
Symmetries and �rst integrals of ordinary di�erence equationsP E HydonDepartment of Mathematics and StatisticsUniversity of SurreyGuildford, Surrey GU2 5XHEnglandAbstractThis paper describes a new symmetry-based approach to the solution of ordinary di�erenceequations. This approach makes it possible to devise techniques for solving di�erence equations,by adapting existing di�erential equation techniques. In particular, we obtain a new systematicmethod of determining one-parameter Lie groups of symmetries in closed form. This methodenables the user to calculate the general solution of a given ordinary di�erence equation for whichsu�ciently many such symmetries can be obtained. Several examples are used to illustrate thetechnique for both transitive and intransive symmetry groups. It is shown that every linear second-order ordinary di�erence equation has a Lie algebra of symmetry generators that is isomorphic tosl(3). The paper concludes with a new systematic method for constructing �rst integrals directly,which can be used even if no symmetries are known.1. IntroductionOver a century ago, Sophus Lie introduced symmetry-based techniques for solving ordinarydi�erential equations (ODEs). Lie's approach enables the user to determine Lie groups of symmet-ries of a given ODE. If a su�ciently large symmetry group can be found, it may be used to solvethe ODE. For an introduction to symmetry methods for ODEs, see Olver (1993), Bluman & Kumei(1989), Stephani (1989), or Hydon (2000).Recently, Maeda (1987) showed that autonomous systems of �rst-order ordinary di�erenceequations (O�Es) can be simpli�ed or solved using an extension of Lie's method. Maeda alsoshowed that the linearized symmetry condition for such O�Es amounts to a set of functionalequations. In general, these are hard to solve, but Maeda described two examples for which a veryrestrictive ansatz yields Lie symmetries. Gaeta (1993) used formal series expansions to derive somesymmetries of those systems of O�Es that are discretizations of continuous systems. Given anODE with known Lie point symmetries, one may ask whether it is possible to discretize the ODEin a way that preserves at least some of the symmetries. Dorodnitsyn (1994) describes how thiscan be achieved, and lists some classes of O�Es that have a given Lie group.Maeda's ideas have been extended to nonautonomous systems and higher-order O�Es byQuispel & Sahadevan (1993) and Levi et al. (1997). These papers describe di�erent series-basedmethods for obtaining some solutions of the linearized symmetry condition. Series expansions canbe calculated if the symmetry condition has a �xed point, although it is usually not obvious howto sum the series to obtain solutions in closed form. Unfortunately, the well-known method forcalculating invariants requires the symmetry generator to be in closed form. This is a substantiallimitation on the usefulness of series-based techniques.In the current paper, we introduce a systematic method for obtaining Lie symmetries (inclosed form) of a given O�E. The new method uses the linearized symmetry condition, which1



is a functional equation, to a derive an associated system of linear partial di�erential equations.This system is similar to the system of determining equations for Lie symmetries of a given ODE.Moreover, having set up the mathematical framework for the new method, we �nd that it enables usto transfer all of the main symmetry methods for ODEs across to O�Es; only minor modi�cationsare needed. The paper describes some nontrivial applications of the underlying transfer principle(which will be discussed elsewhere).Anco & Bluman (1998) have described a constructive method for obtaining �rst integrals ofODEs directly, without using Lie symmetries. Instead, the method uses the adjoint of the linearizedsymmetry condition. In x5 of the current paper, we introduce a technique for obtaining �rst integralsof O�Es directly. Unlike the method described by Anco & Bluman, this technique does not usethe adjoint of the linearized symmetry condition. Nevertheless, it has many features in commonwith the ODE method, and it is easy to use.2. Symmetries of ordinary di�erence equationsIn the following, we consider N th-order O�Es of the formun+N = ! (n; un; un+1; : : : ; un+N�1) ; (2:1)where ! is a given smooth function. Here the independent variable n is an integer. Some authorsprefer to use xn as the independent variable (particularly if the O�E arises as a discretization ofan ODE). It does not matter which notation is used, provided that there is a bijection that mapsn to xn. (N.B. The meshpoints, xn, need not be uniformly spaced.)For simplicity, attention is restricted to regions in which !un 6= 0. A �rst integral of the O�E(2.1) is a non-constant function, � = �(n; un; : : : ; un+N�1);that is constant on solutions of (2.1). In other words, a non-constant function � is a �rst integral if� (n+ 1; un+1; : : : ; un+N�1; !(n; un; : : : ; un+N�1)) = � (n; un; : : : ; un+N�2; un+N�1) : (2:2)This condition holds as an identity in the variables n; un; : : : ; un+N�1. To simplify the notation,we introduce the shift operator (restricted to solutions):S : (n; un; : : : ; un+N�2; un+N�1) 7! ((n+ 1; un+1; : : : ; un+N�1; !(n; un; : : : ; un+N�1)) : (2:3)The action of this operator on any function is de�ned by the action on the function's arguments:S (F (n; un; : : : ; un+N�1)) = F (Sn;Sun; : : : ;Sun+N�1) = F (n+ 1; un+1; : : : ; !):Therefore (2.2) amounts to S� = �: (2:4)The O�E (2.1) has N functionally independent �rst integrals, �1; : : : ; �N , and the general solutionof (2.1) is �i = ci; i = 1; : : : ; N; (2:5)where c1; : : : ; cN are arbitrary constants. Here \functionally independent" means that the Jacobiandoes not vanish, that is, @(�1; : : : ; �N )@(un; : : : ; un+N�1) 6= 0: (2:6)2



