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Abstract. We study topological properties which affect, or are
the consequence of metric constructions such as the box metric.
We consider connected, compact, totally bounded, complete, zero-
dimensional and cardinal functions. We isolate a notion we call
taut, which in the presence of complete implies connected. We
prove that each metric space is the minimal image of a taut metric
space.
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0. Introduction

This paper has its genesis in the study of the still open box product
problem:

Is the product of real lines a normal space when it is given the box
topology ([6], [5], [9])?

We discovered that certain open covers in the box product of the re-
als always have a locally-finite refinement and this lead to considering
the box metric, a construction with categorical connections. Several
definitions are made to study topological properties of this construc-
tion, and these lead to other interesting results. Our sections and major
results are:
1. Fundamentals
2. Connected I

Theorem 2.6. The box metric power of totally bounded connected
metric spaces is connected.
3. Taut

Theorem 3.8. In a bounded complete taut metric space, each pair
of points are joined by the image of a distance-decreasing mapping from
an interval of the reals.
4. Connected II

Theorem 4.3. The box metric product of countably many con-
nected separable taut metric spaces is connected.
5. Tautification
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Theorem 5.11. Each metric has a tautification.
6. Complete and compact

Theorem 6.1. A compact metric space reaches its tautification in
one step through the τ operator.

Example 6.6. There is a metric, topologically equivalent to the
usual metric on [0,1], whose tautification is the discrete metric.
7. Zero-dimensional.

1. Fundamentals

In topology our maps are continuous functions; however, continuous
functions do not reflect the metric of a space, or the uniformity of a
uniform space, they only reflect the topology. In much of mathematics,
the maps between objects reflect the object.

For a category of metric spaces, this is accomplished by distance-
decreasing (DD) mappings. A DD mapping between metric spaces,
f : (X, dX) → (Y, dY ), is defined by the property that

dY (f(x), f(x′)) ≤ dX(x, x′) for any x, x′ ∈ X.

In this category the product X × Y of two metric spaces can have
but one metric, called the box metric because the open balls in Rn are
n-cubes:

d((x, y), (x′, y′)) = max{d
X
(x, x′), d

Y
(y, y′)}.

The metric above induces the usual product topology and topological
interest is further increased through the following

Observation 1.1. A mapping f : (X, dX)→(Y, dY ) between metric
spaces is continuous iff there is a metric d inducing the topology of X
such that f : (X, d)→(Y, dY ) is a DD mapping.

Proof. IF: Assume that f : (X, dX)→(Y, dY ) is continuous. The space
X embeds into X × Y as the graph of f through the mapping x �
(x, f(x)).
The metric we want is induced by the box metric on X × Y , so for
x, x′ ∈ X we define d(x, x′) = max{d

X
(x, x′), d

Y
(f(x), f(x′))}, which

makes f : (X, d)→(Y, dY ) DD mapping.
ONLY IF: Any DD mapping is continuous.

�

The question is how do we handle infinite products. We have some
suggestions from literature:

Let C(X, Y ) denote the set of continuous functions from X to Y .
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If (Y, d) is a metric space, we have the space of paths on Y , C([0, 1], Y )
with the metric ρ(f, g) = sup{d(f(t), g(t)) : t ∈ [0, 1]} ([4]).

Given a topological space X, C(X, R) denotes the set of continuous
functions from X to the reals. If R is given the bounded metric d(r, s) =
min{1, |r−s|}, then the well-known topology of uniform convergence on
C(X, R) is induced by the metric d(f, g) = sup{|f(x)−g(x)| : x ∈ X}
([2]). The box metric expands on both these ideas to the case when X
has the discrete topology, i.e. when we consider a product.

Example 1.2. Consider
∏

n∈N[0, n], where each [0, n] has the Eu-
clidean metric. For the constant 0 function, x = (0)n∈N, and the iden-
tity, y = (n)n∈N, we have sup {d(x(n), y(n)) : n ∈ N} = ∞.

This example suggests we allow our metrics to take the value infin-
ity. Henceforth, all metrics will have range contained in [0,∞]. The
triangle inequality is still verified through the additional property that
for any three points in the product such that the distance between two
points becomes infinite, at least one of the other two distances also
becomes infinite.

Algebraists have the same way to extend the box metric on infinite
products, as in the category of metric spaces and DD mappings ([8],
[3]) the universal laws of products require the following definition of
the product of metric spaces:

Definition 1.3. For a family of metric spaces, {(Xi, di)}i∈I , the box
metric, dsup, on

∏
i∈I Xi is defined by

dsup(x, y) = sup{di(x(i), y(i)) : i ∈ I} for x, y ∈ X.

The product
∏

i∈I Xi with the topology of the box metric shall be called
the box metric product of the spaces {(Xi, di)}i∈I .

Proposition 1.4. The box metric product of metric spaces is a metric
space with DD projection mappings.

Notation 1.5. In a metric space (X, d), given x ∈ X, A ⊆ X, ε > 0,
we use B(x, ε) = {y ∈ X : d(x, y) < ε} and B(A, ε) =

⋃
a∈A B(a, ε).

The following properties are routine:
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Lemma 1.6. a) For {Xi}i∈I family of metric spaces and the box metric
topology on their product we have

a1) If x ∈
∏

i∈I Xi and ε > 0, then B(x, ε) =
⋃

δ<ε

∏
i∈I B(x(i), δ).

a2) If Ai ⊆ Xi for i ∈ I, then cl(
∏

i∈I Ai) =
∏

i∈I cl(Ai).

b) If X, Y are metric spaces, I, J are index sets and we consider

the box metric on products, then
∏J (

∏I X) is isometric to
∏I×J X

and
∏I(X × Y ) is isometric to

∏I X ×
∏I Y .

From 1.6a1) we observe that the box metric topology is contained in
the box topology and that it contains the Tychonoff product topology.
While the sets

∏
i∈I B(x(i), ε) are open in

∏
i∈I Xi with the box topo-

logy, they are generally not open with respect to the box metric.

Example 1.7. The box topology is the smallest topology on
∏N R

containing all the sets
∏

n∈N B(xn, ε).

Proof. Let (x(n))n∈N be a point in
∏N R and

∏
n∈N(y(n), z(n)) a neigh-

bourhood of (x(n))n∈N.
Then

∏
n∈N(y(n), z(n)) =

∏
n∈N(y(n), y(n)+1) ∩

∏
n∈N(z(n)−1, z(n)),

where the sets
∏

n∈N(y(n), y(n) + 1) and
∏

n∈N(z(n) − 1, z(n)) are
products of balls of radius 1

2
.

�

To return full circle, we can see the box metric topology as a gene-
ralization of the Tychonoff product topology:

Proposition 1.8. If {(Xn, dn)}n∈N is a family of metric spaces and
{bn}n∈N is a sequence of positive reals converging to 0 such that dn is
bounded by bn for n ∈ N, then

∏
n∈N Xn with the box metric topology is

homeomorphic to
∏

n∈N Xn with the Tychonoff product topology.

