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Abstract

This paper describes a new symmetry-based approach to the solution of ordinary difference
equations. This approach makes it possible to devise techniques for solving difference equations,
by adapting existing differential equation techniques. In particular, we obtain a new systematic
method of determining one-parameter Lie groups of symmetries in closed form. This method
enables the user to calculate the general solution of a given ordinary difference equation for which
sufficiently many such symmetries can be obtained. Several examples are used to illustrate the
technique for both transitive and intransive symmetry groups. It is shown that every linear second-
order ordinary difference equation has a Lie algebra of symmetry generators that is isomorphic to
sl(3). The paper concludes with a new systematic method for constructing first integrals directly,
which can be used even if no symmetries are known.

1. Introduction

Over a century ago, Sophus Lie introduced symmetry-based techniques for solving ordinary
differential equations (ODEs). Lie’s approach enables the user to determine Lie groups of symmet-
ries of a given ODE. If a sufficiently large symmetry group can be found, it may be used to solve
the ODE. For an introduction to symmetry methods for ODEs, see Olver (1993), Bluman & Kumei
(1989), Stephani (1989), or Hydon (2000).

Recently, Maeda (1987) showed that autonomous systems of first-order ordinary difference
equations (OAEs) can be simplified or solved using an extension of Lie’s method. Maeda also
showed that the linearized symmetry condition for such OAEs amounts to a set of functional
equations. In general, these are hard to solve, but Maeda described two examples for which a very
restrictive ansatz yields Lie symmetries. Gaeta (1993) used formal series expansions to derive some
symmetries of those systems of OAEs that are discretizations of continuous systems. Given an
ODE with known Lie point symmetries, one may ask whether it is possible to discretize the ODE
in a way that preserves at least some of the symmetries. Dorodnitsyn (1994) describes how this
can be achieved, and lists some classes of OAEs that have a given Lie group.

Maeda’s ideas have been extended to nonautonomous systems and higher-order OAEs by
Quispel & Sahadevan (1993) and Levi et al. (1997). These papers describe different series-based
methods for obtaining some solutions of the linearized symmetry condition. Series expansions can
be calculated if the symmetry condition has a fixed point, although it is usually not obvious how
to sum the series to obtain solutions in closed form. Unfortunately, the well-known method for
calculating invariants requires the symmetry generator to be in closed form. This is a substantial
limitation on the usefulness of series-based techniques.

In the current paper, we introduce a systematic method for obtaining Lie symmetries (in
closed form) of a given OAE. The new method uses the linearized symmetry condition, which
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is a functional equation, to a derive an associated system of linear partial differential equations.
This system is similar to the system of determining equations for Lie symmetries of a given ODE.
Moreover, having set up the mathematical framework for the new method, we find that it enables us
to transfer all of the main symmetry methods for ODEs across to OAEs; only minor modifications
are needed. The paper describes some nontrivial applications of the underlying transfer principle
(which will be discussed elsewhere).

Anco & Bluman (1998) have described a constructive method for obtaining first integrals of
ODEs directly, without using Lie symmetries. Instead, the method uses the adjoint of the linearized
symmetry condition. In §5 of the current paper, we introduce a technique for obtaining first integrals
of OAEs directly. Unlike the method described by Anco & Bluman, this technique does not use
the adjoint of the linearized symmetry condition. Nevertheless, it has many features in common
with the ODE method, and it is easy to use.

2. Symmetries of ordinary difference equations
In the following, we consider N*P-order OAEs of the form

Un+N :w(naunaun—l—la-"aun-f-N—l)ﬂ (21)

where w is a given smooth function. Here the independent variable n is an integer. Some authors
prefer to use z,, as the independent variable (particularly if the OAE arises as a discretization of
an ODE). It does not matter which notation is used, provided that there is a bijection that maps
n to z,. (N.B. The meshpoints, x,, need not be uniformly spaced.)