This condition ensures that (in principle, at least) each of un; : : : ; un+N�1 can be written as afunction of n; �1; : : : ; �N . In particular, ifun = F (n; �1; : : : ; �N );the general solution of (2.1) is un = F (n; c1; : : : ; cN ):Throughout this paper, we shall work in the space of variables n; un; : : : ; un+N�1; the condition (2.6)enables us to use n; �1; : : : ; �N as an alternative set of (local) coordinates. We consider symmetriesthat are analogous to dynamical (or internal) symmetries of ODEs. Dynamical symmetries are thepoint symmetries of an equivalent system of n �rst-order ODEs. This is the most general classof symmetries, and there are in�nitely many independent symmetry generators. To �nd any ofthese, some kind of restriction (ansatz) is usually needed. For further details, see Stephani (1989)or Anderson et al. (1993).A symmetry, �, of (2.1) maps the set of solutions to itself. Therefore, if� : (n; �1; : : : ; �N ) 7! (n̂; �̂1; : : : ; �̂N ); (2:7)each �̂i is a smooth function of �1; : : : ; �N only. Symmetries are required to be su�ciently smooth;for example, point symmetries of ODEs are di�eomorphisms of the space of independent anddependent variables. However, the corresponding space for an O�E consists of a set of disjoint�bres, because the independent variable is discrete. Therefore symmetries of O�Es must be �bre-preserving, which means that n̂ is a function of n only. Moreover, the �bres must not be shu�ed(because shu�ing transformations are not allowed in the continuous case); consequently, symmetriesof O�Es are required to be neighbour-preserving. This can happens in one of two ways: either asymmetry is order-preserving, in which casen̂(n+ 1) = n̂(n) + 1;or else the symmetry is order-reversing, in which case its action on n is equivalent to a reection.Henceforth, we shall restrict attention to order-preserving symmetries (which are generally moreuseful than reections).A symmetry is trivial if every solution is mapped to itself, that is, if�̂i = �i; i = 1; : : : ; N: (2:8)Lemma 1For each k 2 Z, the transformation generated by Sk is a trivial symmetry of (2.1). (N.B.Where k is negative, Sk denotes (S�1)�k.)ProofFor k � 0, apply S repeatedly to obtainSk : (n; �1; : : : ; �N ) 7! (n+ k; �1; : : : ; �N ): (2:9)Hence every solution �i = ci is mapped to itself. Equation (2.9) also holds for k < 0, because (2.4)implies that S�1�i = �i. (N.B. The operator S�1 is obtained by �rst using (2.1) to write un as afunction of n; un+1; : : : ; un+N , then replacing n by n� 1; the condition !un 6= 0 ensures that thisis possible.) 3