Proof. We only need to see that the box metric topology is included in
the Tychonoff product topology.
For fixed x ∈

∏
n∈N Xn and ε > 0 there is n0 ∈ N such that dn < ε for

n ≥ n0, so B(x(n), ε) = Xn for n ≥ n0.
�

As we are expanding the topology, many Tychonoff product results
(as compact, totally bounded, connected) are not preserved for infinite
non-trivial products with the box metric. However, the next result
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should not be a surprise.

Proposition 1.9. The box metric product of complete metric spaces is
complete.

Proof. Let {(Xi, di)}i∈I be a family of complete metric spaces for which
we consider the box metric topology on

∏
i∈I Xi.

Let {xn}n∈N be a Cauchy sequence of points from
∏

i∈I Xi. For any ε >
0 there is n(ε) ∈ N such that m, n ≥ n(ε) implies that di(xm(i), xn(i)) ≤
dsup(xm, xn) ≤ ε for i ∈ I.
Thus {xn(i)}n∈N is a Cauchy sequence in Xi converging to some y(i)
for i ∈ I.
Let y = (y(i))i∈I and m ∈ N such that m ≥ n( ε

2
).

For a fixed i ∈ I there is some k ≥ n( ε
2
) such that di(xk(i), y(i)) ≤ ε

2
.

Then di(xm(i), y(i)) ≤ di(xm(i), xk(i)) + di(xk(i), y(i)) ≤ ε for i ∈ I.
Thus if m ≥ n( ε

2
) we have dsup(xm, y) ≤ ε, so {xn}n∈N converges to y.

�

Corollary 1.10. If {di}i∈I is a family of complete metrics on a set X,
then sup{di : i ∈ I} is a complete metric on X.

Proof. It suffices to observe that (X, sup{di : i ∈ I}) is an isometric to

the diagonal, {(x)i∈I : x ∈ X}, closed subspace of (
∏I X, dsup), and to

apply Proposition 1.9.
�

Definitions 1.11. For a metric space (X, d) and a cardinal κ we define
the metric density δµ(X) ≤ κ iff for any ε > 0 there is a subset A of
X such that |A| < κ and B(A, ε) = X.

Given a set X and an index set I, we define

∆(κ, I) :=
{
x ∈

∏I X : |{x(i) : i ∈ I}| < κ
}
.

The diagonal of
∏I X is therefore denoted by ∆(1, I).

The next lemma shall be applied in Theorem 2.6 and in Corollary 4.5.

Lemma 1.12. For a metric space (X, d) the following are true:
i) (X, d) is totally bounded iff δµ(X) ≤ ℵ0;
ii) (X, d) is separable iff δµ(X) ≤ ℵ1;

iii) δµ(X) ≤ κ iff ∆(κ, I) is dense in (
∏I X, dsup) for any index

set I.

Proof. The proofs of i) and ii) are immediate. We shall prove the equi-
valence in iii):
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IF: If ∆(κ, I) is dense in (
∏I X, dsup) for any index set I, in parti-

cular ∆(κ,X) is dense in (
∏X X, dsup).

For n ∈ N fixed there is (ax)x∈X ∈ ∆(κ,X) such that
dsup((x)x∈X , (ax)x∈X) < ε and so d(x, ax) < ε for any x ∈ X.
Then A = {ax : x ∈ X} has |A| < κ and B(A, ε) = X.
As such a set A can be obtained for any ε positive, we conclude that
δµ(X) ≤ ω · κ = κ.

ONLY IF: Assume that δµ(X) ≤ κ and let x ∈
∏I X.

Given ε > 0, let A ⊆ X with |A| < κ such that X = B(A, ε
2
).

For i ∈ I we have B(x(i), ε
2
) ∩ A 6= ∅, so

∏
i∈I B(x(i), ε

2
) ∩

∏I A 6= ∅.
From a1) of Lemma 1.6, B(x, ε) ⊇

∏
i∈I B(x(i), ε

2
). Also

∏I A ⊆
∆(κ, I), therefore B(x, ε) ∩ ∆(κ, I) 6= ∅, i.e. ∆(κ, I) is dense in

(
∏I X, dsup).

�

2. Connectedness I

In this section we start looking at the problem of finding conditions
for connectedness of the product with the box metric topology.

Definitions 2.1. Let (X, d) be a metric space and x, y points in X.
A chain of points from x to y is a finite sequence of points in X,
Zxy = (z0, ..., zn), such that x = z0, y = zn.
If in addition, for ε > 0 we have d(zi, zi+1) ≤ ε for 0 ≤ i < n, we call
Zxy an ε-(d-)chain of points from x to y.

We define x ∼ε y iff there is an ε-chain of points from x to y and

Zxy,ε = {Zxy : Zxy is an ε-chain of points from x to y},

Zε(x) = {z ∈ X : z ∼ε x}.

Observations 2.2. If (X, d) is a metric space, then
i) For ε fixed positive value, ∼ε is an equivalence relation with equiv-

alence classes, {Zε(x)}x∈X , clopen subsets of X.
ii) Monotonicity: If x ∈ X and 0 < ε < ε′, then Zε(x) ⊆ Zε′(x) and

Zxy,ε ⊆ Zxy,ε′ .
iii) Cantor’s definition of connectedness appeared in [1] and it is

nowadays known as uniform connectedness or as Cantor-connectedness
([7]). A metric space (X, d) is said to be Cantor-connected if Zxy,ε 6= ∅
for any x, y ∈ X, ε > 0. It is easy to observe that if (X, d) is connected,
then (X, d) is Cantor-connected, while the reverse implication holds for
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special cases, as compact metric spaces.

Examples 2.3. For n ∈ N we consider [0, n] with the Euclidean metric
and on products, the box metric.

a)
∏N[0, 1] is path-connected;

b)
∏

n∈N[0, n] is not connected (or even Cantor-connected).

Proof. a) It suffices to define a path from the point (0)n∈N to a point
x = (x(n))n∈N.

We define f : [0, 1]→
∏N[0, 1] by f(t)(n) = t · x(n).

As dsup(f(t1), f(t2)) = sup{|t1 − t2| · x(n) : n ∈ N} ≤ |t1 − t2| for
t1, t2 ∈ [0, 1], f is continuous as a DD mapping.

b) We remark that B((0)n∈N,∞) is a proper clopen set in
∏

n∈N[0, n]
since dsup((0)n∈N, (n)n∈N) = ∞.
As ε-chains are finite, points at infinite distance admit no ε-chains,
therefore Cantor-connectedness also fails.

�

The latter argument for the failure of Cantor-connectedness for box
metric products leads us to introducing the following

Definitions 2.4. Given (X, d) metric space, the equivalence relation
x ∼fin y defined by d(x, y) < ∞ determines a partition of X into
clopen equivalence classes.

The metric space (X, d) is called finitely (Cantor-/path-)connected if
each equivalence class determined by ∼fin is (Cantor-/path-)connected.

Examples 2.5. a) The product
∏

n∈N[0, n] of Example 2.3 b) is finitely
path-connected:
For x ∈

∏
n∈N[0, n] let

Ex = {y ∈
∏
n∈N

[0, n] : y ∼fin x}.

