory classes might contain more
information about the D-branes as the corresponding charge in the cohomology.

Physical Explanation due to Witten for a Vector
Bundle Description

While the work of Minasian and Moore gave a hint that K-theory is the more natural
description for D-brane charges, Witten (1998) gave a physical explanation why
K-theory should be the correct framework. The formal difference of bundles E ′−E ′′
appearing in K-theory is interpreted (in type IIB string theory) as a configuration
of space-filling branes with gauge bundle E ′ and space-filling anti-D-branes with
gauge bundle E ′′. Sen’s (1998) conjecture states that—when the H-field is trivial—
all brane configurations can be obtained from such stacks of space-filling branes and
anti-branes via tachyon condensation. The annihilation of branes and anti-branes
with isomorphic bundles E is the physical interpretation of the K-theory relation

E ′ −E ′′ = E ′ ⊕E − E ′′ ⊕E .

This argument was extended by Hořava (1999) to type IIA D-brane configurations,
which are classified by K1(M).

In the presence of a nontrivial H-field, the picture based on Sen’s conjecture has
to be modified, and one is led to consider twisted K-theory. This was suggested by
Witten (1998) in the case of a torsion H-field and by Bouwknegt and Mathai (2000)
in the nontorsion case.
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Role of the Freed–Witten Anomaly and the Twisted K-Theory

A different approach to the K-theory classification of D-branes based on the Freed–
Witten anomaly was pioneered by Maldacena et al. (2001). The Freed–Witten
anomaly is a global world-sheet anomaly of string theory in the presence of
D-branes and a nontrivial H-field. The strategy of Maldacena, Moore, and Seiberg
was again to start with all allowed (here, anomaly-free) D-branes and then identify
configurations that can be dynamically transformed into each other. This leads to
the following two conditions:

1. A D-brane can wrap a cycle N ⊂M only if

W3(N)+ [H]|N = 0

in H3(M,Z). Here, W3(N) is the third integral Stiefel–Whitney class of T N. If
the H-field is trivial, then the first condition just says that the D-brane must be
spinC.

2. Branes wrapping homologically nontrivial N can nevertheless be unstable if, for
some N′ ⊂M containing N,

PD(N ⊂ N′) = W3(N′)+ [H]|N′ ,

where PD(N ⊂ N′) stands for Poincaré dual of N in N′.

These two conditions lead naturally to the twisted K-theory classification of D-brane
charges. The twisted K-theory class on the spacetime comes as a (twisted K-theory,
see Part 4) push-forward of an ordinary untwisted K-theory class on the D-brane.
Finally, both the unphysical and unstable branes are nicely interpreted within the
Atiyah–Hirzebruch spectral sequence (see Chap. 23).

D-Branes as Boundary Conditions for Open Strings

As already mentioned, open strings end on D-branes, which in turn means that
D-branes can be characterized by (conformally invariant) boundary conditions on
the open string worldsheet. From this worldsheet point of view, the D-brane charge
group is again obtained along a similar strategy as before. Firstly, we classify
all boundary conditions for a given closed string background and then identify
those which are connected by renormalization group (RG) flows on the world-sheet
boundary. Unfortunately, in most situations, one is neither able to classify all bound-
ary conditions nor to classify all RG flows between them. In some cases, however,
this strategy was nevertheless successfully pursued as will be discussed in the fol-
lowing paragraph. One should stress that this classification is in a way comple-
mentary to the ones already discussed, because it does not rely on any geometrical
structures of the target space.
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For a two-dimensional topological field theory, where the whole content of the
theory is encoded in a finite-dimensional Frobenius algebra, this problem was ad-
dressed by Moore and Segal (2004). By using sewing constraints, they obtained the
complete classification of D-branes in these theories in terms of K-theory.

WZW Models and the Freed, Hopkins, Teleman Theorem

Wess–Zumino–Witten (WZW) models provide an important class of backgrounds,
where a lot is known on the conformal field theory description of D-branes. Alekseev
and Schomerus (2007) worked out the charge group from the worldsheet approach
for the SU(2) WZW model, which led to precise agreement with the twisted
K-theory. A more structural connection between twisted K-theory and conformal
field theory data was shown by Freed et al. (2005) in the following form. Consider
a simple, simply connected, compact Lie group G of dimension d. Central exten-
sions of its smooth loop group LG by the circle group T are classified by their level
k. Positive energy representations of LG at fixed level are the ones which are im-
portant in string theory. The free abelian group Rk(LG) of irreducible isomorphism
classes with the multiplication given by fusion rules of conformal field theory is
called the Verlinde ring of G at level k (see Chap. 24). If h is the dual Coxeter num-
ber and k + h > 0 is interpreted as an equivariant twisting class in H3

G(G,Z), then
the ring Rk(LG) is isomorphic to the d mod 2-shifted equivariant twisted K-theory
Kk+h,+d

G (G). Here, G acts on itself by the adjoint action and the ring structure on
K-theory is the convolution (Pontryagin) product. An explicit realization of this iso-
morphism given by a Dirac operator—the gauge coupled supercharge of the level
k + h supersymmetric WZW model—was proposed by Mickelsson (2004). Physi-
cally, the equivariant twisted K-theory describes D-branes in the coset model G/G,
which is a topological field theory whose Frobenius algebra is precisely the Verlinde
algebra.

Suggested Reading

A good point to start studying the use of K-theory in string theory is the original
paper by Witten (1998). There is also a good review by Olsen and Szabo (1999).
For the classification of D-brane charges in the presence of a nontrivial H-field in
terms of twisted K-theory, one might consult the paper by Maldacena, Moore and
Seiberg (2001) and the review by Moore (2004). A more recent review on K-theory
in string theory that also discusses the limitations of the K-theory classification is
the one by Evslin (2006).
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Chapter 1
Generalities on Bundles and Categories

This is a preliminary chapter introducing much of the general terminology in the
topology of bundles with the general language of category theory. We use the term
bundle in the most general context, and then in the next chapters, we define the main
concepts of our study, that is, vector bundles, principal bundles, and fibre bundles,
as bundles with additional structure.

In Grothendieck’s notes “A General Theory of Fibre Spaces with Structure
Sheaf,” University of Kansas, Lawrence, 1955 (resp. 1958) he mentions that “the
functor aspect of the notions dealt with has been stressed through, and as it now
appears should have been stressed even more.”

Hopefully, we are carrying this out to the appropriate extent in this approach to
bundles mixed with a general introduction to category theory where examples are
drawn from the theory of bundles. The reader with a background in category theory
and topology will see only a slightly different approach from the usual one.

We will introduce several notations used through the book, for example, (set),
(top), (gr), and (k) denote, respectively, the categories of sets, spaces, groups, and
k-modules for a commutative ring k. These are explained in the context of the defini-
tion of a category in Sect. 4 and in the notations for categories at the end of the book.

Chap. 2 of Fibre Bundles (Husemöller 1994) is a reference for this chapter.

1 Bundles Over a Space

The following section, as mentioned in the introduction, is motivated by
Grothendieck’s Kansas notes where we use the term “bundle” instead of “fibre
space.” A space is a topological space, and a map or mapping is a continuous
function.

1.1. Definition Let B be a space. A bundle E over B is a map p : E → B. The space
E is called the total space of the bundle, the space B is called the base space of the
bundle, the map p is called the projection of the bundle, and for each b ∈ B, the
subspace p−1(b), denoted often by Eb, is called the fibre of the bundle over b ∈ B.

D. Husemöller et al.: Generalities on Bundles and Categories, Lect. Notes Phys. 726, 9–22 (2008)
DOI 10.1007/978-3-540-74956-1 2 © Springer-Verlag Berlin Heidelberg 2008
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1.2. Example The product bundle B×Y over B with fibre Y is the product space
with the projection prB = p : B×Y → B. Observe that the fibre (B×Y )b = {b}×Y
which is isomorphic to Y for all b∈B. Another general example comes by restricting
a bundle p : E→B to subspaces p|E ′ : E ′ →B′, where E ′ is a subspace of E and B′ is
a subspace of B with the property that p(E ′)⊂ B′. Many bundles arise as restrictions
of a product bundle.

1.3. Definition A morphism from the bundle p : E → B to the bundle p′ : E ′ → B
over B is a map u : E → E ′ such that p′u = p.

This condition p′u = p is equivalent to the condition u(Eb) ⊂ E ′b for all b ∈ B,
that is, a morphism u is a map which is fibre preserving. The identity E → E is
a morphism, and if u′ : E ′ → E ′′ is a second morphism of bundles over B, then
u′u : E→ E ′′ is a morphism of bundles.

In Sect. 4, we give the formal definition of a category, but for now, we can speak
of this data of bundles and morphisms of bundles with composition as a category. It
is the category (bun/B) of bundles over B.

In fact, we can relate bundles over distinct base spaces with morphisms general-
izing (1.3).

1.4. Definition A morphism from the bundle p : E → B to the bundle p′ : E ′ → B′
is a pair of maps (u, f ), where u : E → E ′ and f : B→ B′ such that p′u = f p. In
particular, the following diagram is commutative

E
u ��

p

��

E ′

p′
��

B
f �� B′ .

This condition p′u = f p is equivalent to the condition u(Eb)⊂E ′f (b) for all b∈B,

that is, a morphism u is a map which carries the fibre over b to the fibre over f (b).
The pair of identities (idE ,idB) is a morphism E → E , and if (u′, f ′) : E ′ → E ′′ is
a second morphism of bundles, then (u′u, f ′ f ) : E → E ′′ is a morphism of bundles
defining composition (u′, f ′)(u, f ). With these definitions, we have a new category
(bun) which contains (top) the category of all spaces as the full subcategory of
bundles idB : B→ B. Each category (bun/B) is contained in (bun) as a subcategory
but not as a full subcategory except in the case where B reduces to a point ∗ or
the empty set. In this case, (bun/∗) is equivalent to the category (top) viewed as
the category of total spaces, and it gives another inclusion of the category (top)
into (bun).

We have an important functor associated with bundles over a space which we
introduce directly. The formal definition is in a later section.

1.5. Definition Let p : E→ B be a bundle over B, and let U be an open subset of B.
The set Γ(U,E) of sections (or cross sections) of E over U is the set of continuous
maps σ : U → E with p(σ(b)) = b for all b ∈U . For a morphism u : E → E ′ in
(bun/B), we define a function Γ(U,u) : Γ(U,E)→ Γ(U,E ′) by
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Γ(U,u)(σ) = uσ ∈ Γ(U,E ′)

for σ ∈ Γ(U,E).

The formal algebraic properties of the set of cross sections are explained in two
remarks (5.5) and (5.6).

1.6. Example Let p : E = B×Y → B be the product bundle with p(b,y) = b as in
(1.2). A cross section σ over an open subset U ⊂ X is a map σ : U → E = B×Y of
the form

σ(b) = (b, fσ (b))

for b ∈U. This means that Γ(U,E) is just equivalent to the set of maps fσ : U → Y
to the fibre Y .

Now, we consider the special case of an induced bundle where the general con-
cept is considered in Sect. 3.

1.7. Definition Let A be a subspace of a space B and let p : E → B be in (bun/B).
Then, the restriction E|A is the restriction q = p|p−1(A) : p−1(A)→ A in (bun/A)
so that as a space E|A = p−1(A). For a morphism u : E → E ′, the morphism u|A :
E|A→ E ′|A is the subspace restriction.

For a pair of subspaces C ⊂ A ⊂ B, we have E|C = (E|A)|C, and the restriction
is a functor (bun/B)→ (bun/A) as will be further discussed in Sect. 5. With the
restriction, we can introduce an important concept.

1.8. Definition A bundle p : E → B is locally trivial with fibre Y provided each
b ∈ B has an open neighborhood U with E|U isomorphic to the product bundle
pr1 : U×Y →U . A bundle p : E→ B is trivial with fibre Y provided it is isomorphic
to the product bundle pr1 : B×Y → B.

2 Examples of Bundles

Many examples come under the following construction which consists of an arbi-
trary base space and finite dimensional vector spaces in the fibre. In general, the
definitions and examples extend to the case of an infinite dimensional vector space
with a given topology as a fibre, for example, an infinite dimensional Hilbert space.
See Chaps. 20–22.

2.1. Example Let prX : X×V → X be the product vector bundle over a space X with
fibre a real vector space V with its natural topology. A subvector bundle p : E → X
is given by a subspace E ⊂ X ×V such that for p(x,v) = x, each fibre p−1(x) =
Ex ⊂ {x}×V is a subvector space of V . A cross section s ∈ Γ(U,E) is given by
s(x) = (x,v(x)), where v is a map v : U → V such that (x,v(x)) ∈ E ⊂ X ×V for
each x∈ X in X the base space. Such a cross section is called a vector field, and most
vector fields in mathematics and physics are of this simple form. The constraint on
the values of the vector field is contained in the nature of the bundle p : E→ X .
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For the next example, we use the inner product

(x|y) = x0y0 + . . .+ xnyn

for x,y ∈ R
n+1 in Euclidean space.

2.2. Example Tangent and normal bundle to the sphere. The sphere Sn of dimension
n is the closed subspace of R

n+1 consisting of all (x0, . . . ,xn) satisfying (x|x) =
x2

0 + . . . + x2
n = 1. As in (2.1), the tangent bundle T (Sn) is the subbundle of the

product bundle p1 : Sn×R
n+1→ Sn consisting of all (b,x) ∈ Sn×R

n+1 satisfying
(b|x) = 0, and the normal bundle N(Sn) is the subbundle of the product bundle
p1 : Sn×R

n+1→ Sn consisting of all (b,tb) ∈ Sn×R
n+1, where t ∈ R.

2.3. Remark Any (b,y) ∈ Sn×R
n+1 can be decomposed as a perpendicular sum in

the fibre {b}×R
n+1 by the formula

y = (y− (y|b)b)+ (y|b)b,

where y− (y|b)b ∈ T (Sn) and (y|b)b ∈ N(Sn). This is an example of a fibre product
considered in (3.7). Classically, the fibre product of two bundles of vector bundles
is called the Whitney sum and denoted by

T (Sn)⊕N(Sn) = Sn×R
n+1.

When a space B is a quotient space of a space X , it is in many cases possible
to extend the quotient operation to the product bundle X ×Y → X giving a bundle
E→ B with fibre Y . We consider one basic example.

2.4. Example The real projective space Pn(R) of lines in R
n+1 through the origin

can be viewed as the quotient of Sn by the relation x = −x, since for such a line
L we have L∩ Sn = {x,−x}. For any real vector space V , we can take the quo-
tient of the product bundle Sn×V → Sn by the relation (x,v) = (−x,−v) giving a
bundle q : E(V )→ Pn(R), where the fibre q−1({x,−x}) = {x}×V is identified with
{−x}×V under (x,v) = (−x,−v). Again, the fibre is isomorphic to the vector space
V . If we were to identify (x,v) = (−x,v), the quotient bundle would again be the
product bundle

Pn(R)×V → Pn(R)

up to isomorphism. On the other hand, E(V ) is very far from being the product
bundle as we shall see as the theory develops in the first two parts.

2.5. Remark The Whitney sum in (2.3) of the product bundle over Sn denoted by
T (Sn)⊕N(Sn) = Sn×R

n+1 has a quotient version on the real projective space of a
Whitney sum denoted by

T (Pn(R))⊕ (Pn(R)×R) = E(Rn+1).
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Here, T (Pn(R)) is the tangent bundle to the real projective space Pn(R), and the
relation (b,y) = (−b,−y) becomes under the sum

y = (y− (y|b)b)+ (y|b)b

the relation

(b,y− (y|b)b)⊕ (b,(y|b)b)= (−b,−(y− (y|−b)(−b))⊕ (−b,(y|b)(−b))

The second term is a product since (b|y) = (−b|− y) is independent of the repre-
sentative of {b,−b}.
2.6. Remark We have a natural double winding giving P1(R) = S1, the circle. The
space S1×R is a band, and E(R) over S1 or the real projective line P1(R) is the
Möbius band.

3 Two Operations on Bundles

The first operation on bundles transfers a bundle from one space to another under
a continuous map, but before doing the general case, let us introduce the following
definition.

3.1. Definition Let f : B′ →B be a continuous map, and let p : E→B be in (bun/B).
Then the induced bundle f−1(E) is the subspace f−1(E) ⊂ B′ ×E consisting of
all (b′,x) ∈ B′ ×E such that f (b′) = p(x) together with the restriction of the first
projection q : B′ ×E→ B′ to the subspace f−1(E). For a morphism u : E→ E ′ over
B, the morphism f−1(u) : f−1(E)→ f−1(E ′) is the map defined by f−1(u)(b′,x) =
(b′,u(x)) for (b′,x) ∈ f−1(E).

We also use the notation f ∗(E)→ B′ for the induced bundle f−1(E)→ B′.

3.2. Remark The bundles f−1(E)→ B and the bundle morphisms f−1(u) define a
functor from the category (bun/B) to the category (bun/B′) in the sense that for the
identity idE , the induced map f−1(idE) is the identity on f−1(E) and for a composite
of two bundle morphisms u : E → E ′ and u′ : E ′ → E ′′, we have a composition of
two bundle morphisms f−1(u′u) = f−1(u′) f−1(u).

3.3. Remark For two continuous maps g : B′′ → B′ and f : B′ → B and for a bun-
dle p : E → B in (bun/B), we have a natural isomorphism given by a projection
g−1 f−1(E)→ ( f g)−1(E) which carries (b′′,(b′,x)) to (b′′,x). Since b′ = g(b′′) is
determined by b′′, this projection is an isomorphism under which for a morphism
u : E→ E ′ we have a commutative diagram as in (1.7)
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g−1 f−1(E)

��

g−1 f−1(u) �� g−1 f−1(E ′)

��
( f g)−1(E)

(g f )−1(u) �� ( f g)−1(E ′).

In Sect. 5, this kind of diagram is described in general as a morphism or natu-
ral transformation of functors which is in fact more, namely a natural equivalence
between the functors

g−1 f−1(E)−→ ( f g)−1(E).

Finally, we consider products in the categories (bun) and (bun/B).
3.4. Definition Let (pi : Ei→ Bi)i∈I be a family of bundles. Then the product bundle
of this family in (bun) is the product of the maps pi given by Πi∈I pi : Πi∈I Ei →
Πi∈I Bi.

Let (pi : Ei→B)i∈I be a family of bundles over B, that is, in the category (bun/B).

3.5. Definition The product of this family in (bun/B), also called the fibre product,
is the subspace E = ΠB,i∈I Ei ⊂ Πi∈I Ei consisting of I-tuples (xi)i∈I in the product
space such that for i, j ∈ I we have pi(xi) = p j(x j) which we define as [(xi)i∈I ] ∈ E .
The projection is p((xi)i∈I) = x j for any j ∈ I.

For p′ : E ′ → B and p′′ : E ′′ → B, the fibre product is denoted by p : E ′ ×B E ′′ →
B, where E ′ ×B E ′′ is the subspace of E ′ ×E ′′ consisting of (x′,x′′) with p′(x′) =
p′′(x′′) = p(x′,x′′).
Observe that the space f−1(E) = B′ ×B E is the total space of the fibre product of
f : B′ → B and p : E → B in (1.9). As another example, the fibre product of the
product bundle B×Y ′ → B with the product bundle B×Y ′′ → B is “in a natural
way” isomorphic to the product bundle B× (Y ′ ×Y ′′)→ B. In Sect. 5, we explain
the notion of isomorphism of functors.

3.6. Example Returning to the n-sphere Sn and the examples of (2.2) and (2.3), we
have the fibre product or Whitney sum

T (Sn)⊕N(Sn) = T (Sn)×Sn N(Sn) = Sn×R
n+1.

Returning to the n-dimensional real projective space Pn(R) and the example of (2.5),
we have the fibre product or Whitney sum

T (Pn(R))⊕ (Pn(R)×R) = T (Pn(R))×Pn(R) (Pn(R)×R) = E(Rn+1).

4 Category Constructions Related to Bundles

In (1.3), we began speaking of the category of bundles (bun/B) over a space B,
and now we give some of the basic definitions in category theory for the reader
unfamiliar with these concepts.
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4.1. Definition A category C consists of three sets of data.

(I) A class whose elements are called objects of C . When we say X is in C we
mean X is an object in C .

(II) For each pair of objects X ,Y in C a set Hom(X ,Y ) [also denoted by HomC

(X ,Y )] whose elements f are called morphisms from X to Y , this is denoted by

f : X → Y or X
f→ Y .

(III) For each triple of objects X ,Y,Z in C a function

c : Hom(X ,Y )×Hom(Y,Z)−→Hom(X ,Z)

called composition and denoted by c( f ,g) = g f : X → Z for f : X → Y and
g : Y → Z in C .

For a category, the following axioms are satisfied:

(1) If f : X → Y, g : Y → Z, and h : Z→W are three morphisms, then associativity
of composition h(g f ) = (hg) f holds.

(2) For each X in C , there exists a morphism 1X : X→ X such that for all f : Y → X
and g : X → Y we have f = 1X f and g1X = g.

Observe that 1X : X → X satisfying the axiom (2) is unique because if 1′X were a
second one, then 1′X = 1′X 1X = 1X . We also denote 1X : X→ X by simply X : X→ X .

Before considering examples of categories, we introduce the notion of isomor-
phism in a category. It is a general concept in category theory, and in a specific
category it is something which has to be identified, not defined, in special examples.

4.2. Definition Let C be a category. A morphism f : X → Y is called an isomor-
phism provided there exists a morphism f ′ : Y → X with f ′ f = X and f f ′ = Y . Two
objects X and Y in a category C are isomorphic provided there exists an isomor-
phism f : X → Y .

4.3. Remark For a morphism f : X → Y , if there are two morphisms f ′, f ′′ : Y → X
with f ′ f = X and f f ′′ = Y , then we have

f ′ = f ′( f f ′′) = ( f ′ f ) f ′′ = f ′′,

and f is an isomorphism, and the unique morphism f ′ = f ′′ is called its inverse.
The composition of two isomorphisms and the inverse of an isomorphism are iso-
morphisms. The relation two objects are isomorphic is an equivalence relation. Let
Aut(X) denote the group of automorphisms of X , that is, the set of isomorphisms
X → X with composition as group operation.

4.4. Example Let (set) denote the category of sets, that is, the class of objects is
the class of sets, Hom(A,B) is the set of all functions A→ B, and composition is
composition of functions. Let (top) denote the category of spaces, that is, the class
of objects is the class of topological spaces, Hom(X ,Y ) is the set of all continuous
functions X → Y , and composition is composition of continuous functions.

Let (gr) denote the category of groups, that is, the class of objects is the class of
groups, Hom(G,H) is the set of all group morphisms G→ H, and composition is
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composition of group morphisms. For a commutative ring k with unit, we denote by
(k) the category of k-modules, that is, the class of objects is the class of (unitary)
k-modules, Hom(M,N) is the set of all k-linear functions M→ N, and composition
is composition of k-linear functions.

4.5. Remark The isomorphisms in (set) are the bijective functions, the isomor-
phisms in (top) are the bijective continuous maps whose inverse function is
continuous, the isomorphisms in (gr) are the bijective group morphisms, and the
isomorphisms in (k) for a commutative ring k are the bijective k-linear maps.

4.6. Definition A subcategory C ′ of a category C is a category where the objects of
C ′ form a subclass of the objects in C and whose morphism set HomC ′(X ′,Y ′) is a
subset of HomC (X ′,Y ′) such that the composition function for C ′ is the restriction
of the composition function for C . A subcategory C ′ of a category C is called full
provided HomC ′(X ′,Y ′) = HomC (X ′,Y ′) for X ′,Y ′ in C ′.

Observe that a full subcategory C ′ of a category C is determined by its subclass
of objects. For the ring of integers Z, a Z-module is just an abelian group, and hence
the category of abelian groups (ab) = (Z) is a full subcategory of (gr) determined
by the groups satisfying the commutative law.

Using the previous section as a model, we are able to define bundles in any cate-
gory C .

The category (bun) becomes the category Mor(C ) of morphisms in C , and the
category (bun/B) becomes the category C /B of objects E over B, that is, morphisms
p : E→ B.

4.7. Definition Let C be a category. Let Mor(C ) be the category whose objects
are morphisms p : E → B in C , and a morphism in Mor(C ) from p : E → B to
p′ : E ′ → B′ is a pair of morphisms (u, f ), where u : E → E ′ and f : B → B′ such
that p′u = f p. Composition of (u, f ) and (u′, f ′) from p′ : E ′ →B′ to p′′ : E ′′ →B′′ is

(u′, f ′)(u, f ) = (u′u, f ′ f ) : (p : E→ B)−→ (p′′ : E ′′ → B′′).

The category (bun) is just the category Mor((top)).

4.8. Definition For B in a category C , the subcategory C /B of Mor(C ) consists
of all objects p : E → B with base B, and a morphism in C /B from p : E → B to
p′ : E ′ → B is a morphism u : E → E ′ such that p′u = p. Composition of u and u′
from p′ : E ′ → B to p′′ : E ′′ → B is u′u : (p : E → B)→ (p′′ : E ′′ → B).

The category (bun/B) is just the category (top)/B.

5 Functors Between Categories

5.1. Definition Let C and C ′ be two categories. A functor T : C → C ′ consists of
two sets of data
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(I) A function T from the objects in C to the objects in C ′, hence the function type
of notation for a functor.

(II) For each pair of objects X ,Y in C we have a function T : HomC (X ,Y ) →
HomC ′(T (X),T (Y )), that is, if u : X → Y is a morphism in C , then T (u) :
T (X)→ T (Y ) is a morphism in C ′.

For a functor, the following axioms are satisfied.

(1) If u : X → Y and v : Y → Z are two morphisms in C , then for the composites
T (vu) = T (v)T (u) : T (X)→ T (Z) in C ′.

(2) For an object X in C , we have T (idX ) = idT (X) in C ′. In particular the notation
X : X → X under T becomes T (X) : T (X)→ T (X).

5.2. Proposition If F : C →C ′ is a functor and if u : X→Y is an isomorphism in C
with inverse u−1 : Y → X, then T (u) : T (X)→ T (Y ) is an isomorphism in C ′ with
inverse

T (u)−1 = T (u−1) : T (Y )−→ T (X).

Proof. This follows directly from the axioms for a functor.

5.3. Elementary Operations If F : C → C ′ and F ′ : C ′ → C ′′ are two functors,
then the composite on objects and morphisms F ′F : C → C ′′ is a functor, for it is
immediate to check axioms (1) and (2). The identity functor idC : C → C is the
identity on objects and morphisms of C . If we think of categories as objects and
functors as morphisms between categories, then we have the first idea about the
category of categories. Unfortunately, the concept has to be modified, and this we
do in later chapters.

5.4. Examples The functor F : (top)→ (set) which deletes the system of open sets
of a space X leaving the underlying set is an elementary example. The functors
assigning to a bundle p : E→ B the total space T (p : E→ B) = E or the base space
B(p : E→ B) = B are defined as functors T : (bun/B)→ (top) or B : (bun)→ (top).

5.5. Example The sets Γ(U,E) and the functions Γ(U,u) define a functor from
the category (bun/B) to the category (set) of sets in the sense that for the identity
Γ(U, idE) is the identity on the set of section Γ(U,E), and for a composite of two
bundle morphisms u : E → E ′ and u′ : E ′ → E ′′, we have a composition of two
functions Γ(U,u′u) = Γ(U,u′)Γ(U,u). These are the two axiomatic properties of a
functor in the definition (5.1).

5.6. Remark Now, we can change from an open set U to a smaller open set V in
B, that is, for open sets V ⊂ U ⊂ B, we can restrict ρ(V,U) : Γ(U,E)→ Γ(V,E)
continuous functions

ρ(V,U)(s) = s|V.

There is a compatibility condition between this restriction and function defined by
composition by an B-bundle morphism u : E → E ′. For open sets V ⊂U ⊂ B, we
have a commutative square, which in the next section we will interpret in two ways
as a morphism of functors.
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Γ(U,E)

ρ(V,U)
��

Γ(U,u) �� Γ(U,E ′)

ρ(V,U)
��

Γ(V,E)
Γ(V,u) �� Γ(V,E ′)

Now, we formulate a definition where this kind of diagram is described in general
as a morphism or natural transformation of functors in the next section.

6 Morphisms of Functors or Natural Transformations

6.1. Definition Let S,T : C → C ′ be two functors between two categories. A mor-
phism or natural transformation θ : S→ T is given by a morphism θ (X) : S(X)→
T (X) in C ′ for each object X in C such that for each morphism u : X ′ → X ′′ in C
we have

T (u)θ (X ′) = θ (X ′′)S(u),

or equivalently, the following diagram is commutative

S(X ′)

S(u)
��

θ(X ′) �� T (X ′)

T (u)
��

S(X ′′)
θ(X ′′) �� T (X ′′) .

6.2. Definition Let R,S,T : C → C ′ be three functors between two categories, and
let φ : R→ S and ψ : S → T be two morphisms of functors. For each X consider the
morphism

ψ(X)φ(X) = (ψφ)(X) : R(X)→ T (X)

which is called the composition ψφ of φ and ψ .

Then, ψφ : R→ T is a morphism of functors, for if u : X ′ → X ′′ is a morphism in
C , then we have

T (u)(ψφ)(X ′) = ψ(X ′′)S(u)φ(X ′) = ψφ(X ′′)R(u).

The identity morphism 1 : T → T is given by 1(X) = identity on T (X) for each
X in C .

6.3. Definition An isomorphism of functors or natural equivalence θ : S→ T be-
tween two functors S,T : C → C ′ is a morphism of functors θ such that each θ (X)
is an isomorphism

θ (X) : S(X)−→ T (X)

in C ′.
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If θ (X)−1 is inverse of each θ (X), then the family of

θ (X)−1 : T (X)−→ S(X)

defines a morphism θ−1 : T → S of functors which is inverse to θ : S→ T in the
sense of the composition defined in (6.2).

6.4. Definition A functor T : C ′ → C ′′ is an equivalence of categories provided
there exists a functor S : C ′′ → C ′ such that the composite ST is isomorphic to idC ′ ,
the identity functor on C ′, and T S is isomorphic to idC ′′ the identity functor on C ′′.

The composition of two equivalences of categories is again an equivalence of
categories.

6.5. Definition Two categories C ′ and C ′′ are equivalent provided there exists an
equivalence of categories C ′ → C ′′.

Observe that equivalence of categories is a weaker relation than isomorphism of
categories. It almost never happens that two categories are isomorphic, but equiva-
lent categories will have a bijection between isomorphism classes and related mor-
phism sets. In fact, this is the way of recognizing that a functor is an equivalence by
starting with its mapping properties on the morphism sets.

6.6. Definition A functor T : X → Y is faithful (resp. fully faithful, full) pro-
vided for every pair of objects X ,X ′ in X the function T : HomX (X ,X ′) →
HomY (T (X),T (X ′)) is injective (resp. bijective, surjective).

The functors F : (top)→ (set) and F : (gr)→ (set) which assign to a topological
space or a group its underlying set are faithful functors. In the next proposition,
we have a useful criterion for a functor to be an equivalence from one category
to another. In Chap. 3, we apply this criterion to show that the category of vector
bundles on X is equivalent to the category of finitely generated projective C(X)-
modules.

6.7. Proposition A functor T : X → Y is an equivalence of categories if and only
if T is fully faithful and for each object Y in Y , there exists an object X in X with
T (X) isomorphic to Y in Y .

Proof. If S : Y →X is an inverse up to isomorphisms with the identity functor, then
T : HomX (X ,X ′)→HomY (T (X),T (X ′)) is a bijection with inverse constructed by
composing

S : HomY (T (X),T (X ′))→ HomX (ST (X),ST (X ′))

with the isomorphism HomX (ST (X),ST (X ′))→ HomX (X ,X ′). Hence, T is fully
faithful. Since for each Y in Y , the object Y in Y is isomorphic to T S(Y ), the second
condition is satisfied for an equivalence of categories.
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Conversely, we wish to construct S : Y →X by defining S on objects. For each
Y , we choose an object S(Y ) = X in X together with an isomorphism θ (Y ) : Y →
T (X) = T S(Y ). This is possible by the hypothesis, and we proceed to define

S : HomY (Y,Y ′)−→ HomX (S(Y ),S(Y ′))

as the composite of θ (Y ′,Y ) : HomY (Y,Y ′) → HomY (T S(Y ),T S(Y ′)) given by
θ (Y ′,Y ) f = θ (Y ′) f θ (Y )−1 and the inverse of the bijection T defined as T−1 :
HomY (T S(Y ),T S(Y ′))→HomX (S(Y ),S(Y ′)). The two properties of a functor fol-
low for S from the observation that T is a functor and the following relations hold
θ (Y ′′,Y )( f ′ f ) = θ (Y ′′,Y ′)( f ′)θ (Y ′,Y )( f ) and θ (Y,Y )(idY ) = idT S(Y ).

Finally, the morphisms θ (Y ) define an isomorphism θ : Y → TS(Y ) from the
identity on the category Y to T S, and ST was defined so that it is the identity on
X . This proves the proposition.

7 Étale Maps and Coverings

7.1. Definition A map f : Y→X is open (resp. closed) provided for each open (resp.
closed) subset V ⊂ Y , the direct image f (V ) is open (resp. closed) in X .

7.2. Example An inclusion map j : Y→X of a subspace Y ⊂ X is open (resp. closed)
if and only if Y is an open (resp. closed) subspace of X . Any projection p j : Πi∈IXi→
Xj from a product to a factor space is open. A projection pY : X ×Y → Y is closed
for all Y if and only if X is a quasicompact space.

7.3. Remark A space Y is separated (or Hausdorff) provided the following equiva-
lent conditions are satisfied.

(1) For y,y′ ∈ Y with y 
= y′, there exists open neighborhoods V of y and V ′ of y′ in
Y with V ∩V ′ empty.

(2) The intersection of all closed neighborhoods V of any y ∈ Y is just {y}.
(3) The diagonal map ΔY : Y → Y ×Y is a closed map.

This is a basic definition and assertion in general topology. Observe that condi-
tion (3) can be formulated in terms of the diagonal subset Δ ⊂ Y ×Y being a closed
subset.

7.4. Remark Let f ,g : X → Y be two maps into a separated space. The set of all
x ∈ X , where f (x) = g(x) is the closed subset ( f ,g)−1(Δ(Y )), where ( f ,g)(x) =
( f (x),g(x)) defines the continuous map ( f ,g) : X → Y ×Y .

7.5. Definition A map f : Y → X is étale provided either of the following equivalent
conditions are satisfied.

(1) For each y ∈ Y , there exists open neighborhoods V of y in Y and U of f (y) in
X such that f (V ) = U and f |V : V →U is a homeomorphism. This condition is
often referred to as the map f is a local homeomorphism which is another term
for an étale map.

(2) The map f is open and the diagonal map ΔYY : Y → Y ×X Y is an open map.
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A bundle p : E → X in (bun/X) is an étale (resp. open) bundle provided the map p
is an étale (resp. open) map.

For the proof of the equivalence of (1) and (2), we assume firstly (1). To
see that f is open, we consider an open subset W of Y and y ∈ W . There ex-
ists open neighborhoods V of y in W and U of f (y) in X such that f (V ) = U
and f |V : V → U is a homeomorphism. Thus U , is an open neighborhood of
f (y) ∈ f (W ) contained in f (W ), and f is an open map. To see that the diagonal
set Δ(Y ) is open in Y ×X Y , we consider (y,y) ∈ Δ(Y ). From the local homeomor-
phism condition (1), there exists open neighborhoods V of y in Y and U of f (y)
in X such that f (V ) = U and f |V : V → U is a homeomorphism. Then we have
V ×U V ⊂ Δ(Y ).

Conversely, we assume (2). Since Δ(Y ) is open in Y×X Y , there exists an open set
V ⊂ Y with (V ×V)∩ (Y ×Y )⊂ Y ×X Y . Then f (V ) = U is an open neighborhood
of f (y) in X and the open map f restricts to an open map f |V : V →U which is a
bijection since (V ×V)∩ (Y ×Y ) ⊂ Y×X Y. This establishes the equivalence of (1)
and (2).

7.6. Notation The full subcategory of (bun/X) determined by the étale bundles over
X is denoted by (ét/X ).

7.7. Proposition Let p : E → X be an étale (resp. open) bundle. For each map
f : Y → X, the induced bundle q : f−1(E) → Y is an étale (resp. open) bun-
dle.

Proof. To show that q is open, we consider an open set W in f−1(E) and (y,x) ∈
W ⊂ f−1(E). Then, there exists open sets V in Y and U in E such that (y,x) ∈
(V ×U)∩ f−1(E)⊂W. Then we have

y ∈ q((V ×U)∩ f−1(E))⊂V ∩ f−1(p(U))⊂ q(W ),

and this shows that q(W ) and hence also q is open.
To show that q is a local homeomorphism if p is, we consider (y,x) ∈ f−1(E)

and an open neighborhood V of x ∈ E such that p|V : V → p(V ) is a homeomor-
phism. Then we form the open set W = ( f−1(p(V ))×V)∩ f−1(E) in f−1(E) with
(y,x) ∈W . Observe that q|W : W → q(W ) is a homeomorphism. This proves the
proposition.

7.8. Corollary If p : E → X is an étale (resp. open) bundle and if Y ⊂ X is
a subspace of X, then p|p−1(Y ) : E|Y = p−1(Y ) → Y is an étale (resp. open)
bundle.

7.9. Example Let D be a discrete space. Then the product bundle p = pX : X×D→
X is an étale bundle. This is called the product bundle with discrete fibre. In fact,
for each z ∈ D, the restriction p|X×{z} : X×{z}→ X is a homeomorphism when
restricted to the open set X×{z} ⊂ X×D.

Now, we are in position to define coverings in the mature context and describe
the category of coverings as a full subcategory of the category of bundles.
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7.10. Definition A covering p : E → X is an étale bundle which is locally isomor-
phic to a product bundle with discrete fibre. A trivial covering p : E→ X is a bundle
isomorphic to a product bundle with discrete fibre D. We denote by (cov/X ) the full
subcategory of (ét/X ) and hence of (bun/X) determined by the coverings over X .
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Chapter 2
Vector Bundles

The notion of vector bundle is a basic extension to the geometric domain of the
fundamental idea of a vector space. Given a space X , we take a real or complex
finite dimensional vector space V and make V the fibre of a bundle over X , where
each fibre is isomorphic to this vector space. The simplest way to do this is to form
the product X ×V and the projection prX : X ×V → X onto the first factor. This is
the product vector bundle with base X and fibre V .

On first sight, the product bundle appears to have no special features, but it con-
tains other vector bundles which often reflect the topology of X in a strong way. This
happens, for example, for the tangent bundle and the normal bundle to the spheres
which are discussed in 1(2.2) and 1(2.3). All bundles of vector spaces that we will
consider will have the local triviality property, namely, they are locally isomorphic
to a product bundle. The product bundle is also basic because most of the vector
bundles we will be considering will be subvector bundles of a product vector bundle
of higher dimension. In some cases, they will be so twisted that they can only live
in an infinite dimensional product vector bundle.

We will begin by formulating the concept of bundles of vector spaces over X .
These will not be necessarily locally trivial, but they form a well-defined concept
and category. Then, a vector bundle is a locally trivial bundle of vector spaces. The
point of this distinction is that being a vector bundle is a bundle of vector spaces
with an additional axiom and not an additional structure. The local charts which
result are not new elements of structure but only a property, but to state the property,
we need the notion of bundle of vector spaces. After this is done, we will be dealing
with just vector bundles.

Chapter 3 of Fibre Bundles (Husemöller 1994) is a reference for this chapter.

1 Bundles of Vector Spaces and Vector Bundles

All the vector spaces under consideration are defined either over the real numbers
R or the complex numbers C. We need to use the scalars explicitly, and if either
number system applies, we will use the symbol F to denote either the field of real
or the field of complex numbers.

D. Husemöller et al.: Vector Bundles, Lect. Notes Phys. 726, 23–34 (2008)
DOI 10.1007/978-3-540-74956-1 3 © Springer-Verlag Berlin Heidelberg 2008
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1.1. Definition A bundle of vector spaces over B is a bundle p : E → B with two
additional structures

E×B E −→ E and F×E −→ E

defined over B called addition and scalar multiplication, respectively. As maps over
B, they restrict to each fibre

Eb×Eb = (E×B E)b −→ Eb and F×Eb = (F×E)b −→ Eb,

and the basic axiom is that they define a vector space structure over F on each fibre.
We require further that the function which assigns to each b ∈ B the unique zero
0b ∈ Eb is a continuous section.

Although it is not so necessary, we will usually require that the fibres are finite
dimensional, hence the subspace topology on the fibres will be the usual vector
space topology. In the infinite dimensional case, the main difference is that one has
to preassign a topology on the vector space compatible with addition and scalar
multiplication. Bundles of infinite dimensional vector spaces are treated in more
detail in Chap. 20.

1.2. Example Let V be a finite dimensional F-vector space with the usual topology,
and let p : B×V → B be the product bundle. Then, the usual vector space structure
on V defines a bundle of vector space structure on the product bundle by

(b,v′)+ (b,v′′) = (b,v′+ v′′) and k(b,v) = (b,kv), for k ∈ F.

If p : E → B is a bundle of vector spaces and if A ⊂ B is a subspace, then the
restriction q : E|A→A is a bundle of vector spaces with the restriction of the globally
defined addition and scalar multiplication. Now, this can be generalized as in 1(2.1)
to subbundles of vector spaces.

1.3. Definition Let p : E ′ → B and p : E ′′ → B be two bundles of vector spaces over
B. A morphism u : E ′ → E ′′ of bundles of vector spaces over B is a morphism of
bundles such that the restriction to each fibre u|E ′b : E ′b→ E ′′b is a linear map.

1.4. Remark The composition of morphisms of bundles of vector spaces over B
is again a morphism of bundles of vector spaces over B. Hence, it defines a
category.

1.5. Example Let p : E → B be a bundle of vector spaces, and let A be a subspace
of B. Then, the restriction to a subspace p|(E|A) : E|A→ A is a bundle of vector
spaces.

Now, we are in a position to make the main definition of this chapter.

1.6. Definition A vector bundle p : E → B is a bundle of vector spaces such that
every point b∈ B has an open neighborhoodU with the restriction p|(E|U) : E|U→
U isomorphic to the product bundle of vectors spaces pr1 : U×V →U .
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Now, we will always be working with vector bundles and observe that the concept
of bundle of vector spaces was only introduced as a means of defining the local
triviality property of vector bundles. Of course, this could have been done more
directly, but in this way, we try to illustrate the difference between structure and
axiom.

1.7. Definition A morphism u : E ′ → E ′′ of vector bundles over B is a morphism of
the bundles of vector spaces from E ′ to E ′′.

1.8. Remark The composition of morphisms of vector bundles over B is again a
morphism of vector bundles over B. Hence, it defines a category of vector bundles
over B. A trivial vector bundle is one which is isomorphic to a product vector bundle.

1.9. Example Let E ′ → B and E ′′ → B be two bundles of vector spaces over B. The
fibre product E ′ ×B E ′′, also denoted by E ′ ⊕E ′′, is a bundle of vector spaces. If
E ′ and E ′′ are vector bundles, then E ′ ⊕E ′′ is also a vector bundle. For the product
bundles B×V ′ and B×V ′′, the fibre product or Whitney sum is given by (B×V ′)⊕
(B×V ′′) = B× (V ′ ⊕V ′′). The terminology of Whitney sum comes from the direct
sum and the notation E ′ ⊕E ′′ from the direct sum of vector spaces.

1.10. Definition Let E ′,E ′′ and E be three vector bundles over X . A vector bundle
morphism β : E ′ ⊕E ′′ = E ′ ×X E ′′ → E is bilinear provided β |(E ′ ⊕E ′′)x : (E ′ ⊕
E ′′)x→ Ex is a bilinear map of vector spaces. The tensor product E ′ ⊗E ′′ of E ′ and
E ′′ is a specific choice of a vector bundle with a bilinear morphism θ : E ′ ⊕E ′′ →
E ′⊗E ′′ which has the universal property that every bilinear morphism β : E ′⊕E ′′ →
E factors uniquely as uθ , where u : E ′ ⊗E ′′ → E is a morphism of vector bundles.
Note that this is the usual definition of the tensor product for X a point.

2 Isomorphisms of Vector Bundles and Induced Vector Bundles

In the next result, we use the vector bundle local triviality axiom.

2.1. Proposition Let u : E ′ → E ′′ be a morphism of vector bundles over a space B
such that ub : E ′b→E ′′b is an isomorphism for each b∈B. Then, u is an isomorphism.

Proof. The inverse v : E ′′ → E ′ of u exists fibrewise as a function. The only question
is its continuity, and this we check on an open covering of the form u : E ′|U→E ′′|U ,
where E ′ and E ′′ are each trivial bundles. In this case, the restriction of u with
inverse v has the form u : U × Fn → U × Fn with formula u(b,y) = (b,T (b)y),
where T : U → GLn(F) is a continuous map. Then, v(b,z) = (b,T (b)−1(z)) is also
continuous. This proves the proposition.

2.2. Proposition Let p : E→ B be a bundle of vector spaces over B, and let f : B′ →
B be a continuous map. Then, the induced bundle f−1E→ B′ has the structure of a
bundle of vector spaces such that the natural f -morphism w : f−1E→ E over each
b′ ∈ B′ on the fibre
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wb′ : ( f−1E)b′ −→ E f (b′)

is a vector space isomorphism. If E is a vector bundle, then f−1E is a vector bundle.

Proof. Recall that the induced bundle f−1E is a subspace of B′ ×E consisting of all
(b′,x) with f (b′) = p(x). Then, we use f−1(E×B E) = f−1(E)×B′ f−1(E), and the
sum function on the bundle of vector spaces must be of the form (b′,x)+ (b′,y) =
(b′,x+y). Then, scalar multiplication must be of the form a(b′,y) = (b′,ay). In both
cases, these functions are continuous, and moreover, on the fibre wb′ : ( f−1E)b′ →
E f (b′) is a vector space isomorphism.

Finally, if E is a product bundle, then f−1E is a product bundle, and if E is locally
trivial, then f−1E is locally trivial, for it is trivial over open sets f−1(W ), where E
is trivial over W . This proves the proposition.

2.3. Proposition Let (u, f ) : (p′ : E ′ →B′)→ (p : E→B) be a morphism of bundles,
where p′ and p are vector bundles such that over each b′ ∈ B′ on the fibre ub′ : E ′b′ →
E f (b′) is a morphism of vector spaces. Then, u factors by a morphism v : E ′ →
f−1E of vector bundles over B′ followed by the natural f -morphism w : f−1E→ E.
Moreover, if over each b′ ∈ B′ on the fibre ub′ : E ′b′ → E f (b′) is a isomorphism of
vector spaces, then v : E ′ → f−1E is an isomorphism of vector bundles over B′.

Proof. The factorization of u is given by v(x′) = (p′(x′),u(x′)), and it is a vector
bundle morphism since u is linear on each fibre. Moreover, wv(x′) = u(x′) shows
that it is a factorization. If ub′ is an isomorphism on the fibre of E ′ at b′, then

vb′(x′) = (b′,ub′(x′))

is an isomorphism E f (b′) → f−1(E)b′ = {b′}×E f (b′). Thus, we can apply (2.1) to
obtain the last statement. This proves the proposition.

3 Image and Kernel of Vector Bundle Morphisms

3.1. Remark The vector bundle morphism w : [0,1]×F → [0,1]×F defined by the
formula w(t,z) = (t,tz) has a fibrewise kernel and a fibrewise image, but neither is
a vector subbundle because the local triviality condition is not satisfied at 0 ∈ [0,1],
where the kernel jumps from zero and the image reduces to zero.

In order to study this phenomenon, we recall some elementary conditions on rank
of matrices.

3.2. Notation Let Mq,n(F) denote the F-vector space of q×n matrices over F , that
is, q rows and n columns of scalars from F . For q = n, we abbreviate the notation
Mn,n(F)= Mn(F) and denote by GLn(F) the group of invertible n×n matrices under
matrix multiplication. We give these spaces as usual the natural Euclidean topology.
We have Mq,n(C) = Mq,n(R) + Mq,n(R)i, and using blocks of matrices, we have
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the natural inclusion Mq,n(R)+ Mq,n(R)i ⊂ M2q,2n(R), where A + Bi is mapped to(
A 0
0 B

)
∈M2q,2n(R).

3.3. Definition The rank filtration RkMq,n(F) on Mq,n(F) is the increasing filtration
of all A ∈ Mq,n(F) with rank (A) ≤ k. We denote by R=kMq,n(F) = RkMq,n(F)−
Rk−1Mq,n(F).

Clearly, we have for the rank filtration

{0}= R0Mq,n(F)⊂ . . .⊂ RkMq,n(F)⊂ . . .⊂ Rmin{q,n}Mq,n(F) = Mq,n(F).

For square matrices, we have R=nMn(F) = GLn(F), the group of invertible n by n
matrices with coefficients in F .

3.4. Remark The sets RkMq,n(F) in the rank filtration are closed sets which for F =
R or C can be described as consisting of all matrices A for which all (k+1)×(k+1)
subdeterminants are zero. The group GLn(F) is the group of all square matrices A
with det(A) 
= 0. Since the determinant is a polynomial function, these subsets are
algebraic varieties. In particular, the terms of the filtration RkMq,n(F) are closed
subsets of Mq,n(F), and GLn(F) is an open subset of Mn(F). The same is true for
F = H, and we will see that it depends on only knowing that GLn(H) is an open
subset of Mn(H) by the subdeterminant characterization of rank.

3.5. Proposition Let u : E ′ → E ′′ be a morphism of vector bundles over a space B.
If rank (ub) is locally constant, then the bundles of vector spaces ker(u) and im(u)
are vector bundles.

Proof. We form the subspace
⋃

b∈B ker(ub) = ker(u) ⊂ E ′ and the subspace
⋃

b∈B
im(ub) = im(u)⊂ E ′′. With the restriction of the projections E ′ → B and E ′′ → B,
the subbundles ker(u) and im(u) are bundles of vector spaces. In order to show
that they are vector bundles under the rank hypothesis, we can restrict to an open
neighborhood U of any point of B, where both E ′ and E ′′ are trivial and ub has
constant rank q.

Choose an isomorphism to the product bundle, and then u can be represented
by a vector bundle morphism w : U ×Fn→U ×Fm which has the form w(b,y) =
(b,T (b)y). As a continuous function T : U → Mm,n , the matrix T (b) has rank q
over U . For each x ∈ U , we can choose a change of coordinates so that T (b) =(

A(b) B(b)
C(b) D(b)

)
such that

A(x) ∈ GLq(F), B(x) = 0, C(x) = 0, D(x) = 0,

and choosing a subopen neighborhood of x in U , called again U , we can assume
that A(b) is invertible for all b ∈U . Here, we use that GLq(F)⊂Mq(F) is open. Let
π : U×Fn→U×Fn−q denote the projection on the second factor, and note that for
x ∈U , it is the projection onto the ker(T (x)). Since T (b) has constant rank q and
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A(b) is invertible, the restriction π |ker(w) = π |U × ker(T (b)) is an isomorphism
U ×ker(T (b))→U×Fn−q. Hence, we see that ker(w) is locally trivial and thus a
vector bundle.

If wt : U ×Fm →U ×Fn is the morphism given by the transpose matrix T (b)t

and the formula wt(b,y) = (b,T (b)t y), then im(w) = ker(wt ) is also a vector bundle.
This proves the proposition.

A very useful case where we know the rank is locally constant and used in the
next chapter is in the following proposition.

3.6. Proposition Let e = e2 : E → E be an idempotent endomorphism of a vector
bundle p : E → B over B. Then, the set of b ∈ B with rank(eb) = q is open and
closed in B. Hence, ker(e) and im(e) are vector bundles, and E = ker(e)×B im(e) =
ker(e)⊕ im(e).

Proof. Since on each fibre the identity 1 = eb +(1− eb) is the sum of two comple-
mentary projections, we have rank (eb)+rank(1− eb) = n. The set of all b ∈ B with
rank(eb) = q is at the same time the set of all b ∈ B with rank (eb) ≤ q and rank
(1− eb) ≤ n− q, which is a closed set, and the set of all b ∈ B with rank(eb) ≥ q
and rank(1− eb) ≥ n− q, which is an open set. Now apply (3.5). This proves the
proposition.

4 The Canonical Bundle Over the Grassmannian Varieties

4.1. Definition Let X be a union of an increasing family of subspaces

X0 ⊂ . . .⊂ XN ⊂ XN+1 ⊂ . . .⊂ lim−→N XN = X

with the weak topology, that is a subset M ⊂ X is closed if and only if Xm ∩M is
closed in Xm for all m≥ 0.

Another name for the weak topology is the inductive limit topology.

The following inductive limits have the weak topology which start with the inclu-
sions

FN ⊂ FN+1 ⊂ . . .⊂ lim−→N FN = F∞.

4.2. Definition Let Pn(FN) denote the subspace of (FN)n consisting of linearly inde-
pendent n-tuples of vectors in FN . Let Grn(FN) denote the quotient space of Pn(FN)
which assigns to a linearly independent n-tuple the subspace FN of dimension n of
which the n-tuple is basis. The space Grn(FN) is called the Grassmann variety of
n-dimensional subspaces of FN , and Pn(FN) is called the Stiefel variety of linearly
independent frames in N-dimensional space.

4.3. Remark The quotient morphism q : Pn(FN)→ Grn(FN) has the structure of a
principal GLn(F) bundle with right action Pn(FN)×GLn(F)→ Pn(FN) given by
right multiplication of an n-tuple of vectors and by n×n matrix of scalars
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(x1, . . . .,xn).(ai, j) = (y1, . . . ,yn),

where ∑n
i=1xiai, j = y j for i, j = 1, . . . ,n. The subject of principal bundles is taken up

in Chap. 5 and we will return to this example.

There are natural inclusions

Pn(FN)⊂ Pn(FN+1) and Grn(FN)⊂ Grn(FN+1)

induced by the inclusion of FN ⊂ FN+1 = FN⊕F as zero in the last coordinate.

4.4. Definition The product bundle Grn(FN)× FN has two subvector bundles:
En(N) consisting of all (W,v) ∈ Grn(FN)×FN with v ∈W and ⊥EN−n(N) consist-
ing of all (W,v) ∈ Grn(FN)×FN with v⊥W , that is, v is orthogonal to all vectors
in W . The vector bundle En(N) is called the universal vector bundle over Grn(FN).

4.5. Remark If pW denotes the orthogonal projection of FN onto W , then we
have an isomorphism θ : Grn(FN)×FN → En(N)⊕ ⊥EN−n(N) onto the Whitney
sum, where θ (W,v) = (W, pW (v))⊕ (W,v− pW (v)). Over the natural inclusion
Grn(FN) ⊂ Grn(FN+1), there is the natural inclusion of product vector bundles
Grn(FN)×FN ⊂ Grn(FN+1)×FN+1 which under θ induces natural inclusions of
the Whitney sum factors En(N) ⊂ En(N + 1) and ⊥EN−n(N) ⊂ ⊥EN+1−n(N + 1).

Now, we consider the inductive limit spaces and vector bundles as N goes to
infinity.

4.6. Remark The inductive limit construction of (4.1) yields the n-dimensional vec-
tor bundle

En = lim−→ N≥nEn(N) −→ lim−→N≥n Grn(FN) = Grn(F∞).

This vector bundle has the universal property saying that every reasonable vector
bundle is induced from it and under certain circumstances, from the subbundles on
the finite Grassmann varieties as we see in the next section.

5 Finitely Generated Vector Bundles

5.1. Theorem The following six properties of a vector bundle E over X of dimension
n and given N ≥ n are equivalent:

(1) There is a continuous w : E→ FN with w|Ex : Ex→ FN a linear monomorphism
for each x ∈ X.

(2) There is a vector bundle morphism (u, f ) : E→ En(N) which is an isomorphism
on each fibre of E.

(3) There is an isomorphism E → f ∗(En(N)) over X for some continuous map f :
X → Grn(FN).
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(4) There is a vector bundle E ′ over X and an isomorphism φ : E⊕E ′ → X×FN to
the trivial N-dimensional bundle over X.

(5) There exists a surjective vector bundle morphism ψ : X × FN → E which is
surjective on each fibre.

(6) There exist continuous sections s1, . . . ,sN ∈ Γ(X ,E) such that the vectors s1(x),
. . . ,sN(x) generate the vector space Ex for each x ∈ X.

Proof. We begin with a circle of implications.

(1) implies (2): Given w : E→ FNas in (1), we define the morphism of vector bun-
dles (u, f ) : E → En(N) by f (x) = w(Ex) and u(v) = (Eπ(v),w(v)) ∈ En(N) for
v ∈ E and π : E → X the projection.

(2) implies (3): Given (u, f ) as in (2), we factor u by the induced bundle E
u′→

f ∗(En(N)) u′′→ En(N), where u′ : E → f ∗(En(N)) is a fibrewise isomorphism,
hence the desired isomorphism in (3).

(3) implies (4): Given the isomorphism E → f ∗(En(N)) as in (3), we define
E ′ = f ∗(⊥EN−n(N)) and take the Whitney sum leading to an isomorphism E⊕
E ′ → f ∗(En(N))⊕ f ∗(⊥EN−n(N)) = f ∗(En(N)⊕⊥EN−n(N)). Since En(N)⊕⊥
EN−n(N) = Grn(FN)×FN , the product bundle, and a map induces the product
bundle to a trivial bundle, we have an isomorphism E⊕E ′ → X×FNas in (4).

(4) implies (1): Given an isomorphism v : E ⊕ E ′ → X × FN over X . Using the
injection j : E → E⊕E ′ and the projection pr2 : X ×FN → FN , we form the
composite w = (pr2)v j : E → FN , and this is the desired map in (1), where the
restriction w|Ex : Ex→ FN is a linear monomorphism for each x ∈ X .

(4) implies (5): We use the inverse X × FN → E ⊕ E ′ to the isomorphism in (4)
composed with the projection E⊕E ′ → E to obtain a vector bundle morphism
v : X×FN → E which is surjective on each fibre.
Conversely, (5) implies (4) by considering the kernel E ′ = ker(ψ) of ψ which is
a subvector bundle of rank N−n and its orthogonal complement E ′′ which is the
subvector bundle of all (x,v) with v ⊥ ker(ψ)x. The restriction ψ |E ′′ : E ′′ → E
is a fibrewise isomorphism and hence an isomorphism of vector bundles. The
desired morphism is the sum of φ = (ψ |E ′′)−1⊕ j : E ⊕ ker(ψ) = E ⊕E ′ →
X×FN in (4).

(5) and (6) are equivalent. For the natural basic sections σi(x) = (x,ei) of the trivial
bundle X ×FN have images si = ψσi given by ψ with (5) for each i = 1, . . . ,N
and conversely ψ is defined by a set of N sections si in (6) by the condition
ψ(x,a1, . . . ,aN) = a1s1(x)+ · · ·+ aNsN(x). Finally, the equivalence of (5) and
(6) follows by observing that ψ(x, ) is surjective over x ∈ X if and only if
s1(x), . . . ,sN(x) generates Ex. This proves the theorem.

5.2. Definition A vector bundle satisfying any of the equivalent conditions of (5.1)
is called finitely generated.

For N = n, we have the following corollary.

5.3. Corollary The following six properties of a vector bundle E over X of dimen-
sion n are equivalent:
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(1) There is a continuous w : E → Fn with w|Ex : Ex → Fn, a linear isomorphism
for each x ∈ X.

(2) There is a vector bundle morphism (u, f ) : E→ En(n) = {∗}×Fn.
(3) There is an isomorphism E → f ∗(En(n)) over X for the continuous map f :

X → Grn(Fn) = {∗}, a point.
(4) or (5) There is an isomorphism E→ X×Fn or X×Fn→ E between E and the

product n-dimensional bundle over X.
(6) There exist continuous sections s1, . . . ,sn ∈ Γ(X ,E) such that the vectors

s1(x), . . . ,sn(x) form a basis of Ex for each x ∈ X.

6 Vector Bundles on a Compact Space

6.1. Theorem Every vector bundle over a compact space is finitely generated.

Proof. Let p : E → X be a F-vector bundle over X . Let V1, . . . ,Vm be a finite open
covering of X such that E|Vi is trivial for all i = 1, . . . ,m. Choose open sets U1 ⊂
V1, . . . ,Um ⊂Vm and continuous functions ξi : X → [0,1]⊂ F such that

(1) the U1, . . . ,Um is an open covering of X and
(2) supp(ξi)⊂Vi and ξi|Ui = 1 for i = 1, . . . ,m. This is possible since X is normal.

We define a Gauss map w : E → (Fn)m by choosing trivializing Gauss maps
wi : E|Vi → Fn and forming the map w(v) = (ξi(p(v))wi(v))1≤i≤m ∈ (Fn)m,
where this means ξi(p(v))wi(v) = 0 if v ∈ E−E|Vi. The function w is contin-
uous by the support condition (2) on the ξi, and the restriction w|Ex is a linear
monomorphism for each x∈X . Thus, there exists a Gauss map for E , and hence
E is finitely generated.

6.2. Remark If p : E → X is a vector bundle over a space and if (Ui,Vi) is a se-
quence of normal pairs with continuous functions ξi : X → [0,1]⊂ F such that the
U1, . . . ,Um, . . . is an open covering of X , then using the properties supp(ξi)⊂Vi and
ξi|Ui = 1 for i ≥ 1, we have a Gauss map w : E → (Fn)∞ = F∞ given by the same
formula w(v) = (ξi(p(v))wi(v))1≤i ∈ (Fn)∞ = F∞. This Gauss map defines a vector
bundle morphism (u, f ) : E → En(∞) which is an isomorphism on each fibre of E
by f (x) = w(Ex) and u(v) = (Ep(v),w(v)) for v ∈ E . Then, there is an isomorphism
u′ : E → f ∗(En(∞)), that is, such a vector bundle is induced from the universal
bundle over Grn(F∞).

7 Collapsing and Clutching Vector Bundles on Subspaces

There are two topological operations on vector bundles which play a basic role in
the geometric considerations related to vector bundles.



32 2 Vector Bundles

7.1. Definition Let A be a closed subspace of X and form the quotient q : X→ X/A,
where A is collapsed to a point. Let p : E→X be a vector bundle with a trivialization
t : E|A→ A×Fn over the subspace A. The collapsed vector bundle E/t → X/A is
the unique vector bundle defined in terms of q-morphism u : E → E/t of vector
bundles such that t = t∗u for an isomorphism of the fibre t∗ : (E/t)∗ → Fn.

7.2. Definition Let X = A′ ∪ A′′ be the union of two closed subspaces with A =
A′ ∩A′′. Let E ′ → A′ and E ′′ → A′′ be two vector bundles, and α : E ′|A→ E ′′|A
be an isomorphism of vector bundles over A. The clutched vector bundle E ′ ∪α E ′′
is the unique vector bundle E → X together with isomorphisms u′ : E ′ → E|A′ and
u′′ : E ′′ → E|A′′ such that on A we have u′ = u′′α .

In the case of both of the previous definitions, a direct quotient process gives
a bundle of vector spaces, and as for the question of local triviality, we have the
following remarks.

7.3. Local Considerations in the Previous Two Definitions For the local triviality
of the bundles E/t and E ′ ∪α E ′′, we have to be able to extend the trivializing t on A
or the clutching isomorphism α on A to an open neighborhood of A. Here, we must
assume that either A is a closed subspace in a compact X and then use the Tietze
extension theorem or assume that A is a subcomplex of a CW -complex X . For this,
see Fibre bundles (Husemöller 1994) p.123, 135, for more details.

7.4. Functoriality Both the collapsing and clutching are functorial for maps w :
E ′ → E ′′ such that t ′′w = t ′ over A ⊂ X inducing E ′/t ′ → E ′′/t ′′ and morphisms
f ′ : E ′ → F ′ over A′ and f ′′ : E ′′ → F ′′ over A′′ commuting with clutching data
f ′′α = β f ′ inducing a morphism f : E ′ ∪α E ′′ → F ′ ∪β F ′′ of vector bundles.

7.5. Remark Let A be a closed subspace of X , and let E ′ be a vector bundle on X/A.
The induced bundle q∗(E ′) = E has a natural trivialization t over A, and there is
a natural isomorphism E/t → E ′ from the collapsed vector bundle to the original
vector bundle E ′. Let X = A′ ∪A′′ and A = A′ ∩A′′, and let E be a vector bundle over
X . For E ′ = E|A′ and E ′′ = E|A′′, and α the identity on E|A. Then, there is a natural
isomorphism

E ′ ∪α E ′′ −→ E

of the clutched vector bundle to the original vector bundle.

7.6. Commutation with Whitney Sum Over the quotient X/A, we have a natural
isomorphism of the Whitney sum

(E ′/t ′)⊕ (E ′′/t ′′)−→ (E ′ ⊕E ′′)/(t ′ ⊕ t ′′).

Over X = A′ ∪A′′ and A = A′ ∩A′′, we have a natural isomorphism of the Whitney
sum of clutched vector bundles

(E ′ ∪α E ′′)⊕ (F ′ ∪β F ′′)−→ (E ′ ⊕F ′)∪α⊕β (E ′′ ⊕F ′′).



2.8 Metrics on Vector Bundles 33

7.7. Commutation with Induced Bundles Let f : (Y,B)→ (X ,A) be a map of
pairs, and let E be a vector bundle with trivialization t : E|A→ A× Fn. For the
natural morphism w : E → E/t over q : X → X/A, we have a trivialization tw :
f ∗(E)|B→ B×Fn and a natural morphism of f ∗(E)/tw→ f ∗(E/t) induced by w.

Let f : (Y ;B′,B′′,B) −→ (X ;A′,A′′,A) be a map of coverings as in (7.2), let E ′
(resp. E ′′) be a vector bundle over A′ (resp. A′′), and let α : E ′|A→ E ′′|A be an
isomorphism. Then there is an natural isomorphism

( f |A′)∗(E ′)∪β ( f |A′′)∗(E ′′)→ f ∗(E ′ ∪α E ′′),

where β = f ∗(α).

8 Metrics on Vector Bundles

Let z̄ denote the conjugation which on R is the identity, on C is complex conjugation,
and on H is the quaternionic conjugation.

8.1. Definition Let V be a left vector space over F . An inner product is a function
β : V ×V → F such that

(1) For a,b ∈ F and x,x′,y,y′ ∈V , the sesquilinearity of β is

β (ax + bx′,y) = aβ (x,y)+ bβ (x′,y)

β (x,ay + by′) = āβ (x,y)+ b̄β (x,y′).

(2) For x,y ∈V , we have conjugate symmetry β (x,y) = β (y,x).
(3) For x ∈V , we have β (x,x) ≥ 0 in R and β (x,x) = 0 if and only if x = 0.

Two vectors x,y ∈ V are perpendicular provided β (x,y) = 0. For a subspace W
of V , the set W⊥ of all y ∈ V with y perpendicular to all x ∈W is a subspace of V
and V = W ⊕W⊥.

8.2. Definition An inner product on a vector bundle E over X is a map β : E⊕E→
F such that the restriction for x∈ X to each fibre βx : Ex×Ex→F is an inner product
on Ex.

8.3. Example On the trivial bundles X ×Fn or even X ×F∞, there exists a natural
inner product with

β (x,u1, . . . ,un, . . . ,x,v1, . . . ,vn, . . .) = ∑1≤ j
u jv̄ j

(always a finite sum). This formula holds both in the finite and in the infinite case
where vectors have only finitely many nonzero components. By restriction, every
inner product on a vector bundle gives an inner product on each subbundle. For
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a map f : Y → X and a vector bundle E with inner product β , we define a unique
inner product on f ∗(E) such that the natural f -morphism w : f ∗(E)→ E is fibrewise
an isomorphism of vector spaces with inner product f ∗(β ) by the formula

f ∗(β )(y,z′;y,z′′) = β (z′,z′′) for (y,z′),(y,z′′) ∈ f ∗(E).

In particular, every bundle which is induced from the universal bundle over Gn(Fn)
has a metric.

8.4. Remark If E ′ is a subbundle of a bundle E with a metric β , then the fibrewise
union of E ′x

⊥ is a vector bundle, denoted by E ′⊥, and the natural E ′ ⊕E ′⊥ → E is
an isomorphism.

Reference

Husemöller, D.: Fibre Bundles, 3rd ed. Springer-Verlag, New York (1994) 9, 23, 55, 57, 58, 75, 83, 96



Chapter 3
Relation Between Vector Bundles, Projective
Modules, and Idempotents

The main theorem is that there is an equivalence of the category of complex vec-
tor bundles on a space X with the category of finitely generated projective C(X)-
modules, where C(X) is the C-algebra of continuous complex valued functions on
X . For this, we need a suitable hypothesis on X . The module associated to a vec-
tor bundle E is the C(X)-module of cross sections Γ(X ,E), and the cross section
functor Γ : (vect/X)→ (C(X)) is the functor which sets up the equivalence of cate-
gories between the category of (complex) vector bundles (vect/X) on X and the full
subcategory of finitely generated projective modules in the category (C(X)) of all
C(X)-modules.

The first assertion in this direction is the full embedding property of the cross
section functor

Γ : HomX(E ′,E ′′)−→HomC(X)(Γ(X ,E ′),Γ(X ,E ′′)),

that is, Γ is a bijection. This is proved in Sect. 2 after some local to global pre-
liminaries in Sect. 1 which are typical of normal spaces. Then, the remainder of
the argument in Sect. 3 revolves around seeing that under additional hypotheses,
Γ(X ,E) is indeed a finitely generated projective, and every finitely generated pro-
jective module over C(X) is isomorphic to some Γ(X ,E). This is the case for a
compact space X , and for a locally compact space, we can modify the assertion in
terms of vanishing and triviality at infinity.

The main result in this chapter is due independently to Jean-Pierre Serre and
Richard Swan. It is often referred to as the Serre–Swan correspondence between
vector bundles over a space X and finitely generated projective modules over the
algebra C(X).

In the process of showing that every projective module comes from a vector
bundle, we start with relations between idempotent elements in matrix algebras.
The algebraic relation leads to another description of vector bundles and projective
modules as classes of idempotents.

D. Husemöller et al.: Relation Between Vector Bundles, Projective Modules, and Idempotents, Lect. Notes Phys. 726,
35–44 (2008)
DOI 10.1007/978-3-540-74956-1 4 © Springer-Verlag Berlin Heidelberg 2008
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1 Local Coordinates of a Vector Bundle Given by Global
Functions over a Normal Space

In order to go from fibrewise and locally defined sections of a vector bundle, we use
the following open sets which are certain neighborhood pairs.

1.1. Definition A numerable pair (U,V ) or (U,V,ξ ) consists of two open sets
U ⊂ V and a continuous function ξ : X → [0,1] with ξ |U = 1 and the closure of
ξ−1((0,1]) = supp(ξ )⊂ V .

1.2. Remark Because of the Urysohn lemma, every pair U and V of open sets satis-
fying U ⊂ Ū ⊂V in a normal space X is numerable.

1.3. Remark The function θ : Γ(V,E)→ Γ(X ,E) which assigns to a section s ∈
Γ(V,E) of a vector bundle E|V the section θ (s), where

θ (s)(x) =
{

ξ (x)s(x) for x ∈V
0 x ∈ X\supp(ξ )

is a homomorphism. Observe that θ (s)|U = s|U .

1.4. Proposition Let p : E → X be a vector bundle, where E|V is trivial for a nu-
merable pair (U,V,ξ ). Then, there exist cross sections s1, . . . ,sn ∈ Γ(X ,E) such that

(1) for each x ∈U, the vectors s1(x), . . . ,sn(x) form a basis of Ex and
(2) for each s∈ Γ(X ,E), there exist a1, . . . ,an ∈C(X) such that s equals a1s1 + . . .+

ansn on U.

Proof. Since E|V is trivial, there exists a basis of n sections s′i ∈ Γ(V,E) such that
s|V = a′1s′1 + . . .+a′ns′n, where a′i ∈C(V ). Then on U , the section s equals θ (s|V ) =
a1s1 + . . . + ansn, where ai = θ (a′i) and si = θ (s′i) giving (2). The vectors si(x) =
s′i(x) form a basis of Ex. This proves the proposition.

1.5. Corollary If v ∈ Ex or if s′ ∈ Γ(V,E), where E is trivial over a numerable pair,
then there exists a global section s ∈ Γ(X ,E) with s(x) = v or s|U = s′|U, respec-
tively.

1.6. Notation Let E be a vector bundle on X and x ∈ X . Let εx : C(X)→ C and εE
x :

Γ(X ,E)→Ex denote the evaluation maps defined by εx( f ) = f (x) and εE
x (s) = s(x),

respectively. Let Ix denote the kernel of εx : C(X)→ C.

1.7. Proposition Let E be a vector bundle on a normal space X. For every x ∈ X, it
follows that IxΓ(X ,E) = ker(εE

x : Γ(X ,E)→ Ex), that is, ker(εx)Γ(X ,E) = ker(εE
x ).

Proof. An inclusion of IxΓ(X ,E) ⊂ ker(εE
x ) is immediate since εx(Ix) = 0. For the

opposite inclusion, we proceed in two steps. If s|W = 0 for an open neighborhood of
x, then there exists a numerable pair (U,V,ξ ) with x ∈U and V ⊂W . Then ξ s = 0
because ξ |(X−V) = 0. Thus, s = ξ s+(1− ξ )s = (1− ξ )s ∈ IxΓ(X ,E).
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Next, we use (1.4) to obtain a numerable pair (U,V,ξ ), where E|V is trivial
and cross sections s1, . . . ,sn ∈ Γ(X ,E) which are associated with a trivialization
of E|V . For each s ∈ Γ(X ,E), there exists functions a1, . . . ,an ∈ C(X) such that
s|U = (a1s1 + . . .+ansn)|U . From 1(1.4), we see that 0 = εx(s) = s(x) if and only if
0 = εx(a j) = a j(x) for all j = 1, . . . ,n, that is, (a1s1 + . . .+ ansn) ∈ IxΓ(X ,E). Now
the difference

s− (a1s1 + . . .+ ansn)|U = 0

so that by the first step s− (a1s1 + . . . + ansn) ∈ IxΓ(X ,E). Thus, if s(x) = 0, then
also s ∈ IxΓ(X ,E). This proves the other inclusion and the proposition.

2 The Full Embedding Property of the Cross Section Functor

2.1. Theorem If X is a normal space, then the cross section functor Γ from vector
bundles to C(X)-modules is fully faithful, that is, the morphism

Γ : HomX (E ′,E ′′)−→ HomC(X)(Γ(X ,E ′),Γ(X ,E ′′))

is an isomorphism.

Proof. For injectivity, we consider f ,g : E ′ → E ′′ with Γ( f ) = Γ(g). For each v∈ E ′x,
we can choose a global section s∈Γ(X ,E ′) with s(x) = v by (1.5). Then we calculate

f (v) = f s(x) = (Γ( f )s)(x) = (Γ(g)s)(x) = gs(x) = g(v).

Hence, Γ( f ) = Γ(g) implies f = g and Γ is injective.
For surjectivity, we consider a C(X)-linear morphism ψ : Γ(X ,E ′)→ Γ(X ,E ′′)

and observe that ψ(IxΓ(X ,E ′)) ⊂ IxΓ(X ,E ′′) for each x ∈ X . By (1.7), the C(X)-
linear ψ defines for each x ∈ X a quotient linear morphism ψx : E ′x → E ′′x giving a
commutative diagram

Γ(X ,E ′)

ε ′x
��

ψ �� Γ(X ,E ′′)

ε ′′x
��

E ′x
ψx �� E ′′x

We define f : E ′ → E ′′ by f |E ′x = ψx. Then, this fibrewise linear map f will have
the property Γ( f ) = ψ , and it will show that Γ is surjective if we can see that f is
continuous.

For the continuity of f , we consider numerable pairs (U,V ), where E ′|V is trivial.
Then, there exists by (1.4) global sections, s1, . . . ,sn ∈ Γ(X ,E ′), which trivialize E ′
over U . Then, for any v ∈ E ′|U , we can write v uniquely as a linear combination of
these sections as follows
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v = α1(v)s1(p′(v))+ · · ·+ αn(v)sn(p′(v)),

where the functions αi(v) are continuous scalar valued on E ′|U . This leads to the
formula

f (v) = α1(v)(ψs1)(p′(v))+ · · ·+ αn(v)(ψsn)(p′(v))

so that f : E ′|U → E ′′|U is continuous. Thus, f is continuous, and this proves the
full embedding property.

In order to characterize further which C(X)-modules are isomorphic to Γ(X ,E)
for some vector bundle E over X , we study the behavior of Γ for subbundles.

2.2. Definition A sequence of morphisms of three vector bundles E ′ u→ E
v→ E ′′ is

exact provided on each fibre over x∈X the sequence of vector spaces E ′x
u→Ex

v→E ′′x
is, that is, im(u) = ker(v). An arbitrary sequence of morphisms of vector bundles is
exact provided every subthree term sequence is exact.

2.3. Proposition If 0→ E ′ u→ E
v→ E ′′ is an exact sequence of vector bundles, then

the following sequence of C(X)-modules 0→ Γ(X ,E ′)
Γ(u)−→ Γ(X ,E)

Γ(v)−→ Γ(X ,E ′′)
is exact.

Proof. This exactness assertion is the combination of two assertions. For the first,
we note that if s′ ∈ Γ(X ,E ′), then Γ(u)(s′) = 0 implies that u(s′(x)) = 0 in Ex for
each x ∈ X which in turn just means that s′(x) = 0 in Ex for x ∈ X . Thus s′ = 0 and
Γ(u) is a monomorphism. With u, we can identify E ′ as a subbundle of E .

For the second, it is immediate that Γ(v)Γ(u) = Γ(vu) = 0. If Γ(v)(s) = 0 for
s ∈ Γ(X ,E), then v(s(x)) = 0 for each x ∈ X , and this means that s(x) ∈ E ′x ⊂ Ex for
each x ∈ X under the identification with u of E ′ as a subbundle of E . Thus, we have
im(Γ(u)) = ker(Γ(v)), and this proves the proposition.

Again, there is an important point where one has to be rather careful. As we
remarked in 2(3.1), the kernel of a vector bundle morphism is not always a vector
bundle. This is the reason for formulating the previous assertion in terms of an
exact sequence 0→ E ′ u→ E

v→ E ′′, where the kernel of v exists and is exactly the
image of u.

3 Finitely Generated Projective Modules

In order to study the functor Γ(X ,) further, we introduce some notation for the
related categories.

3.1. Notation Let (vect/X) denote the category of vector bundles on the space X .
Let R be a commutative ring, and let (R) denote the category of modules over R. For
a ring R, we denote the categories of left and right modules over R, by respectively,
(R\mod) and (mod/R).

In the previous section, we derived the full embedding property of Γ(X ,) :
(vect/X)→ (C(X)) under the assumption that X is a normal space. Now, we want to



3.3 Finitely Generated Projective Modules 39

restrict (C(X)) to a full subcategory in order to obtain an equivalence of categories
under suitable conditions on the space X .

Recall that a module M is finitely generated free if and only if there is a finite set
x1, . . . ,xn ∈M with u : Rn→M defined by

u(a1, . . . ,an) = a1x1 + · · ·+ anxn

is an isomorphism. The finite set x1, . . . ,xn is called a basis.
The next most elementary type of module M is a direct summand of Rn for some

n. In this case, we have a pair of morphisms u : Rn→M and v : M→ Rn such that
uv is the identity on M and p = vu is the projection onto v(M)⊂ Rn which under the
restriction morphism v : M→ v(M)⊂ Rn is naturally isomorphic to M.

Again, u is given by u(a1, · · · ,an) = a1x1 + · · ·+ anxn in terms of certain ele-
ments x1, . . . ,xn ∈ M, and v is determined by a formula v(x) = (v1(x), . . . ,vn(x)),
where v1, . . . ,vn ∈M∨ = Hom(M,R) the dual module to M. The fact that uv is the
identity on M means that x = ∑n

i=1 vi(x)xi for each x∈M. This leads to the following
definition.

3.2. Definition A finite bibasis of a module M is a set of x1, . . . ,xn ∈ M and
v1, . . . ,vn ∈M∨ such that for each x ∈M we have

x =
n

∑
i=1

vi(x)xi.

To analyze these modules which are direct summands of Rn or equivalently which
have bibasis, we make the following definitions.

3.3. Definition A module M is finitely generated provided there is a surjective mor-
phism u : Rn→M. In particular, u is defined by u(a1, . . . ,an) = a1x1 + · · ·+anxn for
elements x1, . . . ,xn ∈M. These elements x1, . . . ,xn are called generators of M.

3.4. Definition A module P is projective provided for each surjective morphism w :
M → N and each morphism f : P→ N there exists a morphism g : P→ M with
wg = f . The morphism g is called a lifting of the morphism f .

The situation in (3.4) is often described by the commutative diagram of mor-
phisms with the lifting given by dotted arrow.

P
g

��
f

��
M

w �� N �� 0

3.5. Example Every free module L is projective. Let E be a basis of L so that each
x ∈ L has the form x = ∑e∈E ae(x)e with ae unique and almost all zero. Then, for
a surjective morphism w : M → N and a morphism f : L→ N, we have f (x) =
∑e∈E ae f (e), and in order to lift f to g : L→ M by the surjection w : M→ N, we
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have only to choose g(e)∈M with g(e)∈w−1( f (e)) and define g(x) = ∑e∈E aeg(e).
Since w(g(e)) = f (e) for all e ∈ E , it follows that w(g(x)) = f (x) for all x ∈ L.

3.6. Example Let P = P′ ⊕ P′′ be a direct sum. Then, P is projective if and only
if P′ and P′′ are projective. Consider a surjective morphism w : M→ N and relate
morphisms f : P→ N to their restrictions f ′ : P′ → N and f ′′ : P′′ → N by f =
f ′ ⊕ f ′′. Hence, if f lifts to g, then f ′ lifts to g|P′ and f ′′ lifts to g|P′′, and conversely,
if f ′ lifts g′ : P′ →M and f ′′ lifts to g′′ : P′′ →M, then f ′ ⊕ f ′′ is a lifting of g.

3.7. Proposition The following are equivalent for M:

(a) The module M is isomorphic to a direct summand of Rn.
(b) The module M has a bibasis.
(c) The module M is a finitely generated projective module.

Proof. For (a) implies (b) we have seen that the projection u : Rn → M and the
injection v : M→ Rn giving the isomorphism on M onto the direct sum v(M) of Rn

in the discussion before (3.2).
For (b) implies (c), we see that the x1, . . . ,xn of the bibasis are generators of M.

If f : M→ N′′ is a morphism and w : N→ N′′ is a surjective morphism, then choose
g(xi)∈w−1( f (xi)), and for x = ∑n

i=1 vi(x)xi and f (x) = ∑n
i=1 vi(x) f (xi), we can only

define

g(x) =
n

∑
i=1

vi(x)g(xi),

where g is a lifting of f .
Finally, for (c) implies (a), we have a surjective morphism u : Rn → M since

M is finitely generated. Since M is projective, we can lift the identity M → M to
v : M→ Rn, the isomorphism v : M→ v(M), onto a direct sum of Rn. This proves
the proposition.

We leave it to the reader to prove the following version of the previous proposi-
tion which does not refer to finiteness properties of the modules.

3.8. Remark A module M is projective if and only if M is isomorphic to a direct
summand of a free module.

4 The Serre–Swan Theorem

4.1. Notation Let (vect/X) denote the category of vector bundles and vector bundle
morphisms over a space X . For a commutative ring R, let (vect/R) denote the full
subcategory of the category (R) of R-modules determined by modules which are di-
rect summands of a finitely generated free module (i.e., which are finitely generated
projective R-modules). For a general ring (vect/R) is defined the same way with left
R-modules.

Now, we combine theorems (2.1),2(3.6), and 2(5.1) together with another ar-
gument to arrive at an equivalence of category assertion over a space where every
vector bundle is finitely generated, see 2(5.2).
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4.2. Theorem Let X be a space over which each vector bundle is finitely generated.
Then, the cross section functor

Γ = Γ(X ,) : (vect/X)−→ (vect/C(X))

is an equivalence of categories.

Proof. In view of criteria 1(6.7) and (2.1) we only have to show that every finitely
generated projective module M over C(X) is isomorphic to Γ(X ,E) for a vector bun-
dle E . Since M is given by a matrix e2 = e∈Mn(C(X)), we can use e(x) to construct
the related vector bundle E ⊂ B×Fn. This proves the theorem.

As a corollary, we have the following theorem.

Theorem 4.3 (Serre–Swan Theorem) The cross section functor

Γ = Γ(X ,) : (vect/X)−→ (vect/C(X))

is an equivalence of categories for a compact space X.

Proof. Use (4.2) and 2(6.1) for the proof of this assertion.

4.4. Remark For any ring morphism w : R′ →R′′, we have a function w∗ :(vect/R′)→
(vect/R′′) given by

w∗(P′) = R′′ ⊗R′ P
′.

This function defines (vect/ ) as a functor from the category (c\rg) of rings to the
category (set) of sets. There is a functoriality and a naturality related to this equiva-
lence of categories.

4.5. Remark Let f : X → Y be a map. By right composition of functions on Y with
f , we have an induced morphism of rings C( f ) : C(Y )→C(X) and a corresponding
morphism C( f )∗ : (vect/C(Y ))→ (vect/C(X)). The function f also induces a func-
tor f ∗ : (vect/Y )→ (vect/X) by sending a vector bundle E to its pullback f ∗(E).
Then, the cross section functor is contained in the following commutative diagram.

(vect/Y )

Γ(Y,)
��

f ∗ �� (vect/X)

Γ(X ,)
��

(vect/C(Y ))
C( f )∗ �� (vect/C(X)).

Recall that surjective morphisms R → R′′ of rings are given by the ideal I =
ker(R→ R′′) up to natural factorization by an isomorphism R/I→ R′′.
4.6. Remark Each inclusion j : A→ X of a closed subspace A into a compact space
X defines a surjective C( j) : C(X)→C(A) by the Tietze extension theorem, and this
corresponds to an ideal I, the ideal of functions on X which vanish on A. Using the
identification p : X → X/A, we have I = C(p)(C(X/A,∗)), where C(X/A,∗) is the
ideal in C(X/A) of all functions equal to zero at ∗ ∈ X/A, where ∗ is the class of A
in the quotient space X/A.
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5 Idempotent Classes Associated to Finitely Generated
Projective Modules

Let R be a ring and form the matrix algebra Mn(R) over R of n by n matrices.
We consider direct sums of R-modules M⊕N isomorphic to Rn as left R-modules,
or in other words, we consider finitely generated projective modules M which are
quotients of Rn.

5.1. Remark Let u : Rn→ P be an epimorphism onto a projective module P. Then,
there exists a morphism u′ : P→ Rn with uu′ = id, the identity on P and p = u′u is
an idempotent, that is, it satisfies p = p2, leading to a direct sum decomposition

Rn ∼= im(p)⊕ ker(p).

