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Abstract

An analogue of the Poincaré lemma for exact forms on a lattice is stated
and proved. Using this result as a starting-point, a variational complex for
difference equations is constructed and is proved to be locally exact. The
proof uses homotopy maps, which enable one to calculate Lagrangians for
discrete Euler-Lagrange systems. Furthermore, such maps lead to a system-
atic technique for deriving conservation laws of a given system of difference

equations (whether or not it is an Euler-Lagrange system).



1 Introduction

Most partial differential equations (PDEs) that are used as mathematical
models have some interesting geometrical features, the most common of
which are symmetries and conservation laws. If the PDE comes from a vari-
ational principle, its variational symmetries and nontrivial conservation laws
are related to one another by Noether’s Theorem [34, 4]. There are variants
of Noether’s Theorem for Hamiltonian and multisymplectic systems, which
have a structural conservation law for the (multi-)symplectic two-form [5, 6].

Much information about a given PDE can be gleaned from its geomet-
rical structures, which act as constraints on the behaviour of the solutions.
Therefore it is reasonable to try to incorporate these structures into numerical
methods for solving the PDE. Various approaches have been developed, each
of which preserves a particular geometric feature; together, these approaches
form the discipline of geometric integration. For example, low-order conser-
vation laws of hyperbolic PDEs can be preserved by using a Lax-Wendroff
scheme [17]. For some integrable PDEs, there are methods that that preserve
one or two conservation laws [15]. If a differential equation is derived from
a known variational problem, and if variational symmetries are preserved by
the discretiztion, then a discrete version of Noether’s Theorem [24] can be
used to obtain difference analogues of the corresponding conservation laws
(31, 38, 30]. At present, there is no systematic approach to preserving ar-
bitrary conservation laws of PDEs that do not fall into any of the above
categories.

It is sometimes desirable to preserve symmetries that are not variational.
In particular, if the intermediate asymptotic behaviour of a given PDE is

scaling-invariant, discretizations that preserve such invariance are highly ef-



fective. They can reproduce the correct asymptotic behaviour, even as sin-
gularities are approached [8]. For more general symmetries, various adaptive
methods have been proposed that retain Lie symmetries exactly [10].

Throughout this paper, we focus on conservation laws and (to a lesser
extent) symmetries. However there is a rapidly-growing body of work on
numerical methods that preserve other geometric structures. These methods
include symplectic and multisymplectic integrators [36, 7, 30], discrete gra-
dients [32], and Lie group solvers [21, 22, 33]. (A good starting-point for the
newcomer is the overview by Budd & Iserles [9]).

There is a well-developed set of mathematical tools for finding symme-
tries and conservation laws of a given PDE. Generators of one-parameter
Lie groups of symmetries can be determined straightforwardly from the lin-
earized symmetry condition, a technique that can also be used to obtain some
generalized symmetries [34]. (For an elementary introduction to symmetry
methods, consult [18, 37].) There are many computer algebra packages that
will help with the work of finding these symmetries (see Hereman'’s review [16]
for further information). However, it is not usually possible to find all gener-
alized symmetries of a given PDE. If the PDE is the Euler-Lagrange equation
for a known variational problem, and if some generalized symmetries can be
found, it is easy to check which of these are variational symmetries. Then
Noether’s Theorem can be used to construct the corresponding conservation
law.

These well-known methods lead to several questions. Is it possible to find
out whether a given PDE is an Euler-Lagrange equation? If so, is there a
technique for determining a corresponding variational problem? Is it possible
to construct conservation laws systematically if the PDE has no variational,

Hamiltonian, or multisymplectic formulation? Even if there is such a formu-



lation, can one determine conservation laws if no variational symmetries are
known (so that Noether’s Theorem cannot be used)? These questions, which
are related to one another, can be answered with the aid of the variational

complex.
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Figure 1: The three-dimensional continuous variational complex

The continuous variational sequence for a three-dimensional base space

is given in Figure 1. This sequence has two types of vector space: the total
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r-forms, A", and the functional r-forms, A7 (see Olver [34] for details). A
typical element of a space in the sequence appears on the right. Functions
may depend on the dependent variables v and their derivatives up to some
finite order N; these are denoted collectively by u¥). We adopt the summa-
tion convention: where an index occurs twice in a term, summation over all

possible values of the index is implied. The integral

/{-}dxz /{-}dxl dary s

denotes an element of an equivalence class; two coefficient functions are equiv-
alent if they differ by a total divergence. In A2, the matrix-valued differential
operator D is skew-adjoint with respect to the L, inner product.

If the functions depend on the independent variables only then the first
part of the sequence is well-known (this consists of the vector spaces down
to A*). Provided the domain of definition of functions is diffeomorphic to
R?® (or C*), the gradient of a function is zero if and only if it is constant.
Under the same condition, the curl of a vector field f(x) is zero if and only
if f(x) is a gradient, and the divergence of f(x) is zero if and only if f(x)
is a curl. It is less well known that such vector fields may also depend on
arbitrary functions of the dependent variables and their derivatives; these
extra variables are regarded as functions of the independent variables in each
of the vector spaces A". (Consequently, total derivatives are used in the
operators Grad, Curl, and Div.) This result is proved constructively, using
homotopy operators that take an element of the kernel of one map to an
element of the pre-image.

The above sequence and its maps form a complex, because the image of
one map is contained in the kernel of the next (irrespective of the domain).

For example, Div(Curl(-)) is identically zero. More generally, a complex is



a sequence of vector spaces with maps between consecutive elements in the
sequence, such that the composition of any two successive maps is identically
zero. A complex is ezact if the image of each map is precisely the kernel of
the following map. Vinogradov [39] was the first to prove that the variational
complex is formally locally exact. Local means that the domains of definition
of coefficient functions are restricted to be open balls, or (more generally)
to be “totally star-shaped.” A much simpler (constructive) proof due to Ian
Anderson is detailed in Olver [34]; again, this uses homotopy operators. The
variational complex is a formal construction, with an underlying assumption
that there are never any contributions from the boundary of the domain; we
shall use this assumption henceforth.

