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Abstract

Symmetry analysis is a powerful tool that enables the user to construct exact solu-
tions of a given differential equation in a fairly systematic way. For this reason, the
Lie point symmetry groups of most well-known differential equations have been cat-
alogued. It is widely believed that the set of symmetries of an initial-value problem
(or boundary-value problem) is a subset of the set of symmetries of the differential
equation. The current paper demonstrates that this is untrue; indeed, an initial-
value problem may have no symmetries in common with the underlying differential
equation. The paper also introduces a constructive method for obtaining symmetries
of a particular class of initial-value problems.
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1 Introduction

More than a century ago, the Norwegian mathematician Sophus Lie developed
techniques for finding and using the continuous point symmetries of differen-
tial equations. Whilst symmetry analysis remains the most widely-applicable
method of constructing exact solutions of differential equations, it has not
been particularly successful in the treatment of initial- and boundary-value
problems. Perhaps one reason for this is the generally-accepted view that a
symmetry of a boundary-value problem must satisfy three criteria [1]. Namely,
it must be

(1) a symmetry of the governing differential equation;
(2) a smooth bijective mapping of the domain to itself;
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(3) a mapping of the set of boundary data to itself.

The procedure for finding Lie point symmetries of a given differential equation
is well-known (see [2–4] for an introduction and [1,5,6] for a more detailed
description). This procedure has been implemented within many computer
algebra packages [7]. Once the Lie point symmetries are known, they can be
used to construct the discrete point symmetries [8]. Thus it is commonly quite
easy to find all point symmetries that satisfy condition (1). The difficulty is
that the extra conditions (2) and (3) may not be satisfied by any of these
symmetries; in this case it seems that the boundary-value problem has no
point symmetries. Even if some symmetries satisfy conditions (2) and (3),
they are not usually sufficient in number to yield a complete solution of the
given boundary-value problem.

So far, research has focused on the alternative problem of classifying all initial
or boundary conditions that are consistent with symmetries of a particular
differential equation. For integrable partial differential equations (PDEs), a
test for consistency between higher symmetries and boundary conditions has
been developed recently [9].

Solvable initial-value problems (IVPs) for evolution equations with two inde-
pendent variables can be catalogued as follows [10]. First, conditional symme-
tries of the PDE are sought, and the invariance condition leads to an ordinary
differential equation (ODE) for the dependent variable. Then consistency con-
ditions are used to find out which initial conditions reduce the original IVP
to a Cauchy problem for a system of ODEs.

For linear (or linearizable) PDEs, some IVPs can be solved by solving a simpler
IVP [11,12]. The idea is to start with a solvable IVP, and then to use the
symmetries associated with linear superposition to construct a hierarchy of
related IVPs. In this way, one can construct a catalogue of problems that are
solvable for that particular PDE. At present, there is no general procedure for
dealing with a given IVP that lacks sufficient symmetries satisfying (1)–(3)
and is neither linear nor evolutionary.

It is worth examining the conditions (1)–(3) with a critical eye; are they re-
ally necessary? Clearly, conditions (2) and (3) are necessary, for otherwise
the boundary-value problem would be mapped to a different boundary-value
problem. However, given any Lie point symmetry generator

X̃ = ξ(x, y)∂x + η(x, y)∂y ,

(where ∂x = ∂/∂x, etc.) there is an equivalent dynamical symmetry generator

X = Q(x, y, y′) ∂y , where Q(x, y, y′) = η(x, y) − y′ξ(x, y).
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The independent variable x is invariant under the symmetries generated by
X, so condition (2) is automatically satisfied. From now on, we shall write
all generators in the evolutionary form X. However, we restrict attention to
dynamical symmetries that are equivalent to point symmetries, so that the
characteristic Q(x, y, y′) is linear in y′. We shall refer to such symmetries as
point-equivalent symmetries.