One consequence of Lemma 1 is that every nontrivial order-preserving symmetry can be re-garded as the composition of a vertical (or evolutionary) symmetry, which acts only on the �rstintegrals �i (leaving n unchanged), and a trivial symmetry. Just as for ODEs, it is only the non-trivial symmetries that can be used to solve O�Es, so we lose nothing by concentrating on verticalsymmetries.Lemma 2Every nontrivial order-preserving symmetry (2.7) is equivalent to a vertical symmetry,~� : (n; �1; : : : ; �N ) 7! (n; ~�1; : : : ; ~�N );modulo a trivial symmetry.ProofThe proof is by construction: ~� = Sn�n̂(n)�is the unique vertical symmetry that is equivalent to �. (The condition that � is order-preservingensures that n� n̂(n) is independent of n.)In view of Lemma 2, we shall consider only vertical symmetries from now on. Accordingly weseek symmetries (2.7) with n̂ = n. In terms of the original variables,� : (n; un; : : : ; un+N�1) 7! (n; ûn; : : : ; ûn+N�1): (2:10)The action of � on the variables un+k is determined by the action on un. To see this, suppose thatûn = g(n; un; : : : ; un+N�1) = G(n; �1; : : : ; �N ):Then, on the set of solutions of the O�E (2.1),ûn+k = G(n+ k; �1; : : : ; �N ) = Skûn; k = 1; : : : ; N: (2:11)The conditions (2.11) are analogous to the prolongation formulae for dynamical symmetries ofODEs, which reect the necessity for contact conditions to be satis�ed on the set of solutions.The symmetry condition for the O�E (2.1) isûn+N = ! (n; ûn; : : : ; ûn+N�1) ; when (2:1) holds: (2:12)Lie symmetries are obtained by linearizing the symmetry condition about the identity, as follows.We seek one-parameter (local) Lie groups of symmetries of the formûn = un + �Q(n; un; : : : ; un+N�1) +O(�2):The function Q is called the characteristic of the one-parameter group. The prolongation formulae(2.11) yield ûn+k = un+k + �SkQ+O(�2); k = 1; : : : ; N:Expanding (2.12) in powers of � yields the linearized symmetry conditionSNQ�X! = 0; (2:13)4



where X = Q@un + (SQ)@un+1 + � � � + (SN�1Q)@un+N�1 : (2:14)Note that the symmetry generator X, when written in terms of the �rst integrals, is of the formX = F 1(�1; : : : ; �N )@�1 + � � �+ FN (�1; : : : ; �N )@�N : (2:15)This is because each �̂i is a function of � = (�1; : : : ; �N ) only. The most important consequence of(2.15) is that X and S commute as operators on functions. Given any su�ciently smooth function,h(n; un; : : : ; un+N�1) = H(n; �);we use (2.15) to obtainS(XH) = S �F i(�)H�i(n; �)� = F i(�)H�i(n+ 1; �) = X(SH):Therefore S(Xh) = X(Sh): (2:16)Just as for ODEs, the linearized symmetry condition is both necessary and su�cient to obtainthe local Lie group of symmetries generated by X. To �nd solutions of (2.13), we must impose someconstraint upon Q, in order to be able to split (2.13) into an overdetermined system of equations.For example, if we seek characteristics that are independent of un+N�1, it may be possible to splitthe linearized symmetry condition by equating powers of un+N�1. Before this can be achieved,some work is needed to transform (2.13) from a functional equation into a di�erential equation forQ. The next section introduces a method for accomplishing this transformation.3. How to construct the determining equationsConsider the O�E un+2 = unun+12un � un+1 : (3:1)We shall seek point symmetries, whose characteristics are of the form Q = Q(n; un). The linearizedsymmetry condition (2.13) isQ(n+ 2; !) � 2u2n(2un � un+1)2Q(n+ 1; un+1) + u2n+1(2un � un+1)2Q(n; un) = 0; (3:2)where ! denotes the right-hand side of (3.1). The chief di�culty with (3.2) is that the functionQ takes three separate pairs of arguments. To overcome this di�culty, we di�erentiate (3.2) withrespect to un, keeping ! �xed. Here un+1 is regarded as a function of n, un, and !. Using astandard result from multivariable calculus, we obtain@un+1(n; un; !)@un = � !un!un+1 = u2n+12u2n :Therefore (3.2) reduces to� u2n+1(2un � un+1)2Q0(n+ 1; un+1) + 2un+1(2un � un+1)2Q(n+ 1; un+1)5