The fact that the variational complex is locally exact has several uses.
For example, if the Euler operator acting on a function is zero, that function
is necessarily a total divergence. This result can be used to construct scalar
conservation laws systematically [34, 1, 2]. (Form-valued conservation laws
can be calculated with the aid of the variational bicomplex, which may be
regarded as an extension of the variational complex; see Anderson [3] for
details.) Similarly, if a PDE P = 0 satisfies the Helmholtz condition then
P = 0 is necessarily an Euler-Lagrange equation. Moreover, the Lagrangian
can be calculated with the aid of a homotopy operator.

The above techniques can be used to find many of the geometric features
of a given PDE. This raises a key question: to what extent can one do the
same thing for partial difference equations (PAEs)? To date, most of the
various different approaches to geometric integration have focused on pre-
serving a single geometric feature. Given a class of methods that preserve a
particular feature, is it possible to determine which (if any) of the methods

preserve other geometric features? For example, given a class of multisym-



plectic integrators, can one find out which symmetries or conservation laws
are preserved by each discretization [29]?

Systematic techniques for determining some of the geometric structures
of a given PAE have been developed recently, although much work still needs
to be done. There are various techniques for finding Lie symmetries; they
depend upon the type of symmetry that is sought. The development of
such techniques was initiated by Maeda [27], who showed that autonomous
systems of first-order ordinary difference equations (OAEs) can be simplified
or solved with the aid of Lie point symmetries. Maeda also showed that the
linearized symmetry condition for such OAEs amounts to a set of functional
equations. In general, these are hard to solve, but Maeda described two
examples for which a very restrictive ansatz yields Lie symmetries. Gaeta
[13] used formal series expansions to derive some symmetries of those systems
of OAEs that are discretizations of continuous systems. Maeda’s ideas have
been extended in various ways. Series-based methods have been developed for
obtaining some solutions of the linearized symmetry condition for OAEs [35,
25] and PAEs [12, 25]. Series expansions can be calculated if the symmetry
condition has a fixed point. However, it may not be possible to sum the
series and obtain solutions in closed form, in which case the symmetries are
non-local. Another approach uses differential elimination to determine local
symmetries in closed form [19]. This is a systematic method, but it is also
computationally intensive. As with symmetry methods for PDEs, it is limited
by the generality of the class of symmetries being sought.

To obtain conservation laws of an arbitrary PAE, irrespective of whether
or not there is an underlying variational structure, a difference analogue of
the variational complex is needed. The purpose of the current paper is to

introduce such a complex, and to show that it is exact on topologically trivial



domains. We present a homotopy operator that can be used systematically
to construct conservation laws. This is not a trivial generalization of the
continuous homotopy operator, because the independent variables lie on a
lattice rather than a continuous space. Furthermore, the difference operator
does not act like a derivative: there is no analogue of the Leibniz product
rule.

Although the independent variables are discrete, the dependent variables
are continuous (just as for PDEs). Consequently, parts of the new complex
that involve the dependent variables correspond closely to parts of the contin-
uous complex; wherever it is possible, we develop analogues of the structures
described in §5.4 of Olver [34]. As early as 1985, Kupershmidt [23] formu-
lated the difference analogue of Al, in order to provide an algebraic basis for
the study of integrable difference equations. However, this investigation was
not extended to the rest of the complex.

We introduce the complex in three stages. In §2 we construct the dif-
ference complex, whose elements depend only on the lattice points. The
dependent variables are added in §3, which completes the first (or ‘horizon-
tal’) part of the complex; the analogues of Al are also described. In §4 the
whole complex is spliced together. Some applications are presented in §5;

others can be found in [20, 28].

2 The difference complex

2.1 Lattice coordinates and the shift maps

Throughout this section, we retrict attention to spaces that involve only

the lattice coordinates n = (n',...,n?) € ZP. These coordinates will be



the independent variables when we consider difference equations (from §3
onwards). The algebra of functions depending only on the lattice variables n
is written as 5. Unlike R”, the lattice does not have a differentiable structure;
instead it has an ordering on each n’. Consequently, the natural operators

on the lattice are the shift maps,
S :nt s n' 46, kE=1,...,p;

here 6} is the Kronecker delta. To simplify things, let 1, be the p-tuple whose
only nonzero entry is in the k™ place; this entry is 1. Then the k" shift map
is

Sp,:n—>n+1,.

The action of each shift map extends naturally to any function f(n) € B as

follows:
Sk f(n) — f(n+1y). (1)

Note that the shift maps commute (i.e. S;S; = S5;Si), and each shift map is

a homomorphism on B:

Se{f(n)g(n)} = f(n+1x)g(n+1y) = S {f(n)} Se {g(n)}.  Vf(n),g(n) € B.

2.2 The difference map

Let Ex(p) be the exterior algebra on p symbols Ay,...A,, so that

)

A? =0, N A = =NA;.
Definition 2.2.1. We define the algebra of difference forms to be

PEx = U Ex(p)

nezp



with coefficients in B and pointwise multiplication and addition. A typical

element of PEx takes the form

w_PO +Z Z Pllw Zr 21A12"'Air (2)

r=1 i1 <...<ip
where Py(n), P;,;, i (n) € B.
Definition 2.2.2. The action of each shift map on elements of PEx is defined
by (1), together with Si(A;) = A; and
Sk(nw) = Sk(n)Sk(w),  n,w € "EX,

so that the action of Sy on the typical element (2) is

Skw = Sk P() —|— Z Z Sk i182..0p ))A“Alz c. Air-

r=1 i1 <...<ip

There is a natural grading of PEx. We say that w is a difference r-form and

write w € PEX" if

E Piiy i (M)A A, LA

11 <. <lp
The difference 0-forms are defined to be functions of n, so that PEx® = .

