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1 Introduction

It is a traditional custom to associate adjoint equations exclusively with linear
equations. It is also customary to discuss integrating factors for non-linear ordi-
nary differential equations only in the case of first-order equations. Recall that
Noether’s theorem provides a connection between conservation laws for varia-
tional problems with symmetries of the Euler-Lagrange equations. In this intro-
duction, I outline the corresponding definitions and results.

1.1 Integrating factor

The usual approach to integrating factors is as follows. A first-order ordinary
differential equation

a(x, y)y′ + b(x, y) = 0, (1.1)

where y′ = dy/dx, is written in the differential form:

a(x, y) dy + b(x, y) dx = 0. (1.2)

Equation (1.2) is said to be exact if its left-hand side is the differential, i.e.

a(x, y) dy + b(x, y) dx = dΦ(x, y) (1.3)

with some function Φ(x, y). If Equation (1.2) is exact, its solution is defined
implicitly by Φ(x, y) = C = const.
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In general, Equation (1.2) is not exact but it becomes exact upon multiplying
by a certain function µ(x, y) :

µ (a dy + b dx) = dΦ ≡ Φy dy +Φx dx, (1.4)

where

Φy =
∂Φ

∂y
, Φx =

∂Φ

∂x
·

The function µ(x, y) is called an integrating factor for Equation (1.2). It follows
from (1.4) that

Φy = µa, Φx = µ b. (1.5)

The integrability condition for the system (1.5) is written Φxy = Φyx and yields
the following equation for determining the integrating factors:

∂(µa)

∂x
=
∂(µ b)

∂y
· (1.6)

Theoretically, Equation (1.6) provides an infinite number of integrating fac-
tors for Equation (1.2). Practically, however, the integration of Equation (1.6)
is not usually simpler than the integration of the differential equation (1.2) in
question. Nevertheless, the concept of an integrating factor gives us a useful tool
since integrating factors for certain particular equations can be found by ad hoc
methods. If one knows two linearly independent integrating factors, µ1(x, y) and
µ2(x, y), for (1.2) then the general solution of (1.2) is obtained without additional
quadratures from the equation

µ1(x, y)

µ2(x, y)
= C. (1.7)

1.2 Adjoint linear differential operators

Let x = (x1, . . . , xn) be n independent variables, and u = (u1, . . . , um) be m
dependent variables with the partial derivatives u(1) = {u

α
i }, u(2) = {u

α
ij}, . . . of

the first, second, etc. orders, where uαi = ∂uα/∂xi, uαij = ∂2uα/∂xi∂xj . Denoting

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · (1.8)

the total differentiation with respect to xi, we have:

uαi = Di(u
α), uαij = Di(u

α
j ) = DiDj(u

α), . . . .

Recall the definition of the adjoint linear operator. Let us consider, e.g. the
scalar (i.e. m = 1) second-order linear partial differential equations

L[u] ≡ aij(x)uij + bi(x)ui + c(x)u = f(x). (1.9)
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where L is the following linear differential operator:

L = aij(x)DiDj + bi(x)Di + c(x). (1.10)

The summation convention is used throughout the paper. Here, for example, the
summation is assumed over i, j = 1, . . . , n. The coefficients aij(x) are symmetric,
i.e. aij = aji.

The adjoint operator to L is a second-order linear differential operator L∗ such
that

vL[u]− uL∗[v] = Di(p
i) ≡ divP (x) (1.11)

for all functions u and v, where P (x) =
(
p1(x), . . . , pn(x)

)
is any vector. The

adjoint operator L∗ is uniquely determined and has the form

L∗[v] = DiDj(a
ijv)−Di(b

iv) + cv (1.12)

The operator L is said to be self-adjoint if L[u] = L∗[u] for any function u(x).
Recall that the operator (1.10) is self-adjoint if and only if

bi(x) = Dj(a
ij) , i = 1, . . . , n. (1.13)

The linear homogeneous equation

L∗[v] ≡ DiDj(a
ijv)−Di(b

iv) + cv = 0 (1.14)

is called the adjoint equation to the linear differential equation (1.9), L[u] = f(x).
The definitions of the adjoint operator and the adjoint equation are the same

for systems of second-order equations. They are obtained by assuming in Equa-
tion (1.9) that u is an m-dimensional vector-function and that the coefficients
aij(x), bi(x) and c(x) of the operator (1.10) are m×m-matrices.

