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Preface

Today, acquaintance with modern group analysis and its classical founda-
tions becomes an important part of mathematical culture of anyone con-
structing and investigating mathematical models. However, many of clas-
sical works in Lie group analysis, e.g. important papers of S.Lie and
A.V.Bäcklund written in German and some fundamental papers of L.V.
Ovsyannikov written in Russian have been not translated into English till
now. The present small collection offers an English translation of four fun-
damental papers by these authors.

I have selected here some of my favorite papers containing profound re-
sults significant for modern group analysis. The first paper imparts not only
Lie’s interesting view on the development of the general theory of differen-
tial equations but also contains Lie’s theory of group invariant solutions.
His second paper is dedicated to group classification of second-order linear
partial differential equations in two variables and can serve as a concise prac-
tical guide to the group analysis of partial differential equations even today.
The translation of Bäcklund’s fundamental paper on non-existence of finite-
order tangent transformations higher than first-order contains roots of the
modern theory of Lie–Bäcklund transformation groups. Finally, Ovsyan-
nikov’s paper contains an essential development of the group classification
of hyperbolic equations given in Lie’s second paper. Moreover, it contains
two proper invariants for hyperbolic equations discovered by Ovsyannikov.

I am greatly indebted to Ms. Elena Ishmakova and Ms. Roza Yakushina
for their excellent work during the translation.

Karlskrona, 17 December 2004 Nail H. Ibragimov
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General theory of partial differential equations 1

GENERAL THEORY OF PARTIAL

DIFFERENTIAL EQUATIONS
OF AN ARBITRARY ORDER

By Sophus Lie

Translated from German by

N.H.Ibragimov and E.D. Ishmakova

[Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger

Ordnung. Von Sophus Lie. Leipz. Berichte, Heft I, 1895, S. 53–128.

Reprinted in Collected Works of S. Lie [27], vol. 4, paper IX]

I reported about the new theories contained in this paper to the Royal Scien-

tific Society of Saxony on 16 October 1893. Then I developed them in detail

in my lectures at Leipzig University during the winter semester 1893-1894.

Sophus Lie

1. Theory of differential equations is the most important discipline in
all modern mathematics.

It would be correct to say that the notions of derivative and integral
whose origin goes back at least to Archimedes were in fact introduced to
the science later in works of Kepler, Descartes, Cavalieri, Fermat and Wal-
lis. However, these scientists can by no means be regarded as founders of
the infinitesimal calculus for they did not realize that differentiation and
integration are inverse operations.

Nowadays it is taken for granted that this fundamental discovery belongs
to Newton and Leibnitz∗. Moreover, they realized the immense significance
of the above notions and simultaneously developed appropriate algorithms.

∗The question whether Newton or Leibnitz was the first to note that differentiation
and integration are inverse operations obviously was most important for the old priority
dispute on foundation of the Infinitesimal Calculus. If I am not mistaken Mr.Zeuthen,
who has made a great contribution to the history of mathematics, will consider the above
question in his forthcoming work.
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Particularly important were, on the one hand, Newton’s discovery of the
binominal formula showing how to obtain numerous differentials and inte-
grals and, on the other hand, Leibnitz’s introduction of the symbols dx, dy
and finally his consideration of higher-order derivatives with applications.

2. The notions of differential and integral, introduced by Newton and
Leibnitz were applied only to drawing tangents, defining an arc length,
determining areas and volumes. Understanding both concepts indepen-
dently of their applications gave these great mathematicians a possibility to
tackle the problems which nowadays are formulated in terms of differential
equations. Perhaps it would be correct to say that it is formulation and
integration of differential equations that set up an epoch-making progress
and characterize first of all the Newton–Leibnitz era and at the same time
modern higher mathematics.

Newton’s derivation of Kepler’s laws for planetary motions from the
gravitation law, also formulated by Newton, is particularly renowned and
there are good reasons for that. This discovery that was epoch-making not
only for mechanics was based in fact on integration of a system of differential
equations. Namely, the gravitation law provides the differential equations
governing the motion of planets and Kepler’s laws are nothing else but the
corresponding integral equations.

3. The brothers Jacob and Johann Bernoulli (1654–1705, 1667–1748)
made a further contribution to the theory of differential equations; espe-
cially famous are their investigations of geodesic curves and isoperimetric
problems that are considered to be the origin of variational calculus.

The Italian mathematician Riccati (1676–1754) paid attention to par-
ticular cases of the following equation which later became so popular:

dy

dx
= X(x) +X1(x)y +X2(x)y

2.

This equation should certainly be considered as the simplest and the most
significant among non-integrable differential equations. In particular, new
group-theoretic investigations show that this equation can be interpreted as
an analogue of the algebraic equation of the fifth degree.

Clairaut (1713–1765), who is particularly famous for the investigation
of spiral curves, preoccupied himself with equations of the form

y − xy′ − ϕ(y′) = 0,

whose integration theory, as is well known, is connected with the notion of
linear coordinates. Therefore, one can say that the origin of the notion of
linear coordinates (and furthermore, of duality) goes back to Clairaut.
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A further important contribution to the theory of differential equations
was made by d’Alembert (1717–1783). By formulating the general me-
chanical principle,∗ bearing his name, he reduced all problems of dynamics
to differential equations and furnished Newton’s revolutionary mechanical
ideas with a general and definite form. Furthermore, d’Alembert’s elegant
investigations of ordinary and linear partial differential equations were also
very important.

4. The names of Euler, Lagrange and Laplace, Monge, Ampére and
Pfaff determine a new epoch in the general theory of differential equations
characterized in particular by the fact that partial differential equations
were also included into the general theory.

In regard of the above I obviously can not dwell upon every contribution
to the theory of differential equations made by these great mathematicians
and their equally renowned followers: Gauss, Cauchy, Fourier, Abel, Jacobi
and Riemann. However, I will at least try to outline in Chapter I several
most important trends in recent studies on differential equations. I will
dwell upon only those trends which are connected with my investigations
in the field. Then I give in Chapter II a proper survey of some of my own
theories that till now have only been sketched in the Norwegian language. In
the next chapters I describe in detail important general integration theories
also developed by myself.

∗Recently Mr. Ostwald tried to formulate a general principle aimed at embracing all
natural laws. However, as I already said before, the existing mathematical formulation
of the principle is unfortunately so vague and unclear that mathematicians can not
understand its meaning. Provided that the principle is properly formulated one can
answer the question wether e.g. Hertz had similar ideas.



Chapter 1

Comparative review of new

studies on differential

equations

5. In the beginning of this chapter, a survey of investigations on differential
equations made after Euler and Lagrange is given. Although these observa-
tions may seem incomplete and imperfect, nevertheless they enlighten the
tendencies of our own endeavor. Particularly, we dwell on theory of charac-
teristics developed by Monge, Laplace, Ampére and Darboux thus providing
a basis for our own investigations represented in the next chapters.

§ 1. Different directions in theory of differen-

tial equations

In my opinion, the major part of papers on differential equations published
within the last 120 years can be divided into four or five categories having
much in common.

6. I assign to the first category first of all investigations on partial dif-
ferential equations of the first order started by Euler, Lagrange and Monge
and continued by Pfaff, Cauchy, Hamilton, Jacobi, A. Mayer and others.
To the same category I refer research on partial differential equations of
second and higher orders started by Monge and Laplace. Among followers
of Laplace and Monge in this field are Ampére, Darboux and some other
French mathematicians who ensured a considerable advance in the theory
of differential equations. In all these works the notion of characteristics
introduced by Monge played an important part implicitly or explicitly.

4
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7. To the second direction I refer investigations started by d’Alembert,
Fourier and Cauchy and continued by Riemann, Weierstrass, Méray, Schwarz,
C. Newmann, Poincaré, Picard and many other outstanding mathemati-
cians dealing with integrability conditions and solution of initial value prob-
lems.

8. The third direction comprises the most part of recent studies on linear
differential equations based on the general theory of functions developed by
Cauchy and Abel. It should be noted that Gauss and Riemann paved the
way in this direction, but Fuchs (1866) is to be considered as its founder.

The notion of discrete groups introduced by Galois enlightened new hori-
zons in this direction. It neither occurs explicitly in the works of Riemann∗

known to me nor in earlier papers of Fuchs. To the best of my knowledge,
the first works where Galois groups are applied in the general theory of (lin-
ear) differential equations are publications of C. Jordan of the first half of
1874. Moreover, Fuchs made a further progress by applying (1875) Cayley’s
theory of invariants to linear differential equations. In addition it should
be mentioned that the same results, as Klein demonstrated later, can be
derived much simpler and even in a more complete form via combination of
the above C. Jordan’s investigations with F. Klein’s determination† (1874)
of all discrete projective groups on the line.

Numerous function-theoretic investigations of Schwarz, Hermite, Thomé,
Frobenius, Fuchs, Klein, Poincaré, Picard, Appell, Painlevé and others be-
long to this direction. There is no need to dwell upon these results here.
Nevertheless, we will consider further (although only in outline) investiga-
tions of Cockle, Laguerre and Halphen as well as Picard and Vessiot on
linear differential equations.

9. To the fourth direction I refer those investigations where my general
notion of continuous groups is applied in integration theory explicitly or
implicitly. In works of this direction a fundamental role is also played by
the notion of differential invariant which follows directly from the notion of
group.

I do not consider it necessary to dwell upon the history of origin of these

∗It is sufficient that in Riemann’s papers, as well as in many earlier works, the notion of
group occurs implicitly. However, it is still unknown whether the notion of group belongs
to Riemann. The fact that Riemann does not even quote Galois in his investigations of
Abelian integrals does not show clearly whether he was aware of Galois’ works and ideas.

†In November 1873 I informed Klein that I had found all continuous projective groups
with one variable. This information, if I am not mistaken, stimulated Klein to determine
all discrete projective groups with one variable in the spring of 1874.

It is also interesting to note that already at that time (letter of 30 April 1874) Klein
occupied himself with the problem of all single-valued functions of a discrete projective
group.
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two notions. All these investigations are based on my discovery dating back
to 1869–1870 that integration methods of earlier mathematicians which have
been regarded as independent theories can be deduced from the general
principle furnished by the notion of continuous groups. This observation
lead me at once to a series of new, although simple, integration methods
all having group-theoretic nature (Ges. d. Wiss., Christiania 1871, Math.
Ann. Bd.V(1)).

10. In 1872 I outlined several integration theories based on the the-
ory of invariants of the infinite group of all contact transformations as
well as the theory of invariants of the infinite group of all point trans-
formations (cf. short Rèsumè mehrerer neuer Theorien, April 1872; Zur
Theorie der Differentialprobleme, October 1872; Zur Invariantentheorie der
Berührungstransforma-tionen, December 1872; Ges. d. Wiss., Christiania(2)).
I represent these theories in detail in the same journal in 1873–February
1875; cf. Math. Ann. Bd. VIII and XI(3).

There is no need to cite my numerous publications on the same subject
that followed. I would like only to point out that the most important results
are summarized in Math. Ann., Bd. XXIV and XXV(4).

It is typical for all my investigations that I do not restrict myself by
deriving known integrations but I rather give in each case all possible re-
ductions. It should be noted of course, that my proof of impossibility of
further reductions is not yet exhaustive.

11. Further I refer to this direction remarkable works of Laguerre and
Halphen on transformations of ordinary linear differential equations. This
investigations in fact deal with the infinite group:

x1 = ϕ(x), y1 = yχ(x),

which is mentioned by neither of the authors of course(5). I think that
Laguerre (1879) and Halphen (1882) did not know my theory of invariants of
contact transformations and my integration theories based on it, otherwise
they would certainly mention many similarities between the two theories∗.

I should also mention that already in 1870 the English mathematician
Cockle developed ideas on linear differential equations having, in particular,
connection with Laguerre’s ideas.

Finally, I refer to this direction a series of new investigations by Picard
and Vessiot, importance of which I already pointed out several times.

∗The fact that Halphen was acquainted with my earlier works on curves and surfaces
with infinitely many projective transformations follows from quotes in his dissertation
(1879). However, the fact that at first he was not aware of significance of my integration
theories follows from publication in 1879–1881 of his integration theories which have
a very special character. Moreover, his theories are incomplete because he does not
minimize the order and number of operations necessary for integration.
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12. If the historical exposition given here is correct, I can claim that I
have been the first to use the concept of groups in the integration theory of
differential equations.

Within Fuchs’ direction the concept of groups, namely discrete groups,
was used for the first time by C. Jordan in 1874. On the other hand my
theory of groups of functions goes back to 1872, whereas the origin of my
integration theory of a complete system with a known finite or infinite group
can be traced even earlier.

13. Of course I am well aware of many important investigations on
differential equations which can be referred to neither of the four above
directions. They involve Briot and Bouquet’s function-theoretic investiga-
tions, further works by Darboux on algebraic differential equations as well
as valuable investigations initiated by Bruns and Poincaré on the three body
problem and several other function-theoretic investigations.

The above historical comments do not lay claim to be complete. How-
ever since the number of investigations on differential equations, especially
during the last decades, increases so rapidly it seems reasonable enlighten
the relations between all these investigations. I will consider this issue in
detail elsewhere when I finish studying the necessary bibliography.

14. These diverse directions have numerous points of contact of a highest
interest. My own main endeavor is to apply the notion of continuous groups
to the first three directions.

I have already shown in my earlier papers that it is natural to consider all
the theory of first-order partial differential equations from a group-theoretic
point of view.

In the present paper I am trying to reduce the theory of partial dif-
ferential equations of an arbitrary order to the theory of first-order partial
differential equations as much as possible and thus to make the general
theory open for the group-theoretic approach. I investigate this direction
further in my next paper, reported to the Scientific Society of Christiania
in the beginning of the last year.

§ 2. Theory of characteristics of partial dif-

ferential equations

15. It follows from Lagrange’s theory of complete integrals of a partial
differential equation of the first order

F (x, y, z, p, q) = 0

that, as Monge pointed out, all integral surfaces of the equation which
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contact each other in a point, have a general curve and contact each other
along this curve. Monge called these curves characteristics∗. He discovered
that every equation F = 0 has (at most)∞3 characteristics, and that every
integral surface contains∞1 characteristics. Whence, he made a conclusion
that one can draw only one integral surface through every non-characteristic
curve.

Monge extended the notion of characteristics to partial differential equa-
tions in x, y, z of an arbitrary order, although not in a precise form.

16. This extension for equations of the second order

F (x, y, z, p, q, r, s, t) = 0

looks approximately as follows.
Monge designated the curves satisfying the equation

∂F

∂r
dy2 − ∂F

∂s
dydx+

∂F

∂t
dx2 = 0

as characteristics. Thus, every integral surface contains∞1 Monge’s charac-
teristics which split into two different families, and hence cover the surface
twice, provided that the expression

4
∂F

∂r

∂F

∂t
− (

∂F

∂s
)2

does not vanish.
17. These curves are most readily defined indirectly. Namely, if one

draws a non-characteristic curve on an arbitrary integral surface, then there
is no other integral surface osculating the given surface along this curve.

Likewise the notion of characteristics extends to arbitrary partial differ-
ential equations in the variables x, y, z.

18. This approach lead Monge and Ampére to integration theories which
reduce any partial differential equation of the form

A(rt− s2) +Br + Cs+Dt+ E = 0 (1)

to an ordinary differential equation.
Namely, Monge and Ampére discovered that it is possible to determine

three linear differential equations

akdx+ bkdy + ckdz + dkdp+ ekdq = 0 (k = 1, 2, 3) (1′)

∗Monge’s chief contribution to the theory of differential equations is that he made this
discipline approachable from a conceptual viewpoint by introducing elementary notions.
He and his contemporaries lacked free treatment of the imaginaries, the concept of n-
dimensional spaces as well as some function-theoretic rigor.
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which hold for every characteristic of one family. The similar total system,
satisfying the characteristics of the second family, is not considered here.

One can encounter several different significant cases. Together with
Monge and Ampére we consider particularly the case when the total sys-
tem (1′) is integrable, i.e. we assume that there exist two and only two
independent integrals

u(x, y, z, p, q), v(x, y, z, p, q).

Both u and v have constant values on every integral surface along a
characteristic. However, the values of u and v, in general, vary while passing
to another characteristic on the same surface. Consequently, u and v are
connected, on every individual integral surface, by the relation

v − ϕ(u) = 0.

The form of the relation is naturally not always the same for different inte-
gral surfaces.

Since u and v are given functions of x, y, z, p, q, the equation

v − ϕ(u) = 0

is a partial differential equation of the first order. Specifically, the equation

v − ϕ(u) = 0

represents infinitely many first-order partial differential equations for ϕ is
an arbitrary function.

19. Consequently, the common integral surfaces of the above Monge–
Ampére equation of the second order are found by determining the solutions
of all first-order equations

v − ϕ(u) = 0

and singling out those solutions that satisfy the above second-order equa-
tion.

It is readily seen now that there exists one and only one second-order
partial differential equation which is satisfied by integral surfaces of all equa-
tions

v − ϕ(u) = 0.

Indeed, both equations

dv

dx
− ϕ′(u)

du

dx
= 0,

dv

dy
− ϕ′(u)

du

dy
= 0
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obtained by differentiation yield upon eliminating ϕ′(u) the single equation

dv

dx

du

dy
− dv

dy

du

dx
= 0,

which is obviously a second-order partial differential equation identical to
the above Monge–Ampére equation.

20. Thus, one comes to the following beautiful result discovered by
Monge and Ampére.

Theorem. Suppose that the characteristic strips of the first order (be-
longing to one family) satisfy the equations of the form

u(x, y, z, p, q) = a = const., v(x, y, z, p, q) = b = const.

on integral surfaces of the Monge–Ampére equation

Ar +Bs+ Ct+D + E(rt− s2) = 0.

Then all integral surfaces are obtained by determining the general interme-
diate integral:

v − ϕ(u) = 0

and defining the corresponding integral surfaces of these first order partial
differential equations.

21. Let us consider the Monge–Ampére equation (1) again and find its
integral surface containing a given curve x = X(τ), y = Y (τ), z = Z(τ) and
a given developable surface along this curve. To solve this problem we first
express both quantities u(x, y, z, p, q) and v(x, y, z, p, q) as functions of τ by
substituting there the equations of the curve and the corresponding relations
p = P (τ), q = Q(τ). Then we eliminate τ and consider the resulting relation
v−ϕ(u) = 0 as a first-order partial differential equation.(6) Finally, we find
the integral surface of this first-order equation containing the given curve.

We do not dwell here on simplification of the integration procedure pos-
sible in particular cases.

22. Let us take now an arbitrary partial differential equation of the
second order

F (x, y, z, p, q, r, s, t) = 0.

The characteristic strips of the second order∗ satisfy a total system of
six linear differential equations of the form

{
akdx+ bkdy + ckdz + dkdp+ ekdq+

+fkdr + gkds+ hkdt = 0
(k = 1, 2, 3, . . . , 6) (2)

∗I call a characteristic a characteristic strip of the first or second, . . . order when I
take into account not only the values of x, y, z along the characteristic but also the values
of the derivatives p, q, r, s, t . . . .
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for all integral surfaces.
Now let us suppose together with Darboux that this total system is

integrable and admits precisely two independent integrals

u(x, y, z, . . . , r, s, t), v(x, y, z, . . . , r, s, t).

Then, the values of u and v on every integral surface remain unaltered along
a characteristic (of one family), whereas they vary, in general, when shifting
from one characteristic to another on the same integral surface. Whence
Darboux makes a conclusion that every integral surface of F = 0 satisfies a
definite equation of the form

v − ϕ(u) = 0.

Since the form of the function ϕ is given, this new equation is a second-
order partial differential equation which has common integral surfaces with
F = 0.

23. Although it was not Darboux’s concern, we would like to find an
integral surface of F = 0, that contains a given curve

y = Y (x), z = Z(x),

and contacts a given developable surface along this curve. In other words,
given a strip

y = Y (x), z = Z(x), p = P (x), q = Q(x),

we have to find the corresponding integral surface F = 0.
In order to determine the quantities of r, s, t as functions of x for all

points of the given curve, it suffices, in general, to use the equations

P ′ = r + sY ′, Q′ = s+ tY ′

together with dF = 0. As it has already been noted by Monge and Cauchy
this procedure is ineffective if the determinant

1 Y ′ 0
0 1 Y ′ = FrY

′2 − FsY
′ + Ft

Fr Fs Ft

vanishes in all points of the given curve, i.e. when the curve is a charac-
teristic. Bearing in mind this exception, and using the above reasoning one
can determine not only r, s, t, but also third- and higher-order derivatives
along the curve as functions of x. Using the equations

y = Y (x), z = Z(x), P = P (x), q = Q(x),
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r = R(x), s = S(x), t = T (x),

we express u(x, . . . , t) and v(x, . . . , t) as functions of x :

u = U(x), v = V (x)

along the curve. Whence eliminating x we obtain a certain relation between
u and v :

v − ϕ(u) = 0.

Since firstly, as it is known from Cauchy’s general theory that given initial
conditions determine an integral surface of F = 0, secondly, there cer-
tainly exists one and only one equation v − ψ(u) = 0 which holds for all
points of our integral surface, and finally we already know that the equation
v − ϕ(u) = 0 obtained above holds for ∞1 points of our integral surface,
we conclude that the equation v − ϕ(u) = 0 holds for all points of our sur-
face. We will show later how this considerations allow one to determine the
integral surface.

24. Darboux also noticed that the linear differential equations (2) pos-
sess a square root and therefore they represent two total systems in fact.
He restricted himself to the case when both of these total systems have two
independent integrals

u1, v1 and u2, v2.

Consequently, every integral surface of F = 0 satisfies definite equations
v1 − ϕ1(u1) = 0 and v2 − ϕ2(u2) = 0 simultaneously.

Conversely, Darboux showed that for any given functions ϕ1 and ϕ2 the
following three second-order partial differential equations:

F = 0, v1 − ϕ1(u1) = 0, v2 − ϕ2(u2) = 0

furnish an unboundedly integrable system(7); its ∞3 common integral sur-
faces are determined by means of ordinary differential equations.

25. This is the crux of the Darboux theory, which as he mentioned
himself can be extended to several directions.

He paid a special attention to the case of a second-order equation when
both of its total systems of characteristic strips of the first order have two
integrals, u1, v1 and u2, v2, respectively. He pointed out that in this case the
system of equations

F = 0, v1 − ϕ1(u1) = 0, v2 − ϕ2(u2) = 0

is always unboundedly integrable. In this manner Darboux integrates by
means of ordinary differential equations all partial differential equations
common integral of which belongs to Ampére’s first class.
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26. Unfortunately, Darboux gave only an outline of his valuable and far-
reaching investigations. Therefore, his publications by no means contain the
full utilization of his new ideas.

M. Lévy∗ amplified Darboux’s theory considerably by an important al-
though obvious remark.

Lévy treated a second-order partial differential equation F = 0 which
has common integral surfaces with an equation of the second or higher order.
The analytic representation of these surfaces does not depend on arbitrary
constants alone. He discovered that these common integral surfaces pos-
sess characteristic strips which are determined by a simultaneous system of
ordinary differential equations.

Specifically, Lévy discovered that if there are two such second-order
equations, then all common integral surfaces osculating each other in one
point always osculate each other along a curve which represents a charac-
teristic for both differential equations.

Whence, he made a conclusion that a second-order equation F = 0 can
be dealt with by integration of a simultaneous system of ordinary differential
equations, provided that at least one of the two total systems for charac-
teristic strips, e.g. of the m-th order, possesses two independent integrals
u, v. In this way Lévy deals with second–order partial differential equations,
general integral of which does not belong to Ampére’s first class.

Lévy indicated that one has to integrate three systems of ordinary dif-
ferential equations.

27. However, in 1874 I noticed that it is always sufficient to integrate
two simultaneous systems of ordinary differential equations under Lévy’s
assumptions. Namely, upon obtaining two quantities u and v by integrating
the repeatedly mentioned total system, one can pose oneself the problem
of finding such an integral surface of F = 0 which contains a given curve
and contacts a given developable surface along it. These initial conditions
provide four relations (cf. p. 10 and further)

y = Y (x), z = Z(x), p = P (x), q = Q(x),

which determine the values of y, z, p, q as functions of x along the curve. Fur-
thermore, it follows from the above procedure that the functions Y, Z, P,Q
satisfy the relation

Z ′ − P −QY ′ = 0.

Let us denote the values of r, s, t along the curve by R(x), S(x), T (x).
They are determined by the relations

P ′ = R− SY ′ = 0, Q′ − S − TY ′ = 0,

∗Comptes Rendus 1872.
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F (x, Y, Z, P,Q,R, S, T ) = 0,

which, in general, are solvable with respect to R,S and T. If we assume for
the sake of simplicity that u and v contain only derivatives of the first and
second order, we readily define u and v as functions of x

u = U(x), v = V (x),

whence, upon eliminating x we obtain a relation

v − ϕ(u) = 0.

According to Darboux, this equation has common integral surfaces with
the equation F = 0, that do not depend on arbitrary constants only. The
corresponding characteristic strips can be obtained, as Lévy pointed out, by
means of integration of a simultaneous system. One singles out among these
strips those∞1 which have a common system of values x, y, z, p, q, r, s, t with
the surface-strips

y = Y, z = Z, p = P, q = Q, r = R(x), s = S(x), t = T (x).

This completes the determination of the desired integral surface∗ for F = 0.
28. I present here the considerations that assured me initially that

Lévy’s statements are correct.
First let us take a first-order partial differential equation F (x, y, z, p, q) =

0. If we consider all integral surfaces of this equation that have a common
element x, y, z, p, q, then the corresponding values of r, s, t satisfy two linear
equations. Now one takes the equation

0 =
1

2
r(X − x)2 + s(X − x)(Y − y) +

1

2
t(Y − y)2 + . . . ,

which represents the Dupin indicatrix of all these surfaces. These second-
order curves furnish a bundle comprising ∞1 concentric conic sections that
contact each other in two points.

This observation leads directly to the result fundamental for the Laplace
and Monge integration theory of the equation F (x, y, z, p, q) = 0, namely
to the following theorem.

If two integral surfaces of an equation F (x, y, z, p, q) = 0 have a common
element x, y, z, p, q, then they also have a common neighboring element.

On the other hand, let us assume together with Darboux and Lévy that
there exist two second-order partial differential equations

r − f(x, y, z, p, q, s) = 0, t− ϕ(x, y, z, p, q, s) = 0

∗Lie, Verhandl. der Ges. der Wissensch. zu Christiania 1874, p. 247(8).
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which have ∞∞ common integral surfaces and hence meet the condition
f ′ϕ′− 1 = 0, then one immediately arrives at the conclusion that the third-
order indicatrix-curves of these surfaces:

α(X − x)3+3β(X − x)2(Y − y) + 3γ(X − x)(Y − y)2+ δ(Y − y)3+ . . . = 0

are ∞1 osculating each other curves of the third-order.
Whence it follows immediately that all common integral surfaces oscu-

lating each other at one point, osculate each other along a curve.



Chapter 2

Addition to the Monge’s

theory of characteristics

29. Understanding the above Monge, Amperé, Darboux and Lévy’s theories
required a lot of independent work due to their short representation, espe-
cially of Lévy’s investigations. Then I immediately noticed that Darboux’s
new ideas did not enjoy a full application in Lévy’s works. Subsequently, I
outlined several methods and completed the theory of characteristics of my
predecessors considerably in my report to the Scientific Society of Christia-
nia of February 1880(9).

Since in this chapter I am going give a detailed representation of my old
theories I consider it reasonable to explain my usual terminology.

We say that a system of two second-order partial differential equations

F1(x, y, z, p, q, r, s, t) = 0, F2(. . .) = 0 (3)

is unboundedly integrable if these equations possess common integral surfaces
which do not satisfy any other differential equations of the second or first
order.

However, according to Darboux’s general theory, two and only two cases
are conceivable, namely when the equations possess ∞4 or ∞∞ common
integral surfaces, respectively. In the latter case I say that our unboundedly
integrable system of second-order partial differential equations constitutes
an involutory system, or a Darboux system.

Accordingly, I say that a system of partial differential equations of the
m-th order is unboundedly integrable if the equations possess common inte-
gral manifolds which satisfy no other equation of the m-th or lower order.
Further, I call an unboundedly integrable system of differential equations a
Darboux system if the common integral manifolds do not depend on arbi-
trary constants only. In particular, I call a Darboux system an involutory

16
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system if the number of common integral manifolds has its maximum value.
In the special case (3) that we considered first every Darboux system is

an involutory one. However, this is not always true. As a rule there are
several different classes of unboundedly integrable systems that are called
Darboux systems in my terminology. Among these classes the involutory
systems represent a separate class which is to be considered as the most
important one.

30. Now let us obtain Lévy’s result again and consider the unboundedly
integrable system of the second order:

F1(x, y, z, p, q, r, s, t), F2(. . .) = 0.

If we select ∞3 surfaces among all integral surfaces of the system, we
can arrange these ∞3 surfaces in infinitely many ways into ∞1 families
approximately defined by the equation

Φ(x, y, z, a, b) = c.

Here a, b, c are arbitrary constants, c having a fixed value for all surfaces of
one family.

Eliminating the parameters a and b from the equation Φ = c and its
differential consequences:

Φx + Φzp = 0, Φy + Φzq = 0,

one obtains a first-order partial differential equation

V (x, y, z, p, q) = c.

For every value of the parameter c, the latter equation has at least ∞2

common integral surfaces with the equations F1 = 0, F2 = 0. Thus one
arrives at the following problem. Given an unboundedly integrable system
F1 = 0, F2 = 0, find all equations V (x, y, z, p, q) = c having at least ∞2

common integral surfaces with F1 = 0 and F2 = 0 for every value of c. This
requirement is entailed by the fact that the four second-order equations

F1 = 0, F2 = 0,

Vx + Vzp+ Vpr + Vqs = 0, Vy + Vzq + Vps+ Fqt = 0

must have at least ∞3 common integral surfaces.
Eliminating r, s and t from these equations, we obtain one or sometimes

two equations of the form

Ω(x, y, z, p, q, Vx, Vy, Vz, Vp, Vq) = 0
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homogeneous with respect to derivatives of V.
31. Furthermore, we can certainly assume that the equations F1 = 0

and F2 = 0 have the following form∗:

r +R(x, y, z, p, q, s) = 0, t+ T (. . .) = 0.

Differentiation of both equations with respect to x and y leads to the rela-
tions

α +Rsβ + . . . = 0,
β + Rsγ + . . . = 0,

Tsβ + γ + . . . = 0,
Tsγ + δ + . . . = 0.

for determining the third-order derivatives(10) α, β, γ, δ.
If the determinant

1 Rs 0 0
0 1 Rs 0
0 Ts 1 0
0 0 Ts 1

= 1− TsRs ≡ 1− T ′R′

does not vanish, our unboundedly integrable system has precisely ∞4

integral surfaces. If the determinant vanishes identically, the system
F1 = 0, F2 = 0 is a Darboux system or obviously an involutory system.

32. Elimination of r, s and t from the four equations

r +R = 0, t+ T = 0,

Vx + Vz p+ Vp r + Vq s = 0, Vy + Vz q + Vp s+ Vq t = 0

yields one or two first-order partial differential equations determining V as
a function of the five variables x, y, z, p, q. The number of the equations
depends on whether the third-order determinants

Vq −R′Vp, T ′Vq − Vp, Vq(Vq −R′Vp), Vp(T
′Vq − Vp)

of the matrix

1 R′ 0
0 T ′ 1
Vp Vq 0
0 Vp Vq

∗Our system can always be reduced to this form by means of an appropriate contact
transformation.
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vanish identically or not. One can verify that the equations Vq − R′Vp = 0
and T ′Vq − Vp = 0 imply 1 − R′T ′ = 0. Hence, the system of equations
r +R = 0, t+ T = 0 is involutory.