Condition (1) is not necessary. To see this, let S denote the set of all solutions of
a given differential equation, and let T ⊂ S denote the set of all solutions that
also satisfy the boundary conditions. Every symmetry of the equation maps
S to itself. However, we are not interested in all solutions, but only in those
that satisfy the boundary conditions. Therefore condition (1) can be replaced
by the weaker requirement that a symmetry of the boundary-value problem
should be a symmetry of an equation that is satisfied by all solutions in the
subset T . Solutions that are in S \T need no longer be mapped to solutions in
S. (This approach is similar in spirit to the method of nonclassical symmetries,
which can be used to find invariant solutions of partial differential equations
[13,14]). In a recent review of significant open problems in symmetry analysis,
it was suggested that such an approach may yield extra symmetries [15]. The
chief problem is that, until now, there has been no way of constructing an
equation that is satisfied by all solutions of T , but not by all solutions of
S. The aims of the current paper are to show how this can be done, and to
outline the difficulties that are involved in using initial conditions to construct
symmetries.

For simplicity, we shall restrict attention to IVPs for third-order ODEs. In §2,
we use a very simple example to demonstrate how an ODE that is constrained
by initial conditions can have more symmetries than an unconstrained ODE.
Following a discussion of some basic theory in $3, we derive a method for
calculating symmetries of a class of initial-value problems. Several examples
are given in $4 that illustrate how the method works in practice, and the paper
concludes with a discussion of some extensions and open problems.

2 A simple example

We start with a short summary of the method for obtaining dynamical sym-
metries of a given third-order ODE,

y′′′ = ω(x, y, y′, y′′). (1)

First define the total derivative with respect to x, restricted to the set of
solutions of the ODE, as follows:

D = ∂x + y′∂y + y′′∂y′ + ω(x, y, y′, y′′)∂y′′ .
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The second prolongation of the dynamical symmetry generator X = Q ∂y is

X(2) = Q ∂y + DQ ∂y′ + D2Q ∂y′′ .

The characteristics Q of the dynamical symmetry generators are determined
from the linearized symmetry condition

D3Q = X(2)
(

ω(x, y, y′, y′′)
)

. (2)

In particular if Q = η(x, y)− y′ξ(x, y), the linearized symmetry condition can
be split into an overdetermined system of partial differential equations for
ξ(x, y) and η(x, y) by using the fact that these functions do not depend on
derivatives of y.

In this way, it is easy to show that the simplest third-order ODE,

y′′′ = 0, (3)

has a seven-dimensional Lie algebra of point-equivalent symmetry generators,
spanned by

X1 = ∂y , X2 = x∂y , X3 = y∂y , X4 = y′∂y, X5 = xy′∂y ,

XA = x2∂y , XB = (2xy − x2y′)∂y .

Clearly, the set of all solutions of (3) that also satisfy the initial condition

y′′(0) = 0 (4)

is the set of all solutions of the second-order ODE

y′′ = 0. (5)

The ‘reduced’ ODE (5) has an eight-dimensional Lie algebra of point-equivalent
symmetry generators, spanned by

X1 = ∂y , X2 = x∂y , X3 = y∂y , X4 = y′∂y, X5 = xy′∂y ,

X6 = yy′∂y , X7 = (xy − x2y′)∂y , X8 = (y2 − xyy′)∂y .

The reduced ODE has the symmetry generators X1–X5 in common with the
original ODE, whereas X6–X8 are new. The original symmetry generators XA

and XB are not symmetries of the reduced equation.

To see why this is so, it is helpful to work in terms of the first integrals of the
ODEs (3) and (5). A non-constant function α(x, y, y′, y′′) is a first integral of
(1) if and only if Dα = 0. In other words, a first integral is a non-constant
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function that is constant on every solution of the ODE. Every first integral of
(3) is a non-constant function of the first integrals

α = y − xy′ +
1

2
x2y′′, β = y′ − xy′′, γ = y′′. (6)

The solutions of (3) that satisfy the initial condition y′′(0) = 0 are precisely
those for which γ = 0. Therefore the reduced equation is γ = 0, whose first
integrals are

α0 = α|γ=0 = y − xy′, β0 = β|γ=0 = y′.