Then Ex =
⋃

m∈N B(x, m). Each B(x, m) contains x and is path-
connected as in a) of Example 2.3, therefore Ex is path-connected.

b) Nevertheless, the box metric product of path-connected metric
spaces is not finitely Cantor-connected in general :

For the same
∏

n∈N[0, n] we now consider the box metric product
induced by metrics on [0, n] given through dn(x, y) = min{|x− y|, 1}.
On

∏
n∈N[0, n] the equivalence relation ∼fin determines the whole space
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to be the unique equivalence class. But Z(0)n∈N (n)n∈N, 1
2

= ∅.

Theorem 2.6. If (X, d) is a totally bounded connected metric space,

then (
∏I X, dsup) is connected for any index set I.

Proof. For each finite partition P of I we let∏
P = {x ∈

∏I X : x�P is constant for each P ∈ P}

As |P| = n for some n ∈ N,
∏

P is isometric to the finite product Xn

and therefore
∏

P is connected in
∏I X.

As
∏

{I} ⊆
∏

P for any finite partition P of I, we conclude that

∆(ℵ0, I) =
⋃
{
∏

P : P is a finite partition of I} is connected in
∏I X.

By i) and iii) of Lemma 1.12, ∆(ℵ0, I) is dense in
∏I X and therefore∏I X is connected.

�

Example 2.7. There is a non-totally bounded metric space (X, d) such

that (
∏N X, dsup) is path-connected.

Proof. We consider the hedgehog (X, d) defined by letting X consist
of the points of the unit disk, (r, θ) = r · eiθ with 0 ≤ r ≤ 1 and
0 ≤ θ < 2π.
For x = (r0, θ0) and y = (r1, θ1) we have

d(x, y) =

{
|r0 − r1| if θ0 = θ1;
r0 + r1 if θ0 6= θ1.

(X, d) is not totally bounded since {(1
2
, 1] × {θ} : 0 ≤ θ < 2π} is an

infinite family of pairwise disjoint open balls.
On the other hand,

∏I X is path-connected, as each of its points

belongs to an isometric copy of
∏I [0, 1], where [0, 1] has the usual

metric. Each of these copies contains the constant point (0)i∈I , so∏I X is path-connected.
�

We want to extend Theorem 2.6 from powers to arbitrary products
and Example 2.7 indicates that the converse to the Theorem 2.6 does
not hold. However, Example 2.5b) suggests a different tact.

The following is an adaptation of an open cover equivalence of con-
nectedness, which shows that a connected product must satisfy some
”simultaneous” version of Cantor-connectedness:
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Observation 2.8. Let {(Xi, di)}i∈I be a family of metric spaces and
assume that (

∏
i∈I Xi, d

sup) is connected.
Then for every two points (x(i))i∈I ,(y(i))i∈I in

∏
i∈I Xi and ε > 0 there

is n ∈ N such that each xi and yi admit an ε-chain of points Zxiyi
with

|Zxiyi
| ≤ n.

Proof. The observation is clearly true when the index set is finite.
For |I| ≥ ℵ0 suppose not. There is then an ε > 0 and an infinite set
J = {jn : n ∈ N} ⊆ I such that for any n ∈ N there are x(jn) and
y(jn) in Xjn which cannot be joined by an ε-chain of points Zx(jn)y(jn)

with |Zx(jn)y(jn)| ≤ n.
Consider the subproduct P :=

∏
n∈N Xjn and let x = (x(jn))n∈N and

y = (y(jn))n∈N be points in P .
By defining

C = {p ∈ P : there is m(p) ∈ N such that each x(jn) and p(jn)
admit an ε-chain of points, Zx(jn)p(jn), with |Zx(jn)p(jn)| ≤ m(p)},

we have x ∈ C and y /∈ C.
C is open in P : If p ∈ C, since B(p, ε) ⊆

∏
n∈N B(p(jn), ε), we find

that for each t ∈ B(p, ε) and for each n ∈ N we can join x(jn) and t(jn)
by an ε-chain of points,Zx(jn)t(jn), with |Zx(jn)t(jn)| ≤ m(p) + 1.
C is closed in P : If p ∈ cl(C), then B(p, ε)∩C 6= ∅. For t ∈ B(p, ε)∩C
we have dsup(p, t) < ε, so d(p(jn), t(jn)) < ε for n ∈ N.
We conclude that p ∈ C as p(jn) and x(jn) admit an ε-chain of points,
Zp(jn)x(jn), with |Zp(jn)x(jn)| ≤ m(t) + 1.
Then

∏
i∈I Xi admits a proper clopen partition through C×

∏
i∈I\J Xi

and (P \ C)×
∏

i∈I\J Xi and therefore
∏

i∈I Xi is not connected.
�

3. Taut metric spaces

In this section we make formal the idea suggested in Observation 2.8.

Definitions 3.1. If (X, d) is a metric space and Zxy = (z0, ..., zn), is
a chain of points from x to y, we call l(Zxy) := Σ0≤i<nd(zi, zi+1) the
length of the chain of points Zxy.

We define the function χ : X2 × (0,∞) → [0,∞] by

χ(x, y, ε) =

{
inf{ l(Zxy) : Zxy ∈ Zxy,ε} if Zxy,ε 6= ∅
∞ if Zxy,ε = ∅.

Notice that Observation 2.2ii) implies that χ(x, y, ε1) ≥ χ(x, y, ε2)
when ε1 ≤ ε2 .

We define the function τd : X2 → [0,∞] by
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τd(x, y) = limε→0χ(x, y, ε).

Definition 3.2. We call a metric space (X, d) with the property that
d = τd a taut metric space.

Lemma 3.3. Let x and y be points in a metric space (X, d) with
τd(x, y) < v < ∞.
There is δ0 > 0 such that for any δ ≤ δ0 we can find a δ-chain of points
from x to y, Zxy = (x = z0, z1, ..., zn = y), which contains a point z
such that Zxz = (x = z0, ..., zk = z) and Zzy = (z = zk, ..., zn = y) have

max{l(Zxz), l(Zzy)} <
v

2
.

Proof. Assume that v
2

> τd(x, y). As τd(x, y) < 2τd(x,y)+v
4

, for any

δ > 0 we can find a δ-chain of points Zxy with l(Zxy) < 2τd(x,y)+v
4

.

Letting z = x determines the required inequality as 2τd(x,y)+v
4

< v
2
.

Assume now that v
2

< τd(x, y).
There is an ε0 > 0 such that χ(x, y, ε) > v

2
for any 0 < ε ≤ ε0.

We choose δ0 ≤ min{ε0,
v−τd(x,y)

2
} and for 0 < δ ≤ δ0 we find a δ-chain

of points, Zxy = (x = z0, z1, . . . , zn = y), with

l(Zxy) < v+τd(x,y)
2

. (1)

As l(Zxy) > v
2
, there is k < n satisfying the following inequalities

Σ0≤i<k d(zi, zi+1) < v
2

(2)
Σ0≤i≤k d(zi, zi+1) ≥ v

2
(3)

By (1) and (3) we obtain Σk<i<nd(zi, zi+1) < v+τd(x,y)
2

− v
2

= τd(x,y)
2

, so

Σk≤i<nd(zi, zi+1) ≤ δ +Σk<i<nd(zi, zi+1) < v−τd(x,y)
2

+ τd(x,y)
2

= v
2

(4).

