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This paper describes a method that enables the user to construct systematically the
set of all discrete point symmetries of a given ordinary differential equation (ODE)
of order two or greater, provided that the ODE has at least a one-parameter Lie
group of point symmetries.

The method is easy to use, and is based upon Lie’s method of constructing contin-
uous symmetries. The calculations are simple, and computer algebra is not usually
required. Various examples are used to illustrate the method. The paper concludes
with a proof that every ODE whose Lie group of point symmetries is isomorphic to
the unimodular group has at least four inequivalent real discrete point symmetries.
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1. Introduction

Symmetries of all kinds are valuable in the study of ordinary differential equations
(ODEs). Many ODEs of physical importance have (local) Lie groups of point sym-
metries that can be found systematically (see Olver 1986; Bluman & Kumei 1989;
Stephani 1989). These continuous symmetries can be used to reduce the order of an
ODE or to locate separatrices and other topologically important solutions (Bluman
& Kumei 1989).

Discrete point symmetries are commonly used to reduce the domain on which
an ODE is solved numerically, thereby increasing computational efficiency. This is
possible if the ODE, the computational domain and the boundary conditions are
invariant. For example, the following boundary-value problem (BVP) describes the
deformation of a loaded elastic beam on an inhomogeneous elastic support; the beam
is simply supported at its ends:

y(iv) + k(x)y = p(x), x ∈ (−1, 1), (1.1 a)
y(−1) = y′′(−1) = y(1) = y′′(1) = 0. (1.1 b)

Here y(x) is the deformation at the point x, the loading is described by p(x) and
k(x) measures the reaction per unit deformation of the elastic support. If both k and
p are even functions of x, then the BVP (1.1) has a discrete symmetry: it is invariant
under the transformation

Γ : (x, y) 7→ (−x, y). (1.2)
If k(x) is such that there exists a unique solution of (1.1), then that solution is
invariant under the action of Γ . It can be computed from the reduced problem

y(iv) + k(x)y = p(x), x ∈ (0, 1), (1.3 a)
y′(0) = y′′′(0) = y(1) = y′′(1) = 0. (1.3 b)
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Alternatively, the solution of (1.1) can be computed using a spectral method, with
trial functions that are invariant under Γ . With either approach, using the discrete
symmetry greatly improves the efficiency of the computation.

Many nonlinear BVPs have more than one solution. If a given BVP is paramet-
rized, bifurcation theory can be used to analyse the variation in the number and
nature of solutions as the parameter(s) vary. Symmetries of the BVP may have a
marked effect, and must be taken into account. This is accomplished by using equiv-
ariant bifurcation theory (see Golubitsky et al. 1988), which requires that all symme-
tries (discrete and continuous) are known. Various applications to physical problems
are described in Allgower et al. (1992a, b) and Chadam et al. (1996). Some BVPs
have hidden discrete symmetries. These are symmetries of the differential equation
that fail to map the original BVP to itself, but which leave an extended problem
invariant (see Crawford et al. 1991). The system cannot be analysed correctly unless
the hidden discrete symmetries are taken into account. For the remainder of the
current paper, attention is focused on differential equations rather than BVPs. The
reason for this approach is that the set of point symmetries (hidden or otherwise) of
a particular BVP is a subset of the set of all point symmetries of the governing ODE.

Discrete point symmetries are typically much harder to find than continuous
point symmetries. Some progress can be made by using a suitable ansatz (Gaeta
& Rodŕıguez 1996), but this approach does not guarantee that all discrete point
symmetries of a given ODE have been found. The main difficulty is that point sym-
metries of ODEs are determined by a coupled system of nonlinear partial differential
equations (PDEs). Lie’s method works by linearizing this system, which is why it is
relatively easy to calculate all continuous point symmetries. Reid et al. (1993) used
a differential analogue of Buchberger’s algorithm to obtain a Gröbner basis for the
nonlinear determining equations for a particular second-order ODE. This method
is computationally intensive and requires computer algebra, but when it works, it
yields all discrete point symmetries.

The current paper outlines a new method that determines all discrete point sym-
metries of a given ODE systematically and simply, without the need for computer
algebra. It is applicable to any ODE with an N -parameter Lie group of point symme-
tries (N > 1), for which the Lie symmetry generators can be found by the standard
method. Most ODEs of physical interest fall into this category, as does the example
used by Reid et al. (1993) to demonstrate the Gröbner basis method.