If n = m = 1 we have the definition of the adjoint operator to linear ordinary
differential equations. Let us set u = y and consider the first-order equation

L[y] ≡ a0(x) y
′ + a1(x) y = f(x). (1.15)

The adjoint operator L∗[z] to L[y] has the form

L∗[z] = −
(
a0 z

)
′

+ a1 z. (1.16)

The definition of the adjoint operator to higher-order equations is similar. For
example, in the case of the second-order equation

L[y] ≡ a0 y
′′ + a1 y

′ + a2 y = f(x) (1.17)

with variable coefficients a0(x), a1(x), a2(x), the adjoint operator L∗[z] to L[y] is

L∗[z] =
(
a0z
)
′′

−
(
a1z
)
′

+ a2z. (1.18)

Likewise, in the case of the third-order equation

L[y] ≡ a0 y
′′′ + a1 y

′′ + a2 y
′ + a3 y = f(x), (1.19)

the adjoint operator L∗[z] to L[y] is given by

L∗[z] = −
(
a0z
)
′′′

+
(
a1z
)
′′

−
(
a2z
)
′

+ a3z. (1.20)

The homogeneous equation L∗[z] = 0 is called the adjoint equation to L[y] = f(x).
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1.3 Noether’s theorem

Noether’s theorem [9] manifests a connection between symmetries and conserva-
tion laws for variational problems and provides a simple procedure for construc-
tion of conservation laws for Euler-Lagrange equations with known symmetries.
The main steps of this procedure are as follows.

For the sake of brevity, consider Lagrangians L(x, u, u(1)) involving, along
with the independent variables x = (x, . . . , xn) and the dependent variables u =
(u, . . . , um), the first-order derivatives u(1) = {u

α
i } only. Then the Euler-Lagrange

equations have the form

δL

δuα
≡

∂L

∂uα
−Di

(
∂L

∂uαi

)
= 0, α = 1, . . . ,m. (1.21)

They are obtained by variation of the integral
∫
L(x, u, u(1))dx taken over an

arbitrary n-dimensional domain in the space of the independent variables.

Noether’s theorem states that if the variational integral is invariant under a
continuous transformation group G with a generator

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
(1.22)

then the vector field C = (C1, . . . , Cn) defined by

Ci = ξiL+ (ηα − ξjuαj )
∂L

∂uαi
, i = 1, . . . , n, (1.23)

provides a conservation law for the Euler-Lagrange equations (1.21), i.e. obeys
the equation divC ≡ Di(C

i) = 0 for all solutions of (1.21).

The invariance of the variational integral implies that the Euler-Lagrange
equations (1.21) admit the group G. Therefore, in order to apply Noether’s the-
orem, one has first of all to find the symmetries of Equations (1.21). Then one
should single out the symmetries leaving invariant the variational integral (1.21).
This can be done by means of the following infinitesimal test for the invariance
of the variational integral (proved in [5], see also [6]):

X(L) + LDi(ξ
i) = 0, (1.24)

where the generator X is prolonged to the first derivatives u(1) by the formula

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+
[
Di(η

α)− uαjDi(ξ
j)
] ∂

∂uαi
· (1.25)

If Equation (1.24) is satisfied, then the vector (1.23) provides a conservation law.

The invariance condition (1.24) can be replaced by the divergence condition

X(L) + LDi(ξ
i) = Di(B

i). (1.26)
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Then Eq. (1.21) has a conservation law Di

(
Ci
)
= 0, where (1.23) is replaced by

Ci = ξiL+ (ηα − ξjuαj )
∂L

∂uαi
−Bi. (1.27)

It is a common belief that the applicability of Noether’s theorem is severely
restricted because Lagrangians exists only for very special types of differential
equations. The aim of the present paper is to dispel this myth.

2 Main constructions

Here, the notion of an integrating factor is extended to higher-order ordinary
differential equations. Furthermore, an adjoint equation is defined for non-linear
ordinary and partial differential equations of an arbitrary order. Then, using the
new concept of an adjoint equation, I obtain a Lagrangian for any ordinary and
partial differential equation. It follows that Noether type conservation theorems
can be applied to any differential equation as well as to any system where the
number of differential equations is equal to the number of the dependent variables.

2.1 Preliminaries

We will use the calculus in the space A of differential functions introduced in [4]
(see also [5], Section 19.1, and [6], Section 8.2). Let us denote by z the sequence

z = (x, u, u(1), u(2), . . .) (2.1)

with elements zν (ν ≥ 1), where zi = xi (1 ≤ i ≤ n), zn+α = uα (1 ≤ α ≤ m)
and the remaining elements represent the derivatives of u. Finite subsequences of
z are denoted by [z].

