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1 Introduction

Many problems of mathematics, classical and relativistic mechanics, quantum
field theory and other branches of theoretical and mathematical physics are con-
nected with the calculus of variations. In these problems, one usually deals
with the direct variational problem when one starts with a given Lagrangian
L(x, u, u′, . . .) and investigates the dynamics of the physical system in question
by considering the corresponding Euler-Lagrange equations δL/δu = 0. In the
inverse variational problem, one starts with a given differential equation and
looks for the corresponding Lagrangian. Sometimes, one can simply guess a La-
grangian, e.g. in the following examples.

Example 1. The simplest second-order ordinary differential equation y′′(x) = 0
has the Lagrangian L = −y′2/2 since it is identical with the Euler-Lagrange
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equation
δL

δy
≡ ∂L

∂y
−Dx

(
∂L

∂y′

)
= 0.

Indeed, ∂L/∂y = 0, ∂L/∂y′ = −y′, and hence δL/δy = −Dx(−y′) = y′′. Likewise,
we can easily find the Lagrangian for an arbitrary linear second-order equation

y′′ + a(x)y′ + b(x)y = f(x).

The previous simplest case suggests to seek the Lagrangian in the form

L = −p(x)

2
y′2 +

q(x)

2
y2 − r(x)y.

Then
δL

δy
= p(x)y′′ + p′(x)y′ + q(x)y − r(x).

Comparing the Euler-Lagrange equation δL/δy = 0 written in the form

y′′ +
p′(x)

p(x)
y′ +

q(x)

p(x)
y =

r(x)

p(x)

with the second-order equation in question, we obtain

p(x) = e
∫
a(x)dx, q(x) = b(x) e

∫
a(x)dx, r(x) = f(x) e

∫
a(x)dx

and arrive at the following Lagrangian:

L =

[
− 1
2
y′2 +

b(x)

2
y2 − f(x) y

]
e
∫
a(x)dx.

Some twenty years ago, I sketched [1] a general method for constructing invari-
ant Lagrangians for nonlinear partial differential equations and obtained, using
the method, new conservation laws in fluid dynamics. Moreover, the group ap-
proach to the inverse variational problem allows one to find Lagrangians when
the ”guessing method” fails.
We can also use the fact that the Lagrangian is not uniquely determined and

find several invariant Lagrangians starting with any operator X admitted by the
Laplace equation. Recall that Lie’s renowned methods for integration of ordinary
differential equations admitting a group are basically based on reduction of Lie
algebras to so-called canonical forms by proper changes of variables. Introduction
of the canonical variables reduces the equation in question to an integrable form.
Applying this idea, e.g. to second-order equations Lie found that there are four
distinctly different canonical forms of two-dimensional Lie algebras, and accord-
ingly any second-order equation with two infinitesimal symmetries can be reduced
to one of four standard forms each of them being integrable by quadratures (see
Lie’s classical lectures [2] or the modern text [3]).
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The objective of the present paper is to answer the question of how to
find Lagrangians for nonlinear second-order ordinary differential equations y ′′ =
f(x, y, y′) with two known non-commuting symmetries and integrate the equation
using invariant Lagrangians. Our main concern is on developing practical devises
for constructing Lagrangians for non-linear equations rather than on theoretical
investigation of solvability of the inverse variational problem. The method of
invariant Lagrangians is thoroughly illustrated by the following two nonlinear
second-order ordinary differential equations:

y′′ =
y′

y2
− 1

xy
, (1)

y′′ = ey − y′

x
· (2)

An attempt to find Lagrangians for equations (1) and (2) by the “natural”
approach employed in Example 1 shows conclusively that the inverse variational
problem can be rather complicated even for ordinary differential equations.

Furthermore, using equation (1) for illustration of Lie’s integration method I
came across the singular solutions

y = K x and y = ±
√
2x+ C x2 .

of equation (1) by chance, and it seemed that it was merely a result of a par-
ticular choice of variables. The new integration method presented here uncovers
interesting connections of the singular solutions with singularities of the hyperge-
ometric equation determining the Lagrangians. Moreover, the method furnishes
an approach for obtaining one-parameter families of singular solutions that are
otherwise not transparent.

2 Preliminaries

2.1 Invariance of nonlinear functionals and Noether’s theorem

We will use the usual notation x = {xi}, u = {uα}, u(1) = {uα
i }, u(2) = {uα

ij}, . . .
for independent variables x and dependent variables u together with their partial
derivatives u(1), u(2), . . . of the first, second, etc. orders:

uα
i = Di(u

α), uα
ij = Di(u

α
j ) = DiDj(u

α), . . . ,

where

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ uα
ijk

∂

∂uα
jk

+ · · ·

denotes the total differentiation.
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An action (also termed a variational integral) used in Lagrangian mechanics
is a nonlinear functional l[u] (see, e.g. [4], Chapter IV):

l[u] =

∫

V
L(x, u, u(1))dx, (3)

where L(x, u, u(1)) is termed a Lagrangian. The necessary condition l′[u] = 0 for
extrema of the functional l[u] provides the Euler-Lagrange equations:

∂L

∂uα
−Di

(
∂L

∂uα
i

)
= 0, α = 1, . . . ,m. (4)

Noether’s theorem [6] states, e.g. in the case of first-order Lagranians L, that
if the integral (3) is invariant under an infinitesimal transformation x i ≈ xi+εξi,
u α ≈ uα + εηα, in other words, under a continuous group generated by

X = ξi
∂

∂xi
+ ηα

∂

∂uα
(5)

then the quantities

T i(x, u, u(1)) = Lξi +
(
ηα − ξjuα

j

) ∂L

∂uα
i

, i = 1, . . . , n, (6)

define a conserved vector T = (T 1, . . . , Tn) for the Euler-Lagrange equations
(4), i.e. divT ≡ Di

(
T i
)
= 0 on the solutions of (4). If the integral (3) is

invariant under r linearly independent operators X1, . . . , Xr of the form (5), then
the formula (6) provides r linearly independent conserved vectors T1, . . . , Tr.

