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Abstract. The basic results on nonlinear superposi-
tion principles were published by E. Vessiot [1], A. Guld-
berg [2] and S. Lie [3]. I formulate here the main
theorem and illustrate it by several examples. For a
detailed presentation of Lie’s theory of nonlinear su-
perposition principles, see [4].

1 Introduction

It is a very interesting problem to seek, together
with E. Vessiot [1] and A. Guldberg [2], all systems

dxi

dt
= f i(t, x), i = 1, . . . , n, (1)

whose general solutions x = (x1, . . . , xn) can be
expressed via m particular solutions
x1 = (x1

1, . . . , x
n
1 ), . . . , xm = (x1

m, . . . , x
n
m) in the

form

xi = ϕi(x1, . . . , xm; C1, . . . , Cn), i = 1, . . . , n.
(2)

S. Lie, 1893

Lie solved the problem by proving the following
[3](ii)-(iv)

Theorem. Equations (1) possess a nonlinear
superposition if and only if they have the form (dis-
covered by Lie [3](i))

dxi

dt
= T1(t)ξi

1(x) + · · ·+ Tr(t)ξi
r(x), i = 1, . . . , n,

(3)
whose coefficients ξi

α(x) satisfy the condition that
the operators

Xα = ξi
α(x)

∂

∂xi
, α = 1, . . . , r, (4)

span a Lie algebra Lr of a finite dimension r termed
the Vessiot-Guldberg-Lie algebra for equation (1).
The number m of necessary particular solutions is

estimated by nm ≥ r. Superposition formulae (2)
are defined implicitly by the equations

Ji(x, x1, . . . , xm) = Ci, i = 1, . . . , n, (5)

where Ji are functionally independent (with respect
to x1, . . . , xn) invariants of the (m + 1)-point rep-
resentation

Vα = Xα +X(1)
α + · · ·+X(m)

α (6)

of the operators (4).

The present talk is aimed at illistrating Lie’s
theorem by non- trivial examples.

2 Examples

Example 1. Consider a single homogeneous linear
equation written in the form dx/dt = A(t)x. Here
r = 1 and X = xd/dx. We take the two-point
representation (6) of X :

V = x
∂

∂x
+ x1

∂

∂x1

and its invariant J(x, x1) = x/x1. Equation (5) has
the form x/x1 = C. Hence, m = 1 and the formula
(2) is the linear superposition x = Cx1.

Lie’s generalization (3) of this simplest example
is the equation with separated variables:

dx
dt

= T (t)h(x).

Here r = 1 and X = h(x)d/dx. Taking the two-
point representation V of X,

V = h(x)
∂

∂x
+ h(x1)

∂

∂x1
,

and integrating the characteristic system dx/h(x) =
dx1/h(x1), one obtains the invariant J(x, x1) =
H(x)−H(x1), where H(x) =

∫
(1/h(x))dx. Equa-

tion (5) has the form H(x) − H(x1) = C. Hence,
m = 1 and the formula (2) provides the nonlinear
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superposition x = H−1(H(x1) + C).

Example 2. The non-homogeneous linear equa-
tion

dx
dt

= A(t)x+B(t)

has the form (3) with T1 = B(t) and T2 = A(t). The
Vessiot-Guldberg-Lie algebra (4) is an L2 spanned
by the operators

X1 =
d
dx

, X2 = x
d
dx

·

Substituting n = 1 and r = 2 in nm ≥ r, we see
that the expression (2) for the general solution re-
quires at least two (m = 2) particular solutions.
In fact, this number is sufficient. Indeed, let us
take the three-point representation (6) of the basic
operators X1 and X2 :

V1 =
∂

∂x
+

∂

∂x1
+

∂

∂x2
, V2 = x

∂

∂x
+x1

∂

∂x1
+x2

∂

∂x2
,

and show that they admit one invariant. To find
it, we first solve the characteristic system for the
equation V1(J) = 0, namely, dx = dx1 = dx2.
Integration yields two independent invariants, e.g.
u = x − x1 and v = x2 − x1. Hence, the common
invariant J(x, x1, x2) for two operators, V1 and V2,
can be obtained by taking it in the form J = J(u, v)
and solving the equation Ṽ2(J(u, v)) = 0, where the
action of V2 is restricted to the space of the vari-
ables u, v by using the formula Ṽ2 = V2(u)∂/∂u +
V2(v)∂/∂v. Noting, that V2(u) = x − x1 ≡ u and
V2(v) = x2 − x1 ≡ v, we have

Ṽ2 = u
∂

∂u
+ v

∂

∂v
·

Hence the invariant is J(u, v) = u/v, or J(x, x1, x2) =
(x − x1)/(x2 − x1). Thus, equation (5) is written
(x−x1)/(x2−x1) = C. Hence, (2) is the linear su-
perposition x = x1+C(x2−x1) ≡ (1−C)x1+Cx2.