A differential function f is a locally analytic function f([z]) (i.e. locally
expandable in a Taylor series with respect to all arguments) of a finite number
of variables (2.1). The highest order of derivatives appearing in a differential
function f is called the order of f and is denoted by ord(f). Thus, ord(f) = s
means that f = f(x, u, u(1), . . . , u(s)). The set of all differential functions of
finite order is denoted by A. The set A is a vector space endowed with the usual
multiplication of functions. In other words, if f([z]) ∈ A and g([z]) ∈ A and if a
and b any constants, then

a f + b g ∈ A, ord(a f + b g) ≤ max{ord(f), ord(g)},

f g ∈ A, ord(f g) = max{ord(f), ord(g)}.

Furthermore, the space A is closed under the total derivation: if f ∈ A, then

Di(f) ∈ A, ord (Di(f)) = ord(f) + 1,
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The Euler-Lagrange operator in A is defined by the formal sum

δ

δuα
=

∂

∂uα
−Di

∂

∂uαi
+DiDj

∂

∂uαij
+ · · · , α = 1, . . . ,m, (2.2)

where, for every s, the summation is presupposed over the repeated indices i, j, . . .
running from 1 to n. The operator δ/δuα is termed also the variational derivative.

The operator (2.2) with one independent variable x is written

δ

δuα
=

∂

∂uα
−Dx

∂

∂uαx
+D2

x

∂

∂uαxx
−D3

x

∂

∂uαxxx
+ · · · . (2.3)

In the case of one independent variable x and one dependent variable y, we
will use the common notation and write z = (x, y, y′, y′′, . . . , y(s), . . .). Then the
total differentiation (1.8) is written as follows:

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · · (2.4)

and the Euler-Lagrange operator (2.3) becomes

δ

δy
=

∂

∂y
−Dx

∂

∂y′
+D2

x

∂

∂y′′
−D3

x

∂

∂y′′′
+ · · · . (2.5)

The main constructions of this section are based on the concept of multipliers
and the following lemmas (for the proofs, see [6], Section 8.4).

Lemma 2.1. Let f(x, y, y′, . . . , y(s)) ∈ A. IfDx(f) = 0 identically in all variables
x, y, y′, . . . , y(s), and y(s+1), then f = C = const. Likewise, if f(x, u, u(1), . . . , u(s))
is a differential function with one independent variable x and several dependent
variables u = (u1, . . . , um), the equation Dx(f) = 0 implies that f = C.

Lemma 2.2. A differential function f(x, u, . . . , u(s)) ∈ A with one independent
variable x is a total derivative:

f = Dx(g), g(x, u, . . . , u(s−1)) ∈ A, (2.6)

if and only if the following equations hold identically in x, u, u(1), . . . :

δf

δuα
= 0, α = 1, . . . ,m. (2.7)

Lemma 2.3. A function f(x, u, . . . , u(s)) ∈ A with several independent variables
x = (x1, . . . , xn) and several dependent variables u = (u1, . . . , um) is a divergence
of a vector field H = (h1, . . . , hn), hi ∈ A :

f = divH ≡ Di(h
i), (2.8)

if and only if the following equations hold identically in x, u, u(1), . . . :

δf

δuα
= 0, α = 1, . . . ,m. (2.9)
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2.2 Integrating factor for higher-order equations

Definition 2.1. Consider sth-order ordinary differential equations of the form

a
(
x, y, y′, . . . , y(s−1)

)
y(s) + b

(
x, y, y′, . . . , y(s−1)

)
= 0. (2.10)

A differential function µ
(
x, y, y′, . . . , y(s−1)

)
is called an integrating factor for

Equation (2.10) if the multiplication by µ converts the left-hand side of Equation
(2.10) into a total derivative of some function Φ

(
x, y, y′, . . . , y(s−1)

)
∈ A :

µa y(s) + µb = Dx(Φ). (2.11)

Knowledge of an integrating factor allows one to reduce the order of Equation
(2.10). Indeed, Equations (2.10)-(2.11) are written Dx(Φ) = 0, and Lemma 2.1
yields the (s− 1)-order equation

Φ
(
x, y, y′, . . . , y(s−1)

)
= C. (2.12)

Definition 2.1 can be readily extended to systems of ordinary differential equa-
tions of any order.

Theorem 2.1. The integrating factors for Equation (2.10) are determined by
the following equation:

δ

δy

(
µa y(s) + µb

)
= 0, (2.13)

where δ/δy is the variational derivative (2.5). Equation (2.13) involves the vari-
ables x, y, y′, . . . , y(2s−2) and should be satisfied identically in all these variables.