Noether’s original proof was based on calculations involving variations of in-
tegrals

∫
Ldx. An alternative proof of Noether’s theorem given in [7] (see also [1]

or [3] for more detailed presentation) provides the following infinitesimal test for
the invariance of nonlinear functionals l[u] (3) under the group with the generator
X :

X(1)(L) + LDi(ξ
i) = 0, (7)

where X(1) denotes the first prolongation of the generator (5), i.e.

X(1)(L) = ξi
∂L

∂xi
+ ηα

∂L

∂uα
+ ζαi

∂L

∂uα
i

, ζαi = Di(η
α)− uα

j Di(ξ
j).

Definition 1. The function L(x, u, u(1)) satisfying equation (7) is termed an
invariant Lagrangian with respect to the generator (5).

Remark 1. One should not confuse invariant Lagrangians with differential in-

variants the latter being defined by the equation X(1)(L) = 0.
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2.2 Laplace’s method for integration of hyperbolic equations

Recall that any linear hyperbolic second-order differential equations with two
independent variables x, y :

a11uxx + 2a
12uxy + a22uyy + b1ux + b2uy + cu = 0, (8)

can be written in characteristic variables in the standard form

L[u] ≡ uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0. (9)

The Laplace invariants for equation (9) are defined by

h = ax + ab− c, k = by + ab− c. (10)

Let us discuss the integration method when one of the invariants (10) vanishes.

If h = 0, we rewrite the left-hand side of equation (9) in the form

L[u] = vx + bv − hu, where v = uy + au,

and arrive at the following integrable form of equation (9):

vx + bv = 0.

Integration with respect to x yields

v = Q(y) e−
∫
b(x,y)dx

with an arbitrary function Q(y). Substituting v in uy + au = v, one obtains:

uy + au = Q(y) e−
∫
b(x,y)dx

whence upon integration with respect to y :

u =

[
P (x) +

∫
Q(y)e

∫
ady−bdxdy

]
e−

∫
ady. (11)

Likewise, if k = 0 we rewrite the left-hand side of equation (9) in the form

Lu = wy + aw − ku, where w = ux + bu,

and obtain the following general solution of (9) with k = 0 :

u =

[
Q(y) +

∫
P (x)e

∫
bdx−adydx

]
e−

∫
bdx. (12)
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2.3 Integration of a class of hypergeometric equations

In the theory of hypergeometric functions, the main emphasis is on asymptotics
of the hypergeometric equation near its singular points (see, e.g. [9]). For our
purposes, we will need analytic expressions for the general solutions of certain
types of the hypergeometric equation. Therefore, I determine in Theorem 1 a class
of hypergeometric equations integrable by elementary functions or by quadrature.
Particular cases of this class can be found in various books on special functions.
The second-order linear differential equation

x(1− x) y′′ + [γ − (α+ β + 1)x] y′ − αβ y = 0 (13)

with arbitrary parameters α, β, and γ is known as the hypergeometric equation.

It has singularities at x = 0, x = 1 and x =∞.
Any homogeneous linear second-order differential equation of the form

(x2 +Ax+B) y′′ + (Cx+D) y′ + E y = 0 (14)

is transformable to the hypergeometric equation (13), provided that the equation
x2 + Ax + B = 0 has two distinct roots x1 and x2. Indeed, rewriting equation
(13) in the new independent variable t defined by

x = x1 + (x2 − x1)t (15)

one obtains

t(1− t)
d2y

dt2
+

[
Cx1 +D

x1 − x2
− C t

]
dy

dt
− Ey = 0.

Whence setting

Cx1 +D

x1 − x2
= γ, C = α+ β + 1, E = αβ

and denoting the new independent variable t again by x, one arrives at Eq. (13).
If αβ = 0 the hypergeometric equation (13) is integrable by two quadratures.

Indeed, letting, e.g. β = 0 and integrating the equation

dy′

y′
=
(α+ 1)x− γ

x(1− x)
dx,

we have

y′ = C1e
q(x), q(x) =

∫
(α+ 1)x− γ

x(1− x)
dx, C1 = const.

The second integration yields:

y = C1

∫
eq(x) dx+ C2, C1, C2 = const.
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The following theorem singles out the equations (13) with αβ 6= 0 that can be
integrated by transforming them to equations not containing the term with w.

Theorem 1. The general solution of the hypergeometric equation (13) with
β = −1 and two arbitrary parameters α and γ :

x(1− x) y′′ + (γ − αx) y′ + α y = 0 (16)

is given by quadrature and has the form

y = C1

(
x− γ

α

)∫ (
|x|−γ |x− 1|γ−α [x− (γ/α)]−2

)
dx+ C2

(
x− γ

α

)
, (17)

where C1 and C2 are arbitrary constants.

Proof. Since the case α = 0 was considered above, we assume in what follows
that α 6= 0. Let

y = σ(x)w. (18)

Substitution of the expressions

y = σ(x)w, y′ = σ(z)w′ + σ′(z)w, y′′ = σ(z)w′′ + 2σ′(z)w′ + σ′′(z)w

into equation (13) yields:

x(1− x)σ w′′ + {2x(1− x)σ′ + [γ − (α+ β + 1)x]σ}w′

+{x(1− x)σ′′ + [γ − (α+ β + 1)x]σ′ − αβ σ}w = 0. (19)

To annul the term with w, we have to find σ(x) satisfying the equation

x(1− x)σ′′ + [γ − (α+ β + 1)x]σ′ − αβ σ = 0. (20)

It seems that we did not make any progress since we have to solve the original
equation (13) for the unknown function σ(x). However, we will take a particular
solution σ(x) by letting σ′′(x) = 0. Hence, we consider the transformation (18)
of the form

y = (kx+ l)w, k, l = const.

Then equation (20) reduces to

γ k − αβ l = 0, k(α+ 1)(β + 1) = 0.