By using the chain rule, we can write any generator X of dynamical symmetries
of (3) in terms of the first integrals:

X = (X(2)α) ∂α + (X(2)β) ∂β + (X(2)γ) ∂γ .

The dynamical symmetries of any ODE act as point transformations in the
space of first integrals; when the symmetry generators are written in terms of
first integrals, they are independent of x. For the ODE (3), the point-equivalent
symmetry generators amount to

X1 = ∂α, X2 = ∂β , X3 = α∂α + β∂β + γ∂γ , X4 = β∂α + γ∂β,

X5 = β∂β + 2γ∂γ, XA = 2∂γ , XB = 2α∂β + 2β∂γ.

The submanifold γ = 0 is invariant under the transformations generated by
X1–X5. However XA generates translations in the γ-direction, so the plane
γ = 0 is mapped to γ = c, where c is a nonzero constant. Similarly, the group
generated by XB maps almost every solution satisfying γ = 0 to a solution
with γ 6= 0. This explains why XA and XB do not generate symmetries of the
reduced ODE (5).

In terms of the first integrals of (3) the new symmetries of the reduced ODE
are

X6 = (αβ +
1

2
x3γ2)∂α + (αγ + β2 −

3

2
x2γ2)∂β + 3γ(β + xγ)∂γ ,

X7 = −
1

2
x3γ∂α + (α +

3

2
x2γ)∂β − 3xγ∂γ ,

X8 = (α2 −
1

2
x3βγ −

3

4
x4γ2)∂α + (αβ +

3

2
x2βγ + 2x3γ2)∂β − 3xγ(β + xγ)∂γ .

These are not symmetries of (3) because they depend on x. However, on the
submanifold γ = 0, they reduce to

X6 = α0β0 ∂α0
+ β2

0 ∂β0
, X7 = α0 ∂β0

, X8 = α2
0 ∂α0

+ α0β0 ∂β0
,

which are independent of x. Therefore they are generators of dynamical sym-
metries of the reduced ODE.
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To summarize, if we impose an initial condition, we are interested only in the
submanifold T of solutions that satisfy the condition. Symmetries of the orig-
inal ODE that do not leave T invariant are not symmetries of the initial-value
problem. However, transformations that are not symmetries of the original
ODE may act as symmetries when they are restricted to T .

It is natural to ask what happens when further initial conditions are applied.
After all, an initial-value problem is generally posed with a complete set of
initial conditions. For a third-order ODE, the imposition of one initial condi-
tion restricts the set of solutions to a surface in the space of first integrals; this
is why the reduced ODE is second-order. By imposing two initial conditions,
we restrict attention to a curve in the space of first integrals, which gives a
first-order reduced ODE. Similarly, by imposing three initial conditions, we
do not have to solve a reduced differential equation at all. However, to find
the particular solution, we need to know all first integrals; in other words, we
need to obtain the general solution of the original ODE.

This presents no difficulty for y′′′ = 0, which has seven point-equivalent sym-
metries. However, the aim of this paper is to tackle problems where the origi-
nal ODE cannot be solved using point-equivalent symmetries, but the reduced
ODE can be. For all point-equivalent symmetries of the reduced ODE to be
found using Lie’s method, the reduced ODE must be of order two or more.
Therefore, if the original ODE is third-order, we will never apply more than
one initial condition. Of course, once the reduced ODE has been solved, any
remaining initial conditions can be used.

There is one fundamental obstacle to be overcome. Given an ODE whose first
integrals are entirely unknown, no techniques have been developed that enable
a reduced ODE to be constructed from a given initial condition. Therefore we
must work directly with the original ODE, and find a way to restrict attention
to the submanifold T .