However, in this case the quantities

R′ =
Vq

Vp

, T ′ =
Vp

Vq

are functions of x, y, z, p, q, and R and T have the form

R = s
Vq

Vp

+m(x, y, z, p, q) = as+m

T = s
Vp

Vq

+ n(x, y, z, p, q) =
1

a
s+ n.

Consequently we obtain the equations(11)

Vx + Vzp− Vp

(
s
Vq

Vp

+m

)
+ Vqs = 0,

Vy + Vzq + Vps− Vq

(
s
Vp

Vq

+ n

)
= 0.

Since the terms with s in these equations cancel out, V must satisfy the
first-order partial differential equations

Vx + Vzp−mVp = 0, Vy + Vzq − nVq = 0,

Vq − aVp = 0.

It immediately follows that V = c is a common intermediate integral of
equations F1 = 0, F2 = 0 and we can disregard this case here.

33. Thus, let us consider an unboundedly integrable system of two
second-order partial differential equations

F1(x, y, z, p, q, r, s, t) = 0, F2(. . .) = 0.

Here the following three cases are possible.
Our equations can have a common intermediate integral

W (x, y, z, p, q) = c

obtained by integration of a first-order ordinary differential equation. In
this case the system F1 = 0, F2 = 0 is equivalent to the equations

dW

dx
= 0,

dW

dy
= 0.
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Furthermore, it is possible that the equations F1 = 0, F2 = 0 have ex-
actly ∞4 integral surfaces defined by integration of a fourth-order ordinary
differential equation.

Finally, one can consider the case when F1 = 0, F2 = 0 have ∞∞ com-
mon integral surfaces among which, however, there exist no more than ∞2

surfaces satisfying one and the same first-order partial differential equation.
34. These three cases are distinguished by the following criterion.
One brings the equations F1 = 0, F2 = 0 to the form

r +R(x, y, z, p, q, s) = 0, t+ T (. . .) = 0

and considers the equations

Vx + Vzp− VpR + Vqs = 0, Vy + Vzq + Vps− VqT = 0. (4)

If s falls out from these two linear partial differential equations, then
this is the first case. In this case R and S have the forms

R = a(x, y, z, p, q, )s+m(x, y, z, p, q), S =
1

a
s+ n(x, y, z, p, q),

and three linear partial differential equations

Vq − aVp = 0, Vx + pVz −mVp = 0, Vy + qVz − nVq = 0

together with the fourth equation, obtained via the Poisson bracket, de-
fine a complete system. This system has one and only one solution V =
W (x, y, z, p, q). It follows that W = c is the desired intermediate integral.

If the system (4) does not meet the above criterion, then elimination
of s from (4) leads to a single first-order partial differential equation for
V (x, y, z, p, q) :

Ω(x, y, z, p, q, Vx, Vy, Vz, Vp, Vq) = 0,

homogeneous with respect to the derivatives Vx, . . . .
Given an arbitrary solution V (x, y, z, p, q) of Ω = 0, the equations

F1 = 0, F2 = 0, V = c

provide an unboundedly integrable system with ∞2 common integral sur-
faces for every value of the constant c. Obviously, there always exist ∞∞

different equations V = c defining ∞2 integral surfaces for the system
F1 = 0, F2 = 0.

However it should be noted, that one can by no means make a conclusion
from the above that the mentioned equations F1 = 0 and F2 = 0 have ∞∞

common integral surfaces. This happens if and only if the quantities RsTs−1
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vanish identically. Otherwise the equations F1 = 0, F2 = 0 have only ∞4

common integral surfaces.
35. Thus, given an unboundedly integrable second-order system:

F1(x, y, z, p, q, r, s, t) = 0, F2(. . .) = 0 (5)

it is always reasonable to look for a first-order partial differential equation

V (x, y, z, p, q) = c

satisfied by at least∞2 common integral surfaces of the system. Eliminating
r, s, t from the equations F1 = 0, F2 = 0 and

Vx + Vzp+ Vpr + Vqs = 0, Vy + Vzq + Vps+ Vqt = 0

one arrives at a single first-order partial differential equation

Ω(x, y, z, p, q, Vx, Vy, Vz, Vp, Vq) = 0,

for determining V as a function of x, y, z, p, q. This is possible if we ignore
the case when F1 = 0 and F2 = 0 have a common intermediate integral.

We intend to demonstrate that the partial differential equation Ω = 0 is
always semilinear∗. We show further that if

z = f(x, y)

is a common integral surface for both equations F1 = 0, F2 = 0, then the
three equations

z = f(x, y), p = fx, q = fy

define a two-dimensional manifold in the five-dimensional space x, y, z, p, q,
the manifold being in my terminology a proper integral manifold of the
first-order partial differential equation Ω = 0.

36. Indeed, let
z = f(x, y, a, b, c)

be the equation for ∞3 common integral surfaces of both equations F1 =
0 and F2 = 0. Then there exist infinitely many functions V (x, y, z, p, q)
satisfying two second-order partial differential equations

Vx + Vzp+ Vpr + Vqs = 0, Vy + Vzq + Vps+ Vqt = 0

upon substitution z = f(x, y, a, b, c) (cf. p. 17 and further).

∗Cf. my paper in Göt. Nachrichten, October 1872, p. 480 and further(12).
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Let us solve the equations z = f, p = fx, q = fy with respect to a, b, c :

a = A(x, y, z, p, q), b = B(x, y, z, p, q), c = C(x, y, z, p, q)

and introduce the notation

Φ(x, y, A,B,C) ≡ Φ(x, y, a, b, c).

One can see now that the functions V and f satisfy the following equations
identically: {

Vx + Vzp+ Vpfxx + Vqfxy ≡ 0,

Vy + Vzq + Vpfxy + Vqfyy ≡ 0.
(6)

However the equations

F1(x, y, z, p, q, fxx, fxy, fyy) = 0, F2(. . .) = 0 (7)

are also satisfied identically. Eliminating fxx, fxy, fyy from the equations (6)
and (7) one obtains the following equation:

Ω(x, y, z, p, q, Vx, Vy, Vz, Vp, Vq) = 0.

The only assumption regrading the function V is that each of the∞1 equa-
tions V = c has at least ∞2 common integral surfaces with the equations
F1 = 0 and F2 = 0.

37. Let us assume that the equation z = f(x, y, a, b, c) provides ∞3

common integral surfaces for the equations F1 = 0, F2 = 0 and use the
notation

Ψ(x, y, A,B,C) ≡ Ψ.

Analytically, our assumption means that the equations

F1(x, y, z, p, q, fxx, fxy, fyy) = 0, F2(. . .) = 0 (7)

are satisfied identically.
The equations

z = f(x, y, a, b, c), p = fx, q = fy

define ∞3 two-dimensional point manifolds in the five-dimensional space
x, y, z, p, q, each of them having ∞4 elements with the coordinates∗

x, y, z, p, q, Vx : Vy : Vz : Vp : Vq

∗Math. Ann. Bd. IX, pp. 250–251(13).
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determined by the following five equations:

z = f, p = fx, q = fy,

Vx + Vzfx + Vpfxx + Vqfxy = 0, Vy + Vzfy + Vpfxy + Vqfyy = 0.

These∞3 point manifolds possess∞3 ·∞4 =∞7 elements which are singled
out from ∞9 elements of the five-dimensional space by the equations

Vx + Vzp+ Vpfxx + Vqfxy = 0, Vy + Vzp+ Vpfxy + Vqfyy = 0. (6)

38. Invoking our previous considerations, let the partial differential
equations F1(x, . . . , t) = 0, F2 = 0 have more than ∞3 common integral
surfaces. Then both equations (6) may have ∞∞ different forms. However,
it is readily seen, that our ∞7 elements in a five-dimensional space satisfy
an equation having a definite form, namely the equation

Ω(x, y, z, p, q, Vx, Vy, Vz, Vp, Vq) = 0

obtained by elimination of fxx, fxy, fyy from the equations (7) and(6).
This proves our previous statement that the first-order partial differ-

ential equation Ω(. . .) = 0, considered in the space x, y, z, p, q, is satisfied
by every two-dimensional point manifold z = f, p = fx, q = fy provided
that the equation z = f represents in the three-dimensional space x, y, z a
surface satisfying both equations F1 = 0 and F2 = 0.

39. If the unboundedly integrable system F1 = 0, F2 = 0 in the space
x, y, z has only∞4 integral surfaces z = ϕ(x, y, a, b, c, d) the result is trivial.
Namely, the equations

z = ϕ(x, y, a, b, c, d), p = ϕx, q = ϕy

determine in the space x, y, z, p, q exactly ∞4 two-dimensional point mani-
folds, whose ∞4 · ∞4 =∞8 elements

x, y, z, p, q, Vx : Vy : Vz : Vp : Vq

obviously satisfy one and only one equation

Θ(x, y, z, p, q, Vx, Vy, Vz, Vp, Vq) = 0.

Thus, every ∞4 point manifold provides, according to my terminology, a
complete solution of the first-order partial differential equation Θ = 0.

40. The obtained result is of special interest since two partial differential
equations F1 = 0, F2 = 0 compose an involutory system of equations if they
have ∞∞ common integral surfaces z = f.
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Then, as it is known from the theory of first-order partial differential
equations, every proper integral manifold, i.e. every integral manifold that
has the maximum possible number of elements, is generated by characteris-
tic strips. In particular, it is known that integral manifolds of the equation
Ω = 0 are generated by the available∞7 characteristic strips and that every
integral manifold contains ∞3 characteristic strips.

We claim that the locus of a strip in a five-dimensional space is a curve,
not a point. In other words, we claim that the quantities x, y, z, p, q can
have constant values not for every characteristic strip. This immediately
follows from the fact that at least some of the five values Vx, Vy, Vz, Vp, Vq

appear in Ω = 0.
Moreover, the three values x, y, z can also have constant values not for

every characteristic strip. This is provided by the fact that the number
of existing two-dimensional integral manifolds is at least ∞4 and that the
set of all two-dimensional manifolds does not satisfy any first-order partial
differential equation other than Ω = 0 so that every characteristic strip
belongs at least to one two-dimensional manifold z = f, p = fx, q = fy. It
follows that if x, y, z or only x, y have constant values for a characteristic
strip, then z, p, q are also constant for the same strip.

Then,∞7 characteristic strips in five-dimensional spaces are represented
by Ω = 0 and by seven additional equations involving the quantities

x, y, z, p, q, Vx : Vy : Vy : Vz : Vp : Vq,

and containing seven arbitrary constants. These equations yield two and
only two equations in x, y, z with arbitrary constants:

ϕ1(x, y, z, c1, . . . , c7) = 0, ϕ2(. . .) = 0.

However, it follows from the above that in the three-dimensional space
all the surfaces z = f are generated by infinitely many curves belonging to
the family ϕ1 = 0, ϕ2 = 0.

41. It remains only to prove that the family of curves ϕ1 = 0, ϕ2 = 0
contains not∞7, but∞5 curves only and hence the number of characteristic
curves in five-dimensional spaces is also exactly ∞5, although the number
of characteristic strips in the same spaces is ∞7∗.

∗I paid attention to first-order partial differential equations with the number of char-
acteristic strips larger than that of characteristic curves already in my first work on the
general theory of partial differential equations (Scientific Society of Christiania 1872,
Kurzes Résumé. . . (14)).

I will dwell upon important relations between the notions of Darboux system and
involutory system elsewhere.
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Namely, since the number of available two-dimensional integral mani-
folds of the equation Ω = 0 is expressed by the symbol ∞∞, then every
integral manifold can contain only ∞1 characteristic curves. It follows that
every characteristic curve in five-dimensional spaces represents the locus of
∞2 characteristic strips.

Further, it follows that only∞1 characteristic curves pass through every
point of a five-dimensional space. These curves satisfy three non-linear
equations of the form

ϕ(x, y, z, p, q, dx, dy, dz, dp, dq) = 0.

Given an arbitrary curve satisfying these three equations one constructs
∞1 contacting characteristics and obtains a two-dimensional proper integral
manifold of the equation Ω = 0 and simultaneously an integral surface of
the involutory system F1 = 0, F2 = 0.

This, I believe, provides a proper generalization of Lévy’s theory and
discloses its very essence.

42. Consider now an unboundedly integrable system of three first-order
equations:

F1(x, y, z1, z2, p1, q1, p2, q2) = 0, F2 = 0, F3 = 0, (A)

where z1 and z2 are functions of x, y. Any solution

z1 = f(x, y), z2 = ϕ(x, y)

to this system defines a two-dimensional manifold in the four-dimensional
space x, y, z1, z2.

Since the system F1 = 0,F2 = 0,F3 = 0 is unboundedly integrable,
there exist at least ∞3 such two-dimensional integral manifolds. If the
number of these manifolds is precisely∞3, then it follows immediately from
my general theory that there exists a definite semilinear first-order partial
differential equation,

Φ

(
x, y, z1, z2,

∂V

∂x
,
∂V

∂y
,
∂V

∂z1
,
∂V

∂z2

)
= 0,

for which these ∞3 manifolds are solutions in my sense and moreover they
provide a complete solution. However, it seems unexpected at first that our
integral manifolds z1 = f, z2 = ϕ furnish solutions of a partial differential
equation Φ = 0 if their number is more than ∞3.

43. Let us assume that the involutory system F1 = 0,F2 = 0,F3 = 0
contains, inter alia,∞2 integral manifolds not satisfying any parameter-free
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finite relation ψ(x, y, z1, z2, ) = 0. These manifolds satisfy two finite equa-
tions in x, y, z1, z2 with two parameters a and b. Let us bring one of these
relations to the form

V (x, y, z1, z2, a)− b = 0

and differentiate it with respect to x and y :

Vx + Vz1p1 + Vz2p2 = 0, Vy + Vz1q1 + Vz2q2 = 0.

Elimination of p1, p2, q1, q2 from these equations and F1 = 0,F2 = 0,F3 = 0
yields a relation

Ω(x, y, z1, z2, Vx, Vy, Vz1 , Vz2) = 0,

i.e. a first-order partial differential equation. We assume here without
further discussion that the above relation is the only one.

Let us prove now that this partial differential equation is semilinear and
that every integral manifold z1 = f(x, y), z2 = ϕ(x, y) of our involutory
system (A) solves the equation Ω = 0.

44. In order to prove this let us take ∞2 arbitrary integral manifolds

z1 = f(x, y, a, b), z2 = ϕ(x, y, a, b)

of the involutory system (A) and note that every such manifold possesses
∞3 elements with coordinates

x, y, z1, z2, Vx : Vy : Vz1 : Vz2

determined, according to my general theory, by z1 = f, z2 = ϕ together
with the equations

Vx + Vz1fx + Vz2ϕx = 0, Vy + Vz1fy + Vz2ϕy = 0.

Solving z1 = f, z2 = ϕ with respect to a, b :

a = A(x, y, z1, z2) b = B(x, y, z1, z2),

and denoting for the sake of brevity

ψ(x, y, A,B) ≡ ψ,

one obtains two first-order partial differential equations from

Vx + Vz1fx + Vz2ϕx = 0, Vy + Vz1fy + Vz2ϕy = 0. (B)

Their solutions represent the ∞2 above chosen integral manifolds
z1 = f, z2 = ϕ of the involutory system F1 = 0,F2 = 0,F3 = 0.
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The form of the equations (B) depends more or less upon choice of in-
tegral manifolds of the involutory system. However, it is possible to find a
first-order partial differential equation of an absolutely definite form, satis-
fied by all integral manifolds of the involutory system.

Indeed, there exist three equations

Fk(x, y, f, ϕ, fx, ϕx, fy, ϕy) = 0,

satisfied identically in x, y, a, and b, for which we have already selected ∞2

integral manifolds of the involutory system. Accordingly, there exist three
equations

Fk(x, y, z1, z2, fx, ϕx, fy, ϕy) = 0

satisfied identically in x, y, z1, z2.
Let us eliminate fx, ϕx, fy, ϕy from the system of five equations com-

prising the above three equations and two first-order partial differential
equations (B). The resulting first-order partial differential equation

Ω(x, y, z1, z2, Vx, Vy, Vz1 , Vz2) = 0,

obviously has a definite form and is satisfied by every integral manifold of
the involutory system F1 = 0, . . . ,F3 = 0. This proves my earlier statement.

45. We arrive at the fundamental conclusion that every integral mani-
fold of the involutory system is generated by characteristics.

Indeed, our partial differential equation Ω = 0 has ∞5 characteristic
strips in the four-dimensional space x, y, z1, z2. Every integral manifold of
the involutory system (A) interpreted as an integral manifold of Ω = 0,
contains ∞2 characteristic strips. This however does not imply that every
integral manifold contains ∞2 different characteristic curves. The fact that
there can not exist ∞∞ different two-dimensional integral manifolds of the
involutory system (A) also makes it impossible.

Thus, every two-dimensional integral manifold z1 = f, z2 = ϕ of our in-
volutory system F1 = 0,F2 = 0,F3 = 0 contains∞2 different characteristic
strips and only ∞1 different characteristic curves. Every such curve is the
locus of ∞1 characteristic strips.

46. Thus, the semilinear partial differential equation Ω = 0 in a four-
dimensional space has ∞5 characteristic strips, but only ∞4 characteristic
curves, among which ∞1 always pass through a point x, y, z1, z2, in general
position.

It follows from the above that every point x, y, z1, z2 is the vertex of an
elementary cone containing only ∞1 directions of motion and thus being
defined not by one, but by two Monge equations

Φ1(x, y, z1, z2, dx1, dy1, dz1, dz2) = 0, Φ2 = 0.
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We conclude further that the locus of all ∞2 characteristic strips that
pass through one point is a two-dimensional manifold which is eo ipso an
integral manifold of the involutory system.

47. It should be noted that the above properties of the equation
Ω = 0 by no means result directly from the fact that this first-order
partial differential equation is semilinear.

Given a semilinear equation in four variables x1, x2, x3, x4 :

Π(x1, x2, x3, x4, p1, p2, p3, p4) = 0,

let us consider x as given constants and p as homogeneous plain coordinates
in a three-dimensional space. Then, in general, Π = 0 represents a ruled
surface in this three-dimensional space∗. Namely, in the given case, the
ruled surface reduces to a curve in a three-dimensional space.

48. Let us proceed to further conclusions.
In the x, y, z1, z2 space there are obviously infinitely many curves, namely

∞∞, satisfying both Monge equations Φ1 = 0,Φ2 = 0. If we take an arbi-
trary integral curve of the equations Φ1 = 0,Φ2 = 0, it will contact a certain
characteristic curve of the equation Ω = 0 in every point. The ∞1 char-
acteristic curves thus obtained generate a two-dimensional point manifold
which furnishes an integral manifold of the equation Ω = 0 as well as of the
involutory system.

This reduces integration of the involutory system

F1(x, y, z1, z2, p1, q1, p2, q2) = 0, F2 = 0, F3 = 0

to the simplest operations.
49. Consider now an arbitrary unboundedly integrable system of dif-

ferential equations. We can assume that the system is of the first-order
without loss of generality. Here the independent and dependent variables
are x1, . . . , xn and z1, . . . , zm, respectively. Further we set

∂zi
∂xk

= pik.

Thus, the equations of our unboundedly integrable system have the form

Fj(x1, . . . , xn, z1, . . . , zm, p11, . . . , pmn) = 0 (j = 1, 2, . . . , q). (a)

Let us take n equations

Vxk + Vz1 · p1k + Vz2 · p2k + . . .+ Vzm · pmk = 0 (k = 1, 2, . . . , n) (b)

∗Göttinger Nachrichten. October 1872 (15).
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and assume that the number q is so large that one can eliminate the mn
quantities pik from q + n equations (a) and (b). This yields a system of
first-order partial differential equations for the single unknown function V :

Ωk(x1, . . . , xn, z1, . . . , zm, Vx1 , . . . , Vxn , Vz1 , . . . , Vzm) = 0.

We claim that this system of first-order partial differential equations is semi-
linear. Moreover we assert that a solution

z1 = ϕ1(x1, . . . , xn), z2 = ϕ2, . . . , zm = ϕm

of the original unboundedly integrable system F1 = 0, . . . , Fq = 0 provides,
in my sense, a solution of the system Ω1 = 0,Ω2 = 0, . . . .

50. For the proof, we note that the equations z1 = ϕ1, . . . , zm = ϕm

represent in the space x1, . . . , xn, z1, . . . , zm an n-dimensional manifold. Ac-
cording to my general theory, the elements

x1, . . . , xn, z1, . . . , zm, Vx1 , . . . , Vxn , Vz1 , . . . , Vzm

of this manifold are determined by n equations

Vxi + Vz1

∂ϕ1
∂xi

+ · · ·+ Vxm

∂ϕm

∂xi

= 0.

We can assume that the equations z1 = ϕ1, . . . , zm = ϕm contain m
arbitrary parameters a1, . . . , am and that they are solvable with respect to
this parameters:

ai = Ai(x1, . . . , xn, z1, . . . , zm) = Ai(x, z).

Let us use the notation

ψ(x1, . . . , xn, A1, . . . , Am) ≡ [ψ(x1, . . . , xn, a1, . . . , am)].

Then, n equations

Vxi + Vz1

[
∂ϕ1
∂xi

]
+ · · ·+ Vzm

[
∂ϕm

∂xi

]
= 0 (i = 1, . . . , n) (c)

provide a linear system of first-order partial differential equations. The
equations

z1 = ϕ1(x1, . . . , xn, a1, . . . , am), . . . zm = ϕm

furnish a complete solution of this system.
51. Note that the form of equations (c) is determined not only by

the form of the original equations Fj = 0. Taking different equations z1 =
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ϕ1(x, a), . . . , zm = ϕm(x, a) as a basis, one obtains different systems (c).
However, it is possible to determine a system of first-order partial differential
equations with independent variables x1, . . . , xn, z1, . . . , zm and with one
unknown function V satisfied by all manifolds z1 = ϕ1, . . . , zm = ϕm.

Indeed, the equations

Fj

(
x1, . . . , xn, z1, . . . , zm,

[
∂ϕ1
∂x1

]
, . . . ,

[
∂ϕm

∂xn

])
≡ 0

hold identically for all manifolds z1 = ϕ1, . . . , zm = ϕm. Eliminating
[∂ϕi : ∂xk] from the latter equations and from Equation (c), one obtains a
system of first-order partial differential equations

Ωk(x1, . . . , xn, z1, zm, Vx1 , . . . , Vxn , Vz1 , . . . Vzm) = 0

satisfied by all manifolds z1 = ϕ1, . . . , zm = ϕm. The resulting system, if
it exists at all, has a definite form; moreover, it can be found simply by
elimination.

52. Thus, the desired result is obtained and it provides the following
theorem which also holds for partial differential equations of an arbitrary
higher order for they can always be reduced to first-order equations.

Theorem. Given an unboundedly integrable system of q first-order par-
tial differential equations with n independent and m dependent variables:

Fj(x1, . . . , xn, z1, . . . , zm, p11, . . . , pmn) = 0

(
pik =

∂zi
∂xk

)
,

one considers the equations

Vxi + Vz1p1i + · · ·+ Vzmpmi = 0 (i = 1, . . . , n).

Elimination of nm quantities pik from the above q + n equations (if it is
possible) yields a system of first-order partial differential equations with the
unknown function V. The resulting system

Ωk(x1, . . . , xn, z1, . . . , zm, Vx1 , . . . , Vxn , Vz1 , . . . , Vzm) = 0

is satisfied by all integral manifolds z1 = ϕ1, . . . , zm = ϕm of the equations
F1 = 0, . . . , Fq = 0.

53. The question immediately arises of what is the practical significance
of this theorem.

In order to answer this question we note first of all that if the above
elimination is possible and the equations Ωk = 0 are obtained, then we can
always find a family of point manifolds generating all integral manifolds.
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The procedure requires only integration of a system of ordinary differential
equations.

The precise∗ answer to the question is that every system Fj = 0 can be
reduced to another unboundedly integrable system

F ′
j(x

′
1, x

′
2, . . . , x

′
n−1, z

′
1, z

′
2, . . . , p

′
11, . . .) = 0

with less than n independent variables provided the system Ωk = 0 is really
available.

For example, if the number n of the independent variables in the original
system Fj = 0 equals two, then integration of the system Fj = 0 can be
reduced to integration of ordinary differential equations provided that the
system Ωk = 0 exists.

Reduction of the number of independent variables is to be considered,
in general, more effective than reduction of number of dependent variables.
The latter, in its turn, is to be compared with reduction of order of a system.

∗All the considerations represented in this chapter can be found, although in a short
form, in my above-mentioned work of 1880(16).

The following significant conclusion was not at the time so clearly formulated.



Chapter 3

Every infinitesimal contact

transformation of a partial

differential equation generates

a special integral manifold

54. An infinitesimal point or contact transformation admitted by a given
partial differential equation maps, in certain cases, all integral manifolds of
the equation into themselves.

Consider, for example, a linear partial differential equation with constant
coefficients(17)

ap+ bq − c = 0,

which, as is well known, can be rewritten as follows:

a
∂f

∂x
+ b

∂f

∂y
+ c

∂f

∂z
= 0.

Its integral surfaces
z

c
− x

a
= Ω

(x
a
− y

b

)

are cylindrical surfaces with parallel generators. Each of these surfaces is
transformed into itself by means of the infinitesimal translation(18)

a
∂f

∂x
+ b

∂f

∂y
+ c

∂f

∂z
·

Furthermore, given an arbitrary linear partial differential equation(19)

ξ(x, y, z)p+ η(x, y, z)q − ζ(x, y, z) = 0,

32
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every integral surface admits the infinitesimal transformation with the sym-
bol

ξ
∂f

∂x
+ η

∂f

∂y
+ ζ

∂f

∂z
·

This statement is a group-theoretic formulation of Lagrange’s famous
theory of linear partial differential equations with three variables.

55. Turning to a non-linear partial differential equation of the first
order,

W (x, y, z, p, q) = 0,

one can also find infinitesimal transformations mapping its every integral
surface into itself. Namely, this property holds for every infinitesimal con-
tact transformation with the characteristic function of the form

%(x, y, z, p, q) ·W,

where %(x, y, z, p, q) is supposed to be regular for the general solution x, y,
z, p, q of the equation W (x, y, z, p, q) = 0.

This observation extends to all first-order partial differential equations
with an arbitrary number of variables, and provides a basis for all integration
theories that reduce such equations to ordinary differential equations∗.

56. However, there are infinitesimal contact transformations, which
although map a partial differential equation (of the first order) into itself,
and hence convert every integral manifold into an integral manifold, still do
not leave all integral manifolds invariant.

This chapter deals with similar cases and in particular discusses the
question of how one can benefit from existence of such transformations for
integrating partial differential equations. We shall prove that such transfor-
mations can always be used to find the well-known solutions by means of a
relatively simple integration procedure. These solutions are characterized by
being invariant with respect to the above infinitesimal transformations(20).

The next chapter demonstrates that such transformations can be used
in many other ways.

To provide a better understanding of my theory I begin with several
simple but instructive examples.

57. Consider a linear partial differential equation(21)

α(y, z)p+ β(y, z)q − γ(y, z) = 0, (8)

∗I have proved earlier that an infinitesimal contact transformation never maps all
integral manifolds of a partial differential equation of the second or higher order into
themselves.



34 Sophus Lie

with coefficients independent of x. If new variables x1, y1, z1 are introduced
by a transformation

x1 = x+ a, y1 = y, z1 = z (a = const.)

the form of the equation remains unaltered. Geometrically it means that
every translation along the x-axis transforms every integral surface into an
integral surface. In other words, the infinitesimal translation

∂f

∂x

converts every integral surface into an integral surface.
In this particular case our general theory allows to find the integral

surfaces of equation (8) that are mapped into themselves by the infinitesimal
translation ∂f/∂x.

Indeed, let us make the substitution

z = Y (y)

in the linear partial differential equation (8) and obtain the following first-
order ordinary differential equation:

β(y, Y )
dY

dy
− γ(y, Y ) = 0

with the solution Y (y) depending on one arbitrary constant.
Hence, among ∞∞ integral surfaces of every linear partial differential

equation in x, y, z admitting an infinitesimal transformation along the x-axis
and thus having the form

α(y, z)p+ β(y, z)q − γ(y, z) = 0

there are ∞1 cylindrical surfaces mapped into themselves by any infinitesi-
mal translation.

58. Consider an arbitrary linear partial differential equation, e.g. with
three independent variables:

Af = 0 = α
∂f

∂x
+ β

∂f

∂y
+ γ

∂f

∂z

and assume that an infinitesimal transformation

Xf = 0 = ξ
∂f

∂x
+ η

∂f

∂y
+ ζ

∂f

∂z
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mapping our equation Af = 0 into itself is known.
According to my general theory this assumption is represented analyti-

cally in the form
X(A(f))− A(X(f)) = % · Af.

Furthermore, invoking Jacobi and Bours’ general theories, we deduce form
the latter equation that the following two equations

Af = 0, Xf = 0

have a common solution ϕ(x, y, z). If we set ϕ equal to an arbitrary constant
we obtain ∞1 surfaces

ϕ(x, y, z) = a,

which are generated by path curves of the infinitesimal transformation Xf
and, moreover, satisfy the partial differential equation

αp+ βq − γ = 0.

Thus we arrive at the following theorem.
Theorem. If an infinitesimal transformation

Xf = ξ
∂f

∂x
+ η

∂f

∂y
+ ζ

∂f

∂z

converts every integral surface of the linear partial differential equation

αp+ βq − γ = 0 = Af

into an integral surface, then there are ∞1 integral surfaces of Af = 0,
which are mapped into themselves by the infinitesimal transformation(22).

59. One can easily extend this theorem to arbitrary partial differential
equations admitting a known or unknown infinitesimal contact transforma-
tion.

Consider a first-order partial differential equation with three variables

F (x, y, z, p, q) = a = const.

and assume that F = a (for every value of a) admits the infinitesimal
contact transformation

[Wf ]−W
∂f

∂z
·

The notation

x = x1, y = x2, z = x3, −p = p1 : p3, −q = p2 : p3,
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brings our partial differential equation to the form

N(x1, x2, x3, p1, p2, p3) = a,

whereas the symbol of the infinitesimal contact transformation becomes the
Poisson bracket (Hf), where

H = −p3W (x1, x2, x3,−p1 : p3,−p2 : p3).

Here N and H are homogeneous in p. More specifically, N is homogeneous
of order zero and H of the first order.

The condition that every of ∞1 partial differential equations N = a is
invariant under the infinitesimal contact transformation (Hf) is expressed
analytically by the equation

(HN) = 0

holding identically. Whence, introducing the notation

H : p3 =M(x1, x2, x3, p1, p2, p3) = −W

one concludes that two equations

N = a, M = 0

have ∞1 common integral surfaces for every value of a.
Indeed, the relation (HN) = 0 immediately provides the equation

(p3M,N) = 0 = p3(MN) +
∂N

∂x3
M,

that shows that the expression in brackets (MN) vanishes when M = 0.
The resulting integral surfaces of each equation N = a are indeed

mapped into themselves by the infinitesimal contact transformation (Hf).
60. The proof can be simplified in a certain sense if we retain the

original coordinates x, y, z, p, q. Then the invariance of every of ∞1 partial
differential equations

F (x, y, z, p, q) = a

with respect to the infinitesimal contact transformation

[Wf ]−W
∂f

∂z

is equivalent to the condition that the expression

[WF ]−W
∂F

∂z
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vanishes identically. It follows that the bracket

[WF ]

vanishes for W = 0. This demonstrates again that the equations

F = a, W = 0

have ∞1 common integral surfaces which are mapped into themselves by
our infinitesimal contact transformation.

61. The theory extends to all first-order partial differential equations
with n variables and offers the clue to all investigations on first-order partial
differential equations by Lagrange and his followers till Jacobi inclusively.
The discovery of the transformation theory of first-order partial differential
equations outlined here initiated my general investigations in the field∗.