The restriction u|im(p) : im(p)→ P is an isomorphism, and P is finitely generated.
We consider an equivalence relation on idempotents p ∈ Mn(R) such that p and
q ∈Mm(R) are equivalent if and only if im(p) and im(q) are isomorphic.

5.2. Notation Let (R\mod) denote the category of left R-modules. Let u : Rm→ P
and v : Rn→ Q be two epimorphisms onto projective objects P and Q in (R\mod),
and choose splittings u′ : P→ Rm of u and v′ : Q→ Rn of v. Then p = u′u is an
idempotent in the matrix ring Mm(R) with im(p) = P and q = v′v is an idempotent
in Mn(R) with im(q) = Q. Let f : Q→ P be an isomorphism with inverse g : P→Q.
We study related morphisms

y = v′gu : Rm −→ Rn and x = u′ f v : Rn −→ Rm.

We have two properties related to the fact that P and Q are isomorphic:

(A) xy = p and yx = q.
For this, calculate xy = u′ f vv′gu = u′ f gu = u′u = p and yx = v′guu′ f v =
v′g f v = v′v = q.

(B) x = px = xq = pxq and y = qy = yp = qyp.
For this, calculate pxq = u′u(u′ f v)v′v = u′ f v = x, and a similar calculation gives
the other relations.

5.3. Remark Now, we study the relation between two idempotents p2 = p ∈Mm(R)
and q2 = q ∈Mn(R) which have x′y′ = p and y′x′ = q, where x′ : Rn→ Rm and y′ :
Rm→ Rn, that is, (5.2)(A) holds. We can replace x′ by x = px′q : Rn→ Rm and y′ by
y = qy′p : Rm→ Rn. Then, condition (5.2)(A) still holds, that is, xy = p and yx = q,
and (5.2)(B) now holds. To see this, we calculate xy = px′qqy′p = px′y′x′y′x′y′p =
p5, and hence xy = p. Similarly, yx = q. Finally, we calculate qyp = qqy′
pp = qy′p = y, and the other relations of (5.2)(B) follow by similar calculations.

5.4. Definition Two idempotents p∈Mm(R) and q∈Mn(R) are algebraically equiv-
alent provided there exists x : Rn → Rm and y : Rm → Rn satisfying (5.2)(A) and
(5.2)(B) or equivalently by (5.3) just (5.2)(A):
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p = xy and q = yx.

5.5. Proposition The relation of algebraic equivalence is an equivalence relation
between idempotents in matrix algebras.

Proof. To see that p is equivalent to p, we use x = y = p. If p is equivalent to q
with p = xy and q = yx, then by interchanging x and y, we deduce that q is equiva-
lent to p. For transitivity suppose that p,q, and r are idempotents with p = xy,q =
yx,q = uv, and r = vu satisfying (5.2)(B). Then, (xu)(vy) = xqy = xyxy = pp = p
and (vy)(xu) = vqu = vuvu = rr = r. This proves the proposition.

5.6. Proposition If p∈Mm(R) and q∈Mn(R) are algebraically equivalent idempo-
tents, then P = im(p) and Q = im(q) are isomorphic.

Proof. For this, choose p = xy and q = yx satisfying (5.2)(A) and (5.2)(B). Let u :
Rm → im(p) be the epimorphism on the direct factor with splitting morphism u′ :
im(p)→Rm so that p = u′u, and let v : Rn→ im(q) be the epimorphism on the direct
factor with splitting morphism v′ : im(q)→ Rn so that q = v′v. Then form g = vyu′
and f = uxv′ reversing the definition of x and y from f and g in (5.2).

Clearly, we have

g : im(p)−→ im(q) and f : im(q)−→ im(p),

and g f = vyu′uxv′ = vyxv′ = vqv′ = vv′vv′ = im(q), the identity on im(q). Similarly,
f g = im(p), the identity on im(p). This proves the proposition.

5.7. Definition Two idempotents p, p′ ∈Mn(R) are conjugate provided there exists
w ∈ GL(n,R) = Aut(Rn) with p′ = wpw−1.

5.8. Proposition Two idempotents p, p′ ∈Mn(R) are conjugate if and only if p and
p′ are algebraically equivalent and 1− p and 1− p′ are algebraically equivalent.

Proof. If p′= wpw−1, then choose x = pw−1and y = wp. It follows that xy = pp = p
and yx = wppw−1 = p′ so that p and p′ are algebraically equivalent. Since 1− p′ =
w(1− p)w−1, it follows that 1− p and 1− p′ are algebraically equivalent.

Conversely, suppose that p = xy and p′= yx and also that 1− p = uv and 1− p′=
vu such that (5.2)(B) holds. We calculate

(x + u)(y + v) = p + uy + xv +(1− p)
= p +(1− p)u(1− p′)p′yp + pxp′(1− p′)v(1− p)+ (1− p)
= p + 1− p = 1

Let z = y + v and so z−1 = x + u. Using (5.2)(B)

v = v− vp so vp = 0 and u = u− pu so pu = 0,

we calculate the conjugate idempotent
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zpz−1 = (y + v)p(x + u) = ypx + vpx + ypu + vpu = yxyx = p′p′ = p′

so p and p′ are conjugate idempotents. This proves the proposition.

5.9. Definition Let Idem(R) denote the set of equivalence classes of idempotents in
the various Mn(R) with respect to the algebraic equivalence relation. Then, a ring
morphism w : R′ → R′′ induces a ring morphism Mn(w) : Mn(R′)→Mn(R′′) which
in turn induces a natural function

Idem(w) : Idem(R′)−→ Idem(R′′).

5.10. Remark The process of assigning to an idempotent e ∈Mn(R) its image im(e)
as an object in (vect/R) leads to the following commutative diagram for any ring
morphism w : R′ → R′′

Idem(R′)

im
��

Idem(w) �� Idem(R′′)

im
��

Vect/R′
w∗ �� Vect/R′′

where Vect/R denotes the isomorphism classes of finitely generated projective
R-modules, see 4(3.1). For a continuous map f : X → Y , we can put this commuta-
tive diagram together with the one in (4.5) to obtain the functoriality related to the
three versions of vector bundle theory

Vect/Y

Γ(Y, )
��

f ∗ �� Vect/X

Γ(X , )
��

Vect/C(Y )
C( f )∗ �� Vect/C(X)

Idem(C(Y ))

im

��

Idem(C( f )) �� Idem(C(X))

im

��

where now Vect/X is the set of isomorphism classes of vector bundles over X , see
4(2.1). See also 3(5.6).



Chapter 4
K-Theory of Vector Bundles, of Modules,
and of Idempotents

We wish to consider the isomorphism classes of vector bundles over a space X
or in view of the correspondences in the previous chapter, either the isomorphism
classes of finitely generated modules over C(X) or algebraic equivalence classes of
idempotents in the matrix algebras Mn(C(X)) for all n. In each of the three cases,
the direct sum leads to a natural addition on this sets of classes, and with the tensor
product, there is a second algebraic operation of product. Unfortunately, these sets
of isomorphism classes are not a ring under these operations, but only a semiring.
The unfulfilled ring axiom is that each element must have a negative.

In the first section, we see how these semirings map universally into rings in the
same way as the natural numbers map into the integers N→ Z, and the resulting
class groups or rings are called the K-groups of vector bundles, K-groups of finitely
generated projective modules, or the K-groups of matrix ring idempotents. Using
the results of the previous chapter, we can show that these semirings and the corre-
sponding K-rings are all isomorphic. Finally, we consider some special features of
topological algebras, especially C∗-algebras.

1 Generalities on Adding Negatives

There is a universal mapping of a commutative monoid (or semigroup) into a com-
mutative group and a universal mapping of a commutative semiring in a ring. This
is an elementary exercise in the study of functors with universal properties, and it
is the basic construction needed to go from isomorphism classes to stable classes of
vector bundles, projective modules, and idempotents.

1.1. Notation Let (s\ab) denote the category of abelian semigroups with com-
position written additively and morphisms f : A′ → A′′ satisfying f (0) = 0 and
f (x + y) = f (x)+ f (y) for x,y ∈ A′. Let (ab) denote the full subcategory of (s\ab)
determined by the abelian groups.

D. Husemöller et al.: K-Theory of Vector Bundles, of Modules, and of Idempotents, Lect. Notes Phys. 726, 45–54
(2008)
DOI 10.1007/978-3-540-74956-1 5 © Springer-Verlag Berlin Heidelberg 2008
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Note for the general semigroup, the axiom on the existence of −z for all z is not
necessarily fulfilled, but on the other hand, if −z exists in A′ and f : A′ → A′′, then
f (−z) =− f (z) exists in A′′.

1.2. Notation Let (s\rg) denote the category of semirings with unit or 1 element
and morphisms f : R′ → R′′ of semirings preserving the 1 element, that is, f (1) = 1.
Let (rg) denote the full subcategory of (s\rg) determined by the rings with 1.

1.3. Remark Stripping off the multiplication on a semiring (resp. ring) gives an
abelian semigroup (resp. abelian group). This leads to a commutative diagram of
categories.

(rg)

stripping functor
��

�� (s\rg)

stripping functor
��

(ab) �� (s\ab)

Now, the elementary process of extending to a group or a ring is contained in the
next construction, where [a,x] = a− x intuitively.

1.4. Construction The group localization of an abelian semi-group A is the abelian
group T (A) whose elements [a,x] are equivalence classes of elements (a,x) ∈ A×A
by the relation (a′,x′) is equivalent to (a′′,x′′) provided there exists z ∈ A with

a′+ x′′+ z = a′′+ x′+ z.

The group law is given by [a,x]+ [b,y] = [a + b, x + y], the zero element is [0,0],
and the negative −[a,x] = [x,a]. In the case that A is a semiring, we define a ring
structure on T (A) by the relation

[a,x].[b,y] = [ab + xy, ay + xb]

with 1 element 1 = [1,0]. We have a natural morphism θ : A→ T (A) preserving
the semigroup or semiring structure. If A is a commutative semiring, then T (A) is a
commutative ring.

1.5. Example For the natural numbers N either as a commutative semigroup or as a
semiring, the localization is T (N) = Z, the abelian group of integers or the ring of
integers.

1.6. Proposition The natural morphism θ : A→ T (A) is an isomorphism if and only
if for every z ∈ A the negative−z exits in the semigroup or semiring A.

Proof. The direct implication is immediate, and for the converse, note that for [a,x]=
θ (a− x) with a and x well defined the inverse of θ is well defined by θ−1([a,x]) =
a− x. This proves the proposition.

Now we state the universal property of the morphism θ : A→ T (A).
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1.7. Proposition Let f : A→ G be a morphism of commutative semigroups, where
G is a group. Then, there exists a unique morphism of groups h : T (A)→ G with
hθ = f . Let f : A→ R be a morphism of semirings, where R is a ring. Then, there
exists a unique morphism of rings h : T (A)→ R with hθ = f .

Proof. In both cases h([a,x]) = f (a)− f (x), and it must satisfy this formula showing
the uniqueness.

2 K-Groups of Vector Bundles

2.1. Definition Let Vect/X denote the isomorphism classes [E] of vector bundles E
over X with the semiring structure

[E ′]+ [E ′′] = [E ′ ⊕E ′′] and [E ′].[E ′′] = [E ′ ⊗E ′′].

The zero vector bundle is the zero class, and the trivial line bundle is the unit in the
commutative semiring.

2.2. Remark Let f : X → Y be a map between spaces. The inverse image of vector
bundles defines a semiring morphism

Vect/ f : Vect/Y −→ Vect/X

given by the formula Vect/ f ([E]) = [ f ∗(E)]. For a second map g : Y → Z, we have
the contravariant functor property

Vect/g f = Vect/ f ◦Vect/g : Vect/Z −→ Vect/X .

2.3. Definition The Grothendieck K-functor on the category (top) of spaces and
maps is defined by ring localization

K(X) = T (Vect/X).

2.4. Remark The universal property makes K into a functor K : (top)→ (c\rg)op

into the opposite category of the category of commutative rings. The functorial-
ity of K follows from the functoriality of Vect/ and the induced morphisms on the
K-rings is defined by applying (1.7) to the following commutative diagram for a
map f : X → Y relating a semiring and its continuation as a ring.

Vect/Y

θ
��

f ∗ �� Vect/X

θ
��

K(Y )
K( f ) �� K(X).
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The functoriality of K follows from that of Vect/and the uniqueness in the universal
factorization property.

In order to begin the study of the functor K, we observe that the algebraic mor-
phism given by dimension or rank: K(∗)→ Z is an isomorphism.

2.5. Remark The map X→∗ induces a homomorphism Z = K(∗)→ K(X). The im-
age of 1 ∈ Z, which is represented by the trivial line bundle, yields the unit in K(X).

2.6. Remark For each base point ∗ → X , we have a morphism K(X)→ K(∗) = Z

which composed with the unit homomorphism Z→ K(X) of (2.5) is the identity.
It gives a splitting of K(X) = Z⊕K(X ,∗), where K(X ,∗) is an ideal in the supple-
mented ring called the reduced K-theory of the pointed space (X ,∗).

Now, we consider an elementary property of the K-functor which plays a basic
role later.

2.7. Proposition Let j : A→ X be the injection of a closed subspace in a compact
space X, and let q : X → X/A denote the quotient map. Then, there is the sequence
of abelian groups

K(X/A,∗) K(q) �� K(X)
K( j) �� K(A)

and im(K(q)) is an ideal in K(X) which is the kernel of the ring morphism K( j).

Proof. Since the composition q j : A→ X/A is the constant map with value the point
∗, it follows that K(q j) = K( j)K(q) is zero on K(X/A,∗). If a class c ∈ K(X) is
mapped to zero by K( j) in K(A), then we represent c = [E]− [F ], where F is the
trivial vector bundle. After replacing E by E⊕G with G a trivial vector bundle, we
can assume that j∗(E) is trivial, and we choose t a trivialization of E|A = j∗(E).
Then E = q∗(E/t), and c is in the image of K(q). This proves the proposition.

3 K-Groups of Finitely Generated Projective Modules

3.1. Definition Let Vect/R denote the isomorphism classes [P] of finitely generated
projective modules over R with the semigroup structure

[P′]+ [P′′] = [P′ ⊕P′′].

In the case that R is commutative, we have the additional structure

[P′].[P′′] = [P′ ⊗R P′′]

making Vect/R into a commutative semiring. The zero module is the zero class, and
the R-module R is the unit in the commutative semiring for R commutative.
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3.2. Remark Let f : R→ R′ be a morphism of rings. The tensor product of modules
defines a semigroup morphism, which in the case of commutative rings is a semiring
morphism,

f∗ : Vect/R−→Vect/R′.

It is given by the formula f∗([P]) = [R′ ⊗R P]. For a second ring morphism g :
R′ → R′′, we have the covariant functor property

(g f )∗ = g∗ f∗ : Vect/R−→Vect/R′′.

3.3. Definition The Grothendieck K-functor on the category (rg) of rings is defined
by K(R) = T (Vect/R).

3.4. Remark The universal property makes K into a functor K : (rg)→ (ab) into the
category of abelian groups. When restricted to the category (c\rg) of commutative
rings, it yields a functor K : (c\rg)→ (c\rg). The functoriality of K follows from
the functoriality of Vect/ and the universal property (1.7) of the functor T which for
a ring morphism f : R→ R′ yields a morphism K( f ) : K(R)→ K(R′) which makes
the following diagram commutative

Vect/R

θ
��

f∗ �� Vect/R′

θ
��

K(R)
K( f ) �� K(R′)

Recall from 3(4.2) that in the case of R = C(X) for a compact space X , we
have an equivalence of categories given by the cross section functor Γ : (vect/X)→
(vect/C(X)).

3.5. Theorem For a compact space X and C(X), the ring of complex valued contin-
uous functions on X the equivalence of categories under Γ induces an isomorphism
of semirings, denoted by Γ : Vect/X → Vect/C(X), and further it induces an iso-
morphism of the K-rings, again denoted by Γ : K(X)→ K(C(X)). For a continuous
map f : X → Y, we have the commutative diagram

K(Y )

Γ
��

K( f ) �� K(X)

Γ
��

K(C(Y ))
K(C( f )) �� K(C(X)).

In particular, Γ : K→ K ◦C is an isomorphism of functors.

In general, we denote K( f ) and K(C( f )) by simply f ∗.
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4 K-Groups of Idempotents

4.1. Definition Recall from 3(5.9) the definition of Idem(R), the set of algebraic
equivalence classes [p] of idempotents p = p2 in some Mn(R). We define a semi-
group structure on Idem(R) by

[p′]+ [p′′] = [p′ ⊕ p′′].

In the case that R is commutative we have the additional structure

[p′].[p′′] = [p′ ⊗R p′′]

making Idem(R) into a semiring. The zero idempotent p = 0 is the zero class,
and the identity on the R-module R is the unit in the commutative semiring for R
commutative.

4.2. Remark Let f : R → R′ be a morphism of rings. The induced morphism of
matrices defines a semigroup morphism, which preserves algebraic equivalence

Idem( f ) : Idem(R)−→ Idem(R′)

given by the formula Idem( f )([e]) = [Mn( f )(e)] for e ∈Mn(R). For a second ring
morphism g : R′ → R′′, we have the covariant functor property

Idem(g f ) = Idem(g)Idem( f ) : Idem(R)−→ Idem(R′′).

4.3. Definition The Grothendieck idempotent I-functor on the category (rg), resp.
(c\rg), to the category (ab) of abelian groups, resp. (c\rg) of commutative rings, is
defined by I(R) = T (Idem(R)).

4.4. Remark The universal property makes I into a functor I : (rg)→ (ab) into the
category of abelian groups. The functoriality of I follows from the functoriality of
Idem( ) and the universal property (1.7) of the functor T for which the morphism
of semigroups Idem( f ) : Idem(R)→ Idem(R′) induced by a morphism f : R→ R′
yields a map I( f ) which makes the following diagram commutative

Idem(R)

θ
��

Idem( f ) �� Idem(R′)

θ
��

I(R)
I( f ) �� I(R′).

4.5. Theorem For a commutative ring R, the map im, which we have introduced in
3(5.10), induces an isomorphism of semigroups (semirings) denoted by im: Idem(R)
→ Vect/R, and further it induces an isomorphism of K-groups (K-rings), again de-
noted by im:I(R)→ K(R). For a ring morphism f : R→ R′, we have a commutative
diagram
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I(R)

im
��

I( f ) �� I(R′)

im
��

K(R)
K( f ) �� K(R′).

In particular, im : I→ K is an isomorphism of functors.

Proof. We have only to check the multiplicative property of the morphism im in case
R is commutative. For this, we consider p∈Mm(R) with p2 = p and q∈Mn(R) with
q2 = q and form P = p(Rm) and Q = q(Rn). The tensor product of the two direct
sum decompositions Rm = P⊕P′ and Rn = Q⊕Q′ has the form

Rmn = (P⊗Q)⊕ [(P⊗Q′)⊕ (P′ ⊗Q)⊕ (Q⊗Q′)]
= im(p⊗q)⊕ [(P⊗Q′)⊕ (P′ ⊗Q)⊕ (Q⊗Q′)].

This proves the theorem.

5 K-Theory of Topological Algebras

In Chap. 3, Sect. 4, we related vector bundles over X to finitely generated projective
modules over A = C(X), the algebra of continuous complex valued functions on
X . We get the same results for the algebra of bounded continuous functions which
we also denote by C(X). In the algebraic setting, these modules were related to
idempotents in matrix algebras over the matrix algebras Mn(A) for a general algebra
in Sect. 5 of Chap. 3. In the first four sections of this chapter, the class group or
K-groups of vector bundles, finitely generated projective modules, and idempotents
were introduced.

5.1. Remark For the study of class groups, we see that there is a large interface be-
tween the topology of bundles and the algebra of certain modules. There is another
important connection namely with the area of functional analysis, and it starts in the
following two elementary ways:

(1) The algebra C(X) has a natural ∗-algebra structure. This leads to the possibility
of using only projections, that is, just selfadjoint idempotents. The ∗-structure
is given by defining f ∗ of an element f by f ∗(x) = f (x) for x ∈ X .

(2) The algebra C(X) of bounded continuous functions has a norm ‖ f‖ = supx∈X
| f (x)| making C(X) into a special topological algebra, namely a Banach alge-
bra, that is, a complete normed algebra. At a very early stage in the development
of topological K-theory, Banach algebras played an important role giving alter-
native proofs of Bott periodicity, which is a fundamental subject considered in
Chap. 15.

5.2. Remark At the center of this interface between K-theory coming from topology
and the use of analysis in K-theory is the Atiyah–Singer index theorem. Indices like
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Euler numbers can be interpreted as elements of class groups, and it was natural that
the mature form of the theorem would use K-theory in its formulation and proof. In
the process, the homotopy description of K-theory given in Chap. 15, Sect. 2, in
terms of limits of classifying spaces for fibre bundles, has a version in terms of
Fredholm operators. This homotopy classification due independently to Atiyah and
Jänich has an important extension to twisted K-theory.

In order to carry this theme a little further, we give two definitions related to the
first remark (5.1).

5.3. Definition A ∗-algebra A over the complex numbers C is an algebra A over the
complex numbers together with an additive map ∗ : A→ A, where besides additivity
(x + y)∗ = x∗+ y∗, it satisfies (cx)∗ = cx∗,(xy)∗ = y∗x∗, and (x∗)∗ = x for all x,y ∈
A,c ∈ C. An element x in A is selfadjoint provided x∗ = x. An element p ∈ A is a
projection provided it is a selfadjoint idempotent, that is

p2 = p = p∗.

5.4. Example The complex numbers are a ∗-algebra with ∗-operation complex con-
jugation. The matrix algebra Mn(A) is a ∗-algebra with the ∗-operation given by
transposition applied to the ∗ of the matrix elements, that is, for X = (xi, j), we de-
fine X∗ = Y = (yi, j), where

yi, j = x∗j,i .

For K-theory from an algebraic point of view, it is the role of the matrix algebra and
idempotents that plays the basic role.

5.5. Remark In the context of topological algebra, we have a new phenomenon that
the algebra is so large that there are enough representatives of idempotents or pro-
jections in the algebra itself to determine K-theory. This happens for special cases in
algebraic K-theory where up to direct summands with finitely generated free mod-
ules, every finitely generated projective is a projective submodule of a Dedekind
ring R.

For a class of ∗-algebras called C∗-algebras, we return to this question in (5.15).

5.6. Definition A normed algebra is an algebra A with a function ‖ ‖ : A → R

satisfying the following properties:

(1) ‖x‖ ≥ 0 for all x ∈ A, and ‖x‖= 0 if and only if x = 0.
(2) ‖cx‖= |c| · ‖x‖ for all x ∈ A,c ∈ C.
(3) ‖x + y‖ ≤ ‖x‖+‖y‖ for all x,y ∈ A.
(4) ‖xy‖ ≤ ‖x‖ · ‖y‖ for all x,y ∈ A.

‖ ‖ is a norm satisfying (4).

A norm defines a metric d(x,y) = ‖x− y‖ making an algebra A with a norm
a metric space. A norm is complete provided this metric is complete. A Banach
algebra A is a normed algebra which is complete, and a ∗-Banach algebra A is a
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normed ∗-algebra with complete norm such that the relation ‖x∗‖= ‖x‖ for all x∈ A
is satisfied.

There is a special norm property coming from the norm on B(H), the ∗-algebra
of all bounded operators on a Hilbert space H.

5.7. Definition A norm ‖ ‖ on a ∗-algebra A is a C∗-norm provided ‖xx∗‖ = ‖x‖2

holds for all x ∈ A. A C∗-algebra is a ∗-Banach algebra whose norm is a C∗-norm.

To elements in an algebra A over C, we associate a subset of the complex numbers
called the spectrum.

5.8. Definition For an algebra A with unit 1 over C and x ∈ A, a scalar λ ∈ C is in
the spectrum sp(x) of x provided x−λ ·1 is not invertible in A. The spectral radius
ρ(x) of x ∈ A is

ρ(x) = sup
λ∈sp(x)

|λ |.

Note that the function which assigns to λ ∈C− sp(x) the element (x−λ ·1)−1 ∈ A
maps the exterior of the spectrum into the algebra A.

5.9. Remark If A is a Banach algebra, then sp(x) is a closed subset of the closed disc
around 0 of radius ‖x‖ in C. If x is selfadjoint in a ∗-algebra, then sp(x)⊂ R, and if
x = yy∗ in a ∗-algebra, then sp(x) is contained in the positive real axis. It is always
the case that ρ(x)≤ ‖x‖ in a Banach algebra.

5.10. Basic Properties of C∗-Algebras Observe that the spectral radius of an el-
ement is defined just from the algebraic data of the algebra. A ∗-algebra A is a
C∗-algebra if and only if the spectral radius is a C∗-norm on A. In particular, there is
at most one C∗-norm on a ∗-algebra. For a ∗-algebra to be a C∗-algebra is an axiom,
not a new structure as it looks like in the initial definition. This remark is proved in
the context of the characterization of commutative C∗-algebras, see (5.13).

5.11. Example Every closed ∗-subalgebra of a C∗-algebra is again a C∗-algebra. The
space C(X) of bounded continuous complex valued functions on a space X is a com-
mutative C∗-algebra. The algebra B(H) of bounded linear operators on a Hilbert
space H is also a C∗-algebra.

In fact, these examples are related to the following embedding theorem and struc-
ture theorem for commutative C∗-algebras due to Gel’fand and his coworkers.

5.12. Theorem Every commutative C∗-algebra A with a unit is isomorphic to the
C∗-algebra of continuous complex valued functions on a compact space X. More-
over, the space X can be taken to be the subspace of continuous ∗-algebra mor-
phisms φ : A→ C with the subspace topology of the weak topology on the unit ball
in the Banach space dual to A.

5.13. Remark This bijective relation between isomorphism classes of commutative
C∗-algebras and of compact spaces is a consequence of an anti-equivalence of cate-
gories which has been an important motivation for many developments relating ge-
ometry to algebras. A similar relation exists between commutative rings and affine
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schemes and also between algebras of holomorphic functions and Stein varieties.
One current idea, resulting from this, is that a general C∗-algebra should be regarded
as a “noncommutative space.”

In Chap. 23, we consider the K-theory of general topological algebras in a bi-
variant setting. We finish this section with some K-theory considerations.

5.14. Special Features of the K-Theory of C∗-Algebras For a unital C∗-algebra
A we can describe the K-theory in terms of classes of projections, that is, elements
p ∈ A satisfying p∗ = p = p2. The relation of algebraic equivalence is replaced by
p is similar to q provided there exists an element u ∈ A with p = uu∗ and q = u∗u.

Secondly, if A is a C∗-algebra, then all matrix algebras Mn(A) are C∗-algebras,
and the direct sum with the zero matrix gives an embedding Mn(A)→ Mn+q(A)
preserving all the C∗-structure except any unit. The union

M∞(A) =
⋃
0≤n

Mn(A)

is a normed ∗-algebra whose norm satisfies the C∗-condition. The completion K (A)
of M∞(A) is a C∗-algebra which is naturally isomorphic to the C∗-algebra tensor
product A⊗K , where K = K (C) is the C-algebra of compact operators on a
separable Hilbert space.

Finally, through the work of Cuntz and others, there was a development of K(A)
for a C∗-algebra A including Cuntz’s proof of Bott periodicity in the context of C∗-
algebras. This theory follows in many ways the lines of the topological theory in the
next chapter even though K(A) is the algebraic K-theory of A.

We recommend the following two references. The first, Murphy (1990) carries
out the K-theory of C∗-algebras up to Cuntz’s proof of Bott periodicity in the last
chapter. The second is Blackadar (1998). In Sects. 4.6.2 and 4.6.4 of this book, the
relation between algebraic equivalence and similarity is worked out. This book also
takes the reader to many considerations taken up in Chap. 23.
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Chapter 5
Principal Bundles and Sections of Fibre
Bundles: Reduction of the Structure
and the Gauge Group I

In this chapter, we consider bundles p : E → B where a topological group G acts
on the fibres through an action of G on the total space E . This is just an action
E ×G → E of G on E such that p(xs) = p(x) for all x ∈ E and s ∈ G. In par-
ticular, there is a restriction Eb×G → Eb of the globally defined action to each
fibre Eb, b ∈ B, of the bundle. A principal G-bundle is a bundle p : P→ B with
an additional algebraic and continuity action property implying, for example, that
all fibres are isomorphic to G by any map G → Pb of the form s �→ us for any
u ∈ Pb and all s ∈ G. For a principal G-bundle p : P→ B and a left G-space Y ,
we have the fibre bundle construction q : P[Y ] = P×G Y → B. Vector bundles are
examples of fibre bundles where G = GL(n), the general linear group, and Y is
an n-dimensional vector space. The characterization of sections in Γ(B,P[Y ]) by
certain maps P→ Y plays a fundamental role in applications of principal bundle
theory. We outline two important aspects within principal bundle theory in this
chapter. At first, the reduction of the structure group G of a principal bundle P.
The second aspect is the study of AutG(P), the automorphism group of the principal
G-bundle P.

Chapter 4 of Fibre Bundles (Husemöller 1994) is a reference for this chapter.

1 Bundles Defined by Transformation Groups

1.1. Definition A topological group G is a set G together with a group structure and
topology on G such that the function (s, t) �→ st−1 is a continuous map G×G→G.
A morphism f : G′ → G′′ of topological groups is a function which is both a group
morphism and a continuous map.

This continuity condition on (s, t) �→ st−1 is equivalent to G×G→ G, (s, t) �→ s t
and G→ G, s �→ s−1 being continuous maps.

D. Husemöller et al.: Principal Bundles and Sections of Fibre Bundles: Reduction of the Structure and the Gauge
Group I, Lect. Notes Phys. 726, 55–62 (2008)
DOI 10.1007/978-3-540-74956-1 6 © Springer-Verlag Berlin Heidelberg 2008
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1.2. Example The vector spaces R
n and C

n with the addition of vectors as well as
the matrix groups GL(n,R) and GL(n,C) with the usual composition are topological
groups. A subgroup H of a topological group G with the subspace topology is again
a topological group. The determinant det : GL(n)→ GL(1) is an example of a mor-
phism of topological groups, and its kernel SL(n) with the subspace topology is a
closed subgroup.

1.3. Definition Let G be a topological group. A right G-space X is a space X to-
gether with a map X ×G→ X denoted by (x,s) �→ xs satisfying the algebraic ax-
ioms:

(1) x(st) = (xs)t for x ∈ X and s,t ∈ G.
(2) x1 = x for x ∈ X and 1 the identity of the group.

A morphism f : X → Y of right G-spaces is a map f : X → Y of spaces satisfying
f (xs) = f (x)s for x ∈ X and s ∈ G. Such morphisms are also called G-equivariant
maps or G-maps. The category of right G-spaces we denote (G\top).

A left G-space X is one with a map G×X → X having the algebraic properties
(st)x = s(tx) as in (1) and 1x = x. A left G-space has a natural right G-space structure
given by xs = s−1x, and a right G-space has a natural left G-space structure given
by sx = xs−1. Of course, these two concepts are equivalent under this involutionary
correspondence G→ G, s �→ s−1.

1.4. Example The group GL(n,F) acts on the vectors Fn by matrix multiplication
leaving 0 fixed, and hence, it also acts on Fn−{0}. We will return to other actions
later. The two-element group {±1} acts on each sphere Sn, and the circle T = {eiθ}
acts on all odd dimensional spheres S2n−1 ⊂ C

n via complex multiplication.

1.5. Definition Let X be a right (left) G-space. A point x ∈ X is called a fixed point
if xs = x (or sx = x resp.) for all s ∈ G. We denote the subspace of fixed points by
either XG or Fix(X)

For example, Fix(Fn) = {0} is an example for the matrix groups GL(n,F) action
on Fn.

1.6. Definition For a G-space, the orbit of x ∈ X , denoted by xG, is equal to the
set of all xs for a right action and Gx equal the set of all sx for a left action. Let
X/G denote the set of orbits for a right action with projection q : X → X/G given
by q(x) = xG, and let G\X denote the set of orbits for a left action with projection
q : X → G\X . The orbit space has the quotient topology under the projections.

1.7. Remark For a G-space X , the map x �→ xs is an isomorphism, with inverse x �→
x(s−1). Also the projection π : X→X/G is an open map since π(W ) is open in X/G
for each open set W of X from the formula π−1π(W) =

⋃
s∈G Ws.

1.8. Definition A G-bundle p : E → B is a bundle with a right G-space structure
E ×G → E on E such that p(xs) = p(x) for all x ∈ E and s ∈ G. A morphism
(u, f ) : E ′ → E ′′ of G-bundles p′ : E ′ → B′ and p′′ : E ′′ → B′′ is a morphism of
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bundles, so p′′u = f p′, and u is a G-map, so u(xs) = u(x)s for all s ∈ G and x ∈ E ′.
The category of G-bundles is denoted by (G−bun). Note that in later chapters we
consider more general bundles and call them still G-bundles. These are bundles
where G acts on the base B as well and p is equivariant, see 13(2.1).

1.9. Remark There is the functor (G\top)→ (G−bun) which assigns to a right G-
space X the G-bundle q : X→X/G = B. Most G-bundles that we will consider come
by this functor from G-spaces.

2 Definition and Examples of Principal Bundles

2.1. Definition A free G-space X is a right G-space X such that the subspace X∗ of
X×X consisting of all (x,xs) ∈ X×X has a unique continuous function τ : X∗ →G
with the property that x′τ(x′,x′′) = x′′.

If x′s = x′′, then τ(x′,x′′) = s, and in particular xs′ = xs′′ implies that s′ = s′′ in G.

2.2. Definition A principal bundle is a G-bundle p : P→B in the sense of (1.8) such
that P is a free G-space and the natural morphism P/G→ B is an isomorphism. A
principal bundle morphism (u, f ) : P′ → P′′ is a morphism of G-bundles which are
principal bundles p′ : P′ → B′ and p′′ : P′′ → B′′.

2.3. Example A basic example comes from a closed subgroup G⊂ H and p : H →
H/G the quotient map is an example of a principal G-bundle. If p′ : P′ → B′ is a
principal G′-bundle and if p′′ : P′′ → B′′ is a principal G′′-bundle, then the prod-
uct bundle p′ × p′′ : P′ ×P′′ → B′ ×B′′ is a principal G′ ×G′′-bundle. In the case
where B = B′ = B′′, the fibre product q : P′ ×B P′′ → B is a principal G′ ×G′′-
bundle.

2.4. Theorem Every morphism of principal bundles over B is an isomorphism.

2.5. Remark It is easy to see that a morphism u : P′ → P′′ is a bijection on each fibre,
and hence, it has an inverse function. In Fibre Bundles (Husemöller 1994), 4(3.2)
on p. 43, it is proved to be continuous using the translation maps τ of P′ and P′′
(Husemöller 1994, p. 43).

2.6. Example Let p : P → B be a principal G-bundle, and let f : B′ → B be a
continuous map. The induced bundle f−1P → B′ has a G-bundle structure with
(b′,x)s = (b′,xs), and it is a principal bundle with τ((b′,x1),(b′,x2)) = τ(x1,x2)
for P. The morphism (w, f ) : f−1P→ P is a morphism of principal bundles.

2.7. Proposition If p : P→ B is a principal G-bundle and if f : B′ → B is a con-
tinuous map, then f−1P→ B′ is a principal bundle. If (u, f ) : P′ → P is a mor-
phism of principal G-bundles, then u factors as a principal G-bundle isomorphism
v : P′ → f−1P and the canonical f -morphism w : f−1P→ P.

Again, observe that v(x′) = (p′(x′),u(x′)) is a formula for the desired factoriza-
tion as in the case of vector bundles.
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3 Fibre Bundles

3.1. Definition Let P be a principal G-bundle P over B and let Y be a left G-
space Y . Form the quotient P×Y → P[Y ] = P×G Y , where the right action of G
on P×Y is given by (x,y)s = (xs,s−1y). The associated fibre bundle to P with
fibre Y is the space P[Y ] together with the projection pY : P[Y ] → B given by
pY ((x,y)G) = p(x).

In the literature, the notation P×G Y is also used to denote P[Y ], but this no-
tation conflicts with the usual notation of fibre product, so that we will not use
it here.

3.2. Remark There is a map Y → p−1
Y (b) for each choice of x with p(x) = b given

by y �→ (x,y)G. Since τ is continuous, it follows that this map is an isomorphism.

3.3. Example Each n-dimensional vector bundle E over B is isomorphic to a fibre
bundle Vn(E)[Fn] for the group GL(n,F). The principal GL(n,F)-bundle Vn(E) is

called the frame bundle associated with E , and it is the subbundle of E×B
(n). . . ×BE

whose fibre over a point b consists of n-tuples of vectors (v1, . . . ,vn) in Eb which are
linearly independent.

3.4. Example Each n by n matrix algebra bundle A over B is isomorphic to a fibre
bundle Wn(A)[Mn(F)] for the group PGL(n,F) = GL(n,F)/GL(1,F). The principal
PGL(n,F)-bundle Wn(A)[Mn(F)] is called the matrix frame bundle associated with
A, and it is the subbundle of Homalg(Mn(F),A) of algebra morphisms Mn(K) into

the fibres of A and is a subspace of n2 fibre product of A with itself over B.
The description of cross sections of a fibre bundle is very basic because the result

is in terms of equivariant maps from the principal bundle space to the fibre of the
fibre bundle.

3.5. Theorem Let p : P→ B be a principal G-bundle, and let Y be a left G-space.
The set of cross sections Γ(B,P[Y ]) of the fibre bundle P[Y ]→ B are in bijective
correspondence with maps φ : P→ Y satisfying φ(xs) = s−1φ(x).

3.6. Remark Let φ : P→ Y be a map satisfying φ(xs) = s−1φ(x), and form the map
σφ (xG) = (x,φ(x))G which is a well-defined continuous section.

If σ is a section of P[Y ], then it has the form σ(xG) = (x,φσ (x))G = (xs,s−1φσ
(x))G which implies that φσ satisfies the relation φσ (xs) = s−1φσ (x). To deduce the
continuity of φσ from the continuity of σ , we use the continuity of the translation
function, see Fibre Bundles (Husemöller 1994), 4(8.1) on page 48, or leave it as an
exercise for the reader.

4 Local Coordinates for Fibre Bundles

4.1. Trivial Bundles For the product G-principal bundle B×G and for any product
fibre bundle B×Y over B, the automorphisms are each given by maps g : B→ G
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and have the form αg(b,s) = (b,g(b)s) or αg(b,y) = (b,g(b)y), where Y is a left G-
space.

4.2. Remark We consider open coverings Ui of a space B indexed by i ∈ I, and we
form the coproduct or disjoint union space U = �i∈IUi. The open cover arises from
a fibre bundle p : E → B such that E|Ui is trivial for each i ∈ I. For the natural pro-
jection q : U → B, we see that each E|Ui is trivial if and only if q∗(E) is trivial on
U . The projection q : U → B is an example of an étale map, and we can make the
following definition independent of indexed coverings.

4.3. Definition A bundle p : E → B whether a vector bundle, a principal G-bundle,
or a fibre bundle E = P[Y ], where P is a principal G-bundle, is locally trivial pro-
vided there exists an étale map q : U → B with q∗(E) trivial, that is, q∗(E) is iso-
morphic to pr : U×Y →U .

When we start with a trivial bundle over U , we can ask what extra data do we
need to recover the bundle E on B. In the case of B =

⋃
i∈I Ui, we consider the

two trivializations E|Ui → Ui× F and E|Uj → Uj ×F and compare them on the
intersection Ui∩Uj with a map gi, j : Ui∩Uj→G as in (4.1). There is a compatibility
relation on the triple intersection Ui∩Uj ∩Uk called a cocycle condition or descent
condition of the form

gi,k(b)gk, j(b) = gi, j(b) for b ∈Ui∩Uj ∩Uk. (4.1)

4.4. Remark For a double indexed family gi, j : Ui∩Uj → G of maps satisfying the
cocycle condition (∗), there exists a principal bundle over B =

⋃
i∈I Ui, denoted by

p : P→ B, with P|Ui isomorphic to the product bundle Ui×G→Ui such that the
change of coordinates are given by the maps gi, j.

We can give a version of this construction without reference to the indexing of
the covering, only starting with the map q : U = �i∈IUi→ B.

4.5. Definition Let q : U → B be an étale map. Let Z0 = U , let Z1 = U×B U , and let
Z2 = U×B U×B U , and this defines our related two-stage pseudosimplicial space Z
with di, the projection deleting the ith coordinate in the fibre product

Z2
d0,d1,d2 �� Z1

d0,d1 �� Z0 and with did j = d j−1di for i < j.

Descent data for principal G-bundles of Z is the following:

(a) a principal G-bundle Q on Z0,
(b) an isomorphism α : d∗1(Q)→ d∗0(Q) of principal G-bundles over Z1, and
(c) a compatibility of three induced versions of α on Z2 which is just the commu-

tativity of the following diagram,
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that is, we have the following formula

d∗0(α)d∗2(α) = d∗1(α).

4.6. Theorem For an étale map q : U → B, principal G-bundles P on B up to iso-
morphism are in bijective correspondence with principal G-bundles Q together with
descent data on Z under the map which assigns to P on B the bundle Q = q∗(P) on
Z0 = U.

4.7. Remark If U = �i∈IUi = Z0, then we have

Z1 = �(i, j)∈I2(Ui∩Uj) and Z2 = �(i, j,k)∈I3(Ui∩Uj ∩Uk)

with d j, the inclusion of an intersection into the intersection with the index j deleted.
The isomorphism α is the collection of isomorphisms given by gi, j : Ui ∩Uj → G
and the descent commutative diagram is the cocycle condition (1) in (4.3) when
Q = U ×G is the product bundle. For general Q→U , this descent formulation is a
gluing statement.

5 Extension and Restriction of Structure Group

5.1. Definition Let G′ ⊂ G′′ be a closed subgroup G′ in a topological G′′. Let P′
be a G′-principal bundle over B, and P′′ be a G′′-principal bundle with an inclusion
j : P′ → P′′ map. Then P′′ is an extension of P′, and P′ is a restriction of P′′ provided
j(xs) = j(x)s for all x ∈ P′,s ∈ G′.
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It is always possible to extend the structure group.

5.2. Proposition Let P′ be a G′-principal bundle, where G′ is a closed subgroup
of G′′. Then, the fibre bundle P′[G′′] has a principal G′′-bundle structure, and the
natural morphism given by P′ = P′[G′]→ P′[G′′] = P′′ is an extension of P′.

The restriction of the structure group is not always possible, and it depends on
the existence of a cross section for a related fibre bundle.

5.3. Proposition Let P′′ be a G′′-principal bundle, where G′ is a closed subgroup
of G′′. Then, there exists a restriction of P′′ to a G′-principal bundle P′ ⊂ P′′ if and
only if P′′[G′′/G′] has a cross section.

Proof . If P′ → P′′ exists, then P′[G′/G′] = B → P′′[G′′/G′] is the desired sec-
tion, and if σ : B → P′′[G′′/G′] is a cross section, then it corresponds to a map
φ : P′′ →G′′/G′ with φ(xs) = s−1φ(x). The subbundle P′ has total space φ−1(eG′)⊂
P′′.

5.4. Remark Using the notation of (5.1), we consider local coordinates gi, j : Ui ∩
Uj → G′ of P′, and these can be taken to be the local coordinates with values in
G′′ ⊃ G′. Starting with local coordinates gi, j : Ui ∩Uj → G′′ of P′′, we can restrict
the bundle to G′ if and only if there exists hi : Ui → G′′ with higi, jh

−1
j : Ui ∩Uj →

G′ ⊂ G′′.

These concepts extend from a general inclusion G′ ⊂ G′′ to the case of a general
continuous homomorphism w : G′ → G′′.

5.5. Definition Let w : G′ → G′′ be a morphism of topological groups, and let B be
a base space.

(a) The extension of a principal G′-bundle P′ over B is P′′ = P′[G′′] = P′ ×G′ G′′
with the G′′-principal bundle structure given by

[x′,s′′]t ′′ = [x′,s′′t ′′],

where [x′t ′,s′′] = [x′,w(t ′)s′′] for x′ ∈ P′, t ′ ∈ G′, and s′′,t ′′ ∈G′′.
(b) A restriction of a principal G′′-bundle P′′ over B is a principal G′-bundle P′ over

B such that the extension of P′ to a principal G′′-bundle P′[G′′] is isomorphic to
P′′ as a principal G′′-bundle.

(c) A G′-structure on a principal G′′-bundle P′′ over B is an equivalence class of
pairs (P′,v), where P′ is a G′-principal bundle restriction of P′′, and v : P′[G′′]→
P′′ is an isomorphism of principal G′′-bundles. Two pairs (P′1,v1) and (P′2,v2)
defining a G′-structure on P′′ are equivalent provided there exists an isomor-
phism u : P′1→ P′2 of principal G′-bundles with v2 ◦u[G′′] = v1.

5.6. Terminology When G′ = SO(n) in (5.5), a G′-structure is called an orientation,
and when G′ = Spin(n) (cf. 12 (1.5) and 12 (3)), it is called a spin structure.
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6 Automorphisms of Principal Bundles and Gauge Groups

6.1. Definition Let p : P→ B be a principal G-bundle. The gauge group AutB(P) of
P is the space of all gauge transformations of P, that is, all maps u∈Map(P,P) with

pu = p and u(xs) = u(x)s for all s ∈ G, x ∈ P.

In particular, we see that a gauge transformation is just an automorphism of the
principal bundle since u−1 : P→ P is defined and continuous. There are two other
ways of looking at gauge transformations.

6.2. Proposition For a principal bundle P, there is a bijective correspondence be-
tween the following three sets:

(1) gauge transformations u : P→ P,
(2) continuous maps φ : P→ G with φ(xs) = s−1φ(x)s for x ∈ P,s ∈ G, and
(3) cross sections of the fibre bundle P[Ad(G)].

Proof . The bijection between the sets defined by the condition (2) and condition
(3) is just the description of the set of cross sections of a fibre bundle (5.1). If φ is
given by (2), then we define uφ (x) = xφ(x), and we calculate uφ (xs) = xss−1φ(x)s =
uφ (x)s. Conversely, if u : P→ P is a gauge transformation, then u(x) = xφu(x), and
the automorphism property u(xs) = u(x)s implies that u(xs) = xsφu(xs) = xφu(x)s,
and hence it follows that φu satisfies φu(xs) = s−1φu(x)s. This sets up the correspon-
dence and proves the proposition.

6.3. Summary Relations In (a) we summarize the bijection between (1) and (2),
and in (b) we summarize the bijection between (2) and (3):

(a) From φ : P→G we form uφ (x) = xφ(x), and from u : P→ P we form φu : P→G
by u(x) = xφu(x).

(b) From φ : P → G we form σφ (xG) = (x,φ(x)) mod G, and from σ : B →
P[Ad(G)] we have σ(xG) = (x,φσ (x)) mod G.
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Chapter 6
Homotopy Classes of Maps
and the Homotopy Groups

In this chapter, we prepare the basic definitions on the homotopy relation between
maps. These ideas apply everywhere in geometry, and it is usually the case that
invariants of maps which are interesting are those which are the same for two ho-
motopic maps.

A homotopy from X to Y is a map h : X× [0,1]→Y , and in terms of the variables
x ∈ X and t ∈ [0,1], it can be written either as h(x, t), as h(x)(t), or as ht(x). This
gives three interpretations of homotopy which are discussed in the first sections.
For example, ht(x) suggests a deformation from h0 : X → Y to h1 : X → Y which is
another name for a homotopy from h0 to h1. The form h(x)(t) suggests that for each
x ∈ X the function t �→ h(x)(t) is a path in the space Y and a homotopy from this
perspective is just a map from X to the space of paths on Y . The homotopy groups
πn(X ,x0) of a space X with base point x0 are defined either as certain (equivalence
classes of) maps of the n-sphere Sn or of the n-cube In into the space X . We show that
they are in general commutative groups except for the fundamental group π1(X).

The cylinder space X × [0,1] over X plays clearly a basic role in the study of
homotopy properties. For bundles, we will consider those classes of vector bun-
dles, principal bundles, and fibre bundles which have the property that a bundle
p : E → B× [0,1] is isomorphic to (E|(B×{0}))× [0,1]. This is the homotopy
invariance property of bundles. This implies that two homotopic maps induce iso-
morphic bundles.

1 The Space Map(X,,,Y)

As a set, Map(X ,Y ) is the set of all continuous functions f : X → Y . For L⊂ X and
M ⊂ Y , we use the notation 〈L,M〉 for the subset of all f ∈ Map(X ,Y ) such that
f (L) ⊂M. A space or set is compact provided it satisfies the Heine–Borel covering
property and the Hausdorff separation condition.

D. Husemöller et al.: Homotopy Classes of Maps and the Homotopy Groups, Lect. Notes Phys. 726, 65–74 (2008)
DOI 10.1007/978-3-540-74956-1 7 © Springer-Verlag Berlin Heidelberg 2008
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1.1. Definition The compact open topology on Map(X ,Y ) is the topology generated
by all sets 〈K,V 〉, where K is a compact subset of X and V is an open subset of Y .

Recall this means that T ⊂ Map(X ,Y ) is open in the compact open topology
if and only if for all f ∈ T there exists compact subsets Ki ⊂ X and open subsets
Vi⊂Y for i = 1, . . . ,m such that f ∈ 〈K1,V1〉∩ . . .∩〈Km,Vm〉 ⊂ T . The compact open
topology works best for separated (Hausdorff) spaces, and we will assume that our
spaces are separated. It is needed in the following remark.

1.2. Remark If Φ is a family of open sets generating the topology of Y , then the
set of all 〈K,W 〉, where K is compact in X and W ∈ Φ generates the topology of
Map(X ,Y ).

1.3. Functoriality Let u : X ′ →X and v :Y→Y ′ be two continuous maps. Then, u∗ :
Map(X ,Y )→Map(X ′,Y ) defined by u∗( f ) = f u and v∗ : Map(X ,Y )→Map(X ,Y ′)
defined by v∗( f ) = v f are continuous. In addition, let u′ : X ′′ → X ′ and v′ : Y → Y ′′
be two continuous maps. Then, we have the following relations for f ∈Map(X ,Y )
: u∗(v∗( f )) = v f u = v∗(u∗( f )),(uu′)∗ = (u′)∗u∗, and (v′v)∗ = v′∗v∗.

2 Continuity of Substitution and Map(X×××T,Y)

2.1. Definition For three spaces X ,T , and Y we define a map

c : Map(X×T,Y)−→Map(X ,Map(T,Y ))

by the requirement that c( f )(x)(t) = f (x,t) for f ∈Map(X×T,Y ). This is a well-
defined continuous map by (1.2), and it is also clearly injective. Moreover, it restricts
to a topological isomorphism c : Map(X ×T,Y)→ im(c) ⊂ Map(X ,Map(T,Y )),
where the image of c, denoted by im(c), has the subspace topology.

2.2. Definition For two spaces T and Y , the evaluation function

e : Map(T,Y )×T → Y

is given by the formula e( f ,t) = f (t).

2.3. Proposition Let T be an arbitrary space. The evaluation function e : Map(T,Y )
× T → Y is continuous for every Y if and only if the map c : Map(X×T,Y)→
Map(X ,Map(T,Y )) is surjective for all spaces X.

Proof. If e for T is continuous, then for g ∈Map(X ,Map(T,Y )) we have g = c( f ),
where f (x,t) = e(g(x),t). Conversely if c is surjective, then e = c−1(idMap(T,Y )) is
continuous for the case X = Map(T,Y ). This proves the proposition.

2.4. Example If T is a locally compact space, then the evaluation function e :
Map(T,Y )× T → Y is continuous for all spaces Y , and hence by (2.3), the map
c : Map(X×T,Y )→Map(X ,Map(T,Y )) is an isomorphism of spaces (also called
a homeomorphism).
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3 Free and Based Homotopy Classes of Maps

For many considerations, especially those related to algebraic structures, it is im-
portant to consider spaces X together with a given point in X .

3.1. Definition A pointed space X is a pair consisting of a space X together with a
point x0 ∈ X , called the base point. Let X and Y be two pointed spaces. A pointed
map f : X → Y is a map f of the underlying spaces such that f (x0) = y0.

Another name for a pointed map is a base-point-preserving map. In many cases
we use the symbol ∗ for the base point, and then base-point-preserving is the relation
f (∗) = ∗. Clearly, the composition of two pointed maps is again a pointed map.

3.2. Definition As before, (top) denotes the category of spaces and continuous func-
tions. The category of pointed spaces and pointed maps is denoted by (top)∗. The
natural stripping (or forgetful) functor (top)∗ → (top) assigns to a pointed space its
underlying space and to a pointed map the same map.

There are two notions of homotopy corresponding to the two categories: (top),
where (free) homotopies are defined, and (top)∗, where pointed homotopies or base-
point-preserving homotopies are defined.

3.3. Definition Two maps f ′, f ′′ : X → Y in (top) are homotopic provided there ex-
ists a map h : X × [0,1]→ Y with h(x,0) = f ′(x) and h(x,1) = f ′′(x). Two maps
f ′, f ′′ : X→Y in (top)∗ are homotopic provided there exists a map h : X× [0,1]→Y
with h(∗,t) = ∗, h(x,0) = f ′(x) and h(x,1) = f ′′(x).

3.4. Example If f ′, f ′′ : X → R
m are two maps, then

ht(x) = (1− t) f ′(x)+ t f ′′(x)

is a homotopy between f ′ and f ′′. If f ′ and f ′′ preserve a base point, then ht(∗) = ∗.
If in the previous definition we denote h(x,t) by ft(x), then ft(x) is either a one-

parameter family of maps ft : X → Y which preserve base point in the case (top)∗
or it is map

X −→Map([0,1],Y )

equal to f ′ at t = 0 and f ′′ at t = 1. In other words, f0 = f ′ and f1 = f ′′.

3.5. Remark The homotopy relation is an equivalence relation, that is,

(1) it is reflexive meaning that f : X → Y is homotopic to itself by the homotopy
h(x,t) = f (x) for all x ∈ X ,t ∈ [0,1],

(2) it is symmetric meaning that if f is homotopic to f ′ say with a homotopy h(x,t),
then f ′ is homotopic to f with, for example, h′(x,t) = h(x,1− t), and

(3) it is transitive meaning that if f is homotopic to f ′ and f ′ is homotopic to f ′′,
then f is homotopic to f ′′. If h(x,t) is a homotopy from f to f ′ and if h′(x,t) is
a homotopy from f ′ to f ′′, then we define a homotopy h′′(x,t) by the relation
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h′′(x,t) =
{

h(x,2t) for t ∈ [1, 1
2 ]

h′(x,2t−1) for t ∈ [ 1
2 ,1]

The above formula for h′′ in terms of h and h′ comes up often in many construc-
tions, but there is a small point to check, namely continuity of h′′. This follows from
the following general continuity result which is also used in bundle theory for many
purposes.

3.6. Proposition Let X be a space with a covering Φ of subsets, and let f : X→Y be
a function with values in the space Y . Assume that all the restrictions f |M : M→ Y
for M ∈Φ are continuous.

(1) If all M ∈Φ are open sets, then f is continuous or
(2) If all M ∈Φ are closed sets and Φ is a finite set, then f is continuous.

Proof. If W is a subset of Y , then f−1(W ) =
⋃

M∈Φ( f |M)−1(W ), and for (1) take W ,
any open set, then f−1(W ) is an open set and for (2) take W , any closed set, then
f−1(W ) is a closed set. Thus, f is continuous in both cases.

4 Homotopy Categories

Category theory is useful as an organization of some of the basic composition prop-
erties of homotopic maps. For this, we use the following proposition.

4.1. Proposition Let f ′, f ′′ : X → Y and g′,g′′ : Y → Z be two pairs of maps (resp.
pointed maps) which are homotopic (resp. pointed homotopic). Then, g′ f ′,g′′ f ′′ :
X → Z are homotopic (resp. pointed homotopic).

Proof. Let h : X × [0,1]→ Y be a homotopy (resp. pointed homotopy) from f ′ to
f ′′, and let k : Y × [0,1]→ Z be a homotopy (resp. pointed homotopy) from g′ to g′′.
Then, the function q : X × [0,1]→ Z given by the formula q(x, t) = k(h(x, t), t) is
continuous, and q is a homotopy (resp. pointed homotopy) from g′ f ′ to g′′ f ′′. This
proves the proposition.

This proposition means that we can form homotopy quotient categories of the
category (top) of spaces and (top)∗ of pointed spaces.

4.2. Definition The quotient categories and related quotient functors, (top)→ (htp)
and (top)∗ → (htp)∗, are defined such that the quotient functors are the identity on
the objects, and a map (resp. pointed map) f is carried to its homotopy class (resp.
pointed homotopy class) [ f ]. The set of [ f ] where f : X → Y is denoted by [X ,Y ].

The standard category language has a special terminology when dealing with
homotopy categories.

4.3. Definition A map or pointed map f : X → Y is a homotopy equivalence or
pointed homotopy equivalence provided [ f ] is an isomorphism in (htp) or (htp)∗,
respectively. Two spaces or pointed spaces are homotopically equivalent provided
they are isomorphic in (htp) or (htp)∗, respectively.
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In terms of the quotient homotopy categories, we can speak of homotopy invari-
ant functors. This is a property of a functor which is common in geometry.

4.4. Definition A functor F : (top)→ C or F : (top)∗ → C is homotopy invariant
provided F( f ′) = F( f ′′) for any pair of homotopic morphisms f ′ and f ′′. This is
equivalent to F factoring by the quotient functor (top)→ (htp) as a functor F :
(htp)→ C or in the base-point-preserving case by the quotient functor (top)∗ →
(htp)∗ as a functor F : (htp)∗ → C .

Now, we return briefly to Chap. 1, Sect. 4, and general category theory.

4.5. Definition The opposite category C op of a category C has the same objects as
C , and the morphisms X→Y in C op are the morphisms f ∈HomC (Y,X) which are
denoted by f op : X → Y in C op. With this, notation composition of f op : X →Y and
gop : Y → Z is given by the contravariant law gop f op = ( f g)op for f g : Z→ X in C .

4.6. Examples of Functors For each category C and object T , we have two
functors Hom(T, ) : C → (set) and Hom( ,T ) : C op → (set). For v : Y ′ → Y ′′,
the set Hom(T,)(Y ′) = Hom(T,Y ′), the set of morphisms in C , and Hom(T,v) :
Hom(T,Y ′) → Hom(T,Y ′′) are left composition by v. For u : X ′′ → X ′ the set
Hom(,T )(X ′) = Hom(X ′,T ) and Hom(u,T ) : Hom(X ′,T )→Hom(X ′′,T ) are right
composition by u. Viewing the object T in C op just changes the roles of these two
functors.

4.7. Remark The functor [ ,T ] arises in bundle theory and in cohomology, where
T is a classifying space. It is a functor (top)op → (set), or since it is homotopy
invariant by definition (htp)op → (set), it is an example of (4.6). For n > 0, the
homotopy group functor [Sn, ] : (htp)∗ → (gr) starts as [Sn, ] : (top)∗ → (set), where
it is homotopy invariant and has a natural group structure from the geometry of Sn.
This is considered in the next section.

5 Homotopy Groups of a Pointed Space

For n > 0, the homotopy groups πn(X ,x0) of a pointed space X = (X ,x0) have a very
direction definition as the group of homotopy classes of base-point-preserving maps
from Sn to X . For the multiplication or group structure, we use a little geometry, that
is, the sphere Sn, which is the space of points t = (t0, . . . ,tn) ∈ R

n+1 with ||t|| = 1,
is mapped onto the join of two spheres S′ ∨S′′.

5.1. One-Point Join of Spheres Let S′ and S′′ denote the following two spheres in
R

n+1.

(1) S′ has only points tn ≥ 0 with equation

||t− (0, . . . ,0,1/2)||= 1/2,

and
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(2) S′′ has only points tn ≤ 0 with equation

||t− (0, . . . ,0,−1/2)||= 1/2.

Observe that the two spheres S′ and S′′ have just the origin 0 = (0, . . . ,0) ∈ R
n+1

in common, and the union of the two spheres, denoted by S′ ∨S′′, is called the one
point union or one point join of the two spheres. Of course, all three spheres Sn, S′,
and S′′ are isomorphic.

��

��

��

��Sn S′ ∨S′′ = Sn

Sn−1ψ−−−−−−−−−−−−−−−→

5.2. Remark There is a natural map ψ : Sn→ S′ ∨S′′ which preserves the last coor-
dinate tn for n > 0. This means that Sn−1, equal to all points on Sn with tn = 0, is
mapped to 0 = (0, . . . ,0) by ψ , and further ψ has the additional property that the
restriction ψ |(Sn−Sn−1) is a homeomorphism Sn−Sn−1→ S′ ∨S′′ − {0}.

If X/A denotes the space X with the closed subspace A⊂ X pinched or collapsed
to a point, then ψ induces an isomorphism Sn/Sn−1→ S′ ∨S′′.

5.3. Definition Let n > 0 and denote πn(X) = [Sn,X ] for pointed X . Let a,b∈ πn(X)
be represented by a = [α] and b = [β ], where α,β : Sn → X are base-point-
preserving maps. We define the operation a ∗ b = [γ], where γ = (α ⊥ β )ψ , and
where α ⊥ β : S′ ∨S′′ → X is α on the first sphere S′ and β on the bottom sphere S′′.

This simple geometric construction has many algebraic properties due to the flex-
ibility resulting from deforming maps Sn→ X by homotopies.

5.4. Assertion The map ∗ : πn(X)×πn(X)→ πn(X) is a group composition law on
the set πn(X) with neutral element e = [0], where 0 : Sn→ X is the map carrying the
sphere to the base point of X . If a = [α], then the inverse a′ of a is given by a′= [α ′],
where α ′(t0, . . . ,tn) = α(t0, . . . ,tn−1,−tn). If f : X → Y is a base-point-preserving
map, then πn( f )([α]) = [ f α] is a well-defined map πn( f ) : πn(X)→ πn(Y ) which
is a group morphism, and further, if f ′, f ′′ : X→Y are base-point-preserving homo-
topic maps, then πn( f ′) = πn( f ′′) : πn(X)→ πn(Y ) is equal as group morphisms.

The associative law is a construction of an interesting homotopy. If we
parametrize Sn = In/∂ In as the unit cube In of (s1, . . . ,sn) with 0 ≤ si ≤ 1 with
the boundary points ∂ In collapsed to a point, then the group law can be described
by the following formulas. We have [u]∗ [v] = [w], where w : In→ X is defined by

w(s1, . . . ,sn) =
{

u(s1, . . . ,sn−1,2sn) for sn ≤ 1/2
v(s1, . . . ,sn−1,2sn−1) for sn ≥ 1/2

Recall that ∂ In consists of all (si) with some si equal to either 0 or 1. Now, the group
axioms are easily checked.
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5.5. Remark We can summarize the properties of πn for n > 0 as follows, namely
that πn : (htp)∗ → (gr) is a functor with values in the category of groups (gr). In
the special case n = 0, we have π0 : (htp)∗ → (set)∗ as just a functor with values in
the category of pointed sets. The group π1(X) is also called the fundamental group
or Poincaré group while in general πn(X) is called the nth homotopy group of the
pointed space X .

5.6. Example The group πn(Sn) = Z, where the isomorphism is given by the degree
of the map deg : πn(Sn)→ Z. For n = 1 and S1 ⊂ C, the unit circle in the complex
plane

deg[α] =
1

2π i

∫

α

dz
z

is the winding number. For the wedge of two circles, the group π1(S1∨S1) = Z∗Z,
the free group on two generators.

This brings up the question of commutativity of the homotopy groups, and for
this we go back to the second definition of the homotopy groups introduced in the
context of the associative law.

5.7. Second definition of πππn(X) In (5.4), we parametrized the n-sphere Sn as In/∂ In

as the unit cube In of (s1, . . . ,sn) with 0 ≤ si ≤ 1 with the boundary points ∂ In

collapsed to a point. For the ith variable, we have a group law ∗(i) described by the
following formulas. We have [u] ∗(i) [v] = [wi], where wi : In → X is given by the
formulas

u ∗(i) v(s1, . . . ,sn) = wi(s1, . . . ,sn) =
{

u(s1, . . . ,2si, . . . ,sn) if sn ≤ 1/2
v(s1, . . . ,2si−1, . . . ,sn) if sn ≥ 1/2

Recall that ∂ In consists of all (si) with some s j equal to either 0 or 1. Observe
that for i < j, we have the following distributive formula (u ∗(i) v) ∗( j) (u′ ∗(i) v′) =
(u ∗( j) u′)∗(i) (v∗( j) v′) and for the related homotopy classes

([u]∗(i) [v])∗( j) ([u
′]∗(i) [v′]) = ([u]∗( j) [u

′])∗(i) ([v]∗( j) [v
′]).

This leads to the following algebraic lemma which applies to only homotopy classes,
and it is not true on the level of functions since there is no unit property.

5.8. Lemma Let (E,e) be a pointed set with two laws of composition

∗′ : E×E→ E and ∗ ′′ : E×E→ E

with e as unit and satisfying the following distributive law

(a ∗′ b)∗ ′′ (a′ ∗′ b′) = (a ∗ ′′a′)∗′ (b ∗ ′′b′) for all a, b, a′, b′ ∈ E.

Then a∗′ b = a∗ ′′b, and the law of composition is commutative, that is, a∗b = b∗a
for all a,b ∈ E.
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Proof. If we set b = e and a′ = e, then we have

a∗ ′′b′ = (a ∗′ e)∗ ′′ (e∗′ b′) = (a ∗ ′′ e)∗′ (e∗ ′′b′) = a∗′ b′

so that ∗′′ = ∗′. If we set a = e and b′ = e, then we have

b∗ ′′a′ = (e∗′ b)∗ ′′ (a′ ∗′ e) = (e∗ ′′a′)∗′ (b∗ ′′ e) = a′ ∗′ b

so that b∗a = a∗b for the law of composition. This proves the lemma.

5.9. Proposition For n > 1, the homotopy groups are abelian and define functors
πn : (htp)∗ → (ab) with values in the category of abelian groups (ab). Moreover, the
group law on πn(X) can be calculated using any of the n-coordinates of representa-
tive maps u : In→ X of elements of πn(X).

5.10. Proposition The projection maps from a product of pointed spaces induce an
isomorphism

πn(X1× . . .×Xr)−→ πn(X1)⊕ . . .⊕πn(Xr).

Proof. A function f : Sn → X1× . . .×Xr into a product decomposes as an r-tuple
f = ( f1, . . . , fr) of functions fi : Sn→ Xi, and this is true of homotopy classes also.
This proves the proposition.

5.11. Corollary For the r-dimensional torus T r = S1× (r). . . ×S1, we have
π1(T r) = Z

r.

5.12. Proposition If (G,e) is a pointed space with a continuous multiplication a.b
having e as unit, then π1(G) is commutative, and addition in πn(G) can be calcu-
lated as [w′]+ [w′′] = [w], where w(t) = w′(t).w′′(t) for w′,w′′ : Sn → G.

Proof. This is another application of the Lemma (5.8). Of course this proposition
applies to a topological group. Of special interest are Lie groups, and here, we state
the following basic results for a compact Lie group.

5.13. Example Let G be a compact, connected Lie group. If G is simple, then π1(G)
is finite, and if G is simply connected, that is, π1(G) = 0, then π2(G) = 0. We have
also the special cases which we return to in Chap. 12

(1) π1(SO(n)) = Z/2 for n > 1, but π1(S1) = π1(U(1)) = Z.
(2) π1(SU(n)) = π2(SU(n)) = 0 and π3(SU(n)) = Z for n > 1.

6 Bundles on a Cylinder B×××[0, 1]

In the introduction to this chapter, we mentioned that the homotopy properties of
bundles start with the assertion that a bundle on B× [0,1] is determined by its re-
striction to B×{0}. The homotopy property of principal G-bundles, and hence of
fibre bundles which includes vector bundles, is established only for locally trivial
bundles where the open sets in question are of the form V = η−1((0,1]), where
η : B→ [0,1] is a continuous numerical function. The open sets V form a covering
of B in the sense of the next definition.
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6.1. Definition A family Φ is a locally finite open covering of a space B provided
each V ∈ Φ is open, B =

⋃
V∈Φ V , and for each b ∈ B, there exists a neighborhood

N(b) of b with N(b)∩V empty except for finitely many V ∈Φ .

Now, we bring in the numerical functions.

6.2. Definition A family of continuous functions {ηi : B→ [0,1]}i∈I is a partition
(resp. envelope) of unity provided there is a locally finite open covering Φ of B with
the closure of η−1

i ((0,1]) contained in some V ∈ Φ for each i and ∑i∈Iηi(b) = 1
(resp. maxi∈I ηi(b) = 1).

For establishing the homotopy property of principal G-bundles, we use envelopes
of unity, and for the comparison of a bundle with the Milnor construction in the next
chapter, we use partitions of unity. A partition of unity defines an envelope of unity
and vice versa by just rescaling the functions.

6.3. Definition A principal G-bundle P→ B is a numerable bundle provided it is
trivial over the closures of η−1

i ((0,1]) for each i ∈ I for some family of functions
{ηi}i∈I . A corresponding covering Φ then is called a numerable covering of the base
space.

Observe that an induced numerable bundle is numerable.

6.4. Theorem Let P′ → B× [0,1] be a numerable principal G-bundle, and form
the restriction P = (P′|(B×{t})). Then, the extended principal G-bundle (P′|(B×
{t}))× [0,1]→ B× [0,1] is isomorphic to the given P′ → B× [0,1] for any t ∈ [0,1].
Before we sketch the proof of this theorem, we state the main corollary of this
theorem which is the homotopy invariance property for principal G-bundles.

6.5. Corollary Let P→B be a numerable principal G-bundle, and let f ′, f ′′ : B′ →B
be two homotopic maps. Then, the induced G-bundles ( f ′)∗(P) and ( f ′′)∗(P) over
B′ are isomorphic.

Sketch of the proof of the theorem The proof is achieved by constructing a mor-
phism over the projection r : B× [0,1]→ B× [0,1] given by r(b,t) = (b,1). The
proof divides into three steps:

Step 1 This is the special case where we show that a principal G-bundle P over
B× [a,b] is trivial if for a < c < b the two restrictions P|(B× [a,c]) and
P|(B× [c,b]) are trivial. For this, we just use the trivializing condition for P
of an equivariant map P→ G.

Step 2 The bundle P over B× [0,1] is numerable, and we show that there is a nu-
merable covering Φ of B with P|(V × [0,1]) trivial for V ∈ Φ. This is done
by using step 1 and a finite covering of each {b}× [0,1] and for the envelope
of unity ηi(b) equal to a maximum of the η j(b,t) for t ∈ [0,1] for the open
sets in the finite covering associated with ηi : B → [0,1].
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Step 3 The morphism (u,r) : P→ P over r : B× [0,1]→ B× [0,1] is a composition
of locally defined morphisms (ui,ri) : P→ P, where

ri(b,t) = (b,max(ηi(b),t)), ui(hi(b,t,s)) = hi(b,max(ηi(b),t),s)

and hi : Ui× [0,1]×G → P|Ui× [0,1] is an isomorphism of principal G-
bundles related to the local triviality.

For the composition, we consider a well ordering of the indexing set I. In a
suitable neighborhood of b ∈ B, there is only a finite number n(b) of indices i
with ηi(b) 
= 0. Let I(b) = {i(1) < .. . < i(n(b))} be the corresponding finite or-
dered set. On the neighborhood, we form the compositions r = ri(n(b)) . . .ri(1) and
u = ui(n(b)) . . .ui(1). The other terms (ui,ri) for i ∈ I− I(b) are all the identity, and
this leads to a global definition of the desired morphism (u,r).

For more details, see Fibre Bundles, 3(4.1)–3(4.3) and 4(9.4)–4(9.6).

6.6. Remark A convenient class of spaces is the class of paracompact spaces.
A Hausdorff space is paracompact if each open covering is numerable. As a con-
sequence, a locally trivial principal G-bundle over a paracompact space is always
numerable.



Chapter 7
The Milnor Construction: Homotopy
Classification of Principal Bundles

For a given topological group G, we consider all the principal bundles. At first, it
looks like finding all principal G-bundles over a space might be a great task, but
there is a special construction of a principal G-bundle due to Milnor. It has the
property that all other numerable principal G-bundles over all possible spaces are
induced from this particular bundle. Thus, it is called the universal principal G-
bundle, and its base space is called the classifying space B(G) = BG = BG of the
group G.

Not only do we prove that all principal G-bundles P over a space are induced
from the Milnor universal bundle G-bundle E(G)→ B(G) over B(G), see (2.9), but
there is a homotopy uniqueness theorem which says that if two maps induce iso-
morphic bundles, then the maps are homotopic to each other. This should be put
side by side with the result of the previous chapter which says that homotopic maps
induce isomorphic principal bundles. This follows from the analysis of bundles over
a space of the form B× [0,1].

Main assertion The function which assigns to a homotopy class [ f ] in [B,B(G)] the
isomorphism class of the principal bundle f−1(E(G)) over B is a bijection of the
set [B,B(G)] onto the set of isomorphism classes of numerable principal G-bundles
over B, see (3.3).

We conclude the chapter with some specific examples of the Milnor construction
where the involved spaces En(G) and E(G) (to be defined in Sect. 2) are just spheres.

Chapter 4, Sect. 11–13 of Fibre Bundles (Husemöller 1994) is a reference for
this chapter.

1 Basic Data from a Numerable Principal Bundle

1.1. Remark If a principal G-bundle P→ B is trivial over an open set of the form
η−1((0,1]) ⊂ B, where η : B→ [0,1] is a map, then we have an isomorphism of
bundles over η−1((0,1]) of the form

D. Husemöller et al.: The Milnor Construction: Homotopy Classification of Principal Bundles, Lect. Notes Phys. 726,
75–81 (2008)
DOI 10.1007/978-3-540-74956-1 8 © Springer-Verlag Berlin Heidelberg 2008



76 7 The Milnor Construction: Homotopy Classification of Principal Bundles

P|η−1((0,1])−→ η−1((0,1])×G,

which we can compose with η−1((0,1])×G→ (0,1]×G defined simply by (b,s)
which is mapped to (η(b),s).

One way to think about the Milnor total space construction is that we wish to
piece together these image spaces consisting of elements (t,s) with t > 0 and s ∈ G
into a global object. The first step is to see how to extend (0,1]×G at t = 0 to
(0,1]×G⊂ [0,1]×G/({0}×G) by adding one point.

Now, the functions η will come from a partition of unity which is indexed by an
arbitrary set. It would be useful to have control over this arbitrary set, and with the
next proposition, it is possible to always use a countable set.

1.2. Proposition Let P be a numerable principal G-bundle over a space B. Then,
there exists a countable partition of unity {ηn} with P|η−1

n ((0,1]), a trivial
G-bundle.

Proof. We start with a partition of unity ξi indexed by i ∈ I, I is an arbitrary set. For
each b ∈ B, we have the finite set I(b) of i ∈ I with ξi(b) > 0, and for each finite
subset J ⊂ I, we have the open subset V (J) ⊂ B of b ∈ B with ξ j(b) > ξi(b) for
all j ∈ J and i ∈ I− J. Let ξJ(b) = max{0,min j∈J,i∈I−J(ξ j(b)− ξi(b))}, and then
observe that V (J) = ξ−1

J ((0,1]).
Now, if the number of elements #

J′ = #J′′ for two distinct finite sets J′,J′′ ⊂ I, then the intersection V (J′)∩V (J′′) is
empty since ξ j′(b) > ξ j′′(b) and ξ j′′(b) > ξ j′(b) cannot hold simultaneously.

Let Vm =
⋃

#J=m V (J) and let ξm = ∑#J=m ξJ . Again, we have ξ−1
m ((0,1]) = Vm,

and P|Vm is trivial because it is trivial over each open set V (J) in the disjoint union
giving Vm. Finally, the desired partition of unity is

ηm(b) =
ξm(b)

∑n≥0 ξn(b)

with η−1
m ((0,1]) = Vm.

2 Total Space of the Milnor Construction

In order to see the natural character of the Milnor construction, we return to the local
charts of a principal bundle coming from a countable open covering as in (1.2).

2.1. Remark Let π : P→ B be a principal G-bundle trivial over the open sets of a
covering of the form η−1

n ((0,1]) together with isomorphisms

wn : P|η−1
n ((0,1])−→ η−1

n ((0,1])×G,

which we can compose with η−1
n ((0,1])×G→ (0,1]×G. The projection onto the

second factor gives maps
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un : P|η−1
n ((0,1])−→ G

with un(xs) = un(x)s for x ∈ P, s ∈ G. Then, we have the relation wn(x) = (π(x),un

(x)). It is now this data (ηn,un) which we wish to assemble into the Milnor con-
struction and a G-equivariant map.

Partitions of unity map the space into simplexes.

2.2. Definition The affine n-simplex An is the compact subset of R
n+1 consisting of

all t = (ti) ∈ R
n+1 satisfying t0 + . . .+ tn = 1 and ti ≥ 0.

For example, A0 is a point, A1 is a closed segment, A2 is a triangle, and A3 is a
tetrahedron. Singular homology is constructed by mappings of affine simplexes into
a space, while a map η : B→ An corresponds to a partition of unity on B of n + 1
open subsets.

2.3. Definition (Finite Case) We start with the data (ηi,ui) and over the open set
Wn = η−1

0 ((0,1])∪ . . .∪ η−1
n ((0,1]). We form the product An×Gn+1 and take a

quotient En(G) where elements are written as double n+1 tuples (t0 : s0, . . . ,tn : sn)
with t ∈ An and each si ∈G. The equivalence relation is the following as an equality
in En(G), where

(t ′0 : s′0, . . . ,t
′
n : s′n) = (t ′′0 : s′′0 , . . . ,t

′′
n : s′′n)

if and only if t ′i = t ′′i , and when t ′i = t ′′i > 0, we require s′i = s′′i .
In particular, when t ′i = t ′′i = 0, there is no relation between s′i and s′′i reducing to

a single point.

2.4. Principal Action We have an action En(G)×G→ En(G) given by the for-
mula (t0 : s0, . . . ,tn : sn)s = (t0 : s0s, . . . ,tn : sns), and this action is principal with
continuous

τi((t ′0 : s′0, . . . ,t
′
n : s′n),(t

′′
0 : s′′0 , . . . ,t

′′
n : s′′n)) = (s′i)

−1s′′i

on the open subset where t ′i = t ′′i > 0.

2.5. Basic Assertion The data (ηi,ui), where i ≤ n, is equivalent to a map
v : P|Wn→ En(G) satisfying v(xs) = v(x)s. The relation comes by looking at the
coordinates of which gives a formula for v(x), that is,

v(x) = (η0(π(x)) : u0(x), . . . ,ηn(π(x)) : un(x)).

Now, we extend the basic assertion for a finite part of the local trivializing data
to the case of a countable family.

2.6. Definition (Countable Case) We start with the data (ηi,ui) and the open
covering {η−1

i ((0,1])} of B. We see that the natural inclusion of the products
An×Gn+1 ⊂ An+1×Gn+2 passes to the quotient En(G)⊂ En+1(G) as an injection.
The elements written as double n+1 tuples (t0 : s0, . . . ,tn : sn) are carried to the dou-
ble n + 2 tuples (t0 : s0, . . . ,tn : sn,0 : 1) for 1 ∈ G, the identity, si ∈ G, and t ∈ An.
The equivalence relation in En+1(G) induces the equivalence relation in En(G), and
the inclusion is G-equivariant.
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2.7. Definition (Milnor Construction) The total space of the Milnor universal prin-
cipal G-bundle is E(G) =

⋃
0≤n En(G) with the weak topology, that is, a subset

M ⊂ E(G) is closed if and only if M ∩En(G) is closed in En(G) for each n. The
Milnor classifying space is the quotient E(G)/G = B(G).

2.8. Basic Assertion The data (ηi,ui) is equivalent to a map v : P→E(G) satisfying
v(xs) = v(x)s. The relation comes as in the finite case by looking at the coordinates
of which gives a formula for v(x), that is,

v(x) = (η0(π(x)) : u0(x), . . . ,ηn(π(x)) : un(x), . . .).

2.9. Basic Universal Property of the Milnor Construction The Milnor principal
G-bundle is π : E(G)→ E(G)/G. The bundle is numerable with partition of unity
given by

ωi(t0 : s0, . . . ,tn : sn, . . .) = ti

and a principal action with translation functions

τi((t ′0 : s′0, . . . ,t
′
n : s′n, . . .),(t

′′
0 : s′′0 , . . . ,t ′′n : s′′n , . . .)) = (s′i)

−1s′′i .

For each numerable principal G-bundle π : P→ B with localizing data, (ηi,ui)
gives arise to a G-equivariant map v : P→ E(G) with formula v(x) = (η0(π(x)) :
u0(x), . . . ,ηn(π(x)) : un(x), . . .). The map v : P→ E(G) defines a quotient map f :
B → B(G), and the pair (v, f ) : P → E(G) is a morphism of principal
G-bundles.

Finally, we have an isomorphism P→ f−1(E(G)) over B induced by v using the
general result 5(2.4). In particular, every numerable principal G-bundle P over B is
of the form f−1(E(G)) for some map f : B→ B(G). From 6(6.5), two homotopic
maps f : B→ B(G) give isomorphic-induced bundles. This property holds for B(G)
replaced by any space B′. In the case of maps B→ B(G) the converse holds, that
is, if two maps f ′, f ′′ : B→ B(G) have the property that the two induced bundles
f ′−1(E(G)) and f ′′−1(E(G)) are isomorphic, then f ′ and f ′′ are homotopic. We
sketch this in the next section.

3 Uniqueness up to Homotopy of the Classifying Map

We consider various maps B(G)→ B(G) induced by G-equivalent maps E(G)→
E(G).

3.1. Notation Let E(G,ev) (resp. E(G,odd)) be the subspace of E(G) consisting of
(t0 : s0, . . . ,tn : sn, . . .) with t2i = 0 (resp. t2i+1 = 0). Let B(G,ev) = E(G,ev)/G ⊂
B(G) and B(G,odd) = E(G,odd)/G ⊂ B(G). Now, we define hev

s : E(G)→ E(G)
with image E(G,ev) for s = 0 and hodd

s : E(G)→ E(G) with image E(G,odd) for
s = 0 such that these in turn induce the homotopies

gev
s : B(G)−→ B(G) and godd

s : B(G)−→ B(G)
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which for s = 0 have disjoint images, namely B(G,ev) and B(G,odd), and which
for s = 1 are both the identity.

The details we leave to the reader who can find them in the paragraph just before
4(12.3) of Fibre Bundles. These deformations are used in the following theorem
which completes the last step in the homotopy classification theorem announced in
the introduction.

3.2. Theorem Let f ′, f ′′ : B → B(G) be maps such that the induced bundles
( f ′)−1(E(G)) and ( f ′′)−1(E(G)) are isomorphic. Then, the maps f ′ and f ′′ are
homotopic.

Proof. The first step is to use the homotopies described in (3.1) to modify f ′ and
f ′′ so that f ′(B) ⊂ B(G,odd) and f ′′(B)⊂ B(G,ev). Assuming that f ′ and f ′′ have
this property, we have a principal bundle P over B and principal bundle morphisms
(u′, f ′) : P→ E(G,odd)⊂ E(G) and (u′′, f ′′) : P→ E(G,ev)⊂ E(G).

Now, we define a principal G-bundle morphism (u, f ) : P× I→E(G) with f |X×
{0} = f ′ and f |X × {1} = f ′′ in order to prove the theorem. This is done by a
formula for u starting with desired properties for t = 0 and t = 1 where for x ∈ P,
we have from u′ and u′′ the values

u(x,0) = (t0(x) : s0(x),0,t2(x) : s2(x),0, . . .)

and
u(x,1) = (0,t1(x) : s1(x),0,t3(x) : s3(x),0, . . .).

Now, prolong to u(x,t) by the formula

u(x,t) = ((1− t)t0(x) : s0(x),tt1(x) : s1,(1− t)t2(x) : s2(x),tt3(x) : s3(x), . . .).

Clearly, we have u(xs,t) = u(x,t)s for (x,t) ∈ P× [0,1] and s ∈G. Hence, the
G-equivariant map u : P× [0,1]→ E(G) defines the homotopy f : B× [0,1]→B(G)
with f (b,0) = f ′(b) and f (b,1) = f ′′(b). This proves the theorem.

Now, we return to the introduction of this chapter.

3.3. Main Assertion The function which assigns to a homotopy class[ f ]∈ [B,B(G)]
the isomorphism class of the principal bundle f−1(E(G)) over B is a bijection of the
set [B,B(G)] onto the set of isomorphism classes of numerable principal G-bundles
over B.

Proof. It is a well-defined function by 6(6.5). It is injective by (3.2), and it is sur-
jective by (2.9). This proves the homotopy classification of numerable principal
G-bundles in terms of the Milnor construction.

3.4. Remark Let w : G′ → G′′ be a morphism of topological groups inducing a map
Bw : BG′ → BG′′ on the classifying spaces, and let B be a base space.

(a) Let P′ be the principal G′-bundle ( f ′)∗(EG′) for a map f ′ : B→ BG′ into the
classifying space. The extension of P′ to the principal G′′-bundle is given by
( f ′′)∗(EG′′), where f ′′ = (Bw)◦ f ′.
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(b) A restriction of a principal G′′-bundle P′′= ( f ′′)∗(EG′′) for f ′′ : B→ BG′′ is any
P′= ( f ′)∗(EG′′), where (Bw)◦ f ′ and f ′′ are homotopic. In particular, extension
and restriction of structure groups of principal bundles on B is determined by
the function

[B,Bw] : [B,BG′]→ [B,BG′′]

on homotopy classes of maps into classifying spaces.
(c) Let w : G′ → G′′ be a morphism of topological groups inducing a map Bw :

BG′ → BG′′ on the classifying spaces. Let P′′ = ( f ′′)∗(EG′) be a principal G′′-
bundle on B, where f ′′ : B→ BG′′. A G′-structure on P′′ is an equivalence class
of maps f ′ : B→ BG′ such that (Bw) ◦ f ′ and f ′′ are homotopic. Two maps
f ′0, f ′1 : B→ BG′ are equivalent provided there is a homotopy ht : B→ BG′ with
h0 = f ′0, h1 = f ′1, and (Bw)◦ ht = (Bw)◦ f ′0 for all t ∈ [0,1].

4 The Infinite Sphere as the Total Space of the Milnor
Construction

4.1. Unit Sphere in the Real Numbers The zero dimensional sphere S0 is the
space of t ∈ R = R

1 with | t | = 1, that is, S0 = {+1,−1}, and under multiplication
of these two real numbers, it is the group of two elements. Every x ∈ R is of the
form x = r(±1) for some r ≥ 0, and for x 
= 0, the strictly positive r is unique and is
the absolute value |x |= r.

4.2. Unit Sphere in the Complex Numbers The one-dimensional sphere S1 is the
space of z ∈C = R

2 with |z |= 1, that is, S1 = {e2π it : t ∈ [0,1]} the circle of angles
t. Under multiplication of complex numbers, it is a group called the circle group.