Proof. Equation (2.13) is obtained from Lemma 2.2. The highest derivative
that may appear after the variational differentiation (2.5) has the order 2s − 1.
It occurs in the terms

(−1)sDs
x(µa) and (−1)s−1Ds−1

x

[
y(s) ∂(µa)

∂y(s−1)

]
.

We have, dropping the terms that certainly do not involve y(2s−1) :

(−1)sDs
x(µa) = −(−1)

s−1Ds−1
x

[
y(s) ∂(µa)

∂y(s−1)

]
+ · · · .

Thus, the terms containing y(2s−1) annihilate each other, and hence Equation
(2.13) involves only the variables x, y, y′, . . . , y(2s−2). This completes the proof.

For the first-order equation (1.1), a(x, y)y′+b(x, y) = 0, Eq: (2.13) is written:

δ

δy
(µa y′ + µb) = y′ (µa)y + (µb)y −Dx(µa) = 0.

Since Dx(µa) = (µa)x + y′(µa)y, we arrive at Equation (1.6), (µb)y − (µa)x = 0.
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Consider the second-order equation

a(x, y, y′)y′′ + b(x, y, y′) = 0. (2.14)

The integrating factors µ depend on x, y, y′, and Equation (2.13) for determining
µ(x, y, y′) is written:

δ

δy
(µa y′′ + µb) = y′′ (µa)y + (µb)y −Dx

[
y′′ (µa)y′ + (µb)y′

]
+D2

x(µa) = 0.

We have:

Dx(µa) = y′′(µa)y′ + y′(µa)y + (µa)x,

D2
x(µa) = y′′′(µa)y′ + y′′2 (µa)y′y′ + 2y′y′′(µa)yy′ + 2y′′(µa)xy′

+ y′′(µa)y + y′2(µa)yy + 2y′(µa)xy + (µa)xx,

Dx

(
y′′(µa)y′

)
= y′′′(µa)y′ + y′′2 (µa)y′y′ + y′y′′(µa)yy′ + y′′(µa)xy′ ,

Dx

(
(µb)y′

)
= y′′ (µb)y′y′ + y′ (µb)yy′ + (µb)xy′ ,

and hence

δ

δy
(µa y′′ + µb) = y′′[y′ (µa)yy′ + (µa)xy′ + 2(µa)y − (µb)y′y′ ]

+ y′2 (µa)yy + 2y′(µa)xy + (µa)xx − y
′(µb)yy′ − (µb)xy′ + (µb)y.

Since this expression should vanish identically in x, y, y′ and y′′, we arrive at the
following statement.

Theorem 2.2. The integrating factors µ(x, y, y′) for the second-order equation
(2.14) are determined by the following system of two equations:

y′ (µa)yy′ + (µa)xy′ + 2(µa)y − (µb)y′y′ = 0, (2.15)

y′2 (µa)yy + 2y′(µa)xy + (µa)xx − y
′(µb)yy′ − (µb)xy′ + (µb)y = 0. (2.16)

Theorem 2.2 shows that the second-order equations, unlike the first-order
ones, may have no integrating factors. Indeed, the integrating factor µ(x, y) for
any first-order equation is determined by the single first-order linear partial dif-
ferential equation (1.6) which always has infinite number of solutions. In the case
of second-order equations (2.14), one unknown function µ(x, y, y′) should satisfy
two second-order linear partial differential equations (2.15)-(2.16). An integrating
factor exists only if the over-determined system (2.15)-(2.16) is compatible.

Remark 2.1. If a second-order equation (2.14) has two integrating factors, its
general solution can be found without additional integration.
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Example 2.1. Let us calculate integrating factors for the following equation:

y′′ +
y′2

y
+ 3

y′

x
= 0. (2.17)

Equation (2.17) has the form (2.14) with

a = 1, b =
y′2

y
+ 3

y′

x
·

For the sake of simplicity, we will look for the integrating factors of the particular
form µ = µ(x, y). Then Equation (2.15) reduces to 2µy − (µb)y′y′ = 0. Since
(µb)y′y′ = 2µ/y, we obtain the equation

∂µ

∂y
−
µ

y
= 0,

whence µ = φ(x)y. Thus, we have:

µ = φ(x)y, µyy = 0, µxy = φ′, µxx = φ′′y, µb = φy′2 + 3
φ

x
yy′,

(µb)y = 3
φ

x
y′ , (µb)yy′ = 3

φ

x
, (µb)xy′ = 2φ′y′ + 3

(φ′
x
−

φ

x2

)
y.

Substitution in Equation (2.16) leads to the following Euler’s equation:

x2φ′′ − 3xφ′ + 3φ = 0.