As well as being simple to apply to a given ODE, the new method can be used to
prove general results about the existence and nature of discrete point symmetries. For
instance, we prove the somewhat surprising result that every ODE whose group of Lie
point symmetries is isomorphic to SL(2) has at least four discrete point symmetries
that cannot be mapped to one another by any of the continuous point symmetries.
In other words, some discrete point symmetries are generic.

2. Point symmetries of ODEs

We begin by recalling some basic facts about point symmetries of ODEs. A point
symmetry of the ODE

y(n) = ω(x, y, y′, . . . , y(n−1)), n > 2, (2.1)
is a smooth invertible transformation of the (x, y) plane that maps the set of solutions
of (2.1) to itself. Specifically, a point symmetry is a diffeomorphism

Γ : (x, y) 7→ (x̂(x, y), ŷ(x, y)) (2.2)
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that is extended to derivatives by the recursive formula

Γ : y(k) 7→ ŷ(k) ≡ dŷ(k−1)

dx̂
, where ŷ(0) = ŷ, (2.3)

such that
ŷ(n) = ω(x̂, ŷ, ŷ′, . . . , ŷ(n−1)) when (2.1) holds. (2.4)

The composition of any two point symmetries is a point symmetry.
Many ODEs have point symmetries which form (local) Lie groups with one-

parameter Lie subgroups. These symmetries can be written in the form

x̂ = x+ εξ(x, y) +O(ε2) = eεXx,
ŷ = y + εη(x, y) +O(ε2) = eεXy, (2.5)

for each ε in some neighbourhood of zero, where X is the infinitesimal generator

X = ξ(x, y)∂x + η(x, y)∂y. (2.6)

The set of all infinitesimal generators of one-parameter Lie groups of point symme-
tries of an ODE is a Lie algebra, L. Henceforth, attention is restricted to ODEs (2.1)
for which L is non-trivial. Lie’s method is used to construct a basis for the Lie alge-
bra, {Xi}Ni=1; then the structure constants, ckij , are obtained from the commutator
relations

[Xi, Xj ] = XiXj −XjXi = ckijXk. (2.7)
(The usual summation convention is used in (2.7) and henceforth.) Now suppose that
Γ : (x, y) 7→ (x̂, ŷ) is a symmetry of (2.1); then

Γ̂i(ε) = ΓeεXiΓ−1 (2.8)

is also a symmetry for each ε in some neighbourhood of zero. By definition,

Γ̂i(ε) = eεΓXiΓ
−1
, (2.9)

and so Γ̂i(ε) is a one-parameter local Lie group whose infinitesimal generator is

X̂i = ΓXiΓ−1. (2.10)

Therefore X̂i ∈ L for each i. We calculate X̂i explicitly, as follows:

X̂i = (X̂ix̂)∂x̂ + (X̂iŷ)∂ŷ = (ΓXix)∂x̂ + (ΓXiy)∂ŷ = ξi(x̂, ŷ)∂x̂ + ηi(x̂, ŷ)∂ŷ. (2.11)

Hence the generators {X̂i}Ni=1 are simply the basis generators {Xi}Ni=1 with (x, y)
replaced by (x̂, ŷ). Thus they are linearly independent and form a basis for L, and so
each Xi can be written as a linear combination of the X̂i. Furthermore, the structure
constants are preserved by the transformation Xi 7→ X̂i:

[X̂i, X̂j ] = ckijX̂k when (2.7) holds. (2.12)

In other words, the mapping is a symmetry of the Lie algebra. These results are
summarized in the following lemma.

Lemma 2.1. Every point symmetry Γ of (2.1) induces an automorphism of the
Lie algebra L of generators of one-parameter local Lie groups of point symmetries of
(2.1). For each such Γ , there exists a constant non-singular N ×N matrix (bli) such
that

Xi = bliX̂l. (2.13)
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The automorphism preserves all structure constants.

Lemma 2.1 provides a tool for calculating the discrete point symmetries of a given
ODE, once the Lie algebra has been calculated. The most direct approach is discussed
in the next section; this approach must be used when L is abelian (i.e. when all
structure constants are zero). A neater version of the method should be used when
L is non-abelian; this is introduced in §4.