3 How to construct symmetries of a class of IVPs

For simplicity, we focus on a single class of IVPs, namely third-order ODEs

y′′′ = ω(x, y, y′, y′′) (7)

subject to the initial condition

y′′(0) = 0. (8)

The method presented in this section uses Taylor series about x = 0, so we
shall restrict attention to problems for which such series are well-defined. In
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particular, we avoid dealing with singularities at x = 0 by supposing that
y(x) is analytic about x = 0, and that ω is polynomial in x and y′′. (In §5,
the possibility of generalizing the method is discussed.) On solutions of (7),
the total derivative with respect to x is

D = ∂x + y′∂y + y′′∂y′ + ω(x, y, y′, y′′)∂y′′ .

From (2), the linearized symmetry condition for (7) is Γ = 0, where

Γ = D3Q − ωy′′D2Q − ωy′DQ − ωyQ (9)

Without loss of generality, choose the first integrals of (7) to satisfy

α(x, y, y′, y′′) = y(0), β(x, y, y′, y′′) = y′(0), γ(x, y, y′, y′′) = y′′(0)

on solutions of (7). Therefore the reduced ODE is γ = 0, as in the example of
§2; solving this for y′′ gives

y′′ = F (x, y, y′), (10)

where
γ(x, y, y′, F (x, y, y′)) ≡ 0.

On solutions of (10), the total derivative D is replaced by

D0 = ∂x + y′∂y + F (x, y, y′)∂y′ ,

and the linearized symmetry condition for (10) is Γ0 = 0, where

Γ0 = D2
0Q − Fy′D0Q − FyQ. (11)

We shall show that it is possible to solve this linearized symmetry condition
by using Taylor series, even though F , and hence D0, are unknown.

Substituting the reduced ODE (10) into the original ODE (7) leads to the
useful identity

ω(x, y, y′, F (x, y, y′)) = D0F (x, y, y′). (12)

Given an arbitrary differentiable function H(x, y, y′, y′′), let

h(x, y, y′) = H(x, y, y′, F (x, y, y′)).

Then, by using the identity (12), it is easy to show that

D0h(x, y, y′) =
(

DH(x, y, y′, y′′)
)

∣

∣

∣

∣

y′′=F (x,y,y′)
. (13)

In particular, if α0(x, y, y′) = α| γ=0 then

D0α0 =
(

Dα(x, y, y′, y′′)
)

∣

∣

∣

∣

y′′=F (x,y,y′)
= 0,
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so α0 (which is not constant) is a first integral of the reduced ODE. Similarly,
β0(x, y, y′) = β| γ=0 is another (independent) first integral of the reduced ODE.

By induction, it follows from (13) that

Dk
0h(x, y, y′) =

(

DkH(x, y, y′, y′′)
)

∣

∣

∣

∣

y′′=F (x,y,y′)
, ∀ k ∈ N. (14)

This leads to the following relationships between the linearized symmetry
conditions for the original and reduced ODEs.

Theorem 1 Using the notation introduced above,

Γ
∣

∣

∣

∣

y′′=F (x,y,y′)
= D0Γ0 +

(

Fy′ − (ωy′′)
∣

∣

∣

∣

y′′=F (x,y,y′)

)

Γ0, (15)

and, for each k ∈ N,

(

DkΓ
)

∣

∣

∣

∣

y′′=F (x,y,y′)
= Dk

0

{

D0Γ0 +

(

Fy′ − (ωy′′)
∣

∣

∣

∣

y′′=F (x,y,y′)

)

Γ0

}

. (16)

The proof of (15) is straightforward: differentiate (12) with respect to y and
y′ in turn, and use these expressions to eliminate ωy and ωy′ in Γ (on solutions
of the reduced ODE). To prove (16), apply (14) to (15).