Since αβ 6= 0, it follows from the above equations that k 6= 0, and hence β = −1
(or α = −1, but since equation (13) is symmetric with respect to the substitution
α ¿ β we shall consider only β = −1). In what follows, we can set k = 1.
Then the first equation of the above system yields l = −γ/α. Thus we arrive at
equation (16). Furthermore, it follows from (19) that the substitution

y =
(
x− γ

α

)
w (21)
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reduces (16) to the equation

x(1− x)
(
x− γ

α

)
w′′ +

[
2x(1− x)− α

(
x− γ

α

)2]
w′ = 0. (22)

One can readily integrate equation (22) in terms of elementary functions and
one quadrature. Indeed, the equation

dw′

w′
= −2x(1− x)− α[x− (γ/α)]2

x(1− x)[x− (γ/α)]

gives w′ = C1e
r(x), where C1 is an arbitrary constant and

r(x) = −
∫
2x(1− x)− α[x− (γ/α)]2

x(1− x)[x− (γ/α)] dx.

Evaluating the latter integral, one obtains

r(x) = ln
(
|x|−γ |x− 1|γ−α [x− (γ/α)]−2

)
,

and hence

w′ = C1

(
x−γ (x− 1)γ−α [x− (γ/α)]−2

)
.

Thus, the solution of equation (22) is given by quadrature:

w = C1

∫ (
|x|−γ |x− 1|γ−α [x− (γ/α)]−2

)
dx+ C2, C1, C2 = const. (23)

Substituting the expression (23) in the formula (21), we obtain two indepen-
dent solutions of the original equation (16):

y1(x) =
(
x− γ

α

)∫ (
|x|−γ |x− 1|γ−α [x− (γ/α)]−2

)
dx, y2(x) = x− γ

α
·

Taking linear combination of y1(x) and y2(x) with arbitrary constant coefficients,
we obtain the general solution (17) to equation (16), thus completing the proof.

Remark 2. If γ and γ−α are rational numbers, one can reduce (23) to integration
of a rational function by standard substitutions and represent the solution (23)
in terms of elementary functions. See examples in Sections 4.2 and 7.

Corollary. Using the transformation (15) of equation (14) to the standard form
(13), one can integrate the equation (14) with E = − C :

(x2 +Ax+B) y′′ + (Cx+D) y′ − C y = 0. (24)
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3 Lagrangians for second-order equations

Definition 2. A differential function L(x, y, y′) is called a Lagrangian for a given
second-order ordinary differential equation

y′′ − f(x, y, y′) = 0 (25)

if equation (25) is equivalent to the Euler-Lagrange equation

δL

δy
≡ ∂L

∂y
−Dx

(
∂L

∂y′

)
= 0, (26)

i.e. if L(x, y, y′) satisfies the equation

Dx

(
∂L

∂y′

)
− ∂L

∂y
= σ(x, y, y′) · [y′′ − f(x, y, y′)], σ 6= 0, (27)

with an undetermined multiplier σ(x, y, y′).

The expanded form of equation (27) is

y′′Ly′y′ + y′Lyy′ + Lxy′ − Ly = σy′′ − σf(x, y, y′).

Noting that the equality of the coefficients for y′′ in both sides of the above
equation yields σ = Ly′y′ , we reduce equation (27) to the following linear second-
order partial differential equation for unknown Lagrangians1:

f(x, y, y′)Ly′y′ + y′Lyy′ + Lxy′ − Ly = 0, Ly′y′ 6= 0. (28)

Definition 3. The inverse variational problem for the second-order ordinary
differential equation (25) consists in finding a solution L(x, y, y′) of the partial
differential equation (28) with the independent variables x, y, y′ and the given
function f(x, y, y′).

Theorem 2. The inverse variational problem has a solution for any second-order
ordinary differential equation (25). In other words, a Lagrangian exists for any
equation y′′ = f(x, y, y′), where f(x, y, y′) is an arbitrary differential function.

Proof. The proof follows almost immediately from the Cauchy-Kovalevski the-
orem. Let us first assume that f(x, y, y′) 6= 0. Then the equation

f(x, y, y′)Ω2
y′ + y′ΩyΩy′ +ΩxΩy′ = 0

for characteristics of the differential equation (28) is not satisfied by Ω = y ′, and
hence the plane y′ = 0 is not a characteristic surface. Consequently, the Cauchy-
Kovalevski theorem guarantees existence of a solution to the Cauchy problem

f(x, y, y′)Ly′y′ + y′Lyy′ + Lxy′ − Ly = 0, L
∣∣∣
y′=0

= P (x, y), Ly′

∣∣∣
y′=0

= Q(x, y)

1The requirement Ly′y′ 6= 0, known as the Legendre condition, guarantees that the Euler-
Lagrange equation (26), upon solving for y′′, is identical with equation (25). See, e.g. [4],
Chapter IV.
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with arbitrary P (x, y) and Q(x, y). This solution satisfies the required condition
Ly′y′ 6= 0. Indeed, otherwise it would have the form L = A(x, y)y′ + B(x, y).
Substitution of the latter expression in equation (28) shows that the functions
A(x, y) and B(x, y) cannot be arbitrary, but should be restricted by the equation

∂A(x, y)

∂x
=

∂B(x, y)

∂y
·

The initial conditions L
∣∣
y′=0

= P (x, y), Ly′

∣∣
y′=0

= Q(x, y) require that A(x, y)

and B(x, y) should be identical with Q(x, y) and P (x, y), respectively. Thus,
Equation (28) has solutions satisfying the Legendre condition Ly′y′ 6= 0, provided
that f(x, y, y′) 6= 0. In the singular case f = 0 the existence of the required so-
lution is evident since the equation y′′ = 0 has the Lagrangian L = y′2/2. This
completes the proof (cf. [8], pp. 37-39; see also [4]. Chapter IV, §12).