3. The basic method

The method has two stages. To begin with, apply lemma 2.1 to obtain the following
first-order PDEs which every point symmetry (2.2) of the ODE (2.1) must satisfy:

Xix̂ = bliX̂lx̂ = bliξl(x̂, ŷ), i = 1, . . . , N,
Xiŷ = bliX̂lŷ = bliηl(x̂, ŷ), i = 1, . . . , N.

}
(3.1)

These can be solved by the method of characteristics to obtain (x̂, ŷ) in terms of
x, y, bli and some unknown constants or functions obtained on integration of (3.1).
Then ŷ(k) can be calculated using (2.3). Note that the solutions of (3.1) always
include the trivial symmetry (x̂, ŷ) = (x, y), which corresponds to bli = δli.

Every point symmetry satisfies (3.1), but there may be solutions of (3.1) that are
not point symmetries. The second stage is to see which of these solutions correspond
to point symmetries of the ODE, by substituting x̂, ŷ, ŷ′, . . . , ŷ(n) into (2.4) and
checking to see whether or not (2.1) is satisfied.

This two-stage process gives a complete list of the point symmetries of (2.1).
However, we already know about the Lie point symmetries, so the calculations may
be simplified by factoring them out whenever possible. Then we obtain a list of
inequivalent discrete symmetries that are not related to one another by any point
symmetry generated by a one-parameter Lie group.

It is usually convenient to work in a canonical coordinate system, in which one
of the generators (X1, say) is a translation. This is especially useful when N =
dim(L) = 1. Canonical coordinates r(x, y), s(x, y) satisfy

X1r = 0, X1s = 1, (3.2)

so that
X1 = ∂s. (3.3)

If dim(L) = 1 then, writing r̂ = r(x̂, ŷ) and ŝ = s(x̂, ŷ), we obtain from lemma 2.1
the pair of PDEs

r̂s = 0, ŝs = b11 6= 0, (3.4)
whose general solution is

r̂ = f(r), ŝ = b11s+ g(r) (3.5)

for some functions f and g. We require that Γ is a diffeomorphism, and therefore
f and g must be smooth, with df/dr 6= 0. The condition that this transformation
should be a symmetry determines which functions f , g and constants b11 are allowable.

To illustrate the method, consider the ODE

y′′ =
y′

x
+

4y2

x3 (3.6)
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used by Reid et al. (1993) to demonstrate the application of a differential analogue
of Buchberger’s algorithm. This ODE has a one-dimensional Lie algebra of point
symmetry generators, with a basis

X1 = x∂x + y∂y. (3.7)

In terms of canonical coordinates

r = y/x, s = ln |x|, (3.8)

the ODE is equivalent to
d2r

ds2 = 4r2 + r. (3.9)

The solution (3.5) gives

d2r̂

dŝ2 =
b11(ḟ r′′ + f̈ r′2) + (f̈ ġ − ḟ g̈)r′3

(b11 + ġr′)3 , (3.10)

where · = d/dr and ′ = d/ds. The symmetry condition is that

d2r̂

dŝ2 = 4r̂2 + r̂ when (3.9) holds, (3.11)

and therefore
b11(ḟ(4r2 + r) + f̈ r′2) + (f̈ ġ − ḟ g̈)r′3

(b11 + ġr′)3 = 4f2 + f. (3.12)

Equating powers of r′ and using the fact that b11 and ḟ are both non-zero gives

ġ = 0, f = c1r + c2 (c1 6= 0), (3.13)

where the ci are constants and
c1

(b11)2 (4r2 + r) = 4(c1)2r2 + (8c2 + 1)c1r + c2(4c2 + 1). (3.14)

The action of the one-parameter Lie group is factored out by taking g = 0. The
remaining possibilities are obtained by equating powers of r in (3.14); they give

(r̂, ŝ) ∈ {(r, s), (r,−s), (−r − 1
4 , is), (−r − 1

4 ,−is)}. (3.15)

Note that these symmetries form a group, generated by Γ1 : (r, s) 7→ (−r − 1
4 , is),

that is isomorphic to Z4. These discrete symmetries, when written in terms of x, y
and composed with scalings generated by X1 (with complex ε) yield the four families
of symmetries described by Reid et al. (1993). Moreover, the above method finds the
complete list of symmetries very easily, without the need for computer algebra to
reduce a complicated system of nonlinear PDEs to a manageable form. Note that
if we restrict attention to real-valued symmetries and real ε, only the first two of
(3.15) are admissible. However, scalings that multiply x and y by a positive factor
are distinguished from scalings by a negative factor. Hence the group of real discrete
point symmetries is