There is one more sphere which is the topological group of numbers in a number
system, and this is S3, the group of unit quaternions.

4.3. Quaternions The skew field H of quaternions is given by H = R1⊕Ri⊕
R j⊕Rk, where the basis elements i, j,k of the quaternions satisfy the relations
i2 = j2 = k2 =−1 and

i j = k =− ji, jk = i =−k j, and ki = j =−ik.

We can write H = C⊕C j with k = i j and multiplication given by z j = jz for z ∈C

and z = x− iy the complex conjugate of z = x + iy. For a quaternion q = a + bi +
c j + d j, the quaternion conjugate is given by q̄ = a−bi− c j−dk. It has properties
similar to the complex conjugate, namely qq̄ = a2 +b2 +c2 +d2 is the norm squared
|q |2 = qq and q = q. Moreover, quaternionic conjugation is antimultiplicative, that
is, one has q′q′′ = q′′ q′.

4.4. Unit Sphere in the Quaternions The three-dimensional sphere can be para-
metrized by the unit quaternions q ∈ H so with |q | = 1. Moreover, under
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quaternionic multiplication, it is a topological group isomorphic to SU(2). Every
q ∈H is of the form q = |q |u, where u ∈ S3 is a unit quaternion.

Now, we show how to view certain spheres as the total space in the Milnor con-
struction in a very concrete way.

4.5. Spheres as En(G) and Infinite Spheres as E(G)

(a) (Real case) For a point (x0, . . . ,xm−1) ∈ Sm−1, we introduce ti = x2
i and si = +1

if xi ≥ 0 and si =−1 if xi < 0. Then, the map from (x0, . . . ,xm−1) ∈ Sm−1 to (t0 :
s0, . . . ,tm−1 : sm−1) ∈ Em−1({±1}) is a topological isomorphism, and with the
same formulas, we have a topological isomorphism S∞→ E({±1}), where S∞

is the increasing union
⋃

n Sn with the inductive limit topology. These mappings
are S0 or {±1}-equivariant.

(b) (Complex case) For a point (z0, . . . ,zm−1) ∈ S2m−1, we introduce ti = |zi |2 and
si = zi/|zi |. Then, the map from (z0, . . . ,zm−1) ∈ S2m−1 to (t0 : s0, . . . ,tm−1 :
sm−1) ∈ Em−1(S1) is a topological isomorphism, and with the same formu-
las, we have a topological isomorphism S∞ → E(S1). These mappings are
S1-equivariant.

(c) (Quaternionic case) For a point (q0, . . . ,qm−1) ∈ S4m−1, we introduce ti = |qi |2
and si = qi/|qi |. Then, the map from (q0, . . . ,qm−1)∈ S4m−1 to (t0 : s0, . . . ,tm−1 :
sm−1) ∈ Em−1(S3) is a topological isomorphism, and with the same formu-
las, we have a topological isomorphism S∞ → E(S3). These mappings are S3-
equivariant.

4.6. Other Constructions of B(G) There are other constructions of a numerable
principal G-bundle E(G)→ B(G) with the key property that E(G) is contractible,
and hence, by a theorem of Steenrod (1951, Sect. 19), it can be used to induce
and classify up to isomorphism numerable principal G-bundles. In particular, there
also is the construction of a classifying space BG which is functorial for group
morphisms G′ → G′′ in all cases and which in contrast to the Milnor construction
has the property that the projections G′ ×G′′ → G′ and G′ ×G′′ → G′′ induce a
homeomorphism B(G′ ×G′′) = B(G′)×B(G′′). If G is an abelian group, then the
group law G×G→G is a morphism of groups and induces a map B(G×G) = B(G)
which when composed with the inverse of the product isomorphism gives an abelian
group structure B(G)×B(G) = B(G), and then the classifying space construction
can be iterated to obtain Bn(G) = B(Bn−1) inductively.
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Chapter 8
Fibrations and Bundles: Gauge Group II

The fundamental theorem in fibre bundle theory is the main assertion 7(3.3) which
says that numerable principal G-bundles are not only induced from the Milnor con-
struction but also classified up to homotopy by maps into the classifying base space
of the universal bundle. In fact, for a given topological group G, this universal prop-
erty is true for other principal G-bundles than the Milnor construction, and in this
chapter, we investigate which bundles have this property. The base space of each
universal bundle is a new model for the classifying space BG of the group G, and it
is homotopy equivalent to the base space of the Milnor construction. For this analy-
sis, we introduce the notion of fibre map and fibre mapping sequence.

In this chapter, we consider loop spaces and the related path space. These are not
principal bundles, but they have important bundle properties relative to homotopy.
We relate and compare these loop space bundles to universal principal G-bundles.
The key concept of fibre map is common to both path space bundles and the univer-
sal bundles.

For a fibre space fibration p : E → B with fibre F = p−1(b0) and choice of base
point x0 ∈ F ⊂ E , we have a homotopy exact triangle

π∗(F,x0) �� π∗(E,x0)

����
��

��
��

��
��

��
�

π∗(B,b0)

degree−1

		���������������
.

For a given topological group G, we consider all the principal bundles over a
space B which is reduced to homotopy theory by the universal bundle. We will see
that a principal G-bundle P→ B is a universal bundle when P is contractible, and
this leads to other versions of the E(G)→ B(G). These considerations are applied
to B(Aut(P)) for the gauge group of Aut(P) of P→ B.

Chapters 6 and 7 of Fibre Bundles (Husemöller 1994) is a reference for this
chapter.

D. Husemöller et al.: Fibrations and Bundles: Gauge Group II, Lect. Notes Phys. 726, 83–96 (2008)
DOI 10.1007/978-3-540-74956-1 9 © Springer-Verlag Berlin Heidelberg 2008
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1 Factorization, Lifting, and Extension in Square Diagrams

1.1. Remark In a category C , it is frequently useful to consider commutative square
diagrams of morphisms (i/p)

A

i
��

u �� X

p

��
B

f �� Y

so that pu = f i. In fact, we can speak of the category of squares Sq(C ) over a
category C , where a morphism is a morphism on each corner giving a commutative
cube.

1.2. Definition A factorization k of the square (i/p) is a morphism k : B→X leading
to a commutative diagram (i/p)

A

i

��

u �� X

p

��
B

k



���������������� f �� Y

that is, ki = u and pk = f . We can also speak of k as a lifting of f along p or as an
extension of u along i.

Relative to classes of morphisms in C , we can define properties on morphisms
with respect to the existence of factorization. These are lifting and extension prop-
erties.

1.3. Definition Let E be a family of morphisms in C . A morphism p : X → Y has
the lifting property relative to E provided for all i : A→ B in E every diagram (i/p)
has the lifting property along p.

1.4. Definition Let F be a family of morphisms in C . A morphism i : A→B has the
extension property relative to F provided for each p : X → Y in F every diagram
(i/p) has the extension property along i.

These properties are dual to each other in C and its opposite category C op. Ex-
amples are generated by the following two pairs of dual statements.

1.5. Example Let E be a family of morphisms in C , and let p : X→Y and q : Y → Z
be two morphisms in C . If p and q have the lifting property relative to E , then the
composite qp : X → Z has the lifting property relative to E .
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1.6. Example Let F be a family of morphisms in C , and let i : A→ B and j : B→C
be two morphisms in C . If i and j have the extension property relative to F , then
the composite ji : A→C has the extension property relative to F .

1.7. Example Let E be a family of morphisms in C , and let p : X→Y be a morphism
with the lifting property relative to E . If Y ′ → Y is any morphism in C , then the
induced morphism

p′ : X ′ = Y ′ ×Y X −→ Y ′

has the lifting property relative to E . Recall that the induced morphism is the pro-
jection from the fibre product to the first factor.

1.8. Example Let F be a family of morphisms in C , and let i : A→B be a morphism
with the extension property relative to F . If A→ A′ is any morphism in C , then the
coinduced morphism

i′ : A′ −→ B′ = A′�AB

has the extension property relative to F . Recall that the coinduced morphism is the
injection into the cofibre coproduct of the first factor.

1.9. Remark We will apply these general lifting properties to homotopy theory.
This was first done by Quillen in LN 43 where he presented an axiomatic ver-
sion of homotopy theory which seems to be the most promising approach to an
axiomatic version of homotopy theory. This has become especially clear in recent
years.

2 Fibrations and Cofibrations

Now, we use the elementary factorization formalism of the previous section to de-
scribe fibrations, also called fibre maps, and cofibrations, also called cofibre maps.
For this, we need the classes E of elementary cofibrations and F of elementary
fibrations.

2.1. Definition The elementary fibration associated with any space Y is the map
ε : Map([0,1],Y )→Y given by evaluation ε(γ) = γ(0) for a path γ ∈Map([0,1],Y ).
The elementary cofibration associated with any space A is the map β : A→ A× [0,1]
given by inclusion β (a) = (a,0) on the bottom of the cylinder over A.

2.2. Definition A map p : X → Y is a fibration provided any square (β/p) with any
elementary cofibration β : A→ A× [0,1] has the lifting property along p. A map
i : A→ B is a cofibration provided any square (i/ε) with any elementary fibration
ε : Map([0,1],Y )→ Y has the extension property along i.
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2.3. Remark The fibration or fibre map part of the previous definition has a square
of the form

A

β

��

u �� X

p

��
A× [0,1]

k

�������������������� f �� Y

The fibration axiom is also called the homotopy-lifting property since the homotopy
f is required to lift to a homotopy k.

The cofibration or cofibre map part of the previous definition has a square of the
form

A

i

��

u �� M([0,1],Y )

ε

��
B

k

�������������������� f �� Y

,

but in this case, we do not see the homotopy extension property for u so clearly
in this concept. In fact, we can rewrite the above diagram in a context of a map
v : A× [0,1]→ Y , which must extend to B× [0,1].

2.4. Remark In the previous diagram defining a cofibration i : A → B, we con-
sider v : A× [0,1]→ Y the adjoint map to u. The condition for the existence of
the lifting k along ε is equivalent to the existence of a map k′ : B× [0,1] → Y
satisfying

k′(i× [0,1]) = v : A× [0,1]−→ Y and k′β = f : B−→ Y.

The related diagram is a colimit diagram of the form

A

��

�� A× [0,1]

i×[0,1]
��

v=adjoint of u

��									

B

f


id×[0,1] �� B× [0,1] k′ �� Y

.

Conversely, given k′ the homotopy extension of f : B→ Y and v : A× [0,1]→ Y ,
then the adjoint k : B→Map([0,1],Y ) gives an extension along i.

2.5. Remark A commutative square of the form (β ,ε) for two spaces A and Y has
the form
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A

β

��

u �� Map([0,1],Y )

ε

��
A× [0,1]

k

��



















 f �� Y

where u and f are related maps with f (a,0) = u(a)(0), all a ∈ A. The natural lifting
k is given as follows. We introduce the map k′′ : A× [0,1]× [0,1] by

k′′(a,t,s) =
{

(u(a))(s(t + 1)) for 0≤ s≤ 1
t+1

f (a,s(t + 1)−1) for 1
t+1 ≤ s≤ 1,

k′′ defines the natural lifting k : A× [0,1]→Map([0,1],Y ).
If s = 0, then k(a,t)(0) = u(a)(0) = f (a,0). If t = 0, then k(a,0)(s) = u(a)(s).

This leads to the following assertion.

2.6. Proposition The elementary fibrations ε are fibrations which are homotopy
equivalences. The elementary cofibrations δ are cofibration which are homotopy
equivalences

Proof. A right inverse c of ε is given by c : Y →Map([0,1],Y ), where c(y)(t) = y
such that εc is homotopic to the identity by

h′s : Map([0,1],Y )−→Map([0,1],Y )

given by h′s(γ)(t) = γ(st) with h′1(γ) = γ and h′0 = εc. A left inverse q of β is given
by q : A× [0,1]→ A such that β q is homotopic to the identity by h′′s : A× [0,1]→
A× [0,1] given by h′′s (a,t) = (a,st) with h′′1(a,t) = (a, t) and h′′0 = β q. This proves
the proposition.

Let ε ′ : Map([0,1],Y )→ Y be defined by ε ′(γ) = γ(1). Using the elementary
fibration ε ′ which is also a homotopy equivalence, we can replace every map by a
fibration up to a homotopy equivalence.

2.7. Definition Let f : X → Y be a map. The mapping track of f is the fibre product
Tf = X×Y Map([0,1],Y ) together with the injection t f : X → Tf and projection p f :
Tf → Y to the base. The map t f satisfies t f (x) = (x,c( f (x))), where c(y)(t) = y.

2.8. Remark Every map f : X→Y factors f = p f t f through the mapping track X→
Tf → Y , where p f is a fibre map by (1.7) and t f is a homotopy equivalence with
homotopy inverse t ′( f ) given by projection on the first factor and homotopy from
the identity to t f t ′( f ) given by hs(x,γ) = (x,γ((1− s)t + s)).

Let β ′ : X → X × [0,1] be defined by β ′(x) = (x,1). Using the elementary cofi-
bration β ′ which is also a homotopy equivalence, we can replace every map by a
cofibration up to a homotopy equivalence.
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2.9. Definition Let f : X→Y be a map. The mapping cylinder of f is the cofibre co-
product Mf =Y �X X× [0,1] together with the injection q f : X→Mf and projection
m f : Mf → Y to the factor Y . The map q f (x) = f (x) = (x,1) in Mf .

2.10. Remark Every map f : X→Y factors f = m f q f through the mapping cylinder
X → Tf → Y , where q f is a cofibre map by (1.8) and m f is a homotopy equivalence
with homotopy inverse m′( f )(y) = y in the first summand of the cofibre coproduct
and homotopy defined by

hs(y) = y and hs(x,t) = (x,(1− s)t + s).

At s = 0, it is the identity and h1 = m′( f )m f .

2.11. Remark There are essentially two versions of the definition of fibre maps or
fibration. The first is due to Hurewicz, where the lifting property is required for all
elementary β : A→ A× [0,1]. The second is due to Serre, where the lifting property
is required only for all finite complexes A or equivalently all n-cubes A = [0,1]n.

3 Fibres and Cofibres: Loop Space and Suspension

The definition of fibration and cofibration do not refer to base points, and the same is
true of the replacement of f : X→Y by a fibre map p f : Tf →Y or by a cofibre map
q f : X →Mf . Now base points arise naturally when we consider fibres and cofibres
of a map.

3.1. Definition Let f : X → Y be a map. For each y ∈Y , the fibre of f over y ∈ Y is
the subspace Xy = f−1(y)→ X with inclusion in X . The cofibre of f is the quotient
space Y/ f (X), where the image f (X) in Y is reduced to a point. When f : X → Y is
base point preserving, the fibre F of f is defined to be the fibre over the base point
of Y with base point from X . When f is base point preserving, the base point of the
cofibre C = Y/ f (X) is the class of f (X) in the cofibre C. There are two three term
sequences which we wish to study

F → X
f−→ Y and X

f−→ Y →C.

Fibres are related to fibrations and cofibres to cofibrations by the following exact-
ness properties.

3.2. Theorem Let F → X be the fibre of a pointed fibre map f : X → Y . For each
pointed space T , we have an exact sequence of pointed sets

[T,F]∗ −→ [T,X ]∗ −→ [T,Y ]∗.

When the space T is a finite complex like a sphere, then the assertion holds also
for a Serre fibration.
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Let Y →C be the cofibre of a pointed cofibre map f : X → Y. For each pointed
space Z, we have an exact sequence of pointed sets

[C,Z]∗ −→ [Y,Z]∗ −→ [X ,Z]∗.

A sequence M′ u→M
v→M′′ of pointed sets is a exact provided im(u) = u(M′) =

ker(v) = v−1(∗). In the previous theorem, the assertion that im(u)⊂ ker(v) is just the
immediate assertion that vu = ∗, and it holds both for maps and homotopy classes
of maps. The reverse inclusion uses the fibration and cofibration conditions.

Taking the fibre or the cofibre of a map in special situations leads to new con-
structions to which theorem (3.2) applies.

3.3. Definition Let Y be a pointed space. The path space P(Y ) of Y is the fibre P(Y )
of ε : Map([0,1],Y )→ Y together with the restriction of ε ′ to π : P(Y )→ Y . The
fibre of π is the loop space Ω(Y ) of the pointed space Y .

3.4. Remark The loop space Ω(Y ) is the subspace of γ ∈Map([0,1],Y ) with γ(0) =
γ(1) = ∗, and path space P(Y ) is the subspace of γ ∈ Map([0,1],Y ) with γ(0) =
∗ and π(γ) = γ(1). The space P(Y ) is contractible by hs : P(Y ) → P(Y ) with
hs(γ)(t) = γ(st).

3.5. Definition Let X be a pointed space. The cone C(X) on X is the cofibre of
β : X → X × [0,1] with ∗× [0,1] also collapsed to the base point together with
composite of β ′ with the quotient morphism q : X →C(X). The cofibre of q is the
suspension S(X) of the pointed space X .

3.6. Remark The suspension S(X) is the quotient of X × [0,1] with the subspace
(X ×{0,1})∪ ({∗}× [0,1]) reduced to a point, and the cone C(X) is the quotient
of X × [0,1] with the subspace (X ×{0})∪ ({∗}× [0,1]) reduced to a point, and
q : X →C(X) and q(x) is the map which maps a point x in X to the class of (x,1) in
C(X).

3.7. Corollary For pointed spaces T,X ,Y, and Z, we have the following sequences
of pointed sets

[T,Ω(Y )]∗ −→ [T,P(Y )]∗ → [T,Y ]∗

and
[S(X),Z]∗ −→ [C(X),Z]∗ → [X ,Z]∗.

The sets [T,P(Y )]∗ and [C(X),Z]∗ reduce to a single point.

Now, we have a mapping space and a mapping cone associated with a map f :
X → Y generalizing P(Y ) and C(X) and built from the mapping track and mapping
cylinder, respectively. We sketch this topic in the next section where it allows one
to extend the sequences of the theorem (3.2) infinity far to the left for fibrations and
infinity far to the right for cofibrations.
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4 Relation Between Loop Space and Suspension Group
Structures on Homotopy Classes of Maps [X,Y]*

We use the notation Hom(X ,A;Y,∗) for the subspace of Map(X ,Y ) of all maps
f : X → Y with f (A) = ∗. The quotient map X → X/A induces a homeomor-
phism Map∗(X/A,Y )→ Map(X ,A;Y,∗) under suitable compactness assumptions
on (X ,A).

4.1. Remark The adjunction morphism 6(2.1) for pointed spaces X and Y and a
compact pointed space T becomes the following by restriction

Map(X×T,Y ) c �� Map(X ,Map(T,Y ))

Map∗(X×T,X ∨T ;Y,∗) ��

∪
��

Map∗(X ,Map∗(T,Y ))

∪
��

Map∗(X ∧T,Y )

=

��

where X ∧T = (X×T )/(X ∨T ) is the reduced or smash product where X ∨T is the
coproduct of X and T .

4.2. Remark The adjunction morphism 6(2.1) for T = [0,1] is the isomorphism
c : Map(X× [0,1],Y)→Map(X ,Map([0,1],Y )). Using the modifications in the pre-
vious Sect. 4.1, we obtain two basic adjunctions

Map∗(C(X),Y ) �� Map∗(X ,Map∗(T,Y ))

Map∗(S(X),Y )

∪
��

�� Map∗(X ,Ω(Y ))

∪
��

From another point of view, we can describe the spaces in these two adjunctions
as S(X) = X ∧ S1 and Ω(Y ) = Map∗(S1,Y ) and as C(X) = X ∧ [0,1] and P(Y ) =
Map∗([0,1],Y ). Here, the circle S1 is [0,1]/{0,1}, the interval with its end points
reduced to one point.

4.3. Unit Circle Parametrizing the circle with [0,1]→ S1 ⊂C in the complex plane
with the exponential function e(t) = exp(2π it), we can return to the map used to
define π1(Y ) in 6(5.1)–6(5.4). The map ψ : S1→ S1∨S1 can be used to defined the
following.

4.4. Definition The coH-space structure on S(X) is defined via the following dia-
gram
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S(X)
ψ ��

∼=
��

S(X)∨S(X)

∼=
��

X ∧S1
id∧ψ �� X ∧ (S1∨S1)

∼= �� (X ∧S1)∨ (X ∧S1)

The H-space structure on Ω(Y ) is the transpose φ : Ω(Y )×Ω(Y )→ Ω(Y ) of ψ
using the topological isomorphism Map∗(S1∨S1,Y )∼= Ω(Y )×Ω(Y ).

In concrete terms, we have for t ∈ [0,1] the comultiplication on S(X)

ψ(x, t) =
{

((x,2t),∗) for t ≤ 1/2
(∗,(x,2t−1)) for 1/2≤ t

and the multiplication on Ω(Y ) is

φ(u,v)(t) =
{

u(2t) for t ≤ 1/2
v(2t−1) for 1/2≤ t.

The questions of homotopy associativity, homotopy unit, and homotopy inverse
carry over from the same considerations which lead to a group structure on πn(Y ) for
n > 0. As a result, we have the following homotopy level extension of the adjunction
of (4.2).

4.5. Theorem The natural adjunction bijection

[S(X),Y ]∗ −→ [X ,Ω(Y )]∗

is an isomorphism of groups with group structure on the left defined by

ψ : S(X)−→ S(X)∨S(X)

and on the right by
φ : Ω(Y )×Ω(Y)→Ω(Y ) .

The two structures on [S(X),Ω(Y)]∗ are equal and abelian.

For the last statement we use 6(5.8).

5 Outline of the Fibre Mapping Sequence and Cofibre Mapping
Sequence

5.1. Definition Let f : X→Y be a map. The homotopy fibre of f is the fibre product
E f = X×Y P(Y ) together with the projection a( f ) : E f → X to X .

5.2. Remark In concrete terms, the elements of E f are pairs

(x,γ) ∈ X×Map([0,1],Y )
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such that f (x) = γ(1) and γ(0) = y0. The fibre of the projection a( f ) is just the
elements (x0,γ) with γ(0) = γ(1) = y0, that is, the loop space Ω(Y ). Moreover,
a( f ) is a fibre map.

5.3. Assertion There is a natural map j : f−1(y0) → E f defined by j(x) =
(x,c( f (x))), where c(y)(t) = y for all t ∈ [0,1]. A fundamental property of j is
that it is a homotopy equivalence if f is a fibre map.

This is used in comparing two possible sequences in the following diagram which
also relates E f to the mapping track Tf .

5.4. Definition The fibre mapping sequence is the following diagram which starts
with the homotopy fibre

E f
a( f )−→ X

f−→ Y

of a map f : X → Y and continues both by iteration and with the role of the loop
space

Ω(X)
��

��

b(a( f )) �� Ea( f )

a(a( f ))

���������������

Ω(X)
Ω( f ) �� Ω(Y )

��

b( f ) �� E f

���������������

a( f )
��

X

f

��

Tfv
��

u
��

Y

with u = f v.

5.5. Theorem Let T be a pointed space, and let f : X → Y be a pointed fibre map.
The following sequence is exact

..→[T,Ω2Y ]∗→[T,EΩ f ]∗→[T,ΩX ]∗→[T,ΩY ]∗→[T,E f ]∗→[T,X ]∗→[T,Y ]∗→0.

Proof. Use (5.4) and (3.2).

5.6. Definition Let f : X → Y be a map. The homotopy cofibre of f is the cofibre
coproduct Cf = Y �X C(X) together with the inclusion a( f ) : Y →Cf from Y .

5.7. Remark In concrete terms, the elements of Cf is the union of y ∈ Y with
(x, t) with (x0, t) and (x,0) all identified to the base point and (x,1) identified to
f (x) ∈Y. The cofibre of the injection a( f ) is just the further identification of all
of Y to the base point, that is, the suspension S(X). Moreover, a( f ) is a cofibre
map.
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5.8. Assertion There is a natural map q : Cf → Y/ f (X) defined by collapsing all
points (x, t) to the base point. A fundamental property of q is that it is a homotopy
equivalence if f is a cofibre map.

This is used in comparing two possible sequences in the following diagram which
also relates Cf to the mapping cylinder Zf .

5.9. Definition The cofibre mapping sequence starts with the homotopy cofibre X
f→

Y
a( f )−→Cf of a map f : X → Y

Zf

����������������

X

v

��������������� f �� Y

u

��

a( f ) �� Cf

b( f )
��

a(a( f ))

����������������

S(X)

S( f )
��

Ca( f )��

b(a( f ))
��

S(Y ) �� �� S(Y )

with v = u f .

5.10. Theorem Let Z be a pointed space, and let f : X → Y be a pointed cofibre
map. Then, the following sequence is exact

0←[X , Z]∗←[Y, Z]∗←[Cf , Z]∗←[S(X), Z]∗←[S(Y ), Z]∗←[CS( f ), Z]∗←[S2(X), Z]∗←. . .

Proof. Use (5.9) and (3.2).

6 From Base to Fibre and From Fibre to Base

6.1. Exact Homotopy Sequence of a Fibration Let p : E → B be a fibration with
base points and fibre F → E . The exact homotopy sequence of the fibration is the
following triangle

π∗(F,x0) �� π∗(E,x0)

������������

π∗(B,b0)

degree−1
������������

.

In the homotopy exact triangle, two morphisms are induced by F → E and p :
E → B, respectively, while the third, called the boundary morphism and sometimes
denoted by ∂ ,
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πi(B,b0)−→ πi−1(F,x0)

has degree –1 and is defined from the fibration property.

6.2. Elementary Corollaries We use the notation of (6.1)

(1) If F and B are path connected, then E is path connected, and if E is path con-
nected, then B is path connected for surjective p, that is, π0(B) = 0.

(2) Assume that F,E , and B are path connected. The last four possibly nonzero terms
of the above sequence are

π2(B)−→ π1(F)−→ π1(E)−→ π1(B)−→ 0.

In particular, if π1(F) = 0, then π1(E)→ π1(B) is an isomorphism, and π2(E)→
π2(B) is surjective.

6.3. Remark If E is a contractible space, then π∗(E) = 0, and conversely, if all ho-
motopy groups are zero, then for a wide class of spaces E is contractible. This class
includes all CW-complexes, see the next chapter. In this case, a fibration F→E→B
with π∗(E) = 0 has a boundary isomorphism

πi+1(B)−→ πi(F).

In particular, we have π1(B)→ π0(F) is a bijection. Even if F is not a group, its set
of connected components has a natural group structure coming from the fundamen-
tal group of the base.

This leads to a general idea which ties the homotopy theory considerations to
fibre bundle theory.

6.4. Acyclic Fibrations An acyclic fibration F→ E→ B is defined by the property
that E is contractible. There are two constructions:

(1) Base to fibre: Given a path connected, pointed space B, the acyclic fibration as-
sociated to B is the loop space fibration

Ω(B)−→ P(B)→ B,

and the boundary isomorphism πi+1(B)→ πi(Ω(B)) shows that the homotopy of
B in degree i+ 1 is the homotopy of loop space Ω(B) in degree i.

(2) Fibre to base: Given a topological group G, the acyclic fibration associated to G
is the principal bundle fibration

G→ E(G)−→ B(G)

coming from the Milnor construction, and the corresponding boundary isomor-
phism πi+1(B(G))→ πi(G) shows that the homotopy of a topological group G
in degree i is the homotopy of the classifying space B(G) in degree i+ 1.
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7 Homotopy Characterization of the Universal Bundle

7.1. Remark We classify an arbitrary principal G-bundle P→ B with a map f : B→
B(G) into the classifying space of the Milnor universal bundle. If all πi(P) = 0, then
we have again an isomorphism πi+1(B)→ πi(G). Since f is part of an morphism of
principal G-bundles (u, f ) : P→ E(G), it commutes with the boundary map in the
homotopy exact triangle and hence

πi+1( f ) : πi+1(B)−→ πi+1(B(G))

is an isomorphism. Now, in the next chapter, we study for which spaces X and Y
a map f : X → Y with the property that π∗( f ) is an isomorphism has a homotopy
inverse g : Y → X . Any space which is homotopy equivalent to a space which admits
the structure of a CW -complex (to be defined in 9(1.2)) has this property, which
is the assertion of the Whitehead mapping theorem 9(2.2). Moreover, the Milnor
construction B(G) can be equipped with the structure of a CW -complex when G can
be given the structure of a CW-complex, which includes most groups of interest in
geometry.

7.2. Theorem Let G be a group which is a CW-complex, and let E → B be a nu-
merable principal G-bundle such that B is a CW-complex and π∗(E) = 0. Then,
the function which assigns to [ f ] ∈ [X ,B] the principal bundle f ∗(E) over X is a
bijection from [X ,B] to the isomorphism classes of numerable principal G-bundles
overX.

Proof. The classification map w : B→ B(G) is a homotopy equivalence with inverse
v, and w−1(E(G)) is isomorphic to E and v−1(E) is isomorphic to E(G). Now, apply
the same theorem that holds for the Milnor construction 7(3.3).

7.3. Remark Now, we can speak of the universal bundle and the classifying space in
the more general setting as a principal G-bundle with contractible total space and
base space as classifying space.

8 Application to the Classifying Space of the Gauge Group

8.1. Notation Let p : P→ B be a principal G-bundle, and let E(G)→ B(G) de-
note a universal principal G-bundle. Let MapG(P,E(G)) denote the subspace of
w ∈Map(P,E(G)) such that w(xs) = w(x)s for all s ∈ G. Let MapP(B,B(G)) de-
note the subspace of f ∈ Map(B,B(G)) such that f−1(E(G)) and P are isomor-
phic principal G-bundles over B. Each w ∈MapG(P,E(G)) determines modulo G,
a map f ∈ MapP(B,B(G)), and this is a continuous map pP : MapG(P,E(G))→
MapP(B,B(G)). The maps w and f are related by the commutative
diagram
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P

p

��

w �� E(G)

��
B

f �� B(G)

8.2. Remark The gauge group AutB(P) of automorphisms of P acts on the right of
MapG(P,E(G)) with u ∈ AutB(P) acting on w equal to wu. Moreover, if w′,w′′ ∈
MapG(P,E(G)) with pP(w′) = pP(w′′), then we have τ(w′,w′′) = (w′)−1w′′ ∈
AutB(P) with w′τ(w′,w′′) = w′′ which is the translation function mapping
MapG(P,E(G)) into a principal AutB(P) bundle over MapP(B,B(G)).

8.3. Theorem With the above notations, the space MapG(P,E(G)) is contractible,
and the classifying space for the gauge group AutB(P) is just MapP(B,B(G)).

Since we will not need this theorem, we refer to Fibre Bundles, (Husemöller
1994) 7(3.4), for the proof which uses (7.2). The proof is based on the isomorphism

MapG(P×Y,E(G))−→Map(Y,MapG(P,E(G)), .)

These spaces with Y having a trivial G-action are path connected by the homotopy
classification theorem. For Y = MapG(P,E(G)), the identity is path connected to the
trivial map giving the contracting homotopy on MapG(P,E(G)).

8.4. Corollary The gauge group of the product (trivial) principal bundle is

AutB(B×G) = Map(B,G) .

9 The Infinite Sphere as the Total Space of a Universal Bundle

We return to the ideas of the previous chapter and the identification of the Milnor
construction as S∞. The space S∞ is seen to be contractible for it is E(Si) for i = 0,1,
or 3.

9.1. Remark The construction of 7(4.4) carries over to E(Si) for any i, and the result
is S∞. If a finite group G acts freely on Si, then G acts diagonally on E(Si) freely,
and in this way, we have a universal principal G-bundle E(Si)→ E(Si)/G by (7.2).

9.2. Example For a finite cyclic group G, we can embed G⊂ S1 so that it acts freely
on S1 and with complex coordinates on the infinite sphere S∞. The quaternion group
of order 8 consisting of {±1,±i,± j,±k} is a subgroup of S3 so that is acts freely
on S3 and with quaternionic coordinates on the infinite sphere S∞.

Reference

Husemöller, D.: Fibre Bundles, 3rd ed. Springer-Verlag, New York (1994) 9, 23, 55, 57, 58, 75, 83, 96



Chapter 9
Cohomology Classes as Homotopy Classes:
CW-Complexes

We consider filtered spaces and especially CW-complexes. Using the cofibre con-
structions, we discuss the Whitehead mapping theorem. This characterization of
homotopy equivalence was already used in the study of the uniqueness properties of
classifying spaces. This completes a question left open in the previous chapter.

The usual definition of cohomology arises in terms of the dual of homology ei-
ther directly for coefficients in a field or in terms of chains and cochains as linear
forms on chain groups. These chains can arise very geometrically as cell chains
or more generally as simplicial chains. The cochains can be algebraic linear func-
tionals or as in the case of manifolds they can be differential forms which become
linear functionals on chains of simplexes upon integration over the simplexes and
summing over the chain.

There is another perspective on the cohomology of X discovered by Eilenberg
and MacLane in terms of homotopy classes of maps of X into an Eilenberg–
MacLane space K(G,n). This is a topological space which has the homotopy type
of a CW-complex and is characterized by its homotopy groups

πi(K(G),n)) =
{

G if n = i
0 if n 
= i

There is a canonical cohomology class ιn ∈ Hn(K(G,n),G) corresponding to the
identity morphism in Hom(G,G), where

Hom(G,G) = Hom(Hn(G,n),G) = Hn(K(G,n),G)

is part of the universal coefficient theorem.
In this chapter, we use the notion of cofibre maps and the cofibre sequence for a

map. This is needed to establish cohomology properties of the K-theory functor and
in the discussion of the above result that cohomology is defined also by maps into a
classifying space which in this case it is a K(π ,n).

Spanier (1963) is a reference for this chapter.

D. Husemöller et al.: Cohomology Classes as Homotopy Classes: CW-Complexes, Lect. Notes Phys. 726, 97–109
(2008)
DOI 10.1007/978-3-540-74956-1 10 © Springer-Verlag Berlin Heidelberg 2008
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1 Filtered Spaces and Cell Complexes

In analyzing a space X , it is often useful to have in addition some kind of decompo-
sition of the space. Frequently, this comes as an increasing sequence of subspaces
with union the entire space.

1.1. Definition A filtered space X is a space X with an increasing union of closed
subspaces Xn such that a set M in X is closed if and only if M∩Xn is closed in Xn.
This topology on X from the Xn is called the weak topology, and we have already
used the topology on, for example, S∞ =

⋃
n Sn, the infinite sphere which was our

first example of a filtered space. If fn|Xn : Xn→ Y is a sequence of continuous func-
tions satisfying fn|Xn−1 = fn−1 for each n, then there is a function f : X → Y with
f |Xn = fn, and the weak topology condition is exactly what is needed to show that f
is continuous. In order to extend fn−1 to fn, we need further properties on a filtered
space.

1.2. Definition A CW-complex is a filtered space such that each Xn−1 → Xn is a
cofibration of the form

∨I(n)S
n−1 α−→ Xn−1 −→Cα = Xn.

For each i ∈ I(n), we have a restriction αi : Sn−1→ Xn−1 which is used to attach
a closed n-cell en(i) to Xn−1. The set Xn is a disjoint union of Xn−1 and the interiors
of each of the cells en(i). Then the cofibre Xn/Xn−1 is a wedge of n-spheres

∨i∈I(n)e
n(i)/∂en(i) = ∨i∈I(n)S

n

consisting of the closed n-cells with all boundary points reduced to a single point
which is topologically isomorphic to the one-point union of a family of n-spheres.

1.3. Remark Coming back to the question of extending fn−1 to fn for a CW-complex
X , we see that it is possible when fn−1α is null homotopic on each of the disjoint
spheres. Up to the question of base points, this corresponds to a family of elements
[αi] ∈ πn−1(Xn−1) indexed by i ∈ I(n) which must be zero.

The above considerations are part of general obstruction theory where the ele-
ments [αi] are the obstructions to extending the continuous map. Here is a basic
application.

1.4. Theorem Let X be a CW-complex with all homotopy groups πi(X) = 0 for i≥ 0.
Then, X is contractible.

Idea of the Proof. We must construct a map h : X × [0,1]→ X step by step with
the property that h(x,0) = x and h(x,1) = ∗, a fixed point in X0. For x ∈ X0, we
define h0(x,t) as a path from x to ∗ ∈ X0 which is possible since π0(X) = 0 means
any two points can be joined by a path, that is, X is path connected. We define a
CW-complex structure on X× [0,1] by the requirement that
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(X× [0,1])n = (Xn×{0,1})∪ (Xn−1× [0,1]).

For the inductive step assume that we have a deformation hn−1 : (X× [0,1])n−1→
X with hn−1(x,0) = x and hn−1(x,1) = ∗. We define hn : (X× [0,1])n→ X using the
cofibre sequence going from (X × [0,1])n−1 to (X× [0,1])n

∐
I(n)

Sn−1 α−→ (X × [0,1])n−1 −→Cα = (X× [0,1])n.

The obstruction is given by maps αi which are zero as in the discussion of (1.3).
This proves the theorem.

1.5. Remark The construction of the space En(G) of 7(2.3) does not require G to be
a group and can be defined as before for a general topological space T . The resulting
space En(T ) is also called the join of T with itself n + 1 times, and if T is a CW-
complex, then En(T ) and E(T ) are CW-complexes. In particular, for a topological
group G which is a CW-complex, E(G) and B(G) are also CW-complexes. The CW-
filtration E(G)n on E(G) in general differs from the Milnor construction filtration
En(G) on E(G).

1.6. Example The filtration of subspheres Si−1 ⊂ Si ⊂ . . . on either Sm or S∞ is a
CW-filtration with Sn/Sn−1 = Sn∨Sn. This last quotient of the n-sphere (for n > 0)
was used to define the multiplication in the nth homotopy groups of a pointed space.
Since E({±1})= S∞, the group S0 appears in the fact that En(S0)/En−1(S0) has two
components Sn one for each element of S0 = {±1}.

2 Whitehead’s Characterization of Homotopy Equivalences

The previous homotopy extension theorem has an analog with the Whitehead ho-
motopy equivalence characterization for mappings between spaces.

2.1. Remark Since taking the homotopy groups is a functor on the homotopy cat-
egory with base points and since a homotopy equivalence is an isomorphism in
the homotopy category, a homotopy equivalence f : X → Y has the property that
f∗ : π∗(X ,x)→ π∗(Y, f (x)) is an isomorphism for each x ∈ X .

2.2. Theorem (Whitehead) Let f : X → Y be a map between path connected CW-
complexes. If

f∗ : π∗(X ,x)−→ π∗(Y, f (x))

is an isomorphism for some x ∈ X, then f is a homotopy equivalence.

Idea of the proof. By using the mapping cylinder Z( f ) of f , we can replace Y by
Z( f ) and f by the inclusion X ⊂ Z( f ). Thus, we can assume that f is an inclusion
X ⊂ Y and that Y is X with cells adjoined as in a CW-complex. We wish to extend
the identity on A = X× [0,1]∪Y ×{0} to a map Y × [0,1]→ A. The the restriction
to Y ×{1} defines a homotopy inverse of f .

For further background see the book by Whitehead (1978), especially Chaps. 2
and 5.



100 9 Cohomology Classes as Homotopy Classes: CW-Complexes

3 Axiomatic Properties of Cohomology and Homology

A complete development of homology and cohomology would take us out of the
scope of this work. So we will list properties of homology and cohomology which
can be used in an axiomatic definition as given in the book of Eilenberg and Steen-
rod. Let k be a field, or more generally a commutative ring, and let (k) (resp.
(vect/k)) denote the category of k-vector spaces or k-modules (resp. finitely gen-
erated k-vector spaces or finitely generated projective k-modules). The ring k plays
the role of coefficients for the theory.

3.1. Functorial Properties Homology and cohomology are sequences of functors
on the category (pairs) of pairs of spaces with values in (k) or in (vect/k). More
precisely, homology is given through functors Hq : (pairs)→ (k), while cohomology
is given through functors Hq : (pairs)op→ (k).

If f : (X ,A)→ (Y,B) is a map of pairs, that is, f (A) ⊂ B as a map f : X → Y ,
then on homology Hq( f ) = f∗ : Hq(X ,A)→ Hq(Y,B) and on cohomology Hq( f ) =
f ∗ : Hq(Y,B)→ Hq(X ,A) are k-linear maps. For a second map of pairs g : (Y,B)→
(Z,C), the composition relation takes the form (g f )∗ = g∗ f∗ and (g f )∗= f ∗g∗. Also
(identity)∗ = identity and (identity)∗ = identity.

3.2. Absolute Versus Reduced Homology and Cohomology We write Hq(X) =
Hq(X , /0) and Hq(X) = Hq(X , /0) for the so-called absolute homology and cohomol-
ogy modules. These are functors on (top), the category of topology spaces. Reduced
homology and cohomology is defined for pointed spaces X relative to the base point,
and we write H̃q(X) = Hq(X ,∗) and H̃q(X) = Hq(X ,∗) for the corresponding func-
tors on (top)∗, the category of pointed spaces.

3.3. Homotopy Properties If f ′, f ′′ : (X ,A)→ (Y,B) are homotopic maps of pairs,
that is, there is a homotopy ht : X → Y with h0 = f ′, h1 = f ′′, and ht(A)⊂ B for all
t, then Hq( f ′) = Hq( f ′′) and Hq( f ′) = Hq( f ′′).

In particular, homology and cohomology are defined on a quotient category of
pairs. Also Hq( f ) and Hq( f ) are isomorphisms for a homotopy equivalence, that
is, a map which is an isomorphism in the homotopy category. Furthermore, the
homology and cohomology of a contractible space is isomorphic to the homology
and cohomology of a point.

The next property of excision takes various forms, but since we consider usually
pairs (X ,A) of the form, where X is obtained from A by attaching cells, we formulate
excision in terms of the collapsing map

(X ,A)−→ (X/A,∗).

Further, using the mapping sequences, we can formulate the exact sequence
properties.

3.4. Excision and Exactness A cofibrant pair (X ,A) is a pair where the inclusion
A→ X is a cofibration. If (X ,A) is a cofibrant pair, then the excision morphisms
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Hq(X ,A)−→ Hq(X/A,∗) and Hq(X/A,∗)−→ Hq(X ,A)

are isomorphisms for all q. Moreover, for the mapping sequence

A
j−→ X −→Cj −→ S(A)

S( j)−→ S(X),

we have the following exact sequences of linear mappings for the reduced homology
modules

H̃q(A)−→ H̃q(X)−→ H̃q(Cj)−→ H̃q(S(A))−→ H̃q(S(X))

and for the reduced cohomology modules

H̃q(S(X))−→ H̃q(S(A))−→ H̃q(Cj)−→ H̃q(X)−→ H̃q(A).

In particular, we have formulated these two basic properties in terms of the re-
duced homology and cohomology. At this point, there is no relation between ho-
mology and cohomology for different values of q, an integer. In the next axiom, we
have this relation.

3.5. Suspension Axiom We have morphisms of functors

H̃q(X)−→ H̃q+1(S(X)) and H̃q+1(S(X))−→ H̃q(X).

Again this is for reduced homology and cohomology.

3.6. Classical Form of Exactness For the mapping sequence of a cofibrant pair
(X ,A)

A
j−→ X −→Cj −→ S(A)

S( j)−→ S(X),

we have the following exact sequences of linear mappings for the reduced homol-

ogy modules

H̃q(A)−→ H̃q(X)−→ H̃q(X/A)−→ H̃q−1(A)−→ H̃q−1(X)

and for the reduced cohomology modules

H̃q−1(X)−→ H̃q−1(A)−→ H̃q(X/A)−→ H̃q(X)−→ H̃q(A).

Further, if excision is incorporated into the middle terms, we have the following

exact sequences of linear mappings for the reduced homology modules

H̃q(A)−→ H̃q(X)−→Hq(X ,A)−→ H̃q−1(A)−→ H̃q−1(X)

and for the reduced cohomology modules

H̃q−1(X)−→ H̃q−1(A)−→ Hq(X ,A)−→ H̃q(X)−→ H̃q(A).
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Also these hold for either the reduced or the absolute homology and cohomology.

3.7. Remark From the homotopy property, exactness, and excision, we can go back
to the suspension property using S(A) = C(A)/A, for H̃(CA) = 0 in the reduced
theory so we have that

0−→ H̃q(S(A))−→ H̃q−1(A)−→ 0 and 0−→ H̃q−1(A)−→ H̃q(S(A))−→ 0

are exact, which implies that the suspension property holds.

3.8. Dimension Axiom For ordinary homology and cohomology, we require that
the absolute Hi(∗) = Hi(∗) = 0 for i 
= 0 and in degree i = 0 it is one dimensional,
or the reduced homology and cohomology it is

H̃i(S0) = H̃i(S0) =
{

0 for i 
= 0
k for i = 0.

Here, k is the one-dimensional k-module.
Of special interest is k = Z, where Z-modules are just abelian groups and (Z) =

(ab) the category of abelian groups.

3.9. Remark With the dimension axiom, we have the following calculation for the
ordinary reduced homology and cohomology of spheres

H̃i(Sq) = H̃i(Sq) =
{

0 for i 
= q
k for i = q.

This is an immediate application of the suspension property and the relation S(Sq) =
Sq+1.

One frequently used tool is the following sequence which is a consequence of
the above properties.

3.10. Mayer–Vietoris Sequence Let A,B ⊂ X such that the interiors of A and B
form a covering of X . Then, the natural inclusions yields a long exact sequence in
homology

Hq+1(X)→ Hq(A∩B)−→ Hq(A)⊕Hq(B)−→ Hq(X)−→Hq−1(A∩B)

and one in cohomology

Hq−1(A∩B)−→ Hq(X)−→ Hq(A)⊕Hq(B)−→ Hq(A∩B)−→Hq+1(X).

Here, the homomorphism out of Hq(A∩B) is the sum of the homomorphisms in-
duced by the inclusions A∩B⊂ A,B while the homomorphism into Hq(X) is given
by the difference of the two homomorphisms induced by the inclusions A,B⊂ X . In
the cohomological case, the homomorphism is given in a corresponding manner.
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3.11. Remark There is a further extension of all the above considerations
to homology Hq(X ,A;M) and cohomology Hq(X ,A;M) with coefficients in an
abelian group M, or more generally, a k-module M which is useful for certain
considerations. When we write, for example, Hq(X ;Z/n), this can mean either co-
homology as a Z/n-module or cohomology group with coefficients in the abelian
group Z/n.

4 Construction and Calculation of Homology
and Cohomology

4.1. Singular Theory The most important construction of homology and coho-
mology starts with the so-called singular simplices into a space as basis elements
of chain groups. The linear forms on chain groups are the cochain groups, and the
boundary map d on chains under transpose becomes the coboundary map δ on the
cochains. Then, homology is the quotient H∗(X) = ker(d)/im(d) and cohomology
is the quotient H∗(X) = ker(δ )/im(δ ). In the process of defining these concepts
precisely, one shows that dd = 0 and hence also δδ = 0 which yields the relevant
inclusions im(d)⊂ ker(d) and im(δ )⊂ ker(δ ).

4.2. deRham Theory Let M be a smooth manifold, and let Aq(M) denote the real
or complex vector space of differential q-forms. In local coordinates x1, . . . ,xn, these
are expressions of the form

θ = ∑
i(1)<...<i(q)

ai(1),...,i(q)dxi(1)∧ . . .∧dxi(q) .

The algebra of differential forms centers around the basic relation dxi ∧ dx j =
−dx j∧dxi which is equivalent to dxi∧dxi = 0. The differential dθ is defined using

d f = ∑i
∂ f
∂xi

dxi, and it is given by the formula

dθ = ∑
i(1)<...<i(q)

(dai(1),...,i(q))∧dxi(1)∧ . . .∧dxi(q).

Then, the differential on forms d : Aq(M)→ Aq+1(M) is a coboundary map with
dd = 0. From Aq(M) we form the subquotient

Hq
DR(M) =

ker(d)
im(d)

which is called qth deRham cohomology group. It is a real or complex vector space
depending on whether the forms are real or complex.

deRham cohomology is an analytical definition of cohomology while singular
theory is topological. Both play a fundamental role in topology and geometry. For
further reading see Spanier (1963) or Warner (1971).
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As for calculating homology and cohomology of a space, we use the fact that we
know the homology and cohomology of the spheres and hence, also the following
sum formulas.

4.3. Wedge Product Formulas For homology, we have

H̃q(X1∨ . . .∨Xm) = H̃q(X1)⊕ . . .⊕ H̃q(Xm),

and for cohomology, we have

H̃q(X1∨ . . .∨Xm) = H̃q(X1)⊕ . . .⊕ H̃q(Xm).

These formulas follow from the cofibre character of the wedge product.

4.4. Cellular Chains for a Finite Complex Let X be a finite CW-complex so that
Xn = X for some n, and the minimal one is the dimension zero and for each m, the
number of spheres in the wedge decomposition of Xm/Xm−1 is finite denoted by
c(m). In particular, by (4.3), we have

H̃q(Xm/Xm−1) =
{

kc(m) if q = m
0 if q 
= m

and

H̃q(Xm/Xm−1) =
{

kc(m) if q = m
0 if q 
= m

Consider several stages in the filtration of X at once from Xm−2 to Xm+1, and use the
exact sequence in homology with the following k-modules to define what is called
the cell complex of X

Hm+1(Xm+1,Xm) d−→ Hm(Xm,Xm−1)
d−→Hm−1(Xm−1,Xm−2)

↘ ↗ ↘ ↗ ,

H̃m(Xm) H̃m−1(Xm−1)

with Cm(X) = Hm(Xm,Xm−1) and differential d : Cm(X)→Cm−1(X). We leave it to
the reader to check dd = 0, prove Hm(C∗(X)) ∼= Hm(X), and to set up C∗(X), the
corresponding cell complex for cohomology.

4.5. Example Let X be a finite cell complex with the dimension of the cells spaced
in the sense that if Xm−Xm−1 is nonempty, then Xm−2 = Xm−1 and Xm = Xm+1 or in
terms of the number of m cells c(m), that if c(m) 
= 0, then c(m−1) = c(m+1) = 0.
Then, the homology and cohomology can be calculated as Hm(X) = Hm(X) = kc(m)

since the differentials in the cell complex are zero.

4.6. Relation Between Homology and Cohomology Let M be a k-module, and
let X be a space. If either k is a field or if X is a space with Hn−1(X ,k) = 0, then
Hn(X ,M) = Homk(Hn(X ,k),M). The corresponding statement is true on the chain
level, and under either of these hypothesis, it holds on the homology level.
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5 Hurewicz Theorem

In this section, all homology is over the integers.

5.1. Hurewicz Map Let H̃n(Sn) = Zin be a choice of a generator of the infinite
cyclic reduced homology group of Sn. For a pointed space X , the Hurewicz map
φ : πq(X)→ H̃q(X) is defined by

φ([w]) = Hq(w)(iq).

In other words, a map defining the element in the homotopy group is used homo-
logically to carry the fundamental class iq to a homology class in H̃q(X).

5.2. Remark For q > 0, the Hurewicz map is a group morphism.

5.3. Theorem (Poincaré) Let X be a pointed path connected space. The Hurewicz
morphism φ : π1(X)→ H1(X) is a surjective group homomorphism whose kernel is
the commutator subgroup of π1(X).

For the proof of (5.3), we use a covering space corresponding to the commutator
subgroup of π1(X).

This result was extended by Hurewicz to the following theorem.

5.4. Theorem For a path connected space with abelian fundamental group π1(X),
the following are equivalent: πi(X) = 0 for i < m if and only if reduced homology
Hi(X) = 0 for i < m, and moreover, the Hurewicz map

(1) φ : πm(X)→ Hm(X) is an isomorphism and
(2) φ : πm+1(X)→ Hm+1(X) is an epimorphism.

For the proof of (5.4), we use induction on m starting with the Poincaré theorem
together with the loop space fibration ΩX→ PX→ X , where the πi−1(ΩX) = πi(X)
and the same holds for homology in a range near m.

6 Representability of Cohomology by Homotopy Classes

6.1. Definition An Eilenberg–MacLane space K(G,n) is a space which can be given
the structure of a CW-complex and whose homotopy groups are given by

πi(K(G),n)) =
{

G if n = i
0 if n 
= i ,

The above data determine the homotopy type of K(G,n).

By the Hurewicz theorem, φ : G→ Hn(K(G,n)) is an isomorphism of abelian
groups for n > 1, and for n = 1 it is the abelianization of the group G. There is
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a canonical cohomology class ιn ∈ Hn(K(G,n),G) corresponding to the identity
morphism in Hom(G,G), where

Hom(G,G) = Hom(Hn(G,n),G) = Hn(K(G,n),G)

by the universal coefficient theorem (4.6) for abelian groups.
Now as a sort of dual to the Hurewicz map, we have the following.

6.2. Definition The Eilenberg–MacLane map

ψ : [X ,K(G,n)]−→ Hn(X ,G)

is defined by ψ([w]) = Hn(w)(ιn).

In other words, a map defining the element in the cohomology group is used co-
homologically to carry the fundamental class ιn to the corresponding cohomology
class in Hn(X ,G).

6.3. Theorem The Eilenberg–MacLanemap is an isomorphism for a CW-complex X.

For the proof of (6.3), we use induction on the skeletons Xm which are CW-
complexes of dimension ≤ m. Then, it is all zero up to m < n, and at m = n, n +
1, the result follows by consideration of the three cofibre maps Xn−1 → Xn, Xn →
Xn+1, and Xn+1→X and their commutation properties with the Eilenberg–MacLane
morphism.

7 Products of Cohomology and Homology

Let k denote a commutative ring, for example, Z, Z/n, Q, R, or C. The cohomology
groups Hi(X) or Hi(X ,A) shall refer to cohomology with coefficients in k (cf. 3.11).

7.1. Cup Product There is a natural pairing H p(X)×Hq(X)→ H p+q(X) on the
cohomology over k. The image of a pair (a,b) is called the cup product of a and b
and is denoted ab or a � b.

The naturality means that for a ∈ H p(X), b ∈ Hq(X), and f : Y → X , we have
f ∗(ab) = f ∗(a) f ∗(b). The extension to relative cohomology has the form of a natu-
ral pairing

H p(X ,A′)×Hq(X ,A′′)−→H p+q(X ,A′ ∪A′′).

7.2. Algebraic Properties of the Cup Product The cup product is associative and
has a unit 1 ∈ H0(X) which comes from the cochain with value 1 on each singular
0-simplex. The cup product is graded commutative meaning that for a∈H p(X),b ∈
Hq(X) one has

ab = (−1)pqba.

This is the same graded commutativity that we have in a graded exterior alge-
bra. It means that for p odd that 2a2 = 0, and when there is no 2 torsion, we have
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a2 = 0. In particular, a polynomial ring will have to be on an even generator or it
will have to be over a ring with 2 = 0. This is illustrated by the following examples
of cohomology rings.

7.3. Example

(1) For the sphere Sq, the cohomology ring H∗(Sq,k) is the exterior algebra E[a;q]
on one generator a in degree q with a2 = 0. Here, H0(Sq) = k and Hq(Sq) = k.a
while Hi(Sq) = 0 for i 
= 0,q.

(2) For the infinite real projective space P∞(R), the cohomology over the field F2 =
Z/2 of two elements is the polynomial algebra H∗(P∞(R),F2) = F2[w] with
generator w in degree 1.

(3) For the infinite complex projective space P∞(C), the cohomology over any k is
the polynomial algebra H∗(P∞(R),k) = k[c] with generator c in degree 2.

(4) For the infinite quaternionic projective space P∞(H), the cohomology over any k
is the polynomial algebra H∗(P∞(H),k) = k[v] with generator v in
degree 4.

In the next chapter, we will see that example (2) has to do with character-
istic classes of real vector bundles, called Stiefel–Whitney classes, and example
(3) has to do with characteristic classes of complex vector bundles, called Chern
classes. The proof that these are polynomial algebras can be derived from Poincaré
duality. For Poincaré duality in Chap. 11, we need another product called the
cap product mixing cohomology and homology for a good formulation of the
duality map.

7.4. Cap Product The cap product is a natural pairing over k which is defined by
Hi(X)×Hn(X ,A)→ Hn−i(X ,A). For c ∈ Hi(X) and u ∈ Hn(X ,A) the image under
the cap product is denoted by c � u. For an explicit description of the cap product,
we refer to Spanier’s book.

The naturality will be explained further in the context of duality. Its relation to the
cup product is contained in the next remark.

7.5. Cup–Cap Relation For u ∈ Hn(X ,A) and a ∈ H p(X),b ∈ Hq(X), we have
the relation (a � b) � u = a � (b � u) in Hn−p−q(X ,A). Also for i = n and H0

(X ,A) = k, we have simple evaluation 〈c,u〉= c � u of a cocycle on a chain.

8 Introduction to Morse Theory

In (1.1), we introduced the notion of filtered space, and Morse theory generates
from the following construction filtered manifolds which have a cell decomposition
up to homotopy. Hence, there are cases where there is a down to earth calculation
of homology.
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8.1. Example Let f : X → [0,+∞) be a continuous function, and let 0 ≤ t0 < t1 <
.. . < tn < .. . be an increasing sequence of real numbers converging to infinity. Then,
the filtration defined by f and the sequence (tn)n∈N is given by

X0 = f−1([0,t1])⊂ . . .⊂ Xp = f−1([0,tp])⊂ . . .⊂ X∞ = f−1([0,t∞)) .

It is difficult, in general, to say anything about the layers (Xp,Xp−1) of this fil-
tration without further information about the function. Morse functions are a class
of functions where more information is available about such filtrations defined by
positive real-valued functions.

8.2. Notation Let f : M→R be a smooth real-valued function on a smooth manifold
with tangent bundle T (M). The derivative at x∈M is a linear map T ( f )x : T (M)x→
R, and when T ( f )x = 0, the second derivative at x ∈M is defined as a bilinear map

T 2( f )x : T (M)x×T (M)x −→ R .

8.3. Definition Let f : M→ R be a smooth real-valued function on a smooth man-
ifold M. A critical point x of f is an x ∈ M, where T ( f )x = 0, and the associated
critical value is y = f (x) ∈ R. A critical point x ∈M is nondegenerate provided the
bilinear second derivative T 2(M)x is a nondegenerate bilinear form. The index of f
at critical point is the number of negative eigenvalues of the T 2( f ).

If x ∈M is a minimum or maximum of f , then x is a critical point, and further
if f is nondegenerate at a minimum x (resp. maximum x), then the index of f is 0
(resp. dim(M)).

8.4. Definition A Morse function on a compact, smooth manifold M is a smooth
function f : M → R with only a finite number of critical points all of which are
nondegenerate. A nice Morse function F is one where the critical point of index i
has critical value i ∈ R.

There is a version of this definition for noncompact manifolds and even infinite
dimensional ones due to Palais and Smale. This is treated in Schwarz (1993). The
two basic references for Morse theory are Milnor (1963) and Milnor (1965). In
particular, in these books, one finds a proof of the following theorem.

8.5. Theorem Every compact smooth manifold M admits a nice Morse function.

The existence of a Morse function is a partition of unity argument while to change
it to a nice Morse function is a much deeper result.

Applying the scheme in (8.1) with the following proposition, we see how a Morse
function leads to a cell decomposition of a smooth manifold up to homotopy.

8.6. Proposition Let f : M→R be a smooth real-valued function on a smooth man-
ifold M such that there are only q critical points in the subset f−1([t−ε,t +ε]) and
all are of index i. Then f−1((−∞,t + ε]) has the homotopy type of f−1((−∞,t− ε])
with q cells of dimension i adjoined by maps Si−1→ f−1(t−ε)⊂ f−1((−∞,t−ε]).
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8.7. Remark In fact, a Morse function not only can be used to control the homotopy
type of M but also its diffeomorphism type. The attachment of the sphere in the
previous proposition can be done up to diffeomorphism by thickening Si−1⊂ Si−1×
Dn−i and attaching Di×Dn−i, called a handle. This is also explained very well in
the books of Milnor cited above.
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Chapter 10
Basic Characteristic Classes

The theory of characteristic cohomology classes of bundles especially vector bun-
dles grew up in several contexts like the notion of cohomology of a space. It was
natural to try and make calculations with bundles in terms of cohomology for two
reasons. With homology and cohomology, there were combinatorial tools for com-
putation. Then, cohomology and bundles each had contravariant properties under
continuous mappings. The first definitions of characteristic classes were given by
obstructions to existence to cross sections of a bundle or related fibre bundle. Ex-
amples of this can be found in the book by Steenrod (1951).

With the understanding of the cohomology of fibre spaces including the Leray
spectral sequence, the theory of characteristic classes was developed along more
intrinsic lines. It was clear that the separate theories of Chern classes for complex
vector bundles and of Stiefel–Whitney classes of real vector bundles had a parallel
structure. This became completely clear with Hirzebruch’s axiomatization of the
Chern classes which carries over immediately to Stiefel–Whitney classes. In the first
sections, we carry this out using an approach of Grothendieck which also works in
the context of algebraic geometry.

Then, we have the Euler class and Pontrjagin classes which are introduced also
by elementary fibre space methods. Pontrjagin classes can be related nicely to Chern
classes. Then, it becomes clear that with splitting principles for vector bundles into
line bundles that families of characteristic classes can be introduced from power
series by their properties on line bundles. From this, we generate important classes
in the theory of manifolds, that is, the Todd class, the L-class, and the Â-class, and
these classes evaluated on the fundamental homology class of a manifold lead to
specific characteristic numbers. This is considered in the next chapter.

Chapter 17 of Fibre Bundles (Husemöller 1994) is a reference for this chapter.
The topic is also treated in Milnor and Stasheff (1974).

1 Characteristic Classes of Line Bundles

The theory of characteristic classes starts with the observation that the same space
can be the classifying space for bundles, so of the form B(G), and for cohomology

D. Husemöller et al.: Basic Characteristic Classes, Lect. Notes Phys. 726, 111–125 (2008)
DOI 10.1007/978-3-540-74956-1 11 © Springer-Verlag Berlin Heidelberg 2008
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classes, so of the form K(Π ,n). There are two cases of this coincidence. The first
is related with real vector bundles while the second is related to complex vector
bundles.

1.1. The Real Infinite-Dimensional Projective Space P∞∞∞(R) It classifies three
types of objects:

(1) real line bundles over a space X , for P∞(R) has a universal real line bundle,
(2) double coverings of a space X , so P∞(R) = B({±1}), and
(3) one-dimensional cohomology classes on X with values in the group Z/2Z or
{±1} of two elements, so P∞(R) = K(Z/2Z,1).

A real line bundle L on a space X is classified by a homotopy class of maps
u : X → P∞(R) = K(Z/2Z,1). The related cohomology class in H1(X ,Z/2Z) =
[X ,K(Z/2Z,1)], denoted by w1(L), is called the first Stiefel–Whitney class of L.

1.2. The Complex Infinite-Dimensional Projective Space P∞∞∞(C) It classifies
three types of objects:

(1) complex line bundles over a space X , for P∞(C) has a universal complex line
bundle,

(2) principal circle bundles over a space X , so that P∞(C) = B(S1), and
(3) two-dimensional cohomology classes on X with values in the group Z of inte-

gers, so P∞(C) = K(Z,2).

A complex line bundle L on a space X is classified by a homotopy class of maps
u : X → P∞(C) = K(Z,2). The related cohomology class in H2(X ,Z) = [X ,K(Z,2)],
denoted by c1(L), is called the first Chern class of L.

1.3. Notation Let PicC(X) (resp. PicR(X)) denote the group of isomorphism classes
of complex (resp. real) line bundles on X with group operation induced by the tensor
product. The trivial line bundle is the unit, and the dual is the negative.

1.4. Remark Then with the induced line bundle, we define two functors into abelian
groups

PicC, PicR : (top)op −→ (ab).

The characteristic classes w1 and c1 define isomorphisms of functors

w1 : PicR()−→ H1( ,Z/2Z) and c1 : PicC()−→H2( ,Z)

defined on the opposite category of topological spaces to the category of abelian
groups. This is the essentially unique situation where the characteristic class com-
pletely determines the bundle.

In higher dimensions, there are more characteristic classes of a vector bundle, but
they are usually not enough characteristic classes to classify the isomorphism class
of the vector bundles. In the next section, we introduce the fibre space results which
are used to define general characteristic classes in terms of the characteristic class
of line bundles.
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2 Projective Bundle Theorem and Splitting Principle

2.1. Definition Let E be a vector bundle over X . Let q : P(E)→ X be the associated
bundle of projective spaces, where the fibre q−1(x) = P(E)x is the projective space
of linear forms on the fibre Ex.

Observe that if E|U is trivial, then q : P(E|U)→U is trivial, and if E = f−1(E ′) is
an induced bundle, then q : P(E)→ X is the induced associated bundle f−1(P(E ′))
of projective spaces.

2.2. Remark On the associated bundle of projective spaces q : P(E)→ X , there is a
line bundle LE → P(E) with the property that LE |P(E)x is the canonical line bundle
on the projective space P(E)x for each x ∈ X .

The next two theorems, the first for complex vector bundles and the second for
real vector bundles, are easy consequences of the cohomology spectral sequence for
a fibre map q, but they can also be proved for bundles of finite type with an inductive
Mayer–Vietoris argument (i.e., by iteratively using (3.10)).

2.3. Theorem The associated bundle of projective spaces q : P(E) → X for an
n-dimensional complex vector bundle p : E → X has an injective integral cohomol-
ogy morphism q∗ : H∗(X)→H∗(P(E)) making H∗(P(E)) into a free H∗(X)-module
with basis

1,c1(LE), . . . ,c1(LE)n−1.

2.4. Theorem The associated bundle of projective spaces q : P(E)→ X for an n-
dimensional real vector bundle p : E → X has an injective mod 2 cohomology mor-
phism q∗ : H∗(X ,F2)→ H∗(P(E),F2) making H∗(P(E),F2) into a free H∗(X ,F2)-
module with basis

1,w1(LE), . . . ,w1(LE)n−1.

The following two theorems are useful for uniqueness results and for doing cer-
tain calculations.

2.5. Theorem For an arbitrary complex vector bundle E over a space B, we have a
map f : B′ → B with two properties:

(1) f ∗ : H∗(B,Z)→ H∗(B′,Z) is injective and
(2) f ∗(E) =⊕iLi, where the Li are line bundles over B′ .

2.6. Theorem For an arbitrary real vector bundle E over a space B we have a map
f : B′ → B with two properties:

(1) f ∗ : H∗(B,F2)→ H∗(B′,F2) is injective and
(2) f ∗(E) =⊕iLi, where the Li are line bundles.

For the proofs of theorems (2.5) and (2.6), we use induction on the dimension of the
vector bundle E . For line bundles, there is nothing to prove. Using the associated
bundle of projective spaces q : P(E)→ B for the n-dimensional vector bundle p :
E → B, we have q−1(E) = LE ⊕QE , where LE is the canonical line bundle on P(E)
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and QE is a quotient which splits off by direct sum. Since dimQE < dimE , we can
use induction to obtain a map g : B′ → P(E) with the two properties (1) and (2) of
the respective theorems. Then, f = qg is the desired splitting map. Here, we use
(2.3) for (2.5) and (2.4) for (2.6).

3 Chern Classes and Stiefel–Whitney Classes of Vector Bundles

3.1. Definition A theory of Chern classes for complex vector bundles assigns to
each complex vector bundle E over a space B cohomology classes ci(E)∈H2i(B,Z)
satisfying the axioms:

(1) ci(E) = 1 for i = 0 and ci(E) = 0 for i > dim(E).
(2) For a map f : B′ → B and a vector bundle E over B, we have ci( f−1(E)) =

f ∗(ci(E)) in H2i(B′,Z)
(3) For the Whitney sum, we have the relation

ci(E ′ ⊕E ′′) =∑i= j+k
c j(E ′)ck(E ′′)

using the cup product on cohomology, where

H2 j(B,Z)⊗H2k(B,Z)→ H2i(B,Z)

(4) For a line bundle L over B, the first Chern class

c1(L) ∈H2(B,Z)

is defined by representing both line bundle isomorphism classes and two-
dimensional integral cohomology classes by K(Z,2) = P∞(C).

The Chern classes exist and are unique by the projective bundle theorem and the
splitting principle.

3.2. Uniqueness of the Chern Classes The first Chern class of a line bundle is
unique by axiom (4). For an arbitrary complex vector bundle E over a space B, we
have a map f : B′ → B with two properties, namely that f ∗ : H∗(B,Z)→ H∗(B′,Z)
is injective and that f ∗(E) =

⊕
i Li, where the Li are line bundles. Now, the mth

Chern class cm(E) of E must map under an injection f ∗ to f ∗cm(E) = cm(⊕iLi) by
axiom (2). By axiom (3), the Whitney sum formula, this must be

cm(
⊕

i

Li) = ∑
i(1)<...<i(r)

c1(Li(1)) . . .c1(Li(r)),

and since only first Chern classes of line bundles appear in the formula, it is well
defined by axiom 4. Since f ∗ is injective on cohomology, the Chern class is uniquely
determined by the axioms.
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The Grothendieck definition of the Chern classes follows by considering the rela-
tion of linear dependence of powers of the first Chern class in the projective bundle
theorem for an arbitrary complex vector bundle E over a space B.

3.3. Definition of the Chern Classes The associated bundle of projective spaces
q : P(E)→X for an n-dimensional complex vector bundle p : E→X has an injective
integral cohomology morphism

q∗ : H∗(X)−→ H∗(P(E))

making H∗(P(E)) into a free H∗(X)-module with basis

1,c1(LE), . . . ,c1(LE)n−1.

In particular, c1(LE)n is a unique linear combination of these basis elements with
coefficients which we define to be the Chern classes ci(E) of E . More precisely, we
have the relation

c1(LE)n = cn(E)+ cn−1(E)c1(LE)+ . . .+ c1(E)c1(LE)n−1.

3.4. Remark Now, we have to check the axioms (1)–(4) in (3.1). As for axiom (1),
it is immediate from the formula, and for axiom (4), the defining relation reduces to
c1(LE) = c1(E) for a line bundle E which then E = LE . The functoriality property
(2) follows from the functoriality of the associated bundle q : P(E)→B of projective
spaces, the line bundle LE , and c1(LE). For the Whitney sum axiom, we begin with
the following space case.

3.5. Proposition Let E = L1⊕ . . .⊕ Ln be a Whitney sum of complex line bundles
over B. Then, we have the relation

1 + c1(E)+ . . .+ cn(E) = (1 + c1(L1)) . . . (1 + c1(Ln)) in Hev(B,Z).

Proof. On P(E), we have two exact sequences

0−→ LE −→ q−1(E) = q−1(L1)⊕ . . .⊕ q−1(Ln)−→QE −→ 0,

and tensoring with the dual L∨E , we have

0→ LE ⊗L∨E −→ (q−1(L1)⊗L∨E)⊕ . . .⊕ (q−1(Ln)⊗L∨E)−→QE ⊗L∨E → 0.

The line bundle LE ⊗ L∨E has an everywhere nontrivial section σ which induces
on each of the n summands a nontrivial section σi which is everywhere nonzero
on an open subset Vi of P(E). Then, the first Chern class c1(q−1(Li)⊗ L∨E) =
c1(q−1(Li))−c1(LE) = 0 in H2(P(E),Vi;Z). The product over i = 1, . . . ,n is zero in
H2(P(E),Z) giving the relation 0 =∏i=1(c1(q−1(Li))− c1(LE)), which compared
to c1(LE)n = cn(E)+ cn−1(E)c1(LE)+ . . .+ c1(E)c1(LE)n−1 gives the assertion of
the proposition.
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3.6. Theorem The Chern classes for complex vector bundles exist satisfying axioms
(1)–(4) of (3.1). They are uniquely determined by the axioms.

Proof. It remains to check the Whitney sum axiom (3). For two vector bundles E ′
and E ′′ over B, we apply the splitting principle two times to obtain a map f : B′ → B
inducing a monomorphism in integral cohomology and such that f−1(E ′) = L1⊕
. . .⊕ Lm and f−1(E ′′) = Lm+1 ⊕ . . .⊕ Ln. Now, we use the previous proposition
for the sum of line bundles f−1(E ′)⊕ f−1(E ′′) = f−1(E ′ ⊕ E ′′). Then, we have
ci( f−1(E ′ ⊕E ′′)) = ∑i= j+k c j( f−1(E ′))ck( f−1(E ′′)) in H∗(B′,Z), and this implies
the Whitney sum property

ci(E ′ ⊕E ′′) = ∑
i= j+k

c j(E ′)ck(E ′′)

in H∗(B,Z). This proves the theorem.
The Stiefel–Whitney characteristic classes wi(E) of a real vector bundle E over

B are elements of Hi(B,F2). They have the following axiomatic characterization
which parallels the axioms of the Chern classes.

3.7. Definition A theory of Stiefel–Whitney classes for real vector bundles assigns
to each real vector bundle E over a space B cohomology classes wi(E) ∈ Hi(B,F2)
satisfying the axioms:

(1) wi(E) = 1 for i = 0 and wi(E) = 0 for i > dim(E).
(2) For a map f : B′ → B and a vector bundle E over B, we have wi( f−1(E)) =

f ∗(wi(E)) in Hi(B′,F2)
(3) For the Whitney sum, we have the relation

wi(E ′ ⊕E ′′) = ∑
i= j+k

wj(E ′)wk(E ′′)

using the cup product on cohomology where

H j(B,F2)⊗Hk(B,F2)→ Hi(B,F2).

(4) For a line bundle L over B, the first Stiefel–Whitney class

w1(L) ∈ H1(B,F2)

is defined by representing both line bundle isomorphism classes and two-
dimensional integral cohomology classes by K(Z/2,1) = P∞(R).

The Stiefel–Whitney classes exist and are unique by an argument completely
parallel to that for the Chern classes.
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4 Elementary Properties of Characteristic Classes

From the axioms, it is possible to derive some simple stability properties of charac-
teristic classes.

4.1. Notation For a complex vector bundle E , we denote by

c(E) = 1 + c1(E)+ . . .+ cn(E) ∈Gev(B,Z)⊂ Hev(B,Z) =∏
i

H2i(B,Z),

and for a real vector bundle E , we denote by

w(E) = 1 + w1(E)+ . . .+ wn(E) ∈ G∗(B,F2)⊂ H∗(B,F2) =∏
i

Hi(B,F2).

Here, Gev or G∗ denotes the subset in the direct product with zero component equal
to 1. These are commutative monoids of units with the multiplication as monoid
operation. The Whitney sum formula becomes

c(E ′ ⊕E ′′) = c(E ′)c(E ′′) or w(E ′ ⊕E ′′) = w(E ′)w(E ′′).

4.2. Remark For a trivial bundle T over B, we have c(T ) = 1 or w(T ) = 1. This is
equivalent to ci(T ) = 0 or wi(T ) = 0 for i > 0. A trivial bundle on B is induced by
the constant map B→∗, to a point ∗ where it is obvious.

4.3. Remark Two bundles E ′ and E ′′ are stably equivalent provided there exists triv-
ial bundles T ′ and T ′′ with E ′ ⊕T ′ and E ′′ ⊕T ′′ isomorphic. For two stably equiva-
lent complex vector bundles E ′ and E ′′, we have c(E ′) = c(E ′′), and for two stably
equivalent real vector bundles E ′ and E ′′, we have w(E ′) = w(E ′′). The Whitney
sum relation gives a morphism of functors from the K-theory of vector bundles, that
is, stable equivalence classes of vector bundles to these multiplicative monoids of
cohomology

c : K()−→Gev( ,Z) and w : KO() −→G∗( ,F2).

4.4. Example For the tangent bundle T (Sn) to the n-sphere Sn, we have w(T (Sn)) =
1 because T (Sn)⊕N(Sn) and also N(Sn), the normal bundle to the sphere, is a trivial
real vector bundle. Thus,

1 = w(trivial) = w(T (Sn)⊕N(Sn)) = w(T (Sn))w(N(Sn))
= w(T (Sn))w(trivial) = w(T (Sn)).

4.5. Example The real projective space Pn(R) comes from Sn by identifying x
with−x. The same can be done for the tangent bundle Whitney sum with the normal
bundle. By identifying x with−x in the previous example (4.4), we obtain an isomor-
phism between T (Pn(R))⊕N and (n+1)L, the n+1 Whitney sum of the canonical
line bundle L on Pn(R). Since w(L) = 1+ z, where z ∈H1(Pn(R)),F2) is the canon-
ical generator, the Stiefel–Whitney class of the tangent bundle to the real projective
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space is w(T (Pn(R)) = (1+z)n+1. For the Chern class of the tangent bundle to com-
plex projective space, the same type of calculation gives c(T (Pn(C)) = (1 + z)n+1,
where z is a generator of H2(Pn(C),Z).

4.6. Remark For E = E ′ ⊕E ′′, where E ′ and E ′′ are of dimension p and q, respec-
tively, we have cp+q(E) = cp(E ′)cq(E ′′). If E has an everywhere nonzero cross sec-
tion, then E = E ′⊕E ′′, where E ′′ is a trivial line bundle. Then, we see that cn(E) = 0
in the complex case or wn(E) = 0 in the real case. Thus, the top characteristic class
must be zero for the existence of an everywhere nonzero cross section of the vector
bundle. In this sense, we speak of the top characteristic class as an obstruction to
the existence of an everywhere nonzero cross section of the bundle. There are inter-
esting cases where one can assert that the vanishing of the top characteristic class
implies the existence of a everywhere nonzero cross section.

5 Chern Character and Related Multiplicative
Characteristic Classes

The formula for the Chern class of a sum of line bundles,

cm(
⊕
i=1

Li) = ∑
1≤i(1)<...<i(r)≤n

c1(Li(1)) . . .c1(Li(r)),

shows that the mth elementary symmetric function in the first Chern classes of the
line bundles in the sum are exactly the Chern class cm(

⊕
i Li).

5.1. Basics on Elementary Symmetric Functions A symmetric function
f (x1, . . . ,xn) ∈ R[x1, . . . ,xn] in n variables is a polynomial with the property that
f (x1, . . . ,xn) = f (xσ(1), . . . ,xσ(n)) for any permutation σ of n objects. The elemen-
tary symmetric functionσi(x1, . . . ,xn) of degree i is defined by the following relation
∏1≤ j≤n(z+ x j) = ∑0≤i≤nσi(x1, . . . ,xn)zn−i.

5.2. Fundamental Assertion The subring R[σ1, . . . ,σn] in the polynomial ring
R[x1, . . . ,xn] contains all the symmetric functions and the elementary symmetric
functions are algebraically independent. See Fibre Bundles, 14(1.6), for the clas-
sical proof. Now, we use this assertion and the splitting principle of a bundle as a
sum of line bundles to define characteristic classes using the fact that Chern classes
of sums of line bundles are elementary symmetric functions in the Chern classes of
the line bundles.

5.3. The Additive Construction of Symmetric Functions from a Power Series
Let f (t) ∈ 1 + tR[[t]] be a power series with leading term 1, and form the sum
f (x1t) + . . . + f (xnt) with variables x1, . . . ,xn. Then the sum is symmetric in the
variables x1, . . . ,xn, and hence, it can be written uniquely as

f (x1t)+ . . .+ f (xnt) = ∑
0≤m

gm(σ1, . . . ,σn)tm,
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where the gm are polynomial over R in n variables with the elementary symmetric
functions substituted by the fundamental assertion in (5.2).

5.4. Definition The Chern character ch(E) of a vector bundle E over B is a for-
mal infinite sum ch(E) =∑m chm(E) where the summands chm(E) ∈H2m(B,Q) are
defined as follows. For the exponential series f (t) ∈ 1 + tQ[[t]] and n = dim(E)

f (t) = 1 + t + . . .+
tq

q!
+ . . . ,

we introduce the related polynomials gm(σ1, . . . ,σn) over Q as in (5.3) and chm(E)=
gm(c1, . . . ,cn).

Since the Chern character can have infinitely many terms chm(E), we introduce
the following notation.

5.5. Notation Let H∗∗(X ,R) =∏n Hn(X ,R) be the product cohomology R-module
which contains

⊕
n Hn(X ,R) and each summand Hn(X ,R) of degree n. Let

Hev(X ,R) =∏
2n

H2n(X ,R)

be the corresponding product of the even degree cohomology groups. Since ch(T ) =
n for the trivial bundle T of dimension n, we see that ch : K(X)→ Hev(X ,Q) is
defined.

5.6. Proposition The Chern character

ch : K(X)−→ Hev(X ,Q)

is a ring morphism.

Proof. The Chern character is defined to be additive, and for the multiplicative prop-
erty, it is sufficient to check on line bundles by the splitting principle.

Considerations on the Chern character were basic in Atiyah and Hirzebruch
(1961). The following theorem is also proved there.

5.7. Theorem After tensoring with the rational numbers, we have an isomorphism

ch : K(X)⊗Q−→ H∗∗(X ,Q)

of functors.

A reference for this is Chap. 19 in Fibre Bundles (Husemöller 1994) and
Hirzebruch (1962). This results also follows from localizing BU to BUQ =∏m K(Q,
2m) at the rational numbers. Here, one uses the fact that the rationalization YQ of an
arbitrary H-space Y always is a product of Eilenberg–MacLane spaces.

5.8. The Multiplicative Construction of Symmetric Functions from a Power
Series Let φ(t) ∈ 1 + tR[[t]] be a power series with leading term 1, and form
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φ(x1t) . . .φ(xnt) with variables x1, . . . ,xn and t as a product. Then, the product
is symmetric in the variables x1, . . . ,xn, and hence, it can be written uniquely as

φ(x1t) . . .φ(xnt) = ∑
0≤m

ψm(σ1, . . . ,σn)tn,

where the ψm are polynomial over R in n variables with the elementary symmetric
functions substituted in by the fundamental assertion in (5.2).

5.9. Definition The Todd class T d(E) of a complex vector bundle E over B is a for-
mal infinite sum Td(E) = ∑m T dm(E), where the summands T dm(E) ∈ H2m(B,Q)
are defined as follows. For the series φ(t) ∈ 1 + tQ[[t]] and n = dim(E)

φ(t) =
t

1− exp(−t)
,

we introduce the related polynomialsψm(σ1, . . . ,σn) over Q as in (5.8) and T dm(E)
= ψm(c1, . . . ,cn).

Since the Todd class can have infinitely many terms, we have T d(E) ∈H∗∗(X ,Q).

5.10. Remark This class is basic for complex manifolds, because a complex mani-
fold X of dimension n has a basic homology class [X ] ∈H2n(X ,Z), and the number
T d(T (X)))[X ] = T dn(T (X))[X ] is called the Todd genus of the manifold. In the
next chapter, we see that the characteristic classes of tangent bundles of manifolds
carry information on the structure of the manifold.

5.11. Remark The defining series for the Todd class and Todd genus is related to
two other defining series which are used for real manifolds with additional structure,
that is,

x +
x

tanh(x)
= ex x

sinh(x)
=

2x
1− exp(−2x)

.

This identity between three transcendental functions can be seen directly in the fol-
lowing form

x

(
1 +

ex + e−x

ex− e−x

)
= x

2ex

ex− e−x =
2x

1− e−2x .

The two other series mentioned are
√

z
tanh

√
z

and
2
√

z
sinh2

√
z
.

The first one generating the L-class and the L-genus for oriented manifolds, and the
second one generating the Â-class and the Â-genus for oriented manifolds.

Up to now we have only mod 2 characteristic classes for real vector bundles,
that is, Stiefel–Whitney classes, and we need integral classes for real vector bundles
which have something to do with Chern classes. This leads us to the considerations
in the next section where we consider a specific integral class for oriented real vector
bundles called the Euler class.
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6 Euler Class

Now we come to a theorem which for real vector bundles plays a fundamental role
as (2.3) did for complex vector bundles. The best result is for oriented (real) vector
bundles.

6.1. Definition A real vector bundle E of dimension n over B is orientable pro-
vided E is isomorphic to a fibre bundle P[Rn], where P is a principal bundle for the
group SO(n). In local terms, E has an atlas of charts where the linear transformation
changing from one chart to another have strictly positive determinant. From these
local charts of the fibre at b ∈ B, we obtain a map jb : (Rn,Rn−{0})→ (E,E0),
where E0 is E − {zerosection} for each b ∈ B. We choose a fixed generator of
Hn(Rn,Rn−{0}) with coefficients in Z for oriented real vector bundles and in the
field of two elements F2 in general. In the latter case though there is no choice.

6.2. Theorem Let p : E → B be a real vector bundle of dimension n. Then there
exists a unique class UE ∈ Hn(E,E0) such that jb(UE) is the fixed generator of
Hn(Rn,Rn−{0}), and for i < n all cohomology vanishes: Hi(E,E0) = 0. More-
over, the function φ : Hi(B) → Hi+n(E,E0) defined by φ(a) = p∗(a) � UE is an
isomorphism.

This is again an easy consequence of the spectral sequence of a fibre map or
for bundles which are finitely generated, see 5(5.2). It follows from an inductive
Mayer–Vietoris sequence argument.

6.3. Definition The class UE ∈ Hn(E,E0) has an image under the natural mapping
Hn(E,E0)→ Hn(E) which corresponds to a class e(E) ∈ Hn(B), called the Euler
class, under the isomorphism p∗ : H∗(B)→ H∗(E).

6.4. Theorem (Gysin sequence) With the cup product with the Euler class e(E),
denoted by ε(a) = a � e(E), we have an exact couple

H∗(B) ε �� H∗(B)

p∗ of degree 0�����
������

H∗(E0)
ψ of degree −n+1

�����������
.

Here, ε has degree n and ψ is the composition of the coboundary H∗(E0) →
H∗(E,E0) of degree 1 with the inverse of φ in (6.2) of degree−n.

The exact couple or Gysin sequence follows from the cohomology exact se-
quences and (6.2).

6.5. Remark The Euler class e(E) = φ−1(U2
E), and so for an odd dimensional vector

bundle, 2e(E) = 0. If f : B′ → B is a map, then f ∗(e(E)) = e( f−1(E)).

There is a Whitney sum property as a cup product relation for the Euler class.
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6.6. Theorem We have e(E ′ ⊕E ′′) = e(E ′)e(E ′′) ∈H∗(B).

Proof. We consider E = E ′ ⊕ E ′′ and two subbundles E1 ⊂ E and E2 ⊂ E with
first and second projections denoted by q1 : (E,E1) → (E ′,E ′0) and q2 : (E,E2)→
(E ′′,E ′′0 ) respectively. Then by considering the restrictions on fibres, we have the
cup product relation UE = q∗1(UE ′)q∗2(UE ′′). The Euler class formula follows from
this by the definition (6.3).

7 Thom Space, Thom Class, and Thom Isomorphism

The Thom space is a way to replace the relative class UE with the Thom class on a
space coming from (E,E0) and the related isomorphism φ(a) = p∗(a) �UE defined
φ : Hi(B)→ Hi+n(E,E0) by the Thom isomorphism.

7.1. Definition Associated with a vector bundle E having a Riemannian metric, we
have the disc bundle D(E)⊂ E of all vectors v with ||v|| ≤ 1 and the sphere bundle
S(E)⊂ E0 of all vectors v with ||v||= 1.