For simplicity, attention is restricted to regions in which w,,, # 0. A first integral of the OAE
(2.1) is a non-constant function,

¢ = ¢(nauna s aun-l-N—l)a
that is constant on solutions of (2.1). In other words, a non-constant function ¢ is a first integral if
¢ (TL + 17 Un+1,--- ,un+N,1,w(n, Un,--- aun-i-Nfl)) = ¢ (na Un,---; Un+N-2, un+N71) . (22)

This condition holds as an identity in the variables n, tu,,...,u,4+n_1. To simplify the notation,
we introduce the shift operator (restricted to solutions):

S:(nytUny ey UniN-—2,Unan-—1) = (M + 1L Upg1, -y Upen_1,w(N, Uy o Upen—1)) - (2.3)
The action of this operator on any function is defined by the action on the function’s arguments:
S(F(n,tun, ... ,unsn-1)) = F(Sn,Supn,...,Supnyn_1) = F(n+ L upy1,...,w).

Therefore (2.2) amounts to
Sop=¢. (2.4)

The OAE (2.1) has N functionally independent first integrals, ¢!,...,¢", and the general solution
of (2.1) is

¢ = ¢, i=1,...,N, (2.5)
where ¢!, ..., N are arbitrary constants. Here “functionally independent” means that the Jacobian
does not vanish, that is,

a(et,...,oN
3(“71’ s aun-f-N—l)
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This condition ensures that (in principle, at least) each of u,,...,u,+n_1 can be written as a
function of n, ¢!, ..., ¢". In particular, if

un = F(n’ ¢1"" 7¢N)’

the general solution of (2.1) is

u, = F(n,c',...,cV).
Throughout this paper, we shall work in the space of variables n, u,, ..., u,+N_1; the condition (2.6)
enables us to use n, ¢',...,#" as an alternative set of (local) coordinates. We consider symmetries

that are analogous to dynamical (or internal) symmetries of ODEs. Dynamical symmetries are the
point symmetries of an equivalent system of n first-order ODEs. This is the most general class
of symmetries, and there are infinitely many independent symmetry generators. To find any of
these, some kind of restriction (ansatz) is usually needed. For further details, see Stephani (1989)
or Anderson et al. (1993).

A symmetry, I, of (2.1) maps the set of solutions to itself. Therefore, if

L:(n,¢",...,0N)— (R, ¢!, ..., oY), (2.7)

each qAﬁz is a smooth function of ¢', ..., " only. Symmetries are required to be sufficiently smooth;
for example, point symmetries of ODEs are diffeomorphisms of the space of independent and
dependent variables. However, the corresponding space for an OAE consists of a set of disjoint
fibres, because the independent variable is discrete. Therefore symmetries of OAEs must be fibre-
preserving, which means that n is a function of n only. Moreover, the fibres must not be shuffled
(because shuffling transformations are not allowed in the continuous case); consequently, symmetries
of OAEs are required to be neighbour-preserving. This can happens in one of two ways: either a
symmetry is order-preserving, in which case

a(n+1) = n(n) + 1,

or else the symmetry is order-reversing, in which case its action on n is equivalent to a reflection.
Henceforth, we shall restrict attention to order-preserving symmetries (which are generally more
useful than reflections).

A symmetry is trivial if every solution is mapped to itself, that is, if

é=¢', i=1,...,N. (2.8)

Lemma 1
For each k € 7, the transformation generated by S* is a trivial symmetry of (2.1). (N.B.
Where k is negative, S* denotes (S71)7*%.)

Proof
For k > 0, apply S repeatedly to obtain

Ski(n, ¢, ., 0N) = (n4+ k¢, o). (2.9)

Hence every solution ¢* = ¢! is mapped to itself. Equation (2.9) also holds for k < 0, because (2.4)
implies that S~ '¢* = ¢'. (N.B. The operator S~! is obtained by first using (2.1) to write u, as a
function of n, up41, ..., un+n, then replacing n by n — 1; the condition w,  # 0 ensures that this
is possible.)



One consequence of Lemma 1 is that every nontrivial order-preserving symmetry can be re-
garded as the composition of a vertical (or evolutionary) symmetry, which acts only on the first
integrals ¢° (leaving n unchanged), and a trivial symmetry. Just as for ODEs, it is only the non-
trivial symmetries that can be used to solve OAEs, so we lose nothing by concentrating on vertical
symmetries.