(x̂, ŷ) ∈ {(x, y), (−x,−y), (1/x, y/x2), (−1/x,−y/x2)}, (3.16)

which is isomorphic to Z2 × Z2.
As a second example, consider the ODE

y′′ = tan y′, (3.17)
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whose only Lie point symmetries are translations. Here L is two dimensional, with
a basis

X1 = ∂x, X2 = ∂y. (3.18)
Equations (3.1) amount to[

x̂x ŷx

x̂y ŷy

]
=

[
b11 b21
b12 b22

][
1 0
0 1

]
, (3.19)

whose general solution is

(x̂, ŷ) = (b11x+ b12y + c1, b
2
1x+ b22y + c2), c1, c2 const. (3.20)

Bearing in mind that det(bli) 6= 0, the action of the translation group generated by
X1 and X2 can be factored out by taking c1 = c2 = 0. The transformations are
extended to the first and second derivatives, yielding

ŷ′ =
b21 + b22y

′

b11 + b12y
′ , ŷ′′ =

y′′(b11b
2
2 − b21b12)

(b11 + b12y
′)3 . (3.21)

By equating powers of y′, etc., it is found that the symmetry condition

ŷ′′ = tan ŷ′ when y′′ = tan y′ (3.22)

is satisfied if and only if

B =

[
1 kπ

0 α

]
, α ∈ {−1, 1}, k ∈ Z, (3.23)

where B is used henceforth to denote (bli). So the discrete symmetries are all of the
form

(x̂, ŷ) = (x, αy + kπx), α ∈ {−1, 1}, k ∈ Z. (3.24)
The above examples illustrate the basic method, which is easy to use if L is low
dimensional. However, with increasing N , the determining equations can be compli-
cated, because there are many unknown constants bli to consider. For non-abelian
Lie algebras, it is possible to simplify the matrix B before solving the determining
equations, making the method much easier to apply.

4. The improved method

If L is not abelian, then at least some of the equations (2.7) are non-trivial. From
(2.11), the generators X̂i satisfy the same commutator relations as Xi, i.e.

[X̂i, X̂j ] = ckijX̂k. (4.1)

Combining (2.7), (2.13) and (4.1) gives the useful result

cnlmb
l
ib
m
j = ckijb

n
k . (4.2)

It is sufficient to restrict attention to equation (4.2) with i < j, because the structure
constants are antisymmetric in the two lower indices.

Although (4.2) provides some simplification, it is more effective when it is used
in combination with the adjoint action of the Lie group generated by each Xj . The
adjoint action

Ad(exp(εjXj))Xi = Xi− εj [Xj , Xi] + (ε2j/2!)[Xj , [Xj , Xi]]− · · · = api (εj , j)Xp (4.3)
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enables us to factor out those symmetries that are equivalent to one another under a
transformation eεX , for some X ∈ L (see Olver 1986). Specifically, the system (2.13)
is equivalent to

Xi = b̃liX̂l (4.4)
under the group generated by Xj , where

b̃li = api (εj , j)b
l
p. (4.5)

A straightforward calculation shows that equation (4.2) is invariant under the map-
ping bli 7→ b̃li, and therefore we will drop tildes as soon as the transformation has been
made. By using each generator Xj in turn, we obtain a set of inequivalent matrices
B = (bli), without having to solve any PDEs. This is the set of symmetries of the Lie
algebra (up to continuous group equivalence). It is usually possible to ensure that
most of the entries in these matrices are zero.

For example, consider the two-dimensional non-abelian Lie algebra a(1). We
choose a basis {X1, X2} such that [X1, X2] = X1. The only non-zero structure
constants are

c1
12 = −c1

21 = 1. (4.6)
Therefore (4.2) gives

b11b
2
2 − b21b12 = b11, 0 = b21, (4.7)

and hence

B =

[
b11 0
b12 1

]
, b11 6= 0. (4.8)

This can be simplified further by factoring out the equivalent symmetries using (4.3)
and (4.5). Let A(j) denote the matrix whose components are api (εj , j). Equation (4.3)
gives (after a short calculation)

A(1) =

[
1 0
−ε1 1

]
, A(2) =

[
eε2 0
0 1

]
. (4.9)

Applying (4.5), first with j = 1, ε1 = b12/b
1
1, then with j = 2, ε2 = − ln |b11|, we obtain

B =

[
α 0
0 1

]
, where α ∈ {−1, 1}. (4.10)

The reduced form of the matrix B is specific to this particular Lie algebra, and is
independent of the ODE whose Lie point symmetries are generated by the algebra.