Definition 2.2.3. We define the difference map A : PEx"—PEx"! to be

w) =Y Ay (S —id)w (3)

forr =0,...,p—1; here id denotes the identity map. On the typical element
(2), we have

p
= (Sk — id)(Py(n)) Ay
k=1
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p p-1

3% S (S — i) (P, () AA, - A

k=1 r=1i1<...<ip

In particular,

Example 2.2.4. If w = (n' + (n?)?)A; + n'A, then

Aw) = [A1(Ar + As) + ((n* +1)% = (n?)?) AsAq] = —2n° A1 As.

The maps (Sy —id) commute pairwise, whereas the symbols A; anticom-

mute pairwise; it follows that A2 = 0.

Definition 2.2.5. The difference complex is
T RNV SNV n

where ¢ is the inclusion map.

It is important to note that A is not a derivation, that is,

A(wn) # (Aw)n £ w(An).

Furthermore, although the difference complex mimics the de Rham complex,
there is no obvious sense in which the space PEx'|_ can be considered as
the dual space to some tangential object. The geometric meaning of the
difference complex is still being investigated.

Shortly, we shall show that the difference complex is locally exact. First
though, we make some general remarks on complexes and the use of homo-

topy maps to prove exactness.
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2.3 Homotopy maps

A complex is a sequence of linear spaces {A;} together with a collection of
linear maps ¢; : A;—>A;;1 such that

0ir100; =0, for all 7.

This means that
im d; C ker 0;4, (5)
for all 7. Often a complex is written as
Ay B A O A, T
One way to show that the complex is exact, i.e. that

ker 5i+1 =im 5z (6)

for each 7, is to construct a sequence of so-called homotopy maps

Hz' : Ai—>Ai71
such that
Hi+16i + (Si—lHi = ld, for all 2. (7)
In pictures, one has
A 2a oA
. i—lE i;ﬂ i+l -

If w € ker ¢;, then evaluating equation (7) on w yields
0,1 Hijw = w.
Thus w € im¢;_;, and we have
ker 0; C im d;_1 (8)

Putting (8) and (5) together for all ¢ yields the result (6). What is more,
H;(w) is a pre-image (under d;_1) of w, so the proof of exactness is construc-

tive.
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2.4 Local exactness of the difference complex

The Poincaré Lemma states that the de Rham complex is exact over star-
shaped domains; this means that there is a point in the domain that can be
reached from any other point in the domain along a straight path. Indeed,
the homotopy map uses an integral along such a path. The lattice is not
a continuous space, so we should not expect to be able to use the same
construction. However, we can make use of the ordering on Z to construct a

homotopy map.

Definition 2.4.6. A cube-shaped domain in ZP is a set of all lattice points
k = (k',..., kP) such that

négk‘igni, 1=1,...p,

for some integers n, and n’. In other words, a cube-shaped domain consists
of all points that lie within a cube with opposite vertices ng = (n}, ..., n})
and n = (n!,... n?).

Definition 2.4.7. Given a cube-shaped domain, a path from ny to n is
an ordered set of lattice points k;, j = 0,...,7,, that has the following

properties: kg = ng, k;, = n, and for each 57 < j,
ki1 —k; =15

for some i. In other words, a path is a sequence of lattice points such that
each successive point is one step closer to n than its predecessor. Note that
although there may be many paths from ny to n, they all have the same
number of points. Paths between any pair of opposite vertices of the cube
are defined similarly. An edge path is a path whose points all lie on the edges
of the cube.

We can now state the difference analogue of the Poincaré Lemma.

13



Lemma 2.4.8. The difference complex (4) is exact on cube-shaped domains;
hence

kerA| = imA|, gyr-1. r=1,...p—1,

rExr
and kerA|,gxo = R.

To prove this result, we need to construct a set of homotopy maps for the
difference complex. For simplicity, we choose our lattice coordinates so that
ny = 0 and all coordinates of each point in the domain are non-negative. We

also choose the edge path consisting of the points

(k,0,...,0), k=01,... 0l
(n',k,0,...,0), kE=1,...,n°
(n',n?,...,nP71 k), k=1,...,n?.

This allows us to construct the homotopy map by induction on the number of
edges needed to get to n (that is, on the dimension of the lattice). However,
it is easy to modify the formulae and arguments that follow, to allow for
other edge paths from an arbitrary origin to a generic point n in the domain.

Define the projection maps
IT; : Ex"—7 'Ex”, Ij(w) = wl,—.a,~0 (9)
and note that
II,oll,yy0--0llw=0 (10)

for all w € PEx", r > 1.
We introduce a formal analogue of the interior product of a vector field
and a differential form, by defining the derivations 0,1 : /Ex"—/Ex" ! gen-

erated by 0,1 Ay = &i, where § is the Kronecker symbol. This is extended to
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all difference forms by linearity and the product rule. Let h; : JEx"—/Ex" !
be defined by

ni—1
hi(w) = (Dniaw) iy (11)
k=0
For example,
n3-1
hs(a(nt, n?, n*) A1 Az + B(nt, n? n*)A1Ay) = —a(nt,n? k)A;.
k=0

Notes: If w is a 0-form then h;(w) = 0, ¢ = 1,...,p. We also use the
convention that any sum whose lower limit exceeds its upper limit is assigned
the value zero, so h;(w) = 0 if n’ = 0.