I do not consider it necessary to dwell here on these considerations dating
back to 1871–1872, although they lead me to the general theory of contact
transformations as well as to my theory of transformation groups. Instead,
I consider it reasonable to concentrate on extension of my previous develop-
ments† to arbitrary partial differential equations of the second and higher
orders.

In the next chapter I will show that one can gain even more benefit for
integrating partial differential equations from infinitesimal contact transfor-
mations. Although on cursory examination developments in the next chap-
ter may seem to be based on absolutely different principles as compared to
the present chapter, both theories actually have a common source.

62. Let us assume that a second order partial differential equation to
be integrated:

F (x, y, z, p, q, r, s, t) = 0

admits a known infinitesimal contact transformation

[Wf ]−W
∂f

∂z
·

Then the first-order partial differential equation

W (x, y, z, p, q) = 0,

has ∞2 common integral surfaces with F = 0.
In order to prove this statement let us introduce new variables via a

contact transformation

x′ = X(x, y, z, p, q), y′ = Y, z′ = Z, p′ = P, q′ = Q

∗Cf. Kurzes Résumé . . . , Scientific Society of Christiania, Aprill 1872(23).
†Math. Annalen Bd. XI, p. 490, footnote(24).
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such that the known infinitesimal contact transformation takes the form

∂f

∂x′
·

In the new variables the equation F = 0 turns into a second-order partial
differential equation, admitting the translations along the x′-axis, i.e. it
does not contain x′ and hence has the form

Φ(y′, z′, p′, q′, r′, s′, t′) = 0.

The substitution
z′ = Y (y′)

yields the second-order ordinary differential equation determining Y (y ′) :

Φ

(
y′, Y, 0,

dY

dy′
, 0, 0,

d2Y

dy′2

)
= 0.

Its solution Y (y′) depends on two arbitrary parameters.
This completes the proof of our statement provided that both W and F

are regular on points x, y, z, p, q satisfying W = 0.
63. The above important, although particular, result can be formulated

as follows.
Let a second-order partial differential equation

F (x, y, z, p, q, r, s, t) = 0

admit the infinitesimal contact transformation

[Wf ]−W
∂f

∂z

then the partial differential equations

F = 0, W = 0

have ∞2 common integral surfaces provided that both W and F behave
regularly on points x, y, z, p, q satisfying the equation W = 0. In other
words, the equation F = 0 has, in general, ∞2 integral surfaces which are
mapped into themselves by the infinitesimal transformation∗.

64. Although this theorem is very simple, it reveals a real source of
numerous well known but isolated from each other results.

∗Under some conditions all integral surfaces of W = 0 may simultaneously satisfy the
equation F = 0.
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If a second-order partial differential equation admits all motions, it rep-
resents simply a relation between two radii of curvature:

Ω(R1, R2) = 0.

Integral surfaces of such equation include known cylindrical surfaces, sur-
faces of revolution and helical surfaces. In each case one obtains at least
∞7 integral surfaces admitting an infinitesimal motion.

For example, there are surfaces of revolution and helical surfaces which
are simultaneously minimal surfaces, otherwise they have a constant curva-
ture or a constant mean curvature.

Some partial differential equations

Ω(R1, R2, ) = 0

admit not only all ∞6 motions but also all ∞7 similarity transformations.
This is the case with the equation

R1 : R2 = a = const.

It follows that there are surfaces with constant ratio of radii of curvature
that either represent spiral surfaces or admit an infinitesimal transformation

c1(xp+ yq+ zr) + c2(yp− xq) + c3(zq− yr) + c4(xr− zp) + c5p+ c6q+ c7r.

This observation led me in due time to discover minimal surfaces which are
spiral surfaces.

65. The above theorem admits further generalizations, which are of
great interest and can be considered as a natural consequence of my general
theory.

Let us consider partial differential equations in x, y, z. Repeating the
above speculations almost word for word we arrive at the following theorem.

Theorem. If an m-th order partial differential equation

F

(
x, y, z, p, q, r, . . . ,

∂mz

∂ym

)
= 0

admits an infinitesimal contact transformation

[Wf ]−W
∂f

∂z
,

then both partial differential equations

F = 0 W = 0
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have, in general, ∞m common integral surfaces obtained by integration of
an m-th order ordinary differential equation only. This auxiliary equation
contains arbitrary constants, which disappear upon integration of the first-
order equation W = 0.

66. Consider as a first example to the above theorem the fourth order
partial differential equation defining all isothermic surfaces. This differential
equation admits obviously the ten-parameter group of all conformal point
transformations. Our theory provides ∞9+4 isothermic surfaces each of
them admitting an infinitesimal conformal transformation.

As a second example we consider the fourth-order partial differential
equation defining all translation surfaces. This equation admits all ∞12

linear point transformations of the space. It follows that there are

∞11+4

translation surfaces admitting an infinitesimal linear transformation.

These translation surfaces are interesting by themselves and they can
be really determined. The surfaces fall into two categories depending on
whether the infinitesimal linear transformation leave invariant or permute
their points at infinity.

However, we can neglect the first category, for it is clear from the above
that it includes only developable surfaces or more specifically only cylindri-
cal surfaces.

Thus, we can assume that our infinitesimal transformation permutes
the points at infinity among themselves. Then, the plane at infinity will
undergo projective transformation and will contain∞1 curves which remain
invariant. These curves are defined by the equation

ω

(
dy

dx
,
dz

dx

)
= a = const.

Assigning the parameter a two definite values a1 and a2 we choose two
curves. My general theory of translation surfaces provides a partial differ-
ential equation

R(p, q)r + S(p, q)s+ T (p, q)t = 0.

The integral surfaces of the latter equation are translation surfaces. Their
generating curves always have ∞1 tangents intersecting every of the two
above chosen curves at infinity.

If

ξ
∂f

∂x
+ η

∂f

∂y
+ ζ

∂f

∂z
(D)
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is the symbol of the given infinitesimal transformation, the desired transla-
tion surfaces are given by the partial differential equations

ξp+ ηq − ζ = 0, (E)

Rr + Ss+ Tt = 0, (F)

where the first equation contains eleven essential constants and in the second
equation the parameters a1, a2 occur. Then the equations (E) and (F) have
∞2 common integral surfaces for any values of the above thirteen param-
eters. This follows from the fact that the second-order partial differential
equation (F) admits the infinitesimal transformation (D) as it is evident
from geometric considerations.

67. In order to find the finite equations of these surfaces, one can first
determine the path curves

x̄ = a, ȳ = b

of the infinitesimal transformation (D) and write an ordinary differential
equation in x̄, ȳ :

W (x̄, ȳ, ȳ′, ȳ′′) = 0.

Then the integral of the above equation:

Π(x̄, ȳ, α, β) = 0

represents the desired surfaces.
The above operations can be carried out effectively. In this regard we

make the following observations.
Since a linear transformation maps any parallelogram to a parallelogram

and hence carries congruent curves to similar curves, it maps a translation
surface into a translation surface. If a translation surface admits a linear
infinitesimal transformation one has two possibilities, namely, ∞1 congru-
ent similar curves of our surface are either permuted among themselves or
mapped to other families of congruent curves. However, there is no need
to consider the second possibility since it can occur only for the surfaces
which I defined earlier and which can be interpreted as translation surfaces
in infinitely many ways. Thus, it remains to consider only the possibility
when the given infinitesimal linear transformation leaves every family of
congruent curves invariant. In this case every individual curve of such fam-
ily admits an infinitesimal linear transformation, because two independent
linear [infinitesimal] transformations carry every curve of the family to a
similar neighboring curve. It follows that one can determine both families
of congruent curves lying on our surface, and hence the surface itself.



42 Sophus Lie

In particular, there are rectilinear minimal surfaces among the trans-
lation surfaces defined above which admit an infinitesimal linear transfor-
mation. We mention in passing that these helical surfaces are the only
rectilinear translation surfaces which are not cylinders at the same time.

68. We would like to indicate how one can find all these surfaces by
means of simplest possible calculations.

In earlier papers I demonstrated that one can bring every linear homo-
geneous infinitesimal transformations to a canonical form. If the canonical
form is

1...3∑

i,k

cikxipk

one takes a transformation
∑

cikxipk + d1p1 + d2p2 + d3p3

and tries to eliminate all the constants d1, d2, d3, or at least some of them
by means of the change of variables

x′k = xk + αk.

In particular, if the determinant

|cik|

does not vanish, one can simply set all dk equal to zero.
Then one has to find all translation surfaces admitting the infinitesimal

transformation ∑

ik

cikxikpk +
∑

k

dkpk (G)

and note at the same time that every obtained curve admits, according to
the above, a known infinitesimal transformation

∑
cikxipk +

∑
ekpk.

One defines the ∞2 path curves of the latter transformation and chooses
one of them, for example C; then all∞1 path curves of the first infinitesimal
transformation that intersect C generate a surface possessing the required
property.

These simple calculations provide the desired translation surfaces.
69. For example, let us take the infinitesimal transformation

axp+ byq + czr (abc 6= 0),



General theory of partial differential equations 43

add a zero-order term to it and obtain the transformation

(ax+ l)p+ (by +m)q + (cz + n)r.

The path curves of the latter transformation are given by the equations

ax+ l = (ax0 + l)eat,

by +m = (by0 +m)ebt,

cz + n = (cz0 + n)ect.

Accordingly, the path curves of the first transformation are defined by the
equations

x̄ = xeaτ , ȳ = yebτ , z̄ = zecτ .

If one eliminates x, y, z from these six equations, assigning x0, y0, z0 definite
values and regarding t and τ as parameters, one obtains the following three
equations:

ax̄ = −leaτ + (ax0 + l)ea(τ+t)

bȳ = −mebτ + (by0 +m)eb(τ+t)

cz̄ = −necτ + (cz0 + n)ec(τ+t)

determining translation surfaces with the required properties.
70. Consider now a partial differential equation of order m with n + 1

variables:

F

(
z, x1, . . . , xn,

∂z

∂x1
, . . . ,

∂mz

∂xm
n

)
= 0

admitting q known infinitesimal contact transformations

Bkf = [Wkf ]−Wk
∂f

∂z
·

We assume that the above transformations are pairwise permutable:

BiBkf −BkBif ≡ 0,

and that their characteristic functions do not satisfy any homogeneous re-
lation

Φ(W1, . . . ,Wq) = 0.

Then the equations

W1 = 0, . . . , Wq = 0, F = 0
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have common solutions provided that the equation F = 0 behaves regularly
for a system of values z, x1, . . . , xn, p1, . . . , pn satisfying the equations

W1 = 0, . . . , Wq = 0.

In order to prove this theorem and simultaneously to specify it, we in-
troduce new variables

Z,X1, . . . , Xn, P1, . . . , Pn

so that the characteristic functions of our infinitesimal transformations take
the form

Pn, Pn−1, . . . , Pn−q+1.

In these variables the equation F = 0 takes the form

Φ

(
Z,X1, . . . , Xn−q, P1, . . . , Pn,

∂2Z

∂X2
1

, . . .

)
= 0

independent of Xn−q+1, . . . , Xn. Consequently, we set

Z = Θ(X1, . . . , Xn−q),

and obtain Θ from an obviously integrable partial differential equation of
order m with the variables

Z,X1, . . . , Xn−q.

This proves our statement and simultaneously provides an integration
method often appearing efficient in practice, although it requires more in-
tegration operations than (strictly speaking) necessary.

71. The assumption made in the previous example that all the brackets
BiBkf−BkBif vanish can be replaced by the following general supposition.

Let us suppose, for example, that the equation

F

(
z, x1, . . . , xn, . . . ,

∂mz

∂xm
n

)
= 0

admits two infinitesimal contact transformations generating a two-parameter
group. If these transformations are not commutative, we can assume that
the variables have already been chosen so that our infinitesimal transforma-
tions have the form

∂f

∂x1
, x1

∂f

∂x1
+ · · ·+ xn

∂f

∂xn

+ z
∂f

∂z
·
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According to this supposition the equation F = 0 does not contain x1 and
is homogeneous in

x2, . . . , xn, z, dx1, dx2, . . . , dxn, dz,

and hence has the form

Φ

(
x2, . . . , xn, z,

∂z

∂x1
, . . . ,

∂z

∂xn

, z
∂2z

∂x21
, . . .

)
= 0.

We set now

z = Z(x2, . . . , xn) = xnW (x2 : xn, . . . , xn−1 : xn)

and introduce the variables

x2 : xn = y2, . . . , xn−1 : xn = yn−1.

Then we have:

∂Z

∂x1
= 0,

∂Z

∂x2
=
∂W

∂y2
, . . . ,

∂Z

∂xn−1

=
∂W

∂yn−1
,

∂Z

∂xn

= W − y2
∂W

∂y2
− . . .− yn−1

∂W

∂yn−1
, . . . .

In cosequence, our partial differential equation takes the following form con-
taining only the quantities y2, . . . , yn−1,W and the corresponding derivatives
up to order m :

Π

(
W, y2, . . . , yn−1,

∂W

∂y2
, . . .

)
= 0.

71.* Let a partial differential equation F = 0 of order m with variables
z, x1, x2, . . . , xn(n > 2) admit a two-parameter group of contact transforma-
tions generated by two infinitesimal transformations

[Wkf ]−Wk
∂f

∂z
(k = 1, 2).

Then the partial differential equations

F = 0, W1 = 0, W2 = 0

have as many common solutions as possible.
72. In general, let a partial differential equation of order m with vari-

ables z, x1, . . . , xn admit a q-parameter group of contact transformations

[Wkf ]−Wk
∂f

∂z
(k = 1, 2, . . . , q)
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where W does not satisfy any relation of the form

Ω(W1 : Wq,W2 : Wq, . . . ,Wq−1 : Wq) = 0.

Then the equations

F = 0, W1 = 0, . . . ,Wq = 0

have as many common solutions as possible and every such solution is in-
variant under the q-parameter group∗.

73. Let us prove the above statement.
In general, the set of all∞2n+1 elements z, x1, . . . , xn, p1, . . . , pn contains

∞2n+1−q elements satisfying q equations

W1 = 0, . . . ,Wq = 0.

Furthermore, every element satisfying the above equations remains invariant
under every infinitesimal transformation of our group and hence under every
finite transformation of the group. In consequence the family of elements
defined by the equations W1 = 0, . . . ,Wq = 0 remains invariant under all
group transformations.

The∞2n+1−q+ε elements of our invariant family make subdomains which
individually remain invariant. The smallest invariant subdomains contain at
most∞q elements every one of which is joined with all neighboring elements
of this domain.

The ∞µ+ν elements of the family defined by W1 = 0, . . . ,Wq = 0 make
about∞µ minimal invariant subdomains Eν . Every subdomain Eν contains
∞ν elements that form a union of elements(25).

Neighboring complexes Eν have peculiar relations, namely if two neigh-
boring elements belonging to two different complexes Eν are joined, then
two arbitrary neighboring elements of the same two complexes Eν are also
joined. Therefore, ∞µ complexes of elements Eν have exactly the same
relations with each other as characteristic strips of a first order partial dif-
ferential equation.

74. It is not difficult to trace the internal reason leading to the above
result.

Our assumption that q infinitesimal contact transformations

[Wkf ]−Wk
∂f

∂z
(k = 1, 2, . . . , q)

∗We assume implicitly that the functions under consideration behave regularly for
some values of z, x1, . . . , satisfying our system of equations.



General theory of partial differential equations 47

generate a q-parameter group means that q characteristic functionsW1, . . . ,Wq

satisfy the relations

[WiWk]−Wi
∂Wk

∂z
+Wk

∂Wi

∂z
=
∑

s

ciksWs.

It follows immediately that first-order differential equations

W1 = 0, . . . ,Wq = 0

furnish, in my sense, an involutory system. This involutory system has
characteristic manifolds which are precisely complexes of elements Eν in-
troduced above.

Our earlier supposition thatWk do not satisfy any homogeneous relation
Ω = 0 can obviously be replaced by general assumptions.

75. I proved earlier a general statement that there exists a one-to-one
(i.e. not infinite-valued) correspondence between the characteristic man-
ifolds of a first-order involutory system and the first-order elements of a
properly selected space of points ζ, ξ1, . . . , ξn′ . The correspondence is estab-
lished so that two neighboring characteristic manifolds, whose neighboring
elements are always joined, are always reproduced in the space ζ, ξ1, . . . , ξn′
as two joined elements (ζ, ξ, π).

Hence, the original partial differential equation of order m and the first-
order equations W1 = 0, . . . ,Wq = 0, i.e. the system of equations

F = 0, W1 = 0, . . . ,Wq = 0 (L)

can be replaced by a single partial differential equation of order m :

Φ

(
ζ, ξ1, . . . , ξn′ , π1, . . . , πn′ , . . . ,

∂mζ

∂ξmn′

)
= 0.

Since the latter equation always has solutions, this is also true for the system
of equations (L).

76. This proves the earlier announced result. Moreover, it becomes
obvious that the above conclusions hold not only for an equation of order
m but also for an unboundedly integrable system of order m. Thus, we can
formulate the following theorem.

Theorem. If an unboundedly integrable system of partial differential
equations of order m :

Fk

(
z, x1, . . . , xn,

∂z

∂x1
, . . . ,

∂2z

∂x21
, . . . ,

∂mz

∂xm
n

)
= 0 (k = 1, 2, . . .),
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admits a continuous group of contact transformations

[Wkf ]−Wk
∂f

∂z
(k = 1, 2, . . .),

then one finds all solutions of the system F1 = 0, F2 = 0, . . . , which are
invariant under the group, by means of adding q equations:

W1 = 0, . . . ,Wq = 0

to the original equations Fk = 0. If the above q equations do not contradict
each other, they furnish an involutory system of the first order. The char-
acteristic manifolds of the latter system compose integral manifolds of the
system F1 = 0, F2 = 0, . . . provided that they are sufficient in number.

77. Consider a system of partial differential equations of the first order
determining m quantities z1, z2, . . . , zm as functions of x1, . . . , xn. Let us
denote

p
(i)
k =

∂zi
∂xk

·

and write the system in the form

Fν(x1, . . . , xn, z1, . . . , zm, p
(1)
1 , . . . , p(m)n ) = 0 (ν = 1, 2, . . .).

Every system of quantities x1, . . . , xn, z1, . . . , zm, p
(l)
1 , . . . , p

(m)
n is termed an

element. Two neighboring elements(26) are said to be united if they satisfy
the system of equations

dzi − p
(i)
1 dx1 − . . .− p(i)n dxn = 0 (i = 1, . . . ,m).

A set of united elements is termed a union of elements(27). A union of
elements contains maximum ∞n and minimum ∞1 elements.

We refer to a union of elements as a union of integrals for a system
of differential equations F1 = 0, F2 = 0, . . . , if all elements of the union
satisfy the equations Fk = 0. We distinguish between unions of integrals
V1, V2 . . . , Vn, depending on the dimension of the corresponding union of
integrals.

We say that the system of differential equations F1 = 0, F2 = 0, . . . , is
unboundedly integrable if every element x1, . . . , xn, z1, . . . , zm, p

(l)
1 , . . . , p

(m)
n

belongs at least to one union of integrals Vn of our system of equations.
Furthermore, we call the system of equations F1 = 0, F2 = 0, . . . an

involutory system if every its union of integrals Vq in general position belongs
at least to one union of integrals Vn.

78. Let us assume that a first-order involutory system

F1 = 0, F2 = 0, . . . ,
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with the independent variables x1, . . . , xn and the dependent variables
z1, . . . , zm admits given infinitesimal transformations

Ukf =
∑

ξki(x, z)
∂f

∂xi

+
∑

ζki(x, z)
∂f

∂zi
(k = 1, 2, . . . , r)

Furthermore, we assume that the latter transformations generate an r-
parameter group, i.e. that the largest determinants of the matrix

‖ξk1 . . . , ξknζk1, . . . , ζkm‖

do not vanish identically.
If sufficiently many elements in general position satisfy the extended

system of first-order equations

F1 = 0 F2 = 0, . . . ,

ζki − p
(i)
1 ξk1 − p

(i)
2 ξk2 − . . .− p(i)n ξkn = 0 (k = 1, . . . , r; i = 1, . . . ,m)

then the original system of differential equations is unboundedly integrable.
The proof is exactly the same as in the previous example.



Chapter 4

Partial differential equations

admitting an infinite group

79. The previous chapter was devoted to partial differential equations ad-
mitting a continuous group. We demonstrated that an admitted infinites-
imal transformation furnishes special integral manifolds that are mapped
by the transformation into themselves rather than into new integral mani-
folds. In consequence, if a given equation admits finite or infinite continuous
group, the above theories provide methods for obtaining certain solutions.
In case of infinite groups the solutions may depend, in general, not only on
arbitrary constants alone.

This chapter illustrates by simple examples that the above speculations
offer even more advantages. The development of new approaches which
are of the utmost importance is based on our general theory of differential
invariants. Our approach to partial differential equations admitting an infi-
nite continuous group is based on introduction of new variables, namely of a
complete system of differential invariants. According to our general theory
the latter system of invariants exists for every continuous group.

80. Example 1. Let us first consider the infinite continuous group
with the infinitesimal transformations

Z(z)
∂f

∂z

where Z is an arbitrary function of z.
If we use the usual notation Z ′, Z ′′, . . . , for the derivatives of Z, the

infinitesimal transformations of the corresponding extended groups are
written

50
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Z
∂f

∂z
+ Z ′

(
p
∂f

∂p
+ q

∂f

∂q
+ r

∂f

∂r
+ s

∂f

∂s
+ t

∂f

∂t
+ . . .

)

+Z ′′

(
p2
∂f

∂r
+ pq

∂f

∂s
+ q2

∂f

∂t
+ . . .

)
+ . . . .

In order to find all the differential invariants up to the second order we solve
the equations

∂f

∂z
= 0, p

∂f

∂p
+ q

∂f

∂q
+ r

∂f

∂r
+ s

∂f

∂s
+ t

∂f

∂t
= 0,

p2
∂f

∂r
+ pq

∂f

∂s
+ q2

∂f

∂t
= 0

which constitute a complete system according to our general theory. These
equations provide two zero-order invariants

x and y,

one first-order differential invariant

u = p : q,

and two second-order differential invariants

qr − ps

q2
=
∂u

∂x
,

qs− pt

q2
=
∂u

∂y
·

According to our general theory every differential invariant is a function of

x, y, u

and the successive derivatives

∂u

∂x
,

∂u

∂y
,

∂2u

∂x2
, . . . .

It means in my terminology that x, y and u provide a complete system of
differential invariants.

81. Every relation of the form

Ω

(
x, y, u,

∂u

∂x
,
∂u

∂y
, . . .

)
= 0

yields an invariant differential equation

W (x, y, z, p, q, r, s, t, . . .) = 0.
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If there exists an invariant differential equation of the second order which
is not reducible to the form

Ω

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0

then all 3× 3 determinants of the matrix

0 0 1 0 0 0 0 0
0 0 0 p q r s t
0 0 0 0 0 p2 p q q2

vanish whenever the above second-order equation holds. Since such an
equation is not available we make the following conclusion.

The infinite group with the infinitesimal transformations

Z(z)
∂f

∂z

has a complete system of differential invariants provided by

x, y, u = p : q.

Any second-order partial differential equation admitting all transformations
of this infinite group has the form

Ω

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0

reducible to ordinary deferential equations.
82. Similar considerations lead to the general theorem.
If anm-th order partial differential equation with variables x, y, z admits

all transformations of the infinite group

Z(z)
∂f

∂z
,

then it can be reduced without integration to an equation of order m − 1
which is expressed in a general form via x, y, u. If one can integrate this
auxiliary equation of order m−1, then one has to integrate only an ordinary
differential equation of the first order:

p− α(x, y)q = 0.

It appears that the given group

Z(z)
∂f

∂z
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can be by no means applied when dealing with our auxiliary equations.
83. Example 2. Consider the infinite group

ξ(x)
∂f

∂x
− ξ′z

∂f

∂z
,

which I defined as a canonical form while determining all infinite groups
with two variables in 1883∗. Using the common notation δx, δy, δz for the
increments of x, y, z and setting

δx = ξδτ ; δy = 0, δz = −ξ ′zδτ,

we obtain
δp = (−2ξ′p− ξ′′z)δτ, δq = −ξ′qδτ,

δr = (−3ξ′r − 3ξ′′p− ξ′′′z)δτ,

δs = (−2ξ′s− ξ′′q)δτ, δt = −δ′tδτ.
Hence, the symbol of the twice extended group has the form

X ′′f = ξ
∂f

∂x
− ξ′

(
z
∂f

∂z
+ 2p

∂f

∂p
+ q

∂f

∂q
+ 3r

∂f

∂r
+ 2s

∂f

∂s
+ t

∂f

∂t

)
−

−ξ′′
(
z
∂f

∂p
+ 3p

∂f

∂r
+ q

∂f

∂s

)
− ξ′′′z

∂f

∂r
·

The corresponding differential invariants of the zero, first and second
orders are defined as solutions of the complete system

∂f

∂x
= 0,

∂f

∂r
= 0, z

∂f

∂p
+ q

∂f

∂s
= 0,

z
∂f

∂z
+ 2p

∂f

∂p
+ q

∂f

∂q
+ 2s

∂f

∂s
+ t

∂f

∂t
= 0.

This yields one differential invariant of order zero, namely y which we denote
by µ, one differential invariant of the first order ν = q : z, and two differential
invariants of the second order:

u =
zs− pq

z3
, v =

t

z
·

Hence, the general form of an invariant differential equation of the second
order is

Ω(µ, ν, u, v) = 0.

Indeed, the above equation provides all invariant second-order partial
differential equations. This follows immediately from the fact that among
the 4× 4 determinants of the matrix

∗Verhandl. der Gesellschaft der Wissenschaften zu Christiania, 1883(28).
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1 0 0 0 0 0 0 0

0 0 z 2p q 3r 2s t

0 0 0 z 0 3p q 0

0 0 0 0 0 z 0 0

there are non-vanishing ones. For example,

1 0 0 0
0 z 2p 3r = z3,
0 0 z 3p
0 0 0 z

vanishes neither identically nor due to a second-order partial differential
equation.

84. In the given case one can readily see that all differential invariants
of the third and higher orders are obtained from µ, ν, u, v by differentiation
and hence these four quantities furnish a complete system of differential
invariants.

In particular, let us consider an arbitrary surface not satisfying any
relation of the form

W (y, q : z) = 0 =W (µ, ν).

Hence, we can use µ, ν as Gaussian coordinates for the points of this surface
or, in other words, we can take µ, ν as independent variables instead of x, y.
Then, we can prove that four values

∂u

∂µ
,

∂u

∂ν
,

∂v

∂µ
,

∂v

∂ν
(M)

are differential invariants (obviously of the third order) of our group.
In order to prove this let us choose two arbitrary m-th order differential

invariants for example, U and V and consider the equation

Φ(U, V ) = 0

with an arbitrary function Φ. Selecting all possible Φ we obtain infinitely
many m-th order differential equations every one of which represents an
intermediate integral, namely the most general intermediate integral of the
differential equation of the (m+ 1)-th order:

dU

dx

dU

dy

dV

dx

dV

dy

= 0 = ∆.
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Since the general expression Φ(U, V ) is a differential invariant, it is obvious
that ∆ = 0 is an invariant differential equation.

If U, V,W are three differential invariants, then

dU

dx

dV

dx
− c

dW

dx

dU

dy

dV

dy
− c

dW

dy

= 0.

is an invariant differential equation involving the constant c. This equation
can be rewritten in the form

dU

dx

dV

dx

dU

dy

dV

dy

:

dU

dx

dW

dx

dU

dy

dW

dy

= c.

Since c is an arbitrary constant, the left-hand side of this equation is cer-
tainly a differential invariant.

If we introduce U and W as independent variables instead of x, y, the
resulting differential invariant can be expressed via the functional determi-
nant of U and V with the independent variables U,W :

dU

dU

dV

dU

dU

dW

dV

dW

≡ dV

dW
·

85. Thus in our case the quantities (M) denoted by

uµ, uν , vµ, vν

are differential invariants. Moreover, we know eight differential invariants,
namely

µ, ν, u, v, uµ, uν , vµ, vν (N)

of order lower than four.

However, one can prove, that there exist no more than seven independent
differential invariants of the fourth or lower order. In order to calculate all
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these differential invariants we add the expressions of increments

δα = (−4ξ′α− 6ξ′′r − 4ξ′′p− ξ(4)z)δτ,

δβ = (−3ξ′β − 3ξ′′s− ξ′′′q)δτ,

δγ = (−2ξ′γ − ξ′′t)δτ,

δδ = −ξ′δ · δτ

to the following formulae obtained above:

δx = ξ(x)δτ, δy = 0, δz = −ξ ′zδτ,

δp = (−2ξ′p− ξ′′z)δτ, δq = −ξ′qδτ,

δr = (−3ξ′r − 3ξ′′p− ξ′′′z)δτ,

δs = (−2ξ′s− ξ′′q)δτ, δt = −ξ′tδτ.

The desired differential invariants are solutions of the complete system

∂f

∂x
= 0, z

∂f

∂a
= 0,

z
∂f

∂z
+ 2p

∂f

∂p
+ q

∂f

∂q
+ 3r

∂f

∂r
+ 2s

∂f

∂s
+ t

∂f

∂t
+ 4α

∂f

∂α
+ 3β

∂f

∂β
+

+2γ
∂f

∂γ
+ δ

∂f

∂δ
= 0,

z
∂f

∂p
+ 3p

∂f

∂r
+ q

∂f

∂s
+ 6r

∂f

∂α
+ 3s

∂f

∂β
+ t

∂f

∂γ
= 0,

z
∂f

∂r
+ 4p

∂f

∂α
+ q

∂f

∂β
= 0

of five independent equations with twelve independent variables. The fifth-
order determinant of the corresponding matrix has the value z4. It follows
that, on the one hand, every third-order invariant equation can be repre-
sented by a relation between differential invariants and, on the other hand,
the number of independent third-order differential invariants is

12− 5 = 7.

Whence we make a conclusion that the eight values (N) are connected
with each other by one and only one relation

W (µ, ν, u, v, uµ, uν , vµ, vν) ≡ 0.
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86. Now it is possible to develop a general integration theory for all
second-order partial differential equations admitting the above group.

Indeed, the above considerations allow to write an invariant partial dif-
ferential equation of the second order in the form

Ω(µ, ν, u, v) = 0.

Let us solve the above equation, e.g. with respect to v :

v = V (µ, ν, u)

and calculate the derivatives vµ and vν . Substitution of the resulting expres-
sions for v, vµ and vν in the equation W = 0 yields a relation

Π(µ, ν, u, uµ, uν) = 0.

This gives a possibility to reduce the definition of u as a function of µ and
ν to integration of a first-order partial differential equation, and hence to
ordinary differential equations.

However, nothing special can be said about integration of Π = 0 since Π
is an arbitrary function of its five arguments. Nevertheless, if the equation
Π = 0 is already integrated then one can employ its solution

u = U(µ, ν)

together with Ω = 0 to find v as a function of µ, ν, i.e. v = V (µ, ν).
The resulting two equations

u− U(µ, ν) = 0, v − V (µ, ν) = 0

provide, upon substitution

µ = y, η =
q

z
, u =

zs− pq

z3
, v =

t

z

a pair of second-order partial differential equations

z s− p q

z3
− U

(
y,
q

z

)
= 0,

t

z
− V

(
y,
q

z

)
= 0.

The latter equations have common integral surfaces and, moreover, con-
stitute a second-order involutory system. Therefore, one can determine
the common integral surfaces by integrating ordinary differential equations
(cf. pp. 16–24).
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Thus, if a second-order partial differential equation in variables x, y, z
admits the infinite group

ξ(x)
∂f

∂x
− ξ′ · z ∂f

∂z
,

its integration requires only successive integration of three systems of ordi-
nary differential equations.

87. One can develop corresponding theories for arbitrary systems of
differential equations in x, y, z, admitting our group. We shall restrict our-
selves to the following simple observation.