+ u2n+1(2un � un+1)2Q0(n; un)� 2u2n+1un(2un � un+1)2Q(n; un) = 0;where 0 denotes a derivative with respect to the continuous variable. Rescaling, we obtain�Q0(n+ 1; un+1) + 2un+1Q(n+ 1; un+1) +Q0(n; un)� 2unQ(n; un) = 0 (3:3)Now di�erentiate (3.3) with respect to un, this time keeping un+1 �xed, to obtain the ODEddun �Q0(n; un)� 2unQ(n; un)� = 0: (3:4)Note that n appears only as a parameter at this stage. The general solution of (3.4) isQ(n; un) = A(n)un +B(n)u2n: (3:5)Substituting (3.5) into (3.3) yields A(n+ 1) = A(n);and hence A(n) = c1:[N.B. We use ci to denote arbitrary constants.] The remaining unknown function, B(n), is determ-ined by substituting (3.5) into the original linearized symmetry condition (3.2); this yieldsB(n+ 2)� 2B(n+ 1) +B(n) = 0:Hence B(n) = c2n+ c3:Summarizing these results, we have found a three-dimensional Lie algebra of symmetry generators,whose characteristics are linear combinations ofQ1 = un; Q2 = nu2n; Q3 = u2n: (3:6)The same method can be applied to any second-order O�Eun+2 = !(n; un; un+1); !un+1 6= 0: (3:7)[N.B. The condition !un+1 6= 0 ensures that the O�E is genuinely second-order, not equivalent toa �rst-order problem with step length 2.] The linearized symmetry condition for point symmetriesis Q(n+ 2; !)� !un+1Q(n+ 1; un+1)� !unQ(n; un) = 0: (3:8)By eliminating Q(n+ 2; !) and Q(n+ 1; un+1), we can transform (3.8) to an ODE of order threeor less. First, we di�erentiate (3.8) with respect to un, keeping ! �xed, to obtain (after rescaling)Q0(n+ 1; un+1) + �un+1Q(n+ 1; un+1)�Q0(n; un) + �unQ(n; un) = 0; (3:9)where � = ln j!un+1 j � ln j!un j :6



Di�erentiating (3.9) with respect to un, keeping un+1 �xed, we obtain�unun+1Q(n+ 1; un+1)�Q00(n; un) + �unQ0(n; un) + �ununQ(n; un) = 0: (3:10)If �unun+1 = 0, equation (3.10) is a second-order ODE for Q(n; un). Otherwise, we must divide(3.10) by �unun+1 and di�erentiate once more with respect to un (keeping un+1 �xed) to obtain athird-order ODE for Q(n; un). Typically, the coe�cients in the reduced ODE depend upon un+1.If this occurs, the ODE can be split by gathering together all terms with the same dependenceupon un+1.The solution of the reduced ODE contains arbitrary functions of n. It is substituted into thelinearized symmetry condition, which can then be split into a system of determining O�Es for thearbitrary functions (by grouping together all terms with the same dependence upon un and un+1).These determining equations are usually very easy to solve.This approach is capable of yielding more symmetries than can be obtained by using �xedpoint summations. For example, Quispel & Sahadevan (1993) used a �xed-point method to lookfor symmetries of un+2 = 2un+1 � un(1� u2n+1)1� u2n+1 + 2unun+1 :They found two independent characteristics of the form Q = Q(n; un), namelyQ1 = u2n + 1; Q2 = n(u2n + 1):However, the method described above yields Q1; Q2, and a third independent characteristic:Q3 = (u2n + 1) tan�1(un):The ansatz Q = Q(n; un) yields only a few independent characteristics for second-order O�Es.For instance, every linear homogeneous O�E,un+2 = p(n)un+1 + q(n)un; (3:11)has precisely three such characteristics, namelyQ1 = un; Q2 = U1(n); Q3 = U2(n); (3:12)where un = U1(n) and un = U2(n) are linearly independent solutions of (3.11). Consequently,every O�E that is linearizable by a point transformationT : (n; un) 7! (n; ~un(n; un)) (3:12)also has three characteristics of the form Q = Q(n; un). By contrast, every second-order ODEthat is linear or linearizable by a point transformation has an eight-parameter Lie algebra of pointsymmetry generators, which is isomorphic to sl(3). The characteristics of these symmetries are alllinear in y0, which suggests that we may obtain further symmetries of O�Es by trying an ansatzof the form Q = a(n; un)un+1 + b(n; un): (3:13)Even though this ansatz is more complicated than before, our method can be used to obtainall such symmetries of a given O�E. The linearized symmetry condition (2.13) amounts toa(n+ 2; !)S! + b(n+ 2; !) � !un+1 fa(n+ 1; un+1)! + b(n+ 1; un+1)g7