We assume that the linearized symmetry condition for the reduced ODE can
be written as a Taylor series in x:

Γ0 =
∞
∑

k=0

xk

k!

(

Dk
0Γ0

)

∣

∣

∣

∣

0
= 0,

where the notation | 0 means that x, y, y′ and y′′ are replaced by 0, α0, β0 and
0 respectively. Consequently

(

Dk
0Γ0

)

∣

∣

∣

∣

0
= 0, ∀ k ∈ N0.

By Theorem 1, these conditions can be replaced by

Γ0

∣

∣

∣

0
= 0, and

(

DkΓ
)

∣

∣

∣

∣

0
= 0, ∀ k ∈ N0.

As F (0, α0, β0) = 0, projecting (11) and (14) onto the submanifold T at x = 0
yields

Γ0

∣

∣

∣

0
= (D2

0Q)
∣

∣

∣

0
= (D2Q)

∣

∣

∣

0
.

This condition expresses the invariance of the initial condition y′′(0) = 0 under
the group of symmetries of the reduced ODE. Thus, we have been able to write
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the linearized symmetry condition for the unknown reduced ODE in terms of
the original ODE. The results are summarized in the following theorem.

Theorem 2 Provided that the linearized symmetry condition for the reduced

ODE is analytic in x, the point-equivalent symmetry generators X = Q∂y are

obtained by solving the system

(D2Q)
∣

∣

∣

0
= 0, and

(

DkΓ
)

∣

∣

∣

∣

0
= 0, ∀ k ∈ N0, (17)

where Γ is given by (9).

Therefore, in principle, it is possible to obtain characteristics Q(x, y, y′) with-
out knowing the reduced ODE in advance. The chief difficulty is that it seems
to be necessary to solve an infinite series of partial differential equations. Fur-
thermore, even if characteristics can be expressed in closed form, their series
may not be finite or easily recognizable. These difficulties can be overcome if we
can find even one characteristic for the reduced ODE that does not satisfy the
linearized symmetry condition for the original ODE. If Q = η(x, y)− y′ξ(x, y)
is such a characteristic, then

X̃ = ξ(x, y)∂x + η(x, y)∂y

generates point symmetries of the reduced ODE (10). Let r(x, y) and v(x, y, y′)
be fundamental differential invariants of the group generated by X̃, so that

X̃r = 0, X̃(1)v = 0.

Then there exists a function g(r, v) such that (10) is equivalent to a first-order
ODE of the form

dv

dr
= g(r, v).

Consequently,

F (x, y, y′) =
g(r, v)(rx + y′ry) − vx − y′vy

vy′

. (18)

Substituting (18) into the identity (12) leads to a partial differential equation
for the unknown function g(r, v). This splits into an overdetermined system,
because X̃ does not generate symmetries of the original ODE (7). Once g(r, v)
has been found, the reduced ODE is easily reconstructed from (18), and any
remaining symmetries can be found by standard symmetry analysis; these are
typically in closed form. Therefore, we need only to be able to identify one
new point-equivalent symmetry generator to complete the point symmetry
analysis of the reduced equation.
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4 Some examples

In this section, we use the conditions in Theorem 2 to construct the symmetries
of the reduced ODE in each example. For brevity, details of the calculations
will be included only for the first example. In the other two examples, attention
is focused on ways of using symmetries.

The first example is the Blasius equation

y′′′ = yy′′, (19)

which has a two-dimensional Lie algebra of point-equivalent symmetry gener-
ators spanned by

XA = (y + xy′)∂y, XB = y′∂y .

These symmetry generators may be used to reduce (19) to a first-order ODE,
but they do not enable the general solution to be obtained. To find the sym-
metries of the set of solutions that satisfy y′′(0) = 0, we must solve (17),
with

Q(x, y, y′) = η(x, y) − y′ξ(x, y) and Γ(x, y, y′, y′′) = D3Q − yD2Q − y′′Q.