It is important to realize that the order in which the matrices A(j) are used does
not affect the classification of the matrices B; any ordering gives the same final form,
provided that the parameters εj are chosen appropriately.

Having found the reduced matrices, it is easy to determine the discrete symmetries
of ODEs with this Lie algebra. For example, the ODE

y′′′ =
y′′2

x
− y′′

y′
(4.11)

has a two-dimensional Lie algebra of point symmetry generators, spanned by

X1 = ∂y, X2 = 1
2x∂x + y∂y; (4.12)
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note that [X1, X2] = X1. So the inequivalent discrete symmetries satisfy[
X1x̂ X1ŷ

X2x̂ X2ŷ

]
=

[
α 0
0 1

][
0 1

1
2 x̂ ŷ

]
=

[
0 α

1
2 x̂ ŷ

]
, (4.13)

whose general solution is

x̂ = c1x, ŷ = αy + c2x
2, ci const. (4.14)

Substituting (4.14) into the ODE, we find that αc2
1 = 1 and c2 = 0 are required for

the symmetry condition to be satisfied. Therefore the only discrete point symmetries
(up to equivalence) are

(x̂, ŷ) ∈ {(x, y), (ix,−y), (−x, y), (−ix,−y)}, (4.15)

which is isomorphic to Z4, with group generator

Γ1 : (x, y) 7→ (ix,−y). (4.16)

As another example of the method, consider the Chazy equation

y′′′ = 2yy′′ − 3y′2 + λ(6y′ − y2)2, (4.17)

whose symmetries have been studied by Clarkson & Olver (1996). The Chazy equa-
tion has a three-dimensional Lie algebra of Lie point symmetry generators, with a
basis

X1 = ∂x, X2 = x∂x − y∂y, X3 = x2∂x − (2xy + 6)∂y. (4.18)
The commutators of these generators are

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3, (4.19)

and therefore L is isomorphic to sl(2), which is not solvable. However, each of the
two-dimensional subalgebras Span(X1, X2) and Span(X2, X3) are solvable, and so
each can be used to reduce (4.17) to a first-order ODE. Surprisingly, each of the
subalgebras gives rise to the same first-order ODE if the most natural differential
invariants are used for the reduction of order. Indeed, Clarkson (1995, personal com-
munication) observed that the one-parameter groups generated by X1 and X3 can
be used to reduce the Chazy equation to the same second-order ODE.

To explain this result, it is necessary to examine the discrete symmetries of (4.17).
First, we identify the inequivalent matrices B associated with sl(2). The non-zero
structure constants are

c1
12 = −c1

21 = 1, c213 = −c2
31 = 2, c323 = −c3

32 = 1, (4.20)

and therefore the adjoint action of the Lie point symmetries is given by

A(1) =

 1 0 0
−ε1 1 0
ε21 −2ε1 1

 , A(2) =

 eε2 0 0
0 1 0
0 0 e−ε2

 , A(3) =

 1 2ε3 ε23
0 1 ε3

0 0 1

 .
(4.21)

As L is not solvable, it is helpful to begin the classification of matrices B by using
the adjoint action.

If b11 6= 0, then we can use A(1) to set b12 = 0, by taking ε1 = b12/b
1
1. Then the
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identities (4.2) give

B =

 b11 b21 b31
0 1 b32
0 0 1/b11

 . (4.22)

Now use A(3) with ε3 = −b11b32 to set b32 = 0. Then (4.2) gives b21 = b31 = 0. Finally,
use A(2) with ε2 = − ln |b11| to obtain two possibilities:

B =

 α 0 0
0 1 0
0 0 α

 , α ∈ {−1, 1}. (4.23 a)

The only remaining possibility is that b11 = 0. Applying a similar procedure to the
above, we find that in this case

B =

 0 0 α

0 −1 0
α 0 0

 , α ∈ {−1, 1}. (4.23 b)

So there are four distinct matrices B associated with sl(2); in other words, this Lie
algebra has four symmetries (up to equivalence).