�!un fa(n; un)un+1 + b(n; un)g = 0: (3:14)This is reduced to a set of ODEs for a(n; un) and b(n; un) in essentially the same way as before.First di�erentiate with respect to un, keeping ! �xed, to eliminate b(n + 2; !). Then rescale toobtain an equation of the form a(n+ 2; !) + other terms = 0:Di�erentiate this with respect to un, keeping ! �xed, to eliminate a(n+2; !). Then, by repeatedlyrescaling and di�erentiating with respect to un (keeping un+1 �xed), it is possible to eliminate allterms containing a(n+1; un+1), b(n+1; un+1), and their derivatives. Finally, the resulting ODE issplit into a set of ODEs (by equating terms with the same dependence upon un+1). This approachreadily generalizes to any ansatz for an O�E of order N � 2. The calculations rapidly become toolengthy to be done by hand, but can be done with the aid of computer algebra. For the remainderof this paper, we shall state symmetries without describing the details of their derivation.Returning to linear O�Es of the form (3.11), it turns out that the linear ansatz (3.13) doesprovide us with more symmetries.Theorem 3Every second-order linear homogeneous O�E has an eight-dimensional Lie algebra of symmetrygenerators whose characteristics are linear in un+1. This Lie algebra is isomorphic to sl(3).ProofFor a given linear homogeneous O�E (3.11), with two linearly independent solutions un =U1(n) and un = U2(n), there are two functionally independent �rst integrals that are linear in unand un+1:�1(n; un; un+1) = unSU2 � U2un+1U1SU2 � U2SU1 ; �2(n; un; un+1) = U1un+1 � unSU1U1SU2 � U2SU1 : (3:15)From (2.15), every symmetry generatorX = Q@un + SQ@un+1can be rewritten in the form X = F 1(�1; �2) @�1 + F 2(�1; �2) @�2 ; (3:16)where (by the chain rule)F i(�1; �2) = X(�i(n; un; un+1)) = �i(n;Q;SQ):In particular, setting Q = Uj(n) gives X = @�j :Therefore every one-parameter Lie group of symmetries of (3.11) has a characteristic of the formQ(n; un; un+1) = F 1(�1; �2)U1(n) + F 2(�1; �2)U2(n): (3:17)To �nd all characteristics that are linear in un+1, di�erentiate (3.17) twice with respect to un+1and (using the fact that U1(n) and U2(n) are independent) obtain constraints on the functions F i.A basis for the space of such charactistics isQ1 = U1(n); Q2 = U2(n); Q3 = �1U1(n); Q4 = �2U1(n);8



Q5 = �1U2(n); Q6 = �2U2(n); Q7 = �1un; Q8 = �2un:It is easy to check that the corresponding generators form a Lie algebra isomorphic to sl(3).N.B. It is not true that every O�E that is linearizable by a point transformation has an eight-dimensional Lie algebra whose characteristics are linear in un+1. For example, the O�E (3.1) can belinearized by the point transformation (3.12) with ~un = 1=un. However, there are no characteristicsthat are linear in un+1 other than those that we found earlier, which are independent of un+1.Theorem 3 generalizes a result of Levi et al. (1997), who showed thatun+2 = 2un+1 � unhas a Lie algebra that is isomorphic to sl(3).Just as for ODEs, it usually not easy to �nd more than one characteristic of a given second-order linear homogeneous O�E, namelyQ = un = Q3 +Q6:To obtain any other characteristic, one must �nd at least one solution of the O�E (or its adjoint).This severely limits the usefulness of symmetry methods for such equations. For nonlinear O�Es,however, symmetries usually can be found without too much di�culty. They may be used in thesame ways as dynamical symmetries of ODEs.For simplicity, we have focused on second-order O�Es. However, the same method can alsobe used to obtain symmetries of higher-order O�Es. If one uses a more general ansatz, such asQ = Q(n; un; un+1), the method leads to a system of partial di�erential equations for Q. So far, wehave chosen to eliminate SkQ; k � 1, to obtain a system that involves only Q and its derivatives.This is not always the best strategy; sometimes it is better to obtain a system for Sk0Q for somek0 > 0. For example, un+4 = u2n+1un + unhas only one characteristic of the form Q = Q(n; un; un+1), namely Q = c1un. This result is easyto obtain if di�erential elimination is used to derive a system for S4Q, whereas the system forQ is apparently intractable. This demonstrates that some experimentation may be needed if thestandard reduction in favour of Q leads to a system that is too hard to solve.4. How to use symmetries of O�EsIt appears that almost any symmetry method for ODEs has a counterpart for O�Es. Usually,only slight modi�cation is needed to obtain the O�E methods. In the following, we use second-order O�Es to demonstrate various methods. The generalization to higher-order problems isstraightforward.Given a symmetry generator for a second-order O�E,X = Q@un + SQ@un+1 ; (4:1)there exists an invariant, vn = v(n; un; un+1); (4:2)satisfying Xvn = 0; @vn@un+1 6= 0: (4:3)9