Consider a third-order involutory system

F1(x, y, z, p, q, r, s, t, α, β, γ, δ) = 0, F2 = 0

admitting our infinite group. According to the previous discussion it can
be reduced to the form

Φ1(µ, ν, u, v, uµ, uν , vµ, vν) = 0, Φ2 = 0.

Moreover, invoking the equationW = 0, we can express u and v as functions
of two variables µ and ν by solving three partial differential equations of the
first order:

Φ1 = 0, Φ2 = 0, W = 0.

Solution of the latter system is reduced to integration of ordinary differen-
tial equations (cf. p. 25 and further). Finally, we deal with the obtained
equations

u = U(µ, ν), v = V (µ, ν)

as in the previous example.
88. Given a third-order equation admitting our group, for instance the

equation
F (x, y, z, . . . , γ, δ) = 0,

we bring it to the form

Ω(µ, ν, u, v, uµ, uν , vµ, vν) = 0

and add the equation W = 0. Now we have to integrate the first-order
involutory system

Φ = 0, W = 0

with the two unknown functions u and v. Upon differentiating it twice
and eliminating v we substitute the first-order involutory system with two
unknown functions by a third-order involutory system with one function u

Θ1(µ, ν, u, uµ, . . . , uννν) = 0, Θ2 = 0.
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89. In order to generalize the obtained results I provide the following
considerations.

An involutory system with variables x, y, z has several characteristic
numbers and among them there is one characteristic number that I denote
by ω, which is undoubtedly the most important. I call the number ω a class
of the involutory system and define it as follows.

Given an involutory system of order m with variables x, y, z, we differ-
entiate it q times. The difference between the number of derivatives of order
(m + q) in the resulting system and the number of independent differential
equations of order (m+ q) is always the same no matter whether q is equal
to or greater than zero. I denote this number by ω and call it the class of
the involutory system.

Using this terminology and invoking observations given in Chapter II
we arrive to the following theorem.

Theorem. If the class of an involutory system with variables x, y, z
is equal to zero or 1, the solution of the involutory system is reduced to
ordinary differential equations.

90. However, we can formulate the following more general statement.
Theorem. Provided that an involutory system of class ω admits the

infinite group

ξ(x)
∂f

∂x
− ξ′z

∂f

∂z
,

one can reduce it to an involutory system of class (ω − 1) related to an
involutory system of the first class.

According to our earlier considerations the same statement holds for
involutory systems admitting an infinite group

Z(z)
∂f

∂z
·

Indeed, the above theorem is only a particular case of a general theorem
which can be extended to all involutory systems with an arbitrary number of
variables as well as to all infinite groups.

However, in this paper we restrict ourselves to particular cases of the
general theorem, and later we will develop the general theorem in detail.

91. Let us consider partial differential equations admitting the group

ξ(x)
∂f

∂x
+ η(y)

∂f

∂y
·

Here the twice-extended infinitesimal transformation has the form
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ξ
∂f

∂x
+ η

∂f

∂y
− ξ′p

∂f

∂p
− η′q

∂f

∂q
− (2ξ′r + ξ′′p)

∂f

∂r
−

−(ξ′ + η′)s
∂f

∂s
− (2η′t+ η′′q)

∂f

∂t
·

Since the second-order differential invariants are the solutions of the com-
plete system

∂f

∂x
= 0,

∂f

∂y
= 0,

∂f

∂r
= 0,

∂f

∂t
= 0,

p
∂f

∂p
+ s

∂f

∂s
= 0, q

∂f

∂q
+ s

∂f

∂s
= 0,

they are functions of

z and
s

pq
·

Hence, the second-order invariant differential equations can be represented
by the following general formula:

s

pq
= ϕ(z).

The methods elaborated on p. 50 and further provide two intermediate
integrals:

e−
∫
ϕdz ∂z

∂x
= A′(x), e−

∫
ϕdz ∂z

∂y
= B′(y),

that yield by means of quadrature the general integral

∫
e−

∫
ϕdzdz = A(x) +B(y).

92. Our group has four third-order differential invariants:

u, v, µ = z, ν =
s

pq

and seven invariants of the fourth order. Thus there are precisely seven
independent differential invariants of order ≤ 4. Since the following eight
quantities:

µ, ν, u, v, uµ, uν , vµ, vν

provide such invariants there exists an identical relation

W (µ, ν, u, v, uµ, uν , vµ, vν) ≡ 0.
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Given any invariant differential equation of the third order, we bring it
to the form

Ω(µ, ν, u, v) = 0

and afterwards eliminate v from W = 0. Thus, we obtain a first-order
partial differential equation determining u as a function of µ and ν. Upon
integration of the resulting equation one arrives at third-order differential
equations

u− U(µ, ν) = 0, v − V (µ, ν) = 0

that constitute a third-order involutory system of the second class.
In order to make further reduction we use two infinite subgroups of our

group, namely

ξ(x)
∂f

∂x
and η(y)

∂f

∂y
.

Moreover, both of them are invariant subgroups.
Therefore our involutory system of the second class can be reduced to a

system of the first class, and hence to ordinary differential equations in two
different ways. We content ourselves with this result and will not discuss
the question whether the obtained ordinary differential equations can be
simplified further.

93. Similar considerations lead us to the following theorem.
Theorem. If an involutory system of class n with variables x, y, z ad-

mits the infinite group

ξ(x)
∂f

∂x
+ η(y)

∂f

∂y
,

then the system can be reduced to an involutory system of class n − 2 and
to ordinary differential equations.

The theorem holds also for involutory systems in x, y, z admitting the
infinite group

ξ(x)
∂f

∂x
+ η(y)

∂f

∂y
− z(ξ′ + η′)

∂f

∂z
·

On the other hand, if an involutory system of the n-th class in variables
x, y, z admits the infinite group

ξ(x)
∂f

∂x
+ η(y)

∂f

∂y
+ ζ(z)

∂f

∂z

with several known invariant subgroups then, our problem can be reduced
to integration of an involutory system of the class n− 3, etc.

The extent of the reduction depends in every separate case on the number
of arbitrary functions in the given infinite group or more specifically, on the
class of the determining equations of the group.



62 Sophus Lie

94. Another question concerning an involutory system admitting an
unknown group of contact transformations is how one can find this group
most simply. In order to solve this question in general one has to begin
with reduction of all groups to canonical forms. As I mentioned long ago,
my general theories allow to solve all these problems rationally.

The developments presented in this paper are based, explicitly or implic-
itly, on my general transformation theory. In my next paper, the contents
of which I already reported to the Scientific Society long ago, I investigate
the question of how one can rationally apply the concept of groups to the
theory of differential equations from a general viewpoint. Although the in-
vestigations may appear to give no definite answer to the question, I hope
that my general results deserve attention of mathematicians.

95. During my lectures in the winter semester of 1893-1894 I illus-
trated theories of the last chapter by several further examples. Two of the
participants of my lectures, namely Beudon and Williams, are likely to ap-
ply the theories I outlined. These theories also attracted attention of the
Jablonowski Society∗.

∗In my recent work I gave a detailed presentation of my result, published long
ago, containing determination of all surfaces admitting a continuous projective group.
The reason for reproducing the details was that many mathematicians interested in
this result could not reproduce the simple calculations I curtailed in earlier publication
(cf. Archiv for Math., Bd. VII, Christiania, 1882(29); see also Theorie der Transfgr.,
Bd. III, Leipzig, 1893).
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Editor’s Notes

(1)Page 6. Reprinted in [27], vol. 1, paper XI, XII; vol.2, paper I.
(2)Page 6. Reprinted in [27], vol. 3, paper I, V, VI.
(3)Page 6. Reprinted in [27], vol. 3, papers VII-XVI; vol.4, papers I and III.
(4)Page 6. Reprinted in [27], vol. 6, papers II and III.
(5)Page 6. This remark provided me with an incentive to begin in 1997 the

systematic development of the infinitesimal approach to theory of invariants of
families of differential equations. Subsequently this approach was applied to
families of linear and nonlinear differential equations (see, e.g. N.H. Ibragimov
[16], Chapter 10).
(6)Page 10. In other words, Lie expresses the quantities u and v as functions of

τ by substituting in u(x, y, z, p, q) and v(x, y, z, p, q) the equations x = X(τ), y =
Y (τ), z = Z(τ) and the corresponding relations p = P (τ), q = Q(τ). Then he
eliminates τ from u = U(τ), v = V (τ) and obtains a relation v − ϕ(u) = 0.
(7)Page 12. Definition of unboundedly integrable systems is given on page 48.
(8)Page 14. Reprinted in [27], vol. 3, paper XIV, p. 205.
(9)Page 16. Reprinted in [27], vol 3, paper XXVII.
(10)Page 18. Recall the classical notation used by Lie: r = zxx, s = zxy, t = zyy,
α = zxxx, β = zxxy, γ = zxyy, δ = zyyy.
(11)Page 19. These equations are obtained from the system of four equations:

r +R = 0, t+ T = 0,

Vx + Vzp+ Vpr + Vqs = 0, Vy + Vsq + Vps+ Vqt = 0

on page 18. Specifically one has to substitute r = −R = −(s Vq
Vp

+ m) and

t = −T = −(sVp
Vq

+ n) in two last equations of the above system.
(12)Page 21. Reprinted in [27], vol. 3, paper IV, pp. 20–25.
(13)Page 22. Reprinted in [27], vol. 4, paper II, pp. 102–104.
(14)Page 24. Reprinted in [27], vol. III, paper I, p. 2.
(15)Page 28. Reprinted in [27], vol. 3, paper IV.
(16)Page 31. Reprinted in [27], vol. 3, paper XXVII.
(17)Page 32. Recall that p = ∂z/∂x, q = ∂z/∂y.
(18)Page 32. Lie denotes by

a
∂f

∂x
+ b

∂f

∂y
+ c

∂f

∂z

the infinitesimal translation x̄ ≈ x+ aε, ȳ ≈ y+ bε, z̄ ≈ z+ cε with the generator

X = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
·
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(19)Page 32. In modern literature equations of the form

ξ(x, y, z)
∂z

∂x
+ η(x, y, z)

∂z

∂y
− ζ(x, y, z) = 0

are termed quasi-linear instead of linear since their coefficients depend upon the
dependent variable z. See N.H. Ibragimov [16], Chapter 4.
(20)Page 33. Here Lie develops the general theory of group invariant solutions.
Lie was the pioneer in this field. His theory was rediscovered over and over
again in the 1950s and has been widely used in group analysis ever since. Lie’s
role in the theory of invariant solutions has been mentioned in Section 9.4 of
N.H. Ibragimov’s book [16]
(21)Page 33. In the German original, this equation is labelled as (A). I changed
the label since (A) had already been used on page 25.
(22)Page 35. This theorem means that the equation Af = 0 admitting a one-
parameter group with an infinitesimal generator X has a one-parameter family
of solutions invariant with respect to the group.
(23)Page 37. Reprinted in [27], vol. 3, paper I
(24)Page 37. Reprinted in [27], vol.4, paper III, p. 190, note 2.
(25)Page 46. Definition of union of elements is given on page 48.
(26)Page 48. The neighboring elements are written

(x1, . . . , xn, z1, . . . , zm, p
(1)
1 , . . . , p(m)n )

and

(x1 + dx1, . . . , xn + dxn, z1 + dz1, . . . , zm + dzm, p
(1)
1 + dp

(1)
1 , . . . , p(m)n ) + dp(m)n ).

(27)Page 48. Lie’s original term was Elementverein. We used the English transla-
tion union of elements suggested by J.E. Campbell and A. Cohen. See J.E. Camp-
bell [3]; A. Cohen [5].
(28)Page 53. Reprinted in [27], vol. 5, paper XIII, p. 351.
(29)Page 62. Reprinted in [27], vol. 5, paper VII.
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INTEGRATION OF A CLASS OF LINEAR

PARTIAL DIFFERENTIAL EQUATIONS
BY MEANS OF DEFINITE INTEGRALS

By Sophus Lie

Translated from German by N.H.Ibragimov(1)

[Arch.for Math., Bd.VI, Heft 3, S.328-368, Kristiania 1881. Reprinted in

[27], vol. 3, paper XXXV]

In this paper I define a wide class of linear second-order partial differ-
ential equations

R(x, y)r + S(x, y)s+ T (x, y)t+ P (x, y)p+Q(x, y)q + Z(x, y)z = 0, (1)

for which a solution with two arbitrary functions can be obtained. Any
of these arbitrary functions is contained in a definite integral, namely in
a so-called particular integral. The corresponding differential equations, in
general, cannot be solved by Laplace’s method.

To give an idea about the theories developed in what follows, I shall first
integrate two simple particular equations. Then I show how this integration
method can be extended to a large class of differential equations.

Let’s first assume the coefficients R,S, ...Z of equation (1) to be inde-
pendent of y. Then our equation admits a particular solution of the form
ecyΩ(x) with an arbitrary constant c. The quantity Ω depending on x and
c, is defined by the linear ordinary differential equation

RΩ′′ + (cS + P )Ω′ + (c2T + cQ+ Z)Ω = 0,

If R is not equal to zero, this equation has two independent solutions,
viz.

Ω1(x, c) and Ω2(x, c).

Then

ecyΩ1(x, c) and ecyΩ2(x, c).
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are two independent solutions of Equation 1, each containing an arbitrary
constant. Hence the expression

z =

β1∫

α1

f1(c)e
cyΩ1(x, c)dc+

β2∫

α2

f2(c)e
cyΩ2(x, c)dc,

where f1(c) and f2(c) are arbitrary functions of c, and α1, β1, α2, β2 are ar-
bitrary constants, is a solution of equation (1) with two arbitrary functions.
Similarly, the formula

z =
∑

k

f1(ck)e
ckyΩ1(x, ck) +

∑

k

f2(ck)e
ckyΩ2(x, ck)

provides a solution of equation (1).
Now we assume the coefficients R,S, ..., Z in (1) to be functions of x+y.

Then there exist solutions of the form

ecyW (x+ y)

with an arbitrary constant c. The quantity W depending on x+ y and c, is
defined by the linear ordinary differential equation

(R + S + T )W ′′ + (cS + 2cT + P +Q)W ′ + (c2T + cQ+ Z)W = 0.

If (R + S + T ) is not equal to zero, this equation has two independent
solutions, viz.

W1(x+ y, c) and W2(x+ y, c).

It follows, that there exist, in this case, two independent solutions of equa-
tion (1), namely:

ecyW1(x+ y, c) and ecyW2(x+ y, c),

each containing an arbitrary constant. Hence, an expression

z =

β1∫

α1

ecyW1(x+ y, c)f1(c)dc+

β2∫

α2

ecyW2(x+ y, c)f2(c)dc,

is a solution of equation (1) with two arbitrary functions.
I shall provide a background for both of the above integrations.
Given an arbitrary solution z = f(x, y) for equation (1) with coefficients

depending only on x, the function

z = f(x, y + k)
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(it may be the constant k as well) is also a solution (in general, a new
solution) of equation (1). On the other hand, if R,S, ..., Z are functions of
x+ y, then, for the arbitrary solution z = F (x, y), the expression

z = F (x+ k, y − k)

with an arbitrary constant k is again a solution. In both of these particular
cases there exists a transformation which enables one to deduce a solution
with an arbitrary constant from any given solution. We shall prove later
that both of the above integrations are based on this circumstance.

In the present paper, I begin by developing a complete transformation
theory for linear equations (1). I demonstrate that any such equation admits
infinitely many infinitesimal transformations of the form

δx

ξ(x, y)
=

δy

η(x, y)
=

δz

zf(x, y) + ϕ(x, y)
· (2)

Here ϕ is always a solution, namely an arbitrary solution of equation (1).
In general, the quantities ξ and η are equal to zero, and then f is con-
stant. In this general case I gain no advantage from the given infinitesimal
transformation.

However, if the coefficients R,S, ..., Z are linked by certain relations, the
quantities ξ and η may assume values different from zero. In this case f is
defined by a quadrature that gives an arbitrary constant c. If

w(x, y) = const., zψ(x, y) = const.

are two integrals of system (2) with ϕ = 0 then equation (1) always has a
solution of the form

z =
Ω(w)

ψ(x, y)
·

Here Ω is determined by a linear ordinary differential equation of the second
or the first order. If this auxiliary equation is of the second order, then one
can find a solution of equation (1) with two arbitrary functions as was done
previously for special cases. If the auxiliary equation is of the first order,
one finds a solution with one arbitrary function only.

The method of integration outlined here always works out if the given
equation can be reduced to the form

r + S(x)s+ T (x)t+ P (x)p+Q(x)q + Z(x)z = 0

by an arbitrary (known or unknown) contact transformation. Differential
equations that belong to this vast category, can be integrated only occasion-
ally by Laplace’s method(2), i.e., with the help of the only general theory,
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known to me for integration of second order linear partial differential equa-
tions.

It should be mentioned, by the way, that the integration theories devel-
oped in this paper can be extended to nth order linear partial differential
equations with an arbitrary number of variables as well as to systems of
such equations. This is provided that these equations admit infinitesimal
transformations in addition to those demonstrating only the linearity of
these equations. I hope to return back to this problem if I shall not learn
that my method was previously known.



First Part: Transformation

theory for linear second-order

partial differential equations

It is well known that linear second-order partial differential equations with
two independent variables can be reduced either to the form

s+ Pp+Qq + Zz = 0,

or to the form

r + Pp+Qq + Zz = 0.

Therefore we can at first restrict the discussion to these two canonical forms.
Then the obtained results can be easily extended to general equations.

I.

1. To simplify the development of the transformation theory for the
equation

s′ + P ′p′ +Q′q′ + Z ′z′ = 0, (1)

we first show that, without loss of generality, one can assume the coefficient
P ′ to be equal to zero.

Suppose that Monge’s equations for characteristics do not contain any
integrable combinations except x′ and y′. Then a contact transformation
that converts equation (1) into an equation of the same form must have
either the form

x′ = X(x), y′ = Y (y), z′ = F (x, y, z, p, q),

or the form

x′ = Y (y), y′ = X(y), z′ = F (x, y, z, p, q).

69
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We can restrict our considerations to transformations of the first type. Then
the known (derived by me) equations(3)

[x′z′] = 0, [y′z′] = 0,

show that F (4) depends only on x, y, and z. Hence the transformation under
consideration has the form

x′ = X(x), y′ = Y (y), z′ = F (x, y, z).

It follows, by the way, that any infinitesimal transformation that does not
alter equation (1) nonintegrable by Monge’s method(5), has the form:

δx = ξ(x)δt, δy = η(y)δt, δz = ζ(x, y, z)δt.

This important comment will be needed soon.
We apply a transformation of the form

x′ = x, y′ = y, z′ = F (x, y, z)

to our equation. The reckoning yields:

p′ =
dF

dz
p+

dF

dx
, q′ =

dF

dz
q +

dF

dy
,

s′ =
dF

dz
s+

d2F

dz2
pq +

d2F

dzdy
p+

d2F

dzdx
q +

d2F

dydx
,

and

s′ + P ′p′ +Q′q′ + Z ′z′ =
dF

dz
s+

d2F

dz2
pq + p

(
d2F

dzdy
+ P ′dF

dz

)

+q

(
d2F

dzdx
+Q′dF

dz

)
+

(
d2F

dxdy
+ P ′dF

dx
+Q′dF

dy
+ Z ′F

)
.

Hence F must be linear in z :

F = zf(x, y) + ϕ(x, y),

provided that the transformed equation is linear along with the given one.
The coefficient of the quantity p, namely

df

dy
+ P ′f
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vanishes after a suitable choice of f. Hence any equation (1) can be reduced
to the form

s+Qq + Zz = 0. (2)

Thus, the problem of determining all the infinitesimal contact transfor-
mations leaving invariant an equation of the form (1), is reduced to deter-
mining all the infinitesimal point transformations

δx = ξ(x)δt, δy = η(y)δt, δz = (zf(x, y) + ϕ(x, y))δt, (3)

that convert an equation of the form (2) into itself. It is assumed here only
that Equation 2 is not integrable by Monge’s method.

2. To solve this new problem, we calculate increments of the quantities
p, q, s under the infinitesimal transformation (3). For this, we construct
the equation

δ(dz − pdx− qdy) = 0

or, by permuting the symbols d and δ :

dδz − pdδx− qdδy − δpdx− δqdy = 0,

or
d(zf + ϕ)δt− pdξ − qdη − δpdx− δqdy = 0.

This equation splits into the following two equations:

δp

δt
=
d(zf + ϕ)

dx
− p

dξ

dx
= p

(
f − dξ

dx

)
+ z

df

dx
+
dϕ

dx
,

δq

δt
=
d(zf + ϕ)

dy
− q

dη

dy
= q

(
f − dη

dy

)
+ z

df

dy
+
dϕ

dy
·

Then we construct the equation

δ(dp− rdx− sdy) = 0,

that yields the following determination for δs :

δs =
d

dy
δp− s

d

dy
δy,

δs

δt
= s

(
f − dξ

dx
− dη

dy

)
+ p

df

dy
+ q

df

dx
+ z

d2f

dxdy
+

d2ϕ

dxdy
·
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We substitute the values of increments δx, δy, δz, δp, δq, and δs into
the equation

δ(s+Qq + Zz) = 0

= δs+Qδq + Zδz +

(
dQ

dx
q +

dZ

dx
z

)
δx+

(
dQ

dy
q +

dZ

dy
z

)
δy

and obtain the equation

s

(
f − dξ

dx
− dη

dy

)
+ p

df

dy
+ q

{
df

dx
+Q

(
f − dη

dy

)
+
dQ

dx
ξ +

dQ

dy
η

}

+z

{
d2f

dxdy
+Q

df

dy
+ Zf +

dZ

dx
ξ +

dZ

dy
η

}
+

d2ϕ

dxdy
+Q

dϕ

dy
+ Zϕ = 0,

which must become an identity upon substituting s = −Qq−Zz. In conse-
quence, we find the following four equations:

df

dy
= 0, (4)

d2ϕ

dxdy
+Q

dϕ

dy
+ Zϕ = 0, (5)

Q
dξ

dx
+
df

dx
+
dQ

dx
ξ +

dQ

dy
η = 0, (6)

Z

(
dξ

dx
+
dη

dy

)
+

d2f

dxdy
+Q

df

dy
+
dZ

dx
ξ +

dZ

dy
η = 0. (7)

They provide the necessary and sufficient conditions for Equation (2) to
admit the infinitesimal transformation (3).

The quantity ϕ appears only in equation (5), which shows that ϕmust be
a solution, namely an arbitrary solution of equation (2). Equation (4) shows
that f depends only on x. It remains to satisfy, in general, the following
two equations:

Q
dξ

dx
+
df

dx
+
dQ

dx
ξ +

dQ

dy
η = 0,

Z

(
dξ

dx
+
dη

dy

)
+
dZ

dx
ξ +

dZ

dy
η = 0. (8)

Differentiation of the first equation with respect to y yields

dQ

dy

(
dξ

dx
+
dη

dy

)
+

d2Q

dxdy
ξ +

d2Q

dy2
η = 0
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or:
d

dy

(
ξ
dQ

dy

)
+

d

dy

(
η
dQ

dy

)
= 0.

Hence we can set

ξ
dQ

dy
=
dU

dy
, η

dQ

dy
= −dU

dx
·

The auxiliary function U satisfies the equation

ξ
dU

dx
+ η

dU

dy
= 0.

3. In the following discussion it is necessary to consider separately
several subcases.

If both ξ and η are equal to zero, then the determining equations (8)
reduce to

df

dx
= 0, or f= const.

This gives the following.
Theorem. Any partial differential equation

s+Qq + Zz = 0

admits an arbitrarily many infinitesimal transformations of the form

δx = 0, δy = 0, δz = (cz + ϕ(x, y))δt,

where c is an arbitrary constant and ϕ is an arbitrary solution of the partial
differential equation.

From the two cases: ξ ≷ 0, η = 0 and ξ = 0, η ≷ 0, which differ from
each other non-essentially, we have to consider one case, e.g., ξ ≷ 0, η = 0.
By introducing a suitable function of x as new x, we can set ξ = 1. This
implies:

dU

dx
= 0, U = U(y), Q = U(y) + Ω(x),

df

dx
= −dΩ

dx
, f = −Ω(x) + const.,

dZ

dx
= 0, Z = Z(y).

The differential equation under consideration has then the form

s+ (U(y) + Ω(x))q + Z(y)z = 0.
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It admits the infinitesimal transformation

δx = δt, δy = 0, δz = {(−Ω(x) + c)z + ϕ(x, y)}δt,

where again ϕ(x, y) denotes an arbitrary solution of the partial differential
equation. By introducing a suitable quantity of the form zF (x) as new z,
one can reduce Ω(x) to zero. Furthermore, one notices that the equation
s + U(y)q = 0 corresponding to Z = 0, is integrable by Monge’s method.
Therefore, introducing a suitable function of y as new y, one can set Z to be
equal to 1 without the loss of generality. This gives the folowing statement.

Theorem. If a linear second-order partial differential equation with two
distinct families of characteristics admits an infinitesimal transformation
under which one and only one family is transformed, then it can be reduced
to the canonical form:

s+ Y (y)q + z = 0, (9)

and the infinitesimal transformation is defined by the equations:

δx = δt, δy = 0, δz = czδt.

4. Let us now suppose that both ξ and η are different from zero. Then,
without the loss of generality, we can set

ξ = 1, η = 1.

The function U is defined by the equation

dU

dx
+
dU

dy
= 0,

so that U has the form U = U(x− y). Functions Q,Z and f are defined by
the equations

dQ

dy
=
dU

dy
, Q = U(x− y) + Ω(x),

dZ

dx
+
dZ

dy
= 0,

df

dx
= −Ω′,

whence
Q = U + Ω(x), Z = Z(x− y), f = −Ω(x) + c.

It is clear that by introducing a suitable quantity of the form zF (x) as new
z, one can set Ω(x) = 0.

Theorem. If a linear second order partial differential equation with two
distinct families of characteristics admits an infinitesimal transformation
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under which both families are transformed, then it can be reduced to the
canonical form

s+Q(x− y)q + Z(x− y)z = 0; (10)

the infinitesimal transformation is defined by the equations:

δx = δt, δy = δt, δz = (cz + ϕ)δt.

II.
In the two classes of differential equations (9) and (10), there are certain

particularly remarkable equations admitting several infinitesimal transfor-
mations. We shall identify these equations.

5. Every infinitesimal transformation converting an equation of the form

s+ Y (y)q + z = 0

into itself, is determined by Equations (8):

Y
dξ

dx
+
df

dx
+
dY

dy
η = 0,

dξ

dx
+
dη

dy
= 0.

We have from the second equation

dξ

dx
= −dη

dy
= α = const.,

ξ = αx+ β, η = −αy + γ.

Now the first equations yields

αY +
df

dx
+ (−αy + γ)

dY

dy
= 0,

whence
df

dx
= δ = const.,

αY + δ + (−αy + γ)
dY

dy
= 0.

If α ≷ 0 we can set α = 1 and obtain

Y = Ay +B.

If A is different from zero, one can set B equal to zero without loss of
generality . The corresponding equation

s+ Ayq + z = 0 (11)
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admits the infinitesimal transformation

δx = (x+ β)δt, δy = (−y + γ)δt, δz = (−Aγx+ c)zδt

with two arbitrary constants β and γ. Denoting the infinitesimal transfor-
mation

δx = ξδt, δy = ηδt, δz = ζδt

by the usual symbol
ξp+ ηq + ζr,

we must see that equation (11) admits three and only three independent
infinitesimal transformations, namely:

p, q − Axzr, xp− yq.

If, on the other hand, A = 0, and therefore Y = B, then one obtains
the equation: s+Bq + z = 0 which, after introducing zeBx as new z, takes
the form: s+ z = 0. This is only a particular form of the previous equation
s+ Ayq + z = 0.

There is one assumption left: α = 0. In this case we can set γ = 1.
Hence Y again has the form

Y = Ay +B

discussed above.
6. Every infinitesimal transformation leaving invariant an equation of

the form:
s+Q(x− y) · q + Z(x− y) · z = 0, (12)

is determined by equations (8):

Q
dξ

dx
+
df

dx
+Q′ · (ξ − η) = 0, (13)

Z

(
dξ

dx
+
dη

dy

)
+ Z ′ · (ξ − η) = 0 (14)

We supplement them with the equation obtained by differentiation of the
first equation with respect to y:

Q′

(
dξ

dx
+
dη

dy

)
+Q′′ · (ξ − η) = 0, (15)

The last two equations yield:

(Q′Z ′ − ZQ′′) · (ξ − η) = 0.



Integration of a class of linear partial differential equations 77

Hence, if a given partial differential equation (12) admits infinitesimal trans-
formations apart from the known one, i.e., from p+q, and therefore ξ−η ≷ 0,
then the quantities Z and Q′ must satisfy a (not identical) relationship of
the form:

const.Z + const.Q′ = 0 (16)

Further, we notice that: Z = Q′ = 0 implies only the equation s + Aq = 0
integrable by Monge’s method. Therefore, we differentiate either equation
(14) or equation (15), by treating x − y as a constant, and obtain the
equation

(ξ − η)(ξ′′ + η′′)− ξ′2 + η′2 = 0 (17)

for determining ξ and η.
We differentiate the last equation with respect to y :

−η′ξ′′ + η′′′ξ − ηη′′′ + η′η′′ = 0. (18)

In the following discussion, it is convenient to handle separately with several
subcases.

7. Let’s first assume that η = 0. This assumption obviously leads only to
the equations that we have treated before, namely, in section 5, and hence
does not require a detailed discussion.

Further, let’s assume that η′ = 0, η = B ≷ 0. In this case, if the corre-
sponding equation admits an infinitesimal transformation of the form

ξ(x)p+Bq,

then it admits also the transformation p+ q, and therefore the transforma-
tion

(ξ −B)p.

So, this assumption also can result only the equations that we have consid-
ered in section 5.

Now, we assume that η′ ≷ 0, η′′ = 0. Then, in virtu of (18), ξ ′′ = 0, and
hence (17) reduces to ξ′2 − η′2 = 0. Hence, we can set

ξ = αx+ β, η = ±αy + γ.

Since the assumption α = 0 leads to the equations that we have considered
in Section 5, we can let α ≷ 0, or more specifically α = 1. The substitution
of the indicated values for ξ and η in (14) yields:

Z(1± 1) + Z ′(x∓ y + β − γ) = 0. (19)
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The upper sign gives:

Z =
A

(x− y + β − γ)2
, Q =

B

x− y + β − γ
+ C,

where, without loss of generality, we can set β = γ, C = 0. The obtained
significant equation

s+
B

x− y
q +

A

(x− y)2
z = 0

will be soon investigated in detail.
If we take now the lower sign in (19), it follows:

Z ′ = 0, Z = A, Q = B(x− y) + C,

where C, without an essential restriction, can be taken equal to zero. The
corresponding equation

s+B(x− y)q + Az = 0

by introducing ze(1/2)Bx2
as new z, turns into the equation

s−Byq + z = 0,

discussed in Section 5.
Let now η′′ ≷ 0, η′′′ = 0. Then Equation (18) yields

ξ′′ = η′′ = a = const.,

where one can set a = 2 so that ξ and η assume the values

ξ = x2 + bx+ c, η = y2 + βy + γ. (20)

By substituting them into (17), one obtains the relation:

4(c− γ) + (β − b)(β + b) = 0. (21)

Differentiation of (14), by treating (x− y) as a constant, yields:

Z(ξ′′ + η′′) + Z ′ · (ξ′ − η′) = 0,

or, substituting the values (20):

4Z + Z ′ · (2(x− y) + b− β) = 0.
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Therefore Z takes the form:

Z =
A

(x− y + 1
2
(b− β))2

where one can set b− β = 0 without loss of generality, and hence c− γ = 0
in virtu of (21). Formula (16) shows that

Q =
B

x− y
+ C,

where C can be taken equal to zero by introducing zeCx as new z.
It remains to determine f ; formula (13) yields

df

dx
= −B, f = −Bx.