Taking the condition y′′(0) = 0 into account, we obtain

Γ
∣

∣

∣

0
=(D3Q − yD2Q)

∣

∣

∣

0

(DΓ)
∣

∣

∣

0
=(D4Q − yD3Q − y′D2Q)

∣

∣

∣

0

(D2Γ)
∣

∣

∣

0
=(D5Q − yD4Q − 2y′D3Q)

∣

∣

∣

0

(D3Γ)
∣

∣

∣

0
=(D6Q − yD5Q − 3y′D4Q)

∣

∣

∣

0

etc.

Therefore, by induction, the system (17) for this example amounts to

(DkQ)
∣

∣

∣

0
= 0, ∀ k ≥ 2. (20)

It is convenient to introduce the notation

ηk(α0) =
∂kη(x, α0)

∂xk

∣

∣

∣

∣

x=0
, ξk(α0) =

∂kξ(x, α0)

∂xk

∣

∣

∣

∣

x=0
, k ∈ N0.

Derivatives of ηk(α0) with respect to α0 will be denoted by η′

k, η
′′

k , etc; a similar
notation is used for derivatives of ξk(α0). For brevity, the argument α0 is
omitted. Thus

Q
∣

∣

∣

0
= η0 − β0ξ0 (21)
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and
(DQ)

∣

∣

∣

0
= η1 + β0(η

′

0 − ξ1) − β2
0ξ

′

0. (22)

The first of the determining equations (20) is

(D2Q)
∣

∣

∣

0
= η2 + β0(2η

′

1 − ξ2) + β2
0(η

′′

0 − 2ξ′1) − β3
0ξ

′′

0 = 0.

By equating powers of β0, this can be split into the following system:

η2 = 0, 2η′

1 − ξ2 = 0, η′′

0 − 2ξ′1 = 0, ξ′′0 = 0. (23)

In a similar way, the second determining equation

(D3Q)
∣

∣

∣

0
= η3 + β0(3η

′

2 − ξ3) + 3β2
0(η

′′

1 − ξ′2) + β3
0(η

′′′

0 − 3ξ′′1 ) − β4
0ξ

′′′

0 = 0

splits to give the extra conditions

η3 = 0, 3η′

2 − ξ3 = 0, η′′

1 − ξ′2 = 0, η′′′

0 − 3ξ′′1 = 0. (24)

The general solution of (23) and (24) is

η0(α0) = c1α
2
0 + c2α0 + c3, η1(α0) = c4α0 + c5, η2(α0) = η3(α0) = 0,

ξ0(α0) = c6α0 + c7, ξ1(α0) = c1α0 + c8, ξ2(α0) = 2c4, ξ3(α0) = 0,

where each ci is an arbitrary constant. The remaining determining equations
do not constrain these constants in any way, and they provide the information
that

ηk = ξk = 0, ∀ k ≥ 4.

Then Q(x, y, y′) can be reconstructed from the Taylor series

Q(x, y, y′) =
∞
∑

k=0

xk

k!

(

ηk(y) − y′ξk(y)
)

.

Hence the point-equivalent symmetry generators of the reduced ODE have
characteristics of the form

Q(x, y, y′) = (c4y + c5)x + c1y
2 + c2y + c3 − y′(c4x

2 + (c1y + c8)x + c6y + c7).

The set of all such generators forms the same eight-dimensional Lie algebra
as in the example of §2. Indeed, the reduced ODE is, once again, y′′ = 0. To
see this, note that X = ∂y is a symmetry of the reduced ODE, but not of the
Blasius equation. Substituting the differential invariants r = x, v = y′ into
(18) yields

F (x, y, y′) = g(r, v) = g(x, y′).

Then (12) amounts to

yg(x, y′) = gx(x, y′) + g(x, y′)gy′(x, y′).

11



Splitting this into an overdetermined system by equating powers of y, one
obtains g(x, y′) = 0, and hence y′′ = 0.