For the Chazy equation, the system (3.1) is X1x̂ X1ŷ

X2x̂ X2ŷ

X3x̂ X3ŷ

 = B

 1 0
x̂ −ŷ
x̂2 −(2x̂ŷ + 6)

 , (4.24)

where B is one of the four matrices (4.23). It turns out that there are two solutions
of (4.24) for each B. For example, if B is the identity matrix, then

(x̂, ŷ) ∈ {(x, y), (x+ (6/y),−y)}. (4.25)

However, the second of these is not a symmetry of the Chazy equation, and must
therefore be discarded. Each matrix B generates precisely one discrete symmetry of
the Chazy equation; the complete list is

(x̂, ŷ) ∈ {(x, y), (−x,−y), (−1/x, x2y + 6x), (1/x,−(x2y + 6x))}. (4.26)

Each of these symmetries is an involution: it is its own inverse. In particular,

(x, y) 7→ (x̂, ŷ) = (−1/x, x2y + 6x) (4.27)

exchanges X1 and X3; it corresponds to (4.23 b) with α = 1. The fundamental dif-
ferential invariants associated with the one-parameter group generated by X1 are

r1 = y, v1 = y′, (4.28)

in terms of which the Chazy equation is equivalent to

v′′1 =
2r1v

′
1 − (v′1)2

v1
− 3 + λ

(
6− r2

1

v1

)2

. (4.29)

The point transformation (4.27) maps (r1, v1) to (r3, v3), where

r3 = ŷ = x2y + 6x, v3 = ŷ′ = x4y′ + 2x3y + 6x2; (4.30)
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these are fundamental differential invariants associated with X3. The above trans-
formation is a symmetry, and therefore

v′′3 =
2r3v

′
3 − (v′3)2

v3
− 3 + λ

(
6− r2

3

v3

)2

. (4.31)

Equation (4.31) can also be obtained directly from (4.17). This explains Clarkson’s
observation that reducing the Chazy equation with invariants either of X1 or of X3
yields the same second-order ODE.

Indeed, the result can be generalized as follows. Suppose that an ODE has two
one-parameter Lie groups of point symmetries, generated by Xi, i = 1, 2, with cor-
responding fundamental differential invariants ri(x, y) and vi(x, y, y′). Each pair of
differential invariants (r1, v1) or (r2, v2) can be used to reduce the order of the orig-
inal ODE by one. Suppose also that the reduced ODE has the same form whichever
of the pairs is used. Then there is a transformation mapping X1 to X2 such that
(r1, v1) 7→ (r2, v2). This transformation is a symmetry of the original ODE, because
it is a symmetry of the reduced ODE.

5. Existence of discrete symmetries

The set of inequivalent discrete symmetries with bli = δli is a normal subgroup, G0,
of the group G of inequivalent discrete symmetries of an ODE. In this section we
consider the factor group F = G/G0. By construction, each matrix B generates at
most one element of F . Is it possible to state any general results about inequivalent
discrete symmetries of families of ODEs that share the same Lie algebra?

For example, the Chazy equation has one real discrete symmetry corresponding
to each of the four matrices (4.23). We now show that every ODE whose Lie algebra
of point symmetry generators is isomorphic to sl(2) has at least one real discrete
symmetry for each of the matrices (4.23). The inequivalent actions of SL(2) on the
real plane have been completely classified (see Clarkson & Olver 1996). Any ODE
whose Lie algebra of point symmetry generators is sl(2) can be mapped by a real
point transformation to an ODE with one of the following sets of generators:

X1 = ∂x, X2 = x∂x, X3 = x2∂x, (5.1)
X1 = ∂x, X2 = x∂x + y∂y, X3 = x2∂x + 2xy∂y, (5.2)

X1 = ∂x + ∂y, X2 = x∂x + y∂y, X3 = x2∂x + y2∂y, (5.3)
X1 = ∂x, X2 = x∂x + y∂y, X3 = (x2 − y2)∂x + 2xy∂y. (5.4)

Therefore it is sufficient to restrict attention to ODEs that are invariant under one
of the sets of generators (5.1)–(5.4). There are two ways in which an ODE may be
invariant: either it can be rewritten in terms of the differential invariants, or else it is
a singular variety where the orbit dimension drops and the Lie determinant vanishes
(see Olver 1995). The latter case is of no interest to us, because the singular variety
has Lie point symmetries other than those generated by one of (5.1)–(5.4). We refer
to ODEs not of the singular variety as non-degenerate.