Theorem 2.4.9. Under the above assumptions on the domain of definition

of w € PEX" /B, let

p—1
h((,(.)) = hp(CL)) +th (HZ+1 OHi+20...opr)‘ (12)
i=1
Then
h(w w EPEX", 7 >0
Hp(w) = w) (13)
w|n1:...:np:0 w € pEXO

is a homotopy operator for the complex PEx over B.
Example 2.4.10. If p = 2 then for 1-forms w = a(n',n?)A; + B(n',n?)A,
the homotopy map is

h(w) = B(n' k) + : a(k,0)

k=0 k=0

3
S
|

—

S

whereas for 2-forms w = f(n!, n?)A; A, the homotopy map is

n?-1

hw) ==Y f(n',k)A;.
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Notes:

1. If p = 1 then h(w) = hy(w) is the operator that is used to solve the
ordinary difference equation (S; — id) g(n') = f(n') for g given f.

2. If r > 1 then, from (10), the sum in (12) need only be taken from ¢ = r

tor=p—1.

3. If & =1II,w then

Proof: It is sufficient to prove that
h(Aw) + Ah(w) =w —1II; 0 -+ - o Il w. (15)

To see this, note that if w € PEx” and r > 1 then, by (10), II; 0---oIl,w =0
and thus Hz = h is a homotopy map. To show exactness at PEx’, we need
to show that

hA(W) 4+ w1z g = W

for w € PEx®. But this is precisely (15), since

w € PEx’ = h(w) =0, [0 o lw=wl|

nl=..=pr=0"

The proof of (15) is by induction on p. First note that if w € 'Ex’ then
w = f(n') for some function f, and therefore
hA(w) + Ah(w) = h({f(n' +1) = f(n')}As)

= SN k+1) = f(R))
= f(n) = £(0) (16)
= W w|n1:0

= w—ILw.
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Also if w € PEx? then w is a multiple of the p-form A;A;---A, and so

II,w =0 and Aw = 0. Hence

hA(w) + Ah(w)

Now fix r < p and suppose that

Ahp(w)

A ( Z;l (Onp o w) |np:k)
(S —id) (X85" o)

P p_1
Z:o Wl — ZZ:O Wl

w

w—To-ollw

Hjp is a homotopy operator for all p’ < p.

We set @ = II,(w) and observe that @ € P~'Ex"; the induction hypothesis

implies that

hAG + Ahi =@ — Ty oo T, 1@

The last term is nonzero only if » = 0. Note that

I, (Aw)

and so, from (14),

h(Aw)

Also from (14),

Ah(w) = Ahy(w) + Ah(

and therefore, using (18),

hA(w) + Ah(w) = hy(Aw) + Ahy(w) + @0 —Iljolly0---0Il, &

I, (3204 Aj(S; — id)w)

j=1

71 8 (85 — 1d)(Iw)

j=1

Aw

&

(18)

= hy(Aw) + Ahy(w) + I, (w) = Iy oIy 0+ o [T,w.
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So to prove the correctness of the homotopy formula, we need only show that
hy(Aw) + Ahy(w) = w — I w.
But this can be verified by direct calculation, as follows.

hy(Aw)  + Ahy(

np 1 ( np (Zp: Aj(Sj - ld)UJ))

+ZA] (S; —id) (72 (Oppow) npk>

nP==k

k=0
p—1 nP
= (&ﬂu (A;(S; — id)w) + A;(Dpp2(S; — id)w))
j=1 k=0 nP=k
+ 5 (B 1 (A (S, — id)w)) ot (0w

= Opr 1(Apw) — (Opp 5(Apw)) |y + Ap(Onpaw)

=W C"|np:o,Ap:0

=w —ILw
as required, where we have used the identity O0n» A1 + Aj(9wan) = 650
Equations (16) and (17) show that (15) holds for p = r if r > 1 and for p =1
if r = 0. By induction, (15) holds for all p, r, as required. [

One question remains: why did we require the domain to be cube-shaped?
It turns out that for each path along the edges of a cube-shaped domain there
is an operator h which plays the role of h. After a long calculation, it can
be shown that h(w) = h(w), whichever edge path is taken between 0 and
n. Now consider the two-dimensional lattice with the point (1, 1) removed,
which is not a cube-shaped domain. The difference 1-form
A, nt=1,n?>2,

w(n',n?) = B (19)
0 , otherwise,

18



is closed, but it cannot be obtained by applying the difference operator to
any singled-valued function on the punctured lattice. There are exactly two
paths between (0,0) and (2,2). Our homotopy operator takes the path pass-
ing below the deleted point (1,1) and gives the result h(w(2,2)) = 0. The
homotopy operator that takes the path passing over (1,1) is

h(w) = hy(w) + hy (T w) ;

this gives the result E(w(2,2)) = 1. As the result is path-dependent, the
1-form w is not exact. This imitates what happens in the continuous case:
on the punctured plane, there are 1-forms that are closed but not exact.

In fact, the requirement that the domain is cube-shaped is slightly more
restrictive than is necessary. Suppose that the domain contains a point 0
such that every other point n in the domain can be reached by a path P that
is a sequence of consecutive edge paths along cube-shaped subdomains. (By
consecutive, we mean that the last point of the edge path in one subdomain
coincides with the first point of the edge path in the next subdomain.) Then
our homotopy operator can be modified so that it follows the path P, which
proves that the difference complex is exact on any such domain. However,

the details are too lengthy to be included in this paper.

3 The Horizontal, Vertical and Vertical Func-
tional Complexes

For difference equations on a p-dimensional lattice, the independent variables

1

aren = (n', !

ny - -+, ul) are assumed

.,n?). The dependent variables u,, = (u

to vary continuously and to take values in R. A smooth function depending

19



on n, u? and finitely many iterates of u2 is written as P[u]. The algebra of
such functions is denoted by A.