Lemma 2
Every nontrivial order-preserving symmetry (2.7) is equivalent to a vertical symmetry,

f:(na¢1a"'a¢N)'_)(nv&l""’q‘;N)’

modulo a trivial symmetry.

Proof
The proof is by construction: B )

is the unique vertical symmetry that is equivalent to I'. (The condition that I' is order-preserving
ensures that n — n(n) is independent of n.)

In view of Lemma 2, we shall consider only vertical symmetries from now on. Accordingly we
seek symmetries (2.7) with n = n. In terms of the original variables,

T:(nytun, ..y Upin—1) = (M, 8n, .. UpiN—1)- (2.10)
The action of I' on the variables u,,; is determined by the action on w,. To see this, suppose that
Ty = g(NyUn,y - Unan—1) = G(n, ¢, ..., ¢N).
Then, on the set of solutions of the OAE (2.1),
Upyr = Gn+ k¢t ... oN) = Ska,, k=1,...,N. (2.11)
The conditions (2.11) are analogous to the prolongation formulae for dynamical symmetries of
ODEs, which reflect the necessity for contact conditions to be satisfied on the set of solutions.
The symmetry condition for the OAE (2.1) is
UpnaeN = w (N Up, .oy UpyN_1), when (2.1) holds. (2.12)

Lie symmetries are obtained by linearizing the symmetry condition about the identity, as follows.
We seek one-parameter (local) Lie groups of symmetries of the form

Gy = tUp + €Q(N, Un,y . .., Unin—1) + O(€?).
The function @ is called the characteristic of the one-parameter group. The prolongation formulae

(2.11) yield
lipsk = Unik + €S"Q + O(€?), k=1,...,N.

Expanding (2.12) in powers of € yields the linearized symmetry condition
SVNQ - Xw=0, (2.13)
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where

X =Q8y, +(85Q)8u,,, ++ (‘S‘J\’_lQ)[)uHNf1 ) (2.14)

Note that the symmetry generator X, when written in terms of the first integrals, is of the form
X =FY¢',...,¢™M)0p + -+ FN(¢",..., 8" )9yn. (2.15)

This is because each ng is a function of ¢ = (¢!,...,¢") only. The most important consequence of
(2.15) is that X and S commute as operators on functions. Given any sufficiently smooth function,

h(n,up,...,unsNn—1) = H(n, ),
we use (2.15) to obtain
S(XH) =S8 (F'(¢)Hyi(n,¢)) = F'(¢)Hyi(n+ 1,¢) = X(SH).

Therefore
S(Xh) = X(Sh). (2.16)

Just as for ODEs, the linearized symmetry condition is both necessary and sufficient to obtain
the local Lie group of symmetries generated by X. To find solutions of (2.13), we must impose some
constraint upon @, in order to be able to split (2.13) into an overdetermined system of equations.
For example, if we seek characteristics that are independent of u,, y y_1, it may be possible to split
the linearized symmetry condition by equating powers of u,n_1. Before this can be achieved,
some work is needed to transform (2.13) from a functional equation into a differential equation for
Q. The next section introduces a method for accomplishing this transformation.

3. How to construct the determining equations

Consider the OAE
unun+1

(3.1)

u =
nt2 2Up — Upt1
We shall seek point symmetries, whose characteristics are of the form @ = Q(n, u,). The linearized
symmetry condition (2.13) is

On +2,0) 2O+ Ly ungr) + e
n w)—— - Q(n Unp S C o
3 D) ) +1 (2un A'Un+1)2

(2 — Uns1) Q(n,u,) =0, (3.2)

where w denotes the right-hand side of (3.1). The chief difficulty with (3.2) is that the function
@ takes three separate pairs of arguments. To overcome this difficulty, we differentiate (3.2) with
respect to u,, keeping w fixed. Here u,; is regarded as a function of n, u,, and w. Using a
standard result from multivariable calculus, we obtain

2
Oup 41 (N, Uy, w) Wy,  Upyq

5 -
Oou,, Wapis 2u2

Therefore (3.2) reduces to

2
un
 (2u 711:1 +1)? Yint+ L) +

2un+1

3R+ 1Luny)
(2un — un+1)



po i) 2, =0
(2uy — Upy1)? 7y Un U (2Up — Upy1)? M Un) =T,

where ' denotes a derivative with respect to the continuous variable. Rescaling, we obtain