The above existence theorem does not furnish, however, simple practical de-
vices for calculating Lagrangians of nonlinear differential equations (25). I sug-
gested in 1983 ([1], Section 25.3, Remark 1) a method for determining invariant
Lagrangians using the infinitesimal invariance test (7), and illustrated the ef-
ficiency of the method by second-order partial differential equations from fluid
dynamics. I will give here a more detailed presentation of my method, develop a
new integration theory based on invariant Lagrangians and illustrate it by non-
linear ordinary differential equations of the second order.
In the case of ordinary differential equations, the invariance test (7) has the

form
X(1)(L) +Dx(ξ)L = 0. (29)

We apply it to unknown Lagrangians L(x, y, y′) and known generators

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

admitted by the equation (1) in question, where ζ(x, y, y′) is obtained by the
usual prolongation formula:

ζ = Dx(η)− y′Dx(ξ) = ηx + (ηy − ξx)y
′ − y′2ξy. (30)

4 Invariant Lagrangians for Equation (1)

We search for invariant Lagrangians for equation (1),

y′′ =
y′

y2
− 1

xy
,

using the following two known symmetries ([3], Section 12.2.4):

X1 = x2 ∂

∂x
+ xy

∂

∂y
, X2 = 2x

∂

∂x
+ y

∂

∂y
· (31)
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The determining equation (28) for the Lagrangians of equation (1) has the form

(
y′

y2
− 1

xy

)
Ly′y′ + y′Lyy′ + Lxy′ − Ly = 0, Ly′y′ 6= 0. (32)

4.1 The Lagrangians admitting X1

The invariance test (29) under the first generator (31),

X1 = x2 ∂

∂x
+ xy

∂

∂y

provides the non-homogeneous linear first-order partial differential equation

x2∂L

∂x
+ xy

∂L

∂y
+ (y − xy′)

∂L

∂y′
+ 2xL = 0. (33)

The implicit solution V (x, y, y′, L) = 0 provides the homogeneous equation

x2∂V

∂x
+ xy

∂V

∂y
+ (y − xy′)

∂V

∂y′
− 2xL∂V

∂L
= 0. (34)

The characteristic system for the latter equation,

dx

x2
=

dy

xy
=

dy′

y − xy′
= − dL

2xL

gives three first integrals:

λ =
y

x
, µ = y − xy′, ν = x2L,

and the implicit solution V (λ, µ, ν) = 0 yields the solution

L =
1

x2
Φ(λ, µ) (35)

to the partial differential equation (33).

We have by definition of λ and µ :

λx = −
y

x2
, λy =

1

x
, λy′ = 0, µx = −y, µy = 1, µy′ = −x,

and therefore

Ly′ = −1
x
Φµ, Ly′y′ = Φµµ, Lyy′ = − 1

x2
Φλµ −

1

x
Φµµ,

Lxy′ =
1

x2
Φµ +

y

x3
Φλµ +

y′

x
Φµµ, Ly =

1

x3
Φλ +

1

x2
Φµ ·

11



Substitution of these expressions reduces the equation (32) to the following linear
equation with two variables λ and µ :

µΦλµ −
µ

λ2
Φµµ − Φλ = 0, Φµµ 6= 0. (36)

The characteristics Ω(λ, µ) = C of equation (36) are determined by the equa-
tion

µΩλΩµ −
µ

λ2
Ω2

µ ≡
µ

λ2
(λ2Ωλ − Ωµ) Ωµ = 0

equivalent to the system of linear first-order equations

Ωµ = 0, λ2Ωλ − Ωµ = 0.

Two independent first integrals of the latter system have the form

λ = C1, µ− 1
λ
= C2

and provide the characteristic variables u and v :

u = λ, v = µ− 1
λ
·

In these variables equation (36) takes the form

Φuv −
u

1 + uv
Φu −

1

u(1 + uv)
Φv = 0. (37)

i.e. the canonical form

Φuv + a(u, v) Φu + b(u, v) Φv + c(u, v)Φ = 0 (38)

with the coefficients

a(u, v) = − u

1 + uv
, b(u, v) = − 1

u(1 + uv)
, c(u, v) = 0. (39)

Equation (37) can be integrated by Laplace’s cascade method. Indeed, calcu-
lating the Laplace invariants

h = au + ab− c, k = bv + ab− c

for equation (37), one can readily see that one of these invariants vanishes, namely,
h = 0. Therefore, one can obtain the solution to equation (37) using the known
formula

Φ(u, v) =

[
U(u) +

∫
V (v)e

∫
a(u,v)dv−b(u,v)du dv

]
e−

∫
a(u,v)dv (40)

for the general solution of equation (38) with h = 0, where U(u) and V (v) are
arbitrary functions.
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Evaluating the integrals of the coefficients (39):
∫

a(u, v)dv = − ln |1 + uv|,
∫

b(u, v)du = − ln
∣∣∣∣
1 + uv

u

∣∣∣∣

and using the formula (40) one obtains the following general solution to equation
(37):

Φ(u, v) =
[
U(u) +

∫
V (v)

udv

(1 + uv)2

]
(1 + uv). (41)

Let us take a particular solution, e.g. by letting in (41) U(u) = 0, V (v) = v.
Then

Φ =
1

u
+
1 + uv

u
ln |1 + uv| = 1

λ
+ µ ln |λµ| = x

y
+ (y − xy′) ln

∣∣∣∣
y2

x
− yy′

∣∣∣∣ ,

and the formula (35) provides the following Lagrangian for equation (1):

L =
1

xy
+

(
y

x2
− y′

x

)
ln

∣∣∣∣
y2

x
− yy′

∣∣∣∣ . (42)

We have with this Lagrangian:

δL

δy
=

1

xy′ − y

(
y′′ − y′

y2
+
1

xy

)
.

Note that the exceptional situation in our approach that occurs when y−xy ′ = 0,
singles out the solution y = Cx to equation (1). See Remark in Section 4.2.

4.2 The Lagrangians admitting X1 and X2

The prolongation of the second operator (31) is

X2 = 2x
∂

∂x
+ y

∂

∂y
− y′

∂

∂y′

hence the invariance test (29) under X2 is written

2x
∂L

∂x
+ y

∂L

∂y
− y′

∂L

∂y′
+ 2L = 0. (43)

By the same reasoning that led to equation (34), one obtains the equation

2x
∂V

∂x
+ y

∂V

∂y
− y′

∂V

∂y′
− 2L∂V

∂L
= 0. (44)

Thus, the Lagrangians that are invariant under both X1 and X2 should solve
simultaneously the equations (33) and (43):

x2∂L

∂x
+ xy

∂L

∂y
+ (y − xy′)

∂L

∂y′
+ 2xL = 0,

2x
∂L

∂x
+ y

∂L

∂y
− y′

∂L

∂y′
+ 2L = 0.