Integrating it by the standard change of the independent variable, t = lnx, we
obtain two independent solutions, φ = x and φ = x3. Thus, Equation (2.17) has
two integrating factors:

µ1 = xy, µ2 = x3y, (2.18)

and can be solved without an additional integration (see Remark 2.1).
Indeed, multiplying Equation (2.17) by the first integrating factor, we have:

xy

(
y′′ +

y′2

y
+ 3

y′

x

)
= xyy′′ + xy′2 + 3yy′ = 0.

Substituting xyy′′ = Dx(xyy
′) − yy′ − xy′2, we reduce it to Dx(xyy

′) + 2yy′ =
Dx(xyy

′ + y2) = 0, whence
xyy′ + y2 = C1. (2.19)

The similar calculations by using the second integrating factor (2.18) yields:

x3yy′ = C2. (2.20)

Eliminating y′ from Equations (2.19)-(2.20), we obtain the following general so-
lution to Equation (2.17):

y = ±

√
C1 −

C2

x2
. (2.21)
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2.3 Adjoint equations

Definition 2.2. Consider a system of sth-order partial differential equations

Fα

(
x, u, . . . , u(s)

)
= 0, α = 1, . . . ,m, (2.22)

where Fα(x, u, . . . , u(s)) ∈ A are differential functions with n independent vari-
ables x = (x1, . . . , xn) and m dependent variables u = (u1, . . . , um), u = u(x).
The system of adjoint equations to Equations (2.22) is defined by

F ∗

α

(
x, u, v, . . . , u(s), v(s)

)
≡
δ(vβFβ)

δuα
= 0, α = 1, . . . ,m, (2.23)

where v = (v1, . . . , vm) are new dependent variables, v = v(x).

Remark 2.2. In the case of linear equations, adjoint equations given by Def-
inition 2.2 are identical with the classical adjoint equations discussed in Sec-
tion 1.2. Therefore, the adjoint equation to a linear equation (or a system)
F (x, u, . . . , u(s)) = 0 for u(x) is a linear equation (a system) F ∗(x, v, . . . , v(s)) = 0
for v(x), and the relation to be adjoint is symmetric, i.e. F ∗∗ = F. More specif-
ically, if the adjoint equation to F ∗(x, v, . . . , v(s)) = 0 is F ∗∗(x,w, . . . , w(s)) = 0,
then setting w = u in the latter equation we obtain the original equation.

Definition 2.3. A system of equations (2.22) is said to be self-adjoint if the
system obtained from the adjoint equations (2.23) by the substitution v = u :

F ∗

α

(
x, u, u, . . . , u(s), u(s)

)
= 0, α = 1, . . . ,m,

is identical with the original system (2.22)1.

Example 2.2. Let us take n = 1,m = 1, set u = y, v = z, and consider the
first-order linear ordinary differential equation (1.15):

F (x, y, y′) ≡ a0 y
′ + a1 y − f(x) = 0.

Equation (2.23) defining the adjoint equation is written:

δ(zF )

δy
=

(
∂

∂y
−Dx

∂

∂y′

)(
z[a0 y

′ + a1 y − f(x)]
)
= 0.

Since

∂

∂y

(
z[a0 y

′ + a1 y − f(x)]
)
= a1 z,

∂

∂y′
(
z[a0 y

′ + a1 y − f(x)]
)
= a0 z,

Equation (2.23) yields the adjoint equation a1 z −Dx(a0 z) = 0, or

a1 z −
(
a0 z

)
′

= 0

the left-hand side if which is identical with the adjoint operator (1.16).

1In general, it does not mean that F ∗

α
(x, u, u, . . . , u(s), u(s)) = Fα(x, u, . . . , u(s)), see. e.g.

Example 2.6.

10



Example 2.3. For the second-order equation (1.17),

a0 y
′′ + a1 y

′ + a2 y = f(x),

Definition 2.2 yields the adjoint equation
(
∂

∂y
−Dx

∂

∂y′
+D2

x

∂

∂y′′

)(
z[a0 y

′′ + a1 y
′ + a2 y − f(x)]

)
= 0.

Proceeding as in the previous example, one obtains the adjoint equation (1.18):

(
a0z
)
′′

−
(
a1z
)
′

+ a2z = 0.

Example 2.4. Consider the second-order linear partial differential equation (1.9):

L[u] ≡ aij(x)uij + bi(x)ui + cu = f(x).

The definition (2.23) of the adjoint equation is written

(
∂

∂u
−Di

∂

∂ui
+DiDj

∂

∂uij

)(
v[aij(x)uij + bi(x)ui + cu− f(x)]

)
= 0

and yields the adjoint equation (1.14):

L∗[u] ≡ DiDj(a
ijv)−Di(b

iv) + cv = 0.