As a second example, consider the ODE

y′′′ =
2x

y5
−

5y′y′′

y
, (25)

whose only point-equivalent symmetries are scalings, with the characteristic

Q1 = 2y − 3xy′.

By using the computer algebra package Maple [16], equations (17) for k ≤ 11
have been solved. These yield the symmetries Q1 and

Q2 = xy − x2y′.

The fundamental differential invariants of the Lie group of point symmetries
generated by

X2 = x2∂x + xy∂y

are
r =

y

x
, v = xy′ − y.

Hence the reduced ODE,
dv

dr
= g(r, v),

amounts to

y′′ =
vg(r, v)

x3
.

Substituting (18) into (12) yields

2

x4r5
−

5(v + rx)vg

x5r
= −

3vg

x4
+

v2gr

x5
+

(vgv + g)vg

x5
.

By equating powers of x, we obtain the split system

2

r5
− 5vg = −3vg, −

5v2g

r
= v2gr + (vgv + g)vg,

whose only solution is

g(r, v) =
1

r5v
.

Consequently, the reduced ODE is

y′′ =
x2

y5
.

This can be reduced to quadrature by using the two point symmetries with
characteristics Q1 and Q2 in the usual way. Therefore, although the original
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ODE (3) cannot be solved, the set of solutions that satisfy the initial condition
y′′(0) = 0 can be found.

In the previous examples, the series for the symmetries have contained finitely
many terms. This does not generally happen. Consider the ODE

y′′′ = y′′ 2 +

(

y′

y
− xy

)

y′′ + y, (26)

which has no point-equivalent symmetries. The general solution of the system
(17) has infinitely many terms. With the aid of Maple, the first few terms have
been calculated. It appears that there are eight independent point equivalent
symmetries, whose characteristics (up to order x8) are as follows.

Q1 = y

Q2 = 1 +
1

6
x3 +

1

180
x6

Q3 = x +
1

12
x4 +

1

504
x7

Q4 =
(

x3 +
3

20
x6
)

y −
(

2x +
1

2
x4 +

3

70
x7
)

y′

Q5 =
(

x +
5

12
x4 +

11

252
x7
)

y −
(

x2 +
1

6
x5 +

11

1008
x8
)

y′

Q6 =
(

x2 +
7

30
x5 +

13

720
x8
)

y −
(

2 +
2

3
x3 +

7

90
x6
)

y′

Q7 =
(

1 +
1

3
x3 +

1

72
x6
)

y2 −
(

x +
1

12
x4 +

1

504
x7
)

yy′

Q8 =
(

x2 +
1

15
x5 +

1

720
x8
)

y2 −
(

2 +
1

3
x3 +

1

90
x6
)

yy′

As only the first few terms are calculated, we should bear in mind that a
later equation in (17) might remove one or more of these characteristics. The
calculations have been extended to terms of order x14 without destroying any
characteristics, but this does not prove that there are eight point-equivalent
symmetries. Moreover, the above series are not very easy to recognize.

This problem can be solved by using the point-equivalent symmetries gener-
ated by Q1, which is the only characteristic that seems to have finitely many
terms. The fundamental differential invariants of the corresponding point sym-
metries are

r = x, v =
y′

y
.

Substituting (18) into (12) and splitting the resulting equation by equating
powers of y (as in the first example) gives the following system of equations
for g(r, v):

(g + v2)(g + v2 − r) = 0, gr + g(gv + 2v) = 1,
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whose only solution is
g(r, v) = r − v2.

Consequently, the reduced ODE is the Airy equation

y′′ = xy.

This does indeed have eight point-equivalent symmetries; all characteristics
except Q1 can be written in terms of the Airy functions Ai(x) and Bi(x) and
their derivatives (see [2] for a way of doing this).