If we regard u, as a function of n, the shift map S; acts on the dependent
variables as follows:

Skuﬁ = uﬁ‘Flk ' (20)

We write the composite of shifts using multi-index notation as
S =5" .S (21)

so that ug ., = S™ugy. The action of S, on a typical element of A is given
by
SpP(n, .. ug ) = Po+ 1o ug g,y - - ) (22)

3.1 The Horizontal Complex

Definition 3.1.11. We define the algebra of horizontal forms to be
Ex = U Ex(p)
nezp

with coefficients in A and pointwise multiplication and addition. This is like
PEx, except that the coefficients now involve the dependent variables. We
call w a total difference r-form and write w € Ex" if

E Piiy i [u] A, Ay o A

11<...<lp

Also Ex’ = A.
Definition 3.1.12. We define the total difference map A : Ex) —Ex/*! to
be »
Aw)=> Ay (S —id)w (23)
k=1

20



forj=0,....,p— 1.

Example 3.1.13. If w = nlu,1 2,149 p2 Ay then

A(w) = [(nl + 1)un1+1,n2un1+2,n2 - nlunl,nQUn1+1,n2] A1 As.

The proof that A? = 0 duplicates the proof that A? = 0. Note that if w

is a function of the independent variables only then Aw = Aw.

Theorem 3.1.14. The horizontal complex

0—R — Ex’ A> e A> Ex” (24)

is exact.
The proof will be given after we have introduced the analogue of the higher

Euler operators.

3.2 Vertical forms

Definition 3.2.15. A wvertical r-form is a finite sum

Z P orluldug! AL Adug

n+m”

a,m!. . .m"

where P2, . [u] € A. We define the differential d to be

=Y Y Pl AL A

B,mJ a,m!..m" n+mJ

Example 3.2.16. If @ = nu,du,+1 — u2 5du, o then do = ndu,da, ;1.
Any given vertical form can depend on only finitely many of the iterates;

therefore the A complex with differential d is an extension of the well-known
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de Rham complex, with independent variables ug_ . ; the n; play the role of

parameters. Indeed, d is bilinear, is a derivation,
d(DAR) = dDAT + (—1) DA 7

and satisfies 2 = 0. The Poincaré lemma for the continuous vertical complex

extends immediately to yield the following result.

Theorem 3.2.17. The vertical complex

-~

AL At R 4 (25)
1s exact.
Proof: Define the vector field

N 0
vV, = azm un—l—mW

n+m

and the homotopy map
h: AT A

by X

h@) = /0 vy 2B\ % (26)
where in @W[Au] each ul,, is replaced by Aul, ., and each dug, ., is replaced
by Adug, ... By the definition of functions in A, the number of terms in

v, J @ is finite.

It is a standard calculation that
hd+dh =id.

Hence if d@ = 0 then d k@ = @, showing that ker a|Aj+1 C a(//{J) The reverse

inclusion follows from a 2 =0. O

22



Example 3.2.18. If & = nu, 1du,du, 1 then O u] = Nnu,,1du,du,

and
]_ —~ 2 2
Xvqu[)\u] = A [nunun+1dun+1 — nun+1dun]
~ 1
h(w) = g(nununﬂdunﬂ — nuiﬂdun)
(dh+nd)@) = dh@) asd@) =0
1
= 3 (ntty 1 duydug, 11 + 20w,y duydug, 1)
= W

Definition 3.2.19. The action of each shift map on vertical forms is defined

by

Sk(@+1) = Skl + S,
Sk (fﬁ)) = iSk@, ceR, (27)
Sk(dw) = d(Spw),

Se(@A7) = Sp(@) A Sk(®),
together with the standard action on the coefficients given in (22). Hence

« — « m [0 — «
Skdug = dug g, and S™duy = dug 4,

3.3 Functional forms

The second part of the discrete variational complex is a quotient of the verti-
cal complex described above under an equivalence relation. In the continuous
case, two functions are equivalent if they differ by a total divergence. Here
we say that two functions of the iterates are equivalent if they differ by the

total discrete divergence Div, of a vector g € AP, which is defined as follows:

p

Div,(g) = > _(Sk — id)g[ul. (28)

k=1
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Note that every total difference p-form w which belongs to im(A) is of the
form

w = ])iVA (F)A“Aw Ce Aip,
for some F € AP,

Definition 3.3.20. We define an equivalence class on A by

fi~rfo < fi— f,=Div,(g)

for some functions g € A?. The set of functionals F is defined to be the set

of equivalence classes,

F=Al~.

We denote the equivalence class of f € A by > f. The notation reflects the
(formal) identity that

> flul=0

if f is a total discrete divergence. Note that F is not an algebra, that is,
products of functionals are not functionals.

An equivalence relation on A" of vertical 7-forms can be defined similarly,

p
@&~ o = =0+ (S—id)fk  HeA
k=1
for some 7, k = 1,...,p, where Sy acts on 7, according to the formulae (27).

Again, we denote the equivalence class of @ by
> w.

The equivalence classes are called functional forms, and the set of equivalence

classes A"/ ~ is denoted by A”
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3.3.1 Analogue of integration by parts

In the continuous variational complex, much use is made of the product rule
of differential calculus, and the consequent integration by parts, not only in
the study of canonical forms of equivalence classes but at every stage in the
proof of exactness of the continuous variational complex. In the discrete case
studied here, neither the shift maps S nor the difference maps Sy — id obey
the Leibniz product rule. However, there is a formula which plays the role
of integration by parts in our variational complex for discrete systems.