(45)
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Looking for the solution in the implicit form V (x, y, y′, L) = 0, one arrives at the
system of two homogeneous equations (34) and (44):

Z1(V ) ≡ x2∂V

∂x
+ xy

∂V

∂y
+ (y − xy′)

∂V

∂y′
− 2xL∂V

∂L
= 0,

Z2(V ) ≡ 2x
∂V

∂x
+ y

∂V

∂y
− y′

∂V

∂y′
− 2L∂V

∂L
= 0,

(46)

where Z1 and Z2 are the following first-order linear differential operators:

Z1 = x2 ∂

∂x
+ xy

∂

∂y
+ (y − xy′)

∂

∂y′
− 2xL ∂

∂L
,

Z2 = 2x
∂

∂x
+ y

∂

∂y
− y′

∂

∂y′
− 2L ∂

∂L
·

(47)

The invariants for Z1 are λ = y/x, µ = y − xy′, ν = x2L. Furthermore, we
have Z2(λ) = −λ, Z2(µ) = µ, Z2(ν) = 2ν, and hence

Z2 = −λ
∂

∂λ
+ µ

∂

∂µ
+ 2ν

∂

∂ν
·

The characteristic equations

−dλ

λ
=

dµ

µ
=

dν

2ν

yield the following common invariants of Z1 and Z2 :

z = λµ ≡ y2

x
− yy′ , q = λ2ν ≡ y2L.

Thus, the general solution of the system (46) is V = V (z, q), and the equation
V (z, q) = 0 provides the following solution to the system (45):

L =
1

y2
Ψ(z), z =

y2

x
− yy′ · (48)

We have:

zx = −
y 2

x2
, zy = 2

y

x
− y′ , zy′ = −y

and therefore

Ly′ = −1
y
Ψ′ , Ly′y′ = Ψ′′ , Lyy′ =

1

y2
Ψ′ −

(
2

x
− y′

y

)
Ψ′′ ,

Lxy′ =
y

x2
Ψ′′ , Ly = −

2

y3
Ψ+

(
2

xy
− y′

y2

)
Ψ′. (49)

14



Substitution of these expressions reduces the equation (32) to a linear ordinary
differential equation of the second order, namely to the hypergeometric equation

z(1− z)Ψ′′ + 2zΨ′ − 2Ψ = 0, Ψ′′ 6= 0. (50)

Equation (50) has singularities at points z = 0, z = 1 and the infinity, z =∞.
The singular points z = 0 and z = 1 define singular solutions to equations
(1). This relationship between the singular points and singular solutions will be
discussed in the next Section. Let us consider now the solutions to equation (50)
at regular points z.

The substitution Ψ = zw reduces (50) to the integrable form (see Section 2.3)

z(1− z)w′′ + 2w′ = 0. (51)

Equation (51) can be solved in terms of elementary functions. Indeed, we have

dw′

w′
=

2dz

z(z − 1) ≡
2dz

z − 1 −
2dz

z

and obtain upon integration:

w′ = C1

(
1− 1

z

)2
,

whence2

w = C1

(
z − 1

z
− 2 ln |z|

)
+ C2. (52)

We let C1 = 1, C2 = 0 and obtain the following solution Ψ = zw to equation
(50):

Ψ(z) = z2 − 1− 2z ln |z|. (53)

Substituting (53) in (48), we obtain the following function L(x, y, y′) :

L = − 1
y2
+

y2

x2
− 2yy

′

x
+ y′2 − 2

(1
x
− y′

y

)
ln
∣∣∣
y2

x
− yy′

∣∣∣. (54)

Using (48), (49) and (53), one readily obtains

Ly′ =
2

y
− 2y

x
+ 2y′ +

2

y
ln
∣∣∣
y2

x
− yy′

∣∣∣, Ly′y′ = 2− 2x

x(y − xy′
,

Lyy′ = −2
x
+

2

y(y − xy′)
− 2

y2
ln
∣∣∣
y2

x
− yy′

∣∣∣, Lxy′ = 2
y

x2
− 2

x(y − xy′
,

Ly =
2

y3
+ 2

y

x2
− 2y

′

x
− 4

xy
+ 2

y′

y2
− 2 y

′

y2
ln
∣∣∣
y2

x
− yy′

∣∣∣.

2The same result can be obtained from the general formula (23) with α = −2, γ = 0.
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and hence the variational derivative of the function (54):

δL

δy
= 2
1− z

z

(
y′′ − y′

y2
+
1

xy

)
≡ 2x− y2 + xyy′

y(y − xy′)

(
y′′ − y′

y2
+
1

xy

)
.

Hence, the function L(x, y, y′) is a Lagrangian for equation (1) with the exclusion
of the singular points z = 0 and z = 1 of the hypergeometric equation (50).

Remark 3. According to (52) the general solution of equation (50) is given by

Ψ(z) = C1(z
2 − 1− 2z ln |z|) + C2z.

It is spanned by the singular solution (53) and the regular solution Ψ∗ = z. We
eliminated the regular solution because it leads to the trivial Lagrangian (48):

L∗ =
z

y2
≡ 1

x
− y′

y
·

Its variational derivative δL∗/δy vanishes identically.

5 Method of invariant Lagrangians

In the case of ordinary differential equations (25),

y′′ = f(x, y, y′), (55)

the infinitesimal symmetries (5) are written

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(56)

and the conserved quantities (6) have the form

T = ξL+
(
η − ξy′

) ∂L
∂y′

· (57)

The method of integration suggested here is quite different from Lie’s classical
methods (i.e. consecutive integration and utilization of canonical forms of two-
dimensional Lie algebras, see, e.g. [3], Section 12.2) and comprises the following
steps.

First step: Calculate the symmetries (56). Let equation (55) admit two lin-
early independent symmetries, X1 and X2.