Qn+ Lunss) + Q' (nyun) — —Q(n,un) =0 (3.3)

*Ql(n + 1a un+1) +
Un+1 Un

Now differentiate (3.3) with respect to u,, this time keeping u, 41 fixed, to obtain the ODE

L (Q’(n,un) - %Q(n,un)> = 0. (3.4)

du, n

Note that n appears only as a parameter at this stage. The general solution of (3.4) is
Q(n,u,) = A(n)u, + B(n)u>. (3.5)

Substituting (3.5) into (3.3) yields
A(n+1) = A(n),

and hence
A(n) = C1.-

[N.B. We use ¢; to denote arbitrary constants.] The remaining unknown function, B(n), is determ-
ined by substituting (3.5) into the original linearized symmetry condition (3.2); this yields

B(n+2)—2B(n+1)+ B(n) =0.

Hence
B(n) = can + cs.

Summarizing these results, we have found a three-dimensional Lie algebra of symmetry generators,
whose characteristics are linear combinations of

Q1 = up, Q2 = nui, Qs = Ui (3.6)
The same method can be applied to any second-order OAE

Up42 = w(n, Un,, un+1)a Wyt # 0. (37)

[N.B. The condition w,,,,, # 0 ensures that the OAE is genuinely second-order, not equivalent to
a first-order problem with step length 2.] The linearized symmetry condition for point symmetries
is

Q(n+2,w) — W41 Q(n+ 1, upi1) — wu,Q(n,u,) = 0. (3.8)

By eliminating Q(n + 2,w) and Q(n + 1,u,4+1), we can transform (3.8) to an ODE of order three
or less. First, we differentiate (3.8) with respect to u,, keeping w fixed, to obtain (after rescaling)

Q'(n+1Lupy1) + A1 Q4+ 1L tung1) — Q'(n,un) + X, Q(n,un) = 0, (3.9)

where
A=In|wy, | —Injw,,|.
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Differentiating (3.9) with respect to u,,, keeping u, 11 fixed, we obtain

)‘unun+1 Qn+1,upyr) — Q”(na Up) + Au, Ql(na Up) + )‘ununQ(na up) = 0. (3.10)

If Auuny: = 0, equation (3.10) is a second-order ODE for Q(n,uy). Otherwise, we must divide
(3.10) by Ay, u,,, and differentiate once more with respect to u, (keeping u,1 fixed) to obtain a
third-order ODE for Q(n,u,). Typically, the coefficients in the reduced ODE depend upon w,, 11.
If this occurs, the ODE can be split by gathering together all terms with the same dependence
upon Uy, y1-

The solution of the reduced ODE contains arbitrary functions of n. It is substituted into the
linearized symmetry condition, which can then be split into a system of determining OAEs for the
arbitrary functions (by grouping together all terms with the same dependence upon u,, and ,41).
These determining equations are usually very easy to solve.

This approach is capable of yielding more symmetries than can be obtained by using fixed
point summations. For example, Quispel & Sahadevan (1993) used a fixed-point method to look
for symmetries of
2upy1 — un(l —ulq)

1—u2 g + 2uptngy

Up42 =
They found two independent characteristics of the form Q = Q(n, u, ), namely
Qr=u2+1,  Qy=n(u+1).
However, the method described above yields @1, @2, and a third independent characteristic:
Qs = (u? + 1) tan""(uy).

The ansatz Q = Q(n,u,) yields only a few independent characteristics for second-order OAEs.
For instance, every linear homogeneous OAE,

Unt2 = P(N)Unt1 + q(n)Unp, (3.11)

has precisely three such characteristics, namely

Q1 = up, Q2 = Ul(n)a Q3 = U2(n)a (312)

where u, = U;(n) and u, = Us(n) are linearly independent solutions of (3.11). Consequently,
every OAE that is linearizable by a point transformation

T: (nyug) = (n,an(n,uy)) (3.12)

also has three characteristics of the form @ = Q(n,u,). By contrast, every second-order ODE
that is linear or linearizable by a point transformation has an eight-parameter Lie algebra of point
symmetry generators, which is isomorphic to s[(3). The characteristics of these symmetries are all
linear in y’, which suggests that we may obtain further symmetries of OAEs by trying an ansatz
of the form