5 Discussion and open problems

The method proposed in this paper is the first systematic technique for de-
termining the point-equivalent symmetries of a given initial value problem.
However, it is not without difficulties, as illustrated by the last of the above
examples. These difficulties are entirely due to the need for series expansions.
First, it is not usually easy to recognize series that have infinitely many terms.
At present, there is no way to obtain differential invariants (and hence the re-
duced ODE) from a series; the characteristic needs to be written in closed
form. However, many IVPs have at least some symmetries whose characteris-
tics can be written as a low-order polynomial in x, so there are grounds for
hope that the reduced ODE might be obtained by this method.

A fundamental difficulty is that one can only calculate the first few terms, as
the complexity of the calculation becomes prohibitive as k becomes large. For
some IVPs, the inclusion of higher-order terms can remove what at first sight
appears to be a characteristic. For instance, the ODE

y′′′ =
1

y3

(which occurs in lubrication theory) has only one point-equivalent character-
istic, namely

Q1 = 3y − 4xy′.

If one solves (17) for k ≤ 2, it appears that there are three extra characteristics
for the reduced ODE, namely:

Q2 = x −
x4

8y4
−

3x5y′

10y5
,

Q3 = xy +
5x4

24y3
−

(

x2 −
9x5

20y4

)

y′,

Q4 = y2 −
x3

3y2
−

(

xy +
5x4

24y3

)

y′.
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However, these are all removed when the k = 3 equation of (17) is taken into
account. (The only characteristic for the reduced equation is Q1; as this is
a characteristic for the original ODE, the reduced ODE cannot be found.)
In the same way, it is conceivable that some ODEs might appear to have
symmetries that are not removed within the limits of the calculations that
can be done by computer algebra. Nevertheless if a (likely) new symmetry
can be identified then it may be used to try and obtain the reduced ODE.
If (18) and (12) do not produce a solvable split system then the putative
‘symmetry’ is not really a symmetry. Indeed, once the reduced ODE is found,
its point-equivalent symmetries can often be determined in closed form; they
will include the symmetry that has been used to derive the reduced ODE.

For simplicity, we have restricted attention to third-order problems that can
be solved with the aid of Taylor series. The generalization to higher-order
ODEs is obvious, although the complexity of the calculations increases with
the order of the ODE. To deal with regular singularities, it is necessary to
use the Frobenius method. For example, the IVP y′′′ = 0 subject to y′(0) = 0
gives the reduced ODE

y′′ =
y′

x
,

whose point-equivalent characteristics include Q = y′/x, which cannot be
obtained directly with Taylor series. Extensions of the method to singular
problems will be described in a separate paper.

An initial-value problem is usually posed with a complete set of initial condi-
tions, yet only one condition is needed to reduce the order of the ODE by one.
It would be useful to know whether or not there is a systematic way to choose
this condition so that the reduced ODE admits new point-equivalent symme-
tries. For example, the Blasius boundary layer is described by the solution of
the Blasius equation that satisfies the boundary conditions

y(0) = 0, y′(0) = 0, lim
x→∞

y′(x) = 1.

The solution to this problem can be obtained from the solution of the IVP

y′′′ = (y − x2/2)(y′′ − 1), y(0) = y′(0) = y′′(0) = 0.

The above ODE subject to the single condition y′′(0) = 0 has no point-
equivalent symmetries. Is there a choice of constants c1, c2, c3 such that

y′′′ = (y − x2/2)(y′′ − 1), c1y(0) + c2y
′(0) + c3y

′′(0) = 0,

yields a reduced ODE with new point-equivalent symmetries? If so, then it
might be possible to obtain a closed-form solution for the Blasius boundary
layer.
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It remains to be seen how far the method introduced in this paper can be
generalized to initial- and boundary-value problems for PDEs. Whilst the Lie
point symmetries of many PDEs have been classified (see [17,18]), our results
indicate that it may be possible to calculate other point symmetries that
appear when initial or boundary conditions are imposed.
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