Second step: Find an invariant Lagrangian L(x, y, y′) using the invariance
test (29) under the operators X1 and X2 and then solving the defining equation
(28) for L.

Third step: Use the invariant Lagrangian L and apply the formula (57) to the
symmetries X1 and X2 to find two independent conservation laws:

T1(x, y, y
′) = C1, T2(x, y, y

′) = C2. (58)
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Equations (58) mean only that the functions T1(x, y, y
′) and T2(x, y, y

′) preserve
constant values along each solution of equation (55). However, if T1 and T2 are
functionally independent, one can treat C1 and C2 as arbitrary parameters, since
the Cauchy-Kovalevski theorem guarantees that equation (55) has solutions with
any initial values of y and y′, and hence C1, C2 in (58) can assume, in general,
arbitrary values.

Fourth step: Eliminate y′ from two equations (58) to obtain the solution of
equation (55) in the implicit form:

F (x, y, C1, C2) = 0, (59)

where C1 and C2 are two arbitrary parameters.

6 Application of the method to Equation (1)

Let us illustrate the new method of integration by applying it to equation (1):

y′′ − y′

y2
+
1

xy
= 0 (60)

For this equation, we already know two symmetries (31),

X1 = x2 ∂

∂x
+ xy

∂

∂y
, X2 = 2x

∂

∂x
+ y

∂

∂y
, (61)

and the invariant Lagrangian (54),

L = − 1
y2
+

y2

x2
− 2yy

′

x
+ y′2 − 2

(1
x
− y′

y

)
ln
∣∣∣
y2

x
− yy′

∣∣∣. (62)

Since the Lagrangian (62) has singularites, we will begin with singling out the
associated singular solutions of equation (60).

6.1 Singular solutions associated with singularities of the La-
grangian

Recall that the hypergeometric equation (50) has the singular points

z = 0 and z = 1. (63)

According to definition of z given in (48), the singular points (63) provide two
first-order differential equations,

y′ =
y

x
(64)

and

y′ =
y

x
− 1

y
, (65)
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respectively. The Lagrangian (62) collapses at both singular points. Namely, L
is not defined at the point z = 0, i.e. at (64), and vanishes identically at the
point z = 1, i.e. at (65). See also Remark in Section 4.2. Equation (64) is readily
solved and yields y = Kx, K = const.
Equation (65) can be integrated, e.g. by noting that it admits the operators

(61). Indeed, equation (65) is identical with z = 1, where z is a differential in-
variant of X1 and X2. Hence, one can employ either canonical variables or Lies’s
integrating factors.

Method of canonical variables. Let us use, e.g. the operator X1. The
equations X1(τ) = 1 and X1(v) = 0 provide the following canonical variables:

τ = −1
x
, v =

y

x
·

In this variables, equation (65) is written

dv

dτ
+
1

v
= 0

and yields
v = ∓

√
−2t+ C.

Returning to the original variables, one obtains the following solution of equation
(65):

y = ±
√
2x+ Cx2 . (66)

One can also make use of the second symmetry (61). Then, solving the
equations X2(τ) = 1, X2(v) = 0 and assuming x > 0 for simplicity, one obtains

τ = lnx, v =
y√
x
·

In these canonical variables equation (65) becomes

dv

dτ
=

v2 − 2
v

,

whence
v(τ) = ±

√
2 + Ce2τ ·

The substitution y =
√
x v(τ), τ = lnx yields the previous solution (66).

Method of integrating factors. Recall that a first-order differential equa-
tion

M(x, y)dx+N(x, y)dy = 0 (67)

with a known infinitesimal symmetry

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
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has the following integrating factor known as Lie’s integrating factor:

µ(x, y) =
1

ξM + ηN
· (68)

Furthermore, if one knows two linearly independent integrating factors µ1(x, y)
and µ1(x, y), one can obtain the general solution of equation (67) from the alge-
braic relation

µ1(x, y)

µ2(x, y)
= C (69)

with an arbitrary constant C. Applying these two principles to equations (67) with
two known infinitesimal symmetries, one obtains the general solution without
integration.
Let us return to our equation (65). We rewrite it in the form (67):

(x− y2)dx+ xydy = 0

and use its two known infinitesimal symmetries (61):

X1 = x2 ∂

∂x
+ xy

∂

∂y
, X2 = 2x

∂

∂x
+ y

∂

∂y
·

Lie’s integrating factors (68) corresponding to X1 and X2, respectively, have the
form:

µ1(x, y) =
1

x2(x− y2) + x2y2
=
1

x3
, µ2(x, y) =

1

2x(x− y2) + xy2
=

1

2x2 − xy2
·

Therefore the algebraic relation (69) has the form

2x− y2

x2
= C.

Upon solving it with respect to y, one obtains the singular solution (66).
We summerize: The Lagrangian (62) has singularities only at the following

singular solutions of equation (60):

y = K x, y = ±
√
2x+ C x2 , K, C = const. (70)

Remark 4. The singular point z = 1 provides two singular solutions,

y =
√
2x+ C x2

and
y = −

√
2x+ C x2,

because equation (60) is invariant under the reflection y → −y of the dependent
variable.
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6.2 The general solution

We will find now the regular solutions by means of our integration method dis-
cussed in Section 5. Since we already know the symmetries (61) and an invariant
Lagrangian (62) for equation (60), we can proceed to the third step.
Application of the formula (57) to the operators (61) yields:

T1 = x2 L+ x(y − xy′)Ly′ , T2 = 2xL+ (y − 2xy′)Ly′ .

Let us substitute here L and Ly′ from equations (48) and (49), respectively:

L =
1

y2
Ψ(z), Ly′ = −1

y
Ψ′(z), z =

y2

x
− yy′,

where, according to (53),

Ψ(z) = z2 − 1− 2z ln |z|, Ψ′(z) = 2(z − 1− ln |z|).

Thus, we arrive at the following two linearly independent conserved quantities:

T1 =
x2

y2
Ψ(z)− x(y − xy′)

y
Ψ′(z) ≡ −x2

y2
(1− z)2,

T2 =
2x

y2
Ψ(z)− y − 2xy′

y
Ψ′(z) ≡ −2 x

y2
(1− z)2 − 2(z − 1− ln |z|).