Instead of φ itself, one also can work with the composition

Hi(B)
φ−→ Hi+n(E,E0)−→ Hi+n(D(E),S(E))−→Hi+n(D(E)/S(E)),

where the first isomorphism is φ , the second is a restriction homomorphism which
is induced by a homotopy equivalence, and the third is the excision isomorphism for
the pair (D(E),S(E)).

7.2. Definition The space D(E)/S(E) is the Thom space of the vector bundle E ,
the image of UE in Hn(D(E)/S(E)) is the Thom class of E , and the composite
isomorphism is the Thom isomorphism.

7.3. Remark When E is a vector bundle over a compact space B, the Thom space is
isomorphic to the one-point compactification of E . If E is a vector bundle over B
and if T is the trivial one-dimensional vector bundle over B, then we have a section
B → S(E ⊕T ), and the Thom space is isomorphic to S(E⊕ T )/im(B). The natu-
ral morphism E → E⊕T defines an inclusion of the associated projective bundles
P(E)→ P(E⊕T ), and the collapsed space P(E⊕T )/P(E) is another version of the
Thom space.

8 Stiefel–Whitney Classes in Terms of Steenrod Operations

A basic reference for this chapter is Epstein and Steenrod (1962).
Recall (6.5) where we established the formula e(E) = φ−1(U2

E) for the Euler
class. This suggests the possibility of defining more characteristic classes by apply-
ing other cohomology operations to UE .
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8.1. Definition For cohomology with coefficients in a group G, a cohomology
operation of degree i is a morphism θ : H∗( ,G)→ H∗+i( ,G) of functors.

8.2. Theorem For cohomology over the field F2 of two elements, there is a unique
operation Sqi : H∗( ,F2) → H∗+i( ,F2) of degree i such that Sqi commutes with
suspension and Sqi(x) = x2, the cup square, for x ∈ Hi(X ,F2).

The operation Sqi is called the Steenrod square.

8.3. Theorem The Steenrod squares satisfy the following properties.

(1) In degree 0, Sq0 is the identity, and Sqi|Hn( ,F2) = 0 for i > n.
(2) (Cartan formula) For x,y ∈ H∗(X ,F2), we have

Sqk(xy) = ∑
k=i+ j

Sqi(x)Sq j(y).

Multiproduct version is

Sqq(x1 . . .xr) = ∑
i(1)+...+i(r)=q

Sqi(1)(x1) . . .Sqi(r)(xr).

(3) (Adem relations) For 0 < a < 2b, the iterate of squares satisfies

SqaSqb =
[a/2]

∑
j=0

(
b− 1− j

a−2 j

)
Sqa+b− jSq j.

8.4. Steenrod Operations on Low-Dimensional Classes We consider dimensions
one and two.

(1) If x ∈ H1(X ,F2), then we have Sqi(xm) =
(m

i

)
xm+i.

(2) If y ∈ H2(X ,F2) and if Sq1(y) = 0, then we have Sq2i(ym) = (m
i )ym+i and

Sq2i+1(ym) = 0.

Proof. We use induction on m, where m = 0 is clear. Statement (1) then is obtained
as follows.

Sqi(xm) = Sqi(x.xm−1) = Sq0(x).Sqi(xm−1)+ Sq1(x).Sqi−1(xm−1)
=
[(

m−1
i

)
+
(

m−1
i−1

)]
xm+i =

(m
i

)
xm+i.

8.5. Theorem Using the class UE ∈ Hn(D(E)/S(E)) and the total Steenrod opera-
tion Sq =∑0≤i Sqi, we have the following formula for the total Stiefel–Whitney class
Sq(UE) = w(E)UE or w(E) = φ−1(Sq(UE)).

Proof. By the splitting principle, we can check a formula by doing it only for
E = L1⊕ . . .⊕ Ln, a sum of line bundles. Then by (6.6), we have a cup product
decomposition of UE = U1 . . .Un of one-dimensional classes Ui related to Li. Only
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Sq1 is nontrivial on Ui, and it is Sq1(Ui) = U2
i . Hence, by the multiproduct version

of Cartan’s formula, we have the following calculation

Sqr(UE) = Sqr(U1 . . .Un) = ∑i(1)<...<i(r)U1 . . .U2
i(1) . . .U

2
i(r) . . .Un

= ∑i(1)<...<i(r)U2
i(1) . . .U

2
i(r)(U1 . . .Un) = wr(L1⊕ . . .⊕Ln)(U1 . . .Un)

Using the monomorphism property of the splitting map on cohomology, we obtain
Sqr(UE) = wr(E)UE . This proves the theorem.

Later, we will have some use for special Adem relations.

8.6. Special Cases of the Adem Relations

(1) For a = 1, we have 1 ≤ b, and thus, the corresponding sum consists only the
term for j = 0, that is, we have

Sq1Sqb =
(

b−1
1

)
Sqb+1 =

{
Sqb+1 if b is even
0 if b is odd

with simple cases Sq1Sq1 = 0, Sq1Sq2 = Sq3, Sq1Sq3 = 0, and Sq1Sq4 = Sq5.
(2) For a = 2, we have 2 ≤ b, so that the sum consists of only the two terms corre-

sponding to j = 0 and j = 1. Thus, in this case we have

Sq2Sqb =
(

b−1
2

)
Sqb+2 +

(
b−2

0

)
Sqb+1Sq1.

This divides into two cases depending on b mod 4.

Sq2Sqb = Sqb+1Sq1 +
{

Sqb+2 for b≡ 0,3(mod 4)
0 for b≡ 1,2(mod 4)

with some simple cases Sq2Sq2 = Sq3Sq1, Sq2Sq3 = Sq4Sq1 + Sq5, Sq2Sq4 =
Sq5Sq1 + Sq6, Sq2Sq5 = Sq6Sq1, and Sq2Sq7 = Sq8Sq1 + Sq9.

Over the integers Z, the binomial coefficient (n
i ) is the coefficient of xi in the polynomial (1+

x)n ∈ Z[x]. Here, they are understood as numbers modulo 2.

8.7. Two Mod 2 Congruences We have the following in the field F2 = {0,1} of
two elements for c ∈ Z ( c

1

)
=
{

0 if c is even
1 if c is odd

and ( c
2

)
=
{

0 if c≡ 0,1(mod 4)
1 if c≡ 2,3(mod 4)
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9 Pontrjagin classes

Let E∨ denote the dual of a complex vector bundle E over B.

9.1. Proposition The Chern classes of a complex vector bundle E and its dual E∨
are related by ci(E∨) = (−1)ici(E). If a complex vector bundle E is isomorphic to
its dual E∨, then

2c2i+1(E) = 0.

Proof. For a line bundle L, we have c1(L∨) =−c1(L), and the result follows from the
splitting principle and the Whitney sum formula. The second statement is immediate
from the first.

9.2. Remark Every real vector bundle E is isomorphic to its real dual E∗. This is
true for real line bundles L since w1(L) = w1(L∗) and in general, by the splitting
principle. Thus, the complexification EC of a real vector bundle E is isomorphic to
its complex dual E∨

C
, and therefore, 2c2i+1(EC) = 0.

9.3. Definition The Pontrjagin class pi(E) of a real vector bundle E is pi(E) =
(−1)ic2i(EC) ∈H4i(B,Z). The total Pontrjagin class of a real vector bundle is

p(E) = 1 + p1(E)+ . . . ∈∏
0≤i

H4i(B,Z).

9.4. Remark The Whitney sum formula holds in the modified form

2(p(E ′)p(E ′′)− p(E ′ ⊕E ′′)) = 0

That is, the difference is a 2-torsion class.
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Chapter 11
Characteristic Classes of Manifolds

A topological manifold M of dimension n has a fundamental class denoted byωM or
[M]∈Hn(M,Z/2Z), and when it has an orientation, this class is defined in Hn(M,Z)
with the same notation. In each case, the cap product

() � [M] : Hi(M)→ Hn−i(M)

for a closed manifold M is an isomorphism called Poincaré duality. This internal
symmetry between homology and cohomology is a fundamental property of man-
ifolds. When the manifold has a boundary ∂M or when it is not compact, then
Poincaré duality must be modified, but it is always given by cap product with the
fundamental class in Hn(Mn,Z) for the oriented case and in Hn(Mn,Z/2) for the
general case.

A smooth manifold M of dimension n has two complementary real vector bun-
dles: the tangent bundle T (M) of dimension n and the normal bundle ν(M) to some
embedding of M into Euclidean space. The Whitney sum T (M)⊕ν(M) is a trivial
bundle on M which is the restriction to M of the trivial tangent bundle on Euclidean
space. For the characteristic classes with the Whitney sum property, it is essentially
equivalent to work either the characteristic classes of the tangent bundle or the nor-
mal bundle.

Polynomial combinations of characteristic classes of the tangent bundle can be
evaluated on the fundamental class [M], and the result is characteristic numbers
which can be related to other invariants of the manifold. These numbers are related
to homological invariants of the manifold and in many cases to other geometric in-
variants of the manifold and bundles on the manifold. In the last section, we illustrate
this with an explication of the Riemann-Roch-Hirzebruch theorem.

Chapter 18 of Fibre Bundles (Husemöller 1994) is a reference for this chapter.

1 Orientation in Euclidean Space and on Manifolds

1.1. Linear Orientation A nonsingular linear map A : R
n → R

n preserves orien-
tation provided det(A) > 0. The subgroup of GL(n,R) of orientation-preserving

D. Husemöller et al.: Characteristic Classes of Manifolds, Lect. Notes Phys. 726, 127–135 (2008)
DOI 10.1007/978-3-540-74956-1 12 © Springer-Verlag Berlin Heidelberg 2008
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maps is denoted by GL+(n,R), and its compact form is the rotation group SO(n) =
O(n)∩GL+(n,R). Here, what is critical for linear orientation is a basis of the vector
space R

n. To extend the concept of orientation to nonlinear maps, we use homology.

1.2. Topological Orientation To define orientation, we must choose generators
αn−1 ∈ Hn−1(Sn−1) = Z, which for any open set U in R

n and x ∈ U ⊂ R
n corre-

sponds by exactness and excision to a generator αx ∈ Hn(U,U− x) = Z. A homeo-
morphism f : (U,U− x)→ (V,V − f (x)) preserves (resp. reverses) orientation at x
provided f∗(αx) = +α f (x) (resp. −α f (x)).

There are corresponding elements βn−1 ∈ Hn−1(Sn−1) = Z and βx ∈ Hn(U,U−
x) = Z, and orientation preserving and reversing is the same in cohomology. In the
case of a linear f , the determinant definition and the homological definition give the
same result. Again by excision Hn(Mn,Mn− x) = Z, and there are two generators
for any manifold Mn of dimension n.

1.3. Orientation for Manifolds An orientation of an n-dimensional manifold M
is a system of generators ωx ∈ Hn(M,M− x) indexed by x ∈ M such that for any
open ball B⊂M and x,y ∈ B, the classes ωx and ωy correspond under the following
inclusion-induced isomorphisms

Hn(M,M− x)←− Hn(M,M−B)−→Hn(M,M− y).

1.4. Remark When a manifold M has an orientation, we use integral homology, but
without an orientation, we implicitly use homology over Z/2Z, where there is one
nonzero element ωx in the relevant homology group ωx ∈Hn(M,M− x,Z/2Z).

For a given orientation ωx ∈ Hn(M,M− x), we define classes ωK ∈ Hn(M,M−
K) using the induced morphisms r : H∗(M,M−L)→ H∗(M,M−K) for compact
subsets K ⊂ L in M.

1.5. Proposition Let M be an n-dimensional topological manifold. For each com-
pact subset K of M, we have Hi(M,M − K) = 0 for i > n, and a class a ∈
Hn(M,M − K) is zero if and only if for all x ∈ K we have rx(a) = 0, where
rx : Hn(M,M−K)→ Hn(M,M− x) is induced by inclusion.

1.6. Proposition Let (ωx)x∈M be an orientation of a topological manifold M of di-
mension n. For each compact subset K ⊂M, there exists a class ωK ∈Hn(M,M−K)
such that rx(ωK) =ωx for all x∈K, where again rx : Hn(M,M−K)→Hn(M,M−x)
is induced by inclusion.

These two results on orientation in a manifold are proved by using the Mayer–
Vietoris sequence for K′ ∪K′′ = K and K′ ∩K′′ starting with closed balls B where
the classes ωB are immediately defined. Then, we use finite coverings of compact
sets by small balls.

We thus have an orientation class ωM for oriented compact manifolds M. There
are appropriate definitions for the general case, which we shall not describe here.
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2 Poincaré Duality on Manifolds

Using the orientation classes ωK constructed in (1.6) for an n-dimensional manifold
M, we now consider certain cap products related to pairs (K,V ), where K ⊂ V is
compact and V ⊂M is open in M.

2.1. Remark The inclusion j : (V,V −K)−→ (M,M−K) induces isomorphisms in
homology and in cohomology by excision

j∗ :H∗(V,V −K)→ H∗(M,M−K) and j∗ :H∗(M,M−K)→ H∗(V,V −K).

With these notations, we obtain a diagram using the cap product mixing coho-
mology and homology with values in homology.

2.2. Cap Product Diagram With the above notation, we have the following com-
mutative diagram with the right vertical arrow an isomorphism

Hi(M)⊗Hn(M,M−K)
cap ��

j∗⊗( j∗)−1

��

Hn−i(M,M−K)

Hi(V )⊗Hn(V,V −K)
cap �� Hn−i(V,V −K)

j∗

��

Now, we fix one of the variables in the cap product to be an orientation class
ωK ∈ Hn(M,M−K).

2.3. Definition The dualizing morphism relative to a pair K ⊂ V ⊂ M as above is
DK,V : Hi(V )→ Hn−i(M,M−K) given by DK,V (a) = j∗(a � j−1∗ (ωK)). Then, we
take the limit of V ⊃V ′ ⊃K giving a second dualizing morphism DK defined on the
direct limit

Ȟi(K) = lim−→K⊂V Hi(V )

as
DK : Ȟi(K)−→ Hn−i(M,M−K)

using the cap product diagram.

It is this second dualizing morphism DK which leads to Poincaré duality.

2.4. Theorem Let M be a manifold with orientation. Then, the dualizing morphism

DK : Ȟi(K)−→ Hn−i(M,M−K)

is an isomorphism for all compact subsets K of M.

Proof. This is proved by using Mayer–Vietoris for K′ ∪K′′ = K and K′ ∩K′′ starting
with closed balls B, where the classes ωB are immediately defined. Then, we use
finite coverings of compact sets by small balls.

The first corollary is the classical Poincaré duality theorem where Ȟi(K) =
Hi(M).
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2.5. Theorem Let M be a compact n-dimensional manifold with orientation ωM.
Then, DM : Hi(M)→ Hn−i(M) is an isomorphism i = 0, . . . ,n.

The second corollary is the classical Alexander duality theorem.

2.6. Theorem Let K be a compact subset of R
n. Then, the morphism Ȟi(K) →

Hn−i−1(Rn−K,∗) which is the composition of

DK : Ȟi(K)→ Hn−i(Rn,Rn−K)

and the boundary morphism

Hn−i(Rn,Rn−K)→ Hn−i−1(Rn−K,∗)

is an isomorphism.

2.7. Remark If K has a neighborhood base of open sets each of which has K as
a deformation retract, then the limit cohomology Ȟi(K) is isomorphic to singular
homology Hi(K).

3 Thom Class of the Tangent Bundle and Duality

3.1. Remark Let T (M) be the tangent bundle of a smooth manifold M. Then, M
has an orientation ωx ∈ Hn(M,M − x) if and only if T (M) has a class UT (M) ∈
Hn(T (M),T (M)0), where T (M)0 = T (M)−{zero section}. In general the classes
are Z/2 classes, but M has an orientation (as an integral class) if and only if T (M)
has the structure of an SO(n) fibre bundle.

Associated with the orientation of M, we have the dualizing morphism DK :
Ȟi(K)→Hn−i(M,M−K) which we wish to characterize in terms of the class UT(M)
transfer to a class UM on M×M by using the exponential morphism expx : T (M)x →
M for a Riemannian metric on M, where expx(v) is the value at t = 1 of the unique
geodesic through x with tangent vector v for t = 0.

3.2. Notation We use ht(x,v) = (expx(−tv),expx(v)) to define a diffeomorphism
ht : (D(T (M)),D0(T (M)))→ (Nt(Δ ,M×M),Nt (Δ ,M×M)−Δ) for all t ∈ [0,1],
where Nt(Δ ,M ×M) is a closed manifold neighborhood of Δ in M ×M. With
this ht , we define a homotopy of diffeomorphisms onto closed submanifolds kt :
(D(T (M)),D0(T (M)),M) → (M×M,M×M−Δ ,Δ) by kt(x,v) = (ht(x,v),(x)),
where x is the projection of v from the tangent bundle T (M) to M.

3.3. Remark Using excision, we have an isomorphism

(ht)∗ : H∗(M×M,M×M−Δ)−→H∗(D(T (M)),D0(T (M))).

Now, we bring in the basic cohomology class UT (M) in 10(6.2) for the tangent
bundle T (M). Again, it is a Z/2-class in the general case and an integral class when
T (M), or equivalently M, has an orientation.
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3.4. Definition The relative product class U ′
M of M is defined by the relation

(ht)∗(U ′
M) = UT (M) and the fundamental product class UM = j∗(U ′

M)∈Hn(M×M),
where j : M×M→ (M×M,M×M−Δ) is the inclusion.

3.5. Remark By evaluating cocycles on cycles, we obtain a pairing 〈 , 〉 : Hi(X ,R)×
Hi(X ,R)→ R. We apply this to X = M and X = M×M and to R = Z and Z/2.

In terms of the fundamental product class, we have three pairing formulas which
are proved in the Fibre bundles, 18(6.3), 18(6.4), and 18(6.5) (Husemöller 1994).

3.6. Proposition Let M be a closed, connected manifold with orientation class [M]
and fundamental product class UM.

(1) For a ∈ H p(M) and b ∈ Hq(M), we have UM(a×b) = (−1)pqUM(b×a).
(2) We have the pairing 〈UM,1× [M]〉= 1.
(3) For any class U ∈ Hn(M×M) with (1) and (2) as for UM and a ∈ H p(M),c ∈

Hp(M) we have the pairing

〈a,c〉= (−1)n+p〈U,c× (a � [M])〉,

where D(a) = a � [M] defined as D : H p(M)→ Hn−p(M) is the dualizing mor-
phism.

3.7. Application to Poincaré Duality Over a Field Let F be a field which is F2 =
Z/2, the field of two elements for a general closed manifold M. Let D(a) = a � [M]
defined by D : H p(M,F)→ Hn−p(M,F) be the Poincaré duality isomorphism. The
fact that D is an isomorphism can be seen from the pairing for a ∈ H p(M), c ∈
Hp(M)

〈a,c〉= (−1)n+p〈U,c× (a � [M])〉
for two reasons: Firstly, 〈a,c〉 = 0 for all c ∈ Hp(M) if and only if a = 0, and
hence, D is a monomorphism. Secondly, cohomology over a field H p(M,F) =
Hom(Hp(M),F) = Hp(M,F)∨ is just the dual of homology so that homology and
cohomology in degree p have the same dimension. This combined with the two
monomorphisms

D : H p(M,F)−→ Hn−p(M,F) and D : Hn−p(M,F)−→Hp(M,F)

shows that D is an isomorphism.

4 Euler Class and Euler Characteristic of a Manifold

4.1. Definition Let X be a space with finite total dimensional homology. The Euler
characteristic χ(X) of X is given by χ(X) = ∑i(−1)i dimQ(Hi(X ,Q)).

The reader with a background with the universal coefficient theorem can show
that for any field F , we can calculate
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χ(X) =∑
i
(−1)i dimF(Hi(X ,F)) or χ(X) =∑

i
(−1)i dimF(Hi(X ,F)).

The Euler characteristic of M are calculated in terms of the Euler class of the
tangent bundle in the next theorem which is proved in 18(7.2) of Fibre Bundles
(Husemöller 1994).

4.2. Theorem Let Mn be a closed, connected, oriented manifold with [M]′ ∈
Hn(M,Z) a generator with 〈[M]′, [M]〉 = 1. Then the Euler class e(T (M)) of the
tangent bundle is given by

e(T (M)) = χ(M)[M]′.

4.3. Corollary Let Mn be a closed, connected, orientable manifold with an every-
where nonzero vector field. Then, χ(M) = 0.

It is a theorem of H. Hopf that the converse is also true. The result is illustrated
by χ(S2n) = 2 and χ(S2n+1) = 0, where odd-dimensional spheres have such an ev-
erywhere nonzero vector field and even spheres do not.

5 Wu’s Formula for the Stiefel–Whitney Classes of a Manifold

The Steenrod squares Sq = ∑i Sqi and the Stiefel–Whitney class w(E) of a bundle
are related by the form w(E) = φ−1(Sq(UE)), see 10(8.5). Using Poincaré duality
and its relation to UM , we have the Wu class and its relation to the Stiefel–Whitney
classes of the tangent bundle.

5.1. Notation Let Sqtr : H∗(X)→H∗(X) denote the transpose of the (total) Steenrod
square Sq : H∗(X) → H∗(X). In particular, we have 〈Sq(a),b〉 = 〈a,Sqtr(b)〉 for
a ∈ H∗(X), b ∈H∗(X).

5.2. Definition Let M be closed manifold with Poincaré duality isomorphism D :
Hi(M) → Hn−i(M) and fundamental class [M]. The Wu class of M is v =
D−1(Sqtr([M])).

The Wu class has the property that

〈a,D(v)〉= 〈a,Sqtr([M])〉= 〈Sq(a), [M]〉= 〈a,v � [M]〉= 〈av, [M]〉.

5.3. Theorem Let M be a closed smooth manifold. Then, the Stiefel-Whitney class
w(M) = w(T (M)) of the tangent bundle is given as the Steenrod square of the Wu
class w(M) = Sq(v).

For the proof using (3.6), see 18(8.2) of Fibre Bundles (Husemöller 1994).

5.4. Corollary The Stiefel–Whitney classes of closed manifolds are homotopy in-
variants of the manifold.

5.5. Corollary If v =∑i vi, where vi ∈Hi(M), then we have vi = 0 for 2i > dim(M).
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6 Cobordism and Stiefel–Whitney Numbers

6.1. Notation Let M′ and M′′ be two n-dimensional manifolds with M = M′ �M′′,
the disjoint union. Then, the fundamental class of M′ �M′′ is [M′ �M′′] = [M′] +
[M′′] with suitable injections for Hn(M′ �M′′) = Hn(M′)⊕Hn(M′′). In particular,
when M′ and M′′ are oriented, then M′ and M′′ have the sum orientation. In gen-
eral, we have the Z/2-orientation class. There is one special case where M′ or
M′′ is empty, and then M′ = M′ � /0. Also −M′ is M′ with the orientation class
−[M′] = [−M′].

6.2. Definition Two manifolds M′ and M′′ are cobordant provided there exists a
manifold W n+1 with boundary such that the boundary ∂W = M′ �M′′. Two oriented
manifolds M′ and M′′ are oriented cobordant provided there exists a manifold W
with an orientation [W ]∈Hn+1(W,∂W ) with ∂W = M′−M′′ so that the homological
boundary ∂ [W ] = [M′]− [M′′]. A manifold M is a boundary-provided M, and the
empty manifold are cobounding, that is, there exists W with ∂W = M.

6.3. Example For any manifold M, we can form W = M× [−1,1], and we see that
∂W = M�M in the unoriented sense. For any manifold M with a fixed point-free
involution, T : M → M, that is, T 2 = identity and T (x) �= x for all x ∈ M, we can
identify (x,t) with (T (x),−t) in the product M× [−1,1] and obtain a smooth quo-
tient manifold W with ∂W = M. Then, relation ∂W = M is an oriented cobordism
when M is oriented and T is orientation preserving.

Two spaces with involutions are Sn and the odd-dimensional projective spaces
P2n+1(R). The odd-dimensional projective space has a fixed point-free involution
coming from the quotient of multiplication by i on the odd-dimensional sphere S2n+1

as a subspace of C
n+1.

Now, we can consider combinations of characteristic classes which are evaluated
on the fundamental class [M] of a manifold M to give the so-called characteristic
numbers of the manifold M.

6.4. Definition The Stiefel–Whitney number of a manifold M corresponding to

the monomial w = wr(1)
1 . . .wr(n)

n is 〈w, [M]〉 ∈ Z/2. The Pontrjagin number of an
oriented manifold M with orientation class [M] corresponding to the monomial

p = pr(1)
1 . . . pr(n)

n is 〈p, [M]〉 ∈ Z. In both cases, the characteristic classes are the
characteristic classes of the tangent bundle.

For n = dim(M), there is one Stiefel–Whitney number for each sequence
r(1), . . . ,r(n) with n = 1.r(1)+ 2.r(2)+ . . . + n.r(n), and for oriented M, there is
one Pontrjagin number for each sequence r(1), . . . ,r(n) with n = 4.r(1)+ 8.r(2)+
. . . + 4n.r(n). Now, these numbers are related to the concept of cobordism by the
following theorem of Pontrjagin.

6.5. Theorem Let Mn be a closed manifold which is the boundary Mn = ∂W n+1 of
a manifold with boundary. Then, all Stiefel–Whitney numbers of M are zero. If M′
and M′′ are cobordant manifolds, then the corresponding Stiefel–Whitney numbers
of M′ and M′′ are equal.
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Proof. The key remark for the proof is that T (W )|M = T (M)⊕L, where L is the
trivial line bundle. Hence, the top combinations of characteristic classes are zero on
this restriction. Now use that [W ] ∈ Hn+1(W,M) maps to [M] ∈ Hn(M) under the
boundary operator.

For further details, see 18(9.2) of Fibre Bundles (Husemöller 1994).

6.6. Remark The corresponding theorem holds for Pontrjagin numbers and oriented
cobordism.

6.7. Remark There are also stunning converses to Pontrjagin’s result. Thom showed
in the 1950s that two closed manifolds are cobordant if their Stiefel–Whitney
numbers agree. Little later, Wall proved a corresponding result for oriented cobor-
dism. Two oriented closed manifolds are oriented cobordant if their Stiefel–Whitney
numbers and their Pontrjagin numbers agree.

7 Introduction to Characteristic Classes and Riemann–Roch

We have seen that characteristic classes evaluated on the orientation class have
a geometric significance for cobordism, but when this topological significance
was being worked out by Thom, Hirzebruch was applying characteristic classes
to the Riemann–Roch problem. This was explained later in two ways: Firstly,
Grothendieck extended the work of Hirzebruch to the algebraic domain formulat-
ing and proving a Riemann–Roch theorem for an algebraic morphism. Secondly,
Atiyah–Singer extended the Hirzebruch Riemann–Roch theorem to an index theo-
rem for elliptic operators. In fact, the first proof of the index theorem was using the
cobordism methods of Hirzebruch. In the last 50 years, there has been an explosion
in mathematics around these ideas with many far reaching applications. We will just
touch on a modest amount of the first ideas of Hirzebruch.

7.1. Topological Notation Consider a compact complex manifold X of complex
dimension n. Then, X is a real compact, oriented manifold of real-dimensional 2n
with an orientation class [X ] ∈ H2n(X ,Z) coming from the complex structure since
U(n) ⊂ SO(2n). The complex tangent bundle of complex dimension n has Chern
classes c1, . . . ,cn, where ci = ci(T (X)) which contains topological information and
information about the complex geometry.

7.2. Geometric Notation Consider a complex analytic vector bundle E on X of
dimension r. Then, the C-vector space Γ(X ,E) of complex analytic sections of E
has the basic property that it is finitely generated (since X is assumed to be compact),
which makes the question of a formula for its dimension an interesting problem. The
complex vector bundle E also has Chern classes c1(E), . . . ,cr(E).

7.3. Remark If we consider an exact sequence of complex analytic vector bundles
0→ E ′ → E → E ′′ → 0, then we have only a left exact sequence for the sections
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0−→ Γ(X ,E ′)−→ Γ(X ,E)−→ Γ(X ,E ′′).

This leads to a sheaf cohomology theory Hi(X ,E), where Γ(X ,E) = H0(X ,E).
Again, we have finite dimensionality of these cohomology vector spaces and a
vanishing above 2dim(E). Instead of considering one dimension, we group all
the dimensions into a Euler characteristic χ(E) = ∑0≤i(−1)i dimC Hi(X ,E) which
will have an additive property relative to short exact sequences of analytic vec-
tor bundles, that is, χ(E) = χ(E ′) + χ(E ′′), in the case of the exact sequence
0→ E ′ → E → E ′′ → 0.

It is this Euler characteristic which is used to extend the classical Riemann–Roch
for a curve and a complex line bundle to a general smooth projective algebraic vari-
ety X . With the above notations, we have the Riemann–Roch–Hirzebruch formula.

7.4. Theorem For the Todd class T d(X) of T (X) and the Chern character ch(E),
we have

χ(E) = (ch(E)Td(X))[M]

Recall from 10(5.5) that the Chern character and from 10(5.8) that the Todd
class of a vector bundle is defined in terms of Chern classes.

In dimension 1, where X is a closed Riemann surface or the complex points on
a smooth algebraic complete algebraic curve, we recover the usual Riemann–Roch
theorem.

Corollary 7.5 (Riemann–Roch Theorem) For a line bundle L on a closed Riemann
surface X, we have

dimC H0(X ,L)−dimC H1(X ,L) = deg(L)+ 1−g,

where g is the genus of X.

The term deg(L) comes from ch(L) and 1−g from T d(X) in the right-hand side
of (7.4). The vector space H1(X ,L) is isomorphic to H0(X ,K⊗ L(−1)⊗) by Serre
duality.

Reference
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Chapter 12
Spin Structures

Orientation of a real vector bundle E can be described in terms of the O(n)-
associated principal bundle. Namely, orientability is equivalent to the property that
the structure group of the bundle can be reduced to SO(n)⊂ O(n).

The group Spin(n) is a double cover of the rotation group SO(n). A spin struc-
ture on an oriented vector bundle is a lifting of the SO(n)-structure group of the
bundle to the Spin(n)-structure group. This all takes place with the associated prin-
cipal bundles, and it is one place where the vector bundle’s associated principal
bundle plays an essential role. The group Spinc(n) = (Spin(n)× S1)/Γ combines
real oriented bundle data by the projection Spinc(n) → Spin(n)/Γ′ = SO(n) for
Γ′ = {1,e}, e2 = 1 ∈ Spin(n), and complex line bundle data by the other projec-
tion Spinc(n)→ S1/Γ′′ for Γ′′ = {1,−1} ⊂ S1. A Spinc(n) structure on an oriented
vector bundle is a lifting of the SO(n)-structure group of the bundle to the group
Spinc(n).

1 The Groups Spin(n) and Spinc(n)

1.1. Orthogonal and Rotation Groups In the discussion of vector bundles, we
have used orthogonal group principal bundles. On the orthogonal group in n-
dimensions O(n), we have the determinant surjection with kernel SO(n), the rotation
group as kernel in the following kernel exact sequence

1−→ SO(n) = ker(det)−→ O(n) det−→O(1) = {±1}.

Note that SO(1) = 1, SO(2) = S1, and SO(3)∼= P3(R), the three-dimensional pro-
jective space where elements in the three-dimensional rotation group are given by
an axis of rotation and an angle≤ π . So the rotation is an element of the ball B(0,π)
of radius π in R

3 but with x and −x identified for ||x|| = || − x|| = π . This is the
projective space in three dimensions.

D. Husemöller et al.: Spin Structures, Lect. Notes Phys. 726, 137–145 (2008)
DOI 10.1007/978-3-540-74956-1 13 © Springer-Verlag Berlin Heidelberg 2008
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1.2. Remark The first homotopy groups of SO(n) are given by the following:

π0(SO(n)) = 0, π1(SO(n)) =
{

Z for n = 2
Z/2Z for n > 2

π2(SO(n)) = 0, π3(SO(n)) =
{

0 for n = 2
Z for n > 2

.

1.3. Spin Group The Spin(n) group is the universal covering group of SO(n) for
n > 2. For n = 2, we require Spin(2) = S1.

Since π1(SO(n)) = Z/2Z for n > 2, the universal covering group

{1,ε} −→ Spin(n)−→ SO(n)

is a twofold covering so that the kernel is {1,ε} with ε2 = 1. For n = 2, we consider
formally the twofold covering

Spin(2) = S1 −→ SO(2) = S1

with kernel = {±1}.
1.4. Example The group Spin(3) is isomorphic to S3, the topological group of unit
quaternions q = q0 + q1i+ q2 j + q3k ∈H so that ||q||= 1, where ||q||2 = q2

0 + q2
1 +

q2
2 + q2

3. The quaternion conjugation is defined by the formula q̄ = q0−q1i−q2 j−
q3k for q = q0 + q1i + q2 j + q3k. A quaternion u is a unit quaternion if and only
if u−1 = ū. The rotation of an element u ∈ S3 on the purely imaginary quaternions
Im(H) = Ri + R j + Rk, which is given by the formula r(u)(q) = uqu−1, defines a
twofold cover

r : Spin(3) = S3 −→ SO(Im(H)) = SO(3).

There is a parallel discussion of the double cover

r : Spin(n)−→ SO(n)

using Clifford algebras instead of the quaternions.

1.5. Clifford Algebra The Clifford algebra Cl(n) is the unital algebra over the real
numbers generated by n elements e1, . . . ,en satisfying relations

eie j + e jei =−2δi, j 1≤ i, j ≤ n.

In particular, we have the anticommutativity eie j =−e jei for i �= j and the e2
i =−1.

A basis of the algebra consists of monomials ei(1) . . .ei(r), where 1 ≤ i(1) < .. . <
i(r)≤ n. In particular, there are exactly 2n monomials. Observe that

(a1e1 + . . .+ anen)(b1e1 + . . .+ bnen) =
−2(a1b1 + . . .+ anbn)+ (a1b2−a2b1)e1e2 + . . .+(an−1bn−anbn−1)en−1en.

In particular, every nonzero u = a1e1 + . . . + anen with ||a|| = 1 is a unit in the
algebra, and the conjugation by u on the space Re1 + . . .+Ren carries this space into
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itself as a linear automorphism-preserving distance. The group Pin(n) is defined to
be the group generated by these units u and its action on Re1 + . . .+Ren by conjuga-
tion maps φ : Pin(n)→O(n). We calculate ker(φ) = {±1} as with the quaternions.
The spin group Spin(n) is φ−1(SO(n)) and the restriction φ : Spin(n)→ SO(n) is
the universal covering of SO(n), the n-dimensional rotation group.

1.6. Spinc Group We have the following product diagram around Spin(n)×S1 with
the Z/2Z subgroups which leads to a definition of the complex spin group Spinc as
a quotient by the central subgroup Γ of order 2.

Z/2Z = {1,ε}

��

{(1,1),(ε,−1)}pr1�� pr2 ��

��

{±1}

��
Spin(n)

��

Spin(n)×S1��

��

�� S1 = K(Z,1)

2
��

SO(n) Spinc(n)�� �� S1 = K(Z,1)

In particular, we have Spinc(n) = (Spin(n)×S1)/Γ, with Γ= {(1,1),(ε,−1)}.

2 Orientation and the First Stiefel–Whitney Class

2.1. Remark In order to study the first Stiefel–Whitney class of a vector bundle, we
take the classifying space fibre sequence of the exact sequence (1.1) relating O(n)
and SO(n) to obtain the fibre sequence

O(n) det−→ {±1} −→ BSO(n)−→ BO(n)
B(det)−→ B{±1}= K(Z/2Z,1).

2.2. Definition Let E be a real n-dimensional vector bundle over a space X classi-
fied by a map f : X → BO(n). The first Stiefel–Whitney class w1(E) of E is the
homotopy class of the composite [B(det) f ] ∈ [X ,B{±1}] = H1(X ,Z/2Z). An ori-
entation of the real vector bundle E is represented by a lifting of the classifying map
f to a map f ′ : X → BSO(n), and E is orientable provided f lifts to some f ′. A
homotopy class [ f ′] of liftings of f is called an orientation.

An orientation can also be defined as a reduction of the structure group from
O(n) to SO(n).

2.3. Proposition With the notations in (2.1), the composite B(det) f is null homotopy
if and only if f has a lifting f ′ : X → BSO(n). A real vector bundle E has an orien-
tation if and only if the first Stiefel–Whitney class w1(E) = 0. The various orienta-
tions are simply and transitively acted on by the group [X ,{±1}] = H0(X ,{±1}) =
H0(X ,Z/2Z).
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Proof . This follows from the properties of homotopy mapping sets into a fibre se-
quence.

2.4. Remark There is a universal first Stiefel–Whitney class which is a homotopy
class of mappings w1 : BO(n)→ K(Z/2Z,1) or an element w1 ∈H1(BO(n),Z/2Z)
for n-dimensional bundles and similarly a homotopy class of mappings w1 : BO→
K(Z/2Z,1) or an element w1 ∈ H1(BO,Z/2Z) for stable bundles. The element w1

generates a polynomial algebra in H∗(BO,Z/2Z).

3 Spin Structures and the Second Stiefel–Whitney Class

3.1. Remark In order to study the second Stiefel–Whitney class of an oriented vector
bundle, we take part of the classifying space fibre sequence of the exact sequence
(1.3) relating SO(n) and Spin(n) to obtain the fibre sequence

{1,ε} −→ Spin(n)−→ SO(n) σ−→ B{1,ε}= K(Z/2Z,1).

With this sequence, we use the group structure on B{1,ε} and the fact that SO(n)→
B{1,ε} is a group morphism to apply again the fibre sequence of this exact sequence
to obtain the fibre sequence

K(Z/2,1) = B{1,ε} −→ BSpin(n)−→ BSO(n)
B(σ)−→ B2{1,ε}= K(Z/2,2).

3.2. Definition Let E be a real oriented n-dimensional vector bundle over a space X
classified by a map f : X → BSO(n). The second Stiefel–Whitney class w2(E) of E
is the homotopy class of the composite [B(σ) f ] ∈ [X ,B2{1,ε}] = H2(X ,Z/2Z) =
H2(X ,F2). A spin structure on the real oriented vector bundle E is represented by
a lifting of the classifying map f to a map f ′ : X → BSpin(n), and E has a spin
structure provided f lifts to some f ′. A homotopy class [ f ′] of liftings of f is called
a spin structure.

A spin structure can also be defined as a lifting of the structure group from SO(n)
to Spin(n).

3.3. Proposition With the notations in (3.1), the composite B(σ) f is null homotopy
if and only if f has a lifting f ′ : X →BSO(n). An oriented real vector bundle E has a
spin structure if and only if the second Stiefel–Whitney class w2(E) = 0. The various
spin structures of an oriented vector bundle over X are simply and transitively acted
on by H1(X ,Z/2Z).

Proof . This follows from the properties of homotopy mapping sets into a fibre se-
quence.

3.4. Remark There is always a universal second Stiefel–Whitney class which is
a homotopy class of mappings w2 : BSO(n) → K(Z/2Z,2) or an element w2 ∈
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H2(BSO(n),Z/2Z). For stable bundles, we have w2 : BSO→ K(Z/2Z,2) or an el-
ement w2 ∈ H2(BSO,Z/2Z).

4 Spinc Structures and the Third Integral Stiefel–Whitney Class

4.1. Remark In order to define the third integral Stiefel–Whitney class of an oriented
vector bundle, we take the classifying space fibre sequences of the product diagram
(1.4) relating Spinc(n) and SO(n) to obtain the following three vertical fibre se-
quences

B(Z/2Z) = B{1,ε}

��

B{(1,1),(ε,−1)}pr1��

��

pr2 �� B{±1}

��
BSpin(n)

��

BSpin(n)×BS1

��

�� �� BS1 = K(Z,2)

2
��

BSO(n)
w2

�����������������

W3=δw2

��

BSpinc(n)

��

�� �� BS1 = K(Z,2)

reduction mod 2		�������������

K(Z,3) K(Z/2Z,2)δ��

with δ = Bockstein.

4.2. Definition Let E be a real oriented n-dimensional vector bundle over a space X
classified by a map f : X → BSO(n). The integral third Stiefel–Whitney class W3(E)
of E is the homotopy class of the composite [δw2 f ] ∈ [X ,K(Z,3)] = H3(X ,Z),
where δ is the Bockstein δ : K(Z/2Z,2)→ K(Z,3). A spinc structure on the real
oriented vector bundle E is a complex line bundle L with classifying map g : X →
B(S1) = K(Z,2) such that in K(Z/2Z,2)

w2 f = g mod 2.

With this relation, we have a lifting f ′ : X → B(Spinc(n)) which composed with the
first projection is f and with the second projection is g. The homotopy class [ f ′]
projecting to f is called a spinc structure on E .

A spinc structure can also be defined as a lifting of the structure group from
SO(n) to Spinc(n).

4.3. Proposition With the notations in (4.1), the composite w2 f is of the form g mod
2 if and only if δw2 f =W3 f : X →K(Z,3) is null homotopic. An oriented real vector
bundle E has a spinc structure if and only if the third integral Stiefel–Whitney class
W3(E) = 0. The group [X ,BS1] = H2(X ,Z) acts simply and transitively on the set
of spinc structures of an oriented vector bundle E over X.
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Proof . This follows from the properties of homotopy mapping sets into a fibre se-
quence and a fibre product.

4.4. Remark There is always a universal third integral Stiefel–Whitney class which
is a homotopy class of mappings W3 : BSO(n) → K(Z,3) or an element W3 ∈
H3(BSO(n),Z). For stable bundles, there is a corresponding W3 ∈H3(BSO,Z).

5 Relation Between Characteristic Classes of Real
and Complex Vector Bundles

This topic has been considered in Chap. 10, Sect. 9 on Pontrjagin classes. Now, we
consider the spinc-structure on a real vector bundle coming from a complex vector
bundle.

5.1. Change of Scalars Restriction and induction yield relations between complex
and real vector bundles.

(1) Let E → X be an n-dimensional complex vector bundle over X classified by a
map f : X → BU(n). The associated real 2n-dimensional vector bundle E|R is
given by restricting the scalars from C to R, and it is classified by f composed
with BU(n)→ BO(2n) induced by the inclusion U(n)⊂ O(2n).

(2) Let ER → X be an n-dimensional real vector bundle over X classified by a map
g : X → BO(n). The associated complex n-dimensional vector bundle C⊗R ER

is given by tensoring with C over R fibrewise, and it is classified by g composed
with BO(n)→ BU(n) induced by the inclusion O(n)⊂U(n).

5.2. Real Characteristic Classes of Complex Vector Bundles Let E be a complex
vector bundle on X with restriction to the real vector bundle E|R. Then, we have

w1(E|R) = 0, W3(E|R) = 0, and w2(E|R) = c1(E) mod 2.

In particular, a complex vector bundle as a real vector bundle has an orientation and
a spinc(n)-structure.

6 Killing Homotopy Groups in a Fibration

6.1. Notation For a pointed space X , we denote by X〈n〉 → X the fibration having
the property that πi(X〈n〉)→ πi(X) is an isomorphism for i ≥ n and πi(X〈n〉) = 0
for i < n. Observe that X〈0〉= X , X〈1〉 is the connected component of the base point
of X , and

X〈2〉 −→ X〈1〉 ⊂ X

is the universal covering of the connected component X〈1〉. In general, there are
factoring fibrations over X given by
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X〈n + 1〉



��
��

��
��

�
�� X〈n〉

����
��

��
��

X

For n > 0, the fibre of the fibration X〈n+1〉→ X〈n〉 is a K(πn(X),n−1) space. For
n > 1, this space can be taken to be an abelian group, and the fibration can be made
into a principal fibration.

6.2. Definition With these notations, this fibration is classified by a map cn : X〈n〉→
K(πn(X),n), and we obtain the n-step fibration sequence for the pointed space X

K(πn(X),n−1)−→ X〈n + 1〉 −→ X〈n〉 −→ K(πn(X),n).

The fibration X〈n〉 → X is called the n-connected covering of X . Note that X〈n〉 in
general is n−1-connected but not necessarily n-connected.

6.3. Remark For any pointed space T , the n-step fibration sequence for X yields the
following homotopy mapping sequence

[T,K(πn(X),n−1)] �� [T,X〈n + 1〉] �� [T,X〈n〉] c �� [T,K(πn(X),n)]

Hn−1(T,πn(X)) Hn(T,πn(X))

For α ∈ [T,X〈n〉] and β ∈ [T,X〈n + 1〉], we have the following two assertions:

(1) The element α ∈ [T,X〈n〉] lifts to some β ∈ [T,X〈n+1〉], that is, α is the image
of some β if and only if the characteristic class c(α) = 0 in Hn(T,πn(X)).

(2) Given α which lifts to β , the various liftings β differ by an action of Hn−1

(T,πn(X)) = [T,K(πn(X),n−1)] on [T,X〈n + 1〉].
6.4. Some m-Connected Coverings of BO Now, we consider a stable real vector
bundle E on T classified by f : T → BO and the possibility of lifting it to various
connected coverings of BO. The first row is a sequence of identities and the second
row is a sequence of fibrations where the fibres are K(π ,m) spaces with π given by
the homotopy of BO as determined by Bott periodicity.

T
id ��

f3
��

T

f2
��

id �� T

f1
��

id �� T

f

��
BO〈8〉 �� BO〈4〉= BSpin �� BSO �� BO

Both homology groups, H4(BSpin,Z) and H4(BSO,Z), are isomorphic to Z, and the
homomorphism H4(BSO,Z)→H4(BSpin,Z) induced by the natural map BSpin→
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BSO has cokernel isomorphic to Z/2Z. The image of p1 ∈H4(BSO,Z) therefore is
two times a generator. This generator in H4(BSpin,Z) is denoted 1

2 p1.
We have three assertions:

(1) A map f1 factoring f up to homotopy exists if and only if w1(E) = 0.
(2) When w1(E) = 0 and f1 is chosen, a map f2 factoring f1 up to homotopy exists

if and only if w2(E) = 0.
(3) When w1(E) = 0,w2(E) = 0, and f2 is chosen, a map f3 factoring f2 exists if

and only if 1
2 p1(E) = 0.

6.5. Some m-Connected Coverings of O(n) There are corresponding connected
covers for the group O(n). Note that the m-connected cover of a topological group
by definition yields a space and not a topological group. However, the sequence of
connected covers O(n)〈7〉→O(n)〈3〉→O(n)〈1〉→O(n)〈0〉→O(n) for n > 4 can
be realized through a sequence of topological groups

String(n)−→ Spin(n)−→ SO(n)−→O(n).

The topological group SO(n) is the 0-connected subgroup of O(n) for n > 1, Spin(n)
is the 3-connected covering of SO(n) and O(n) for n > 2, and these are all compact
Lie groups. The group String(n) which corresponds to the 7-connected covering
of Spin(n), SO(n), and O(n) is defined for n > 4 and is called the string group.
There are various models for the topological group String(n), but none of them
is a compact Lie group since H3(String(n),Z) = 0. A lifting of an O(n) principal
bundle to SO(n) is called an orientation, to Spin(n) is called a spin structure, and to
String(n) is called a string structure.

We can interpret (6.3) for the tangent bundle T (M) to a manifold with the fol-
lowing terminology.

6.6. Remark Let M be a smooth manifold with tangent bundle T (M) with character-
istic classes of M equal to the classes of T (M).

(a) The manifold M is orientable if and only if the Stiefel–Whitney class w1(M) = 0.
The set of orientations of M is simply and transitively acted on by H0(M,Z/2Z).

(b) The oriented manifold M is spin if and only if the Stiefel–Whitney class w2(M) =
0. The set of spin structures on M is simply and transitively acted on by
H1(M,Z/2Z).

(c) The spin manifold M is string if and only if the Pontrjagin class 1
2 p1(M) = 0. The

set of string structures on M is simply and transitively acted on by H3(M,Z).

6.7. Geometric Significance of Spin Structures On a spin manifold M, we can
define a spinor bundle SM related to the tangent bundle T (M) together with a
Dirac operator acting on the sections of the spinor bundle SM . The index of the
Dirac operator can be computed in terms of the Â(M), the Â-genus of the mani-
fold M. The index is an obstruction to the existence of a metric with positive scalar
curvature on M.
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6.8. Remark Conjecturally, there is a similar interpretation of the existence of string
structures on M in terms of spinors and Dirac operators on the free loop spaceΛ(M)
of M. The index of the Dirac operator would be the Witten index, and it is con-
jecturally an obstruction to the existence of a metric with positive Ricci curvature
on M.
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Chapter 13
G-Spaces, G-Bundles, and G-Vector Bundles

In this chapter, we introduce the basic notions related to objects being acted on by
a group G. Since the objects like spaces and bundles have topologies, we will as-
sume that the group is a topological group. Let G be a topological group which is
eventually a compact Lie group. We consider G-spaces X and G-vector bundles with
a base G-space. The aim is to develop the theory in a parallel fashion to ordinary
bundle theory taking into account the G-action on both the base space and the total
space together with actions between fibres. There are some generalities which ap-
ply to bundles in general including principal bundles which we outline in the first
sections. A G-vector bundle over a point is just a representation of G on a vector
space. In particular, we analyze part of the properties of G-vector bundles in terms
of representation theory of G. Since the representation theory of compact groups is
well understood, we will restrict ourselves to this case for the more precise theory,
but compact groups will play a role for topological reasons too. For example, we
show that G-homotopic maps always induce isomorphic G-vector bundles when G
is compact.

Of special interest is the group G of two elements. The symbol (τ) is a symbol for
the group on two elements with generator τ which is always an involution under any
action. The first example is that of complex conjugation τ(a + ib) = a− ib, where
τ : C→C. We incorporate the concept real structures in K-theory using (τ)-bundles
and mix this with the G-equivariant theory, for it plays a basic role in the relation
between complex and real structures on vector bundles.

1 Relations Between Spaces and G-Spaces: G-Homotopy

In Chap. 5, Sect. 1, we introduced the basic notions of G-spaces and the G-
equivariant maps between G-spaces as background for principal bundles where G
acted on total space-preserving fibres. We extend these concepts so that G can act
also on the base space. This consists of making certain functors more explicit.

D. Husemöller et al.: G-Spaces, G-Bundles, and G-Vector Bundles, Lect. Notes Phys. 726, 149–161 (2008)
DOI 10.1007/978-3-540-74956-1 14 © Springer-Verlag Berlin Heidelberg 2008
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1.1. Notation for the Basic Categories and Functors Let (top) be the category
of spaces and maps, and let (G\top) be the category of G-spaces and G-equivariant
maps. If G is the trivial group, (G\top) can be identified with (top). For two G-
spaces, X and Y , one obtains the space Map(X ,Y ) of all continuous maps from X
to Y . It carries a natural G-action which is motivated and specified in remark 1.5 and
definition 1.6 below.

For a homomorphism ρ : H → G of topological groups, the restriction functor
Res : (G\top)→ (H\top) assigns to a G-space X the H-space X with the action
θ : G×X → X given by the composition

θ (ρ× id) : H×X → G×X → X .

The trivial G-space functor Tr : (top)→ (G\top) assigns to a space W the G-space
Tr(W ) = W as a space with trivial G-action. The stripping (or forgetful) functor
Str : (G\top)→ (top) assigns to a G-space X the space Str(X) = X viewed as a
space without G-action. The functor Tr can be identified with the restriction functor
induced by the homomorphism which maps G to the trivial group while the stripping
functor Str can be identified with the restriction functor induced by the inclusion of
the trivial group into G.

The functor Res has both a left and a right adjoint.

1.2. Biadjunctions of Res The induction functor Ind : (H\top) → (G\top) as-
signs to an H-space X the quotient G×HX which is obtained by identifying
(gρ(h−1),x)) = (g,hx) for all g ∈ G,h ∈ H, and x ∈ X . The quotient is regarded
as a G-space via the action induced by left multiplication on the first factor. The
functor is a left adjoint to the functor Res, that is, for every G-space W , one has

MapG(G×HX ,W ) = MapH(X ,Res(W ))

The coinduction functor Coind : (G\top)→ (H\top) assigns to an H-space Y
the H-space MapH(G,Y ), where G is regarded as the H-space where an element
h ∈ H acts on G by left multiplication with ρ(h)−1. That is, the space MapH(G,Y )
consists of all maps φ : G → Y satisfying where an element h ∈ H acts on G by
left multiplication via ρ . More specifically, MapH(G,Y ) consists of all maps φ :
G→ Y satisfying tφ(s) = φ(ρ(t)s) for all s ∈ G and t ∈ H. The space MapH(G,Y )
is regarded as a G-space with the action of an element s ∈ G on a function φ ∈
MapH(G,Y ) is given by (s.φ)(s′) = φ(s′s). The functor Coind is right adjoint to
Res, that is, in terms of morphism sets, we have

MapH(Res(X),Y ) = MapG(X ,Coind(Y ))

From the above, we obtain biadjunctions to the functors Tr and Str.

1.3. Biadjunctions of Tr Let X be a G-space. We have two spaces Quot(X) =
G\X and Fix(X) = MapG(∗,X) ⊂ X with, respectively, the quotient and subspace
topologies from X . They correspond to the induction and the coinduction functor
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for the homomorphism which maps G to the trivial group. We therefore have the
following adjunction relations

Quot � Tr and Tr � Fix : (G\top)−→ (top).

In terms of morphism sets we have, for G-spaces W , the natural isomorphisms

Map(G\X ,W ) = MapG(X ,Tr(W ))

and
MapG(Tr(W ),Y ) = Map(W,Fix(Y )) .

1.4. Biadjunctions of Str Let W be a space. For the inclusion of the trivial group
into G, the adjunctions of (1.2) specialize to the adjunction relation

G× ( .) � Str and Str �Map(G, .) : (top)−→ (G\top).

In terms of morphism sets, we have the natural isomorphisms

MapG(G×W,Y) = Map(W,Str(Y ))

and
MapG(X ,Map(G,W )) = Map(Str(X),W ).

This adjunction relation depends on the adjunction

Map(X×T,Y) = Map(X ,Map(T,Y )) ,

which we discussed in Sect. 1 and 2 of Chap. 6.
The adjunction for spaces

c : Map(X×T,Y )→Map(X ,Map(T,Y ))

where c( f )(x)(t) = f (x,t) plays a basic role for the concept of homotopy of maps.
We extend adjunction to G-spaces in order to consider G-homotopy.

1.5. Remark Let X , T , and Y be G-spaces. The G-structure on X×T is given by the
relation s(x,t) = (sx,st), and a G-map f : X×T →Y satisfies the relation s f (x,t) =
f (sx,st). In order that f (x)(t) : X → Map(T,Y ) be a G-morphism, we must have
f (sx)(t) = [s. f (x)](t), or in other terms, we require that

f (sx,t) = f (sx,ss−1t) = s f (x,s−1t) = [s. f (x)](t),

and this leads to the action G×Map(T,Y )→Map(T,Y ), where

(s.u)(t) = su(s−1t) for s ∈ G,t ∈ T.

1.6. Definition The action G ×Map(T,Y ) → Map(T,Y ) given by the formula
s.u(t) = (s.u)(t) = su(s−1t) for s ∈G, t ∈ T makes Map(T,Y ) into a G-space. Now,
we can use 6(2.4) in the G-equivariant setting.



152 13 G-Spaces, G-Bundles, and G-Vector Bundles

1.7. Assertion Let T be a locally compact G-space, and let X and Y be G-spaces.
The isomorphism of spaces

c : Map(X×T,Y)−→Map(X ,Map(T,Y ))

restricts to an isomorphism for G-spaces morphisms

c : MapG(X×T,Y )−→MapG(X ,Map(T,Y )),

where MapG(X ,Y )⊂Map(X ,Y ) has the subspace topology. If X is locally compact
instead of T , then we have an isomorphism of G-spaces c : MapG(X × T,Y ) →
MapG(T,Map(X ,Y )), and if further G acts trivially on T , then MapG(T,Map(X ,Y ))
= Map(T,MapG(X ,Y )) since MapG(X ,Y ) = Fix(Map(X ,Y )), the G-fixed points on
Map(X ,Y ). This, we apply to the concept of G-homotopy.

1.8. Definition Let X and Y be two G-spaces. Two G-maps f ′, f ′′ : X → Y are G-
homotopic provided there exists a G-map h : X × [0,1]→ Y with G acting trivially
on [0,1] such that h(x,0) = f ′(x) and h(x,1) = f ′′(x).

1.9. Remark As in the nonequivariant case, the relation of G-homotopy is an equiv-
alence relation.

1.10. Remark The homotopy h can be viewed as a path parametrized by t given by
ht(x) = h(x, t) consisting of G-maps X → Y , and if X is locally compact, then all
such paths determine a homotopy from h0 = f ′ to h1 = f ′′.

2 Generalities on G-Bundles

The most general concept of a bundle is that of a map p : E → B, where B is called
the base space, E is called the total space, and p is the projection. The inverse images
p−1(b), also denoted Eb, with the subspace topology are called the fibres of the
bundle.

2.1. Definition Let G be a topological group. A G-bundle is a G-equivariant map
p : E → B between G-spaces, in particular, p(sx) = sp(x) for s ∈ G. The G-space E
is called the total space, the G-space B is called the base space, and the G-equivariant
map p is called the projection. Note that in Chap. 5 we required a G-bundle to have
a trivial action of G on the base space B and the right action on the total space.

The equivariant property of the projection p can be formulated in terms of the
commutativity of the diagram where the horizontal maps are the G-space structure
or action maps

G×E

G×p

��

�� E

p

��
G×B �� B .

.
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2.2. Definition Let p′ : E ′ → B′ and p′′ : E ′′ → B′′ be two G-bundles. A morphism
is a pair of G-equivariant maps u : E ′ → E ′′ and f : B′ → B′′ defined, respectively,
on the total spaces and base spaces such that p′′u = f p′. The composition of G-
bundle morphisms is defined by composing the maps on the total and base spaces.
In the case that B′ = B′′ = B and f is the identity on B, the morphism u : E ′ → E ′′ is
called a B-morphism of G-bundles. The composition of two B-morphisms is again
a B-morphism of G-bundles.

2.3. Remark Let p : E → B be a G-bundle, and let b ∈ B and s ∈ G with sb ∈ B.
The action of s on E restricts to fibres Eb → Esb as an isomorphism with inverse the
action of s−1 on the fibres.

2.4. Notation Let p : E → B be a G-bundle, and let Γ(B,E) denote the set of all
sections of p : E→ B, that is, all maps σ : B→ E with p(σ(b)) = b for all b∈ B. We
give Γ(B,E) the subspace topology from the compact open topology on Map (B,E).
It is a G-space with action (sσ)(b) = s(σ(s−1b)) for b ∈ B, s ∈G, and σ ∈ Γ(B,E).
A G-equivariant section σ ∈ Γ(B,E) is one with sσ = σ for all s∈G, and the subset
of G-equivariant sections is denoted by ΓG(B,E).

2.5. Definition Let p′ : E ′ → B′ and p′′ : E ′′ → B′′ be two G-bundles. The product
G-bundle is p′ × p′′ : E ′ × E ′ → B′ × B′′. In the case that B′ = B′′ = B, the fibre
product G-bundle is q : E ′ ×B E ′′ → B, the fibre product of bundles with G-action
s(x′,x′′) = (sx′,sx′′), where the condition p′(x′) = p′′(x′′) implies p′(sx′) = p′′(sx′′).

2.6. Definition Let p : E → B be a G-bundle, and let f : B′ → B be a G-map. Then,
the induced bundle f−1(E) with total space f−1(E) ⊂ B′ ×E defined by the con-
dition (b′,x) ∈ f−1(E) if and only if f (b′) = p(x), and projection q : f−1(E)→ B′
given by q(b′,x) = b′ has a G-bundle structure, where s(b′,x) = (sb′,sx).

2.7. Remark Let p′ : E ′ → B′ and p′′ : E ′′ → B′′ be two G-bundles with a morphism
consisting of a pair of G-equivariant maps u : E ′ → E ′′ and f : B′ → B′′ defined,
respectively, on the total spaces and base spaces such that p′′u = f p′. Then, there
is a factorization u = u′′u′ of u as a G-bundle morphism u′ : E ′ → f−1(E ′′) over B′
and u′′ : f−1(E ′′)→ E ′′ as a G-bundle morphism over f . The formulas are u′(x′) =
(p′(x′),u(x′)) and u′′(b′,x′′) = x′′.

3 Generalities on G-Vector Bundles

The primary interest in this chapter is in (finite dimensional) complex vector bun-
dles, and in the course of our discussion, real and quaternionic vector bundles will
arise within the equivariant structure. As usual, G denotes a topological group.

3.1. Definition Let X be a G-space. A G-vector bundle over X is a G-map p : E→ X
which is a G-bundle and a vector bundle such that for all s∈G, the action of s : Eb→
Esb is a vector space isomorphism.
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Observe that if sb = b, then s acts as a linear automorphism of the vector space
fibre Eb.

3.2. Definition Let p′ : E ′ → X ′ and p′′ : E ′′ → X ′′ be two G-vector bundles, and
let f : X ′ → X ′′ be a G-map. An f -morphism u : E ′ → E ′′ of G-vector bundles
is a morphism of G-bundles which also is a morphism of vector bundles. When
X ′ = X ′′ = X and f is the identity on X , then u is called an X -morphism of G-vector
bundles.

3.3. Categories of G-Vector Bundles Let X be a G-space. The categories of real
and complex G-vector bundles over X are denoted by VectR(X ,G) and VectC(X ,G).
Tensoring with C (over R) gives a functor VectR(X ,G)→ VectC(X ,G), and reduc-
ing the scalar multiplication from the complex numbers C to the real numbers R

gives a functor VectC(X ,G)→ VectR(X ,G). The composition of the first functor
followed by the second is a functor VectR(X ,G) → VectR(X ,G) which carries a
real G-bundle V to V ⊕V over (X ,G). The composition of the second functor fol-
lowed by the first is a functor VectC(X ,G)→ VectC(X ,G) which carries a complex
G-bundle E to E⊕E∗ over (X ,G).

3.4. Remark In (2.4), the G-action on the set of sections Γ(X ,E) was introduced for
a G-vector bundle. The space Γ(X ,E) of sections is, first of all, a vector space with
the usual addition and scalar multiplication given by the formula

(a′σ ′+ a′′σ ′′)(b) = a′σ ′(b)+ a′′σ ′′(b)

for σ ′,σ ′′ ∈ Γ(X ,E) and scalars a′ and a′′. Moreover, by (1.4), the action of s ∈ G
induces the identities

(s(a′σ ′+ a′′σ ′′))(b) = s((a′σ ′+ a′′σ ′′)(s−1b)) =
a′s(σ ′(s−1b)+ a′′s(σ ′′)(s−1b) = a′(sσ ′)(b)+ a′′(sσ ′′)(b)

for b ∈ X ,s ∈ G, and σ ∈ Γ(X ,E) showing that Γ(X ,E) is a G-vector space. If u :
E ′ →E ′′ is an X -morphism of G-vector bundles, then Γ(u)(σ)(b) = u(σ(b)) defines
a morphism Γ(u) : Γ(X ,E ′)→ Γ(X ,E ′′) of G-vector spaces, because sΓ(u)(σ)(b) =
su(σ(b)) = su(σ(s−1b)) = u(s(σ(s−1b))) = Γ(u)(sσ)(b).

Finally, the cross section vector space is a functor from the categories of complex
and real G-vector bundles

Γ(X ,) : VectC(X ,G)−→ RepC(G) and Γ(X ,) : VectR(X ,G)−→ RepR(G)

to the categories RepC(G) and RepR(G) of, respectively, complex and real (not
necessarily finite dimensional) representations of G. The question of continuity of
such representations will not be discussed here.

3.5. Definition Let p′ : E ′ → X ′ and p′′ : E ′′ → X ′′ be two G-vector bundles. The
product p′ × p′′ : E ′ ×E ′′ → X ′ ×X ′′ is a G-vector bundle. In the case that X ′ =
X ′′ = X , the fibre product q : E ′ ×X E ′′ → X is a G-vector bundle.
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3.6. Definition Let p : E → X be a G-vector bundle, and let f : X ′ → X be a G-map.
Then, the induced bundle f−1(E) is a G-vector bundle as can be checked immedi-
ately from the total space f−1(E)⊂ X ′×E defined by the condition (b′,x)∈ f−1(E)
if and only if f (b′) = p(x) and projection q : f−1(E)→ X ′ given by q(b′,x) = b′
has a G-bundle structure, where s(b′,x) = (sb′,sx) and vector bundle structure
a′(b′,x1)+ a′′(b′,x2) = (b,a′x1 + a′′x2).

As with (2.7), we have the following remark.

3.7. Remark Let p′ : E ′ → X ′ and p′′ : E ′′ → X ′′ be two G-vector bundles with a
morphism consisting of a pair of maps u : E ′ → E ′′ and f : X ′ → X ′′ defined, re-
spectively, on the total spaces and base spaces such that p′′u = f p′. Then, there is
a factorization u = u′′u′ of u as a G-vector bundle morphism u′ : E ′ → f−1(E ′′)
over X ′ and u′′ : f−1(E ′′)→ E ′′, a G-vector bundle morphism over f . This follows
immediately from the formulas u′(x′) = (p′(x′),u(x′)) and u′′(b′,x′′) = x′′.

3.8. Definition Analogously, as in Chap. 4, Sect. 2, one defines the G-equivariant
K-theory ring KG(X) of a G-space X as the Grothendieck construction applied to
the semiring of isomorphism classes of G-vector bundles on X .

4 Special Examples of G-Vector Bundles

We consider three special cases of G-vector bundles.

4.1. Example Let E be a G-vector bundle over a space B which is trivial as a vector
bundle. This means that p : E → B is isomorphic to prB : B×V → B, where V is a
complex vector space. For this product G-bundle, we have an action G×B→ B and
the product B×V with V has a G-action G×B×V → B×V of the form

s(b,v) = (sb,J(s,b)v),

where J : G×B→ End(V ) is a continuous function. For the unit of the action, we
must have J(1,b) = idV for all b∈ B, and for the associativity of the action, we must
have

(stb,J(st,b)v) = st(b,v) = s(tb,J(t,b)v) = (stb,J(s,tb)J(t,b)v),

or for all b ∈ B and s,t ∈G, the cocycle relation (or chain rule)

J(st,b) = J(s,tb)J(t,b).

When s = t = 1, we have J(1,b) = J(1,b)J(1,b) so that if J(1,b) is invertible, then
we have automatically J(1,b) = 1. Otherwise, it is only an idempotent.

Conversely, for a continuous function J : G×B→ End(V ) satisfying J(1,b) = 1
and J(st,b) = J(s,tb)J(t,b), the product bundle has a G-bundle structure given by
s(b,v) = (b,J(b,s)v). If we change the trivialization by a function C : B→ GL(V ),
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then we have a new G-bundle structure where J′(b,s) = C(sb)J(b,s)C(b)−1, for if
ψ(b,v) = (b,C(b)v), then the action

(sb,J′(b,s)v) = ψsψ−1(b,v) = ψs(b,C(b)−1v) =
ψ(sb,J(b,s)C(b)−1v) = (sb,C(sb)J(b,s)C(b)−1v).

This gives what is called the cobounding relation between J and J′, that is, J′(b,s) =
C(sb)J(b,s)C(b)−1.

4.2. Homogeneous Space Let X be a G-space with a transitive G-action, and
choose a point x ∈ X with stabilizer subgroup Gx. Then, there is a natural con-
tinuous bijection f : G/Gx → X of G-spaces, where f (tGx) = tx. We assume that f
is a topological isomorphism and hence, G-space isomorphism. This is the case for
G compact and X separated.

4.3. Example Let p : E → G/H be a G-vector bundle over the homogeneous space
G/H. As we have seen in (3.1), the stabilizer subgroup Gx = H of 1.H = x acts
on the fibre Ex of E over x as a group representation. We can form the quotient
G×H Ex of the product G×Ex which projects to G×H x = G/H as a vector bundle
q : G×H Ex → G/H. This is the fibre bundle construction, and we denote this fibre
bundle also by q : G[Ex]→G/H. Next, there is a natural morphismα : G×H Ex→E
of vector bundles over G/H given by α(s,v) = sv ∈ E . Since α(sh−1,hv) = α(s,v),
the formula defines a morphism of vector bundles which is an isomorphism on each
fibre. Hence, it is an isomorphism.

Conversely, to each representation V of H, we can associate a natural G-vector
bundle G[V ] = G×H V → G×H ∗= G/H over G/H.

4.4. Example Let B be a G-space with trivial G action, that is, sb = b for all s ∈
G,b ∈ B. Then, a G-vector bundle structure on a vector bundle p : E → B is just a
group morphism

G−→ Aut(E/B).

To go further, we assume that G be a compact group. Then, we can analyze the
structure of E in terms of a choice of representatives Vi of the various isomorphisms
classes of irreducible representations of G. Let I denote the set of these isomorphism
classes. Since G is compact, these representatives Vi are finite dimensional. If V is
a finite dimensional representation of G, then the natural map

⊕
i∈I HomG(Vi,V )⊗

Vi → V is an isomorphism where we use the relation HomG(Vi,Vj) = Cδi, j. Let
Ei denote the product vector bundle B×Vi over B. Then HomG(Ei,E j) = C(B)δi, j,
where C(B) is the C-algebra of continuous complex valued functions on B. Thus, the
isomorphism for representations extends to the following isomorphism for vector
bundles ⊕

i∈I

HomG(Ei,E)⊗Ei −→ E.

Recall that End(Vi) ∼= Vi⊗V ∗i and that the completion of
⊕

i∈I End(Vi) are isomor-
phic to L2(G), the space of L2-functions on G with respect to Haar measure. This is
the content of the Peter–Weyl theorem.



13.5 Extension and Homotopy Problems for G-vector Bundles 157

5 Extension and Homotopy Problems for G-Vector Bundles
for G a Compact Group

In this section, G is a compact group, and in general, we will consider bundles over
compact G-spaces. A G-vector bundle E over a G-space X is, in particular, a vector
bundle, hence locally trivial as a vector bundle. This says nothing about the role of
the action of G on these sets where the bundle is trivial in general.

5.1. Remark Let G be a compact group, and let E be a G-vector bundle over a sep-
arated space B. The restriction E|(Gx) to the compact orbit Gx ⊂ B of E is a vec-
tor bundle, and the orbit is isomorphic to the homogeneous space G/Gx under the
isomorphism G/Gx → Gx. By (4.3), we have a natural isomorphism of this restric-
tion E|Gx → G[Ex] over Gx, where G[Ex] → Gx is the fibre bundle associated to
the principal Gx-bundle G → Gx with fibre Ex coming from the representation of
Gx on Ex.

5.2. Proposition Let E be a G-vector bundle over a compact G-space X, and let Y
be a closed G-subspace of X. The restriction of G-equivariant sections ΓG(X ,E)→
ΓG(Y,E|Y ) is a surjection.

Proof . An open set V with Y ⊂ V ⊂ X has a section σ ′′ ∈ Γ(V,E) extending σ ′ ∈
Γ(Y,E|Y ), that is, σ ′′|Y = σ ′. This follows from the fact that Y is covered by a finite
number of open sets over which E is trivial and over which σ ′ is described by a map
into a vector space. These maps into vector spaces extend by the Tietze extension
theorem.

5.3. Proposition Let E ′ and E ′′ be two G-vector bundles over a compact G-space
X, and let u : E ′|Y → E ′′|Y be an isomorphism of the restrictions to a closed G-
subspace Y of X. There exists a G-invariant neighborhood V of Y in X and an
isomorphism w : E ′|V → E ′′|V extending u.

Proof . The first step is to apply the previous proposition (5.2) to u ∈ ΓG(Y,Hom
(E ′,E ′′)) to obtain w′ ∈ ΓG(X ,Hom(E ′,E ′′)), a G-morphism w′ : E ′ → E ′′. Since
being an isomorphism is an open condition, there is G-open set V with Y ⊂ V in X
with w : E ′|V → E ′′|V , an isomorphism. This proves the proposition.

5.4. Proposition Let E be a G-vector bundle on a G-space Y , and let f ′, f ′′ : X →Y
be two G-homotopic maps from a compact G-space X. Then, the induced G-bundles
f ′−1E and f ′′−1E are isomorphic.

Proof . Let h : X × [0,1]→ Y be a homotopy from f ′ to f ′′, and let E ′ = h−1(E)
on X× [0,1] with E ′|X×{0}= f ′−1(E). By the previous proposition, this equality
extends to an isomorphism

E ′|X× [0,ε]−→ f ′−1(E)× [0,ε]

using the compactness of X . Then, using the compactness of [0,1], we can extend
this to an isomorphism E ′ → f ′−1(E)× [0,1] which restricts to X ×{1} giving an
isomorphism f ′′−1(E)→ f ′−1(E). This proves the proposition.
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6 Relations Between Complex and Real G-Vector Bundles

Now the group of two elements plays a special role.

6.1. Notation We use (τ) to denote the group with two elements where τ is element
of order 2. The group (τ) acts on C by complex conjugation τ(a+ ib) = a− ib, and
the fixed field or space is the real numbers R = Fix(τ) and with complex conjugation
on C

m with fixed space R
m = Fix(τ).

The idea that the real object is the fixed object of an action (τ) plays a basic role.

6.2. Remark Complex conjugation (τ) acts on Pn(C), and the fixed space is just
Pn(R). When τ preserves a subalgebraic variety of projective space, the real points
are the fixed points of the action of τ . To extend this action to the canonical (com-
plex) line bundle L→ Pn(C), we consider the exact sequence

0−→ E −→ Pn(C)×C
n+1 −→ L−→ 0

of vector bundles over Pn(C), where the n-dimensional subbundle E ⊂Pn(C)×C
n+1

consists of all (zi,wi) ∈ Pn(C)×C
n+1, where z0w0 + . . .+ znwn = 0. Since the equa-

tion for E consists of real coefficients, E and the quotient L have the coordinatewise
action of τ . But the action of τ is not by a complex linear automorphism, instead,
it is conjugate linear on the fibres of the quotient Pn(C)×C

n+1 → L. Then, the
fixed point line bundle over the fixed space under τ is the real canonical line bun-
dle LR → Pn(R). This leads to the study of complex G-bundles where the action is
conjugate linear on the fibres or more generally, partially linear and partially con-
jugate linear on the fibres. These ideas were introduced by Atiyah and extend to a
G-vector bundle setting where the group (τ) acts also on G. A G-equivariant real
theory with K-groups KRG is formulated as a mixture of Atiyah’s real theory with
K-groups KR and Segal’s G-equivariant theory with K-groups KG. This theory KRG

was introduced in Atiyah and Segal (1969).

6.3. Remark Let G be compact Lie group with a real structure τ : G→ G. Form the
cross product (τ)G, which is (τ)×G, as a set and group structure (τ ′,s′)(τ ′′,s′′) =
(τ ′τ ′′,(τ ′′s′)s′′) for τ ′,τ ′′ ∈ (τ) and s′,s′′ ∈G. If X is a real (τ)G-space, then both G
and (τ) act on X with the property τ(s.x) = τ(s).τ(x), or equivalently, the property
that the cross product (τ)G acts on X .

6.4. Definition A (G,τ)-vector bundle E is a complex G-vector bundle over a (τ)G-
space with a real (τ)G-vector bundle structure such that the fibre action of τ on the
real (τ)G-vector bundle Ex → Eτx is C-conjugate linear. A morphism of (G,τ)-
vector bundles E ′ → E ′′ is a morphism which is a morphism of complex G-vector
bundles and real (τ)G-vector bundles. Since a vector space is a vector bundle over
a point, this terminology applies also to complex vector spaces.

6.5. Notation Let Vect(X ,G,τ) denote the category of (G,τ)-vector bundles over
the (τ)G-space X . When G is the identity, this category is denoted by Vect(X ,τ).



13.7 KRG-Theory 159

The category Vect(X ,τ) was studied very early by Atiyah (1966), and he called
the space (X ,τ) a real space by analogy with algebraic geometry where the fixed
points of complex conjugation on the complex points form the set of real points.

6.6. Remark The results of the previous sections apply to the category Vect(X ,G,τ).
For example, a continuous G-map f : X → Y defines a functor

f−1 : Vect(Y,G,τ)→ Vect(X ,G,τ) .

The extension and homotopy properties (5.2),(5.3), and (5.4) carry over immedi-
ately. The (G,τ)-action on the vector space of sections Γ(X ,E) is a (G,τ)-action
on the vector space where again, that is, it is C-linear for s ∈ G and is C-conjugate
linear for s = τ .

6.7. Remark A (τ)G-space X induces a G-space structure on X τ , the τ-fixed points
of X , and Vect(X ,G,τ)→Vect(X τ ,G) is the complexification of a real G-equivariant
vector bundle. Under complexification, VectR(X τ ,G) is mapped injectively onto the
image of Vect(X ,G,τ)→ Vect(X τ ,G) as an equivalence of categories.

7 KRG-Theory

We apply the Grothendieck construction to the semiring of isomorphism classes in
the category Vect(X ,G,τ) of (G,τ)-vector bundles over the (τ)G-space X .

7.1. Definition The (G,τ)-equivariant real K-theory is a functor defined on the op-
posite category to the category of compact (τ)G-spaces denoted by KRG. When
G = (id), the functor is denoted simply by KR, and when τ is the identity, KRG is
isomorphic to the ordinary equivariant K-theory KG. The reduced version of KRG,
denoted K̃RG, is defined on the opposite category of compact-pointed (τ)G-spaces
as the kernel of the restriction to the base point

K̃RG(X) = ker(KRG(X)−→ KRG(∗)).

For a G-equivariant cofibration A ⊂ X , the relative group KRG(X ,A) is defined as
the reduced group K̃RG(X/A).

These contravariant functors are abelian group valued, KRG is commutative ring
valued, and the relative group KRG(X ,A) is a module over the ring KRG(X).

7.2. Notation Let Rp,q = R
q⊕ iRp with the τ action given by complex conjugation,

that is, τ(yi,x) = (−yi,x). Let Bp,q and Sp,q denote the unit ball and unit sphere in
Rp,q, respectively. Note that Rp,p = C

p, and the sphere Sp,q has dimension p+q−1.

7.3. Definition The (p,q)-suspension groups of KRG(X ,A) are defined as the fol-
lowing relative KRG-groups

KRp,q
G (X ,A) = KRG(X×Bp,q,(X × Sp,q)∪ (A×Bp,q)).
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Since the index p is related to the τ action, the suspension which is free of the
(τ)G-action is the index q, one uses this index to build a corresponding Z-graded
cohomology theory. For the nonpositive values, one defines the cohomology groups
by KR−q

G (X ,A) = KR0,q
G (X ,A). For defining the corresponding cohomology groups

of positive degree, we have to wait until the next chapter where Bott periodicity is
discussed.

One crucial property of the functors KR−q is formulated in the next two proposi-
tions.

7.4. Proposition Let (X ,A) be a (τ)G-pair. There is a long exact sequence extend-
ing to the left for the single-index-suspension groups KR−q

G (X ,A) for q ≥ 0 as fol-
lows

. . .−→ KR−1
G (X)−→ KR−1

G (A)−→ KRG(X ,A)−→ KRG(X)−→ KRG(A).

Using the exact sequence for the triple

(X×Bp,q,(X × Sp,q)∪ (A×Bp,q),X×Sp,q),

we obtain the following proposition.

7.5. Proposition Let (X ,A) be a (τ)G-pair. There is a long exact sequence extend-
ing to the left for the double-index-suspension groups, we have an exact sequence
for q≤ 0 ending at q = 0, and in each index p≥ 0

. . .→ KRp,−1
G (X)→ KRp,−1

G (A)→ KRp,0
G (X ,A)→ KRp,0

G (X)→ KRp,0
G (A).

Finally, we have the exterior product which is induced by the exterior tensor
product.

7.6. Proposition The ring structure on KRG(X) extends to the following external
product

KRp′,q′
G (X ′,A′)⊗KRp′′,q′′

G (X ′′,A′′)−→ KRp′+p′′,q′+q′′
G (X ′ ×X ′′,A)

where A = (A′ ×X ′′)∪ (X ′ ×A′′).

There is a graded ring structure on the groups KRp,q
G (X ,A) resulting from the

exterior product by restricting to the diagonal Δ : X → X×X .

7.7. Corollary The ring structure on KRG(X) extends to graded ring structure on
the groups additive in p and preserving q

KRp′,q
G (X ,A)⊗KRp′′,q

G (X ,A)−→ KRp′+p′′,q
G (X ,A).

To complete the picture of this functor KRG(X) and its suspensions, we need
Bott periodicity which is taken up in the next chapter.
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Chapter 14
Equivariant K-Theory Functor KG : Periodicity,
Thom Isomorphism, Localization,
and Completion

Using the Grothendieck construction in the preceding chapter, we defined the func-
tors KG for real and complex G-bundles and the Atiyah real KRG by mapping the
semiring of G-vector bundles into its ring envelope. We saw that the basic proper-
ties of the equivariant versions of vector bundle theory have close parallels with the
usual vector bundle theory, and the same is true for the related relative K-theories.
This we carry further in this chapter for the version of topological K-theory that has
close relations to index theory.

The simple form of Bott periodicity for complex K-theory is the isomorphism
K(X)⊗K(S2)→ K(X × S2). The 2-sphere S2 which also can be identified as the
one-dimensional complex projective space P1(C) plays a basic role. We can say that
this is the periodicity theorem for a trivial line bundle X ×C→ X over X . For the
case of KRG periodicity and Thom isomorphism, it is convenient to have a version
of the Bott isomorphism for any line bundle L→ X over a space X or space X with
involution τ .

We survey two basic results of Atiyah and Segal: the localization theory and the
completion theorem for the calculation of K-theory of classifying spaces.

1 Associated Projective Space Bundle to a G-Equivariant Bundle

As usual for a vector space V , the associated projective space P(V ) is the space
of one-dimensional linear subspaces W ⊂ V . In algebraic geometry, it is usually
defined as the space of one-dimensional quotients V →U . The canonical line bundle
L→ P(V ) is the subbundle L⊂ P(V )×V of the product of (W,x) with x ∈W or the
quotient construction of P(V ), the canonical line bundle L → P(V ) is the quotient
line bundle P(V )×V → L of {U}×U for V →U in P(V ). If G acts on V , then G
acts on P(V ) in both cases, and when V is a (G,τ)-vector space, then (τ)G also acts
on P(V ) in both cases. This all carries over to vector bundles.

1.1. Definition Let E → X be a (G,τ)-vector bundle over X with G-action
G× E → E . The associated projective bundle is p : P(E)→ X , where the fibre

D. Husemöller et al.: Equivariant K-Theory Functor KG : Periodicity, Thom Isomorphism, Localization, and
Completion, Lect. Notes Phys. 726, 163–173 (2008)
DOI 10.1007/978-3-540-74956-1 15 © Springer-Verlag Berlin Heidelberg 2008
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P(E)x = P(Ex) is the associated projective space of the vector space fibre Ex. The
(G,τ)-bundle structure on p : P(E)→ X comes from the (G,τ)-vector bundle struc-
ture on the vector bundle E over X . The canonical line bundle LE on P(E) is also a
(G,τ)-equivariant bundle which is the canonical line bundle on each fibre. We use
the quotient version, and this means that the following diagram with LE and its dual
L∨E as (G,τ)-line bundles over P(E) with (τ)G actions.

(τ)G×L∨E

��

�� (τ)G× p−1(E)

��

�� (τ)G×LE

��
L∨E �� p−1(E) �� LE

1.2. Remark For a one-dimensional vector space U and nonzero u ∈ U we have
for any finite-dimensional vector space V , an isomorphism of vector spaces V →
U ⊗V,v �→ u⊗ v. It induces an isomorphism P(V )→ P(U ⊗V) which is indepen-
dent of u. Hence, for each line bundle L and vector bundle E over X , we have a
well-defined isomorphism of projective space bundles P(E)→ P(L⊗ E).

2 Assertion of the Periodicity Theorem for a Line Bundle

The following theorem was introduced for a finite group G by Atiyah and proved for
a compact group by Segal. It is based on a careful analysis of the clutching functions
for a bundle over X×S2 in terms of a Fourier series. We here give a treatment within
the real setting.

2.1. Theorem Let L be a (G,τ)-equivariant line bundle over a (τ)G-space X with
corresponding class a = [L] ∈ KRG(X). The ring morphism

θ : KRG(X)[t]/(t−1)(ta−1)−→ KRG(P(L⊕C))

defined by θ (t) = [LL⊕C] is a well-defined isomorphism.

If we apply the theorem to trivial one-dimensional bundles, we obtain the follow-
ing corollary. Therefore, note that as (τ)G-spaces, we have S1,1 ∼= P(C2).

2.2. Corollary For a (τ)G-space X, the ring morphism

θ : KRG(X)[t]/(t−1)2 −→ KRG(X×S1,1)

defined by θ (t) = [LC⊕C] is a well-defined isomorphism.

2.3. Preliminaries to a Sketch of the Proof of (2.1) Choose a metric on L invariant
under the involution τ or in general (G,τ)-structure. The unit circle bundle S is then
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a real space. The section z of π∗(L) defined by the inclusion S→ L is a real section
together with all its powers zk. The function z is the clutching function for (1,L).
To see that (1,z,L) is the bundle H∨ defined as the subbundle of π∗(L⊕1), we note
that for each y ∈ P(L⊕1)x, the fibre H∨

y is a subspace of (L⊕1)x with H∨
∞ = Lx⊕0

and H∨
0 = 0⊕1x. In particular, the composition

H∨ −→ π∗(L⊕1)−→ π∗(1)

induced by the projection L⊕1→ 1 defines an isomorphism

f0 : H∨|P0 −→ π∗0 (1),

and similarly, the composition H∨ → π∗(L⊕1)→ π∗(L) induced by the projection
L⊕1→ L defines an isomorphism

f∞ : H∨|P∞ −→ π∗0 (L).

Hence, f = f0 f−1
∞ : π∗(1)→ π∗(L) is a clutching function for H∨. For y∈ Sx , f (y) is

the isomorphism whose graph is H∨
y . Since H∨

y is the subspace of Lx⊕1x generated
by y⊕1, where y ∈ Sx ⊂ Lx, 1 ∈C, we see that f is our section z. Thus, we have an
isomorphism of real bundles Hk⊗ → (1,z−k,L(−k)⊗).

Now, for any clutching function f ∈ ΓHom(π∗(E0),π∗(E∞)) which is a real sec-
tion, there is a Fourier series with coefficients real sections ak of Hom(Lk⊗⊗E0,E∞)
given by τ(x) = x̄

āk(x) = ak(x̄) =− 1
2π i

∫

Sx̄

fx̄(zx̄)−k−1dzx̄ =
1

2π i

∫

Sx

fx(zx)−k−1dz = ak(x),

where τ reverses the orientation of Sx and f and z are real. At a real point x ∈ X , the
condition that fx is real becomes fx(e−iθ ) = fx(eiθ ), which implies that the Fourier
coefficients are real.