Q = a(n,up)uns1 + b(n,uy). (3.13)

Even though this ansatz is more complicated than before, our method can be used to obtain
all such symmetries of a given OAE. The linearized symmetry condition (2.13) amounts to

a(n + 27“‘)) Sw+ b(n + 2,(4)) = Wy {a(n + 17 un-l-l) w+ b(n + 1a un+1)}
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— Wy, {a(n, uy )Upy1 + b(n,u,)} = 0. (3.14)

This is reduced to a set of ODEs for a(n,u,) and b(n,u,) in essentially the same way as before.
First differentiate with respect to u,, keeping w fixed, to eliminate b(n + 2,w). Then rescale to
obtain an equation of the form

a(n + 2,w) + other terms = 0.

Differentiate this with respect to u,,, keeping w fixed, to eliminate a(n + 2, w). Then, by repeatedly
rescaling and differentiating with respect to u,, (keeping u, .1 fixed), it is possible to eliminate all
terms containing a(n+ 1, u,41), b(n+ 1, up41), and their derivatives. Finally, the resulting ODE is
split into a set of ODEs (by equating terms with the same dependence upon w,,41). This approach
readily generalizes to any ansatz for an OAE of order N > 2. The calculations rapidly become too
lengthy to be done by hand, but can be done with the aid of computer algebra. For the remainder
of this paper, we shall state symmetries without describing the details of their derivation.

Returning to linear OAEs of the form (3.11), it turns out that the linear ansatz (3.13) does
provide us with more symmetries.

Theorem 3
Every second-order linear homogeneous OAE has an eight-dimensional Lie algebra of symmetry
generators whose characteristics are linear in u,y1. This Lie algebra is isomorphic to sl(3).

Proof

For a given linear homogeneous OAE (3.11), with two linearly independent solutions w, =
Ui(n) and u,, = Us(n), there are two functionally independent first integrals that are linear in u,
and Up41:

U, SUy — Ustin 41 Urtn41 — u,SUp

¢1(”a Up, Unt1) = U, SU, — UpSU, ¢2(”a Up, Uny1) = U.SU, — UpSU; - (3.15)
From (2.15), every symmetry generator
X =Q0y, +8Q0y,,,
can be rewritten in the form
X =F'(¢',¢°) 04 + F*(¢", ¢*) 0y, (3.16)

where (by the chain rule)
Fi(¢1a ¢2) = X(¢Z(na Un, un+1)) = ¢z(n, Q, SQ)

In particular, setting @ = U;(n) gives
X = a¢j.

Therefore every one-parameter Lie group of symmetries of (3.11) has a characteristic of the form
Q(na U, un+1) = F1(¢17 ¢2)U1 (TL) + F2(¢17 ¢2)U2(TL) (317)

To find all characteristics that are linear in w, 1, differentiate (3.17) twice with respect to w41
and (using the fact that U;(n) and Us(n) are independent) obtain constraints on the functions F™*.
A basis for the space of such charactistics is

Q1 =Ui(n), Q2=Us(n), Qsz=0¢'Ui(n), Qs=¢°Ui(n),
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Qs = ¢'Us(n), Qs =¢’Va(n), Qr=¢'un, Qs="up.

It is easy to check that the corresponding generators form a Lie algebra isomorphic to sl(3).

N.B. It is not true that every OAE that is linearizable by a point transformation has an eight-

dimensional Lie algebra whose characteristics are linear in u,, 1. For example, the OAE (3.1) can be

linearized by the point transformation (3.12) with @, = 1/u,,. However, there are no characteristics

that are linear in u,4; other than those that we found earlier, which are independent of wu, 1.
Theorem 3 generalizes a result of Levi et al. (1997), who showed that

Up+42 = 2un-{—l — Up

has a Lie algebra that is isomorphic to si(3).
Just as for ODEs, it usually not easy to find more than one characteristic of a given second-
order linear homogeneous OAE, namely

Q= u, = Q3+ Qs.