This invariant is found by the method of characteristics; it is a �rst integral ofdunQ = dun+1SQ :Moreover, every invariant function of n, un, and un+1 is a function of n and vn only. For later use,we shall suppose that (4.2) can be inverted to obtainun+1 = w(n; un; vn) (4:4)for some function w.From (2.16), X(Svn) = S(Xvn) = 0;so Svn is invariant: it is a function of n and vn only. Thus the solutions ofun+2 = !(n; un; un+1) (4:5)satisfy a �rst-order O�E of the form vn+1 = Svn = 
(n; vn): (4:6)If (4.6) can be solved (perhaps by exploiting further symmetries of (4.5) { see below) then thegeneral solution, vn = v(n; un; un+1) = f(n; c1); (4:7)is equivalent to the �rst-order O�E un+1 = w(n; un; f(n; c1)); (4:8)which admits the symmetries generated by X. To solve (4.8), we need to obtain a canonicalcoordinate, sn = s(n; un); (4:9)that satis�es Xsn = 1:The most obvious choice of canonical coordinate iss(n; un) = Z dunQ(n; un; w(n; un; f(n; c1))) : (4:10)Note that Xsn+1 = X(Ssn) = S(Xsn) = S(1) = 1 = Xsn;so sn+1 � sn is an invariant. Consequentlysn+1 = sn + g(n; vn)for some function g, and therefore (4.8) is equivalent tosn+1 = sn + g(n; f(n; c1)): (4:11)10



The general solution of (4.11) is sn = c2 + n�1Xr=n0 g(r; f(r; c1)); (4:12)where n0 is any convenient integer.If an O�E has anN -dimensional solvable Lie (sub)algebra of symmetry generators, the solvablestructure can be exploited in exactly the same way as for ODEs. Consider the nonlinear O�Eun+2 = 2u3n+1u2n � un+1: (4:13)The set of characteristics that are linear in un+1 is spanned byQ1 = un+1un ; Q2 = un: (4:14)The commutator [X1;X2] has the characteristic[Q1; Q2] � X1Q2 �X2Q1 = un+1un = Q1:Therefore the generators X1, X2, form a basis for a nonabelian solvable Lie algebra, whose derivedsubalgebra is spanned by X1. Consequently X1 should be used for the �rst reduction of order, sothat the reduced O�E inherits the symmetries generated by X2. The invariant vn of the groupgenerated by X1 satis�esX1vn = �un+1un @un +�2u2n+1u2n � 1� @un+1� vn = 0:Using the method of characteristics, we obtainvn = (u2n+1 � u2n)u4n : (4:15)This reduces the O�E (4.13) to vn+1 = 4vn; (4:16)which inherits the scaling symmetry generated by X2. The general solution of (4.16) isvn = c14n; (4:17)which is equivalent to un+1 = �unp1 + c14nu2n : (4:18)However, the negative root is inconsistent with (4.13). Therefore the canonical coordinate issn = Z dunp1 + c14nu2n = 1pc1 2n sinh�1 (pc1 2nun) : (4:19)Then (4.18) is equivalent to sn+1 = sn;11