By (2) and (4), we can take z = zk.

If v
2

= τd(x, y), we take v′ = τd(x,y)+v
2

and we use the previous case

all the way to finding z such that max{l(Zxz), l(Zzy)} < v′

2
< v

2
.

�

Theorem 3.4. A metric space (X, d) is taut iff for every pair of points
x, y ∈ X with d(x, y) < ∞ and for each v > d(x, y) there is z ∈ X
such that

max{d(x, z), d(z, y)} <
v

2
.
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Proof. ONLY IF: Assume that (X, d) is taut and let x, y ∈ X and
v > d(x, y) = τd(x, y) be given.
We make use of Lemma 3.3 to find a chain of points, Zxy which can be
decomposed into two chains, Zxz and Zzy such that

max{l(Zxz), l(Zzy)} <
v

2
.

By the triangle inequality we obtain

max{d(x, z)), d(z, y)} <
v

2
.

IF: Assume now that (X, d) is a metric space satisfying the given
inequality.
Fix v > d(x, y) and let z(0) = x and z(1) = y. Choose z(1

2
) such that

max{d(z(0), z(1
2
)), d(z(1

2
), z(1))} < v

2
.

For n ∈ N and k ≤ 2n we can define inductively points via the dyadic
rationals, z( k

2n ), such that

max{d(z(k−1
2n ), z( k

2n )), d(z( k
2n ), z(k+1

2n ))} < v
2n for 1 ≤ k < 2n.

Thus, Σ0≤i<nd(z( k
2n ), z(k+1

2n )) < v and further χ(x, y, 1
2n ) < v for n ∈ N.

Therefore τd(x, y) < v for any v > d(x, y) and so τd(x, y) = d(x, y).
�

Definition 3.5. In Geometry, where the geodesic metric is useful, a
metric with the property in Theorem 3.4 is said to have the approxi-
mate midpoint property .

Corollary 3.6. A metric space (X, d) is taut iff for every 0 < v < ∞
and for any x, y ∈ X such that d(x, y) < v there is a set V such that
{0, v} ⊆ V ⊆ cl(V ) = [0, v] and a DD mapping, ϕ : V → X such that
ϕ(0) = x and ϕ(v) = y.

Proof. ONLY IF: Assume that (X, d) is taut and d(x, y) < v for fixed
x, y ∈ X, v positive. Starting from z(0) = x and z(1) = y, we make use
of the approximate midpoint property to define inductively for n ∈ N
and k ≤ 2n points via the dyadic rationals, z( k

2n ), such that

max{d(z(k−1
2n ), z( k

2n )), d(z( k
2n ), z(k+1

2n ))} ≤ v
2n for 1 ≤ k < 2n.

Thus, d(z( k0

2n ), z( k1

2n )) ≤ Σk0≤i<k1d(z( k
2n ), z(k+1

2n )) < |k1−k0|·v
2n and more-

over, following appropriate paths through the points indexed by the
dyadic rationals, we find that

d(z( k0

2n0
), z( k1

2n1
)) < | k1

2n1
− k0

2n0
| · v (1)
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Let V = {k·v
2n : n ∈ ω, 0 ≤ k ≤ 2n} and define the mapping ϕ : V → X

by ϕ(k·v
2n ) := z( k

2n ), which is DD by (1).
IF: Assume now that (X, d) is such that for every x, y ∈ X and v

positive with d(x, y) < v there is a DD mapping ϕ as ennounced in a).
For fixed x, y ∈ X and v positive such that d(x, y) < v choose v′ such
that d(x, y) < v′ < v and let ϕ : V ′ → X be a DD mapping such
that {0, v′} ⊆ V ′ ⊆ cl(V ′) = [0, v′] and ϕ(0) = x, ϕ(v′) = y. Using
the density of V ′ in [0, v′], we find v0 ∈ V ′ such that v0 < v

2
and

v′ − v0 < v
2
. Then ϕ(v0) is a point in X such that d(x, ϕ(v0)) < v

2
and d(ϕ(v0), y) < v

2
. Therefore (X, d) has the approximate midpoint

property, so it is taut by Theorem 3.4.
�

Definition 3.7. Given a metric space (X, d) and x, y ∈ X, a DD arc
from x to y is the image of an interval [a, b] ∈ R with the usual metric
under a DD mapping, f : [a, b] → X such that f(a) = x and f(b) = y.

Theorem 3.8. Suppose (X, d) is a complete taut metric space and that
x, y ∈ X are such that d(x, y) < ∞. Then there is DD arc from x to y.

Proof. Having d(x, y) < v for some positive v, we have the DD map-
ping ϕ : V → X constructed in Corollary 3.6. We further create an
extension, ϕ̃ : [0, v] → X through

ϕ̃(r) :=
⋂

n∈N cl(ϕ(B(r, 1
n
) ∩ V )) for r ∈ [0, v].

As ϕ is a DD mapping, diam(ϕ(B(r, 1
n
) ∩ V )) < 1

n
and therefore

diam(cl(ϕ(B(r, 1
n
)∩ V ))) ≤ 1

n
. Hence the definition of ϕ̃ gives at most

one point.
As X is a complete metric space, any countable decreasing intersection
of closed sets is nonempty, so the definition of ϕ̃ gives exactly one point.
It is now obvious that ϕ̃ extends ϕ. It is also easy to observe that ϕ̃
remains DD mapping, therefore ϕ̃ witnesses the property that x and y
can be connected by a DD arc.

�

Lemma 3.9. Let (X, d) be a metric space with (Y, dY ) dense in X and
dY = d�Y 2. Then (X, d) is taut iff (Y, dY ) is taut.

Proof. ONLY IF: Assume (X, d) is taut. For y, y′ ∈ Y with d(y, y′) <
v < ∞ we use the approximate midpoint property to find z ∈ X such

that max{d(y, z), d(y′, z)} < d(y,y′)+v
4

. By the density of Y , there is
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w ∈ B(z, v−d(y,y′)
4

) ∩ Y and then max{d(w, y), d(w, y′)} < d(y,y′)+v
4

+
v−d(y,y′)

4
= v

2
, hence (Y, dY ) has the approximate midpoint property.

IF: If (Y, dY ) is taut, then for x, x′ ∈ X such that d(x, x′) < v < ∞
we first use the density of Y to find y ∈ B(x, v−d(x,y)

8
) ∩ Y and y′ ∈

B(x′, v−d(x,y)
8

) ∩ Y . As d(x, x′) < v+d(x,y)
2

, then d(y, y′) < v+d(x,y)
2

+
v−d(x,y)

4
= 3v+d(x,y)

4
. By the approximate midpoint property, we find

z ∈ Y such that max{d(z, y), d(z, y′)} < 3v+d(x,y)
8

.

Then max{d(z, x), d(z, x′)} < 3v+d(x,y)
8

+ v−d(x,y)
8

= v
2

and so the ap-
proximate midpoint property holds for the pairs of points from X at
finite distance.

�

Example 3.10. A taut connected non-arcwise connected metric space:

X :=
(
[0, 1]× {0, 1}

) ⋃
n∈N

( ⋃
1≤k<2n

{ k

2n

}
×

[ 1

2n
, 1

])
.