Hence, the equation

s+
B

x− y
q +

A

(x− y)2
z = 0

admits three independent infinitesimal transformations, namely:

p+ q, xp+ yq, x2p+ y2q −Bxzr.

Since both x and y undergo threefold (driegliedrig) transformations, it is
clear a’priori that there are no more infinitesimal transformations; however,
this can be easily verified by means of equations (13), (14).

8. Finally, there remains the hypothesis that η′′′ differs from zero.
Equation (18) shows in this case that ξ satisfies an equation of the form

ξ′′ = aξ + b,

and therefore ξ has the form

ξ = A+B sinm(x− α).

We substitute this expression into the equation

ξ′η′′ + (ξ − η)ξ′′′ − ξ′ξ′′ = 0

to obtain
η′′ = −m2(η − A),

so that η has the form:

η = A+ C sinm(y − β).
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It is clear that without a restriction we can set

A = 0, m = 1, α = 0, β = 0.

Then the substitution of the obtained values for ξ and η into (17) yields:

B2 − C2 = 0, B = ±C,

where we can set B = +C = 1.
If we substitute the values for ξ and η in equation (14), it follows:

Z(cos x+ cos y) + Z ′(sinx− sin y) = 0

or:
Z ′

Z
= −cos x+ cos y

sinx− sin y
= −cotg1

2
(x− y),

whence:

Z =
A

sin2 1
2
(x− y)

and:

Q = B cotg
1

2
(x− y) + C,

where C can be taken equal to zero by introducing zeCx as new z. By setting

1

2
x = x′,

1

2
y = y′, z = z′,

we reduce our partial differential equation to the form:

s′ +B cotg(x′ − y′) · q′ + A

sin2(x′ − y′)
z′ = 0.

We do not discuss this equation in details because it follows from the equa-
tion

s+
B

x− y
q +

A

(x− y)2
z = 0,

obtained above, by the substitution

z = z′(cos x′)B, x = tgx′, y = tgy′.

9. We assemble the second-order equations with two distinct families
of characteristics admitting infinitesimal transformations in the following
table(6):
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s+ Y (y) q + z = 0
p

s+Q(x− y) q + Z(x− y)z = 0
p+ q

s+ Cyq + z = 0

p, q − Cxzr, xp− yp

s+
B

x− y
q +

A

(x− y)2
z = 0

p+ q, xp+ yq, x2p+ y2q −Bxzr

III.

Now we turn to linear equations of second order with irreducible families
of characteristics. It is known that they can assume the canonical form

r + Pp+Qq + Zz = 0.

Furthermore, it is easy to prove that they can be reduced by quadratures
to the following simple form:

r +

(
1

2
± 1

2

)
q + Z(x, y)z = 0.

This reduction, that probably has been known long ago, should be done
first in what follows.

10. Let an arbitrary equation of the form

r′ +W (x′, y′, z′, p′, q′) = 0, (22)

be given such that its characteristics admit only one integrable combination,
corresponding to the integral y′.

If a contact transformation converts this equation into an equation of
the similar form, then y′ becomes a function of y. Therefore this transfor-
mation must have the form (this can be derived, e.g., from my previous
investigations on contact transformations):

y′ = β(y), x′ = f1(x, y, z, p), z′ = f2(x, y, z, p),

p′ = f3(x, y, z, p), q′ = qf4(x, y, z, p) + f5(x, y, z, p).

It follows:

dx′ =

(
df1
dx

)
dx+

(
df1
dy

)
dy, dy′ = β′dy,
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whence:

dy =
1

β′
dy′, dx =

dx′

(df1/dx)
− (df1/dy)dy

′

(df1/dx)β ′
·

Thus, we have:

r′ =

(
df3
dx′

)
=

(
df3
dx

)
dx

dx′
+

(
df3
dy

)
dy

dx′

or:

r′ =
(df3/dx) + p (df3/dz) + r (df3/dp)

(df1/dx) + p (df1/dz) + r (df1/dp)
·

We carry out such a transformation for any equation of the form

r′ + P ′p′ +Q′q′ + Z ′z′ = 0. (23)

The transformed equation has the form:

r +
C +Dq

A+Q′ q (df1/dp) f4
= 0.

Thus, in order that an equation of the form (22) can assume the linear form
(23), it must be linear in q.

On the other hand, if a linear equation (23), that is not integrable by
Monge’s method, can be converted into a linear equation by a contact trans-
formation, then one must have either

df1
dp
Q′f4 = 0, (24)

or

C : A = D :
df1
dp
Q′f4. (25)

Equation (24) is valid only if df1

dp
= 0, because both f4 and Q

′ must differ

from zero, otherwise the equation (23) would be integrable by Monge’s
method. On the other hand if relation (25) is valid then, in virtu of

C =
df3
dx

+ p
df3
dz

+

(
df1
dx

+ p
df1
dz

)
(P ′f3 +Q′f5 + Z ′f2),

D =

(
df1
dx

+ p
df1
dz

)
Q′f4,

A =
df3
dp

+
df1
dp

(P ′f3 +Q′f5 + Z ′f2),
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it follows the relation

df1
dp

(
df3
dx

+ p
df3
dz

)
− df3
dp

(
df1
dx

+ p
df1
dz

)
= 0 = [f1f3] = [x′p′],

that is impossible.
Therefore:

df1
dp

= 0, x′ = f1(x, y, z),

and in virtu of
[y′z′] = 0, [x′z′] = 0

it follows also that
z′ = f2(x, y, z),

whence

p′ =
(df2/dx)

(df1/dx)
, q′ = − 1

β′

(
df1
dy

)
(df2/dx)

(df1/dx)
+

(
df2
dy

)
1

β′
,

r′ =
(dp′/dx)

(df1/dx)
=

(df1/dx)(d
2f2/dx

2)− (df2/dx)(d
2f1/dx

2)

(df1/dx)3
·

If we carry out this transformation for the given linear equation (23),
the transformed equation takes the form:

r [(df1/dx)(df2/dz)− (df2/dx)(df1/dz)] + Ω(x, y, z, p)

[(df1/dx) + p(df1/dz)]
3

+
Q′

β′
q

{
df2
dz
− df1
dz

(df2/dx) + p(df2/dz)

(df1/dx) + p(df1/dz)

}
+W (x, y, z, p) = 0.

Multiplying it by (df1

dx
+ pdf1

dz
)3 and then dividing by df1

dx
df2

dz
− df2

dx
df1

dz
, one

obtains:

r +
Q′

β′
q

(
df1
dx

+ p
df1
dz

)2
+ Φ(x, y, z, p) = 0.

Because this equation must be linear, it follows:

df1
dz

= 0.

Then our transformation becomes:

y′ = β(y), x′ = α(x, y), z′ = F (x, y, z),

p′ =
Fx + pFz

αx

, q′ =
1

β′

−(Fx + pFz)αy + (Fy + qFz)αx

αx

,
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r′ =
αx(Fxx + 2pFxz + p2Fzz + rFz)− (Fx + pFz)αxx

α3x
,

so that
Fzz = 0, F = zf(x, y) + ϕ(x, y).

This proves the following.
Theorem. If a linear equation

r′ + P ′p′ +Qq′ + Zz′ = 0,

non-integrable by Monge’s method, is converted to a linear equation of the
same form by a contact transformation, then this transformation must have
the form:

y′ = β(y), x′ = α(x, y), z′ = zf(x, y) + ϕ(x, y),

p′ =
fp+ zfx + ϕx

αx

, q′ =
αx(fq + zfy + ϕy)− αy(fp+ zfx + ϕx)

β′αx

,

r′ =
αx(fr + 2fxp+ zfxx + ϕxx)− αxx(fp+ zfx + ϕx)

α3x
·

We require that the transformed equation has the form:

r + q + Z1(x, y)z = 0.

Then, as it will be shown we can set ϕ = 0. This yields the equation

f

α2x
r +

2fxαx − αxxf + Pfα2x −Qαyα
2
x(1/β

′)f

α3x
p+

Qf

β′
q

+z

{
fxx
α2x
− αxxfx

α3x
+ P

fx
αx

+Q
fy
β′
−Q

αyfx
β′αx

+ Zf

}

=
f

α2x
{r + q + Z1z},

that splits into the following:

2fxαx −
(
αxx − Pα2x +Qαyα

2
x

1

β′

)
f = 0,

Q

β′
=

1

α2x
·

Here, one can take an arbitrary β(y), then the last equation gives α by a
quadrature, and finally the first equation gives f by a quadrature.

Thus, every linear equation of the form

r + Pp+Qq + Zz = 0, where Q ≷ 0,
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can be reduced with the help of two quadratures to the simple form:

r + q + Z(x, y)z = 0.

11. Now we determine all the infinitesimal transformations, that leave
invariant an equation of the form

r + q + Z(x, y)z = 0. (26)

According to the previous results, such a transformation must be neces-
sarily of the form

δx = ξ(x, y)δt, δy = η(y)δt, δz = (zf(x, y) + ϕ(x, y))δt.

Therefore:

δp

δt
=

(
dζ

dx

)
− p

(
dξ

dx

)
− q

(
dη

dx

)
= (f − ξx)p+ fxz + ϕx,

δq

δt
=

(
dζ

dy

)
− p

(
dξ

dy

)
− q

(
dη

dy

)
= −ξyp+ (f − ηy)q + fyz + ϕy,

δr

δt
=

(
dδp

dx

)
− r

(
dξ

dx

)
− s

(
dη

dx

)
= (f − 2ξx)r+(2fx− ξxx)p+ fxxz+ϕxx.

It follows, in view of (26):

(f − 2ξx)(−q − Zz) + (2fx − ξxx)p+ fxxz + ϕxx

−ξyp+ (f − ηy)q + fyz + ϕy + Z(zf + ϕ) + z(Zxξ + Zyη) = 0,

whence:

2ξx − ηy = 0,

2fx − ξxx − ξy = 0,

2Zξx + fxx + fy + Zxξ + Zyη = 0, (27)

ϕxx + ϕy + Zϕ = 0,

While discussing these equations, two different cases can occur, i.e.,
when η is equal to zero or is different from zero.

If η = 0 then:

ξx = 0, ξ = ξ(y), 2fx = ξy, Zx = 0,

so that our equation has the form

r + q + Z(y)z = 0.
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In this case, we always can annul Z by introducing an appropriate quantity
of the form zF (y) as new y.

We shall determine the most general infinitesimal contact transformation
which transforms the equation found here, i.e., r + q = 0, into itself. We
obtain the relations

2ξx − ηy = 0, 2fx − ξy = 0, fxx + fy = 0.

Hence,

ξ =
1

2
x
dη

dy
+ Y (y),

df

dx
=

1

4
x
d2η

dy2
+

1

2
Y ′,

f =
1

8
x2
d2η

dy2
+

1

2
xY ′ + Y1(y),

1

4

d2η

dy2
+

1

8
x2
d3η

dy3
+

1

2
xY ′′ + Y ′

1 = 0,

and

η = αy2 + βy + γ, Y = my + n, Y ′ = −1

2
αy + δ.

Thus, the equation r + q = 0 will be transformed into itself by the fol-
lowing infinitesimal transformations:

p, q, 2yp+ xzr, xp+ 2yq, 2xyp+ 2y2q +

(
1

2
x2 − y

)
zr.

12. We now turn to the case η ≷ 0. Let’s recall, that, when reducing
the equation (23) to the normal form r + q + Zz = 0, we could introduce
any function of y as new variable y; so, we find out that without loss of
generality, we can let η = 1. It follows that the first three equations (27)
become

ξx = 0, 2fx − ξy = 0, fxx + fy + Zxξ + Zy = 0,

so that ξ is independent of x :

ξ = ξ(y).

If we introduce now an appropriate quantity x + Ψ(y) as new x [and
ze(1/2)xΨ

′(y) as new z], that changes the form of the equation r+q+Z(x, y)z =
0 non essentially, then we can always let

ξ = 0.

This yields:
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fx = 0, fy + Zy = 0,

f = f(y), Z = −f(y) + Ω(x),

so that our second-order equation has the form

r + q + (−f(y) + Ω(x))z = 0.

To obtain a more simple form, we set

z = z′Y (y), x = x′, y = y′,

whence:
r = r′Y, q = q′Y + z′Y ′,

so that the transformed equation

r′ + q′ +

(
−f(y) + Ω(x) +

Y ′

Y

)
z′ = 0,

after a suitable choice of Y, takes the simple form:

r + q + Z(x)z = 0.

If a linear second order equation with an irreducible family of charac-
teristics admits an infinitesimal transformation that alters characteristics,
then it can take the form:

r + q + Z(x)z = 0. (28)

13. Now we look for all equations of the form determined above that
admit several infinitesimal transformations.

The most general infinitesimal transformation for such equation is de-
termined by relations (27):

2ξx = ηy, 2fx = ξy, 2Zξx + fxx + fy + Zxξ = 0 (29)

whence:

ξ =
1

2
xηy + Y (y), fx =

1

4
xη′′ +

1

2
Y ′,

f =
1

8
x2η′′ +

1

2
xY ′ + Y1,

and:

Zη′ +
1

4
η′′ +

1

8
x2η′′′ +

1

2
xY ′′ + Y ′

1 + Zx

(
1

2
xη′ + Y

)
= 0.
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Considering this functional equation, it is not difficult to find the possible
values of the unknown functions.

The easiest way to the desired goal is as follows. First of all, we notice
that there is no infinitesimal transformation with vanishing η, because this
equation according to proceeding statements can be reduced to the form:
r + q = 0 discussed above. Taking into account my old investigations on
transformation groups of a one-dimensional manifold (y) we find out that
our equation admits at most three infinitesimal transformations. Moreover,
we can assume that the corresponding expression for η has, in general, the
form:

A+By + Cy2

Indeed, let

H1 = ξ1p+ η1q + ζ1r, H2 = ξ2p+ η2q + ζ2r

be two infinitesimal transformations of our partial differential equation that
transform y and obey the condition

(H1H2) = H1. (30)

Then, as before, we always can choose variables x and y such that equation
(28) takes the form:

r + q + Z(x)z = 0,

and H1 becomes q. Therefore, in virtu of (30):

dξ2
dy

= 0,
dη2
dy

= 1,
dζ2
dy

= 0,

so that H2 has the form:

H2 = ξ(x)p+ yq + f(x)zr.

Equations (29) yield:

2ξx = ηy = 1, ξ =
1

2
x+ a, 2fx = 0, f = f(y),

fy + Z + Zx

(
1

2
x+ a

)
= 0,

where the constant a, without loss of generality, can be taken equal to zero,
whereas fy must be equal to a constant B. Then the last equation shows
that we can set

Z =
A

x2
−B.
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Moreover, one can reduce B to zero by introducing an expression of the
form zF (y) as new z. Then the infinitesimal transformation H2 accepts the
form:

H2 = xp+ 2yq + Czr.

The question arises of whether the partial differential equation that was
found:

r + q +
A

x2
z = 0,

admits a third infinitesimal transformation of the form:

H3 = ξp+ y2q + f(x, y)zr.

To find ξ and f we construct the equations

ξx = y, ξ = xy + Y, 2fx = x+ Y ′,

2Zy + fxx + fy + Zxξ = 0. (31)

But now there is the relation:
(
1

2
xp+ yq, ξp+ y2q

)
= ξp+ y2q,

whence:

1

2
xξx + yξy −

1

2
ξ = ξ,

1

2
xy + y(x+ Y ′) =

3

2
(xy + Y ),

yY ′ =
3

2
Y, Y = Ky3/2.

On the other hand:

(q, ξp+ y2q) = 2(
1

2
xp+ yq),

whence:
ξy = x, Y ′ = 0, K = 0.

It remains to determine f from equation (31). It follows:

2fx = x, f =
1

4
x2 + Y1,

2
A

x2
y +

1

2
+ Y ′

1 − 2
A

x3
xy = 0,

whence:

Y1 = −
1

2
y + b, f =

1

4
x2 − 1

2
y + b.
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Therefore, the second-order partial differential equation

r + q +
A

x2
z = 0

admits three infinitesimal transformations

q, xp+ 2yq, xyp+ y2q +

(
1

4
x2 − 1

2
y

)
zr.

Thus, we know canonical forms of all the linear second-order partial dif-
ferential equations with an irreducible family of characteristics that admit
infinitesimal transformations. These canonical forms are as follows:

r + q + Z(x)z = 0

q

r + q = 0

p, q, 2yp+ xzr, xp+ 2yq, xyp+ y2q +

(
1

4
x2 − 1

2
y

)
zr

r + q + A
x2 z = 0

q, xp+ 2yq, xyp+ y2q +

(
1

4
x2 − 1

2
y

)
zr



Second Part: Integration of

linear partial differential

equations admitting

infinitesimal transformations

IV.

After we have defined, in the previous part, canonical forms of all the linear
second-order partial differential equations admitting infinitesimal transfor-
mations, we turn now to the integration of these canonical forms. Then we
show, in the next sections, that a preliminary reduction to the appropriate
canonical form is not necessary.

We will consider successively four canonical forms presented on Page 81
and three canonical forms given on Page 90.

14. Every equation of the form

s+ Y (y)q + z = 0 (32)

has particular integrals of the form:

z = ecxΩ(y),

where Ω is defined by the equation:

(Y + c)Ω′ + Ω = 0.

It follows:

log Ω = −
∫

dy

Y + c
= −Y1, Ω = e−Y1 , z = ecx−Y1 .

If an arbitrary function of c is denoted by f(c) then the definite integral:

z =

∫ β

α

ecx−Y1f(c)dc

91
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between the constant limits α and β, is a solution of (32) with an arbitrary
function.

Let’s consider now the equation

s+ Cyq + z = 0 (33)

with the infinitesimal transformations

p, q − Cxzr, xp− yq.

The infinitesimal transformation:

δx

1
=
δy

0
=
δz

cz

shows as before that:

z =

∫ β

α

ecx(Cy + c)−
1
C f(c)dc = z1

is a solution with an arbitrary function. On the other hand, the infinitesimal
transformation q − Cxzr, or in general form:

δx

0
=
δy

1
=

δz

(−Cx+ k)z
(k = const),

reveals that (33) has a solution of the form:

z = ekye−CxyΩ(x).

Here Ω is defined by the linear differential equation

(k − Cx)Ω′ = (C − 1)Ω,

and hence equation (33) has a solution of the form:

z =

∫ β1

α1

e(k−Cx)y(Cx− k)−(1−C)/Cϕ(c)dc = z2.

Thus: z = z1+z2 is a solution of equation (33) with two arbitrary functions.
The third canonical form

s+Q(x− y)q + Z(x− y)z = 0 (34)

admits the infinitesimal transformation p+ q and simultaneously the more
general transformation p+ q + czr or equivalently:

δx

1
=
δy

1
=
δz

cz
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Hence, equation (34) has solutions of the form

z = ecxΩ(x− y),

where Ω is defined by the linear ordinary differential equation:

Ω′′ + (c+Q)Ω′ − ZΩ = 0.

If Ω1 and Ω2 are two independent solutions of this equation then

z =

∫ β1

α1

Ω1(x− y, c)ecxf1(c)dc+

∫ β2

α2

Ω2(x− y, c)ecxf2(c)dc

is a solution of (34) with two arbitrary functions.
Specifically, if one deals with the integration of the important equation

s+
B

x− y
q +

A

(x− y)2
z = 0 (35)

with three infinitesimal transformations:

p+ q, xp+ yq, x2p+ y2q −Bxzr, (36)

then, according to our method, one should first integrate the linear equation

Ω′′ +

(
c+

B

x− y

)
Ω′ − A

(x− y)2
Ω = 0.

Because I don’t know whether this auxiliary equation can be solved, in
general, by the known methods, I develop the other noteworthy method in
which all the three infinitesimal transformations are utilized.

If λ denotes an arbitrary constant, then equation (35) admits the in-
finitesimal transformation:

p+ q + 2λ(xp+ yq) + λ2(x2p+ y2q −Bxzr)

and simultaneously the transformation

δx

(1 + λx)2
=

δy

(1 + λy)2
=

δz

−Bλz(1 + λx)
·

It follows that equation (35) has solutions of the form:

z = (1 + λx)−BW

(
λ(x− y)

(1 + λx)(1 + λy)

)
.
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Here W is defined by the equation

− λ2

(1 + λx)2(1 + λy)2
W ′′ −Bλ

W ′

(x− y)(1 + λx)(1 + λy)

+A
W

(x− y)2
= 0,

which, after setting
λ(x− y)

(1 + λx)(1 + λy)
= ω

accepts the integrable form

−W ′′ − B

ω
W ′ +

A

ω2
W = 0.

This auxiliary equation is satisfied by the assumption W = ωm, when the
constant m is defined by the equation of second degree:

m(m− 1) +Bm− A = 0 = m2 + (B − 1)m− A.

Hence, it is always possible to obtain a solution of equation (35) with two
arbitrary functions. If the roots of the last equation are distinct, the corre-
sponding solution has the form

z =

∫ β1

α1

(1 + λx)−Bωm1f1(λ)dλ+

∫ β2

α2

(1 + λx)−Bωm2f2(λ)dλ.

15. Now turn to the integration of the three canonical forms presented
on pages 356-357 [boxed formulas in Section 13. N.H.I.]. Since the equation

r + q = 0

admits five independent infinitesimal transformations:

p, q, 2yp+ xzr, xp+ 2yq, 2xyp+ 2y2q +

(
1

2
x2 − y

)
zr,

we can obtain its solution with two arbitrary functions using several ways.
The infinitesimal transformation q, or more generally

q + kzr

shows that there exist solutions of the form:

ekyX(x).
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Here
X ′′ + kX = 0,

X = A sinx
√
k +B cos x

√
k,

so that

z =

∫ β1

α1

sinx
√
k · ekyf1(k)dk +

∫ β2

α2

cos x
√
k · ekyf2(k)dk

represents a solution with two arbitrary functions. A different (by the form)
solution with two arbitrary functions is obtained as follows. One constructs
first a solution with one arbitrary function using the infinitesimal transfor-
mation p + czr, then likewise one constructs a solution with one arbitrary
function using the infinitesimal transformation 2yp + xzr. After that one
adds together these solutions.

A third solution with two arbitrary functions is obtained with the help
of the infinitesimal transformation

p+ εq + ρzr.

In the particular solution obtained here, one treats, for example ρ, as an
arbitrary function of ε and then integrates with respect to ε, etc.

In order to find a solution with two arbitrary functions for an arbitrary
equation of the form

r + q + Z(x)z = 0, (37)

one makes use of the infinitesimal transformation q+ czr, which shows that
there exist particular solutions of the form

z = ecyX(x).

Here X is defined by the equation

X ′′ + (c+ Z)X = 0.

Let X1(x, c) and X2(x, c) be its two solutions. Then

z =

∫ β1

α1

ecyX1(x, c)f1(c)dc+

∫ β2

α2

ecyX2(x, c)f2(c)dc

is a solution with two arbitrary functions.
Specifically, if one deals with the integration of equation

r + q +
A

x2
z = 0 (38)
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with the infinitesimal transformations

q, xp+ 2yq, xyp+ y2q +

(
1

4
x2 − 1

2
y

)
zr,

then, following our method, one should first integrate the auxiliary equation

X ′′(x) +

(
c+

A

x2

)
X(x) = 0.

However, it is also possible to proceed the following way:
Equation (38) admits the infinitesimal transformation

q + λ(xp+ 2yq − 1

2
zr) + λ2(xyp+ y2q +

(
1

4
x2 − 1

2
y

)
zr).

We construct the simultaneous system

dx

λx(1 + λy)
=

dy

(1 + λy)2
=

dz

λ2z
(
1
4
x2 − 1

2
y
)
− 1
2
λz

with two solutions:

x

1 + λy
= w, log z − λ2yx2

4(1 + λy)2
+

1

2
log(1 + λy).

Therefore equation (38) has solutions of the form

z = (1 + λy)−
1
2 e

λ2yx2

4(1+λy)2F

(
x

1 + λy

)
.

One can find that F (w) is determined, as a function of w, from the linear
ordinary differential equation

F ′′(w)− λwF ′ +

(
1

4
λ2w2 − 1

2
λ+

A

w2

)
F = 0.

The substitution
F = e

1
4
λw2

Φ(w)

reduces this equation to the integrable form

Φ′′ +
A

w2
Φ = 0.

The latter equation is satisfied by the assumption

Φ = wm,
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where
m(m− 1) + A = 0.

If this equation of the second degree is valid for two different values m1 and
m2 of a constant m, then

z =

∫ β1

α1

ψ(λ)e
1
4
λw2

wm1f1(λ)dλ+

∫ β2

α2

ψ(λ)e
1
4
λw2

wm2f2(λ)dλ

is a solution of (38) with two arbitrary functions; here, for the sake of
brevity, the following notation is used:

(1 + λy)−
1
2 e

λ2yx2

4(1+λy)2 = ψ(λ).

16. Thus, we have found solutions with two arbitrary functions for six
canonical forms:

s+ Cyq + z = 0,

s+Q(x− y) · q + Z(x− y) · z = 0,

s+
A

x− y
q +

B

(x− y)2
z = 0,

r + q = 0,

r + q + Z(x)z = 0,

r + q +
A

x2
z = 0.

On the contrary, we have found for the equation

s+ Y (y)q + z = 0

a solution only with one arbitrary function.
Some of these equations have been integrated long ago. It should be

noted, however, that the method that I have used can be applied actually
to all equations, that can be reduced to any of these canonical forms by a
suitable contact transformation. This is to be shown in the next sections.

V.

17. Let an arbitrary linear second order partial differential equation

Rr + Ss+ Tt+ Pp+Qq + Zz = 0, (39)

nonintegrable by Monge’s method, be given. It follows from the preceding
that any infinitesimal contact transformation that converts this equation
into itself, must have the form

δx = ξ(x, y)δt, δy = η(x, y)δt, δz = {zf(x, y) + ϕ(x, y)}δt,
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where ϕ is an arbitrary solution of equation (39). If we set ϕ = 0 and seek
the most general infinitesimal transformation:

δx = ξδt, δy = ηδt, δz = zfδt, (40)

that transforms equation (39) into itself, then we find five equations for
determining three quantities ξ, η and f. Then one obtains, by differentiation,
still further equations.

Here, various cases may take place: either there is no system of values
ξ, η, f that satisfies the relations under consideration (this is a general case) ,
or there are several such systems of values, namely 1, 3 or 5. The correspond-
ing systems of values are determined by ordinary differential equations, that
can be integrated by a rational theory.

18. If an infinitesimal transformation (40) is found in this way, then the
partial differential equation(7)

ξp+ ηq − z(f + c) = 0

with an arbitrary constant c has ∞2 solutions, common with the given
second order equation. These common solutions are obtained by integrating
an ordinary differential equation of the second order. Then, as before, one
obtains a solution with two arbitrary functions.

The given method always leads to the aim, when all the characteristics
of equation (39) are transformed by the infinitesimal transformation. The
correctness of the theory developed in the present section follows without
difficulties from the theories, explained in the previous sections.

VI.

An interesting application of the previously explained theory is the fol-
lowing:

19. Let two families of curves, c and c1, be given on a sphere, that
form an orthogonal system. Then it’s well known that all surfaces having
c and c1 as the spherical image of their lines of curvature, are defined by
a known linear second-order partial differential equation. If we assume
that both families of curves c and c1 are transformed into themselves under
the infinitesimal rotation (or infinitesimal conformal transformation) of the
spherical image, then the corresponding partial differential equation admits
a known infinitesimal transformation of the form considered previously. If
we exclude the simple case when c and c1 are families of meridian and
parallel circles, then our partial differential equation has the form:

s+Q(x− y) · q + Z(x− y) · z = 0. (41)
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Its solution with two arbitrary functions is obtained by integrating the linear
second-order differential equation

W ′′ + (c+Q)W ′ − ZW = 0.

In general, the integration of this auxiliary equation cannot be done.
20. Suppose that the auxiliary equation for c = 0 (or for any special

value of c) can be integrated. Then one obtains a special solution

z = W (x− y)

of the partial differential equation (41). Further, by means of successive
quadratures, one finds an arbitrary number (∞∞) of solutions for equation
(41).

Then equation (41) admits the infinitesimal transformation

δx

1
=
δy

1
=

δz

W (x− y)

and therefore has a solution of the form

z = xW (x− y) +W1(x− y),

where W1 is defined by the equation

W ′′
1 +QW ′

1 − ZW1 +W ′ = 0,

which is always integrable. Furthermore, equation (41) admits the infinites-
imal transformation

δx

1
=
δy

1
=

δz

xW +W1

and therefore has the solution of the form:

z =
1

2
x2W (x− y) + xW1(x− y) +W2,

whereW2 is again defined by an integrable equation. This procedure can be
repeated infinitely; thus one finds, by successive quadratures, an arbitrary
number (∞∞) of solutions.

21. Similarly, one obtains, for example, by successive quadratures an in-
finite (∞∞) surfaces, the lines of curvature of which have the same spherical
image as those for any given screw surface.

On the other hand, if one takes any surface which transforms into itself
by any infinitesimal transformation then first one finds lines of curvature for
this surface by a quadrature. Then by successive quadratures one finds an
arbitrary number (∞∞) of surfaces, curvature lines of which have the same
spherical image. By the way, it should be noticed, that the method can
be applied to any linear second-order equation admitting an infinitesimal
transformation.
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Review by the author

[F.d.M., Bd.XIII, Jahrg. 1881, S.298-300. Berlin 1883. Reprinted in [27],

vol.3, paper XXXVa.]

This paper begins with a complete transformation theory for all linear
homogeneous second order partial differential equations with two indepen-
dent variables and one dependent variable.

Each of these equations admits an infinite set of invariance transforma-
tions. Namely, if z = f(x, y) is an arbitrary solution then the equation
admits eo ipso the transformation

x′ = x, y′ = y, z′ = cz + f,

where c denotes an arbitrary constant. This evident transformation leaves
x and y invariant.

There exist several classes of equations, that admit, in addition, invari-
ance transformations changing x and y as well. All such equations can be
reduced, by a suitable choice of coordinates, to one of the following forms:

s+ Y (y)q + z = 0, (1)

s+Q(x− y) · q + Z(x− y) · z = 0, (2)

s+ const. yq + z = 0, (3)

s+
A

x− y
q +

B

(x− y)2
z = 0, (4)

r + q + Z(x)z = 0, (5)

r + q = 0, (6)

r + q +
A

x2
z = 0. (7)

Equations of canonical forms (1), (2) or (5) admit only one infinitesimal
transformation that changes x and y. Each of the equations (3), (4) and (7)
admits three independent infinitesimal transformations that change x and
y. Finally, Equation (6) admits five infinitesimal transformations of that
kind.

It should be noticed, that the differential equation of minimal surfaces is
a special case of the type (4). This type of equations involves, however, a set
of easily definable equations, the solutions of which belong to the Ampére’s
first class.

The above-mentioned equations can not be solved, in general, by Laplace’s
method. However, it is possible to get a particular solution with two ar-
bitrary constants. These constants appear in a nonlinear way, whence one
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immediately obtains a solution with two arbitrary functions that appear in
particular integrals.

To accomplish this integration procedure it is not necessary to reduce
the given equation to its canonical form. Thus, given a linear second or-
der partial differential equation between z, x, y admitting an infinitesimal
transformation that changes x and y, it is always possible to get a solution
with arbitrary functions by integrating ordinary differential equations.

Although the integration accomplished here is not complete because
arbitrary functions occur in partial integrals, the present theory seems to
be a substantial advance.