Example 2.5. Consider the heat equation

ut − c(x)uxx = 0,

where c(x) is a variable or constant coefficient. Eq. (2.23) is written (see (2.2)):

δ

δu

(
v[c(x)uxx − ut]

)
=

(
−Dt

∂

∂ut
+D2

x

∂

∂uxx

)(
v[c(x)uxx − ut]

)
= 0

and yields the adjoint equation D2
x(c(x) v) +Dt(v) = 0, or

vt + (c v)xx = 0.

Let us calculate by Definition 2.2 the adjoint equations to several well-known
non-linear equations from mathematical physics.

Example 2.6. Consider the Korteweg-de Vries equation

ut = uxxx + uux. (2.24)

We take F (t, x, u, . . . , u(3)) = ut − uxxx − uux and write the left-hand side of
Equation (2.23) in the form

δ

δu

(
v[ut − uxxx − uux]

)
= −vt + vxxx − vux +Dx(uv) = −vt + vxxx + uvx.
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Hence, F ∗(t, x, u, v, . . . , u(3), v(3)) = −(vt− vxxx− uvx), and the adjoint equation
to the Korteweg-de Vries equation (2.24) is

vt = vxxx + uvx. (2.25)

We have

F ∗(t, x, u, u, . . . , u(3), u(3)) = −(ut − uxxx − uux) ≡ −F (t, x, u, . . . , u(3)).

Thus, Equation (2.24) is self-adjoint (see Definition 2.3).
Let us find the adjoint equation to Equation (2.25). We have:

δ

δv

(
w[vt − vxxx − uux]

)
= −wt + wxxx +Dx(uw) = −wt + wxxx + uwx + wux.

Hence, the adjoint to Equation (2.25) is wt = wxxx + uwx + wux. Setting here
w = u, we obtain the equation

ut = uxxx + 2uux

different from the original Korteweg-de Vries equation (2.24) (cf. Remark 2.2).

Example 2.7. Consider the Burgers equation

ut = uux + uxx. (2.26)

The left-hand side of Equation (2.23) is written:

δ

δu

(
v[ut − uux − uxx]

)
= −vt − vux +Dx(uv)− vxx = −vt + uvx − vxx.

Hence, adjoint equation to the Burgers equation (2.26) is (see also [7])

vt = uvx − vxx. (2.27)

Example 2.8. Consider the non-linear heat equation:

ut = [k(u)ux]x (2.28)

The left-hand side of Equation (2.23) is written:

δ

δu

(
v[ut − k(u)uxx − k

′(u)u2
x]
)

(2.29)

= −vt − k
′(u) v uxx − k

′′(u) v u2
x −D

2
x(k(u) v) + 2Dx(k

′(u) v ux).

We have Dx(k(u) v) = k vx + k′ v ux and therefore

−D2
x(k(u) v) + 2Dx(k

′(u) v ux) = −Dx(k vx) +Dx(k
′ v ux).

12



Inserting this in Equation (2.29) and making simple calculations we arrive at the
following adjoint equation to the non-linear heat equation (2.28) (see also [7]):

vt + k(u)vxx = 0. (2.30)

Let us find the adjoint equation to (2.30). We have:

δ

δv

(
w[vt + k(u)vxx]

)
= −wt +D2

x

[
k(u)w

]
.

Hence, the adjoint equation to (2.30) is wt =
[
k(u)w

]
xx

and does not coincide
with Equation (2.28) upon setting w = u.

2.4 Lagrangians

Theorem 2.3. Any system of sth-order differential equations (2.22),

Fα

(
x, u, . . . , u(s)

)
= 0, α = 1, . . . ,m, (2.22)

considered together with its adjoint equation (2.23),

F ∗

α

(
x, u, v, . . . , u(s), v(s)

)
≡
δ(vβFβ)

δuα
= 0, α = 1, . . . ,m, (2.23)

has a Lagrangian. Namely, the simultaneous system (2.22)-(2.23) with 2m de-
pendent variables u = (u1, . . . , um) and v = (v1, . . . , vm) is the system of Euler-
Lagrange equations (1.21) with the Lagrangian L defined by2

L = vβFβ . (2.31)

Proof. Indeed, we have:

δL

δvα
= Fα

(
x, u, . . . , u(s)

)
(2.32)

and
δL

δuα
= F ∗

α

(
x, u, v, . . . , u(s), v(s)

)
. (2.33)

Let us turn to examples. Consider linear equations, e.g. the homogeneous
linear second-order partial differential equation (1.9):