We consider X with the usual metric, d. Since (X, d) is dense in the
unit square, Lemma 3.9 shows that (X, d) is taut. X is connected since
X \ ([0, 1]× {0}) is arcwise connected and cl(X \ ([0, 1]× {0})) = X.
However, there is no arc from (0, 0) to (1, 1).

4. Connectedness II

Lemma 4.1. The box metric product of taut metric spaces is taut.

Proof. Suppose {(Xi, di)}i∈I is a family of taut metric spaces and con-
sider x, y points in

∏
i∈I Xi such that dsup(x, y) < v < ∞.

We can see that dsup has the approximate midpoint property:
By Lemma 3.4, for each i ∈ I we can find z(i) ∈ Xi such that

max{di(x(i), z(i)), di(z(i), y(i))} < 2di(x(i),y(i))+v
6

.

Then z := (z(i))i∈I has max{dsup(x, z), dsup(z, y)} ≤ 2dsup(x,y)+v
6

< v
2
.
�

Through Proposition 1.9, Theorem 3.8 and Lemma 4.1 we obtain

Proposition 4.2. The box metric product of taut complete metric
spaces is finitely arcwise-connected.
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The next theorem represents an attempt to remove completeness from
the hypothesis of 4.2:

Theorem 4.3. The box metric product of countably many taut finitely
connected metric spaces is finitely connected.

Proof. We shall make use of the following result used in the Tychonoff
product of connected spaces:

Remark 4.4. For x ∈
∏

i∈I Xi and F ⊆ I we let
E(F, x) := {y ∈

∏
i∈I Xi : {i ∈ I : y(i) 6= x(i)} ⊆ F} and further

E(x) :=
⋃

F⊆I, |F |<∞ E(F, x).

As each E(F, x) is isometric to
∏

i∈F Xi, if (Xi, di) are connected for
i ∈ I, then E(x) is connected.

Proof of 4.3: Suppose that there are x, y ∈
∏

n∈N Xn and C clopen
in

∏
n∈N Xn such that x ∼fin y, x ∈ C and y /∈ C.

Applying Lemma 3.4, we define two sequences {xn}n∈N, {yn}n∈N of
points in C, respectively not in C:
Let x1 := x and y1 := y. Suppose that we have defined xn and yn.
Choose z ∈

∏
n∈N Xn such that max{d(xn, z), d(z, yn)} < d(xn, yn) · 2

3
.

If z ∈ C let xn+1 := z and yn+1 := yn. Otherwise define xn+1 := xn

and yn+1 := z.
Clearly, for each ε > 0 there is n so large that

sup{d(xm, ym), d(xn, xm), d(yn, ym) : m ≥ n} < d(x, y) ·
(

2
3

)n ≤ ε (?)

Define now u, v ∈
∏

n∈N Xn by u(n) := xn(n), v(n) := yn(n) for n ∈ N.
We show u ∈ C, the proof that v /∈ C is analogous.
For each n ∈ N we define qn ∈

∏
n∈N Xn by

qn(i) =

{
xi(i) if i ≤ n;
xn(i) if i ≥ n.

We know that E(xn) is connected by Remark 4.4, so E(xn) ⊆ C for
any n ∈ N.
As qn ∈ E({1, 2, .., n}, xn), we conclude that qn ∈ C for n ∈ N.
According to (?), dsup(qn, u) < d(x, y) ·

(
2
3

)n ≤ ε for n ∈ N, thus u is a
limit point of {q(n)}n∈N ⊆ C. As C is closed, u ∈ C.
Also by (?), limn→∞dn(u(n), v(n)) = 0, so v ∈ cl(E(u)).
From Remark 4.4, E(u) is connected, so cl(E(u)) ⊆ C. Therefore
v ∈ C - a contradiction.

�
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Corollary 4.5. Arbitrary powers of taut separable finitely connected
metric spaces are finitely connected with respect to the box metric.

Proof. Let (X, d) be taut separable finitely connected metric space and
I an index set.
By Theorem 4.3 (∆(ℵ1, I), dsup) is finitely connected. By ii) and iii) of

Lemma 1.12, ∆(ℵ1, I) is dense in (
∏I X, dsup), hence (

∏I X, dsup) is
finitely connected.

�

5. Tautification

The principal aim of this section is to prove that each metric space
is the DD image of a “minimal” taut metric space, which we call its
tautification.
There are various roads to the tautification. The τ process introduced
in 3.1, an approach derived from the idea of extending connectedness
in the box metric product, is developing at ”intermediate” speed with
respect to the others, that shall be described together with properties.

Definitions 5.1. Suppose (X, d) is a metric space. Given x, y ∈ X
and r > 0, we say that x and y are r-linked provided that for every
a ∈ [0, r] there is z ∈ X such that d(x, z) ≤ a and d(z, y) ≤ r − a.

We define the function λd : X2 → [0,∞) by

λd(x, y) =

{
∞ if x and y are not r-linked for any r ∈ [0,∞)
inf {r : x and y are r-linked} otherwise.

The following notions are inspired by Corollary 3.6.

Definitions 5.2. Suppose (X, d) is a metric space. Given x, y ∈ X
and r > 0, we say that x and y are r-densely linked provided that there
is {0, r} ⊆ R ⊆ cl(R) = [0, r] and a DD mapping ϕ : R → (X, d) such
that ϕ(0) = x and ϕ(r) = y.

We define the function Υd : X2 → [0,∞) by

Υd(x, y) =

{
∞ if x and y are not r-densely linked for any r ∈ [0,∞)
inf {r : x and y are r-densely linked} otherwise.

Lemma 5.3. Given (X, d) metric space, λd, τd and Υd are metrics
on X. Moreover, (X, Υd) is taut.
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Proof. It is easy to see by the definitions 3.1, 5.1 and 5.2 that λd, τd
and Υd are symmetric functions on X2 and that they are null exactly
on the diagonal ∆X .
We further show the triangle inequality.

For λd:
Let x, y, z ∈ X, δ > 0 and a ∈ [0, λd(x, y) + λd(y, z) + δ].
Assuming that a ≤ λd(x, y) + δ holds, there is w ∈ X such that
d(x, w) ≤ a and d(w, y) ≤ λd(x, y) + δ − a.
Then d(w, z) ≤ d(w, y) + d(y, z) ≤ λd(x, y) + d(y, z) + δ − a.
Assuming that a > λd(x, y) + δ holds, we first write this as λd(y, z) <
λd(x, y) + λd(y, z) + δ − a.
By the definition of λd(y, z), there is w ∈ X such that d(w, z) ≤
λd(x, y) + λd(y, z) + δ − a and such that d(y, w) ≤ λd(y, z) + δ −
(λd(x, y) + λd(y, z) + δ − a) = a− λd(x, y).
Further d(w, x) ≤ d(w, y) + d(x, y) ≤ a− λd(x, y) + d(x, y) ≤ a.
As for every a ∈ [0, λd(x, y) + λd(y, z) + δ] we find a point w ∈ X such
that d(x, w) ≤ a and d(w, z) ≤ λd(x, y) + λd(y, z) + δ− a, we conclude
that λd(x, z) ≤ λd(x, y) + λd(y, z) + δ for every δ > 0 and the triangle
inequality is verified.