Example 3. Consider the Riccati equation

dx
dt

= P (t) +Q(t)x+R(t)x2. (7)

Here the Vessiot-Guldberg-Lie algebra is L3 spanned
by

X1 =
d
dx

, X2 = x
d
dx

, X3 = x2 d
dx

· (8)

We take the four-point representation of the oper-
ators (8),

V1 =
∂

∂x
+

∂

∂x1
+

∂

∂x2
+

∂

∂x3
,

V2 = x
∂

∂x
+ x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
,

V3 = x2 ∂

∂x
+ x2

1

∂

∂x1
+ x2

2

∂

∂x2
+ x2

3

∂

∂x3
, (9)

and find its invariant

J =
(x− x2)(x3 − x1)
(x1 − x)(x2 − x3)

.

The equation J = C gives the well-known nonlin-
ear superposition.

Example 4. Lie’s theorem associates with any Lie
algebra a system of differential equations admit-
ting a superposition of solutions. Consider, as an
illustrative example, the three-dimensional algebra
spananed by

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ y

∂

∂y
,

X3 = x2 ∂

∂x
+ xy

∂

∂y
· (10)

It is a subalgebra of the eight-dimensional Lie alge-
bra of the projective group on the plane. Accord-
ingly, the first equation of the associated system
(3),

dx
dt

= T1(t) + 2T2(t)x+ T3(t)x2, (11)

dy
dt

= T2(t)y + T3(t)xy,

is the Riccati equation (7) with P = T1, Q = 2T2,
R = T3. The operators (10) span the Vessiot-Guldberg-
Lie algebra L3 for the system (11). The estimation
nm ≥ r with n = 2, r = 3 determines the minimum
m = 2 of necessary particular solutions. Conse-
quently, we take the three-point representation of
the operators (10):

V1 =
∂

∂x
+

∂

∂x1
+

∂

∂x2
,

V2 = 2x
∂

∂x
+ y

∂

∂y
+ 2x1

∂

∂x1

+ y1
∂

∂y1
+ 2x2

∂

∂x2
+ y2

∂

∂y2
,

V3 = x2 ∂

∂x
+ xy

∂

∂y
+ x2

1

∂

∂x1

+ x1y1
∂

∂y1
+ x2

2

∂

∂x2
+ x2y2

∂

∂y2
·

The operator V1 provides five invariants, viz.
y, y1, y2, z1 = x1−x, z2 = x2−x1. Restricting V2 to
these invariants, one obtains the dilation generator

Ṽ2 = 2z1
∂

∂z1
+ 2z2

∂

∂z2
+ y

∂

∂y
+ y1

∂

∂y1
+ y2

∂

∂y2
·

Its indepedent invariants are u1 = z2/z1, u2 =
y2/(x1−x), u3 = y2

1/(x1−x), and u4 = y2
2/(x1−x).
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Hence, a basis of the common invariants of V1 and
V2 :

u1 =
x2 − x1

x1 − x
, u2 =

y2

x1 − x
,

u3 =
y2
1

x1 − x
, u4 =

y2
2

x1 − x
·

It remains to find the resrtiction Ṽ3 of V3 to the
above invariants by the formula

Ṽ3 = V3(u1)
∂

∂u1
+ · · ·+ V3(u4)

∂

∂u4
·

The reckoning shows that

V3(u1) =
(x2 − x1)(x− x2)

x− x1
≡ (x1 − x)(1 + u1)u1,

V3(u3) = y2
1 ≡ (x1 − x)u3,

V3(u2) = −y2 ≡ −(x1 − x)u2,

V3(u4) =
x+ x1 − 2x2

x− x1
y2
2 ≡ (x1 − x)(1 + 2u1)u4.

Hence,

Ṽ3 =
(
x1 − x

)(
(1 + u1)u1

∂

∂u1
− u2

∂

∂u2
+ u3

∂

∂u3

+(1 + 2u1)u4
∂

∂u4

)
.

Consequently, the equation Ṽ3ψ(u1, . . . , u4) = 0 is
equivalent to

(1+u1)u1
∂ψ

∂u1
−u2

∂ψ

∂u2
+u3

∂ψ

∂u3
+(1+2u1)u4

∂ψ

∂u4
= 0,

whence, by solving the characteristic system

du1

(1 + u1)u1
= −du2

u2
=

du3

u3
=

du4

(1 + 2u1)u4
,

one obtains the following three independent invari-
ants:

ψ1 = u2u3 ≡
y2y2

1

(x1 − x)2
,

ψ2 =
u1u2

1 + u1
≡ (x2 − x1)y2

(x1 − x)(x2 − x)
,

ψ3 =
u4

(1 + u1)u1
≡ (x1 − x)y2

2

(x2 − x1)(x2 − x) ·

Hence, the general nonlinear superposition (5), in-
volving two particular solutions, (x1, y1) and (x2, y2),
is written

J1(ψ1, ψ2, ψ3) = C1, J2(ψ1, ψ2, ψ3) = C2, (12)

where J1 and J2 are arbitrary functions of three
variables such that their Jacobian with respect to

x, y does not vanish identically. Letting, e.g. J1 =√
ψ1 and J2 =

√
ψ2ψ3, i.e. specifying (12) in the

form
yy1

x1 − x
= C1,

yy2
x2 − x

= C2,

one arrives at the following representation of the
general solution via two particular solutions:

x =
C1x1y2 − C2x2y1
C1y2 − C2y1

, y =
C1C2(x2 − x1)
C1y2 − C2y1

·
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