To motivate this formula, we first consider functions of a single lattice
coordinate, n; we write the corresponding shift operator as S. Given any
two (square-summable) sequences {f,}, {g,}, we have the identity

o0

Z (Sf)n gn = Z fn+1 gn = Z fn n—1 = Z fn(S_lg)n

n=—oo n=—oo n=—oo n=—oo

by a change of dummy variable. This result is easily extended to an arbitrary

number of lattice coordinates. Moreover, given f, g € A,

(Sef)g — f(S:tg) = (Se —id)(fS; g)

for each k. Hence
> (Sef)g = f(Sitg) (29)

using both the definition and the natural interpretation. Equation (29) is the
analogue of “integration by parts”. To prove that the variational complex
is locally exact, we need analogues of the higher Euler operators, which we
derive below. Our analogues are obtained by replacing (—D)™ by S~ ™. This
“replacement rule” follows from using (29) rather than the usual integration

by parts formula.
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3.3.2 The vertical functional complex

In this section we take the vertical complex defined earlier and project it

to the equivalence classes of functional forms. The result is again an exact

complex, which will form the right hand side of the variational complex we

are developing.

Definition 3.3.21. Let w = ) @ be the functional r-form corresponding to

the vertical r-form w. Then the variational derivative of w is defined to be

sw =Y da.

Lemma 3.3.22. ¢ is well-defined.

Proof: We need to show that d is identically zero on total differences, or

equivalently that aSk = 8, for any k. Let f be an arbitrary function in A.

Then

d(Sif)

B 0Sif 4 o
- aug+m n+m

a,m

a,m n+m-—1g

_ af Sfld «

- Oue E QUnim
a,m n+m—1;

= df O

As d? =0, it follows immediately that 62 = 0.

Theorem 3.3.23. The vertical functional complex

5 5
0—A? 25 AL 2o

26
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is exact.
Proof: We show first that the homotopy operator h (26) is well-defined on

equivalence classes. Let S denote S for some k. From the identities
Sv, = vy, S(w[Au]) = S(w)[Au],
it is simple to see that
1S = Sh.

Thus if f; — fo = Sg — ¢ then Efl —Efz =(S— id)ﬁg, and so
fi~ fo= ﬁfl ~ /Hfz-

Hence
Bh+h) Y w=S([dh+hdw=Yw

showing that

is exact.

The kernel of d o0 consists of functions which do not depend on the
Ug m, that is, are functions of the n; alone. All such functions are equivalent
to zero, as we will now show, completing the proof of exactness of (30).

To show that f = f(n) = f ~ 0, it is enough to show that the equation

fn)=S,9—g (31)

has a solution g for any given f. We may take as the initial condition that g
is zero on the hyperplane {(n',...n?~! n?) | n? = n°}. Then, for any given
f, the values of g(n',...n?7' n%+1) can be obtained from (31). The process
repeats to give g on all of ZP. [
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4 The discrete variational complex

To complete the construction of a variational complex for difference equa-
tions, we must patch together the horizontal and vertical functional com-
plexes. This is accomplished with the Euler operator, which has been studied
by Kupershmidt [23]. It turns out that the Euler operator E can be defined
in the same way for both differential and difference equations, by using the
Fréchet derivative as follows.

The Fréchet derivative of an r-tuple P[u] € A" is the differential operator
Dp: A? — A" defined by

0 (@) =ty {

e—0

Plu + eQlu]] — P[u] } (32)

€
where Q[u] is an arbitrary element of A?. (Note that the independent vari-
ables act as parameters here.) Then the Euler operator is defined by its

action on arbitrary elements Plu] € A", as follows:
E(P[u]) = Dp(1), (33)

where D% is the adjoint of Dp with respect to the appropriate inner product.
For difference equations, this is the /5 inner product. The component of the

Euler operator that corresponds to the dependent variable u® is

ZS m@u

The Euler operator induces the following action on elements of ExP:

E(fAr---A,) =) Eo(f)du

We let 7 : A" — AL denote the projection which takes a vertical form to

n+m

its equivalence class,

(@) =Y. (34)



Note that 7 is a surjection. Then the discrete variational complex is, writing

moF as E
—R—Ex B — . B Eonr 2 00 (3p)

In §3.3 we showed exactness of the complex to the right of Al. In this
section we complete the proof that this complex is exact. First we look in
detail at the point where the horizontal complex and the vertical functional

complex are spliced together using the Euler operator.

4.1 Exactness around F

Consider Figure 2, where 7 is given by (34), and where we have written

E(f)du for > E.(f)dug for simplicity.

A> Exr! A> Ex» 25 A
ml I
0— A0 25 Al A2
FAL- A, s E(f)du
ml I

S 5 S E(f)du

Figure 2: Splicing the horizontal and vertical functional complexes

Lemma 4.1.24. domr=7wo F.
Proof:

ToB(f) = N5, Fulf)dus
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= X (ZamlS ™, fdus)
= 3 (Dumlug,, ) (Smdug)
= ¥ (T O fl )

= Ydf
= don(f)

where S™ is defined in (21) and we have used the action of the shift maps

on vertical forms given in (27). O

Theorem 4.1.25. The variational complex is exact at Ex? and at AL. Specif-

ically,

A. The Euler-Lagrange operator has for its kernel precisely those functions

in A that are total discrete divergences, that is,
S E(f)du=05 3 f=0

B. The variational derivative d|,, has for its kernel precisely those expres-

sions which are Euler-Lagrange equations, that is,

6(>>", fadu®) =0 & fo = E,(L) for some £
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Proof: To show Part A,

> E(f)du=0
< 7woE(f)=0
< don(f)=0 by preceeding Lemma
<~ 7(f)=0 by exactness of (30)
—= X f=0,

which means that f is a total discrete divergence.