It is in the nature of the method that these investigations can be
extended to linear equations of any order with an arbitrary number of
variables.
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Editor’s Notes

(1)Page 6. First published in [15]. Reproduced here by courtesy of CRC Press.
(2)Page 67. Laplace [22]. See also Darboux [7] Chap. 3, and Goursat [13].
(3)Page 70. See e.g. Lie [26].
(4)Page 70. In the German original, F is misprinted as Z.
(5)Page 70. Equation (1) is said to be integrable by Monge’s method if it

possesses an intermediate integral with one arbitrary function, or, equivalently, if
differential equations for one of the systems of characteristics admit two distinct
integrable combinations. See, e.g., E. Goursat [13].
(6)Page 80. In the German original, the last but one equation in the table is

misprinted with A and B permuted.
(7)Page 98. This equation defines invariant solutions.
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SURFACE TRANSFORMATIONS

By A.V. Bäcklund

Translated from German by

N.H.Ibragimov and R.M. Yakushina

[Ueber Flächentransformationen, A.V. Bäcklund, Mathematische Annalen,

IX, 1876, S. 297–320.]

I.

Recently, I became concerned with the question if there are surface trans-
formations of a three-dimensional space that leave invariant the second-
order tangency (osculation) rather than the first-order tangency. I dis-
cussed this question in volume 10 of Annual Reports of Lund University
(Sept. 1874) and came to the conclusion that the transformations that
leave invariant the first-order tangency, i.e. Lie’s contact transformations,
are the only ones for which higher-order tangency conditions are invariant(1).
Simultaneously, Lie’s paper∗ appeared in volume 8 of Mathematischen An-
nalen where the similar question on osculating transformations was raised.
Therefore I would like to undertake a detailed presentation of the previous
investigation and to dwell upon certain points that were only hinted before.

I begin with the proof of nonexistence of a proper osculating transfor-
mation of plane curves, giving first pure geometric reasoning and then an
analytic proof. Only then I proceed to an exhaustive survey of the problem.

§ 1. Geometric proof of nonexistence of proper

osculating transformations of plain curves

1. The osculating transformation transforms any curve of a plane into one
or several, but not infinitely many, curves of the same plane. Moreover, it
converts any two curves in osculation into two likewise osculating curves.
Furthermore, application of an osculating transformation to a figure, con-
sisting of a curve C and two curves C ′ and C ′′ that are infinitely close to

∗S. Lie, ‘Begründung einer Invariantentheorie der Berührungstransformationen’,
Math. Annalen, 8, 1874, 215-288.
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each other and osculate with C in two neighboring points, results in a new
figure that consists of a curve Γ, the image of C, and two infinitely close to
each other curves Γ′ and Γ′′, images of C ′ and C ′′, respectively, that osculate
with the curve Γ in two neighboring points. Since C ′ and C ′′ are in oscu-
lation with one and the same curve in two neighboring points, they should
contact each other. Likewise, the curves Γ′,Γ′′ should contact each other.
We conclude that any osculating transformation should posses a property to
map any two infinitely close curves contacting each other into two curves
of the same kind.

But this property characterizes, as I will show bellow, Lie’s contact trans-
formations. Hence, a proper osculating transformation does not exist.

2. Consider on the plane (x, y) a transformation of the above kind. It
maps any curve of the plane to a curve and converts two contacting each
other curves into two other likewise contacting curves. Furthermore, let
λ1 λ2 λ3 be parameters of a three-fold system(2) of curves ψ(x y λ1 λ2 λ3) = 0
and let

ϕ(λ1 λ2 λ3 dλ1 dλ2 dλ3) = 0 (1)

be the contact condition for two neighboring curves (λ)(λ + dλ). Let the
curves obtained from the curves (λ) by means of the above transformation
be represented by the equation

f(x y λ1 λ2 λ3) = 0. (2)

Then eliminating x y p from (2) and from the following three equations (3):





f ′(x) + pf ′(y) = 0,
∑ df

dλ
dλ = 0,

∑ df ′(x)

dλ
dλ+ p

∑ df ′(y)

dλ
dλ = 0,

(3)

one arrives again at equation (1). Hence, the last equation represents the
contact condition for two consecutive curves (λ) as well as for two consecu-
tive curves (2). Thus, when two neighboring curves (λ) satisfy the contact
condition, the corresponding curves (2) must also obey the contact condi-
tion.

Conversely, when two three-fold systems of curves provide a definite
differential equation as the contact condition, they furnish a transformation
of the above character.

Given a three-parameter system of curves regarded as the system (λ),
one can obtain a significant correlation between this system and a system
(2) in the following way.
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Let us consider the parameters λ as coordinates of points in a three-
dimensional space R3 and the variables x y as arbitrary constants. Then
equation (2) represents a system of ∞2 surfaces in R3. Furthermore, equa-
tion (1) associates with every point ofR3 an elementary complex-cone (Com-
plexkegel), and since (1) results from (2) via the equations (3), any two
infinitely approaching surfaces (2) must intersect each other along a curve.
All the linear elements (λ dλ) of this curve satisfy equation (1) and hence
belong to the elementary complex-cones (1). In other words the curves of
intersection should belong to complex (1). – Note that∞1 surfaces (2) pass
through any point of R3. The envelope of their tangent plains at any point
is a cone that coincides near the point with the cone, formed by the linear
elements, through the given point, of the curves of intersection of every
two neighboring ∞1 surfaces. However, this cone corresponds to elemen-
tary complex-cone (1) with the vertex at the above point. Consequently,
any of the ∞2 surfaces (2) will contact cone (1) in all the points of the
corresponding surface. Thus: the surfaces (2) build up a solution with two
arbitrary constants x y of the first-order differential equation the elementary
complex-cones of which are represented by equation (1).

Hence, two neighboring integrals of the first-order partial differential
equation (I denote it briefly Φ = 0) should intersect along a characteristic
of this equation. In consequence, the curve represented by the equations

f = 0, f ′(x) + pf ′(y) = 0

should be a characteristic of Φ = 0, and a certain characteristic passes
through every point∗ x y p. It means that infinitely many one-fold curves
(2) having one common element x y p correspond to ∞1 points (λ) that
constitute a characteristic of Φ = 0. Let us represent the system of curves
(λ) via its equation in point coordinates x y

ϕ(x y λ1 λ2 λ3) = 0. (4)

∗The result of the above speculation is the following: any ordinary nonlinear dif-
ferential equation ϕ(λ dλ) = 0 can in infinitely many ways be replaced by ∞3 curves
ϕ(x y p λ1 λ2 λ3) = 0, χ(x y p λ1 λ2 λ3) = 0. In other words, according to Lie, ϕ(λ dλ) =
0 forms the basis of a certain curve-complex. There exists only one system of curves of
this complex that can be represented by a system of equations

ψ(x y λ1 λ2 λ3) = 0, ψ′(x) + pψ′(y) = 0.

These are the characteristics of the first-order partial equation connected with ϕ(λ dλ) =
0.

There is one more implication of the above: any ordinary nonlinear differential equation
ϕ(λ dλ) = 0 can be considered as contact condition of two neighboring curves taken from
a three-parameter system of curves.
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If x y λ1 λ2 λ3 are interpreted in the similar way, then this system provides
a solution of Φ = 0 where x y are two arbitrary constants. Besides, every
family of curves (λ) (i.e. the curves (4)) that contact each other in one point
must correspond to a characteristic of Φ = 0. But since there are no more
than ∞3 characteristics of Φ = 0, one characteristic does not, in general,
envelope a family of∞1 characteristics. Therefore, conversely, to the points
(λ) of any characteristic of Φ = 0 there correspond infinitely many one-fold
curves (λ), curves (4), that contact each other in one and the same point.
As one and the same characteristic corresponds to both families of curves,
∞1 curves (λ) osculating in one point correspond to ∞1 curves (2) that
osculate in one point.

Thus, the following statement is proved. Supposed that between two
three-parameter systems of curves there is given a correspondence such that
two neighboring tangent curves of one system correspond to two curves of the
same kind from the other one. Then all the osculating in one point curves
of one of the systems correspond to similar curves of the other system.
Consequently, the transformation that maps one system of curves into the
other is a transformation of linear elements (x y p). Furthermore, it must
map any two connected elements into two similar elements, because two
connected linear elements always belong to a curve (real or imaginary) of one
of the systems and the corresponding elements will join the corresponding
curve. Hence, every transformation of the above kind is also Lie’s contact
transformation. q.e.d.

§ 2. Analytical proof of the same theorem

3. Since any curve of the plane determines definite values of xypp′. . .∗ which
conversely determine the curve, any curve transformation between two do-
mains (xy) and (XY ) (these domains are supposed to be overlapping) of the
plane is a transformation between xypp′. . . and XY PP ′. . . . In particular,
an osculating transformation converts the quantities (xypp′) into (XY PP ′);
and naturally all the values (xypp′) belonging to a curve in the plane (xy)
are mapped into the corresponding values of a curve in the plane (XY ).
Thus, every osculating transformation is defined by equations of the form:

x = F (XY PP ′),

y = F1( ),

p = Φ1( ),

p′ = Φ2( ),

∗p = dy/dx, p′ = dp/dx, . . .
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where F. . .Φ2 are to be determined in such a way that the system of equa-
tions

dy − p dx = 0, dp− p′dx = 0 (a)

is transformed into the similar system:

dY − PdX = 0, dP − P ′dX = 0. (b)

The latter statement represents the analytical proof to the assertion: if
two neighboring elements (x . . p′), (x+ dx . . p′+ dp′) belong to a curve then
the corresponding elements (X . . P ′), (X + dX . . P ′ + dP ′) also belong to a
certain curve.

Let us consider the following series of ∞1 consecutive elements (xypp′):

x0 y0 p0 p
′,

x0 y0 p0 p
′ + dp′,

x0 y0 p0 p
′ + 2dp′,

.......................

Since any two neighboring elements of this series satisfy the equations
(a), (because here dx = dy = dp = 0), and since any two neighboring
elements of the corresponding∞1 consecutive elements (XY PP ′) must also
satisfy the equations (b), we conclude that the latter ∞1 elements should
belong to some curve. Upon eliminating P, P ′ from the equations

x0 = F (XY PP ′),

y0 = F1( ),

p0 = Φ1( ),

one obtains the equation of the curve that corresponds to the linear element
(x0y0p0). Likewise, one obtains the equation of a curve in (xy) that corre-
sponds to the linear element (XY P ). – In other words after the elimination
of the quantity P ′ from the equations of transformation, every osculating
transformation must result in two equations:

f(x y pX Y P ) = 0, ϕ(x y pX Y P ) = 0, (c)

which have one common integral in both variables xyp and XY P . Con-
versely, two equations (c) possessing the above properties determine an
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osculating transformation provided that the equations∗

f = 0, ϕ = 0,
df

dx
+ p

df

dy
+ p′

df

dp
= 0,

df

dX
+ P

df

dY
+ P ′ df

dP
= 0

associate to an arbitrary system of quantities (XY PP ′), resp. (xypp′), a
system of quantities (xypp′), resp. (XY PP ′), or several systems of this
kind.

I will show, however, that systems of equations possessing the properties
(c) can not provide all the quantities (xypp′) of the plane. Indeed, these
equations associate with three-fold infinite (XY P ) only a two-fold infinite
set of curves. Hence, the above construction can provide only the ∞3 ele-
ments (xypp′) of these curves. Thus, it is proved that a proper osculating
transformation does not exist.

4. Elimination of P, resp. p, from the equations (c) leads to two equa-
tions:

p = f(xyXY ), P = ϕ(xyXY ). (d)

They replace the equations (c) and should have a common integral both in
the (xy) and (XY ) spaces. Then the relations between the equations (d)
are expressed algebraically as follows:

dϕ

dx
+ f

dϕ

dy
= 0,

df

dX
+ ϕ

df

dY
= 0.

Elimination of f results in an equation for determining ϕ:

d

dX

(
dϕ

dx
:
dϕ

dy

)
+ ϕ

d

dY

(
dϕ

dx
:
dϕ

dy

)
= 0.

which can be rewritten in the form:

d

dx

(
dϕ

dX
+ ϕ

dϕ

dY

)
−
(
dϕ

dx
:
dϕ

dy

)
· d
dy

(
dϕ

dX
+ ϕ

dϕ

dY

)
= 0.

If dϕ
dx

+ pdϕ
dy

= 0 then the following equation is also valid:

(
d

dx
+ p

d

dy

)(
dϕ

dX
+ ϕ

dϕ

dY

)
= 0.

∗Combined when necessary with the equations

dϕ

dx
+ p

dϕ

dy
+ p′

dϕ

dp
= 0,

dϕ

dX
+ P

dϕ

dY
+ P ′ dϕ

dP
= 0,

which are compatible with the above ones due to the relations between f and ϕ.
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Thus the differentials(4) of ϕ vanish and therefore

dϕ

dX
+ ϕ

dϕ

dY
= ψ(X,Y, ϕ).

The solution of this equation is given by

Φ(Ψ1(X,Y, ϕ),Ψ2(X,Y, ϕ) x, y) = 0,

where Φ is an arbitrary function of four variables. If one replaces here ϕ by
P , one obtains the second equation from (d). This equation is only two-fold
infinite with respect to XY P . Therefore, the ∞3 elements (XY P ) belong
only to ∞2 curves in the xy plane. Thus, there are no proper osculating
transformations of curves on a plane given by one-to-one mappings. Q.e.d.

II.

The following question arises. How far can one extend the previous re-
sults to multi-dimensional spaces? I will consider this question and will
deal with the general problem of determining all those transformations of
an (n + 1)-dimensional space converting the n - dimensional varieties, i.e.
the surfaces in this space, into one another. These transformations are obvi-
ously divided into two distinctly different classes. The first class comprises
transformations that convert any surface of the space (zx1x2. . . xn) into only
one surface (or several surfaces) of the space (ZX1X2. . . Xn). The second
class consists of transformations that map any surface into infinitely many
surfaces.

Consider again two-dimensional spaces, i.e. planes. Note that any curve
of the plane is completely determined by the quantities (xypp′ . . .), and that
two neighboring quantities (xypp′ . . .) and (x+ dx y + dy p+ dp p′ + dp′ . . .)
belong to one and the same curve if and only if the following equations hold:

dy − p dx = 0, dp− p′dx = 0 . . . . (A)

Therefore any curve transformation between (xy) and (XY ) planes is de-
scribed by the requirement that equations (A) are mapped into the similar
equations:

dY − PdX = 0, dP − P ′dX = 0, . . . . (B)

Thus, in order to determine a curve transformation, it is sufficient to specify
two arbitrary equations

{
X = F (xypp′ · · · pk),
Y = F1(xypp

′ · · · pl)
(C)
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and deduce, employing (A), (B), the following equations:




P = Φ(xypp′ · · · ),
P ′ = Φ1( ),

...........................

(D)

In general the equations (C), (D) cannot be solved for xypp′ · · · . Then
the transformation belongs to the second class mentioned above, i.e. it
is a multivalued transformation. Though any curve in the (xy) plane is
mapped only into one curve in the (XY ) plane, a curve of the latter plane
corresponds to infinitely many curves in the (xy) plane, namely, all solutions
of a certain differential equation∗. However, if the equations (C) together
with the first k equations from (D) form a system that can be solved with
respect to xyp . . .pk−1 so that these equations can be represented in the form

x = f(XY P...),

y = f1( ),

p = ϕ( ),

........................

then the transformation will belong to the first class, i.e. it will be a
single-valued (or finite-valued) transformation. In this case this transfor-
mation will be, first of all, a transformation of curve-pieces (xyp . . . pk−1)
and (XY P . . . P k−1) with the same length. Consequently, to such pieces
(xyp . . . pk−1) of a curve there correspond pieces of the same length belong-
ing to another curve.

Regarding the transformations of this type there is a theorem that they
are exclusively contact transformations according to the definition of Sophus
Lie. Hence, all single-valued transformations are transformations of (xyp) in
(XY P ). It is already proved that there exist no other curve transformations
of (xypp′) on (XY PP ′). In the following sections it will be shown that
proper contact transformations of higher orders do not exist as well.

Let us now consider spaces of an arbitrary dimension n + 1. In order
to define the most general transformation mapping all surfaces (Mn) into
surfaces one can take any n+ 1 equations





Z = F (z x1 . . xn p1 . . pn p11 p12 . . pnn . . pklm . . . ),

X1 = F1( ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xn = Fn( )

(C ′)

∗Or, possibly, of a system of several differential equations.



and derive from them by differentiation and elimination the equations




Pk = Φk(z..xk..pk..pkl..pklm...),

Pkl = Φkl( ),

..............................................

(k, l,m, .. = 12..n),

(D′)

so that the following system of equations(5), Section 6.2.1. remains invariant:

dz −
∑

pk dxk = 0, dpk −
∑

pkl dxl = 0, . . . to inf. (A′)

In general, the system (C ′) defines a multivalued transformation. The
surface transformation is single-valued if and only if (C ′) is Lie’s contact
transformation (see §4).

I have already discussed the assumption that probably there are no single-
valued surface transformations other than Lie’s contact transformations. The
proof of this statement for two and three dimensions was given, as mentioned
in the preamble to this paper, in one of the issues of Annuals Reports of Lund
University(6). Simultaneously the same question was raised by Lie in one of
his papers in Mathematischen Annalen where he also questioned if partial
differential equations of higher orders admit transformations which are not
contact transformations(7). In my paper mentioned above I proved non-
existence of higher-order contact transformations. The proof of non-existence
which concerns all surfaces manifested inter alia, as Lie also mentioned to
me, that the statement cannot be directly applied to transformations valid
only on integral surfaces of a higher-order partial differential equation; in the
present work I represent it as a corollary of my earlier theorem.

In §5 I single out from transformations discussed in the previous sections
those mapping a first-order partial equation in an n + 1-dimensional space
onto an n-dimensional space. This allows one to make a conclusion about
the transformation of first-order equations.

Such a mapping is based on a contact transformation. It was employed
by Lie in his synthetic investigations as I concluded from his remarks in the
paper ”General theory of first-order partial differential equations” (Abh. der
Gesellschaft der Wissenschaften zu Christiania, 1874, p.218).

Finally, I provide several remarks on a class of multivalued transforma-
tions of three-dimensional spaces.

I would like to mention, as I already did in my previous paper, that last
summer in Munich I discussed osculating transformations on the plane with
Felix Klein. At that time the problem was not solved yet and he offered new
view points to the problem that considerably promoted its handling.
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§ 3. Single-valued transformations of plane

curves

5. I am going to resume the speculations presented in no◦ 2 in a more
detailed form. Instead of a three-fold system of curves I will deal with a
system involving n+ 1 arbitrary parameters λ :

f(xyλ1λ2 . . . λk+1) = 0 (5)

and use the procedure that was applied previously to system (4). Here
λ1λ2 . . . λk+1 will be considered as coordinates of a point in a k+1-dimensional
space Rk+1, whereas x y will be regarded as arbitrary constants. Elimination
of x y p from the equations





f = 0, f ′(x) + pf ′(y) = 0,

∑ df

dλ
dλ = 0,

∑ df ′(x)

dλ
dλ+ p

∑ df ′(y)

dλ
dλ = 0

(6)

leads to an equation
ψ(λ dλ) = 0 (7)

that provides the contact condition for two neighboring curves (5).
Regarding this equation one should note first of all the following. One

can infer from the equations (6), letting xypλ be constant (then the values
of λ are determined by two first equations (6)), that to every such system of
values there correspond ∞k−2 values of dλi

dλk+1
. Specifically, these values have

the form
dλ i = α1dλ

(1)
i + α2dλ

(2)
i + . . . . αk−1dλ

(k−i)
i ,

(i = 12 . . . k + 1),

where α are arbitrary. The rays of the cone ψ = 0 belonging to some point
(λ) provide an infinite number of plane bundles of dimensions k − 2. Hence,
the cone itself must be represented in plane coordinated by k − 1 equations.
Let these k − 1 equations,





ψ1(λ 1 . . . λ k+1 π1 . . . πk+1) = 0,

ψ2( ) = 0,

................................................

ψk−1( ) = 0,

(8)

be homogeneous with respect to π. Then contact condition (7) can be re-
placed by this system of partial differential equations of the first order in
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Rk+1. However, this is not a complete characteristic of equation (7). Namely,
the surface elements (λπ) of manifold (5), Mk in the space Rk+1, satisfy
equations (8), and, hence, manifold-system (5) is a common solution for the
equations (8) with two arbitrary constants xy.

Conversely, every system of k − 1 partial equations of the first order in
Rk+1 possessing a common solution with two arbitrary constants leads to an
equation ψ(λ dλ) = 0, which can be interpreted as a contact condition for
two neighboring curves of a k + 1-fold system:

f(xyλ 1 . . . λ k+1) = 0.

Furthermore, the equation of every system of curves of this kind, where x y
are treated as arbitrary constants, represents a common complete solution for
the system of partial differential equations.

The above mapping of the system of equations (8) to the plane associates
with every linear element (x y p ) of the plane a characteristic Mk−1 (it is a
k − 1 dimensional manifold - the intersection of two neighboring integrals
Mk), with every element x y p p′ a characteristic Mk−2 (the intersection of
three consecutive integrals Mk), etc. The points of a characteristic Mk−1

correspond to the curves (5) that contact each other in one point, the points
of a characteristic Mk−2 correspond the curves (5) that osculate each other
in one point, etc.

An additional point to emphasize is that if between two k+1-fold systems
of curves

f (x y λ 1... λ k+1) = 0,

ϕ ( ) = 0

there exists a correspondence such that to two neighboring and contacting
each other curves of one system correspond two likewise contacting each other
curves of the other system, then all contacting in one point curves f = 0 cor-
respond to curves ϕ = 0 possessing exactly the same property. Therefore,
both systems of curves provide the same system of partial differential equa-
tions (8), and one and the same characteristic Mk−1 corresponds to both
contacting at one point families f = 0, resp. ϕ = 0. It follows that for all
transformations of the plane that map two neighboring contacting each other
curves into similar curves, the first-order tangency condition must leave in-
variant. Thus, all these transformations are Lie’s contact transformations.
In fact it was already proved in no◦ 2.

6. As it was already shown, a curve transformation leaving the second-
order tangency unaltered is in fact a usual contact transformation. A trans-
formation leaving invariant the third-order tangency, maps every two neigh-
boring curves, that have the second-order tangency, into two similar curves;
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or even more, I claim that this transformation must belong to the class of
transformations that map two neighboring curves having the first-order tan-
gency into similar curves. Indeed, if curves C ′C ′′ are first-order tangent to
each other, then there exists a curve C osculating with C ′C ′′ in two points,
neighboring the tangency point of these curves. Every transformation of the
above kind will convert C ′C ′′C into Γ ′ Γ ′′ Γ, where Γ will osculate both Γ ′

and Γ ′′ in two neighboring points. Since Γ ′ and Γ ′′ osculate one and the
same curve Γ in two neighboring points they are first-order tangent. Thus,
two first-order tangent curves C ′C ′′ are converted into two similar curves
Γ ′ Γ ′′ - as was stated. Thus, the above transformation is Lie’s contact trans-
formation. Likewise there are no transformations for which the third-order
tangency is an invariant condition other than Lie’s contact transformations.

The same reasoning shows that there are no proper tangent transforma-
tions of the 4th, 5th ... order. But, as it has already been proved, every
single-valued curve transformation is to be a transformation of curve-pieces
of the same length, (x y p . . . . pk), (X Y P . . . P k), and hence, it is to be a
contact transformation of either the first or the second, third, fourth ... or-
der. It follows that every single-valued transformation of curves on the plane
is Lie’s contact transformation.

§ 4. Transformations of n-dimensional mani-

folds Mn in an n + 1-dimensional space

7. I note first of all that if a surface Mn has the tangency of order r with
two infinitely neighboring each other surfaces in two neighboring points p p′,
respectively, then the two latter surfaces should possess a tangency of order
r − 1 at the point p′. And vice versa, if two infinitely neighboring surfaces
have a tangency of order r − 1, then there exist an infinite number of ways
to construct surfaces having a tangency of order r with the above surfaces in
the vicinity of contact points.

Every surface transformation that converts surfaces having second-order
tangency into similar ones, will consequently map two infinitely close surfaces
which are first-order tangent into two surfaces of the same kind. Likewise, a
transformation leaving invariant third-order tangency must convert any two
osculating surfaces into two second-order tangent surfaces. One can follow
now the procedure suggested in no◦ 6. Namely, given two surfaces C ′C ′′ hav-
ing first-order tangency at a point, we construct a surface C that has second-
order tangency with them at two points neighboring the tangency point of
C ′ and C ′′. It is self evident from this construction that our transformation
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converts any two first-order tangent surfaces into two similar surfaces, etc.
Finally, every surface transformation leaving invariant tangency of a certain
order, should convert any two first-order tangent surfaces into two similar sur-
faces. Now every single-valued surface transformation should be a transfor-
mation of surface elements of the same length (z xk pk pkl...) (Z Xk Pk Pkl...),
and for every such transformation the tangency of a certain order is an in-
variant condition. Consequently, every single-valued surface transformation
must be a transformation leaving invariant the first-order tangency of two
infinitely neighboring surfaces.

8. Let us consider an n+ 2-fold system of surfaces

f(z x1 ... xn λ1 ... λ n+2) = 0. (9)

The condition that two surfaces corresponding to the parameters λ λ+ dλ
contact each other is obtained by elimination of z x p from the following 2n+2
equations:





f = 0, f ′(xk) + p kf
′(z) = 0,

∑ df

dλ
dλ = 0,

∑ df ′(xk)

dλ
dλ+ pk

∑ df ′(z)

dλ
dλ = 0,

(k = 12 ... n) ,

(10)

Then the desired condition is given by an ordinary differential equation

ϕ (λ dλ) = 0 (11)

If z x are interpreted as arbitrary constants and λ 1 λ 2 ... λ n+2 as coor-
dinates of a point in a space R n+2, then equation (11) represents in this
space a system of elementary cones, while equation (9) defines in the same
space an n+ 1-fold system of manifolds Mn+1. These manifolds intersect in
every point (in consequence of the equations (10)) with ∞n−1 neighboring
Mn+1 along a one-dimensional manifold linear elements of which constitute
rays of elementary cones (11). In consequence, the∞n manifolds (9) passing
through one and the same point (λ), define a cone (11) by means of their
surface elements in this point. Let Φ = 0 be the partial equation of the first
order, the characteristic cone (or the elementary complex-cone) of which is
represented by equation (11). Then every system of surfaces (9), for which
ϕ = 0 is a tangency condition, provides a complete solution of the partial
equation Φ = 0 with n+ 1 arbitrary constants z x 1 ... x n.

When two n+ 2-fold systems of surfaces

f(z x1 ... xn λ1 ... λ n+2) = 0, ϕ(z x1 ... xn λ1 ... λ n+2) = 0 (12)
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are related to each other in such a way, that to two contacting each other
surfaces f(λ(1)) = 0, f(λ(1) + dλ) = 0 correspond two likewise contacting
surfaces ψ(λ(1)) = 0, ψ(λ(1) + dλ) = 0, then each of the above two equations
is a complete solution of one and the same partial differential equation Φ =
0, provided that z, x are regarded as constants and the λs as variables.
The parameters λ of ∞1 surfaces (corresponding to one of the solutions)
contacting in one point, and hence having a common system of values (z x p),
represent in the space R n+2 coordinates of points of a characteristic for the
equation Φ = 0, and vice versa. We conclude that the systems of surfaces
(12) are related in such a way that if ∞1 surfaces of one system contact
each other in one point, the corresponding surfaces of the other system also
contact in one point. Therefore, one of the systems of surfaces can be derived
from the other via a Lie contact transformation.

Thus, every single-valued surface transformation is Lie’s contact trans-
formation.

9. Among infinite number of n+ k-fold surfaces

f(z x1 ... xn λ1 ... λ n+k) = 0, (13)

there are ∞k−1 surfaces with a given element (z x p). If λ1 ... λ n+k are re-
garded as coordinates of points in a space R n+k, then the tangency condition
for two surfaces (13) is given by a differential equation

ψ(λ dλ) = 0

which is actually a system of k − 1 first-order equations (homogeneous with
respect to π) in R n+k :

{
Ψi(λ1 ... λ n+k π1 ... πn+k) = 0,

(i = 12 ... k − 1).
(14)

The above system has a common solution containing n+1 arbitrary constants.
This common solution is given by the equation f = 0, where z x are arbitrary
constants, as well as by every system of ∞n+k manifolds Mn in the space
R n+1, provided that the tangency condition for the system is defined by ϕ = 0.

The above consideration furnishes a relation between the space R n+1 and
the space composed by the elements (λπ) of the equations (14). I will return
to this matter later(8).
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§ 6. A class of multivalued transformations of

three-dimensional spaces

16. As it was already shown in the introduction any three equations





X = F (z x y p q),

Y = F1( ),

Z = F2( )

(15)

completely determine a surface transformation provided that one requires
the invariance of the system of equations

dz = p dx+ q dy, dp = rdx+ s dy, dq = sdx+ tdy, . . . to inf.

i.e., it is transformed into the similar system:

dZ = PdX +QdY, dP = RdX + SdY, dQ = SdX + TdY, . . . to inf.

This surface transformation will be single valued if the quantities P , Q ob-
tained from the above equations contain only z x y p q, but not the derivatives
of higher orders.

Otherwise, if these quantities have the form

P = Φ1(z x y p q r s t),

Q = Φ2( ),

the equations (15) define a multivalued transformation. This transformation
assigns to every point (X Y Z) a set of ∞2 elements (z x y p q), and to every
surface element (Z X Y P Q) on each of the elements (z x y p q) associated
with the point (X Y Z) - a set of ∞1 values of (r s t). Furthermore, every
surface in the space (x y z) is mapped onto a surface of the space (X Y Z),
whereas every surface of the latter space is transformed into all the integrals
of a first-order partial differential equation f (F F1 F2) = 0.

The transformation (15) maps∗ a first-order partial differential equation
ϕ (Z X Y P Q) = 0 into a second-order partial differential equation that has
a first integral with two arbitrary constants λ µ:

f (F F1 F2λµ) = 0

∗Transformation (15) is also referred to by P. du Bois-Reymond in the work ”Beiträge
zur Interpretation der partiellen Differentialgleichungen mit drei Variablen”, Leipzig, 1864,
p. 173.
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Linear partial differential equations of the first order in the space (X Y Z)
are mapped to second-order partial differential equations in the space (x y z).
The latter second-order equations are linear in r s t rt− s2 and have the first
integral of the form:

f (F F1 F2) equals to an arbitrary function of ϕ (FF1 F2).

17. I will pay a special attention to the following transformation:





X = x,

Y = y,

Z = q

(16)

due to its application to a known class of second-order partial equations.
The equations (16) yield





P = s,

Q = t,

R = v,

(
v =

d3z

dx2 dy
, w =

d3z

dx dy2
, ω̃ =

d3z

dy3

)

S = w,

T = ω̃,

etc.

(16′)

Consider in the space (x y z) a second-order equation that does not con-
tain z p and hence, has the form:

F (x y q rs t) = 0,

or upon solving for r:
r = f(x y qs t)∗ (17)

and find its image in the space (X Y Z).
Now differentiate equation (17) with respect to y:

v =
df

dy
+ t

df

dq
+ w

df

ds
+ ω̃

df

dt
,

∗In the same way one can handle the following equation:

r = f(x y q s t) + z ϕ(x) + pψ(x)
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and use the equations (16), (16′) to obtain:

R− S
df

dP
− T

df

dQ
=

df

dY
+Q

df

dZ
· (18)

This provides the image of all equations of the form

r = f (x y q s t) + F (x),

where F (x) is an arbitrary function.
To every surface of the space (X Y Z) there correspond the integrals of

an equation
q = F (x y),

whose solution has the form:

z = ϕ (x y) + Ψ(x), (19)

where Ψ is an arbitrary function.
Since to each integral of equation (18) there must correspond, inter alia,

integrals of equation (17), the arbitrary function Ψ in (19) can be determined
by the requirement that equation (19) becomes an integral of (17) provided
that Z = F (X Y ) is an integral surface for equation (18). In consequence,
the function Ψ is determined (by two quadratures) as a function of x, namely,
it is obtained from F (x) by multiplying it by cx+ c′ where c, c′ are arbitrary
constants.