The Fourier series is approximated with a finite Laurent series, and this in turn
is linearized by adding dimensions so that only a function in x added to a function
in x times z remains. This is the linear case, and the real structure goes through the
analysis.

It remains to analyze the linear case. In this case, we split the linear clutching
function p for two vector bundles E0 and E∞ into two parts p = p+ ⊕ p− with
homotopies p(t) = p+(t)⊕ p−(t), where

p+(t) = a+z+ tb+ and p−(t) = ta−z+ b− for t ∈ [0,1]

leading to an isomorphism between (E0, p,E∞) and the direct sum

(E0
+,z,L⊗E0

+)⊕ (E0
−,1,E0

−) .

For this, we use the fact that for a linear operator T : V → V on a finite-
dimensional space, the complex integral
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Q =
1

2π i

∫

S
(z−T)−1dz,

where S is a circle not going through an eigenvalue of T is a projection commuting
with T . We have a direct sum decomposition V = V (+)⊕V(−), where V (+) = QV
and V (−) = (1−Q)V , and T decomposes as T = T (+)⊕T (−), where T (+) has
all the eigenvalues of T inside S and T (−) has all the eigenvalues of T outside S.

Now, we go to the related topic of introducing the suspension and relative groups.

2.4. Notation Let R
p,q = R

q⊕ iRp with the involution given by τ(a, ib) = (a,−ib).
Let Sp,q⊂Bp,q⊂R

p,q denote the unit sphere and unit ball contained in the Euclidean
space. Note that dim(Sp,q) = p + q−1 and R

p,p = C
p.

2.5. Definition The relative group

KR(X ,A) = ker(KR(X/A)−→ KR(∗)),

the kernel of the induced map of ∗ → X/A restriction to the base point. In this
definition, (X ,A) is a pair with an involution on X carrying A to itself, and hence, it
fixes the base point of X/A. Note that KR(X) = KR(X , /0) where /0 is the empty set
so that X/ /0 = X �{∗}.

In relative equivariant K-theory, we use the same construction.

2.6. Definition For a pair (X ,A) with involution, the bigraded suspension groups
are defined as

KRp,q(X ,A) = KR(X×Bp,q,X×Sp,q∪A×Bp,q) .

The usual graded suspension groups with an involution are denoted by KR−q =
KR0,q.

2.7. Exact Sequence for a Pair (X,A) We have the following exact triangle

KR∗(X) �� KR∗(A)

degree +1������������

KR∗(X ,A)

										

For a triple (X ,A,B), it takes the following form

KR∗(X ,B) �� KR∗(A,B)

degree +1��











KR∗(X ,A)

����������

This, we apply to (X ×Bp,0,(X×Sp,0)∪ (A×Bp,0),X ×Sp,0)
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KRp,∗(X) �� KRp,∗(A)

degree +1��












KRp,∗(X ,A)

�����������

.

These result from the ring structure on KR(X) and take the form (external prod-
ucts)

KRp′,q′(X ′,A′)⊗KRp′′,q′′(X ′′,A′′)−→ KRp′+p′′,q′+q′′(X ,A),

where X = X ′ ×X ′′ and A = (X ′ ×A′′)∪ (A′ ×X ′′). Internal products result by re-
stricting to the diagonal.

Now, we return to the periodicity theorem (2.1).

2.8. Notation Let b be the Bott element given by

b = [H]−1∈ KR1,1(∗) = KR(B1,1,S1,1) = K̃R(P(C2)),

and let the Bott morphism β : KRp,q(X ,A) → KRp+1,q+1(X ,A) be given by
β (x) = b.x. Here, H is the canonical line bundle on P(C)2.

2.9. Theorem For each pair (X ,A) with an involution, the Bott morphism β :
KRp,q(X ,A)→ KRp+1,q+1(X ,A) is an isomorphism.

3 Thom Isomorphism

The Thom isomorphism depends on a construction of elements in KRG(X ,A) given
by a complex of vector bundles which is acyclic on A. This generalizes the clutch-
ing construction which cannot be used so directly to describe the product struc-
ture on KRG(X ,A). The Thom isomorphism is an assertion that a module over
KRG(X) related to a (G,τ)-vector bundle is of rank one generated by the Thom
class. The construction of the Thom class is in terms of a complex of exterior alge-
bras.

3.1. Definition The Koszul complex associated to a (G,τ)-vector bundle E and an
invariant section σ is

λ ∗〈E〉 : 0−→C
d−→ E =Λ1E

d−→Λ2E
d→ . . .

d−→Λ iE
d−→ . . . ,

where d(ξ ) = ξ ∧σ(x) if ξ ∈ Λ iEx. Observe that λ ∗〈E〉 is acyclic at all points x,
where σ(x) �= 0.

3.2. Example Let E be a (G,τ)-vector bundle over X and let p : E → X denote
the projection. Then, the diagonal δ : E → E ×X E = p∗(E) is a natural section
of p∗(E), and it vanishes exactly on the image of the zero section. We denote the
Koszul complex on E formed from p∗(E) and δ by Λ∗〈E〉.
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3.3. Remark Let M∗ be a complex on X which is acyclic outside of a compact
set K of X , and observe that p∗(M∗) is acyclic outside of the set p∗(K). Then,
Λ∗〈E〉⊗ p∗(M∗) is acyclic outside the image of the compact set K under the zero
section.

3.4. Definition Let E be a (G,τ)-vector bundle over X . Then, the Thom morphism
φ! : KRG(X)→ KRG(E) carries a class in KRG(X) defined by a complex M∗ of vec-
tor bundles acyclic outside a compact set K of X to the complexΛ∗〈E〉⊗ p∗(M∗). If
X is compact, thenΛ∗〈E〉 is acyclic outside the compact zero section, and the image
under the Thom isomorphism of 1 is φ!(1) = ΛE , where ΛE is the class of Λ∗〈E〉
in KRG(E). It is called Thom class of E . Since ΛE is related to alternating sum of
elements of Λ∗〈E〉, it also written as Λ−1(E).

3.5. Remark Let E be a (G,τ)-vector bundle over X with zero section φ : X → E .
Then, the Thom morphism φ! : KRG(X)→ KRG(E) is a special example of an in-
duced morphism f! : KRG(X)→KRG(Y ) defined for certain maps f : X →Y , which
we will consider in the next section. It has the basic property that φ−1φ!(ξ ) = ξλE ,
where λE is the class of λ ∗〈E〉 in KRG(X).

3.6. Remark Replacing X and E by, respectively, X×R
q and E×R

q, we obtain the
Thom morphism φ! : KR−q

G (X)→ KR−q
G (E).

Now, the main theorem is the following which is called the Thom isomorphism
theorem.

3.7. Theorem Let E be any (G,τ)-vector bundle over a locally compact G-space X.
Then, the Thom morphism φ! : KRG(X)→ KRG(E) is an isomorphism.

3.8. First Reduction If the Thom morphism is an isomorphism for compact
(τ)G-spaces X , then it is an isomorphism for locally compact (τ)G-spaces. This
is done by observing that it is enough to prove the theorem for relatively compact
open (τ)G-subspaces U of X . Then, by the exact sequence for the pair (Ū ,Ū −U),
one is reduced to the case of a compact base space. Finally, we use the fact that the
following diagram has split exact rows,

0 �� KR−q
G (X) ��

φ!

��

KRG(X ×Sq) ��

φ!

��

KRG(X) ��

φ!

��

0

0 �� KR−q
G (E) �� KRG(E×Sq) �� KRG(E) �� 0.

3.9. Line Bundle Case This is a return to the periodicity theorem in (2.1). Now, we
use the fact that E is identified with P(E⊕C)−P(E) so that KRG(E) is the kernel
of the restriction morphism

KRGP(E⊕C))−→ KRG(P(E)),
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which is generated by H−π∗(E) or C−π∗(E)⊗H∨, where π : P(E⊕C) → X is

the projection. Restricting to E ⊂ P(E ⊕C), we obtain the complex Λ∗E for H|E
is trivial. Thus, we obtain that KRG(E) is the free KRG(X)-module on the one
generatorΛE .

3.10. Sums of Line Bundles Since the compact case is known for line bundles,
it follows that locally compact case holds for line bundles. Hence, the general re-
sult is true for (τ)G bundles which are a sum of line bundles because the Thom
isomorphism is transitive.

3.11. Proposition Let p′ : E ′ ⊕E ′′ → E ′ and p′′ : E ′ ⊕E ′′ → E ′′ be the projections
from the direct sum of (τ)G bundles over X. Then, we have an isomorphismΛ∗〈E ′⊕
E ′′〉→ (p′)−1Λ∗〈E ′〉⊗(p′′)−1Λ∗〈E ′′〉, and the following diagram commutes, where
φ is the zero section

KRG(E ′)
φ!

��

KRG(X) ��

φ! ��										

φ!

������������
KRG(E ′ ⊕E ′′)

KRG(E ′′)
φ!

�������������

.

Proof . The first statement is the coproduct-preserving character of the exterior al-
gebra. The second statement uses a natural isomorphism Λ∗〈E ′ ⊕ E ′′〉 → (p′)−1

Λ∗〈E ′〉 ⊗Λ∗〈(π ′)−1(E ′′)〉 for the commutativity of one triangle, where (p′′)−1Λ∗
〈E ′′〉 is isomorphic to Λ∗〈(π ′′)−1(E ′′)〉. This proves the proposition.

As a corollary of (3.7) and (3.11), we have the following.

3.12. Corollary There is a certain element in KR−2
G (∗) such that multiplication by

this element induces an isomorphism KR−q
G (X)→ KR−q−2

G (X).

Finally, we mention the final key step which is best seen from the point of view of
the index theorem of elliptic differential operators. It is a step reducing the general
case to a sum of line bundles.

3.13. Proposition Let i : T →G be the inclusion of a maximal torus into a compact
connected Lie group. For a locally compact (τ)G-space X, there is a natural mor-
phism of KR∗G(X)-modules i! : KR∗T (X)→ KR∗G(X) such that i!(1) = 1 and i!i∗ is
the identity.

The application to the final step in the proof of the Thom isomorphism can be
achieved through an embedding G⊂U(N).



170 14 Equivariant K-Theory Functor KG

4 Localization Theorem of Atiyah and Segal

The results in this section are contained in Segal (1968) and Atiyah and Segal. The
following is a basic property of characters on compact Lie groups relative to sub-
groups and conjugacy classes.

4.1. Proposition Let G be a compact Lie group, and let H be a closed subgroup of
G,H �= G. If γ is a conjugacy class in G with intersection γ∩H = /0, then there exists
a character χ on G with χ |H = 0 and χ(γ) �= 0.

4.2. Remark For each conjugacy class γ , we have a ring morphism vγ : R(G)→ Z

given by substitution vγ(χ) = χ(γ), where a character χ = trace(ρ) , ρ ∈ R(G) is
always constant on a conjugacy class. The kernel p(γ) = ker(vγ) is a prime ideal
in R(G), and the function which assigns to the conjugacy class γ ∈ cl(G) the prime
ideal p(γ) is an injection cl(G) → Spec(R(G)), the space of prime ideals in the
commutative ring R(G).

4.3. Notation Let M be a module over R(G), and let γ be a conjugacy class in G.
The localization at the prime ideal p(γ) of R(G) is denoted by R(G)γ and of the
module M is denoted by Mγ , that is, R(G)γ = R(G)p(γ) and Mγ = Mp(γ). If χ ∈ R(G)
is nonzero on γ , that is, χ(γ) �= 0, then χ is a unit in R(G)γ . Since R(G) = KG(∗) and
the product KG(X)⊗KG(Y )→ KG(X ×Y ) is associative, commutative, and with a
unit, it follows that KG(X) is a module over R(G).

4.4. Notation Let X be a locally compact G-space. For s ∈ G, the subspace of
all x ∈ X with sx = x is denoted by X(s) ⊂ X . If x ∈ X(s) and t ∈ G, then
tx ∈ X(tst−1) since (tst−1)(tx) = tsx = tx. In other words, tX(s) = X(tst−1). Let
X(γ) =

⋃
s∈γ X(s) =

⋃
t∈G tX(s). When X(s) is compact, then X(γ) is also compact.

We have that localization and geometry are related by the following basic theo-
rem of Atiyah and Segal.

4.5. Theorem Let X be a locally compact G-space, and let γ be a conjugacy class
in G with inclusion i : X(γ)→ X .

(1) If X(γ) is empty, then the localization K∗G(X)γ = 0.
(2) In general, the localization of the induced morphism

K∗G(i)γ : K∗G(X)γ −→ K∗G(X(γ))γ

is an isomorphism.

Proof . Statement (1) implies (2) from the exact triangle in K∗G cohomology for the
induced morphism i∗γ from inclusion i

K∗G(X)γ
i∗γ �� K∗G(X(γ))γ

�������������

K∗G(X−X(γ))γ

�����������
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By (1), we have K∗G(X − X(γ))γ = 0, and hence, the localization i∗ is an
isomorphism.

Now, we return to the situation of proposition (4.1) of a closed subgroup H of
G,H �= G. If γ is a conjugacy class in G with intersection γ ∩H = /0, then there
exists a character χ on G with χ |H = 0 and χ(γ) �= 0. We localize R(G)→ R(G)γ ,
and χ ∈ R(G) becomes a unit in R(G)γ , and since χ |H = 0, this unit in R(G)γ
annihilates the algebra R(H), its localization R(H)γ , and Mγ = 0 for any R(H)-
module M.

We apply these remarks to M = K∗G(X), where X is a compact G-space admitting
a surjective G-map X →G/H. The factorization X →G/H→∗ gives a factorization
showing that K∗G(X) is an R(H)-module.

R(G)

��

�� R(H)

��
K∗G(∗) �� K∗G(G/H) �� K∗G(X)

Hence, we deduce that if γ is a conjugacy class of G which does not intersect a

closed subgroup H of G, then the localization K∗G(X)γ = 0.
Further, if Y is any closed G-subspace of X , then it admits a G-map Y → G/H,

and so K∗G(Y )γ = 0 and also K∗G(X ,Y )γ = 0 from the exact triangle associated a
subspace because localization is an exact functor.

Let X be a locally compact G-space, and let Y ⊂ X be an orbit with isotropy
group H. Since there exists “slices” or local cross sections to X →G\X , we can find
a closed G-neighborhood V of Y in X with a G-retraction onto Y . In the case of a
G-submanifold Y of X , we can take V to be a closed tubular neighborhood defined
by a G-invariant Riemannian metric.

Now in the situation where such neighborhoods V of orbits exist, we can cover
any compact G-subspace L of X by a finite number of sets Li = Vi∩L. Let Hi be the
isotropy group connected with Vi with corresponding G-map Li → G/Hi. Assume
that γ is a conjugacy class of elements of G having no fixed points in X so that
γ ∩Hi = /0 for all Hi. Thus, by the above considerations, we have K∗G(Li)γ = 0. By
an induction argument, we have K∗G(L)γ = 0.

Replacing L by any compact G-subset L′ and using the exact triangle for (L,L′),
we deduce that K∗G(L,L′)γ = 0. In particular, if U is an open relatively compact
G-subspace of X , we have

K∗G(U)γ = K∗G(Ū ,∂Ū)γ = 0.

Since K∗G(X)γ = lim−→U⊂⊂X K∗G(U)γ and localization commutes with direct limits, we

have established (1), and this proves the theorem.
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5 Equivariant K-Theory Completion Theorem of Atiyah
and Segal

The main reference for this section is Atiyah and Segal (1969).
Let G be a compact Lie group with corresponding universal bundle E(G) →

B(G), and let X be a compact (τ)G-space.

5.1. Definition Let V be a (G,τ)-vector bundle on X . Using the fibre bundle con-
struction, we have a τ-vector bundle E(G)[V ] → E(G)[X ], and this construction
induces a morphism

α : KR∗G(X)−→ KR∗(E(G)[X ])

in KR-theory. The base space E(G)[X ] is called the Borel construction or homotopy

quotient of X by G and is denoted also by XG.

5.2. Remark Since KR∗(E(G)[X ]) = KR∗G(E(G)× X), where the action of G is
free on E(G)×X , we can interpret α as the morphism induced by the projection
E(G)×X→X under KR∗G. There is a difficulty with the definition of KR∗(E(G)[X ])
since E(G) and E(G)[X ] are not compact. As usual in mathematics, we must
extend the definition or concept. In particular, α as it stands is not an isomor-
phism.

5.3. Definition On the Borel construction E(G)[X ], we have an ind-structure (E(G)
[X ])n = En(G)[X ] given by the increasing union En(G) of the Milnor construction
E(G). In K-theory, we have the pro-object

KR∗(E(G)[X ]) = {KR∗((E(G)[X ])n)}n∈N

for a compact group G acting on a compact τ-space.

5.4. Remark On the right side of morphism

α : KR∗G(X)−→ KR∗(E(G)[X ])

we have a pro-structure, and now on the left side we define a pro-structure by

taking X = ∗, a point where KRG(∗) = RR(G) the character ring of G for G-modules
with a τ-structure. Related to the morphism α : KR∗G(X)→ KR∗(E(G)[X ]) is the
factorization

αn : RR(G) = KR∗G(∗)−→ KR∗G(En(G)[∗]) = KR∗G(Bn(G)) ε−→ Z.

5.5. Remark Since Bn(G) is the union of n contractible open subsets Ui, where the
ith join coordinate does not vanish, the product of any n elements of the kernel in
KR∗G(Bn(G)) is zero. It is also the case then that I(G) is the augmentation ideal, and
αn factors as

αn : KR∗G(X)/I(G)nKR∗G(X)−→ KR∗((E(G)[X ])n).
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5.6. Theorem Let X be a compact G-space such that KR∗G(X) is a finitely generated
RR(G)-module. Then, the morphism αn defined as

αn : KRG(X)/I(G)nKRG(X)−→ KR((E(G)[X ])n)

is an isomorphism of pro-rings.
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Chapter 15
Bott Periodicity Maps and Clifford Algebras

Before there was K-theory, there was Bott periodicity. It was a result of the analysis
of homogeneous spaces, their loop spaces, and classifying spaces of limits of Lie
groups. In a parallel study of Clifford algebras, we see a periodicity which has much
to do with Bott periodicity. This is pointed out in this chapter.

When topological K-theory was introduced by analogy with Grothendieck’s co-
herence sheaf K-theory, Bott periodicity was there and made possible an entire co-
homology theory. Immediately, the vector bundle class approach to K-theory was
coupled with the homotopy theory as in the discussion of the universal bundles and
classifying spaces. The universal bundles of a group became the classifying space
of K-theory by a simple limiting process. These limit spaces is the domain of the
first forms of K-theory.

For complex vector bundles, the group GL(n,C) and its compact subgroup U(n)
both play a role. The fact that the use of principal bundles over U(n) or over
GL(n,C) follows from the existence of a Hermitian metric on vector bundles. There
is another approach which we take up in the next chapter by the classical Gram–
Schmidt process. We use the compact forms, that is, U(n), for the homotopy classi-
fication of K-theory.

After the homotopy analysis of Bott periodicity, we consider the Clifford algebra
description. This we do in the context of KR-theory as in the previous chapter.

1 Vector Bundles and Their Principal Bundles and Metrics

In 2(8.2), we introduced the notion of a metric on a vector bundle, and in 2(8.3)
using the metric on the universal bundle, we saw that every vector bundle has a
metric.

1.1. Remark When we associate the principal bundle to a complex vector bundle,
we can either use changes of coordinates in GL(n,C) preserving only the linear
structure or changes of coordinates in U(n) preserving the linear and metric struc-
tures. An n-dimensional C-vector bundle E over X is of the form P[Cn], where P is

D. Husemöller et al.: Bott Periodicity Maps and Clifford Algebras, Lect. Notes Phys. 726, 175–188 (2008)
DOI 10.1007/978-3-540-74956-1 16 © Springer-Verlag Berlin Heidelberg 2008
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a GL(n,C)-principal bundle or of the form P′[Cn], where P′ is a U(n)-principal bun-
dle associated to P by reduction of the structure group from GL(n,C) to the group
U(n) of unitary n by n matrices.

1.2. Remark In terms of the classifying spaces, the set of isomorphism classes
Vectn(B) of n-dimensional complex vector bundles over B can be identified with
either [B,BGL(n,C)] or [B,BU(n)]. The process of assigning to an n-dimensional
C-vector bundle E the Whitney sum with the trivial bundle E⊕C

q (or E×C
q) cor-

responds to the inclusions GL(n,C)→ GL(n + q,C) and U(n)→U(n + q) which
induce in terms of either homotopy description the functions corresponding to sta-
bilization of vector bundles

[B,BGL(C,n)]−→ [B,BGL(C,n + q)] and [B,BU(n)]−→ [B,BU(n + q)].

1.3. Remark Similar assertions hold for real and quaternion vector bundles where
stabilization takes, respectively, the form

[B,BGL(R,n)]−→ [B,BGL(R,n + q)] and [B,BO(n)]−→ [B,BO(n + q)].

[B,BGL(H,n)]−→ [B,BGL(H,n + q)] and [B,BSp(n)]→ [B,BSp(n + q)].

Here, H is the quaternions and Sp(n) is the symplectic subgroup of quaternionic
linear maps preserving the H-metric. In the case of U(n) and O(n), we have the
subgroups of determinant 1 matrices.

2 Homotopy Representation of K-Theory

K-theory is the result of stabilization using the inclusions of the formU(n)→ U(n+
q). Hence, we introduce the following limit groups.

2.1. Definition For each of the five sorts of groups in (1.2) and (1.3), we have the
following five direct limit groups

O =
⋃
n≥0

O(n), SO =
⋃
n≥0

SO(n) ,

U =
⋃
n≥0

U(n), SU =
⋃
n≥0

SU(n), and Sp =
⋃
n≥0

Sp(n).

We give them the usual direct limit topology, and they are topological groups with
respect to this topology.

2.2. Remark The classifying spaces of these groups can be described as limit spaces

BO =
⋃
n≥0

BO(n), BSO =
⋃
n≥0

BSO(n), BU =
⋃
n≥0

BU(n),
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BSU =
⋃
n≥0

BSU(n), and BSp =
⋃
n≥0

BSp(n).

In the case of a compact space, X we have the following relations

[X ,BO] = lim−→ n≥0 [X ,BO(n)], [X ,BSO] = lim−→ n≥0 [X ,BSO(n)],

[X ,BU ] = lim−→ n≥0 [X ,BU(n)], [X ,BSU ] = lim−→ n≥0 [X ,BSU(n)],

and [X ,BSp] = lim−→ n≥0 [X ,BSp(n)] .

Hence, the stabilized bundle theory, that is, K-theory, has a homotopy interpreta-
tion as homotopy classes of maps on a compact space due to the interchanging of
increasing unions inside [X , ] with inductive limits outside of the sets of homotopy
classes of maps. Explicitly, f : X → BU(n) and f ′ : X → BU(n + q) represent the
same points in lim−→n≥0[X ,BU(n)] if and only if [ f ′] = [ j f ] for the natural inclusion

j : BU(n)→ BU(n + q).

2.3. Remark In each of the five sequences of groups, denoted by G(n)→ G(n + q),
we have a natural inclusion

G(m)×G(n)−→G(m+ n)

inducing on the classifying spaces a map BG(m)×BG(n)→ BG(m+n). After suit-
able choices all of which lead to homotopic equivalent maps, we have a map on the
limit group G×G→ G. This observation can be applied to the following cases.

On the limit-classifying spaces, we have multiplications

BO×BO−→ BO, BSO×BSO−→ BSO,

BU×BU −→ BU, BSU×BSU −→ BSU, and BSp×BSp→ BSp.

These are called the H-space structures on the five limit-classifying spaces.
As with loop spaces, these are not strictly associative maps, but they are

homotopy-associative maps. They induce maps

[X ,BG]∗ × [X ,BG]∗ = [X ,BG×BG]∗ −→ [X ,BG]∗

and

[X ,Z×BG]∗× [X ,Z×BG]∗ = [X ,Z×BG×Z×BG]∗ −→ [X ,Z×BG]∗

making [X ,BG]∗ and [X ,Z×BG]∗ into groups for each of the five cases G = O, SO,
U,SU , or Sp.

2.4. Remark We have the following formulas for real and complex K-theory of a
space where the isomorphisms are given by inducing the universal bundle on some
BU(n)⊂ BU or BO(n)⊂ BO.
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[X ,Z×BU ]∗ −→ K(X) and [X ,Z×BO]∗ −→ KO(X).

These isomorphisms should be thought of as the analogue of the Eilenberg-MacLane
isomorphism 9(6.2) for K-theory.

Here the base point plays a role in that [ , ]∗ refers to base-point-preserving maps
and homotopies, and the extra factor of Z takes care of the possibly nonconnected X .
Now we return to the suspension extension of the previous chapter, 14(2.6), where
we handle the situation more directly without a relative theory.

2.5. Definition We define negative K-groups by

K−q(X) = [Sq∧X ,BU ]∗ and KO−q(X) = [Sq∧X ,BO]∗.

These are functors on the category of pointed spaces and pointed homotopy
classes of maps. They have all of the properties of classical cohomology theory
contained in Chap. 9, Sect. 3, for example, the suspension property K−q+1(S(X))→
K−q(X) is an isomorphism. At this point, the K-groups are defined only for negative
indices, but using the following adjunction relation, we see the relevance of know-
ing the loop spaces Ωp(Y ) = Map∗(Sp,Y ) of the infinite classical groups and their
classifying spaces.

2.6. Assertion The isomorphisms of spaces

Map(X × Sp,Y )→Map(X ,Map(Sp,Y ))

and
Map(X × Sp,Y )→Map(Sp,Map(X ,Y ))

of 6(2.1) restrict on the right and pass to a quotient on the left to give isomorphisms
of pointed spaces

Map∗(X ∧Sp,Y )−→Map∗(S
p,Map∗(X ,Y ))

or
Map∗(S

p(X),Y )−→Ωp(Map∗(X ,Y ))

and
Map∗(X ∧Sp,Y )−→Map∗(X ,Map∗(S

p,Y ))

or
Map∗(S

p(X),Y )−→Map∗(X ,Ωp(Y )) .

For homotopy classes, the last isomorphism takes the form

[Sp(X),Y ]∗ −→ [X ,Ωp(Y )]∗.

2.7. Remark The last result implies that the suspensions for K-theory have another
form using loop spaces of BU or BO, that is, we have

K−q(X) = [Sq∧X ,BU ]∗ = [X ,Ωq(BU)]∗
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and
KO−q(X) = [Sq∧X ,BO]∗ = [X ,Ωq(BO)]∗.

When this theory was being set up by Atiyah and Hirzebruch (1961),
Bott had already studied the loop spaces of BU and BO and discovered in 1957–

1958 their periodicity properties which we consider in the next section. It is a
twofold periodicity of BU and an eightfold periodicity of BO.

3 The Bott Maps in the Periodicity Series

The real periodicity where V, X , and Y are, respectively, countable dimensional real,
complex, and quaternionic vector spaces with complexification VC and quaternionic
scalar extensions VH and XH.

p Cp,0 Periodi- C0,q q
city map

0 R
U(VC)
O(V ) Ω

(
SU(V ′

C
⊕V ′′

C
))

S0(V ′⊕V ′′)

)
R 0

↘ φ4

1 C
Sp(XH)
U(X) Ω

(
Sp(VH)
U(VC)

)
R⊕R 1

↘ φ6

2 H Sp(Y ) Ω(Sp(XH)) R(2) 2
↘↖

3 H⊕H B(Sp)= Sp(Y ′⊕Y ′′)
Sp(Y ′)⊕Sp(Y ′′) Ω(B(Sp(Y ))) C(2) 3

↘ φ1

4 H(2) U(Y )
Sp(Y) Ω

(
Sp(Y ′⊕Y ′′)

Sp(Y ′)⊕Sp(Y ′′)

)
H(2) 4

↘ φ3

5 C(4) SO(X)
U(X) Ω

(
SO(Y )
U(Y )

)
H(2)⊕H(2) 5

↘ φ5

6 R(8) Spin(X) Ω(Spin(X)) H(4) 6
↘↖

7 R(8)⊕R(8) B(O)= O(V ′⊕V ′′)
O(V ′)⊕O(V ′′) ΩB(Spin(X)) C(8) 7

↘ φ2

8 R(16) U(VR)
O(V ) Ω

(
SU(V ′

C
⊕V ′′

C

SO(V ′⊕V ′′)

)
R(16) 8

9 C(16) R(16)⊕R(16) 9
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The complex periodicity where X is a complex vector space.

p C(p) Periodicity
Map

0 C B(U) = U(X ′⊕X ′′)
U(X ′)⊕U(X ′′) ΩB(U(X))

↘ φO

1 C⊕C U(X) ΩSU(X ′ ⊕X ′′)
↘↖

2 C(2) B(U) = U(X ′⊕X ′′)
U(X ′)⊕U(X ′′) ΩB(U(X))

3.1. Remark The previous table of mappings are defined and shown to be homotopy
equivalences of H-spaces. There are two real cases and one complex case where the
homotopy equivalence reduces to a map G→ΩB(G). This is a full description of the
various elements of Bott periodicity. The verification of the maps being homotopy
equivalences is the subject of the Cartan and Moore seminar, Paris, ENS 1959-1960.
A key point is that the maps are homotopy equivalences if they are shown to induce
homology isomorphisms since they are maps of H-spaces.

3.2. Complex Periodicity The first homotopy equivalence is BU → ΩSU which
extends to Z×BU →ΩU . The second homotopy equivalence is U →ΩBU , which
loops to ΩU → Ω2BU . The composite is the homotopy equivalence Z× BU →
Ω2BU . Thus, for any pointed connected space X , we have the sequence of isomor-
phisms

K(X ,∗) = [X ,Z×BU ]∗ −→ [X ,Ω2BU ]∗ −→ [S2(X),BU ]∗ = K(S2(X),∗),

whose composite is known as Bott periodicity for reduced complex K-theory.

3.3. Real Periodicity The eight homotopy equivalences are composed to give Z×
BO→Ω8BO, and hence, we have the sequence of isomorphisms

KO(X ,∗) = [X ,Z×BO]∗ −→ [X ,Ω8BO]∗ −→ [S8(X),BO]∗ = K(S8(X),∗),

whose composite is known as Bott periodicity for reduced real K-theory.

4 KR∗G(X) and the Representation Ring RR(G)

We return to reality, that is to KR(X) and KRG(X), through the use of involutions.

4.1. Notation Let G be a compact Lie group with an involution τ , for example, the
unitary group U(n) with τ complex conjugation of matrices. Let X be a space with
an involution τ , and let E → X be a vector bundle with a real structure, that is,
τ : Ex → Eτ(x) is a conjugate complex linear isomorphism.

4.2. Definition A (G,τ)-module M is a finite-dimensional G-module over C together
with a conjugate complex linear τ : M → M such that τ(sx) = τ(s)τ(x) for
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s ∈ G,x ∈M. Let RR(G) denote the representation ring of (G,τ)-modules. We have
two maps relating it with the complex representation, or character, ring R(G) of G,
namely σ : RR(G)→ R(G) and ρ : R(G)→ RR(G), where σ(M) is M without τ and
ρ(N) = N⊕ N̄ with τ(x′,x′′) = (x′′,x′), the flip between two factors.

4.3. Remark The simple (G,τ)-modules S divide into three classes depending on
End(G,τ)(S) which is either R,C, or H.

(1) End(G,τ)(S) = R : σ(E) is as simple as a G-module over C,
(2) End(G,τ)(S) = C : S = ρ(N), where N and N̄ are nonisomorphic, and
(3) End(G,τ)(S) = H : S = ρ(N), where N and N̄ are isomorphic.

These three types of simple (G,τ)-modules S decompose the simple modules into
the disjoint union of three sets which are the basis elements of the three subgroups
RR(G), RC(G), and RH(G) giving a direct sum decomposition

RR(G) = RR(G)⊕RC(G)⊕RH(G).

In Fibre Bundles, 14(11), we have a characterization of real, complex, and quater-
nionic representations, see theorem 14(11.4) and the three corollaries which follow
(Husemöller 1994).

4.4. Remark If G acts trivially on X , then there is a natural isomorphism KG(X)→
R(G)⊗K(X) where a vector bundle E is carried to ⊕SS⊗HomG(S,E). This iso-
morphism carries over to spaces X with involution τ with the same correspondence

KRG(X)−→ RR(G)⊗KR(X).

Finally, putting together this decomposition with the three fold decomposition of
the previous remark, we have for trivial G-spaces with τ-structure a decomposition

KRG(X)−→ [RR(G)⊗KR(X)]⊕ [RC(G)⊗KC(X)]⊕ [RH(G)⊗KH(X)],

where KR(X),KC(X), and KH(X), respectively, are the Grothendieck group of real,
complex, and quaternionic vector bundles, respectively, on X .

Note that KC(X) is just K(X), and it is independent of the involution for a com-
plex vector bundle E decomposes as E0⊕ τ∗(Ē0), where E0 is the subvector bundle
of E where the two complex structures coincide.

5 Generalities on Clifford Algebras and Their Modules

The following is a summary of some of the results in Fibre Bundles, chap. 12 on
Clifford algebras (Husemöller 1994). We will be primarily interested in the subject
over the real and complex numbers. We use the symbol F for such a field.

5.1. Definition A quadratic form (V, f ) over F is an F-vector space V of finite di-
mension together with a function f : V ×V → F satisfying

(1) f (a′x′+ a′′x′′,y) = a′ f (x′,y)+ a′′ f (x′′,y) for all a′,a′′ ∈ F and x′,x′′,y ∈V and
(2) f (x,y) = f (y,x) for all x,y ∈V.
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The first axiom says that f (x,y) is a linear form in x for fixed y ∈ V , and the
second axiom says that also f (x,y) is a linear form in Y for fixed x ∈V. We also use
the terminology of symmetric bilinear form for quadratic form. It is the same over a
field with 2 �= 0 in F so that we can divide by it.

5.2. Definition The direct sum or Witt sum of two quadratic forms is given by
(V ′, f ′)⊕ (V ′′, f ′′) = (V ′ ⊕V ′′, f ′ ⊕ f ′′), where

( f ′ ⊕ f ′′)((x′,x′′),(y′,y′′)) = f ′(x′,y′)+ f ′′(x′′,y′′).

In particular for v′ ∈V ′ and v′′ ∈V ′′, we have ( f ′ ⊕ f ′′)(v′,v′′) = 0, that is, these two
vectors are perpendicular in the direct sum.

5.3. Definition Let (V, f ) be a quadratic form over F. The Clifford algebra of
(V, f ) is a pair (C( f ),θ ) consisting of an algebra C( f ) over F and a linear map
θ : V →C( f ), where θ (x)2 = f (x,x).1 in the algebra C( f ) with the following uni-
versal property: For any other F-linear map α : V → A into an algebra over F with
the property that α(x)2 = f (x,x).1, there exists a morphism u : C( f )→A of algebras
with α = uθ . Moreover, u is unique with respect to the property that α = uθ .

5.4. Remark The Clifford algebra of (V, f ) exists and is unique up to isomorphism.
The universal property gives uniqueness. As for existence, we can start with the
tensor algebra T (V ) =

⊕
n V⊗n on V and divide by the ideal generated by all x⊗x−

f (x,x).1 for x ∈V. Then θ : V →C( f ) is the quotient of V → T (V ).
The universal property of the Clifford algebra follows from that of T (V ) and the

generators of the ideal in T (V ) divided out to construct C( f ).

5.5. Involution and Even/Odd Grading of the Clifford Algebra There is an invo-
lution β of C( f ) by applying the universal property of (C( f ),θ ) to −θ . This yields
a splitting C( f ) = C( f )0 ⊕C( f )1, where C( f )i is the subspace of x ∈ C( f ) with
β (x) = (−1)ix.

The example of the Clifford algebra brings us to the study of Z/2-graded or
parity-graded objects. For two elements x,y ∈ V viewed as elements in C( f )1, we
have the commutativity relation in C( f )0 ⊂C( f )

xy + yx = 2 f (x,y).1 .

For these parity-graded objects, either modules or algebras always coming in two
parts indexed 0 and 1 or equally well by even and odd we organize the tensor product
into a graded object.

5.6. Graded Tensor Product Let L = L0⊕ L1 and M = M0⊕M1 be two graded
modules. The graded tensor product L⊗M = (L⊗M)0 ⊕ (L⊗M)1, where (L⊗
M)0 = (L0⊗M0)⊕ (L1⊗M1) and (L⊗M)1 = (L0 ⊗M1)⊕ (L1 ⊗M0). The new
ingredient is that the involution τ : L⊗M →M⊗L depends on the grading with a
sign τ(x⊗ y) = (−1)i jy⊗ x, where x ∈ Li and y ∈Mj.
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This applies to two-graded algebras A⊗B, but with a new definition of multipli-
cation related to the sign for τ , namely

(x′ ⊗ y′)(x′′ ⊗ y′′) = (−1)i j(x′x′′)⊗ (y′y′′),

where x′′ ∈Mi,y′ ∈ Lj.
To distinguish the graded tensor product multiplication from the usual multipli-

cation, we will write A⊗̂B in the graded case.

This leads to two basic isomorphisms.

5.7. Two Basic Isomorphisms We have natural isomorphisms

(1) C( f ′ ⊕ f ′′)→C( f ′)⊗̂C( f ′′) as graded algebras and

(2) C( f ) = C( f )0⊕C( f )1
φ→C(ε ⊕ f )0 as ungraded algebras, where ε is the one-

dimensional quadratic form (Fe,ε) with ε(x,y) =−xy for x,y ∈ F .

The formula for φ is given by φ(x) = e⊗ x. For x ∈ V , we have φ(θ (x))2 =
(e⊗ θ (x))(e⊗ θ (x)) = −e2⊗ θ (x)2 = f (x,x).1 showing that φ is defined as an
algebra morphism from the universal property.

For the first isomorphism, we apply the universal mapping property toψ(x′,x′′)=
θ ′(x′)⊗1+1⊗θ ′′(x′′) and obtain an algebra morphism C( f ′ ⊕ f ′′)→C( f ′)⊗̂C( f ′′)
with inverse given tensoring together the algebra morphisms defined by inclusion
C( f ′)→C( f ′ ⊕ f ′′) and C( f ′′)→C( f ′ ⊕ f ′′).

5.8. Main Example Let R
q,p denote the quadratic form space for p+q-dimensional

space over R, that is R
p+q, but the quadratic form which is the sum of q-negative

squares and p-positive squares. Let C(q, p) be the corresponding Clifford algebra
which is

C(−x1− . . .− xq + xq+1 + . . .+ xq+p).

When we tensor with the complex numbers C, we have the complex Clifford algebra
C(n) = C⊗R C(p,n− p).

5.9. Table of Clifford Algebras We denote by F(n) = Mn(F) the n by n matrix
algebra over the field F = R, C, or H. Observe also that F(n)⊗F F(m) = F(mn).

n C(n,0) C(0,n) C(n)

0 R R C

1 C R⊕R C⊕C

2 H R(2) C(2)
3 H⊕H C(2) C(2)⊕C(2)
4 H(2) H(2) C(4)
5 C(4) H(2)⊕H(2) C(4)⊕C(4)
6 R(8) H(4) C(8)
7 R(8)⊕R(8) C(8) C(8)⊕C(8)
8 R(16) R(16) C(16)
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To arrive at this table, we use the isomorphisms C⊗R C = C⊕C, C⊗R H = C(2),
and H⊗R H = R(4).

6 KR-q
G (*) and Modules Over Clifford Algebras

Denote the Clifford algebra F⊗R C(q,0) by just CF〈q〉 related to the negative def-
inite form, and view it as a parity or Z/2Z-graded algebra. Here, F = R, C, or H.
Now, we mix the usual theory of Clifford algebras with the reality structure τ on
the algebra and a compact Lie group G, in particular, we consider modules over the
group algebra CF〈q〉[G].

6.1. Definition A real-graded CF〈q〉[G]-module M is a parity or Z/2Z-graded com-
plex vector space M = M0⊕M1 with the additional structure:

(1) a C-linear action of CF〈q〉 making it a graded CF〈q〉-module,
(2) an antilinear involution τ : M →M of degree zero commuting with CF〈q〉, and
(3) a C-linear action of G on M commuting with that of CF〈q〉 and such that τ(sx) =
τ(s)τ(x) for s ∈G,x ∈M.

6.2. Notation Let MF〈q〉(G) denote the Grothendieck group of such modules.
These modules give elements of the G-equivariant K-theory of the spheres using
the following clutching construction. We have a natural restriction morphism

r : MF〈q + 1〉(G)−→MF〈q〉(G)

using the inclusion morphism CF〈q〉 →CF〈q + 1〉.
6.3. Definition The natural morphism

α : MF〈q〉(G)−→ KFG(Dq,Sq−1)

assigns to the class of a CF〈q〉[G]-module M the pair of (G,τ)-vector bundles Ei =
Dq×Mi for i = 0,1 together with the isomorphism

φ : E0|Sq−1 −→ E1|Sq−1

given by φ(b,x) = (b,bx), where b ∈ Dq ⊂ R
q ⊂CF〈q〉.

The main calculation of the KR-theory of a point is contained in the following
exact sequence where we use CF〈q〉 and MF〈q〉(G) for the case F = R.

6.4. Proposition The sequence

MR〈q + 1〉(G) r−→MR〈q〉(G) α−→ KR−q
G (∗)−→ 0

is exact.
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6.5. Notation To study the τ-representation ring RR(G), we use the following de-
composition RR(G) = A(G)⊕ B(G)⊕C(G) in terms of the basis consisting of
classes [E] of irreducible G-modules, that is, [E] is in A(G), B(G), or C(G) pro-
vided the commuting algebra is, respectively, R,C, or H. With the decomposition
RR(G) = A(G)⊕B(G)⊕C(G), we have the following analysis of the morphism α .

6.6. Decomposition of the Morphism α The morphism α splits into a direct sum
of three morphisms

MR〈q〉(G) = A(G)⊗MR(q)⊕B(G)⊗MC(q)⊕C(G)⊗MH(G)
↓ α

KRG(∗) = A(G)⊗KR(∗)⊕B(G)⊗KC(∗)⊕C(G)⊗KH(∗)

Here, KR(X),KC(X),and KH(X) are the K-theory based on real, complex, quater-
nionic vector bundles, respectively.

6.7. Notation We have four morphisms of RR(G)-modules.

i : RR(G)−→ RC(G) and ρ : RC(G)−→ RR(G)

j : RH(G)−→ RC(G) and η : RC(G)−→ RH(G)

given by change of scalars.

6.8. Table of Calculations of KR−q
G (∗)

q CR〈q〉 MR〈q〉 r : q + 1 �→ q KR−q
G (∗)

0 RR(G)
1 R RR(G) ρ RR(G)/ρRC(G)
2 C RC(G) = R(G) j RC(G)/ jRH(G)
3 H RH(G) id⊕ id 0
4 H⊕H RH(G)⊕RH(G) id⊕ id RH(G)
5 H(2) RH(G) η RH(G)/ηRC(G))
6 C(4) RC(G) i RC(G)/RH(G)
7 R(8) RR(G) id⊕ id 0
8 R(8)⊕R(8) RR(G)⊕RR(G)

7 Bott Periodicity and Morse Theory

In Chap. 9, Sect. 8, we gave an introduction to Morse theory with the aim of showing
how the theory gives cell decompositions of smooth manifolds which yield cell
complexes for the calculation of homology. In fact, it was with Morse theory and
basic differential geometry that Bott first proved the periodicity theorem for the
stable linear groups and their classifying spaces. The basic reference is still Milnor
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(1963). The book has four parts, and for the purposes of Chap. 9 in this lecture notes,
part I of Milnors book would be sufficient, but for the periodicity theorem, the entire
book is needed. In Part II, there is a very readable introduction to some Riemannian
geometry, and in Part III, it is applied to the variation of geodesics. This variational
theory centers on the index theory of critical points for the energy functional, and
the indices are related to a cell decomposition of loop space where the geodesics are
now critical points. In the first section of the part IV, there is a general discussion
concerning the space of geodesics on homogeneous spaces as a subspace of loop
space. For this, we use the space

Ω(SU(2m) : I,−I)

of paths from the identity matrix I to the negative −I of the identity matrix, but
Ω(SU(2m) : I,−I) is homotopically equivalent to theΩ(SU(2m) : I), loop space on
SU(2m), by the map which multiplies each element ofΩ(SU(2m) : I,−I) by a fixed
path from −I to I.

7.1. Assertion The space of minimal geodesics from I to −I in SU(2m) is homeo-
morphic to the complex Grassmann manifold Gm(C2m). Every minimal geodesics
from I to −I has index ≥ 2m+ 2.

Here, the space of minimal geodesics from I to −I in SU(2m) is considered as a
subspace of Ω(SU(2m) : I,−I), and hence, there is an inclusion map

Gm(C2m)−→Ω(SU(2m) : I,−I),

whose connectivity can be measured. This is done by viewing Ω(SU(2m) : I,−I)
as built from Grassmann manifold with cells of high dimension determined by the
index of other geodesics.

This assertion is the statement of the two Lemmas 23.1 and 23.2 of Milnor’s
book (1965, p.128). Its proof is based on calculus of variations application of Morse
theory which is explained in Part III and the first part of Part IV of the book. It is a
modern account of Marston Morse’s theory of calculus of variations in large. This
gives the periodicity theorem in the following unstable form.

7.2. Unstable Periodicity Theorem The inclusion map

Gm(C2m)−→Ω(SU(2m) : I,−I)

induces an isomorphism of homotopy groups in dimensions i≤ 2m

πi(Gm(C2m)−→ πi(Ω(SU(2m) : I,−I))−→ πi+1(SU(2m)) .

To obtain the homotopy periodicity of the unitary groups, we use the four fibra-
tions and related isomorphisms of homotopy groups coming from the exact homo-
topy sequence
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(1)
U(m)−→U(m+ 1)−→ S2m+1

giving the isomorphism

πi−1(U(m))−→ πi−1(U(m+ 1))−→ πi−1(U(m+ 2))−→ ...−→ πi−1(U)

for i≤ m.
(2)

U(m)−→U(2m)−→U(2m)/U(m)

giving the vanishing
πi(U(2m)/U(m)) = 0

for i≤ 2m.
(3)

U(m)−→U(2m)/U(m)−→ Gm(C2m)

giving the isomorphism

πi(Gm(C2m))−→ πi−1(U(m))

for i≤ 2m.
(4)

SU(m)−→U(m)−→ S1

giving the isomorphism

πi(SU(m))−→ πi(U(m))

for i �= 1.

7.3. Summary For 1≤ i≤ 2m, this leads to the sequence of isomorphisms

πi−1(U)−→ πi−1(U(m))−→ πi(Gm(C2m))−→ πi+1(SU(2m))−→ πi+1(U)

giving the following theorem.

7.4. Periodicity Theorem We have an isomorphism

πi−1(U)−→ πi+1(U) for all i > 0 .

Moreover, π2 j+1 = Z and π2 j = 0 for j ≥ 0.

8 The Graded Rings KU∗(∗) and KO∗(∗)

Now, we explain the Bott periodicity theorem in terms of the multiplicative structure
of K-theory of a point.
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8.1. Assertion We have
KU∗(∗) = Z[b][b−1],

where b is generator KU−2(∗).
8.2. Assertion We have

KO∗(∗) = Z[x,y,η ][x−1]/(2η ,η3,ηy,y2−4x),

where

(1) η is a generator of KO−1(∗) = Z/2Z

(2) y is a generator of KO−4(∗) = Z

(3) x is a generator of KO−8(∗) = Z.
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Chapter 16
Gram–Schmidt Process, Iwasawa
Decomposition, and Reduction of Structure
in Principal Bundles

Using the classical Gram–Schmidt process from the beginning linear algebra, we
are able to derive group theory results about the linear groups and reduction of
structure group results for vector bundles. By starting with these very elementary
considerations, we see that there are applications to both group representation theory
as well as to the topology of groups, their classifying spaces, and principal bundles.

This theory also has applications to modular forms which play an important role
in systems with an SL(2,Z)-symmetry. One example is the Verlinde algebra which
arises later in a twisted K-theory calculation.

1 Classical Gram–Schmidt Process

1.1. Notation Let again F denote one of the following three topological fields of
scalars: the real numbers R, the complex numbers C, or the quaternions H. An F-
Hilbert space H is a vector space H over F with an inner product ( | ) : H×H → F
which is linear in the first variable, conjugate linear in the second variable, hermitian
symmetric, that is, (y|x) = (x|y) for all x,y∈H, and nondegenerate, that is, (x|x) > 0
for all x �= 0 in H.

1.2. Definition For a positive integer n and an F-Hilbert space H, the space Ln(H)
is the open subspace of Hn consisting of linearly independent n-tuples of vectors,
the space On(H) is the closed subspace of Hn consisting of n-tuples y1, . . . ,yn which
are orthogonal, that is, (yi|y j) = 0 for i �= j, and the space ONn(H) is the closed
subspace of n-tuples z1, . . . ,zn which are orthonormal, that is, (zi | z j) = δi, j.

There is a simple pair of operations for the sequence of spaces ONn(H) ⊂
On(H)⊂Ln(H) which is retracting to a subspace. These two retractions are called
the Gram–Schmidt process.

1.3. Gram–Schmidt Process for On(H)⊂⊂⊂Ln(H) To x1, . . . ,xn in Ln(H), we as-
sociate y1, . . . ,yn in On(H) such that the subspace generated by y1, . . . ,yi is equal to

D. Husemöller et al.: Gram–Schmidt Process, Iwasawa Decomposition, and Reduction of Structure in Principal
Bundles, Lect. Notes Phys. 726, 189–201 (2008)
DOI 10.1007/978-3-540-74956-1 17 © Springer-Verlag Berlin Heidelberg 2008
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the subspace generated by x1, . . . ,xi for each i = 1, . . . ,n. The formula for yi is given
inductively as follows

y1 = x1 and yi = xi−∑i−1
j=1y j(xi|y j)/(y j|y j).

In particular, we can also solve inductively for the xi in terms of a linear combination
of y j with 1≤ j ≤ i as

xi =∑i
j=1y jui, j (1.1)

with ui,i = 1. If we define ui, j = 0 for j > i, then we obtain an upper triangular matrix
u = (ui, j) with ones on the diagonal.

1.4. Gram–Schmidt Process for ONn(H)⊂⊂⊂On(H) To y1, . . . ,yn in On(H), we as-
sociate z1, . . . ,zn in ONn(H) such that the subspace generated by z1, . . . ,zi is equal
to the subspace generated by y1, . . . ,yi for each i = 1, . . . ,n. The formula for zi is
given by z j = y j/(y j|y j) for j = 1, . . . ,n, or equivalently

y j = z j(y j|y j) for j = 1, . . . ,n. (1.2)

2 Definition of Basic Linear Groups

Again F denotes one of the topological fields R,C, or H.

2.1. Definition Let Mn(F) denote the ring of n by n matrices over the field F with
the topology from the matrix element identification with Fn2

. The general linear
group GL(n,F) is the subgroup of invertible matrices, that is, invertible elements of
Mn(F), with the subspace topology.

In the case of F being commutative, that is, F = R or C, we have a determinant
map det : Mn(F)→ F , and for w ∈Mn(F), we have det(w) �= 0 if and only if w ∈
GL(n,F). Recall that det(w′w′′) = det(w′)det(w′) for two elements w′,w′ ∈Mn(F).

2.2. Definition The special linear group SL(n,F) is the kernel of det : GL(n,F)→
GL(1,F), where GL(1,F) is the group of invertible one by one matrices, or equiva-
lently, invertible elements F∗ ⊂ F .

2.3. Definition The basic Hermitian inner product of Fn is given by the formula
(x|y) = ∑n

i=1 xiȳi, where ȳ denotes the complex or quaternionic conjugation of y.

2.4. Definition The unitary subgroupU(n,F) of GL(n,F) consists of all w∈GL(n,F)
preserving the inner product, that is,

(w(x)|w(y)) = (x|y)

for all x,y ∈ Fn. The special unitary subgroup is SU(n,F) = U(n,F)∩SL(n,F).



16.3 Iwasawa Decomposition for GL and SL 191

2.5. Remark The inner product-preserving condition (w(x)|w(y)) = (x|y) is satisfied
for all x,y ∈ Fn if it is satisfied for x,y in a set of generators of Fn, for example,
some basis. The inner product-preserving condition (w(x)|w(y)) = (x|y) is satisfied
for all x,y ∈ Fn if it is also satisfied for x = y in Fn where it takes the form that
||w(x)||= ||x|| for all x ∈ Fn.

2.6. Notation For the unitary and the special unitary groups, we use the following
special notations:

U(n,R) = O(n) and SU(n,R) = SO(n) when F = R,
U(n,C) = U(n) and SU(n,C) = SU(n) when F = C, and
U(n,H) = Sp(n).

3 Iwasawa Decomposition for GL and SL

3.1. Definition An Iwasawa decomposition of a topological group G is a sequence
of subgroups G1, . . . ,Gm such that the multiplication map Gm → G restricts to G1×
. . .×Gm → G as an isomorphism of topological spaces. Such a decomposition is
often denoted by simply G = G1 . . .Gm.

In the case of a Lie group G with a maximal compact subgroup K, we have the
original Iwasawa decomposition G = KAN, where A is commutative and N is nilpo-
tent. In (4.1), we have an application of the Iwasawa decomposition for classifying
spaces of linear groups and their maximal compact subgroups.

See Sect. 7 by B. Krötz to this chapter on general properties of the Iwasawa
decomposition.

The Iwasawa decomposition of GL(n,F) and SL(n,F) for F = R or F = C comes
by considering the right action of GL(n,F) on the space of basis vectors Ln(Fn) in
n- dimensional space Fn.

3.2. Definition The right action Ln(Fn)×GL(n,F)→Ln(Fn) is given by action
b′ = b.w, where for b = (x1, . . . ,xn), b′ = (x′1 . . . ,x′1) ∈ Ln(Fn) and w = (wi, j) ∈
GL(n,F), the matrix relation x′j = ∑n

i=1xiwi, j defines the action. This action is just
the classical change of basis by an invertible square matrix.

This action has two basic properties which are used to carry out the Iwasawa
decomposition.

3.3. Proposition For b,b′ ∈Ln(Fn), there exists a unique w∈GL(n,F) with b.w =
b′. If two of the following conditions are fulfilled, then the third holds for b.w = b′:

b ∈ ONn(Fn), b′ ∈ ONn(Fn) and w ∈U(n,F).

Now, we introduce two types of subgroups used in the Iwasawa decomposition.

3.4. Definition For any ring R, the subgroup of upper triangular matrices N(n,R) in
GL(n,R) consisting of all matrices w = (wi, j), where wi, j = 0 for i > j and wi,i = 1
for each i = 1, . . . ,n.
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3.5. Definition Let A be the subgroup of GL(n,R) of matrices a =(ai, j) with ai, j = 0
for i �= j and ai,i > 0. Let SA = A∩SL(n,R).

3.6. Remark By extending scalars, there are natural subgroup inclusions GL(n,R)⊂
GL(n,C), GL(n,C)⊂ GL(n,H), and SL(n,R)⊂ SL(n,C).

3.7. Theorem We have the following five Iwasawa decompositions of the linear
groups

GL(n,R) = O(n).A.N(n,R) and SL(n,R) = SO(n).SA.N(n,R),

GL(n,C) = U(n).A.N(n,C) and SL(n,C) = SU(n).SA.N(n,C),

and GL(n,H) = Sp(n).A.N(n,H).

Proof. For w∈GL(n,F), we consider the base point e∈Ln(Fn) with e = (e1, . . . ,en)
and the translate e.w = (x1, . . . ,xn) ∈Ln(Fn) by w. Now, we apply the first step of
the Gram–Schmidt process (1.3)

(∗) xi =∑ j=1y jui, j with ui,i = 1,

so that e.w = y.u with u ∈ N(n,F), and then we apply the second step of the Gram–
Schmidt process (1.4)

(∗∗) y j = z j(y j|y j) for j = 1, . . . ,n,

so that e.w = y.u = z.a.u with a∈ A. Now z = (z1, . . . ,zn) ∈ONn(Fn) which means
that z = e.k with k ∈U(n,F). This leads the relations e.w = y.u = z.a.u = e.(k.a.u),
and from this, we have the unique decomposition of w = k.a.u for k∈U(n,F),a∈A,
and u ∈ N(n,F) which is the Iwasawa decomposition of GL(n,F).

When F = R or C, we see that det(w) = det(kau)= det(k)det(a), where det(a)>
0 and |det(k)|= 1. Hence, w∈ SL(n,F) if and only if k ∈ SU(n,F) and a∈ SA. This
establishes the Iwasawa decomposition in these cases.

4 Applications to Structure Group Reduction for Principal
Bundles Related to Vector Bundles

The fact that a vector bundle is a fibre bundle with structure group either GL(n,C)
or U(n) has already been discussed in the context of a Riemannian metric on the
bundle. Using the Iwasawa decomposition, we obtain another proof using homotopy
methods with the related classifying spaces.

4.1. Theorem The following five maps of linear groups and the related five maps of
their classifying spaces are homotopy equivalences.

(1) U(n)−→ GL(n,C) and BU(n)−→ BGL(n,C),
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(2) SU(n)−→ SL(n,C) and BSU(n)−→ BSL(n,C),
(3) O(n)−→GL(n,R) and BO(n)−→ BGL(n,R),
(4) SO(n)−→ SL(n,R) and BSO(n)−→ BSL(n,R), and
(5) Sp(n)−→GL(n,H) and BSp(n)−→ BGL(n,H).

Proof . The groups A and SA have a contraction to the identity namely ht(a) = at

for a matrix a, where h0(a) = 1 and h1(a) = a. The groups N(n) have a contraction
to the identity ht(n) = n(t), where the matrix element n(t)i, j = ni, j for i≥ j and tni, j

for i < j for a matrix n, where h0(n) = 1 and h1(n) = n. Now, the theorem results
by applying these homotopies to the terms in the Iwasawa decomposition.

4.2. Remark By using the spectral theorem in Hilbert space H, we have the same
homotopy equivalences

U(H)−→ GL(H) and BU(H)−→ BGL(H).

4.3. Remark The homotopy equivalences in (4.1) and (4.2) are compatible with in-
clusion coming from n to n+m or H to H⊕H ′ with the obvious inclusion of groups
with the identity added onto the complementary factor.

5 The Special Case of SL2(R) and the Upper Half Plane

5.1. Notation For SL(2,R), the Iwasawa decomposition takes the form G = SL(2,R)
= SO(2).A.N = K.A.N, where the elements of these subgroups are given by the fol-
lowing matrices

(1) K = SO(2) = {k(θ )} for k(θ ) =
(

cosθ sinθ
−sinθ cosθ

)

(2) A = {a(t)} for a(t) =
(

t 0
0 t−1

)

(3) N = {n(v)} for n(v) =
(

1 v
0 1

)
.

In order to study the left coset space SL(2,R)/SO(2)= G/K as the group product
A.N = N.A, we consider the upper half plane H.

5.2. Definition The upper half plane H is the open subset of z ∈ C with Im(z) > 0.
The action of G on H is given by

(
a b
c d

)
(z) =

az+ b
cz+ d

.

If c = 0 in an element of G, the image of z is a2z+ ab since d = a−1. Any element
yi+ x ∈ H is of the form y = a2 and x = ab for the square root of y = Im(z) > 0 and
b = x/a.
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5.3. Proposition The action of A.N = N.A is transitive on the upper half plane H,
and for g∈G, we have g(i)= i if and only if g∈K. The maps given by multiplication
of matrices N×A×K→ G and K×A×N→ G are homeomorphisms.

Proof. The argument for the first assertion is given just before the statement of

the proposition. The relation g(i) = i for the two by two matrix g =
(

a b
c d

)
is the

relation ai + b = −c + di so the fixed point relation g(i) = i reduces to a = d and
b = −c with the determinant condition a2 + b2 = 1. These are exactly the numbers
represented by a = cosθ and b = sinθ , that is, g = k(θ ).

Each g ∈G when applied to i has the unique form g(i) = n′a′(i) with a′ ∈ A,n′ ∈
N. Hence, (n′a′)−1g = k(θ ) by the first part giving a unique decomposition and
transposing, we have the relation 4g = n′a′k(θ ). Giving the topological isomorphism
N × A×K → G. The other case results by taking inverses reversing the order of
multiplication.

5.4. Corollary The inclusion K → G is a homotopy equivalence.

Proof. Every g ∈ G has a unique representation by g = k(θ )a(t)n(v), and gs =
k(θ )a(st)n(sv) is a homotopy from k(θ ) = g0 to g = g1.

5.5. Corollary The map ψ where ψ(gK) = g(i) defines a topological isomorphism
ψ : G/K → H.

Besides the homotopy type implications, this isomorphism G/K → H is used to
study discrete subgroups Γ of G in terms of how they act on H. The first and basic
example is Γ = SL(2,Z). As an example of how the action on H is used, we quote
the following two related results.

5.6. Proposition The group SL(2,Z) is generated by

T =
(

1 1
0 1

)
and S =

(
0 1
−1 0

)
.

Every z∈H can be transformed by g, a product of S and T and their inverses to g(z)
with |g(z)| ≥ 1 and |g(z)| ≤ 1/2. Moreover, if |g(z)|> 1 and |g(z)|< 1/2, then g is
unique with this property.

This is proved nicely in Serre (1973).
The operation S(z) = −1/z is called the modular transformation on the upper

half plane while T (z) = z+ 1 is called simple translation.

6 Relation Between SL2(R) and SL2(C) with the Lorentz Groups

6.1. Notation Let M(1,2) be the vector space of symmetric real 2×2 matrices, that

is, matrices < t,x,y >=
(

t + x y
y t− x

)
. For X ∈M2(R), we have X ∈M(1,2) if and
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only if Xt = X . The space M(1,2) is a vector space over R of dimension 3, and the
determinant

det < t,x,y >= t2− x2− y2

is the Lorentz metric for one-time coordinate and two-space coordinates.
Let M(1,3) be the vector space of Hermitian complex 2× 2 matrices, that is,

matrices < t,x,y,z >=
(

t + x y + iz
y− iz t− x

)
. For Z ∈M2(C), we have Z ∈M(1,3) if and

only if Z∗ = Z. The space M(1,3) is a vector space over R of dimension 4 and the
determinant

det < t,x,y,z >= t2− x2− y2− z2

is the Lorentz metric for one-time coordinate and three-space coordinates. Note that
M(1,2)⊂M(1,3) is the subspace where z = 0.

6.2. The Morphism θθθ ::: SSSLLL222(R)→→→OOO(((111,,,222))) For A∈ SL2(R), we define θ (A)(X) =
AXA−1 and we see that θ (A)(X) ∈ M(1,2) for X ∈ M(1,2). Moreover,
det(θ (A)(X)) = det(X) for X ∈ M(1,2) showing that θ (A) ∈ O(1,2), the Lorentz
group of type (1,2).

6.3. The Morphism θθθ ::: SSSLLL222(C)→→→OOO(((111,,,333))) For A ∈ SL2(C), we define θ (A)(Z) =
AZA−1 and we see that θ (A)(Z) ∈ M(1,3) for Z ∈ M(1,3). Moreover,
det(θ (A)(Z)) = det(Z) for Z ∈ M(1,3) showing that θ (A) ∈ O(1,3), the Lorentz
group of type (1,3).

6.4. Remark We see that θ (A′A′′) = θ (A′)θ (A′′) in both cases, and the two defi-
nitions of θ are compatible under restriction to SL2(R) ⊂ SL2(C) and M(1,2) ⊂
M(1,3). The kernel ker(θ ) of θ , that is the matrices A of SL2(C) with θ (A) = iden-
tity, consists of the two elements ±I, where I is the identity matrix.

6.5. Remark Using θ , the Iwasawa decompositions SL2(R) = SO(2).A.N and
SL2(C) = SU(2).A′.N′ give Iwasawa decompositions of O(1,2) and O(1,3), respec-
tively. Observe that the image of θ is of finite index in the Lorentz groups O(1,2)
and O(1,3). This allows us to study the Lorentz groups using SL2(R) and SL2(C).

A Appendix: A Novel Characterization of the Iwasawa
Decomposition of a Simple Lie Group (by B. Krötz)

This appendix is about (essential) uniqueness of the Iwasawa (or horospherical)
decomposition G = KAN of a semisimple Lie group G. This means:

A.1. Theorem Assume that G is a connected Lie group with simple Lie algebra g.
Assume that G = KL for some closed subgroups K,L < G with K∩L discrete. Then
up to order, the Lie algebra k of K is maximally compact, and the Lie algebra l of L
is isomorphic to a+n, the Lie algebra of AN.

A.2. General Facts on Decompositions of Lie Groups. For a group G, a subgroup
H < G, and an element g ∈ G, we define Hg = gHg−1.
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A.3. Lemma Let G be a group and H,L < G subgroups. Then, the following state-
ments are equivalent:

(i) G = HL and H ∩L = {1}.
(ii) G = HLg and H ∩Lg = {1} for all g ∈ G.

Proof. Clearly, we only have to show that (ii) ⇒ (i). Suppose that G = HL with
H∩L = {1}. Then, we can write g∈G as g = hl for some h∈H and l ∈ L. Observe
that Lg = Lh and so

H ∩Lg = H ∩Lh = Hh∩Lh = (H ∩L)h = {1} .

Moreover, we record

HLg = HLh = HLh = Gh = G .

In the sequel, capital Latin letters will denote real Lie groups and the correspond-
ing lower case fractur letters will denote the associated Lie algebra, that is, G is a
Lie group with Lie algebra g.

A.4. Lemma Let G be a Lie group and H,L < G closed subgroups. Then, the fol-
lowing statements are equivalent:

(i) G = HL with H ∩L = {1}.
(ii) The multiplication map

H×L→G, (h, l) �→ hl

is an analytic diffeomorphism.

Proof. Standard structure theory.
If G is a Lie group with closed subgroups H,L < G such that G = HL with

H ∩L = {1}, then we refer to (G,H,L) as a decomposition triple.

A.5. Lemma Let (G,H,L) be a decomposition triple. Then:

(∀g ∈ G) g = h+ Ad(g)l and h∩Ad(g)l = {0} . (A.1)

Proof. In view of Lemma A.4, the map H×L→G, (h, l) �→ hl is a diffeomorphism.
In particular, the differential at (1,1) is a diffeomorphism which means that g =
h+ l, h∩ l = {0}. As we may replace L by Lg, for example Lemma A.3, the assertion
follows.
Question 1 Assume that G is connected. Is it then true that (G,H,L) is a decompo-
sition triple if and only if the algebraic condition (A.1) is satisfied.

A.6. Remark If the Lie algebra g splits into a direct sum of subalgebra g = h+ l, then
we cannot conclude in general that G = HL holds. For example, let h = m+a+n be
a minimal parabolic subalgebra and l = n be the opposite of n. Then, HL = MANN
is the open Bruhat cell in G. A similar example is when g = sl(n,R) with h the
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upper triangular matrices and l = so(p,n− p) for 0 < p < n. In this case, HL ⊂ G
is a proper open subset. Notice that in both examples, condition (A.1) is violated as
h∩Ad(g)l �= {0} for appropriate g ∈ G.

A.7. The Case of One Factor Being Maximal Compact. Throughout this section,
G denotes a semisimple-connected Lie group with associated Cartan decomposition
g = k + p. Set K = expk and note that Ad(K) is maximal compact subgroup in
Ad(G).

For what follows we have to recall some results of Mostow on maximal solvable
subalgebras in g. Let c ⊂ g be a Cartan subalgebra. Replacing c by an appropriate
Ad(G)-conjugate, we may assume that c = t0 + a0 with t0 ⊂ k and a0 ⊂ p. Write
Σ = Σ(a,g)⊂ a∗\{0} for the nonzero ada0-spectrum on g. For α ∈ Σ , write gα for
the associated eigenspcae. Call X ∈ a0 regular if α(X) �= 0 for all α ∈ Σ . Associated
to a regular element X ∈ a, we associate a nilpotent subalgebra

nX =
⊕
α∈Σ
α(X)>0

gα .

If a⊂ p happens to be maximal abelian, then we will write n instead of nX .
With this notation we have the following

A.8. Theorem Let g be a semisimple Lie algebra. Then, the following assertions
hold:

(i) Every maximal solvable subalgebra r of g contains a Cartan subalgebra c of g.
(ii) Up to conjugation with an element of Ad(G), every maximal solvable subalge-

bra of g is of the form
r = c+nX

for some regular element X ∈ a0.

Proof. Lemma A.14 and Mostow (1961).
We choose a maximal abelian subspace a⊂ p and write Σ = Σ(g,a) for the asso-

ciated root system. For a choice of positive roots, we obtain a unipotent subalgebra
n. Write m = zk(a) and fix a Cartan subalgebra t⊂m. Write A,N,T for the analytic
subgroups of G corresponding to a, n, t. Notice that t+a+n is a maximal solvable
subalgebra by Theorem A.8.

A.9. Lemma Let L < G be a closed subgroup such that G = KL with K∩L = {1}.
Then, there is an Iwasawa decomposition G = NAK such that

N ⊂ L⊂ TAN and L� LT/T � AN . (A.2)

Conversely, if L is a closed subgroup of G satisfying (A.2), then G = KL with
K∩L = {1}.
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Proof. Our first claim is that L contains no nontrivial compact subgroups. In fact,
let LK ⊂ L be a compact subgroup. As all maximal compact subgroups of G are
conjugate, we find a g∈G such that Lg

K ⊂K. But Lg
K ∩K ⊂ Lg∩K = {1} by Lemma

A.3. This establishes our claim.
Next, we show that L is solvable. For that, let L = SL×RL be a Levi decompo-

sition, where S is semisimple and R is reductive. If S �= 1, then there is a nontrivial
maximal compact subgroup SK ⊂ S. Hence, S = 1 by our previous claim and L = RL

is solvable.
Next, we turn to the specific structure of l, the Lie algebra of l. Let r = c+nX be a

maximal solvable subalgebra of g which contains l. As before, we write c = t0 +a0

for the Cartan subalgebra of r. We claim that a0 = a is maximal abelian in p. In fact,
notice that l∩ t0 = {0} and so l ↪→ r/t0 � a0 +nX injects as vector spaces. Hence,

dim l = dima+ dimn≤ dima0 + dimnX .

But, dima0 ≤ dima and dimnX ≤ dimn and therefore a = a0. Hence, r = t+a+n.
As l� r/t as vector spaces, we thus get hat L� LT/T �R/T �AN as homogeneous
spaces. We now show that N ⊂ L which will follow from n⊂ [l, l]. For that, choose
a regular element X ∈ a. By what we know already, we then find an element Y ∈ t
such that X +Y ∈ l. Notice that ad(X +Y ) is invertible on n and hence n⊂ [X +Y,n].
Finally, observe that

[X +Y,n] = [X +Y,r] = [X +Y, l+ t] = [X +Y, l]

which concludes the proof of the first assertion of the lemma.
Finally, the second assertion of the lemma is immediate from the Iwasawa de-

composition of G.

A.10. Manifold Decompositions for Decomposition Triples. Throughout this
section, G denotes a connected Lie group.

Let (G,H,L) be a decomposition triple and let us fix maximal compact subgroups
KH and KL of H and L, respectively. We choose a maximal compact subgroup K of
G such that KH ⊂ K. As we are free to replace L by any conjugate Lg, we may
assume in addition that KL ⊂ K.

We then have the following fact, see also Lemma A.4 and Oniščik (1969).

A.11. Lemma Let (G,H,L) be a decomposition triple. Then, (K,KH ,KL) is a de-
composition triple, that is, the map

KH ×KL → K, (h, l) �→ hl

is a diffeomorphism.

Before we prove the lemma, we recall a fundamental result of Mostow concern-
ing the topology of a connected Lie group G, cf. Mostow (1952). If K < G is a
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maximal compact subgroup of G, then there exists a vector space V and a home-
omorphism G � K ×V . In particular, G is a deformation retract of K and thus
H•(G,R) = H•(K,R).
Proof. As H∩L = {1}, it follows that KH ∩KL = {1}. Thus, compactness of KL and
KH implies that the map

KH ×KL → K, (h, l) �→ hl

has closed image. It remains to show that the image is open. This will follow from
dim KH + dim KL = dim K. In fact, G� H×L implies that G is homeomorphic to
KH ×KL×VH×VL for vector spaces VH and VL. Thus,

H•(K,R) = H•(G,R) = H•(KH ×KL,R),

and Künneth implies for any n ∈N0 that

Hn(K,R)�
n

∑
j=0

Hj(KH ,R)⊗Hn− j(KL,R).

Now, for an orientable connected compact manifold M, we recall that HdimM

(M,R) = R and Hn(M,R) = {0} for n > dimM. Next, Lie groups are orientable,
and we deduce from the Künneth identity from above that dimKH +dimKL = dimK.
This concludes the proof of the lemma.

Let us write kh and kl for the Lie algebras of KH and KL, respectively. Then, as
(K,KH ,KL) is a decomposition triple, it follows from Lemma A.5 that

k = kh + Ad(k)kl and h∩Ad(k)l = {0} .

Now, let th ⊂ kh be a maximal toral subalgebra and extend it to a maximal torus t,
that is, th⊂ t. Now pick a maximal toral subalgebra tl. Replacing l by an appropriate
Ad(K)-conjugate, we may assume that tl ⊂ t (all maximal toral subalgebras in k are
conjugate). Finally, write T,TH ,TL for the corresponding tori in T .

A.12. Lemma If (K,KH ,KL) is a decomposition triple for a compact Lie group K,
then (T,TH ,TL) is a decomposition triple for the maximal torus T . In particular

rank K = rank KH + rank KL . (A.3)

Proof. We already know that th + tl ⊂ t with th∩ tl = {0}. It remains to verify that
th + tl = t. We argue by contradiction. Let X ∈ t,X �∈ th +hl. As k = kh + kl, we can
write X = Xh + Xl for some Xh ∈ kh and Xl ∈ kl.

For a compact Lie algebra k with maximal toral subalgebra t⊂ k, we recall the di-
rect vector space decomposition k = t⊕ [t,k]. As th + tl ⊂ t, we, hence, may assume
that Xh ∈ [th,kh] and Xl ∈ [tl,kl]. But, then we get

X = Xh + Xl ∈ [th,kh]+ [tl,kl]⊂ [t,k],

and therefore, X ∈ t∩ [t,k] = {0}, a contradiction.
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A.13. Decompositions of Compact Lie Groups. Decompositions of compact Lie
groups is an algebraic feature as the following lemma, essentially due to Oniščik,
shows.

A.14. Lemma Let k be a compact Lie algebra and k1,k2 < k be two subalgebras.
Then, the following statements are equivalent:

(i) k = k1 + k2 with k1∩ k2 = {0}
(ii) Let K,K1,K2 be simply connected Lie groups with Lie algebras k,k1 and k2.

Write ιi : Ki → K, i = 1,2 for the natural homomorphisms sitting over the inclu-
sions ki ↪→ k. Then the map

m : K1×K2 → K, (k1,k2) �→ ι1(k1)ι2(k2)

is a homeomorphism.

Proof. The implication (ii)⇒ (i) is clear. We establish (i)⇒ (ii). We need that m
is onto and deduce this from Lemma A.11 and Oniščik (1969). Then, K becomes a
homogeneous space for the left–right action of K1×K2. The stabilizer of 1 is given
by the discrete subgroup F = {(k1,k2) : ι1(k1) = ι2(k2)−1, that is, K � K1×K2/F .
As K1 and K2 are simply connected, we conclude that π1(K) = F , and thus, F = {1}
as K is simply connected.

We now show the main result of this section.

A.15. Lemma Let (K,K1,K2) be a decomposition triple of a connected compact
simple Lie group. Then, K1 = 1 or K2 = 1.

Before we prove this, a few remarks are in order.

A.16. Remark(a) If K is of exceptional type, then the result can be easily deduced
from dim K = dim K1 + dim K2 and the rank equality rank K = rank K1 +
rank K2, cf. Lemma A.12. For example, if K is of type G2, Then a nontrivial
decomposition K = K1K2 must have rank Ki = 1, that is, ki = su(2). But,

14 = dim K �= dim K1 + dim K2 = 6 .

(b) The assertion of the lemma is not true if we only require K = K1K2 and drop
K1 ∩K2 = {1}. For example if K is of type G2, then K = K1K2 with Ki locally
SU(3) and K1∩K2 = T a maximal torus.

Proof. The proof is short but uses a powerful tool, namely the structure of the co-
homology ring of the compact group K. See for instance Ozeki (1977) or Koszul
(1978).

Putting matters together, this concludes the proof of Theorem 1.
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Chapter 17
Topological Algebras: G-Equivariance
and KK-Theory

In three previous Chaps. 13–15, we have developed the theory of G-equivariant vec-
tor bundles over a compact space X for a compact group G. In Chap. 3, vector bun-
dles over a compact space X were related to finitely generated projective modules
over the algebra C(X). The K-theory of X was described in terms of projections in
the C∗-algebra C(X) tensored with the compact operators in 4(5.14), that is, K0(X)
is naturally isomorphic to C∗-algebra K-theory K(C(X)).

In fact, the K-theory K(A) is defined for all C∗-algebras A, and this introduces the
possibility of a geometric interpretation of the K-theory for more general classes of
topological algebras. The beginnings of this point of view arises when we consider
an algebra related to a compact group G acting on a compact space X . This is a
noncommutative algebra, called the cross product algebra G � A, where A = C(X),
whose K-theory turns out to be the G-equivariant K-theory KG(X). This theory is
outlined in Sects. 1 and 2.

This step leads to a broad extension of the theory involving other topological
algebras, called m-algebras and locally convex algebras. The K-theory of these al-
gebras, which includes C∗-algebras, has many formal properties of the K-theory of
spaces. We outline aspects of the theory in this chapter in Sects. 3–10.

The index theory of elliptic operators leads to K-theory invariants and suggested
a version of K-homology theory with geometric and analytical data evolving “K-
cycles.” These cycles were first introduced by Atiyah and were related to extension
groups Ext(B,A) by Brown–Douglas–Fillmore. Kasparov has developed a bivariant
theory KK(A,B) for C∗-algebras with a G-equivariant version KKG(A,B). Cuntz
has extended the theory to locally convex algebras and a related bivariant theory
k(A,B).

We give a short descriptive introduction to these constructions including the
smooth case which arises with smooth manifolds naturally, because smooth func-
tion spaces are usually only locally convex. Since in one chapter it is only possible
to give a sketch of the theory, we will make frequent references to the books denoted
by 〈B〉 or 〈CMR〉, that is, respectively, Blackadar (1998) and Cuntz et al. (2007).

D. Husemöller et al.: Topological Algebras: G-Equivariance and KK-Theory, Lect. Notes Phys. 726, 203–226 (2008)
DOI 10.1007/978-3-540-74956-1 18 © Springer-Verlag Berlin Heidelberg 2008
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1 The Module of Cross Sections for a G-Equivariant
Vector Bundle

In 3(2.1), we have studied the cross section functor for vector bundles

Γ : HomX (E ′,E ′′)−→ HomC(X)(Γ(X ,E ′),Γ(X ,E ′′))

with full embedding and equivalence properties under suitable conditions into the
category of finitely generated projective modules over the algebra C(X). We wish
to extend this picture to modules and spaces with G-action. We need the following
conventions and definitions.

Convention 1.1 As in Chap. 3 and 13, X is a compact space and G is a compact
group. The C∗-topology on C(X) is also the compact open topology. For a vector
bundle E over X, we give Γ(X ,E), the compact open topology and all automorphism
groups occurring get the compact open topology too.

1.2. Definition For a G-space X , we define a multiplicative map α : G→Aut(C(X))
by the formula α(s)( f )(x) = f (s−1x). A topological algebra A with continuous
group homomorphism α : G→ Aut(A) is called a G-algebra.

We extend this definition to cross sections of any vector G-vector bundle E over
a G-space X using the notation s# : Es−1x → Ex which is by definition of a G-vector
bundle a C-linear isomorphism between fibres of E .

1.3. Definition Let E be a G-equivariant vector bundle over a space X . The left
G-action on Γ(X ,E) is the continuous group homomorphismα : G→Aut(Γ(X ,E)),
where α(s)(σ)(x) = s#σ(s−1x).

1.4. Remark The map α is C(X)-linear on the vector space Γ(X ,E) in the sense it
satisfies the equivariance formula

α(s)( fσ) = α(s)( f )α(s)α(σ)

for the action of f ∈ C(X) = Γ(X ,X ×C) on σ ∈ Γ(X ,E). For this, we use the
calculation

α(st)(σ)(x) = (st)#σ((st)−1x) = s#t#σ(t−1s−1x)

= s#α(t)(σ)(s−1x) = α(s)α(t)(σ)(x).

1.5. Definition Let A be a topological algebra with G-action. A (G,A)-module M is
a left A-module together with a linear continuous G-action on M such that s(ax) =
s(a)s(x), where s∈G, a∈ A, and x∈M. Let (G,A)Mod denote the category of (G,A)-
modules and morphisms consisting of A-linear G-equivariant maps.

1.6. Example The cross section module Γ(X ,E) of a G-vector bundle E is a (G,
C(X))-module. The cross section module is a functor

Γ : VectG(X)→(G,C(X)) Mod.
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In order to relate two G-equivariant K-groups for A = C(X), we have the follow-
ing version of the Serre–Swan theorem using the full subcategory Vect(G,C(X)) of
objects in (G,C(X))Mod which are finitely generated projective C(X)-modules.

1.7. Theorem Let G be a compact group acting on a compact space X. The cross
section functor Γ : VectG(X)→ Vect(G,C(X)) is an equivalence of categories.

Proof . This theorem is proved by averaging over the compact group the equiv-
alence of categories Γ(X , ) : (vect/X) → (vect/C(X)), see 3(4.3). The functor
Γ : VectG(X)→ Vect(G,C(X)) is faithful as a restriction of a faithful functor, and

Γ : HomG(E ′,E ′′)−→ Hom(G,C(X))(Γ(X ,E ′),Γ(X ,E ′′))

is a bijection for f ∈ Hom(G,C(X))(Γ(X ,E ′),Γ(X ,E ′′), there is v : E ′ → E ′′ a mor-
phism of vector bundles with Γ(v) = f . The average u of v will be G-equivariant and
satisfies Γ(u) = f , giving a full embedding. To show the restriction of Γ in the as-
sertion is an equivalence, we note the key step is to take an object M in (G,C(X))Mod
and choose a surjective (G,A)-morphism w : An → M together with an A-linear
v : M → An which is a section of w. We average v to u and wv = M to wu = M. In
this way, we construct enough G-equivariant vector bundles on X in order that Γ
is an equivalence of categories.

1.8. Definition Using the category VectG(X) of G-equivariant vector bundles over
X , we can form the Grothendieck group KG(X) to obtain G-equivariant K-theory
K0

G(X).

1.9. Definition Using the category Vect(G,A) of finitely generated projective (G,A)-
modules, we can form the Grothendieck group KG(A) to obtain G-equivariant
K-theory of a G-algebra A.

As before, the K-theory of a space can be calculated in terms of the K-theory of
algebras, but now in the equivariant setting.

1.10. Corollary Let G be a compact group acting on a compact space X. The cross
section functor Γ induces an isomorphism of the K-groups

KG(X)
∼=−→ KG(C(X)).

See 〈B〉, 11.4, for more details.

2 G-Equivariant K-Theory and the K-Theory of Cross Products

In Chap. 4, Sect. 5, we saw that a C∗ property on an algebra could lead to additional
properties of the K-theory. In this section, we outline how for a compact group G the
G-equivariant K-theory for a C∗-algebra A can be described using the usual K-theory
of the related crossed product C∗-algebra G � A, where G is a compact group.
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2.1. Cross Products of Groups For a topological group G acting on another topo-
logical group H by α : G → Aut(H), there is a cross product group G � H and a
related topological group extension

H
i−→ G � H

π−→ G,

where as a space G � H is the product space H ×G, with π(a,u) = u and i(a) =
(a,1). The multiplication on G � H is given by the formula

(a′,u′) · (a′′,u′′) = (a′α(u′)(a′′),u′u′′) for (a′,u′),(a′′,u′′) ∈ G � H.

It is easy to check that (1,1) is the unit, and for the relation

(a,u)−1 = (α(u−1)a−1,u−1),

we calculate

(a,u) · (α(u−1)a−1,u−1) = (aα(u)α(u−1)a−1,uu−1) = (1,1).

2.2. Example For a field F , its affine group Aff(F) is

F+ −→ Aff(F) = F∗� F+ −→ F∗,

where Aff(F) is a subgroup of the permutation group of F consisting of substitutions
a + ux and group law

(a′+ u′x) · (a′′+ u′′x) = a′+ u′(a′′+ u′′x)+ b′ = (a′+ u′(a′′))+ (u′u′′)x.

The group Aff(F) is called the affine group of the line.
There is a matrix realization of Aff(F) with group law given by

(
u′ 0
a′ 1

)(
u′′ 0
a′′ 1

)
=
(

u′u′′ 0
a′+ u′a′′ 1

)
.

Now, we give the mapping spaces C(G,A) and L1(G,A) the structure of a
G-algebra.

2.3. Definition Let G be a locally compact group, let A be a Banach ∗-algebra, and
let α : G→ Aut(A) be an action of G on A. Let Cc(G,A) be the ∗-algebra of com-
pactly supported continuous functions G→ A. The ∗-algebra structure is defined by
the convolution multiplication

(a∗b)(s) =
∫

a(t)αt(b)(t−1s)dt for s,t ∈ G,a,b ∈Cc(G,α,A)

and the ∗-operation

(a∗)(s) = δ (s)−1αs(a)(s−1)∗ for s ∈ G,a ∈Cc(G,A).
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For the locally compact group G, the modular function is δ : G → R
∗
+ defined by

the formula d(s−1) = δ (s)−1ds. We use the fact that it is morphism of topological
groups.

2.4. Definition The cross product G � A is the enveloping C∗-algebra of Cc(G,A).

2.5. Remark The question of whether there are units or approximate units is the
first issue. In fact, we can choose a sequence of elements in C(G) which give an
approximate identity in C(G,A) or L1(G,A).

To assign to a G-equivariant module over A a cross algebra, we follow this
procedure.

2.6. Definition Let E be a G-equivariant A-module. Then, E is considered as a right
L1(G,A)-module by the following formula

x
∫

a(g)Egdg =
∫
αg−1(xa(g))dg

for x ∈ E , a ∈ L1(G,A).

2.7. Proposition Let E be a G-equivariant A-module which is of the form eMm(A),
where e is a projection. The E considered as a right L1(G,A)-module is of the form
pMn(L1(G,A)), where p is a projection.

For a sketch of a proof, we make the following remarks. We can find a G-
equivariant A-module E ′ such that E⊕E ′ is isomorphic A⊗W , where W is finite
dimensional with the action of g ∈ G on a⊗w ∈ A⊗W given by αg(a)⊗ gW (w),
where gW is a representation of G on the finite-dimensional W . We use the fact that
the G-representation W is of the form e′L1(G) and put together e and e′ to obtain p.