For τd:
Assume that τd(x, y) and τd(y, z) are finite and fix n ∈ N.
There are ε1, ε2 > 0 such that χ(x, y, ε) < τd(x, y) + 1

n
for 0 < ε ≤ ε1

and χ(y, z, ε) < τd(y, z) + 1
n

for 0 < ε ≤ ε2.
Then for 0 < ε ≤ min{ε1, ε2} we find ε-chains of points from x to z of
d-length no greater than τd(x, y) + τd(y, z) + 2

n
.

As χ(x, z, ε) ≤ τd(x, y) + τd(y, z) + 2
n

for ε ≤ min(ε1, ε2), we conclude

that τd(x, z) ≤ τd(x, y) + τd(y, z) + 2
n

and as n was arbitrarily fixed,
we obtain the triangle inequality.

For Υd:
We let n ∈ N, ϕ1 : R1 → X DD mapping with cl(R1) = [0, Υd(x, y)+ 1

n
],

ϕ1(0) = x, ϕ1(Υd(x, y) + 1
n
) = y and ϕ2 : R2 → X DD mapping with

cl(R2) = [0, Υd(y, z) + 1
n
], ϕ2(0) = y, ϕ2(Υd(y, z) + 1

n
) = z.

Letting R2 + Υd(x, y) + 1
n

denote the right translation of the set R2 by

Υd(x, y)+ 1
n
, we define the mapping ϕ : R1∪(R2+Υd(x, y)+ 1

n
) → X by

ϕ(r) =

{
ϕ1(r) if r ∈ R1

ϕ2(r) if r ∈ R2 + Υd(x, y) + 1
n
.

ϕ is DD, with cl(R1∪(R2+Υd(x, y)+ 1
n
)) = [0, Υd(x, y)+Υd(y, z)+ 2

n
],

ϕ(0) = x and ϕ(Υd(x, y) + Υd(y, z) + 2
n
) = z.

As Υd(x, z) ≤ Υd(x, y) + Υd(y, z) + 2
n

for n ∈ N arbitrarily fixed, we
obtain the triangle inequality for Υd.
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The tautness of (X, Υd) follows easily through observing that it is a
metric space with the approximate midpoint property.

�

Lemma 5.4. Let (Y, ρ) be a taut metric space. If f : (Y, ρ) → (X, d)
is a DD mapping, to a metric space (X, d), then f : (Y, ρ) → (X, τd)
is also DD mapping.

Proof. Let ρ(y, y′) be finite and let n ∈ N. By Corollary 3.6, y and y′

are ρ(y, y′) + 1
n
-densely linked, so let ϕ : R → Y be a DD mapping

with cl(R) = [0, ρ(y, y′) + 1
n
], ϕ(0) = y and ϕ(ρ(y, y′) + 1

n
) = y′. By

the density of R, for fixed ε > 0 there is an ε-chain of points from 0
to ρ(y, y′) + 1

n
, Z0 ρ(y,y′)+ 1

n
= (r0 = 0, r1, . . . , rk = ρ(y, y′) + 1

n
), where

k ∈ N and ri ∈ R for 0 ≤ i ≤ k.
As ϕ and f are DD, the mapping f ◦ ϕ is DD and
Zϕ(y)ϕ(y′) := (f ◦ ϕ(r0) = f(y), f ◦ ϕ(r1), . . . , f ◦ ϕ(rk) = f(y′)) is an

ε-chain of points from f(y) to f(y′) with

l(Zf(y)f(y′)) =
∑

0≤i<n

d(f◦ϕ(ri), f◦ϕ(ri+1)) ≤
∑

0≤i<n

|ri+1−ri| = ρ(y, y′)+
1

n
.

Since χ(f(y), f(y′), ε) ≤ ρ(y, y′)+ 1
n

for arbitrary ε and n, we conclude
that τd(f(y), f(y′)) ≤ ρ(y, y′) and therefore f : (Y, ρ) → (X, τd) is DD.

�

Lemma 5.5. Given (X, d) metric space, the metrics λd, τd and Υd
satisfy the inequalities

d ≤ λd ≤ 2d and λd ≤ τd ≤ Υd.

Proof. To show the inequalities fix x, y ∈ X.
If λd(x, y) = ∞, then λd(x, y) ≥ d(x, y).

By definition, if λd(x, y) < r for r > 0, then there is z ∈ X such that
d(x, z) ≤ r and d(z, y) ≤ 0, therefore d(x, y) ≤ r. Hence d(x, y) ≤
λd(x, y).

Any points x and y are 2d(x, y)-linked as for a ∈ [0, 2d(x, y)] we can
choose z = x if a ≤ d(x, y) and z = y if a ≥ d(x, y). Therefore λd ≤ 2d.

If x, y ∈ X are such that τd(x, y) is finite, then for a fixed n ∈ N we
have χ(x, y, ε) < τd(x, y) + 1

n
for any ε > 0.

Given an a ∈ [0, τd(x, y)+ 1
n
], for an ε positive sufficiently small we can

find an ε-chain of points from x to y, Zxy of d-length under τd(x, y)+ 1
n

such that there is z ∈ Zxy which decomposes Zxy into two chains of
points, Zxz and Zzy of length no greater than a and respectively no
greater than τd(x, y) + 1

n
− a. This gives d(x, z) ≤ a and d(z, y) ≤
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τd(x, y) + 1
n
− a and so λd(x, y) ≤ τd(x, y) + 1

n
.

As n is arbitrarily chosen, then λd(x, y) ≤ τd(x, y).
We apply Lemma 5.4 to the DD identity from (X, Υd) to (X, d) and

obtain τd ≤ Υd.
�

Remark 5.6. While (X, d) and (X,λd) are topologically equivalent,
the topology of (X, τd) is in general finer than the topology of (X, d).

Examples 5.7. The inequalities of Lemma 5.5 cannot be straight-
ened:
a) If we consider the unit circle with d the Euclidean distance, the
points p = (−1, 0) and q = (1, 0), then λd(p, q) = 2

√
2, while τd(p, q) =

π. Therefore d(p, q) < λd(p, q) < 2d(p, q) and λd(p, q) < τd(p, q).

b) For τd(p, q) 6= Υd(p, q) we can look at the following example:
For each n ∈ N let fn be the graph of y(x) = xn, where x ∈ [0, 1].
On fn we choose the points p = (0, 0) = pn,0, pn,1,...,pn,n = (1, 1) = q
such that they partition Gn into n arcs of equal lengths. Let X =⋃

n∈N,0≤k≤n{pn,k} with the Euclidean distance d.

It is easy to observe that τd(p, q) = 2 and as all other points from X
distinct from p and q are isolated, Υd(p, q) = ∞.

Corollary 5.8. A metric space (X, d) is taut iff

d = λd = τd = Υd.

Proof. Corollary 3.6 reads now as (X, d) is taut iff d = Υd. As d ≤
λd ≤ τd ≤ Υd by Lemma 5.5, (X, d) is taut iff the four metrics coincide.