In the original variables x, y, and y′ the conserved quantities are written

T1 = 2x− 2x
2y′

y
− x2

y2
− y2 + 2xyy′ − x2y′2 ,

T2 = 2

(
1− x

y2
− 2xy

′

y
+ yy′ − xy′2 − ln

∣∣∣
y2

x
− yy′

∣∣∣
)
.

(71)

However, the form (71) of the conserved quantities is not convenient for elimi-
nating y′ from the conservation laws. Therefore, we will use the following repre-
sentation of T1 and T1 in terms of the differential invariant z :

T1 = −
x2

y2
(1− z)2, T1 −

x

2
T2 = x(1− z + ln |z|). (72)

Then one can readily eliminate the variable z instead of y′.
Fourth step: Let us write the conservation laws (58) in the form

T1 = −C2
1 , T2 = 2C2.

Using the expression of T1 given in (72), we have

x2

y2
(1− z)2 = C2

1 ,
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whence

1− z = C1
y

x
, z = 1− C1

y

x
·

Substitution of the above expressions in the second equation (72) yields:

−C2
1 − C2x = x

(
C1

y

x
+ ln

∣∣∣C1
y

x
− 1
∣∣∣
)
.

Hence, the two-parameter solution (59) is given in the implicit form:

C1y + C2x+ C2
1 + x ln

∣∣∣C1
y

x
− 1
∣∣∣ = 0.

Invoking two singular solutions (70), we see that the complete set of solutions
to equation (60) is given by the following distinctly different formulae (cf. [3]):

y = K x, y = ±
√
2x+ C x2 ,

C1y + C2x+ C2
1 + x ln

∣∣∣C1
y

x
− 1
∣∣∣ = 0.

(73)

Remark 5. The representation of the solution by the different formulae (73) does
not conflict with uniqueness of the solution to the Cauchy problem. Indeed, any
initial data x = x0, y(x0) = y0, y′(x0) = y′0 is compatible only with one formula
(73) chosen in accordance with the initial value z0 = (y

2
0/x0)−y0y

′

0 of the invariant
z. Namely, the solution with the initial data x = x0, y(x0) = y0, y′(x0) = y′0 is
given by the first or the second formula (73) if z0 = 0 or z0 = 1, respectively.
Otherwise it is given by the third formula (73). The constants K,C,C1, C2 are
found by substituting x = x0, y = y0, y′ = y0 in the formulae (73) together with
their differential consequences:

y′ = K, y′ = ± 1 + Cx√
2x+ C x2

,

C1 y
′ + C2 + ln

∣∣∣C1
y

x
− 1
∣∣∣+

C1(xy
′ − y)

C1 y − x
= 0,

(74)

Examples of initial value problems.

(i) Let x0 = 1, y0 = 1, y′0 = 1. Then z0 = 0, and hence the solution belongs
to the first formula (73). The substitution x = 1, y = 1, y′ = 1 in (73) and
(74) yields K = 1. Hence, the solution of equation (60) with the initial data
x0 = 1, y0 = 1, y′0 = 1 has the form y = x.

(ii) For the initial data x0 = 1, y0 = 1, y′0 = 2, one has z0 = −1. Therefore the
solution belongs to the third formula (73). Substituting the initial values of x, y, y ′

(73)-(74), one obtains C1 = 2, C2 = −6, and hence 2y−6x+4+x ln |(2y/x)−1| =
0.

(iii) For the initial data x0 = 1, y0 = 1, y′0 = −1, one has z0 = 2. Accordingly,
the solution is given by the third formula (73) with C1 = −1, C2 = − ln 2.
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(iv) If x0 = 1, y0 = 1, y′0 = 0, one has z0 = 1. Hence, we should use the
second formula (73), where we have to specify the sign and determine the constat
C by substituting the initial values x0 = 1, y0 = 1, y′0 = 0 in (73)-(74). The
reckoning shows that the solution is given by the second formula (73) with the
positive sign and C = −1, i.e. it has the form y =

√
2x− x2.

(v) Likewise, taking x0 = 1, y0 = −1, y′0 = 0, one can verify that the solution
of the Cauchy problems is given by the second formula (73) with the negative
sign and C = −1, i.e. y = −

√
2x− x2.

7 The Lagrangian and integration of Equation (2)

Consider now Equation (2):

y′′ = ey − y′

x
·

It has the following two symmetries ([3], Section 9.3.1):

X1 = x ln |x| ∂
∂x
− 2(1 + ln |x|) ∂

∂y
, X2 = x

∂

∂x
− 2 ∂

∂y
· (75)

The determining equation (28) for the Lagrangians of equation (2) has the form

(
ey − y′

x

)
Ly′y′ + y′Lyy′ + Lxy′ − Ly = 0, Ly′y′ 6= 0. (76)

7.1 Calculation of the invariant Lagrangian

Let us find the invariant Lagrangian for our equation using both symmetries (75).
The invariance test (29) under the operators (75) yields:

x ln |x|∂L
∂x
− 2(1 + ln |x|)∂L

∂y
−
[2
x
+ (1 + ln |x|) y′

] ∂L
∂y′

+ (1 + ln |x|)L = 0,

x
∂L

∂x
− 2∂L

∂y
− y′

∂L

∂y′
+ L = 0.

(77)
Looking for the solution of the system (77) in the implicit form V (x, y, y′, L) = 0,
one arrives at the system of two homogeneous equations

Z1(V ) = 0, Z2(V ) = 0 (78)

with the linear differential operators

Z1 = x ln |x| ∂
∂x
− 2(1 + ln |x|) ∂

∂y
−
(2
x
+ (1 + ln |x|)y′) ∂

∂y′
− (1 + ln |x|)L ∂

∂L
,

Z2 = x
∂

∂x
− 2 ∂

∂y
− y′

∂

∂y′
− L

∂

∂L
·
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The invariants for Z1 are

λ = x ey/2 ln |x|, µ = (2 + xy′) ln |x|, ν = L e−y/2.