2.8. Theorem Let G be a compact group acting on a compact space X with cross
product algebra G �C(X). Then, there is an isomorphism between

KG(C(X)) and K(G �C(X)) .

See 〈B〉, 11.7.1, and the appendix (Sect. 10) by S. Echterhoff to this chapter.
The importance of this section is that for a compact G, we do not need a sepa-

rate G-equivariant theory for operator algebra K-theory as in the case of compact
G-spaces.

3 Generalities on Topological Algebras: Stabilization

3.1. Definition Let V be a complex vector space. A seminorm p on V is a function
p : V → R such that



208 17 Topological Algebras: G-Equivariance and KK-Theory

(a) p(x)≥ 0 for all x ∈V ,
(b) p(cx) = |c|p(x) for all x ∈V , c ∈ C, and
(c) p(x + y)≤ p(x)+ p(y) for all x,y ∈V .

If V is an algebra, then p is submultiplicative provided it satisfies also
(d) p(xy)≤ p(x)p(y) for all x,y ∈V .

A seminorm is a norm provided p(x) = 0 implies x = 0

3.2. Definition A locally convex vector space V is a topological vector space where
the topology is defined by the open balls given by a family of seminorms. A locally
convex topological algebra A is a topological algebra whose underlying vector space
is locally convex. An m-algebra A is a locally convex topological algebra with the
topology given by submultiplicative seminorms.

The continuity of the multiplication A×A→ A in the definition of locally convex
topological algebras can be formulated in terms of seminorms to the effect that for
every seminorm p on A, there exists a seminorm q on A such that p(xy)≤ q(x)q(y)
for all x,y ∈ A.

Let (C∗\alg),(m\alg),and (lc\alg) denote the categories of C∗-algebras, m-
algebras, and locally convex algebras, respectively.

3.3. Definition Let A be a locally convex algebra. For each locally compact space
X , we denote by C(X ,A) the algebra of all continuous functions f : X → A which
vanishes at ∞, that is, for each neighborhood U of the origin in A, there exists a
compact subset K ⊂ X with f (X −K)⊂U .

For a smooth manifold X ⊂R
n, we denote by C∞(X ,A) the algebra of all smooth

functions f : X → A which vanishes at ∞ along with all derivatives.
The reader should be aware that the notations C(X),C(X ,A) as well as C∞(X),

C∞(X ,A) are used for different spaces in different contexts.
Each seminorm p on A gives rise to a seminorm p( f ) on C(X ,A) denoted by p( f )

or pX( f ) = maxx∈X p( f (x)). In the case where X ⊂ R
m is a smooth submanifold,

each seminorm p on A gives rise to an infinite family of seminorms pn( f ) defined
by

pn( f ) = maxx∈X ,|J|≤n|∂ J f (x)|,
where as usual ∂ J is an iterated derivative of f given by J = { j(1), . . . , j(m)} and

∂ J = ∂ j(1)
1 . . .∂ j(m)

m . Of course we can extend these definitions to manifolds X which
are not necessarily embedded into R

n.

The following construction is used for describing homotopy and extensions used
in K-theory.

3.4. Definition Let I be a finite interval, and let A be a locally convex algebra. Let
A(I) or AI denote the subalgebra of continuous functions f ∈ C(I,A), satisfying
f (t) = 0 for an open end point t of I otherwise no condition. Let A∞(I) or A∞I
denote the subalgebra of smooth functions f ∈ C∞(I,A) satisfying f (i)(t) = 0 for
any end point of t ∈ I, where i > 0 and f (t) = 0 for an open end point t of I.
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For t ∈ I, we have a substitution morphism εt : AI → A and εt : A∞I → A, where
εt( f ) = f (t) ∈ A. This leads to the concept of homotopy and of diffeotopy, that is,
smooth homotopy.

3.5. Definition Two morphisms f ′, f ′′ : A→ B of locally convex algebras are homo-
topic (resp. smoothly homotopic) provided there exists a morphism h : A→ B[0,1]
(resp. h : A→ B∞[0,1]) with ε0h = f ′ and ε1h = f ′′.

If there exists a homotopy with end points not necessarily zero, then there exists a
homotopy with zero end points, see 〈CMR〉, 6.1. Now, it follows that the homotopy
and smooth homotopy are equivalence relations.

Stabilizations involve making algebras larger by embedding into matrix algebras
and their related completions.

3.6. Remark For an arbitrary algebra, we have embeddings

A−→M2(A)−→ . . .−→Mn(A)−→ . . .−→M∞(A) =
⋃
0<n

Mn(A).

These embeddings result from putting zero in the bottom and the right entries
Mn(A) → Mn+q(A). Note the unit is not preserved. A ∗-structure extends to the
matrices by using also the transpose of the matrix, and any seminorm extends by
using the operator seminorm for matrices relative to each seminorm on A.

3.7. Definition Let K denote the C∗-algebra completion of M∞(C), and for a C∗
algebra A, let K (A) denote the C∗ completion of M∞(A).

3.8. Remark The algebra K can be identified with the closed subalgebra of compact
operators in B(H), the algebra of bounded operators on an infinite dimensional
separable Hilbert space H. We use also the notation K (H) for K in this case.

3.9. Definition Let K ∞ denote the m-algebra of all N×N matrices (ai, j) for which
the following seminorms

pn((ai, j)) =∑
i, j
|1 + i|n|1 + j|n|ai, j|

are finite. Such matrices are called rapidly decreasing, and the algebra K ∞ is called
the algebra of all smooth compact operators. The algebra also can be regarded as an
algebra of operators acting on an infinite-dimensional separable Hilbert space.

4 Ell(X) and Ext(X) Pairing with K-Theory to Z

We consider two functors Ell(X) and Ext(X) which lead to KK-theory through
their pairing with K-theory to Z. This pairing suggests that they are related with
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K-homology. The first Ell(X) was introduced by Atiyah in the context of elliptic op-
erators on a compact manifold X , and the second Ext(X) was introduced by Brown,
Douglas, and Fillmore as a step toward an extension theory for C∗-algebras.

Ell(X ) is the set of index data on a manifold X which maps onto the K-homology
K0(X) of the space X . It was introduced by Atiyah and is related to the Fredholm
data associated with an elliptic pseudodifferential operator between two vector bun-
dles on a manifold X . It is a natural extension of the work on the Atiyah–Singer
index theorem. At this point, we leave the main theme of these notes and only pro-
vide a sketch of the ideas.

4.1. Remark Let D : Γ∞(M,E ′) → Γ∞(M,E ′′) be a pseudodifferential operator of
degree zero between two smooth complex vector bundles on a smooth manifold. If
D is elliptic, then D extends to a Fredholm operator

F ′ : H ′ = L2(M,E ′)→ H ′′ = L2(M,E ′′).

The index of F ′ is called the analytic index of D, denoted by inda(D). If φ ′ and φ ′′
are the action of smooth functions f ∈ C∞(M) on H ′ and H ′′, respectively, where
φ ′ : C∞(M)→B(H ′) and φ ′′ : C∞(M)→B(H ′′) are ∗-algebra morphisms, then the
difference

φ ′′( f )F ′ −F ′φ ′( f ) ∈K (H ′,H ′′)

the vector space of compact operators H ′ → H ′′. There is also a Fredholm operator
F ′′ : H ′′ → H ′ with F ′F ′′ − 1 ∈ K (H ′′), F ′′F ′ − 1 ∈ K (H ′), and F ′′ − (F ′)∗ ∈
K (H ′,H ′′).

4.2. Remark We can form the nth direct sum of this situation with the notation
H ′〈n〉= (H ′)n⊕, H ′′〈n〉= (H ′′)n⊕, and with actions φ ′〈n〉, φ ′′〈n〉, and with a Fred-
holm operator

F ′〈n〉= (F ′)n⊕ : H ′〈n〉 −→ H ′′〈n〉
satisfying the compact operator commutator property

φ ′′〈n〉( f )F ′〈n〉−F ′〈n〉φ ′〈n〉( f ) ∈K (H ′〈n〉,H ′′〈n〉).

4.3. Definition Let Ell(X) be the set of triples (H,φ ,F), where H is the graded
Hilbert space H0 = H ′ and H1 = H ′′, φ = (φ ′,φ ′′) : C(X)→ End(H)0 is a ∗-algebra
morphism into the graded bounded operators of even degree, and

F =
(

0 F ′
F ′′ 0

)
: H → H

is operator of odd degree such that this data satisfies the following conditions:

(1) [φ( f ),F ] = φ( f )F−Fφ( f ) ∈K (H),
(2) FF∗ −1 ∈K (H), and
(3) F−F∗ ∈K (H).
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Conditions (2) and (3) are the Fredholm conditions. With this grading concept,
we put the two Hilbert spaces into one graded Hilbert space and the other data comes
in this graded setting.

4.4. Pairing with K000(X) = K000(((CCC(((XXX)))))) K000(X) = K000(((CCC(((XXX)))))) For the index theorem,
the pairing

Ell(X)×K0(C(X))−→ Z

assigns to a triple (H,φ ,F) and a projection class [p] ∈ K0(C(X)), where p2 = p =
p∗ ∈Mn(C(X)), the index of F ′〈n〉|ker(pφ〈n〉), where pφ〈n〉 ∈ C(X)n which acts
on H ′〈n〉 as in (4.2) and ker(φ〈n〉(p)) ⊂ H ′〈n〉.

This pairing is part of the Kasparov product when Ell(X) and K0(X) are inter-
preted in terms of KK-theory. The next pairing comes from the extension theory
developed by Brown, Douglas, and Fillmore.

4.5. Definition The group Ext(X) is the set of isomorphism classes of extensions of
C(X) by K = K (H) on a separable H. Such an extension is a type of short exact
sequence

0−→K −→ E
π−→C(X)−→ 0,

where π is a surjective C∗-algebra morphism with kernel isomorphic to K .
In general, we can replace C(X) by any C∗ algebra B, and with the usual notation

for extensions, we have Ext(X) = Ext(C(X),K )

4.6. Remark There is a basic extension with kernel K = K (H) namely as an ideal
in B(H), the C∗-algebra K (H) is an extension over the quotient algebra A (H) =
B(H)/K (H) called the Calkin algebra. The elements in Ext(X) can be shown to
be in bijective correspondence with ∗-morphisms τ : C(X) → A (H) = A up to
unitary equivalence in A under certain circumstances.

4.7. Remark In terms of this classification we can explain the abelian semigroup on
Ext by forming for τ ′ : C(X)→A (H ′) and τ ′′ : C(X)→ A (H ′′) the sum τ ′ ⊕ τ ′′ :
C(X)→A (H ′ ⊕H ′′). In fact, this semigroup Ext(X) usually is a group.

4.8. Example For X ⊂C, the elements of Ext(X) are given by normal elements of A
with spectrum X . Another formulation of this is to take T ∈B(H) with [T,T ∗] =
T T ∗ − T ∗T in K (H) such that the essential spectrum of T is X . This element is
trivial in Ext(X) if and only if T = N + K for some normal N ∈ B(H) and K ∈
K (H).

4.9. Functorial Properties A continuous f : X → Y induces a ∗-homomorphism
C( f ) : C(Y )→C(X), and this in turn induces by a fibre product construction

f∗(0→K → E ′ →C(X)→ 0) = (0→K → E ′′ →C(Y )→ 0),

where E ′′ = E ′ ×C(X) C(Y ), and hence, we have f∗ : Ext(X)→ Ext(Y ) the induced
morphism. If g : Y → Z is a second map, then (g f )∗ = g∗ f∗.
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4.10. Pairing with K111(X) We now pair the group Ext(X) with K1(X) by defining a
group homomorphism γ : Ext(X)→ Hom(K1(X),Z). An element of K1(X) is rep-
resented by a homotopy class [g], where g : X → GL(n,C) is a map or equivalently
g∈Gl(n,C(X)). An element [τ]∈Ext(X) is represented by a map τ :C(X)→A (H)
and hence, τ(g) ∈Gl(n,A (H)). Choose an entrywise lifting τ(g)′ ∈Mn(B(H)) of
the matrix τ(g). This lifting τ(g)′ is a Fredholm operator on Hn. Then, we define
γ[τ] = ind(τ(g)′). The morphism γ : Ext(X)→ Hom(K1(X),Z) is equivalent to a
pairing

Ext(X)×K1(X)−→ Z.

5 Extensions: Universal Examples

Extensions are classified by assuming a splitting property of the quotient morphism.
In the next definition, we consider examples.

5.1. Definition Let

(E) : 0 �� A �� E
π �� B�� �� 0

be an extension of locally convex algebras. The extension (E) is

(1) linearly split provided there exists a continuous linear map s : B → E with
πs(y) = y for all y ∈ B,

(2) algebraically split provided there exists an algebra morphism s : B→ E which
is an algebra splitting.
A C∗-algebra extension (E) is:

(3) positively split provided there exists a continuous linear splitting s : B→E such
that s(B+)⊂ E+, that is, s preserves positive elements,

(3) ∗completely positively split provided any finite matrix extension of the exten-
sion Mn(π) : Mn(E)→Mn(B) is positively split,

5.2. Definition Let Ext(B,A) denote the set of isomorphism classes of extensions

(E) : 0 �� A �� E
π �� B�� �� 0

of B by A for two given locally convex algebras A and B.

This set Ext(B,A) is a functor of two variables covariant in B and contravariant
in A.

5.3. Functoriality of Ext(B, A) Let u : A→ A′ and v : B′ → B be two morphisms
of algebras, and consider an extension

(E) : 0 �� A �� E �� B �� 0 .
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We form the following extension using a cartesian square over B where E ′= E×B B′
and cocartesian square from A where E ′′ = E ∗A A′

v∗(E) : 0 �� A ��
��

��

E ′ ��

��

B′ ��

v

��

0

(E) : 0 �� A

u

��

�� E ��

��

B ��
��

��

0

u∗(E) : 0 �� A′ �� E ′ �� B �� 0 .

The above construction depends on the existence of finite limits in the category to
form E ′ and finite colimits to form E ′′.

5.4. Remark In (5.3) with further morphisms u′ : A′ → A′′ and v′ : B′′ → B′, we have
the relations (u′u)∗ = (u′)∗u∗ and (vv′)∗ = (v′)∗v∗. The categories of sequences with
splittings have to be checked to see whether the constructions preserve the relative
splittings. This is the case for (5.1)(1) and (2). Note that v∗ : Ext(B,A)→ Ext(B′,A)
and u∗ : Ext(B,A)→ Ext(B,A′) make Ext a functor in each of the variables.

5.5. Sum of Extensions Let

(E ′) : 0 �� A �� E ′
π ′ �� B�� �� 0

and

(E ′′) : 0 �� A �� E ′′
π ′′ �� B�� �� 0

be two extensions. The M2-sum has the form

(E/2) : 0 �� M2(A) �� D
π �� B�� �� 0 ,

where D is the algebra of matrices of the form

(
x′ b
c x′′

)
, and b,c ∈ A, and (x′,x′′) ∈

E ′ ×B E ′′, and π
(

x′ b
c x′′

)
= π(x′) = π(x′′). A section s′ of π ′ and s′′ of π ′′ combine

to a section s of π given s(b) =
(

s′(b) 0
0 s′′(b)

)
for b ∈ B.

This sum is used in E-theory, where A and M2(A) are isomorphic.

5.6. Remark In general, the kernel A of the projection π : E → B in an extension is
an algebra without unit. There is a universal construction of an embedding θ : A→
M(A) into an algebra with unit called the multiplier algebra, and an extension

0−→ θ (A)−→M(A)−→ Q(A)−→ 0
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with the universal mapping property for an extension (E) maps into the multiplier
algebra extension

(E) : 0 �� A ��

��

θ



��������� E ��

φ
��

B ��

φ ′

��

0

0 �� θ (A) �� M(A) �� Q(A) �� 0 .

Let L(AA) and L(AA) denote the subalgebras of B(A) of right A-linear and left A-
linear endomorphisms of the linear space A or the C∗-algebra containing A as an
essential ideal, see 〈B〉, 12.1.

5.7. Construction The multiplier algebra M(A) of locally convex algebra A is the
subalgebra of all (u,v) ∈ L(AA)×L(AA) such that xu(y) = v(x)y for x,y ∈ A.

For (u′,v′), (u′′,v′′)∈M(A), we have (u′,v′)(u′′,v′′) = (u′u′′,v′v′′) for xu′(u′′(y))
= v′(x)u′′(y) = v′′(v′(x))y. Also c(u,v) = (cu,cv).

To define θ : A→ M(A), we use the multiplications la(x) = ax and ra(x) = xa,
and then θ (a) = (la,ra). The assertion θ (A) ∈M(A) is the relation x(ay) = (xa)y
or xu(y) = v(x)y. Note also that la′ la′′ = la′a′′ and ra′ la′′ = ra′′a′ . For the definition of
φ : E→M(A), we observe that for e∈E the multiplications le(A)⊂ A and re(A)⊂A
so that φ(e) = (le,re) is defined since x(ey) = (xe)y in E .

5.8. Remark The ker(θ ) is the ideal of all x ∈ A with xA = 0 and Ax = 0. If A has
a unit 1, then xy(y) = v(x)y for x = 1 is u(y) = 1u(y) = v(1)y and y = 1 is v(x) =
v(x)1 = xu(1), but x = y = 1 gives a single element u(1) = v(1) = w ∈ A. Hence,
θ is surjective because θ (w) = (u,v). Hence, θ : A→M(A) is an isomorphism if A
has a unit.

This is an example of an extension by A with the universal property that any
extension (E) by A maps uniquely to this multiplier extension.

For an algebra B, there is a universal tensor algebra extension with linear splitting
which maps to all extension (E) over B.

5.9. Construction The tensor algebra T (B) extension over a locally convex algebra
B is the completion of the algebraic tensor algebra

⊕
1≤n Bn⊗ with projection π :

T (B)→ B defined to have the property that π(y1⊗ . . .⊗ ym) = y1 . . .ym ∈ B. The
extension is denoted by

(T ) : 0 �� J(B) �� T (B)
π �� B
s

�� �� 0.

Before we consider the locally convex structure on T (B) and J(B), we describe the
universal mapping property of this extension.

5.10. Universal Property For each morphism f : B → B′ of algebras and each
extension
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(E ′) : 0 �� A′ �� E ′
π ′ ��

B′
s′

�� �� 0

with a linear splitting s′, there exists a unique morphism of extensions over f

(T ) : 0 �� J(B) ��

g′

��

T (B)

g

��

π �� B

f

��

s
�� �� 0

(E ′) : 0 �� A′ �� E ′
π ′ ��

B′
s′

�� �� 0.

with g(y1⊗ . . .⊗ ym) = s′(y1) . . . s′(ym) and g′ = g|J(B).

The universal property of the tensor algebra T (V ) on a vector space or a module
is a basic tool in mathematics.

5.11. Remark There are two versions of T (V ) =
⊕

0≤n V n⊗ and T (V ) =
⊕

0<nV n⊗,
where in the first case V 0⊗ = scalars, say C, for the module V and T (V ) has a unit,
and in the second case, which we use above, there is no unit in the algebra T (V ). In
both cases, the multiplication is the coproduct of morphisms V p⊗⊗V q⊗ →V (p+q)⊗
where associativity is taken for grant. The universal property relative to the functor
ν which assigns to an algebra A the underlying module ν(A), and it is a natural
isomorphism

Hom(alg/k)(T (V ),A) = Hom(k)(V,ν(A))

saying that T is a left adjoint functor to ν .

5.12. Remark In the context of locally convex vector spaces, we want the structure
of a locally convex algebra on T (V ) for each locally convex space V such that if
ν(A) denotes the underlying locally convex vector space of A, we have the same
natural isomorphism

Hom(lc\alg/k)(T (V ),A) = Hom(lc\k)(V,ν(A)),

abcd where the morphisms are continuous in the locally convex topology.
One reference is Valqui in K-theory (2001). It solves this problem in the topol-

ogy from seminorms by putting the seminorms on the nonassociative version of
T (A) which is a sum indexed by binary trees. The resulting seminorms make mul-
tiplication jointly continuous and are universal for general nonassociative algebras
and in the quotient tensor algebra T (A).

For further explanations of extensions, the reader should consult 〈B〉, Chap. 7.

6 Basic Examples of Extensions for K-Theory

In this section, we consider the basic examples of extensions of locally convex al-
gebras used in the formulation of KK-theory and kk-theory exactness properties. In



216 17 Topological Algebras: G-Equivariance and KK-Theory

many cases, there is a continuous and smooth version of the extension. See 〈B〉, 8.2,
for these definitions in the case of C∗-algebras.

6.1. Definition Let B be a locally convex algebra. The continuous cone C(B) and
suspension S(B) extension is

0−→ S(B) = B(0,1)−→C(B) = B(0,1]
q−→ B−→ 0,

where the projection q( f ) = f (1). The smooth cone C∞(B) and smooth suspension
S∞(B) extension is

0−→ S∞(B) = B∞(0,1)−→C∞(B) = B∞(0,1]
q−→ B−→ 0.

6.2. Remark There is a continuous homotopy ht : C(B)→ C(B) and a smooth ho-
motopy ht : C∞(B)→ C∞(B) both given by the formula ht( f )(s) = f (ts) form the
base point to the identity h1( f ) = f , or in other words, the cones are contractible in
the continuous and smooth senses.

6.3. Definition Let u : A→ B be a morphism of algebras. The mapping cylinder of
u is the fibre product Z(u) = A×B B[0,1], and the mapping cone of u is the fibre
product C(u) = A×B B(0,1], where q : B[0,1]→ B and q : B(0,1]→ B are given by
q( f ) = f (1). We have the smooth versions the mapping cylinder and mapping cone
Z∞(u) = A×B B∞[0,1] and C∞(u) = A×B B∞(0,1] also.

6.4. Homotopy Properties of the Mapping Cylinder We have two morphisms of
locally convex algebras ξ = ξ (u) : A→ Z(u) given by ξ (x) = x, f (a)(1) and η =
η(u) : Z(u)→ A given by η(x, f ) = x. The composite ηξ = idA and the composite
ξη(x, f ) = x is homotopic to idZ(u) with ks(x, f )(t) = (x, f ((1−s)t +s), where k0 =
idZ(u) and k1 = ξη . The smooth version of the relation between A and Z∞(u) holds
by analogy where the homotopy ks is a smooth homotopy.

6.5. Extensions Defined by the Mapping Cylinder and Cone The projection p :
Z(u)→ B given by p(x, f ) = f (0) defines a natural extension

0−→C(u)−→ Z(u)
p−→ B−→ 0.

Furthermore, if u has a linear section σ : B → A of u, then p has a linear section
σ ′(y) = (σ(y),y(t) = y) for all t. Combining (6.4) and (6.5), we have an extension
up to homotopy of special importance

[u] : C(u)
a(u)−→ A

u−→ B.

The kernel of the surjective algebra morphism a(u) : C(u)→ A is just C(u)/A =
S(B), and we have the following basic mapping cone extension for u : A→ B.

0−→ S(B)
b(u)−→C(u)

a(u)−→ A−→ 0.
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Now, we compare an arbitrary extension to the mapping cone [u] homotopy exten-
sion.

6.6. Remark Let 0 → I → A
u→ B → 0 be an extension of locally convex alge-

bras. There is a comparison between the kernel I and the mapping cone C(u) with
ε : I → C(u) given by the formula ε(x) = (x,0) with the following commutative
diagram

I ��

ε
��

A �� B

0 �� S(B)
b(u) �� C(u)

a(u) �� A �� 0.

The next extension plays a basic role in the definition of kk-theory.

6.7. Definition The universal two-way extension for an algebra A is defined by start-
ing with Q(A)= A∗A or A

∐
A called the coproduct (or free product) of A with itself

with ε ′,ε ′′ : A→Q(A) the two inclusions. There is a codiagonal∇ : Q(A)→A which
has the defining property∇ε ′ and∇ε ′′ equal the identity on A. There is a switch mor-
phism τ : Q(A)→ Q(A) having the defining property τε ′ = ε ′′ and τε ′′ = ε ′. With
the kernel q(A) = ker(∇), we have the two-way extension

0−→ q(A)−→ Q(A) ∇−→ A→ 0

with two algebra splittings ε ′,ε ′′ : A→ Q(A).

6.8. Universal Property of the Two-Way Extension Consider an extension with
two algebra splittings σ ′,σ ′′ : A→ E over π : E → A by K → E . Then, we have the
following universal property of the two-way extension

A

ε ′ ε ′′
��

0 �� q(A) �� Q(A)

∇(σ ′∗σ ′′)
��

∇ �� A �� 0

0 �� K �� E
π �� A �� 0.

The following extension is used to establish the Bott periodicity for K-theory in
the context of operator algebras.

6.9. Töplitz Extensions The algebraic Töplitz algebra Talg(v) is the ∗-algebra gen-
erated by one element v with one relation namely v∗v = 1. It has a quotient algebra
Calg(q) of the morphism carrying v to q with two relations namely q∗q = 1 = qq∗,
and the kernel of π : Talg(v)→Calg(q) of the morphism carrying v to q is generated
by e = 1− vv∗ which is a projection e = e∗ = e2 satisfying ev = 0 and v∗e = 0. We
define an isomorphism h : (e)→M∞ where h(vie(v∗) j) = Ei, j, the matrix with one
in the (i, j) entry and zero otherwise satisfying the relations
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Ei, jEk,l = δ j,kEi,l .

The algebraic Töplitz extension itself is

0−→M∞ = (1− vv∗)−→ Talg(v)−→Calg(q)−→ 0,

where M∞ =
⋃

n≥0 Mn.
The algebraic Töplitz extension has a C∗-completion

0−→K −→ T (v)−→C(T )−→ 0,

where K is the algebra of compact operators and C(T ) is the algebra of continuous
functions on the circle T = U(1).

The smooth Töplitz extension is the locally convex algebra extension

0−→K ∞ −→ T∞(v)−→C∞(T )−→ 0,

where C∞(T ) is the algebra of smooth functions on the circle T = U(1). In terms
of Fourier coefficients ∑k∈Z akqk where the seminorms qn((ak)) = ∑k∈Z |1+ k|n|ak|
are finite. These seminorms are submultiplicative. The algebra K ∞ is described as
in (3.9).

6.10. Definition Let A be a locally convex algebra. The dual cone C∨(A) and dual
suspension S∨(A) are defined as kernel in the exact sequence coming from the
smooth Töplitz algebra as the kernel of the mapping carrying v and q to 1 ∈ A

0 �� K ∞(A) �� C∨(A)

��

�� S∨(A)

��

�� 0

0 �� K ∞(A) �� T∞(v)(A)



���������
�� C∞(A)

�����
��

��
�

�� 0.

A

Finally, we have an algebraic version of the first cone and suspension construc-
tion as follows.

6.11. Definition Let A be locally convex algebra and form the locally convex alge-
bra A[t] = A⊗̂C[t], where C[t] has the fine topology. Let Salg(A) = t(1− t)A[t] ⊂
Calg(A) = tA[t] as ideals in A[t] of polynomials vanishing at 0 and 1 and at 0.
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7 Homotopy Invariant, Half Exact, and Stable Functors

Most functors that we consider take values in (ab) or (ab)op or in the categories (C)
or (C)op, that is, abelian group or vector-valued covariant or contravariant functors.

7.1. Definition Let A denote one of the categories (C∗\alg) ⊂ (m\alg)⊂ (lc\alg)
and C be an abelian category. A functor H : A → C is

(a) homotopy (resp. smooth homotopy ) invariant provided for a homotopy (resp.
smooth homotopy) between u′,u′′ : A → B, the induced morphisms H(u′) =
H(u′′) : H(A)→H(B) is an isomorphism.

(b) M2-stable (resp. stable) provided for the inclusion A → M2(A) (resp. A →
K (A)) induces an isomorphism H(A)→H(M2(A)) (resp. H(A)→H(K (A))).

(c) half exact for linearly split (resp. for positively split, for algebraically split) ex-
tensions provided for such an extension 0 → I → E → B → 0, the sequence
H(I)→ H(E)→ H(B) is exact in the abelian category C .

7.2. Example The K-theory functor K0 : A →(ab)op is homotopy invariant, is stable,
and is half exact for linearly split extensions.

The next project is to extend the half exactness property to a longer sequence
using properties of extensions and the homotopy and stability properties. We de-
fine connecting morphisms or boundary morphisms associated with each S(B) and
S∨(B), the suspension and its dual.

7.3. Proposition Let 0→ I→A
u→B→ 0 be an extension of locally convex algebras

as in (6.6), and consider the comparison between the kernel I and the mapping
cone C(u) with ε : I → C(u) given by the formula ε(x) = (x,0) with the following
commutative diagram

I
j ��

ε
��

A �� B

0 �� S(B)
b(u) �� C(u)

a(u) �� A �� 0.

For a half-exact homotopy invariant functor H,we have H(C(ε)) = 0 and H(ε) :
H(I)→ H(C(u)) is an isomorphism. There is a long exact sequence infinite to the
left of the form

∂ ��H(S(I))
H(S j) ��H(S(A))

H(Su) ��H(S(B)) ∂ ��H(I)
H( j) �� H(A)

H(u) ��H(B).

This follows from the following commutative diagram using the first two
assertions
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H(I)

��

�� H(A) �� H(B)

H(S(B))
��

��

��

∂
��












H(C(u)) �� H(A)

H(S(A)) ��

H(S(u))
��











H(C(a(u))) �� H(C(u)).

There is an argument to the effect that the composition of the maps S(A)
S(u)−→

S(B)−→C(a(u)) is smoothly homotopic to the natural map S(A)→C(a(u)) com-
posed with the natural self-map of S(A) reversing the orientation on [0,1].

See 〈B〉, 19.4–19.6, for more explanation.

8 The Bivariant Functor kk∗(A, B)

We consider a functor kk∗(A,B) of two variables

kk∗ : (lc\alg)op× (lc\alg)−→ gr(Z)

with values in the category gr(Z) of graded abelian groups which will have several
properties:

(a) it will be a limit expression of the form [A′,B′] where A′ is the result of terms
in an iterate universal extension of A, B′ is a stabilization of B and [A′,B′] is
homotopy classes of Hom(lc\alg)(A′,B′),

(b) extensions will define classes in kk1(A,B),
(c) it will be homotopy invariant, half exact, and stable in each variable
(d) kk∗(C,B) = K∗(B) which is already defined and kk∗(A,C) = K∗(A) yet to be

defined as K-homology,
(e) there is a composition product with

kk∗(A,B)⊗ kk∗(B,C)−→ kk∗(A,C),

which is associative with unit in each kk∗(A,A) and kk∗(C,C) = Z when the
split exact sequences for half-exactness are algebraically split,

(f) The pairings in Sect. 4 are examples of the composition product between
K∗(B)⊗K∗(B) = kk∗(C,B)⊗ kk∗(B,C)−→ kk∗(C,C) = Z.

After establishing Bott periodicity in the next section, we have two exact
hexagons associated to an extension an kk-theory starting with the mapping cone
sequence.

8.1. Theorem Let D be a locally convex algebra, and let
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(E) : 0−→ I
i−→ E

π−→ B−→ 0

be an extension with a continuous linear splitting. Associated to the functor kk(D, )
and kk( ,D) there are two exact hexagons

kk0(D, I)
kk(i) �� kk0(D,E)

kk(π) �� kk0(D,B)

��
kk1(D,B)

��

kk1(D,E)
kk(π)�� kk1(D, I)

kk(i)��

and

kk0(B,D)
kk(π) �� kk0(E,D)

kk(i) �� kk0(I,D)

��
kk1(I,D)

��

kk1(E,D)
kk(i)�� kk1(B,D).

kk(π)��

Associated to the extension (E) is a classifying map J(B)→ I and thus an element
of kk1(B, I) denoted by kk(E). The vertical arrows in the first diagram are given up
to sign by multiplication on the right by kk(E) and in the second diagram up to sign
by multiplication on the left by kk(E).

The standard theory for KK(A,B) is developed in 〈B〉, 17.1–19.6.

9 Bott Map and Bott Periodicity

Some aspects of algebraic K-theory are common to operator algebra K-theory and
to topological K-theory, but the most significant difference centers around Bott pe-
riodicity. The existence of the Bott map and of the inverse of the Bott map has been
very nicely clarified recently in the Münster thesis of A. Thom. We present the gen-
eral framework of his ideas which, as in Cuntz’s proof of Bott periodicity, starts
with the Töplitz extension in operator algebra K-theory and the two versions of a
smooth and continuous suspension which are different from the one in the algebraic
case. This is developed again in 〈B〉, 19.2, with an elementary introduction in 〈B〉,
9.1–9.3.

9.1. Remark In the suspension algebra S = C(0,1) and the dual-suspension algebra
S∨ = ker(ε : C(S1)→ C), where ε( f ) = f (1), we have the smooth and polynomial
versions of these algebras with values in a locally convex algebra A:

t(1− t)A[t]⊂ S∞(A)⊂ S(A)

for S∞(A) = { f ∈ A∞[0,1]| f (m)(0) = f (m)(1) = 0 for all m} and

(1− t)A[t,t−1]⊂ (S∨)∞(A)⊂ S∨(A)
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for (S∨)∞(A) = { f ∈ A∞(S1)| f (m)(1) = 0 for all m}. The two continuous and the
two smooth versions are isomorphic by change of variable g ∈ S∨(A) is mapped
to f (t) = g(e2π it), f ∈ S(A). On the other hand, the algebraic subalgebras do not
correspond at all since there is no algebraic exponential map.

9.2. Definition Let kk∗ be a kk-theory for which the dual mapping cone is zero.
Then, there is an excision for the reduced Töplitz extension

K (A)−→C∨(A)−→ S∨(A)

The unstable inverse Bott morphism ψ : SS∨(A) → K (A) is the image of the
identity idS∨(A) under the composition of the boundary and the inverse boundary
morphisms

kki(S∨(A),S∨(A))−→ kki−1(S∨(A),K (A))−→ kki(S(S∨(A)),K (A)).

Again K (A) is the compact operator stabilization of A.

9.3. Definition An inverse Bott morphism φ : S(S∨(A))→ A is a morphism which
composed with the natural stabilization A→K (A) gives the unstable inverse Bott
morphism.

9.4. Proposition Let kk∗ be a K -stable theory with extension for the Töplitz ex-
tension. Then, there exists a unique inverse Bott morphism which is the image of
the unstable inverse Bott morphism ψ : S(S∨(A))→K (A) under the inverse of the
natural stabilization isomorphism

kki(S∨(S(A)),K (A))→ kki(S∨(S(A)),A).

For the Bott morphism itself, we have similar considerations with the following
algebra morphism induced by an inclusion

j : S3 = S(H)→U(2)⊂M2(C),

where j(w) is the left multiplication of w on the quaternions H and hence on C
2 as

a unitary matrix. We can view j as an element in M2(C0(S3)).

9.5. Definition The Bott algebra morphism C0(S1) → M2(C0(S3)) is the unique
morphism of C∗-algebras which carries q = e2π iθ to the map j ∈M2(C0(S3)) and by
taking the tensor product with a locally convex algebra the corresponding morphism

θ : S∨(A)→M2((S∨)3(A))

In the C∗-algebra case, the functors S and S∨ are identified.

9.6. Definition A Bott morphism S∨(A)→ (S∨)3(A) is any morphism whose com-
position with the stabilization morphism

(S∨)3(A)→M2((S∨)3(A))
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gives the Bott algebra morphism S∨(A)→M2((S∨)3(A)).

9.7. Proposition Let kk∗ be a M2-stable theory. Then, there exists a Bott morphism
β which is the image of the Bott algebra morphism under the inverse of the natural
M2-stable isomorphism

kki(S∨(A),(S∨)3(A))→ kki(S∨(A),M2((S∨)3(A))).

In the case where the Bott morphism and the inverse Bott morphism exist, they are
inverse morphisms under composition.

A Appendix: The Green–Julg Theorem (by S. Echterhoff )

In this section, we give a short KK-theoretic proof of the Green–Julg theorem,
that is, we show that for any compact group G and any G-C∗-algebra B the group
KKG∗ (C,B) is canonically isomorphic to K∗(B � G).

Let G be a locally compact group and let A and B be two G-C∗-algebras. Then,
the equivariant KK-groups KKG(A, B) =: KKG

0 (A, B) are defined as the set of all
homotopy classes of triples (E ,Φ,T ), where

(1) E = E0⊕E1 is a Z2-graded Hilbert B-module endowed with a grading preserv-
ing action γ : G→ Aut(E );

(2) Φ =
(
Φ0 0
0 Φ1

)
is a G-equivariant ∗-homomorphism;

(3) T =
( 0 P

Q 0

)
is an operator in L (E ) such that

[Φ(a),T ],(T ∗ −T )Φ(a),(T 2−1)Φ(a),(Ad γs(T )−T)Φ(a) ∈K (E )

for all a ∈ A and s ∈ G.

If G is compact, then it was shown by Kasparov that we may assume without
loss of generality that the operator T is G-equivariant (by replacing T by T G =∫

G Adγs(T )ds if necessary) and that Φ is nondegenerate. In particular, if A = C,
then KKG(C,B) can be described as the set of homotopy classes of pairs (E ,T )
such that T is G-invariant and

T ∗ −T, T 2−1 ∈K (E ).

Similarly, we can describe K0(B�G) = KK(C,B�G). We start with the following
easy lemma:

A.1. Lemma Let distance G be a compact group and let B be a G-C∗-algebra. Sup-
pose that EB is a G-equivariant Hilbert B-module. Then EB becomes a pre-Hilbert
B � G-module if we define the right action of B � G on EB and the B � G-valued
inner products by the formulas
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e · f :=
∫

G
γs
(
e · f (s−1)

)
ds and 〈e1,e2〉B�G(s) := 〈e1,γs(e2)〉B

for e,e1,e2 ∈ E and f ∈ C(G,B) ⊆ B � G. Denote by EB�G its completion. More-
over, if (EB,T ) represents an element of KKG(C,B) with T being G-invariant, then
T extends to an operator on EB�G such that (EB�G,T ) represents an element of
KK(C,B � G).1

Proof. First note that the above defined distance right action of C(G,B) on EB

extends to an action of B � G. For this, we observe that the pair (Ψ ,γ), with
Ψ : B→LK (E )(EB) given by the formulaΨ(b)(e) = e ·b∗, is a covariant homomor-
phism of (B,G,β ) on the left Hilbert K (EB)-module EB. Then e · f =

(
Ψ×γ( f )

)
(e)

for f ∈C(G,B), and the right-hand side clearly extends to all of B � G.
It is easily seen that 〈·, ·〉B�G is a well-defined B� G-valued inner product which

is compatible with the right action of B � G on EB. So we can define EB�G as the
completion of EB with respect to this inner product.

If T ∈LB(EB), then T determines an operator T G ∈LB�G(EB�G) by the formula

T G(e) =
∫

G
γt
(
T (γt−1(e))

)
dt, for e ∈ EB ⊆ EB�G,

and one checks that T → T G is a ∗-homomorphism from LB(EB) to LB�G(EB�G).
In particular, it follows that every G-invariant operator on EB extends to an operator
on EB�G. If e1,e2 ∈ EB⊆ EB�G, then a short computation shows that the correspond-
ing finite rank operatorΘe1,e2 ∈K (EB�G) is given by the formula

Θe1,e2 = Θ̃G
e1,e2

if Θ̃e1,e2 ∈K (EB) denotes the corresponding finite rank operator on EB. This easily
implies that the remaining part of the lemma.

A.2. Theorem (Green–Julg Theorem) Let G be a compact group and let B be a
G-C∗-algebra. Then the map

μ : KKG(C,B)→ KK(C,B � G);μ
(
[(EB,T )]

)
= [(EB�G,T )]

is an isomorphism.

Proof. Note first that we can apply the same formula to a homotopy, so the map is
well defined. We now define a map ν : KK(C,B � G)→ KKG(C,B) and show that
it is inverse to μ .

For this, let L2(G,B) denote the Hilbert B-module defined as the completion of
C(G,B) with respect to the B-valued inner product

〈 f ,g〉B =
∫

G
βs
(

f (s−1)∗g(s−1)
)

ds

1 We are grateful to Walther Paravicini for pointing out a mistake in a previous version of this
lemma!
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and the right action of B on L2(G,B) given by ( f · b)(t) = f (t)βt(b) for f ∈
C(G,B),b ∈ B. There is a well-defined left action of B � G on L2(G,B) given by
convolution when restricted to C(G,B)⊆ B�G (and C(G,B)⊆ L2(G,B)). We even
have B � G ⊆ K

(
L2(G,B)

)
. To see this, we simply note that K

(
L2(G,B)

)
=

C(G,B)�G by Green’s imprimitivity theorem (where G acts on C(G) by left trans-
lation), and B � G can be viewed as a subalgebra of C(G,B) � G in a canonical
way.

Let σ : G→ Aut
(
L2(G,B)

)
be defined by

σs( f )(t) = f (ts); f ∈C(G,B).

Then, σ is compatible with the action β of G on B. Moreover, a short computa-
tion shows that the homomorphism of B � G into L

(
L2(G,B)

)
given by convo-

lution is equivariant with respect to the trivial G-action on B � G and the action
Adσ on L2(G,B). Now assume that (Ẽ ,T ) represents an element of KK(C,B�G).
Then, Ẽ ⊗B�G L2(G,B) equipped with the action id⊗σ is a G-equivariant Hilbert
B-module and (Ẽ ⊗L2(G,B),T ⊗1) represents an element of KKG(C,B) (here, we
use the fact that B � G⊆K

(
L2(G,B)

)
). Thus, we define

ν : KK(C,B � G)→ KKG(C,B); ν
(
[(Ẽ ,T )]

)
= [(Ẽ ⊗B�G L2(G,B),T ⊗1)].

Again, applying the same formula to homotopies implies that ν is well defined.
To see that ν is an inverse to μ one check the following:

(a) Let EB be a Hilbert B-module and let EB�G be the corresponding Hilbert B�G-
module as described in Lemma A.1 Then,

EB!C(G,B)→ EB;e⊗ f �→ e · f =
∫

G
γs
(
e · f (s−1)

)
ds

extends to a G-equivariant isometric isomorphism between EB�G⊗B�G L2(G,B)
and EB.

(b) Let Ẽ be a Hilbert B � G-module. Then,

Ẽ !C(G,B)→ Ẽ ;e⊗ f �→ e · f

determines an isometric isomorphism
(
Ẽ ⊗B�G L2(G,B)

)
B�G

∼= Ẽ

as Hilbert B � G-modules.

Both results follow from some straightforward computations. Note that for the proof
of (b) one should use the fact that for all x∈ B�G and f ,g∈C(G,B), the element of
B�G given by the continuous function s �→ 〈x∗ · f ,σs(g)〉B coincides with f ∗ ∗x∗g,
where we view f ,g as elements of B � G. This follows by direct computations
for x ∈ C(G,B), and since both expressions are continuous in x, it follows for all
x ∈ B � G. Finally, it is trivial to see that the operators match up in both directions.
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A.3. Remark We should remark, that the above Theorem A.2 is a special case of
a more general result for crossed products by proper actions due to Kasparov
and Skandalis (Theorem 5.4). There also exist important generalizations to proper
groupoids by Tu (2005) (Proposition 6.25) and Paravicini (2007), where the latter
provides a version within Lafforgue’s Banach KK-theory. For the original proof of
the Green–Julg theorem for compact groups we refer to Julg (1981).
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Part IVAlgebra Bundles: Twisted K-Theory





Chapter 18
Isomorphism Classification of Operator
Algebra Bundles

We consider algebra bundles where the fibre is an algebra of bounded operators in
a separable Hilbert space H over the complex numbers. If the Hilbert space H is
infinite dimensional, the algebra is either B the algebra of all bounded operators on
H or K the algebra of compact operators in B, and we refer to these bundles as
operator algebra bundles. If the Hilbert space H is finite dimensional, the algebra
is just the n2-dimensional matrix algebra Mn(C), and we refer to these bundles as
matrix algebra bundles.

As with vector bundles, these bundles have a fibre bundle interpretation so that
the structure is governed by a related principal bundle over the automorphism group
of the algebra. The classification of these algebra bundles is just a homotopy analysis
of this automorphism group of the algebra.

For an algebra bundle A over X , we associate a characteristic class
α(A) ∈ H3(X ,Z) using the homotopy classification of principal bundles. With this
characteristic class, we have an isomorphism classification of infinite dimensional
operator algebra bundles over X which is contained in the next two statements:

(1) Two operator algebra bundles A′ and A′′ over X are isomorphic if and only if
α(A′) = α(A′′) ∈ H3(X ,Z).

(2) Every element of H3(X ,Z) is of the form α(A) for some operator algebra bun-
dle over X .

There are two corresponding statements for the first Chern class c1(L) of complex
line bundles over X .

The three-dimensionalcharacteristic class was discovered as a Čech cohomology
class by Grothendieck in the finite-dimensional case and by Dixmier and Douady
in the general case. The homotopy version was pointed out by Rosenberg. Operator
algebra bundles were treated by Fell (1959) and by Dixmier and Douady (1963),
where the Čech H3 classification is given.

The classification of operator algebra bundles is very simple for the same rea-
son that the only infinite-dimensional Hilbert bundles are the trivial ones. This is
the Kuiper theorem, see 22(2.1), which says that the automorphism group of an

D. Husemöller et al.: Isomorphism Classification of Operator Algebra Bundles, Lect. Notes Phys. 726, 229–239 (2008)
DOI 10.1007/978-3-540-74956-1 19 © Springer-Verlag Berlin Heidelberg 2008
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infinite-dimensional separable Hilbert space is contractible, and in particular, then
its classifying space is contractible also.

Matrix algebra bundles were considered by Serre and Grothendieck, and the sub-
ject was treated as an introduction to Grothendieck’s three Seminar Bourbaki ex-
posés which appeared also in the collection Dix Exposés. The same homotopy anal-
ysis used for operator algebra bundles applies to Mn-matrix algebra bundles A over
X . The result is a characteristic class αn(A)∈ nH3(X ,Z) with values in the subgroup
of a ∈ H3(X ,Z) with n ·a = 0, that is, n-torsion elements. Grothendieck gave a de-
scription of this class using sheaf theory. In the finite-dimensional case, we do not
obtain an isomorphism classification theory as with operator algebras, for all matrix
algebra bundles of the form End(E) where E is a vector bundle have the property
that αn(End(E)) = 0. To each matrix bundle A′, there is an operator algebra bundle
A with α(A) = α(A′), and A is unique up to isomorphism. This bundle A associated
to A′ can be constructed by tensoring the trivial operator bundle A with A′.

This leads to the following refinement of the classification theorem

(3) An operator algebra bundle A is of the form of a Mn-matrix algebra bundle
tensor with the trivial operator algebra bundle if and only if α(A) is an n-torsion
element in H3(X ,Z).

Returning to line bundles, we recall the related result which says that a line bun-
dle L over X is flat if and only if c1(L) is a torsion element in H2(X ,Z).

For the convenience of the reader, certain features of vector bundle theory which
are treated in Chaps. 2, 5 and 7 are repeated in a parallel manner to algebra bundle
theory.

1 Vector Bundles and Algebra Bundles

1.1. Definition A vector bundle E over a space X is a bundle p : E → X together
with bundle morphisms E×X E → E and C×E → E over X such that these opera-
tions make each fibre into a vector space over C. Moreover, each point has an open
neighborhood U such that E|U is isomorphic to the product vector bundle U ×C

n.
If all the fibres of E are n-dimensional, then E is called an n-dimensional, vector
bundle.

1.2. Notation Let Vectn(X) denote the isomorphism classes of n-dimensional vec-
tor bundles over X . For a map f : X → Y and a vector bundle E over Y , the induced
bundle f ∗(E) has a natural vector bundle structure with morphism f ∗(E)→ E over
f such that on the fibres it restricts to an isomorphism of vector spaces. Hence,
Vectn : (top)op → (set) is a functor from the opposite category of spaces (top) to the
category of sets (set).

1.3. Definition A matrix algebra bundle A over a space X is a bundle p : A→ X to-
gether with bundle morphisms A×X A→A and C×A→A such that these operations
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make each fibre into a matrix algebra over C. Moreover, each point has an open
neighborhood U such that A|U is isomorphic to the product matrix algebra bundle
U×Mn(C). If all the fibres of A are n by n matrix algebras, then A is called an n by
n matrix algebra bundle.

1.4. Notation Let Algn(X) denote the isomorphism classes of n by n matrix alge-
bra bundles over X . For a map f : X → Y and a matrix algebra bundle A over Y ,
the induced bundle f ∗(A) has a natural matrix algebra bundle structure with mor-
phism f ∗(A)→ A over f such that the restrictions to the fibres are isomorphisms of
algebras. Hence, Algn : (top)op → (set) is a functor.

1.5. Definition There is a natural morphism of functors

End : Vectn −→ Algn

which assigns to each vector bundle E the endomorphism matrix algebra bundle
End(E) = E⊗E∨ as a vector bundle with multiplication given by using the evalua-
tion morphism E∨ ⊗E → X×C.

This operation commutes with the induced bundle construction so that it defines
a morphism of functors. These End(E) are examples of finite-dimensional algebra
bundles reflecting the vector bundle structure of E .

1.6. Remark Let H be a separable infinite-dimensional Hilbert space, and let B =
B(H) be the algebra of bounded operators on H with the ideal K = K (H) of
compact operators. As in definition (1.1), we can define Hilbert space vector bun-
dles which are locally of the form U ×H, and as in definition (1.3), we can de-
fine operator algebra bundles in two ways which are locally of the form U ×B or
U×K .

1.7. Remark In fact, all infinite-dimensional Hilbert space bundles are trivial, and
the reason stems, as we have mentioned before, from the contractibility of the auto-
morphism group of the Hilbert space H which is used to glue locally trivial bundles
together into a global bundle. This follows clearly from the fibre bundle structure of
all the bundles under consideration.

We leave the description of the categories of algebra bundles to the reader.

2 Principal Bundle Description and Classifying Spaces

2.1. Notation For a topological group G and a space X , we denote the set of iso-
morphism classes of locally trivial principal G-bundles by PrinG(X). Further, if Y
is a left G-space and P is a principal G-bundle, then the associated fibre bundle
P[Y ] = P×G Y = P×Y/G, the quotient of P×Y by the relation (x,y), is equivalent
to (xs,s−1y) for all s ∈ G.
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2.2. Remark In order to use principal bundles, we recall that the group of
automorphisms of the fibres of vector bundles and matrix algebra bundles are given,
respectively, by

GL(n,C) = Aut(Cn)

and

PGL(n,C) = GL(n,C)/GL(1,C) = Aut(MnC).

Here, GL(n,C) acts on Mn(C) by inner automorphisms, that is, for A ∈ GL(n,C)
and X ∈Mn(C), AXA−1 is the inner automorphism action of A in X ∈Mn(C).

2.3. Assertion For each principal GL(n,C)-bundle P over X and the group GL(n,C)
acting by matrix multiplication on C

n the associated fibre bundle P[Cn] is a vector
bundle with vector operations from the associated fibre C

n. This defines a bijection
from

PrinGL(n,C)(X)−→ Vectn(X)

which is an isomorphism of functors. The inverse of the fibre bundle construction
is the principal bundle P(E) of all maps C

n → E which map isomorphically onto
some fibre and GL(n,C) action given by right composition.

2.4. Assertion For each principal PGL(n,C)-bundle P over X and the group
PGL(n,C) acting by inner automorphisms on Mn(C), the associated fibre bundle
P[Mn(C)] is a matrix algebra bundle with algebra operations from the associated
fibre Mn(C). This defines a bijection from

PrinPGL(n,C)(X)−→ Algn(X)

which is an isomorphism of functors. The inverse of the fibre bundle construction
is the principal bundle P(A) of all maps Mn(C) → A which map isomorphically
onto some fibre and PGL(n,C) action given by right composition of inner automor-
phisms.

2.5. Assertion By dividing out the diagonal subgroup of GL(n,C), we obtain a
quotient morphism GL(n,C) → PGL(n,C) defining the projective linear group
PGL(n,C) as a left GL(n,C) space. Hence, for each principal bundle P over
X for GL(n,C), the associated fibre bundle P[PGL(n,C)] is a principal bundle
over X for PGL(n,C). This defines a morphism of functors θ : PrinGL(n,C) →
PrinPGL(n,C) between principal bundle sets. In this way, we obtain a commuta-
tive diagram of morphisms of functors (top)op → (set) using the End functor
in (1.5)

PrinGL(n,C)(X) ��

θ
��

Vectn(X)

End
��

PrinPGL(n,C)(X) �� Algn(X)
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2.6. Remark For infinite dimensional Hilbert space vector bundles and operator al-
gebra bundles, we have the same construction using GL(1,B) = Aut(H), the group
of invertible bounded operators. Using the fibre bundle construction, we have a
bijection

PrinGL(1,B)(X)−→AlgH(X)

which is an isomorphism of functors of X . The functor AlgH(X) has two interpreta-
tions either as bundles modeled on B or K .

Now, the classification of vector bundles and algebra bundles is reduced to the
classification of principal bundles. In this form, there is a homotopy classification
of principal bundles, and this we take up in the next section.

3 Homotopy Classification of Principal Bundles

3.1. Remark Associated with the two groups and the group morphism GL(n,C)→
PGL(n,C) = GL(n,C)/GL(1,C) are the classifying spaces BGL(n,C) and
BPGL(n,C) with universal principal bundles EGL(n,C) and EPGL(n,C) for the
groups GL(n,C) and PGL(n,C), respectively. The induced morphism BGL(n,C)→
BPGL(n,C) on the classifying spaces is just the functor B applied to the quo-
tient morphism, or it is the classifying map for the principal PGL(n,C) bundle
EGL(n,C)[PGL(n,C)] over BGL(n,C). The induced universal bundle over a space
X leads to the two new horizontal arrows in the following extension of (2.5).

3.2. Assertion In the following commutative diagram, the horizontal functions are
all bijections

[X ,BGL(n,C)] ��

��

PrinGL(n,C)(X)

θ
��

�� Vectn(X)

End

��
[X ,BPGL(n,C)] �� PrinPGL(n,C)(X) �� Algn(X).

The first vertical arrow is induced by the induced quotient map BGL(n,C) →
BPGL(n,C).

3.3. Remark There are compact versions of these groups and related classifying
spaces. The unitary group U(n) is a subgroup of GL(n,C) and the projective unitary
group PU(n) = U(n)/U(1) is a subgroup of PGL(n,C). The natural inclusions are
seen to be homotopy equivalences with the Gram–Schmidt process, and hence, the
inclusions of classifying spaces are homotopy equivalences

BU(n)−→ BGL(n,C) and BPU(n)−→ BPGL(n,C) .
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Again, there are universal bundles and the remarks in (2.1) carry over to the compact
groups. The induced universal bundle over a space X leads to the two new horizontal
arrows in the following extension of (3.2)

3.4. Assertion In the following commutative diagram, the horizontal functions are
all bijections

[X ,BU(n)] ��

��

[X ,BGL(n,C)] ��

��

PrinGL(n,C)(X) ��

θ
��

Vectn(X)

End
��

[X ,BPU(n)] �� [X ,BPGL(n,C)] �� PrinPGL(n,C)(X) �� Algn(X).

The first vertical arrow is induced by the induced quotient map BU(n)→ BPU(n).

3.5. Remark There is another representation of PGL(n,C) using the special linear
group SL(n,C) = ker(det : GL(n,C)→GL(1,C)). Since up to a scalar matrix every
matrix has determinant 1, the restriction of GL(n,C)→ PGL(n,C) to SL(n,C)→
PGL(n,C) is surjective with kernel μ(n,C), the nth roots of unity in C. Hence, we
have

PGL(n,C) = SL(n,C)/μ(n,C) .

There is also the compact version with SU(n)⊂ SL(n,C), the special unitary sub-
group, where we have two group extensions one for SU(n) and one for U(n)

1−→ Z/nZ−→ SU(n)−→ PSU(n)−→ 1⋂ ⋂ ||
1−→ U(1) −→ U(n) −→ PU(n) −→ 1 .

These group extensions are contained in two group extensions one for SL(n,C)
and one for GL(n,C)

1 −→ μ(n,C) −→ SL(n,C)−→ PSL(n,C)−→ 1⋂ ⋂ ||
1−→ GL(1,C)−→ GL(n,C)−→ PGL(n,C)−→ 1 .

3.6. Fibre Sequences for Classifying Spaces We have the following diagram for
the classifying spaces

K(Z/n,1)=B(Z/n)

δ
��

�� BSU(n)

inc
��

�� BPU(n)

id
��

γ �� B(B(Z/n))=K(Z/n,2)

δ
��

K(Z,2)=BU(1) �� BU(n) �� PBU(n) �� B(BU(1))=K(Z,3),

where the morphisms δ are Bockstein maps coming from the short exact sequence
of groups 0→ Z

n→ Z→ Z/nZ→ 0 as the connecting morphism δ : K(Z/nZ,q)→
K(Z,q + 1).
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3.7. Matrix Algebra Characteristic Classes We define two related characteristic
classes for matrix algebra bundles using the fibre sequences in (3.6)

βn : Algn(X)−→ H2(X ,Z/nZ) and αn : Algn(X)−→H3(X ,Z) .

To a matrix algebra bundle A, we associate a principal PU(n)-bundle P so that the
fibre bundle P[Mn(C)] = A and then classify the principal PU(n) bundle A with a
homotopy class [ f ] ∈ [X ,BPU(n)]. Then, we define

βn(A) = γ[ f ] ∈ H2(X ,Z/nZ) and αn(A) = δβn(A) ∈H3(X ,Z).

3.8. Remark The classes βn(A) and αn(A) are n-torsion classes. From the exact fi-
bre sequence, we have the exactness statement that βn(A) = 0 if and only if A is
isomorphic to a bundle of the form End(E), whereΛnE is a trivial line bundle, and
αn(A) = 0 if and only if A is isomorphic to a bundle of the form End(E) for some
vector bundle E .

Observe that the image of βn depends on n while the image of αn is in H3(X ,Z)
independent of n. Of course αn has the property that it lies in the subgroup
nH3(X ,Z) of n-torsion points. In the next section, we will see that all the elements
of H3(X ,Z) have an interpretation in terms of operator algebra bundles, and then
we will relate αn(A) of matrix algebra bundles to the class α(A) of operator algebra
bundles.

4 Classification of Operator Algebra Bundles

4.1. Notation Let H be a separable Hilbert space. The group U(H) of unitary auto-
morphisms of H endowed with the norm topology is a Banach Lie group. Its central
subgroup is U(1) the circle group of complex numbers of absolute value 1. The
group of projective unitary automorphisms of H, denoted by PU(H), is the quotient
U(H)/U(1) with the quotient topology. We obtain a central extension of Banach
Lie groups

1−→U(1)−→U(H)−→ PU(H)−→ 1

and a principal U(1)-bundle U(H)→ PU(H). When H is n-dimensional the groups
are denoted by U(n) = U(H) and PU(n) = PU(H).

The entire classification discussion of the operator algebra bundles is based on
the following theorem of Kuiper which we quote.

4.2. Kuiper’s Theorem The group U(H) is a contractible space for an infinite-
dimensional separable Hilbert space.

The reference is Kuiper (1965).
The corollary for an infinite-dimensional Hilbert space bundles is the following

triviality result.
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4.3. Corollary The classifying space BU(H) is contractible for an infinite-
dimensional separable Hilbert space H, and hence, any Hilbert space vector bundle
is trivial, see 8(6.3).

The corollary for operator algebra bundle is the following classification by a
single-characteristic class.

4.4. Corollary The group PU(H) as a space is a classifying space for the circle. In
particular, PU(H) is a K(Z,2) space and its classifying space BPU(H) is a K(Z,3)
space. Thus, principal bundles over a space X for the group PU(H) with the norm
topology are classified by the set, in fact the group,

[X ,BPU(H)] = [X ,K(Z,3)] = H3(X ,Z)

of homotopy classes of maps X → K(Z,3) which is ordinary third cohomology.

Again, we have an important relation between classification of principal bundles
and cohomology.

4.5. Notation We denote by α(A) ∈ H3(X ,Z) for the operator algebra bundle
P[B(H)] or P[K (H)], where P is the principal bundle associated with an algebra
bundle A, and α : VectH(X)→ H3(X ,Z) is an isomorphism of functors.

In order to compare the characteristic classes α for operator algebra bundles and
αn for matrix algebra bundles, we consider the tensor product pairing ⊗ of two
groups into a third.

4.6. Example There are two tensor product pairings⊗ : Z×Z→Z and⊗ : (Z/n′Z)×
(Z/n′′Z)→ Z/n′n′′Z for cyclic groups, where the second pairing is the quotient of
the first. For the unitary groups, we have⊗ : U(H ′)⊗U(H ′′)→U(H ′ ⊗H ′′), which
is a group morphism from the formula (A′ ⊗B′)(A′′ ⊗B′′) = (A′A′′)⊗ (B′B′′). This
defines a quotient pairing ⊗ : PU(H ′)⊗PU(H ′′)→ PU(H ′ ⊗H ′′), and in the case
where H ′ and H ′′ are finite-dimensional the pairing on the unitary groups induces a
pairing⊗ : SU(H ′)×SU(H ′′)→ SU(H ′ ⊗H ′′) on the special unitary groups. All of
the morphisms⊗ are group morphisms in each variable.

4.7. Remark If we apply the classifying space construction to the tensor pairing Z×
Z→ Z and compose with a product map, then the composite

BZ×BZ→ B(Z×Z)
B(⊗)→ BZ

is just the pairing ⊗ : U(1)×U(1)→U(1).
Now, we apply the pairing maps to the fibre space sequence

U(1)−→U(H)−→ PU(H)−→ BU(1) .
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4.8. Remark We have the following diagram of tensor product pairings for two
Hilbert spaces H ′ and H ′′

BU(1)×BU(1)

��

�� B(U(1)×U(1))

��

B(⊗) �� BU(1) = K(Z,2)

��
BU(H ′)×BU(H ′′)

��

�� B(U(H ′)×U(H ′′))

��

B(⊗) �� BU(H ′ ⊗H ′′)

��
BPU(H ′)×BPU(H ′′)

��

�� B(PU(H ′)×PU(H ′′))

��

B(⊗) �� BPU(H ′ ⊗H ′′)

��
B2U(1)×B2U(1) �� B2(U(1)×U(1))

B(⊗) �� B2U(1) = K(Z,3).

4.9. Remark If P′ is a principal G′-bundle over X and if P′′ is a principal G′′-bundle
over X , then the fibre product P′ ×X P′′ over X is a principal (G′ ×G′′)-bundle over
X . If G′ ×G′′ → G is a morphism of topological groups, then (P′ ×X P′′)[G] is a
principal G-bundle over X .

If A′ = P′[B(H ′)] and A′′ = P′′[B(H ′′)] are two operator algebra bundles over
X with groups PU(H ′) and PU(H ′′), respectively, then we can construct a tensor
product bundle A′ ⊗A′′ defined as P[B(H ′ ⊗H ′′)] and using the fact that the above
pairings are just the unique up to homotopy H-space structure on K(Z,n) for n =
1,2, and 3. Note the algebraic tensor product A′x⊗A′′x is in general only contained
in (A′ ⊗A′′)x. We obtain the following theorem.

4.10. Theorem For two operator algebra bundles A′ and A′′ on X, we have α(A′ ⊗
A′′) = α(A′)+α(A′′).

4.11. Remark The matrix algebra bundles and the operator algebra bundles have
principal bundles with structure groups linked by the following diagram

Z/nZ ��

��

U(1)

		��������������

��
SU(n)

��

U(n)

�������������
U(H) = ∗

��
PSU(n) = PU(n) �� PU(H) = U(H)/U(1).

For classifying spaces, we have the following diagram of fibrations given in terms
of vertical sequences
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K(Z/nZ,1) �� K(Z,2)

B(Z/nZ) ��

��

B(U(1))

		��������������

��
B(SU(n))

��

BU(n)

��������������
BU(H) = ∗

��
BPSU(n) = BPU(n)

��

�� BPU(H) = B(U(H)/U(1))

K(Z/nZ,2) �� K(Z,3).

4.12. Theorem Let H be a separable infinite-dimensional Hilbert space. The char-
acteristic class isomorphism α : AlgH(X)→H3(X ,Z) of functors has the additional
property that α(A) is a torsion class of order n if and only if there exists an Mn-
matrix algebra bundle A′ with A isomorphic to A′ tensored with the trivial operator
algebra bundle over X.

4.13. Remark As a general assumption, in this section, the unitary group U(H) is
endowed with the norm topology which can also be described as the topology of
uniform convergence on the unit ball of H. Under this assumption,U(H) is a Banach
Lie group in a natural way, and it has been shown in (4.4) that each cohomology
class α ∈H3(X ,Z) can be realized by a projective bundle on X with structure group
PU(H) = U(H)/U(1) in the norm topology. The norm topology is, however, not
the only natural choice of a topology on U(H) and PH(U) = U(H)/U(1) as is
indicated by the following observation.

4.14. Lemma For the trivial vector bundle X ×H, let Φ : X ×H → X ×H be a
candidate of an automorphism given by (x,h) �−→ (x,φ(x)(h)) with φ(x) ∈U(H)
for all x ∈ X. Then, Φ is continuous if and only if φ : X →U(H) is continuous in
the strong topology.

The strong topology on a subset of the space B(H) of bounded operators on H
is the topology of simple (or pointwise) convergence given by the seminorms

ph(A) = ‖A(h)‖ , A ∈B(H) ,

h ∈ H. The strong topology is weaker than the norm topology.

By (4.14), the natural structure group of Hilbert space vector bundles is U(H)
with the strong topology. What do we know about U(H) with this topology?

4.15. Proposition The unitary group U(H) with the strong topology is a topological
group. Moreover, the strong topology agrees with the compact open topology and is
metrizable (if H is separable).
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The first statement is in sharp contrast to several claims in the corresponding
literature on quantization of symmetries and in other publications. Even in recent
publications as, for example, in the article Twisted K-theory of Atiyah and Segal
(2005), it is stated that U(H) is not a topological group with respect to the strong
topology. But the proof is very simple. For example, U �→ U−1 is continuous in
U0 ∈U (H), since for h ∈ H and ε > 0 one defines g = U−1

0 (h) and obtains for all
U ∈U(H):

∥∥U−1
0 (h)−U−1(h)

∥∥=
∥∥g−U−1U0(g)

∥∥= ‖U(g)−U0(g)‖ .

Hence,
∥∥U−1

0 (h)−U−1(h)
∥∥ < ε for all U ∈U(H) with ‖U0(g)−V(g)‖ < ε . That

U(H) is a topological group in the strong topology in contrast to GL(H) can be
attributed to the fact that U(H) is equicontinuous. The equicontinuity of U(H) as
a set of operators also accounts for the coincidence of the strong and the compact
open topology and the metrizability.

A much deeper result is the contractibility of U(H) in the strong topology which
is shown in the above mentioned article. As a consequence much of classification re-
sults are parallel to the norm topology case, in particular the results in (4.3) and (4.4).

4.16. Corollary Let U(H) be the topological group with the strong topology and let
PU(H) = U(H)/U(1) with the quotient topology. Then, any Hilbert space vector
bundle over X with structure group U(H) is trivial. And the principal bundles over
X for the group PU(H) are classified by H3(X ,Z).
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Chapter 19
Brauer Group of Matrix Algebra Bundles
and K-Groups

Before using the characteristic class isomorphism

α : AlgH(X)−→H3(X ,Z)

to study its role in extending vector bundle K-theory, we analyze further the ma-
trix bundle theory using the restriction αn : Algn(X)→n H3(X ,Z) of α to Algn(X)
which is a group morphism in the corollary (1.4). In the context of sheaf theory, we
have already derived a multiplicative property of the morphisms αn and βn. Now,
we carry this out in the context of classifying space theory.

This leads naturally into the question of the Brauer group of all matrix algebra
bundles with the relation A′ and A′′ are Brauer equivalent provided that A′ ⊗ End(E ′)
and A′′ ⊗ End(E ′′) are isomorphic over X for two vector bundles E ′ and E ′′. The
result is the Brauer group B(X) of a space X which is a form of K-group or Klas-
sengruppe in the sense of Grothendieck. We study the stability properties of this
group.

The reader with a special interest in twisted K-theory can go directly to the next
chapter. The last section discusses a sheaf theory approach to matrix algebra bundles
for completeness of the discussion. It is not used in the later chapters.

1 Properties of the Morphism αααn

The group morphism property of αn follows the line of argument as we established
the same property of α in 20(4.8) using 20(4.9) to obtain 20(4.10).

1.1. Remark Now, we apply the pairing maps of 20(4.6) to the fibre space sequence
associated with matrix algebra bundles

Z/mZ−→ SU(H)−→ PU(H)−→ B(Z/mZ),

dimH = m in the case of ⊗ : (Z/n′Z)× (Z/n′′Z)→ (Z/n′n′′Z).

D. Husemöller et al.: Brauer Group of Matrix Algebra Bundles and K-Groups, Lect. Notes Phys. 726, 241–249 (2008)
DOI 10.1007/978-3-540-74956-1 20 © Springer-Verlag Berlin Heidelberg 2008
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1.2. Remark We have the following diagram of tensor product pairings

B(Z/n′)×B(Z/n′′) −−−−→ B((Z/n′)×(Z/n′′))
B(⊗)−−−−→ B(Z/n′n′′)=K(Z/n′n′′,1)

⏐⏐�
⏐⏐�

⏐⏐�
BSU(n′)×BSU(n′′) −−−−→ BSU(n′)×SU(n′′)

B(⊗)−−−−→ BSU(n′n′′)⏐⏐�
⏐⏐�

⏐⏐�
BPU(n′)×BPU(n′′) −−−−→ BPU(n′)×PU(n′′)

B(⊗)−−−−→ BPU(n′n′′)⏐⏐�
⏐⏐�

⏐⏐�
B2(Z/n′)×B2(Z/n′′) −−−−→ B2((Z/n′)×(Z/n′′))

B(⊗)−−−−→ B2(Z/n′n′′)→ K(Z,3).

Recall from 1(4.9) that (P′×X P′′)[G] is a principal G-bundle over X if G′×G′′ →
G is a morphism of topological groups, if P′ is a principal G′-bundle over X , and
if P′′ is a principal G′′-bundle over X . The fibre product P′ ×X P′′ is a principal
(G′ ×G′′)-bundle.

If A′ = P′[Mn′(C)] and A′′ = P′′[Mn(C)] are two matrix algebra bundles over
X with groups PU(n′) and PU(n′′), respectively, then we can construct a tensor
product bundle using P = P′ ×X P′′ by

A′ ⊗A′′ = P[Mn′(C)⊗Mn′′(C)] = P[Mn′n′′(C)] .

Using the fact that the above pairings are just the unique maps up to homotopy
which are given by the H-space structure on K(Z/mZ,n) for n = 1,2, and 3, we
obtain the following theorem.

1.3. Theorem For an Mn′ -matrix algebra bundle A′ and an Mn′′ -matrix algebra bun-
dle A′′ on X, we have

αn′n′′(A′ ⊗A′′) = αn′(A′)+αn′′(A′′)

in H3(X ,Z).
The exactness properties of the morphism αn can be derived from the fibre se-

quences introduced in 20(3.6).

1.4. Theorem There is an exact sequence of functors (top)op → (set)∗, the category
of pointed sets

Vectn ε−→ Algn αn−→ H3( ,Z) n−→H3( ,Z),

where ε = End and n is multiplication by n.

Proof . The exactness of the first three terms can be seen from the classifying space
point of view in 20(3.6). The exactness of the last three terms is the result of bringing
together two exact sequences
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Vectn
ε �� Algn αn ��

βn

������������ H3( ,Z)
n �� H3( ,Z)

H2( ,Z/nZ)
δ

������������

��������������

0

�������������
0

in 20(3.6) for classifying spaces. This proves the theorem.
In terms of the characteristic class αn(A) of an Mn-matrix algebra bundle isomor-

phism class A on X , we can interpret part of (1.5) in the following corollary.

1.5. Corollary The characteristic class αn(A) of an Mn-matrix algebra bundle A is
an n-torsion class, that is, nαn(A) = 0. The algebra bundle A is isomorphic to an
endomorphism class End(E) if and only if αn(A) = 0.

1.6. Remark Observe that everything refers to a dimension n of the Mn-matrix alge-
bra bundles, and the resulting characteristic class is an n-torsion class. In 20(4.12),
we saw how to get around this with a tensor product type of equivalence which we
consider now at length starting in the next section.

2 From Brauer Groups to Grothendieck Groups

2.1. Generalities on Class Groups K-theory in its broadest setting can be con-
ceived as starting with a group-valued invariant which is not strong enough for
an isomorphism classification of objects in a category C . Such an invariant I :
Ob(C )→ A would lead naturally to a class group K(C ) = Ob(C )/(relation) with
a universal type invariant Ob(C ) → K(C ) factoring I with a group morphism
I′ : K(C ) → A. The algebraic structure of invariants of type I would be encoded
in the class group K(C ), and the study of the invariant I and the study of K(C )
would be thought of as being equivalent.

2.2. Example An example of this phenomenon outside the subject of these notes is
the divisor class group related to a smooth complete algebraic curve C. The divisor
group Div(C) is the abelian group generated by points of C. Each point of the curve
has a degree over the field, and the degree function extends to a group morphism
Div(C)→Z. The divisor of a function which is the weighted sum of zeros and poles
of the function has degree zero with this extension, and it is natural to consider the
quotient of the group of divisors modulo the subgroup of divisors of functions. It is
this divisor class group which plays an important role in the theory of curves.

Now, we come to two types of class groups of algebra bundles.

2.3. Definition Two matrix algebra bundles A and A′ over X are Brauer equivalent
provided there exists two vector bundles E and E ′ with A⊗End(E) and A′⊗End(E ′)
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isomorphic. The set Br(A) of Brauer equivalence class cl(A) of matrix algebra bun-
dles together with the group structure given by cl(A) · cl(A′) = cl(A⊗A′) is called
the Brauer group.

From the isomorphism Aop⊗A→End(Vect(A)), where Vect(A) is the underlying
vector bundle of the algebra, we see that cl(Aop) = cl(A)−1 which gives the inverse.

2.4. Remark In line with the generalization of (2.1), we can define the characteris-
tic class α : Br(A)→ Tors(H3(X ,Z)) on the Brauer classes by α(cl(A)) = αn(A),
where A is an Mn-matrix algebra representative of the class cl(A) ∈ Br(A).

We have the following theorem of Serre which we just quote now.

2.5. Theorem If X is a finite complex, then the characteristic class α : Br(A) →
Tors(H3(X ,Z)) is an isomorphism.

Recall that reindexing of MnMq gives Mn(Mq(C)) = Mnq(C).

2.6. Definition Two matrix algebras A and A′ over X are stably equivalent provided
there exists n and n′ with Mn(A) and Mn′(A′) isomorphic. The set KP(X) of stable
equivalence classes {A} of matrix algebra bundles A together with the semigroup
structure given by {A′} · {A′′}= {A′ ⊗A′′} is called the projective K-group.

There is a natural morphism KP(X)→ Br(X), where {A} �→ cl(A). We consider
KP(X) and Br(X) as K-groups in the sense of Grothendieck further in the next three
sections.

3 Stability I: Vector Bundles

Now, we return to Grothendieck who pointed out the importance of the class theory
for coherent sheaves and vector bundles.

3.1. Definition Two vector bundles E and E ′ over X are K-equivalent provided that
there exists a trivial bundle T with E⊕T and E ′ ⊕T isomorphic. Let [E] denote the
K-equivalence class of E on X .

If [E] is a K-equivalence class on Y and if f : X → Y is a continuous function,
then f ∗[E] = [ f ∗E] is well-defined K-equivalence class on X which defines a functor
[ ] on (top)op with values in the category of semirings.

3.2. Notation Let [X ] denote the set of K-equivalence classes [E] of bundles on X
with the semiring structure

[E ′]+ [E ′′] = [E ′ ⊕E ′′] and [E ′] · [E ′′] = [E ′ ⊗E ′′] .

Let K(X) denote the universal abelian group. Then, K(X) is also the universal com-
mutative ring on the semigroup [X ]. Further, the universal constructions lead to a
functor K : (top)op → (c\rg) with values in the category of commutative rings.
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This is the fundamental class group or ring, Klassengruppe, of Grothendieck.

3.3. Definition Two vector bundles E and E ′ over X are stably equivalent provided
there exist two trivial bundles T and T ′ with E⊕T and E ′ ⊕T ′ isomorphic.

If E and E ′ are K-equivalent, they have the same fibre dimension at each point.

3.4. Remark Two K-equivalent vector bundles E and E ′ on X give the same element
in K(X). Let X be a connected space, let ∗ ∈ X be a base point of X with inclusion
map ∗→X inducing rk : K(X)→K(∗) = Z given by dimension at ∗, and let K̃(X) =
ker(rk). Then E and E ′ are stably equivalent if and only if [E]− [E ′] = 0 ∈ K̃(X).

Now, we interpret the sequence of isomorphisms for dimension n

[X ,BU(n)]−→ [X ,BGL(n,C)]−→ PrinGL(n,C)(X)−→Vectn(X)

of 2(2.3) in terms of K(X). It is carried out with the inclusions of groups U(n)→
U(m + n) and j : BU(n)→ BU(n + m) of classifying spaces. If a bundle E over X
corresponds to a map f : X → BU(n) and if T is a trivial bundle of dimension m,
then E⊕T over X corresponds to j f : X → BU(m+ n).

3.5. Assertion The isomorphisms of 4(3.4) fit into an inductive system correspond-
ing to Whitney sum with a trivial bundle with inductive limit K(X), that is,

lim−→ n [X ,BU(n)]−→ lim−→ n [X ,BGL(n,C)]−→ lim−→ n Vectn(X )̂ = K(X) .

For a path-connected space X with base point we the base-point-preserving homo-
topy classes K̃(X), that is,

lim−→ n [X ,BU(n)]∗ −→ lim−→ n [X ,BGL(n,C)]∗ −→ K̃(X) .

There is a sheaf cohomology description discussed later in Sect. 6.

4 Stability II: Characteristic Classes of Algebra Bundles
and Projective K-Group

4.1. Definition For two natural numbers m and n, the matrix morphism of functors
Algn(X)→Algmn(X) is defined by associating to an n by n matrix algebra bundle A
the mn by mn matrix algebra bundle Mm(A) = A⊗ (X×Mm(C)) = A⊗Mm(X×C),
which is the tensor product with the m by m trivial algebra bundle.

4.2. Remark Recall that there are natural embeddings of cyclic groups ( 1
n Z)/

Z ⊂ ( 1
nm Z)/Z ⊂ Q/Z. Using the multiplicative property of the characteristic class

αn : Algn()→ H3( ,Z), we see that βn : Algn()→ H2( ,( 1
n Z)/Z) fits into the fol-

lowing commutative diagram by (1.4)
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Algn() ��
��

��

Algmn()
��

��
BPU(n) ��

βn

��

BPU(mn)

βmn

��
K(( 1

n Z)/Z,2) �� K(( 1
mn Z)/Z,2)

Now, we take the direct limit of these diagrams to obtain a basic first character-
istic class on KP(X).

4.3. Remark Using the inductive limit definition where

KP(X) = lim−→m,n(Algn(X)→Algmn(X)) ,

we define the inductive limit characteristic class γ : KP(X)→ H2(X ,Q/Z). Here,
we use the formulas

K(Q/Z,2) = lim−→m,n

(
K

((
1
n

Z

)
/Z,2

)
−→ K

((
1

mn
Z

)
/Z,2

))

and

H2(X ,Q/Z) = lim−→m,n

(
H2
(

X ,

(
1
n

Z

)
/Z

)
−→ H2

(
X ,

(
1

mn
Z

)
/Z

))
.

5 Rational Class Groups

5.1. Remark Since the first paper of Atiyah–Hirzebruch on topological K-theory, we
know that the rational Chern character

chQ : K(X)Q →H∗∗(X)Q

is an isomorphism of ring-valued functors. Another way to express this is that the
localization BUQ of BU at the rational numbers decomposes as a product of K(π ,n)-
spaces, that is, we have a decomposition BUQ =∏i>0 K(Q,2i).

5.2. Assertion Above, we have the map BPU → K(Q/Z,2), and there are other
factors, as in BUQ but without tensoring over the rational numbers, leading to the
homotopy equivalence

BPU −→ K(Q/Z,2)×∏
i>1

K(Q,2i).

For this, see Grothendieck (1995).
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5.3. Remark For x ∈ Tors(H3(X ,Z)), we have x = δ (y), where y ∈ H2(X ,Q/Z)
corresponding to a map X → K(Z/nZ,2)→ K(Q/Z,2) for a large enough n. This
gives the principal PU(n)-bundle corresponding to x ∈ H3(X ,Z).

6 Sheaf Theory Interpretation

Let X be a space, and let CX denote the sheaf of germs of complex-valued functions
on X . This section is for the reader with background in sheaf theory.

6.1. Remark The set Vectn(X) is isomorphic to the set of isomorphism classes of
CX -modules of sheaves locally isomorphic to C n

X and the set Algn(X) is isomorphic
to the set of isomorphism classes of CX algebras locally isomorphic to Mn(CX ).

6.2. Assertion Using sheaf cohomology by which local charts are glued together
with 1-cocycles, we obtain a sheaf cohomology version of the commutative diagram
20(2.5) of the following form, where the horizontal arrows are bijections

H1(X ,GL(n,CX )) ��

θ
��

Vectn(X)

End
��

H1(X ,PGL(n,CX )) �� Algn(X).

.

In this case, the vertical morphism θ is one of the morphisms in the sheaf cohomol-
ogy exact sequence associated to the short exact sequence of sheaves

1−→GL(1,CX )−→ GL(n,CX )−→ PLG(n,CX)−→ 1 .

It is useful to have the following terms of the cohomology exact sequence including
θ , namely

· · · →H0(X ,PGL(n,CX))→ H1(X ,GL(1,CX ))→ H1(X ,GL(n,CX )) θ→

H1(X ,PGL(n,CX ))→H2(X ,GL(1,CX ))→ . . . .

6.3. Remark Returning to 20(3.5), we introduce another exact sequence of sheaves
using the special linear group

1−→ μ(n,CX)−→ SL(n,CX)−→ PLG(n,CX )−→ 1 .

Again, the following terms of the cohomology exact sequence with θ are

· · · → H0(X ,PGL(n,CX ))→H1(X ,μ(n,CX))→ H1(X ,SL(n,CX )) θ→

H1(X ,PGL(n,CX ))→ H2(X ,μ(n,CX))→ . . . .
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6.4. Remark In 20(3.6), the fibre sequence of classifying spaces led naturally to
K(π ,n) spaces which classify ordinary cohomology, and the morphism θ on a space
is studied with cohomology with coefficients in Z or a finite group. The exact se-
quence with sheaf cohomology gives the same analysis of the morphism θ defined
by assigning to a vector bundle the matrix algebra bundle End(E). For this, we have
to analyze the cohomology group

Hi(X ,GL(1,CX )) = Hi(X ,C ∗
X )

by the exponential sequence 〈exp〉 with kernel Z

〈exp〉 0−→ ZX −→ CX
exp−→ C ∗

X −→ 1

and by the nth power sequence 〈n〉 with kernel the roots of unity

〈n〉 0−→ μ(n,CX )−→ C ∗
X

n−→ C ∗
X −→ 1 .

6.5. Remark The related cohomology sequences take the following form: for 〈exp〉

. . .−→ H0(X ,C ∗
X )−→H1(X ,ZX )−→H1(X ,CX )

exp−→ H1(X ,C ∗
X )−→H2(X ,ZX )−→ . . .

and for 〈n〉

. . .−→ H0(X ,C ∗
X )−→H1(X ,μ(n,CX))−→H1(X ,C ∗

X )

n−→H1(X ,C ∗
X )−→ H2(X ,μ(n,CX ))−→ . . .

For paracompact spaces, the sheaf CX has no higher cohomology, and we have the
natural isomorphism

Hq(X ,C ∗
X )−→ Hq+1(X ,ZX) = Hq+1(X ,Z) for q > 0 .

With this isomorphism to standard singular integral cohomology, we see the relation
with the classifying space sequence of 20(3.6)

K(Z,2) = BU(1)−→ BU(n)−→ BPU(n)−→ B(BU(1)) = K(Z,3)

and the sheaf cohomology sequence

H2(X ,Z)↔ H1(X ,GL(1,CX ))→ H1(X ,GL(n,CX )) θ→

H1(X ,PGL(n,CX)) δ→ H2(X ,GL(1,CX ))↔ H3(X ,Z) .

6.6. Remark Using the relation PGLn = SLn/μn, we have the cohomology sequence
with mod n reduction r
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H1(X ,μ(n,CX))→H1(X ,SL(n,CX)) θ→H1(X ,PGL(n,CX)) δ
′→H2(X ,μ(n,CX)),

together with the maps

H1(X ,μ(n,CX )) rδ−→ H2(X ,Z/nZ) and H2(X ,μ(n,CX ))→ H3(X ,Z).

Reference

Grothendieck, A.: Le groupe de Brauer. Part I. Séminaire Bourbaki, Vol. 9, Exp. 290: 199–219
(1995) 246





Chapter 20
Analytic Definition of Twisted K-Theory

As pointed out in the previous chapter, there are several approaches to ordinary
complex K-theory. Each of these approaches leads to a version of twisted K-theory.
The basic data for twisted K-theory is an operator algebra bundle A over X . The
twisted K-group is denoted by Kα (X), where the characteristic class α of A is part
of the data α(A) = α ∈ H3(X ,Z).

First, we consider twisted K-theory in terms of the Fredholm subbundle Fred(A)⊂
A over X . We relate mappings from X into the Fredholm operators Fred(H) and
cross sections of the Fredholm subbundle over X . The twisted K-group of X rela-
tive to the algebra bundle A is given by fibre homotopy classes of cross sections of
Fred(A).

Ordinary K-theory is also described by mappings into a space Fred(H). Map-
pings into Fred(H) can be thought as cross sections of the trivial bundle with fibre
Fred(H). By replacing the trivial bundle with fibre Fred(H) with a nontrivial bundle
with fibre Fred(H), we obtain a twisted K-theory from classes of cross sections of
this nontrivial bundle.

Secondly, we introduce the C∗-algebra of sections Γ(X ,K (A)) of the algebra
bundle. The K-theory of a C∗-algebra is the twisted K-group relative to the algebra
bundle A over X .

Operator bundles with fibre B = B(H) or with fibre K = K (H) are equivalent
since they both have an automorphism group PU(H) up to homotopy. The bundles
with fibre B are more useful for a Fredholm operator approach to twisted K-theory
while the bundles with a fibre K appear more naturally in the operator K-theory
approach to twisted K-theory.

1 Cross Sections and Fibre Homotopy Classes of Cross Sections

1.1. Definition A cross section s of a bundle p : E → B is map s : B → E with
ps = idB. Let Γ(B,E) denote the set of all cross sections of E over B.

The condition ps = idB is equivalent to s(b) ∈ Eb for all b ∈ B.