�

Definitions 5.9. Let (X, d) be a metric space and β an ordinal.
We define λ0d = d = τ0d and λβd = sup{λ(λαd) : α < β},

τβd = sup{τ(ταd) : α < β}.
We let Λd be the metric on X such that Λd = λγd = λ(λγ)d from

an ordinal γ.
We let Td be the metric on X such that Td = τνd = τ(τν)d from

an ordinal ν.

Lemma 5.10. If d1 and d2 are metrics on X such that d1 ≤ d2, then
τd1 ≤ τd2, λd1 ≤ λd2, Υd1 ≤ Υd2.

Proof. For x, y points in X and ε > 0 it suffices to remark that all
ε-d2-chains of points from x to y are ε-d1-chains of points, if x and y
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are ε-d2 (densely) linked then they also are ε-d1 (densely) linked.
�

Theorem 5.11. Given a metric space (X, d), the following are true:
i) (X, Td) and (X, Λd) are taut and Λd = Td = Υd.
ii) If (Y, ρ) is a taut metric space and f : (Y, ρ) → (X, d) is a DD

mapping to a metric space (X, d), then f : (Y, ρ) → (X, Td) is also DD.

Proof. i) (X, Td) is taut by definition. From the definition of Λd, it is
easy to observe that (X, Λd) has the approximate midpoint property.
For the equality of the three metrics we make use of Corollary 5.8 and
of the monotonicity properties from Lemma 5.10:
As d ≤ Λd, Υd ≤ Υ(Λd). As Λd is taut, Υ(Λd) = Λd, hence Υd ≤ Λd.
As d ≤ Υd, Λd ≤ Λ(Υd). As Υd is taut, Λ(Υd) = Υd, hence Λd ≤ Υd.
We conclude that Λd = Υd and we can show similarly that Td = Υd.

ii) can be seen as a consequence of Lemma 5.4 together with the
property that if f : (Y, ρ) → (X, di) is DD mapping for i ∈ I, then
f : (Y, ρ) → (X, sup{di : i ∈ I}) is also DD.

�

Definition 5.12. Henceforth, we call (X, Td) the tautification of (X, d).

We extend the idea of Lemma 3.9 to the tautification process:

Lemma 5.13. Let (X, d) be a metric space with (Y, dY ) dense in X
and dY = d�Y 2. Then τdY = (τd)�Y 2.

Proof. Let χX and χY represent the infimum functions calculated through
chains of points in X and respectively through chains of points in Y .
For y, y′ ∈ Y and ε > 0 we have χY (y, y′, ε) ≥ χX(y, y′, ε) as all the
ε-chains of points in Y are ε-chains of points in X.
For δ > 0 we can find a chain of points, (y = z0, . . . , zn = y′), such that

Σ0≤i<nd(zi, zi+1) ≤ χX(y, y′, ε) +
δ

2
(1)

By the density of Y in X, for each 1 ≤ i ≤ n − 1 we can find points
ui ∈ B(zi,

δ
4n

). We let u0 = y and un = y′.
Using the triangle inequality,

Σ0≤i<nd(ui, ui+1) ≤ Σ0≤i<n

(
d(zi, zi+1) +

δ

2n

)
(2)

From (1) and (2) we obtain

Σ0≤i<nd(ui, ui+1) ≤ χX(y, y′, ε) + δ
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As (u0, ..., un) is a chain of points in Y from y to y′, we conclude that
χY (y, y′, ε) ≤ χX(y, y′, ε) + δ.
As δ was chosen arbitrary positive value, χY (y, y′, ε) = χX(y, y′, ε) and
therefore τdY = (τdX)�Y 2 .

�

6. Complete and Compact

We have seen in Example 5.7a) that the λ operator takes longer itera-
tion to attain the tautification, even when the metric space is compact.
On the other hand, the τ operator gives the tautification of a compact
metric space in only one step:

Theorem 6.1. Suppose (X, d) is a compact metric space. Then τd =
Td; thus (X, τd) is taut.

Proof. We want to see that for every x, y ∈ X with τd(x, y) < v there
is z ∈ X such that τd(x, z) < v

2
and τd(z, y) < v

2
.

As τd(x, y) < τd(x,y)+v
2

, by Lemma 3.3, we find n0 ∈ N such that for

every n ≥ n0 there is a point zn of Zxy such that the 1
n
-chains of points

from x to zn, Zx,zn , and from zn to y, Zzn,x have

max{l(Zx,zn), l(Zzn,x)} <
τd(x, y) + v

4
.

Without loss of generality, we can assume that the sequence of points
{zn}n≥n0 is convergent to some z in X.
For every n ≥ n0 let mn ≥ n be such that zmn ∈ B(z, 1

n
).

Then Zx,zmn
∪ {z} and Zzmn ,y ∪ {z} are 1

n
-chains of points from x to z

and respectively from z to y of d-lengths no greater than τd(x,y)+v
4

+ 1
n

for n ≥ n0.
Having then max{χ(x, z, 1

n
), χ(z, y, 1

n
)} ≤ τd(x,y)+v

4
+ 1

n
for any n ≥ n0,

we conclude that max{τd(x, z), τd(y, z)} ≤ τd(x,y)+v
4

< v
2
.

�

Example 6.2. Theorem 6.1 does not extend to complete metric spaces.
We modify 5.7 b) in order to introduce an example of a complete metric
space (Y, ρ) with τρ 6= Tρ:

Let (H, d) denote the hedgehog with countably many spikes, H =⋃
n∈ω In and of center {o} = Im ∩ In for m 6= n.

For n ∈ ω and k ∈ 0, 2n we let pn(k) denote the point from In such
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that d(o, pn(k)) = k
2n .

We let (Y, ρ) be the quotient space given by Y = X/∼, where

pm(k) ∼ pn(l) iff (m, k) = (n, l) or k
2m = l

2n ∈ {0, 1}

We denote by q := p̂0(1) = {pn(2n) : n ∈ ω} and let

ρ(x̂, ŷ) = min{d(x, y), d(x, q) + d(y, q)}.
The Cauchy sequences in (Y, ρ) are those converging to either o or q.
As for any n ∈ ω we have along In

1
2n -ρ-chains of points from o to q of

length 1, τρ(o, q) = 1.
All other points of Y are isolated with respect to ρ, so Tρ(o, q) = ∞.

A metric space (X, d1) with d1 ≥ d0 for some (X, d0) complete is not
necessarily complete. Nevertheless, the metrics defined in this section
inherit completness:

Proposition 6.3. a) If (X, d) is complete and ξ is an ordinal, then
(X, λξd) and (X, τξd) are complete.

b) If (X, d) is complete, then (X, Υd) is complete.

Proof. a) From the first inequalities in Lemma 5.5, d and λd have
the same convergent sequences and Cauchy sequences. Thus (X, λd)
inherits the completness from (X, d).
Assuming that (X, λαd) is complete for α < ξ, where ξ is a limit ordinal,
then λξd = sup{λαd : α < ξ} is a metric preserving the completeness
of X according to Corollary 1.10.

If {xn}n∈N is a τd-Cauchy sequence, then the second inequality of
5.5 shows it is also d-Cauchy and so it d-converges to some x ∈ X.
As {xn}n∈N is a τd-Cauchy sequence, given ε > 0, there is nε such that
τd(xnε , xn) ≤ ε for any n ≥ nε.
This implies that χ(xnε , xn,

ε
k
) ≤ ε for any n ≥ nε and for any k ∈ N.