whose general solution is sn = c2: In the original variables, the general solution of (4.13) isun = 1pc1 2n sinh (c2pc1 2n) : (4:20)The above technique fails if X2 is a scalar multiple of X1, in which case the symmetry groupgenerated by X1 and X2 is intransitive. Then if vn satis�es X1vn = 0, it also satis�es X2vn = 0. Asingle reduction of order can be achieved, but the remaining one-parameter Lie group acts triviallyon the reduced O�E and cannot be used to solve it.Intransitive two-dimensional Lie subgroups of point symmetries also occur for some second-order ODEs. They are of little consequence, because there is always a transitive two-dimensionalsubgroup of point symmetries as well (Stephani, 1989). However, for second-order O�Es, the usualans�atze may not yield a transitive group. The group generated by X1 and X2 is intransitive ifQ2Q1 = SQ2SQ1 = S �Q2Q1� ;that is, if the ratio of the characteristics is a �rst integral:Q2Q1 = �:We now show how to construct another (functionally independent) �rst integral. The methoddepends upon whether or not X1 and X2 commute.For now, it is most convenient to write the generators in terms of �rst integrals, with X1 innormal form. Thus X1 = @�1 ; X2 = �@�1 ; (4:21)for some �rst integral �1, and there is an independent �rst integral, �2, that is mapped to itself bythe group action. From (4.21), we obtain[X1;X2] = ��1X1:If [X1;X2] 6= 0 then � depends nontrivially on �1. Now construct an invariant vn of X1 as describedearlier. Clearly, vn is a function of n and �2 only, so�2 = F (n; vn);for some function F . To obtain �2, we must �nd a solution ofF (n+ 1;
(n; vn)) = F (n; vn):(In practice, this is usually easy.) Then � and �2 are functionally independent �rst integrals.If X1 and X2 commute then � is a function of �2 only. Indeed, without loss of generality, wecan set �2 = �:To obtain �1, �rst note that X1�1 = 1;and so �1 is a canonical coordinate. Therefore�1 = Z dunQ1 (n; un; un+1(n; un; �2)) +G(n; �2); (4:22)12



for some function G. To obtain G (up to an arbitrary function of �2), we apply the conditionS�1 � �1 = 0;and solve the resulting �rst-order linear O�E using the standard method.To illustrate this technique, consider the O�Eun+2 = u2n+1un + un+1: (4:23)The symmetry generators whose characteristics are linear in un+1 form an abelian Lie algebra; thecharacteristics are linear combinations ofQ1 = un; Q2 = un+1 � nun: (4:24)It is easy to verify that S �Q2Q1� = Q2Q1 ;and because the generators commute, we choose�2 = Q2Q1 = un+1un � n: (4:25)From (4.22), �1 = ln junj+G(n; �2);where G(n+ 1; �2)�G(n; �2) = ln junj � ln jun+1j = � ln jn+ �2j: (4:26)The general solution of (4.26) isG(n; �2) = A(�2)� ln j�(n+ �2)j;where �(z) is the Gamma function and A is an arbitrary function. Without loss of generality, wecan set A(�2) = 0 and replace �1 by its exponential,~�1 = un�(n+ �2) :Therefore the general solution of (4.23) isun = c1�(n+ c2): (4:27)5. Direct construction of �rst integralsAnco & Bluman (1998) describes a method for obtaining �rst integrals of a given ODE directly,whether or not any Lie symmetries are known. A simpli�ed version of this method is given in Hydon(2000). 13



It is also possible to construct �rst integrals of O�Es directly, even if no symmetries are known.The starting point for this approach is the equationS� = �; �un+N�1 6= 0: (5:1)For second-order O�Es, (5.1) amounts to�(n+ 1; un+1; !(n; un; un+1)) = �(n; un; un+1); �un+1 6= 0: (5:2)(For brevity, we shall consider only second-order problems; the generalization to higher-order O�Esis entirely straightforward.)It is convenient to introduce the functionsP1(n; un; un+1) = �un(n; un; un+1); (5:3)P2(n; un; un+1) = �un+1(n; un; un+1): (5:4)By di�erentiating (5.2) with respect to un and un+1 in turn, we obtainP1 = !unSP2; (5:5)P2 = SP1 + !un+1SP2: (5:6)Therefore P2 satis�es the second-order linear functional equation(S!un)S2P2 + !un+1SP2 � P2 = 0: (5:7)Just as for the linearized symmetry condition, we obtain solutions of (5.7) by �rst choosing anansatz, then di�erentiating repeatedly to obtain a di�erential equation for P2. Given a solutionP2 of (5.7), it is straightforward to construct P1. At this stage, it is necessary to check that theintegrability condition @P1@un+1 = @P2@un (5:8)is satis�ed. (This is because some solutions of (5.7) are not derived from any �rst integral.) If (5.8)holds then the �rst integral � is of the form� = Z (P1 dun + P2 dun+1) + F (n); (5:9)where F (n) is determined (up to an arbitrary constant) by substituting (5.9) into (5.2) and solvingthe resulting �rst-order linear O�E.To illustrate the method, consider the O�Eun+2 = nn+ 1un + 1un+1 : (5:10)We use the ansatz P2 = P2(n; un); then (5.7) amounts ton+ 1n+ 2P2(n+ 2; !)� 1u2n+1P2(n+ 1; un+1)� P2(n; un) = 0: (5:11)14