Hence, the first equation Z1(V ) = 0 yields that V = V (λ, µ, ν). Furthermore, we
have

Z2(λ) = x ey/2 =
λ

ln |x| , Z2(µ) = 2 + xy′ =
µ

ln |x| , Z2(ν) = 0.

Thus, we have for V = V (λ, µ, ν) :

Z2(V ) =
1

ln |x|

(
λ
∂V

∂λ
+ µ

∂V

∂µ

)
.

Hence, the second equation (78) is identical with the equation Z̃2(V ) = 0, where

Z̃2 = λ
∂

∂λ
+ µ

∂

∂µ
·

Solutions z = µ/λ and ν to the characteristic equation

dλ

λ
=

dµ

µ

provide the following common invariants of Z1 and Z2 :

z =

(
2

x
+ y′

)
e−y/2 , ν = L e−y/2.

Thus, V = V (z, ν). The equation V (z, ν) = 0 when solved for ν yields ν = Ψ(x),
or:

L = ey/2Ψ(z), z =

(
2

x
+ y′

)
e−y/2 · (79)

We have:

zx = −
2

x2
e−y/2 , zy = −

z

2
, zy′ = e−y/2 ,

and therefore

Ly′ = Ψ′ , Ly′y′ = e−y/2Ψ′′ , Lyy′ = −z

2
Ψ′′ ,

Lxy′ = − 2
x2
e−y/2Ψ′′ , Ly =

1

2
ey/2

(
Ψ− zΨ′

)
. (80)

Substitution of these expressions reduces the equation (76) to the integrable linear
ordinary differential equation of the form (24) with the coefficients C = −1,
B = −2 and A = D = 0 :

(z2 − 2)Ψ′′ − zΨ′ +Ψ = 0. (81)
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In accordance with Section 2.3, we rewrite equation (81) in the new independent
variable t defined by (15), where we replace x and x1, x2 by z and z1 =

√
2,

z2 = −
√
2, respectively. Thus, we let

z =
√
2 (1− 2 t) (82)

and arrive at the hypergeometric equation of the form (16) with α = −1 and
γ = −1/2 :

t(1− t)Ψ′′ +
(
t− 1

2

)
Ψ′ −Ψ = 0, (83)

where Ψ′ denotes the differentiation with respect to t. The solution to equation
(83) is given by the formula (17) and has the form

Ψ(t) = (2t− 1)(MJ +N), (84)

where M,N are arbitrary constants and J is the following integral:

J = 4
∫ √

|t(t− 1)|
(2t− 1)2 dt. (85)

Let us evaluate the integral J and express the solution (84) in elementary func-
tions.
We will first assume that t(t− 1) > 0, i.e. either t > 1 or t < 0. According to

(82), it means that
z2 − 2 > 0. (86)

Using this assumption, let us rewrite the integral J in the form

J = 4
∫

t
√
(t− 1)/t
(2t− 1)2 dt. (87)

The standard substitution (t− 1)/t = s2 together with the expressions

√
t− 1
t
= s, t =

1

1− s2
, dt =

2sds

(1− s2)2
, 2t− 1 = 1 + s2

1− s2
, (88)

transforms the integral (85) to the form

J = 8
∫

s2ds

(1− s2)(1 + s2)2
=

∫ (
1

s+ 1
− 1

s− 1 +
2

s2 + 1
− 4

(s2 + 1)2

)
ds .

Since ∫
ds

(s2 + 1)2
=

s

2(s2 + 1)
+
1

2

∫
ds

s2 + 1
,

the integral J reduces to

J = ln
∣∣∣∣
s+ 1

s− 1

∣∣∣∣−
2s

s2 + 1
·
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Invoking the definition (88) of s and using the assumption (86), one obtains the
following expression for the integral (85):

J = ln
(√

|t|+
√
|t− 1|√

|t| −
√
|t− 1|

)
− 2
√

t(t− 1)
2t− 1 ≡ ln

(√
|t|+

√
|t− 1|

)2
− 2
√

t(t− 1)
2t− 1 ·

Substituting J in (84) one obtains the following solution of equation (83):

Ψ(t) =M
[
(2t− 1) ln

(
|t|+ |t− 1|+ 2

√
t(t− 1)

)
− 2
√

t(t− 1)
]
+ (2t− 1)N.

Using the definition (82) of variable z, the inequality (86) and the equations

2t− 1 = − z√
2
, |t|+ |t− 1| = |z|√

2
, 2

√
t(t− 1) =

√
z2 − 2√
2

,

we have

Ψ(z) = −M√
2

[√
z2 − 2 + z ln(

√
z2 − 2 + |z|)

]
+

M ln
√
2−N√
2

z .

We simplify the above expression by taking M = −
√
2, N = −

√
2 ln

√
2 and

obtain
Ψ(z) =

√
z2 − 2 + z ln(

√
z2 − 2 + |z|). (89)

Finally, substituing (89) in (79), we arrive at the following Lagrangian:

L =

√(2
x
+ y′

)2
− 2ey+

(2
x
+y′
){
ln

(√(2
x
+ y′

)2
− 2ey+

∣∣∣
2

x
+y′
∣∣∣
)
−y

2

}
. (90)

Introducing in (90) the notation

B =
√(2

x
+ y′

)2
− 2ey

and using (80) and (89), one obtains:

L = B +
(2
x
+ y′

){
ln

(
B +

∣∣∣
2

x
+ y′

∣∣∣
)
− y

2

}
,

Ly =
1

2
B, Ly′ = −y

2
+ ln

(
B +

∣∣∣
2

x
+ y′

∣∣∣
)
,

Ly′y′ = − 1B , Lyy′ =
1

2B
(2
x
+ y′

)
, Lxy′ =

2

x2B · (91)

Thus, one has with the Lagrangian (90):

δL

δy
=
1

B

(
y′′ +

y′

x
− ey

)
.

Remark 6. By reducing Ψ(z) to (89) we eliminated the regular solution Ψ = z
of equation (81). The reason for the elimination is that Ψ = z leads to the trivial
Lagrangian (79), L∗ = y′ + (2/x).
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