To obtain any other characteristic, one must find at least one solution of the OAE (or its adjoint).
This severely limits the usefulness of symmetry methods for such equations. For nonlinear OAEs,
however, symmetries usually can be found without too much difficulty. They may be used in the
same ways as dynamical symmetries of ODEs.

For simplicity, we have focused on second-order OAEs. However, the same method can also
be used to obtain symmetries of higher-order OAEs. If one uses a more general ansatz, such as
Q = Q(n,uy, uy41), the method leads to a system of partial differential equations for Q. So far, we
have chosen to eliminate S¥Q, k > 1, to obtain a system that involves only @ and its derivatives.
This is not always the best strategy; sometimes it is better to obtain a system for S*Q for some
ko > 0. For example,

2
un+1

Un44 = + Un

n

has only one characteristic of the form @ = Q(n, Uy, upy1), namely Q@ = cyu,. This result is easy
to obtain if differential elimination is used to derive a system for S*Q, whereas the system for
Q is apparently intractable. This demonstrates that some experimentation may be needed if the
standard reduction in favour of () leads to a system that is too hard to solve.

4. How to use symmetries of OAEs

It appears that almost any symmetry method for ODEs has a counterpart for OAEs. Usually,
only slight modification is needed to obtain the OAE methods. In the following, we use second-
order OAEs to demonstrate various methods. The generalization to higher-order problems is
straightforward.

Given a symmetry generator for a second-order OAE,

X =Q0y, +8Q0,,,,, (4.1)
there exists an invariant,
Uy = V(N Uy, Upg1), (4.2)
satisfying
dvy,
Xuv, =0, 2o, (4.3)
Oy 41



This invariant is found by the method of characteristics; it is a first integral of

du, dup41

Q  SQ
Moreover, every invariant function of n, u,, and u,1 is a function of n and v,, only. For later use,
we shall suppose that (4.2) can be inverted to obtain

Upt1 = w(N, Uy, Vy) (4.4)

for some function w.
From (2.16),
X(Sv,) =8(Xv,) =0,

so Sv,, is invariant: it is a function of n and v, only. Thus the solutions of

Unto = W(N, Up, Upt1) (4.5)
satisfy a first-order OAE of the form

Vnt1 = Sv, = Q(n, v,). (4.6)

If (4.6) can be solved (perhaps by exploiting further symmetries of (4.5) — see below) then the
general solution,

Upn = U(naunaun+1) = f(n§cl)a (47)

is equivalent to the first-order OAE

Up+1 = w(nv Up s f(na Cl))v (48)

which admits the symmetries generated by X. To solve (4.8), we need to obtain a canonical
coordinate,

Sn = (N, uy), (4.9)

that satisfies
Xs, =1.

The most obvious choice of canonical coordinate is

du,
s(n,uy,) = . 4.10
m1n) = [ et T (410
Note that
Xsnt1 = X(Ssn) =8(Xsn) =8(1) =1= Xs,,
SO Sp4+1 — Sp, 18 an invariant. Consequently
Sn+1 = Sn + g(n, vn)
for some function g, and therefore (4.8) is equivalent to
Sn+1 = Sn +g(n,f(n,61)) (411)
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The general solution of (4.11) is

Sp =C2 + Z g(Taf(T;Cl))’ (412)

T=np

where ng is any convenient integer.
If an OAE has an N-dimensional solvable Lie (sub)algebra of symmetry generators, the solvable
structure can be exploited in exactly the same way as for ODEs. Consider the nonlinear OAE

Up+4+2 = 5 — Up+1- (413)

The set of characteristics that are linear in u,41 is spanned by

Unp
Q1 = —*, Q2 = . (4.14)

Unp

The commutator [X7, X5] has the characteristic

u’ﬂ
[Q1, Q2] = X1Q2 — X2Q1 = u+1 = Q1.
Therefore the generators Xy, Xo, form a basis for a nonabelian solvable Lie algebra, whose derived
subalgebra is spanned by X;. Consequently X; should be used for the first reduction of order, so
that the reduced OAE inherits the symmetries generated by X,. The invariant v, of the group
generated by X, satisfies