The fundamental differential invariants associated with (5.1) are

I = y, J =
2y′y′′′ − 3y′′2

2y′4
. (5.5)

Every non-degenerate ODE that is invariant under (5.1) can be rewritten as an
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equation involving only I, J and derivatives of J with respect to I. If both I and
J are invariant under a point transformation, then so are all derivatives of J with
respect to I, and thus the transformation is a point symmetry of every non-degenerate
ODE whose continuous symmetries are generated by (5.1). It is straightforward to
check, for each B in (4.23), which of the point transformations satisfying (3.1) leave
both I and J unchanged. This gives a list of four inequivalent symmetries of every
non-degenerate ODE that is invariant under (5.1):

(x̂, ŷ) ∈ {(x, y), (−x, y), (1/x, y), (−1/x, y)}. (5.6)

The list is minimal; particular ODEs may have additional real discrete symmetries.
For example, the ODE

y′′′ =
3y′′2

2y′
+ y′3F (y2) (5.7)

has a discrete symmetry
(x̂, ŷ) = (x,−y), (5.8)

for any smooth function F . This symmetry is not equivalent to any of (5.6). In fact,
J is invariant under this symmetry, but I is not—it is only a relative invariant (see
Olver 1995).

In the same way, a minimal list of inequivalent real discrete symmetries can be
constructed for the remaining actions of SL(2) on the real plane. For brevity, we
state only the fundamental differential invariants and the minimal list in each case.

The fundamental differential invariants corresponding to (5.2) are

I = yy′′ − 1
2y
′2, J = y2y′′′, (5.9)

and the minimal list is

(x̂, ŷ) ∈ {(x, y), (−x,−y), (1/x,−y/x2), (−1/x, y/x2)}. (5.10)

The fundamental differential invariants corresponding to (5.3) are

I =
(y − x)y′′ − 2y′(1 + y′)

(y′)3/2 , J =
(y − x)2(2y′y′′′ − 3y′′2)

2y′3
, (5.11)

and the minimal list is

(x̂, ŷ) ∈ {(x, y), (−x,−y), (1/x, 1/y), (−1/x,−1/y)}. (5.12)

The fundamental differential invariants corresponding to (5.4) are

I =
yy′′ + y′2 + 1

y′2 + 1
, J =

y2{(y′2 + 1)y′′′ − 3y′y′′2}
3(y′2 + 1)3 , (5.13)

and the minimal list is

(x̂, ŷ) ∈
{

(x, y), (−x,−y),
(

x

x2 + y2 ,−
y

x2 + y2

)
,

(
− x

x2 + y2 ,
y

x2 + y2

)}
. (5.14)

These results show that every ODE whose continuous point symmetries are isomor-
phic to SL(2) has four inequivalent real discrete symmetries.

Similar results can be proved for other Lie groups by the same method. It is
not generally true that every symmetry of the Lie algebra of an ODE generates at
least one discrete symmetry of the ODE. We have seen that discrete symmetries of
(3.17) correspond to matrices B of the special form (3.23), whereas any choice of
non-singular B preserves the structure constants in this example.
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6. Final remarks

The method introduced in this paper is easy to use, and is widely applicable.
Nevertheless, it is only applicable to those ODEs that have non-trivial Lie groups of
symmetries. For other ODEs, it seems that a reduction of the nonlinear determining
equations to a differential Gröbner basis (using computer algebra) offers the best
prospect of finding all discrete symmetries.

The new method can be extended to PDEs, as will be described in a later paper.
Furthermore, it can be extended to other types of symmetries, such as contact sym-
metries (Hydon 1998). Contact symmetries can be used in similar ways to point
symmetries, but they can be difficult to find and use (see Hydon 1996), and therefore
they have been somewhat under-exploited. Nevertheless, discrete contact symmetries
can be found systematically for ODEs of order three or greater. For example, Hydon
(1998) demonstrates that the ODE (4.11) has eight inequivalent discrete contact
symmetries. These are the four symmetries listed in (4.15)—point symmetries are
special types of contact symmetries—and four more obtained by composing (4.15)
with the Legendre transformation

Γ2 : (x, y) 7→ (x̂, ŷ) = (y′, xy′ − y). (6.1)

It remains to be seen how much further the method can be extended.
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