L[u] ≡ aij(x)uij + bi(x)ui + c(x)u = 0. (2.34)

The Lagrangian (2.31) is written:

L = v L[u] = v
(
aij(x)uij + bi(x)ui + c(x)u

)
. (2.35)

2See also the concept of a weak Lagrangian introduced in [3].
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We have:
δL

δv
=
∂L

∂v
= L[u] (2.36)

and

δL

δuα
= DiDj

( ∂L
∂uij

)
−Di

( ∂L
∂ui

)
+
∂L

∂u

= DiDj

(
aijv

)
−Di

(
biv
)
+ cv = L∗[v]. (2.37)

Theorem 2.4. Let the linear operator L[u] be self-adjoint, L∗[u] = L[u]. Then
Equation (2.34) is obtained from the Lagrangian

L =
1

2

[
c(x)u2 − aij(x)uiuj

]
. (2.38)

Proof. We rewrite the Lagrangian (2.35) in the form

L = v
(
aijuij + biui + cu

)
= Dj

(
vaijui

)
− vuiDj

(
aij
)
+ vbiui − a

ijuivj + cuv.

The first term at the right-hand side can be dropped by Lemma 2.3, while the
second and the third terms annihilate each other by the condition (1.13). Finally,
we set v = u, divide by two and arrive at the Lagrangian (2.38).

Example 2.9. For the Helmholtz equation ∆u+ k2u = 0, (2.38) gives the well-
known Lagrangian L =

(
k2u2 − |∇u|2

)
/2.

If one deals with linear equations that are not self-adjoint or with non-linear
equations, one obtains a Lagrangian formulation by considering the equation in
question together with its adjoint equation.

Example 2.10. The linear heat equation is not self-adjoint. Therefore, we con-
sider it together with its adjoint equation and obtain the system of two equations:

ut − c(x)uxx = 0, vt + (c v)xx = 0 (2.39)

which is derived from the Lagrangian

L = vut − c(x) vuxx. (2.40)

Example 2.11. According to Example 2.6, the Lagrangian

L = v[ut − uxxx − uux] (2.41)

leads to the Korteweg-de Vries equation (2.24) and its conjugate (2.25) combined
in the following system:

ut = uxxx + uux, vt = vxxx + uvx. (2.42)
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Example 2.12. Likewise, we obtain from Example 2.8 the Lagrangian

L = v[ut − k(u)uxx − k
′(u)u2

x] (2.43)

that leads to the non-linear heat equation (2.28) and its conjugate (2.30) com-
bined in the following system:

ut = [k(u)ux]x, vt + k(u)vxx = 0. (2.44)

Example 2.13. One of fundamental equations in quantum mechanics is the
Dirac equation

γk
∂ψ

∂xk
+mψ = 0, m = const. (2.45)

The dependent variable ψ is a 4−dimensional column vector with complex val-
ued components ψ1, ψ2, ψ3, ψ4. The independent variables compose the four-
dimensional vector x = (x1, x2, x3, x4), where x1, x2, x3 are the real valued spatial
variables and x4 is the complex variable defined by x4 = ict with t being time
and c the light velocity. Furthermore, γk are the following 4×4 complex matrices
called the Dirac matrices:

γ1 =




0 0 0 − i

0 0 − i 0

0 i 0 0

i 0 0 0



, γ2 =




0 0 0 − 1

0 0 − 1 0

0 1 0 0

−1 0 0 0



,

γ3 =




0 0 − i 0

0 0 0 i

i 0 0 0

0 − i 0 0



, γ4 =




1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1



.

Equation (2.45) does not have a Lagrangian. Therefore, it is considered to-
gether with the conjugate equation

∂ψ̃

∂xk
γk −mψ̃ = 0. (2.46)

Here ψ̃ = ψ Tγ4 is the row vector, where ψ denotes the complex-conjugate to ψ
and T the transposition. The system (2.45)-(2.46) has the Lagrangian

L =
1

2

[
ψ̃

(
γk

∂ψ

∂xk
+mψ

)
−

(
∂ψ̃

∂xk
γk −mψ̃

)
ψ

]
.