Using the symmetry-�nding algorithm of x3, we obtain a single solution (up to an arbitrary constantfactor): P2 = nun: (5:12)Therefore P1 = nun+1; (5:13)and the integrability condition is satis�ed. From (5.9),� = nunun+1 + F (n);and hence S�� � = F (n+ 1)� F (n) + n+ 1 = 0:(N.B. No matter how complicated the original O�E is, the function F always satis�es a �rst-orderlinear O�E which is easily solved.) In this example,F (n) = �n(n+ 1)2 ;(up to an irrelevant constant). Therefore we have obtained the �rst integral� = nunun+1 � n(n+ 1)2 : (5:14)The general solution to this particular problem can be found by rewriting � = c1 as a �rst-orderlinear O�E for vn = ln junj: vn+1 + vn = ln ���� n+ 12 + c1n ���� :By using the standard method for such O�Es, we obtain the general solution,vn = (�1)n c2 + nXk=n0(�1)k ln ���� k2 + c1k � 1 ����! ;here n0 is a suitably-chosen integer.Any pair of functions (P1; P2) that satis�es (5.5) and (5.6) can be combined with characteristicsof symmetries to yield �rst integrals, as follows.Theorem 4Given a second-order O�E (3.7), suppose that (P1; P2) solves (5.5), (5.6), and that Q is thecharacteristic of a one-parameter Lie group of symmetries. Then� = P1Q+ P2SQ (5:15)is either a �rst integral or a constant.ProofWe use the linearized symmetry condition to show that S� = �, as follows:S� = (SP1)(SQ) + (SP2)(S2Q)= (SP1)(SQ) + (SP2)(!un+1SQ+ !unQ)= P1Q+ P2SQ= �: 15



Note that Theorem 4 does not require the integrability condition (5.8) to hold. If (5.8) issatis�ed then it may be possible to construct two functionally independent �rst integrals from onepair (P1; P2) and one characteristic.6. ConclusionWe have seen that many symmetry-based methods for ODEs are easily adapted to O�Es. Itis often possible to obtain symmetries or �rst integrals sytematically. The method for obtainingsymmetries can be generalized to partial di�erence equations (P�Es), as will be described in aseparate paper. (For P�Es, the chief obstacle to obtaining symmetries is the complexity of thecalculations in the di�erential elimination stage.)ReferencesAnco, S. C. & Bluman, G. 1998 Integrating factors and �rst integrals for ordinary di�erentialequations. Eur. J. Appl. Math. 9, 245{259.Anderson, I. M., Kamran, N. & Olver, P. J. 1993 Internal, external and generalized symmetries.Adv. in Math. 100, 53{100.Bluman, G. W. & Kumei, S. 1989 Symmetries and di�erential equations. New York: Springer.Dorodnitsyn, V. A. 1994 Symmetry of �nite-di�erence equations. In CRC handbook of Lie groupanalysis of di�erential equations, vol. 1. (ed. N. H. Ibragimov), pp. 365{403. Boca Raton: CRCPress.Gaeta, G. 1993 Lie-point symmetries of discrete versus continuous dynamical systems. Phys. Lett.178A, 376{384.Hydon, P. E. 2000 Symmetry methods for di�erential equations. Cambridge: Cambridge UniversityPress. (In press)Levi, D., Vinet, L. & Winternitz, P. 1997 Lie group formalism for di�erence equations. J. Phys.A: Math. Gen. 30, 633{649.Maeda, S. 1987 The similarity method for di�erence equations. IMA J. Appl. Math. 38, 129{134.Olver, P. J. 1993 Applications of Lie groups to di�erential equations, 2nd edn. New York: Springer.Quispel, G. R. W. & Sahadevan, R. 1993 Lie symmetries and the integration of di�erence equations.Phys. Lett. 184A: 64{70.Stephani, H. 1989 Di�erential equations: their solution using symmetries. Cambridge: CambridgeUniversity Press.
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