Thus, the problem of integration of the second-order equation (17) reduces
to the problem of integration of the linear second-order equation (18).

The above transformation associates any two integrals of equation (17)
having the nth-order tangency in one point with two integrals of equation
(18) having the n − 1th-order tangency. Accordingly, the characteristics of
equation (17) correspond to the characteristics of equation (18).

The above considerations generalize the well-known Legendre’s theory ∗

of the equations†

F (r s t) = 0.

In order to find the linear equation (18) corresponding to Legendre’s form
one has to use the transformation

X ′ = s, Y ′ = t, Z ′ = sx+ ty − q

obtained from (16) via the reciprocal transformation

X ′ = P, Y ′ = Q, Z ′ = PX +QY − Z.

∗Cf. Boole: Differential equations, Cambridge 1859, p. 369.
†I learned recently from Lie about Legendre’s theory.
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The required equation has the form:

R
df

dY
− S

df

dX
− T = 0.

The above considerations hold true if the equations (16), (17) undergo
any contact transformations.

Helsingborg, 18. July 1875.
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Editor’s Notes

(1)Page 103. See A.V. Bäcklund [1]. The reader is referred to Lars G̊arding [11],
Chapter 5: Bäcklund, for a brief account on the life of Albert Viktor Bäcklund
(1845-1922) and interesting comments on the influence of Lie’s 1872 work on
Bäcklund’s interest to the theory of tangent transformations.
(2)Page 104. The author’s German term is ein dreifaches Curvensystem.
(3)Page 104. Here, f ′(x) and f ′(y) stand for partial derivatives of f(x, y, λ1, λ2, λ3)

with respect to x and y, respectively.
(4)Page 109. Read total differentials. Specifically, the author’s expression the

differential of ϕ vanishes means that its total derivative vanishes, i.e. Dx(ϕ) = 0
where Dx = ∂

∂x + p ∂
∂y is the symbol of the total derivation.

(5)Page 111. The equations (A′) are rudiments to infinite-order tangent trans-
formations which we [19] called later Lie-Bäcklund transformations. See also
N.H. Ibragimov [15], Section 6.2.1 for more detailed historical remarks on Lie-
Bäcklund transformation groups.
(6)Page 111. See Editor’s Note (1).
(7)Page 111. Bäcklund refers to the footnote on page 223 in: S. Lie [24]. See

also R.L. Anderson and N.H. Ibragimov [19], §1 and §4.
(8)Page 116. We did not include in the translation the material of no◦ 10, 11

and §5 since they comprise a mere reiteration of some conclusions of the above
considerations.
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GROUP PROPERTIES OF THE
CHAPLYGIN EQUATION

By L.V. Ovsyannikov

Translated from Russian by N.H.Ibragimov

[Gruppovye svoistva uravnenia S.A. Chaplygina, L.V. Ovsyannikov, Priklad-

naia Mekhanika i Tekhnicheskaia Fizika (Applied Mechanics and Technical

Physics), Novosibirsk, 1960, No. 3, p. 126–145.]

Methods based on transition to the plane of the hodograph of velocities
are of great importance in studying plane steady-state irrotational prob-
lems of gas dynamics. This transition originates a linear partial differential
equation of the second-order known as the Chaplygin equation. However,
boundary value problems remain, in general, nonlinear. Furthermore, in ac-
cordance with the nature of the phenomenon, the Chaplygin equation has a
mixed elliptic-hyperbolic type. To overcome the resulting difficulties many
researchers tried to find such approximations to the Chaplygin equation for
which the general solution had a relatively simple form. Then one can re-
gard an approximate equation as an equation describing the motion of some
fictitious gas in which the dependence of pressure on density (or density on
velocity) approximates, in a certain way, the real dependence.

It is well known that the first approximation of this kind was suggested
by Chaplygin [4] in 1902. The next consideration to the problem was given in
forty years’ time. S.A. Khristianovich [20] developed Chaplygin’s method in
order to apply it to the problem of subsonic flow around a body. F.I. Frankle
[10] and S.V. Falkovich [9] suggested that the Chaplygin equation be approx-
imated by the Tricomi equation. Various approximations were considered by
S.A. Khristianovich [21], L.I. Sedov [29], Tomotika and Tamada [30], Germain
and Liger [12], M.A. Lavrentyev and A.V. Bitsadze [23], G.A. Dombrovskii
[8], S.V. Vallander [31], I.M. Yur’ev [32], A.A. Grib and A.G. Ryabinin [14],
etc. A more comprehensive bibliography on the problem can be found in
L. Bers’ book [2].
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The majority of the suggested approximations were obtained by using one
and the same approach. Namely, an approximating equation was required to
possess particular solutions of a specified structure or to be reduced to such
an equation by simple substitutions. However, it is clear that this approach
is not regular enough to embrace all “good” approximations from a unified
point of view.

In the present paper the quality of an approximation is estimated by
the dimension of the transformation group admitted by the approximating
equation. The principle of estimation here is as follows: the broader the
group, the “better” the equation. This method requires a preliminary in-
vestigation of group properties of second-order differential equations. Group
classification of such equations (with two independent variables) was given
by Lie [25]. However, Lie’s classification lacked an invariant formulation that
caused difficulties in applying it to particular problems. Once this deficiency
is made up all Chaplygin equations admitting a three-parameter group as
well as all “good” approximations in the problem of gas dynamics can be
enumerated. The obtained result meets the expectations: the majority of
the known approximations turn out to obey the condition that the approxi-
mate equation admits as large a group as possible. The only exception is the
approximation of Tomotika and Tamada [30] which cannot be referred to as
“good” approximations from the group viewpoint. However, employing the
approximation, the authors found only solitary examples of interesting flows.

Thus, the present paper resumes a new approach to approximate methods
in investigating the plane problem of gasdynamics. Moreover, the presented
results have independent significance as well. They specify general peculiari-
ties possessed by second-order linear equations in two independent variables.

The structure of the paper is as follows. Firstly, a brief derivation of the
Chaplygin equation is given (§1) and general equivalence properties related
to second-order equations and their Laplace invariants (§2, Lemmas 1-4) are
recalled. Secondly, Lie’s problem on group classification of such equations is
considered (§3). The solution of the problem is given in terms of the Laplace
invariants of the initial equation (Theorem 1 and its Corollary). Then the
group classification of the Chaplygin equations is presented (§4, Theorem 3)
in terms of the group properties of an auxiliary system of ordinary differential
equations (Theorem 2). Further, canonical forms of the “admissible” Chap-
lygin equations are indicated and the rules reducing them to these forms are
clarified (§5). Finally, we single out among the Chaplygin equations, admit-
ting a three-parameter group, the Tricomi type equations, i.e. the simplest
equations of the mixed type (§6, Theorems 4 and 5), as well as the equations
that asymptotically tend to the Laplace equation and hence furnish a good
approximation of the Chaplygin equation in the case of low velocities (§7,



Group properties of the Chaplygin equation 125

Theorem 6).
All “arbitrary” functions encountered in the paper are supposed to be

analytical thus making it possible to ignore the difference in types of second-
order equations obtained at intermediate stages of reasoning. The final re-
sults are independent of this assumption.

§ 1. The Chaplygin equation and the Chap-

lygin function

Let u and v be the projections of velocity to the x and y axes, respectively,
where x and y are referred to the rectangular Cartesian coordinates sys-
tem, and let ρ be density. Then the equations of the plane-parallel steady
irrotational gas motion are written in the form:

uy − vx = 0, (ρu)x + (ρv)y = 0, ρ = ρ0R(w) (1.1)

where w =
√
u2 + v2 is the velocity related to the critical velocity, R(w)

is a given function, R(0) = 1, and ρ0 is a constant. For instance, for the
polytropic gas with the polytropic index γ we have:

R =

(
1− γ − 1

γ + 1
w2
)1/γ−1

(1 < γ <∞). (1.2)

By virtue of Equations (1.1) there exist a velocity potential ϕ and a flow
function ψ determined by the equations

dϕ = udx+ vdy, dψ = Rudy −Rvdx.

Inversion of these equations with the following change to the polar coordi-
nates in the hodograph plane u = w cos θ, v = w sin θ yields:

dx =
cos θ

w
dϕ− sin θ

Rw
dψ, dy =

sin θ

w
dϕ+

cos θ

Rw
dψ (1.3)

Hence, for ϕ and ψ considered as functions of w,Θ it follows:

ϕw = w
d

dw

(
1

Rw

)
ψθ, ϕθ =

w

R
ψw (1.4)

Elimination of ϕ leads to a single equation for the flow function:

w
d

dw

(
1

Rw

)
ψθθ =

∂

∂w

(w
R
ψw

)
(1.5)

If following Chaplygin one introduces a new independent variable σ = σ(w)
defined by the equations
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Figure 1: Function K(σ).

dσ

dw
= −R(w)

w
, σ(1) = 0, (1.6)

one reduces Equation (1.5) to the form

K(σ)ψθθ + ψσσ = 0, (1.7)

where

K(σ) =
wR′ +R

R3
·

Hereafter, an equation of the form (1.7) is called the Chaplygin equation,
and the function K(σ) is called the Chaplygin function.

A qualitative graph of the Chaplygin function in the case (1.2) is plotted
in Fig. 1. A refinement of the behaviour of K(σ) in this case is given by the
following asymptotic formulae:

K(0) = 0, K ′(o) = 2

(
γ + 1

2

) 2
γ−1

, (1.8)

lim
σ→+∞

e4σ[K(σ)− 1] = − 1

γ + 1
exp

[
2

∫ 1

0

[(
1− γ − 1

γ + 1
x

) 1
γ−1

− 1

]
dx

x

]
, (1.9)

lim
σ→σ1

(σ − σ1)
γ+1
γ K(σ) = −2

γ

(
γ − 1

γ

) 1
γ

, (1.10)

where

σ1 = −
∫ W

1

(
1− γ − 1

γ + 1
w2
) 1

γ−1 dw

w
, W =

√
γ + 1

γ − 1
, (1.11)

and by the inequalities:

K ′(σ) > 0, K ′′(σ) < 0 (σ1 < σ < +∞). (1.12)

The transformation of the Chaplygin equation to the characteristic vari-
ables

λ = L(σ) + θ, µ = L(σ)− θ,
dL

dσ
=
√
−K (1.13)

yields:

ψλµ +N(λ+ µ)(ψλ + ψµ) = 0

(
N = −1

4

d

dσ

1√
−K

)
(1.14)
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Equation (1.14) will be referred to as the Chaplygin equation as well. Let us
introduce the quantity t = 2L(σ) = λ+ µ. Then

N(t) = −1

2

d

dt
log σ′

(
σ′ =

dσ

dt

)
. (1.15)

If the function σ(t) defining the dependence t = t(σ) is known the Chaplygin
function is determined from (1.13) and has the form:

K(σ) = −1

4

(
dt

dσ

)2
· (1.16)

§ 2. The Laplace invariants

Consider an equation with an unknown function z = z(x, y)

zxy + Azx +Bzy + Cz = 0 (2.1)

where A,B,C are given functions of x, y.
Two equations of the form (2.1) are said to be equivalent if they are

connected by transformation:

x1 = α(x), y1 = β(y), z = ω(x1, y1)z1, (2.2)

where z1 = z1(x1, y1) is a new unknown function. Furthermore, equations
will be called equivalent by function if they are transformed into each other
by (2.2) with α(x) ≡ x, β(y) ≡ y.

Equivalence properties is conveniently formulated in terms of the Laplace
invariants of equation (2.1):

h = Ax + AB − C, k = By + AB − C. (2.3)

The following statements hold. They were presented by Darboux [6] in a
slightly different form.

Lemma 1. For an equation of the form (2.1) with the invariants h, k to be
equivalent by function to an equation with the invariants h1, k1 it is necessary
and sufficient that h1 = h, k1 = k.

Proof. The proof of the necessity is obtained by substitution z = ω(x, y)z1
and calculation of the invariants of the resulting equation for z1. The proof
of the sufficiency results from the observation that if the coefficients of the
second equation are A1, B1, C1, then the equations h1 = h, k1 = k yield

(A1 − A)x = (B1 −B)y.
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Therefore there exists a function ω = ω(x, y) such that

A1 = A+
ωy

ω
, B1 = B +

ωx

ω
.

Moreover, it follows from h1 = h that

C1 = C + A
ωx

ω
+B

ωy

ω
+
ωxy

ω

The direct substitution into Equation (2.1) shows that the change z = ωz1
maps (2.1) into the equation with the coefficients A1, B1, C1.

A simple consequence of the Lemma states that those and only those
equations (2.1) are equivalent by function to the equation zxy = 0 for which
h ≡ k ≡ 0.

Lemma 2. An equation (2.1) with the invariants h(x, y), k(x, y) is equiva-
lent to an equation of the same type with the invariants h1(x, y), k1(x, y) if
and only if there exist two functions, α(x) and β(y) such that

h(x, y)

h1[α(x), β(y)]
=

k(x, y)

k1[α(x), β(y)]
= α′(x)β ′(y). (2.4)

Proof. Here again proof of the necessity results from direct substitution
which in this case can be considerably simplified due to Lemma 1. Namely,
one can consider only those transformations (2.2) where ω ≡ 1. Now let
equations (2.4) be satisfied for some α(x), β(y). We apply to the equation
with the invariants h, k the change of variables (2.2) with the above α(x), β(y)
and ω = 1. Then it will go over into an equation with the invariants h2, k2
such that the equations (2.4) hold with h1, k1 replaced by h2, k2 :

h(x, y)

h2[α(x), β(y)]
=

k(x, y)

k2[α(x), β(y)]
·

The above equation together with (2.4) yield that

h2(x1, y1) = h1(x1, y1), k2(x1, y1) = k1(x1, y1).

Hence, according to Lemma 1, the equation with the invariants h2, k2 is
equivalent by function to the equation with the invariants h1, k1.

In addition to transformations (2.2) there exists another type of transfor-
mations preserving the structure of equations (2.1). In order to obtain such
transformations we note that Equation (2.1) can be derived by eliminating
the auxiliary function z∗ from the system

zy + Az = z∗, z∗x +Bz∗ = hz (2.5)



Group properties of the Chaplygin equation 129

or by eliminating z∗∗ from the system

zx +Bz = z∗∗, z∗∗y + Az∗∗ = kz. (2.6)

Conversely, provided that h 6= 0, elimination of z from the system (2.5)
gives an equation of the form (2.1) for z∗.. This new equation will be called
Laplace’s x-transformation of Equation (2.1). Let h∗, k∗ denote its Laplace
invariants. Then simple calculations yield:

h∗ = 2h− k − ∂2log h

∂x∂y
, k∗ = h. (2.7)

Likewise, if k 6= 0, elimination of z from the system (2.6) yields an equa-
tion for z∗∗ called Laplace’s y-transformation of Equation (2.1). Its invariants
are:

h∗∗ = k, k∗∗ = 2k − h− ∂2log k

∂x∂y
· (2.8)

Now let us agree to denote equations of the form (2.1) with the invariants
h, k by the symbol (h, k). Then, Laplace’s x-transformation of the equation
(h, k) results in the equation (h∗, k∗) while the y-transformation results in
the equation (h∗∗, k∗∗).

Lemma 3. Laplace’s y-transformation of the equation (h∗, k∗) is equivalent
by function to the equation (h, k). Likewise, Laplace’s x-transformation of
the equation (h∗∗, k∗∗) is equivalent by function to the equation (h, k).

Proof. The direct calculation of the invariants shows that

(h∗)∗∗ = h, (k∗)∗∗ = k

and
(h∗∗)∗ = h, (k∗∗)∗ = k.

Now Lemma 1 completes the proof.
It follows from Lemma 3 that the set of equations derived from the original

equation by Laplace’s transformations is “one-dimensional” in the following
sense. We set in the original equation h = h0, k = h−1 and hence, denote our
equation by (h0, h−1). Then we define hn for any n by the recurrent formula:

hn+1 + hn−1 = 2hn − ∂2 log hn

∂x∂y
(n = 0,±1± 2, . . .). (2.9)

Due to (2.7), the formula (2.9) yields the invariant h∗ = h1 of the equation
(h∗, k∗) when n = 0, and the invariant k∗∗ = h−2 of the equation (h∗∗, k∗∗)
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when n = −1. It is easy to verify now that Laplace’s x-transformation, in
general, maps (hn, hn−1) into hn+1, hn, whereas the y-transformation maps
(hn+1, hn) into (hn, hn−1), respectively. Thus the Laplace series is obtained:

. . . ; (h−2, h−3); (h−1, h−2); (h0, h−1); (h1, h0); (h2, h1); . . . (2.10)

The Laplace series can be continued until some invariant hn becomes iden-
tical to zero. A remarkable property of the series (2.10) is that if hn ≡ 0 for a
certain n, the general solution with two arbitrary functions involving quadra-
tures can be found for the original equation. Moreover, if the series (2.10) is
“cut off” at both ends, then the general solution with two arbitrary functions
can be obtained without quadratures [6]. For further considerations, the case
when the invariants hn have a constant ratio will be significant.

Lemma 4. If the invariants h, k of the original equation have the constant
ratios(1)

k

h
= p,

1

h

∂2log h

∂x∂y
= q, (2.11)

then all the invariants of the Laplace series (2.10) have constant ratios.

Proof. Let us rewrite (2.11) in the form:

h−1 = ph0,
∂2logh0

∂x∂y
= qh0.

The formula (2.9) with n = 0 proves the constancy of the ratio h1/h0 :

h1

h0
= 2− p− q.

Now the constancy of the ratio hn/h0 follows from (2.9) by induction. To
evaluate this ratio for any n, we consider (2.9) as a finite-difference equation:

hn+1 − 2hn + hn−1 = −qh0

with the initial conditions h−1 = ph0, h0 = h0. The solution of this problem
(which is obviously unique) is given by:

hn

h0
= 1 + (1− p)n− 1

2
qn(n+ 1). (2.12)

In the particular case when the invariants of the original equation (h0, h−1)
are equal i.e. when p = 1, the formula (2.12) has the form:

hn

h0
= 1− 1

2
qn(n+ 1) (2.13)
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§ 3. Calculation of the group for the second-

order equation

Let us proceed to determination of transformations preserving Equation
(2.1), or as it is practice to say, transformations admitted by Equation (2.1).
Specifically, the term a group admitted by Equation (2.1) will stand for the
quotient group of the group of all admitted transformations by its trivial
normal deviser. The latter is comprised of the transformations

x̄ = x, ȳ = y, z̄ = az + z0(x, y)

where a is a parameter and z0(x, y) is any fixed solution of the equation. The
infinitesimal generator of the group is written in the form:

X = ξ
∂

∂x
+ η

∂

∂y
+ πz

∂

∂z
· (3.1)

It is known [28] that the functions ξ, η, π depend at most on x, y. More-
over, the function π is defined up to a constant addend. Applying the no-
tation of the paper [28] to Equation (2.1), we find that the only component
K12 of the tensor Kij and the invariant H have the form:

K12 = 2J = 2(By − Ax), H = Ax +By + 2(AB − C). (3.2)

The system of the determining equations given in [28] is reduced now to the
following:

∂ξ

∂y
=
∂η

∂x
= 0, (3.3)

∂

∂x
(π +Bξ + Aη) = −Jη, ∂

∂y
(π +Bξ + Aη) = Jξ, (3.4)

∂

∂x
(Jξ) +

∂

∂y
(Jη) = 0,

∂

∂x
(Hξ) +

∂

∂y
(Hη) = 0. (3.5)

Equations (3.3) show that ξ = ξ(x), and η = η(y). Equations (3.4) determine
π(x, y) provided that ξ and η are found. The first equation in (3.5) is the
compatibility condition for the system (3.4), while the second equation in
(3.5) is an additional condition imposed on the functions ξ, and η.

Thus, the size of the group admitted by Equation (2.1) is determined by
the general solution of system (3.5). Since (3.2) yields that J = k − h, H =
k+ h, Equations (3.5) can be rewritten in terms of the Laplace invariants of
Equation (2.1) as follows:

∂

∂x
(kξ) +

∂

∂y
(kη) = 0,

∂

∂x
(hξ) +

∂

∂y
(hη) = 0. (3.6)
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We restrict ourselves to the case when at least one of the invariants h, k is
distinct from zero since otherwise equation (2.1) is equivalent to the equation
zxy = 0. Let h 6= 0. Using the notation (2.11) we obtain from (3.6) the
following equation

ξ
∂p

∂x
+ η

∂p

∂y
= 0. (3.7)

This equation shows that p is either an invariant of the group with the
operator X or p = const.

It is easily seen that if p 6= const., Equation (2.1) admits at most a one-
parameter group. Indeed, if along with (3.7) we have

ξ1
∂p

∂x
+ η1

∂p

∂y
= 0,

then, invoking that p 6= const, we will have ξη1 − ξ1η = 0 or ξ1 = cξ, η1 =
cη. Here c is a constant since it is a function only of x and only of y,
simultaneously. Then (3.4) yields that π1 = cπ as well. It means that the
operator

X1 = ξ1
∂

∂x
+ η1

∂

∂y
+ π1z

∂

∂z

is linearly dependent on the operator X.
Let us consider now the case p = const. From the two equations (3.6)

here remains only one, namely, the second one. Rewriting it in the form

ξ
∂ log h

∂x
+ η

∂ log h

∂y
+ ξ′(x) + η′(y) = 0, (3.8)

and applying the operator ∂2

∂x∂y
we obtain:

ξ
∂

∂x
log

(
∂2 log h

∂x∂y

)
+ η

∂

∂y
log

(
∂2 log h

∂x∂y

)
+ ξ′(x) + η′(y) = 0.

Whence, subtracting the equation (3.8) and using the notation (2.11) we
have:

ξ
∂q

∂x
+ η

∂q

∂y
= 0. (3.9)

This equation shows again that either q is an invariant of the group admitted
by Equation (2.1) and then the admitted group depends at most on one
parameter, or q = const.

Thus, Equation (2.1) can admit more than a one-parameter group only
when both p and q are constants. Let us show that if q is constant then the
invariant h must have a very peculiar form. According to Lie [25], Equation
(3.10) considered below had been integrated by Liouville.
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Lemma 5. The general solution of the equation

1

h

∂2 log h

∂x∂y
= q, q = const., (3.10)

has the form:

h =
2

q

α′(x)β ′(y)

[α(x) + β(y)]2
(q 6= 0), h = α′(x)β ′(y) (q = 0), (3.11)

where α(x) and β(y) are arbitrary functions.

Proof. The case q = 0 is trivial. If q 6= 0 the formula (3.11) provides a solu-
tion of equation (3.10) for arbitrary α(x) and β(y). This can be checked by
straightforward substitution of the expression for h into (3.10). Conversely,
let h be a solution of Equation (3.10). We set h = χ−2 and rewrite (3.10) in
the form

χχxy − χxχy = −q
2
· (3.12)

Whence, differentiating with respect to x, we obtain an equation equivalent
to

∂

∂y
log

χxx

χ
= 0, or χxx = r(x)χ .

If χ1 and χ2 are two linearly independent solutions of the above ordinary
differential equation, then its general solution is

χ = c1(y)χ1(x) + c2(y)χ2(x).

We write it in the form

χ = χ1(x)c2(y)

[
χ2(x)

χ1(x)
+
c1(y)

c2(y)

]

or

χ = m(x)n(y)[α(x) + β(y)],

substitute the latter expression in Equation (3.12) and arrive at the following
equation:

(mn)2 =
q

2α′β′
·

Consequently, h = χ−2 has the form (3.11). The main result on Equation
(2.1) can be formulated as follows.
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Theorem 1. Equation (2.1) admits more than a one-parameter group if and
only if the quantities

k

h
= p,

1

h

∂2 log h

∂x∂y
= q

have constant values. Provided that this condition is satisfied, Equation (2.1)
admits a three-parameter group and is equivalent either to the Euler-Poisson
equation (if q 6= 0)

zxy −
2/q

x+ y
zx −

2p/q

x+ y
zy +

4p/q2

(x+ y)2
z = 0 (3.13)

or to the equation (if q = 0)

zxy + xzx + pyzy + pxyz = 0. (3.14)

Proof. The necessity for p and q to be constant has been already established.
Now let p and q be constant. Then by virtue of Lemma 5 the invariants h, k
have the form (provided that q 6= 0):

h =
2

q

α′(x)β ′(y)

[α(x) + β(y)]2
, k =

2p

q

α′(x)β ′(y)

[α(x) + β(y)]2
· (3.15)

Let us compare the above equation with an equation having the invariants

h1 =
2

q

1

(x+ y)2
, k1 =

2p

q

1

(x+ y)2
(3.16)

and employ Lemma 2. It is evident that the functions α(x) and β(y) in-
volved in the formulae (3.15) obey the condition (2.4) of Lemma 2. There-
fore Equation (2.1) is equivalent to the equation with the invariants (3.16).
Since Equation (3.13) has precisely the invariants (3.16), Lemma 1 yields
that Equation (2.1) is equivalent to Equation (3.13).

In the case q = 0 the invariants h, k have the form (see Lemma 5):

h = α′(x)β ′(y), k = pα′(x)β ′(y).

Hence, by virtue of Lemma 2, Equation (2.1) is equivalent to an equation
with the invariants h1 = 1, k1 = p, the latter equation being equivalent by
function to Equation (3.14).

Since equivalent equations admit similar groups, the proof of Theorem
1 will be finished if we show that each of the equations (3.13) and (3.14)
admits a three-parameter group. Recall that the only equation that ξ, η
should satisfy is Equation (3.8).
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If q 6= 0 Equation (3.8) takes the form

xξ′ − 2ξ + yη′ − 2η + yξ′ + xη′ = 0. (3.17)

Applying the operation ∂2/∂x∂y we obtain ξ′′ + η′′ = 0, whence

ξ′′ = −η′′ = 2a0 = const.

Consequently,

ξ = a0x
2 + a1x+ a2, η = −a0y2 + b1y + b2.

Equation (3.17) yields that

b1 = a1, b2 = −a2.

Thus, the general form of the coordinates ξ, η satisfying (3.8) in the case of
invariants (3.16) is the following:

ξ = a0x
2 + a1x+ a2, η = −a0y2 + a1y − a2.

Furthermore, π is determined by Equation (3.4) and has the form:

π = a0
2

q
(px− y).

Ultimately, we arrive at the conclusion that Equation (3.13) admits a three-
parameter group of transformations generated by the following operators:

X1 =
∂

∂x
− ∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
,

X3 = x2
∂

∂x
− y2

∂

∂y
+

2

q
(px− y) z

∂

∂z
· (3.18)

If q = 0 equation (3.8) has the form

ξ′ + η′ = 0

and yields:
ξ = a0x+ a1, η = −a0y + b1.

Furthermore, π is determined by Equation (3.4) and has the form:

π = −a1y − b1p x.

Hence, Equation (3.14) admits a three-parameter group with the generators

X1 = x
∂

∂x
− y

∂

∂y
, X2 =

∂

∂x
− yz

∂

∂z
, X3 =

∂

∂y
− pxz

∂

∂z
· (3.19)
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Corollary 1. Two equations of the form (2.1) admitting a three-parameter
group are equivalent if and only if they have equal values of the parameters
p and q.

Indeed, if two equations have equal p and q then by Theorem 1 each of
them is equivalent either to Equation (3.13) or to Equation (3.14). Con-
versely, if two equations are equivalent then Equation (2.4) and Lemma 2
show that they have equal values of the parameter p. The equality of the
values of the parameter q follows from the equations

1

h

∂2 log h

∂x∂y
=

1

α′β′h′
∂2 log(α′β′h1)

∂x∂y
=

1

h1

∂2 log h1
∂α∂β

obtained by using (2.4).

§ 4. Determination of the admissible Chap-

lygin functions

In this section we will find all Chaplygin functions K(σ) for which Equation
(1.7) admits a three-parameter group. Any Chaplygin function of this kind
and the corresponding equation will be called an admissible Chaplygin func-
tion and an admissible equation, respectively. In order to find all admissible
Chaplygin functions, it suffices to consider Equation (1.14) and utilize the
results of § 3 since the equations (1.7) and (1.14) admit similar groups.

The Laplace invariants of equation (1.14) have the form

h = k = N ′ +N2,

where N = N(t) = N(λ+ µ) and the prime denotes the differentiation with
respect to t.

Let us first consider the case when h = 0. Then the abo ve equations
yields that either N = 0 or N = (t+ t0)

−1, where t0 is a constant. The case
N = 0 corresponds evidently to the function K(σ) = const. In the second
case Equation (1.15) has the form

∂

∂t
log σ′(t) = − 2

t+ t0
; or σ − σ0 = −

c1
t + t0

and hence, according to (1.16), we have

K(σ) = −
(

c

σ − σ0

)4
, c, σ0 = const. (4.1)
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According to Lemma 1, these are the only cases when the Chaplygin equation
is equivalent to the wave equation for vibrating strings (or to the Laplace
equation).

Let h 6= 0. The equation h = k and Theorem 1 show that Equation (1.14)
is admissible if and only if the quantity

1

h

∂2 log h

∂λ∂µ
=

1

h

∂2 log h

dt2
= q (4.2)

is constant. This condition provides a differential equation for h = h(t).
Given any solution of Equation (4.2), one can obtain the function N(t) by
solving the Riccati equation

N ′ +N2 = h. (4.3)

Let us introduce a new independent variable s and an auxiliary function
ζ = ζ(s) via the equations

ds

dt
= h, (4.4)

N = h
ζ ′(s)

ζ(s)
· (4.5)

Considering the invariant h as a function of s, we obtain that Equation (4.2)
takes the form

d2h

ds2
= q (4.6)

and Equation (4.3) reduces to the following linear equation for ζ :

d

ds

(
h
dζ

ds

)
− ζ = 0. (4.7)

Invoking the formulae (1.15) (1.16) and using Equation (4.5), one can readily
show that any solution ζ = ζ(s) of Equation (4.7) provides the following
parametric representation of the admissible Chaplygin functions:

K(σ) = −1

4
ζ4(s), σ =

∫
ds

hζ2
· (4.8)

In the above formulae, the arbitrary constant that appears while determin-
ing σ′ from (1.15) can be taken, without loss of generality, to be equal to
one. Indeed, this condition can be achieved by multiplying the solution ζ of
Equation (4.4) by a constant factor.
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In order to work out the quadrature in the second equation (4.8), we
consider a solution ζ0 = ζ0(s) of Equation (4.7) that is linearly independent
of ζ(s). The Wronskian

W [ζ0, ζ] = ζ ′0 ζ − ζ0 ζ
′

of these two solutions is equal to

W [ζ0, ζ] =
c

h
, c = const.

Therefore
d

ds

(
ζ0
ζ

)
=
W [ζ0, ζ]

ζ2
=

c

hζ2
·

Consequently, one can take σ in the following form:

σ =
1

c

ζ0(s)

ζ(s)
(4.9)

since the additive constant of integration can be arbitrarily changed due to
the choice of a solution ζ0 when ζ is fixed.

Note that, given any fixed q, we obtain a set of admissible functions K(σ)
depending on the arbitrary constants that appear while solving the equations
(4.6), (4.7) and evaluating the quadrature (4.8). In order to give a precise
description of the above set, we will use group properties of the system of
ordinary differential equations

h′′ = q, (h ζ ′)′ = ζ, h ζ2 σ′ = 1, 4K = −ζ4. (4.10)

determining K(σ) when q is given. Here, the primes denote the derivatives
with respect to s.