Indeed, we have:

δL

δψ
= −

(
∂ψ̃

∂xk
γk −mψ̃

)
,

δL

δψ̃
= γk

∂ψ

∂xk
+mψ.
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3 Application to the Maxwell equations

This section is dedicated to illustration of the method by applying Noether’s
theorem to the Maxwell equations. Consider the Maxwell equations in vacuum:

1

c

∂E

∂t
= curlH, divE = 0,

1

c

∂H

∂t
= −curlE, divH = 0. (3.1)

The system (3.1) contains six dependent variables, namely, the components of
the electric field E = (E1, E2, E3) and the magnetic field H = (H1, H2, H3),
and eight equations, i.e. it is over-determined. On the other hand, the number
of equations in the Euler-Lagrange equations (1.21) is equal to the number of
dependent variables. Consequently, the system (3.1) cannot have a Lagrangian.
What is considered in the literature as a variational problem in electrodynamics
(see, e.g. [1], [8]) provides a Lagrangian for the wave equation

∆A−
1

c2
∂2A

∂t2
= 0

for the vector potential A of the electromagnetic field, but not for the Maxwell
equations (3.1).

Let us find a Lagrangian for the electromagnetic field by using Theorem 2.3.
First we note that the equations divE = 0, divH = 0 hold at any time pro-
vided that they are satisfied at the initial time t = 0. Hence, they are merely
initial conditions (see, e.g. [2] or [6]). Therefore, we will consider the following
determined system of differential equations (we set t′ = ct and take t′ as new t):

curlE +
∂H

∂t
= 0, curlH −

∂E

∂t
= 0. (3.2)

We introduce six new dependent variables, namely the components of the
vectors V = (V 1, V 2, V 3) andW = (W 1,W 2,W 3), and introduce the Lagrangian

L = V ·

(
curlE +

∂H

∂t

)
+W ·

(
curlH −

∂E

∂t

)
(3.3)

in accordance with the definition (2.31).

One can readily verify that the Lagrangian (3.3) yields the system (3.2) to-
gether with its adjoint, namely:

δL

δV
≡ curlE +

∂H

∂t
= 0,

δL

δW
≡ curlH −

∂E

∂t
= 0, (3.4)

δL

δE
≡ curlV +

∂W

∂t
= 0,

δL

δH
≡ curlW −

∂V

∂t
= 0. (3.5)
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If we set V = E,W =H, Eqs. (3.5) coincide with (3.4). Hence, the operator
in (3.2) is self-adjoint. Therefore we set V = E,W =H in (3.3), divide by two
and obtain the Lagrangian for the Maxwell equations (3.2) (cf. Theorem 2.4):

L =
1

2

[
E ·

(
curlE +

∂H

∂t

)
+H ·

(
curlH −

∂E

∂t

)]
. (3.6)

In coordinates, the Lagrangian (3.6) is written:

L =
1

2

[
E1 (E3

y − E
2
z +H1

t ) + E2 (E1
z − E

3
x +H2

t ) + E3 (E2
x − E

1
y +H3

t )

+H1 (H3
y −H

2
z − E

1
t ) +H2 (H1

z −H
3
x − E

2
t ) +H3 (H2

x −H
1
y − E

3
t )
]
. (3.7)

The symmetries of the Maxwell equations are well known, and one can apply
Noether’s theorem by using the Lagrangian (3.6). We will employ, as an example,
the invariance of Equations (3.2) with respect to the group of transformations

H ′ =H cos θ +E sin θ, E′ = E cos θ −H sin θ (3.8)

with the generator

X = E
∂

∂H
−H

∂

∂E
≡

3∑

i=1

(
Ei ∂

∂H i
−H i ∂

∂Ei

)
. (3.9)

The prolongation (1.25) of this generator is written

X = E
∂

∂H
−H

∂

∂E
+Et

∂

∂Ht

−Ht
∂

∂Et

+Ex
∂

∂Hx

−Hx
∂

∂Ex

+ · · · . (3.10)

Acting by the operator (3.10) on the Lagrangian (3.6) we have:

X(L) =
1

2

[
−H ·

(
curlE +Ht

)
+E ·

(
curlH −Et

)

+E ·
(
− curlH +Et

)
+H ·

(
curlE +Ht

)]
= 0.

Hence, the condition (1.24) is satisfied and one can obtain a conservation law by
the formula (1.23). We will write the conservation law in the form

Dt(τ) + divχ = 0, (3.11)

where χ = (χ1, χ2, χ3), divχ = Dx(χ
1) +Dy(χ

2) +Dz(χ
3). Eq. (1.23) yields:

τ = E ·
∂L

∂Ht

−H ·
∂L

∂Et

=
1

2

[
E ·E −H · (−H)

]
=

1

2

[
|E|2 + |H|2

]
.

Hence, τ is the energy density. Likewise, calculating the spatial coordinates of the
conserved vector (1.23), one can verify that χ is the Poynting vector, χ = E×H.
Thus, we have obtained the conservation of energy (see, e.g. [8]):

Dt

(
|E|2 + |H|2

2

)
+ div

(
E ×H

)
= 0. (3.12)
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