D. Husemöller et al.: Analytic Definition of Twisted K-Theory, Lect. Notes Phys. 726, 251–253 (2008)
DOI 10.1007/978-3-540-74956-1 21 © Springer-Verlag Berlin Heidelberg 2008
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1.2. Example For the product bundle p : B×Y →B, the set of cross sectionsΓ(B,B×
X) can be identified with the set Map(B,Y ) of mappings form B to Y . A cross section
of the product bundle has the form s(b) = (b, f (b)), where f : B→Y is a continuous
function, and conversely, f determines s f uniquely by the formula s f (b) = (b, f (b)).

For many invariants of continuous functions f : X → Y between two spaces X
and Y , the function itself is less important than the deformation class or homotopy
class of the mapping. This leads to the following two basic definitions.

1.3. Definition A homotopy between two maps f ′, f ′′ : X → Y is a map h : X ×
[0,1]→ Y such that f ′(x) = h(x,0) and f ′′(x) = h(x,1). Two maps f ′, f ′′ : X → Y
are homotopic provided there exists a homotopy from f ′ to f ′′.

Homotopy of maps is an equivalence relation on the set Map(X ,Y ). We denote
the set of homotopy classes [ f ] : X → Y by [X ,Y ]. The set [X ,Y ] is a quotient of
Map(X ,Y ).

1.4. Definition Let s′ s′′ : B → E be two cross sections of p : E → B. A fibre ho-
motopy between s′ and s′′ is a homotopy h such that ph(b,t) = b for all b ∈ B and
t ∈ [0,1]. Two cross sections s′ s′′ : B→ E are fibre homotopic (or fibre homotopi-
cally equivalent) provided there exists a fibre homotopy map from s′ to s′′.

Fibre homotopy of sections is an equivalence relation on the set Γ(B,E) of cross
sections of p : E→ B. Let [Γ](B,E) denote the set of fibre homotopy classes of cross
sections of p : E → B. Then [Γ](B,E) is a quotient set of Γ(B,E).

1.5. Remark For the trivial bundle p : B×Y → B, the function which assigns to a
map f : B→Y in Map(B,Y ) the cross section s f (b)= (b, f (b)) in Γ(B,B×Y ) carries
homotopy equivalent f to fibre homotopy equivalent cross sections. This defines a
natural bijection [B,Y ]→ [Γ](B,B×Y) of the bijection Map(B,Y )→ Γ(B,B×Y).

2 Two Basic Analytic Results in Bundle Theory and K-Theory

2.1. Theorem (Kuiper) Let H be a separable infinite-dimensional Hilbert space.
The unitary group U(H) with the norm topology is a contractible group.

2.2. Theorem (Atiyah–Jänich). Let H be a separable infinite-dimensional Hilbert
space. There is a natural morphism of functors on compact spaces [X ,Fred(H)]→
K(X) with the following property: If f : X → Fred(H) is a map with ker( f (x)) and
coker( f (x)) locally of constant dimension, then the image of [ f ] is E ′ −E ′′, where
E ′ and E ′′ are the subbundles of the trivial X ×H → X with fibres

E ′x = x×ker(f(x)) and E′x = x×ker(f(x)∗) .

This map [X ,Fred(H)]→ K(X) is an isomorphism of functors on the opposite cate-
gory of compact spaces and continuous map.

Recall that bundles of C∗-algebras with fibres isomorphic to B(H) up to
isomorphism are classified by elements in [X ,B(PU(H))]. Moreover, for a sepa-
rable infinite-dimensional H, the space BPU(H) is a K(Z,3).
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2.3. Corollary For a separable infinite-dimensional H, the bundles of C∗-algebras
with fibres isomorphic to B(H) are classified by an element t ∈ H3(X ,Z).

3 Twisted K-Theory in Terms of Fredholm Operators

For each t ∈H3(X ,Z), we define Kt(X) the twisted K-theory over X using Fredholm
operators in the related B(H)-bundle A(t) or related principal PU(H) bundle P(t),
where P(t)[B(H)] and A(t) are isomorphic as B(H) bundles. We use the following
remark in order to bring in Fredholm operators.

3.1. Remark The automorphisms in PU(H) or more broadly PGL(H) preserve the
open subspace Fred⊂B(H). Hence, we have a subbundle P(t)[Fred] or Fred(A(t))
where the fibre Fred(A(t))x = Fred(A(t)x) which is isomorphic to Fred(H).

Thus, the Fredholm elements in the fibre of a bundle of B(H) algebras have a
meaning independent of the local chart of the bundle. Now building on the Atiyah–
Jänich theorem, we can extend the notion of K-theory to a twisted version using
B(H) algebras.

3.2. Definition For t ∈ H3(X ,Z), the twisted K-group Kt(X) of X relative to the
twisting t is [Γ](X ,Fred(A(t)).

In the previous definition of the group Kt (X), there is a choice made for the
algebra bundle A(t) which is unique up to isomorphism. In fact, we could define the
twisted K-theory relative to operator algebra bundles A by KA(X) = [Γ](X ,Fred(A)),
and with this form of the definition, we have the following functoriality.

3.3. Functoriality For untwisted K-theory, any map f : X →Y induces f ∗ : K(Y ) =
[Y,BU ]→ [X ,BU ] = K(X) by composition from the right. For cross sections f ∗ =
Γ( f ) : Γ(Y,E) → Γ(X , f ∗(E)) or fibre homotopy classes of cross sections
[Γ]( f ) : [Γ](Y,E)→ [Γ] (X , f ∗(E)) are defined. This means that functoriality is for
maps or homotopy classes of maps where the twisting by the bundles are related by
inverse images under mappings in the category with twistings.





Chapter 21
The Atiyah–Hirzebruch Spectral Sequence
in K-Theory

Now that we have K-theory and its generalization, we discuss the Atiyah–Hirzebruch
spectral sequence relating the ordinary cohomology to K-theory. Since cohomology
is known for many spaces, with this spectral sequence, it is possible in some case to
calculate the K-theory or more generally the twisted K-theory of the space by this
spectral sequence.

The spectral sequence is a tool introduced into algebraic topology at the end of
1940 originating with the ideas of Jean Leray. He was studying the effect of mapping
on homology in order to extend the existing fixed point theorems used in the theory
of nonlinear partial differential equations. A spectral sequence is a family of chain
complexes linked together via their homology, and we introduce the concept via the
exact couple originating with William Massey.

Any filtered space X with filtration X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊂ . . . ⊂ X =
⋃

n Xn has
a spectral sequence for any type of K-theory or cohomology theory E∗(X) which
analyzes the group E∗ in terms of the value on the relative layers E∗(Xn,Xn−1) from
the filtration X . We begin by explaining what is an exact couple and its derived
couple and then consider the related spectral sequence. Then this is applied to the
K-theory of a filtered space. With a spectral sequence, it is usually the E2 term which
lends itself to calculation. This is the case with the K-theory spectral sequence where
the E2 term is calculated in terms of ordinary cohomology, and the spectral sequence
itself “converges” to the K-theory.

Finally, we illustrate how the spectral sequence leads to interesting special cal-
culations in K-theory and string theory. The twisted K-theory spectral sequence was
first studied in Rosenberg (1989).

1 Exact Couples: Their Derivation and Spectral Sequences

1.1. Definition An exact couple (A,E,α,β ,γ) is a pair of objects A and E with
morphisms giving a diagram

D. Husemöller et al.: The Atiyah–Hirzebruch Spectral Sequence in K-Theory, Lect. Notes Phys. 726, 255–264 (2008)
DOI 10.1007/978-3-540-74956-1 22 © Springer-Verlag Berlin Heidelberg 2008
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A
α �� A

β����
��

��
�

E

γ

���������

such that im(α) = ker(β ), im(β ) = ker(γ), and im(γ) = ker(α).

This must take place in a category where images and kernel are defined, for
example, the category of abelian groups or of graded k-modules. In fact, any abelian
category is suitable.

Usually, there is a question of degree or bidegree as with complexes because a
boundary operator in algebra usually changes the degree down as in homology or
up as in cohomology and K-theory.

1.2. Notation In homology, a complex C is graded and has a boundary operator
d : C→C with d : Ci→Ci−1 of degree –1, and cohomology of complex C is graded
and has a boundary operator d : C→C with d : Ci→Ci+1 of degree +1. Always up
and lower notations for degrees are related by the rule Ci = C−i and Ci = C−i giving
the translation between upper and lower indices. In the case of exact couples, we
have bidegrees and exact couples with homological and cohomological gradings.
Since we are just interested in the cohomological case, we will only introduce that
case in the next definition.

1.3. Definition A graded exact couple of type r is an exact couple (Ar,Er,α,β ,γ),
where Ar and Er are bigraded k-modules with α of bidegree (r,−r), β of bidegree
(0,0), and γ of bidegree (0,+1), that is, we have

α : Ai, j −→ Ai+r, j−r, β : Ai, j −→ Ei, j, and γ : Ei, j −→ Ai, j+1 .

2 Homological Spectral Sequence for a Filtered Object

2.1. Notation Let ∗= X1 ⊂ X0 ⊂ X1 ⊂ . . .⊂ Xp ⊂ . . .⊂ X denote either

(a) a filtered chain complex with the algebraic object Xp redenoted by FpX so as not
to mix filtration and degree indices or

(b) a filtered space X , where Xn = X for some n and the homology theory has exci-
sion, that is, H∗(Xp,Xq)→ H∗(Xp/Xq) is an isomorphism for p > q.

2.2. Definition In both cases for notation (2.1), the filtration on the homology is
defined as the image

FpHn(X) = im(Hn(Xp)−→ Hn(X)).

Note that for the algebraic object the pth term in the filtration is denoted by FpH(X).
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2.3. Remark We have a level exact sequence

0−→ Xp−1 −→ Xp −→ Xp/Xp−1 = E0
p(X)−→ 0

and a related exact triangle for graded objects

Hn(Xp−1) �� Hn(Xp)

��
Hn+1(Xp/Xp−1)

��

Hn(Xp/Xp−1).

Observe that there is a shift in homological degrees to lead to an exact triangle.
Now, we assemble further allowing a shift in the filtration degree to obtain the

homology exact couple.

2.4. Definition The homology exact couple associated with the data (2.1) is given
by the diagram

A1 α �� A1

β����
��

��
�

E1,

γ

����������

where A1
p,q = Hp+q(Xp) and E1

p,q = Hp+q(Xp/Xp−1) and the bidegrees of the three
morphisms in the exact couple are

deg(α) = (+1,−1), deg(β ) = (0,0), and deg(γ) = (−1,0) .

As usual, the fact that we have an exact couple means that

im(α) = ker(β ), im(β ) = ker(γ), and im(γ) = ker(α) .

We know that we can derive the above exact couple from the discussion in the first
section, but we will only need to consider the E2 = H(E1,d1) to see the other terms
of the spectral sequence.

2.5. Remark The differential d1 : E1 → E1 is given by d1 = β γ and the bidegree
(–1,0), that is, d1 : E1

p,q→ E1
p−1,q. This means that the E2 term is given by

E2 = H(E1,β γ) =
ker(β γ)
im(β γ)

=
γ−1(ker(β ))

β (im(γ))
=

γ−1(im(α))
β (ker(α))

.

From general considerations in the first section, we can calculate the Er term of
the spectral sequence by the formula

Er = H(Er−1,dr−1) =
γ−1(im(αr−1))
β (ker(αr−1))

.
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Now, we are interested in what might be called the elementary convergence
properties of the above spectral sequence arising in homology. This means that
Er

p,q = Er+1
p,q = Er+2

p,q = . . . for some r.

2.6. Finiteness Assumption Returning to the notation of (2.1), we assume that for
(a) FpHn(X) = Xn for p > n or (b) Xm = X for some m which is interpreted as a
dimension. There we have Er

p,q = Er+1
p,q = Er+2

p,q = . . . = E∞
p,q by definition.

The final step in this discussion is to calculate this limit or stable E∞ in terms of
FpH(X) of (2.2).

2.7. Theorem Let X be a filtered object satisfying the finiteness assumption of (2.6).
Then

E∞
p,q =

FpHp+q(X)
Fp−1Hp+q(X)

= E0
p,q(H(X)) .

Proof . We calculate for large r

E∞
p,q = Er

p,q =
γ−1(im(αr−1))
β (ker(αr−1))

=
im(β )

β (ker(Hp+q(Xp)→ Hp+q(X)))

β ′−→ Hp+q(Xp)
(ker(Hp+q(Xp)→ Hp+q(X))+ (im(Hp+q(Xp−1)→ Hp+q(Xp))

,

where β ′ is induced by β and is an isomorphism. This quotient is mapped isomor-
phically by the induced map H(Xp)→ H(X) giving

E∞
p,q =

im(Hp+q(Xp)→ Hp+q(X))
im(Hp+q(Xp−1)→ Hp+q(X))

=
FpHp+q(X)

Fp−1Hp+q(X)
= E0

p,q(H(X)) .

3 K-Theory Exact Couples for a Filtered Space

Continuing with the notation (2.1)(b) for a filtered space, we apply the K-theory
functor to the triple of spaces Xp−1⊂Xp⊂X and related reduced spaces Xp/Xp−1→
X/Xp−1→ X/Xp. What we define for the K functor K∗ can be carried out for any
cohomology theory E∗.

3.1. Definition The filtration F pK∗(X) on the K-theory of X is defined by either the
image or kernel

F p(KmX) = im(Km(X/Xp−1)→ Km(X)) = ker(Km(X)→ Km(Xp−1)) .

3.2. Remark Observe that the factorization

X −→ X/Xp−1 −→ X/Xp

shows that F pKm(X)⊃ F p+1Km(X) so that the filtration is decreasing.
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3.3. Remark We have an exact sequence

∗ −→ Xp/Xp−1 −→ X/Xp−1 −→ X/Xp −→ ∗

and a related exact triangle for the K-groups

Ap+1,q−1
1 = K p+q(X/Xp) �� K p+q(X/Xp−1) = Ap,q

1

��
E p,q−1

1 = K p+q+1(Xp/Xp−1)

��

K p+q(Xp/Xp−1) = E p,q
1

.

Observe that there is a shift in homological degrees to lead to an exact triangle, and
by assembling the filtration degree, we obtain a cohomology exact couple.

3.4. Definition The K-theory exact couple is given by

A1
α �� A1

β����
��

��
��

E1,

γ

����������

where Ap,q
1 = K p+q(X/Xp−1) and E p,q

1 = K p+q(Xp/Xp−1) with deg(α) = (−1,+1),
deg(β ) = (0,0), and deg(γ) = (−1,0).

From the discussion in the first section, we know that we can derive this cou-
ple any number of times yielding a spectral sequence with Er+1 = H(Er,dr). We
consider the exact formulas for r = 1 and the E2 term.

Now, we are interested in what might be called the elementary convergence
properties of the above spectral sequence arising in homology. This means that
E p,q

r = E p,q
r+1 = E p,q

r+2 = . . . for some r, and in this case, we define Er
p,q

∞ = E p,q.
Returning to the finiteness assumption (2.6)(b), we complete the discussion by

calculating the E∞ term in terms of F pK(X) introduced in (3.2).

3.5. Theorem Let X be a filtered object satisfying the finiteness assumption of (2.6).
Then

E p,q
∞ =

F pK p+q(X)
F p+1K p+q(X)

= E p,q
0 (H(X)) .

Proof . We calculate for large r

E p,q
∞ = E p,q

r =
γ−1(im(αr−1))
β (ker(αr−1))

=
im(β )

β (ker(K p+q(X)→ K p+q(Xp−1)))

β ′−→ K p+q(X/Xp−1)
(ker(K p+q(X/Xp−1)→ K p+q(X))+ (im(K p+q(X/Xp)→ K p+q(X/Xp−1))

,
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where β ′ is induced by β and is an isomorphism. This quotient is mapped
isomorphically by the induced map K(X/Xp−1)→ K(X) giving

E p,q
∞ =

im(K p+q(X/Xp−1)→ K p+q(X))
im(K p+q(X/Xp)→ K p+q(X))

=
F pK p+q(X)

F p+1K p+q(X)
= E p,q

0 (K(X)) .

This establishes the theorem.

3.6. Remark This result depends just on exactness and the excision isomorphism
E∗(X/Y )→ E∗(X ,Y ) for any cohomology theory E∗.

4 Atiyah–Hirzebruch Spectral Sequence for K-Theory

Now we return to the ideas of Chap. 9 and CW-complexes which are filtered spaces
X with Xp/Xp−1 equal to a wedge of spheres all of dimension p. In 9(4.4), we intro-
duced cellular chains where the spheres in Xp/Xp−1 appear as basis elements.

4.1. Remark Let X be a CW-complex. The K-theory spectral sequence defined by
filtration by cells has the E1 term

E p,q
1 = K p+q(Xp/Xp−1).

If it has only m(p) p-cells, that is if Xp/Xp−1 = ∨m(p)S
p is a wedge of m(p)

p-spheres, then we can calculate the E1 term as a direct sum E p+q
1 = K p+q(Xp/Xp−1)=

K p+q(∨m(p)S
p) =

⊕
m(p) K p+q(Sp). Using the suspension property of generalized

cohomology theory, we can rewrite

E p,q
1 = K p+q(Xp/Xp−1) =

⊕

m(p)

K p+q(Sp) = Cp(X ,Kq(∗))

meaning cellular cochains of X with values in K-groups of a point.

4.2. Remark In 9(4.4), we went further to identify the cell boundary morphism with
the boundary morphism of the triple (Xp+1,Xp,Xp−1), that is,

d1 : E p,q
1 = K p+q(Xp/Xp−1)−→ K p+q+1(Xp+1,Xp) = E p+1,q

1 .

The result of this calculation is that

E p,q
2 = H p(X ,Kq(∗)) .

We summarize the main results in the next assertion which holds for any gener-
alized cohomology theory E∗ not just K-theory.
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4.3. Assertion For a finite CW-complex X there exists a spectral sequence Er

satisfying

(1) E p,q
1 = Cp(X ,Kq(∗)), where d1 is the ordinary cell boundary operator in coho-

mology,
(2) E p,q

2 = H p(X ,Kq(∗)), and
(3) there is a filtration of F pK∗(X) such that E p,q

∞ is isomorphic to the associated
graded complex, that is,

E p,q
∞ = F pK p+q(X)/F p+1K p+q(X) .

In the previous assertion (4.3), we have not used any property of K-theory, and in
fact, the assertion holds for ordinary cohomology theory in which case the spectral
sequence collapses. This is just the content of the analysis in 9(4.4).

4.4. Assertion For ordinary cohomology theory H∗, the spectral sequence in (4.3)
collapses with E2 = E∞.

In the case of K-theory, we can build Bott periodicity into the form of the spectral
sequence.

4.5. Assertion The even–odd grading of K(X) given by Bott periodicity K(X) =
(Kev(X),Kod(X)) has a filtration

F pK(X) = ker(K(X)−→ K(X/Xp−1)) ,

with E p,q
r (X) and E p,q+2

r (X) isomorphic and with the odd complementary degrees
E p,2q+1

r = 0 for r ≥ 1 and all q. The only differentials are the odd differentials
d2s+1 : E p

2s+1→ E p+2s+1
2s+1 . The associated graded complex of the filtration on K(X)

is of the form E p,0
∞ . In particular, the K-theory spectral sequence collapses when

Hi(X ,Z) is zero for all odd degrees i. As an application we have the following
calculation.

4.6. Proposition The K-theory of the complex projective space Pm(C) is given by
K0(Pm(C)) = Z[x]/xm+1 and K1(Pm(C)) = 0.

For the ring structure, the class x = L−1 must be studied, where L is the canon-
ical line bundle, but as an additive group it is free of rank m+ 1.

4.7. Remark In Chap 10, Sect. 5, we considered the Chern character ring morphism
K(X)→ H∗∗(X ,Q). The Chern character induces a morphism from the K-theory
spectral sequence to the rational cohomology spectral sequence. The basic result
that tensoring with rational numbers K(X)⊗Q→ H∗∗(X ,Q) gives an isomorphism
was shown in 10(5.6). This has the following implication for the K-theory spectral
sequence.

4.8. Theorem In general, the differentials are torsion morphisms. If X is H∗(X ,Z)
torsion free, then the K-theory spectral sequence collapses.
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5 Formulas for Differentials

In (4.8), we saw that all differentials in the K-theory spectral sequence are torsion
operations, it is natural to look for formulas for the differentials which involve coho-
mology operations with finite field coefficients. Besides the Bockstein operations,
we expect the Steenrod operations. For p = 2, we used the Steenrod squaring opera-
tions in 10(8.2) and 10(8.3) to give another formula for the Stiefel–Whitney classes
in 10(8.5).

5.1. Remark In 10(8.6)(1) we had the formula

Sq2a+1 = Sq1Sq2a : Hi(X ,F2)−→Hi+2a+1(X ,F2),

where Sq1 : Hi+2a(X ,F2)→ Hi+2a+1(X ,F2) is the Bockstein morphism associated
with the exact sequence of groups

0−→ Z/2Z−→ Z/4Z−→ Z/2Z−→ 0 .

In turn, this exact sequence of groups is a quotient of the multiplication by two

exact sequence of groups 0→ Z
2→ Z→ Z/2Z = F2→ 0 so there is a factorization

of Sq1 = rδ , where

(1) δ : H j(X ,F2)→ H j+1(X ,Z) is the Bockstein associated with multiplication by
two exact sequence and

(2) r : Hq(X ,Z)→ Hq(X ,F2) is the reduction mod 2-induced morphism in coho-
mology. For an odd degree, we can define an integral-valued Steenrod square

Sq2a+1 = δSq2a : Hi(X ,F2)−→Hi+2a+1(X ,Z) .

Finally, with the reduction mod 2 morphism, we have an integral operation
Sq2a+1 = δSq2ar : Hi(X ,Z)→ Hi+2a+1(X ,Z) .

5.2. Remark The first two odd degree cases in the previous discussion are Sq1

and Sq3. The integral version of Sq1 is factorized by Hi(X ,Z) r→ Hi(X ,F2)
δ→

Hi+1(X ,Z), where r is the reduction mod 2 and δ is the Bockstein. The integral
version of Sq3 is defined by Sq3 : Hi(X ,Z)→ Hi+3(X ,Z) as in (5.1)(2). It was re-
alized by Atiyah and Hirzebruch that this is the first nontrivial differential in the
complex K-theory spectral sequence. This is always a torsion operation which is
killed by 2, and the differentials are torsion morphisms.

5.3. Proposition In the complex K-theory spectral sequence, the first terms are

E p,q
3 = E p,q

2 =
{

H p(X ,Z) for q even
0 for q odd ,

and the first possibly nontrivial differential is

d3 = Sq3 : Hi(X ,Z) = E p,q
3 −→ E p+3,q−2

3 = H p+3(X ,Z) .
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6 Calculations for Products of Real Projective Spaces

6.1. Remark The Stiefel–Whitney classes for the real projective spaces are given by
formulas

w1(Pn(R)) = n + 1 and w2(Pn(R)) =
n(n + 1)

2
(mod2) .

In particular, it is the odd-dimensional real projective spaces which are orientable,
that is, w1 = 0 (mod 2). Of the odd dimensions n = 4m + 1 and n = 4m + 3, the
w2 = 1 (mod 2) for n = 4m + 1 and w2 = 0 (mod 2) for n = 4m + 3. In particular,
P4m+3(R) is an oriented real manifold which has a spin structure.

6.2. Cohomology of Real Projective Spaces The homology and cohomology with
F2 coefficients is given by

Hi(Pn(R),F2) = F2 for 0≤ i≤ n

and zero otherwise, and

H∗(Pn(R),F2) = F2[w]/(w)n+1

with the cap product algebra structure. With integral coefficients, it depends whether
the dimension is even or odd. We give the result of the oriented odd-dimensional
case n = 2m + 1, where we obtain a copy of Z in the top dimension, due to ori-
entability, and

i 0 1 2 3 . . . . . . 2m 2m+ 1

Hi((Pn(R),Z) Z 0 Z/2 0 . . . . . . Z/2 0
Hi((Pn(R),Z) Z Z/2 0 Z/2 . . . . . . 0 Z

6.3. K-Theory Results For an odd-dimensional projective space, we have
K1(Pn(R),Z) = Z and K0(P2m−1(R),Z) = Z⊕Z/2m−1 as additive groups. The ring
structure on K0 is given by

K0(P2m−1(R),Z) = Z[y]/((y + 1)2−1,ym)

or by

K0(P2m−1(R),Z) = Z[y]/(y2 + 2y,ym) = Z[x]/((x2−1),(x−1)m) .

For the first odd dimensions, we have

K0(P1(R),Z) = Z , K0(P3(R),Z) = Z⊕Z/2 = Z[x]/(x2−1,(x−1)2)

K0(P5(R),Z) = Z⊕Z/22 = Z[x]/(x2−1,(x−1)3)
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K0(P7(R),Z) = Z⊕Z/23 = Z[x]/(x2−1,(x−1)4) .

7 Twisted K-Theory Spectral Sequence

In twisted K-theory, there is a three-dimensional class which plays a role, and it
combines with Sq3 to give the differential in the twisted K-theory spectral sequence.

7.1. Proposition For t ∈H3(X ,Z), the twisted complex K-theory spectral sequence
has initial terms with

E p,q
3 = E p,q

2 =
{

H p(X ,Z) for q even
0 for q odd ,

the first nontrivial differential

d3 = Sq3 +( ) � t : H p(X ,Z) = E p,q
3 −→ E p+3,q−2

3 = H p+3(X ,Z) .

This means that the third differential is deformed by the cup product with the twisting
class.

Reference
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Soc. Ser. A 47(3):368–381 (1989) 255



Chapter 22
Twisted Equivariant K-Theory
and the Verlinde Algebra

As we outlined in the introduction, the role of K-theory in physics started when
topological invariants of D-branes in string theory took values in K-groups. When
the D-brane has a nontrivial background B-field, the corresponding D-brane invari-
ants take values in the twisted K-groups where the B-field is a three-form defining
the twisting in the K-group.

Just as there is a G-equivariant K-theory, there is also a G-equivariant twisted
K-theory with a definition in terms of Fredholm operators on a Hilbert space having
suitable G-action. One such G-space is G = Ad(G) with the adjoint action of G on it-
self, and in this case, it is sometimes possible to determine the twisted G-equivariant
K-theory of G.

Throughout this chapter, G is a compact, simply connected, simple real Lie
group. In some cases the assertions hold more generally as for the isomorphism

R(G)−→ KG(∗)

which is true for a general compact group.
When one considers either the loop group on G or the associated Kac-Moody Lie

algebra to Lie(G), the classical Lie algebra of G, there is a representation theory for
a given level or central charge c. The representations of central charge c define a
fusion algebra Verc(G), called the Verlinde algebra which is a quotient ring of R(G)
for simply connected compact Lie groups G which are simple. The main assertion
in this chapter is that this Verlinde fusion algebra is related to twisted K-theory of
Ad(G). The isomorphism

R(G)−→ KG(∗)
has a quotient which is an isomorphism giving a commutative square

R(G) ��

��

KG(∗)

��
Verc(G) �� Kα

G (Ad(G)).

D. Husemöller et al.: Twisted Equivariant K-Theory and the Verlinde Algebra, Lect. Notes Phys. 726, 265–274 (2008)
DOI 10.1007/978-3-540-74956-1 23 © Springer-Verlag Berlin Heidelberg 2008
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Some of the background material for this chapter is taken from lectures in Bonn
of Gerd Faltings. Some of the calculations are taken from Gregory Moore where
one finds a physical explanation of the role of the third differential in the Atiyah–
Hirzebruch spectral sequence for twisted K-theory which was discussed in the last
section of the previous Chap. 23.

1 The Verlinde Algebra as the Quotient
of the Representation Ring

There is a Verlinde algebra associated with a finite-dimensional simple complex Lie
algebra and a level c. Recall that to a simple and simply connected compact real
Lie group G, we can form the complex Lie algebra g = Lie(G)⊗R C . This sets up
a bijection between isomorphism classes of simple, simply connected compact real
Lie groups and the isomorphism classes of finite-dimensional simple complex Lie
algebras. The representation rings are also isomorphic under this correspondence.
The Verlinde algebra Verc(g) of representations of the loop algebra L(g) of level or
central charge c with fusion product corresponds to the algebra of positive energy
representations of level c ≥ 0 of the loop Lie group L(G) with the fusion product
(Witten (1993)).

1.1. Notation Let g be a Lie algebra over the complex numbers, and let A be an
associative algebra. The Lie algebra structure on g⊗A is given by the formula

[u⊗a,v⊗b] = [u,v]⊗ab or [au,bv] = ab [u,v]

for u,v ∈ g , a,b ∈ A . Two special cases are

g[t] = g⊗C C[t] and g[t,t−1] = g⊗C C[t,t−1],

where the second case g[t,t−1] is called the Lie algebra of algebraic loops with
values in g.

The affine Kac–Moody algebra g̃ corresponding to a given Lie algebra g refers
to a basic extension of the Lie algebra g[t,t−1] of loops with values in g, see (1.4).
We consider the construction in the following case.

1.2. Simple Lie Algebra Let g be a finite-dimensional simple Lie algebra over C.
Choose a Cartan subalgebra h⊂ g whose action on g gives the root system. Choices
of positive root systems correspond to decompositions

g = h⊕n+⊕n−,

where n+ and n− are the nilpotent subalgebras of g with a basis of the positive and
negative roots, respectively. Let P be the weight lattice relative to h⊂ g, and let P+

denote the positive weights relative to the Borel subalgebra b = h⊕n+ ⊂ g.
On the simple Lie algebra g, we have an invariant bilinear form
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( | ) : g×g→ C

which is unique up to a scalar multiple. It is unique assuming (θ |θ ) = 2 for the
longest root θ .

1.3. Representation Ring R(((g))) of g A basis of the abelian group R(g) is the set of
irreducible representations πλ up to isomorphism which are parametrized by their
highest weight vector λ ∈ P+. The ring structure is given by the tensor product
π⊗π ′ of representations. So [π ][π ′] = [π⊗π ′], where [π ] denotes the isomorphism
class of the representation π . In all cases, the representations are finite dimensional.

By restriction of the action from g to the subalgebra h, we have an injective ring
morphism

R(g)→ R(h) = Z[t1,t−1
1 , . . . ,t�, t

−1
� ],

where � = dimh is called the rank of g. Since h is commutative, the irreducible
representations of h are one dimensional. The Weyl group W of G acts on h and
R(h), and the invariants

R(h)W = image(R(g)→ R(h)) .

This is made explicit for g = sl(2) in the next section.

1.4. Affine Kac–Moody Algebra g̃ Associated with a Finite-dimensional Simple
Lie Algebra g We have an exact sequence of Lie algebras over the complex numbers

0−→ CK⊕Cd −→ g̃−→ g[t, t−1]−→ 0 .

The kernel CK⊕Cd is an abelian Lie algebra, and the twisting cocycle is the addi-
tional term in the formula for the Lie bracket

[ f (t)u,g(t)v] = f (t)g(t) [u,v]− (u|v)Rest=0( f dg)K,

the twisting of the induced central extension is

[d, f (t)u] = t
d
dt

f (t)u ,

and
[K, f (t)u] = 0 ; [d,K] = 0 .

1.5. Representations of g̃ of Level c ∈ N where K acts with Eigenvalue c Form
the Verlinde Algebra Verc(((g))). This algebra Verc(g) has an additive basis of irre-
ducible representations on which K ∈ L(g) acts by the scalar c. They parametrized
by λ ∈ P+ with 〈

λ ,θ∨
〉≤ c,

where θ∨ is the maximal coroot. This parameter λ makes a description of the Ver-

linde algebra as some kind of quotient of R(g) possible.
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1.6. Assertion The Verlinde algebra Verc(g) is the quotient ring of R(g) by an
ideal Ic. Additively, Verc(g) is a finitely generated free abelian group which is a
Grothendieck group of central charge c representations of L(g).

The product on Verc(g) has an independent definition called the fusion product.
In the quotient process, it comes from the tensor product of representations.

1.7. Generators of the Ideal Ic in R(g) To describe the generators of the ideal Ic,
we denote the fundamental weights by Λi, where 0 ≤ i ≤ � = dimh. For an affine
weight of level c,

Λ = λ + cΛ0 + ad

with λ ∈ P+ , a ∈ C, the action of an element w ∈Waff in the affine Weyl group is
given by the formula

w ·Λ = w · (λ + cΛ0 + ad) = w(λ ,c)+ cΛ0 +(a−dw(λ ,c))d,

where w(λ ,c) ∈ P+ and dw(λ ,c) ∈ Z. For a weight λ , the action takes the form

w ·λ = w · (λ + ρ)−ρ called shift action, where ρ = ∑�
i=0 Λi.

1.8. Basic Assertion The ideal Ic = ker(R(g)→ Verc(g)) is generated by the ele-
ments of the form

[λ ]− (−1)�(w)[w(λ ,c)] , λ ∈ P+ ,

where �(w) = length of w ∈Waff . The basic reference is Sect. 2.2 in Feigin et al.
(2002).

2 The Verlinde Algebra for SU(2) and sl(2)

As an example, we work out the Verlinde algebra Verc(SU(2)) = Verc(sl(2)) for the
compact group SU(2) and the corresponding Lie algebra Lie(SU(2))∼= sl(2) of two
by two complex matrices of trace zero. This algebra which we denote in this section
by Verc is a quotient of the ring of characters R(SU(2)) of the group SU(2) or also
of the Grothendieck ring R(sl(2)) of representations of the Lie algebra sl(2). The
structure is very explicit since the rings R(SU(2))∼= R(sl(2)) are both isomorphic
to the polynomial ring in one variable over Z, and the Verlinde algebra is a quotient
algebra which is of finite rank over Z.

2.1. Remark As a ring of characters, R(SU(2)) is determined by the monomorphism
R(SU(2))→ R(U(1)) where the circle group T = U(1) is the maximal torus. We
have R(U(1)) = Z[t,t−1] where t = e2π iθ , and hence, it is the ring of finite Fourier
series. The image of the monomorphism R(SU(2))→ R(U(1)) is the subring of the
finite Fourier series f (t) with the property that f (t) = f ( 1

t ).

2.2. Lemma A finite Fourier series f (t) satisfies f (t) = f ( 1
t ) if and only if f (t) =

g(t + 1
t ), where g(x) ∈ Z[x] is a polynomial.
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The proof results from the relation

tn+1 + t−n−1 = (t + t−1)(tn + t−n)− (tn−1 + t−n+1) ,

which generates the inductive procedure.

2.3. Proposition As a subring of R(U(1)) = Z[t,t−1], the ring R(SU(2)) is the poly-
nomial ring Z[x], where x = t + t−1.

2.4. Remark The irreducible representations of the Lie group SU(2) or of the Lie al-
gebra sl(2) are parametrized by natural numbers and are denoted by V (n) , n ∈ N ,
where dimCV (n) = n + 1 . Under the natural injective ring homomorphism
R(sl(2))→ R(h) = Z[t,t−1], the class of V (n) becomes the polynomial

[n](t) = tn + tn−2 + . . .+ t−n+2 + t−n .

In R(sl(2)), we denote the element representing the irreducible V (n) also by [n].
For example, the first V (0) is the trivial one-dimensional representation, V (1) is

the standard two-dimensional matrix representation, and V (2) is the
three-dimensional adjoint representation of sl(2) on itself. We denote that V (n) = 0
for n < 0.

2.5. Proposition For the multiplicative structure on the irreducible representations,
we can calculate with the Clebsch–Gordan inductive rule

V (n)⊗V(m) = V (m+ n)⊕V(n−1)⊗V(m−1)

the formula

V (n)⊗V(m) = V (m+ n)⊕ . . .⊕V(n−m) for n≥ m .

For the proof, we consider again the embedding if R(sl(2)) as a subring of R(h) =
Z[t,t−1]. The image of the class of V (n) is given by tn + tn−2 + . . .+ t−n+2 + t−n .
Now,

(tn + tn−2 + . . .+ t−n+2 + t−n)(tm + tm−2 + . . .+ t−m+2 + t−m) =
tn+m + tn+m−2 + . . .+ t−n+m+2 + t−n+m

tn+m−2 + tn+m−4 . . .+ t−n+m + t−n+m−2

tn+m−4 . . .+ t−n+m + t−n+m−2 + t−n+m−4

. . . . . . . . .
t−n+m + t−n+m−2 + . . .+ t−n−m+2 + t−n−m

which after reordering and summing the terms gives

(tn+m + tn+m−2 + . . .+ t−n−m+2 + t−n−m)+(tn−1 + . . .+ t−n+1)(tm−1 + . . .+ t−m+1)

which is the desired formula.

2.6. Example The first special cases are V (n)⊗V (0) = V (n) and V (n)⊗V (1) =
V (n + 1)⊕V(n−1) which are formally the same as the character formula
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(t + t−1)(tn + tn−2 + . . .+ t−n)=(tn+1 + tn−1 + · · ·+ t−n−1)+(tn−1 + tn−3 + · · ·+ t−n+1)

used in describing R(SU(2)). In particular, V (2)⊗V(1) =V (3)⊕V(1) is the adjoint
action on the two by two matrices.

2.7. Proposition The Grothendieck ring R(sl(2)) of finite-dimensional represen-
tations is the polynomial ring Z[x], where x is the class of the standard two-
dimensional representation V (1) of sl(2). It is the polynomial ring in one variable x
over the integers. As an abelian group, R(sl(2)) is of countable rank having a basis
given by the isomorphism classes [V (n)] of irreducible representations.

To describe the Verlinde algebra as a quotient ring

Z[t,t−1]⊃ R(sl(2))−→Verc(sl(2))

of the representation ring R(sl(2)), we use the following prescription.
Associated with each c ∈ N, we have the reflection σc of the integers Z given by

σc(n) = 2c− n around c and fixing c. The conditions of (1.8) for the generators of
the ideal Ic in the case of Verc(sl(2)) take the form

[c + 1]∈ Ic and [n]+ [2c + 2−n]∈ Ic for 0 < n < c + 1 .

The quotient π : R(sl(2))→Verc(sl(2)), which depends on the central charge c,
is defined by the two conditions:

(1) π(V (c + 1)) = 0 and
(2) π(V (n)+V(2c + 2−n)) = 0 for 0 < n < c + 1.

2.8. Proposition The ideal Ic in R(sl(2)) is a principal ideal generated by [c + 1]
the class of the irreducible representation of dimension c+ 2.

To see that one relation is sufficient, we have as given [c+1]∈ Ic and the relation

V (m)⊗V(1) = V (m+ 1)⊕V(m−1)

for all m ∈N shows that for m = c+1 that we have [n]+ [σc(n)] ∈ Ic for n = c, and
by an elementary descending induction also for 0 < n < c + 1. Hence, the kernel is
a principal ideal generated by [c + 1].

The following theorem can be worked out from the above description, see the
article of Faltings (1995), on the Verlinde formula.

2.9. Theorem The algebra Verc(sl(2)) is isomorphic to Z[x]/( fc(x)), where

fc(x) = ∏
ζ 2c+2=1,ζ �=±1/inverse

(
x− (ζ +

1
ζ

)
)

.
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In this formula, ζ and 1
ζ are grouped together in one term giving a total of c factors.

In particular, the algebra has degree c and tensored with Q is a product of totally
real fields and CM fields. Another form of fc is

fc(x) =
c

∏
m=1

(
x−
(

exp

(
m

2c + 2
2π i

)
+ exp

(
− m

2c + 2
2π i

)))

=
c

∏
m=1

(
x−2cos

(
m

2c + 2
2π
))

.

To determine the multiplicative structure of the Verlinde algebras
Verc(sl(2)) = Verc(SU(2)), we recall the character of the irreducible representa-
tion V (n) on R(U(1)).

2.10. Remark For g ∈ R
[
t, t−1

]
, where R is a commutative ring, we have used the

fact that g(t) = g( 1
t ) if and only if there exists f (x) ∈ R [x] with

g(t) = f (t +
1
t
) .

Also g(t) = tm + . . . + t−m if and only if f is monic, f (x) = xm+ lower terms. If
u ∈ R∗, then

g(u) = 0 if and only if f

(
u +

1
u

)
= 0 .

Applying this to tc + tc−2 + . . .+ t−c which appears in the factorization

tc+1− tc−1 = (t− t−1)(tc + tc−2 + . . .+ t−c) ,

we see for ζ 2c+2 = 1, ζ 2 �= 1, that

0 = g(ζ ), where g(t) = tc + tc−2 + . . .+ t−c .

Each ζ + 1
ζ is one of the c different roots of the monic polynomial fc(x), hence the

above formula for fc(x).

3 The G-Bundles on G with the Adjoint G–Action

To see that G×G modulo G with the diagonal action is a G-space isomorphic to G
with the adjoint action, we make the following remarks.

3.1. Definition The left-diagonal action of G on G×G is given by

G× (G×G)→ G×G is s(x,y) = (sx,sy)

and the right-diagonal action of G on G×G is given by
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(G×G)×G→ G×G is (x,y)s = (xs,ys) .

We will use the orbit notation and write G(x,y) for the set of all s(x,y) = (sx,sy),
s ∈ G.

3.2. Definition The adjoint action of G on G is given by

Ad : G→ Aut(G) is Ad(s)t = sts−1

for s, t ∈ G. With this action, we denote the G-space G as Ad(G).

3.3. Proposition The map ψ ′ : G\(G×G)→G given by the formula ψ ′(G(x,y)) =
x−1y is an isomorphism of spaces which is

(1) a G-isomorphism of right G-spaces, where G(x,y)s = G(x,ys) for s ∈ G and
(x,y) ∈G×G and

(2) a G-isomorphism of left G-spaces ψ ′ : G\(G×G)→ Ad(G), where s ·G(x,y) =
G(xs−1,ys−1) for s ∈ G.

The map ψ ′′ : (G×G)/G→ G given by the formula ψ ′′((x,y)G) = xy−1 is an
isomorphism of spaces which is

(1) a G-isomorphism of left G-spaces, where s(x,y)G = G(sx,y) for s ∈ G and
(x,y) ∈G×G and

(2) a G-isomorphism of left G-spaces ψ ′′ : (G×G)/G→ Ad(G), where s · (x,y)G =
G(sx,sy) for s ∈ G.

3.4. Double Diagonal Action Consider the following diagram for a topological
group using the analysis of (3.3) with the two-sided diagonal action given by the
image of the element (s,(x,y),t) being (sxt,syt).

G× (G×G)×G ��

��

(G×G)×G

��

where s.((x,y), t) = ((sx,sy), t)
�

��
G× [(G×G)/G] ��

G×ψ ′′

��

(G×G)/G

ψ ′′

��

where s.((x,y)G) = ((sx,sy)G)

G×G
Ad �� G where ψ ′′(s(x,y)G) = (sx)(sy)−1

= s(xy)−1s−1 = Ad(s)(ψ ′′(x,y)G)

We have a principal bundle over G for a left G action, and we introduce this concept
in the next definition.

3.5. Definition Let G and Γ be two topological groups. A Γ-equivariant principal
G-bundle p : P→ B is a map of Γ-spaces where for each γ ∈ Γ, the action maps by
γ denoted by γ : P→ P is a morphism of G-principal bundles over γ : B→ B.
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In terms of elements z∈P, t ∈G, and γ ∈Γ, the morphism of G-principal bundles
condition takes the form γ(zt) = (γz)t. The previous construction is an example of
G-principal bundle P = G×G→ (G×G)/G = B isomorphic to G with a left action
of G such that on B = G it is the adjoint action of G on G and on P it is the left
diagonal G-action on G×G.

As for fibre bundles with a G-group action, we have the following definition.

3.6. Definition Let G and Γ be two topological groups, and let p : P→ B be a Γ-
equivariant principal G-bundle. Let Y be a left G× Γ-space. We define a left Γ-
bundle structure on the fibre bundle q : P[Y ] = P×G Y → B with the quotient action
where Γ×P[Y ]→ P[Y ] is given by the relation γ · (x,y)G = (x,γy)G. This is well-
defined since (xs,s−1γy)G = (x,γy)G.

For b ∈ B and its image γb ∈ B under γ ∈ Γ, we have the induced map on the
fibres P[Y ]b = b×Y → γb×Y = P[Y ]γb which is just the action of γ ∈ Γ on Y . In
the case of a vector space as fibre, we have the following.

3.7. Remark Let G and Γ be two topological groups, and let P → B be a Γ-
equivariant principal G-bundle. For a Γ-vector space V , the fibre bundle P[V ]→ B
is a Γ-vector bundle.

3.8. Example We define the adjoint ring morphism R(G)→ KG(Ad(G)) by assign-
ing to a class [V ] ∈ R(G) the K-class in KG(Ad(G)) of the G-equivariant vector
bundle represented by (G×G)[V ] on Ad(G).

4 A Version of the Freed–Hopkins–Teleman Theorem

The natural isomorphism R(G)−→ KG(∗) extends to a commutative triangle

R(G) ��

												
KG(∗)

��
Ktwist

G (Ad(G)),

where the vertical arrow is a general Gysin morphism in twisted K-theory as-
sociated to the G-map ∗ → Ad(G), and twist is a number related to H3(G) =
H3

G(Ad(G)) = Z.

4.1. Main Assertion For each twist α on Ad(G), the above commutative triangle
extends to a commutative diagram

R(G) ��

��

KG(∗)

��
Verc(G) �� Kα

G (Ad(G)),
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where α = α(c) is c shifted by the dual Coxeter number of G. The lower arrow

Verc(G)−→ Kα
G (Ad(G))

is an isomorphism.

The proof divides into two parts. Firstly, show that R(G)→ Kα
G (Ad(G)) is surjec-

tive, and secondly, establish the identity

ker(R(G)−→ Kα
G (Ad(G)) = ker(R(G)−→ Verc(G)) ,

where again α is c shifted by the dual Coxeter number of G. In three preprints of
Freed–Hopkins–Teleman (2005), one can find a proof that the lower arrow is an
isomorphism. There have been various proofs of aspects of this isomorphism in
the electronic archives before 2005. Another reference is the paper of Bunke and
Schröder, where the formulation of the theorem as a commutative square is consid-
ered.

In Sects. 2 and 3, the case of G = SU(2) and g = sl(2) are carried out in detail
with Verc(sl(2)) = R(sl(2))/Ic. In general, the space G\Ad(G) is a simplex of di-
mension equal to the rank of G. Here, in the special G = SU(2), the space G\Ad(G)
equals the closed interval [0,π ], where each t ∈ [0,π ] corresponds to the conjugacy
class of (

eit 0
0 e−it

)
.

In K-theory, KSU(2)(∗)−→ KSU(2)(Ad(SU(2))) is just a power series in one param-
eter divided by one relation. The first calculation in KSU(2)-theory is to see that this
relation corresponds to a generator of Ic ⊂ R(SU(2)).

This isomorphism is one of the reasons for being interested in the general theory
of twisted K-theory.
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Chapter 23
Bundle Gerbes

In Part V, we consider constructions, called gerbes, leading to an element of
H3(X ,Z), and these cohomology classes classify gerbes in some suitable sense.
These constructions are other versions of the same phenomena related to algebra
bundles, and they lead also to the general concept of twisted K-theory when prop-
erly stabilized.

We begin with a special type of gerbe, called a bundle gerbe. While a vector
bundle is rather a direct generalization of vector space over a point, a bundle gerbe
is a gerbe construction over the clutching data arising from a general bundle. It is
included in the general concept of gerbe, see Chap. 27, but it leads directly to certain
examples and illustrates some ideas around the concept of a gerbe.

Bundle gerbes are line bundles L over the fibre product Y ×B Y of a space (or
bundle) Y over B together with a multiplication on L which uses the fibre product
structure. While the first Chern class of the line bundle L over B is in H2(B,Z) and
describes the complex line bundle up to isomorphism, the bundle gerbe has a class
in H3(B,Z) which describes the gerbes coming from the bundles on Y over B up to
isomorphism.

1 Notation for Gluing of Bundles

1.1. Definition Descent data for a bundle E over Y = Z0 relative to the map f : Y →
B, see also 5(4.5), is a two-stage pseudosimplicial space

Z2 = Y ×B Y ×B Y
d0,d1,d2 �� Z1 = Y ×B Y

d0,d1 �� Z0 = Y

together with an isomorphism α : d∗1(E)→ d∗0(E) of bundles over Z1 = Y ×B Y . The
maps di refer to deleting the ith coordinate, and we require the following compati-
bility condition for the three induced versions of α on Z2 = Y ×B Y ×B Y , that is, the
commutativity of the diagram

D. Husemöller et al.: Bundle Gerbes, Lect. Notes Phys. 726, 277–286 (2008)
DOI 10.1007/978-3-540-74956-1 24 © Springer-Verlag Berlin Heidelberg 2008
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or we have the following formula

d∗0(α)d∗2(α) = d∗1(α).

Recall we have the following gluing theorem as in 5(4.6).

1.2. Theorem For an étale map f : Y → B, a bundle E over Y has descent data if
and only if E is isomorphic to f−1(V ), where V is a bundle over B.

1.3. Remark We can speak about maps f : Y → B with descent data for vector bun-
dles E over B, that is, for a given α : d∗1(E)→ d∗0(E) an isomorphism of vector
bundles over Z1 = Y ×B Y satisfying the compatibility conditions, and we have a
unique vector bundle E ′ over B with f ∗(E ′) isomorphic to E .

Now, we consider the elementary conditions related to gluing as motivation for
gerbes. These refer to an open covering of the base space together with the twofold
and threefold intersections of the open sets.

1.4. Notation Let Y =
∐

U∈ΦU , where Φ is a covering of B by contractible open
subsets, and let π : Y → B be the étale map induced by the inclusions U ⊂ B for each
U ∈Φ. Then, observe that we have the simplicial maps two-stage simplicial space

∐
U,V,W∈ΦU ∩V ∩W = Y ×B Y ×B Y

d0 ,d1 ,d2−→ ∐
U,V∈ΦU ∩V = Y ×B Y

d0,d1−→∐U∈ΦU =Y .

1.5. Zero-Order Gluing or Cocycle Condition Consider the cosimplicial object
by mapping the simplicial space of (1.4) into a fixed space Z
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Map(B,Z) δ �� Map(Y,Z)
δ0,δ1 �� Map(Y×BY,Z)

δ0,δ1,δ2�� Map(Y×BY ×BY,Z),

where δ = Map(π ,Z) is induced by the étale projection π : Y → B and δi =
Map(di,Z). Now, the gluing statement is the equivalence between giving a map
f : B→ Z and giving a family of maps ( fU ) ∈Map(Y,Z) = ∏U∈Φ Map(U,Z) satis-
fying the coboundary gluing condition which takes the form either

δ0( fU ) = δ1( fU ) or fU |(U ∩V ) = fV |(U ∩V) for U,V ∈Φ .

1.6. First-Order Gluing or Cocycle Condition Consider the cosimplicial object
in (1.5) for Z = S1. A line bundle L on B induces by π a trivial line bundle π∗(L)
isomorphic to Y ×C together with an isomorphism d∗1(Y ×C)→ d∗0(Y ×C) which
is defined by g : Y ×B Y → S1. The compatibility condition as in (1.1) has the form
δ ∗1 (g) = δ ∗0 (g)δ ∗2 (g). If we denote by gU,V = g|(U ∩V ), then the compatibility be-
comes the two relations

(a)
gU,V = g−1

V,U on U ∩V

and
(b)

gU,V gV,W gW,U = 1 on U ∩V ∩W .

This data g : Y ×X Y → S1 or equivalently the collection of gU,V : U ∩V → S1 is the
descent data for the line bundle on B.

1.7. Second-Order Gluing or Cocycle Condition Consider again the cosimplicial
object in (1.5) for Z = S1 with a map g : Y ×B Y → S1 or equivalently a family of
maps gU,V : U ∩V → S1. On U ∩V ∩W , we form the function λU,V,W : U ∩V ∩W →
S1, or equivalently, λ : Y ×B Y ×B Y → S1 given by relation λU,V,W = gU,V gV,W gW,U .
We assume that λ has the following properties:

(1) λU,V,W = λ−1
U,W,V = λ−1

W,V,U = λ−1
V,U,W on U ∩V ∩W and

(2) δ (λ )U,V,W,T = λV,W,T λ−1
U,W,T λU,V,T λ−1

U,V,W = 1 on U ∩V ∩W ∩T

for U,V,W,T ∈Φ. The function λ satisfying (1) and (2) is equivalent to a line bun-
dle L on Y ×B Y satisfying the following:

(a) τ∗(L) and L∨ = L(−1)⊗ are isomorphic, where τ interchanges the two factors of
Y ×B Y and

(b) the line bundle d∗0(L)⊗d∗1(L)(−1)⊗⊗d∗2(L) is trivial.
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2 Definition of Bundle Gerbes

For the definition of bundle gerbes, we use the previous fibre product notation re-
lated to gluing of bundles for the projections.

2.1. Fibre Product Three-Stage Simplicial Space We start with a general three
stage simplicial space

Z3
d0,d1,d2,d3 �� Z2

d0,d1,d2 �� Z1
d0,d1 �� Z0 .

In that case, Z3 = Y ×B Y ×B Y ×B Y , Z2 = Y ×B Y ×B Y , and Z1 = Y ×B Y , Z0 = Y
for a space Y over B, that is, a map Y → B. The morphisms di refer to the projection
which deletes the ith coordinate 0 ≤ i ≤ q on Zq. These morphisms compose with
the following relation

did j = d j−1di for 0≤ i < j ≤ q on Zq .

2.2. Definition A bundle gerbe over a space B is a triple consisting of a locally
trivial bundle p : Y → B, a line bundle L→ Y ×B Y over the fibre product of Y with
Y over B, and an isomorphism of line bundles

γ : d∗2(L)⊗d∗0(L)−→ d∗1(L)

on Z2 = Y ×B Y ×B Y satisfying an associative law on the fourfold product Z3 =
Y ×B Y ×B Y ×B Y which is the following commutative diagram where we use the
cosimplicial relation d∗j d∗i = d∗i d∗j−1 for i < j freely.

d∗3(d∗2(L)⊗d∗0(L))⊗d∗1d∗0(L)

d∗3(γ)⊗d∗1 d∗0(L)
��

d∗3d∗2(L)⊗d∗0(d
∗
2(L)⊗d∗0(L))

d∗3 d∗2(L)⊗d∗0(γ)
��

d∗3d∗1(L)⊗d∗1d∗0(L) d∗3d∗2(L)⊗d∗0d∗1(L)

d∗1(d
∗
2 ⊗d∗0(L))

d∗1(γ)
��

d∗2(d∗2(L)⊗d∗0(L))

d∗2(γ)
��

d∗1d∗1(L) d∗2d∗1(L)

2.3. Definition A morphism of bundle gerbes is a triple consisting of a map f : B′ →
B, an f -bundle morphism u : Y ′ → Y , and a line bundle morphism w : L′ → L such
that over u×B′ u×B′ u we have a commutative diagram
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d∗2(L′)⊗d∗0(L
′)

γ ′ ��

d∗2(w)⊗d∗0(w)
��

d∗1(L
′)

d∗1(w)
��

d∗2(L)⊗d∗0(L)
γ �� d∗1(L).

If f is the identity on B, then u is a B-morphism of bundle gerbes.

2.4. Remark The composition of morphisms of bundle gerbes is again a morphism
of bundle gerbes. We can speak of the category (bun/gerbes) of bundle gerbes and
the category (bun/gerbes/B) of bundle gerbes over B.

2.5. Remark The categories (bun/gerbes) and (bun/gerbes/B) have finite products
beginning with the product of bundles over B and then the fibrewise tensor product
of the line bundles on the product of their base space. For the bundle gerbes Y ′ → B′
with line bundle L′ on Y ′ ×B′ Y

′ and Y ′′ → B′′ with line bundle L′′ on Y ′′ ×B′′Y
′′, the

product Y ′×Y ′′ → B′×B′′ has the line bundle q′∗(L′)⊗q′′∗(L′′) on (Y ′ ×Y ′′)×B′×B′′
(Y ′×Y ′′) = (Y ′×B′Y

′)×(Y ′′×B′′Y
′′), where q′ and q′′ are the projections to the first

and second factors.

2.6. Example For a bundle p : Y → B and a line bundle J on Y by using the dual J∨,
we form the line bundle L = d∗1(J)⊗d∗0(J

∨) and define the following bundle gerbe
δ (J) as p and L with the natural morphism given by

γ : d∗2(d
∗
1(J)⊗d∗0(J

∨))⊗d∗0(d
∗
1(J)⊗d∗0(J

∨)) �� d∗1(d
∗
1(J)⊗d∗0(J

∨))

d∗2d∗1(J)⊗d∗2d∗0(J
∨)⊗d∗0d∗1(J)⊗d∗0d∗0(J∨) �� d∗1d∗1(J)⊗d∗1d∗0(J∨)

d∗2(L)⊗d∗0(L) �� d∗1(L)

Here, we have used relations d∗2d∗1 = d∗1d∗1 , d∗2d∗0 = d∗0d∗1 , and d∗0d∗0 = d∗1d∗0 .

2.7. Definition A bundle gerbe Y → B with L on Y ×B Y is trivial provided there
exists a line bundle J on Y with L isomorphic to δ (J).

3 The Gerbe Characteristic Class

3.1. Remark Now, we define the characteristic class of a bundle gerbe. The first
Chern class of a line bundle L on B is given by choosing an open covering Ui, i ∈ I
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and sections si : Ui→ L|Ui which are never zero. Then on the intersection Ui∩Uj,
we have relations between the everywhere nonzero sections of the form si = gi js j,
where gi j : Ui ∩Uj → C∗. On the intersection Ui ∩Uj ∩Uk, the restrictions of the
section changing functions satisfy

gi jg jkgki = 1 or gi jg jk = gik .

The inclusions Ui→ B induce a map f : Y =
∐

i∈IUi→ B, and f−1(L) = M is trivial
on Y . The bundle L is the result of the gluing isomorphism d∗1(M)→ d∗0(M) on
Y ×B Y which is just multiplication by gi j on Ui×B Uj isomorphic to Ui∩Uj. Recall
{gi j} gives the Chern class c1(L).

3.2. Definition A bundle gerbe over B with map p : Y → B and line bundle L→
Y ×BY is locally trivial provided there exists an open covering Ui, i∈ I of B and sec-
tions si : Ui→Y of p such that on Ui j =Ui∩Uj the induced line bundle (si,s j)−1(L)
is trivial. The sections si : Ui → Y are called trivializing sections of the gerbe,
and they can be collected to Z = Z0 =

∐
i∈IUi giving a map Z → B and a lift-

ing s : Z → Y over B such that (s×Z s)−1(L) = M is a trivial line bundle over
Z×B Z.

3.3. Definition Consider a locally trivial bundle gerbe over B with map p : Y → B,
line bundle L→ Y ×B Y over the fibre product of Y over B, and an isomorphism of
line bundles

γ : d∗2(L)⊗ d∗0(L)−→ d∗1(L)

on Y ×B Y ×B Y satisfying the above associative law on the fourfold product Y ×B

Y ×B Y ×B Y . The local cocycle condition with the trivializing sections si : Ui→ Y
of the gerbe is given by inducing the isomorphism γ to s−1(γ) : d∗2(M)⊗d∗0(M)→
d∗1(M) on Z×B Z×B Z given by a function a : Z×B Z×B Z→ C

∗ or equivalently a
family of complex valued functions ai jk : Ui jk→ C

∗ satisfying the relations

gi jg jkgki = ai jk or gi jg jk = ai jkgik .

3.4. Remark The cocycle condition on the ai jk : Ui jk→ C
∗ is derived from the asso-

ciative law condition in the isomorphism γ . The result is a continuous cohomology
class or equivalently a sheaf cohomology class {ai jk} in H2(B,C∗).

3.5. Definition The gerbe cohomology class of a locally trivial gerbe is the co-
homology class in H3(B,Z) coming from the class {ai jk} ∈ H2(B,C∗) under the
coboundary operator arising from the short exact sequence

0−→ Z−→C−→ C
∗ −→ 1 .
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3.6. Remark The notion of continuous cohomology Hq(X ,A) with values in a topo-
logical abelian group can be defined by the iterated classifying space construction
Bq(A) = B(Bq−1(A)). This means that B(A) is naturally an abelian topological group
if A is an abelian topological group. This can be carried out in the simplicial lan-
guage which we have not mentioned up to now or by a modification of the Milnor
construction by Milgram.

3.7. Notation For a bundle gerbe L→ Y ×B Y , also denoted later by L/Y ×B Y , the
corresponding characteristic class is denoted by

α(L/Y ×B Y ) ∈H3(B,Z) .

The elementary properties of α are the following

3.8. Remark We have α(L∨/Y ×B Y ) = −α(L/Y ×B Y ) and for the tensor product
α(L′ ⊗L′′/Y ×B Y ) = α(L′/Y ×B Y )+ α(L′′/Y ×B Y ).

With respect to morphism, we have the naturality property directly from the
definitions.

3.9. Proposition Let u : Y ′ → Y ′′ be a bundle map over a map of the base space
f : B′ → B′′, and let w : L′ → L′′ be a u×B u map of line bundles. Then, we
have

f ∗(α(L′′/Y ′′ ×B′′ Y
′′)) = α(L′/Y ′ ×B′ Y

′).

4 Stability Properties of Bundle Gerbes

Bundle gerbes have stability properties relative to trivial bundle gerbes just as
vector bundles have stability properties relative to trivial bundles. The bundle
gerbe characteristic class α(L/Y ×B Y ) ∈ H3(B,Z) gives a complete classifica-
tion as in the case of B(H)-algebra bundles A over X for an infinite-dimensional
Hilbert space H, where the characteristic class is denoted by α(A) ∈ H3(B,Z), see
20(4.12).

4.1. Proposition A bundle gerbe L/Y ×B Y is a trivial bundle gerbe if and only if
α(L/Y ×B Y ) = 0 in H3(B,Z).

For the proof, note that a trivialization of L/Y ×B Y gives a coboundary for the
cocycle α(L/Y ×B Y ) and conversely, a coboundary relation for the cocycle is the
descent data for the trivialization of the gerbe.

4.2. Definition Two bundle gerbes L′/Y ′ ×B′ Y
′ and (L′′/Y ′′ ×B′′ Y

′′) are stably iso-
morphic provided that L′ ⊗T ′ and L′′ ⊗T ′′ are isomorphic for trivial bundle gerbes
T and T ′ or equivalently L′ ⊗ (L′′)∨ is a trivial gerbe.

4.3. Proposition The function which assigns to a stable isomorphism class
[L/Y ×B Y ] of bundle gerbes the characteristic class α(L/Y ×B Y ) ∈ H3(B,Z) is
a bijection.

For the proof, we use an extension of the idea of (4.1).
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5 Extensions of Principal Bundles Over a Central Extension

In geometry, structure groups of bundles usually are reduced by putting additional
structure on the basic geometric construction. This is the case with vector bundles
where by introducing a metric the structure groups are reduced from GL(n,C) to
the compact U(n). The fact that it is always possible to reduce the structure group
from the general linear group to the unitary group is related to the fact that all vector
bundles can be endowed with a metric.

In physics, structure groups of bundles are changed by going from the
symmetries of a classical system which are representations to the symmetries of
the related quantized system which are projective representations. This change in
structure group is measured by a characteristic class.

5.1. Notation Let
1−→C

∗ −→ G′ −→G−→ 1

be a central extension with classifying space sequence

. . .−→G−→ B(C∗)−→ B(G′) γ−→ B(G)
β−→ B(B(C∗)) = K(Z,3) .

As mentioned in (3.6), the double classifying space B(B(C∗)) can be defined, and
the map β and the map G→ B(C∗) come from a similar construction.

5.2. Extension of Structure Group Class Let P be a principal G-bundle over B
with a classifying map fP : B→ B(G). We look for a G′ principal bundle which
factors P′ → P→ B, where the first map is G′ → G equivariant. In particular, the
quotient map P′/C

∗ → P is defined and G-equivariant. This principal G′-bundle is
classified by a map fP′ : B→ BG′ where γ fP′ = fP up to homotopy, see 7(3.3). Since
we have a fibre sequence, we have the following assertion:

5.3. Proposition The principal G-bundle P has a lifting to P′ if and only if the three-
dimensional cohomology class defines β fP as 0 in H3(B,Z).

We denote the obstruction to lifting by α(P) = β fP in H3(B,Z).
These considerations resemble the role of w1 for an orientation of a vector bun-

dle, see 12(2.3).

6 Modules Over Bundle Gerbes and Twisted K-Theory

Starting with a B(H) algebra bundle, we introduce the related twisted K-theory by
using the action of a bundle gerbe on gerbe modules. The stability theory of gerbe
modules gives another formulation of twisted K-theory, see 22(3.2).

Recall that a bundle gerbe L→Y×BY or just L/Y×BY has a structure morphism
γ : d∗2(L)⊗d∗0(L)→ d∗1(L) on Y ×BY ×B Y satisfying an associative law on the four-
fold product Y ×B Y ×B Y ×B Y .
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6.1. Definition A module over L/Y ×B Y is a pair consisting of a vector bundle
E→Y together with a vector bundle isomorphism σ : L⊗d∗0(E)→ d∗1(E) satisfying
the associative law which is the following commutative diagram where we use the
cosimplicial relations d∗j d∗i = d∗i d∗j−1 for i < j freely.

(d∗2(L)⊗d∗0(L))⊗d∗1d∗0(E)

γ⊗d∗1 d∗0(E)
��

d∗2(L)⊗d∗0(L⊗d∗0(E))

d∗2(L)⊗d∗0(σ)
��

d∗1(L)⊗d∗1d∗0(E) d∗2(L)⊗d∗0d∗1(E)

d∗1(L⊗d∗0(E))

d∗1(σ)
��

d∗2(L⊗d∗0(E))

d∗2(σ)
��

d∗1d∗1(E) d∗2d∗1(E)

The dimension of the module is the dimension of the vector bundle.
A morphism f : E ′ → E ′′ of modules over the bundle gerbe L/Y ×B Y is a vector

bundle morphism f over Y such that the following diagram of action morphisms is
commutative.

L⊗d∗0(E
′) σ ′ ��

d∗0( f )
��

d∗1(E ′)

d∗1( f )
��

L⊗d∗0(E
′′) σ ′′ �� d∗1(E ′′)

The composition of module morphisms over the bundle gerbe L/Y×BY as vector
bundle morphisms is again a morphism of modules over the gerbe L/Y ×B Y . Let
Mod(L/Y ×B Y ) denote the category of modules over the gerbe L/Y ×B Y with the
operations of direct sum E ′ ⊕E ′′ and tensor product E ′ ⊗E ′′ defined in the obvious
manner.

6.2. Notation Let Iso(L/Y ×B Y ) denote the set of isomorphism classes of ele-
ments in Mod(L/Y×BY ) with the semiring structure given by direct sum and tensor
product.

6.3. Proposition If a gerbe L/Y ×B Y has a module E of dimension n, then n ·
α(L/Y ×B Y ) = 0 in H3(B,Z).

Proof . When E is one dimensional, then the action σ defines a trivialization of
L/Y ×B Y of L, and if E is n dimensional, then Ln⊗/Y ×B Y acts on the nth
exterior power ΛnE which is one dimensional, and thus Ln⊗/Y ×B Y is trivi-
alizable so that 0 = α(Ln⊗/Y ×B Y ) = n · α(L/Y ×B Y ). This proves the
proposition.
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6.4. Proposition A trivialization of L/Y ×B Y defines a semiring morphism Mod
(L/Y ×B Y )→ Vect(B). Further, two stably equivalent gerbes (L′/Y ′ ×B Y ′) and
(L′′/Y ′′ ×B Y ′′) have isomorphic semiring Mod(L′/Y ′ ×B Y ′) and
Mod(L′′/Y ′′ ×B Y ′′).

Observe that the action of a trivialized gerbe is just descent data for a bundle, and
stabilizing relations gives also descent data for comparing the module categories.

6.5. Definition Let B be a compact space. For a given torsion element α ∈H3(B,Z)
the twisted K-theory constructed by bundle gerbes is the Grothendieck group Kα (B)
of the semigroup Iso(L/Y ×B Y ) where α = α(L/Y ×B Y ).

For the comparison of this definition of twisted K-theory with 22(3.2), we use
the class defined for the extension in (5.1)

1−→C
∗ −→G′ −→ G−→ 1,

where G′ = GL(H) and G = PGL(H). An algebra bundle has the form P[B(H)],
where P is a principal U(H)-bundle or B(H)-bundle. This has a clear relation
to the gerbe, and the sections of the Fredholm subbundle is related to gerbe
modules.

We will not go into this further here, but the interested reader can find the details
and also the discussion of the nontorsion case in the reference: Bouwknegt et al.
(2002). In the references of this paper, one will find articles developing the theory
of bundle gerbes including the first paper of Murray.

Reference

Bouwknegt, P., Carey, A.L., Mathai, V., Murray, M.K., Stevenson, D.: Twisted K-theory and
K-theory of bundle gerbes. Comm. Math. Phys. 228: 17–45 (2002) 286



Chapter 24
Category Objects and Groupoid Gerbes

We introduce the notions of category objects and groupoid objects in a category C
with finite fibre products. A groupoid object is a category object with an inversion
structure morphism which sometimes is unique. In this case, a groupoid is a category
object with an axiom, otherwise it is a category with additional structure. For this,
we begin with n-level pseudosimplicial objects in a category in order to formulate
the notion of a category object. These have been used already for a description of
local triviality of bundles and the construction of bundles from local data or from
descent data. Then, we go further with simplicial objects, geometric realization, the
nerve of a category, and the final step in the detour away from gerbes to the definition
of algebraic K-theory. All this illustrates the vast influence of these general concepts
in mathematics for which there are more and more applications to physics.

Groupoid gerbes are line bundles over the morphism space G(1) in a groupoid
G(∗), which in case G = G(1) is a group, correspond to central extensions. In the
case of bundle gerbes, these groupoid gerbes are line bundles L over the fibre product
Y ×B Y of a space Y over B together with a multiplication which uses the fibre prod-
uct structure. Moreover, for bundle gerbes, there is a line bundle isomorphism on
Y ×B Y ×B Y with an associativity condition on Y ×B Y ×B Y ×B Y , and for groupoid
gerbes, there is a line bundle isomorphism on G(1)×G(0) G(1) with an associativity
condition on

G(1)×G(0) G(1)×G(0) G(1) .

The line bundle on G(1) usually is taken to be symmetric with respect to the inverse
mapping of the groupoid.

1 Simplicial Objects in a Category

In several places, we have already used the formalism of part of a simplicial object to
organize data and axioms especially for the local description of bundles, see 5(4.5)
and 25(1.1), for the basic ingredients of a bundle gerbe 25(2.2). We will use these
concepts to describe the category objects and groupoid objects in a category C .

D. Husemöller et al.: Category Objects and Groupoid Gerbes, Lect. Notes Phys. 726, 287–301 (2008)
DOI 10.1007/978-3-540-74956-1 25 © Springer-Verlag Berlin Heidelberg 2008
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1.1. Definition An n-level pseudosimplicial object in a category C is a sequence of
objects Zq for 0≤ q≤ n in C together with morphisms di : Zq→ Zq−1 for 0≤ i≤ q
in C such that

did j = d j−1di : Zq −→ Zq−2

for 0≤ i < j ≤ q. A morphism of n-level pseudosimplicial objects is a sequence of
morphisms fq : Z′q→ Z′′q for 0≤ q≤ n such that

di fn = fn−1di for 1≤ i≤ n .

The reason for the term pseudosimplicial instead of simplicial is that a simpli-
cial object Z.will also have morphisms s j : Zq → Zq+1 for 0 ≤ j ≤ q with suitable
relations.

We can display every morphism and object easily up to three levels

Z3
d0,d1,d2,d3 �� Z2

d0,d1,d2 �� Z1
d0,d1 �� Z0.

and for descent questions for a bundle E over Y = Z0, the terms arise as fibre prod-
ucts relative to a map f : Y → B

Z2 = Y ×B Y ×B Y
d0,d1,d2 �� Z1 = Y ×B Y

d0,d1 �� Z0 = Y .

This extends further with Z3 = Y ×B Y ×B Y ×B Y , Z2 = Y ×B Y ×B Y , Z1 = Y ×B Y ,
and Z0 =Y , the morphisms di refer to the projection which deletes the ith coordinate
0≤ i≤ q on Zq.

1.2. Definition Associated to a first level or first stage pseudosimplicial object

Z1 = Z(1)
d0,d1−→ Z(0) = Z0 in a category, we have an object, namely the fibre product

denoted by Z(1)∗Z0 Z(1) = Z(1)d0(×Z(0))d1Z(1) which has a first and second pro-
jection denoted by pr1 = d2 : Z(1)∗Z0 Z(1)→ Z(1) and pr2 = d0 : Z(1)∗Z0 Z(1)→
Z(1), respectively. Note that d2 is the last factor deleted and d0 is the first factor
deleted in the case Z(1) = Z(0)×B Z(0) for f : Z(0)→ B.

We have used pseudosimplicial objects of order n to organize gluing data, and
now we consider the complete concept of a simplicial object, and in the case of
simplicial set, we define a filtered space called the geometric realization.

1.3. Definition A simplicial object X. in a category C is a sequence of objects Xn

for n≥ 0 in C together with morphisms in C defined by

di(X) = di : Xn −→ Xn−1 and s j(X) = s j : Xn −→ Xn+1

for 0≤ i, j ≤ n such that the following relations hold

(1) did j = d j−1di (i < j)
(2) sis j = s jsi−1 (i > j)
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and

(3) dis j =

⎧
⎨
⎩

s j−1di (i < j)
1 (i = j, j + 1)
s jdi−1 (i > j + 1) .

1.4. Definition A morphism f. : X.→ Y. of simplicial objects in a category is a
sequence of morphisms fn : Xn→ Yn satisfying the relations

di(Y ) fn = fn−1di(X) and si(Y ) fn = fn+1si(X)

with 0≤ i, j ≤ n.

1.5. Remark The composition of two morphisms f. : X.→Y.and g.: Y.→ Z.defined
by the relation (g f )n = gn fn is a morphism X.→ Z. of simplicial objects in the
category C . With these definitions, we have the category Δ(C ) of simplicial objects
in C .

We introduce a topological space associated to a simplicial set, or in other words,
we define a functor R : Δ(set)→ (top) from the category of simplicial sets to the
category of topological spaces, called geometric realization using affine simplexes.

1.6. Definition The affine simplex A(n) is the closed subset of the compact cube
[0,1]n+1⊂R

n+1 consisting of all points (t0, . . . ,tn)∈ [0,1]n+1⊂R
n+1 with t0 + . . .+

tn = 1. The coordinates ti of these points in A(n) are called barycentric coordinates.

1.7. Remark The boundary ∂A(n) of A(n) is related to the cosimplicial operations
δi : A(n−1)→ A(n) defined for 0≤ i≤ n in barycentric coordinates by

δi(t0, . . . ,tn−1) = (t0, . . . ,ti−1,0,ti, . . . ,tn−1) .

The boundary ∂A(n) =
⋃

i∈[n] im(δi) is a union of the images of the face morphisms
δi for i ∈ [n] = {0,1, . . . ,n} .

1.8. Remark The iterates of the cosimplicial operations satisfy δ jδi = δiδ j−1 :
A(n−2)→ A(n) for 0≤ i < j ≤ n, where both compositions will take (t0, . . . ,tn−2)
to (t0, . . . ,ti−1,0,ti, . . . t j−1,0,t j, . . . ,tn−2). The other cosimplicial operations σi :
A(n + 1)→ A(n) for 0≤ j ≤ n are defined by the formulas

σ j(t0, . . . ,tn+1) = (t0, . . . ,t j−1,t j + t j+1,t j+2, . . . ,tn+1) .

1.9. Definition The geometric realization R(X.) of a simplicial set X. is the quotient
of the disjoint union

∐
0≤nXn×A(n) by the simplicial relations which are generated

by
(di(x),t)∼ (x,δi(t)) and (s j(x′),t ′)∼ (x′,σ j(t ′))

for x ∈ Xn, t ∈ A(n− 1), x′ ∈ Xn−1, t ′ ∈ A(n + 1) for 0≤ i, j ≤ n.

1.10. Remark The homology and cohomology of the space R(X.) can be calcu-
lated in terms of the simplicial set X.. The geometric realization R(X.) is a fil-
tered space with R(X.)k being the image of

∐
0≤n≤kXn×A(n) in R(X.), and level
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R(X.)k/R(X.)k−1 is a wedge of k-spheres each one for each element of Xk −∐
0≤ j≤ks j(Xk−1), the set of nondegenerate k-simplexes in X..
Thus, a simplicial set generates a filtered space whose homology is controlled by

the combinatorial topology of the simplicial set.

2 Categories in a Category

This is a short introduction to the concept of category in a form leading to the defi-
nition of category objects in a category X .

2.1. Small Categories as Pairs of Sets Let C be a small category which means
that the class of objects C(0) is a set. Form the set C(1) equal to the disjoint union
of all Hom(X ,Y ) for X ,Y ∈ C(0). These two sets are connected by several func-
tions. Firstly, we have the domain (left) and ring (right) functions l,r : C(1)→C(0)
defined by the requirement that

l(Hom(X ,Y )) = {X} and r(Hom(X ,Y )) = {Y}

on the disjoint union. For C(1), we have f : l( f )→ r( f ) is a notation for the mor-
phism f in C.

Secondly, we have an identity morphism for each object of C which is a function
e : C(0)→C(1) having the property that le and re are the identities on C(0). Here,
e(X) = idX : X → X for e ∈ Hom(X ,X).

Thirdly, we have composition g f of two morphisms f and g but only in case
where r( f ) = l(g). Hence, composition is not defined in general on the entire
product C(1)×C(1), but it is defined on all subsets of the form Hom(X ,Y )×
Hom(Y,Z) ∈C(1)×C(1). This subset is called the fibre product of r : C(1)→C(0)
and l : C(1)→C(0) consisting of pairs ( f ,g) ∈C(1)×C(1) where r( f ) = l(g). The
fibre product is denoted by C(1)r×

C(0)l
C(1) with two projections r, l : C(1)r×

C(0)l
C(1)→

C(0) defined by

l( f ,g) = l( f ) and r( f ,g) = r(g).

Then, composition is defined by m : C(1)r×
C(0)l

C(1)→ C(1), where m( f ,g) = g f

satisfying lm( f ,g) = l( f ,g) = l( f ) and rm( f ,g) = r( f ,g) = r(g) . Now, the reader
can supply the unit and associativity axioms.

Fourthly, the notion of opposite category C op where f : X → Y in C be-
comes f op : Y → X in C op, and (g f )op = f opgop can be described as C op =
(C(0),C(1),e, lop = r,rop = l,mop = mτ), where τ is the flip in the fibre product
τ : C (1)r×

C(0)l
C(1)→C(1)r×

C(0)l
C(1).

2.2. Remark We rewrite the previous setup where left l is replaced by d1 delet-
ing the first factor and right r is replaced by d0 deleting the 0-factor in a pair
using the second-level pseudosimplicial notation of the previous section l = d1,
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r = d0 : C(1)→C(0). Furthermore, we have the fibre product mixing d0 and d1

giving C(1) ∗C(0) C(1) = C(1)r×
C(0)l

C(1) with the projection on the second and first

factors d0,d2 : C(1) ∗C(0) C(1) → C(1), respectively. A category object structure
fills in this picture with a morphism d1 : C(1) ∗C(0) C(1) → C(1) extending the
structure to a second-level pseudosimplicial object where C(2) = C(1) ∗C(0) C(1)
giving d0,d1,d2 : C(2)→ C(1). In addition, we have a base or identity morphism
e : C(0)→C(1).

2.3. Definition Let C be a category with finite fibre products. A category object
C(∗) in C is a sextuple (C(0),C(1), l,r,e,m) consisting of two objects, C(0) and
C(1), and four morphisms

(1) l,r : C(1)→C(0) called domain (left) and range (right)
(2) e : C(0)→C(1) a unit morphism, and
(3) m : C(1)r×

C(0)l
C(1)→ C(1) called multiplication or composition satisfying the

following axioms:

(Cat1) The compositions le and re are the identities in C(0).
(Cat2) Domain and range are compatible with multiplication

C(1)r×
C(0)l

C(1) m ��

pr1/pr2

��

C(1)

l/r

��
(C(1))

l/r �� C(0)

(Cat3) (associativity) The following diagram is commutative

C(1)r×
C(0)l

C(1)r×
C(0)l

C(1) m×C(1) ��

C(1)×m
��

C(1)r×
C(0)l

C(1)

m

��
C(1)r×

C(0)l
C(1) m �� C(1)

(Cat4) (unit property of e) m(C(1),er) and m(le,C(1)) are each identities on C(1).

2.4. Definition A morphism u(∗) : C′(∗)→C′′(∗) from the category object C′(∗) in
C to the category object C′′(∗) in C is a pair of morphisms u(0) : C′(0)→ C′′(0)
and u(1) : C′(1)→ C′′(1) commuting with the four structure morphisms of C′(∗)
and C′′(∗). The following diagrams have to be commutative
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C′(0)

u(0)
��

e′ �� C′′(1)

u(1)
��

C′′(0) e′′ �� C′′(1)

C′(1)
l′/r′ ��

u(1)
��

C′′(0)

u(0)
��

C′′(1)
l′′/r′′ �� C′′(0)

and
C′(1)r×

C′(0)
lC′(1) m′ ��

u(1)×
u(0)

u(1)

��

C′(1)

u(1)

��
C′′(1)r×

C′′(0)
lC′′(1) m′′ �� C′′(1)

2.5. Example A category object C(∗) in the category of sets (set) is a small category
as in (1.1).

2.6. Example A category object C(∗) with C(0), the final object in C , is just a
monoidal object C(1), object together with a multiplication, in the category C .

2.7. Example The pair of morphisms consisting of the identities u(0) = C(0) and
C(1) = u(1) is a morphism u(∗) : C(∗) → C(∗) of a category object called the
identity morphism on C(∗). If u(∗) : C′(∗)→ C′′(∗) and v(∗) : C′′(∗)→ C(∗) are
two morphisms of category objects in C , then (vu)(∗) : C′(∗)→ C(∗) defined by
(vu)(0) = v(0)u(0) and (vu)(1) = v(1)u(1) is a morphism of category objects in C .

2.8. Definition With the identity morphisms and the composition of morphisms in
(2.7), we see that the category objects in C and the morphisms of category objects
form a category called cat(C ), that is, the category of category objects in C . There
is a full subcategory mon(C ) of cat(C ) consisting of those categories C(∗), where
C(0) is the final object in C . This is the category of monoids in the category C .

Now, we return to the point of view of pseudosimplicial objects as a perspective
on category objects.

2.9. Remark The category cat(set) of category objects in the category (set) of sets
is just the category of small categories where morphisms of categories are functors
and composition is composition of functors. Also mon(set) is just the category of
monoids. There is an additional structure of equivalence between morphisms as
natural transformation of functors, and this leads to the notion of 2-category which
we will not go into here.

2.10. Remark Let C(∗) = (C(0),C(1), l,r,e,m) be a category object in a category
C . In (2.2), we have identified the first two terms in a pseudosimplicial object
with d0 = r and d1 = l with s0 = e : C(0)→ C(1) we have a simplicial object.
Then, by introducing the special fibre products using r on the left and l on the
right, we have C(2) = C(1) ∗C(0) C(1) and C(3) = C(1) ∗C(0) C(1) ∗C(0) C(1) but
also C(3) =C(2)∗C(0)C(1) = C(1)∗C(0)C(2). The outside projections give the sim-
plicial morphism
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d0,d3 : C(3)−→C(2) and d0,d2 : C(2)−→C(1).

The composition in the category is d1 :C(2)→C(1). The relation d0d2 = d1d0 is just
compatibility in the fibre product, and two relations d0d1 = d0d0 and d1d2 = d1d1

are just the fact that the domain of g f is the domain of f and the range of g f is the
range of g. The simplicial morphisms d1,d2 : C(3)→C(2) are defined as c∗C(0)C(1)
and C(1)∗C(0) c, where c = d1 : C(2)→C(1). There are six relations did j = d j−1di

for i < j, where

(a) d1d2 = d1d1 is associativity
(b) d0d2 = d1d0 and d1d3 = d2d1 are compositions, and
(c) d0d1 = d0d0, d2d3 = d2d2, and d0d3 = d2d0 are compatibility in the fibre product.

3 The Nerve of the Classifying Space Functor and Definition
of Algebraic K-Theory

3.1. Definition The classifying space functor or nerve functor

Ner: (cat)−→ Δ (set)

is defined by assigning to a small category X the nerve Ner(X ) in the category of
simplicial sets Δ (set) and assigning to a functor F : X →Y the morphism Ner(F) :
Ner(X )→ Ner(Y ) of simplicial sets given by the formula

Ner(F)(X0, . . . ,Xp;u1, . . . ,up) = (F(X0), . . .F(Xp);F(u1), . . . ,F(up)).

For functors F : X →Y and G : Y →Z , we have Ner(GF) = Ner(G)Ner(F) :
X →Z and Ner : (cat)→ Δ (set) is a well-defined functor with the following sim-
plicial operations.

3.2. Definition The nerve Ner(X ) of a small category (X ) is the simplicial set,
where Ner(X )p is set of all sequences (X0, . . . ,Xp;u1, . . . ,up) where ui : Xi−1→ Xi

is a morphism in X for 1≤ i≤ p. The simplicial operations are defined as follows:

(1) di : Ner(X )p→Ner(X )p−1 is defined by deleting the object Xi in the sequence.
More precisely, this is given by the formula

di(X0, . . ,Xp;u1, . . ,up)=

⎧
⎨
⎩

(X1, . . .,Xp;u2, . . . ,up) i = 0
(X0, . . ,Xi−1,Xi+1, . . ,Xp;u1, . . ,ui+1ui, . . ,up) 0< i< p
(X0, . . .,Xp−1;u1, . . .,up−1) i = p .

(2) s j : Ner(X )p → Ner(X )p+1 is defined by putting identity on Xj at Xj. More
precisely, this is given by the formula

s j(X0, . . . ,Xp;u1, . . . ,up) = (X0, . . . ,Xj,Xj, . . . ,Xp;u1, . . ,u j,Xj,u j+1. . ,up),
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where Xj : Xj → Xj is used to denote the identity on Xj. That is, the object has
the same symbol as the identity morphism on the object.

The 0 simplexes of Ner(X ) are just the objects of X , and the 1 simplexes of
Ner(X ) are just the morphisms of X .

The reader is invited to check the simplicial relations.