To show Part B, if w* € Al is such that dw* = 0, then by exactness of
the vertical functional complex, there exists n* € AY such that on* = w*.
But n* = Y. n = =n(n) for some n € A° because 7 is surjective. Hence
w* = om(n) = wE(n), showing that w* is in the image of 7E as required.
Since n € Ex? it is of the form fA;---A, for some f € A. Then the desired
Lagrangian Lis f. [

4.2 Exactness of the horizontal complex

4.2.1 The Higher Euler operators and the Total Homotopy Oper-

ator

Definition 4.2.26. Given two multi-indices m = (my, ma,...,m,) and 1 =
(li,1lg, ..., 1)) we say m D lif m; > [; for all e = 1,...,p. We further define

the order of the multi-index, #m = m; + ... +m,,.

Definition 4.2.27. We define the higher Euler operators
B =3 (1)s 10
o J Ug+17

where S=1 = §;185%= ... 8"
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Definition 4.2.28. The total interior product for the g-tuple Q € A7 is
q

@) =3} S atl oy (Q EI <i4w>>
Qi) = - p—r+#I+1 “Te 0 ’

k
a=1 k=1 n

for w € EX".

Definition 4.2.29. Given w = w(n,u], let w[n,0] be the projection of w
obtained by setting u%, = 0 for all @, m. Then wn,0] is in the difference
complex, that is, has coefficients in B (recall a function is in B if it depends

on the n/ only).
Example 4.2.30. If w = u,1 24141 + ntAy then wn, 0] = ntA,.
Theorem 4.2.31. For w € Ex” with r > 0 define the operator
! dA
Hw) = [ @)
A=0 A

where u = (u!,... u%), and set
H|gyo(w) = w[n,0].
Then the operator H satisfies

win,u] —w[n,0) = AH(w)+ H(Aw) weEX, r>0
wln,u] —wln,0] = H(w)+ H(Aw) w € Ex°
The form wn, 0] is in the difference complex. That is, the coefficients are

in B. In order to obtain the total homotopy operator, we need to add to H

the homotopy operator Hyz for the difference complex.

Theorem 4.2.32. Let Hy be the homotopy operator (13) for the difference

complex. Then the total homotopy operator

Hr(w) = H(w) + Hg(w|n,0])
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satisfies
w= AHr(w)+ Hr(Aw) weEX", r>0

w= Hr(w)+ Hr(Aw) w € Ex°
Example 4.2.33. As an example of the use of the total homotopy operator,

consider the difference equation,
wln,u] = (0 + 1)upy1tpi2 — Uty — (n+ 1)) = 0.

This is the OAE

1
n 0

n+1 i Up+1
multiplied by the characteristic P = S(nu,) = (n+ 1)u,41. As E(w) =0, w

Uny2 —

must be a divergence. In the one dimensional case, this means that we may
reconstruct the first integral by using the homotopy map!

To do this, we write the equation as an element of Ex?, (in this case,
p=1),

w = wA.

The higher order Euler operators in one dimension are

EY =879, ., +25%0,, ,+ -, EP=8729, ,+- -

Un+2 Un+2

and the total interior product is

I, (w) = Z(S —id) (u, EY (0 4 Dty g1ty — niptinsy — (14 1)))

Therefore
(W) = u,[STHN A+ Dttyge — nuy) + 25 72((n A+ 1)tyy1)

+(S —id) (un S *((n + Dttn11))

= 2NUpUpy1-
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Now w[n,0] = —(n + 1)A;. Using 0,,0A; = 1 in the formula for Hp,

Hs(wln.0) = =3 @usfn+ DAY |y = =S (4 1))y = =Sk

Finally w = Af, where

1 n
0 = Hr(w) = / 2Nyt 1 dX =Dk
A

=0 k=1

= NUplUpi1 — in(n +1).

5 Some applications of the discrete variational

complex

5.1 How to obtain Lagrangians

What do the above results mean for the study of systems of partial difference
equations? Given a system of PAEs P, =0, P, =0, ..., P, = 0, we write

down an element of A}, namely
P =5 Pidul + Pydu? + -+ - + P,dul.

This involves deciding which equation belongs to which dependent variable,
that is, for which j is P, = E;(L) for some (as yet unspecified) £. Assigning
the wrong P; to each du/, may cause the discrete Helmholtz condition to fail,
i.e. 0P # 0, so the fact that the system is an Euler-Lagrange system may be
missed. Worse is if the system is only equivalent to an Euler-Lagrange system,
for example, if F1(L) = g1, E2(L) = g2, and P, = g1 + g2, P> = g1 — S¢o.
Even for the continuous case, the general equivalence problem, of detecting

when a system is equivalent to an Euler-Lagrange system, is open (see p.
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355 of Olver [34]). However, given that JP = 0, we may use the homotopy

operator T for the vertical functional complex to find L.

Example 5.1.34. The first discrete Painlevé equation is

= U Uu Uy —

+pu=0. (36)

(See equation (3.3.1) in [14]; we have set a third constant 7 to be zero and
translated u,, to w, + 1 to simplify our calculations here). This equation sat-
isfies Dp = D} and hence a Lagrangian exists for this equation. Calculating

the homotopy yields
L = [} Pulu,dA

an + 3
1+ Auy,

= HUp + %(Un—I—l + up + un—l)un + (an + B) lOg(l + Un)

= fol ptty, + AUy + Uy + Up1) Uy + Uy | dA

This is equivalent to
L = pty + L (,)? + unttnir + (an + B) log(1 +u,).

It is straightforward to check that E(L) = P.

Example 5.1.35. As a more substantial example, consider the following

system of PAEs:

Py

0, (37)
0.