Also, as {xn}n∈N is d-convergent to x, we have that d(xn, x) ≤ ε
k

for n
no smaller than some nε,k.
In particular we can form ε

k
-chains of points from xnε to x through

points xn with n ≥ max{nε, nε,k} such that we obtain χ(xnε , x, ε
k
) ≤

ε + ε
k
.

We conclude that τd(xnε , x) ≤ ε and further that the sequence {xn}n∈N
is τd-convergent to x. Therefore (X, τd) is complete.
The same kind of argument as for λξd completes the inductive argument
that τξd is complete.

b) The completeness of (X, Υd) is a consequence of a) in view of the
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fact that Υd is an iteration of the λ or of the τ operator.
�

Lemma 6.4. a) Given a metric space (X, d), a mapping f : I → (X, d)
from an interval I ⊆ R is a DD arc iff f : I → (X,Td) is a DD arc.

b) The tautification Td of a complete metric space (X, d) is discrete
iff all the DD arcs in (X, d) are constant.

Proof. a) IF: As I with the usual metric is taut, Theorem 5.11 ii)
implies that f : I → (X, Td) is a DD arc.

ONLY IF: If f : I → (X,Td) is a DD arc, then we use the fact that
the identity from (X, Td) to (X, d) is DD to argue that f : I → (X, d)
is also a DD arc.

b) IF: Assume that Td(x, y) = ∞ for x 6= y ∈ X. Then x and y
can be separated by disjoint clopen balls, B(x,∞) and B(y,∞), so the
points cannot be Td-arc connected and in particular there are no d-DD
arcs from x to y by a).
ONLY IF: If (X, d) is complete, then so is (X, Td) by b) of Proposition
6.3.
According to Theorem 3.8, Td(x, y) < ∞ implies that there is a Td-DD
arc from x to y, which is also a d-DD arc from x to y by a).

�

Remark 6.5. For a general metric space (X, d) with tautification
Td(x, y) < ∞ we do not generally have x and y d-arcwise connected,
nor Td-arcwise connected, as we can observe in the case of the rationals.

Example 6.6. There is a homeomorphic image (X, d) of [0, 1] such
that (X, d) has no d-DD arcs and therefore (X, τd) is discrete.

We need the following lemma, which shows that there are no space-
filling DD curves, and which can be extended to analogous results for
n-dimensional manifolds:

Lemma 6.7. Consider (R, d), where d is the usual metric and (R2, d2),
where d2 is the induced box metric of d or the Euclidean distance.
The range of any DD mapping from a closed interval of (R, d) to
(R2, d2) has empty interior.

Proof. Suppose not. As the mapping can be scaled, we can assume
without loss of generality that there is an interval, I ⊆ R and a DD
mapping, f : I → R2 such that [0, 1]2 ⊆ f(I).
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Fix n ∈ N and choose rij ∈ f−1(( i
n
, j

n
)) for 1 ≤ i, j ≤ n.

We first observe that if there is a point x ∈ f(B(rij,
1
2n

))∩f(B(rkl,
1
2n

)),

then d2(x, ( i
n
, j

n
)) < 1

2n
and d2(x, ( k

n
, l

n
)) < 1

2n
since f is DD mapping,

so d2((
i
n
, j

n
), ( k

n
, l

n
)) < 1

n
, which implies (i, j) = (k, l).

Therefore f(B(rij,
1
2n

)) are disjoint sets and further {B(rij,
1
2n

)}1≤i,j≤n

is a set of n2 disjoint intervals of length 1
n
.

As n ∈ N was arbitrarily fixed, this contradicts the boundedness of the
interval I.

�

Proof of 6.6: Let now σ : [0, 1] → [0, 1]2 be a space-filling curve with
the property

σ(G) 6= ∅ for any open ∅ 6= G ⊆ [0, 1]. (?)

Let (X, d) be the graph of σ as a subset of [0, 1]3 with the box metric.
As the box metric and the Euclidean metric are equivalent in 3-space,
(X, d) is a homeomorph of [0, 1].
Suppose that there is a non-constant DD arc, A, in (X, d) and let J1

be the projection of A onto the domain of σ. As A is connected, J1

contains an open set G ⊆ [0, 1]. Thus, (?) shows that the projection
J2 of A onto [0, 1]2 has int(A) 6= ∅. However, when [0, 1]2 is given
the (equivalent) box metric, the projection is a DD mapping. Hence
int(A) = ∅ - a contradiction.

7. Zero-Dimensional

Recall that for (X, d) metric space, x, y ∈ X and ε > 0 we have
x ∼ε y iff there is an ε-chain of points from x to y.
We introduce a definition relating to the notion of measure of connect-
edness used by Lowen in [7]:

Definition 7.1. Given (X, d) metric space and x, y ∈ X, we define

sd(x, y) = inf{ε > 0 : x ∼ε y}
We call a metric space (X, d) slack if d = sd.

Recall that a (pseudo)metric d on X is said to be an ultra(pseudo)metric
provided that d(x, y) ≤ max{d(x, z), d(z, y)} for any x, y ∈ X.

Remarks 7.2. For (X, d) metric space the following are true:
i. sd is an ultrapseudometric on X such that the identity map from

(X, d) to (X, sd) is DD;
ii. (X, d) has sd = 0 iff (X, d) is Cantor-connected.
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iii. (X, d) is slack iff d is an ultrametric:
IF: If d is an ultrametric, let Zxy = (x = z0, z1, . . . , zn = y) be an

ε-chain of points from x to y. Then d(z0, z1) ≤ ε and d(z1, z2) ≤ ε
implies d(z0, z2) ≤ ε. Further d(z0, zi) ≤ ε and d(zi, zi+1) ≤ ε implies
d(z0, zi+1) ≤ ε for i < n. Therefore we obtain d(x, y) = d(z0, zn) ≤ ε ≤
sd(x, y) ≤ d(x, y), so d = sd.

ONLY IF: If d = sd, then the ultrapseudometric sd is actually an
ultrametric.
In particular this implies that slack metric spaces are 0-dimensional .

Proposition 7.3. If (X, d) is a compact 0-dimensional metric space,
then there is a compatible metric ρ on X such that (X, ρ) is slack.

Proof. Given x, y ∈ X we let

Pxy = {(A, B) ⊆ X2 : {A, B} clopen partition of X with x ∈ A, y ∈ B}.

The ultrametric ρ defined by

ρ(x, y) =

{
sup{d(A, B) : (A, B) ∈ Pxy} if x 6= y;
0 otherwise .

has ρ ≤ d and therefore it generates a topology contained in the to-
pology generated by d. The topology generated by ρ is also Hausdorff
and therefore it agrees with the topology of the compact (X, d).
By Proposition 7.2, (X, ρ) is a slack metric space.

�

Proposition 7.4. Products of slack metric spaces are slack with re-
spect to the box metric topology.
Therefore products of slack metric spaces are 0-dimensional with re-
spect to the box metric topology.

Proof. The supremum on a family of ultrametrics is an ultrametric.
Further we invoque Remark 7.2.

�
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