It is easy to verify that the system (4.10) admits a five-parameter group
with the following generators:

Y1 =
∂

∂s
, Y2 = s

∂

∂s
− σ

∂

∂σ
+ 2h

∂

∂h
, Y3 =

∂

∂σ
,

Y4 = 2σ
∂

∂σ
− ζ

∂

∂ζ
− 4K

∂

∂K
, Y5 = σ2

∂

∂σ
− σζ

∂

∂ζ
− 4σK

∂

∂K
·

(4.11)

The operators (4.10) generate the following one-parameter groups of trans-
formations with the respective parameters ai(i = 1, 2, 3, 4, 5) (the unwritten
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quantities are invariant under the corresponding operator):

(Y1) s̄ = s+ a1,

(Y2) s̄ = a2s, σ̄ =
1

a2
σ, h̄ = a22h,

(Y3) σ̄ = σ + a3,

(Y4) σ̄ = a24σ, ζ =
1

a4
ζ, K =

1

a44
K,

(Y5) σ̄ =
σ

1− a5σ
, ζ̄ = (1− a5σ)ζ, K = (1− a5σ)

4K.

(4.12)

We will denote by D the group composed of the transformations (4.12). The
system (4.10) admits the group D, and every transformation from D maps
any solution of the system (4.10) into a solution of this system. This yields
the following result.

Theorem 2. If K0(σ) is an admissible Chaplygin function corresponding to
a certain value of q then

K(σ) =
M

(cσ + d)4
K0

(
aσ + b

cσ + d

)
(4.13)

is also an admissible Chaplygin function corresponding to the same value of
q. Here M,a, b, c, d are arbitrary constants (in general, complex) such that
M 6= 0 and ad− bc 6= 0.

Proof. Let us take any constants M ′, a′, b′, c′, d′ such that M ′ 6= 0,
a′d′ − b′c′ 6= 0 and, using the superposition of the transformations (4.12),
consider the transformation

σ̄ =
a′σ + b′

c′σ + d′
, K =M ′(c′σ + d′)4K.

The group property yields that if K(σ) is an admissible function then K(σ̄)
is also an admissible function. Furthermore, we have:

σ =
d′σ̄ − b′

−c′σ̄ + a′
, c′σ + d′ =

a′d′ − b′c′

−c′σ̄ + a′

and

K(σ̄) =
M ′(a′d′ − b′c′)4

(−c′σ̄ + a′)4
K

(
d′σ̄ − b′

−c′σ̄ + a′

)
.

Since the last formula differs from (4.12) only in notation, the theorem is
proved.
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The formula (4.13) defines the most general transformation of the func-
tions K(σ) induced by the transformations of the group D. Consequently,
regarding two functions to be equivalent if they are connected via (4.13),
we divide the whole family of functions K(σ) into the classes of equivalent
functions with respect to D. The problem is to find these classes via their
simplest representatives.

We first note that the groupD transforms, along with the functionsK(σ),
the solutions h(s) of the equation (4.6) as well. Since the group D acts on
the variables s and h by means of the transformations (Y1) and (Y2) from
(4.12), the most general transformation of the function h(s) under the group
D can be written in the form

h(s) =
1

l2
h0(ls+m), (4.14)

where l,m are arbitrary constants, l 6= 0.

The functions K(σ) obtained as solutions of system (4.10) with a fixed
function h(s) belong to one class. Indeed, letting h(s) be given, we see from
the equations (4.8) and (4.9) that the variation of K(σ) is possible only due
to arbitrariness in the choice of two linearly independent solutions ξ0(s) and
ξ(s) of a given equation (4.7). It is manifest, however, that this arbitrariness
is settled by the transformation (4.13).

Let us introduce the classes of equivalent functions h(s) by putting two
functions in one class if they are connected by a transformation of the form
(4.14). Then to every class of equivalent h(s) there will correspond one class
of equivalent K(σ). Indeed, let K0(σ) and K(σ) be obtained via h0(s) and
h(s), respectively, where h(s) is given by (4.14). Then h(s) is mapped to
h0(s) by a proper transformation from D while K(σ) will be mapped into
K1(σ). According to the previous remark, K1(σ) is equivalent to K0(σ), and
henceK(σ) is equivalent toK0(σ). Conversely, the functions h(s) determined
via a given function K(σ) belong to one class. This is readily seen, e.g. from
the equations

h = − 1

ζ3
d2

dσ2

(
1

ζ

)
, s = −

∫
d2

dσ2

(
1

ζ

)
dσ

ζ

resulting from (4.7) and (4.8).

Thus, there is a one-to-one correspondence between the classes of equiv-
alent functions K(σ) and h(s). This means that we will find all classes of
the admissible K(σ) if we proceed as follows. At first, we fill find the classes
of functions h(s) and then we will construct, for every representative h0(s),
any single function K0(σ).
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Equation (4.6) determining h(s) has the general solution

h(s) = 1/2qs2 + C1s+ C2, (4.15)

where C1 and C2 are arbitrary constants. It is apparent now that if q 6= 0
all solutions h(s) are divided into two classes according to the character of
roots of the function (4.15). Namely, class I comprises the solutions having
repeated roots and class II comprises the solutions with simple roots. Any
two solutions of the same class are connected by the transformation (4.14)
while solutions of different classes cannot be transformed into one another
via this transformation. If q = 0 we will assign the solutions (4.15) with
C1 = 0 to class I while the solutions (4.15) with C1 6= 0 will be referred to
class II (if q = 0 one or both roots can be formally assumed to be at∞; then
classes I and II will differ according to the multiplicity of the root s = ∞).
The corresponding classes of the functions K(σ) will be denoted by (I, q)
and (II, q).

It remains now to take two linearly independent solutions ζ0(s) and ζ(s) of
equation (4.7) for each of the elementary representatives h0(s) of the defined
classes and to determine the representatives K0(σ) of the above classes via
the parametric representation (4.8), (4.9). Due to Theorem 2, the latter can
be written in a more simple form:

K = ζ4(s), σ =
ζ0(s)

ζ(s)
· (4.16)

We proceed now to calculations.
Class (I, 0). One can take here h0(s) = 1. Then solutions to Equation

(4.7) will be, e.g. ζ0 = eσ and ζ = e−σ. Elimination of s from (4.16) yields:

K0(σ) =
1

σ2
· (4.17)

Class (II, 0). In this case, it is convenient to take h0(s) = −2s. Then
Equation (4.7) has the form:

2(sζ ′)′ + ζ = 0.

The change of variables x =
√
2s, ζ(s) = y(x) reduces the above equation

to the Bessel equation with the index zero:

y′′ +
1

x
y′ + y = 0

Taking the Bessel functions y = J0(x) and y0 = Y0(x) of the first and second
kind, respectively, as two linearly independent solutions of this equation, we
obtain:

K0(σ) = J40 (
√
2s), σ =

Y0(
√
2s)

J0(
√
2s)

· (4.18)
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In the case when q 6= 0, it is convenient to introduce a new parameter ν
instead of q by setting

2

q
= ν(ν + 1). (4.19)

Class (I, q) with q 6= 0. One can take here h0(s) = 1
2
qs2. Invoking the

notation (4.9), we write Equation (4.7) in the form

(s2ζ ′)′ − ν(ν + 1)ζ = 0,

i.e. as the Euler equation with the indices ν and −ν − 1. If ν 6= 1/2, two
linearly independent solutions of the above equation are

ζ0 = s−ν−1, ζ = sν .

Elimination of s from Equations (4.16) yields:

K0(σ) = σ−
4ν

2ν+1 . (4.20)

The case when ν = −1/2 corresponds to q = −8. Hence, the class (I,−8)
should be singled out. Two solutions of Equation (4.7) can be taken in the
form:

ζ0 = −2
log s√
s
, ζ =

1√
s
·

Then K0 = s−2 and σ = −2 log s or s = e−σ/2. Consequently, the represen-
tative of this class is

K0(σ) = eσ. (4.21)

Class (II, q) with q 6= 0. Let us assume that the roots of h0(s) are at the
points ±1, and hence

h0(s) =
1

2
q(s2 − 1).

Then equation (4.7) becomes an equation for the Legendre functions:

[(1− s2)ζ ′]′ + ν(ν + 1)ζ = 0. (4.22)

Two linearly independent solutions are furnished by the Legendre functions
of the νth degree ζ = Pν(s) and ζ0 = Qν(s) of the first and second kind,
respectively. We obtain:

K0(σ) = P 4ν (s), σ =
Qν(s)

Pν(s)
· (4.23)

The final result of these calculations and the preceding discussions can be
formulated as follows.
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Theorem 3. Any admissible Chaplygin function either coincides with one
of the functions (4.17), (4.18), (4.20), (4.21), (4.23) or is obtained from one
of them via group transformation (4.13).

Let us note that the case h = 0 fits the above classification as well if,
by convention, we set q = ∞ and take K0(σ) = 1 as a representative of the
class (II,∞). This is due to the fact that the transformation (4.13) maps
K0(σ) = 1 to the function (4.1).

§ 5. Canonical forms of the admissible Chap-

lygin equation

It is manifest that p = 1 for every Chaplygin equation. Hence, due to the
corollary of Theorem 1, two admissible Chaplygin equations are equivalent
if and only if they have identical values of the parameter q. The Chaplygin
equation with the invariant h is equivalent by function to the equation

ψ◦
λµ − hψ◦ = 0 (5.1)

since the latter has the Laplace invariants equal to h as well. The reckoning
shows that Equation (1.14) is mapped into (5.1) by the following substitution:

ψ =
1

ζ
ψ◦, (5.2)

where ζ is determined by Equation (4.5).
Let us consider the canonical forms of admissible Equations (5.1) and the

corresponding transformations to the canonical forms. Applying to (5.1) the
reasoning used in the proof of Theorem 1, one obtains the following results.

If q = 0 then there exist functions α(λ) and β(µ) such that

h = α′(λ)β ′(µ). (5.3)

Furthermore, the change of variables

α = α(λ), β = β(µ), ψ◦(λ, µ) = Ψ(α, β) (5.4)

reduces equation (5.1) to the form

Ψαβ = Ψ. (5.5)

If q 6= 0 then there exist functions α(λ) and β(µ) such that

h =
2

q

α(λ)β ′(µ)

[α(λ) + β(µ)]2
· (5.6)
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Now the same change of variables (5.4) reduces (5.1) to the equation

Ψαβ =
ν(ν + 1)

(α + β)2
Ψ, (5.7)

where the parameter q is replaced by ν defined via Equation (4.19).
Thus, any admissible Chaplygin equation is equivalent either to Equation

(5.5) or to Equation (5.7).
Let us find the possible forms of the functions α and β. For this purpose

the invariant h should be calculated as a function of t = λ+µ by integrating
Equation (4.4). Note that it is sufficient to consider only representatives of
classes of equivalent functions h(s).

Class (I, 0). Here h = 1, and (4.4) yields s = t. Thus

α = λ, β = µ.

Class (II, 0). Here h = −2s, and (4.4) yields 2s = −e−2t. Thus
h = e−2t = e−2λe−2µ and consequently

α =
1

2
e−2λ, β =

1

2
e−2µ.

Class (I, q) with q 6= 0. Here h = 1
2
qs2, and (4.4) yields s = −ν(ν +1)/t.

Thus h = ν(ν + 1)/t2 and consequently

α = λ, β = µ.

Class (I,−8) has no differences from all the other classes (I, q).
Class (II, q) with q 6= 0. Here h = 1

2
q(s2−1). Integrating (4.4) we obtain

s = −cthqt
2
, h =

q

2
sh2

qt

2
·

Since

sh2
qt

2
=

1

4
e−qλeqµ(eqλ − e−qµ)2,

we have

α = eqλ, β = −e−qµ.

Let us also specify the group transformation that maps any solution of
an admissible Chaplygin equation again into a solution of the same equation.
It is sufficient to do this for each of the canonical forms (5.5) and (5.7) since
the change of variables reducing any admissible equation to one of them is
already known. Using the results of §3 we obtain that a three-parameter
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transformation of the family of solutions for Equation (5.5) into itself has
the form:

Ψ(α, β) = Ψ

(
aα + b,

1

a
β + c

)
, a 6= 0. (5.8)

The similar transformation for equation (5.7) has the form:

Ψ̄(α, β) = Ψ

(
aα + b

cα + d
,

aβ + b

cβ + d

)
, ad− bc 6= 0. (5.9)

Equations (5.8) and (5.9) involve arbitrary constants a, b, c, d.
In conclusion of this section, let us consider the Laplace series for every

admissible Chaplygin equation. Due to the equivalence properties it is suffi-
cient to investigate the series for the canonical form of such an equation. In
the case of the canonical form (5.5) all terms of the Laplace series (2.10) co-
incide with the original equation. However, application of Laplace’s method
to Equation (5.7) leads to new equations that differ from the original one by
the values of the parameter ν. Equation (2.13) shows that the Laplace series
cuts off at a certain n if and only if the following equation holds:

2

q
= n(n+ 1). (5.10)

Comparing (5.10) with Equation (4.19) defining ν we see that Equation (5.10)
is satisfied when ν = n. Moreover, since n(n+1) = (−n−1)(−n), the Laplace
series cuts off at both ends.

Consequently, if ν is an integer (ν 6= 0 and ν 6= −1), one can find the
general solution for the admissible Chaplygin equation in an explicit form
containing two arbitrary functions and not involving quadratures. For the
canonical equation (5.7) the solution has the form [6]:

Ψ(α, β) = (α + β)n+1
∂2n

∂αn∂βn

F (α) +G(β)

α + β
, (5.11)

where F (α) and G(β) are arbitrary functions.
If ν is not an integer then the Laplace series is infinite. But since the

admissible Chaplygin function is equivalent to Equation (5.7), its Riemann
function is expressed by a hypergeometric function [6]. Hence, a formula for
the general solution containing two arbitrary functions can be written for
the general admissible Chaplygin equation as well. However, the arbitrary
functions will appear now under a sign of some quadratures.

Note that in the problem of gas dynamics, the approximations due to
S.A. Khristianovich [21] and G.A. Dombrovsky [8] correspond to the value
ν = 1 which leads to the approximating equations of classes (I, 1) and (II, 1),
respectively.
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§ 6. The Tricomi type equations

Let us investigate admissible Chaplygin functions that can be used for ap-
proximation in the vicinity of the point of transition over the acoustic speed
σ = 0. A necessary condition for reliability of such an approximation is
validity of (1.8) type equations.

We call an admissible Chaplygin equation (1.7) a Tricomi type equation
(in short: T-type) if K(σ) is an analytic function of σ in a vicinity of the
point σ = 0 and if K(0) = 0 whereas K ′(0) 6= 0. The corresponding function
K(σ) will also be termed a T-type function. The problem is to find all T-type
equations.

The Tricomi equation
σψθθ + ψσσ = 0 (6.1)

itself is a T-type equation since K(σ) = σ is one of the admissible functions.
It is obtained from (4.20) when

ν = −1

6
, (6.2)

i.e it is a representative of the class (I,−72/5).

Theorem 4. Any T-type equation is equivalent to the Tricomi equation.

Proof. The proof can be obtained by inspecting the corresponding K(σ) in
different classes. Let us consider the formulae (4.16) of parametric represen-
tation of the admissible Chaplygin functions. A point where K = 0 and σ
is finite will be called a transition point. Let s = s0 at a transition point.
Then Equations (4.16) yield that ζ(s0) = 0 and ζ0(s0) = 0. It follows that a
transition point should be a critical point of Equation (4.7).

Note that if a critical point of equation (4.7) is a transition point for
some h0(s) then after transformation (4.14) the transformed point will be
a transition point for the new equation with the transformed function h(s).
Therefore, in order to obtain transition points it is sufficient to consider
the standard equations (4.7) corresponding to the simplest representatives of
classes of equivalent functions h(s).

If q = 0, the only transition points could be s = 0 and s =∞. However,
neither when h = 1 nor when h = −2s the above points are transition points.
The case h = 1 is a trivial one. If h = −2s this conclusion results from the
behavior of J0(x) and Y0(x) at x → 0 and x → ∞. Consequently, there are
no T-type equations in the classes (I, 0) and (II, 0).

Turning to the class (I, q), the only transition point there can be s =∞.
Indeed, the form of two linearly independent solutions ζ0 = s−ν−1 and ζ = sν
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of Equation (4.7) shows that the requirement for s = 0 to be a transition point
leads to the contradictory inequalities ν > 0 and −ν − 1 > 0. Furthermore,
s =∞ will be a transition point for the function (4.20) if −4ν/(2ν + 1) = 1,
i.e. ν = −1/6. This leads to the Tricomi equation (6.1).

Finally, let us consider the classes (II, q) with q 6= 0. Here h = 1
2
q(s2− 1)

and transition points can be provided only by the critical points s = ±1 and
s =∞. However, the indices of equation (4.22) at the critical points s = ±1
equal to zero. Therefore one of the solutions at any of these points will be
regular while the other will possess the logarithmic singularity. It follows
that s = ±1 are not transition points. Hence, every admissible function in
the classes (II, q) can have at most one transition point corresponding to
s = ∞. Equation (4.22) has at s = ∞ the indices −ν and ν + 1. If this
point is a transition one, then the indices should be different, otherwise (i.e.
if ν = −1/2) one of the solutions would have the logarithmic singularity at
s =∞. Consequently, there exist two linearly independent solutions that can
be presented when |s| > 1 in the form:

ζ = sνf1(s
−1), ζ0 = s−ν−1f2(s

−1), (6.3)

where f1(s
−1) and f2(s

−1) are power series in s−1 converging in the circle
|s−1| < 1. Moreover, f1(0) = f2(0) = 1. Therefore, we obtain by using (4.16):

K(σ) = σ−
4ν

2ν+1 g(σ), g(0) = 1.

Thus, the equation

− 4ν

2ν + 1
= 1

is a necessary condition forK(σ) to be a T-type function. The above equation
leads again to the value ν = −1/6.

This proves Theorem 4 since we obtained that the admissible T-type func-
tions K(σ) can be contained only in the classes (I,−72/5) and (II,−72/5).
It remains only to employ the corollary of Theorem 1.

We will show now that the class (II, -72/5) indeed contains T-type func-
tion K(σ). For this purpose we will construct explicitly the power series in
the formulae (6.3) and, in addition, will prove the analyticity of the obtained
function K(σ).

With this aim in view, we will introduce in Equation (4.22) the new
independent variable τ defined by thje equations

s2 = τ, ζ(s) = δ(τ). (6.4)

Then equation (4.22) takes the form:

τ(τ − 1) δ′′ +

(
−1

2
+

3

2
τ

)
δ′ − 1

4
ν(ν + 1) δ = 0. (6.5)
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The hypergeometric equation (6.5) has at τ = ∞ the indices − 1
2
ν and

1
2
(ν + 1). Consequently, its two linearly independent solutions are written

via hypergeometric series as follows:

δ = τ
ν
2F

(
−ν
2
, −ν

2
+

1

2
; −ν + 1

2
;
1

τ

)
,

δ0 = τ−
ν+1
2 F

(
ν + 1

2
,
ν

2
+ 1; ν +

3

2
;
1

τ

)
.

(6.6)

Returning to the variable s and taking the value ν = − 1
6
, the one we are

interested in, we obtain two linearly independent solutions to Equation (4.22)
that have the required form (6.3):

ζ = s−
1
6F

(
1

12
,
7

12
;
2

3
; s−2

)
, ζ0 = s−

5
6F

(
5

12
,
11

12
;
4

3
; s−2

)
. (6.7)

The representation (4.16) of the corresponding admissible Chaplygin function
has the form:

K = s−
2
3

[
F

(
1

12
,
7

12
;
2

3
; s−2

)]4
, σ = s−

2
3
F
(
5
12
, 11
12
; 4
3
; s−2

)

F
(
1
12
, 7
12
; 2
3
; s−2

) · (6.8)

The second equation in (6.8) can be written in the form

σ3 = s−2f(s−2),

where f(s−2) is analytic near the point s−2 = 0 and besides f(0) = 1. Hence,
s−2 is an analytic function of σ3. Consequently, the ratio

K

σ
=

[
F
(
1
12
, 7
12
; 2
3
; s−2

)]5

F
(
5
12
, 11
12
; 4
3
; s−2

)

as well as the admissible function K(σ) determined by (6.8) will be analytic
functions of σ. Consequently, K(σ) is a T-type function.

Finally we note that if K0(σ) is an admissible T-type function then, due
to group property (4.13), the function

K(σ) =
M

(cσ + d)4
K0

(
σ

cσ + d

)
(6.9)

will be also an admissible T-type function for all values of the constants
M, c, d (M 6= 0, d 6= 0). It turns out that the above constructions furnish all
admissible T-type functions. Thus the following assertion holds.
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Theorem 5. Any T-type admissible Chaplygin function can be obtained by
means of the group transformation (6.9) either from the function K0(σ) = σ
or from the function K0(σ) determined by Equations (6.8).

Proof. Recall that the T-type functions K(σ) equivalent to one of such
functions K0(σ) belong to family (4.13). The requirement K(0) = 0 leads to
the equation K0(b/d) = 0 meaning that σ = b/d must be a transition point.
This is possible only if b = 0 since otherwise the function K0(σ) would have
two transition points. However, the proof of Theorem 4 revealed that none
of the admissible functions K(σ) can have more than one transition point.
If b = 0 then K(σ) = 0 is satisfied due to K0(0) = 0. Moreover,

K ′(0) =Mad−5K ′
0(0) (6.10)

and therefore K ′(0) 6= 0 if K ′
0(0) 6= 0. It is manifest that if b = 0 one can as-

sume a = 1. This proves that every subclass of equivalent T-type functions is
described by the formula (6.9). Since the obtained T-type functions, namely,
K = σ and the function (6.8) are representatives of classes (I,−72/5) and
(II,−72/5) of equivalent functions and since no other classes contain T-type
functions, the theorem is proved.

§ 7. The Laplace type equations

Here we will obtain all admissible Chaplygin appropriate for approximating
the gasdynamical function K(σ) in the limiting case of low speeds, i.e. when
σ → +∞. The accuracy of such an approximation is guaranteed by Equation
(1.9) showing that the Chaplygin equation turns into the Laplace equation
asymptotically when σ → +∞.

We call an admissible equation (1.7) a Laplace type equation (briefly L-
type) if K(σ) meets the condition of the form (1.9) when σ → +∞. The
corresponding function K(σ) will also be called an L-type function. It is
apparent that the Laplace equation itself is an L-type equation.

Theorem 6. The L-type Chaplygin functions can be only functions of the
classes (II, q). Moreover, the class (II, q) with any q contains an L-type
function. If K0(σ) is a function of this type then the general form of L-type
functions of the same class is given by

K(σ) = K0(aσ + b), (7.1)

where a and b are arbitrary constants, a > 0.
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Proof. We will call a point a critical point and denote it by s∞ if, at this
point, σ = ∞ and K 6= 0, K 6= ∞. The representation (4.16) shows that at
the critical point one should have ζ 6= 0, ζ 6= ∞ and ζ0 = ∞. Hence, only a
singular point of Equation (4.7) can be a critical point.

It is easily seen that there are no critical points in the classes (I, q). For
the class (I, 0), the statement results from the observation that the only
possible critical point is s∞ =∞ and none of the solutions of equation (4.7)
has a finite value different from zero at this point. In the classes (I, q) with
q 6= 0 there can be two critical points, s∞ = 0 and s∞ =∞. However, again
there are no solutions having a finite non-vanishing value at the point s∞.

Let us show that there is an L-type function in any class (II, q). Indeed,
in this case Equation (4.7) has a regular singular point where both its indices
equal to zero. One of the solutions is finite at the singular point and can
be taken as the function ζ in the representation (4.16) while the other has
necessarily a logarithmic singularity and can be taken as the function ζ0.

In the case of the class (II, 0), it is the function (4.18) that represents an
L-type function, whereas in the classes (II, q) with q 6= 0 it is the function
(4.23). In the first case the critical point is s∞ = 0, and in the second case
it is s∞ = 1.

Finally, let K0(σ) be an L-type function determined by Equations (4.16)
via linearly independent solutions ζ(s) and ζ0(s) of Equation (4.7). The gen-
eral form of the admissible functions of the class represented by K0(σ) is
defined by (4.13). To finish the proof of the theorem, it remains to demon-
strate that if the formula (4.13) furnishes again an L-type function then it
reduces to (7.1), i.e. c = 0.

Let us assume that c 6= 0. Then to the point σ∗ = a/c there corresponds
a point s∗ such that

ζ(s∗) =∞,
ζθ(s∗)

ζ(s∗)
6=∞. (7.2)

These equations show that s∗ is a singular point for Equation (4.7).

Let us show that s∗ 6= ∞. It is manifestly true for the class (II, 0) since
both solutions J0(

√
2s) and Y0(

√
2s) tend to zero when s→ +∞.

Consider now a class (II, q) with q 6= 0. The indices of two linearly
independent solutions of Equation (4.7) at s = ∞ equal to −ν and ν + 1.
To satisfy (7.2) at s∗ = ∞, the parameter ν should be outside the interval
[−1, 0]. Indeed, if −1 < ν < 0 both solutions vanish at s =∞, and the values
ν = −1 and ν = 0 do not correspond to any finite value q. In what follows,
one can assume without loss of generality, that ν > 0 since otherwise we
would replace ν by −ν − 1 without changing the value of q.

The analytical continuation of the solutions ζ(s) and ζ0(s) into the region
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|s| > 1 has the form:

ζ = Asνf1(s
−1) +Bs−ν−1f2(s

−1),

ζ0 = A0s
νf1(s

−1) +B0s
−ν−1f2(s

−1), (7.3)

where A,B,A0, B0 are constants such that AB0−A0B 6= 0 while f1(s
−1) and

f2(s
−1) are power series in integral powers of s−1 such that f1(0) = f2(0) = 1.

Since ν > 0, the condition that ζ →∞ when s→∞ implies A 6= 0. Hence,
we obtain the following expression for σ :

σ =
ζ0
ζ

=
A0 +B0s

−2ν−1f3(s
−1)

A+Bs−2ν−1f3(s−1)
· (7.4)

Here f3(s
−1) is a function that has the same properties as f2(s

−1). Due to
(7.2) we have A0 = Aσ∗. Therefore, the formula (7.4) yields that

(σ − σ∗)s
2ν+1 → AB0 − A0B

A2
6= 0

when s→∞. Consequently, we have in the vicinity of σ = σ∗ :

s ∼ (σ − σ∗)
− 1

2ν+1 .

The expression (7.3) for ζ and the representation (4.16) in the vicinity of
σ = σ∗ yield:

K0(σ) ∼ (σ − σ∗)
− 4ν

2ν+1 .

Now, invoking (4.13), we have at σ →∞ :

K(σ) =
M

(cσ + d)4
K0

(
σ∗ +

bc− ad

c(cσ + d)

)
∼ (cσ + d)

4ν
2ν+1

−4.

It follows that K(σ) can be an L-type function only if the exponent in the
latter expression vanishes, i.e. if ν = −1. This cannot correspond, however,
to any final value of q. It follows that s∗ 6=∞ in the formula (7.2).

The class (II, 0) contains only two singular points, s = 0 and s = ∞.
The first of them was already used in constructing the L-type function (4.18).
Therefore, the condition c 6= 0 leads here to contradiction.

The class (II, q) with q 6= 0 contains three singular points, s = ±1
and s = ∞. The assumption c 6= 0 eliminates the point s∗ = ∞. Let us
assume that K0(σ) is a function for which s∞ = 1 is a critical point. It
is obvious that this function is determined up to the transformation (7.1).
If the transformation (4.13) maps K0(σ) into an L-type function K(σ), the
latter can have as a critical point only s∞ = −1. However, the equation used
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in constructing K(σ) remains unaltered when s is replaced by −s. Therefore
the variety of L-type functions with the critical point s∞ = −1 coincides with
the set of similar functions for s∞ = 1. Therefore the critical point s∞ = −1
can be disregarded.

We obtain that the transformations mapping an L-type function K0(σ)
again into an L-type function can be identified with the transformations
preserving the critical point associated with K0(σ). Obviously, these are only
the transformations with c = 0, i.e. the transformations of the form (7.1).
This completes the proof of Theorem 6.

Let us show that there exists an admissible function K(σ) which is T-
type and L-type simultaneously. According to Theorem 5 and Theorem 6, the
desired function can belong only to the class (II,−72/5). Here the transition
point is s0 =∞ while s∞ = 1 can be taken as a critical point.

Starting from the T-type function K0(σ) defined by (6.8), one can choose
an appropriate transformation (6.9) so that to obtain an L-type function.
To this end, it suffices to replace the solution ζ defined according to (6.7)
by a linear combination ζ1 of solutions ζ and ζ0 such that the analytical
continuation of ζ1 will be regular at the point s = 1. One can obviously use,
instead of s, the variable τ defined by (6.4). Then we have for Equation
(6.5) the unique solution (up to a constant factor) which is regular at τ = 1,
namely (when ν = −1/6):

δ1 = F

(
1

12
,

5

12
; 1; 1− τ

)
.

By extending this hypergeometric series into the domain |τ | > 1, we obtain:

δ1 = c1δ + d1δ0,

where δ and δ0 are determined by (6.6) and the coefficients c1 and d1 are:

c1 =
Γ
(
1
3

)

Γ
(
5
12

)
Γ
(
11
12

) , d1 =
Γ
(
−2
3

)

Γ
(
1
12

)
Γ
(
7
12

) · (7.5)

Thus, a function K∗(σ) which is simultaneously of the T-type and the
L-type, is determined by the equations

K∗ =

[
F

(
1

12
,

5

12
; 1; 1− s2

)]4
,

σ =
F
(
5
12
, 11
12
; 4
3
; s−2

)

s2/3F
(
1
12
, 7
12
; 2
3
; s−2

)
−QF

(
5
12
, 11
12
; 4
3
; s−2

) ,
(7.6)
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where

Q = −d1
c1

=
3Γ( 5

12
)Γ( 5

12
)

2Γ( 1
12
)Γ( 7

12
)
· (7.7)

It can be readily verified that the function K∗(σ) is obtained from the
“standard” T-type function (6.8), denoted by K0(σ), by means of the group
transformation

K∗(σ) =
c41

(1 +Qσ)4
K0

(
σ

1 +Qσ

)
. (7.8)

The function K∗(σ) provides a good approximation of the gasdynamical
Chaplygin function in the whole subsonic as well in the transonic domain.
This function was obtained in different way and used in applications by
Germain and Liger [12].

In conclusion we note that one can find likewise all admissible equations
meeting the condition (1.10). This condition requires that the function K(σ)
have a ”limiting” point, i.e. a point s1 where σ = σ1 and K = ∞. At the
limiting point, one should have ζ = ∞ and ζ0 = ∞ while the ration ζ0/ζ
should be finite and different from zero. Hence, the limiting point must
also be a singular point of Equation (4.7), namely, s1 = ∞. It is easily seen
that the corresponding functions K(σ) are contained in the classes (I, q) and
(II, q1), where

2

q1
= ν1(ν1 + 1), ν1 =

γ + 1

2(γ − 1)
· (7.9)

Furthermore, there are no admissible T-type functions that meet the
condition (1.10). Hence, it is impossible to obtain an approximation of the
gasdynamical Chaplygin equation that will be good in the supersonic and
transonic domains simultaneously.
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Editor’s Notes

(1)Page 130. The quantities p and q are invariants, Ovsyannikov’s invariants,
of the hyperbolic equations (2.1) with respect to the general group of equivalence
transformations (2.2). The complete set of all invariants was found recently by
N.H. Ibragimov [18], see also [17].
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Afdelingen for Mathematik och Naturvetenskap (1873–74), pp. 1-12.

[2] Bers, L. Mathematical aspects of subsonic and transonic gas dynamics.
London, 1958.

[3] Campbell, J. E. Introductory treaties on Lie’s theory of finite contin-
uous transformation groups. Clarendon Press, Oxford, 1903.

[4] Chaplygin, S. A. On gas jets. Dissertation,1902, M-L., GITTL, 1949.

[5] Cohen, A. An introduction to the Lie theory of one-parameter groups
with applications to the solution of differential equations. D.C. Heath,
New York, 1911.

[6] Darboux, G. Leçons sur la Théorie Générale des Surfaces, vol. III.
Gauthier-Villars, Paris, 1889.
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