2 2 1
unl,n2—1 - un1+1,n2 + a(unl,nQ)

(38)

— 1 1 2
P, = Uptp2py = Upi_1p2 — a(unl,n2)

It is easy to check that 6P = 0. Then, provided that ta(t) — 0 as ¢t — 0, the
homotopy map yields (up to equivalence)
1 2 1 2 ntn2
L= unl,n2+1un1,n2 - unl,nzun1+1,n2 +/ Oé(t) dt.

t=u?
nl ,n2

(For problems in which the homotopy operator is singular, consult [2].)
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5.2 How to obtain conservation laws

We give an application of the higher Euler operators to calculating first
integrals of equations which are Euler-Lagrange equations of a Lagrangian.
The Lagrangian is assumed to have a variational symmetry, which we define
below. Thus we have a discrete analogue of Noether’s theorem.

The multi-dimensional case is discussed in [20]; here we show the defini-

tions, calculations and an example for ordinary difference equations.

Definition 5.2.36. The first-order partial differential operator
X = Q0u, +(5Q)0u,,, +
generates a variational symmetry of a Lagrangian L(n, w,, ... Upm) if
XL=0.

The function @ is called the characteristic of the symmetry.

Theorem 5.2.37. If X is a variational symmetry of a Lagrangian L with

characteristic @), then

©= i QE/H-I )

k=0

is a first integral of

where the E®) are the higher Euler operators

ad kE+¢
=D

(=0 k

S—(k—l—Z) )

Un+k+2L

Indeed, it can be shown by direct calculation that

(Se — 80)|E(L):0 = 0.
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Example 5.2.38. Take

Up,
L = + n (log [ty 1| — log uy|)
un-i—l

which has a scaling symmetry. Indeed,

X =up0y, + tUps10y,,., + ...

n+1

is the variational symmetry, with characteristic () = u,,. The Euler-Lagrange

equation can be written, after some simplification, as

2

Uy

Un+1 =
Un + Up—1

and thus

= QS ' (0y,., L)

Un—1
Un

= n—1-
is a first integral, that is, is constant on solutions. Indeed it is simple to
verify that (S¢ — ¢)|g)—o = 0. Finally, it is a simple matter to solve the

equation ¢ — c¢; = 0 to obtain the solution,
up, = co/T'(n — ¢1).

Although the above example is fairly simple, it is possible to use the
variational complex to construct conservation laws of arbitrary systems of
difference equations, whether or not Noether’s Theorem is valid. For details

of how to do this, see [20].

5.3 Continuum Limits

Several authors have developed discretized versions of particular continuous

variational calculations [10, 31]. Such developments, by construction, have an
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inbuilt continuum limit. The variational complex developed in this article has
no implicit continuum limit. This is important because difference equations
arise naturally in applications such as quantum gravity, and should therefore
be regarded as objects in their own right. Indeed, difference equations can
have several continuum limits, or no continuum limit at all, and they may
have important solutions which are not approximations to solutions of a
continuum limit.

Nevertheless, given the use of difference equations as approximations to
continuous models especially for numerical calculation, it is important to
consider how our results behave under limiting processes. Here we consider
only an example.

Recall the first discrete Painlevé equation (cf. 36),

a+bn
1+ u,

P =ty +uy+u, 1+ - 3. (39)

A continuum limit is given by

u, ~ €w(t)
Upt1 ~ €w(t+e) (40)
a+bn ~ 34t

which when inserted into (39) yields
P~ e (w" + 3w® +t) + O(c°). (41)
The discrete Lagrangian for (39) (calculated in §4.2) is

L = %(Un+]_ + Up + U 1)Up — Uy, + (@ + bn) log(1 + uy,) (42)
~ E(Gww” + wt + w®) + O(8).

Now, £ = fww"+wt+w? is in fact a Lagrangian for (39), being equivalent to
the usual Lagrangian —1 (w')*+wt+w? (recall two Lagrangians are equivalent

if they differ by a total divergence).
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Next, we consider the continuum limit of the discrete Euler-Lagrange
operator. It is helpful to introduce the forward difference operator A = S—id
(which should not be confused with the difference operator of §2). Suppose

that L = L(n, 4y, ...Uy1m). Then, using L to denote OL/Oupypm, we

Un4+m

obtain
E(L) = Ly, +S 'Ly, +S 2Ly, + -
= Lun + (S_l - ld)L(gfld)un + (S_l o id)zL(Sfid)zun +ee
— Lun - AS_lLAun + A2S_2LA2un F---
= Lun — %S_ILAun/e+€_22S_2LA2un/e2 F---

where to obtain the final line we have used the dummy scalar e together with
the identity 0/0u = (1/€) 0/0(u/e).

If we now use the continuum limit (40) given above, with w,1j, = ew(t £ ke),

we obtain
Aun ~ Eg’wl, Azun ~ 64wl” é ~ i
€ dt
and thus ,
1 d d
E(L)~—=\|L,— —Lyw+—LywywF-- 43
(L) ( St Sww ) (13)

The first point to note is that the continuum limit of the Euler-Lagrange
operator is the continuous Euler-Lagrange operator. Further, it can be seen
that the powers of € are consistent, so that taking the separate continuum
limits of the Lagrangian and the Euler-Lagrange operator is consistent with

taking the continuum limit of F(L), to obtain the continuum limit of P.

6 Conclusion

In this paper, we have derived a discrete analogue of the variational complex.

All of the constructions that involve the (continuous) dependent variables are
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analogous to the continuous case, although the formulae are modified some-
what. However, the proof of local exactness of the difference complex is not
at all similar to the proof of the Poincaré Lemma. Now that the homotopy
maps for the discrete variational complex are known, it is simple (in princi-
ple) to construct conservation laws of PAEs, without reference to Noether’s
Theorem. The main difficulty lies in the complexity of the calculations (see
[20] for further details).

Throughout the paper we have restricted attention to difference equations
with real-valued coefficients. However, all results are also true if R is replaced

by C.
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