3.1 Special Low Degree Examples

For the nerve of X , we have the following formulas and relations:

(1) d1(X
f−→ Y ) = X and d0(X

f−→ Y ) = Y ,

(2) d2(X
f−→ Y

g−→ Z) = X
f−→ Y, d1(X

f−→ Y
g−→ Z) = X

g f−→ Z,

d0(X
f−→ Y

g−→ Z) = Y
g−→ Z ,

The relations are

d0d1(X
f−→ Y

g−→ Z
h−→ T ) = d0d0(X

f−→ Y
g−→ Z

h−→ T ) = Z
h−→ T,

d1d2(X
f→ Y

g→ Z
h→ T ) = X

(hg) f−→ T = X
h(g f )−→ T = d1d1(X

f→ Y
g→ Z

h→ T ),

that is, associativity, and

d2d3(X
f−→ Y

g−→ Z
h−→ T ) = d2d2(X

f−→ Y
g−→ Z

h−→ T ) = X
f−→ Y,

d0d2(X
f−→ Y

g−→ Z
h−→ T ) = d1d0(X

f−→ Y
g−→ Z

h−→ T ) = Y
hg−→ T,

d1d3(X
f−→ Y

g−→ Z
h−→ T ) = d2d1(X

f−→ Y
g−→ Z

h−→ T ) = X
g f−→ Z,

d0d3(X
f−→ Y

g−→ Z
h−→ T ) = d2d0(X

f−→ Y
g−→ Z

h−→ T ) = Y
g−→ Z.

An easy check shows that Ner(F) in (3.1) commutes with di and s j defining
a morphism of simplicial sets and that Ner(identity on X ) equals the identity on
Ner(X ).

Before we go to groupoids and gerbes, we wish to indicate how the higher alge-
braic K-theory of a ring R was defined by Quillen using the geometric realization of
the nerve of a category.
3.3 Remark Given a ring R, the category of finitely generated projective mod-
ules (vect/R) has the Grothendieck group K(R) of isomorphism classes of ob-
jects with the direct sum of modules as semigroup structure, see 4(3.1). Using the
subcategory C of (vect/R) of nonzero finitely generated projective modules and
split monomorphisms, Quillen defines the higher K-groups Ki(R) as the homotopy
groups πi−1(Ner(C )). The basic properties follow from the homotopy property of
nerves.
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4 Groupoids in a Category

In the case of a groupoid where each f is an isomorphism with inverse ι( f ) = f−1,
this formula defines a map ι : C(1)→ C(1) with domain and range interchanged
r(ι( f )) = l( f ) and l(ι( f )) = r( f ). There is also the inverse property m( f , ι( f )) =
e(l( f )) and m(ι( f ), f ) = e(r( f )).

4.1. Definition Let C be a category with fibre products. A groupoid G(∗) in C is
a septuple (G(0),G(1), l,r,e,m, ι) where the first six items form a category object
(G(0),G(1), l,r,e,m) and where the inverses morphism ι : C(1)→C(1) satisfies in
addition to (Cat1–Cat4) the following axioms:

(grpoid1) The following compositions hold lι = r and rι = l.
(grpoid2) The following commutative diagram give the inverse property of ι :

G(1)→ G(1)

G(1)
((G(1),ι)/(ι,G(1)) ��

l/r

��

G(1)r×
G(0)l

G(1)

m

��
G(0) e �� G(1).

In general, we can think of a groupoid as a category where every morphism is
an isomorphism, and the process of associating to an isomorphism its inverse is an
isomorphism of the category to its opposite category. Moreover, this isomorphism
is an involution when the double opposite is identified with the original category.

4.2. Example In the category of sets, a category object G(∗) is a groupoid when
every morphism u ∈ G(1), which is defined u : l(u)→ r(u), is a bijection, and in
this case, the morphism ι is the inverse given by ι(u) = u−1 : r(u)→ l(u).

4.3. Remark If ι ′ and ι ′′ are two groupoid structures on a category object (C(0),
C(1), l,r,e,m), then ι ′ = ι ′′. To see this, we calculate as with groups using the asso-
ciative law

ι ′(u) = m(ι ′(u),m(u, ι ′′(u)) = m(m(ι ′(u),u), ι ′′(u)) = ι ′′(u).

This means that a groupoid is not a category with an additional structure, but a
category satisfying an axiom, namely ι exists. Also, we have ιι = G(1), the identity
on G(1) by the same argument.

4.4. Example A groupoid G(∗) with G(0), the final object in C , is just a group object
in the category G .

4.5. Definition A morphism u(∗) : G′(∗)→G′′(∗) of groupoids in C is a morphisms
of categories in C .
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4.6. Remark A morphism of groupoids has the additional property that ι ′′u(1) =
u(1)ι ′. This is seen as with groups from the relation m′′(ι ′′u(1),u(1)) = l′′e′′ =
m′′(u(1)ι ′,u(1)). We derive (2.3) by applying this to the identity functor.

4.7. Definition Let grpoid(C ) denote the full subcategory of cat(C ) determined by
groupoids.

There is a full subcategory grp(C ) of grpoid(C ) consisting of those groupoids
G(∗), where G(0) is the final object. This is the category of groups over the cate-
gory C .

The category grpoid(set) of groupoids over the category of sets is just the cat-
egory of small categories with the property that all morphisms are isomorphisms.
Also grp(set) is just the category (grp) of groups.

4.8. Example Let G be a group object in a category C with fibre products. An action
of G on an object X of C is a morphism α : G×X→ X satisfying two axioms given
by commutative diagrams

(1) (associativity)

G×G×X

μ×X

��

G×α �� G×X

α
��

G×X
α �� X

where μ : G×G→G is the product on the group object, and
(2) (unit)

X = {∗}×X
e×X ��

X ������������ G×X

α








X .

4.9. Remark The related groupoid X〈G〉(∗) is defined by X〈G〉(0) = X and
X〈G〉(1) = G×X with structure morphisms

e = eG×X : X〈G〉(0)−→ X〈G〉(1) = G×X ,

l = pr2 : X〈G〉(1) = G×X −→ X = X〈G〉(0),

and
r = α : X〈G〉(1)−→ X = X〈G〉(0).

For the composition, we need natural isomorphism

θ : X〈G〉(1)r ×
X〈G〉(0)l

X〈G〉(1)−→ G×G×X

given by pr1θ = prG pr1, pr2θ = prG pr2 and pr3θ = prX pr1. Then, composition m
is defined by the following diagram
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X〈G〉(1)r ×
X〈G〉(0)l

X〈G〉(1) θ ��

m

��

G×G×X

μ×X

��
X〈G〉(1) G×X .

The unit and associativity properties of m come from the unit and associativity prop-
erties of μ : G×G→ G.

4.10. Definition With the above notation, X〈G〉(∗) is the groupoid associated to the
G action on the object X in C . It is also called the translation category.

5 The Groupoid Associated to a Covering

Let X =
⋃

α∈I Uα be a covering of X where X is a set, a space and Uα are as usually
open sets, or a smooth manifold and Uα are open submanifolds.

5.1. Definition Let (Uα)α∈I be a covering of X . The groupoidU(∗) associated to the
covering is defined as the coproducts U(0) =

∐
α∈IUα and U(1) =

∐
(α ,β )∈I×IUα ∩

Uβ , and the structure morphisms are defined using the coproduct injections

qα : Uα →∐α∈IUα and qα ,β : Uα ∩Uβ →
∐

(α ,β )∈I×IUα ∩Uβ

as follows.

(1) The source and target morphisms s,t : U(1)→U(0) are defined by the follow-
ing relations

sqα ,β = qα(inc1) and tqα ,β = qβ (inc2),

where inc1 : Uα ∩Uβ →Uα and inc2 : Uα ∩Uβ →Uβ are inclusions.
(2) The unit morphism e : U(0)→U(1) is defined by the following relation eqα =

qα ,α : Uα = Uα ∩Uα .
(3) The multiplication morphism m : U(1)t×

U(0)s
U(1)→U(1) is defined by observ-

ing that the fibre product U(1)t×
U(0)s

U(1)→U(1) is a coproduct of inclusions

qα ,β ′ ×qβ ′′,γ : (Uα ∩U ′β )t×
U(0)s

(U ′′β ∩Uγ) = Uα ∩Uβ ∩Uγ −→U(1)t×
U(0)s

U(1)

and using the notation incα ,β ,γ for the inclusions, where β = β ′ = β ′′

incα ,β ,γ : (Uα ∩U ′β )t×
U(0)s

(U ′′β ∩Uγ) = Uα ∩Uβ ∩Uγ −→Uα ∩Uγ .

With this description of the fibre product, we see that the groupoid multiplication is
defined by the relation
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m(qα ,β ′ ×qβ ′′,γ ) = qα ,γ(incα ,β ,γ).

(4) The inversion morphism ι : U(1)→ U(1) is defined by the requirement that
ιqα ,β = qβ ,α for all α,β ∈ I. The axioms for a groupoid are easily checked,
and this is left to the reader.

5.2. Remark The calculation of the fibre product in terms of triple intersections

qα ,β ′ ×qβ ′′,γ : (Uα ∩U ′β )t×
U(0)s

(U ′′β ∩Uγ) = Uα ∩Uβ ∩Uγ −→U(1)t×
U(0)s

U(1)

has the following extension to n factors U(1), and it is a coproduct of (n− 1)-
fold intersections, which is seen by calculating the fibre product of n injections
qα(0),α ′(1)× qα ′′(1),α ′(2)× . . .× qα ′′(n−1),α(n). As with the simple fibre product, this
reduces to the case

α ′(1) = α ′′(1) = α(1), . . . ,α ′(n−1) = α ′′(n−1) = α(n−1) ,

and the notation is abbreviated to

qα(0),...,α(n) : Uα(0)∩ . . .∩Uα(n) −→ (U(1)t×
U(0)s
∗)n .

6 Gerbes on Groupoids

Now, we return to the simplicial notation for a category which is a groupoid in order
to carry over to groupoids the ideas contained in the previous chapter on bundle
gerbes.

6.1. Notation Let G(∗) = (G(0),G(1), l,r,e,m, ι) be a groupoid in C where sextu-
ple (G(0),G(1), l,r,e,m) is a category object and inverse morphism is ι : G(1)→
G(1). As in (2.2) and (2.9), we identify the first two terms in a simplicial object with
d0 = r, d1 = l, and the unit is s0 = e : G(0)→G(1). Again by introducing the special
fibre product using r on the left and l on the right, we have G(2) = G(1)∗G(0) G(1)
and G(3) = G(1) ∗G(0) G(1) ∗G(0) G(1) = G(2) ∗G(0) G(1) = G(1) ∗G(0) G(2). The
outside projections are given by the simplicial morphisms d0,d3 : G(3) −→ G(2)
and d0,d2 : G(2) −→ G(1) . The composition in the groupoid or category is d1 :
G(2)→ G(1), and we have all the considerations (a), (b), and (c) contained in (2.9)
with a new consideration for ι : G(1)→ G(1), where

(d) d0ι = d1, d1ι = d0 : G(1)→ G(0) and
(e) ιd1 = d1(ι × ι)τ : G(2)→ G(1), where τ : G(2)→ G(2) interchanges the two

factors of G(2) = G(1)∗G(0) G(1) as it is seen from the formulas in (3.3)(2)

d2(X
f−→ Y

g−→ Z) = X
f−→ Y, d1(X

f−→ Y
g−→ Z) = X

g f−→ Z
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and
d0(X

f−→ Y
g−→ Z) = Y

g−→ Z .

6.2. Example Let Y → B be a bundle. Then G(0) = Y and G(1) = Y ×B Y has a
groupoid structure with composition

d1 : G(2) = G(1)∗G(0) G(1) = (Y ×B Y )×B (Y ×B Y )−→ Y ×B Y = G(1)

resulting from projection from the middle two factors to B. The inverse ι : G(1) =
Y ×B Y → Y ×B Y = G(1) just switches the two factors. We leave it to reader to
check the axioms.

6.3. Definition Let G(∗) be a groupoid in the category of spaces. A gerbe on G(∗) is
a pair of a line bundle L on G(1) together with an isomorphism γ : d∗2(L)⊗d∗0(L)→
d∗1(L) over G(2) satisfying the associative law on G(3) which is the following com-
mutative diagram where we use the cosimplicial relations d∗j d∗i = d∗i d∗j−1 for i, j
freely.

d∗3(d∗2(L)⊗d∗0(L))⊗d∗1d∗0(L)

d∗3(γ)⊗d∗1 d∗0(L)
��

d∗3d∗2(L)⊗d∗0(d
∗
2(L)⊗d∗0(L))

d∗3 d∗2(L)⊗d∗0(γ)
��

d∗3d∗1(L)⊗d∗1d∗0(L) d∗3d∗2(L)⊗d∗0d∗1(L)

d∗1(d
∗
2 ⊗d∗0(L))

d∗1(γ)
��

d∗2(d∗2(L)⊗d∗0(L))

d∗2(γ)
��

d∗1d∗1(L) d∗2d∗1(L)

6.4. Definition Let (u,v) : G′(∗)→ G′′(∗) be a morphism of groupoids of spaces,
and let L′,γ ′ be a groupoid gerbe over G′(∗) and L′′,γ ′′ be a groupoid gerbe over
G′′(∗). A v-morphism of gerbes is a v-morphism w : L′ → L′′ of line bundles such
that over v×u v : G′(2)→G′′(2) we have the commutative diagram

d∗2(L′)⊗d∗0(L
′)

γ ′ ��

d∗2(w)⊗d∗0(w)
��

d∗1(L′)

d∗1(w)
��

d∗2(L)⊗d∗0(L)
γ �� d∗1(L)

If (v,u) is the identity on G(∗), then w is a B-morphism gerbes over G(∗).
6.5. Remark The composition of morphisms of groupoid gerbes is again a mor-
phisms of gerbes. We can speak of the category (gerbes) of groupoid gerbes and
the category of (gerbes/G(∗)) over G(∗).
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6.6. Remark The category (gerbes/G(∗)) has tensor products given by the tensor
products of line bundles. An exterior tensor product exists on the product groupoid
G′(∗)×G′′(∗) for a gerbe L′,γ ′ and gerbe L′′,γ ′′.

6.7. Example For a groupoid G(∗) and a line bundle J on G(0) by using the dual
L = d∗1(J)⊗ d∗0(J

∨), we define the following groupoid gerbe δ (J) as γ and L with
the natural morphism given by

γ : d∗2(d
∗
1(J)⊗d∗0(J

∨))⊗d∗0(d
∗
1(J)⊗d∗0(J

∨)) �� d∗1(d
∗
1(J)⊗d∗0(J

∨))

d∗2d∗1(J)⊗d∗2d∗0(J
∨)⊗d∗0d∗1(J)⊗d∗0d∗0(J∨) �� d∗1d∗1(J)⊗d∗1d∗0(J∨)

d∗2(L)⊗d∗0(L) �� d∗1(L).

Here, we have used relations d∗2d∗1 = d∗1d∗1, d∗2d∗0 = d∗0d∗1 and d∗0d∗0 = d∗1d∗0 as in
25(2.6).

6.8. Definition A groupoid gerbe L on G(∗) is trivial provided there exists a line
bundle J on G(0) with L isomorphic to δ (J).

7 The Groupoid Gerbe Characteristic Class

The characteristic class for a groupoid gerbe will lie in the Čech hypercohomology
of the groupoid which is defined using the Čech cochain functor C∗(X ,M) on a
space X with values in a module or sheaf M.

7.1. Definition Let G(∗) be a category of spaces. The Čech cosimplicial object as-
sociated with G(∗) with values in M is

C∗(G(∗),M) : C∗(G(0),M)
δ0 ��
δ1

�� C∗(G(1),M) . . .
δ0 ��
δn

�� C∗(G(n),M)
δ0 ��

δn+1

�� . . . ,

where δi = C∗(di,M).

7.2. Definition The Čech double cochain complex associated to a category of spaces
G(∗) is the double complex where the first coboundary is

δ =
n

∑
i=1

(−1)iδi : C∗(G(n−1),M)−→C∗(G(n),M)

and the second is the Čech coboundary. Let C∗(G(∗),M) denote this double com-
plex. The Čech cohomology of category of spaces G(∗) with values in M denoted by
H
∗(G(∗),M) is the cohomology of the single complex associated with the double

complex C∗(G(∗),M).
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7.3. Remark Let G(∗) be a groupoid gerbe with line bundle L on G(1) together with
an isomorphism γ : d∗2(L)⊗d∗0(L)→ d∗1(L) over G(2) satisfying the associative law
on G(3). The Čech cocycle representing the first Chern class c(1)(L) of L is a cocycle
in C2(G(1),Z) of the associated single complex of the double complex C∗(G(∗),Z).

7.4. Definition With previous notation in (7.3), the characteristic class of gerbe
(G(∗),L) denoted by α(G(∗),L) is the cohomology class in H

∗(G(∗)),Z) repre-
sented by c(1)(L).

7.5. Remark If the groupoid gerbe (G(∗),L) is trivial, then c(1)(L) is trivial in the
first direction, and the characteristic class α(G(∗),L) = 0.





Chapter 25
Stacks and Gerbes

A basic structure in mathematics for the study of a space X is to give to each open set
an object A(U) in a category C together with restriction morphisms rV,U : A(U)→
A(V ) for V ⊂U satisfying rU,U is the identity and the composition property

rW,U = rW,V rV,U for W ⊂V ⊂U .

Such a structure is called a presheaf with values in C .
Again, there is a gluing condition which is realized by a universal construction.

To formulate this, we use adjoint functors which are introduced in Sect. 2. An ex-
ample of such a functor is the sheaf associated to a presheaf.

In this chapter, we consider another approach to gerbes by the more general
concept of stack. A stack over a space X is a configuration of categories over X
associated to open sets of X with various gluing properties. Instead of gluing triv-
ial bundles to obtain a general bundle, we consider categories FU indexed by the
open subsets of a space X together with restriction functors rV,U : FU → FV for
V ⊂U . Normally, we expect to have the composition property rW,U = rW,V rV,U for
W ⊂ V ⊂ U of a presheaf, but now we can only assume that a third element of
structure is given, namely an isomorphism between the functors rW,U and rW,V rV,U .
When these data satisfy a suitable coherence relation, this triple of data is called a
category over X . This concept was introduced by Grothendieck with the term fibred
category over X . It is a generalization of the presheaf of categories where the key
feature is that transitivity of restriction is just defined up to isomorphism.

Although the entire collection of categories, denoted by F (U) or FU , over open
sets do not form a presheaf, but only a presheaf up to an isomorphism in the transi-
tivity relation, it is possible to extract from the category over X various presheaves
on X . The condition that these presheaves are sheaves of sets is the first step in
formulating the definition of a stack. We have seen that descent conditions play a
basic role in many parts of bundle theory, and we formulate descent data concepts
in a category over a space. The condition that a category over a space be a stack is
formulated in terms of descent data in a category being realized as objects in the
category.

D. Husemöller et al.: Stacks and Gerbes, Lect. Notes Phys. 726, 303–322 (2008)
DOI 10.1007/978-3-540-74956-1 26 © Springer-Verlag Berlin Heidelberg 2008
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1 Presheaves and Sheaves with Values in Category

In Chap. 5, principal bundles are introduced without reference to local charts, but
in 5(4.5), we describe what form a local description would take using an étale map
q : U → B, where U is related to an open covering of B. Then in terms of this
description with the concept of descent data, we are able to reverse the process and
go from descent data back to a principal bundle. Now, we return to these concepts
which are also basic in sheaf theory with a brief introduction to sheaf theory as a
preliminary to the discussion of stacks and their related gerbes.

1.1. Definition Let X be a topological space, and let C be a category. A presheaf P
on X with values in C assigns to each open set U of X an object P(U) in C and to
each inclusion V ⊂U of open sets in X a morphism rV,U : P(U)→ P(V ) in C such
that the following two axioms hold:

(a) rU,U = identity on P(U) and
(b) rW,U = rW,V rV,U : P(U)→ P(W ) for open sets W ⊂V ⊂U .

1.2. Remark For a topological space X , we have the category Op(X) coming from
the ordered set of open subsets of X . There is at most one morphism V →U , and the
morphism set HomOp(X)(V,U) is the inclusion V ⊂U otherwise is empty. With this
category, we see that the presheaf P with values in the category C is just a functor
P : Op(X)op→ C on the opposite category, that is, a contravariant functor.

A sheaf is defined as a presheaf where gluing is always possible, or in other
words, descent data is always realized. For the definition we use products in the
category.

1.3. Definition A presheaf F on X with values in category C is a sheaf provided
that for all open coverings U the following sequence is exact

F(U) �� ∏U ′∈U F(U ′) ���� ∏(U ′ ,U ′′)∈U 2 F(U ′ ∩U ′′) .

Here, the first morphism in C is defined from the restriction F(U)→ F(U ′), and
the second pair of morphisms is defined from two restrictions

F(U ′)→ F(U ′ ∩U ′′) and F(U ′′)→ F(U ′ ∩U ′′)

in all cases commuting with the projections from the product.
We remark that the exactness says that the object F(U) is completely determined

from its restrictions to all objects F(U ′) in the open covering U =
∐

U ′∈U U ′ and if
the family of objects F(U ′) in C have the property that their restrictions to overlap-
ping open sets in F(U ′ ∩U ′′) are the same, then we can glue the objects together to
an object in F(U) over the open set U covered by the U ′ ∈U .

1.4. Remark But this is not exactly the gluing that takes place for bundles where we
use an isomorphism between the two restrictions of a′ ∈ F(U ′)→ F(U ′ ∩U ′′) and
of a′′ ∈ F(U ′′)→ F(U ′ ∩U ′′) in F(U ′ ∩U ′′) over the overlapping set U ′ ∩U ′′. The



25.1 Presheaves and Sheaves with Values in Category 305

restrictions are not assumed to be equal, but they come with a given isomorphism as
the part of the data.

1.5. Definition Let P′ and P′′ be two presheaves on X with values in the category
C . A morphism f : P′ → P′′ is a family of morphisms fU : P′(U)→ P′′(U) in C
indexed by the open sets of X commuting with restriction, that is, the following
diagram is commutative for V ∈U

P′(U)
fU ��

r′V,U

��

P′′(U)

r′′V,U

��
P′(V )

fV �� P′′(V ).

A morphism of sheaves is a morphism of underlying presheaves.

Composition of morphisms of presheaves is defined indexwise on the open sets
of X .

1.6. Notation. Let preSh(X ,C ) denote the category of presheaves on X with values
in C and morphisms of presheaves. Let Sh(X ,C ) be the subcategory of sheaves
with values in C . It is a full subcategory in the sense that for two sheaves F ′ and
F ′′, the morphism sets HomSh(X ,C )(F ′,F ′′) = HompreSh(X ,C )(F ′,F ′′). We denote by
J : Sh(X ,C )→ preSh(X ,C ) the inclusion functor for the subcategory of sheaves in
the category of presheaves.

1.7. Key Construction A fundamental process is to turn a presheaf into a sheaf
s(P) to obtain a morphism of presheaves β : P→ J(s(P)) in a universal manner, that
is, the morphism β of functors of preSh(X ,C )→ preSh(X ,C ) has a universal prop-
erty. We explain this universal mapping property of β in terms of adjoint functors
in the next assertion, and we give an introduction to adjoint functors in Sect. 2. We
should emphasize that if J has such an adjoint functor s, called sheafification, then β
exists and satisfies the universal property. Moreover, s is unique up to isomorphism
of functors when it is the adjoint functor to J. In particular, sheafification is part of
this very basic idea which is central for so many constructions in mathematics.

1.8. Theorem For a space X and a category C with colimits, the inclusion functor
J : Sh(X ,C )→ preSh(X ,C ) has a left adjoint functor s : preSh(X ,C )→ Sh(X ,C ).
(It is called sheafification.)

1.9. Construction of s for the Category C === (Set) of Sets Let P be a presheaf of
sets on a space X . The stalk Px of P at x ∈ X is the quotient of the union of all sets
P(U) with x ∈U under the relation a′ ∈ P(U ′) is equivalent to a′′ ∈ P(U ′′) provided
there exists an open set U with x ∈U ⊂U ′ ∩U ′′ such that rU,U ′ (a′) = rU,U ′′(a′′).
This is an equivalence relation. The equivalence class of b ∈ P(V ) is denoted by
[b,x], and it is called the germ of b ∈ P(V ) for x ∈ V . Let ét(P) =

∐
x∈X Px be the

space of all germs with projection π : ét(P)→ X defined by π(Px) = x. The basis of
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the open sets is given by all sets of the form 〈a〉 consisting of all [a,x′] for all x′ ∈U
and a ∈ P(U). Then, π is an étale map. With β : P→ Js(P) where a ∈ P(U) is
carried to the section σ(x) = [a,x], we get the identification s(P)(U) = Γ(U, ét(P)).

2 Generalities on Adjoint Functors

This section is a detour from the aim of the chapter, but it is a basic tool used for the
constructions of the chapter.

Abelianization is defined by a universal property relative to the category of
abelian objects. The theory of adjoint functors, which we sketch now, is the formal
development of this idea of a universal property, and this theory also gives a method
for constructing equivalences between categories. We approach the subject by con-
sidering morphisms between the identity functor and composite of two functors. For
an object X in a category, we frequently use the symbol X also for the identity mor-
phism X → X along with 1X , and the same for a category X , the identity functor
on X is frequently denoted by X . Let (set) denote the category of sets.

2.1. Remark Let X and Y be two categories and T : X →Y and S : Y →X two
functors. Morphisms of functors X →X of the form α : ST →X are in bijective
correspondence with morphisms

a : HomY (Y,T (X))−→HomX (S(Y ),X)

of functors Y op×X → (set), where

(1) the morphism α defines a by the relation a( f ) = α(X)S( f ) and
(2) the morphism a defines α by the relation

a(1T (X)) = α(X) : ST(X)→ X .

Morphisms of functors Y → Y of the form β : Y → T S are in bijective corre-
spondence with morphisms

b : HomX (S(Y ),X)−→ HomY (Y,T (X))

of functors Y op×X → (set), where

(1) the morphism β defines b by the relation b(g) = T (g)β (Y ) and
(2) the morphism b defines β by the relation

b(1S(Y)) = β (Y ) : Y → T S(Y ) .

2.2. Remark For f : Y → T (X), we calculate

b(a( f )) = T (a( f ))β (Y ) = T (α(X))[T S( f )β (Y )] = [T (α(X))β (T (X))] f
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using TS( f )β (Y ) = β (T (X)) f , where β is a morphism of functors, and for g :
S(Y )→ X , we calculate

a(b(g)) = α(X)S(b(g)) = [α(X)ST (g)]S(β (Y)) = g[α(S(Y ))S(β (Y ))]

using α(X)ST (g) = gα(S(Y )), where α is a morphism of functors. Thus, we have
that b(a( f )) = f for all f : Y → T (X) if and only if

T (α(X))β (T (X)) = 1T (X) ,

and we have a(b(g)) = g for all g : S(Y )→ X if and only if

α(S(X))S(β (Y)) = 1S(Y ) .

2.3. Definition An adjoint pair of functors is a pair of functors T : X → Y and
S : Y →X together with an isomorphism of functors of X in X and Y in Y

b : HomX (S(Y ),X)−→HomY (Y,T (X)),

or equivalently, the inverse isomorphism

a : HomY (Y,T (X))−→ HomX (S(Y ),X).

The functor S is called the left adjoint of T and T is the right adjoint of S, and this
is denoted by S � T .

2.4. Remark In the view of (1.1) and (1.2), an adjoint pair of functors can be defined
as T : X → Y and S : Y →X together with two morphisms of functors

β : Y −→ TS and α : ST −→X

satisfying

T (α(X))β (T (X)) = 1T(X) and α(S(X))S(β (Y )) = 1S(Y).

2.5. Remark If S : Y → X is the left adjoint of T : X → Y , then for the dual
categories S : Y op→X op is the right adjoint of T : X op→ Y op.

The relation between adjoint functors and morphism with a universal property is
contained in the next property.

2.6. Universal Property for T :X →→→ Y . For each object Y in Y , we assume we
are given an object s(Y ) in X and a morphism β (Y ) : Y → T (s(Y )) such that for all
f : Y → T (X) there exists a unique morphism g : s(Y )→ X in X with T (g)β (Y ) =
f . Then, there exists a unique functor S : Y →X with S(Y ) = s(Y ) and β : 1Y →
T S, a morphism of functors with b(g) = T (g)β (Y ) defining a bijection

b : HomX (S(Y ),X)−→HomY (Y,T (X), .



308 25 Stacks and Gerbes

The pair (s(Y ),β (Y )) for each Y in Y defines an adjoint pair S � T.

Proof . Let v : Y ′ → Y ′′ be a morphism in Y . We define S(v) : s(Y ′)→ s(Y ′′) by
considering the composite

β (Y ′′)v : Y ′ −→ T (s(Y ′′))

and applying the universal property giving a unique morphism called S(v) : s(Y ′)→
s(Y ′′) such that T (S(v))β (Y ′′) = β (Y ′′)v. Denote S(Y ) = s(Y ), and then one checks
that S is a functor with S � T . This proves the proposition.

2.7. Universal Property for S :Y →→→X . For each object X in X , we assume there
exists an object t(X) in Y and a morphism α(X) : S(t(X))→ X such that for all
g : S(Y )→ X there exists a unique morphism f : Y → t(X) such that α(X)S( f ) = g.
Then, there exists a unique functor T : X → Y such that for each object X
in X the object T (X) = t(X) and α : ST → 1X , a morphism of functors with
a( f ) = α(X)S( f ) defining a bijection

a : HomY (Y,T (X))−→ HomX (S(Y ),X).

The pair (t(X),α(X)) for each X in X defines an adjoint pair S � T .

Proof . To define T on morphisms, we use the universal property. If u : X → X ′ is
a morphism in X , then there exist a unique morphism T (u) : T (X)→ T (X ′) such
that α(X ′)(S(T (u)) = uα(X) as morphisms ST (X)→ X ′. The reader can check that
this defines a functor T , and the rest follows from the fact that the universal property
asserts that this is a bijection. This proves the proposition.

Also, we deduce (2.7) immediately applying (2.6) to the dual category (2.5).

2.8. Examples of Adjoint Functors There are two general classes of examples of
adjoint pairs of functors. The first kind is related to a universal construction and
the second kind to a function of two variables f (x,y) being viewed as a function
f (x)(y) = f (x,y) of x for each value of the second variable y.

Examples related to universal constructions:

(U1) Let (set) denote the category of sets and functions, and let (gr) denote the
category of groups. The stripping of the group law from a group is a functor
T : (gr)→ (set), and it has a left adjoint functor S : (set)→ (gr), denoted by
S � T . For a set E , the group S(E) is the free group on the set E .

(U2) Let (k) denote the category of k-modules, where k is a commutative ring (with
unit). The stripping of the module structure from a module is a functor T :
(k)→ (set), and it has a left adjoint functor S : (set)→ (k). For a set E , the
module S(E) , sometimes denoted k[E], is the free k-module on the set E .
A special case is (Z) = (ab) the category of abelian groups.
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(U3) Let J : (ab)→ (gr) be the natural inclusion functor of the category of abelian
groups into the category of groups. The functor J has a left adjoint functor
〈(gr)〉 : (gr)→ (ab) called abelianization 〈(ab)〉(G) = G/(G,G) = Gab, the
quotient of G by the commutator subgroup.H

Examples related to two ways of viewing a function of two variables:

(T1) For the three sets X , W , and Y and Hom(X ×W,Y ) the set of functions f :
X×W → Y , we have a natural bijection

θ : Hom(X ×W,Y)−→ Hom(X ,Hom(W,Y ))

given by (θ ( f )(x)(w) = f (x,w) for x ∈ X , w ∈W . We can interpret this as
an adjoint functor S � T , where for fixed W the functor S(X) = X ×W and
T (Y ) = Hom(W,Y ).

(T2) For three separated spaces X , W , and Y and Hom(X ×W,Y ) the set of
all continuous functions f : X ×W → Y with the compact open topology
and W locally compact, we have a natural bijection θ : Hom(X ×W,Y )→
Hom(X ,Hom(W,Y )) given by (θ ( f )(x)(w) = f (x,w) for x ∈ X , w ∈W . We
can interpret this as an adjoint functor S � T , where for fixed W , the functor
S(X) = X×W and T (Y ) = Hom(W,Y ).

There is a version of (T2) for the category of pointed separated spaces
where Map∗(X ,Y ) is the space of base-point-preserving maps with the com-
pact open topology.

(T3) The functor S(X) = X ∧W = X ×W/X ∨W is the smash product, and the
adjunction takes the form of a bijection

θ : Map∗(X ∧W,Y )−→Map∗(X ,Map∗(W,Y )),

where again (θ ( f ))(x)(w) = f (x ∧w). For W = S1, this specializes to the
suspension S(X) = X ∧ S1 adjunction with loop space Ω(Y ) = Map∗(S1,Y )
on Y . The adjunction takes the form of a bijection

θ : Map∗(S(X),Y )−→Map∗(X ,Ω(Y )),

where again (θ ( f )(x)(s) = f (x∧ s) for s ∈ S1.
(T4) For three k-modules L, M, and N, there is a natural isomorphism of k-modules

θ : Hom(L⊗M,N)−→Hom(L,Hom(M,N)),

where θ ( f )(x)(y) = f (x⊗ y). For a fixed module M, the functors S(L) =
L×M is the left adjoint of T (N) = Hom(M,N) where both S,T : (k)→ (k).

3 Categories Over Spaces (Fibred Categories)

3.1. Definition Let X be a space. A category F over X is the following data:

(a) For each open subset U of X , we are given a category FU (also denoted F (U)),
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(b) For each inclusion of open sets V ⊂U , we are given a functor i∗ = iV,U : FU →
FV , and

(c) For each double inclusion of open sets W ⊂ V ⊂ U , we are given an isomor-
phism of functors θ = θW,V,U : iW,U → iW,V iV,U satisfying compatibility the re-
lation for triple inclusions: for W ⊂ V ⊂U ⊂ T the following diagram is com-
mutative

iW,T

θW,V,T

��

θW,U,T �� iW,U iU,T

θW,V,U iU,T

��
iW,V iV,T

iW,V θV,U,T �� iW,V iV,U iU,T.

Here, we have used the simple notation where for a morphism of functors θ :
T ′ → T ′′ defined by T ′,T ′′ : X → Y and functors F : X ′ →X , G : Y → Y ′ we
have a morphism GθF : GT ′F→GT ′′F of functors defined by X ′ → Y ′ given by
substitution.

The isomorphisms θ make precise the notion that transitivity of restriction holds
only up to natural equivalence, and they are also part of the structure. When the
isomorphisms θ are identities, then F is a presheaf of categories.

3.2. Definition Let X be a space, and let F and G be two categories over X . A
morphism φ : F → G of categories over X is a functor φ(U) = φU : FU → GU for
each open set U and for each open inclusion of open sets V ⊂U an isomorphism

ηV,U : φV iV,U −→ iV,U φU

which make the following pentagon commutative with respect to the isomorphisms
in the restriction condition for W ⊂V ⊂U

φW iW,U

φW θW,V,U

��

ηW,U �� iW,U φU

θW,V,U φU

��
φW iW,V iV,U

ηW,V iV,U�� iW,V φV iV,U
iW,V ηV,U�� iW,V iV,U φU

3.3. Remark The composition of two morphisms φ : F → G and ψ : G →H with
related isomorphisms ηV,U : φV iV,U → iV,U φU and ζV,U : ψV iV,U → iV,U ψU , respec-
tively, is defined by the simple composition of functors (ψφ)U = ψU φU with related
isomorphism ξV,U : ψV φV iV,U → iV,U ψU φU equal to the composite

ξV,U = (ζV,U φU)(ψV ηV,U)

of two isomorphisms ψV φV iV,U → ψV iV,UφU → iV,U ψU φU . To check associativity
and unit of composition of morphisms is immediate.
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In particular, we have the category of categories (of fibre categories) over a space
X . In the next definition, we show how local concepts come into the discussion of
categories over a space.

3.4. Definition A morphism φ : F →G of categories over X is locally full provided
for each open T in X , each object b in G (T ), and each x ∈ T there exist an open
neighborhood U of x and a in F (U) such that φU(a) is isomorphic to iU,T (b) ∈
G (U). A morphism φ is a weak equivalence provided φ(T ) is fully faithful for each
open set T in X and φ is locally full.

To speak about morphisms which are equivalences, we need the notion of a fibred
morphism and a fibred isomorphism of morphisms F → G . This takes us into the
domain of 2-categories. We come back to these considerations later.

3.5. Example Let X be a space, and let G be a topological group. For each open
set U ⊂ X , let PG(U) denote the category of principal G-bundles over U with the
explicit restriction PG(U)→PG(V ) given by res(P) = V ×U P. The composition
of restrictions is the natural isomorphism W ×U P→W ×V V ×U P between fibre
products.

4 Prestacks Over a Space

A category F over a space, even though it is not a presheaf, gives arise to presheaves
associated to morphism sets.

4.1. Proposition Let F be a category over the space X. If T is an open set, and if a′,
a′′ are objects in the category F (T ), then the function which assigns to each open
set U ⊂ T the set HomF (U)(iU,T (a′), iU,T (a′′)) is a presheaf on T . This presheaf will
be denoted by HomF (a′,a′′).

Proof . For the inclusion i : V →U in T , we must define the restriction function of
the presheaf

HomF (a′,a′′)(i) : HomF (a′,a′′)(U)−→ HomF (a′,a′′)(V ).

For u ∈ HomF (a′,a′′)(U) = HomF (U)(iU,T (a′), iU,T (a′′)) we form

iV,U(u) : iV,UiU,T (a′)−→ iV,UiU,T (a′′) in F (V ) .

Then HomF (a′,a′′)(i)(u) ∈ HomF (V )(iV,T (a′), iV,T (a′′)) is the composite

v = HomF (a′,a′′)(i)(u) = (θV,U,T (a′′))−1[iV,U(u)]θV,U,T (a′) ,

or in other words, we have the following commutative diagram in F (V )
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iV,U iU,T (a′)
iV,U (u)

�� iV,UiU,T (a′′)

iV,T (a′)

θV,U,T

��

v
�� iV,T (a′′) .

θV,U,T

��

For W ⊂V ⊂U ⊂ T and inclusions j : W →V and i : V →U , we must check the
transitivity of the restriction functions, that is,

HomF (a′,a′′)( j)HomF (a′,a′′)(i) = HomF (a′,a′′)(i j).

For this, we start by applying the functor iW,V to the previous diagram

iW,V iV,T iU,T (a′)
iW,V iV,U (u)

�� iW,V iV,U iU,T (a′′)

iW,U iU,T (a′)

θW,V,U iU,T
�����������������
iW,V iV,T (a′)

iW,V θV,U,T

��

iW,V (v)
�� iW,V iV,T (a′′)

iW,V θV,U,T

��

iW,T (a′)
θW,U,T

������������������
θW,V,T

��

w �� iW,T (a′′) .

θW,V,T

��

With this notation, w = HomF (a′,a′′)( j)(v), u = HomF (a′,a′′)(i)(u), and
w = HomF (a′,a′′)(i j)(u) by the outer commutative square.

Although the category over a space is not a presheaf in general with the proof of
this proposition, we see that for each open set T of X and for each pair of objects a′
and a′′ in F , there is a morphism presheaf HomF (a′,a′′) on the space T .

4.2. Definition Let φ : F → G be a morphism of categories over X . If T is an open
set and if a′, a′′ are objects in the category F (T ), then induced functions φa′,a′′(U)
where U ⊂ T are defined by the following commutative diagram

HomF (a′,a′′)(U)
φa′ ,a′′ (U)

�� HomG (φT (a′),φT (a′′))(U)

HomF (U)(iU,T (a′), iU,T (a′′))

φU

��
HomG (U)(φU iU,T (a′),φU iU,T (a′′))

Ad(η)
�� HomG (U)(iU,T φT (a′), iU,T φT (a′′))

Here, the function Ad(η)( f ) is the conjugation defined by requiring the following
diagram to be commutative
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φU (iU,T (a′))

ηU,T

��

f �� φU(iU,T (a′′))

ηU,T

��
iU,T (φT (a′))

Ad(η)( f ) �� iU,T (φT (a′′)) .

4.3. Proposition Let φ : F → G be a morphism of categories over X, let T be an
open set, and let a′, a′′ be objects in the category F (T ). Then, the induced functions

φa′,a′′(U) : HomF (a′,a′′)(U)−→HomG (φT (a′),φT (a′′))(U),

where U is open in T is a morphism of presheaves of sets on T .

Proof . We have to check the commutativity relation

φa′,a′′(V )HomF (a′,a′′)(i) = HomG (φT (a′),φT (a′′))(i)φa′ ,a′′(U).

For u ∈HomF (a′,a′′)(U) = HomF (U)(iU,T (a′), iU,T (a′′)), we form

iU,V (u) : iV,UiU,T (a′)−→ iV,U iU,T (a′′) in F (V ).

Then v ∈HomF (a′,a′′)(i)(u) = HomF (V )(iV,T (a′), iV,T (a′′)) is the morphism in the
following commutative diagram in F (V )

iV,U iU,T (a′)
iU,V (u)

�� iV,UiU,T (a′′)

iV,T (a′)

θV,U,T

��

v �� iV,T (a′′).

θV,U,T

��

Now applying the morphism φa′,a′′(V ) to v gives

HomF (a′,a′′)(V )
φa′,a′′ (V )

�� HomG (φT (a′),φT (a′′))(V )

HomF (V )(iV,T (a′), iV,T (a′′))

φV

��
HomG (V )(φV iV,T (a′),φV iV,T (a′′))

Ad(η) �� HomG (V )(iV,T φT (a′), iV,T φT (a′′)).

Putting the diagrams together, we have following commutative diagram for i :
V → U
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HomF (a , a )(U)

HomF (a ,a )(i)

φa ,a (U)
HomG(φT (a ),φT (a ))(U)

HomG(φT (a ),φT (a ))(i)

HomF(U)(iU,T (a ), iU,T (a ))

φU

HomG(U)(φU (iU,T (a )),φU (iU,T (a )))
Ad(η)

iU,V

HomG(U)(iU,T (φT (a )), iU,T (φT (a )))

HomG(V )(iU,V φU (iU,T (a )), iU,V φU (iU,T (a )))

Ad(η)

HomG(V )(iU,V iU,T (φT (a )), iU,V iU,T (φT (a )))

θ−1
U,V,T

HomF (a , a )(V )
φa ,a (V )

HomG(φT (a ),φT (a ))(V )

HomF(V )(iV,T (a ), iV,T (a ))

φV

HomG(V )(φV (iV,T (a )),φV (iV,T (a )))
Ad(η)

HomG(V )(iV,T (φT (a )), iV,T (φT (a )))

With this diagram, we establish the commutativity of the restriction morphisms with
the morphism induced by φ .

In terms of these presheaves we can introduce the next concept.

4.4. Definition A category F over a space X is a prestack provided for each open
T in X and each pair of objects a′, a′′ in F (T ) the presheaf HomF (a′,a′′) on T is a
sheaf.

In the category of categories T over a space X , we have the full subcategory of
prestacks.

4.5. Remark For a space X , the category of sheaves Sh(X) is a subcategory of the
category Op(X)∨ of sets on X with inclusion j : Sh(X)→Op(X)∨. There is a functor
σ : Op(X)∨ → Sh(X) which associates to every presheaf P on X , a universal sheaf
σ(P) on X with a morphism β : P → jσ(P) having the universal property that
the function b(φ) = jβ (φ) defines a bijection

b : HomSh(X)(σ(P),E )−→HomOp(X)∨(P, j(E )).

We say that σ is the left adjoint functor to the inclusion functor j : Sh(X)→Op(X)∨,
and from the universal property which incorporated in the bijection b, sheafification
σ is unique up to isomorphism of functors.

4.6. Notation Let X be a space. Let (Cat/X) denote the category of categories over
X , and let (preSt/X) denote the full subcategory of prestacks over X .
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4.7. Proposition The inclusion functor

j : (preSt/X)−→ (Cat/X)

has a left adjoint functor σ : (Cat/X)→ (preSt/X), where σ is related to the sheafi-
fication σ by the requirements that σF (U) has the same objects as F (U) and
the morphism set is given by cross sections of the sheafification of the presheaves
HomF (a′,a′′)

HomσF (U)(a
′,a′′) = Γ(U,σHomF (a′,a′′)(U)).

Proof . In the statement, we have defined σ as identity on objects and as sheafifi-
cation on the morphism sets. We have to see that the composition operation is well
defined for the sheafification of the presheaves HomF (a′,a′′). For a morphism of
presheaves P ′ ×P ′′ →P , we have the following composite morphism of sheafi-
fication σ(P ′)×σ(P ′′)→ σ(P ′ ×P ′′)→ σ(P) which is used to construct the
composition in σ(F ). The universal property follows from the universal property
in (4.5). The proposition now follows easily.

5 Descent Data

In the previous section, we saw that descent data in a prestack were present on the
morphism sets through the condition that HomF (a′,a′′) is a sheaf. Now, we consider
a descent condition on the objects which is used to define a stack as a prestack. We
use the notation a|V = iV,U(a) for an object in FU and V ⊂U .

5.1. Definition Let F be a category over a space X , and let U = {Ui}i∈I be an open
covering of U in X . A descent datum is two families {ai,θi, j}i, j∈I , where ai is an
object in F (Ui) and θi, j: a j|Ui∩Uj→ ai|Ui∩Uj is an isomorphism in F (Ui ∩Uj)
satisfying the cocycle condition

θii = id and θi,k = θi, jθ j,k ∈ F (Ui∩Uj ∩Uk).

5.2. Example Each object a in FU determines a descent datum {ai,θi, j}i, j∈I for
every covering U = {Ui}i∈I of U , where ai = iUi ,U(a) and θi, j is the composition of
an isomorphism and its inverse between iUi, j ,U(a) and the two restrictions iUi, j ,Ui(ai)
and iUi, j ,Uj (a j). Let R(a,U ) denote this descent datum associated to a.

5.3. Definition Let {a′i,θ ′i, j}i, j∈I and {a′′i ,θ ′′i, j}i, j∈I be two descent data for a cover-
ing U = {Ui}i∈I . A morphism is an indexed family fi : a′i→ a′′i in Fi of U such that
for i, j ∈ I the following diagram is commutative

a′j|Ui, j

θ ′i, j

��

f j �� a′′j |Ui, j

θ ′′i, j

��
a′i|Ui, j

fi �� a′′i |Ui, j.
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Indexwise composition of morphisms is again a morphism. The resulting cate-
gory of all descent data for a covering U = {Ui}i∈I of U is denoted by Δ(U ,F ).

5.4. Remark The restriction in (5.2)

R( ,U ) : FU −→ Δ(U ,F )

is a functor for each open covering U = {Ui}i∈I of U . We call R(a,U ) the descent
datum of a on U .

5.5. Definition A prestack F over X is a stack provided for each open set U , and
for each open covering U = {Ui}i∈I of U , the restriction functor FU → Δ(U ,F )
is an equivalence of categories. Let (St/X ) denote the full subcategory of (preSt/X )
consisting of stacks.

5.6. Remark Let F be a category over X . The restriction functor

FU → Δ(U ,F )

is fully faithful for all open sets U if and only if F is a prestack. This means that a
category F over X is a stack if and only if it is a prestack and every descent datum
on any open covering U of U is isomorphic to a restriction R(a,U ) for some object
a in FU .

5.7. Remark If φ : F ′ →F ′′ is a morphism of categories over X , then for each open
covering U the function

Δ(φ) : Δ(U ,F ′)−→ Δ(U ,F ′′)

defined by Δ(φ)({a′i,θ ′i, j}i, j∈I) = {φ(a′i),φ(θ ′i, j)}i, j∈I is a functor between two
categories of descent data.

5.8. Example For a topological space, the function which assigns to each open set
U the category Vect(U) is a stack and to each open set U the category Sh(U,C ) of
sheaves with values in C is also a stack.

6 The Stack Associated to a Prestack

In (4.7), we showed how the inclusion functor from prestacks to categories j :
(preSt/X)→ (Cat/X) over X has a universal property, that is, it is a left adjoint func-
tor. To show that the analog is true for the inclusion functor j : (St/X)→ (preSt/X),
we study how a descent datum changes under the change of coverings. As with
sheaves, a colimit of descent data will construct the universal stack determined by
a prestack. For this, we need notions where functors are equivalences and where
morphisms of categories are equivalences.
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6.1. Definition A functor F : C ′ → C ′′ is faithful (resp. full, fully faithful) provided
F : HomC ′(X ,Y )→HomC ′′(F(X),F(Y )) is injective (resp. surjective, bijective) for
all objects X in C and all objects Y in C ′.

Faithful, full, and fully faithful are properties preserved by composition of
functors.

6.2. Definition A functor F : C ′ →C ′′ is an equivalence provided F is fully faithful
and surjective up to isomorphism, that is, for each object Z in C ′′, there exists an
object X in C ′ with F(X) and Z isomorphic.

6.3. Remark A functor F : C ′ → C ′′ is an equivalence if and only if there exists
a functor G : C ′′ → C ′ such that GF is isomorphic to identity on C ′ and FG is
isomorphic to the identity on C ′′. It is the case that G is both right and left adjoint
of F , and for this reason, the first step in studying whether or not a functor F is an
equivalence is to look for a left or right adjoint functor of F .

In (3.4), we introduced the notion of locally full morphisms of categories over X .
Now, we consider equivalences of categories over a space.

6.4. Definition A morphism φ : F → G of categories over X is an equivalence pro-
vided φ(U) : FU → GU is an equivalence of categories for each open set U in X . A
morphism φ : F → G of categories over X is a weak equivalence provided φ(U) is
fully faithful for each open set U in X and φ is locally full.

6.5. Remark Let φ : F → G be an equivalence of categories over X . Then, F is a
prestack (resp. stack) over X if and only if G is a prestack (resp. stack).

6.6. Remark If φ : F → G is a weak equivalence of prestacks over X and if F is a
stack, then φ is an equivalence. In other words, the local surjectivity gives arise to
surjectivity map up to isomorphism by descent construction.

Similarly, we have the factorization property.

6.7. Remark Let φ : F ′ → F ′′ is a weak equivalence of prestacks over X and
ψ ′ : F ′ → G be a morphism of prestacks over X . If G is a stack, then there exists
a morphism ψ ′′ : F ′′ → G of prestacks over X such that ψ ′′φ and ψ ′ are naturally
equivalent morphisms.

With sheaves, the inclusion J : Sh(X ,C )→ preSh(X ,C ) has a left adjoint, but
with the inclusion Stack(X)→ preSt(X), we must use the following definition which
is based on the assertion (6.7).

6.8. Definition For a prestack F over X , the associated stack is a pair consisting of
a stack s(F ) together with a weak equivalence φ : F → s(F ).

6.9. Theorem For a prestack F over X, the associated stack exists and is unique
up to a strong equivalence.

The uniqueness is contained in (6.7), and the existence is a colimit construction
as with the associated sheaf to a presheaf. The limit is over all coverings related to
the descent data where for a sheaf of sets the related colimit is given by forming the
stacks of the presheaf.
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7 Gerbes as Stacks of Groupoids

We have considered gerbes as bundle gerbes and groupoid gerbes. Now, we return
to the concept of a gerbe in terms of groupoids over a space X .

7.1. Definition A gerbe G on X is a stack over X such that each G (U) is a groupoid
and the union of all open sets U such that G (U) is nonempty is X . It satisfies the
following local connectivity or transitivity condition: For two objects a′, a′′ in any
G (U) and x in U , there exists an open set V with x ∈ V ⊂U and a morphism u :
iV,U(a′)→ iV,U(a′′).

The basic example extends the idea of principal bundle. Instead of a group we
start with a sheaf G of groups over X .

7.2. Definition A principal G-sheaf P over X is a sheaf of sets with an action P×
G→ P over X of sheaves such that X is the union of all U with P(U) = Γ(U,P)
nonempty and G(U) is free and transitive on P(U) for each open subset U of X .
A morphism P′ → P′′ of principal G-sheaves is a morphism of sheaves commuting
with the action G.

Another word for principal G-sheaf is torsor (it is a rather silly word).

7.3. Remark In terms of the étale spaces over X , the action is defined by s(P)×
s(G)→ s(P) over X , where s(P)→ X is surjective and projection and action s(P)×
s(G)→ s(P) is a homeomorphism.

7.4. Remark The trivial principal G-sheaf is G itself, and a principal G-sheaf P is
isomorphic to G if and only if P(X) = Γ(X ,P) is nonempty. Then, any element
defines an isomorphism G→ P by the action on the cross section of P over X .

7.5. Example Let G be a sheaf over X . Let (BunG(U)) denote the category of
principal G(U) sheaves over U . Then, (BunG(U)) is a gerbe over X .

There are two cohomological classifications by H1(X ,G) for isomorphism classes
of principal G-sheaves for a sheaf of groups and by H2(X ,L) for gerbes G over X
with given band L, see Sect. 9.

8 Cohomological Classification of Principal G-Sheaves

The cohomological classification of sheaves, bundles, and gerbes depends on the
automorphisms of trivial bundles.

8.1. Remark The automorphism group of the trivial principal G-bundle G is just the
group of cross sections Γ(X ,G) where to a cross section σ we associate the auto-
morphism uσ : G→ G given by uσ (U) : G(U)→ G(U) given by uσ (τ) = τ(σ |U).

8.2. Principal G-Sheaves Trivial Over an Open Covering Let G be a group sheaf
over the space X , and let U = {Ui}i∈I be an open covering of X . For a principal
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G-sheaf P where P|Ui is trivial, we choose a section σi ∈ Γ(Ui,P) defining the triv-
ialization. By (8.1) over Ui, j = Ui∩Uj, we have a section gi, j ∈ Γ(Ui, j,G) such that
on Ui, j, we have (σi|Ui, j)gi, j = (σ j|Ui, j).

(1) Cocycle Condition: Over the triple intersection Ui, j,k = Ui ∩Uj ∩Uk, we have
the cocycle relation

gi, jg j,k = gi,k.

(2) Change of Section Leads to a Coboundary Relation: For a second set of sections
σ ′i we have new g′i, j such that on Ui, j, we have (σ ′i |Ui, j)g′i, j = (σ ′j|Ui, j). The two
sets of sections are related again by elements bi ∈ Γ(Ui,G), where σ ′i = σibi.
Hence, we have the cobounding relation

big
′
i, j = gi, jb j or g′i, j = b−1

i gi, jb j on Ui, j

which follows from the following substitutions

σigi, jb j = σ jb j = σ ′j = σ ′i g′i, j = σibig
′
i, j.

8.3. Definition Let G be a sheaf of groups on a space X , and let U = (Ui)i∈I be an
open covering of X . The first cohomology set H1(U ,G) of the covering U of X
with values in the sheaf G is the set of cocycles (gi, j)i, j∈I with values in G where
gi, j ∈Γ(Ui, j,G) modulo the cobounding equivalence g′i, j = b−1

i gi, jb j, where sections
bi ∈ Γ(Ui,G) for i ∈ I.

8.4. Remark Let (gi, j)i, j∈I be a cocycle with values in G relative to a covering U =
{Ui}i∈I . Then, there is a principal G-sheaf P, where P|Ui is trivial for each i ∈ I and
the trivializations are related by the isomorphism defined by gi, j on Ui, j. Moreover,
two cocycles (gi, j)i, j∈I and (g′i, j)i, j∈I define isomorphic principal G-sheaves if and
only if they are cobounding. This gives the following proposition.

8.5. Proposition The cohomology set H1(U ,G) classifies principal G-sheaves
which are trivial on all Ui ∈U up to isomorphism.

To remove the dependence on the covering U in (8.5), we introduce a certain
colimit.

8.6. Definition Let G be a sheaf of groups on a space X . The first Čech cohomology
set H1(X ,G) is the colimit of all H1(U ,G) over the open coverings U of X . A
morphism between coverings U = {Ui}i∈I →B = {Vi}i∈I is defined by a function
θ : J→ I, where Uθ( j) ⊃Vj for all j ∈ J in order to define the colimit.

In terms of the first Čech cohomology set, we have the classification of all princi-
pal G-sheaves because each principal G-sheaf is trivial for some open covering of X .

8.7. Proposition The cohomology set H1(X ,G) classifies principal G-sheaves up to
isomorphisms.
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9 Cohomological Classification of Bands Associated with a Gerbe

The cohomological classification of bands in a gerbe depends on various sheaves
associated to the gerbe.

9.1. Sheaves on Open Sets in a Covering Let G be a gerbe over X . Then, for each
object in G(T ) over an open T ⊂ X , the automorphisms

AutG(a,a) = HomG(a,a)

is a sheaf on T . Let X =
⋃

i∈I Ui be an open covering of X , and let ai be an object in
G(Ui). Then, AutG(ai,ai)is a sheaf of groups on Ui.

9.2. Relating Automorphism Sheaves on Over Lapping Ui∩∩∩Uj open Sets With
the notations of (9.1) and for an open covering

Ui, j = Ui∩Uj =
⋃

k∈I(i, j)

Ui, j(k),

we have an isomorphism

wi, j(k) : res(ai)−→ res(a j)

in G(Ui, j(k)).

9.3. Band Datum for G and the Coverings Ui∩∩∩Uj =
⋃⋃⋃

k∈∈∈I(i,j)
Ui,j(k) With previous

isomorphism
wi, j(k) : res(ai)−→ res(a j)

in G(Ui, j(k)) we can conjugate to obtain a morphism

λi, j(k) = Ad(wi, j(k)) : Aut(ai)|Ui, j(k) −→ Aut(a j)|Ui, j(k)

which is an isomorphism of sheaves of groups.

9.4. Equivalence Class of Covering Band Datum for a Gerbe G Two choices in
(9.3) of

wi, j(k) : res(ai)−→ res(a j)

give morphisms
λi, j(k) = Ad(wi, j(k))

differing by inner automorphisms. Hence, the band data is

{Aut(ai), λi, j(k) ∈ Out(ai,a j)}

which describes the gerbe.

9.5. Outer Automorphism Sheaves For a group sheaf G over X , we have Aut(G),
the automorphism sheaf and the exact sequence of sheaves
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�

1

����������
1

��
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where Ad(g)h = ghg−1 on the stacks and sections. For two sheaves of groups G′
and G′′, we have the generalization to the isomorphism sheaf

X ⊃ T �−→ Iso(G′|T,G′′|T ),

where G′′|T acts by conjugation Ad on the isomorphisms. The quotient

X ⊃ T �−→ Iso(G′|T,G′′|T )/AdG′′|T

is a presheaf and the associated sheaf is Out(G′,G′′). An element φ ∈ Γ(T,Out(G′,
G′′)) is an outer isomorphism G′|T → G′′|T .

Let G be a gerbe on X so that over each open set we have a groupoid G(U).
Gerbes are analyzed using the notion of the band data.

9.6. Definition A band data for an open covering X =
⋃

α Uα and a gerbe is a family
of sheaves of groups Kα over Uα , a family λα ,β : Kβ |Uα ∩Uβ → Kα |Uα ∩Uβ of
isomorphisms, and sections gα ,β ,γ ∈ Γ(Uα ∩Uβ ∩Uγ ,Kα) satisfying

λα ,β λβ ,γ = gα ,β ,γλα ,γ ,

gα ,β ,γgα ,γ,δ = λα ,β (gβ ,γ,δ )gα ,β ,δ ,

and
λα ,α = 1, gα ,α ,γ = gα ,γ,γ = 1.

9.7. Definition The cocycle data (λα ,β ,gα ,β ,γ) is equivalent to the cocycle data
(λ ′α ,β ,g′α ,β ,γ) provided that there exists sections κα ,β ∈ Γ(Uα ∩Uβ ,Kα) such that

λ ′α ,β = κα ,β λα ,β

and
g′α ,β ,γ = κα ,β λα ,β (κβ ,γ)gα ,β ,γκ−1

α ,γ .

The set of equivalence classes of cocycle data for X =
⋃

α Uα and Kα is denoted

Ȟ2({Uα}α ,Kα ).

These are the nonabelian Čech classes.
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9.8. Remark If Kα s are sheaves of abelian groups, we can speak of a gerbe with
an abelian band. If, moreover, sheaves Kα over the opens Uα are isomorphic to
restrictions Kα ∼ K|Uα for each α ∈ I of the constant sheaf K = S1 and λα ,β = 1
for all Uα ,β , we get bundle gerbes in the sense of Chap. 25.
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Index of Notations

See also the Notation for Examples of Categories

Γ(U, E) Set of cross sections over U of a bundle E 1(1.5)
E ′ ×B E ′′ Fibre product of bundles E ′,E ′′ over B 1(3.5)
Mor(C ) Category of morphisms in the category C 1(4.7)
C /B Subcategory of morphisms over B for an

object in C
1(4.8)

F Denotes either the field R of real or the
field C of complex numbers, see also 15(6)

2(2.1)

X/A Quotient space for A ⊂ X , where A is col-
lapsed to a point

2(7.1)

lim−→N XN = X Inductive limit of (XN), for example,
lim−→N FN = F∞

2(4.1)

C(X) C-algebra of continuous complex-valued
functions on the space X—see also 4(5.1)
and 8(3.5) below

3

Idem(R) Set of equivalence classes of idempotents
in the various Mn(R)

3(5.9)

T (A) Localization of an abelian semigroup A or
semiring

4(1.4)

[E] Equivalence class of vector bundles 4(2.1)
Vect/X Semiring of isomorphism classes [E] of

vector bundles
4(2.1)

K(X) Grothendieck functor K(X) = T (Vect/X) 4(2.3)
K(X , ∗) Ideal in the supplemented ring 4(2.6)
K(R) Grothendieck functor K(R) = T (Vect/R) 4(3.3)
f ∗ K( f ) or K(C( f )) 4(3.5)
I(R) Grothendieck idempotent I-functor I(R),

I(R) = T (Idem(R))
4(4.3)
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C(X) C∗-algebra of bounded continuous func-
tions on a space X , see also 3 above and
8(3.5) below

4(5.1),
4(5.11)

B(H) Space of bounded linear operators on a
Hilbert space H

4(5.6)

M∞(A) Inductive limit of the C∗-algebras of n×n-
matrices Mn(A)

4(5.14)

K Space of compact operators on a Hilbert
space, K ∼= K (C)

4(5.14)

K (A) Completion of M∞(A) of a C∗-algebra A,
K (A)∼= A⊗K (C)

4(5.14),
18(3.7)

T Circle group isomorphic to the 1-sphere S1 5(1.4)
X/G Space of right orbits for a right G-action

on X
5(1.6)

G\X Space of left orbits for a left G-action on X 5(1.6)
P×G Y = P[Y ] Associated fibre bundle to a principal G-

bundle P and a left G-space Y
5(3.1)

Vn(E) Frame bundle associated with a vector bun-
dle E

5(3.3)

Wn(A) Matrix frame bundle associated with a ma-
trix algebra bundle A

5(3.4)

�i∈I Disjoint union (coproduct in (set)) 5(4.2)
Z Two stage pseudosimplicial space Z re-

lated to an étale map q : U → B
5(4.5)

πn(X , x0) Homotopy groups of a pointed space
X = (X ,x0)

6, 6(5),
6(5.3)

Map(X ,Y ) Space of all continuous mappings from
X to Y

6(1)

〈L, M〉 Subset in Map(X ,Y ) of the maps f with
f (L) ⊂M

6(1)

[ f ] (Pointed) Homotopy class of a map f 6(4.2)
[X ,Y ] Set of homotopy classes of maps f : X→Y 6(4.2)
S′ ∨S′′ Joint of spheres 6(5.1)
T r r-Dimensional torus 6(5.11)
B(G)=BG=BG Classifying space of the group G 7
E(G)=EG=EG Universal principal G-bundle over BG 7
H Quaternions 7(4.3)
S∞ Infinite sphere 7(4.5),

8(9),
9(1.1)

P(X) Path space of pointed space (X ,x0) 8(3.3)
ω(X) Loop space of the pointed space (X ,x0) 8(3.3)
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C(X) Cone on the pointed space (X ,x0), but also
the space of (bounded) continuous func-
tions on X , see 3 and 4(5.1)

8(3.5)

S(X) Suspension of the pointed space (X ,x0) 8(3.5)
E f , Cf , Zf 8(5)
(K(G),n) Eilenberg–MacLane space 9, 9(6.1)
ιn Canonical class in Hn(K(G,n),G) corre-

sponding to the identity morphism
9

Hq, Hq Homology and cohomology 9(3.1)
H̃q, H̃q Reduced homology and cohomology 9(3.4)
Aq(M) Vector space of differential q-forms on a

manifold M
9(4.2)

Hq
DR(M) de Rham cohomology 9(4.2)

ab or a � b Cup product of a ∈ H p(X) and b ∈ Hq(X) 9(7.1)
F2 The field of two elements, F2

∼= Z/2 9(7.3)
P∞(R) Infinite real projective space (and corre-

spondingly for C,H)
9(7.3),
10(1.1)

w1(L) First Stiefel–Whitney class of a real line
bundle L

10(1.1)

c1(L) First Chern class of a complex line
bundle L

10(1.2)

PicC(M) Picard group of complex line bundles in M 10(1.3)
ci(E) Chern classes of a complex vector bun-

dle E
10(3.1)

wi(E) Stiefel–Whitney classes of a real vector
bundle E

10(3.7)

Hev(B, Z) Even cohomology 10(4.1),
10(5.5)

Gev(B, Z) Subset of Hev(B,Z) with zero component
equal to 1

10(4.1)

Sqi The Steenrod square 10(8.2)
pi(E) Pontryagin classes of a real vector bundle 10(9.3)

ωM = [M] Fundamental class of a manifold M 11
() � [M] Cap product 11
ωK Orientation class for compact K ∈M 11(1.4)
Ȟi(K) Ȟi(K) = lim−→ K⊂V Hi(V ) for compact K 11(2.3)

Cl(n) Clifford algebra to n-dimensional eu-
clidean space, see 15(5.3)

12(1.5)

Spinc(n) Spinc group, quotient of Spin(n)×U(1) 12(1.6)
String(n) 7-connected covering of Spin(n) 12(6.5)

Res The restriction functor (G\top)→ (H\top) 13(1.1)
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Tr The trivial G-space functor (top) →
(G\top)

13(1.1)

Str The stripping functor (G\top)→ (top) 13(1.1)
Ind The induction functor (H\top)→ (G\top) 13(1.2)
Coind The coinduction functor (G\top) →

(H\top)
13(1.2)

Quot(X) Quot(X) = G\X for a G-space X 13(1.3)
Fix(X) Fix(X) = MapG(∗,X)⊂ X for a G-space X 13(1.3)
� Adjunction relation 13(1.4),

25(2)
VectR(X , G) Category of real G-vector bundles 13(3.3)
Rep

R Real (not necessarily finite dimensional)
representations of G, see R(G) 24

13(3.4)

KG(X) Grothendieck functor of the semi-ring of
isomorphism classes of G-vector bundles
on a G-space X

13(3.8)

(τ) The group with two elements 13(6.1)
KRG 13(6.2)
(τ)G Cross product of (τ) and G 13(6.3)
Vect(X , G, τ) The category of (G,τ)-vector bundles over

the (τ)G-space X
13(6.5)

K̃RG The reduced version of KRG 13(7.1)
KRp, q

G (X , A) The (p,q)-suspensiongroups of KRG(X ,A) 13(7.3),
14(2.6)

P(E) Projective bundle associated to vector
bundle

14(1.1)

KR(X , A) Relative group for A⊂ X 14(2.5)
φ! The Thom morphism 14(3.4)
O, SO, U, SU, Sp Direct limit groups 15(2.1)
RR(G) The representation ring of (G,τ)-modules 15(4.2)
C( f ) The Clifford algebra of a quadratic form f 15(5.3)
C(q, p) The Clifford algebra C(−x1 − . . .− xq +

xq+1 + . . .+ xq+p) over R

15(5.8)

F R, C or H, see, however, 2(2.1) where F
replaces only R or C

15(5.9),
15(6)

CF〈q〉[G] The Clifford algebra F⊗R C(q,0) 15(6)
MF〈q〉(G) The Grothendieck group of the group alge-

bra CF〈q〉[G]
15(6.2)

N(n, R) The group of upper triangular invertible n
by n matrices with coefficients in a ring R

16(3.4)

H upper half plane 16(5.2)
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(G, A)Mod The category of (G,A)-modules and
morphisms consisting of A-linear G-
equivariant maps, where A is a G-algebra

18(1.5)

K0
G(X) G-equivariant K-theory 18(1.8)

KG(A) The Grothendieck group providing the G-
equivariant K-theory of a G-algebra A

18(1.9)

G � H The cross product of groups G,H related to
an action of G on H

18(2.1)

Cc(G, A) The ∗-algebra of compactly supported con-
tinuous functions G→ A on a topological
group G with values in a Banach algebra A

18(2.3)

C(X ,A) The algebra of all continuous functions f :
X → A which vanish at ∞

18(3.4)

f∗ Induced morphism Ext(X)→ Ext(Y ) 18(4.9)
Ext(B, A) The set of isomorphism classes of exten-

sions of B by A for two given locally con-
vex algebras

18(5.2)

C(B), S(B) Continuous cone resp. suspension of a lo-
cally convex algebra B

18(6.1)

C∨(A), S∨(A) Dual cone C∨(A) resp. dual suspension
S∨(A) of a locally convex algebra

18(6.10)

kk∗(A, B) The biinvariant functor 18(8.1)

Vectn(X) The set of isomorphism classes of n- di-
mensional vector bundles over X , see also
21(6.1)

20(1.2),
15(1.2)

Algn(X) The set of isomorphism classes of n by n
matrix algebra bundles over X

20(1.4)

VectH(X) The set of isomorphism classes of vec-
tor bundles over X with fibre the Hilbert
space H

20(2.6)

AlgH(X) The set of isomorphism classes of infinite-
dimensional algebra bundles modeled on
B(H) or K (H) for a separable infinite-
dimensional Hilbert space H

20(2.6)

nH3(X , Z) The subgroup of n-torsion points in
H3(X ,Z)

20(3.8), 20

KP(X) 21(4.3)
Vectn(X) The set of isomorphism classes of CX -

modules of sheaves locally isomorphic
to C n

X

21(6.1)
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E∞
p,q 23(2.7)

E p,q
∞ 23(3.4)

Verc(g) The Verlinde algebra of central charge c 24(1.6)
V (n) Irreducible representation of sl(2) of di-

mension n + 1
24(2.4)

δ (J) Typical trivial bundle gerbe 25(2.7)
Kα(B) K-theory twisted by a torsion element α ∈

H3(B,Z) (bundle gerbe construction)
25(6.8)

X. A simplicial object in a category C 26(1.3)
Δ(C ) Category of simplicial objects in C 26(1.5)
R(X.) Geometric realization of a simplicial set X. 26(1.9)
C(∗) Category object 26(2.3)
cat(C ) Category of category objects of C 26(2.8)
Ner Nerve functor Ner : (cat)→ Δ (set) 26(3.1)
G(∗) Groupoid in a category C 26(4.1)

U �→ P(U) Presheaf in a category 27(1.1)
Op(X) Category coming from the ordered set of

open subsets of a space X
27(1.2)

Sh (X ,C ) Sheaves with values in the a category C 27(1.6)
preSh (X ,C ) Presheaves with values in C 27(1.6)
(Cat/X) Category of categories over a space X 27(4.6)
(preSt/X) Category of prestacks over X 27(4.6)
Δ(U , F ) Descent data for a covering U 27(5.3)
(St/X) Category of stacks over X 27(5.5)



Notation for Examples of Categories

Categories are typically denoted by suitable abbreviations enclosed in brackets.
Here are some examples.

(set) Category of sets
(set)∗ Category of pointed sets
(gr) Category of groups
(ab) Category of abelian groups
(rg) Category of rings
(c\rg) Category of commutative rings
(k) Category of modules over k, where k is a commutative ring
(vect/k) Category of finitely generated projective modules over k,

where k is a commutative ring
(alg/k) Category of unital algebras over k
(c\alg/k) Category of commutative unital algebras over k
(R\mod) Category of left R-modules for a ring R
(mod/R) Category of right R-modules
(R\mod/R) Category of R-bimodules
(top) Category of topological spaces
(top)∗ Category of pointed topological spaces
(htp) Homotopy category of topological spaces
(htp)∗ Homotopy category of pointed topological spaces
(cpt) Category of compact (Hausdorff) spaces
(cpt)∗ Category of pointed compact (Hausdorff) spaces
(bun) Category of bundles
(bun/B) Category of bundles over B
(bun/gerbes) Category of bundle gerbes
(bun/gerbes/B) Category of bundle gerbes over B
(cat) Category of small categories
Δ (set) Category of simplicial sets

333





Index

(G,A)-module M, 204
(G,τ)-equivariant real K-theory, 159
(p,q)-suspension groups, 159
∗-Banach algebra, 53
∗-algebra, 52
E-theory, 213
F-Hilbert space, 189
G-action on Γ(X,E), 204
G-algebra, 204
G-bundle, 56
G-equivariant K-theory, 265
G-equivariant K-theory K0

G(X), 205
G-equivariant K-theory of a G-algebra A, 205
G-equivariant section, 153
G-space, 56
H-space, 91
H-space structures, 177
K-cycles, 203
K-equivalent, 244
K-groups, 51
K-theory exact couple, 259
K-theory functor, 219
L-class, 111, 120
L-genus for oriented manifolds, 120
M′ u→M

v→M′′ , 89
M2-stable (resp. stable), 219
M2-sum of extensions, 213
Spin(3), 138
Spin(n) group, 138
Spin(n)-structure, 137
Spinc(n) structure, 137
Â-class, 111, 120
Â-genus for oriented manifolds, 120
τ-vector bundle, 172
Γ-equivariant principal G-bundle p : P→ B,

272
m-algebra, 208

n-connected covering of X , 143
n-level pseudosimplicial object, 288
nth power sequence 〈n〉, 248
nth homotopy group, 71
étale, 20, 21, 318
Čech cosimplicial object associated with, 300

a groupoid, 299
abelian category, 256
abelianization, 306
absolute homology and cohomology modules,

100
action of G on an object X , 296
acyclic fibration, 94
Adem relations, 123
adjoint action, 265, 272
adjoint pair of functors, 307
adjoint ring morphism, 273
affine n-simplex, 77
affine Kac–Moody algebra, 266
affine simplex, 289
Alexander duality theorem, 130
algebra B(H) of bounded linear operators on

a Hilbert space H, 53
algebraic Töplitz algebra, 217
algebraic Töplitz extension, 218
algebraically equivalent, 42
associated bundle of projective spaces, 113
associated fibre bundle, 58
associated Kac-Moody Lie algebra, 265
associated projective bundle, 163
associated stack, 317
Atiyah–Hirzebruch class, 2
Atiyah–Hirzebruch spectral sequence, 4
automorphisms of the fibres, 232
axiomatic characterization, 116
axiomatic version of homotopy theory, 85

335
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Banach Lie group, 235
band, 13
band data, 321
base space, 9
bijective functions, 16
Borel construction, 172
Borel subalgebra, 266
Bott algebra morphism, 222
Bott element, 167
Bott morphism, 167, 222
Bott periodicity, 163
Bott periodicity for reduced complex K-theory,

180
Bott periodicity for reduced real K-theory, 180
boundary isomorphism, 94
boundary morphism, 93
Brauer equivalent, 241, 243
Brauer group, 241
bundle, 9
bundle E over B, 9
bundle gerbe, 277, 282, 284, 285
bundle gerbe has a class, 277
bundle of vector spaces, 24

cap product, 107, 127
Cartan formula, 123
Cartan subalgebra, 266
categories over spaces, 309
category, 15, 16
category object, 287
category object structure, 291
category of categories, 17
category of k-modules, 16
category of groups, 15
category of sets, 15
category of spaces, 15
category of squares, 84
cellular chains, 104
central charge c, 265, 266
central extension, 284
change of section, 319
change the trivialization, 155
characteristic class isomorphism, 238
characteristic class of gerbe, 301
characteristic classes for matrix algebra

bundles, 235
characteristic numbers, 127
Chern character, 2, 135
Chern character ring morphism, 261
Chern class of a sum of line bundles, 118
Chern class of the tangent bundle, 118
Chern classes, 107, 111
circle, 90
class group, 51

classifying space, 81, 83
classifying space construction, 81
classifying space functor or nerve functor, 293
classifying spaces, 176
Clebsch–Gordan inductive rule, 269
Clifford algebra, 138, 182
closed, 20
clutched vector bundle, 32
clutching function, 165
cobordant, 133
cocycle condition, 59, 319
cocycle data, 321
cocycle relation, 155
cofibrant pair, 100
cofibration, 85
cofibre, 89
cofibre mapping sequence, 93
coH-space, 90
cohomology, 100
cohomology operation, 123
collapsed vector bundle, 32
commutation with induced bundles, 33
compact group, 156
compact Lie group, 200
compact open topology, 66, 239
complex infinite-dimensional projective space,

112
complex vector bundle, 142
composite, 17
composite of two bundle morphisms, 13
composition, 15, 18, 310
composition of G-bundle morphisms, 153
comultiplication on S(X), 91
cone, 89
conjugacy class, 170
conjugate, 43
continuous cone, 216
contractibility, 239
cosimplicial operations, 289
critical point, 108
cross product G � A, 207
cross section, 11, 251
cross section functor Γ, 37
cross section of the product bundle, 252
cross section vector space is a functor, 154
cross sections, 10
crossed products, 226
cup product, 106
cup–cap relation, 107
CW-complex, 98

D-brane, 1, 3
decomposition, 195
decomposition triple, 196
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deRham Theory, 103
descent condition, 59, 303
Descent data, 277
descent data, 315
descent data for principal G-bundles, 59
descent data for vector bundles, 278
diffeomorphism type, 109
diffeotopy, 209
differential q-forms, 103
dimension axiom, 102
Dirac operator, 5
double diagonal action, 272
dual of a complex vector bundle E, 125
dualizing morphism, 129

Eilenberg–MacLane isomorphism, 178
Eilenberg–MacLane map, 106
Eilenberg–MacLane space, 105
Eilenberg–MacLane space K(G,n), 97
elementary cofibration, 85
elementary fibration, 85
elementary symmetric function, 118
Ell(X), 210
endomorphism matrix algebra bundle, 231
equivalence, 317
equivalence classes of idempotents in, 44
equivalence of categories, 19
equivalent categories, 19
equivariant KK-groups, 223
Euler characteristic, 131
Euler class, 111, 121, 132
evaluation function, 66
even/odd grading, 182
exact couple, 255
exact sequences, 101
exact triangle for KR∗(X), 166
excision morphisms, 100
exponential sequence 〈exp〉, 248
extension of a principal G′-bundle P′, 61
extension of structure group class, 284
extension property, 84
extension theory, 211

factorization, 84
faithful functor, 19, 317
fibration, 85
fibre, 9, 89
fibre bundle E = P[Y ], 59
fibre homotopic, 252
fibre homotopically equivalent, 252
fibre homotopy, 252
fibre homotopy classes, 252
fibre mapping sequence, 92
fibre product, 12, 14

fibre product of bundles with G-action, 153
fibre space fibration, 83
fibred category, 303
filtered space, 98
finite bibasis, 39
finitely generated, 30
finitely generated projective module, 40
first Čech cohomology, 319
first Chern class of the line bundle, 277
first Chern class of L, 112
first cohomology set, 319
first nontrivial differential, 264
first Stiefel–Whitney class, 139
first Stiefel–Whitney class of L, 112
first-order gluing, 279
fixed point, 56
formula for the total Stiefel–Whitney class,

123
Fredholm conditions, 211
free G-space, 57
Frobenius algebra, 5
full embedding property of the cross section

functor, 35
full subcategory, 16
fully faithful functor, 19, 37, 317
functor, 16, 17
functor faithful, 317
functoriality, 253
fundamental group, 71
fusion product, 266

gauge group AutB(P), 96
gauge group AutB(P) of P, 62
gauge transformation, 62
Gauss map, 31
geometric realization, 289
gerbe, 277, 299, 318
graded exact couple of type r, 256
graded ring structure, 160
graded tensor product, 182
Gram–Schmidt process, 189
Grassmann variety, 28
Green’s imprimitivity theorem, 225
Green–Julg Theorem, 224
Grothendieck K-functor, 47
Grothendieck idempotent I-functor, 50
Grothendieck ring, 268
group SL(2,Z), 194
group localization, 46
group of automorphisms, 15
groupoid, 226, 295
groupoid U(∗) associated to the covering, 297
groupoid associated to the G action on the

object X , 297
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groupoid gerbe, 300
groupoid object, 287
Gysin sequence, 121

half exact, 219
handle, 109
Hausdorff space, 20
higher algebraic K-theory of a ring R, 294
Hilbert B-module, 223
Hilbert space vector bundles, 231
homology, 100
homology exact couple, 257
homotopic, 67
homotopy, 65, 219
homotopy equivalence, 68
homotopy invariant, 69
homotopy (resp. smooth homotopy) invariant,

219
homotopy cofibre of f , 92
homotopy equivalence, 99
homotopy fibre, 91
homotopy invariance of bundles, 64
homotopy quotient categories, 68
homotopy relation, 67
Hurewicz fibration, 88
Hurewicz map, 105
Hurewicz theorem, 105

idempotents, 42, 43
inclusion, 129
index, 108
index theorem for elliptic operators, 134
induced bundle, 13, 25, 153
inductive limit topology, 28
inner product, 33
inner product on a vector bundle, 33
integral third Stiefel–Whitney class, 141
inverse, 15
irreducible representations, 156, 267
isomorphism, 15
isomorphism of functors, 18
Iwasawa, 195
Iwasawa decomposition of a topological group,

191

k∗, 220
K-Theory of C∗-Algebras, 54
Kasparov product, 211
Koszul complex, 167
Kuiper’s theorem, 235

left G-space, 56
Lie algebra of algebraic loops, 266
lifting property, 84

limit topology, 176
linearly independent n-tuples, 189
localization at the prime ideal, 170
locally convex vector space, 208
locally convex topological algebra, 208
locally full, 81, 311
locally trivial, 11, 59, 282
long exact sequence, 160
loop space, 89
Lorentz metric, 195

Möbius band, 13
map, 20
mapping cone, 89, 216
mapping cone of u, 216
mapping cylinder, 88, 99, 216
mapping cylinder of u, 216
mapping space, 89
mapping track, 87
matrix algebra bundle, 230
Mayer–Vietoris sequence, 102, 121
metric with positive scalar curvature, 144
Milnor principal G-bundle, 78
Milnor total space construction, 76
Milnor universal principal G-bundle, 78
module over, 285
morphism, 24, 25, 289, 295, 305, 310
morphism of n-level pseudosimplicial, 288
morphism of bundle gerbes, 280
morphism of functors, 18
morphism of two G-bundles, 153
Morse theory, 107, 185
multiplication on Ω(Y ), 91
multiplier algebra, 214

natural equivalence, 18
natural transformation, 18
nice Morse function, 108
nondegenerate, 108
norm topology, 235, 236, 238
normal bundle ν(M), 127
normed algebra, 52
numerable bundle, 73
numerable covering of the base space, 73
numerable pair, 36

objects, 15
one point union, 70
open, 20
open bundle, 21
operator algebra bundles, 231
opposite category, 69
or one point join, 70
orientable, 121, 144
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orientation, 61, 128, 137, 139, 144
orientation classes ωK , 129
orientation of an n-dimensional manifold M,

128
original Iwasawa decomposition G = KAN,

191
orthogonal, 189
orthonormal, 189
outer automorphism sheaves, 320

pairing with, 211
pairing with K111(X), 212
paracompact space, 74
parity-graded objects, 182
partition (resp. envelope of unity, 73
path space, 89
periodicity theorem, 168, 187
Peter–Weyl theorem, 156
Poincaré duality, 107, 127
Poincaré duality isomorphism, 132
Poincaré duality theorem, 129
Poincaré group, 71
pointed homotopy equivalence, 68
pointed map, 67
pointed space, 67
Pontrjagin class, 111, 125
Pontrjagin numbers, 134
presheaf, 303, 304
prestack, 314
principal G-bundle, 59
principal G-sheaf, 318, 319
principal bundle, 57
principal bundle morphism, 57
product G-principal bundle, 58
product bundle, 10, 14, 23
projection, 9
projective, 39
projective bundle theorem, 115

quadratic form, 181
quantum field theories, 1
quasicompact space, 20
Quillen, 85

rank filtration, 27
real (τ)G-vector bundle, 158
real infinite-dimensional projective space, 112
real periodicity, 179
real projective space, 12
real vector bundle, 121
reduced homology and cohomology, 100
related groupoid, 296
relation, 114
relative group, 166

representations, 268
restriction, 11
restriction of a principal G′′-bundle P′′, 61
Riemann surface, 135
Riemann–Roch theorem, 135
Riemann-Roch-Hirzebruch theorem, 127
right G-space, 56
ring structure, 160

second dualizing morphism, 129
second Stiefel–Whitney class, 140
second-level pseudosimplicial

object, 291
second-order gluing, 279
section, 10
seminorm, 207
separated space, 20
Serre fibration, 88
Serre–Swan Theorem, 41
set of index data, 210
sheaf, 304
sheaf of groups, 319
sheafification, 305
simple, 238
simple Lie group, 195
simplicial object, 288
singular simplices, 103
smooth, 216
smooth cone, 216
smooth suspension, 216
smooth Töplitz extension, 218
space, 74
special linear group, 190
spectral radius, 53
spectrum, 53
spin, 144
spin structure, 61, 140, 144
spinc structure, 141
splitting principle, 114, 119, 125
stability properties of characteristic classes,

117
stabilized bundle theory, 177
stable equivalence classes, 244
stably equivalent, 117, 244, 245
stably isomorphic, 283
stack, 303
Steenrod square, 123
Stiefel variety, 28
Stiefel–Whitney class, 4, 107, 111, 132
Stiefel–Whitney class for the real projective

space, 263
Stiefel–Whitney class of the tangent bundle,

117
Stiefel–Whitney numbers, 133
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string, 144
string structure, 144
string theory, 4
strong topology, 238
subcategory, 16
substitution morphism, 209
supersymmetry, 2
suspension, 89, 178, 216
suspension axiom, 101
symmetric function, 118

tangent and normal bundle, 12
tangent bundle T (M), 127
tensor algebra T (B), 214
theory of adjoint functors, 306
third integral Stiefel–Whitney

class, 141
Thom class of E, 168
Thom isomorphism, 168
Thom morphism, 168
Tietze extension theorem, 157
Todd class, 111, 120, 135
Todd genus of the manifold, 120
topological group, 55
topology, 238
total space, 9
trivial, 300
trivial vector bundle, 25
trivializing sections of the gerbe, 282

twisted K-theory, 3, 4

unitary group, 238
universal coefficient theorem, 106, 131
universal first Stiefel–Whitney class, 140
universal principal G-bundle, 95
universal property, 29, 306
universal two-way extension, 217
universal vector bundle over Grn(FN), 29
unstable periodicity theorem, 186
upper half plane, 193

vector, 25
vector bundle, 23, 24, 30, 230, 244, 245
vector field, 11
Verlinde algebra, 265, 266

weak topology, 28, 78, 98
Wedge Product, 104
Whitehead mapping theorem 9(2.2), 95
Whitney sum, 12, 114
Whitney sum formula, 125
Whitney sum property, 121
winding number, 71
Witten index, 145
Wu class, 132

zero-order gluing, 278
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