2 2
Xiv, = <Un+1 6un + {@ o 1} 3un+1> vy, = 0.
u

Un n

Using the method of characteristics, we obtain

Up = u (4.15)
This reduces the OAE (4.13) to
Upt1 = 4o, (4.16)
which inherits the scaling symmetry generated by X,. The general solution of (4.16) is
v, = 14", (4.17)

which is equivalent to
Upt1 = Tup/ 1+ c14™u? . (4.18)

However, the negative root is inconsistent with (4.13). Therefore the canonical coordinate is

sinh™! (\/¢1 2"uy,) - (4.19)

/ du, 1
Sn - =
J 14 cedru? /e 2n

Then (4.18) is equivalent to
Sn4+1 = Sn,
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whose general solution is s, = co. In the original variables, the general solution of (4.13) is

1

C1 AL

sinh (c2+/c1 27) . (4.20)

Up =

The above technique fails if X5 is a scalar multiple of X4, in which case the symmetry group
generated by X; and X5 is intransitive. Then if v, satisfies X;v, = 0, it also satisfies Xov, = 0. A
single reduction of order can be achieved, but the remaining one-parameter Lie group acts trivially
on the reduced OAE and cannot be used to solve it.

Intransitive two-dimensional Lie subgroups of point symmetries also occur for some second-
order ODEs. They are of little consequence, because there is always a transitive two-dimensional
subgroup of point symmetries as well (Stephani, 1989). However, for second-order OAEs, the usual
ansatze may not yield a transitive group. The group generated by X; and X is intransitive if

Q: _ SQ _S<@)

Q1 SQ T\
that is, if the ratio of the characteristics is a first integral:
Q_ 4
Q1

We now show how to construct another (functionally independent) first integral. The method
depends upon whether or not X; and X, commute.
For now, it is most convenient to write the generators in terms of first integrals, with X in

normal form. Thus
X, = 8¢1, Xy = <I>8¢1, (4.21)

for some first integral ¢!, and there is an independent first integral, ¢2, that is mapped to itself by
the group action. From (4.21), we obtain

(X1, X5] = @41 X

If [ X1, X5] # 0 then ® depends nontrivially on ¢'. Now construct an invariant v,, of X; as described
earlier. Clearly, v,, is a function of n and ¢? only, so

¢2 = F(TL, vn)a
for some function F. To obtain ¢2, we must find a solution of
F(n+1,9(n,v,)) = F(n,v,).

(In practice, this is usually easy.) Then ® and ¢? are functionally independent first integrals.
If X; and X, commute then @ is a function of ¢? only. Indeed, without loss of generality, we

can set
P = .

To obtain ¢!, first note that
X19' =1,

and so ¢! is a canonical coordinate. Therefore

du,

1 _
¢ = / Q1 (naunaun+1(nauna¢2))

12

+ G(n, ¢?), (4.22)




for some function G. To obtain G (up to an arbitrary function of ¢?), we apply the condition
S¢1 o ¢1 = 07

and solve the resulting first-order linear OAE using the standard method.
To illustrate this technique, consider the OAE

“i+1
Up+2 = + Up+1- (423)

n

The symmetry generators whose characteristics are linear in u, 11 form an abelian Lie algebra; the
characteristics are linear combinations of

Ql = Up, Q2 = Up4+1 — NUp. (424)

Q) _ Q2
S(@>_Q1’

and because the generators commute, we choose

It is easy to verify that

R . (4.25)

B Ql Up

¢2

From (4.22),
¢' = In|u,| + G(n,¢?),

where
G(n+1,¢%) — G(n,¢*) =In|uy| — In|upy1| = —In|n + ¢?|. (4.26)

The general solution of (4.26) is
G(n,¢*) = A(¢*) — In|T(n + ¢%)],

where I'(z) is the Gamma function and A is an arbitrary function. Without loss of generality, we
can set A(¢?) = 0 and replace ¢! by its exponential,

1 Up,
T(n+¢%)
Therefore the general solution of (4.23) is
up, = c1'(n + ¢2). (4.27)

5. Direct construction of first integrals
Anco & Bluman (1998) describes a method for obtaining first integrals of a given ODE directly,
whether or not any Lie symmetries are known. A simplified version of this method is given in Hydon

(2000).
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It is also possible to construct first integrals of OAEs directly, even if no symmetries are known.
The starting point for this approach is the equation

S¢ = ¢, Punyn_ 1 7 0. (5.1)

For second-order OAEs, (5.1) amounts to

d(n+ L upi1,w(n, up, uny1)) = OGN, Up, Upt1), Gupis 7 0. (5.2)

(For brevity, we shall consider only second-order problems; the generalization to higher-order OAEs
is entirely straightforward.)
It is convenient to introduce the functions

Pl(naunaun+1) = Qu, (naunaun+1)a (5'3)
P2(naunaun+1) = ¢un+1 (nvunaun-f-l)' (54)
By differentiating (5.2) with respect to u, and u,4; in turn, we obtain
P =w,, 8P, (5.5)
P2 :SP1+wun+1SP2. (56)
Therefore P, satisfies the second-order linear functional equation
(Swy, )8’ Ps + wy,,,,SPy — Py = 0. (5.7)

Just as for the linearized symmetry condition, we obtain solutions of (5.7) by first choosing an
ansatz, then differentiating repeatedly to obtain a differential equation for P,. Given a solution
P, of (5.7), it is straightforward to construct P;. At this stage, it is necessary to check that the
integrability condition

8P1 8P2

OUpyr Oy

(5.8)

is satisfied. (This is because some solutions of (5.7) are not derived from any first integral.) If (5.8)
holds then the first integral ¢ is of the form

where F(n) is determined (up to an arbitrary constant) by substituting (5.9) into (5.2) and solving
the resulting first-order linear OAE.
To illustrate the method, consider the OAE

? o+ — (5.10)
Upy2 = U, . .
2T +1 Uy +1
We use the ansatz P, = Py(n,u,); then (5.7) amounts to
1 1
P P+ 2,w) 5 Pa(n+ 1uns1) — Po(n,un) =0, (5.11)
n+2 Unt1

14



Using the symmetry-finding algorithm of §3, we obtain a single solution (up to an arbitrary constant
factor):
Py = nuy,. (5.12)

Therefore
Py =nuyq1, (5.13)

and the integrability condition is satisfied. From (5.9),
¢ = nupuny1 + F(n),

and hence
S¢p—¢p=F(n+1)—F(n)+n+1=0.

(N.B. No matter how complicated the original OAE is, the function F' always satisfies a first-order
linear OAE which is easily solved.) In this example,
n(n+1)

F("):—T,

(up to an irrelevant constant). Therefore we have obtained the first integral

n(n+1) .

5 (5.14)

¢ = NUpUn41 —

The general solution to this particular problem can be found by rewriting ¢ = ¢; as a first-order
linear OAE for v,, = In| u,|:

n+1l ¢

+ J—

n

Up4+1 + 9, =In

By using the standard method for such OAEs, we obtain the general solution,

u k c
— n k 1 .
vy = (—1) <cz+ > (-1)kIn §+k1> :
here ng is a suitably-chosen integer.

k:ng
Any pair of functions (P, P») that satisfies (5.5) and (5.6) can be combined with characteristics
of symmetries to yield first integrals, as follows.

Theorem 4
Given a second-order OAE (3.7), suppose that (Py, Py) solves (5.5), (5.6), and that Q is the
characteristic of a one-parameter Lie group of symmetries. Then

1s either a first integral or a constant.

Proof
We use the linearized symmetry condition to show that S® = &, as follows:

§® = (SP)(SQ) + (SP)(5*Q)
= (SP)(SQ) + (SP2)(wuyy SQ + Wi, Q)
= PQ + PSQ
= 3.
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Note that Theorem 4 does not require the integrability condition (5.8) to hold. If (5.8) is
satisfied then it may be possible to construct two functionally independent first integrals from one
pair (P;, P») and one characteristic.

6. Conclusion

We have seen that many symmetry-based methods for ODEs are easily adapted to OAEs. It
is often possible to obtain symmetries or first integrals sytematically. The method for obtaining
symmetries can be generalized to partial difference equations (PAEs), as will be described in a
separate paper. (For PAEs, the chief obstacle to obtaining symmetries is the complexity of the
calculations in the differential elimination stage.)
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